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Abstract

Terahertz (THz) time domain spectroscopy is emerging as a powerful tool to char-
acterise samples both chemically and physically. In this work di�erent methods of
estimating spectroscopic parameters of a sample, its thickness and the uncertainty
of these estimates is presented. A number of case studies are also examined includ-
ing paracetamol polymorphs and a method of creating a spectroscopic simulant of
Semtex-H is presented.

Approximation of the sample spectroscopic parameters, real refractive index and
absorption coe�cient were formed by building up a simple model of the samples
interaction with THz radiation. Methods of correcting unwrapping error in the real
refractive index were developed, including a method to correct in the presence of
discontinuities in the refractive index itself. These approximations were then applied
to extract parameters of both lactose and paracetamol samples.

An algorithm to generate spectroscopic simulants was developed and applied to
Semtex-H. These simulants consisted of simple mixtures of inert compounds, which
were measured and found to have similar spectrum to the target sample.

Methods of �tting resonant models to the sample response were developed to
extract both the spectroscopic parameters and sample thickness. These were re�ned
by calibrating for the Gaussian beam pro�le of the THz radiation, which was shown
to increase the accuracy of the extracted thickness. The thickness and spectroscopic
parameters of a lactose sample were measured with temperature, and it was found
that the spectroscopic parameter change was underestimated when thickness was
assumed constant.

A resonant model for multilayered samples was then developed and used to
characterise IPA in a �owcell measurement. This was then combined with a method
of time segmentation of the sample response, to extract spectroscopic parameters
and sample thickness simultaneously. This was then applied to a two layer sample,
to extract the spectroscopic parameters of a silicon and a quartz layer from a single
measurement.

Finally, methods of propagating the uncertainty from the time domain to the
spectroscopic parameters were developed. These were based on a multivariate nor-
mal statistical model of the measurements and were compared to numerical bootstrap
and Monte–Carlo estimates. These were used to develop con�dence intervals for
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the extracted refractive index, absorption coe�cient and thickness. These methods
were applied to both a lactose and quartz sample.
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ż columnated complx variable and
conjigate of a complx multivari-
ate variable

z̃ columnated complx variable and
conjigate of a complx multivari-
ate variable in Fourier symetry
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Chapter 1

Introduction

Terahertz (THz) radiation refers to a frequency band of the electromagnetic spec-

trum between ultrahigh frequency radiation (up to 300 GHz) and infrared radiation.

Generally the frequency range considered is between 0.1 and 10 THz. For a long time,

the term "THz gap" [1] has been used widely referring to the fact that this part of

the spectrum was inaccessible until relatively recently. This inaccessibility was due

to the fact that THz radiation is located at frequencies between the easily accessible

conventional radio frequencies and optical frequencies. To access this frequency

band, electronic devices needed to either become faster and or new optical devices

had to be developed.

There are several advantages of the terahertz frequency band as both an imaging

and sensing medium. Notably, many materials which are opaque at other frequencies

are transparent at THz frequencies [2], THz radiation is non–ionising [3] and is

sensitive to both intramolecular and intermolecular vibrational modes [4].

The fact that many materials are transparent to THz radiation and that is can be

used safely at low powers has lead to applications in security [5], industrial control

[6], non–destructive testing [7], [8] and heritage conservation [9].

Of particular interest is THz spectroscopy, the analysis of the interaction of THz

electromagnetic radiation with materials. At THz frequencies a number of e�ects

have been identi�ed, including intermolecular and intramolecular vibrational modes

[10]. Gas molecules show rotational modes at THz frequencies [11] which has lead to

interest in using THz gas spectroscopy for atmosphere research [12]. The sensitivity
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to intermolecular modes shown by THz spectroscopy means that it is sensitive to

crystal structure, so could be used as a complimentary method to X-ray di�raction

to sense crystal structure changes [13]. In particular, it is sensitive to di�erent

polymorphs [14] and isomers [15] of the same compound, which has signi�cant

implications for the pharmaceutical industry, where such solid state modi�cations

of a compound can have vastly di�erent physical properties and impact drug delivery

[16].

Another use of THz spectroscopy is the identi�cation of materials. Drugs of abuse

[5] and explosives [17] have both been shown to be identi�able by THz spectroscopy,

and THz spectroscopy is foreseen as a potential means of detecting restricted com-

pounds in security screening. Water is particularly absorbent of THz radiation, so

applications involving monitoring water content have also been suggested [18].

In this work, a transmission terahertz (THz) time domain spectroscopy (TDS)

is used, as it provides a coherent measurement of pulsed THz radiation through

a sample [17] and is a relatively common "tabletop" method of performing THz

spectroscopy. The research in this work is primarily focused on the extraction of

sample refractive index, absorption coe�cient and thickness, with their correspond-

ing measurement uncertainty. The techniques developed can be applied to several

applications and could be adapted to di�erent THz spectroscopic instruments (in

particular continuous wave instruments or re�ection instruments) by adapting the

model of sample interaction with THz radiation.

1.0.1 Objectives and structure of this work

The objective of this work is to develop algorithms which can be used to extract

the real refractive index, absorption coe�cient and thickness of a sample, and their

corresponding uncertainty, of a sample using THz TDS.

This thesis is divided into six main chapters. The �rst outlines the principles

of THz TDS and signal processing techniques. The second chapter covers simple

extraction approximations and phase unwrapping corrections, and applies these

techniques to some samples of interest. The third chapter demonstrates a method

of creating mixtures which mimic the spectrum of an explosive using a mixture
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generating algorithm. The fourth chapter covers more complex extraction tech-

niques, which allow for the extraction of the sample thickness, calibration against

Gaussian beam e�ects, characterising an unknown layer in a sample, a new method

of extracting thickness and a method of extracting multiple layer properties. The

�nal experimental chapter covers the uncertainty in measurements and a multivari-

ate statistical method of estimating the uncertainty within parameters. Finally, a

conclusion and review of this work is presented.
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Chapter 2

Principles of terahertz

time-domain spectroscopy and

signal processing

In this chapter, the principles of THz TDS and how to extract the refractive index and

absorption coe�cient from a solid sample are discussed. An overview of di�erent de-

tection and emission devices is �rst discussed with an emphasis on THz time domain

transmission spectroscopy. A brief overview of the operation THz TDS systems used

in this work is then given. After this, a section reviewing signal processing in THz

TDS and section covering propagation within dielectrics is given.

2.1 Terahertz time domain spectroscopy instruments

Development of terahertz spectroscopy has been primarily driven by the develop-

ment of coherent detectors and emitters in the THz frequency range. Incoherent radi-

ation from mercury arc lamps [19] was �rst used to perform spectroscopy, which was

followed by the development of photo–conductive switches [20] and electro–optic

emitters [21] and detectors [22]. These devices are driven by femtosecond lasers,

originally dye lasers [20] were used, but have been supplemented by Ti:sapphire

lasers [23] and �ber lasers [24]. These systems generate broadband pulses of THz

radiation and measure the generated radiation coherently in the time domain.
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Beyond the scope of THz TDS instruments, there are several other THz detec-

tion and emission technologies including photo–mixers [25], parametric sources

[26], Schottky diodes [27], gas lasers [28] and quantum cascade lasers [29]. These

instead generate and detect continuous radiation as opposed to the pulsed radiation

used in this work. There are also two notable high powered sources of radiation,

synchrotrons and free–electron lasers [30], both of which are electron beam fa-

cilities. Additionally, bolometers [31] or Golay cells [32] can be used to perform

non–coherent detection for many of these sources. In this work a femtosecond laser

is used with a beam splitter to both pump the emitter and sample the THz radiation,

and this ensures that the sampling laser does cause time sample jitter. However,

by using two separate lasers with di�erent repetition rates it is possible to achieve

signi�cantly faster time sampling [24]. Another variation is to use a laser with a

variable THz frequency comb to enhance the frequency resolution of the THz TDS

measurement [33].

Transmission instrument geometry is used within this work and is where a

sample is placed in between an emitter and detector. This has the notable di�culty

of being limited by the instruments dynamic range, while being simpler to align and

perform reference measurements. Instead, re�ection geometry can be used, where

a sample is placed in front of both emitter and detector and the re�ected radiation

is measured. While instruments in this orientation are more capable of measuring

absorbent and optically thick samples [34], they require precise alignment of sample

and reference mirror.

This work is focused exclusively on the use of THz TDS instruments and in this

section an overview of the operation of the emitters, detectors, laser and instrument

is given.

2.1.1 Photo–conductive emission and detection

Photo–conductive switches generate THz radiation similarly to the simple Hertzian

dipole [20], by creating a short transient current a far �eld propagating THz electric

wave is emitted.

The bandwidth of this electric wave is proportional to the di�erential of the
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current density [20] and thus a a transient current of extremely short time period is

required. A femtosecond laser pulse is used to generate this current by exciting elec-

trons across the energy band gap within a photo–active semiconductor. An external

electrical bias (typically 100-600 V in this work) is then used to rapidly accelerate

these carriers, creating the transient current. The semiconductor is designed so that

the carriers generated have an extremely short lifetime. In this work low tempera-

ture grown gallium arsenide (LT-GaAs) which is then annealed to introduce defects

which shorten the carrier lifetime [35] is used. As the laser pulse width is extremely

small compared to the carrier lifetime, the transient current time period is predomi-

nantly determined by this carrier lifetime and thus so is the THz bandwidth of the

produced radiation.

Figure 2.1: A photo–conductive emitter, the THz radiation is shown as blue cones and the
femtosecond laser is shown red line.

In Figure 2.1, the schematic of a photo–conductive emitter is shown. The switch

consists of two electrical contacts which are biased with a strong DC electric �eld. A

a femtosecond laser pulse is used to excite a freespace THz pulse, which radiates from

the surface towards the source of the laser and through the substrate. Collecting

radiation in re�ection orientation (the former) gives a broader bandwidth as the

THz radiation has not propagated through the emitter [36], which will act to absorb

radiation. However, more power is generally coupled into the substrate material due

to it’s higher permittivity, leading to greater power being transmitted through the

substrate [37].

The switch can also be used in reverse to time sample a THz pulse. A femtosecond
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laser beam which arrives at the same time as the THz radiation is used to generate

carriers within the switch. However, instead of having an external electrical bias,

the THz electric �eld is used as the driving �eld for the carriers [38]. This creates

a current which is proportional to the amplitude of the THz electric �eld. As the

lifetimes of the carriers are much shorter than the THz pulse, this acts as a time

sampling mechanism where both the laser pulse and THz are incident on the detector.

By changing the time di�erence between the two pulses it is possible to time sample

an entire THz waveform.

Photoconductive switches have the advantage of being relatively compact coher-

ent high bandwidth room temperature emitters and detectors, which can be driven

by "turn–key" lasers. They can also be combined with other similar emission and

detection technologies, in particular electro–optic detection. For these reasons, they

have become a common technology to drive THz TDS systems [34].

The patterned design of the photoconductive emitter can vary considerably and

a number of designs have been attempted, including bowtie, log spiral [39], Hertzian

dipole [40] and interlaced �ngers [41]. However, the primary element of the design

is the gap between the two electrodes. There exists a compromise between a large

gap and a narrow gap. In the former, larger biases can be applied [42], increasing

THz power. In the former, larger bandwidths of radiation can be produced [43].

While photo–conductive emitters and detectors are a relatively robust technol-

ogy, they do have some limitations. In particular, the laser pulse energy must be

absorbed by the device to emit the radiation, resulting in unwanted heating e�ects

[43] and optical saturation of the device [44], and the electric bias can cause device

breakdown [45]. Another issue, which is common to other emission and detection

schemes, is that the THz radiation can resonate within the devices. This leads to

re�ections in the time trace which can limit the re�ection–free time window.

In this work, LT-GaAs-on-Quartz devices [46] are used. These devices are LT-

GaAs devices fabricated on z-cut quartz. The use of quartz serves two purposes,

�rstly it acts to increase the dark resistivity of the device reducing parasitic heating

e�ects. Secondly, it is a mostly THz transparent material of almost arbitrary thickness

which can be used to delay the emitter or detector system re�ections.
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2.1.2 Electro–optic sampling

Electric–optic sampling is a detection scheme for THz radiation. It is driven by a

femtosecond laser which is coherent with the THz radiation (this is usually achieved

by using the same or a synced laser to generate the radiation [24]). The THz ampli-

tude is encoded into the laser pulse, which has a much shorter pulse width than the

THz radiation. This in e�ect forms a time sample of the THz electric �eld, which

can be changed in time by changing the arrival time of the laser pulse relative to the

THz pulse. This can then be used to sample the entire THz pulse.

(a) (b) (c) (d)

THz

Probe

Figure 2.2: Electro–optic sampling detector. (A) - Electro–optic crystal, with laser and THz
radiation incident on it, (B) - quarter wave plate, (C) - Wollaston prism and (D) - balanced
photodiodes.

Figure 2.2 shows the electro–optic sampling scheme. In the electro–optic crys-

tal, Figure 2.2(a), the THz radiation and sampling laser pulse co–propagate and the

instantaneous amplitude of the THz radiation modulates the laser beam’s polari-

sation by inducing a birefringence via the Pockels e�ect [47]. Before entering the

electro–optic crystal the laser beam is linearly polarised, the electro–optic crystal

exhibits birefringence proportional to the THz electric �eld [47]. This results in a

phase change for di�erent orthogonal components aligned with the di�erent crys-

tal axes and shifts the linear polarisation towards ellipticity. This ellipticity will be

proportional the THz electric �eld and if no electric �eld is present, the laser beam

will remain linearly polarised (provided there is no residual birefringence). This is

followed by a quarter wave plate, Figure 2.2(b), which adds a polarisation bias, if no

electric �eld is present the laser beam will be circularly polarised. In the presence

of an electric �eld, it will be elongated than in the absence of an electric �eld. A

Wollaston prism is used to split two orthogonal components of the beam, this is
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aligned so that one represents the narrowing of the elliptical polarisation and the

other represents the lengthening of the polarisation. Each of these beams are mea-

sured by a balanced pair of photo–diodes. These beams will have equal intensity

if no THz radiation is present, otherwise the di�erence will correspond to the time

sample amplitude of the THz.

The particulardisadvantage of using this detection scheme, is that the THz radi-

ation and optical probe interact over the entirety of the electro–optic crystal. This

would in principle increase the sensitivity of the detector, if it were not for the dif-

ferent propagation speeds of the laser and THz pulses. This leads to the temporal

position of the probe pulse moving relative to the THz pulse, creating a low–pass

�lter e�ect. This can be counteracted by using phase matching schemes, either by

angling the crystal and the radiation directions [48] or by �nding a probe beam

frequency which has a similar propagation velocity to the THz radiation [49]. An-

other way to compensate for this e�ect is to use thinner crystals [50], however the

THz radiation can become resonant within the detector crystal limiting the usable

time window [51]. These re�ection can be mitigated by using either matched delay

crystals [49] or anti–re�ection coatings [52]. Another consideration of thin crystals

is the di�culties in manufacturing and handling [53].

Electro–optic sampling has been demonstrated with a number of electro–optic

crystal materials, most notably lithium–niobate [48] which requires an angular phase

matching scheme or zinceblende crystals such as Zinc telluride (ZnTe) [48] or Gal-

lium phosphide (GaP) when increased bandwidth is required [54]. For both materials,

a collinear phase matching scheme can be employed with a 820 nm probe radiation

[49]. ZnTe is most commonly used because of its higher sensitivity, however, it is

bandwidth limited to 5 THz due to absorption modes at these frequencies [55]. GaP

is lower sensitivity but has a greater detection range and has been shown to be usable

up to 7 THz [54].

2.1.3 Femtosecond lasers

Femtosecond lasers are lasers which generate pulses of optical radiation with fem-

tosecond pulse widths. These lasers are used in THz TDS spectroscopy to both gen-
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erate and detect the THz radiation. In this work Ti:Saphire lasers are used, which

make use of a Ti:saphire crystal as both a lasing material and as a non-linear lens to

shape the pulses [56].

The short pulse width is required for both the generation and detection schemes.

In the former, the THz radiation is generated by the femtosecond laser pulse and the

bandwidth of the generated radiation is proportional to the pulse width of the laser

used to drive the generation process [36]. In the sampling instances, the pulse is es-

sentially approximated as a delta function and needs to be relatively small compared

to the THz radiation to be an e�ective instantaneous time sample.

The wavelength of the laser is more nuanced and is generally determined by

the photon energy required to generate carriers in photo–conductive devices or

the phase matching conditions required in in electro–optic sampling. Fortunately,

both of these are satis�ed at approximately 800 nm in LT-GaAs semiconductors [57],

ZnTe electro–optic crystals and GaP electro–optic crystals , which is within the

Ti:sapphire lasers operational range of 650–1000 nm [58].

2.1.4 Terahertz TDS systems used in this work

In this work three di�erent THz TDS systems are primarily used, referred to in this

work as: the low frequency broadband (LFRBB THz TDS) system, the high frequency

resolution (HFRBB THz TDS) system and the narrowband (NB THz TDS) system.

Acronyms are used to maintain brevity during this work. These instruments have

been developed by members of the THz group and represent a number of technical

innovations made by these members.

The LFRBB THz TDS system has a bandwidth from 0.3 THz to 7 THz. The

system is driven by a Vitatra-HP (Coherent) laser with a < 20 fs pulse duration and

a average power of 1 W, which is used to both generate and detect radiation. In both

cases approximately 90% was used for pumping the emitter and 10% was used for the

probe beam. In Figure 2.3, the LFRBB THz TDS system is shown. (A) shows the linear

delay stage used to change the beam path lengths (and thus arrival times), (B) shows

where a sample is placed in the system (not present in reference measurements), (C)

the emitter in re�ection geometry, (D) the electro–optic sampling detection scheme
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(A)

(D)(C)

(B)

Pump

Probe

Controlled Atmosphere

(E)

Figure 2.3: The low frequency resolution broadband system: (A) - mechanical delay stage, (B)
- sample, (C) - photoconductive emitter in re�ection geometry, (D) - electro–optic sampling
detector, (E) - silicon beam block for re�ected pump laser beam.

and (E) a silicon optical beam block. The beam block is used to block the re�ected

pump beam (from the emitter and parabolic mirror) from interfering with detection,

and is transparent to THz radiation but opaque to the optical beam. The system is

encased in a controlled atmosphere of dry air to remove the e�ects of water vapour

from the system [59] (humidity less than 1 % for all measurements).

Unusually for a THz TDS system, the emitter is set up in re�ection geometry.

The radiation is collected from the frontside of the emitter and as such has a broader

bandwidth. The emitter used in the version of the system is a LT-GaAs photo con-

ductive emitter, described in [46]. The detector consists of a electro-optic sampling

system, using a 0.15 mm thick GaP electro-optic crystal.

In Figure 2.4 the HFRBB THz TDS system is shown. The system is the same

as the LFRBB THz TDS except the emitter and detector have been replaced with

LT-GaAs-on-Quartz photo–conductive devices [46] and a second delay stage (E) is

present in the probe beam. In this work the second delay stage is only used for

alignment.

The NB THz TDS system is shown in Figure 2.5. The laser driving both the pump

and probe in this system is a Mai Tai (Spectra physics), with a pulse width of 100

fs and power of 2 W. 90% is used to drive the system and 10% of this beam used

to probe the detector. The photo conductive emitter used is a LT-GaAs-on-Quartz



2.1. TERAHERTZ TIME DOMAIN SPECTROSCOPY INSTRUMENTS 13

(A)

(D)(C)
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Probe

Controlled Atmosphere

(E)

(F)

Figure 2.4: The high frequency resolution broadband system: (A) - mechanical delay stage,
(B) - sample, (C) - Photo-conductive emitter in re�ection geometry, (D) - photo–conductive
detector, (E) - second delay stage, (F) - silicon beam block for re�ection pump laser beam.

(A)

(D)(B)

(C)

Pump

Probe

Controlled Atmosphere

Figure 2.5: The Narrowband THz TDS System: (A) Mechanical delay stage, (B) - Photo
conductive emitter in transmission geometry, (C) - Sample, (D) - electro-optic sampling
detector
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device. The electro-optic sampling system used in this system uses a 2 mm ZnTe

electro-optic crystal. This system has a lower bandwidth of 3 THz, which is why it

is referred to as the narrowband system in this work.

2.1.5 Time sampling in a terahertz time domain system

The THz TDS system samples a THz waveform, but does this by only sampling

di�erent instants of multiple generated waveform and construct a single waveform

from these time samples. This relies on the generated waveforms being consistent

and that the waveform does not change between samples.

The detection scheme makes use of the laser’s short pulse length, e�ectively

treating it as a impulse function, to sample the THz radiation. The probe beam will

drive the detector sampling the THz radiation at the instant when the probe arrives.

The time instant at which the amplitude of the THz radiation is sampled is dictated

by the time di�erence between the pump and probe pulses being incident on the

emitter and detector respectively. This time di�erence is changed by repositioning

the optical delay stage (which will change the path length). In Figure 2.6 the rela-

tionship between the optical time di�erence and sampled waveform is shown. In

Figure 2.6 (A), the optical arrival times are shown relative to the THz pulse, with their

arrival time di�erence, δt. This relates to the sampled THz waveform in Figure 2.6

(B), where the sample time corresponds to δt of the lasers and thus a spatial position

of the delay stage. The measured amplitude at the time sample will correspond to

the amplitude of the THz waveform at the probe’s arrival time.

The stage will be held at a position corresponding to the time sampling instant

for a time interval much greater than the repetition rate of the laser. The output

at the detector will therefore consist of a signal (optical or electrical depending on

detector) which has a repetition rate of the laser. By using a detector with a much

lower response time, this is implicitly averaged and will form a constant signal. In

Figure 2.7, the averaging e�ect of the detected signal is shown. Figure 2.7 (A), the

output of the detector is shown (assuming stage has constant position at each sam-

pling point) and Figure 2.7 (B) shows the output signal (green) over the sample hold

period, Thold. In Figure 2.7 (C) the output of the detector is an average of individual
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Figure 2.6: (A) - The amplitude of the THz radiation is sampled at the time instant dictated
by the di�erence between pump and probe arrival times, δt. The pump and probe beams are
shown as red beams beams sampling the black THz pulse for clarity. (B) - The time sampled
waveform measured. The time instant corresponds to δt and the amplitude corresponds to
the THz amplitude where the probe arrivals.

detected pulses (shown as red lines) and in Figure 2.7 (D) these individual detected

signals have a repetition frequency of the laser, Flaser, each of which corresponds to

an individual generated and detected THz pulse, Figure 2.8 (E).

The bias voltage that is applied to the emitter is electrically chopped with a 7 KHz

square wave. This results in the THz and thus detector output being chopped (the

detector has a response time comparable to the chopping time period) see Figure 2.8,

which is then fed into a lock-in ampli�er.

The lock-in ampli�er takes a reference from the emitter bias and the detected

signal, and demodulates and applies a low-pass �lter, which it then samples using

an analogue to digital converter, see Figure 2.9. This is sent to a computer which

records the THz scan.

To e�ectively sample the waveform the di�erence between the pump and probe

arrival times can be changed, this is done using mechanical delay stages incorporated

into the beam paths. This changes the path lengths of the beams relative to each

other, and thus the di�erence in arrival times of pulses. A simple method of sampling

the time waveform is thus to move the stage in a small step, measure, and repeat for

the entire measurement time window. An alternate method used in this work, is to

move the stage at constant velocity and sample with constant time period.
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µ

Thold 1
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(A) (B) (C) (D)

(E)

Figure 2.7: (A) - The detected waveform from the detector, (B) - The measured waveform
amplitude held for sample hold time Thold, (C) - The measured amplitude (green) is an average
of the individual detected signal (red), (D) - The individual detected signals have a repetition
frequency of Flaser and (E) - The individual detected signals correspond to an individual
sampled THz pulses.

THz

Emitter Detector

Figure 2.8: The driving emitter bias is electrically chopped, resulting in a chopped THz beam
and chopped detector output

ADC

Mixer Low Pass Filter Ampli�er

From Detector

Chopper Reference

To Computer

Figure 2.9: The lock-in system diagram: The input is demixed against the reference, this is
then low passed �ltered using a moving average �lter, ampli�ed and is then �nally resampled
using an ADC.
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THz
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Figure 2.10: Relation between the sampled THz waveform to the free space radiation. At
each time sample, the stage position is held constant (or moved slowly) for the sampling
hold period, Thold. This consists of a chopped waveform, chopped at Fbias. This chopped
waveform is an average of individual measured signals with a repitition rate equal to the laser,
Flaser. Each of the individual measured signals corresponds to one generated and detected
THz pulses.

A restriction on the stage hold time or stage velocity, is the lockin’s �lter time.

The lockin uses a moving average �lter, the length of which is determined by the

time constant used in the lockin settings. If the stage is moving during this time

period (regardless of sampling scheme) the �lter will act on the THz wave.

The sampling time period (in real time) must therefore be longer than the �lter

time period, to have no e�ect. However, the (THz) sampling period must be more

than twice the bandwidth of the THz pulse, see § 2.3.4. This is dictated by the spacial

separation of the stage at sampling points, so this restriction is on the velocity of

the stage (and thus measurement time).

In Figure 2.10, the relation between each THz pulse and the sampled THz wave-

form is shown. The sampled THz waveform is constructed from millions of individ-

ual THz pulses. The sampled waveform (shown using stepped movement for clarity)

has a sample time period of Thold This waveform consists of a chopped (at Fbias)

waveform. And each of these chopped waveforms is an average of many samples

taken at the repetition rate of the laser, Flaser.
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2.2 Extraction of spectroscopic parameters in THz TDS

The processing of THz TDS signals has developed in parallel to system development.

Originally, transmission spectra were used as a means of identifying water vapour

in one of the earliest THz TDS systems [59]. This developed into the use of the Beer

Lambert law [47] and relating the real refractive index to the change in phase.

Duvillaret et al [60] developed a method of treating the sample as a linear system

and �tting a planar wave model to the transfer function in the frequency domain.

By exploiting this method, the thickness of a sample could be extracted in situ. Two

di�erent methods of thickness extraction were developed, a method of matching

the separated pulses of an optically thick sample [61] and a method of minimising

frequency domain etalons in optically thin samples [61]. A method used in this

work was developed by Dorney et al, who minimised etalons using a direct search

of total variance [62]. A variation of this was developed using a Fourier transform

to measure these etalons in a quasi space domain instead [63]. Techniques which �t

transfer function models models are discussed further in Chapter 5.

These methods have been shown to be very e�ective and are capable of extracting

the thickness while mitigating the e�ect of etalons in the extracted parameters. The

two primary issues with these methods has been (i) that there are residual etalons

present after extraction and (ii) that a direct search for the thickness is required. For

the former, a proposed solution to this has been to use a moving average �lter which

is dependent of the con�dence interval of the measurements [64]. The latter issue

will often require a computationally expensive iteration over a range of thicknesses.

A fast method of extracting the thickness has been developed using a 3 dimensional

optimisation of curve multipliers [65]. This was used to extract the thickness and

then a full parameter extraction using a resonant model. While this is reported to be

very e�ective, it relies on a low frequency resolution approximation, extracts a low

resolution value and has multiple solutions. This in e�ect requires a good estimate of

thickness and optical parameters before extraction. A method which enables direct

extraction of the sample thickness, refractive index and absorption using multiple

measurements of the sample with di�erent alignments has been developed [66].
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While this enabled direct extraction of the thickness of the sample, it relies on precise

knowledge of the sample alignment which is often not trivial.

A similar idea to �tting to the transfer function has been to reconstruct the sam-

ple time response and minimise the di�erence to the measured sample response [67].

While the authors show that this method is accurate, it is noted to be slower and it

is not clear what signi�cant bene�t this technique has. A similar, but arguably more

bene�cial idea, has been to combine a transfer function model with a parametric

model of refractive index [68], [69]. Parametric methods of extraction are generally

more accurate [70] provided that the model accurately represents the data. Unfor-

tunately this typically mandates the use of a non–parametric method to estimate

the model. However, a parametric method might be well suited to industrial control

applications where the sample of interest is well known. Related to this has been the

idea of using a Genetic algorithm to assign properties to a multiple layers of paint

[71]. However, this technique would require considerable computational power to

operate and is not inherently deterministic.

There have also been several tomographic techniques using the THz pulse to

extract sample thickness [72]. These methods rely on using the temporal properties

(equivalent to the group phase delay) to extract the thickness and the average re-

fractive index. However, it has been suggested that temporal methods of measuring

the thickness are substantially less accurate than frequency domain methods [73].

A suggested method of improving tomography techniques has been to �nd a sparse

representation of the time domain signal, which only encodes information about

interfaces [74].

Methods have been developed to extract information in the case of more complex

samples. In this case, a singular layer within the sample is unknown but a complete

model of the layer structure is used [64]. This is discussed further in Chapter 5. A

common method of modelling a layered structure in continuous wave systems is to

use a transfer matrix method [75]. This however relies on a standing wave forming

through the sample, an e�ect which does not often occur in THz TDS. One method

of dealing with this is to do partial normalisation of the sample response against

another related sample. This was done in the case of [76], where a �owcell was used.
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However, this is a non-general method which reduces dynamic range. Another

method, which has been adapted from �nite resonance models, is to estimate a �nite

resonance model of the multilayer sample using initial estimates [64]. Both of these

methods rely on partial information about the sample, in particular only one of the

layers can be unknown and all other layers must be speci�ed in the model. Multilayer

extraction is discussed further in Chapter 5.

Noise reduction methods have been developed but have primarily focused on

white noise reduction. In particular, simple averaging of repeated measurements has

been identi�ed as a principle means of reducing the zero mean noise in a measure-

ment [77]. Convolutional Gaussian frequency �lters [78] and Wiener deconvolution

[79] have been used �lter out noise. The primary reason these are not used in this

work is that these improve the time domain measurement by �ltering the frequency

domain. As the analysis is primarily performed in the frequency domain in this

work, this is both detrimental and not required. In addition, there are a number of

assumptions about the noise when applying a Wiener �lter (particularly stationary

noise [70]), which were not found to be valid in the measurements in this work, see

Chapter 6.

A di�erent technique has been the use of wavelet thresholding [79]. In this

technique, a wavelet transform is applied to the time domain measurements and

then a subtractive threshold is applied. The theory is that the THz pulse is well

compressed into intense coe�cients by this process but the noise is not, so applying

a subtractive threshold removes more noise than signal. There are several issues

with this, the selection of wavelet transform parameters can have a large e�ect on the

performance, there is substantial signal dependent noise (which is well compressed)

and the �ltering process can introduce distortion into the process. A more recent

related method has been empirical mode decomposition [80], which makes use of

both a transformed signal and reference noise to perform the �ltering. However,

since the reference noise is taken in absence of the sample, it likely has similar issues

to wavelet thresholding.

A concept related to noise removal is uncertainty analysis. In this case, noise

is simply a source of measurement uncertainty which can be characterised. With-
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ayachumnankul et al [81] used a similar process to the method in this work (see

Chapter 6) based on univariate statistics and uncertainty propagation. The primary

issue with this method, is that it assumes independence between time and frequency

samples, which is not true of the measurements in this work. Krüger et al [82]

extended this methodology to derive a term for �tting models, which used a simi-

lar methodology to that recommended in the Guide to Expression of Uncertainty

in Measurement [83], to project the uncertainty onto the error and then onto the

extracted parameters. There also exists an older method [61], which is less com-

monly cited in the literature, which makes use of a calibrated parametric model to

estimate the uncertainty in complex refractive index, ñ,. However this is dependent

on calibration measurements. This is discussed further in Chapter 6.

While Kramers–Kronig methods are not required to calculate either the real

refractive index or absorption of a sample in THz TDS, some authors have devised

methods which attempt to exploit approximations of these transforms. Bernier et

al. [84] devised an iterative method of improving the parameters, by recursively

applying the Kramers–Kronig relations to improve extracted parameters. Another

more recent use, has been to use Kramers–Kronig relations to extract the thickness of

a water channel in a �owcell structure [85], using a similar process to total variance.

Peiponen et al. has done extensive work on the use of Kramers–Kronig relations

in THz spectroscopy, in particular as a method of aligning re�ection systems [86],

detection of scattering e�ects [87], consistency checks on extracted parameters [88]

and extraction of spectroscopic parameters in the absence of measured thickness

[89].

The Fourier transform is known to over parametrise (as it �ts to multiple fre-

quencies), so it is common in signal processing to use a time domain model to extract

a frequency response which gives an improved frequency response [70]. Tych et

al. used a continuous time domain model to extract the frequency response of a

sample [90]. However, identi�cation of a suitable model can be di�cult and will be

sample dependent. In particular, as the spectrum of a sample can consist of dozens

of absorption modes, extremely high order time domain models may be required.

A di�erent method of using THz radiation is to use empirical analysis to iden-
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tify sample properties. In this case, distinguishing features of a THz spectrum are

identi�ed for known training samples, this is then used to identify features in future

samples. This can be done using spectroscopic parameters [91] or just using the

frequency spectrum [92]. In the latter, while simpler, it introduces a dependence on

the instrument.

2.3 The transfer function and Fourier transform

Throughout this work, the transfer function of the spectroscopic sample is often

referred to. In this section, the concept of an impulse response is introduced. This

is followed by the Fourier transform, which is then applied to the impulse response

to derive the transfer function. A transfer function is a quantitative measure of a

system, which in this case is the spectroscopic sample. The practical aspects of time

and frequency sampling are then discussed, which are expanded into the concept of

frequency resolution. Frequency resolution is currently a limitation within the THz

TDS measurements due to re�ections within the time trace.

2.3.1 Linear time invariant systems

A sample within a spectroscopic system can be considered a linear time invariant

(LTI) system acting on the THz radiation. A LTI system is a system with a linear

relationship between its input and output which does not change over time [93]. In

this work, the input is considered to be a reference THz TDS measurement and the

output is considered to be a sample THz TDS measurement.

x(t) y(t)

y(t) = F (x(t))

Figure 2.11: A LTI system, which relates input x(t) and output y(t) via function F. In the
diagram above, a THz pulse is the input and a sample THz measurement is the output. The
sample is the LTI system which transforms the THz pulse to the sample response.

In Figure 2.11 a LTI system is shown. The input consists of a continuous variable

of time, x(t), and the output consists of second variable of time, y(t). The relation
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between the two is the function F which represents the system. In the case of a LTI

system this can always be written as convolution operation [93]:

y(t) = F (x(t)) = (x ∗ h)(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ (2.1)

where h is the impulse response of the system and represents the case where the

input is an impulse function. A way of quantitatively describing the spectroscopic

sample’s interaction with the THz radiation is to use its impulse response.

The system is considered linear because convolution is both additive and scalar

multiplicative [93]:

((ax) ∗ h) (t) = a (x ∗ h) (t) (2.2)

((x1 + x2) ∗ h) (t) = (x1 ∗ h) (t) + (x2 ∗ h) (t) (2.3)

It is also considered time invariant as any shift in time of the input leads to a corre-

sponding time shift of the output:

y(t+ a) = (x ∗ h) (t+ a) (2.4)

2.3.2 Complex representation

A variable is said to be complex if it has both a real and imaginary part:

z = a+ ib (2.5)

where z is a complex complex variable and both a and b are real variables. i is the

imaginary unit and is the square root of minus one, i =
√

(−1).

The conjugate of a complex variable is de�ned as:

z∗ = a− ib (2.6)

Thus another de�nition of a is:

a = <(z) =
1

2
(z + z∗) (2.7)
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and b:

b = =(z) =
i

2
(z − z∗) (2.8)

The exponential of a complex variable is equal to two complex sinusoids:

ez = |z| ei∠z = |z| cos(∠z) + i |z| sin(∠z) (2.9)

where |z| is the magnitude and ∠z is the angle or phase of the complex variable.

The magnitude is de�ned as:

|z| =
√

(a2 + b2) (2.10)

and the angle is de�ned as:

∠z = tan−1

(
b

a

)
(2.11)

A method of representing sinusoids is to use complex numbers:

cos(θ) = <
(
eiθ
)

=
1

2

(
eiθ − e−iθ

)
(2.12)

2.3.3 Fourier series and Fourier transforms

Fourier transforms are used to convert THz TDS measurements from the time domain

to the frequency domain. A brief overview of the Fourier series and the analytical

Fourier transform is presented in this subsection. This is then related to the concept

of a transfer function of a LTI system.

A function which is periodic can be represented as a summation of sinisiods.

Consider the signal x(t), which is periodic, such that:

x(t) = x(t+ kTx) (2.13)

where k is an arbitrary integer and Tx is the time period of x(t). If this signal has
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�nite energy, it can be expressed as a Fourier series [70]:

x(t) = a0 +
∞∑
k=1

akcos (kω0t+ θk) (2.14)

where w0 = 2π
Tx

, ak are the Fourier coe�cients and θk is a phase o�set for each

frequency.

The Fourier series can then be expressed in terms of complex exponentials and

negative frequencies:

x(t) =
∞∑

k=−∞
zke

ikω0t (2.15)

where zk is a complex Fourier coe�cient and z−k is its conjugate.

zk can always be found by performing an integration over the period T :

zk =
1

Tx

∫ T+t0

t0

x(t)e−ikω0tdt (2.16)

where t0 is an arbitrary start point for the integration.

This can be expanded to include the case where Tx → ∞, i.e. for non peri-

odic functions. Under such case, the series coe�cients converges on a continuous

frequency spectrum [70]:

X(ω) = F (x(t)) =

∫ ∞
−∞

x(t)e−iωtdt (2.17)

where F represents the Fourier transform. Conversely, a function of time can be

expressed as the inverse Fourier transform of a spectrum:

x(t) = F−1 (X(ω)) =

∫ ∞
−∞

X(ω)eiωtdω (2.18)

where F−1 represents the inverse Fourier transform.

The Convolution theorem can be used to represent convolution in the time

domain as multiplication in the frequency domain [93]:

F−1 (X(ω)Y (ω)) = F−1 (F (x(t))F (y(t))) = (x ∗ y)(t) (2.19)
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This can be used with regards to a LTI. The output spectrum Y (ω) can instead be

represented as multiplication of the input spectrumX(ω) with the transfer function

H :

Y (ω) = X(ω)H(ω) (2.20)

The transfer function is thus the frequency domain equivalent of the impulse re-

sponse. This can be used to deconvolve an impulse response of a system with known

input and output [93]:

h(t) = F−1 (H(ω)) = F−1

(
Y (ω)

X(ω)

)
(2.21)

The description of the spectroscopic sample is spectroscopically described in

terms of frequency, so applying a Fourier transform is generally required to extract

these parameters. Additionally, using Fourier transforms represents a way of decon-

volving the impulse response. In this work the frequency domain equivalent, the

transfer function, is generally used when describing the sample response.

2.3.4 Discrete time sampling

The THz time trace is not measured continuously, rather it is discreetly sampled at

regularly intervals. This results in important limitations on the bandwidth of the

spectrum, in particular aliasing can occur if the scan is not sampled at a high enough

frequency. This sub section brie�y outlines discrete time sampling a variable which

is a function of time.

It is not realisable to measure a variable over time continuously, instead the vari-

able must be sampled at discrete intervals. This is modelled as being instantaneous

samples of a variable x(t):

x(k) = x(tk) (2.22)

where x(k) is the time sample of x(t) at time stamp tk. It should be noted that both

k and tk are in�nite sequences for the purposes of analysis. In this work x(t) is
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considered bandwidth limited, such that its spectrum:

X(ω) = 0, |ω| > ωc (2.23)

where ωc is the cut-o� frequency. Under these circumstances it is preferable to use

a periodic sampling:

x(k) = x(kTs) (2.24)

where Ts is the sampling period. Using this scheme it is possible to accurately

measure bandwidth limited variables. However, the sampling frequency, Fs, must

be greater than or equal to twice the highest frequency of x(t) to prevent aliasing

[93]:

Fs ≥ 2fc (2.25)

where fc = ωc
2π .

For a discrete time signal the integral is replaced with a summation to produce

the discreate time Fourier transform (DTFT) [70]:

X̂(ω) = F (x(k)) =

∞∑
k=−∞

x(k)e−iωkTs (2.26)

Where X̂(ω) is the continuous spectrum of the in�nite sequence x(k) and is an

analytical transform. It is related to the spectrum of x(t), X(ω) by [70]:

X̂(ω) = Fs

∞∑
k=−∞

Xc (ω − k2πFs) (2.27)

In the case of a bandwidth limited signal this results in the spectrum being

periodic with sampling frequency Fs. Shown in Figure 2.12 is an illustration of the

periodicity of THz spectrum. The spectrum is both continuous and periodic with the

sampling frequency, Fs = 25 THz. It should be noted that this is actually a discrete

sampled spectrum (see the next section).
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-25 0 25
Frequency (THz)

X(
ω

)

Figure 2.12: Periodic bandwidth of a DTFT. In this case, the THz spectrum is periodic with
the sampling frequency of 25 THz.

2.3.5 The discrete Fourier transform

A continuous frequency spectrum is not practically realisable for the same reason a

continuous time variable is not. Instead, the frequency domain must be sampled. A

regularly sampled spectrum is de�ned as:

X(m) = X(mδf ) (2.28)

wherem is the frequency index and δf is referred to as the computational resolution

(see below). This will produce instantaneous samples in the frequency domain. To

synthesize time samples, instead of performing integration, summation is used [70]:

x̂(k) =
1

N

N
2
−1∑

j=−N
2

X(m)ei2πδfmk (2.29)

This equation has the same form as equation 2.15 and is thus a �nite Fourier series.

This also means that the synthesised x̂(k) is periodic with 1
δf

, which equates to N

time domain samples.

Within this period of N samples the synthesised samples can be related to the

original time samples [70]:

x̂(k) = x(k), 0 ≤ k < N (2.30)
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Outside of this range x̂(k) will repeat.

This provides a method of producing �nite Frequency samples from �nite time

samples. For the �nite time samples, x(k), of length N , there is the �nite frequency

spectrum, X(m), which is related to the discreate Fourier transform (DFT) [70]:

X(m) =
N−1∑
k=0

x(k)e−i
2π
N
mk (2.31)

It is conventional that the index m extends between 0 and N − 1 as the spectrum

is periodic, so indices above N
2 are equal to the negative indices. There also exists a

inverse DFT [93]:

x(k) =
N−1∑
m=0

X(m)ei
2π
N
mk (2.32)

In this work, an analytical Fourier transform is not used. Instead a DFT is used

on the THz time domain scans. This produces corresponding frequency samples

of the THz spectrum. Processing is performed on a set of discrete frequencies, al-

though analytically it is treated as a continuous variable. The measured bandwidth

is limited by the sampling frequency and the frequency resolution is limited by the

time window used. The latter is often an experimental limitation, due to re�ections

in the time scan.

It is possible to increase the number of frequency samples, by a process known

as zero padding:

x0(k) =


x(k) if 0 ≤ k < N

0 if N ≤ k < L

(2.33)

In this case x(k) has been expanded to a L length sequence by appending zeros. A

L length discrete spectrum can then be calculated using the DFT. This process is

equivalent to up–sampling and applying a smoothing �lter in the frequency domain.

Thus no new information is added by this process, instead additional frequency sam-

ples are interpolated. It is for this reason that δf is referred to as the computational

frequency resolution.

The DTFT of a �nite xw(k) of length N is equivalent to in�nite zero padding

(L = ∞). This is distinct from x(k) and is often viewed as sampling x(k) over a
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�nite length window. In this case xw(k) is:

xw(k) = x(k)w(k) (2.34)

where w(k) is a window function. The simplest window function is a rectangular

window function of length N :

w(k) =


1 , 0 ≤ k < N

0 , otherwise
(2.35)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

t

Figure 2.13: Two sine waves at slightly di�erent frequencies

The use of a time window leads to a limited frequency resolution and to frequency

leakage (in the time domain this is the sharp truncation of time domain features)

[93]. The use of a �nite period of time leads to uncertainty in the frequency of a

component. In Figure 2.13 two sinusoids are shown with similar periodicity are

shown. As time progresses they diverge, and are easily distinguishable. Therefore as

the time window length is increased, the uncertainty of the frequency of a sinusoid

is decreased. This is fundamentally di�erent from the computational frequency

resolution, as it re�ects the limit of the time window used to accurately resolve

di�erent frequencies. The simplest method of de�ning frequency resolution is to

take the reciprocal of the time window length, 1
Tw

[93]. This is not a “hard” resolution,

it rather re�ects the minimum width of the window function in the frequency domain

which “smears” the frequency spectrum of the non–windowed time domain signal.



2.3. THE TRANSFER FUNCTION AND FOURIER TRANSFORM 31

Another consideration is that time signals of �nite length can not be enhanced by

increasing the time window length.

The DFT has adjustable computational frequency resolution (via zero padding),

increasing this will not change the frequency resolution of the time window. How-

ever, it is still important to consider the computational frequency resolution because

aliasing can occur in the frequency domain [93]. This is most prominent when

considering the magnitude or phase of the spectrum.
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Figure 2.14: (A) - spectrum magnitude, (B) - spectrum phase and (C) - unwrapped spectrum
phase. Blue - zero–padded spectrum and Red - non zero–padded spectrum

The magnitude of the complex spectrum can often consist of peaks which are

sampled in the case of the DFT. This sampling however does not have to align with

the peaks. This can result in features appearing to be considerably di�erent. In

Figure 2.14(A), the non zero–padded spectrum is shown as a red line and the zero–

padded spectrum is shown as a blue line. The non zero–padded spectrum appears to

be a singular wide peak, however zero–padding has revealed a much narrower peak

(frequency resolution limited by the time window used) with considerable frequency

leakage (the side lobes).

Another common case of aliasing is with the phase of a spectrum. This is ex-

tremely important when considering phase unwrapping. The phase is assumed to be

a continuous line, if the sampling period steps over the wrapping discontinuities it

will be incorrectly unwrapped. Fortunately aliasing can be prevented by increasing

the computational frequency resolution. In Figure 2.14(B) the non zero–padded spec-

trum is shown as a red line and the zero–padded spectrum is shown as a blue line.
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This has been unwrapped in Figure 2.14(C) (see § 3.9) but have produced dramatically

di�erent unwrapped phases.

The unwrapping of the phase is particularly important in this work as the spec-

troscopic parameters extracted in this will be dependent on the unwrapped phase.

Thus in this work zero-padding has been used to produce a computational frequency

resolution of 10 GHz.

2.4 Propagation of electromagnetic radiation within di-

electric materials

In this section the propagation of electromagnetic waves in a dielectric medium is

discussed. A simple singular frequency propagation model is discussed in the con-

text of dielectric materials, where the e�ect of refractive index is discussed. This

model is expanded to the idea that there exists a complex multiplier for distance

propagated in a dielectric medium. In the subsequent chapters, this concept is used

as a basis for propagation within a sample and within air. Boundary conditions are

brie�y discussed, which provide a simpli�ed basis for the relationships between the

re�ected, transmitted and incident waves at an interface. Finally, a brief explanation

of the features observed in refractive index and absorption is presented. The charac-

teristic shape of a relaxation is also exploited to form an unwrapping correction to

the real refractive index, see § 3.9.

2.4.1 Electromagnetic wave propagation

In this work, the propagation of electromagnetic (EM) radiation through a dielectric

is considered. The simplest EM wave is a sinusoidal wave [47], which consists of

an sinusoidal electric wave with a perpendicular magnetic wave. The magnetic

wave is always present, however as only dielectrics are considered in this work, it is

assumed to not interact with the materials. Instead the electric wave is of particular

importance [47].
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The simplest electric wave consists of a sinusoid:

e(z, t) = e0<
(
eiωt−

2π
λ
z+θ
)

(2.36)

where ω is the angular frequency of the wave, t is the time axis, z is the propagation

direction, e(z, t) is the electric wave, e0 is the amplitude of the wave, θ is the phase of

the wave and λ is the wavelength. Using the Fourier transform, an arbitrary shaped

wave can be viewed as a superposition of these waves at di�erent frequencies. These

waves are often referred to as plane waves, as the phase of the wave is consistent

within a plane perpendicular to the propagation direction. In this work, most of the

models assume that the waves take this form.

However, later in the work, § 5.8, a slightly more complex propagation mode is

considered. This is the Gaussian propagation mode, which has a well de�ned spatial

distribution. In this case, perpendicular to the propagation direction, the intensity

drops o� with a Gaussian pro�le (de�ned by the Gaussian probability distribution

of the same name). In the region of the focus, a Gaussian pro�le beam is well

approximated by a plane wave.

2.4.2 Electromagnetic wave propagation within dielectrics

The phase velocity of a wave is:

ve = fλ (2.37)

Within a dielectric, EM waves propagate at lower velocity. The ratio between the

velocity within a material and a vacuum is the real refractive index [47]:

n =
c

ve
=
λ0

λ
(2.38)

where c is the phase velocity in a vacuum (or more concisely the velocity of light)

and λ0 is the wavelength in a vacuum. The frequency does not change within the

dielectric, thus the wavelength changes.

Within a dielectric electric waves can be absorbed, this can be modelled by using
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damped sine waves as a basis [47]:

e(z, t) = e0e
−ωκz

c <
(
ei(ωt−

2π
λ
z+θ)

)
(2.39)

where the extinction coe�cient, κ, is the frequency dependent extinction coe�cient.

This can can be rearranged to include the frequency dependent complex refractive

index, ñ:

e(z, t) = e0<
(
ei(ωt−

ωñ
c
z+θ)

)
(2.40)

where ñ = n− iκ. This can be used to derive the propagation coe�cient in § 3.2.

2.4.3 Boundaries between dielectrics

At an interface between two dielectrics, a boundary condition occurs. The wave

inside one material will propagate di�erently to that in another material. Across the

boundary both the electric and magnetic wave must be consistent between the two

materials, for a wave incident at the interface, part of the wave is re�ected to satisfy

this constraint.

The wave impedance is the ratio between the magnetic and electric waves within

a dielectric [94]:

z =
E

B
=

1

ñ
z0 (2.41)

where z0 is the wave impedance of free space. The waves at the interface can be

related, for the electric �eld:

Bi +Br = Bt (2.42)

and magnetic �eld:

Bi −Br = Bt (2.43)

where Bi and Bi are the electric and magnetic waves incident on the interface, Er

and Br are the electric and magnetic waves re�ected and Et and Bt are the trans-

mitted electric and magnetic waves. This assumes that the waves are propagating

perpendicular to the interface.

Using the wave impedance and these relations, the complex ratios between in-
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cident and transmitted, and between the incident and re�ected waves can be found

[94]. These form the Fresnel re�ection and transmission coe�cients [47], which are

used in § 3.2 to construct models of the sample transfer function.

2.4.4 Polarisation and permittivity

A dielectric can be considered to consist of various charges bound in di�erent ways.

For instance, charge will often be distributed around a crystal lattice. When an

electric �eld is applied over a portion of the dielectric, a force is exerted on these

charges which will displace the charges from their rest state and an opposite restoring

force will occur.

The displacement of these charges relative to the neutral positions induces a

electric dipole moment. This can be measured by the induced polarisation [47]:

P = xq (2.44)

where x is the charge displacement, and q is the charge.

For a dielectric, the polarisation can be related to the electric �eld by the permit-

tivity [47]:

P = (ε̃− 1) ε0E (2.45)

where ε̃ is the complex relative permittivity and ε0 is the permittivity of free space.

The real part of the permittivity relates to the change in polarisation and the imagi-

nary part relates to the frequency dependent loss of energy within the material.

A propagating electric wave in a dielectric is coupled to the polarisation, thus

the permittivity acts to slow the wave down. The permittivity can then be related

to the complex refractive index [47]:

ε̃ = ñ2 (2.46)

Thus, the underlying polarisation mechanism (at a particular frequency) will often

dictate the value of the permittivity and thus refractive index at that frequency. By

modelling the polarisation as a function of frequency, it is possible to identify the
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refractive index as a function of frequency.

The bound charges can e�ectively be modelled by charged masses on the end

of a spring, i.e. a simple harmonic oscillator. This can be viewed as being driven by

the propagating electric �eld. The oscillator model can be viewed as a summation

of the driving electric force, a restorative force (the metaphorical spring) which is

proportional to the displacement, a damping force which is proportional to the mass

velocities and Newtons second law which equates force to being proportional to

acceleration.

m
d2x

dt2
+ a

dx

dt
+ bx = −qE(t) (2.47)

This can be converted to polarisation:

d2P

dt2
+ a

dP

dt
+ bP =

q2

m
E(t) (2.48)

Which can be solved by applying a Fourier transform and rearranging:

P (ω) =
q2

m

1

ω2
0 − ω2 + iaω

E(ω) (2.49)

where ω0 =
√
b. The permittivity can then be said to be [47]:

ε̃(ω) ∝ 1

ω2
0 − ω2 + iaω

+ 1 (2.50)
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Figure 2.15: A relaxation in permittivity, blue - real permittivity and green - imaginary
permittivity

The permittivity (and the underlying polarisation) can be seen as dictating the
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complex refractive index as a function of frequency. An underlying oscillator has a

natural frequency, which results in a peak in the absorbance of the material (imagi-

nary parts of ñ and ε̃) which can be �tted with a Lorentzian function and in the real

parts a relaxation, a sharp discontinuity within absolute value (this term is not used

to refer to dielectric relaxation processes within this work). In Figure 2.15, both the

real and imaginary parts of permittivity are shown when this model is used. The

imaginary part is shown in green and has a strong Lorentzian peak, and the real part

is shown in blue and has a peak followed immediately by a valley.

A dielectric will generally have many polarisation processes and can typically be

considered a superposition of di�erent harmonic oscillators. A substantial number

of other e�ects can a�ect the measured permittivity. In particular, the thermal en-

ergy of the material will a�ect the oscillation mechanisms leading to homogeneous

broadening of relaxations [95] and various scattering processes will increase the ap-

parent losses or result in non-homogeneous broadening [96]. In molecular materials

at THz frequencies these are generally intermolecular and are non-trivial to assign,

requiring detailed modeling and calculation of the absorption modes [97]. While

this work does not generally assign physical features to the spectra measured, these

relaxation processes can be observed throughout the work and in § 3.9, the shape of

a relaxation is exploited to correct the real refractive index.

2.5 Conclusion

In this chapter, a brief overview of the principles required to understand the work

in later chapters is presented. The principles of the THz TDS system have been

presented, in particular how noise is reduced and time sampling is achieved. The

discrete Fourier transform and the transfer function were introduced, both of which

are used later to form estimates of material parameters. Finally propagation of the

THz radiation within a dielectric is discussed from which a model of THz interaction

with a sample is derived.
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Chapter 3

Estimation of sample refractive

index and absorption coe�cient

This chapter consists of a de�nition of complex refractive index, real refractive index,

extinction coe�cient, absorption coe�cient and dielectric permittivity, and how they

interrelate. A brief overview of the processing steps required to approximate them

is presented. It is then discussed how these relate to THz propagation through a

sample, and a transfer function sample model is then constructed. This model is

used to form approximations to calculate these parameters. In the example of of

α–lactose monohydrate phase unwrapping issues are identi�ed. A simple method of

correcting phase unwrapping is then presented, and is demonstrated on the example

of α–lactose monohydrate. Three di�erent polymorphic forms of paracetamol are

then measured, and the di�erent absorption spectrums between 0.3 and 6 THz are

identi�ed. A number of challenges relating to the measurement of samples in THz

TDS systems are highlighted, in particular the e�ect of errors localised in time and of

sample thickness uncertainty. Thickness uncertainty is currently the largest source

of systematic error in extracted values of refractive index and absorption coe�cient

from THz TDS measurements [81].
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3.1 Spectroscopic parameters

THz radiation which propagates through a sample will be both attenuated and de-

layed in time, both of which can be related to the optical and dielectric parameters. In

this section, the frequency dependence of these parameters is explicitly highlighted.

However, in later sections this has merely been implied to maintain brevity.

The parameter used within transfer function models is ñ, which is a combination

of n and κ:

ñ(ω) = n(ω)− iκ(ω) (3.1)

where ω is the angular frequency and i is the complex unit. The real refractive index,

n, is a unitless measure of phase delay (velocity change) with respect to a vacuum,

and the extinction coe�cient, κ, is a unitless measure of amplitude attenuation per

unit length.

The absorption coe�cient, α, is used preferentially as a measure of absorption

and is related to the extinction coe�cient through:

α(ω) = κ(ω)
2ω

c
(3.2)

where c is the free–space propagation velocity of light. An alternative variation, the

decadic absorption coe�cient, α10 is often used, which can be related to α by [98]:

α10(ω) = α(ω)log10(e) (3.3)

where e is the natural logarithm base.

Sample models, used later in this work, treat the sample as a dielectric interacting

with an electric �eld. These models are based on ñ, which can be related to the

complex (relative) dielectric permittivity, ε̃, by:

ε̃(ω) = ñ(ω)2 = (n(ω)− iκ(ω))2 (3.4)
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Like ñ, this can be split into a real and imaginary parts:

ε̃(ω) = ε(ω)′ − iε(ω)′′ =
(
n(ω)2 − κ(ω)2

)
− i (2n(ω)κ(ω)) (3.5)

where ε′ is the real permitivity and ε′′ is the imaginary permitivity. ε′ is the frequency

dependent ratio between capacitance of a dielectric and capacitance of vacuum and

ε′′ is a measure of how much energy is lost from the applied electric �eld in the

dielectric material.

3.2 Sample transfer function model

With the aim of calculating the spectroscopic parameters, a model relating the pa-

rameters to the measured transfer function was developed, and such models can be

found in various guises in the literature [60], [62], [63]. To form this model several

assumptions about the sample and the THz radiation are commonly employed: The

sample is modelled as a solid non–conductive dielectric slab with uniform refractive

index across the medium and the same magnetic permeability as dry air. The THz

radiation is modelled as a collimated point beam, which propagates from the air

and through the sample, see Figure 3.1(A). Re�ections are assumed to occur but are

assumed to not be measured in this chapter. To simplify this work, it is assumed that

the beam propagates perpendicular to the sample interfaces, however more general

models do exist [62]. These assumptions are generally valid when the sample is thin

compared to the focal length of the optics used. As thicker samples are used, the

e�ects of the Gaussian beam pro�le will become more prominent [99]–[101].

At each interface only a portion of the incident THz radiation propagates across

the boundary. T1,2 is the ratio between the transmitted and incident radiation at the

interface. If the refractive index of either material is complex, then this ratio will also

be complex indicating an incurred phase change at the interface. This coe�cient

can be calculated from the materials refractive indexes, respectively ñ1 and ñ2:

T1,2 =
2ñ2

ñ1 + ñ2
(3.6)
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(A) (B)

1 2

Figure 3.1: (A) A THz electric wave, passing through a homogeneous sample. The THz wave
is modelled as a point pencil beam perpendicular to the sample interfaces. (B) An interface
between two dielectric materials, 1 & 2. In this diagram, material 1 is air and material 2
is the sample. At the interface part of the THz radiation is re�ected (red), the other part
is transmitted into the second material (smaller blue arrow). There will also be a second
re�ection at the second interface which is not shown.

In Figure 3.1(B), an interface is shown between air and the sample. T1,2 is the ratio

between the incident and transmitted radiation. The THz radiation propagating

through an attenuating and velocity retarding material will incur a phase shift and

attenuation relative to the incident radiation. The complex ratio between the two is

the propagation coe�cient, P , which can be calculated for a given thickness, l, and

ñ:

P = e−i
ωl
c
ñ (3.7)

Figure 3.2 shows a wave propagating through a sample. Within the sample, the

radiation has shorter wavelength (due to the velocity change) and is attenuated. The

wave which leaves the sample has incurred a phase change and has a reduced ampli-

tude compared to the incident radiation. The propagation coe�cient is a description

of this.

To form a model of the transfer function, the measurements used to perform

the deconvolution must be considered. In Figure 3.3, both measurements are shown

Figure 3.2: THz radiation (shown as sine wave for clarity), passing through a sample. The
wave passing through the sample has a di�erent wavelength (shown above sample) and will
undergo attenuation. This results in a phase change and amplitude relative to the incident
radiation which will be sample dependent.
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l l(A) (B)

Figure 3.3: (A) Model of the THz radiation passing through a sample of thickness l, (B) Model
of the THz radiation in the reference measurement, passing through air which is displaced
by the sample.

with respect to the model. In the sample measurement, the THz radiation propa-

gates through the sample. The sample interfaces and propagation through the sample

should then be considered when forming the model of Esam. In the reference mea-

surement, instead of propagating through the sample, the THz propagates through

air which is displaced from the beam path in the sample measurement. Thus the

propagation within air in the absence of a sample must be considered when forming

the model of Eref.

For the Esam the following model is constructed:

Esam = Ta,sPsTs,aE0Hsys (3.8)

where Ta,s and Ts,a are the air-sample (left) and sample-air (right) transfer coe�-

cients for the interfaces, Ps is the propagation coe�cient for the samples medium

over the sample thickness, l, E0 is the generated THz radiation and Hsys is the in-

strument transfer function. Both Hsys and E0 are consistent between reference and

sample measurements, and thus will cancel out within the transfer function model.

A corresponding model for the measured THz radiation can then be constructed

for the reference measurement:

Eref = PaE0Hsys (3.9)

where Pa is the propagation coe�cient of air over the sample thickness. This is

modelled based on the refractive index of dry air, which is assumed to be ñair = 1.
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Thus the modelled transfer function, H̄ , is:

H̄ =
Esam
Eref

= Ta,s
Ps
Pa
Ts,a (3.10)

Or in terms of the sample’s complex refractive index:

H̄(ω) =
4ñ

(ñ+ 1)2 e
−iωl

c
(ñ−1) (3.11)

3.3 Overview of the extraction processing
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Figure 3.4: Processing �ow diagram to extract the n and α of sample. Several measurements
of the reference and sample are taken, from which the frequency domain transfer function
is deconvolved. From the transfer function, the n and α are calculated.

To extract both n and α of a sample, measurements of a reference (dry air) and

of the sample must be taken. These measurements are processed to calculate both

parameters, the processing can be viewed as a series of sequential smaller processes.

Each of these smaller processes are explained in the following sections.

In Figure 3.4, a diagrammatic overview of the processing chain is shown. For ref-

erence and sample measurements, the measurement scans are �rst averaged (§ 3.4)

before a DFT is applied (§ 3.5) to extract the frequency representation of the ref-

erence or sample measurement. The transfer function, H , is then calculated by

normalising the sample against the reference (§ 3.5). The real refractive index is

then calculated (§ 3.6) using the angle (or phase) of the transfer function, ∠H , in

this work unwrapping corrections are then applied after calculation of n (§ 3.9). The
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absorption coe�cient is then calculated using the magnitude of the transfer function,

|H|, and n (§ 3.6).

3.4 Averaging and windowing of time domain data be-

fore applying Fourier transforms

Before applying a discrete Fourier transform, the time domain measurements must

be processed into a singular windowed time scan. Multiple time scans are taken of

a sample or reference, these consist of discrete samples of the amplitude of the THz

electric �eld and time stamps of where they are taken from relative to an origin.

A measured time scan will consist of samples taken regularly in time from a

continuous measurement, e(t), of the electric �eld. The sampled electric �eld can

be written in terms of a time stamp index k, either in terms of the kth time stamp,

tk or in terms of the sampling time period, Ts:

e(k) = e(kTs) = e(tk) (3.12)

where e(k) is the kth sample of e(t).
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Figure 3.5: Average of white noise (dashed red) with the multiple scans of white noise (blue
circles).

Multiple time scans of the same sample are arithmetically averaged at each time

stamp:

e (k) =
1

N

N∑
m=1

em (k) (3.13)
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where m is the index of the measurement, and N is the number of measurements

taken. This will asymptotically reduce the power of the zero mean noise with respect

to the number of measurements used [93]. In Figure 3.5 an average (dashed red line)

of multiple white noise scans is shown (blue circles). The true value should be a

constant value with respect to time. The averaged value, tends towards a constant

and is considerably less variant than the individual noisy scans. The measurements

were sampled at a time period of 0.04 ps.

It is important to perform this step before further processing, in particular the

calculation of spectroscopic parameters is non-commutative with arithmetic averag-

ing [102], due to the processing being neither additive or multiplative. This results

in the case where averaging multiple extracted ñ estimates will produce a di�erent

result to averaging before extraction and extracting a single ñ estimate. Importantly,

the zero mean noise in the measurement will not be zero mean after extraction, so av-

eraging after extraction is less robust to noise. The e�ects of averaging, uncertainty

and noise are discussed in more detail in Chapter 6.

Each averaged scan is then windowed in time, this is achieved by multiplying

with a windowing function. A Tukey window function is used in this work, which is a

rectangular window function with cosine roll-o�, (see Figure 3.6). The ratio between

the roll-o� region’s and the rectangular regions can be adjusted to minimise window

edge discontinuities. This function was used to maximise frequency resolution, while

reducing the e�ects of discontinuities which can be caused by a rectangular window,

i.e. frequency leakage.
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Figure 3.6: A Tukey window (red dashed line) is applied to a raw reference scan (blue dashed
line) to produce a scan without the re�ection (green)
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Figure 3.7: A reference (blue) measurement and a sample (red) measurement, the identical
time windows (dashed lines) are shifted relative to each other.

Windowing a time domain trace is necessary, as the measurement time window

is limited by re�ections recorded within the time trace. In Figure 3.6, a reference

measurement is shown (dashed blue), including a system re�ection from the 150 µm

GaP electro-optic crystal, with the applied time window function (red dashed) and

the resulting re�ection free time trace (green). These re�ections will induce artefacts

in the deconvolved transfer function [103]. There are two sources of re�ections, one

being the sample [60] which the THz �eld can resonate in, the other being the system

[103] in particular the emitter, detector [104] and in the broadband system an optical

beam block (high resistivity silicon plate).

If the system re�ections have to be removed (so the time position of the re�ec-

tions is consistent between measurements), the same time window can be applied to

all the measurements. The time window is �rst adjusted and applied to the reference

measurement. The sample trace is considered to be approximately an attenuated

and time shifted copy of the reference measurement. The same window can then be

applied to the sample measurement, by shifting it in time by a corresponding sample

time shift. The sample time delay δth is estimated by locating the maximum in the

cross-correlation between the windowed reference and sample measurement. The

cross-correlation between the two measurements gives a measure of the similarity

between them with respect to a time shift being applied to the sample measurement.

The location of the maximum will therefore correspond to the time shift which needs

to be applied to the sample measurement to maximise the similarity to the reference
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measurement. By using this technique, the same window can be applied to both

reference and sample measurements without incurring additional distortion in either

measurement.

Consequently δth can be calculated by inverting the shift:

δth = −rmaxTs (3.14)

where rmax is the (index) position of the maximum in the cross correlation.
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Figure 3.8: The cross–correlation of the reference and a sample measurement. The maximum
is marked with a triangle.

The (discrete) cross-correlation between the windowed reference and sample

measurement is:

Cref,sam(r) =

k=L−1∑
k=0

eref (k) esam (k + r) (3.15)

where r is the di�erence index, eref is the windowed reference measurement, esam is

the sample measurement and L is the length of the time index k. rmax can then be

estimated by locating the maximum of this function.

In Figure 3.7, a time measurement of a sample (red) and a reference (blue) is

shown, with the associated windows (dashed lines). The window in each case is the

same, but shifted in time by 1.44 ps. In Figure 3.8, the cross-correlation between the

two is shown, with the di�erence given in ps (multiplied by Ts). There is a clear

maximum, which was used to estimate the 1.44 ps time shift.
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3.5 Deconvolution of a Sample’s Transfer Function

To quantify the e�ect of a sample on the propagating THz electric �eld, the transfer

function of a sample is calculated from reference and sample measurements. In ef-

fect, this treats the sample as a linear time invariant system, with known input and

output. Since the e�ect of the sample can be described numerically by convolving

the sample’s impulse response with an air measurement, the sample’s e�ect can

be estimated by performing deconvolution. This is accomplished by normalising

the complex frequency response of a sample measurement against that of a refer-

ence measurement (air), producing the transfer function of a sample. The impulse

response of a system can then be deconvolved by performing the inverse Fourier

transform, if required.

A DFT is then applied, to calculate the full complex spectrum of a measurement.

Zero padding is used to increase the computational resolution, which refers to the

interval between samples in the frequency domain. However, as no new information

is introduced to increase the resolution, these new samples are interpolated. This is

done for two reasons, �rstly the computational resolution (and bandwidth) must be

the same in both sample and reference measurements to perform the point by point

division, and secondly features of interest may be aliased if the resolution is too low.

The complex frequency spectrum is then truncated down to the measured fre-

quencies. This truncation is not used as a �ltering technique, rather the analysis

is being restricted to this range. At frequencies outside of this range, there does

not exist analysable information, either because of dynamic range limitations, or

because of inherent bandwidth limitations of the system. Dynamic range limitations

will be discussed further in § 3.7.

The transfer function, H , can then be calculated by normalising the frequency

domain sample measurement, Esam, against the frequency domain reference mea-

surement, Eref:

H(ω) =
Esam(ω)

Eref (ω)
(3.16)

UsingH , the extraction of spectroscopic parameters can then be performed. As with

the spectroscopic parameters in later parts of this work, the frequency dependence
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is not explicitly stated and the reader should assume this dependence.

3.6 Model approximations

Equation 3.11 is di�cult to invert without numerical methods. However, using

simple approximations, it is possible to derive approximations to estimate the real

refractive index, n, and extinction coe�cient κ, individually. These approximations

are shown to be accurate when used with samples which are non–resonant and are

used as initial points for numerical methods in Chapter 5.

It is assumed that the propagation coe�cient dominates the phase of the transfer

function (i.e. absorption has negligible e�ect on the phase at interfaces). Based on

this assumption the phase of the transfer function can be equated to the phase of

the models propagation coe�cient terms:

∠H = ∠
Ps
Pa

= −ωl
c

(n− 1) (3.17)

The rightmost term is not limited to the range −π to π, so ∠H must be unwrapped

to be accurate. This is explored further in § 3.9, where the e�ects of wrapped phase

are discussed and unwrapping techniques are introduced.

Equation 3.17 can be rearranged into:

n = − c

ωl
∠H + 1 (3.18)

Thus, if the thickness of the sample is known, the real refractive index can be es-

timated. Keeping with this assumption, the transmission coe�cient terms can be

approximated to be real and dependent solely on n. The transfer function model

magnitude can then be approximated as:

|H| = 4n

(n+ 1)2 e
−ωl
c
κ (3.19)
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Inverting this, κ, can be calculated:

κ =
−c
ωl

loge

(
(n+ 1)2

4n
|H|

)
(3.20)

This can be converted to absorption coe�cient using equation 3.2. And thus equa-

tion 3.20 is simply a variation of the Beer Lambart law [47].

It should be noted, that the measured absorption coe�cient and real refractive

index will be a�ected by additional physical e�ects which are assumed negligible

within the extraction. E�ects such as scattering [105] can result in additional losses

and phase changes not modelled.

3.7 Limitations of dynamic range

The bandwidth of a measurement is limited by two di�erent aspects, the inherent

physical bandwidth of the spectroscopic system and the detection noise of the system.

The former refers to the limited ability to emit, focus and detect electromagnetic

radiation beyond or below certain frequencies. The latter refers to the inability of

the system to detect radiation, due to radiation amplitude being smaller than the

detector noise in the system [106]. This detector noise is distinct from measurement

noise [107], and refers to the noise in absence of radiation in the system.

When propagating through a sample the THz radiation will be attenuated, the

detector noise is however unchanged. This will result in a decrease in bandwidth

in the sample measurement, as the emitted radiation is weaker towards the limits

of the bandwidth. Inversely there exists a limit on the detectable absorption due to

this noise �oor.

κ is a measure of absorption, based on a sample measurement normalised to a

reference measurement. A maximum value will therefore be related to the reference

measurement normalised to the detector noise �oor, referred to as the dynamic range

of the spectrometer. The dynamic range can be estimated as [106]:

DR =
|Eref |
δdet

(3.21)
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where δdet is the root mean square (RMS) of the detector noise. This can be in-

corporated into equation 3.20, to form an expression for the maximum extinction

coe�cient, κmax:

κmax =
c

ωl
loge

(
4n

(n+ 1)2
DR

)
(3.22)

From which the analysable bandwidth of a sample measurement can be estimated

to being the range where κ < κmax.

In this work α is commonly used, so an alternative form of this dynamic range

limit is αmax [106]:

αmax =
2

l
loge

(
4n

(n+ 1)2
DR

)
(3.23)

Again, analogously to κ, the analysable bandwidth of the sample measurement can

be estimated to be where α < αmax.

3.8 Terahertz spectroscopy of anhydrous and monohy-

drate forms of α–lactose
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Figure 3.9: absorption coe�cient of lactose anhydrous 100% (blue) and lactose monohydrate
(red). Peaks have been marked in circles with vertical lines. αmax (dashed lines) of lactose
anhydrous has been used to determine bandwidth.

α–lactose is a common case study in THz spectroscopy, as it is inexpensive, safe

and has distinct features across THz frequency region. α–lactose has monohydrate

and anhydrous crystalline forms which have distinctly di�erent absorption spectra

and so serve to demonstrate sensitivity to crystalline structure in the THz region.

α–lactose monohydrate is also of interest as a test sample, as it exhibits narrow
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absorption features between 0.1 THz and 2 THz, which most THz spectroscopy

systems operate over, so it is a practical example to test the available frequency

resolution of the instrument. The monohydrate form has 2 sharp features at 0.53 THz

and 1.4 THz [108], the former of which is reported to have a full width half maximum

(FWHM) of 23 GHz at room temperature [109]. This can be used to demonstrate

the instrument’s experimental frequency resolution, which is determined by the

inverse time window length (in seconds). If the frequency resolution is too low,

which can occur when the time window has been limited due to a re�ection within

the measurement, features will be broadened and merged. It should be noted, that

the integrated area of an absorption peak should remain consistent, as the limited

frequency resolution has a moving average e�ect.

α–lactose anhydrous and monohydrate were both measured twice, at 10% and

100% concentrations in pellets with similar thickness and volume. A description of

the pellet making process is provided in Appendix A. These were measured at a

sampling frequency of 25 THz, using the LFRBB THz TDS system. The emitter was

biased with a 7 KHz 150 V square wave and a 220 GHz frequency resolution time

window was used.

In Figure 3.9, the absorption coe�cient of 100% Lactose monohydrate (red) and

anhydrous (blue) is shown. Peaks have been determined by using a peak �nding

algorithm (peak detection on the second derivative), which have been marked as

circles with vertical lines. The estimated αmax is shown as dashed lines of the appro-

priate colour. The bandwidth was limited to 3.3 THz as α of lactose monohydrate

meets αmax at 3.14 THz. Lactose anhydrous has a large feature at approximately

2 THz, which is being clipped by αmax (the curve given is an estimate). This has

resulted in it erroneously appearing to be 3 separate peaks, when it is actually just

a large singular feature. Peaks which are clipped by αmax will be distorted but will

have the same approximate place as only the absorption above αmax is distorted.

This can be veri�ed by looking at a lower concentration (lowering the absorption)

or by using a thinner sample (increasing αmax).

The spectral features of the two forms are distinctly di�erent , in particular the

sub 2 THz, the features of lactose monohydrate is considerably sharper than the
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broader features of lactose anhydrous at these frequencies, while the lactose anhy-

drous has a much larger feature at approximately 2 THz. The lactose monohydrate

feature at 0.53 THz is expected to be much narrower than measured here. This is

due to the frequency resolution of 220 GHz compared to the feature FWHM of 23

GHz.

At the very low frequencies (below 0.5 THz), the absorption appears to be nega-

tive (the sample appears to amplify the radiation). This is likely an artifact introduced

by a slight increase in pump laser power, which results in ampli�cation of THz in

the sample measurement. This leads to a downward shift in absorption, and where

the absorption is negligible, a negative absorption.

Pellets of 10% α lactose monohydrate and anhydrous were made by diluting with

polytetra�uoroethylene (PTFE) (which with the exception of a 6 THz peak [17], has

very little THz absorption). A full description of the pellet making process is found in

Appendix A. This has the e�ect of decreasing the absorption of the sample, increasing

the bandwidth of α below αmax. However, additional physical interaction between

THz radiation and the mixture will occur, in particularly introducing additional

background scattering from the PTFE [105], and asymmetric peak distortion due to

the Christiansen e�ect [96].
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Figure 3.10: absorption coe�cient of 10 % lactose anhydrous (blue) and lactose monohydrate
(red). The left pane shows 0–5.3 THz, the right pane show 5.3–6.5 THz. Di�erent scales have
been used for clarity and the curves do not join between panes. Peaks have been marked
in circles with vertical lines. αmax (dashed lines) of lactose anhydrous has been used to
determine bandwidth.

In Figure 3.10, α of 10% lactose monohydrate (red) and anhydrous (blue) is shown.
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Peaks determined are marked as circles with vertical lines, and the bandwidth was

determined by α of lactose anhydrous meeting its αmax at 6.5 THz. Two di�erent

scales have been used for 0–5.3 and 5.3–6 THz as the PTFE peak has dominated the

spectrum of the lactose anhydrous measurement. The curves are marked with the

same scheme between panes.

Comparing both Figures 3.9 and 3.10, the absorption of diluted lactose is sig-

ni�cantly decreased and some slight distortion of low frequency features can be

observed. Both noticeably contain a series of peaks across the entire bandwidth.

Lactose anhydrous displays strong features at 1.87 and 2.24 THz, and at 4.72, 5.09

and 5.5 THz. While the monohydrate form has a distinct triplet of peaks at 2.88, 3.26

and 3.84. Table 3.1 contains the collected peaks detected in both concentrations and

forms of lactose, the peaks have been grouped by frequency. There exist several

peaks which are present in the 100% samples but not in the corresponding 10% sam-

ples, that are due to a broad peak being “capped” by αmax. Apart from these features,

there is good agreement between the di�erent concentrations, with variation of less

than 50 GHz between the features. There also appears to be several peaks which are

at similar frequencies between the monohydrate and anhydrous forms.

The 0.53 THz peak present in lactose monohydrate should have a FWHM of 23

GHz [109], however in Figure 3.9, the feature is comparatively broad. This is due to

the low frequency resolution time window used, if a high resolution (longer) time
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Figure 3.11: low resolution (red) (220 GHz) and high resolution (blue) (77 GHz) α of the
0.53 lactose monohydrate peak, a Lorentzian curve has been �tted to high resolution data
(magenta)
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Anhydrous Anhydrous Monohydrate Monohydrate
10% 100% 10% 100%
0.52 0.54 0.55 0.53
0.82 0.83 0.86 0.82

1.05 1.08
1.19 1.21

1.36 1.39 1.38
1.85

1.87 1.87 1.74 1.78
2.00 1.97

2.24 2.23 2.26 2.19
2.67 2.70 2.56 2.56
3.01 3.03 2.88 2.87

3.13
3.28 3.28 3.26 3.22
3.59 3.58

3.87 3.84
4.17
4.31 4.30
4.72 4.58
5.09 4.93

5.22
5.50 5.52

5.88

Table 3.1: Table of absorption peaks in 10% α lactose anhydrous, 100% α lactose anhydrous,
10% α lactose monohydrate and 100% α lactose monohydrate
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Figure 3.12: Absorption coe�cient of 100 % lactose monohydrate (blue) and 10 % lactose
monohydrate scaled by a factor of 10. Peaks are shown as circles with vertical lines, and the
αmax of 100 % lactose monohydrate is shown as a dashed line

window is used, the measured FWHM will decrease. In Figure 3.11, the 0.53 THz

feature is shown, calculated using a frequency resolution of 220 GHz (red) and a

frequency resolution of 77 GHz (blue). To do this a time window including system

and sample re�ections was used, which lead to a number of artifacts in the spectra

(see § 3.11). The feature measured using the 77 GHz resolution is much sharper, and

a Lorentzian curve has been �tted to it (magenta curve). The FWHM of this curve is

27 GHz, which is close to the reported value of 23 GHz. An even higher frequency

resolution is possible using a longer time window. However, a number of additional

re�ections are included which will have an adverse e�ect on the peak shape.

Figure 3.12 shows the di�erent concentrations of lactose monohydrate, with

100% shown in blue, and 10% shown in red. The 10% has been scaled up by 10,

which gives an approximation of the α of 100% Lactose monohydrate over a larger

bandwidth. This is based on the assumption that scattering is negligible and that

PTFE is non-absorbent at THz frequencies. This simple approximation is used in § 4

to model mixtures of di�erent compounds.

In Figure 3.12, the 10% and 100% clearly shows similar features, which demon-

strate where the 100% has been capped by αmax at 3.26 THz. There appears to be

a feature at 1.97 THz in the 10% which is not present in the 100%. This is probably

an artifact in the processing (for instance slight frequency leakage from the window

function), rather than due to the inclusion of PTFE, which lacks signi�cant features
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Figure 3.13: n of 100 % Lactose monohydrate (blue), a correction was applied to resolve
phase unwrapping issues (red). The high res vesion of the 0.53 THz relaxation is shown in
green.

at this frequency.

In Figure 3.13, the real refractive index of 100 % Lactose monohydrate is shown.

At locations where a feature would be present in the α spectrum, a relaxation is

present, resulting in a sharp change in the real refractive index. At 0.53 THz a very

broad relaxation is present, which is due to limitation of the frequency resolution.

When a high resolution time window (77 GHz) is used, the feature (green) takes the

shape of a sharp relaxation. At 1.4 THz there exists a relaxation corresponding to

the 1.4 THz peak, and at 2.62 THz there exist a series of sharp discontinuities due to

the absorption spectrum being capped by αmax.

Sharp features in the α spectrum result in sharp relaxations, as n and κ are

inherently part of the same complex function, ñ. The relationship between the

imaginary and real parts of ñ are the Kramers-Kronig relations [110], which can be

used to convert from one to the other. A rule of thumb for the shape of the features

in n is to use the di�erential of κ.

These sharp discontinuities can result in unwrapping errors in n, which if not

corrected (blue), lead to n at a higher frequencies than a discontinuity being higher

than expected. This can be corrected by applying a correction to the real refractive

index (red), to give the correct form to the relaxation. This could be performed

by iteratively applying Kramers-Kronig relations to κ and n [84]. However, a far

simpler approach is taken in § 3.9.3, which instead uses a model of unwrapping error
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to �nd the �attest n curve.

3.9 Phase unwrapping corrections

To extract the real refractive index and thus the dependent extinction coe�cient, the

unwrapped phase of the transfer function is required. This is due to equation 3.17,

which relates the transfer function phase to the real refractive index:

∠H =
c

ωl
(n− 1) (3.24)

The right hand side of this expression is not limited to a speci�c region, however the

phase of the transfer function is calculated using an arctan function (equation 2.11),

which is only de�ned in the region between −π and π, angles outside this region

“wrap” around to the opposite end of this range. The calculated angle is then often a

multiple of 2π away from the true angle.

This results in ambiguity such that the true “unwrapped” phase, ∠H , is some

multiple of 2π away from the wrapped estimate, ∠H ′:

∠H
′
(k) = ∠H(k) + a(k)2π (3.25)

where k is the frequency index and a(k) is an integer multiplier at the frequency

sample. a(k) is cumulative, the value at k is dependent on the value at k − 1. As

real refractive index requires the unwrapped phase, this ambiguity will propagate

to the refractive index. This results in two apparent e�ects with respect to the real

refractive index. The �rst is an error which asymptotically decreases with frequency

while the second is discontinuities between values. The former occurs when the

initial phase o�set, a(0), is unknown, creating an o�set across all frequencies (a(k)

is cumulative) while the latter occurs when the phase wraps from one value to the

other forming discontinuities. These e�ects are intrinsically the same error, that the

phase o�set, a(k)2π, is unknown. Thus to correct wrapping errors, a(k) must be

estimated. In this work this is done by assuming that the lowest frequency point

is correct, such that a(0) = 0, and estimating a(1)–a(L − 1). From the updated
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Figure 3.14: Real refractive index of lactose monohydrate calculated from wrapped phase.
The value the refractive index wraps around is marked as a dashed grey line.

estimate of ∠H or n a value for a(0) is then formed which can then be applied to

recover the unwrapped estimate.

Figure 3.14 show n calculated from the wrapped phase, ∠H ′, of the 100 % lac-

tose monohydrate sample from § 3.8. A wrapping e�ect is present which causes

discontinuities centered around 1. This is due to the calculated phase of the transfer

function wrapping around 0 and the use of equation 3.18 which adds an o�set of 1.

In Figure 3.15, the incorrect values for n of a 1 mm thick high resistivity silicon plate

has been shown (red) along with a corrected estimate (blue). The extracted n has

been processed with corrections for discontinuities, however there is a phase o�set

error which results in an asymptotic error. This is particularly common in samples

which have either high sample thickness or a high refractive index.
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Figure 3.15: The incorrect estimate (red) of n for high resistivity silicon, and a estimate with
phase o�set error corrected (blue)
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Figure 3.16: The wrapped phase (dashed) is unwrapped (solid).

3.9.1 Unwrapping the transfer function phase

The standard method of unwrapping phase is to assume a linear relationship between

frequency points (i.e. that phase is roughly a straight line). At discontinuities be-

tween points greater than π, an integer multiple of 2π is added to the next point until

the di�erence between the points is less than π. In Figure 3.16 a diagram showing

the wrapped (dashed) and unwrapped (solid) phase is displayed. At discontinuities

greater than π an integer multiple of 2π is added, shifting the segments of the phase

to form a straight line.

This integer multiple, b(k), can be formulated as the integer argument minimum

between samples of ∠H ′:

b(k) = argmin
b(k)

(
∠H

′
(k)− ∠H

′
(k − 1)− b(k)2π

)
(3.26)

Which can then be related to a(k):

a(k) = a(k − 1) + b(k) (3.27)

which shows that a(k) is cumulative, i.e. ther error accumulates across frequencies.

Then a new estimate transfer function phase, ∠H ′′ can be formed:

∠H
′′
(k) = ∠H

′
(k)− a(k)2π (3.28)

where a(0) = 0 is assumed.

This provides a simple method to estimate the unwrapped phase. However, two

issues persist, the inherent assumption that the �rst frequency sample is correct (in
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terms of a(k) this is assuming that a(0) = 0) and that the unwrapped phase does not

have discontinuities greater than π present within it. The �rst assumption is often

incorrect. The phase information at low frequencies can be poor leading to forward

propagation of error across frequencies and to the asymptotic error in Figure 3.15.

A common method adopted in the literature [101] to circumvent this is to instead

truncate at the lower frequencies and extrapolate back towards zero which will give

an estimate of the phase close to 0 frequency. This is then used to form an educated

prediction as to correct phase o�set.

Figure 3.17 shows an estimate of phase with an incorrect phase o�set (dashed)

and extrapolated o�set (solid). The phase before the vertical dashed line is incorrect,

leading to an incorrect initial o�set. To correct this, this region is instead extrapolated

back towards 0. This leads to the correct o�set being calculated. This is equivalent

f

∠
H

Figure 3.17: The incorrect o�set phase (dashed) and the phase with extrapolated o�set (solid).
Vertical dashed line shows where the phase was extrapolated from.

to locating a(0):

a(0) = argmin
a(0)

(
∠H

′′
(0)− a(0)2π

)
(3.29)

Where ∠H ′′(0) is the extrapolated phase from ∠H ′′(k) at k = 0. The correct phase

can then be recovered:

∠H(k) = ∠H ′′(K)− a(0)2π (3.30)

3.9.2 Unwrapping refractive index

An alternative solution to the unwrapping problem is to try to resolve it after calcu-

lating the real refractive index. This provides a di�erent method of calculating a(k),
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Figure 3.18: The �nite di�erence of n′ (from Figure 3.14) (blue) and −λ(k)l (red dashed)

which makes use of the assumption that n is constant with respect to frequency.

As n is related to the gradient of ∠H , this is equivalent to assuming that ∠H is

a straight line. However, as this and the previous methods are di�erent, they can

converge on di�erent answers, and this can be used as a “sanity” check for other

methods and published data. In later sections (§ 3.9.3 & § 5.2), the relations used to

perform this wrapping, are exploited to form more accurate extracted values of n

and κ.

By combining equations 3.18 and 3.25, the following expression can be derived:

n′(k) = n(k) + a(k)
c

f(k)l
= n(k) + a(k)

λ(k)

l
(3.31)

where n′ is an estimate of real refractive index based on wrapped phase and will

generally take the form of chopped error shown in Figure 3.14. f(k) is the frequency

in Hertz at index k and λ(k) is the corresponding free space wavelength.

Assuming that the real refractive index is roughly constant, discontinuities can

then be removed by subtracting integer multiples of λ(k)
l . This is equivalent to the

method which minimises discontinuities in the raw phase by adding integer multiples

of 2π. In Figure 3.18 the �nite di�erence of Figure 3.14 is shown as a blue line,−λ(k)
l

is also shown as a red-dashed line. The �nite di�erence shows sharp peaks where n

has suddenly changed due to the phase wrapping. These will tend to λ(k)
l or some

integer multiple of, which is why in Figure 3.18 the peaks tend to the red line.
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Thus b(k) can be estimated as:

b(k) = −R
(

(n(k)− n(k − 1)) l

λ(k)

)
(3.32)

where R(x) is the round to nearest integer function. Using equation 3.27, a(k) can

then be estimated. As with conventional phase unwrapping, this only resolves the

phase ambiguity due to discontinuity between samples, it does not resolve the o�set.

In other words a(0) is left ambiguous. This can therefore form a new estimate of

refractive index, n′′:

n′′(k) = n′(k)− a(k)
λ

l
(3.33)

This assumes that a(0) = 0, and thus the new estimate:

n′′(k) = n(k) + a(0)
λ(k)

l
(3.34)

In Figure 3.19, equation 3.34 has been applied to the n′ estimate from Figure 3.14.

The region at frequencies below 2.5 THz is relatively �at, and displays some expected

relaxations. Above frequencies of 2.5 THz, the n appears to deviate to higher values.

This is because of underlying discontinuities within the phase which the unwrapping

correction fails to correct.
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Figure 3.19: The new estimate of n of lactose monohydrate

To recover n, a(0) must be found. This estimate of n is an estimate without

knowledge of the initial o�set and will take the form of asymptotic error (red curve)

shown in Figure 3.15.
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By assuming that n is approximately constant, a(0) can be estimated. λ
l will

increase exponentially at lower frequencies, thus the incorrect real refractive indices

will diverge at lower frequencies and have a larger average di�erential with respect to

frequency. By minimising the average di�erential (�nd the �attest refractive index

curve) the value of refractive index can be found. To achieve this, an error term

between the measured and modelled estimate is used:

εn′′ =
dn′′

df
− dn̄′′

df
(3.35)

where n̄′′ is the model (from equation 3.34) of the calculated n′′. If the di�erential

of n tends to 0 (i.e. n is a constant) then this can be simpli�ed:

εn′′ =
dn′′

df
− a(0)

c

f2l
(3.36)

A mean square error with respect to frequency can then be formed:

MSEn′′ = µ

((
dn′′

df
− a(0)

c

f2l

)2
)

(3.37)

where µ(x) is the arithmetic mean operation. An estimate of a(0) can be found

by locating where the di�erential with respect to a(0) is equal to 0, which will be

where:

a(0) = −R
(
l

c
µ

(
dn′′

df
f2

))
(3.38)

This assumes that the di�erential of the real refractive index tends to 0, that the

di�erential of the bad estimate is accurately known (it is instead estimated from the

�nite di�erence) and that the error is constant across frequency. These assumptions

are often not true, so weighting the average towards lower frequencies where the

error is greater often performs better. Using the weighting 1
f2

, an estimate of a(0)

can be formed, which in a simpli�ed form is:

a(0) = −R
(

lc

µ(λ2)
µ

(
dn′′

df

))
(3.39)
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An unwrapped estimate of n can then be formed using:

n(k) = n′′(k)− a(0)
λ(k)

l
(3.40)
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Figure 3.20: The di�erential of n of silicon (blue) and c
f2l (red dashed)

In Figure 3.15, the incorrect n of a silicon plate is shown due to the phase o�set

(a(0)) being unknown. To remedy this, equation 3.39 was used to calculate a(0) =

−1, which has then been used in equation 3.40 to form the correct n shown in

Figure 3.15. In Figure 3.20, the di�erential of incorrect estimate of n of silicon is

shown (blue), with c
f2l

overlaid (red dashed). As true n of silicon is almost constant

across the bandwidth, the erroneous di�erential will tend to c
f2l

as a(0) = −1.

3.9.3 Unwrapping at discontinuities in real refractive index

These methods which minimise discontinuities within ∠H or n assume that the

di�erence between ∠H frequency samples is always less than π. There exist two

conditions where this might not be true. The �rst is a simple aliasing e�ect, if the

frequency domain is sub sampled (the computational frequency resolution is too low)

and the phase is to be unwrapped, discontinuities greater than π are possible and

the unwrapping procedure will produced an aliased unwrapped phase, see § 2.3.5

on the DFT. This can be remedied by simply increasing the zero padding (and thus

increasing the computational frequency resolution of the discrete Fourier transform).

The second occurs when a fundamental discontinuity is present in the phase

which can occur under two conditions. When the signal hits the noise �oor (due to
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limitation of dynamic range), the phase can be in�uenced by noise. This dominates

in Figure 3.13, where incorrect phase unwrapping has lead to n being overestimated

above 2.5 THz. This can break the implicit assumption of minimum phase di�erence,

as the measured phase in this region is ambiguous. The phase will therefore consist

of random �uctuations and the unwrapping will often incorrectly interpret this. The

second cause of discontinuities in the phase, is when there are discontinuities within

the real refractive index itself. This can occur when a particularly narrow absorption

feature is present, leading to sharp relaxation in real refractive index.

After performing the algorithms in § 3.9.1 or § 3.9.2, these discontinuities are

still present in n but are minimised, and are thus detectable and correctable. The

wrapping relations with n discussed in § 3.9.2 can be exploited to form the correction

but instead of using individual samples, the mean of segments on either side of a

discontinuity are used. To detect these discontinuities, the di�erential squared can

be used with a peak detection algorithm. This can then be used to fragment the

refractive index into internally consistent (with respect to wrapping) segments.

In Figure 3.21, a refractive index with a discontinuity is shown (left) and is to be

fragmented into two segments na and nb. This is done by performing peak detection

(di�erential zero crossing) on the di�erential squared (right), to the left of the peak

will be the �rst segment (na) and to the right the second (nb).

In Figure 3.22, the extracted n of lactose is shown (blue), with the boundaries of

the segments marked by dashed red lines. These occur where the di�erential peaks

(i.e. a sharp change in refractive index) and should occur where either a relaxation

or erroneous step is present. However, this can incorrectly segment n which has

f (THz) f (THz)

n

(d
n df

)2

na

nb

na
nb

Figure 3.21: The real refractive index of a sample contains a discontinuity (left). To break
n into na and nb, peak detection is performed on the di�erential of n, squared (right). The
peak is circled, and the corresponding segments are marked by bars.



68 3. Estimation of sample refractive index and absorption coe�cient

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.6

1.8

2

2.2

2.4

Frequency (THz)

n

Figure 3.22: The real refractive index of Lactose monohydrate (blue), with the segmentation
points (dashed red).

occurred at 0.25 THz. Division of a larger correct segment into smaller segments is

not an issue, as the smaller segments are already consistent with each other. What

can cause incorrect solutions, is where there is over segmentation in the region of

a true discontinuity. In the neighbourhood of a discontinuity in n, if a segment is

too small (due to over segmentation), its average value can be dominated by the

discontinuity. Since the correction procedure relies on the segment average being

correct, this can lead to incorrect values being produced. Fortunately, by specifying

a minimum segment size during the segmentation, this can be avoided.

To extract the correct real refractive index, these segments must be made to be

consistent with each other. To do this, there is assumed to be an inherent discontinu-

ity between the segments, but the average value between segments are consistent.

This is in essence allowing discontinuities within the real refractive index, as long

as the broader frequency response is �at.

To �nd the correct values for each of the segments, one is assumed to be correct

f (THz)

n
sa
m δµ(n)

na

nb

f (THz)

n
sa
m

δµ(n)

na

nb

δµ(n)

min

Figure 3.23: Incorrect n due to a discontinuity (left) and the correct n (right). This correction
can be found by minimising δµ(n) between segments na and nb
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Figure 3.24: Two segments of the real refractive index of Lactose, na (blue), n′b (red) and the
corrected nb (green). The means of the segments have also been marked as diamonds. The
segmentation points have been marked using grey dashed lines.

and the di�erence between the mean values of segments is minimised. This is shown

in Figure 3.23, where two segments on either side of a discontinuity in refractive

index have been identi�ed (left). To �nd the correct real refractive index (right), the

di�erence between segment means δµ(n) has been minimised.

Given two sequential segments, na and nb, which are assumed to be approxi-

mately constant (�at) and equal (na ≈ nb), a relation between na and a incorrect

estimate of the latter segment, n′b, can be formed:

na ≈ n′b + a
λb
l

(3.41)

where a is an integer constant and λb are the wavelengths over segment nb. na is

assumed to be correct without any phase unwrapping error. Thus �nding the value

of a which minimises the di�erence between segment averages will �nd the �attest

(barring the discontinuity) combinations of the two segments. This can then be done

sequentially between pairs of segments, to correct the entire curve.

The squared di�erence between segment means is:

SD =

(
µ (na)− µ

(
n′b + a

λb
l

))2

(3.42)

which given approximation 3.41, should tend to 0. Thus to estimate a, this must be
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minimised. The value of a which minimises this is:

a = R

(
l
µ (na)− µ (n′b)

µ (λb)

)
(3.43)

This can then be used to form an estimate of nb which is most consistent with

segment na:

nb = n′b + a
λb
l

(3.44)

In Figure 3.24, the segments between 1.4 and 2.9 THz from Figure 3.22 are shown.

Between segments na (blue) and n′b (red) there is a step, and the means of the two

(diamonds) are considerably di�erent. Using the assumption that the di�erence

between means should be minimal, a correction has been applied to n′b to arrive

at na (green). This has created a discontinuity, but has minimised the di�erence

between its mean and na’s. This correction was calculated using equations 3.44

and 3.43.
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Figure 3.25: The corrected estimate of n of 100 % Lactose monohydrate. Where discontinu-
ities are present has been marked by vertical dashed red lines.

These corrections are sequentially applied to the segments from low frequency

to high frequency to form a new estimate of n. In Figure 3.25, the corrected n is

shown, which is signi�cantly �atter but has regular discontinuities. The discon-

tinuities which are due to relaxations have been marked by dashed red lines (the

incorrect segmentation at 0.25 THz was present but had no a�ect on the correction).

In Figure 3.26, the extracted n of the 10 % Lactose monohydrate sample (from § 3.8)

is shown. The absolute values for both samples will not be consistent but the general
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shape of the low concentration should be similar with the high concentration n. In

Figure 3.26, the discontinuities positions from Figure 3.25 have been marked as red

vertical lines. The majority of these discontinuities lie on features which appear to be

smoothed relaxations. Where there does not appear to be consistency is between 3

and 3.5 THz. This is where the absorption of the 100 % sample has reached the limits

of the system’s dynamic range. At higher frequencies, the discontinuities seem to be

consistent. However, this is likely due to the absorption modes at these frequencies

being distinct peaks (and thus less a�ected by reaching the limits of dynamic range),

rather than there being a correct feature present.
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Figure 3.26: The estimate of n of 10 % Lactose monohydrate. Where discontinuities are
present in the estimate of 100 % Lactose monohydrate, has been marked by vertical dashed
red lines.

3.10 Polymorphism of paracetamol

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

100

200

Frequency (THz)

α
(c

m
-1

)

Form I
Form II
Form III

Figure 3.27: Absorption coe�cient of 100% Paracetamol I (blue), II (red) & III (green). αmax
has been marked as dashed lines, peaks have been marked by vertical lines with circles.
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Figure 3.28: Absorption coe�cient of 100 % Paracetamol I (blue), II (red) & III (green), taken
from [111]

Paracetamol is a common commercially available analgesic, which has a number

of di�erent crystalline forms. It has been previously measured at THz frequencies

[4], [112] and its di�erent crystalline forms (I,II,III) have been observed by changing

the temperature[111].

Both 100% Paracetamol I and II was measured over 0-3 THz in the LFRBB THz

TDS system, and the relevant refractive index and absorption coe�cient have been

identi�ed. The paracetamol polymorphs (forms I, II and III) were provided by Colin

Seaton, Ian Scowen and Tasnim Munshi. The paracetamol form III provided was crys-

tallised using a method which ensured stability at room temperature and included

traces of lactose. The measurements were performed at a time sampling frequency

of 150 THz with an approximate frequency resolution of 200 GHz. 100 % Paraceta-

mol III was also measured over 0–3 THz in the LFRBB THz TDS at a time sampling

frequency of 30 THz, with an approximate frequency resolution of 200 GHz. The

emitter was biased with a 7 kHz square wave.

In Figure 3.27, the absorption coe�cient of Paracetamol I (blue), II (red) and III

(green) is shown. Peaks have been found by applying a peak detection algorithm

on the second order di�erential and marked with circles and vertical lines. αmax

has been marked for all samples as dashed lines of the appropriate colour. Forms

I, II and III reach αmax at 2.88, 2.2 and 2.63 THz respectively. The di�erent forms

have distinct but similar spectra, and there appear to be several common groupings

of peaks between the forms. Form II is relatively �at below 2 THz compared to the
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Figure 3.29: Absorption coe�cient of 100 % Paracetamol I measured at 415 K (blue) and room
temperature (red) taken from [111]. In green the room temperature measurement from this
work is shown.

other forms. However, peak detection has found a number of features which can

be grouped by frequency with similar peaks in forms I and III at these frequencies.

Form I has similar features to form III but at a slightly higher frequency. Features

above 2 THz can be seen which are not common to forms II and III, however this

might be due to a dynamic range limitation in the measurements of the other forms,

rather than an inherent di�erence in the spectra. Form III shows a relatively strong

peak at 0.68 THz, form II has a weaker feature at a higher frequency, but form I does

not appear to (although a peak has been detected by the algorithm).

In Figure 3.28, absorption data interpolated from the published �gures in [111]

is shown. These measurements were taken at di�erent temperatures, at frequencies

between 0.4 and 3 THz within an air-tight chamber. The data shows good agreement

with the measured data in Figure 3.27. A relative lack of peaks in form II below 2

THz can be seen, with two peaks at 2.3 and 2.8 THz. This suggests that in Figure 3.27

these peaks are being capped by the noise �oor. Form III shows weak features corre-

sponding to the 1.32 and 1.79 THz and a strong peak at 0.68 THz, which corresponds

to the peaks observed in Figure 3.27. Form I shows much broader features than those

observed in Figure 3.27, which could is likely due to the higher sample temperature

which will cause homogeneous broadening.

In Figure 3.29, the absorption coe�cient of paracetamol form I from [111] is

shown with this work’s measurement of form I. The blue and red curves show the
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referenced absorption data at 415 K and room temperature. The green curve shows

the measurement from this work. The di�erence between the absorption spectra at

415 K is that there are distinct peaks at 1.8 and 2.4 THz, compared to the doublet at 1.84

and 2.12 THz, which is likely due to some associated red shift with temperature and

the doublet merging into a broad feature. The two room temperature measurements

show similar shape, however the reference measurement shows broader features

which might be an artifact from the interpolation process used to extract the data.

Notably, these measurements appear to have a systematic di�erence which increases

with frequency. This could be due to a di�erence in the scattering in the samples

[113] or due to thickness uncertainty, see § 3.12.

Lower concentration samples were measured to give a spectral �ngerprint be-

tween 0 and 6 THz. 10 % concentration form I and II samples were measured at a

sampling rate of 150 THz and a 20 % concentration form III sample was measured

at a sampling rate of 75 THz. The full powdered sample fabrication process can be

found in Appendix A. Both were measured using the LFRBB THz TDS system and

with a frequency resolution of approximately 200 GHz. Form III was measured at a

higher concentration because it was much less absorbent than the other forms.

In Figure 3.30, the absorption of 10% form I (blue) and II (red), and 20% form III

(green). The axis have been limited to under 5.5 THz to prevent the 6 THz PTFE

matrix peak dominating the curves. Peak detection has been performed on all the
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Figure 3.30: Absorption coe�cient of 10 % Paracetamol I (blue) & II (red), and 20 % Paraceta-
mol III (green). αmax has been marked as dashed lines, peaks have been marked by vertical
lines with circles.
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measurements and the peaks have been marked by vertical lines and circles. There

exists again similar groupings of peaks between the di�erent forms. However, this

becomes weaker at higher frequencies particularly at 2.9 THz where a feature is

present in both forms I & II but not in III and at 4.5 THz where forms I and III share

a doublet but form II does not. Despite these similarities, all of the forms appear to

have di�erent overall shapes which can be seen over the larger bandwidth. Form I

displays a consistent series of peaks, while form II has 3 main features (other peaks

appear to be fairly weak) and form III takes exhibits a dominant peak at 2.6 THz.

III 100 % III 20 % II 100 % II 10 % I 100 % I 10 %
0.68 0.68 0.76 0.6 0.54 0.56

0.83 0.87
1.01 0.99 1.09 1.1 1.12 1.13
1.32 1.34 1.43 1.4 1.46 1.44
1.79 1.73 1.79 1.73 1.84 1.76
2.37 2.24 2.28 2.12 2.19

2.63 2.63 2.59 2.55
2.89 2.88

3.2 3.44 3.37
3.72 3.72 3.69
4.11 4.21 4.19
4.39 4.44
4.66 4.66
4.99 4.99 5
5.24 5.3

Table 3.2: Table of absorption peaks in Paracetamol Forms I, II and III.

Table 3.2 shows the peaks detected in the measurements. Where possible the

features have been grouped by frequency. From this table, there appear to be sev-

eral absorption modes exhibited by the di�erent forms at similar features. However,

particularly at larger bandwidths, the relative intensities of these features are sub-

stantially di�erent giving di�erently shaped spectra.

These results show the applicability of THz TDS to the detection of di�erent

polymorphic forms of pharmaceutical compounds. This is particularly important,

as di�erent polymorphs have di�erent physical and chemical properties, which can

have both manufacturing, storage and application implications [16].
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3.11 Deconvolution errors

From equations 3.16, 3.8 & 3.9, the system transfer function, Hsys, should cancel out.

However, it was observed that this does not occur as by including a system re�ection

within both the sample and reference measurements etalons are introduced into ñ,

which would not be present when re�ections are excluded. The transfer function is

deconvolved from sample and reference measurements, both of which contain some

degree of error.

These error terms are de�ned as the di�erence between the deterministic value

of a measurement and the actual measured value. Random error due to uncertainty

within the measurement will propagate to ñ, which is discussed further in Chapter 6.

Other forms are systematic error within the measurement which can be further

viewed as systematic measurement errors and systematic modelling errors. In the

former, there exists systematic error or bias within the measurement in some form.

For instance if there is systematic error in the time base [114], [115] features (in

particular re�ections) can be di�erent between sample and reference measurements.

In the latter, there exists an e�ect which is not being modelled. A common e�ect of

this type would be resonance within the sample which produces multiple peaks in

the time trace. In this case, the resonant sample response can be treated as additive

error in addition to the sample response which �ts the model. Another source of

this type, would be to consider e�ects of the sample on the focused THz radiation.

The sample will a�ect the focal length of the beam [100], which will in turn a�ect

the focusing on the detector, introducing an e�ect which is not modelled.

By modifying equation 3.16 to include additive error terms within measurements,

an estimate of H including error terms can be formed:

H ′ =
Esam + εsam
Eref + εref

(3.45)

where εsam and εref are errors within the sample and reference measurements re-

spectively and H ′ is transfer function with error in the measurements.

To understand how error a�ects ñ, a logarithmic form can be used. Starting with
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the transfer function model, equation 3.11, and applying a logarithm to both sides:

loge(H) = loge
(

4ñ

(ñ+ 1)2

)
− iωl

c
(ñ− 1) (3.46)

This can be rearranged into the form:

ñ = i
c

ωl

(
loge (H) + loge

(
(ñ+ 1)2

4ñ

))
+ 1 (3.47)

Replacing H with H ′ will lead to two additional logarithmic terms, which are

incorporated into the estimate of ñ with deconvolution errors, ñ′:

ñ′ = i
c

ωl

(
loge (H) + loge

(
1 +

εsam
Esam

)
−

loge
(

1 +
εref
Eref

)
+ loge

(
(ñ+ 1)2

4ñ

))
+ 1 (3.48)

This can be then be written including ñ:

ñ′ = ñ+ i
c

ωl

(
loge

(
1 +

εsam
Esam

)
− loge

(
1 +

εref
Eref

))
(3.49)

If εsam
Esam

< 1 and εref
Eref

< 1, this can be expanded into the form of a Taylor series:

ñ′ = ñ+ i
c

ωl

∞∑
k=1

(−1)k+1

k

(
εksam
Eksam

−
εkref
Ekref

)
(3.50)

where k is a summation index.

3.11.1 Time localised error

If the error occurs at regions in time, as in the case of error associated with re�ections,

error terms will have the general form of:

ε = ε0e
−iωtε,0 (3.51)

where ε0 is the time centered error spectrum and tε,0 is the time di�erence between

ε0 and non time centered spectrum (the shift in time to centre). εsam and εref can be
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combined into a singular complex sinusoidal term, in which case a general error at

the kth index, εk, with time shift, tε, can be formed:

εke
−ikωtε =

εksam
Eksam

−
εkref
Ekref

(3.52)

where εk and tε are de�ned as:

εk =

(
εksam,0
Eksam

e−ikω
(tε,sam−tε,ref)

2 −
εkref,0

Ekref
e−ikω

(tε,ref−tε,sam)
2

)
(3.53)

tε =
(tε,sam + tε,ref)

2
(3.54)

Where εsam,0 and ε0,ref are the corresponding time shifted sample and reference

errors, with time shifts tε,sam and tε,ref .

By substituting this into Equation 3.49, it can be factored into a summation of

complex sinusoids:

ñ′ = ñ+ i
c

ωl

∞∑
k=1

(−1)k+1

k
εke
−ikωtε (3.55)

In the case that there is no time localised error in the reference measurement (εref =

0) and there is in the sample measurement (for instance when the THz radiation

resonates within the sample and is not accounted for in the processing), then equa-

tion 3.49 can be further simpli�ed:

ñ′ = ñ+ i
c

ωl

∞∑
k=1

(−1)k+1

k

εksam,0
Eksam

e−ikωtε,sam (3.56)

The deconvolved estimates of n and κ including deconvolution error, n′ and κ′, can

be derived by separating the real and imaginary parts of equation 3.55:

n′ = n+
c

ωl

∞∑
k=1

(−1)k+1

k
sin(kωtε)εk (3.57)

κ′ = κ− c

ωl

∞∑
k=1

(−1)k+1

k
cos(kωtε)εk (3.58)



3.11. DECONVOLUTION ERRORS 79

30 32 34 36 38 40 42 44 46 48 50

−100

−50

0

50

Time (ps)

e(
t)

(a
.u

.)
Reference
Silicon

Figure 3.31: Time traces of both a 1 mm thick silicon and the associated reference measure-
ment. A system re�ection is included in the time window of both measurements

These equations are reached when there is error which is local to a particular

point in time, such as error which is associated with a system or sample re�ection.

In both cases the error occurs across a speci�c region of time, rather than across

the entire time window (i.e. the error has the general form of equation 3.51). The

error when propagated to the ñ, will have a sinusoidal component resulting in etalon

artifacts.

3.11.2 Systematic deconvolution errorwhen systemechoes are present

Silicon in particular demonstrates the systematic error and produces very visible

artifacts which can be seen when calculating with a time window which includes

either system or sample re�ections. In Figure 3.31, a time scan of a 1 mm thick silicon

plate is shown (blue) with its corresponding reference measurement (red). Both of

these measurements were measured with the LFRBB THz TDS system. The scans

were measured with a bias voltage of 150 V chopped at 7 kHz, and were sampled

at 25 THz. In both measurements, a system re�ection from the 150 µm thick GaP

electro-optic crystal used in the detection scheme is present. The extracted real

refractive index and extinction coe�cient are shown in Figure 3.32. Both of which

show signi�cant etalons when the system re�ection is included in the time window.

These are not present when both time windows are shortened such that the system

re�ection is excluded.

This is due to an error which occurs in the measurement of the re�ection. This
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system re�ection is in principle independent of the sample and the transfer function

of the system re�ection relative to the initial pulse should be consistent. When

deconvolving a measurement which includes a system re�ection in both windows,

it should be removed.

If, however, there is a small systematic change in this system transfer function,

artifacts will appear in the extracted parameters. As the error in ñ is proportional to

this systematic error, the error can be very small as long as it is signi�cantly large

relative to ñ.

This error will also occur at the re�ections point in time, and as such the etalons

should be an expression of equation 3.57. This can be seen by applying a Fourier

transform to either n or κ. This technique has been used before in thickness extrac-

tion, (see § 5.7), to quantify the change in etalon magnitude [116]. In Figure 3.33,

the Fourier transform of the �nite di�erence (to suppress non-sinusoidal features)

of n and κ is shown. This is measured on a pseudo time domain scale (this is dif-

ferent to an inverse Fourier transform, but is still measured in time). Features in

this domain will correspond to sinusoidal like features in the underlying parameters

and what is immediately noticeable is that the both n (blue) and κ (red) have fea-

tures at the same location and are periodic on the pseudo time scale. An estimate

of tε,sam = tε,ref = 4.4 ps is formed, by measuring the time di�erence between the

negative peaks between the main pulse and re�ection in the silicon measurement in

2 4 6
3.4

3.41

Frequency (THz)

n

2 4 6
0.2

0.4

0.6

0.8

1

1.2
·10−2

Frequency (THz)

κ

With Refelction
Without

Figure 3.32: Estimated properties of silicon based on the measurement including a system
re�ection. Left - real refractive index. Right - extinction coe�cient. A measurement which
includes a system re�ection in both time windows (blue) and without (red)
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Figure 3.33: The Fourier transform of the �nite di�erence of n (blue) and κ (dashed red).
Both curves show very similar periodic features at approximate intervals of 4.4 ps (vertical
blue dashed lines)

Figure 3.31, multiple of this have been marked on Figure 3.33 as blue dashed lines.

From this it can be seen that the features in both Fourier transform of n and κ are

separated by this interval. This relationship is approximate due to the error being

deconvolved with the measurement response, in equation 3.50 this is shown as a

division term.

These measurements demonstrate the need to apply windowing to remove sys-

tem re�ections, as small errors localised to the system re�ection will propagate

through to and dominate the calculated spectroscopic parameters. As these are

displaced relative to the initial pulse in the measurement and that the error in ñ

is directly proportional to εk, a series of sinusoids is formed in the spectroscopic

parameters.

3.11.3 Systematic deconvolution error of sample resonance

When the THz radiation resonates within the sample, re�ections (echoes) are present

in the sample trace which are not present in the reference trace. These are not

accounted for within the sample model (see equation 3.10) and thus can be viewed as

a systematic error within the measurement. Like the case with the system re�ections,

this leads to etalons within n and κ.

In Figure 3.34, the time measurements for a 1 mm thick silicon (blue) plate with

its corresponding reference measurement is shown (red). The measurement was
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Figure 3.34: Time measurements of a 1 mm thick silicon plate (blue) and the corresponding
reference measurement (red). A sample re�ection is present in the sample trace, which is
not present in the reference measurement
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Figure 3.35: The extracted parameters of silicon. Left - real refractive index, right - extinction
coe�cient. The parameters based on data with sample re�ection included have etalons (blue)
while the parameters based on data without the re�ection do not (dashed red).
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Figure 3.36: The Fourier transforms of mean centered n (blue) and κ (dashed red). Both
contain sharp periodic features with a period of 22.84 ps (blue dashed lines)
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performed using the HFRBB THz TDS, using a 600 V 7 KHz bias voltage, and was

sampled at 25 THz. The sample measurement contains a second peak, which cor-

responds to a re�ection within the sample itself. This is not present within the

reference measurement.

When processed to extract values of n and κ, this leads to sinusoidal etalons. In

Figure 3.35, the n (left) and κ (right) are shown. Both of the measurements based on

Figure 3.34 show large etalons with a short oscillation period. If the time window is

shortened to exclude the sample re�ection, these etalons are removed. This is shown

in Figure 3.35 as red dashed lines. In Figure 3.36, the Fourier transform of the �nite

di�erences of n (blue) and κ (red) are shown. A sharp set of features are present

in both parameter curves and again both are periodic. tε,sam was calculated to be

22.84 ps from Figure 3.34 by measuring the time di�erence between the re�ection

and the initial peak in the sample scan. In this particular case, the error caused by

sample resonance is solely in the sample measurement, see equation 3.56, so tε,sam

will correspond to the periodicity of the etalons. This has been marked on Figure 3.36

as vertical blue dashed lines, and this matches up to the sharp peak present in the

periodic feature from both parameter curves. This is a more exact relation than in

the system re�ection case, as εsam
Esam

will be the transfer function of a re�ection within

the sample relative to the initial pulse.

This example exhibits a very common e�ect, as many samples have a refractive

index high enough to produce re�ections and especially when the sample is thinner,

this will produce measurable distortions in the sample parameters. In Chapter 5, this

etalon e�ect is used in conjunction with a sample resonance model to accurately

measure sample thickness.

3.12 E�ect of thickness uncertainty

In equations 3.18 and 3.20, the sample thickness is required to calculate both n

and κ. Any inaccuracy in the thickness will propagate to the n and κ, resulting in

uncertainty in these terms. The thickness uncertainty can be propagated through

equations 3.18 and 3.20, to form estimates of the uncertainty of n and κ. To do this,
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σl

σn

(a) (b)

l

n n

l
Figure 3.37: (a) - The hypothetical relation between thickness and refractive index is non-
linear. (b) In the neighbourhood of the sample thickness (marked as a dashed line on (a)), the
relation can be modelled as being approximately linear, leading to a proportional relation
between σl and σn.

these equations are approximated by simpler linear relations.

In Figure 3.37, a hypothetical relation between thickness and refractive index is

shown (a). Increasing thickness will asymptotically decrease the value of n towards

0. The relation between uncertainty in thickness, σl, and uncertainty in n, σn, is

therefore non-linear. It is however possible to construct an approximate linear rela-

tion at the measured value of thickness by constructing a �rst order polynomial, see

Figure 3.37 (b). The relation between σn & σl is then approximated by replacing the

non-linear relation with a simpler multiplication by the absolute di�erential at this

point:

σn ≈
∣∣∣∣dndl

∣∣∣∣σl (3.59)

An approximate relation for σn can therefore be derived by di�erentiating equa-

tion 3.18:

σn ≈
∣∣∣ c
ωl2

∠H
∣∣∣σl ≈ σl

l
(n− 1) (3.60)

A similar relation can be derived for σκ:

σκ ≈

∣∣∣∣∣ cωl2 ln
(

(n+ 1)2

4n
|H|

)∣∣∣∣∣σl ≈ σl
l
κ (3.61)

In the above approximation, additional terms relating σn have been neglected, as

these will be much smaller than this primary term.
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These can both be arranged into the following forms:

σn
n
≈ σl

l

(
1− 1

n

)
(3.62)

σκ
κ
≈ σl

l
(3.63)

This leads to the useful observation that the relative uncertainty (uncertainty divided

by its measured value) of spectroscopic parameters due to thickness uncertainty will

be proportional to the relative uncertainty in thickness. A common technique to

increase the αmax of a measurement is to use a thinner sample. However, unless

the instrument used to measure the thickness of the sample is changed, the abso-

lute uncertainty of the thickness will remain the same. This leads to the relative

uncertainty with respect to the thickness increasing and thus the uncertainty in the

spectroscopic parameters.

There also exist conditions where the thickness can not be measured without

some signi�cant error. In particular when the sample is subject to experimental

conditions which e�ect the thickness, for example temperature change.

3.13 Thickness uncertainty of α lactose monohydrate

A 10% α lactose monohydrate sample was measured, the thickness measured was

0.45 mm to within 0.005 mm using a micrometer. The sample was measured in the
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Figure 3.38: σn of 10 % α– lactose monohydrate, an estimate based of di�erent calculations
of n (green) and an estimate derived from the uncertainty in thickness (red dashed)
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Figure 3.39: σκ of 10 % α–lactose monohydrate, an estimate based of di�erent calculations
of κ (green) and an estimate derived from the uncertainty in thickness (red)

LFRBB THz TDS biased with a 7 KHz 150 V square wave and was sampled at 25 THz.

In Figure 3.38, the uncertainty for n of the sample is shown. The green line is an

estimate of uncertainty based on di�erent estimates of n calculated using di�erent

thicknesses (0.445, 0.45 and 0.455 mm). The dashed red line is an estimate based on

equation 3.60, and is calculated based on an uncertainty of 0.005 mm. Both estimates

are nearly identical.

In Figure 3.39, the uncertainty for κ of the sample is shown. The green line is an

estimate of uncertainty based on di�erent estimates of κ calculated using di�erent

thicknesses (0.445, 0.45 and 0.455 mm). The red line is an estimate based on equation

3.61, and is calculated based on an uncertainty of 0.005 mm. At low frequencies the

estimates are slightly di�erent, at higher frequencies the estimates converge. This is

because the refractive index uncertainty (assumed negligible in equation 3.61) will

be present, however the absorption value is very small. At higher frequencies, the

estimate in equation 3.61 is more e�ective as κ is larger.

These estimates have found that the uncertainty in κ is roughly 1% while in

n it is closer to 3% due to the relative uncertainty in the thickness measurement

and represents a signi�cant systematic error within the measurement. This could of

course be mitigated by using a thicker sample, which would decrease αmax.
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3.14 Conclusion

In this chapter the target spectroscopic parameters were identi�ed with their relevant

relation to each other. A sample model was then developed with regards to the THz

electric �eld, which takes ñ and l as parameters. Approximations for the real and

imaginary parts of ñ, n and κ were derived. These can be used to approximate these

parameters from sample and reference measurements.

These were then applied to a α lactose and a discussion of unwrapping correc-

tions for n was presented. The absorption spectra of di�erent polymorphic forms of

paracetamol were presented.

The method presented here to estimate both n and κ have two signi�cant is-

sues which were discussed. First there exist deconvolution errors, which arise from

error within the measurement. If these errors are localised in time (only occur in

particular regions of the time scan), then in ñ there will be a sinusoidal component

errors. Secondly, sources of time localised errors were discussed, system and sample

re�ections. While both are removable by windowing in the time domain, this will

limit the frequency resolution of the measurements.

The methods presented in this chapter are considerably limited by sample re�ec-

tions and the relative thickness uncertainty. Often it is not possible to simply use a

thicker sample to mitigate these e�ects, and there is an optimal sample thickness for

spectroscopic extraction [117]. Another issue is more complex samples, for instance

a layered structure, which can produce complex sample resonance. In Chapter 5,

more complex methods are discussed which exploit sample resonance and extract

sample thickness.

Another issue is the application of THz TDS to speci�c application. These ap-

plications can often involve testing dangerous or expensive samples, so a suitable

method of testing and calibrating instrumentation is prudent. In the next chapter, a

method of algorithmically creating explosive simulants for security applications is

presented.
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Chapter 4

Creation of explosive spectrum

simulants

This chapter presents an algorithm for generating a mixture of compounds which

acts as simulant for Semtex-H in a THz TDS system. The algorithm in this chapter

was published in [118]. The methods presented in Chapter 3 were used to extract

the absorption coe�cient of the simulant mixtures.

THz has gathered considerable interest for security applications, particularly for

the detection of concealed explosives [5], [17], [119]. Common explosive compounds

are also identi�able by THz spectroscopy [5].

When testing and calibrating an explosive detection system in "real world" con-

ditions, it is preferable not to use an actual explosive and to instead use an inert test

sample to maintain restricted access to explosives. In order to practically test explo-

sives at THz frequencies, a non-hazardous analogue is required. This non-explosive

simulant should have similar absorption spectra to the target explosive. This does

not mean spectra which are objectively the same, but which have spectral features at

the same locations in frequency with similar relative intensity to the target explosive.
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Figure 4.1: THz spectra of RDX (green), PETN (red) and Semtex-H (blue). The spectra of
PETN and Semtex-H have both been o�set by 50 and 100 cm1 respectively for clarity

4.1 Terahertz spectroscopy of Semtex-H and related ex-

plosives

In Figure 4.1, the absorption spectra of cyclotrimethylenetrinitramine (RDX) (green),

pentaerythritol tetranitrate (PETN) (red) and Semtex-H (blue) are shown. Both the

RDX and PETN samples were 20 % concentration samples with a PTFE matrix.

Semtex-H is a mixture of both RDX and PETN, with a number of additional non

THz absorbent components [17]. A simulant of Semtex-H will have to reproduce

features at 0.79, 1.44, 1.98, 2.15 and 2.92 THz.

Absorption modes at THz frequencies are often attributable to crystalline struc-

ture and this is true for the target Semtex-H [97], [120], creating a simulant chem-

ically will therefore be extremely challenging. A simpler route is to instead �nd a

mixture of inert compounds which mimic select features in the spectra. By �nding

a combination of these compounds, the full spectra can be mimicked.
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Figure 4.2: Normalised THz absorption spectra of a range of organic molecules. (top-left)
amino acids: Leucine (magenta), Isoleucine (green), Glutamine (red) and Asparagine (blue).
(top-right) sugars and carbohydrates: Sucrose (magenta), Microcellulose (green), Lactose An-
hydrous (red) and Glucose Monohydrate (blue). (bottom-left) a range of organic compounds:
Benzocaine (blue), Ca�eine (red) and Lidocaine (green). (bottom-right) non-explosive com-
pounds that are chemically similar to known explosives: Cyabouric acid (yellow), Pen-
taerithritol (megenta), Artemisinin (green), Erithritol (red) and Hexamethylenetetramine
(blue). All spectra were normalised to have a maximum absorption of one, and are o�set by
0.5 for clarity.
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4.2 A compound database

In Figure 4.2, the spectra of a range of sugars and other commonly available organic

compounds are shown, which between them have a wide range of spectral features.

Having a large number of components increases the number of possible solutions,

and therefore the chance of a good solution. This increase in potential solutions

also makes the selection of an optimal solution more di�cult. The 16 compounds

considered in Figure 4.2 were used to form a library of spectra, from which Semtex-H

simulants were designed. These compounds were chosen because they had spectral

features at similar frequencies to the target spectrum of Semtex-H and because they

are both physically and chemically inert when mixed together [118]. A number of

the samples shown in Figure 4.2 were diluted using PTFE in order to increase the

usable measurement bandwidth of each sample.

4.3 Modelling mixture spectra

To evaluate mixtures of compounds, the combined spectra of a mixture must be

considered. The included components of a mixture are assumed to contribute to the

overall absorption spectra in proportion to its concentration in the mixture. So that

combinations of compounds leads to summation of absorption spectra (scattering is

assumed negligible). Thus a mixture spectrum, MN , can be modelled as a weighted

sum of the constituent component spectra:

MN (ω) =

j=N∑
j=1

CjSj(ω) (4.1)

where N is the number of components, Sj is the pure THz absorption spectrum

of each component j taken from the library of spectra and Cj is the concentration

(normalised to one) of each component. This method of modelling provides a simple

and e�ective way to locate a viable simulant mixture.

A more complex but generally accurate method of modelling a mixture spectra

is to use e�ective medium approximations, such as Maxwell Garnet [121] or Brugge-

man [122]. These methods can produce more accurate mixture spectra but would
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introduce additional complexity into the mixture modelling process. These were not

used in the simulant generation algorithm, instead multiple viable mixtures were

generated using the above method to compensate for a simple mixture model.

This was also used to estimate the pure absorption spectra from a diluted compo-

nent spectra, the matrix material PTFE was assumed to have negligible absorption.

The estimate of a pure spectra based on the diluted spectra was then simply the

absorption spectra of the diluted sample divided by the concentration normalised to

1 (i.e. a 10% sample would have its spectra divided by 0.1).

4.4 Quantifying similarity between spectra

Once a mixture is modelled, its spectra are compared to the target spectra using a

function to quantise the similarity. Cross-correlation was chosen as the basis for

this function. As with equation 3.15, one dataset is shifted relative to the other and

a summation is computed giving a quanti�cation of the similarity. This is however

performed in the frequency domain, rather than the time domain:

CAB(r) =
k=L∑
k=0

A(k)B(k + r) (4.2)

where r is the frequency shift between the spectraA andB, L is the number of sam-

ples in each of the spectra, k is the frequency index and C is the cross-correlation.

The frequency shift is used to provide a similarity score with a degree of frequency

tolerance. A weighted normalised correlation coe�cient was used to provide a nor-

malised similarity score between 0 (spectra are completely di�erent) and 1 (spectra

are identical) [123]:

CWs
AB =

∑r=l
r=−l CAB(r)W (r)√∑r=l

r=−l CAA(r)W (r)
√∑r=l

r=−l CBB(r)W (r)
(4.3)

where W (r) is a weight function, de�ned as:

W (r) = 1− |r|
l

(4.4)
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Here l is the frequency shift tolerance, i.e. the absolute shift of a spectral feature that

will be tolerated by the �tness function before a discriminating penalty is applied.

The weight function is used to introduce a preferential score bias to small frequency

shifts. A simpli�ed schematic of how this was used can be seen in Figure 4.3. In

Figure 4.3.a, the two spectral features, A and B are identical in spectra but shifted

by a value r. As r is greater than l, the weighting function is reduced and the �nal

score is poor. In Figure 4.3b, r is less than l and the spectral features are identical;

however, r is still quite large. In Figure 4.3c, r is smaller than in Figure 4.3b but

the spectral features are not identical. The spectra in Figure 4.3c will always give a

better score than Figure 4.3b. CWs
AB gives a score between 1 and 0. Thus, a mixture of

compounds that form a suitable Semtex-H simulant must give a resultant spectrum

with a high value of CWs
AB .

Figure 4.3: A diagram to illustrate how spectra is evaluated in relation to frequency di�erence
(r) between the target feature ( (A) , dotted) and simulant feature ( (B) , solid), and frequency
tolerance (l). (a) r is greater than l, the cross- correlation is truncated using W (r), giving a
poor score. (b) The simulant feature has an identical shape, and thus good cross-correlation,
but large r, giving a poorer score due to W (r) than (c), where the simulant feature is only
partially similar in shape, but has smaller r

4.5 Selection and optimisation of mixtures

Genetic algorithms are a class of minimiser/maximiser algorithms based on the prin-

ciples of evolution [124]. A genetic algorithm operates on a population of di�erent

solutions to a given problem, and operates by replacing poor performing solutions

with better solutions generated from the remaining higher ranked population. By

iteratively performing this process, a optimal solution can be found.

In Figure 4.4, a �owchart of the genetic algorithm used in this work is shown.

The genetic algorithm used in this work operated iteratively on a population of
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Figure 4.4: Flowchart of the genetic algorithm used in this work
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solutions until the top solution was stable over 50 iterations. An initial population

is generated randomly with a uniform distribution [125]. With each iteration of

the population, individual solutions were evaluated by a �tness function and sorted

by score. The top two ranked solutions are selected as “elites”, and pass directly to

the next iteration of the population. “Parents” are then selected from the previous

iteration of the population to form a new population through either “crossover”

or “mutation” [125]. 80 % of the new non-elite population is formed by crossover,

a randomised combination of the two parents from the previous iteration. The

remaining 20 % are formed by mutation, which is random change to a single parent.

The process continues to iterate over the population, until the �tness function score

of the top mixture has changed by less than 10−6 over 50 iterations. In the �rst stage

of the selection process where chemical components of the mixture are selected

(see below), a variation of the genetic algorithm which optimises integer problems

was used, during genetic algorithm operations such as "crossover" or "mutation"

solutions are forced to take integer values using a penalty function [126]. In the

second stage, where the concentration of the �xed components are optimised, a non-

linear constraint was used to ensure that all components were positive and their sum

was equal to one [127].

To evaluate the performance of each solution, it is evaluated against the tar-

get spectrum (the normalised spectrum of Semtex-H) by a �tness function, which

provides a �tness score. In this case, the �tness function F is given by:

F = 100
(
1−

∣∣CWs
AB

∣∣) (4.5)

F is simply the weighted normalised correlation coe�cient, CWs
AB , scaled between 0

and 100, with 0 representing a perfect match for the normalised spectrum of Semtex-

H, and 100 representing no correlation. This was done to convert a normalised max-

imisation problem into a normalised minimisation problem, which is required by the

implementation of the genetic algorithm. The genetic algorithm was implemented

using MATLAB’s global optimisation toolbox [128]; To create viable simulants, the

problem was split into sequential stages: (i) selecting the components of the mixture
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and (ii) optimising the relative concentrations of the mixture.

In the component-selection stage, the genetic algorithm was used to form �ve

compound combinations with repetitions, with each component making up 20% of

the mixture. This was implemented as optimising a combination of 5 integers with

repetitions. This reduces the complexity of the optimisation problem signi�cantly,

rather than trying to �nd an optimum selection of any number of unique compounds

with corresponding concentrations which sum to 100 %, the problem becomes a

search for the optimal combination of 5 integers between 1 and 16 (the number of

compounds). Each component in the spectra library was assigned an integer value

and the combinations of integers were converted into a mixture spectra. Repetitions

were used to form concentrations which are a multiple of 20 %. For instance, if the

algorithm generated a mixture spectra formed from a combination of components

1, 2, 3, 1, and 1; this would be converted to a three component mixture containing

components 1, 2, and 3 with concentrations of 60, 20 and 20% by mass, respectively.

The mixture spectra were then modelled using equation 4.1, normalised and then

evaluated against the normalised spectrum of Semtex-H using the �tness function, F

in equation 4.5. The maximum normalised spectra were used in the �tness function,

as a comparison between the relative intensities of the spectrum was desired. A

�owchart of the process is shown in Figure 4.5.1 and is shown under component

selection.

An initial population of solutions was uniformly and randomly generated, as

the process of optimisation is dependent on the initial population, increasing its size

(or equivalently repeating the process) will yield a more extensive search for the

optimum solution. After evaluating the population solutions, the genetic algorithm

then modi�es the population of mixture spectra by removing solutions with poorer

scoring spectra and generating additional spectra from the remaining population.

The evaluation, using �tness scores, and modi�cation of the population was repeated

until a consistent best-ranked solution appeared with a change in �tness function

less than 10−6 over 50 iterations.

This process of selecting a suitable component combination was repeated for a

total of 30 times, deliberately making use of the non-deterministic selection process
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to produce multiple viable solutions. The highest-ranked mixture spectra from each

of the 30 repeats were then compared, duplicates were removed and the remaining

mixture spectra ranked. A �ow chart of the entire component selection process is

shown in Figure 4.5.1.

The top two scoring solutions were then used as a basis for the second stage, in

which the genetic algorithm was used to optimise the concentration of each compo-

nent of the simulant mixture. Randomisation of the two mixture concentrations was

used to form the initial population. The genetic algorithm was performed in a similar

manner to the �rst stage, but changes were now made to component concentrations

for a �xed component selection. These concentrations were then used to form the

spectrum of the mixture, which was then compared to the normalised spectrum of

Semtex-H using the �tness function F . This is shown in Figure 4.5.2 as a �owchart

under concentration optimisation.

As in the �rst stage, the process was repeated until a consistent best solution with

a change in �tness function of less than 10−6 over 50 iterations was achieved. This

second stage was then repeated a further four times, and the mean concentrations

from each run used as the concentration for the �nal solution. A �owchart of this

second stage is shown in Figure 4.5.2.

The whole process was then repeated ten times, over eight di�erent frequency

tolerances and the �nal solution of each run was collected. At the end of this process

four di�erent solutions were found and are summarised in Table 4.1.
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Figure 4.5: Flowcharts of both the �rst and second stages of the simulant generation algo-
rithm. 1 - The �rst stage �owchart, the left �owchart shows the process which performs the
component selection and the right �owchart shows how the individual component combina-
tions are evaluated. 2 - The second stage �owchart, the left �owchart shows the concentration
optimisation and the right �owchart shows how mixtures are evaluated.
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4.6 Results

Table 1 shows the components, concentrations and �tness function score (F , where

0 is a perfect match) for each of the four unique mixtures that were obtained using

the genetic optimisation algorithm. The process converged on similar mixtures over

di�erent frequency tolerances, where components were the same, with preference

being given to the mixture at the lowest frequency tolerance. Three mixtures were

obtained using the lowest frequency tolerance of 37 GHz (mixtures 1, 2 and 3 in

table 1). A further solution (mixture 4) was produced once the frequency tolerance

was increased signi�cantly to 620 GHz but which concomitantly resulted in a much

lower �tness function score. This lower score is because a greater frequency shift

tolerance weakens the constraint of matching the frequency of features for the tar-

get spectra, which can give a better �tness score and a greater diversity of solutions.

This is at the expense of matching target feature location in frequency. In the case

of mixture 4, the feature at 1.7 THz produced a good match with Semtex-H’s dou-

blet at 2 THz because of the greater frequency shift tolerance allowed in this case.

The �tness score for mixtures obtained using di�erent frequency tolerances are not

directly comparable. It was found, however, that the frequency shift tolerance was

not required to be increased to achieve multiple low �tness solutions. This is un-

surprising given the large full width half maximum (FWHM) of the majority of the

spectral features being imitated. All four mixtures contain artemisinin, which closely

simulates the low-frequency spectral feature of RDX (0.79 THz) along with a num-

Mixture Component name Fitness function, Frequency
number (concentration) F (0 - 100) tolerance (THz)

1 Art (21%), Micro(79%) 1.88 0.037

2 Art (18%), Micro(64%), 1.8172 0.037
Hex (18%)

3 Art (17%), Micro(51%), 1.8223 0.037
Hex (27%), Asp (5%)

4 Art (23%), Hex (53%), 0.40923 0.62
Lid (24%)

Table 4.1: The four algorithm-generated mixtures, their components, mass percentages and
the �tness function value of the spectra compared to the normalised spectrum of Semtex-H.
Art - Artimisinin, Micro - Microcellulose, Hex - Hexamethylenetetramine, Lid - Lidocaine



4.6. RESULTS 101

ber of higher-frequency spectral features of both RDX and PETN. Microcellulose

was also a signi�cant component of three of the mixtures, as it usefully provided a

weak contribution to peaks at similar frequencies to those in Semtex-H. These were

located at 0.79, 1.44, 1.98, 2.15 and 2.92 THz, as well as a background that increases

with frequency, similar to that seen in Semtex-H.
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Figure 4.6: The four predicted spectra for the simulant mixtures are shown as solid lines.
The dashed lines show the measured spectra of the mixtures once they were made, diluted
with PTFE to 25% by mass and pressed into solid pellets. The solid blue line shows the
normalised spectra of Semtex-H previously shown in �gure 4.1 for comparison. Spectra
have been normalised and o�set for clarity. Red - Mixture 1, Green - Mixture 2, Magenta -
Mixture 3 and Yellow - Mixture 4.

Given the non-deterministic nature of these algorithms, a relaxation of the con-

straint on component numbers was considered. The number of components in the

�rst part of the process was deliberately kept low in order to make the resultant

mixture easier to fabricate. When simulant generation was performed with a larger

number of components (up to 20), the resulting mixtures contained very low concen-

trations and scored no better than those developed using the method described above.

If the number of features is compared to that of the target spectra, the reason for

this becomes clear. There are only four broad peaks in the target spectra; therefore,

produced simulants will only require a similar number of components (assuming

a single component produces each feature) to mimic these features. The resulting
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predicted spectra for each of the four mixtures are shown as solid lines in Figure 4.6,

with each spectra showing four broad spectral features centred roughly at 0.75, 1.5, 2

and 3 THz. Each mixture was then produced and diluted to 25% concentration with

PTFE before being pressed into a solid pellet. The THz spectra for each of these sam-

ples are shown as dashed lines in Figure 4.6. Figure 4.6 also shows the normalised

spectra of Semtex-H (blue solid line) from Figure 4.1 with all spectra being o�set of

1 for clarity and comparison.

The experimentally measured spectra of each of the four mixtures are not iden-

tical to the predicted spectra; peaks in the spectra are generally weaker and less

prominent. These discrepancies are likely caused by a number of factors. First, it has

been assumed that the absorption intensity scales linearly with concentration both

in the formation of the library and then in equation 4.1 when forming the mixture

spectra. Secondly, to construct the library compounds were diluted with PTFE which

can cause slight changes in peak positions [120] compared to the spectra of the pure

material. Finally, mixing a number of substances will a�ect the THz scattering [113],

particularly if there is a high contrast in refractive index, and in addition may also

lead to changes in spectral peak shape [96].

4.7 Conclusion

In this chapter a algorithm was outlined to generate suitable simulants for a target

spectrum. The simulants consisted of mixtures of inert compounds which mimicked

the normalised spectrum of the target. This was applied to Semtex-H to generate

four viable mixtures. Samples of these mixtures were formed and measured. The

resulting sample mixtures were compared against the target spectrum and the mod-

elled mixture spectra. It was found that resultant mixtures produced features which

mimicked the spectra, however it was limited by the e�ects of scattering and the

combinational e�ects of a mixture.

This algorithm could be used to generate viable simulant mixtures for a wide

range of target samples. This could include samples which are hazardous, restricted

(such as drugs of abuse), expensive or unstable at calibration conditions. Additionally,
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this technique could be used to decompose a mixture into its constituent components

using spectroscopic measurements.
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Chapter 5

Transfer function methods of

extraction

This chapter discusses di�erent methods of indirectly extracting ñ of any sample

using error minimisation techniques. This is used to extract the thickness of a sample

in-situ and to extract ñ of an uncharacterised layer in a multi-layer sample. New

algorithms are developed to extract both the thickness and ñ of a sample. These

algorithms have lead to two conference presentations [129], [130].

5.1 Overview of �tting resonant sample transfer func-

tion models

In order to extract the ñ of a sample, approximate methods discussed in Chapter 3

can be used. These can be accurate, however, are limited by resonance within the

sample and the relative thickness uncertainty. These can both be resolved by �tting

a sample transfer function model.

Fitting a transfer function model allows more complex sample models than the

one presented in § 3.2. This allows THz resonance within the sample to be considered,

allowing the time window to include re�ections from the sample. The use of a

model which includes this resonance will mitigate the etalons in ñ, allowing better

frequency resolution to be obtained. The re�ections from the sample also represent

additional information about the sample, this can be used in conjunction with a
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resonant model to extract the thickness of the sample in situ. This allows the sample’s

thickness to be measured accurately at the THz focus, under conditions which may

prevent accurate thickness measurement by other means.

Deconvolve

H ñ

Fit H̄
Eref

Esam ñ

l̄

β

Approx ñ

Min T.V.
ñ

l

l

Single Fitting

Figure 5.1: The processing �ow diagram of �tting a resonant sample model. Deconvolution
is followed by �tting a model to the transfer function. This can be repeated using di�erent
assumed thicknesses, l̄, to �nd a minima in total variance, T.V., which corresponds to the
sample thickness, l.

In Figure 5.1, an overview of the �tting and thickness process is presented. The

transfer function of the sample, H , is calculated from reference, Eref, and sample,

Esam, measurements. In the dashed central box an extraction for a measured thick-

ness, l, is shown. An initial estimate of ñ is produced using the methods in § 3.6.

Using these as a initial starting point, the sample transfer function model, H̄ , is �tted

to H by minimising the error between the two, to indirectly extract ñ. A calibration

coe�cient, β, can be used to increase the accuracy of the extraction by accounting

for a Gaussian beam pro�le. When using a resonant model, it is possible to extract

the thickness by performing a direct search. In this case, the process is repeated for

di�erent assumed thicknesses, l̄, and evaluated by minimising total variance, T.V., to

extract both the l and the ñ of the sample.

5.2 Fitting a sample transfer function model

In order to �t a sample transfer function model to the calculated sample transfer

function, a measure of error must be minimised with respect to ñ of a sample. This

measure of error can be one of several functions, however three will be considered

in this work, all of which are a measure of the di�erence between the modelled and

measured transfer function.
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In order to minimise the error with respect to ñ, a minimisation algorithm is used.

In the literature both simplex (direct search) [63] and gradient descent [101] have

been used (it has also been reported that any error minimisation method works [131]).

In this work, the Levenberg–Marquardt algorithm [132], [133] has been used because

it was found to generally give the faster convergence. These algorithms �nd local

minima in the error function. This has two important connotations, �rstly there may

exist a better solution (a minimum which is lower than the one located) and secondly,

there can exist residual error after the minimisation process. In practice, however,

these can be neglected. The former can be avoided by using techniques which

restructure the error to have a singular minimum, and the latter is not signi�cant,

as the models are �tted at each frequency point, so there is no compromise between

multiple data points.

A minimum (or equivalently maximum) is de�ned when the di�erential of the

error function with respect to extracted parameter (in this case ñ) is equal to 0:

dE
dñ

= 0 (5.1)

Where E is the error. Using the chain rule, this can be shown to be:

dH̄

dñ

dE
dH̄

= 0 (5.2)

Where H̄ is the transfer function model. This shows that if the error function has a

minimum with respect to H̄ it also has a minimum with respect to ñ.

A range of error functions can therefore be used, provided that they have a min-

imum with respect to H̄ . This also inherently means that if di�erent error functions

have the same location of minima with respect to H̄ , they will produce the same min-

ima with respect to ñ. In this case, the problem is said to be critically determined, the

number of error variables is equal to the number of �tted parameters. The solution

to the problem is thus unique as there is no redundancy.

The models used within this work are also non-interdependent with respect to

frequency and thus, so are the minima. i.e. �nding the minima over all frequencies,
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is the same as �nding the minima at each frequency [63].

To extract the ñ of a sample and �t a model to H , the argument minimum is

located. This is the value of ñ which minimises the error between H̄ and H :

ñ(ω) = argmin
ñ(ω)

E
(
H(ω), H̄ (ñ, ω)

)
(5.3)

Where E is some measure of error between the model and measured transfer func-

tions.

As the extracted ñ is phase unwrapping sensitive, the error function must be as

well. The error functions suggested in the literature are either the absolute di�erence

of complex logarithms [101] or the absolute di�erence between magnitudes and

phases [63]. Alternatively, simply using the square of these error functions produces

the same answer (the preferred error minimisation technique, Levenberg-Marquardt,

uses the square). The former takes the form:

E =
∣∣loge (H)− loge

(
H̄
)∣∣ =

∣∣loge |H| − loge ∣∣H̄∣∣+ i∠H − i∠H̄
∣∣ (5.4)

WhereH is the experimental transfer function (the calculated transfer function) and

H̄ is the modelled transfer function. And the latter takes the form:

E =
∣∣|H| − ∣∣H̄∣∣∣∣+

∣∣∠H − ∠H̄
∣∣ (5.5)

Both of these error functions are similar and will both have a minimum at:

∣∣H̄∣∣ = |H| (5.6)

∠H̄ = ∠H (5.7)

Which is equatable to:

H̄ = H (5.8)

Phase wrapping can a�ect the extracted ñ, this can be observed from equation 5.7,

as if ∠H̄ is not unwrapped, multiple values of ñ can produce the same value, leading
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to local minima in the overall error.

There exist several solutions to this problem. Arguably the simplest is to try to

provide an initial estimate of ñ which is so close to the actual value, that wrapping

issues never occur. This is the approach suggested by Duvillaret et al. [60], by using

the lower adjacent frequency extracted value as an initial estimate, unwrapping

issues can largely be avoided. This method however relies on two things, �rst an

initial point must be extracted correctly, and secondly, that the di�erence between

ñ at adjacent frequencies is negligible. However, this can lead to error at lower

frequencies propagating forward to higher frequencies. This method also enforces a

dependence on lower frequencies being calculated �rst, other than wrapping errors

there is no reason to calculate sequentially and if this dependence was removed, the

problem becomes poised to being parallel-ised.

A second method would be to form an unwrapped estimate of the phase in

equations 5.4 and 5.5. n is approximated as being constant with respect to frequency

and the model is evaluated at lower frequencies with the same value of ñ, starting at

0. The error can then be calculated using the unwrapped phase from both the model

and measured transfer functions. However, this is computationally expensive and

poorly scaled, at each frequency point all lower frequencies have to be re-evaluated.

It also su�ers the same issues explored in § 3.9, with conventional unwrapping (i.e.

it assumes discontinuities are smaller than 2π). The advantage is this method can be

evaluated in parallel as the extraction is not frequency interdependent, and is robust

when a poor initial estimate is provided.

An extension of this method, is to extrapolate from a constant n to a phase with

constant gradient. The model can then be evaluated at the current frequency, and at

an adjacent frequency with the same ñ. The gradient of the phase can then estimated

by taking the di�erence between the two points. This can then be used to extrapolate

back to 0, forming a straight line. The correct phase o�set can then be estimated by

shifting the line down a multiple of 2π, so that is is within ±π (corresponding to 0

phase at 0). This assumes that the phase of H̄ is linear with respect to constant n.

However, this is a property of the model used and is not inherently true (in particular,

resonant models do not have this property). Thus forming an estimate of the gradient
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may fail due to local variation in the model phase.

A e�cient method is to form boundaries on the extracted ñ. As noted in § 3.9, the

real refractive index has a relationship with phase wrapping and Sushko et al. [134]

used this to form boundaries on the extraction process. This however complicates

the minima search as a minimum can be formed at the boundary leading to new local

minima. To resolve this, wrapping around an initial n value is used. Two boundary

conditions are formed:

nUB = ninit +
c

2fl
(5.9)

and:

nLB = ninit −
c

2fl
(5.10)

Where nUB and nLB are the upper and lower bounds respectively. A wrapping error

function can then be formed, such that:

E (ñ) = ε

(
ñ− a c

fl

)
(5.11)

Where a is an integer, which is calculated from the boundaries:

a =


R ↓

(
(n− nLB) flc

)
if n > nUB

R ↓
(

(n− nUB) flc

)
otherwise

(5.12)

Where R ↓ (x) rounds x towards 0. After extraction, the n can have wrapping

artefacts, however κ will be correct. The estimate of n can then be corrected by

using the unwrapping corrections in § 3.9.

This method will therefore converge to values of ñ in the region of the initial

estimate. This is particularly advantageous if discontinuities in the refractive index

are present, see § 3.9.3, as other methods of �xing the unwrapping will not generally

account for this. This method is also the most computationally simple, with each

frequency being non-interdependent, thus simple to parallel-ise. However, it is

dependent on the correct value being within these initial boundaries. This will

always be true provided that initial estimates are made using the methods in § 3.9,
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using the same estimate of thickness.

Using this method of boundary conditions, error functions which are phase in-

sensitive can be used. In this work the di�erence of real and imaginary parts is

used:

E =
∣∣<(H)−<(H̄)

∣∣+
∣∣=(H)−=(H̄)

∣∣ (5.13)

Equivalently the conjugate square could be used:

E =
(
H − H̄

) (
H − H̄

)∗ (5.14)

The advantage of both of these error functions is that they are computationally and

analytically simpler than equations 5.4 & 5.5, as neither require logarithms or arctan

operations to extract the phase.

To extract ñ, the error function equation 5.13 is used in conjunction with wrap-

ping around an initial estimate. It should be noted that all the error functions pre-

sented in this chapter will often produce the same answer provided correct initial

conditions, as the solution is unique.

5.3 Fitting transfer function models to α lactose mono-

hydrate

The measurements of 100% α lactose monohydrate from § 3.8 were re–extracted

using a transfer function �tting. The results from § 3.8 were used as both initial

points and as a comparison. The model used was the one presented in § 3.2.

In Figure 5.2, the absorption coe�cient of the sample calculated using the two

di�erent methods is shown. The blue estimate was calculated by �tting the model,

and the red dashed line was calculated using equation 3.20, which was also used as

an initial estimate for the �tting. Both estimates meet αmax at 3.25 THz, which is

assumed to be approximately the same for both extractions.

In Figure 5.3, the refractive index of the sample calculated via both methods is

shown. The blue line is the estimate based on �tting the model, and the red dashed

line is an estimate calculated using equation 3.18. The approximation was used to
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Figure 5.2: α of 100 % Lactose monohydrate, using a �tted transfer function model (blue)
and a approximation (red, dashed)
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Figure 5.3: n of 100 % Lactose monohydrate, using a �tted transfer function model (blue)
and a approximation (red, dashed)
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create boundary conditions for the error function, see equations 5.9,5.10. Where

measurement has been limited by dynamic range, sharp discontinuities are present

in the extracted n. If boundary conditions were not used, the n would be extracted

incorrectly at these points.

Simply �tting the sample model from § 3.2 has the same limitations as using

the approximate methods in § 3.6 as the time window must be shortened to exclude

re�ections from the sample. It also does not result in some substantial increase in

accuracy, this is because the absorption of the sample has negligible e�ect on the

transmission coe�cient, see § 3.2, and thus the approximations are very accurate.

The bene�t of �tting is the ability to model complex sample responses, which can

be used to include re�ections from the sample. This can be used to extract ñ at a

better frequency resolution and to extract the sample thickness from the sample

measurement.

5.4 Sample resonance models

The sample model was developed further in line with the literature to include reso-

nance within the sample [60], [62], [63]. These models assume that re�ections occur

at the sample interfaces, and that this can result in secondary echoes in the time

domain measurement.

To develop this model, the initial model discussed in § 3.2 is used as a starting

point. The same assumptions about the sample and the THz beam is used. However

internally there is assumed to be resonance between the two sample interfaces. This

l

Figure 5.4: Model of the THz beam resonanting in the sample with thickness l, an angle
has been added for clarity. The THz beam re�ects and transmits at each interface, creating
resonance within the sample.



114 5. Transfer function methods of extraction

(A) (B)

1 2

Figure 5.5: (A) - the THz radiation passing through a sample, (B) - The THz radiation being
partially re�ected at the sample–air interface

results in a portion of the THz radiation being re�ected back and forth creating

multiple pulses which can be detected in the time trace.

In Figure 5.4, the modi�ed sample model is shown diagrammatically, with an

angle o�set for clarity (the THz beam is still assumed to be perpendicular to the

sample interfaces). The THz beam passes through the sample, making a single initial

pass. Additionally, at the second interface the radiation re�ections back into the

sample. This cascades with a re�ection at the �rst interface to create a Fabry-Perot

resonance e�ect. Each path through the sample will still partially transmit, leading

to multiple pulses of THz radiation being detected.

To form this model analytically, the re�ection coe�cient is introduced. This re-

lates both the amplitude and phase of the re�ected radiation to the incident radiation,

at an interface between two materials with refractive indexes ñ1 and ñ2, and is:

R1,2 = 1− T1,2 =
ñ2 − ñ1

ñ2 + ñ1
(5.15)

In Figure 5.5 (A), THz radiation passing through a sample is shown. In Figure 5.5

(B), there exists an interface between the sample (1) and air (2), which have di�erent

corresponding refractive indexes. The relation between the incident and re�ected

radiation is the re�ection coe�cient.

To develop a model which takes into account the resonance between sample air

interfaces, the model in § 3.2 is modi�ed to include coe�cients which account for

the re�ection at each interface and propagation back and forth over the sample. A

transfer function model which accounts for just one re�ection in the sample trace
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would take the form:

H̄ = Ta,s
Ps
Pa
Ts,a

(
1 +R2

s,aP
2
s

)
(5.16)

Where Ts,a, Ta,s, Ps, Pa and Rs,a are the transmission coe�cient between the sam-

ple and air, transmission coe�cient between air and the sample, the propagation

coe�cient of the sample, the propagation coe�cient of the displaced air and the

re�ection coe�cient between the sample and air respectively.

To add a second re�ection to the model, equation 5.16 can simply be multiplied

again by
(

1 +R2
sam,airP

2
sam

)
, to extend it to three re�ections, it simply needs to be

multiplied by the same factor. There exists a simple generalisation forM re�ections:

H̄ = Tair,sam
Psam
Pair

Tsam,air

δ=M∑
δ=0

R2δ
sam,airP

2δ
sam (5.17)

Where δ is the pulse index, δ = 0 for the initial transmission without re�ection,

δ = 1 for the �rst re�ection, etc.

M can be approximated reliably by [63]:

M =
floor( ctmaxnl − 1)

2
(5.18)

Where tmax is the length of the time window and n is in this case an estimate of the

average (across frequency) real refractive index.

As
∣∣∣R2

sam,airP
2
sam

∣∣∣ < 1, this model will converge on [60]:

H̄ = Tair,sam
Psam
Pair

Tsam,air
1

1−R2P 2
(5.19)

Both are valid approaches to the same modelling problem, however one considers

a �nite series of re�ections, and the other an in�nite series. The former will converge

on the latter provided a long enough time window or a weak resonance. However,

this is not inherently true if the series of re�ections is truncated (for instance to

remove system re�ections).
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5.5 Fitting resonant models

It has already been established in § 3.11, that re�ections from the sample create sinu-

soidal artefacts in the extracted ñ, by �tting a model which models these resonances,

these artefacts can be minimised.

z-cut quartz was used as a test case in this work, as it produces a strong resonance

and is broadly transparent (α < 10cm−1) at THz frequencies. It was also found to

have an extremely �at surface pro�le, which was pro�led using an alpha–step with

an accuracy to within 1 µm. A consideration for § 5.17 is that the re�ections are

also well separated which allows time partitioning.

This resonance is di�cult to resolve as the re�ections are relatively strong com-

pared to other samples, this makes the quartz sample sensitive to inaccuracies within

the transfer function model. The strong resonance is due to the large non-dispersive

n across the bandwidth of the THz pulse, with an exception at 3.87 THz, where a

weak absorption mode was observed.

A 0.512 mm z-cut quartz plate was measured using HFRBB THz TDS system at

sampling frequency of 25 THz, with two di�erent windows, the �rst with a frequency

resolution of 30 GHz and the second with a resolution of 200 GHz. The �rst was

used to capture the full re�ection train of the quartz sample, the second was used to

exclude the re�ections from the processing.

1 2 3 4 5 6

0

50

100

Frequency (THz)

α
(c

m
-1

)

Fitted Model
Aprox Method
Low Res Aprox Method

Figure 5.6: Absorption coe�cient of a 0.512 mm z-cut quartz sample, with 10 cm−1 o�sets.
Blue - Extracted values using a resonant model, Red - approximate solution including re-
�ections, Green - Approximate solutions excluding re�ections. Dashed blue - αmax of the
measurement.
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Figure 5.7: Real refractive index of a 0.512 mm z-cut Quartz sample, with 0.05 o�sets. Blue -
Extracted values using a resonant model, Red - approximate solution including re�ections,
Green - Approximate solutions excluding re�ections

In Figure 5.6, the calculatedαwith 10 cm−1 o�sets of the quartz sample is shown,

calculated using a sample thickness of 0.512 mm. In Figure 5.7, the corresponding n

curves with 0.05 o�sets are shown.

The green and red curves were approximated using the methods in § 3.6, using

the shorter and longer time windows respectively. The blue curves were extracted

by �tting a resonant model to the longer time window measurements. The inclusion

of sample re�ections has incurred etalons in the extracted parameters. By using a

resonant model, these can be reduced. However, this reduction is inconsistent across

frequencies and has been found experimentally to be dependent on the thickness

used during extraction [62].

5.6 E�ect of thickness error on ñ

The error in the sample thickness used to �t a resonant model will result in etalons

being present in the extracted ñ. This can be derived from the analysis in § 3.11

which derived how time localised error produced etalons.

Using the same method in § 3.11, it is possible to write ñ as a logarithm of the

resonant model:

ñ =
ci

wl

(
loge (H)− loge (Ta,sTs,a)− loge

(
1 +

M∑
δ=1

R2δ
s,aP

2δ
s

))
+ 1 (5.20)
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Taking the �rst order Taylor series approximation of a logarithm, the following

can be formed:

ñ ≈ ci

ωl

(
loge (H)− loge (Ta,sTs,a)−R2

s,aP
2
s

)
+ 1 (5.21)

The same approximation can be derived using an in�nite resonance model (however

they will diverge at higher orders).

If H̄ ≈ H ,i.e. when the error has been minimised after �tting, then the error,

En̄, between the extracted refractive index, n̄, and the true value, ñ, can be estimated

as:

Eñ = n̄− ñ =
ci

ωl
(loge (Ta,sTs,a)−

l

l̄
loge

(
T̄a,sT̄s,a

)
+R2δ

s,aP
2δ
s −

l

l̄
R̄2δ
s,aP̄

2δ
s

)
(5.22)

Where T̄ , R̄ and P̄ are model coe�cients formed from n̄ and l̄. l̄ is the assumed

thickness used during the �tting.

Approximating 1
l̄
T̄s,aT̄a,s = 1

l Ts,aTa,s, an approximation can be formed:

Eñ ≈
ci

ω

(
1

l
R2
s,aP

2
s −

1

l̄
R̄2
s,aP̄

2
s

)
(5.23)

For an estimated thickness, in the neighbourhood of the actual sample thickness,

a value of n̄ is always extractable. However from equation 5.24, there exists a method

of measuring En̄, which can then be used to �nd the correct thickness.

If the ñ is roughly �at (i.e. dñ
dω ≈ 0), such that its di�erential with respect to

frequency tends to 0, the di�erential of this error can be extracted:

dn̄

dω
=
dñ

dω
+
dEñ
dω
≈ dEñ

dω
(5.24)

This can then be expressed using the product rule as di�erentiation of the individual

coe�cients:

dn̄

dω
≈ ci

ω

(
1

l

(
dR2

s,a

dω
P 2
s +R2

s,a

dP 2
s

dω

)
− 1

l̄

(
dR̄2

s,a

dω
P̄ 2
s + R̄2

s,a

dP̄ 2
s

dω

))
(5.25)
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Assuming that the re�ection coe�cients are �at (dRsdω ≈ 0) and given dP 2
s

dω = −i2ln
c P 2

s ,
dn̄
dω can be approximated as:

dn̄

dω
≈ 2

ω

(
ñR2

s,aP
2
s − n̄R̄2

s,aP̄
2
s

)
(5.26)

Which leads to the observation that the di�erential of n̄ is equal to the di�erence of

two complex sinusoids, P̄ 2
s and P 2

s . Using the beat frequency phenomena:

dn̄

dω
≈ 2

ω
e−i

ω
c (lñ+l̄n̄)

(
ñR2

s,ae
iω
c (l̄n̄−lñ) − n̄R̄2

s,ae
−iω

c (l̄n̄−lñ)
)

(5.27)

Which as l̄ − l tends to 0 will approximate to:

dn̄

dω
≈ 4iñ

ω
e−i

ω
c (lñ+l̄n̄)R2

s,asin
(ω
c
<
(
l̄n̄− lñ

))
(5.28)

As l̄ changes, the di�erential (and thus error) of the estimated n̄will therefore appear

to be a modulated complex sinusoidal. The exception is where the assumed thickness

is equal to the actual thickness, in which case equation 5.28 simpli�es to 0.

This can be exploited to perform a direct search, by minimising a measure of

deviation with respect to assumed thickness, the correct thickness can be located. A

common measure in the literature [62], [63] is total variance:

TV(l̄) =
N∑
k=2

|n̄l̄(k + 1)− n̄l̄(k)| (5.29)

Where k is the frequency index and N is the number of frequency domain samples.

By �nding a minimum of the function with respect to l̄, by directly iterating over

di�erent assumed values, the true value of l can be found. This minimum has been

observed to be local, both in this work and in the literature [62], which is due to

the beat frequency e�ect interacting with the �nite bandwidth. In practice, in this

work the real refractive index is used instead of the extinction coe�cient, as it is in

general �atter and thus produces smoother measures of TV [116].

Another practicality, is that the TV shows an inverse dependence with thickness

in samples which have strong features present. This is because the n̄ is inversely
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proportional to l̄. If there are no features present, this is a constant with respect

to frequency so will have little e�ect on TV. If this is not true, then a background

dependence is observed. This can be normalised out by multiplying the TV by l̄.

Alternative methods have been suggested, notably a method which performs a

Fourier transform on the real refractive index and minimises the peak present [116],

which is similar to the method of analysis in § 3.11.

5.7 Thickness extraction of quartz

In § 5.5, a resonant model was �tted to 0.512 mm z-cut quartz, this has been repeated

multiple times with di�erent assumed thicknesses, to produce di�erent extracted

values of n. This has then been evaluated with total variance to form a measure

of error with respect to thickness and to perform a direct search to �nd the correct

sample thickness.
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Figure 5.8: Estimated values ofn of 0.512 mm z-cut quartz, extracted using a in�nite resonant
model with di�erent assumed thicknesses. Each curve is colour coded to its total variance
value.
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Figure 5.9: Total variation of the real refractive index over assumed thicknesses between
0.35 – 0.65 mm in 0.005 mm steps for the measured z-cut quartz sample. The colour coded
markers are the points taken for Figures 5.8, taken in steps of 0.025 mm.

In Figure 5.8, the refractive index values extracted with assumed thicknesses be-

tween 0.355–0.63 mm with 0.025 mm steps are shown, each curve has been assigned

a colour based on its total variation value corresponding to a marker of the same

colour in Figure 5.9. The blue curve is the smoothest curve, and represents the local

minimum in the total variance curve, and is measured to be 0.505 mm. This is a slight

under estimated compared to measurement with micrometer (taken to be 0.51 mm)

and measurement taken with the alpha–step (0.512 mm). Near the smoothest curve,

the error appears to be purely sinusoidal, however as the assumed thickness deviates

signi�cantly from the true thickness a decaying beat frequency becomes apparent.

In Figure 5.9, the total variance calculated from the real refractive index over

assumed thicknesses of 0.35–0.65 mm with 0.005 mm increments is shown (chosen

of a computational accuracy of the extracted thickness). The colour coded markers

are the points taken for Figures 5.8, taken in steps of 0.025 mm. There is a distinct

local minima at 0.505 mm, which corresponds to extracted thickness. There also

exists a much weaker collection of local minima. There also exists a global trend to

smaller values, which is attributed to the inverse dependence on l̄.

There are residual etalons present in the �nal extracted parameters and the ex-

tracted thickness is a slight underestimate. This can be attributed to the model being

slightly incorrect, due to the focused nature of the THz radiation.
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5.8 Correction for gaussian beam e�ects

When modelling the interaction of the THz radiation with a sample, the THz ra-

diation is modelled as being a point pencil beam. This assumption can be valid if

the sample is thin relative to the Rayleigh distance of the beam [47]. It has been

demonstrated that there exists a systematic bias when using focused radiation [99],

[100], when compared to collimated results. Thus integrating corrections into the

sample model may improve results.

In this work the beam pro�le is assumed to be Gaussian, it has been suggested

in the literature that mounting lenses on emitters signi�cantly changes the beam

pro�les [135], so this assumption is not general and will depend on the emitter used.

Due to the emitter orientation, lenses are not used in this work.

The THz radiation is focused using a set of o�-axis parabolic mirrors, resulting in

the THz radiation having a Gaussian beam pro�le. The sample will act as a primitive

lens, shifting the focal point of the beam in the propagation axis. There exist both

amplitude and phase changes due to the pro�le which depend on the distance from

the beam focus along the propagation axis. In [100] an inclusion of a calibration

parameter, β, into the model from § 3.2 has been suggested to approximate for the

e�ect of Gouy phase shift and the on-axis amplitude variation. To do this, a model

of the focal shift in terms of sample thickness and real refractive index is required.

The THz radiation is modelled as being a focused beam, entering a sample.

Within the sample, the beam is less tightly focused compared to free space due

to Snell’s law [47]. This leads to the focal spot being shifted. In Figure 5.10, focused

∆

l

Figure 5.10: the THz radiation is defocused entering the sample, and re-focused leaving the
sample. The radiation which passes through a sample (solid blue line) therefore propagates
∆ further than in air (dashed blue line) before converging to a focal point.
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THz radiation is shown passing through the sample using simple geometric approx-

imations. Within the sample (solid line), the beam converges slower than in the free

space (dotted line). When the beam does converge to a point, if it has passed through

the sample, it propagates forward further before converging to a focus. The focus is

therefore displaced by ∆.

Approximately, neglecting e�ects relating to the absorption, angular dispersion

and frequency dependence of the sample parameters, the focal point change in the

THz pro�le for propagation over dielectric with given n and l [100]:

∆ =
l

n
(n− 1) (5.30)

This shift relates to the focus at the sample, however the e�ect at the detector is

the cause of the detected amplitude and phase change. In the THz TDS in this work,

two parabolic mirrors are used either side of the sample focus, see § 2.1.4. Using the

thin lens approximation, the shift at the focus, ∆′, can be related to this value by

[100]:

∆′ =
∆(

a
F − 1

)2 (5.31)

Where ∆� |a+ F | has been assumed, and a is the distance from the focal spot to

the mirror, and F is the focal length of the parabolics (which is the same for both

parabolics). The focal point displacement can then be related to a change in phase

and amplitude by modelling the THz at the detector as having a Gaussian beam

pro�le.

Assuming that the TDS system is aligned such that the focal point of the refer-

∆′

Figure 5.11: The THz focus is shifted at the detector (shown here as a photo-conductive
detector), into the detector by ∆′



124 5. Transfer function methods of extraction

ence beam is aligned to the detector, this will result in the focal spot being displaced

into the detector. In Figure 5.11, the detector is shown (the detector mechanism

is arbitrary, the method has been demonstrated on both electro-optic crystals and

photo–conductive emitters and detectors [100]), with the focus of the THz radiation

aligned in a reference (dashed lines) to the edge of the detector. When a sample

is introduced, the focus of the radiation is shifted through the detector (the “detec-

tion region” is assumed to be much thinner than the shift). This in e�ect means

the detector detects −∆′ away from the focus of the radiation when a sample is

introduced.

A modi�ed sample model was developed to account for this shift away from the

focus of the THz radiation at the detector. Two further coe�cients are introduced

to model a Gaussian pro�le beam, the �rst is an amplitude correction for the beam

width, w(z):

w(z) =
1√

1 +
(
z
z0

)2
(5.32)

Where z is the displacement from the focus of the beam radiation (at z = 0) in the

beam propagation direction and z0 is the Rayleigh distance, which can be related to

the beam waist, w0, of the beam and the frequency, f :

z0 =
πw2

0

c
f (5.33)

And an additional phase shift, the Gouy phase shift, G(z), is introduced:

G(z) = e
−i∠ z

z0 (5.34)

Where ∠ is the angle operation. These terms will be present solely in the sample

measurement, as both will equate to 1 in the reference measurement as z = 0.

A frequency and system dependent calibration is introduced to group the e�ects

of the parabolics and the Rayleigh distance, referred to in this work as the beam
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alignment coe�cient, β [100]:

β =
c

ωz0

(
a
F − 1

)2 (5.35)

β is best visualised using a di�erent arrangement:

β =
1

2π2

(
λ

w0

)2

︸ ︷︷ ︸
(i)

1

( aF − 1)2︸ ︷︷ ︸
(ii)

(5.36)

where (i) is the squared frequency dependent wavelength (λ), beam waist ratio and

(ii) is the combined lensing a�ect of the parabolic mirrors.

This is incorporated into w(z), to form a new coe�cient, w(l′), in terms of l′

[100]:

w(l′) =
1√

1 +
(
−ωβl′
c

)2
(5.37)

Where l′ is the path length through the sample normalised to real refractive index,

this includes an air displaced term, so that for a non resonant model:

l′0 =
l

n
− l

nair
(5.38)

Where nair = 1 and l′0 is the normalised path length for a single pass through the

sample, which is equivalent to −∆.

G(z) can be approximated as G(l′) using a �rst order Taylor series approxima-

tion [100]:

G(l′) ≈ e+iωβl
′

c (5.39)

The non resonant model from § 3.2 can then be expressed as:

H̄ = Ts,aTa,s
Ps
Pa
w(l′0)G(l′0) (5.40)

To consider resonance within the sample, the e�ect on the focus of the radiation

must be considered when the propagation distance through the sample is increased.

In Figure 5.12 the propagation of the THz radiation is shown, when a double pass
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∆

l

∆1

(A) (B)

3l

Figure 5.12: (A) - The THz radiation is defocused entering the sample, and re-focused leaving
the sample. The radiation re�ects once at each interface to fold in on itself. This results in the
focal point shift in the oposite direction to non-resonant case, giving a new displacement to
the focal distance, ∆1, which can have a drastically di�erent amplitude. (B) - The "unfolded"
radiation. In e�ect the beam has propagated over a sample 3 times as thick, resulting in a
longer convergence length to the beam focus. However, because of folding, it results in the
propagation outside the sample, being much shorter.

through the sample (internal re�ection once at each interface) is shown. This leads

to a further shift in the focus of the radiation, in proportion to a double pass through

the sample. This leads to ∆1 being de�ned as [100]:

∆1 =
l

n
(n− 3) (5.41)

This can instead be generalised in terms of l′ as, for arbitrary echo index δ:

l′δ = (1 + 2δ)
l

n
− l

nair
(5.42)

This can then be incorporated into the �nite resonance model from § 5.4, to form:

H̄ = Ta,s
Ps
Pa
Ts,a

δ=M∑
δ=0

R2δ
s,aP

2δ
s G(lδ)

′w(l′δ) (5.43)

For thin samples with low refractive index, w(l′δ) can be assumed to be approxi-

matly 1 and the in�nite resonance model can be formed:

H̄ = Ta,s
Ps
Pa
Ts,aG(l′0)

1

1−R2
s,aP

2
sG(l′′)

(5.44)

Where l′′ = 2l
n .

These modi�ed models however require β to be known for a given THz TDS

system to calculate both w(l′) and G(l′). Todo this a method using calibration
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samples is required.

5.8.1 Estimating the beam alignment coe�cient

To correct for this e�ect β must be therefore be estimated, in [100] the method used

is to measure a calibration sample and then repeat the measurement at a di�erent

detector position (the system will require realignment after each calibration mea-

surement). The n of the calibration sample is estimated from each measurement,

which is then fed into an equation, which provided a, F , µ(n) and l are known can

be used to calculate β.

A simpler method is to use a calibration sample which produces an echo. By

windowing the initial pulse and echo separately, and treating them as separate mea-

surements, di�erent estimations of n can be formed. The initial pulse will only pass

through the sample once, see Figure 5.10, while the re�ection will pass through the

sample multiple times, see Figure 5.11. This results in a change in the detected Gouy

phase shift.

A generalisation of equation 3.17 for sequential pulse index δ (0, being the initial

pulse) can be formed:

n =
−c

ω(2δ + 1)l
∠Hδ +

1

2δ + 1
(5.45)

Where Hδ is the transfer function for the pulse with index δ.

This estimate does not account for the Gouy phase shift, so each estimate will

be biased by [100]:

nδ = n+ β
n− (2δ + 1)

n(2δ + 1)
(5.46)

Where n is the true value of the sample’s refractive index, and nδ is the estimate

formed from Hδ .

Taking the di�erence between the estimate of n for the initial pulse, n0, and the

echo, n1, the following can be simpli�ed:

n0 − n1 = β
n− 1

n
− βn− 3

3n
= β

2

3
(5.47)
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And therefore:

β =
3

2
(n0 − n1) (5.48)

More generally for arbitrary na and nb:

β =
(2a+ 1)(2b+ 1)

2(b− a)
(na − nb) (5.49)

This allows β to be calculated relatively trivially from a calibration sample with

known thickness, from a single measurement of a sample (using multiple time win-

dows). As this requires sample resonance, an ideal calibration sample must have

high real refractive index and negligible absorption. Fortunately there already ex-

ist candidates which are ideal for this, high resistivity silicon and z-cut quartz in

particular [99].

5.8.2 Partitioning the impulse response

To estimate β, separate estimates of real refractive index are required based on dif-

ferent pulses from the sample. This could be estimated by separately windowing

each pulse in the sample trace, and then separately calculating the transfer function

of each pulse. This could then be used to individually calculate the real refractive

index based on each window.

A superior solution is to partition the impulse response, h, which is the time

domain equivalent of the transfer function. These partitions can then be converted

to time localised segments of the transfer function, in a similar method to the short

time Fourier transform [93]. By separating each pulse into a separate segment, it is

possible to calculate the transfer function of each pulse.

The impulse response will generally be susceptible to noise, as the sample and

reference measurement out of bandwidth (de�ned by dynamic range of reference

measurement) will usually result in catastrophic cancellation (i.e. 0
0 ). This makes

it di�cult to e�ectively partition the impulse response. A �lter is thus required to

provide adequate signal to noise ratio of the impulse response.

It was found that simply using a rectangular window onH was su�cient to form
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a �lter such that the �ltered transfer function Ĥ in the frequency domain is:

Ĥ(f) =


H(f) if − fc < f < fc

0 otherwise
(5.50)

The �ltered impulse response, ĥ was then calculated by performing the inverse

discrete Fourier transform (IDFT) on Ĥ . This is equivalent to �ltering the impulse

response, h, with an in�nite sinc kernel. Alternatively, other �lters could be used

which might have shorter time responses, however a compromise would be made to

the frequency domain response. This could for instance have a negative impact on

the analysis after this operation.

The impulse response is then partitioned by applying di�erent windowing func-

tions, with di�erent ending and start points. As with the raw time domain scans, a

Tukey window was used to perform each partition. A DFT was then applied to each

partitioned section of the impulse response, to form a separated series of transfer

function segments, which could give the transfer function for each separate time

response of the sample.

5.9 Measuring the beam alignment coe�cient
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Figure 5.13: The partitioned impulse response of quartz. Gray - raw impulse response, Blue
- Windowed initial pulse, Green - windowed second pulse. The peak amplitude normalised
(for clarity) windows are shown dashed lines

In Figure 5.13, the impulse response of a 0.512 mm z-cut quartz sample is shown.



130 5. Transfer function methods of extraction

0 1 2 3 4 5 6
2.05

2.1

2.15

2.2

Frequency (THz)

n

Figure 5.14: Two di�erent estimates of n of the quartz sample, from the �rst impulse window
(blue) and the second (green).

The original impulse response (grey), has been segmented into two using windows

(dashed lines). The �rst segment (blue) contains an initial pulse, the second (green)

contains the secondary pulse. The sample was measured using the HFRBB THz TDS

system, at a sampling frequency of 500 THz with a frequency resolution of 30 GHz.

The impulse response was calculated by applying the inverse DFT to the transfer

function, calculated by normalising the sample frequency response to that of an

air reference. The impulse response has two prominent pulses, corresponding to a

transmission through the sample. The �rst, corresponds to transmission through

the sample without re�ection; the second corresponds to the �rst sample re�ection.

These features have been separated by applying a Tukey window, to isolate the �rst

pulse. This is then subtracted from the original impulse response, and a second win-

dow is applied to isolate the second pulse. Each of these windowed transfer functions

are converted back to the frequency domain, using separate Fourier transforms, to

form two di�erent time localised transfer functions.

In Figure 5.14, n of the quartz sample, based on the initial pulse transfer function

(blue) and the re�ection pulse (green). These were calculated using equation 5.45,

with δ = 0 and δ = 1 respectively. There is a systematic di�erence between the two

estimates from each sample, from which a di�erent estimate of β can be formed.

In Figure 5.15, di�erent estimates of β are shown, based on measurements of

di�erent samples. Each of these samples were measured, under the same conditions

as the quartz. These measurements were made using thickness measurements per-
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formed with an alpha–step surface pro�ler. The alpha-step has a reported accuracy

of less than 1 µm, and where possible, several di�erent measurements have been

made to observe the spatial variation in sample thickness. The blue estimate was

calculated using the quartz sample, with a measured thickness of 0.512 mm and no

spatial variation was found in these measurements. The green curve was estimated

from a 1.015 mm high resistivity silicon sample with an observed spatial standard

deviation of 0.0036 mm. The red estimate was made using a 0.58 mm high resistiv-

ity silicon sample, unfortunately the sample was damaged before a spatial pro�le

could be measured. The magenta estimate was formed using a TPX sample, with a

thickness of 0.969 mm and a spatial deviation of 0.0107 mm.

These di�erent estimates of β were found to have distinct o�sets, but have a

similar curve across frequency. It was hypothesised that thickness uncertainty was

causing di�erent measured o�sets, and that centering the curves might result in

similar curves. In Figure 5.16, the estimates of β were centered at 2 THz. When

this is used, the di�erent estimates of β are shown to be consistent with each other.

However, there is noise at both 0.5 THz and above 5 THz. The TPX sample shows

the most noise at these extremes, and the silicon samples the least. It is likely then

that this is primarily due to the limited signal to noise ratio (SNR) of the re�ection

pulses which is driving this distortion, samples which produce weaker re�ections

will give distorted secondary estimates of n.
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Figure 5.15: Estimates of β made using di�erent samples. Blue - 0.512 mm z-cut quartz,
Green - 1.015 mm High resistivity silicon, Red - 0.58 mm high resistivity silicon, Magenta -
0.969 mm TPX
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It is possible to derive the e�ect of thickness uncertainty on β by extending

equation 3.62, from which the following can be derived:

σβ ≈
σl
l

(β − 1) (5.51)

Which considering β � 1 approximates to:

σβ ≈
σl
l

(5.52)

i.e there is frequency independent uncertainty β with respect to the relative uncer-

tainty in thickness. It is worth noting that this relative error in thickness produces

an absolute error in β. Given the measured amplitude of β, uncertainty which is

small can be signi�cant if the calibration sample is thin.

Several measurements, of several samples were used to estimate β, a full descrip-

tion of measurements can be found in appendix B. These estimates were found to

be alignment dependent, but not detector or emitter dependent (this was tested with

the di�erent variations of the THz TDS system, and would require further testing).

In Figure 5.17, the centered average of the di�erent estimates of β, with the standard

error shown as a dashed line.

This average estimate was observed to be approximately quadratic, and to create

a calibration curve, a quadratic curve was �tted to this zero centered average using
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Figure 5.16: Di�erent estimates of β, centered at 2 THz (grey line). Blue - 0.512 mm z-cut
Quartz, Green - 1.01 mm High resistivity silicon, Red - 0.58 mm high resistivity silicon,
Magenta - 1.22 mm TPX
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Figure 5.17: The centered mean of the measured estimates of β, the standard error is shown
as dashed lines.

linear least squares. It was observed that di�erent measurements of the same z-

cut quartz sample produced very consistent estimates of β, which coincides with

it having no measured spatial variation in its thickness. Thus the o�set from the

average of these estimates was added to this �tting, to create an accurate calibration

curve. In Figure 5.18, the di�erent estimates of β, based on the same sample, are

shown as dashed blue lines. The �tted quadratic curve is shown as a thick red line,

only the o�set of the curve is based solely on the quartz measurements. A quadratic

was used because it �tted the data well, other instruments may produce di�erent

values of β and require a di�erent model.
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Figure 5.18: The �tted quadratic calibration curve (red), and the estimates of β, using a quartz
sample, used to estimate the o�set.
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5.10 Extraction of z-cut quartz thickness with calibrated

extraction
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Figure 5.19: The real refractive index of z-cut quartz, the thickness in each case was based
on the total variation minimum. Blue - extraction without using a calibration coe�cient,
Green - with calibration coe�cient.

The processing of the 0.512 mm z-cut quartz, extracted in section § 5.5, was

repeated with a calibrated model with a �tted β curve taken from § 5.9. In Figure 5.19,

the n of the quartz sample is shown. A direct search was performed to locate the

sample thickness which minimises the total variation. The blue curve was extracted

in the absence of a calibration coe�cient (equivalent to β = 0), and the green

curve has been extracted with the �tted calibration curve from § 5.9. Di�erent

thicknesses were extracted with these measurements, in the former (without β) a

thickness of 0.504 mm was extracted and in the latter (withβ) a thickness of 0.512 mm

was extracted. The inclusion of β has served to calibrate the thickness extraction,

however it was observed that larger etalons between 4 and 6 THz were introduced

by using a calibration coe�cient.

Extracting the calibration thickness from the same sample shows that the calibra-

tion procedure is self consistent. It was found that the calibration could be performed

with arbitrary assumed thickness and this would be extracted from the measurement

using that calibration.

In Figure 5.20, the total variance of the uncalibrated (blue) and calibrated (green)

model extractions is shown. The total variance in the calibrated curve is slightly

higher, and the location of the local minima has been moved from 0.504 mm to
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Figure 5.20: The total variance of the quartz measurement, using di�erent assumed thick-
nesses. Blue - without calibration, Green - with calibration

0.512 mm, i.e. it has been moved to be in line with the alpha–step thickness mea-

surement. It would however be expected that the total variance would be lower (as

the model should be a better �t), a possible explanation for this is that system was

aligned di�erently such that β should be di�erent for this measurement.

In Figures 5.21 and 5.22, both n andα of the same sample of quartz but measured

under di�erent alignment. The measurement was performed in the same system but

at a sampling frequency of 500 THz. The extracted values are based on calibrated

(green) and non-calibrated (blue) models. The calibrated model is smoother, indi-

cating that the model is likely a slightly better �t. In Figure 5.23, the total variance

curves are shown, like before the local minimum has shifted in the calibrated extrac-

tion, however the total variance curve has lower absolute values. The minimum has
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Figure 5.21: The real refractive index of z-cut quartz, under di�erent alignment. Blue -
extracted without calibration, Green - extracted with calibration.
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Figure 5.22: The absorption coe�cient of z-cut quartz under di�erent alignment. Blue -
extracted without calibration, Green - extracted with calibration (20 cm−1 o�set)

moved from 0.505 mm to 0.515 mm, this only slightly disagrees with the non-contact

gauge measurement (0.512 mm), which could be down to measurement or sample

alignment uncertainty.

In Figure 5.24, the extracted values of β for the two di�erent measurements

are shown, along with the �tted curve used to calibrate the measurements. These

estimations of β were calculated as described in § 5.9. The blue curve corresponds

to the latter above (Figures 5.21,5.22,5.23), and the green curve corresponds to the

former above (Figures 5.19,5.20). The red curve is the �tted parameter used during

the extraction. All three curves are consistent between 1 and 4 THz, however beyond

4 THz the green curve diverges. This curve pro�le was collaborated with another

sample taken with the same alignment, see appendix B.
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Figure 5.23: The total variance of the extraction process for the quartz sample. Blue - Without
calibration, Green - With calibration.
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This strongly suggests that β is alignment dependent and could be used to ac-

cess the quality of the alignment. β will show a strong inverse dependence on the

alignment properties of the beam and in Figure 5.24, the higher frequencies could

be distorted by miss–alignment.
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Figure 5.24: β for the di�erent measurements. Blue - estimated from the measurements used
for Figures 5.21,5.22,5.23, Green - estimated from the measurements used for Figures 5.19,5.20
and Red - The �tted calibration used for the extraction of n and α

5.10.1 Consistent extraction of z-cut quartz

Regardless of extracted thickness, the n of a material should be consistent with

di�erent sample thicknesses. Therefore, post extraction of l, n and α should be

consistent between di�erent samples of the same material. It was found that when

sample thickness was extracted with calibrated models the extracted estimates of n

and α were more consistent between samples of the same material.

Two di�erent samples of z-cut quartz were measured with the LFRBB THz TDS

system with a sampling frequency of 25 THz with a bias voltage of 100 V. The

frequency resolution used was 120 GHz, and the time window included system re-

�ections. These system re�ections do not a�ect the thickness extraction, but will

incur etalons in the extracted parameters. The �rst sample was 0.512 mm and the

second was 0.35 mm thick.

The parameter extraction was performed with and without calibration, using

a direct search to extract the thickness. Two di�erent corresponding thicknesses

were extracted for each sample. In the former sample, thicknesses of 0.505 mm
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and 0.512 mm extracted with and without calibration respectively, the same values

extracted in § 5.10. In the latter sample, thicknesses of 0.344 mm and 0.349 mm

extracted with and without calibration respectively.
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Figure 5.25: n of two di�erent z-cut quartz samples. Blue - uncalibrated measurement of
0.512 mm quartz, Red - uncalibrated measurement of 0.35 mm quartz, Green - calibrated mea-
surement of 0.512 mm and Purple - calibrated measurement of 0.35 mm. The unsmoothed
estimates are shown as grey curves.

In Figure 5.25, the di�erent extracted values of n are shown. For clarity the

di�erent curves have been smoothed with a moving average �lter with width 150

GHz to remove the etalons from the system re�ections. The blue and red curves

show the uncalibrated measurements of the 0.512 mm and 0.35 mm extracted curves.

The purple and green curves show the calibrated extracted values. There is a slight

di�erence between the uncalibrated curves, due to systematic error, primarily in the

extracted thickness (the systematic error in the thickness is also accountable for the

o�set in the uncalibrated results). By accounting for this e�ect in the model, the

error in both curves has been removed. This has resulted in a consistent n between

the samples.

5.11 Temperature dependence of α lactose anhyrous

A signi�cant advantage of being able to measure the thickness of a sample in situ, is

to monitor and correct for a thickness change, which would otherwise be assumed

constant. This can reveal e�ects in the spectra which would otherwise be missed.

A 5% α–Lactose anhydrous sample was measured using the system described
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by [91], with the emitter being biased at 100 V and chopped at 10 kHz. The sample

fabrication process can be found in Appendix A. The emitter used was driven by

an Oxford Instruments cryostat and temperature controller were used in conjunc-

tion with liquid helium to cool the sample to 4 K and then measure the sample in

10 K increments, starting at 10 K and ending with 290 K. The heating process was

performed by lowering the �ow of helium through the cryostat and increasing the

heater power (via the temperature controller). A room temperature measurement

was performed before cooling the sample. The sample was made using a PTFE

matrix, with concentrations measured by mass.

Each measurement was made at a sampling frequency of 150 THz, and win-

dowed with two di�erent windows. The �rst window included system and sample

re�ections, with a frequency resolution of 110 GHz. The second window used had a

lower frequency resolution of 220 GHz, but did not include either sample or system

re�ections.

The �rst window included both a sample re�ection and a system re�ection. It

was not possible to separate the system and sample re�ections by windowing (as the

sample and system re�ections overlapped) and the sample re�ection was required

to extract the thickness of the sample. A calibrated in�nite resonance model was

�tted to each measurement at each temperature (see § 5.4), using the β from § 5.9.

A direct search was used in conjunction with total variation to extract the thick-

ness of the sample at each temperature, as in § 5.6. As this window includes system

re�ections, etalons persist which are not reduced by the direct search and as such a

lower frequency resolution window was used for analysis. The thickness extraction

is not a�ected by the inclusion of system re�ection in the time window, this is espe-

cially useful in setups which incur additional system re�ections (such as cryostats,

�owcells etc. ).

In Figure 5.26, the absorption coe�cient for the room temperature measurement

is shown. The blue curve shows the low frequency resolution estimation, and the red

curve shows the �tted absorption. The low frequency has been approximated using

the technique from § 3.6, and the high frequency resolution estimate has been �tted

using a resonant model, with the thickness optimised to minimise etalons. These are
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Figure 5.26: The measured absorption coe�cient of 5 % α–lactose anhydrous. Blue - Low
frequency resolution estimate. Red - High frequency resolution estimate, based on �tting
using resonant model, including system re�ections
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Figure 5.27: Thickness of a 5 % α–lactose anhydrous sample as a function of temperature.
Blue circles - individual measurements. Line - �tted �rst order polynomial

still present in the absorption despite this due to the inclusion of system re�ections.

In this sample, the reduction of frequency resolution has little impact on the resultant

spectra. This is because the spectral peaks are broad, however this is not inherently

the case for all samples. There are also e�ects which are present which can change

peak shape considerably, for instance homogeneous broadening is usually reduced

by lowering the temperature of the sample [97] and changing sample concentration

can narrow peaks by reducing non–homogeneous broadening [96]. To provide clear

data, the low frequency resolution data has been used for analysis. This data has

been estimated using the technique from § 3.6, using the extracted thickness from

the high resolution data.

Using the �rst window in conjunction with a resonant �tting, the sample thick-
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ness was measured at each temperature. In Figure 5.27 the measured thickness at

each temperature is shown. Circles mark individual measurements of thickness,

and the �at line shows a �rst order polynomial �tted to the thickness. From the

measurements, there is a clear trend of the sample contracting with lowering the

temperature. The room temperature appears to be an outlier in this dataset, however

it is noted that it is measured before the cooling process, so it is possible that the

sample structure has changed during cooling and reheating, resulting in a slightly

thicker sample.

As discussed in § 3.12, the relative error in sample thickness can have a consider-

able e�ect on the sample n and α. During the cooling process the sample contracts,

resulting in a signi�cant change in n and α. If the sample thickness is assumed con-

stant during cooling, this will instead result in error. The error in n is particularly

signi�cant, as it is of similar magnitude to the change due to temperature change.

When the thickness change was taken into account during these measurements, it

was found that the change in n was underestimated.

In Figure 5.28, the mean real refractive index (with respect to frequency) is shown

as a function of temperature. The blue markers show the means with an extracted

thickness, and the red markers show the means where the thickness has been as-

sumed to be constant (measured thickness of 0.58 mm, using micrometer). The lines

are �rst order polynomials �tted to the data excluding the room temperature mea-
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Figure 5.28: The average real refractive index at each temperature. Blue - estimate with
extracted thickness, Red - Estimate using constant thickness of 0.58 mm. Lines are �rst order
polynomials �tted to the data excluding room temperature measurement.
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surement. Without thickness extraction, the �tted o�set is 1.46 with a negative

gradient of 10−4, while with thickness extraction the o�set has increased to 1.5 and

the negative gradient has doubled to 2 × 10−4. The o�set di�erence between the

two di�erent sets is due to the measured thickness (via micrometer) being a slight

overestimate. Both curves show a similar trend with the real refractive index being

higher at lower temperatures. However, the absolute change across temperature is

doubled when calculated using the extracted thickness.

A plausible explanation for this change in nwith temperature, is that the sample

is a mixture of lactose, PTFE and air [136]. If the individual components expand at

di�erent rates, this results in the ratio of volumes changing and thus the measured

ñ of the mixture changing with temperature. In Appendix C, the thickness change

is attributed to an estimated air volume change. This was found to reduce the n

change across temperature.

In Figure 5.29, the temperature dependent α is shown for the 5% α lactose anhy-

drous sample with 15 cm−1 o�sets between temperatures. The measurements have

been colour coded from coldest (blue) to warmest (red). Most features show a de-

crease of homogeneous broadening increasing with temperature, and some display

weak blue (to higher frequency) shift at lower temperatures. In particular, the peak

at 1.3 THz, shows a dramatic sharpening as the temperature decreases as well as

a slight blue shift. The feature at 2 THz, show sharpening before merging with its

higher frequency neighbor, and forming a broad doublet. Other higher frequency

features show sharpening and slight blue shift with temperature. There exists a large

feature at 6 THz from the PTFE matrix, which has been truncated out (as not to a�ect

the thickness extraction performed at an earlier stage, due to αmax), which starts to

dominate at 5 THz.

In Figure 5.30 the temperature dependent estimates of n of the 5% α lactose

anhydrous samples are shown with 0.2 o�sets. The measurements have been colour

coded from coldest (blue) to warmest (red). There are clear trends of the relaxations,

which correspond to the absorption peaks, becoming sharper as the temperature is

lowered. There is also slight blue shift of the location, particularly the feature at

1.3 THz. The exception to this is the relaxation at 2 THz, which broadens at lower
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Figure 5.29: the temperature dependent absorption coe�cient for a 5 % lactose anhydrous
sample, with 15 cm−1 o�sets. The measurements have been colour coded from coldest
(blue) to warmest (red).The measurements were taken at 4 K, then 10K to 290 K with 10 K
increments and at room temperature (taken to be 293 K)
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temperatures. This is due to the merging of the two features in the absorption, to

form a broad dublet, which results in smearing out the relation across frequencies.
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Figure 5.30: The temperature dependent n of 5% α lactose anhydrous o�set by 0.2 at each
measurement. The measurements have been colour coded by temperature, from coldest
(blue) to warmest (red). The measurements were taken at 4 K, then 10 K to 290 K with 10 K
increments and at room temperature (taken to be 293 K)

5.12 Multilayer sample extraction

Often there exists samples which consist of multiple layers, the most common ex-

ample of this is a �owcell, which consists of outer window layers with a liquid in

between. In these samples, there exists a singular uncharacterised layer with un-
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known ñ, the other layers have known properties. It is the ñ of this layer which is

extracted. To do this, a measurement of the sample is performed and normalised

against an air reference measurement to calculate its transfer function. A model

for the layered sample is then �tted to the transfer function, where the ñ of the un-

known layer is used to adjust the �t, and the other layer properties are kept constant

(relative to the �tting). This unknown layers thickness can then also be extracted

using the thickness extraction process in § 5.7.

5.13 General multilayer �nite resonance model

This can be challenging to model, as a re�ection in one layer can lead to a series of

re�ections in another layer, which in turn, can each lead to a series of re�ections

in another layer, etc. If the layers are thin, the series of re�ections in the sample

are convergent, and the model simpli�es considerably to a product of coe�cients.

A method which makes use of this, by modelling forward and backward standing

waves is the transfer matrix method [75]. However, more generally due to the �nite

time window there are layers whose resonance is only partially encapsulated (if at

all). Another method of simplifying the model, is to combine it with clever experi-

ment design, so that the resonance of some of the layers is constrained. This was

done in [76], by using a �ow-cell with thick windows with a short time window.

The �ow-cell windows have a resonance period much greater than the time window,

so the resonance within them can be ignored. The model used there was modi�ed

further, by using an empty �ow-cell (air instead of liquid) as a reference. This re-

moved the need to model propagation in the windows (but not the window-liquid

interface), while including an additional resonance term (from the air in the channel)

and reducing the overall dynamic range of the measurement.

An alternate, more general method, is to instead form a �nite resonance model

for the sample which �ts the time window. This has been performed before by [64],

which mapped out the resonance model using an approximate n for the unknown

layer. This was then encoded into a “resonance matrix”, which was used to form a

�nite resonance model consisting of propagation, re�ection and transmission coe�-
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Figure 5.31: Left - The THz beam paths through a 2 layered sample (angle o�set for clarity).
Right - The equivalent binary tree. Segments have been coloured to di�erentiate neighboring
segments and end points have been labeled using letters.

cients. This method of course relies on an initial estimate being accurate enough to

form the correct model (fortunately if thicknesses of each layer are reasonably accu-

rately known, this should be the case). Another potential issue, is that it will model

redundant (not detected) beam paths which are outside the dynamic range of the

measurement. While this will not signi�cantly change results, it will considerably

simplify the model at higher frequencies (as longer paths become more redundant).

In this work, the sample model is built dynamically using a simpli�ed ray tracing

scheme. In order to do this, the beam paths are viewed as a "resonant tree", a binary

tree formed from segments representing propagation over individual layers. In order

to do this, the assumptions from § 3.2 are applied to the multilayer sample. This in-

cludes that the THz radiation is a culminated point beam propagating perpendicular

to each interface in the sample and that the layers are homogeneous dielectrics.

In Figure 5.31 a binary layer sample is shown on the left, with the di�erent

THz beam paths through the sample. On the right is the equivalent resonance tree.

The beam segments have been coloured for contrast (so neighboring segments have

di�erent colours) and end points have been labeled with di�erent letters. Only those

which leave the sample towards the detector result in a detected THz pulse, these

have been terminated by arrows. There are many beam paths through the sample

which are not detected by the system due to dynamic range, propagation toward the

emitter and a �nite time window, these have not been marked by arrows.

As the THz pulse propagates through the sample, it will be partially re�ected at

each interface. This results in a re�ection beam path and a transmission beam path.



5.13. GENERAL MULTILAYER FINITE RESONANCE MODEL 147

Each of these beam paths will then propagate to other interfaces, further splitting

into an additional two paths, which will then further split into two paths and so

forth. These di�erent paths will lead to one of two events, a pulse being detected

or a pulse not being detected. The former occurs when a beam path leaves the

sample structure towards the detector. The latter occurs when a beam path leaves

the structure towards the emitter, results in a propagation time longer than the

measurement time window or results in a THz pulse amplitude below the inverse

dynamic range, see § 3.7.

In Figure 5.32 the propagation of THz radiation in a layered sample measurement

is shown. The sample consists of M layers, each with thickness lL, where L is the

layer index (1 is closest to emitter, M is closest to detector). The total thickness of

the sample is
∑M

L=1 lL. The sample response will consist of a number of pulses, each

associated with a di�erent beam path through the sample. These beam paths are in

essence the di�erent paths through the resonance tree, thus the transfer function is:

Esam = E0HsysHT (5.53)

where HT is the transfer function of the detected resonance tree and is the sum of

these paths which are detected.

As in § 3.2, the radiation propagates over the air which is displaced by the sample

M − 1,

· · ·

1, 2, · · · , M3,

l1 l2 lM

Figure 5.32: The THz radiation passing through a M layered sample (angle for clarity). Each
layer can have a unique thickness, lL.
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in the sample measurement, thus the air measurement is:

Eref = E0HsysPa

(
M∑
L=1

lL

)
(5.54)

The air propagation term is in this case evaluated using the sum of thicknesses.

There are only terms for the displaced air in this measurement, no sample is present

during the reference used in this work.

The sample transfer function model can therefore be written as:

H̄ =
HT

Pa
(5.55)

i.e. to �nd the transfer function for a layered sample is the same as �nding the

transfer function for its resonant tree.

This is not a trivial task as there is no way of calculating if a beam path is

redundant (not–detected) without exploring it. In Figure 5.33 a simple resonance tree

in a two layered sample is shown. The solid blue line shows the detected resonance

tree consisting of a single pass through and re�ection in the �rst layer. However, to

determine this detected resonance tree the redundant beam paths, shown as dotted

lines, had to be explored.

The symmetry at the nodes of binary trees is exploited to form a transfer function.

A node (at an interface) in the resonance tree can be considered a point where a

re�ection sub tree and transmission sub tree are merged. In Figure 5.34 the same

Figure 5.33: The THz beam paths through a two layered sample (angle for clarity). Solid blue
lines - beam paths which result in a detection. Dotted blue lines - redundant beam paths
through the sample
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Figure 5.34: The THz beam paths through a 2 layered sample (angle for clarity). Solid lines -
beam paths which result in a detection. Dotted lines - redundant beam paths through the
sample. Blue - initial segments of the tree. Green - Re�ection sub tree. Red - Transmission
sub tree.

bilayer with resonance tree has been shown. The tree has been split into three parts,

the blue path is the initial beam path, the red paths are the transmission sub tree at

the �rst interface and the green paths are the re�ection sub tree at the �rst interface.

Each of these sub trees can then be further divided at each interface.

This can then be exploited to de�ne HT in terms of sub tree transfer functions.

Using the colour coding from Figure 5.34, the transfer function for the tree can be

written as:

HT = T0,1P1 (R1,2 HT,R + T1,2HT,T ) (5.56)

where T0,1 is the transfer coe�cient for the air–�rst–layer interface, P1 is the prop-

agation coe�cient for the �rst layer, R1,2 is the re�ection coe�cient between the

layers, T1,2 is the transmission coe�cient between layers, HT,R is the re�ection sub

tree transfer function and HT,T is the transmission sub tree.

This is a general relation and can be applied to arbitrary sub tree of the main

tree. In Figure 5.35 the two layered sample is shown, with the resonant tree split

into four di�erent colours. The grey paths are not relevant to this example. Starting

with the blue segment, a sub tree is traced out which consists of a green re�ection

sub tree and a red transmission sub tree.

A general form for a resonant sub tree initially propagating over layer with index

L in propagation direction D (D = 1 or D = −1 for propagating towards or away
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Figure 5.35: The THz beam paths through a 2 layered sample (angle for clarity). Solid lines -
beam paths which result in a detection. Dotted lines - redundant beam paths through the
sample. Gray - non-relevant parts of the resonance tree. Blue - initial segments of the sub
tree. Green - Re�ection sub tree. Red - Transmission sub tree.

from detector respectively) can be thus given by:

HL,D = PL (RL,L+D HL,−D + TL,L+DHL+D,D ) (5.57)

where PL is the propagation coe�cient for layer L, TL,L+D is the transmission coef-

�cient between layers L& L+D,RL,L+D is the re�ection coe�cient between these

layers,HL,D is the transfer function of the resonant tree,HL,−D is the re�ection sub

tree and HL+D,D is the transmission sub tree. This is de�ned recursively, only the

layer index, L, and propagation direction, D, change for each sub–tree. It should be

noted that L = 0 and L = M + 1 are the air pseudo–layers (no thickness) which are

used solely for the transmission and re�ection coe�cients when leaving the sample.

To complete this termination conditions need to be formed (i.e. when beam paths

are stopped being explored). This occurs under four conditions, when a beam path

leaves the sample towards the director, when a beam path leaves the sample towards

the emitter, when the beam is no longer detectable due to the propagation time

being longer than the time window and when the beam is no longer detectable due

to the limited dynamic range. There is also a �fth condition in the implementation,

a recursion counter to prevent in�nite recursion (this is a practical constraint and

is not required from a theoretical point of view). With the exception of the �rst

condition, these result in a redundant beam path. A sub tree (a collection of beam

paths) which is redundant has a transfer function of HT = 0. Beam paths which

leave towards the detector have a transfer function of HT = 1.
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The constraints for leaving the sample are easy to resolve, they are entirely

resolvable using the layer index L. However, to resolve the constraints based on

time and dynamic range, each recursion these constraints must be tightened. A new

transfer function model based on these constraints is formed:

HS =


PL (RL,L+DHSR + TL,L+DHST ) , if S = non–redundant

1 , if S = detected

0 , otherwise

(5.58)

where S is the sub tree state, SR is the re�ection sub tree state and ST is the transmis-

sion sub tree state. The abstraction of a state is simply used for brevity in this work

and is replaced by the underlying variables and constraints in the implementation.

The construction of a resonance tree transfer function is similar to that in [64] (which

considered a tree of �xed size based on time constraints) and the construction of

transfer function coe�cients is largly is adapted from [64].

The state is used to encapsulate all the information about the current recursion:

S =



L layer

D direction

Tlim time constraint

Nlim noise constraint

(5.59)

where Tlim is the propagation time constraint and Nlim is the noise (dynamic range)

constraint. These are used to say if the recursion is in the following states based on

the conditions:

S =


non–redundant if 0 < L ≤M & 0 < Tlim & |PL| > Nlim

detected if M < L & 0 < Tlim & |PL| > Nlim

redundant otherwise

(5.60)
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The state is then updated for the re�ection and transmission sub trees:

SR =



L layer

−D direction

Tlim − tL time constraint

Nlim
|PLRL,L+D| noise constraint

(5.61)

ST =



L+D layer

D direction

Tlim − tL time constraint

Nlim
|PLTL,L+D| noise constraint

(5.62)

Where tL is the propagation time for a layer and is tl = nLlL
c . The new sub tree

states not only re�ect the new current layer and propagation direction, but also the

new constraints that the sub tree must satisfy. Each recursion will decrease the time

constraint for the sub tree by the propagation time for the current layer and the

noise limit is increased in proportion to attenuation caused by the current layer and

interface. This has the e�ect of tightening the constraints for sub trees for each

recursion.

This is then used in conjunction with the current layer position to determine

if propagation over the current layer is redundant. An analogy would be �nding a

path through a maze with one end of a string attached to the path �nder and the

other to the entrance. The path �nder can only �nd a route through the maze which

is shorter than the string but can only rule out a route by exploring it to the limit of

the string.

By equating redundant sub tree transfer functions to 0, any parent tree will

not have any contribution from the redundant sub tree. In appendix D, the bilayer

example is worked through on a recursion by recursion process to achieve a transfer

function of the bilayer sample.

This can then be combined with initial conditions and a coe�cient for the �rst
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interface, to form a dynamic model for the transfer function of the resonant tree:

HT = T0,1HSI (5.63)

where SI is the initial tree state, which is:

SI =



1 layer

1 direction

Tmax + tair time constraint

|Pa|
DR|T0,1| noise constraint

(5.64)

where Tmax is the time length of the window used, is the dynamic range measurement

from § 3.7 and tair is the propagation time of the additional air measured in the

reference measurement. This can be calculated using:

tair =
nair

∑M
L=1 lL
c

(5.65)

It should be noted that the noise constraint was found to have negligible impact

on the extracted parameters (compared to the time constraint) but will speed up ex-

traction as paths can quickly become redundant through this constraint. However, it

was found to be preferable to slightly overestimate the dynamic range (for constraint

purposes) as it also acted as a hard limit for extracted values. When α > αmax, the

extracted value using this constraint would be equal to αmax. The dynamic range

is subject to uncertainty and can easily be underestimated, overestimating it by 10%

was found to generally guard against this e�ect.

All of the coe�cients used in the model are precalculated and looked up dur-

ing the calculation of the resonance tree. To calculate these coe�cients, the same

assumptions made in § 3.2 are applied to each layer. Namely that the layers are

homogeneous dielectrics and the interfaces are perpendicular to the propagation

direction. In principle it would be possible to generalise the multilayer model to

arbitrary incidence angle using the coe�cients from [62], each layer would simply
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have an associated angle from the normal which would then be used to calculate the

coe�cients.

This approach to modelling the transfer function has several advantages. From

an experimental viewpoint using an air reference and modelling the entirety of the

sample model will give greater dynamic range than using a related sample as a

reference [76]. Dynamic range was found to be proportional to the certainty in a

measurement, see § 6.7.

Another considerable advantage is that this algorithm can be applied to arbitrary

number of layers or constraint, see appendix D. This allows it to be applied to almost

any layered sample. Although it should be noted, that its computational complexity

will increase with the number of layers or constraint size.

Another feature is that the model is dynamic, it is formed as it is calculated.

Another approach would be to use initial approximations to form a static model [64].

However, while this simpli�es the model, it is reliant on approximations made before

�tting.

Related to this, is during the extraction the parameters of at least one layer can

change, which can simplify the model during extraction (decreasing computation

time). It was found that the noise (dynamic range) constraint would particularly

simplify the model, as the absorption of a layer does not have to change much to

make sub tree resonances redundant.

A �nal advantage is that it can be implemented in very concise code using re-

cursive programming techniques. Related to this, but not used in this work, is that

each sub tree can be computed concurrently in parallel leading to faster extraction.

5.13.1 Incorporation of the beam alignment coe�cient

It was shown in § 5.8 that the Gaussian beam pro�le will incur additional e�ects

which must be modelled. These can be incorporated into the multilayer model using

the additional coe�cients from § 5.8, and modifying the sub tree state.

For each layer in the sample there exists a refractive index normalised thickness,

l′L, and an air normalised sum of layer thickness’s, l′air = 1
nair

∑M
L=1 lL, which if

nair = 1 will just be total sample thickness. The sample transfer function, equa-
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tion 5.55, can then be written as:

H̄ =
HT

PaG(l′air)
(5.66)

Equation 5.63 can then be modi�ed to include terms for the beam width and Gouy

phase shift:

HS =


PLGL (RL,L+DHSR + TL,L+DHST ) , if S = non–redundant

1 , if S = detected

w(z′) , otherwise

(5.67)

where z′ is the normalised propagation distance for the beam path and GL is the

precalculated Gouy shift coe�cient for layer L, and is calculated by using the nor-

malised thickness for that layer, GL = G(lL).

In this model the detected beam path is not equal to one, but rather the amplitude

change which will be detected due to the shift in focus. To calculate this, the n

normalised beam path must be calculated for each detected path through the sample.

This is performed by cumulatively summing the normalised thicknesses during the

recursion. In order to do this S is modi�ed to include z′. This will have no e�ect

on the constraints of the model, but the re�ection and transmission states will be

updated to re�ect the current propagated distance.

SR =



L layer

−D direction

z′ + l′L normalised propagation distance

Tlim − tL time constraint

Nlim
|PLRL,L+D| noise constraint

(5.68)
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ST =



L+D layer

D direction

z′ + l′L normalised propagation distance

Tlim − tL time constraint

Nlim
|PLTL,L+D| noise constraint

(5.69)

The initial state will then be:

SI =



1 layer

1 direction

0 normalised propagation distance

Tmax + tair time constraint

1
DR noise constraint

(5.70)

5.14 Extraction of the refractive index of IPA

To extract ñ of a liquid in a free space THz TDS system, a �owcell is typically used.

These samples consist of a three layer system; two outer layers of a THz transparent

material, and a active liquid layer. The outer layers have already been characterised,

such that both the ñ and thickness of each of them are known. The liquid layer is

then desired to be characterised.

A �owcell consisting of two 2.1 mm z-cut quartz windows was measured in NB

THz TDS system. The emitter was biased with a 350 V 7 KHz square wave. The

samples were measured at a sampling frequency of 33.33 THz, with a frequency

resolution of approximately 200 GHz. Isopropanol (IPA) and air were measured in

the �owcell, with the same 250 µm PTFE spacers (supports placed either side of the

liquid layer, which do not interact with THz radiation). Calibration measurements

were not available for this system, as such β = 0 was assumed. This will lead to

a small systematic bias in the extraction of parameters, however, as the channel is

thin, the active layer’s parameters should be only weakly a�ected.

The �owcell, loaded with a liquid was treated as a conventional sample, and was
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measured using a dry air reference. Estimates of the real refractive index were �rst

made by treating the �ow cell as a sample with the active layers thickness, estimated

using equation 3.18, and then corrected. The absorption was then (this must be done

after correcting n) similarly estimated using equation 3.20,and then corrected.

The correction to n was formed by assuming simple additivity of n between

layers, to form the correction:

nc = n− 2(nq − 1)
lq
lc

(5.71)

Where nq and lq are the real refractive index and thickness of the quartz layers

respectively, nc and lc is the real refractive index and thickness of the liquid channel,

and n is the estimate calculated using equation 3.18. This correction assumes that

the transfer function phase is a sum of the individual layer contributions, and that

the outer layers are identical.

Similarly, the absorption can be corrected:

αc = α− 2
αqlq
lc

(5.72)

Where αq is the absorption coe�cient of the quartz layers, αc is the absorption

coe�cient of the liquid channel, and α is the estimate calculated from equation 3.20.

Below 0.4 THz, the absorption is negative. This is due to the systematic error in the

z-cut quartz’s ñ estimate and was improved by using an empty �owcell to extract

the quartz’s ñ.

These corrected estimates were based on the results of a separate measurement

of z-cut quartz parameters, and were used as initial conditions for a �tting. The

generalised resonant model was then �tted to the transfer function, using a time

limit of 30 ps, which was estimated from the impulse response of the sample, a

dynamic range limit was not used. A refractive index wrapping error function was

used to perform the �t, the wrapping behaviour is not a�ected by using a multilayer

model, provided the n of other layers are kept constant during the extraction.

In Figure 5.36, the n of the IPA in the �owcell is shown. The blue curve is the



158 5. Transfer function methods of extraction

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
1

1.5

2

2.5

Frequency (THz)

n

Multilayer Ext
Initial

Figure 5.36: n of IPA. Blue - extracted using a multilayer algorithm, Red dashed - initial
estimate made before extraction.
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Figure 5.37: α of IPA. Blue - extracted using a multilayer algorithm, Red dashed - initial
estimate made before extraction.
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extraction based on �tting a transfer function model and the red dashed curve is the

initial approximation. Similarly, in Figure 5.37, the α of the IPA is shown. Again,

the blue curve shows the �tted estimate and the red dashed curve shows the initial

estimate. At 2.6 THz a peak is present, this is thought to be due to a dynamic range

limitation (similar to αmax).

The IPA has reasonable coupling with the quartz and is absorbent, thus resonance

has not occurred (or is extremely weak) in the channel. The time window was

chosen, so that no resonance within the outer layers is measured. This has resulted

in a measurement where no re�ections are measured, and thus the model �tted

will simplify to a non-resonant multilayer model. In this case, just as in § 3.6 the

approximations perform extremely well. Unlike in previous examples however, it is

still possible to extract the thickness of the channel by using the empty �owcell.

A related sample to the �owcell with a liquid in its middle layer, is a �owcell with

dry air in its middle layer. It would be perfectly possible to extract the ñ of the air.

However, dry air can be approximated to have a refractive index of 1, so this is not

required. What this can be used to do, is provide both a measurement of the quartz

ñ and the thickness of the channel. Generally it is assumed when performing a

multilayer �t that there is a singular unknown layer which needs to be characterised.

It is however, perfectly possible to work on the assumption that there are multiple

layers which have the same unknown ñ, and extract the same ñ for multiple layers.

Instead of extracting the ñ of the air layer, the ñ of both quartz layers is extracted by

�tting a model to the transfer function and keeping the air channel refractive index

constant during the �tting.

Air has a much lower n than quartz, and displays little absorption, so resonance

will occur within the air layer. This will propagate to the extracted values of ñ of

the quartz, and thus by extracting the ñ in a air �owcell, it is possible to perform a

direct search to extract the thickness of the air channel.

In Figure 5.38 the extracted n of the quartz is shown with di�erent assumed

thickness’s for the air channel. The curves have been coloured by total variance

values (blue - high values and red - low values). The curve extracted at the total

variance minimum is shown as a green curve. There are etalons which form and
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Figure 5.38: n of z-cut quartz, extracted from a air �lled �owcell. The values have been
extracted with channel thickness ranging from 0.2 mm to 0.3 mm in 5 µm steps. Curves
have been coloured by total variance values (red is lower, blue higher), and the extracted
value, at the total variance minimum, is shown by a green line
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Figure 5.39: α of z-cut quartz, extracted from an air �lled �owcell. The values have been
extracted with channel thickness ranging from 0.2 mm to 0.3 mm in 5 µm steps. Curves
have been coloured by total variance values (red is lower, blue higher), and the extracted
value, at the total variance minimum, is shown by a green line
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reduce as the thickness is changed. Interestingly, the bulk n does not vary with the

channel thickness, which would happen if the channel refractive index was extracted

instead. This can be attributed to the very weak dependence of the extracted ñ of

quartz on the air channel.

In Figure 5.39 the extracted values of α of the quartz is shown with di�erent

assumed thickness’s of the air channel. The curves have been coloured by total

variance values (blue, high values and red, low values). The curve extracted at the

total variance minimum is shown as a green curve. Again, etalons have formed

which are smoothed out with a change in channel thickness.
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Figure 5.40: The total variance of the extracted n of z-cut quartz, measured against channel
thickness.

In Figure 5.40, the measured total variance of the quartz n, against channel

thickness. The total variation has a minimum at 275 µ m, which corresponds to the

channel thickness, when �lled with air. This shows that it is possible to extract the

thickness of layers which are not being characterised by the �tting. The fact that

these etalons form in the quartz ñ, indicate that etalons from resonance within the

sample are additive with the extracted parameters. If this is indeed the case, this

suggests that etalons from multiple sources (resonance within di�erent layers) will

add together, and can be minimized independently. This would mean that it would be

possible to perform a direct search for the thicknesses of multiple layers sequentially.

In Figures 5.41 and 5.42, the extracted n and α of IPA are shown, using the

values from Figures 5.41 and 5.42 for the quartz outer layers during the extraction.

These values have been colourised by total variance value, and the curve extracted
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Figure 5.41: n of IPA, extracted from a IPA �lled �owcell. The quartz ñ used during extraction
have been extracted from an air �lled �owcell with channel thickness ranging from 0.2 mm
to 0.3 mm in 5 µm steps. Curves have been coloured by total variance values (red is lower,
blue higher), and the extracted value, at the total variance minimum, is shown by a green
line

at the total variance minimum is shown in green. It has been assumed by using this

method, that the channel thickness is the same in both the air and IPA measurements.

The �owcell between measurements was not disassembled between measurements,

instead the IPA was inserted via a plumbing system built into the �owcell. The

etalons have propagated from the quartz ñ to the extracted IPA ñ. This has resulted

in similar results to what would be expected, if recursion occurred within the IPA

layer. It should be noted, that the local minima in total variance does not change

during this process, and the etalons are being driven by the resonance in the air �lled

�owcell measurement, and not because of resonance within the IPA measurement.

This presents a method of extracting the thickness of a layer, using multiple related

measurements.
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Figure 5.42: α of IPA, extracted from a IPA �lled �owcell. The quartz ñ used during extraction
have been extracted from an air �lled �owcell with channel thickness ranging from 0.2 mm
to 0.3 mm in 5 µm steps. Curves have been coloured by total variance values (red is lower,
blue higher), and the extracted value, at the total variance minimum, is shown by a green
line

5.15 Multi time �tting

The segmentation method from § 5.9 can be combined with a model �tting to extract

information. To do this, a model for each segment is �tted to a segmented transfer

function. This allows more information to be extracted from a single measurement.

In this case, both the measurement and model is in e�ect split into multiple corre-

sponding measurements and models. This relies on both the model and measurement

being separable in the time domain (i.e. pulses do not overlap). By �tting to multi-

ple measurements, with common parameters, more parameters can be extracted at

once. In this case, the thickness can be simultaneously extracted with the complex

refractive index.

To facilitate this, the transfer function must be segmented, which is performed

using the multiple windowing of impulse responses described in § 5.8.2. This was

also used to form time constraints, Tw, for each partition. These partitions were

chosen to separate features. At each frequency, an error function was minimised

with respect to ñ and l:

ñ, l = argmin
ñ,l

E
(
Hw, H̄w(ñ, l)

)
(5.73)

Where E is an error function, Hw is the vector of partitioned transfer functions at
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that frequency, and H̄w is the corresponding vector of models.

Unlike in previous �ttings, where the thickness was constant, the thickness

can be a �tting parameter. This means that the real refractive index cannot be

wrapped (as the thickness changes), and thus E must locate the minimum using

unwrapped phase. Fortunately, in the simple case where each transfer function

segment contains a single pulse, the phase of each segment tends to be very linear.

Thus the unwrapped phase can be extrapolated by calculating the model over 2 other

neighboring frequencies and �tting a straight line to 0 in the phase.

The error function is de�ned as:

E =
M−1∑
j=0

∣∣|Hj | −
∣∣H̄j

∣∣∣∣2 +
∣∣∠Hj − ∠H̄j

∣∣2 (5.74)

By using this technique, it was possible to directly extract the thickness of the

sample at each frequency. By doing this, the measurement frequency resolution

is reduced (approximately determined by the �rst window). However, any sample

response which can be partitioned in this way will not bene�t from an improved fre-

quency response. This is because the individual pulses in time must be shorter than

the time window used to separate them. Using a longer window would not confer

more information. In the frequency domain, a peak would not get any narrower by

using a longer time window because the peak width is fundamental to the sample

response and is not a�ected by the lack of frequency resolution.

This has the advantage of directly extracting the thickness without having to per-

form a numerically intensive search. Additionally, each frequency can be calculated

concurrently in parallel, so this could become dramatically faster using implementa-

tion on specialist hardware.

Additionally it was found that this technique was very robust to poor initial es-

timates in the examples tested, particularly to overestimation (in most cases, a 100%

overestimate in thickness as an initial condition would converge). This might be use-

ful if the thickness cannot be measured and only initial estimates from tomography

of the peaks are possible. A similar technique which used frequency domain �ltering

(equivalent to time domain windowing) exists [65], however this was reported to
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produce multiple solutions (so requires accurate initial estimates).

5.16 Time localised �nite resonance models

To �t to multiple transfer functions segmented in time, a model must be created

which �ts each segment. To do this, the generalised �nite resonant model, § 5.13, is

adapted to produce multiple time localised models.

Figure 5.43: Multilayer resonance models for each time segment are built simultaneously.
The left diagram shows the transfer function of the �rst time segment and the right diagram
shows the transfer function of the second segment.

In Figure 5.43 a resonance tree is shown. It is then split into two di�erent trees,

which consist of di�erent beam paths. These two trees are not sub-trees of the main

resonance tree, but are instead formed from di�erent sets of beam paths. These sets

of beam paths are time localised to di�erent sequential time windows.

These multiple trees can be created by modifying the sub tree transfer function

model to use multiple time constraints to calculate a vector of transfer functions.

H̄ and HT are modi�ed to be vectors of multiple di�erent time windowed transfer

functions.

A set of time constraints is measured from the di�erent time windows of the

impulse response, such that:

Th =

0, Th,1,
2∑
j

Th,j , . . . ,
N∑
j

Th,j

 (5.75)

Where Th is a vector of time constraints, andTh,j is the jth time window length. This

is the cumulative sum of the time lengths of each window and will be one element
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longer than the number of time windows used.

The sub tree transfer function is then de�ned as:

HS =


PLGL (RL,L+DHSR + TL,L+DHST ) , if S = non–redundant

1 , if S = detected

w(z′)W , otherwise

(5.76)

where W is the window section vector. The sub tree state consistent with § 5.13,

however the time constraint, Tlim, is now a vector and the subtraction is applied to

all elements in this vector. The constraint state is however slightly di�erent:

S =


non–redundant if 0 < L ≤M & 0 < Tlim,N & |PL| > Nlim

detected if M < L & 0 < Tlim,N & |PL| > Nlim

redundant otherwise

(5.77)

where Tlim,N is the last element of Tlim (recursion continues until the last time con-

straint). W is the window select vector and is calculated from Tlim:

Wj =


1 Tlim,j+1 > 0, Tlim,j < 0

0 otherwise
(5.78)

For example, given the vector Tlim = [−3,−2, 1, 3],W = [0, 1, 0].

The initial state used is then:

SI =



1 layer

1 direction

Th + tair time constraint

1
DR noise constraint

(5.79)

This model can be used to form time localised models of a sample which consist

of several layers. This can in turn be �tted to multiple time segmented transfer

functions.
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5.17 Time localised extraction of quartz

A measurement was performed by partitioning the impulse response of a 0.512 mm z-

cut quartz sample from § 5.10. Two time windows were used to partition the impulse

response, each with a frequency resolution of approximately 135 GHz. The �rst

contained the main transmitted pulse and the second contained the �rst re�ection

from the sample. The time localised model was then �tted to a partitioned transfer

function. The calibration curve presented in § 5.9 was used to calibrate the extraction.

Using this multi-time localised �tting, it is possible to extract ñ and l. This

results in lower resolution data than using a full window, but it will be etalon free, if

the impulse response is partitioned such that the transmissions through the sample

(initial pulse and re�ections) are separated. Using this technique this way does not

result in additional information being extracted.
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Figure 5.44: Real refractive index of z-cut quartz. Blue - real refractive index extracted
simultaneously with thickness. Green - real refractive index extracted with an assumed
thickness of 0.5 mm. Red - extracted value formed from § 5.10

Using a time localised �tting in this manner does not confer any additional ben-

e�ts, simply shorting the time window used to process the data will yield similar

results. Using a time localised �tting however incurs the ability to extract the thick-

ness of the sample (at each frequency) simultaneously with ñ. In Figure 5.44, the

real refractive index of the sample has been extracted along with the thickness of the

sample. The average of the frequency dependent thickness was 0.512 mm, which

is the measured thickness of the sample. The blue curve represents the values of

n when the thickness has been extracted simultaneously, and the green curve is
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Figure 5.45: Absorption coe�cient of z-cut quartz. Blue - absorption coe�cient extracted
simultaneously with thickness. Green - extracted assuming a thickness of 0.5 mm (o�set of
5 cm−1). Red - extracted value from § 5.10 (10 cm−1 o�set)

when the thickness has been kept at an assumed thickness of 0.5 mm (this thickness

was used as an initial point during thickness extraction). The red curve shows the

estimate from § 5.10 extracted using a resonant model. The resonant model has

an extremely similar shape and value, the slight di�erence is due to the di�erent

extracted thickness of 0.515 mm. Using this method, a smooth estimate is extracted

due to the limited time windows used.

In Figure 5.45, the corresponding absorption coe�cient is shown. The blue curve

shows the values of theαwhen simultaneously extracting thickness and green shows

the extracted values, assuming a thickness of 0.5 mm, with a 5 cm−1 o�set. The red

curve shows the estimate from § 5.10 extracted using a resonant model with a 10

cm−1 o�set.
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Figure 5.46: The extracted thickness of z-cut quartz. Blue - extracted without β calibration,
Green - extracted with β calibration, Red - measured thickness of 0.512 mm
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Figure 5.47: Blue - The normalised thickness calibration error. Red - β used to calibrate for
this error.

In Figure 5.46, the frequency dependent extracted thickness is shown. The blue

curve shows the thickness extracted without using calibration (β = 0), and the green

curve shows the calibrated extracted values. As a point of reference, the measured

thickness of 0.512 mm is shown as a red line. The calibrated curve is clearly more

consistent and closer to the measured thickness of 0.512 mm. It was observed that

the calibration error between the two thicknesses, when normalised to the thickness

of measured thickness (0.512 mm) was equal to β. In Figure 5.47, the normalised

thickness calibration error (di�erence between extracted thicknesses) normalised to

the measured thickness (0.512 mm) is shown in blue. The calibration curve used for

β is shown as a red line. It was observed that these values were almost identical,

suggesting thatβ primarily corrects the e�ect of the sample thickness on the model.

5.18 Time localised extraction of α–lactose anhydrous

It was found that the room temperature measurement of 5% α–lactose anhydrous

from § 5.11 was a suitable candidate for time localised extraction of both l and ñ.

Unfortunately, this was not the case for most of the lower temperature measure-

ments, as the spectral features sharpened, the time domain traces became longer and

the individual pulses became impossible to separate successfully. This technique

relies on the pulses being separable in the time domain, when this is not the case,

convergence on a solution does not seem to be possible.
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Figure 5.48: Extractedα of 5% α lactose anhydrous, Blue- extracted using segmented transfer
functions, Green - extracted using a single window low res window (120 GHz resolution)
and Red - extracted using a single window and an in�nite resonant model to resolve the �rst
sample re�ection.

Two windows were used to segment the impulse response before converting

back to transfer functions. The windows used to segment the transfer functions had

a frequency resolution of 200 GHz (both windows were the same length). Neither

segment appeared to contain etalons, which would be associated with included sys-

tem re�ections in the initial reference and sample windows (which was the case).

This is likely due to the re-windowing, which will distort (reducing their prominence)

artifacts shared between the multiple windows. It is assumed that this error is still

present, but has simply been obscured in this case.

A time localised model was �tted to the di�erent segmented transfer functions

to extract both l and ñ. To prevent unpredictable behaviour during the �tting, a

dynamic range limit was not used during the �tting, only time limits were. Using a

dynamic range limit can result in discontinuous results due to the re�ection being

limited, e�ectively creating a hard constraint on the extraction (this is not the case

when not segmenting the transfer function). The extraction appears to be robust

to this limit, this is because the dynamic range is based on the amplitude of the

measurement. As the additional information (thickness) is strongly phase dependent,

the extraction seems to able to cope when this limit is reached.

In Figure 5.48, the extracted α of the sample is shown. The blue curve shows the

values extracted using multiple transfer function segments using a time localised

model. The green curve shows the extracted values using a single low resolution (120
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Figure 5.49: n of 5% α lactose anhydrous. Blue- extracted using segmented transfer functions,
Dashed Green - extracted using a single window low res window (120 GHz resolution) and
Dashed Red - extracted using a single window and an in�nite resonant model to resolve the
�rst sample re�ection.

GHz) window, calculated using the approximations from § 3.6. The red curve shows

the extracted values using a single window (70 GHz resolution) which contained

both a single re�ection from the system and from the sample. A in�nite resonance

model using the calibration from § 5.9. Both the green and blue curves do not display

etalons due to the low frequency resolution window used. The blue curve displays

some distortion at lower frequencies (up to 1 THz), which might be due to weak

overlap of the features temporally, which results in a loss of frequency resolution of

the features. The red curve displays etalons, particularly at higher frequencies. At

low frequencies, where the sample re�ection is more dominant and produces etalons,

the resonant model has mitigated the etalons. However, at higher frequencies where

the system re�ection etalons are more dominant, this has not had an e�ect.

In Figure 5.49, the extractedn is shown. The blue curve shows the multi-segment

extracted estimate, the green curve shows the low resolution approximation and the

red curve shows the estimate formed from a high resolution time window with a

resonant model. The blue estimate is smoother in general, apart from frequencies

below 1 THz, where the windowing process has introduced some distortion in the

form of large etalons. This suggests a partial overlap between the pulses, and the

second window including some of the lower frequencies from the �rst window. Both

the multi segment and high frequency resolution estimate appear to agree, this

is because both of these calibrate for the slight error in n due to the Gouy phase
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shift, which the approximate solution does not. This could be corrected using the

approximation in [100].

In Figure 5.50 the extracted thickness is shown (blue), along with the extracted

thickness from § 5.11 (red line). The extracted estimate is not perfectly �at and shows

a degree of noise at both ends of the bandwidth. The estimate is largely convergent

on the same estimate as using a direct search in conjunction with a resonant model.

However, no direct search (performing an assumed thickness sweep) is required and

no loss of peak width is observed by using the lower frequency resolution.

This extraction technique can be used successfully on samples which have a time

response which does not overlap and can be segmented. This segmentation does

lower the measurement frequency resolution. However, the frequency resolution is

primarily determined by the sample response (not the technique). If a sample pro-

duces a long time response (and thus requires good frequency resolution) which does

not overlap, this technique will produce su�cient frequency resolution to resolve

the frequency peaks because the time window will contain the entire time response

of a pulse.

However, this is reliant on the assumption that the sample response does not

overlap and that it is possible to observe that this is the case in the time domain.

This can be resolved experimentally by using a thicker sample, which will delay the

sample re�ection allowing a longer initial time window.
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Figure 5.50: Extracted thickness of a 5 % lactose anhydrous sample. Blue - extracted using
a segmented transfer function. Red - extracted value from § 5.11 using a direct search with
total variance.
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Figure 5.51: The windowed segments of the impulse response of a high resistivity silicon
and quartz layered sample. Blue - The main transmitted pulse. Green - The �rst re�ection
from the quartz layer

5.19 Extraction of complex refractive index of a z-cut

quartz and high resistivity silicon layered sample

using a time localised model

Fitting a time localised model to a segmented transfer function could be used to

extract information other than the thickness of a sample. For instance if a layered

sample produced resonance, it might be possible to characterise each layer from a

single measurement. This is because a second transfer function segment will carry

both amplitude and phase information.

A 1.01 mm high resistivity silicon and 0.512 mm z-cut quartz layer sample were

measured using the HFRBB THz TDS system, with a bias voltage of 700 V and at

a sampling frequency of 500 THz. The layers were mechanically clamped in a lens

holder. The silicon was the layer closest to the emitter and the quartz was closest to

the detector.

The transfer function was segmented, so that the main pulse (which passes

through both layers) was in the �rst time window and the �rst re�ection was in

the second window. In Figure 5.51, the segmented impulse response is shown. The

blue pulse is the main transmitted pulse and the green is the �rst re�ection. This

re�ection is from the quartz layer which is both thinner and has a lower refractive

index. Other re�ections have been excluded for this measurement.
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A time localised model was then �tted to both segments, the thicknesses and

order of both layers was kept constant. The ñ of both layers was optimised during

the �tting to minimise the error of both windows. The initial values used were based

on separate measurements of each layer.

In Figure 5.52 the extracted real refractive indices are shown. The left pane shows

the n of the silicon and the right pane shows the n of the quartz. In dashed lines,

the initial estimates are shown for reference. These were approximated based on

equations in § 3.6 and measured under the same conditions. The extracted silicon

curve appears to be underestimated while the extracted quartz curve appears to be

overestimated.

In Figure 5.53 the extracted absorption coe�cient for both layers is shown. The

blue curves shows the extracted α of the silicon layer while the green curve shows

the extracted α of the quartz layer. The initial estimates have been shown as dashed

curves of the same colours for reference. The silicon curve has been overestimated

while the quartz curve has been underestimated (hence why it is negative). The

extracted estimate of the quartz contains the 3.8 THz peak which is present in the

initial estimate.

While these extracted values have been over or underestimated respectively

in each case, this technique does have viability and could be improved upon to

fully characterise a layered sample. If more segments were used, additional phase
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Figure 5.52: The n of a high resistivity silicon and z-cut quartz layered sample. Left pane -
n of silicon. Right pane - n of quartz. Solid lines - Extracted from a time segmented transfer
function. Dashed lines - approximate estimates based on separate measurements of each
layer.
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Figure 5.53: The α of a high resistivity silicon and z-cut quartz layered sample. Blue - α of
silicon. Green - α of quartz. Solid lines - Extracted from a time segmented transfer function.
Dashed lines - approximate estimates based on separate measurements of each layer.

information might be available and it might be possible to extract the thickness

of each layer, in addition to ñ of each layer, from a single measurement. Another

potential avenue is to combine it with Kramers–Kronig relations, similar to the

method in [85] to extract more plausible values of ñ.

The issue with this approach to extracting the ñ of each layer is that uncertainty

between the di�erent values are negatively correlated. Overestimate the α of one

layer and the other layer will compensate to minimise the error for the overall �t.

This results in correlated uncertainty between the extracted estimates of ñ. This

might be compounded with experimental uncertainties.

For instance, if the angular alignment of the sample to the THz beam is slightly

wrong, this will result in the propagation length in both samples being longer than

the thickness each layer. In a singular layer sample, this will primarily act to in-

crease the e�ective thickness (which can be extracted). In this case, the quartz layer

thickness is e�ectively underestimated more than the silicon’s (due to Snell’s law).

This results in the quartz’s refractive index being overestimated, to compensate the

silicon’s refractive index is overestimated. This results in the transmission and re�ec-

tion coe�cient being di�erent and thus the extracted absorption acts to compensate

for this e�ect.
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5.20 Conclusion

In this chapter, the process of extracting ñ and l of a sample by �tting models to the

sample transfer functions were discussed and demonstrated in detail. It was found

that when a model, which was calibrated for the Gaussian beam pro�le, was �tted to

the transfer function of a sample, the thickness could be accurately extracted. This

is performed by minimising the etalons in the extracted n as a function of assumed

thickness. The method of measuring the beam alignment coe�cient, β, from a

calibration sample was presented. This was used to calibrate other measurements

within this work.

A method of modelling multilayered samples was presented and was used to

extract the thickness and ñ of a liquid layer in a �ow cell. This model was extended

to work on multiple time segments of the transfer function. This was then used

to develop a new method of extracting both the ñ and l of a single layer sample.

This method directly extracts the thickness as a function of frequency, so can be

computationally e�cient compared to directly searching for the correct thickness.

It was found that this technique was frequency resolution limited, but that this

limitation is due to the sample response. This technique was then applied to a

multilayer sample to extract the ñ of each layer from a single measurement. The

extracted values were observed to be negatively correlated, when a parameter was

overestimated in one layer, the parameter in the other layer was underestimated. This

could be made more viable in the future by accounting for measurement uncertainties

and modelling their e�ect on the extracted parameters.

The use of resonant models in this work leaves residual etalons present in the

extracted parameters. These etalons are partially owing to the di�erent measurement

uncertainties present in the measurement. By estimating the uncertainty in the

extracted complex refractive index, it might be possible to account for the residual

etalons in ñ.
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Chapter 6

Estimating uncertainty in

complex refractive index and

thickness

In this chapter, a method of estimating the covariance matrices of both ñ and the

variance of l is presented. The covariance matrix is a measure of uncertainty and

correlation within a measurement, from which con�dence intervals can be formed.

A model for the probability distribution of noise within THz TDS measurements

based on normal (Gaussian) statistics was developed. Using this model a method

of propagating the correlated uncertainty to the spectroscopic parameters based

on the guide to the expression of uncertainty in measurement [83], [137] is given.

Con�dence intervals are formed from these uncertainty estimates, which are applied

to both the refractive index and absorption coe�cient of α lactose monohydrate and

z-cut quartz. The uncertainty of the extracted l of the z-cut quartz is then estimated

using a resonant model �tting. The methods developed in this work have been

published in [138] and are compared against established empirical methods.

6.1 Introduction

So far in this work, measurements have almost exclusively been considered deter-

ministic and repeatable. However, a measurement is subject to two types of error,
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measurement and systematic. Systematic error refers to error within the measure-

ment process itself, which could be underlying biases or uncertainty in the procedure

or equipment. A common example of this is THz TDS is the sample thickness, which

is relied upon to calculate ñ, see § 3.12. The measurement error refers to random

error which changes with each o�set, for example electrical noise within the detector

equipment.

The purpose of this chapter is to estimate the uncertainty due to measurement

error. While measurement error can be very small, it will have an e�ect on the ex-

tracted parameters which is not insigni�cant. Additionally, systematic errors such as

the alignment error and spatial variation in the sample properties can be experimen-

tally measured, and thus treated as measurement error. For example„ by reinserting

the sample into the system between measurements, multiple measurements of the

same sample under di�erent alignments (both spatial and angular) can be gathered,

with di�erent measured error.

Previous methods have been developed which estimate the e�ect of measure-

ment uncertainty, see § 2.2. In this work, the only assumptions made about the

measurement is that it has a multivariate Gaussian distribution. The source of the

measurement uncertainty is purposely kept general, as such the methodology in this

work should work with any THz spectroscopy system (and could also be applied

more broadly to many other instruments well beyond the scope of this work).

The noise in a THz TDS system is modelled as a random variable with a multivari-

ate normal (Gaussian) distribution, see Appendix E. It was found that the measured

time domain scans approximately exhibit a zero mean multivariate normal distribu-

tion, see § 6.3. A normal distribution model was used as it is completely described by

its expectation (average) and covariance, and has multiplicative and additive proper-

ties [139]. The expectation represents the average taken over in�nite observations

(or alternatively the value weighted integral of probability density function), and will

in this work be an estimate of the deterministic signal. The variance is the expected

squared distance from the expectation, or how far on average a value will be from

the expectation. This is used as a measure of uncertainty as it will often represent

how close a measured value will be to the deterministic value (i.e. measurements
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made with low variance noise will tend to be close to the deterministic value). The

covariance is a combined measure of correlation and variance and can be considered

a measure of the correlated uncertainty. It was found to be particularly important

when transforming between the time and frequency domains and for analysing the

underlying causes of uncertainty.

6.2 Modelling a THz time scan

There exists a number of di�erent sources of error within a THz TDS time scan, in

particular there exists several sources of measurement error. The uncertainty from

this measurement error can be estimated from multiple repeated measures of a THz

scan. In order to do this a basic model of the uncertainty in the THz scan is required.

A single THz time domain scan consists of many discrete samples, each taken at

time tk. It is assumed in this work, that these samples are taken with regular period,

such that tk = Tsk. Each discrete sample consists of an amplitude measurement of

the THz electric �eld, measured at time Tsk, which is noted as:

e(k) = e(Tsk) (6.1)

Each of these discrete samples has an associated error, which contributes error to

the measured amplitude, ê(k):

ê(k) = e(k) + v(k) (6.2)

where v(k) is the error at index k. This error is a collective summation of di�er-

ent errors from di�erent error sources. In the literature, several di�erent sources

of error have been described, in particular general detector noise [61] (either in

measurement ampli�ers or in the photo–diodes), time stamp error and laser noise

[140]. Time stamp error has several di�erent associated variations, in particular

random error [141], registration error of the stage [142] and periodic jitter in the

time stamp [115]. Rather than individually modelling each of these sources, each

of these sources are assumed to be normally distributed with zero average, thus the
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sum of these variables, v(k), should be normally distributed with zero average. This

is con�rmed by measurement of the marginal empirical distributions over a THz

pulse, see Appendix E.

The THz measurement scan, consisting of individual samples, can be grouped

into a multivariate variable:

ê =



e(0) + v(0)

e(1) + v(1)

...

e(N − 2) + v(N − 2)

e(N − 1) + v(N − 1)


(6.3)

If e is deterministic, such that it is constant with repeated measurement, and v is

zero mean, then ê will be normally distributed (see appendix E):

ê ∼ NN (e,Σv) (6.4)

This leads to the useful observation, that the expectation will be e and the covariance

will characterise the uncertainty due to noise.

v is the multivariate normally distributed variable, and can always be expressed

as a matrix times a variable, s,with an uncorrelated standard normal distribution :

v = V s (6.5)

This will hold true, regardless of the underlying source (or combinations of sources)

of error provided v is approximately normal. The structure of matrix V will be

determined by the sources (and combination of sources) of error and the processing

of data. An example of a process which could a�ect this matrix, is applying a low–

pass �lter (for example the e�ect of the lock–in ampli�er).

V will de�ne the covariance matrix:

Σv = V V ′ (6.6)
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Which is useful to perform a rudimentary analysis of the error sources.

Fortunately, as ê has expectation e, e can be estimated from multiple measure-

ments of ê using the arithmetic mean [107]:

e = E (ê) ≈ µ (ê) (6.7)

6.2.1 Estimating the expectation and covariance

It is not normally possible to know either of the de�ning statistics of a stochastic

variable. However, it is possible to estimate them with some degree of uncertainty

from multiple repeated observations.

For variable x, the expectation can be estimated using the sample mean [139]:

x̄ ≈ µ (x) (6.8)

where µ(x) is the sample mean of x, which can be calculated from multiple mea-

surements of x:

µ (x) =
1

M

M−1∑
k=0

xk (6.9)

where xk is the kth measurement of a set ofM measurements. The arithmetic mean

is only an estimator of the expectation and is subject to uncertainty in the original

measurements. The standard deviation of the mean is often referred to as standard

error [137], and can be calculated from the covariance matrix of x:

Σx̄ =
1

M
Σx (6.10)

Similarly for the co–covariance matrix:

Γx̄ =
1

M
Γx (6.11)

More formally, µ(x) is distributed normally:

µ(x) ∼ NN (x̄,Σx̄,Γx̄) (6.12)
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Importantlyµ (x) has expectation x̄ and as the number of measurements is increased,

the probability distribution gets more constrained about this value. This can be

thought of as the uncertainty decreasing, or alternatively the noise being reduced.

Σx can be estimated from M measurements using the sample covariance matrix

[139]:

Σx ≈
1

M − 1

M−1∑
k=0

(xk − µ(x)) (xk − µ(x))† (6.13)

The sample covariance matrix will again be a random variable and have a Wishart

probability distribution, or in the univariate case a χ2 distribution [139]. This is

particularly important, given that the covariance is only estimated and should be

considered a random variable in itself.

6.3 Measurements of time domain uncertainty

In § 6.2 a model for a time domain scan was discussed. To validate this model a

series of reference measurements were taken on the LFRBB THz TDS. These were

measured at a sampling frequency of 25 THz, with a bias voltage of 150 V chopped

at 7 KHz. 410 di�erent scans were taken, the limitation of the number of scans

taken is the time it takes for one scan. To increase this, the delay stage was moved

faster, this resulted in measurements with higher than normal variance. This was not

considered an issue in this analysis, as it is the noise which is being characterised.

In Figure 6.1 the average time scan is shown in the top pane. Two red lines mark

the range which shows the greatest variation, consisting of 15 time samples. These

samples are analysed in greater detail at a later point in this section. In Figure 6.1

the variance of the time scans as a function of time is shown in the bottom pane.

What is interesting is that it shows large peaks at the edges of the THz pulse. This

is indicative of time base error [141], which manifests itself as an amplitude error

proportional to the di�erential of underlying deterministic signal. This uncertainty

was found to be highly correlated within the THz scan.

In Figure 6.2 the correlation matrix of the THz scan is shown. This consists of

an image coloured from blue (-1), to green (0) and to red (1). As would be expected,

regions which show little THz radiation in the scan are mostly not correlated with
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Figure 6.1: .
An air time scan. Top - Blue line - average of 410 di�erent measurements. Vertical
dashed red lines - time range for further analysis. Bottom - Variance of the time

scans with respect to time
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Figure 6.2: Correlation matrix of the time scan. Blue - −1, Green - 0 and Red - +1

other parts of the scan, however in the THz pulse there is a strong checked positive

and negative correlation pattern. This happens to correspond with the edges of the

THz pulse, rising edges are self correlated, as are falling edges, but rising and falling

edges are negatively correlated. In practice this means that when a time sample is

measured slightly higher on a rising edge, all the other samples on a rising edge tend

to move up as well, and all the samples on a falling edge tend to move down.

The correlation between time samples cannot be assumed negligible, as in [81],

and is particularly important when applying a Fourier transform. A singular sample

in frequency will be dependent on all time samples within the time window. If time

samples are correlated, this will have a dramatic e�ect on the variance at singular

frequency points. The reverse is also true, time samples depend on the entirety of

the spectrum, thus correlation in the frequency domain should also be considered

(even when estimating variance in the frequency domain).

The simplest example is to consider a time domain scan consisting of a single si-

nusoid at a singular frequency. If the magnitude and phase of this sinusoid is random,
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this will a�ect all points in the time scan and produce variation between repeated

measurement. However, because it is the magnitude and phase of the sinusoid which

is random and not the individual time samples, the variation across time will be cor-

related. If this was reversed, by applying a Fourier transform, this correlation would

equate to variance in a very narrow region of the frequency spectrum.

This highlights the main criticism of previous work [81], which attempt to use

univariate statistics to estimate the frequency domain uncertainty. It was found

that univariate models of uncertainty are insu�cient and the correlation in both

frequency and time domains must be accounted for, when estimating uncertainty in

the frequency domain.
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Figure 6.3: Green - Magnitude of the spectrum. Blue - estimate of variance based on [81],
Dashed Cyan - estimate of variance formed from the bootstrap and Red - estimate of variance
based on uncertainty propagation.

In Figure 6.3, the magnitude spectrum (green) of the time domain data is shown,

along with di�erent estimates of the variance. The blue curve shows an estimate

made with the method in [81], the red curve shows the estimate made using uncer-

tainty propagation, see § 6.4.3,6.4.4, and the dashed cyan curve shows an estimate

made using the bootstrap data, see § 6.4. The bootstrap and multivariate uncertainty

propagation agree extremely well, while the other estimate has overestimated the

variance considerably.

In the case of time base error, it is possible to approximate a correction for the

time base by looking at the deviation from the mean. By dividing the deviation from

the mean by the �nite di�erence and multiplying by the sampling time period, and

estimate of the time stamp error for each time sample can be found. In Figure 6.4,
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Figure 6.4: Time scan between the two red dashed lines in Figure 6.1. The time stamps have
been corrected, and the scans have been coloured by the deviation from the mean at the
falling edge marked by the vertical line

the di�erent samples are shown with time stamp estimates. At points where the

time base error is dominant, the samples appear to form a line with the gradient

of the THz pulse. At points where the gradient is small, this has not been e�ective

and the time base correction is very unreliable. This is particularly prominent at the

maximum and minimum of the scan. A vertical line has been placed on the sample

which has been used to determine the colour of the time scans. The time scans have

been coloured from red to blue, representing positive or negative deviation from

the mean at this point. Thus the colour represents deviation at this falling edge.

Interestingly, while the red stamps appear to be shifted left with a time correction,

while the blue stamps appear to be shifted right. Rather than the time base error being

random at each point, it appears to be an error across the entire pulse. This could

be registration error within the stage [142], which has been previously reported in

THz TDS measurements, an alternative hypothesis is that error in the stage position

will simply persist over a long period of its movement (i.e. this could be local to

regions of the THz scan rather than entire scans). This e�ect will mean that there

is an arrival time uncertainty of the pulse, which will manifest itself as an o�set

uncertainty in the real refractive index.

The simplest method to assess the probability distribution of the noise of the

THz scan is to examine the empirical marginal distributions. In § E, it was shown

that a marginal distribution of multivariate normal distribution is also normal. This
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will also occur with univariate marginal distribution. A simple method to examine

the distribution empirically is to examine the histogram of each time sample and

compare to the parametric normal distribution of each time sample.

k = 1 k = 2 k = 3 k = 4 k = 5

k = 6 k = 7 k = 8 k = 9 k = 10

k = 11 k = 12 k = 13 k = 14 k = 15

Figure 6.5: Normalised 10 bin histograms for each time sample between the two vertical lines
in �gure 6.1. The red lines show the parametric normal distribution based on the sample
mean and variance

In Figure 6.5, 10 bin histograms are shown for the 15 time samples (k is the index)

between the two red lines in Figure 6.1. A histogram can be used as an empirical

approximation of the underlying distribution, by comparing them to the parametric

model of the noise, it is possible to asses the marginal distributions at each time

sample. These histograms have been normalised to the area they cover, so that

the area is approximately 1. The red line shows a parametric normal distribution,
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speci�ed by the sample mean and variance in each case. In most of the cases, the

histograms tend to be similar to each of the parametric normal distributions, although

k = 6 . . . 10 appear to be slightly skewed and k = 13, 14 appears to be more uniform

than would be expected if normal. These points occur at peaks within the THz power

and are likely down to slight laser power drift over the course of the measurements

(several hours) than typical variation in a conventional measurement. Laser power

drift will have an e�ect on the amplitude of the measurement, as the generated THz

power is proportional to this noise [81].

A more accurate estimate of the empirical distribution can be formed by using

a bootstrap method (see § 6.4) to estimate the distribution of the mean. Using a

bootstrap method will be more representative of the empirical distribution of the

measurement noise as it is more sensitive to the likelihood of the noise [143] and

can be used to form a much larger size of histogram. This was performed with

this data set to produce 5000 di�erent estimates of the mean time domain scan. In

Figure 6.6 the resulting 500 bin histograms were then normalised and compared to

the parametric normal distributions. Due to the large number of bins used in the

histogram, the histogram appears to be almost continuous, and is very similar to the

parametric curve. Although outliers are present in some cases (see k = 7, 8, 9), but

considering there relative infrequency, they are assumed negligible.

As the processing is performed on an average of the time scans, it is the dis-

tribution of this mean which is most important. Fortunately it appears or tends to

be normally distributed, this is generally validated by the processing results when

compared to bootstrap estimations. If it were not the case, these would diverge sig-

ni�cantly. What these results might indicate is that the distribution of a single scan

is less normal. It is preferable from an analysis point of view to continue to treat it as

normally distributed, although it is acknowledged that this might not always be true.

A consequence which is not considered in this work, is this non–normality might

introduce a bias into the sample mean. This is assumed negligible as the variation is

typically small relative to the amplitude of the signal.
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Figure 6.6: Normalised 500 bin histograms for each time sample between the two vertical lines
in Figure 6.1 based on a 5000 repetition bootstrap mean. The red lines show the parametric
normal distribution based on the sample mean and variance
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6.4 Estimating covariance of extracted parameters

Calculating the covariance of the extracted ñ or l is non–trivial. A naive method of

performing this, would be to simply calculate multiple values of ñ and l based on

several measurements. The issue with this approach is that ñ and l are extracted

using the mean of the time domain measurements. This naive estimate of covari-

ance is not representative of these extracted estimates of ñ and l. There are other

issues as well, in particular, it will be more sensitive to outliers in the measurement

(averaging in the time domain mitigates this) and that it will be considerably more

computationally expensive.

A better method would be to estimate based on di�erent averaged time scans,

for instance this could be done by averaging batches of measurements. However,

this is not generally required, as a bootstrap method can be used instead. A boot-

strap [143] randomly draws (with repetitions) time scans from the original set of

measurements to form a new collection of time scans of the same size, which is then

averaged. This is then repeated to form multiple averages, from which ñ and l can be

extracted and the covariance can be estimated. The assumption using this method

is that the original set of time measurements is representative of the distribution of

the measurement. If for instance a low number of measurements is used and there

is an outlier, the bootstrap will over represent this outlier in the �nal statistics. This

method is often accurate and requires little information of the underlying distri-

bution. However, a large number (100+) of extracted ñ values is usually required

(which is computationally intensive).

Another method, is to use a Monte–Carlo [83] simulation to generate represen-

tative values of ñ and l. In this case a multivariate normal distribution is assumed

and data is simulated with time domain covariance matrices equal to the measured

estimates of uncertainty (of the time domain mean). If the underlying distribution is

normal, this will be accurate. However, again a large number of extracted ñ values

is usually required.

Instead, uncertainty propagation is used in this work and the above methods

are used as a comparison. Uncertainty propagation forms an approximation for
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each step of the processing, such that given an estimate of the covariance before the

processing step, an estimate of the uncertainty at the output of the step can be made.

DFT

DFT

DeconvolveAverage

Average

Sample

Reference

Approx ñ
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Figure 6.7: Uncertainty processing �owchart. The reference and sample measurements are
used to estimate covariance in the time domain, this is then propagated to the extracted
parameters using sensitivity matrices for each operation in the �owchart.

This is then used to form a similar processing algorithm to that used to extract ñ

and l. In Figure 6.7, a �owchart of this algorithm is shown to estimate the complex

covariance, Σ, and co–covariance (not shown for brevity), Γ, of ñ and l. For both

reference and sample measurements, the covariance matrices of their spectrums, ΣE ,

are calculated by performing uncertainty propagation for both averaging and the

DFT. An estimate for the covariance matrices of H , ΣH , is then estimated and then

used to estimate the covariances of ñ, Σñ, and l, Σl. The covariance of ñ must be

estimated in di�erent ways dependent on the method used to extract ñ. To estimate

the covariance of l, the covariance of the total variance is �rst estimated directly

from the transfer function.

A complex representation of variables is used during most of the processing, so

a complex multivariate normal distribution should be used for the uncertainty in

these variables. Complex variables are essentially two dimensional, thus to measure

covariance twice as much information is required. In this work, complementary

pairs of complex covariance and co-covariance matrices are used, as a complex vari-

able can be treated as a singular variable during analysis. An overview of complex

multivariate normal distributions is found in Appendix E.
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Uncertainty propagation is performed for each step by multiplying the covari-

ance of the input covariance by the sensitivity matrix [83] of the operation used. For

an arbitrary processing step, variable y which is function F of variable x:

y = F(x) (6.14)

Then the covariance matrix of y is:

Σy = CFΣxC
†
F (6.15)

where Σy is the complex covariance matrix ofy, Σx is the complex covariance matrix

of x, CF is the sensitivity matrix of operation F and † is the conjugate transpose

(† = ∗′). The co–covariance has a similar relation:

Γq = AΓzA
′ (6.16)

where Γy is the complex covariance matrix of y and Γx is the complex covariance

matrix of x.

In this work, generally only the sensitivity matrix ( C ) is presented as the

above relations are used to propagate the covariance and co–covariance matrices.

The sensitivity matrix is generally the complex Jacobian of the processing step and

can be derived analytically by performing di�erentiation with respect to the input

variable.

From these covariance matrices, con�dence intervals are then formed. These

represent an interval for a parameter which will cover the deterministic value with

some speci�ed likelihood (95 % is used in this work).

6.4.1 Sensitivity of the arithmetic mean

The �rst operation is to calculate the arithmetic mean of multiple scans, see § 3.4,

which will tend towards the underlying deterministic variable. As this is a function

of multiple independent normal variables, it will have a normal distribution.
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The equation for the arithmetic mean of multiple measurements is given by:

µ(e) =
1

M

M−1∑
k=0

ek (6.17)

the sensitivity matrix for of the average, Cµ,ek , is the scalar:

Cµ,ek =
1

M
(6.18)

Given that each ek is identically and independently distributed, the covariance of

the mean, Σē, can then be written as:

Σē =
M−1∑
k=0

1

M2
Σe =

1

M
Σe (6.19)

6.4.2 Sensitivity of windowing

The time domain data is windowed before being converted to the Fourier frequency

domain, see § 3.4. This operation can be written in matrix form as:

ew = D (w) e (6.20)

where ew is the windowed time domain data, D(x) indicates the diagonal matrix

formed from vector x and w is the vector containing the windowing function. The

sensitivity matrix of the windowing, Cw, is then:

Cw = D (w) (6.21)

This operation can also be used to truncate the data, it should be noted that this

truncated data is still normally distributed (as it is a marginal distribution, see Ap-

pendix E).

6.4.3 Uncertainty of the DFT

The majority of the remaining operations take place in the complex frequency

(Fourier) domain. The DFT is used to convert the real time domain data to com-
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plex frequency data. The DFT can be represented as a matrix operation [93]:

Ẽ = Fe (6.22)

Where F is the DFT matrix and Ẽ is the full spectrum frequency domain equivalent

of e, and thus the sensitivity matrix of the Fourier transform, CẼ,e, is:

CẼ,e = F (6.23)

While this could be used to calculate both the covariance and co–covariance, as for

real data Σ = Γ, this is not required. Ẽ is the full frequency spectrum (including

frequencies up to sampling frequency, Fs) and will have the same conjugate symme-

try as z̃ in the Appendix E. Thus ΣẼ is the Fourier covariance matrix discussed in

appendix E, and will have the form:

ΣẼ = CẼ,eΣeCẼ,e =

 ΣE
↔

ΓE

l Γ∗E l
↔

Σ∗E

 (6.24)

whereE is the half spectrum (up to halfFs), and is what is generally used to perform

analysis. The Fourier covariance matrix is thus fairly trivial to convert to ΣE and

ΓE (and happens to be computationally e�cient).

While it is possible to calculate ΣẼ with the DFT matrix, it is generally more

e�cient to use a Fast Fourier Transform implementation (FFT):

ΣẼ = FFT
(

FFT (Σe)
†
)†

(6.25)

In this work a sub–set of E is used for analysis (determined by αmax of a mea-

surement), and will have a marginal distribution with the relevant sub matrices, so

that:

Σ′E,j,k = ΣE,j,k for kmin <= j <= kmax, kmin <= k <= kmax (6.26)

where Σ′E,j,k is the covariance of the frequencies used, kmin is the index which
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corresponds to the lowest frequency used and kmax is the index which corresponds

to the highest frequency used.

Just like the DFT, the inverse discrete Fourier transform can be written in matrix

form, so that the sensitivity matrix is:

Ce,Ẽ = F−1 (6.27)

where F−1 is the inverse DFT matrix. This acts on the Fourier covariance, ΣẼ .

6.4.4 Sensitivity of the complex logarithm,magnitude and argument

The magnitude and argument are not complex di�erentiable functions as they are

inherently functions of the underlying real and imaginary parts. To compensate for

this, the augmented covariance matrix, see appendix E, can be used in the uncertainty

propagation.

The complex logarithm is used in the next section and is closely related to the

magnitude and phase of a complex variable. The complex logarithm is complex

di�erentiable and related to the magnitude and argument of complex variable, z:

loge(z) = loge(|z|) + i∠z (6.28)

The sensitivity matrix for the complex logarithm, Cloge , is its derivative:

Cloge(z) = D
(

1

z

)
= D

(
z∗

|z|2

)
(6.29)

While it is possible to consider the magnitude and phase as independent, gener-

ally this will not be true. It is therefore preferable to consider the jointly distributed

multivariate variable of the two:

→
z =

|z|
∠z

 (6.30)
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This can be related to loge(z) by:

→
z =

1

2

D (|z|) D (|z|)

−iI iI


 loge(z)

loge(z)∗

 (6.31)

And thus the sensitivity matrix, C→
z ,ż

, is with respect to ż (see Appendix E):

C→
z ,ż

=

D
(
z

2|z|

)
D
(
z∗

2|z|

)
D
(
−iz

2|z|2

)
D
(
−iz∗
2|z|2

)
 (6.32)

6.4.5 Sensitivity of deconvolution

In the frequency domain, the complex transfer can be calculated by division:

H =
Esam
Eref

(6.33)

WhereH ,Esam andEref are the transfer function, frequency domain sample mea-

surement and frequency domain reference measurement respectively.

The sample and reference measurements are assumed independent, so their con-

tribution to covariance of H can be formulated as a summation:

ΣH = CH,EsamΣEsamC
†
H,Esam

+CH,ErefΣErefC
†
H,Eref

(6.34)

Where CH,Esam , CH,Eref are the sensitivity matrices for the sample and reference

measurements respectively. A similar relation can be derived for the complementary

covariance matrices, by simply replacing the conjugate transpose with the transpose.

Deriving the sensitivity matrices can be done using the product and quotient

rules:

CH,Esam = D
(

1

Eref

)
(6.35)

CH,Eref = D

(
−Esam
E2
ref

)
(6.36)

When the sensitivity matrices are calculated based on measurement dependent val-

ues, the average is used.
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6.4.6 Sensitivity of complex refractive index approximations

In § 3.6, the n and κ of a sample is approximated using the magnitude and phase of

the transfer function. The derivations for the sensitivity matrix in which case can be

found in [81]. It is however preferable to consider the ñ instead, as it can be related

to the complex logarithm.

Using equation 3.47, ñ can be approximated as:

ñ = i
c

ωl

(
loge (H) + loge

(
(n+ 1)2

4n

))
+ 1 (6.37)

where ñ is the complex refractive index, ω is a vector of angular frequencies, l is

the thickness and n is the real refractive index vector. All operations are performed

element by element with the respective vectors.

If the real refractive index is suitably low (n . 3), the transmission terms can be

approximated as being negligible, thus this can be further simpli�ed:

ñ = i
c

ωl
loge (H) + 1 (6.38)

Which is fully complex di�erentiable, as it wholly a function of the complex loga-

rithm. For high index (n > 3) materials the method given in § 6.8 can be applied

with a non–resonant model to achieve an accurate estimation.

As this is a function of the complex logarithm, the sensitivity matrix of it,Cñ,H ,

can be calculated using the sensitivity matrix of the logarithm, Cloge(H),H :

Cñ,H = D
(
ic

ωl

)
Cloge(H),H = D

(
ic

ωl

1

H

)
(6.39)

The covariance of n and κ can then be calculated using the following relations:

Σn = 1
2< (Σñ + Γñ)

Σn,κ = 1
2= (−Γñ + Σñ)

Σκ = 1
2< (Σñ − Γñ)

(6.40)
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6.4.7 Sensitivity of spectroscopic parameter conversions

The α is a linear relation of a sample, as such the sensitivity matrix, Cα,κ, between

it and the extinction coe�cient is:

Cα,κ = D
(

2ω

c

)
(6.41)

The covariance between n and α can be calculated using the following:

Σn,α = Σn,κCα,κ
′ (6.42)

The complex permittivity, ε̃, is simply the square of the ñ, so the sensitivity

matrix between the two is:

Cε̃,ñ = 2ñ (6.43)

This can then be converted into real and imaginary permittivity using the same form

as equation 6.40.

6.5 Uncertainty ofα lactosemonohydratemeasurements

A 10 % α–lactose monohydrate sample was measured in the LFRBB THz TDS, see

§ 3.8. The sample’s n and α were then approximated, see § 3.6. The measurement

uncertainty was then estimated in the time domain, and corresponding estimates

of the uncertainty of n and α. These estimates were then used to �nd con�dence

intervals and a rudimentary analysis of the uncertainty was performed by analysing

the correlation and variance.

From the time domain covariance, an estimate of the n and α covariances was

formed by sequentially applying the sensitivity matrices of each operation to the

covariance and relation matrices. From the �nal covariance matrices, the variance

of both n and α was found. The covariance and mean estimates of both sample and

reference measurements were formed from 10 time scans each.

To provide a comparison, three other estimates of the covariance were formed

using numerical methods. The �rst method, referred to as the "naive" method, is to
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treat the sample and reference measurements as pairs, and form multiple estimates

of n and α. These are then treated as a statistical sample, from which the covariance

can be formed. The second method is the bootstrap method [143]. From this multiple

estimates of the mean (in the time domain) are formed, and then multiple estimates

of n and α can be formed. These are then used to estimate the variance. The �nal

method used for comparison is the "Monte–Carlo" method [83]. This method sim-

ulates multiple estimates of the mean time domain scan with covariance and mean

equal to the sample estimates of the mean and covariance. From these estimates,

multiple estimates of n and α, and their corresponding statistics, were formed.
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Figure 6.8: Di�erent estimates of the relative uncertainty of n of a 10% Lactose monohydrate
sample measurement. Green line - the naive method, light blue - the bootstrap method, red
- the Monte–Carlo method and dashed blue - the propagation of uncertainty method.

In Figure 6.8, the di�erent estimates of the relative standard deviation of n are

shown. The green line shows the naive methods estimate, the light blue line shows

the bootstrap estimate, the red line shows the Monte–Carlo estimate and the dashed

blue shows the estimate propagated from the time domain. These estimates are all

fairly similar below 5 THz, and show similar values and shape. Both the Monte–

Carlo and Bootstrap methods have been formed using 2000 di�erent estimates. The

naive estimate consistently overestimates the variance slightly compared to the

other methods, while the other methods track each other constantly. Interestingly,

the propagation and Monte–Carlo methods are near identical (below 5 THz), this

is to be expected as both are based on the assumption of an underlying normal

distribution. The bootstrap does not assume any particular probability distribution,
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and instead relies on observed frequency in the sample set. That the bootstrap agree

extremely well with the methods based on assumed normality, indicates that this

assumption is valid in this case. Above 5 THz, the Monte–Carlo estimate appears

to step. This occurs because of unwrapping changes in the di�erent estimates of n.

The unwrapping corrections from Chapter 3, are formed based on the measured data

(regardless of method) and will therefore be subject to uncertainty as well, which

will propagate to n. The uncertainty in the unwrapping correction has not been

considered in this work (but is inherently present), as below αmax (in α) it tends

to be negligible. At 6 THz, the bootstrap also shows this behaviour as well. The

reason it does not show unwrapping uncertainty below this frequency is that this

uncertainty does not occur within the original sample set. As the Monte–Carlo

method models the uncertainty, it can model e�ects not present within the original

data.
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Figure 6.9: Di�erent estimates of the relative uncertainty of α of a 10% lactose monohydrate
measurement. Green line - naive estimate, light blue - bootstrap estimate, ref - Monte–Carlo
estimate and dashed blue - propagation of uncertainty estimate

In Figure 6.9, the corresponding di�erent estimates of the relative standard devi-

ation of α are shown. The green line shows the naive estimate, the light blue shows

the bootstrap estimate, the red line shows the Monte–Carlo estimate and the dashed

blue line shows the uncertainty propagation estimate. The naive estimate is the

outlier in this case, while the other three estimates agree extremely well.

In this particular sample measurement, the naive method has appeared to do

fairly well compared to the other methods. This is because the measurements in
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Figure 6.10: Di�erent estimates of the variance of α of a z-cut quartz measurement. Green
line - naive estimate, light blue - bootstrap estimate, ref - Monte–Carlo estimate and dashed
blue - propagation of uncertainty estimate

this case study did not contain outliers and were extremely low variance. This is

not guaranteed to be the case, and sometimes it is not possible to acquire a low

noise data set (for instance when measuring a sample in a non-stable state). In

Figure 6.10, di�erent estimates of variance for a 0.512 mm z-cut quartz sample’s α is

shown. Variance was used instead of relative uncertainty, as the relative uncertainty

was found to be sensitive to catastrophic collision (0
0 ) and produced extreme values.

This sample was measured in the HFRBB THz TDS system, with 20 repetitions of

both reference and sample measurements. It was found that one of the reference

measurements was an outlier in the frequency domain at higher frequencies and

could skew the results. The green (naive) estimate of variance is signi�cantly o�set

from both the Monte–Carlo (red) and uncertainty propagation methods (dashed blue)

estimates. This because it was skewed by the outlier in a way that these estimates

were not. Interestingly the bootstrap has also been somewhat skewed by this outlier.

The bootstrap is based on the frequency in the sample set, outliers which occur in

the original sample set can skew this estimate [143]. This e�ect will rapidly reduce

in larger sample sets, so the issue is rather that the sample size is too small rather

than it has outliers in.

In Figure 6.11, the correlation matrices for the 10 % α–lactose monohydrate

sample estimated using each method is shown. The top row shows uncertainty

propagation estimates, the second shows Monte–Carlo estimates and the third shows
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Figure 6.11: Di�erent Estimates of correlation of 10% α lactose monohydrate. Top row
- Uncertainty propagation estimates, middle row - Monte–Carlo estimates, bottom row -
bootstrap estimates. First column - correlation within n, second column - correlation with
α and third column - correlation between n and α
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bootstrap estimates. The �rst column shows the correlation within the n variation,

the second shows the correlation with the α variation and the third column shows

the correlation between the two. All of the estimates are near identical, with the

exception being in the real refractive index correlation. Unwrapping was included

in the Monte–Carlo and bootstrap estimates, which has dominated at the higher

frequencies making the data appear less correlated than it is in the uncertainty

propagation estimate.
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Figure 6.12: Uncertainty propagation estimates of correlation of 10% α lactose monohydrate.
Bottom left - n correlation matrix, Bottom right - correlation matrix between n and α, Top
right - correlation matrix of α. n and α are shown in the top and left panes for reference.

In Figure 6.12, the uncertainty propagation estimates of correlation are shown.

Only the uncertainty propagation estimates are shown in detail, as other estimates

produced extremely similar estimates. The correlation of n and α are shown in the

bottom left and top right corners respectively. In the bottom right, the correlation
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between the two variables are shown. As n and κ (which α is related to) are parts

of the same complex variable, they are interdependent. Given this interdependence,

it is not unexpected that the variation between the two is correlated, and in this

work they are treated as being jointly normal, just as in the case of other complex

variables.

The correlation in each variable appears to be broadly frequency independent,

i.e. the variation at one frequency seems to be broadly correlated with the variation

at every other frequency. This is likely due to the real refractive index o�set being

uncertain (due to a pulse arrival time uncertainty), which will also result in there

being a broad frequency change in α (due to the Kramers–Kronig relations between

n and κ [84]).

In both correlation matrices, there exists a strong diagonal band. The main

diagonal of a correlation matrix is always one, however in this case it has been

expanded to nearby frequencies. This is because of the use of zero padding in the

measurement, which in the frequency domain equates to using interpolation. In this

case, since several neighbouring frequencies are essentially functions of the same

underlying information they must be correlated. Within the n of the sample, there

is a large block of positive correlation across a broad range of frequencies. This is a

result of the pulse shifting in the measured time window, see § 6.3. There is slightly

negative correlation (light blue) at 6 THz. This is due to strong peak at this frequency

from the PTFE matrix used in the sample, which will have considerable uncertainty

due to the limits of dynamic range at these frequencies. There is also a double band

of lower correlation at 4.3 and 4.6 THz, which corresponds to the relaxations at this

frequencies. This is a region of negative correlation which is being dominated by the

background positive correlation (from the pulse shift in time) and occurs because

there is uncertainty in the relaxation positions at these frequencies (it should be

noted that the uncertainty is small).

The correlation of α is more localised, which suggests that some variation is due

to the peak uncertainty rather than a group shift across frequencies like refractive

index. In particular, there are small regions of strong correlation along the diagonal

which are associated with singular features, particularly at the 3.26 THz peak, which
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indicate localised peak amplitude uncertainty (i.e. the entire peak is changing in

unison). However, like n, there is a banding of negative correlation from the edge

of the 6 THz peak in PTFE. This suggests that there might be uncertainty in the

position of the rising edge (this could be peak position uncertainty or peak width

uncertainty due to the limited dynamic range).

The correlation between n and α appears to be much more neutral than the

correlation within each of the respective variables. This is partly due to the lack of

a dominant diagonal band (these are di�erent variables, so are not self–correlated).

Instead there is much more localised peaks in correlation, which correspond to the

relaxations and peaks in n and α, which would be expected due to the underlying

polarisation mechanisms, see § 2.4.4. Interestingly, the n between 5 and 6 THz

appears to correlated broadly across frequencies in α. This might indicate that the

variation at these frequencies in n, is driving a more broadband variation in α.

6.6 Estimating con�dence intervals

A con�dence interval represents a range of values which the deterministic parameter

lies within, with some predetermined probability [139]. It should be clear that it is

the con�dence interval which is random, the parameter which is being estimated is

deterministic. Thus performing new measurements will lead to di�erent estimates

of the con�dence intervals, which will cover the same parameter with the same

probability. In the multivariate case, there exists a multivariate con�dence region

[83]. This con�dence region will consist of a N dimensional hyper–ellipsoid which

covers the mean vector with some probability. This methodology is not used in

this work, as it requires a larger number of observations than dimensions [83] (i.e.

to form a con�dence region for a 100 dimensional n and α vectors, at least 201

measurements would have to be performed). It would also be di�cult to create

visualisations of the hyper–ellipsoid which would be analytically useful. Instead,

univariate con�dence intervals are proposed, these ignore correlation, and solely

cover the component with some probability.
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6.6.1 Non-simultaneous con�dence intervals

A scalar component, xi, of the multivariate variable, x, will have univariate distribu-

tion. It is then possible to form N con�dence intervals based on univariate statistics.

These intervals will not consider correlation between di�erent scalar components,

but individually will have probability p likelihood of covering the individual compo-

nent.

To form a con�dence interval, consider a measurement of the form:

x̂ = x+ y (6.44)

Where y is a zero mean random variable and x is a deterministic variable. The

distrubtion for the kth component is distrubtued normally:

x̂k ∼ N1

(
xk, σ

2
yi

)
(6.45)

And for probability p there exists a value a for which the following is true:

P (xk − a ≤ x̂k ≤ xk + a) = p (6.46)

Conversely it is possible to specify an interval which will contain xk based on an

observed x̂k with probability p:

P (x̂k − a ≤ xk ≤ x̂k + a) = p (6.47)

This can be seen by considering the case where xk − a ≤ x̂k ≤ xk + a, in which

case xk always lies within a of x̂k. If x̂k is not within this range, this is not true.

Since x̂k has probability p of being in this range, the statement in equation 6.47 has

the same probability.

For a given probability p, it is possible to determine a value a which satis�es

equation 6.47. For a known value of σyk , this can be done by using a standard normal



6.6. ESTIMATING CONFIDENCE INTERVALS 207

variable, s ∼ N (0, 1), so that x̂k = σyks+ xk. There is a constant b for variable s:

P (−b ≤ s ≤ b) = 1− c = p (6.48)

b is then the value equal to the inverse of the normal cumulative distribution function

(the integral of the PDF) of s for probability 1− c
2 :

b = N−1
s (1− c

2
) (6.49)

a can then be calculated by following through to x̂k:

a = bσyk (6.50)

In the case where σyk is estimated from the measured data, b must instead be calcu-

lated using an inverse of the t cumulative distribution:

b = t−1
v

(
1− c

2

)
(6.51)

where v is the degree of freedom in the measurement, and for M measurements

is typically M − 1. In the case of combinations of variance, an e�ective degree of

freedom should be calculated (see § 6.6.3).

For the multivariate variable x̂, there exists the vectors x̂±a exist which satisfy

the following [139]:

P (x̂k − ak ≤ xk ≤ x̂k + ak) = p (6.52)

This is only true for individual components, it does not mean that all components

of the multivariate intervals cover all components of x simultaneously. It is for

that reason, that in this work they are referred to as non-simultaneous con�dence

intervals.

6.6.2 Bonferroni simultaneous con�dence intervals

In the previous sub-section, non-simultaneous intervals were considered. The issue

with these intervals is that they only consider the probability of individual compo-
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nents of the con�dence interval. This will lead to a case where the probability that

all the components of the deterministic value lie within the con�dence intervals is

overestimated (i.e. the con�dence interval is to narrow). This can be seen by con-

sidering a variable with N components, which are independently and identically

distributed, in which case [139]:

P (x̂− a ≤ x ≤ x̂+ a) = pN (6.53)

The probabilities multiply, in which case for larger values of N it could be quite

likely that individual components of the interval do not cover x.

Instead it is possible to construct a Bonferroni interval which has at least prob-

ability p, and speci�es that for all the k components of x are within a con�dence

interval:

P (x̂− a ≤ x ≤ x̂+ a) ≥ p (6.54)

Where a is calculated from a di�erent value of b [139]:

b = t−1
v

(
1− c

2A

)
(6.55)

where A is the number of components in the variable x. In the case of n and α,

which are essentially the real and imaginary parts of ñ, this will be 2N . Both n and

α are jointly normal, and can be considered sub–variables of the combination of

the two. Thus 2N is used so that the intervals have a probability p of covering the

deterministic values of both n and α simultaneously.

6.6.3 E�ective degrees of freedom

When considering combinations of di�erent normal variables (or functions of com-

binations of variables) the degrees of freedom is not equal to M − 1. Instead the

e�ective degree of freedom needs to be calculated from the underlying variances σ2
j ,
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degrees of freedom vj and combination of variances [137]:

ve =

(∑L−1
j=0 σ

2
j

)2

∑L−1
j=0

σ4
j

vj

(6.56)

where L is the number of di�erence sources of variance.

For example, to calculate the e�ective degrees of freedom for the kth con�dence

interval of n:

ve,nk =
σ4
nk

σ4
s,nk

Ms−1 +
σ4
r,nk

Mr−1

(6.57)

where σ2
nk

is the kth component of the variance of n, Ms is the number of sample

measurements, Mr is the number of reference measurements, σ2
s,nk

is the sample

contribution to σ2
nk

and σ2
r,nk

is the reference contribution. σ2
s,nk

can be calculated

by assuming the variance in the reference measurement is 0, and calculating σ2
nk

based solely on the sample variance. The same can be done for σ2
r,nk

by assuming the

variance in the sample measurement is 0. The e�ective degrees of freedom will need

to be estimated for each component of a con�dence interval, if the con�dence interval

is for a parameter which is a function of both reference and sample measurements.

6.7 Con�dence intervals of α lactose monohydrate mea-

surements

In Figure 6.13 the n of the 10 % α–lactose monohydrate sample from § 6.5 is shown

with con�dence intervals. The left pane shows 0.2–5.3 THz and the right pane shows

5.3–6.5 THz. Di�erent scales were used as the uncertainty in relaxations above 5.3

THz tend to dominate the measurement. The green shaded band shows the 95%

probability simultaneous con�dence interval, and the red shaded band shows the cor-

responding non-simultaneous interval. Both are based on estimates of the variation

made using uncertainty propagation, the simultaneous estimate will be a multiple of

the non-simultaneous estimate. The con�dence interval is narrow over most of the

frequency range, with the exception at 6 THz. It should be noted that while there

is some change in the shape of the relaxation features, this measurement is highly
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Figure 6.13: The estimated 95% probability con�dence intervals of n of a 10% α–lactose
monohydrate sample. The left pane shows 0.2–5.3 THz and the right pane shows 5.3–6.5THz.
Di�erent scales have been used to emphasise con�dence intervals in these regions. The
green shaded region shows the simultaneous interval and the red shaded region shows the
non–simultaneous region. The estimate of n is shown as a black line.

correlated (i.e. the uncertainty is in the average refractive index). Below 0.3 THz,

the measured phase tends to be extremely noisy and it is expected the con�dence

region would expand below these frequencies. At higher frequencies, above 5.5 THz,

α has reached αmax. As such noise will dominate the measurement considerably,

which leads to larger con�dence bands. The con�dence intervals expands around

the relaxations at these frequencies, which indicates that there is larger uncertainty

around these relaxations. It should be noted, that the unwrapping uncertainty has

not been considered, and that the con�dence interval will actually be considerably

larger at these frequencies if it was considered.

In Figure 6.14 the α of the sample is shown with con�dence intervals. The left

pane shows 0.2–5.3 THz and the right pane shows 5.3–6.5THz. Di�erent scales have

been used as the uncertainty in relaxations above 5.3 THz tend to dominate the

measurement. The green shaded band shows the 95% probability simultaneous con-

�dence interval and the red shaded band shows the corresponding non-simultaneous

interval. The black line shows the estimated α and the red line shows αmax. The

con�dence intervals were based on uncertainty propagation of the variation. As

would be expected, where α tends to αmax, the con�dence intervals become ex-

tremely large, this is because noise dominates the magnitude measurement at these

frequencies. Interestingly, between 3.5 and 6 THz the con�dence intervals expand
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Figure 6.14: The estimated 95% probability con�dence intervals of α of a 10 % α–lactose
monohydrate sample. The left pane shows 0.2–5.3 THz and the right pane shows 5.3–6.5THz.
Di�erent scales have been used to emphasise con�dence intervals in these regions. The
green shaded region shows the simultaneous interval and the red shaded region shows the
non–simultaneous region. The estimate of α is shown as a black line. The αmax of the
measurement is shown as a cyan line.

signi�cantly. This occurs because of the decreasing reference measurement ampli-

tude with respect to frequency. If this is considered with regards to the deconvolution

sensitivity matrix equations 6.35 and 6.36, it can be seen that the uncertainty in both

measurements is inversely proportional to the magnitude of the reference measure-

ment. Thus as it tends to be smaller, the uncertainty in the transfer function (and

thus α) tends to be larger.

The dynamic range of the reference, see § 3.7, will therefore have considerable

e�ect on the uncertainty of the extracted ñ. This could be important when con-

sidering system design, for instance designing emitters tuned to a particular range

of frequencies might increase the certainty at these frequencies (by decreasing cer-

tainty at other frequencies). Another reason this might be relevant is when more

unusual references are used, for instance when using self referencing [144] in re�ec-

tion measurements or when using a similar sample (for instance an empty �owcell

[76]).

6.8 Fitting a transfer function model

In Chapter 5 a sample model is �tted to the transfer function. Calculating the sensi-

tivity matrix for such a formulation can be di�cult. Instead the assumption is that
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the error function has a global minimum at:

H̄ = H (6.58)

Where H̄ is the transfer function model. The sensitivity matrix can then be formed

as the inverse of the model’s Jacobian:

Cñ,H = ∆−1
H̄,ñ

(6.59)

This is a simpli�cation of a more robust analysis [82], which can more generally be

applied to uncertainty when using indirect �tting [83].

6.8.1 Sensitivity matrices of sample models

To �nd the sensitivity matrix of the model, which will be the inverse of its Jacobian

with respect to ñ:

Cñ,H = ∆−1
H̄,ñ

(6.60)

In the case where a model is being �tted to a singular transfer function, at each

frequency with a singular parameter (i.e. just a single layer sample’s ñ), the Jacobian

will be a diagonal matrix:

∆H,ñ = D
(
dH̄

dñ

)
(6.61)

It will thus be the derivative of the model at each discrete frequency. Being a diagonal

matrix, the inverse is an inversion of the diagonal at each frequency:

∆−1
H,ñ = D

(
dH̄

dñ

−1
)

(6.62)

The derivative of the model needs to be calculated. One way of estimating the

derivative is to use the �nite di�erence, by making a small step in a parameter,

calculating the model and then taking the di�erence (this is how gradient descent al-

gorithms function without an analytical gradient). The di�culty with this approach,

is that the gradient would have to be estimated using a small step size to be accurate

for the uncertainty (which experimentally is extremely small), and thus is susceptible
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to calculation error. A better approach is to derive the derivative analytically. As all

the models used in this work are a product of coe�cients, only the derivatives of

the coe�cients need to be found and the product rule can then be used to �nd the

derivative of the model.

6.8.2 Derivative of the model coe�cients

To �nd the derivative of a sample, the individual model coe�cient derivatives are

required. These coe�cients are functions of the sample’s ñ and can be di�erentiated

with respect to the sample’s ñ.

The propagation coe�cient, given by equation 3.7, has the derivative :

dP (ñ)

dñ
= −iωl

c
P (ñ) (6.63)

The transmission coe�cient given by equation 3.6, is a function of two di�erent

layer’s ñ, ñ1 being the layer sourcing the radiation and ñ2 being the layer receiving

the radiation. Being a function of two di�erent ñ’s, there are two di�erent derivatives.

The �rst being with respect to ñ2:

dT1,2

dñ2
=

2ñ1

(ñ1 + ñ2)2 (6.64)

The second being with respect to ñ1:

dT1,2

dñ1
=

−2ñ2

(ñ1 + ñ2)2 (6.65)

Similarly, there is the re�ection coe�cient, given by equation 5.15 between two

layers, which will have two derivatives. The �rst being with respect to ñ2:

dR1,2

dñ2
=

2ñ1

(ñ1 + ñ2)2 (6.66)

And the second with respect to ñ1:

dR1,2

dñ1
=

−2ñ2

(ñ1 + ñ2)2 (6.67)
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The Gouy phase correction coe�cient is given by equation 5.39, and its derivative

with respect to the sample’s ñ is approximately:

dG(n)

dñ
≈ −iωlβ

cn2
G(n) (6.68)

Which works if the extinction coe�cient is assumed negligible, so that ñ ≈ n in

these equations.

Similarly, for the beam waist amplitude correction, see equation 5.37, the deriva-

tive is:
dw(n)

dñ
≈ −ω2β2l2

c2n3

(
1 +

(
ωβl
cn

)2
)w(n) (6.69)

6.8.3 Modifying transfer functionmodels to calculate the derivative

All the models used in this work consist of products of separate coe�cients. These

coe�cients are functions of ñ and have been shown to be di�erentiable with respect

to ñ. This means the product rule can be used to calculate the derivative, but also

that almost all of the transfer function model itself must be calculated to calculate

the derivative (i.e. if one coe�cient is factored out of the derivative, the product of

the other coe�cients and the derivative of the coe�cient will be left).

One method of calculating the derivative is to treat it as a joint calculation with

the transfer function. Creating a vector, H̄ , de�ned as the transfer function and its

derivative:

H̄ =

 H̄
dH̄
dñ

 (6.70)

Factoring out a coe�cient A, the transfer function can always be written as:

H̄ =

 AH̄ ′

dA
dñ H̄

′ +AdH̄′

dñ

 (6.71)
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where H̄ ′ = H̄
A . This can be written in matrix form:

H̄ =

A 0

dA
dñ A

 H̄ ′ = AH̄ ′ (6.72)

A is the coe�cient matrix. This can be applied to any model coe�cient, and can be

applied sequentially. For example, the simplest model can be written as:

H̄ = Ta,sTs,aPsP
−1
a

1

0

 (6.73)

Where each of the coe�cients is in matrix form with its derivative with respect to

the sample’s ñ. It should be noted that in the case of Pa, the derivative is 0.

This method can be applied to any model within this work to calculate the deriva-

tive, simply by replacing the scalar coe�cients with matrix forms. There is one

exception, which is where an in�nite resonance must be considered. In which case,

it makes sense to de�ne an temporary Fabry–Perot resonance coe�cient:

F = 1− P 2
sR

2
s,a (6.74)

The derivative can then be calculated using the matrix formulation. The resonance

matrix, F , can then be set as:

F =

 1
F 0

−dF
dñ

1
F 2

1
F

 (6.75)

And the in�nite resonance model can be written as:

H̄ = Ta,sTs,aPsP
−1
a F

1

0

 (6.76)
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6.9 Uncertainty of �tting a resonantmodel to z-cut quartz

A 0.512 mm z-cut quartz sample was measured using the HFRBB THz TDS, as in

§ 5.10. A in�nite resonance transfer function model was �tted to the data with

di�erent assumed thicknesses between 505 and 525 µm, with 0.5 µm steps. Total

variance was then used to extract the correct thickness, and select the corresponding

ñ. The �tted calibration coe�cient, β, from § 5.9 was used to calibrate the extraction.

The uncertainty in n, α and total variance was estimated using uncertainty

propagation. To validate this approach, other estimates of the uncertainty based on

a Monte–Carlo method and a bootstrap method were used. Both of these methods

used 500 repetitions, and took several hours to compute on a desktop machine.
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Figure 6.15: Di�erent estimates of variance in z-cut quartz sample. The n estimates are
shown on the left and the α estimates are shown on the right. The thick blue lines shows
the Monte-Carlo estimates, the green lines show the bootstrap estimates and the dashed red
lines show the uncertainty propagation estimate.

In Figure 6.15 the di�erent estimates of variance are shown. The top pane shows

the variance of n and the bottom pane shows the variance of α. The thick blue

line shows the Monte–Carlo estimate, the green line shows the bootstrap estimate

and the dashed red line shows the uncertainty propagation estimate. Estimating the

uncertainty over a range of thicknesses, see § 6.11, using Monte–Carlo and bootstrap

methods took several hours (due to the high number of repetitions). In comparison,

estimation via uncertainty propagation took under 30 seconds (less than a second

for a singular thickness).
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The di�erent estimates are in extremely good agreement, with the exception of

some individual frequencies in n. At certain frequencies, the extraction has con-

verged to an incorrect value in some of the Monte–Carlo and bootstrap estimates.

This has resulted in the variance being skewed, resulting in spikes in the variance

at these frequencies.

The variance shows etalons across the bandwidth, these occur with the frequency

as the residual etalons present in the extracted n and α. It should be noted, that if

a non-resonant model is �tted these etalons are not present in the uncertainty. The

model used will have a signi�cant e�ect on the uncertainty as well as extracted ñ.

The variance appears to increase in both variables with frequency, as in § 6.5 the

uncertainty is inversely proportional to the dynamic range of the reference and at

frequencies where this is smaller, the uncertainty will be larger.

In Figure 6.16 the correlation matrices estimated by uncertainty propagation are

shown. In the upper left the correlation matrix of n is shown, in the bottom right

the correlation matrix of α is shown and in the top right correlation matrix between

the two is shown. The correlation matrices of n and α, show two strong regions

of correlation, roughly segmented about 3.8 THz. This happens to correspond with

the relaxation in the n. This is indicative of the n o�set uncertainty being di�erent

either side, creating separate regions of correlation. The lower frequency region is

broadly correlated, in the n this is due to pulse arrival time uncertainty in the time

domain. In the α a similar e�ect is observed which is likely down to variation in the

pulse amplitude in the time domain (i.e. the entire magnitude spectrum is changing,

rather than individual regions).

As in Figure 6.12, there is strong diagonal correlation, however it is much nar-

rower. This is because far less zero padding was used to achieve a similar computa-

tional frequency resolution. There also appears to be a lattice like structure super

imposed on the correlation matrix, this is especially noticeable in the correlation

between the two variables. This lattice like structure occurs because of the positive

correlation and negative correlation of associated with the etalons which are present

in the uncertainty. These will be associated with uncertainty in the sample re�ection.

For instance if there is uncertainty in its arrival time this will have a broad e�ect
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Figure 6.16: Correlation matrices of n and α of z-cut quartz. Bottom left - correlation matrix
of n, bottom right - correlation matrix between n and α and upper right - correlation matrix
of α. n and α of the sample are shown in the top and left panes for reference.
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across the spectrum similar to uncertainty in the main pulse arrival time. How-

ever, because the re�ection produces etalons in the spectrum, its uncertainty will

re�ect that and have regions of both positive and negative correlation with similar

periodicity.
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Figure 6.17: Estimates of the 95% con�dence intervals of n. The green shaded region is
the simultaneous con�dence intervals, and the red shaded region is the non-simultaneous
con�dence intervals. The black line is the estimate of n.

In Figure 6.17 the extracted n is shown with its corresponding 95% intervals. The

green shaded region is the simultaneous con�dence intervals and the red shaded

region is the non-simultaneous con�dence intervals. The con�dence intervals were

estimated from using the uncertainty propagation method. The black line is the esti-

mate of n. The con�dence intervals are fairly narrow across the spectrum, however

at higher frequencies the intervals become much broader.
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Figure 6.18: Estimates of the 95% con�dence intervals of α. The green shaded region is
the simultaneous con�dence interval and the red shaded region is the non-simultaneous
con�dence interval. The blue line is the estimate of α.

In Figure 6.18 the estimated α and its corresponding 95% con�dence intervals is
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shown. The green shaded region is the simultaneous con�dence intervals and the

red shaded region is non-simultaneous con�dence intervals. The black line is the

estimated value of α. The con�dence interval becomes considerably wider at higher

frequencies. The con�dence intervals are broad enough to suggest that the residual

etalons are at least partially due to a variation within the measurement, particularly

due to uncertainty in the sample re�ections.

At lower frequencies (between 0.5 and 2.5 THz) the lower con�dence interval is

smoother than the extracted α. This is due to the uncertainty being greater than the

peak and troths formed by the etalons, indicating that the deterministic value could

be considerably smoother. The caveat with this analysis is that the con�dence inter-

vals have no indication of correlation and are a random variable (i.e. the con�dence

interval structure and size are subject to probability).

The uncertainty in these measurements is conditional on the β calibration. How-

ever, this calibration curve will be subject to its own uncertainty and has been shown

to have a considerable e�ect on the residual etalons in the extracted parameters, see

§ 5.10. This uncertainty will likely have a structural e�ect (i.e. might produce/reduce

etalons) on the uncertainty. However, in order to account for this uncertainty, there

are several development issues which would need to be resolved (particularly with

pooling covariance estimates and with the dimensionality reduction e�ects of the

�tting used).

Another paramter this is conditional on is the extracted thickness, which has

been extracted along with its uncertainty in § 6.11 using total varaince. This uncer-

tainty will have a considerable a�ect on the uncertainty of n and α. However, as

the uncertainty of the thickness is directly propagated from the uncertainty in n

and would require developing a method of estimating a convaraince matrix which

includes the extracted thickness (i.e. the covariance between n, α and l should be

considered). It should be noted that in this sample the uncertainty of the extracted

thickness was extreamly small and will have negligible e�ect on the uncertainty of

n and α.
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6.10 Uncertainty of thickness extracted using total vari-

ance

In § 5.6, total variance was used to measure the sample thickness in situ, by minimis-

ing etalons in the �tted ñ. The calculation for total variance at assumed thickness l

is:

TVl = 1′ |Dnl| (6.77)

Where 1′ is a N row vector of ones to perform summation, nl is the real refractive

index extracted using assumed thickness l, andD is a (N − 1)×N �nite di�erence

operator matrix, which is de�ned as Toeplitz matrix of the form:

D =



1 −1 0 · · · 0

0 1 −1 · · · 0

...
... . . . . . . ...

0 0 · · · 1 −1


(6.78)

The sensitivity matrix, CTV ,n, is then in the form of a row vector:

CTV ,n = sgn(Dnl)
′
D (6.79)

Where sgn is the sign function:

sgn(x) =

 x = 1 : x ≥ 0

x = −1 : x < 0
(6.80)

The sensitivity matrix given in equation 6.58 is for a single thickness, and ignores

correlation between extracted values of real refractive index using di�erent assumed

thickness’s. This can be resolved by recognising the inherent dependence on the

measurements transfer function and creating a sensitivity matrix, CTV ,H , which
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maps the uncertainty from that to total variance:

CTV ,H =



CTV ,n(l0)Cñ,H(l0)

CTV ,n(l1)Cñ,H(l1)

...

CTV ,n(lN−1)Cñ,H(lN−1)


(6.81)

Where CTV ,nl and Cñ,H,l are the sensitivity matrices calculated at thickness l, and

lk is the kth assumed thickness, unto N − 1th thickness.

The covariance matrix of TV is then calculated using the following:

ΣTV =
1

2
R
(
CTV ,HΣHC

†
TV ,H +CTV ,HΓHC

′
TV ,H

)
(6.82)

A subset ofTV around the correct local minima can then be used to estimate the

uncertainty in thickness. This subset, TV ′, will be smaller but still have a marginal

normal distribution. A quadratic can be �tted to this reduced subset (alternatively a

broad range could be considered by using a higher order polynomial) of the form:

TV ′ = Lb (6.83)

where L is design matrix of the form:

L =

[
1 l l2

]
(6.84)

and b is a vertical vector of polynomial coe�cients. The polynomial coe�cients can

be estimated using linear least squares [139]:


b0

b1

b2

 = L−1TV ′ (6.85)
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Figure 6.19: Di�erent estimates of variation of total variation. The blue curve shows the
Monte–Carlo estimate, the red curve shows the bootstrap estimate and the green curve
shows the uncertainty propagation estimate.

where L−1 is the pseudo–inverse of L. The argument minima of TV ′ is:

l = argmin
l

TV ′ =
−b1
2b2

(6.86)

Where l is in this case the extracted sample thickness. The sensitivity matrix,Cl,TV ′ ,

between the two is then:

Cl,TV ′ =

[
−1
2b2

b1
2b22

0

]
L−1 (6.87)

This will then map the uncertainty in total variance to the uncertainty in the ex-

tracted thickness:

σl = Cl,TV ′ΣTV ′C
′
l,TV ′ (6.88)

6.11 Extracted thickness uncertainty of z-cut quartz

The z-cut quartz sample measurement was used to extract the thickness using total

variance. Multiple estimates of the uncertainty of total variance were formed, using

Monte–Carlo, bootstrap and uncertainty propagation methods.

In Figure 6.19 the estimated variance for the calculated total variance for each

of the assumed thicknesses, ranging from 0.5 mm to 0.52 mm with a 0.005 mm step.
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Figure 6.20: Di�erent estimates of correlation within the total variation. Left - the Monte–
Carlo estimate, middle - the bootstrap estimate and right - the uncertainty propagation
estimate.

The blue curve shows the Monte–Carlo estimate, the red curve shows the bootstrap

estimate and the green curve shows the uncertainty propagation estimate based on

the sensitivity matrix in § 6.10. None of the estimates agree perfectly, as the total

variance operation is (purposely) very sensitive to variation.

In Figure 6.21 the di�erent estimates of correlation of the total variation of the

measurement. The left image shows the Monte–Carlo estimates, the middle image

shows the bootstrap estimate and the right image shows the uncertainty propagation

estimate. The estimates are very similar, but small di�erences are noticeable in the

shape of the negative regions. The correlation matrix shows that each side of the

minima (see below) is positively correlated with itself but negatively correlated with

the other side of the minima. This practically means that if one side of the minima

increases the other side will decrease.

In Figure 6.21 the estimated con�dence intervals of the total variation. The light

shaded region is the simultaneous con�dence interval and the darker region is the

non-simultaneous con�dence interval. The blue line shows the total variance esti-

mate. The estimates have been formed based on uncertainty propagation estimates

of variance. The con�dence interval is fairly constant across assumed thickness, this

is because the variance does not change signi�cantly with assumed thickness.

A quadratic was �tted locally (using linear least squares) to the minima, the re-

gion has been marked by vertical lines in Figure 6.21. The �tting has been shown as
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two lines, which are based on the simultaneous con�dence intervals of the polyno-

mial coe�cients. From these polynomial coe�cients, 95% con�dence intervals for

the minima location were estimated to be 512.1 and 512.5 µm. This is the �rst time,

to the authors knowledge, that the thickness uncertainty has been estimated, when

the thickness has been extracted using total variance. This is extremely accurate,

but as mentioned above, does not account for uncertainty in β, which is likely the

biggest uncertainty in this estimate. It has already been shown that the uncertainty

in the calibration thickness has a large e�ect on the measured β, it would be feasible

that this would have a large e�ect on both the uncertainty of β and the uncertainty

of the minima location.
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Figure 6.21: The estimated con�dence intervals for total variation. The lighter region shows
the simultaneous con�dence interval, the darker region shows the non-simultaneous con�-
dence interval and the blue line shows the estimate of total variation. The purple lines show
the con�dence intervals for a �tted quadratic between the two vertical dashed lines.

6.12 Conclusion

In this chapter a model for the uncertainty in THz TDS measurements was developed

based on multivariate normal statistics. A method of estimating the uncertainty of ñ

was then presented based on the method of uncertainty propagation. This was used

to estimate con�dence intervals for n and α, using both: (i) simple approximations

and (ii) �tting a resonant model to the sample response. It was also shown that the

measurement uncertainty had a very small e�ect on the extracted sample thickness

using total variation.
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The methods of estimation were shown to be extremely accurate compared to

both bootstrap and empirical methods, while being substantially quicker to compute.

These methods could be extended to include calibration uncertainty, multilayer sam-

ple extraction and time localised �tting.
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Chapter 7

Conclusion and further work

In Chapter 5 simple approximate methods of processing the THz TDS measurements

were presented and a new method of correcting the refractive index for phase unwrap-

ping issues was developed. These methods of extracting the absorption coe�cient

and refractive index were found to be su�cient to process some measurements of

lactose and paracetamol, as well as develop spectroscopic simulants in Chapter 4.

These approximate methods are often su�cient and should serve as an initial

point for the processing. However, if the sample response is complex or there is

signi�cant sample thickness uncertainty, the methods presented in Chapter 5 should

be used. These method �t a model to the measured transfer function of the sample

and by doing so, can incorporate more complex sample responses and extract more

information from a single measurement.

A method of using a direct thickness search (total variance) was developed in

conjunction with a resonant model which included a calibration coe�cient for the

THz Gaussian beam pro�le. This allowed extremely accurate extraction of the sample

thickness in situ and was used to determine the thickness of z-cut quartz andα lactose

anhydrous samples.

A simple method of calibrating for this e�ect was developed. By segmenting

the transfer function in the time domain it was possible to isolate the main pulse

and �rst re�ections of a calibration sample with known thickness. Using simple

estimates of refractive index it was then possible to directly measure the calibration

coe�cient.
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The calibration procedure developed should be adopted in future experimenta-

tion and in particular several calibration measurements should be performed after

system realignment. These calibration measurements should be performed with

transparent, resonant materials with low relative thickness uncertainty (as this was

proportional to the uncertainty in β). It was found that z-cut quartz was well suited

to this task and a variety of quartz samples with di�ering thicknesses would make

excellent calibration samples. Alternatively, if quartz is not available, thick (> 2

mm) high resistivity silicon could make a suitable calibration sample provided that

the thickness uncertainty does not scale with sample thickness (for instance, if it

is caused by a slanted surface). By performing these calibration measurements, the

accuracy of thickness extraction can be greatly enhanced.

A method of modelling multilayered samples was developed and this was used

to extract the complex refractive index of a IPA within a �owcell. To perform this

extraction, the two z-cut quartz layers had to have known complex refractive index

and thickness. By measuring an empty �owcell with the same channel thickness it

was possible to both extract the complex refractive index of all layers and extract

the channel thickness.

To apply this extraction technique in the future to other layered samples, the

experiment should be designed in conjunction with the processing with particular

consideration of how all the layers should be characterised and how to measure

the required information. It may well be the case that is is possible to extract out

additional information by considering related samples to the sample of interest, for

instance considering multiple measurements of a layered sample with di�erent layers

removed.

A time localised model was developed to �t to a time segmented transfer function.

This was then used to extract directly the thickness, refractive index and absorption

coe�cient of a sample. The advantage of this method is that it is robust and a direct

search for the thickness is not required. This could therefore be used as an initial step

before performing a direct search using total variance to characterise the uncertainty

of the thickness, refractive index and absorption coe�cient.

This method was extended to extract out the refractive index and absorption co-
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e�cient of multiple layers. This was applied to a high resistivity silicon and quartz

layered sample with known thicknesses. The extracted estimates were negatively

correlated and were systematically incorrect. However, it was capable of uniquely

assigning the phonon mode correctly to the quartz, which indicates that this method

(in its underdeveloped state) could be used as a method of identifying spectral fea-

tures, rather than accurate values.

When processing sample measurements, it is the recommendation of the author

that initial approximations are initially used. These approximate values will often

be similar to the �nal value after processing and should serve as a means of quickly

identifying experimental issues (for instance a lower concentration is required) or

if further processing is useful. These approximations can then be used as initial

estimates during the transfer function �tting.

To perform thickness extraction, resonance within the sample is required. Un-

fortunately, this is not always the case and samples maybe to absorbent or be to

transparent for this to occur. To identify if a sample measurement can be used to

extract thickness, there are three di�erent potential methods of identifying reso-

nance: i) a re�ection is present within the sample time scan which is not present

in the reference time scan, ii) after approximating refractive index and absorption

coe�cient, there are etalons present at lower frequencies which reduce at higher

frequencies and iii) performing a direct search using total variance for the thickness.

It should be noted, that the �rst two are simple to perform (relatively) but are not as

sensitive as performing the thickness extraction.

It has been observed in this work that samples mixed with PTFE (the matrix

material) do often produce re�ections which can be exploited to extract out the

thickness of the sample. In future work, it would be advisable to adapt existing

dilution procedures to take this into account (i.e. dilute not just for bandwidth

but for resonance). By measuring pure PTFE (or another matrix material) pellets

with di�erent thicknesses, it would be possible to assign an approximate range of

pellet mixture masses for low concentrations which produce resonance and whose

thickness can be measured. This could then be used in experiments to perform in

situ thickness extraction.



230 7. Conclusion and further work

In Chapter 6, a method of estimating the uncertainty in the refractive index,

absorption and thickness were developed. The method developed was found to be

extremely accurate when compared to robust numerical methods of estimating the

uncertainty. This method is very general and could be adapted to other instrumenta-

tion (for instance re�ection THz TDS systems) and di�erent processing techniques

(for instance �tting Lorentzian peak functions to absorption data).

Before applying these techniques to experimental data, steps should be taken

to validate the underlying assumption of normally distributed noise. The simplest

method is to examine the bootstrapped histograms of individual time samples and

compare them to normal distributions. Secondly, if applying these techniques for

the �rst time or applying a new processing method (for instance a new transfer

function model), comparisons between the bootstrap, Monte Carlo and uncertainty

propagation estimates should be performed. If they uncertainty propagation agrees

with the bootstrap estimate, then it is a suitable method of estimating the uncertainty.

The Monte Carlo estimate strictly enforces the condition of normality on the original

time domain scans, if the uncertainty propagation estimate agrees with the Monte

Carlo estimate but not the bootstrap, the likelihood is that the underlying data is

either skewed by an outlier or is not normally distributed.

Experimentally it was found that the uncertainty was inversely proportional to

the dynamic range of the reference measurement. Designing experiments so that

dynamic range is maximised is thus a method of increasing certainty within the

sample measurement. In practice this means that using dry air references are ideal.

This proportionality rule is primarily a�ected by the uncertainty in the reference

measurement, so performing more repetitions of the reference measurements will

provide a greater reduction in uncertainty than performing repetitions of the sample

measurement.

Finally with regards to measurement procedure, it is highly preferable to increase

the number of measurement repetitions. This will reduce the uncertainty present by

averaging in the time domain but also reduce the variability of the covariance and

con�dence interval estimates (i.e. taking more measurements increases the certainty

of the uncertainty). This should be considered at the expense of noise reduction
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within the measurement (i.e. acquiring more data using faster acquisition methods),

so that individual measurements are noisier but better estimates of covariance can

be gathered. This will not inherently lead to an increase in the uncertainty of the

�nal extracted parameters, as measurement noise reduction is often performed by

averaging within the instrumentation rather than in the processing (for instance by

using a longer lock in time constant).

7.1 Further work

There are several issues and further avenues of research which can be explored.

The foremost limitation still present in the processing are the re�ections within the

sample trace.

While the primary system re�ections have been experimentally delayed by emit-

ter and detector design [46] this might not always be possible due to other experimen-

tal constraints (for instance the use of a cryostat). It would therefore be preferable

to mitigate the e�ects of the system re�ections in the processing. In order to do this,

the underlying cause of the error in these re�ections needs to be identi�ed. If it is

a systematic measurement error (such as systematic time base error), this can be

treated as a systematic uncertainty within the measurement and the work in Chap-

ter 6 could be adapted to calculate the uncertainty in the extracted parameters. If it

is an unmodelled e�ect which is dependent on the sample, it might be more prudent

to adapt the sample transfer function model and �t to the transfer function.

Another avenue which has been explored to some extent in the literature is

using linear prediction [103], [145], [146]. These methods attempt to model and

deconvolve the re�ection, which might obscure rather than remove error. Instead

it might be more prudent to simply form a time model of the main pulse and �t to

a shorter window. Once the model is identi�ed (it will likely be sample dependent),

a �tting could be performed over a longer time window. Another avenue would be

non–linear processing, for instance the cepstrum [147] is known to separate con-

volution components in the time domain into a summation. Given that the sample

and the reference should have similar convolutional components (from the system
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re�ection), this could be combined with independent component analysis [148] to

remove the common components, which should correspond to the reference and

following re�ections.

To improve the performance of the simulant generation algorithm, the mod-

elling of mixture spectra could be improved. In particular by incorporating e�ective

medium approximation, such as Maxwell–Garnett [121], and scattering models [96],

more accurate models could be used during the optimisation. Another consideration

is the predictability and reliability of the produce mixture. In the optimisation, a

relative concentration uncertainty could be assumed and used to penalise mixtures

which are unlikely to experimentally produce the modelled spectra.

When �tting a transfer function, there are several optimisations which could

still be performed. In particular, the current implementation of the optimisation uses

a computed �nite di�erence of the error function to descend the gradient. Instead

it might be more prudent to incorporate the method of calculating the di�erential

from Chapter 6. This will reduce the calculation complexity signi�cantly.

Fitting a resonant model was shown to mitigate the e�ects of sample re�ections

within the trace. This does not however produce an etalon–free estimate of the

complex refractive index, which would be expected in most cases. It is unlikely, that

it ever will produce a completely smooth estimate without over parametrising the

model used to �t, simply because the uncertainty in the complex refractive index

displays etalons.

Instead it would be preferable to �nd the most likely etalon–free estimate for a

parameter. This was the approach essentially taken in [63], which used a spatially

variant moving average �lter. In essence, it smoothed using a moving average �lter

within con�dence intervals on the transfer function. The issue with this approach

is it used standard deviation as a con�dence interval and treated it as a hard limit

(con�dence intervals are subject to probability). This approach could be adapted to

the con�dence intervals formed for the extracted parameters in Chapter 6. However

it might instead be better to optimise both the total variance and likelihood of the

complex refractive index values, to �nd the most likely smooth estimate.

The time segmentation methods used to both estimate the beam alignment coef-
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�cient and to extract parameters could be improved by performing better separation

of the pulses in the impulse response. An issue with the �lter used in the deconvolu-

tion process is that it has an in�nite time response, which leads to slight overlap in

the pulses. Therefore, a simple method which might improve the spacial separation

is to use a �nite impulse response �lter when performing the deconvolution. This,

however, might incur additional distortion of the frequency domain, so a compro-

mise between the two would have to be made. Another method is to �nd a sparser

approximation [74], which would �nd an approximation for both the frequency and

time responses which is more compact (and thus separable) in the time domain.

The di�erent time segments used during a �tting have di�erent uncertainty.

In the case where the �tting is under determined (there is more information than

parameters), it would be possible to improve the estimation by weighting each seg-

ment in proportion to its certainty. This would result in �tting the transfer function

model more towards the main pulse which will have less uncertainty and produce

a more accurate estimate of the extracted parameters. This might show particular

improvement where the complex refractive index of multiple layers is extracted.

Another consideration when using segmented transfer function models is that

it can function on groups of pulses. This could be used when extracting information

about multiple layers in a sample, as clusters of pulses can easily be produced (for

instance if one layer is optically thick and another optically thin). This could then

be used to perform a hybrid of the resonant model �tting and time localised �tting,

which could be used to extract the thickness of one layer in the case where spacial

separation is not possible.

The uncertainty estimation from Chapter 6 can be considerably expanded. In

particular, there is an additional measurement uncertainty from calibration mea-

surements for the beam alignment coe�cient, β. This would require developing a

methodology of combining multiple measurement uncertainties, as will as propa-

gating to a �tting of β. The same methodology of uncertainty propagation could

then be used to estimate the uncertainty in the extracted complex refractive index

due to the calibration measurements. This would likely introduce an uncertainty

which contains signi�cant etalon like features, so could explain the residual etalon
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artefacts present in the complex refractive index when �tting a resonant model.

The uncertainty propagation could be adapted to work with multilayer models

and time segmentation methods. In both of these cases it would require extending

the calculation of the model di�erential. In the multilayer case this could then be

used to propagate measurement uncertainty of characterised layers to the extracted

complex refractive index. In the time segmented �tting, uncertainty propagation

of the segmentation would also have to be considered before the uncertainty from

di�erent segments could be propagated to the both extracted thickness and complex

refractive index.

Finally, the analysis of uncertainty could be expanded. In particular, principle

component analysis and factor analysis [139] could be used to analyse the uncertainty

within the time domain and within the extracted parameters, to characterise the

sources and their e�ects. Another use of principle component analysis would be

to perform dimensionality reduction. This could then be used to form approximate

con�dence ellipses for the complex refractive index, which would give a quantitative

description of the correlated uncertainties e�ect on the extracted parameters.
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Appendix A

Fabrication of powdered sample

pellets

To create a sample pellet for a given concentration, C , the following steps are taken:

• The sample is measured out by mass to 100C mg.

• The sample is ground in a hand mortar and pestle.

• 1 µm PTFE is measured out by mass to 100(1− C) mg.

• The PTFE is mixed with the ground sample to form a consistent mixture.

• A copper ring is placed in the pellet press. This is used to form a support for

the pellet.

• 40 mg of the pellet mixture is measured out and placed inside the copper ring.

• The press with the pellet mixture is then fully assembled and put under 8

tonnes of pneumatic pressure for 20 minutes.

• The press is carefully disassembled and the pellet is removed from the press.

40 mg is used to make the pellet as it was found to produce a consistently phys-

ically stable, thin pellet. A pellet made using this mass would usually be approxi-

mately 0.5 mm thick and leave enough remaining pellet mixture to manufacture a

second pellet if required.
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Appendix B

Additional beam alignment

calibration measurements

This appendix contains di�erent estimates of the beam alignment calibration coef-

�cient, β, used in Chapter 5.9 to perform a quadratic �tting. The measurements

were performed in the HFRBB THz TDS and LFRBB THz TDS systems, which used

di�erent emitters and detectors but had the same alignment and parabolic. It is was

veri�ed that measurements from the two systems produced similar estimates of β.

In Figures B.1,B.2 several di�erent samples were measured in the HFRBB THz TDS

system. In Figure B.3, z-cut quartz samples were measured in the LFRBB THz TDS

system. It should be noted, that di�erent samples were subject to di�erent thickness

uncertainties, which is why the o�set of β changes between di�erent samples.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2
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6
·10−2

Frequency (THz)

β

Figure B.1: Estimates of β made using di�erent samples on the HFRBB THz TDS system.
Blue - 0.512 mm z-cut quartz, Green - 1.015 mm high resistivity silicon, Red - 0.58 mm high
resistivity silicon, Purple - 0.969 mm TPX



240 B. Additional beam alignment calibration measurements

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

2

3

4
·10−2

Frequency (THz)

β

Figure B.2: Estimates of β made using di�erent samples on the HFRBB THz TDS system.
Blue - 0.512 mm z-cut quartz, Green - 1.015 mm high resistivity silicon

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−0.1

−5 · 10−2

0

5 · 10−2

0.1

Frequency (THz)

β

Figure B.3: Estimates of β made using di�erent samples on the LFRBB THz TDS system.
Cyan & Red - 0.512 mm z-cut quartz samples, Blue & Green - 0̃.325 mm (uncertainty not
known) z-cut quartz samples
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Appendix C

Temperature dependence air

volume in a 5 % α–lactose

anhyrous sample

In § 5.11, then of a 5 %α–lactose anhydrous sample was found to change signi�cantly

with temperature. It was postulated that this might be due to the e�ective permittiv-

ity of the sample changing, as the relative densities of the samples constituents (air,

lactose and PTFE) changes with temperature. In this appendix, a correction based

on the air volume solely changing with temperature is presented. This was found

to signi�cantly reduce the variation with temperature. However, is should be noted

that this method was extremely reliant on several assumptions and used a �tting to

estimate the air volume content.

This measured ñ can be related to the e�ective permittivity of the mixture. From

this e�ective permittivity an estimate of the permittivity of lactose can be formed

by using Maxwell-Garnett [121] e�ective medium approximations. Using Maxwell-

Garnett, a relation between the e�ective permittivity, sample permittivity, host (PTFE

matrix) permittivity and air permittivity can be formed [136]:

εeff − εh
εeff + 2εh

= δs
εs − εh
εs + 2εh

+ δa
εa − εh
εa + 2εh

(C.1)

where εeff is the e�ective (measured) permittivity of the mixture, εh is the permittiv-
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ity of the host (PTFE matrix), εs is the lactose permittivity and εa is the permittivity

of air (assumed εa = 1. De�ning the value, Ch,a, for brevity as:

Ch,a =

(
εeff − εh
εeff + 2εh

− δa
εa − εh
εa + 2εh

)
(C.2)

This can be rearranged to:

εs =
2εhCh,a + δsεh
δs − Ch,a

(C.3)

The sample volume ratio, δs, can be formed from the sample mass ratio, δs,m, sample

density, ds, air volume ratio, δa, and host density, dh:

δs =
dhδs,m

dhδs,m + (1− δs,m)ds
(1− δa) (C.4)

Similarly, the host ratio:

δh =
ds(1− δs,m)

dhδs,m + (1− δs,m)ds
(1− δa) (C.5)

This assumes that the sample and host mass ratios are known, but that the air mass

is not known (but that the volume ratio is).

If the volume change of each of the components were known as a function of

temperature it would be possible to estimate the sample permittivity directly from the

measurements. However, since this is not easy to measure in situ with the cryogenic

measurements.

It is possible to form an estimate based on the assumption that a single compo-

nent of the sample is responsible for the contraction in sample volume. In this work,

it is assumed that the change in air volume within the sample is dominant. This is

because the air is a gas and hence more compressible than the solid constituents of

the sample.

It is then approximated that the air is solely responsible for the change in sample

volume and that the sample contracts uniformly in all directions. From the latter

approximation, the thickness change with temperature can be used to estimate the
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volume change with temperature:

δV (t) =
Vt
Vrt

=

(
lt
lrt

)3

(C.6)

Where δV is the volume change at temperature t, Vt is the volume at temperature t,

Vrt is the volume at room temperature, lt is the thickness at temperature t and lrt is

the thickness at room temperature.

From the air assumption, the volumes of the lactose and PTFE host are roughly

consistent with temperature. Thus the volume ratio for each as a function of tem-

perature are:

δs,t =
δs

δV (t)
(C.7)

and:

δh,t =
δh

δV (t)
(C.8)

Where δs,t and δh,t are the sample and host volume ratios at temperature t. The air

volume ratio can then be formed:

δa,t = 1− δs,t − δa,t (C.9)

The density of lactose is 1.525 gcm−3 [149], and of PTFE is 2.16 gcm−3 [150].

The mass ratio of the lactose to PTFE was 5%, and the average permittivity of PTFE

is 2.1025 [151]. An air volume ratio of 0.01 was estimated by minimising the mean

square error between 100% lactose anhydrous, see § 3.8, and this sample at room

temperature. The extracted thickness was then used to estimate the volume ratio

changes in the sample, and thus the permittivity of the sample, from which n and α

can be calculated.

It was found that by assuming that the air volume is solely responsibly for the

sample thickness change signi�cantly reduced the variation in n across tempera-

tures. In Figure C.1, the average of n is shown at each temperature. The blue curve

shows the means based on the volume ratios changing, and the red curve shows

the extracted values assuming that the volume ratios are constant. The corrected
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Figure C.1: The average real refractive index of the sample at each temperature, after applying
a Maxwell Garnett e�ective medium approximation. Blue - Assuming that volume ratios are
changing. Red - Assuming that volume ratios are constant.

estimate is signi�cantly �atter across temperature, while the uncorrected estimate

shows a relatively large change in n.
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Appendix D

Multilayer Model Examples

In this appendix a simpli�ed recursion by recursion example of the multilayer model

from § 5.13 is given. To simplify the example considerably (and get a predictable

model) a 2 layer sample is used both with thickness 1 m, the angular frequency, ω,

has been kept at one and the free space propagation of light, c, has been kept at 1

ms−1. The �rst layer has a ñ of 2 and the second a ñ of 3. By using a c = 1ms−1

and the layer thickness of 1 m, this meant that the propagation time for the �rst

layer was 2 s and for the second layer was 3 s. A noise limit of 0 was used (in�nite

dynamic range) and a time limit of 3 s was used for the model.

The iteration of equation 5.57 is shown with these limits applied. The equation

has been coloured to match the programmatically generated image labeled with the

same number. The initial equation for the main tree transfer function is:

HT = T0,1H1,1, L = 1, D = 1, Tlim = 5 (D.1)

The initial time limit is larger because of the displaced air propagation time. This is

expanded into the recursive form (Figure D.1 (1)):

HT = T0,1P1 (R1,2 H1,−1 + T1,2H2,1 )

, L = 1, D = 1, Tlim = 5 (D.2)

The current layer index, L, and direction,D, are shown on the right with the current
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time limit. The re�ection branch is then expanded (Figure D.1(2)):

HT = T0,1P1 (R1,2 P1 (R1,0H1,1 + T1,0H0,−1) + T1,2H2,1 )

, L = 1, D = −1, Tlim = 3 (D.3)

The non-explored path has been coloured in gray. The propagation direction has

�ipped but the layer has remained the same. The Transmitted path, which leaves

the detector is then explored (Figure D.1(3)):

HT = T0,1P1 (R1,2 P1 (R1,0H1,1 + T1,0H0,−1) + T1,2H2,1 )

, L = 0, D = −1, Tlim = 1 (D.4)

As L = 0, this path is redundant and H0,−1 = 0. The re�ection path is the ex-

panded(Figure D.1(4)):

HT = T0,1P1 (R1,2 P1R1,0P1 (R1,2H1,−1 + T1,2H2,1) + T1,2H2,1 )

, L = 1, D = 1, Tlim = 1 (D.5)

And then the re�ection path after that is expanded (Figure D.1(5)):

HT = T0,1P1 (R1,2 P1R1,0P1 (R1,2H1,−1 + T1,2H2,1) + T1,2H2,1 )

, L = 1, D = −1, Tlim = −1 (D.6)

This is redundant because of the time limit, so H1,−1 = 0. The transmitted path is

then expanded (Figure D.1(6)):

HT = T0,1P1 (R1,2 P1R1,0P1T1,2H2,1 + T1,2H2,1 )

, L = 2, D = 1, Tlim = −1 (D.7)

Which is again redundant because of the time limit. The original transmission is
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then expanded, following the beam path through the second layer (Figure D.1(7)):

HT = T0,1P1P2 (R2,3 H2,−1 + T2,3H3,1 )

, L = 2, D = 1, Tlim = 3 (D.8)

The re�ection at the �nal interface is then explored (Figure D.1(8)):

HT = T0,1P1P2 (R2,3 H2,−1 + T2,3H3,1 )

, L = 2, D = 1, Tlim = 0 (D.9)

This path is redundant because the time limit is 0, thus H2,−1 = 0. Exploring the

transmitted path (Figure D.1(9)):

HT = T0,1P1P2T2,3H3,1

, L = 3, D = 1, Tlim = 0 (D.10)

As the layer index is 3, this is detected . This means H3,1 = 1 and HT can be

simpli�ed:

HT = T0,1P1P2T2,3 (D.11)

This can be extended to longer time limits and greater dynamic range, to where the

model formed is much more complicated, see Figure D.1(10).
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

Figure D.1: Generated beam path diagrams for the model at di�erent stages.
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This algorithm can be extended to arbitrary number of layers, noise and time

constraints. For examples see Figures D.2,D.3, where �gures have been generated

using a 3 and 4 layer sample.

Figure D.2: A resonance tree through a 3 layered sample

Figure D.3: A resonance tree through a 4 layered sample
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Appendix E

Overview of complex

multivariate normal

distributions

In this appendix, an overview of complex multivariate normal distributions is pre-

sented. It is assumed that the reader has an understanding of both complex numbers

and univariate normal distributions.

E.1 Bivariate normal variables

The simplest multivariate random variable is the bivariate variable, which is in the

case of two variables, x0, x1, which are somehow related and are both normally

distributed. In such a case, these two variables can be said to be correlated. By

this, there is an association between their measured values, this does not necessarily

mean however that their is causation or a strong relation between the variables. In

Figure E.1, examples of correlated samples taken from otherwise standard (x̄0, x̄1 =

0 and σx0, σx1 = 1) normal variables are given. The left �gure shows samples taken

from two variables which are negatively correlated (so there is a negative association

between samples), the middle shows where there is no correlation, and the variables

are independent, and the right shows positive correlation between the two variables

(so there is a positive association between samples).
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Figure E.1: Samples of two variables, x0, x1, with di�erent modeled correlations. Left -
Negative correlation, Middle - no correlation (independent) and Right - Positive correlation

To quantify this, the covariance between two variables, σx0,x1 , is introduced

[152]:

σx0,x1 = cov(x0, x1) = E ((x0 − x̄0)(x1 − x̄1)) (E.1)

This is measure of both the dispersion of each variable and the correlation. This can

then be further described as a multiplication of standard deviation and a correlation

coe�cient, rx,y , of the two variables:

σx0,x1 = σx0rx0,x1σx1 (E.2)

Conversely, the correlation coe�cient can always be calculated by normalising the

covariance:

rx0,x1 =
σx0,x1
σx0σx1

(E.3)

The correlation coe�cient will range from −1 to 1. In this case 1 corresponds to a

perfect positive linear relation, −1 corresponds to a negative linear relation, and 0

corresponds to independence (no correlation) [152].

Instead of having separate variables it is preferable to group variables into a

single two dimensional vector variable. This bivariate variable, x, will be a vector

of the scalar variables:

x =

x0

x1

 (E.4)
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This bivariate variable will have an average, x̄. This expectation is nothing more

than a vector of the individual scalar vectors:

x̄ = E(x) =

x̄0

x̄1

 (E.5)

A covariance matrix [139], Σx, (sometimes referred to as a auto-covariance or

variance covariance matrix) can be introduced for a bivariate variable:

Σx = E
(
(x− x̄)(x− x̄)′

)
=

 σ2
x0 σx0,x1

σx1,x0 σ2
x0

 (E.6)

This matrix will contain the variance vector along it’s diagonal, and in the upper and

lower of diagonal corners, the covariance between the two sub variables. A similar

correlation matrix, Rx, can be formed:

Σx = σxRxσx (E.7)

Where σx is the standard deviation matrix. The Correlation matrix always has a

diagonal containing ones, indicating a sub variable is perfectly correlated with itself.

The standard deviation matrix can be calculated by isolating the main diagonal of

Σx:

σx =

σx0 0

0 σx1

 (E.8)

Being a diagonal matrix, the inverse is particularly easy to calculate:

σ−1
x =

 1
σx0

0

0 1
σx1

 (E.9)

And thus the correlation matrix is easily retrievable:

Rx = σ−1
x Σxσ

−1′
x (E.10)

The PDF of a multivariate (bivariate is a spacial case) variable can then be written
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in terms of vectors and matrices:

P (x = a) =
1√

2π |Σx|
e−

1
2

(a−x̄)′Σ−1
x (a−x̄) (E.11)

where |Σx| is the determinate of the covariance matrix. In the case of bivariate

variable, the bivariate value maps to a scalar probability, and will always form an en

elliptically (on the x0, x1 plane) shaped distribution.

E.2 Multivariate Normal Variables

A multivariate variable is simply a bivaraite variable extended to arbitrary number

of sub variables [139]. So the N dimensional variable x is just:

x =



x0

x1

...

xN−2

xN−1


(E.12)

The average vector, x̄ is then:

x̄ = E(x) =



x̄0

x̄1

...

x̄N−2

x̄N−1


(E.13)



E.2. MULTIVARIATE NORMAL VARIABLES 255

The covaraince matrix is then extended thusly:

Σx = E
(
(x− x̄)(x− x̄)′

)
=

σ2
x0 σx0,x1 · · · σx0,xN−2 σx0,xN−1

σx1,x0 σ2
x1 · · · σx1,xN−2 σx1,xN−1

...
... . . . ...

...

σxN−2,x0 σxN−2,x1 · · · σ2
xN−2

σxN−2,xN−1

σxN−1,x0 σxN−1,x1 · · · σxN−2,xN−1 σ2
xN−1


(E.14)

The probability density function of a multivariate normal distribution is equation E.11,

extended to N dimensions. The notation for a multivariate is the same as in the

univariate case, just with vectors and a notation for the dimensionality:

x ∼ NN (x̄,Σx) (E.15)

Given a variable, y, which is a linear function of x:

y = Ax+ c (E.16)

where A is a matrix, and c is a vector. Both c and y have length M , and A will

therefore be a matrix of size M × N . y will then be normally distributed with

L dimensions, it should be noted that L 6= N , and can equal 1 (dimensionality

reduction is generally possible). The expectation is commutable with the matrix

multiplication operation, and thus ȳ is [139]:

ȳ = Ax̄+ c (E.17)

And Σy is then [139]:

Σy = AΣxA
′ (E.18)

Another relevant property is that a marginal distribution of a multivariate normal
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variable is always normally distributed [139], thus:

y ⊂ x, M < N , y ∼ NM (ȳ,Σy) (E.19)

This will commonly be assumed when using a subset of the measured quantities, e.g.

when windowing or using select frequencies.

E.3 Complex multivariate gaussian distributions

A large portion of this work models complex variables, in which case the noise in

the variables will also be complex. A model for handling the random distribution of

complex variables needs to be addressed.

The simplest method of doing this is to simply model the real and imaginary

components as separate but correlated variables [153]. This results in univariate

variables being transformed to bivariate, and N multivariate variables being trans-

formed to 2N multivariate variables. In multivariate notation, given vector z which

a combination of real, x, and imaginary, y, parts:

z = x+ iy (E.20)

A new form can then be formed:

ẑ =

x
y

 (E.21)

Thus ẑ has distribution:

ẑ ∼ N2N

(
ˆ̄z,Σẑ

)
(E.22)

Importantly, the covariance can be written in terms of sub matrices:

Σẑ =

 Σx Σx,y

Σy,x Σy

 (E.23)

This method is e�ective, however it would be preferable to perform statistical
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analysis in the same representation as the variable being modelled, which makes

the analysis less complex. An alternative de�nition of complex covariance, used

more commonly in signal processing applications, is to use the expectation of the

conjugate square [154]:

Σz = E

(
(z − z̄)(z − z̄)†

)
(E.24)

where † represents the conjugate transpose († = ∗′). This new de�nition of the

covariance matrix is both complex, and often an incomplete description of covariance

(there are exceptions [154]). An additional matrix is now required, called the co-

covariance matrix (other names proposed are the relation [155] or pseudo covariance

matrix [156]). This matrix is:

Γz = E
(
(z − z̄)(z − z̄)′

)
(E.25)

Variable z is then said to have complex normal distribution, with complex aver-

age z̄, covariance matrix Σz and co–covariance matrix Γz :

z ∼ NN (z̄,Σz,Γz) (E.26)

This complex representation of covariance can be related to real and imaginary

covariance matrices by [155]:

Σz = (Σx + Σy) + i (Σy,x − Σx,y) (E.27)

Γz = (Σx − Σy) + i (Σy,x + Σx,y) (E.28)

This shows that both matrices are a complex formulation of the same information

as the real and imaginary covariance matrices. It is always possible to recover one

of the real and imaginary covariance matrices, given both Σz and Γz .
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It is useful to consider the variable ż which is a vector of z and its conjugate:

ż =

 z
z∗

 (E.29)

This has a conjugate symmetry (which is shared by the Fourier transform for exam-

ple) and can be linearly mapped to ẑ [155]:

ż =

1I iI

1I −iI

 ẑ (E.30)

z̄ =
1

2

 1I 1I

−iI iI

 ż (E.31)

where I is an identity matrix of size N × N . If the augmented covariance matrix

[154] is then calculated by using equation E.25 on ż, which is related to Σz and Γz

by:

Σż =

Σz Γz

Γ∗z Σ∗z

 (E.32)

This also proves that the complex covariance matrices are a complex mapping of the

real and imaginary covariance matrices.

ż can then be said to be normally distributed simply with augmented covariance

matrix Σż :

ż ∼ N2N

(
¯̇z,Σż

)
(E.33)

However as ż is a redundant form of z, the form of the normal distribution using

covariance and co–covariance matrices is su�cient.

An alternative formulation of ż is used based on Fourier series conjugate sym-

metry. A matrix �ip transform,
↔
I , is speci�ed as the horizontal mirror image of the

identity matrix. A new complex variable is de�ned as:

z̃ =

I 0

0
↔
I

 ż =

 z

l z∗

 (E.34)



E.3. COMPLEX MULTIVARIATE GAUSSIAN DISTRIBUTIONS 259

where l speci�es a vertical �ip and 0 is a matrix of zeros of sizeN×N . z̃ will then be

in the same form as a discrete Fourier transform of a real multivariate variable. This

can be seen as if z is the �rstN sequentially ordered discrete frequency components

of a Fourier transform with 2N frequencies, so that if zk is the kth descreate complex

frequency component:

zk = z

(
Fsk

2N

)
(E.35)

The discrete Fourier transform of a real variable has conjugate symmetry so that

[93]:

z

(
Fs(2N − k)

2N

)
= z

(
−Fsk
2N

)
= z

(
Fsk

2N

)∗
(E.36)

i.e. the discrete complex frequency component at frequencies beyond half the sam-

pling frequency (or alternatively at a negative frequency) will be equal to the conju-

gate of a lower frequency. z̃ is then the full discrete frequency spectrum:

z̃k = z

(
Fsk

2N

)
(E.37)

The augmented covariance matrix will then be converted to what is referred to in

this work as the Fourier covariance matrix:

Σz̃ =

 Σz
↔
Γz

l Γ∗z l
↔
Σ∗z

 (E.38)

This represents the “full spectrum” complex covariance of a complex frequency de-

pendent variable. In this work complex representation is used exclusively within the

frequency domain, so every complex variable has a Fourier covariance matrix asso-

ciated with its full spectrum. It is however a redundant form, as a limited selection

of frequencies are only ever used (these are still marginally normally distributed)

and the full Fourier covariance matrix can always be reconstructed from Σz and

Γz . There are instances when the Fourier covariance matrix is preferred during the

analysis as it shares symmetry with the spectrum, see § 2.3.5. It should be noted,
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that there is a redundant form of the normal distribution:

z̃ ∼ N2N

(
¯̃z,Σz̃

)
(E.39)

Like ż, z̃ can be mapped to the real and imaginary sub–variables.

Given q = Az + c for arbitrary complex matrix A, the following can be con-

strued [154]:

Σq = AΣzA
† (E.40)

Γq = AΓzA
′ (E.41)

Additionally q will then be complexly distributed, so that:

q ∼ NL (q̄,Σq,Γq) (E.42)

Another point of interest, is that if z is real:

Σz = Γz (E.43)

This can be used in the case whereA andq is complex, to form a complex distribution

of a function of a real variable.
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