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Abstract 
 

Overuse and misuse of antibiotics has led to the global spread of antimicrobial 

resistance, threatening our ability to treat bacterial infections. The horizontal 

acquisition of multidrug resistance (MDR) plasmids, from other bacterial 

lineages, has been instrumental in spreading resistance. Newly acquired 

plasmids are often poorly adapted to hosts causing intragenomic conflicts, 

reducing the competitiveness of plasmid-carrying strains. Costs can be 

overcome by positive selection for plasmid-encoded adaptive traits in the short-

term, or ameliorated by compensatory evolution in the long-term. How the 

selection and adaptation of MDR plasmids varies with antibiotic treatment 

remains unclear. First, I demonstrate that the selective conditions for the 

maintenance of an MDR plasmid are dependent upon the sociality of resistance 

it encodes. Selection for efflux of antibiotics, a selfish trait, occurred at very low 

concentrations of antibiotic, far below the minimum inhibitory concentration of 

sensitive plasmid-free strain. In contrast, selection for inactivation of antibiotics, 

a cooperative trait, increased the amount of antibiotic required to select for the 

MDR plasmid, allowing sensitive plasmid-free bacteria to survive high levels of 

antibiotic. These selection dynamics were only accurately predicted when 

mathematical models included the mechanistic details of antibiotic resistance. 

Secondly, I show that the trajectory of evolution following MDR plasmid 

acquisition varies with antibiotic treatment. Tetracycline treatment favoured a 

distinct coevolutionary trajectory of chromosomal resistance mutations coupled 

with plasmid mutations impairing plasmid-borne resistance. This led to high-

level, low-cost antibiotic resistance, but also produced an integrated genome of 

co-dependent replicons that may limit the onward spread of co-adapted MGEs 

to other lineages. This evolutionary trajectory was strikingly repeatable across 

independently evolving populations despite the emergence of multiple 

competing lineages within populations. The results presented here demonstrate 

that the interaction between positive selection and compensatory evolution can 

help to explain the persistence of MDR plasmids in the clinic and the 

environment. 
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1. Introduction 
 

Antibiotics are one of the greatest tools of modern medicine; their routine use as 

a first line therapy for bacterial infections, as well as prophylactic use during 

chemotherapy and invasive operations to prevent infection, has significantly 

reduced mortality and increase life expectancy. However, the emergence of 

antimicrobial resistant (AMR) bacteria, particularly those with multi-drug 

resistance (MDR), is a major risk to global health, as the drugs which we are 

dependent on diminish in effectiveness (World Health Organization, 2015). Over 

2 million people are estimated to become infected with AMR infections each 

year in the US alone, 23,000 of whom die (CDC, 2013). In the EU 25,000 

patients die each year of infections caused by AMR bacterial (EMEA and ECDC, 

2009). The limited pace of novel antibiotic discovery is overshadowed by the 

ever increasing spread of AMR (Lewis, 2013). A recent UK review predicts 10 

million deaths per-year will be attributable to AMR infections globally by 2050 if 

current trends in the spread of AMR are not tackled (O’Neill, 2014). The 

horizontal gene transfer (HGT) of resistance genes across lineages, species 

and families of bacteria is a key driver in the global spread of AMR (Maiden, 

1998). These resistance genes often cluster upon semi-autonomous mobile 

genetic elements (MGEs), such as conjugative plasmids, which allow the 

instantaneous acquisition of multiple resistance genes in a single event, 

increasing the emergence of MDR bacterial pathogens (Carattoli, 2013). The 

spread of AMR through the exchange of plasmids remains one of the most 

difficult challenges in the fight against resistance. Therefore understanding the 

selection and evolution of plasmid borne resistance is critical in dealing with this 

challenge. 

 

This thesis aims to add to our current understanding of plasmid borne AMR by 

examining the how selection for MDR plasmids varies with the mode of antibiotic 

resistance, and how plasmids and bacterial hosts evolve under different 

antibiotic treatments. This introductory chapter will briefly introduce the global 

emergence of AMR along with the core themes of the thesis, namely plasmids 

as vessels of AMR, the costs and sociality of antibiotic resistances, and 

evolution of plasmids and their bacterial hosts. 
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1.1 Emergence of Antimicrobial Resistance 
	

1.1.1 Discovery 

Alexander Fleming famously discovered the first antibiotic, penicillin, by accident 

in 1928 when he observed zones of clearing around a Penicillium fungus that 

was contaminating an agar plate of staphylococci. The ease with which bacteria 

could evolve resistance to penicillin was soon noted, and referred to in 

Fleming’s acceptance speech for The 1945 Nobel Prize in Physiology or 

Medicine, awarded for the discovery of penicillin:  

 

 “It is not difficult to make microbes resistant to penicillin in the laboratory 

by exposing them to concentrations not sufficient to kill them” – Alexander 

Fleming (1945) 

 

However, at this time resistance was not of major concern, because the rate of 

antibiotic discovery for the following 40 years was sufficient to outpace the 

spread of resistance. This was, in part, thanks to a discovery platform 

introduced by Selman Waksman in the early 1940’s. Waksman’s screening for 

antimicrobial compounds from soil microbes, notably streptomycetes, led to the 

discovery of streptomycin, the first aminoglycoside antibiotic, and paved the way 

for systematic screening for novel antimicrobial compounds (Schatz et al., 

1944). The cheap and efficient screening method of searching for zones of 

inhibition in lawns of bacteria on agar plates established by Fleming and 

Waksman led to an antibiotic discovery boom throughout the 50’s and 60’s 

(Figure 1.1). Approximately two thirds of naturally derived antibiotics have been 

isolated from soil actinomycetes (Fair and Tor, 2014). However, systematic 

screening for novel classes of antibiotic tailed off as the rate of discovery of new 

antibiotics by this method declined (Lewis, 2013).  
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Figure 1.1 | The Antibiotic Timeline. The dates of discovery, introduction, and 

first observation of resistance of major classes of antibiotics. Data source: Lewis 

(2013). 

 

 

1.1.2 The antibiotic discovery void 

As rates of novel antibiotic discovery from natural products diminished, a greater 

emprises on targeted drug design and synthesis was adopted in a bid to reduce 

rediscovery and cross-resistance rates (Silver, 2011). Optimisation of natural 

products showed some success, increasing the spectrum and stability of 

compounds while avoiding the action of specific resistance mechanisms, with 

the development of semi-synthetic β-lactam’s as a prime example (Elander, 

2003). However, the synthetic production of antibiotics was less than fruitful 

(Fair and Tor, 2014), with no new classes of antibiotic being discovered between 

1987 and 2015 (Ling et al., 2015; Silver, 2011). The combination of decreasing 

success rates of discovery and declining profitability of antibiotic production, 

together with difficulties in novel drug approval, led many big pharmaceutical 

companies to abandon their antibiotic discovery programs in the late 1990s 

(Projan, 2003). As a result, this has placed greater pressure on the remaining 

antibiotics we have at our disposal. Exacerbating this problem, global usage of 

antibiotics has increased by 36% from 2000 to 2010 (Boeckel et al., 2014), with 

use of ‘last-resort’ antibiotics, such as vancomycin, becoming more common. 

Increased use, coupled with the stagnation of antibiotic discovery, is a major 

threat to public heath as antibiotic resistance spreads rapidly across the globe.  
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This global spread of AMR is due to the evolution of resistant genotypes via de 

novo mutation or acquisition of novel resistance genes via HGT (section 1.2) 

which then increase in frequency due to positive selection arising from antibiotic 

usage. Resistant strains spread within local clinical settings from patient to 

patient, nationally between clinics though the movement of patients and 

healthcare workers, and internationally through global travel networks. For 

example, methicillin-resistant Staphylococcus aureus (MRSA), first observed in 

the UK in the early 1990’s, rose from 2% to 40% of S. aureus infections within 

the UK within 8 years (Johnson et al., 2001). MRSA has since spread globally, 

being observed within Europe, Australia and Singapore (Holden et al., 2013). 

Similarly, the resistance enzyme New Delhi metallo-β-lactamase (NDM), first 

observed within a bacterial pathogen in 2008, has spread to over 40 counties 

due to both the spread of pandemic bacteria, and inter-species and inter-genus 

transmission of blaNDM containing MGEs (section 1.2) (Johnson and Woodford, 

2013).  

 

1.1.3 Appearance of resistance in bacteria 

Bacteria can be intrinsically resistant to specific classes of antibiotic due to the 

functional or structural characteristics of the cell, for example certain classes of 

antibiotic cannot permeate the gram-negative cell membrane, or specific 

antibiotic targets may be missing from certain bacterial taxa (Blair et al., 2015). 

This limits the choice of affective antibiotics but does not contribute to the 

spread of resistance. Alternatively, bacteria can gain resistance to antibiotics, 

either through de novo mutation or HGT of antimicrobial resistance genes 

(ARGs). De novo mutations typically enhance resistance in 3 ways: they may 

lead to changes in the structure of the antibiotic target to decrease the 

antibiotic’s binding affinity (Rybkine et al., 1998), increase the expression of 

efflux machinery to remove antibiotic from the cell, or cause reduced membrane 

permeability to limit access of the antibiotic to the target (Guay et al., 1994; 

Phan and Ferenci, 2017; Webber and Piddock, 2001). De novo resistance 

mutations are typically vertically inherited (i.e. passed on through cell division) 

and therefore largely remain clonal, and are commonly observed in chronic 

bacterial infections (Oliver et al., 2000). By contrast, horizontally acquired ARGs 

can be shared among distantly related bacteria and come pre-packaged upon 

MGEs. Commonly horizontally acquired resistance mechanisms include new 

efflux systems, enzymes that modify or inactivate the antibiotic, or alternative 
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genes that can replace the function of the antibiotic target without being inhibited 

by the antibiotic (Cantón and Coque, 2006; Popowska and Krawczyk-Balska, 

2013). ARGs carried on MGEs can be both vertically inherited, or transferred 

horizontally between cells. 

 

Horizontally acquired resistance mechanisms are often sophisticated 

specialised molecules begging the question: where did these resistance 

mechanisms come from to begin with? The evolution of antibiotic resistance can 

be split into pre- and post-antibiotic eras denoting the periods before and after 

the clinical use of antibiotics (Aminov, 2009). Antibiotic resistance predates 

clinical use of antibiotics, with evidence of diversification and selection of ARGs 

in natural bacterial communities from 30,000 year old permafrost samples 

(D’Costa et al., 2011) and a four million year old cave system (Bhullar et al., 

2012). Phylogenetic evidence supports this ancient evolution of ARGs, with the 

enzyme β-lactamase, a resistance mechanism to the most widely used 

antibiotics, β-lactams, predicted to have originated over two billion years ago 

(Hall et al., 2004). This ancient history of resistance is coupled with the fact that 

most of the antibiotics we use are derived from natural microbial products, 

produced by fungi and bacteria. In natural communities, antibiotics are excreted 

into the local environment by microbes to inhibit growth of neighbouring 

bacteria, providing a competitive advantage to the antibiotic producing 

population. ARGs are likely to have originally evolved to protect antibiotic 

producers from their own weapons or as defence mechanisms in the targeted 

organisms.  

 

Interestingly, some authors have suggested that natural concentrations of 

antimicrobial compounds found within environments, not affected by 

anthropogenic contamination, are often too low to exert lethal effects on bacteria 

(Aminov, 2009). It has therefore been proposed that these compounds could 

play a role in cell-to-cell communication, signalling, and gene regulation in 

bacterial communities (Aminov, 2009). Sub-inhibitory concentrations of 

antibiotics have been shown to induce biofilm formation (Linares et al., 2006), 

and influence quorum sensing within bacterial populations (the process of 

altering gene expression in response to cell density) (Thomson et al., 2000). 

The role of antibiotics beyond a form of bacterial chemical warfare remains 

incomplete, however it is clear that these molecules have wider implications 

than merely inhibitory action. 
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The use of antibiotics over the last century can be thought of as an evolution 

experiment on a global scale (Andersson and Levin, 1999). The anthropogenic 

use of antibiotics during the post-antibiotic era has placed incredibly strong 

selection pressures upon bacteria to gain resistance across all ecosystems. 

ARGs that happen to provide resistance, which once may have been involved 

with other metabolic functions, have been mobilised from the gene pool of 

natural communities and have spread rapidly within pathogenic and commensal 

bacteria (Wright, 2010). ARGs can now provide a huge competitive advantage, 

increasing growth rates and decreasing mortality when under antibiotic 

selection. The selection and spread of antibiotic resistance has proceeded 

within a very short evolutionary time scale, less than a century, during which 

HGT mediated by MGEs has played a prominent role.  

 
 
1.2 The Horizontal Transfer of Antimicrobial Resistance 
 

HGT occurs extensively among prokaryotes, with large proportions of bacterial 

genomes consisting of horizontally acquired accessory genes (Young, 2016). 

The acquisition of genetic material from different lineages via the transfer of 

MGEs is a fundamental driver of bacterial adaptation and diversification, 

allowing the sharing of ecologically important genes between distantly related 

bacteria (Jain et al., 2003; Wiedenbeck and Cohan, 2011). These non-essential 

accessory genes provide traits, in addition to house-keeping functions present in 

the core genome, accelerating adaption to novel or fluctuating environments by 

bypassing the requirement for rare de novo mutations (Frost et al., 2005; 

Norman et al., 2009), and thus permitting bacteria to occupy ecological niches 

which were previously inaccessible. This communal gene pool of MGEs can be 

transferred between bacteria in three prominent ways: transformation, 

transduction and conjugation (Figure 1.2). Plasmids are the primary conjugative 

MGEs, and are the principle cause of MDR phenotypes within both clinical and 

commensal bacteria (Bennett, 2008). 
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Figure 1.2 | Mechanisms of horizontal gene transfer between bacteria. Genetic 

material can transfer between bacteria in three main ways: 1) Transduction – 

bacterial DNA can be mistakenly packaged within phage (viruses that infect 

bacteria), and transferred into new hosts during infection.  2) Transformation – 

DNA from the environment, often released upon cell death, can be taken up by 

some species of bacteria. 3) Conjugation – the process by which mobile genetic 

elements are transferred from a donor bacterium to a recipient bacterium, 

bacteria are drawn together by a pilus produced by the donor cell to form a 

mating pair, at which point the mobile genetic element is copied into the new 

host. Extra-chromosomal plasmids and genomic integrative and conjugative 

elements (ICE) are often transferred in this way. Adapted from Holmes et al. 

(2016). 

 

1.2.1 Bacterial plasmids 
Conjugative plasmids are semi-autonomous MGEs that act as shuttles for the 

transfer of genes between bacterial lineages (Bergstrom et al., 2000). The most 

common structure of plasmids are closed circular double stranded DNA 

molecules, and the defining feature of plasmids is that their replication is 

independent of the host chromosome. This independence allows them to be 

horizontally transmitted between distantly related bacteria through conjugation, 

making them a major contributor to the communal gene pool (Norman et al., 

Conjugation

Transduction

Transformation
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2009). Independence from the host chromosome also potentially decouples the 

evolutionary pressures acting upon plasmids and the host, resulting in plasmids 

having and pursuing their own evolutionary interests subject to distinct selective 

pressures. Consequently, the fitness of plasmids may not be aligned to that of 

their hosts, allowing for both conflict and cooperation between plasmid and host 

contingent upon the prevailing environment (Harrison and Brockhurst, 2012; 

MacLean and San Millan, 2015). This broad array of interactions generates 

reciprocal selection and adaptation, shaping structure and function of both 

plasmid and chromosomal replicons. 

 

1.2.2 Plasmid structure 

Plasmids are modular in structure, with genes of similar function clustered 

together into discrete regions of the molecule. This mosaic structure of genes 

and operons from different sources is the result of frequent recombination 

events, such as the acquisition of transposable elements (Norman et al., 2009). 

Plasmids can therefore be partitioned into the core ‘backbone’ of genes that 

encode plasmid-specific functions, and ‘accessory’ elements that are not 

required by the plasmid. The backbone genes can broadly be split into three 

functional groups controlling replication, stability, and conjugation. These 

plasmid-specific functions are not essential to the bacterial host; making these 

parts of the plasmid sequence dispensable from the viewpoint of the bacteria.  

 

The defining feature of a plasmid is the replication (rep) system. This system 

generally requires a plasmid encoded initiator protein that binds on the plasmid’s 

origin of replication (oriV) before the recruitment of the host’s DNA replication 

machinery (DNA helicases, DNA polymerase, DNA clamp, topoisomerase etc.) 

(Solar et al., 1998). The plasmid’s rep system is often coupled with modules 

(cop) that activate or inhibit the expression of the rep proteins, hence control the 

copy number of the plasmid. The rep system also defines the incompatibility 

group of a plasmid as multiple plasmids with similar rep systems interfere with 

each other’s copy number, preventing similar plasmids from occupying the same 

host (Carattoli et al., 2005). 

 

The host range of a plasmid is usually limited by the compatibility of the rep 

system with the hosts DNA replication machinery (Zhong et al., 2005). Some 

plasmids can only be stably maintained within only narrow range of hosts, such 
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as Inc-F or IncI group which are only found within Enterobacteriaceae (Carattoli, 

2009). In contrast, broad-host-range plasmids, such as the members of the 

IncP-1 family, can transfer and propagate within almost all gram-negative 

bacteria, thanks to their control systems, multiple rep initiation proteins and 

stability systems (Fang and Helinski, 1991; Popowska and Krawczyk-Balska, 

2013). These plasmids have a wide environmental distribution, present in soils, 

wastewater, livestock manure and river sediment (Bahl et al., 2007; Sen et al., 

2011, 2013; Szczepanowski et al., 2009).  

 

The maintenance of a stable plasmid copy number within a host is vital to a 

plasmid’s survival. If the copy number were to raise too high, the metabolic 

burden of the plasmid upon the host would be unsustainable (Norman et al., 

2009) whereas if copy number drops too low, the plasmids could be lost at cell 

division (a process called segregation). As plasmid-free segregants have the 

competitive advantage of not incurring the metabolic cost of plasmid 

maintenance (section 1.3), appreciable rates of segregational loss of a plasmid 

could rapidly lead to the plasmid’s extinction. Small plasmids often rely on high 

copy numbers and diffusion to ensure plasmids are present in both mother and 

daughter cells (Summers and Sherratt, 1984). However, when the copy number 

of a plasmid drops below ~10 per cell a more active approach to maintaining 

plasmids over many generations is required (Thomas, 2000). This comes in the 

form of plasmid encoded stability modules, which ensure the plasmid is 

maintained in both daughters at cell division. Plasmid active partitioning systems 

encode actin like filaments that push the plasmids to the opposite poles of a 

dividing cell (Salje et al., 2010), allowing stable inheritance. Many plasmids also 

carry post-segregational killing (also known as addiction) systems that kill any 

plasmid free segregants that may arise. These generally consist of toxin-

antitoxin (TA) systems comprising a stable toxin and an unstable antitoxin; upon 

plasmid loss the antitoxin degrades faster than the toxin, leaving sufficient toxin 

remaining to kill any plasmid free cells (Jensen and Gerdes, 1995). 

 

The conjugation modules of a plasmid allow its transfer horizontally from cell-to-

cell. Self-propagating conjugative plasmids encode genes for mate pair 

formation, the physical linkage of two cells via the formation of a conjugation 

pilus. A second DNA processing step is required to generate the single stranded 

DNA molecule, propagate its transfer via the pilus and synthesise the second 

strand in the donor and recipient (Norman et al., 2009). Mobilizable plasmids do 
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not encode the genes required for mate pair formation and only harbour the 

DNA processing genes, hitchhiking on the pili formed by cohabiting conjugative 

plasmids.  

 

Plasmids may also carry accessory genes that impart adaptive traits on their 

hosts, but are not essential for the maintenance of the plasmid (Rankin et al., 

2011). These accessory genes are themselves often carried upon MGEs, such 

as transposons, nested within the plasmid resembling a Russian doll-like 

architecture (Sheppard et al., 2016). The separate origin of accessory genes is 

also evidenced by the fact that their GC content is often different from the 

plasmid backbone (Norman et al., 2009). The mobility of accessory genes 

allows for their transposition both between plasmids and onto the chromosomes 

of their hosts (Hall et al., 2017a; Sheppard et al., 2016). Accessory genes 

encode a wide range of adaptive traits including virulence factors (Johnson and 

Nolan, 2009), novel metabolic functions (Sen et al., 2011; Young et al., 2006) 

and resistance to heavy metals or antimicrobials (Baker-Austin et al., 2006; 

Bennett, 2008).  The benefits of accessory traits are usually ecologically 

contingent, only increasing bacterial fitness within specific environments. As 

such, these traits often allow bacteria to exploit novel niches, such as eukaryotic 

hosts or contaminated environments (Nogueira et al., 2009; Ramírez-Díaz et al., 

2011; Schwarz and Johnson, 2016). It has been noted that many of the adaptive 

traits encoded by plasmids have social effects within microbial communities, 

with accessory gene products affecting not only the host, but the fitness of 

neighbouring cells as well (Rankin et al., 2011). 

 

1.2.3 Plasmid prevalence and the spread of AMR 

Plasmids play a prominent role in the spread of AMR, with plasmid-conferred 

resistance encompassing nearly all currently used antibiotics (Bennett, 2008). 

The dissemination of resistance plasmids has led to a number of global 

resistance pandemics, with plasmids promoting the spread of the CTX-M 

extended spectrum β-lactamases (ESBL) (Cantón and Coque, 2006; Dhanji et 

al., 2011), carbapenemases (Déraspe et al., 2014), and quinolone resistances 

(Rodríguez-Martínez et al., 2011). Of particular concern are plasmids which 

contain multiple ARGs providing resistance to different antibiotics, so called 

MDR plasmids (Popowska and Krawczyk-Balska, 2013), which offer bacteria 

with resistance to multiple antibiotics in a single step and thus potentiate the 
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rapid emergence of MDR phenotypes in bacterial pathogens (Norman et al., 

2008; Wright, 2010). To understand the maintenance, enrichment, and 

transmission of antibiotic resistance plasmids, extensive work has been 

conducted exploring the fitness cost, selection and evolution of plasmid borne 

AMR, which will be discussed in the following sections.  

 

 

1.3 The Cost of Plasmid Carriage 
 

Although ecologically important accessory traits encoded upon plasmids can 

provide benefits to their bacterial hosts, plasmids often reduce the competitive 

fitness of bacteria in the absence of positive selection (Baltrus, 2013). These 

fitness costs can result in strong purifying selection against plasmid carriage, as 

plasmid-free bacteria may have higher growth rates, sorter lag times, or higher 

population densities than isogenic plasmid-containing bacteria (Andersson and 

Hughes, 2010). As a result, the fitness cost of plasmid carriage can impede the 

maintenance of plasmids within bacterial populations. Costs associated with 

plasmid carriage, originally coined metabolic burden in recombinant bacteria, 

have long been observed (Bentley et al., 1990), but recent studies utilising 

whole genome sequencing and transcriptomics have expanded our 

understanding of the basis of plasmid costs (Harrison et al., 2015; Loftie-Eaton 

et al., 2017; Porse et al., 2016; San Millan et al., 2015; Yano et al., 2016). The 

physiological costs induced by plasmids can generally be categorised as either 

direct metabolic costs, due to increased transcription and translation associated 

with the expression of plasmid-encoded genes, or indirect, through the 

disruption of cellular networks. The causes of fitness costs associated with 

plasmid carriage are not mutually exclusive; multiple interacting effects are likely 

to give rise to the physiological costs plasmids impose on their hosts. 

 

1.3.1 Metabolic costs of plasmid carriage 
The metabolic costs of plasmid carriage stem from the increase in genetic 

material within the cell. The maintenance and replication of extra DNA is unlikely 

to cause significant direct costs, as the relative quantity of DNA within the cell 

tends not to increase significantly upon plasmid acquisition (Baltrus, 2013; San 

Millan and MacLean, 2017). Rather, costs are associated with the expression of 

novel genes introduced by the plasmid. The transcription of the newly acquired 
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plasmid genes is not thought to incur a significant cost (San Millan and 

MacLean, 2017). However, as the levels of expression of horizontally acquired 

genes are generally unoptimised (Park and Zhang, 2012), high levels of 

expression of plasmid encoded genes increases the translational load of the 

cell, and is expected to be the major source of cost during gene expression 

(Baltrus, 2013; Glick, 1995; San Millan and MacLean, 2017). The increase in 

cellular mRNA places a burden upon ribosomes which are occupied during 

translation at the expense of translation of host encoded genes (Shachrai et al., 

2010). An increase in translation can also cause costs to arise due to increased 

consumption of limited amino acids, starving the cells of this essential resource 

and slowing down growth rates (Glick, 1995; Shachrai et al., 2010). Another 

source of cost during translation arises due to significant differences in codon 

usage between the plasmid genes and the host cell. These differences lead to a 

reduction in translation efficiency, affecting the speed and accuracy of 

translation (Plotkin and Kudla, 2011). This in turn can lead to the stalling of 

translation, mRNA degradation before translation, errors in the protein sequence 

and protein misfolding, all of which are costly (Drummond and Wilke, 2008).  

 

1.3.2 Disruption of cellular networks 

As well as the metabolic costs of plasmid carriage, cellular networks can also be 

disrupted at the cost of host fitness. The increased transcriptional load induced 

by the acquisition of a plasmid can trigger a potentially disproportional global 

transcriptional response, perturbing the level of expression of large numbers of 

chromosomal genes, particularly those involved with translation (Harrison et al., 

2015; San Millan et al., 2015). The host SOS stress response can also be 

triggered for a number of reasons upon acquisition of a conjugative plasmid. 

The SOS response is usually triggered by DNA damage and is responsible for 

DNA repair; however, the triggering of this complex host network also increases 

mutagenesis, stalls chromosomal replication and suppresses cell division, 

reducing the cells competitive fitness (D’Ari and Huisman, 1983; Kawai et al., 

2003). Conjugation introduces single stranded plasmid DNA (ssDNA) into a 

novel host cell, triggering the host SOS stress response (Baharoglu et al., 

2010). This potentially limits the potential success of horizontal transfer as some 

conjugative plasmids encode genes that act to alleviated the SOS stress 

response during conjugation (Althorpe et al., 1999). Plasmid rep systems can 

also trigger the SOS response by sequestering the chromosomal replication 



	 22 

machinery through the recruitment of host DNA replication proteins (Ingmer et 

al., 2001; Loftie-Eaton et al., 2017; San Millan et al., 2015).   

 

The costs that plasmids impose on their hosts are a critical driver of the 

evolution of plasmid borne AMR. These fitness effects can be a major limitation 

to the success of both horizontal and vertical transmission of the MGEs, 

determining under which environments the MGE is beneficial (Bergstrom et al., 

2000). Plasmid costs can also drive the adaptation of both host and 

chromosomal genes, as costs can lead to evolution of strains that have 

ameliorated the costs of plasmid carriage (Harrison and Brockhurst, 2012).  

 

 

1.4 Selection of Plasmid Borne Resistance 
 

The aim of clinical antibiotic use is to provide sufficient antibiotic so that 

infections are cleared while minimising the toxic side effects inherent to many 

classes of antibiotics. Laboratory determination of the lowest concentration at 

which a drug inhibits all growth of bacteria, the minimal inhibitory concentration 

(MIC), is a key tool in predicting clinical antibiotic dosage. The traditional view is 

that resistance is selected for at concentrations of antibiotic above the MIC of 

sensitive strains despite the costs associated with resistance (Andersson, 2006; 

Drlica, 2003), as high concentrations of antibiotics select for resistance at the 

complete exclusion of sensitive strains. However, antibiotic gradients ranging 

from well in excess of the MIC, to far bellow the MIC (sub-MIC) exist in humans, 

livestock and the environment (Berendonk et al., 2015). In fact, far more 

environments contain concentrations of antibiotic below the MIC of sensitive 

cells than above (Kümmerer, 2003). The significance of antibiotics at sub-MIC 

levels upon the selection and maintenance of resistance has only recently been 

considered (Andersson and Hughes, 2014). Sub-MIC concentrations of 

antibiotics still reduce the growth of sensitive strains; if the reduction in growth 

outweighs the cost of resistance, resistance can be selected for below the MIC 

(Hughes and Andersson, 2012). However, the social interactions between 

bacteria can alter the outcome of antibiotic treatment, confounding sub-MIC 

selection dynamics. Processes, such as biofilm formation and cooperative 

resistance mechanisms, allow a population of bacteria to survive antibiotic 

treatment where a single cell would not (Vega and Gore, 2014). Moreover, these 
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social traits are often encoded as accessories genes upon plasmids (Rankin et 

al., 2011). Therefore, it is likely that the selection of antibiotic resistance 

plasmids depends on two factors: 1) the cost of plasmid carriage, and 2) the 

sociality of the traits that are being selected for.  

 

1.4.1 Sub-MIC selection of resistance 

Direct competition between antibiotic resistant and antibiotic sensitive strains is 

commonly used to determine at what drug concentration the growth is equal 

between the two strains. At this concentration of antibiotic resistance begins to 

be selected for and is defined as the minimum selectable concentration (MSC, 

Figure 1.3) (Gullberg et al., 2011). Enrichment of pre-existing resistance at sub-

MIC levels of antibiotic has been demonstrated empirically in a number of 

studies (Gullberg et al., 2011, 2014; Liu et al., 2011). These studies have shown 

that the MSC value of a resistance varies depending on the resistance under 

selection. Liu et al. (2011) demonstrated that the MSC for ciprofloxacin and 

tetracycline resistance encoded upon the Tn10 transposon within Escherichia 

coli was 1/5 and 1/20 of the MIC of the susceptible strain, respectively. Gullberg 

et al. (2011) obtained similar results; the MSC values for various resistances to 

tetracycline, ciprofloxacin and streptomycin were between 10-fold and 230-fold 

lower than the MIC of the susceptible strain in both E. coli and Salmonella 

enterica (Var, Typhimurium LT2). Interestingly, different mutations conferring 

resistance to the same antibiotic also displayed different MSC values. The MSC 

depended upon the cost of resistance, such that a lower cost resistance 

mutation had a lower MSC (Gullberg et al., 2011). The group went on to show 

that the concentrations of antibiotics (tetracycline, erythromycin, trimethoprim 

and kanamycin) and heavy metals (arsenite and copper) selecting for a costly 

MDR plasmid were, in all cases, lower than the MIC of the plasmid-free 

susceptible strain (Gullberg et al., 2014). The studies showed that very low 

concentrations of antibiotics that are often present in contaminated natural 

environments or in patients under antibiotic treatment are able to select for and 

maintain resistance. 
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Figure 1.3 | The selective windows of antimicrobial resistance. Under no 

antibiotic selection or extremely low concentrations of antibiotic, the susceptible 

strain (blue line) outcompetes the resistant strain (purple line) due to the fitness 

costs associated with resistance. Conventionally resistance was thought to be 

selected at concentrations of antibiotic between the minimum inhibitory 

concentration of the susceptible strain (MICSUSC) and minimum inhibitory 

concentration of the resistant strain (MICRES). However, sub-inhibitory 

concentrations of antibiotic insufficient to kill sensitive bacteria can selected for 

resistance past the minimum selectable concentration (MSC), i.e. the intersect 

of susceptible and resistance growth. Adapted from Gullberg et al. (2011). 

 

 

1.4.2 The sociality of antimicrobial resistance  

It is becoming increasingly evident that the social dynamics imparted by 

qualitatively different mechanisms of antibiotic resistance can alter the outcome 

of antibiotic treatment (Vega and Gore, 2014; Yurtsev et al., 2013). As a 

consequence, determining the MSC of resistances may not simply be a function 

of cost, but may also be determined by the sociality of resistance. Cooperative 

drug resistances such as the inactivation of antibiotics, provide a benefit to 

surrounding bacteria regardless of their resistance phenotype, and determine 

the prevalence of resistance genes within a population (Yurtsev et al., 2013).  

 

The enzymatic inactivation of antibiotics by resistant bacteria lowers the 

environmental concentration of antibiotics, allowing sensitive cells to survive and 
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compete under antibiotic treatment (Brook, 2009). Experimental systems have 

shown that the cooperative intracellular inactivation of chloramphenicol, via a 

plasmid borne acetyltransferase, allows the survival of sensitive strains through 

the detoxification of the environment in liquid culture, on semi-solid surfaces and 

in an in vivo mouse model (Sorg et al., 2016).  The enzymatic inactivation of β-

lactam antibiotics via β-lactamase also allows sensitive cells to survive initial 

concentrations of antibiotic that would usually kill them (Dugatkin et al., 2005; 

Medaney et al., 2016; Perlin et al., 2009; Yurtsev et al., 2013). When 

cooperative resistance carries a cost, whether due to the production of enzymes 

or due to resistance being encoded upon a plasmid, sensitive strains will grow 

faster than resistant strains once the antibiotic is cleared from the environment 

(Yurtsev et al., 2013). Therefore, the protection offered by cooperative 

resistances would be expected to push the MSC to higher values, with the 

precise extent of this effect dependent upon the cost of resistance. 

 

The selection of antibiotic resistance will depend therefore both on the cost and 

the sociality of resistance. Sub-MIC selection of resistance mechanisms would 

be expected for selfish resistance mechanisms that do not impart a social 

benefit upon surrounding sensitive cells. In contrast, cooperative resistance 

should be selected for at higher relative concentrations of antibiotic (i.e. higher 

fraction of the sensitive MIC). Multiple mechanistically different resistances are 

frequently clustered together onto conjugative plasmids (Carattoli, 2013). An 

outstanding question is how combinatorial antibiotic usage selects for MDR 

plasmids, especially for combinations of antibiotics requiring qualitatively 

different mechanisms of drug resistance. 

 

 

1.5 Amelioration of Plasmid Cost  
  

1.5.1 The plasmid paradox 

Conjugative plasmids are fundamental in the adaptation of bacteria, providing a 

source of novel genetic material, as well as acting as catalysts for evolutionary 

change (Frost et al., 2005). However, the existence of conjugative plasmids 

presents a paradox (Harrison and Brockhurst, 2012). The acquisition of a 

plasmid imparts a significant fitness cost upon the new host (section 1.3). 

Plasmid-free competitors will outcompete plasmid-containing bacteria, driving 
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the plasmid to extinction (Hall et al., 2016). Despite this plasmids remain 

widespread in bacteria. 

 

There are evolutionary processes and plasmid encoded mechanisms that may 

help to explain the maintenance of plasmids within bacterial populations. When 

the accessory traits are under positive selection, the plasmid can be stabilised in 

the short-term (section 1.4). However, if the accessory trait is mobilised on to 

the chromosome the plasmid becomes redundant, once again exposing the host 

to the unneeded costs of plasmid carriage, and thus the plasmid can be lost 

(Harrison and Brockhurst, 2012). Segregational loss of plasmids can be 

minimised by plasmid encoded stability systems such as active partitioning 

systems and TA modules (section 1.2.2). These help to stabilise plasmids by 

reducing the number of plasmid-free competitors (Loftie-Eaton et al., 2016). 

However, active partitioning systems are not perfect and anti-toxins can be 

transferred on the chromosome (Ramisetty and Santhosh, 2016), leading to the 

emergence of plasmid-free cells that will outcompete the plasmid-harbouring 

population.   

 

There are two main routes that can resolve the plasmid paradox and explain the 

stable existence of plasmids over the long-term – horizontal transfer and 

compensatory evolution. If infectious transfer rates of the plasmid between 

bacteria were high enough plasmids could survive within a population purely as 

a parasite, despite of the costs associated with them. However, the costs 

associated with conjugation are significant both for the host and recipient cells, 

the production of the conjugative pilus not only consumes host resources but 

opens the cell to attack from phage (Lin et al., 2011), and newly acquired 

ssDNA can trigger stress responses in novel hosts (section 1.3). Yet, several 

studies have shown that conjugative plasmids can have sufficient conjugation 

rates to allow them to invade and persist within bacterial populations (Hall et al., 

2016; Stevenson et al., 2017). However, modelling has suggested that due to 

the costs associated with elevated conjugation rates, amelioration of plasmid 

cost is a more likely long-term solution to stabilising the maintenance of 

plasmids (Hall et al., 2017b).  
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1.5.2 Evolution and Amelioration of Plasmid Cost 

Compensatory evolution can stabilise plasmids by reducing the cost of plasmid 

carriage. A number of long-term evolution experiments have demonstrated the 

ability of compensatory evolution to stabilise plasmids through adaptation of the 

host, plasmid or reciprocal coadaptation of both, reducing the fitness cost 

imposed by the plasmid (Dahlberg and Chao, 2003; Harrison et al., 2015; Loftie-

Eaton et al., 2016, 2017; Porse et al., 2016; San Millan et al., 2015; Sota et al., 

2010). The reduction in cost stabilises the plasmid within bacterial populations 

by reducing the purifying selection acting against it. 

 

1.5.2.1 Host adaptation 

Host compensatory adaptation of plasmid cost can resolve perturbed cellular 

homeostasis. Harrison et al. (2015) found that the acquisition of a large 

conjugative plasmid by Pseudomonas fluorescens SBW25 increased the 

expression of approximately 17% of the genome, including genes involved with 

protein synthesis, suggesting the plasmid incurred a high translational burden. A 

highly parallel and repeatable mutation arose within a chromosomal GacA/GacS 

global regulatory system, independent of whether the plasmid was under 

positive selection or not. The adaptation of the GacA/GacS system restored 

chromosomal expression to ancestral plasmid-free levels, and also down-

regulated the expression of plasmid genes. These results align closely to a 

similar study examining the amelioration of the cost of a small, non-transmittable 

antibiotic resistance plasmid within Pseudomonas aeruginosa PAO1 (San Millan 

et al., 2015). Again, the acquisition of the plasmid significantly altered the 

expression of a large proportion of the genome. The mutational inactivation of 

two chromosomal genes, a UvrD-like helicase or a serine/threonine kinase, 

during coevolution with the plasmid reduced the expression of the plasmid 

encoded rep system, thus restored the transcriptional profile of the cells. It was 

likely that the rep system was interfering with chromosomal replication, 

triggering the SOS response and stalling cell division (San Millan et al., 2015). A 

recent study examining the amelioration of a costly MDR plasmid, RP4 within 

Pseudomonas sp. H2, also observed that mutations within chromosomal 

helicases compensated for the cost of the plasmid (Loftie-Eaton et al., 2017). 

Interestingly, these mutations also improved the persistence of other broad-

host-range plasmids, suggesting that mutations within helicases that adversely 
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interact with plasmids may be a general mechanism for the adaptation of 

plasmid carriage.  

 

1.5.2.2 Plasmid adaptation 

The burden of plasmid carriage can also be reduced through mutation on the 

plasmid (Porse et al., 2016; Sota et al., 2010). Following 1000 generations of 

coevolution between the broad-host-range IncP-1β plasmid pMS0506 and host 

Shewanella oneidensis, Sota et al. (2010) observed that the plasmid had 

increase stability within both the coevolved and ancestral hosts. Parallel 

mutations within the plasmid replication initiation protein TrfA not only reduced 

the cost of the plasmid within S. oneidensis but also increased its stability within 

other naïve hosts. This provides evidence that unoptimised rep systems of naïve 

plasmids are an important source of the cost of plasmid carriage. However, 

other non-essential elements within plasmids can also contribute to their cost. 

Porse et al (2016) determined that a 25 kb region of large conjugative MDR 

plasmid was the major contributor to the burden it imposed upon its hosts. 

Compensatory evolution through IS26-mediated deletion of the costly region 

allowed stable maintenance of the plasmid.  

 

1.5.2.3 Coadaptation 

Co-adaptation of both the plasmid and hosts can also contribute to improved 

fitness (Dahlberg and Chao, 2003; Loftie-Eaton et al., 2016). Following 

experimental evolution of E. coli and one of two plasmids, R1 and RP4, 

reduction in cost required adaptation of both the plasmid and the host 

chromosome (Dahlberg and Chao, 2003). When the evolved plasmid was 

transferred into the ancestral host, the cost of plasmid carriage was reduced, 

suggestive of plasmid adaptation. Additionally, the ancestral plasmid conferred a 

lower cost in the evolved host, suggestive of host adaptation. A recent study 

determined the genetic basis of coevolution between an IncP-1β MDR plasmid 

and its host, Pseudomonas moraviensis (Loftie-Eaton et al., 2016). Evolution 

under antibiotic selection led to plasmid acquisition of a TA system from a native 

plasmid, this, coupled with host mutations, improved plasmid stability. Here, 

compensatory adaptation was indicative of positive epistasis because the 

plasmid and chromosomal mutations alone only provided a slight increase in 

plasmid persistence, but together they greatly increased persistence. 
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It is clear that compensatory adaption is an important route to ameliorate the 

cost of plasmid acquisition, reducing purifying selection against the plasmid, 

thus stabilising plasmids in bacterial populations. However, key outstanding 

questions remain unanswered; how does the mode of compensatory evolution 

following MDR plasmid acquisition vary with antibiotic treatment? What are the 

dynamics of coevolution between plasmid and host, and how repeatable are 

these coevolutionary dynamics? 

  

 

1.6 RK2 Plasmid as a Model System  

 

The work presented in this thesis experimentally tests the interaction between 

the broad-host-range MDR plasmid RK2, and the model organism E. coli, to 

address when the MDR plasmid is selected for and how it evolves with it’s 

hosts. The RK2 plasmid was isolated from Klebsiella aerogenes following an 

outbreak of carbenicillin resistance in P. aeruginosa in the Burns Unit of the 

Birmingham Accident Hospital in 1969 (Ingram et al., 1973). It became evident 

that the RK2 plasmid was transferred from P. aeruginosa and maintained in K. 

aerogenes, before seeding a second outbreak of resistant P. aeruginosa six 

months later (Ingram et al., 1973). Interest in the RK2 plasmid grew due to its 

extreme broad-host-range and the taxonomic diversity of these host species, 

being able to replicate within almost all gram-negative bacteria (Schmidhauser 

and Helinski, 1985). RK2 is a 60-kb self-transmissible plasmid encoding ARGs 

against ampicillin via a TEM-1 β-lactamase, tetracycline via a tetA/R efflux 

pump, and kanamycin via a phosphotransferase (Figure 1.4) (Pansegrau et al., 

1994). The replication and copy number of RK2 (approximately 5 in E. coli) is 

controlled by one of two initiator proteins, depending on its host (Durland et al., 

1990; Solar et al., 1998), and stability of the plasmid is provided by active 

partitioning and TA systems (Pansegrau et al., 1994). The conjugation 

apparatus is clustered within two modules, tra1 and tra2, encoding the genes 

required for mate pair formation and DNA transfer (Bingle et al., 2003; Zatyka et 

al., 1994). The RK2 plasmid provides an ideal model system to test evolutionary 

questions posed above due to the range of qualitatively different modes of 

resistances it encodes as well as the extensive knowledge of the plasmid’s DNA 

sequence, regulation and control systems. 
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Figure 1.4 The RK2 plasmid, regions colour coded by functional groups. Scale 

in kb. Rep region encodes initiation factors controlling plasmid replication. Tra1 

and Tra2 encode conjugation machinery. The Par region controls active 

partitioning, Kil regions encode genes required for host lethality controlled by the 

Ctl region. There are two MGEs encoded within RK2, insertion sequence IS21 

and transposon Tn1 encoding β-lactamase. An efflux pump that is negative 

regulated in the absence of tetracycline provides tetracycline resistance, 

encoded by tetA and tetR. Kanamycin resistance is provided aphA encoding an 

aminoglycoside 3'-phosphotransferase. Created using the complete nucleotide 

sequence of RK2 produced by Pansegrau et al. (1994). 

 

 

1.7 Chapter Overview 
The thesis focuses on the sociality of resistance and the coevolution of plasmids 

and hosts when under positive selection, specifically: 

 

Chapter 2 – Selective conditions for a multidrug resistance plasmid depend on 

the sociality of antibiotic resistance: 

The sociality of antibiotic resistance encoded upon a MDR plasmid may alter the 

selective conditions required to maintain plasmids. To test this hypothesis I 

compared the concentrations of antibiotic required to select for two qualitatively 

different resistance mechanism encoded on the MDR plasmid RK2. In this 
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chapter I show that the antibiotic concentrations selecting for the RK2 plasmid in 

E. coli depend upon the sociality of the drug resistance: the selection for selfish 

drug resistance (efflux pump) occurred at very low drug concentrations, just 

1.3% of the MIC of the plasmid-free antibiotic-sensitive stain, whereas selection 

for cooperative drug resistance (modifying enzyme) occurred at drug 

concentrations exceeding the MIC of the plasmid-free strain. Combining the two 

antibiotics at concentrations that alone do not select for resistance, selected for 

both resistance mechanisms. These results suggest that selfish resistances will 

be particularly important for the selective maintenance and spread of MDR 

plasmids.  

 

Chapter 3 – Mode of antibiotic action and mechanism of resistance jointly shape 

selection for antibiotic resistance: 

I theoretically investigate the effect of mode of antibiotic action and mechanism 

of resistance upon the selection for resistance. I demonstrate that the accurate 

prediction of the selection for resistance can only be achieved when 

mathematical models include whether antibiotics are bacteriostatic or 

bactericidal, and whether the antibiotic is inactivated by the resistance 

mechanism or not. I further predict that inactivation of bacteriostatic antibiotics 

by resistant bacteria provides greater protection to sensitive bacteria within a 

population than the inactivation of bactericidal antibiotics, leading to weaker 

selection for resistance. The chapter highlights the importance of understanding 

both the sociality of resistance and the antibiotic mode of action when predicting 

the selective conditions of resistance. 

 

Chapter 4 – Adaptive modulation of antibiotic resistance through intragenomic 

coevolution: 

Increasing evidence is pointing to compensatory coevolution between plasmid 

and host playing a key role in stabilising MDR plasmids within bacterial 

populations (Loftie-Eaton et al., 2016; McNally et al., 2016). In this chapter I 

address the outstanding question; how does the mode of compensatory 

adaptation vary with antibiotic treatment? I found that routes to compensatory 

adaptation were different between tetracycline selection and ampicillin-only or 

no antibiotic selection. I discovered that coevolution between the MDR plasmid 

RK2 and E. coli under tetracycline selection followed an unexpected and 

counterintuitive trajectory that was not observed under the other antibiotic 

treatments. Intragenomic coevolution ameliorating the cost of plasmid encoded 
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tetracycline resistance led to co-dependency between the plasmid and host 

chromosome; the resulting co-dependent genome provided high-level, low-cost 

resistance. This work demonstrates how gaining resistance plasmids can be just 

the start of the evolution of antibiotic resistance; gaining a MDR plasmid is a 

dynamic evolutionary process driven by the costs of expressing horizontally 

acquired ARGs. 

 

Chapter 5 – High repeatability of bacteria-plasmid coevolution under antibiotic 

selection: 

I extend the work presented in Chapter 4 to determine the repeatability of 

plasmid-host co-evolutionary dynamics. Through whole genome sequencing of 

clones isolated across the 530 generations of evolution from four independently 

evolving tetracycline populations presented in the previous chapter, I examine 

the temporal order of mutation acquisition. I show that the dynamics of 

coevolution can be strikingly parallel despite clonal interference between 

multiple competing lineages. The order of beneficial mutations was identical 

across all independent replicate populations examined. Evidence points towards 

mutations with the largest phenotypic effect being selected first, with mutation 

that induce smaller phenotypic effect being selected later in time. The study 

provides evidence that reciprocal coevolution between bacteria and plasmids 

can be highly repeatable, with mutations on the chromosome and plasmid 

following a specific path. 
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2. Selective Conditions for a Multidrug Resistance Plasmid 
Depend on the Sociality of Antibiotic Resistance 
 

The following chapter is adapted from the published article: Bottery, M.J., Wood, 

A.J., and Brockhurst, M.A. (2016). Selective conditions for a multidrug 

resistance plasmid depend on the sociality of antibiotic resistance. Antimicrob. 

Agents Chemother. AAC. 60, 2524-2527. M.A.B. and A.J.W. supervised the 

project. M.J.B. performed the experiments and analysed the data. All authors 

contributed towards the design of the study and wrote the manuscript. Data from 

the paper summarized in figures 2.1 and 2.3. Additional data on frequency 

depend selection was acquired after the publication of the paper. 

 

 

2.1 Abstract 
 
Multiple antibiotic resistance genes (ARGs) are frequently clustered on 

conjugative plasmids, which are an important source of clinical resistance. It is 

critical therefore to understand the selective conditions promoting the spread of 

these multidrug resistance (MDR) plasmids. Here, we tested how the antibiotic 

conditions required to select for a multidrug resistant plasmid, RK2, in 

Escherichia coli depended on the mechanism of resistance, specifically whether 

drug resistance was selfish or cooperative. We observed highly contrasting 

selective conditions depending upon the sociality of resistance: a selfish drug 

resistance, efflux of tetracycline, was selected for at ~1% of the minimum 

inhibitory concentration (MIC) of the plasmid-free antibiotic-sensitive strain, 

whereas, a cooperative drug resistance, enzymatic inactivation of ampicillin, 

was only favoured at antibiotic concentrations exceeding the MIC of the 

plasmid-free strain. When used in combination, dual antibiotic selection was 

additive and thus selected for the MDR plasmid at concentrations even lower 

than those observed to be selective under single antibiotic treatments. Finally, 

we show that selection for cooperative resistance, unlike selfish resistance, is 

strongly favored when resistance is rare within a population. These results 

suggest that selfish drug resistances, such as efflux pumps, are likely to play an 

important role in the dynamics of MDR plasmids in the environment where they 

can be selected for by very low, sub-MIC concentrations of antibiotic.    
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2.2 Introduction 
 
Antibiotics are critical to modern medicine, but their widespread use and misuse 

have led to the evolution of strains resistant to most commonly used antibiotics 

(Bush et al., 2011; Laxminarayan et al., 2013). Antibiotic resistance has become 

a major threat to global health, with multidrug-resistant (MDR) bacteria observed 

globally (World Health Organization, 2014). Environmental antibiotic resistance 

genes (ARGs) are a major source of clinical resistance (Berendonk et al., 2015). 

ARGs can be selected for at very low concentrations of antibiotics, far below the 

MIC of sensitive cells (Gullberg et al., 2011, 2014), with antibiotic contamination 

at sub-MICs being proposed as the main driving force behind environmental 

selection for resistance (Andersson and Hughes, 2014; Liu et al., 2011; 

Sandegren, 2014). However, ARGs can encode qualitatively different forms of 

resistance, ranging from selfish to cooperative. Selfish drug resistances confer a 

benefit only to the individual cell harboring them, for example, efflux pumps, 

reduced membrane permeability, and antibiotic target alteration (Blair et al., 

2015). In contrast, cooperative antibiotic resistance benefits both the resistant 

cell and surrounding cells, whether they are resistant or not. For example, 

modifying enzymes, such as β-lactamases, inactivate the antibiotic through 

hydrolysis, decreasing its environmental concentration. Localization of the β-

lactamase enzyme in the periplasmic space may enhance the share of the 

benefit for the resistant cell, but nevertheless, the decrease in the overall 

environmental concentration of antibiotic will benefit both resistant and sensitive 

cells (Vega and Gore, 2014).  

 

We hypothesized that the sociality of drug resistance alters the selective 

conditions for the spread of ARGs (Conlin et al., 2014; Yurtsev et al., 2013). 

Specifically, because the benefits of selfish drug resistance are directed solely 

to the resistant cell, whereas the benefits of cooperative drug resistance are 

shared between resistant and sensitive cells, we predicted that selfish drug 

resistance should be selected at lower relative drug concentrations (i.e., % of 

the sensitive MIC) than those for cooperative resistance. These contrasting 

modes of resistance may also determine whether selection for resistance is 

frequency dependent (Conlin et al., 2014; Dugatkin et al., 2005; Levin et al., 

1988; MacLean and Gudelj, 2006; Ross-Gillespie et al., 2007; Yurtsev et al., 

2016). We would expect that as cooperative resistance provides a public good 
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via the inactivation of the antibiotic, the survival of sensitive cells would 

depended upon the frequency of cooperators within a population. In contrast, 

selfish drug resistances do not alter the survival of sensitive cells and therefore 

selection for a selfish resistance would not be frequency dependent.  

 

Multiple ARGs are frequently clustered together onto conjugative plasmids, 

including combinations of selfish and cooperative drug resistances (Carattoli, 

2013). How combinatorial antibiotic usage selects for MDR plasmids is not clear, 

especially for combinations of antibiotics requiring qualitatively different modes 

of drug resistance, such as selfish or cooperative drug resistance. Here, we 

tested how the sociality of drug resistance and single versus combined antibiotic 

treatment altered the selective conditions for the MDR plasmid RK2 (Pansegrau 

et al., 1994) in Escherichia coli MG1655. RK2 carries genes encoding both 

cooperative ampicillin resistance, mediated by a β-lactamase, and selfish 

tetracycline resistance, mediated by an efflux pump. We report that the selfish 

drug resistance is selected for at far lower relative antibiotic concentrations than 

those for cooperative drug resistance and that combined antibiotic selection is 

additive, showing no interaction. Furthermore, we show that the selection for 

cooperative breakdown of ampicillin is strongly frequency dependent, whereas 

the selfish efflux of tetracycline is not. Therefore the selection for the 

cooperative RK2 plasmid can be manipulated, ranging from highly cooperative 

under ampicillin conditions, though non-cooperative in the absence of ampicillin, 

to selfish in the presence of tetracycline.  

 

 

2.3 Materials and methods 
 

2.3.1 Strains, culture conditions 

Two isogenic E. coli MG1655 strains chromosomally labelled with GFP or 

mCherry were used for direct competition. These strains are labelled at the 

neutral insertion site attB lambda through λ red homologous recombination. 

Both strains were provided by the Van Der Woude lab (University of York). The 

RK2 multidrug resistance plasmid was introduced to the marker strains through 

conjugation from E. coli MV10(RK2) provided by the Thomas lab (University of 

Birmingham). Transconjugants were selected on nutrient broth agar plates 

supplemented with tetracycline 10 µg ml-1. As there was no antibiotic resistance 
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selectable marker on the chromosome of the fluorescently labelled cells, 

transconjugants were distinguished through detection of fluorescent markers 

using Zeis Stereo Lumar v12 microscope. Presence of the RK2 plasmid was 

confirmed by PCR using RK2 specific primers amplifying the plasmids origin of 

replication, oriV (Fw: cccatcatgaccttgccaag Rv: gtaacagatgagggcaagcg). All 

cultures were conducted in Oxoid® Nutrient Broth (NB) at 37°C, shaken at 180 

rpm, 5 ml in 50 ml microcosms unless otherwise stated.  

 

2.3.2 MIC measurements 

To measure minimal inhibitory concentrations (MIC), six replicate cultures of 

plasmid free E. coli MG1655 and six replicate cultures of E. coli MG1655(RK2) 

were grown overnight until stationary phase in 5 ml NB, the saturated cultures 

were then sub-cultured 50 µl into 5 ml fresh NB and grown to an OD600 of 0.5. 

These were then diluted into 96-well plates containing gradients of ampicillin 

(ranging from 0 µg ml-1 to 4096 µg ml-1) or tetracycline (ranging from 0 µg ml-1 to 

256 µg ml-1) antibiotics in nutrient broth, to an initial density of 5×105 CFU ml-1. 

100 µl cultures were grown for 24 hours 37°C shaken at 600 rpm, 3 mm orbital 

radius. OD600 was measured after 24 hours. The MIC was defined as the lowest 

concentration that inhibited all bacterial growth. These conditions informed the 

antibiotic conditions used to in competitive fitness assays. 

 

2.3.3 Growth curves 

Growth curves of E. coli MG1655 with and without RK2 plasmid were conducted 

in monoculture. Three independent replicate microcosms were inoculated with 

individual colonies of MG1655 with and without the RK2 plasmid and grown to 

saturation over night. These were sub-cultured 50 µl into 5 ml NB and grown for 

2 hours until OD600 of 0.5. The sub-cultures were used to inoculate 100 µl NB in 

96-well plates to a final dilution of 1:400. The plates were incubated at 37°C with 

shaking at 300 rpm, 3 mm orbital radius for 24 hours, with OD600 measured 

every 30 minutes using a Tecan infinite M200 Pro plate reader. 

 

Growth curves of plasmid free E. coli MG1655 were conducted to determine the 

sub-MIC growth response to ampicillin and tetracycline. Three independent 

replicate saturated overnight cultures were sub-cultured to an OD600 of 0.5, and 

used to inoculated 100 µl NB supplemented with either 0, 2, 4, 6, 8, or  
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10 µg ml-1 ampicillin or 0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1 2.4, or 2.7 µg ml-1 

tetracycline in 96-well plates at a final dilution of 1:400. Plates were grown at 

37°C with shaking at 300 rpm, 3 mm orbital radius for 48 hours, OD600 was 

measured every 30 minutes by Tecan infinite M200 Pro plate reader.  

 

2.3.4 Relative fitness 

The relative fitness of plasmid bearing versus plasmid free cells was estimated 

by direct competition experiments. To control for fitness effects of the 

fluorescent markers, competitions were performed with the plasmid carried in 

the MG1655-gfp background against plasmid-free MG1655-mcherry for half of 

the replicates, and vice versa for the other half of the replicates. Competitions 

were conducted across antibiotic concentration gradients, ranging from no 

antibiotic to 12 µg ml-1 ampicillin or 250 ng ml-1 tetracycline. Six replicates of 

each antibiotic concentration were conducted. The competitions were initiated 

with 1:1 mixtures of plasmid-bearing against plasmid-free strains from overnight 

cultures at an initial density of approximately 5×105 CFU ml-1. To gain exact 

viable cell counts, dilutions of culture were spread on to nutrient agar plates. 

Competition cultures were grown for 24 hours in 100 µl NB within 96 well plates 

at 37°C, 600 rpm. Final densities calculated via plate counts, strains were 

distinguished through detection of fluorescent markers using Zeis Stereo Lumar 

v12 microscope. The relative fitness of plasmid-bearing bacteria was calculated 

as a ratio of Malthusian parameters (Lenski et al., 1991): 

 

𝑊!"#$%&' =
ln

𝑁!"#$%,!"#$%&'
𝑁!"!#!$%,!"#$%&'

ln
𝑁!"#$%,!"##
𝑁!"!#!$%,!"##

 

 

No significant difference between growth dynamics of marker strains was 

observed (Figure S2.1), along with no significant difference in relative fitness 

when plasmid free MG1655-gfp and -mcherry strains were directly competed 

(Figure S2.2, t-test difference from 1 t11 = 0.6001, p = 0.5606).  

 

2.3.5 Frequency dependent selection 

Frequency dependent selection was measured through direct competition 

between E. coli MG1655 and E. coli MG1655(RK2) at different starting 

frequencies. As with the relative fitness calculations, to control for fitness effects 
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of the differentially fluorescently marked strains, 3 replicate competitions per 

treatment were conducted with the RK2 plasmid in the MG1655-gfp background 

and 3 replicate competitions were conducted with the RK2 plasmid in the 

MG1655-mcherry background. Competitions were initiated with either 1:99, 1:9, 

1:1, 9:1 or 99:1 mixtures of plasmid-bearing strains and with plasmid-free strains 

from overnight monocultures grown in 5 ml non-selective NB media. These 

mixtures were used to inoculate 100 µl NB containing either 0, 4, 8, or 12 µg ml-1 

of ampicillin or 0, 13, 26 or 39 ng ml-1 of tetracycline at a final dilution of 1:400. 

The strains were competed for 24 hours at 37°C, 600 rpm in 96 well plates. To 

detect very low proportions of each competing strain, cell densities at the start 

and end of the competition were determined through flow cytometry. Saturated 

populations were diluted to 1:1000 in sterile 22 µm filtered PBS, and stained 

with 1 µg ml-1 DAPI to distinguish between cells and background noise. Cells 

were first gated from the background electrical noise using FSC and SSC, and 

then gated on a positive DAPI signal using 450/45 channel on a 405 nm laser. 

Sub-populations of plasmid containing and plasmid free cells were gated on 

GFP signal using 525/40 channel on a 488 nm laser (Figure S2.3). All gating 

was conducted using R3.3.3 {flowCore}. Selection rate (r) was calculated as the 

difference between the plasmid bears and plasmid free Malthusian growth 

parameters: 

 

𝑟!"#$%&' = ln
𝑁!"#$%,!"#!"#$
𝑁!"!#!$%,!"#$%&'

− ln
𝑁!"#$%,!"##
𝑁!"!#!$%,!"##

 

 

Which gives the absolute difference in density over 24 hours between the two 

strains. This measure of fitness is preferable when comparing strains were one 

competitor is much less fit than the other (Travisano and Lenski, 1996). 

 

2.3.6 Statistics 

Significant difference between two related samples was calculated using two 

sided, two-sample t-test. Shapiro-Wilk test was conducted to check for 

normality. Interacting effects of co-treatment with ampicillin and tetracycline 

were calculated using multiple linear regression with antibiotics are interacting 

terms. The effects of frequency of resistances and concentration of antibiotic 

upon fitness were calculated using multiple linear regression with frequency and 

concentration as interacting terms. All statistical analysis was conducted in R 

(version 3.2.3). 
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2.4 Results 
 

2.4.1 Sub-MIC effect of antibiotics on growth 

Conventionally, ARGs are thought to be positively selected for at antibiotic 

concentrations exceeding the MIC of sensitive cells in monoculture (Hughes and 

Andersson, 2012). This is referred to as the conventional selective window 

(Figure 2.1), and is the concentration required to reduce to reduce the growth of 

a bacterial population to undetectable levels. This is the basis of calculating the 

dosage of antibiotics within clinical settings, with the aim to clear an infection 

through maintaining antibiotics concentrations above a bacteria’s MIC. Due to a 

focus on resistance phonotypes with high levels of resistance, how antibiotic 

concentrations below the MIC of sensitive cells selects for resistance is often 

overlooked. Importantly, growth of sensitive strains is reduced when exposed to 

concentrations of antibiotic insufficient to kill them, which may lead to the 

selection for resistance (Figure 2.1). 

 

 
 

Figure 2.1 | Cell density (optical density at 600 nm [OD600]) of sensitive plasmid-

free bacteria (green line) and resistant plasmid containing bacteria (blue line) as 

a function of ampicillin concentration (A) and tetracycline concentration (B) after 

24 h of growth in monoculture. The error bars show standard error of the mean 

(SEM) values (n = 6). The area shaded in green shows the sub-MIC selective 

window, and the area shaded in blue shows the selective window conventionally 

thought to select for resistance. 
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To determine the impact of sub-MIC concentrations of tetracycline and ampicillin 

we measured the growth of plasmid free MG1655 across a gradient of sub-

inhibitory concentrations of antibiotic. Sub-MIC concentrations of both ampicillin 

and tetracycline increase the length of the lag phase and decrease the growth 

rate and carrying capacity of the sensitive bacterial populations (Figure 2.2). 

Ampicillin acts as bactericidal at concentrations exceeding the MIC, inhibiting 

cell wall synthesis and causing cell lysis (Waxman and Strominger, 1983), 

however, below the MIC ampicillin can produce bacteriostatic effects, reducing 

and inhibiting bacterial growth (Thonus et al., 1982). A transition between 

bactericidal and bacteriostatic mode of action may be evident in the sharp 

decrease in growth after 6 µg/ml (Figure 2.2A). This transition in mode of action 

may be the cause of the hill type shape of the MIC curve, whereby there is a 

slow reduction in growth at low concentrations of antibiotic which increases at 

higher concentrations (Figure 2.1A). In contrast, tetracycline is through to act 

predominately as a bacteriostatic (Chopra and Roberts, 2001), as a result 

increased concentrations of tetracycline linearly decrease growth of sensitive 

bacteria (Figure 2.2B). 

 

 

 
 

Figure 2.2 | Sub-MIC sensitivity of plasmid free E. coli MG1655 to ampicillin 

(bactericidal) and tetracycline (bacteriostatic). Growth curves (OD600) of plasmid 

free E. coli MG1655 in increasing concentrations of (A) ampicillin and (B) 

tetracycline. Dotted vertical line represents the 24-hour mark at which 

competition and MIC cultures are measured for relative fitness and growth 

respectively. Lines show mean of three biological replicates per treatment with 

error bars representing SEM.  
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2.4.2 Selective conditions of Multi-drug resistance 

To determine whether the sociality of resistance affected the selection window 

for the RK2 MDR plasmid, we estimated the relative fitness of plasmid-bearing 

versus isogenic plasmid-free cells by direct competition, according to standard 

methodology. In the absence of antibiotics, the plasmid imposed a significant 

cost of carriage, decreasing the fitness of E. coli by 19% (Figure 2.3A and B, t 

test, P = 0.001, t = 9.8674, df = 23). An intrinsic cost is often associated with 

plasmid carriage when accessory traits are not under positive selection due to 

cellular disruption and increased translational load (Baltrus, 2013). Cooperative 

ampicillin resistance was positively selected at ampicillin concentrations 

exceeding the MIC of plasmid-free sensitive E. coli strains (Figure 2.3A). 

Importantly, sensitive cells were able to maintain positive growth in mixed 

cultures at ampicillin concentrations that completely inhibited their growth in 

monoculture (>8 µg/ml; Figure 2.1A; see also Figure S2.4 in the supplemental 

material), justifying the assignment of ampicillin resistance as cooperative. Thus, 

cooperative resistance permits the persistence of a sensitive subpopulation 

beyond the sensitive MIC due to the inactivation of the antibiotic, potentially 

allowing reinvasion by sensitive cells once the antibiotic concentration is 

sufficiently reduced by the action of resistant cells. 

 

In contrast, selfish tetracycline resistance was positively selected at tetracycline 

concentrations of just 1.3% of the MIC of sensitive E. coli (Figure 2B). Indeed, at 

concentrations of tetracycline that were >10% of the MIC of sensitive E. coli, the 

resistant plasmid bearers competitively excluded the plasmid-free bacteria, with 

no plasmid-free cells observable (see Figure S2.5). This is despite the fact that 

plasmid-free E. coli survived at these tetracycline concentrations when grown 

alone (Figure 2.1B). Our data suggest that selfish tetracycline resistance is 

positively selected in the sub-MIC selective window at very low tetracycline 

concentrations, similar to those observed in the natural environment (Zhang and 

Li, 2011). 
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Figure 2.3 | Fitness reaction norms as a function of antibiotic concentration 

during competition experiments between E. coli harboring the RK2 plasmid and 

isogenic plasmid-free sensitive strains. Competition in the presence of ampicillin 

(A) and tetracycline (B) is shown, and the red lines show a fitted regression. 

Dashed lines represent antibiotic concentrations predicted to select for RK2 

plasmid. (C and D) Fitness reaction norms of combination treatments with both 

ampicillin and tetracycline during competition experiments between E. coli 

harboring the RK2 plasmid and plasmid-free strains; these are alternative 

visualizations of the same experimental data. There is no significant interaction 

of antibiotic treatments upon the relative fitness (F1,68 = 0.2395, P = 0.6261), 

indicating that treatments were non-interacting and additive. The error bars in 

panels A, C, and D show the SEM values (n = 6). Antibiotic concentrations are 

shown as percentages of the MIC for sensitivity. 
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antibiotics were used in combination, their selective effects were independent 

and additive (Figure 2.3C). This means that very low concentrations of 

tetracycline were sufficient to completely mask the population-level effects of 

cooperative ampicillin resistance. With increasing tetracycline concentrations, 

the ampicillin concentration positively selecting for the MDR plasmid shifted to 

lower and lower sub-MIC levels, reducing the window of selective conditions 

under which sensitive cells could persist (Figure 2.3D). 

 

Residues of multiple antibiotics are commonly found to contaminate the same 

environments at low concentrations (Batt et al., 2006; Zhang and Li, 2011). 

These combinations, and particularly the presence in the environment of 

antibiotics, like tetracycline, targeted by selfish efflux mediated resistance will 

select for the spread of MDR plasmids and competitive exclusion of sensitive 

cells. This is despite being present at concentrations far below the level required 

to positively select resistance individually. This adds further evidence that 

ARGs, whether chromosomal or carried by plasmids, can be positively selected 

at antibiotic concentrations far below the MIC of sensitive strains (Gullberg et al., 

2011, 2014; Liu et al., 2011). 

 

2.4.3 Social resistance and frequency dependence 

Next we determined whether the starting frequency of resistance within a 

population altered at what concentration resistance was selected for, i.e. 

whether selection for the resistances were frequency dependent. Relative 

fitness of plasmid bearing versus plasmid free cells was estimated across a 

range of initial plasmid frequencies and antibiotic concentrations (Figure 2.4B, 

2.4D). Both tetracycline concentration (F1,116 = 119.28, p < 0.01) and frequency 

of resistance (F1,116= 33.49, p < 0.01) have significant effects on the selection 

rates of the RK2 plasmid. However, both predictors did not show a significant 

interaction (F1,116 = 1.186, p = 0.2784), indicating that the concentration of 

tetracycline and frequency of resistance in a population are independent. 

Therefore selection for the efflux of tetracycline is not altered by the frequency of 

resistance within the population, and only very low concentration of tetracycline 

are required to select for the selfish resistance independent of the fraction of 

resistance in the population.  

 

In contrast, the starting frequency of plasmid-bearing antibiotic-resistant bacteria 
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within a population greatly affects the concentration of antibiotic required to 

select for cooperative ampicillin resistance (Figure 2.4A, 2.4C). At low starting 

frequencies of plasmid-bearing cells (one tenth of the total population), the 

concentration of ampicillin required to select for resistance is reduced to below 

44% of the sensitive MIC. Where as, when the starting frequency of plasmid-

bearing cells is high within a population (nine tenths of the total population), the 

concentration of ampicillin required to select for resistance increased to above 

133% of the sensitive MIC.  Both the concentration of ampicillin (F1,116 = 103.69, 

p < 0.01) and the frequency of plasmid within the population (F1,116 = 350.925, p 

< 0.01) are significant predictors of the selection rate of the resistant cells. But 

unlike the selfish tetracycline resistance, ampicillin concentration and frequency 

of plasmid have a significant interaction (F1,116 = 44.914, p < 0.01). The 

interaction of selective environment and frequency of resistance results in  

negative frequency dependent selection for cooperative resistance, whereby 

selection for resistance is stronger when resistance is rare. A lower frequency of 

plasmid containing bacteria within a population may result in a lower average 

inactivation rate of antibiotic, providing little or no protection to plasmid sensitive 

cells within the environment. The reduced protection provided by the resistant 

cells results in positive selection for resistance at lower relative concentrations 

of antibiotic. Taken together these finding suggest that selfish resistances are 

important for maintaining multi-drug resistance plasmids independent of 

frequency within a population, but cooperative resistances are equally as 

important for the selective maintenance when the plasmid is rare in a 

population.   
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Figure 2.4 | Log10 selection rates (r) of plasmid bearing E. coli vs plasmid free 

E. coli as a function initial plasmid frequency under (A,C) ampicillin selection 

and (B,D) tetracycline selection. Points show means of six independent 

replicates; with error bars showing SEM. C and D show the same data plotted 

as heat maps. Selection rates were measured at frequencies of 0.01 and 0.99, 

these measurements have been omitted from the plot for clarity, however, the 

stats presented in the text include these measurements. Plots containing this 

additional data can be found in the supplementary information, Figure S2.6. 
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2.5 Discussion 
 
Here, we show that the extent to which an ARG is positively selected at sub-

MICs depends upon the sociality of the mechanism of drug resistance. 

Cooperative ampicillin resistance is positively selected at ampicillin 

concentrations exceeding the MIC, whereas selfish tetracycline resistance is 

positively selected at 100-fold-lower relative drug concentrations. This striking 

difference in the selective window for ARGs located on the same MDR plasmid 

probably arises because of the population-level effects of the ARGs: cooperative 

ampicillin resistance allowed sensitive bacteria to survive at concentrations 

above their MIC by reducing the ampicillin concentration and sharing the 

benefits of resistance, whereas selfish tetracycline resistance drove the 

complete competitive exclusion of sensitive cells at >10% of the MIC due to the 

exclusively individual benefits of efflux-mediated resistance. These contrasting 

mechanisms of resistance also lead to frequency dependent selection of 

cooperative ampicillin resistance but not selfish tetracycline resistance. 

Combining the two antibiotics at concentrations that would not normally select 

for resistance individually selects for both resistances and the spread of the 

MDR plasmid.  

 

Our study has a number of possible limitations: First, it is possible that other 

factors in addition to sociality may have contributed to differences in the fitness 

reaction norms of the antibiotics, including the contrasting effects of sub-MICs 

on monoculture densities, and the fact that ampicillin is bactericidal while 

tetracycline is bacteriostatic. Second, we use exemplars of cooperative and 

selfish resistance, but more research will be required to test the importance of 

sociality on the selective conditions for other resistance mechanisms. 

 

Understanding when antibiotic resistance is selected for within bacterial 

population is a central goal in studying the spread of resistance. Our findings 

suggest that selfish efflux-mediated drug resistances are likely to be especially 

important for the selective maintenance and spread of MDR plasmids 

independent of the frequency of resistance in the populations. However, 

cooperative resistances are likely to be equally as important for the selective 

maintenance when the plasmid is rare in a population. 
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3. Mode of Antibiotic Action and Mechanism of Resistance 
Jointly Shape Selection for Antibiotic Resistance 
 

 

3.1 Abstract 
 
The acquisition and spread of bacterial resistance to antibiotics threatens global 

public health. Mathematical models have proved to be a key tool in aiding our 

understanding of antibiotic resistance. Pharmacokinetic and pharmacodynamics 

(PK-PD) models are used to predict optimal dosage and antibiotic regimens 

targeted at specific pathogens. However, PK-PD models often omit important 

biological details that affect selection for resistant genotypes, limiting their 

usefulness for predicting resistance evolution. Here, we develop simple models 

parameterised with experimental data for two antibiotics, tetracycline and 

ampicillin, that differ in their modes of action and mechanisms of resistance. We 

show that selection for resistance can only be accurately predicted when models 

include whether antibiotics are bactericidal or bacteriostatic, and whether 

resistance involves inactivation of the antibiotic or not. We further demonstrate 

that inactivation of bacteriostatic antibiotics provided more protection to sensitive 

cells within a population than inactivation of bactericidal antibiotics, leading to 

weaker selection for resistance. 

 

 

3.2 Introduction 
 

The global spread of antimicrobial resistance (AMR) within bacteria is a major 

threat to both routine and critical care, as the drugs we rely on to cure infections 

diminish in effectiveness (Laxminarayan et al., 2013). Mathematical models 

have proven to be a valuable tool in understanding the population dynamics of 

bacteria under antibiotic treatment (Czock and Keller, 2007; Jacobs et al., 

2016). Techniques such as pharmacokinetic-pharmacodynamic modelling (PK-

PD) are used to predict optimal dosage and antibiotic regimens targeted at 

specific pathogens (Chung et al., 2006; Mouton et al., 1997), but can also be 

applied to predict the emergence and subsequent selection of resistance 

(Lipsitch and Levin, 1997). The minimum inhibitory concentration (MIC) of 

sensitive cells is commonly used in combination with these models to predict the 
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concentration of antibiotic required to clear infection and the probability for 

resistance to arise (Drlica, 2003). 

	

Within host PK-PD models commonly assume an antibiotic effect to be 

bactericidal (Jacobs et al., 2016), however the mode of action of antibiotics 

ranges from bacteriostatic – reducing the growth rate of a cell – to bactericidal – 

directly killing the cells. This fundamental difference in the mode of action of 

antibiotics is likely to alter selection for resistance in bacterial populations simply 

because sensitive cells are merely outgrown rather than killed under treatment 

by bacteriostatic antibiotics (Pankey and Sabath, 2004). Similarly, PK-PD 

models often have simple approximations of resistance whereby all the benefit 

of resistance is directed to the resistant sub-population. While this is likely to be 

the case for certain mechanisms of resistance, it is not appropriate for 

mechanisms of resistance that inactivate the antibiotic itself. When resistance is 

mediated by a mechanism that does not change the environmental 

concentration of antibiotic – such as efflux pumps, alteration of target site or 

target site protection via antibiotic release (Dönhöfer et al., 2012; Rahman et al., 

2017) – the benefit of resistance is purely directed towards the resistant cell. In 

contrast, enzymatic inactivation of an antibiotic, such as by β-lactamases or 

acetyltransferases, decrease the local concentration of antibiotic. This provides 

high levels of resistance to the producers but also lowers the environmental 

concentration of antibiotic and thereby allows some sensitive cells to persist in 

the population, providing collective resistance (Dugatkin et al., 2005; Sorg et al., 

2016; Yurtsev et al., 2013). Recent experimental studies suggest that this 

difference in the mechanism of antibiotic resistance alters the concentration of 

antibiotic required to select for resistance in mixed populations containing 

resistant and sensitive genotypes (Bottery et al., 2016). 

 

We develop a simple mathematical model that incorporates both bacteriostatic 

and bactericidal terms, as well as modes of resistance that do or do not 

inactivate the antibiotic. The model is parameterised against published data for 

sensitive and resistant strains of Escherichia coli where resistance is provided 

by the plasmid RK2 (Bottery et al., 2016). RK2 encodes resistance genes 

against ampicillin, a bactericidal antibiotic for which resistance inactivates the 

drug, and tetracycline, a bacteriostatic antibiotic for which resistance does not 

inactivate the drug. We report that including the mode of antibiotic action and 
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mechanism of resistance in the model greatly improved its power to predict 

selection for resistance, including whether or not selection for resistance is 

frequency dependent. We extended the model to allow all combinations of mode 

of antibiotic action and mechanism of resistance and find that these properties 

interact: inactivation of bacteriostatic antibiotics was predicted to provide more 

protection to sensitive cells within a population than inactivation of bactericidal 

antibiotics.  

 

 

3.3 Methods 
 

3.3.1 Theory 

The model presented here builds upon a within-host PK-PD framework, to 

explore the population dynamics of a mixed population containing both antibiotic 

sensitive and resistant bacteria (Jacobs et al., 2016). The model incorporates 

two different modes of antibiotic action, bacteriostatic which reduces the growth 

rate of cells, and bactericidal, killing cells within the model.  The model also 

includes terms describing two different mechanisms of antibiotic resistance, 

active enzymatic inactivation of the antibiotic, reducing the environmental 

concentration of the antibiotic, and resistance whereby the concentration of 

antibiotic in the environment remains unchanged. The interactions between the 

different components of the model are summarised in Figure 3.1. 

 

The model system tracks two sub-populations of bacteria: antibiotic sensitive 

plasmid free bacteria (𝑆) and antibiotic resistant plasmid containing bacteria 

(𝑅). Both stains are inhibited to a greater or lesser degree by the concentration 

of antibiotic within the system (𝐴). The bacterial population dynamics when 

under antibiotic treatment, are described by the following set of differential 

equations: 

 

d𝑆
d𝑡

= 𝛼 −
𝐾𝑚𝑎𝑥!" ∙ 𝐴!

(𝐾𝐴!"!")! + 𝐴!
𝑆 1 −

𝑆 + 𝑅
𝐾

−
𝐾𝑚𝑎𝑥!" ∙ 𝐴!

(𝐾𝐴!"!")! + 𝐴!
𝑆  

(1) 

d𝑅
d𝑡

= 𝛽 −
𝐾𝑚𝑎𝑥!" ∙ 𝐴!

(𝐾𝐴!"!")! + 𝐴!
𝑅 1 −

𝑆 + 𝑅
𝐾

−
𝐾𝑚𝑎𝑥!" ∙ 𝐴!

(𝐾𝐴!"!")! + 𝐴!
𝑅  

(2) 
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And the change in concentration of antibiotic within the system is given by the 

following: 
d𝐴
d𝑡

= −𝑅
𝑉!"# ∙ 𝐴
𝑘! + 𝐴

 (3) 

 

 

Equations (1-3) aim to understand the population dynamics within a microcosm, 

where nutrient availability is limited, resulting in the bacterial population reaching 

stationary phase within 24 hours. We therefore implemented growth of the two 

sub-populations as logistic terms with a combined carrying capacity K, with 

growth rates for S and R as α and β respectively. As carriage of resistance 

plasmid is often costly (Andersson and Levin, 1999; Baltrus, 2013; Bergstrom et 

al., 2000) we imposed a cost c to the growth rate of resistance cells so that 

𝛽 = 1 − 𝑐 𝛼. 

 

 
 

Figure 3.1 | Summary of interactions within the mass action model. Sub-

populations of antibiotic-sensitive plasmid-free 𝑆 and antibiotic-resistant 

plasmid-containing 𝑅 compete, with growth limited by the combined carrying 

capacity 𝐾 of the system. Both 𝑆 and 𝑅 are inhibited by the concentration of 

antibiotic 𝐴 within the system but sensitive cells are affected to a greater extent. 

The antibiotic can either reduce the growth rates 𝛼 and 𝛽, simulating a 

bacteriostatic, or directly remove cells from the model, simulating a bactericidal 

antibiotic. Resistance to the antibiotic is implemented through a higher 𝐾𝐴!" 

than the sensitive population, with cooperative resistance also degrading the 

antibiotic within the system through a Michaelis-Menten kinetic term. 
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The affect of antibiotic upon bacterial growth depends upon the type of antibiotic 

administered. We implemented a bacteriostatic term in equations (1) and (2) as 

a Hill function reducing the growth rate of each bacteria type, (𝐾𝑚𝑎𝑥!" ∙

𝐴!)/((𝐾𝐴!"!")! + 𝐴!), dependent on 𝐾𝑚𝑎𝑥!" the maximum reduction in growth 

rate and 𝐾𝐴!"!" the concentration of antibiotic required to achieve 50% of 

𝐾𝑚𝑎𝑥!" and the Hill coefficient 𝑚, for 𝑖 = 𝑆,𝑅. The distinguishing factor between 

resistance and sensitivity to the bacteriostatic antibiotic was 𝐾𝐴!"!", we assume 

𝐾𝐴!"!" > 𝐾𝐴!"!" representing a lower probability of the antibiotic reaching its 

target in resistance cells. A bactericidal term was implemented as a killing rate, 

removing each bacteria type from the system according to the function 

(𝐾𝑚𝑎𝑥!" ∙ 𝐴!)/((𝐾𝐴!"!")! + 𝐴!)𝑖, subject to a maximum kill rate 𝐾𝑚𝑎𝑥!", the 

concentration of antibiotic at which 50% of the maximum effect, 𝐾𝐴!"!", and the 

Hill coefficient, 𝑛, for 𝑖 = 𝑆,𝑅. The killing rate was assumed to be equal between 

the sensitive and resistant populations, however the concentration of antibiotic 

which yielded 50% of 𝐾𝑚𝑎𝑥!" differed between the two strains, with 𝐾𝐴!"!" >

𝐾𝐴!"!" (Jacobs et al., 2016).  

 

Differentiating resistant and sensitive sub-populations purely through the 

parameters of the antibiotic terms as described above results in resistance that 

is completely privatised, i.e. the benefit of resistance is purely directed towards 

the resistant cells within the population. However, resistance mechanisms that 

inactivate the antibiotic change the local concentration of antibiotic, and 

therefore may alter the selection pressure upon resistant cells within a mixed 

population (Bottery et al., 2016; Livermore, 1997; Nikaido and Normark, 1987; 

Yurtsev et al., 2013). To model the inactivation antibiotic we implemented a 

Michaelis-Menten kinetic term with a per cell maximum achievable antibiotic 

degradation rate (𝑉!"#) and a Michaelis constant (𝑘!) describing the antibiotic 

concentration at which half of 𝑉!"# is achieved.  

 

The equations were solved numerically in R(3.3.3) using the LSODA method 

within the {deSolve} package (Soetaert et al., 2010). Relative fitness (𝑊!) of 

resistant population was calculated by direct comparison of the Malthusian 

growth parameters using the following equation (Lenski et al., 1991): 
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𝑊! =
ln 𝑁!"

𝑁!!
ln 𝑁!"

𝑁!!

 
(4) 

 

 

Where 𝑁!" and 𝑁!! are the population densities of resistance cells at time t and 

0 respectively and, 𝑁!" and 𝑁!! are the sensitive population densities at time 

point t and 0 respectively. 

 

3.3.2 Estimation of Model Parameters 

Each function within the model was parameterised independently using either in 

vitro observations, model fitting to previously acquired experimental data, or 

literature values. The logistic growth terms for sensitive bacteria were derived 

from growth experiments of E. coli in the absence of antibiotic, with the cost of 

harbouring the plasmid estimated through direct competition. The effect of each 

antibiotic upon the bacteria was parameterised through fitting to MIC curves. 

The inactivation rates of ampicillin by the RK2 plasmid encoded TEM-1 β-

lactamase were predicted from literature values. Table 3.1 summarises the 

parameters used in the model. 

 

The sensitive bacterial growth rate, 𝛼, was estimated from bacterial growth 

curves conducted in 96 well plates, 100ul cultures in Oxoid Nutrient Broth. The 

doubling time was estimated during logistic growth between 𝑇! = 120 minutes 

and 𝑇! = 240 minutes post inoculation using the following formula: 𝑔 = 1/

[(log 𝑁! − log(𝑁!))/(log 2 ∙ (𝑇! − 𝑇!))] where 𝑁! is the optical density at 𝑇!, 𝑁! is 

the optical density at 𝑇!. The fitness cost (𝑐) of plasmid carriage is ~20% as 

measure through direct competition between isogenic plasmid free and plasmid 

containing bacteria in the absence of antibiotics, the growth rate 𝛽 of resistant 

cells estimated as 1 − 𝑐 𝛼. The carrying capacity after 24 hours growth in 5ml 

nutrient broth is approximately 109 cells ml-1 when sensitive and resistant cells 

are grown in co-culture.  
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Table 3.1 | Parameter notation and estimated values used in mass action 

model. References: 1. Bottery et al. (2016), 2. Nikaido and Normark (1987), 3. 

Livermore (1997), 4. Suvorov et al. (2007). 

Parameter Description Units Value Source 

𝛼 Growth rate of sensitive plasmid 

free bacteria 

h-1  1.25 This study 

𝑐 Fitness cost of resistance -  0.2 1 

𝛽 Growth rate of resistant plasmid 

carrying bacteria, 1 − 𝑐 𝛼 

h-1  1.0  

𝐾 Carrying capacity  cells ml-1  109 This study 

𝐾𝑚𝑎𝑥!"  Maximum growth reduction of 

sensitive bacteria, bacteriostatic 

h-1 Tet 1.25 This study 

𝐾𝑚𝑎𝑥!"  Maximum growth reduction of 

resistant bacteria, bacteriostatic 

h-1 Tet 1.0 This study 

𝐾𝐴!"!"  Antibiotic concentration required 

for half reduction in growth rate 

of sensitive bacteria 

µg ml-1 Tet 0.08 Fitted 

𝐾𝐴!"!" Antibiotic concentration required 

for half reduction in growth rate 

of resistant bacteria 

µg ml-1 Tet 10.6 Fitted 

𝑚 Hill coefficient of antibiotic 

growth reduction term 

- Tet 1.0 Fitted 

𝐾𝑚𝑎𝑥!" Maximum killing rate of sensitive 

bacteria, bactericidal 

h-1 Amp 1.5 Fitted 

𝐾𝑚𝑎𝑥!"  Maximum killing rate of resistant 

bacteria, bactericidal 

h-1 Amp 1.5 This study 

𝐾𝐴!"!" Antibiotic concentration require 

for half maximum death rate of 

sensitive bacteria 

µg ml-1 Amp 4.5 This study 

𝐾𝐴!"!" Antibiotic concentration require 

for half maximum death rate of 

resistant bacteria 

µg ml-1 Amp 3200 Fitted 

𝑛 Hill coefficient of antibiotic death 

term 

- Amp 1.6 Fitted 

𝑉!"#  Maximum antibiotic inactivation 

rate 

µg h-1 cell-1 Amp 9.2×10-6 2  

Tet 0  

𝑘!  Antibiotic concentration for half 

maximum inactivation rate 

µg ml-1 Amp 12.9 2, 3, 4 

Tet 0  
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The antibiotic effect terms were parameterised against the MIC curves from 

Bottery et al. (2016). As ampicillin causes the lysis of cells, we assumed 

ampicillin to have a purely bactericidal effect in the model. Half the concentration 

of ampicillin required to reduce growth by half (𝐾𝐴!"!") was estimated from the 

sensitive plasmid free MIC curve as 4.5 µg ml-1. The maximum achievable death 

rate (𝐾𝑚𝑎𝑥!") and Hill coefficient (𝑛) for sensitive cells exposed to ampicillin 

were estimated by fitting simulated death curves of sensitive cells grown in 

monoculture to the MIC data, while keeping the growth rate and carrying 

capacity fixed, along with inactivation rates at zero. As the ampicillin MIC of 

plasmid containing resistant cells is greater than 4 mg ml-1, 𝐾𝐴!"!" was 

parameterised as the minimum value required to achieve growth to within 10% 

of 𝐾 at 4 mg ml-1 ampicillin. Tetracycline binds to the 50S ribosomal subunit 

lowing the growth rate of bacteria; therefore we assumed tetracycline to have a 

purely bacteriostatic effect within the model. Unlike the bactericidal term, the 

𝐾𝐴!" within the bacteriostatic term cannot be directly estimated from the MIC 

curves of tetracycline, as the concentration required to reduce growth rate by 

half may not result in the population density reducing by half after 24 hours 

growth. 𝐾𝑚𝑎𝑥!" for each strain was assumed to be equal to the maximum 

growth rate of the bacteria. 𝐾𝐴!"!" and Hill coefficient (𝑚) was estimated 

through fitting the simulated growth in monoculture to death curves keeping all 

other parameters static. Minimising RMSE and maximising R2 determined best 

predictions for fitted values. 

 

Parameter values for the hydrolysis of ampicillin where taken from literature 

estimations of plasmid encoded TEM-1 β-lactamase. The typical 𝐾!"# value 

associated with the inactivation of ampicillin by a single TEM-1 molecule is 

~1000 s-1 (Nikaido and Normark, 1987; Stojanoski et al., 2015; Zimmermann 

and Rosselet, 1977) with a 𝑘! value of 12.9 µg ml-1 (Nikaido and Normark, 

1987). To estimate 𝑉!"# per cell, an estimate of the number of β-lactamase 

molecules per cell is required; a previous study estimated that a high copy 

number plasmid with a MIC of 16 mg ml-1 had ~7300 TEM-1 molecules per cell, 

whereas a low copy number plasmid with an MIC of 4 mg ml-1 produced five 

times less TEM-1 molecules (Suvorov et al., 2007). The RK2 plasmid provides 

sufficient resistant to survive at 4 mg ml-1 of ampicillin, having an MIC of 

approximately 9 mg ml-1 (Fang and Helinski, 1991), therefore an intermediate 

value of ~4400 TEM molecules per cell was estimated, resulting in a 𝑉!"# of 
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9.2×10-6 µg h-1 cell-1. The starting conditions of simulations were chosen to 

reflect laboratory competition experiments, within an initial total cell density of 

5×105 cell ml-1. Models were iterated for a simulated 24 hours. Antibiotic was 

applied in a single dose at the start of the simulation and is simulated to be 

homogenously distributed throughout the environment. 

 

Using the fitted parameter values, the concentration of antibiotic required to 

select for resistance was predicted. Simulations were initiated with a 50:50 co-

culture of both sensitive and resistant sub-populations with a single dose of 

antibiotic. Mathematical solutions to the models were calculated over 24 hrs of 

growth, and the final density of both sub-populations were use to calculate the 

relative fitness of the resistant population using equation (4). This was 

conducted over a range of antibiotic concentrations to produce fitness reaction 

norms (Figure 3.2). These predicted fitness reaction norms were then compared 

to previously published, experimentally derived fitness reaction norms (Bottery 

et al., 2016). To account for the different MICs of the two antibiotics we 

examined the impact of antibiotic concentrations as percentage of sensitive 

bacteria’s MIC (% of 𝑆 MIC). 

 

 

3.4 Results 
 

3.4.1 Model fitting 

The parameters of the death terms were fitted to previously published MIC data 

(Bottery et al., 2016). Tetracycline was modelled to have a purely bacteriostatic 

effect; lowering the growth rate of cells. As the sufficient quantities of 

tetracycline were able to reduce all growth of both resistant and sensitive cells to 

zero (Figure S3.1 A/B), 𝐾𝑚𝑎𝑥!" was parameterised as the maximum achievable 

growth rate for each strain. Values for 𝐾𝐴!"!" were predicted through fitting to 

MIC curves (Figure S3.1A/B), the fit describes the MIC of resistant monoculture 

well, with a R2 value of 0.99 and RMSE of 0.03. However, the fit for sensitive 

cells over estimated the concentration of tetracycline required to have an effect 

on the population density, producing a poorer fit with a R2 value of 0.81 and 

RMSE of 0.12.  
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The parameter fit to the ampicillin sensitive MIC curve using a death term results 

in a high precision fit with a R2 value of 0.98 and RMSE of 0.04 (Figure S3.1 C). 

As the MIC of resistant cells was not determined it was not possible to fit the 

model to this curve (Figure S3.1 D), therefore the death rate was assumed to be 

equal to the parameterised value for sensitive cells under ampicillin treatment 

and the 𝐾𝐴!"!" term was estimated as a value that provides growth at 4 mg ml-1 

of ampicillin. With these values of 𝐾𝑚𝑎𝑥!" and 𝐾𝐴!"!" along with the ampicillin 

inactivation rate estimated form literature values, the resistant cells were 

predicted to have a MIC of 4800 µg ml-1. This is likely an underestimate of the 

level of resistance provide by the RK2 plasmid (Fang and Helinski, 1991), 

however the value of 𝐾𝐴!"!" had very little effect on the qualitative output of the 

mathematical model. β-lactamase accumulates within the periplasmic space of 

gram-negative bacteria (Bowden and Georgiou, 1990; Livermore, 1995); 

although some extracellular release may occur due to leakage, degradation of 

the antibiotic mostly occurs locally to the resistant cell and resistance is still 

primarily directed towards the resistant population.  Therefore, when the 

mechanism of resistance is through the inactivation of antibiotic, we assume 

𝐾𝐴!"!" remains greater than 𝐾𝐴!"!", reflecting the decreased chance of the 

antibiotic molecule reaching its target. This acts to partly privatise the resistance 

to the resistant population, without adding further spatial complexity e.g. 

diffusion across the cell wall to the model. Without this privatisation (𝐾𝐴!"!" =

 𝐾𝐴!"!"), inactivation of ampicillin alone at the parameterised rates would 

provide resistance to 46 µg ml-1 ampicillin. Under the assumption of 𝐾𝐴!"!" =

 𝐾𝐴!"!", resistance would be completely communal, providing equal benefit to 

both resistant and sensitive bacterial sub-populations. 

 

3.4.2 Antibiotic Resistance Selection Reaction Norms 

Tetracycline resistance is modelled purely with an increased 𝐾𝐴!"!" reflecting 

the complete privatisation of resistance encoded via an efflux pump on the RK2 

plasmid. This results in the bacterial population having no influence on the 

concentration of antibiotic within the system. Whereas, ampicillin resistance also 

included an inactivation term, reducing the global concentration of antibiotic 

based on the population size of 𝑅. The difference in resistance mechanism 

resulted in different relative concentrations of antibiotic being required to select 

for resistance (Figure 3.2).  The model accurately predicted the fitness reaction 

norm when the RK2 plasmid was under tetracycline selection with a R2 fit of 
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0.92.  Just 1% of the sensitive MIC of tetracycline (20 ng ml-1) was required to 

select for resistance.  

 

 
 

Figure 3.2 | Simulated relative fitness of plasmid carriage, calculated from the 

numerical solution to models (1)-(3), of resistant population (𝑅) after 24 hr 

growth in competition with sensitive bacteria (𝑆) starting at equal densities. 

Simulations were initiated with increasing antibiotic (𝐴) concentrations of A 

tetracycline or B ampicillin. Dotted line in panel B represents simulated relative 

fitness of 𝑅 when there is no cooperative inactivation of antibiotic by the 𝑅 sub-

population (𝑉!"# = 0). Concentration of antibiotic is labelled as a percentage of 

𝑆 MIC (tetracycline 2 µg ml-1 and ampicillin 9 µg ml-1). Horizontal black line 

represents equal fitness between 𝑅 and 𝑆 (relative fitness = 1), vertical dashed 

lines show the models prediction of the intercept of 1, and the vertical solid line 

shows the experimentally determined intercept of 1. 

 

 

The models fit to the ampicillin fitness reaction norm was less accurate, it did not 

capture the plateau in plasmid cost at low concentrations of ampicillin observed 

in the experimental data, and underestimated the concentration of ampicillin 

required to select for resistance, resulting in a R2 of 0.67. This less accurate fit 

reflects the increased complexity of the ampicillin model, and may be due to 

inaccurate parameterisation of either the inactivation rate of ampicillin, or the 

parameterised death curve not reflecting the true dynamics in co-culture. An 

inactivation rate of 1.52 × 105 (approximately 7300 beta-lactamase molecules 

per cell, similar to high copy number TEM-1 encoding plasmids (Suvorov et al., 

2007)) was required to produce the same relative fitness intercept of 1 as the 

experimental data, but the shape of the curve did not reflect the data, having an 

poorer R2 fit of 0.58. Increasing the Hill coefficient while maintaining the same 
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MIC (𝐾𝐴!"!" = 6.2, 𝐾𝑚𝑎𝑥!" = 1.6, 𝑛 = 6) produced an improved R2 fit of 0.82 

(Figure 3.3). However, the originally parameterised model still predicts a much 

higher relative concentration of ampicillin is required to select for resistance, 

77% of the sensitive MIC (6.9 µg ml-1), with co-culture allowing positive growth 

of sensitive cells beyond their MIC. When the inactivation rate is set to zero 

within the model, the concentration of ampicillin required to select for resistance 

is reduced to 8% of the sensitive MIC, confirming that the inactivation of 

ampicillin is providing the protection to sensitive bacteria (Figure 3.2 B). 

 

 

 
Figure 3.3 | Best simulated fit to experimental relative fitness of 𝑅 when in 

competition with 𝑆 across ampicillin concentration gradient. Horizontal black line 

represents equal fitness between 𝑅 and 𝑆, vertical solid line shows the 

experimentally observed intercept of 1. Model parameters: 𝐾𝐴!"!" = 6.2, 

𝐾𝑚𝑎𝑥!" = 1.6, 𝑛 = 6. 

 

 

Treatment with tetracycline provides a constant positive selective pressure for 

resistance throughout logistic growth (Figure 3.4A), as the environmental 

concentration of antibiotic remains unchanged (Figure 3.4B). Tetracycline has 

no effect after the population reaches 𝐾, resulting in a linear fitness reaction 

norm with very low levels of antibiotic required to overcome the cost of 

resistance. In contrast, the population dynamics resulting from ampicillin 

selection are more complex. Upon inoculation there is strong selection for 

resistance while the concentration of antibiotic is high (Figure 3.4C). This 

increases the frequency of resistance within the population, but also increases 

the effective inactivation rate of ampicillin, resulting in a lower environmental 

concentration of antibiotic (Figure 3.4D). This phenomenon scales with the initial 

concentration of antibiotic, meaning that the higher the initial concentration of 
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ampicillin, the stronger the selection for resistance, resulting in faster 

inactivation of the antibiotic. The reduction in the environmental concentration of 

ampicillin allows the reinvasion of sensitive cells back into the population. 

However, as ampicillin is a bactericidal, reinvasion can only occur so long as the 

initial transient selection is not strong enough to cause the extinction of the 

sensitive sub-population. Reinvasion is also limited by the rate of inactivation of 

the antibiotic, and can only occur when ampicillin is inactivated to sufficient 

levels before the population reaches 𝐾.  

 

 

 
Figure 3.4 | Simulated population dynamics predicted from numerical solutions 

of models (1) – (3) presented in Figure 3.3. Panels A and C show change 

frequency of 𝑅 through time in response to antibiotic selection. Panels B and D 

show change in frequency of 𝑅 plotted against antibiotic concentration. Arrows 

are located every hour for the first three hours, indicating the passage of time for 

each simulation. Line colour represents the starting concentration of antibiotic 

used within each simulation. Points show the final frequency of 𝑅 at t = 24 hr.  
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To test the predictive power of the model we went on to predict the fitness 

surface in response to co-treatment with both ampicillin and tetracycline. The 

model confirms the empirical results found by Bottery et al. (2016)  showing 

treatment with tetracycline can mask the benefits of the social resistance 

mechanism, causing lower concentration of both ampicillin and tetracycline to 

select for resistance (Figure 3.5). 

 

 

 
Figure 3.5 | Simulated relative fitness of 𝑅 under combinatorial selection with 

both ampicillin and tetracycline. Black line shows intercept of 1 (equal fitness). 

Relative fitness of 0.9, 1.1, 1.2 and 1.3 labelled in grey.  

 

 

3.4.3 Frequency dependence 

It is expected that the relative fitness of non-cooperating cheaters within a 

microbial population will be greater when rare (Dugatkin et al., 2005; Ellis et al., 

2007; Ross-Gillespie et al., 2007). Experimental data shows that selection for 

ampicillin resistance mediated by a β-lactamase is negatively frequency 

dependent (Chapter 2, section 2.4.3, Figure 2.4). In contrast, selection for 

tetracycline resistance encoded by an efflux pump is not frequency dependent 

(Chapter 2, section 2.4.3, Figure 2.4). 

 

Consistent with previous findings, the model predicts that selection for 

tetracycline resistance via efflux is not frequency dependent (Figure 3.6B). The 
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concentration of tetracycline required to select for resistance remained at 1% of 

the sensitive MIC, independent of the initial frequency of resistant cells within 

the population. In contrast, the selection for ampicillin resistance showed 

negative frequency dependence (Figure 3.6A). When resistance is rare within a 

population approximately 25% of the sensitive MIC is required to select for 

resistance, whereas, then sensitive cells are rare over 100% of the sensitive 

MIC is required to select for resistance. The survival of sensitive cells is 

dependent upon the frequency of resistant cells within the population when 

under ampicillin treatment. When resistance is rare, the effective inactivation 

rate is low, resulting in more continuous selection for resistance. The extent that 

frequency alters the selection conditions may be dependent upon the 

localisation of the benefit produced; it is expected that frequency dependence 

would be favoured when the public good is preferentially directed towards the 

co-operators (Ross-Gillespie et al., 2007). In the case of ampicillin resistance, 

preferential access to resistance is provided by the localisation of the β-

lactamase in the periplasm of resistant cells, is reflected in the model by partial 

privatisation of resistance (𝐾𝐴!"!" >  𝐾𝐴!"!").  

 

 

 
Figure 3.6 | Simulated relative fitness of 𝑅 with varying antibiotic concentration 

(A ampicillin and B tetracycline) and starting frequency of 𝑅 (starting 𝑅 from 

0.01 to 0.99). Black line shows intercept of 1 (equal fitness). Relative fitness of 

0.9, 1.1, 1.2 and 1.3 labelled in grey.  
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3.4.4 Predicting the interaction between mode of antibiotic action and 

mechanism of resistance 

The results show that inclusion of the mechanism of resistance, whether the 

antibiotic is inactivated by the resistant population or not, is required to 

accurately predict the selection of resistance. We now examine the potential 

interaction between the mechanisms of resistance and the mode of antibiotic 

action. By determining the fitness landscape of resistance across hypothetical 

inactivation rates for ampicillin and tetracycline we can predict how the mode of 

action of the antibiotic affects the selection of resistance. Figure 3.7 shows the 

effect of varying inactivation rate of ampicillin on the relative fitness of the 

resistance sub-population. A higher inactivation rate results in higher 

concentrations of ampicillin required to select for resistance, but this effect 

becomes saturated, with less gain as the inactivation rate increases. However, 

the dynamics of selection with cooperative inactivation of a bacteriostatic, such 

as tetracycline, differ greatly from those of the bactericidal (Figure 3.8). 

Increasing the inactivation rate of tetracycline provides an increasing benefit for 

sensitive cells. Cooperative resistance may therefore be more beneficial when 

the antibiotic target is a bacteriostatic rather than a bactericidal.  

 

 

 
 

Figure 3.7 | Simulated relative fitness of 𝑅 with varying ampicillin concentration 

and inactivation rate. 𝑉!"# = 0 Is omitted from plot and is presented in Figure 

3.4B. Black line shows intercept of 1 (equal fitness). 
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Figure 3.8 | Simulated relative fitness of 𝑅 with varying tetracycline 

concentration and inactivation rate. 𝑉!"# = 0 Is omitted from plot and is 

presented in Figure 3.3A. Black line shows intercept of 1 (equal fitness). 

 

 
3.5 Discussion 
 
PK-PD models are commonly used to predict the outcome of drug treatments in 

order to optimise the clinical effectiveness of antibiotic regimens (Chung et al., 

2006; Czock and Keller, 2007; Mouton et al., 1997). These models often have 

simple approximations of mechanism of resistance and action of antibiotics. 

However, recent studies have shown that biological details, such as the 

mechanism of resistance and mode of action of antibiotic, can alter the selective 

conditions of resistance (Bottery et al., 2016; Sorg et al., 2016; Yurtsev et al., 

2013), aspects which are often overlooked in PK-PD models. Here we show 

that, without an accurate representation of these details of antibiotic resistance, 

the effectiveness of PK-PD models, when used to predict the evolution of 

resistance, is limited.  

 

We presented a model of bacterial population dynamics that incorporated terms 

describing both the mechanism of resistance and mode of action of antibiotics, 

allowing the distinction of bacteriostatic and bactericidal antibiotics as well as 

resistance mechanisms that do and don’t inactivate antibiotics. Through the 

inclusion of these terms, our models can more accurately predict the antibiotic 

concentrations required to select for resistance. Firstly, the inactivation of 



	 64 

antibiotics by a resistant sub-population can allow sensitive cells to survive at 

concentrations of antibiotic alone would usually kill them. These results can only 

be reliably replicated through the inclusion of antibiotic inactivation terms within 

a model, as the rapid inactivation of antibiotic within an environment by resistant 

cells is the driving factor shaping the selection of resistance. Secondly, the 

model accurately predicts that the mechanism of resistance alters the frequency 

dependence of selection. The predictions of the model are consistent with 

experimental data showing that the selection for bacteria harbouring resistance 

mechanisms that do not alter the environmental concentration of antibiotic, such 

as efflux pumps, is independent from the frequency of resistant bacteria within 

the population. Whereas, resistances that inactivate antibiotics, such as β-

lactamases, are negative frequency dependent; i.e. selection for resistant 

bacteria is stronger when they are rare.  

 

Given the models strong predictive power of the social interaction mediated by 

antibiotic resistance mechanism, we sought to explore the theoretical interaction 

between mode of antibiotic action and mechanism of resistance. The model 

predicts that these properties interact; whereby, inactivation of bacteriostatic 

antibiotics by resistant bacteria provides greater protection to sensitive bacteria 

within a population than the inactivation of bactericidal antibiotics. As 

bacteriostatic antibiotics simply reduce the growth rate of sensitive cells, they 

are initially out grown by the resistant population rather than being actively killed 

as would be the case when under selection by a bactericidal antibiotic. This 

results in a more effective reinvasion of sensitive cells once the antibiotic it is 

cleared from the environment. Thus, the model provides a testable hypothesis 

that mode of action of an antibiotic influences the invasion of resistance within 

bacterial populations, and may help to explain the rarity of resistance 

mechanisms that inactivate tetracycline (Forsberg et al., 2015).  

 

The proposed model has limitations, the effect of antibiotics upon bacteria are 

not purely bacteriostatic, or bactericidal, and are often weighted combinations of 

the two or concentration dependent. More accurate parameterisation of the 

weightings of a specific antibiotic towards the –static or –cidal terms can be 

achieved by fitting to time course data. However, data presented here suggests 

that fitting pure –static or –cidal terms to MIC curves provide an adequate 

approximation allowing the accurate prediction of social dynamics upon the 

selection of resistance. We use tetracycline and ampicillin ARGs as examples, 
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but the model in not specific to these antibiotics or resistance mechanisms, and 

can be applied to any antibiotic. Despite these limitations, our model shows that 

a systematic understanding of the nature of the action of existing antibiotics and 

their resistance mechanisms is needed to permit reliable mathematical 

modelling of the impact of AMR. 

 

The model highlights that the mode of antibiotic action and resistance can have 

major implications on the evolutionary and ecological outcomes of antibiotic 

selection. To accurately predict the selection and maintenance of resistance 

within a bacterial population, whether encoded on a MDR plasmid or 

chromosomally, a clear understanding of the sociality of resistance and impact 

of antibiotic mode of action are required. 
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4. Adaptive Modulation of Antibiotic Resistance Through 
Intragenomic Coevolution 
 

The following chapter has been published as: Bottery, M.J., Wood, A.J., and 

Brockhurst, M.A. (2017). Adaptive modulation of antibiotic resistance through 

intragenomic coevolution. Nat. Ecol. Evol. 1, 1364–1369. M.A.B. and A.J.W. 

supervised the project. M.J.B. performed the experiments and analysed the 

data. All authors contributed towards the design of the study and wrote the 

manuscript. 

 

4.1 Abstract 
Bacteria gain antibiotic resistance genes by horizontal acquisition of mobile 

genetic elements (MGE) from other lineages. Newly acquired MGEs are often 

poorly adapted causing intragenomic conflicts, resolved by compensatory 

adaptation of the chromosome, the MGE or reciprocal coadaptation. The 

footprints of such intragenomic coevolution are present in bacterial genomes, 

suggesting an important role promoting genomic integration of horizontally 

acquired genes, but direct experimental evidence of the process is limited. Here 

we show adaptive modulation of tetracycline resistance via intragenomic 

coevolution between Escherichia coli and the multi-drug resistant (MDR) 

plasmid RK2. Tetracycline treatments, including monotherapy or combination 

therapies with ampicillin, favoured de novo chromosomal resistance mutations 

coupled with mutations on RK2 impairing the plasmid-encoded tetracycline 

efflux-pump. These mutations together provided increased tetracycline 

resistance at reduced cost. Additionally, the chromosomal resistance mutations 

conferred cross-resistance to chloramphenicol. Reciprocal coadaptation was not 

observed under ampicillin-only or no antibiotic selection. Intragenomic 

coevolution can create genomes comprised of multiple replicons that together 

provide high-level, low-cost resistance, but the resulting co-dependence may 

limit the spread of co-adapted MGEs to other lineages.   

 

 

4.2 Introduction 
 
Horizontal gene transfer (HGT) is a fundamental process in bacterial evolution 

that accelerates adaptation by sharing ecologically important accessory traits 
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between lineages (Jain et al., 2003). These accessory traits are themselves 

frequently located on semi-autonomous mobile genetic elements (MGE), such 

as conjugative plasmids, that encode genes for their own replication, partition 

and horizontal transfer (Frost et al., 2005; Norman et al., 2009). Conjugative 

multidrug resistance (MDR) plasmids, encoding antibiotic resistance genes 

(ARGs) against multiple classes of antibiotics, are of particular clinical concern 

since they allow instantaneous acquisition of MDR phenotypes and thus 

potentiate the rapid emergence of MDR bacterial pathogens (Carattoli, 2013; 

Svara and Rankin, 2011). Newly acquired conjugative plasmids are often costly 

since the plasmid is unlikely to be well adapted to the new genetic background, 

causing intragenomic conflict (Baltrus, 2013). The cost of plasmid carriage is 

likely to arise due to the metabolic burden of maintaining, transcribing and 

translating plasmid genes (Diaz Ricci and Hernández, 2000), as well as via 

disruption of cellular homeostasis caused by gene regulatory interference 

between chromosomal and plasmid regulators (Harrison et al., 2015; San Millan 

et al., 2015), and cytotoxic effects of plasmid gene products (Baltrus, 2013).  

 

An important route to resolving this intragenomic conflict is compensatory 

evolution to ameliorate the cost of plasmid acquisition (Harrison and Brockhurst, 

2012). Experimental evolution suggests that compensatory evolution can arise 

via mutations located on either the chromosome or the plasmid, or via 

intragenomic coevolution involving both plasmid and chromosome mutations 

(Harrison et al., 2015; Loftie-Eaton et al., 2016; Porse et al., 2016; San Millan et 

al., 2015). Comparative genomics suggests a key role for compensatory 

evolution in natural bacterial populations, potentially stabilising MDR plasmids 

within lineages and thus allowing the evolutionary emergence by HGT of MDR 

pathogens (McNally et al., 2016). A key outstanding question is how the mode 

of compensatory evolution following MDR plasmid acquisition varies with 

antibiotic treatment. Here we experimentally evolved Escherichia coli MG1655 

carrying the MDR plasmid RK2 (encoding tetracycline and ampicillin resistance 

genes) under a range of antibiotic treatment regimes including no antibiotic, 

mono- and combination-therapies of tetracycline and ampicillin. Following 530 

generations of selection we quantified evolved changes in antibiotic resistance 

and fitness, and used genome sequencing to determine the genetic bases of the 

observed adaptation.  
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4.3 Methods 
 

4.3.1 Strains, culture conditions and evolution experiment 

E. coli MG1655 chromosomally labelled with GFP at the attB lambda attachment 

site was used in the evolution experiments. Isogenic E. coli MG1655-mCherry 

was used as a reference strain in competition experiments. Both E. coli strains 

were provided by the Van Der Woude lab (University of York). The RK2 plasmid 

was introduced to the strains through conjugation from E. coli MV10 provided by 

the Thomas lab (University of Birmingham). All cultures were grown in Oxoid® 

Nutrient Broth (NB) at 37°C 5 ml in 50 ml microcosms shaken at 180 rpm. 

Independent selection lines were founded by 30 independent single colonies of 

E. coli MG1655-GFP harbouring RK2. These were grown overnight in non-

selective conditions and split into the 5 antibiotic treatments, no antibiotic 

selection, 100 µg ml-1 ampicillin, 10 µg ml-1 tetracycline, 100 µg ml-1 ampicillin 

plus 10 µg ml-1 tetracycline, and 24 hour cycling between 100 µg ml-1 ampicillin 

and 10 µg ml-1 tetracycline, with 6 replicate populations per treatment. In 

parallel, 6 independent E. coli MG1655-GFP colonies were picked for control 

treatments and grown under no selection. Selection lines were established by 

transferring 50 µl of saturated overnight culture into 5 ml of selective media. 

These populations were maintained through transfer of 1% of the population into 

fresh media and antibiotics every 24 hours for 80 transfers, resulting in ~6.64 

generations per day, totalling ~530 bacterial generations. For the cycling 

treatment 3 populations were initiated with 100 µg ml-1 ampicillin and 3 

populations were initiated with 10 µg ml-1 tetracycline. Culture density (OD600) 

was recorded every 24 hours. Plasmid prevalence was measure at the start and 

end of the selection experiment by screening 20 randomly picked colonies from 

each population using multiplex primers specific to RK2 replication origin (Fw: 

ctcatctgtcaacgccgc, Rv: aaccggctatgtcgtgct), β-lactamase (Fw: 

ataactacgatacgggagggc, Rv: acatttccgtgtcgccctta), and tetracycline efflux pump 

(Fw: tgggttctctatatcgggcg, Rv: tgggcgagtgaatgcagaat). These primers allowed 

for the detection of plasmid loss and transposition of resistances onto the 

chromosome. One end point clone was randomly selected from each population 

for phenotypic typing, curing, calculation of MICs and sequencing. Every eight 

transfers throughout the experiment 500 µl samples of whole populations were 

collected and stored in 25% glycerol at -80°C. Whole populations were also 

plated out on non-selective media, 20 individual clones were then randomly 
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selected, sub-cultured for a further 24 hours in non-selective media, and stored 

in 25% glycerol in 96 well plates. 

 

4.3.2 Relative Fitness  

The relative fitness of the evolved plasmid bearing versus ancestral plasmid free 

strain was estimated by direct competition, with six replicate strains per-

treatment. The competitions were initiated with 50 µl of 1:1 mixtures of plasmid-

bearing evolved strain and plasmid-bearing ancestral strain marked with 

mCherry from overnight cultures in 5 ml of non-selective NB media. The relative 

fitness of the evolved strains was calculated by gaining exact viable cell counts 

at 0 hours and 24 hours, strains were distinguished through detection of 

fluorescent markers using Zeis Stereo Lumar v12 microscope. The relative 

fitness of plasmid-bearing bacteria was calculated as a ratio of Malthusian 

parameters (Crozat et al., 2005):  

𝑊!"# =
ln

𝑁!"#$%,!"#
𝑁!"!#$%,!"#

ln
𝑁!"#"$%,!"#
𝑁!"!#!$%,!"#

 

 

Fitness effects due to different markers was determined by competing plasmid 

free MG1655-GFP with plasmid free MG1655-mCherry, the relative fitness of 

MG1655-GFP was not significantly difference from 1 (t5=0.015584, p=0.9882) 

showing that there is no significant difference between the two marker strains. 

 

Relative fitness of evolved strains harbouring evolved plasmid or evolved strains 

harbouring ancestral plasmid versus ancestral plasmid bearing cells was 

estimated using the same method as above, with eighteen replicate strains per 

competition, but grown in 100 µl cultures in a 96 well plate, 37°C shaken at 600 

rpm, 3 mm orbital radius, inoculated to an initial dilution of 1:500. Again no 

fitness effect of markers was observed (t5=-0.2795, p=0.791). 

 

4.3.3 Curing RK2 from evolved strains 

Evolved strains were cured using the pCURE curing system (Hale et al., 2010). 

The anti-incP-1 cassette (RK2 oriV, parD, korA, and incC genes) from 

pCURE11 was ligated into the pLAZ2 chloramphenicol resistant vector that 

contains the sacB gene allowing counter selection for plasmid free segregants. 

The resultant plasmid was transformed into chemically competent evolved 
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strains and selected for using Cml 12.5 µg ml-1. Single colony transformants 

were re-streaked on to Cml 12.5 µg ml-1 plates and Cml 12.5 µg ml-1 + 5% 

sucrose. Sucrose sensitive colonies were checked by PCR for the presence of 

the curing plasmid (Fw: aagttttggtgactgcgctc, Rv: caaagacgatgtggtagccg) and 

absence of RK2 β-lactamase and tetA (primers as above). Successfully cured 

clones were cultured for 24 hours in non-selective media to allow segregation of 

the curing plasmid; sergeants were selected on antibiotic free, 5% sucrose 

plates. To confirm loss of both plasmids sucrose resistant colonies were 

checked for sensitivity to chloramphenicol, ampicillin, and tetracycline, as well 

as PCR using primers mentioned above. Both the ancestral strain harbouring 

RK2 and ancestral plasmid free strains under went the curing process and were 

used as a comparison to cured evolved strains to control for curing process. 

Ancestral RK2 was introduced into the cured evolved strains, and evolved RK2 

was introduced into the plasmid free ancestor through conjugation. Again, to 

control for the curing and conjugation steps, ancestral RK2 was conjugated into 

cured ancestral strains and used for comparison. Saturated overnight cultures of 

donor plasmid containing strains and recipient plasmid free strains were mixed 

1:1, and 50 µl was used to inoculate 5 ml NB. The mixed cultures were grown 

for 24 hours and plated out on to 100 µg ml-1 ampicillin to select for 

transconjugants. Transconjugants were confirmed by fluoresces and PCR 

screening for RK2 plasmid.  

 

4.3.4 Minimum inhibitory concentration 

To measure minimal inhibitory concentrations, six replicate cultures per-

treatment were grown overnight until stationary phase in 5 ml NB, the saturated 

cultures were then sub-cultured 50 µl into 5 ml fresh NB and grown to an OD600 

of 0.5. These were then diluted into 96-well plates containing a log2 serial 

dilution of antibiotic (AMP, TET or CML) to an initial density of 5×105 CFU ml-1. 

100 µl cultures were grown for 24 hours 37°C shaken at 600 rpm, 3 mm orbital 

radius. OD600 was measured after 24 hours. 

 

4.3.5 Growth Curves 

Six replicate saturated overnight cultures per-treatment were sub-cultured to an 

OD600 of 0.5, and used to inoculate 100 µl NB supplemented with 10 µg ml-1 TET 

per well in 96-well plates at a final dilution of 1:1000. Plates were grown at 37°C 

with shaking at 300 rpm, 3 mm orbital radius for 24 hours, OD600 was measured 
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every 16 minutes by Tecan infinite M200 Pro plate reader. Growth rates were 

calculated as the maximum slope of log2 transformed OD600 covering four time 

points (~1 hour of growth), lag phase was calculated to end when growth rate 

reached 10% of the maximum achieved growth rate. 

 

4.3.6 Genome sequencing and analysis 

Whole genomes were extracted from each evolved population’s clone as well as 

the ancestral strain and ancestral strain harbouring the RK2 plasmid using the 

DNeasy Blood and Tissue extraction kit (Qiagen). The total DNA was 

sequenced by MicrobesNG (http://www.microbesng.uk), which is supported by 

the BBSRC (grant number BB/L024209/1), using Illumnia MiSeq. Reads were 

mapped to E. coli MG1655 K-12 genome (GenBank accession U00096.3) and 

RK2 (GenBank accession BN000925.1) reference using BWA-MEM (Li and 

Durbin, 2009). Single nucleotide variants and small indel events were detected 

using GATK UnifiedGenotyper (McKenna et al., 2010) and SnpEff (Cingolani et 

al., 2012), insertion sequences were identified using custom scripts and 

Integrative Genomics Viewer (Robinson et al., 2011), and large genome-wide 

structural variants were detected using BreakDancer (Chen et al., 2009). 

Mutations that were present in the ancestral clones were excluded, resulting in a 

set of mutations that were acquired during the selection experiment. 

 

4.3.7 Tracking mutations 

Populations that did not show a hypermutator phenotype, had insertion 

sequences within ompF, and mutations in the tetracycline resistance genes on 

the plasmid, from the constant TET treatments (T and AT treatments) were 

selected for further analysis to gain an understanding of the mutational timeline 

during the selection experiment. Insertion sequences within ompF were 

identified within whole populations of T4, AT2, AT3 and AT5 by PCR of the 

ompF gene (Fw: ACTTCAGACCAGTAGCCCAC, Rv: 

GCGCAATATTCTGGCAGTGA). A short product of 716 bp indicated no 

insertion sequence, a long product of 1484 bp indicted IS1 and a long product of 

1911 bp indicted IS5. Whole population PCR indicated that ompF::IS mutants 

had swept into the population by transfer 40 for populations T4, AT2 and AT5, 

and transfer 48 in population AT3. Frequency of ompF insertion sequences 

were calculated by PCR of 20 clones from transfers 8, 16, 24, 32, and 40. 

Tetracycline resistance genes (tetA and tetR) from clones containing ompF::IS 



	 72 

mutations from population AT2, transfers 8, 16, 24, and 32 were then Sanger 

sequenced to determine if ompF mutations arise before tetAR mutations (tetA: 

Fw: GGCTGCAACTTTGTCATG, Rv: TTCCAACCGCACTCCTAG, Internal1: 

ACAGCGCCTTTCCTTTG, Interal2: AAGGCAAGCAGGATGTAG; tetR: Fw: 

TCTGACGCGGTGGAAAG, Rv: ACGCGCGGATTCTTTATC, Internal1: 

GAGCCTGTTCAACGGTG, Internal2: TCTGACGACACGCAAAC). 

 

4.3.8 Statistical analysis 

To test if the mutations observed within each treatment had significantly different 

variances a multivariate homogeneity of groups variances test was conducted 

(Anderson, 2006). The binary presence or absence of a variant at each allele 

was use to calculate a Euclidean distance matrix between each population. This 

was used to test for homogeneity of variances between treatments using 

betadisper {vegan 2.4-0}. The variances between treatments were significantly 

different, with hypermutators significantly affecting within-group variation. These 

clones were removed from further analysis as significant differences in within-

group variance can lead to falsely significant results when testing for differences 

between groups (Anderson, 2001). Permutational Multivariate Analysis of 

Variance was used to calculate whether different evolutionary treatments 

resulted in different sets of mutations (Anderson, 2001; Zapala and Schork, 

2006). Using the Euclidean distance matrix with hypermutators removed, the 

significance of within- and between-group distances was calculated using 

adonis2 {vegan 2.4-0}. The data was partitioned into different groups, multiple 

testing was corrected for using Bonferroni correction. Neighbour Joining 

phylogeny was constructed using the binary presence or absence table with 

hypermutators removed. Tree estimation and bootstrap support was conducted 

using ape-package {ape 4.0}. Significant difference between two related 

samples was calculated using two sided, two-sample t-test. Shapiro-Wilk test 

was conducted to check for normality, when normality could not be assumed a 

non-parametric Wilcoxon signed-rank test was used. Differences among 

treatments growth under antibiotic selection were calculated by ANOVA of the 

integral of the resistance profiles, with subsequent Tukey multiple comparison of 

means. All statistical analysis was conducted in R (version 3.2.3). 

 

 

 



	 73 

4.3.9 Data Availability 

The sequence data supporting the findings of this study are available at the 

European Nucleotide Archive, accession: PRJEB20735. All other data in this 

study is available at Figshare data depository 

(https://doi.org/10.6084/m9.figshare.5092225.v1). Custom code used to map 

possible IS elements are available online 

(https://github.com/mbottery/Co_Evo_IS_Analysis). 

 

 

4.4 Results 
 

Thirty independent isogenic populations of E. coli MG1655 carrying the MDR 

plasmid RK2 (Pansegrau et al., 1994), which encodes resistances to 

tetracycline (TET) and ampicillin (AMP), were experimentally evolved for ~530 

generations (80 days), under five antibiotic treatments (six independently 

evolving lines per treatment): no antibiotic (N), AMP (A), TET (T), AMP plus TET 

(AT), and 24 hour cycling between AMP and TET (A/T) (see methods). Plasmids 

remained at high frequency in all populations for the duration of the selection 

experiment. Plasmid-free segregants were only observed at very low frequency 

in two of the six populations from treatment N (Figure S4.1), whereas 

transposition of resistance genes from RK2 onto the host’s chromosome was 

never observed.  

 

To test for changes in antibiotic resistance profiles following evolution we first 

determined the minimum inhibitory concentration (MIC) of evolved lineages to 

TET and AMP. The susceptibility of the evolved strains to antibiotics differed 

between treatments (Figure 4.1A). We observed a four-fold increase in TET MIC 

in evolved strains from the T and AT treatments and a small increase in lineages 

that had evolved under the cycling A/T treatment compared with the ancestral 

MG1655 with ancestral RK2 (Anc-RK2), whereas evolved strains from 

treatments N and A showed no change in tetracycline MIC (ANOVA, F5,30 = 

6.103, p < 0.001; Post-hoc Tukey Tests, Anc-RK2:T p < 0.001, Anc-RK2:AT p < 

0.01, Anc-RK2:N p = 0.525, Anc-RK2:A p = 0.783). By contrast, we observed no 

change in resistance to AMP in any treatment (ANOVA, F5,30 = 1.212, p = 

0.327), possibly due to a lower relative selection pressure imposed by the 

concentration of AMP used in the experiment compared to the concentration of  
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Figure 4.1 | Resistance profiles of evolved plasmids and hosts. Growth of a, 

evolved MG1655 strains with evolved RK2 plasmids b, evolved MG1655 strains 

cured of evolved RK2 plasmids c, evolved MG1655 strains with ancestral RK2 

plasmid and d, ancestral MG1655 clones with evolved RK2 plasmids in the 

presence of tetracycline, ampicillin or chloramphenicol in comparison to 

ancestral MG1655. Points represent means of one clone from each of the six 

independent treatment populations, with SEM error bars. Dashed grey and black 

lines show the resistance profiles of plasmid free and plasmid containing 

ancestral strains respectively. Dashed lines in evolved host cured of plasmid 

plots (c) show ancestral MG1655 and ancestral MG1655(RK2) after curing 

process. Dashed lines in ancestral host evolved plasmid plots (d) show 

ancestral MG1655 and ancestral MG1655(RK2) which had under gone curing 

with ancestral RK2 subsequently reintroduced.  Vertical dashed lines in AMP 

and TET resistance profiles show the concentrations of AMP (100 µg ml-1) or 

TET (10 µg ml-1) used in the selection experiment. 
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TET (Bottery et al., 2016). Interestingly, TET selection led to the evolution of 

bacteria that were cross-resistant to chloramphenicol (CML), although the extent 

of the evolved cross-resistance varied between treatments (ANOVA, F5,30 = 

24.25, p < 0.001); with CML MIC increasing 8-, 4-, and 2-fold in T, AT, A/T 

treatments, respectively. Consistent with CML cross-resistance being a 

correlated response to TET selection, evolved strains from both the N and A 

treatments remained equally sensitive to CML as the ancestral MG1655(RK2) 

(Post-hoc Tukey Tests, Anc-RK2:N p = 0.975, Anc-RK2:A p = 0.993). Thus 

whereas T and AT treatments, and to a lesser extent the cycling A/T treatment, 

led to the evolution increased TET resistance and cross-resistance to CML, 

evolved lineages from the N and A treatments showed no change in their 

resistance profile. 

 
To examine the genetic bases of evolved changes in resistance we next 

obtained whole genome sequences for one randomly selected clone per 

population. Excluding hypermutators, evolved clones had acquired between 2 

and 11 mutations, located exclusively on the chromosome in non-TET 

treatments (C, N, A), and on both the chromosome and plasmid in the 

treatments including TET (T, AT, A/T) (Figure S4.2). Of all the observed 

mutations 13.2% were synonymous and 19% were intergenic, the remaining 

non-synonymous mutations (67.8%) comprised missense mutations (42.8%), 

frameshifts (10.6%), insertion sequences (5.6%) and gene deletions (5.4%), and 

these were analysed further. While the variance in the number of non-

synonymous mutations did not differ between treatments (Analysis of 

multivariate homogeneity of group variances excluding hypermutators F5,26 = 

1.8617, p = 0.1358), the loci affected by non-synonymous mutations did vary 

between treatments (Permutational ANOVA, permutation test: F5,26 = 2.5231, p 

< 0.01, Bonferroni corrected). Clones that had evolved under TET selection (T, 

AT, A/T) had significantly different sets of non-synonymous mutations compared 

to evolved clones from the other treatments (C, N, A) (permutation test: F1,30 = 

6.9463, p < 0.01, Bonferroni corrected), with a larger genetic distance between 

TET and non-TET treatments than within these treatment groups (Figure 4.2A). 

Thus TET-selected lineages followed an evolutionary trajectory distinct from 

non-TET-selected lineages, leading to mutations on both the chromosome and 

the plasmid, which suggest that TET selection favoured bacteria-plasmid 

coadaptation. 
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Figure 2 | Mutations show treatment specific parallelism. a, An unrooted 

neighbour joining phylogeny of end-point evolved clones. The distance matrix 

was constructed from the binary presence or absence of variants at each gene 

relative to the ancestral strain; hypermutators were excluded from the analysis. 

Scale bar represents number of gene variants; percentage bootstrap support is 

shown at the branches, B=1000, values below 0.3 are omitted. Blue branches 

represent clone isolated from TET treatments. b, Mutations observed in evolved 

clones (excluding hypermutators) across treatment. Rings represent E. coli 

chromosomes or RK2 plasmids. Dots represent mutations, the size of the dots 

represent the number of mutations at the same loci across independent 

replicate populations. Plots of individual treatments are in Figure S4.3.  

 

 

Strikingly parallel mutations were observed between independent replicate 

populations both within and between TET-containing treatments (Figure 4.2B). 

Highly parallel mutations are likely to represent adaptive evolution at these loci, 

and because mutations at these loci were not observed in the populations from 

the N and A treatments, these mutations were likely to be TET-specific 

adaptations. Mutations in the chromosomal genes ompF (16 out of 18 clones), 

and ychH (16 out of 18 clones) showed strong locus-level parallelism within all 

three TET-containing treatments. Mutations in ompF, encoding a major non-

specific diffusion porin (Cowan et al., 1992), were all predicted loss-of-function 

mutations, including the insertion of IS elements, frameshifts or premature stop 

codons. The loss of OmpF in E. coli reduces membrane permeability, including 

to antibiotics, and consequently is known to increase resistance to a wide 

spectrum of antibiotics (Blair et al., 2015) including TET and CML (Cohen et al., 
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1989; Thanassi et al., 1995). Deletion of ompF (E. coli K-12 ΔompF JW0912 

(Baba et al., 2006)) significantly increased resistance to TET without the RK2 

(t9.09 = 4.2836, p < 0.01), and further increased TET resistance when carrying 

RK2 (Two-way ANOVA Interaction F1,20 = 14.724, p < 0.01; Figure S4.4A). 

Parallel loss of function mutations (IS elements and frameshifts) in ychH were 

observed across all the TET treatments. YchH is a hypothetical stress-induced 

inner membrane protein (Lee et al., 2010; Mendoza-Vargas et al., 2009), but 

deletion of ychH (E. coli K-12 ΔychH JW1196 (Baba et al., 2006)) did not 

significantly increase the resistance to TET with or without the plasmid (Figure 

S4.4B), suggesting that this general stress response may not be required under 

TET selection and is consequently selected against.  

 

Mutations in several loci observed in the T and AT treatments were not present 

in the cycling A/T treatment. These included mutations in both acrR (10 out of 

12 clones) and adhE (9 out of 12 clones). Mutations in adhE were extensively 

parallel at the nucleotide level, with 8 clones from independent populations all 

having the same missense SNP in the ethanol dehydrogenase domain 

(Membrillo-Hernández et al., 2000). The phenotypic significance of these 

mutations is unclear due to the multiple roles assigned to this protein, including 

multiple metabolic pathways (Kessler et al., 1991), but intriguingly the AdhE 

protein is known to exhibit binding activity to the 30S ribosome (Shasmal et al., 

2016), the primary TET target. The acrR gene encodes a repressor of AcrAB 

multidrug efflux pump (Ma et al., 1996), the majority of mutations in acrR are 

predicted loss of function mutations, with IS elements and frameshifts observed 

in evolved strains. The deletion of acrR results in the overexpression of acrAB 

leading to MDR phenotypes (Okusu et al., 1996; Wang et al., 2001). Deletion of 

acrR (E. coli K-12 ΔacrR JW0453 (Baba et al., 2006)) alone did not significantly 

increase resistance to TET (t9.32 = -0.591, p = 0.339), but when combined with 

the RK2 plasmid did allow significantly increased growth in TET (t6.4 = 3.665, p < 

0.01, Figure S4.4C). These findings are consistent with the higher TET 

resistance of evolved clones from the T and AT treatments versus the A/T 

treatment (Figure 4.1A) and reflect overall weaker TET selection under the A/T 

cycling compared to the T and AT treatments where TET selection was 

constant. Interestingly, stronger TET selection appeared to constrain evolution 

at chromosomal loci not involved in resistance. For example, we observed 

highly parallel loss of function mutation in the flagellum operon in the A, N and 

A/T treatments, but only rarely observed mutations at these loci in T and AT 
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treatments. Loss of the flagellar motility is a commonly observed adaptation of 

E. coli to growth in liquid media (Cooper et al., 2003) and this may have been 

impeded by clonal interference or negative epistasis with chromosomal 

resistance mutations in populations under strong TET selection. Consistent with 

this, whereas evolved clones from the N and A treatments increased in fitness 

relative to the plasmid-free ancestor in antibiotic-free media, such fitness gains 

were not observed in evolved clones from the TET-containing treatments 

(Figure S4.5). 

 

To confirm that TET selection had led to the evolution of chromosomal 

resistance we next cured evolved strains of their plasmids and quantified 

resistance (Hale et al., 2010).. Evolved strains carrying putative chromosomal 

resistance mutations displayed increased TET (ANOVA, F5,30 = 42.63, p < 

0.001), AMP (ANOVA, F5,30 = 12.55, p < 0.001) and CML (ANOVA, F5,30 = 35.88, 

p < 0.001) resistance (Figure 4.1B). Across all tested antibiotics, evolved clones 

carrying both ompF and acrR mutations had significantly increased resistance 

compared to the ancestral MG1655 (Post-hoc Tukey Tests, all p < 0.05), 

whereas cured evolved strains without either of these mutations (i.e. from the N 

and A treatments) did not (Post-hoc Tukey Tests, all p > 0.05). Interestingly, 

cured evolved clones from the cycling A/T treatment that carried only mutations 

in ompF but not in acrR showed marginally increased resistance to both TET 

and CML, but no detectable increase in AMP resistance, relative to MG1655. 

Thus TET selection favoured the de novo evolution of chromosomal resistance 

despite pre-existing plasmid-encoded TET resistance, and these chromosomal 

resistance mutations are responsible for the observed cross-resistance to CML.  

 

We observed parallel mutations on the plasmid exclusively in evolved clones 

from the TET-containing treatments (T, AT, and A/T). These mutations occurred 

in tetA/tetR (18 out of 18 clones; tetA: 13, tetR: 2, both: 3, Figure 4.2B) which 

encode the tetracycline-specific efflux pump. The expression tetA is tightly 

regulated by the repressor tetR in the absence of tetracycline (Møller et al., 

2016; Ramos et al., 2005). Mutations in tetA were dispersed throughout the 

gene, affecting the protein’s transmembrane, periplasmic and cytoplasmic 

domains (Allard and Bertrand, 1992). Three of the five mutations observed in 

tetR are in direct contact with or in close proximity to the tetracycline binding 

pocket (Orth et al., 2000), while the other two mutations are located in the 

central scaffolding of the protein, suggesting that they are likely to interfere with 
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activity of the tetR repressor. Evolved plasmids carrying mutations in tetA or 

tetR displayed reduced resistance to TET in the ancestral MG1655 background 

compared to ancestral RK2 (Figure 4.1D, ANOVA, F5,30 = 4.586, p < 0.01). 

Consistent with reduced efficacy of plasmid-encoded resistance in evolved 

lineages with tetA/tetR mutations, when we replaced the evolved plasmid with 

ancestral RK2, this led to increased TET resistance (ANOVA, F5,30 = 71.86, p < 

0.001, Anc-RK2:T,AT,A/T all p < 0.05).  

 

Our data suggest that evolved strains from TET-containing treatments adapted 

their resistance to TET by acquisition of weak chromosomal resistance 

mutations in combination with mutations that reduced the efficacy of the 

plasmid-encoded TET efflux pump. To understand the evolutionary benefits of 

this counterintuitive dual resistance strategy we first compared the effect of 

chromosomal background (evolved or ancestral) and plasmid genotype (evolved 

or ancestral) on growth in the presence of 10 µg/ml TET (i.e., the concentration 

used in our selection experiment). The evolved chromosomal background 

carrying resistance mutations displayed a significantly shortened lag phase 

compared to the ancestral chromosomal background, irrespective of the plasmid 

genotype (Figure S4.6; ANOVA, F3,56 = 76.92, p < 0.001; Post-hoc Tukey Tests, 

Evolved Host:Ancestral Host all p < 0.001). This suggests that chromosomal 

resistances reducing membrane permeability to antibiotics allowed evolved 

strains to start growing faster in the presence of TET.  

 

Whereas evolved bacteria grew equally well with evolved or ancestral plasmids, 

ancestral bacteria displayed impaired growth with evolved compared to 

ancestral plasmids (Figure S4.6; Max OD, W = 93, p < 0.01). This is consistent 

with the mutations in tetA/tetR reducing resistance but importantly confirms that 

this reduction is not evident when in combination with the chromosomal 

resistance mutations, which appear to compensate for the reduced efficacy of 

the plasmid-encoded efflux pump.  

 

We next competed evolved bacteria with either the evolved or ancestral plasmid 

against the ancestral MG1665(RK2) to compare the costs of carrying each 

plasmid genotype. The ancestral plasmid displayed a significantly higher cost 

than the evolved plasmid in the evolved chromosomal background (Figure S4.7, 

t25.71 = -2.287, p < 0.05). This suggests that the mutations to tetR/tetA ameliorate 

the cost of plasmid carriage but at the price of reduced efficacy of TET efflux. 
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This is consistent with previous studies showing a high cost of expressing the 

specific tetracycline efflux pump (Nguyen et al., 1989). Taken together with the 

growth data, this suggests that although mutations to tetA/tetR reduce growth 

under tetracycline in the ancestral chromosomal background, they have minimal 

effect on resistance in the evolved chromosomal background due to the reduced 

membrane permeability and additional efflux systems expressed in the evolved 

chromosomal background carrying mutations in ompF and acrR, leading to high 

resistance and a lowered cost of plasmid carriage. This suggests that the 

chromosomal resistance mutations must have been gained prior to the 

mutations in the plasmid-encoded tetracycline efflux pump. To test this, for one 

population (AT2) we tracked the frequency over time of an observed IS-insertion 

in ompF by PCR and then determined by sequencing when these genotypes 

acquired mutations in the tetA/tetR genes. Consistent with the hypothesised 

order of mutations, the IS-insertion in ompF was first detected at transfer 8 and 

had swept to fixation by transfer 32, whereas mutations in tetA/tetR were not 

observed in this ompF::IS background until transfer 32 (Figure S4.8). 

 

 

4.5 Discussion 
 

Our current model of bacterial evolution suggests that horizontal acquisition of 

ARGs accelerates resistance evolution by providing bacteria with ready-made 

resistance mechanisms, bypassing the requirement for rare de-novo mutations 

(Jain et al., 2003). However, recent population genomic data suggesting that 

lineages independently acquire and then subsequently coevolve with MDR 

plasmids (Johnson et al., 2016; McNally et al., 2016; Stoesser et al., 2016) imply 

a more dynamic evolutionary process. Consistent with this, here we show that 

gaining an ARG can be just the starting point in the evolution of resistance and, 

due to the costs of expressing horizontally acquired ARGs, does not preclude 

subsequent de novo evolution of chromosomal resistance. Evolved strains from 

TET-containing treatments gained chromosomal resistance mutations reducing 

membrane permeability and enhancing efflux of TET and providing cross-

resistance to other antibiotics, shortening lag phase in the presence of TET. 

These mutations also reduced the need for a fully operational plasmid-encoded 

tetracycline efflux pump, expression of which is highly costly (Nguyen et al., 

1989), allowing plasmid mutations in the TET efflux pump and its regulator 
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which reduced the cost of plasmid-encoded resistance. A consequence of this 

intragenomic coevolution is that the increased TET resistance of evolved strains 

from T, AT and A/T treatments required the action of both the chromosomal- 

and plasmid-encoded resistances, which together acted multiplicatively. Thus 

intragenomic coevolution can lead to the evolution of bacterial genomes 

comprised of co-dependent replicons, limiting the potential for onward 

transmission of the plasmid due to the weaker resistance it now encodes in 

other lineages.  
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5. High repeatability of bacteria-plasmid coevolution under 
antibiotic selection 
 

 

5.1 Abstract 
 
Plasmids are important agents of horizontal gene transfer that accelerate 

bacterial evolution by transferring ecologically important traits between cells and 

species. However, gaining and expressing horizontally acquired genes can be 

costly leading to intragenomic conflict between the chromosome and the 

plasmid. These evolutionary conflicts can be resolved by compensatory 

evolution – of the host, the plasmid, or reciprocal coevolution of both – to reduce 

the cost. The dynamics of bacteria-plasmid coevolution remain largely unknown. 

Here we show, through temporal sequencing of multiple populations of 

Escherichia coli carrying the multidrug resistance RK2 plasmid, highly 

repeatable plasmid-host coevolutionary dynamics under antibiotic selection. 

Across all independently evolving populations the order in which beneficial 

mutations arose was identical despite clonal interference between multiple 

competing lineages within the same populations. Carrying the plasmid combined 

with tetracycline selection in all cases favoured chromosomal resistance 

mutations, reducing the length of the lag phase of the cells, followed by 

mutations to the plasmid, impairing the tetracycline resistance. Finally, additional 

resistance associated chromosomal mutations were acquired. Together these 

mutations provided increased resistance combined with improved growth in the 

presence of tetracycline. Our study provides evidence that reciprocal 

coevolution between bacteria and plasmids can be remarkably repeatable. 

 

 

5.2 Introduction 
 

The horizontal gene transfer (HGT) of genetic material between lineages is an 

important driver of bacterial evolution, facilitating the rapid adaptation and 

diversification of prokaryotes (Ochman et al., 2000; Wiedenbeck and Cohan, 

2011). The acquisition of mobile genetic elements (MGEs) harbouring 

ecologically important accessory traits – as well as the genes required for their 

own replication, maintenance and horizontal transfer – promotes the innovation 
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of bacterial genomes, allowing bacteria to exploit novel niches (Nogueira et al., 

2009; Ramírez-Díaz et al., 2011) or become better adapted to their current 

niche (Schwarz and Johnson, 2016). A worrying example is the rapid spread of 

antibiotic resistance within pathogenic bacteria via the HGT of conjugative 

multidrug resistance (MDR) plasmids (Bennett, 2008; Carattoli, 2013). However, 

the introduction of novel MDR plasmids often leads to conflicts between the 

newly acquired genes and the pre-existing genetic background (Baltrus, 2013). 

Direct costs are imposed through the maintenance, translation and transcription 

of the plasmid-encoded genes (Park and Zhang, 2012). Whereas, indirect 

effects reduce fitness of the host through disruption of host cellular networks 

(Harrison et al., 2015; San Millan et al., 2015) and cytotoxic effects (Baltrus, 

2013). These costs can be ameliorated through compensatory evolution 

(Harrison and Brockhurst, 2012) dependent upon either the adaption of the 

plasmid (De Gelder et al., 2008) or host (Harrison et al., 2015; Loftie-Eaton et 

al., 2017; San Millan et al., 2014). Compensatory mutations can act directly to 

reduce the cost of the plasmid, affecting replication machinery or costly regions 

of the plasmid (Porse et al., 2016; Yano et al., 2016), or resolve disruption of 

cellular homeostasis; e.g., by limiting the bacteria’s SOS response or negating 

global transcriptional perturbations induced by the plasmid (Harrison et al., 

2015; Loftie-Eaton et al., 2017; San Millan et al., 2015; Sota et al., 2010). But 

there is growing experimental evidence that conflict between the plasmid and 

host can promote intragenomic coevolution between the independent replicons, 

thereby reducing the cost of the plasmid and increasing its persistence (Bottery 

et al., 2017; Loftie-Eaton et al., 2016). The order in which mutations are 

acquired by the chromosome and plasmid is likely to be important in the 

integration of plasmid in novel hosts. However, very little is known about the 

dynamics of bacteria-plasmid coevolution, or how repeatable this coevolutionary 

process is.  

 

In a recent study, we investigated the compensatory adaptation between 

Escherichia coli MG1655 and the multidrug resistant plasmid RK2 (conferring 

resistance to ampicillin and tetracycline) when under antibiotic treatment 

(Bottery et al., 2017). The newly acquired plasmid produced a considerable cost 

in the presence of tetracycline, however, over 530 generations of coexistence, 

the cost of RK2 carriage was ameliorated through intragenomic coevolution. A 

set of beneficial mutations on the chromosome, which increased resistance and 

growth in the presence of tetracycline, paved the way for a reduction in the 
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efficiency and cost of the plasmid bourn resistance. This lead to co-dependency 

between the two replicons, which now provided increased resistance at a 

decreased cost.  

 

In this study, we analyse four of the independently evolving populations from the 

previously published evolution experiment to investigate the repeatability of the 

coevolutionary dynamics within and between populations under tetracycline 

treatment. Through whole genome sequencing of clones across 530 

generations of coevolution from four independent populations, we examine the 

temporal dynamics of the gaining of beneficial mutations. We find that 

coevolutionary dynamics are remarkable repeatable between independently 

evolving populations. Interestingly, although there is evidence of co-occurring 

independent lineages with genetically different but functionally similar mutations 

within populations, the order of the acquisition of beneficial mutations is identical 

between independent lineages. Plasmid carriage combined with tetracycline 

treatment firstly lead to the acquisition of chromosomal mutations that increased 

resistance to tetracycline and also decreased the cells lag phase in the 

presence of tetracycline. These mutations were followed by mutations on the 

plasmid that have previously been shown to both decrease resistance and cost 

of the plasmid (Bottery et al., 2017). Finally, fine-tuning of resistance followed 

through the acquisition of secondary and tertiary chromosomal mutations. The 

data shows that the trajectory of intragenomic coevolution can be highly 

repeatable between independent lineages. 

 

 

5.3 Methods 

 

5.3.1 Experimental Design 
The evolution experiment, described previously (Bottery et al., 2017), coevolved 

Escherichia coli MG1655 with the multidrug resistance plasmid RK2 in various 

antibiotic treatments, to which the RK2 plasmid provided resistance. Cultures 

were grown at 37°C in 50 ml microcosms containing 5 ml of Oxoid® Nutrient 

Broth (NB) shaken at 180 rpm. Six independent biological replicates 

(populations) were initiated for each treatment, consistent with previous 

evolution experiments and sufficient to detect treatment specific parallel 

evolution (Harrison et al., 2015). Constant tetracycline treatments were 
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supplemented with 10 µg ml-1 tetracycline (populations T1-6) or 100 µg ml-1 

ampicillin plus 10 µg ml-1 tetracycline (populations AT1-6). The populations were 

evolved for ~530 generations (80 days), through daily transfers of 50 µl of 

saturated culture into 5 ml of fresh media supplemented with antibiotics specific 

to the treatment, yielding roughly 6.6 generations per day. OD600 of populations 

were measured daily. 500 µl samples from each population were frozen at -80°C 

on day zero and every 8 days (~53 generations) thereafter in 25% glycerol. 

Whole populations were also diluted and spread onto nutrient agar every 8 

days, with 20 individual colonies selected at random and frozen at -80°C. A 

single clone from day 80 (generation 530) the end of the experiment from each 

population was randomly selected for sequencing, along with 3 clones from 

transfers 8, 16 and 40 in populations T3, AT2 and AT5, and transfers 16, 24, 

and 48 in population AT3. Populations under constant tetracycline treatment 

were selected for further analysis based on the clones’ final sequenced 

genotype, so that the population contained insertion sequence (IS) elements 

within ompF and did not exhibit a hypermutator phenotype (no mutations within 

mutL of mutS). The time points chosen for sequencing were selected to provide 

samples prior to the observation of IS elements within the population based on 

whole population PCR, as well as the time point at which they were first 

observed and 24 transfers after first observing IS elements within the 

population.  

 

5.3.2 PCR tracking of mutations 

The frequency of IS mutation of the ompF genes was tracked within populations 

T4, AT2, AT3 and AT5 though whole population PCR. PCR primers amplifying 

ompF (Fw: ACTTCAGACCAGTAGCCCAC, Rv: 

GCGCAATATTCTGGCAGTGA) identified IS elements; a PCR short product of 

716 bp indicated no insertion sequence, a product of 1484 bp indicted IS1 and a 

long product of 1911 bp indicted IS5 within ompF. 5 µl of frozen whole 

populations from every 8 transfers was mixed with 10 µl of nuclease free water, 

1 µl of which was used as template for the PCR, resulting in approximately 1 × 

105 cells per PCR reaction. IS elements were never observed within the control 

population which coevolved with the RK2 plasmid in the absence of antibiotic 

treatment (N1). Twenty individual clones isolated from transfers 8, 16, 24, 32 

and 40 from populations T4, AT2, AT3 and AT5 were subsequently checked for 

the presence of IS elements within ompF using the above primers. Standard 
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PCR reactions were performed using Go Taq Green Master Mix (Promega) 0.4 

µM of each primer, on a program of 95°C for 5 min, 30 cycles of 95°C for 30 s, 

60°C for 30 s, and 72°C for 2min, with a final extension of 72°C for 5 mins. 
 

5.3.3 Sequencing and analysis 

Three clones without IS elements in ompF were randomly selected from transfer 

8 from populations T4, AT2, AT5 for sequencing, along with three clones from 

transfer 16, population AT3. Three random clones containing IS elements within 

ompF from populations T4, AT2, AT5, transfers 16 and 40, and three from 

population AT3 transfers 24 and 48 were also selected for sequencing. Each 

clone was grown for 24 hours until saturation in the same selective environment 

as they evolved in, before total genomic extraction using the DNeasy Blood and 

Tissue extraction kit (Qiagen) according to the manufactures instructions. The 

integrity of the DNA was assessed on a 0.75% agarose gel, and concentration 

estimated by Qubit dsDNA BR Assay Kit (Thermo Fisher Scientific). Total 

genomic DNA was sequenced by MicrobesNG (http://www.microbesng.uk), 

which is supported by the BBSRC (grant number BB/L024209/1), using 2 × 250 

base pair paired-end reads on the Illumnia MiSeq platform. Sequence adapters 

were trimmed using Trimmomatic (Bolger et al., 2014) and quality assessed 

using Samtools (Li et al., 2009), BedTools (Quinlan and Hall, 2010) and bwa-

mem (Li and Durbin, 2009) by MicrobesNG. Trimmed reads were mapped to the 

E. coli MG1655 K-12 and RK2 plasmid genomes available on NCBI, accession 

numbers U00096.3 and BN000925.1, respectively, using the Burrows-Wheeler 

short read aligner (Li and Durbin, 2009). Variants were called using GATK’s 

Unified Genotyper (McKenna et al., 2010) and annotated using SnpEff 

(Cingolani et al., 2012). Variants were filtered on base quality, coverage and 

single nucleotide polymorphisms (SNPs) around gaps. Insertion sequences 

were detected based on an over representation of larger inner mate gaps 

between mapped paired reads and structural variants were detected using 

Breakdancer (Chen et al., 2009). All variants were confirmed using the 

Integrated Genome Viewer (Robinson et al., 2011). To produce a set on 

mutations accumulated throughout the evolution experiment, variants that were 

also present in the previously sequenced ancestral strain (Bottery et al., 2017) 

were excluded. 
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5.3.4 Phylogenetic analysis  

The phylogenetic trees were produced based on the binary presence and 

absence of all observed mutations within the data set for each sequenced clone. 

This gives each observed mutation equal weight when building the trees, which 

is appropriate when variants are under strong selection (Tenaillon et al., 2016). 

Trees were built using the neighbour joining method provided by the R package 

ape {ape 4.0} (Paradis et al., 2004) and were rooted to no observed variants, i.e. 

the ancestral strain harbouring RK2. The strong parallelism of mutations 

between populations resulted in clones from different populations clustering 

within the same clades when a composite tree was produced. However, as the 

populations evolved independently, separate trees were produced for each 

population and combined into a single plot.  

 

5.3.5 Minimum inhibitory concentrations 

To measure the minimum inhibitory concentration (MIC) of tetracycline, clones 

were grown over night in 5 ml of NB. The saturated cultures were sub-cultured 

50 µl into 5 ml of fresh NB and allowed to grow until an OD600 of 0.5. These sub-

cultures were then diluted 1:400, to an initial density of ~5×105 CFU/ml, in 96-

well plates containing a log2 dilution series of tetracycline. Cultures were grown 

for 24 hours at 37°C, shaken at 600 rpm, 3 mm orbital radius, with OD600 

measured at the end point. Three technical replicates were conducted per clone. 

 

5.3.6 Growth Curves 
Growth curves were conducted using a Tecan infinite M200 Pro plate reader in 

96 well plates. Overnight cultures of clones were sub-cultured to an OD600 of 0.5 

in fresh NB, and then diluted 1:1000 into 100 µl NB supplemented with 10 µg ml-

1 TET. Cultures were grown at 37°C with shaking at 300 rpm, 3 mm orbital 

radius for 24 hours, and OD600 was measured every 16 minutes. Three technical 

replicates were conducted per clone. Growth rates were calculated as the 

maximum slope of log2 transformed OD600 covering four time points (~1 hour of 

growth), lag phase was calculated to end when growth rate reached 10% of the 

maximum achieved growth rate. 

 

5.3.7 Statistics 

Statistical analyses were performed in R (version 3.3.3). Linear and non-linear 

models were fit to the number of mutations acquired through time using Non-
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linear least squares fit, quality of fit was calculated using Akaike information 

criterion (AIC). Comparisons among MIC curves were calculated through 

comparing the area under the curve, and statistical differences in length of lag 

phase among clones were calculated using ANOVA, with subsequent Tukey 

multiple comparison of means. 

 

 

5.4 Results 
 
Populations of Escherichia coli were previously co-evolved with the MDR 

plasmid RK2 under either single, combined or cycling treatment with ampicillin 

or tetracycline for ~530 generations (Bottery et al., 2017). Under the 

tetracycline-containing treatments the chromosomal and plasmid replicons co-

evolved to become co-dependent, reliant upon each other to provide adequate 

resistance to the tetracycline concentration. Here, we explore the temporal 

coevolutionary dynamics of populations exposed to tetracycline treatments. 

Guided by previous whole genome sequencing of clones from the end-point of 

the selection experiment, the non-hypermutable populations T4, AT2, AT3 and 

AT4, which were evolved under constant tetracycline treatment (with [AT] or 

without [T] ampicillin), were selected for further analysis. Each population 

contained insertion sequence (IS) elements within ompF; loss of function of 

ompF was beneficial under tetracycline treatment (Bottery et al., 2017). To 

identify when these beneficial mutations of ompF occurred within the selected 

populations, whole population PCR of ompF was conducted (Figure S5.1), along 

with PCR of 20 individual clones from each population at transfers 8, 16, 24, 32 

and 40 (Figure S5.2). IS elements were first observed at transfer 16 in 

population T4, transfer 8 in populations AT2 and AT5, and transfer 24 in 

population AT3. 

 

5.4.1 Acquisition of mutations 

Clones were sequenced from time-points before and after the acquisition of IS 

elements within ompF to determine the variability in genotype both within and 

between populations. Three clones were randomly selected from the sampled 

transfer before the occurrence of IS elements within the population (transfer 8 

for populations T4, AT2 and AT5, transfer 16 for AT3), and then 8 and 32 

transfers after this point. A single end point clone (transfer 80) from each 
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population that had been previously sequenced (Bottery et al., 2017) was also 

analysed. In total we observed 143 mutations (Figure S5.3), comprising of: 71 

point mutations, 53 IS elements, 14 deletions and 5 duplications. Of these 

mutations 27 were intergenic variants and 3 were synonymous substitutions. 

The trajectories of the acquisition of mutations were similar across all 

populations, with the number of mutations increasing linearly over time (Figure 

5.1A/B, GLM, F1,28=181.98, P<0.01). Across all clones sequenced thirty-nine 

unique loci were affected by mutations, seven of which were parallel across the 

four populations. 

 

 

  

      
 

Figure 5.1 | A Average number of mutations through time, generation 530 has 1 

sequenced genome, other points show mean number of mutations observed 

within 3 independent clones isolated from same population, with bars 

representing SEM. B Points show number of mutations in each sequenced 

clone, pluses show grand mean of total observed mutations across all 

treatments. The solid line shows the best fit to 𝑚 = 𝑎𝑡, where 𝑎 = 0.0181, R2 = 

0.931. The dashed line shows the fit to 𝑚 = 𝑏 𝑡, ΔAIC = -21.24, R2 = 0.926. The 

dotted line shows the fit to the two parameter model, 𝑚 = 𝑎𝑡 + 𝑏 𝑡, ΔAIC = -

0.13, R2 = 0.932, models proposed by Tenaillon et al. (2016). Fits to individual 

populations are shown in Figure S5.4. 
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5.4.2 Population phylogenies 
Construction of phylogenies based on the presence or absence of mutations 

shows that there is considerable within population diversity across all four 

populations (Figure 5.2). The accumulation of short branches at the base of the 

trees shows early divergence, which was subsequent lost within the populations. 

As many of these mutations were not observed later in time, it is expected that 

these mutation were removed from the population through selective sweeps for 

more beneficial mutations.  

 

The subsequent population trajectories differ between populations. A single 

lineage appears to dominate population T4, diverging early within the 

experiment. Likewise, in population AT2 a single lineage dominated by transfer 

16, but was superseded by a second lineage that appears to have diverged 

earlier in time. In both of these populations the final sequenced clone came to 

dominate the population by half way through the experiment, suggestive of the 

stepwise acquisition of beneficial mutations and subsequent selective sweeps. 

Whereas, in populations AT3 and AT5, the phylogeny has deeper branching, 

showing that lineages coexisted despite strong selection for beneficial 

mutations. Thus, multiple different mutations with potentially similar fitness gains 

were emerging in parallel and being maintained within a single population. 

Despite identical selection conditions between the AT treatments, and parallel 

evolution observed to the gene loci level after 530 generations, the population 

dynamics leading to these parallel mutations differed between independently 

evolving lines. Whereas some populations were dominated by a single lineage, 

others had coexisted lineages over long periods of time. 
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Figure 5.2 | Phylogeny of sequenced clones isolated from population T4, AT2, 

AT3 and AT5 rooted the ancestral MG1655(RK2). Distance matrix was 

constructed from the binary presence of absence of mutations, specific to the 

nucleotide level, relative to the ancestral strain. The scale bar represents 

number of mutations. Branch node labels and colour of branches show the 

transfer from which the clones were isolated.  

 

 

5.4.3 Parallel evolution 

Selection of MG1655(RK2) under constant tetracycline treatment led to mutated 

loci that were strikingly parallel across independent replicate populations, and 

therefore indicative of beneficial mutations under positive selection at these sites 

(Bottery et al., 2017). Across all four populations sequenced, the order of the 
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mutation gained by all four populations was the lost of function of ompF via the 

acquisition of an IS element at transfers 16 or 24 (Figure 5.3). OmpF is a 

membrane protein that allows the passive diffusion of small molecules, including 

tetracycline, across the cell membrane (Phan and Ferenci, 2017). There is some 

genetic variability observed prior to the acquisition of ompF mutations, but these 

mutations are mostly lost from the populations upon the loss of function of 

ompF. Clones isolated from transfer 16, that had IS elements within ompF, had 

significantly increased resistance to tetracycline when compared to clones 

isolated from transfer 8 or the ancestral strain (Figure 5.4, Post-hoc Tukey 

Tests: Anc(RK2):Transfer 16 all p > 0.05, see Table S5.1 for ANOVA tables). By 

transfer 16 all clones also had a significantly reduced lag phase compared to the 

ancestral strain (Figure S5.8, Post-hoc Tukey Tests: Anc(RK2):Transfer 16 all p 

> 0.05, See Table S5.2 for ANOVA tables). IS elements were observed within all 

subsequent time points, but only in population T4 was the same IS element 

observed consistently throughout the experiment. Clones isolated from 

population AT2 at transfer 16 had IS5 within ompF and a SNP in gfcD (encoded 

within an inactive operon in MG1655-K12 (Peleg et al., 2005)), which were lost 

from the population, displaced by a lineage which inactivated ompF through the 

insertion of IS1. Populations AT3 and AT5 had one of three different IS 

elements; IS1, IS2 and IS5 within ompF. These results suggest that the 

beneficial loss of function of ompF evolved independently multiple times within a 

single population (Figure 5.3). However, the variation in MIC among clones from 

these populations at any one time point was low (Figure S5.5-5.7), showing that 

independent lineages with the same functional mutations had similar resistance 

profiles. 

 

Across all populations the next beneficial mutations to occur were SNPs within 

the plasmid bourn tetA or tetR genes, encoding a tetracycline specific efflux 

pump and its negative regulator, respectively (Schnappinger and Hillen, 1996). 

These mutations reduced the level of resistance to tetracycline when present in 

a wild-type background, but also reduced the cost of the plasmid (Bottery et al., 

2017). This order of mutations is consistent with the hypothesis that mutations 

within tetA and tetR are reliant upon the prior acquisition of ompF mutations. 

Interestingly, there was no significant difference in the MIC between clones from 

transfer 16 and 40 (Post-hoc Tukey Tests: Transfer 16:Transfer 40 p > 0.05), 

suggesting that ompF mutations alone mask the decreased efficacy of the 

mutated plasmid-encoded efflux pump. 
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Figure 5.3 | Each panel shows the mutations observed within each population 

during constant selection under tetracycline treatment. Concentric rings 

represent E. coli chromosomes or RK2 plasmids, ring colour represent the time 

point the clones were isolated (see keys); inner lighter rings to outer darker rings 

represent the progression through time. Sets of three concentric rings are 

represent three independent clones isolated from the same time point within that 

population. Points on the plot represent mutations at specific loci, circles = non-

synonymous mutations, bars = frame shift inducing deletions, squares = 

duplications, and triangles = IS elements (colours show type of IS element, see 

key). 
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Figure 5.4 | The change in tetracycline resistance profile through time in 

population A T4, B AT2, and C AT5. The vertical line represents the 

concentration of tetracycline selected for during the evolution experiment. Points 

represent the collective mean of the three sequenced independent clones from 

each time point with error bars showing SEM. For individual MIC curves for each 

clone see Figure S5.5-5.7. 
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acrR, which negatively regulates the acrAB genes (Su et al., 2007), being only 
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MIC decreased in clones isolated from population AT2 at transfer 80, reduced 

back down to a level which was not significantly different from the ancestral 

strain (Figure 5.4, Anc-RK2:AT2-80 p = 0.481). Potentially, the acquisition of 

subsequent parallel mutations is required to maintain high levels of resistance 

observed within populations T4 and AT5. End-point clones from populations T4 

and AT5, also showed increased growth rates when compared to the ancestral 

strains (although these gains were not significant, Figure S5.8), whereas, end-

point clones from population AT2 did not show this effect, potentially due to the 

lack of mutation of acrR and ychH. Thus, the early chromosomal mutations had 

the large benefit of allowing cells to grow significantly faster in the presence of 

tetracycline, while subsequent mutations had smaller effects on growth that are 

difficult to distinguish through analysis of growth curves alone.  

 

The order of beneficial mutations was consistent across all four populations, 

with mutations of ompF followed by tetA/R, then ychH and finally acrR (Figure 

5.3). The only parallel mutations not to show temporal consistency between 

populations was a highly parallel SNP within adhE, encoding an alcohol 

dehydrogenase which is involved in multiple metabolic pathways (Kessler et al., 

1991) and known to exhibit binding activity to the 30S ribosome under aerobic 

respiration (Shasmal et al., 2016), the primary target of tetracycline. These 

mutations fluctuate in frequency both within and between populations, being 

observed only early on in population AT3, consistently in all transfers in 

population AT5 and only in the later half of the experiment in populations T4 and 

AT2. 

 

 

5.5 Discussion 
 

Our results demonstrate that plasmids not only act as facilitators of HGT, but 

due to evolutionary conflict with the host chromosome, also selects for 

intragenomic coevolution. The acquisition of the RK2 MDR plasmid provides the 

benefit of resistance in the short term despite costs associated with carriage of 

the plasmid. However, over longer periods of antibiotic selection with 

tetracycline, a highly parallel set of mutations occurs both on the plasmid and 

host’s chromosome, reducing the plasmids cost (Bottery et al., 2017). Here we 

show that the observed coevolution between plasmid and host follows the same 
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order of mutations between independently evolving populations. This was 

despite the coexistence of independently competing lineages within some of the 

populations. We found that across all lineages, mutations within a 

chromosomally encoded outer membrane pore were followed by the mutation of 

the plasmid encoded tetracycline resistance genes. Subsequent mutation of 

chromosomal stress response and multidrug efflux systems followed. Their 

phenotypic effects upon resistance and growth of the bacteria potentially govern 

the common order of mutations. 

 

The expression of the RK2 encoded tetracycline specific efflux pump is costly 

(Modi et al., 1991; Nguyen et al., 1989); mutations in the pump were able to 

reduce both the cost and efficiency of the pump (Bottery et al., 2017). But, in the 

presence of tetracycline, these mutations reduce the growth of the ancestral 

bacteria, as there are no additional resistance mechanisms to compensate for 

the reduction in efflux efficacy. Therefore the reduction in resistance caused by 

the plasmid mutations was hypothesised to rely upon the prior acquisition of 

additional chromosomal resistance mutations. Supporting this hypothesis, the 

mutational loss of function of ompF always occurred first across all of the 

sequenced populations. This mutation was likely selected for due to the 

significantly decreased length of the lag phase it conferred to cells in the 

presence of tetracycline. But, importantly the mutational loss of function of ompF 

also increased the level of resistance to tetracycline, providing a buffer to allow 

the mutational reduction in plasmid bourn resistance to sweep into the 

population. Following the early acquisition of ompF and tetA/R mutations, 

secondary resistance associated mutations in ychH and then acrR arose within 

the populations. Again the order of these mutations was highly parallel both 

within and between populations. End-point clones that had gained these 

mutations maintained high levels of resistance and showed an increase in 

growth rate, whereas a population that never acquired mutations within ychH 

and acrR did not, suggesting the potential importance of continual innovation 

when under tetracycline selection.  

 

Here we measured the phenotypic effects the incremental acquisition of 

mutations, these help to explain the parallelism of the order of mutations 

between lineages. However, the highly repeatable order of mutations may also, 

in part, be due to diminishing returns epistasis (Chou et al., 2011), where by the 

extent of the benefit provided by mutations governs when they are selected 
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within a population. It would be expected that mutations with larger fitness 

effects will be selected early, with less beneficial mutations appearing in the 

population later. This pattern is implicit in the phenotypic data, with the early 

mutation of ompF having the largest phenotypic effect. However, in order to 

elucidate the direct fitness benefits of the incremental mutations descripted 

here, the direct competition between evolved lineages is required. 

 

There is a growing body of evidence that the gaining of a plasmid can promote 

reciprocal coevolution of both plasmid and bacteria, reducing the cost imposed 

by the plasmid and helping to stabilise their existence within lineages (Bottery et 

al., 2017; Loftie-Eaton et al., 2016). The footprints of coevolution between host 

and plasmid are also present in bacterial genomes, with the rapid expansion 

and diversification of E. coli sequence types following the acquisition of MGEs 

by multiple independent lineages (McNally et al., 2016; von Mentzer et al., 

2014). Our data suggests that this coevolution between plasmid and host can be 

highly structured, following a specific path governed by the phenotypic effects of 

mutations upon the resistance and growth of the bacteria. Further work will have 

to be conducted to determine if the dynamics of other examples of reciprocal 

coevolution between plasmid and host are similarly highly repeatable.
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6. Discussion 

 

Plasmids play a fundamental role in the evolution of antimicrobial resistance 

(AMR). The ability of plasmids to transmit between often distantly related 

bacterial lineages and accumulate multiple resistance genes means that they 

pose one of the greatest challenges in dealing with the emergence of AMR. Yet, 

our understanding of the selection and evolution of multidrug resistance (MDR) 

plasmids is limited. The data presented in this thesis demonstrates that the 

dynamics of both selection and evolution of MDR plasmids can vary dependent 

upon the plasmid encoded antimicrobial genes (ARGs) under selection. I show 

that the sociality of the contrasting antibiotic resistance mechanisms encoded by 

a MDR plasmid determined the selective conditions for the plasmid (Chapter 2). 

Furthermore, the mechanistic details of antibiotic resistance, along with mode of 

action of the antibiotic, were shown to be essential to produce mathematical 

models that accurately predict selection for resistance (Chapter 3). These two 

chapters address how short-term antibiotic selection can overcome the costs of 

plasmid carriage, but in the longer-term, compensatory evolution can stabilise 

MDR plasmids within bacterial populations by reducing the costs associated 

with plasmid carriage. I went on to examine how the mode of compensatory 

evolution varies with antibiotic treatment. I found that tetracycline treatment, but 

not ampicillin treatment led to intragenomic coevolution between the RK2 

plasmid and it’s host Escherichia coli. Coevolution ameliorated the cost of 

plasmid borne tetracycline resistance, but also created a co-dependency 

between the plasmid and its host (Chapter 4). The coevolutionary dynamics 

between E. coli and RK2 were strikingly repeatable across the independently 

evolving populations despite the emergence of multiple competing lineages 

within populations (Chapter 5). The data presented in the thesis demonstrates 

that a combination of positive selection and compensatory evolution can help to 

explain why MDR plasmids persist within bacterial populations despite their 

inherent fitness cost. 

 

 

6.1 Selection for Multidrug Resistance Plasmids 
 

The thesis highlights the importance of plasmid cost in the selection and 

maintenance of MDR plasmids. Although the underlying molecular bases of 
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plasmid costs are poorly understood (Millan and MacLean, 2017), the fitness 

burden imposed by plasmids is a fundamental driver of plasmid and host 

evolution (Harrison et al., 2015; Loftie-Eaton et al., 2017; San Millan et al., 

2015). The cost of plasmid carriage generates purifying selection against 

plasmid-carrying strains, the thesis first explores how positive selection for 

plasmid-encoded traits can overcome this purifying selection. Recent studies 

have shown that it can take only a very small concentration of antibiotic, far 

below the minimum inhibitory concentration (MIC) of sensitive plasmid-free 

strain, to select for costly plasmids (Andersson and Hughes, 2014; Gullberg et 

al., 2014). However, MDR plasmids can encode qualitatively different 

mechanisms of resistance, ranging from cooperative to selfish. In Chapter 2 I 

show that the sociality of resistance can alter the selective conditions for a MDR 

plasmid. Plasmid encoded cooperative inactivation of ampicillin was selected for 

at concentrations of antibiotic higher than the MIC of the plasmid-free strain. The 

enzymatic inactivation of ampicillin by resistant cells permitted a sensitive sub-

population to survive past their MIC by reducing the environmental ampicillin 

concentration. In contrast, selection for a tetracycline efflux pump, encoded on 

the same MDR plasmid, occurred at just 1/100th of the MIC of the sensitive 

plasmid-free strain. Furthermore, selection for a cooperative resistance 

mechanism, but not a selfish resistance mechanism, was negatively frequency 

dependent, resulting in a higher fitness of plasmid containing strain when they 

were rare. Mass action modelling helped confirm that the inactivation of 

antibiotic did provide a shared benefit of resistance, but importantly showed that 

the inclusion of both mode of action and mechanism of resistance are required 

to accurately predict the selection for resistance. Interestingly, the inactivation of 

bacteriostatic antibiotics permitted cooperation across a wider range of 

parameters than the inactivation of bactericidal antibiotics. 

 

The levels of antibiotic contaminating natural environments can vary across 

orders of magnitude, ranging from very high concentrations – mg ml-1 in 

industrial sewage (Larsson et al., 2007) – to very low concentrations – ng or pg 

ml-1 in soil and water (Kümmerer, 2009; Zhang and Li, 2011). Our results show 

that even at these very low sub-MIC concentrations of antibiotic, selfish 

resistances such as efflux pumps will be selected for, driving the competitive 

exclusion of sensitive cells. Selfish resistances therefore seem to be especially 

important for the selection of MDR plasmids in environments with very low 

concentrations of antibiotic.  
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Multiple different antibiotics are often present at low levels within a single 

environment (Kim et al., 2011; Valcárcel et al., 2011). This is of concern due to 

the combined effects of multiple antibiotics demonstrated by the results 

presented in chapter 2 and 3. Combining two antibiotics at very low 

concentrations, each of which individually was insufficient to select for the 

resistance plasmid, together selected for the plasmid when in combination. 

Environmental pollution with multiple antibiotics may therefore be a contributing 

factor for the persistence of environmental MDR plasmids, even when each 

antibiotic is present at concentrations below the level required to select for 

resistance. 

 

Coexistence of sensitive and resistant bacteria can occur when the benefit of 

resistance is shared in well-mixed populations, via the inactivation of the 

antibiotic. However, bacteria often live within complex spatially structured 

communities such as biofilms (Nadell et al., 2016). Limited diffusion and local 

interactions mediated by structured environments, such as biofilms, could vastly 

change population level effects of resistance by disproportionally directing the 

benefits of social resistances to the resistant sub-population. Spatial segregation 

and reduced diffusion within biofilms has been observed to promote cooperative 

behaviours in bacteria, such as the production and secretion of iron scavenging 

siderophores where the public good is preferentially utilised by neighbouring co-

operators (Kümmerli et al., 2009). Whether biofilms promote or suppress 

cooperative antibiotic resistance is unknown. However, the modelling results 

presented in chapter 3 suggest that the survival of a sensitive sub-population 

may be more likely when in co-culture with a resistant population that inactivates 

bacteriostatic antibiotics as an initially high concentration of bacteriostatic does 

not kill sensitive cells. This may be of particular importance within structured 

populations where the public good of reduced antibiotic concentration is not 

immediately available to the sensitive sub-population. In support of this 

hypothesis, one of the few studies that has examined cooperative antibiotic 

resistance within spatially structured environments showed that the inactivation 

of chloramphenicol (a bacteriostatic antibiotic) allowed the survival of sensitive 

cells both on agar plates and within in vivo mouse models (Sorg et al., 2016). 

 

Understanding how antibiotic resistance is selected for is a central goal of 

studying the spread of MDR plasmids. There are many forms of both selfish (Li 
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et al., 2015) and cooperative (Wright, 2005) resistances that can be encoded 

upon MDR plasmids. The social implications of these plasmid-encoded 

resistances are often overlooked; the thesis highlights the importance of 

quantifying the social interactions imparted by resistances in order to gain an 

understanding of the selection and maintenance of MDR plasmids within 

bacterial populations.  

 

 

6.2 Evolution of Plasmid Borne Resistance 
 

Antibiotic treatment can lead to the competitive exclusion of antibiotic sensitive 

cells from a population and positively select for MDR plasmids. However, 

positive selection alone does not resolve the intragenomic conflicts between 

plasmid and host; the underlying costs of plasmid carriage are still present even 

when the plasmid is acting as a mutualist (in the presence of positive selection). 

Studies have shown that compensatory evolution can act to ameliorate the cost 

of plasmid carriage when a plasmid is acting as a parasite (in the absence of 

positive selection) but also when it is in a mutualistic relationship with the 

bacterial host (Harrison et al., 2015). An outstanding question was how the 

mode of compensatory evolution following the acquisition of a MDR plasmid 

varies with antibiotic treatment.  We addressed this question through 

experimental evolution of E. coli carrying the MDR plasmid RK2 under a range 

of antibiotic treatments. We found that populations treated with tetracycline had 

an evolutionary trajectory distinct from populations that were not treated with 

tetracycline, which led to mutations both on the chromosome and plasmid. De 

novo chromosomal resistance mutations that arose under tetracycline treatment, 

despite pre-existing plasmid resistance, provided cross-resistance to other 

antibiotics and a shortened lag phase in the presence of tetracycline. These 

chromosomal mutations enabled the acquisition of mutations within the plasmid 

borne tetracycline efflux pump that reduced its level of resistance and cost. 

Further examination of populations evolving under constant tetracycline 

treatment revealed that the coevolutionary dynamics were highly repeatable. 

Despite clonal interference between multiple competing lineages within 

populations, the order of beneficial mutations was always the same. 
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A worrying consequence of the intragenomic coevolution observed under 

tetracycline treatment was that the coevolved plasmid and host together acted 

multiplicatively (Bottery et al. 2017), providing an increased level of resistance to 

tetracycline and cross-resistance to chloramphenicol at a reduced cost. 

However, neither the de novo chromosomal resistance mutations nor the 

evolved plasmid efflux pump provided a sufficient level of resistance for the E. 

coli to survive at the level of tetracycline it had been selected for. Thus, following 

intragenomic coevolution the two replicons became co-dependent, this 

potentially limited the ability of the plasmid to be transmitted and stability 

maintained in other lineages due to the weaker resistance it encoded. 

 

It is clear from our results that the evolutionary trajectory following the 

acquisition of a MDR plasmid does vary with antibiotic treatment.  An 

outstanding question arising from this result is what caused the differences in 

the evolutionary trajectories following treatment with ampicillin or tetracycline. 

Our results suggest the main cause of the differences in evolutionary trajectories 

were due to the costs of resistance. Although the bla gene encoding β-

lactamase on the RK2 plasmid is constitutively expressed (Wilson et al., 1997), 

the β-lactamase does not require any other substrates in order to catalyse the 

hydrolysis of ampicillin (Shaikh et al., 2015). Therefore, it is likely that this 

resistance mechanism is not particularly costly, as it does not consume cellular 

resources once the β-lactamase proteins have been produced. In contrast, 

although the expression of the TetA efflux pump is strongly negatively repressed 

by TetR in the absence of tetracycline, high levels of expression of tetA can be 

triggered with very little tetracycline (Nguyen et al., 1989). Once expressed, the 

efflux pump, unlike β-lactamase, is energy dependent – potentially limiting 

cellular resources (Levy, 2002) – but it also disrupts the cell physiology through 

the insertion into the membrane (Nguyen et al., 1989). This difference in the 

cost of expression between the two resistance mechanisms may have been the 

cause of two differing evolutionary trajectories, allowing the acquisition of 

immediate effect chromosomal mutations and modulation of the plasmid-borne 

resistance when under tetracycline selection.  

 

The mechanism of action of the two antibiotic resistances may have also 

contributed to the differences between the evolutionary trajectories adopted 

under ampicillin and tetracycline selection. The RK2 encoded β-lactamase is 

predicted to inactivate all ampicillin within the microcosm within just five hours of 
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growth (see chapter 3). This will have resulted in the bacteria to be under 

periodic ampicillin selection, with bacteria exposed to very little antibiotic for the 

majority of the experiment. In contrast, the efflux of tetracycline from the cell is a 

continual process required throughout the growth cycle of the cells. The more 

constant selection pressure imposed by tetracycline treatment and not ampicillin 

treatment may have also contributed to the difference in evolution observed 

between the two treatments.  

 

To gain a clearer picture of how antibiotic treatment alters evolution following the 

bacterial acquisition of a MDR plasmid a greater range of resistance plasmids 

must be examined. A future direction may be to examine the positive selection 

of plasmids harbouring potentially less costly resistance mechanisms which 

remain under constant selection, such as tetM, which acts to block the binding 

of tetracycline to the ribosome (Dönhöfer et al., 2012). An alternative is to 

explore the selection of a potentially more costly form of antibiotic inactivation 

such as group transfer – kanamycin phosphotransferase or chloramphenicol 

acetyltransferase for example – which requires energy in the form of ATP and 

acetyl-CoA respectively (Leslie, 1990; Wright and Thompson, 1999). 

 

The horizontal acquisition of ARGs encoded on MDR plasmids accelerates the 

evolution of antibiotic resistance by introducing new resistance genes into 

bacteria in a single step, by-passing the need for rare de novo resistance 

mutations (Bennett, 2008; Jain et al., 2003). However, bacterial genomes show 

the footprints of coevolution between horizontally acquired genetic elements and 

host chromosomes. The pathogenic E. coli lineage ST131 was observed to 

have multiple co-existing subtypes; chromosomal mutations within each were 

associated with the maintenance of different horizontally acquired genetic 

elements, including plasmids (McNally et al., 2016). The data presented in 

chapters 4 and 5, together with these recent findings, is suggestive of a more 

dynamic evolutionary process, whereby the acquisition of a conjugative MDR 

plasmid can act as a catalyst for the adaptation of both chromosomal and 

plasmid encoded genes.  
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6.3 Conclusions 
 

Antibiotic resistance in bacteria is a global threat to public health, and the 

horizontal transfer of MDR plasmids is a key vector for the acquisition and 

spread of antibiotic resistance in commensals and pathogens (Bennett, 2008). 

Although MDR plasmids benefit bacteria under antibiotic treatment, the carriage 

of plasmids can also impose a significant fitness cost upon novel bacterial hosts. 

Research into the maintenance of MDR plasmids has begun to identify the role 

of fitness costs, positive selection and compensatory evolution in explaining 

plasmid-host dynamics. My research demonstrates the interaction between 

these factors: both positive selection and compensatory evolution can help to 

explain the persistence of MDR plasmids in the clinic and environment. 

 

The results of the thesis paint a worrying picture, even when MDR plasmids are 

costly only a very small concentration of antibiotic is required to overcome this 

cost and select for resistance. When resistance is cooperative it may take a 

higher relative concentration to select for resistance; however, resistance will 

likely be maintained within bacterial populations exposed to sub-MIC levels of 

antibiotic through negative frequency dependent selection. Importantly, the point 

at which resistance will be selected for is dependent upon the cost of resistance. 

Therefore, cost free resistance mechanisms could be maintained within 

populations without any exposure to antibiotics. I have shown that it only takes a 

short period for compensatory mutations to arise and reduce the cost of an MDR 

plasmid. Moreover, positive selection for resistance can lead to not only a 

reduction in the cost of resistance, but also an increased level of resistance and 

cross-resistance. It is critical therefore that we reduce the levels of antibiotic 

exposure in the environment, and optimise current drug regimens to limit long-

term exposure to sub-MIC levels of antibiotics. Despite the advances presented 

here and elsewhere (Gullberg et al., 2014; Harrison et al., 2015; Loftie-Eaton et 

al., 2017; Porse et al., 2016; San Millan et al., 2015), our ability to predict the 

evolution of plasmid-mediated antibiotic resistance remains limited, particularly 

within clinically relevant settings. Future work needs to explore how the 

evolution of antibiotic resistance proceeds in clinically relevant pathogen-

plasmid combinations within more complex microbial environments.  
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Appendices 
 
Appendix A: Chapter 2 
 
 

 
Figure S2.1 | Growth curves of marked strains show no difference in growth 

dynamics between marked strains, with or without RK2 plasmid. Bacteria were 

grown in 96-well plates at 37°C with periodic shaking in a Tecan Infinite 200 Pro 

plate reader, with OD600 measured every 30 mins. Error bars represent SEM 

(n=6). 

 

 
 

Figure S2.2 | No significant difference in fitness of MG1655::gfp strain and 

MG1655::mcherry strain (t test t = 0.6001, df = 11, p-value = 0.5606) or between 

MG1655::gfp(RK2) and MG1655::mcherry(RK2) (two sample t test t = 0.5186, df 

= 16, p-value = 0.6944) when competed in antibiotic free media. Green bar 

represents RK2 plasmid in MG1655::gfp background competed against 

MG1655::mcherry and red bars are RK2 plasmid in MG1655::mcherry 

background competed against MG1655::gfp. Error bars represent SEM (n=6). 
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Figure S2.3 | Quantification of GFP and mcherry marked MG1655 strains in co-

culture using flow cytometry. A Density plots showing SSC vs DAPI signals, 

bacterial cells were differentiated from noise based on a positive DAPI signal as 

SSC alone does not accurately split the two. B Density plots showing SSC vs 

GFP signal, GFP expressing cells are easily distinguishable from mcherry 

expressing cells, ratios of the two strains were used to calculate selection rates. 
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Figure S2.4 | Plots of cell densities of plasmid free and RK2 plasmid containing 

populations in competition, these data were used to calculate the relative fitness 

of plasmid bearing strain (figure 2.3A/B in text). Note that relative fitness (W) 

relies on positive growth of both competing strains. Error bars represent SEM 

(n=6). 
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Figure S2.5 | High concentrations of tetracycline cause extinction of sensitive 

population when in competition. Green bars are the RK2 plasmid in 

MG1655::gfp background competed against MG1655::mcherry and red bars are 

the RK2 plasmid in MG1655::mcherry background competed against 

MG1655::gfp. Upward arrows represent a relative fitness above 2 i.e. no 

observable sensitive bacteria within the population. Error bars represent SEM 

(n=3). 
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Figure S2.6 | Log10 selection rates (r) of plasmid bearing E. coli vs plasmid free 

E.coli as a function initial plasmid frequency under (A,B) ampicillin selection and 

(C,D) tetracycline selection. Points show means of six independent replicates; 

with error bars showing SEM. B and D show the same data as panels plotted as 

heat maps.  
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Appendix B: Chapter 3 
 
 

    

    
Figure S3.1 | Fitting of simulated monocultures to empirical MIC data. The black 

line shows E. coli density after 24 hours growth at increasing concentrations of 

tetracycline or ampicillin, with error bars representing SEM (n=6). The blue lines 

show the population density at t=24 hr of the best parameter fit of numerical 

solution to models (1)-(3) when simulated in monoculture. A Plasmid free MIC in 

tetracycline, 2 µg ml-1, 𝐾𝑚𝑎𝑥!" = 1.25, 𝐾𝐴!"!" = 0.08 B Plasmid containing MIC 

in tetracycline, 64 µg ml-1, 𝐾𝑚𝑎𝑥!" = 1, 𝐾𝐴!"!" = 10.6 C Plasmid free MIC in 

ampicillin, 9 µg ml-1, 𝐾𝑚𝑎𝑥!" = 1.5, 𝐾𝐴!"!" = 4.5 D Plasmid containing MIC in 

ampicillin, >4096 µg ml-1, as the full curve was not available, 𝐾𝐴!"!" was 

selected to provide growth at 4096 µg ml-1 ampicillin, 𝐾𝑚𝑎𝑥!" = 1.5, 𝐾𝐴!"!" = 

3200. 
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Appendix C: Chapter 4 
 

 
Figure S4.1 | Persistence of plasmid at transfer 80, generation ~530. Bars show 

mean percentage of 20 evolved colonies from transfer 80 positive for RK2 

plasmid by PCR, 6 independent populations per treatment, error bars show 

SEM.  

 

 
Figure S4.2 | Number of mutations per genome. Bar charts show number of 

mutations per evolved clone in each treatment. The dark area of bar represent 

chromosomal mutations and the light area represent plasmid mutations. 
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Figure S4.3 | Mutations observed in each evolved independent population. 

Each ring represents the chromosome or RK2 from a single clone from each 

independent population, populations 1 to 6 from inner ring to outer ring. Dots (●) 

represent SNPS and sort indels, triangles (▲) represent insertion sequences, 

squares (◼) represent large duplications and bars (❙) represent large deletions. 

Mutations which are present within the same loci in two or more clones from the 

same treatment are labelled.  
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Figure S4.4 | Loss of function of OmpF multiplicatively increases tetracycline 

resistance when in combination with plasmid based efflux pump. Growth of keio 

knockout strains in the presence tetracycline in comparision to ancestral 

MG1655. Dashed lines represent ancestral strains, solid lines represent 

knockout strains, with light lines showing plasmid free growth and dark lines 

showing growth when harbouring RK2 a, E. coli K-12 ΔompF (JW0912) b, E. 

coli K-12 ΔychH (JW1196) c, E. coli K-12 ΔacrR (JW0453). Error bars represent 

SEM of six replicates.  
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Figure S4.5 | Relative fitness of evolved plasmid bearing populations. The 

relative fitness of evolved plasmid containing strains verses ancestral plasmid 

free strains when under no antibiotic selection. Bars represent mean of one 

randomly selected clone from each of the six replicate populations, error shows 

SEM. The black line represents the fitness of the ancestral plasmid carrying 

strains verses ancestral plasmid free, with the shaded grey area showing SEM 

(n=6). Evolved clones selected without antibiotics or with AMP increased in 

fitness (one-sample t test from 1 N: mean = 1.0047, s.e. = 0.019, t5 = 0.2445, p 

= 0.8166, A: mean = 1.0733, s.e. = 0.0109, t5 = 6.709, p < 0.05). Evolved clones 

constantly exposed to TET (T and AT treatments) remained significantly less fit 

than the ancestral plasmid free MG1655 in antibiotic-free media (one-sample t 

test from 1 T: mean = 0.9059, s.e. = 0.0224, t5 = -4.192, p < 0.05, AT: mean = 

0.8938, s.e. = 0.0.0321, t5 = -3.300, p < 0.05). 
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Figure S4.6 | Chromosomal resistances reduce lag time. Growth curves of: 

evolved host with evolved plasmid, evolved host with ancestral plasmid, 

ancestral host with evolved plasmid and ancestral host with ancestral plasmid, 

in TET 10µg/ml (the TET concentration used in the selection experiment), from 

either T, AT or A/T treatments. Mean of one randomly selected strain from each 

of the six replicate populations per treatment, error bars represent SEM.  

 

 

 
Figure S4.7 | Plasmid mutations ameliorate the cost of chromosomal 

resistances. The relative fitness of evolved strains from T treatment harbouring 

either their evolved plasmid or ancestral plasmid competed against ancestral 

MG1655 with ancestral RK2 plasmid, bars show the mean of 18 replicates, with 

error bars showing SEM. 
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Figure S4.8 | Plasmid tetA/tetR mutations only occur after acquiring insertion 

sequences in ompF. Bars represent the number of independent clones from 

population AT2 that have ompF::IS mutations, detected by PCR, and the 

number of clones within this background with tetA or tetR mutations, detected by 

Sanger sequencing.  
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Appendix D: Chapter 5 
 

 
 

Figure S5.1 | Whole population PCR of ompF within populations N1, T4, AT2, 

AT3 and AT5. Short bands of 716 bp indicate on aquisiiton of IS elements within 

ompF. Bands of 1484 bp show the acquisition of IS1, and bands of 1911 bp 

show the acquisition of IS5 within ompF. The insertion of IS elements was never 

ombserved within the control population evolving with RK2 under no antibiotic 

selection. Lanes marked with M contain size markers. 
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Figure S5.2 | Frequency of IS elements witin ompF between transfers 8 and 40 

in population T4, AT2, AT3 and AT5. Bars represent the number of independent 

clones from population AT2 that have ompF::IS mutations, detected by PCR.  
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Figure S5.3 | Number of mutations within each clone through time in 

populations T4, AT2, AT3 and AT5. Solid fill shows chromosomal mutilations, 

dashed fill shows plasmid mutations. 

 
Figure S5.4 | Fits of models to the acquisition of mutations within populations 

T4, AT2, AT3 and AT5. The solid line shows the best fit to a linear model, the 

dashed line shows the fit to a root-squared model, and the dotted line shows the 

fit to the two parameter model, incorporating both the linear and root-squared 

terms. 
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Figure S5.5 | The change in resistance profile through time of independent 

clones within population T4. Faceted by transfer clones were isolated from. The 

vertical line represents the concentration of tetracycline selected for during the 

evolution experiment. Points represent the mean of the three technical 

replicates with error bars showing SEM.  

 
Figure S5.6 | The change in resistance profile through time of independent 

clones within population AT2. Faceted by transfer clones were isolated from. 

The vertical line represents the concentration of tetracycline selected for during 

the evolution experiment. Points represent the mean of the three technical 

replicates with error bars showing SEM.  
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Figure S5.7 | The change in resistance profile through time of independent 

clones within population AT5. Faceted by transfer clones were isolated from. 

The vertical line represents the concentration of tetracycline selected for during 

the evolution experiment. Points represent the mean of the three technical 

replicates with error bars showing SEM.  

 

 

 
Figure S5.8 | Growth curves of the ancestral MG1655(RK2) and clones from 

transfers 8, 16, 40 and sequenced clones from transfer 80 from populations T4, 

AT2 and AT5 in the presence of tetracycline 10 µg/ml, the same concentration 

used in the selection experiment. Points are the mean of three replicates with 

error bars representing SEM. 
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Table S5.1 | ANOVA comparison of tetracycline resistance integrals with Tukey 
multiple comparison tests of A population T4, B population AT2, and C 
population AT5.  
 
A Population T4 
Factor d.f. Sum 

Squares 
Mean 
Squares 

F Value P 

Transfer 4 2.438 0.609    23.56 6.84e-09 
Residuals    30 0.776 0.026      
 
Comparison Difference P adjusted 
Anc – 8 -0.075 0.916 
Anc – 16 -0.647 0.0001 
Anc – 40 -0.464 0.0001 
Anc – 80 -0.631 0.0001 
8 – 16 -0.572 0.000 
8 – 40 -0.389 0.0001 
80 – 8 0.556 0.0001 
40 – 16 -0.183 0.138 
80 – 16 -0.017 0.999 
80 – 40 0.167 0.535 
 
B Population AT2 
Factor d.f. Sum 

Squares 
Mean 
Squares 

F Value P 

Transfer 4 0.982 0.245    11.1 1.21e-05 
Residuals    30 0.663 0.022   
 
Comparison Difference P adjusted 
Anc – 8 0.033 0.994 
Anc – 16 -0.274 0.019 
Anc – 40 -0.372 0.001 
Anc – 80 -0.179 0.482 
8 – 16 -0.308 0.001 
8 – 40 -0.405 0.000 
80 – 8 0.211 0.231 
40 – 16 0.097 0.639 
80 – 16 -0.096 0.868 
80 – 40 -0.193 0.315 
 
C Population AT5  
Factor d.f. Sum 

Squares 
Mean 
Squares 

F Value P 

Transfer 4 1.337   0.334 7.864 0.0002 
Residuals    30 1.274   0.042   
 
Comparison Difference P adjusted 
Anc – 8 -0.217 0.346 
Anc – 16 -0.379 0.020 
Anc – 40 -0.599 0.0001 
Anc – 80 -0.380 0.111 
8 – 16 -0.163 0.465 
8 – 40 -0.382 0.004 
80 – 8 0.164 0.756 
40 – 16 0.219 0.186 
80 – 16 0.001 1.000 
80 – 40 -0.218 0.515 
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Table S5.2 | ANOVA comparison of length of lag phase when growing in 
tetracyclin 10 µg/ml with Tukey multiple comparison tests of A population T4, B 
population AT2, and C population AT5. 
 
A Population T4 
Factor d.f. Sum 

Squares 
Mean 
Squares 

F Value P 

Transfer 4 59.53   14.882    18.23 2.71e-09 
Residuals    50 40.81    0.816     
 
Comparison Difference P adjusted 
Anc – 8 2.179 0.0002 
Anc – 16 3.339 0.000 
Anc – 40 3.392 0.000 
Anc – 80 3.796 0.000 
8 – 16 1.160 0.008 
8 – 40 1.213 0.005 
80 – 8 -1.617 0.009 
40 – 16 -0.053 0.999 
80 – 16 -0.457 0.863 
80 – 40 -0.404 0.908 
 
B Population AT2 
Factor d.f. Sum 

Squares 
Mean 
Squares 

F Value P 

Transfer 4 109.33   27.331    558.7 <2e-16 
Residuals    50 2.45    0.049   
 
Comparison Difference P adjusted 
Anc – 8 -0.246 0.214 
Anc – 16 2.776 0.000 
Anc – 40 2.759 0.000 
Anc – 80 2.583 0.000 
8 – 16 3.022 0.000 
8 – 40 3.005 0.000 
80 – 8 -2.829 0.000 
40 – 16 0.018 0.999 
80 – 16 0.193 0.448 
80 – 40 0.176 0.543 
 
C Population AT5  
Factor d.f. Sum 

Squares 
Mean 
Squares 

F Value P 

Transfer 4 110.03   27.507    25.17 1.86e-11 
Residuals    50 54.64    1.093     
 
Comparison Difference P adjusted 
Anc – 8 1.336 0.113 
Anc – 16 3.849 0.000 
Anc – 40 3.726 0.000 
Anc – 80 4.175 0.000 
8 – 16 2.513 0.000 
8 – 40 2.390 0.000 
80 – 8 -2.829 0.000 
40 – 16 0.123 0.998 
80 – 16 -0.316 0.977 
80 – 40 -0.439 0.925 
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Abbreviations 
 
AIC Akaike information criterion 

AMP Ampicillin 

AMR Antimicrobial Resistance 

ARG Antibiotic Resistance Gene 

bp Base Pair 

CFU Colony Forming Units 

CML Chloramphenicol 

DNA Deoxyribonucleic Acid 

ESBL Extending Spectrum β-lactamse 

GFP Green Fluorescent Protein 

HGT Horizontal Gene Transfer 

ICE Integrative and Conjugative Elements 

IS Insertion Sequence 

kb Kilobase 

Mb Mega-base 

MDR Multidrug Resistance 

MGE Mobile Genetic Element 

MIC Minimum Inhibitory Concentration 

MRSA Methicillin-Resistant Staphylococcus aureus 

MSC Minimum Selectable Concentration 

NB Nutrient Broth 

NDM New Delhi metallo-β-lactamase 

OD Optical Density 

PCR Polymerase Chain Reaction 

PK-PD Pharmacokinetic-Pharmacodynamic 

SEM Standard Error [of the] Mean 

SNP Single Nucleotide Polymorphism 

ssDNA Single Stranded Deoxyribonucleic Acid 

TA Toxin-Antitoxin 

TET Tetracycline 
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