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Abstract 

Multi-strand systems include, but are not limited to, beam-like structure (special composites) 

or wire-like structure (mechanical cables and electrical wires), constructed from many long 

strands that are constrained rather than bonded, can provide appreciable levels of damping 

through the friction in the interfacial surfaces between the individual strands. These systems 

are generally metallic to provide dry friction damping over significantly wider working 

temperature ranges than is typical for common damping materials such as viscoelastic 

polymers. 

This work proposes an analytical model that describes the frictional damping behaviour of 

multi-strand system constructed from strands that have square and circular cross-sections. 

The analytical models predict the frictional system stiffness under simply supported 

configuration. This is followed by systematic quasi-static experiments and numerical 

investigations using standard finite element analyses. Simple Coulomb friction is assumed at 

the interfaces. 

Dynamic loss factors for multi-strand beams and multi-strand wires are obtained by 

performing forced vibration tests and are found (the loss factors) to be insensitive of the 

frequency. The analytical models in this study show preference in describing multi-strand 

systems due to some limitations in the experimental and numerical representations. This 

thesis provides a vital and necessary insight into the physics for stranded structures and 

materials that are largely prevalent in mechanical (e.g. cables) and electrical (e.g. wires) 

elements. 
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Chapter 1  

Introduction 

Vibration control in machinery and mechanical structures is considered a subject of interest 

to many researchers. The presence of dry metal friction in a system can provide significant 

levels of damping over a large range of working temperatures. Unlike viscoelastic materials, 

which are well known for providing damping, metallic dry frictional systems are temperature 

independent systems, which has caused them to be of considerable interest in some industry 

sectors. The main source of damping in these systems is the energy dissipated as heat due to 

the relative movement between mating surfaces that have frictional contact.  

1.1 Multi-strand systems 

Multi-strand systems comprise individual strands having frictional contact on the interfacial 

surfaces. The individual strands in this study are made of mild steel. These strands are kept 

together by means of clamping that applies the normal force required to provide frictional 

forces. Multi-strand systems of square and circular cross-sectional construction are shown in 

Figure 1.1.  
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Figure 1.1 Multi-strand systems comprising (a) nine-strand beam with square cross-section 

and (b) seven-strand wire with circular cross-section 

 

Multi-strand systems are distinguished as having multiple neutral axes due to the strands 

being frictionally connected rather than bonded to each other. This means that, during 

flexure, the individual strands flex independently of each other, thereby making relative 

displacement possible between strands. Optimising relative motion between the strands, 

whilst considering the change in flexural stiffness of the system is the key to improving 

damping levels. 

One of the benefits of these systems is that they can be implemented in machines as a part of 

the system itself to control vibrations through the dissipating vibrational energy. Another 

benefit is that these systems are not expensive and are widely available. 

 

 

 

 

 

 

 

Multiple neutral axes 
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The challenge in these systems is that the mechanism is not well understood and therefore it 

is difficult to optimise the frictional behaviour in order to provide certain damping levels. To 

achieve understanding of these systems, the overall stiffness of the system experiencing 

frictional behaviour should be identified accurately when the system is in slide contact 

condition. This stiffness is termed frictional stiffness in this study. The ability to describe the 

stiffness of a frictional system analytically can provide scope for new research as there is 

currently a lack of research describing the stiffness of a system where friction behaviour is 

involved during flexural loading.  

1.2 Aims and contributions 

The work in this study aims to provide understanding of the frictional behaviour of multi-

strand beams (MSB), diagonal multi-strand beams (DMSB), multi-strand bars (MSR) and 

multi-strand wires (MSW) that comprise square and circular cross-sectioned strands. This is 

achieved through introducing analytical models that describe the frictional behaviour in 

these systems. These models are able to predict the flexural stiffness of the system. The 

effects of various parameters such as the length of strands, the number of strands, the cross-

section size, the normal force, the amplitude of the forcing and the frequency of excitation 

on the damping levels are investigated in order to explain and optimise the damping 

behaviour of multi-strand systems.  

This work addresses the damping behaviour in such multi-strand systems with frictional 

contact between individual strands. This is carried out by introducing analytical models to 

predict the system’s stiffness and damping when subjected to flexural deformations. The 

analytical models are validated by experimental and numerical work. 

To some extent, the experimental tests along with the numerical analyses are used to validate 

the analytical modelling. However, when the structure is more complex, the experimental 

set-up becomes more difficult, especially in a multi-strand wires comprising more than 

thirty-seven wires. On the other hand, the finite element analyses had limitations in 

simulating complex structures as the finite element package was limited to constructing 

multi-strand wire systems comprising seven wires, without taking into account the time 

expense. Therefore, it is desirable to have analytical models that can predict and describe the
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frictional damping behaviour in these complex systems in a significantly shorter time and 

with less preparation. 

1.3 Thesis layout 

Various multi-strand systems are involved in this study, including multi-strand beams, multi-

strand bars and multi-strand wires. Full description of the frictional behaviour during the 

sticking and the sliding phases are illustrated in this thesis. This thesis is divided into eight 

chapters. 

Chapter 2 presents a literature review of previous research. The literature was selected to 

cover the different aspects of the study. Discussions and explanations of the previous and 

current research are conducted to clarify the knowledge gaps in these topics. 

Chapter 3 focuses on the analytical and numerical models developed to describe the 

frictional behaviour in multi-strand beams (MSB) in which the individual strands are square 

cross-sectioned. The effects of the studied parameters such as length of individual strands, 

number of strands involved in the system, the clamp force, the size of individual strands and 

the amplitude of the displacement on the damping are described. The experimental 

investigation of material properties is discussed. The chapter describes the experiments 

performed to identify the static and dynamic coefficients of friction. Prediction of the 

frictional stiffness of the system is modelled analytically. The analytical models produce 

hysteresis loops which are then compared against hysteresis loops that are obtained 

numerically. Numerical models are built to investigate the effect of changing the number of 

individual strands while keeping the overall cross-section of the system the same. 

Chapter 4 deals with the experimental tests performed on multi-strand beams (MSB) to 

investigate the same parameters considered in Chapter 3. Comparisons of the damping 

parameters and hysteresis loops obtained analytically, numerically and experimentally are 

presented. 

Chapter 5 concentrates on the experimental, analytical and numerical investigations of 

diagonal multi-strand beams (DMSB) in. This chapter considers the effects of parameters 

such as the length of individual strands, the number of the strands involved in the system, the 

clamp force and the amplitude of the applied displacement on the damping behaviour of the 
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system. The effect of rotation of the system on the system stiffness and on the frictional 

forces is investigated. The thermal effect that occurred during the experimental work due to 

the friction is investigated and the hysteresis loops and the damping parameters obtained 

experimentally, analytically and numerically are compared together. 

Chapter 6 explores multi-strand bars (MSR) and multi-strand wires (MSW) experimentally, 

analytically and numerically. Material properties are identified experimentally. This involves 

manufacturing special clamps to clamp the MSR and calibrate the clamp forces, while heat 

shrink rings are used to clamp the MSW. After explaining the experimental work performed 

on MSR and MSW the chapter focuses on the analytical models developed to predict the 

frictional stiffness of the system and to describe the hysteresis loops. The effects of 

parameters such as the number, the diameter and the length of individual strands as well as 

amplitude of the applied displacement on the damping characteristics are considered. The 

chapter presents comparisons of the damping parameters and the hysteresis loops obtained 

analytically, experimentally and numerically.               

Chapter 7 deals with the dynamic experiments conducted on multi-strand beams (MSB) and 

multi-strand wires (MSW). These experiments were designed to illustrate the effect of 

vibration on the damping levels in these systems. The damping parameters are presented 

over the range of the tested frequencies. 

Chapter 8 presents the main conclusions drawn from the work described above. 
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Chapter 2  

Literature Review 

2.1 Dry friction 

To discuss dry friction sensibly, some definitions are defined upfront. 

Dry friction can be defined as the friction induced from the relative movement of two or 

more mating surfaces in the absence of lubrication. Dry friction comprises two possible 

generalized regimes. The first regime is the static friction, sometimes known as “stiction”, 

where there is no movement between mating surfaces. The second regime is the dynamic 

friction, which occurs when slip is present at the mating surface. These regimes are used to 

define the friction coefficients. The slip takes place at two phases. The first phase is 

microslip where some asperities break and others remain depending on the force level, ratio 

of shear force to normal force, applied to the system causing relative movement between the 

two surfaces in contact at the micro-scale level. The second phase is the macroslip where slip 

starts at all surface asperities causing the two bodies in contact start to slide relative to each 

other. 

Therefore, static and dynamic coefficients of friction are used to estimate the frictional force.  

An early attempt to study friction phenomena scientifically was made by Amontons in 1699 

through his three laws of friction which were verified later by Coulomb in 1785. These three 

friction laws state that the normal force has a direct effect on the friction force, the friction 

force is independent of the area of the contact, and the kinetic friction is independent of the 

sliding velocity. Several analytical models were later proposed. The types of model used to 

describe static dry friction may include the Coulomb model, Static Friction model and 

Karnopp model. 
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The Coulomb model (Equation 2.1),which has been adopted by many researchers, states that 

the friction force is independent of the contact area, has a direct proportion to the normal 

force and opposes the direction of movement, while the friction force is dependent on the 

direction of the velocity (assuming no zero velocity).  

  vFF NCoul sgn  2.1 

where, FCoul is Coulomb friction force, µ is coefficient of friction, FN is the normal force and 

v is the velocity.   

The Static friction, stiction, model, which was studied by Rabinowicz [1], stated that the 

external force needed to overcome the stiction force for a system that has static contact 

would be greater than the external force needed to overcome Coulomb friction force due to 

the fact that Coulomb model did not count for zero velocity contact. Static friction model 

assumes that the static friction is dependent on the external force (the force that can cause the 

slipping if it was high enough to overcome the stiction force) as shown in Equation 2.2 in 

addition to the independency of the velocity. 

 

 

           if 0  and  

sgn   if 0  and  

ex ex N

Stat

N ex ex N

F v F F
F

F F v F F



 

  
 

 

 2.2 

where, FStat is Static friction force and Fex is the external force.  

For some control applications, zero velocity contact can cause some computational problems 

therefore Karnopp [2] introduced a friction model in which he introduced the friction force 

as a function of velocity and defined a region for low velocity, and whereas outside this 

region the friction force has an arbitrary value, inside the low velocity region the friction 

force is found by other forces in the system.    

Stick-slip behaviour is a ‘jerking’ relative motion between surfaces alternating between a 

relative velocity of zero (stick) and nonzero (slip). This occurs when either the tangential 

force fluctuates between less than and greater than (or equal to) the frictional force, or the 

statistical ‘locking’ of the asperities changes spatially alternating between lock and unlock 

conditions.  

Stick-slip phenomenon was first given its name “stick-slip” by Bowden and Leben [3] 

during their experimental work to investigate the effect of sliding on alternation between 
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sticking and sliding the frictional force where they assumed values for the static and the 

kinetic coefficients of friction. This investigation was extended by the experimental work of 

Antoniou et al [4] who specified magnitudes for the coefficient of friction at each stick-slip 

cycle as the stick-slip oscillates. More stick-slip studies can be found in the references [5–9].  

Since earthquakes are generated by stick-slip between the tectonic plates, geophysicists 

needed a model that could describe the time history of the friction force magnitude. The 

Dahl model  [10], which was introduced in 1968, was supposed to cover the static and the 

dynamic dry friction contact stages. Dahl provided a description for the elastic and plastic 

distortions of the asperities during the microslip by transforming the stress-strain curve of 

each contact pair into a force-displacement curve analytically. Dahl friction force is a 

function of velocity and displacement which is represented empirically as  

 

 0 1 sgnDahl Dahl

N

dF F
v

dx F




 
  

 
 2.3 

where, FDahl is Dahl friction force, σ0 is stiffness parameter at equilibrium point where FDahl= 

0. Dahl friction force can be written in a time derivative as 

 

 0. 1 sgnDahl Dahl Dahl

N

dF dF Fdx
v v

dt dx dt F




  
    

  

 2.4 

Coulomb model (Equation 2.1) was considered as a special case of Dahl’s model, 

representing the steady-state case of the Dahl model (Equation 2.4). 

Stribeck effect is friction behaviour whereby friction force decreases due to increasing the 

velocity in contacts and due to a lubrication film, and many researchers have used this effect 

to describe the stick-slip at its initial conditions. The sliding contact for Coulomb, viscous, 

combination of Coulomb and viscous and Stribeck friction models have been investigated 

analytically by Andersson et al [11] in terms of their performance conditions and contact 

type. However, they argued that the friction force in the case of zero sliding cannot be found, 

and this case may require the use of micro-slip models like Dahl, Lu-Gre and combinations 

of “Coulomb, viscous and Stribeck” friction models. Basically, models depend on the 

occurrence of local slip of some particles inside the contact area while other particles are still 

stacked without slipping. They suggested that if these models were connected together to 
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construct a system model, this system model could be used in the simulation and analysis of 

different contact conditions. 

To mimic the unequal distribution of asperities in the contact region, Haessig and Friedland 

[12] introduced the Bristle model (Equation 2.5) which was considered a dynamic friction 

model as the model counted for the velocity. In this model, the friction is created by large 

numbers of random bristles that come into contact. Each bristle is considered as a spring and 

friction force is counted by summing the total forces resulting from the presumed springs. 

This model was found to be inefficient as the complexity of the model is increased by 

increasing the number of the bristles.  

 
1

( )
M

Bris i ii
F x s


   2.5 

where, FBris is Bristle friction force, M is the number of bristles, σ is the stiffness of bristles, 

xi is the relative location of bristles and si is the connection position of the mating bristles. 

Later, scientists from the Lund control group and the Grenoble control group started to 

propose a dynamic friction model called the Lu-Gre model [13, 14]. Basically, this model 

was a combination of the Dahl model and Stribeck effect along with the Bristle model but 

with averaging of the friction forces resulting from the total bristles in contact. Lu-Gre 

friction model described as 

 
0 1 2Lu GreF z z v       2.6 

Where, FLu-Gre is Lu-Gre friction force, z has been introduced by Dahl and considered the 

bristles deformation in Lu-Gre model and is described as  

 

0

friF
z


  2.7 

where, Ffri is the friction force, σ1 is the microscopic damping, z is obtained through 

substituting Equation 2.7 into Equation 2.4 which results 

 

0

0

1
. . .Bris

Coul

vdFdz dx
z v z

dt dx dt F



     2.8 

In Lu-Gre friction model, the constant friction force FCoul is replaced with a velocity-

dependent function g(v)which leads to  
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2 is the viscous friction coefficient. The advantage of Lu-Gre model is the preslide and 

slide stages are included in the model.  

2.1.1 Dry friction in delaminated and multi layered beams 

In many cases delamination may be considered as a phenomenon of failure in composites. 

This happens when the layers start to separate from each other. Friction induced between the 

delaminated layers can be utilized in vibration control. Most research papers deal with the 

delamination status theoretically. Additionally, multi-layered beams can give similar 

behaviour to the delamination.    

The free vibration of composite laminates with a single central delamination was 

investigated by Saravanos and Hopkins [15]. In their work, they obtained natural frequencies 

and modal damping values experimentally, and they also developed an analytical model to 

help explain the effect of delaminations. In the model, a kinematic assumption was 

introduced to describe the crack as an additional degree of freedom in the laminate theory. 

Accordingly, the generalized stiffness, mass and damping matrices were formulated. It was 

found that the natural frequency decreases with increasing the delamination length. The 

effect of friction in the delamination interface on the damping performance was not 

considered. The dynamic behaviour of a composite beam with a single delamination has also 

been studied by Kargarnovin et al [16] but with a  moving contact force on the surface. The 

dynamic response was obtained analytically through modal analysis and the effects of the 

velocity of the moving force, location of the single delamination and the delamination length 

were considered; however, the effect of friction between the delaminated layers was 

neglected. Li and Crocker [17]  examined the effect of the delamination length, position and 

whether the delamination occurred on one side or both sides of a honeycomb-foam sandwich 

beam. They pointed out that the delamination can cause friction which would in turn 

increases the damping; however, the friction between the delaminated layers was not studied.  

The vibration of a beam with two delaminations was studied analytically by Della and Shu 

[18]. They divided the beam into five interconnected strands and applied classical beam 
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theory in their work. The vibration modes of the beam were investigated when the strands 

were free (global), partially constrained (mixed) and fully constrained (local) – see Figure 

2.1. They studied the effect of slenderness ratio on the fundamental frequency of the beam. 

Only equal delamination lengths were used in their study. They found that in the case of the 

constrained mode the strands were vibrating together, while in the case of the free mode the 

beams were vibrating independently. On the other hand, they found that vibration of the 

beam depended on the thickness of the delaminated layer in the case of the partially 

constrained mode. The drawback of their work is that, the effects of friction were not taken 

into consideration despite obvious frictional contact. 

 

Figure 2.1  Beam vibration modes (a) free mode, (b) partially constrained mode and (c) 

constrained mode (Source [18]) 

 

The influence of the size and location of the delamination on the fundamental frequency and 

mode shape in a beam with two overlapping delaminations were investigated by Della et al 

[19]. An analytical study of the free vibrations was conducted. They found that the 

fundamental frequency and the mode shape were affected by the second overlapping 

delamination of a clamped beam. Also, the length of the delamination had a significant effect 

(b) 

(c) 

(a) 
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on the fundamental frequency and the mode shapes. However, the study focused on the 

dynamic behaviour of the delaminated beams and ignored the frictional effect between the 

laminates and its effects on the response. A similar study, conducted by Andrews et al [20], 

used a cantilever beam that was loaded at its end and the beam end was divided into 

segments (delaminations with different lengths). They showed that the short and long 

delaminations can reduce or increase the rate of energy release depending on the geometry of 

the system. The contact between the segmented beams was assumed to be non-frictional and 

the study suggested that future researches should study the effects of friction. Other studies 

that analysed the response of composites experiencing interlayer slip [21–24] ignored the 

presence of friction in the interlayer region. 

A leaf spring system (shown in Figure 2.2), often used in the automotive industry, can show 

dry friction at the interfaces between the leaves. An approach was introduced by Osipenko et 

al [25] to investigate the shape of bent leaves where each leave has different lengths with un-

bonded frictionless contact. The model was simplified into spring of two straight leaves 

under bending. The leaves were constrained from one end and was free from the other end. 

To simplify the problem of getting the shape for the bent leaf, they calculated the density of 

the interfacial loads. The hysteresis behaviour of the leaf spring system of a truck was 

studied experimentally and numerically by Yum [26]. The experimental part of this study 

focused on the effect of friction that may result from the shackle (that lies at one of the leaf 

ends) on the hysteresis loops. Shackle friction effect was neglected in the numerical analysis, 

in addition to the friction between the leaves, which resulted in some differences in the 

hysteresis behaviour compared with the experimental results.  

Blok [27] showed in his thesis that the energy dissipation by a Coulomb model in a stick 

condition is at similar levels to the energy dissipated by a Stribeck model or Viscous model 

of stick status. Blok built an experimental model for a mass which was sliding on a base 

depending on the basis of Coulomb friction model. The results were compared with those 

from theoretical analysis based on the Coulomb friction model.  

2.1.2 Dry friction between fibres 

Fibrous materials involve metallic and non-metallic materials such as steel fibres, entangled 

metal wire, yarns and paper. Under load these materials experience dry friction as slip can  
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Figure 2.2  Leaf spring system 

 

occur at interfaces. The dry friction between the contact surfaces will cause non-linear 

behaviour and at the same time will resist relative motion between the moving parts. This 

resistance can be considered as a dissipation of the energy which can be utilized in vibration 

control. 

The first studies to investigate fibres and their twisting methods started in the 1950s. An 

apparatus was developed by Lindberg and Gralen [28] to evaluate the coefficient of friction 

between two twisted fibres in experiments using fibres made of nylon and wool. The method 

involved twisting two fibres together, applying a force at one of the four ends while holding 

the other ends and then starting the slip. Because the applied forces were known, the 

frictional forces could then be found. This method was applicable to two fibres in contact 

only.   

The friction between yarns and a cylinder was studied experimentally by Howell [29], using 

yarn and a cylinder produced from different materials. A formula was developed for the 

Capstan contact which was represented as line contact between the fibres and the cylinder or 

as point contact between the fibres themselves. The effect of the cylinder diameter was 

studied in terms of the resulting contact with the yarn and its effect on the friction 

coefficients. The tension of a fibre around a cylinder was found as 
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where, T is the tension of a fibre around a cylinder for non-metallic materials and is found 

experimentally, To is the initial or the restraining tension, μ is the coefficient of friction, ρ is 
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the radius of the cylinder, θ is the angle of the twist of the fibre around the cylinder and n is 

the friction index. Then the coefficient of friction is estimated as 

 nTF   2.11 

Howell stated that the repeatability of the experimental results depended on the level of the 

cylinder’s surface cleaning. The fibres and the cylinder were non-metallic materials. 

Gupta and El-Mogahzy [30] attempted to generalize a model that can work on viscoelastic 

fibres, identifying the parameters a and n of the empirical formula  

 naNF   2.12 

where, a represented the effect of the stiffness and n represented the shape factor. They 

believed that the surface morphology has an effect on the coefficient of friction as the 

number of asperities increases if the surface is rough. They studied fibres made of materials 

with viscoelastic deformation as these materials do not follow the standard friction law 

because these materials partially deform plastically. They assumed that neither the contact 

area nor the normal force affects the specific shear strength. The study was concerned to find 

a general formula for the true area of contact in terms of the number of asperities at the 

contact area. Through generalizing the pressure distribution on the asperities in the contact 

area and assuming some forms of stress distribution for the asperities, they were able to 

derive the formula. Line contact for in-line fibres and the point contact for across fibres were 

implemented.  

The experimental work conducted by El-Mogahzy and Gupta [31] was an attempt to connect 

their study with the results of a previous theoretical study [30]. They used both line contact 

method (twist method) [28] and point contact method (Capstan method) [29]. Both of which 

methods can be classified as inter-fibre contact. The parameters under study were the 

coefficient of friction in addition to a and n indices in the friction formula for viscoelastic 

materials Equation 2.12. They examined the effect of the cross-section shape of the fibre as 

well as the effects of the type of the fibre used in the experiments and whether the fibres 

were annealed or not. Generally, the parameters under study took the structural effects and 

the shape effects into account. They noticed that n was not affected by wet contact but was 

affected by the shape factor and a was a factor of material properties. The previous two 
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studies were limited to investigating the effect of the morphology of the contact area on the 

friction for fibres.   

Depending on the structural similarity between the yarn/fabric and the fibrous material in 

terms of both having friction in their fibres, Ngoc et al [32] adopted Dahl’s model to 

describe the hysteresis loops of woven materials. A comparison was made between the 

simulated results and data measured in the lab. Based on the results of this study, they 

suggested that more research is needed to describe and simulate the friction behaviour in 

fibres as the simulated model was empirical-data dependent.  

A review of models used to represent the behaviour of dry fibrous materials was conducted 

by Syerko et al [33] within different conditions. The study concluded that models at macro-

scale (whole component) can process any type of fibrous material as these models do not 

depend on the micro structure of the material; however, this procedure is used at the expense 

of the accuracy. Models at the meso-scale (yarn) can analyse some statuses like crushing and 

sliding in fibres, but input data will be needed to simulate these models. In order to obtain 

the input data, models at the micro-scale (fibre) will be needed to illustrate the exact internal 

behaviour of the adjacent fibres and how they affect the whole model. In the work of Raoof 

and Hobbs [34] and Raoof and Roger [35], multilayered strands experiencing axial load 

were studied analytically where the ends of the strands were assumed fixed. In their work, 

zero friction was assumed for the full slip stage as they considered that the frictional force is  

negligible compared to the force changes in the wires themselves due to the axial load.   

2.1.3 Microslip in balls and cylinders 

The normal contact between two elastic curved bodies was first analytically introduced by 

Hertz in 1882. The assumptions of the Hertz theorem are that the deformations are within the 

elastic limit, the contact area is much smaller compared with the dimensions of the bodies in 

contact, the bodies are elastic half-space, and the contact is frictionless. Hertzian contact 

includes only normally loaded (normal to the longitudinal axis of the bodies in contact) 

contact.  

Later, the contact of two elastic half space bodies that were loaded normally and tangentially 

was studied by Cattaneo in 1938 and by Mindlin in 1949 by extending the Hertzian theory of 

contact to include a slip condition that may occur due to tangential loading. Mindlin 
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simplified the analysis by introducing the following assumptions: 1- the two spheres in 

contact are identical in shape. 2- the contact area resulting from the normal load is 

independent of the tangential loading. 3- tangential loading causes the contact interface to 

start slipping and increase of the tangential load causes the slip to spread radially as an 

annulus starting from the edge of the contact area. The inner radius of the annulus (c) was 

defined as 

 
1

P
c a

N
   2.13 

where, a is the Hertzian half width contact area, N is the contact normal force and P is the 

non-constant tangential load. 4- the direction of the shear stress generated on the annulus is 

parallel to the direction of the tangential load. 

The Mindlin concept regarding the slip generated from tangential loading has been used 

widely by researchers in an attempt to describe frictional contact in elastic half-space bodies.  

Goodman and Brown [36] compared the results of their experimental work, using a steel ball 

constrained by two steel surfaces opposite to each other where the ball was exposed to 

normal load and cyclic tangential load, with analytical prediction depending on the Mindlin 

concept, and they were able to describe the hysteresis loop for the stick-slip condition. 

Similar work was presented by Dini and Hills [37]. Pires and Oden [38] studied numerically 

the deformations of the asperities when subjected to constant normal and oscillating 

tangential loading. They limited their work to the assumption that the normal pressure 

distribution on the asperities is independent of the effect of the oscillation of the tangential 

load. A similar assumption, that normal deformations are independent of the tangential 

stresses, was applied to the numerical work of Nowell et al [39], which used two dissimilar 

elastic bodies that came into contact. Their results agreed with the analytical prediction of 

the Mindlin concept.   

In the above research, it was assumed that the tangential stress would not cause sliding 

between the mating surfaces and that the tangential stress was applied in the lateral direction. 

In the work of this thesis, the contact was allowed to extend to full slide condition. In 

addition, the system was exposed to flexural loading creating tangential stresses along the 

length of the system (longitudinal direction). 
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Although the Hertzian theorem of contact states that the contact is frictionless and that the 

normal pressure is Hertzian, some researchers have attempted to utilize this theorem in 

frictional contact systems. 

Kalker [40] studied two cylinders in contact numerically and it was assumed that there was 

no distinction between the slip and no slip cases. The tangential stress was supposed not to 

affect the distribution of the normal Hertzian pressure on the contact area. The shape of the 

contact area of two cylinders pressed over each other where their longitudinal axes were 

parallel, was described by Kalker [41]; however, he pointed out that the error in the results, 

when compared to an exact Hertz solution, increases when the ratio of the length of the 

contact area to the width of the contact area increases. Similar work was conducted by 

Ahmadi et al [42] that attempted to relate the effect of friction to the contact area. They 

stated that the contact area might change slightly due to friction, but provided no actual 

calculations. In an attempt to model the tangential contact stiffness of the asperity in the 

frictional contact area, Shi et al [43] considered the contact area of the asperity as a 

parameter instead of  using the major and minor axes, because they believed that the asperity 

contact area is stochastic. They showed that the tangential contact stiffness decrease with 

increasing the tangential force and increase with increasing the normal force. In line with the 

previous, Mulvihill et al [44] were not able to measure the true contact area in their study to 

investigate the friction between carbon fibres in composites and they used a Hertzian 

formula to calculate the contact area instead. 

Researchers have utilized simplified Mindlin concepts to describe the rolling contact of two 

half space bodies experiencing friction in terms of distribution of tangential stress along the 

contact area and prediction of the contact area dimensions.    

The tangential stress resulting from rolling of two normally loaded elastic spheres and its 

distribution along the contact area was proposed mathematically by Goodman [45] and 

Mossakovskii [46]. The friction effects were inserted as frictional stresses into Hertzian 

pressure. The contact status was limited to stick in their study. Similar work was done by 

Zhupanska and Ulitko [47]. The shear modulus of elasticity was denoted to  in Goodman’s 

work, which makes it difficult for the reader to follow the insertion of the friction effect in 

the analytical equations, especially since no clear evidence was shown for the use of the 

coefficient of friction in their work. Their solution was simplified by presuming normal 
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displacements independent of tangential stress. Normal displacements dependent on 

tangential stress were studied by Spence [48] in a full stick contact problem and by Spence 

[49] in a partial stick contact problem. The adhesion contact area of bodies, in a Hertzian 

problem, experiencing rolling contact was predicted by Haines and Ollerton [50] in their 

work. They described the adhesion contact area experimentally through photoelasticity 

technique which was followed by analytical work using simple strip theory; however, there 

was a difference between the experimental and predicted contact area. Kalker, referring to 

this difference in his review of the Haines and Ollerton work, explained that strip theory can 

hardly be used in this type of problem as this theory cannot explain rolling and tangential 

slip as it is a two dimensional theory. Haines then presented similar work [51] based on 

photoelastic experiments and computer programming. He found that it is difficult to describe 

the system when it starts to slide under the rolling and tangential actions. A model was built 

by Vu-Quoc et al [52] to describe the normal and tangential stresses in elastoplastic spheres. 

However, their model depended majorly on data such as the radius of the contact area, radius 

of curvature, stresses and force-displacement curves that were obtained from finite element 

simulation. They pointed out that in elastoplastic spheres the contact area is not expected to 

be circular as Mindlin assumed for elastic spheres in contact. An elastoplastic sphere 

normally loaded on a flat surface was also studied by Brizmer et al [53] to investigate the 

effect of different materials under slip and stick conditions.  The analytical model adopted 

the Hertzian theorem to measure the radius of the contact area for slip, while numerical 

methods were used to describe the stick condition. The stick and slip in rolling bodies and its 

effect on subsurface cracks was explored by Liu et al [54]. In their research, the radius of 

contact area was defined based on the Mindlin formula (Equation 2.13).     

Most of the research discussed above dealt with the rolling action in normally loaded 

cylinders and spheres and depended on the Mindlin formula to predict the slip contact area, 

with the slip contact area assumed to be in the shape of an annulus, in sphere contact, that 

surrounds the stick contact area with the inner radius of annulus c as shown in Equation 

2.13. Examination of this equation leads to the conclusion that even though the outer radius 

was not specified in the Mindlin formula, it is impossible that the inner radius ( c ) will have 

a value greater than the radius of contact of a frictionless case where it is assumed to 

represent the radius of contact in stick contact in the Mindlin formula. The current study 
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retains this formula used in the previous researches described above as the author believes 

that the radius of contact in stick contact is much larger than the radius of contact in 

frictionless contact.  

2.2 Damping from interfacial friction 

2.2.1 Interfacial damping 

One source of interfacial damping is the damping generated from the frictional slip at the 

interfacial contact area. Some mechanical structures that are beam-like utilize interfacial 

frictional behaviour to reduce vibrations. This section reviews some of the work in this area. 

Goodman and Klumpp [55], presented a model of a double leaf cantilever beam that 

estimated theoretically the dissipation of energy from two beams in contact. They compared 

the obtained data with results derived from experimental work. Experimental data are 

important in designing frictional damper systems as Griffin [56] showed in his review 

because some mechanisms that can affect the dynamic response of the system are difficult to 

predict in advance in addition to that the experimental work can validate the analytical 

models. A review of the mathematical methods used to describe the dry frictional behaviour 

in turbine blades was introduced by Rizvi et al [57]. They pointed out that most of the 

available models can only describe and analyse problems through limited cases that adopt 

the boundary conditions of these models. In the study of Menq et al [58], two dimensional 

friction damper was added to a blade mass and the damper was assumed to be massless with a 

constant stiffness. Coulomb model was adopted to represent the friction behaviour in the system. 

The purpose of this study was to find an estimated method to analyse problems with two 

dimension frictional contact. Three cases were included in the solution and a mathematical form 

was built for each case; full stick, full slip and microslip. They used receptance method as a 

methodology to separate the effects of the external load and the damping force from each other. 

The effect of the ramp angle of a displacement dependent damper on the damping 

characteristics of a beam was investigated by Whiteman and Ferri [59]. They studied a 

beam-like structure attached to displacement dependent damper (Figure 2.3). In their study, 

the normal force causing the dry friction was set to increase linearly in relation to the 

transverse beam deflection through the use of ramp configuration. The study tried to find an 
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optimal value for the ramp angle to give a maximum damping ratio. It was found that the 

more the ramp angle increased, the lower the equivalent damping ratio.  

 

Figure 2.3  Transverse frictional interfaces to represent variable normal load (Source [59]) 

 

Damping can be effected by the geometrical characteristics. The effect of the interface length 

on the loss factor was investigated by Singh and Nanda [60] through experimental study of 

the dynamic behaviour of two beams held together by a tack weld and having slip in the 

interface. During dynamic loading, the amount of energy dissipated decreased when 

compared with the microslip case. The half-power method was used to obtain the damping 

ratio. The contact pressure between the two beams was considered as a uniform pressure. It 

was found that the energy dissipation increased with increasing the length of the beams, 

whereas it decreased with increasing the thickness of the beams. 

The effect of the damping caused by interfacial friction in a composite of silicone rubber and 

steel rods was investigated by Nelson and Hancock [61]. Tensile experiments were 

performed for three main types of contact: bonded fibre matrix, lightly bonded fibre matrix 

and matrix alone. Their study showed that a matrix with lightly bonded fibres can give a 

much greater energy dissipation than those with fully bonded fibres because of the existence 

of interfacial slip. Hysteresis loops were used to estimate the difference between the three 

cases. The purpose of their study was to design a composite with targeted values of stiffness 

and damping. Research on the damping mechanism in fibre reinforced composites and the 
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methods applied to analyse the damping was described and reviewed by Chandra et al [62]. 

The damping studies were categorised as based on three main types of method: 

macromechanical, micromechanical and viscoelastic. Meanwhile, the levels of interfacial 

bonding were classified as soft, ideal and sturdy. It was reported that the maximum damping 

could be obtained from the matrix of the composite, which is controversial with regard to the 

work of Nelson and Hancock [61] which concluded that the maximum damping in 

composite was obtained from the fibres.  

Other researchers have developed empirical models to describe the damping in composites. 

For example, the damping properties of laminate composite materials with interleaved 

viscoelastic layers were investigated experimentally through a cantilever beam test by 

Berthelot et al [63]. The obtained damping data were modelled under the consideration of 

laminate theory, taking into account the transverse shear effect. This model was applied to a 

simple structure comprising different materials. The loss factor of those materials was 

derived from the experimental damping data.  On the same lines, Mahi et al [64] investigated 

the damping characteristics in some types of unidirectional and orthogonal composites. The 

stored strain energy was used in their study to determine the damping behaviour of the 

composites generated from the material.  The results of their analytic analysis were fitted to 

the experimental results. The loss factor found from the analysis was considered to derive 

from the material damping. It was concluded that composites with higher friction behaviour, 

such as taffeta composite, will produce a higher loss factor as the friction is greater between 

the wrap and weft fibres.  

Some researchers have attempted to simplify the problem through systems with lower 

degrees of freedom. The analytical work of Dowell [65] investigated a linear single degree 

of freedom system damped by a dry friction element attached to the system, following 

Coulomb theory. Some cases were introduced to examine the effect of location of the dry 

friction element within the system. It was found that if the exciting force and the threshold 

force (the force at which the dry friction element has no motion) were in the same position, 

the threshold force was not affected by the exciting frequencies or by the geometrical 

parameters (stiffness, mass and damping). Meanwhile, if they were positioned in different 

places, the threshold force was affected by all those parameters previously mentioned above. 

In a theoretical and experimental study introduced by Dowell and Schwartz [64, 65], three 
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different configurations for the attached dry friction setting were assumed and the equation 

of motion was derived for these settings . They compared the results of their study with the 

results obtained previously by Dowell [65] and a similar behaviour was obtained as they 

used a cantilever beam and Dowell used a simply supported beam.  

2.2.2 Loss factor 

The loss factor is one of the most convenient indicators for the level of damping that exists 

in a system. This is proportional to the ratio between the energy loss and the maximum 

vibrational energy in a system. 

 

energy

lossenergy
factorLoss

.max
  2.14 

Some researchers have investigated the loss factor generated from material damping.  

Carfagni et al [68] presented methods to calculate the loss factor η. They proposed the loss 

factor as the comprehensive parameter to describe the damping in a system and the reason is 

that loss factor can describe the damping in nonlinear cases. Similar work was presented by 

Carfagni and Pierini [68, 69]. A dynamic study on thick cross-plied composite configured as 

cantilever was carried out by Koo and Lee [71] to investigate the natural frequency and 

damping factors. Experimental and numerical analyses were carried out using 

graphite/epoxy composite. The dependence of the material on the frequency was investigated 

by calculating the modulus of elasticity from the natural frequency. The effect of the natural 

frequency on the material properties of the composite was explored and it was found that at 

higher frequencies, there was a reduction in the values of the modulus of elasticity. 

Other researchers have investigated the loss factor obtained from structural damping. 

Srinivasan and Cutts [72] related the damping in turbine blades of jet engines to rubbing at 

the shroud interface and to platform dampers. They considered the frictional damper to be of 

macroslip type in their experimental and analytical work and they expressed the effects of 

friction as loss factor. Sherif and Omar showed in their experimental and analytical work 

[73] that there is inverse proportion between the damping and the relative amplitude in the 

microslip region. The structure consisted of two simple elastic bodies experiencing dry 

friction and the two bodies were moving at the same direction but with different forcing 
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values. Wang et al [74] attributed the dissipation of energy in their experimental and 

analytical work to the friction on a cantilever beam that had pressure distributed along the 

length and was constrained with a frictional layer. Yuan et al [75] examined the frictional 

damping in blades using a two dimensional model. Lacing and shroud structures (see Figure 

2.4) were used and their effect on the blade stiffness and blade damping was investigated. A 

three dimensional model of two asperities in rough contact was presented by Pan et al [76]. 

Although they used Hertz theory to describe the dry frictional contact problem, they showed 

that the loss factor increased with increasing the dynamic coefficient of friction. 

 

 

 

 

 

 

 

 

. 

 

 

 

Figure 2.4  Simplified blade model showing (a) Lacing structure and (b) Shroud structure 

(Source [75]) 

 

2.2.3 Microslip friction 

The general concept of micro-slip friction is that within a certain contact area, slip 

movement could occur between some particles or asperities while at the same time other 
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asperities in the same contact area may be in a stick condition. This phenomenon can be 

considered the main source for damping in some systems 

There is interest in the capabilities of nanotubes technique and one benefit cited is that they 

have the potential to increase damping in composites. In the work of Zhou et al [77], a single 

wall carbon nanotube was used as filler in polymer resin in addition to the other filler types 

in order to enhance the damping characteristics. A micromechanical model was introduced. 

The microslip interfacial friction was considered between the resin and the nanotubes. 

Experimental work was compared to the analytical data and showed enhancement in the 

damping features when single wall nanotube was added (η=0.08) compared to other filler 

types (η=0.01–0.02). They used a finite element model to estimate the damping ratio in order 

to be able to compare the results of the analytical model against the experimental work, 

which means that the model could not predict damping. The friction effect between the 

nanotubes and the resin and between the nanotubes themselves on the damping was studied 

theoretically in a nano-composite with carbon nanotubes by Lin and Lu [78]. The contact 

between the nanotubes themselves was assumed to be similar to a dry friction condition in 

beams. A vibration analysis was performed analytically on a mass–spring system to account 

for the effect of the two friction types in the system. The effect of some parameters on the 

loss factor was explored, for example, volume fraction (loss factor increase with increasing 

volume fraction) and resin modulus of elasticity (loss factor decrease with increasing resin 

modulus). They found that damping level increased for higher modes, with a more 

complicated mode shape, can result in more strain and then more damping in the system. 

Similar work was presented by Formica and Lacarbonara [79] where they found the 

microslip to be one of the factors that increased the damping in their study on 

nanocomposites. The dynamic behaviour at the interfacial contact area, particularly the 

energy dissipation during the microslip phase, was described by Asadi et al [80]. An 

analytical model was built to estimate the energy dissipation in a beam with frictional 

support at the root region. Stick, microslip and slip cases were studied. The contact between 

the fixed support and the beam was frictional. Experimental work was performed on a beam 

and the results were compared with the analytical model. The contact parameters for the 

analytical model were obtained from the experimental work; therefore, their model can be 

considered as an empirical model rather than an analytical model. They compared hysteresis 
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loops that were obtained analytically and experimentally at frequencies above and below the 

fundamental natural frequency region. It is interesting to see the good match between the 

hysteresis loops even though that the inertial effect was not removed from the results, as 

exciting a system at frequencies near and beyond the fundamental frequency would certainly 

produce inertial effects. The above research shows that the analytical models were dependent 

on parameters obtained either numerically or experimentally. 

 

2.3 Modelling with finite element method 

Using finite element models in some vibrational problems can save time and expense in 

addition to providing the ability to study the effects of many parameters during the 

simulation.   

The use of FE models can sometimes dispense with the need for experimental work, as 

stated by Boisse et al [81] who used the three dimensional finite element package as an 

alternative to experimental work in the case of the unit woven cell. They determined the 

mechanical behaviour of woven materials, the transverse compaction, in biaxial tension and 

in-plane shearing. The woven yarn was assumed as a two directional fabric (warp and weft) 

instead of using the yarn as a straight or curved beam. During the experimental comparative 

study, a camera processed with software was used when performing the in-plane shear test, 

the displacement and strain region being obtained by the use of an image correlation method. 

Coulomb friction with master/slave technique was adopted to represent the contact between 

the yarns when making the 3-D finite element model, in addition to the use of elastic 

orthotropic material. For the solving process, they depended on the large strain theory due to 

the displacements and strains being high. For the simulation of the woven fabric in the case 

of in-plane shearing, an implicit method was used because it was sufficient up to the case of 

locking angle, while in the case of biaxial tension simulation an explicit approach was used 

to implement the generality of formulation that they introduced. 

Chen and Deng [82] used a FE model to simulate the micro-slip and the damping behaviour 

induced in the interfacial friction in beams with two types of contact: press-fit joint and lap-

shear joint. They compared their results with two previous experimental studies. They called 

the first experimental data G-K, deriving from the Goodman and Klumpp model [55], and 
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the second experimental data was called the M-D, referring to the Metherell and Diller 

model [83]. They found that the FE model was capable of predicting the damping behaviour 

and could simulate the slip damping. Several important parameters were compared including 

the effects of clamping pressure, vertical applied force, coefficient of friction, and the height 

of the beams on the energy loss per loading cycle.  

Two models of simply supported plates were dynamically studied by Burlayenko and 

Sadowski [84]. The first model was designed with de-bond in the middle of the plate (penny 

shape debonded), while the second model had no de-bond. The plate was considered as a 

type of laminate. Commercial FE code was used to simulate the models. Their study found 

that the contact was a source of the non-linearity in the structure and that the existence of the 

delamination had the effect of increasing the amplitude and reducing the natural frequency. 

They reported that the FE code was capable of predicting the dynamical characteristics. 

Some researchers have attempted to model wire rope systems through the use of finite 

element packages. Most of these studies reduced a system with a complex wire rope 

structure with several wires helically wound around a core (including systems with nineteen 

wires and more) to a simple straight wire system with a core wire and six outer wires. 

In the work of Ghoreishi et al [84, 85] and Ramteke and Yenarkar [87], a simple straight 

wire rope (1+6) comprising six outer wires placed radially around a core wire was modelled 

using a finite element package. The system was subjected to axial loads in order to predict 

mechanical behaviour. Friction was not included in their analysis, but they suggested that it 

should be included in future work. Similar work was presented by Kastratovic and 

Vidanovic [88] and Shibu et al [89] but with a bonded contact and no separation.    

Some researchers altered the size of the wires in order to minimise the effect of friction 

during the modelling. In the work of Gerdemeli et al [90] and Foti and Luca [91] it was 

ensured that the size of the core wire was larger than the outer wires in such a way that only 

frictional contact between the core wire and the outer wires existed. Coefficient of friction of 

0.115 was used for the wires with modulus of elasticity of 188 GPa, and that no friction 

existed between the outer wires themselves.         

Models of simple straight wire rope where friction was included between the wires during 

the simulation of axial loading were presented by Kastratovic and Vidanovic [92] and Imrak
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and Erdonmez [93] and Erdonmez and Imrak [94] and Shi et al [95], with coefficient of 

friction values between 0.1 and 0.2 for wires and with modulus of elasticity in the range of 

188 GPa and 190 GPa.  

2.4 Summary 

The study in this thesis focuses on the macroslip behaviour in multi-strand structure 

experiencing flexure loading. Here, the Coulomb model is adopted to represent friction as 

the damping is found to be independent of the frequency. 

Most of the research shown in Section 2.1.1 that dealt with multi-strand beams neglected 

frictional effects. In the work presented in this thesis, the effects of friction are included in an 

analytical work in order to describe stiffness in the presence of friction.  

It can be seen that the studies reviewed in Section 2.1.2 did not present effective methods to 

describe the frictional behaviour in multi-layered systems composed of steel bars or steel 

wires. In the study presented in this thesis, the frictional behaviour of multi-strand bars and 

wires and the frictional system stiffness are described with sufficient accuracy to be 

compared with quasi-static tests and numerical analyses. 

Most studies of frictional behaviour between two mating cylinders shown in Section 2.1.3 

depend on the Hertzian theorem for frictionless contact in their description of frictional 

behaviour and actual measurements for the contact area experiencing dry friction were not 

presented. In the work of this thesis, the analytical model used to describe the frictional 

behaviour of multi-strand bars and multi-strand wires counted for the real frictional contact 

area and was eliminated analytically.  

In this thesis, the interfacial frictional behaviour between the mating strands was utilized to 

provide damping levels under different parametric characteristics. Similar behaviour 

regarding the effect of beam length and thickness on the loss factor that has been shown by 

other research in Section 2.2.1 is obtained and is presented in Chapters 3, 4 and 5. The 

analytical model presented in this thesis is purely analytical and does not depend on any 

experimental or numerical data to describe the damping behaviour in multi-strand systems. 

This model is ensured to be is simple and accurate, having taken into consideration many 
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parameters during model design. The results from the analytical model agree with the 

experimental and numerical results when compared together. 

In the work of this thesis, the loss factor, the ratio of dissipated energy per cycle to the stored 

strain energy, is considered as indicator of the damping amount in the multi-strand system.  

In this study, finite element models of the multi-strand beams and bars are used to simulate 

the flexural loading during frictional contact between all the strands involved in the system. 

These FE models are used to verify the analytical and experimental work to an extent 

because the finite element package has been not capable of obtaining solutions in the case of 

multi-strand bars and wires with large number of strands (nineteen strands and more) due to 

the complexity that the line-to-line contact, between the mating bars and wires, add to the 

solution process. This can be referred to the fact that for line-to-line contact, finite element 

package uses nodal detection scheme rather than Gauss integration points used in a surface-

to-surface contact. Using nodes as contact detection technique can cause convergence 

complications such as node slipping in which the node slips off the edge of the targeted 

surface.  

The aim of this study is to describe the frictional damping behaviour of multi-strand systems 

constructed from strands that have square and circular cross-sections. 

The objectives of this study can be summarized as: 

• Propose analytical models to estimate the frictional stiffness and damping in multi-

strand systems such as multi-strand beams, diagonal multi-strand beams, multi-strand 

bars and multi-strand wires.  

• Validate the analytical models through experimental and numerical studies at several 

different configurations and loadings. 

• Investigate the effect of vibration on the damping levels in multi-strand systems. 

• Examine the sensitivity of the obtained  damping to parameters such as length, cross-

section, clamp force, loading amplitude and number of strands. 
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Chapter 3  

Modelling of damping behaviour for meso-

scale multi-strand beams 

 

3.1 Introduction 

In this chapter, damping behaviour in systems comprising multi-strand square steel beams 

experiencing dry frictional behaviour at metal-to-metal surfaces is investigated numerically 

and analytically at the meso-scale.  

Analytical models were built to describe the damping behaviour of multi-strand beams. 

These models are independent of both the experimental data and the numerical results. 

Instead, damping is estimated from the energy dissipated during cyclic loading by plotting 

the force-displacement curves. 

The analytical modelling followed the numerical studies, the purpose being to validate the 

analytical work. For this reason, the specifications of the individual strands (width, thickness 

and height) are identified as described in the next section in order to expose the multi-strand 

beams to different loading levels and configurations (Table 3.1). The work in this chapter is 

followed by experimental work in the next chapter (Chapter 4) to compare the hysteresis 

loops for the different loadings and configurations obtained from the analytical, numerical 

and experimental work. 
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3.2 Description of the multi-strand beams 

The multi-strand beam (MSB) used in this work is defined as a beam-like structure 

comprising individual strands. These strands considered were square cross-section, key steel 

beams. The length of each strand was 300 mm and they were constructed from BS4235 mild 

steel. A three-point bend configuration was adopted for the analysis and two span distances 

between the supports, 250 mm and 200 mm, were chosen. MSBs were constructed from four 

and nine individual strands. The overall cross-section of each MSB was set to have a square 

profile by placing the individual strands equally in the vertical and horizontal directions; 

therefore, nine-strand beams (see Figure 3.1) comprised three rows and three columns of 

individual strands. Individual strands with square cross-section of 3×3 mm and 4×4 mm 

were used and each MSB configuration, detailed in Table 3.1, was made up of strands with 

the same cross-section size. The method of choosing the values of the clamp forces and 

applied displacements used in Table 3.1 will be explained later in Sections 3.4.1 and 4.2.3 

respectively.       

Normal forces applied to surfaces that experience frictional contact are essential to create 

frictional forces; therefore, clamp forces were applied to the MSB during the analytical and 

numerical work. For the analytical work, the clamp force utilized to calculate the frictional 

stress was one of the requirements for the modelling process. For the numerical study, the 

clamp effect was applied as an equivalent pressure on the outer surfaces of the individual 

strands.    

 

 

 

 

 

 

 

 

 

Figure 3.1  Geometric nomenclature for an (a) individual strand and (b) nine-strand beam 
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The MSB was subjected to flexural deformations and as the beam flexed, if the load was 

large enough, slip between individual strands occurred along the length of the beam. This is 

shown in Figure 3.2. 

 

 

 

 

 

Figure 3.2  Typical multi-strand beam undergoing flexure (nine-strand beam system shown). 

 

Table 3.1  Loading levels and configurations for the MSB 

 

Test 

Configuration 

No 

Span distance, 

mm 

No of 

beams 

Cross-Section 

size, mm 

Clamping 

force, N 

Peak displacement, 

mm×Sin(ωt) 

1 1.7 2.5 1 

sb01 250 4 3 × 3 100     

sb02 250 4 3 × 3 190     

sb03 250 4 3 × 3 250     

sb04 250 4 4 × 4 100     

sb05 250 4 4 × 4 190     

sb06 250 4 4 × 4 250     

sb07 250 9 3 × 3 100     

sb08 250 9 3 × 3 190     

sb09 250 9 3 × 3 250     

sb10 250 9 4 × 4 100     

sb11 250 9 4 × 4 190     

sb12 250 9 4 × 4 250     

sb13 200 4 3 × 3 100     

sb14 200 4 3 × 3 190     

sb15 200 4 3 × 3 250     

sb16 200 4 4 × 4 100     

sb17 200 4 4 × 4 190     

sb18 200 4 4 × 4 250     

sb19 200 9 3 × 3 100     

sb20 200 9 3 × 3 190     

sb21 200 9 3 × 3 250     

sb22 200 9 4 × 4 100     

sb23 200 9 4 × 4 190     

sb24 200 9 4 × 4 250     

 

y 

z 
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3.3 Evaluating material properties 

Knowledge of the modulus of elasticity and material density of the individual square key 

steel strands was considered of importance due to their influence on the dynamic behaviour 

of the MSB. At the same time, identification of these mechanical properties was one of the 

requirements for building the numerical and analytical models. As the beam strands were flat 

key steel, accurate information relating to the material properties was unavailable. 

3.3.1 Measurement of density 

In order to estimate the density, six strands (three with cross-section 3×3 mm and three with 

4×4 mm) were weighed on electronic scales. Accurate dimensional measurements were 

made to calculate the volume and, using Equation 3.1, the average density was found to be 

approximately 7802 kg/m3 for beams with 3×3 mm and 7808 kg/m3 for beams with 4×4 mm.  

 m AL  3.1 

where, m is the mass of a strand,  is the density, A the cross-sectional area and L is the free 

length. For simplicity, a common value of 7800 kg/m3 was used in the subsequent work.  

3.3.2 Measurement of Young’s modulus from beam free vibration 

Free vibration tests were carried out to estimate the natural frequency of the first vibration 

mode of a strand held in a cantilevered configuration. The Young’s modulus was then 

obtained using the well-known natural frequency formula for Euler-Bernoulli beams with 

rectangular cross-sections. 

Strands with cross-section size of 3×3 mm and 4×4 mm were used in the experiment. With 

both cross-section sizes, the free length of the strand was 212 mm. Each experiment was 

repeated five times for consistency and repeatability purposes. During the experiments, the 

strand was clamped at one end using a block and fasteners. Two torque values, 40 N.m and 

50 N.m, were used on the fasteners and it was noticed that changing the torque values did 

not affect the results, which means that the clamp condition in the holder was acceptable. A 

Laser Optical Displacement Sensor (MicroEpsilon LD1605-10) with a sensitivity of 2 V/mm 

was used to read the displacement response. The sample rate on the data acquisition system 

was 50000 sample/sec and the duration of the signal was 1.8 sec (see Figure 3.3). To 

calculate the modulus of elasticity, Equation 3.2 was used [96]. 
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3.2 

where, f is the frequency in Hz, λ is a dimensionless parameter (1.875 for the first mode of a 

clamped – free beam), I is the second moment of area.  

The natural frequencies (n) obtained from the experiments and their corresponding modulus 

of elasticity values (E) are shown in Table 3.2. Noting that the scatter in the results was 

relatively small, the average values for the modulus of elasticity taken forward from this 

work were 180 GPa for the 3×3 mm strands and 190 GPa for the 4×4 mm strands. This 

enabled the assignment to reflect better representation for the material properties, especially 

at the numeric and mathematic stages. Although the tested values of modulus of elasticity for 

each cross-section (Table 3.2) are considered repeatable however the modulus of elasticity 

for the 3×3 mm strands differed from those for the 4×4 mm strands. The reason of obtaining 

different values of the modulus of elasticity for different cross-sections might be because of 

the manufacturing process and the cutting technique used to prepare these key steel strands 

was different between these cross-sections which resulted in different levels of residual 

stresses in the material.  

 

 

 

 

 

 

 

 

Figure 3.3  Time domain free decay signal for a 3×3×212 mm beam. 
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Table 3.2  Material properties obtained experimentally for strands with dimensions of 

3×3×212 mm and 4×4×212 mm 

strands of dimensions 

3×3×212 mm 

strands of dimensions 

4×4×212 mm 

f, Hz E, GPa f, Hz E, GPa 

51.90 180.6 71.07 190.5 

51.82 180.0 71.24 191.4 

51.69 179.1 70.93 189.7 

51.88 180.5 71.15 190.9 

51.72 179.3 71.00 190.1 

Average 51.80 179.9 71.07 190.5 

Standard 

deviation 
0.093 0.681 0.121 0.664 

 

 

3.4 Friction estimation experiments 

Friction is typically classified as lubricated friction, dry friction, fluid friction or internal 

friction. Lubricated friction exists when a lubricant is present between the mating surfaces, 

whereas dry friction occurs if there is no lubricant. Fluid friction is the motion resistance 

between the layers of a viscous fluid. The resistance to the deformations between the 

material particles at the molecular level is called internal friction. This study considers only 

dry friction that occurs between the strands of a multi-strand beam. 

Several models have been built and developed in order to describe the frictional behaviour 

between two surfaces in contact as shown in Chapter 2. Some of these models count for the 

static behaviour of the contact condition as Coulomb friction models and others count for the 

dynamic behaviour in the contact region, such as the Dahl model, Bristle model and LuGre 

model. In the Coulomb friction model, only the direction of the velocity is taken into account 

and is independent of the area of the contact. The Coulomb friction model assumes that the 

friction force opposes the direction of the relative motion and is dependent on the amount of 

normal force, which is perpendicular to the shear force direction. Dynamic friction models 

are used to identify the value of the friction amount between the two surfaces in contact. For 

instance, in a steady-state condition, the Dahl friction model would take exactly the same 

form as the Coulomb friction model. 
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Specifically, for a multi-layer beam, the above models showed similar trends in terms of the 

resulting waveforms when subjected to a free vibration excitation as shown in the work 

presented by Lord [97] therefore, the Coulomb friction model is adopted for numerical and 

analytical models presented here and henceforth. The Coulomb friction model is presented 

as 

  vFF cd sgn
 3.3 

where, Fd is the frictional force, Fc is the normal force, μ is the coefficient of friction which 

is a ratio between the frictional force and the normal force and sgn(v) is the sign of the 

velocity which is considered a signum function to identify the direction of the frictional 

force as 
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3.4 

This section describes free vibration tests conducted to estimate the coefficient of friction 

between the steel strands used in this work. This includes experiments to calibrate the 

normal force values that were applied to the specimens during the friction experiments. 

3.4.1 Torque-force calibration for clamps 

The normal (clamping) force, or pressure, in any frictional system has a significant effect on 

the magnitude of the frictional forces, see Equation 3.3, and hence the amount of energy that 

can be dissipated. For this reason, it was important to use a repeatable and accurate method 

to apply the normal force. As the experimental work described in Chapter 4 would require 

the strands to be clamped together during the flexural experiments, the same type of clamps 

and fasteners were used during the friction measurements. The clamp set comprised two 

halves, each of which had a circular cross-section that was attached to the load cell, while the 

opposite face of the clamp was flat to accept fasteners that connected the two clamp halves 

together.  

The clamping force was applied as a torque to the two fasteners connecting the clamp halves. 

It was assumed that the clamping force could be set by altering the torque applied to the 

fasteners. A test rig (see Figure 3.4) was used to measure the force from the applied torque. 

The test setup contained a load cell (Loadstar Sensor MFD-050-100) sandwiched between a 
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pair of clamps. Various levels of torque were applied to the clamp’s two fasteners, and the 

resulting equivalent force was measured. The tests were repeated five times and the average 

force for each torque level was taken as the nominal value for subsequent work. The results 

of the torque-load calibration experiments are shown in Figure 3.5. Note that the torque 

values quoted were those applied directly to each fastener. List of the torque values and the 

equivalent reaction force is presented in Appendix A.   

 

 

 

 

 

 

 

Figure 3.4  Normal force calibration test rig 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.5  Equivalent clamping force values, red circles indicate the clamp forces used in 

the tests (error bars show one standard deviation) 
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3.4.2 Coefficient of friction experiments 

This section describes static and dynamic experiments conducted to estimate the coefficient 

of friction values.  

It was shown in Section 3.3 that material properties differed somewhat for the two strand 

types. It was also assumed that friction between the strands could differ and hence the static 

test was performed on both sizes of strands with cross-section of 3×3 mm and 4×4 mm. The 

length of the strands was 300 mm. The static test (referred to here as the tilt test) involved 

attaching one strand to a surface and a laying second strand on top of it. The surface was 

gradually tilted from one end until the upper strand started moving. Figure 3.6 shows the 

setup of the tilt test. At the tilt position where slide commences, the vertical height 

(y projection) and the horizontal width (x projection) were measured to calculate the angle of 

the inclination. Finally, the coefficient of friction was calculated from the tangent of the 

inclination angle. A different upper beam was used in each of the five trials conducted, while 

the lower beam was kept unchanged. The coefficient of friction values that were estimated 

by the tilt test were considered as static coefficients of friction.  

Table 3.3 shows the estimated coefficient of friction values for strands of both cross-section 

sizes, 3×3 mm and 4×4 mm. The average values for the coefficient of friction were 0.24 and 

0.33 for the strands with cross-section size of 3×3 mm and 4×4 mm respectively. 

 

Figure 3.6  Setup of the tilt test 
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Table 3.3  Estimation of the coefficient of friction values obtained from the tilt test for 

strands with cross-section of 3×3 mm and 4×4 mm 
 Cross-section of 3×3 mm Cross-section of 4×4 mm 

Trials x proj. y proj. μ x proj. y proj. μ 

1 150 32.0 0.21 150 50.0 0.33 

2 150 42.0 0.28 150 52.0 0.34 

3 150 33.0 0.22 150 45.0 0.30 

4 150 37.0 0.24 150 53.0 0.35 

5 150 40.0 0.26 150 51.0 0.34 

Average  0.24  0.33 

Standard 

deviation 
 0.02  0.01 

 

Experiments were also carried out to measure friction during dynamic loading. Testing was 

conducted on the 4×4 mm strand interfaces using a modified version of Lord’s base-excited, 

single degree-of-freedom oscillator test rig [97] that is shown in Figure 3.7b. The oscillator 

is formed from a mass block and a linear spring that sit within the rig frame through which 

base motion is applied.  The test interfaces are constructed from two pairs of pads, each of 

which are segments cut from the key steel strands with cross-section of 4×4 mm.  In this 

work, the length of the pads that were attached to the test rig was 15 mm and the length of 

the pads that were attached to the mass was 35 mm. The general methodology of the 

experiment was to provide a pulse excitation to the base of the test rig and to then let the 

resulting motion decay freely. Then, the difference between any two subsequent peaks in the 

relative displacement signal between the test rig body and the mass was used to estimate the 

coefficient of friction. The instrumental setup for the experiment is shown in Figure 3.7a. 
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Figure 3.7  Friction experiment showing (a) instrumentation layout and (b)the test rig 

 

The attachment process was conducted carefully to ensure that there would be no unexpected 

movement of the pads during the experiment: first, interfacial groove seats were machined 

where the pads attached to both the test rig body and the mass; second, ceramic strain gauge 

adhesive was used to fix the pads into their positions. The length and width of the grooves 

were such that the pads would not move once they were fitted.  

The mass was maintained in the centre of the test rig by the linear spring attached to the base 

of the mass and also by the frictional pairs on both sides of the mass. A fastener (M6) was 

attached to the side of the test rig body through a threaded hole with an open end to the outer 

frictional pad. The fastener was exposed to various levels of clamp force. The clamp force 

was applied in the shape of a torque on the fastener, causing the fastener in turn to press the 

outer frictional pad towards the other mating pad. As this connection was the same as that 

(a) 
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used in the clamps discussed in Section 3.4.1, the clamp forces were estimated from the 

torque applied to the fastener. Forces were therefore obtained using Figure 3.5 although the 

actual force values had to be halved because the data shown in Appendix A involved two 

fasteners being loaded simultaneously, while in the coefficient of friction experiment only 

one fastener was used to clamp the pads. Clamp torques of 14.1 N.mm, 28.2 N.mm, 42.3 

N.mm, 56.5 N.mm and 70.6 N.mm were applied to the fastener to produce applied clamping 

forces of 27 N, 40 N, 50 N, 65 N and 78 N respectively to the mild key steel pads. For each 

clamping force level, the relative displacement signal was recorded and analysed. 

A half sine signal of a frequency 20 Hz was generated through the software Audacity and 

transferred from the sound card of the PC into the power amplifier (1000VA capacity). The 

signal was used to excite the test rig through the use of an electrodynamic shaker with peak 

force capacity of 500 N (Ling Dynamic Systems V455) attached to the base of the test rig. 

As the test rig was excited, two laser displacement sensors were used to measure the 

displacements of the test rig body and the mass respectively. The resulting displacement 

signals were acquired using a digital oscilloscope (Pico Technology 4424) operating at a 

sample rate of 14000 sample/sec. Relative displacement between the mass and the base was 

then calculated as the difference between the two displacement signals.  

The Coulomb friction model assumes that the friction force is independent of the velocity 

and that the friction force opposes the velocity direction as shown in Equation 3.4 and hence 

the sign of the friction force changes every half cycle. When undergoing free vibration, the 

energy lost by the system over one half-cycle can be obtained from the difference in strain 

energy (stored in the spring) at the two extreme displacement points where the velocity is 

zero. The dissipated energy  is equal to the work done by the friction force [98] as  

 
2 21

( ) ( )
2

i i d i iK X X F X X     3.5 

where, K is the system stiffness, Xi is the maximum amplitude when the velocity is zero, X-i 

is the decayed amplitude at the end of the half cycle and Fd is the frictional force. 

Rearranging Equation 3.5  in terms of the amplitude decrease over a half cycle,  
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Then the amplitude reduction for a whole cycle is given by 



Chapter 3                                                                                 Friction estimation experiments 

41 

 

 
K

F
XX d

ii

4
)( 1  

 
3.7 

where, Xi+1 is the amplitude of the next cycle. 

Noting that in this experiment, two interface pairs act in parallel, substitution of Equation 3.3 

into Equation 3.7 results in, 
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where, n is the number of the surfaces which are in contact and Fc is the normal force.   

The total mass of the moving parts in the test rig was 2.415 kg including the mass block and 

the fasteners used to attach these parts together. Using the relationship of the natural 

frequency to the stiffness and the mass, the stiffness of the spring in this test rig was 37.8 

N/mm. 

A typical result is shown is Figure 3.8. The apparent distortion of the signals when they 

exceeded +1 mm was caused by the range limit on the lasers rather than by a physical effect. 

Where this occurred, the “negative peaks” (extreme values below 0 mm) were used instead. 

The difference between two peaks in the relative displacements for different clamping force 

levels is shown in Table 3.4.  

                                     
Figure 3.8  The test rig, mass block and relative displacement unfiltered signals with clamp 

force of 26.5 N are shown 
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Table 3.4  The difference between two subsequent peaks in the relative displacement signals 

for different clamp forces 

Clamp 

force, N 

Selected 

peak, mm 

Following 

peak, mm 

Difference between two 

peaks (xi-xi+1), mm 
μ 

26.5 3.07 1.61 1.46 0.26 

39.5 2.55 0.35 2.20 0.26 

46.0 2.51 0.16 2.35 0.23 

64.6 3.28 0.11 3.17 0.23 

77.5 5.05 0.80 4.25 0.26 

 

 

From Table 3.4 it can be seen that the average coefficient of friction obtained from the 

dynamic tests on the 4×4 mm strands was approximately 0.25. The static coefficient of 

friction values from the tilt test for the same strand cross-section were around 0.33. This 

reduction of around 24% from static to dynamic behaviour is as expected. While dynamic 

testing was not carried out for the 3×3 mm strands, assuming the same ratio between static 

and dynamic coefficients of friction would give a dynamic friction coefficient value of 0.18. 

 

3.5 Quasi-static numerical analyses 

Finite element (FE) models are used to simulate the response of the multi-strand beams that 

were defined in Table 3.1.  Quasi-static force or quasi-static displacement means that the 

change of the force or displacement with time is very slow. This variation should be much 

less than the value of the first natural frequency of the system to which the force or 

displacement is applied to. It also may mean that, the system can be analysed as several 

static states and the change in the force or displacement will not affect the dynamic 

characteristics of the system.  

The coefficient of friction used at the interfacial surfaces was 0.25 and 0.18 for the multi-

strand beams of cross-section size 4×4 mm and 3×3 mm respectively and the equivalent 

modulus of elasticity was 190 GPa and 180 GPa. The selection of these values was based on 

the experimental results obtained from Section 3.3 and Section 3.4. Each configuration was 

constrained and loaded as a beam subjected to three-point flexure with a sinusoidal 

displacement loading. The FE models were constructed using ANSYS and involved 20 node 

brick elements for the body representation and the contact pairs represented using 3-D, 8 
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node surface-surface contact (CONTA174) and 3-D, target segment (TARGE170). A 

Coulomb friction model was used where sliding occurs if the tangential force exceeds the 

limiting force defined as the product of normal force and coefficient of friction. The number 

of potential slip zones meant that convergence was not easily achieved. To help with this, an 

augmented Lagrange contact formulation was used along with a contact stiffness factor of 

0.075. The element size was decided to be 2.0 mm for strands of cross-section 4×4 mm and 

1.5 mm for strands with cross-section of 3×3 mm. The selection of the element size was 

based on a mesh density study performed on Configuration sb06. Two factors were 

considered, the first was the consistency of the predicted forcing value and the second was 

the computational expense – see Figure 3.10a and Figure 3.10b. The validation study is 

presented in Figure 3.9 and it is clear that the element size of 2.0 mm should not affect the 

accuracy of the numerical analyses. The element size for strands with cross-section of 3×3 

mm was reduced to 1.5 mm to provide suitable meshing as this number is the half of the 

cross-section sides.  

Figure 3.9  Validation of the Element size 

 

It is worth to mention here that during the mesh density study, the contact status was 

assumed bonded for the ease of the simulation as this condition was considered not to affect 

the validation process. The model was subjected to a ramp displacement loading of 1.0 mm 

during the validation study. 
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Figure 3.10  Effect of element size on the number of (a) nodes and (b) elements – showing 

FE statistics of Configuration sb06  

 

Table 3.5 displays information about of the FE models used to simulate Configurations sb01 

through sb24. The deformed FE models for Configurations sb06 and sb12 are shown in 

Figure 3.11. The clamp effect was simulated as a distributed pressure on the outer surfaces 

of the multi-strand beam. Loading was applied at the middle of the beam as a prescribed 

sinusoidal displacement with a frequency of 1 Hz. The response was calculated using 150 

substeps involving the implicit iterative solver built into the FE software. The simulated 
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(a) 

(b) 

force-displacement hysteresis loops for Configurations sb06, sb12, sb18 and sb24 are 

presented in Figure 3.12.   

 

Table 3.5  Statistic data of the FE models for Configurations sb01 through sb24 

Configuration
No of 

strands

Length, 

mm

cross-section, 

mm

Element size, 

mm

No of 

nodes

No of 

elements

sb01-sb03 4 250 3×3 1.5 15204 2016

sb04-sb06 4 250 4×4 2 15204 2016

sb07-sb09 9 250 3×3 1.5 34209 4536

sb10-sb12 9 250 4×4 2 34209 4536

sb13-sb15 4 200 3×3 1.5 12084 1600

sb16-sb18 4 200 4×4 2 12084 1600

sb19-sb21 9 200 3×3 1.5 27189 3600

sb22-sb24 9 200 4×4 2 27189 3600  
  

 

 

 

 

 

 

 

Figure 3.11  Flexural deformation of the FE models for Configurations (a) sb06 and (b) sb12 
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Figure 3.12  Numerical hysteresis loops at different displacement loading levels for 

Configurations (a) sb06, (b) sb12, (c) sb18 and (d) sb24 

 

3.6 Analytical modelling 

The system considered in this section consisted of multi-strand beams undergoing flexural 

deformations and experiencing frictional contact between the mating strands, with each 

strand being a perfect Euler-Bernoulli beam. The analytical model developed in this section 

takes into account the frictional effects by introducing them directly into the system 

stiffness. The interfaces of the strands are allowed to slide against each other once the 

friction force at the interface is exceeded. This results in a reduction of stiffness for the 

system. 
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3.6.1 The frictional second moment of area 

The flexural stiffness of a multi-strand beam (MSB) can be represented using the frictional 

second moment of area. The term “frictional second moment of area” in this work refers to 

an effective second moment of area that accounts for friction-dependent slip and stick in an 

MSB such that it can be treated as a Euler-Bernoulli beam. When the contact between 

strands is either bonded or frictionless, the second moment of area can be calculated using 

the parallel axis theorem, 

 
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n

nAdII
1

2
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3.9 

where I is the second moment of area for the system, I0 is the second moment of area for an 

individual strand, A is the cross-section area, N is the number of strands and d is neutral axis 

that it deforms around. 

When the bond between the strands is perfect, d is the distance from the centroid of the 

strands to the centroid of the beam, where the neutral axis is located. For a frictionless 

contact, d is equal to zero (as shown in Figure 3.13b) as each strand flexes around its own 

neutral axis. The absence of friction decouples the axial stretching of strands and hence two 

separate systems. In a frictional case, the transfer distance (d) increases as the coefficient of 

friction , increases as shown in Figure 3.13c. 

This section introduces an analytical method used to predict the frictional second moment of 

area at any magnitude of  up to the limiting of the equivalent of the strands being bonded. 

This was achieved firstly by estimating the deformation relationship, over a range of  

magnitudes, extending from frictionless contact to bonded contact. Second, the estimated 

deformation magnitudes were used to predict the frictional second moment of area at any 

specific  magnitude. 
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Figure 3.13  Transfer distance, d, for strands that are (a) bonded, (b) frictionless, and (c) 

frictional – dashed lines represent the neutral axes 

 

To provide upper and lower bounds for the frictional second moment of area, two cases were 

considered: perfectly bonded strands and strands with frictionless contact. Equation 3.10 was 

used to calculate the second moment of area for a system with frictionless contact  

 
3

12
frictionless

Nbh
I   3.10 

where N is the number of strands involved in the system, b and h are the cross-section 

dimensions of the individual strands. The total deformation in a frictionless system for a 

simply supported beam is, 
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where E is the modulus of elasticity, l is the span distance, and F is the applied force at the 

centre of the multi-strand beam. For the bonded case, the second moment of area can be 

calculated from, 
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where yN is the number of strands in the vertical direction. The total deformation can be 

calculated by  
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A multi-strand beam contains many interfaces along which slip can occur. The basic 

assumption made in developing this model is that an interface will remain stuck as long as 

the magnitude of the shear stress at the interface is less than the frictional stress. Therefore, 

the last moment that the interface is considered stuck is when the shear stress (τw) induced by 

the applied load, equals the frictional stress. 

 .friw  
 

3.14 

The frictional stress can be expressed as 

 
w

wc

fri
A

F 
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where, Fc is the clamping force, μw is the coefficient of friction at the interface, Aw is the area 

of the interface. The expression for shear stress in a rectangular beam [99], with simply 

supported boundary conditions, can be written as, 
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Where w , is the shear stress at the interface, F is the force applied to the system, yt is the 

location of the geometric centroid of the multi-strand beam and is expressed as 

 
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where, Ny is the number of the strands in the vertical direction and yw is the thickness of the 

strands involved in the slip and is described as 
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where, w is the number of strand involved in the slip. For given loading therefore, the 

coefficient of friction at the critical condition can be obtained by substituting Equations 3.15 

and 3.16 into 3.14, to get, 
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Thus, for a given applied load, the deflection under frictionless conditions is given by 

Equation 3.11. The deflection where strands remain stuck together is given by Equation 3.13 

and the corresponding minimum coefficient of friction is given by Equation 3.19. 



Chapter 3                                                                                                 Analytical modelling 

50 

 

For each interface of interest, the analytical model is used to find two key points in the load-

deflection behaviour. The first is the point at which slip begins and the second is when the 

maximum load is reached. These points are represented graphically in Figure 3.15 as points 

1 and 2 respectively.  

 

Figure 3.14  Key points on the force-displacement plot for the analytical model 

 

For a given coefficient of friction, Fslip for any interface can be obtained by rearranging 

Equation 3.19. The corresponding displacement (at point 1) can be obtained by substituting 

this force value in Equation 3.13. 

To obtain the f, the displacement under sliding friction at maximum force (point 2), the 

assumption is made that its position between the bonded and frictionless cases (shown in 

Figure 3.14) is linearly related to the coefficient of friction. Figure 3.15 shows the 

relationships between the displacement () and the coefficient of friction () for 

Configurations sb01 to sb06 that are obtained using this approach. Equivalent results for 

Configurations sb07 to sb24 are presented in Appendix B. Note that the left end of each line 

represents the frictionless case (at displacement frictionless) while the right end, represents the 

limiting bonded condition (at displacement bond). The value of f is defined by the value of 

each of these lines at the friction coefficient of interest. 
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Figure 3.15  Deformations versus coefficient of friction for Configurations (a) sb01 through 

(f) sb06 respectively 
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It was crucial to investigate the validity of the linear relationship between the displacement 

and μ, therefore, a finite element model (described in Section 3.5) was built for 

Configuration sb06 to compare with the analytically predictions. Results from the two 

approaches, for an applied load of 29.1 N, is depicted in Figure 3.16. From the FE result, it 

can be seen that the relationship is approximately linear, hence the assumption used in the 

analytical model can be considered acceptable. 

 

 

Figure 3.16  Deformation versus coefficient of friction for (a) analytical model and (b) FE 

model – Configuration sb06 is shown 

 

It is often convenient to obtain a linear approximation of the stiffness of a system. The 

analytical model allows this by using the concept of the frictional second moment of area If 

which has a similar form to the bonded and frictionless cases, hence,  

 .
48

3

E

Fl
I f 

 
3.20 

For a given maximum applied force therefore, the linear approximation can therefore be 

made the desired friction condition – as indicated in Figure 3.17.  
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Figure 3.17  Effect of applied load intensity on the system stiffness 

 

Figure 3.18 depicts this second moment of area Configurations sb01 to sb06 under different 

loading conditions.  
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Figure 3.18  Second moment of area versus coefficient of friction for Configurations (a) 

sb01 through (f) sb06 respectively 

The frictional second moment of area for Configurations sb07 to sb24 are presented in 

Appendix C. 
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3.6.2 Frictional second moment of area – finite element analysis 

Finite element (FE) models were used to investigate the significance of local stretching 

(resulting in microslip) for this type of system. Typical load-deflection behaviour is shown 

in Figure 3.19 where it can be seen that there is little evidence of significant microslip. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19  Microslip region (red boxes indicate upper and lower bounds) of the multi-

strand beams for (a) sb06 and (b) sb12 

 

 

The sensitivity of the frictional second moment of area to the applied force was also 

investigated. This was calculated by substituting the load and deflection values obtained 

from the FE analysis into Equation 3.20. Results are shown in Figure 3.20. 
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Figure 3.20  Behaviour of the frictional second moment of area (If) during system transition 

through sticking, microslip and sliding regions for Configurations (a) sb06 and (b) sb12 

 

3.6.3 Analytical hysteresis loops 

The previous section presented the prediction of both the frictional second moment of area 

(the stiffness) for the multi-strand beams for the loading levels and configurations presented 

in Table 3.1. 

The analytical model produces a force-displacement response. This can be extended into a 

force-displacement hysteresis loop to estimate the system loss factor (damping levels). 
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Figure 3.21 shows the various loading and unloading stages for the hysteresis loop. The 

starting point for the hysteresis loop is the origin, point(0). Point (1) defines the 

commencement of the sliding stage during the loading phase, which ends at point (2). 

 

Figure 3.21  Hysteresis loop stages 

 

To describe the force-displacement hysteresis loop, the shear stress and the frictional stress 

at the contact regions were used to determine the force required to start the slipping in the 

multi-strand beams. At the moment when slide starts at an interface, the frictional stress 

equals the shear stress that tries to initiate the slipping (Equation 3.14). By substituting 

Equations 3.15 and 3.16 into Equation 3.14 and rearranging in term of the force F, the force 

needed to start slip [100] can be described as  
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The deformation resulting from the slip force can be calculated through 
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The third stage is the damping stage and it represents the transition from the sticking region 

into the sliding region. Damping stage starts from point (2) which represents the maximum 

force and displacement applied on the system and ends at point (3). This stage determines 
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the damping amount in the produced hysteresis loop. Depending on the peak force F , the 

maximum resulting deformation is calculated by, 
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The force and deformation at the end of the damping stage are calculated as 
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The fourth stage is the sliding stage during the unloading phase. The fourth stage starts from 

point (3) and travels all the way to the position of the maximum force and loading on the 

other side of the hysteresis loop, the bottom left side, to end up at point (4).  

It is worth mentioning that in most of experimentally obtained hysteresis loops, the 

maximum force counts for the calculations of the average peak strain energy because it is 

rare that a point on the hysteresis loop will have both the force and displacement at its 

maximum values. 

The analytical model in this study assumes the sides of the hysteresis loop are symmetric. 

Therefore, the force and displacement of point (4) are found as follows, 

 ,24 FF   3.26 

 .24  
 3.27 

The sliding stage during the loading phase starts from point (5) and ends at point (2). The 

force and displacement at the start of the sliding stage are calculated through,  
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Fd1 and Fd2 present the frictional forces including the flexural loading effect at the required 

levels.  
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The average effective stiffness was defined by bisecting the distance between the loading 

and unloading stages. The energy dissipated per cycle was measured as the area inside the 

hysteresis loop. The stored strain energy was calculated as the area contained between the 

average effective stiffness and the displacement axis. The general description for the loss 

factor can be expressed as 

 

max2 U

dW


 

 

3.30 

where,   is the loss factor, dW is the energy dissipation per cycle and Umax is the maximum 

strain energy. 

For a symmetric hysteresis loop, Equation 3.30 can be used to calculate the loss factor of a 

system as it counts for one half of the hysteresis loop by finding the maximum stored strain 

energy (Umax). However for the reasons of the asymmetric hysteresis loop (see Figure 3.22) 

that present in this work, the previous equation cannot determine accurately the amount of 

the damping in the system since this equation assumes the both ends of the hysteresis loop 

are symmetric. In order to accurately calculate the hysteresis loop in a system that has 

asymmetric hysteresis loop, the total strain energy should be considered to count for the two 

halves of the hysteresis loop. Equation 3.31 used to calculate the loss factor in a system with 

asymmetric hysteresis loop [101].   

 
)( 21 UU

dW


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

 

3.31 

where, U1 and U2 are the strain energy in the positive and negative parts of the hysteresis 

loop and they are not equal. 
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Figure 3.22  Hysteresis loop for stored strain energy 

 

3.7 Modelling results and discussion 

This section presents the obtained hysteresis loops, compares the damping levels gained 

from the multi-strand beams using different analyses methods and discusses the analytical 

and numerical results. Force-displacement curves obtained at each loading stage for 

Configuration sb01 to Configuration sb24, (see Table 3.1) were used to plot the numerical 

hysteresis loops. Configurations sb01–sb12 had three loading stages (1.0 mm, 1.7 mm and 

2.5 mm) while Configurations sb13–sb24 had only two loading stages (1.0 mm and 1.7 mm) 

because they were shorter in length and a 2.5 mm loading can cause permanent deformations 

(more explanation is provided in Section 4.2.3). Analytical models were used to estimate the 

system stiffness and to describe the analytical hysteresis loops for the parameters shown in 

Table 3.1.  

Comparison between the analytical and numerical hysteresis loops were presented in Figure 

3.23 at different loading levels for Configuration sb22 through sb24. Comparison for 

Configuration sb01 through Configuration sb21 is presented in Appendix D. The hysteresis 

loops obtained analytically and numerically were in good agreement for all configurations. 

The analytical models followed the sliding stages accurately. The numerical models 

described the transition from the stick stage to the slide stage while the analytical models 

were designed to provide general description for the damping behaviour in the MSB and 

despite this fact, the analytical models were able to define the start and end of the stick and 

slide regions accurately enough to describe the general damping behaviour. 
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Figure 3.23  Comparison of analytical and numerical hysteresis loops for Configuration sb22 

at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm and for Configuration sb23 at PK-PK loading 

of (c) 1.0 mm, (d) 1.7 mm and for Configuration sb24 at PK-PK loading of (e) 1.0 mm and 

(f) 1.7 mm 
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This study considers the loss factor values an indication for the damping levels that the 

multi-strand beams (MSB) achieved during the flexural loading. For the damping parameters 

that were obtained analytically and numerically, the energy dissipation per cycle was 

calculated by counting for the area inside the hysteresis loops. The stored strain energy was 

calculated by defining the average system stiffness and measuring the area contained 

between the average stiffness and the displacement axis.  

Analytical and numerical damping parameters such as the loss factor, energy dissipation per 

cycle, strain energy and the system stiffness for Configuration sb01 to sb24 are presented in 

Appendix E. 

The stored strain energy was not affected by the change of clamp force values or the change 

of the loading levels while the energy dissipation per cycle showed increase in the values 

with increasing the clamp force however it (energy dissipation) was reduced with increasing 

the loading levels. As a result, the loss factor values increased by increasing the clamp force 

levels while the loss factor decreased by increasing the loading levels. These results are in 

line with previous research [60,73,74]. 

In order to investigate the effect of the loading levels and the geometrical parameters on the 

obtained damping levels for the MSB without taking into account the effect of variation of 

both the material properties of the strands and the coefficient of friction values, it was 

decided to use the analytical models to describe the hysteresis loops for strands that had the 

same material properties, E=190 GPa, and the same coefficient of friction, µ=0.25 for all 

configurations, sb01–sb24, shown in Table 3.1. This procedure should shed light purely on 

the effect of the cross-section size, the loading displacement levels, the clamping force, the 

span length and the number of strands involved in the multi-strand beams. Figure 3.24 shows 

the loss factor values for all the configurations at different peak-to-peak loading levels, 1.0 

mm, 1.7 mm and 2.5 mm. Figure 3.25a shows that the loss factor is directly proportional to 

the clamp force level. The reason behind this was that clamp force had a direct relation to the 

frictional forces induced between the mating strands therefore the increase of the clamp 

force led to the increase of the frictional forces which in turn increased the energy 

dissipation levels. While the loss factor has inverse proportion to the loading levels as shown 

in Figure 3.25b. The direct proportion between the loss factor and the span length is shown 

in Figure 3.26a. Shorter strands had higher stiffness, similar to the effect of the cross-section 
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on the loss factor, which led to increase the strain energy resulted from each flexural loading 

and in turn decrease the loss factor values. The cross-section size of the individual strands 

has inverse proportion to the loss factor as shown in Figure 3.26b. This behaviour is referred 

to that the stiffness levels were lower in systems with smaller cross-sections which means in 

theory, that less force needed to dissipate energy per cycle than those with larger cross-

sections for same energy dissipation level. Figure 3.27 depicts the effect of the number of 

strands involved in the multi-strand beams on the loss factor values where the cross-section 

size of the individual strands kept unchanged. Interestingly, there was approximately no 

change in loss factor values during changing the number of strands in the MSB for systems 

with the same cross-section size but different number of strands. This behaviour was not true 

when the change of the strands number was synced with the change of the cross-section size 

as shown in Figure 3.27b were increasing the number of strands with increasing the strands 

cross-section led to a reduction in the loss factor values.     
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Figure 3.24  Loss factor values for the configurations shown in Table 3.1 at PK-PK loading 

levels of (a) 1.0 mm, (b) 1.7 mm and (c) 2.5 mm 
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Figure 3.25  Loss factor versus (a) clamp force for Configurations sb04-sb06 at PK-PK 

loading level of 1.0 mm and loss factor versus (b) loading levels (Displacement amplitude) 

for Configuration sb04 

 

 

 

Figure 3.26  Loss factor versus (a) span length for Configurations sb04 and sb16 and loss 

factor versus (b) cross-section size for Configurations sb01 and sb04 at PK-PK loading level 

of 1.0 mm  
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Figure 3.27  loss factor versus number of individual strands where in (a) the number of 

strands increased from four strands (each strand cross-section is 4×4 mm) to nine strands 

(each strand cross-section is 4×4 mm) while in (b) the number of strands increased from four 

strands (each strand cross-section is 3×3 mm) to nine strands (each strand cross-section is 

4×4 mm) at PK-PK loading levels of 1.0 mm
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3.8 Numerical stiffness study 

In the previous sections, the effect of the number of strands was considered, however the 

size of each strand was maintained and hence the overall cross-section of the MSB changed. 

This section is devoted to investigate the effect that the number of strands involved in the  

MSB have on the loss factor and the energy dissipation levels whilst maintaining the  

overall cross-section.  

This section adopted numerical models for analysis purposes. Finite element models were 

built for the MSB which was constructed from different numbers of square sectioned 

strands. The overall dimensions of the MSB were fixed at 12×12×300 mm for all 

configurations, which are defined in Table 3.6 and described in Figure 3.28. 

The numerical models were expected to simulate the behaviour of the MSB that was 

exposed to a quasi-static peak-to-peak (PK-PK) cyclic sinusoidal displacement loading of 

1.0 mm at a frequency of 1.0 Hz. Clamp force levels of 100 N, 190 N and 250 N were 

applied to hold the individual strands together during flexural loading. The clamp force 

effect was applied as an equivalent distributed pressure along both the outer upper and outer 

lower surfaces of the MSB. The modulus of elasticity for the numerical work in this section 

was 190 GPa and the coefficient of friction between the individual mating strands was 0.25. 

 

Table 3.6  Configuration of the MSB for the numerical stiffness study 

Configuration 

no. 

Total no. of 

strands 

Individual cross-sectional strand 

width and thickness, mm 

No. of strands per 

row and column 

mb01 4 6 2 

mb02 9 4 3 

mb03 16 3 4 

mb04 36 2 6 
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Figure 3.28  Layout of the MSB containing (a) four strands (mb01), (b) nine strands (mb02), 

(c) sixteen strands (mb03) and (d) thirty-six strands (mb04) 

 

The average effective stiffness was estimated by a polynomial fit applied to the numerical 

hysteresis loop. The energy dissipation per cycle was measured by numerical integration of 

the force-displacement curve. The loss factor was calculated from the hysteresis loop from 

the energy dissipation and the stored strain energy using Equation 3.31 [99, 100]. 

Figure 3.29 shows hysteresis loops for Configurations mb01 through mb04. It can be 

observed that increasing the number of strands reduces the underlying gradient of the 
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hysteresis loops and therefore the system stiffness. The energy dissipation per cycle (i.e. the 

area of each hysteresis loop) however, is approximately the same for all configurations 

(shown in Figure 3.30). The peak strain energy (shown in Figure 3.31) is directly 

proportional to the stiffness and therefore reduces as the number of strands increases. The 

loss factor is shown in Figure 3.32. 
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Figure 3.29  Numerical force-displacement curves for Configurations mb01–mb04 at PK-PK 

displacement of 1.0 mm and a clamp force of (a) 100 N, (b) 190 N and (c) 250 N 
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Figure 3.30  The relationship between the energy dissipation, clamp force, and number of 

strands for Configurations mb01–mb04 at 1.0 mm PK-PK displacement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.31  The relation between the stored strain energy, clamp force and number of 

strands for Configurations mb01–mb04 at 1.0 mm PK-PK displacement
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Figure 3.32  The relationship between the loss factor, clamp force, and number of  

strands for Configurations mb01–mb04 at 1.0 mm PK-PK displacement 

 

3.9 Conclusions 

Several conclusions can be drawn from the results obtained in this chapter. The main 

conclusions are: 

• Conclusions on loss factor level, 

➢ The loss factor values are independent to the number of strands in the multi-strand 

beams if the cross-section size of the individual strands kept unchanged. This is not 

true when strands with different cross-section size are used in the MSB. 

➢ The energy dissipation remains approximately at same levels when increasing the 

number of strands in the MSB if the overall cross-section area of the MSB kept 

unchanged while the loss factor tends to increase. 

➢ The loss factor is highly dependent on the clamp force levels. Larger clamp forces 

result in higher loss factor values. 

➢ Increasing the loading level can reduce the loss factor values. Also, decreasing the 

length of the individual strands can cause to reduce the loss factor values. 
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➢ The loss factor is dependent on the cross-section size of the individual strands. 

Larger cross-sections may reduce the loss factor values. 

• Conclusions on the modelling level, 

➢ The finite element models were able to simulate the flexural behaviour that was 

performed on the multi-strand beams.  

➢ The analytical model was able to predict the stiffness for a system experiencing 

frictional behaviour during flexural loading. 

➢ The analytical model follows the numerically computed force-displacement 

response over most stages of loading and unloading. 

• Conclusions of the effect of the coefficient of friction, 

➢ The relationship between the frictional second moment of area and the coefficient 

of friction is highly nonlinear. 

➢ The relationship between the system deformation and the coefficient of friction is 

linear. 

• The transition region between the stick and slip stages plays an important role in 

changing the system stiffness from being bonded to frictional to being frictionless.
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Chapter 4  

Quasi-static experiments on multi-strand 

beams 

4.1 Introduction 

This chapter describes the experimental work conducted on the set of multi-strand beams 

(MSBs) introduced in Chapter 3. The purpose of the work was to investigate the effects of 

various parameters on the system loss factors and to provide experimental validation of the 

analytical and numerical models. Testing involved exposing each MSB to sinusoidal loading 

using a three point bend configuration. Hysteresis loops were generated from the resulting 

force and displacement signals. 

4.2 Methodology 

Testing was conducted at low loading rates using a servo-hydraulic test machine (MTS 858 

Table Top System). The arrangement for each test is shown in Figure 4.1. Mechanical 

clamps (A) were used to hold the strands together to form a beam (B). Each beam was 

supported on 25 mm diameter rollers (D) while loading was applied as displacement 

controlled motion of the central roller (C), which was also of the same diameter. The 

parameters under study were: the span distance between the two supporting rollers, the 

number of strands in the MSB, the cross-section size of the tested strands, the clamping force 

and the applied vertical displacement at the middle of the MSB. 
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Figure 4.1  Test configuration showing (A) clamps, (B) beam, (C) loading roller and (D) 

support roller 

 

 

4.2.1 Clamping 

The clamp sets had a semicircular cross-section with the curved side positioned to face the 

outer strands to reduce the contact region between the clamps and the strands (see Figure 

4.2) to minimise friction at this contact, a PTFE lubricant was inserted into the interface 

between the clamps and the strands. Each clamp set had two threaded fasteners which were 

torqued to apply the required clamping force on the MSB. Conversion and calibration of the 

clamp torque into equivalent clamp force were described in Section 3.4.1. Using Appendix 

A, torques of 42.3 N.mm, 84.7 N.mm and 112.9 N.mm were applied on each of the two 

fasteners that were used to connect the two halves of the clamp set to produce equivalent 

clamp forces of 100 N, 190 N and 250 N applied through the clamp sets against the MSB. 
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Figure 4.2  Clamp configuration on multi-strand beam for (a) side view and (b) front view 

 

The method employed in this study involved four pairs of clamps which provided clamping 

forces in the horizontal (width) and vertical (thickness) directions. The clamps were located 

approximately 25 mm from each stationary roller at each end of the beam.  

 

4.2.2 Test procedure 

First, the span between the supports was set according to the test configuration – as defined 

in Table 3.1. Testing was carried out at different amplitude levels of peak-to-peak sinusoidal 

displacement loading. Loading was applied in the thickness direction through the loading 

roller. At the start of each experiment, the loading roller was lowered until an initial contact 

(observed as an increase in the force signal) was made with the beam. From this point, the 

loading roller was lowered a further 0.1 mm to induce a light compressive load to ensure 

contact was maintained at all times between the loading roller and the beam. A sinusoidal 

displacement at a frequency of 1.0 Hz was then used to load the beam from the 0.1 mm 

initial displacement to additional peak-to-peak (PK-PK) displacements of 1.0 mm, 1.7 mm, 

and (for configurations with the span of 250 mm) 2.5 mm. The reason for selecting these 

loading levels are explained in Sections 4.2.3 and 4.2.4. A repeat test at the lowest amplitude 

(1.0 mm) was carried out at the end of each set of tests and was compared with the 

equivalent original test. In this way it was shown that significant permanent change did not 

occur in any of the strands or interfaces during testing. Force and displacement signals were 
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recorded at a rate of 100 sample/sec and the time for each loading stage was 15 sec with a 

dwell time of 1 sec between each stage.  

4.2.3 Estimation of the loading displacement levels 

It was important to deform the MSBs sufficiently, in order to activate slip at the interfaces. 

However, it was also important to avoid deforming strands beyond their plastic limits in the 

absence of available material data on yield strains, testing of individual strands were 

necessary.  

For flexural loading under prescribed displacement, it was noted that the highest stress 

would occur on the outer surfaces of the thickest beam if inter-strand slip did not occur. 

considering this as the worst case, for a square section beam of thickness h, Euler-Bernoulli 

bending theory [99] gives 

 
3

6
,

M

h
   4.1 

where, 
 
is the maximum stress and M is the bending moment about the neutral axis.  

For a centrally loaded, simply supported beam, the maximum bending moment is, 
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M   4.2 

while the deflection is, 
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Combing these equations, it can be shown that the maximum strain is,  
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4.4 

where, f is the flexural strain. 

 

The stress-strain relation for the material was obtained through a three point bend test on a 

single strand of 2×2×300 mm. The maximum displacement applied by the test machine was 

30 mm which corresponded to a static forcing equal to approximately 15 N. The feed rate of 

the servo-hydraulic machine was 1.0 mm/min with sampling frequency of 100 Hz.  
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The resulting stress-strain plot for the material can be seen in Figure 4.3, although no sudden 

yield point is noticeable, relatively linear behaviour can be seen up to 0.3% strain. 

Consequently, this was used as the "worst case" strain that beams under testing would be 

allowed to experience.   

 

 

 

 

 

 

 

 

Figure 4.3 Stress-strain behaviour under flexural loading 
 

For a 12 mm thick beam (i.e. Configuration sb12 and sb24 under bonded conditions) a 

maximum strain of 0.3% is reached at deflections of 1.7 and 2.5 mm for spans of 200 and 

250 mm respectively. These values were therefore used as the maximum deflections for 

loading.  

4.2.4 Estimation of slip initiation force 

While no slip was assumed to find the deflection limits, it was important to ensure that slip 

did actually take place. The likelihood of this occurring was predicted using the analytical 

model developed in Chapter 3. The force required for slip to commence, is given by 

Equation 3.21. Certain assumptions were adopted: the clamping force was assumed to be 

250 N, the coefficient of friction, ,was 0.25, modulus of elasticity 190 GPa.  

The force required to initiate the slip was 0.50 N and 0.62 N for Configurations sb12 and 

sb24 respectively. This was equivalent to deformations of 0.004 mm and 0.003 mm 

respectively. This indicates that the chosen range of the applied displacements can initiate 

the slip in the system. 
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4.3 Results and discussion 

4.3.1 Experimental results 

During the three-point bend test, closed-loop control was employed to ensure that the 

displacement signal had a sinusoidal shape. The effect of friction between the strands could 

be seen in the force trace as a small phase difference (from damping) and a distortion of the 

waveform (from nonlinearity). A typical pair of signals is shown in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Force and displacement histories for Configuration sb12 at PK-PK displacement 

of 2.5 mm 

 

Configurations sb01–sb12 experienced four displacement loading stages (1.0 mm, 1.7 mm, 

2.5 mm and 1.0 mm) while Configurations sb13–sb24 were exposed to three loading stages 

(1.0 mm. 1.7 mm and 1.0 mm). The damping behaviour was presented through plotting the 

hysteresis loops for the force and displacement time histories. In this section, not all the test 

Configurations results are presented however, Figure 4.5 shows the unfiltered hysteresis 

loops for Configurations sb06, sb12, sb18 and sb24. 
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Figure 4.5  Experimental hysteresis loops at different displacement loadings levels for 

Configurations  (a) sb06, (b) sb12, (c) sb18 and (d) sb24 

The displacement loading for test Configurations sb13 through sb24 was limited to 1.7 mm 

due to the analytical prediction results obtained in Section 4.2.3 which suggested that the 

maximum displacement loadings should be maintained at under 80% of the maximum 

allowable flexural displacement (2.2 mm) for multi-strand beams with individual strands 

length 200 mm. Therefore, the hysteresis loops for test Configurations sb18 and sb24 show 

only three displacement loadings, 1.0 mm 1.7 mm and 1.0 mm, as can be seen in Figure 4.5c 

and Figure 4.5d.  

It is worth mentioning at this stage that the maximum loading forces achieved during the 

experiments agreed well with the analytical estimation of allowable forces obtained in 

Section 4.2.3 for test Configurations sb12 and sb24 as shown in Table 4.1. 
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Table 4.1  Comparison of analytically estimated and experimentally obtained forces values 

Test set
Estimated maximum 

forcing, N

Experimental maximum 

forcing, N

sb12 307 296

sb24 384 391  

 

The behaviour of the hysteresis loops agrees well with the damping behaviour in a dry 

frictional system as reported by [103]. 

The force measurement contained some noise, as seen in Figure 4.5. The reason for this was 

that the load cell range was 10 KN while the measurements rarely exceeded 500 N. It was 

considered beneficial to remove the noise using digital filtering techniques. Generally, a 

signal is digitally filtered for two reasons: first to restore a distorted signal: second, to 

separate two or more combined signals that are contained in the unfiltered signal. The 

filtering in this work adopts the separation of two or more combined signals as the noises 

contained in the unfiltered signal can be considered as the combined signals.  

In order to select the best approach, three techniques were considered: averaging, Fast 

Fourier Transform (FFT) filtering and a harmonic fitting approach. A brief description of 

each technique is provided below. 

Averaging: the signal is divided into individual cycles and the average taken. In this work, 

eight averages were used. For this approach to work, the noise would have to be random. 

FFT filter: the signal is converted from time domain into frequency domain using the 

algorithm. In the frequency domain, spectral data above a cut-off is set to zero before inverse 

transforming back to the time domain. The cut-off frequency is chosen to be 25 times the 

natural frequency.  

Harmonic fitting: a series of sine waves, corresponding to multiples of the test frequency, are 

fitted to the measured force signal over eight cycles in the time domain. 

Figure 4.6 shows the effects of using these three techniques to filter the experimental results 

for Configuration sb06.  
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For convenience, this work adopts the Fourier transform technique which is shown in Figure 

4.6c. 

Figure 4.6  Hysteresis loops for test Configuration sb06 with (a) no filtering, (b) averaging, 

(c) Fast Fourier Transform and (d) Harmonic fitting 

The work in this chapter and the later chapters utilizes the loss factor values as an indication 

for the amount of damping that the multi-strand beams achieved during the flexural 

behaviour in line with the different parameters that have been studied. A Matlab script was 

developed to calculate the loss factor and system average stiffness for all the displacement 

loading stages.  

Differences were found between the trends of the loading stage and unloading stage in the 

experimentally obtained hysteresis loops which means that these hysteresis loops were 

asymmetric, with the hysteresis loop appearing to be thicker near the region of the maximum 

loading than at the start of the loading. The reason for this behaviour could relate to the 
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amount of loading differing between the loading and unloading stages, as the unloading 

stage starts after the system has reached its maximum position that comprises both the 

clamping force and the maximum loading level. At this particular moment, the system 

restoration process is greater than at the start of the loading stage where the system restores 

from the effect of the clamping force only. This behaviour seemed to be more noticeable in 

the nine-strand beams than in the systems with four-strand beams due to the increased 

number of surfaces in contact inside the system.   

The average effective stiffness was estimated by applying a polynomial fit (third order) to 

the experimental hysteresis loop. The energy dissipation per cycle (i.e. the area enclosed in 

the loop) was measured by numerical integration of the force-displacement curve. The loss 

factor was calculated from the experimentally obtained hysteresis loop through counting the 

energy dissipation and the stored strain energy using Equation 3.31. 

Table 4.2 and Table 4.3 show the experimental damping parameters for Configurations 

sb01–sb12 and Configurations sb13–sb24 respectively. Findings regarding the effect of the 

parameters presented in Table 3.1on the loss factor were obtained in a similar way to the 

modelling results presented in Chapter 3. The average effective stiffness was not affected by 

change in either the clamp force values or the loading levels, whereas increasing the clamp 

force led to an increase in the energy dissipation per cycle, and increasing the loading levels 

reduced the energy dissipation. For further details about the effect of the parameters on the 

loss factor values please read Section 3.7 (Figure 3.24–Figure 3.27).  
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Table 4.2  Experimental damping characteristics for Configuration sb01 through 

Configuration sb12 

 

Configuration 
Loading, 

mm 

Experimental 

Loss factor 
Energy dissipation / 

cycle, mJ  

Strain 

energy, mJ 

Stiffness, 

N/mm 

sb01 

1.000 0.074 0.798 3.437 14.56 

1.700 0.047 1.575 10.73 15.43 

2.500 0.042 3.115 23.63 15.33 

sb02 

1.000 0.102 1.111 3.474 12.97 

1.700 0.065 2.166 10.67 15.17 

2.500 0.051 3.791 23.53 15.49 

sb03 

1.000 0.161 1.786 3.521 13.87 

1.700 0.099 3.330 10.69 15.09 

2.500 0.075 5.572 23.63 15.92 

sb04 

1.000 0.062 2.428 12.50 49.83 

1.700 0.048 5.402 35.65 49.54 

2.500 0.045 10.74 75.95 48.58 

sb05 

1.000 0.158 6.371 12.80 49.77 

1.700 0.103 11.82 36.43 49.96 

2.500 0.092 22.26 77.12 49.25 

sb06 

1.000 0.178 7.557 13.48 50.24 

1.700 0.136 15.97 37.32 49.62 

2.500 0.117 28.58 77.86 47.84 

sb07 

1.000 0.103 2.737 8.446 34.15 

1.700 0.063 4.968 25.09 34.74 

2.500 0.048 8.143 54.26 35.79 

sb08 

1.000 0.170 4.820 9.018 34.67 

1.700 0.118 9.586 25.89 36.61 

2.500 0.091 15.75 55.32 35.71 

sb09 

1.000 0.203 5.624 8.831 34.35 

1.700 0.125 10.06 25.63 36.19 

2.500 0.092 15.98 55.18 36.58 

sb10 

1.000 0.061 5.320 27.57 111.9 

1.700 0.051 12.65 79.71 110.7 

2.500 0.063 33.87 171.3 112.1 

sb11 

1.000 0.115 10.18 28.13 114.5 

1.700 0.086 21.86 80.79 113.1 

2.500 0.086 46.48 171.4 112.6 

sb12 

1.000 0.173 15.54 28.66 114.0 

1.700 0.121 30.69 80.97 112.1 

2.500 0.098 52.92 172.6 113.4 



Chapter 4                                                                                               Results and discussion 

 

85 

 

 

Table 4.3  Experimental damping characteristics for Configuration sb13 through 

Configuration sb24 

 

 

 

4.3.2 Comparison of results 

The results in Chapter 3 that were obtained from the analytical and numerical modelling 

comprised the entire range of configurations shown in Table 3.1. As the experimental work 

involved performing tests on the same configurations that were used for the work presented 

in Chapter 3, this enabled comparisons to be conducted between results from the 

experimental work of this chapter and those from the analytical and numerical modelling 

work of Chapter 3.   

Configuration 
Loading, 

mm 

Experimental 

Loss factor 
Energy dissipation / 

cycle, mJ  

Strain 

energy, mJ 

Stiffness, 

N/mm 

sb13 
1.000 0.046 1.074 7.385 29.49 

1.700 0.040 2.681 21.56 29.69 

sb14 
1.000 0.109 2.601 7.628 30.14 

1.700 0.072 4.983 22.09 30.08 

sb15 
1.000 0.109 2.632 7.689 30.56 

1.700 0.078 5.467 22.31 31.20 

sb16 
1.000 0.073 5.472 23.79 95.93 

1.700 0.059 12.60 68.26 96.09 

sb17 
1.000 0.120 8.961 23.85 93.91 

1.700 0.089 19.02 68.24 95.18 

sb18 
1.000 0.130 9.833 24.10 94.63 

1.700 0.096 20.61 68.46 95.38 

sb19 
1.000 0.068 3.630 16.95 69.36 

1.700 0.045 7.028 49.25 68.12 

sb20 
1.000 0.120 6.574 17.37 70.77 

1.700 0.084 13.19 49.99 69.58 

sb21 
1.000 0.145 7.805 17.09 68.76 

1.700 0.091 14.13 49.46 69.16 

sb22 
1.000 0.087 14.67 53.47 216.8 

1.700 0.072 35.02 154.0 215.9 

sb23 
1.000 0.136 23.27 54.32 218.0 

1.700 0.094 45.70 154.8 218.2 

sb24 
1.000 0.144 24.50 54.23 218.5 

1.700 0.109 52.99 154.8 218.3 
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Comparison between the experimental, numerical and analytical hysteresis loops are 

presented in Figure 4.7 and Appendix F for the studied parameters shown in Table 3.1 at 

different loading levels. Most of the comparisons showed good agreement, particularly when 

the stiffness of the multi-strand beams was at higher levels – for example Figure 4.7. The 

hysteresis loops obtained numerically and analytically were in good agreement with each 

other for all the configurations. The analytical model followed the sliding stages accurately. 

The hysteresis loops obtained experimentally using square strands with cross-section of 3×3 

mm produced slightly different results compared with the hysteresis loops that were obtained 

numerically and analytically. The reason was that these strands seem to have different 

specifications from the square strands with cross-section of 4×4 mm, also the cross-section 

size of the 3×3 mm strands, b and h (Figure 3.1a), was not consistent along the length of the 

strands which might have caused instability during the frictional flexural loading. 

Meanwhile, the cross-section for strands of 4×4 mm showed a consistent profile along the 

strands' length, as shown in Table 4.4, The experimental hysteresis loops' behaviour at the 

start of the unloading stage, discussed earlier in Section 4.3.1, where the thickness of the 

experimental hysteresis loop increased, appeared visually clear when compared with the 

numerical and analytical hysteresis loops. This was related to the system at that region, the 

end of the loading stage, restoring from a higher forcing level where this forcing effect 

comprised both the clamp force and the maximum loading force applied to the system while 

only the clamp force was involved in the restoration process at the start of the loading stage.  
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Figure 4.7  Comparison of experimental, numerical and analytical hysteresis loops for 

Configuration sb22 at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm and for Configuration sb23 

at PK-PK loading of (c) 1.0 mm, (d) 1.7 mm and for Configuration sb24 at PK-PK loading 

of (e) 1.0 mm and (f) 1.7 mm 
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Table 4.4  Profile of a square strand cross-section of 3×3 and 4×4 mm along the length of the 

strand presented as the width (b) and the height (h) 

 

Length, mm 

Cross-section of 

3×3 mm 

Cross-section of 

4×4 mm 

b, mm h, mm b, mm h, mm 

0.00 2.99 2.99 3.99 3.99 

20.0 2.99 2.98 3.99 3.99 

40.0 2.99 2.99 3.99 3.99 

60.0 2.99 2.99 3.99 3.99 

80.0 2.99 2.99 3.99 3.99 

100 2.99 2.99 3.99 3.99 

120 2.99 2.99 3.99 3.99 

140 2.98 2.98 3.99 3.99 

160 2.99 2.99 3.99 3.99 

180 3.00 2.98 3.99 3.99 

200 2.99 2.98 3.99 3.99 

220 2.99 2.99 3.99 3.99 

240 2.99 2.99 3.99 3.99 

260 2.99 2.99 3.99 3.99 

280 2.98 2.98 3.99 3.99 

300 2.99 2.99 3.99 3.99 

 

 

Comparison of the loss factor and the stiffness obtained analytically, numerically and 

experimentally are represented in Table 4.5 for Configurations sb01–sb12 and Table 4.6 for 

Configurations sb13–sb24. 
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Table 4.5  Comparison of analytically, numerically and experimentally obtained damping 

characteristics for Configurations sb01–sb12 

 

 

Configuration 
Loading, 

mm 

Analytical Numerical Experimental 

Loss 

factor 

Stiffness, 

N/mm 

Loss 

factor 

Stiffness, 

N/mm 

Loss 

factor 

Stiffness, 

N/mm 

sb01 

1.000 0.109 16.48 0.116 14.86 0.074 14.56 

1.700 0.067 15.90 0.072 15.20 0.047 15.43 

2.500 0.048 15.63 0.051 15.28 0.042 15.33 

sb02 

1.000 0.188 17.86 0.201 14.50 0.102 12.97 

1.700 0.119 16.74 0.128 14.86 0.065 15.17 

2.500 0.084 16.22 0.090 15.15 0.051 15.49 

sb03 

1.000 0.233 18.78 0.248 14.84 0.161 13.87 

1.700 0.151 17.30 0.162 14.71 0.099 15.09 

2.500 0.107 16.61 0.115 15.01 0.075 15.92 

sb04 

1.000 0.080 53.40 0.085 50.57 0.062 49.83 

1.700 0.052 52.07 0.054 50.70 0.048 49.54 

2.500 0.038 51.46 0.039 50.53 0.045 48.58 

sb05 

1.000 0.139 56.38 0.147 48.99 0.158 49.77 

1.700 0.088 53.85 0.092 50.20 0.103 49.96 

2.500 0.064 52.71 0.066 50.87 0.092 49.25 

sb06 

1.000 0.174 58.36 0.184 48.29 0.178 50.24 

1.700 0.111 55.04 0.117 49.68 0.136 49.62 

2.500 0.080 53.54 0.084 50.57 0.117 47.84 

sb07 

1.000 0.105 36.79 0.110 35.02 0.103 34.15 

1.700 0.066 35.62 0.068 34.59 0.063 34.74 

2.500 0.048 35.10 0.049 34.31 0.048 35.79 

sb08 

1.000 0.187 39.52 0.196 34.09 0.170 34.67 

1.700 0.116 37.28 0.122 35.08 0.118 36.61 

2.500 0.082 36.25 0.086 34.91 0.091 35.71 

sb09 

1.000 0.237 41.35 0.251 33.78 0.203 34.35 

1.700 0.148 38.39 0.156 34.63 0.125 36.19 

2.500 0.105 37.00 0.110 35.11 0.092 36.58 

sb10 

1.000 0.083 120.0 0.085 114.7 0.061 111.9 

1.700 0.057 117.4 0.056 113.9 0.051 110.7 

2.500 0.045 116.2 0.043 113.3 0.063 112.1 

sb11 

1.000 0.139 126.0 0.145 115.7 0.115 114.5 

1.700 0.091 120.9 0.092 115.5 0.086 113.1 

2.500 0.068 118.7 0.068 114.7 0.086 112.6 

sb12 

1.000 0.175 129.9 0.182 113.6 0.173 114.0 

1.700 0.113 123.3 0.116 116.3 0.121 112.1 

2.500 0.083 120.3 0.084 115.6 0.098 113.4 
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Table 4.6  Comparison of analytically, numerically and experimentally obtained damping 

characteristics for Configurations sb13–sb24 

 

 

 

4.4 Conclusions 

Three point bend tests were performed on multi-strand beams (MSB) at different 

configurations and different loading levels (Table 3.1). The conclusions drawn from the 

work in this chapter can be summarised as 

➢ The damping behaviour of the MSB that was obtained experimentally followed the 

analytical and numerical damping behaviour for most of the configurations that were 

shown in Table 3.1. 

Configuration 
Loading, 

mm 

Analytical Numerical Experimental 

Loss 

factor 

Stiffness, 

N/mm 

Loss 

factor 

Stiffness, 

N/mm 

Loss 

factor 

Stiffness, 

N/mm 

sb13 
1.000 0.074 31.18 0.078 29.46 0.046 29.49 

1.700 0.046 30.44 0.048 29.71 0.040 29.69 

sb14 
1.000 0.130 32.90 0.136 28.75 0.109 30.14 

1.700 0.081 31.53 0.085 29.37 0.072 30.08 

sb15 
1.000 0.164 34.05 0.171 28.36 0.109 30.56 

1.700 0.103 32.21 0.109 29.15 0.078 31.20 

sb16 
1.000 0.057 102.6 0.060 98.43 0.073 95.93 

1.700 0.039 100.4 0.039 98.43 0.059 96.09 

sb17 
1.000 0.097 105.9 0.102 96.61 0.120 93.91 

1.700 0.063 102.7 0.065 98.66 0.089 95.18 

sb18 
1.000 0.122 108.3 0.127 95.94 0.130 94.63 

1.700 0.078 104.2 0.081 98.12 0.096 95.38 

sb19 
1.000 0.073 69.91 0.076 67.58 0.068 69.36 

1.700 0.048 68.46 0.048 66.85 0.045 68.12 

sb20 
1.000 0.127 73.34 0.132 66.85 0.120 70.77 

1.700 0.080 70.57 0.083 67.74 0.084 69.58 

sb21 
1.000 0.162 75.62 0.168 66.09 0.145 68.76 

1.700 0.101 71.93 0.105 67.99 0.091 69.16 

sb22 
1.000 0.065 230.8 0.064 222.4 0.087 216.8 

1.700 0.048 227.4 0.045 221.4 0.072 215.9 

sb23 
1.000 0.101 238.3 0.103 225.9 0.136 218.0 

1.700 0.069 231.9 0.068 223.9 0.094 218.2 

sb24 
1.000 0.125 243.2 0.127 222.9 0.144 218.5 

1.700 0.084 234.9 0.083 224.9 0.109 218.3 



Chapter 4                                                                                                                Conclusions                                                                                                           

 

91 

 

➢ Changing the clamp force and loading levels had approximately no effect on the systems 

stiffness. 

➢ The clamp force and loading levels were directly proportional to the energy dissipation 

per cycle and the loss factor. 

➢ The experimental damping characteristics results (Table 4.2 and Table 4.3) were in good 

agreement with the findings from Chapter 3 regarding the effect of the parameters under 

study (Table 3.1) on the damping behaviour of the MSB. 

➢ The visual observation of the experimentally obtained hysteresis loops validated the 

experimental estimations of the coefficient of friction and the modulus of elasticity 

performed in Sections 3.3 and 3.4 respectively. 
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Chapter 5  

Quasi-static damping behaviour of multi-

strand diagonal beams 

 

5.1 Introduction 

The work presented in Chapter 3 and Chapter 4 investigated the damping levels in multi-

strand beams (MSB) where the system was at an angle of 0° with the horizontal axis. This 

chapter will present work on multi-strand beams positioned at different angles with the 

horizontal axis. This configuration was used for two reasons: first, to explore the effect of 

the angle of rotation (φ) on the system’s stiffness; second to investigate the effect of φ on the 

frictional forces that are induced between the mating surfaces in such a system and on the 

amount of the slip deformations which in turn affect the energy dissipation levels. 

A series of experiments were conducted on the diagonal multi-strand beams, which studied 

parameters such as the length of the individual strands, the number of strands, the clamp 

force levels, and the loading displacement levels. During the experiments, the DMSB was 

placed at 45° with the horizontal axis. 

Analytical models were built, first, to estimate the stiffness of a system that experiences 

frictional behaviour and, second, to describe the damping behaviour of the DMSB during the 

flexural loading. The analytical models were developed to include the effect of the angle of 

rotation (φ) into the calculations. 

Finite element (FE) models were built to simulate the flexural behaviour of the DMSB that 

was placed at 45° where frictional contact presents between the individual mating strands.



Chapter 5                                   Quasi-static experiments on the diagonal multi-strand beams 

 

93 

 

This was followed by building FE models for Configurations db3 and db6 (see Table 5.1) to 

describe the damping behaviour where the angle of rotation changes in the range of 0°–45° 

with the horizontal axis at an angle step of 5°.   

Subsequently, analytical models were built to take the change of the angle of rotation from 

0° through 45° into consideration.   

A comparison was performed between the hysteresis loops that were obtained 

experimentally, numerically and analytically for different configurations where the angle of 

rotation was at 45°. The results from Chapter 3 were used for studying the multi-strand 

beams at angle of rotation of 0° for specific configurations.    

A comparative study was then conducted in order to compare the damping characteristics of 

the DMSB through the range of the angles of rotation (0°–45°). 

Thermal effect (temperature rise) was studied to investigate if there was a major increase that 

might change the strands properties as shown in Appendix G.  

5.2 Quasi-static experiments on the diagonal multi-

strand beams 

This section is dedicated to the quasi-static tests performed on the diagonal multi-strand 

beams. The effect of various parameters on the damping levels in the DMSB was considered 

during the tests. The various set-ups of the DMSB were exposed to cyclic quasi-static 

displacement loading. For the purposes of this study the system was constructed of 

individual key steel square strands to form a beam-like structure.   

5.2.1 Methodology 

Quasi-static tests were conducted on the diagonal multi-strand beams and the three point 

bend configuration was adopted for the experiments. The experiment set-up is shown in 

Figure 5.1. Various parameters such as the length of the individual strands, the number of 

strands in the system, the loading displacement levels and the clamp force levels, shown in 

Table 5.1, were considered during the tests and their effects on the damping levels of the 

DMSB were investigated. The DMSB was placed diagonally at an angle of rotation (φ) of 

45°, see Figure 5.1a, during the experiments to minimize any potential of twisting.  
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A servo-hydraulic test machine (MTS 858 Table Top System) was used to conduct the tests 

on the DMSB through applying a displacement controlled quasi-static load. The dimensions 

of the individual strands were 4×4×300 mm and the span distance varied between 250 mm 

and 200 mm. Four strand and nine strand configurations were used to form the DMSB.  

 

Figure 5.1  Experimental set-up for diagonal nine-strand beam showing (a) the side view and 

(b) the front view. 

 

Tests were carried out on Configuration db01 through db12 as shown in Table 5.1 and the 

DMSB was positioned between two stationary supports and the test machine’s non-rotating, 

uniaxial motion, loading roller. Special supporters were manufactured to maintain the 

DMSB horizontal during the experiment. Figure 5.2 shows the specially manufactured 

support. One supporter was located at 125 mm and the other at 100 mm from the centre of 

the DMSB in order to form span distances of 250 mm and 200 mm respectively. The loading 

roller was positioned at the centre.         

A clamping mechanism was used to hold the individual strands together during the 

experiments. The rotation of the DMSB at angle of 45° necessitated applying four pairs of 

clamps to provide the required clamp force on the entire outer surfaces of the DMSB. The 

clamp units were the same as those used in Chapter 3 because the strands used in these 

experiments resembled the strands used in the Chapter 3 experiments; therefore, the 

calibration of the normal forces applied to the clamps in Section 3.4.1 was used for this 

section as well. The clamps were located at 25 mm from each stationary supporter on each 

side. 
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Figure 5.3 shows the diagonal multi-strand beams (DMSB) for Configuration db06 during 

the flexural loading with the clamps attached.  Three clamp force levels were used to clamp 

the system 100 N, 190 N and 250 N.  

Table 5.1  Test parameters for the DMSB 

Test Configuration 

No 

Span distance, 

mm 

No of 

strands 

Clamping 

force, N 

Peak displacement, 

mm×Sin(ωt) 

1.00 1.70 1.00 

db01 250 4 100    

db02 250 4 190    

db03 250 4 250    

db04 250 9 100    

db05 250 9 190    

db06 250 9 250    

db07 200 4 100    

db08 200 4 190    

db09 200 4 250    

db10 200 9 100    

db11 200 9 190    

db12 200 9 250    

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.2  Stationary supporter 
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Figure 5.3  Diagonal nine-strand beam (a) under flexural loading (b) with clamps attached 

 

Experiments were carried out at two amplitude levels of peak-to-peak (PK-PK) sinusoidal 

displacement loading of 1.0 mm and 1.7 mm. These values and the force needed to initiate 

the slip were calculated in a prior investigation in Sections 4.2.3 and 4.2.4. The test 

procedure adopted to test the DMSB is similar to the procedure performed on the (MSB) in 

Section 4.2.2 but with a pre-displacement of 0.2 mm that was applied to the loading roller 

where visual increase in the force signal was observed. Peak-to-peak (PK-PK) sinusoidal 

displacements of 1.0 mm and 1.7 mm was applied for each configuration followed by further 

displacement at the lowest amplitude (1.0 mm) at the end of each loading displacement (1.7 

mm). 

  

(a) 

(b) 
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5.2.2 Experimental results 

The displacement and the force signals were recorded via a closed-loop controller during the 

flexural loading to trace the expected sinusoidal shape for the displacement. The pair of 

signals shown below in Figure 5.4 show the phase difference (from damping) in the force 

signal which relates to the friction effect between the strands and a distortion of the 

waveform that is derived from the nonlinearity. 

 

Figure 5.4  Force and displacement histories for Configuration db06 at PK-PK displacement 

of 1.7 mm. 

 

Configurations db1–db12, Table 5.1, experienced three sinusoidal displacement loading 

stages (1 mm, 1.7 mm and 1 mm) during the flexural tests. In section 3.4.2, the maximum 

PK-PK displacement amplitude for multi-strand beams was limited to 1.7 mm for systems 

where the span distance between the individual strands was 200 mm, corresponding to the 

investigations performed in that section. However, to examine the effect of the loading levels 

on the damping behaviour in the multi-strand beams, the maximum loading was set at 1.7 

mm for the entire configurations in this chapter.  

 The damping behaviour was obtained by plotting the hysteresis loops from the force and 

displacement time histories. Unfiltered hysteresis loops for Configurations db03, db06, db09 
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and db12 are shown in Figure 5.5. Each hysteresis loop contained the two displacement 

loadings (1 mm and 1.7 mm). In Figure 5.5, it can be seen that the start of the loading stage, 

upper right corner on the hysteresis loop, is narrower than the start of the unloading stage, 

lower left corner on the hysteresis loop. This behaviour can be related to the larger amount 

of loading at the end of the loading stage, where the loading is at its maximum value, and 

this causes the system to restore from higher deformation levels at the start of the unloading 

stage than at the start of the loading stage. 

Generally, at the microslip region, in the transition from stick to slide, at the start of both the 

loading and unloading stage, the diagonal multi-strand beams (DMSB) appeared to take a 

longer distance to transit from sticking to sliding than the multi-strand beams (MSB), which 

was discussed in Chapter 3, and the reasons for this behaviour are twofold. First, the loading 

condition during the experiment necessitated that the loading roller of the servo-hydraulic 

test machine had a point contact with the upper-top diagonal strand in the DMSB, which 

means that the flexural loading started at the single upper-top strand, then the loading 

transited to the next layers of the diagonal strands, and so on. Second, interestingly, the 

arrangement of the strands in the DMSB and the fact that the vertical loading from the test 

machine was no longer perpendicularly distributed on the contact regions, as was the case 

for the multi-strand beams (MSB) in chapter 3, allowed creation of diagonal contact regions. 

This means that each strand in the DMSB had two of its surfaces experiencing dry frictional 

contact, which was double the number of strand surfaces with frictional contact in the MSB. 

Bearing this fact in mind and knowing that the contact intensity may vary between the 

different couples of strands that are in contact, this would lead to some diagonally placed 

strand couples deforming separately from other couples instead of deforming 

simultaneously, as seen visually during the experiment, and this could be the major reason 

for the extension in microslip distance. 
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Figure 5.5  Unfiltered hysteresis loops at PK-PK displacement loading of 1 mm and 1.7 mm 

for Configuration (a) db03, (b) db06, (c) db09 and (d) db12 

 

The unfiltered force traces contained noise in the range of 2N–4N. The most likely cause for 

this is the relatively low sensitivity of the force sensor as its maximum range was 10 KN. 

As with the work in Chapter 4, the Fourier transform was used to filter the data. Figure 5.6 

shows the filtered experimentally obtained hysteresis loops for Configurations db03, db06, 

db09 and db12. 
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Figure 5.6  Filtered hysteresis loops at PK-PK displacement loading of 1 mm and 1.7 mm for 

Configuration (a) db03, (b) db06, (c) db09 and (d) db12 

 

5.3 Analytical modelling 

The aim of the work described in this section was to build analytical models with the ability 

to describe the damping levels that can be obtained from diagonal multi-strand beams 

(DMSB) during a flexural loading where the DMSB would be rotated through angles of 

rotation ranging from 0°–45°. The first purpose of these analytical models was to estimate 

the DMSB stiffness and the second was to describe the damping behaviour for these 

systems.  
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5.3.1 Effect of angle of rotation φ on system damping levels 

The diagonal multi-strand beams (DMSB) discussed in this chapter were positioned at 45° 

with the horizontal axis during the experiments, unlike the setup used for the multi-strand 

beams (MSB) in Chapter 3 where the strands were placed horizontally. Given that both the 

numerical and the analytical models in this work are designed to cover the range of angles 

0°–45°, it was crucial to investigate the effect of the angle of rotation on the damping 

characteristics of the DMSB. Investigation of these characteristics was conducted 

numerically and involved studying the effect of φ on both the strain energy (stiffness) levels 

and the energy dissipation (frictional forces) levels.  

5.3.1.1 Effect of φ on the strain energy (system stiffness) 

The second moment of area was adopted to represent the stiffness in this work as the other 

parameters that could have an effect on the stiffness during rotating the DMSB, such as the 

length and the modulus of elasticity, were unchanged. The strands used in this work were 

formed into square key steel beams and the overall dimensions of the DMSB were kept 

square (the width equals the height) during the entire configurations. The strain energy can 

be represented as  

 
2

2

1
KxU 

 
5.1 

where U is the strain energy, K is the system stiffness and x is the system displacement. 

The rotating the DMSB with angle of rotation in the range of 0°–45° is expected to have no 

effect on the behaviour of the second moment of area [104]. 

  

5.3.1.2 Effect of φ on the strain dissipation levels (frictional forces)  

In a system where there is dry frictional contact, the frictional forces induced between the 

mating surfaces play an important role in determining the level of energy that can dissipate 

per cycle. The relation between the energy dissipation and the frictional forces is shown in 

Equation 5.2 [53, 102].  
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 4 ddW F u   5.2 

where dW is the energy dissipation per cycle, Fd is the frictional force and u is the 

relative displacement between the surfaces in contact. 

The frictional forces depend primarily on both the normal forces applied perpendicular in the 

thickness direction of the surfaces of contact and the coefficient of friction between the 

mating surfaces. The normal forces in this work were the clamping forces and the flexural 

loading applied to the system. The clamping forces were maintained perpendicular to the 

surfaces of contact; however, the flexural loading was no longer perpendicular to the 

thickness direction of the contacted strands because the surfaces of contact between the 

mating strands for the diagonal multi-strand beams (DMSB) were inclined with an angle of 

φ, while the flexural load was kept vertical during the entire loading process (see Figure 5.3). 

In order to count for the vertical flexural load effect on the inclined contact surface, the 

component of the flexural load that was normal to the contact surface was considered as a 

normal force acting to generate the frictional forces in addition to the clamping forces that 

were already normal to the contact surface. Figure 5.7 shows the distribution of the flexural 

load in the DMSB. This distribution assumes that all contact surfaces reach sliding stage 

during the rotation of the DMSB in a range of angles of 0°–45°.  
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Figure 5.7  Load distribution on inclined contact surfaces – diagonal four-strand beam is 

shown 

 

According to Figure 5.7, the frictional forces (Fd) acting on the surfaces that were in contact 

could be expressed as 

    cos sind c l lF F F F        5.3 

where Fd is the frictional force, Fc is the clamp force, Fl is the flexural load and μ is the 

coefficient of friction. 

The analytically obtained profile for the frictional force within the range of the angles of 

rotation of 0°–45° is shown in Figure 5.8 and Figure 5.9 for Configurations db03 and db06. 

The general behaviour tended toward a slight increase in the values of the frictional forces 

with increasing the angle of rotation. This could cause an increase in the amount of the 

energy that might dissipate per cycle from the DMSB due to friction. 

 



Chapter 5                                                                                                  Analytical modelling 

 

104 

 

 

 

 

 

 

 

 

 

 

Figure 5.8  The frictional force versus the angle of rotation for Configuration db03 at PK- 

PK displacement of (a) 1.0 mm and (b) 1.7 mm 

 

 

 

 

 

 

 

 

 

 

Figure 5.9  The frictional force versus the angle of rotation for Configuration db06 at PK-PK 

displacement of (a) 1.0 mm and (b) 1.7 mm 

  

 

5.3.2 Analytical hysteresis loops  

The DMSB stiffness was predicted through estimating the value of the frictional second 

moment of area (If) analytically in a technique similar to that explained earlier in Section 

3.6.1where the upper and lower bounds (Equation 3.11 and Equation 3.13) for the linear 

relationship of the displacement-coefficient of friction were calculated and then the amount 

of the coefficient of friction that could bond the contact status was found through Equation 

3.19. Next, depending on the values of the displacement at each specific coefficient of 

(a) (b) 
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friction values, the frictional second moment of area was estimated. Figure 5.10 shows the 

linear relationship between the displacements and the coefficient of friction values for 

Configurations db03 and db06 at an angle of rotation of 45° and a peak amplitude 

displacement of 0.5 mm.  

 

 

 

 

 

 

 

 

 

 

Figure 5.10  Displacement versus coefficient of friction at a peak amplitude displacement 

loading of 0.5 mm for Configurations (a) db03 and (b) db06 

 

The linearity of the relation between the displacement and the coefficient of friction was 

validated through building FE models and exposing them to ramp loading with different 

coefficient of friction values at the contact regions each time, as shown in Figure 5.11. 

 

 

 

 

 

 

 

 

 

 

Figure 5.11  Peak displacement versus coefficient of friction for the DMSB comparing the 

FE and analytical model for Configurations (a) db03 and (b) db06 
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The analytically obtained frictional second moment of area (If) is presented in Figure 5.12 

for Configurations db03 and db06. The relation between the frictional coefficient of friction 

and the coefficient of friction values was nonlinear.  

 

 

 

 

 

 

 

 

 

 

Figure 5.12  The frictional second moment of area versus the coefficient of friction obtained 

analytically for Configurations (a) db03 and (b) db06 

 

The author at this stage preferred not to include all the sensitivity studies performed on the 

DMSB to investigate the effect of coefficient of friction and loadings on the frictional 

second moment of area as it might have been considered repetitive even though the DMSB 

system described in this chapter differed from the MSB system used in Chapter 3 but similar 

behaviour of the sensitivity was observed (for more information, read Section 3.6.1). 

The same pathway as was used to calculate the analytical hysteresis loop in Section 3.6.3 

was followed here, however the models here included the effect of the angle of rotation (φ). 

The model counts for the friction effect between the mating strands by introducing the term 

If  which presents the stiffness of the DMSB experiencing dry frictional contact. The model 

produces a force-displacement response. This was extended into a force-displacement 

hysteresis loop to estimate the loss factor value (damping levels) that the DMSB could 

provide for the specific configurations, Table 5.1, at the range of the angles of rotation (φ). 

Figure 3.21 shows the various loading and unloading stages for the hysteresis loop. The 

starting point for the hysteresis loop begins from the origin point (0) in the Cartesian 
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coordinate system. Point (1) represents the sliding stage during the loading phase, second 

stage, ending at point (2). 

To estimate the force-displacement hysteresis loop, the shear stress between the mating 

strands and the frictional stresses at the contact regions can be used to determine the force 

required to start the slipping in diagonal multi-strand beams. At the moment when the 

contacted strands begin to slide, the frictional force equals the shear force that tries to initiate 

the slipping. This force is described by Equation 3.21. The deformation that results from the 

slip force can be calculated through Equation 3.22. The third stage is the damping stage and 

this represents the transition from the sticking region into the sliding region. The damping 

stage starts from point (2) and represents the maximum force and displacement applied on 

the system, ending at point (3). This stage determines the damping amount in the produced 

hysteresis loop. 

Depending on the applied force F2 the maximum resulting displacement δ2 is calculated by 

Equation 3.23. The force F3 and displacement δ3 at the end of the damping stage are 

calculated through Equations 3.24 and 3.25 respectively. 

 The fourth stage is the sliding stage during the unloading phase. The fourth stage starts from 

point (3) and travels all the way to the position of the maximum force and loading on the 

other side of the hysteresis loop, the bottom left side, ending up at point (4).  

The force F4 and the displacement δ4 of point (4) are found through Equations 3.26 and 3.27 

respectively. 

The sliding stage during the loading phase starts from point (5) and ends at point (2). The 

force F5 and the displacement δ5 at the start of the sliding stage are calculated through 

Equations 3.28 and 3.29 respectively. 

The analytically obtained hysteresis loops are presented in Figure 5.13 through Figure 5.16 

for the DMSB with Configurations db03, db06, db09 and db12 at peak-to-peak displacement 

loading of 1.0 mm and 1.7 mm. These configurations had an angle of rotation (φ) of 45° with 

the horizontal axis.  
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Figure 5.13  Analytical hysteresis loop for Configuration db03 at PK-PK displacement of (a) 

1.0 mm and (b) 1.7 mm 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14  Analytical hysteresis loop for Configuration db06 at PK-PK displacement of (a) 

1.0 mm and (b) 1.7 mm 
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Figure 5.15  Analytical hysteresis loop for Configuration db09 at PK-PK displacement of (a) 

1.0 mm and (b) 1.7 mm 

 

 

 

 

 

 

 

 

 

 

Figure 5.16  Analytical hysteresis loop for Configuration db012 at PK-PK displacement of 

(a) 1.0 mm and (b) 1.7 mm 

 

5.4 Quasi-static numerical simulation of the DMSB 

Numerical models of the DMSB for Configuration db01 through db12, Table 5.1, at an angle 

of rotation of 45° were built to simulate the experimental (Section 5.2) and the analytical 

quasi-static flexural behaviour (Section 5.3).  

The three point bend was adopted for the entire configurations during the quasi-static 

sinusoidal displacement loading and the clamping forces were applied as an equivalent 
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distributed pressure on the outer surfaces. The clamp pressure was maintained normal to the 

contact surfaces between the mating surfaces during rotating the DMSB with angle of 

rotation 0° through 45°. Finite element commercial package, ANSYS, was used to construct 

the DMSB. Mesh and contact details were as defined previously in Section 3.5.    

The numerical models for the DMSB were positioned at an angle of rotation of 45° and 

comprised four-strand and nine-strand arrangements that were clamped and exposed to 

flexural loading, as shown in Figure 5.17a and b respectively. The numerical models were 

constructed of square sectioned strands gathered through a frictional contact between the 

mating surfaces and held together by a clamp force to form the DMSB.  

Configurations db03 and db06 were rotated at a range of angle of rotation (φ) of 0°–45° with 

the horizontal axis to investigate the effect of φ on the generated damping levels. DMSB 

models comprising four strands and nine strands are shown in Figure 5.18 and Figure 5.19 

respectively, where the DMSB were rotated at angles of rotation of 15°, 25°, 35° and 45°. 

The individual strands used in the DMSB had a cross-section of 4×4 mm. The effects of 

parameters such as the span distance, the number of strands in the system and the clamp 

force level on the damping levels during the flexural loading were investigated. The modulus 

of elasticity was 190 GPa, deriving from the experimental work to evaluate the material 

properties as was presented in Section 3.3. The coefficient of friction was 0.25 and based on 

the experimental results to investigate the coefficient of friction values discussed in Section 

3.4.  
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Figure 5.17  Numerical modelling of the DMSB positioned at angle of rotation of 45° and 

comprised of (a) four strands, and (b) nine strands – elemental arrangements as shown in the 

cross-sectioned view 

 

The frictional behaviour was seen as a small phase difference in the force signal. A typical 

pair of force-displacement signals obtained numerically is shown in Figure 5.20. 

Numerically obtained force-displacement relationships (hysteresis loops) for Configurations 

db03, db06, db09 and db12 at peak-to-peak quasi-static sinusoidal displacement loadings of 

1.0 mm and 1.7 mm are shown in Figure 5.21. The average effective stiffness was estimated 

by applying a polynomial fit to the numerically obtained hysteresis loop. The energy 

dissipation amount per cycle was measured by numerical integration of the force-

displacement curve. The loss factor was calculated from the hysteresis loop through counting 

the energy dissipation and the stored strain energy [99, 100]. 
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Figure 5.18  DMSB comprised of four strands (db03) with the system positioned at angles of 

rotation of (a) 15°, (b) 25°, (c) 35° and (d) 45° – individual strands are coloured separately 
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Figure 5.19  DMSB comprised of nine strands (db06) with the system positioned at angles of 

rotation of (a) 15°, (b) 25°, (c) 35° and (d) 45° – individual strands are coloured separately 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20  Numerical force-displacement time histories for Configuration db03 at 

displacement loading of 1.7 mm 
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Figure 5.21  Numerical hysteresis loop of the DMSB at PK-PK displacement loading of 1.0 

mm and 1.7 mm for Configurations (a) db03, (b) db06, (c) db09 and (d) db12 

 

5.5 Results and discussion 

The section is devoted to discussion of the results of the diagonal multi-strand beams 

(DMSB) that were obtained during the flexural behaviour investigations. The force-

displacement curves (hysteresis loops) were used to describe the damping behaviour of the 

DMSB and the loss factor was considered to determine the damping levels in the system. 

The results for the comparison between the hysteresis loops that were obtained 

experimentally and numerically and analytically are shown in Figure 5.22 and Appendix H  
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for the entire configurations shown in Table 5.1 at peak-to-peak displacement of 1.0 mm and 

1.7 mm. The analytical and numerical and experimental damping parameters for the entire 

configurations presented in Table 5.1 are listed in Appendix I. Comparison of the damping 

characteristics that were obtained analytically, numerically and experimentally is presented 

in Table 5.2.  

The numerical and analytical hysteresis loops were in good agreement and they followed 

most of the experimental force-displacement curves at the end of the loading phase; 

however, non-symmetric sliding was observed during the experiments between the opposite 

mating surfaces. This would be due to local surface condition and imperfection clamping 

which caused the experimental hysteresis loops to differ from the analytical and numerical 

hysteresis loops where the sliding was assumed to be perfect. Non-symmetric sliding 

appeared to be most significant in low applied load levels.   

Similar levels of loss factor were obtained for DMSB that did not have the same number of 

strands but where the individual strands had the same cross-section, for example, db01 and 

db4, db3 and db06, db07 and db12 (Table 5.2). The energy dissipation levels per cycle and 

the stored strain energy increased by increasing the strands number and this could be related 

to the overall cross-section of the DMSB increasing, which increased the stiffness; also, the 

number of contact surfaces was increased by increasing the strands number, which resulted 

in increasing the energy dissipation. 

The loading level had inverse correlation with the loss factor and direct correlation with the 

energy dissipation and the stored strain energy, whereas the stiffness was not affected. The 

relation between the stiffness and the strain energy (Equation 5.1) explains why the lack of 

change in the stiffness with increasing the loading level could have caused the strain energy 

to increase. The clamp force had a direct correlation with the loss factor and the energy 

dissipation as the normal force on the contact regions increased, whereas the strain energy 

and the stiffness were not affected. The span distance had inverse correlation with each of 

energy dissipation, strain energy and stiffness as, for the same amount of loading, the sliding 

distance would be larger in shorter structures, which would lead to an increase in energy 

dissipation (Equation 5.2). In addition, shorter structures are stiffer than long structures, 

which explains why the strain energy increased with reduction of the span distance. The loss 

factor had a direct correlation with the loss factor.  
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Figure 5.22  Comparison of experimental and numerical and analytical hysteresis loops for 

Configuration db07 at PK-PK displacement of (a) 1.0 mm and (b) 1.7 mm and for 

Configuration db08 at PK-PK displacement of (c) 1.0 mm and (d) 1.7 mm and for 

Configuration db09 at PK-PK displacement of (e) 1.0 mm and (f) 1.7 mm 
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Table 5.2  Comparison of analytically, numerically and experimentally obtained damping 

characteristics for Configurations db01–db12 

 

 

 

 

 

 

 

 

 

 

Configuration 
Loading, 

mm 

Analytical Numerical Experimental 

Loss 

factor 

Stiffness

, N/mm  

Loss 

factor 

Stiffness

, N/mm  

Loss 

factor 

Stiffness

, N/mm  

db01 
1.000 0.126 52.19 0.121 47.42 0.090 46.19 

1.700 0.079 50.46 0.078 48.30 0.069 47.27 

db02 
1.000 0.219 56.36 0.208 45.98 0.140 52.36 

1.700 0.138 52.97 0.134 47.23 0.118 45.53 

db03 
1.000 0.275 59.15 0.258 45.26 0.192 58.15 

1.700 0.175 54.64 0.169 46.50 0.175 45.02 

db04 
1.000 0.126 116.5 0.118 110.3 0.107 93.42 

1.700 0.082 113.0 0.077 108.6 0.093 92.19 

db05 
1.000 0.223 122.3 0.205 110.8 0.150 95.31 

1.700 0.137 118.2 0.131 111.0 0.111 97.66 

db06 
1.000 0.276 130.5 0.260 106.5 0.214 100.7 

1.700 0.172 121.6 0.168 111.8 0.156 98.51 

db07 
1.000 0.088 98.75 0.083 93.48 0.100 85.40 

1.700 0.057 96.71 0.055 93.76 0.076 87.47 

db08 
1.000 0.151 104.0 0.143 90.89 0.175 90.44 

1.700 0.096 99.88 0.092 93.40 0.122 87.39 

db09 
1.000 0.191 107.5 0.179 89.44 0.194 92.58 

1.700 0.121 102.0 0.115 92.45 0.161 86.81 

db10 
1.000 0.093 221.1 0.083 211.8 0.102 172.7 

1.700 0.065 218.1 0.057 209.5 0.094 173.3 

db11 
1.000 0.152 232.2 0.141 215.4 0.153 180.8 

1.700 0.100 223.6 0.092 210.6 0.123 176.6 

db12 
1.000 0.191 239.2 0.177 214.3 0.220 184.7 

1.700 0.124 227.9 0.115 214.9 0.173 181.5 
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Numerical and analytical hysteresis loop results of rotating the DMSB in a range of angles of 

0°–45° were obtained. Figure 5.23 and Figure 5.24 show hysteresis loops for Configurations 

db03 and db06 at peak-to-peak displacement loading of 1.0 mm and 1.7 mm respectively 

where the DMSB were rotated at 15°, 30° and 45°. The energy dissipation amounts per cycle 

and the loss factor were increased with increasing the angle of rotation, while the stored 

strain energy stayed at similar levels during the rotation and these findings agree with the 

results obtained from the investigation of the effect of angle of rotation on the stored energy 

and energy dissipation in Section 5.3.1. Table 5.3 through Table 5.6 present the damping 

parameters that were obtained analytically and numerically for the DMSB rotated in a range 

of angles from 0°–45° at PK-PK displacement loading of 1.0 mm and 1.7 mm.  
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Figure 5.23  Numerical and analytical hysteresis loops at peak displacement loading of 1.0 

mm for Configuration db03 at angle of rotation of (a) 15°, (b) 30° and (c) 45° and for 

Configuration db06 at angle of rotation of (d) 15°, (e) 30° and (f) 45° 
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Figure 5.24  Numerical and analytical hysteresis loops at peak displacement loading of 1.7 

mm for Configuration db03 at angle of rotation of (a) 15°, (b) 30° and (c) 45° and for 

Configuration db06 at angle of rotation of (d) 15°, (e) 30° and (f) 45° 
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Table 5.3  Analytical damping characteristics of the DMSB for Configurations db03 and 

db06 at PK-PK displacement loading of 1.0 mm during rotation in range of angles 0°–45° 

 

 

 

 

 

 

 

 

 

 

 

Angle of 

rotation 

Analytical 

Loss factor 
Energy dissipation / 

cycle, mJ 

Strain 

energy, mJ 

Stiffness, 

N/mm 

db03 

0 0.174 7.154 13.09 58.36 

5 0.222 8.532 12.22 56.23 

10 0.234 9.045 12.32 57.04 

15 0.244 9.492 12.40 57.75 

20 0.253 9.886 12.43 58.18 

25 0.261 10.20 12.46 58.56 

30 0.267 10.45 12.48 58.87 

35 0.273 10.59 12.32 59.07 

40 0.273 10.74 12.50 59.21 

45 0.275 10.78 12.48 59.15 

db06 

0 0.175 16.16 29.38 129.9 

5 0.219 18.90 27.52 125.2 

10 0.231 20.06 27.68 126.9 

15 0.242 21.08 27.69 128.0 

20 0.253 21.96 27.65 128.6 

25 0.261 22.69 27.70 129.5 

30 0.267 23.25 27.70 130.1 

35 0.272 23.66 27.70 130.5 

40 0.275 23.91 27.70 130.7 

45 0.276 24.00 27.63 130.5 
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Table 5.4  Numerical damping characteristics of the DMSB for Configurations db03 and 

db06 at PK-PK displacement loading of 1.0 mm during rotation in range of angles 0°–45° 

 

 

 

 

 

 

 

 

 

 

 

Angle of 

rotation 

Numerical 

Loss factor 
Energy dissipation / 

cycle, mJ 

Strain 

energy, mJ 

Stiffness, 

N/mm 

db03 

0 0.184 7.473 12.91 48.29 

5 0.191 7.366 12.28 46.44 

10 0.196 7.697 12.49 46.95 

15 0.202 8.087 12.75 48.41 

20 0.217 8.694 12.77 47.42 

25 0.231 9.214 12.69 44.99 

30 0.243 9.630 12.63 45.62 

35 0.251 9.938 12.58 46.57 

40 0.256 10.12 12.55 45.81 

45 0.259 10.19 12.54 45.51 

db06 

0 0.182 16.41 28.64 113.6 

5 0.193 16.57 27.35 110.6 

10 0.195 17.03 27.83 112.5 

15 0.209 18.37 27.97 112.5 

20 0.224 19.55 27.80 109.0 

25 0.236 20.54 27.66 108.5 

30 0.246 21.32 27.55 109.4 

35 0.254 21.89 27.46 107.4 

40 0.258 22.24 27.40 106.6 

45 0.260 22.35 27.38 106.5 
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Table 5.5  Analytical damping characteristics of the DMSB for Configurations db03 and 

db06 at PK-PK displacement loading of 1.7 mm during rotation in range of angles 0°–45° 

 

 

 

 

 

 

 

 

 

 

 

Angle of 

rotation 

Analytical 

Loss factor 
Energy dissipation / 

cycle, mJ 

Strain 

energy, mJ 

Stiffness, 

N/mm 

db03 

0 0.111 12.98 37.15 55.04 

5 0.138 15.29 35.21 53.10 

10 0.146 16.22 35.35 53.59 

15 0.153 17.05 35.37 53.89 

20 0.160 17.76 35.39 54.15 

25 0.165 18.34 35.42 54.37 

30 0.169 18.74 35.21 54.54 

35 0.172 19.13 35.45 54.67 

40 0.174 19.33 35.46 54.73 

45 0.175 19.41 35.38 54.64 

db06 

0 0.113 29.80 84.18 123.3 

5 0.137 34.44 80.09 119.1 

10 0.145 36.45 80.11 119.8 

15 0.152 38.22 80.10 120.4 

20 0.158 39.75 79.98 120.8 

25 0.163 41.01 80.02 121.2 

30 0.167 42.00 80.03 121.6 

35 0.170 42.71 79.94 121.7 

40 0.171 43.14 80.01 122.0 

45 0.172 43.28 80.06 122.1 
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Table 5.6  Numerical damping characteristics of the DMSB for Configurations db03 and 

db06 at PK-PK displacement loading of 1.7 mm during rotation in range of angles 0°–45° 

 

 

The configurations of the diagonal multi-strand beams (DMSB) presented in Table 5.1 had 

counterparts among the multi-strand beams (MSB) presented in Table 3.1 that shared 

common physical properties except that the DMSB were rotated at 45°, while the MSB were 

at 0° with the horizontal axis (see Table 5.7). Figure 5.25 compares the loss factor between 

the MSB and the DMSB that were obtained analytically at PK-PK displacement loadings of 

1.0 mm and 1.7 mm. The configurations of the DMSB achieved higher loss factor values 

than the configurations of the MSB. This could be related to the increase in the energy 

dissipation amounts when the DMSB system rotated at 45° due to the increased surfaces of 

contact in these systems, as shown in Figure 5.26. The stored strain energy (stiffness) was at 

similar levels for both the MSB and the DMSB as shown in Figure 5.28, the reason being 

Angle of 

rotation 

Numerical 

Loss factor 
Energy dissipation / 

cycle, mJ 

Strain 

energy, mJ 

Stiffness, 

N/mm 

db03 

0 0.117 13.52 36.65 49.68 

5 0.125 13.81 35.11 47.68 

10 0.130 14.50 35.54 48.37 

15 0.139 15.55 35.54 47.53 

20 0.148 16.48 35.44 47.22 

25 0.155 17.27 35.36 47.40 

30 0.161 17.88 35.29 47.29 

35 0.166 18.33 35.23 46.77 

40 0.168 18.59 35.21 46.55 

45 0.169 18.70 35.19 46.50 

db06 

0 0.116 29.87 82.14 116.3 

5 0.125 30.87 78.44 110.9 

10 0.132 32.85 79.15 111.7 

15 0.141 34.90 78.95 110.6 

20 0.148 36.67 78.76 111.1 

25 0.154 38.11 78.59 110.7 

30 0.159 39.22 78.47 110.3 

35 0.163 40.05 78.36 110.4 

40 0.167 41.03 78.22 111.4 

45 0.168 41.18 78.13 111.8 
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that the same number of strands and the same cross-section were used when comparing 

between the configurations of the MSB and the DMSB and therefore the stiffness would 

remain stable whether the system was flat or rotated by an angle (the reader can refer to 

Section 5.3.1).    

Table 5.7  Physically matched configurations of MSB and DMSB 

MSB DMSB 

sb04 db01 

sb05 db02 

sb06 db03 

sb10 db04 

sb11 b05 

sb12 db06 

sb16 db07 

sb17 db08 

sb18 db09 

sb22 db10 

sb23 db11 

sb24 db12 
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Figure 5.25  Comparison of the loss factor between multi-strand beams (MSB) and diagonal 

multi-strand beams (DMSB) rotated at 45° and exposed to a PK-PK displacement loading of 

(a) 1.0 mm and (b) 1.7 mm 
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Figure 5.26  Comparison of the energy dissipation between multi-strand beams (MSB) and 

diagonal multi-strand beams (DMSB) rotated at 45° and exposed to a PK-PK displacement 

loading of (a) 1.0 mm and (b) 1.7 mm 
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Figure 5.27  Comparison of the stored strain energy between multi-strand beams (MSB) and 

diagonal multi-strand beams (DMSB) rotated at 45° and exposed to a PK-PK displacement 

loading of (a) 1.0 mm and (b) 1.7 mm 

 

 

 

 

Configurations 

S
to

re
d
 s

tr
ai

n
 e

n
er

g
y,

 N
.m

m
 

 

(a) 

Configurations 

S
to

re
d
 s

tr
ai

n
 e

n
er

g
y,

 N
.m

m
 

 

(b) 



Chapter 5                                                                                               Results and discussion 

 

129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28  Comparison of the system stiffness between multi-strand beams (MSB) and 

diagonal multi-strand beams (DMSB) rotated at 45° and exposed to a PK-PK displacement 

loading of (a) 1.0 mm and (b) 1.7 mm 
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5.6 Conclusions 

The diagonal multi-strand beams (DMSB) were modelled analytically and numerically and 

were investigated experimentally in this chapter. Configurations of the DMSB that were 

rotated at 45° were compared with some configurations of Chapter 3 that physically matched 

them but were not rotated. Rotation of the DMSB in a range of angles of 0°–45° was 

investigated analytically and numerically. The work done in this chapter revealed findings 

which can be summarised as follows: 

• In relation to damping 

✓ The number of strands in the DMSB had no effect on the loss factor value when 

using individual strands of the same cross-section size, while energy dissipation level, 

strain energy and stiffness each had a direct correlation with the number of strands. 

✓ The clamp force level had a direct correlation with the loss factor level and the 

energy dissipation per cycle, while the stiffness and the strain energy were not affected 

by the clamp force level. 

✓ The displacement loading level had inverse correlation with the loss factor and 

direct correlation with both the energy dissipation and the strain energy, while the 

stiffness was not affected by the loading levels. 

✓ The span distance had direct correlation with the loss factor, while energy 

dissipation, strain energy and stiffness each had inverse correlation with the span 

distance. 

✓ The DMSB (rotated at 45°) had higher loss factor and energy dissipation levels 

when compared with the MSB (flat at 0°) because friction on each strand is higher, 

while the strain energy and the stiffness were not affected. 

✓ The loss factor and energy dissipation increased when the DMSB were rotated in a 

range of angles of 0°–45°, while the strain energy and the stiffness were not affected. 

• In relation to modelling 

✓ The analytical and numerical models followed the experimental force-displacement 

curve for the DMSB rotated at 45°. 

✓ The analytical and numerical models were able to describe the damping behaviour 

of the DMSB that were rotated in a range of angles of 0°–45°. 
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Chapter 6  

Quasi-static damping behaviour of multi-

strand bars and wires 

6.1 Introduction 

Systems comprising dry friction contacts can provide considerable levels of damping over 

large operating temperature ranges. When temperature insensitive materials, such as metallic 

or carbon fibres, are considered, this damping can occur over a significantly wider 

temperature range than what is typical for common damping materials such as viscoelastic 

polymers.  Energy dissipation from friction interfaces involving a small number of relatively 

large contact surfaces, such as turbine blade roots, has received significant research interest 

[53, 54]. On the other hand, damping from a large number of relatively small contacts, such 

as found in a multi-strand bars and wires, is not nearly as well understood. There is therefore 

a need for efficient and accurate models to allow optimisation of this kind of damping 

mechanism in order to improve vibration attenuation in mechanical systems. Practical 

examples of these systems include fibre bundles, woven fabrics, multi-strand wire dampers 

and isolators, composite materials with dry frictional contact from poor wetting and 

damaged/delaminated fibre composites. 

In Chapters 3, 4 and 5, the damping behaviour in multi-strand beams, where the strands had 

square cross-section, were investigated through building analytical models, numerical 

analyses and experimental tests. This chapter focuses on studying the damping behaviour in 

multi-strand bars and wires where the strands have circular cross-section. 
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The knowledge gained from the previous chapters regarding the damping behaviour of these 

systems and the ability to predict analytically the stiffness of systems experiencing dry 

frictional behaviour between the mating surfaces, made it possible to transit the work 

geometrically to another level where strands of circular cross-section with meso and micro 

dimensions were used in. 

This chapter proposes an analytical model that describes the stiffness behaviour for 

frictionally constrained multi-strand bars (MSR) and wires (MSW) constructed from circular 

cross-section strands followed by numerical analyses and experimental tests. The analytical 

model predicts the frictional system stiffness, for simply supported boundary conditions, 

which is then used to determine the damping from the force-displacement hysteresis under 

harmonic loading. The analytical model developed includes the frictional effects by 

introducing them directly into the system stiffness. This does not depend on any empirical 

parameters other than material properties and the coefficient of friction.  The interfaces of 

the un-bonded strands are allowed to slide against each other reducing the system stiffness as 

these structures, when sliding, have several neutral axes. The results from the model were 

capable of defining the stick and sliding regions. Validation of the analytical model was 

carried out through numerical simulations using finite elements and quasi-static tests on a 

Universal Test System (UTS). The experimental and numerical works were performed on 

meso and micro levels. The force-displacement hysteresis behaviour from both the numerical 

simulations and quasi-static tests were compared with the analytical model demonstrating 

good agreement for a variety of conditions. 

6.2 Multi-strand bars and wires description 

The multi-strand bars (MSR) and the multi-strand wires (MSW) in this chapter were 

composed of individual strands. These strands were steel bars and wires with circular cross-

section and each strand had frictional contact with its neighbours. The arrangement allowed 

for the outer strands to be placed radially around a core strand. It was prerequisite that the 

individual strands had the same diameter and that the total number of strands involved in the 

system was set according to Equations 6.1 and 6.2 in order to ensure that each strand had a 

contact with its adjacent strands. Depending on the total number of strands in the system, 

there will be several orbits containing radially placed strands around the core strand with a 
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minimum number of strands of six to create, first, orbit. The sequence of adding strands to a 

new orbit was achieved through adding the minimum number of strands required to create an 

orbit (six) to the number of strands in the last orbit that the system has.   

For instance, a system that has seven strands will has one core strand and six strands placed 

radially around a core strand, which is sufficient to create the first orbit, with a pitch angle of 

360° divided by the number of outer strands in the outer orbit (in case there was more than 

one orbit). Figure 6.1a shows a seven-strand bar. To create the second orbit, the minimum 

number of strands required to create an orbit (six) is added to the number of strands in the 

last orbit that the system has, first orbit in this case which had six strands, to conclude that 

the second orbit will has twelve strands. The total number of strands will be, in this case, the 

sum of the number of strands in the previous system (seven strands) and the number of 

strands in the second orbit (twelve), which is nineteen. Nineteen-strand bar is shown in 

Figure 6.1b. Table 6.1 lists numbers of strands that create multi-strand bars and wires where 

all the involved strands have contact with their neighbours.        

 6 orbitpreviousorbitnext NN , 6.1 

 orbitnextsystemprevioussystemnew NNN  . 6.2 

where, N is the number of strands.  

The pitch angle between the strands centre at any orbit was found by 

 
ob

ob
N

360
  6.3 

where, 
ob is the pitch angle between the strands centres at orbit ob (see Figure 6.1a) and 

obN  is the number of strands at that specific orbit. The radius of orbit ob can be defined as 

 










2
sin ob

ob

r
R


 

6.4 

where, r the radius of the individual strands. 
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Table 6.1  Number of strands in multi-strand bars and wires where all strands have contact 

with their neighbours 

Number of strands in multi-

strand bar and wire 

Core strand Number of strands in 

last orbit 

Pitch angle in 

last orbit 

7 1 6 60.0° 

19 1 6+6=12 30.0° 

37 1 12+6=18 20.0° 

61 1 18+6=24 15.0° 

91 1 24+6=30 12.0° 

127 1 30+6=36 10.0° 

169 1 36+6=42 8.57° 

217 1 42+6=48 7.50° 

 

The height of the seven-strand system (Figure 6.1a) can be expressed as  

 7 6h r  6.5 

while the height of the nineteen-strand system (Figure 6.1b) is expressed as 

 19 9.4641h r  6.6 
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Figure 6.1  Arrangement of strands in multi-strand bar system comprising (a) seven strands – 

contact regions are indicated by the ‘dashed ovals’– and (b) nineteen strands 

 

The estimated height of any multi-strand bar or wire can be expressed as 
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where, anyh
 
is the height of any multi-strand bar or wire and lastN

 
is the number of strands in 

the last orbit for that system. 

Several configurations are considered in this chapter as shown in Table 6.2. The reader 

should take note that the analytical model described in this paper only pertains to the 

configurations listed in Table 6.2. Mild steel strands and spring steel strands are assigned to 

the MSR and MSW respectively and a three point bend configuration is adopted to load the 

system. 

Table 6.2  Multi-strand bar and wire configurations 

Configuration No of strands 
Diameter of individual 

 strand, mm 

Length, 

mm Displacement 

amplitude, mm 

msr1 7 3.00 250 0.50, 1.00, 1.50 

msr2 7 4.00 250 0.50, 1.00, 1.50 

msw1 7 0.50 45.0 0.10, 0.15 

msw2 19 0.50 45.0 0.10, 0.15 

msw3 37 0.50 45.0 0.10, 0.15 

msw4 61 0.50 45.0 0.10, 0.15 

 

Radial clamping forces are required to hold the individual strands together. These forces are 

also essential to create the frictional forces between the mating surfaces. The clamping effect 

was applied as discrete forces in the analytical models but for convenience, as distributed 

pressure during the numerical analyses [97].  

The MSR and MSW are exposed to flexural deformations and as the bars and wires flex, if 

the load is large enough, slip between individual strands occurs along the length. This is 

shown in Figure 6.2. 
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Figure 6.2  Typical multi-strand bar undergoing flexure (seven-strand bar shown) 

 

6.3 Material properties 

The modulus of elasticity and the density of the strands can affect the damping levels in a 

frictional system. Insufficient information about these material properties for the circular 

cross-sectioned strands (bars and wires) was available therefore it was essential to estimate 

these properties experimentally. Identification of the material properties was required for 

analytical modelling and numerical analysis therefore it was important to obtain these 

properties. Free vibration tests were performed on the circular cross-sectioned bar and wire 

strands to determine the material modulus of elasticity.  

6.3.1 Beam free vibration 

Natural frequencies of the circular cross-sectioned bars and wires were found through the 

obtained free decay responses from free vibration tests. The modulus of elasticity was then 

calculated through the natural frequency formula for the first mode.  

6.3.2 Experimental work 

Free vibration tests were performed in order to obtain the natural frequencies for circular 

cross-sectioned bars with diameters of 3.0 mm and 4.0 mm and circular cross-sectioned 

spring steel wires with a diameter of 0.5 mm. Free lengths of 250 mm and 40 mm were used 

for the tested bar and wire strands respectively. The experiments were repeated five times for 

each case to provide consistency and repeatability. A special vice was designed and 

manufactured to hold the bars and wires during the free vibration test. This is shown in 

Figure 6.3. To ensure a firm grip, 15% (50 mm) of the total bar length (300 mm) was 

y 

z 
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embedded in the vice during the test. The design of the vice allowed it to be used for bars 

with diameters of 3.0 mm and 4.0 mm and wires with 0.5 mm diameter. 

 

 

                      (a)                                                   (b) 

Figure 6.3  The vice used for the free vibration test (a) as one part and (b) dismantled 

 

A Laser Optical Displacement Sensor with a sensitivity of 2 V/mm was used to obtain the 

displacement signals of the bars and wires under free vibration. The resulting voltage signals 

were acquired digitally using a sample rate of 50000 sample/sec for the bars and 19980 

sample/sec for the wires. The total duration of the signal was 2.0 sec (see Figure 6.4).  

The natural frequency was estimated from average time period during the resulting free 

vibration. In order to estimate the modulus of elasticity of the tested bars and wires, the 

formula for the natural frequency for the first mode was used (through calculating Equation 

3.2) in terms of the modulus of elasticity [96]. 
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Figure 6.4  Time domain free decay signal of a (a) 4.0×250 mm circular bar and (b) 0.5×40 

mm circular wire 

 

At this stage, an estimate of the density of the bars and wires was needed. Ten bars (five bars 

with diameter of 3.0 mm and five bars with diameter of 4.0 mm) and five wires with 

diameter of 0.5 mm were weighed on electronic scales and accurate dimensional 

measurements were made to calculate the volume and by the use of Equation 3.1, the 

average density was found to be approximately 7852 kg/m3 for bars with diameter 3.0 mm 

and 7843 kg/m3 for bars with diameter of 4.0 mm and 7850 kg/m3 for wires with diameter of 

0.5 mm. For simplicity, a common value of 7850 kg/m3 was used in the subsequent work of 

this chapter. 

The natural frequencies (ωn) measured from the free vibration test and their corresponding 

modulus of elasticity values (E) for bars with diameter of 3.0 mm and 4.0 mm and wires 

with diameter of 0.5 mm are shown in  Table 6.3.  
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Table 6.3  Material properties obtained experimentally for circular bars of dimensions of 

3.0×250 mm and 4.0×250 mm and circular wires of dimensions of 0.5×40 mm 

Circular bar of dimensions 

3.0×250 mm 

Circular bar of dimensions 

4.0×250 mm 

Circular wire of dimensions 

0.5×40 mm 

f, Hz E, GPa f, Hz E, GPa f, Hz E, GPa 

33.51 195.4 43.91 188.5 217.3 203.7 

33.45 194.7 43.85 188.0 217.2 203.5 

33.63 196.7 43.91 188.5 217.4 203.9 

33.56 196.0 43.86 188.1 217.1 203.3 

33.56 195.9 43.80 187.6 217.3 203.7 

Average 

33.54 195.7 43.86 188.1 217.3 203.6 

 

6.4 Analytical modelling 

The damping behaviour of multi-strand bars and wires, where the individual strands have 

circular cross-section, experiencing frictional contact is studied and modelled in this section. 

The contact condition between the mating surfaces has a direct effect on the overall system 

stiffness and its response. Therefore, it is essential to estimate the stiffness of the multi-

strand bar in order to describe the damping behaviour accurately. The prediction of the 

frictional second moment of area for the multi-strand bars and wires is the prerequisite to 

estimate the system stiffness in the current study. As in Chapter 3, the term “frictional 

second moment of area” refers to the effective second moment of area that account for 

effects of friction.  

The multi-strand bars (MSR) and wires (MSW) contain strands of the same length that are in 

a simply supported configuration with a load applied in the centre normal to the uppermost 

strand. 

The analytical model developed included the frictional effects by introducing them directly 

into the system stiffness with no dependence on any empirical parameters other than material 

properties and the coefficient of friction. The damping level was estimated through describe 

the force-displacement relationship, hysteresis loop, obtained analytically and then evaluate 

the loss factor.   
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6.4.1 Frictional second moment of area 

The stiffness of the system is represented by the frictional second moment of area. When 

these systems are either bonded or frictionless, the second moment of area can be calculated 

using the parallel axis theorem as shown in Equation 3.9. 

For a bonded case, all the strands in the system are counted as one body, therefore the 

transfer distance of each strand (d) is the distance from the centroid of the individual strand 

to the geometric centre of the whole system as shown in Figure 6.5a. For a frictionless case, 

the transfer distance (d) is equal to zero (as shown in Figure 6.5b) as each strand has its own 

neutral axis and there is no transfer distance between the strand’s neutral axis and the 

geometric centre of the system. For instance, in Figure 6.5b there are two separate systems. 

In a frictional case, the transfer distance (d) should increase with increasing the coefficient of 

friction, μ, and the direction of this increment is towards the contact regions as shown in 

Figure 6.5c. 

For a case that the friction is involved between the mating strands, the analytical method 

predicts the frictional second moment of area at any magnitude of μ up to a limit of the 

equivalent of the strands being bonded. This is achieved firstly by estimating the 

displacement relationship with a range of magnitudes for μ from frictionless contact through 

fully bonded contact. The estimated displacements are then used to predict the frictional 

second moment of area as a function of μ. 

 

 

 

 

 

 

 

 

 

Figure 6.5  Second moment of area, Ixx, and transfer distance (d) for strands that are (a) 

bonded, (b) frictionless and(c) frictional – dashed lines represent the neutral axes 
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Two cases are considered in order to provide the upper and lower bounds for the frictional 

second moment of area: strands with perfectly bonded contact and strands with a frictionless 

contact. Equation 6.8 is used to calculate the second moment of area for a multi-strand bar 

with frictionless contact.  

 
4

4rN
I ssfrictionle


  6.8 

where, N is the number of strands involved in the system, r is the radius of the individual 

strands in the multi-strand bar. The peak displacement in a frictionless system is as was 

shown previously in Equation 3.11. 

The second moment of area of a seven-strand bar, where it has one orbit of outer strands and 

a core strand, in a bonded contact can be calculated as 
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where, 
1N is the number of strands in the first orbit and 

1 is the pitch angle between the 

strands centres in the first orbit. 
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Equation 6.9 can be re-written as 
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The second moment of area for a nineteen-strand bar, where it has two orbits of strands and a 

core strand (see Table 6.1), in a bonded case can be calculated as 
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where, 
2N is the number of strands in the second orbit and 

2 is the pitch angle between 

strands centres at that orbit (see Figure 6.1) and  
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6.13 

Equation 6.12 can be re-written as 

 
4

19
4

2768.425
rIbond   6.14 

The peak displacement in a bonded is calculated through Equation 3.13. 

To calculate the equivalent coefficient of friction, , during the bonding case (sticking), a 

correlation at the contact between the strands was required for the shear stress and the 

frictional stress from the frictional forces.  

The contact status should remain stuck as long as the frictional stress is greater than or equal 

to the maximum shear stress. Therefore the last moment that the system is considered stuck 

is when the frictional stress equals the shear stress as was presented in Equation 3.14. 

The frictional stress can be expressed as 

 
erface

friction

w

wc
fri

A

F

lb

F

int




  6.15 

where, Fc is the clamping force, µw is the coefficient of friction at the interface layer, bw and l 

are the width and the length of the interface.  

The shear stress can be expressed as [99] 

 
w

w
Ib

FQ
  

6.16 

where, τw is the shear stress at the required interface layer, F is the force applied to the 

system and Q is the first moment of area for the sheared area. 

At this stage, the position where the maximum shear stress expected to take place should be 

identified. The multi-strand bar was divided into multiple layers (see Figure 6.6) in order to 

integrate the first moment of area and the shear stress through each layer.  
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Figure 6.6  Dividing the multi-strand bar into layers in order to describe the profile of Q and 
  

 

The first moment of area, Q, in circular cross-sections (see Figure 6.7) can be expressed as 

 dAyQ    6.17 

where, y is the distance between the edge of the sheared area and the neutral axis and dA is 

the segment area which is expressed as 

 sdydA 2  6.18 

where,  

 22 yrs  , 6.19 

 )sin(ry  , 6.20 

Substituting Equations 6.18 and 6.19 into Equation 6.17 leads to 

 dyyryQ
r

y

222    6.21 

 

 

 

 

 

 

Figure 6.7  Sheared section in a circular cross-section 
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The first moment of area and the shear stress at the different layers (Figure 6.6) were found 

as follows: 

- For Layer TT1 (see Figure 6.8): 

The first moment of area is expressed as 

   
r

y
dyyryrQ

1

22

1 22  6.22 

and the shear stress is expressed as 
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Figure 6.8  The shear stress at layer TT1 where 90 >θ1> 0 

 

 

- For layer TT2 (see Figure 6.9): 

The first moments of area are expressed as   
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and the shear stress is expressed as 
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Figure 6.9  The shear stress at layer TT2 where 0 <θ21< 90 and 90 >θ22> 0 

 

- For layer TT3 (see Figure 6.10): 

The first moments of area are expressed as 
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and the shear stress as  
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Figure 6.10  The shear stress at layer TT3 where 90 > θ31> 0 and 0 < θ32< 90 
 

 

Figure 6.11 and Figure 6.12 show the profile of the first moment of area and the profile of 

the shear stress respectively along the height of the seven-strand bars. 

 

 

 

 

 

 

 

 

 

Figure 6.11  The profile of the first moment of area, Q, around the neutral axis of the seven-

strand bar 
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Figure 6.12  The profile of the shear stress, , around the neutral axis of the seven-strand 

bar 

 

The technique that was used to generate both the first moment of area and the shear stress 

profiles for the seven-strand bars was used to generate the first moment of area profile and 

the shear stress profile for nineteen-strand bars.  

Figure 6.13 and Figure 6.14 show the profile of both the first moment of area and the shear 

stress of a nineteen-strand bar. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13  The profile of the first moment of area, Q, around the neutral axis of the 

nineteen-strand bar 
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Figure 6.14  The profile of the shear stress, τ, around the neutral axis of the nineteen-strand 

bar 

 

Examination of Figure 6.12 and Figure 6.14 show the trend of the shear stresses which lead 

to the conclusion that the position where slip is initiated occurs where the shear stress is 

maximised. For seven-strand bars and wires and depending on this conclusion, the first slip 

should start at the middle of the multi-strand system however the core strand is a solid body 

and cannot be separated into two bodies therefore; the first three strands at the top will start 

the slip in the system.  

Through calculating Equation 6.16 for the interface where the maximum shear stress occurs, 

the maximum shear stress in a seven-strand system can be described as 
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6.32 

where, max7  
is the maximum shear stress in the seven-strand bar or wire and bw is the width 

of the interface and max7Q
 
is the maximum first moment of area in the seven-strand system 

and is described as 
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which can be re-written as 
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3

max7 4 rQ   6.34 

Substituting Equations 6.15 and 6.32 into Equation 3.14 and solving in term of the 

coefficient of friction, the equivalent coefficient of friction of the seven-strand system was 

then described as 

 
cbond FI
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6.35 

The maximum shear stress in a nineteen-strand bar or wire can be expressed as 
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where, max19
 
is the maximum shear stress in the nineteen-strand system and max19Q  is the 

maximum first moment of area in the nineteen-strand bar or wire and was expressed 

analytically as 
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6.37 

which can be re-written as 

 
3

max19 9282.18 rQ   6.38 

Substituting Equations 6.15 and 6.36 into Equation 3.14 and solve in terms of the coefficient 

of friction produces the equivalent coefficient of friction of the nineteen-strand system which 

can be described as 

 
cbond FI

FlQ

19

max19
19   

6.39 

The previous technique can be followed to estimate the equivalent-to-bond coefficient of 

friction in the case of using larger number of strands in the multi-strand system depending on 

Table 6.1 in selecting the strands number.     
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By knowing that the coefficient of friction in frictionless contact was zero, a relationship was 

plotted between the displacement (δ) and the coefficient of friction (µ). This relationship 

provides the magnitudes of the displacement at any specific coefficient of friction between 

the frictionless and the bonded states. The corresponding displacements for each coefficient 

of friction were used to calculate the related frictional second moment of area through 

Equation 3.20. 

Configurations in Table 6.2 were used in order to analytically describe the relationship 

between the displacement and the coefficient of friction with different loading conditions 

and different strand parameters.  

Figure 6.15 shows the analytically obtained relationship between the displacement ( ) and 

the coefficient of friction ( ) during different loading conditions and different geometric 

parameters for Configurations msr1 and msr2 shown in Table 6.2. The linear relationship 

between the displacement and the coefficient of friction was verified earlier through building 

numerical models and compares the obtained numerical results with the analytical models in 

Section 3.6.1. 

The effect of the friction on the system stiffness was illustrated through depicting the 

nonlinear relationship of the frictional second moment of area with the coefficient of friction 

in Figure 6.16 which highlights the importance of determining the frictional system stiffness 

to describe the system response accurately during a frictional contact.  

The relationship of the system displacement and the frictional second moment of area with 

the coefficient of friction were in similar trends for the other configurations and therefore the 

author preferred to limit the presentation of these relations to Configuration msr1 and msr2. 
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Figure 6.15  The relationship of the displacement, δ, and the coefficient of friction, μ, for 

Configurations (a) msr1 and (b) msr2 – solid, dashed and dotted lines are for maximum 

forcing peak displacements of 0.5 mm, 1.0 mm and 1.5 mm respectively 

 

 

 

 

 

 

 

 

 

 

Figure 6.16  The relationship of the frictional second moment of area, If, and the coefficient 

of friction, μ, for Configurations (a) msr1 and (b) msr2 – solid, dashed and dotted lines are 

for maximum forcing peak displacements of 1.5 mm, 1.0 mm and 0.5 mm 

 

6.4.2 Sensitivity of the frictional second moment of area 

The frictional contact between the individual strands in the multi-strand bars and wires 

caused the general stiffness of the system to change during the transition of the contact status 

from sticking phase and microslip phase and then through the slide phase. In this section, 
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finite element models for Configurations msr1 and msr2 are built to investigate the transition 

of the frictional second moment of area through contact phases. Details about the finite 

element models are provided in Section 6.6. The numerical results for the applied ramp 

displacement of 1.5 mm and the reaction force resulting from the applied displacement were 

used to plot the force-displacement relationship. The transition phases are evident in Figure 

6.17 for Configurations msr1 and msr2. The transition of the frictional second moment of 

area through the contact phases is depicted in Figure 6.18 for Configurations msr1 and msr2 

through the use of Equation 3.20. The behaviour of both the transition distance and the 

frictional second moment of area through sticking, microslip and sliding phases shed the 

light to the importance of the ability to describe the system stiffness during frictional 

behaviour analytically. 

It should be noted that although after the microslip region is completed, that the frictional 

second moment of area, If, approaches the second moment of area for a frictionless contact 

condition but will not ever fully converge because the frictional second moment of area will 

still contain amount of friction as the level of sliding to the level of sticking increases. 
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Figure 6.17  Force-displacement relationship obtained numerically were the contact 

transition regions are shown for Configurations (a) msr1 and (b) msr2 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18  The transition of the frictional second moment of area through the contact 

phases for Configurations (a) msr1 and (b) msr2 

 

6.4.3 Analytical hysteresis loop 

The analytical model was built to present the damping behaviour of the multi-strand bars 

(MSR) and wires (MSW) experiencing flexural loading with the presence of friction. The 

model is able to produce force-displacement relationship which is used to describe the 

hysteresis loops for the configurations listed in Table 6.2.  
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The multi-strand bars and wires presented in this chapter comprised circular individual 

strands and due to the arrangement of these strands (see Figure 6.1) in the system, strands 

with neutral axes that are not at the same vertical level will start to bend together when 

sliding phase take place.  

The analytical model in this chapter considers that the individual strands in the multi-strand 

system start sliding at several stages. The system that has the entire strands in stick status 

will split into two systems at the moment when the first group of strands start sliding as 

shown in Figure 6.19b. The contact phase between the new two systems is a slide phase 

while the strands within each system are in a stick phase. The position where the first group 

start to slide is defined through knowing where the maximum shear stress occurs. The 

strands in the new system which are in stick status will also start to slide as the force resulted 

from the applied displacement increase enough to cause sliding. Figure 6.19a shows the 

loading and unloading stages. 

The procedure of describing the analytical hysteresis loops for the seven-strand bar or wire 

and nineteen-strand bar or wire is explained in this section and similar technique can be used 

for larger number of strands in the system.   

– For a seven-strand bar (7sr) and seven-strand wire (7sw): 

The slip initiation is expected to occur through two levels. The first, happens where the 

maximum shear stress occurs, depending on the analytical work in Section 6.4.1 to describe 

the profile of the shear stress in a seven-strand bar, at the neutral axis of the whole system as 

shown in Figure 6.12. Section 1A in Figure 6.19b represents the first slip level, the three 

strands at the top, in the system and the force needed to start the slip is expressed as 
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where topI3 and topQ3 are the second moment of area and the first moment of area for stuck 

strands at first level of slip respectively and they can be expressed as  

 
4

3
4

27
rI top   6.41 
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The displacement resulted from the force that initiated the slip is calculated through 
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6.43 

The second slip level happens after the first slip took place and caused the original system to 

separate into two new systems that each one of them has stick contact condition between the 

individual strands. The force needed to start the slip in the new resulted system, the strand at 

the top of the system depending on the profile of the shear stress shown in Figure 6.12, is the 

force needed to start the slip in the first level in addition to the force needed to start the slip 

in the resulted new system.  

 
 

lQ

IFF
FslFsl

top

topc

AB

1

1

7171

2/2 
  

6.44 

where, topI1  
and topQ1 are the second moment of area and the first moment of area for the 

stuck strand at the second slip level respectively and they can be expressed as 
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The displacement at the end of the slip stage is described as 
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By the end of the slip stage, the system starts to slide. The end of the slide phase during the 

unloading stage, Point 2 in Figure 6.19, presents the peak force and displacement in the 

frictional system. Depending on the peak force F, the peak displacement is calculated 

through Equation 3.23.  

The microslip phase starts from Point 2 to Point 3, Figure 6.19, passing through the original 

system position. This stage determines the amount of damping that the system could 

produce. The force and displacement at the first slip level are calculated as  
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The force and displacement of the second slip level during the microslip phase, Point 3B in 

Figure 6.19, are expressed as 
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The microslip phase is followed by the slip phase during the loading stage which ends in 

Point 4, Figure 6.19, the force F4 and the displacement δ4 at this point presents the peak 

values. They are calculated through the use of Equations 3.26 and 3.27. 

The transition from the loading stage to the unloading stage crosses through the microslip 

phase. Similarly, this phase has two levels to initiate the slip. The first slip level ends at 

Point 5A as shown in Figure 6.19. The force F5A7 and the displacement d5A7 are calculated as 
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The force F5B7 and the displacement d5B7 of the second slip level which ends at Point 5B are 

calculated as 
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Figure 6.19  Analytical hysteresis loop for seven-strand system where (a) the loading and 

unloading stages and (b) the predicted strands to start slip are shown 

 

 

– For a nineteen-strand bar (19sr) and nineteen-strand wire (19sw): 

Depending on the shear profile of the nineteen-strand bar or wire (Figure 6.14), there are 

three slip levels contained in the microslip phase. The first slip level initiates at the position 

of the maximum shear stress which is on the neutral axis of the multi-strand system. Similar 

to the seven-strand system, new systems created due to the first slip where the individual 

strands have still stuck contact condition between each other. 

The clamp forces are varied during the three slip levels and they are expressed as  
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where, α2 is the pitch angle between the stands in the second orbit and can be calculated 

using Equation 6.3, Fc1, Fc2 and Fc3 are the clamp forces at the first, second and third slip 

level respectively.  
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The first slip level ends at Point 1A as shown in Figure 6.20a. The force F1A19 for the first 

slip level (Section 1A in Figure 6.20b) are expressed as 

 
 

lQ

IFF
F

top

topc

A

9

91

191

2/2 
  

6.59 

where, topI9  and topQ9 are the second and the first moments of area respectively for the 

strands that stuck in the first slip level and they are expressed as 
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The displacement d1A19in the first slip level is expressed as 
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The second slip level ends in Point 1B as shown in Figure 6.20a. The force F1B19 of the 

second slip level are expressed as 
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where, topI5  and topQ5 are the second and the first moment of areas respectively for the 

strands that are stuck in the second slip level and they can be expressed as 
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The displacement d1B19 of the second slip level can be expressed as 
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The third slip level ends at Point 1C as shown in Figure 6.20a and the force F1C19 is 

calculated by 
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 where, topI2  and topQ2 are the second and the first moments of area for the strands that are 

stuck in the third slip level and they are expressed as 
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The displacement d1C19 of the third slip level is expressed as 
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At this stage, the strands in the system start the slide phase during the unloading stage which 

ends at the peak force and peak displacement position, point 2 as shown in Figure 6.20a, The 

peak force F is used to calculate the peak displacement δ2 of the system taking into account 

the frictional effect using Equation 3.23.  

The microslip phase as explained earlier had three slip levels and ends. The first slip level 

ends at Point 3A (depicted in Figure 6.20a). The force F3A19 and the displacement d3A19 for 

the first slip level is expressed as 
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The second slip level ends at Point 3B as shown in Figure 6.20a. The force F3B19 and the 

displacement d3B19 of the second slip level are calculated as 
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The microslip phase ends at the end of the third slip level (Point 3C in Figure 6.20a) and the 

force F3C19 and the displacement d3C19 are expressed as 

 













lQ

IF
FF

top

topc

BC

2

23

193193

2
2


 

6.75 

 













EQ

lF
dd

top

c
BC

2

2

3
193193

48

2
2

  
6.76 

The loading stage (sliding phase) starts at Point 3C and ends at Point 4 as shown in Figure 

6.20a. The force F4 and the displacement δ4present the peak values and they are calculated 

through Equations 3.26 and 3.27 respectively. 

The transition from loading to unloading stages crosses through the microslip phase which 

comprises three slip levels. The first slip level ends at Point 5A as shown in Figure 6.20a. the 

force F5A19 and the displacement d5A19 for the first slip level are calculated as 

 










 


lQ

IFF
FF

top

topc

A

9

91

4195

)(2
2


 

6.77 

 










 


EQ

lFF
d

top

c
A

9

2

1
4195

48

)(2
2


  

6.78 

The second slip level ends at Point 5B as shown in Figure 6.20a and the force F5B19 and the 

displacement d5B19 for this slip level are calculated as 
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The microslip phase ends by the end of the third slip level at Point 5C as depicted in Figure 

6.20a. The force F5C19 and the displacement d5C19 for this level are expressed as 
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Figure 6.20  Analytical hysteresis loop for nineteen-strand system where (a) the loading and 

unloading stages and (b) the predicted strands to start slip are shown 

 

Similar technique can be used to describe the hysteresis loops analytically for multi-strand 

system with larger number of strands. Figure 6.21 shows analytically obtained hysteresis 

loops for Configurations msr1, msr2, msw1, msw2, msw3 and msw4 (Table 6.2) at different 

peak displacement loadings. The different clamp forces that are used in the different models 

are obtained from the clamp force calculations in later Sections 6.5.1.1 and 6.5.2.1. 
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Figure 6.21  Analytical hysteresis loops at different peak displacement loadings for 

Configurations (a) msr1, (b) msr2, (c) msw1, (d) msw2, (e) msw3 and (f) msw4 
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The average effective stiffness is defined as the average stiffness between the loading and 

unloading stages. The energy dissipated per cycle is measured as the area inside the 

analytical hysteresis loop. The stored strain energy is calculated as the area contained 

between the average effective stiffness and the displacement axis and Equation 3.31used to 

calculate the loss factor. 

6.5 Quasi-static experiments on multi-strand bars and 

wires 

This section is devoted to the experiments performed at the meso-scale and the micro-scale 

levels on the multi-strand bars and wires where these systems comprise individual strands 

with circular cross-section. 

Mechanical clamps were used to hold the strands together for the seven-strand bar while heat 

shrink rings were used for the seven and nineteen strand wires. The geometric nomenclature 

is shown in Figure 6.1. The term quasi-static as stated earlier in Chapter 4 refers to a test in 

which the inertial forces have a negligible effect on the system response.   

6.5.1 Experiments on seven-strand bars 

Seven-strand bars comprising circular cross-sectional strands were used in the tests. The 

material used was 303 Grade Stainless Steel. The identification of the material properties 

was performed experimentally earlier in Section 6.3.  

6.5.1.1 Clamp mechanism and its calibration 

Two clamps were designed and manufactured. Each clamp unit was designed to apply a 

clamping effect on the six radially placed strands at the same time with the same clamp 

force. The clamps were located approximately 80 mm from each end of the bar. Figure 6.22a 

shows the multi-strand bar with the clamps attached. 
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Figure 6.22  Three point flexure test configuration of the multi-strand bar (a) with clamps 

and bearings, (b) the clamp unit 

 

The clamp force was applied as a torque to the fasteners bolted in the clamp unit (shown in 

Figure 6.22b). As before, testing was carried out to relate the torque on the bolts to the 

compressive force applied. The data from the tests is provided in Figure 6.23. 

 

Figure 6.23  Equivalent clamp force values 

6.5.1.2 Experimental set-up and methodology 

The three point flexure tests consisted of the seven-strand bar (Configurations msr1 and 

msr2 detailed in Table 6.2) being placed between two stationary support bearings at each end 

and a uniaxial motion loading support bearing applied equidistance from the stationary 

supports. These support bearings were specially designed and manufactured (shown in 

Figure 6.24) in order to fit the multi-strand bar due to its circular shape, in the length 

direction. Careful consideration taken into account in the design process of these supports to 

(a) (b) 
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minimize the boundary conditions effect through the sharp contact edge between the 

supports and the multi-strand bars. Each multi-strand system had its own bearings as there 

were two sets of bars with different individual strands diameters (3 mm and 4 mm). Each of 

the support bearings was located 125 mm from the centre of the bar while the loading 

bearing was positioned centrally along the length of the bar.  

 

Figure 6.24  Support bearing 

 

The loading was applied in the thickness direction through the loading bearing using the 

same MTS 858 Table Top servo-hydraulic test machine(see Figure 6.22a). The applied 

displacement was altered during the tests. The setup for the test is shown in Figure 6.25. 

At the start of each experiment, the loading bearing was lowered until an initial contact was 

made with the bar. From this point, the loading bearing was lowered an additional 0.1 mm to 

apply a light compressive load to avoid flatting of the peak in the obtained force signal. A 

sinusoidal displacement at 1.0 Hz was then applied to the bar starting from the 0.1 mm initial 

displacement to additional peak-to-peak (PK-PK) displacement of 0.5 mm, 1.0 mm and 1.5 

mm. Each of the PK-PK displacements used level of clamping force of 142 N. The amounts 

of the sinusoidal displacements were chosen to ensure operation within the elastic region.  
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Figure 6.25  Setup of the three point bend test (a) side view, (b) front view 

 

6.5.1.3 Experimental results 

The force and displacement signals obtained from the tests were used to estimate the 

damping generated. The sampling frequency for each recorded signal was 1000 Hz. Figure 

6.26 shows typical force and the displacement time histories where the effect of the friction 

was apparent as a lag between the two signals.  

The experimental data contained some electrical noise as shown in Figure 6.27. As before, a 

Fast Fourier Transform filter was used to remove this noise as shown in Figure 6.28 (see 

Section 4.3.1).  

Polynomial fit was applied to the experimental hysteresis loops in order to estimate the 

average effective stiffness. The energy dissipation amount per cycle was measured by 

numerical integration of the force-displacement curve. Equation 3.31 was then used to 

calculate the loss factor from the energy dissipation and the stored strain energy.  
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Figure 6.26  The force and displacement time history at peak displacement of 1.0 mm for 

Configurations (a) msr1 and (b) msr2 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.27  Unfiltered force-displacement (hysteresis loops) relationships at 0.5 mm, 1.0 

mm and 1.5 mm peak displacements for Configurations (a) msr1 and (b) msr2 
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Figure 6.28  Filtered force-displacement (hysteresis loops) relationships at 0.5 mm, 1.0 mm 

and 1.5 mm peak displacements for Configurations (a) msr1 and (b) msr2 
 

 

6.5.2 Experiments on seven-strand wires and nineteen-strand wires 

Multi-strand wires comprising seven strands (Configuration msw1) and nineteen strands 

(Configuration msw2) were used in the tests. The individual strands were made of spring 

steel and the material properties that were identified earlier in Section 6.3. Heat shrink rings 

were used to provide the clamping effect required to hold the individual steel strands 

together. These systems were subjected to three point flexure tests.   

6.5.2.1 Clamping with heat shrink rings 

Heat shrink rings were used to clamp the individual strands together as it was impractical to 

use metal rings with tiny bolts and also because of the additional mass of such clamps. On 

the other hand, heat shrink rings provided inexpensive, light weight clamps with no need for 

the bolts. 

The heat shrink material was polypropylene , a thermoplastic polyolefin polymer. Polyolefin 

polymers consist of carbon and hydrogen atoms and are non-porous. They are used as heat-

shrink wraps in consumer merchandise and wire protection. Polyolefin can shrink when 

subjected to heat and in some places they are called shrink wraps. Nevertheless, this material 

can melt if exposed to very high temperature (the minimum temperature to trigger the heat 

shrink action was 90C°) and can break when exposed to very cold temperature. The material 
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used had a shrink ratio of 2:1 of its original diameter when exposed to a heat source over 150 

C° [106,107]. 

- Pressure applied by heat shrink rings 

Press-fit theory for thick-walled cylinders was used to estimate the clamping pressure that 

the heat shrink rings applied to the multi-stand wire. These rings were considered thick as 

their average radius was less than 20 times their thickness [108].  

In order to estimate the pressure that the heat shrink ring applies, the radial interference 

displacement was required. This is the difference between the radial displacement of the ring 

and the radial displacement of the multi-strand wire as shown in Figure 6.29 and expressed 

as, 

 rmrrr    6.83 

where, δr is the radial interference displacement, δrr is the radial displacement of the heat 

shrink ring and δrm is the radial displacement of the multi-strand wire.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.29  Press-fit theory applied to the multi-strand wire and the heat shrink ring 

 

 

As the heat shrink ends are free, the condition was considered plane stress (zero longitudinal 

stress) and from standard elasticity theory [109]: 
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where, σr and σθ 
are the radial and the circumferential stresses respectively and υ is Poisson’s 

ratio. 

Re-arranging Equation 6.85 in term of the radial interference leads to 

 )( r
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r
    6.86 

At this stage, the radial displacement for both the heat shrink ring and the multi-strand wire 

are calculated and substituted in Equation 6.83.  

- For the heat shrink ring radial displacement: 

Reusing Equation 6.86 in terms of heat shrink ring gives: 
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where, rf  is the nominal radius, Er and υr  are the modulus of elasticity and Poisson’s ratio 

for the heat shrink ring respectively. 

The radial and the circumferential stresses for internally pressurized thick-walled cylinders 

(heat shrink ring) were described as 
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where, σrr and σθr are the radial and the circumferential stresses for internally pressurized 

thick-walled cylinder, Pf is the interference pressure, ro is the over-all heat shrink ring radius. 

Substituting Equations 6.88 and 6.89 into Equation 6.87 gives 
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- For the multi-strand wire radial displacement: 

Reusing Equation 6.86 in term of multi-strand wire system gives 
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where, Em and υm are the modulus of elasticity and Poisson’s ratio for the multi-strand steel 

wires respectively. 

The radial and circumferential stresses for externally pressurized thick-walled cylinders 

(multi-strand wire system) were described as 
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where, σrm and σθm are the radial and the circumferential stresses for externally pressurized 

thick-walled cylinder and ri is inner radius of the multi-strand wire system (zero for solid 

cylinders). 

Substituting Equations 6.92 and 6.93 into Equation 6.91 gives 
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- For the radial displacement at interference fit: 

The radial interference was then calculated through substituting Equations 6.90 and 6.94 into 

Equation 6.83 gives 
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Re-writing Equation 6.95 in term of the interference pressure, as the interference radial 

displacement is known already, gives 

 
2 2 2 2

2 2 2 2

r
f

f o f f f i

r m

r o f m f i

P
r r r r r r

E r r E r r



 


    

            

 

6.96 

The interference pressure fP represents the pressure applied by the heat shrink ring on the 

multi-strand wire. The equivalent pressure applied from the entire heat shrink rings, used to 

hold the strands in the system, on each strand’s body was expressed as 

 
l

lN
PP rr

feq   6.97 

where, Peq is the equivalent pressure applied to the individual strands, Nr is the number of 

heat shrink rings used to clamp the individual strands, lr is the length of each heat shrink ring 

and l is the length of the multi-strand wire. 

The equivalent clamp force affecting on the individual strands was calculated through 

 rlPF eqceq   
6.98 

The mechanical material properties, modulus of elasticity, of the heat shrink were required 

as these properties were one of the parameters that determine the amount of pressure that the 

heat shrink ring applied to the multi-strand wire. Experiments were performed on heat shrink 

strips using the Visco-analyser machine (see Figure 6.30). The Visco-analyser machine is a 

dynamic mechanical analysis (DMA) machine. It provides sinusoidal loading with a 

maximum load capacity of 100 N. The software estimates modulus and loss factor from the 

load and deflection time history and the specimen geometry. Two specimens were tested: the 

first was the material in its original form while the second was material after being exposed 

to heat (90°C) and allowed to cool for 30 minutes. Measurements were made to the cross-

section of the heat shrink strip in order to provide these measurements to the machine 

program. Each test was repeated eleven times. Table 6.4 shows the moduli of elasticity for 

both, unheated and heated, specimens. The average value of the modulus of elasticity for the 

heated specimen (85 MPa) was used for subsequent calculations.       
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Figure 6.30  Setup for the heat shrink test 

 

 

Table 6.4  The modulus of elasticity of the unheated and heated heat shrinks 

Test 

Number 
Unheated heat shrink E, MPa Heated heat shrink E, MPa 

1 84.7 94.7 

2 98.9 89.7 

3 97.9 89.4 

4 96.6 88.3 

5 95.2 87.0 

6 93.7 85.7 

7 92.3 84.4 

8 91.1 83.2 

9 89.7 81.9 

10 88.4 80.7 

11 87.0 79.4 

Average 92.3 85.9 
 

 

Some parametric values that were used in Equation 6.96 to calculate the clamp pressure and 

subsequently the clamp forces are listed in Table 6.5. 
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Table 6.5  Parametric data of the heat shrink ring and the multi-strand wire 

Parameter msw1 msw2 

δr, mm 0.050 0.300 

rf, mm 0.750 1.200 

ro, mm 0.700 1.500 

ri, mm 0.000 0.000 

υr
 0.420 0.420 

Er, GPa 0.850 0.850 

υm
 

0.300 0.300 

Em, GPa 203.6 203.6 

 

From the previous calculations, the clamp force applied on the strands by the heat shrink 

rings was 0.94 N and 10 N for Configurations msw1 and msw2 respectively.  

6.5.2.2 Experimental set-up and methodology 

The DMA machine used for material characterisation was also used to conduct quasi-static 

tests on Configurations msw1 and msw2 (Table 6.2). Configuration msw1 comprised seven 

steel strands whereas Configuration msw2 comprised nineteen steel strands. The individual 

circular cross-sectioned strands in both configurations were 0.5 mm in diameter and a total 

length of 60 mm. The span distance was 45 mm. The length and span distance dimensions 

were chosen according to the chamber size of the DMA machine. 

Four heat shrink rings were used to clamp Configurations msw1 and msw2. The pre-shrunk 

diameter of the seven and nineteen strand wires were 1.6 mm and 4.8 mm respectively. On 

heating the shrink ratio was 2:1. Each ring was 1.0 mm in length and had a wall thickness of 

0.3 mm. Figure 6.31 shows both multi-strand wires clamped with heat shrink rings.  

Cyclic sinusoidal peak-to-peak displacement loading of 0.15 mm and 0.10 mm at a 

frequency of 2.5 Hz were applied to the seven-strand wire and the nineteen-strand wire 

respectively. A static compressive pre-displacement of 0.1 mm was set as the minimum 

displacement during the subsequent sinusoidal displacement. The experimental force and the 

displacement results were recorded at sampling frequencies of 5100 Hz and 20000 Hz for 

Configurations msw1 and msw2 respectively. The seven-strand wire experiencing flexural 

loading is shown in Figure 6.32. 
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Figure 6.31  Heat shrink rings clamping (a) seven-strand wire and (b) nineteen-strand wire 
 

 

 

Figure 6.32  Seven-strand wire during the three point flexure loading 

 

6.5.2.3 Experimental results 

Three point flexure tests performed on seven-strand wire and nineteen-strand wire using the 

DMA machine. The force and the displacement signals were obtained experimentally and 

used to plot the force-displacement relationships (hysteresis loops) in order to estimate the 

damping amounts in these wire systems. The unfiltered hysteresis loops are shown in Figure 

6.33 for Configuration msw1 and msw2. Fast Fourier transform filter was adopted to filter 

(a) (b) 
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the force and the displacement signals. The reason for choosing this technique was explained 

earlier in Section 4.3.1. The filtered data are shown in Figure 6.34 for Configurations msw1 

and msw2. 

The force and the displacement time histories for Configurations msw1 and msw2 are 

depicted in Figure 6.35. The effect of friction appears in the force signal as a phase 

difference and a distortion caused by the nonlinearity. 

The experimental hysteresis loops were exposed to polynomial fit in order to estimate the 

average effective stiffness. The energy dissipation amount per cycle was calculated through 

a numerical integration of the force-displacement curve. Equation 3.31 was then used to 

count the loss factor through calculating the energy dissipation and the stored strain energy 

that were obtained from the experimental hysteresis loops. 

 

 

 

 

 

 

 

 

 

 

Figure 6.33  Unfiltered hysteresis loops for (a) seven-strand wire (msw1) and (b) nineteen-

strand wire (msw2) 
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Figure 6.34  Filtered hysteresis loops for (a) seven-strand wire (msw1) and (b) nineteen-

strand wire (msw2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.35  Time history of the force and the displacement signals for (a) seven-strand wire 

(msw1) and (b) nineteen-strand wire (msw2)
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6.6 Quasi-static numerical analysis 

Finite element (FE) models were built for Configurations msr1, msr2, msw1 and msw2 

(Table 6.2) to simulate the frictional behaviour of the multi-strand bars and wires.  

The numerical modelling process was identical to that carried out for the square sectioned 

bars studied previously. FE models were constructed using ANSYS and comprised Solid 3-

D 20-node quadratic hexahedral (SOLID186) elements for the body representation of each 

strand while 8-node surface-surface contact (CONTA174) and target segment (TARGE170) 

were used to represent the contact pairs. Each strand was represented as a linear elastic 

material with Poisson’s ratio of 0.3 and the mechanical properties of the strands are listed in 

Table 6.6. The selection of the material properties for the strands was based on the 

experimental results obtained from Section 6.3. A Coulomb friction model was used for each 

contact pair with μ=0.25 estimated by using the analytical model described in Section 6.4.1 

along with experimental results. 

Mesh properties for the multi-strand bars and the multi-strand wires are presented in Table 

6.6. Statistical data of the number of nodes and elements and element lengths used to build 

the FE models for different configurations were provided in Table 6.6. The element sizes 

were chosen depending on the validation study performed on Configurations msr1 and 

msw1. Two criteria were taken into consideration when choosing the element size. The first 

was the consistency of the resulting numeric forcing values and the second was the 

computational expense due to the increased number of the nodes and elements that represent 

the strands bodies when using smaller element sizes. The effect of body element size on the 

number of nodes and elements and the validation study are presented in Table 6.7 and it was 

clear that the selected element sizes should not affect the accuracy of the numerical analyses 

and maintain sensible analysis time cost. 

 

 

 

 



Chapter 6                                                                                 Quasi-static numerical analysis 

180 

 

Table 6.6  Statistical data of the numerical models 

Configurations 
Number of 

nodes 

Number of 

elements 

Body element 

size, mm 

End side element 

size, mm 

Modulus of 

elasticity, GPa 

msr1 70969 14364 2.000 0.750 195.7 

msr2 110509 21924 2.000 1.000 188.1 

msw1 70969 14364 0.360 0.125 203.6 

msw2 232171 46872 0.360 0.125 203.6 

 

 

Table 6.7  Validation of the effect of body element size on the number of nodes, the number 

of elements and the reaction force for Configuration msr1 

Element size, mm No. of nodes No. of elements Force, N 

2.750 53049 10716 136.6 

2.500 56409 11400 136.7 

2.250 63129 12768 136.7 

2.000 70969 14364 136.7 

1.750 81049 16416 136.7 

1.500 94489 19152 136.7 

1.250 112409 22800 136.8 

1.000 140409 28500 136.8 

 

 

6.6.1 Boundary conditions and loadings 

Each configuration was constrained and loaded as a three-point flexure with a sinusoidal 

displacement loading. The boundary conditions and loadings were applied to the FE models 

to match those applied in the analytical models and the experimental tests. The clamping 

force was presented in the simulation as a radially distributed pressure [95, 100] on the 

strands, directed toward the centre of the wire system as depicted in Figure 6.36.  
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Figure 6.36  Boundary conditions and loads of FE models for (a) msw1 and (b) msw2 

 

Peak-to-peak (PK-PK) displacements of 0.5 mm, 1.0 mm and 1.5 mm were considered for 

Configurations msr1 and msr2 while PK-PK displacements of 0.1 mm and 0.15 mm were 

applied to Configuration msw1 and only 0.1 mm PK-PK displacement was applied to 

Configuration msw2. A seven-strand bar (msr1) experiencing flexural loading and a 

nineteen-strand wire (msw2) are shown in Figure 6.37. The clamp pressure was the ratio of 

the clamping forces to the area where the clamping forces was applied. A quasi-static 

sinusoidal displacement (ignoring transient effects) was used to obtain force-displacement 

hysteresis loops that were used to determine the system loss factor. 

 

 

 

 

Figure 6.37  FE models showing (a) typical deformation depicted for a seven-strand bar 

(msr1) under bending and (b) A nineteen-strand wire (msw2) 
 

 

 

 

(a) (b) 



Chapter 6                                                                                 Quasi-static numerical analysis 

182 

 

6.6.2 Numerical results 

The simulated force-displacement data were obtained from the numerical models for 

Configurations msr1, msr2 and msw1. The solver was unable to reach convergence for 

Configurations msw2, msw3 and msw4 although finer mesh was used – for Configuration 

msw2, the solver required six days computation time on a high performance PC. Peak-to-

peak (PK-PK) displacements of 0.5 mm, 1.0 mm and 1.5 mm were applied to the FE models 

of Configurations msr1 and msr2 and the force-displacement relationships (hysteresis loops) 

obtained during the simulation are shown in Figure 6.37a and b. The numerical force-

displacement relationships obtained from applying PK-PK displacements of 0.1 mm and 

0.15 mm to Configuration msw1 are depicted in Figure 6.37c.  

For all obtained numerical hysteresis loops, dry friction behaviour was observed visually in 

the hysteresis loops – see Figure 6.38 as an example.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.38  Numerical hysteresis loops at different peak displacement loadings for 

Configurations (a) msr1, (b) msr2 and (c) msw1
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6.7 Results and discussion 

In this section, the hysteresis loops obtained from analytical models, experimental tests and 

numerical analysis are compared together for the configurations listed in Table 6.2 at 

different loading displacement. Generally, there was an agreement in the damping behaviour 

described by the three techniques. 

Table 6.8, Table 6.9 and Table 6.10 list the analytical and the experimental and the 

numerical damping characteristics respectively.   

Comparison of analytically, experimentally and numerically obtained hysteresis loops is 

shown in Figure 6.38 for Configurations msr1 (seven-strand bar with each strand diameter of 

3.0 mm) and msr2 (seven-strand bar with each strand diameter of 4.0 mm) at peak-to-peak 

(PK-PK) displacement loadings of 0.5 mm, 1.0 mm and 1.5 mm. The effect of increasing the 

diameter of the individual strands in the system was to cause a reduction in the loss factor 

whereas the energy dissipation per cycle, the peak strain energy and the stiffness were 

increased. The stiffness increased as it is directly proportional to the second moment of area 

while the increase of the energy dissipation and the peak strain energy was due to that 

increased force required to displace the system for the same amount. 

The effect of increasing the peak displacement was noticed as a reduction in the loss factor 

values for all configurations which agrees with the conclusions obtained from the previous 

chapters. The stiffness behaviour showed no significant change for different levels of 

loading for the same configuration (Table 6.9). 

Comparison of the analytically and numerically obtained hysteresis loops for Configuration 

msw1 (seven-strand wire) at PK-PK displacement of 0.1 mm was shown in Figure 6.39a 

while a comparison of analytical, experimental and numerical hysteresis loops for 

Configuration msw1 at PK-PK displacement of 0.15 mm was shown in Figure 6.39b. 

Experimental and analytical hysteresis loops were compared and depicted in Figure 6.39c for 

Configuration msw2 (nineteen-strand wire) at PK-PK displacement of 0.1 mm.  
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Figure 6.39  Comparing Analytical, experimental and numerical hysteresis loops for both 

Configuration msr1 at PK-PK displacement loading of (a) 0.5 mm, (b) 1.0 mm and (c) 1.5 

mm and for Configuration msr2 at PK-PK displacement loading of (d) 0.5 mm, (e) 1.0 mm 

and (f) 1.5 mm 
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Analytical hysteresis loops for Configurations msw2, msw3 (thirty-seven-strand wire) and 

msw4 (sixty-one-strand wire) at PK-PK displacement loadings of 0.1 mm and 0.15 mm were 

shown in Figure 6.21d, e and f.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.40  Comparing (a) analytical and numerical hysteresis loops for Configuration 

msw1at PK-PK displacement of 0.1 mm and (b) analytical, experimental and numerical 

hysteresis loops for Configuration msw1 at PK-PK displacement of 0.15 mm and (c) 

analytical and experimental hysteresis loops for Configuration msrw2 at PK-PK 

displacement of 0.1 mm 
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Table 6.8  Analytical damping characteristics for Configuration msr1 through Configuration 

msw4 

Configurations 
PK-PK 

displacement, mm 

Analytical 

Stiffness, 

N/mm 

Strain 

energy, mJ 

Energy dissipation 

/cycle, mJ 

Loss 

factor 

msr1 0.500 17.67 1.489 1.829 0.391 

msr1 1.000 17.64 4.734 4.219 0.283 

msr1 1.500 17.59 10.53 6.654 0.201 

msr2 0.500 54.28 3.673 2.926 0.253 

msr2 1.000 54.00 14.67 6.305 0.136 

msr2 1.500 54.40 32.49 9.537 0.093 

msw1 0.100 2.422 0.006 0.001 0.082 

msw1 0.150 2.517 0.014 0.002 0.055 

msw2 0.100 38.45 0.098 0.027 0.088 

msw2 0.150 39.61 0.224 0.041 0.058 

msw3 0.100 108.2 0.292 0.154 0.168 

msw3 0.150 107.4 0.634 0.264 0.132 

msw4 0.100 159.8 0.465 0.552 0.378 

msw4 0.150 157.6 0.984 0.933 0.301 

 

 

Table 6.9  Experimental damping characteristics for Configuration msr1 through 

Configuration msw2 

Configurations 
PK-PK 

displacement, mm 

Experimental 

Stiffness, 

N/mm 

Strain 

energy, mJ 

Energy dissipation 

/cycle, mJ 

Loss 

factor 

msr1 0.500 21.27 1.525 1.802 0.376 

msr1 1.000 17.87 5.240 4.953 0.300 

msr1 1.500 18.25 10.82 5.740 0.168 

msr2 0.500 54.49 3.627 2.691 0.236 

msr2 1.000 53.53 13.90 5.777 0.132 

msr2 1.500 55.11 30.77 8.661 0.089 

msw1 0.150 2.520 0.014 0.002 0.050 

msw2 0.100 39.47 0.098 0.030 0.098 
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Table 6.10  Numerical damping characteristics for Configurations msr1 through 

Configuration msw1 

Configurations 
PK-PK 

displacement, mm 

Numerical 

Stiffness, 

N/mm 

Strain 

energy, mJ 

Energy dissipation 

/cycle, mJ 

Loss 

factor 

msr1 0.500 17.36 1.370 1.946 0.452 

msr1 1.000 15.12 4.657 4.577 0.312 

msr1 1.500 16.37 10.04 7.373 0.233 

msr2 0.500 49.06 3.609 2.910 0.256 

msr2 1.000 53.66 13.98 6.739 0.153 

msr2 1.500 53.46 31.40 9.858 0.099 

msw1 0.100 2.388 0.006 0.001 0.099 

msw1 0.150 2.543 0.014 0.002 0.061 

 

6.8 Conclusions 

The conclusions that can be derived from the work described in this chapter are detailed 

below. 

• Analytical models: 

✓ The analytical models described the damping behaviour in the multi-strand bars and 

multi-strand wires accurately. The analytical models followed the slip phases that 

occur when several strands start slipping at different times. 

✓ The analytical models were able to estimate the frictional stiffness of the multi-

strand systems using the frictional second moment of area. 

✓ The  importance of the analytical models developed in this chapter is evident as 

they provided prediction for all configurations. 

✓ The analytical models save the cost and the time that would be spent on the 

experimental tests and numerical analyses.   

✓ The technique used in this chapter to describe the shear stress profile along the 

vertical axis of the multi-strand system can predict the positions of which specific 

strands start the slip phase. 

✓ The relationship of the frictional second moment of area to the coefficient of 

friction is nonlinear. 

✓ The analytical models followed the damping behaviours that were produced 

experimentally and numerically for the same test configurations. 
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• The experiments: 

✓ The different clamp techniques used in the experiments used to clamp the multi-

strand bars (circular clamp units) and the multi-strand wires (heat shrink rings) were 

proper clamp methods as the experimental results being verified through a comparison 

with the analytical and numerical results. 

✓ The modulus of elasticity of the heat shrinks tend to reduce slightly when exposed 

to heat as shown in the experimental work in Section 6.5.2.1 (Table 6.4). 

• Numerical modelling: 

✓ The numerically obtained hysteresis loops agreed with the analytical and 

experimental results and followed similar frictional behaviours. 

✓ The clamp force can be applied as an equivalent distributed pressure on the outer 

surfaces of the strands as this case makes easier for the FE package to come with a 

convergence for the solution. 

✓ The FE package (ANSYS) was not able to obtain solutions for Configurations 

msw2 (nineteen-strand wire), msw3 (thirty-seven-strand wire) and msw4 (sixty-one-

strand wire). 

• Damping: 

✓ The loss factor can increase dramatically when the multi-strand system comprises 

higher number of strands. 

✓ The loss factor decreases with increasing the level of loadings. 

✓ The loss factor decreases when increasing the diameter of the individual strands for 

the same strands lengths. 

✓ The frictional second moment of area (frictional system stiffness) values change as 

the multi-strand system transits from stick and microslip and slide phases. 

✓ The energy dissipation and the peak strain energy increase with increasing loadings. 

✓ The energy dissipation and the peak strain energy increase with increasing the 

diameter of the individual strand for the same strands lengths. 

✓ The loading levels had no significant effect of the frictional systems stiffness. 

✓ Increasing the individual strand diameters increases the frictional stiffness for the 

same strands lengths. 



Chapter 7                                                            Dynamic experiments on multi-strand beams 

189 

 

 

 

 

Chapter 7  

Dynamic characteristics of multi-strand 

systems 

7.1 Introduction 

In the previous chapters, the damping behaviour in multi-strand systems subjected to flexural 

loading was studied. The change of the loading with time was small enough, relative to the 

system natural frequency, so that the inertial forces had negligible effect on the system 

response. In practical applications, damping is only required in dynamic conditions, usually 

around system resonances. While Coulomb friction damping is theoretically insensitive to 

excitation frequency, it was considered essential to evaluate the performance of the multi-

strand systems under dynamic loading and to explain any changes seen.  

In this chapter, the responses of the multi-strand beams (MSB) and the multi-strand wires 

(MSW) to vibrational excitations over a range of frequencies were examined. Consequently, 

the resulting damping amounts from the frictional contacts between the individual strands 

were calculated over the excitation frequency range.  

 

7.2 Dynamic experiments on multi-strand beams 

Dynamic experiments were conducted to investigate the sensitivity of the loss factor to 

vibration frequency. These tests were performed on the same square-section beams that were 

studied under quasi-static conditions in Chapter 4. A shaker was used to excite the multi-

strand beam in a range of frequencies at different levels of amplitude. The pinned-pinned 
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configuration was adopted for the tests. Frequency response function was obtained for the 

MSB at each of the excitation amplitudes.      

7.2.1 Experimental set-up and methodology 

Configuration sb12 (Table 3.1) was selected for the tests, being made up of nine square 

cross-sectioned steel strands. Each of these strands had a free length of 300 mm and cross-

section size of 4×4 mm. The peak-to-peak (PK-PK) amplitude levels for the dynamic tests 

were 0.5 mm, 1.0 mm and 2.0 mm. While the same configuration as for quasi-static tests 

(Chapter 4) was used, some changes to the test arrangements were required to allow the use 

of an electrodynamic shaker (Ling Dynamic Systems V455 500 N peak sine force) rather 

than the hydraulic test machine used previously in Chapters 4 and 5.  

A test rig was designed and manufactured for the dynamic test. The fundamental natural 

frequency of the manufactured test rig was examined by performing an impulse hammer test 

on the test rig. An accelerometer (PCB Model 352C68) with a sensitivity of 95.82 mV/g was 

used to measure the response of the test rig. Both the impulse signal of the hammer and the 

free decay signal of the test rig were recorded with a frequency of 2000 sample/sec for each 

signal. Figure 7.1 shows the time history of the hammer signal and test rig signal. A 

frequency response function ratio of the acceleration to the forcing was then plotted as 

shown in Figure 7.2. This indicated that the fundamental natural frequency of the test rig was 

approximately 250 Hz. 
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Figure 7.1  Time histories of the (a) impulse signal of the hammer and (b) free decay test rig 

signal 

 

 

Figure 7.2  The frequency response function (FRF) of the manufactured test rig 

 

The test fixture is shown in Figure 7.3. The strands comprising the beam were compressed 

and constrained (in the direction of excitation) using two clamps placed 55 mm from each 

end of the beam. The torque on the bolts was set so that the clamping force applied by each 

clamp was 250 N (i.e. a total of 500 N over the beam). A third clamp, attached at the 

midpoint of the beam, was connected to the shaker via a transversely flexible “stinger” and a 

force sensor. This clamp was only used to connect the shaker to the beam; hence, bolts were 

tightened enough to avoid relative motion between the beam midpoint and the shaker but not 

enough to have a significant effect on the overall clamp force. 
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The beam was placed between two pairs of support rollers in order to mimic a simply 

supported boundary. Each roller pair held the beam with sufficient pressure to stop the beam 

from dropping onto the roller holders during testing. Again, this pressure was kept to a 

minimum to avoid significant changes to the overall clamp force. The distance between the 

roller pairs, i.e. the span of the beam, was set at 250 mm. 

The system was excited using sinusoidal wave forms with frequencies in the range 10 Hz to 

200 Hz. The motion of the central clamp, and hence the midpoint of the beam, was measured 

using a laser displacement sensor. A closed-loop controller was used to maintain constant 

displacement amplitude at each frequency. The layout of the instrumentation and signals is 

provided in Figure 7.4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3  Set-up for the dynamic experiment with: (A) support rollers, (B) electrodynamic 

shaker (LDS V455), (C) force sensor (Dytran 1053V3), (D) laser displacement sensor 

(MicroEpsilon LD1605-10) 
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Figure 7.4  Instrumentation layout for the dynamic experiment with (B) – (D) as Figure 7.3, 

(E) signal conditioning unit (F) controller (SigLab 20-22A), (G) 1 kW power amplifier (H) 

oscilloscope (Picoscope 4424) 

 

At each frequency of interest, force and displacement signals were acquired at a sampling 

rate of 50 kHz over a period of 2 seconds. During testing, some high frequency noise was 

noticeable, particularly on the displacement reading. This was attributed primarily to the 

surface roughness at the laser measurement point and, at higher amplitudes, possible slip at 

the support rollers and in the clamp used to connect the shaker. To remove these effects, the 

force and displacement signals were isolated using a fast Fourier transform based filter that 

rejected spectral components with frequencies greater than 25 times the test frequency or 

below 5 Hz. This relatively large pass-band was employed to ensure that important 

harmonics arising from the nonlinear response were not excluded: it was observed that the 

excluded spectral components had magnitudes that were three orders of magnitude lower 

than the fundamental. 

A plot showing the receptance frequency response function (FRFs) at different amplitude 

levels is provided in Figure 7.5. The figure also shows best-fit curves obtained using 

equivalent linear single degree-of-freedom (SDOF) system models. The parameters of these 

models are provided in Table 7.1. From these results, it can be seen that the system stiffness 
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and damping reduced as the dynamic amplitude increased. This softening behaviour for a 

friction system is in line with observations made by others [6, 16]. 

 

Figure 7.5  Receptance for a clamp force of 250 N per clamp for PK-PK displacement 

amplitudes of 0.5 mm, 1 mm and 2 mm 

 

Table 7.1  System properties of beam Configuration 2 under various loading and clamping 

conditions 

PK-PK 

amplitude, mm 

Natural 

frequency, Hz 
Damping ratio Effective mass, kg 

0.500 174.7 0.130 0.125 

1.000 158.2 0.120 0.136 

2.000 148.8 0.100 0.136 

 

The nonlinear behaviour was also investigated by examining the hysteresis loops at each 

frequency. In order to do this, inertia effects first had to be removed from the measured force 

signal fmeas using, 

 
effmeas xmff 2  7.1  

where x is the measured displacement,  the frequency of excitation in rad/s and meff the 

effective mass (from the SDOF curve fits). Figure 7.6 shows examples of the hysteresis 

loops obtained from the experiments for different PK-PK excitation displacements and 

frequencies. 
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Figure 7.6  Experimental hysteresis loops for Configuration sb12 at different frequencies 

with PK-PK excitation displacements of (a) 0.5 mm, (b) 1 mm and (c) 2 mm 

 

It can be seen, for the parameters considered, that all of the excitation levels achieve 

macroslip. As the excitation amplitude is increased, the beam extends into the macroslip 

region increasing the energy dissipated along with the peak strain energy. Importantly these 

increase at different rates therefore making the loss factor nonlinear with respect to the 

amplitude.  

Figure 7.7 shows the loss factors(obtained from the SDOF fit to the receptance curve) for the 

full range of frequencies considered at PK-PK displacements of 0.5 mm, 1 mm, and 2 mm 

respectively. The vertical line in each plot shows the system natural frequency. It can be seen 

that for all displacements, the loss factor remains relatively constant and close to the value 
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indicated by the receptance curve fit (note that the curve fit used a viscous damping model 

but at resonance, the equivalent system loss factor is twice the damping ratio).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7  Loss factor values for Configuration sb12 over a range of excitation frequencies 

with PK-PK displacement of (a) 0.5 mm, (b) 1 mm and (c) 2 mm 

 

Figure 7.8 presents the energy dissipation per cycle over the range of excitation frequencies 

for PK-PK displacements of 0.5 mm, 1 mm, and 2 mm respectively. While the values remain 

reasonably close, there is some fluctuation caused by differences in actual amplitude of 

vibration (the controller achieved amplitude accuracy to within 10%) and possibly distortion 

caused by higher harmonics that were evident at higher frequencies.  
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Figure 7.8  Energy dissipation per cycle for Configuration sb12 at PK-PK displacement 

amplitudes of (a) 0.5 mm, (b) 1.0 mm and (c) 2.0 mm 

 

The effect of the applied (shaker) load on the contact pressure may also have been 

significant here. This is because this applied load would have been in-phase with the 

displacement at low frequencies, retarding the onset of slip (and thereby increasing energy 

loss) but at resonance, this force would be 90 degrees out of phase with the displacement, 

and therefore would not affect the onset of macroslip significantly. 

Figure 7.9 shows the PK-PK stored strain energy amounts at for Configuration sb12 at each 

tested frequency and at different levels of excitation amplitudes. The strain energy
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was calculated through measuring the area under the average effective stiffness where the 

average effective stiffness was found by a polynomial fit to the experimentally obtained 

hysteresis loops.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9  Stored strain energy for Configuration sb12 at PK-PK displacement amplitudes 

of (a) 0.5 mm, (b) 1.0 mm and (c) 2.0 mm 

 

7.3 Dynamic experiments on multi-strand wires 

Dynamic tests were performed to investigate the damping characteristics of the seven-strand 

wire. Free and forced vibration tests were conducted to identify the natural frequencies of the 

system. The arrangement of the seven-strand wire is similar to Configuration msw1 shown 

in Table 6.2 but with longer strands (196 mm instead of 45 mm). The strands experienced 

dry friction contact between each other. Heat shrink rings were used to keep the strands 

together during the tests. More information about the use of the heat shrink rings with the 

multi-strand wires can be found in Section 6.5.2.1.    
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7.3.1 Free vibration tests 

Free vibration tests were performed on a seven-strand wire where each strand had a diameter 

of 0.5 mm and a free length of 196 mm. The individual strands were kept in contact with 

each other by using seven heat shrink rings. The heat shrinks were separated between each 

other by a distance of 25 mm along the length of the strands. Cantilever configuration was 

adopted for the test and the decay signal was recorded and analysed to estimate the natural 

frequency and the damping level. Results were compared with free decay signal of a solid 

wire with free length of 196 mm and diameter of 1.5 mm which was the same as the multi-

strand wire’s overall diameter. Signals were sampled at frequency of 100000 sample/sec and 

the duration of each signal was 2 sec. A clamp, made of aluminium, was manufactured in 

order to provide the fixed end for the cantilever configuration where strain gauge cement 

was used to stick the strands into the clamper. 

Figure 7.10 shows the layout for the seven-strand wire and the solid wire in cantilever 

configuration. The tests were repeated five times for the consistency purposes. 

Figure 7.11 shows the free decay time history signals of both the seven-strand wire and the 

solid wire for one of the tests. The time history signals were converted into frequency 

domain signals by the means of the fast Fourier transform in order to estimate the natural 

frequencies.  

The frequency domain signals of both the seven-strand wire and the solid wire for one of the 

tests were shown in Figure 7.12. The friction effect between the individual strands in the 

multi-strand wire can be seen in the behaviour of the frequency response function shown in 

Figure 7.13 where a comparison is depicted between the frequency response function of the 

multi-strand wire and the solid wire. The fundamental natural frequency of both the seven-

strand wire and the solid wire obtained from the free vibration tests are shown in Figure 

7.14. The average fundamental natural frequency was 9.58 Hz for the seven-strand wire and 

was 28 Hz for the solid wire.  
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Figure 7.10  The free vibration test layout in cantilever configuration for (a) seven-strand 

wire and (b) solid wire 

 

 

 

 

 

 

 

 

 

 

Figure 7.11  The free decay history signal of (a) seven-strand wire and (b) solid single wire 

 

In this section, the damping characteristics are evaluated from the free vibration. The 

frictional behaviour of the multi-strand wire is nonlinear. To provide accurate description of 

the damping ratio ( ), it was decided to measure the damping ratio between every two 

adjacent peaks separately through the logarithmic decrement in the decay signal. The 

logarithmic decrement was expressed as 

 

21

2







  

7.1 

where,  is the logarithmic decrement. Solving Equation 7.1 in terms of the damping ratio 

gives 

 

22

2

4 





  7.2 

 

(a) (b) 

Time, sec Time, sec 

A
m

p
li

tu
d
e,

 m
m

 

A
m

p
li

tu
d
e,

 m
m

 

(a) (b) 



Chapter 7                                                         Dynamic experiments on multi-strand wires                                                                                              

201 

 

Figure 7.12  Frequency domain signal of (a) seven-strand wire and (b) solid wire 

 

 

Figure 7.13  Comparison of the frequency response function between the multi-strand wire 

and the solid wire 

 

 

 

 

 

 

 

 

 

 

Figure 7.14  The fundamental natural frequency obtained from free vibration tests performed 

on (a) seven-strand wire and (b) solid wire 
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The damping ratio values versus the amplitudes contained in the decay signal of the free 

vibration tests conducted on the seven-strand wire are shown in Figure 7.15. Examining the 

results reveal that the damping tends to be less when measured at higher amplitudes 

compared to damping levels measured at lower amplitudes. This conclusion, displacement 

dependent damping, was observed in the previous chapters and was referred to as the ratio of 

the energy dissipation levels to the stored strain energy are higher in low amplitude 

displacements compared to those obtained from higher amplitudes. As expected, the 

damping ratio obtained from the free vibration tests performed on the solid wire were very 

low therefore the decay in the time domain signal was unnoticeable for the selected caption 

time (2 sec). The damping ratio values obtained from the solid wire versus the amplitude are 

shown in Figure 7.16.  

 

 

 

 

 

 

 

 

Figure 7.15  The damping ratio versus the amplitude of the free decay signal for seven-

strand wire obtained from five free vibration trials 

 

 

 

 

 

 

 

 

 

Figure 7.16  The damping ratio versus the amplitude of the free decay signal for solid wire 

obtained from five free vibration trials 
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7.3.2 Forced vibration tests 

Forced vibration tests were performed on a seven-strand wire. Each strand has circular cross-

section with a diameter of 0.5 mm and free length of 196 mm. The strands where kept 

together using seven heat shrink rings. The purpose of the forced vibration tests was to 

describe the frequency response function in order to compare the obtained fundamental 

natural frequency with the one obtained from the free vibration test (Section 7.3.1).  

Testing was first carried out using a white noise signal. The frequencies were in the range of 

1–100 Hz. A 100 N capacity electrodynamic shaker (Data Physics V20) was used to excite 

the seven-strand wire. Force sensor (DYTRAN instruments 1053V3) was used to measure 

the forcing during the test. The force sensor was attached to the shaker. The clamp which 

represented the fixed end of the seven-strand wire was attached to the force sensor. A laser 

displacement sensor (MicroEpsilon LD1605-10) was used to measure the displacements 

during the test. The laser displacement sensor was positioned at 30 mm from the fixed end of 

the seven-strand wire. The excited seven-strand wire and test layout are shown in Figure 

7.17 and Figure 7.18 respectively. The obtained frequency response function shown in 

Figure 7.19 and indicates that the value of the natural frequency (9.6 Hz) agrees with the one 

estimated from the free vibration test (9.58 Hz). 

 

 

Figure 7.17  The seven-strand wire exposed to based excitation 
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Figure 7.18  Setup for the forced vibration tests 

 

 

 

 

 

 

 

 

 

Figure 7.19  The frequency response function of the seven-strand wire 

 

7.3.3 Prediction 

The analytical model described in Section 6.4.3 was used to predict the damping ratios 

obtained from exciting the seven-strand wire in a cantilever configuration. These results 

were compared with the damping ratios estimated from the free vibration tests described in 

Section 7.3.1. Figure 7.20 compares the damping ratios obtained using different techniques.
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Figure 7.20  Analytical model prediction of the damping ratio compared to the results of the 

free vibration tests 

 

 

7.4 Conclusions 

The dynamic behaviour of the loss factor in a multi-strand beam was addressed. The main 

conclusion that can be drawn from the data presented in this chapter is that the loss factor 

can be considered frequency independent. It was verified that the multi-strand beam and the 

multi-strand wire were highly nonlinear and that the natural frequencies depended on the 

level of excitation. For the parameters considered in this chapter, the damping level 

decreased with increasing displacement amplitude and this behaviour was clear in the free 

vibration experiments performed in this chapter. 
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Chapter 8  

Summary and Conclusions 

8.1 Summary 

The aim of the study was to describe, understand and optimise the frictional damping 

behaviour in multi-strand structures. This was achieved through developing analytical 

models which were verified using systematic experiments and numerical models. The study 

provided a necessary insight into the physics for multi-strand structures that are largely 

prevalent in mechanical (e.g. cables) and electrical (e.g. wires) elements. 

Preliminary studies on multi-strand beams (MSB) as described in Chapters 3 and 4 and 

diagonal multi-strand beams (DMSB) as described in Chapter 5 provided the required 

understanding and explanations for the frictional damping behaviour in these systems. Then 

in Chapter 6 the study was extended to explain and optimise the damping behaviour in multi-

strand bars (MSR) and multi-strand wires (MSW) where the strands had circular cross-

sections. Important contributions of this study are the prediction of the frictional system 

stiffness and full description of the frictional damping behaviour as presented by the 

analytical models developed in this study and verified through extensive experimental and 

numerical work.  

The numerical models showed limitations in simulating complex multi-strand wires 

(nineteen-strand wire and more) where the contact configurations caused solution problems 

in addition to computational expense. On the other hand, the preparation of complex multi-

strand wires for experimental set-up is considered difficult as well as time consuming. 

Therefore, the analytical models presented in this study provide a convenient and accurate 

alternative as the required damping parameters can be obtained in a significantly shorter 

period of time. 



Chapter 8                                                                                                               Conclusions                                                                                                                                       

 

207 

 

8.2 Conclusions 

In Chapter 2, it was shown that existing studies of multi-strand systems ignore the friction 

effect between the individual strands during flexural loading, whereas in the current study 

this effect has been given careful consideration and its consequences on the general stiffness 

of the system (termed frictional stiffness in this study) have been addressed.  

The analytical models presented in Chapters 3, 5 and 6 to represent the multi-strand beams 

(MSB), the diagonal multi-strand beams (DMSB) and the multi-strand bars and wires (MSR 

and MSW) respectively were able to predict the frictional damping behaviour of these 

systems for all the configurations studied and followed the numerical and experimental 

flexural behaviour accurately. It was expected with the multi-strand bars and wires that 

several strands with different neutral axes would start to slip at the same time. Therefore, the 

technique presented in Chapter 6 to approximate the shear stress profile along the height of 

the system predicted the positions of the strands that started to slip first.  

In Chapter 7, the dynamic behaviour of the MSB and the MSW was addressed. The loss 

factor was found to be independent of the excitation frequency. The natural frequency was 

inversely proportional to the level of excitation. The independence of the damping 

parameters from the excitation vibration validates that static or quasi-static excitations can 

present actual behaviour of the system. 

As described in Chapter 5, the beam rotation angle was directly proportional to both the loss 

factor and the energy dissipation per cycle, while both the system stiffness and the stored 

energy were found to be independent of the angle of rotation.  

Examining the results from Chapters 3–5, several general conclusions can be drawn. 

• The relation of the coefficient of friction to the applied load was linear, while it was 

nonlinear with the frictional second moment of area. 

• The loss factor was independent of the number of individual strands involved in the 

system if the cross-section size of the individual strands remained the same. 

• The loss factor was inversely proportional to the cross-section size of the strands 

whereas it was directly proportional to the length of strands. 
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• Interestingly, the energy dissipation level per cycle was independent of the number of 

individual strands if the overall cross-section of the system was kept unchanged. 

• There was direct proportion between the normal force and both the loss factor and the 

energy dissipation per cycle, whereas the relation between the loading amplitude and 

the loss factor was inversely proportional. 

• The system stiffness was approximately independent of both the normal force and the 

loading amplitude. 

In all the techniques used (analytical, numerical and experimental), similar behaviours for 

the damping parameters were observed. Visual observation for the comparison between the 

numerically, analytically and experimentally obtained hysteresis loops validated the 

experimental work to estimate the coefficient of friction and the material properties. 

Multi-strand bars (MSR) and multi-strand wires (MSW) were considered in Chapter 6. The 

FE models showed limitations in simulating multi-strand bars and wires comprising more 

than seven strands.  

In the multi-strand bars and wires, the loss factor was directly proportional to the number of 

strands and inversely proportional to the diameter of the individual strands. Both the energy 

dissipation per cycle and the stored energy were directly proportional to the applied loading 

and the diameter of the individual strands. The frictional second moment of area showed 

independence of the applied loading, while it was in direct relation to the diameter of the 

individual strands. 

The work in this thesis had some limitations which can be summarised as follows: 

• The analytical models ignore stretching of the strands. Thus all parts move together. 

This is reasonable at low compression loads.  

• The loading regime was limited to a flexural behaviour for all the work of this thesis. 

Other loading patterns can be of interest to apply on the multi-strand systems. 
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for instance, extending the analytical models that describe the multi-strand wires into 

analytical models that describe spiral multi-strand wires might require to investigate 

the torsion loading effect. This is covered in the future work (Section 8.3). 

• The boundary conditions adopted for the work in this thesis were three point bend 

and cantilever configurations. 

• The shear stress that initiate's the slippage between the individual strands during the 

flexural behaviour was assumed to be constant which means that, theoretically, the 

slip occur simultaneously along the length of the multi-strand systems.     

The clamping techniques used during the experiments to keep the individual strands together 

in the MSR (clamp rings) and MSW (heat shrink rings) are thought to be proper clamping 

methods as the results have been verified through the analytical and numerical results. 

The good agreement between the experimental and the numerical results indicates that the 

representation of clamp force as a distributed pressure in the numerical solution was 

appropriate .  

8.3 Recommendations for future work 

The work in this thesis was devoted to understanding and optimising the frictional damping 

gained from flexing multi-strand wires comprised of steel strands. Analytical models were 

introduced to describe and evaluate the damping levels in these systems. Listed below are 

recommendations for future work. 

1- The analytical model introduced in this work depends on the applied load being large 

enough to start the slip phase and the bulk system stiffness exceeding the system 

stiffness in the sticking phase. Developing the analytical model to include the case 

where the applied load is not sufficient to start slip and causing a microslip contact in 

the system could be useful. 

2- The loading in this study was flexural. Extending the study in the future to include 

torsional loading in addition to flexural can be of interest to investigate the effect of 

this type of loading on the damping behaviour.   

3- The multi-strand bars and wires comprised straight strands. This study can be 

extended to braided strands positioned around a straight core strand.  
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4- A real-life application of the frictional damping system presented in this study would 

be possible and inexpensive to apply. This damping system could be implemented 

successfully as follows: 

a. In the form of special types of composite where some strands are artificially 

implanted with dry friction contact. In this way, significant damping levels 

will be produced from the system with no additional mass added to the 

mechanical system due to the damping system. However, the effect of 

reducing the composite stiffness should be taken into consideration. 

b. As damping mechanisms attached to vibrational systems such as those of 

turbine blade structures. This can be implemented as a frictional damper at 

the base of the blade.  

c. In civil structures as a damping system where very low temperatures can 

restrict the use of conventional damping systems (viscoelastic damper).     

5- The study used one-piece strands to construct the beams, bars and wires. Instead, 

segmented strands could be used to construct the multi-strand system in order to 

investigate the resulting damping levels. This situation could change the system 

response which in turn would result in different damping levels. 

6- In the case of multi-strand beams where the individual strands were square cross-

sectioned, the coefficient of friction (static and dynamic) was found experimentally. 

For multi-strand bars and wires, approximately similar coefficients of friction were 

given to the strands. Even the chosen values are believed to represent the real 

coefficient of friction values as the values of the study’s numerical and analytical 

models showed good agreement in comparison with the experimental results. It 

would be interesting to introduce systematic experiments to investigate the 

coefficient of friction in circular cross-sectioned strands where the interfacial area is 

a line contact. 

7- A study of the effect of friction on the wear level at the interface between the mating 

surfaces would be of importance at higher loading amplitudes.  

8- The coefficient of friction was assumed to have a constant value over the whole 

surface of the contact. Thinking about the surface finishing of the used strands and 

the friction at the micro-scale level introduces doubts about whether this is true and 



Chapter 8                                                                        Recommendations for future work                                                                                                                                       

 

211 

 

suggests that there should be a way to assume different values of the coefficient of 

friction along the surface of contact. 
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Appendix A  

 

A.1 Torque values and the equivalent reaction force 

 

Table A.1 Torque vales on each fastener and the equivalent reaction force 

Torque, N.mm Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Force, N 

14.12 55.30 49.20 50.70 53.40 55.80 52.88 

28.24 78.20 74.60 76.60 84.20 82.60 79.24 

42.36 97.58 107.6 96.34 104.8 94.59 100.2 

56.49 130.0 146.0 130.0 126.0 122.0 130.8 

70.61 167.0 156.0 141.0 152.0 158.0 154.8 

84.73 198.0 193.5 188.0 184.0 186.0 189.9 

98.86 200.0 235.0 224.0 213.0 198.0 214.0 

112.9 236.0 243.0 254.0 270.0 248.0 250.2 
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Appendix B  

B.1 Relationship between the displacement and the 

coefficient of friction 

The analytically build relationship between the displacement and the coefficient of friction 

through using Equation 3.19 during different loading conditions and different geometric 

parameters for Configuration sb07 through Configuration sb24.  
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Figure B.1  Deformations versus coefficient of friction for Configurations (a) sb07 through 

(f) sb12 respectively 
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Figure B.2  Deformations versus coefficient of friction for Configurations (a) sb13 through 

(f) sb18 respectively 
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Figure B.3  Deformations versus coefficient of friction for Configurations (a) sb19 through 

(f) sb24 respectively 
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Appendix C  

C.1 Relationship between the frictional second moment of 

area and the coefficient of friction 

The relationships of the frictional second moment of area against the coefficient of friction 

are built using Equation 3.20 and described in Figure C.1 through Figure C.3 for 

Configuration sb07 through sb24.  
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Figure C.1  Second moment of area versus coefficient of friction for Configurations (a) sb07 

through (f) sb12 respectively 
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Figure C.2  Second moment of area versus coefficient of friction for Configurations (a) sb13 

through (f) sb18 respectively 
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Figure C.3  Second moment of area versus coefficient of friction for Configurations (a) sb19 

through (f) sb24 respectively
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Appendix D  

D.1 Comparison of hysteresis loops of multi-strand beams 

– analytical and numerical 

Figure D.1 through Figure D.9 show comparison between the analytical hysteresis loops and 

the numerically obtained hysteresis loops for Configuration sb01 through sb21.    
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Figure D.1  Comparison of analytical and numerical hysteresis loops for Configuration sb01 

at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm, (c) 2.5 mm and for Configuration sb02 at PK-

PK loading of (d) 1.0 mm, (e) 1.7 mm and (f) 2.5 mm 
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Figure D.2  Comparison of analytical and numerical hysteresis loops for Configuration sb03 

at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm, (c) 2.5 mm and for Configuration sb04 at PK-

PK loading of (d) 1.0 mm, (e) 1.7 mm and (f) 2.5 mm 
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Figure D.3  Comparison of analytical and numerical hysteresis loops for Configuration sb05 

at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm, (c) 2.5 mm and for Configuration sb06 at PK-

PK loading of (d) 1.0 mm, (e) 1.7 mm and (f) 2.5 mm 
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Figure D.4  Comparison of analytical and numerical hysteresis loops for Configuration sb07 

at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm, (c) 2.5 mm and for Configuration sb08 at PK-

PK loading of (d) 1.0 mm, (e) 1.7 mm and (f) 2.5 mm 
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Figure D.5  Comparison of analytical and numerical hysteresis loops for Configuration sb09 

at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm, (c) 2.5 mm and for Configuration sb10 at PK-

PK loading of (d) 1.0 mm, (e) 1.7 mm and (f) 2.5 mm 

 

 

Displacement, mm 

F
o
rc

e,
 N

 

(a) 

Analytical 
Simulation 

 

Displacement, mm 

F
o
rc

e,
 N

 

(b) 

Analytical 
Simulation 

 

Displacement, mm 

F
o
rc

e,
 N

 

(c) 

Analytical 
Simulation 

 

Displacement, mm 

F
o
rc

e,
 N

 

(d) 

Analytical 
Simulation 

 

Displacement, mm 

F
o
rc

e,
 N

 

(e) 

Analytical 
Simulation 

 

Displacement, mm 

F
o
rc

e,
 N

 

(f) 

Analytical 
Simulation 

 



Appendix D                                                                                                                                                                                                                                                         

 

235 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.6  Comparison of analytical and numerical hysteresis loops for Configuration sb11 

at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm, (c) 2.5 mm and for Configuration sb12 at PK-

PK loading of (d) 1.0 mm, (e) 1.7 mm and (f) 2.5 mm 
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Figure D.7  Comparison of analytical and numerical hysteresis loops for Configuration sb13 

at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm and for Configuration sb14 at PK-PK loading 

of (c) 1.0 mm, (d) 1.7 mm and for Configuration sb15 at PK-PK loading of (e) 1.0 mm and 

(f) 1.7 mm 
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Figure D.8  Comparison of analytical and numerical hysteresis loops for Configuration sb16 

at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm and for Configuration sb17 at PK-PK loading 

of (c) 1.0 mm, (d) 1.7 mm and for Configuration sb18 at PK-PK loading of (e) 1.0 mm and 

(f) 1.7 mm 
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Figure D.9  Comparison of analytical and numerical hysteresis loops for Configuration sb19 

at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm and for Configuration sb20 at PK-PK loading 

of (c) 1.0 mm, (d) 1.7 mm and for Configuration sb21 at PK-PK loading of (e) 1.0 mm and 

(f) 1.7 mm
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Appendix E  

E.1 Analytical, numerical and experimental Damping 

characteristics of multi-strand beams (MSB) 
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Table E.1 Analytical damping characteristics for Configuration sb01 through Configuration 

sb12 

 

 

 

Configuration 
Loading, 

mm 

Analytical 

Loss factor 
Energy dissipation / 

cycle, mJ  

Strain 

energy, mJ 

Stiffness, 

N/mm 

sb01 

1.000 0.109 1.309 3.830 16.48 

1.700 0.067 2.325 10.99 15.90 

2.500 0.048 3.545 23.70 15.63 

sb02 

1.000 0.188 2.336 3.947 17.86 

1.700 0.119 4.178 11.16 16.74 

2.500 0.084 6.344 23.96 16.22 

sb03 

1.000 0.233 2.965 4.050 18.78 

1.700 0.151 5.355 11.29 17.30 

2.500 0.107 8.151 24.15 16.61 

sb04 

1.000 0.080 3.216 12.74 53.40 

1.700 0.052 5.965 36.67 52.07 

2.500 0.038 9.546 79.18 51.46 

sb05 

1.000 0.139 5.627 12.93 56.38 

1.700 0.088 10.22 36.94 53.85 

2.500 0.064 15.91 79.58 52.71 

sb06 

1.000 0.174 7.154 13.09 58.36 

1.700 0.111 12.98 37.15 55.04 

2.500 0.080 20.08 79.88 53.54 

sb07 

1.000 0.105 2.852 8.611 36.79 

1.700 0.066 5.152 24.78 35.62 

2.500 0.048 8.052 53.57 35.10 

sb08 

1.000 0.187 5.125 8.741 39.52 

1.700 0.116 9.112 25.02 37.28 

2.500 0.082 13.92 53.84 36.25 

sb09 

1.000 0.237 6.591 8.854 41.35 

1.700 0.148 11.70 25.20 38.39 

2.500 0.105 17.81 54.15 37.00 

sb10 

1.000 0.083 7.587 28.98 120.0 

1.700 0.057 14.94 83.55 117.4 

2.500 0.045 25.37 180.5 116.2 

sb11 

1.000 0.139 12.77 29.19 126.0 

1.700 0.091 23.90 83.91 120.9 

2.500 0.068 38.64 181.1 118.7 

sb12 

1.000 0.175 16.16 29.38 129.9 

1.700 0.113 29.80 84.18 123.3 

2.500 0.083 47.41 181.5 120.3 
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Table E.2  Analytical damping characteristics for Configuration sb13 through Configuration 

sb24 

 

 

 

 

 

 

 

 

 

 

 

Configuration 
Loading, 

mm 

Analytical 

Loss factor 
Energy dissipation / 

cycle, mJ  

Strain 

energy, mJ 

Stiffness, 

N/mm 

sb13 
1.000 0.074 1.723 7.434 31.18 

1.700 0.046 3.105 21.40 30.44 

sb14 
1.000 0.130 3.079 7.549 32.90 

1.700 0.081 5.489 21.57 31.53 

sb15 
1.000 0.164 3.939 7.644 34.05 

1.700 0.103 7.043 21.74 32.21 

sb16 
1.000 0.057 4.468 24.75 102.6 

1.700 0.039 8.763 71.69 100.4 

sb17 
1.000 0.097 7.616 25.08 105.9 

1.700 0.063 14.19 72.04 102.7 

sb18 
1.000 0.122 9.633 25.20 108.3 

1.700 0.078 17.75 72.23 104.2 

sb19 
1.000 0.073 3.861 16.79 69.91 

1.700 0.048 7.247 48.45 68.46 

sb20 
1.000 0.127 6.768 16.94 73.34 

1.700 0.080 12.26 48.75 70.57 

sb21 
1.000 0.162 8.667 17.05 75.62 

1.700 0.101 15.57 48.94 71.93 

sb22 
1.000 0.065 11.54 56.90 230.8 

1.700 0.048 24.55 164.1 227.4 

sb23 
1.000 0.101 18.13 57.14 238.3 

1.700 0.069 35.87 164.6 231.9 

sb24 
1.000 0.125 22.47 57.32 243.2 

1.700 0.084 43.36 164.9 234.9 
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Table E.3  Numerical damping characteristics for Configuration sb01 through Configuration 

sb12 

 

 

 

Configuration 
Loading, 

mm 

Numerical 

Loss factor 
Energy dissipation / 

cycle, mJ  

Strain 

energy, mJ 

Stiffness, 

N/mm 

sb01 

1.000 0.116 1.390 3.801 14.86 

1.700 0.072 2.460 10.92 15.20 

2.500 0.051 3.746 23.57 15.28 

sb02 

1.000 0.201 2.468 3.913 14.50 

1.700 0.128 4.434 11.06 14.86 

2.500 0.090 6.728 23.79 15.15 

sb03 

1.000 0.248 3.133 4.020 14.84 

1.700 0.162 5.680 11.19 14.71 

2.500 0.115 8.678 23.95 15.01 

sb04 

1.000 0.085 3.347 12.58 50.57 

1.700 0.054 6.112 36.25 50.70 

2.500 0.039 9.602 78.33 50.53 

sb05 

1.000 0.147 5.895 12.74 48.99 

1.700 0.092 10.59 36.47 50.20 

2.500 0.066 16.35 78.65 50.87 

sb06 

1.000 0.184 7.473 12.91 48.29 

1.700 0.117 13.52 36.65 49.68 

2.500 0.084 20.73 78.92 50.57 

sb07 

1.000 0.110 2.944 8.503 35.02 

1.700 0.068 5.269 24.51 34.59 

2.500 0.049 8.119 52.99 34.31 

sb08 

1.000 0.196 5.314 8.621 34.09 

1.700 0.122 9.436 24.69 35.08 

2.500 0.086 14.33 53.26 34.91 

sb09 

1.000 0.251 6.86 8.722 33.78 

1.700 0.156 12.15 24.84 34.63 

2.500 0.110 18.45 53.48 35.11 

sb10 

1.000 0.085 7.577 28.28 114.7 

1.700 0.056 14.42 81.63 113.9 

2.500 0.043 23.77 176.51 113.3 

sb11 

1.000 0.145 12.93 28.47 115.7 

1.700 0.092 23.75 81.91 115.5 

2.500 0.068 37.57 176.9 114.7 

sb12 

1.000 0.182 16.41 28.64 113.6 

1.700 0.116 29.87 82.14 116.3 

2.500 0.084 46.72 177.3 115.6 
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Table E.4  Numerical damping characteristics for Configuration sb13 through Configuration 

sb24 

 

 

 

 

 

 

 

 

 

Configuration 
Loading, 

mm 

Numerical 

Loss factor 
Energy dissipation / 

cycle, mJ  

Strain 

energy, mJ 

Stiffness, 

N/mm 

sb13 
1.000 0.078 1.798 7.381 29.46 

1.700 0.048 3.237 21.26 29.71 

sb14 
1.000 0.136 3.209 7.497 28.75 

1.700 0.085 5.746 21.43 29.37 

sb15 
1.000 0.171 4.081 7.608 28.36 

1.700 0.109 7.370 21.57 29.15 

sb16 
1.000 0.060 4.590 24.51 98.43 

1.700 0.039 8.682 70.72 98.43 

sb17 
1.000 0.102 7.898 24.69 96.61 

1.700 0.065 14.47 71.00 98.66 

sb18 
1.000 0.127 9.891 24.85 95.94 

1.700 0.081 18.01 71.22 98.12 

sb19 
1.000 0.076 3.954 16.56 67.58 

1.700 0.048 7.280 47.81 66.85 

sb20 
1.000 0.132 6.948 16.71 66.85 

1.700 0.083 12.527 48.05 67.74 

sb21 
1.000 0.168 8.874 16.82 66.09 

1.700 0.105 15.917 48.24 67.99 

sb22 
1.000 0.064 11.16 55.25 222.4 

1.700 0.045 22.60 159.5 221.4 

sb23 
1.000 0.103 17.91 55.49 225.9 

1.700 0.068 34.22 159.9 223.9 

sb24 
1.000 0.127 22.29 55.68 222.9 

1.700 0.083 41.93 160.2 224.9 
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Appendix F  

F.1 Comparison of hysteresis loops of multi-strand beams 

– analytical, numerical and experimental 

Figures F.1 through F.9 show comparison of analytical, numerical and experimental 

hysteresis loops. 
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  Figure F.1  Comparison of experimental, numerical and analytical hysteresis loops 

for Configuration sb01 at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm, (c) 2.5 mm and for 

Configuration sb02 at PK-PK loading of (d) 1.0 mm, (e) 1.7 mm and (f) 2.5 mm 
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Figure F.2  Comparison of experimental, numerical and analytical hysteresis loops for 

Configuration sb03 at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm, (c) 2.5 mm and for 

Configuration sb04 at PK-PK loading of (d) 1.0 mm, (e) 1.7 mm and (f) 2.5 mm 
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Figure F.3  Comparison of experimental, numerical and analytical hysteresis loops for 

Configuration sb05 at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm, (c) 2.5 mm and for 

Configuration sb06 at PK-PK loading of (d) 1.0 mm, (e) 1.7 mm and (f) 2.5 mm 
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Figure F.4  Comparison of experimental, numerical and analytical hysteresis loops for 

Configuration sb07 at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm, (c) 2.5 mm and for 

Configuration sb08 at PK-PK loading of (d) 1.0 mm, (e) 1.7 mm and (f) 2.5 mm 
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Figure F.5  Comparison of experimental, numerical and analytical hysteresis loops for 

Configuration sb09 at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm, (c) 2.5 mm and for 

Configuration sb10 at PK-PK loading of (d) 1.0 mm, (e) 1.7 mm and (f) 2.5 mm 
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Figure F.6  Comparison of experimental, numerical and analytical hysteresis loops for 

Configuration sb11 at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm, (c) 2.5 mm and for 

Configuration sb12 at PK-PK loading of (d) 1.0 mm, (e) 1.7 mm and (f) 2.5 mm 
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Figure F.7  Comparison of experimental, numerical and analytical hysteresis loops for 

Configuration sb13 at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm and for Configuration sb14 

at PK-PK loading of (c) 1.0 mm, (d) 1.7 mm and for Configuration sb15 at PK-PK loading 

of (e) 1.0 mm and (f) 1.7 mm 
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Figure F.8  Comparison of experimental, numerical and analytical hysteresis loops for 

Configuration sb16 at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm and for Configuration sb17 

at PK-PK loading of (c) 1.0 mm, (d) 1.7 mm and for Configuration sb18 at PK-PK loading 

of (e) 1.0 mm and (f) 1.7 mm 
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Figure F.9  Comparison of experimental, numerical and analytical hysteresis loops for 

Configuration sb19 at PK-PK loading of (a) 1.0 mm, (b) 1.7 mm and for Configuration sb20 

at PK-PK loading of (c) 1.0 mm, (d) 1.7 mm and for Configuration sb21 at PK-PK loading 

of (e) 1.0 mm and (f) 1.7 mm
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Appendix G  

G.1 Thermal effects in diagonal multi-strand beams 

(DMSB) 

In frictional systems, the friction between the contact surfaces converts the kinetic energy 

(work) of two bodies that are moving relative to each other, based on the first 

thermodynamic law, into thermal energy (heat). When two solid bodies slide against each 

other, the normal force acting in the interface region is supported by the asperities (at micro 

scale) that exist within the contact surfaces. As the shear stress increases (to start sliding), 

the interlocked asperities start to break at the weakest points and new asperities come into 

contact where this action generates heat [111]. 

For the DMSB used in this study, square key steel strands were used in order to provide 

damping over a large range of operation temperatures. Excessive heat can result in changes 

to the local interface mechanical properties of metal strands.   

This section describes the experimental investigations performed to check that the generated 

heat from the flexural behaviour of the DMSB was within an acceptable operating 

temperature range (0°C–200°C). The heat generated from the frictional behaviour of 

Configurations db01, db03, db04 and db06, Table 5.1, was measured using an infrared 

camera (thermoIMAGER MICRO-EPSILON TIM 400). This camera can measure 

temperatures between 20°C and 900°C and record a real-time image with up to 80 Hz. The 

real-time images for the tests presented in Figure G.1 through Figure G.4 show that the heat 

generated from the DMSB during the flexural loading was in the normal limits 

(approximately 25°C) and would not be expected to affect the mechanical properties of the 

key steel strands. 
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Figure G.1 Thermal effect during the flexural loading for Configuration db01 

 

 

Figure G.2  Thermal effect during the flexural loading for Configuration db03 
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Figure G.3  Thermal effect during the flexural loading for Configuration db04 

 

 

 

Figure G.4  Thermal effect during the flexural loading for Configuration db06 
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Appendix H  

H.1 Comparison of experimental, numerical and 

analytical hysteresis loops for diagonal multi-strand 

beams (DMSB) 
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Figure H.1  Comparison of experimental and numerical and analytical hysteresis loops for 

Configuration db01 at PK-PK displacement of (a) 1.0 mm and (b) 1.7 mm and for 

Configuration db02 at PK-PK displacement of (c) 1.0 mm and (d) 1.7 mm and for 

Configuration db03 at PK-PK displacement of (e) 1.0 mm and (f) 1.7 mm 
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Figure H.2  Comparison of experimental and numerical and analytical hysteresis loops for 

Configuration db04 at PK-PK displacement of (a) 1.0 mm and (b) 1.7 mm and for 

Configuration db05 at PK-PK displacement of (c) 1.0 mm and (d) 1.7 mm and for 

Configuration db06 at PK-PK displacement of (e) 1.0 mm and (f) 1.7 mm 
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Figure H.3  Comparison of experimental and numerical and analytical hysteresis loops for 

Configuration db10 at PK-PK displacement of (a) 1.0 mm and (b) 1.7 mm and for 

Configuration db11 at PK-PK displacement of (c) 1.0 mm and (d) 1.7 mm and for 

Configuration db12 at PK-PK displacement of (e) 1.0 mm and (f) 1.7 mm
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Appendix I  

I.1 Analytical, numerical and experimental Damping 

characteristics of the diagonal multi-strand beams 

(DMSB) 
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Table I.1  Analytical damping characteristics for Configuration db01 through Configuration 

db12 

 

 

 

 

 

 

 

 

 

Configuration 
Loading, 

mm 

Analytical 

Loss 

 factor 

Energy dissipation / 

cycle, mJ 

Strain 

energy, mJ 

Stiffness, 

N/mm 

db01 
1.000 0.126 4.768 12.07 52.19 

1.700 0.079 8.655 34.88 50.46 

db02 
1.000 0.219 8.461 12.28 56.36 

1.700 0.138 15.19 35.14 52.97 

db03 
1.000 0.275 10.78 12.48 59.15 

1.700 0.175 19.41 35.38 54.64 

db04 
1.000 0.126 10.78 27.33 116.5 

1.700 0.082 20.44 79.09 113.0 

db05 
1.000 0.223 18.78 26.82 122.3 

1.700 0.137 34.20 79.45 118.2 

db06 
1.000 0.276 24.00 27.63 130.5 

1.700 0.172 43.42 80.20 121.6 

db07 
1.000 0.088 6.486 23.55 98.75 

1.700 0.057 12.20 68.18 96.71 

db08 
1.000 0.151 11.28 23.73 104.0 

1.700 0.096 20.56 68.45 99.88 

db09 
1.000 0.191 14.37 23.91 107.5 

1.700 0.121 26.03 68.68 102.0 

db10 
1.000 0.093 15.60 53.51 221.1 

1.700 0.065 31.29 153.3 218.1 

db11 
1.000 0.152 25.74 53.78 232.2 

1.700 0.100 48.98 155.5 223.6 

db12 
1.000 0.191 32.43 53.91 239.2 

1.700 0.124 60.50 155.8 227.9 
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Table I.2  Numerical damping characteristics for Configuration db01 through Configuration 

db12 

 

 

 

 

 

 

 

 

 

Configuration 
Loading, 

mm 

Numerical 

Loss factor 
Energy dissipation / 

cycle, mJ 

Strain 

energy, mJ 

Stiffness, 

N/mm 

db01 
1.000 0.121 4.559 11.99 47.42 

1.700 0.078 8.467 34.54 48.30 

db02 
1.000 0.208 8.021 12.28 45.98 

1.700 0.134 14.69 34.89 47.23 

db03 
1.000 0.258 10.18 12.54 45.26 

1.700 0.169 18.70 35.19 46.50 

db04 
1.000 0.118 9.935 26.84 110.3 

1.700 0.077 18.78 77.45 108.6 

db05 
1.000 0.205 17.45 27.15 110.8 

1.700 0.131 32.08 77.98 111.0 

db06 
1.000 0.260 22.35 27.38 106.5 

1.700 0.168 41.18 78.13 111.8 

db07 
1.000 0.083 6.066 23.32 93.48 

1.700 0.055 11.63 67.32 93.76 

db08 
1.000 0.143 10.58 23.58 90.89 

1.700 0.092 19.52 67.75 93.40 

db09 
1.000 0.179 13.40 23.86 89.44 

1.700 0.115 24.68 68.08 92.45 

db10 
1.000 0.083 13.58 52.28 211.8 

1.700 0.057 26.59 149.2 209.5 

db11 
1.000 0.141 23.32 52.67 215.4 

1.700 0.092 43.47 151.12 210.6 

db12 
1.000 0.177 29.51 52.97 214.3 

1.700 0.115 54.87 152.2 214.9 
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Table I.3  Experimental damping characteristics for Configuration db01 through 

Configuration db12 

 

Configuration 
Loading, 

mm 

Experimental 

Loss factor 
Energy dissipation / 

cycle, mJ 

Strain 

energy, mJ 

Stiffness, 

N/mm 

db01 
1.000 0.090 3.338 11.80 46.19 

1.700 0.069 7.245 33.56 47.27 

db02 
1.000 0.140 5.754 13.05 52.36 

1.700 0.118 12.66 34.14 45.53 

db03 
1.000 0.192 8.920 14.78 58.15 

1.700 0.175 19.85 36.01 45.02 

db04 
1.000 0.107 7.780 23.23 93.42 

1.700 0.093 19.63 66.94 92.19 

db05 
1.000 0.150 11.58 24.64 95.31 

1.700 0.111 24.42 70.03 97.66 

db06 
1.000 0.214 17.21 25.57 100.7 

1.700 0.156 35.11 71.57 98.51 

db07 
1.000 0.100 7.026 22.33 85.40 

1.700 0.076 15.06 63.48 87.47 

db08 
1.000 0.175 12.71 23.18 90.44 

1.700 0.122 24.66 64.32 87.39 

db09 
1.000 0.194 15.17 24.89 92.58 

1.700 0.161 33.12 65.40 86.81 

db10 
1.000 0.102 13.95 43.48 172.7 

1.700 0.094 37.28 125.6 173.3 

db11 
1.000 0.153 22.12 45.90 180.8 

1.700 0.123 50.62 130.5 176.6 

db12 
1.000 0.220 33.06 47.90 184.7 

1.700 0.173 73.02 134.4 181.5 
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