
Evolving comprehensible and scalable solvers using

CGP for solving some real-world inspired problems

Patricia Ryser-Welch

PhD

University of York

Electronic Engineering

July 2017

Abstract 3

Abstract

My original contribution to knowledge is the application of Cartesian Genetic Pro-

gramming to design some scalable and human-understandable metaheuristics auto-

matically; those find some suitable solutions for real-world NP-hard and discrete prob-

lems. This technique is thought to possess the ability to raise the generality of a

problem-solving process, allowing some supervised machine learning tasks and be-

ing able to evolve non-deterministic algorithms.

Two extensions of Cartesian Genetic Programming are presented. Iterative Cartesian

Genetic Programming can encode loops and nested loop with their termination criteria,

making susceptible to evolutionary modification the whole programming construct.

This newly developed extension and its application to metaheuristics are demonstrated

to discover effective solvers for NP-hard and discrete problems. This thesis also ex-

tends Cartesian Genetic Programming and Iterative Cartesian Genetic Programming

to adapt a hyper-heuristic reproductive operator at the same time of exploring the au-

tomatic design space. It is demonstrated the exploration of an automated design space

can be improved when specific types of active and non-active genes are mutated.

A series of rigorous empirical investigations demonstrate that lowering the comprehen-

sion barrier of automatically designed algorithms can help communicating and iden-

tifying an effective and ineffective pattern of primitives. The complete evolution of

loops and nested loops without imposing a hard limit on the number of recursive calls

is shown to broaden the automatic design space. Finally, it is argued the capability of

a learning objective function to assess the scalable potential of a generated algorithm

can be beneficial to a generative hyper-heuristic.

4 Contents

Contents i

Contents

Abstract 3

List of Figures vi

List of Tables xii

Acknowledgements xxi

Declaration xxiii

1 Introduction 1

1.1 Thesis aims and contributions . 2

1.2 Plan of thesis . 5

2 Optimisation of algorithms 7

2.1 Basic principles . 8

2.2 The problem domain . 10

2.2.1 The problem search space 10

2.2.2 The problem encoding scheme 11

2.2.3 The problem evaluation process 11

2.2.4 Problem-specific operators 12

2.2.5 Problem parameters . 12

2.2.6 Discussion . 13

2.3 The algorithm domain . 14

2.3.1 The algorithm search space 14

2.3.2 The algorithm encoding scheme 16

2.3.3 The learning objective function 17

2.3.4 The algorithm parameters 18

2.3.5 The algorithm understandability metrics 20

2.3.6 Discussion . 21

2.4 Algorithm optimisation processes 23

2.4.1 Predicting the performance of algorithms 24

ii Contents

2.4.2 Automating parameter settings 26

2.4.3 Selection of operators . 27

2.4.4 Generation of algorithms . 31

2.4.5 Discussion . 35

2.5 Conclusion . 39

3 Three problem domains 41

3.1 Common features . 43

3.1.1 Population operators . 44

3.1.2 Termination criteria . 45

3.1.3 Summary . 48

3.2 The Mimicry Problem . 49

3.2.1 The chosen encoding scheme 50

3.2.2 Fitness evaluation . 51

3.2.3 Problem parameters . 52

3.2.4 Problem operators . 53

3.2.5 Summary . 57

3.3 The Traveling Salesman Problem . 58

3.3.1 The chosen encoding scheme 60

3.3.2 Fitness evaluation . 61

3.3.3 Parameters . 63

3.3.4 Problem operators . 64

3.3.5 Summary . 69

3.4 The Nurse Rostering Problem . 70

3.4.1 The chosen encoding scheme 73

3.4.2 Fitness evaluation . 76

3.4.3 Problem Operators . 80

3.4.4 Summary . 84

3.5 Discussion and conclusion . 85

4 Graph-Based GP 87

4.1 Review of graph-based genetic programming 88

4.1.1 Parallel distributed genetic programming 89

Contents iii

4.1.2 Linear-graph genetic programming 90

4.1.3 Graph structure program evolution 92

4.1.4 Parallel Algorithm Discovery and Orchestration 93

4.1.5 Cartesian Genetic Programming 94

4.1.6 Implicit-context CGP . 97

4.1.7 Adaptive Cartesian Harmony Search 98

4.1.8 Discussion . 99

4.2 CGP hyper-heuristics . 101

4.2.1 Cartesian Genetic Programming 101

4.2.2 Iterative Cartesian Genetic Programming 104

4.2.3 Autoconstructive Cartesian Genetic Programming 108

4.3 Conclusion . 117

5 Evolving metaheuristics 119

5.1 Introduction . 119

5.2 Learning objective function . 120

5.3 Evolving the body of a loop . 121

5.3.1 Validation . 123

5.4 Iterative Cartesian Genetic Programming: the full evolution of loops . 127

5.4.1 Validation of the learnt iterative metaheuristics 129

5.5 Discussion and conclusion . 133

6 Improved learning objective process 135

6.1 Introduction . 136

6.2 Problem domain . 139

6.2.1 Traveling salesman problem 139

6.2.2 Mimicry problem . 141

6.2.3 Nurse rostering problem . 142

6.3 Evolution of the body of a loop . 145

6.3.1 Discovery of Traveling Salesman Problem solvers 146

6.3.2 Performance . 148

6.3.3 Discovery of Mimicry problem solvers 152

6.3.4 Discovery of nurse rostering problem solvers 156

iv Contents

6.4 The full evolution of loops . 162

6.4.1 Discovery of iterative Travelling salesman solvers 163

6.4.2 Discovery of iterative mimicry solvers 165

6.4.3 Discovery of iterative nurse rostering problem solvers 169

6.4.4 Performance and comparison 171

6.5 Discussion and conclusion . 171

7 Evolving hyper-heuristic reproductive operators 173

7.1 Introduction . 173

7.2 Experiments . 174

7.2.1 Discovering sequential and iterative mimicry solvers 176

7.2.2 Discovering sequential and iterative traveling salesman solvers 176

7.2.3 Genetically improving some CGP mutation operators 176

7.2.4 Effect of the online generative hyper-heuristics 179

7.2.5 Comparison to an offline learning process 180

7.3 Validation of a learnt CGP mutation 182

7.3.1 Performance of discovered NRP solvers 183

7.3.2 Effect of the learnt CGP mutation operators 185

7.4 Discussion and conclusion . 186

8 Critical analysis 187

8.1 Scalable patterns of primitives . 188

8.1.1 The Traveling Salesman Problem 188

8.1.2 The mimicry problem . 192

8.1.3 The nurse rostering problem 196

8.2 Automatic design of metaheuristics 200

8.2.1 Templates and directed graphs 201

8.2.2 Effect of the learning objective functions 204

8.2.3 Effectiveness of the learning 207

8.3 Comprehensibility metrics . 208

8.3.1 Problem-specific solvers . 209

8.3.2 Other forms of GP . 212

8.3.3 Effect on human understandability metrics 214

Contents v

8.3.4 Comparison with other techniques 216

8.3.5 Discussion . 221

8.4 Conclusion . 222

9 Conclusion 223

9.1 Recommendations . 225

9.2 Future work . 226

Appendix A: Algorithms 229

Appendix B: Statistical results 253

Statistical results 253

Abbreviations 311

Glossary 313

References 319

vi List of Figures

Contents vii

List of Figures

2.1 A decomposition of the algorithm search space 15

2.2 Evolutionary fitness landscape with a three and two dimensional rep-

resentation model [87] . 19

2.3 A comparison of hyper-heuristics, metaheuristics and heuristics [31] . 37

2.4 Classification of meta-learning methods as proposed by Pappa et al.

[250] . 38

2.5 Classification of hyper-heuristic techniques as proprosed by Pappa et

al. [250] . 38

3.1 A process showing the mechanism of a loop 46

3.2 An optimum solution of a the mimicry problem, for an instance of 10

bits . 49

3.3 Solutions of the mimicry problems for an instance of 10 bits. A Ham-

ming distance is given with the fitness value of each solutions. The

bits in bold in the imitator are dissimilar from the the prototype. . . . 51

3.4 Crossovers techniques applied to the imitators of the two solutions . . 54

3.5 Mutation techniques applied to the imitators of a solution 56

3.6 Possible solutions for the Icosian game [252] 58

3.7 An optimum solution of a TSP instance made of 5 cities. 59

3.8 Examples of TSP solutions for a 5-city instance. 62

3.9 Examples of TSP solutions for a 5-city instance. 66

3.10 Examples of TSP solutions for a 5-city instance. 67

3.11 An example of a 2-Opt Local Search [153] 69

3.12 An example of a 3-Opt Local Search [153] 69

3.13 A formulation of work patterns using a linear programming problem

as suggested by [84] . 72

3.14 A formulation of work patterns using for the nurse rostering problem [3] 72

3.15 A visual representation of the nurse rostering problem [57] 73

3.16 A description of shifts [48] . 78

3.17 New swap techniques used by the NewSwaprLocalSearch [83] 82

viii List of Figures

3.18 Horizontal swap used by the HorizontalSwapLocalSearch [83] 83

3.19 Vertical swap used by the VerticalSwapLocalSearch [83] 83

4.1 An example of a program encoded in grid [255] 89

4.2 An example of a linear gp individual as provided by [160] 91

4.3 An example of a linear gp individual as provided by [160] 91

4.4 An GRAPE program with its data set as given by [282] 92

4.5 A PADO example program [309] . 93

4.6 A graphical representation of a CGP graph [226] 95

4.7 An example of how a ICGP graph is interpreted as provided by [293] . 98

4.8 An example of how a CGP graphs provided by [99] 99

4.9 A solver expressed with its active nodes 102

4.10 A solver expressed with its active nodes 104

4.11 : autoconstructive CGP graphs. The top individual encodes an algo-

rithm with directed acyclic graph and the bottom individual with iter-

ative CGP graph. Both individual encodes a mutation operators with

an iterative CGP graph. All the branching genes are represented with

blue arrows. 109

5.1 CGP graphs representing the TSP solvers B as described in algorithms

5.3 . 123

5.2 A comparison of the the solvers TSP-[A-C] and TSP-[R-T] during the

search for an optimum tour for the learning benchmark pr439. 126

5.3 A statistical comparison of solvers TSP-A, TSP-B and TSP-C for the

instance eg7146 . 127

5.4 CGP graphs representing the TSP solvers D and described in algo-

rithms 5.4 . 129

5.5 A comparison of the solvers TSP-[D-E] and TSP-[U-W] during the

search for an optimum tour for the learning benchmark pr439. 131

5.6 A statistical comparisons of TSP-A, TSP-B, TSP-C,TSP-D and TSP-

E over a 100 runs with 6,000 problem evaluations. The mean and

standard deviation are represented with a diamond shape. 132

6.1 Results of a game with a target with three challenges 137

Contents ix

6.2 A statistical comparisons of TSP-[F-H] over a 100 runs with 6,000

problem evaluations. The mean and standard deviation are represented

with a diamond shape. 148

6.3 The outline of histograms showing the statistic distribution of traveling

salesman problem solvers obtained with a two-operator exhaustive

search. 149

6.4 The outline of histograms showing the statistic distribution of traveling

salesman problem solvers obtained with a three-operator exhaustive

search. 150

6.5 The outline of histograms showing the probability distribution of trav-

eling salesman solvers obtained with our offline non-iterative opti-

misation process. 150

6.6 The outline of histograms showing the probability distribution of mimicry

solvers obtained with our offline non-iterative optimisation process.

The learning instances are used with a maximum number of problem

evaluations of 1,500. 153

6.7 The outline of histograms showing the probability distribution of mimicry

solvers obtained with a four-operator exhaustive search 156

6.8 A statistical comparison of solvers NRP-A, NRP-B and NRP-C for the

instance BCV-3.46.1 . 159

6.9 A statistical comparison of solvers NRP-A, NRP-B and NRP-C for the

instance G-Post . 159

6.10 A statistical comparison of solvers NRP-A, NRP-B and NRP-C for the

instance BCV-1.8.4 . 160

6.11 The outline of histograms showing the statistic distribution of the nurse

rostering problem solvers obtained with a two-operator exhaustive

search. The learning instances are used with a maximum number of

problem evaluations of 40. 161

6.12 A statistical comparison of solvers TSP-I, TSP-J and TSP-K for the

instance eg7146 . 164

x List of Figures

6.13 A comparison of the solvers MC-[D-F] and MC-M during the search

for a perfect imitator for a 800-bit benchmark. 1,500 problem evalua-

tions were used. 166

6.14 A statistical comparison of solvers MC-C, MC-D and MC-E for the

3000-bit instance . 167

6.15 A statistical comparison of solvers MC-C, MC-D and MC-E for the

5000-bit instance . 168

6.16 A statistical comparison of solvers MC-C, MC-D and MC-E for the

10000-bit instance . 168

7.1 Autoconstructive CGP graphs. The top individual encodes an algo-

rithm with directed acyclic graph and the bottom individual with iter-

ative CGP graph. Both individual encodes a mutation operators with

an iterative CGP graph. All the branching genes are represented with

blue arrows. 175

7.2 A statistical comparison of solvers NRP-E, NRP-F and NRP-G for the

instance BCV-1.8.4 . 185

7.3 A statistical comparison of solvers NRP-H, NRP-I and NRP-J for the

instance BCV-1.8.4 . 185

8.1 A graphical representation of the expected fitness of for the algorithms

TSP-A to TSP-E and the metaheuristics published by [246, 319]. The

instances ranges between 38 to 7663 cities 189

8.2 A graphical representation of the expected fitness of for the algorithms

TSP-F to TSP-Q and the metaheuristics published by [246, 319]. The

instances ranges between 38 to 7663 cities 190

8.3 A graphical representation of the expected fitness of for the algorithms

TSP-A to TSP-E and the metaheuristics published by [246, 319]. The

instances ranges between 9,152 to 33,708 cities 190

8.4 A graphical representation of the expected fitness of for the algorithms

TSP-F to TSP-Q and the metaheuristics published by [246, 319]. The

instances ranges between 9,152 to 33,708 cities 191

Contents xi

8.5 A graphical representation of the expected fitness of each algorithms

for the instances ranging between 100 to 30,000 bits. 193

8.6 A graphical representation of the expected fitness of each algorithms

for the instances ranging between 100 to 100,000 bits. 195

8.7 A graphical representation of the best expected fitness obtained by

solvers NRP-A - NRP-J. The limit approximately varies between [−0.8..2].

. 197

8.8 A graphical representation of the best expected fitness obtained by

solvers NRP-A - NRP-J. The limit approximately varies between [0..35].197

8.9 A graphical representation of the best expected fitness obtained by

solvers NRP-A - NRP-J. The limit approximately varies between [0..1, 320].198

8.10 An hyper-heuristic searching the multiple areas of the algorithm search

space. Each search algorithm has potentially a different set of prob-

lems associated to it [257]. 200

8.11 The metaheuristics design space . 201

8.12 An example of published algorithm generated by a generative tree-

based hyper-heuristics. 212

xii List of Tables

Contents xiii

List of Tables

3.1 Problem statement of the mimicry problem 49

3.2 Mimicry operators with their opcode and the number of evaluations

used. 57

3.3 TSP Problem statement . 59

3.4 Traveling Salesman operators with their opcode and the number of

evaluations used. 70

3.5 Nurse rostering operators with their opcode and the number of evalu-

ations used. 84

4.1 a list encoding the label, the coordinates of the nodes, and the horizon-

tal displacement for example given in figure 4.1 89

4.2 This table summarises the function set of each subspecies of a repro-

ductive mechanism. The operators formatted in italic are only applied

to the iterative algorithm. 117

4.3 This table summarises the condition set of each subspecies of repro-

ductive operators . 117

5.1 Parameters of the Classic CGP . 122

5.2 The function set made of TSP-specific and population operators . . . 123

5.3 State of populations p and t at generation 7 during a validation run.

The solver TSP-B was used with the validation instance d1291. 124

5.4 State of populations p and t at generation 7 during a validation run.

The solver TSP-T was used with the validation instance d1291. 125

5.5 Parameters of the Iterative CGP for all the tests 128

5.6 Function set: List of TSP heuristics used as primitives. 129

5.7 Condition set: Boolean primitives chosen for the stopping criterion. . 129

5.8 State of populations p and t when 2,990 algorithm evaluations have

been used during a validation run. The solver TSP-T was used with

the validation instance d1291. 131

6.1 Function set: List of TSP heuristics used as primitives. 139

xiv List of Tables

6.2 Parameters of the metaheuristics for all the test 140

6.3 Parameters of the metaheuristics for all the learning test 141

6.4 Mimicry operators with their opcode and the number of evaluations

used. 142

6.5 Nurse rostering operators with their opcode and the number of evalu-

ations used. 143

6.6 Parameters of the metaheuristics for all the test 143

6.7 Parameters of our CGP hyper-heuristics 146

6.8 A comparison of the tours likely to be obtained during a learning run

(i.e by the learning objective function) and those obtained by 100 in-

dependent validation runs. 147

6.9 Median of tours obtained in Chesc 2011, automatic design of selective

hyper-heuristics [275], automatically designed selective-hyper-heuristics

[120] and our experiments. The table reports the median tours using

arelative error to the known optima. 151

6.10 A comparison of the tours likely to be obtained during a learning run

(i.e by the learning objective function) and those obtained by 100 in-

dependent validation runs. 154

6.11 State of the populations p and t at generation 1 during a learning run.

The solver MC-M was used with the learning instance 800. 155

6.12 State of the populations p and t at generation 1 during a learning run.

The solver MC-A was used with the learning instance 800. 155

6.13 A comparison of the rosters likely to be obtained during a learning

run (i.e by the learning objective function) and those obtained by 100

independent validation runs. 157

6.14 State of the populations p and t at generation X during a validation

run. The solver the solver NRP-A was used with the learning instance

Ikegami-2Shift-DATA1. 158

6.15 State of the populations p and t at generation X during a validation

run. The solver the solver NRP-K was used with the learning instance

Ikegami-2Shift-DATA1. 158

Contents xv

6.16 A comparison of the averages of rosters obtained by [21] and our ex-

periments. The table shows the relative error of the results. 161

6.17 Iterative CGP parameters applied in these experiments. The parame-

ters in bold have been refined and differ from our experiments in chap-

ter 5 . 162

6.18 Condition set: Boolean primitives chosen for the stopping criterion.

The conditions formatted in bold are different from our previous ex-

periments. 162

6.19 A comparison of the tours likely to be obtained during a learning run

(i.e by the learning objective function) and those obtained by 100 in-

dependent validation runs. 163

6.20 A comparison of the imitators likely to be obtained during a learning

run (i.e. by the learning objective function) and those obtained by 100

independent validation runs. 167

6.21 Condition set: Boolean primitives chosen for the stopping criterion. . 169

6.22 A comparison of the rosters likely to be obtained during a learning

run (i.e by the learning objective function) and those obtained by 100

independent validation runs. 170

7.1 Reproductive operators parameters 175

7.2 Some examples of genetically improved CGP mutation altering itera-

tive CGP graphs. 178

7.3 A comparison of the rosters likely to be obtained during a learning

run (i.e by the learning objective function) and those obtained by 100

independent validation runs. 184

8.1 Software metrics for the traditional metaheuristics as expressed by

Luke et al.[205] . 209

8.2 Software metrics applied to the generated mimicry solvers and Herdy’s

evolution strategy [146] . 210

8.4 Software metrics applied to the generated NRP solvers 210

xvi List of Tables

8.3 Software metrics applied to the generated TSP solvers, some meta-

heuristic written by human-activity, and also some solvers generated

with tree-base GP . 211

8.5 Summary of metaheuristics understandability metrics evolved with a

non-graph-based form of genetic programming 213

B.1 Statistical comparison for some mimicry solvers generated in chapters

[5-7] . 256

B.2 Statistical comparison for some mimicry solvers generated in chapters

[5-7] . 257

B.3 Statistical comparison of imitators obtained by Herdy [146] and the

generated solvers MC-[A-L] . 258

B.4 Statistical comparison of imitators obtained by generated solver MC-A

and the generated solvers MC-[B-L] 259

B.5 Statistical comparison of imitators obtained by generated solver MC-B

and the generated solvers MC-[C-L] 260

B.6 Statistical comparison of imitators obtained by generated solver MC-C

and the generated solvers MC-[D-L] 261

B.7 Statistical comparison of imitators obtained by generated solver MC-D

and the generated solvers MC-[E-L] 262

B.8 Statistical comparison of imitators obtained by generated solvers MC-

[E-F] and the generated solvers MC-[G-L] 263

B.9 Statistical comparison of imitators obtained by generated solvers MC-

[G-I] and the generated solvers MC-[J-L] 264

B.10 Statistical comparison of imitators obtained by generated solvers MC-

[J-K] and the generated solver MC-L] 265

B.11 Statistical comparison of some imitators obtained by some mimicry

solvers. 266

B.12 Statistical comparison of imitators obtained by Herdy [146] and the

generated solver MC-A, and the generated solvers MC-A, MC-E, MC-

L, MC-M . 267

B.13 Statistical comparison of imitators obtained the generated solver MC-

D, and the generated solvers MC-E, MC-L, MC-M 267

Contents xvii

B.14 Statistical comparison of tours obtained by solvers TSP[A-J] for the

instances u2152,usa13509, d18512, dj38, q194 and zi929 269

B.15 Statistical comparison of tours obtained by generated solvers TSP[K-

Q], Ulder [319] and Ozcan [247] for the instances u2152,usa13509,

d18512, dj38, q194 and zi929 . 270

B.16 Statistical comparison of tours obtained by solvers TSP[A-J] for the

instances lu980,rw1621,nu3496, ca4663, tz6117, eg7146. 271

B.17 Statistical comparison of tours obtained by generated solvers TSP[K-

Q], Ulder [319] and Ozcan [247] for the instances lu980,rw1621,nu3496,

ca4663, tz6117, eg7146. 272

B.18 Statistical comparison of tours obtained by solvers TSP[A-J] for the

instances ym7663,ei8246,ar9152, ja9847, gr9882, and kz9976. 273

B.19 Statistical comparison of tours obtained by generated solvers TSP[K-

Q], Ulder [319] and Ozcan [247] for the instances ym7663,ei8246,ar9152,

ja9847, gr9882, and kz9976. 274

B.20 Statistical comparison of tours obtained by solvers TSP[A-J] for some

instances with a greater number 10,000 cities. 275

B.21 Statistical comparison of tours obtained by generated solvers TSP[K-

Q], Ulder [319] and Ozcan [247] for some instances with a greater

number 10,000 cities. 276

B.22 Statistical comparison of tours obtained by Ulder [319] and Ozcan

[247] and the generated solvers TSP-[A-E] 277

B.23 Statistical comparison of tours obtained by Ulder [319] and the gener-

ated solvers TSP-[F-Q] . 278

B.24 Statistical comparison of tours obtained by Ozcan [247] and the gen-

erated solvers TSP-[F-Q] . 279

B.25 Statistical comparison of tours obtained by the generated solvers TSP-

[A-E] . 280

B.26 Statistical comparison of tours obtained by the generated solver TSP-

A and the generated solvers TSP-[F-Q] 281

B.27 Statistical comparison of tours obtained by the generated solver TSP-B

and the generated solvers TSP-[F-Q] 282

xviii List of Tables

B.28 Statistical comparison of tours obtained by the generated solver TSP-C

and the generated solvers TSP-[F-Q] 283

B.29 Statistical comparison of tours obtained by the generated solver TSP-

D and the generated solvers TSP-[F-Q] 284

B.30 Statistical comparison of tours obtained by the generated solver TSP-E

and the generated solvers TSP-[F-Q] 285

B.31 Statistical comparison of tours obtained by the generated solver TSP-F

and the generated solvers TSP-[G-Q] 286

B.32 Statistical comparison of tours obtained by the generated solver TSP-

G and the generated solvers TSP-[H-Q] 287

B.33 Statistical comparison of tours obtained by the generated solver TSP-

H and the generated solvers TSP-[I-Q] 288

B.34 Statistical comparison of tours obtained by the generated solver TSP-I

and the generated solvers TSP-[J-Q] 289

B.35 Statistical comparison of tours obtained by the generated solver TSP-J

and the generated solvers TSP-[K-Q] 290

B.36 Statistical comparison of tours obtained by the generated solvers TSP-

[K-L] and the generated solvers TSP-[M-Q] 291

B.37 Statistical comparison of tours obtained by the generated solvers TSP-

[M-Q] . 292

B.38 Definition of a nurse rostering instances, with the number of nurses,

types of shift and days. 293

B.39 Statistical comparison of rosters obtained by NRP solvers NRP-[A-J]

for the instances BCV-1.8.1, BCV-1.8.2, BCV-1.8.3, BCV-1.8.4 and

BCV-2.46.1. 294

B.40 Statistical comparison of rosters obtained by NRP solvers NRP-[A-J]

for the instances BCV-3.46.1, BCV-3.46.2, BCV-4.13.2, BCV-5.4.1. . 295

B.41 Statistical comparison of rosters obtained by NRP solvers NRP-[A-J]

for the instances BCV-6.13.1, BCV-6.12.2, BCV-7.10.1, BCV-8.13.1

and BCV-8.13.2. 296

Contents xix

B.42 Statistical comparison of rosters obtained by NRP solvers NRP-[A-

J] for the instances BCV-A.12.1, BCV-A.12.2, Instance 2, Instance 3,

and Instance 4. 297

B.43 Statistical comparison of rosters obtained by NRP solvers NRP-[A-

J] for the instances Instance 5, Instance 6, Instance 7, Instance 9 and

Instance 10. 298

B.44 Statistical comparison of rosters obtained by NRP solvers NRP-[A-

J] for the instances ORTECO1, ORTECO2, G-Post, G-Post-B, and

Ikegami-3Shift-Data.1. 299

B.45 Statistical comparison of the generated solver NRP-A and the gener-

ated solvers NRP[A-J]. 300

B.46 Statistical comparison of the generated solver NRP-A and the gener-

ated solvers NRP[A-J]. 301

B.47 Statistical comparison of the generated solver NRP-B and the gener-

ated solvers NRP[C-J]. 302

B.48 Statistical comparison of the generated solver NRP-B and the gener-

ated solvers NRP[C-J]. 303

B.49 Statistical comparison of the generated solver NRP-C and the gener-

ated solvers NRP[D-J]. 304

B.50 Statistical comparison of the generated solver NRP-C and the gener-

ated solvers NRP[D-J]. 305

B.51 Statistical comparison of the generated solvers NRP-[D-E] and the

generated solvers NRP[F-J]. 306

B.52 Statistical comparison of the generated solvers NRP-[D-E] and the

generated solvers NRP[F-J]. 307

B.53 Statistical comparison of the generated solvers NRP[F-J]. 308

B.54 Statistical comparison of the generated solvers NRP[F-J]. 309

B.55 List of abbreviations . 311

xx List of Tables

Acknowledgements xxi

Acknowledgements

I will be forever grateful to Dr. Julian Miller who first encouraged me to apply for this

Ph.D. project. I would like to thank him for all the time he has dedicated so that this

work could be achieved. Without his support, mentorship, and guidance, the findings

presented in this document would not have been completed.

I would like to thank Dr. Martin Trefzler for his patience and leadership skills. His ex-

pertise in evolutionary computations has been invaluable in the design of many empir-

ical methods. Without his support, mentorship, and guidance many analytical aspects

may not have been considered.

Without Dr. Jerry Swan, a detailed framework and some software metrics would not

have been used in the context of generative hyper-heuristic. I would like to thank him

for his persistent approach to identify some areas that needed to be refined. Without

his expertise in machine learning in general, certain aspects would not have been dis-

cussed.

The N8 HPC is provided and funded by the N8 consortium and EPSRC (Grant No.

EP/K000225/1), the Centre is coordinated by the Universities of Leeds and Manch-

ester. Without their computer facilities, many of our experiments would have been

able to run successfully.

I am indebted to their support and outstanding computer services they provide. I

would like to thank Dr. Gabriela Ochoa and Dr. Timothy Curtois for sharing some

of their software libraries. Without their kindness, many of our experiments and find-

ings would not have been possible. I would like to thank Dr. Kyle Harrington for his

valuable advice on autoconstructive techniques.

xxii Acknowledgements

Finally, I would like to thank my family for their support and extreme patience. My

husband Paul, my children Paola and Thomas have provided the most loving support. I

believe they will not miss the laptop accompanying their partner and mum everywhere

she goes.

Declaration xxiii

Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, University.

All sources are acknowledged as References.

The research presented in this thesis features in a number of the author’s publications

listed below:

• Ryser-Welch, Patricia, and Julian F. Miller. ”A review of hyper-heuristic frame-

works.” Proceedings of the Evo20 Workshop, AISB. Vol. 2014. 2014.

• Ryser-Welch, Patricia, and Julian F. Miller. ”Plug-and-Play hyper-heuristics:

an extended formulation.” Self-Adaptive and Self-Organizing Systems (SASO),

2014 IEEE Eighth International Conference on. IEEE, 2014.

• Ryser-Welch, Patricia, Julian F. Miller, and Shahriar Asta. ”Generating human-

readable algorithms for the traveling salesman problem using hyper-heuristics.”

Proceedings of the Companion Publication of the 2015 Annual Conference on

Genetic and Evolutionary Computation. ACM, 2015.

• Ryser-Welch, Patricia, Julian F. Miller, and Shariar Asta. ”Evolutionary Cross-

domain Hyper-Heuristics.” Proceedings of the Companion Publication of the

2015 Annual Conference on Genetic and Evolutionary Computation. ACM,

2015.

• Ryser-Welch, Patricia, et al. ”Iterative Cartesian Genetic Programming: Creat-

ing General Algorithms for Solving Travelling Salesman Problems.” European

Conference on Genetic Programming. Springer, Cham, 2016.

• Ryser-Welch, Patricia, and Julian F. Miller. ”PPSN 2016 Tutorial: A Graph-

based GP and Cartesian Genetic Programming.”

xxiv Declaration

Chapter 1. Introduction 1

Chapter 1. Introduction

Contents
1.1 Thesis aims and contributions 2

1.2 Plan of thesis . 5

Designing effective algorithms for solving computational problems is a time-consuming

and challenging task. A comprehension of a problem characteristics should contribute

in planning and order some operations in sequences, to form an algorithm [159].

The algorithms should be expressed using a carefully chosen encoding scheme. Suit-

ably expressive algorithms may never terminate or have over-long computations. It

is, therefore, useful to consider an algorithm search-space consisting of feasible and

infeasible algorithms. Various forms of constraints have many times prevented these

unwanted occurrences [174, 244, 199, 180, 344, 182, 285]. Only suitable algorithms

could be generated and assessed, preventing an excessive use of valuable resources

during an algorithm search [298, 270, 224].

Non-deterministic methods should guarantee to return an algorithm, but it may not

be optimum. These algorithms compensate certain operators weaknesses with the

strengths of others. An algorithm search should sample a wide range without be-

coming impractical. Enumerating every possible combination of operators may not

always be possible. When the numbers of primitives increases, the number of poten-

tial combinations exponentially grow.

2 Chapter 1. Introduction

Genetic Programming (GP) is a systematic and domain-independent method for com-

puters to solve problems automatically [172] . The evolution identifies the steps that

need to be carried out to find a solution. Some domain knowledge, a data structure, and

an EA can often efficiently produce human-competitive results [158, 173, 224, 175,

76]. Circuit design, image processing, polymers, medicine, chemistry, mathematics,

biology, and optimisation are some examples of applications that have benefited from

the various form of GP. Some evolutionary algorithms (EAs) can also be generated.

However, some human-competitive results have yet to be consistently observed and

studied.

The hypothesis of this thesis is, therefore; an automated design of algorithms can be

used to discover human-understandable and human-competitive algorithms, which are

scalable and effective for a chosen problem.

1.1. Thesis aims and contributions

These discussions stimulate the following question.

Does the added complexity of using an automatic design process together with an im-

posed syntactic algorithm structure bring the desirable qualities of scalability, com-

pactness and human-understandability?

Based on the described motivations and material presented in the literature review;

a number of objectives are proposed.

1. To explore whether Cartesian Genetic Programming (CGP) can be an effective

generative hyper-heuristics to evolve metaheuristics that solve computationally

hard problems.

2. To investigate whether CGP can automate the decision to particular sequences

employed in a metaheuristic; the latter is evolved to solve a problem.

3. To extend Recurrent CGP technique to be capable of evolving complete iterative

constructs.

Chapter 1. Introduction 3

4. To extend the CGP technique to be capable of implementing an autoconstructive

mechanism.

5. To apply the developed iterative and autoconstructive CGP to the generation of

metaheuristics that find solutions to computationally hard problems.

6. To investigate how the developed autoconstructive CGP can affect the scalability

and the compactness of metaheuristics.

7. To apply some software complexity metrics to seek whether a graph-based hyper-

heuristic can improve human-understandability.

8. To analyse the solutions of computationally hard problems obtained by some

generated metaheuristics, to identify some effective patterns of problem-specific

operators that find suitable solutions to computationally hard problems.

Throughout this thesis, several substantial contributions are made the generative hyper-

heuristics, CGP and the broader field of machine learning. The most significant con-

tributions are now summarised.

1. A significant proportion of this thesis is dedicated to providing empirical evi-

dence of the advantages of using a CGP generative hyper-heuristics. The fol-

lowing benefits are shown and discussed:

(a) A coefficient of variation can provide a substantial benefit to automating

the decision to particular sequences employed in a metaheuristic. Re-

sults show an effective pattern of problem-specific operators can be gen-

erated using a reduced amount of computer resources. Generative hyper-

heuristics solely rely on the free-lunch-theorem to evaluate generated meta-

heuristics and widely overlook this significant advantage.

(b) The ability to generate effective metaheuristics that find suitable solutions

for computationally hard problems. Results presented indicates mutating

active and non-coding genes continually during an automated design pro-

cess represents a significant advantage over methods randomly selecting

genes during reproduction.

4 Chapter 1. Introduction

2. This thesis presents Iterative CGP, a significant extension to Cartesian Genetic

Programming. It enables the formation of iterative sub-programs and the encod-

ing termination of those. In this thesis, Iterative CGP is shown to be capable

of efficiently generating some metaheuristics that find some near-optimum to

problems inspired by real-life problems. From these applications, presented re-

sults demonstrate that standard and iterative CGP could perform better for the

nurse-rostering problem, but particularly well for the traveling salesman prob-

lem. Additionally, Iterative CGP is demonstrated to outperform not only stan-

dard CGP for some NP-hard problems but also some selective and generative

hyper-heuristic techniques.

3. This thesis presents autoconstructive CGP, a significant extension to standard

and iterative Cartesian Genetic Programming. Firstly, experiments demonstrate

to improve a CGP-reproductive operator during the evolution of metaheuristics

genetically. Some CGP-reproductive operators were obtained and tested to gen-

erate some metaheuristics for an unseen problem. Secondly, as with standard

and iterative Cartesian Genetic Programming, results demonstrate to discover

some effective metaheuristics for some computationally hard problems.

4. This thesis thoroughly analyses the solutions obtained by some problem-specific

metaheuristics. Some parametric and non-parametric statistics show some human-

competitive results are observed and studied. We believe these results are sig-

nificant and in line with GP research in areas such as digital circuits.

5. This thesis provides an extensive list of generated solvers. Some metaheuristics

have been translated from their CGP form to an imperative pseudo-code. A

detailed statistical analysis shows a validation process has used some known

and unknown distinct learning set of instances to validate these solvers. It is also

demonstrated some parametric statistics have helped establishing some patterns

of primitives that are likely to scale well. Some non-parametric statistical tests

identify too some patterns of primitives that can achieve the same performance.

A rigorous assessment by inspection has validated some features and patterns of

primitives can impact a metaheuristic positively.

Chapter 1. Introduction 5

6. This thesis rigorously assesses the level of difficulty to understand some meta-

heuristics. It is shown some generated metaheuristics with standard, iterative

and autoconstructive CGP can score similarly as some metaheuristics written

by human-activity. Results presented indicate CGP-generated metaheuristics

can be expressed with a similar vocabulary than problem-specific and published

metaheuristics. Secondly, it is shown that other forms of genetic programming

can generate shorter metaheuristics a smaller vocabulary. Published metaheuris-

tics may seem more unfamiliar to a reader with expert knowledge in metaheuris-

tics.

1.2. Plan of thesis

This thesis has been planned in three main sections; a detailed literature review, the

details of our experiments and then a critical analysis and a conclusion.

Chapter 2 provides a detailed literature review of optimisation of algorithms. A gen-

eral framework for generative hyper-heuristics is introduced and used in in sub-

sequent chapters.

Chapter 3 reviews and discusses the problems we have chosen for our experiments.

Chapter 4 reviews graph-based GP and presents the graph-based hyper-heuristics ap-

plied in our experiments

Chapter 5 reports and discusses the results obtained by using standard CGP and iter-

ative CGP. Objectives [1-3] are mainly explored.

Chapter 6 describes a learning objective process using a coefficient of variation. The

results are reported. Objectives [1-3, 8] are mainly explored.

Chapter 7 mainly explores the objectives [5-8]. The experiments completed with

autoconstructive CGP are described and their results discussed.

6 Chapter 1. Introduction

Chapter 8 critically analyses the impact brought to the algorithm search by improv-

ing some elements incrementally. Scalable patterns of primitives are suggested,

and the comprehensibility of some generated solvers are analysed mathemati-

cally. All objectives are considered.

Chapter 9 concludes this documents and suggests some further research arising from

this work.

Appendix A lists all the solvers obtained by our experiments in an imperative pseudo-

code.

Appendix B provides all the results of our thorough statistical analysis.

Abbreviations lists the abbreviations appearing in this thesis.

Glossary provides a glossary keywords used in this document.

Chapter 2. Optimisation of algorithms 7

Chapter 2. Optimisation of algorithms

Contents
2.1 Basic principles . 8

2.2 The problem domain . 10

2.2.1 The problem search space 10

2.2.2 The problem encoding scheme 11

2.2.3 The problem evaluation process 11

2.2.4 Problem-specific operators 12

2.2.5 Problem parameters . 12

2.2.6 Discussion . 13

2.3 The algorithm domain . 14

2.3.1 The algorithm search space 14

2.3.2 The algorithm encoding scheme 16

2.3.3 The learning objective function 17

2.3.4 The algorithm parameters 18

2.3.5 The algorithm understandability metrics 20

2.3.6 Discussion . 21

2.4 Algorithm optimisation processes 23

2.4.1 Predicting the performance of algorithms 24

2.4.2 Automating parameter settings 26

2.4.3 Selection of operators . 27

2.4.4 Generation of algorithms 31

2.4.5 Discussion . 35

2.5 Conclusion . 39

8 Chapter 2. Optimisation of algorithms

Optimised algorithms are assumed to run more efficiently and therefore reduce the

execution time while finding some equally or better solutions than non-optimised al-

gorithms. Various methods can achieve the process of optimising algorithms. This

chapter positions our work in the active field of research, by reviewing extensively

techniques attempting to accomplish this significant goal. Some functional mathe-

matical expressions describe the elements of some standard and shared components.

The subsequent chapters can, therefore, refer to these formally defined some essential

features to discuss our experiments and their results.

2.1. Basic principles

Many methods postulate some algorithms may perform better for a set of instances

than others. Newell et al. [237, 238] aimed at grouping some deterministic algorithms

that could exhibit some abilities to solve specific mathematical problems. Their early

attempt in artificial intelligence has led to the development of a technique that con-

structs some computer programs (i.e., “The General Problem Solving I”). Friedberg

[104] proposed “the program of a stored-program computer be gradually improved by

a learning procedure which tries many programs and chooses, from the instructions

that may occupy a given location, the one most often associated with a successful re-

sult.”

Rice et al. [267] introduce “The algorithm selection problem”; a method that maps

the algorithm performance to certain instances to predict their performance with some

unknown instances. This problem is well studied in the research field of selective

meta-learning and algorithm configuration. Examples of such systems include the

concept of “Programming by optimisation” or the generation of parallel portfolio of

algorithms [148, 195].

Chapter 2. Optimisation of algorithms 9

Some similar focus has been reported with non-deterministic algorithms. Wolpert et

al. [345, 346] prove if a search algorithm or a supervised machine learning method

may work well for a problem, it may not work for another one. The automation of pa-

rameter settings and the evolution of EAs have both aimed at addressing the outcome

of this seminal paper.

Burke et al [47] provides a generalisation of a technique referred as “selective hyper-

heuristic” (SEL-HH). Introduced by Cowling et al. [78], this optimisation technique

selects some problem-specific operators randomly to search for some problem solu-

tions.

Finally, Spector et al. [302] extend genetic programming (GP) by co-evolving some

GP genetic operators and some evolved algorithms. An algorithm search constructs

some problem-specific algorithms and some GP genetic operators at the same time,

without any human involvements.

Each research community studies distinctive perspectives and approaches. Some liter-

ature predicts the performance of algorithms, and some other automate the parameter

settings of algorithms. Other select problem-specific operators, while other commu-

nities generate some algorithms. Notwithstanding the wide area of research, some

highly-cohesive frameworks exist. Their architecture often rely on a problem domain,

an algorithm domain and some optimisation processes. The loose coupling between

a problem and some problem-solving techniques is often perceived to increase the

generality of a technique [302, 78, 346, 148, 195, 237, 238, 47].

10 Chapter 2. Optimisation of algorithms

2.2. The problem domain

Problem-solving techniques often formulate the task at hand with a problem space dis-

tinct characteristics [288]. Many algorithm optimisation techniques can refer to this

critical element with a different name. However, in selective and generative methods it

is often called the problem domain. Therefore we will use this terminology to conform

with the literature.

Each of our chosen problem domains is not only hard to solve but also have unique

and problem-specific features. By their nature, their operators, problem search space,

encoding scheme and evaluation process are very dissimilar.

2.2.1 The problem search space

A problem statement defines abstractly some conditions indicating whether a goal is

reached. In mathematics, a problem represents the objective(s) to be met. More con-

crete elements are added with an instance; this input is useful for judging a solution

complexity [20]. The latter suggests the amount of work required to find a solution.

Some instances can become larger and then increase the size of some possible solutions

and a problem solution search space (see expression 2.1). The number of computations

may increase as well. All possible solutions are held in a large set referred as the

problem search space; it is then divided into subsets for every possible solution of each

instance (see expressions 2.1 and 2.2) [27, 233]. An “optimum solution” is considered

to be the best known solution or the global optimum (see expression 2.3).

problem(instance) :Instance 7→ Solutions (2.1)

∀Solution ∈ Instance :{Solutions ∈ ProblemSearchSpace} (2.2)

Optimum :Solution = Best known solution (2.3)

Chapter 2. Optimisation of algorithms 11

2.2.2 The problem encoding scheme

A specific and specialised format organises some data to represent a problem solution

(see expression 2.4). The problem encoding scheme could be very simple or more

intricate. Many suitable data structures may be available. Still, a chosen problem

encoding scheme should efficiently represent a problem statement. Otherwise, their

problem solution may not be understood and analysed easily.

problem encoding scheme : (data× data structure) 7→ Solution (2.4)

2.2.3 The problem evaluation process

A problem evaluation process assesses whether a solution meets the objective de-

scribed in a problem statement. Often a solution is mapped to a real value (see ex-

pression 2.5). Each problem solution can then be analysed by an automated system or

a person; numerical values can be analysed by statistical methods.

Solutions found by non-deterministic methods are also unlikely to be optimal or per-

fect. With that in mind, the problem fitness evaluation process could also approximate

the discrepancy between a known minima and a solution fitness value (see expression

2.6). A so-called relative error naturally provides a metric indicating whether a solu-

tion is an optimum (RelError = 0), a near-optimum (RelError > 0), a new know

optimum (RelError < 0), and an inadmissible solution (RelError →∞).

ProblemEvaluation(aSolution) :Solution 7→ IR (2.5)

RelError(aV alue, knownMin) :(IR× IR) 7→ IR (2.6)

12 Chapter 2. Optimisation of algorithms

2.2.4 Problem-specific operators

An operator should transform a problem solution from a current state to another state.

The new answer could be in a near region or a different part of the problem search

space. The quality of a new solution could, therefore, be affected positively or nega-

tively or even remained the same.

Each operator should provide a unique functionality. their arity n could vary from

0 ≤ n ≤ ∞ and one solution should be at least returned (i.e. 1 ≤ m ≤ ∞); expression

2.7 formally defines the general signature of operators. A problem domain is likely to

have more than one operator. Therefore a list of problem-specific operators is made

available (i.e ListOfOp see expression 2.8). Sections 2.4 and 2.5 discusses how this

list contribute an algorithm optimisation process and an algorithm domain.

Op(arg1, arg2,, argn) :Solutionn 7→ Solutionm (2.7)

ListOfOp :{Op1...Opmax} (2.8)

2.2.5 Problem parameters

This type of metadata provides some specific information related to a problem domain.

The parameters would influence the problem search space and the operator’s perfor-

mance.

To simplify our model, we assume that the problem domain has at least one parameter;

an instance (see equations 2.1, 2.9 and 2.11). The operators may also rely on some

parameters to achieve their tasks. Because it is a challenging task to predict the number

of parameters required, we prefer expressing this variable between 1 and infinity (see

expression 2.10).

Chapter 2. Optimisation of algorithms 13

ProblemParam : Instance ∪ {pp1, ..., pplast} (2.9)

1 ≤ last ≤ ∞ (2.10)

setProblemParam(pp1, ..., pplast) : parameterslast 7→ ProblemParam (2.11)

2.2.6 Discussion

We are not pretending this decomposition of a problem domain offers a panacea. It can

be argued a search space, a problem encoding scheme, some problem operators, some

parameters, and an evaluation process provide a certain completeness to the concept

of a problem within an optimisation or discrete context. We would acknowledge this

point and would welcome a comparison against another decomposition more suitable

for another approach.

The definition of a problem search space is comprehensive enough for this work. A

unique problem statement with the description of instances is later discussed (see chap-

ter 3). The problem-solving methods used in this thesis are not-deterministic; often the

problem search space is referred as a fitness landscape.

Some non-deterministic operators can randomly find solutions of lesser, equal or better

quality. This type of operators will be applied instead of mathematical operations (i.e.

+,−,%,÷,×). The general concept of mutation, recombination, ruin-and-recreate

and local search will be adapted to some various encoding schemes (i.e. binary strings,

directed acyclic graphs and table). These operators will rely on some probabilistic pa-

rameters.

14 Chapter 2. Optimisation of algorithms

A problem-solving method should explore the problem search space, whether it is

automated or not. For example, “Mimicry solvers” should survey many possible so-

lutions of the mimicry search space and perhaps find an optimum solution; similarly

“TSP solvers” and “NRP solvers” should consider solutions from their own search

space (i.e. the “TSP search space” and the “NRP search space”). In the context of

this work, we consider non-deterministic algorithms as problem-solving techniques.

The next section describes the elements of an algorithm domain.

2.3. The algorithm domain

Solving a problem requires performing a series of actions, with the hope of producing

an optimum solution. In computer science and mathematics, the so-called algorithms

are sequences of operators that are also performed in a particular order to achieve a

well-defined goal.

Some variety of algorithms can be identified by the type of operators they apply. Math-

ematical operations can form mathematical expressions, organising operators and vari-

ables of a programming language can compose a program and also digital gates can

represent a digital circuit. These tools can solve a problem with different outcomes;

some of them may find some appropriate solutions and some others may not. This

situation could lead in trying and assessing many algorithms, before identifying an

effective algorithm [292, 43, 288, 338, 234, 342, 62, 67, 154, 339, 220, 278, 159].

2.3.1 The algorithm search space

When a finite list of operators exists, then the algorithm search space should represent

every possible distinct algorithm. Every step should correspond to a valid operator that

can be mapped to a given problem domain (see expressions 2.12 and 2.13).

Chapter 2. Optimisation of algorithms 15

The algorithm search space should only “be aware” of an operator list provided by

a chosen problem domain. Consequently the same signature as ListOfOp is also

adopted (see expression 2.8 defined in section 2.2.4). This level of abstraction should

make completely transparent the type of algorithms represented (i.e., mathematical ex-

pressions, digital circuits or computer programs), making the algorithm domain more

general and loosely coupled to the problem domain.

∀A : (step1...steplast) where step ∈ ListOfOp and 1 ≤ last ≤ ∞ (2.12)

Algorithm : {A ∈ AlgorithmSearchSpace} (2.13)

AlgorithmSearch space : UnsuitableAlg ∪ SuitableAlg (2.14)

It is assumed the human design space is part of the automated design space (see fig-

ure 2.1). Some early assumptions can restrict the resulting combination of operators.

Detailed study of solutions obtained from some sample problems and personal inspec-

tions based on experience can lead to premature commitment to a specific design; some

alternatives solvers can then be eliminated or abandoned at an early stage [159, 148].

Figure 2.1: A decomposition of the algorithm search space

16 Chapter 2. Optimisation of algorithms

Theoretically, automating some aspects of the algorithm search could prevent this sit-

uation occurring; perhaps some suitable and syntactically correct algorithms could be

found outside the human design space. As a practical necessity, imposing some con-

straints on the loops of evolved programs prevent unending iterations. Some grammat-

ical rules or templates can make this possible by stating the elements that remain un-

changed and the part of the program that is evolved [174, 244, 199, 180, 344, 182, 285].

2.3.2 The algorithm encoding scheme

A data structure encodes sequences of operators; it should represent the operations

acting upon the data (see expression 2.15) [140]. During the execution of an algorithm,

each step can apply an operator on some give solutions (see expression 2.16); a unique

operator code (i.e. OpCode) represent an function.

An execution process can then decode each step to obtain a problem solution (see

expression 2.17). Algorithm 2.1 illustrates how a finite sequence of operators can be

decoded using the functions ApplyOp and ExecAlg.

Alg. encoding scheme : data× data structure 7→ Algorithm (2.15)

ApplyOp(aStep, someSolutions) : (Op× Solutionn) 7→ Solutionm (2.16)

ExecAlg(anAlgorithm, anInstance) : (A× Instance) 7→ Solution (2.17)

Algorithm 2.1. A general decoding process that sequentially applies each step of an
algorithm

1: function EXECALG(anAlgorithm, anInstance)
2: ProblemSolution← InitialiseSolution(anInstance)
3: for CurrentStep ∈ anAlgorithm do
4: ProblemSolutions← ApplyOp(CurrentStep, ProblemSolutions)
5: CurrentStep← nextStep
6: end for
7: return ProblemSolution
8: end function

Chapter 2. Optimisation of algorithms 17

An algorithm encoding scheme specifies the order of execution. An algorithm can,

therefore, be executed a number of times; each run becomes independent and could

return each time a different problem solution.

2.3.3 The learning objective function

This evaluation process assesses the performance of a given algorithm, by mapping its

ability of solving a problem against a numerical value (i.e an algorithm fitness value

defined by expressions 2.18 and 2.19). Also referred as learning objective function,

this process should predict whether an algorithm could find optimum or near-optimum

solutions of unseen instances.

AlgEvaluation(anAlgorithm, Instances) : (A× Instancen) 7→ IR (2.18)

AlgF itV al = AlgEvaluation(anAlgorithm, Instances) (2.19)

RunAlg(anAlg, anInstance, Runs) : (A× Instance× IN) 7→ IRm (2.20)

A learning objective function should include at least three steps to compute an algo-

rithm fitness value :

1. A given algorithm is decoded and find some solutions for some given instances.

Those are passed by the parameter Instances in algorithm 2.2. The function

ExecAlg defined in expression 2.17 performs this task. This step maps (A ×

Instancen) 7→ Sm.

2. The problem solutions obtained in step 1 are then evaluated (see line 5 of algo-

rithm 2.2). A specific problem evaluation process is applied; those were defined

by expressions 2.5 and 2.6. This second stage maps Sm 7→ IRm.

3. These problem fitness values can then be statistically analysed to compute an

algorithm fitness value (see expression 2.18 and line 8 of algorithm 2.2). This

final step maps IRm 7→ IR.

18 Chapter 2. Optimisation of algorithms

Algorithm 2.2. Run several times an algorithms and evaluates the problem solutions.
1: function RUNALG(anAlgorithm, anInstance, Runs)
2: someResults← sizeOf(Runs)
3: for aRun ∈ Runs do
4: aSolution← execAlg(anAlgorithm, anInstance)
5: aProbF itV al← ProblemEvaluation(aSolution))
6: Results[aRun]← RelError(aProbF itV al, anInstance.Optimum)
7: end for
8: return ApplyStatistics(Results)
9: end function

In theoritical biology, every possible genotype is assigned a fitness value. A descrip-

tion of how frequently one genotype is reached from another can now be visualised in

a mountainous landscape (see Figure 2.2 part a) or a two-dimensional space (see fig-

ure 2.2 part b) [87, 243, 157, 351]. For the remaining of the thesis, we will assuming

an excellent solver should be minimising its problem solutions; therefore any learning

objective function should reward any effective metaheuristics with a low value [168].

2.3.4 The algorithm parameters

The algorithm domain parameters describe the algorithm characteristics. Therefore

they are part of the algorithm domain. The algorithms parameters should also embed

in the problem parameters; otherwise, they may not be set before any algorithms are

executed. For example, the functions RunAlg and AlgEvaluation defined respec-

tively in expressions 2.17 and 2.18 have the instance of a problem as an argument,

which is a compulsory parameter in the problem domain (see equation 2.1).

The set of algorithm parameters has two important characteristics. First, the minimum

number of algorithm parameters should be greater than or equal the number of pa-

rameters of a given problem domain (see equation 2.22). Secondly, all the algorithms

parameters should at least include all the parameters of a given problem domain. In

equations 2.22 and 2.9, the problem domain parameters are referred as pp and then the

algorithm parameters ap. The function SetAlgorithmParam defined in expressions

2.23 respects these two conditions; it includes both sets of parameters.

Chapter 2. Optimisation of algorithms 19

Figure 2.2: Evolutionary fitness landscape with a three and two dimensional represen-
tation model [87]

20 Chapter 2. Optimisation of algorithms

last : Size(ProblemParam) ≤ last ≤ ∞ (2.21)

∀AlgParam ∈ ProblemParam ∪ ({} ∪ {ap1, ..., aplast}) (2.22)

SetAlgParam(pp1, ..., aplast) : parameterlast 7→ AlgorithmParam (2.23)

2.3.5 The algorithm understandability metrics

Newell et al. [237] highlights the importance of choosing the vocabulary of a program.

They argue a program would not be able to operate within a task environment other-

wise. We include some understandability metrics to capture and quantify its effect on

its understandability. The comprehension of an algorithm is often subjective and un-

derstudied. Nonetheless, it is usually considered a small value is more favourable to

represent the barrier of understanding has been lowered [127].

In our framework, some metrics quantify the elements affecting the effort to under-

stand an algorithm; those include the vocabulary and the length of an algorithm. Hal-

stead et al [127] defines that each distinct symbol chosen to express an algorithm is part

of its vocabulary. Those may include some constants and some variables an algorithm

relies on to represent some values (i.e. noOperand). The operators (i.e arithmetical,

logical and assignment), functions and keywords are also part of this metric; they are

referred as noOp (see expression 2.24). The Length sums every occurrence of these

operators and operands appearing in an algorithm (see expression 2.25).

V ocabulary ← NoOp+NoOperand (2.24)

Length← TotOp+ TotOperand (2.25)

Chapter 2. Optimisation of algorithms 21

The effort to understand an algorithm is shown in expression 2.26. For two algorithms

of the same length, a larger vocabulary increases the effort metric. Adding a new

operand or a new operator not only affects the vocabulary metric, but also influences

the level of error-proneness (i.e.
(
NoOp×TotOperand

2×noOperand

)
). Halstead et al. [127] reflected

that many variables or constants could require more mental resources to working out

the data they represent. Also, increase the distinct functions and operators can quickly

require effort to understand how they transform the data. At the same time, more error

can be introduced.

We also embed a cyclometric complexity, so that we can compute the number of the

independent paths within our algorithms. This metric represents each line of an algo-

rithm as a node graph. Some edges model the path between each node. Expression

2.27 compute the number of independent path using McCabe expression [215].

Effort← (NoOp× TotOperand× Length)log2(V ocabulary)

2× noOperand
(2.26)

NoIndependentPaths← NoEdges−NoNodes+ 2 (2.27)

2.3.6 Discussion

We have decomposed the algorithm domain into its search space, understandability

metrics, evaluation process, parameters as well as execution process. Our work fo-

cuses on metaheuristics, and perhaps this view may have guided the composition of

this domain in this manner. We would be happy to compare and validate this model to

a greater context.

22 Chapter 2. Optimisation of algorithms

An evaluation process, an encoding scheme and also some parameters are common to

both domains. Each of these is part of a different component and represent an algo-

rithm or a problem. For example, a problem evaluation process assesses the problem

solutions, but a learning objective process evaluates the quality of an algorithm. A

problem encoding scheme encodes solutions of a problem and an algorithm encoding

scheme represents an algorithm. The problem parameters only affect the problem do-

main and the algorithm parameters influences the algorithm.

Both domains have exchanged some information and ”services” with each other, so

they can efficiently provide their purpose. A list of operators, some instances, some

problem parameters and some problem fitness values are some essential information

obtained from the problem domain and used by the algorithm domain. The latter pro-

vides solutions to the problem domain resulting from the execution of an algorithm.

The definition of all sub-components should be general enough to ensure the two do-

mains remain independent from each other. Otherwise, an algorithm domain and a

problem domain needs to be written again for each type of problem and algorithms

used to find solutions.

Instead of having some “algorithm operators”, the algorithm domain had an algorithm

execution process. We believe “algorithm operators” are a form of algorithm optimi-

sation; they can act on the various elements of an algorithm.

In the next section, we will review how the algorithm domain elements have been op-

timised in the vast literature of machine learning. We will be discussing the prediction

of performance, the automation of parameter settings, the selection of operators and

the generations of algorithms.

Chapter 2. Optimisation of algorithms 23

2.4. Algorithm optimisation processes

Algorithms can find solutions to problems in many different ways, but some of them

work better than others. Often the quality of these solutions, the length or cost used by

this process can offer a measure of the efficiency and effectiveness of these algorithms.

While effective algorithms are likely to be more successful in finding the desired out-

comes (i.e., optimum or near-optimum solutions), efficient ones can achieve the same

results with less effort or resources.

Optimising algorithms can achieve this ultimate goal, but a manual process can take

a considerable amount of time. Automating the most repetitive parts of such meth-

ods can hasten the whole process. Ultimately, when Moore’s law limits are reached,

a much shorter period than human activities will then be required to process infor-

mation [349]. So automating the optimisation of certain aspects of algorithms could

potentially not only improve their performance, but also the research community could

advance their knowledge base in much faster pace.

To the best of our knowledge, automating the optimisation of algorithms has focused

on four main areas. Its simplest form, “The algorithm selection problem” maps known

algorithms to specific instances of a problem, to predict their performance on unseen

instances [267]. Then, parameter settings can automatically adapt the algorithms pa-

rameters to the problem to be solved [148, 14, 98]. “Selective hyper-heuristics” (SEL-

HH) repetitively chooses operators from a given finite list and applies them to the

current state of the search [78]. However, the most ambitious form of optimisation is

to automate the creation of computer programs, so that ”computers are programming

themselves” [231].

24 Chapter 2. Optimisation of algorithms

2.4.1 Predicting the performance of algorithms

Predicting the performance of algorithms on specific instances can require a lot of

effort, time and attention. Algorithm fitness evaluations completed on a set of training

problems can become useful to predict the performance on unseen instances. Some

algorithms are mapped to a problem domain, by executing solvers to every instance of

the training set (see expression 2.28).

In this context, the algorithm evaluation process has been adapted to focus specif-

ically with one instance and one known algorithm at a time (see expression 2.29),

to allow a three-dimensional Euclidean space being constructed with the tuple <

algorithm, instance, algorithmperformancemeasure > as dimensions (those were

defined respectively in expressions 2.13, 2.2, 2.29). The performance measure can then

be maximised for either an algorithm or an instance assisting in predicting the perfor-

mance of an algorithm on unknown instances (see equations 2.31) [267, 230, 296, 82,

331, 41].

∀instances of a training set : ExecuteAlg(AnAlgorithm,AnInstance) (2.28)

AlgorithmEvaluation(anAlgorithm, anInstance) : (A× I) 7→ IR (2.29)

performancemeasure :< A, I, AlgorithmEvaluation(A, I) > (2.30)

arg max
AεAlgorithm

: ||AlgorithmEvaluation(A, I)|| (2.31)

arg max
IεInstance

: ||AlgorithmEvaluation(A, I)|| (2.32)

2.4.1.1 Previous and recent work

The ”Algorithm Selection Problem” (ASP) [267] has yet to attract a lot of interest.

Nonetheless, the prediction of some algorithms’ performance was successful for some

NP-hard problems (i.e., scheduling and boolean satisfiability problem). Broad libraries

of instances and algorithms were assembled to model algorithm runtimes, using sta-

tistical regression [352, 109, 276, 18, 155].

Chapter 2. Optimisation of algorithms 25

Some portfolios have also been applied to discover new knowledge about some specific

problem and the algorithm domain [186, 185, 187]. These methods often can be lim-

ited to one problem domain. The algorithms also tend to be deterministic and conse-

quently with large instances such techniques can become ineffective. Nonetheless, the

use of non-deterministic-algorithm portfolios has overcome this issue [361, 360, 359].

The prediction accuracy has improved by adding some features to these frameworks.

Online algorithm portfolio has used a form of reinforcement and machine learning.

Some selection mechanisms have successfully reduced the execution time [106, 34,

108, 123, 289, 12, 313, 143, 315]. A filtering system has also improved the num-

ber of instances solved across well-established benchmarks of boolean satisfiability

problem; they identify the likeliness to negatively or positively affect the computer so-

lutions. Some well-known online entertainment providers have adopted these solvers

[320, 229, 266, 40].

Others have taken the advantages of evaluating the algorithms in parallel to achieve

this same aim [151, 147, 194]. The most recent advancement has incrementally added

some parameters and shares the configuration space across the parallel processes [196].

Some parameter setting features have been added and will be discussed in the next sub-

section.

The strengths and weaknesses of different algorithms have also been studied to influ-

ence an algorithm design process. Graphical representation of the performance mea-

sure space is examined and discussed in details. This type of optimisation often clas-

sify the instances in term of level of challenge and often evolve them to study the be-

haviours of an algorithm. Such works have positively brought more understanding the

characteristics of the algorithms and instances of the traveling salesman problem and

the timetabling problem [294, 295, 262, 297, 81]. To conclude this section, Kotthof

should provide a more comprehensive and detailed review of the algorithm selection

problem and its future development [170].

26 Chapter 2. Optimisation of algorithms

2.4.2 Automating parameter settings

The relationship between the parameters of a problem and an algorithm domain was

discussed in section 2.3.4. The performance of an algorithm could be affected pos-

itively or negatively by some parameter settings. Finding its optimised tuning could

take time and resources too [148], despite being a straightforward process. Any of

these parameters can then be tuned by hand or by an automated process, without any

differentiation between both methods. This section will be reviewing the automatic

parameter setting during the problem search.

The first stage often initialises some parameters. This process can be implemented

using some deterministic or stochastic mechanisms (see expression 2.33). In the sub-

sequent stages, at least one parameter is set at a time (see expression 2.34). Expression

2.35 retrieves the value of a given parameter.

InitialiseParam() : {} 7→ AlgParam (2.33)

SetAlgParam(aParam, aV alue) : (AlgParam× V alue)→ AlgParam (2.34)

GetAlgParamV alue(aParam) : AlgParam→ V alue (2.35)

2.4.2.1 Previous and recent work

Self-adaptive metaheuristics should adapt some strategic parameters during their search.

For a long time, Evolution Strategies have influenced each individual step size with

self-adaptation [33, 24, 341, 36, 128, 152, 146, 130] . The mutation rate adjusts itself

to the need of the search but can be quite slow [130]. A covariance matrix adaptation

has also been used for this purpose, with a much quicker response. [129, 132, 131, 36,

19, 156, 269, 209].

Chapter 2. Optimisation of algorithms 27

In recent years, [93, 94, 17] has extended this concept to iterated local search and

memetic algorithms; the perturbation brought by local search adapts itself to prevent

staying in local optima for many generations. Crossover and mutation rates are also

adjusted during the search [189, 204]. Unlike an evolution strategy (ES) there are yet

some explicit self-adaptive methods to be identified.

Self-adaptive metaheuristics are often considered as a form of parameter control. In

contrast, a parameter tuning technique searches for suitable parameters values, which

remains fixed during the run [98]. Such methods have mainly been applied to many

metaheuristics [291, 97, 10, 80, 290]. Still, a minority of software engineering commu-

nities have studied the benefits such techniques could bring to their research [148, 162].

The most recent development has adjusted the parameter of a hybrid metaheuristic

[314]. The parameter tuning outcome can positively guide the design of algorithms.

By exploring a wider range of parameters in a small space of time, the optimised pa-

rameters value should bring more knowledge about parameters setting, some instances

and a pattern of operators.

2.4.3 Selection of operators

Operators randomly chosen are repetitively (1) concatenated and (2) applied on solu-

tions. These new solutions are produced at time t. When t = 0, problem solutions

are randomly created, mapping an empty set to one with at least one problem solution

(see expressions 2.2, 2.1, 2.36 and 2.37). The consecutive actions often select repeti-

tively operators from a list (see equation 2.41), before applying it to the current set of

problem solution (i.e. equations 2.8, 2.16, 2.38, 2.39, 2.40).

28 Chapter 2. Optimisation of algorithms

t ∈ [0] : InitProbSolution(Instance) (2.36)

InitProbSolution() : ({} × Instance) 7→ Solution0 (2.37)

∀t ∈ [1, T imeLimit] : Solutiont = SelectOp(ListOfOp, Solutiont−1) (2.38)

SelectOp(ListOfOp, Solt) : ApplyOp(Choose(listOfOp), Solutionst) (2.39)

SelectOp(ListOfOp, Solt) : (ListOfOp× Solutionsn) 7→ Solutionsm (2.40)

Choose(listOfOp) : ListOfOp 7→ Op (2.41)

The distinction between a problem domain, an algorithm domain, and an algorithm

optimisation process is often unclear. The algorithm chooses some problem operators

using some programming construct (i.e., selection and iteration); it becomes the algo-

rithm optimisation process itself. The functionsApplyOp(Choose(ListOfOp), Solutionn)

(see expressions 2.17 and 2.41) bridges both components; connecting directly to a

chosen problem domain. Despite being aware of the strengths and weaknesses of

each operator, it could be difficult to distinguish between the combinations of specific

operators that can make a positive impact on the search. Consequently, some added

analytical tools may be required to compensate this weakness.

It would be fair to argue this process generates some algorithms. However, a very

long list of operators selected through a learning selective algorithm would need to

be extracted. These algorithms may be syntactically correct, but they would be those

could be extremely long sequences of operators which may (or may not) have some

logical patterns. These algorithms can be very different from the ones programmers

are used to and would program themselves. They would be very challenging to code

again with a high-level programming language. It would not only take a very long

time, but also no control flow would be employed.

Chapter 2. Optimisation of algorithms 29

2.4.3.1 Previous work

The idea behind selective hyper-heuristics arose to compensate the strengths and weak-

nesses of operators, to find more effective problem solutions. Denzinger et al. [89]

have introduced this concept 1996 by to prove mathematical theorems automatically.

It was then formulated by Cowling et al. [79] three years later approximately.

It is worth noting some research communities can shorten the term ”selective hyper-

heuristics” to ”hyper-heuristics”. Hyper-heuristic also includes the generation of (meta-

)heuristics, which is discussed in the next subsection. For the remaining of the thesis,

the terminology hyper-heuristics will encompass both disciplines, and we will differ-

entiate both types adequately.

SEL-HH has been applied to various problems with NP-hard computational complex-

ity; scheduling, packing, constraint satisfaction and routing problems have been stud-

ied. Burke et al. [52] provides a complete survey of such research and the results of the

cross-domain heuristic search challenges can offer more information 1. It is noticeable

in the literature, very little or no comparison with the state-of-the-art outside the field

is provided; making challenging to position precisely the efficiency of such methods.

However, SEL-HH frameworks can offer some many useful benchmarks.

Some frameworks (i.e., the Hyper-heuristics Flexible Framework [242], parHyflex

[324] and hMod [321]) treat all the stochastics operators, and benchmarks in a black-

box. Very little domain knowledge of the problem domain is required; this counter-

intuitive aspect has led to the development of ”cross-domain” hyper-heuristic algo-

rithms. With such tools, explaining the logical flow of instructions could become a

challenging task [270]. For the exception of Hyperion [306], the architecture itself

prevent identifying the operators that have contributed to finding the best solutions.

As a result, this aspect is often missing from the literature. For all that, the ability to

solve significant real-world problems could also be limited.

1These websites can be found in http://www.asap.cs.nott.ac.uk/external/chesc2011/ and
http://www.hyflex.org/chesc2014/

30 Chapter 2. Optimisation of algorithms

2.4.3.2 Recent work

Following the development of these frameworks, the optimisation process has applied

some grammatical rules to guide the selection of operators, so that some patterns of

stochastic operators (i.e., mutation, crossover, ruin-and-recreate, local search) can be

guided more efficiently by a learning process [265, 212, 214, 13, 305].

Many other researchers have used some ”metaheuristic” patterns again to call some

types of operators; those include an EA, a “harmony search” and an “ant colony” as

an inspiration [88, 207, 31, 23, 115, 190]. Some problem-specific operators have been

stretched to whole metaheuristics; various EAs are randomly selected instead of some

genetic operators [120].

The solutions obtained are often compared with those found by another selective

hyper-heuristics. We argue it would be valuable to compare against other optimisation

techniques and the state-of-the-art for each problem. Otherwise, the real contribution

of this method may not be fully appreciated.

Some new trends area of research has started to emerge. For Chen et al. [70] has

published an analysis of the selected operators to solve routing problems. Their re-

sults can then be used again in designing new algorithms. Also, the original concepts

behind selective hyper-heuristic have been revisited to solve more effectively the al-

gorithm selection problem. The operators have become whole EAs that are applied

in parallel to solve a problem. The best solutions found are selected, before the next

iteration [118, 120, 121, 119, 37]. The latest advancement clusters some operators to

improve the selection process [300, 356, 228]. On innovative technique has hybridized

a selective and generative hyper-heuristics [286].

Chapter 2. Optimisation of algorithms 31

2.4.4 Generation of algorithms

This optimisation process should produce and assess some complete algorithms. In

the first step, a set of algorithms should be randomly created using a list of operators

provided by the problem domain (see equations 2.8, 2.42, 2.43). In the subsequent

generations, new sequences of operators are repetitively generated. This is formally

defined in expressions 2.44 and 2.45.

t ∈ [0] : Alg0 = InitialiseAlg(aListOfOp) (2.42)

InitialiseAlg(ListOp) : (ListOfOp× {}) 7→ {Algorithm} (2.43)

∀t ∈ [1, T imeLimit] : Algt = GenerateAlg(aListOfOp,Algt−1) (2.44)

GenerateAlg({Algorithm}) : (ListOp× {Algorithm}) 7→ {Algorithm} (2.45)

arg max
A∈Algorithm

: ||AlgEvaluation(A)|| (2.46)

Similarly to predicting the performance and the automating of parameters setting of

algorithms, this form of optimisation also uses again many functionalities provided by

the problem and algorithm domains. The evaluation of algorithms, a list of operator,

and a sequence of steps provides the provide the key elements required by the genera-

tion process (see expressions 2.8, 2.12 and 2.18). As a result, ordering some operators

effectively to generate some sequences becomes fully independent from the problem

domain.

32 Chapter 2. Optimisation of algorithms

2.4.4.1 Generations of sequential algorithms

The idea of program synthesis is not new; it has originated demonstrate some form

of artificial intelligence [159, 238, 237]. An algorithm encoding scheme chosen can

represent a neural network or a metaheuristic. Nonetheless, sequences of operators

need to be followed to find some solutions [250]. Neural networks, decision trees and

induction rules have been evolved using some genetic algorithms (GA) and a form of

GP [355, 357, 260, 90, 7, 318, 249, 330, 30, 29]. The more recent development in

this area has composed some first-order logical rules for knowledge base benchmarks

dataset [354]. Some effort has also been made with other techniques such as Bayesian

networks and other stochastic methods [193, 235, 122].

In his highly acclaimed book, Koza [172] explains how computers could be pro-

grammed with a GA and a tree-based encoding scheme. This idea was adopted not

only to discover mathematical formulae and circuits [179, 56, 53, 59, 224, 75, 279],

but also evolve EAs with various variants of genetic programming [245, 244, 161, 308,

199, 105, 25, 349].

Another methodology generates some algorithms using a self-assembly approach; the

components autonomously assemble operators based on a statistical analysis of the

configurations [312, 311, 188]. Implicit CGP uses a unique set of signature for some

types of operators to assemble some classifiers [293].

2.4.4.2 Generations of iterative algorithms

Koza [174, 180] also attempted to raise interest in automatically designing iterative

algorithms, but this area of research had remained quite inactive in the GP community.

This type of algorithm repeats some sub-sequences instructions when a specific con-

dition is met. A mechanism encodes an initialisation and an update step, a termination

condition, as well as the body of a loop.

Chapter 2. Optimisation of algorithms 33

The evolution of indefinite loops can be prevented by applying various forms of con-

straints. Some syntactic rules can govern the structure of the algorithms and a maxi-

mum number of times the body of a loop can be executed is often limited [180, 344,

182, 283, 74, 344, 69].

Earlier work have also considered the body of a loop as an automatically defined func-

tion [39, 333, 332, 309, 310]. Sometimes these iterations may only repetitively apply

one operator, which can be too restrictive. These mechanisms aim at keeping control

of the halting problem.

2.4.4.3 Generations of EAs

The automatic design of EAs has adopted another approach. A template guarantees

(1) a population of solutions is initialised, (2) some individuals for reproduction is se-

lected and (3) a valid stopping criterion is applied. The remaining part of the EA is

automatically designed by the evolution.

This approach has successfully improved the quality of problem-solutions found for

various problem including function optimisation and the “royal road” problems [308,

244, 199]. The most recent advancement has evolved only one mathematical expres-

sion of an algorithm [241, 286]; solutions for small instances of the traveling salesman

and vehicle routing problems have been found.

34 Chapter 2. Optimisation of algorithms

The automatic design of evolutionary operators is also an active field of research. The

solutions quality for the problems including function optimisation, timetabling, and the

TSP have been improved in comparison to other techniques. The evolutionary opera-

tor’s order remains unchanged (i.e., crossover then the mutation is applied); GP gener-

ates the code of at least one operator; a selection mechanism of an individual for repro-

duction was evolved [350, 271] as well as some genetic operators [350, 348, 26, 308].

Similarly to parameters tuning, a generated genetic operator remains unaltered each

time an algorithm is executed.

Some algorithm generation operators can also be evolved while exploring an algo-

rithm search space. A generation operator adapts itself to the needs of the algorithm

search. PushGp, AutoDoG and Self-Modifying CGP are examples are examples of

these techniques [302, 141, 138, 303].

2.4.4.4 Hybridisation of generative techniques

During the completion of this work, some grammatical evolution has led to some excit-

ing developments; the grammar structure has been extended to explicitly consider the

features of the grammar being used [200, 201, 144]. Some other explore the mapping

between problems, genotype size and genetic operator [217] and other have generated

some parallel programs [72, 73].

Some hybrid techniques have also extended a generative optimisation process with

some other capabilities. Some generated algorithms performance is predicted too. A

first phase generates many EAs then an algorithm portfolio techniques matches the

performances of those against some inputs [227].

Some recent development has automated the design of selective hyper-heuristic algo-

rithms. Some grammatical evolution techniques generate some algorithms that ran-

domly select some problem-specific operators [275]. The results have improved in

comparison to a more traditional selective hyper-heuristics.

Chapter 2. Optimisation of algorithms 35

2.4.5 Discussion

The optimisation of algorithms involves a rather large variety of research communi-

ties. We have discussed four different types of optimising algorithms; those have been

introduced from its simplest form its most complicated methods. Two trends appear

across the field. The first approach adapts some elements of an algorithm during the

search.

For the exception of [250, 82, 31, 98], these two trends are not often differentiated in

the literature, making it difficult to compare their results against the state-of-the-art

or with another form of optimisation. Also, the lack of consensus about the idea of

termination criteria (i.e., maximum runtime, maximum of evaluations or generations)

can bring another difficulty to efficiently compare the results with other approaches.

2.4.5.1 Self-adaptation

Some elements of a solver can adapt themselves while searching the problem fitness

landscape. Selecting some problem-specific operators selection, controlling some al-

gorithm parameters, and generating some reproductive operators during the algorithm

search adopted such concept.

Many of these methods treat the optimisation processes as a black-box, preventing the

identification of interesting features that human may have yet thought about. Also,

the operators and parameter settings that have positively contributed to finding good

problem solutions may not be recognized easily.

36 Chapter 2. Optimisation of algorithms

2.4.5.2 Training solvers

Performance prediction, parameter tuning and algorithm generation use information

gained from a training set that can be valuable to solve some unseen instances. Many

research tends to focus on one problem (or family of problems), making it challenging

to establish their real level of generality.

Often the literature focuses on the problem solutions obtained and an engineering pro-

cess; more theoretical aspect could be discussed, and some scientific fundamentals

may be discovered. It would be also beneficial if some research community could dis-

cuss how measuring success may be achieved consistently. Similar suggestions have

been made in the field of metaheuristics [298, 112].

2.4.5.3 Learning mechanisms

Meta-learning and hyper-heuristics may share more common features than many of

their practitioners may admit. The architecture of their frameworks and intentions are

very similar. In both fields, a problem domain and a learning mechanism (i.e., an

optimisation method) are applied to accomplish comparable desired outcomes; their

frameworks separate a problem domain and an optimisation process. However, this

decomposition was suggested in earlier research in the use of heuristic to synthesise

some programs automatically [159, 238, 237].

In meta-learning, the learning at a meta level aims at obtaining information about the

performance of the algorithm. A base level is concerned about a task to achieve [331].

In hyper-heuristics, a learning mechanism should operate in the search space of heuris-

tics and improve their performance; this is often referred as the hyper-heuristic level.

A problem domain should contain all the information related to a computational search

problem and some stochastic operators that can be used to find an optima [52, 65, 78].

Chapter 2. Optimisation of algorithms 37

Similar intentions are also achieved by various research communities. Meta-learning

has focused on improving algorithms performance through experience; those can be

deterministic or stochastic methods. Besides, hyper-heuristics selects or generates

heuristics to find solutions of hard computational problems.

The terms “metaheuristics” and “heuristics” are often used interchangeably in the

literature; it can either refer to a stochastic operator or an EAs. Sorenson et al. [299]

have recently suggested that in a metaheuristic can be an algorithm or a framework.

We refer a metaheuristic as an algorithm that can find some solutions by searching a

problem fitness landscape.

To combat this lack of consensus that can bring some confusion, Barros et al. [31]

disambiguates adequately the intent of a heuristic and a metaheuristic in the context

of hyper-heuristics. Metaheuristics can be generated by a form of generative hyper-

heuristics (in grey in figure 2.3) and hopefully, their sequences of stochastic operators

can be studied. A selective hyper-heuristics searches the space of heuristics to gener-

ate a problem solution. These two types of hyper-heuristics must not be confused as

they have different purposes; one generates algorithms and the others one select some

operators.

Figure 2.3: A comparison of hyper-heuristics, metaheuristics and heuristics [31]

38 Chapter 2. Optimisation of algorithms

In some cases, mathematical operators have been considered as heuristics [203, 241,

287] instead of operators. We argue then that hyper-heuristics is a form of meta-

learning that specialises in the selection of heuristics and the generation of meta-

heuristics. In fact, Pappa et al [250] refer to these two fields as “meta-learning/hyper-

heuristics”. Their classification of meta-learning and hyper-heuristics methods in-

cludes the ”selection” and ”generation” sub-categories (see figures 2.4 and 2.5). How-

ever, meta-learning has a broader scope than hyper-heuristics.

Figure 2.4: Classification of meta-learning methods as proposed by Pappa et al. [250]

Figure 2.5: Classification of hyper-heuristic techniques as proprosed by Pappa et al.
[250]

Chapter 2. Optimisation of algorithms 39

2.5. Conclusion

Some important concepts were introduced, and we will be referring to this chapter in

the remaining sections of this document. We are not pretending this decomposition

offers an answer to all questions, but it defines and differentiates all the features of this

vast field of research suitably.

We will be generating some metaheuristics using a graph-based algorithm encod-

ing scheme and an evolution strategy (ES); our focus will be on a generative hyper-

heuristics (as highlighted in gray in figure 2.3). The next chapter introduces our chosen

problem domains.

40 Chapter 2. Optimisation of algorithms

Chapter 3.Three problem domains 41

Chapter 3. Three problem domains

Contents
3.1 Common features . 43

3.1.1 Population operators . 44

3.1.2 Termination criteria . 45

3.1.3 Summary . 48

3.2 The Mimicry Problem . 49

3.2.1 The chosen encoding scheme 50

3.2.2 Fitness evaluation . 51

3.2.3 Problem parameters . 52

3.2.4 Problem operators . 53

3.2.5 Summary . 57

3.3 The Traveling Salesman Problem 58

3.3.1 The chosen encoding scheme 60

3.3.2 Fitness evaluation . 61

3.3.3 Parameters . 63

3.3.4 Problem operators . 64

3.3.5 Summary . 69

3.4 The Nurse Rostering Problem 70

3.4.1 The chosen encoding scheme 73

3.4.2 Fitness evaluation . 76

3.4.3 Problem Operators . 80

3.4.4 Summary . 84

3.5 Discussion and conclusion . 85

42 Chapter 3.Three problem domains

The previous chapter models some algorithm optimisation processes independently

from a given problem domain. Selective and generative hyper-heuristics have adopted

this level of separation between a search method (i.e., a learning mechanism) and the

problem domain [52, 78, 31, 53].

A majority of optimisation processes specialises in one problem or a family of prob-

lems. Consequently, we have chosen three different problems to demonstrate the gen-

erality of our techniques. Those are not only hard to solve, but also have unique

features. Two NP-hard combinatorial problems have many real-life instances and

benchmarks available. All these problems have commonly defined optimality concern-

ing one objective function, which suits well many deterministic and non-deterministic

methodologies. When the size of these instances grows large, it becomes unfeasible

to find a solution through an exhaustive search. On that basis, a metaheuristic can find

a solution in some reasonable amount of time, but near optimum may only be obtained.

We will introduce a discrete optimisation problem generalising the ”OnesMax” prob-

lem. The so-called ’Mimicry problem’ aims to find a bitstring that is identical to a

fixed target bitstring[146]. Then we discuss our second problem; the traveling sales-

man problem finds the shortest tour that visits a collection of cities [16] . Finally, we

discuss a scheduling problems that should assign shift to nurses in an optimal way [50].

For purpose of clarification, the common features of the three problem domains are

discussed in the next section.

Chapter 3.Three problem domains 43

3.1. Common features

The description of our three problem domains uses the general characteristics and fea-

tures introduced in section 2.2. These elements are general enough to communicate

the concepts and ideas behind each problem. Each problem is introduced in term of

encoding scheme, problem evaluation process, and problem operators. We will also

specify a problem statement and provide a list of operators at the end of sections [3.2

- 3.4].

In this work, e will be using some well-known operators; such as mutation, crossover,

ruin-and-recreate and local searches to generate some hybrids metaheuristics. Muta-

tion operators alter some ”genes” to bring some diversity to the search. These changes

can be positive or negative. Crossover operators takes some genes from two parents

(i.e., solutions) to produce an offspring. Ruin-and-Recreate operators often mutates

some genes of an individual and then improves the solution. Finally, Local-search

operators find some candidate solutions close to an individual in the problem search

space.

In generative and selective hyper-heuristics, every operator often returns one solution.

Some selective hyper-heuristic frameworks manage a population of solutions in a vec-

tor [242, 324, 306]. Returning one solution adapts the operators to this data structure.

In generative hyper-heuristics, a consistent signature for every operator can be used

more effectively with a form of genetic programming [245, 244]. For that reason,

crossover operators often produce one offspring instead of two.

Some categories of non-deterministic operators may be detrimental or inapplicable to

a particular problem domain. Therefore only crossover and mutation operators are

commonly discussed across our three problem domains. Ruin-and-recreate and Local-

search operators are only used when it was identified favourable. Nonetheless, each

problem domain frequently includes some population operators as well as some termi-

nation criteria. .

44 Chapter 3.Three problem domains

3.1.1 Population operators

Our metaheuristics should sample some candidate solutions referred as “populations

p and t”. Individuals of p can survive for more than one generation, but individuals

of t can be much shorter. Their ephemeral life-span terminates when a metaheuristic

selects some new individuals for reproduction.

The individuals of t are “tweaked” by some problem-specific operators; new solutions

replace the previous ones. All these operations are defined in expressions [3.1 - 3.5].

InitPopulation(ProblemParam, µ, λ) : 7→ Solutionµ+λ (3.1)

Restart(ProblemParam, µ) : 7→ Solutionµ (3.2)

SelectElitism(p) : Solutionµ 7→ Solutionλ (3.3)

ReplaceLeastF it(p, t) : Solutionµ × Solutionsλ 7→ Solutionsµ (3.4)

ReplaceRandom(p, t) : Solutionµ × Solutionsλ 7→ Solutionsµ (3.5)

InitPopulation randomly generates a population p and t. The unique problem param-

eters and encoding scheme specify the solutions characteristics generated by this

function. The number of parents is defined by The operator parameter µ defines

the number of parents p and the number of temporary solutions (i.e., t by λ).

SelectElitism selects the best individuals for reproduction. This selection operator

should help to descend towards a global minimum more efficiently, without

guiding the search into a local optimum.

ReplaceLeastFit identifies the individual of p with the highest fitness value and re-

places it if a solution has a lower fitness value. We will be seeking to miminise

the solutions of every problem. This operator should maintain a population with

the best solutions. However, we are aware this feature may contribute to reach-

ing local optima without leaving it. We hope our suite of problem-specific oper-

ators should perturb enough the solutions to prevent this situation.

Chapter 3.Three problem domains 45

ReplaceRandom selects individuals of p randomly and replaces them with some in-

dividuals of t. This operator applies no criterion. As a result, a much poorer

quality solution can replace an individual of p of better quality.

RestartPopulation initialises again randomly all the individuals of p. This opera-

tor can help moving forward the search within the fitness landscape, especially

when it remains in a local optimum.

3.1.2 Termination criteria

Metaheuristics may stop when it has found an ideal solution, or it has run out of time.

In this thesis, optimum solutions are likely to have a solution fitness value set to zero;

all our problem fitness evaluation return a relative value (see sections 3.2.2, 3.3.2 and

3.4.2). When a solution fitness value becomes negative, it indicates a lower optimum

solution may have been found.

A budget of evaluations replaces the concept of time; the execution time can, therefore,

vary for metaheuristics, as different instances are attempted to be solved. We anticipate

more time may be required to find some solutions for the most challenging instances. A

“budget of evaluations” should compare the performance of our generated algorithms

fairly and consistently across the problem domains and their instances.

Some of our experiments evolve not only the order of operators but also iterations.

A maximum number of evaluations MaxEval should bound the execution of meta-

heuristics, preventing issues of program termination occurring.

In selective hyper-heuristics, it is not uncommon each time an operator alters a solu-

tion the new individual is evaluated [242, 324, 306]. Our generative hyper-heuristics

will use this technique again and increase an evaluation counter called EvalCount.

46 Chapter 3.Three problem domains

For clarification, we will assume a body of the loop is executed when expressions [3.6

- 3.12] are evaluated as true. Otherwise, the loop terminates. Our reasonably sized set

of termination criteria guarantees each expression can terminate a loop without any

other mechanism. These termination criteria have been documented in [205].

Figure 3.1: A process showing the mechanism of a loop

3.1.2.1 Number of evaluations only

This category of termination criteria relies only on the number of evaluations. Some

of the expressions rely upon only on a sample of the evaluation.

EvalCount ≤MaxEval : (IN × IN) 7→ IB (3.6)

EvalCount ≤ Limit : (IN × IN) 7→ IB (3.7)

EvalCount ≤ MaxEval

2
: (IN × IN) 7→ IB (3.8)

EvalCount >
MaxEval

2
andEvalCount ≤MaxEval : (IN × IN) 7→ IB (3.9)

EvalCount ≤MaxEval stops a loop as soon as all the evaluations have been used.

EvalCount ≤ Limit ends a loop when a randomly set number of evaluations has been

reached. A variable referred as Limitmust respect the inequalityEvalCount ≤

Limit ≤MaxEval.

EvalCount ≤ MaxEval
2

terminates a loop when half of the evaluations have been used;

the value of Limit = MaxEval
2

. It is hoped some stage evolution may be gener-

ated.

Chapter 3.Three problem domains 47

EvalCount > MaxEval
2

and EvalCount ≤MaxEval executes the body of a loop when

half of the evaluations have been used. This type of condition should help gen-

erating some stage evolution.

3.1.2.2 Number of evaluations and fitness value

The number of evaluations and the quality of the best individual are the two criteria

that can determine whether a loop should terminate (see expressions [3.10- 3.14]). In

our termination criteria, we consider a search has reached the highest mountain when

no distance exists between the known optima and the best individual of p. Therefore

we use the equality p.fitness = 0, where the variable p.fitness returns the fitness of

the best individual of p (see section 3.1.1).

EvalCount ≤MaxEval or p.fitness > 0 : (IB × IN × IN) 7→ IB (3.10)

EvalCount ≤MaxEval or p.fitness > goal : (IB × IN × IN) 7→ IB (3.11)

EvalCount ≤ Limit or p.fitness > goal : (IB × IN × IN) 7→ IB (3.12)

EvalCount ≤MaxEval or IsBetter(noEval) : (IB × IN × IN) 7→ IB (3.13)

EvalCount ≤MaxEval or IsBetter(1) : (IB × IN × IN) 7→ IB (3.14)

EvalCount ≤MaxEval or p.fitness > 0 either terminates a loop when all the evalu-

ations have been used or when an optimum solution is found.

EvalCount ≤MaxEval or p.fitness > goal ends a loop when a near-optimum (i.e

goal = 0.05) has been reached or all the evaluations have been used.

EvalCount ≤ Limit or p.fitness > goal ends a loop when a near-optimum (i.e goal =

0.05) has been reached or the problem evaluations used have reached a limit ran-

domly set. A variable referred asLimitmust respect the inequalityEvalCount ≤

Limit ≤MaxEval,.

48 Chapter 3.Three problem domains

EvalCount ≤MaxEval or IsBetter(noEval) stops the execution of a loop, when a

known optimum is found or when the search remains for too long in a local

optimum [319]. A parameter referred as Probation period defines the minimum

number of evaluations before the gradient of p is assessed.

EvalCount ≤MaxEval or IsBetter(1) terminates the execution of a loop when the

population p has not improved over one generation. It is a special case of the

previous termination criterion.

3.1.2.3 Random Walk

The idea behind simulated annealing is to search randomly the fitness landscape, be-

fore applying a hillclimber; in the literature it is refferred as a “walk”. A probability

Prob = e
best(p)−best(t)

EvalCount is calculated before compared against a random number gen-

erated at each generation (i.e R); Prob ∈ [0, 1] and R ∈ [0, 1]). Prob and R help

evaluating an acceptance criteria. When it is true, R ≤ Prob or the newly generated

solution is better than its parent. This acceptance criteria is used in a selection instead

of a loop [205].

Expression 3.15 is inspired by this acceptance criteria. The condition 3.15 stops when

one of the three states is met; (1) when all the evaluations have been used, (2) when an

optimum solution is found, or (3) the end of a random walk has been reached.

EvalCount≤MaxEval or p.fitness > 0 orWalk() : (IB×IB×IN×IN) 7→IB

(3.15)

3.1.3 Summary

The features introduced in section 2.2 are not only being used to define every problem

domain. Also, some population operators and some termination criterion have been

specified, so that the search space of hybrids metaheuristics can be widened.

Chapter 3.Three problem domains 49

Problem-specific operators return only one solution; a problem-specific operator eval-

uates this solution each time it is called. It has been designed in this manner to suitably

support our learning mechanism.

3.2. The Mimicry Problem

In a natural environment, some creatures share common patterns with others species

that are distasteful to their predators [281]. As a discrete problem, the mimicry prob-

lem minimises the numbers of different bits between two bitstrings; a full problem

statement and an example of an optimum solution are given below.

Table 3.1: Problem statement of the mimicry problem

Problem statement

The purpose of the Mimicry problem is to imitate a pattern of bits,

so that two bitstrings become identical [349, 146].

Figure 3.2: An optimum solution of a the mimicry problem, for an instance of 10 bits

An optimum solution should have two identical bitstrings, as illustrated in figure 3.2.

OnesMax problem is a particular instance of the mimicry, with its pattern restricted to

1s. In comparison, the mimicry problem sets more complex pattern using 0s and 1s.

Some of them can be generated randomly, some others by hand; however, a prototype

remains the same during a run. Also, OnesMax’ fitness evaluation tends to sum all

the 1s, and an optimum solution fitness value is equivalent to the length of the bits.

The Mimicry evaluation often uses a form of Hamming distance; this is discussed in

section 3.2.2.

50 Chapter 3.Three problem domains

The Mimicry has yet to attract the same attention as OnesMax. Optimum solutions

for the OnesMax problem tends to be shorter than 2000 bits[347, 316, 206] and for

the Mimicry problem a quarter of that amount [349, 146]. Our interest lies in finding

solutions for much more substantial instances using generated solvers.

As a black-box problem, no direct comparison is allowed by any solvers or operators

applied on a solution. Only meta-knowledge can indicate how similar or dissimilar

are both bitstrings. This constraint raises the level of challenge and should make it

relevant to the research community and our research.

3.2.1 The chosen encoding scheme

A pair of bitstrings encodes a mimicry solution (see figure 3.2 and expressions 3.16,

3.17, 3.18); a prototype stores a pattern of bits that is imitated by an imitator. Both

bitstrings have the same fixed number of bits and are randomly generated during the

initialisation process.

A prototype remains unchanged during the lifespan of the solution and passes from

one solution to another during one run. The mimicry-specific operators only alter the

imitator.

Prototype : {p1, ..., pL}, p ∈ {0, 1} (3.16)

Imitator : {i1, ..., iL}, i ∈ {0, 1} (3.17)

Solution : {I, P} (3.18)

Chapter 3.Three problem domains 51

3.2.2 Fitness evaluation

Our purpose is to minimise the Hamming distance between a prototype and an imita-

tor. The total number of bits that differs between the two bitstrings is computed. The

difference between each bit (i.e. |pi − ii|) is 0 when the bit are similar or otherwise 1

(see equation 3.19).

The fitness value is generalised in every instance. The evaluation process divides the

Hamming distance by the length of the substrings. Every solution has consequently

a fitness value in the range of [0, 1], as illustrated in figure 3.3. An optimum solution

has a Hamming distance of 0, while the least suitable solution has a value of 1. In this

solution, the imitator is in bold to indicates every bit differs from the prototype. The

two other solutions provide examples with varying fitness values.

Figure 3.3: Solutions of the mimicry problems for an instance of 10 bits. A Hamming
distance is given with the fitness value of each solutions. The bits in bold in the imitator
are dissimilar from the the prototype.

HammingDistance(aSolution) :

Length∑
i=0

|pi − ii| (3.19)

ProblemEvaluation(aSolution) : HammingDistance(Length)/Length (3.20)

ProblemEvaluation(aSolution) : Solution 7→ IR 7→ [0, 1] (3.21)

52 Chapter 3.Three problem domains

It is also worth noting, a Hamming distance of 5 bits for an instance of 1000 bits should

have a higher quality than for an instance of 10 bits. Using expression 3.20, the first

solution (i.e. 1000-bit instance) would score less than 1% (0.005) and for the 10-bit

solution 0.5. As a result, some relevant and meaningful information about the quality

of a solution is suitably included in the fitness value.

3.2.3 Problem parameters

All the mimicry parameters are described below.

Instance : Length ∈ IN (3.22)

Prototype ∈ [0, 1]Length (3.23)

MutRate ∈ [0, 1] (3.24)

AdaptiveMutRate ∈ [0, 1] (3.25)

ProblemParam = {Instance, Prototype, AdaptiveMutRate,MutRate} (3.26)

An instance or Length is characterised by the number of bits composing the proto-

type and the imitator of a solution. Referred as the Length, this parameter defines

the instance of this problem as a natural number (i.e. [1..∞]); this is formally

defined in equation 3.22. For example, an instance sets to 10 then its solutions

have 10 bits, and an instance sets to 1,000 generates solutions with 1,000 bits.

Optimum solutions for the second instance are more difficult to find compared

against the first one. As the length increases, it becomes challenging to imitate

perfectly an imitator to its prototype.

A prototype sets the pattern of bits to be imitated by each solution.

Mutation rates set defines the number of bits that are mutated by some mutation op-

erators. MutationRate remains unchanged during the search (see equation 3.24).

The adaptive mutation rate is adapted to the search needs. This process is dis-

cussed in the next section. Both rates must have a value between 0 and 1, where

0 indicates no mutation and 1 should mutate a whole imitator.

Chapter 3.Three problem domains 53

3.2.4 Problem operators

In an evolutionary context, bitstring operators should generate a new mimicry solution

from at least one individual. Our chosen non-deterministic operators (i.e., crossover

and mutation) manipulates the imitator to produce only one solution. This solution has

the same prototype but should have a different imitator.

3.2.4.1 Crossover operators

Figure 3.4 and equations 3.27, 3.28, 3.29 formally define several traditionnal crossover

techniques; those are considered as valid recombination operators with a bitstring en-

coding scheme [4].

CrossoverOnePoint(Solution1, Solution2) : (Solution× Solution) 7→ Solution

(3.27)

CrossoverTwoPoints(Solution1, Solution2) : (Solution× Solution) 7→ Solution

(3.28)

CrossoverUniform(Solution1, Solution2) : (Solution× Solution) 7→ Solution

(3.29)

All these operators create only one offspring, to reduce the level of disruption that a

crossover can bring to one solution. A crossover can either be destructive or construc-

tive. For that reason, Herdy et al. [146] have successfully adopted crossover operators

that produce only one solution. However, we may be trading preservation with a lower

survival rate for individually created with such crossover [301].

CrossoverOnePoint splits into two parts the imitator of two solutions. The first part

of the imitator of Solution1 is recombined with the second part of the imitator

Solution2. A crossover point is randomly selected so that 1 ≤ point ≤ Length.

54 Chapter 3.Three problem domains

Figure 3.4: Crossovers techniques applied to the imitators of the two solutions

CrossoverTwoPoints uses two crossover points instead of one. Every bit of the imita-

tor of Solution1 before the first crossover point is copied to the new imitator. The

middle section of the imitator of Solution2 is recombined to the new bitstring,

before adding the last part of the imitator of the Solution1 again.

CrossoverUniform copies bits randomly from the imitator of Solution1 or Solution2

randomly.

3.2.4.2 Mutation operators

A few randomly chosen bits are changed from 0 to 1 and from 1 to 0. This type of

operations brings some diversity that can improve or weaken the quality of a solution.

It would be undesirable to flip a corrected bit of an imitator; an error would introduce.

With a small instance, the error could be corrected easily. However, we anticipate the

probability to correct the erroneous bit decrease as the length increases.

Chapter 3.Three problem domains 55

With that in mind, we have chosen the mutation operator used by the state-of-the-art

[146], and one that adapts the mutation rate during to the optimisation run. We have

also devised some mutation operators that maintain the quality of a solution or im-

proves it; these “hill-climbers” have been labelled with the two letters ”HC”. Those

may limit search space but should help to find a near-optimum or optimum solutions.

Such operators are trading quality against using more fitness evaluations.

All these operators are illustrated in figure 3.5, defined in equations 3.30, 3.31, 3.32,

3.33, 3.34. Their behaviour is described below.

MutateOneBit(aSolution) : Solution 7→ Solution (3.30)

MutateUniformV ariableRate(aSolution) : Solution 7→ Solution (3.31)

MutateOneBitHC(aSolution) : Solution 7→ Solution (3.32)

MutateUniformHC(aSolution) : Solution 7→ Solution (3.33)

MutateUniformSubSequenceHC(aSolution) : Solution 7→ Solution (3.34)

MutateOneBit selects randomly one bit of an imitator and flips it; 0 becomes 1, and

1 becomes 0. The state-of-the-art [146] used this operator.

MutateUniformVariableRate uses an adaptive mutation rate and adjusts over time

this parameter in response to the state of the search obtained from the optimisa-

tion run.

The “One-Fifth rule” has been implemented as suggested by Rechenberg in

1973 [150]. The operator is increasing the adaptive mutation rate if a 1
5

of the

offsprings are fitter than their parents. It is decreased when less than 1
5

of the

children are fitter than the parents, but remain unchanged when 1
5

of the off-

springs have a better fitness value than the parents.

56 Chapter 3.Three problem domains

Figure 3.5: Mutation techniques applied to the imitators of a solution

Our adjustments use a step of 1
Length

so that the increase and decrease in the

adaptive mutation rate has a relation to the instance. Short instances are likely to

recover more easily when an error is introduced. Still, the probability to correct

such mistake becomes reduced as the length increases. This operator is added

for completeness, despite being discouraged by the state-of-the-art [146].

MutateOneBitHC applies the mutateOneBit operator repetitively. This process stops

when its fitness has improved (i.e., one different bit has been flipped) or four

attempts have been made.

Chapter 3.Three problem domains 57

MutateUniformHC also applies repetitively the MutateOneBit operator. In this case,

the operator stops when a maximum number of flips has been applied. Only

flips that have made a positive impact on the solution are kept. The number of

flips is computed from the mutation rate parameter and the number of bits in the

instance; i.e. noF lip = mutationRate× Length.

MutateUniformSubSequenceHC flips all the bits of a sub-string. When an error is

introduced, then the alteration is revoked. For consistency, the maximum num-

ber of flips is calculated using the same formulae as the MutateUniformHC oper-

ator. As a result, any sub-strings position are defined as [start, start+noF lip].

A start position is randomly chosen within the range [1, Length]. When the end

position exceeds the length of an instance (i.e., start+noF lip > Lentgh), then

the sub-string is shortened as the like a bit of the bitstring becomes the end of

the sub-sequence.

3.2.5 Summary

This section has introduced the mimicry problem domain. A pair of bitstring encodes

a solution, but the operators listed in table 3.2 change only the bits from an imitator.

Those form a complete set. Either the state-of-the-art or other contexts have applied

these operators successfully.

Table 3.2: Mimicry operators with their opcode and the number of evaluations used.

OpCode Operator(s) Number of evaluations

0 CrossoverOnePoint() 1

1 CrossoverTwoPoints() 1

2 CrossoverUniform() 1

3 MutateOneBit() 1

4 MutateOneBitHC() [1,4]

5 MutateUniformSubSequenceHC() Length * MutationRate

6 MutateUniformHC() Length * MutationRate

7 MutateUniformVariableRate 1

58 Chapter 3.Three problem domains

3.3. The Traveling Salesman Problem

For a long time, researchers have studied routing problems. In the 18th century, Eu-

ler generalised the ”Könisberg bridges” problem, which is often regarded as the birth

of Graph theory. 100 years later an extension to his formulation allowed solving the

mail carrier and ”commis-voyageur” problems. Since, this concept has successfully

designed some circuits as well as many of forms of networks [44, 277, 16].

On numerous occasions, suitable routing problem solutions form some closed circuits;

those passe only once on a bridge, on the street, a city or in a node of a graph and tend

to start and end at the same point. Formally defined as ”Hamiltonian cycles”, a graph

G = {V,E} is used where each vertex V is visited only once as a constraint.

It is believed the traveling salesman problem (TSP) originated from the Icosian game

developed by the mathematician W. R. Hamilton more than 150 years ago. The pur-

pose was to devise a route a traveller that needed to visit 20 different cities, without

visiting any of them twice. Solutions start and end in the same city (i.e., those are con-

sidered as Hamiltonian tours). Otherwise, they are thought to be Hamiltonian paths

(see figure 3.6).

In the 20th century, Karl Menger set the task of finding the shortest path connecting

each vertex whose pairwise distances are known. [252, 44, 277, 16]. This deceptively

simple goal of the “traveling salesman problem” stated in table 3.3 includes all these

elements.

Figure 3.6: Possible solutions for the Icosian game [252]

Chapter 3.Three problem domains 59

Table 3.3: TSP Problem statement

Problem statement
Given a set of cities along with the cost of travel between each pair of them,
traveling salesman problem, or TSP for short, is to find the cheapest way
of visiting all the cities and returning to the starting point [16].

Figure 3.7: An optimum solution of a TSP instance made of 5 cities.

Figure 3.7 has five cities and its distance is 24; we will discuss in subsection 3.3.2

reasons why this Hamiltonian cycle is one optimum solution. At the time of writ-

ing, no general method can find optimum solutions for every instance of the TSP. The

state-of-art includes Concorde, an integer programming system [15], Lin-Kernighan

heuristics a local search heuristics [145] and an edge-assembly crossover [236]. These

three methods are considered to be the state-of-the-art and have found many of the

optima of the benchmarks available on TSPLIB 1 and the national TSP instances 2.

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
2http://www.math.uwaterloo.ca/tsp/world/index.html

60 Chapter 3.Three problem domains

Evolutionary algorithms have found some known optima for instances up to a few hun-

dreds of cities [116, 240, 181, 86, 28, 102, 163, 113, 219, 117]. When metaheuristics

couples an EAs with a local search instances up to 1000 cities can be solved. However,

their performance can decrease with the more substantial tours [232, 177, 124]. With a

Memetic Algorithm, the genetic operators generate the genetic code of a TSP solution,

but it remains unchanged during its life. Then, the local search mechanism performs

individual learning by refining the quality of the TSP solutions; this brings an element

of cultural evolution during a TSP-solution lifespan.

Iterated Local Search can “jump” from local optima to a nearby one. A tour is altered

by a mutation operator to escape the local optima. These changes need to be big

enough to prevent the search “falling” again in the same local optima. Readers who

wish to read further about Iterated Local Search, in general, will find [198, 176] very

informative.

3.3.1 The chosen encoding scheme

Formally, a graph encodes a tour (see equation 3.35), where a node represents a city

and an edge distances between each pair (i.e., a Euclidean vector). An array of integer

often encodes this graphical representation; the sequence of cities are arranged in a

certain order to describe a tour and referred as permutations. The first city indicates

the start of a tour, then the subsequent cells the cities that need to be visited. The last

and first cities are paired to form a cycle. Each city is given a unique index that is used

to form cyclic permutations; as formally defined in equations 3.36, 3.37, 3.40.

Figure 3.7 illustrates city A becomes index 1, city B index 2 up to city E index 5 and

the tour is written again as this cyclic permutation {1, 2, 4, 3, 5}. Several examples of

TSP solutions is given in 3.8, with two feasible solutions and one infeasible.

Chapter 3.Three problem domains 61

The pairing of cities defines the direction of each edge (i.e., one city to the subse-

quent one). The edge weight represents the distance to travel from one city to another

one. Distance matrices or a list of Euclidean coordinates can provide these distances

[126]. We will be adopting the latter to comply with the standard of TSPLIB defined

by Reinelt [264]. Equations 3.38 and 3.39 formally defines formulae to find the weight

of each edge.

G = {V,E} (3.35)

Indices : 1..NoOfCities (3.36)

Tour : {i1, .., iNoOfCities} (3.37)

EuclideanDistance(xi, yi, xj, yj) : round(
√

((xi − xj)2 − (yi − yj)2)) (3.38)

EuclideanDistance(xi, yi, xj, yj) : (IR× IR× IR× IR) 7→ IN+ (3.39)

Solution : {Tour, ListOfEuclideanCoordinates} (3.40)

3.3.2 Fitness evaluation

The problem statement (see table 3.3) suggests the best tour consist of the shortest pos-

sible Hamiltonian cycle for a distinctive graph. The weight of every edge connecting

the cities are added together to calculate the tour length (see equations 3.41 and 3.42).

The function nextCity(index) retrieves the following city in a permutation to calcu-

late the weight of an edge. When it is repetitively called from the first to the last town

(i.e., a cycle), then the tour length can be computed.

62 Chapter 3.Three problem domains

Length(city1, city2) : EuclideanDistance(xcity1 , ycity1 , xcity2 , ycity2) (3.41)

LengthOfAtour :

NoOfCities∑
i=1

Length(i, nextCity(i)) (3.42)

ProblemEvaluation(aSolution) :
TourLength−Mimina(Instance)

Minima(Instance)
(3.43)

ProblemEvaluation(aSolution) : Solution 7→ IR 7→ [−∞,∞] (3.44)

Known optima can vary in length from one instance to another. For example the

instance dj38 for the country Djibouti has 38 cities and an minima of 6,656 km, and

Canada (instance ca4663) short tour is 1,290,319 km [77]. A relative error provides

a more consistent fitness value and also compare naturally against the state-of-the-art.

For these reasons, the problem evaluation function could return a value between −∞

and∞.

Figure 3.8: Examples of TSP solutions for a 5-city instance.

Chapter 3.Three problem domains 63

3.3.3 Parameters

The parameters influencing the instance and TSP-specific operators are listed in ex-

pressions [3.45 - 3.50].

Instance : Name ∈ String (3.45)

NoCities ∈ IN+ (3.46)

Data : (indexOfACity,X − coor, Y − coord)NoOfCities (3.47)

Depth ∈ [0, 1] (3.48)

Intensity ∈ [0, 1] (3.49)

ProblemParam : {Instance,NoCities,Data,Depth, Intensity} (3.50)

Each instance has a unique name composed of some letters and a number. The latter

defines some cities, and the two letters produce a unique identifier (i.e., dj38). How-

ever, some instances may have the same amount of cities (see equation 3.45). The

latter should be positive (see expression 3.46). We believe Hamiltonian cycles become

interesting with a minimum of 4 vertices; with a lower number of nodes only one tour

exists. Our experiments will find solutions for instances ranging from 38 to more than

ten thousand cities.

We have adopted a list of Euclidean coordinates (i.e., Data in expression 3.47) consis-

tent with the TSPLIB format described in [264]. These tuples provides the X and the

Y coordinates of any cities needed to calculate the Euclidean distance (see equations

3.38, 3.41, 3.42, 3.47).

64 Chapter 3.Three problem domains

The remaining parameters can affect positively or negatively the performance of some

operators. The intensity of the mutation defines the number of cities to be shuffled in

a permutation and the depth the number of iteration used in a local search. Both pa-

rameters are formally defined in equations 3.48 and 3.49. The next section introduces

in detailed all the TSP-specific operators.

3.3.4 Problem operators

Permutations can be altered using a variety of deterministic and non-deterministic op-

erators. We have chosen some popular crossover, mutation, and local search operators

specialised for exploring the TSP solution search space [86, 113, 117, 219, 163, 102,

28, 145, 133].

We adopted the approach suggested by the Automated Scheduling, Optimisation, and

Planning (ASAP) group, during the development the Hyflex framework [242]. Our

TSP problem domain includes some heuristics divided into three subsets; crossover,

mutation, and local search operators. All of them only produce one TSP candidate-

solution and evaluate the length of its associated tour.

3.3.4.1 Crossover operators

With some population-based metaheuristics, crossover operators tend to probe a much

larger portion of the TSP-solution search space and bring some diversification to a

population of solutions. Crossover operators often produce two-offsprings, from two

parents, but they can also produce only one offspring. The function signature uses the

latter (see equations 3.51, 3.52, 3.53), bringing a certain consistency with the other

categories of operators.

Chapter 3.Three problem domains 65

Applying a crossover operator onto two permutations is likely to produce some infea-

sible tours. A mechanism that guarantees to transform two Hamiltonian cycles into

one prevents the creation of Hamiltonian paths. The research community has adopted

this specialism for a long time, instead of letting the evolution finding the Hamiltonian

cycles naturally.

OX(Sol1, Sol2) : (Solution× Solution) 7→ Solution (3.51)

PMX(Sol1, Sol2) : (Solution× Solution) 7→ Solution (3.52)

V R(Sol1, Sol2) : (Solution× Solution) 7→ Solution (3.53)

SEC(Sol1, Sol2) : (Solution× Solution) 7→ Solution (3.54)

Order Based Crossover (OX) chooses a sub-tour in one parent and imposes the rel-

ative order of the cities of the other parent [86]. In figure 3.9, the relative order

of the sub-tour {2, 4, 3} of Tour no 1 has been assigned to the second tour (i.e.,

Tour no 2).

Partially-Mapped Crossover (PMX) copies an arbitrarily chosen sub-tour from the

first parent into the second parent, before applying minimal changes to construct

a valid tour [113, 117]. Figure 3.9 illustrates the sub-tour {2, 4, 3} of the first

parent has been copied to the recombined tour. To form a Hamiltonian cycle, the

city no 2 has been swapped with city no 5 and the city no 1 with no 4.

Voting Recombination Crossover (VR) uses a randomized Boolean voting mecha-

nism to decide from which parents each city is copied from [219]. Our simula-

tion in figure 3.9, has selected position 1, 3 and 5 to choose a city from the first

parent and the remaining one from the second individual.

Subtour-Exchange Crossover (SEC) preserves randomly selected sub-tours from both

parents to construct one new offspring. Some minor adjustments are applied to

build a feasible tour [163]. The recombined tour in figure 3.9 is composed of the

first two cities of the first parents and the remaining ones from the second tour.

It worth noting, the city no 1 correctly appear only once in the solution, and it

has been replaced by city no 5, to prevent an invalid tour.

66 Chapter 3.Three problem domains

Figure 3.9: Examples of TSP solutions for a 5-city instance.

3.3.4.2 Mutation operators

The cities’ order of a permutation are altered with the hope of refining and reducing

the tour length. Swapping two cities, inversing sub-tours, rearranging the whole per-

mutation or part of it can suitably produce a new tour from an existing one. These

unary operations should transform a Hamiltonian cycle to another one without any

added specialism; no city or sub-tours are interchanged between solutions.

InsertionMutation(aSolution) : Solution 7→ Solution (3.55)

ExchangeMutation(aSolution) : Solution 7→ Solution (3.56)

ScrambleMutation(aSolution) : Solution 7→ Solution (3.57)

SimpleInversionMutation(aSolution) : Solution 7→ Solution (3.58)

Chapter 3.Three problem domains 67

Figure 3.10: Examples of TSP solutions for a 5-city instance.

Insertion Mutation (IM) moves a randomly chosen city in a tour to randomly se-

lected place [102]. In figure 3.10, the city no 5 has moved to the fourth position.

Exchange Mutation (EM) swaps two randomly selected cities. The cities 3 and 5

were swapped in figure 3.10 [28].

Scramble Mutation (SM) rearranges a random sub-tour of cities [86]. Hyflex ap-

plies this mutation operator on a sub-tour and the whole tour. Examples of both

operators are given in figure 3.10.

Simple Inversion Mutation (SIM) implements a 2-opt heuristics, that is discussed

in the next section. In our example given in figure 3.10, the order of the sub-

sequence /5, 1, 3/ has been inverse. In this instance, the outcome produces the

same tour as the exchange mutation. It is worth noting, with longer permuta-

tions, it is less likely to occurs.

68 Chapter 3.Three problem domains

3.3.4.3 Local search operators

Local searches iteratively move from one permutation to a neighbour tour. Tradition-

ally those are often referred as k-opt heuristics. Some edges between two pair of cities

are reconnected differently to obtain a new shorter tour. Examples of such moves are

illustrated in figures 3.11 and 3.12.

Unlike the mimicry problem (see section 3.2), the effect of some alterations can be

locally assessed, without evaluating the whole solution. The local search operators

provided by Hyflex analyses the possible (if not all) the k-opt moves before applying

the best move [145, 133]. It is, therefore, suitable to count one evaluation for each

local search, as only once full evaluation of a newly created tour is computed at the

end of the process.

Our chosen local search operators implement these well-documented local searches.

Those are formally define in equations 3.59, 3.60, 3.61. And described below. In-

stead of providing some sample solutions, we have preferred to provide some example

moves. These operations have a higher level of sophistication that cannot be fully

demonstrated in a simple example.

2 OptLocalSearch(aSolution) : Solution 7→ Solution (3.59)

Best2 OptLocalSearch(aSolution) : Solution 7→ Solution (3.60)

3 OptLocalSearch(aSolution) : Solution 7→ Solution (3.61)

2 OptLocalSearch stops the search as soon as a shorter tour is found, by a 2-opt

exchange [133].

Best2 Opt-LocalSearch relies on ranking all edges with each nodes ordered by in-

creasing length. At a node, all the possible 2-opt-moves are examined by enu-

meration. The best move is then applied to the solution [133].

Chapter 3.Three problem domains 69

3 OptLocalSearch() deletes 3 edges before reconnecting them with optimum recon-

nection. All the possible connections are considered [145].

Figure 3.11: An example of a 2-Opt Local Search [153]

Figure 3.12: An example of a 3-Opt Local Search [153]

3.3.5 Summary

The traveling salesman problem is a more complicated problem than the mimicry prob-

lem. Therefore its problem domain uses an encoding scheme with several elements;

a graph defined by some nodes, edges and some weights. Its ProblemEvaluation

function relies on Euclidean distances and known minima to compute a relative error.

Those are unique for each instance. Some instances have a short tour length and some

others very long ones. A relative error offers a consistent approach to assess a solution.

Table 3.4 lists all the operators specific to the traveling salesman problem domain.

Heuristic techniques that have found some tours efficiently and that are well-documented

in the literature have been included in our set of TSP-specific operators.

70 Chapter 3.Three problem domains

Table 3.4: Traveling Salesman operators with their opcode and the number of evalua-
tions used.

OpCode Operator(s) Number of evaluations
0 InsertionMutation() λ
1 ExchangeMutation() λ
2 ScrambleWholeTourMutation() λ
3 ScrambleSubTourMutation() λ
4 SimpleInversionMutation() λ
6 2-OptLocalSearch() λ
7 Best2-OptLocalSearch() λ
8 3-OptLocalSearch() λ
9 OrderBasedCrossover() λ
10 PartiallyMapCrossover () λ
11 VotingRecombinationCrossover() λ
12 SubtourExchangeCrossover() λ

3.4. The Nurse Rostering Problem

The primary goal of the nurse rostering problem (NRP) is to arrange some non-overlapping

shifts for some nurses over a well-defined period so that the cost of the workforce is

minimised. This problem is part of specific real-life problems under the umbrella re-

ferred as personnel scheduling problem [83, 3].

In 1954, Dantzig [84] and Edie [96] were the first mathematician to simplify the Port

of authority toll booth personnel, to reduce the delays at the bridges without increasing

the number of employees. Their suggested mathematical models were rather simple,

but efficient. Dantzig [84] chose to model the working pattern with a square matrix.

Each row represents the pattern of a shift and each column a period of work. A binary

value flags whether an employee is scheduled to work at a given time (see figure 3.13).

The number of periods needed for a work pattern is represented by wi (see expression

3.62). The variable bt defined in expression 3.63 is the number of toll gates required

for a period. The number of periods available for one day is expressed by expression

3.64 and stored in N. In this formulation, w0 is the number of unused periods and those

needs to be maximised (see expression 3.65).

Chapter 3.Three problem domains 71

NoPeriodsInAWorkPattern : waPattern = TotalPeriods(x, aPattern) (3.62)

NoGatesOpenedInAPeriod : baPeriod = TotalGates(x, aPeriod) (3.63)

NoPeriodsAvailableInADay : N = TotalPeriodAvailable(x) (3.64)

NoPeriodsUnused : w0 = Max(TotalUnusedPeriods(x)) (3.65)

Personnel scheduling problems include many different industries and services. Keep-

ing a company’s cost as low as possible can determine its competitive strength. One

factor often controls its workforce efficiency [323]. The nurse rostering problem has a

complex set of constraints that are hard to comply; it is even more difficult to find an

optimum. Figure 3.14 shows a roster with 8 nurses over a period of 29 days schedules

the periods of relief, the day and night shifts for each nurse.

Detailed reviews and surveys of mathematical and artificial intelligence methods are

provided by [100, 68, 263, 50]. Integer programming and non-deterministic methods

have successfully found solutions to many instances of the nurse rostering problem

[46, 68, 71, 246, 46, 322, 125, 22, 111, 340].

Classical genetic algorithm and some metaheuristics often handle the conflict between

the objectives and constraints ineffectively. These paradigms have therefore been spe-

cialised; some extra features have been added, such as ranking or repairing the con-

straints violations [208, 8, 9, 35].

More recently, selective hyper-heuristics have made some good advancements [167,

57, 95, 66]. To the best of our knowledge, NRP solvers have yet to be discovered

within the context of generative hyper-heuristic.

72 Chapter 3.Three problem domains

Figure 3.13: A formulation of work patterns using a linear programming problem as
suggested by [84]

Figure 3.14: A formulation of work patterns using for the nurse rostering problem [3]

Chapter 3.Three problem domains 73

3.4.1 The chosen encoding scheme

A roster plans nurses shifts over a period of time. A minimal set of decision variables,

some domain values and a complex set of constraints are encoded in one solution (see

expression 3.66); these three elements are common to constraint-satisfaction problem

[272]. We will discuss these three elements in the following paragraphs.

A table helps to visualise the binary programming. Expressions 3.67 and 3.68 defines

the variable and domain of the nurse rostering problem. For example, xnurse,day,shiftType

indicates whether a nurse has been scheduled to cover a shift on a certain day. In Figure

3.15 xHeadNurse,Mon,D is set to 1 and xHeadNurse,Mon,N to 0 . Figure 3.14 has simpli-

fied the schedules by showing only one column per day. As a result, when no shift is

scheduled for a nurse on a certain day, the cell remains empty.

Figure 3.15: A visual representation of the nurse rostering problem [57]

Solution : 〈V ariable,Domain, Constraints〉 (3.66)

V ariable : xnurse,day,shiftType (3.67)

Domain : {0, 1} (3.68)

74 Chapter 3.Three problem domains

The constraints have threefold. First, the feasibility of a roster is defined. Hard con-

straints are assumed to be met all the time, to guarantee that only infeasible and ac-

ceptable rosters are found. Burke et al. [57] have demonstrated that metaheuristics

initially generating and creating feasible rosters is highly beneficial. Secondly, the soft

constraints or objectives improve the quality and accuracy of feasible rosters. [110, 48]

have relaxed some hard constraints to objectives to assess more accurately the quality

of a roster. The evaluation process is discussed in section 3.4.2. Thirdly, the objectives

can differentiate the cover needs from the soft constraints concerned about the nurses’

satisfaction. These two aspects play an important role to the efficiency of the wards.

All these constraints are often defined with more complex mathematics [83, 57, 51].

We prefer expressing them in a more general manner using a functional language (see

expressions [3.70 - 3.79]).

The hard constraint ḡ prescribes the number of shifts per day (see expression 3.70).

The constraint must be applied to every nurse to ensure a roster is feasible. Nonethe-

less, a coverage objective ensures the preferred number of nurses are working during

each shift (see expression 3.71).

Constraints :
〈
ḡ, h̄
〉

(3.69)

ḡ0(x) = TotalDailyShift(aNurse, aDay) ≤ maxDailyShift (3.70)

h̄0(x) =

1 if TotalShift(aType, aDay) ≤MinCover(aType, aDay)

0 otherwise

(3.71)

The intent of some nurses working objectives is to optimise the nurses’ satisfaction

with their work schedules. It is highly preferable to prevent some undesirable succes-

sion of shifts, to limit to a reasonable amount of consecutive working days and to plan

a minimum of days off. The nurses need to sufficiently rest between shift and do not

exceed working their contractable hours. These objectives are defined in expressions

3.72, 3.73, 3.74 and 3.75.

Chapter 3.Three problem domains 75

h̄1(x) =

1 if TotalWeeklyHours(aNurse) ≥MaxHours(aNurse)

0 otherwise

(3.72)

h̄2(x) =

1 if hasUndesirableShiftSuccession(aNurse) = true

0 otherwise

(3.73)

h̄3(x) =

1 if TotalConsecD(aNurse) * ConsecDays(aNurse)

0 otherwise

(3.74)

h̄4(x) =

1 if TotalConsecDOff(aNurse) < MinConsecDayOff

0 otherwise

(3.75)

A reasonable life-work balance must be instilled. Weekends should be either day off

or working days (see expression 3.76). A maximum number of working weekends

should also be respected for a period of planning (see expression 3.77).

h̄5(x) =

1 if TotalWeekendShift(aNurse) * NoWEShift

0 otherwise

(3.76)

h̄6(x) =

1 if TotalWorkWE(aNurse) ≥MaxWorkingWE

0 otherwise

(3.77)

Finally, a maximum number of nights shift should be limited to an allowed consecu-

tive number of working days. Expressions 3.78 and 3.79 define this highly desirable

outcome.

76 Chapter 3.Three problem domains

h̄8(x) =

1 if TotalConsecShift(aNurse,N) * ConsecDays(N)

0 otherwise

(3.78)

h̄9(x) =

1 if TotalWeekShift(aNurse,N) < NoWeekShift(N)

0 otherwise

(3.79)

3.4.2 Fitness evaluation

By the nature of the problem, the evaluation of a roster provides a cost, which becomes

large when some constraints are not met. Otherwise, its value is low. This cost can,

therefore, indicate whether a solution is suitable or not.

The soft constraints, introduced in the previous section, have therefore been trans-

formed to weighted objectives with high values. The cost of a roster has become a

weighted sum of all the objectives (see expression 3.80). The fitness value can ade-

quately inform a solver whether its search is finding optimum, near-optimum or in-

adequate solutions. This process is independent of the varying level of information

provided by the parameters.

Some instances have a known minimum with a value of 0. Our problem evaluation

function has been adapted so that a relative error can be returned too. We are now

adding the main features describing the problem (i.e. the number of nurses, the number

of days in the planning period and the number of types of shift). Those are given in

expressions 3.81 and 3.82.

Chapter 3.Three problem domains 77

Cost :

LastObjective∑
n=1

weightn × Constraintsn(x) (3.80)

ProblemEvaluation(aSolution) :
cost−Minima(Instance)

Nurses+ Period+ ShiftTypes
(3.81)

ProblemEvaluation(aSolution) :Solution 7→ IR 7→ [−∞,∞] (3.82)

The problem parameters are very different than the ones used for the two previous

problems. It has been defined a set of three different types of operators, to communi-

cate more clearly the numerous information required by the problem domain. Expres-

sion 3.83 groups the nurse rostering problem parameters with three subsets; (1) the

instance, (2) the constraints and (3) the operators. These three set of parameters are

discussed below.

ProblemParam : {Instance, Constraints, Operators} (3.83)

3.4.2.1 Instance parameters

An instance has specified the type of shifts, the length of a scheduling period and

the number of employees (see expressions [3.84 - 3.87]). They contribute to defining

the structure of the schedules; i.e. the number of rows, columns and the possible

values of a cell. It is assumed the instance name is unique. However, the remaining

parameters may be the same in several instances, as sometimes the constraints may

only be different.

Nurses ∈ IN+ (3.84)

LengthPeriod ∈ IN+ (3.85)

ShiftTypes ∈ IN+ (3.86)

Instance : {Name,Nurses, LengthPeriod, ShiftTypes} (3.87)

78 Chapter 3.Three problem domains

3.4.2.2 Constraints parameters

For each nurse, some weekly contractable hours needs to be specified. A range of

numbers defines Suitable numbers of consecutive working days and weekend shifts.

A nurse can only work a maximum number of weekends. All these parameters are

expressed in expressions 3.88 and 3.89. A maximum of daily shift for every nurse is

defined in expression 3.93.

The 24-hour cover needs to be scheduled. A shift type has a well-defined start and end

time (see figure 3.16). It is undesirable for certain shift type to occur in succession.

As a result, these patterns are defined in set referred as Succession and undesirable

shifts are paired. A restriction on the maximum number of weekly occurrences and

consecutive working days is desirable; therefore those are also specified in this set.

Expressions 3.91 and 3.91 group these parameters together.

Each day of the week requires a minimum cover. A tuple in expression 3.92 specifies

a minimum number of nurses needed for a type of shift on a specific day of the week

(i.e. Monday to Sunday). The minimal cover required for a day is obtained using

the function MinCover(ShiftType,Day). An example of some shift type and their

coverage is given in figure 3.16.

Figure 3.16: A description of shifts [48]

A period of schedule often starts on Monday and it is referred to the value 1. Every

Sunday is represented by a multiple of 7. Expression 3.94 defines a period of schedule

as a series of days ranging between 1 to LenghPeriod.

Chapter 3.Three problem domains 79

Nurses : Nurse1..NurseNoOfNurses (3.88)

Nurse : {MaxHours, ConsecDays,NoWEShifts,MaxWorkingWE} (3.89)

Shifts : ShiftType1..ShiftTypeNoOfShiftTypes (3.90)

Shift : {startT ime, endT ime, Succession, ConsecDays,WeeklyShift} (3.91)

Cover : 〈DayOfTheWeek, ShiftType, noOfNurses〉 (3.92)

DayShift = 1 (3.93)

PeriodSchedule : Day1..DayLengthOfPeriod (3.94)

Constraints : {Nurses, Shifts, PeriodSchedule, Cover,DayShift} (3.95)

3.4.2.3 Operators parameters

Similarly to the traveling salesman problem, the parameters Depth and Intensity can

affect positively or negatively the performance of some operators. The intensity is

used to calculate the number of schedules changed by a non-deterministic operator.

In this context, the depth affects the time some operators are applied on some rosters

[83]. These two parameters are part of the Operators parameters and are defined in

expressions [3.96-3.98].

Depth ∈ [0, 1] (3.96)

Intensity ∈ [0, 1] (3.97)

Operators : {Intensity,Depth} (3.98)

80 Chapter 3.Three problem domains

3.4.3 Problem Operators

3.4.3.1 Crossover operators

The crossover operators should create a new roster using the best features of two par-

ents. Shifts can be assigned and unassigned to obtain improved roster solutions hope-

fully. Expressions [3.99 - 3.101] defines the nurse rostering’s crossover operators.

Those are described below.

MultiEventCrossover : (Solution× Solution) 7→ Solution (3.99)

ScatterSearchCrossover : (Solution× Solution) 7→ Solution (3.100)

SimpleCrossover : (Solution× Solution) 7→ Solution (3.101)

MultiEventsCrossover unassigns each shift temporarily to measure the changes in

the problem fitness function. The largest increase in the cost identifies the best

assignments. The best assignments for both are rosters then copied into the

offspring. The number of best assignments are computed using the formulae

4 + round((1− intensityOfMutation) ∗ 16) [45, 83]

ScatterSearchCrossover uses first all the common assignments of both parents to

create a new roster. Then it selects assignments alternately from each parent for

the objectives that have yet to be met. [54]

SimpleCrossover creates a new roster by selecting only the common assignments of

both parents.

3.4.3.2 Mutation operator

Similar to the TSP, a mutation operator often returns a solution that is worse than the

original solution. It becomes useful to move the search from an optimum to another

region of the problem solution space. Mutation operators have been successful at al-

tering a roster when it is encoded as permutations [68].

Chapter 3.Three problem domains 81

The problem domain has only one mutation operator. Shifts are unassigned randomly

to return a feasible roster. This number is proportional to the parameter IntensityOf-

Mutation and it is computed by the formulae IntensityOfMutation ∗ 80.0D [83]

(see expression 3.102);

UnassignedShiftsMutation : Solution 7→ Solution (3.102)

3.4.3.3 Local Search operators

These neighbourhood operators have been introduced by [49] for the nurse roster-

ing problem. In our problem domain, we have adopted the five local searches well-

documented by Curtois et al. [83]. All of these operators can be described as hill-

climbers. They either lower the penalty cost for a roster or reverses the changes. All

these operators are given in expressions [3.103 - 3.107] and described in details below.

NewSwapLocalSearch : Solution 7→ Solution (3.103)

HorizontalLocalSearch : Solution 7→ Solution (3.104)

V erticalSwapLocalSearch : Solution 7→ Solution (3.105)

V ariableDepthLocalSearch : Solution 7→ Solution (3.106)

GreedyV ariableDepthLocalSearch : Solution 7→ Solution (3.107)

HorizontalSwapLocalSearch repetitively swaps some blocks of adjacent days dur-

ing the scheduling period. Only improving swaps are kept (i.e. the penalty for a

nurse is reduced). Other swaps are reversed. Figure 3.18 provides an example.

VerticaSwapLocalSearch swaps repetitively some blocks of shifts between employ-

ees (see figure 3.19). Swaps deteriorating the roster are reversed; this occurs

when the penalty for a day increases.

82 Chapter 3.Three problem domains

NewSwapLocalSearch may delete an existing shift or move a block of adjacent days

(see figure 3.17). If the penalty of a nurse is reduced, then the move is kept.

Otherwise, the changes are reversed. These steps are repeated while some new

moves exist in the roster.

VariableDepthLocalSearch applies an ejection chain by alternating a deletion of an

existing shift and moving a block of adjacent days. This technique was intro-

duced by Burke et al. [49] and also by Yagiura with a job scheduling problem

[353]. Only changes that lower the penalty for a nurse is kept. The length of

time is limited to Depth× 5seconds [83].

GreedyVariableDepthLocalSearch is also a variant the variable depth technique

introduced by [49]. It extends the “VariableDepthLocalSearch” operator with

two features. First, a greedy algorithm generates an entire pattern of work for a

nurse. Secondly, the weekend objectives must be satisfied. The length of time is

limited to Depth× 5seconds [83].

Figure 3.17: New swap techniques used by the NewSwaprLocalSearch [83]

Chapter 3.Three problem domains 83

Figure 3.18: Horizontal swap used by the HorizontalSwapLocalSearch [83]

Figure 3.19: Vertical swap used by the VerticalSwapLocalSearch [83]

3.4.3.4 Ruin-and-Recreate operators

Ruin-and-Recreate operators first remove at least one shift of a roster causing the

penalty cost to increase (i.e the ”Ruin” phase). Then the ”Recreate” phase attempt

to repair the roster. Three ruin-and-recreate operators are included in our problem

domain (see [3.108-3.110]).

SimpleGreedyRuinRecreate : Solution 7→ Solution (3.108)

SmallGreedyRuinAndRecreate : Solution 7→ Solution (3.109)

LargeGreedyRuinAndRecreate : Solution 7→ Solution (3.110)

The behaviour of these operators share a similar feature; the three of them repair a

ruined roster by assigning the shift to a nurse that has the least increase in their penalty

cost. For each operator, the number of un-assigned shifts varies from 1 schedule too

much [48, 83]. These variations are discussed below.

SimpleGreedyRuinRecreate brings a small disruption by removing 1 schedule [83].

84 Chapter 3.Three problem domains

SmallGreedyRuinRecreate un-assigns all the shift for one or more randomly se-

lected nurses. The number of nurses is calculated using the formulae given by

Curtois et al [83]; x = round(Intensity ∗ 4) + 2.

LargeGreedyRuinRecreate brings the largest level of disruption. The number of

nurses is calculated using the expression x = round(Intensity∗NoOfNurses)

3.4.4 Summary

The encoding scheme of the nurse rostering problem domain is the most complex of

the three problems. It has many constraints that either lower or increase the problem

fitness value. When these restrictions are not met, then a penalty is added to the cost.

Tuples indicate whether a nurse has been scheduled to work a shift on a specific day.

The operators listed in table 3.5 changes the values of these tuples. Unlike the other

two problem domains, the problem parameters needed to split into three categories;

instance, constraints and operators. This classification helps in understanding their

purpose and their effect on the problem domain.

Table 3.5: Nurse rostering operators with their opcode and the number of evaluations
used.

OpCode Operator(s) Number of evaluations
0 newSwapLocalSearch() λ
1 HorizontalSwapLocalSearch() λ
2 VerticalSwapLocalSearch() λ
3 VariableDepthLocalSearch() λ
4 GreedyVariableDepthLocalSearch() λ
5 SimpleGreedyRuinRecreate() λ
6 SmallGreedyRuinRecreate() λ
7 LargeGreedyRuinRecreate() λ
8 MultiEventCrossover() λ
9 ScatterSearchCrossover () λ
10 SimpleCrossover() λ
12 UnassignedShiftMutation() λ

Chapter 3.Three problem domains 85

3.5. Discussion and conclusion

Each problem represents its solutions with a distinct encoding scheme. Well-known

data structures such as bitstrings, undirected weighted graphs, or triples rely on spe-

cific operators manipulating the data encoded in a solution. Various constraints may

exist in the form of black-box optimisation, feasible and infeasible solutions or a set of

preferences. It becomes more challenging to find suitable solutions when the number

of these constraints increases. Any forms of algorithm optimisation should be able to

withstand such changes too.

We have introduced three different problems regarding a problem statement, encoding

scheme, specific parameters and operators. These three problems are not only hard to

solve but also have unique features. The traveling salesman and the nurse rostering

scheduling have not only real-life instances available, but they also are two NP-hard

problems. The remaining problem (i.e. the mimicry problem) may be uncomplicated,

but it can become very hard to solve when the number of bits increases. In the litera-

ture, instances often focus on less than 1,000 bits.

We will be generating some metaheuristics that find solutions for these three prob-

lems. A graph-based genetic programming uses the evolution to sample algorithms of

varying length. Population and problem-specific operators are passed to the genetic

programming as a function set. When iterations are evolved too, a stopping criterion

is also given. Our methods are inspired by the model discussed in section 2.4.4 and

discussed in our next section.

86 Chapter 3.Three problem domains

Chapter 4. Graph-Based Genetic Programming 87

Chapter 4. Graph-Based GP

Contents
4.1 Review of graph-based genetic programming 88

4.1.1 Parallel distributed genetic programming 89

4.1.2 Linear-graph genetic programming 90

4.1.3 Graph structure program evolution 92

4.1.4 Parallel Algorithm Discovery and Orchestration 93

4.1.5 Cartesian Genetic Programming 94

4.1.6 Implicit-context CGP . 97

4.1.7 Adaptive Cartesian Harmony Search 98

4.1.8 Discussion . 99

4.2 CGP hyper-heuristics . 101

4.2.1 Cartesian Genetic Programming 101

4.2.2 Iterative Cartesian Genetic Programming 104

4.2.3 Autoconstructive Cartesian Genetic Programming 108

4.3 Conclusion . 117

Graphs represent a pair wise relationship between two objects. Euler introduced the

concept of connecting vertices with some edges in 1736. Approximately a century

later, K.G.C Von Staudt mentions for the first time the idea of trees; an undirected

and acyclic graph [64]. Trees are suitable for encoding some hierarchical relationship

between data; they have no cycle.

88 Chapter 4. Graph-Based Genetic Programming

In 1952, the first application of a tree structure in computer science was to analyse

mathematical expressions. Operating systems also organise files on some data storage

with a tree. Each file is read recursively, and an element is only aware of its par-

ent. Then, abstract syntax trees are generated by compilers to represent programmes,

before creating some machine code. Later on in machine learning, mathematical ex-

pressions represented with trees considered as “programs”. The idea of evolving these

trees with an EA gave birth to Beagle [103] and then to “tree-based genetic program-

ming” [171].

Computer science has many uses of directed graphs. First, the connection between

the elements of a computer network is represented by a directed graphs. Secondly,

data flow and activity diagrams model the information through a system and how a

process transformed the data. Thirdly, algorithms and processes can also express their

sequences of instructions diagrammatically with some vertices and edges. Fourthly,

McCabe et al. [215] have used again this idea to develop some metrics to measure the

complexity of algorithms and computer programs. Lastly, in selective hyper-heuristics,

a graph-based hyper-heuristics often refers to an algorithm that selects some problem-

specific operators altering the structure of a graph. Such graph can encode some prob-

lem solutions of scheduling problems [92, 58].

4.1. Review of graph-based genetic programming

A technique referred as “graph-based genetic programming” has attempted to trans-

form tree-structure into a hybrid graph with the use of some interactive outputs. Some

sub-trees become redundant during the interpretation process; some special functions

can disactivate some branches and active others[107]. In the remaining of this the-

sis graph-based genetic programming refers to a form of genetic programming that

encodes a program with a directed graph.

Chapter 4. Graph-Based Genetic Programming 89

4.1.1 Parallel distributed genetic programming

A matrix of active and inactive nodes encodes a program. Figure 4.1 encodes the math-

ematical expressionmax (x ∗ y, 3 + x ∗ y) and the inactive nodes are represented with

a dot. Each node is assigned a physical address with a row and column. The address

(0, 0) is always given the output node [255, 256]. The other nodes can either be a

terminal or a function. During the decoding process, only the latter has a displacement

attached to its node.

A depth-first mechanism differentiates the active nodes from the inactive nodes. Algo-

rithm 4.1 retrieves first all the nodes connected to a node. From the displacement

of some function and output nodes, the algorithm recursively calls the procedure

DecodeDirectedGraph and stops when the three terminals x, y, 3 are reached and

their value saved in a hash-table. Then the recursive call stack applies, in turn, each

operator encoded in the function nodes. Table 4.1 displays the list encoding a label,

coordinates, and some horizontal displacement for the next connected nodes.

Figure 4.1: An example of a program encoded in grid [255]

Table 4.1: a list encoding the label, the coordinates of the nodes, and the horizontal
displacement for example given in figure 4.1

Label Coordinates Displacement
max (0,0) +1 +3
I (0,1) 0
+ (3,1) -2, 0
* (1,2) -1 + 1
3 (3,2)
x (0,3)
y (2,3)

90 Chapter 4. Graph-Based Genetic Programming

Algorithm 4.1. A feedforward mechanism used to decode the program in a grid [255]
1: procedure DECODEDIRECTEDGRAPH(NodeCoordinates, Values)
2: NodesConnected← DisplacementFromPreviousLayer()
3: for currentNode ∈ NodesConnected do
4: if CurrentNode == function then
5: V alues← DecodeDirectedGraph(CurrentNode, V alues)
6: V alues(NodeCoordinate)← applyOperator(CurrentNode, V alues)
7: else if NodeType(NodeCoordinate) == Terminal then
8: V alues(NodeCoordinate)← V alueOfTerminal
9: end if

10: end for
11: return V alues
12: end procedure

A genetic algorithm evolves these grids. The genetic code passed from one generation

to another includes active and inactive nodes. As a result, some inactive nodes can

be activated by the genetic operators at a later stage. One crossover swaps sub-graphs

with some inactive nodes. Mutation operators can either activate some sub-graphs by

mutating a link or insert a sub-graph to some terminals. Otherwise, new offspring are

generated by swapping only active sub-graphs. This form of genetic programming

has solved a variety of problems including regression, lawnmower, exclusive-or, even-

parity, and finite state-automata induction problem.

4.1.2 Linear-graph genetic programming

Symbolic regression was also successfully solved by linear-graph genetic program-

ming. A branching mechanism controls an execution path occurring between pro-

grams. A program node encodes a series of instructions (i.e a linear program), with

some conditions that guide the connection to the next program node (see figure 4.3).

In figure 4.2, four program nodes encode the mathematical expression R0 = (R1 +

2)2 − ((R1 + 2)2mod 9).

Chapter 4. Graph-Based Genetic Programming 91

An interpretation process starts at the root and executes the instructions on a set of

registers. These values are assessed dynamically by the branching nodes, to decide the

edge to use progress the program. In our example (see figure 4.2) the branching node

should either connects to using the edges 0 or 1. In this instance, the minimum value

of R0 is 0 when R1 ∈ [−4...0]. Therefore edge 0 is always going to be used.

Figure 4.2: An example of a linear gp individual as provided by [160]

Figure 4.3: An example of a linear gp individual as provided by [160]

A genetic algorithm with a small population has been the most successful in evolving

these type of programs [160]. A ”graph crossover” exchanges sub-graphs from both

parents, to form two new offsprings. A ”linear crossover” exchanges equally sized-

segments between vertices. A mutation operator can alter an element of the linear

program, a branching function or the number of outgoing edges.

92 Chapter 4. Graph-Based Genetic Programming

4.1.3 Graph structure program evolution

Graph-structure program evolution (GRAPE) models the flow of the data over a pro-

gram. It emulates the registers in a microprocessor where the operations and addresses

of the values are stored (see figure 4.4). The operators encoded in the nodes alter the

variables and may use the constants stored in this dataset. These nodes are arbitrarily

connected to each other. Not all the information of a node is active; a node type acti-

vates or deactivates some information stored in a fixed length string of integer values.

In figure 4.4 the start node and the output node have the least information active. The

other nodes may have some arguments or connection greyed out, as shown in figure

4.4.

Figure 4.4: An GRAPE program with its data set as given by [282]

The sequence of operations is defined by a feed-forward mechanism. Algorithm 4.2

establishes the nodes connected to the output and their order of execution. Then the se-

quence is executed and applied to the data. A genetic algorithm with uniform crossover

and mutation evolves successfully programs that solve factorial, exponential equations,

Fibonacci numbers and reversing a list [282, 284, 285].

Chapter 4. Graph-Based Genetic Programming 93

Algorithm 4.2. A feedforward mechanism used to decode the program in a grid [282]
1: procedure DECODEDIRECTEDGRAPH

2: V alues(StartNode)← resetV alue()
3: NodesConnected← getNodesConnectedToTheOutput()
4: for currentNode ∈ NodesConnected do
5: V alues(CurrentNode)← applyOperator(CurrentNode)
6: end for
7: return V alues(CurrentNode)
8: end procedure

4.1.4 Parallel Algorithm Discovery and Orchestration

PADO evolves some programs with an evolutionary strategy; these programs should

find some suitable solutions for some challenging vision problems. Real-life objects

should be detected in high resolution, noisy images of real-world objects [309, 309,

310].

Two arbitrary graphs encode two programs (i.e. the “main program” and the “mini

program”). This technique considers programs as some code expressed in an impera-

tive programming language. A path between the node q and the node X represents a

program. A branch-decision function decides to which node to move to. This function

would rely on the previous state of the program and the memory (see figure 4.5).

Figure 4.5: A PADO example program [309]

94 Chapter 4. Graph-Based Genetic Programming

A mini program can be attached to any main programs; the node M can recursively

call this sub-program. However, a fixed time prevents each program to run indefinitely.

Finally the nodes L91 and L17 call a subroutine from a given library of programs.

A simple index memory can store some integer values. Those are used during the ex-

ecution of a program. Although in theory those could be extended to any other data

type and object, those had yet to be implemented in PADO.

This complex graph-based genetic programming implements many features of a sim-

ple programming language. The function set contains a well-developed set of operators

including reading and writes from an index memory and some mathematical operators.

Also, many constraints have been implemented to ensure the programs to stop after a

fixed execution time. Some others constrain the language primitives to a particular

type of problems. It has yet to be extended to other NP-hard problems.

4.1.5 Cartesian Genetic Programming

Miller et al. [225] developed CGP (CGP) in 1999-2000. In its classic form, it uses a

very simple integer address-based genetic representation of a program in the form of

a directed graph. CGP represents a program using a grid of nodes; each node can be

addressed using the Cartesian coordinates as addresses (i.e. a row and a column).

A string of integers encodes some programs. In figure 4.6, the program has two inputs

(i.e. the orange circle labelled 0 and 1) that are connected mainly to the nodes of the

first and second column. The program data inputs are given the absolute data addresses

0 to n − 1, where n − 1 is the number of program inputs. The number of nodes (i.e.

length) is fixed. Each can connect to a previous node or a program input. Node inputs

become restricted by a number of nodes they can link back.

Chapter 4. Graph-Based Genetic Programming 95

Figure 4.6: A graphical representation of a CGP graph [226]

Each node contains a function; those are underlined in the list of integers and listed

in a function “look-up table”. The remaining node genes state where the node gets

its data from and models the edges. For example, node 7 connects to the nodes 4 and

5 in figure 4.6. In classic CGP nodes either links to a previous node or a program input.

During the decoding process, only the nodes connected to an output are considered to

be active. The remaining ones become inactive (i.e., node 6 in figure 4.6). Our exam-

ple has four outputs (represented in blue in figure 4.6) that determine the sequences of

operators for four different programs. Output no 2 points to node 2 creating a concise

program with the operator 0 to execute. A longer program encodes the sequence of

operators 1, 5, 4, 2 (see the nodes numbered 3, 4, 5 and 7). Those were interpreted us-

ing a feed-forward mechanism given in algorithm 4.3. This process identifies first the

active nodes then executed them from left to right.

Active and inactive genes are passed from one generation to another. Inactive nodes

can either be activated when the output points to a different node or a node input are

mutated.

96 Chapter 4. Graph-Based Genetic Programming

An evolutionary strategy can explore a wide distribution of offspring (see algorithm

4.4) [222]. An initial population of CGP graphs is randomly generated and evaluated

before the best CGP-graph is promoted (see lines [1-2]). The remaining lines repet-

itively mutate the best CGP graph (i.e. µ) to produce and evaluate new offspring. A

point mutation can randomly change the genes of coding and non-coding nodes.

The purpose of a function referred as Promote has twofold. First, changes in inactive

nodes are passed from one generation to another when the fitness of an offspring re-

mains the same as the parent. Secondly, it replaces the parent µ with any CGP-graphs

with a better fitness. Therefore, ineffective problem solvers can be tested, but do not

survive more than one generation.

Algorithm 4.3. A feedforward mechanism used to decode the program in a grid [225]
1: procedure DECODEDIRECTEDGRAPH(OutputNo)
2: NodesConnected← IdentifyNodesConnectedToAnOutput(OutputNo)
3: for currentNode ∈ NodesConnected do
4: V alues(CurrentNode)← applyOperator(CurrentNode)
5: end for
6: return V alues(CurrentNode)
7: end procedure

Algorithm 4.4. The (µ + λ) evolutionary strategy [225], where µ represents number
of the parent population; it is often set to 1, but can have a greater size. lambda is the
number of the offspring.

1: CGPoffspring ← RandomlyGenerateIdividual(µ+ λ)
2: CGPparent ← Promote(CGPoffspring)
3: while Not solutionFound() or generation < Limit do
4: for i ∈ [1..λ] do
5: CGPoffspring[i]←Mutate(CGPparent)
6: CGPoffspring[i]← Evaluate(CGPoffspring[i])
7: end for
8: CGPparent ← Promote(CGPoffspring)
9: end while

CGP has solved symbolic regression, lawnmover, if-and-only-if, classification prob-

lems [335, 334, 135, 99]. It has been successful in images filtering [134, 183]. Neural

networks have also been evolved [165, 166, 317]. In addition, CGP has been very

productive in synthesis of circuits [327, 328, 223, 224, 329, 164, 136, 280, 149, 210]

Chapter 4. Graph-Based Genetic Programming 97

Various features have extended the classic CGP. In section 4.1.6, an implicit context

has been added; the modified technique has been used in the diagnosis of some de-

generative diseases. A coevolution mechanism has improved the design of circuits

[149]. New genetic operators have been studied to explore new methods to improve

CGP [218, 114]. Modules have been encoded in CGP graphs with some success

[333, 336, 335, 334] and [135]. Finally, self-modifying CGP has added some func-

tions that can modify an encoded program to refine the sequences of operators that

solve the Fibonacci numbers, squares, regression, summing and parity [137, 139].

4.1.6 Implicit-context CGP

Implicit-context Cartesian genetic programming (ICGP) constructs some directed acyclic

graphs by simulating substrate binding. In biology, molecules and enzyme bind to-

gether with to complete a chemical reaction. This process relies on both elements

having a region that can fit together like two lego bricks [259].

ICGP relies on functionality profiles to filter inappropriate variations, to simulate the

active site used by a substrate and an enzyme to bind. “Formally, a functionality pro-

file is a vector in a n r-dimensional space where each dimension corresponds to a

function or terminal. This vector describes the relative occurrence of each function

and terminal, weighted by depth, within an expression. In effect, it provides a means

of representing and comparing (through vector difference) the functional behaviour of

an expression” [293]. A graph is interpreted bottom-up, by connecting a node with

a previous node that matches its functionality profile. For example, in figure 4.7, the

node with the Cartesian address (1, 1) can bind with the first and second input[293, 61].

98 Chapter 4. Graph-Based Genetic Programming

Figure 4.7: An example of how a ICGP graph is interpreted as provided by [293]

ICCGP has extended CGP, by representing some grids of nodes with a string of inte-

gers. Those are evolved with a genetic algorithm, instead of an evolutionary strategy;

a uniform crossover and mutation produce some offspring. The primary application of

an ICCGP has been in medical assessment of diagnosis of Alzheimer [178] as well as

some classifiers [293, 61].

4.1.7 Adaptive Cartesian Harmony Search

During the completion of this thesis, a new extension of CGP has been used to evolve

some classifiers. The datasets include some chemical analysis of plants, morphologi-

cal features of plants, signals recorded from high-frequency antennas, and also engines

sounds. Adaptive Cartesian Harmony Search (ACHS) evolves some CGP graph (see

figure 4.8) with Harmony search [99]. This algorithm is very similar to the evolu-

tionary strategy used by Miller et al. [225]. This observation is not surprising, as a

Harmony search is a special case of an Evolutionary Strategy [248, 259]. This frame-

work also estimates the predictive capability of intermediate solutions, to improve

convergence.

Chapter 4. Graph-Based Genetic Programming 99

Figure 4.8: An example of how a CGP graphs provided by [99]

4.1.8 Discussion

GP is more than a tree encoding programs that are evolved with a genetic algorithm.

The research community is increasingly using a graph-based form. CGP has been one

of the first technique developed in the late 1990s; other graph-based genetic program-

ming techniques have yet to be applied to a wider range of problems.

The diversification of the nodes size was necessary to encode various information.

Each technique has a unique purpose, which has focused on solving specific prob-

lems. The methods introduced in sections [4.1.1 - 4.1.4] mentions some specific areas

of application, with the exception of symbolic regression.

CGP has adapted to various applications using an offline and online method of learn-

ing. The information held in the nodes has proven to be highly flexible, to add modules

as well as mixed-data type variables have been encoded. An increasing number of re-

searchers are interested in hybridising the technique to improve it and adapts to the

needs of various applications. It is a good sign of the real potential of CGP.

100 Chapter 4. Graph-Based Genetic Programming

Nonetheless, it is challenging to compare the real general performance of these tech-

niques with another graph-based genetic programming. Very few literature has com-

pared these methods under the same parameters applied to the problem domain. This

issue was also raised by Poli et al. [258] with genetic programming in general. It is

worth noting, that [221, 335] have found that CGP could find better solutions than a

tree-based GP for Boolean and the lawn mowing problems.

CGP and PADO are often evolved by an evolution strategy with a small population

of individuals. Other graph-based GP have used a genetic algorithm, with a larger

population. These large populations may use a lot of resources, but more importantly,

they have adapted their algorithm encoding scheme. For example, PDGP and LGP

resemble the structure of a tree with a root as a starting point. The crossover has been

adapted to exchange ”sub-graphs” instead of ”sub-trees”. Some crossover and mu-

tation operators have specialised in mutating the content of the node or activate some

sub-graphs. ICCGP and GRAPE have both adopted a uniform crossover and mutation;

both of these techniques encodes directed graph with a bit string.

It is worth noting, a comparison of tree-based, graph-based, stack-based and grammat-

ical genetic programming has been compared with the same method of evolution. The

results and discussions have found the tree-based genetic programming was the best

hyper-heuristics [142]. Their chosen method was a genetic algorithm with a large pop-

ulation, which has been proven very effective in tree-based GP. It would be interesting

to repeat these experiments with an evolution strategy, a small population and a more

significant nodes budget.

Chapter 4. Graph-Based Genetic Programming 101

The reasons why such a simple evolutionary strategy works well is primarily due to

the presence of non-coding genes, and the 1+4 strategy cannot decrease the algorithm

fitness, improving the quality of the algorithms. This phenomenon is also predominant

in PDGP, GRAPE, PADO and ICCGP. This idea was introduced to tree-based genetic

programming by [107] to attempt to transform a tree into a graph. Otherwise, tree-

based genetic programming only stores coding genes.

CGP is mostly implemented with a point mutation (also referred as neutral mutation),

but Goldman et al. [114] has found useful to mutate genes until one active gene is

altered. Originally empirical studies completed by Miller [221] has found that recom-

bination does not seem to add anything; this confirms some observations made by

[310] for PADO. As a result, a (1 + 4) evolution strategy has been adopted with CGP.

Nonetheless, crossover might be useful if there are multiple programs with indepen-

dent fitness assessment [336, 337].

Graph-based genetic programming has a lower number of publications compared against

tree-based genetic programming. CGP has grown steadily and has been adopted by

many research communities. We would hope in the future that may be some new

forms may arise.

4.2. CGP hyper-heuristics

4.2.1 Cartesian Genetic Programming

We have chosen a (1 + 1) Evolutionary Strategy (see Algorithm 4.4) to search some

algorithm search spaces. One-dimensional CGP graphs have a start, an end and a

workflow; flow charts are represented and executed sequentially.

102 Chapter 4. Graph-Based Genetic Programming

The number of coding nodes or operations can be anything from zero to the maximum

number of nodes defined in a CGP graph. Only the nodes connected to an output node

are considered to be part of an algorithm; the remaining nodes become inactive (i.e.

non-coding genes).

4.2.1.1 Decoding the CGP graph

Figure 4.9 only shows all the active nodes connected to an output node. These have

the indexes 1, 30, 45, and 67 and encode the sequence of instructions “0-9-8-13”; this

CGP graph represents the TSP Solver A (i.e. algorithm A.19 that can be found in sec-

tion 9.2).

Figure 4.9: A solver expressed with its active nodes

Templates can specify the “initialisation” step, the “update” step and the termination

criterion of an iteration, leaving the body of a loop being only influenced by the

evolution [174]. For example, algorithms 4.5 and 4.6 illustrate how a template can be

adapted to a population-based non-deterministic algorithm, but other applications may

use different templates.

Algorithm 4.5. A feedforward mechanism used to decode a CGP graph
1: procedure DECODEDIRECTEDACYCLICGRAPH(OutputNo)
2: NodesConnected← IdentifyNodesConnectedToAnOutput(OutputNo)
3: CurrentNode← GotoF irstNodeOfGraph
4: numEvals← 0
5: while NotLastNodeOfGraph(CurrentNode) do
6: V alues(CurrentNode)← applyOperator(CurrentNode)
7: CurrentNode← GoToNextNode()
8: numEvals← numEvals+ 1
9: end while

10: return NumEvals
11: end procedure

Chapter 4. Graph-Based Genetic Programming 103

Algorithm 4.6. An general algorithm template of a population-based metaheuristics
1: function FINDSOLUTION(problemParam, µ, λ)
2: p← InitPopulation(problemParam, µ, λ)
3: t← SelectElitism(p)
4: EvalCount← 0
5: while EvalCount ≤MaxEvals or p.fitness > 0 do
6: NumEvals← 0
7: NumEvals← DecodeDirectedAcyclicGraph(OutputNo)
8: EvalCount = EvalCount + NumEvals
9: end while

10: P← ReplaceLeastFit(p,t)
11: return Best(p)
12: end function

Lines 1-3 An initial population p is randomly generated and evaluated. Some indi-

viduals are also selected for reproduction and initialise a temporary population

t.

Line 4 An “initialisation” step set the number of evaluations to 0.

Line 5 The loop is guaranteed to end. The condition terminates the loop when no

more evaluations are available, or a known optimum solution is found.

Line 7 The evolved sequence of operators is applied to the populations of individuals

t and p; those were introduced in section 3.1.1. The function DecodeDirectedA-

cyclicGraph() decodes the CGP graphs and apply the operators sequential. This

subroutine also counts and returns the number of evaluations used .

Line 8 The update step increases the number of evaluations used by the evolved se-

quence of instructions.

Lines 10-11 The best problem solution found by the metaheuristic is saved in p and

returned when the metaheuristics stops.

104 Chapter 4. Graph-Based Genetic Programming

4.2.2 Iterative Cartesian Genetic Programming

Cycles are formed with iterative CGP so that loops can be altered by the evolution

and terminates without any hard limits. Directed “cyclic” graphs can now encode a

stopping criterion, an iterative update step and the body of a loop; all these elements

are made susceptible to the evolution. Consequently, each node now contains two new

genes; we name them Branching and Condition. Figure 4.10 represents the iterative

CGP graph of algorithm TSP Solver J given in section 9.2; this figure omits many

branching connections and non-coding genes for clarity.

Figure 4.10: A solver expressed with its active nodes

Feed-forward connections are standard feed-forward CGP connection genes.

Branching connections can point to a previous node, a program input, or itself; in

this case a node is referred as a process node and shown in white in figure 4.10.

When the branching gene points to a suitable subsequent node a cycle is formed;

then the node becomes a decision node. In figure 4.10 those are shaded in grey.

A level-back parameter determines how many nodes (before and after) a branch-

ing gene can connect to define the boundaries of the body of a loop and split a

CGP graph into smaller sub-sequences.

Function genes are as in standard CGP and encode a primitive operation. In figure

4.10, these genes are formatted in bold.

Condition genes represent the stopping criteria of loops. A condition look-up table

provides a set of Boolean primitives; these indicate whether a loop exits (and

control subsequently moves to the next node following the last loop node) or

continues to execute the next node inside the loop. In figure 4.10, these genes

are formatted in italic font.

Chapter 4. Graph-Based Genetic Programming 105

4.2.2.1 Decoding iterative CGP graphs

The clear distinction between “decision” and “process” nodes allows a decoding pro-

cess to repetitively apply a sub-sequence of operators sequentially, under a distinct

condition. The first and last problem-specific operation of a sub-sequence is deter-

mined by (1) the function gene of decision node and (2) the function gene encoded in

the node pointed to by the branching gene of the decision node.

Algorithm 4.7 continues to decode process nodes the same way as CGP. The decision

nodes can then guide the execution to an algorithm to the first operation of the body a

loop or the next operation.

Algorithm 4.7. A feedforward mechanism used to decode an iterative CGP graph
1: procedure DECODEDIRECTEDCYCLICGRAPH(OutputNo)
2: NodesConnected← IdentifyNodesConnectedToAnOutput(OutputNo)
3: OrderedNodesConnected← IdentifyBranchingNodes(NodesConnected)
4: CurrentNode← GotoF irstNodeOfGraph
5: NumEvals← 0
6: while NotLastNodeOfGraph(CurrentNode) do
7: if TypeOf(CurrentNode) = processNode then
8: V alues(CurrentNode)← applyOperator(CurrentNode)
9: NumEvals← NumEvals+ 1

10: end if
11: if TypeOf(CurrentNode) = DecisionNode then
12: if IsTerminationCriteriaMet(CurrentNode) then
13: CurrentNode← GoToEndOfTheLoop()
14: else
15: V alues(CurrentNode)← applyOperator(CurrentNode)
16: NumEvals← NumEvals+ 1
17: end if
18: end if
19: CurrentNode← GoToNextNode()
20: end while
21: return NumEvals
22: end procedure

106 Chapter 4. Graph-Based Genetic Programming

Lines 2-4 All the active nodes are identified by working backwards from an output

node. In figure 4.10 the output 0 is used. The decision nodes are placed so that

branching can happen during the decoding process; the decision node index is

inserted after the last active node of a subsequence (i.e. the body of a loop). For

example, in figure 4.10 all the active nodes are executed in the following order:

2, 10, 56, 10, 67, 75, 2. The decision nodes index(i.e. 2 and 10) are repeated to

indicate the starts and then end of the body of the nested loops.

Lines 5-17 The sequence of active nodes iteratively applies the operators and termi-

nation criteria.

Lines 6-8 The operator encoded in some process nodes are applied.

Lines 9-15 The termination criterion encoded in some decision nodes are de-

coded and applied. When the termination criteria are met, the execution

of a given loop is stopped. The current node becomes the last node of the

loop. Otherwise, the operator is applied in the same manner as a process

node.

Line 16 The decoding process moves to next node.

As a result, the template has now become less restrictive. A population-based non-

deterministic algorithm uses again the function DecodeDirectedCyclicGraph() but no

loop is expressed (see algorithm 4.8). The first three lines and the last instruction of

algorithm 4.8 are part of the template. An initial population is generated randomly

before being evaluated, at least one individual is selected for reproduction.

Algorithm 4.8. A minimalistic template of a hybrid metaheuristic
1: function FINDSOLUTION(ProblemParam,µ,λ)
2: p← InitPopulation(ProblemParam,µ,λ)
3: t← SelectElitism(p)
4: EvalCount← 0
5: NumEvals← DecodeDirectedCyclicGraph(OutputNo)
6: EvalCount← NumEvals
7: p← replaceLeastFit(t, p)
8: return Best(p)
9: end function

Chapter 4. Graph-Based Genetic Programming 107

Similarly to algorithm 4.6, the best solution found the metaheuristic is saved in p

and returned when the metaheuristics have stopped its run. Those are formatted in a

black colour and normal font. The remaining instruction decodes the Iterative-CGP

phenotype to an iterative algorithm.

4.2.2.2 Evolution of iterative CGP graphs

We use an (1+1) Evolutionary Strategy again to search the algorithm space of iterative

algorithms (see algorithm 4.4). The added branching and condition genes now need

two basic grammatical rules to ensure that either only nested loops are created, or new

iterations do not overlap.

The creation of an initial iterative CGP population and a point mutation operator rely

on the following mechanisms.

1. When an iterative CGP graph does not encode any loops the value of any branch-

ing gene is free to point to any nodes and program inputs.

2. For any nodes inside an existing loop, their branching genes can only connect to

a node with a higher index that is inside the current loop or any previous nodes

and program inputs. In figure 4.10, the branching gene of nodes with an index

greater than 2 can be valid if its value is lower than the index. It can also point

to the right to a node with an index lower than 75.

3. For any nodes outside an existing loop, their branching genes can only con-

nect to a node that is outside any existing sub-sequences. A valid value for the

branching gene of node 1 can only point to the input or nodes greater than 75 or

the program input in figure 4.10.

108 Chapter 4. Graph-Based Genetic Programming

Genes continue to be randomly chosen. When a “condition gene” is selected, then

a valid condition is randomly chosen from the condition look-up table. Also when

a “Branching gene” is chosen, then a valid address is randomly selected. This part

of the mutation verifies that either only nested loops are created, or new loops do not

overlap; the two aforementioned basic grammatical rules are applied in this genetic

operator.

4.2.3 Autoconstructive Cartesian Genetic Programming

The mutation operators of the two previous hyper-heuristics discussed in sections 4.2.1

and 4.2.2 remain the same during the algorithm search. Autoconstructive CGP (Auto-

constructive CGP) evolves algorithms and a hyper-heuristic reproductive mechanism;

a sequence of operations that constructs the mutation should evolve during the algo-

rithm search.

The equation offspring′ = offspring(reproductive operator) was introduced by

Lee Spector in PushGP [302]. This autoconstructive form of genetic programming

uses a tree to encode reproductive operators and stacks for the algorithms. To imple-

ment such ideas with Cartesian Genetic Programming, we have coupled the encoding

scheme introduced in sections 4.2.1 and 4.2.2 with an iterative CGP graph. The latter

stores a sequence of operations that represents a mutation operator (see Figure 4.11).

Mutation operators are passed from one generation of algorithm individual to another.

As result, the parent copies its reproductive mechanism unaltered to its offspring.

Some sequential and iterative algorithms, as well as the mutation operators, are de-

coded in the same manner than CGP and iterative CGP graph. An evolution strategy

initialises, promotes and evaluates some problem-solvers using the same techniques

as described in sections 4.2.1 and 4.2.2. The fitness value of an algorithm remains the

fitness value of an autoconstructive CGP graph. Later in this section, we will discuss

the evaluation process of a mutation operator.

Chapter 4. Graph-Based Genetic Programming 109

Figure 4.11: : autoconstructive CGP graphs. The top individual encodes an algorithm
with directed acyclic graph and the bottom individual with iterative CGP graph. Both
individual encodes a mutation operators with an iterative CGP graph. All the branching
genes are represented with blue arrows.

110 Chapter 4. Graph-Based Genetic Programming

An evolutionary strategy co-evolves a population of algorithms and a population repro-

ductive mechanisms the algorithm search. Algorithm 4.9 is general enough to evolve

sequential or iterative algorithms. The first two steps initialise randomly and evaluate

the individuals of a problem-solver population. The next line promotes the best of

these algorithm offspring.

A similar process is then implemented for a population of mutation operators. The best

reproductive mechanism is subsequently assigned to the newly promoted CGP graph

(i.e. CGPparent) (see lines 3-6 of algorithm 4.9.

New algorithms are then produced using an evolved mutation operator. These algo-

rithm offspring are evaluated before being promoted; these steps are similar to the

Evolutionary Strategy discussed in section 4.1.5 (see lines [7-8] and [18-21]).

Algorithm 4.9. The (µ+λ) evolutionary strategy [225] extended to co-evolve a hyper-
heuristic reproductive operator and algorithms.

1: CGPoffspring ← RandomlyGenerateIdividual(µ+ λ)
2: CGPparent ← Promote(CGPoffspring)
3: MutationOffspring ← InitialiseReproductiveOperators(µmutation, CGPparent)
4: MutationParent ← PromoteReproductiveOperator(MutationOffspring)
5: CGPparent ← AssignMutationOperator(MutationParent)
6: NoGraphGenerated← 0
7: while not solutionFound() or generation < Limit do
8: for i ∈ [1..λ] do
9: if NoGraphGenerated =MaxGraphGenerated then

10: NoGraphGenerated← 0
11: CGPparent.Mutation← EvalMutationOp(CGPparent.Mutation)
12: CGPparent.Mutation← EvolveMutationOp(CGPparent)
13: else
14: NoGraphGenerated← NoGraphGenerated+ 1
15: end if
16: CGPoffspring[i]← CGPparent.Mutate()
17: CGPoffspring[i]← Evaluate(CGPoffspring[i])
18: end for
19: CGPparent ← Promote(CGPoffspring)
20: end while

Chapter 4. Graph-Based Genetic Programming 111

With this online learning hyper-heuristics, the reproductive mechanism is likely to

change as the algorithm search progresses. A mutation operator must produce a cer-

tain number of algorithm offspring, before being evaluated and evolved. It is defined

by an added parameterMaxGraphGenerated. Then the resulting reproductive mech-

anism is then assigned to the CGP parent (i.e. a sequential or iterative algorithm), and

the algorithm search can resume. This is shown in line [9-16] of algorithm 4.9.

4.2.3.1 Evaluation of reproductive operators

An autoconstructive CGP individual acts as a host for a species of mutation operators.

A reproductive mechanism does not only benefit from this ”living environment”, but

also receives some information about its performance. A positive value rewards new

metaheuristics that perform better than its parent. Otherwise a score of 0 is recorded in

a list. Reproductive mechanisms that alter exclusively non-coding genes are penalised

by the negative value (-1).

Once a certain number of algorithm offspring has been generated, the arithmetic mean

of all these performances is computed by the function EvaluateMutationOp(). The

resulting mutation fitness value can then be used to assess the quality of a reproductive

mechanism.

4.2.3.2 Genetic improvement of reproductive operators

The function EvolveMutationOp can genetically improve the subspecies of hyper-

heuristic reproductive operators (i.e the population MutationOffspring). Each type

of reproductive mechanism attempts three times to evolve a new CGP offspring (see

algorithm 4.10 lines [3 - 14]). New mutation operators are promoted if their perfor-

mance is better than their parent. When a better improved reproductive operator is

found then, it replaces the current CGP mutation operator.

112 Chapter 4. Graph-Based Genetic Programming

The process terminates when a reproductive operator should perform better than the

mutation used (at the current stage of the coevolution). After three attempts, the popu-

lation of the three subspecies are reset. This mechanism offers another chance to find a

new reproductive operator. A new operator is assigned to the CGPparent, replacing the

mutation operator encoded in the autoconstructive CGP graph, if it is likely to perform

better.

Algorithm 4.10. This algorithms shows the steps used to generate a reproductive
mechanism for sequential and iterative algorithms.

1: function EVOLVEMUTATIONOP(ByValue CGPParent)
2: Attempt = 0
3: while Attempt < 3 do
4: for Parent ∈ [ActiveNodes,AnyNodes,Structure] do
5: Offspring ←Mutate(Parent)
6: Offspring ← EvaluateMutationOp(Offspring, CGPParent)
7: MutationOffspring ← Promote(Offspring)
8: if Parent is better than CGPParent.Mutation then
9: CGPparent ← AssignMutationOperator(Parent)

10: goto end
11: end if
12: end for
13: Attempt← Attempt + 1
14: end while
15: if Attempt = 3 then
16: MutationOffspring ← InitialiseReproductiveOperators(µmutation, CGPparent)
17: MutationParent ← PromoteReproductiveOperator(MutationOffspring)
18: CGPparent ← AssignMutationOperator(NewReproductiveOp)
19: end if
20: return CGPparent.Mutation
21: end function

4.2.3.3 Function and termination set of reproductive operators

A comprehensive function set provides the operators that can change the genes of

each node and the graph output; they are applied to the sequential or iterative al-

gorithms. Some of these operators modify the coding genes common to both CGP

hyper-heuristics (i.e. sequential and iterative). Expressions [4.1 - 4.5] either change a

function, a feedforward connection of active and inactive nodes or the output of a CGP

graph. It is worth noting, expressions 4.2, 4.4 and 4.5 are used in the point mutation

discussed in section 4.1.5.

Chapter 4. Graph-Based Genetic Programming 113

FlipFunctionOfActiveNode(ActiveNodeIndex) (4.1)

FlipFunctionOfAnyNode(ANodeIndex) (4.2)

FlipFeedForwardConnToActiveNode(ActiveNodeIndex) (4.3)

FlipFeedForwardConnToAnyNode(ANodeIndex) (4.4)

FlipAnOutput(OutputIndex) (4.5)

FlipFunctionOfActiveNode() and FlipFunctionOfAnyNode() change the function

genes of a randomly selected node. While FlipFunctionOfActiveNode() only

selects active nodes, but FlipFunctionOfAnyNode() can choose any nodes from

the graph.

FlipFeedforwardConnToAnActiveNode() and FlipFeedForwardConnToAnyNode()

mutate one input forward of a randomly selected node. FlipTheInputForward-

OfANode() can choose a node from the entire graph; the new input forward can

point to any previous nodes or a graph input. On the other hand, FlipTheInput-

ForwardToAnActiveNode() is restricted to select from the subset of active nodes

in a graph. The new input can only points to a previous active node or a graph

input.

FlipAnOutput() changes an output of a graph to a randomly selected node.

Some operations have specialised in altering the added genes of an iterative CGP node;

those are a condition and a branching gene. The operations given in expressions [4.6

- 4.9] extends the function set so that iterative algorithms can be mutated with this

online learning mechanism. Coding genes and non-coding genes can be mutated with

an evolved mutation operator. A point mutation discussed in section 4.2.2 relies on

the operators given in expressions 4.2, 4.4, 4.5, 4.7, and 4.9 to produce new CGP

offspring.

114 Chapter 4. Graph-Based Genetic Programming

FlipConditionOfActiveNode(ActiveNodeIndex) (4.6)

FlipConditionOfAnyNode(ANodeIndex) (4.7)

FlipBranchingGeneOfAnActiveNode(ActiveNodeIndex) (4.8)

FlipBranchingGeneOfAnyNode(ANodeIndex) (4.9)

(4.10)

FlipConditionOfActiveNode() andFlipConditionOfAnyNode() change the condi-

tion genes of a node randomly selected.FlipConditionOfActiveNode() is restricted

to the active nodes of a CGP graph, but FlipTheConditionOfANode() can choose

any node in the entire graph.

Both FlipBranchingGenesToAnActiveNode() and FlipBranchinGeneANode() mu-

tate the branching gene of an iterative node with the grammar discussed in sec-

tion 4.2.2. FlipBranchingGenesToAnActiveNode() changes coding genes to a

valid active node. However, FlipBranchingGenesOfANode() is free to choose

any nodes of a graphs and point to any suitable nodes.

The function set has also some other unusual operators. Those are expressed in ex-

pressions [4.11-4.16] can bring small changes or bring larger disruption to a graph.

It is hoped the algorithm search space could be searched within a region or move to

another part, with more control.

SwapFunctions() (4.11)

ApplyAFunctionLocalSearch() (4.12)

ApplyInputForwardLocalSearch() (4.13)

ApplyConditionLocalSearch() (4.14)

InitialiseActiveNode(ActiveNodeIndex) (4.15)

InitialiseAnyNode(ANodeIndex) (4.16)

SwapFunctions() randomly selects two active nodes and swap their function genes.

Chapter 4. Graph-Based Genetic Programming 115

ApplyAFunctionLocalSearch() applies three timesFlipFunctionOfActiveNode()

on the same active node. The function that brings the most beneficial changes to

a CGP graph is kept. If no improvement to the algorithm fitness function occurs

the changes are revoked.

ApplyConditionLocalSearch() applies three times the operator FlipConditionOfAc-

tiveNode() and keep the best changes that improves an iterative CGP graph.

Otherwise, the change is revoked.

ApplyInputForwardLocalSearch() makes three attempts to change a randomly se-

lected input forward of an active node; it uses again the operator FlipTheInput-

ForwardToAnActiveNode()). Then the most favourable mutation flip is kept.

If no improvement to the algorithm fitness function occurs the changes are re-

voked.

InitialiseActiveNode() and InitialiseAnyNode() change every gene of a randomly

selected node. Only coding genes values are altered by InitialiseActiveNode().

However, InitiaseANode() can change of any nodes of a CGP graph. These two

operators can operate on sequential and iterative algorithms.

The encoding scheme of the reproductive operator also relies on a condition set. It-

erative CGP graphs offer more freedom to evolve the reproductive mechanism than

directed acyclic graphs. Expressions [4.17 - 4.20] implements a ”for” loop. Each time

the body of a loop is executed a counter is incremented by one. The remaining ex-

pressions (i.e. [4.21 - 4.23]) increments a counter each time a node has been altered

instead. The loop stops when the correct proportion of nodes has been reached.

116 Chapter 4. Graph-Based Genetic Programming

IsCounterLessThanTwo() (4.17)

IsCounterLessThanFour() (4.18)

IsCounterLessThanEight() (4.19)

IsCounterLessThanTen() (4.20)

HasLessThanATenthOfAGraph() (4.21)

HasLessThanAQuarterOfAGraph() (4.22)

HasLessThanAHalfOfAGraph() (4.23)

Our list of operators and termination criteria that are used by the reproductive mecha-

nism is undeniably large. We have therefore allocated these operators to a subspecies

of generative mechanism that fit best with their purpose.

For example, the function set for the ”active-nodes” subspecies changes coding genes

and the termination criteria brings only a few iterations (Tables 4.2 and 4.3). The small

variations brought to the algorithms are likely to test and assess problem-solvers with

similar operators in different orders. It is worth noting this type of reproductive oper-

ator may drive the algorithm search in a local optimum.

The function and condition set for the ”any-nodes” subspecies can also mutate some

non-coding genes. As a result, the benefit of a neutral mutation can continue to be

applied to the search. However, we would expect reproductive mechanism with a mix-

ture of coding and non-coding genes being the more successful. Finally, the smallest

function set has been given to the ”structure” subspecies. These three operators should

bring the most disruption, moving the algorithm search to a new area of the algorithm

search space. These function and condition sets are summarised in tables 4.2 and 4.3.

Chapter 4. Graph-Based Genetic Programming 117

Table 4.2: This table summarises the function set of each subspecies of a reproductive
mechanism. The operators formatted in italic are only applied to the iterative algo-
rithm.

Active-Nodes Any-Nodes Structure
FlipFunctionOfActiveNode FlipFunctionOfActiveNode InitialiseActiveNode
FlipFeedForwardConnToActiveNode FlipFeedForwardConnToActiveNode InitialiseAnyNode
SwapFunctions FlipFunctionOfAnyNode FlipAnOutput
ApplyAFunctionLocalSearch FlipFeedForwardConnToAnyNode
ApplyInputForwardLocalSearch FlipConditionOfActiveNode
ApplyConditionLocalSearch FlipTheConditionOfANode
FlipConditionOfActiveNode FlipBranchingGeneOfActiveNode

FlipBranchingGeneOfAnyNode

Table 4.3: This table summarises the condition set of each subspecies of reproductive
operators

Active-Nodes Any-Nodes Structure
IsCounterLessThanTwo IsCounterLessThanFour IsCounterLessThanTen
IsCounterLessThanFour HasLessThanAQuarterOfAGraph HasLessThanATenthOfAGraph
IsCounterLessThanEight HasLessThanAHalfOfAGraph

4.3. Conclusion

This chapter has reviewed quite comprehensively graph-based genetic programming

techniques. Those have evolved directed acyclic graphs and directed graphs with a

variety of EAs. CGP has been one of the first graph-based genetic programming tech-

niques, and it remains still popular; this original technique is quite flexible to be ex-

tended for a different purpose.

Three CGP-based hyper-heuristics techniques have been described. Two of these tech-

niques are some extensions from the original work from Miller et al. [221]. Our first

extension has allowed the full evolution of iterations in algorithms; the technique can

be used in a wider context than evolving metaheuristics. Our second extension is an

online-learning hyper-heuristics that should evolve a reproductive mechanism during

the algorithm search. Our next chapter will discuss the experiments we have conducted

with these techniques to generate some problem-solvers for the three problem domain

introduced in chapter 3.

118 Chapter 4. Graph-Based Genetic Programming

Chapter 5. Evolving metaheuristics 119

Chapter 5. Evolving metaheuristics

Contents
5.1 Introduction . 119

5.2 Learning objective function . 120

5.3 Evolving the body of a loop . 121

5.3.1 Validation . 123

5.4 Iterative Cartesian Genetic Programming: the full evolution of

loops . 127

5.4.1 Validation of the learnt iterative metaheuristics 129

5.5 Discussion and conclusion . 133

5.1. Introduction

Evolving the body of a loop was originally suggested by Koza et al. [174], when he

raised the following question: Is it possible to automate the decision about whether to

employ the particular sequence of iterative steps in a computer program that is evolved

by genetic programming to solve a problem? [174].

Suitably expressive algorithms may never terminate or have over-long computations.

When the algorithm design is automated, some forms of constraints prevent these un-

wanted occurrences as a practical necessity. Defining the elements that remain un-

changed and the evolved part of a program can be achieved with some grammatical

rules or templates [244, 199, 180, 344, 182, 285].

120 Chapter 5. Evolving metaheuristics

The evolution of some iterative or recursive structures has been made possible by

relaxing some of these constraints. The evolution of some “for loops” is often re-

stricted to a hard-coded and maximum number of times such constructs can be re-

peated [192, 343, 69, 191, 253, 6, 358, 253, 11]. Some iterative programs have also

been generated with a form of graph-based genetic programming. The operation set

often relies on arithmetical or boolean operators. At the time of writing, we are not

aware of any direct applications to search problems. [282] .

The purpose of this chapter has therefore twofold. We investigate first the effectiveness

of classic CGP in evolving the body of a loop. We then extend CGP exposing the

iteration of a metaheuristic fully to the evolution. In the remainder of this thesis, the

cluster N8 HPC 1 host all our experiments.

5.2. Learning objective function

The learning objective function we use in this chapter is given in Algorithm 5.1; its

signature complies with the general definition provided in section 2.3.3 (i.e a function

referred as AlgEvaluation in expression 2.18).

We penalise metaheuristics without any replacement operators with a very large algo-

rithm fitness value (see line 3 of algorithm 5.1). This mechanism aims at decreasing

the likelihood of such algorithms surviving to the next generation. Otherwise, some

problem solutions are obtained (i.e., one for each given instances) and their arithmetic

mean is returned.

1N8 HPC provided and funded by the N8 consortium and EPSRC (Grant No.EP/K000225/1), The
Centre is coordinated by the Universities of Leeds and Manchester

Chapter 5. Evolving metaheuristics 121

Algorithm 5.1. Learning objective function
1: function ALGEVALUATION(anAlgorithm, Instances)
2: if AnAlgorithm has no replacement operator then
3: Fitness =∞
4: else
5: for anInstance ∈ Instances do
6: aResult← RunAlg (anAlgorithm, anIntance,Runs = 1)
7: Total← Total + aResult
8: end for
9: Fitness← Total

Number of instances
10: end if
11: return Fitness
12: end function

5.3. Evolving the body of a loop

We hope to generate some TSP solvers. Each generated metaheuristic is evaluated us-

ing the process described in algorithm 5.1. The three predetermined learning instances

were chosen pr299, pr439 and rat783; we hope they would assess suitably well the al-

gorithm abilities. Metaheuristic such as memetic algorithms and iterated local search

often apply a local search operator before searching iteratively the problem-solution

space [205]. Consequently, the general template introduced in algorithm 4.6 has been

extended: a 3 OptLocalSearch() is applied to the TSP-candidates solutions of p be-

fore the loop (see algorithm 5.2). A maximum number of 500 evaluations is applied

each time a generated metaheuristic is executed. Each time an operator is applied on

a TSP individual, a problem evaluation is deducted. Both population p and t have two

individuals. The problem-specific parameter Depth of search has been set to 0.89 and

the intensity of mutation to 0.8.

A CGP hyper-heuristic evolves the body a loop (see line 6 of algorithm 5.2). The tech-

nique introduced in section 4.2.1 is applied with the parameters and function provided

in table 5.1 and 5.2).

122 Chapter 5. Evolving metaheuristics

Algorithm 5.2. : The template of a hybrid metaheuristic makes the body of the loop
susceptible to the evolution.

1: function FINDSOLUTION(ProblemDomain,µ,λ)
2: p← InitPopulation(ProblemDomain,µ,λ)
3: p← 3-Opt-LocalSearch(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t← SelectElitism(p)
6: NumEvals← DecodeAcyclicGraph(OutputNo = 0) . Evolved part of the

code
7: EvalCount = EvalCount + NumEvals
8: end while
9: return Best(p)

10: end function

Table 5.1: Parameters of the Classic CGP

Parameter Value

Length (no of nodes) 100

Levels-forward (no of nodes) 100

Program inputs 1

Program outputs 1

µ + λ 1 + 1

Mutation Rate 0.05

Generations 1200

Hyper-heuristics evaluations: 1202

Number of Runs 250

Chapter 5. Evolving metaheuristics 123

Table 5.2: The function set made of TSP-specific and population operators

opCode Problem operators
0 t← InsertionMutation(t)
1 t← ExchangeMutation(t)
2 t← ScrambleWholeTourMutation(t)
3 t← ScrambleSubtourMutation(t)
4 t← SimpleInversionMutation(t)
6 t← 2 OptLocalSearch(t)
7 t← Best2 OptLocalSearch(t)
8 t← 3 OptLocalSearch(t)
9 t← OrderBasedCrossover(t)

10 t← PartiallyMapCrossover(t)
11 t←VotingRecombinationCrossover(t)
12 t← SubtourExchangeCrossover(t)
13 p←ReplaceLeastFit(t,p)
14 p←ReplaceRandom(t,p)
15 p← RestartPopulation(p)

5.3.1 Validation

Some metaheuristics evolved in these experiments are given in algorithms [A.19, A.20,

A.21, A.36, A.37, A.38]; those are referred as TSP-[A-C] and TSP-[R-T]. These se-

quences of instructions were translated from their CGP graphs to be hard-coded in

three unique TSP solvers; an example is given in figure 5.1 and algorithm 5.3. These

solvers were programmed with the programming language Java and use again all the

primitives. For direct comparison, the metaheuristics due to Ozcan [247] and Ulder

[319] were also coded in Java. All these algorithms can be found in section 9.2 in

Appendix 9.2.

Figure 5.1: CGP graphs representing the TSP solvers B as described in algorithms 5.3

124 Chapter 5. Evolving metaheuristics

Algorithm 5.3. : TSP Solver B. The code formatted in black are part of the tem-
plate shown in algorithm 4.8. The code in blue and italic fonts is the outcome of the
decoding process.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: p← 3-Opt-LocalSearch(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t← SelectElitism(p)
6: t← ExchangeMutation(t) . start generated code
7: t← 3−OptLocalSearch(t)
8: p← ReplaceLeastF it(t, p) . end generated code
9: end while

10: return Best(p)
11: end function

We were disappointed, but have found interesting, not every generated metaheuristic

can find some suitable solutions. Some operators can increase the distance to a known

optima, rather than shortening it. We had hoped our technique would balance both

types of operators more effectively. Table 5.3 shows how the solver TSP-B relies on

ExchangeMutation to disrupt the TSP solutions, then one local searche to shorten some

tours 3 OptLocalSearch.

Table 5.3: State of populations p and t at generation 7 during a validation run. The
solver TSP-B was used with the validation instance d1291.

Operator p1 p2 t1 t2

SelectElitism 1.394e-01 (=) 1.233e-01 (=) 1.394e-01 (≤) 1.233e-01 (≤)

ExchangeMutation 1.394e-01 (=) 1.233e-01 (=) 2.232e-01 (>) 2.236e-01 (>)

3 OptLocalSearch 1.394e-01 (=) 1.233e-01 (=) 1.110e-01 (<) 1.110e-01 (<)

ReplaceLeastFit 1.110e-01 (<) 1.110e-01 (<) 1.110e-01 (=) 1.110e-01 (=)

Chapter 5. Evolving metaheuristics 125

Some other algorithms have been unable to move away from a local optima (i.e. algo-

rithms [A.37-A.38] in section 9.2 and graph 5.2). The body of the loop of solver TSP-

T finds a near-optima using a 3-OptLocalSearch(), then a ScrambleSubtourMutation

moves away from the local optima. Some tour lengths (t1 and t2) are then shortened by

a 2 OptLocalSearch and a Best2 OptLocalSearch(). OrderBasedCrossover increases

the tour length or preserves it. However, the offspring are much longer now than the

parents. The latter remains therefore unchanged as the ReplaceLeastFit operator can-

not replace the parents with the new offsprings; f.fitness ≥ p.fitness. The same

tours obtained at the start of a search are therefore selected over and over again with-

out a shorter tour being obtained (see Table 5.4).

Table 5.4: State of populations p and t at generation 7 during a validation run. The
solver TSP-T was used with the validation instance d1291.

Operator p1 p2 t1 t2

SelectElitism 1.394e-01 (=) 1.233e-01 (=) 1.394e-01 (≤) 1.233e-01 (≤)

3-OptLocalSearch 1.394e-01 (=) 1.233e-01 (=) 1.112e-01 (<) 0.908e-02 (<)

ScrambleSubtourMut 1.394e-01 (=) 1.233e-01 (=) 1.230e+01 (>) 2.025e+01 (>)

2 OptLocalSearch 1.394e-01 (=) 1.233e-01 (=) 7.430e+00 (<) 6.794e+00 (<)

Best2 OptLocalSearch 1.394e-01 (=) 1.233e-01 (=) 6.59e+00 (<) 6.587e+00 (<)

OrderBasedCrossover 1.394e-01 (=) 1.233e-01 (=) 6.619e+00 (<) 6.587e+00 (<)

ReplaceLeastFit 1.394e-01 (=) 1.233e-01 (=) 6.619e+00 (=) 6.587e+00 (=)

Figures 5.2 illustrate how some generated metaheuristics can descent towards an op-

tima during a learning and a validation run.

126 Chapter 5. Evolving metaheuristics

Figure 5.2: A comparison of the the solvers TSP-[A-C] and TSP-[R-T] during the
search for an optimum tour for the learning benchmark pr439.

0 20 40 60 80 100 120

Generations

0.05

0.1

0.15

0.2

0.25

0.3

R
e
la

ti
v
e
 e

rr
o

r
fr

o
m

 k
n

o
w

n
 m

in
im

a

TSP-A

TSP-B

TSP-C

TSP-R

TSP-S

TSP-T

5.3.1.1 Performance

The solvers TSP-[A-C] have found some near-optimum ranging between 0 and 0.15

to a known optima. Those were first published in [273], with 3,000 evaluations and 20

independent runs. We have completed an additional 100 validation runs with a doubled

number of problem evaluations, to deepen our understanding of these metaheuristics.

More validation instances were also used ranging from 38 to 33,708 cities 2. A detailed

statistical analysis of the tours found for these instances is provided in section 9.2.

Except for the validation instance dj38, Ozcan[247] and Ulder [319] have consis-

tently found some tours with an expected relative error greater or equal to 0.18. The

automatically-designed metaheuristics have found better tours with an expected rela-

tive error lower or equal 0.10. These solvers have also a lower median than the ones

humanly-written; the solver TSP-B has found the shortest tours. A Mann-Whitney U

non-parametric test with a P-value set to 0.01 has confirmed the solver TSP-B is sig-

nificantly better than solver TSP-A, TSP-C, Ozcan and Ulder’s metaheuristics. Also,

TSP-A is significantly better than TSP-C. A big effect is reported in tables B.25, B.23

and B.24. The A-measure is often greater than 0.71 for a majority of instances [304].

2http://www.math.uwaterloo.ca/tsp/world/countries.html

Chapter 5. Evolving metaheuristics 127

The distribution of the solutions obtained by these metaheuristics TSP [A-C] has a

positive skew (i.e. mean ≥ median). In figure 5.3 the standard deviation is shown in

a diamond and the mean as a dotted line.

Figure 5.3: A statistical comparison of solvers TSP-A, TSP-B and TSP-C for the in-
stance eg7146

5.4. Iterative Cartesian Genetic Programming: the full

evolution of loops

We use the offline-learning generative hyper-heuristic introduced in section 4.2.2.

These experiments should provide an insight into how hybrid metaheuristics can be

discovered with an iterative Cartesian Genetic Programming.

The loops of our metaheuristics are fully evolved using iterative CGP. Our proposed

method evolves merely a sequence of non-deterministic operators, but also repeated

sub-sequences (or loops). Any iterations can terminate without any hard limits being

implemented CGP.

128 Chapter 5. Evolving metaheuristics

We hope algorithms with several consecutive loops could be generated; often meta-

heuristics are designed without any nested loops. The iterative CGP hyper-heuristics

settings (see table 5.5) therefore shows a number of nodes, mutation rate and hyper-

heuristic evaluations have increased. The other parameters (i.e. program inputs and

outputs, µ+ λ, the number of runs) have remained the same.

The method of evaluating a tour and the parameters remain unchanged from our pre-

vious experiments (see section 5.3). Tables 5.6 and 5.7 lists the function and condition

set used in these experiments. The first three termination criteria rely on the number

of problem evaluations used. Inspired Ulder [319], the termination criterion labelled

with the terCode 4 relies on an additional parameter to function appropriately. Only

when after 50 iterations no new shorter tour has been found in loop is exited.

Table 5.4 has shown some operators can disrupt too much a tour and it becomes too

challenging to balance its effect with some others operators (see table 5.4). As well

as ScrambleSubtourMutation, ScrambleWholeTourMutation, PartiallyMapCrossover,

VotingRecombinationCrossover and ReplaceRandom can also affect negatively the

TSP search. In the experiments reported in section 5.3, those appears the least in

our generated metaheuristics (i.e. ≤ 5%) or none at all. Therefore those have been

removed from the function set.

Table 5.5: Parameters of the Iterative CGP for all the tests

Parameter Value
Length (no of nodes) 300
Levels-forward (no of nodes) 100
Levels-backs (no of nodes) 100
Program inputs 1
Program outputs 1
µ + λ 1 + 1
Mutation Rate 0.10
Hyper-heuristics evaluations: 1502
Runs 250

Chapter 5. Evolving metaheuristics 129

Table 5.6: Function set: List of TSP heuristics used as primitives.

Index TSP heuristics
0 t← InsertionMutation(t)
1 t← ExchangeMutation(t)
4 t← SimpleInversionMutation(t)
7 t← Best2-OptLocalSearch(t)
8 t← 3-OptLocalSearch(t)
9 t← OrderBasedCrossover(t)

12 t← SubtourExchangeCrossover(t)
13 p← ReplaceLeastFit(p,t) and

t←SelectParents(p)
15 p← RestartPopulation(p)

Table 5.7: Condition set: Boolean primitives chosen for the stopping criterion.

Index Termination criteria
1 EvalCount ≤MaxEval
2 EvalCount ≤ MaxEval

2

3 EvalCount > MaxEval
2

and EvalCount ≤MaxEvals
4 EvalCount ≤MaxEval or IsBetter(noEval)

5.4.1 Validation of the learnt iterative metaheuristics

The solvers TSP-[D-E] and TSP-[U-W] were discovered (see algorithms [A.22-A.23]

and [A.40-A.41] in section 9.2). An example of a translated iterative CGP graph into

a programmed solver is provided in figure 5.4 and algorithm 5.4.

Figure 5.4: CGP graphs representing the TSP solvers D and described in algorithms
5.4

130 Chapter 5. Evolving metaheuristics

Algorithm 5.4. TSP Solver D - The code formatted in black is part of the template
shown in algorithm 4.8. The code in blue and italic fonts is the outcome of the decod-
ing process.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEval do . start generated code
5: t← 3−OptLocalSearch(t)
6: p← Restart(p)
7: p← ReplaceLeastF it(t, p)
8: t← SelectElitism(p)
9: t← ExchangeMutation(t) . end generated code

10: end while
11: p← ReplaceLeastFit(t, p)
12: return Best(p)
13: end function

The solvers TSP-[D-E] have demonstrated some abilities to converge towards a known

optima. However, solvers TSP-[U-W] have been unsuccessful to converge towards a

suitable solution. Some of these metaheuristics ineffectively balance the operators

that lengthen and shorten some tours within an iteration. The solver TSP-U (see al-

gorithm A.40) has been unable to improve more than once the tour of population p,

creating an abrupt drop during the learning run. Table 5.8 illustrates the operators

Best2 OptLocalSearch and SubtourExchangeCrossover may leave unchanged the off-

springs, until a 3 OptLocalSearch operator is applied. However, the local search re-

mains in local optima and as the search progresses, no better tour is found; resulting in

creating only one improvement through the search (see solvers TSP-U in figure [5.5]).

Chapter 5. Evolving metaheuristics 131

Figure 5.5: A comparison of the solvers TSP-[D-E] and TSP-[U-W] during the search
for an optimum tour for the learning benchmark pr439.

0 50 100 150

Generations

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
e

la
ti
v
e
 e

rr
o
r

fr
o
m

 k
n
o

w
n
 m

in
im

a

Instance pr439 (439 cities)

TSP-U

TSP-V

TSP-W

TSP-D

TSP-E

Table 5.8: State of populations p and t when 2,990 algorithm evaluations have been
used during a validation run. The solver TSP-T was used with the validation instance
d1291.

operator p1 p2 t1 t2

Best2 OptLocalSearch 2.687e-01 (≤) 2.537e-01 (≤) 1.951e-01 (≤) 1.951e-01 (≤)

SubtourExchangeCrossover 2.687e-01 (=) 2.537e-01 (=) 1.951e-01(=) 1.951e-01 (=)

Best2 OptLocalSearch 2.687e-01 (=) 2.537e-01 (=) 1.951e-01 (=) 1.951e-01(=)

SubtourExchangeCrossover 2.687e-01 (=) 2.537e-01 (=) 1.951e-01 (=) 1.951e-01 (=)

Best2 OptLocalSearch 2.687e-01 (=) 2.537e-01 (=) 1.951e-01(=) 1.951e-01 (=)

3 OptLocalSearch 2.687e-01 (=) 2.537e-01 (=) 1.778e-0 (<) 1.778e-01 (<)

ReplaceLeastFit 2.687e-01 (=) 2.537e-01 (=) 1.778e-01 (=) 1.778e-01 (=)

SelectElistism 1.778e-01 (<) 1.778e-01 (<) 1.778e-01 (=) 1.778e-01 (=)

3 OptLocalSearch 1.778e-01 (=) 1.778e-01 (=) 1.778e-01 (=) 1.778e-01 (=)

ReplaceLeastFit 1.778e-01 (=) 1.778e-01 (=) 1.778e-01 (=) 1.778e-01 (=)

SelectElitism 1.778e-01 (=) 1.778e-01(=) 1.778e-01 (=) 1.778e-01 (=)

132 Chapter 5. Evolving metaheuristics

5.4.1.1 Performance

The solvers TSP-[D-E] were published [274]. Section 9.2 provides a detailed statis-

tical analysis of the tours obtained by these solvers 9.2. Except for instances greater

than 22,000 cities, these two solvers were able to find some shorter tours.

Most of the tours found by the solver TSP-D have a similar length; the standard de-

viation and interquartile range tend to be quite small (see tables of section 9.2). For

example, the tours obtained for instance eg7146 approximately vary by [0.04] (see fig-

ure 5.6 and (see section 9.2)).

Figure 5.6: A statistical comparisons of TSP-A, TSP-B, TSP-C,TSP-D and TSP-E
over a 100 runs with 6,000 problem evaluations. The mean and standard deviation are
represented with a diamond shape.

Chapter 5. Evolving metaheuristics 133

5.5. Discussion and conclusion

Two offline-learning generative hyper-heuristics have evolved partially and fully the

iterations of some metaheuristics, for the traveling salesman problem; the TSP is often

used to test new methods. For a majority of the validation instances, some tours with

an expected relative error to the known optima ranging between 0 and 0.10 have been

consistently obtained. Our validations set included some benchmarks with a very large

number of cities, but relatively short runs were able to find suitable tours.

We have translated the generated metaheuristics from their CGP-graph forms into a

pseudo-code and demonstrating that those are compact and human-comprehensible.

Some effective combinations of problem-specific operators were able to converge to-

wards a known optima; the order of the TSP-specific operators have suitably perturbed

some tours before improving them. On the other hand, ineffective patterns of primi-

tives have remained in local optima.

134 Chapter 5. Evolving metaheuristics

Chapter 6. Improved learning objective process 135

Chapter 6. Improved learning objective pro-

cess

Contents
6.1 Introduction . 136

6.2 Problem domain . 139

6.2.1 Traveling salesman problem 139

6.2.2 Mimicry problem . 141

6.2.3 Nurse rostering problem 142

6.3 Evolution of the body of a loop 145

6.3.1 Discovery of Traveling Salesman Problem solvers 146

6.3.2 Performance . 148

6.3.3 Discovery of Mimicry problem solvers 152

6.3.4 Discovery of nurse rostering problem solvers 156

6.4 The full evolution of loops . 162

6.4.1 Discovery of iterative Travelling salesman solvers 163

6.4.2 Discovery of iterative mimicry solvers 165

6.4.3 Discovery of iterative nurse rostering problem solvers . . . 169

6.4.4 Performance and comparison 171

6.5 Discussion and conclusion . 171

136 Chapter 6. Improved learning objective process

6.1. Introduction

Both finance and machine learning attempt to learn from a set of known data and make

a prediction on an unknown set. These disciplines have benefited from applying some

measures of dispersion and central tendency. In finance, a mean-variance analysis can

predict the potential return of a portfolio. The possible loss and earning over a period

of time should be balanced by a diversified portfolio [211]. In comparison, some su-

pervised machine learning techniques should approximate a target function that maps

some input variables to some output ones.

Sometimes the approximate target function becomes insensitive to small fluctuations

in a learning set. Some other times it is unable to generalise at all on training or valida-

tion set of benchmarks. Some techniques have overcome these undesirable outcomes

with the help of a coefficient of variation; a minimum level of quality that a target

function should achieve during a learning run (i.e. a goal) has also been specified

[184, 42, 251, 197].

This chapter explores whether an objective learning process inspired by a diversified

learning set, a coefficient of variation and some achievable goals could improve the

performance of our offline-learning generative hyper-heuristics.

We are proposing to balance the performances (effective and less effective) over a

diversified set of learning instances. At least one instance is likely to be easy to solve,

a second one brings more challenge to find some solutions and finally one that is known

offer a high level of difficulty. The principles behind our improved learning objective

process could be illustrated using some knives and a target. Figure 6.1 shows the

performance of a knives-thrower after attempting a diversity of challenges.

Chapter 6. Improved learning objective process 137

1. A knives-thrower was able to hit three times the centre when the player was

throwing their pocket-knives from a very short distance away from the target.

The central tendency and the dispersion for these results are set 0.00 (i.e. the

results are known optimum).

2. The player then steps away further from the target; the central tendency and the

dispersion are now greater, moving away from the centre and achieving near-

optimum solutions.

3. The same pattern is repeated when the knives-thrower steps again further away

and plays again. The knives have landed in the outer part of the target; the central

tendency and the dispersion have increased too.

A successful knives-thrower should achieve a minimum requirement (see the top pat-

tern illustrated in figure 6.1); otherwise, the player would only be able to hit the centre

and miss other sections of the target. We would consider that the knives-thrower would

be overfitting to the centre of a board. A player would be more sensitive to the fluctua-

tion of some different challenges. When the number of throws increases, a successful

knives-thrower should hit the centre of a target for the three targets.; the central ten-

dency and dispersion should then decrease (see the bottom pattern of figure 6.1).

Figure 6.1: Results of a game with a target with three challenges

138 Chapter 6. Improved learning objective process

The improved learning objective function implements a similar incremental process as

previously described.

Algorithm 6.1. The Improved learning objective function uses again the signature
described in section 2.3.3;
Require: Instances must hold three instances referred as easyInstance, mediumInstance,

hardInstance. Each of them should have a reasonable goal set for each step of the pro-
cess.

1: function ALGEVALUATION(anAlgorithm, Instances).
2: anInstance← easyInstance
3: if Algorithm has not improved initial population then . Phase 1
4: return∞
5: end if
6: for anInstance ∈ Instances do . Phase 2
7: someResults[i]← RunAlg(anAlgorithm, anInstance,Runs = 3)
8: if Stats[anInstance].CentralTendency ≥ anInstance.goal then
9: return∞

10: else
11: Fitness = Fitness+ Stats[anInstance].CoeffientOfV ariation
12: end if
13: end for
14: if The coefficient of variation has increased then . Phase 3
15: return Fitness
16: else
17: return∞
18: end if
19: end function

Phase 1 assesses whether the generated metaheuristic improves its initial population.

Learnt metaheuristics that fail this step stops the process at this phase. This

undesirable feature affects the performance of the non-deterministic algorithm

negatively.

Phase 2 collects some performance data incrementally. Compared to our previous

learning objective function (see algorithm 5.1), the number of attempts has now

increased from 1 to 3 for instance. If the central tendency of these results fails to

meet an instance goal, then the algorithm stops. Otherwise, it repeats the same

process with the next instance until there are none left.

Phase 3 penalises an algorithm that fails to demonstrate an ability to scale. A com-

parison of the coefficient of variations obtained from the independent runs for

an easy and a hard instance should identify this ability.

Chapter 6. Improved learning objective process 139

6.2. Problem domain

The parameters and operators of three problem domain introduced in chapter 3 are

used in our experiments.

6.2.1 Traveling salesman problem

Most of the traveling salesman problem parameters introduced in chapter 5.3 remain

the same. From our observation made in our previous experiments, our function set

has now a reduced number of operators; those listed in table 6.1.

Three different learning instances have been chosen to fit more suitably with the im-

proved learning objective function. Using the results from chapter 5, we have chosen a

goal of 0.00 for the instance wi29 (i.e our “easy instance”). Then our chosen medium

instance is pr439 with a goal of 0.10, and finally, the most challenging instance is

d1291 with a goal of 0.18. In our context, a goal indicates the distance away from

a known minima. The domain knowledge gained from the results obtained from our

previous experiments have helped us identify these expected performances.

Table 6.1: Function set: List of TSP heuristics used as primitives.

OpCode Problem operators
0 t← InsertionMutation(t)
1 t← ExchangeMutation(t)
4 t← SimpleInversionMutation(t)
7 t← Best2-OptLocalSearch(t)
8 t← 3-OptLocalSearch(t)
9 t← OrderBasedCrossover(t)

12 t← SubtourExchangeCrossover(t)
13 p← ReplaceLeastFit(t,p)

t← SelectParents(p)

140 Chapter 6. Improved learning objective process

Table 6.2: Parameters of the metaheuristics for all the test

Parameter Value
Offsprings t 2
Parents P 2
Maximum of evaluations 1002
Depth of Search 0.89
Intensity of mutation 0.8
Predetermined learning instances:
- the easy instance with its goal wi29 (0.00)
- the medium instance with its goal pr439 (0.10)
- the hard instance with its goal d1291 (0.18)

The template has been refined too. In line 3, a 3-OptLocalSearch() operator is again

applied. Other changes include executing a population operator no 13 at the end of

each iteration (see lines 12 and 13 of algorithm 6.2). These two lines replace the least

fit parent with a better offspring, before selecting new individuals for reproduction

in the temporary population t. The objective learning function is not testing for se-

quences of operators that include this combination of operations (i.e. operator 13). In

chapter 5, metaheuristics that did not apply a replacement operator could not converge

effectively towards the known minima.

Algorithm 6.2. : The template of a hybrid metaheuristic, with its core being evolved
by an evolved Hyper-Heuristic algorithm.

function FINDSOLUTION(ProblemParam,µ,λ)
p← InitPopulation(ProblemParam,µ,λ)
t← SelectElitism(t)
p← 3-Opt-LocalSearch(p)
while EvalCount ≤MaxEvals or p.fitness > 0 do

. Evolved part of the code
NumEvals← DecodeAcyclicGraph(OutputNo = 0)
p← ReplaceLeastFit(t,p)
t← SelectElitism(p)
EvalCount← EvalCount + NumEvals

end while
return Best(p)

end function

Chapter 6. Improved learning objective process 141

6.2.2 Mimicry problem

The state-of-the-art [146] has influenced the settings of the metaheuristics’ parameters.

An evolution strategy (1/1+1) with 3072 generations have solved an instance with 500

bits. The evolution strategy recombines the genetic code of one parent and one off-

spring (see table 6.3).

Table 6.3: Parameters of the metaheuristics for all the learning test

Parameter Value
Offsprings t 1
Parents P 1
Maximum of evaluations 1500
Mutation rate 0.001
Adaptive mutation rate 0.05
Predetermined learning instances:
- the easy instance with its goal 300 (0.01)
- the medium instance with its goal 500 (0.05)
- the hard instance with its goal 800 (0.10)

The 500-bit instance is considered as a medium challenge with a goal of 0.05, and our

easy instance has 300 bits and the most challenging one 800 bits. The goal has been

set to some quite low values, as we hope to find near optima greater than 5,000 bits in

our validation phase. All the mimicry-problem operators introduced in section 3.2 are

included in our function set (see table 6.4). The termination criteria IsBetter has been

adapted to the evolution strategy (1/1+1). This condition terminates the execution of

a loop when the populations p and t has not improved over one generation.

Each time a problem search starts, the mimicry problem domain requires generating a

prototype randomly. Line 1 of algorithm 6.3 now applies the InitPopulation operator

makes this process transparent (see section 6.2.2).

142 Chapter 6. Improved learning objective process

Table 6.4: Mimicry operators with their opcode and the number of evaluations used.

opCode Operator(s)
0 t← CrossoverOnePoint(t)
1 t← CrossoverTwoPoints(t)
2 t← CrossoverUniform(t)
3 t←MutateOneBit(t)
4 t←MutateOneBitHC(t)
5 t←MutateUniformSubSequenceHC(t)
6 t←MutateUniformHC(t)
7 t←MutateUniformVariableRate(t)
13 p← ReplaceLeastFit(t,p)

t← SelectParents(p)

Algorithm 6.3. : The template of a hybrid metaheuristic, with its core being evolved
by an evolved Hyper-Heuristic algorithm.

function FINDSOLUTION(ProblemParam,µ,λ)
p← InitPopulation(ProblemParam,µ,λ)
t← SelectElitism(p)
while EvalCount ≤MaxEvals or p.fitness > 0 do

. Evolved part of the code
NumEvals← DecodeAcyclicGraph(OutputNo = 0)
EvalCount = EvalCount + NumEvals

end while
return Best(p)

end function

6.2.3 Nurse rostering problem

Some initial experiments have highlighted that the disruption brought by some oper-

ators could be detrimental to the problem search. The alterations would deteriorate

too much the quality of a roster so that it would be too challenging to correct to find

a near-optima (or optimum). Their effect were tested and assessed by inspection. The

function set given in table 6.5 has been reduced to local search, ruin-and-recreate,

crossover and mutation operators that should help our learnt metaheuristics to move

efficiently through the problem search space.

Chapter 6. Improved learning objective process 143

Table 6.5: Nurse rostering operators with their opcode and the number of evaluations
used.

OpCode Operator(s)
0 t← NewSwapLocalSearch(t)
1 t← HorizontalSwapLocalSearch(t)
3 t← VariableDepthLocalSearch(t)
4 t← GreedyVariableDepthLocalSearch(t)
5 t← SimpleGreedyRuinRecreate(t)
6 t← SmallGreedyRuinRecreate(t)
7 t← LargeGreedyRuinRecreate(t)
11 t← UnassignedShiftMutation(t)
13 p← ReplaceLeastFit(t,p)

t← SelectParents(p)
15 p← RestartPopulation()

The metaheuristics’ parameters are given in tables 6.6. Our three learning instances

have an increasing number of employees and type of shifts. Our easier instance In-

stance1 schedules 8 nurses over a period of 14 days for 1 type of shifts. We consider

the instance BCV-4.13-1 as a medium challenge; rosters for an additional 5 nurses over

4 different of shifts for 29 days needs to be optimised. Our most challenging instances

Ikegami-2Shift-DATA1 more than double the number of nurses (i.e. 28) over 2 shifts

over a period of 30 days.

Table 6.6: Parameters of the metaheuristics for all the test

Parameter Value
Offsprings t 2
Parents P 2
Maximum of evaluations 40
Depth of Search 0.60
Intensity of mutation 0.60
Predetermined learning instances:
- the easy instance with its goal Instance1 (0.00)
- the medium instance with its goal BCV-4.13.1 (0.00)
- the hard instance with its goal Ikegami-2Shift-DATA1 (0.15)

144 Chapter 6. Improved learning objective process

We use the template described in algorithm 6.4 for the evolution of the body of a loop.

The two population operations replaceLeastFit and SelectParents are applied to move

the algorithm search forward more effectively. Iterative CGP-graphs also applies this

feature at the end a subsequence. This has now been added in the decoded process for

this problem (see algorithm 6.5).

Algorithm 6.4. : The template of a hybrid metaheuristics, with its core being evolved
by an evolved Hyper-Heuristic algorithm.

function FINDSOLUTION(ProblemParam,µ,λ)
p← InitPopulation(ProblemParam,µ,λ)
t← SelectElitism(p)
p← GreedyVariableDepthLocalSearch(t)
while EvalCount ≤MaxEvals or p.fitness > 0 do

. Evolved part of the code
NumEvals← DecodeAcyclicGraph(OutputNo = 0)
p← ReplaceLeastFit(t,p)
t← SelectElitism(p)
EvalCount = EvalCount + NumEvals

end while
return Best(p)

end function

Algorithm 6.5. A feedforward mechanism used to decode an iterative CGP graph
1: procedure DECODECYCLICGRAPH(OutputNo)
2: NodesConnected← IdentifyNodesConnectedToAnOutput(OutputNo)
3: OrderedNodesConnected← IdentifyBranchingNodes(NodesConnected)
4: CurrentNode← GotoF irstNodeOfGraph
5: while NotLastNodeOfGraph(CurrentNode) do
6: if TypeOf(CurrentNode) = processNode then
7: V alues(CurrentNode)← applyOperator(CurrentNode)
8: end if
9: if TypeOf(CurrentNode) = DecisionNode then

10: if IsTerminationCriteriaMet(CurrentNode) then
11: Values(CurrentNode)← applyOperator(13)
12: CurrentNode← GoToEndOfTheLoop()
13: else
14: V alues(CurrentNode)← applyOperator(CurrentNode)
15: end if
16: end if
17: CurrentNode← GoToNextNode()
18: end while
19: end procedure

Chapter 6. Improved learning objective process 145

Algorithm 6.6. : The template of an hybrid metaheuristics, with its iteration(s) being
fully evolved evolved by an Hyper-Heuristic algorithm.

function FINDSOLUTION(ProblemParam,µ,λ)
p← InitPopulation(ProblemParam,µ,λ)
t← SelectElitism(p)
p← GreedyVariableDepthLocalSearch(t)

. Evolved part of the code
NumEvals← DecodeCyclicGraph(OutputNo = 0)
EvalCount← NumEvals
return Best(p)

end function

6.3. Evolution of the body of a loop

Our experiments apply the offline-learning generative hyper-heuristics introduced in

section 4.2.1. We hope to investigate the effect of our new our new improved algo-

rithm objective function (see algorithm 6.1) on the partial evolution of a loop.

Several parameters have been adjusted to reflect some of the findings of chapter 5;

those have been formatted in bold in table 6.7. We hope longer algorithms can be

evaluated as a larger algorithm search space can be explored. Perhaps more unusual

metaheuristics performing more effectively can be discovered.

It is also hoped the effect on human understandability can also be further explored.

Total freedom to connect forward the nodes remain our favoured choice. Lastly, we

hope to reduce the number of learning runs, to save using some computer resources.

Consequently, we have increased the total number of hyper-heuristics generations to

6000 (6002 hyper-heuristics evaluations in total).

146 Chapter 6. Improved learning objective process

Table 6.7: Parameters of our CGP hyper-heuristics

Parameter Value

Length (no of nodes) 200

Levels-forward (no of nodes) 200

Program inputs 1

Program outputs 1

µ + λ 1 + 1

Mutation Rate 0.10

Generations 6000

Hyper-heuristics evaluations: 6002

Some metaheuristics will be evolved for the mimicry, traveling salesman and nurse-

rostering problem. The learnt metaheuristics will be translated from their directed

acyclic graph form to the programming language Java. We also exhaustively enumer-

ated the body of a loop over a period of 24 hours. In these experiments, we use the

operators, parameters as and templates are given in section 6.2.

6.3.1 Discovery of Traveling Salesman Problem solvers

6.3.1.1 Effect of the improved learning objective function

Applying the improved learning objective function in conjunction to an increased num-

ber of hyper-heuristic evaluations have considerably lowered the number of hyper-

heuristics evaluations; approximately 1.80e+06 algorithms evaluations were saved (i.e.

the number of learning runs have been reduced from 250 to 20).

Chapter 6. Improved learning objective process 147

The improved learning objective function has assessed the metaheuristics more accu-

rately. Metaheuristics demonstrating these prescribed behaviours could only be pro-

moted by the hyper-heuristic, moving the search to a more desirable area of the al-

gorithm search space. First, those needed to demonstrate an initial population could

be improved; preventing some undesirable behaviours discussed in chapter 5.3. Sec-

ondly, the instance goals have contributed in identifying patterns of primitives that

may not scale well. The discovered solvers, which have met the instance goals, have

found the shortest tours with an increased number of runs and problem evaluations

(table 6.8). The TSP-[F-H] and TSP-[X-Y] can be found in section 9.2 (see algorithms

[A.24-A.26] and [A.42-A.43]).

Table 6.8: A comparison of the tours likely to be obtained during a learning run (i.e
by the learning objective function) and those obtained by 100 independent validation
runs.

Algorithm Instance Learning objective function Validation
NoRuns = 3 Goal NoRuns = 100
p.eval = 500 p.eval = 6000

µ σ met? µ σ

TSP-F wi29 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
pr439 6.22e-02 1.81e-02 yes 3.82e-02 1.33e-02
d1291 1.39e-01 6.76e-02 yes 1.03e-01 2.30e-02

TSP-G wi29 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
pr439 1.11e-01 3.49e-02 no 5.31e-02 2.04e-02
d1291 1.33e-01 3.82e-02 yes 1.23e-01 2.78e-02

TSP-H wi29 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
pr439 9.10e-02 2.50e-02 yes 4.55e-02 1.84e-02
d1291 1.53e-01 5.98e-03 yes 1.13e-01 2.58e-02

TSP-X wi29 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
pr439 1.50e-01 4.20e-02 no 5.89e-02 2.79e-02
d1291 1.15e-01 7.06e-02 yes 1.61e-01 3.63e-02

TSP-Y wi29 2.13e-02 3.01e-02 no 9.89e-03 1.50e-02
pr439 9.91e-02 2.54e-03 yes 9.84e-02 3.68e-02
d1291 1.29e-01 1.18e-02 yes 1.43e-01 2.05e-02

148 Chapter 6. Improved learning objective process

6.3.2 Performance

Section 9.2 provides a complete statistical analysis of the performance of solvers TSP-

[F-H]. Figure 6.2 compares the tours obtained from these three solvers for the val-

idation instance eg7146. The median and minima of solver TSP-H are the lowest,

confirming the predicted performance of the improved learning objective function.

Figure 6.2: A statistical comparisons of TSP-[F-H] over a 100 runs with 6,000 problem
evaluations. The mean and standard deviation are represented with a diamond shape.

6.3.2.1 Comparison to an exhaustive search

An exhaustive search with up to 5 operators has been completed within a 24 hour pe-

riod; employing more than five times the number of algorithm evaluations than our

hyper-heuristics. For longer instances, the euclidean distance between each city could

demand a lot of resources to identify their Cartesian coordinates. Some local-search

operators rely on calculating euclidean distances in sub-tours, to establish whether the

changes are shortening a tour; some of these operators can take a long time to run.

Chapter 6. Improved learning objective process 149

The outline of histograms represents the probability distribution of the tours obtained

by traveling salesman solvers; these patterns of primitives were exhaustively enumer-

ated with 2 or 3 operators using the metaheuristic parameter given in table 6.2. In both

figures 6.3 and 6.4, less than 5% of metaheuristics would be able to meet the instance

goal of pr439 and d1291; this is approximately 3 metaheuristics out of 64 when 2 op-

erators are applied and 25 out of 512 when 3 operators are applied.

We can surmise the probability to design an effective metaheuristic applying a short

number of operators can be quite low. When 2 operators have applied the probability

to meet the instance goal for instances pr439 and d1291 can be less than 2.20e − 03.

With 3 operators this probability slightly increases to 2.39e− 03.

Figure 6.3: The outline of histograms showing the statistic distribution of traveling
salesman problem solvers obtained with a two-operator exhaustive search.

0 0.05 0.1 0.15 0.2 0.25 0.3

Relative Error

0

0.05

0.1

0.15

0.2

0.25

P
ro

b
a

b
ili

ty

wi29

pr439

d1291

The probability distribution of traveling salesman solvers obtained by CGP-designed

metaheuristics is much different (see table 6.5). First, its spread has been reduced

to the approximate range [0.00, 0.18]; the exhaustive search was [0.00, 0.28]. The

probability that CGP-designed metaheuristics find unsuitable tours for the instances

pr439 and d1291 has been reduced; the peaks have moved to the left within the range

[0.1, 0.2].

150 Chapter 6. Improved learning objective process

Figure 6.4: The outline of histograms showing the statistic distribution of traveling
salesman problem solvers obtained with a three-operator exhaustive search.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Relative Error

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

b
a

b
ili

ty

wi29

pr439

d1291

Unlike an exhaustive search, the patterns of primitives can vary between 0 and 200 op-

erators (the length of CGP graph). The output a CGP graph and the feed-forward genes

would vary the length of the encoded metaheuristic during the search. Therefore the

improved learning objective function has assessed more varied patterns of primitives

than an exhaustive search. This algorithm search space would have been much larger;

less problem domain knowledge would have been provided by the programmer. More

patterns of TSP-operators can, therefore, be explored; the solvers promoted would

have been guided towards favourable areas of the algorithm search.

Figure 6.5: The outline of histograms showing the probability distribution of traveling
salesman solvers obtained with our offline non-iterative optimisation process.

0 0.05 0.1 0.15 0.2

Relative Error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
a

b
ili

ty

wi29

pr439

d1291

Chapter 6. Improved learning objective process 151

6.3.2.2 Comparison to selective hyper-heuristics

Our CGP hyper-heuristic has obtained some solvers, that can find better solutions than

a selective hyper-heuristics. Table 6.9 compares the tours obtained in our experiments

and two selective hyper-heuristics techniques. The tours obtained by the solvers TSP-

[F-H] can be much shorter for the benchmark usa13509 than those obtained a selective

hyper-heuristic method. Automating the design of a selective hyper-heuristic or a

metaheuristic can bring some scalability.

Table 6.9: Median of tours obtained in Chesc 2011, automatic design of selective
hyper-heuristics [275], automatically designed selective-hyper-heuristics [120] and
our experiments. The table reports the median tours using arelative error to the known
optima.

Instance Selective automatically designed TSP-F TSP-G TSP-H
hyper-heuristics selective hyper-heuristics

pr299 8.10e-05 8.10e-05 6.35e-03 2.55e-03 4.23e-03
rat575 5.53e-03 5.53e-03 9.44e-03 7.52e-03 6.20e-03
u2152 3.70e-02 4.40e-02 4.75e-02 5.17e-02 4.09e-02
usa13509 9.43e+00 6.43e-02 5.54e-02 5.90e-02 5.40e-02

6.3.2.3 Comparison to a tree-based generative hyper-heuristic

[241] evolves deterministic algorithm that constructs a tour iteratively. This very dif-

ferent approach encodes within a template the algorithm (see algorithm 6.7). A tree-

based GP generates a mathematical equation to replace a Euclidean distance as a met-

ric to iteratively choose the order of cities. A small function set made of mathematical

operators has been used. The terminals (i.e variables) represent the Cartesian coordi-

nates of two cities (i.e. y1, y2, x1, x2) and the distance between the cities c1 and c2

(i.e M). Also, the number of unvisited cities (n) and the tour length k are also used.

Algorithm 6.7 shows only one expression has been made susceptible to the evolution.

A mechanism prunes the branches exceeding a certain size; those are replaced by ran-

domly selecting some variables (i.e. terminal). This technique relies on some input

made by the programmer.

152 Chapter 6. Improved learning objective process

Algorithm 6.7. : TSP solver Ntombela. “Tour construction” algorithm using an
evolved mathematical expression as reported by Ntombela et al [241]

procedure CREATETOUR(Cities[])
startCity← RandomlySelect (Cities[])
firstCity← startCity
Tour← EmptyList
while UnallocatedCities(Cities[], Tour) do

for City in Cities[] do . Calculate a value for each city
City.Value← (y1/sqrt(M)) + x1 + 1 + 2× k + y2 . Evolved Part

end for
Cities[]← SortAscendinglyByValues(Cities[])
FirstCity← SelectFirstCity(Cities[])
Tour← AddToTheEnd(FirstCity)

end while
return Tour

end procedure

The performance of this techniques has been validated with instances ranging between

48 and 237 cities. The relative to the known minima often of the best tour obtained for

these instances ranges between [0.15, 0.20]. It is worth noting, the benchmarks of our

validation set use a greater number of cities and the gap to the known minima is often

lower for most instances (see section 9.2).

6.3.3 Discovery of Mimicry problem solvers

6.3.3.1 Effect of the improved learning objective function

The metaheuristics referred as MC-[A-C] and MC-[K-L] were discovered from 20

learning runs; those are available in section 9.2 (see algorithms [A.2-A.4], A.12 and

A.13. The probability distribution to find a suitable solution with a generated meta-

heuristics is quite high (see in figure 6.6). Many CGP-designed metaheuristics have

found imitators that are near the instance goal. The distribution spread ranges between

0.0 and 0.5, suggesting that some runs could not find suitable patterns of primitives.

Chapter 6. Improved learning objective process 153

Figure 6.6: The outline of histograms showing the probability distribution of mimicry
solvers obtained with our offline non-iterative optimisation process. The learning
instances are used with a maximum number of problem evaluations of 1,500.

0 0.1 0.2 0.3 0.4 0.5 0.6

Relative Error

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
P

ro
b
a
b
ili

ty

300 bits

500 bits

800 bits

The solvers MC-A and MC-B have fully met the learning objective function targets;

their algorithm fitness value is respectively 1.39e-01 and 1.56e+00. We would expect

that the objective learning function would have found some suitable solutions for the

three learning instances and some validation runs (see table 6.10). The three remain-

ing metaheuristics (i.e. MC-C, MC-M and MC-N) have scored a high algorithm fitness

value; at least one the instance goal has not been met. From these observations, we

surmise the objective learning function has assessed well the generated metaheuristics.

154 Chapter 6. Improved learning objective process

Table 6.10: A comparison of the tours likely to be obtained during a learning run (i.e
by the learning objective function) and those obtained by 100 independent validation
runs.

Algorithm Instance Learning objective function Validation
NoRuns = 3 NoRuns = 100
p.eval = 1, 500 Goal p.eval = 20, 000
µ σ met? µ σ

MC-A 300 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
500 3.00e-02 2.80e-03 yes 0.00e+00 0.00e+00
800 7.66e-02 3.80e-03 yes 0.00e+00 0.00e+00

MC-B 300 3.33e-03 0.00e+00 yes 0.00e+00 0.00e+00
500 3.20e-02 6.40e-03 yes 2.00e-05 2.00e-04
800 7.87e-02 2.59e-02 yes 6.25e-05 2.74e-04

MC-C 300 4.44e-03 1.57e-03 yes 0.00e+00 0.00e+00
500 5.00e-01 3.33e-03 no 3.00e-04 7.72e-04
800 5.13e-01 1.27e-02 no 2.88e-03 2.15e-03

MC-M 300 4.44e-01 1.95e-02 no 4.23e-01 4.63-02
500 3.96e-01 2.40e-02 no 4.30e-01 4.60-02
800 4.13e-01 5.55e-02 no 4.90e-01 4.39-02

MC-N 300 4.45e-01 1.34e-02 no 4.47e-01 3.69-02
500 4.38e-01 1.74e-02 no 4.38e-01 3.51-02
800 4.57e-01 2.33e-02 no 4.41e-01 3.66-02

Not all the combinations of operators have been effective. Solvers MC-[M-N] both

combine a crossover operator with some hill-climber mutations; however, no replace-

ment operator is applied. The metaheuristic MC-M recombines the parent solution

with the offspring (i.e. CrossoverTwoPoints), increasing the number of incorrect bits

(see table 6.11), after applying a MutationUniformSubSequenceHC(). Then three mu-

tations are applied. Some of them improve the solutions, and some other do not. This

pattern is repeated until the problem search stops; returning a poor imitator as the out-

come.

Some other combinations have shown to be more efficient At each generation; four

mutation operators can correct some bits; a MutationOneBitHC and MutationUni-

formHC. Therefore, the metaheuristic can find an optimum solution.

Chapter 6. Improved learning objective process 155

Table 6.11: State of the populations p and t at generation 1 during a learning run. The
solver MC-M was used with the learning instance 800.

Problem-specific operator p1 t1
MutationUniformSugSequenceHC 5.00e-01 (=) 4.80e-01 (≤)
CrossoverTwoPoints 5.00e-01 (=) 5.06e-01 (>)
MutationVariableRate 5.00e-01 (=) 5.10e-01 (>)
MutationSubSequenceHC 5.00e-01 (=) 5.02e-01 (<)
MutationSubSequenceHC 5.00e-01 (=) 5.02e-01 (=)

Table 6.12: State of the populations p and t at generation 1 during a learning run. The
solver MC-A was used with the learning instance 800.

Operator p1 t1
MutationOneBitHC 5.00e-01 (=) 4.76e-01 (≤)
MutationUniformHC 5.00e-01 (=) 4.76e-01 (=)
MutationUniformHC 5.00e-01 (=) 4.76e-01 (=)
MutationUniformHC 5.00e-01 (=) 4.74e-01 (<)

A 24-hour run was able to enumerate successfully up to 6 operators. A minority of

metaheuristics can find some suitable solutions for the 500-bit-long and 800-bit-long

learning instances, using the parameters given in table 6.3. Those would apply four

operators in the body of their loop. For example, in figure 6.7 less than 5% of the

metaheuristics would meet the goal of the learning instances mentioned above (i.e.

0.05 and 0.10); it is approximately 200 metaheuristics.

The probability to design metaheuristics with the body of its loop applying 4 operators

that meet these instances goal is less than 2.50e − 03. The assumption that this fixed

number of operators needs to be made would rely on some well-developed domain

knowledge. A CGP hyper-heuristic can generate algorithms of varying length; less

domain knowledge is input by the programmer. The probability distribution shown in

figure 6.6 is very different. It is skewed to left; the improved learning objective func-

tion has contributed in differentiating effective metaheuristics from ineffective ones;

guiding the search to some favourable regions of the metaheuristic search space.

156 Chapter 6. Improved learning objective process

Figure 6.7: The outline of histograms showing the probability distribution of mimicry
solvers obtained with a four-operator exhaustive search .

0 0.1 0.2 0.3 0.4 0.5 0.6

Relative Error

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
ro

b
a

b
ili

ty

300 bits

500 bits

800 bits

6.3.4 Discovery of nurse rostering problem solvers

6.3.4.1 Effect of the improved learning objective function

The NPC computer cluster1 was also used for this series of experiments. Each hyper-

heuristic evaluation has approximately been computed in 86.4 seconds; to complete a

full run each hyper-heuristic evaluation could use a maximum of 7.2 seconds. Only a

12th of the hyper-heuristics evaluations were applied (i.e. 500). A list of constraints

can use a lot of computer resources to compute a roster fitness evaluation and iden-

tify the best changes in a roster brought by an operator. Often the computer resources

available can limit the number of hyper-heuristic evaluations. For these reasons, a re-

duced number of learning runs was completed over a period of 12-hours; in total 10

learning runs was attempted.

1N8 HPC provided and funded by the N8 consortium and EPSRC (Grant No.EP/K000225/1). The
Centre is coordinated by the Universities of Leeds and Manchester

Chapter 6. Improved learning objective process 157

The solvers NRP-[A-C] and NRP-L (See algorithms [A.47 - A.49 and A.57] given in

section 9.2) were discovered. A comparison of the rosters obtained by these meta-

heuristics during a learning run and some validation run suggests the improved learn-

ing objective function has been effective for the nurse rostering problem. In table 6.13,

the solver NRP-A has not met all the instances goals; it has not found optimum roster

during the validation.

Table 6.13: A comparison of the rosters likely to be obtained during a learning run (i.e
by the learning objective function) and those obtained by 100 independent validation
runs.

Algorithm Instance Learning objective function Validation
NoRuns = 3 Goal NoRuns = 100
p.eval = 40 met? p.eval = 3, 000

µ σ µ σ

NRP-A Instance1 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
BCV-4.13.1 0.00e+00 0.00e+00 yes 2.83e-03 9.09e-03
Ikegami 1.89e-01 6.94e-02 no 3.58e-02 2.92e-02

NRP-B Instance1 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
BCV-4.13.1 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
Ikegami 9.44e-02 6.74e-02 yes 0.00e+00 0.00e+00

NRP-C Instance1 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
BCV-4.13.1 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
Ikegami 6.11e-02 3.85e-02 yes 0.00e+00 0.00e+00

NRP-K Instance1 2.35e+02 2.54e+00 no 3.34e+02 5.12e+01
BCV-4.13.1 4.59e+02 7.90e+01 no 5.01e+02 9.01e+01
Ikegami 2.13e+01 6.02e+00 no 4.45e+01 8.04e+00

Some generated metaheuristics can improve the roster and reduce the cost efficiently;

table 6.14 illustrates the effect of each operator solver NRP-A on the search in one iter-

ation. On the other hand, table 6.15 applies a very poor sequence of problem-specific

operators. The cost of a roster decreases well until MultiEventCrossover increases

dramatically the cost. The disruption cannot be efficiently corrected and would find an

optimum roster for the more straightforward instance (i.e. instance 1).

158 Chapter 6. Improved learning objective process

Table 6.14: State of the populations p and t at generation X during a validation run.
The solver the solver NRP-A was used with the learning instance Ikegami-2Shift-
DATA1.

Operator p1 p2 t1 t2
SmallGreedyRuinRec. 2.78e+01 (=) 2.48e+01 (=) 4.33e-01 (≥) 4.33e-01 (≥)

SimpleGreedyRuinRec. 2.78e+01 (=) 2.48e+01 (=) 4.16e-01 (<) 4.16e-01 (=)
ReplaceLeastFit 4.166e-01 (<) 4.16e-01 (<) 4.16e-01 (=) 4.16e-01 (=)

SelectElitism 4.166e-01 (=) 4.16e-01 (=) 4.16e-01 (=) 4.16e-01 (=)
GreedyVariableDepthLS 4.16e-01 (=) 4.16e-01 (=) 3.50e-01 (<) 2.50e-01 (<)

ReplaceLeastFit 3.50e-01 (<) 2.50e-01 (<) 3.50e-01 (=) 2.50e-01 (=)
SelectElitism 3.50e-01 (=) 2.50e-01 (=) 3.50e-01 (=) 2.50e-01 (=)

Table 6.15: State of the populations p and t at generation X during a validation run.
The solver the solver NRP-K was used with the learning instance Ikegami-2Shift-
DATA1.

Operator p1 p2 t1 t2
VariableDepthLocalSearch 2.78e+01 (=) 2.48e+01 (=) 3.00e-01 (≤) 3.16e-01 (≤)

NewSwapLocalSearch 2.78e+01 (=) 2.48e+01 (=) 3.00e-01 (=) 3.00e-01 (<)
RestartPopulation 2.78e+01 (=) 2.48e+01 (=) 3.00e-01 (=) 3.00e-01 (=)

MultiEventCrossover 2.78e+01 (=) 2.48e+01 (=) 1.62e+03 (>) 1.62e+03 (>)
SmallGreedyRuinRecreate 2.78e+01 (=) 2.48e+01 (=) 1.43e+03 (<) 1.42e+03 (<)

6.3.4.2 Performance of the metaheuristics

The solvers have found some rosters of suitable quality over 100 independent runs with

3,000 evaluations. NRP-[B-C] have found the more suitable rosters; their distribution

is more compact, and their skewness is undefined. The distribution of solver NRP-A

can have a long tail to the right and is often positively skewed. Nonetheless, for certain

instances, the median is the same for the solvers NRP-A, NRP-B and NRP-C. Section

9.2 provide all these results.

Chapter 6. Improved learning objective process 159

Figure 6.8: A statistical comparison of solvers NRP-A, NRP-B and NRP-C for the
instance BCV-3.46.1

Figure 6.9: A statistical comparison of solvers NRP-A, NRP-B and NRP-C for the
instance G-Post

160 Chapter 6. Improved learning objective process

Figure 6.10: A statistical comparison of solvers NRP-A, NRP-B and NRP-C for the
instance BCV-1.8.4

6.3.4.3 Comparison to an exhaustive search

Within a 24-hour run, a two-operator exhaustive search was completed. Every two-

operator combination was able to find an optimum roster, for the benchmark referred

as Instance1. The probability distribution to find a suitable solution for the other learn-

ing instances is given in figure 6.11. Our CGP hyper-heuristic would need more hyper-

heuristics generations before it could find shorter combinations and perhaps more ef-

fective. For this reason, we have preferred not to provide a probability distribution of

the solutions found by our generated metaheuristics.

6.3.4.4 Comparison to selective hyper-heuristics

The current state-of-the-art of the nurse-rostering problem is often considered as a

form of selective hyper-heuristics or a form of integer programming. Metaheuristics

are often ineffective as solutions can become infeasible easily. However, the solvers

NRP-[B-C] have found better rosters than the state-of-the-art (see table 6.16).

Chapter 6. Improved learning objective process 161

Figure 6.11: The outline of histograms showing the statistic distribution of the nurse
rostering problem solvers obtained with a two-operator exhaustive search. The
learning instances are used with a maximum number of problem evaluations of 40.

0 0.05 0.1 0.15 0.2 0.25 0.3

Relative Error

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ro

b
a

b
ili

ty

BCV-4.13.1

Ikegami-2Shift-DATA1

Table 6.16: A comparison of the averages of rosters obtained by [21] and our experi-
ments. The table shows the relative error of the results.

Instance Selective NRP-A NRP-B NRP-C
hyper-heuristics [21]

BCV-3.46.1 4.10e-01 4.25e-01 2.65e-01 6.40e-01
BCV-A.12.1 7.28e+00 6.42e+01 3.42e+00 4.06e+00
BCV-A.12.2 5.77e+00 6.32e+01 2.96e+00 3.45e+00
Ikegami 3Shift-data1 3.03e-01 3.92e-01 1.85e-01 1.28e-01
ORTEC01 1.34e+00 9.88e-01 6.92e-01 8.60e-01
ORTEC02 1.09e+00 2.03e+01 2.50e-01 9.00e-01

162 Chapter 6. Improved learning objective process

6.4. The full evolution of loops

We evolve the complete iterations of metaheuristics with the iterative Cartesian Ge-

netic programming. Section 4.2.2 introduces this offline generative hyper-heuristics.

For this series of experiments, our improved objective algorithm (see algorithm 6.1)

will evaluate. The number of nodes has been reduced to match the length applied in

our previous section (see the parameters formatted in bold in table 6.17).

Our condition set has been extended too; a wider range of termination criteria used in

a variety of metaheuristics has been added (see the condition in bold in table 6.18 and

section 3.1.2). No change has been made to the iterative template given in algorithm

4.8 in section 5.4.

Table 6.17: Iterative CGP parameters applied in these experiments. The parameters in
bold have been refined and differ from our experiments in chapter 5

Parameter Value
Length (no of nodes) 200
Levels-forward (no of nodes) 200
Levels-backs (no of nodes) 200
Program inputs 1
Program outputs 1
µ + λ 1 + 1
Mutation Rate 0.10
Hyper-heuristics evaluations: 6002
Runs 20

Table 6.18: Condition set: Boolean primitives chosen for the stopping criterion. The
conditions formatted in bold are different from our previous experiments.

TerCode Termination criteria
1 EvalCount ≤MaxEval
4 EvalCount ≤MaxEval or IsBetter(p,noEval)
5 EvalCount ≤MaxEval or p.fitness > 0
6 EvalCount ≤ Limit
7 EvalCount ≤MaxEval or IsBetter(1)
8 EvalCount ≤MaxEval or p.fitness > 0 or Walk()
9 EvalCount ≤MaxEval or p.fitness > goal

10 EvalCount ≤ Limit or p.fitness > goal

Chapter 6. Improved learning objective process 163

6.4.1 Discovery of iterative Travelling salesman solvers

6.4.1.1 Effect of the improved learning objective function

The solvers TSP-[I-K] and TSP-[Z] were discovered over 20 runs (see algorithms

[A.27 - A.29] and A.44 in section 9.2). The solvers TSP-A and TSP-B have been

discovered again. Some validation runs have been completed with other combinations

of TSP-specific operators; we wanted to explore the performance of a broader range

of metaheuristics.

Iterative CGP was able to suitably balance some disruptive operators, local searches

and the termination criterion. Those were have met the instance goals of the objective

learning function. For example, solver TSP-Z applies a sequence of 12 operators in

the body of a loop. This has been detrimental in finding suitable tours for the instance

pr439, during the learning run. This metaheuristic applies many crossover operators;

section 5.3 demonstrated the effect of some crossover operators might not bring any

benefits.

Table 6.19: A comparison of the tours likely to be obtained during a learning run (i.e
by the learning objective function) and those obtained by 100 independent validation
runs.

Algorithm Instance Learning objective function Validation
NoRuns = 3 Goal NoRuns = 100
p.eval = 500 p.eval = 6, 000

µ σ met? µ σ

TSP-I wi29 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
pr439 8.13e-02 2.20e-02 yes 4.21e-02 1.63e-02
d1291 1.41e-01 3.76e-02 yes 1.09e-01 2.63e-02

TSP-J wi29 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
pr439 8.17e-02 3.74e-02 yes 4.46e-02 1.81e-02
d1291 1.39e-01 2.62e-02 yes 1.12e-01 2.59e-02

TSP-K wi29 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
pr439 9.54e-02 7.61e-03 yes 4.47e-02 1.97e-02
d1291 1.26e-01 2.97e-02 yes 1.09e-01 2.58e-02

TSP-Z wi29 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
pr439 1.34.e-01 4.71e-02 no 6.90e-02 2.10e-02
d1291 1.38e-01 3.38e-02 yes 1.59e-01 3.05e-02

164 Chapter 6. Improved learning objective process

6.4.1.2 Performance and comparison

TSP-[I-K] have found the best tours in our learning set (see table 6.19). Those have

therefore solved all the instances of our validation set. Detailed statistical results can

be found in section 9.2.

Some large tours can be found by solver TSP-I and TSP-J; their distributions becomes

skew more to the right (see figure 6.12). However, these two metaheuristics have found

tours with similar median as the ones obtained by the best solvers discovered so far

(i.e TSP-B , TSP-D and TSP-H) (see section section 9.2).

The solver TSP-K distribution is more compact. Similarly to solver TSP-E, fewer

problem evaluations have found some suitable tours. Both metaheuristics apply a

termination condition that reduces the problem search. The solver TSP-K has often

found some better than the solver TSP-E (see table tab:TSP14 in section 9.2). These

two metaheuristics would become useful to use when the level of accuracy is less

important than the computing resources available.

Figure 6.12: A statistical comparison of solvers TSP-I, TSP-J and TSP-K for the in-
stance eg7146

Chapter 6. Improved learning objective process 165

6.4.1.3 Comparison to a tree-based hyper-heuristics

During the completion of this work, Loloya et al. [203] have automatically designed

a tour construction algorithm with a tree-based genetic programming. A very minimal

template and function sets were also used. A branch encoded the header of a while

loop, a selection or statements. Terminals could either add cities to a tour or modifies

the tour. The latter includes a SimpleInversionMutation and a 2-Opt-Local-Search.

Those were restricted to return integer values so that selection criteria could be ex-

pressed as a comparison (i.e. = 1 is true, and = 0 is false). One termination criterion

is used (i.e. the current city is greater than a tour length).

These algorithms are quite compact too (see algorithms [A.45-A.46] in section 9.2).

Large trees are penalised by a learning objective function. A programmer needs spec-

ifying a maximum number of branches and terminals., to prevent bloating.

It is disappointing no result obtained for a specific instance is reported; some bench-

marks have been grouped together instead. The relative errors to the known optima

ranges between 4.86e-02 and 6.44e-02. In section 9.2, the tours within the same range

of cities vary between a perfect solution to a gap of 2.45e-02.

6.4.2 Discovery of iterative mimicry solvers

6.4.2.1 Effect of the improved objective learning function

The solvers MC-[D-F] and MC-M were discovered over 60 learning runs; those can

be found in section 9.2 (see algorithms [A.5 - A.7] and A.14).

166 Chapter 6. Improved learning objective process

It was observed the solver MC-M would not meet some of the instances goals (see table

6.20). Randomly setting the number of problem evaluations can prevent searching the

problem fitness landscape. The metaheuristic can find some imitators with a variable

length (i.e. very short or quite long). For example, the number of problem evaluations

would have been very small in figure 6.13); the curve for the solver MC-M is very

short. Also, the search can be slowed when correct bits are flipped by the primitives

in the body of a loop. As a result, this combination of problem-specific operators and

termination criteria appears to be less effective (see figure 6.13).

Figure 6.13: A comparison of the solvers MC-[D-F] and MC-M during the search for
a perfect imitator for a 800-bit benchmark. 1,500 problem evaluations were used.

0 200 400 600 800 1000 1200 1400

Generations

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e
la

ti
v
e

 e
rr

o
r

fr
o

m
 k

n
o
w

n
 m

in
im

a MC-D

MC-E

MC-F

MC-M

6.4.2.2 Performance and comparison

A detailed statistical analysis of the imitators obtained by the solvers MC-[D-F] is

given in section 9.2. These metaheuristics can find some imitators with the same me-

dian; the A-measure is very close to 0.5.

Some distribution may be affected differently by some outliers. For example, an un-

defined skewness is exhibited for solver MC-F in figures [6.14-6.16]); its median and

arithmetical mean are very close to each other. The arithmetical mean of solvers MC-

D and MC-E can either be lowered or increased by some outliers.

Chapter 6. Improved learning objective process 167

Table 6.20: A comparison of the imitators likely to be obtained during a learning
run (i.e. by the learning objective function) and those obtained by 100 independent
validation runs.

Algorithm Instance Learning objective function Validation
NoRuns = 3 NoRuns = 100
p.eval = 1, 500 Goal p.eval = 20, 000
µ σ met? µ σ

MC-D 300 1.11e-03 1.92e-03 yes 0.00e+00 0.00e+00
500 2.53e-02 1.62e-02 yes 0.00e+00 0.00e+00
800 7.29e-02 9.21e-03 yes 0.00e+00 0.00e+00

MC-E 300 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
500 2.80e-02 2.00e-03 yes 0.00e+00 0.00e+00
800 7.79e-02 3.61e-03 yes 0.00e+00 0.00e+00

MC-F 300 1.11e-03 1.92e-03 yes 0.00e+00 0.00e+00
500 2.07e-02 6.11e-03 yes 0.00e+00 0.00e+00
800 7.38e-02 2.17e-03 yes 0.00e+00 0.00e+00

MC-O 300 3.91e-01 6.85e-03 no 4.43e-01 5.33e-02
500 3.36e-01 2.89e-03 no 4.53e-01 2.93e-02
800 3.48e-01 4.34e-03 no 2.22e-01 0.17e-01

Figure 6.14: A statistical comparison of solvers MC-C, MC-D and MC-E for the 3000-
bit instance

168 Chapter 6. Improved learning objective process

Figure 6.15: A statistical comparison of solvers MC-C, MC-D and MC-E for the 5000-
bit instance

Figure 6.16: A statistical comparison of solvers MC-C, MC-D and MC-E for the
10000-bit instance

Chapter 6. Improved learning objective process 169

For instance with less than 5,000 bits, the iterative solvers have generally found better

imitators than the solvers MC-[A-B]. The median of imitators found by solvers solvers

MC-[D-F] are often lower than ones found by the solvers MC-[A-B] (see tables B.4

and B.5). With larger instances, the medians becomes the same. Evolve full iterations

have been brought a positive effect to the algorithm search of mimicry solvers.

6.4.3 Discovery of iterative nurse rostering problem solvers

6.4.3.1 Effect of the improved objective learning function

20 learning runs were achieved in these experiments. Each of them was able to com-

plete 10 times more evaluation than reported in section 6.3.4. The generated meta-

heuristics often could not improve the initial population; the learning objective pro-

cess, therefore, stopped at phase 1. The learning algorithm has found too challenging

to combine suitably a termination criteria with sequences of nurse-rostering operators.

The short number of hyper-heuristic generations prevent testing and assessing many

generated metaheuristics. Reducing the condition set to four conditions has had a little

positive impact (see table 6.21).

Table 6.21: Condition set: Boolean primitives chosen for the stopping criterion.

Index Termination criteria

1 EvalCount ≤MaxEval

4 EvalCount ≤MaxEval or IsBetter(noEval)

8 EvalCount ≤MaxEval or p.fitness > 0 or Walk()

9 EvalCount ≤MaxEval or p.fitness > goal

Despite experiencing these difficulties, we have obtained the solver NRP-D (see algo-

rithm 6.8). This algorithm has met most of the learning instance goal but was able to

find some optimum rosters consistently during the validation runs (see table 6.22).

170 Chapter 6. Improved learning objective process

Algorithm 6.8. : NRP solver D (NRP-D)
function FINDSOLUTION(ProblemParam,µ, λ)

p← InitPopulation(ProblemParam, µ, λ)
t← SelectElitism(p)
while EvalCount ≤MaxEvals do . start generated code

t← V ariableDepthLocalSearch(t)
p← ReplaceLeastF it(t, p)
t← SelectElitism(t)
t← SimpleGreedyRuinRecreate(t)
t← SmallGreedyRuinRecreate(t)
p← ReplaceLeastF it(t, p)
t← SelectElitism(t)

end while . end generated code
return Best(p)

end function

Table 6.22: A comparison of the rosters likely to be obtained during a learning run (i.e
by the learning objective function) and those obtained by 100 independent validation
runs.

Algorithm Instance Learning objective function Validation
NoRuns = 3 Goal NoRuns = 100
p.eval = 40 met? p.eval = 3, 000

µ σ µ σ

NRP-D Instance1 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
BCV-4.13.1 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
Ikegami 2.20e-01 1.84e-01 no 0.00e+00 0.00e+00

Chapter 6. Improved learning objective process 171

6.4.4 Performance and comparison

A detailed statistical analysis is available in section 9.2. For many instances, the iter-

ative solver has the same median as the solver NRP-A, NRP-B and NRP-C. For some

others a medium to a significant effect exists; some better or worse rosters have been

found (see tables [B.45 - B.50]). It is therefore inconclusive whether the full evolution

of loop has been beneficial to the algorithm search of nurse-rostering solvers.

6.5. Discussion and conclusion

Some solvers have been obtained successfully for more NP-hard or discrete problems

(i.e. traveling saleman, the mimicry and nurse-rostering problems). Those have found

suitable problem solutions; some of them are optimum or near to the known optima.

New best solutions were also found. The problem solutions obtained from our CGP-

designed hyper-heuristics are often better quality when compared to solutions obtained

from a selective and tree-based generative hyper-heuristics.

Increasing four times the number of hyper-heuristic generations has extended the algo-

rithm search efficiently. Most of the generated metaheuristics were obtained approx-

imately after 2,400 hyper-evaluations. A minority of runs have promoted a generated

metaheuristics on the last iteration; resulting in a long plateau. Nonetheless, we are

pleased the number of learning runs has decreased by at least 92% and computing

resources were economised. A reduction of approximately 180,000 hyper-heuristic

evaluations was made.

Next chapter focuses on evolving the hyper-heuristic reproductive operator during the

algorithm search.

172 Chapter 6. Improved learning objective process

Chapter 7. Evolving hyper-heuristic reproductive operators 173

Chapter 7. Evolving hyper-heuristic reproduc-

tive operators

Contents
7.1 Introduction . 173

7.2 Experiments . 174

7.2.1 Discovering sequential and iterative mimicry solvers 176

7.2.2 Discovering sequential and iterative traveling salesman solvers176

7.2.3 Genetically improving some CGP mutation operators 176

7.2.4 Effect of the online generative hyper-heuristics 179

7.2.5 Comparison to an offline learning process 180

7.3 Validation of a learnt CGP mutation 182

7.3.1 Performance of discovered NRP solvers 183

7.3.2 Effect of the learnt CGP mutation operators 185

7.4 Discussion and conclusion . 186

7.1. Introduction

An autoconstructive evolution evolves algorithms and a reproductive mechanism; se-

quences of operations that constructs hyper-heuristic reproductive operators should

evolve during the algorithm search [302]. In section 2.4.4 this type of reproductive

mechanism was referred as GenerateAlg. Autoconstructive CGP co-evolves a popu-

lation of algorithms and CGP mutation operators; the latter are genetically improved

during the algorithm search. This innovative CGP technique was introduced in section

4.2.3.

174 Chapter 7. Evolving hyper-heuristic reproductive operators

In chapter 4 new directed acyclic graphs and directed graphs were generated by alter-

ing some active and inactive genes. Some graph-based GP techniques, such as PADO,

PDGP and CGP have included a concept of neutral mutation in their reproductive op-

erators. Darwin [85] has described this phenomenon as “Variations neither useful nor

injurious would not be affected by natural selection, and would be left either a fluctu-

ating element, as perhaps we see in certain polymorphic species, or would ultimately

become fixed, owing to the nature of the organism and the nature of the conditions”.

In previous chapters, CGP has randomly selected some active and inactive genes. It

is possible some hyper-heuristic generations may only mutate non-active genes; those

may be activated at a later stage of the algorithm search. Goldman et al. [114] has

recently overcome this occurring using an independent-mutation-rate CGP; A CGP

mutation alters randomly selected genes until on active genes is changed.

This chapter focuses on genetically improving some hyper-heuristic reproductive op-

erators used during the algorithm search. We hope to extract these hyper-heuristic

generative operators and code them with an imperative programming language. We

aspire to discover some alternative hyper-heuristic reproductive mechanism that may

improve the generation of CGP graphs.

7.2. Experiments

The online learning algorithm introduced in section 4.2.3 in used in these experiments;

Autoconstructive CGP will be evolving partially and fully the iterations of some meta-

heuristics. The hyper-heuristic parameters, learning objective function, templates and

problem domains applied in chapter 6 have remained unchanged.

Chapter 7. Evolving hyper-heuristic reproductive operators 175

An iterative CGP-graph represents a reproductive operator for both types of solvers

(figure 7.1). Additionally, table 7.1 provides the parameters used to encode the hyper-

heuristic reproductive operators. Those have fewer nodes and a high mutation rate.

Therefore, the number of possible paths has now been reduced to 1.17e+12 [2]. The

possible number of CGP mutation operator can be larger. However, this estimation

does not take into account the function and condition sets described in section 4.2.3.

Figure 7.1: Autoconstructive CGP graphs. The top individual encodes an algorithm
with directed acyclic graph and the bottom individual with iterative CGP graph. Both
individual encodes a mutation operators with an iterative CGP graph. All the branching
genes are represented with blue arrows.

Table 7.1: Reproductive operators parameters

Parameter Value

Length (no of nodes) 10

Levels-forward (no of nodes) 10

Levels-feedback (no of nodes) 10

Program inputs 1

Program outputs 1

Mutation Rate 0.20

Length of probation period 10 hyper-heuristics generations

176 Chapter 7. Evolving hyper-heuristic reproductive operators

7.2.1 Discovering sequential and iterative mimicry solvers

The sequential solvers (MC-[G-I]) and the iterative solvers (MC-[J-L]) were discov-

ered (see algorithms [A.8 - A.13] in section 9.2).

A total of 80 learning runs were completed; 40 for each type of solvers. Often, the

imitators obtained by these generated metaheuristics have the same or a lower median

than the ones obtained by our previous experiments (see a detailed statistical analysis

given section 9.2).

7.2.2 Discovering sequential and iterative traveling salesman solvers

20 learning runs were completed for each type of solvers. The sequential solvers TSP-

[L-M] and the iterative solvers TSP-[O-Q] were obtained. The solver TSP-I has found

the best expected tours by approximately a 1
1000

, but the tour distribution obtained

with solvers TSP-M and TSP-Q appears to be more compact. Section 9.2 provides

a detailed statistical analysis of the tours obtained by these metaheuristics. All the

algorithms are given in section 9.2).

7.2.3 Genetically improving some CGP mutation operators

The “Active-Node CGP mutation” has successfully been genetically improved. This

CGP mutation changes some active function and condition genes (see algorithms 7.1

and 7.2). The CGP mutation called any-nodes has been left unaltered during the algo-

rithm search. When this CGP mutation operator is applied, then the algorithm search

should progress to another area of the algorithm search space. The number of active

nodes may change; this can lengthen or shorten a solver. Several active functions

and condition genes are also altered to produce an algorithm with a different order of

problem-specific operators (see algorithms 7.3 and 7.4).

Chapter 7. Evolving hyper-heuristic reproductive operators 177

Algorithm 7.1. : The Active-Nodes CGP mutation operator that can be applied on
directed acyclic graphs.

1: function HYPERACTIVENODEMUTATION

2: SwapFunctionBetweenTwoNodes()
3: for i ∈ [0..2] do
4: FlipTheFunctionOfAnActiveNode()
5: end for
6: end function

Algorithm 7.2. : The Active-Nodes CGP mutation operator that can be applied on
directed graphs.

1: function HYPERACTIVENODEMUTATION

2: SwapFunctionBetweenTwoNodes()
3: for i ∈ [0..1] do
4: FlipTheFunctionOfAnActiveNode()
5: FlipTheConditionOfAnActiveNode()
6: end for
7: end function

The genetic improvement process has often reduced the number of alterations made

to a CGP graph. The iteration initially coded was usually removed reducing a CGP

mutation operator to an algorithm without any iterations. Some small changes would

re-order some problem-specific operators (see CGP mutation A in table 7.2). The CGP

mutation B is very likely to shorten or lengthen solver by pointing to another active

node or a graph input.

Other genetic improvements have brought more changes to a solver. CGP Mutation

C would change the order of the problem-specific operators and change a condition

genes of an active node. This alteration may switch to a header of a loop if the ran-

domly selected nodes encode a looping header in a solver. Finally, the CGP Mutation

D searches locally for the best moves to improve a solver.

Algorithm 7.3. : The Any-Nodes CGP mutation operator that can be applied on di-
rected graphs.

1: function HYPERLEARNTMUTATION

2: for i ∈ [0..9] do
3: FlipFeedForwardConnToAnActiveNode()
4: FlipFunctionofActiveNode()
5: FlipFeedForwardConnToAnyNodes()
6: end for
7: end function

178 Chapter 7. Evolving hyper-heuristic reproductive operators

Table 7.2: Some examples of genetically improved CGP mutation altering iterative
CGP graphs.

CGP mutation Description
A SwapsFunctionsBetweenTwoActiveNodes() Two randomly selected active

function genes are swapped.
B FlipTheInputForwardToAnActiveNode() An active and randomly selected

feed-forward connection genes
is changed to point to another
active node or a graph input.

C SwapsFunctionsBetweenTwoActiveNodes() Two randomly selected active
FlipTheConditionOfAnActiveNode function genes are swapped. An

active condition gene is changed.
D For i ∈ [0..3] An active node is selected. Three

InputForwardLocalSearch() attempts to point to another
End For active node or a graph input are made.

If one of the flips improves the solver,
then the alteration is kept. Otherwise
the CGP graph remains the same.This
local search is repeatively applied
4 times.

Algorithm 7.4. : The Any-Nodes CGP mutation operator that can be applied on di-
rected graphs.

1: function HYPERLEARNTMUTATION

2: for i ∈ [0..9] do
3: FlipFeedForwardConnToAnActiveNode()
4: FlipFunctionofActiveNode()
5: FlipConditionofActiveNode()
6: FlipFeedForwardConnToAnyNodes()
7: FlipBranchingGeneToAnyNodes()
8: end for
9: end function

Algorithm 7.5. : The Structure CGP mutation operator that can be applied on directed
graphs and directed acyclic graphs.

1: function HYPERLEARNTMUTATION

2: for i ∈ [0..(Length/4)] do
3: ChangeAnOutputOfAGraph()
4: InitialiseANode()
5: InitialiseAnActiveNode()
6: end for
7: end function

Chapter 7. Evolving hyper-heuristic reproductive operators 179

The Structure CGP mutation has rarely been applied and it has not been genetically

improved. This CGP mutation could be compared to ruining and recreating part of

a CGP-graph. We had hoped this CGP mutation might reset the algorithm search if

no other options (i.e. the Any-Node and Active-Node CGP mutation) would move the

algorithm search forward. In the light of this result, we may now consider removing

this option in the future.

7.2.4 Effect of the online generative hyper-heuristics

The algorithm evaluations required to evolve the hyper-heuristic reproductive opera-

tors are not considered as algorithm evaluations [302]; this may need to be reviewed

in the future. It is therefore undeniable more CGP graphs have been evaluated by the

co-evolution learning algorithm (see section 4.2.3.2). An additional 1, 800 algorithm

evaluations may have been used. A genetic improvement process would have evolved

600 CGP mutation operators during a learning run (i.e using the experiments parame-

ters stated in tables 6.17, 6.7 and 7.1).

We have observed a pattern of CGP mutations during some learning runs. An “active-

node CGP mutation” would be applied and genetically improved several times in a

row. Then an “any-node CGP mutation” would be identified and chosen to move the

search forward. Sometimes this type of CGP mutation would be applied to many gen-

erations of CGP individuals. From these observations, we surmise the CGP mutation

operators given in algorithms 7.3 and 7.4 have been used to most.

The mutation rate would indirectly vary during the algorithm search, ranging between

1 and 30 genes. Some of the genetically improved CGP mutation operators would mu-

tate only one gene (see table 7.2). Some “any-nodes CGP mutation” much more. The

genetic improvement process may increase or decrease the mutation rate each time it

evolves the population of CGP-mutation operators.

180 Chapter 7. Evolving hyper-heuristic reproductive operators

The co-evolution of both problem solvers and CGP mutation operators have discov-

ered some generated metaheuristics again. The best TSP solvers obtained from our

previous experiments (i.e TSP-B and TSP-I) were re-discovered several times. Those

were not chosen to explore a greater variety of TSP solvers.

More compact effective mimicry solvers have been obtained. For example, the solver

MC-A has been reduced to two lines in solver MC-G. Also the solver MC-L shortens

the solvers MC-D. These pairs share the same medians of imitators for most of the

complete validation set.

7.2.5 Comparison to an offline learning process

The mutation rate has remained the same during the algorithm search; the neutral mu-

tation applied in our offline generative hyper-heuristic would alter a constant number

of genes during a learning run. An evolution strategy would only evolve a population

of problem solvers.

Active and non-active genes are randomly selected. Unlike our online generative

hyper-heuristic, active genes are not guaranteed to be altered each time a CGP off-

spring is produced. CGP graphs with identical active genes would pass to the next

generation some new genetic material (see section 4.1.5 and algorithm 4.4). Yet an

algorithm evaluation would be used to compute the algorithm fitness value of a known

algorithm.

Goldman et al [114] have considered this situation as wasted evaluations. Tradition-

ally, CGP has only evaluated CGP offspring with different active nodes indices than

its parent. New genetic code encoded in inactive genes can, therefore, be passed to the

next generation. The evolution strategy promotes CGP offspring with a better or equal

fitness value [221].

Chapter 7. Evolving hyper-heuristic reproductive operators 181

A high probability to waste some evaluations during the evolution could be quite

high. In section 5.3, the number of active nodes in CGP graphs would vary be-

tween 6 and 12 (i.e. 3 to 6 operators). Using the formulae suggested by [114] (i.e

(1 −MutationRate)NoOfActiveGenes), the probability to waste some evaluations dur-

ing the partial evolution of iterations would be in range [0.54, 0.73]. In section 6.3.1,

the probability would spread between [0.43, 0.81]. The body of a loop would range

between two and eight operators long and the number of active genes between 4 and

16 operators. The mutation rate was increased and a replacement operator added to

the template.

In comparison, our online generative hyper-heuristic would control the mutation of

active and non-active genes. The co-evolution of both problem solvers and CGP mu-

tation operators has helped in searching in turn “locally” and “globally” the algorithm

search space. The algorithm search space may be explored more efficiently; finding

some compact and effective solvers.

The number of learning runs for the traveling salesman has remained constant for the

traveling salesman problem. For the mimicry problem, the inequality of learning runs

between the partial and complete evolution of iterations has now been balanced.

An offline generative hyper-heuristics was the most appropriate method to obtain some

nurse-rostering-problem solvers. The number of computer resources required by this

problem would produce even shorter learning runs than in section 6.3.4; approximately

2% of the hyper-heuristics budget was used. The quality of those solvers was inferior;

they were not demonstrating any scalable properties.

182 Chapter 7. Evolving hyper-heuristic reproductive operators

7.3. Validation of a learnt CGP mutation

The two hyper-heuristic reproductive operators most used by autoconstructive CGP

were identified in section 7.2.3 (see algorithms 7.3 and 7.4). An evolution strategy is

therefore edited to replace a neutral mutation with a learnt CGP mutation operator

obtained from our experiments in section 7.2. The evolution strategy would remain

the same, except the CGP mutation operator (see line 5 of algorithm 7.6).

Algorithm 7.6. The (µ+ λ) evolution strategy

1: CGPoffspring ← RandomlyGenerateIdividual(µ+ λ)
2: CGPparent ← Promote(CGPoffspring)
3: while Not solutionFound() or generation < Limit do
4: for i ∈ [1..λ] do
5: CGPoffspring[i]← LearntMutation(CGPparent)
6: CGPoffspring[i]← Evaluate(CGPoffspring[i])
7: end for
8: CGPparent ← Promote(CGPoffspring)
9: end while

We hope to validate the performance of this hyper-heuristic reproductive operator on

an unseen problem domain (i.e. the nurse-rostering problem). The hyper-heuristic

parameters remain mostly the same (see sections 6.3 and 6.4). The CGP mutation

operator defines itself the hyper-heuristic mutation rate (i.e. 0.075 for the partial evo-

lution of loops and 0.0625 for the complete evolution of loops). The problem domain

settings remain the same as section 6.2.3 and 6.3.4.

Chapter 7. Evolving hyper-heuristic reproductive operators 183

7.3.1 Performance of discovered NRP solvers

The nurse rostering solvers NRP-[E-J] and NRP-[L-O] are examples of generated

metaheuristics discovered in our latest experiments (see algorithms [A.51-A.56] and

[A.58-A.61] in section 9.2). A minority of these solvers have met the goal sets in

the learning objective function (see table 7.3 and section 6.2.3). Some of these meta-

heuristics may find many times known optima, but outliers can affect the distribution

negatively. For example, the solvers NRP-E and NRP-G have found most suitable so-

lutions. However, one outlier with a huge gap has been found (see figure 7.2). Such

occurrences could affect the objective learning function negatively, misrepresenting

the real performance of a solver. As a result, this may lead to rejecting a suitable

solver during the algorithm search and the validation process (i.e. solvers NRP-M and

NRP-O in table 7.3).

Solver NRP-N (see algorithm 7.7) has demonstrated the worse performance. This

solver has been obtained from a complete evolution of loops. However, best-generated

solvers have no loop. The generated part of the metaheuristic is executed once, reduc-

ing the problem solution search dramatically.

A detailed statistical analysis was completed for the solvers NRP-[E-J] (see in section

9.2). An example of some results is provided in figures 7.2 and 7.3.

Algorithm 7.7. : NRP solver N (NRP-N) was discovered from the experiments de-
scribed in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p) . start generated code
4: t← V ariableDepthLocalSearch(t)
5: t← UnassignedShiftMutation(t)
6: t← UnassignedShiftMutation(t) . end generated code
7: return Best(p)
8: end function

184 Chapter 7. Evolving hyper-heuristic reproductive operators

Table 7.3: A comparison of the rosters likely to be obtained during a learning run (i.e
by the learning objective function) and those obtained by 100 independent validation
runs.

Solver Instance Learning objective function Validation
NoRuns = 3 Goal NoRuns = 100
p.eval = 40 met? p.eval = 3, 000

µ σ µ σ

NRP-E Instance1 0.00e+00 0.00e+00 yes 8.61e-04 8.65e-03
BCV-4.13.1 0.00e+00 0.00e+00 yes 2.83e-03 9.09e-03
Ikegami 3.08e-02 2.54e-02 yes 3.58e-02 2.92e-02

NRP-F Instance1 2.07e+01 6.66e+00 no 1.30e+01 1.06e+01
BCV-4.13.1 1.61e+02 2.79e+02 no 2.15e-04 2.16e-03
Ikegami 2.11e-01 4.08e-02 no 9.15e-02 5.05e-02

NRP-G Instance1 2.20e+01 2.50e-02 no 2.58e-03 1.48e-02
BCV-4.13.1 3.20e+02 2.77e+02 no 5.89e+01 1.61e+02
Ikegami 2.16e-01 6.09e-02 no 4.15e-02 6.24e-02

NRP-H Instance1 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
BCV-4.13.1 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
Ikegami 1.33e-01 0.0e+00 yes 5.44e-02 2.05e-02

NRP-I Instance1 0.00e+00 0.00e+00 yes 3.04e-03 1.53e-02
BCV-4.13.1 0.00e+00 0.00e+00 yes 1.54e-03 1.16e-02
Ikegami 2.11e-01 4.08e-02 no 1.21e-01 6.07e-02

NRP-J Instance1 0.00e+00 0.00e+00 yes 2.58e-03 1.48e-02
BCV-4.13.1 0.00e+00 0.00e+00 yes 1.29e-03 6.01e-03
Ikegami 1.22e-01 1.60e-02 yes 1.61e-01 5.68e-02

NRP-L Instance1 0.00e+00 0.00e+00 yes 6.21e+00 10.00e+00
BCV-4.13.1 3.18e+02 2.75e+02 yes 4.06e+02 9.09e-03
Ikegami 2.21e+01 3.04e+02 no 6.21e+00 10.01e+00

NRP-M Instance1 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
BCV-4.13.1 7.06e-03 3.01e-02 no 2.17e-02 1.43e-03
Ikegami 9.91e-01 6.02e-02 no 9.19e-02 4.86e-02

NRP-N Instance1 2.22e+01 2.01e-02 no 21.86e+00 3.81e+00
BCV-4.13.1 4.91e+02 4.16e+00 no 5.40e+02 3.09e+02
Ikegami 1.45e+01 6.28e+00 no 2.40e+01 4.78e+00

NRP-O Instance1 0.00e+00 0.00e+00 yes 0.00e+00 0.00e+00
BCV-4.13.1 1.01e-02 2.02e-03 no 1.72e-03 6.60e-03
Ikegami 1.21e-01 4.98e-02 yes 1.04e-01 4.58e-02

Chapter 7. Evolving hyper-heuristic reproductive operators 185

Figure 7.2: A statistical comparison of solvers NRP-E, NRP-F and NRP-G for the
instance BCV-1.8.4

Figure 7.3: A statistical comparison of solvers NRP-H, NRP-I and NRP-J for the
instance BCV-1.8.4

7.3.2 Effect of the learnt CGP mutation operators

The learnt CGP mutation operator had a positive impact on the search. The number of

algorithm evaluations rose from 2% to 10%, and the number of learning runs increased

from 10 to 20 for each type of encoding scheme (i.e. CGP and iterative CGP).

186 Chapter 7. Evolving hyper-heuristic reproductive operators

A learning objective function would assess more generated metaheuristics. Changing

some “active function” and “active condition” genes would create some new solvers

each time the learnt CGP mutation is applied. Altering some active and inactive con-

nection genes contributes to changing the order of the problem-specific operators too.

This higher level of control over the algorithm search may have implemented and im-

proved the search for NRP solvers. Still many of these solvers may be unsuitable.

More sections of the algorithm search space are likely to be searched. The offline

hyper-heuristic should visit more favourable areas this cannot be guaranteed. The ran-

dom process of selecting CGP genes for mutation may be partly restricted to some

active genes. Also, no restriction or problem domain knowledge has been included.

The algorithm search may have been the least successful when loops were fully evolved.

Some metaheuristics have been promoted with no iteration, performing less efficiently

than those that repetitively apply some patterns of primitives. Their problem search

is much shorter. Such choice suggests the algorithm search may sometimes be under-

fitting.

7.4. Discussion and conclusion

From our experiments with mimicry and TSP problems, we have identified some CGP

mutations operators. Some solvers for the nurse-rostering problem were learnt by one

of these refined offline-learning generative hyper-heuristic. The neutral mutation was

replaced by our learnt hyper-heuristic reproductive operator. We were therefore able

to find more suitable iterative nurse-rostering solvers. A CGP mutation operator was

validated on a unseen problem domain.

Chapter 8. Critical analysis 187

Chapter 8. Critical analysis

Contents
8.1 Scalable patterns of primitives 188

8.1.1 The Traveling Salesman Problem 188

8.1.2 The mimicry problem . 192

8.1.3 The nurse rostering problem 196

8.2 Automatic design of metaheuristics 200

8.2.1 Templates and directed graphs 201

8.2.2 Effect of the learning objective functions 204

8.2.3 Effectiveness of the learning 207

8.3 Comprehensibility metrics . 208

8.3.1 Problem-specific solvers 209

8.3.2 Other forms of GP . 212

8.3.3 Effect on human understandability metrics 214

8.3.4 Comparison with other techniques 216

8.3.5 Discussion . 221

8.4 Conclusion . 222

This chapter critically analyses the results of our experiments to bring some answers

to our five objectives introduced in section 1.1. We will focus our attention to the

problem and algorithm domain, before our optimisation processes.

188 Chapter 8. Critical analysis

8.1. Scalable patterns of primitives

At the start of this work, we made the assumptions it would be beneficial to compre-

hend how certain combinations of operators can lead to a good or poor performance.

Programming languages offer a medium to convey the instructions to complete a spe-

cific task, between programmers and computers [140]. The idea of computers com-

municating algorithms to programmers is not new. Newell et al. [239] stated in their

seminal paper ”artificial intelligence must be concerned with how symbol systems must

be organised in order to behave intelligently”.

Our experiments have generated solvers of varying effectiveness and scalability. A

critical analysis of these solvers’ performance could suggest some combinations of

problem-specific operators that could find some suitable solutions.

8.1.1 The Traveling Salesman Problem

8.1.1.1 Effect of geographical features on the generated solvers

TSP instances vary in term of number cities and geographical features. Landforms and

water bodies can restrict the number of routes available between cities, creating some

clusters of some towns.

Our instances either represent a drilling networks (i.e. u2152, usa13509 and d18512)

or actual geographical data (i.e. the remaining instances). The mapping of some algo-

rithms, instances and some expected fitness values can vary greatly to form an irregular

set of columns (see figures 8.1 - 8.3).

Chapter 8. Critical analysis 189

These figures suggest our solvers have found better tours for instances that have the

least clustered cities. Examples of these instances include ca4663, d18512, dj38,

ei8246, fi10639, ho14473, lu980, mo14185, qa194, sw24978, u2152, usa13509 and

zi929. The expected fitness are often consistently low (see figures 8.1 - 8.3).

Archipelagos and mountain ranges can bring some bottleneck clustering some cities

togethe. Greece, Japan, Vietnam and Argentina (i.e gr9882, ja9847, vm22775 and

ar9152) have a highest expected fitness (see figures 8.1 - 8.3).

Figure 8.1: A graphical representation of the expected fitness of for the algorithms
TSP-A to TSP-E and the metaheuristics published by [246, 319]. The instances ranges
between 38 to 7663 cities

8.1.1.2 Effect on the number of cities on the generated solvers

A different set of solvers have found better tours than others as the number of cities

increases, irrespectively to their unique geographical features.

190 Chapter 8. Critical analysis

Figure 8.2: A graphical representation of the expected fitness of for the algorithms
TSP-F to TSP-Q and the metaheuristics published by [246, 319]. The instances ranges
between 38 to 7663 cities

Figure 8.3: A graphical representation of the expected fitness of for the algorithms
TSP-A to TSP-E and the metaheuristics published by [246, 319]. The instances ranges
between 9,152 to 33,708 cities

Chapter 8. Critical analysis 191

Figure 8.4: A graphical representation of the expected fitness of for the algorithms
TSP-F to TSP-Q and the metaheuristics published by [246, 319]. The instances ranges
between 9,152 to 33,708 cities

• noCities = 38 : For the exception of solver TSP-O, the solvers TSP-[A-Q] have

found optima for the instance dj38.

• 194 ≤ noCities ≤ 14,473: Solver TSP-D has found the best tours for these

instances. The “TSP-D” tour distribution is likely to be different; the A-measure

is often greater than 0.7 (see tables B.22 and B.29). The central tendency (i.e.

median and/or arithmetic mean) is generally the lowest (see tables B.18, B.19

and [B.26 - B.37]).

• noCities > 14,473: Solvers TSP-B, TSP-H and TSP-I have found the best tours

of these most challenging instances. Those can be significantly better with a

medium effect (see table B.27).

192 Chapter 8. Critical analysis

8.1.1.3 Level of disruption

Various mutation operators bring a different level of disruption. First, when a mutation

operator swaps randomly two cities (i.e. the ExchangeMutation operator), then more

suitable tours have been obtained for instances up to 14,000 cities. Secondly, mutation

operators that move a position of cities or inverses randomly the order of some cities

appear to be more efficient with larger instances (i.e. InsertionMutation or SimpleIn-

versionMutation).

Larranaga et al. [181] conclusion were confirmed. In contrast, the patterns of prim-

itives were exhaustively tested by human activities with some short TSP instances

were used (i.e. ≤ 200 cities). Our generative hyper-heuristics have not only found

some suitable metaheuristics, but also allow us to comprehend the effect of combining

some TSP operators.

8.1.1.4 Metaheuristic design suggestions

Metaheuristics that uses every problem evaluation of a given budget and apply the pat-

tern of primitive [aMutation, 3 OptLocalSearch, ReplaceLeastFit, SelectElitism] are

more likely to reduce the length of tours to a suitable level. Swapping cities randomly

is likely to be more suitable for small instances. More disruptive mutations can be

more effective in a large instance.

8.1.2 The mimicry problem

8.1.2.1 Fixed number of problem evaluations

Our first validation set samples some instances within the range 100 ≤ Length ≤

30, 000. A fixed number of 20,000 problem evaluations was applied during each vali-

dation run has used. Some solvers were more scalable than others.

Chapter 8. Critical analysis 193

• Length ≤ 1000: The metaheuristic obtained from the literature (i.e. Herdy

[146]) and the generated solvers MC-[A-L] have generally found suitable or

optimum imitators (see section 9.2 and figure 8.5).

• 1000 ≤ Length ≤ 6000: The best imitators have been found by a reduced set

of generated solvers (i.e MC-A, MD-D, MC-G, MC-E and MC-L). Their distri-

bution is often very similar. The A-measure is very close to 0.5 and the null-

hypothesis has been accepted (see section 9.2 and figure 8.5).

• 7000 ≤ Length ≤ 30000: The generated solvers MC-B, MC-H, MC-J, MC-

K have found the best imitators. The expected fitness increases for this set of

instances. The fixed number of problem evaluations restrict the possible number

of bits that can be corrected, resulting in converging to a high expected fitness

(see section 9.2 and figure 8.5).

Figure 8.5: A graphical representation of the expected fitness of each algorithms for
the instances ranging between 100 to 30,000 bits.

194 Chapter 8. Critical analysis

8.1.2.2 Herdy’s ratio

Herdy [146] reported a (1/1+1) evolution strategy would required 3,072 generations to

correct 250 bits of a 500-bit-long instance. This metaheuristic expected fitness started

to rise sharply for instances with more than 1,000 bits; for the generated solvers the

imitators quality begun degrading for instances with more than 3,000 bits. At that

point the ratio 500 bits : 3, 072 generations stops being respected.

Our implementation of Herdy’s metaheuristic has used again some of the mimicry-

specific operators. The reported number of generations (i.e 3,072) would therefore

apply 6,144 problem evaluations; one problem evaluation for applying CrossoverUni-

form and one for MutateOneBit (see table 3.2 and Algorithm A.1 in Appendix A).

Therefore, we have expressed again number of problem evaluations required for a cer-

tain instance using the expression Length ∗ [(3072× 2)/250] (i.e Length ∗ 24.576).

8.1.2.3 Variable number of problem evaluations

Our second validation set samples some instances within the range 100 ≤ Length ≤

100, 000. Some optimum imitators were found by the solvers MC-A, MC-D, MC-E

and MC-L when the number of problem evaluations was set using Herdy’s ratio. Up

to 10,000 Herdy’s metaheuristics has consistently found some perfect imitators. With

larger instances some bits were still not corrected (see tables [B.11 - B.13] and figure

8.6).

The solver MC-M failed to find any suitable solutions. This solver was unable to meet

the three goals specified in our improved learning objective function. Increasing the

number problem evaluations in relation to an instance has brought no improvement

(see table 6.20 in section 6.4.2, tables [B.11 - B.13] in Appendix B and figure 8.6).

Chapter 8. Critical analysis 195

Figure 8.6: A graphical representation of the expected fitness of each algorithms for
the instances ranging between 100 to 100,000 bits.

MC-M

MC-L

Algorithms

MC-E

MC-D

MC-A0

0.05

0.1

0.15

100000 Herdy

0.2

Instances

E
x
p

e
c
te

d
 f

it
n

e
s
s

0.25

10000

0.3

1000

0.35

0.4

100

0.45

196 Chapter 8. Critical analysis

With both set of validation instances, the most successful metaheuristics have com-

monly used mutationOneBitHC and/or mutationUniformHC. These solvers would pre-

serve the number of corrected bits, preventing introducing new errors in an imitator.

By repetitively applying these hill-climbers operators the ReplaceLeastFit population

operator becomes redundant during the search. The population p only needs to be

populated again at the end of the search; perhaps one population of mimicry individ-

ual may only be required.

8.1.2.4 Metaheuristic design suggestions

Every bit of an imitator can be corrected provided the following conditions are applied.

1. The number of problem evaluations relative to the length of the instance. It

should be set to ProblemEvaluation← Length ∗ 24.576).

2. Only corrected flips are kept.

3. Bits are repetitively and randomly selected and flipped in an imitator.

8.1.3 The nurse rostering problem

8.1.3.1 Two extremes of rosters

The generated solvers have found rosters ranging between two extremes. Some new

optima have been found and some other unsuitable rosters too. The mapping between

solvers, instances and expected fitness has therefore the greater discrepancy of our

three chosen problems; the expected fitness can be approximated between these limits

[−0.8 .. 2, 500] (see figures [8.7-8.9]).

Chapter 8. Critical analysis 197

Figure 8.7: A graphical representation of the best expected fitness obtained by solvers
NRP-A - NRP-J. The limit approximately varies between [−0.8..2].

-2

-1

0

1

E
x
p

e
c
ti
e

d

fi
tn

e
s
s

NRP-J

2

NRP-I

3

BCV-1.8NRP-H ORTEC02
NRP-G Ikegami

Algorithms

BCV-5.4.1NRP-F
BCV-3.46.2NRP-E

Instances

BCV-3.46.1NRP-D BCV-1.8.3
NRP-C BCV-1.8.2

BCV-1.8.1NRP-B
BCV-1.8NRP-A

Figure 8.8: A graphical representation of the best expected fitness obtained by solvers
NRP-A - NRP-J. The limit approximately varies between [0..35].

0

10

BCV-2.46.1

20

E
x
p

e
c
te

d
 f

it
n

e
s
s

BCV-6.12.2 NRP-J

30

BCV-A.12.2 NRP-I

40

NRP-HG-Post

Instances

NRP-GG-Post-B

Algorithms

NRP-F
Instance 10

NRP-E
Instance 3 NRP-D

ORTEC01 NRP-C
NRP-B

NRP-A

198 Chapter 8. Critical analysis

Figure 8.9: A graphical representation of the best expected fitness obtained by solvers
NRP-A - NRP-J. The limit approximately varies between [0..1, 320].

0

Instance 9

500

Instance 7

1000

NRP-J Instance 6

1500

Instance 5NRP-I

E
x
p

e
c
te

d
 f

it
n

e
s
s

Instance 4

2000

NRP-H Instance 2NRP-G

Instances

2500

Instance 10

Algorithms

NRP-F BCV-A.12.1

3000

BCV-8.13.2NRP-E
BCV-8.13.1NRP-D BCV-7.10.1NRP-C BCV-6.13.1

NRP-B BCV-4.13.2
BCV-4.13.1NRP-A

8.1.3.2 Effect of BCV instances on the generated solvers

The BCV instances were initially formulated with the hope of moving forward meta-

heuristics research for this problem. Linear programming or selective hyper-heuristics

techniques have found a majority of known optima [21, 66, 326].

Many of our generated metaheuristics have successfully found the known optimum,

and some new optima have been discovered instance BCV-1.8.4. Their medians are

therefore the same (see tables [B.39 - B.51]). All these solvers have used a relatively

low number of problem evaluations.

Chapter 8. Critical analysis 199

8.1.3.3 Effect on more challenging instances on the generated solvers

Integer programming techniques have often solved the remaining benchmarks (i.e.

ORTEC01, ORTEC02, G-Post, G-Post-B, Ikegami). Those are considered to chal-

lenge more non-deterministic algorithms.

We are pleased that suitable rosters have been found by solvers NRP-[B-C-D] and

NRP-H (see table B.44 in Appendix B). The best-known optima has also been consis-

tently found by solvers NRP-A, NRP-B, NRP-C, NRP-H and NRP-I.

8.1.3.4 Most scalable generated solvers

Solvers NRP-B and NRP-H have been the most successful solvers (see tables [B.39 -

B.51]). Both measures of centrally tendency solver NRP-B have been the lowest for

18 instances out of 30.

Both solvers remove some shifts before applying at least one local search. The pat-

terns of operators satisfy (1) the weekend constraints and (2) an entire work schedule

for a nurse. For that reason, the fitness of a roster is reduced. Satisfying these con-

straints have been particularly useful for some benchmarks with a substantial number

of days or nurses (i.e. instance2, instance3, GPOST-B, Ikegami 3-Shift 1). All of these

algorithms move some shifts to some adjacent days so that the cost of a roster can be

lowered.

8.1.3.5 Metaheuristic design suggestions

Metaheuristics are likely to find better rosters when some shifts are removed before

applying at least one local search and promoting the best roster to a parent solutions.

200 Chapter 8. Critical analysis

8.2. Automatic design of metaheuristics

Poli et al [257] represents a hyper-heuristic as a technique that operates on the [meta]heuristic

search space (see figure 8.10). The framework introduced in chapter 2 has included

the hyper-heuristic search as an algorithm optimisation process. The solvers are part

of the algorithm domain and the set of problems in the problem domain.

Figure 8.10: An hyper-heuristic searching the multiple areas of the algorithm search
space. Each search algorithm has potentially a different set of problems associated to
it [257].

The loose coupling between these three main components has contributed in making

use of very little or no knowledge of the other parts; each primary element achieves a

single well-defined task. In chapters [5-7] this feature has helped to explore some

features that could improve the performance of our graph-based generative hyper-

heuristics.

Chapter 8. Critical analysis 201

8.2.1 Templates and directed graphs

8.2.1.1 Suitable and unsuitable metaheuristics

Both templates and some directed “acyclic” and “cyclic” graphs encode the generated

solvers. The inductive bias has ensured the minimum metaheuristics requirements

would be met to prevent the generation of unsuitable solvers. As suggested by Koza

[174], the structure of the templates are general enough and problem independent.

Known undesirable design aspects are being removed from the fixed part of the algo-

rithm. An extensive section of the algorithm search space can be searched to generate

some suitable solvers (see figure 8.11).

Figure 8.11: The metaheuristics design space

8.2.1.2 Syntactically correct metaheuristics

Some grammatical rules have guaranteed the generation of correct nested-loops with-

out specifying a maximum number of nesting level. Examples of solvers with nested

loops can be found in solvers MC-F, MC-K and TSP-O in Appendix 9.2.

The automatic design process has evolved some data flow diagrams. Directed graphs

(i.e. acyclic and cyclic) have encoded the evolvable part of a solver. Integer values en-

code some iterative sequences of some metaheuristics within a string. A feed-forward

and feedback mechanism safeguards the connections to valid nodes.

202 Chapter 8. Critical analysis

Operators had to be part of a finite set of symbols (i.e. a function and condition set).

Each of these syntactic rules introduced in section 4.2 has maintained correct iterative

sequences. During the decoding process, each active function gene also represents a

syntactically correct line of code.

8.2.1.3 Initialising a population of solutions

We have assumed suitable metaheuristics would start searching the problem fitness

landscape by randomly initialising a problem-solution population. Otherwise, the

problem fitness landscape cannot be explored. This first step is considered as a ne-

cessity [241, 205, 112, 146, 103, 232, 177].

8.2.1.4 Guaranteeing the metaheuristics can terminate

Two termination mechanisms have guaranteed the metaheuristics to terminate. Some

templates that only evolve the body of a loop. Koza et al. [174] initially suggested

this technique to prevent some iterative algorithms run indefinitely. As a practical ne-

cessity, some constraints avoid unending iterations. Some grammatical rules can also

make this possible by stating the elements that remain unchanged and the part of the

program that is evolved [244, 199, 180, 344, 182, 285].

Some termination criteria have been considered as primitives; some conditions defined

externally to a hyper-heuristic similarly as some problem-specific operators. Both sets

of primitives were tested before the learning runs so that the metaheuristics would

stop.

8.2.1.5 The best problem solution is returned

Two populations of problem solutions were defined in section 3.1.1. Individuals of

a population referred as p could survive through the whole search. The templates

guarantee this population is updated before its best individual is returned.

Chapter 8. Critical analysis 203

8.2.1.6 Adapting the automatic design to a problem domain needs

At the start of our experiments, we made the assumptions a template would remain

the same for each problem. We have envisaged the basic “skeleton” of a metaheuristic

would be general enough for our three problem domain. As we completed some inves-

tigative experiments, it became apparent for the templates to be adapted to the needs of

the problem domain. Some problem fitness landscape may be more challenging than

other to search for a metaheuristic.

Firstly, the mimicry problem fitness landscape was most suited to a minimalistic tem-

plate; no replacement operators was imposed until the end of the evolution. Secondly,

the nurse rostering problem has benefited by applying ReplaceLeastFit and SelectEliti-

cism as the last two operators of the body of any loops. Both templates were amended

for this problem. Thirdly, the traveling salesman problem has many aspects that can

be met from various techniques. Two templates have evolved the body of a loop (see

algorithm 5.2 in section 5.3 and algorithm 6.2 in section 6.2.1).

8.2.1.7 Approximating the size of the algorithm fitness landscape

Directed acyclic and cyclic graphs can represent deceptively a large number of possible

algorithms. The evolvable part is encoded within a path of active nodes or a sub-graph.

Some pair-wise relationships between elements model the operation flows; both have

a start and end. For the exception of a specified maximum graph length, no other re-

striction was made to the problem operators applied by any solvers. No grammatical

or syntactic rule was applied to assume a certain order of operations too.

204 Chapter 8. Critical analysis

Directed acyclic graphs restricted the encoding scheme to non-iterative sequences.

Counting by-hand the possible number sequences becomes a challenging task rapidly.

The number of possible paths rises very quickly in the millions. For example 15 ver-

tices could have approximately 1.81e+29 sequences [2, 268, 216]. In our experiments,

a minimum of 100 nodes has been used, so some metaheuristics of substantial sizes

could be searched too.

In autoconstructive CGP, the hyper-heuristics reproductive operators are encoded with

10-node-long graphs; this should allow 1.17e+12 possible paths for each type of mu-

tation operators. The size of the algorithm search space remains therefore very sub-

stantial.

8.2.1.8 Generative hyper-heuristic design suggestion

The feasibility of a metaheuristic can be guaranteed by a template providing a popula-

tion of solutions is initialised, and the best solution found during a run is returned. An

encoding scheme can enforce some syntactical rules that can be decoded to search the

problem fitness landscape. Termination criteria can be implemented in a template or

as primitives to ensure a metaheuristic terminates.

8.2.2 Effect of the learning objective functions

A learning objective function associates some solvers and a set of problems (see figure

8.10). This process should reveal the differences present in a problem fitness landscape

and an algorithm fitness landscape.

The algorithm search space can be illustrated with the following metaphor; a large

mountain range with some high peaks. Metaheuristics with good performances should

become the highest points.

Chapter 8. Critical analysis 205

8.2.2.1 The no-free-lunch theorem

The state-of-art in evolving EAs [244, 199] was applied in chapter 5. The learning

objective function is given in algorithm 5.1 and shows how the no-free-lunch theorem

has been used as an inspiration.

Efficient solvers can have a suitable algorithm fitness value computed by a no-free-

lunch learning objective function. These metaheuristics find some short tours for each

instance, lowering the arithmetical mean. The latter can also become skewed to the

left. In this case, a generated metaheuristic effectively and solely solve the least chal-

lenging learning instance. These metaheuristics may not move away from a local op-

timum with an increased number of problem evaluations; as demonstrated in chapters

[5-6].

We surmised the algorithm search of mimicry solvers was over-fitting. The no-free-

lunch learning objective function was not sensitive enough to small fluctuations present

in the mimicry training set. Additionally, some critical information about NRP solvers

were unlikely to be captured. Some roster may become large very quickly and an

arithmetic mean could become skewed to the right. Rosters found by our generated

metaheuristics have often scored with a more substantial standard deviation and in-

terquartile value (see Appendix B). We surmise the algorithm search was under-fitting

NRP solvers.

206 Chapter 8. Critical analysis

8.2.2.2 The mean-variance analysis

Another technique has instead calculated a measure of centrality and dispersion, to

apply some ideas inspired by the mean-variance analysis (see algorithm 6.1). Cap-

turing some clear information about the metaheuristics performance for each learning

instance has simulated more accurately the characteristic of scalability. Some expected

goals (i.e. instance goals) have modelled the “real” performance of the solvers against

some realistic aims. In general, the best-generated metaheuristics discussed in section

8.1 have met these conditions. We have observed these metaheuristics would have

been rewarded a favourable algorithm fitness value (see figures 6.3 - 6.11 and tables

[6.13 - 6.20] in section 6.3).

The logical steps and parametrisation of the second learning objective function have

become more general; solvers for several problem domains were suitably assessed.

The algorithm fitness value can measure the solver performances based on some set of

problem solutions. The hyper-heuristics are now capable of promoting solvers that are

likely to be more efficient and scalable. Therefore, the differences existing at the level

immediately below have been revealed using a more suitable performance measure

[257].

8.2.2.3 Generative hyper-heuristic design suggestion

A learning objective function that incrementally achieves a set of desired results can

save a lot of computer resources being used during the algorithm search. A coeffi-

cient of variation can capture some clear information that measures the metaheuristics

performance with regards to their potential scalability.

Chapter 8. Critical analysis 207

8.2.3 Effectiveness of the learning

8.2.3.1 Generalisation

Our supervised learning algorithms have generalised beyond their training sets. Many

of our generated metaheuristics have searched the problem fitness landscape efficiently;

the discovered solvers have found problem solutions for a wide range of unseen in-

stances (see section 8.1).

At the start of the work, we assumed the elements of our offline learning algorithm

would be general enough for each problem domain. Through the completion of this

thesis, subtle problem-specific tuning had a positive impact on the algorithm search

(see section 8.2). An online learning algorithm has also genetically modified some

suitable CGP mutation operators.

8.2.3.2 Effect of the hyper-heuristic reproductive operator

Changes in the hyper-heuristic reproductive operators have aided to explore a broader

range of solvers. We believe the added control on the selected genes within a CGP

graph has been beneficial. At each hyper-heuristic generation, some active genes have

been altered, generating and assessing a new solver.

As a result, some TSP solvers have been discovered again. Some more efficient

mimicry solvers have been obtained. A “learnt” CGP mutation was also discovered.

An offline learning algorithm has validated this hyper-heuristic reproductive operator

with an “unseen problem”. Some NRP solvers have been searched with with more

ease. More effective iterative solvers were found; at each generation, a new solver was

assessed.

208 Chapter 8. Critical analysis

8.2.3.3 Hyper-heuristic design suggestions

An evolution strategy can search more effectively the algorithm search space, provid-

ing some active and non-active genes are mutated. Genetically modifying a CGP mu-

tation operator during the algorithm search can aid controlling the selection of genes

to be mutated, resulting in exploring the algorithm search space with more precision.

8.3. Comprehensibility metrics

In software engineering, a comprehensible code is a desirable outcome, since it is be-

lieved the cost of maintenance can be lowered. To help to identify such code, some

specific metrics have been designed to assess the complexity of some programs ex-

pressed in a programming language [60, 261, 32, 63].

Some of these metrics have been included in our algorithm domain; they quantify the

understandability of some problem-specific solvers. We can therefore enquire into

the human understandability of some generated solvers expressed with an imperative

pseudo-code. The metaheuristics optimisation processes should change the values of

the human understandability metrics introduced in section 2.3.5. Each time some op-

erators or iterations are modified, the vocabulary, length, effort and no of independent

paths may become larger or smaller.

For example, some knowledge would be required to maintain and implement some

non-deterministic methods. The effort metric of some well-known metaheuristics ap-

proximately scores between [9, 000..15, 000]. Luke et al. [205] have expressed these

metaheuristics with a set of keywords representing several types of loops, selections,

comparisons and assignments. Consequently, the vocabulary and length metrics are

quite high, impacting negatively on the effort required to understand these algorithms

negatively.

Chapter 8. Critical analysis 209

Testing effectively these traditional metaheuristics would require a procedure that con-

siders all the independent paths. Each time a loop or a selection construct is applied

a new path is added, increasing the number of independent paths dramatically. These

traditional metaheuristics would challenge a programmer to understand its structure

and maintain it.

Table 8.1: Software metrics for the traditional metaheuristics as expressed by Luke et
al.[205]

Algorithm No independent Vocabulary Length Effort
paths

GA 5 30 72 15,191.73
ES 8 28 65 12,499.12

ILS 5 23 56 9,330.60

8.3.1 Problem-specific solvers

Knowledge about a problem domain and an algorithm representation was required

to establish an appropriate communication between programmers-to-computers and

computers-to-programmers. The difficulty to “make sense of ” these algorithms was

then eased dramatically by adopting a set of symbols that a group of programmers and

CGP can use (see chapters [3-7]). Otherwise, we would not have been able to criti-

cally analyse given pattern of primitives, their performance and the benefits brought to

search a problem fitness landscape [169, 38, 60].

Once coded with an imperative pseudo-code, the understandability metrics were com-

puted for each solver of appendix A. The solvers’ performance discussed in section

8.1, results reported in chapters [5-7] and appendix B have also been summarised (see

tables [8.2-8.4]).

210 Chapter 8. Critical analysis

Table 8.2: Software metrics applied to the generated mimicry solvers and Herdy’s
evolution strategy [146]

Algorithm No independent Vocabulary Length Effort Class of
paths instances

Herdy [146] 2 24 43 3,450.18 Length ≤ 1,000
MC-A 2 25 47 3,928.70 NoOfBits ≤ 100,000
MC-B 2 28 65 9,561.83 NoOfBits ≤ 10,000
MC-C 2 27 58 7,266.89 Length ≤ 1,000
MC-D 2 17 43 3,623.94 NoOfBits ≤ 100,000
MC-E 3 27 55 5,135.28 NoOfBits ≤ 100,000
MC-F 3 27 55 5,135.28 NoOfBits ≤ 10,000
MC-G 2 25 43 3,145.05 NoOfBits ≤ 10,000
MC-H 2 25 43 3,145.05 NoOfBits ≤ 10,000
MC-I 2 25 51 4,440.69 NoOfBits ≤ 10,000
MC-J 2 24 44 3,698.54 NoOfBits ≤ 10,000
MC-K 3 28 61 6,798.04 NoOfBits ≤ 10,000
MC-L 2 21 39 2,644.45 NoOfBits ≤ 10,000
MC-M 2 21 39 2,644.45 Not effective
MC-N 2 26 50 5,327.17 Not effective
MC-O 2 24 46 4,429.07 Not effective

Table 8.4: Software metrics applied to the generated NRP solvers

Algorithm No independent Vocabulary Length Effort Class of

paths instances

NRP-A 2 21 58 6,106.81 Most BCV instances

NRP-B 2 22 58 7,032.45 Most instances

NRP-C 2 24 63 8,449.89 Most BCV instances

NRP-D 2 22 57 7,897.97 Most BCV instances

NRP-E 2 27 60 7,274.98 Some BCV instances

NRP-F 2 26 59 6,877.68 Some BCV instances

NRP-G 2 27 64 8,277.31 Some BCV instances

NRP-H 2 21 50 5,270.78 Most nstances

NRP-I 2 22 47 5,164.98 BCV instances

NRP-J 2 24 58 6,204.98 Some BCV instances

NRP-K 2 24 56 8,106.21 not effective

NRP-L 2 23 57 7,956.30 not effective

NRP-M 2 25 59 10,215.82 not effective

NRP-N 1 15 29 1,586.20 not effective

NRP-O 2 21 38 3,838.89 not effective

Chapter 8. Critical analysis 211

Table 8.3: Software metrics applied to the generated TSP solvers, some metaheuristic
written by human-activity, and also some solvers generated with tree-base GP

Algorithm No independent Vocabulary Length Effort Class of
paths instances

Ozcan [246] 2 21 41 3,781.79 noCities < 38
Ulder [319] 2 25 43 4,351.87 noCities < 38
Ntombela [241] 3 29 60 4,372.18 noCities ≤ 247
Loyola-1 [203] 5 19 65 5,245.34 noCities ≤ 1,400
Loyola-2 [203] 6 16 51 6,156.00 noCities ≤ 1,400
TSP-A 2 26 51 4,794.45 noCities < 38
TSP-B 2 25 49 4,266.54 noCities > 14,473
TSP-C 2 29 57 6,215.86 noCities < 38
TSP-D 2 25 57 6,823.37 noCities < 14,473
TSP-E 3 23 73 12,831.41 noCities < 38
TSP-F 2 25 61 6,161.24 noCities < 38
TSP-G 2 26 66 7,941.86 noCities < 38
TSP-H 2 25 49 3,925.22 noCities > 14,473
TSP-I 2 24 52 5,165.72 noCities > 14,473
TSP-J 2 24 76 10,574.11 noCities < 38
TSP-K 2 25 48 3,677.93 noCities < 38
TSP-L 2 27 66 9,069.47 noCities < 38
TSP-M 2 26 68 8,693.93 noCities < 38
TSP-N 2 27 72 11,214.60 noCities < 38
TSP-O 3 31 71 8,279.61 not effective
TSP-P 2 26 60 8,523.46 noCities < 38
TSP-Q 2 25 60 7,430.17 noCities < 38
TSP-R 2 25 49 4,266.54 not effective
TSP-S 2 25 57 6,215.86 not effective
TSP-T 2 26 61 8,181.64 not effective
TSP-U 3 28 76 21,564.78 not effective
TSP-V 2 22 64 9,479.48 not effective
TSP-W 2 31 80 22,219.57 not effective
TSP-X 2 25 60 6,934.83 noCities ≤ 29
TSP-Y 2 25 78 12,878.96 not effective
TSP-Z 2 23 83 21,868.19 not effective

212 Chapter 8. Critical analysis

In comparison to the traditional metaheuristics listed table 8.1, a programmer with

some good problem domain knowledge could understand with more ease the most

effective solvers. Those have often scored a low value for the effort metric (see the al-

gorithms highlighted in green in tables [8.3-8.4]. Their vocabulary and length are often

reasonably small. The total number of operators and operands should, therefore, be

quite low. In comparison, the metrics are often close to some problem specific meta-

heuristics reported in the literature (i.e. Herdy [146], Ozcan[246] and Ulder[319]).

8.3.2 Other forms of GP

At the start of this work, only a minority of the literature dedicated to generative hyper-

heuristics have been publishing examples of some discovered algorithms; the main

focus remains the problem solutions obtained from these techniques. More recent

publication has continued with this trend [287, 254, 325, 55, 5, 213].

Many of these have applied a tree-based GP; we anticipate those may be very chal-

lenging to comprehend as the program may grow large during the learning phase (see

figure 8.12). Unlike [241, 203], no maximum tree depth was specified. Nonetheless,

some TSP solvers generated by tree-based GP have more independent paths. Their

vocabulary and length can vary and their effort metrics achieve a similar score than

the most effective TSP solvers. These results are either driven by using a very large

template or the evolution has repetitively applied the same combinations of operands

and operators.

Figure 8.12: An example of published algorithm generated by a generative tree-based
hyper-heuristics.

Chapter 8. Critical analysis 213

Binary code, parse trees, and registers have also been used. These chosen EAs have

solved a variety of problems that differ from our choices; function optimisation and

the Royal-Road problem were examples of use.

Table 8.5: Summary of metaheuristics understandability metrics evolved with a non-
graph-based form of genetic programming

Algorithm No independent Vocabulary Length Effort
paths

Oltean et al [245] 1 10 16 141.74
Oltean et al [245] 1 11 24 415.13
Oltean et al [244] 2 20 48 1936.22
Diosan et al [91] 2 19 48 1699.17
Lourenco et al. [199] 2 15 14 187.53
Lourenco et al [202] 2 14 19 651.06
Lourenco et al [202] 2 14 19 651.06
Lourenco et al [202] 2 15 15 234.41
Lourenco et al [202] 2 14 19 651.06
Martin et al. [213] 2 25 67 5744.09

These solvers often score much lower values, than the ones obtained by human activ-

ity (see table 8.5). A smaller number of functions, operators and compact grammatical

rules may have limited the metaheuristics expressibility; the vocabulary is therefore

quite low. Sometimes indices symbolise some problem solutions [91]; this increases

the effort metric but can move away from a ”human” programmer expectations.

Martin et al. Martin et al. [213] have matched the score achieved by our learnt meta-

heuristics. An extensive set of constants and genetic operators was used, but no re-

placement operator appears to be in the function set. Similarly to the technique used

by [203], hybrid metaheuristics employs some mathematical operators alongside some

genetic operators. This vocabulary may be unfamiliar to the “human-designers of

metaheuristics”; these researchers are more likely to use some genetic operators.

214 Chapter 8. Critical analysis

8.3.3 Effect on human understandability metrics

8.3.3.1 Vocabulary

The variables, constants, operators, functions, reserved keywords offer a complete

set of symbols that comprises most elements of an imperative programming language.

Many of the lines remain unchanged as they are written in a template. For example, the

variables p and t, the assignment operator←, the population operators SelectElitism()

and ReplaceLeastF it()). These distinct symbols remain constant during the meta-

heuristic search; those are now referred as NoOptemp and NoOperandtemp (see ex-

pression 8.1).

Some others lines were encoded in CGP graphs (iterative and non-iterative). In chap-

ters [5-7] these lines were considered as active function and condition genes. The

part evolved is therefore modelled in expression 8.2 in a similar way; NoOpgraph and

NoOperandgraph are likely to change values during the search. Therefore we can

write again the variable NoOp and NoOperand (see expressions 8.4 and 8.5).

V ocabularytemp ← NoOptemp +NoOperandtemp (8.1)

V ocabularygraph ← NoOpgraph +NoOperandgraph (8.2)

V ocabulary ← V ocabularytemp + V ocabularygraph (8.3)

NoOp← NoOptemp +NoOpgraph (8.4)

NoOperand← NoOperandtemp +NoOperandgraph (8.5)

totOp← totOptemp + totOpgraph (8.6)

totOperand← totOperandtemp + totOperandgraph (8.7)

Chapter 8. Critical analysis 215

8.3.3.2 Length

The Length of a program varies each time the evolve part of metaheuristics varies. The

total number of operands and operators used are likely to change. There it would be

beneficial to adapt the length metric with one for the template and one for the graphs

(see expressions [8.8-8.10]).

Lengthtemp ← totOptemp + totOperandtemp (8.8)

Lengthgraph ← totOpgraph + totOperandgraph (8.9)

Length← Lengthtemp + Lengthgraph (8.10)

8.3.3.3 Effort

The effort metric is mostly affected by the changes brought by the evolved part of the

metaheuristic. This expression has been expressed to illustrate how variables mod-

elling the templates and graphs affect the metric (see expression 8.11). Any variations

in the values ofNoOpgraph,NoOperandgraph, totOpgraph and totOperandgraph would

affect the effort metric too.

Effort← (Length×NoOp× totOperand)log2(V ocabulary)

2(NoOperand)
(8.11)

8.3.3.4 No of independent path

The templates impose a certain number of nodes and edges to the metaheuristics. Each

line of code is represented by a node, resulting in converting the template and evolving

part of the metaheuristics into a graph. Those are now referred as NoEdgestemp,

NoEdgesgraph, NoNodestemp and NoNodesgraph.

216 Chapter 8. Critical analysis

NoEdges← NoEdgestemp +NoEdgesgraph) (8.12)

NoNodes← NoNodestemp +NoNodesgraph) (8.13)

NoIndependentPath← NoEdges−NoNodes+ 2 (8.14)

8.3.4 Comparison with other techniques

8.3.4.1 Graph-based hyper-heuristics

The understandability metrics can be affected by when a CGP mutation is applied,

especially when active genes are mutated. When a hyper-heuristic reproductive oper-

ator only alters non-coding genes; the encoded metaheuristics remain the same. The

evolution of hyper-heuristics reproductive operators should overcome this undesirable

effect. The experiments conducted in chapter 7 have guaranteed some coding and

non-coding genes were mutated. As result, a wider range of understandability metrics

would have been explored.

Lemma 1

The vocabulary, length and effort metric is only susceptible to changes made to active

coding genes.

The termination criteria introduced in section 3.1.2 rely on various variables; some of

them may have several conditions too. The values ofNoOperandgraph andNoOpgraph

should vary the most when some termination criterion of an active loop header is mu-

tated, or a loop is introduced. As a consequence, some operands, comparisons, boolean

and logical operators expressing a termination criterion may be added or removed by

iterative CGP; increasing or decreasing these values. This only occurs with when iter-

ations are fully evolved with iterative Cartesian Genetic programming.

Lemma 2

The vocabulary are likely to vary the most when iterations are fully evolved.

Chapter 8. Critical analysis 217

Depending on the number of occurrences of an operator in a solver, the value of

NoOpgraph may vary slightly within the integer range [−1..1]. If a new problem-

specific operator is introduced, then the lexicon would become larger by one unit.

Conversely, when a problem-specific operator is applied once, then NoOpgraph would

decrease by one unit if it is removed. Otherwise, the number of operands remains un-

changed.

Lemma 3

Activating and deactivating nodes can affect the most the length of a metaheuristic.

Independent paths arise when ”goto” statements are applied in metaheuristics; those

are represented by one node with two edges. The solvers rely on such statements to

move out of a loop when a termination criterion is met.

When the partial evolution of iterations evolves the body of a loop, a template has the

same number of edges and nodes. The equivalence NoEdgestemp = NoNodestemp

hold setting the number of independent paths to 2 (see equation 8.14). The first path

executes the evolved body of a loop and the second path never enter the loop as the

termination criterion is met. Activating or deactivating a CGP node would increase or

decrease the value ofNoNodegraph andNoEdgesgraph by one unit. One node and one

edge are added or removed. The equivalence NoEdgesgraph = NoNodesgraph also

hold maintaining the number of independent paths to 2 (see equation 8.14).

The templates used to fully evolve iterations has only one independent path. Its num-

ber of edges is smaller than the number of nodes (i.e. lines). Each time a loop is added

or removed, then the value of NoEdgesgraph varies by two units and NoNodesgraph

by one. The number of independent paths increases or decreases by one unit. Both

equivalences NoEdgesgraph = NoNodesgraph and NoEdgestemp = NoNodestemp

do not hold any more.

218 Chapter 8. Critical analysis

Lemma 4

Adding or removing an iteration can affect the number of independent paths.

8.3.4.2 Exhaustive search

The body of some loops was enumerated by an exhaustive search; every possible com-

bination of a fixed number of problem-specific operators was exhaustively tested and

assessed. Some templates were used again to leave one part of the algorithm un-

changed; those were the same as used with a CGP hyper-heuristics. Therefore, the

equations [8.1 - 8.14] can suitably model the understandability metrics for this enu-

meration process.

The vocabulary metric changes during the enumeration process within a range of val-

ues. It is assumed all the operands have been introduced by the templates (i.e expres-

sion 8.2 becomes V ocabularygraph ← NoOpgraph, NoOperandegraph = 0).

The enumerating process can only change the variable NoOpgraph. A minimum vo-

cabulary occurs when all the enumerated operators are the same; then NoOpgraph =

1. When a combination use all distinct operators, the biggest vocabulary metric is

reached. In this case, NoOpgraph = NoEnumeratedOp.

Lemma 5

The enumeration of a fixed number of operator restricts the metaheuristic vocabulary

in the range expressed by the inequality

(V ocabularytemp + 1) ≤ V ocabulary ≤ (V ocabularytemp +NoEnumeratedOp)

The body of a loop is fixed by the number of enumerated operators. The Lengthgraph

metric should be proportional to the number of enumerated operators. As the variable

NoEnumeratedOp becomes larger more operands and operators are applied, affect-

ing the overall length.

Chapter 8. Critical analysis 219

The number of operators and operands can vary for each opcode in a given function

set. The variables TotOpgraph should, therefore, vary between the minimum and max-

imum numbers of operators in a function set. The same assumption can be made with

the number of operands (i.e. TotOperandgraph). As a result, the minimum value of

the Lengthgraph would represent a metaheuristic using a combination of a problem-

specific operator with the least number of operators and operands. The maximum

value would combine the opcode with the greater length.

Lemma 6

The number of enumerated operators would affect the most the effort to understand a

metaheuristics. A decreased length and the vocabulary would promote comprehension,

but an increased values in these metrics would raise the barrier of understanding.

8.3.4.3 Selective hyper-heuristics

Metaheuristic produced by selective hyper-heuristics may require a more straightfor-

ward representation of the understandability metric. This technique concatenates some

problem-specific operators in each generation; the outcome algorithm is an enormous

list of problem-specific operators. We, therefore, apply the original definition of the

understandability metrics; no template prevents having some constant and variable

values during the algorithm optimisation (see expressions [2.24-2.27] given in section

2.3.5).

The majority of the operators included in the function set should be randomly selected

during a run. For this reason, it is presumed the value ofNoOp increases as asymptote.

Until all the operators are selected, the value of NoOp increases by one unit each time

a new distinct operator is selected. Then this variable remains constant. We, therefore,

believe the equalities [8.15 - 8.16] hold.

220 Chapter 8. Critical analysis

NoOp = SizeOfFunctionSet (8.15)

lim
iteration→maxIteration

NoOp = SizeOfFunctionSet (8.16)

The number of operands is often modelled similarly as some memory addresses. Vec-

tors store all problem solutions with a unique index, represented as variables. The

number of operands becomes NoOperand = NoProblemSolutions. It is assumed,

all these operands are applied from the first iteration, resulting in remaining unchanged

as the number of selected operators become larger.

At the end of a run, the vocabulary metric depends on the number of problem solu-

tions, and the function set size. The vocabulary metric is likely to remain the same if

the function set size and the number of problem solutions both remain unchanged.

Lemma 7

The vocabulary of a concatenated list of selected problem operators can be expressed

as the sum of the function set size and the number of problem solutions used. The

maximum number of operators tends to the size of the function set. The number of

operands tends to the number of solutions.

The selective hyper-heuristic would select an operator and two operands [307]. As the

selective hyper-heuristic progresses the length metric increases linearly; totOpit ←

totOpit−1 + 2 and totOperandit ← totOperandit−1 + 3 grows larger each type an op-

erator is randomly selected and applied; increasing at the same time the effort metric.

Chapter 8. Critical analysis 221

The effort values of very short metaheuristics runs in the thousand very quickly (see

tables[8.3-8.4]). We would assume these concatenated list of operators obtained from

the selective hyper-heuristics would grow very quickly towards ∞. It should reflect

adequately the enormous barrier brought to comprehension. An automated analytical

tool would need to be written to analyse the frequency of the operators instead. The

focus has shifted toward toward computer understandability instead of human under-

standability.

Lemma 8

The length and the effort metric increases continually during the execution of the se-

lective hyper-heuristics. Their values are expected to move toward∞.

8.3.5 Discussion

A computer can search for algorithms, but many may challenge human understand-

ing. The space of automatically generated algorithms is much larger than the space

of humanly-designed algorithms and is likely to contain many unfamiliar algorithms

[270]. For example, algorithms encoded in some data structures appear to be very dif-

ferent than the one a human would design.

Our set of symbols has been simplified to the context of some specific problem do-

mains, metaheuristics and CGP. With the help of some templates, directed acyclic

graphs and directed graphs have produced some comprehensible solvers; the under-

standability metrics score very closely those computed by some “humanly-written”

metaheuristics.

The idea of computers communicating algorithms to programmers is not new. Newell

et al. [239] stated in their seminal paper “artificial intelligence must be concerned with

how symbol systems must be organised to behave intelligently”. Lowering the barriers

of understandability is a step forward in this direction.

222 Chapter 8. Critical analysis

Not all the discovered patterns of primitives have found some suitable solutions. Some

ineffective algorithms have also scored some low understandability metrics. Therefore

inspecting automatically-designed algorithms become a necessary step to assist in the

validation process.

8.4. Conclusion

This chapter has critically analysed the effect of our experiments on the common and

essential elements of the optimisation of metaheuristics; (1) the problem domain, (2)

the metaheuristic domain and (3) the metaheuristic optimisation process. Some com-

parisons with the state-of-the-art have positioned our techniques favourably. In gen-

eral, near-optimum found by our discovered solvers were nearer the optimum solutions

than a selective hyper-heuristic or metaheuristics written by human activities.

Our CGP hyper-heuristics have found some longer algorithms with fewer metaheuris-

tic evaluations. An exhaustive search would have become infeasible very quickly.

Also, the generated metaheuristics were human-understandable; some known and un-

known patterns of problem operators were identified. Next chapter will conclude this

thesis. Some recommendations and future work are discussed.

Chapter 9. Conclusion 223

Chapter 9. Conclusion

Contents
9.1 Recommendations . 225

9.2 Future work . 226

Designing effective metaheuristics can be difficult and time-consuming. Non-deter-

ministic problem-specific operators may disrupt excessively or insufficiently some

problem solutions. Therefore, searching a problem fitness landscape can become in-

effective for some instances and finding sufficiently good solutions of computational

hard problems across a set of instances may not be guaranteed.

Some combinations of problem-specific operators can successfully produce a desired

outcome when the weaknesses of certain operators are balanced with the strengths of

others. Indeed, studying metaheuristics and their performance would result in under-

standing how certain patterns of problem-specific operators may be more effective than

others. The hyper-heuristics community (i.e selective and generative) largely focus on

the problem solutions, instead of studying the metaheuristics obtained from their algo-

rithm optimisation techniques. Without controlling the size of a metaheuristic, some

algorithms can become unfamiliar and unreasonably challenge the human intellect.

We argue selective hyper-heuristics may not be suited for this purpose; selected oper-

ators are concatenated while search a problem fitness landscape. Tree-based GP can

also represent large algorithms, without using a method to control bloat. Extracting

some generated metaheuristics and expressing them in a language that is more com-

prehensible to humans may become a challenging task. This could prevent a more

effective way for programmers and computer to communicate with each other. We

believe it would be desirable if not only the programmers could communicate to the

computer, but the reverse occurs too.

224 Chapter 9. Conclusion

We have shown some domain knowledge and a graph-based GP can discover compre-

hensible and effective metaheuristics. We argue our generated solvers are expressed

similarly than the ones that have been designed by human activities. A lists some gen-

erated metaheuristics were decoded and expressed again with a speudocode very close

to an imperative programming language.Some well-known software metrics quantify

the vocabulary, length and effort to a comparable amount of those written by human

activity. These results reflect appropriately these stochastic methods require some spe-

cialist knowledge to be designed, implemented and validated.

Generative hyper-heuristics to date has mainly concentrated on evolving the body of

a loop or have applied some hard limits to control the halting problem. We argue the

techniques which allow to take advantage of the characteristics of directed graphs will

be essential to move forward the generation of deterministic and non-deterministic al-

gorithms, without imposing hard limits.

We have shown some improvements made to CGP can evolve efficaciously some meta-

heuristics. We have discussed how a measure of centrality and dispersion is beneficial

to evaluate a metaheuristic. A desired state of scalability is more suitably modelled;

the means for an end can be measured more effectively with a set of goals. We have

also demonstrated an online hyper-heuristic that genetically improves its reproductive

operator during the metaheuristic search can bring some advantages.

The failure of applying this technique to a scheduling problem with a complex set

of expected constraints is disappointing, but expected. It was partially anticipated

this online hyper-heuristic is general enough for our three problem domains. If more

time resources would be available then the metaheuristic search needs would be met

more effectively. This problem is a general one. Nonetheless, we have validated the

performance of a genetically-improved hyper-heuristic reproductive operator to evolve

some solvers for this challenging scheduling problem. This technique has brought

some concepts of cross-domain selective hyper-heuristics, genetic improvements, and

autoconstructivism together.

Chapter 9. Conclusion 225

9.1. Recommendations

The recommendations made by [78, 222, 237, 302, 104] remain sound. Some practical

suggestions can be made.

1. The problem fitness values should indicate the distance away from the instance

known optima. This meta-information compares automatically against the state-

of-the-art in a meaningful and a general manner across every instance and prob-

lem domains.

2. The interpretation of any algorithms should be kept separated from the algorithm

optimisation process and the problem domain. A higher cohesion can enhance

swapping some elements more efficiently; their effect on the algorithm and prob-

lem domain can be studied more easily. Code re-use, increased maintainability

and fewer operations should reduce the coding time.

3. Diagnosing issues with a learning algorithm requires a good domain knowledge.

(a) Testing individually each problem operators should help to identify their

effect on problem solutions. These investigative experiments can help

recognising the level of disruption brought by an operator. Generated

solvers can be analysed with an intensified problem domain knowledge.

(b) Templates can be written with more problem domain knowledge.

(c) Recognising when a similar problem fitness value for each learning in-

stance may suggest the metaheuristic search lack of sensitivity to fluctua-

tions between learning instances.

4. Hyper-heuristics reproductive operators should alter some coding and non-coding

genes. This method optimises the use of resources.

5. Recording the evolved metaheuristics can help establish whether the generative

hyper-heuristic is optimising suitably the solvers.

(a) Studying the history of generated metaheuristics can validate whether the

assumptions modelled in a learning objective function are suitable.

226 Chapter 9. Conclusion

(b) Mapping the evolved hyper-heuristic reproductive operators during an on-

line hyper-heuristic search helps to determine some possible improvements

in an offline learning algorithm across different problem domains.

9.2. Future work

Many interesting questions arise from this thesis. Further investigations could explore

the benefits and clarify in which circumstances the techniques introduced to CGP can

be the most appropriate. Examples include:

• Digital circuits

• Optimisation of assembly code

• Numerical analysis

• Protein-structure prediction

• Evolution of branch-and-bound algorithm for solving problems with a high-level

of constraints.

• Vehicle routing problem

• Other real-world problems

However, the concept of evolving some hyper-heuristics reproductive operators that

are general enough to search algorithms across many different problem and algorithm

domains effectively is an obvious step. It would also be interesting to extend iterative

CGP with the ability to evolve algorithms with their variables as well as their selec-

tions.

Chapter 9. Conclusion 227

For a very long time researchers have pursued the goal that machines could learn to

solve a problem for which they were not given precise methods. At the start of this

work, hyper-heuristics was branded as an emerging methodology that would automate

the learning of heuristics. During the completion of this thesis, interest in selective

hyper-heuristic appear to have shifted towards a generative form of hyper-heuristics.

A consequence is a generalisation that a “heuristic” can apply deterministic and non-

deterministic methods. The literature has recently adopted the terminology algorithm

synthesis or exploration of the automated design search space.

The concept of embedding fully human understandability within a generative frame-

work should also be considered. Otherwise, the generated (meta-)heuristics are likely

to remain in a black box. This could bring together the concept of a “learning ma-

chine” and “software engineering” a bit closer. Then perhaps the complete generation

of a program may become a step closer.

Very little progress has been made to develop some theoretical understanding of many

hyper-heuristics approaches. Some of them appear to focus on one specific domain

and some engineering aspects. Many research communities should share some com-

mon benchmarks so that their techniques could be compared more efficiently against

other machine learning techniques. Then perhaps we would be able to deepen the the-

oretical knowledge and increase collaboration.

228 Chapter 9. Conclusion

Appendix A: Algorithms 229

Appendix A: Algorithms

The three subsequent sections provide all the algorithms mentioned in this thesis.

Three forms of designs methods were used to generate these algorithms:

1. A CGP hyper-heuristic (see chapters [5-7])

2. A tree-based GP hyper-heuristics (as documented in the literature)

3. Some humanly-designed algorithms (as reported in the literature)

In addition to the problem-specific operators introduced in chapter 3, the reserved

keywords function, while, do, end and return are also used to express our solvers.

Finally, the comparison operators ≤ and > , the logical operator or and assignment

operator← have been included in the language or vocabulary.

The Mimicry Problem

This section provides the mimicry solvers obtained either from the literature or our

experiments.

Algorithm A.1. : Mimicry solver Herdy (Herdy(1991) [146])
1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: while EvalCount ≤MaxEvals or p.fitness > 0 do
4: t← SelectElitism(p)
5: t← CrossoverUniform(t)
6: t←MutateOneBit(t)
7: p← ReplaceLeastFit(p,t)
8: end while
9: return Best(p)

10: end function

230 Appendix A: Algorithms

Algorithm A.2. : Mimicry solver A (MC-A) was discovered from the experiments
described in section 6.3

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t←MutateOneBitHC(t) . start generated code
6: t←MutateUniformHC(t)
7: t←MutateUniformHC(t)
8: t←MutateUniformHC(t) . end generated code
9: end while

10: p← ReplaceLeastFit(p,t)
11: return Best(p)
12: end function

Algorithm A.3. Mimicry solver B (MC-B) was discovered from the experiments
described in section 6.3

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t←MutateOneBitHC(t) . start generated code
6: t←MutateOneBitHC(t)
7: p← ReplaceLeastF it(p, t)
8: t← SelectElitism(p)
9: t← CrossoverOnePoint(p, t)

10: t← CrossoverTwoPoints(p, t)
11: t←MutateUniformHC(t)
12: t←MutateUniformSubSequenceHC(t) . end generated code
13: end while
14: p← ReplaceLeastFit(p,t)
15: return Best(p)
16: end function

Algorithm A.4. Mimicry solver C (MC-C) was discovered from the experiments
described in section 6.3

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t← CrossoverUniform(p, t) . start generated code
6: t←MutateUniformHC(t)
7: p← ReplaceLeastF it(p, t)
8: t← SelectElitism(p)
9: t←MutateOneBitHC(t)

10: t← CrossoverOnePoint(p, t) . end generated code
11: end while
12: p← ReplaceLeastFit(p,t)
13: return Best(p)
14: end function

Appendix A: Algorithms 231

Algorithm A.5. Mimicry Solver D (MC-D) was discovered from the experiments
described in section 6.5

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤ MaxEvals do . start generated code
5: t←MutationOneBitHC(t)
6: t←MutationOneBitHC(t)
7: t←MutationOneBitHC(t)
8: end while . end generated code
9: p← ReplaceLeastFit(p,t)

10: return Best(p)
11: end function

Algorithm A.6. Mimicry Solver E (MC-E) was discovered from the experiments
described in section 6.5

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do . start generated code
5: t←MutationOneBit(t)
6: while EvalCount ≤ MaxEvals or IsBetter(1) do
7: t←MutationOneBitHC(t)
8: end while
9: end while . end generated code

10: p← ReplaceLeastFit(p,t)
11: return Best(p)
12: end function

Algorithm A.7. Mimicry Solver F (MC-F) was discovered from the experiments
described in section 6.5

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do . start generated code
5: t← CrossoverOnePoint(p, t)
6: while EvalCount ≤ MaxEvals or IsBetter(1) do
7: t←MutationOneBitHC(t)
8: end while
9: end while . end generated code

10: p← ReplaceLeastFit(p,t)
11: return Best(p)
12: end function

232 Appendix A: Algorithms

Algorithm A.8. Mimicy Solver G (MC-G) was discovered from the experiments
described in section 7.2.1

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t←MutationOneBitHC(t) . start generated code
6: t←MutateUniformHC(t) . end generated code
7: end while
8: p← ReplaceLeastFit(p,t)
9: return Best(p)

10: end function

Algorithm A.9. Mimicry Solver H (MC-H) was discovered from the experiments
described in section 7.2.1

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t←MutationOneBitHC(t) . start generated code
6: t←MutateUniformSubSequenceHC(t) . end generated code
7: end while
8: p← ReplaceLeastFit(p,t)
9: return Best(p)

10: end function

Algorithm A.10. Mimicry Solver I (MC-I) was discovered from the experiments
described in section 7.2.1

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t←MutationOneBitHC(t) . start generated code
6: t←MutationOneBitHC(t)
7: t←MutateUniformSubSequenceHC(t)
8: t←MutateUniformSubSequenceHC(t) . end generated code
9: end while

10: p← ReplaceLeastFit(p,t)
11: return Best(p)
12: end function

Appendix A: Algorithms 233

Algorithm A.11. Mimicry Solver J (MC-J) was discovered from the experiments
described in section 7.2.1

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do . start generated code
5: t←MutateUniformSubSequenceHC(t)
6: p← ReplaceLeastF it(p, t)
7: end while . end generated code
8: p← ReplaceLeastFit(p,t)
9: return Best(p)

10: end function

Algorithm A.12. Mimicry Solver K (MC-K) was discovered from the experiments
described in section 7.2.1

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do . end generated code
5: t←MutationOneBitHC(t)
6: Limit← initialiseNewLimit(MaxEvals, EvalCount)
7: while EvalCount ≤ Limit orp.fitness > goal do
8: t←MutationOneBitHC(t)
9: end while

10: t←MutateUniformSubSequenceHC(t)
11: end while . end generated code
12: p← ReplaceLeastFit(p,t)
13: return Best(p)
14: end function

Algorithm A.13. Mimicry Solver L (MC-L) was discovered from the experiments
described in section 7.2.1

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals do . end generated code
5: t←MutationOneBitHC(t)
6: t←MutationOneBitHC(t)
7: end while . end generated code
8: p← ReplaceLeastFit(p,t)
9: return Best(p)

10: end function

234 Appendix A: Algorithms

Algorithm A.14. Mimicry solver M (MC-M) was discovered from the experiments
described in section 6.3. This metaheuristic is ineffective; no further analysis is com-
pleted.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t←MutateUniformSubSequenceHC(t) . start generated code
6: t← CrossoverTwoPoints(p, t)
7: t←MutateUniformV ariableRate(t)
8: t←MutateUniformSubSequenceHC(t)
9: t←MutateUniformSubSequenceHC(t) . end generated code

10: end while
11: p← ReplaceLeastFit(p,t)
12: return Best(p)
13: end function

Algorithm A.15. Mimicry solver N (MC-N) was discovered from the experiments
described in section 6.3. This metaheuristic is ineffective; no further analysis is com-
pleted.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t←MutateUniformSubSequenceHC(t) . start generated code
6: t← CrossoverTwoPoints(p, t)
7: t←MutateUniformV ariableRate(t)
8: t←MutateUniformSubSequenceHC(t)
9: t←MutateUniformSubSequenceHC(t) . end generated code

10: end while
11: p← ReplaceLeastFit(p,t)
12: return Best(p)
13: end function

Algorithm A.16. Mimicry solver O (MC-O) was discovered from the experiments
described in section 6.5. This metaheuristic is ineffective; no further analysis is com-
pleted.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: Limit← RandomlyGetNoOfEval() . start generated code
5: while EvalCount ≤ Limit or p.fitness > goal do
6: t←MutateOneBit(p, t)
7: t←MutateUniformV ariableRate(t)
8: t←MutateUniformSubSequenceHC(t)
9: end while . end generated code

10: p← ReplaceLeastFit(p,t)
11: return Best(p)
12: end function

Appendix A: Algorithms 235

The Traveling Salesman Problem

This section provides some TSP solvers obtained from different sources. Algorithms

A.17 and A.18 were obtained from the literature; those have been written by human

activities. Algorithms A.45 and A.46 were automatically designed by a tree-based

GP technique. Those incrementally construct tours instead of using a metaheuristic to

search the TSP fitness landscape. Solver TSP[A-Q] were obtained by our experiments.

Algorithm A.17. : TSP Solver Ulder (Ulder(1991) [319]
1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: while p.fitness > 0 or IsBetter(p,5) do
4: t← SelectionElitism(p)
5: t← VotingRecombinationCrossover(t)
6: t← 2-OptLocalSearch(t)
7: p← ReplaceLeastFit(t,p)
8: end while
9: return Best(p)

10: end function

Algorithm A.18. : TSP Solver Ozcan (Ozcan(2004) [247]
1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: while EvalCount ≤MaxEvals do
4: t← SelectionElitism(p)
5: t← InsertionMutation(t)
6: t← Order-BasedCrossover(t)
7: t← SimpleInversionMutation(t)
8: p← ReplaceLeastFit(t, p)
9: end while

10: return Best(p)
11: end function

236 Appendix A: Algorithms

Algorithm A.19. : TSP Solver A (TSP-A) was discovered from the experiments
described in section 5.3

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: p← 3-Opt-LocalSearch(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t← SelectionElitism(p)
6: t← InsertionMutation(t) . start generated code
7: t← Order −BasedCrossover(t)
8: t← 3−OptLocalSearch(t)
9: p← ReplaceLeastF it(t, p) . end generated code

10: end while
11: return Best(p)
12: end function

Algorithm A.20. : TSP Solver B (TSP-B) was discovered from the experiments
described in section 5.3

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: p← 3-Opt-LocalSearch(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t← SelectElitism(p)
6: t← ExchangeMutation(t) . start generated code
7: t← 3−OptLocalSearch(t)
8: p← ReplaceLeastF it(t, p) . end generated code
9: end while

10: return Best(p)
11: end function

Algorithm A.21. : TSP Solver C (TSP-C) was discovered from the experiments
described in section 5.3

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: p← 3-Opt-LocalSearch(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t← SelectElitism(p)
6: t← ExchangeMutation(t) . start generated code
7: t← Best− 2−OptLocalSearch(t)
8: t← ExchangeMutation(t)
9: t← 3−OptLocalSearch(t)

10: p← ReplaceLeastF it(t, p) . end generated code
11: end while
12: return Best(p)
13: end function

The Nurse Rostering Problem

This section provides all the solvers obtained by our experiments.

Appendix A: Algorithms 237

Algorithm A.22. TSP Solver D (TSP-D) was discovered from the experiments de-
scribed in section 5.4

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEval do . start generated code
5: t← 3−OptLocalSearch(t)
6: p← Restart(p)
7: p← ReplaceLeastF it(t, p)
8: t← SelectElitism(p)
9: t← ExchangeMutation(t) . end generated code

10: end while
11: p← ReplaceLeastFit(t, p)
12: return Best(p)
13: end function

Algorithm A.23. TSP Solver E (TSP-E) was discovered from the experiments de-
scribed in section 5.4

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤ MaxEval

2 do . start generated code
5: t← 3−OptLocalSearch(t)
6: while EvalCount ≤ MaxEval

2 do
7: t← Best2−OptionLocalSearch(t)
8: t← ExchangeMutation(t)
9: t← 3−OptionLocalSearch(t)

10: p← replaceLeastF it(t, p)
11: t← SelectElitism()
12: end while
13: t← SimpleInversionMutation(t)
14: end while
15: t← 3−OptionLocalSearch(t)
16: t← OrderBaseCrossover(t) . end generated code
17: p← ReplaceLeastFit(t, p)
18: return Best(p)
19: end function

Algorithm A.47. : NRP solver A (NRP-A) was discovered from the experiments
described in section 6.3

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← GreedyVariableDepthLocalSearch(t)
5: while EvalCount ≤MaxEvals do
6: t← SmallGreedyRuinRecreate(t) . start generated code
7: t← SimpleGreedyRuinRecreate(t)
8: p← ReplaceLeastF it(t, p)
9: t← SelectElitism(t)

10: t← GreedyV ariableDepthLocalSearch(t) . end generated code
11: p← ReplaceLeastFit(t, p)
12: t← SelectElitism(p)
13: end while
14: return Best(p)
15: end function

238 Appendix A: Algorithms

Algorithm A.24. : TSP Solver F (TSP-F) was discovered from the experiments de-
scribed in section 6.3

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← 3-Opt-LocalSearch(t)
5: while EvalCount ≤MaxEvals or p.fitness > 0 do
6: t← 3−OptLocalSearch(t) . start generated code
7: p← ReplaceLeastF it(t)
8: t← SelectElitism(p)
9: t← ExchangeMutation(t)

10: t← 3−OptLocalSearch(t) . end generated code
11: p← ReplaceLeastFit(t, p)
12: t← SelectElitism(p)
13: end while
14: return Best(p)
15: end function

Algorithm A.25. : TSP Solver G (TSP-G) -was discovered from the experiments
described in section 6.3

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← 3-Opt-LocalSearch(t)
5: while EvalCount ≤MaxEvals or p.fitness > 0 do
6: t← Best2−OptLocalSearch(t) . start generated code
7: t← Best2−OptLocalSearch(t)
8: t← InsertMutationt(t)
9: t← 3−OptLocalSearch(t)

10: p← ReplaceLeastF it(t)
11: t← SelectElitism(p) . end generated code
12: p← ReplaceLeastFit(t,p)
13: t← SelectElitism(p)
14: end while
15: return Best(p)
16: end function

Algorithm A.26. : TSP Solver H (TSP-H) - was discovered from the experiments
described in section 6.3

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← 3-Opt-LocalSearch(t)
5: while EvalCount ≤MaxEvals or p.fitness > 0 do
6: t← SimpleInversionMutation(t) . start generated code
7: t← 3−OptLocalSearch(t) . end generated code
8: p← ReplaceLeastFit(t,p)
9: t← SelectElitism(P)

10: end while
11: return Best(p)
12: end function

Appendix A: Algorithms 239

Algorithm A.27. TSP Solver I (TSP-I) was discovered from the experiments de-
scribed in section 6.5

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do . start generated code
5: p← ReplaceLeastF it(t, p)
6: t← SelectElitism(p)
7: t← InsertionMutation(t)
8: t← 3−OptLocalSearch(t)
9: end while . end generated code

10: p← replaceLeastFit(t, p)
11: return Best(p)
12: end function

Algorithm A.28. TSP Solver J (TSP-J) was discovered from the experiments de-
scribed in section 6.5

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do . start generated code
5: t← InsertionMutation(t)
6: while EvalCount ≤ MaxEval Or IsBetter(1) do
7: p← ReplaceLeastF it(t, p)
8: t← SelectElitism(p)
9: t← 3−OptLocalSearch(t)

10: end while
11: t← 3−OptLocalSearch(t)
12: p← replaceLeastF it(t, p)
13: t← SelectElitism(p) . end generated code
14: end while
15: p← ReplaceLeastFit(t, p)
16: return Best(p)
17: end function

Algorithm A.29. TSP Solver K (TSP-K) was discovered from the experiments de-
scribed in section 6.5

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: Limit← RandomlyGetNoOfEval() . start generated code
5: while EvalCount ≤ Limit do
6: t← 3−OptLocalSearch(t)
7: p← ReplaceLeastF it(t, p)
8: t← SelectElitism(t)
9: t← ExchangeMutation(t) . end generated code

10: end while
11: p← ReplaceLeastFit(t, p)
12: return Best(p)
13: end function

240 Appendix A: Algorithms

Algorithm A.30. : TSP Solver L (TSP-L) was discovered from the experiments
described in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← 3-Opt-LocalSearch(p)
5: while EvalCount ≤MaxEvals or p.fitness > 0 do
6: t← ExchangeMutation(t) . start generated code
7: t← 2−OptLocalSearch(t)
8: t← 3−OptLocalSearch(t)
9: t← OrderBasedCrossover(t)

10: p← ReplaceLeastF it(t, p)
11: t← SelectElitism(p) . endgenerated code
12: p← ReplaceLeastFit(t,p)
13: t← SelectElitism(p)
14: end while
15: return Best(p)
16: end function

Algorithm A.31. : TSP Solver M (TSP-M) was discovered from the experiments
described in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← 3-Opt-LocalSearch(p)
5: while EvalCount ≤MaxEvals or p.fitness > 0 do
6: p← ReplaceLeastF it(t, p) . start generated code
7: t← SelectElitism(p)
8: t← 2−OptLocalSearch(t)
9: t← ExchangeMutation(t)

10: t← 3−OptLocalSearch(t)
11: t← 3−OptLocalSearch(t) . end generated code
12: p← ReplaceLeastFit(t,p)
13: t← SelectElitism(p)
14: end while
15: return Best(p)
16: end function

Appendix A: Algorithms 241

Algorithm A.32. : TSP Solver N (TSP-N) was discovered from the experiments
described in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← 3-Opt-LocalSearch(p)
5: while EvalCount ≤MaxEvals or p.fitness > 0 do
6: t← Best2−OptLocalSearch() . start generated code
7: t← ExchangeMutation(t)
8: t← 3−OptLocalSearch(t)
9: p← ReplaceLeastF it(t, p)

10: t← SelectElitism(p)
11: t← OrderBasedCrossover(t)
12: t← PartiallyMapCrossover(t) . end generated code
13: p← ReplaceLeastFit(t,p)
14: t← SelectElitism(p)
15: end while
16: return Best(p)
17: end function

Algorithm A.33. : TSP Solver O (TSP-O) was discovered from the experiments
described in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: Limit1← RandomlyGetNoOfEval() . start generated code
5: while EvalCount ≤ Limit1 do
6: t← 3−OptLocalSearch(t)
7: Limit2← RandomlyGetNoOfEval(t)
8: while EvalCount ≤ Limit2 or IsBetter(noEval) do
9: t← 3−OptLocalSearch(t)

10: p← ReplaceLeastF it(t, p)
11: t← SelectElitism(t)
12: t← SimpleInversionMutation(t)
13: t← Best2−OptLocalSearch(t)
14: end while
15: end while . end generated code
16: p← ReplaceLeastFit(t, p)
17: return Best(p)
18: end function

242 Appendix A: Algorithms

Algorithm A.34. : TSP Solver P (TSP-P) was discovered from the experiments de-
scribed in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do . start generated code
5: t← Best2−OptLocalSearch(t)
6: p← ReplaceLeastF it(t, p)
7: t← SelectElitism(p)
8: t← InsertMutation(t)
9: t← 3−OptLocalSearch(t)

10: t← SimpleInversionMutation(t)
11: t← 3−OptLocalSearch(t) . end generated code
12: end while
13: p← ReplaceLeastFit(t, p)
14: return Best(p)
15: end function

Algorithm A.35. : TSP Solver Q (TSP-Q) was discovered from the experiments
described in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEval or p.fitness > 0 do . start generated code
5: t← 3 OptLocalSearch(t)
6: p← ReplaceLeastF it(t, p)
7: t← SelectElitism(p)
8: t← OrderBasedCrossover(t)
9: t← ExchangeMutation(t)

10: t← 3 OptLocalSearch(t) . end generated code
11: end while
12: p← ReplaceLeastFit(t, p)
13: return Best(p)
14: end function

Algorithm A.36. : TSP Solver R (TSP-R) was discovered from the experiments
described in section 5.3. This metaheuristic is ineffective; no further analysis is com-
pleted.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: p← 3-Opt-LocalSearch(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t← SelectElitism(p)
6: t← 3−OptLocalSearch(t) . start generated code
7: t← InsertionMutation(t)
8: p← ReplaceLeastF it(t, p) . end generated code
9: end while

10: return Best(p)
11: end function

Appendix A: Algorithms 243

Algorithm A.37. : TSP Solver S (TSP-S) was discovered from the experiments
described in section 5.3. This metaheuristic was ineffective; no further analysis will
be completed.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: p← 3-Opt-LocalSearch(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t← SelectElitism(p)
6: t← OrderBasedCrossover(t) . start generated code
7: t← InsertionMutation(t)
8: t← InsertionMutation(t)
9: p← ReplaceLeastF it(t, p)

10: t← SelectElitism(p) . end generated code
11: end while
12: return Best(p)
13: end function

Algorithm A.38. : TSP Solver T (TSP-T) was discovered from the experiments
described in section 5.3.This metaheuristic was ineffective; no further analysis will be
completed.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: p← 3-Opt-LocalSearch(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 do
5: t← SelectElitism(p)
6: t← 3−OptLocalSearch(t) . start generated code
7: t← ScrambleSubtourMutation(t)
8: t← 2 OptLocalSearch(t)
9: t← Best2−OptLocalSearch(t)

10: t← OrderBasedCrossover(t)
11: p← ReplaceLeastF it(t, p) . end generated code
12: end while
13: return Best(p)
14: end function

244 Appendix A: Algorithms

Algorithm A.39. : TSP Solver U (TSP-U) was discovered from the experiments
described in section 5.4.This metaheuristic was ineffective; no further analysis will be
completed.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals do . start generated code
5: t← Best2−OptLocalSearch(t)
6: while EvalCount > MaxEvals

2 andEvalCount ≤MaxEvals do
7: t← 3−OptLocalSearch(t)
8: p← ReplaceLeastF it(t, p)
9: t← SelectElitism(p)

10: end while
11: t← SubtourExchangeCrossover(t)
12: end while . end generated code
13: p← ReplaceLeastFit(t,p)
14: return Best(p)
15: end function

Algorithm A.40. : TSP Solver V (TSP-V) was discovered from the experiments
described in section 5.4. This metaheuristic was ineffective; no further analysis will
be completed.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals do . start generated code
5: t← SubtourExchangeCrossover(t)
6: t← 3−OptLocalSearch(t)
7: t← 3−OptLocalSearch(t)
8: end while
9: p← ReplaceLeastF it(t, p)

10: t← SelectElitism(p) . end generated code
11: p← ReplaceLeastFit(t,p)
12: return Best(p)
13: end function

Appendix A: Algorithms 245

Algorithm A.41. : TSP Solver W (TSP-W) was discovered from the experiments
described in section 5.4. This metaheuristic was ineffective; no further analysis will
be completed.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤ MaxEval

2 do . start generated code
5: t← SubtourExchangeCrossover(t)
6: t← SimpleInversionMutation(t)
7: t← Best2−OptLocalSearch(t)
8: t← SubtourExchangeCrossover(t)
9: t← OrderBasedCrossover(t)

10: end while
11: t← OrderBasedCrossover(t)
12: t← 3−OptLocalSearch(t)
13: t← SimpleInversionMutation(t)
14: t← InsertionMutation(t) . end generated code
15: p← ReplaceLeastFit(t,p)
16: return Best(p)
17: end function

Algorithm A.42. : TSP Solver X (TSP-X) was discovered from the experiments
described in section 6.3. This metaheuristic was ineffective; no further analysis will
be completed.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← 3-Opt-LocalSearch(p)
5: while EvalCount ≤MaxEvals or p.fitness > 0 do
6: t← 3−OptLocalSearch(t) . start generated code
7: t← SubtourExchangeCrossover(t)
8: t← SimpleInversionMutation(t)
9: t← ExchangeMutation(t)

10: t← 3−OptLocalSearch(t) . end generated code
11: p← ReplaceLeastFit(t,p)
12: t← SelectElitism(p)
13: end while
14: return Best(p)
15: end function

246 Appendix A: Algorithms

Algorithm A.43. : TSP Solver Y (TSP-Y) was discovered from the experiments
described in section 6.3. This metaheuristic was ineffective; no further analysis will
be completed.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← 3-Opt-LocalSearch(p)
5: while EvalCount ≤MaxEvals or p.fitness > 0 do
6: t← 3−OptLocalSearch(t) . start generated code
7: t← Best2−OptLocalSearch(t)
8: p← ReplaceLeastF it(t, p)
9: t← SelectElitism(p)

10: t← 3−OptLocalSearch(t)
11: t← 3−OptLocalSearch(t)
12: t← InsertionMutation(t)
13: t← InsertionMutation(t) . end generated code
14: p← ReplaceLeastFit(t,p)
15: t← SelectElitism(p)
16: end while
17: return Best(p)
18: end function

Algorithm A.44. : TSP Solver Z (TSP-Z) was discovered from the experiments
described in section 6.5. This metaheuristic was ineffective; no further analysis will
be completed.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals do . start generated code
5: t← SubtourExchangeCrossover(t)
6: t← 3−OptLocalSearch(t)
7: t← OrderBasedCrossover(t)
8: p← ReplaceLeastF it(t, p)
9: t← SelectElitism(p)

10: t← SubtourExchangeCrossover(t)
11: t← SimpleInversionMutation(t)
12: t← SimpleInversionMutation(t)
13: t← 3−OptLocalSearch(t)
14: t← SubtourExchangeCrossover(t)
15: t← OrderBasedCrossover(t)
16: p← ReplaceLeastF it(t, p)
17: t← InsertionMutation(t)
18: end while . end generated code
19: p← ReplaceLeastFit(t,p)
20: return Best(p)
21: end function

Appendix A: Algorithms 247

Algorithm A.45. : TSP solver Loloya-1. It is a tour construction algorithm as sug-
gested by Loyola et al [203]

1: i← 0
2: while i < c do . start generated code
3: if nearest− insertion() = 1 then
4: i← i+ 1;
5: 2−Opt();
6: end if
7: best− neighbor();
8: i← i+ 1;
9: 2−Opt();

10: if nearest− insertion() = 1 then
11: i← i+ 1;
12: 2−Opt();
13: end if
14: worst− neighbor();
15: i← i+ 1;
16: 2−Opt();
17: end while . end generated code

Algorithm A.46. : TSP solver Loloya-2 It is a tour construction algorithm as sug-
gested by Loyola et al [203]

1: i← 0
2: nearest− insertion(); . start generated code
3: best− neighbor();
4: near − center();
5: i← 3;
6: if far − center() = 1 then
7: i← i+ 1;
8: if worst− neighbor() = 1 then
9: i← i+ 1;

10: if worst− neighbor() = 1 then
11: i← i+ 1;
12: while i < c do
13: nearest− insertion();
14: i← i+ 1;
15: 2−Opt();
16: end while
17: end if
18: end if
19: end if . end generated code

248 Appendix A: Algorithms

Algorithm A.48. : NRP solver B (NRP-B) was discovered from the experiments
described in section 6.3

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← GreedyVariableDepthLocalSearch(t)
5: while EvalCount ≤MaxEvals do
6: t← UnassignedShiftMutation(t) . start generated code
7: t← NewSwapLocalSearch(t)
8: t← NewSwapLocalSearch(t)
9: t← V ariableDepthLocalSearch(t) . end generated code

10: p← ReplaceLeastFit(t, p)
11: t← SelectElitism(p)
12: end while
13: return Best(p)
14: end function

Algorithm A.49. : NRP solver C (NRP-C) was discovered from the experiments
described in section 6.3

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← GreedyVariableDepthLocalSearch(t)
5: while EvalCount ≤MaxEvals do
6: t← V ariableDepthLocalSearch(t) . start generated code
7: t← LargeGreedyRuinRecreate(t)
8: t← GreedyV ariableDepthLocalSearch(t)
9: t← SimpleGreedyRuinRecreate(t)

10: t← V ariableDepthLocalSearch(t)
11: t← NewSwapLocalSearch(t) . end generated code
12: p← ReplaceLeastFit(t, p)
13: t← SelectElitism(p)
14: end while
15: return Best(p)
16: end function

Appendix A: Algorithms 249

Algorithm A.50. : NRP solver D (NRP-D) was discovered from the experiments
described in section 6.5

function FINDSOLUTION(ProblemParam,µ, λ)
p← InitPopulation(ProblemParam, µ, λ)
t← SelectElitism(p)
while EvalCount ≤MaxEvals do . start generated code

t← V ariableDepthLocalSearch(t)
p← ReplaceLeastF it(t, p)
t← SelectElitism(p)
t← SimpleGreedyRuinRecreate(t)
t← SmallGreedyRuinRecreate(t)
p← ReplaceLeastF it(t, p)
t← SelectElitism(p)

end while . end generated code
return Best(p)

end function

Algorithm A.51. : NRP solver E (NRP-E) was discovered from the experiments
described in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← GreedyVariableDepthLocalSearch(t)
5: while EvalCount ≤MaxEvals do
6: p← ReplaceLeastF it(t, p) . start generated code
7: t← SelectElitism(p)
8: t← NewSwapLocalSearch(t)
9: t← LargeGreedyRuinRecreate(t)

10: t← V ariableDepthLocalSearch(t) . end generated code
11: p← ReplaceLeastFit(t, p)
12: t← SelectElitism(t)
13: end while
14: return Best(p)
15: end function

Algorithm A.52. : NRP solver F (NRP-F) was discovered from the experiments
described in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← GreedyVariableDepthLocalSearch(t)
5: while EvalCount ≤MaxEvals do
6: t← V ariableDepthLocalSearch(t) . start generated code
7: p← ReplaceLeastF it(t, p)
8: t← SelectElitism(p)
9: t← SmallGreedyRuinRecreate(t) . end generated code

10: p← ReplaceLeastFit(t, p)
11: t← SelectElitism(t)
12: end while
13: return Best(p)
14: end function

250 Appendix A: Algorithms

Algorithm A.53. : NRP solver G (NRP-G) was discovered from the experiments
described in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← GreedyVariableDepthLocalSearch(t)
5: while EvalCount ≤MaxEvals do
6: t← LargeGreedyRuinRecreate(t) . start generated code
7: p← ReplaceLeastF it(t, p)
8: t← SelectElitism(p)
9: t← GreedyV ariableDepthLocalSearch(t)

10: t← NewSwapLocalSearch(t)
11: t← SimpleGreedyRuinRecreate(t) . end generated code
12: p← ReplaceLeastFit(t, p)
13: t← SelectElitism(t)
14: end while
15: return Best(p)
16: end function

Algorithm A.54. : NRP solver H (NRP-H) was discovered from the experiments
described in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals do . start generated code
5: p← ReplaceLeastF it(t, p)
6: t← SelectElitism(p)
7: t← SmallGreedyRuinRecreate(t)
8: t← GreedyV ariableDepthLocalSearch(t)
9: p← ReplaceLeastF it(t, p)

10: t← SelectElitism(p)
11: end while . end generated code
12: return Best(p)
13: end function

Algorithm A.55. : NRP solver I (NRP-I) was discovered from the experiments de-
scribed in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals do . start generated code
5: t← GreedyV ariableDepthLocalSearch(t)
6: t← HorizontalSwapLocalSearch(t)
7: t← NewSwapLocalSearch(t)
8: p← ReplaceLeastF it(t, p)
9: t← SelectElitism(t)

10: end while . end generated code
11: return Best(p)
12: end function

Appendix A: Algorithms 251

Algorithm A.56. : NRP solver J (NRP-J) was discovered from the experiments de-
scribed in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals or p.fitness > 0 orWalk() do . start gen. code
5: p← ReplaceLeastF it(t, p)
6: t← SelectElitism(t)
7: t← NewSwapLocalSearch(t)
8: t← GreedyV ariableDepthLocalSearch(t)
9: p← ReplaceLeastF it(t, p)

10: t← SelectElitism(t)
11: end while . end generated code
12: return Best(p)
13: end function

Algorithm A.57. : NRP solver K (NRP-K) was discovered from the experiments
described in section 7.2.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← GreedyVariableDepthLocalSearch(t)
5: while EvalCount ≤MaxEvals do
6: t← V ariableDepthLocalSearch(t) . start generated code
7: t← NewSwapLocalSearch(t)
8: p← RestartPopulation()(p)
9: t←MultiEventCrossover(t)

10: t← SmallGreedyRuinRecreate(t) . end generated code
11: p← ReplaceLeastFit(t, p)
12: t← SelectElitism(t)
13: end while
14: return Best(p)
15: end function

Algorithm A.58. : NRP solver L (NRP-L) was discovered from the experiments
described in section 7.2.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← GreedyVariableDepthLocalSearch(t)
5: while EvalCount ≤MaxEvals do
6: t← HorizontalSwapLocalSearch(t) . start generated code
7: t← HorizontalSwapLocalSearch(t)
8: t← UnassignedShiftMutation(t)
9: p← ReplaceLeastF it(t, p)

10: t← SelectElitism(p) . end generated code
11: p← ReplaceLeastFit(t, p)
12: t← SelectElitism(t)
13: end while
14: return Best(p)
15: end function

252 Appendix A: Algorithms

Algorithm A.59. : NRP solver M (NRP-M) was discovered from the experiments
described in section 7.2.

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: t← GreedyVariableDepthLocalSearch(t)
5: while EvalCount ≤MaxEvals do
6: t← V ariableDepthLocalSearch . start generated code
7: t← NewSwapLocalSearch(t)
8: t← UnassignedShiftMutation(t)
9: p← V ariableDepthLocalSearch

10: t← SmallGreedyRuinRecreate . end generated code
11: p← ReplaceLeastFit(t, p)
12: t← SelectElitism(t)
13: end while
14: return Best(p)
15: end function

Algorithm A.60. : NRP solver N (NRP-N) was discovered from the experiments
described in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p) . start generated code
4: t← V ariableDepthLocalSearch(t)
5: t← UnassignedShiftMutation(t)
6: t← UnassignedShiftMutation(t) . end generated code
7: return Best(p)
8: end function

Algorithm A.61. : NRP solver O (NRP-O) was discovered from the experiments
described in section 7.2

1: function FINDSOLUTION(ProblemParam,µ, λ)
2: p← InitPopulation(ProblemParam, µ, λ)
3: t← SelectElitism(p)
4: while EvalCount ≤MaxEvals do . start generated code
5: t← GreedyV ariableDepthLocalSearch(t)
6: t← HorizontalSwapLocalSearch(t)
7: t← NewSwapLocalSearch(t)
8: p← ReplaceLeastF it(t, p)
9: t← SelectElitism(t)

10: end while . end generated code
11: return Best(p)
12: end function

Appendix B: Statistical results 253

Appendix B: Statistical results

This appendix provides a complete set of results obtained from our algorithm optimi-

sation processes and the literature. We compare the performance of the majority of the

algorithms given in the previous appendix.

An extensive collection of unknown instances has validated the performance of these

problem-specific metaheuristics. No learning instance is reported in this appendix. We

have completed 100 independent runs for each algorithm for some solutions unknown

benchmark.

The arithmetical mean suggests the expected solutions that can be obtained by a problem-

specific metaheuristic for a benchmark. This simple measure of central tendency is

commonly used in many scientific fields, including selective and generative hyper-

heuristic. Nonetheless, some misleading results can be reported with skewed data sets

and outliers.

The distributions of the problem solutions exhibit such properties. Therefore, a me-

dian estimates more accurately the middle value within a data set; extreme values or

outliers do not affect this measure of central tendency. Therefore we believe the arith-

metical mean and the median should indicate whether problem-specific metaheuristics

are likely to lower the problem solutions over time.

A standard deviation (std) measures the range of solutions that could be found by

a problem-specific metaheuristic. A large value may indicate a high uncertainty to

obtain suitable near-optima. The interquartile range (IQR) quantifies the statistical

dispersion of the midspread, instead of the whole range. Alongside the standard devi-

ation, both measures of dispersion describe the likelihood to obtain an outlier with an

algorithm for specific benchmarks.

254 Appendix B: Statistical results

The best results for each instance have been reported in green for by the mean and

standard deviation and in orange for the median and interquartile range. This

differentiation helps us appreciating more effectively a distribution skewness and the

variability of the solutions that can be found.

We have compared the solutions found by some discovered solvers using the Mann-

Whitney U test. This non-parametric test indicates whether two distributions of prob-

lem solutions have the same medians. The Mann-Whitney U test can, therefore, inform

us whether two metaheuristics have the same performance and operate on the same set

of problem solutions.

We assume that each problem solution obtained for a benchmark is considered to be

independent of each other. The problem fitness value is ordinal, and one can at least

say, of any two observations, which is the greater. The null hypothesis H0 suggests two

sets of problem solutions are equal. The alternative hypothesis H1 suggests otherwise.

All our non-parametric tests have completed over 100 independent runs with a p-value

set to 0.01.

The “A-measure” effect size was also calculated, to assess the effect on the medians.

This additional information suggests no effect exists (0.5), a small effect (0.56) and a

common effect (0.64). Finally, a big effect is indicated by an “A” measure greater or

equal to 0.71] [304].

A symbol = indicates no significant difference exists between Alg A and Alg B (i.e.

the results of). A symbol + denotes that Alg A is significantly better than Alg B and

finally a symbol − that Alg A is significantly worse than Alg B.

We should appreciate more effectively which algorithms would perform well on a

benchmark or a class of them.

Appendix B: Statistical results 255

The Mimicry Problem

Tables [B.1-B.10] statistically compares the distribution of imitators found by some

of the mimicry solvers provided in Appendix A. 100 independent runs with 20,000

evaluations were completed. The mutation rate was set to 0.001 and the adaptive

mutation rate to 0.05. A formal description of this problem domain was provided in

section 3.2.

256 Appendix B: Statistical results

Table B.1: Statistical comparison for some mimicry solvers generated in chapters [5-7]

Instance 100 1000 2000 3000 4000 5000
MC-A mean 0.000e+00 0.000e+00 6.433e-04 6.433e-04 3.387e-03 9.132e-03

std (0.0e+00) (0.0e+00) (4.8e-04) (4.8e-04) (8.7e-04) (1.4e-03)
median 0.000e+00 0.000e+00 6.667e-04 6.667e-04 3.375e-03 9.200e-03
IQR (0.0e+00) (0.0e+00) (6.7e-04) (6.7e-04) (1.3e-03) (1.8e-03)

MC-B mean 0.000e+00 1.500e-04 2.933e-03 2.933e-03 5.542e-03 1.148e-02
std (0.0e+00) (4.1e-04) (2.8e-03) (2.8e-03) (5.1e-03) (9.6e-03)
median 0.000e+00 0.000e+00 2.167e-03 2.167e-03 4.250e-03 9.200e-03
IQR (0.0e+00) (0.0e+00) (3.0e-03) (3.0e-03) (6.0e-03) (1.2e-02)

MC-C mean 0.000e+00 7.310e-03 1.020e-01 1.020e-01 1.476e-01 1.876e-01
std (0.0e+00) (2.8e-03) (5.3e-03) (5.3e-03) (5.1e-03) (5.2e-03)
median 0.000e+00 7.000e-03 1.020e-01 1.020e-01 1.471e-01 1.871e-01
IQR (0.0e+00) (3.0e-03) (7.2e-03) (7.2e-03) (5.6e-03) (6.6e-03)

MC-D mean 0.000e+00 4.000e-05 5.767e-04 5.767e-04 3.505e-03 8.944e-03
std (0.0e+00) (1.4e-04) (4.4e-04) (4.4e-04) (9.2e-04) (1.4e-03)
median 0.000e+00 0.000e+00 6.667e-04 6.667e-04 3.250e-03 9.000e-03
IQR (0.0e+00) (0.0e+00) (6.7e-04) (6.7e-04) (1.4e-03) (1.6e-03)

MC-E mean 0.000e+00 0.000e+00 6.333e-04 6.333e-04 3.285e-03 9.573e-03
std (0.0e+00) (0.0e+00) (4.5e-04) (4.5e-04) (8.1e-04) (2.6e-03)
median 0.000e+00 0.000e+00 6.667e-04 6.667e-04 3.250e-03 9.000e-03
IQR (0.0e+00) (0.0e+00) (6.7e-04) (6.7e-04) (1.0e-03) (2.0e-03)

MC-F mean 0.000e+00 0.000e+00 6.833e-04 6.833e-04 3.460e-03 9.110e-03
std (0.0e+00) (0.0e+00) (4.4e-04) (4.4e-04) (9.7e-04) (1.4e-03)
median 0.000e+00 0.000e+00 6.667e-04 6.667e-04 3.250e-03 9.000e-03
IQR (0.0e+00) (0.0e+00) (6.7e-04) (6.7e-04) (1.3e-03) (2.0e-03)

MC-G mean 0.000e+00 0.000e+00 5.667e-04 5.667e-04 3.327e-03 9.028e-03
std (0.0e+00) (0.0e+00) (4.2e-04) (4.2e-04) (8.6e-04) (1.4e-03)
median 0.000e+00 0.000e+00 3.333e-04 3.333e-04 3.250e-03 8.600e-03
IQR (0.0e+00) (0.0e+00) (3.3e-04) (3.3e-04) (1.1e-03) (1.8e-03)

MC-H mean 0.000e+00 3.700e-04 3.467e-03 3.467e-03 3.460e-03 1.235e-02
std (0.0e+00) (6.8e-04) (3.7e-03) (3.7e-03) (9.7e-04) (9.1e-03)
median 0.000e+00 0.000e+00 2.333e-03 2.333e-03 3.250e-03 1.100e-02
IQR (0.0e+00) (1.0e-03) (4.0e-03) (4.0e-03) (1.3e-03) (1.0e-02)

MC-I mean 0.000e+00 2.900e-04 3.883e-03 3.883e-03 7.475e-03 1.237e-02
std (0.0e+00) (5.2e-04) (3.7e-03) (3.7e-03) (7.1e-03) (8.8e-03)
median 0.000e+00 0.000e+00 2.667e-03 2.667e-03 5.250e-03 1.080e-02
IQR (0.0e+00) (1.0e-03) (5.2e-03) (5.2e-03) (8.1e-03) (1.2e-02)

MC-J mean 0.000e+00 1.230e-03 6.945e-03 6.945e-03 6.945e-03 1.161e-02
std (0.0e+00) (1.2e-03) (6.4e-03) (6.4e-03) (6.4e-03) (8.7e-03)
median 0.000e+00 1.000e-03 4.000e-03 4.000e-03 4.000e-03 9.500e-03
IQR (0.0e+00) (2.0e-03) (8.5e-03) (8.5e-03) (8.5e-03) (1.2e-02)

MC-K mean 0.000e+00 1.200e-04 3.857e-03 3.857e-03 4.625e-03 9.666e-03
std (0.0e+00) (3.3e-04) (3.8e-03) (3.8e-03) (2.9e-03) (5.5e-03)
median 0.000e+00 0.000e+00 2.500e-03 2.500e-03 4.125e-03 8.700e-03
IQR (0.0e+00) (0.0e+00) (4.3e-03) (4.3e-03) (3.6e-03) (4.9e-03)

MC-L mean 0.000e+00 0.000e+00 6.167e-04 6.167e-04 3.353e-03 9.188e-03
std (0.0e+00) (0.0e+00) (4.0e-04) (4.0e-04) (9.0e-04) (1.2e-03)
median 0.000e+00 0.000e+00 6.667e-04 6.667e-04 3.500e-03 9.200e-03
IQR (0.0e+00) (0.0e+00) (3.3e-04) (3.3e-04) (1.3e-03) (1.6e-03)

Herdy mean 6.000e-04 1.729e-02 5.275e-02 9.417e-02 1.311e-01 1.643e-01
std (7.2e-04) (2.8e-03) (4.1e-03) (3.9e-03) (4.3e-03) (4.2e-03)
median 0.000e+00 1.750e-02 5.300e-02 9.413e-02 1.310e-01 1.634e-01
IQR (1.0e-03) (4.3e-03) (6.2e-03) (4.6e-03) (5.8e-03) (6.8e-03)

Appendix B: Statistical results 257

Table B.2: Statistical comparison for some mimicry solvers generated in chapters [5-7]

Instance 6000 7000 8000 10000 20000 30000
MC-A mean 1.762e-02 2.870e-02 4.091e-02 6.751e-02 1.838e-01 2.569e-01

std (1.7e-03) (2.0e-03) (2.1e-03) (2.5e-03) (2.5e-03) (2.1e-03)
median 1.742e-02 2.914e-02 4.106e-02 6.750e-02 1.838e-01 2.568e-01
IQR (2.2e-03) (2.5e-03) (2.4e-03) (2.8e-03) (3.8e-03) (2.7e-03)

MC-B mean 2.189e-02 3.162e-02 4.256e-02 6.618e-02 1.848e-01 2.565e-01
std (1.3e-02) (1.6e-02) (1.9e-02) (2.2e-02) (2.5e-02) (2.6e-02)
median 1.875e-02 2.829e-02 4.244e-02 6.405e-02 1.804e-01 2.587e-01
IQR (1.4e-02) (2.1e-02) (2.6e-02) (3.2e-02) (3.3e-02) (3.5e-02)

MC-C mean 2.206e-01 2.466e-01 2.695e-01 3.033e-01 3.891e-01 4.223e-01
std (4.8e-03) (4.4e-03) (4.4e-03) (4.2e-03) (3.0e-03) (2.3e-03)
median 2.206e-01 2.459e-01 2.697e-01 3.035e-01 3.891e-01 4.223e-01
IQR (5.9e-03) (7.0e-03) (6.3e-03) (5.4e-03) (4.3e-03) (3.1e-03)

MC-D mean 1.916e-02 3.286e-02 4.090e-02 6.742e-02 1.843e-01 2.569e-01
std (5.2e-03) (6.2e-03) (2.1e-03) (2.2e-03) (2.2e-03) (2.3e-03)
median 1.800e-02 2.979e-02 4.113e-02 6.735e-02 1.842e-01 2.569e-01
IQR (2.3e-03) (1.2e-02) (2.6e-03) (2.6e-03) (2.9e-03) (3.1e-03)

MC-E mean 1.787e-02 3.358e-02 4.137e-02 6.723e-02 1.841e-01 2.569e-01
std (1.7e-03) (6.6e-03) (2.1e-03) (2.4e-03) (2.4e-03) (2.3e-03)
median 1.792e-02 3.007e-02 4.113e-02 6.755e-02 1.840e-01 2.566e-01
IQR (2.6e-03) (1.2e-02) (3.4e-03) (3.5e-03) (2.9e-03) (3.5e-03)

MC-F mean 1.775e-02 3.227e-02 4.077e-02 6.741e-02 1.835e-01 2.567e-01
std (1.4e-03) (6.2e-03) (2.0e-03) (2.3e-03) (2.6e-03) (2.3e-03)
median 1.783e-02 2.943e-02 4.063e-02 6.740e-02 1.834e-01 2.567e-01
IQR (1.5e-03) (1.2e-02) (2.6e-03) (3.1e-03) (3.3e-03) (3.0e-03)

MC-G mean 1.762e-02 2.867e-02 4.108e-02 6.746e-02 1.840e-01 2.571e-01
std (1.7e-03) (1.8e-03) (2.1e-03) (2.4e-03) (2.2e-03) (2.2e-03)
median 1.783e-02 2.843e-02 4.113e-02 6.710e-02 1.840e-01 2.575e-01
IQR (2.5e-03) (2.6e-03) (2.9e-03) (3.2e-03) (2.5e-03) (2.9e-03)

MC-H mean 2.128e-02 3.113e-02 4.514e-02 6.726e-02 1.846e-01 2.532e-01
std (1.3e-02) (1.7e-02) (1.9e-02) (2.0e-02) (2.8e-02) (2.2e-02)
median 1.975e-02 2.879e-02 4.456e-02 6.690e-02 1.813e-01 2.522e-01
IQR (1.9e-02) (2.2e-02) (2.7e-02) (2.1e-02) (3.4e-02) (2.9e-02)

MC-I mean 1.999e-02 3.253e-02 4.088e-02 6.878e-02 1.846e-01 2.537e-01
std (1.3e-02) (1.8e-02) (1.8e-02) (2.3e-02) (2.8e-02) (2.4e-02)
median 1.750e-02 3.157e-02 3.919e-02 7.160e-02 1.813e-01 2.532e-01
IQR (1.6e-02) (2.5e-02) (2.6e-02) (3.6e-02) (3.4e-02) (3.5e-02)

MC-J mean 2.180e-02 2.815e-02 4.240e-02 7.163e-02 1.777e-01 2.546e-01
std (1.3e-02) (1.4e-02) (1.9e-02) (2.5e-02) (2.6e-02) (2.3e-02)
median 1.975e-02 2.729e-02 3.975e-02 6.935e-02 1.767e-01 2.531e-01
IQR (1.6e-02) (1.9e-02) (2.7e-02) (3.5e-02) (3.5e-02) (2.6e-02)

MC-K mean 1.808e-02 2.821e-02 4.031e-02 6.870e-02 1.799e-01 2.564e-01
std (6.7e-03) (8.8e-03) (8.2e-03) (1.4e-02) (1.5e-02) (1.2e-02)
median 1.817e-02 2.736e-02 3.975e-02 6.895e-02 1.813e-01 2.569e-01
IQR (7.8e-03) (7.9e-03) (7.1e-03) (1.0e-02) (1.3e-02) (1.2e-02)

MC-L mean 1.780e-02 2.873e-02 4.090e-02 6.766e-02 1.839e-01 2.562e-01
std (1.7e-03) (2.0e-03) (2.1e-03) (2.5e-03) (2.2e-03) (1.8e-03)
median 1.767e-02 2.857e-02 4.094e-02 6.765e-02 1.838e-01 2.564e-01
IQR (2.2e-03) (3.0e-03) (2.5e-03) (3.7e-03) (3.3e-03) (2.7e-03)

Herdy mean 1.930e-01 2.165e-01 2.556e-01 3.569e-01 3.994e-01 3.993e-01
std (3.8e-03) (4.1e-03) (3.7e-03) (3.0e-03) (2.1e-03) 2.0e-03
median 1.929e-01 2.162e-01 2.554e-01 3.568e-01 3.995e-01 3.994e-01
IQR (4.3e-03) (5.3e-03) (4.7e-03) (4.4e-03) (2.9e-03) 2.9e-01

258 Appendix B: Statistical results

Ta
bl

e
B

.3
:S

ta
tis

tic
al

co
m

pa
ri

so
n

of
im

ita
to

rs
ob

ta
in

ed
by

H
er

dy
[1

46
]a

nd
th

e
ge

ne
ra

te
d

so
lv

er
s

M
C

-[
A

-L
]

H
er

dy
vs

In
st

an
ce

M
C

-A
M

C
-B

M
C

-C
M

C
-D

M
C

-E
M

C
-F

M
C

-G
M

C
-H

M
C

-I
M

C
-J

M
C

-K
M

C
-L

10
0

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

10
00

0.
73

(−
)

0.
67

(−
)

0.
99

(+
)

0.
71

(−
)

0.
73

(−
)

0.
73

(−
)

0.
73

(−
)

0.
59

(−
)

0.
61

(−
)

0.
65

(+
)

0.
68

(−
)

0.
73

(−
)

20
00

1
(−

)
1

(−
)

1
(+

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
0.

99
(−

)
0.

99
(−

)
0.

91
(−

)
0.

99
(−

)
1

(−
)

30
00

1
(−

)
1

(−
)

1
(+

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

40
00

1
(−

)
1

(−
)

1
(+

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

50
00

1
(−

)
1

(−
)

1
(+

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

60
00

1
(−

)
1

(−
)

1
(+

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

70
00

1
(−

)
1

(−
)

1
(+

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

80
00

1
(−

)
1

(−
)

1
(+

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

10
00

0
1

(−
)

1
(−

)
1

(+
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
20

00
0

1
(−

)
1

(−
)

1
(+

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

30
00

0
1

(−
)

1
(−

)
1

(+
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)

Appendix B: Statistical results 259

Ta
bl

e
B

.4
:S

ta
tis

tic
al

co
m

pa
ri

so
n

of
im

ita
to

rs
ob

ta
in

ed
by

ge
ne

ra
te

d
so

lv
er

M
C

-A
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

M
C

-[
B

-L
]

M
C

-A

vs

In
st

an
ce

M
C

-B
M

C
-C

M
C

-D
M

C
-E

M
C

-F
M

C
-G

M
C

-H
M

C
-I

M
C

-J
M

C
-K

M
C

-L

10
0

0.
50

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

10
00

0.
56

(−
)

0.
99

(+
)

0.
54

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
65

(−
)

0.
63

(−
)

0.
83

(+
)

0.
56

(−
)

0.
5

(=
)

20
00

0.
82

(+
)

1
(+

)
0.

54
(=

)
0.

51
(=

)
0.

54
(=

)
0.

54
(=

)
0.

8
(+

)
0.

84
(+

)
0.

88
(+

)
0.

84
(+

)
0.

5
(=

)

30
00

0.
82

(+
)

1
(+

)
0.

54
(=

)
0.

51
(=

)
0.

54
(=

)
0.

54
(=

)
0.

8
(+

)
0.

84
(+

)
0.

88
(+

)
0.

84
(+

)
0.

5
(=

)

40
00

0.
56

(+
)

1
(+

)
0.

53
(=

)
0.

54
(=

)
0.

51
(=

)
0.

53
(=

)
0.

51
(=

)
0.

66
(+

)
0.

61
(+

)
0.

61
(+

)
0.

51
(=

)

50
00

0.
5

(−
)

1
(+

)
0.

54
(=

)
0.

51
(=

)
0.

51
(=

)
0.

53
(=

)
0.

59
(+

)
0.

59
(+

)
0.

53
(+

)
0.

56
(−

)
0.

51
(=

)

60
00

0.
57

(+
)

1
(+

)
0.

59
(=

)
0.

55
(=

)
0.

53
(=

)
0.

51
(=

)
0.

56
(+

)
0.

5
(=

)
0.

58
(+

)
0.

54
(+

)
0.

53
(=

)

70
00

0.
51

(=
)

1
(+

)
0.

65
(+

)
0.

67
(+

)
0.

6
(+

)
0.

53
(=

)
0.

5
(=

)
0.

56
(+

)
0.

54
(−

)
0.

6
(−

)
0.

51
(=

)

80
00

0.
53

(+
)

1
(+

)
0.

51
(=

)
0.

55
(=

)
0.

53
(=

)
0.

52
(=

)
0.

55
(+

)
0.

54
(−

)
0.

53
(−

)
0.

58
(−

)
0.

51
(=

)

10
00

0
0.

54
(=

)
1

(+
)

0.
51

(=
)

0.
53

(=
)

0.
51

(=
)

0.
52

(=
)

0.
52

(−
)

0.
54

(+
)

0.
54

(+
)

0.
55

(+
)

0.
51

(=
)

20
00

0
0.

55
(=

)
1

(+
)

0.
55

(=
)

0.
53

(=
)

0.
53

(=
)

0.
53

(=
)

0.
53

(−
)

0.
53

(−
)

0.
6

(−
)

0.
61

(−
)

0.
51

(=
)

30
00

0
0.

52
(+

)
1

(+
)

0.
51

(=
)

0.
50

(=
)

0.
51

(=
)

0.
54

(=
)

0.
58

(−
)

0.
55

(=
)

0.
58

(−
)

0.
51

(+
)

0.
6

(=
)

260 Appendix B: Statistical results

Ta
bl

e
B

.5
:S

ta
tis

tic
al

co
m

pa
ri

so
n

of
im

ita
to

rs
ob

ta
in

ed
by

ge
ne

ra
te

d
so

lv
er

M
C

-B
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

M
C

-[
C

-L
]

M
C

-B
vs

In
st

an
ce

M
C

-C
M

C
-D

M
C

-E
M

C
-F

M
C

-G
M

C
-H

M
C

-I
M

C
-J

M
C

-K
M

C
-L

10
0

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

10
00

0.
99

(+
)

0.
53

(=
)

0.
56

(−
)

0.
56

(−
)

0.
56

(−
)

0.
58

(−
)

0.
56

(=
)

0.
78

(+
)

0.
51

(=
)

0.
56

(−
)

20
00

1
(+

)
0.

83
(−

)
0.

82
(−

)
0.

81
(−

)
0.

84
(−

)
0.

52
(=

)
0.

56
(=

)
0.

69
(+

)
0.

55
(=

)
0.

82
(−

)
30

00
1

(+
)

0.
83

(−
)

0.
82

(−
)

0.
81

(−
)

0.
84

(−
)

0.
52

(=
)

0.
56

(=
)

0.
69

(+
)

0.
55

(=
)

0.
82

(−
)

40
00

1
(+

)
0.

56
(−

)
0.

57
(−

)
0.

56
(−

)
0.

57
(−

)
0.

56
(−

)
0.

58
(=

)
0.

55
(=

)
0.

5
(=

)
0.

57
(−

)
50

00
1

(+
)

0.
51

(=
)

0.
51

(=
)

0.
50

(=
)

0.
51

(=
)

0.
55

(=
)

0.
55

(=
)

0.
52

(=
)

0.
51

(=
)

0.
50

(=
)

60
00

1
(+

)
0.

53
(−

)
0.

56
(−

)
0.

56
(−

)
0.

57
(−

)
0.

52
(=

)
0.

55
(=

)
0.

5
(=

)
0.

57
(−

)
0.

56
(−

)
70

00
1

(+
)

0.
58

(+
)

0.
59

(+
)

0.
56

(+
)

0.
5

(+
)

0.
52

(=
)

0.
51

(=
)

0.
56

(=
)

0.
55

(=
)

0.
50

(=
)

80
00

1
(+

)
0.

53
(=

)
0.

53
(=

)
0.

54
(=

)
0.

53
(−

)
0.

54
(=

)
0.

52
(=

)
0.

5
(=

)
0.

53
(=

)
0.

53
(=

)
10

00
0

1
(+

)
0.

54
(+

)
0.

53
(+

)
0.

54
(+

)
0.

54
(+

)
0.

52
(=

)
0.

52
(=

)
0.

57
(=

)
0.

54
(+

)
0.

54
(+

)
20

00
0

1
(+

)
0.

56
(+

)
0.

56
(+

)
0.

55
(+

)
0.

56
(+

)
0.

5
(=

)
0.

5
(=

)
0.

57
(=

)
0.

52
(+

)
0.

56
(+

)
30

00
0

1
(+

)
0.

52
(=

)
0.

51
(=

)
0.

52
(=

)
0.

51
(=

)
0.

54
(=

)
0.

53
(=

)
0.

52
(=

)
0.

51
(=

)
0.

53
(=

)

Appendix B: Statistical results 261

Ta
bl

e
B

.6
:S

ta
tis

tic
al

co
m

pa
ri

so
n

of
im

ita
to

rs
ob

ta
in

ed
by

ge
ne

ra
te

d
so

lv
er

M
C

-C
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

M
C

-[
D

-L
]

M
C

-C
vs

In
st

an
ce

M
C

-D
M

C
-E

M
C

-F
M

C
-G

M
C

-H
M

C
-I

M
C

-J
M

C
-K

M
C

-L
10

0
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
10

00
0.

99
(−

)
0.

99
(−

)
0.

99
(−

)
0.

99
(−

)
0.

99
(−

)
0.

99
(−

)
0.

98
(−

)
0.

99
(−

)
0.

99
(−

)
20

00
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

30
00

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
40

00
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

50
00

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
60

00
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

70
00

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
80

00
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

10
00

0
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

20
00

0
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

30
00

0
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

262 Appendix B: Statistical results

Ta
bl

e
B

.7
:S

ta
tis

tic
al

co
m

pa
ri

so
n

of
im

ita
to

rs
ob

ta
in

ed
by

ge
ne

ra
te

d
so

lv
er

M
C

-D
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

M
C

-[
E

-L
]

M
C

-D
vs

In
st

an
ce

M
C

-E
M

C
-F

M
C

-G
M

C
-H

M
C

-I
M

C
-J

M
C

-K
M

C
-L

10
0

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

10
00

0.
54

(−
)

0.
54

(−
)

0.
54

(−
)

0.
62

(−
)

0.
6

(−
)

0.
82

(+
)

0.
52

(=
)

0.
54

(−
)

20
00

0.
54

(=
)

0.
58

(=
)

0.
51

(=
)

0.
82

(+
)

0.
85

(+
)

0.
89

(+
)

0.
85

(+
)

0.
54

(=
)

30
00

0.
54

(=
)

0.
58

(=
)

0.
51

(=
)

0.
82

(+
)

0.
85

(+
)

0.
89

(+
)

0.
85

(+
)

0.
54

(=
)

40
00

0.
56

(=
)

0.
52

(=
)

0.
55

(=
)

0.
52

(=
)

0.
65

(+
)

0.
6

(+
)

0.
59

(+
)

0.
54

(=
)

50
00

0.
54

(=
)

0.
52

(=
)

0.
5

(=
)

0.
6

(+
)

0.
61

(+
)

0.
53

(+
)

0.
53

(−
)

0.
55

(=
)

60
00

0.
55

(=
)

0.
57

(=
)

0.
58

(=
)

0.
53

(+
)

0.
53

(−
)

0.
54

(+
)

0.
51

(+
)

0.
57

(=
)

70
00

0.
53

(=
)

0.
54

(=
)

0.
67

(−
)

0.
58

(−
)

0.
53

(+
)

0.
63

(−
)

0.
71

(−
)

0.
66

(−
)

80
00

0.
56

(=
)

0.
52

(=
)

0.
53

(=
)

0.
55

(+
)

0.
54

(−
)

0.
53

(−
)

0.
58

(−
)

0.
5

(=
)

10
00

0
0.

52
(=

)
0.

51
(=

)
0.

5
(=

)
0.

51
(−

)
0.

55
(+

)
0.

54
(+

)
0.

55
(+

)
0.

52
(=

)
20

00
0

0.
53

(=
)

0.
59

(=
)

0.
52

(=
)

0.
53

(−
)

0.
53

(−
)

0.
61

(−
)

0.
64

(−
)

0.
55

(=
)

30
00

0
0.

51
(=

)
0.

52
(=

)
0.

53
(=

)
0.

58
(−

)
0.

55
(−

)
0.

58
(−

)
0.

51
(−

)
0.

50
(=

)

Appendix B: Statistical results 263

Ta
bl

e
B

.8
:S

ta
tis

tic
al

co
m

pa
ri

so
n

of
im

ita
to

rs
ob

ta
in

ed
by

ge
ne

ra
te

d
so

lv
er

s
M

C
-[

E
-F

]a
nd

th
e

ge
ne

ra
te

d
so

lv
er

s
M

C
-[

G
-L

]

M
C

-E
M

C
-F

vs
vs

In
st

an
ce

M
C

-F
M

C
-G

M
C

-H
M

C
-I

M
C

-J
M

C
-K

M
C

-L
M

C
-G

M
C

-H
M

C
-I

M
C

-J
M

C
-K

M
C

-L
10

0
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
10

00
0.

5
(=

)
0.

5
(=

)
0.

65
(−

)
0.

63
(−

)
0.

83
(+

)
0.

56
(−

)
0.

5
(=

)
0.

5
(=

)
0.

65
(−

)
0.

63
(−

)
0.

83
(+

)
0.

56
(−

)
0.

5
(=

)
20

00
0.

54
(=

)
0.

55
(=

)
0.

8
(+

)
0.

84
(+

)
0.

89
(+

)
0.

84
(+

)
0.

51
(=

)
0.

58
(=

)
0.

79
(+

)
0.

83
(+

)
0.

88
(+

)
0.

83
(+

)
0.

55
(=

)
30

00
0.

54
(=

)
0.

55
(=

)
0.

8
(+

)
0.

84
(+

)
0.

89
(+

)
0.

84
(+

)
0.

51
(=

)
0.

58
(=

)
0.

79
(+

)
0.

83
(+

)
0.

88
(+

)
0.

83
(+

)
0.

55
(=

)
40

00
0.

54
(=

)
0.

51
(=

)
0.

54
(=

)
0.

66
(+

)
0.

62
(+

)
0.

62
(+

)
0.

53
(=

)
0.

53
(=

)
0.

5
(=

)
0.

65
(+

)
0.

61
(+

)
0.

6
(+

)
0.

52
(=

)
50

00
0.

52
(=

)
0.

54
(=

)
0.

57
(+

)
0.

58
(+

)
0.

51
(+

)
0.

57
(−

)
0.

5
(=

)
0.

53
(=

)
0.

59
(+

)
0.

6
(+

)
0.

52
(+

)
0.

55
(−

)
0.

52
(=

)
60

00
0.

53
(=

)
0.

54
(=

)
0.

55
(+

)
0.

51
(−

)
0.

57
(+

)
0.

53
(+

)
0.

52
(=

)
0.

51
(=

)
0.

56
(+

)
0.

5
(−

)
0.

57
(+

)
0.

53
(+

)
0.

5
(=

)
70

00
0.

57
(=

)
0.

7
(−

)
0.

6
(−

)
0.

55
(+

)
0.

65
(−

)
0.

72
(−

)
0.

69
(−

)
0.

62
(−

)
0.

57
(−

)
0.

52
(+

)
0.

62
(−

)
0.

68
(−

)
0.

62
(−

)
80

00
0.

58
(=

)
0.

53
(=

)
0.

54
(+

)
0.

55
(−

)
0.

54
(−

)
0.

61
(−

)
0.

56
(=

)
0.

55
(=

)
0.

55
(+

)
0.

54
(−

)
0.

53
(−

)
0.

57
(−

)
0.

53
(=

)
10

00
0

0.
52

(=
)

0.
52

(=
)

0.
51

(−
)

0.
55

(+
)

0.
54

(+
)

0.
56

(+
)

0.
54

(=
)

0.
51

(=
)

0.
51

(−
)

0.
55

(+
)

0.
54

(+
)

0.
55

(+
)

0.
52

(=
)

20
00

0
0.

56
(=

)
0.

5
(=

)
0.

53
(−

)
0.

53
(−

)
0.

61
(−

)
0.

63
(−

)
0.

52
(=

)
0.

57
(=

)
0.

52
(−

)
0.

52
(−

)
0.

6
(−

)
0.

6
(−

)
0.

54
(=

)
30

00
0

0.
52

(=
)

0.
54

(=
)

0.
58

(−
)

0.
55

(−
)

0.
58

(−
)

0.
51

(+
)

0.
58

(−
)

0.
55

(=
)

0.
58

(−
)

0.
55

(−
)

0.
57

(−
)

0.
5
(+

)
0.

58
(=

)

264 Appendix B: Statistical results

Ta
bl

e
B

.9
:S

ta
tis

tic
al

co
m

pa
ri

so
n

of
im

ita
to

rs
ob

ta
in

ed
by

ge
ne

ra
te

d
so

lv
er

s
M

C
-[

G
-I

]a
nd

th
e

ge
ne

ra
te

d
so

lv
er

s
M

C
-[

J-
L

]

M
C

-G
M

C
-H

M
C

-I
vs

vs
vs

In
st

an
ce

M
C

-H
M

C
-I

M
C

-J
M

C
-K

M
C

-L
M

C
-I

M
C

-J
M

C
-K

M
C

-L
M

C
-J

M
C

-K
M

C
-L

10
0

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

10
00

0.
65

(−
)

0.
63

(−
)

0.
83

(+
)

0.
56

(−
)

0.
5

(=
)

0.
52

(=
)

0.
72

(+
)

0.
59

(−
)

0.
65

(−
)

0.
74

(+
)

0.
57

(−
)

0.
63

(−
)

20
00

0.
82

(+
)

0.
86

(+
)

0.
89

(+
)

0.
85

(+
)

0.
55

(=
)

0.
54

(=
)

0.
67

(+
)

0.
53

(=
)

0.
8

(−
)

0.
63

(+
)

0.
51

(=
)

0.
84

(−
)

30
00

0.
82

(+
)

0.
86

(+
)

0.
89

(+
)

0.
85

(+
)

0.
55

(=
)

0.
54

(=
)

0.
67

(+
)

0.
53

(=
)

0.
8

(−
)

0.
63

(+
)

0.
51

(=
)

0.
84

(−
)

40
00

0.
53

(=
)

0.
66

(+
)

0.
62

(+
)

0.
62

(+
)

0.
51

(=
)

0.
65

(+
)

0.
61

(+
)

0.
6

(+
)

0.
52

(=
)

0.
52

(=
)

0.
58

(−
)

0.
66

(−
)

50
00

0.
6

(+
)

0.
6

(+
)

0.
53

(+
)

0.
54

(+
)

0.
55

(=
)

0.
5

(=
)

0.
53

(=
)

0.
58

(−
)

0.
59

(−
)

0.
53

(=
)

0.
58

(−
)

0.
59

(−
)

60
00

0.
56

(+
)

0.
5

(−
)

0.
58

(+
)

0.
54

(+
)

0.
52

(=
)

0.
53

(=
)

0.
51

(=
)

0.
55

(−
)

0.
55

(−
)

0.
55

(=
)

0.
5

(=
)

0.
5

(+
)

70
00

0.
5

(+
)

0.
56

(+
)

0.
53

(−
)

0.
6

(−
)

0.
51

(=
)

0.
53

(=
)

0.
54

(=
)

0.
53

(−
)

0.
5

(−
)

0.
57

(=
)

0.
57

(−
)

0.
56

(−
)

80
00

0.
54

(+
)

0.
54

(−
)

0.
53

(−
)

0.
59

(−
)

0.
53

(=
)

0.
56

(=
)

0.
54

(=
)

0.
57

(−
)

0.
55

(−
)

0.
52

(=
)

0.
52

(+
)

0.
54

(+
)

10
00

0
0.

51
(−

)
0.

55
(+

)
0.

54
(+

)
0.

55
(+

)
0.

52
(=

)
0.

52
(=

)
0.

55
(=

)
0.

53
(=

)
0.

52
(+

)
0.

54
(=

)
0.

51
(−

)
0.

54
(−

)
20

00
0

0.
53

(−
)

0.
53

(−
)

0.
61

(−
)

0.
63

(−
)

0.
53

(=
)

0.
5

(=
)

0.
57

(=
)

0.
53

(−
)

0.
53

(+
)

0.
57

(=
)

0.
53

(−
)

0.
53

(+
)

30
00

0
0.

59
(−

)
0.

55
(−

)
0.

58
(−

)
0.

52
(−

)
0.

63
(−

)
0.

51
(=

)
0.

53
(=

)
0.

56
(+

)
0.

57
(+

)
0.

52
(=

)
0.

54
(+

)
0.

54
(+

)

Appendix B: Statistical results 265

Ta
bl

e
B

.1
0:

St
at

is
tic

al
co

m
pa

ri
so

n
of

im
ita

to
rs

ob
ta

in
ed

by
ge

ne
ra

te
d

so
lv

er
s

M
C

-[
J-

K
]a

nd
th

e
ge

ne
ra

te
d

so
lv

er
M

C
-L

]

M
C

-J
M

C
-K

vs
vs

In
st

an
ce

M
C

-K
M

C
-L

M
C

-L
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
10

00
0.

79
(−

)
0.

83
(−

)
0.

56
(−

)
20

00
0.

64
(−

)
0.

89
(−

)
0.

84
(−

)
30

00
0.

64
(−

)
0.

89
(−

)
0.

84
(−

)
40

00
0.

55
(+

)
0.

61
(−

)
0.

62
(−

)
50

00
0.

54
(−

)
0.

52
(−

)
0.

56
(+

)
60

00
0.

56
(−

)
0.

57
(−

)
0.

53
(−

)
70

00
0.

51
(=

)
0.

54
(+

)
0.

6
(+

)
80

00
0.

5
(−

)
0.

53
(+

)
0.

58
(+

)
10

00
0

0.
53

(−
)

0.
53

(−
)

0.
54

(−
)

20
00

0
0.

54
(+

)
0.

6
(+

)
0.

62
(+

)
30

00
0

0.
54

(+
)

0.
57

(+
)

0.
53

(−
)

266 Appendix B: Statistical results

The statistical comparison of the imitators found by some mimicry solvers is provided

in table B.11. One of them was designed by humanly activities (i.e Herdy) and the

remaining were generated with a CGP hyper-heuristic. The number of problem eval-

uations was computed using the expression (3, 072 ∗ 2)/250 (see section 8.1.2). 100

independent runs were completed.

Table B.11: Statistical comparison of some imitators obtained by some mimicry
solvers.

100 1000 10000 100000
Herdy mean 0.000e+00 1.300e-04 1.370e-04 1.371e-04

std (0.0e+00) (3.4e-04) (1.2e-04) (3.3e-05)
median 0.000e+00 0.000e+00 1.000e-04 1.300e-04
IQR (0.0e+00) (0.0e+00) (1.5e-04) (4.0e-05)

MC-A mean 0.000e+00 0.000e+00 0.000e+00 0.000e+00
std (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)
median 0.000e+00 0.000e+00 0.000e+00 0.000e+00
IQR (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)

MC-D mean 0.000e+00 0.000e+00 0.000e+00 0.000e+00
std (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)
median 0.000e+00 0.000e+00 0.000e+00 0.000e+00
IQR (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)

MC-E mean 0.000e+00 0.000e+00 0.000e+00 0.000e+00
std (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)
median 0.000e+00 0.000e+00 0.000e+00 0.000e+00
IQR (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)

MC-L mean 0.000e+00 0.000e+00 0.000e+00 0.000e+00
std (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)
median 0.000e+00 0.000e+00 0.000e+00 0.000e+00
IQR (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)

MC-M mean 4.099e-01 4.322e-01 4.344e-01 4.298e-01
std (6.9e-02) (3.6e-02) (3.4e-02) (4.0e-02)
median 4.100e-01 4.345e-01 4.348e-01 4.362e-01
IQR (1.0e-01) (5.0e-02) (4.7e-02) (5.3e-02)

Appendix B: Statistical results 267

Ta
bl

e
B

.1
2:

St
at

is
tic

al
co

m
pa

ri
so

n
of

im
ita

to
rs

ob
ta

in
ed

by
H

er
dy

[1
46

]a
nd

th
e

ge
ne

ra
te

d
so

lv
er

M
C

-A
,a

nd
th

e
ge

ne
ra

te
d

so
lv

er
s

M
C

-A
,M

C
-E

,
M

C
-L

,M
C

-M

H
er

dy
M

C
-A

vs
vs

In
st

an
ce

s
M

C
-A

M
C

-D
M

C
-E

M
C

-L
M

C
-M

M
C

-D
M

C
-E

M
C

-L
M

C
-M

10
0

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

1
(+

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
1

(+
)

10
00

0.
56

(−
)

0.
56

(−
)

0.
56

(−
)

0.
56

(−
)

1
(+

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
1

(+
)

10
00

0
0.

88
(−

)
0.

88
(−

)
0.

88
(−

)
0.

88
(−

)
1

(+
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

1
(+

)
10

00
00

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(+

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
1

(+
)

Ta
bl

e
B

.1
3:

St
at

is
tic

al
co

m
pa

ri
so

n
of

im
ita

to
rs

ob
ta

in
ed

th
e

ge
ne

ra
te

d
so

lv
er

M
C

-D
,a

nd
th

e
ge

ne
ra

te
d

so
lv

er
s

M
C

-E
,M

C
-L

,M
C

-M

M
C

-D
M

C
-E

M
C

-L
vs

vs
vs

In
st

an
ce

s
M

C
-E

M
C

-L
M

C
-M

M
C

-L
M

C
-M

M
C

-M
10

0
0.

5
(=

)
0.

5
(=

)
1

(+
)

0.
5

(=
)

1
(+

)
1

(+
)

10
00

0.
5

(=
)

0.
5

(=
)

1
(+

)
0.

5
(=

)
1

(+
)

1
(+

)
10

00
0

0.
5

(=
)

0.
5

(=
)

1
(+

)
0.

5
(=

)
1

(+
)

1
(+

)
10

00
00

0.
5

(=
)

0.
5

(=
)

1
(+

)
0.

5
(=

)
1

(+
)

1
(+

)

268 Appendix B: Statistical results

The Traveling Salesman Problem

This section provides the results of a detailed statistical analysis completed for some

of the TSP solvers obtained by our experiments discussed in chapters [5-7]. We have

completed 100 independent runs completed with 6,000 problem evaluations. The Na-

tional traveling salesman problems [1] provide the details of the instances.

Appendix B: Statistical results 269

Table B.14: Statistical comparison of tours obtained by solvers TSP[A-J] for the in-
stances u2152,usa13509, d18512, dj38, q194 and zi929

u2152 usa13509 d18512 dj38 qa194 zi929
TSP-A mean 5.405e-02 6.004e-02 4.250e-02 0.000e+00 2.563e-03 1.776e-02

std (9.4e-03) (8.1e-03) (1.7e-03) (0.0e+00) (1.8e-03) (4.6e-03)
median 5.293e-02 5.791e-02 4.243e-02 0.000e+00 2.673e-03 1.765e-02
IQR (1.0e-02) (8.2e-03) (2.1e-03) (0.0e+00) (3.1e-03) (5.4e-03)

TSP-B mean 4.333e-02 5.491e-02 4.006e-02 0.000e+00 2.092e-03 1.218e-02
std (7.1e-03) (7.5e-03) (1.8e-03) ((0.0e+00) (1.3e-03) (3.4e-03)
median 4.298e-02 5.341e-02 3.976e-02 0.000e+00 2.673e-03 1.205e-02
IQR (8.4e-03) (6.4e-03) (2.2e-03) (0.0e+00) (2.7e-03) (5.1e-03)

TSP-C mean 7.511e-02 6.768e-02 4.629e-02 0.000e+00 2.722e-03 2.335e-02
std (1.2e-02) (1.1e-02) (2.0e-03) (0.0e+00) (1.7e-03) (4.8e-03)
median 7.295e-02 6.457e-02 4.597e-02 0.000e+00 3.368e-03 2.281e-02
IQR (1.6e-02) (9.3e-03) (2.9e-03) (0.0e+00) (3.1e-03) (6.6e-03)

TSP-D mean 4.055e-02 5.442e-02 4.077e-02 0.000e+00 2.821e-03 1.319e-02
std (1.6e-02) (1.8e-02) (5.1e-03) (0.0e+00) (8.0e-03) (1.6e-02)
median 3.958e-02 5.143e-02 4.010e-02 0.000e+00 2.673e-03 1.145e-02
IQR (7.3e-03) (3.9e-03) (2.4e-03) (0.0e+00) (2.7e-03) (4.4e-03)

TSP-E mean 5.603e-02 6.075e-02 4.349e-02 0.000e+00 3.188e-03 1.906e-02
std (9.0e-03) (7.5e-03) (1.8e-03) (0.0e+00) (2.7e-03) (5.0e-03)
median 5.549e-02 5.847e-02 4.337e-02 0.000e+00 2.887e-03 1.841e-02
IQR (1.1e-02) (8.3e-03) (2.4e-03) (0.0e+00) (1.2e-03) (5.2e-03)

TSP-F mean 4.759e-02 5.675e-02 4.217e-02 0.000e+00 2.253e-03 1.625e-02
std (7.3e-03) (5.6e-03) (1.9e-03) (0.0e+00) (1.5e-03) (4.2e-03)
median 4.753e-02 5.544e-02 4.198e-02 0.000e+00 2.673e-03 1.593e-02
IQR (9.2e-03) (5.8e-03) (2.9e-03) (0.0e+00) (2.5e-03) (5.3e-03)

TSP-G mean 5.213e-02 6.157e-02 4.231e-02 0.000e+00 4.651e-03 1.920e-02
std (8.0e-03) (1.0e-02) (2.1e-03) (0.0e+00) (5.0e-03) (4.6e-03)
median 5.171e-02 5.900e-02 4.199e-02 0.000e+00 3.208e-03 1.906e-02
IQR (1.1e-02) (8.4e-03) (2.5e-03) (0.0e+00) (2.3e-03) (6.2e-03)

TSP-H mean 4.127e-02 5.553e-02 4.019e-02 0.000e+00 2.884e-03 1.415e-02
std (6.7e-03) (7.6e-03) (2.1e-03) (0.0e+00) (2.6e-03) (4.0e-03)
median 4.090e-02 5.397e-02 3.968e-02 0.000e+00 2.673e-03 1.383e-02
IQR (9.2e-03) (6.2e-03) (2.5e-03) (0.0e+00) (8.6e-04) (6.0e-03)

TSP-I mean 4.259e-02 5.478e-02 4.029e-02 0.000e+00 2.889e-03 1.286e-02
std (6.3e-03) (6.3e-03) (1.8e-03) (0.0e+00) (2.6e-03) (3.4e-03)
median 4.173e-02 5.296e-02 4.002e-02 0.000e+00 2.673e-03 1.262e-02
IQR (7.6e-03) (5.7e-03) (2.6e-03) (0.0e+00) (0.0e+00) (4.3e-03)

TSP-J mean 4.234e-02 5.719e-02 4.061e-02 0.000e+00 2.316e-03 1.377e-02
std (7.2e-03) (9.1e-03) (1.7e-03) (0.0e+00) (1.5e-03) (4.4e-03)
median 4.155e-02 5.403e-02 4.039e-02 0.000e+00 2.673e-03 1.327e-02
IQR (1.0e-02) (7.5e-03) (2.4e-03) (0.0e+00) (7.5e-04) (5.8e-03)

270 Appendix B: Statistical results

Table B.15: Statistical comparison of tours obtained by generated solvers TSP[K-Q],
Ulder [319] and Ozcan [247] for the instances u2152,usa13509, d18512, dj38, q194
and zi929

u2152 usa13509 d18512 dj38 qa194 zi929
TSP-K mean 5.070e-02 6.226e-02 4.341e-02 0.000e+00 5.185e-03 2.157e-02

std (1.1e-02) (1.0e-02) (2.6e-03) (0.0e+00) (6.3e-03) (9.5e-03)
median 4.845e-02 5.880e-02 4.335e-02 0.000e+00 3.101e-03 1.882e-02
IQR (1.4e-02) (1.2e-02) (4.0e-03) (0.0e+00) (2.4e-03) (9.7e-03)

TSP-L mean 5.828e-02 6.520e-02 4.471e-02 0.000e+00 4.491e-03 2.284e-02
std (8.4e-03) (1.0e-02) (1.9e-03) (0.0e+00) (4.6e-03) (5.3e-03)
median 5.875e-02 6.285e-02 4.473e-02 0.000e+00 3.529e-03 2.238e-02
IQR (8.6e-03) (1.3e-02) (2.5e-03) (0.0e+00) (2.2e-03) (7.7e-03)

TSP-M mean 4.962e-02 5.985e-02 4.259e-02 0.000e+00 2.913e-03 1.780e-02
std (6.5e-03) (9.0e-03) (1.9e-03) (0.0e+00) (2.7e-03) (4.0e-03)
median 4.960e-02 5.695e-02 4.230e-02 0.000e+00 2.673e-03 1.703e-02
IQR (6.7e-03) (7.4e-03) (2.5e-03) (0.0e+00) (1.9e-03) (5.4e-03)

TSP-N mean 5.659e-02 6.360e-02 4.377e-02 0.000e+00 3.569e-03 1.999e-02
std (9.4e-03) (1.0e-02) (1.9e-03) (0.0e+00) (3.9e-03) (4.9e-03)
median 5.562e-02 6.100e-02 4.334e-02 0.000e+00 3.101e-03 1.975e-02
IQR (1.1e-02) (9.4e-03) (2.7e-03) (0.0e+00) (1.1e-03) (5.8e-03)

TSP-O mean 7.632e-02 7.206e-02 4.835e-02 5.858e-03 5.089e-02 5.424e-02
std (1.6e-02) (1.2e-02) (3.3e-03) (1.4e-01) (2.1e-02) (1.6e-02)
median 7.548e-02 6.918e-02 4.754e-02 0.000e+00 4.790e-02 5.320e-02
IQR (2.3e-02) (1.2e-02) (3.8e-03) (0.0e+00)) (3.1e-02) (2.0e-02)

TSP-P mean 6.404e-02 6.667e-02 4.523e-02 0.000e+00 4.288e-03 2.424e-02
std (8.8e-03) (9.0e-03) (2.0e-03) (0.0e+00) (5.0e-03) (5.3e-03)
median 6.382e-02 6.394e-02 4.501e-02 0.000e+00 3.529e-03 2.374e-02
IQR (1.1e-02) (1.1e-02) (2.4e-03) (0.0e+00) (3.0e-03) (8.1e-03)

TSP-Q mean 5.277e-02 5.844e-02 4.307e-02 0.000e+00 2.599e-03 2.018e-02
std (7.3e-03) (6.8e-03) (2.1e-03) (0.0e+00) (2.3e-03) (5.0e-03)
median 5.299e-02 5.669e-02 4.294e-02 0.000e+00 2.673e-03 1.977e-02
IQR (1.1e-02) (7.3e-03) (2.9e-03) (0.0e+00) (3.1e-03) (6.0e-03)

Ulder mean 2.066e-01 2.430e-01 2.329e-01 4.009e-02 1.945e-01 2.089e-01
std (1.6e-02) (5.0e-03) (1.3e-02) (4.8e-02) (5.4e-02) (3.1e-02)
median 2.053e-01 2.447e-01 2.294e-01 1.788e-02 1.884e-01 2.040e-01
IQR (2.0e-02) (5.5e-03) (1.7e-02) (7.2e-02) (7.9e-02) (3.9e-02)

Ozcan mean 2.024e-01 2.411e-01 2.319e-01 1.023e-01 3.111e-01 2.120e-01
std (1.0e-02) (9.0e-03) (1.3e-02) (8.3e-02) (3.1e-02) (2.7e-02)
median 2.043e-01 2.447e-01 2.294e-01 5.228e-02 3.124e-01 2.079e-01
IQR (1.7e-02) (5.5e-03) (1.3e-02) (1.4e-01) (3.1e-02) (3.6e-02)

Appendix B: Statistical results 271

Table B.16: Statistical comparison of tours obtained by solvers TSP[A-J] for the in-
stances lu980,rw1621,nu3496, ca4663, tz6117, eg7146.

lu980 rw1621 nu3496 ca4663 tz6117 eg7146
TSP-A mean 3.332e-02 1.307e-01 9.042e-02 6.753e-02 7.858e-02 7.065e-02

std (6.9e-03) (3.1e-02) (1.7e-02) (1.1e-02) (1.0e-02) (1.8e-02)
median 3.311e-02 1.243e-01 8.762e-02 6.530e-02 7.698e-02 6.539e-02
IQR (9.3e-03) (3.6e-02) (2.1e-02) (1.3e-02) (1.1e-02) (1.9e-02)

TSP-B mean 2.356e-02 9.460e-02 7.625e-02 5.736e-02 6.598e-02 6.356e-02
std (6.1e-03) (1.8e-02) (1.8e-02) (1.2e-02) (9.5e-03) (1.7e-02)
median 2.324e-02 9.157e-02 7.270e-02 5.517e-02 6.387e-02 5.908e-02
IQR (7.9e-03) (2.8e-02) (2.0e-02) (9.3e-03) (8.2e-03) (1.7e-02)

TSP-C mean 4.762e-02 1.545e-01 9.970e-02 7.973e-02 9.784e-02 9.094e-02
std (1.1e-02) (2.8e-02) (2.0e-02) (1.3e-02) (1.7e-02) (2.8e-02)
median 4.550e-02 1.505e-01 9.432e-02 7.536e-02 9.488e-02 8.183e-02
IQR (1.5e-02) (3.8e-02) (2.5e-02) (1.5e-02) (1.4e-02) (3.6e-02)

TSP-D mean 2.232e-02 8.174e-02 7.014e-02 5.276e-02 6.201e-02 5.662e-02
std (1.3e-02) (1.8e-02) (9.7e-03) (6.3e-03) (1.0e-02) (1.3e-02)
median 2.072e-02 7.750e-02 6.855e-02 5.282e-02 6.082e-02 5.542e-02
IQR (7.0e-03) (1.5e-02) (1.1e-02) (6.7e-03) (8.2e-03) (1.0e-02)

TSP-E mean 3.475e-02 1.245e-01 9.275e-02 6.739e-02 7.967e-02 7.866e-02
std (7.3e-03) (2.9e-02) (2.3e-02) (8.3e-03) (1.6e-02) (2.3e-02)
median 3.369e-02 1.192e-01 8.738e-02 6.686e-02 7.651e-02 7.081e-02
IQR (1.1e-02) (3.4e-02) (2.3e-02) (1.1e-02) (1.4e-02) (1.9e-02)

TSP-F mean 2.846e-02 1.015e-01 8.169e-02 5.999e-02 7.086e-02 6.663e-02
std (5.9e-03) (1.6e-02) (1.5e-02) (7.0e-03) (7.6e-03) (9.1e-03)
median 2.809e-02 1.001e-01 7.790e-02 5.996e-02 6.921e-02 6.489e-02
IQR (8.4e-03) (1.9e-02) (1.8e-02) (9.0e-03) (9.4e-03) (1.2e-02)

TSP-G mean 3.275e-02 1.269e-01 8.970e-02 6.858e-02 7.756e-02 7.294e-02
std (5.9e-03) (2.6e-02) (1.8e-02) (1.4e-02) (1.3e-02) (1.5e-02)
median 3.245e-02 1.231e-01 8.607e-02 6.595e-02 7.530e-02 6.923e-02
IQR (7.8e-03) (3.7e-02) (2.6e-02) (1.4e-02) (1.2e-02) (1.7e-02)

TSP-H mean 2.410e-02 1.051e-01 8.327e-02 6.027e-02 6.722e-02 6.725e-02
std (5.2e-03) (2.1e-02) (1.7e-02) (1.2e-02) (7.2e-03) (1.7e-02)
median 2.332e-02 1.000e-01 8.065e-02 5.702e-02 6.641e-02 6.251e-02
IQR (7.1e-03) (2.1e-02) (2.1e-02) (1.3e-02) (9.0e-03) (2.1e-02)

TSP-I mean 2.453e-02 1.011e-01 7.868e-02 5.688e-02 6.715e-02 6.185e-02
std (5.4e-03) (2.2e-02) (1.6e-02) (7.1e-03) (8.2e-03) (1.5e-02)
median 2.425e-02 9.896e-02 7.501e-02 5.570e-02 6.567e-02 5.853e-02
IQR (6.6e-03) (3.1e-02) (1.4e-02) (8.4e-03) (9.3e-03) (1.6e-02)

TSP-J mean 2.443e-02 1.061e-01 7.840e-02 5.579e-02 6.560e-02 6.494e-02
std (5.0e-03) (2.2e-02) (1.5e-02) (9.1e-03) (7.1e-03) (1.6e-02)
median 2.429e-02 9.994e-02 7.544e-02 5.495e-02 6.425e-02 6.054e-02
IQR (5.8e-03) (2.8e-02) (1.6e-02) (1.1e-02) (8.0e-03) (1.8e-02)

272 Appendix B: Statistical results

Table B.17: Statistical comparison of tours obtained by generated solvers TSP[K-Q],
Ulder [319] and Ozcan [247] for the instances lu980,rw1621,nu3496, ca4663, tz6117,
eg7146.

lu980 rw1621 nu3496 ca4663 tz6117 eg7146
TSP-K mean 3.663e-02 1.075e-01 8.784e-02 6.291e-02 7.589e-02 7.091e-02

std (1.6e-02) (2.1e-02) (2.0e-02) (1.0e-02) (1.3e-02) (1.3e-02)
median 3.338e-02 1.051e-01 8.202e-02 6.160e-02 7.252e-02 6.838e-02
IQR (1.9e-02) (3.1e-02) (2.4e-02) (1.2e-02) (1.8e-02) (1.7e-02)

TSP-L mean 3.720e-02 1.287e-01 9.919e-02 7.247e-02 8.405e-02 8.800e-02
std (6.8e-03) (2.3e-02) (2.5e-02) (1.7e-02) (1.5e-02) (2.7e-02)
median 3.655e-02 1.236e-01 9.159e-02 6.802e-02 7.983e-02 7.922e-02
IQR (7.7e-03) (2.9e-02) (3.0e-02) (1.4e-02) (1.3e-02) (2.8e-02)

TSP-M mean 3.079e-02 1.069e-01 8.208e-02 6.100e-02 7.257e-02 6.726e-02
std (5.5e-03) (1.7e-02) (1.4e-02) (5.4e-03) (6.9e-03) (1.0e-02)
median 3.060e-02 1.072e-01 7.955e-02 6.027e-02 7.209e-02 6.504e-02
IQR (6.1e-03) (2.6e-02) (1.7e-02) (5.9e-03) (9.7e-03) (1.4e-02)

TSP-N mean 3.565e-02 1.305e-01 9.186e-02 6.979e-02 8.212e-02 8.381e-02
std (7.2e-03) (3.2e-02) (2.0e-02) (1.1e-02) (1.6e-02) (3.0e-02)
median 3.461e-02 1.245e-01 8.909e-02 6.779e-02 7.908e-02 7.485e-02
IQR (9.5e-03) (4.0e-02) (2.3e-02) (1.3e-02) (1.2e-02) (2.7e-02)

TSP-O mean 7.095e-02 1.485e-01 1.181e-01 9.267e-02 9.504e-02 9.411e-02
std (1.6e-02) (2.2e-02) (2.1e-02) (1.8e-02) (9.9e-03) (9.3e-02)
median 6.936e-02 1.483e-01 1.162e-01 8.760e-02 9.396e-02 9.361e-02
IQR (2.3e-02) (2.7e-02) (3.2e-02) (1.5e-02) (1.3e-02) (1.7e-02)

TSP-P mean 4.350e-02 1.412e-01 9.740e-02 7.767e-02 8.962e-02 7.476e-02
std (7.6e-03) (2.1e-02) (1.5e-02) (1.0e-02) (8.4e-03) (1.4e-02)
median 4.237e-02 1.390e-01 9.629e-02 7.630e-02 8.930e-02 7.129e-02
IQR (1.0e-02) (2.3e-02) (1.9e-02) (1.5e-02) (1.1e-02) (1.5e-02)

TSP-Q mean 3.391e-02 1.098e-01 8.626e-02 6.113e-02 7.247e-02 6.890e-02
std (6.2e-03) (1.7e-02) (1.5e-02) (6.2e-03) (6.6e-03) (1.0e-02)
median 3.435e-02 1.104e-01 8.564e-02 6.044e-02 7.218e-02 6.761e-02
IQR (9.2e-03) (2.3e-02) (1.5e-02) (7.9e-03) (8.8e-03) (1.3e-02)

Ulder mean 2.320e-01 2.759e-01 2.514e-01 2.567e-01 2.520e-01 2.636e-01
std (1.9e-02) (1.7e-02) (1.2e-02) (3.8e-02) (6.9e-03) (7.8e-03)
median 2.331e-01 2.718e-01 2.510e-01 2.714e-01 2.520e-01 2.610e-01
IQR (2.1e-02) (2.8e-02) (1.4e-02) (2.1e-02) (1.4e-02) (1.2e-02)

Ozcan mean 2.317e-01 2.757e-01 2.534e-01 2.637e-01 2.435e-01 2.609e-01
std (1.4e-02) (1.7e-02) (1.3e-02) (7.9e-03) (3.3e-16) (6.4e-03)
median 2.301e-01 2.708e-01 2.535e-01 2.602e-01 2.435e-01 2.609e-01
IQR (2.1e-02) (2.8e-02) (1.9e-02) (1.0e-02) (0.0e+00) (7.1e-03)

Appendix B: Statistical results 273

Table B.18: Statistical comparison of tours obtained by solvers TSP[A-J] for the in-
stances ym7663,ei8246,ar9152, ja9847, gr9882, and kz9976.

ym7663 ei8246 ar9152 ja9847 gr9882 kz9976
TSP-A mean 1.018e-01 5.558e-02 1.052e-01 1.263e-01 9.454e-02 7.686e-02

std (1.6e-02) (5.8e-03) (1.5e-02) (2.7e-02) (1.5e-02) (8.5e-03)
median 9.891e-02 5.483e-02 1.030e-01 1.247e-01 9.224e-02 7.509e-02
IQR (2.0e-02) (5.9e-03) (2.0e-02) (4.1e-02) (2.2e-02) (1.1e-02)

TSP-B mean 9.535e-02 5.095e-02 9.474e-02 1.168e-01 9.206e-02 6.705e-02
std (2.3e-02) (5.0e-03) (1.8e-02) (4.2e-02) (1.9e-02) (9.1e-03)
median 8.891e-02 5.044e-02 9.094e-02 1.037e-01 8.477e-02 6.491e-02
IQR (1.8e-02) (6.8e-03) (1.6e-02) (6.0e-02) (2.8e-02) (7.7e-03)

TSP-C mean 1.230e-01 6.351e-02 1.263e-01 1.479e-01 1.160e-01 9.648e-02
std (2.9e-02) (6.3e-03) (2.3e-02) (3.9e-02) (2.4e-02) (1.5e-02)
median 1.139e-01 6.274e-02 1.207e-01 1.375e-01 1.160e-01 9.473e-02
IQR (4.2e-02) (7.8e-03) (2.6e-02) (6.1e-02) (4.0e-02) (2.2e-02)

TSP-D mean 8.590e-02 4.930e-02 9.239e-02 8.663e-02 7.806e-02 6.193e-02
std (1.5e-02) (5.1e-03) (1.8e-02) (1.6e-02) (1.9e-02) (4.6e-03)
median 8.304e-02 4.843e-02 9.031e-02 8.285e-02 7.522e-02 6.144e-02
IQR (1.1e-02) (4.7e-03) (1.3e-02) (2.3e-02) (1.1e-02) (5.9e-03)

TSP-E mean 1.050e-01 5.838e-02 1.044e-01 1.268e-01 9.451e-02 7.999e-02
std (2.0e-02) (8.6e-03) (1.9e-02) (4.3e-02) (1.7e-02) (1.2e-02)
median 9.831e-02 5.627e-02 1.002e-01 1.173e-01 8.892e-02 7.635e-02
IQR (1.9e-02) (8.5e-03) (1.7e-02) (5.0e-02) (2.0e-02) (1.3e-02)

TSP-F mean 9.473e-02 5.470e-02 9.980e-02 1.064e-01 8.317e-02 7.135e-02
std (1.0e-02) (5.8e-03) (1.1e-02) (2.5e-02) (7.6e-03) (8.4e-03)
median 9.348e-02 5.330e-02 9.731e-02 1.013e-01 8.334e-02 6.900e-02
IQR (1.2e-02) (5.5e-03) (1.3e-02) (3.4e-02) (1.0e-02) (9.4e-03)

TSP-G mean 1.017e-01 5.770e-02 1.059e-01 1.185e-01 9.271e-02 7.855e-02
std (1.5e-02) (7.9e-03) (1.4e-02) (2.9e-02) (1.4e-02) (1.3e-02)
median 9.938e-02 5.575e-02 1.042e-01 1.152e-01 9.036e-02 7.582e-02
IQR (1.4e-02) (8.5e-03) (2.2e-02) (3.6e-02) (2.0e-02) (1.5e-02)

TSP-H mean 9.628e-02 5.189e-02 9.955e-02 1.185e-01 8.896e-02 6.957e-02
std (1.4e-02) (5.0e-03) (1.4e-02) (3.2e-02) (1.3e-02) (1.0e-02)
median 9.368e-02 5.148e-02 9.788e-02 1.132e-01 8.653e-02 6.781e-02
IQR (1.7e-02) (6.1e-03) (2.1e-02) (4.7e-02) (1.7e-02) (9.4e-03)

TSP-I mean 9.663e-02 5.031e-02 9.785e-02 1.004e-01 8.337e-02 6.802e-02
std (1.6e-02) (4.1e-03) (1.4e-02) (2.7e-02) (1.1e-02) (9.2e-03)
median 9.246e-02 4.992e-02 9.585e-02 9.445e-02 8.098e-02 6.618e-02
IQR (2.1e-02) (5.2e-03) (2.1e-02) (3.2e-02) (1.4e-02) (8.9e-03)

TSP-J mean 9.440e-02 5.200e-02 1.000e-01 1.100e-01 8.930e-02 6.997e-02
std (1.5e-02) (5.1e-03) (1.4e-02) (2.5e-02) (1.2e-02) (8.9e-03)
median 9.124e-02 5.132e-02 9.971e-02 1.080e-01 8.833e-02 6.908e-02
IQR (1.5e-02) (5.9e-03) (1.7e-02) (3.8e-02) (1.8e-02) (1.1e-02)

274 Appendix B: Statistical results

Table B.19: Statistical comparison of tours obtained by generated solvers TSP[K-Q],
Ulder [319] and Ozcan [247] for the instances ym7663,ei8246,ar9152, ja9847, gr9882,
and kz9976.

ym7663 ei8246 ar9152 ja9847 gr9882 kz9976
TSP-K mean 9.652e-02 5.861e-02 1.068e-01 1.042e-01 8.540e-02 7.503e-02

std (1.0e-02) (7.6e-03) (1.3e-02) (2.3e-02) (8.4e-03) (1.2e-02)
median 9.568e-02 5.696e-02 1.048e-01 9.913e-02 8.489e-02 7.253e-02
IQR (1.4e-02) (8.4e-03) (1.8e-02) (3.2e-02) (1.2e-02) (1.5e-02)

TSP-L mean 1.139e-01 6.056e-02 1.163e-01 1.379e-01 1.028e-01 8.585e-02
std (2.5e-02) (8.2e-03) (1.9e-02) (4.7e-02) (2.1e-02) (1.6e-02)
median 1.046e-01 5.840e-02 1.114e-01 1.266e-01 9.713e-02 8.160e-02
IQR (2.6e-02) (7.5e-03) (2.3e-02) (7.6e-02) (2.8e-02) (1.9e-02)

TSP-M mean 9.554e-02 5.528e-02 1.012e-01 1.044e-01 8.539e-02 7.193e-02
std (9.8e-03) (4.6e-03) (1.2e-02) (2.2e-02) (7.8e-03) (7.7e-03)
median 9.434e-02 5.492e-02 1.003e-01 1.046e-01 8.506e-02 7.045e-02
IQR (1.1e-02) (4.6e-03) (1.6e-02) (3.3e-02) (1.2e-02) (9.0e-03)

TSP-N mean 1.050e-01 5.855e-02 1.081e-01 1.370e-01 9.990e-02 8.156e-02
std (1.9e-02) (7.0e-03) (1.5e-02) (4.1e-02) (2.1e-02) (1.2e-02)
median 9.961e-02 5.755e-02 1.066e-01 1.259e-01 9.535e-02 7.978e-02
IQR (1.8e-02) (7.3e-03) (2.0e-02) (6.1e-02) (3.0e-02) (1.5e-02)

TSP-O mean 1.115e-01 7.036e-02 1.184e-01 1.147e-01 9.369e-02 9.069e-02
std (1.1e-02) (9.7e-03) (1.2e-02) (2.0e-02) (8.2e-03) (1.4e-02)
median 1.101e-01 6.816e-02 1.177e-01 1.123e-01 9.252e-02 8.697e-02
IQR (1.5e-02) (1.4e-02) (1.6e-02) (2.8e-02) (1.1e-02) (1.7e-02)

TSP-P mean 1.098e-01 6.367e-02 1.179e-01 1.323e-01 1.023e-01 9.144e-02
std (1.3e-02) (7.4e-03) (1.5e-02) (2.6e-02) (1.5e-02) (1.4e-02)
median 1.078e-01 6.275e-02 1.164e-01 1.285e-01 1.017e-01 8.894e-02
IQR (1.7e-02) (8.4e-03) (2.3e-02) (4.1e-02) (2.1e-02) (1.9e-02)

TSP-Q mean 9.325e-02 5.710e-02 1.027e-01 1.044e-01 8.439e-02 7.184e-02
std (9.4e-03) (7.4e-03) (1.3e-02) (2.4e-02) (6.9e-03) (6.7e-03)
median 9.236e-02 5.530e-02 1.024e-01 9.959e-02 8.400e-02 7.153e-02
IQR (1.2e-02) (7.6e-03) (1.8e-02) (3.8e-02) (9.8e-03) (7.8e-03)

Ulder mean 2.712e-01 2.519e-01 2.670e-01 2.661e-01 2.648e-01 2.658e-01
std (8.7e-03) (5.2e-03) (5.6e-03) (8.5e-03) (8.0e-03) (9.9e-03)
median 2.713e-01 2.515e-01 2.674e-01 2.658e-01 2.633e-01 2.615e-01
IQR (1.2e-02) (5.0e-03) (5.2e-03) (6.9e-03) (1.4e-02) (7.3e-03)

Ozcan mean 2.723e-01 2.488e-01 2.649e-01 2.803e-01 2.659e-01 2.623e-01
std (1.1e-02) (9.0e-03) (1.1e-02) (1.5e-02) (1.1e-02) (6.3e-03)
median 2.720e-01 2.439e-01 2.669e-01 2.789e-01 2.637e-01 2.612e-01
IQR (1.5e-02) (1.2e-02) (1.5e-02) (2.3e-02) (1.5e-02) (5.4e-03)

Appendix B: Statistical results 275

Table B.20: Statistical comparison of tours obtained by solvers TSP[A-J] for some
instances with a greater number 10,000 cities.

fi10639 ho14473 mo14185 it16862 vm22775 sw24978 bm33708
TSP-A mean 6.342e-02 1.508e-01 6.144e-02 9.769e+00 9.373e-02 7.365e-02 7.352e-02

std (5.4e-03) (1.8e-02) (5.5e-03) (1.1e-01) (1.6e-02) (7.4e-03) (5.3e-03)
median 6.302e-02 1.482e-01 6.046e-02 9.757e+00 9.392e-02 7.201e-02 7.289e-02
IQR (7.4e-03) (2.2e-02) (5.4e-03) (1.6e-01) (2.0e-02) (1.0e-02) (7.8e-03)

TSP-B mean 5.926e-02 1.452e-01 5.666e-02 9.714e+00 9.951e-02 6.906e-02 6.915e-02
std (6.2e-03) (2.4e-02) (4.9e-03) (1.5e-01) (2.6e-02) (9.0e-03) (7.4e-03)
median 5.858e-02 1.393e-01 5.533e-02 9.667e+00 9.759e-02 6.667e-02 6.776e-02
IQR (7.9e-03) (2.8e-02) (6.2e-03) (1.6e-01) (4.4e-02) (8.9e-03) (5.9e-03)

TSP-C mean 7.144e-02 1.806e-01 7.098e-02 9.875e+00 1.328e-01 8.565e-02 8.492e-02
std (7.9e-03) (2.9e-02) (8.3e-03) (1.6e-01) (3.8e-02) (1.2e-02) (1.3e-02)
median 7.057e-02 1.748e-01 6.900e-02 9.854e+00 1.312e-01 8.318e-02 8.019e-02
IQR (7.3e-03) (3.8e-02) (8.2e-03) (2.2e-01) (6.2e-02) (1.9e-02) (1.4e-02)

TSP-D mean 5.926e-02 1.241e-01 5.633e-02 9.699e+00 1.513e-01 1.474e-01 1.495e-01
std (1.4e-02) (1.0e-02) (1.1e-02) (8.1e-02) (5.4e-02) (5.6e-02) (5.3e-02)
median 5.774e-02 1.218e-01 5.448e-02 9.695e+00 1.364e-01 1.383e-01 1.493e-01
IQR (6.6e-03) (1.2e-02) (4.0e-03) (1.4e-01) (7.8e-02) (1.1e-01) (9.9e-02)

TSP-E mean 6.664e-02 1.476e-01 6.372e-02 9.790e+00 1.115e-01 7.455e-02 7.308e-02
std (6.2e-03) (2.3e-02) (5.6e-03) (1.6e-01) (2.7e-02) (8.3e-03) (6.5e-03)
median 6.583e-02 1.426e-01 6.256e-02 9.744e+00 1.058e-01 7.206e-02 7.129e-02
IQR (7.3e-03) (3.2e-02) (6.1e-03) (1.8e-01) (3.6e-02) (1.2e-02) (7.5e-03)

TSP-F mean 6.262e-02 1.317e-01 5.922e-02 9.712e+00 8.696e-02 6.653e-02 7.056e-02
std (5.0e-03) (1.1e-02) (3.4e-03) (9.1e-02) (1.4e-02) (3.8e-03) (4.0e-03)
median 6.236e-02 1.311e-01 5.854e-02 9.697e+00 9.197e-02 6.559e-02 7.016e-02
IQR (5.1e-03) (1.8e-02) (5.4e-03) (1.6e-01) (2.3e-02) (3.8e-03) (5.2e-03)

TSP-G mean 6.560e-02 1.451e-01 6.142e-02 9.779e+00 9.651e-02 7.155e-02 7.496e-02
std (6.8e-03) (1.6e-02) (5.4e-03) (1.1e-01) (1.7e-02) (5.8e-03) (6.0e-03)
median 6.461e-02 1.467e-01 6.009e-02 9.786e+00 9.715e-02 7.102e-02 7.490e-02
IQR (6.6e-03) (2.1e-02) (6.7e-03) (1.5e-01) (2.4e-02) (8.3e-03) (8.1e-03)

TSP-H mean 6.051e-02 1.416e-01 5.724e-02 9.724e+00 8.977e-02 6.789e-02 7.078e-02
std (5.8e-03) (1.6e-02) (4.5e-03) (1.1e-01) (1.6e-02) (6.1e-03) (5.0e-03)
median 6.000e-02 1.416e-01 5.658e-02 9.728e+00 8.965e-02 6.698e-02 7.013e-02
IQR (6.3e-03) (2.3e-02) (5.3e-03) (1.5e-01) (2.4e-02) (7.0e-03) (7.9e-03)

TSP-I mean 5.935e-02 1.358e-01 5.592e-02 9.683e+00 8.337e-02 6.658e-02 6.954e-02
std (5.3e-03) (1.2e-02) (4.2e-03) (9.9e-02) (1.4e-02) (5.7e-03) (5.6e-03)
median 5.874e-02 1.362e-01 5.504e-02 9.651e+00 8.362e-02 6.557e-02 6.877e-02
IQR (6.7e-03) (1.7e-02) (5.8e-03) (1.4e-01) (2.2e-02) (7.5e-03) (6.4e-03)

TSP-J mean 5.941e-02 1.431e-01 5.792e-02 9.721e+00 9.192e-02 6.806e-02 7.128e-02
std (5.2e-03) (1.4e-02) (4.9e-03) (9.3e-02) (1.7e-02) (5.6e-03) (6.5e-03)
median 5.996e-02 1.421e-01 5.652e-02 9.739e+00 9.194e-02 6.688e-02 7.037e-02
IQR (7.4e-03) (1.8e-02) (6.0e-03) (1.3e-01) (2.2e-02) (7.6e-03) (6.7e-03)

276 Appendix B: Statistical results

Table B.21: Statistical comparison of tours obtained by generated solvers TSP[K-Q],
Ulder [319] and Ozcan [247] for some instances with a greater number 10,000 cities.

fi10639 ho14473 mo14185 it16862 vm22775 sw24978 bm33708
TSP-K mean 6.431e-02 1.333e-01 6.108e-02 9.745e+00 8.597e-02 6.939e-02 7.175e-02

std (7.4e-03) (1.1e-02) (5.5e-03) (8.2e-02) (1.3e-02) (5.7e-03) (4.6e-03)
median 6.325e-02 1.333e-01 6.030e-02 9.749e+00 8.933e-02 6.819e-02 7.140e-02
IQR (8.0e-03) (1.8e-02) (6.1e-03) (1.2e-01) (2.4e-02) (7.4e-03) (6.6e-03)

TSP-L mean 6.776e-02 1.575e-01 6.675e-02 9.810e+00 1.113e-01 7.657e-02 7.789e-02
std (6.7e-03) (2.2e-02) (7.3e-03) (1.4e-01) (2.6e-02) (9.8e-03) (8.0e-03)
median 6.715e-02 1.550e-01 6.486e-02 9.796e+00 1.107e-01 7.510e-02 7.769e-02
IQR (8.2e-03) (3.0e-02) (9.4e-03) (1.9e-01) (4.1e-02) (1.2e-02) (1.0e-02)

TSP-M mean 6.326e-02 1.343e-01 6.035e-02 9.730e+00 8.460e-02 6.895e-02 7.118e-02
std (5.3e-03) (1.0e-02) (4.1e-03) (9.0e-02) (1.3e-02) (5.1e-03) (4.6e-03)
median 6.344e-02 1.333e-01 5.965e-02 9.724e+00 9.001e-02 6.831e-02 7.081e-02
IQR (7.0e-03) (1.4e-02) (5.7e-03) (1.5e-01) (2.4e-02) (6.7e-03) (6.1e-03)

TSP-N mean 6.562e-02 1.532e-01 6.395e-02 9.809e+00 1.039e-01 7.507e-02 7.624e-02
std (4.6e-03) (1.8e-02) (5.6e-03) (1.4e-01) (2.6e-02) (9.2e-03) (9.1e-03)
median 6.543e-02 1.507e-01 6.279e-02 9.784e+00 1.005e-01 7.271e-02 7.317e-02
IQR (5.7e-03) (2.2e-02) (6.3e-03) (1.5e-01) (4.1e-02) (1.3e-02) (9.2e-03)

TSP-O mean 7.993e-02 1.358e-01 7.103e-02 9.849e+00 9.254e-02 7.688e-02 7.752e-02
std (7.7e-03) (1.2e-02) (4.7e-03) (9.1e-02) (1.5e-02) (6.0e-03) (5.4e-03)
median 7.827e-02 1.352e-01 7.090e-02 9.847e+00 9.415e-02 7.648e-02 7.720e-02
IQR (1.1e-02) (1.7e-02) (5.4e-03) (1.1e-01) (2.7e-02) (8.6e-03) (7.6e-03)

TSP-P mean 7.250e-02 1.582e-01 7.004e-02 9.830e+00 1.106e-01 8.199e-02 8.221e-02
std (6.4e-03) (1.4e-02) (6.3e-03) (1.2e-01) (1.8e-02) (8.3e-03) (7.1e-03)
median 7.198e-02 1.567e-01 6.837e-02 9.819e+00 1.079e-01 8.032e-02 8.138e-02
IQR (6.9e-03) (1.8e-02) (8.9e-03) (1.8e-01) (2.8e-02) (1.2e-02) (8.5e-03)

TSP-Q mean 6.365e-02 1.330e-01 6.078e-02 9.725e+00 8.514e-02 6.857e-02 7.204e-02
std (5.7e-03) (1.2e-02) (4.6e-03) (7.7e-02) (1.3e-02) (5.0e-03) (4.7e-03)
median 6.350e-02 1.317e-01 5.988e-02 9.728e+00 8.866e-02 6.761e-02 7.175e-02
IQR (7.5e-03) (1.9e-02) (5.8e-03) (1.2e-01) (2.2e-02) (5.7e-03) (7.1e-03)

Ulder mean 2.458e-01 2.606e-01 2.401e-01 1.174e+01 2.542e-01 2.415e-01 2.516e-01
std (3.3e-02) (6.2e-03) (9.0e-03) (1.6e-01) (1.4e-02) (3.9e-03) (2.9e-03)
median 2.558e-01 2.622e-01 2.374e-01 1.165e+01 2.510e-01 2.403e-01 2.521e-01
IQR (1.4e-02) (1.4e-02) (9.3e-03) (2.5e-01) (2.6e-02) (7.9e-03) (4.2e-03)

Ozcan mean 2.555e-01 2.608e-01 2.373e-01 1.174e+01 2.551e-01 2.472e-01 2.486e-01
std (6.8e-03) (5.9e-03) (7.0e-03) (1.6e-01) (1.3e-02) (5.4e-03) (4.4e-03)
median 2.558e-01 2.622e-01 2.375e-01 1.165e+01 2.528e-01 2.455e-01 2.488e-01
IQR (9.7e-03) (1.4e-02) (8.7e-03) (2.5e-01) (2.5e-02) (6.7e-03) (6.5e-03)

Appendix B: Statistical results 277

Ta
bl

e
B

.2
2:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

U
ld

er
[3

19
]a

nd
O

zc
an

[2
47

]a
nd

th
e

ge
ne

ra
te

d
so

lv
er

s
T

SP
-[

A
-E

]

U
ld

er
O

zc
an

vs
vs

T
SP

-A
T

SP
-B

T
SP

-C
T

SP
-D

T
SP

-E
T

SP
-A

T
SP

-B
T

SP
-C

T
SP

-D
T

SP
-E

u2
15

2
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
us

a1
35

09
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
d1

85
12

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

dj
38

0.
94

(−
)

0.
94

(−
)

0.
94

(−
)

0.
94

(−
)

0.
94

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
qa

19
4

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

zi
92

9
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
lu

98
0

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

rw
16

21
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
nu

34
96

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

ca
46

63
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
tz

61
17

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

eg
71

46
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
ym

76
63

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

ei
82

46
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
ar

91
52

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

ja
98

47
1

(−
)

1
(−

)
0.

99
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

gr
98

82
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
kz

99
76

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

fi1
06

39
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
ho

14
47

3
1

(−
)

1
(−

)
0.

98
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
0.

99
(−

)
1

(−
)

1
(−

)
m

o1
41

85
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
it1

68
62

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

vm
22

77
5

1
(−

)
1

(−
)

1
(−

)
0.

95
(−

)
0.

95
(−

)
1

(−
)

1
(−

)
1

(−
)

0.
96

(−
)

0.
96

(−
)

sw
24

97
8

1
(−

)
1

(−
)

1
(−

)
0.

97
(−

)
0.

97
(−

)
1

(−
)

1
(−

)
1

(−
)

0.
99

(−
)

0.
99

(−
)

bm
33

70
8

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

0.
99

(−
)

0.
99

(−
)

278 Appendix B: Statistical results

Ta
bl

e
B

.2
3:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

U
ld

er
[3

19
]a

nd
th

e
ge

ne
ra

te
d

so
lv

er
s

T
SP

-[
F-

Q
]

U
ld

er
vs

T
SP

-F
T

SP
-G

T
SP

-H
T

SP
-I

T
SP

-J
T

SP
-K

T
SP

-L
T

SP
-M

T
SP

-N
T

SP
-O

T
SP

-P
T

SP
-Q

u2
15

2
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
us

a1
35

09
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
d1

85
12

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

dj
38

0.
94

(−
)

0.
94

(−
)

0.
94

(−
)

0.
94

(−
)

0.
94

(−
)

0.
94

(−
)

0.
94

(−
)

0.
94

(−
)

0.
94

(−
)

0.
81

(−
)

0.
94

(−
)

0.
94

(−
)

qa
19

4
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
zi

92
9

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

lu
98

0
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
rw

16
21

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

nu
34

96
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
ca

46
63

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

tz
61

17
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
eg

71
46

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

ym
76

63
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
ei

82
46

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

ar
91

52
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
ja

98
47

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

gr
98

82
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
kz

99
76

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

fi1
06

39
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
ho

14
47

3
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
m

o1
41

85
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
it1

68
62

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

vm
22

77
5

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

sw
24

97
8

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

bm
33

70
8

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

Appendix B: Statistical results 279

Ta
bl

e
B

.2
4:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

O
zc

an
[2

47
]a

nd
th

e
ge

ne
ra

te
d

so
lv

er
s

T
SP

-[
F-

Q
]

O
zc

an
vs

T
SP

-F
T

SP
-G

T
SP

-H
T

SP
-I

T
SP

-J
T

SP
-K

T
SP

-L
T

SP
-M

T
SP

-N
T

SP
-O

T
SP

-P
T

SP
-Q

u2
15

2
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
us

a1
35

09
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
d1

85
12

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

dj
38

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
0.

95
(−

)
1

(−
)

1
(−

)
qa

19
4

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

zi
92

9
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
lu

98
0

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

rw
16

21
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
nu

34
96

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

ca
46

63
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
tz

61
17

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

eg
71

46
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
ym

76
63

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

ei
82

46
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
ar

91
52

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

ja
98

47
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
gr

98
82

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

kz
99

76
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
fi1

06
39

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

ho
14

47
3

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

m
o1

41
85

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

it1
68

62
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
vm

22
77

5
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
sw

24
97

8
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
bm

33
70

8
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)

280 Appendix B: Statistical results

Ta
bl

e
B

.2
5:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

s
T

SP
-[

A
-E

]

T
SP

-A
T

SP
-B

T
SP

-C
T

SP
-D

vs
vs

vs
vs

T
SP

-B
T

SP
-C

T
SP

-D
T

SP
-E

T
SP

-C
T

SP
-D

T
SP

-E
T

SP
-D

T
SP

-E
T

SP
-E

u2
15

2
0.

84
(−

)
0.

93
(+

)
0.

93
(−

)
0.

57
(=

)
0.

99
(+

)
0.

68
(−

)
0.

88
(+

)
0.

99
(−

)
0.

91
(−

)
0.

95
(+

)
us

a1
35

09
0.

77
(−

)
0.

79
(+

)
0.

85
(−

)
0.

54
(=

)
0.

92
(+

)
0.

61
(−

)
0.

79
(+

)
0.

95
(−

)
0.

76
(−

)
0.

87
(+

)
d1

85
12

0.
85

(−
)

0.
94

(+
)

0.
81

(−
)

0.
66

(+
)

0.
99

(+
)

0.
55

(=
)

0.
92

(+
)

0.
98

(−
)

0.
86

(−
)

0.
88

(+
)

dj
38

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

qa
19

4
0.

6
(−

)
0.

56
(+

)
0.

6
(−

)
0.

57
(=

)
0.

69
(+

)
0.

5
(=

)
0.

68
(+

)
0.

69
(−

)
0.

51
(=

)
0.

68
(+

)
zi

92
9

0.
84

(−
)

0.
81

(+
)

0.
86

(−
)

0.
58

(=
)

0.
98

(+
)

0.
55

(=
)

0.
89

(+
)

0.
97

(−
)

0.
75

(−
)

0.
9

(+
)

lu
98

0
0.

85
(−

)
0.

87
(+

)
0.

93
(−

)
0.

55
(=

)
0.

98
(+

)
0.

61
(−

)
0.

88
(+

)
0.

99
(−

)
0.

84
(−

)
0.

95
(+

)
rw

16
21

0.
86

(−
)

0.
74

(+
)

0.
95

(−
)

0.
56

(=
)

0.
97

(+
)

0.
74

(−
)

0.
83

(+
)

0.
99

(−
)

0.
8

(−
)

0.
95

(+
)

nu
34

96
0.

75
(−

)
0.

64
(+

)
0.

87
(−

)
0.

52
(=

)
0.

84
(+

)
0.

59
(−

)
0.

76
(+

)
0.

94
(−

)
0.

62
(−

)
0.

88
(+

)
ca

46
63

0.
8

(−
)

0.
8

(+
)

0.
92

(−
)

0.
53

(=
)

0.
95

(+
)

0.
64

(−
)

0.
83

(+
)

0.
99

(−
)

0.
81

(−
)

0.
94

(+
)

tz
61

17
0.

87
(−

)
0.

88
(+

)
0.

95
(−

)
0.

52
(=

)
0.

97
(+

)
0.

66
(−

)
0.

85
(+

)
0.

99
(−

)
0.

86
(−

)
0.

94
(+

)
eg

71
46

0.
66

(−
)

0.
75

(+
)

0.
8

(−
)

0.
63

(+
)

0.
85

(+
)

0.
64

(−
)

0.
77

(+
)

0.
95

(−
)

0.
66

(−
)

0.
9

(+
)

ym
76

63
0.

67
(−

)
0.

73
(+

)
0.

84
(−

)
0.

52
(=

)
0.

83
(+

)
0.

63
(−

)
0.

7
(+

)
0.

95
(−

)
0.

71
(−

)
0.

87
(+

)
ei

82
46

0.
74

(−
)

0.
84

(+
)

0.
85

(−
)

0.
6

(=
)

0.
95

(+
)

0.
62

(−
)

0.
8

(+
)

0.
97

(−
)

0.
74

(−
)

0.
89

(+
)

ar
91

52
0.

74
(−

)
0.

79
(+

)
0.

78
(−

)
0.

54
(=

)
0.

91
(+

)
0.

53
(=

)
0.

71
(+

)
0.

95
(−

)
0.

82
(−

)
0.

76
(+

)
ja

98
47

0.
63

(−
)

0.
65

(+
)

0.
9

(−
)

0.
55

(=
)

0.
74

(+
)

0.
73

(−
)

0.
59

(=
)

0.
95

(−
)

0.
67

(−
)

0.
84

(+
)

gr
98

82
0.

58
(=

)
0.

77
(+

)
0.

87
(−

)
0.

52
(=

)
0.

79
(+

)
0.

77
(−

)
0.

57
(=

)
0.

96
(−

)
0.

77
(−

)
0.

86
(+

)
kz

99
76

0.
84

(−
)

0.
88

(+
)

0.
96

(−
)

0.
55

(=
)

0.
96

(+
)

0.
69

(−
)

0.
87

(+
)

1
(−

)
0.

82
(−

)
0.

97
(+

)
fi1

06
39

0.
7

(−
)

0.
83

(+
)

0.
77

(−
)

0.
66

(+
)

0.
91

(+
)

0.
56

(=
)

0.
81

(+
)

0.
94

(−
)

0.
71

(−
)

0.
87

(+
)

ho
14

47
3

0.
61

(−
)

0.
82

(+
)

0.
92

(−
)

0.
58

(=
)

0.
85

(+
)

0.
82

(−
)

0.
53

(=
)

0.
98

(−
)

0.
83

(−
)

0.
85

(+
)

m
o1

41
85

0.
77

(−
)

0.
87

(+
)

0.
86

(−
)

0.
64

(+
)

0.
96

(+
)

0.
57

(=
)

0.
86

(+
)

0.
98

(−
)

0.
81

(−
)

0.
93

(+
)

it1
68

62
0.

68
(−

)
0.

7
(+

)
0.

68
(−

)
0.

5
(=

)
0.

8
(+

)
0.

53
(=

)
0.

68
(+

)
0.

84
(−

)
0.

68
(−

)
0.

68
(+

)
vm

22
77

5
0.

55
(+

)
0.

8
(+

)
0.

86
(+

)
0.

7
(+

)
0.

75
(+

)
0.

8
(+

)
0.

62
(+

)
0.

58
(=

)
0.

66
(−

)
0.

72
(−

)
sw

24
97

8
0.

72
(−

)
0.

82
(+

)
0.

95
(+

)
0.

52
(=

)
0.

9
(+

)
0.

97
(+

)
0.

74
(+

)
0.

84
(+

)
0.

8
(−

)
0.

94
(−

)
bm

33
70

8
0.

76
(−

)
0.

83
(+

)
0.

97
(+

)
0.

55
(=

)
0.

94
(+

)
0.

98
(+

)
0.

73
(+

)
0.

87
(+

)
0.

86
(−

)
0.

97
(−

)

Appendix B: Statistical results 281

Ta
bl

e
B

.2
6:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

T
SP

-A
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

T
SP

-[
F-

Q
]

T
SP

-A
vs

T
SP

-F
T

SP
-G

T
SP

-H
T

SP
-I

T
SP

-J
T

SP
-K

T
SP

-L
T

SP
-M

T
SP

-N
T

SP
-O

T
SP

-P
T

SP
-Q

u2
15

2
0.

71
(−

)
0.

56
(=

)
0.

88
(−

)
0.

86
(−

)
0.

85
(−

)
0.

61
(−

)
0.

66
(+

)
0.

65
(−

)
0.

58
(=

)
0.

9
(+

)
0.

8
(+

)
0.

52
(=

)
us

a1
35

09
0.

66
(−

)
0.

52
(=

)
0.

73
(−

)
0.

77
(−

)
0.

7
(−

)
0.

55
(=

)
0.

67
(+

)
0.

54
(=

)
0.

62
(+

)
0.

86
(+

)
0.

76
(+

)
0.

58
(=

)
d1

85
12

0.
56

(=
)

0.
56

(=
)

0.
81

(−
)

0.
81

(−
)

0.
79

(−
)

0.
61

(+
)

0.
82

(+
)

0.
51

(=
)

0.
69

(+
)

0.
98

(+
)

0.
86

(+
)

0.
57

(=
)

dj
38

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
68

(−
)

0.
5

(=
)

0.
5

(=
)

qa
19

4
0.

55
(=

)
0.

62
(+

)
0.

51
(=

)
0.

51
(=

)
0.

56
(=

)
0.

62
(+

)
0.

65
(+

)
0.

51
(=

)
0.

57
(=

)
1

(+
)

0.
61

(+
)

0.
5

(=
)

zi
92

9
0.

6
(=

)
0.

59
(=

)
0.

72
(−

)
0.

81
(−

)
0.

73
(−

)
0.

61
(+

)
0.

77
(+

)
0.

5
(=

)
0.

63
(+

)
0.

99
(+

)
0.

82
(+

)
0.

65
(+

)
lu

98
0

0.
69

(−
)

0.
51

(=
)

0.
86

(−
)

0.
85

(−
)

0.
85

(−
)

0.
52

(=
)

0.
66

(+
)

0.
61

(−
)

0.
59

(=
)

0.
99

(+
)

0.
85

(+
)

0.
54

(=
)

rw
16

21
0.

81
(−

)
0.

52
(=

)
0.

78
(−

)
0.

8
(−

)
0.

76
(−

)
0.

73
(−

)
0.

5
(=

)
0.

74
(−

)
0.

51
(=

)
0.

71
(+

)
0.

66
(+

)
0.

71
(−

)
nu

34
96

0.
66

(−
)

0.
52

(=
)

0.
62

(−
)

0.
72

(−
)

0.
72

(−
)

0.
57

(=
)

0.
6

(=
)

0.
64

(−
)

0.
52

(=
)

0.
85

(+
)

0.
64

(+
)

0.
56

(=
)

ca
46

63
0.

71
(−

)
0.

51
(=

)
0.

72
(−

)
0.

81
(−

)
0.

83
(−

)
0.

62
(−

)
0.

59
(=

)
0.

7
(−

)
0.

57
(=

)
0.

92
(+

)
0.

78
(+

)
0.

68
(−

)
tz

61
17

0.
75

(−
)

0.
56

(=
)

0.
84

(−
)

0.
84

(−
)

0.
89

(−
)

0.
6

(−
)

0.
62

(+
)

0.
68

(−
)

0.
56

(=
)

0.
89

(+
)

0.
82

(+
)

0.
68

(−
)

eg
71

46
0.

52
(=

)
0.

58
(=

)
0.

57
(=

)
0.

67
(−

)
0.

62
(−

)
0.

55
(=

)
0.

74
(+

)
0.

51
(=

)
0.

65
(+

)
0.

87
(+

)
0.

62
(+

)
0.

53
(=

)
ym

76
63

0.
63

(−
)

0.
5

(=
)

0.
61

(−
)

0.
61

(−
)

0.
65

(−
)

0.
58

(=
)

0.
64

(+
)

0.
61

(−
)

0.
54

(=
)

0.
71

(+
)

0.
67

(+
)

0.
66

(−
)

ei
82

46
0.

56
(=

)
0.

56
(=

)
0.

69
(−

)
0.

78
(−

)
0.

69
(−

)
0.

63
(+

)
0.

72
(+

)
0.

5
(=

)
0.

65
(+

)
0.

93
(+

)
0.

84
(+

)
0.

55
(=

)
ar

91
52

0.
61

(−
)

0.
52

(=
)

0.
6

(=
)

0.
65

(−
)

0.
6

(=
)

0.
55

(=
)

0.
67

(+
)

0.
57

(=
)

0.
56

(=
)

0.
77

(+
)

0.
73

(+
)

0.
53

(=
)

ja
98

47
0.

71
(−

)
0.

59
(=

)
0.

59
(=

)
0.

78
(−

)
0.

67
(−

)
0.

73
(−

)
0.

54
(=

)
0.

73
(−

)
0.

55
(=

)
0.

63
(−

)
0.

56
(=

)
0.

73
(−

)
gr

98
82

0.
73

(−
)

0.
53

(=
)

0.
61

(−
)

0.
73

(−
)

0.
59

(=
)

0.
68

(−
)

0.
61

(+
)

0.
68

(−
)

0.
55

(=
)

0.
52

(=
)

0.
65

(+
)

0.
7

(−
)

kz
99

76
0.

7
(−

)
0.

51
(=

)
0.

77
(−

)
0.

8
(−

)
0.

74
(−

)
0.

59
(−

)
0.

69
(+

)
0.

68
(−

)
0.

62
(+

)
0.

82
(+

)
0.

82
(+

)
0.

68
(−

)
fi1

06
39

0.
54

(=
)

0.
6

(=
)

0.
65

(−
)

0.
7

(−
)

0.
7

(−
)

0.
53

(=
)

0.
7

(+
)

0.
51

(=
)

0.
63

(+
)

0.
97

(+
)

0.
87

(+
)

0.
52

(=
)

ho
14

47
3

0.
82

(−
)

0.
59

(=
)

0.
64

(−
)

0.
75

(−
)

0.
62

(−
)

0.
79

(−
)

0.
58

(=
)

0.
78

(−
)

0.
54

(=
)

0.
75

(−
)

0.
65

(+
)

0.
79

(−
)

m
o1

41
85

0.
61

(−
)

0.
51

(=
)

0.
75

(−
)

0.
8

(−
)

0.
71

(−
)

0.
52

(=
)

0.
74

(+
)

0.
54

(=
)

0.
66

(+
)

0.
9

(+
)

0.
87

(+
)

0.
52

(=
)

it1
68

62
0.

65
(−

)
0.

53
(=

)
0.

61
(−

)
0.

73
(−

)
0.

62
(−

)
0.

55
(=

)
0.

58
(=

)
0.

59
(=

)
0.

57
(=

)
0.

72
(+

)
0.

64
(+

)
0.

61
(−

)
vm

22
77

5
0.

61
(−

)
0.

55
(=

)
0.

57
(=

)
0.

68
(−

)
0.

53
(=

)
0.

64
(−

)
0.

7
(+

)
0.

66
(−

)
0.

61
(+

)
0.

5
(=

)
0.

75
(+

)
0.

66
(−

)
sw

24
97

8
0.

83
(−

)
0.

57
(=

)
0.

75
(−

)
0.

8
(−

)
0.

74
(−

)
0.

68
(−

)
0.

58
(=

)
0.

71
(−

)
0.

53
(=

)
0.

66
(+

)
0.

79
(+

)
0.

72
(−

)
bm

33
70

8
0.

66
(−

)
0.

57
(=

)
0.

64
(−

)
0.

71
(−

)
0.

64
(−

)
0.

59
(=

)
0.

67
(+

)
0.

62
(−

)
0.

56
(=

)
0.

7
(+

)
0.

85
(+

)
0.

57
(=

)

282 Appendix B: Statistical results

Ta
bl

e
B

.2
7:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

T
SP

-B
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

T
SP

-[
F-

Q
]

T
SP

-B
vs

T
SP

-F
T

SP
-G

T
SP

-H
T

SP
-I

T
SP

-J
T

SP
-K

T
SP

-L
T

SP
-M

T
SP

-N
T

SP
-O

T
SP

-P
T

SP
-Q

u2
15

2
0.

67
(+

)
0.

81
(+

)
0.

58
(=

)
0.

54
(=

)
0.

54
(=

)
0.

7
(+

)
0.

92
(+

)
0.

76
(+

)
0.

89
(+

)
0.

98
(+

)
0.

96
(+

)
0.

82
(+

)
us

a1
35

09
0.

66
(+

)
0.

77
(+

)
0.

52
(=

)
0.

51
(=

)
0.

59
(=

)
0.

78
(+

)
0.

86
(+

)
0.

73
(+

)
0.

84
(+

)
0.

94
(+

)
0.

91
(+

)
0.

71
(+

)
d1

85
12

0.
8

(+
)

0.
81

(+
)

0.
5

(=
)

0.
54

(=
)

0.
59

(=
)

0.
86

(+
)

0.
96

(+
)

0.
84

(+
)

0.
93

(+
)

0.
99

(+
)

0.
98

(+
)

0.
88

(+
)

dj
38

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
68

(−
)

0.
5

(=
)

0.
5

(=
)

qa
19

4
0.

56
(=

)
0.

73
(+

)
0.

62
(−

)
0.

61
(−

)
0.

55
(=

)
0.

72
(+

)
0.

76
(+

)
0.

62
(−

)
0.

69
(+

)
1

(+
)

0.
72

(+
)

0.
61

(−
)

zi
92

9
0.

77
(+

)
0.

9
(+

)
0.

64
(+

)
0.

55
(=

)
0.

6
(=

)
0.

86
(+

)
0.

97
(+

)
0.

86
(+

)
0.

91
(+

)
0.

99
(+

)
0.

98
(+

)
0.

91
(+

)
lu

98
0

0.
73

(+
)

0.
86

(+
)

0.
54

(=
)

0.
56

(=
)

0.
56

(=
)

0.
8

(+
)

0.
93

(+
)

0.
82

(+
)

0.
9

(+
)

1
(+

)
0.

98
(+

)
0.

88
(+

)
rw

16
21

0.
63

(+
)

0.
85

(+
)

0.
65

(+
)

0.
59

(=
)

0.
65

(+
)

0.
68

(+
)

0.
89

(+
)

0.
7

(+
)

0.
85

(+
)

0.
97

(+
)

0.
95

(+
)

0.
74

(+
)

nu
34

96
0.

63
(+

)
0.

73
(+

)
0.

64
(+

)
0.

57
(=

)
0.

57
(=

)
0.

69
(+

)
0.

81
(+

)
0.

64
(+

)
0.

76
(+

)
0.

94
(+

)
0.

84
(+

)
0.

71
(+

)
ca

46
63

0.
65

(+
)

0.
8

(+
)

0.
58

(=
)

0.
53

(=
)

0.
53

(=
)

0.
69

(+
)

0.
87

(+
)

0.
71

(+
)

0.
85

(+
)

0.
98

(+
)

0.
95

(+
)

0.
7

(+
)

tz
61

17
0.

72
(+

)
0.

82
(+

)
0.

59
(+

)
0.

57
(=

)
0.

52
(=

)
0.

77
(+

)
0.

92
(+

)
0.

78
(+

)
0.

89
(+

)
0.

98
(+

)
0.

96
(+

)
0.

78
(+

)
eg

71
46

0.
66

(+
)

0.
73

(+
)

0.
58

(=
)

0.
53

(=
)

0.
53

(=
)

0.
7

(+
)

0.
84

(+
)

0.
66

(+
)

0.
78

(+
)

0.
92

(+
)

0.
77

(+
)

0.
7

(+
)

ym
76

63
0.

6
(+

)
0.

69
(+

)
0.

6
(=

)
0.

58
(=

)
0.

56
(=

)
0.

63
(+

)
0.

78
(+

)
0.

63
(+

)
0.

71
(+

)
0.

82
(+

)
0.

8
(+

)
0.

58
(+

)
ei

82
46

0.
7

(+
)

0.
78

(+
)

0.
56

(=
)

0.
52

(=
)

0.
57

(=
)

0.
82

(+
)

0.
88

(+
)

0.
75

(+
)

0.
84

(+
)

0.
98

(+
)

0.
94

(+
)

0.
78

(+
)

ar
91

52
0.

67
(+

)
0.

74
(+

)
0.

64
(+

)
0.

59
(=

)
0.

66
(+

)
0.

78
(+

)
0.

86
(+

)
0.

69
(+

)
0.

78
(+

)
0.

91
(+

)
0.

88
(+

)
0.

71
(+

)
ja

98
47

0.
53

(=
)

0.
57

(=
)

0.
56

(=
)

0.
59

(=
)

0.
5

(=
)

0.
54

(=
)

0.
65

(+
)

0.
54

(=
)

0.
66

(+
)

0.
57

(+
)

0.
68

(+
)

0.
54

(=
)

gr
98

82
0.

6
(−

)
0.

55
(=

)
0.

51
(=

)
0.

62
(−

)
0.

5
(=

)
0.

55
(+

)
0.

67
(+

)
0.

55
(+

)
0.

62
(+

)
0.

6
(+

)
0.

69
(+

)
0.

56
(−

)
kz

99
76

0.
7

(+
)

0.
83

(+
)

0.
61

(+
)

0.
55

(=
)

0.
63

(+
)

0.
74

(+
)

0.
9

(+
)

0.
73

(+
)

0.
87

(+
)

0.
94

(+
)

0.
94

(+
)

0.
75

(+
)

fi1
06

39
0.

68
(+

)
0.

77
(+

)
0.

57
(=

)
0.

52
(=

)
0.

52
(=

)
0.

71
(+

)
0.

84
(+

)
0.

71
(+

)
0.

81
(+

)
0.

98
(+

)
0.

94
(+

)
0.

71
(+

)
ho

14
47

3
0.

68
(−

)
0.

54
(=

)
0.

52
(=

)
0.

6
(−

)
0.

52
(=

)
0.

65
(−

)
0.

68
(+

)
0.

64
(−

)
0.

64
(+

)
0.

61
(−

)
0.

73
(+

)
0.

66
(−

)
m

o1
41

85
0.

71
(+

)
0.

77
(+

)
0.

56
(=

)
0.

54
(=

)
0.

59
(=

)
0.

76
(+

)
0.

9
(+

)
0.

75
(+

)
0.

86
(+

)
0.

97
(+

)
0.

96
(+

)
0.

77
(+

)
it1

68
62

0.
56

(=
)

0.
7

(+
)

0.
57

(=
)

0.
53

(=
)

0.
58

(=
)

0.
65

(+
)

0.
73

(+
)

0.
6

(+
)

0.
73

(+
)

0.
82

(+
)

0.
77

(+
)

0.
61

(+
)

vm
22

77
5

0.
63

(−
)

0.
52

(=
)

0.
6

(−
)

0.
67

(−
)

0.
57

(−
)

0.
64

(−
)

0.
63

(+
)

0.
65

(−
)

0.
55

(=
)

0.
57

(−
)

0.
63

(+
)

0.
65

(−
)

sw
24

97
8

0.
53

(=
)

0.
67

(+
)

0.
5

(=
)

0.
57

(=
)

0.
52

(=
)

0.
58

(=
)

0.
77

(+
)

0.
57

(=
)

0.
73

(+
)

0.
82

(+
)

0.
89

(+
)

0.
56

(=
)

bm
33

70
8

0.
65

(+
)

0.
79

(+
)

0.
63

(+
)

0.
56

(=
)

0.
63

(+
)

0.
7

(+
)

0.
85

(+
)

0.
67

(+
)

0.
8

(+
)

0.
88

(+
)

0.
94

(+
)

0.
71

(+
)

Appendix B: Statistical results 283

Ta
bl

e
B

.2
8:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

T
SP

-C
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

T
SP

-[
F-

Q
]

T
SP

-C
vs

T
SP

-F
T

SP
-G

T
SP

-H
T

SP
-I

T
SP

-J
T

SP
-K

T
SP

-L
T

SP
-M

T
SP

-N
T

SP
-O

T
SP

-P
T

SP
-Q

u2
15

2
0.

99
(−

)
0.

96
(−

)
1

(−
)

1
(−

)
1

(−
)

0.
94

(−
)

0.
89

(−
)

0.
98

(−
)

0.
9

(−
)

0.
52

(=
)

0.
77

(−
)

0.
96

(−
)

us
a1

35
09

0.
91

(−
)

0.
75

(−
)

0.
9

(−
)

0.
92

(−
)

0.
86

(−
)

0.
71

(−
)

0.
59

(−
)

0.
81

(−
)

0.
68

(−
)

0.
65

(+
)

0.
52

(=
)

0.
84

(−
)

d1
85

12
0.

94
(−

)
0.

93
(−

)
0.

98
(−

)
0.

99
(−

)
0.

99
(−

)
0.

81
(−

)
0.

72
(−

)
0.

91
(−

)
0.

83
(−

)
0.

7
(+

)
0.

65
(−

)
0.

88
(−

)
dj

38
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

68
(−

)
0.

5
(=

)
0.

5
(=

)
qa

19
4

0.
63

(−
)

0.
55

(=
)

0.
57

(−
)

0.
61

(−
)

0.
63

(−
)

0.
56

(=
)

0.
58

(=
)

0.
56

(−
)

0.
51

(=
)

0.
99

(+
)

0.
56

(=
)

0.
57

(=
)

zi
92

9
0.

87
(−

)
0.

74
(−

)
0.

93
(−

)
0.

97
(−

)
0.

93
(−

)
0.

64
(−

)
0.

55
(=

)
0.

82
(−

)
0.

7
(−

)
0.

98
(+

)
0.

54
(=

)
0.

68
(−

)
lu

98
0

0.
96

(−
)

0.
89

(−
)

0.
99

(−
)

0.
98

(−
)

0.
99

(−
)

0.
77

(−
)

0.
79

(−
)

0.
93

(−
)

0.
82

(−
)

0.
89

(+
)

0.
6

(=
)

0.
87

(−
)

rw
16

21
0.

97
(−

)
0.

77
(−

)
0.

93
(−

)
0.

94
(−

)
0.

92
(−

)
0.

92
(−

)
0.

77
(−

)
0.

94
(−

)
0.

74
(−

)
0.

55
(=

)
0.

64
(−

)
0.

93
(−

)
nu

34
96

0.
79

(−
)

0.
66

(−
)

0.
75

(−
)

0.
83

(−
)

0.
83

(−
)

0.
7

(−
)

0.
54

(=
)

0.
77

(−
)

0.
61

(−
)

0.
75

(+
)

0.
5

(=
)

0.
7

(−
)

ca
46

63
0.

95
(−

)
0.

77
(−

)
0.

89
(−

)
0.

97
(−

)
0.

96
(−

)
0.

87
(−

)
0.

71
(−

)
0.

95
(−

)
0.

75
(−

)
0.

77
(+

)
0.

53
(=

)
0.

95
(−

)
tz

61
17

0.
96

(−
)

0.
88

(−
)

0.
98

(−
)

0.
98

(−
)

0.
98

(−
)

0.
88

(−
)

0.
8

(−
)

0.
96

(−
)

0.
83

(−
)

0.
53

(=
)

0.
66

(−
)

0.
96

(−
)

eg
71

46
0.

82
(−

)
0.

71
(−

)
0.

79
(−

)
0.

87
(−

)
0.

82
(−

)
0.

73
(−

)
0.

53
(=

)
0.

8
(−

)
0.

61
(−

)
0.

64
(+

)
0.

68
(−

)
0.

77
(−

)
ym

76
63

0.
84

(−
)

0.
74

(−
)

0.
81

(−
)

0.
81

(−
)

0.
84

(−
)

0.
81

(−
)

0.
6

(=
)

0.
83

(−
)

0.
7

(−
)

0.
57

(−
)

0.
6

(−
)

0.
86

(−
)

ei
82

46
0.

86
(−

)
0.

76
(−

)
0.

93
(−

)
0.

97
(−

)
0.

93
(−

)
0.

73
(−

)
0.

68
(−

)
0.

87
(−

)
0.

75
(−

)
0.

72
(+

)
0.

51
(=

)
0.

8
(−

)
ar

91
52

0.
89

(−
)

0.
78

(−
)

0.
86

(−
)

0.
88

(−
)

0.
86

(−
)

0.
77

(−
)

0.
65

(−
)

0.
86

(−
)

0.
75

(−
)

0.
57

(=
)

0.
59

(=
)

0.
83

(−
)

ja
98

47
0.

82
(−

)
0.

72
(−

)
0.

72
(−

)
0.

87
(−

)
0.

78
(−

)
0.

84
(−

)
0.

59
(=

)
0.

83
(−

)
0.

59
(=

)
0.

76
(−

)
0.

6
(−

)
0.

83
(−

)
gr

98
82

0.
92

(−
)

0.
79

(−
)

0.
84

(−
)

0.
9

(−
)

0.
83

(−
)

0.
89

(−
)

0.
66

(−
)

0.
89

(−
)

0.
7

(−
)

0.
77

(−
)

0.
66

(−
)

0.
91

(−
)

kz
99

76
0.

94
(−

)
0.

84
(−

)
0.

95
(−

)
0.

96
(−

)
0.

95
(−

)
0.

88
(−

)
0.

71
(−

)
0.

94
(−

)
0.

79
(−

)
0.

62
(−

)
0.

6
(=

)
0.

95
(−

)
fi1

06
39

0.
86

(−
)

0.
75

(−
)

0.
9

(−
)

0.
93

(−
)

0.
93

(−
)

0.
77

(−
)

0.
66

(−
)

0.
84

(−
)

0.
77

(−
)

0.
82

(+
)

0.
56

(=
)

0.
82

(−
)

ho
14

47
3

0.
97

(−
)

0.
87

(−
)

0.
9

(−
)

0.
95

(−
)

0.
89

(−
)

0.
96

(−
)

0.
74

(−
)

0.
96

(−
)

0.
79

(−
)

0.
95

(−
)

0.
74

(−
)

0.
96

(−
)

m
o1

41
85

0.
96

(−
)

0.
87

(−
)

0.
96

(−
)

0.
98

(−
)

0.
94

(−
)

0.
88

(−
)

0.
66

(−
)

0.
92

(−
)

0.
8

(−
)

0.
57

(=
)

0.
51

(=
)

0.
9

(−
)

it1
68

62
0.

81
(−

)
0.

67
(−

)
0.

78
(−

)
0.

86
(−

)
0.

79
(−

)
0.

75
(−

)
0.

62
(−

)
0.

78
(−

)
0.

63
(−

)
0.

51
(=

)
0.

57
(=

)
0.

79
(−

)
vm

22
77

5
0.

86
(−

)
0.

78
(−

)
0.

83
(−

)
0.

88
(−

)
0.

81
(−

)
0.

86
(−

)
0.

66
(−

)
0.

88
(−

)
0.

72
(−

)
0.

81
(−

)
0.

67
(−

)
0.

87
(−

)
sw

24
97

8
0.

98
(−

)
0.

87
(−

)
0.

94
(−

)
0.

95
(−

)
0.

94
(−

)
0.

92
(−

)
0.

74
(−

)
0.

93
(−

)
0.

78
(−

)
0.

73
(−

)
0.

58
(=

)
0.

94
(−

)
bm

33
70

8
0.

94
(−

)
0.

77
(−

)
0.

91
(−

)
0.

94
(−

)
0.

88
(−

)
0.

9
(−

)
0.

68
(−

)
0.

91
(−

)
0.

76
(−

)
0.

69
(−

)
0.

52
(=

)
0.

89
(−

)

284 Appendix B: Statistical results

Ta
bl

e
B

.2
9:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

T
SP

-D
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

T
SP

-[
F-

Q
]

T
SP

-D
vs

T
SP

-F
T

SP
-G

T
SP

-H
T

SP
-I

T
SP

-J
T

SP
-K

T
SP

-L
T

SP
-M

T
SP

-N
T

SP
-O

T
SP

-P
T

SP
-Q

u2
15

2
0.

82
(+

)
0.

92
(+

)
0.

59
(=

)
0.

65
(+

)
0.

62
(+

)
0.

83
(+

)
0.

97
(+

)
0.

89
(+

)
0.

96
(+

)
0.

99
(+

)
0.

98
(+

)
0.

92
(+

)
us

a1
35

09
0.

78
(+

)
0.

85
(+

)
0.

63
(+

)
0.

63
(+

)
0.

7
(+

)
0.

86
(+

)
0.

91
(+

)
0.

83
(+

)
0.

9
(+

)
0.

96
(+

)
0.

94
(+

)
0.

81
(+

)
d1

85
12

0.
75

(+
)

0.
76

(+
)

0.
54

(=
)

0.
51

(=
)

0.
54

(=
)

0.
83

(+
)

0.
95

(+
)

0.
8

(+
)

0.
9

(+
)

0.
99

(+
)

0.
96

(+
)

0.
84

(+
)

dj
38

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
68

(−
)

0.
5

(=
)

0.
5

(=
)

qa
19

4
0.

56
(=

)
0.

72
(+

)
0.

62
(−

)
0.

6
(−

)
0.

55
(=

)
0.

71
(+

)
0.

76
(+

)
0.

62
(−

)
0.

69
(+

)
0.

99
(+

)
0.

71
(+

)
0.

61
(−

)
zi

92
9

0.
81

(+
)

0.
91

(+
)

0.
68

(+
)

0.
61

(+
)

0.
64

(+
)

0.
87

(+
)

0.
97

(+
)

0.
89

(+
)

0.
92

(+
)

0.
99

(+
)

0.
98

(+
)

0.
92

(+
)

lu
98

0
0.

83
(+

)
0.

92
(+

)
0.

66
(+

)
0.

68
(+

)
0.

69
(+

)
0.

86
(+

)
0.

97
(+

)
0.

91
(+

)
0.

96
(+

)
0.

99
(+

)
0.

99
(+

)
0.

95
(+

)
rw

16
21

0.
85

(+
)

0.
95

(+
)

0.
87

(+
)

0.
79

(+
)

0.
86

(+
)

0.
86

(+
)

0.
97

(+
)

0.
89

(+
)

0.
95

(+
)

0.
99

(+
)

0.
98

(+
)

0.
91

(+
)

nu
34

96
0.

76
(+

)
0.

86
(+

)
0.

75
(+

)
0.

69
(+

)
0.

68
(+

)
0.

81
(+

)
0.

92
(+

)
0.

76
(+

)
0.

87
(+

)
0.

99
(+

)
0.

95
(+

)
0.

84
(+

)
ca

46
63

0.
81

(+
)

0.
91

(+
)

0.
71

(+
)

0.
68

(+
)

0.
61

(+
)

0.
83

(+
)

0.
97

(+
)

0.
88

(+
)

0.
95

(+
)

0.
99

(+
)

0.
99

(+
)

0.
87

(+
)

tz
61

17
0.

85
(+

)
0.

92
(+

)
0.

74
(+

)
0.

72
(+

)
0.

68
(+

)
0.

87
(+

)
0.

98
(+

)
0.

9
(+

)
0.

96
(+

)
0.

99
(+

)
0.

99
(+

)
0.

9
(+

)
eg

71
46

0.
83

(+
)

0.
87

(+
)

0.
71

(+
)

0.
6

(+
)

0.
66

(+
)

0.
84

(+
)

0.
95

(+
)

0.
82

(+
)

0.
9

(+
)

0.
99

(+
)

0.
91

(+
)

0.
86

(+
)

ym
76

63
0.

79
(+

)
0.

87
(+

)
0.

77
(+

)
0.

74
(+

)
0.

73
(+

)
0.

82
(+

)
0.

93
(+

)
0.

81
(+

)
0.

88
(+

)
0.

97
(+

)
0.

96
(+

)
0.

77
(+

)
ei

82
46

0.
82

(+
)

0.
87

(+
)

0.
68

(+
)

0.
61

(=
)

0.
69

(+
)

0.
9

(+
)

0.
94

(+
)

0.
87

(+
)

0.
92

(+
)

0.
98

(+
)

0.
97

(+
)

0.
88

(+
)

ar
91

52
0.

73
(+

)
0.

79
(+

)
0.

68
(+

)
0.

63
(+

)
0.

7
(+

)
0.

84
(+

)
0.

91
(+

)
0.

74
(+

)
0.

83
(+

)
0.

95
(+

)
0.

93
(+

)
0.

76
(+

)
ja

98
47

0.
75

(+
)

0.
85

(+
)

0.
82

(+
)

0.
68

(+
)

0.
79

(+
)

0.
74

(+
)

0.
87

(+
)

0.
75

(+
)

0.
9

(+
)

0.
87

(+
)

0.
95

(+
)

0.
73

(+
)

gr
98

82
0.

74
(+

)
0.

85
(+

)
0.

8
(+

)
0.

7
(+

)
0.

81
(+

)
0.

79
(+

)
0.

91
(+

)
0.

8
(+

)
0.

87
(+

)
0.

93
(+

)
0.

94
(+

)
0.

79
(+

)
kz

99
76

0.
86

(+
)

0.
94

(+
)

0.
79

(+
)

0.
74

(+
)

0.
8

(+
)

0.
89

(+
)

0.
98

(+
)

0.
89

(+
)

0.
97

(+
)

1
(+

)
1

(+
)

0.
91

(+
)

fi1
06

39
0.

75
(+

)
0.

83
(+

)
0.

64
(+

)
0.

58
(=

)
0.

59
(=

)
0.

77
(+

)
0.

89
(+

)
0.

77
(+

)
0.

87
(+

)
0.

98
(+

)
0.

96
(+

)
0.

77
(+

)
ho

14
47

3
0.

7
(+

)
0.

88
(+

)
0.

83
(+

)
0.

78
(+

)
0.

87
(+

)
0.

74
(+

)
0.

94
(+

)
0.

78
(+

)
0.

93
(+

)
0.

79
(+

)
0.

97
(+

)
0.

72
(+

)
m

o1
41

85
0.

81
(+

)
0.

85
(+

)
0.

64
(+

)
0.

53
(=

)
0.

67
(+

)
0.

85
(+

)
0.

95
(+

)
0.

85
(+

)
0.

93
(+

)
0.

98
(+

)
0.

97
(+

)
0.

86
(+

)
it1

68
62

0.
54

(=
)

0.
72

(+
)

0.
56

(=
)

0.
58

(=
)

0.
56

(=
)

0.
65

(+
)

0.
75

(+
)

0.
6

(=
)

0.
74

(+
)

0.
89

(+
)

0.
8

(+
)

0.
59

(=
)

vm
22

77
5

0.
9

(−
)

0.
84

(−
)

0.
88

(−
)

0.
92

(−
)

0.
87

(−
)

0.
91

(−
)

0.
72

(−
)

0.
92

(−
)

0.
77

(−
)

0.
86

(−
)

0.
73

(−
)

0.
92

(−
)

sw
24

97
8

1
(−

)
0.

97
(−

)
0.

98
(−

)
0.

99
(−

)
0.

99
(−

)
0.

98
(−

)
0.

93
(−

)
0.

99
(−

)
0.

93
(−

)
0.

92
(−

)
0.

87
(−

)
0.

99
(−

)
bm

33
70

8
0.

99
(−

)
0.

95
(−

)
0.

98
(−

)
0.

99
(−

)
0.

97
(−

)
0.

98
(−

)
0.

93
(−

)
0.

98
(−

)
0.

94
(−

)
0.

94
(−

)
0.

89
(−

)
0.

98
(−

)

Appendix B: Statistical results 285

Ta
bl

e
B

.3
0:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

T
SP

-E
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

T
SP

-[
F-

Q
]

T
SP

-E
vs

T
SP

-F
T

SP
-G

T
SP

-H
T

SP
-I

T
SP

-J
T

SP
-K

T
SP

-L
T

SP
-M

T
SP

-N
T

SP
-O

T
SP

-P
T

SP
-Q

u2
15

2
0.

78
(−

)
0.

63
(−

)
0.

91
(−

)
0.

9
(−

)
0.

89
(−

)
0.

67
(−

)
0.

59
(=

)
0.

72
(−

)
0.

51
(=

)
0.

87
(+

)
0.

75
(+

)
0.

59
(=

)
us

a1
35

09
0.

69
(−

)
0.

51
(=

)
0.

76
(−

)
0.

79
(−

)
0.

72
(−

)
0.

52
(=

)
0.

64
(+

)
0.

58
(=

)
0.

58
(=

)
0.

84
(+

)
0.

73
(+

)
0.

61
(−

)
d1

85
12

0.
7

(−
)

0.
7

(−
)

0.
88

(−
)

0.
89

(−
)

0.
88

(−
)

0.
51

(=
)

0.
68

(+
)

0.
64

(−
)

0.
53

(=
)

0.
94

(+
)

0.
75

(+
)

0.
58

(=
)

dj
38

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
68

(−
)

0.
5

(=
)

0.
5

(=
)

qa
19

4
0.

63
(−

)
0.

55
(=

)
0.

57
(=

)
0.

6
(−

)
0.

63
(−

)
0.

55
(=

)
0.

57
(=

)
0.

56
(=

)
0.

5
(=

)
0.

99
(+

)
0.

55
(=

)
0.

57
(=

)
zi

92
9

0.
67

(−
)

0.
51

(=
)

0.
78

(−
)

0.
86

(−
)

0.
79

(−
)

0.
55

(=
)

0.
71

(+
)

0.
58

(=
)

0.
56

(=
)

0.
99

(+
)

0.
77

(+
)

0.
58

(=
)

lu
98

0
0.

73
(−

)
0.

56
(=

)
0.

89
(−

)
0.

88
(−

)
0.

88
(−

)
0.

52
(=

)
0.

6
(+

)
0.

65
(−

)
0.

54
(=

)
0.

99
(+

)
0.

8
(+

)
0.

52
(=

)
rw

16
21

0.
76

(−
)

0.
55

(=
)

0.
73

(−
)

0.
76

(−
)

0.
71

(−
)

0.
68

(−
)

0.
57

(=
)

0.
69

(−
)

0.
56

(=
)

0.
78

(+
)

0.
72

(+
)

0.
66

(−
)

nu
34

96
0.

68
(−

)
0.

54
(=

)
0.

64
(−

)
0.

74
(−

)
0.

74
(−

)
0.

59
(−

)
0.

58
(=

)
0.

66
(−

)
0.

5
(=

)
0.

84
(+

)
0.

62
(+

)
0.

57
(=

)
ca

46
63

0.
75

(−
)

0.
52

(=
)

0.
74

(−
)

0.
84

(−
)

0.
86

(−
)

0.
65

(−
)

0.
58

(=
)

0.
74

(−
)

0.
55

(=
)

0.
95

(+
)

0.
78

(+
)

0.
73

(−
)

tz
61

17
0.

71
(−

)
0.

54
(=

)
0.

81
(−

)
0.

82
(−

)
0.

86
(−

)
0.

58
(=

)
0.

63
(+

)
0.

65
(−

)
0.

56
(=

)
0.

87
(+

)
0.

81
(+

)
0.

65
(−

)
eg

71
46

0.
67

(−
)

0.
55

(=
)

0.
68

(−
)

0.
78

(−
)

0.
73

(−
)

0.
58

(=
)

0.
63

(+
)

0.
66

(−
)

0.
53

(=
)

0.
81

(+
)

0.
51

(=
)

0.
61

(−
)

ym
76

63
0.

65
(−

)
0.

51
(=

)
0.

63
(−

)
0.

64
(−

)
0.

68
(−

)
0.

6
(=

)
0.

62
(+

)
0.

62
(−

)
0.

52
(=

)
0.

7
(+

)
0.

66
(+

)
0.

68
(−

)
ei

82
46

0.
66

(−
)

0.
53

(=
)

0.
77

(−
)

0.
84

(−
)

0.
76

(−
)

0.
52

(=
)

0.
6

(=
)

0.
61

(−
)

0.
53

(=
)

0.
86

(+
)

0.
74

(+
)

0.
55

(=
)

ar
91

52
0.

57
(=

)
0.

56
(=

)
0.

57
(=

)
0.

62
(−

)
0.

55
(=

)
0.

59
(−

)
0.

71
(+

)
0.

52
(=

)
0.

6
(=

)
0.

81
(+

)
0.

76
(+

)
0.

51
(=

)
ja

98
47

0.
63

(−
)

0.
52

(=
)

0.
53

(=
)

0.
71

(−
)

0.
6

(=
)

0.
65

(−
)

0.
57

(=
)

0.
65

(−
)

0.
59

(−
)

0.
54

(=
)

0.
61

(+
)

0.
65

(−
)

gr
98

82
0.

7
(−

)
0.

51
(=

)
0.

58
(=

)
0.

71
(−

)
0.

56
(=

)
0.

65
(−

)
0.

63
(+

)
0.

64
(−

)
0.

57
(=

)
0.

57
(+

)
0.

68
(+

)
0.

68
(−

)
kz

99
76

0.
75

(−
)

0.
55

(=
)

0.
8

(−
)

0.
84

(−
)

0.
78

(−
)

0.
64

(−
)

0.
63

(+
)

0.
73

(−
)

0.
56

(=
)

0.
76

(+
)

0.
76

(+
)

0.
73

(−
)

fi1
06

39
0.

7
(−

)
0.

56
(=

)
0.

78
(−

)
0.

82
(−

)
0.

83
(−

)
0.

62
(−

)
0.

55
(=

)
0.

66
(−

)
0.

54
(=

)
0.

92
(+

)
0.

76
(+

)
0.

64
(−

)
ho

14
47

3
0.

72
(−

)
0.

5
(=

)
0.

55
(=

)
0.

63
(−

)
0.

52
(=

)
0.

68
(−

)
0.

64
(+

)
0.

66
(−

)
0.

61
(+

)
0.

64
(−

)
0.

69
(+

)
0.

69
(−

)
m

o1
41

85
0.

76
(−

)
0.

63
(−

)
0.

85
(−

)
0.

89
(−

)
0.

81
(−

)
0.

66
(−

)
0.

63
(+

)
0.

69
(−

)
0.

52
(=

)
0.

86
(+

)
0.

8
(+

)
0.

67
(−

)
it1

68
62

0.
65

(−
)

0.
53

(=
)

0.
61

(−
)

0.
73

(−
)

0.
61

(−
)

0.
54

(=
)

0.
57

(=
)

0.
59

(−
)

0.
56

(=
)

0.
69

(+
)

0.
62

(+
)

0.
59

(−
)

vm
22

77
5

0.
79

(−
)

0.
66

(−
)

0.
75

(−
)

0.
83

(−
)

0.
72

(−
)

0.
8

(−
)

0.
51

(=
)

0.
82

(−
)

0.
58

(=
)

0.
7

(−
)

0.
51

(=
)

0.
81

(−
)

sw
24

97
8

0.
84

(−
)

0.
59

(−
)

0.
76

(−
)

0.
81

(−
)

0.
75

(−
)

0.
7

(−
)

0.
56

(=
)

0.
71

(−
)

0.
51

(=
)

0.
63

(+
)

0.
76

(+
)

0.
74

(−
)

bm
33

70
8

0.
61

(−
)

0.
62

(+
)

0.
6

(−
)

0.
68

(−
)

0.
6

(=
)

0.
54

(=
)

0.
71

(+
)

0.
57

(=
)

0.
6

(=
)

0.
74

(+
)

0.
86

(+
)

0.
53

(=
)

286 Appendix B: Statistical results

Ta
bl

e
B

.3
1:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

T
SP

-F
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

T
SP

-[
G

-Q
]

T
SP

-F
vs

T
SP

-G
T

SP
-H

T
SP

-I
T

SP
-J

T
SP

-K
T

SP
-L

T
SP

-M
T

SP
-N

T
SP

-O
T

SP
-P

T
SP

-Q
u2

15
2

0.
66

(+
)

0.
74

(−
)

0.
71

(−
)

0.
69

(−
)

0.
57

(=
)

0.
84

(+
)

0.
59

(−
)

0.
78

(+
)

0.
97

(+
)

0.
93

(+
)

0.
7

(+
)

us
a1

35
09

0.
67

(+
)

0.
63

(−
)

0.
67

(−
)

0.
58

(−
)

0.
69

(+
)

0.
8

(+
)

0.
6

(=
)

0.
76

(+
)

0.
94

(+
)

0.
89

(+
)

0.
57

(=
)

d1
85

12
0.

51
(=

)
0.

78
(−

)
0.

76
(−

)
0.

73
(−

)
0.

64
(+

)
0.

83
(+

)
0.

56
(=

)
0.

73
(+

)
0.

98
(+

)
0.

87
(+

)
0.

62
(+

)
dj

38
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

68
(−

)
0.

5
(=

)
0.

5
(=

)
qa

19
4

0.
67

(+
)

0.
56

(=
)

0.
54

(=
)

0.
5

(=
)

0.
67

(+
)

0.
71

(+
)

0.
56

(=
)

0.
64

(+
)

1
(+

)
0.

67
(+

)
0.

55
(=

)
zi

92
9

0.
69

(+
)

0.
64

(−
)

0.
74

(−
)

0.
66

(−
)

0.
67

(+
)

0.
84

(+
)

0.
61

(+
)

0.
72

(+
)

0.
99

(+
)

0.
89

(+
)

0.
74

(+
)

lu
98

0
0.

69
(+

)
0.

72
(−

)
0.

7
(−

)
0.

7
(−

)
0.

66
(+

)
0.

84
(+

)
0.

6
(=

)
0.

77
(+

)
1

(+
)

0.
96

(+
)

0.
73

(+
)

rw
16

21
0.

8
(+

)
0.

52
(=

)
0.

53
(=

)
0.

53
(=

)
0.

58
(=

)
0.

84
(+

)
0.

59
(−

)
0.

8
(+

)
0.

96
(+

)
0.

94
(+

)
0.

63
(+

)
nu

34
96

0.
64

(+
)

0.
53

(=
)

0.
57

(=
)

0.
58

(=
)

0.
58

(=
)

0.
75

(+
)

0.
52

(=
)

0.
67

(+
)

0.
93

(+
)

0.
8

(+
)

0.
62

(+
)

ca
46

63
0.

7
(+

)
0.

55
(=

)
0.

64
(−

)
0.

69
(−

)
0.

58
(=

)
0.

8
(+

)
0.

53
(=

)
0.

78
(+

)
1

(+
)

0.
94

(+
)

0.
54

(=
)

tz
61

17
0.

68
(+

)
0.

64
(−

)
0.

66
(−

)
0.

72
(−

)
0.

61
(+

)
0.

84
(+

)
0.

58
(=

)
0.

78
(+

)
0.

97
(+

)
0.

95
(+

)
0.

59
(−

)
eg

71
46

0.
62

(+
)

0.
55

(−
)

0.
67

(−
)

0.
61

(−
)

0.
59

(−
)

0.
8

(+
)

0.
51

(=
)

0.
69

(+
)

0.
97

(+
)

0.
68

(+
)

0.
57

(=
)

ym
76

63
0.

65
(+

)
0.

51
(=

)
0.

52
(=

)
0.

55
(=

)
0.

56
(=

)
0.

77
(+

)
0.

53
(=

)
0.

67
(+

)
0.

88
(+

)
0.

82
(+

)
0.

54
(=

)
ei

82
46

0.
62

(+
)

0.
64

(−
)

0.
74

(−
)

0.
64

(−
)

0.
68

(+
)

0.
77

(+
)

0.
57

(=
)

0.
7

(+
)

0.
94

(+
)

0.
87

(+
)

0.
62

(+
)

ar
91

52
0.

63
(+

)
0.

51
(=

)
0.

57
(−

)
0.

51
(=

)
0.

68
(+

)
0.

79
(+

)
0.

55
(=

)
0.

67
(+

)
0.

88
(+

)
0.

84
(+

)
0.

58
(=

)
ja

98
47

0.
63

(+
)

0.
61

(+
)

0.
59

(=
)

0.
54

(=
)

0.
52

(=
)

0.
7

(+
)

0.
51

(=
)

0.
73

(+
)

0.
62

(+
)

0.
77

(+
)

0.
52

(=
)

gr
98

82
0.

7
(+

)
0.

62
(+

)
0.

53
(=

)
0.

64
(+

)
0.

57
(=

)
0.

82
(+

)
0.

58
(=

)
0.

75
(+

)
0.

83
(+

)
0.

88
(+

)
0.

54
(=

)
kz

99
76

0.
69

(+
)

0.
59

(=
)

0.
65

(−
)

0.
56

(=
)

0.
58

(=
)

0.
83

(+
)

0.
54

(=
)

0.
78

(+
)

0.
91

(+
)

0.
91

(+
)

0.
54

(=
)

fi1
06

39
0.

64
(+

)
0.

62
(−

)
0.

67
(−

)
0.

67
(−

)
0.

56
(=

)
0.

74
(+

)
0.

54
(=

)
0.

68
(+

)
0.

97
(+

)
0.

9
(+

)
0.

55
(=

)
ho

14
47

3
0.

75
(+

)
0.

69
(+

)
0.

6
(=

)
0.

73
(+

)
0.

54
(=

)
0.

86
(+

)
0.

57
(=

)
0.

84
(+

)
0.

6
(=

)
0.

93
(+

)
0.

53
(=

)
m

o1
41

85
0.

62
(+

)
0.

68
(−

)
0.

74
(−

)
0.

64
(−

)
0.

58
(=

)
0.

83
(+

)
0.

57
(=

)
0.

77
(+

)
0.

98
(+

)
0.

96
(+

)
0.

59
(=

)
it1

68
62

0.
68

(+
)

0.
52

(=
)

0.
6

(=
)

0.
52

(=
)

0.
61

(+
)

0.
72

(+
)

0.
56

(=
)

0.
7

(+
)

0.
85

(+
)

0.
77

(+
)

0.
55

(=
)

vm
22

77
5

0.
67

(+
)

0.
53

(=
)

0.
59

(=
)

0.
57

(=
)

0.
53

(=
)

0.
78

(+
)

0.
56

(=
)

0.
7

(+
)

0.
62

(+
)

0.
84

(+
)

0.
55

(=
)

sw
24

97
8

0.
77

(+
)

0.
55

(=
)

0.
53

(=
)

0.
57

(=
)

0.
65

(+
)

0.
87

(+
)

0.
65

(+
)

0.
83

(+
)

0.
93

(+
)

0.
98

(+
)

0.
63

(+
)

bm
33

70
8

0.
72

(+
)

0.
5

(=
)

0.
59

(=
)

0.
51

(=
)

0.
57

(=
)

0.
8

(+
)

0.
54

(=
)

0.
71

(+
)

0.
85

(+
)

0.
95

(+
)

0.
59

(=
)

Appendix B: Statistical results 287

Ta
bl

e
B

.3
2:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

T
SP

-G
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

T
SP

-[
H

-Q
]

T
SP

-G
vs

T
SP

-H
T

SP
-I

T
SP

-J
T

SP
-K

T
SP

-L
T

SP
-M

T
SP

-N
T

SP
-O

T
SP

-P
T

SP
-Q

u2
15

2
0.

86
(−

)
0.

84
(−

)
0.

82
(−

)
0.

57
(=

)
0.

72
(+

)
0.

59
(=

)
0.

64
(+

)
0.

92
(+

)
0.

85
(+

)
0.

54
(=

)
us

a1
35

09
0.

74
(−

)
0.

77
(−

)
0.

7
(−

)
0.

53
(=

)
0.

64
(+

)
0.

56
(=

)
0.

59
(=

)
0.

82
(+

)
0.

73
(+

)
0.

59
(=

)
d1

85
12

0.
79

(−
)

0.
77

(−
)

0.
74

(−
)

0.
63

(+
)

0.
83

(+
)

0.
56

(=
)

0.
73

(+
)

0.
97

(+
)

0.
87

(+
)

0.
62

(+
)

dj
38

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
68

(−
)

0.
5

(=
)

0.
5

(=
)

qa
19

4
0.

62
(−

)
0.

65
(−

)
0.

68
(−

)
0.

5
(=

)
0.

53
(=

)
0.

61
(−

)
0.

54
(=

)
0.

99
(+

)
0.

5
(=

)
0.

62
(−

)
zi

92
9

0.
79

(−
)

0.
88

(−
)

0.
8

(−
)

0.
54

(=
)

0.
7

(+
)

0.
59

(=
)

0.
55

(=
)

0.
99

(+
)

0.
77

(+
)

0.
57

(=
)

lu
98

0
0.

86
(−

)
0.

85
(−

)
0.

85
(−

)
0.

53
(+

)
0.

69
(+

)
0.

61
(−

)
0.

6
(=

)
1

(+
)

0.
88

(+
)

0.
55

(=
)

rw
16

21
0.

76
(−

)
0.

79
(−

)
0.

74
(−

)
0.

72
(−

)
0.

52
(=

)
0.

73
(−

)
0.

51
(=

)
0.

74
(+

)
0.

68
(+

)
0.

7
(−

)
nu

34
96

0.
6

(=
)

0.
7

(−
)

0.
71

(−
)

0.
55

(=
)

0.
62

(+
)

0.
63

(−
)

0.
54

(=
)

0.
85

(+
)

0.
66

(+
)

0.
53

(=
)

ca
46

63
0.

71
(−

)
0.

8
(−

)
0.

82
(−

)
0.

62
(−

)
0.

59
(=

)
0.

68
(−

)
0.

56
(=

)
0.

9
(+

)
0.

75
(+

)
0.

67
(−

)
tz

61
17

0.
78

(−
)

0.
79

(−
)

0.
84

(−
)

0.
55

(=
)

0.
66

(+
)

0.
61

(−
)

0.
61

(+
)

0.
89

(+
)

0.
83

(+
)

0.
61

(−
)

eg
71

46
0.

64
(−

)
0.

74
(−

)
0.

68
(−

)
0.

53
(=

)
0.

68
(+

)
0.

61
(−

)
0.

58
(=

)
0.

87
(+

)
0.

55
(=

)
0.

56
(=

)
ym

76
63

0.
62

(−
)

0.
63

(−
)

0.
68

(−
)

0.
59

(=
)

0.
64

(+
)

0.
62

(−
)

0.
53

(=
)

0.
74

(+
)

0.
69

(+
)

0.
68

(−
)

ei
82

46
0.

74
(−

)
0.

82
(−

)
0.

73
(−

)
0.

55
(=

)
0.

64
(+

)
0.

57
(−

)
0.

57
(=

)
0.

87
(+

)
0.

76
(+

)
0.

51
(=

)
ar

91
52

0.
63

(−
)

0.
66

(−
)

0.
61

(−
)

0.
53

(=
)

0.
66

(+
)

0.
58

(=
)

0.
54

(=
)

0.
75

(+
)

0.
71

(+
)

0.
55

(=
)

ja
98

47
0.

51
(=

)
0.

71
(−

)
0.

58
(=

)
0.

65
(−

)
0.

6
(+

)
0.

65
(−

)
0.

62
(+

)
0.

53
(=

)
0.

65
(+

)
0.

64
(−

)
gr

98
82

0.
57

(=
)

0.
7

(−
)

0.
56

(=
)

0.
64

(−
)

0.
64

(+
)

0.
64

(−
)

0.
58

(=
)

0.
56

(+
)

0.
69

(+
)

0.
67

(−
)

kz
99

76
0.

75
(−

)
0.

79
(−

)
0.

73
(−

)
0.

6
(=

)
0.

66
(+

)
0.

67
(−

)
0.

59
(=

)
0.

77
(+

)
0.

78
(+

)
0.

67
(−

)
fi1

06
39

0.
74

(−
)

0.
77

(−
)

0.
78

(−
)

0.
57

(=
)

0.
61

(+
)

0.
6

(=
)

0.
52

(=
)

0.
92

(+
)

0.
79

(+
)

0.
58

(=
)

ho
14

47
3

0.
56

(=
)

0.
67

(−
)

0.
53

(=
)

0.
72

(−
)

0.
66

(+
)

0.
71

(−
)

0.
62

(+
)

0.
68

(−
)

0.
74

(+
)

0.
72

(−
)

m
o1

41
85

0.
74

(−
)

0.
8

(−
)

0.
71

(−
)

0.
53

(=
)

0.
73

(+
)

0.
55

(=
)

0.
64

(+
)

0.
91

(+
)

0.
86

(+
)

0.
53

(=
)

it1
68

62
0.

65
(−

)
0.

75
(−

)
0.

66
(−

)
0.

6
(−

)
0.

55
(=

)
0.

63
(−

)
0.

53
(=

)
0.

69
(+

)
0.

61
(+

)
0.

65
(−

)
vm

22
77

5
0.

62
(−

)
0.

73
(−

)
0.

59
(=

)
0.

69
(−

)
0.

67
(+

)
0.

71
(−

)
0.

57
(=

)
0.

56
(=

)
0.

7
(+

)
0.

71
(−

)
sw

24
97

8
0.

69
(−

)
0.

75
(−

)
0.

68
(−

)
0.

62
(−

)
0.

65
(+

)
0.

64
(−

)
0.

6
(+

)
0.

74
(+

)
0.

85
(+

)
0.

66
(−

)
bm

33
70

8
0.

7
(−

)
0.

76
(−

)
0.

68
(−

)
0.

66
(−

)
0.

6
(=

)
0.

69
(−

)
0.

51
(=

)
0.

62
(+

)
0.

78
(+

)
0.

65
(−

)

288 Appendix B: Statistical results

Ta
bl

e
B

.3
3:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

T
SP

-H
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

T
SP

-[
I-

Q
]

T
SP

-H
vs

T
SP

-I
T

SP
-J

T
SP

-K
T

SP
-L

T
SP

-M
T

SP
-N

T
SP

-O
T

SP
-P

T
SP

-Q
u2

15
2

0.
55

(=
)

0.
54

(=
)

0.
76

(+
)

0.
95

(+
)

0.
82

(+
)

0.
92

(+
)

0.
99

(+
)

0.
98

(+
)

0.
87

(+
)

us
a1

35
09

0.
51

(=
)

0.
57

(=
)

0.
76

(+
)

0.
83

(+
)

0.
7

(+
)

0.
81

(+
)

0.
93

(+
)

0.
89

(+
)

0.
68

(+
)

d1
85

12
0.

53
(=

)
0.

59
(+

)
0.

84
(+

)
0.

93
(+

)
0.

81
(+

)
0.

89
(+

)
0.

99
(+

)
0.

95
(+

)
0.

85
(+

)
dj

38
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

68
(−

)
0.

5
(=

)
0.

5
(=

)
qa

19
4

0.
52

(=
)

0.
57

(=
)

0.
61

(+
)

0.
65

(+
)

0.
5

(=
)

0.
57

(=
)

1
(+

)
0.

61
(+

)
0.

51
(=

)
zi

92
9

0.
59

(=
)

0.
53

(=
)

0.
77

(+
)

0.
91

(+
)

0.
74

(+
)

0.
82

(+
)

0.
99

(+
)

0.
94

(+
)

0.
83

(+
)

lu
98

0
0.

53
(=

)
0.

53
(=

)
0.

79
(+

)
0.

94
(+

)
0.

82
(+

)
0.

91
(+

)
1

(+
)

0.
99

(+
)

0.
89

(+
)

rw
16

21
0.

56
(=

)
0.

5
(=

)
0.

55
(=

)
0.

8
(+

)
0.

56
(=

)
0.

77
(+

)
0.

92
(+

)
0.

9
(+

)
0.

61
(+

)
nu

34
96

0.
59

(=
)

0.
59

(=
)

0.
55

(=
)

0.
71

(+
)

0.
51

(=
)

0.
64

(+
)

0.
91

(+
)

0.
75

(+
)

0.
58

(=
)

ca
46

63
0.

56
(=

)
0.

61
(−

)
0.

61
(+

)
0.

79
(+

)
0.

61
(+

)
0.

76
(+

)
0.

96
(+

)
0.

88
(+

)
0.

6
(+

)
tz

61
17

0.
52

(=
)

0.
58

(=
)

0.
71

(+
)

0.
91

(+
)

0.
71

(+
)

0.
87

(+
)

0.
99

(+
)

0.
98

(+
)

0.
72

(+
)

eg
71

46
0.

6
(=

)
0.

54
(=

)
0.

61
(+

)
0.

77
(+

)
0.

56
(=

)
0.

7
(+

)
0.

88
(+

)
0.

67
(+

)
0.

59
(+

)
ym

76
63

0.
52

(=
)

0.
55

(=
)

0.
54

(=
)

0.
74

(+
)

0.
52

(=
)

0.
65

(+
)

0.
82

(+
)

0.
78

(+
)

0.
54

(=
)

ei
82

46
0.

59
(=

)
0.

51
(=

)
0.

79
(+

)
0.

86
(+

)
0.

71
(+

)
0.

81
(+

)
0.

97
(+

)
0.

93
(+

)
0.

74
(+

)
ar

91
52

0.
55

(=
)

0.
51

(=
)

0.
65

(+
)

0.
76

(+
)

0.
54

(=
)

0.
66

(+
)

0.
85

(+
)

0.
81

(+
)

0.
57

(=
)

ja
98

47
0.

68
(−

)
0.

57
(=

)
0.

63
(−

)
0.

6
(=

)
0.

63
(−

)
0.

62
(+

)
0.

51
(=

)
0.

65
(+

)
0.

63
(−

)
gr

98
82

0.
63

(−
)

0.
52

(=
)

0.
56

(=
)

0.
7

(+
)

0.
56

(=
)

0.
65

(+
)

0.
66

(+
)

0.
77

(+
)

0.
6

(−
)

kz
99

76
0.

56
(=

)
0.

53
(=

)
0.

66
(+

)
0.

86
(+

)
0.

62
(+

)
0.

82
(+

)
0.

93
(+

)
0.

93
(+

)
0.

63
(+

)
fi1

06
39

0.
56

(=
)

0.
55

(=
)

0.
66

(+
)

0.
82

(+
)

0.
66

(+
)

0.
78

(+
)

0.
98

(+
)

0.
93

(+
)

0.
66

(+
)

ho
14

47
3

0.
61

(−
)

0.
53

(=
)

0.
66

(−
)

0.
71

(+
)

0.
64

(−
)

0.
68

(+
)

0.
61

(−
)

0.
78

(+
)

0.
66

(−
)

m
o1

41
85

0.
59

(=
)

0.
53

(=
)

0.
73

(+
)

0.
89

(+
)

0.
72

(+
)

0.
85

(+
)

0.
97

(+
)

0.
95

(+
)

0.
74

(+
)

it1
68

62
0.

61
(−

)
0.

5
(=

)
0.

57
(=

)
0.

68
(+

)
0.

53
(=

)
0.

67
(+

)
0.

81
(+

)
0.

73
(+

)
0.

52
(=

)
vm

22
77

5
0.

61
(−

)
0.

55
(=

)
0.

55
(=

)
0.

75
(+

)
0.

57
(=

)
0.

67
(+

)
0.

55
(=

)
0.

8
(+

)
0.

57
(=

)
sw

24
97

8
0.

57
(=

)
0.

52
(=

)
0.

59
(=

)
0.

79
(+

)
0.

58
(=

)
0.

76
(+

)
0.

86
(+

)
0.

92
(+

)
0.

56
(=

)
bm

33
70

8
0.

58
(=

)
0.

51
(=

)
0.

56
(=

)
0.

78
(+

)
0.

53
(=

)
0.

69
(+

)
0.

81
(+

)
0.

92
(+

)
0.

57
(=

)

Appendix B: Statistical results 289

Ta
bl

e
B

.3
4:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

T
SP

-I
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

T
SP

-[
J-

Q
]

T
SP

-I
vs

T
SP

-J
T

SP
-K

T
SP

-L
T

SP
-M

T
SP

-N
T

SP
-O

T
SP

-P
T

SP
-Q

u2
15

2
0.

51
(=

)
0.

74
(+

)
0.

93
(+

)
0.

8
(+

)
0.

91
(+

)
0.

99
(+

)
0.

97
(+

)
0.

85
(+

)
us

a1
35

09
0.

59
(=

)
0.

79
(+

)
0.

86
(+

)
0.

74
(+

)
0.

84
(+

)
0.

94
(+

)
0.

91
(+

)
0.

71
(+

)
d1

85
12

0.
55

(=
)

0.
84

(+
)

0.
96

(+
)

0.
8

(+
)

0.
9

(+
)

1
(+

)
0.

97
(+

)
0.

85
(+

)
dj

38
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

68
(−

)
0.

5
(=

)
0.

5
(=

)
qa

19
4

0.
55

(=
)

0.
64

(+
)

0.
68

(+
)

0.
53

(=
)

0.
61

(+
)

1
(+

)
0.

65
(+

)
0.

52
(=

)
zi

92
9

0.
55

(=
)

0.
83

(+
)

0.
96

(+
)

0.
84

(+
)

0.
89

(+
)

0.
99

(+
)

0.
97

(+
)

0.
9

(+
)

lu
98

0
0.

51
(=

)
0.

78
(+

)
0.

94
(+

)
0.

81
(+

)
0.

9
(+

)
1

(+
)

0.
98

(+
)

0.
88

(+
)

rw
16

21
0.

56
(=

)
0.

6
(=

)
0.

82
(+

)
0.

6
(=

)
0.

79
(+

)
0.

94
(+

)
0.

92
(+

)
0.

64
(+

)
nu

34
96

0.
51

(=
)

0.
64

(+
)

0.
8

(+
)

0.
59

(=
)

0.
73

(+
)

0.
94

(+
)

0.
84

(+
)

0.
68

(+
)

ca
46

63
0.

56
(=

)
0.

69
(+

)
0.

88
(+

)
0.

7
(+

)
0.

86
(+

)
1

(+
)

0.
97

(+
)

0.
69

(+
)

tz
61

17
0.

56
(=

)
0.

73
(+

)
0.

91
(+

)
0.

72
(+

)
0.

87
(+

)
0.

98
(+

)
0.

97
(+

)
0.

73
(+

)
eg

71
46

0.
55

(=
)

0.
72

(+
)

0.
85

(+
)

0.
68

(+
)

0.
79

(+
)

0.
94

(+
)

0.
78

(+
)

0.
71

(+
)

ym
76

63
0.

53
(=

)
0.

55
(=

)
0.

74
(+

)
0.

54
(=

)
0.

66
(+

)
0.

79
(+

)
0.

77
(+

)
0.

51
(=

)
ei

82
46

0.
6

(=
)

0.
86

(+
)

0.
92

(+
)

0.
8

(+
)

0.
88

(+
)

0.
99

(+
)

0.
97

(+
)

0.
82

(+
)

ar
91

52
0.

56
(=

)
0.

69
(+

)
0.

8
(+

)
0.

59
(+

)
0.

7
(+

)
0.

87
(+

)
0.

84
(+

)
0.

62
(+

)
ja

98
47

0.
63

(+
)

0.
57

(=
)

0.
76

(+
)

0.
58

(=
)

0.
79

(+
)

0.
72

(+
)

0.
84

(+
)

0.
57

(=
)

gr
98

82
0.

65
(+

)
0.

59
(+

)
0.

81
(+

)
0.

59
(=

)
0.

75
(+

)
0.

79
(+

)
0.

86
(+

)
0.

57
(=

)
kz

99
76

0.
58

(=
)

0.
71

(+
)

0.
89

(+
)

0.
68

(+
)

0.
85

(+
)

0.
94

(+
)

0.
94

(+
)

0.
69

(+
)

fi1
06

39
0.

51
(=

)
0.

7
(+

)
0.

85
(+

)
0.

7
(+

)
0.

81
(+

)
0.

99
(+

)
0.

95
(+

)
0.

7
(+

)
ho

14
47

3
0.

65
(+

)
0.

56
(=

)
0.

81
(+

)
0.

54
(=

)
0.

78
(+

)
0.

51
(=

)
0.

89
(+

)
0.

57
(=

)
m

o1
41

85
0.

62
(+

)
0.

79
(+

)
0.

92
(+

)
0.

78
(+

)
0.

89
(+

)
0.

99
(+

)
0.

98
(+

)
0.

8
(+

)
it1

68
62

0.
62

(+
)

0.
71

(+
)

0.
79

(+
)

0.
66

(+
)

0.
78

(+
)

0.
89

(+
)

0.
83

(+
)

0.
66

(+
)

vm
22

77
5

0.
64

(+
)

0.
56

(=
)

0.
81

(+
)

0.
54

(=
)

0.
74

(+
)

0.
68

(+
)

0.
88

(+
)

0.
54

(=
)

sw
24

97
8

0.
59

(=
)

0.
65

(+
)

0.
84

(+
)

0.
64

(+
)

0.
8

(+
)

0.
9

(+
)

0.
95

(+
)

0.
63

(+
)

bm
33

70
8

0.
57

(=
)

0.
64

(+
)

0.
83

(+
)

0.
61

(+
)

0.
75

(+
)

0.
86

(+
)

0.
94

(+
)

0.
65

(+
)

290 Appendix B: Statistical results

Ta
bl

e
B

.3
5:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

T
SP

-J
an

d
th

e
ge

ne
ra

te
d

so
lv

er
s

T
SP

-[
K

-Q
]

T
SP

-J
vs

T
SP

-K
T

SP
-L

T
SP

-M
T

SP
-N

T
SP

-O
T

SP
-P

T
SP

-Q
u2

15
2

0.
73

(+
)

0.
93

(+
)

0.
78

(+
)

0.
9

(+
)

0.
99

(+
)

0.
97

(+
)

0.
84

(+
)

us
a1

35
09

0.
71

(+
)

0.
8

(+
)

0.
66

(+
)

0.
77

(+
)

0.
89

(+
)

0.
85

(+
)

0.
63

(+
)

d1
85

12
0.

81
(+

)
0.

95
(+

)
0.

78
(+

)
0.

9
(+

)
0.

99
(+

)
0.

96
(+

)
0.

82
(+

)
dj

38
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

68
(−

)
0.

5
(=

)
0.

5
(=

)
qa

19
4

0.
67

(+
)

0.
71

(+
)

0.
57

(=
)

0.
64

(+
)

1
(+

)
0.

67
(+

)
0.

56
(=

)
zi

92
9

0.
78

(+
)

0.
91

(+
)

0.
76

(+
)

0.
83

(+
)

0.
99

(+
)

0.
94

(+
)

0.
83

(+
)

lu
98

0
0.

78
(+

)
0.

94
(+

)
0.

81
(+

)
0.

91
(+

)
1

(+
)

0.
99

(+
)

0.
89

(+
)

rw
16

21
0.

54
(=

)
0.

77
(+

)
0.

54
(=

)
0.

75
(+

)
0.

91
(+

)
0.

88
(+

)
0.

59
(=

)
nu

34
96

0.
65

(+
)

0.
8

(+
)

0.
59

(=
)

0.
73

(+
)

0.
94

(+
)

0.
84

(+
)

0.
68

(+
)

ca
46

63
0.

72
(+

)
0.

89
(+

)
0.

73
(+

)
0.

88
(+

)
0.

98
(+

)
0.

96
(+

)
0.

73
(+

)
tz

61
17

0.
77

(+
)

0.
94

(+
)

0.
78

(+
)

0.
91

(+
)

0.
99

(+
)

0.
98

(+
)

0.
79

(+
)

eg
71

46
0.

66
(+

)
0.

81
(+

)
0.

61
(+

)
0.

74
(+

)
0.

91
(+

)
0.

72
(+

)
0.

65
(+

)
ym

76
63

0.
6

(+
)

0.
78

(+
)

0.
58

(+
)

0.
7

(+
)

0.
86

(+
)

0.
82

(+
)

0.
52

(=
)

ei
82

46
0.

78
(+

)
0.

85
(+

)
0.

7
(+

)
0.

8
(+

)
0.

97
(+

)
0.

93
(+

)
0.

74
(+

)
ar

91
52

0.
65

(+
)

0.
77

(+
)

0.
53

(=
)

0.
66

(+
)

0.
86

(+
)

0.
81

(+
)

0.
56

(=
)

ja
98

47
0.

57
(=

)
0.

67
(+

)
0.

56
(=

)
0.

7
(+

)
0.

57
(=

)
0.

73
(+

)
0.

57
(=

)
gr

98
82

0.
59

(−
)

0.
69

(+
)

0.
59

(−
)

0.
64

(+
)

0.
62

(+
)

0.
75

(+
)

0.
61

(−
)

kz
99

76
0.

63
(+

)
0.

85
(+

)
0.

59
(=

)
0.

8
(+

)
0.

93
(+

)
0.

92
(+

)
0.

6
(+

)
fi1

06
39

0.
7

(+
)

0.
85

(+
)

0.
7

(+
)

0.
82

(+
)

0.
99

(+
)

0.
95

(+
)

0.
7

(+
)

ho
14

47
3

0.
7

(−
)

0.
7

(+
)

0.
69

(−
)

0.
66

(+
)

0.
66

(−
)

0.
78

(+
)

0.
7

(−
)

m
o1

41
85

0.
7

(+
)

0.
87

(+
)

0.
69

(+
)

0.
82

(+
)

0.
96

(+
)

0.
93

(+
)

0.
7

(+
)

it1
68

62
0.

58
(=

)
0.

7
(+

)
0.

53
(=

)
0.

67
(+

)
0.

83
(+

)
0.

74
(+

)
0.

53
(=

)
vm

22
77

5
0.

6
(=

)
0.

73
(+

)
0.

6
(−

)
0.

64
(+

)
0.

51
(=

)
0.

76
(+

)
0.

61
(−

)
sw

24
97

8
0.

57
(=

)
0.

79
(+

)
0.

56
(=

)
0.

75
(+

)
0.

86
(+

)
0.

93
(+

)
0.

54
(=

)
bm

33
70

8
0.

56
(=

)
0.

76
(+

)
0.

53
(=

)
0.

68
(+

)
0.

79
(+

)
0.

89
(+

)
0.

58
(=

)

Appendix B: Statistical results 291

Ta
bl

e
B

.3
6:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

s
T

SP
-[

K
-L

]a
nd

th
e

ge
ne

ra
te

d
so

lv
er

s
T

SP
-[

M
-Q

]

T
SP

-K
T

SP
-L

vs
vs

T
SP

-L
T

SP
-M

T
SP

-N
T

SP
-O

T
SP

-P
T

SP
-Q

T
SP

-M
T

SP
-N

T
SP

-O
T

SP
-P

T
SP

-Q
te

xt
bf

u2
15

2
0.

73
(+

)
0.

52
(=

)
0.

68
(+

)
0.

91
(+

)
0.

83
(+

)
0.

6
(+

)
0.

8
(−

)
0.

57
(=

)
0.

84
(+

)
0.

69
(+

)
0.

69
(−

)
us

a1
35

09
0.

61
(+

)
0.

59
(=

)
0.

56
(=

)
0.

78
(+

)
0.

69
(+

)
0.

62
(−

)
0.

7
(−

)
0.

56
(=

)
0.

7
(+

)
0.

57
(=

)
0.

73
(−

)
d1

85
12

0.
66

(+
)

0.
59

(=
)

0.
54

(=
)

0.
9

(+
)

0.
71

(+
)

0.
54

(=
)

0.
78

(−
)

0.
65

(−
)

0.
86

(+
)

0.
57

(=
)

0.
74

(−
)

dj
38

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
68

(−
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
68

(−
)

0.
5

(=
)

0.
5

(=
)

qa
19

4
0.

52
(=

)
0.

61
(−

)
0.

55
(=

)
0.

99
(+

)
0.

51
(=

)
0.

62
(−

)
0.

64
(−

)
0.

57
(=

)
0.

99
(+

)
0.

52
(=

)
0.

65
(−

)
zi

92
9

0.
61

(+
)

0.
61

(−
)

0.
51

(=
)

0.
96

(+
)

0.
66

(+
)

0.
5

(=
)

0.
78

(−
)

0.
65

(−
)

0.
98

(+
)

0.
58

(=
)

0.
64

(−
)

lu
98

0
0.

58
(+

)
0.

59
(−

)
0.

54
(=

)
0.

94
(+

)
0.

73
(+

)
0.

5
(=

)
0.

78
(−

)
0.

57
(=

)
0.

98
(+

)
0.

75
(+

)
0.

63
(−

)
rw

16
21

0.
75

(+
)

0.
5

(=
)

0.
72

(+
)

0.
91

(+
)

0.
88

(+
)

0.
54

(=
)

0.
77

(−
)

0.
51

(=
)

0.
74

(+
)

0.
68

(+
)

0.
74

(−
)

nu
34

96
0.

66
(+

)
0.

56
(=

)
0.

58
(=

)
0.

86
(+

)
0.

7
(+

)
0.

52
(=

)
0.

74
(−

)
0.

58
(=

)
0.

76
(+

)
0.

53
(=

)
0.

65
(−

)
ca

46
63

0.
71

(+
)

0.
55

(=
)

0.
68

(+
)

0.
96

(+
)

0.
86

(+
)

0.
54

(=
)

0.
79

(−
)

0.
53

(=
)

0.
87

(+
)

0.
69

(+
)

0.
78

(−
)

tz
61

17
0.

69
(+

)
0.

54
(=

)
0.

64
(+

)
0.

88
(+

)
0.

82
(+

)
0.

54
(−

)
0.

79
(−

)
0.

56
(=

)
0.

81
(+

)
0.

73
(+

)
0.

8
(−

)
eg

71
46

0.
71

(+
)

0.
58

(=
)

0.
61

(+
)

0.
9

(+
)

0.
58

(=
)

0.
53

(=
)

0.
78

(−
)

0.
58

(=
)

0.
69

(+
)

0.
65

(−
)

0.
75

(−
)

ym
76

63
0.

72
(+

)
0.

53
(=

)
0.

62
(+

)
0.

84
(+

)
0.

78
(+

)
0.

6
(=

)
0.

75
(−

)
0.

61
(−

)
0.

57
(+

)
0.

52
(=

)
0.

8
(−

)
ei

82
46

0.
58

(=
)

0.
64

(−
)

0.
51

(=
)

0.
86

(+
)

0.
72

(+
)

0.
58

(=
)

0.
73

(−
)

0.
58

(=
)

0.
82

(+
)

0.
67

(+
)

0.
67

(−
)

ar
91

52
0.

64
(+

)
0.

62
(−

)
0.

52
(=

)
0.

75
(+

)
0.

7
(+

)
0.

58
(=

)
0.

75
(−

)
0.

62
(−

)
0.

6
(+

)
0.

56
(=

)
0.

71
(−

)
ja

98
47

0.
72

(+
)

0.
51

(=
)

0.
75

(+
)

0.
65

(+
)

0.
8

(+
)

0.
5

(=
)

0.
71

(−
)

0.
51

(=
)

0.
62

(−
)

0.
51

(+
)

0.
72

(−
)

gr
98

82
0.

77
(+

)
0.

5
(=

)
0.

71
(+

)
0.

76
(+

)
0.

84
(+

)
0.

53
(=

)
0.

77
(−

)
0.

55
(=

)
0.

6
(−

)
0.

54
(=

)
0.

8
(−

)
kz

99
76

0.
74

(+
)

0.
56

(=
)

0.
68

(+
)

0.
84

(+
)

0.
84

(+
)

0.
56

(=
)

0.
82

(−
)

0.
56

(=
)

0.
62

(+
)

0.
63

(+
)

0.
83

(−
)

fi1
06

39
0.

65
(+

)
0.

52
(=

)
0.

59
(+

)
0.

93
(+

)
0.

81
(+

)
0.

51
(=

)
0.

71
(−

)
0.

6
(−

)
0.

91
(+

)
0.

72
(+

)
0.

69
(−

)
ho

14
47

3
0.

84
(+

)
0.

53
(=

)
0.

82
(+

)
0.

56
(=

)
0.

91
(+

)
0.

51
(=

)
0.

84
(−

)
0.

55
(=

)
0.

81
(−

)
0.

55
(=

)
0.

84
(−

)
m

o1
41

85
0.

75
(+

)
0.

52
(=

)
0.

67
(+

)
0.

91
(+

)
0.

87
(+

)
0.

5
(=

)
0.

78
(−

)
0.

61
(−

)
0.

72
(+

)
0.

65
(+

)
0.

76
(−

)
it1

68
62

0.
64

(+
)

0.
55

(=
)

0.
62

(+
)

0.
8

(+
)

0.
7

(+
)

0.
56

(=
)

0.
67

(−
)

0.
52

(=
)

0.
63

(+
)

0.
56

(=
)

0.
69

(−
)

vm
22

77
5

0.
79

(+
)

0.
52

(=
)

0.
71

(+
)

0.
63

(+
)

0.
86

(+
)

0.
52

(=
)

0.
81

(−
)

0.
59

(=
)

0.
7

(−
)

0.
51

(=
)

0.
8

(−
)

sw
24

97
8

0.
74

(+
)

0.
51

(=
)

0.
7

(+
)

0.
83

(+
)

0.
91

(+
)

0.
54

(=
)

0.
76

(−
)

0.
55

(=
)

0.
56

(=
)

0.
7

(+
)

0.
78

(−
)

bm
33

70
8

0.
75

(+
)

0.
53

(=
)

0.
64

(+
)

0.
79

(+
)

0.
91

(+
)

0.
52

(=
)

0.
77

(−
)

0.
6

(=
)

0.
51

(=
)

0.
68

(+
)

0.
73

(−
)

292 Appendix B: Statistical results

Ta
bl

e
B

.3
7:

St
at

is
tic

al
co

m
pa

ri
so

n
of

to
ur

s
ob

ta
in

ed
by

th
e

ge
ne

ra
te

d
so

lv
er

s
T

SP
-[

M
-Q

]

T
SP

-M
T

SP
-N

T
SP

-O
T

SP
-P

vs
vs

vs
vs

T
SP

-N
T

SP
-O

T
SP

-P
T

SP
-Q

T
SP

-O
T

SP
-P

T
SP

-Q
T

SP
-P

T
SP

-Q
T

SP
-Q

u2
15

2
0.

73
(+

)
0.

96
(+

)
0.

91
(+

)
0.

63
(+

)
0.

86
(+

)
0.

74
(+

)
0.

61
(−

)
0.

74
(−

)
0.

92
(−

)
0.

84
(−

)
us

a1
35

09
0.

66
(+

)
0.

86
(+

)
0.

79
(+

)
0.

53
(=

)
0.

77
(+

)
0.

65
(+

)
0.

69
(−

)
0.

66
(−

)
0.

89
(−

)
0.

82
(−

)
d1

85
12

0.
67

(+
)

0.
96

(+
)

0.
83

(+
)

0.
56

(=
)

0.
92

(+
)

0.
71

(+
)

0.
61

(−
)

0.
81

(−
)

0.
95

(−
)

0.
79

(−
)

dj
38

0.
5

(=
)

0.
68

(−
)

0.
5

(=
)

0.
5

(=
)

0.
68

(−
)

0.
5

(=
)

0.
50

(=
)

0.
68

(−
)

0.
68

(−
)

0.
5

(=
)

qa
19

4
0.

56
(=

)
1

(+
)

0.
61

(+
)

0.
51

(=
)

0.
99

(+
)

0.
55

(=
)

0.
58

(−
)

0.
99

(−
)

1
(−

)
0.

62
(−

)
zi

92
9

0.
64

(+
)

0.
99

(+
)

0.
84

(+
)

0.
66

(+
)

0.
99

(+
)

0.
72

(+
)

0.
52

(=
)

0.
98

(−
)

0.
99

(−
)

0.
71

(−
)

lu
98

0
0.

7
(+

)
1

(+
)

0.
93

(+
)

0.
66

(+
)

0.
99

(+
)

0.
78

(+
)

0.
56

(−
)

0.
95

(−
)

1
(−

)
0.

85
(−

)
rw

16
21

0.
74

(+
)

0.
93

(+
)

0.
91

(+
)

0.
54

(=
)

0.
71

(+
)

0.
66

(+
)

0.
7

(−
)

0.
6

(=
)

0.
92

(−
)

0.
89

(−
)

nu
34

96
0.

66
(+

)
0.

93
(+

)
0.

78
(+

)
0.

6
(=

)
0.

83
(+

)
0.

62
(+

)
0.

58
(−

)
0.

78
(−

)
0.

9
(−

)
0.

71
(−

)
ca

46
63

0.
77

(+
)

1
(+

)
0.

95
(+

)
0.

51
(=

)
0.

9
(+

)
0.

73
(+

)
0.

76
(−

)
0.

8
(−

)
0.

99
(−

)
0.

94
(−

)
tz

61
17

0.
73

(+
)

0.
98

(+
)

0.
94

(+
)

0.
51

(=
)

0.
84

(+
)

0.
76

(+
)

0.
73

(−
)

0.
65

(−
)

0.
98

(−
)

0.
95

(−
)

eg
71

46
0.

68
(+

)
0.

95
(+

)
0.

66
(+

)
0.

56
(=

)
0.

74
(+

)
0.

54
(=

)
0.

64
(−

)
0.

85
(−

)
0.

95
(−

)
0.

62
(−

)
ym

76
63

0.
65

(+
)

0.
87

(+
)

0.
82

(+
)

0.
56

(=
)

0.
7

(+
)

0.
65

(+
)

0.
7

(−
)

0.
55

(=
)

0.
9

(−
)

0.
85

(−
)

ei
82

46
0.

66
(+

)
0.

95
(+

)
0.

87
(+

)
0.

55
(=

)
0.

87
(+

)
0.

74
(+

)
0.

59
(=

)
0.

73
(−

)
0.

89
(−

)
0.

8
(−

)
ar

91
52

0.
63

(+
)

0.
85

(+
)

0.
8

(+
)

0.
54

(=
)

0.
72

(+
)

0.
68

(+
)

0.
6

(=
)

0.
53

(=
)

0.
81

(−
)

0.
77

(−
)

ja
98

47
0.

74
(+

)
0.

64
(+

)
0.

79
(+

)
0.

51
(=

)
0.

65
(−

)
0.

5
(−

)
0.

74
(−

)
0.

7
(+

)
0.

65
(−

)
0.

79
(−

)
gr

98
82

0.
71

(+
)

0.
76

(+
)

0.
85

(+
)

0.
54

(=
)

0.
54

(−
)

0.
58

(−
)

0.
73

(−
)

0.
69

(+
)

0.
82

(−
)

0.
88

(−
)

kz
99

76
0.

76
(+

)
0.

92
(+

)
0.

92
(+

)
0.

5
(=

)
0.

7
(+

)
0.

71
(+

)
0.

77
(−

)
0.

53
(=

)
0.

93
(−

)
0.

92
(−

)
fi1

06
39

0.
63

(+
)

0.
97

(+
)

0.
88

(+
)

0.
51

(=
)

0.
96

(+
)

0.
81

(+
)

0.
61

(−
)

0.
78

(−
)

0.
97

(−
)

0.
86

(−
)

ho
14

47
3

0.
81

(+
)

0.
53

(=
)

0.
91

(+
)

0.
54

(=
)

0.
79

(−
)

0.
6

(+
)

0.
82

(−
)

0.
89

(+
)

0.
56

(=
)

0.
91

(−
)

m
o1

41
85

0.
7

(+
)

0.
95

(+
)

0.
91

(+
)

0.
52

(=
)

0.
85

(+
)

0.
79

(+
)

0.
68

(−
)

0.
58

(−
)

0.
94

(−
)

0.
9

(−
)

it1
68

62
0.

66
(+

)
0.

82
(+

)
0.

73
(+

)
0.

51
(=

)
0.

65
(+

)
0.

56
(=

)
0.

67
(−

)
0.

56
(=

)
0.

84
(−

)
0.

74
(−

)
vm

22
77

5
0.

73
(+

)
0.

67
(+

)
0.

88
(+

)
0.

5
(=

)
0.

61
(−

)
0.

59
(+

)
0.

73
(−

)
0.

76
(+

)
0.

65
(−

)
0.

87
(−

)
sw

24
97

8
0.

72
(+

)
0.

85
(+

)
0.

92
(+

)
0.

52
(=

)
0.

61
(+

)
0.

74
(+

)
0.

73
(−

)
0.

67
(+

)
0.

86
(−

)
0.

93
(−

)
bm

33
70

8
0.

67
(+

)
0.

81
(+

)
0.

92
(+

)
0.

55
(=

)
0.

62
(+

)
0.

76
(+

)
0.

63
(−

)
0.

69
(+

)
0.

77
(−

)
0.

9
(−

)

Appendix B: Statistical results 293

The Nurse-Rostering problem

The statistical analysis provided in this section summarises the rosters found over a

100 independent runs with 3,000 problem evaluations. The instances detail are given

in table B.38. More information can be found in [3].

Table B.38: Definition of a nurse rostering instances, with the number of nurses, types
of shift and days.

No of No of No of
Instance Nurses Types days
BCV-1.8.1 8 5 28
BCV-1.8.2 8 5 28
BCV-1.8.3 8 5 28
BCV-1.8.4 8 5 28
BCV-2.46.1 46 4 28
BCV-3.46.1 46 3 28
BCV-3.46.2 46 3 28
BCV-4.13.1 13 4 29
BCV-4.13.2 13 4 28
BCV-5.4.1 13 4 28
BCV-6.13.1 13 5 30
BCV-6.12.2 13 5 30
BCV-7.10.1 10 6 28
BCV-8.13.1 13 5 28
BCV-8.13.2 13 5 28
BCV-A.12.1 12 5 31
BCV-A.12.2 12 5 31
Instance 1 8 1 14
Instance 2 14 2 14
Instance 3 20 3 14
Instance 4 10 2 28
Instance 5 16 2 28
Instance 6 18 3 28
Instance 7 18 3 28
Instance 9 36 4 28
Instance 10 40 5 28
ORTEC01 16 4 31
ORTEC02 16 4 31
GPOST 8 2 28
GPOST-B 8 2 28
Ikegami-2Shift-DATA1 28 2 30
Ikegami-3Shift-DATA.11 25 3 30

294 Appendix B: Statistical results

Table B.39: Statistical comparison of rosters obtained by NRP solvers NRP-[A-J] for
the instances BCV-1.8.1, BCV-1.8.2, BCV-1.8.3, BCV-1.8.4 and BCV-2.46.1.

BCV-1.8.1 BCV-1.8.2 BCV-1.8.3 BCV-1.8.4 BCV-2.46.1
NRP-A mean 4.878e-04 1.585e-02 4.634e-03 -1.195e+00 4.506e+00

std (3.4e-03) (1.2e-02) (9.6e-03) (1.6e-15) (1.3e+00)
median 0.000e+00 2.439e-02 0.000e+00 -1.195e+00 4.494e+00
IQR (0.0e+00) (2.4e-02) (0.0e+00) (0.0e+00) (1.4e+00)

NRP-B mean 0.000e+00 4.146e-03 2.439e-04 -7.734e-01 2.925e+00
std (0.0e+00) (1.6e-02) (2.4e-03) (2.3e-01) (9.5e-01)
median 0.000e+00 0.000e+00 0.000e+00 -8.415e-01 2.763e+00
IQR (0.0e+00) (0.0e+00) (0.0e+00) (2.9e-01) (1.2e+00)

NRP-C mean 0.000e+00 6.098e-03 0.000e+00 -7.868e-01 5.035e+00
std (0.0e+00) (1.1e-02) (0.0e+00) (2.1e-01) (1.4e+00)
median 0.000e+00 0.000e+00 0.000e+00 -8.171e-01 5.026e+00
IQR (0.0e+00) (1.2e-02) (0.0e+00) (2.7e-01) (2.0e+00)

NRP-D mean 0.000e+00 7.805e-03 9.756e-04 -7.898e-01 4.187e+00
std (0.0e+00) (1.1e-02) (4.8e-03) (2.2e-01) (1.2e+00)
median 0.000e+00 0.000e+00 0.000e+00 -8.049e-01 4.141e+00
IQR (0.0e+00) (2.4e-02) (0.0e+00) (3.2e-01) (1.5e+00)

NRP-E mean 0.000e+00 3.659e-03 0.000e+00 2.172e+00 5.576e+00
std (0.0e+00) (8.8e-03) (0.0e+00) (3.0e+01) (1.6e+00)
median 0.000e+00 0.000e+00 0.000e+00 -8.537e-01 5.615e+00
IQR (0.0e+00) (0.0e+00) (0.0e+00) (3.0e-01) (2.0e+00)

NRP-F mean 2.374e+00 7.561e-03 7.317e-04 -7.480e-01 5.845e+00
std (2.4e+01) (1.1e-02) (4.2e-03) (2.2e-01) (1.6e+00)
median 0.000e+00 0.000e+00 0.000e+00 -7.927e-01 5.724e+00
IQR (0.0e+00) (2.4e-02) (0.0e+00) (2.4e-01) (1.9e+00)

NRP-G mean 0.000e+00 5.366e-03 7.317e-04 -1.180e-01 2.932e+00
std (0.0e+00) (1.0e-02) (4.2e-03) (7.2e+00) (1.0e+00)
median 0.000e+00 0.000e+00 0.000e+00 -8.537e-01 2.929e+00
IQR (0.0e+00) (0.0e+00) (0.0e+00) (4.9e-01) (1.3e+00)

NRP-H mean 0.000e+00 1.073e-02 2.683e-03 -1.195e+00 4.063e+00
std (0.0e+00) (1.2e-02) (7.7e-03) (1.6e-15) (1.1e+00)
median 0.000e+00 0.000e+00 0.000e+00 -1.195e+00 4.071e+00
IQR (0.0e+00) (2.4e-02) (0.0e+00) (0.0e+00) (1.6e+00)

NRP-I mean 7.829e-02 4.237e-01 2.293e-02 -1.029e+00 4.019e+00
std (9.7e-02) (2.7e-01) (1.1e-02) (1.7e-01) (3.2e+00)
median 2.439e-02 3.902e-01 2.439e-02 -9.024e-01 2.968e+00
IQR (1.1e-01) (4.1e-01) (0.0e+00) (3.2e-01) (3.5e+00)

NRP-J mean 1.473e-01 4.827e-01 1.166e-01 -6.741e-01 3.020e+01
std (4.5e-01) (3.9e-01) (2.9e-01) (2.6e-01) (2.7e+01)
median 4.878e-02 4.146e-01 2.439e-02 -6.341e-01 2.065e+01
IQR (9.8e-02) (3.9e-01) (4.9e-02) (3.2e-01) (3.0e+01)

Appendix B: Statistical results 295

Table B.40: Statistical comparison of rosters obtained by NRP solvers NRP-[A-J] for
the instances BCV-3.46.1, BCV-3.46.2, BCV-4.13.2, BCV-5.4.1.

BCV-3.46.1 BCV-3.46.2 BCV-4.13.2 BCV-5.4.1
NRP-A mean 4.258e-01 0.000e+00 0.000e+00 0.000e+00

std (6.8e-02) (0.0e+00) (0.0e+00) (0.0e+00)
median 4.286e-01 0.000e+00 0.000e+00 0.000e+00
iRQ (9.1e-02) (0.0e+00) (0.0e+00) (0.0e+00)

NRP-B mean 2.655e-01 0.000e+00 0.000e+00 0.000e+00
std (5.0e-02) (0.0e+00) (0.0e+00) (0.0e+00)
median 2.597e-01 0.000e+00 0.000e+00 0.000e+00
iRQ (6.5e-02) (0.0e+00) (0.0e+00) (0.0e+00)

NRP-C mean 6.406e-01 0.000e+00 0.000e+00 0.000e+00
std (1.1e-01) (0.0e+00) (0.0e+00) (0.0e+00)
median 6.364e-01 0.000e+00 0.000e+00 0.000e+00
iRQ (1.7e-01) (0.0e+00) (0.0e+00) (0.0e+00)

NRP-D mean 5.087e-01 0.000e+00 0.000e+00 0.000e+00
std (8.9e-02) (0.0e+00) (0.0e+00) (0.0e+00)
median 5.065e-01 0.000e+00 0.000e+00 0.000e+00
iRQ (1.3e-01) (0.0e+00) (0.0e+00) (0.0e+00)

NRP-E mean 6.882e-01 0.000e+00 1.178e+02 1.044e+00
std (1.1e-01) (0.0e+00) (2.1e+02) (2.7e-15)
median 6.883e-01 0.000e+00 0.000e+00 1.044e+00
iRQ (1.4e-01) (0.0e+00) (0.0e+00) (0.0e+00)

NRP-F mean 8.452e-01 0.000e+00 1.144e+02 1.044e+00
std (1.1e-01) (0.0e+00) (2.5e+02) (2.7e-15)
median 8.442e-01 0.000e+00 0.000e+00 1.044e+00
iRQ (1.5e-01) (0.0e+00) (0.0e+00) (0.0e+00)

NRP-G mean 3.825e-01 0.000e+00 1.223e+02 1.044e+00
std (6.9e-02) (0.0e+00) (2.1e+02) (2.7e-15)
median 3.766e-01 0.000e+00 0.000e+00 1.044e+00
iRQ (1.0e-01) (0.0e+00) (2.4e+02) (0.0e+00)

NRP-H mean 3.817e-01 0.000e+00 0.000e+00 0.000e+00
std (5.9e-02) (0.0e+00) (0.0e+00) (0.0e+00)
median 3.896e-01 0.000e+00 0.000e+00 0.000e+00
iRQ (7.8e-02) (0.0e+00) (0.0e+00) (0.0e+00)

NRP-I mean 5.803e-01 1.455e-02 2.667e-03 0.000e+00
std (2.5e-01) (1.0e-02) (7.3e-03) (0.0e+00)
median 5.844e-01 1.299e-02 0.000e+00 0.000e+00
iRQ (3.6e-01) (1.3e-02) (0.0e+00) (0.0e+00)

NRP-J mean 1.584e+00 3.623e-02 1.468e+02 1.044e+00
std (8.3e-01) (6.0e-02) (2.5e+02) (2.7e-15)
median 1.558e+00 1.299e-02 4.444e-02 1.044e+00
iRQ (9.9e-01) (1.3e-02) (4.7e+02) (0.0e+00)

296 Appendix B: Statistical results

Table B.41: Statistical comparison of rosters obtained by NRP solvers NRP-[A-J] for
the instances BCV-6.13.1, BCV-6.12.2, BCV-7.10.1, BCV-8.13.1 and BCV-8.13.2.

BCV-6.13.1 BCV-6.12.2 BCV-7.10.1 BCV-8.13.1 BCV-8.13.2
NRP-A mean 7.750e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00

std (8.3e-02) (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)
median 1.042e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00
IQR (1.7e-01) (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)

NRP-B mean 3.200e-01 0.000e+00 5.455e-02 0.000e+00 0.000e+00
std (6.1e-02) (0.0e+00) (5.7e-02) (0.0e+00) (0.0e+00)
median 3.333e-01 0.000e+00 0.000e+00 0.000e+00 0.000e+00
IQR (0.0e+00) (0.0e+00) (1.1e-01) (0.0e+00) (0.0e+00)

NRP-C mean 1.350e-01 0.000e+00 7.955e-03 0.000e+00 0.000e+00
std (6.6e-02) (0.0e+00) (2.9e-02) (0.0e+00) (0.0e+00)
median 1.667e-01 0.000e+00 0.000e+00 0.000e+00 0.000e+00
IQR (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)

NRP-D mean 1.598e-01 0.000e+00 0.000e+00 0.000e+00 0.000e+00
std (6.4e-02) (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)
median 1.667e-01 0.000e+00 0.000e+00 0.000e+00 0.000e+00
IQR (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)

NRP-E mean 1.925e-01 5.253e+01 4.166e+00 1.766e+02 1.280e+02
std (8.3e-02) (1.2e+02) (2.9e+01) (5.7e+01) (7.1e+01)
median 1.667e-01 0.000e+00 0.000e+00 1.916e+02 1.611e+02
IQR (0.0e+00) (9.2e+01) (0.0e+00) (1.4e+01) (2.1e+01)

NRP-F mean 1.844e+00 5.978e+01 8.156e+00 1.617e+02 1.378e+02
std (1.8e+01) (1.5e+02) (4.0e+01) (7.1e+01) (6.3e+01)
median 0.000e+00 0.000e+00 0.000e+00 1.907e+02 1.627e+02
IQR (1.7e-01) (9.4e+01) (0.0e+00) (1.5e+01) (1.9e+01)

NRP-G mean 8.354e-02 3.831e+01 0.000e+00 1.747e+02 1.436e+02
std (9.6e-02) (1.1e+02) (0.0e+00) (6.0e+01) (6.1e+01)
median 0.000e+00 0.000e+00 0.000e+00 1.908e+02 1.671e+02
IQR (1.7e-01) (9.0e+01) (0.0e+00) (1.6e+01) (1.6e+01)

NRP-H mean 4.417e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00
std (7.3e-02) (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)
median 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
IQR (1.7e-01) (0.0e+00) (0.0e+00) (0.0e+00) (0.0e+00)

NRP-I mean 3.565e-01 0.000e+00 9.648e-01 0.000e+00 0.000e+00
std (2.6e-01) (0.0e+00) (9.9e-01) (0.0e+00) (0.0e+00)
median 3.333e-01 0.000e+00 6.591e-01 0.000e+00 0.000e+00
IQR (0.0e+00) (0.0e+00) (1.9e+00) (0.0e+00) (0.0e+00)

NRP-J mean 4.167e-01 0.000e+00 9.798e-01 1.751e+02 1.383e+02
std (6.7e-16) (0.0e+00) (2.3e+00) (5.9e+01) (6.5e+01)
median 4.167e-01 0.000e+00 1.136e-01 1.920e+02 1.658e+02
IQR (0.0e+00) (0.0e+00) (7.3e-01) (1.4e+01) (1.3e+01)

Appendix B: Statistical results 297

Table B.42: Statistical comparison of rosters obtained by NRP solvers NRP-[A-J] for
the instances BCV-A.12.1, BCV-A.12.2, Instance 2, Instance 3, and Instance 4.

BCV-A.12.1 BCV-A.12.2 Instance 2 Instance 3 Instance 4
NRP-A mean 6.046e+01 6.320e+01 1.573e+00 1.609e+00 1.635e+00

std (9.6e+00) (9.9e+00) (8.9e+00) (8.9e+00) (8.9e+00)
median 5.986e+01 6.417e+01 0.000e+00 5.405e-02 7.500e-02
IQR (1.4e+01) (1.5e+01) (0.0e+00) (0.0e+00) (5.0e-02)

NRP-B mean 3.420e+00 2.963e+00 1.961e-01 3.044e-01 1.848e-01
std (1.0e+00) (1.3e+00) (6.6e-01) (6.4e-01) (6.6e-01)
median 3.427e+00 3.010e+00 8.333e-02 1.892e-01 7.500e-02
IQR (1.5e+00) (1.8e+00) (6.7e-02) (5.4e-02) (5.0e-02)

NRP-C mean 4.057e+00 3.456e+00 5.429e-02 9.175e-02 1.020e-01
std (8.2e-01) (1.1e+00) (3.2e-01) (3.2e-01) (3.2e-01)
median 4.031e+00 3.438e+00 0.000e+00 5.405e-02 7.500e-02
IQR (1.2e+00) (1.5e+00) (3.3e-02) (2.7e-02) (2.5e-02)

NRP-D mean 1.512e+01 1.531e+01 3.677e-01 4.558e-01 3.975e-01
std (2.4e+00) (2.6e+00) (2.3e+00) (2.3e+00) (2.3e+00)
median 1.504e+01 1.560e+01 3.333e-02 1.351e-01 7.500e-02
IQR (3.6e+00) (3.4e+00) (1.0e-01) (5.4e-02) (1.2e-02)

NRP-E mean 4.846e+00 4.601e+00 1.402e-01 2.366e-01 8.750e-02
std (1.0e+00) (1.2e+00) (7.0e-01) (6.8e-01) (2.8e-02)
median 4.844e+00 4.615e+00 3.333e-02 1.351e-01 7.500e-02
IQR (1.3e+00) (1.9e+00) (1.0e-01) (6.8e-02) (3.8e-02)

NRP-F mean 2.714e+01 2.956e+01 4.142e-01 4.587e-01 4.735e-01
std (5.5e+00) (5.5e+00) (4.1e+00) (4.1e+00) (4.1e+00)
median 2.776e+01 2.865e+01 0.000e+00 5.405e-02 5.000e-02
IQR (7.8e+00) (8.2e+00) (0.0e+00) (0.0e+00) (2.5e-02)

NRP-G mean 1.130e+01 1.129e+01 3.500e-02 1.005e-01 7.000e-02
std (3.6e+00) (3.6e+00) (4.4e-02) (5.1e-02) (2.6e-02)
median 1.056e+01 1.042e+01 0.000e+00 8.108e-02 7.500e-02
IQR (5.8e+00) (5.8e+00) (6.7e-02) (8.1e-02) (2.5e-02)

NRP-H mean 5.800e+01 5.905e+01 1.083e+00 1.120e+00 5.202e-01
std (8.6e+00) (9.7e+00) (7.7e+00) (7.7e+00) (4.6e+00)
median 5.846e+01 6.047e+01 0.000e+00 5.405e-02 5.000e-02
IQR (1.2e+01) (1.3e+01) (0.0e+00) (2.7e-02) (2.5e-02)

NRP-I mean 1.887e+01 3.599e+01 8.211e+00 4.690e+01 3.125e+00
std (9.4e+00) (1.5e+02) (8.5e+00) (4.4e+02) (2.3e+00)
median 1.615e+01 1.753e+01 6.467e+00 2.784e+00 2.562e+00
IQR (8.4e+00) (1.6e+01) (1.3e-01) (1.8e+00) (1.7e+00)

NRP-J mean 1.713e+02 1.544e+02 3.728e+00 3.404e+00 4.853e+00
std (2.6e+02) (2.3e+02) (1.4e+00) (2.1e+00) (2.6e+00)
median 9.276e+01 8.894e+01 3.333e+00 2.892e+00 5.000e+00
IQR (9.0e+01) (8.1e+01) (2.8e-01) (2.8e+00) (4.8e+00)

298 Appendix B: Statistical results

Table B.43: Statistical comparison of rosters obtained by NRP solvers NRP-[A-J] for
the instances Instance 5, Instance 6, Instance 7, Instance 9 and Instance 10.

Instance 5 Instance 6 Instance 7 Instance 9 Instance 10
NRP-A mean 5.638e+00 8.482e+00 7.875e+00 2.699e+00 1.050e+01

std (8.3e+00) (7.8e+00) (7.9e+00) (8.8e+00) (7.7e+00)
median 4.283e+00 7.918e+00 6.275e+00 7.059e-01 9.808e+00
IQR (2.0e-01) (1.9e+00) (1.8e+00) (8.8e-02) (2.5e+00)

NRP-B mean 1.761e+00 3.793e+00 3.793e+00 1.290e+00 1.541e+00
std (9.0e-01) (1.2e+00) (1.2e+00) (6.0e-01) (7.3e-01)
median 2.109e+00 4.041e+00 4.041e+00 1.074e+00 1.164e+00
IQR (1.7e-01) (1.9e+00) (1.9e+00) (1.3e-01) (1.2e+00)

NRP-C mean 3.255e+00 6.220e+00 4.434e+00 1.175e+00 7.364e+00
std (1.0e+00) (1.9e+00) (1.3e+00) (9.4e-01) (2.6e+00)
median 4.130e+00 6.102e+00 4.320e+00 7.941e-01 8.493e+00
IQR (2.0e+00) (2.0e+00) (1.8e+00) (1.0e-01) (1.7e+00)

NRP-D mean 2.498e+00 5.770e+00 2.422e+00 1.496e+00 4.621e+00
std (2.0e+00) (2.2e+00) (2.2e+00) (2.2e+00) (2.1e+00)
median 2.217e+00 6.041e+00 2.392e+00 1.029e+00 4.829e+00
IQR (1.7e-01) (2.4e-01) (2.3e-01) (9.6e-02) (1.5e+00)

NRP-E mean 2.144e+00 5.386e+00 2.250e+00 1.469e+00 5.149e+00
std (6.6e-01) (1.6e+00) (9.4e-01) (7.0e-01) (1.6e+00)
median 2.152e+00 6.010e+00 2.412e+00 1.221e+00 5.219e+00
IQR (1.1e-01) (2.7e-01) (3.2e-01) (1.2e-01) (1.8e+00)

NRP-F mean 4.248e+00 7.306e+00 6.482e+00 1.512e+00 9.786e+00
std (3.8e+00) (3.8e+00) (3.7e+00) (4.1e+00) (4.1e+00)
median 4.239e+00 7.918e+00 6.196e+00 7.941e-01 9.966e+00
IQR (1.8e+00) (1.9e+00) (5.3e-01) (1.2e-01) (1.5e+00)

NRP-G mean 2.609e+00 6.376e+00 3.161e+00 1.274e+03 5.228e+00
std (8.5e-01) (1.1e+00) (1.2e+00) (3.4e+02) (1.5e+00)
median 2.239e+00 6.102e+00 2.569e+00 1.312e+03 4.863e+00
IQR (2.4e-01) (1.8e+00) (1.9e+00) (7.2e+00) (1.3e+00)

NRP-H mean 4.771e+00 7.819e+00 7.198e+00 2.015e+00 9.734e+00
std (7.2e+00) (6.9e+00) (6.9e+00) (7.6e+00) (6.8e+00)
median 4.217e+00 7.867e+00 6.235e+00 6.912e-01 9.664e+00
IQR (1.9e+00) (1.9e+00) (5.3e-01) (5.9e-02) (1.5e+00)

NRP-I mean 1.036e+02 7.064e+02 3.189e+02 2.015e+00 2.682e+01
std (5.3e+02) (1.7e+03) (5.4e+02) (7.5e+00) (2.2e+01)
median 1.066e+01 1.435e+01 1.796e+01 6.911e-01 1.973e+01
IQR (4.2e+00) (6.4e+00) (1.9e+01) (1.6e+00) (7.5e+00)

NRP-J mean 1.129e+01 6.543e+00 1.377e+01 3.343e+00 1.737e+01
std (2.9e+00) (1.7e+00) (4.4e+00) (1.6e+00) (4.9e+00)
median 1.096e+01 6.041e+00 1.416e+01 3.713e+00 1.805e+01
IQR (3.9e+00) (2.0e+00) (4.3e+00) (1.7e+00) (4.5e+00)

Appendix B: Statistical results 299

Table B.44: Statistical comparison of rosters obtained by NRP solvers NRP-[A-J] for
the instances ORTECO1, ORTECO2, G-Post, G-Post-B, and Ikegami-3Shift-Data.1.

ORTEC01 ORTEC02 G-Post G-Post-B Ikegami 3
Shift-Data.1

NRP-A mean 9.888e-01 2.031e+01 1.230e+01 9.348e+00 3.919e-01
std (1.6e-01) (1.8e+01) (1.3e+01) (1.2e+01) (7.0e-02)
median 9.804e-01 6.569e+00 5.645e+00 5.382e+00 3.966e-01
IQR (2.0e-01) (2.7e+01) (2.6e+01) (2.1e+01) (9.5e-02)

NRP-B mean 6.916e-01 2.504e-01 1.361e-01 4.395e-02 1.848e-01
std (1.1e-01) (2.2e-01) (5.3e-01) (3.1e-02) (3.9e-01)
median 6.863e-01 1.961e-01 7.895e-02 5.263e-02 1.379e-01
IQR (2.0e-01) (3.9e-01) (2.6e-02) (2.6e-02) (6.0e-02)

NRP-C mean 8.600e-01 9.000e-01 6.000e-02 3.711e-02 1.281e-01
std (1.3e-01) (1.4e-01) (3.8e-02) (2.5e-02) (3.3e-02)
median 8.824e-01 8.824e-01 7.895e-02 5.263e-02 1.207e-01
IQR (2.0e-01) (2.0e-01) (5.3e-02) (5.3e-02) (4.3e-02)

NRP-D mean 9.800e-01 7.401e-01 7.026e-02 5.526e-02 1.767e-01
std (1.2e-01) (1.8e-01) (2.6e-02) (3.0e-02) (3.9e-01)
median 9.804e-01 7.843e-01 7.895e-02 5.263e-02 1.207e-01
IQR (2.0e-01) (2.9e-01) (2.6e-02) (2.6e-02) (5.2e-02)

NRP-E mean 8.078e-01 3.883e-01 7.526e-02 4.132e-02 1.405e-01
std (1.3e-01) (2.0e-01) (2.6e-02) (2.8e-02) (3.8e-02)
median 7.843e-01 3.922e-01 7.895e-02 5.263e-02 1.379e-01
IQR (9.8e-02) (2.9e-01) (0.0e+00) (2.6e-02) (5.2e-02)

NRP-F mean 9.580e-01 1.729e+01 1.043e+01 9.137e+00 4.371e-01
std (1.4e-01) (1.8e+01) (1.2e+01) (1.3e+01) (7.9e-02)
median 9.804e-01 5.686e+00 5.500e+00 5.355e+00 4.310e-01
IQR (2.0e-01) (2.6e+01) (2.6e+01) (1.1e+01) (1.0e-01)

NRP-G mean 8.688e-01 1.348e+01 6.178e+00 4.688e+00 2.257e-01
std (1.7e-01) (1.7e+01) (1.0e+01) (8.2e+00) (1.1e-01)
median 8.824e-01 3.922e+00 3.421e-01 1.711e-01 2.328e-01
IQR (2.0e-01) (2.9e+01) (8.2e+00) (5.5e+00) (1.9e-01)

NRP-H mean 9.475e-01 4.164e-01 6.105e-02 2.895e-02 1.176e-01
std (1.2e-01) (1.4e-01) (2.7e-02) (1.9e-02) (3.5e-02)
median 9.804e-01 3.922e-01 7.895e-02 2.632e-02 1.207e-01
IQR (2.0e-01) (9.8e-02) (2.6e-02) (2.6e-02) (5.2e-02)

NRP-I mean 1.461e+01 1.701e+01 2.245e+01 1.907e+01 4.928e-01
std (1.9e+01) (1.6e+01) (3.1e+01) (2.7e+01) (1.9e-01)
median 3.431e+00 6.029e+00 1.176e+01 1.088e+01 4.741e-01
IQR (2.6e+01) (2.6e+01) (2.9e+01) (2.6e+01) (1.3e-01)

NRP-J mean 1.347e+01 1.981e+01 1.538e+01 1.657e+01 4.310e-01
std (1.4e+01) (1.9e+01) (1.5e+01) (1.5e+01) (2.2e-16)
median 3.824e+00 6.471e+00 6.066e+00 1.367e+01 4.310e-01
IQR (2.6e+01) (2.7e+01) (2.6e+01) (2.6e+01) (0.0e+00)

300 Appendix B: Statistical results

Ta
bl

e
B

.4
5:

St
at

is
tic

al
co

m
pa

ri
so

n
of

th
e

ge
ne

ra
te

d
so

lv
er

N
R

P-
A

an
d

th
e

ge
ne

ra
te

d
so

lv
er

s
N

R
P[

A
-J

].

N
R

P-
A

vs
In

st
an

ce
N

R
P-

B
N

R
P-

C
N

R
P-

D
N

R
P-

E
N

R
P-

F
N

R
P-

G
N

R
P-

H
N

R
P-

I
N

R
P-

J
B

C
V-

1.
8.

1
0.

51
(=

)
0.

51
(=

)
0.

51
(=

)
0.

51
(=

)
0.

5
(=

)
0.

51
(=

)
0.

51
(=

)
0.

91
(+

)
0.

99
(+

)
B

C
V-

1.
8.

2
0.

76
(−

)
0.

7
(−

)
0.

66
(−

)
0.

75
(−

)
0.

67
(−

)
0.

71
(−

)
0.

6
(−

)
1

(+
)

0.
99

(+
)

B
C

V-
1.

8.
3

0.
59

(−
)

0.
59

(−
)

0.
57

(−
)

0.
59

(−
)

0.
58

(−
)

0.
58

(−
)

0.
54

(=
)

0.
85

(+
)

0.
88

(+
)

B
C

V-
1.

8.
4

0.
98

(+
)

0.
99

(+
)

0.
99

(+
)

0.
98

(+
)

0.
98

(+
)

0.
96

(+
)

0.
5

(=
)

0.
76

(+
)

1
(+

)
B

C
V-

2.
46

.1
0.

84
(−

)
0.

61
(+

)
0.

58
(=

)
0.

7
(+

)
0.

76
(+

)
0.

83
(−

)
0.

6
(=

)
0.

66
(−

)
0.

94
(+

)
B

C
V-

3.
46

.1
0.

97
(−

)
0.

95
(+

)
0.

77
(+

)
0.

98
(+

)
1

(+
)

0.
68

(−
)

0.
69

(−
)

0.
68

(+
)

0.
94

(+
)

B
C

V-
3.

46
.2

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
9

(+
)

1
(+

)
B

C
V-

4.
13

.1
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

59
(−

)
0.

59
(−

)
0.

58
(−

)
0.

5
(=

)
0.

54
(−

)
1

(+
)

B
C

V-
4.

13
.2

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
62

(−
)

0.
6

(−
)

0.
62

(−
)

0.
5

(=
)

0.
56

(−
)

1
(+

)
B

C
V-

5.
4.

1
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
1

(+
)

1
(+

)
1

(+
)

0.
5

(=
)

0.
5

(=
)

1
(+

)
B

C
V-

6.
13

.1
0.

97
(+

)
0.

67
(+

)
0.

74
(+

)
0.

79
(+

)
0.

56
(=

)
0.

5
(=

)
0.

61
(−

)
0.

94
(+

)
1

(+
)

B
C

V-
6.

12
.2

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
71

(−
)

0.
69

(−
)

0.
65

(−
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

B
C

V-
7.

10
.1

0.
74

(−
)

0.
53

(−
)

0.
5

(=
)

0.
51

(=
)

0.
52

(=
)

0.
5

(=
)

0.
5

(=
)

0.
98

(+
)

1
(+

)
B

C
V-

8.
13

.1
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

95
(+

)
0.

92
(+

)
0.

95
(+

)
0.

5
(=

)
0.

5
(=

)
1

(+
)

B
C

V-
8.

13
.2

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
89

(+
)

0.
92

(+
)

0.
93

(+
)

0.
5

(=
)

0.
5

(=
)

1
(+

)
B

C
V-

A
.1

2.
1

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

0.
57

(=
)

0.
99

(−
)

0.
76

(+
)

B
C

V-
A

.1
2.

2
1

(−
)

1
(−

)
1

(−
)

1
(−

)
1

(−
)

1
(−

)
0.

61
(−

)
0.

99
(−

)
0.

72
(+

)
In

st
an

ce
2

0.
79

(+
)

0.
55

(=
)

0.
67

(+
)

0.
68

(+
)

0.
52

(=
)

0.
61

(−
)

0.
54

(=
)

0.
97

(+
)

0.
96

(+
)

In
st

an
ce

3
0.

97
(+

)
0.

61
(−

)
0.

94
(+

)
0.

95
(+

)
0.

52
(=

)
0.

78
(+

)
0.

58
(=

)
0.

96
(+

)
0.

96
(+

)
In

st
an

ce
4

0.
58

(−
)

0.
54

(=
)

0.
51

(=
)

0.
6

(−
)

0.
59

(=
)

0.
55

(=
)

0.
61

(−
)

0.
97

(+
)

0.
96

(+
)

In
st

an
ce

5
0.

96
(−

)
0.

78
(−

)
0.

92
(−

)
0.

95
(−

)
0.

58
(=

)
0.

87
(−

)
0.

63
(−

)
0.

95
(+

)
0.

96
(+

)
In

st
an

ce
6

0.
96

(−
)

0.
69

(−
)

0.
78

(−
)

0.
81

(−
)

0.
54

(=
)

0.
7

(−
)

0.
6

(=
)

0.
96

(+
)

0.
66

(−
)

In
st

an
ce

7
0.

95
(−

)
0.

88
(−

)
0.

97
(−

)
0.

99
(−

)
0.

57
(=

)
0.

95
(−

)
0.

55
(=

)
0.

97
(+

)
0.

86
(+

)
In

st
an

ce
9

0.
83

(+
)

0.
76

(+
)

0.
84

(+
)

0.
84

(+
)

0.
77

(+
)

1
(+

)
0.

6
(=

)
0.

87
(−

)
0.

85
(+

)
In

st
an

ce
10

1
(−

)
0.

76
(−

)
0.

91
(−

)
0.

9
(−

)
0.

61
(+

)
0.

89
(−

)
0.

62
(−

)
0.

97
(+

)
0.

88
(+

)

Appendix B: Statistical results 301

Ta
bl

e
B

.4
6:

St
at

is
tic

al
co

m
pa

ri
so

n
of

th
e

ge
ne

ra
te

d
so

lv
er

N
R

P-
A

an
d

th
e

ge
ne

ra
te

d
so

lv
er

s
N

R
P[

A
-J

].

N
R

P-
A

vs
In

st
an

ce
N

R
P-

B
N

R
P-

C
N

R
P-

D
N

R
P-

E
N

R
P-

F
N

R
P-

G
N

R
P-

H
N

R
P-

I
N

R
P-

J
O

R
T

E
C

01
0.

9
(−

)
0.

74
(−

)
0.

53
(=

)
0.

81
(−

)
0.

57
(=

)
0.

7
(−

)
0.

59
(=

)
1

(+
)

1
(+

)
O

R
T

E
C

02
0.

91
(−

)
0.

91
(−

)
0.

91
(−

)
0.

91
(−

)
0.

5
(=

)
0.

63
(−

)
0.

91
(−

)
0.

51
(=

)
0.

54
(=

)
G

-P
os

t
0.

99
(−

)
1

(−
)

1
(−

)
1

(−
)

0.
52

(=
)

0.
7

(−
)

1
(−

)
0.

63
(+

)
0.

61
(+

)
G

-P
os

t-
B

0.
99

(−
)

1
(−

)
0.

99
(−

)
1

(−
)

0.
51

(=
)

0.
7

(−
)

1
(−

)
0.

68
(+

)
0.

69
(+

)
Ik

eg
am

i
0.

98
(−

)
1

(−
)

0.
98

(−
)

1
(−

)
0.

66
(+

)
0.

89
(−

)
1

(−
)

0.
78

(+
)

0.
71

(+
)

302 Appendix B: Statistical results

Ta
bl

e
B

.4
7:

St
at

is
tic

al
co

m
pa

ri
so

n
of

th
e

ge
ne

ra
te

d
so

lv
er

N
R

P-
B

an
d

th
e

ge
ne

ra
te

d
so

lv
er

s
N

R
P[

C
-J

].

N
R

P-
B

vs
N

R
P-

C
N

R
P-

D
N

R
P-

E
N

R
P-

F
N

R
P-

G
N

R
P-

H
N

R
P-

I
N

R
P-

J
B

C
V-

1.
8.

1
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

51
(=

)
0.

5
(=

)
0.

5
(=

)
0.

92
(+

)
1

(+
)

B
C

V-
1.

8.
2

0.
57

(=
)

0.
6

(−
)

0.
52

(=
)

0.
6

(−
)

0.
55

(=
)

0.
66

(−
)

1
(+

)
1

(+
)

B
C

V-
1.

8.
3

0.
51

(=
)

0.
52

(=
)

0.
51

(=
)

0.
51

(=
)

0.
51

(=
)

0.
55

(−
)

0.
93

(+
)

0.
99

(+
)

B
C

V-
1.

8.
4

0.
5

(=
)

0.
5

(=
)

0.
54

(=
)

0.
55

(=
)

0.
57

(=
)

0.
98

(−
)

0.
83

(−
)

0.
63

(+
)

B
C

V-
2.

46
.1

0.
89

(+
)

0.
8

(+
)

0.
92

(+
)

0.
94

(+
)

0.
51

(=
)

0.
79

(+
)

0.
53

(+
)

0.
97

(+
)

B
C

V-
3.

46
.1

1
(+

)
0.

99
(+

)
1

(+
)

1
(+

)
0.

92
(+

)
0.

94
(+

)
0.

9
(+

)
0.

99
(+

)
B

C
V-

3.
46

.2
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

9
(+

)
1

(+
)

B
C

V-
4.

13
.1

0.
5

(=
)

0.
5

(=
)

0.
59

(−
)

0.
59

(−
)

0.
58

(−
)

0.
5

(=
)

0.
54

(−
)

1
(+

)
B

C
V-

4.
13

.2
0.

5
(=

)
0.

5
(=

)
0.

62
(−

)
0.

6
(−

)
0.

62
(−

)
0.

5
(=

)
0.

56
(−

)
1

(+
)

B
C

V-
5.

4.
1

0.
5

(=
)

0.
5

(=
)

1
(+

)
1

(+
)

1
(+

)
0.

5
(=

)
0.

5
(=

)
1

(+
)

B
C

V-
6.

13
.1

0.
96

(−
)

0.
94

(−
)

0.
86

(−
)

0.
97

(−
)

0.
95

(−
)

0.
98

(−
)

0.
53

(=
)

1
(+

)
B

C
V-

6.
12

.2
0.

5
(=

)
0.

5
(=

)
0.

71
(−

)
0.

69
(−

)
0.

65
(−

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
B

C
V-

7.
10

.1
0.

7
(−

)
0.

74
(−

)
0.

73
(−

)
0.

71
(−

)
0.

74
(−

)
0.

74
(−

)
0.

87
(+

)
0.

84
(+

)
B

C
V-

8.
13

.1
0.

5
(=

)
0.

5
(=

)
0.

95
(+

)
0.

92
(+

)
0.

95
(+

)
0.

5
(=

)
0.

5
(=

)
1

(+
)

B
C

V-
8.

13
.2

0.
5

(=
)

0.
5

(=
)

0.
89

(+
)

0.
92

(+
)

0.
93

(+
)

0.
5

(=
)

0.
5

(=
)

1
(+

)
B

C
V-

A
.1

2.
1

0.
69

(+
)

1
(+

)
0.

84
(+

)
1

(+
)

1
(+

)
1

(+
)

1
(+

)
1

(+
)

B
C

V-
A

.1
2.

2
0.

63
(+

)
1

(+
)

0.
82

(+
)

1
(+

)
0.

99
(+

)
1

(+
)

1
(+

)
1

(+
)

In
st

an
ce

2
0.

76
(−

)
0.

64
(−

)
0.

64
(−

)
0.

83
(−

)
0.

7
(−

)
0.

83
(−

)
1

(+
)

0.
97

(+
)

In
st

an
ce

3
0.

98
(−

)
0.

78
(−

)
0.

73
(−

)
0.

99
(−

)
0.

88
(−

)
0.

98
(−

)
0.

83
(+

)
0.

91
(+

)
In

st
an

ce
4

0.
52

(−
)

0.
57

(−
)

0.
66

(−
)

0.
51

(−
)

0.
51

(−
)

0.
53

(−
)

0.
98

(+
)

0.
98

(+
)

In
st

an
ce

5
0.

87
(+

)
0.

73
(+

)
0.

64
(+

)
0.

93
(+

)
0.

78
(+

)
0.

92
(+

)
1

(+
)

1
(+

)
In

st
an

ce
6

0.
84

(+
)

0.
81

(+
)

0.
78

(+
)

0.
91

(+
)

0.
92

(+
)

0.
93

(+
)

0.
99

(+
)

0.
9

(+
)

In
st

an
ce

7
0.

73
(+

)
0.

77
(−

)
0.

77
(−

)
0.

91
(+

)
0.

54
(−

)
0.

93
(+

)
0.

99
(+

)
0.

97
(+

)
In

st
an

ce
9

0.
82

(−
)

0.
62

(−
)

0.
78

(+
)

0.
86

(−
)

1
(+

)
0.

88
(−

)
0.

87
(−

)
0.

86
(+

)
In

st
an

ce
10

0.
96

(+
)

0.
97

(+
)

0.
96

(+
)

0.
98

(+
)

0.
99

(+
)

0.
99

(+
)

1
(+

)
1

(+
)

Appendix B: Statistical results 303

Ta
bl

e
B

.4
8:

St
at

is
tic

al
co

m
pa

ri
so

n
of

th
e

ge
ne

ra
te

d
so

lv
er

N
R

P-
B

an
d

th
e

ge
ne

ra
te

d
so

lv
er

s
N

R
P[

C
-J

].

N
R

P-
B

vs
N

R
P-

C
N

R
P-

D
N

R
P-

E
N

R
P-

F
N

R
P-

G
N

R
P-

H
N

R
P-

I
N

R
P-

J
O

R
T

E
C

01
0.

81
(+

)
0.

94
(+

)
0.

71
(+

)
0.

91
(+

)
0.

78
(+

)
0.

9
(+

)
1

(+
)

1
(+

)
O

R
T

E
C

02
1

(+
)

0.
98

(+
)

0.
72

(+
)

1
(+

)
1

(+
)

0.
77

(+
)

1
(+

)
1

(+
)

G
-P

os
t

0.
66

(−
)

0.
62

(−
)

0.
59

(+
)

0.
99

(+
)

0.
74

(+
)

0.
73

(−
)

1
(+

)
1

(+
)

G
-P

os
t-

B
0.

56
(=

)
0.

56
(=

)
0.

52
(=

)
0.

99
(+

)
0.

78
(+

)
0.

66
(−

)
1

(+
)

1
(+

)
Ik

eg
am

i
0.

56
(=

)
0.

56
(=

)
0.

53
(=

)
0.

98
(+

)
0.

71
(+

)
0.

62
(−

)
0.

98
(+

)
0.

98
(+

)

304 Appendix B: Statistical results

Ta
bl

e
B

.4
9:

St
at

is
tic

al
co

m
pa

ri
so

n
of

th
e

ge
ne

ra
te

d
so

lv
er

N
R

P-
C

an
d

th
e

ge
ne

ra
te

d
so

lv
er

s
N

R
P[

D
-J

].

N
R

P-
C

vs
N

R
P-

D
N

R
P-

E
N

R
P-

F
N

R
P-

G
N

R
P-

H
N

R
P-

I
N

R
P-

J
B

C
V-

1.
8.

1
0.

5
(=

)
0.

5
(=

)
0.

51
(=

)
0.

5
(=

)
0.

5
(=

)
0.

92
(+

)
1

(+
)

B
C

V-
1.

8.
2

0.
53

(=
)

0.
55

(=
)

0.
53

(=
)

0.
52

(=
)

0.
59

(−
)

1
(+

)
0.

99
(+

)
B

C
V-

1.
8.

3
0.

52
(=

)
0.

5
(=

)
0.

52
(=

)
0.

52
(=

)
0.

55
(−

)
0.

94
(+

)
1

(+
)

B
C

V-
1.

8.
4

0.
5

(=
)

0.
54

(=
)

0.
56

(=
)

0.
57

(=
)

0.
99

(−
)

0.
85

(−
)

0.
64

(+
)

B
C

V-
2.

46
.1

0.
67

(−
)

0.
6

(=
)

0.
65

(+
)

0.
88

(−
)

0.
7

(−
)

0.
7

(−
)

0.
92

(+
)

B
C

V-
3.

46
.1

0.
82

(−
)

0.
61

(+
)

0.
91

(+
)

0.
98

(−
)

0.
99

(−
)

0.
61

(−
)

0.
9

(+
)

B
C

V-
3.

46
.2

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
9

(+
)

1
(+

)
B

C
V-

4.
13

.1
0.

5
(=

)
0.

59
(−

)
0.

59
(−

)
0.

58
(−

)
0.

5
(=

)
0.

54
(−

)
1

(+
)

B
C

V-
4.

13
.2

0.
5

(=
)

0.
62

(−
)

0.
6

(−
)

0.
62

(−
)

0.
5

(=
)

0.
56

(−
)

1
(+

)
B

C
V-

5.
4.

1
0.

5
(=

)
1

(+
)

1
(+

)
1

(+
)

0.
5

(=
)

0.
5

(=
)

1
(+

)
B

C
V-

6.
13

.1
0.

59
(−

)
0.

66
(−

)
0.

73
(−

)
0.

65
(−

)
0.

77
(−

)
0.

92
(+

)
1

(+
)

B
C

V-
6.

12
.2

0.
5

(=
)

0.
71

(−
)

0.
69

(−
)

0.
65

(−
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

B
C

V-
7.

10
.1

0.
54

(−
)

0.
52

(=
)

0.
51

(=
)

0.
54

(−
)

0.
54

(−
)

0.
97

(+
)

0.
98

(+
)

B
C

V-
8.

13
.1

0.
5

(=
)

0.
95

(+
)

0.
92

(+
)

0.
95

(+
)

0.
5

(=
)

0.
5

(=
)

1
(+

)
B

C
V-

8.
13

.2
0.

5
(=

)
0.

89
(+

)
0.

92
(+

)
0.

93
(+

)
0.

5
(=

)
0.

5
(=

)
1

(+
)

B
C

V-
A

.1
2.

1
1

(+
)

0.
73

(+
)

1
(+

)
1

(+
)

1
(+

)
1

(+
)

1
(+

)
B

C
V-

A
.1

2.
2

1
(+

)
0.

75
(+

)
1

(+
)

0.
99

(+
)

1
(+

)
1

(+
)

1
(+

)
In

st
an

ce
2

0.
63

(+
)

0.
63

(+
)

0.
58

(=
)

0.
57

(=
)

0.
59

(−
)

1
(+

)
0.

99
(+

)
In

st
an

ce
3

0.
94

(+
)

0.
94

(+
)

0.
6

(−
)

0.
72

(+
)

0.
69

(−
)

0.
98

(+
)

0.
98

(+
)

In
st

an
ce

4
0.

56
(=

)
0.

67
(−

)
0.

56
(=

)
0.

51
(=

)
0.

58
(=

)
0.

99
(+

)
0.

99
(+

)
In

st
an

ce
5

0.
74

(−
)

0.
81

(−
)

0.
7

(+
)

0.
65

(−
)

0.
66

(+
)

0.
99

(+
)

1
(+

)
In

st
an

ce
6

0.
59

(−
)

0.
63

(−
)

0.
65

(+
)

0.
51

(=
)

0.
61

(+
)

0.
99

(+
)

0.
51

(=
)

In
st

an
ce

7
0.

88
(−

)
0.

89
(−

)
0.

83
(+

)
0.

72
(−

)
0.

87
(+

)
0.

99
(+

)
0.

94
(+

)
In

st
an

ce
9

0.
83

(+
)

0.
83

(+
)

0.
5

(=
)

1
(+

)
0.

84
(−

)
0.

88
(−

)
0.

89
(+

)
In

st
an

ce
10

0.
81

(−
)

0.
8

(−
)

0.
81

(+
)

0.
76

(−
)

0.
67

(+
)

1
(+

)
0.

95
(+

)

Appendix B: Statistical results 305

Ta
bl

e
B

.5
0:

St
at

is
tic

al
co

m
pa

ri
so

n
of

th
e

ge
ne

ra
te

d
so

lv
er

N
R

P-
C

an
d

th
e

ge
ne

ra
te

d
so

lv
er

s
N

R
P[

D
-J

].

N
R

P-
C

vs
N

R
P-

D
N

R
P-

E
N

R
P-

F
N

R
P-

G
N

R
P-

H
N

R
P-

I
N

R
P-

J
O

R
T

E
C

01
0.

75
(+

)
0.

6
(=

)
0.

7
(+

)
0.

54
(=

)
0.

69
(+

)
1

(+
)

1
(+

)
O

R
T

E
C

02
0.

69
(−

)
0.

88
(−

)
1

(−
)

0.
77

(−
)

0.
9

(−
)

1
(−

)
1

(−
)

G
-P

os
t

0.
56

(=
)

0.
75

(+
)

1
(+

)
0.

81
(+

)
0.

53
(=

)
1

(+
)

1
(+

)
G

-P
os

t-
B

0.
68

(−
)

0.
54

(=
)

0.
99

(+
)

0.
8

(+
)

0.
61

(−
)

1
(+

)
1

(+
)

Ik
eg

am
i

0.
5

(=
)

0.
6

(=
)

1
(+

)
0.

74
(+

)
0.

58
(=

)
1

(+
)

1
(+

)

306 Appendix B: Statistical results

Ta
bl

e
B

.5
1:

St
at

is
tic

al
co

m
pa

ri
so

n
of

th
e

ge
ne

ra
te

d
so

lv
er

s
N

R
P-

[D
-E

]a
nd

th
e

ge
ne

ra
te

d
so

lv
er

s
N

R
P[

F-
J]

.

N
R

P-
D

N
R

P-
E

vs
vs

N
R

P-
E

N
R

P-
F

N
R

P-
G

N
R

P-
H

N
R

P-
I

N
R

P-
J

N
R

P-
F

N
R

P-
G

N
R

P-
H

N
R

P-
I

N
R

P-
J

B
C

V-
1.

8.
1

0.
5

(=
)

0.
51

(=
)

0.
5

(=
)

0.
5

(=
)

0.
92

(+
)

1
(+

)
0.

51
(=

)
0.

5
(=

)
0.

5
(=

)
0.

92
(+

)
1

(+
)

B
C

V-
1.

8.
2

0.
58

(−
)

0.
51

(=
)

0.
55

(=
)

0.
56

(=
)

1
(+

)
0.

99
(+

)
0.

58
(−

)
0.

53
(=

)
0.

65
(−

)
1

(+
)

1
(+

)
B

C
V-

1.
8.

3
0.

52
(=

)
0.

51
(=

)
0.

51
(=

)
0.

53
(=

)
0.

92
(+

)
0.

98
(+

)
0.

52
(=

)
0.

52
(=

)
0.

55
(−

)
0.

94
(+

)
1

(+
)

B
C

V-
1.

8.
4

0.
54

(=
)

0.
55

(=
)

0.
57

(=
)

0.
99

(−
)

0.
84

(−
)

0.
64

(+
)

0.
6

(=
)

0.
53

(=
)

0.
98

(−
)

0.
82

(−
)

0.
67

(+
)

B
C

V-
2.

46
.1

0.
75

(+
)

0.
8

(+
)

0.
79

(−
)

0.
53

(=
)

0.
62

(−
)

0.
95

(+
)

0.
55

(=
)

0.
92

(−
)

0.
78

(−
)

0.
74

(−
)

0.
91

(+
)

B
C

V-
3.

46
.1

0.
9

(+
)

0.
99

(+
)

0.
87

(−
)

0.
88

(−
)

0.
58

(+
)

0.
93

(+
)

0.
84

(+
)

0.
99

(−
)

0.
99

(−
)

0.
67

(−
)

0.
88

(+
)

B
C

V-
3.

46
.2

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
9

(+
)

1
(+

)
0.

5
(=

)
0.

5
(=

)
0.

5
(=

)
0.

9
(+

)
1

(+
)

B
C

V-
4.

13
.1

0.
59

(−
)

0.
59

(−
)

0.
58

(−
)

0.
5

(=
)

0.
54

(−
)

1
(+

)
0.

5
(=

)
0.

5
(=

)
0.

59
(−

)
0.

56
(=

)
0.

84
(+

)
B

C
V-

4.
13

.2
0.

62
(−

)
0.

6
(−

)
0.

62
(−

)
0.

5
(=

)
0.

56
(−

)
1

(+
)

0.
51

(=
)

0.
5

(=
)

0.
62

(−
)

0.
57

(−
)

0.
79

(+
)

B
C

V-
5.

4.
1

1
(+

)
1

(+
)

1
(+

)
0.

5
(=

)
0.

5
(=

)
1

(+
)

0.
5

(=
)

0.
5

(=
)

1
(−

)
1

(−
)

0.
5

(=
)

B
C

V-
6.

13
.1

0.
58

(−
)

0.
8

(−
)

0.
72

(−
)

0.
84

(−
)

0.
89

(+
)

1
(+

)
0.

83
(−

)
0.

77
(−

)
0.

87
(−

)
0.

81
(+

)
1

(+
)

B
C

V-
6.

12
.2

0.
71

(−
)

0.
69

(−
)

0.
65

(−
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

0.
55

(=
)

0.
7

(−
)

0.
7

(−
)

0.
7

(−
)

B
C

V-
7.

10
.1

0.
51

(=
)

0.
52

(=
)

0.
5

(=
)

0.
5

(=
)

0.
98

(+
)

1
(+

)
0.

51
(=

)
0.

51
(=

)
0.

51
(=

)
0.

97
(+

)
0.

98
(+

)
B

C
V-

8.
13

.1
0.

95
(+

)
0.

92
(+

)
0.

95
(+

)
0.

5
(=

)
0.

5
(=

)
1

(+
)

0.
56

(=
)

0.
52

(=
)

0.
95

(−
)

0.
95

(−
)

0.
51

(=
)

B
C

V-
8.

13
.2

0.
89

(+
)

0.
92

(+
)

0.
93

(+
)

0.
5

(=
)

0.
5

(=
)

1
(+

)
0.

53
(=

)
0.

59
(=

)
0.

89
(−

)
0.

89
(−

)
0.

58
(+

)
B

C
V-

A
.1

2.
1

1
(−

)
0.

98
(+

)
0.

79
(−

)
1

(+
)

0.
58

(+
)

1
(+

)
1

(+
)

0.
99

(+
)

1
(+

)
1

(+
)

1
(+

)
B

C
V-

A
.1

2.
2

1
(−

)
0.

99
(+

)
0.

81
(−

)
1

(+
)

0.
66

(+
)

0.
99

(+
)

1
(+

)
0.

98
(+

)
1

(+
)

0.
99

(+
)

1
(+

)
In

st
an

ce
2

0.
5

(=
)

0.
71

(−
)

0.
56

(=
)

0.
72

(−
)

0.
98

(+
)

0.
97

(+
)

0.
71

(−
)

0.
56

(=
)

0.
72

(−
)

1
(+

)
0.

98
(+

)
In

st
an

ce
3

0.
55

(=
)

0.
96

(−
)

0.
7

(−
)

0.
96

(−
)

0.
86

(+
)

0.
94

(+
)

0.
96

(−
)

0.
73

(−
)

0.
97

(−
)

0.
86

(+
)

0.
93

(+
)

In
st

an
ce

4
0.

62
(−

)
0.

62
(−

)
0.

58
(=

)
0.

65
(−

)
0.

98
(+

)
0.

97
(+

)
0.

71
(−

)
0.

68
(−

)
0.

74
(−

)
1

(+
)

0.
99

(+
)

In
st

an
ce

5
0.

61
(−

)
0.

87
(+

)
0.

58
(=

)
0.

85
(+

)
0.

98
(+

)
0.

98
(+

)
0.

91
(+

)
0.

69
(+

)
0.

89
(+

)
1

(+
)

1
(+

)
In

st
an

ce
6

0.
55

(=
)

0.
75

(+
)

0.
62

(+
)

0.
72

(+
)

0.
98

(+
)

0.
56

(=
)

0.
78

(+
)

0.
67

(+
)

0.
76

(+
)

0.
99

(+
)

0.
6

(+
)

In
st

an
ce

7
0.

51
(=

)
0.

93
(+

)
0.

75
(+

)
0.

95
(+

)
0.

99
(+

)
0.

98
(+

)
0.

95
(+

)
0.

75
(+

)
0.

97
(+

)
1

(+
)

0.
99

(+
)

In
st

an
ce

9
0.

84
(+

)
0.

87
(−

)
1

(+
)

0.
89

(−
)

0.
86

(−
)

0.
86

(+
)

0.
87

(−
)

1
(+

)
0.

89
(−

)
0.

85
(−

)
0.

84
(+

)
In

st
an

ce
10

0.
68

(+
)

0.
88

(+
)

0.
59

(=
)

0.
91

(+
)

0.
99

(+
)

0.
99

(+
)

0.
89

(+
)

0.
58

(−
)

0.
91

(+
)

1
(+

)
0.

99
(+

)

Appendix B: Statistical results 307

Ta
bl

e
B

.5
2:

St
at

is
tic

al
co

m
pa

ri
so

n
of

th
e

ge
ne

ra
te

d
so

lv
er

s
N

R
P-

[D
-E

]a
nd

th
e

ge
ne

ra
te

d
so

lv
er

s
N

R
P[

F-
J]

.

N
R

P-
D

N
R

P-
E

vs
vs

N
R

P-
E

N
R

P-
F

N
R

P-
G

N
R

P-
H

N
R

P-
I

N
R

P-
J

N
R

P-
F

N
R

P-
G

N
R

P-
H

N
R

P-
I

N
R

P-
J

O
R

T
E

C
01

0.
83

(−
)

0.
56

(=
)

0.
7

(−
)

0.
57

(=
)

1
(+

)
1

(+
)

0.
78

(+
)

0.
62

(+
)

0.
77

(+
)

1
(+

)
1

(+
)

O
R

T
E

C
02

0.
83

(−
)

1
(−

)
0.

85
(−

)
0.

84
(−

)
1

(−
)

1
(−

)
1

(−
)

0.
98

(−
)

0.
63

(=
)

1
(−

)
1

(−
)

G
-P

os
t

0.
72

(+
)

1
(+

)
0.

79
(+

)
0.

6
(−

)
1

(+
)

1
(+

)
1

(+
)

0.
72

(+
)

0.
83

(−
)

1
(+

)
1

(+
)

G
-P

os
t-

B
0.

65
(−

)
0.

98
(+

)
0.

73
(+

)
0.

77
(−

)
1

(+
)

1
(+

)
0.

99
(+

)
0.

78
(+

)
0.

65
(−

)
1

(+
)

1
(+

)
Ik

eg
am

i
0.

59
(=

)
0.

98
(+

)
0.

73
(+

)
0.

57
(=

)
0.

98
(+

)
0.

98
(+

)
1

(+
)

0.
7

(+
)

0.
66

(−
)

1
(+

)
1

(+
)

308 Appendix B: Statistical results

Ta
bl

e
B

.5
3:

St
at

is
tic

al
co

m
pa

ri
so

n
of

th
e

ge
ne

ra
te

d
so

lv
er

s
N

R
P[

F-
J]

.

N
R

P-
F

N
R

P-
G

N
R

P-
H

N
R

P-
I

vs
vs

vs
vs

N
R

P-
G

N
R

P-
H

N
R

P-
I

N
R

P-
J

N
R

P-
H

N
R

P-
I

N
R

P-
J

N
R

P-
I

N
R

P-
J

N
R

P-
J

B
C

V-
1.

8.
1

0.
51

(=
)

0.
51

(=
)

0.
91

(+
)

0.
99

(+
)

0.
5

(=
)

0.
92

(+
)

1
(+

)
0.

92
(+

)
1

(+
)

0.
52

(+
)

B
C

V-
1.

8.
2

0.
55

(=
)

0.
56

(=
)

1
(+

)
0.

99
(+

)
0.

61
(−

)
1

(+
)

1
(+

)
1

(+
)

0.
99

(+
)

0.
51

(=
)

B
C

V-
1.

8.
3

0.
5

(=
)

0.
54

(=
)

0.
92

(+
)

0.
98

(+
)

0.
54

(=
)

0.
92

(+
)

0.
98

(+
)

0.
88

(+
)

0.
93

(+
)

0.
55

(−
)

B
C

V-
1.

8.
4

0.
61

(−
)

0.
98

(−
)

0.
88

(−
)

0.
59

(+
)

0.
96

(−
)

0.
77

(−
)

0.
68

(+
)

0.
76

(+
)

1
(+

)
0.

9
(+

)
B

C
V-

2.
46

.1
0.

94
(−

)
0.

83
(−

)
0.

76
(−

)
0.

9
(+

)
0.

77
(+

)
0.

53
(+

)
0.

97
(+

)
0.

62
(−

)
0.

95
(+

)
0.

94
(+

)
B

C
V-

3.
46

.1
1

(−
)

1
(−

)
0.

84
(−

)
0.

81
(+

)
0.

51
(=

)
0.

74
(+

)
0.

96
(+

)
0.

74
(+

)
0.

96
(+

)
0.

9
(+

)
B

C
V-

3.
46

.2
0.

5
(=

)
0.

5
(=

)
0.

9
(+

)
1

(+
)

0.
5

(=
)

0.
9

(+
)

1
(+

)
0.

9
(+

)
1

(+
)

0.
64

(−
)

B
C

V-
4.

13
.1

0.
5

(=
)

0.
59

(−
)

0.
56

(=
)

0.
84

(+
)

0.
58

(−
)

0.
55

(=
)

0.
84

(+
)

0.
54

(−
)

1
(+

)
0.

96
(+

)
B

C
V-

4.
13

.2
0.

52
(=

)
0.

6
(−

)
0.

56
(=

)
0.

81
(+

)
0.

62
(−

)
0.

58
(−

)
0.

78
(+

)
0.

56
(−

)
1

(+
)

0.
98

(+
)

B
C

V-
5.

4.
1

0.
5

(=
)

1
(−

)
1

(−
)

0.
5

(=
)

1
(−

)
1

(−
)

0.
5

(=
)

0.
5

(=
)

1
(+

)
1

(+
)

B
C

V-
6.

13
.1

0.
55

(=
)

0.
55

(=
)

0.
94

(+
)

0.
99

(+
)

0.
6

(−
)

0.
93

(+
)

1
(+

)
0.

96
(+

)
1

(+
)

0.
95

(+
)

B
C

V-
6.

12
.2

0.
54

(=
)

0.
69

(−
)

0.
69

(−
)

0.
69

(−
)

0.
65

(−
)

0.
65

(−
)

0.
65

(−
)

0.
5

(=
)

0.
5

(=
)

0.
5

(=
)

B
C

V-
7.

10
.1

0.
52

(=
)

0.
52

(=
)

0.
95

(+
)

0.
96

(+
)

0.
5

(=
)

0.
98

(+
)

1
(+

)
0.

98
(+

)
1

(+
)

0.
59

(−
)

B
C

V-
8.

13
.2

0.
57

(=
)

0.
92

(−
)

0.
92

(−
)

0.
54

(=
)

0.
93

(−
)

0.
93

(−
)

0.
53

(=
)

0.
5

(=
)

1
(+

)
1

(+
)

B
C

V-
A

.1
2.

1
0.

99
(−

)
1

(+
)

0.
82

(−
)

0.
96

(+
)

1
(+

)
0.

79
(+

)
1

(+
)

0.
99

(−
)

0.
77

(+
)

0.
98

(+
)

B
C

V-
A

.1
2.

2
1

(−
)

0.
99

(+
)

0.
75

(−
)

0.
93

(+
)

1
(+

)
0.

85
(+

)
1

(+
)

0.
98

(−
)

0.
75

(+
)

0.
95

(+
)

In
st

an
ce

2
0.

65
(−

)
0.

52
(=

)
0.

99
(+

)
0.

98
(+

)
0.

66
(−

)
1

(+
)

0.
99

(+
)

0.
98

(+
)

0.
97

(+
)

0.
84

(−
)

In
st

an
ce

3
0.

78
(+

)
0.

6
(−

)
0.

98
(+

)
0.

98
(+

)
0.

83
(−

)
0.

93
(+

)
0.

97
(+

)
0.

98
(+

)
0.

97
(+

)
0.

66
(+

)
In

st
an

ce
4

0.
54

(=
)

0.
51

(=
)

0.
99

(+
)

0.
98

(+
)

0.
56

(=
)

1
(+

)
0.

99
(+

)
0.

99
(+

)
0.

98
(+

)
0.

76
(+

)
In

st
an

ce
5

0.
81

(−
)

0.
54

(=
)

0.
98

(+
)

0.
98

(+
)

0.
77

(+
)

1
(+

)
1

(+
)

0.
97

(+
)

0.
97

(+
)

0.
6

(=
)

In
st

an
ce

6
0.

68
(−

)
0.

56
(=

)
0.

98
(+

)
0.

63
(−

)
0.

63
(+

)
0.

99
(+

)
0.

53
(=

)
0.

97
(+

)
0.

6
(−

)
0.

98
(−

)
In

st
an

ce
7

0.
9

(−
)

0.
52

(=
)

0.
98

(+
)

0.
89

(+
)

0.
94

(+
)

1
(+

)
0.

97
(+

)
0.

98
(+

)
0.

88
(+

)
0.

74
(−

)
In

st
an

ce
9

1
(+

)
0.

85
(−

)
0.

89
(−

)
0.

88
(+

)
1

(−
)

0.
85

(−
)

1
(−

)
0.

93
(−

)
0.

91
(+

)
0.

83
(−

)
In

st
an

ce
10

0.
88

(−
)

0.
71

(−
)

0.
97

(+
)

0.
88

(+
)

0.
88

(+
)

1
(+

)
0.

99
(+

)
0.

98
(+

)
0.

9
(+

)
0.

65
(−

)

Appendix B: Statistical results 309

Ta
bl

e
B

.5
4:

St
at

is
tic

al
co

m
pa

ri
so

n
of

th
e

ge
ne

ra
te

d
so

lv
er

s
N

R
P[

F-
J]

.

N
R

P-
F

N
R

P-
G

N
R

P-
H

N
R

P-
I

vs
vs

vs
vs

N
R

P-
G

N
R

P-
H

N
R

P-
I

N
R

P-
J

N
R

P-
H

N
R

P-
I

N
R

P-
J

N
R

P-
I

N
R

P-
J

N
R

P-
J

O
R

T
E

C
01

0.
64

(−
)

0.
52

(=
)

1
(+

)
1

(+
)

0.
63

(+
)

1
(+

)
1

(+
)

1
(+

)
1

(+
)

0.
55

(=
)

O
R

T
E

C
02

0.
6

(−
)

0.
91

(−
)

0.
57

(=
)

0.
6

(=
)

0.
87

(−
)

0.
72

(−
)

0.
74

(−
)

1
(−

)
1

(−
)

0.
57

(=
)

G
-P

os
t

0.
68

(−
)

1
(−

)
0.

65
(+

)
0.

63
(+

)
0.

82
(−

)
0.

79
(+

)
0.

77
(+

)
1

(+
)

1
(+

)
0.

54
(=

)
G

-P
os

t-
B

0.
7

(−
)

1
(−

)
0.

68
(+

)
0.

68
(+

)
0.

84
(−

)
0.

82
(+

)
0.

82
(+

)
1

(+
)

1
(+

)
0.

5
(=

)
Ik

eg
am

i
0.

94
(−

)
1

(−
)

0.
64

(+
)

0.
53

(−
)

0.
77

(−
)

0.
97

(+
)

0.
98

(+
)

1
(+

)
1

(+
)

0.
69

(−
)

310 Appendix B: Statistical results

Abbreviations 311

Abbreviations

Table B.55: List of abbreviations

Abbreviations Description
A-CHS Adaptive Harmony Search
CGP Cartesian Genetic Programming
GP Genetic Programming
GRAPE Graph-Structure Program Evolution
IC-CGP Implicit Cartesian Genetic Programming
LGP Linear Genetic Programming
MC Mimicry problem
NRP Nurse-rostering problem
PADO Parallel Algorithm Discovery and Orchestration
PDPG Parallel distributed Genetic Programming
TSP Traveling Salesman problem
SEL-HH Selective hyper-heuristic

312 Abbreviations

Glossary 313

Glossary

Algorithms are sequences of primitives that are executed in a certain order. The con-

trol of the flow can repeat a set of primitives several times or execute a set of

operators only if a condition is met.

Algorithm encoding scheme represents an algorithm, using a data structure.

Algorithm fitness functions assesses the quality of an algorithm. Its purpose is to

provide a numeral value that can help predict the algorithm abilities to solve

unseen instances.

Algorithm optimisation processes produce algorithms that should efficiently solve a

problem. This process does not guarantee to find the optimum algorithms.

Algorithm representation A set of symbols adopted by a group of people used sim-

ilarly to write an algorithm.

Algorithm search space or algorithm space. A set was representing all possible al-

gorithms for a certain problem, using a well-defined set of operations.

Algorithm Selection Problem finds an algorithm from an algorithm space, such that

this algorithm maximises the problem fitness value. It has been formalised by

[267].

Algorithm-solution is a sequence of instructions that have been produced by a learn-

ing mechanism. An algorithm-solution belong in the algorithm search space.

Bloom’s taxonomy classifies educational goals, in six objectives; those are referred

as knowledge, comprehension, application, analysis, synthesis, evaluation. It is

often represented as a pyramid, with the knowledge at the base and the evalua-

tion at the top.

Coefficient of variation shows how the data is dispersed near a central of tendency.

It is calculated by the formulate Cv = σ
µ

Complexity represents the amount of work required to find a solution for a problem.

314 Glossary

Crossover is a type of reproductive operator that breaks the genetic material of an

individual and recombined it with the genetic material of another individual.

Directed acyclic graph represents pair-wise relationships between two objects. The

edges are directed to show the direction of flow. They have no cycle.

Directed graphs or directed ”cyclic” graphs represent pair-wise relationships between

two objects. The edges are directed to show the direction of flow. These graphs

can have cycles. In this document we refer directed graphs and directed cyclic

graphs interchangeably.

Effort is a metric used to measure the effort to understand an algorithm [127].

Flowchart depicts some algorithms steps by steps. They often use boxes and arrows

to diagrammatically shows the flows of operations from the start to an end.

Generative hyper-heuristics generates a sequence of primitives using a given set of

stochastic operators. The product can be algorithm-solutions as well as problem-

solutions.

Graph-based Genetic Programming is a form a genetic programming that encodes

programs with a directed graph.

Heuristics A non-deterministic search method that offers an alternative approach to

exhaustive search. Those can find solutions to difficult computational problems

in a reasonable amount of time. These methods guarantee to find a solution at

any time, but it may not be optimum.

Human learnability is a concept that readers can easily and quickly familiarise them-

selves with new solvers. This concept is often applied in user interaction design.

Hyper-heuristics is a search methodology that selects or generates heuristics to find

solutions of hard computational problems [59, 65] In some part of the literature,

this term is also spelt without the hyphen.

Inductive bias represents some assumptions a learning algorithm uses to predict an

output from an input.

Glossary 315

Imperative programming uses statements that change program states. In the context

of this work, a permanent and temporary population represents the states. The

operators change the states of these two populations of problem solutions.

Instance is often considered as a concrete representation of a problem. It should have

some features that differentiate them from the others.

Knowledge can be defined as the information stored in the computer system or facts,

information, and skills acquired through experience or education.

Language system A linguistic system that combines elements into patterned expres-

sions, that can be used to accomplish specific tasks in specific contexts [101].

Length is metric that estimate a program length [127].

Lexicon is the vocabulary of a language. In the context of this document, the language

is used to code some metaheuristics using some symbols representing some vari-

ables, constants, and operators. The latter includes assignment, boolean, logical,

problem specific and population operators.

Local search apply some local changes until a limit of time is elapsed.

Meta-learning improves algorithms performance through experience. A meta-level

optimises the performance of an algorithm, and a base-level specialises in a

problem to solve.

Metaheuristics The purpose of such approaches is to find, generate, or select a method

or algorithm to solve a problem; their search space is now the collection of all

possible heuristics and the outcome can be formulae or algorithms together with

a solution of the problem it solves.

Mutation changes some genes in a problem solutions to produce a new offspring

solution.

No of independent path is measure that indicates the number of possible paths that

exists in a program. It indicates the number of tests and the level of maintenance

required for a program [215].

316 Glossary

Objectives are soft constraints in the context of constraint-satisfaction problem. Those

add values to a solution. The purpose of the nurse rostering problem is to lower

its cost. Therefore, a significant score would indicate none or few objectives are

met by a roster. Otherwise, the cost is low.

Path is a sequence of edges which connect a sequence of vertices. In a directed graph

(acyclic and cyclic), all the edges must be in the same direction.

Primitives are segments of the code that can be used to construct programs.

Problem - A general statement describing problem an objective to achieve.

Problem algorithm refers to a property that characterises the problem domain and

should affect its output.

Problem domain is a component that includes the operators used to find solutions,

a problem encoding scheme, a problem fitness function and a problem search

space.

Problem encoding scheme represents a solution of a problem, using a data structure.

Problem fitness functions assess the quality of a solution, by providing a numerical

value based on a solution.

Problem optimisation processes search for a solution for a problem.

Problem-solutions refers to a solution of a problem that has been found by a heuristic.

Programs are often considered to be mathematical expressions in genetic program-

ming. It can also be a sequence of instructions or subroutines.

Programming languages are made of symbols and keywords that can be used by

programmers to give instructions to a computer.

Prototype is a patterned of bitstring that needs to be imitated by another. (Mimicry

problem)

Pseudocode is thought as a simplified programming language. It is used in program

design. The pseudocode applied in this thesis is based on imperative program-

ming.

Glossary 317

Quality of an algorithm A measure that helps to determine the ability to solve a

problem. In machine learning, it can be referred as an objective function or a

fitness function. In this document, it is referred as an algorithm fitness function.

Recombination see crossover

Ruin-and-Recreate is a variety of operators that removes or mutate some part of the

genetic code (ruin) and then repair the damaged solution (recreate).

Selective hyper-heuristics build an algorithm from an empty state, and stochastic

operators are incrementally added to produce a complete sequence of operators

gradually.

Vocabulary is a metric that measure the size of a symbols used in a programs [127].

318 Glossary

Glossary 319

References

[1] National traveling salesman problems. http://www.math.uwaterloo.ca
/tsp/world/countries.html. Accessed: 2016-09-30.

[2] The online encyclopedi of integer sequences. https://oeis.org/A003087/list.
Accessed:2017-02-25.

[3] XML FORMAT FOR AUTOROSTER PROBLEM INSTANCES,
howpublished = http://www.schedulingbenchmarks.org/
documentation.html, note = Accessed: 2016-10-11.

[4] Ajith Abraham, Nadia Nedjah, and Luiza de Macedo Mourelle. Evolutionary
computation: from genetic algorithms to genetic programming. In Genetic Sys-
tems Programming, pages 1–20. Springer, 2006.

[5] Alexandros Agapitos, Michael O’Neill, Ahmed Kattan, and Simon M. Lu-
cas. Recursion in tree-based genetic programming. Genetic Programming and
Evolvable Machines, 18(2):149–183, 2017.

[6] Alexandros Agapitos, Michael ONeill, Ahmed Kattan, and Simon M Lucas. Re-
cursion in tree-based genetic programming. Genetic Programming and Evolv-
able Machines, pages 1–35, 2016.

[7] Fardin Ahmadizar, Khabat Soltanian, Fardin AkhlaghianTab, and Ioannis Tsou-
los. Artificial neural network development by means of a novel combination of
grammatical evolution and genetic algorithm. Engineering Applications of Ar-
tificial Intelligence, 39:1–13, 2015.

[8] Uwe Aickelin and Kathryn Dowsland. Exploiting problem structure in a
genetic algorithm approach to a nurse rostering problem. arXiv preprint
arXiv:0802.2001, 2008.

[9] Uwe Aickelin and Kathryn A Dowsland. An indirect genetic algorithm for a
nurse-scheduling problem. Computers & Operations Research, 31(5):761–778,
2004.

[10] Bahriye Akay and Dervis Karaboga. Parameter tuning for the artificial bee
colony algorithm. In International Conference on Computational Collective
Intelligence, pages 608–619. Springer, 2009.

[11] Brad Alexander and Brad Zacher. Boosting search for recursive functions using
partial call-trees. In International Conference on Parallel Problem Solving from
Nature, pages 384–393. Springer, 2014.

[12] Shawkat Ali and Kate A Smith. On learning algorithm selection for classifica-
tion. Applied Soft Computing, 6(2):119–138, 2006.

[13] Alejandro Reyes Amaro, Eric Monfroy, and Florian Richoux. Un langage ori-
enté parallèle pour modéliser des solveurs de contraintes. In Onzièmes Journées
Francophones de Programmation par Contraintes (JFPC), 2015.

http://www.schedulingbenchmarks.org/documentation.html
http://www.schedulingbenchmarks.org/documentation.html

320 References

[14] Peter J Angeline. Adaptive and self-adaptive evolutionary computations. In
Computational intelligence: a dynamic systems perspective. Citeseer, 1995.

[15] David Applegate, R Bixby, Vasek Chvátal, and W Cook. Cutting planes and
the traveling salesman problem. In Proceedings of the eleventh annual ACM-
SIAM symposium on Discrete algorithms, page 429. Society for Industrial and
Applied Mathematics, 2000.

[16] David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The
traveling salesman problem: a computational study. Princeton university press,
2011.

[17] Aliasghar Arab and Alireza Alfi. An adaptive gradient descent-based local
search in memetic algorithm applied to optimal controller design. Information
Sciences, 299:117–142, 2015.

[18] Alejandro Arbelaez, Youssef Hamadi, and Michele Sebag. Building portfolios
for the protein structure prediction problem. In Workshop on Constraint Based
Methods for Bioinformatics, 2010.

[19] Dirk V Arnold and Nikolaus Hansen. A (1+ 1)-cma-es for constrained optimisa-
tion. In Proceedings of the 14th annual conference on Genetic and evolutionary
computation, pages 297–304. ACM, 2012.

[20] Sanjeev Arora and Boaz Barak. Computational complexity: a modern ap-
proach. Cambridge University Press, 2009.

[21] Shahriar Asta and Ender Ozcan. A tensor-based approach to nurse rostering.

[22] M Naceur Azaiez and SS Al Sharif. A 0-1 goal programming model for nurse
scheduling. Computers & Operations Research, 32(3):491–507, 2005.

[23] Zalilah Abd Aziz. Ant colony hyper-heuristics for travelling salesman problem.
Procedia Computer Science, 76:534–538, 2015.

[24] Thomas Bäck and Frank Hoffmeister. Basic aspects of evolution strategies.
Statistics and Computing, 4(2):51–63, 1994.

[25] Mohamed Bader-El-Den and Riccardo Poli. Generating sat local-search heuris-
tics using a gp hyper-heuristic framework. In Artificial evolution, pages 37–49.
Springer, 2007.

[26] Mohamed Bader-El-Den, Riccardo Poli, and Shaheen Fatima. Evolving
timetabling heuristics using a grammar-based genetic programming hyper-
heuristic framework. Memetic Computing, 1(3):205–219, 2009.

[27] Alampallam V Balakrishnan. Introduction to random processes in engineering.
Wiley New York, 1995.

[28] Wolfgang Banzhaf. The “molecular” traveling salesman. Biological Cybernet-
ics, 64(1):7–14, 1990.

Glossary 321

[29] Rodrigo C Barros, Márcio P Basgalupp, André CPLF de Carvalho, and Alex A
Freitas. Towards the automatic design of decision tree induction algorithms. In
Proceedings of the 13th annual conference companion on Genetic and evolu-
tionary computation, pages 567–574. ACM, 2011.

[30] Rodrigo C Barros, Márcio P Basgalupp, André CPLF de Carvalho, and Alex A
Freitas. Automatic design of decision-tree algorithms with evolutionary algo-
rithms. Evolutionary computation, 21(4):659–684, 2013.

[31] Rodrigo C Barros, André CPLF de Carvalho, and Alex A Freitas. Evolutionary
algorithms and hyper-heuristics. In Automatic Design of Decision-Tree Induc-
tion Algorithms, pages 47–58. Springer, 2015.

[32] Aisha Batool, Muhammad Habib ur Rehman, Aihab Khan, and Amsa Azeem.
Impact and comparison of programming constructs on java and c# source code
readability. 2015.

[33] Thomas BDack, Frank Hoffmeister, and Hans-Paul Schwefel. A survey of evo-
lution strategies. In Proceedings of the 4th international conference on genetic
algorithms, pages 2–9, 1991.

[34] J Christopher Beck and Eugene C Freuder. Simple rules for low-knowledge
algorithm selection. In Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, pages 50–64. Springer,
2004.

[35] Gareth Beddoe, Sanja Petrovic, and Jingpeng Li. A hybrid metaheuristic case-
based reasoning system for nurse rostering. Journal of Scheduling, 12(2):99–
119, 2009.

[36] Hans-Georg Beyer. Evolution strategies. Scholarpedia, 2(8):1965, 2007.

[37] Leonardo CT Bezerra, Manuel López-Ibánez, and Thomas Stützle. Automatic
design of evolutionary algorithms for multi-objective combinatorial optimiza-
tion. In International Conference on Parallel Problem Solving from Nature,
pages 508–517. Springer, 2014.

[38] Benjamin S Bloom et al. Taxonomy of educational objectives. vol. 1: Cognitive
domain. New York: McKay, pages 20–24, 1956.

[39] Scott Brave. Evolving recusive programs for tree search. 1996.

[40] Pavel Brazdil and Lars Kotthoff. Metalearning & algorithm selection. 2015.

[41] Pavel B Brazdil, Ricardo Vilalta, Carlos Soares, and Christophe Giraud-Carrier.
Meta-learning. In Encyclopedia of the Sciences of Learning, pages 2239–2243.
Springer, 2012.

[42] Esther Bron, Marion Smits, John van Swieten, Wiro Niessen, and Stefan Klein.
Feature selection based on svm significance maps for classification of dementia.
In International Workshop on Machine Learning in Medical Imaging, pages
272–279. Springer, 2014.

[43] David C Brown and Balakrishnan Chandrasekaran. Design problem solving:
knowledge structures and control strategies. Morgan Kaufmann, 2014.

322 References

[44] Giuseppe Bruno, Andrea Genovese, and Gennaro Improta. Routing problems:
a historical perspective. BSHM Bulletin, 26(2):118–127, 2011.

[45] Edmund Burke, Peter Cowling, Patrick De Causmaecker, and Greet Vanden
Berghe. A memetic approach to the nurse rostering problem. Applied Intelli-
gence, 15(3):199–214, 2001.

[46] Edmund Burke, Patrick De Causmaecker, Sanja Petrovic, and Greet Vanden
Berghe. Variable neighborhood search for nurse rostering problems. In Meta-
heuristics: computer decision-making, pages 153–172. Springer, 2003.

[47] Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and
Sonia Schulenburg. Hyper-heuristics: An emerging direction in modern search
technology. In Handbook of metaheuristics, pages 457–474. Springer, 2003.

[48] Edmund K Burke, Timothy Curtois, Gerhard Post, Rong Qu, and Bart Veltman.
A hybrid heuristic ordering and variable neighbourhood search for the nurse
rostering problem. European Journal of Operational Research, 188(2):330–
341, 2008.

[49] Edmund K Burke, Timothy Curtois, Rong Qu, and G Vanden Berghe. A time
predefined variable depth search for nurse rostering. INFORMS Journal on
Computing, 2007.

[50] Edmund K Burke, Patrick De Causmaecker, Greet Vanden Berghe, and Hendrik
Van Landeghem. The state of the art of nurse rostering. Journal of scheduling,
7(6):441–499, 2004.

[51] Edmund K Burke, Patrick De Causmaecker, Sanja Petrovic, and G Vanden
Berghe. Fitness evaluation for nurse scheduling problems. In Evolutionary
Computation, 2001. Proceedings of the 2001 Congress on, volume 2, pages
1139–1146. IEEE, 2001.

[52] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela
Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of
the art. Journal of the Operational Research Society, 64(12):1695–1724, 2013.

[53] Edmund K Burke, Mathew R Hyde, Graham Kendall, Gabriela Ochoa, Ender
Ozcan, and John R Woodward. Exploring hyper-heuristic methodologies with
genetic programming. In Computational intelligence, pages 177–201. Springer,
2009.

[54] Edmund K Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender
Özcan, and John R Woodward. A classification of hyper-heuristic approaches.
In Handbook of metaheuristics, pages 449–468. Springer, 2010.

[55] Edmund K Burke, Matthew Hyde, Graham Kendall, and John Woodward. A
genetic programming hyper-heuristic approach for evolving 2-d strip packing
heuristics. IEEE Transactions on Evolutionary Computation, 14(6):942–958,
2010.

[56] Edmund K Burke, Matthew R Hyde, and Graham Kendall. Evolving bin pack-
ing heuristics with genetic programming. In Parallel Problem Solving from
Nature-PPSN IX, pages 860–869. Springer, 2006.

Glossary 323

[57] Edmund K Burke, Jingpeng Li, and Rong Qu. A hybrid model of integer pro-
gramming and variable neighbourhood search for highly-constrained nurse ros-
tering problems. European Journal of Operational Research, 203(2):484–493,
2010.

[58] Edmund K Burke, Barry McCollum, Amnon Meisels, Sanja Petrovic, and Rong
Qu. A graph-based hyper-heuristic for educational timetabling problems. Eu-
ropean Journal of Operational Research, 176(1):177–192, 2007.

[59] EK Burke, M Hyde, G Kendall, G Ochoa, E Ozcan, and J Woodward. Handbook
of metaheuristics, volume 146 of international series in operations research
& management science, chapter a classification of hyper-heuristic approaches,
2010.

[60] Raymond PL Buse and Westley R Weimer. A metric for software readability.
In Proceedings of the 2008 international symposium on Software testing and
analysis, pages 121–130. ACM, 2008.

[61] Xinye Cai, Stephen L Smith, and Andy M Tyrrell. Positional independence and
recombination in cartesian genetic programming. In European Conference on
Genetic Programming, pages 351–360. Springer, 2006.

[62] Jaime G Carbonell. Derivational analogy: A theory of reconstructive problem
solving and expertise acquisition. Technical report, DTIC Document, 1985.

[63] Jorge Cardoso, Jan Mendling, Gustaf Neumann, and Hajo A Reijers. A dis-
course on complexity of process models. In Business process management
workshops, pages 117–128. Springer, 2006.

[64] Professor Cayley. Desiderata and suggestions: No. 2. the theory of groups:
Graphical representation. American Journal of Mathematics, 1(2):174–176,
1878.

[65] Konstantin Chakhlevitch and Peter Cowling. Hyperheuristics: recent develop-
ments. In Adaptive and multilevel metaheuristics, pages 3–29. Springer, 2008.

[66] Ching-Yuen Chan, Fan Xue, WH Ip, and CF Cheung. A hyper-heuristic inspired
by pearl hunting. In Learning and intelligent optimization, pages 349–353.
Springer, 2012.

[67] Edward C Chang, Thomas J D’Zurilla, and Lawrence J Sanna. Social problem
solving: Theory, research, and training. American Psychological Association,
2004.

[68] Brenda Cheang, Haibing Li, Andrew Lim, and Brian Rodrigues. Nurse rostering
problems—-a bibliographic survey. European Journal of Operational Research,
151(3):447–460, 2003.

[69] Guang Chen and Mengjie Zhang. Evolving while-loop structures in genetic
programming for factorial and ant problems. AI 2005: Advances in Artificial
Intelligence, pages 1079–1085, 2005.

324 References

[70] Yujie Chen, Philip Mourdjis, Fiona Polack, Peter Cowling, and Stephen Remde.
Evaluating hyperheuristics and local search operators for periodic routing prob-
lems. In Evolutionary Computation in Combinatorial Optimization, pages 104–
120. Springer, 2016.

[71] BMW Cheng, Jimmy Ho-Man Lee, and JCK Wu. A nurse rostering system
using constraint programming and redundant modeling. IEEE Transactions on
information technology in biomedicine, 1(1):44–54, 1997.

[72] Gopinath Chennupati, R Azad, and Conor Ryan. Performance optimization
of multi-core grammatical evolution generated parallel recursive programs. In
Proceedings of the 2015 on Genetic and Evolutionary Computation Conference,
pages 1007–1014. ACM, 2015.

[73] Gopinath Chennupati, Jeannie Fitzgerald, and Colan Ryan. On the efficiency
of multi-core grammatical evolution (mcge) evolving multi-core parallel pro-
grams. In Nature and Biologically Inspired Computing (NaBIC), 2014 Sixth
World Congress on, pages 238–243. IEEE, 2014.

[74] Vic Ciesielski and Xiang Li. Experiments with explicit for-loops in genetic
programming. In Evolutionary Computation, 2004. CEC2004. Congress on,
volume 1, pages 494–501. IEEE, 2004.

[75] Carlos A Coello Coello, Alan D Christiansen, and Arturo Hernández Aguirre.
Use of evolutionary techniques to automate the design of combinational circuits.
International Journal of Smart Engineering System Design, 2:299–314, 2000.

[76] William Comisky, Jessen Yu, and John Koza. Automatic synthesis of a wire an-
tenna using genetic programming. In Late Breaking Papers at the 2000 Genetic
and Evolutionary Computation Conference, Las Vegas, Nevada, pages 179–186.
Citeseer, 2000.

[77] William Cook. National travelling salesman problems, 2009.

[78] Peter Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic approach
to scheduling a sales summit. In Practice and theory of automated timetabling
III, pages 176–190. Springer, 2000.

[79] Peter Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic approach
to scheduling a sales summit. In Practice and Theory of Automated Timetabling
III, pages 176–190. Springer, 2001.

[80] Broderick Crawford, Ricardo Soto, Eric Monfroy, Wenceslao Palma, Carlos
Castro, and Fernando Paredes. Parameter tuning of a choice-function based
hyperheuristic using particle swarm optimization. Expert Systems with Appli-
cations, 40(5):1690–1695, 2013.

[81] Laura Cruz-Reyes, Claudia Gómez-Santillán, Norberto Castillo-Garcı́a,
Marcela Quiroz, Alberto Ochoa, and Paula Hernández-Hernández. A visual-
ization tool for heuristic algorithms analysis. In 7th International Conference
on Knowledge Management in Organizations: Service and Cloud Computing,
pages 515–524. Springer, 2013.

Glossary 325

[82] Laura Cruz-Reyes, Claudia Gómez-Santillán, Joaquı́n Pérez-Ortega, Vanesa
Landero, Marcela Quiroz, and Alberto Ochoa. Algorithm selection: From meta-
learning to hyper-heuristics.

[83] Tim Curtois, Gabriela Ochoa, Matthew Hyde, and José Antonio Vázquez-
Rodrı́guez. A hyflex module for the personnel scheduling problem. School
of Computer Science, University of Nottingham, Tech. Rep, 2010.

[84] George B Dantzig. Letter to the editor-a comment on edie’s traffic delays at toll
booths. Journal of the Operations Research Society of America, 2(3):339–341,
1954.

[85] Charles Darwin and William F Bynum. The origin of species by means of
natural selection: or, the preservation of favored races in the struggle for life.
2009.

[86] Lawrence Davis et al. Handbook of genetic algorithms, volume 115. Van Nos-
trand Reinhold New York, 1991.

[87] J Arjan GM de Visser and Joachim Krug. Empirical fitness landscapes and the
predictability of evolution. Nature Reviews Genetics, 15(7):480–490, 2014.

[88] Paul Dempster and John H Drake. Two frameworks for cross-domain heuristic
and parameter selection using harmony search. In Harmony Search Algorithm,
pages 83–94. Springer, 2016.

[89] Jörg Denzinger, Marc Fuchs, and Matthias Fuchs. High performance ATP sys-
tems by combining several AI methods. Citeseer.

[90] Shifei Ding, Hui Li, Chunyang Su, Junzhao Yu, and Fengxiang Jin. Evo-
lutionary artificial neural networks: a review. Artificial Intelligence Review,
39(3):251–260, 2013.

[91] Laura Silvia Diosan and Mihai Oltean. Evolving evolutionary algorithms using
evolutionary algorithms. In Proceedings of the 9th annual conference compan-
ion on Genetic and evolutionary computation, pages 2442–2449. ACM, 2007.

[92] Bei Dong, Licheng Jiao, and Jianshe Wu. Graph-based hybrid hyper-heuristic
channel scheduling algorithm in multicell networks. Transactions on Emerging
Telecommunications Technologies, 28(1), 2017.

[93] Xingye Dong, Maciek Nowak, Ping Chen, and Youfang Lin. A self-adaptive
iterated local search algorithm on the permutation flow shop scheduling prob-
lem. In Informatics in Control, Automation and Robotics (ICINCO), 2014 11th
International Conference on, volume 1, pages 378–384. IEEE, 2014.

[94] Xingye Dong, Maciek Nowak, Ping Chen, and Youfang Lin. Self-adaptive per-
turbation and multi-neighborhood search for iterated local search on the permu-
tation flow shop problem. Computers & Industrial Engineering, 87:176–185,
2015.

326 References

[95] John H Drake, Ender Özcan, and Edmund K Burke. An improved choice func-
tion heuristic selection for cross domain heuristic search. In International Con-
ference on Parallel Problem Solving from Nature, pages 307–316. Springer,
2012.

[96] Leslie C Edie. Traffic delays at toll booths. Journal of the operations research
society of America, 2(2):107–138, 1954.

[97] Agoston E Eiben and Selmar K Smit. Parameter tuning for configuring and
analyzing evolutionary algorithms. Swarm and Evolutionary Computation,
1(1):19–31, 2011.

[98] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parame-
ter control in evolutionary algorithms. Evolutionary Computation, IEEE Trans-
actions on, 3(2):124–141, 1999.

[99] Andoni Elola, Javier Del Ser, Miren Nekane Bilbao, Cristina Perfecto, Enrique
Alexandre, and Sancho Salcedo-Sanz. Hybridizing cartesian genetic program-
ming and harmony search for adaptive feature construction in supervised learn-
ing problems. Applied Soft Computing, 2016.

[100] Andreas T Ernst, Houyuan Jiang, Mohan Krishnamoorthy, and David Sier. Staff
scheduling and rostering: A review of applications, methods and models. Eu-
ropean journal of operational research, 153(1):3–27, 2004.

[101] Edward Finegan. Language: Its structure and use. Cengage Learning, 2014.

[102] David B Fogel. An evolutionary approach to the traveling salesman problem.
Biological Cybernetics, 60(2):139–144, 1988.

[103] Richard Forsyth. Beagle-a darwinian approach to pattern recognition. Kyber-
netes, 10(3):159–166, 1981.

[104] Richard M Friedberg. A learning machine: Part i. IBM Journal of Research and
Development, 2(1):2–13, 1958.

[105] Alex S Fukunaga. Automated discovery of local search heuristics for satisfia-
bility testing. Evolutionary Computation, 16(1):31–61, 2008.

[106] Matteo Gagliolo and Jürgen Schmidhuber. Learning dynamic algorithm portfo-
lios. Annals of Mathematics and Artificial Intelligence, 47(3-4):295–328, 2006.

[107] Edgar Galvan-Lopez. Efficient graph-based genetic programming representa-
tion with multiple outputs. International Journal of Automation and Computing,
5(1):81–89, 2008.

[108] Cormac Gebruers, Alessio Guerri, Brahim Hnich, and Michela Milano. Mak-
ing choices using structure at the instance level within a case based reasoning
framework. In Integration of AI and OR techniques in constraint programming
for combinatorial optimization problems, pages 380–386. Springer, 2004.

[109] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Torsten Schaub, Mar-
ius Thomas Schneider, and Stefan Ziller. A portfolio solver for answer set
programming: Preliminary report. In Logic Programming and Nonmonotonic
Reasoning, pages 352–357. Springer, 2011.

Glossary 327

[110] Celia A Glass and Roger A Knight. The nurse rostering problem: A critical
appraisal of the problem structure. European Journal of Operational Research,
202(2):379–389, 2010.

[111] Fred Glover and Claude McMillan. The general employee scheduling problem.
an integration of ms and ai. Computers & operations research, 13(5):563–573,
1986.

[112] Fred W Glover and Gary A Kochenberger. Handbook of metaheuristics, vol-
ume 57. Springer Science & Business Media, 2006.

[113] David E Goldberg and Robert Lingle. Alleles, loci, and the traveling salesman
problem. In Proceedings of an International Conference on Genetic Algorithms
and Their Applications, volume 154. Lawrence Erlbaum, Hillsdale, NJ, 1985.

[114] Brian W Goldman and William F Punch. Reducing wasted evaluations in carte-
sian genetic programming. In European Conference on Genetic Programming,
pages 61–72. Springer, 2013.

[115] Juan Carlos Gomez and Hugo Terashima-Marı́n. Evolutionary hyper-heuristics
for tackling bi-objective 2d bin packing problems. Genetic Programming and
Evolvable Machines, pages 1–31, 2017.

[116] John Grefenstette, Rajeev Gopal, Brian Rosmaita, and Dirk Van Gucht. Ge-
netic algorithms for the traveling salesman problem. In Proceedings of the first
International Conference on Genetic Algorithms and their Applications, pages
160–168. Lawrence Erlbaum, New Jersey (160-168), 1985.

[117] John J Grefenstette. Incorporating problem specific knowledge into genetic
algorithms. Genetic algorithms and simulated annealing, 4:42–60, 1987.

[118] Jacomine Grobler and Andries Engelbrecht. Metric-based heuristic space di-
versity management in a meta-hyper-heuristic framework. In Computational
Intelligence, 2015 IEEE Symposium Series on, pages 1665–1672. IEEE, 2015.

[119] Jacomine Grobler, Andries Engelbrecht, Graham Kendall, and VSS Yadavalli.
The entity-to-algorithm allocation problem: extending the analysis. In Compu-
tational Intelligence in Ensemble Learning (CIEL), 2014 IEEE Symposium on,
pages 1–8. IEEE, 2014.

[120] Jacomine Grobler, Andries P Engelbrecht, Graham Kendall, and VSS Ya-
davalli. Heuristic space diversity control for improved meta-hyper-heuristic
performance. Information Sciences, 300:49–62, 2015.

[121] Jacomine Grobler, Andries Petrus Engelbrecht, Graham Kendall, and VSS Ya-
davalli. Multi-method algorithms: Investigating the entity-to-algorithm alloca-
tion problem. In IEEE Congress on Evolutionary Computation, pages 570–577,
2013.

[122] Sumit Gulwani. Technical perspective: Program synthesis using stochastic tech-
niques. Communications of the ACM, 59(2):113–113, 2016.

[123] Haipeng Guo. Algorithm selection for sorting and probabilistic inference: a
machine learning-based approach. PhD thesis, Citeseer, 2003.

328 References

[124] Gregory Gutin and Daniel Karapetyan. A memetic algorithm for the generalized
traveling salesman problem. Natural Computing, 9(1):47–60, 2010.

[125] Mohammed Hadwan, Masri Ayob, Nasser R Sabar, and Roug Qu. A harmony
search algorithm for nurse rostering problems. Information Sciences, 233:126–
140, 2013.

[126] Michael Hahsler and Kurt Hornik. Tsp-infrastructure for the traveling salesper-
son problem. Journal of Statistical Software, 23(2):1–21, 2007.

[127] Maurice Howard Halstead. Elements of software science, volume 7. Elsevier
New York, 1977.

[128] Nikolaus Hansen. An analysis of mutative σ-self-adaptation on linear fitness
functions. Evolutionary Computation, 14(3):255–275, 2006.

[129] Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772, 2016.

[130] Nikolaus Hansen, Asma Atamna, and Anne Auger. How to assess step-size
adaptation mechanisms in randomised search. In International Conference on
Parallel Problem Solving from Nature, pages 60–69. Springer, 2014.

[131] Nikolaus Hansen and Stefan Kern. Evaluating the cma evolution strategy on
multimodal test functions. In International Conference on Parallel Problem
Solving from Nature, pages 282–291. Springer, 2004.

[132] Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the
time complexity of the derandomized evolution strategy with covariance matrix
adaptation (cma-es). Evolutionary computation, 11(1):1–18, 2003.

[133] Pierre Hansen and Nenad Mladenović. First vs. best improvement: An empiri-
cal study. Discrete Applied Mathematics, 154(5):802–817, 2006.

[134] Simon Harding. Evolution of image filters on graphics processor units using
cartesian genetic programming. In 2008 IEEE Congress on Evolutionary Com-
putation (IEEE World Congress on Computational Intelligence), pages 1921–
1928. IEEE, 2008.

[135] Simon Harding, Vincent Graziano, Jürgen Leitner, and Jürgen Schmidhuber.
Mt-cgp: Mixed type cartesian genetic programming. In Proceedings of the 14th
annual conference on Genetic and evolutionary computation, pages 751–758.
ACM, 2012.

[136] Simon Harding, Juergen Leitner, and Juergen Schmidhuber. Cartesian genetic
programming for image processing. In Genetic programming theory and prac-
tice X, pages 31–44. Springer, 2013.

[137] Simon Harding, Julian F Miller, and Wolfgang Banzhaf. Self modifying carte-
sian genetic programming: Fibonacci, squares, regression and summing. In Eu-
ropean Conference on Genetic Programming, pages 133–144. Springer, 2009.

[138] Simon Harding, Julian F Miller, and Wolfgang Banzhaf. Developments in
cartesian genetic programming: self-modifying cgp. Genetic Programming and
Evolvable Machines, 11(3-4):397–439, 2010.

Glossary 329

[139] Simon L Harding, Julian F Miller, and Wolfgang Banzhaf. Self-modifying
cartesian genetic programming. In Cartesian Genetic Programming, pages
101–124. Springer, 2011.

[140] Robert Harper. Practical foundations for programming languages. Cambridge
University Press, 2012.

[141] Kyle I Harrington, Lee Spector, Jordan B Pollack, and Una-May O’Reilly. Au-
toconstructive evolution for structural problems. In Proceedings of the 14th
annual conference companion on Genetic and evolutionary computation, pages
75–82. ACM, 2012.

[142] Sean Harris, Travis Bueter, and Daniel R Tauritz. A comparison of genetic
programming variants for hyper-heuristics. In Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and Evolutionary Com-
putation, pages 1043–1050. ACM, 2015.

[143] Emma Hart and Kevin Sim. On constructing ensembles for combinatorial opti-
misation. Evolutionary Computation, 2017.

[144] Pei He, Zelin Deng, Chongzhi Gao, Liang Chang, and Achun Hu. Analyz-
ing grammatical evolution and\ pi grammatical evolution with grammar model.
In Information Technology and Intelligent Transportation Systems, pages 483–
489. Springer, 2017.

[145] Keld Helsgaun. General k-opt submoves for the lin–kernighan tsp heuristic.
Mathematical Programming Computation, 1(2-3):119–163, 2009.

[146] Michael Herdy. Application of the ‘evolutionsstrategie’ to discrete optimization
problems. In Proceedings of the 1st Workshop on Parallel Problem Solving from
Nature, PPSN I, pages 188–192, London, UK, UK, 1991. Springer-Verlag.

[147] Holger Hoos, Marius Lindauer, and Torsten Schaub. claspfolio 2: Ad-
vances in algorithm selection for answer set programming. arXiv preprint
arXiv:1405.1520, 2014.

[148] Holger H Hoos. Programming by optimization. Communications of the ACM,
55(2):70–80, 2012.

[149] Radek Hrbácek, Michaela Sikulova, Pietro Lio, Orazio Miglino, Giuseppe
Nicosia, Stefano Nolfi, and Mario Pavone. Coevolutionary cartesian genetic
programming in. Advances in Artificial Life, ECAL 2013, pages 431–438, 2013.

[150] Alois Huning, Ingo Rechenberg, and Manfred Eigen. Evolutionsstrategie. opti-
mierung technischer systeme nach prinzipien der biologischen evolution, 1976.

[151] Frank Hutter, Manuel López-Ibáñez, Chris Fawcett, Marius Lindauer, Holger H
Hoos, Kevin Leyton-Brown, and Thomas Stützle. Aclib: A benchmark library
for algorithm configuration. In Learning and Intelligent Optimization, pages
36–40. Springer, 2014.

[152] Jens Jägersküpper. Rigorous runtime analysis of the (1+ 1) es: 1/5-rule and
ellipsoidal fitness landscapes. In International Workshop on Foundations of
Genetic Algorithms, pages 260–281. Springer, 2005.

330 References

[153] David S Johnson and Lyle A McGeoch. The traveling salesman problem: A
case study in local optimization. Local search in combinatorial optimization,
1:215–310, 1997.

[154] David H Jonassen. Toward a design theory of problem solving. Educational
technology research and development, 48(4):63–85, 2000.

[155] Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and
Meinolf Sellmann. Algorithm selection and scheduling. In Principles and Prac-
tice of Constraint Programming–CP 2011, pages 454–469. Springer, 2011.

[156] Jérôme Henri Kämpf and Darren Robinson. A hybrid cma-es and hde optimi-
sation algorithm with application to solar energy potential. Applied Soft Com-
puting, 9(2):738–745, 2009.

[157] Yanfei Kang, Rob J Hyndman, Kate Smith-Miles, et al. Visualising forecast-
ing algorithm performance using time series instance spaces. Technical report,
Monash University, Department of Econometrics and Business Statistics, 2016.

[158] Karthik Kannappan, Lee Spector, Moshe Sipper, Thomas Helmuth, William
La Cava, Jake Wisdom, and Omri Bernstein. Analyzing a decade of human-
competitive (?humie?) winners: What can we learn? In Genetic Programming
Theory and Practice XII, pages 149–166. Springer, 2015.

[159] Elaine Kant. Understanding and automating algorithm design. Software Engi-
neering, IEEE Transactions on, (11):1361–1374, 1985.

[160] Wolfgang Kantschik and Wolfgang Banzhaf. Linear-graph gp-a new gp struc-
ture. In European Conference on Genetic Programming, pages 83–92. Springer,
2002.

[161] Wolfgang Kantschik, Peter Dittrich, Markus Brameier, and Wolfgang Banzhaf.
Empirical analysis of different levels of meta-evolution. In Evolutionary Com-
putation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 3. IEEE,
1999.

[162] Sheng Liang Kao, Tse Hsine Liao, Chih Hua Ke, Wan Chen Wang, Yen Chu
Lu, Jih Ping Chi, Chieh Fu Chung, et al. Method and system for parameter
configuration, June 30 2015. US Patent 9,069,581.

[163] K Katayama, H Sakamoto, and H Narihisa. The efficiency of hybrid muta-
tion genetic algorithm for the travelling salesman problem. Mathematical and
Computer Modelling, 31(10):197–203, 2000.

[164] S Kazarlis, John Kalomiros, Anastasios Balouktsis, and Vassilios Kalaitzis.
Evolving optimal digital circuits using cartesian genetic programming with so-
lution repair methods. In Proceedings of the 2015 International Conference on
Systems, Control, Signal Processing and Informatics (SCSI 2015), Barcelona,
Spain, pages 39–44, 2015.

[165] Gul Muhammad Khan, Julian Francis Miller, and David M Halliday. Coevolu-
tion of intelligent agents using cartesian genetic programming. In Proceedings
of the 9th annual conference on Genetic and evolutionary computation, pages
269–276. ACM, 2007.

Glossary 331

[166] Maryam Mahsal Khan, Arbab Masood Ahmad, Gul Muhammad Khan, and Ju-
lian F Miller. Fast learning neural networks using cartesian genetic program-
ming. Neurocomputing, 121:274–289, 2013.

[167] Ahmed Kheiri, Mustafa Mısır, and Ender Özcan. Ensemble move acceptance
in selection hyper-heuristics. In International Symposium on Computer and
Information Sciences, pages 21–29. Springer, 2016.

[168] Kenneth E Kinnear. Fitness landscapes and difficulty in genetic programming.
In Evolutionary Computation, 1994. IEEE World Congress on Computational
Intelligence., Proceedings of the First IEEE Conference on, pages 142–147.
IEEE, 1994.

[169] George R Klare. Assessing readability. Reading research quarterly, pages 62–
102, 1974.

[170] Lars Kotthoff. Algorithm selection for combinatorial search problems: A sur-
vey. arXiv preprint arXiv:1210.7959, 2012.

[171] John R Koza. Genetic programming: A paradigm for genetically breeding pop-
ulations of computer programs to solve problems. Stanford University, Depart-
ment of Computer Science, 1990.

[172] John R Koza. Genetic programming: on the programming of computers by
means of natural selection, volume 1. MIT press, 1992.

[173] John R Koza. Human-competitive results produced by genetic programming.
Genetic Programming and Evolvable Machines, 11(3-4):251–284, 2010.

[174] John R Koza and David Andre. Evolution of iteration in genetic programming.
In Evolutionary Programming, pages 469–478, 1996.

[175] John R Koza, Martin A Keane, Matthew J Streeter, William Mydlowec, Jessen
Yu, and Guido Lanza. Genetic programming IV: Routine human-competitive
machine intelligence, volume 5. Springer Science & Business Media, 2006.

[176] Oliver Kramer. Iterated local search. In A Brief Introduction to Continuous
Evolutionary Optimization, pages 45–54. Springer, 2014.

[177] Natalio Krasnogor, Jim Smith, et al. A memetic algorithm with self-adaptive
local search: Tsp as a case study. In GECCO, pages 987–994, 2000.

[178] Stuart E Lacy, Michael A Lones, Stephen L Smith, Jane E Alty, DR Jamieson,
Katherine L Possin, and Norbert Schuff. Characterisation of movement disorder
in parkinson’s disease using evolutionary algorithms. In Proceedings of the 15th
annual conference companion on Genetic and evolutionary computation, pages
1479–1486. ACM, 2013.

[179] Timothy Lai. Discovery of understandable math formulas using genetic pro-
gramming.

[180] William Benjamin Langdon. Genetic programming and data structures. PhD
thesis, University College London, 1996.

332 References

[181] Pedro Larrañaga, Cindy M. H. Kuijpers, Roberto H. Murga, Inaki Inza, and Se-
jla Dizdarevic. Genetic algorithms for the travelling salesman problem: A re-
view of representations and operators. Artificial Intelligence Review, 13(2):129–
170, 1999.

[182] Jan Larres, Mengjie Zhang, and Will N Browne. Using unrestricted loops in ge-
netic programming for image classification. In IEEE Congress on Evolutionary
Computation, pages 1–8. IEEE, 2010.

[183] J Leitner, S Harding, A Förster, and J Schmidhuber. Mars terrain image classi-
fication using cartesian genetic programming. In International Symposium on
Artificial Intelligence, Robotics & Automation in Space, 2012.

[184] Benjamin Lenz, Bernd Barak, Julia Mührwald, and Carolin Leicht. Virtual
metrology in semiconductor manufacturing by means of predictive machine
learning models. In Machine Learning and Applications (ICMLA), 2013 12th
International Conference on, volume 2, pages 174–177. IEEE, 2013.

[185] Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim McFadden, and
Yoav Shoham. Boosting as a metaphor for algorithm design. In Principles and
Practice of Constraint Programming–CP 2003, pages 899–903. Springer, 2003.

[186] Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim McFadden, and
Yoav Shoham. A portfolio approach to algorithm selection. In IJCAI, volume
1543, page 2003, 2003.

[187] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Learning the em-
pirical hardness of optimization problems: The case of combinatorial auctions.
In Principles and Practice of Constraint Programming-CP 2002, pages 556–
572. Springer, 2002.

[188] Lin Li, Jonathan M Garibaldi, and Natalio Krasnogor. Automated self-assembly
programming paradigm: The impact of network topology. Int. J. Intell. Syst.,
24(7):793–817, 2009.

[189] Ling Li, Qiuhua Tang, Peng Zheng, Liping Zhang, and CA Floudas. An im-
proved self-adaptive genetic algorithm for scheduling steel-making continuous
casting production. In Proceedings of the 6th International Asia Conference on
Industrial Engineering and Management Innovation, pages 399–410. Springer,
2016.

[190] Wenwen Li, Ender zcan, and Robert John. Multi-objective evolutionary al-
gorithms and hyper-heuristics for wind farm layout optimisation. Renewable
Energy, 105:473 – 482, 2017.

[191] Xiang Li. Utilising restricted for-loops in genetic programming. PhD thesis,
School of Computer Science and Information Technology, Faculty of Applied
Science, Royal Melbourne Institute of Technology, Melbourne, 2007.

[192] Xiang Li and Victor Ciesielski. An analysis of explicit loops in genetic pro-
gramming. In Evolutionary Computation, 2005. The 2005 IEEE Congress on,
volume 3, pages 2522–2529. IEEE, 2005.

Glossary 333

[193] Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin Vu, and Michael D
Ernst. Program synthesis from natural language using recurrent neural net-
works. Technical report, Technical Report UW-CSE-17-03-01, University of
Washington Department of Computer Science and Engineering, Seattle, WA,
USA, 2017.

[194] M Lindauer, H Hoos, and F Hutter. From sequential algorithm selection to
parallel portfolio selection. In Learning and Intelligent Optimization, pages
1–16. Springer, 2015.

[195] Marius Lindauer, Holger Hoos, Kevin Leyton-Brown, and Torsten Schaub. Au-
tomatic construction of parallel portfolios via algorithm configuration. Artificial
Intelligence, 2016.

[196] Marius Lindauer, Holger Hoos, Kevin Leyton-Brown, and Torsten Schaub. Au-
tomatic construction of parallel portfolios via algorithm configuration. Artificial
Intelligence, 244:272–290, 2017.

[197] Yong Liu, Huifeng Wang, Hong Zhang, and Karsten Liber. A comprehensive
support vector machine-based classification model for soil quality assessment.
Soil and Tillage Research, 155:19–26, 2016.

[198] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local
search: Framework and applications. In Handbook of Metaheuristics, pages
363–397. Springer, 2010.

[199] Nuno Lourenço, Francisco Pereira, and Ernesto Costa. Evolving evolutionary
algorithms. In Proceedings of the 14th annual conference companion on Ge-
netic and evolutionary computation, pages 51–58. ACM, 2012.

[200] Nuno Lourenço, Francisco B Pereira, and Ernesto Costa. Sge: a structured rep-
resentation for grammatical evolution. In International Conference on Artificial
Evolution (Evolution Artificielle), pages 136–148. Springer, 2015.

[201] Nuno Lourenço, Francisco B Pereira, and Ernesto Costa. Studying the proper-
ties of structured grammatical evolution. 2015.

[202] Nuno Lourenço, Francisco Baptista Pereira, and Ernesto Costa. The importance
of the learning conditions in hyper-heuristics. In Proceedings of the 15th annual
conference on Genetic and evolutionary computation, pages 1525–1532. ACM,
2013.

[203] Cristian Loyola, Mauricio Sepúlveda, Mauricio Solar, Pierre Lopez, and Victor
Parada. Automatic design of algorithms for the traveling salesman problem.
Cogent Engineering, 3(1):1255165, 2016.

[204] Hai-liang Lu, Xi-shan Wen, Lei Lan, Yun-zhu An, and Xiao-ping Li. A self-
adaptive genetic algorithm to estimate ja model parameters considering minor
loops. Journal of Magnetism and Magnetic Materials, 374:502–507, 2015.

[205] Sean Luke. Essentials of metaheuristics. Lulu Com, 2013.

334 References

[206] QingLian Ma, Yu-an Zhang, Kiminobu Koga, Kunihito Yamamori, Makoto
Sakamoto, and Hiroshi Furutani. Stochastic analysis of onemax problem us-
ing markov chain. Artificial Life and Robotics, 17(3-4):395–399, 2013.

[207] Mashael Maashi, Graham Kendall, and Ender Özcan. Choice function based
hyper-heuristics for multi-objective optimization. Applied Soft Computing,
28:312–326, 2015.

[208] Broos Maenhout and Mario Vanhoucke. An electromagnetic meta-heuristic for
the nurse scheduling problem. Journal of Heuristics, 13(4):359–385, 2007.

[209] Andrea Maesani and Dario Floreano. Viability principles for constrained opti-
mization using a (1+ 1)-cma-es. In International Conference on Parallel Prob-
lem Solving from Nature, pages 272–281. Springer, 2014.

[210] Francisco AL Manfrini, Heder S Bernardino, and Helio JC Barbosa. On heuris-
tics for seeding the initial population of cartesian genetic programming applied
to combinational logic circuits. In Proceedings of the 2016 on Genetic and Evo-
lutionary Computation Conference Companion, pages 105–106. ACM, 2016.

[211] Harry M Markowitz. Meanvariance analysis. In Finance, pages 194–198.
Springer, 1989.

[212] Richard J Marshall, Mark Johnston, and Mengjie Zhang. Hyper-heuristics,
grammatical evolution and the capacitated vehicle routing problem. In Pro-
ceedings of the 2014 conference companion on Genetic and evolutionary com-
putation companion, pages 71–72. ACM, 2014.

[213] Matthew A Martin and Daniel R Tauritz. Hyper-heuristics: A study on increas-
ing primitive-space. In Proceedings of the Companion Publication of the 2015
Annual Conference on Genetic and Evolutionary Computation, pages 1051–
1058. ACM, 2015.

[214] Franco Mascia, Manuel López-Ibáñez, Jérémie Dubois-Lacoste, and Thomas
Stützle. Grammar-based generation of stochastic local search heuristics through
automatic algorithm configuration tools. Computers & operations research,
51:190–199, 2014.

[215] Thomas J McCabe. A complexity measure. IEEE Transactions on software
Engineering, (4):308–320, 1976.

[216] Brendan D McKay, Frédérique E Oggier, Gordon F Royle, NJA Sloane, Ian M
Wanless, and Herbert S Wilf. Acyclic digraphs and eigenvalues of (0, 1)-
matrices. Journal of Integer Sequences, 7(2):3, 2004.

[217] Eric Medvet, Fabio Daolio, and Danny Tagliapietra. Evolvability in grammat-
ical evolution. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO, 2017.

[218] Andreas Meier, Mark Gonter, and Rudolf Kruse. Accelerating convergence in
cartesian genetic programming by using a new genetic operator. In Proceedings
of the 15th annual conference on Genetic and evolutionary computation, pages
981–988. ACM, 2013.

Glossary 335

[219] H Miihlenbein and J Kindermann. The dynamics of evolution and learning-
towards genetic neural networks. Connectionism in perspective, pages 173–197,
1989.

[220] Bradley N Miller and David L Ranum. Problem Solving with Algorithms and
Data Structures Using Python SECOND EDITION. Franklin, Beedle & Asso-
ciates Inc., 2011.

[221] Julian F Miller. An empirical study of the efficiency of learning boolean func-
tions using a cartesian genetic programming approach. In Proceedings of the 1st
Annual Conference on Genetic and Evolutionary Computation-Volume 2, pages
1135–1142. Morgan Kaufmann Publishers Inc., 1999.

[222] Julian F Miller. Cartesian genetic programming. Springer, 2011.

[223] Julian F Miller, Dominic Job, and Vesselin K Vassilev. Principles in the evo-
lutionary design of digital circuitspart i. Genetic programming and evolvable
machines, 1(1-2):7–35, 2000.

[224] Julian F Miller, Dominic Job, and Vesselin K Vassilev. Principles in the evo-
lutionary design of digital circuitspart ii. Genetic programming and evolvable
machines, 1(3):259–288, 2000.

[225] Julian F Miller and Peter Thomson. Cartesian genetic programming. In Euro-
pean Conference on Genetic Programming, pages 121–132. Springer, 2000.

[226] Julian F Miller and Peter Thomson. Cartesian genetic programming. In Euro-
pean Conference on Genetic Programming, pages 121–132. Springer, 2000.

[227] Péricles BC Miranda, Ricardo BC Prudêncio, and Gisele L Pappa. H3ad: A
hybrid hyper-heuristic for algorithm design. Information Sciences, 2017.

[228] Mustafa Mısır. Matrix factorization based benchmark set analysis: A case study
on hyflex.

[229] Mustafa Misir and Michele Sebag. Algorithm selection as a collaborative filter-
ing problem. 2013.

[230] Tom M Mitchell. The need for biases in learning generalizations. Depart-
ment of Computer Science, Laboratory for Computer Science Research, Rut-
gers Univ. New Jersey, 1980.

[231] Tom M Mitchell et al. Machine learning. wcb, 1997.

[232] Pablo Moscato et al. On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Caltech concurrent computation
program, C3P Report, 826:1989, 1989.

[233] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman
& Hall/CRC, 2010.

[234] Krista R Muis, Cynthia Psaradellis, Susanne P Lajoie, Ivana Di Leo, and Mari-
anne Chevrier. The role of epistemic emotions in mathematics problem solving.
Contemporary Educational Psychology, 42:172–185, 2015.

336 References

[235] Vijayaraghavan Murali, Swarat Chaudhuri, and Chris Jermaine. Bayesian
sketch learning for program synthesis. arXiv preprint arXiv:1703.05698, 2017.

[236] Yuichi Nagata and Shigenobu Kobayashi. A powerful genetic algorithm using
edge assembly crossover for the traveling salesman problem. INFORMS Jour-
nal on Computing, 25(2):346–363, 2013.

[237] Allen Newell, John C Shaw, and Herbert A Simon. Report on a general problem
solving program. In IFIP congress, volume 256, page 64. Pittsburgh, PA, 1959.

[238] Allen Newell and Herbert Simon. The logic theory machine–a complex infor-
mation processing system. IRE Transactions on information theory, 2(3):61–79,
1956.

[239] Allen Newell and Herbert A Simon. Computer science as empirical inquiry:
Symbols and search. Communications of the ACM, 19(3):113–126, 1976.

[240] Mohd Razali Noraini and John Geraghty. Genetic algorithm performance with
different selection strategies in solving tsp. 2011.

[241] Nomzamo Ntombela and Nelishia Pillay. Evolving construction heuristics for
the symmetric travelling salesman problem. In Proceedings of the Annual Con-
ference of the South African Institute of Computer Scientists and Information
Technologists, page 30. ACM, 2016.

[242] Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A Vazquez-Rodriguez,
James Walker, Michel Gendreau, Graham Kendall, Barry McCollum, Andrew J
Parkes, Sanja Petrovic, et al. Hyflex: A benchmark framework for cross-domain
heuristic search. In Evolutionary computation in combinatorial optimization,
pages 136–147. Springer, 2012.

[243] Gabriela Ochoa and Nadarajen Veerapen. Deconstructing the big valley search
space hypothesis. In European Conference on Evolutionary Computation in
Combinatorial Optimization, pages 58–73. Springer, 2016.

[244] Mihai Oltean. Evolving evolutionary algorithms using linear genetic program-
ming. Evolutionary Computation, 13(3):387–410, 2005.

[245] Mihai Oltean and Crina Groşan. Evolving evolutionary algorithms using
multi expression programming. In Advances in Artificial Life, pages 651–658.
Springer, 2003.

[246] Ender Özcan. Memetic algorithms for nurse rostering. In International Sympo-
sium on Computer and Information Sciences, pages 482–492. Springer, 2005.

[247] Ender Ozcan and Murat Erenturk. A brief review of memetic algorithms for
solving euclidean 2d traveling salesrep problem. In Proc. of the 13th Turkish
Symposium on Artificial Intelligence and Neural Networks, pages 99–108, 2004.

[248] Miriam Padberg. Harmony search algorithms for binary optimization problems.
In Operations Research Proceedings 2011, pages 343–348. Springer, 2012.

[249] Gisele L Pappa and Alex A Freitas. Automating the design of data mining algo-
rithms: an evolutionary computation approach. Springer Science & Business
Media, 2009.

Glossary 337

[250] Gisele L Pappa, Gabriela Ochoa, Matthew R Hyde, Alex A Freitas, John Wood-
ward, and Jerry Swan. Contrasting meta-learning and hyper-heuristic research:
the role of evolutionary algorithms. Genetic Programming and Evolvable Ma-
chines, 15(1):3–35, 2014.

[251] Helena MM Patching, Laurence M Hudson, Warrick Cooke, Andres J Garcia,
Simon I Hay, Mark Roberts, and Catherine L Moyes. A supervised learning
process to validate online disease reports for use in predictive models. Big data,
3(4):230–237, 2015.

[252] Ed Pegg Jr. The icosian game, revisited. Mathematica J, pages 310–314, 2009.

[253] Tessa Phillips, Mengjie Zhang, and Bing Xue. Genetic programming for evolv-
ing programs with recursive structures. In Evolutionary Computation (CEC),
2016 IEEE Congress on, pages 5044–5051. IEEE, 2016.

[254] Nelishia Pillay. A generative hyper-heuristic for deriving heuristics for classical
artificial intelligence problems. In Advances in Nature and Biologically Inspired
Computing, pages 337–346. Springer, 2016.

[255] Riccardo Poli. Parallel distributed genetic programming. COGNITIVE SCI-
ENCE RESEARCH PAPERS-UNIVERSITY OF BIRMINGHAM CSRP, 1996.

[256] Riccardo Poli et al. Evolution of graph-like programs with parallel distributed
genetic programming. In ICGA, pages 346–353. Citeseer, 1997.

[257] Riccardo Poli and Mario Graff. There is a free lunch for hyper-heuristics, ge-
netic programming and computer scientists. In European Conference on Ge-
netic Programming, pages 195–207. Springer, 2009.

[258] Riccardo Poli, Leonardo Vanneschi, William B Langdon, and Nicholas Freitag
McPhee. Theoretical results in genetic programming: the next ten years? Ge-
netic Programming and Evolvable Machines, 11(3-4):285–320, 2010.

[259] Thomas D Pollard, William C Earnshaw, and Jennifer Lippincott-Schwartz.
Cell biology. Elsevier Health Sciences, 2007.

[260] V William Porto and David B Fogel. Evolving artificial neural networks. Clin-
ical applications of artificial neural networks, page 223, 2001.

[261] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. A simpler model of
software readability. In Proceedings of the 8th working conference on mining
software repositories, pages 73–82. ACM, 2011.

[262] Marcela Quiroz, Laura Cruz-Reyes, José Torres-Jiménez, Patricia Melin, et al.
Improving the performance of heuristic algorithms based on exploratory data
analysis. In Recent Advances on Hybrid Intelligent Systems, pages 361–375.
Springer, 2013.

[263] Abdur Rais and Ana Viana. Operations research in healthcare: a survey. Inter-
national transactions in operational research, 18(1):1–31, 2011.

[264] Gerhard Reinelt. Tsplib95. Interdisziplinäres Zentrum für Wissenschaftliches
Rechnen (IWR), Heidelberg, 1995.

338 References

[265] Z. Ren, H. Jiang, J. Xuan, Y. Hu, and Z. Luo. New insights into diversification
of hyper-heuristics. IEEE Transactions on Cybernetics, 44(10):1747–1761, Oct
2014.

[266] Joel Ribeiro, Josep Carmona, Mustafa Mısır, and Michele Sebag. A recom-
mender system for process discovery. In Business Process Management, pages
67–83. Springer, 2014.

[267] John R Rice. The algorithm selection problem. 1975.

[268] Robert W Robinson. Counting unlabeled acyclic digraphs. In Combinatorial
mathematics V, pages 28–43. Springer, 1977.

[269] Raymond Ros and Nikolaus Hansen. A simple modification in cma-es achiev-
ing linear time and space complexity. In International Conference on Parallel
Problem Solving from Nature, pages 296–305. Springer, 2008.

[270] Peter Ross. Hyper-heuristics. In Search Methodologies, pages 611–638.
Springer, 2014.

[271] Andrew Runka. Evolving an edge selection formula for ant colony optimiza-
tion. In Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, pages 1075–1082. ACM, 2009.

[272] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and
Douglas D Edwards. Artificial intelligence: a modern approach, volume 2.
Prentice hall Upper Saddle River, 2003.

[273] Patricia Ryser-Welch, Julian F Miller, and Shahriar Asta. Generating human-
readable algorithms for the travelling salesman problem using hyper-heuristics.
In Proceedings of the Companion Publication of the 2015 Annual Conference
on Genetic and Evolutionary Computation, pages 1067–1074. ACM, 2015.

[274] Patricia Ryser-Welch, Julian F Miller, Jerry Swan, and Martin A Trefzer. Iter-
ative cartesian genetic programming: Creating general algorithms for solving
travelling salesman problems. In European Conference on Genetic Program-
ming, pages 294–310. Springer, 2016.

[275] Nasser R Sabar, Masri Ayob, Graham Kendall, and Rong Qu. Automatic design
of a hyper-heuristic framework with gene expression programming for combi-
natorial optimization problems. IEEE Transactions on Evolutionary Computa-
tion, 19(3):309–325, 2015.

[276] Horst Samulowitz, Chandra Reddy, Ashish Sabharwal, and Meinolf Sellmann.
Snappy: A simple algorithm portfolio. In Theory and Applications of Satisfia-
bility Testing–SAT 2013, pages 422–428. Springer, 2013.

[277] Alexander Schrijver. On the history of combinatorial optimization (till 1960).
Handbooks in operations research and management science, 12:1–68, 2005.

[278] Robert Sedgewick and Philippe Flajolet. An introduction to the analysis of
algorithms. Addison-Wesley, 2013.

[279] Lukas Sekanina. Evolvable components: from theory to hardware implementa-
tions. Springer Science & Business Media, 2012.

Glossary 339

[280] Lukas Sekanina and Vlastimil Kapusta. Visualisation and analysis of genetic
records produced by cartesian genetic programming. In Proceedings of the
2016 on Genetic and Evolutionary Computation Conference Companion, pages
1411–1418. ACM, 2016.

[281] PM Sheppard. The evolution of mimicry; a problem in ecology and genetics.
In Cold Spring Harbor Symposia on Quantitative Biology, volume 24, pages
131–140. Cold Spring Harbor Laboratory Press, 1959.

[282] Shinichi Shirakawa and Tomoharu Nagao. Evolution of sorting algorithm using
graph structured program evolution. In 2007 IEEE International Conference on
Systems, Man and Cybernetics, pages 1256–1261. IEEE, 2007.

[283] Shinichi Shirakawa and Tomoharu Nagao. Graph structured program evolution
with automatically defined nodes. In Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, pages 1107–1114. ACM, 2009.

[284] Shinichi Shirakawa and Tomoharu Nagao. Graph structured program evolution:
Evolution of loop structures. In Genetic Programming Theory and Practice VII,
pages 177–194. Springer, 2010.

[285] Shinichi Shirakawa, Shintaro Ogino, and Tomoharu Nagao. Graph structured
program evolution. In Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 1686–1693. ACM, 2007.

[286] Kevin Sim and Emma Hart. A combined generative and selective hyper-
heuristic for the vehicle routing problem. In Proceedings of the Genetic and
Evolutionary Computation Conference 2016, GECCO ’16, pages 1093–1100,
New York, NY, USA, 2016. ACM.

[287] Kevin Sim and Emma Hart. A combined generative and selective hyper-
heuristic for the vehicle routing problem. In Proceedings of the 2016 on Genetic
and Evolutionary Computation Conference, pages 1093–1100. ACM, 2016.

[288] Herbert A Simon and Allen Newell. Human problem solving: The state of the
theory in 1970. American Psychologist, 26(2):145, 1971.

[289] Bryan Singer and Manuela Veloso. Learning to predict performance from for-
mula modeling and training data. In ICML, pages 887–894, 2000.

[290] Selmar K Smit and AE Eiben. Parameter tuning of evolutionary algorithms:
Generalist vs. specialist. In European Conference on the Applications of Evo-
lutionary Computation, pages 542–551. Springer, 2010.

[291] Selmar K Smit and Agoston E Eiben. Comparing parameter tuning methods for
evolutionary algorithms. In 2009 IEEE congress on evolutionary computation,
pages 399–406. IEEE, 2009.

[292] Mike U Smith. Toward a unified theory of problem solving: Views from the
content domains. Routledge, 2012.

[293] Stephen L Smith and Michael A Lones. Implicit context representation cartesian
genetic programming for the assessment of visuo-spatial ability. In 2009 IEEE
Congress on Evolutionary Computation, pages 1072–1078. IEEE, 2009.

340 References

[294] Kate Smith-Miles and Jano van Hemert. Discovering the suitability of optimi-
sation algorithms by learning from evolved instances. Annals of Mathematics
and Artificial Intelligence, 61(2):87–104, 2011.

[295] Kate Smith-Miles, Brendan Wreford, Leo Lopes, and Nur Insani. Predicting
metaheuristic performance on graph coloring problems using data mining. In
Hybrid Metaheuristics, pages 417–432. Springer, 2013.

[296] Kate A. Smith-Miles. Cross-disciplinary perspectives on meta-learning for al-
gorithm selection. ACM Comput. Surv., 41(1):6:1–6:25, January 2009.

[297] Kate A Smith-Miles, Ross JW James, John W Giffin, and Yiqing Tu. A knowl-
edge discovery approach to understanding relationships between scheduling
problem structure and heuristic performance. In Learning and intelligent op-
timization, pages 89–103. Springer, 2009.

[298] Kenneth Sörensen. Metaheuristicsthe metaphor exposed. International Trans-
actions in Operational Research, 22(1):3–18, 2015.

[299] Kenneth Sorensen, Marc Sevaux, and Fred Glover. A history of metaheuristics.
arXiv preprint arXiv:1704.00853, 2017.

[300] Jorge A Soria-Alcaraz, Gabriela Ochoa, Marco A Sotelo-Figeroa, and Ed-
mund K Burke. A methodology for determining an effective subset of heuris-
tics in selection hyper-heuristics. European Journal of Operational Research,
260(3):972–983, 2017.

[301] William M Spears et al. Crossover or mutation. Foundations of genetic algo-
rithms, 2:221–237, 1992.

[302] Lee Spector. Autoconstructive evolution: Push, pushgp, and pushpop. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), volume 137, 2001.

[303] Lee Spector, Nicholas Freitag McPhee, Thomas Helmuth, Maggie M Casale,
and Julian Oks. Evolution evolves with autoconstruction. In Proceedings of the
2016 on Genetic and Evolutionary Computation Conference Companion, pages
1349–1356. ACM, 2016.

[304] Susan Stepney. Statistics with confidence. ionosphere, 93:91–67, 2009.

[305] Jerry Swan and Nathan Burles. Templar–a framework for template-method
hyper-heuristics. In Genetic Programming, pages 205–216. Springer, 2015.

[306] Jerry Swan, Ender Özcan, and Graham Kendall. Hyperion–a recursive hyper-
heuristic framework. In Learning and intelligent optimization, pages 616–630.
Springer, 2011.

[307] Jerry Swan, John Woodward, Ender Özcan, Graham Kendall, and Edmund
Burke. Searching the hyper-heuristic design space. Cognitive Computation,
6(1):66–73, 2014.

[308] Jorge Tavares, Penousal Machado, Amilcar Cardoso, Francisco B Pereira, and
Ernesto Costa. On the evolution of evolutionary algorithms. In Genetic Pro-
gramming, pages 389–398. Springer, 2004.

Glossary 341

[309] Astro Teller and Manuela Veloso. Pado: Learning tree structured algorithms
for orchestration into an object recognition system. Technical report, DTIC
Document, 1995.

[310] Astro Teller and Manuela Veloso. Pado: A new learning architecture for object
recognition. Symbolic visual learning, pages 77–112, 1997.

[311] Germán Terrazas, Marian Gheorghe, Graham Kendall, and Natalio Krasnogor.
Evolving tiles for automated self-assembly design. In Evolutionary Computa-
tion, 2007. CEC 2007. IEEE Congress on, pages 2001–2008. IEEE, 2007.

[312] Germán Terrazas, Hector Zenil, and Natalio Krasnogor. Exploring pro-
grammable self-assembly in non-dna based molecular computing. Natural
Computing, 12(4):499–515, 2013.

[313] Nathan Thomas, Gabriel Tanase, Olga Tkachyshyn, Jack Perdue, Nancy M Am-
ato, and Lawrence Rauchwerger. A framework for adaptive algorithm selection
in stapl. In Proceedings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 277–288. ACM, 2005.

[314] Yanfei Tian, Liwen Huang, and Yong Xiong. A general technical route for pa-
rameter optimization of ship motion controller based on artificial bee colony al-
gorithm. International Journal of Engineering and Technology, 9(2):133, 2017.

[315] Murchhana Tripathy and Anita Panda. A study of algorithm selection in data
mining using meta-learning. Journal of Engineering Science and Technology
Review, 10(2):51–64, 2017.

[316] Yuri R Tsoy. The influence of population size and search time limit on genetic
algorithm. In Science and Technology, 2003. Proceedings KORUS 2003. The 7th
Korea-Russia International Symposium on, volume 3, pages 181–187. IEEE,
2003.

[317] Andrew James Turner and Julian Francis Miller. Cartesian genetic program-
ming encoded artificial neural networks: a comparison using three benchmarks.
In Proceedings of the 15th annual conference on Genetic and evolutionary com-
putation, pages 1005–1012. ACM, 2013.

[318] Andrew James Turner and Julian Francis Miller. Neuroevolution: Evolving
heterogeneous artificial neural networks. Evolutionary Intelligence, 7(3):135–
154, 2014.

[319] NLJ Ulder, E Pesch, PJM van Laarhoven, HJ Bandelt, and EHL Aarts. Improv-
ing tsp exchange heuristics by population genetics. Parallel Problem Solving
from Nature, pages 109–116, 1991.

[320] unknown. Netflix prizes, 2015.

[321] Enrique Urra, Daniel Cabrera-Paniagua, and Claudio Cubillos. Towards an
object-oriented pattern proposal for heuristic structures of diverse abstraction
levels. XXI Jornadas Chilenas de Computación, 2013.

342 References

[322] Christos Valouxis, Christos Gogos, George Goulas, Panayiotis Alefragis, and
Efthymios Housos. A systematic two phase approach for the nurse rostering
problem. European Journal of Operational Research, 219(2):425–433, 2012.

[323] Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeule-
meester, and Liesje De Boeck. Personnel scheduling: A literature review. Eu-
ropean Journal of Operational Research, 226(3):367–385, 2013.

[324] Willem Van Onsem and Bart Demoen. Parhyflex: A framework for parallel
hyper-heuristics. In BNAIC 2013: Proceedings of the 25th Benelux Conference
on Artificial Intelligence, Delft, The Netherlands, November 7-8, 2013. Delft
University of Technology (TU Delft); under the auspices of the Benelux Asso-
ciation for Artificial Intelligence (BNVKI) and the Dutch Research School for
Information and Knowledge Systems (SIKS), 2013.

[325] Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Bäck. Evolv-
ing the structure of evolution strategies. arXiv preprint arXiv:1610.05231, 2016.

[326] Greet Vanden Berghe. An advanced model and novel meta-heuristic solution
methods to personnel scheduling in healthcare. 2002.

[327] Zdenek Vasicek and Lukas Sekanina. Hardware accelerators for cartesian ge-
netic programming. In European Conference on Genetic Programming, pages
230–241. Springer, 2008.

[328] Zdeněk Vašı́ček and Karel Slanỳ. Efficient phenotype evaluation in cartesian ge-
netic programming. In European Conference on Genetic Programming, pages
266–278. Springer, 2012.

[329] Vesselin K Vassilev and Julian F Miller. The advantages of landscape neutrality
in digital circuit evolution. In International Conference on Evolvable Systems,
pages 252–263. Springer, 2000.

[330] Alan Vella et al. Hyper-heuristic decision tree induction. PhD thesis, Heriot-
Watt University, 2012.

[331] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-
learning. Artificial Intelligence Review, 18(2):77–95, 2002.

[332] James Alfred Walker and Julian Francis Miller. Evolution and acquisition of
modules in cartesian genetic programming. In Genetic Programming, pages
187–197. Springer, 2004.

[333] James Alfred Walker and Julian Francis Miller. Investigating the performance
of module acquisition in cartesian genetic programming. In Proceedings of the
7th annual conference on Genetic and evolutionary computation, pages 1649–
1656. ACM, 2005.

[334] James Alfred Walker and Julian Francis Miller. Embedded cartesian genetic
programming and the lawnmower and hierarchical-if-and-only-if problems. In
Proceedings of the 8th annual conference on Genetic and evolutionary compu-
tation, pages 911–918. ACM, 2006.

Glossary 343

[335] James Alfred Walker and Julian Francis Miller. The automatic acquisition, evo-
lution and reuse of modules in cartesian genetic programming. IEEE Transac-
tions on Evolutionary Computation, 12(4):397–417, 2008.

[336] James Alfred Walker, Julian Francis Miller, and Rachel Cavill. A multi-
chromosome approach to standard and embedded cartesian genetic program-
ming. In Proceedings of the 8th annual conference on Genetic and evolutionary
computation, pages 903–910. ACM, 2006.

[337] James Alfred Walker, Katharina Völk, Stephen L Smith, and Julian Francis
Miller. Parallel evolution using multi-chromosome cartesian genetic program-
ming. Genetic Programming and Evolvable Machines, 10(4):417–445, 2009.

[338] Yingxu Wang and Vincent Chiew. On the cognitive process of human problem
solving. Cognitive Systems Research, 11(1):81–92, 2010.

[339] Yingxu Wang, Ying Wang, S. Patel, and D. Patel. A layered reference model
of the brain (lrmb). Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 36(2):124–133, March 2006.

[340] D Michael Warner and Juan Prawda. A mathematical programming model for
scheduling nursing personnel in a hospital. Management Science, 19(4-part-
1):411–422, 1972.

[341] Karsten Weicker and Nicole Weicker. On evolution strategy optimization in
dynamic environments. In Evolutionary Computation, 1999. CEC 99. Proceed-
ings of the 1999 Congress on, volume 3. IEEE, 1999.

[342] Robert W Weisberg. Toward an integrated theory of insight in problem solving.
Thinking & Reasoning, 21(1):5–39, 2015.

[343] Gayan Wijesinghe and Vic Ciesielski. Parameterised indexed for-loops in ge-
netic programming and regular binary pattern strings. In Asia-Pacific Confer-
ence on Simulated Evolution and Learning, pages 524–533. Springer, 2008.

[344] Gayan Wijesinghe and Vic Ciesielski. Evolving programs with parameters and
loops. In IEEE Congress on Evolutionary Computation, pages 1–8. IEEE, 2010.

[345] David H Wolpert. What the no free lunch theorems really mean; how to improve
search algorithms.

[346] David H Wolpert and William G Macready. No free lunch theorems for opti-
mization. IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

[347] David Harlan Wood, Junghuei Chen, Eugene Antipov, Bertrand Lemieux, and
Walter Cedeño. A design for dna computation of the onemax problem. Soft
Computing, 5(1):19–24, 2001.

[348] John R. Woodward and Jerry Swan. The automatic generation of mutation op-
erators for genetic algorithms. In Proceedings of the 14th Annual Conference
Companion on Genetic and Evolutionary Computation, GECCO ’12, pages 67–
74, New York, NY, USA, 2012. ACM.

344 References

[349] John Robert Woodward and Jerry Swan. Automatically designing selection
heuristics. In Proceedings of the 13th annual conference companion on Genetic
and evolutionary computation, pages 583–590. ACM, 2011.

[350] John Robert Woodward and Jerry Swan. Automatically designing selection
heuristics. In Proceedings of the 13th Annual Conference Companion on Ge-
netic and Evolutionary Computation, GECCO ’11, pages 583–590, New York,
NY, USA, 2011. ACM.

[351] Sewall Wright. The roles of mutation, inbreeding, crossbreeding, and selection
in evolution, volume 1. na, 1932.

[352] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla:
portfolio-based algorithm selection for sat. Journal of Artificial Intelligence
Research, pages 565–606, 2008.

[353] Mutsunori Yagiura, Toshihide Ibaraki, and Fred Glover. An ejection chain ap-
proach for the generalized assignment problem. INFORMS Journal on Com-
puting, 16(2):133–151, 2004.

[354] Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical
rules for knowledge base completion. arXiv preprint arXiv:1702.08367, 2017.

[355] Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447, 1999.

[356] W Yates and EC Keedwell. Clustering of hyper-heuristic selections using the
smith-waterman algorithm for off line learning. GECCO, 2017.

[357] Jianbo Yu, Shijin Wang, and Lifeng Xi. Evolving artificial neural networks
using an improved pso and dpso. Neurocomputing, 71(4):1054–1060, 2008.

[358] Tina Yu and Chris Clark. Recursion, lambda-abstractions and genetic program-
ming. Cognitive Science Research Papers-University Of Birmingham CSRP,
pages 26–30, 1998.

[359] Shiu Yin Yuen, Chi Kin Chow, and Xin Zhang. Which algorithm should i
choose at any point of the search: an evolutionary portfolio approach. In Pro-
ceedings of the 15th annual conference on Genetic and evolutionary computa-
tion, pages 567–574. ACM, 2013.

[360] Shiu Yin Yuen and Xin Zhang. On composing an (evolutionary) algorithm
portfolio. In Proceedings of the 15th annual conference companion on Genetic
and evolutionary computation, pages 83–84. ACM, 2013.

[361] Shiu Yin Yuen and Xin Zhang. On composing an algorithm portfolio. Memetic
Computing, 7(3):203–214, 2015.

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Declaration
	Introduction
	Thesis aims and contributions
	Plan of thesis

	Optimisation of algorithms
	Basic principles
	The problem domain
	The problem search space
	The problem encoding scheme
	The problem evaluation process
	Problem-specific operators
	Problem parameters
	Discussion

	The algorithm domain
	The algorithm search space
	The algorithm encoding scheme
	The learning objective function
	The algorithm parameters
	The algorithm understandability metrics
	Discussion

	Algorithm optimisation processes
	Predicting the performance of algorithms
	Automating parameter settings
	Selection of operators
	Generation of algorithms
	Discussion

	Conclusion

	Three problem domains
	Common features
	Population operators
	Termination criteria
	Summary

	The Mimicry Problem
	The chosen encoding scheme
	Fitness evaluation
	Problem parameters
	Problem operators
	Summary

	The Traveling Salesman Problem
	The chosen encoding scheme
	Fitness evaluation
	Parameters
	Problem operators
	Summary

	The Nurse Rostering Problem
	The chosen encoding scheme
	Fitness evaluation
	Problem Operators
	Summary

	Discussion and conclusion

	Graph-Based GP
	Review of graph-based genetic programming
	Parallel distributed genetic programming
	Linear-graph genetic programming
	Graph structure program evolution
	Parallel Algorithm Discovery and Orchestration
	Cartesian Genetic Programming
	Implicit-context CGP
	Adaptive Cartesian Harmony Search
	Discussion

	CGP hyper-heuristics
	Cartesian Genetic Programming
	Iterative Cartesian Genetic Programming
	Autoconstructive Cartesian Genetic Programming

	Conclusion

	Evolving metaheuristics
	Introduction
	Learning objective function
	Evolving the body of a loop
	Validation

	Iterative Cartesian Genetic Programming: the full evolution of loops
	Validation of the learnt iterative metaheuristics

	Discussion and conclusion

	Improved learning objective process
	Introduction
	Problem domain
	Traveling salesman problem
	Mimicry problem
	Nurse rostering problem

	Evolution of the body of a loop
	Discovery of Traveling Salesman Problem solvers
	Performance
	Discovery of Mimicry problem solvers
	Discovery of nurse rostering problem solvers

	The full evolution of loops
	Discovery of iterative Travelling salesman solvers
	Discovery of iterative mimicry solvers
	Discovery of iterative nurse rostering problem solvers
	Performance and comparison

	Discussion and conclusion

	Evolving hyper-heuristic reproductive operators
	Introduction
	Experiments
	Discovering sequential and iterative mimicry solvers
	Discovering sequential and iterative traveling salesman solvers
	Genetically improving some CGP mutation operators
	Effect of the online generative hyper-heuristics
	Comparison to an offline learning process

	Validation of a learnt CGP mutation
	Performance of discovered NRP solvers
	Effect of the learnt CGP mutation operators

	Discussion and conclusion

	Critical analysis
	Scalable patterns of primitives
	The Traveling Salesman Problem
	The mimicry problem
	The nurse rostering problem

	Automatic design of metaheuristics
	Templates and directed graphs
	Effect of the learning objective functions
	Effectiveness of the learning

	Comprehensibility metrics
	Problem-specific solvers
	Other forms of GP
	Effect on human understandability metrics
	Comparison with other techniques
	Discussion

	Conclusion

	Conclusion
	Recommendations
	Future work

	Appendix A: Algorithms
	Appendix B: Statistical results
	Statistical results
	Abbreviations
	Glossary
	References

