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Abstract

Gravitropism is a vital process determining plant architecture. As

plant architecture is key to resource aquisition a better understanding

of gravitropic behaviour may have a great impact on our future food

security. Recent models of gravitropism have focussed on understand-

ing specific mechanisms involved in gravitopic response. However our

understanding of gravitropism at the behavioural level remains lim-

ited, with little known about the factors that determine a response

and the timescales involved. We show that gravitropic behaviour is

best treated as an angle dependent stochastic system exhibiting fast

angle detection and relatively slow response with limited to no hys-

teresis. A minimal stochastic model of root gravitropism is presented

which provides a description of gravitropic behaviour at the popula-

tion level as well making informative predictions about the behaviour

of the mechanisms involved. The root is treated as having a prob-

ability of making a discrete bend in a given time that is directly

proportional to the current angle. The angle dependent probability

combined with the size of a bend determines the expected response,

while the bend size determines the variation in response. The time

step of a bend limits the timescale of the response to a few minutes.

The need to analyse the noisy response of roots to gravity has neces-

sitated the development of equipment to precisely control the angle of

a root tip over long time periods, as well as automated data analysis

tools capable of handling large datasets.
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Chapter 1

Introduction

1.1 The role of tropisms in plant growth

Like all organisms, plants require a variety of resources to survive and reproduce.

Being sessile, plants must be capable of maximising the amount of resources cap-

tured from their surroundings. A plant’s shape, or architecture, is an important

aspect of resource optimisation, with different architectures maximising the cap-

ture of different resources available for uptake. For example topsoil tends to

contain a greater concentration of nutrients but is often drier than than deeper

soil layers (Lynch, 1995). It has been shown that in beans, a shallow and highly

branched root system allows for more effective nutrient uptake (Lynch and van

Beem, 1993) than a deeper root system. Conversely, it has long been known that

in desert plants a deep root system with near vertical roots allows plants to better

survive dry conditions (Cannon, 1911). Shoot architecture is equally important

for maximising the utilisation of the light available. For example the tropical

tree Terminalia catappa has been shown to display branching angles optimum for

light capture in its environment (Honda and Fisher, 1978).

Plant architecture is not fixed; many plants are able to actively adapt to the

conditions they find themselves in. This has been demonstrated in the bean

Phaseolus vulgaris which under different conditions will adapt its root architec-
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1.2 Growth control in herbaceous plant roots

ture to maximise the overall uptake of water or nutrients (Ho et al., 2004), with

more vertical roots being produced in nutrient rich or water poor conditions. In

herbaceous plants particularly, changes in shape can occur over short timescales

due to directed growth in response to stimuli. By actively directing growth in

response to stimuli the plant is able to move and adapt to rapidly changing con-

ditions despite its sessile nature. These processes known as tropisms have been

studied since Darwin wrote “The power of movement in plants” (Darwin and

Darwin, 1880) in 1880.

Tropic responses can be triggered by a range of stimuli. Gravitropism is a response

towards or away from the direction of gravity, allowing roots to bend downwards

or shoots upwards. Phototropism causes shoots or roots to bend towards or away

from light. Thigmotropism is a response to touch, and hydrotropism a response

to water content (Esmon et al., 2005). In many cases multiple stimuli will be

present and driving conflicting responses, in this situation the plant must be able

to integrate multiple conflicting responses and maintain a coherent response to

complex stimuli. Such ability in an organism lacking a centralised controller such

as the nervous system seen in animals is impressive. The following sections outline

some of the processes involved in generating an active and coherent growth re-

sponse with an emphasis on gravitropic mechanisms and behaviour in Arabidopsis

thaliana .

1.2 Growth control in herbaceous plant roots

1.2.1 Bending as a growth response

Organs capable of tropic response have well defined structures that must be main-

tained while directional growth is achieved. Because of this it not simply sufficient

to grow when a stimulus is present, instead growth must be coordinated across

the organ in order to produce a bend towards or away from the stimulus.

In Arabidopsis, post-embryonic root growth is governed by the longitudinal elon-

2



1.2 Growth control in herbaceous plant roots

gation of epidermal cells. When a stimulus is present, cell expansion becomes

asymmetrical across the root differentiation zone, causing the root to bend. A

simple explanation for this can be obtained from the geometry of a bend over

a small distance. Assuming the bend over a small distance (say one cell-length)

is constant, we can describe the mid-line of the root with width w as an arc on

a circle. Since root growth is mainly longitudinal, the width of the root can be

considered constant. If we look at the two sides, the inner side I and outer side

O, their edges will be arcs along circles with radius r and r + w, respectively.

(see figure 1.1 for an illustration). This is described by Equation 1.1, where θ is

the angle of the arc describing both sides in radians. If we rearrange Equation

1.1 we find that θ = O−I
w

. Therfore in an ideal root (or shoot) with constant

width we would expect a bend proportional to the difference in length between

the opposite sides. It is worth noting that the direction of the observed bend is

towards the shorter side of the organ.

In order for tropic growth to be achieved it is sufficient for an organ to produce

asymmetrical growth rates such that the side of the organ in the direction of the

intended bend is elongating slower than the opposite side. This could be achieved

by increasing growth rates on the outside of the intended bend, decreasing growth

rates on the inside, or through some combination of the two.

A similar analysis, along with measurements confirming the consistency of bend-

ing can be found in Perbal et al. (Perbal et al., 2002).

θ =
I

r
=

O

r + w
(1.1)

1.2.2 Auxin concentration determines growth rate

Cellular elongation is limited by the stiffness of the cell wall. The elongation

itself is driven by the turgor pressure of the cell (Cleland, 1987), when the turgor

pressure exceeds the yield stress threshold of the cell wall, the cell will expand,

with the growth rate given by equation 1.2 where P is the turgor pressure, Y is

3



1.2 Growth control in herbaceous plant roots

Figure 1.1: Assuming uniform curvature over small distances the inner and outer
sides of the root can be treated as arcs along circles with radius r and r+w. The
angle of the segment is given by θ.

the yield stress, m is an extensibility coefficient, and V is the volume of the cell.

Unidirectional, longitudinal growth occurs because the structure of the cell wall,

with bands of cellulose which ring the cell, strongly resists elongation along the

radial axis of the cell (Schopfer, 2006). To produce differential growth either the

turgor pressure or the cell wall yield stress must be varied.

δV

δt
= m · (P − Y ) (1.2)

The hormone Auxin (indole-3-acetic acid) is a key growth regulator that has

been widely accepted as the most significant player in tropic growth. Auxin is

capable of regulating cellular elongation rates by changing the stiffness of the cell

wall (Nakahori et al., 1991). A recent detailed review of the biophysical basis of

cell wall extensibility is given by Crosgrove in (Cosgrove, 2015). As the turgor

pressure forces the cell to elongate it behaves viscoelastically (Cosgrove, 1993),

with the weakening of the cell wall being accompanied by the deposition of new

wall material making the process irreversible (Schopfer, 2006). In the root, in-
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1.2 Growth control in herbaceous plant roots

creased auxin content inhibits cell elongation, whereas in the shoot it promotes

elongation (Fendrych et al., 2016). Although there is limited data available on

the precise relationship between auxin concentration and elongation rates in the

Avena coleoptile it appears to be sigmoidal, with initial increases in auxin con-

centration promoting elongation which quickly plateaus as the concentration is

increased further (Cleland, 1972). However this relationship is known not to hold

in the Arabidopsis root where increasing auxin levels cause a decrease in the elon-

gation rate (Fendrych et al., 2016; Swarup et al., 2005). It is plausible however

that a similar sigmoidal function may be displayed in the Arabidopsis root, where

at low values the turgor pressure is insufficient to overcome the yield stress of the

walls, and at high concentrations the elongation rate is limited by other processes

(such as the speed of wall deposition).

The mechanism by which auxin inhibits cellular elongation in the root is still up

for debate. In the shoot the acid growth theory is used to explain the mecha-

nism behind auxin induced cellular elongation. The acid growth theory claims

that auxin triggers the activation of proton pumps on the cell membrane, lead-

ing to acidification of the apoplast. The reduction in pH in the apoplast then

activates cell wall loosening enzymes, such as expansins, allowing the cell to elon-

gate (Hager, 2003). Recent studies have shown that in the root increases in auxin

concentration can lead to alkalinisation of the apoplast, and that this in turn in-

hibits cellular elongation (Barbez et al., 2017), suggesting the acid growth theory

may apply to roots as well as shoots.

The expansins are a super-family of cell wall loosening enzymes thought to play

a role in determining cellular expansion during gravitropic response (Cosgrove,

1997; Sampedro and Cosgrove, 2005; Zhang and Hasenstein, 2000). The structure

of the cell wall largely consists of rigid load-bearing cellulose microfibrils bound

together by hemicelluloses and pectins (Cosgrove, 2005), with elongation occur-

ring due to slippage between cellulose microfibrils (Cosgrove, 2000). Expansins

facilitate the movement of the cellulose microfibrils by disrupting the binding be-

tween the microfibrils and the supporting pectins and hemicelluloses (Cosgrove,

2000), this allows the cellulose microfibrils to move apart in response to the turgor

pressure within the cell.

5



1.2 Growth control in herbaceous plant roots

A.
B.

C.

Figure 1.2: A. The location of PIN expression and auxin flow in the root tip,
image adapted from (Feraru and Friml, 2008). B. The auxin transport pattern in
an Arabidopsis root. Auxin is moved down the vasculature towards the tip. The
columella (shaded beige) redistributes the auxin laterally through the lateral root
cap and back up and away from the tip into the epidermis. The auxin dependent
regulation of cell elongation occurs behind the tip in the elongation zone (shaded
grey). C. During graviresponse auxin is preferentially distributed to the lower
side.

1.2.3 Auxin distribution drives behaviour

The Cholodny Went model of tropic behaviour, proposed in the 1920’s (Cholodny,

1927; Went, 1927), states that tropic growth is driven by the distribution of the

plant growth regulator auxin. In both the Arabidopsis root and shoot the flow of

auxin follows a distinctive pattern. In the root the flow of auxin forms an inverted

fountain with auxin flowing down the vasculature in the centre of the root to the

root tip, more specifically the stem cell niche and columella cells of the root cap.

From here the auxin is moved laterally and back up the root to the epidermis

via the lateral root cap, where it flows up and away from the tip (see Fig. 1.2).

Elongation then occurs further back from the root tip in a region known as the

elongation zone. In the Arabidopsis root increased auxin concentration leads to

decreased elongation.

6



1.2 Growth control in herbaceous plant roots

Auxin is synthesised primarily in young leaves and the root tip (Ljung et al.,

2005), although all cells have the capability to produce auxin. After synthesis

auxin is transported through the plant in two ways. Long distance transport of

auxin takes place in the vascular system and allows relatively rapid movement

of auxin. Short distance polar auxin transport relies instead on the chemical

properties of auxin and on the activity of efflux carriers (such as the PINs) and

influx carriers (such as AUX1) (Marchant et al., 1999), the locations of which

determine the flow of auxin though the organ (Benková et al., 2003; Grieneisen

et al., 2007; Robert and Friml, 2009). Inside the cell auxin is deprotonated, the

pH gradient between the cell and the surrounding cytoplasm then prevents it

from diffusing across the plasma membrane. AUX1 is an auxin efflux protein

in the AUX/LAX family required for polar auxin transport. Loss-of-function

AUX1 mutants show a reduction in auxin transport rates which causes a loss of

gravitropic ability in the roots (Marchant et al., 1999).

Where the AUX/LAX family consists of auxin efflux proteins, the PIN family

consists of auxin influx proteins. In Arabidopsis eight members of the PIN family

have been identified (Vieten et al., 2007), of which PINS 1,2,3,4, and 7 have been

shown to be expressed in the root tip (Petrášek and Friml, 2009) (Fig. 1.2), loss of

function in pin2 produces an agravitropic phenotype while pin3pin4pin7 mutants

show decreased gravitropic ability as an auxin gradient cannot be maintained in

the elongation zone.

As these PIN proteins are required for auxin transport out of the cell, the location

of the PINs within the cells of the root cap determines the direction of auxin flow

out of the tip. While the mechanisms determining PIN polarity in the columella

are not know, in other tissues cellular distribution is controlled by the antagonistic

action of the phosphatase PP2A and the protein kinase PID (Fozard et al., 2012;

Michniewicz et al., 2007) with phosphorylated PINs localising on the upper face

of cells, and loss of PID function causing dephosphorylated PINs to relocalise to

the lower face of cells (Kleine-Vehn et al., 2009; Sukumar et al., 2009). Fozard

et al. produced a model of PIN phosphorylation and localisation which shows

that unique stable equilibrium levels of phosphorylated PINs exist given different

levels of PID and PP2A (Fozard et al., 2012). This would support the idea that
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1.2 Growth control in herbaceous plant roots

reliable gravitropic growth could be produced by a variation in levels of PID or

PP2A in the columella controlling the flow of auxin out of the root tip by varying

the amount of PINs localised at the upper and lower faces of the cells in the

columella.

In the Arabidopsis root, gravitational stimulation causes an increase in auxin

output on the lower side of the columella which then leads to an auxin gradient

further back in the elongation zone. The increase in auxin on the lower side of

the elongation zone causes it to grow more slowly than the upper side leading to

a downwards bend in the root.

Auxin response can be either transcriptional or non-transcriptional. While very

little is known of the latter there are two families of transcription regulators

that have been demonstrated, AUXIN/INDOLE-3-ACETIC ACID co-repressor

proteins (Aux/IAA) and AUXIN RESPONSE FACTORS (ARFs). ARFs can

be divided into two broad classes, those that activate and those that repress

transcription. Dimerisation occurs between activating ARFs and AUX/IAA co-

repressors which results in transcriptional repression at the targeted locus. Auxin

acts to promote gene expression by promoting the ubiquitinisation and subsequent

degradation of AUX/IAAs thus relieving the repression (Tiwari et al., 2001).

The auxin dependent degradation of Aux/IAA proteins has been used as the

basis for an auxin biosensor. By binding a portion of the Aux/IAA complex

that is responsible for auxin-induced instability to a yellow fluorescent protein

(YFP) one can create create an inverse marker for auxin concentration. R2D2

is a ratiometric auxin marker consisting of DII-VENUS, a degron from domain 2

of Aux/IAA IAA28 fused to GPF, and nuclear localised red fluorescent protein

(RFP). Auxin causes the degradation of DII-VENUS, this acts as an inverse

reporter where the presence of auxin reduces the YFP fluorescence (Liao et al.,

2015). As the RFP is stable it is able to act as a control allowing more accurate

auxin measurements than DII-VENUS alone.

By using DII-VENUS alone it is possible to get a good approximation of auxin

distribution within the root and other tissues. Although DII-VENUS levels are

not directly proportional to auxin levels, a system of ODE’s (ordinary differental
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1.2 Growth control in herbaceous plant roots

equations) has been produced which is able to map the levels of DII-VENUS to

auxin (Band et al., 2012).

Analysis of auxin distribution using DII-VENUS has shown an auxin gradient

across the lateral axis of gravistimulated roots as expected, however the results

suggest that the distribution of auxin at different angles does not change smoothly

as previously thought. Instead of a smoothly changing auxin gradient, the magni-

tude of which depends upon the angle of orientation, a tipping point was observed.

When rotated by 90◦ there was a large change in auxin distribution within the

first few minutes of reorientation. Interestingly the auxin gradient was lost around

the mid point of gravitropic bending (at an orientation of approximately 48◦) af-

ter which it was hypothesised that continuing bending is due to downstream

products of auxin which persist after the auxin asymmetry has dissipated (Band

et al., 2012). It is suggested that statocytes act as a tilt switch outputting a

binary auxin signal with an auxin gradient being formed if and only if the stato-

cyte is reorientated above a threshold angle. In this case bending to the vertical

could be the result of deceleration over time after the root tip has moved below

the threshold angle. Given this it is not clear how gravitropic growth could occur

after reorientation to an angle of below the 48◦ threshold value. Additionally if

an organ is held at different orientations the rate of gravitropic growth should

form a step function, or sigmoid. While there is not a large amount of fixed

orientation data available the results of Mullen et al. (Mullen et al., 2000) do

not seem to show the rates of reorientation predicted by the tipping point model,

instead showing a smooth increase in bend-rate as the angle increases.

A model of PIN positions within cells in the arabidopsis root has shown that the

distribution of PIN’s in the columella is able to produce a lateral auxin gradient

across the root (Grieneisen et al., 2007), as would be required by the Cholodny

Went hypothesis. However this model is based on simplified cellular geometries,

models including more complex cellular geometries highlight the necessity of ef-

flux proteins such as AUX1 in generating realistic auxin distributions (Band et al.,

2014). This builds upon previous work which models the relationship between

auxin concentration and D2-Venus, making it possible to determine the concen-

tration of auxin across the root during graviresponse (Band et al., 2012)
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1.2 Growth control in herbaceous plant roots

Statocytes and statoliths

The most widely accepted explanation of how gravity sensing cells detect the

direction of gravity is the starch-statolith theory (Sack, 1991, 1997), originally

proposed by the German botanist Fritz Noll in 1897. Most plants have spe-

cialised gravity sensing cells known as statocytes which contain dense specialised

amyloplasts called statoliths. This is supported by the fact that removal of the

statocytes in the Arabidopsis root tip by laser ablation has been shown to reduce

gravitropic response (Blancaflor and Masson, 2003). The statoliths consist of one

or more starch granules contained within a membrane. Being denser than the

surrounding medium the statoliths are able to sediment at the bottom of the sta-

tocyst, this sedimentation is thought to be involved in the detection of gravity. It

is not known how the placement of statoliths affects the auxin signal outputted

by the cell (Morita and Tasaka, 2004) but it seems likely that the signal depends

upon the number of statoliths in contact with the membrane. Recent work sug-

gests that statoliths act as angle sensors rather than force sensors (Chauvet et al.,

2016) though whether it is the absolute number which is detected or the force

of statoliths pressing on the membrane is still an important question. It is also

possible that the there are in fact 2 mechanisms involved in signal production:

the presence of statoliths on the side wall of the cell, may determine magnitude

of response, and their presence (or absence) on the top or bottom face of the cell

may determine direction.

The starch-statolith theory is well supported by several pieces of evidence. For

example Arabidopsis mutants which lack the ability to produce starch are less

sensitive to gravity than those able to produce starch normally (Kiss et al., 1989),

while retaining the ability to respond to other stimuli (Kiss et al., 1996). Others

have shown that in Salix viminalis root bending only occurs after statoliths have

developed (Fjell, 1985), and that in decapitated Zea mays roots gravitropism is

only shown in roots which have developed statoliths which are capable of sedimen-

tation (Hillman and Wilkins, 1982). However some gravitropic response does still

occur in starch-less Arabidopsis mutants, which is consistent with the idea that

while starch-statoliths are involved in sensing the direction of gravity, starch-less
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1.2 Growth control in herbaceous plant roots

statoliths may still be able to sediment on the bottom of the cell (Sack, 1991).

Statolith movement

There have been some attempts to model the movement of statoliths within the

cell. For example Audus et al. (Audus, 1964) made a physical model of a cell

containing polythene “statoliths”. They found a good fit between the number of

statoliths on the long edge of the model cell and reported magnitude of gravit-

ropic responses at different orientations. To simulate this Audus used a perspex

box of of a similar shape to a central columella cell containing between 30 and

36 polythene statolith models, which was then filled with paraffin. The box was

then rotated and the number of statoliths in contact with the long wall of the box

counted. They found that the log of the number of contacts between statoliths

and the cell wall was a close match to the reported gravitropic responses in pre-

vious literature. This suggests a relationship between the strength of gravitropic

output and the number of statoliths touching the lower side of the cell, but the

relationship is unlikely to be linear. Before Audus it had been suggested that

statoliths did not normally sink directly to the lowest point in the cell, rather

that they have a tendency to clump together and move along the cell wall, and

there is evidence that statolith movement is affected by interactions with the cell’s

cytoskeleton which would not have an equivalent in Audus’s model (Palmieri and

Kiss, 2005).

There are a number of factors which may alter the behaviour of statoliths within

the cell. The movement and position of statoliths will depend on both the sta-

toliths interactions with other parts of the cell, and with each other. It has been

shown that the movement of statoliths in cells does not depend entirely on the

effects of gravity, but that statoliths movements are actively affected by vacuoles

within the cell and the cell’s cytoskeleton(Moulia and Fournier, 2009; Palmieri

and Kiss, 2005).

In Arabidopsis, statoliths show saltatory movement (consisting of short abrupt

jumps), which ceases when the cytoskeleton is disrupted using latrunculin B (Palmieri
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1.3 Root behaviour

and Kiss, 2005; Saito et al., 2005) which implies that the statoliths are being ac-

tively propelled around the cell. It is also possible that saltatory movements

are due to statoliths becoming ensnared by the cytoskeleton and releasing stored

potential energy as they escape. Disruption of the cytoskeleton also reduces sta-

tolith movement in general, though it is not known whether this is due to the same

mechanism. It has also been found that treatment of Arabidopsis hypocotyls with

latrunculin B causes increased gravitropic curvature (Palmieri and Kiss, 2005).

It has been suggested that the increase in curvature is due to increased contact

time between statoliths and vacuoles in the cell which may be necessary for sig-

nal transduction (Saito et al., 2005). The idea that statolith-vacuole interactions

are involved in gravitropism is supported by the finding that mutations causing

abnormal vacuole formation inhibit gravitropic response (Morita et al., 2002).

1.3 Root behaviour

1.3.1 Gravitropic behaviour and the Sine Law

In his 1882 work “Uber orthotrope und plagiotrope Pflanzenteile” (Sachs, 1882),

Julius von Sachs hypothesised that the gravitropic response of a root or shoot

should be determined by the component of gravity at a right angle to the long axis

of the organ. This idea, also known as the Sine Law for gravitropism, predicts

that when an organ is displaced the magnitude of response is proportional to the

sine of the angle of rotation (Dumais, 2013) and has since become a commonly

used model of gravitropism.

The Sine Law was formally described as “the intensity of the gravitropic change

in tip angle for a given stimulation time ts and a given gravity g is proportional

to the sine of the stimulation angle of the plant relative to the direction of the

gravitational field vector” (Moulia and Fournier, 2009).

As the response is determined by the component of gravity acting across the

organ, the rotation is measured from the vertical, so an organ displaced hori-
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1.3 Root behaviour

zontally would show the greatest response. When discussing the Sine Law, the

response of an organ is defined by the rate of gravitropic curvature, or the rate at

which the angle of the displaced organ returns to its initial angle. This leads to

equation (1.3), where θ is the orientation of the organ relative to gravity, and t is

time. c represents a rate coefficient subject to the following constraints: in posi-

tively gravitropic organs (those that bend downwards) c < 0, while in negatively

gravitropic organs (which bend upwards) c > 0.

δθ

δt
= c sin θ (1.3)

The Sine Law describes the relationship between a given a stimulation angle and

response. As an organ responds to a given rotation this in turn changes the an-

gle. In order to measure only the initial rotation, and so a known stimulus, the

Sine Law was proposed for cases where the stimulation time equals the reaction

time of the organ (the time at which the organ starts to reorientate) (Moulia

and Fournier, 2009). When longer stimulation is applied the response does not

always fit a straight Sine Law, with some evidence that for many plants the maxi-

mum gravitropic response occurs when the plant is reorientated by approximately

120◦ (Audus, 1964; Larsen, 1969), not 90◦ as would be predicted. Empirical mod-

ifications to the Sine Law have been described which attempt to capture the be-

haviour at angles above 90◦. Some examples of these modified Sine Laws include

the addition of offsets in the detected angle as shown in Eq. 1.4 (Mullen et al.,

2000), and the introduction of cosine terms such as in Eq. 1.5 (Metzner, 1929)

and Eq. 1.6 (Larsen, 1969). In these instances k, k1, and k2, represent various

tuning parameters which can be adjusted to fit the observed response.

δθ

δt
= c sin (θ + k1) + k2 (1.4)

δθ

δt
= c sin θ(1− k cos θ) (1.5)
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1.3 Root behaviour

δθ

δt
=

c sin θ√
k2 + 2k cos θ + 1

(1.6)

Due to the continuous change in angle over time, it is difficult to determine

whether a change in response is due to the change in angle or the time since

reorientation. However by using the ROTATO system (a feedback system able

to constrain root tip angles for long time periods) it has been shown that the

response does not appear to be time-dependent, and that an organ actively main-

tained at an angle away from its normal growth angle will continue to respond

consistently to its displacement long after it would otherwise have stopped bend-

ing (Mullen et al., 2000). Mullen et al. fit the observed response to the modified

Sine Law given in Eq. 1.4, where y ∝ sin(θ−14.7), this gives a maximum response

of approximately 105◦, which lies between that predicted by the Sine Law and

that observed by others (Audus, 1964; Larsen, 1969). It should be noted however

that this modification to the Sine Law is purely empirical and, while it is able

to fit the data, it departs from the fundamental assumption of the model, that

response is proportional to gravity acting across the organ.

As the Sine Law only describes tip angle when applied to the root, it does not

predict the final shape of the plant. Indeed in the case of soft roots being driven

by growth occurring behind the tip the mechanics are complicated and there is

no guarantee that the path of the root will follow that of the tip. However the

Sine Law would suggest that a root whose tip has been displaced and maintained

at a nearly vertical angle would form a gentle curve, compared to one which has

the tip maintained at a near horizontal angle which would be tightly curved.

It is worth noting that while the Sine Law is intuitive, a simple model of the

movement of sedimentary particles in a box would not obviously give a Sine Law.

If the number of statoliths is large, and they are able to move around the cell

freely in response to gravity, the statoliths can be modelled as a liquid collecting

at bottom of the cell. Assuming the cell is rectangular, the number of statoliths

in contact with the lower edge of the cell approximates to equation (1.10). Where

V is equal to the volume of statoliths, θ is the orientation of the cell, and θmax is

the angle at which the entire cell face is in contact with statoliths.
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Figure 1.3: A. Position of liquid model statolith in a rotated cell. B. The feedback
loop between gravity detection in statocytes and response to gravity.

Given a cell rotated from the vertical by an angle θ and a volume of statoliths

V , the statoliths form a right-triangle as shown in Figure (1.3). The volume V

is given by equation (1.7). Given that we are assuming a rectangular cell, and

the statoliths form a right-triangle, we know a = θ, and so can multiply equation

(1.7) by tan θ (1.8). This gives A2 in terms of V and θ as shown in equation

(1.9). Taking the square root of equation (1.9) gives the length of the covered

side A, and dividing by the length of the cell wall gives the predicted fractional

activation, Afrac of the gravitropic response in equation(1.10).

2V = AB, (1.7)

tan θ =
A

B
(1.8)

A2 = 2V tan θ (1.9)
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1.3 Root behaviour

Afrac =

√
2V tan θ√

2V tan θmax
(1.10)

While the Sine Law is a commonly used model of gravitropic behaviour it is not

a complete description of behaviour. For example Bastien el al (Bastien et al.,

2013) suggest that the Sine Law alone cannot explain gravitropic behaviour in

shoots, and that some proprioceptive component is necessary to achieve a stable

orientation. Due to the shape of shoots a curvature near the base of a shoot will

affect the orientation of the shoot further away from the base. Unlike in roots,

gravitropic growth in shoots occurs along the length of the organ. The Sine

Law would predict that the stem of a rotated plant would repeatedly overshoot

the vertical as the base would still be responding to a change in the direction of

gravity as the tip was approaching vertical. The minimal model to account for this

requires a balance between gravitropic curvature and basipetal straightening. A

large number of plant shapes seen among different plants can be modelled by using

a bending number, B which represents the ratio of these two responses. Unlike

the Sine Law alone the addition of a proprioceptive term allows the equilibrium

shape of the organ to be defined, providing at least one tropism is distributed

and external forces are negligible.

Despite these questions the Sine Law remains a commonly used model in many

situations (Galland, 2002).

1.3.2 Gravitropic set-point angle and the anti-gravitropic

offset

In many plants the primary shoot and root will grow vertically upwards and down-

wards respectively, however many plant organs are maintained at a non-vertical

angle (Roychoudhry and Kepinski, 2015). While it has been suggested that non-

vertical growth is due to a lack of gravitropic ability it has now been shown that

non-vertical orientation is actively maintained and that this is not simply due to a

weak gravitropic response, as when reorientated both shoots and roots are able to
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bend either upwards or downwards to return to their previous orientation (Digby

and Firn, 1995; Mullen and Hangarter, 2003; Roychoudhry et al., 2013). It is

important to note that in different species not all plant organs are gravitropic.

Organs can be gravitropic only at specific stages of development (Sievers and

Volkmann, 1977), and some organs do not display gravitropic behaviour at any

point. Organs can also be orientated relative to gravity due to being attached to

a gravitropic organ, but not be gravitropic themselves (Blancaflor and Masson,

2003).

Some early studies of gravitropism considered horizontal growth to be distinct

from vertical growth, with horizontally growing organs being referred to as pla-

giotropic or diageotropic. However as a single organ can vary in angle throughout

its lifetime, and in response to a number of factors, it has been concluded that

these behaviours are the result of variation along a continuum of gravitropic re-

sponse (Digby and Firn, 1995). The angle at which an organ is maintained was

defined as the gravitropic set-point angle (or GSA), and is the point at which

there is no gravitropic curvature. The GSA of an organ is given as an angle be-

tween 0◦ and 180◦, with 0◦ being vertically downwards and 180◦ being vertically

upwards (see Figure1.4). As gravity sensing in the root is confined to the root tip

the angle maintained is the tip angle (Figure1.4, in shoots where gravity sensing

and response occurs along the length of the organ the angle must be measured

along the organ. The existence of a GSA was proposed by Digby and Firn who

observed that the Tradescantia fluminensis shoot, over the course of its develop-

ment, will maintain a range of angles between almost vertically upwards to almost

vertically downwards; as shown in Figure1.5. The power of this observation is in

its descriptive value, the orientation of any organ can be described by its GSA

allowing models to be produced which can describe a range of organ shapes using

a single system of gravitropic growth.

Non-vertical GSA, such as is seen in lateral roots and shoots, can be explained by

a gravitropic and an anti-gravitropic response (or offset) which act in opposing

directions, these responses are balanced in a stable equilibrium when the organ

is at its GSA. This anti-gravitropic force has been observed by subjecting Ara-

bidopsis to clinorotation. In the absence of a constant gravitropic response the
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Figure 1.4: A. A reorientated root in the process of a gravitropic response, the
effective angle of the root is given by θ. B. GSA is measured as 0◦ being vertically
downwards, and 180◦ being vertically upwards.

lateral branches will bend back upon themselves, as the anti-gravitropic offset is

no longer being balanced by a gravitropic response (Roychoudhry et al., 2013).

The same effect is also seen in roots suggesting a common mechanism is shared

by both roots and shoots.

A constant (or slow to react) anti-gravitropic offset combined with a gravitropic

response which varies depending on orientation may be able to explain how an

organ can be maintained at a non vertical angle, and also allows for similar

behaviour observed in primary and lateral organs when reorientated. This would

lead to a modified Sine Law for non-vertical GSA’s shown in Eq.1.11, with an

offset O. A vertically orientated primary root or shoot can be treated as a special

case of an organ where the anti-gravitropic offset is equal to 0.

δθ

δt
= c sin(θ) +O (1.11)
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Figure 1.5: The GSA of Tradescantia fluminensis shoots at different stages of
development. A shoot is shown at different times over 12 days, and points along
the shoot are tracked. Points are numbered sequentially starting from the base,
and new points are added as the shoot grows. The GSA of these points is shown
over time, with �, ♦, and © representing points 4, 6 and 8, respectively. This
shows a smooth change in GSA over the time period measured. Figure adapted
from Digby and Firn, 1995 (Digby and Firn, 1995).
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1.3.3 Non-gravitropic behaviour

When at GSA, roots display a range of non-tropic behaviour. Most notable

at the large scale are waving and skewing. When grown on a two dimensional

surface Arabidopsis roots grow in a distinct sinusoidal pattern (Figure 1.6). The

reasons for this are not fully understood but a number of processes are thought to

be involved including circumnutation and gravitropism (Simmons et al., 1995).

The role of gravity in root waving is still unclear however as plants grown in

microgravity can display stronger waving phenotypes than under 1G (Paul et al.,

2012; Roux, 2012). It is clear that root-gel interactions are important for skewing

to occur. In a three dimensional environment Arabidopsis roots will grow in a

corkscrew pattern, but when confined to a 2D surface, such as on agar plates, this

corkscrew becomes flattened forming the waving pattern in Fig. 1.6. As the root

digs further into the gel on one half of the corkscrew it is unable to move as freely

across the surface. This produces a bias in the back and forth motion of the root

tip which manifests as a skew in the direction of growth, as shown in Fig. 1.6.

Physical interactions with the surrounding environment play an important role

in the final shape of the root, as impedance of the root tip can cause buckling as

it is forced into the growth media which has the effect of accentuating existing

curvature (Thompson and Holbrook, 2004). This is supported by the observation

that on inclined plates root skew is increased as the gravitropic response digs the

root tip further into the media.

While not directly relevant to the work in this thesis, it is important to remember

that these processes are continuing through the course of any gravitropic response.

Unlike behaviours such as phototropism we cannot remove this background re-

sponse of the plant (as much as we would like to), nor it’s mechanical interactions

with the environment. As such any behaviour observed under gravistimulation

will be a combination of gravitropic and other behaviours.
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A.

B.

Figure 1.6: A. 5 day old Arabidopsis seedlings at GSA (imaged under near infra-
red light). Note the sinusoidal waving of the roots, neither root tip it as the GSA.
B. An older root displays skewing behaviour caused by root-gel interactions.
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1.4 Context and project aims

To date recent models of root gravitropism have tended to focus largely on in-

dividual mechanisms involved in the gravitropic response, such as the role of in-

flux/efflux proteins in determining the flow of auxin across the root (Band et al.,

2014). While bottom-up models of gravitropism have had considerable success

describing physiological features of a gravitropically stimulated root, they have

not yet been able to predict the response at a behavioural level. At the be-

havioural level gravitropic behaviour is still largely described by the Sine Law

and it’s variants (see section 1.3.1). However while the Sine Law performs well

at low angles modifications are needed in order to accurately describe high angle

responses (where the root is above the horizontal). These models can produce

reasonable descriptions of gravitropic behaviour but they lack explanatory power,

as does the unmodified Sine Law. Alternative models such as the tipping point

model described previously (section 1.2.3) are unable to explain behaviour at low

angles. Many behavioural questions remain unanswered by current models such

as the time-scales of the response, the presence or lack of hysteresis (the effect of

a roots history on its future behaviour) at the behavioural level, and the precise

nature of the angle-dependent response.

In this project we aimed to create a behavioural model of gravitropic response

that can accurately describe gravitropic behaviour over a wide range of angles,

from vertically downwards to above the horizontal, as well as to determine what

factors determine this behaviour and under what conditions it occurs. Addition-

ally we aim to provide a link between behaviour and the mechanisms involved in

a response allowing us to limit the range of possible mechanisms.
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Chapter 2

Materials and Methods

2.0.1 Seed sterilisation

Arabidopsis seeds were sterilised using chlorine gas. Open 1.5 ml Eppendorf tubes

containing the seeds were left in a bath of chlorine gas for 3 hours, the seeds were

then allowed to ventilate for 1 hour. Chlorine gas was produced by mixing 3 ml

of hydrochloric acid and 100 ml of bleach containing sodium hypochlorate.

2.0.2 Plant growth media

Arabidopsis plants were grown on sterile Arabidopsis salts (ATS) growth media,

the composition of which is given in Table 2.1.

2.0.3 Kinetics experiments and analysis

Arabidopsis seeds were vernalised at 5◦C in the dark for 2 days, Plants were

grown on ATS for 5 days in controlled conditions at 20◦C with a light/dark cycle

of 16 hours light and 8 hours dark.

In order to remove phototropism as a confounding effect on response, all plants
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Ingredient Concentration
KNO3 5 mM
KPO4 2.5 mM
MgSO4 2 mM
Ca(NO3)2 2 mM
Fe− EDTA 50 µM
H2BO3 70 nM
MnCl2 14 mM
CuSO4 0.5 mM
ZnSO4 1 mM
Na2MoO4 0.02 mM
NaCl 10 mM
CaCl 0.01 mM
Sucrose 1%
Plant agar 0.8%

Table 2.1: ATS constituents.

were imaged under near infra-red light (840 mn wavelength). All plants were

given a 1 hour acclimatisation period under NIR lighting before reorientation.

Plates were then manually reoriented so that the root tips were at the desired

angle and images were taken by a modified Canon camera with the IR filter

removed. Imaging was performed at 1 minute intervals for at least 6 hours.

Manual measurement of the root-tip angle was done on images at 10 minute

intervals using ImageJ Schneider et al. (2012).

For kinetics experiments plants were grown in either 92 mm x 16 mm round petri

dishes, or 120 mm x 17 mm square dishes. Plants were placed roughly 5 mm-10

mm apart resulting in around 20-30 plants per plate.

We exclusively used the Col-0 ecotype, with seeds obtained from Katelyn Sageman-

Furnas.

2.0.4 ROTATO experiments

In order to be consistent with the kinetics experiments all seeds were seeds were

vernalised at 5◦C in the dark for 2 days, Plants were grown on ATS for 5 days
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in controlled conditions at 20◦C with a light/dark cycle of 16 hours light and 8

hours dark. Imaging was done under near infra-red light (840 mn wavelength)

using a dinolite microscope with plants imaged every minute (see chapter 3 for

details).

On ROTATO smaller 60 mm plates were used to reduce the weight on the stage.

A single plant was used per plate as it is not possible to constrain multiple plants

simultaneously.

We exclusively used the Col-0 ecotype, with seeds obtained from Katelyn Sageman-

Furnas.
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Chapter 3

Development of a ROTATO

system

3.1 Introduction

When modelling any system it is important to properly understand which factors

determine the response of the system, under what conditions a given response

occurs, and over what timescales. In the case of root gravitropism there are

a number of factors which may affect the behaviour of the root. Perhaps the

most obvious of these is the root-tip angle. Sine-law dictates that response is

proportional to sin θ based on the idea that the response depends only upon

the magnitude of the gravitational force acting across the organ at the time of

response. However this is not the only possible mechanism which may produce

similar behaviour. It seems likely that at small enough time scales the necessity

of transmitting a signal from the columella to the elongation zone will add a

temporal component to the response. Over short times one may expect the root’s

recent history to be the determining factor of response due to the delay between

angle detection, signal transmission, and response. The ROTATO system uses a

feedback mechanism to maintain root tip angles over long time periods, while this

has previously been used to show that gravitropic responses can be consistently
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maintained(Mullen et al., 2000), this has only been tested over a limited range

of angles and timescales. Even within the limits imposed by Sine Law there are

time-dependent mechanisms which could produce such behaviour. Consider the

case of a pendulum where the instantaneous force acting on the bob produces a

sinusoidal velocity over time. It is conceivable that a similar mechanism could

produce time-dependent Sine Law like behaviour given an initial reorientation.

Traditional reorientation experiments where a root is given some initial stimulus

and allowed to respond struggle to separate the effects of changing angle and time

since reorientation, given only an initial reorientation it is also impossible to fully

control the angular history of a root throughout an experiment. In essence it is

hard to distinguish between differences in response over time and difference due

to the change in angle throughout the course of the reorientation.

The ROTATO system is based on the design used in Mullen et al., where a single

plant is placed on a computer controlled rotating stage. A plant is placed so that

the root tip is at the centre of rotation of the stage with a camera positioned

to observe the tip (see Fig 3.1). Using computer vision software the tip angle

is measured periodically (normally once per minute) and the stage is rotated

to bring the tip to the desired angle. The measured angle of the root tip and

the rotation of the stage are logged allowing the response to the measured over

the experiment. The system was developed in order to allow increased control

over root-tip angle over time by constant measurement and adjustment of the

tip angle (Mullen et al., 2000). In theory this allows for the angle to be fully

controlled over long time periods while the response is measured simultaneously.

This high level of control over root-tip angle allows the contributions of angle and

time to be determined independently by, for example, constraining a root at a

given angle and observing the rate of response while the angle remains unchanged.

While the system is designed primarily to constrain roots the adjustment step can

be individually controlled allowing either high resolution traditional reorientation

experiments, or periods of constrained and free response.

As we were unable to replicate previously published results, nor were our results

consistent with those presented elsewhere in this document, we did not continue

27



3.2 Hardware

A.
B.

Figure 3.1: A. A simple schematic of the ROTATO system. A plant is placed
on a rotating stage with a camera positioned to image the root tip. B. The
ROTATO feedback loop. The root is imaged and the tip-angle is detected, the
plant is then rotated to maintain the desired tip-angle.

working with the ROTATO system after the initial testing and experimentation

was complete. However as this is likely due to limitations of the hardware used

it is our hope that the system design may prove useful to others attempting to

create a similar system.

3.2 Hardware

3.2.1 Camera

When choosing a camera for the ROTATO system there are a number of consid-

erations. It is important to have a sufficient resolution and field of view (FOV) to

accurately measure the root-tip angle while ensuring that the tip does not move

out of the FOV during the course of the experiment. While the tip is initially

placed at the centre of rotation for the plate, ensuring there is no translation as

the stage is rotated, the placement is by necessity inexact. Under the sort of

magnifications necessary to accurately determine the tip angle, even small devi-

ations from the centre of rotation can lead to large movements of the tip in the

image. Compounding this is the growth of the root. Even an initially perfectly
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centred root-tip will move away from the centre as it grows, and once off the

centre of rotation can quickly move out of the field of view. The lighting condi-

tions to image under are also important considerations. As the ROTATO system

is designed to measure purely gravitropic response it is important to minimise

the effects of other behaviours, including phototropism. Visible light cameras are

easier to obtain, with a wide variety of readily available lighting set-ups, however

any visible light in the system may induce a phototropic response in the root.

If we assume the computer vision is perfect we will be able to draw a straight

line from the end of the root to the back of the columella. Assuming this line

joins two pixels in the image we can calculate the angular resolution from the

length of the line. Given a tip at pixel position (0, 0) the second point must exist

on the circle with radius L pixels around the point (0, 0). If we can resolve to

1 pixels length along this circle then given that in radians the length of an arc

is given by s = r · θ; the minimum resolvable angle is equal to 1
L

. Converting

into degrees gives us Equation 3.1, values for a reasonable range of columella

lengths are given in table 3.1. While this calculation does not take into account

discretisation of length along different directions (a move along the diagonal of

a pixelated circle will give a different resolution to a change along the flat) or

the effects of techniques designed to overcome the pixelisation of the image, this

does give us an indication of the scale required for accurate measurements. To

be accurate to within 1◦ we will need a resolution sufficient to give a columella

length of at least 60 pixels, without taking into account inaccuracy due to the

computer vision. This must be done while also maintaining sufficient FOV to

ensure the root does not leave the visible area of the plate over the course of an

experiment.

θresolution ≈
1

L
· 360

2 · π
=

180

π · L
(3.1)

When choosing conditions to image under there is a trade-off between the clarity

of image and the phototropic response induced in the root by the lighting. The

original ROTATO system used a back-lighting system where the plant is placed

between a light source and the camera. The advantage of this method are a high
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L (pixels) Resolution (◦)
10 5.73
20 2.86
30 1.91
40 1.43
50 1.15
60 0.95
70 0.82
80 0.72
90 0.64
100 0.57
110 0.52
120 0.48
130 0.44
140 0.41

Table 3.1: Approximate limits of angular resolution given length of columella in
pixels.

contrast between the root and the image background. As the light is directional

but perpendicular to the plane of gravitropic response there should not be any

direct interference between phototropic and gravitropic response, additionally any

phototropic response will be perpendicular to the imaging plane and so should

not produce a change in measured angle from the point of view of the camera.

An alternative to back lighting is front lighting. Like back lighting the direction

of illumination is perpendicular to the plane of response. Unlike back lighting,

front lighting places the illuminates the sample from the direction of the camera.

The advantage of this is that the physical set-up takes up significantly less spaces

and it is easier to produce an even illumination without specialist equipment.

This comes at the cost of some image contrast. However both the above methods

assume a separation between gravitropic and phototropic responses which may

not be valid. As both phototropism and gravitropism work to produce an auxin

gradient across the affected tissue (Pandey and Chaudhary, 2016) it is unlikely

that the two responses can be treated independently even when working across

different axis.

One solution to this is to image under infra-red light which has been shown not
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to induce a phototropic response (Iino and Carr, 1981). This does present some

practical problems as infra-red cameras of the type needed for the ROTATO

system are expensive, as are lighting systems. While it appears that infra-red

light does not produce phototropic responses there is some evidence to suggest

that in Oats IR lighting can effect growth angles (Johnson et al., 1996), so even

here care should be taken to minimise exposure.

We have used a Dino Lite AM7013M-FIT for the following reasons. The camera

has high enough resolution to allow accurate angle detection and while maintain-

ing sufficient field of view to maintain tracking for decent lengths of time. The

camera works in the near infra-red range (940 nm wavelength) allowing imaging

in similar conditions to our reorientation experiments and minimising the effects

of phototropism. In order to minimise the potential for phototropic effects even

from infra-red lighting, front lighting is used which does not require as high an

illumination as back lighting. Using lower levels of illumination also allows for

better control over temperature and makes the system more compact and easier

to use. While there are technically superior cameras in terms of resolution, focal

distance, or magnification, the Dino Lite is a good compromise between between

technical specifications and affordability. It is also compact enough to be easy

to use in a small environment and the technical limits are offset by the fact that

only a single root can be maintained on a plate at a time limiting the needed

resolution and FOV.

3.2.2 Stage

The ROTATO system needs to be able to accurately rotate the sample by a

given amount over a potentially unlimited number of rotations. We used a Agilis

AG-PR100 rotation stage from the Newport Corporation which is capable of

adjustments as small as 0.001◦ with no maximum rotation amount.

A diagram of the physical system is shown in Fig. 3.2
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Figure 3.2: The ROTATO hardware consists of an infra-red camera and a ro-
tation stage controlled by a computer, the rotation stage is connected via an
intermediate controller.

3.3 Software

3.3.1 System design

The core of the ROTATO system is the measure-adjust cycle. Conceptually there

are 3 main components to the software. First is the hardware control which pro-

vides an interface for the physical control of the equipment, and provides feedback

on actions carried out. It also provides simple image acquisition controls allowing

different cameras to be used if necessary. Second is the image analysis software.

This is the most complex part of the software, and provides an easy interface for

the extraction of root features from raw images. This part of the software consists

of an analyser object which is capable of operating fully independently of the rest

of the ROTATO system (see Chapter 5). Lastly is the control system. This runs

a ROTATO experiment, it provides an interface allowing experimental param-

eters to be set, manages data acquisition, analysis, and storage, and maintains

the central control loop. The design of the central control system interacts mini-

mally with the hardware and the image analysis system, and exclusively through

the public methods provided by those components. This should allow alternative

hardware or image analysis methods to be simply swapped in if desired.

The ROTATO software is designed to be easy to set up and run. The system is

controlled by a “MATATOobject” class (see section 3.3.2). The class controls all

the stages of an experiment, including managing and storing the data collected.
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To use the software first ensure the sample is correctly mounted to the stage and

the camera is in focus, with a clear view of the root tip. Once the physical set-up

is complete a “MATATOobject” class must be instantiated, then call the “setup”

method which allows the user to enter the experimental conditions. Lastly the

“stepMATATO” method must be called within a loop. To allow for parallelisation

waiting is not performed in step so a delay should be included in the loop. An

example script is given in appendix A, and an outline of the experimental process

is given in Figure 3.3.
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The software is written exclusively in MATLAB due to its ease of use, large

library of inbuilt functions, good hardware interface support, and cross platform

support. An early prototype was written using Python and OpenCV but this

was not continued due to the time needed to recreate features already available

in MATLAB. For an example script running a ROTATO system see appendix A.

3.3.2 Control system

The control system consists of a single “MATATOobject” class (MATATO being

shorthand for MATLAB ROTATO). The details of the “MATATOobject” will

not be covered in full here but an outline of the object is as follows. The object

itself has two methods which are necessary to run a ROTATO experiment and

are defined below. The first of these is the constructor. The constructor takes ex-

perimental parameters (outlined below), a camera type, and a connection object.

As the Agilis stage controller takes a serial connection it is necessary to create a

single connection which can be shared between instances rather than creating a

separate connection for each instance. The second method is the “stepMATATO”

method which completes a single step of the measure-adjust cycle and returns the

time taken by the step. As pausing in MATLAB completely blocks execution it

is not possible to include the wait in the step and maintain the option for con-

current experiments. Instead timing must be performed outside the MATATO

object.

1. MATATOobject = constructor(jitter, constrain, lateral, camType,

stageID[optional], camID[optional], connection[optional]): “jitter”

and “constrain” are boolean experimental type parameters. Jitter causes

the root to be periodically moved around a central point. Typically this

is done by +1,-1 degrees at each step. This can be used to test whether

the act of moving a root causes a difference in behaviour. If the constrain

flag is on the root will be constrained at the initial angle specified during

set-up, otherwise the root will be allowed to respond without interference.

CamType is a string containing one of various different camera and lighting

types used during testing. It determines which of a number of preset image
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Figure 3.3: An overview of the ROTATO software. The central loop performs the
analyse-adjust cycle while raw and processed data is saved to disk. Experimental
conditions and settings can be changed in the initial set-up stage. Progress is
displayed during the experiment to allow manual adjustments to image conditions
and error correction.
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analysis parameters will be used. Both “stageID” and “camID” are the ID’s

of the camera and stage to be used if more than one of each is detected.

Connection is an optional argument containing a serial port connection.

This connection will be used to interact with the stage.

2. timeTaken = stepMATATO(): This performs a single step of the measure-

adjust cycle and updates the internal state of the MATATOobject instance.

It also saves the updated state and the raw images to disk. The return value

“timeTaken” is the time taken by the step (in seconds).

The “MATATOobject” provides a “setup” method which prompts the user for

experimental conditions and allows the user to perform initial quality tests before

the experiment commences. When run the “setup” method will take the user

through the following steps:

1. A live video of the camera feed is displayed. This gives the user a chance

to ensure that the root of interest is squarely in the field of view, in focus,

and that the lighting conditions are good.

2. When prompted by the user a snapshot is taken and an annotated image

is taken. This displays the boundary, centre-line, and tip position of the

root as determined by the analysis software (see Fig. 3.16 for an example

image). The tip angle is displayed for verification. If this does not appear

correct the user can adjust the camera and restart the process.

3. If the analysis appears correct the user will be prompted to enter any notes

on the experiment. This could include anything unusual or noteworthy that

may not be stored in the standard condition fields.

4. The user is next prompted for an angle to constrain at. The root is then

rotated to the given angle, based off the initial angle detected in step 2. If

the constrain flag has been previously set to 1 the root will be constrained

at this angle, otherwise it will be allowed to reorient freely.

5. A second snapshot is taken and the angle detected is provided. This gives

the user a final chance to check that the set-up is correct and the stage is
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correctly calibrated. This also gives the user an indication of the drift in

tip position caused by imperfectly centred tip position. Folders are created

to store the images and the user is prompted to start. If the user accepts

the prompt the set-up is complete.

A measure-adjust step is at the heart of the ROTATO system. The “step-

MATATO” method is designed to encapsulate the entire measurement, analysis,

adjust, process in one package. At each step the method saves both the raw image

data and an annotated copy of the data for easy visualisation, allowing manual

verification or reanalysis at a later time. The internal state of the MATATOob-

ject is updated with the analysed data and a visualisation of the experiments

progress is provided. A “stepMATATO” call has the following stages:

1. A snapshot of the root is taken.

2. The raw image is saved to disk.

3. The image is analysed and key features are identified. This includes the

tip angle and position, as well as an annotated image identifying the roots

outline, midline, and tip position.

4. The annotated image is saved to disk.

5. The necessary rotation is calculated. Maximum and minimum bounds are

set for the rotation, both to reduce unnecessary adjustments due to noise

and to prevent erroneous readings from incorrect analysis.

6. The stage is rotated, and the actual rotation as returned by the stage is

stored.

7. The root is imaged a second time with the root at the new position.

8. The image is analysed and the error between the new angle and the expected

angle is recorded.

9. The object is updated with the data for this step.

10. An updated summary of the experiments progress is displayed.
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11. The time since the step began is recorded and returned. The step ends.

3.3.3 Computer vision

The image analysis software is designed to extract and analyse root features

from individual images of an Arabidopsis root. While designed for the ROTATO

system the analysis software is flexible enough to cope with other imaging set-ups

providing the image quality is good and the area surrounding the samples is clear

of obstructions.

Challenges

Extracting features accurately and robustly is vital for the ROTATO system.

Key to this is good image quality with a clearly defined root and a consistent

background. While care has been taken to ensure good image quality there are

still a number of challenges to accurate feature detection. In a clear image, as

shown in Figure 3.6, the root is sharply contrasting with an either constant or

nearly constant background. There are no other objects in the image, and the root

has a strong water meniscus all the way to the tip giving it a well defined outline

and a consistent shape. This is not the case in all instances, Figure 3.4 shows

an example of a low contrast root which is most likely lacking a water meniscus.

Other problems can be caused by foreign objects or features in the image, this

includes imperfections in the agar surface (bubbles, indentations, etc), dirt or grit

on the plates lid, or marks on the backing material that forms the background

of the image. If such features occur in the image the software must be able to

distinguish them from the desired root. In some cases such as small specular

features this is easily possible, in other cases such as with impressions in the agar

this is very difficult to achieve simply be looking at the properties of the feature.

Figure 3.5 shows an example of an indentation left in the gel by the root. In this

case the root was poorly aligned with the centre of the plate and was re-centred,

leaving an impression of the same size and shape as itself.
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Figure 3.4: An example of a low contrast root lacking a water meniscus. It is
possible the root has grown into the agar.
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Figure 3.5: An example of a foreign feature in the image. In this case the root
was poorly aligned with the centre of the plate and was re-centred, leaving an
impression of the same size and shape as itself. Features such as this are very
difficult to separate from actual roots based on properties such as size, shape, or
colour.
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Figure 3.6: An example ROTATO image with a dark root on light background.
Under these lighting conditions the root is transparent with only the edge clearly
defined. Specular reflection makes the edges inconsistent.

The analysis pipeline

Figure 3.6 shows an example root image. The following section will go through the

analysis process step-by-step until the initial feature detection stage is complete.

Traditionally many image processing operations assume a light object on a dark

background, examples of this include many morphological operations such as di-

lation and erosion, as well as common thresholding methods. Under our lighting

conditions we have a dark root on a light background, the first step of the pro-

cessing is to complement the image. This results in the image seen in Figure 3.7.

The next stage of the pipeline is to convert the image to greyscale. The images

are natively stored in RGB, the obvious greyscaling methods are to either take a
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Figure 3.7: A reversed image with a light root on a dark background. Many of the
features of the raw image are still present, such as transparency and inconsistent
colouration.
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Figure 3.8: The complemented image transformed to greyscale by taking the
green channel.

single channel or average across the channels. In general the green channel was

clearer than either the red or blue channels, with a reasonable amount of contrast

around the root and a consistent background (see Figure 3.8). Taking the mean

pixel intensity across channels gave reasonable results but not as good as the

green channel alone. The result of greyscaling in our example image is shown in

Figure 3.8.

While taking the green channel produces a relatively uniform background, there is

still a noticeable change in intensity where the lighting is centred, whereas ideally

we want a distinct root on a uniform background. We equalise the background

by taking the difference between each pixel intensity and the mean intensity of

its surrounding area. This keeps “small” features such as the root while removing

gradual gradients such as that produced by an uneven background, conceptually
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this is similar to a high pass filter. A clear example of this can be seen by

comparing Figure 3.8 from before the filtering with Figure 3.9 showing the same

image after filtering (and scaled for legibility). Notice how the dark patch in the

centre of the image has been removed but the root remains clear. This background

subtraction step also has the convenient effect of setting the background intensity

to approximately 0, note that due to the image subtraction our image intensities

are now in range the −255 to 255. Averaging is done by performing convolution

with a uniform circular kernel, while the size of the kernel can be set in the

software a default value of 71 pixels is used (approximately one root width of a

typical primary root).

As we are looking for a light root on a dark background, and we have effectively

set the background colour to 0, we can then discard any negative intensities (by

setting them to 0), this gives us the image shown in Figure 3.10. The process so

far has taken a 3 channel image with an unknown and uneven background and

unknown root colour and produced a single channel image with a background

value of around 0 and a lighter root.

At this point we are able to threshold the root and produce a good estimation of

the roots outline. While there are standard techniques to pick a threshold such

as Otsu’s method (Otsu, 1979), under the known conditions of the ROTATO

system a manually set threshold was more consistent than calculating a different

threshold for each image. After thresholding we typically get a root outline as

shown in Figure 3.11.

Morphological closing is used to fill in the root outline. As we know the ap-

proximate width of the root this can be done reliably and without significant

artefacts being produced near the tip. As shown in Figure 3.12 (and Figure 3.16)

good filling and root tip identification can be achieved by closing. There is a

tendency to fill in areas between root hairs which would make this method un-

suitable for applications needing accurate identification of the roots midline past

the differentiation zone, however that is not required by the ROTATO system.

A second opening process with a small kernel is applied to the image to remove

the root hairs (Figure 3.13). Failure to remove hairs can lead to problems in the
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Figure 3.9: The intensity of the greyscaled image relative to the local area. A local
averaging filter is applied to the image and the difference between the original
and the local average is taken. This example uses a circular mean filter with
a radius of 71 pixels (the default value used for the experiments performed in
section 3.5), approximately equal to 1 root-width. As the intensities are typically
low the image was been scaled for visibility.
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Figure 3.10: The positive values of the relative intensity values from Figure 3.9.
Obtained using the transform pixel(i,j) = max(0, pixel(i,j)). As the intensities are
typically low the image was been scaled for visibility.
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Figure 3.11: A threshold applied to the filtered image shown in Figure 3.10. The
roots edge has been extracted but the transparent centre has not.
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Figure 3.12: Morphological closing applied to the root outline. The outline has
been filled at the expense of accuracy in the differentiation zone. Some hairs are
present and the area between hairs has been incorrectly identified as belonging
to the root.
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Figure 3.13: Morphological opening gets rid of the hairs, but does not affect the
root tip.

next stage where the skeleton is obtained.

The root midline is identified my finding the morphological skeleton of the root.

A skeletonisation method used was taken from Lam et al (Lam et al., 1992)

as implemented in MATLAB’s “bwmorph(thin)” function. This was found to

produce better results than the default MATLAB “skel” skeletonisation method.

In some instances however the skeletonisation can produce “forked” results, with

a split midline, as can be seen in Figure3.14. In this case we cannot tell which

branch of the split is correct (or indeed if either is correct). Similarly small spurs

can be erroneously identified as tips. In order to deal with these issues small

spurs are removed from the skeleton. This is done in a way that does not effect

components of midline of a size greater than a given threshold. Figure 3.14 shows

a split skeleton section after spur removal. The final midline is shown in Fig. 3.15
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A. B.

Figure 3.14: A. Poor segmentation has caused a “split end” (shown in red)
making the tip position and angle hard to determine. Two potential tip positions
are shown in blue, and the segmentation is outlined in green. B. By removing
small spurs we can obtain a more accurate and consistent measurement of tip
position and angle. This is the same segmentation as in Figure 3.14 after spur
removal. There is now only a single candidate tip position.

Figure 3.16 shows the final result of the analysis pipeline. The estimated outline

of the root is shown in green, with the midline in red. In general the root outline

is accurate, in this case with 2 notable exceptions. First the specular reflection

off the root tip has produces 2 indentations in the extracted outline. This is not a

common problem, being specific to the particular lighting in the example image,

however problems of this sort do have the potential to produce inaccurate angle

measurements. This specific example gives an angle of 96.6◦ compared to 94.7◦

given by manual measurement, an error of 1.9◦. In general problems caused by

lighting are transient as the movement of the stage is sufficient to change the

angle of illumination, while this does mean that they can occur unexpectedly

during an experiment it also means that, to a degree, this sort of problem is

self-correcting. The second notable problem with the outline detection is around

the root hairs. Detection of hairs during the initial steps leads to overestimation

of the boundary of the root. While this can be mitigated to a degree by removing

the hair itself (the opening step of the pipeline), and at the skeletonisation stage

removing spurs from the midline, it is difficult to remove entirely. However as the

distance between the tip and the beginning of hair growth is much larger than

the length of the tip the inaccuracies in segmentation do not affect the measured
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Figure 3.15: Skeletonisation is used to find the midline of the root. Small spurs
are removed leaving only the central line. The skeleton extends to approximately
1
2

root-widths from the tip.
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Figure 3.16: An annotated root image. The green border gives the roots outline,
while the red line shows the roots midline. The background image has been
converted to greyscale for clarity.

tip angle. There is the potential for spurs in the midline caused by root hairs

to be erroneously identified as the root tip but this is mitigated by the spur

removal process. For a more in-depth analysis of the vision systems accuracy see

section 3.5.

While it would be considerably more efficient to run the above processing pipeline

only on a region of interest the movement of the root tip during the adjustment

step precludes this. While the root tip is aligned to the centre of the stage during

the initial setup, the growth of the root moves it away from the centre point as

the experiment progresses. This introduces lateral movement when the plant is

rotated that can be large relative to the scale of the image, because of this we do

not know the position of the root tip at the start of each analysis step.
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nn AA xx

Table 3.2: The Agilis motor command format. “nn” is the axis of the stage,
“AA” is a 2 character command, “xx” is an optional parameter depending on
command type. (Corporation, 2012)

3.3.4 Stage control

The stage control software consists of a single stage class, which provides a simple

interface between the stage and the control software. The details of the hardware

interface are abstracted away allowing physical stages to be swapped with minimal

changes. Two versions of the stage controller have been developed, an initial

version working with a simple stepper motor stage used for prototyping, and a

final version that uses the Agilis stage. Both provide the same interface to the

ROTATO system, but as the stepper motor code was only used for prototyping

it will not be covered in detail.

The Agilis motors themselves connect to a control box which connects to a com-

puter via serial connection. Each stage is identified by a port and channel which

are determined by which physical socket the stage is connected to. Communica-

tion is done by sending newline terminated commands in ASCII, with the form

shown in table 3.2(Corporation, 2012). The motor control code wraps around the

serial commands and provides a number of methods with the same general struc-

ture. With a few exceptions the command methods have the following structure:

1. Move to the correct channel

2. Construct a string to send to the device

3. Write the string to the serial port

4. Wait for a reply

5. Return the reply

All the commands available to the Agilis stage have been implemented but not

all are necessary for the ROTATO system, for details on the full list of com-
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mands available see the Agilis user manual (Corporation, 2012). As many of the

commands available to the Agilis motor, are specific to the motor a higher level

set of commands is used by the ROTATO software. By far the most commonly

used command is the “stepByAngle” function which converts an angle given in

degrees, into a number of steps, which is then sent to the stage. Positive val-

ues cause a rotation in one direction while negative values cause a rotation in

the other direction, which direction is which depends on the physical layout of

the stage and can be changed in software. As channel and axis information is

contained within the object this then provides a hardware independent way of

interfacing with the stage.

As the Agilis stage works in terms of steps, with a step-size not being well defined,

calibrating the stage is very important. The Agilis version of the motor control

code also includes a calibration method with the following steps:

1. The Stage is manually set to 0◦ using the markings on the outside of the

stage.

2. The controller will attempt to turn the stage clockwise by 90◦.

3. The actual rotation as given by the markings on the stage is entered, and

the clockwise step-size is calculated.

4. The controller then attempts to turn the stage counter-clockwise back to

the original position at 0◦.

5. The actual angle of the stage relative to 0 is entered and the counter-

clockwise step-size is calculated.
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3.4 Evaluation

3.4.1 Stage accuracy

Ensuring the accuracy of the stages rotation is vitally important for gathering

reliable data. While an error in rotation is unlikely to seriously compromise the

root tip angle, if the rotation done is consistently different to that recorded the

bend-rate will not be correctly measured. Initial accuracy tests were performed

in much the same way as the stage calibration. The angle of the stage as given

by the reference mark on the front is recorded, the stage is told to rotate by a set

amount, and the angle after rotation is recorded. As it is important to determine

not just relative error but absolute error this has been performed with both 30◦

and 90◦ turns. As can be seen on Fig. 3.17 the accuracy of the stage is good for

30◦ turns, however for large single reorientations drift does occur.

However, single large rotations are not representative of the behaviour when the

system is in use. Given a measurement frequency of 1 minute, and assuming a fast

bending root we would typically not expect rotations of more than around 1◦−2◦

at any one time. In practise the maximum rotation allowed when the system is in

operation is ±2◦ in order to protect against erroneous measurements. Given the

precision of manual measurements we cannot determine the accuracy of the stage

over a single rotation on this scale. However, given a cumulative error in rotation

it is possible to determine any bias in rotation over a long series of movements.

In order to test the stage accuracy in representative conditions the stage is set to

perform a random walk of 500 rotations of ±2◦, equivalent to almost 1.5 times the

maximum number of rotations performed in a typical 6 hour experiment. Under

these conditions considerable errors accumulated leaving the final rotation out by

around 25 degrees (Fig. 3.17). As the error is highly consistent is is likely that

this is the result of a miscalibration rather than a problem with the hardware

itself. Unfortunately we were not able to consistently achieve a more accurate

calibration than presented here. In order to test the drift on a repeatable set of

movements a patterned walk was used. This consists of 100 alternating pairs of

(+1◦,−1◦), and (−1◦,+1◦) rotations, with each pair returning the stage to it’s
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Figure 3.17: The error in the rotation of the motorised stage. Turns consist of
a single turn of the specified size. The patterned walk consisted of 100 pairs of
alternating +1◦,−1◦ turns. The random walk consisted of 500 random turns of
between −2◦ and +2◦, giving an average magnitude of 1◦. Drift occurs after a
large number of turns, as shown in the random walk trial. Given the consistency
of the error it is likely this is due to the limits of the calibration method. N = 5

initial position. After 100 sets of rotations no appreciable error was seen. One

would naively expect the error to be proportional to the number of steps taken

but this does not appear to be the case, the reason for this is unclear.

3.4.2 Computer vision accuracy

Correct identification and measurement of the root is key to the accurate con-

trol of root tip angle. Given small errors in mechanical adjustment, as seen in

section 3.4.1 the accuracy at which the root is maintained at the desired angle

is approximately equal to the accuracy at which the angle is measured. In order

to quantify the accuracy of the vision system roots were placed in the ROTATO

system and time-lapse images were taken by the camera used for the ROTATO.

These images can then be both hand measured and passed into the ROTATO

vision system and the results compared. As can be seen in Figure 3.19 the system

performs well. In two out of the three cases the system performed well with the
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measured values equally distributed above and below the manual measurements

and a mean error of less than 1◦ (Figure 3.19, table 3.3). The third root is more

interesting, where the computer vision consistently overestimated the angle by

up to 15◦. The cause of this is a bubble forming at the edge of the root approxi-

mately 4 hours into the bend (see Figs. 3.18 and 3.20). As problems such as this

are difficult to foresee or to compensate for, but easy to spot visually, in instances

such as this data was discarded if appropriate.

When comparing manual and automated measurements which typically differ by

less than 2◦ (table 3.3) it is often not possible to determine which measurement

is “correct”. As the resolution of the angle detection by the Arabidopsis root tip

is unlikely to be capable of distinguishing such small differences, at this scale the

difference between manual and automated results is not a useful form of analysis.

However in order to minimise disturbance to the root and erroneous adjustments

to the noise in the angle detection is is useful to determine the degree of noise

present in the detection. This has been done by approximating the true root

path using a smoothing spline and calculating the residuals from this. Using this

method for all the roots tested we consistently see an average image by image

error of approximately 1◦, with 95% of measurements falling within ≈ 2◦ of the

true value as given by the fitted spline (see Figure 3.21).

Given the average error on a successful experiment is of the order of 1◦ we should

be able maintain root tip angles to within a few degrees of the desired angle.

The vision system has shown itself to be highly consistent with a noise level of

approximately 1◦, and 95% of measurements have less than 2◦ of noise. Given this

we can largely eliminate noise in response by setting the minimum adjustment

size to 2◦, the point at which we can be 95% confident that a reading represents

a real change in root tip angle.

As can be seen in figures 3.19 and 3.20, it can on occasion be difficult to accurately

segment the root. In this instance a bubble forming near the root tip has been

identified as part of the root, but other features such as impressions in the gel, or

roots burrowing into the gel can present similar problems (figures 3.4 3.5). While

it is often possible to identify cases such as these before an experiment begins, in
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Mean error Std error Mean noise Std noise
root 1 0.8482 4.089 -2.961e-17 0.8736
root 2 5.999 4.131 1.974e-16 1.143
root 3 0.608 3.938 8.142e-17 0.9679

all roots 2.485 4.753 8.306e-17 1

Table 3.3: Distribution of error from the manual and noise in the detection, as
shown in Figs. 3.19 and 3.21. Errors are calculated from the difference between
matching manual and automated measurements, noise is calculated from the
residuals of a smoothing spline applied to the automated results. Due to the use
of a smoothing spline we would expect the mean noise to equal 0.

some cases problems only before apparent during the experiment. In instances

where the computer vision is unable to correctly identify the root tip it is best to

discard such experiments. In properly monitored experiments this is uncommon,

occurring in less than 10% of experiments, although it is necessary to ensure the

root does not move out of the field of view.

3.5 Results

3.5.1 Experimental methods

When running constrained ROTATO experiments, a 5 day old seedling was ini-

tially placed in the ROTATO equipment to acclimatise for 1 hour before reorien-

tation. After acclimatisation the plant was reoriented such that the root tip was

at the desired angle, the angle was then adjusted by a maximum of ±2 degrees

at 1 minute intervals to maintain the tip angle. This was continued for up to six

hours, or until the system failed (typically due to root growth moving the root

tip out of the field of view of the camera). Roots were imaged in dark conditions,

under NIR light with a wavelength of 940 nm. Root tip angle, desired angle,

adjustment made, time of measurement, and tip position were measured each

time an adjustment was made. For the full experimental details see section 2.

For a full table of experimental settings see appendix B
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A. B.

C. D.

Figure 3.18: A. Example segmentation and angle visualisation of a root tip. The
tip position and angle is overlaid in black. B. Example segmentation and angle
visualisation of a root tip. The tip position and angle is overlaid in black. C.
Example segmentation and angle visualisation of a root tip. The tip position and
angle is overlaid in black. D. An example of a poorly analysed root tip angle.
What appears to be a bubble in the agar is affecting the segmentation and pulling
the centre line off centre.
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A. B.

Figure 3.19: A. Example traces for reorientated roots, manual measurements are
taken every 10 minutes automated measurements every minute. The traces shown
here correspond to the images given in Figs. 3.18 B. Estimated error distribution
for the root traces given in A. The overall mean error is 2.5◦±4.75◦, distributions
were calculated using a kernel-smoothing estimator with a Gaussian kernel.

3.5.2 Experimental results

In order to compare bend rates over a range of angles, constraint (where the root

tip is held at a constant angle) experiments were performed at 0◦, 20◦, 30◦, 60◦,

and 90◦. As expected we found continuous bending at all angles throughout the

duration of the experiments, as shown in Figure 3.22. Beyond this the data is

highly variable. In order to determine the average bend rate we perform a least-

squares fit for linear fit through the cumulative bend over time, constrained to

pass through (0, 0). The gradient of this line is then gives us the mean bend rate

of the data. This model was chosen at it represents the expected behaviour if the

response is fully angle-dependent with no change in behaviour over time.

Bend rates have been calculated from the mean response of the populations con-

strained at the angles given above. Unlike previous work (Mullen et al., 2000)

we do not see a clear trend of increasing bend rates at higher angles (Figure 3.22.

Although we do see a strong correlation between angle and bend rate (c ≈ 0.88),

we see significantly faster bending at both 30◦ and 60◦ than would be predicted

by the Sine Law or a simple linear model. The fact that we see the greatest bend

rates at 60◦ is cause for concern. Previous constraint work has found a maxi-
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Figure 3.20: A bubble has been erroneously identified as part of the root throwing
off the tip angle. The tip angle is given as 77.9◦ compared to 61◦ when measured
manually, an error of over 16◦. The black circle marks the detected tip position
while the line shows the angle.
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A. B.

Figure 3.21: A. The residuals given when comparing the measured angles to a
smoothed path. This demonstrates the distribution of the noise around the “true”
root tip angle as measured by the system. The distributions were calculated using
a kernel-smoothing estimator with a Gaussian kernel. B. The cumulative error
distribution of the residuals when comparing the measured angles to a smoothed
path for all 3 roots. 50% of measurements are within ≈ 0.5◦ of the smooth path
and 95% are within ≈ 2◦.

mum bending angle of around 105◦, while in reorientation kinetics experiments

the maximum response is reported to be in the 120◦ to 130◦ range.

As we are fitting to the mean of each population’s cumulative bend over time

we are not easily able to determine the range of bend rates observed within a

population. This could be done by fitting to individual roots within each popu-

lation and determining the spread from the individual bend-rates, however when

looking at individuals it is apparent that at the individual level bending is not

constant. Figure 3.22 shows 3 example traces from 90◦ constraint experiments.

Of these three only a single root (root 2) displays a constant rate of bending of

a long period of time, from around 90 minutes into the experiment until the root

is lost after 5 and a half hours. Given this inconsistency we cannot meaning-

fully describe individual by simply taking the mean bend rate, although this is

appropriate at the population level.
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A. B.

C.

Figure 3.22: A. Cumulative bending over time for 0◦, 20◦, 30◦, 60◦, and 90◦

constrained roots (N ≥ 11). Large changes in angle are due to roots getting lost
and being removed from the dataset. B. Example traces for 3 individual roots
constrained at 90◦ for 6 hours. Only one of three shown displays a consistent
rate of bending. C. Mean bend rate for 0◦, 20◦, 30◦, 60◦, and 90◦ constrained
roots. While there is a strong correlation c ≈ 0.88 between angle and bend-rate
the results we see the maximum response at 60◦ which is not consistent with the
free response data presented in chapter 4. (N ≥ 11)
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3.6 Discussion

A working ROTATO system has great potential usefulness due to the ability

to control gravitropic stimulation over long periods of time. Previous ROTATO

systems have demonstrated persistent gravitropic responses for long time periods,

following a modified Sine Law. While we were able to observe persistent responses

at the population level, individual results were highly variable. Additionally we

could not confirm any angle-dependent model of gravitropic response beyond the

fact that higher angles tend to produce a greater response. Surprisingly we saw

the greatest response at 60◦ which does not agree with previous measurements

which place the maximum response at 105◦ in constraint experiments and around

130◦ in free response. Due to the disagreement between these results and previous

studies, as well as the reorientation kinetics discussed elsewhere in this document,

it is likely that the system was failing to either maintain the desired angles, or that

other sources of error were present in the experiments we could not account for.

Although it should be mentioned that in general the bend rates are comparable

with bend rates of up to 0.35◦/minute compared to approximately 0.5◦/minute

in free response over the same range of angles.

There are 3 principal possibilities which could account for the inconsistency be-

tween the results observed on ROTATO and in reorientation experiments. Firstly

there may have been a failure in controlled conditions. While every effort was

made to ensure consistent growth and experimental conditions it is possible that

this was not sufficient. Failure in conditions is most likely during the course of

a ROTATO experiment, as while the system was placed in a controlled temper-

ature environment we were not able to account for any heating of the sample

due to waste heat from the ROTATO equipment or absorption of the IR light

used for imaging. The second possibility is a failure to accurately identify the

root tip angle. If the vision system incorrectly measured the root tip angle for

a prolonged period of time it is possible that the root was actually being main-

tained at a different angle to that reported. This seems unlikely however for a

number of reasons. Firstly the root is checked periodically during the course of

each experiment specifically in order to ensure good tracking and to adjust the
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camera if necessary. In cases where a root was not able to be tracked accurately

the experiment was discarded. Secondly the ROTATO system produces anno-

tated images for every measurement taken allowing for manual verification for

the tip measurement. Thirdly it is unlikely that difficulties tracking the root tip

angle would occur for long periods of time. While it is not uncommon for single

frames to report inaccurate results, in order for the results observed inaccurate

readings would need to be taken consistently and that if highly likely to have

been observed. The third possibility is perhaps the most likely, which is that the

amount bent does not match that recorded. The mechanical stage used does not

include a feedback system to measure the actual angle rotated. While under test

conditions the stage shows good accuracy under realistic rotations and conditions,

it is possible that this is not always the case. Poor accuracy in the stage would

manifest as the root being correctly maintained at the desired angle (within some

limits imposed by the accuracy of the stage and the angle detection), but inac-

curate bend rates would be recorded. A related problem is mechanical slippage

either of the stage or of the plant itself. Again this would appear as correctly

maintained roots however the recorded bend rate would be incorrect.

Improvements to the system could certainly be made. The addition of back light-

ing could significantly improve the initial stage of root segmentation, allowing

for more accurate and reliable angle detection. This is likely to improve the

throughput of the system as with the current system experiments are manually

monitored and discarded should the angle detection fail. As the ROTATO is

only able to process a single root at a time, and experiments can be long, loss of

the root tip can significantly impact the number of successful experiments. The

use of a rotation stage capable of verifying its position would rule out the most

likely source of error in the current system. This would reduce the reliance on

the initial stage calibration and provide confirmation that the reported reorien-

tation is correct. While confirmation of correctness is in theory possible based on

the angle detection alone (by comparing the angle after reorientation with that

expected), the error in detection is of the same order of magnitude as the desired

adjustments. In this case we cannot detect small errors in reorientation as stage

inaccuracy is likely to be smaller than the error in angle detection.

65



3.6 Discussion

While the ROTATO system has limitations it may still be useful for maintaining

a constant angle for a long period of time. Even assuming we are not able to

accurately report the bend rate of a root within the system we are still able to

maintain root tip angles over long periods of time, and to verify the correctness of

this maintenance. Indeed the software developed here has now been ported to the

original ROTATO hardware as presented in Mullen et al. where it is performing

well.
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Chapter 4

Gravitropic response is noisy and

angle-dependent.

4.1 Introduction

The most widely used behavioural model of gravitropic response is the Sine Law

(see section 1.3.1). Although the Sine Law has been validated experimentally,

it is not without its flaws. The mechanistic basis for the Sine Law is that the

response is proportional to the force of gravity acting across the organ, this is

a reasonable assumption if the gravity sensing mechanism in the root-tip acts a

force sensor. The magnitude of the perceived deviation from the vertical could

then easily be proportional to the force acting across the organ, which could easily

lead to a Sine Law like response. However there is recent evidence that the root

tip acts not as a force sensor, but as an angle sensor. In this case the theoretical

case for a Sine Law becomes significantly less clear. This is compounded by the

large body of evidence suggesting that the angle of maximum response lies in the

region of 120◦-140◦ (Audus, 1964; Galland, 2002; Larsen, 1969). This suggests

that, in essence, gravitropic response is not linked directly to the force across the

root, which is further supported by the fact that in shoots, gravitropic response is

constant over a range of effective gravities (Chauvet et al., 2016); the presence of
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a non-horizontal angle of maximum response also detracts from Sine Laws power

as a descriptive model. Taken together one could argue that Sine Law as a model

has been shown to lack a theoretical basis as well as having limited powers of

prediction.

As discussed in section 1.3.1, the role of time-dependence in gravitropic response

has not been thoroughly investigated. A tipping point mechanism has been pro-

posed in which the statocytes act as a binary tilt switch (Band et al., 2012). In

this model an auxin asymmetry of constant magnitude is present above 48◦ from

vertical, with no auxin asymmetry present below this angle. Presumably then

any difference in response would not be due to the magnitude of the response to

the current gravitational stimulus, but due to other effects such as time since re-

orientation. Certainly for a reoriented root to achieve vertical growth in a system

which maintains no response below approximately 48◦ requires at least some level

of hysteresis. An exclusively time-dependent response is problematic for non-zero

GSA maintenance over long time periods, while it is not impossible to imagine a

time varying process where the gravitropic and anti-gravitropic responses remain

balanced; such a system would be hard pressed to display to robustness seen by

lateral roots.

The purpose of this chapter is twofold. Firstly it is to determine the magnitude

of any time-dependent effects, or hysteresis, on gravitropic response. Second is

to determine more generally the accuracy and limits of Sine Law as a model, and

evaluate alternative relationships between root-tip angle and gravitropic response.

To do this a large (N = 368) set of Arabidopsis reorientation kinetics from a range

of initial reorientations has been collected and analysed to determine the extent

of time and angle dependent effects.
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4.2 Results

4.2.1 Definitions

To avoid confusion following terminology and definitions will be used:

• Angle. Angle refers to the orientation of the root-tip (specifically the

columella) with respect to gravity. Angle is defined as the difference in

angle between a root-tip and the gravity vector, this is measured in degrees

with an angle of 0◦ representing a root pointing vertically downwards, and

an angle of 180◦ representing a root pointing vertically upwards. Angle is

represented by the character θ.

• Bend rate. Bend rate is the rate of change of angle with respect to time.

This is a vector quantity with positive values representing upwards bending

and negative values representing downwards bending. The unit is degrees
minute

and it is written as δθ
δt

.

• Proportional bend rate. Proportional bend rate is the proportion of

the root-tip angle bent per minute. Conceptually this is similar to the

“decay rate” found in many physical and chemical processes. The unit is

minutes−1, and it is represented by the character λ.

• Curvature. Curvature is the change in angle with respect to length. This

is a vector quantity with positive values representing upwards bending in the

tip-wards direction and negative values representing downwards bending in

the tip-wards direction. The unit of curvature is degrees
cm

and it is written as
δθ
δl

.

A large set of 368 Arabidopsis reorientation kinetics were measured. Plants were

imaged under infra-red light at 1 minute intervals with manual measurements

taken at 10 minute intervals for 6 hours (see section 2). Experimental work and

measurements were performed jointly with Katelyn Sageman-Furnas (Sageman-

Furnas, 2016). In order to ensure that a wide range of angle/time points were

covered, initial reorientations were done at 30◦, 60◦, 90◦, 120◦, and 150◦. The
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Reorientation angle Initial N N after re-binning
30 47 52
60 61 81
90 91 87
120 84 71
150 87 65
170 0 14

Table 4.1: N values of the reorientation kinetics data-set before and after re-
binning.

number of roots at each reorientation angle can be seen in table 4.1 and Figure 4.1.

As shown in Figure 4.1 these is significant overlap between the initial angles of

roots with different initial reorientations. The pre-reorientation angles follow

a widely dispersed distribution with approximately 50% of roots more than 10◦

from 0, and 20% more than 20◦ from 0 (see Fig. 4.2). With the difference between

consecutive reorientation angles being 15◦ approximately 0.33, or one-third, of

roots start closer to a different reorientation angle than intended.

In order to compare behaviour in a truly angle-dependent way, we need to ensure

that each root is correctly categorised by starting angle. Non-gravitropic be-

haviours such as waving and skew can cause significant variation in angle before

reorientation (Fig. 4.2). The obvious method is to simply take roots which start

more than some distance from the target angle and relabel them as the appro-

priate category. However this approach is flawed, as when comparing means and

variances it is important not to conflate roots on different physical plates. While

all care was taken to ensure that the experimental conditions were consistent be-

tween experiments some variation is inevitable. This does not pose a significant

problem to determining the mean behaviour as one would expect any variations

in behaviour to balance out, however when looking at higher moments of root

populations (such as the variance) we cannot rely on differences between exper-

iments to cancel out. If we were to combine similar distributions with slightly

different means we would expect the variance of the resultant distribution to in-

crease. Because of this we cannot simply group roots together but must treat each

plate independently, when re-categorising roots with initial angles outside the ac-
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ceptable range we would have to “split” each plate into components based upon

the root starting angle. As in each plate the starting angles are not uniformly

distributed by splitting them in this way we will end up a much larger range of

roots per plate, a hypothetical plate of 20 roots could be split into a group of 19,

and a group of 1 given an unfortunate distribution of initial angles. This presents

difficulties when comparing results of such disparate sizes, and makes the results

highly sensitive to outliers.

An alternative to simply splitting the roots is to set some minimum “sub-plate

size”, where if enough roots from a single plate would be re-categorised they are,

but if the number falling into the same category is below some minimum the

roots are instead discarded. This ensures that each root in the resultant data-

set is categorised correctly and that each plate contains a reasonable number of

roots but at the expense of throwing away data. With this method there is some

necessary trade-off between similarity of plate size (and thus comparability), and

number of roots discarded.

A third alternative which seeks to equalise plate size and correctly categorise

initial root angle is to sort the starting angles of each root on a plate. The roots

are then grouped with their neighbours into sub-groups of a given size. A plate

of 30 plants with a wide range of starting angles could become 6 sets of 5 roots,

each with a much smaller initial angle distribution. These sub-groups can then be

categorised based on the average starting angle of the group. Using this method

most roots will be correctly categorised, and each group of roots will be at a

roughly equal size, allowing meaningful comparison between groups. The main

advantage of this method is that no data is discarded.

While we have used the latter method of categorising roots there is no clear

answer to how best to to balance the competing demands of 1. Accurately clas-

sifying starting angles, 2. Keeping plate sizes roughly equal allowing for accurate

comparisons, and 3. Discarding the minimum data possible. The results of this

re-categorising can be seen in table 4.1 and Figure 4.3
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Figure 4.1: The distribution of initial root angles based on the reorientation
angle. The large overlaps between reorientation populations make categorising
by reorientation angle problematic.
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Figure 4.2: The pre-reorientation distribution of initial root angles, variation in
response can be caused by processes such as waving and skewing.
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Figure 4.3: The distribution of initial root angles after re-categorising. While
there is still some overlap between populations it is minimal, while experimental
batch size has been normalised (not shown) and the total number of roots has
been conserved.
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4.2.2 Graviresponse is noisy

It is initially difficult to determine the nature of gravitropic behaviour from the

reorientation kinetics alone. Figure 4.4 shows the raw angle over time traces for

roots reoriented to 90◦. As can be seen in the figure the response is highly variable,

with the fastest roots reaching the vertical in under 4 hours while the slowest are

still at angles above 60◦ when the experiment ends at 6 hours after reorientation.

This gives the fastest roots an average angular velocity approximately 3 times

higher than the slowest. Similarly when looking at the bend rate as a function

of angle the results are equally noisy (see Figure 4.4) with a significant fraction

(approximately 30%) of measurements indicating upwards bending. When fitting

to the raw bend rate data the Sine Law is able to account of just under 8% of the

observed variation in response (least-squares fit to y = c ·sin(θ), r2 = 0.078). It is

tempting to dismiss this range of bend rates as individual variation, with individ-

ual roots following relatively smooth paths through the cloud of measurements,

however this is not the case. Figure 4.4 shows the paths of 3 individuals through

angle/bend space, not only are these paths non-smooth, but there appears to be

greater within root variation than between root variation. While individual mea-

surement error may account for some of this variation in individually measured

bend rates, it cannot explain the large range of responses seen in angle over time.

Given this variation in response it is not possible to distinguish between different

models of gravitropic response, such as the Sine Law, or the root-tan model

presented in section 1.3.1 (see Figure 4.4). One solution to the problem of fitting

to noisy data is angle binning, Figure 4.4 shows the reorientation data from

Figure 4.4 averaged over 1◦,2◦,5◦, and 10◦ bins. It is clear that even with small

bin sizes the noise can be reduced to reasonable levels. However while this allows

for more accurate analysis we are merely hiding the variability, any model which

seeks to capture root behaviour must still take it into account.
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A. B.

C. D.

Figure 4.4: A. Raw angle against time traces for 90◦ reoriented roots, measured
at 10 minute intervals. B. Example angle/bend-rate traces for 90◦ reoriented
roots. C. It is impossible to distinguish between possible models based of the raw
reorientation data. 3 models are presented here: Sine Law, the root-tan model,
and a simple linear fit. D. By using spatial binning it is possible to dramatically
reduce the level of noise. 4 bin sizes are shown, 1◦,2◦,5◦, and 10◦. Over this range
of bin sizes the underlying structure does not change dramatically. 87 roots have
been used for this analysis but where binned the number of points per bin varies.

76



4.2 Results

4.2.3 Graviresponse is not time-dependent

Establishing what determines root behaviour at any point is crucial to under-

standing and accurately modelling gravitropic response. The degree to which

the behaviour is angle and time-dependent, as well as the presence of hysteresis

(where current behaviour depends upon previous stimuli) not only has implica-

tions for model development but also for our understanding of non-vertical GSA

maintenance. Here we refer to responses which vary over a longer time period

as being time dependent, in this context this means a response which occurs on

the order of 10 minutes or more. An example would be if roots were unable to

continue bending when constrained at a given period for a significant amount of

time. Hysteresis is a similar concept but refers to the effect of a roots history

over a given time scale. An example of hysteresis in response would be if a root

at 90◦ behaved differently depending on whether it had initially been reoriented

to 90◦ or was in the process of bending down from 120◦. To determine the level

of time-dependence we can compare the behaviour of roots at the same angle at

different times after reorientation, and to determine hysteresis we can compare

the behaviour of roots at the same angle but after different initial reorientations.

Figure 4.5 shows the mean bend rate as a function of angle for the 90◦ reorienta-

tion kinetics during 6 different time periods since reorientation. It is clear from

this figure that over the time period of the experiment there is no significant dif-

ference in behaviour between roots at the same angle (p ≈ 0.22, 2-way ANOVA

with angle and time since reorientation as independent variables). While only

data from 90◦ reorientations has been presented here in order to control for the

effects of hysteresis, this does limit the amount of data at certain angles and time

combinations. For example, there are few roots around 90◦ after 5 hours. If we

expand the data set to include all the reorientation data from the 30◦-150◦ range

we can see that even over a large range of reorientation angles there does not

appear to be any difference in behaviour due to time since reorientation (Fig-

ure 4.5, p ≈ 0.4, 2-way ANOVA with current angle and initial reorientation angle

as independent variables). If the behaviour of a stimulated root displays hystere-

sis we would expect to observe a change in behaviour dependent on the roots

recent history. Unfortunately our control over a root’s path once reorientation
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has begun is limited, making it hard to precisely control the history of a root for

any given measurement. We can get some control over the history of a root by

varying the reorientation angle. By comparing the behaviour of roots reoriented

to a given angle with those passing through that angle from a higher reorientation

we can determine whether having been at a higher angle some time previously

influences current behaviour. Figure 4.5(c) shows the bend rate as a function of

angle grouped by the initial reorientation angle. It is clear from this that the

initial reorientation angle does not affect the behaviour of a root at a given an-

gle. Taken together this shows that over the given time scales time-dependent

effects and hysteresis do not play a significant role in gravitropic behaviour. From

a modelling perspective we can assume that a root’s current angle is likely the

sole determiner of its behaviour. Mechanistically, this suggests that the processes

involved act on a time scale significantly faster or slower than that measured.

Slower time scales are unlikely to have a noticeable effect on any observed be-

haviour in primary roots as the time scale would have to be significantly longer

than the course of a gravitropic response, however we cannot rule out possible

effects of long term variations on GSA maintenance in non-vertical organs. It

seems clear that over small enough intervals time-dependent effects will be im-

portant simply due to the physical limits of the system, we can however rule out

the long time impact of these limits.

4.2.4 Graviresponse is angle-dependent

While we can see from our analysis of bend rates that gravitropic behaviour is

angle-dependent (p ≤ 0.01, 2 way ANOVA with current angle and time since

reorientation as independent variables) the relationship between angle and grav-

itropic response is not clear. While we could assume a Sine Law relationship, a

visual inspection of the data shows it contains many of the same features that

have previously caused problems for the Sine Law, such as a greater than 90◦

maximum bend rate (see section 1.3.1). In order to accurately predict root be-

haviour, as well as shed light on the mechanisms behind such behaviour, we need

to determine the nature of the angle/bend-rate relationship. We have chosen to
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A. B.

C.

Figure 4.5: A. Binned bend rate as a function of angle for 90◦ reoriented roots.
There is no difference in behaviour due to time since reorientation (p ≈ 0.2,
2-way ANOVA, with current angle and time since reorientation as independent
variables). N = 87, error-bars show standard deviation as the number of measure-
ments per bin varies. B. Binned bend rate as a function of angle for all reoriented
roots (30◦ - 150◦ reorientations). There is no difference in behaviour due to time
since reorientation (p ≈ 0.4, 2-way ANOVA, with current angle and time since
reorientation as independent variables). N = 368, error-bars show standard de-
viation as the number of measurements per bin varies. C. Binned bend rate as a
function of angle grouped by initial reorientation angle. There appears to be no
significant difference between behaviours at the same angle based on the starting
angle of the root. N = 368, error-bars show standard deviation as the number of
measurements per bin varies.
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Model r2 p(Gaussian)
Sine Law 0.885 0.05
root-tan 0.883 0.23
linear fit 0.862 0.15

Table 4.2: Goodness of fit statistics for all binned reorientation data below 90◦,
Based off 11341 measurements from approximately 305 roots.

compare 3 models of angle-dependent behaviour. The first is the Sine Law which

has historically been used to describe this behaviour. The second is a root-tan

model based on a geometric relationship between statolith position and bend rate.

Lastly is a simple linear fit, while this has no mechanistic basis at the current

time it is the simplest model of root behaviour which may be able to describe

the increased bend rates seen above 90◦. When determining the degree to which

a model agrees with the data we are taking two factors into account. Firstly,

the variation between the model and the data should be small compared to the

variation in the data, this is captured by the r2 statistic. Secondly, if the model

is correct we could reasonably assume that errors due to random noise would be

normally distributed and show no positive or negative bias. To test this we are

using a second measure of goodness of fit, which is the probability the residuals

come from a Gaussian distribution with a mean of 0. Even after reducing the

variation in response by angle binning it is difficult to distinguish between the

3 models. Figure 4.6 shows the best fit (LSQ) of the 3 models to the 90◦ reori-

entation data. The difference between the three models is small for the ≤ 90◦

range of angles. This is mirrored in the r2 values which show that all the models

explain a large but similar amount of the observed response, although at these

small angles the error in the root tan model can most easily be explained as noise

(table 4.2).

The difference between the Sine Law and the root tan model remains small even

at high angles while a linear fit continues to describe the response at angles above

90◦. At angles of up to 130◦ (the approximate angle of maximum bending) the

linear fit provides a significantly better fit to the data than the other two models

(Figure 4.6). Although none of the models residuals can be confidently put down

to noise, a linear fit continues the capture response well, with an r2 of approxi-
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Model r2 p(Gaussian)
Sine Law 0.567 0.004
root-tan 0.572 0.0002
linear fit 0.795 0.03

Table 4.3: Goodness of fit statistics
for all binned reorientation data be-
low 130◦. Based off 12720 measure-
ments from 345 roots.

Model r2 p(Gaussian)
Sine Law 0.46 0.049
root-tan 0.47 0.0016
linear fit -0.14 0

Table 4.4: Goodness of fit statistics
for all binned reorientation data at
all angles. Based off 13194 measure-
ments from 368 roots.

mately 0.8 (table 4.3). This may be due to hidden dependencies between points.

While the angle/bend rate values are treated as independent, as the responses

are calculated from the same time series data; a single angle measurement in the

time series will contribute to the bend rates in multiple angle bins. This has

the potential to interfere with statistical tests that assume independence between

samples.

Due to the reduction in bend rate as the roots reach the vertical at 180◦ when the

entire data set is included the root-tan model can best describe the data however

the difference between the Sine Law and the root tan is negligible (Figure 4.6,

table 4.4). Overall it is hard to determine a single best description of the data.

While a linear fit appears to work best for angles below approximately 130◦, the

commonly found angle of maximum bending, it is incapable of dealing with the

decrease in bend rate above this angle.

Given a model of bend rate we can normalise our observed values by the model,

this should allow us an alternative visualisation which makes it easier to determine

the deviations from the models. This is equivalent to calculating the value of the

“c” proportionality coefficient required to make each point fit the model (see

section 1.3.1, Eq. 1.3), this should be the same if a single model is to fit the

full range of behaviour and so we should see a constant value. Note this is only

possible for the Sine Law and the linear fit models, it cannot be done for the root

tan model as the model has an extra degree of freedom which we cannot separate

out the response. Fig. 4.7 shows the values obtained from this normalisation. In

both cases similar features of the data are apparent. Neither model is able to fit

the higher angles, although the linear model fares significantly better. The point
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A. B.

C.

Figure 4.6: A. Comparison of angle-dependent models for all reorientation data
at angles below 90◦. Based off 11341 measurements from approximately 305
roots binned into 5◦ bins. Error-bars show standard deviation as the number of
measurements per bin varies.. B. Comparison of angle-dependent models for all
reorientation data at angles below 130◦. Based off 12720 measurements from ap-
proximately 345 roots binned into 5◦ bins. Error-bars show standard deviation as
the number of measurements per bin varies.. C. Comparison of angle-dependent
models for all reorientation data. Based off 13194 measurements from 368 roots
binned into 5◦ bins. Error-bars show standard deviation as the number of mea-
surements per bin varies..
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at which the failure becomes apparent is higher (≈ 130◦ compared to ≈ 90◦ for the

Sine Law) and the deviation is more consistent, showing a clear linear decrease

in the fit parameter. The Sine Law deviations however are much more numerous

and less self consistent. The second feature of note is the deviation around 25◦.

In both normalisations there is a sharp increase in response around 25◦, although

this is transitory it will likely have knock on effects when fitting to response as

a function of time. Lastly and perhaps more subtly is the dip in response rate

around 90◦. While in absolute terms this is small, it is significant and like the 25◦

deviation is likely to have knock on effects when fitting to behaviour over time.

This normalisation allows us to check for auto-correlations within the data, giving

us a new method for determining time-dependent effects over a range of time

scales simultaneously. Figure 4.7 shows the mean auto-correlation values for the

individual roots over the time period of the experiment. For each individual we

have calculated the time-series ti = δθ
sin(θ)

, and ti = δθ
θ

. By calculating the auto-

correlation between terms in this sequence time-dependent or periodic effects

should become apparent. As our series is taken from the difference between

samples along a time series we would expect unbiased measurement errors to

produce a negative auto-correlation over the time scale of a single sample, as

can be seen here. Beyond this however there is a negligible relationship between

normalised bend rates at time periods above 10 minutes, indicating that at most

periodic or time-dependent effects appear to account for less than 1% of the

observed response.

Overall, the evaluation of the 3 models of gravitropism presented here is a mixed

bag. No model is able to adequately explain the response over the full range of

angles tested. At low angles, the 3 models are at a practical level indistinguish-

able. The only model able to describe the response above the horizontal is a linear

relationship between angle and bend rate, but this too fails above approximately

130◦. Traditionally, modified Sine Laws have been presented to better describe

observed behaviour, often adding an extra parameter to shift the point of maxi-

mum bending to this point, however this technique presents methodological flaws

covered later (see section 4.3). Considering the physical system involved it does

not seem surprising that as a root-tip approaches 180◦ the ability to produce a
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A. B.

C.

Figure 4.7: A. Sine-law coefficients required to fit the data over the full range of
angles measured. A best fit model is provided for comparison. Some outliers have
been omitted for clarity. Based off 13194 measurements from 368 roots binned
into 2◦ bins. Shaded regions show standard error. B. Proportional bend rate
(equivalent to a linear coefficient) required to fit the data over the full range of
angles measured. A best fit model is provided for comparison. Based off 13194
measurements from 368 roots binned into 2◦ bins. Shaded regions show standard
error. C. Mean auto-correlations for bend rates normalised according to the sin-
law or a linear fit. Both models show some degree of negative auto-correlation
over the 10 minute time period. It is not clear whether this is a feature of the
response or is a result of measurement error. There is no meaningful correlation
over periods above 10 minutes. Based off 13194 measurements from 368 roots.
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gravitropic response is reduced. Determining a downward face of the cell is likely

to be increasingly difficult and inaccurate as both the cells lateral faces become

parallel to the direction of gravity (at 180◦ it is no longer meaningful to consider

either a “downward” face). It is certainly plausible that instead of a continu-

ous decrease in the magnitude of gravitropic perception, 130◦ marks the point at

point at which the root-tip has difficulty determining the lower side wall. Below

this point a linear relationship between angle and response performs significantly

better than the alternatives. Looking at the proportional bend-rates (Figure 4.7

there appears the be a very consistent deviation from the linear model, unlike

that seen by the Sine Law. This may indicative of a reasonable model choice

albeit with incorrect parameters, in this case the higher angle response may be

linearly decreasing at this point. Despite its limitations I would argue that a lin-

ear relationship between angle and bend-rate is the best description of the data

presented here however, like all the models presented, it is clear it is only able to

describe a section of the angles over which response occurs.

4.2.5 Maximum bending occurs at 130◦

Given the success of a linear model in describing the angle-response data below

the point of maximum bending it is useful to determine, as well as possible, an

exact angle of deviation from the model. This will allow us to more accurately

determine the limits of the model as well as its accuracy within the applicable

range of angles. Additionally having an accurate angle of deviation may provide

insights into the mechanism behind the response. Visually the response above

130◦ appears to decrease at a constant rate becoming close to 0 at 180◦ This

suggests a possible model able to describe bending across the full range of angles

and, more importantly here, to determine the point of maximum response with a

high degree of accuracy. We can do this by creating a piece-wise linear function

with a single knot. Effectively we can use 2 linear fits with the stipulation that

below the intersection of the fits we use one fit, and above it we use the other.

We can then perform a LSQ fit using any of the standard methods to determine

the best fit parameters and thus the point of maximum bending. In order to
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simplify the fitting process and reduce the parameter space the function has been

reformatted to Equation 4.1, where g1 is the gradient of the low angle section,

θmax is the point of maximum bending, and g2 is the gradient of the high angle

section.

δθ

δt
=

g1 · θ θ ≤ θmax

g1 · θmax + g2 · (θ − θmax) θ > θmax
(4.1)

The result of fitting to this bi-linear model is shown in Figure 4.8.

Care must be taken when interpreting the results of this model. While it does

produce good results, fitting the observed data well over the entire range of angles

this is to be expected given the increased degrees of freedom over the models

tested previously (the bi-linear fit has 3 DoF, compared to 2 for the root-tan

model, and 1 for both the Sine Law and the standard linear fit). It is difficult

to say how much the improvement is simply down to the extra flexibility allowed

by the model. However it does allow us the determine the point at which the

linear model diverges from the observed responses, at 131.5◦. This appears to

be largely invariant to the size of the angle bins used, varying by less than ±1◦

over bin sizes ranging from 1◦ to 10◦. Additionally as the lower portion of the

function is largely independent of the upper portion we can be confident that the

fit produced is an accurate representation of the bending below the turning point

and is not biased by the inclusion or exclusion of data to either side. As such this

technique is used only to determine the range in which we can be confident about

the linearity of response, and the magnitude of the proportionality constant.

4.3 Discussion

As discussed previously, root gravitropism kinetics have largely been described

in the context of the Sine Law, however there are a number of problems with

this model that have yet to be addressed. The most striking of these is the

maximum bend-rate appearing above the horizontal as is predicted, but other
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Figure 4.8: A two part piece-wise linear fit, or bi-linear fit, to reorientation kinet-
ics across all tested angles. This fit predicts a maximum bending angle of 131.5◦.
This fit can explain a large proportion of the observed response (r2 ≈ 0.70), and
the residuals are normally distributed around the model (p ≈ 0.18) as would be
expected due to noise. Based off 13194 measurements from 368 roots binned into
5◦ bins. Error-bars show standard deviation as the number of points per bin
varies.
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problems arise when trying to reconcile the mechanistic basis of the model with

our growing understanding of graviperception. The Sine Law is based on the

presumption that the force of gravity acting across the organ determines the

magnitude of response. Experiments in hypergravity, such as on centrifuged

roots, do not show positive a relationship between strength of gravitropic stimuli

and response (Fitzelle and Kiss, 2001) as would be expected. Added to this is

recent work showing that the statocytes themselves do not in fact act as force

sensors (Chauvet et al., 2016). It has also been shown that the magnitude of the

auxin gradient across gravistimulated roots follows a linear model, at least up to

120◦ (Sageman-Furnas, 2016). More circumstantially is the successful prediction

of graviproprioceptive response in a wide range of shoots using a linear model

of response (Bastien et al., 2013), although in this case linearity was used as a

simplified model and no claims as to its accuracy were made.

Relatively little is known about gravitropic behaviour from a systems point of

view such as the effects of time-dependent vs angle-dependent behaviour and the

role of hysteresis. While there is evidence that gravitropic behaviour is angle-

dependent, such as the continuous bending seen on ROTATO (Mullen et al.,

2000), time-dependent models have also been proposed for the mechanism behind

the response (Band et al., 2012). Determining these dependencies is vital to

our understanding of lateral root behaviour. Our current understanding of GSA

maintenance in lateral roots being caused by an AGO is dependent on a smooth

angle-dependent response over the range of GSA’s observed. While the AGO

model requires angle dependence for GSA maintenance over long time periods,

time-dependent effects and hysteresis cannot be ruled out, and may play a part

in response as a root returns to its GSA.

In order to determine the factors involved in gravitopic response we have per-

formed large scale reorientation kinetics experiments over a range of angles form

30◦ to 150◦. When comparing reorientation rates there appears to be no difference

between responses at the same angle but at different times since reorientation.

This supports the previous work seen on ROTATO which suggests that gravit-

ropic responses can be maintained at a constant level for wide ranges of time since

reorientation. Moreover this demonstrates that angle is the determining factor in

88



4.3 Discussion

response even during changing gravitational stimuli, something not demonstrated

on the ROTATO system. Analysis of bend rate as a function of angle does not

show the presence of hysteresis over the time scales tested further supporting an-

gle as the key factor in response. Additionally by looking at the auto-correlation

between normalised bend rates as a time series we can determine that magnitude

of time-dependent any hysteric effects independently of the specific time since re-

orientation and across a wide range of time scales. While this detected evidence

of short term correlations of the same frequency as the sampling, this is to be

expected when analysing the differences between measurements taken with some

independent error. Beyond this we found no significant time-dependent effects,

however we can only test for effects over the time period of the measurement.

We cannot therefore rule out any effects faster than the sampling frequency of

10 minutes, or longer than the measurement time of 6 hours (such as would be

caused due to root waving).

Across all of our analysis we see a consistent maximum response at around 130◦.

Similar results have been widely reported in the past (Audus, 1964; Galland,

2002; Larsen, 1969; Mullen et al., 2000) with the maximum response often found

in the region of 120◦ to 130◦. Our data shows this is not simply a transient effect

as could be caused by higher angles allowing faster statolith movement away

from the previous lower face of the cell. The consistency of this result across

different times and histories strongly indicates that this is a real and persistent

phenomenon.

This high angle of maximum response was a motivating factor in the compari-

son between different models of response. While there appears to be no simple

model that accurately describes behaviour at all angles however there are a few

conclusions that can be drawn from the comparisons. At no point does the Sine

Law perform significantly better than a linear fit (or the more complicated root

tan model). At low angles the models are practically indistinguishable. While

the Sine Law is often the go-to model when looking at reorientation kinetics this

may be not be the most appropriate model. The Sine Law has been approxi-

mated by a linear model (Bastien et al., 2013) with good results, but rather than

simply being a simplification, a linear model may in fact be more accurate and
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apply over a wider range of angles than the Sine Law. Given the evidence cited

previously that statocytes do not appear to act as a force sensor, and that auxin

asymmetry correlates directly with stimulation angle (see section 6.4.4) it seems

likely that this is a direct result of the gravitropic mechanisms and not simply

the result of a poorly realised response. Moving to a piece-wise linear fit allows

us a highly accurate measurement of the maximum bending angle and provides

an extremely good fit to the observed response, however it does not seem right to

propose this as a description of gravitropic response without further insight into

the mechanisms behind it.

The cause of the maximum bend response at 130◦ is not currently known. If we as-

sume a linear model where the statocyte is acting as an angle sensor then we may

able to gain insights from looking at statolith behaviour. Using physical models

of statocytes it has been found that the maximum number of statoliths in contact

with a lateral cell face occurs at around 130◦. This physical model was subject to

limitations however. The number of “statoliths” in contact with the lateral face

was counted when they were at equilibrium. In the root tip statoliths do not set-

tle into a stable equilibrium, instead showing saltatory movements which would

be expected to distribute the statoliths more even throughout the cell. While

this may indicate that around 130◦ is the point at which the initial movement of

statoliths after a reorientation would produce the maximum response, if this was

the cause of the maxima in bend rate we may expect the effect to be transitory as

the statoliths are more evenly distributed throughout the cell. Another possible

explanation for the maxima is that after 130◦ it becomes difficult to distinguish

the lower face as statoliths start to rest against both sides of the cell. However if

this the case one would expect the effect to be symmetrical around the horizontal

which is not the case. Some mechanism is needed to break the symmetry of the

response and as of yet this is not known, although there is preliminary data to

suggest that the cell geometry may be able to break this symmetry.

While it is possible to compare models after a significant amount of noise re-

duction has been done, even with large datasets (over 10,000 data points were

collected for this analysis) the data remains too noisy to fully determine the be-

haviour. The variability in response is huge throughout the dataset, and while
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some of this may be attributable to errors in measurement and variability in ex-

perimental conditions this cannot account for the range of responses observed.

This is not necessarily surprising as there is evidence that noise may be signifi-

cant in the mechanisms behind gravitropic behaviour, either due to errors in the

detection of a weak signal or in a more active role such as stochastic resonance

acting to boost the signal. Given a typical statoliths mass the force of the sta-

tolith resting on a membrane is of the same order as thermal noise within the

cell Björkman (1989). Although it is unclear how much of a role resting force has

to play in statolith position detection (certainly the statocyte as a whole does

not seem to sense force as discussed above) this certainly opens the possibility

of highly noisy response. This is potentially compounded by the saltatory move-

ment displayed by statoliths even when at rest (section 1.2.3). Taken together

this suggests that whether the gravitational signal is encoded in statolith posi-

tion or in resting force, in either case the resulting signal is likely to be either

incredibly weak or highly variable. Given this it would actually be surprising if

the response was not highly variable. This variation in response has a number

of implications. Firstly it demonstrates the need for a large dataset as collected

here, even then it may not possible to fully understand the data without exten-

sive analysis. Secondly when developing a model of gravitropic behaviour it may

not be sufficient to simply capture the mean response, if the behaviour can be

treated as a stochastic process it may be possible to capture other features of the

response such as the higher order moments of a responding population. If so this

could give us valuable insight into the mechanisms behind the behaviour as well

as providing a valuable tools when analysing mutant phenotypes.
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Chapter 5

A computer vision system for

root angle analysis

5.1 Introduction

Given the noisiness inherent in gravitropic response (see section 4.2.2) the need

for large data-sets is paramount. While we have collected data from a large

number of root reorientations over a broad range of angles the analysis is very

time-consuming which limits the size of the data-set obtainable. Given a 6 hour

measurement time, sufficient to record a full bend after a typical 90◦ reorientation,

and a sampling frequency of ten minutes, of the order of time a bend event may

be detected, each root requires 37 measurements. Our primary dataset contains

368 roots, with over 500 roots measured initially, some of which had to be dis-

carded due to experimental problems (roots burrowing into the growth medium,

growing into other roots, poor imaging conditions, etc). In total over 13, 500

measurements are included in the final dataset, with over 20, 000 being made in

total. Manual measurement on this scale is incredibly time consuming and is

the bottleneck when producing large datasets. Even at 10 minute measurement

frequencies the amount of data to be analysed is large, however in order to truly

capture response we would ideally like to measure at intervals smaller than re-
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sponse can occur. Given some reasonable limits on response given by statolith

sedimentation time and auxin transport rates (see section 6.2.1) we can estimate

that response may be able to occur in as little as a few minutes. Ideally we

would like to be able to measure response on the scale of one minute. This is not

currently practical given the time limits imposed by manual measurements. For

the final dataset we have collected, over 130, 000 measurements would have to be

made; an order of magnitude more than was practical.

By automating the image analysis we should be able to drastically reduce if not

remove entirely the measurement bottleneck, as well as increase the sampling

rate. There exist freely available computer vision systems for use analysing root

data, such as the popular RootNav (Pound et al., 2013), however to date these

systems all rely on manual annotation for each image analysed. While this is well

suited to single images of individual plants it does not scale well to time-lapse

image series where the amount of annotation would be large.

This chapter covers the adaption of the ROTATO computer vision system covered

in chapter 3 to large scale data collection and analysis, and to produce a system

able to analyse large time-lapse image sequences with minimal human interaction,

along with the difficulties this entails.

5.2 Imaging setup

Good image quality is key to accurate image analysis. In order to reduce possible

interference by phototropic responses the decision was made to do all imaging un-

der near infra-red lighting. This not only removes phototropism as a confounding

effect but should allow direct comparison between roots imaged using this system

and those imaged on ROTATO (see section 3.2.1 for more details on the use of

NIR).

In order to allow for flexibility in lighting modular lighting boards were designed,

each containing 2 LEDs outputting NIR light at a wavelength of 940NM. Each

board runs the 2 LEDs in parallel off a pair of rails which allow multiple boards
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Figure 5.1: The circuit diagram for the near infra-red LED modules. The two
power rails can be connected to other modules allowing each LED to be run in
parallel.

to be daisy chained together. This design allows multiple boards to be easily

connected or disconnected from the system with minimal effort, as each LED

in the chain runs in parallel this can continue until the power supply reaches

capacity. Given the low draw from the LED’s in practise there is no upper limit

to how many units can be connected. The circuit diagram for the LED modules

is given in Figure 5.1. LED modules were placed to ensure even illumination of

the plate from multiple directions where possible. Due to space and temperature

constraints front lighting was used rather than back lighting. While back lighting

would produce a clearer image the amount of lights required to produce even

illumination over the area of the plate could cause the plate to overheat.
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5.3 Computer vision techniques

Rather than create a new system for analysis of multiple roots the computer vision

method from the ROTATO system was adapted for plates containing multiple

roots, this allowed code reuse and simplified debugging and testing.

Like the ROTATO vision system the computer vision system has the following

steps.

1. The image is converted to grayscale by taking the green colour channel.

2. Background normalisation is performed by taking the difference between

each pixel and its local neighbourhood.

3. The image is thresholded.

4. Morphological closing is done to fill in gaps in the root.

5. Skeletonisation is performed and skeleton end-points are used to get tip

position.

6. Tip angle is measured, either from the skeleton or the tip area.

As multiple roots are present in the image and there is no reliable automated

method of distinguishing roots of interest from other objects in the image (whether

that’s other roots or non-root features) manual selection of root tips is needed.

When a set of time-lapse images is selected the first image is loaded. The user

is then prompted to select the root tips of interest using the mouse. Each time

a subsequent image is analysed the tips are matched to the closest selected posi-

tions, and the root tip position is updated. This allows the system to track the

movement of a root tip throughout the time-lapse.

5.3.1 Challenges

Some of the challenges presented by automated root tracking have been covered

previously (section 3.3.3) however tracking multiple roots presents some new dif-
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ficulties not present in the ROTATO system.

The most obvious problem is in matching multiple root tips to their previous

positions. In the current system a simple nearest neighbour method is used to

match tips to their previous positions. This is surprisingly robust, although a

maximum distance threshold is put in place to ensure that the tip position does

not change if the tip is lost or if two roots collide.

Possibly the largest challenge to accurate analysis is the limited resolution avail-

able for whole plate imaging. As shown in table 3.1 decreased resolution neces-

sarily leads to a reduced accuracy in angle detection, with the current imaging

system the length of the tip to the beginning of the elongation zone is approxi-

mately 12 pixels, in practise using an ideal root this gives us an accuracy of ±2.5◦,

see Figure 5.2. However this assumes an ideal root and perfect segmentation, due

to the relatively low resolution of the images even small errors in segmentation

can significantly affect the angle detected. Even errors in the ideal segmentation

due to rotation of the image are sufficient to produce significant deviations in the

detected angle.

A more unexpected problem lies in the depth of field used when imaging whole

plates. The low depth of field of the microscope used to image single roots on the

ROTATO system has the beneficial side effect of blurring out any background

features, such as irregularities in the backing material and condensation on the

plates lid. Unfortunately when imaging the whole root the depth of field is

sufficient to keep these unwanted features sharply in focus. When features such as

condensation overlap with the root tip it becomes extremely difficult to correctly

determine the root outline, and as such the root tip angle.

5.4 Results

The vision system was tested on the same data-set presented in chapter 4, con-

sisting of 368 roots reoriented to angles between 30◦ and 170◦. Over the data-set

as a whole we see similar average bend rates in the automated analysis as we do
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A. B.

Figure 5.2: A. Accuracy of angle detection for an ideal root. A virtual root was
created and rotated to a given angle, this was then compared to the value returned
when the root was passed to the computer vision angle detection system. Two
angle detection methods have been tested, on an ideal root using the centre line
of the root is superior to using the outline to determine angle. This is not always
the case when the root is not well formed. B. Error in the angle detection for
an ideal root. A virtual root was created and rotated to a given angle, this was
then compared to the value returned when the root was passed to the computer
vision angle detection system. Two angle detection methods have been tested,
on an ideal root using the centre line of the root is superior to using the outline
to determine angle, with a mean error of 2.5◦ compared to 3.8◦. Both methods
appear to follow a heavy tailed distribution with generally good accuracy and
infrequent but very poor outliers.
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in the manual, with a bend rate of approximately −0.0062 · θ (
◦

minute
) compared

to −0.0053 · θ (
◦

minute
) for the manual measurements below 130◦ (see Figure 5.3).

Interestingly we do not see a decrease in bend rate above 130◦. This could be a

consequence of the noisiness of the automated results. It is clear when looking at

the distribution of bend rates (Figure 5.3) than while the mean bend rate may

be similar we are seeing a much broader distribution when using the automated

angle detection. If we are seeing an increase in the noise of measurements this

may mask the decrease in bend rates seen at higher angles. As the data at high

angles is relatively sparse a large proportion of the measurements at higher angles

may be due to peaks in the noise around lower angled roots. Regression to the

mean would then cause a disproportionately high number of large bends to be

reported.

A large part of the increased range of bend rates seen may be down to a combi-

nation of increased measurement rate and relatively low resolution images. Due

to the large number of roots being measured simultaneously each root takes up

significantly less space in the image. Although the images themselves are high

resolution (36MP, 7360x4912), the typical length from root tip to differentiation

zone is only around 12 pixels. Using an ideal root segmentation we are only able

to accurately identify the root tip angle to within approximately 2.5◦, giving us

a lower bound on noise of at least that. This combined with the lower noise

reduction during normalisation due to a higher measurement frequency (for more

details see section 6.4.2) could explain the apparent increase in the variation in

bend rates.

When comparing measurements at the level of individual plates the results are

highly variable. Due to the timing involved much of the data set was collected

before the vision system was developed. In many cases the images produces

were, while good enough for manual measurement, not of sufficient quality to

allow automated angle measurement. Reasons for this include inconsistent or dim

lighting conditions, imperfectly focused images, and objects such as condensation

on the plate. Fig. 5.5 demonstrates some untrackable images. Of the 33 plates

analysed 11 were not able to be analysed, of the remaining 22 plates not all roots
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A. B.

Figure 5.3: A. Angle against bend rate for roots reoriented to between 30◦ and
170◦. Shaded areas show standard deviation. Based off 13194 manual measure-
ments and ≈ 130, 000 automated measurements from 370 roots. B. Angle against
bend rate for roots reoriented to between 30◦ and 170◦. Based off 13194 manual
measurements and ≈ 130, 000 automated measurements from 370 roots. Shaded
areas show SEM but the number of points per bin varies.

were able to be tracked, in total including the discarded plates 25% of roots could

not be analysed.

However when sufficient care is taken to ensure good image quality, as shown in

Figure 5.6 and 5.7, the results closely match the manual data (Figure 5.8). In

general however there is a tendency to overestimate the angle compared to the

manual measurements (Figure 5.8), particuarly in cases where the image quality

is marginal. This is especially clear when looking at the mean angle of the exper-

imental groups. Fig. 5.4 shows the mean angle over time for the roots grouped

by initial reorientation angle (excluding plates with no successful measurements),

it is clear that the automated system is not able accurately measure root angle

when run on the dataset as a whole.

5.5 Discussion

While the system is able to produce good results under ideal conditions, and

with good image quality, it is not robust enough to automate the analysis of the
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Figure 5.4: Mean angle over time for 30◦, 60◦, and 90◦ reorientations. Points
represent manual measurements and lines automated measurements. Only plates
that were both manually measured and successfully automated are included in
this comparison. N = 237 automated roots, 296 manually measured roots, error
bars and shaded regions are SEM.
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A. B.

C. D.

Figure 5.5: Examples of poor images. In sub-figures A-C condensation makes the
roots difficult to track. In D The lighting has caused reflections from the plate
lib to be visible, this obscures the roots, creates false roots, and makes tracking
impossible.
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Figure 5.6: A clear image allows for accurate image analysis. The the roots are
of high contrast and sharply in focus, there are no other objects or condensation
on the plate. While the lighting is not uniform it is locally consistent.
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Figure 5.7: These roots contrast sharply with the image background and maintain
good contrast along the entire length of the root. Additionally the background
is uniform and relatively clear.
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A. B.

Figure 5.8: A. On good quality images the automated results agree well with
the manual measurements. Points and line show the mean value from a single
experiment, the shaded region shows standard deviation. N = 23. B. There is a
tendency to overestimate the angle compared to manual measurements, this can
be due to loss of contrast as the root approaches vertical causing the tip to be
lost. Points and line show the mean value from a single experiment, the shaded
region shows standard deviation. N = 28.

existing dataset. There are a number of problems when analysing whole plate

images rather than the single root images of the ROTATO system.

1. Low contrast around the root tip can lead to loss of the tip, producing

erroneous high angles to be reported.

2. Small roots limit the angular resolution of the tip detection.

3. Condensation and other features on the plate can obscure the root tip, or

be erroneously identified as the root tip.

4. Collisions between roots can cause the root tip to be lost.

These problems are mostly able to be mitigated if sufficient care is taken to

properly prepare the system before imaging, however for more reliable results

changes to the physical setup would be beneficial.

In the initial experimental setup the lighting was placed above and slightly in front

of the plate. This top lighting reduced glare as opposed to front lighting, and the

oblique angle of the lighting produced more even illumination than was possible
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A. B.

Figure 5.9: A. At initial reorientation the root is near horizontal with uniform
contrast along its length. B. Over time as the root tip approaches the vertical
contrast is lost. In this case there is an area of low contrast just behind the root
tip, this makes analysis difficult as the tip risks being lost.

using the same lights in a back-lighting setup. However as the light was coming

from the top it highlighted horizontal objects which lie perpendicular to the path

of the light. While this allows for good detection of roots near the horizontal

which contrast strongly with the background, as the root tip approaches the

vertical the contrast decreases. This is illustrated in figure 5.9, where a root

which is clearly defined near the beginning of a time-lapse series loses contrast

as it approaches the vertical. This can be compensated for by reducing the

detection threshold, either globally or locally in the region of the tip, but this

comes at the cost of over-segmentation. In later experiments the position of the

lighting was adjusted to produce more even illumination at all angles. While

this mitigated the problem by increasing contrast at lower angles not all roots

were sufficiently illuminated to produce reliable segmentation. The system as a

whole could be dramatically improved by the introduction of back-lighting which

can produce very high contrast images reliably and at all angles. Preliminary

tests demonstrate that with good back-lighting such images can be produced

(Figure 5.10) implementing such a system would require a significant rebuild to

the physical system. Nevertheless it promises a dramatic improvement in image

quality and measurement accuracy.

105



5.5 Discussion

Figure 5.10: A backlit image can produce extremely good contrast and consis-
tency, this allows highly accurate analysis.
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While the size of the root in the image limits the accuracy possible when mea-

suring tip angle, this is unlikely to cause systematic errors as seen in the results.

However it still would be beneficial to increase the resolvable accuracy as this

would allow for more accurate bend rates to be measured. This is particuarly

important given the high measurement frequency desirable in a system such as

this. While increasing the resolution would help improve the accuracy, this is

secondary to the problems involved in accurately segmenting the roots at the

existing resolution.

As mentioned previously good sample preparation is key to good automated anal-

ysis. As the vision system is fundamentally based on detecting light objects on

a dark background, the presence of foreign light objects causes serious problems

(Figs. 5.11,5.12). At a software level these can be mitigated by a post-processing

step. The system is capable of reliably filtering out many sources of error by

removing small connected regions from the segmented image (see Figure 5.13),

when these objects overlap with the root tip they become very difficult to sepa-

rate from the root, as shown in figure 5.14. While this problem is easy to solve

once it has been identified it does present serious difficulties when analysing older

images which may have been taken before the problem was apparent.

As tip detection is performed by looking for the endpoints of a root skeleton,

collisions between roots can cause the tip to be lost. If a root collides with another

root the skeletons of the two roots become joined, as shown in figure 5.15. While

realistically it may not be valid to measure the behaviour of roots after they

collide with each other, in order to discard such roots they need to be accurately

identified. Identification of collisions is normally caught by setting limits on the

distance a root tip can move between consecutive images. As root growth is

slow we not expect a tip to change position by a significant amount in the time

between images, when roots collide the root tip may no longer be detected and

it is likely that the nearest detected tip is far away relative to the distance a root

may grow between images. This method is not infallible however as collisions can

occur near the tips of two roots. Even when a collision is successfully detected

it represents a loss of data as that root can no longer be accurately measured,

both due to the limits of the vision system and due to change in response caused
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Figure 5.11: There is heavy condensation in the lower portion of the plate. This
can be erroneously identified as belonging to a root (subfigure 5.12).
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Figure 5.12: Unless post-processing is performed condensation will cause false
positives when identifying roots. Root outlines are shown in green, and centre-
lines in red.
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Figure 5.13: After post-processing almost all erroneous detection’s have been
removed, however condensation close to the root can still disrupt the segmentation
(centre and bottom right). Root outlines are shown in green, and centre-lines in
red.
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Figure 5.14: Condensation near a root has been misidentified as part of the root
(the upper left branch of the segmentation). In this case it will not affect the tip
angle as the error occurs far from the root tip (not shown). Root outlines are
shown in green, and centre-lines in red. Two false root tips have been identified
in blue.
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Figure 5.15: Collisions between roots can cause the root tip to be lost. Here three
roots have collided causing their skeletons to become joined. Only the longest
root is able to be measured. Although it is not necessary or desirable to measure
tip angle after collisions, they can cause problems for the tracking system.

by the collision. This problem can be avoided by placing fewer individuals on a

plate however this limits the amount of data produced in a single experiment.
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Chapter 6

A stochastic model of root

gravitropism

6.1 Introduction

Previous attempts to describe gravitropic behaviour have produced models able

to describe the expected behaviour of a root or shoot but have not attempted

to explain the variation in individual response. As shown earlier, individual root

responses can be highly variable and this variation cannot be simply attributed to

individual variation alone (section 4.2.2). In this chapter we present a stochastic

model of gravitropic behaviour, building on the results obtained in chapter 4.

Using this model we are able to describe gravitropic response at the population

level; capturing the mean and variance of reorientated roots, both over time and

instantaneously, as angle-dependent behaviour. Unlike previous models we are

able to place limits on the processes involved in generating gravitropic response

such as the time-scales of detection and bending. We hope that this will then be

useful in identify a mechanistic basis for behaviour at the organ scale.
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6.2 A minimal stochastic model

6.2.1 Model outline

A minimal stochastic model can be built from the following assumptions:

1. Angle-dependent behaviour can be accounted for at the tissue level without

explicitly modelling each process involved.

2. Gravitropic behaviour is inherently stochastic.

3. Gravitropic behaviour is angle-dependent.

We have chosen a discrete model where during a given period of time a root has

some probability of making a bend. Implicit in this assumption is that there is

a complementary probability of the root not bending during this time period.

During the course of a gravitropic response we see periods of bending and non-

bending that occur on a far faster time scale than could be accounted for by root

waving. While it is possible that there is some complicated function which deter-

mines the occurrence of bending and non-bending periods during a gravitropic

response there is no clear evidence that this is the case. Indeed we have seen

no time-dependent patterns in gravitropic response that may indicate periods of

bending and not bending occur on a given timescale as might be expected if this

was down to some deterministic phenomena.

Given the lack of evidence of time-dependent behaviour and the clear influence

of root tip angle on a roots bend-rate we treat the root as having a probability of

bending dependent on the roots angle. We assume a linear relationship between

bend probability and angle for a number of reasons. Firstly at low angles (≤ 90◦)

a linear model performs as well as other models tested such as the Sine Law (see

section 4.2.4). Secondly and perhaps most importantly a linear model provides

significantly better predictions for the range of angles between 90◦ and the point

of maximum bending at approximately 130◦. Lastly at angles above 130◦ we have

seen good results when using a bi-linear fit (section 4.2.5). While we must be

careful when using the bi-linear fit due to the reasons outlined previously, it is a
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powerful tool when used to determine the limits within which a linear model can

be applied.

In order to keep the model tractable we are assuming that when a bend occurs it

is of a given size. This assumption has largely been made in order to simplify the

model, it being the minimal assumption necessary to produce predictive results.

However given our understanding of the mechanics of bending this assumption is

reasonable. If, as has been suggested, elongation rate follows a sigmoidal pattern

(see section 1.2.2) in response to auxin concentration we can approximate this

using a step function (Cleland, 1972) which produces 2 discrete growth rates. We

would expect straight growth when both the upper and lower side are growing at

the same rate, and for bending to occur when the sides are growing at different

rates. As we have two growth rates there is only a single positive magnitude of

growth rate difference, over a given time-step this should produce a bend of a

known side dependent on the difference between the two possible growth rates.

Given these assumptions we have formulated a discrete model with the following

parameters.

1. δt = The time step during which a bend may occur, conceptually equivalent

to the time a bend event takes to unfold. Measured in minutes.

2. ∆ = The size of a single bend event in degrees.

3. p = The proportionality coefficient giving the probability of bending at a

given angle. P (bend) = p · θ = λδt
∆

, where λ = θ′.

By assuming our bend probability is directly proportional to the current angle

we set the GSA to 0 (as p · 0 = 0). This limits the applicability of the model to

primary organs where the GSA is equal to 0. In order to describe non-vertical

growth either this assumption would have to be modified or another source of

bending, such as from the AGO, would have to be included. We have neglected

to include upwards bending in the model despite seeing cases of upwards bending

in the data. This is done partly for simplicity, but also because it is not clear

whether upwards bending in roots with a GSA of 0 is due to gravitropic behaviour,

or other non-gravitropic responses such as waving or skewing. In roots left at the
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GSA, root waving will produce both upwards and downwards (when the root is

not vertically downwards already) bending, we would expect this to explain at

least some of the upwards bending observed after reorientation. We also cannot

discount mechanical effects from root-gel interactions as a source of upwards

bending. While is is clear that for roots with a non-vertical GSA upwards bending

would have to be included, as when reorientated these roots are able to bend

upwards to their GSA, but in this case it is safe to put them aside. While we

would expect some latency in response we have treated this as sufficiently small to

be discarded. In this respect our model is similar to the Sine Law which assumes

instantaneous response. As long as the time-step used is sufficiently large to

account for the delay in detection and auxin transport this seems reasonable.It

has been shown that gravity perception is extremely fast with presentation times

of as little as 10 seconds in Arabidopsis (Kiss et al., 1989). Given a distance from

the columella to the elongation zone of approximately 500µm (Verbelen et al.,

2006), and an auxin transport velocity of about 8mm/hour (Kramer et al., 2011)

we would expect a lower bound of around 3-4 minutes for the response time, plus

the time for cellular elongation to occur.

6.2.2 Expected behaviour

From the parameters above we can calculate the mean response of a root over

both time and angle. Given a root at angle θ and time t, the probability of

bending in time δt is equal to p · θ. If a bend occurs the angle at time t + δt is

equal to θt−∆, otherwise the angle is equal to θt. The mean angle at time t+ δt

is then given by Equation (6.1), if we approximate this to a continuous model the

mean bend rate is given by (6.2). It is immediately obvious from (6.2) that the

bend-rate is proportional to the angle as would be expected from a linear model.

Given a continuous model we would then expect the mean angle to follow the

exponential decay given by Equation (6.3), which follows naturally from Equation

6.2.

However as we are working with discrete time we can obtain the equivalent to

equation (6.2) by following the steps in equation (6.4). This results in the geo-
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metric decay shown in Equation (6.4).

In practice with a small ∆, both the continuous and discrete solutions given by

equations (6.3) and (6.5) produce very similar results. Given a ∆ of 10◦ and a

probability of bending equal to 1 at 180◦, equations (6.3) and (6.5) differ by less

than 0.5◦ at the most divergent (see Figure 6.1). This makes the exponential

decay given by equation (6.3) a very useful approximation of the predicted model

mean. As all three parameters can be combined into a single parameter grouping,

by fitting λ we are able to constrain the parameter space available to the model,

which proves to be useful when model fitting. This reduces our mean response to

a single parameter model similar to the unmodified Sine Law, however unlike the

Sine Law this is able to explain bending above 90◦ without requiring additional

parameters.

Unlike the exponential approximation we cannot reduce the geometric equation

to a single parameter model, as we would expect the mean behaviour to approx-

imate the exponential model we are not able to extract the model parameters

δt, ∆, and p from the mean behaviour although we can constrain the parameter

values such that λ = ∆·p
δt

where λ can be obtained from the mean response. In

order to estimate the model parameters we must look at other properties of the

distribution of root angles over time, particularly the variance.

θt+δt = θt −∆p · θt (6.1)

δθ

δt
=

(∆ · p) · θ
δt

(6.2)

lim
δt→0

θt = θ0 · e−λt, λ =
∆ · p
δt

(6.3)
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Figure 6.1: Comparison between the geometric and exponential approximation
with reasonable test parameters (p = 1

180
,∆ = 10). The difference is less than

0.5◦ at the greatest point.

θt+δt = P (¬bend) · θt + P (bend) · (meanθt −∆)

= (1− p · θt) · θt + (p · θt) · (θt −∆)

= (1− p ·∆) · θt (6.4)

θt = θ0 · (1− p ·∆)
t
δt (6.5)
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6.2.3 Angle-dependent variation

At any given angle we would expect there to be a probability p · θ of bending.

Over small changes in angle where we θ and thus P (bend) are can be treated as

constant. Bend decisions can then be treated as independent. In this case over a

given amount of time t, N independent bend decisions could be made. This situa-

tion is analogous to independent coin tosses, in that the number of bend decisions

made will follow a binomial distribution. The variance in response over a given

time frame, t, is then given by the binomial variance equation (Equation 6.6).

If we take the Equation (6.6) and consider a single step of the model, we arrive at

Equation (6.7) which represents the variance in the bend-rate of a root. It is clear

from this formulation that the bend size, ∆, is the most significant contributor

to the predicted variance, as for any θ where (P = p · θ, 0 ≤ P ≤ 1), then

P · (1 − P ) is bounded at 0.25 where P = 0.5. As the bend size is unbounded

it will therefore be the largest contribution to the angle-dependent variance for

any ∆ > 0.5◦. As the angle over time is given by the integral of the bend-rate

over time given some initial condition, we can see that the bend size ∆ is also the

primary contributor to the variance as a function of time. Equation 6.7 gives us

the variance in response per time-step, in practise we will normalise bend rates

to degrees per minute to give comparable values to measurement data.

While we can approximate the bending over small numbers of steps as binomial,

as each bend results in a change in the probability of bending the resulting dis-

tribution is not binomial (Butler and Stephens, 1993). When fitting over time we

cannot make this approximation and the variance must be calculated numerically

as shown in section 6.2.4.

σ2
θ = ∆2 · P · (1− P ) ·N, N =

t

δt
, P = θ · p (6.6)

σ2
θ = ∆2 · (θ · p) · (1− θ · p) (6.7)
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Given some error ε in measurement we would expect to see the variance given

by equation (6.8), as we normalise by dividing by the time-step . Over large

measurement times our measurement error tends towards zero, however in order

to assume a binomial distribution of bends we are assuming a constant probability

of bending and so this only holds given a small change in angle. Clearly we cannot

then just use a long measurement time to reduce the effects of error, neither can

we necessarily assume that over small time scales the correspondingly small angle

changes will be significantly greater than the error in measurement. This problem

can be addressed by simulations where we would expect that over longer time

periods the error in recorded bend rate will match that observed in the data, but

over short measurement periods we would expect greater than predicted variation.

σ2
θ = ∆2 · P · (1− P ) + ε2t, P = θ · p (6.8)

6.2.4 Variation in response

While the expected behaviour and instantaneous variance are straightforward to

calculate, the variance over a large number of steps is much more difficult. Pre-

viously we have made the approximation that the probability of bending remains

roughly constant. This allows us treat the distribution of bends as binomial

which greatly simplifies things. However as each bend changes the changes the

probability of future bends we cannot treat each bend decision as independent.

By treating the model as a Markov chain we can calculate the probability of any

given number of bends occurring in a given number of steps.

The change in probability, P , after a single bend is equal to ∆p. For a root with a

starting probability of bending P0, and a change in probability δP the probability

of making N bends, where N ≤ P0

δP
, in M steps is given by Equation (6.9). The

angle after N bends is then equal to θ0 − ∆ · N . This allows us to calculate

the expected probability distribution for a root’s position after a given amount

of time, and so calculate the mean and variance of a population starting from a

given angle. The mean angle given by this method is identical to that given by
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Equation (6.5).

If we treat each root as an infinite population of roots all at the same initial angle,

we can describe the proportion of roots at each angle obtainable by the model as

a vector of 0’s with a 1 at the point in the vector corresponding to the starting

angle. As the model does not include upwards bending the starting angle is the

maximum achievable angle and can be set to the first position in the vector. Our

starting population is then represented by the vector 1, 0, 0, · · · , corresponding to

the vector term in Equation (6.9). At any angle the root can either bend by ∆ or

not bend, therefore after each step there are 2 possible angles the root can occupy.

The proportions of the population after the first step will consist of p · θ0 which

have bend and are now at the angle θ0−∆, and 1− (p · θ0) which are still at the

initial angle. After each new step, or given some other distribution of angles, the

proportion of roots at a given angle is equal to the proportion of roots previously

at that angle which did not bend (the previous proportion multiplied by (1−p·θ))
plus the proportion of the roots at just above the angle in question which have

now bent down (the previous proportion at θ + ∆ multiplied by 1− p · (θ −∆)).

Each row of the matrix term in Equation (6.9) represents these proportions at

a given angle. Each time we multiply the initial population distribution vector

by the matrix take a single step through the model updating the population

distribution as we go. As each row in the matrix represents an angle differing the

∆ and we have set the first row to represent the angle θ0 we can set each θ in the

matrix to θ0 − (r ·∆), where r is the row number (counting from 0).

To simplify the calculation given by Eq.6.9 we can do the matrix multiplications

first by raising the matrix term to the power M then multiply by the initial

distribution. As we started with a distribution vector with only a 1 in the first

position this is equivalent to taking the first row of the final matrix. In fact each

row in the matrix represents the distribution after a different number of steps,

for efficiency we can calculate the final matrix once to obtain the full distribution

over each step from 0 to M .

The advantage of calculating the expected distribution numerically is that when

dealing with populations of roots at different starting angles we can calculate
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the distributions of each root simultaneously and then combine the results into

a single distribution. This allows us to easily model the behaviour of real root

populations rather than using an idealised model of the population starting with

a single starting angle.

P (N |M) =


1

0

0
...

·


1− p · θ0 p · θ0 0 · · · · · ·
0 1− p · (θ0 −∆) p · (θ0 −∆) 0 · · ·
...

. . . . . . . . .
...

· · · · · · · · · 0 1− p · (θ0 −N ·∆)


M

(6.9)

6.3 Numerical methods

6.3.1 Parameter estimation and model fitting

We can constrain the parameters by making use of the exponential approximation

for the mean angle given in Equation (6.3). As the mean angle depends on the

parameter group ∆·p
δt

, while the variance depends primarily on ∆ we have chosen

to group the parameters into the 2 groups ∆ and p
δt

for fitting, by setting δt to

a known value we can reduce the fitting to only p and ∆. Initial values are then

given for both p and ∆. Next the value λ is calculated. As we expect angle to

be the determining factor in gravitropic behaviour, λ is calculated by fitting to

the binned (θ, δθ) values as shown in section 4.2.2. As we are assuming a linear

relationship between angle and bend-rate we know the model will not hold above

the angle of maximum response. Therefore a bi-linear fit is used (section 4.2.5)

whereby the gradient of the fit below the angle of maximum response is equal

to λ. This results in a λ of 0.0059 ◦/min, for comparison we are also able to

estimate this value from the proportional bend-rates ( δθ
θ

), or a fit over time. At

low angles however fitting over time becomes less reliable as both measurement

error and natural variation make a proportionally greater contribution to the
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Method λ(◦/min)
bend-rate (bi-linear) 0.0059
bend-rate (linear, θ ≤ 90) -0.0057
proportional bend rate (median) -0.0058
mean over time (4 hours) -0.0057
mean over time (6 hours) -0.0061

Table 6.1: Comparison of the parameter group λ = ∆·p
δt

obtained via different
methods. A bi-linear fit to bend-rate as a function of angle is used for model
fitting.

resulting fit. In fact as the probability of bending approaches 0 the relative

variance, given by the coefficient of variation for a single time step approaches

infinity (Equation 6.10) making estimation of mean increasingly difficult. Because

of this we get more accurate results only fitting to the first 4 hours of response

where the mean angles are greater. The resulting values are given in table 6.1.

σ

µ
=

√
1− p
n · p

(6.10)

Given a λ and initial values for both ∆ and δt we can then set p subject to

Equation (6.11). This ensures the model is able to fit the mean bend-rate and

angle of the data over time. We then perform a least-squares fit on the parameter

∆, which minimises the difference between the expected variance given ∆ and

the observed variance. When doing this we update the probability p such that

λ remain constant. Determining a suitable δt is difficult as we have no way of

directly measuring it. The final value of ∆ puts an upper bound on the value as

if the time-step is too large the probability must become greater than 1 at high

angles if λ is to be maintained at the measured value. There must also be a lower

bound given by auxin transport speeds and the speed of response, but we are not

able to quantify this accurately. It appears however, that the size of δt affects

the magnitude of finite data effects. While this is difficult to quantify as, by their

nature, finite data effects disappear when large amounts of data is tested, we have

set δt at 7 minutes. This is sufficient time for the physical processes involved to

occur, is below the upper bound set by ∆ and λ, and appears to produce good
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fits to the data.

p =
λ · δt

∆
; (6.11)

When fitting to multiple experimental batches, we cannot simply combine both

sets of roots into a single experiment. Due to unavoidable differences in conditions

it is possible that some batches may display different behaviour to others. We

would expect over a large number of experiments that both faster and slower

behaviour will be present and that the mean behaviour will be unaffected, the

increase in sample size will also compensate for any small variations. However

if we combine experimental batches with differing means we will increase the

variance of the resulting set. When fitting to multiple experimental batches the

fit is performed so as to minimise the sum of the squared residuals over all batches.

The final fitted parameters for our dataset are as follows.

• δt = 7 minutes

• p = 0.0049

• ∆ = 8.4◦

This gives a λ of 0.0059.

6.3.2 Model alignment

When comparing the behaviour of different root populations with differing start-

ing angles it is useful to have a method of comparing these different experiments

to a single unified model. While this can be done by looking at the response

as a function of angle, as done in chapter 4, the binning process weights differ-

ent angles differently depending on the number of measurements taken at that

angle. This can be problematic for visualisation as the weighting is not easily

determined from the figures. Additionally, as the raw data is taken in the form

of angle measurements over time, a time-dependent visualisation is in some ways
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more natural than an angle-dependent visualisation.

Assuming no time-dependence or hysteresis in the system (as shown in sec-

tion 4.2.3) we would expect a root behaving at angle θ to display the same

behaviour no matter its time since reorientation or original reorientation angle.

We can then treat a root reorientated to angle θ and at time 0 the same as a root

reorientated to θ + δθ and at some time t. In effect, each root can be treated

as enacting a portion of the response of an ideal root originally reorientated to

180◦ (excluding roots reorientated to above 130◦)), and whose behaviour is given

by Equation (6.12). For any set of measurements in the form (θ, t), we can then

choose some offset toffset such that we minimise the difference between the mea-

sured results and the ideal path. Given a least squares fit we aim to minimise the

equation given in Eq. 6.13. We are effectively shifting each set of measurements

along in time in order to align them with the expected exponential as well as

possible. When λ is known this sum can be minimised by any standard solver,

we have implemented a modified Newton’s method for this, when λ is not known

however it can be estimated from the angle-dependent bend rate. As we are fit-

ting over time more accurate fits for λ are often obtained by running a second

pass after the initial alignment and fitting the exponential equation (6.12) to the

newly aligned measurements, from this we can obtain a second estimate of λ and

re-fit the alignments.

While this method is a good visualisation tool it does include the addition of a

degree of freedom for every set of measurements aligned and so should not be

solely relied upon.

θt = 180 · eλ·t (6.12)

n∑
i=0

√
(θi − 180 · eλ·(ti−toffset))2 (6.13)
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6.4 Results

The model as described is sufficient to predict properties of the distribution of

root populations over time, such as the mean angle and variance. We also can

simulate populations where appropriate for verification.

6.4.1 Root tip angle distribution

Geometric fits to 90◦ reorientation data show good agreement above approxi-

mately 20◦ in all cases, however there is some deviation below this point with the

experimental data showing faster bending than predicted as shown in Figure 6.2.

Despite this deviation at low angles the model is able to describe the data well

(r2 ≈ 0.99).

While the mean angle is relatively stable the variability of the variance is signifi-

cantly greater. Simulations show the variance has a consistent index of dispersion

of ≈ 0.5 over the time period of the experiment and given the same starting pop-

ulation as seen experimentally. Nevertheless we are able to provide good fits to

the experimental conditions in two out of the three cases tested, with the third

showing greater than predicted variance (Figure 6.2). Given the sample sizes used

and the high predicted variation in the variance it is actually unlikely that the

observed variance would closely fit the expected in all cases. While more accurate

estimates of the variation in response could be obtained with larger sample sizes

we are unable to combine sets of roots as unlike the mean the variance is not

stable.

Comparisons of descriptive properties of the root populations are important for

both verification and model fitting, but we are not limited to testing the mean and

variance alone. By simulating the root behaviour we can compare the observed

distribution of angles with that predicted by the model. Figure 6.3 shows the

observed distribution of the roots analysed in figure 6.2 compared to simulated

roots. Root angles were linearly interpolated to the measured times. While

comparisons were performed for all times measured only measurements taken
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every 2 hours are shown here. We see very good agreement between the observed

and the simulated results at early time points, however at long times (and thus

low angles) we see a more sharply peaked distribution than predicted. This may

be due to the overshooting present in the model which is not observed in this

set of experimental data (though has been reported previously). We cannot see

any significant statistical difference between the simulated and observed results

at any time points (p > 0.05, two-way t-test using the Bonferroni correction for

multiple comparisons).

While the model is able to predict both the mean and variance of roots reorien-

tated to the horizontal we should be capable of predicting behaviour at all angles

below the angle of maximum bending at 130◦. Fig. 6.4 shows the geometric fits

to a total of 368 roots reorientated to angles between 30◦ and 150◦. In order

to ensure accurate comparisons between different starting angles and consistency

with values used for variance fitting, individuals were re-categorised depending

on their actual starting angle after reorientation as described in section 4.2. As

expected, reorientations to above 130◦ show very poor fits to the model. At low

angles below approximately 20◦, we see similar deviations in the 60◦ data as we

saw previously with the 90◦ reorientations. The only exception at low angles

is the 30◦ reorientation data which shows good agreement with the model. An

overview of the observed behaviour across the full range of angles can be gained

by aligning the observed values to a single model as shown in figure 6.5. Although

this alignment adds a significant extra degree of freedom to model it allows for

good visual analysis.

6.4.2 Angle-dependent variation

As predicted by equation (6.8), the variation in angle-dependent response is

greater than that predicted by the model (Figure 6.6), although of the same

order of magnitude with the mean standard deviation being approximately 25%

larger than predicted. When comparing with simulations we see the expected in-

crease in angle-dependent variation over ten minute measurements but not over

thirty minute measurements.
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A. B.

C.

Figure 6.2: A. Example model fits for the mean angle of 90◦ reorientation kinetics.
Each plate has been fit separately to avoid biasing the variance (shown in B). Fits
are geometric given by Equation (6.5), where p = 0.0049,∆ = 8.4◦, (λ = 0.0059).
B. Example model fits for the variance of 90◦ reorientation kinetics. Each
plate has been fit separately to avoid biasing the variance. Fits are calculated
from the expected distribution given the individual root starting angles, where
p = 0.0049,∆ = 8.4◦, (λ = 0.0059). C. Example model fits for the variance as
a function of the mean for 90◦ reorientation kinetics. Each plate has been fit
separately to avoid biasing the variance. As the behaviour is angle-dependent
measuring the variance as a function of angle is more robust than fitting over
time.
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Figure 6.3: Comparisons between the observed root-tip angle angle distribution
and simulated results for 91 roots over the course of a 6 hour kinetics experiment.
Simulated angles were linearly interpolated at the time points shown. N = 91.

A. B.

Figure 6.4: A. Example model fits for the mean angle of all reorientation kinetics.
Mean values are the mean of each plate mean for plates reorientated to the
given angle. Fits are geometric given by Equation (6.5), where p = 0.0049,∆ =
8.4◦, (λ = 0.0059). Error bars show SEM. N given in table 4.1. B. Example
model fits for the variance as a function of angle for all reorientation kinetics.
Mean values are the mean of each plate variance for plates reorientated to the
given angle. Fits are calculated from the full distribution given using the method
outlined in section 6.2.4, where p = 0.0049,∆ = 8.4◦, (λ = 0.0059). N given in
table 4.1

129



6.4 Results

Figure 6.5: Means of 30◦, 60◦, 90◦, 120◦, and 150◦ reorientation kinetics aligned
to a single model. Roots with initial angles significantly above 150◦ have been
grouped separately. Good fits are seen from approximately 130◦, although some
groups (60◦ and 90◦) display deviations at angles below approximately 20◦. N
given in table 4.1

6.4.3 Finite data effects

It is noticeable from the aligned angles over time (Figure 6.5) that the 60◦ and

90◦ reorientations bent faster than predicted at low angles; below roughly 20◦.

It is not clear however whether this is due to the nature of the response or is

a result of having finite data. If we look at the probability of making N bends

after a number of steps sufficient to reduce the mean angle to some small value (as

calculated in Equation (6.9)) we can see the resulting distribution displays visible

kurtosis, with the probability of over-bending by a large number of steps being

greater than that of under-bending by an equivalent number. While we would

expect that with a large enough sample the expected number of bends made

would be as we predict, with a small sample we might expect to see a greater

chance of over-bending rather than under-bending. This is testable in simulation,

where we do in fact see similar over-bending to that seen in experimental results,

albeit not to the same degree. Figure 6.7 shows an example simulation run over

100 roots, roughly the number gathered in the data set, while we do not see

deviations as large as seen in the experimental data the same trend is present,
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A. B.

C. D.

Figure 6.6: A. Predicted instantaneous angle-dependent behaviour compared
to observed behaviour. Model predictions were calculated from Equation (6.6)
where p = 0.0049, ∆ = 8.4◦, (λ = 0.0059) and assuming no error. Error bars
show standard deviation. As expected we see slightly over the predicted varia-
tion in response. Based off 13194 measurements from 370 roots binned into 5◦

bins. B. Predicted instantaneous angle-dependent behaviour compared to ob-
served behaviour. Model predictions were based on simulations measured every
10 minutes, where p = 0.0049, ∆ = 8.4◦, (λ = 0.0059). Error bars show stan-
dard deviation. As simulations do not display measurement error or individual
differences we would expect less variation in simulation than observed. Based off
13194 measurements from 370 roots binned into 5◦ bins. C. Predicted instan-
taneous angle-dependent behaviour compared to observed behaviour over a 30
minute time-scale. Model predictions were based on simulations measured every
30 minutes, where p = 0.0049, ∆ = 8.4◦, (λ = 0.0059). Error bars show stan-
dard deviation. Over these time scales we would predict measurement errors to be
negligible meaning we see good agreement between simulation and experiment.
Based off 4398 measurements from 370 roots binned into 5◦ bins. D. Angle-
dependent variance for data measured at 10 minutes and 30 minutes compared
to predictions. The 10 minute data is more variable than expected which can
be accounted for by measurement error, model predictions are based of Eq. 6.6.
The 30 minute data fits the predictions well, over 30 minutes we cannot assume
bending is binomial so simulations have been used to calculate the variance.
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suggesting at least some of the deviation observed may be explained by finite data

effects. Figure 6.8 shows the mean of 1000 runs of the model at 30◦, 60◦, 90◦, and

120◦ with the experimental data for comparison. While this approximately ten

times the sample size gathered experimentally there is still some deviation from

the expected angle below roughly 10◦. As expected this deviation increases as

we increase ∆ due to a variations from the expected number of bends resulting

in larger effects. It also decreases with larger sample sizes, again as expected.

Unfortunately at low angles the gravitropic response is weaker compared to other

behaviour such as root waving and skewing, this makes it increasingly difficult

to accurately measure the gravitropic behaviour at low angles. While the reason

for the low angle deviation from the model is not clear it seems likely that it is a

combination of finite data effects and other behaviour obscuring the gravitropic

response.

6.4.4 Auxin concentration after reorientation

The model presented here provides a good description of gravitropic root be-

haviour but does not explain the mechanism behind this behaviour. Further,

while we have shown the response can be described by a stochastic model we do

not know the source of the variation within responses. It is possible (and indeed

seems likely) that the statocyte is a noisy angle sensor. If this is the case we

would expect to see considerable variation in auxin concentration in the flanks of

a gravistimulated root as a result of the noisy output from the columella. It is

also possible that cellular elongation is not a consistent process in which case we

would expect less variation in auxin concentration as the variation in response

would occur in the response to auxin not the perception of gravity.

R2D2 is a ratiometric auxin reporter containing a stable RFP and an auxin

degradable YFP which allows for auxin levels in vivo to be assessed (Liao et al.,

2015). R2D2 measurements were obtained from the post-columella epidermis of

roots after 40 minutes of gravistimulation at angles between 0◦ and 120◦ (Sageman-

Furnas, 2016). By comparing RFP and YFP we are able to infer relative auxin

levels on both the upper and lower side of the root. While this gives consistent
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Figure 6.7: Means of 100 simulated roots at 30◦, 60◦, 90◦, and 120◦ using the
experimentally determined bend size of 8.4◦. 100 roots is of the same order of
magnitude as the data collected (52-87 roots), while the low angle deviation is
not as great as is seen in the data a similar trend is present.
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A. B.

C.

Figure 6.8: A. Means of 1000 simulated roots at 30◦, 60◦, 90◦, and 120◦ using
the experimentally determined bend size of 8.4◦. Simulations are shown with
lines, experimental data with circles. At low angles simulated results tend to
bend more than expected. This effect increases with higher ∆ and decreases with
higher sample sizes. B. Means of 1000 simulated roots at 30◦, 60◦, 90◦, and 120◦

using a bend size of 10◦. Simulations are shown with lines, experimental data
with circles. At low angles simulated results tend to bend more than expected.
This effect increases with higher ∆ and decreases with higher sample sizes. C.
Means of 1000 simulated roots at 30◦, 60◦, 90◦, and 120◦ using a bend size of 20◦.
Simulations are shown with lines, experimental data with circles. At low angles
simulated results tend to bend more than expected. This effect increases with
higher ∆ and decreases with higher sample sizes.
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auxin levels we are not able to determine the exact auxin concentration in abso-

lute terms, nor do we know the concentration necessary to induce a response in

the elongation zone. If we make the minimal assumption that bend probability

is proportional to the auxin asymmetry, then we can find some conversion factor

c such that P (bend) = c · Auxin. This allows us to fit the model to the mea-

sured R2D2 fluorescence despite not having a well defined conversion between

fluorescence and auxin concentration. We can obtain a value for c by fitting

the probability of bending as predicted by the model on the data-set collected

previously to the mean R2D2 asymmetry at the measured angles, as shown in

figure 6.9. While this does not allow us to predict the measured mean asymmetry

we can then use the conversion factor obtained here to predict the expected vari-

ance in auxin levels, shown in figure 6.10. Unfortunately with the limited data

available we are not able to determine whether the variation observed is sufficient

to explain the variation in response. While it appears that the variance is of the

same order of magnitude as expected we see lower than expected variation at low

angles, and higher than expected at high angles. Additionally the shape of the

variance as a function of angle is not convex as would be predicted. However

as we have shown previously the measured variance itself is very susceptible to

noise, and with the small sample sizes available (12 ≤ N ≤ 14) this cannot be

ruled out.

Interestingly while the ratio of auxin asymmetry at a given angle is reasonably

consistent (at least after 40 minutes of gravistimulation) the magnitude of auxin

on the upper and lower sides of the root is not. Figure 6.11 shows the upper

and lower auxin levels for individual roots. The absolute auxin concentration can

vary by up to a factor of 4 within a single reorientation angle but the lower
upper

ratio

remains constant.

6.5 Discussion

Historically, models of gravitropic behaviour have focused on the expected be-

haviour, with the Sine Law and its variants presenting a deterministic prediction

135



6.5 Discussion

Figure 6.9: Mean auxin asymmetry 40 minutes after gravistimulation. The model
fit shows a LSQ fit to the experimental data. The is a linear relationship between
angle and auxin asymmetry up to 120◦ as predicted by the model. N ≥ 13, error
bars and shaded region show SEM.
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Figure 6.10: Variance in observed auxin asymmetry 40 minutes after gravistim-
ulation. Model fits are based of the expected instantaneous variance scaled by
c. While the variance of of the correct order of magnitude it is not possible to
determine whether it is sufficient to explain the variation in response. N ≥ 13
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Figure 6.11: Individual upper and lower side auxin concentrations 40 minutes
after gravistimulation. While there is considerable variation in absolute concen-
trations the ratio of lower

upper
is consistent with a linear model. Circles represent

individuals, solid lines represent the predicted ratio based on the fit shown in
figure 6.9, dotted lines represent the best fit to the data at the given angle.
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of the gravitropic response. Implicit in this is the assumption that the mechanisms

behind the gravitropic response are also deterministic, or at least sufficiently con-

sistent that they can be treated as such, and that the variation in population

response is down to individual differences. However there is evidence at both the

mechanistic level and the behavioural level that the gravitropic response itself

is a stochastic process. Statoliths display erratic saltatory movements, possi-

bly making the generation of a consistent signal difficult, and there is evidence

that increasing thermal noise is able to increase the gravitropic response. Added

to this the relative weakness of the gravitational signal compared to the back-

ground noise within a cell would make accurate measurements difficult, although

stochastic resonance may be able to boost the detection.

By treating gravitropic response as a stochastic process we are able to predict

the population level behaviour of reorientated roots below 130◦. Given reorien-

tations of 90◦ we are able to predict the mean and variance of root populations

(Figure 6.2). While predictions of the variance over time are not always reliable

(Figure 6.2) this may be down to the high degree of variability in the variance,

which is predicted to be greater than in the mean response (see section 6.4.1).

Despite this we are able to predict the variance against angle more reliably (Fig-

ure 6.2). This is likely to be due to the lack of time-dependence in the response;

as gravitropic response is fundamentally an angle-dependent process we would ex-

pect angle-dependent analysis to produce more reliable results. This holds over a

range of angles with a single model able to predict both the mean angle variance

of root populations reorientated to between 30◦ and 120◦ over the course of 6

hours (Fig. 6.4).

Although the model produces good fits up to 130◦, we are not able to capture the

behaviour above this point, this is especially obvious when the data is aligned a

single model as shown in figure 6.5. This demonstrates the difficulties in fitting to

data over time, as even once the high angle populations have on average moved

to below the cut-off point of 130◦ the population still contains roots above this

angle, skewing the results. Instead angle-dependent analysis provides a better

description of the behaviour, with the model able to capture both the mean

and variance in response up to 130◦. It is true that we see greater variation than
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predicted in the experimental data (Figure 6.6), however this is to expected given

the limitations in measurement accuracy when measuring small responses over

a fast time scale. If larger measurements are used, measuring every 30 minutes

as opposed to 10, we see good agreement between experimental and predicted

behaviour (Figure 6.6).

At very low angles we see considerable variation in response, with some exper-

iments bending faster than predicted. While we cannot fully explain this effect

it is likely to be due to finite data effects. Similar responses are seen in sim-

ulations although not at the magnitudes observed experimentally (Figure 6.7).

Unfortunately at low angles it becomes increasingly difficult to separate the weak

gravitropic response from the background behaviour of the root, which may ex-

plain some of the discrepancy.

We have had some success describing the behaviour stochastically, but it is not

clear at what point the variation in the response originates. While the statocyte

seems like a good candidate, given the aforementioned sources of noise within the

cell; we cannot confirm whether the output of the columella as measured by the

auxin concentration in the flanks is sufficiently variable to explain the response.

By relating the observed auxin concentration to the probability of bending we can

make tentative predictions for the expected variation, but we do not have a clear

enough understanding of the dynamics of the R2D2 reporter to give accurate

predictions. Nevertheless the observed variation in auxin concentration is of the

correct order of magnitude to explain the variation in response, and so this cannot

be ruled out.

The fact that we are able to describe the response using a discrete model suggests

that the response to a gravitropic signal is non-linear, indeed the cellular response

to auxin has been shown to be sigmoidal making a discrete step function an ap-

propriate description. If this is the case we would expect relatively consistent

bending (the consistency depending on the steepness of the sigmoid) to occur

when the auxin concentration reaches some critical threshold. It remains to be

seen whether this is achieved when natural noise on top of a angle-dependent

baseline exceeds this threshold, or whether it is the result of large scale changes
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in concentration which are triggered irregularly. While we have assumed instan-

taneous bends at discrete time points it is clear that the physical process of

bending occurs over time. However the fact that response can be described well

with a time step of 7 minutes suggests that this is sufficient time for bending

to occur. As the response has been shown to depend on the current angle this

must be sufficient for the angle to be detected a gravitropic signal to pass from

the columella to the elongation zone. This requires a number of process to occur

for which we can estimate the times required. Statolith sedimentation and the

initial perception of a gravitropic stimulus has been shown to occur on the order

of 30 seconds. While we do not have accurate figures for the auxin transporta-

tion time from the columella to the elongation zone, given rough auxin transport

rates (Kramer et al., 2011) and the distances involved this is likely to be around

3 minutes. This suggests that the response to a change in auxin concentration

occurs over the time scale of a 3-4 minutes. Further work is necessary to confirm

this estimate.
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Chapter 7

General discussion

Over the course of this project a ROTATO system has been developed allowing

roots to be constrained at a given angle with respect to gravity for prolonged time

periods (chapter 3). While the hardware used was not sufficiently reliable, the

software developed has proven to be robust and portable; and is now being used

successfully elsewhere. The computer vision system developed for the ROTATO

has been adapted for large-scale automated analysis of multiple roots (chapter 5).

Although older data-sets were not able to be automated this provides a platform

for future work to be analysed in greater detail than was possible previously.

In depth analysis of a large data-set of reorientation kinetics has been performed,

with an emphasis on determining the factors that contribute to gravitropic re-

sponse at the behavioural level, and over which time-scales (chapter 4). Grav-

itropic response was found to be angle-dependent, with time-dependent effects

being negligible and no evidence of hysteresis at the time-scales studied. Gravit-

ropic response was found to be highly variable, with mean bend-rates increasing

linearly up to 130◦.

Based on the analysis performed in chapter 4, a minimal stochastic model was

developed which is able to predict gravitropic response at the population level as

well as providing mechanistic insight into the processes and time-scales involved

in a gravitropic response (chapter 6).
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7.1 The ROTATO system

When attempting to understand tropic behaviour is is important that one is able

to accurately control the stimulus under study. Due to the nature of gravitropic

behaviour, and the impracticality of changing the magnitude or direction of grav-

itational field the plant is experiences, the ROTATO system, in which roots can

be constrained at a given angle with respect to gravity, promises to be a valu-

able tool for understanding gravitropic behaviour in more detail than is currently

possible. Although at least one other ROTATO is known to exist (Mullen et al.,

2000) the details of it’s construction are not currently publically available.

The ROTATO system described in chapter 3 consists of a software system to

identify, track, image, and adjust, roots as well as a set of physical hardware

capable of making the required measurements and adjustments. The two compo-

nents have been designed to be easily separable so that new ROTATO systems

can be built with different hardware as required. This has been demonstrated

successfully as the software outlined in chapter 3 has now been ported to the orig-

inal hardware used in Mullen et al. and is performing well. While specific details

will depend upon experimental conditions and equipment, the ROTATO software

is able to accurately track roots position and angle to within ±1◦ for prolonged

periods. When conditions are good this has shown itself to be extremely reliable,

however as is often the case when dealing with objects in the real world conditions

are often far from perfect. There are known problems when the growth media

if not consistent, such as when bubbles are present, which have been shown to

reduce to accuracy significantly. While it is possible that alternative computer

vision techniques, such as a level-set method, could deal with such problems it is

likely that any such system will fail on occasion. Given this there are a number

of simple steps that can be taken to produce good results. Firstly plates can be

screened before being placed on the ROTATO system allowing obvious problems

to be caught. Secondly experiments can be monitored in real time to ensure

problems are caught promptly, often a simple adjustment of the lighting or cam-

era position can prevent loss of accuracy occurring. Due to the slow growth rate

of most plant roots, combined with measures in place to ensure that individual
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errors do not significantly affect the root tip angle, it is often possible to see a

problem coming well before it occurs making even infrequent checks sufficient.

With this in mind, the software is capable of performing its job well and will

hopefully be of considerable use in the future.

The results obtained from the ROTATO system are inconclusive and of unknown

accuracy. While the tip angle measurements themselves can be verified, the

behaviour observed is not as expected or previously reported (Mullen et al., 2000).

Like previous studies we see continuous consistent bending at the population level,

but the rates of bending do not match those previously observed. Specifically,

while there is an upwards trend in bend-rates, with higher angles producing higher

bend-rates, at 60◦ we observed faster bending than at 90◦. While the exact angle

of maximum bending is disputed most estimates put it between 105◦ and 130◦,

indeed in free response experiments we observe maximum bend-rates at around

130◦ (see chapter 4). There are two immediately obvious possible sources of error.

Firstly this could simply be down to natural variation in response, it is possible

that the results obtained are accurate and that the sample size is simply too

small detect the increase in response between 60◦ and 90◦. The second possibility

is a failure of the controlled conditions. While the ROTATO system was in

a controlled environment with the temperature maintained at 20◦ it has been

known for the temperature regulation to fail. As the experiments themselves

are time consuming the data was collected over the course of a few months, it is

possible that over this time there were large enough changes in conditions to affect

the results. The last possibility is a problem with the ROTATO hardware itself.

While we are able to verify the accuracy of the software from the stored images

produced during the experiment, we are not easily able to verify the accuracy of

the stage response while an experiment is in progress. If the reported adjustments

do not match the actual adjustments the results obtained will be incorrect. While

we have not detected any significant error in adjustments under test conditions

the possibility cannot presently be discounted.
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7.2 Automated analysis is necessary for high through-

put measurements

Given the inconsistency in gravitropic response, even between plants under iden-

tical conditions, large sample sizes are necessary to accurately measure the ex-

pected behaviour. This is especially important when higher order moments, such

as the variance, are being measured as they can be more prone to error than the

mean response. In order to measure fast responses high frequency measurements

are also necessary, although this comes with drawbacks in the accuracy of mea-

surement. Currently the bottleneck when collecting large amounts of data from

kinetics experiments is the time required to manually analyse the images pro-

duced. An automated system would allow significantly larger numbers of plants

to be analysed, and at higher measurement frequencies than is currently possible.

The automated analysis method discussed in chapter 5 provides a good platform

for moving towards completely automated analysis. Under the correct conditions

properties such as the mean and variance of root populations can be measured

showing good agreement with manual measurements. However the system is not

currently able to accurately measure root tip angles under poor conditions. This

is certainly an area where more advanced computer vision techniques would be

appropriate, as unlike the ROTATO system mentioned above it is not always

practical to manually verify measurements and adjust the conditions during the

course of the experiment. While the accuracy of the measurements is limited

by the resolution of the images produced, better imaging conditions should also

allow for much more accurate automation. Preliminary test images obtained using

back-lighting show very good image conditions, with consistent background and

excellent contrast maintained throughout. It is likely that the current vision

system would be able to produce good results under these conditions, however

the analysis of the data collected during the course of this project cannot be

automated unless significant improvements are made to the vision system.
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7.3 Root gravitropism is angle-dependent

To date there has been little effort to characterise gravitropic behaviour as a dy-

namic system. While the assumption has generally been that behaviour depends

up on angle (tip angle in roots), the time scale of sensing and response has not

been carefully considered beyond presentation time assays. There have not been

any extended attempts to study hysteresis at the behavioural level, some models

have alluded to hysteresis to explain low angle bending (Band et al., 2012). By

analysing response as functions of both time and angle we are able to determine

that time-dependent effects are negligible or non-existent over the time scales of

a response. We were also unable to see any evidence of hysteresis in gravitropic

behaviour. This is not to say that time can be disregarded in all models of gravit-

ropism. Clearly, cellular process such as statolith sedimentation, PIN localisation,

and auxin transport take time to happen. Additionally, any behavioural response

times will be limited by factors such as auxin transport velocity (Kramer et al.,

2011) and the distance between the root tip and the elongation zone (Verbelen

et al., 2006). We can however say that these processes are relatively fast, at least

compared to the scale of a full gravitropic response which can take many hours.

Therfore, under free response conditions, the angle which is being responded to

is not going to be significantly different to the current angle.

Detailed analysis of a large number of roots has allowed us to more accurately

analyse behaviour as a function of angle than has been seen previously. By

binning responses by angle we are able to look at behaviour over very small

angle ranges. Although this approach does lose us some accuracy in individual

measurements compared to looking at the population level mean angles and bend-

rates, this is more than compensated for by ensuring that we are not grouping

together roots at vastly different angles. When looked at this way we see what

appears to be a linear relationship between angle and bend rate up to around

130◦. Similar angles of maximum bending have been observed previously with

measurements typically ranging between 120◦ and 135◦ (Audus, 1964; Larsen,

1969). More interesting is the shape of the response. This binning approach

is, to my knowledge, unique in that it allows a much higher angular resolution
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of measurements than is normally obtained. It perhaps for this reason that we

are able to distinguish between a Sine Law like response and a linear response,

certainly the differences are subtle and unlikely to be noticeable without a large

data set and careful testing. Adoption of a linear model has significant advantages

over a modified Sine Law. Firstly the Sine Law relies on an assumption about

the mechanism behind graviperception, specifically that it is dependent upon the

force of gravity acting across the organ. Modifications to the Sine Law which are

able to accurately capture the angle of maximum response are forced to abandon

this mechanistic justification. It is possible that such modifications could be

explained by the shape of the collumella. Statocytes are not perfectly square, at

least in Arabidopsis. This causes the lateral cell wall to be at a different angle to

the centre line of the root. If it was the force acting on the lateral cell wall we

could then explain maximum bending at angles above 90◦. However while this

may be able to produce maximum bending angles above 90◦ the statocyte does

not appear to be sufficiently rhomboid to explain the increase in bending up to

130◦. In fact there is recent evidence that it is angle not force which is detected by

the statocyte (Chauvet et al., 2016), if this is the case then a linear relationship

is the more parsimonious model of behaviour. This is convenient as it allows us

to model behaviour even when measurements are taken at few discrete angles, as

is common when studying gravitropic behaviour, without fear of over-fitting to

our data as may occur with modified Sine Laws. Mathematically, the behaviour

produced is also easier to deal with than ad-hoc modified Sine Laws, producing an

expected exponential decay in tip angle. In fact the assumption of linearity has

been made in the past to produce more mathematically tractable models (Bastien

et al., 2013).

For all it’s advantages, a linear model cannot explain the observed decrease in

bend rate above 130◦. While it makes intuitive sense that as a root approaches

vertical it becomes harder to determine its lower side, higher angle behaviour

remains to be properly characterised. While one may naively expect bending to

decrease above the horizontal, in order for a non-90◦ maximum bending angle

there needs to be some mechanism to break the 90◦ symmetry. Some initial

geometric models of cell geometry suggest the shape of the statocytes may be
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sufficient to break the 90◦ symmetry. However this remains to be shown.

It is striking that there is considerable variation in gravitropic response even

within an individual responding root (see section 4.2.2). While it is possible

that this is merely due to the interaction between gravitropic and non-gravitropic

behaviour, such as root waving, this explanation seems unlikely because most non-

tropic behaviour in Arabidopsis is not large or fast enough to explain the variation,

with waving having a period of around 20 hours (Simmons et al., 1995).It is

because of this that we conclude that the gravitropic behaviour itself is best

described stochastically. Stochastic processes in gravitropism have been suspected

before (Ma and Hasenstein, 2007; Meroz and Bastien, 2014) at the cellular level

but gravitropism is normally treated deterministically. It is not clear at what

point in the gravitropic process the stochasticity occurs, however there are a

number of promising options. It is possible the graviperception is subject to

noise. It is known that statoliths display saltatory movements although the effect

this has on gravitropic response is not clear (Hejnowicz and Sievers, 1981; Leitz

et al., 2009), however these relatively large random movements may well introduce

a level of stochasticity into the auxin signal output by the cell. It has been

suggested that due to the weakness of the gravity signal noise amplification may

be necessary for sensitive graviperception (Hasenstein, 2011). Given this statolith

dynamics and the initial phases of signal transduction are a natural place to look

for the source of variation in gravitropic response. In this case we can consider

the statocytes/statoliths as noisy sensors which give rise to noisy responses. It is

also possible that the response to auxin of the cells in the elongation zone is not

consistent. While there has been work to determine a dose response curve for

auxin concentration (Cleland, 1972) it is not clear how consistent the response is.

In this respect it is possible that the motors which drive the gravitropic response

are themselves noisy.
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7.4 The stochastic model of root gravitropism

Treating gravitropic behaviour as a stostastic process allows us to create powerful

models capable of predicting not just the average response but the expected

distribution of responses seen in a population. This provides a useful tool not just

for model verification but for exploring new phenotypes, as variation in response

can now be studied explicitly. For example by using a stochastic model it would

be possible to determine whether differences in response are due to real changes in

gravitropic response or due to variation in starting angles caused by a root waving

phenotype. If the model parameters can be accurately mapped to biological

processes it would allow the causes of similar behaviour, such as a change in

graviperceptive sensitivity or auxin sensitivity, to be disentangled.

While we have tried to produce a minimal model of gravitropic behaviour there are

a number of assumptions which have mechanistic implications. The assumption of

linearity is supported by the idea that statoliths do not in fact act as force sensors,

as discussed previously (section 7.3). While we have seen no time-dependent

effects in our analysis, the fact that a time-independent model can capture the

behaviour is encouraging. Although it has not been possible to fully pin down

the best time-step to use for the model, we have had good results with a δt

of 7 minutes. This is reasonable given that gravity perception can occur in as

little as 10 seconds (Kiss et al., 1989) and rough estimates at the delay due to

auxin transport are of the order of a few minutes (see section 6.2.1), but the

response time of cellular elongation is not known. Given a δt of 7 minutes we

would expect the response to be fast with elongation occurring within a couple

of minutes of a change in auxin concentration. This is certainly a subject that

would be interesting to investigate in depth as there is a lack of information on

the specifics of elongation kinetics.

The model presented in this thesis is only relevant to primary roots with a vertical

GSA. Analysis of lateral root kinetics reveals both similarities and differences in

response. At angles up to 130◦ the response in primaries appears linear, as does

the response in laterals but with an offset causing upwards bending below the

GSA and downwards bending above the GSA (Fig. 7.1). This is supported by the
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A. B.

Figure 7.1: A. A comparison between bend rate in lateral and primary Ara-
bidopsis roots. At low angles the lateral roots (red) appear to behave similarly
to primary roots (blue) with the addition of an offset. The black dashes show the
addition to an offset to the primary root fit sufficient to obtain the observed GSA,
the angle-dependent behaviour is very similar between the two models as shown
by the similarity in gradient. N = 111 lateral roots, 370 primary roots binned
into 5◦ bins. Fits are bi-linear. B. The proportional bend-rate for primary and
lateral roots. In laterals the proportional bend rate appears to be hyperbolic as is
consistent with a constant offset. The measurements for this data were obtained
from Ryan Kaye.

proportional bend rate which appears to fit a hyperbolic model as would occur

given a constant offset (Fig. 7.1). This is as expected given previous work iden-

tifying an anti-gravitropic offset (Roychoudhry et al., 2013). Crucially however

the gradient of the response is the same in both lateral and primary roots, sug-

gesting that the gravitropic mechanisms are shared in both laterals and primaries

and that our model may be able to be adapted for lateral roots. Interestingly

the point of maximum bending has shifted to around 90◦ in lateral roots. The

reasons for this are unknown, and as we do not know what determines the point

of maximum bending in primaries it is hard to suggest a cause for the shift. It

would be interesting to see how the model can be adapted to include an AGO,

and whether this would shed any light on the problem. It is worth considering

that the difference between the maximum bend angle in primaries and laterals is

around 40◦, very close to the lateral root GSA (approximately 45◦ based off the

fit in this dataset) although it is not clear whether the two are related.
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While we have assumed for this model that the gravitropic response is stochastic,

it is possible that the root growth itself is a stochastic process. This could be due

to either stochastic cell division in the root apical meristem, or to noisy cellular

elongation in the elongation zone. As gravitropic response relies on differential

growth, stochastic growth underlying a deterministic gravitropic process could be

expected to produce stochastic behaviour. If this is the case the model presented

here may be generalisable to root growth under other conditions. High resolution

(both spatial and temporal) measurements of root growth in non-gravistimulated

roots would allow the variation in growth rate to be quantified, and a distinction

between stochastic gravitropism and stochastic growth to be made.

7.5 Final comments

In this thesis we have presented in depth analysis of gravitropic behaviour in

Arabidopsis with an emphasis on understanding what determines the magnitude

of a gravitropic response. We have shown the importance of angle dependence

when describing gravitropic behaviour as well as the inherently stochastic nature

of the response. Additionally a minimal model has been proposed which is ca-

pable of describing the behaviour of populations under gravitational stimulus in

greater detail than has been possible previously. However our understanding of

gravitropic behaviour is still far from complete. Important questions remain to

be answered such as what determines the angle of maximum response and why

does it appear to be different in lateral roots? Any complete model of root be-

haviour will need to be extended to include other tropic behaviours, and it would

be interesting to see whether other tropisms can be framed in a similar way. Non-

tropic behaviours such as circumnutation and root waving have been modelled

but their interaction with tropic responses has not been adequately addressed.

Root behaviour is often treated as purely the response to stimuli, such as gravity

and light, but in soft herbaceous plants mechanical interactions with the environ-

ment are likely to play a large role in determining the final behaviour displayed.

It would be interesting to see how behavioural models such as the one presented
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here can be integrated with mechanical models, as this may allow for a better

understanding or the underlying biological responses.

While this work was concerned with Arabidopsis, almost all species of plant (and

fungi) display gravitropic behaviour, many of which have been previously shown

to follow similar Sine Law like behaviour. There is still work to be done extending

our model to other species and to organs with non-vertical GSA.

Plant behaviour is exceedingly complex and we have a long way to go before we

are able to fully describe it, let alone fully understand the mechanisms behind it.
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Petrášek, J. and Friml, J. (2009). Auxin transport routes in plant development.

Development, 136(16):2675–2688. 7

Pound, M. P., French, A. P., Atkinson, J. A., Wells, D. M., Bennett, M. J., and

Pridmore, T. (2013). Rootnav: navigating images of complex root architec-

tures. Plant Physiology, 162(4):1802–1814. 93

159



BIBLIOGRAPHY

Robert, H. S. and Friml, J. (2009). Auxin and other signals on the move in plants.

Nature Chemical Biology, 5(5):325–332. 7

Roux, S. J. (2012). Root waving and skewing-unexpectedly in micro-g. BMC

plant biology, 12(1):231. 20

Roychoudhry, S., Del Bianco, M., Kieffer, M., and Kepinski, S. (2013). Auxin

controls gravitropic setpoint angle in higher plant lateral branches. Current

Biology, 23(15):1497–1504. 17, 18, 150

Roychoudhry, S. and Kepinski, S. (2015). Shoot and root branch growth an-

gle controlthe wonderfulness of lateralness. Current opinion in plant biology,

23:124–131. 16
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Appendix A

An example ROTATO script

% sets up and runs 2 MATATO experiments in parallel

jitter = 0; % whether to jitter the root

constrain = 1; % whether to constrain the root

adjustTime = 60; % time in seconds between adjustments

micType = ’invMic’; % microscope type (determines default image analysis settings)

% number of objects to run and which camera is attached to which stage

nMATS =2;

camIDs = [1 2];

stageIDs = [1 2];

% get time to run for

numSteps = input(’Enter the length of time to run for (hours): ’);

numSteps = round(numSteps*60);

% what sort of root is this?

lateral = input(’Is this root a lateral (1 for yes, 0 for no)? ’);

% make a connection to the controller.
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port = findMotorPort();

con = createConnection(port);

% instansiate MATATOs

MATATOs = {};

for i = 1:nMATS,

MATATOs{i} = MATATOobject(jitter,constrain,lateral,micType,stageIDs(i),camIDs(i),con);

end

% perform setup step

for i = 1:nMATS,

MATATOs{i}.setup()

end

% run step loop

for i = 1:numSteps,

tic;

for j = 1:nMATS,

MATATOs{j}.stepMATATO();

MATATO = MATATOs{j};

save(MATATOs{j}.saveName,’MATATO’);

end

timeElapsed = toc;

waitTime = max(0,(MATATOs{1}.adjustTime)-timeElapsed);

pause(waitTime);

end
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Appendix B

ROTATO experimental settings

The following table contains the standard experimental settings a ROTATO ex-

periment. While these settings were used for the majority of experiments some

computer vision were tweaked in order to ensure accurate angle detection. Inter-

nal settings, depreciated settings, and visualisation options are not included as

they do not effect the results shown previously.
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Setting Value Description
Adjustment time 60 The time in seconds between adjustments.
Adjustment number 361 The maximum number of adjustments

made before stopping.
Maximum turn 2 The maximum turn allowed in a single

step.
Minimum turn 2 The minimum turn allowed in a single

step.
Constraint angle X The angle to constrain the root at, this

varied depending on the experiment.
Constrain True Whether to constrain the root.
Jitter False Whether to add noise to the movement

every step. This was used for testing only.
Lateral False Whether the root is a lateral root, if so

different vision defaults were used.
Tip length 70 The length in pixels of the root tip used

in angle detection.
Root width 70 The width of the root.
Close size 23 The size of the kernel used when closing

the image. Should be about one third of
the root width.

Open size 23 The size of the kernel used when opening
to remove hairs. Should be similar to the
close size.

Invert colours 1 Whether to take the complement of the
initial image prior to processesing.

Absolute value False Whether to use the absolute change in in-
tensity from the background, if set to false
only light objects are detected.

Extraction threshold 15 The threshold used to detect a root.
World size 71 (or 151) The size of the surrounding area used in

background equalisation. This varied de-
pending on the image quality with 151 be-
ing a common option.

Blur size 0 Size of initial blurring kernel used to de-
crease noise, this was not needed in the
final version of the code but is included
nonetheless.

Noise size 200 Size in pixels of small objects to be re-
moved after segmentation.

Spur size 60 The length of small spurs to remove from
the skeleton.

Angle method ’line’ Whether to use a line or an ellipse to fit
to the root tip when detecting angle.
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