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The construction industry has witnessed a widespread of cold-formed steel structures (CFS) in the recent years. However, despite its advantages due to the thin-walled nature of such kind of structures they are highly susceptible to instabilities including coupled instabilities. Currently the modal decomposition method used to analyse these coupled instabilities still has space of improvement. For example, the method generates overly rigid distortional and global modes, and an increased computational effort is needed when dealing with complex cross-sections. Regarding the design of CFS, the existing design code is cumbersome to implement since different empiral formulas are proposed for different types of buckling. In addition, an overly conservative prediction of the ultimate load is obtained for sections where there is significant disparity between the slenderness values of different parts. 
The aim of the project is to improve the modal decomposition methods and to exploit its application aspects in the analysis and design of CFS undergoing coupled instabilities. 
First, two new modal decomposition methods are developed, namely the polarisation method and the nodal force method. Both of the methods are based on the finite strip method (FSM), and are aimed at overcoming the disadvantages of the existing method. 
Second, the nodal force method is applied to analyse the deformed shape of CFS columns in the post-buckling stage, in which the contributions of buckling modes are traced until the column fails. This lays a foundation for the development of design approaches dealing with coupled instabilities. In addition, the modal decomposition method is applied to the statistical analysis of geometric imperfections of CFS specimens, which leads to a scientific charactorisation of geometric imperfections.   
Finally, a design approach is developed based on the concept of the direct strength method (DSM). In the proposed design approach, the initial post-buckling stiffness is considered as an input parameter in addition to the critical load. These input parameters are then used to establish a multi-linear model approximating the elastic post-buckling behaviour, which is linked to the ultimate load using empirical formulas. In the proposed design approach, two improvements are made. First, a unified design formula is used for different types of buckling, which are distinguished by the difference in post-buckling stiffness. Second, the overly conservative prediction of the ultimate load, when one part of the section is significantly slender, is avoided. This is due to the fact that in these cases, the reduction of the stiffness when buckling occurs is comparably minor.  
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CHAPTER 1. [bookmark: _Toc496973313]Introduction

[bookmark: _Toc398802855][bookmark: _Toc496973314]Background
Cold-formed steel (CFS) structural elements are steel structural products made by bending thin flat sheets of steel at ambient temperature (Fig. 1.1). CFS structures have a history of over a century, and recently it has become widespread throughout the world thanks to the more economic production of steel coils particularly in coated form with zinc or aluminium/zinc coatings. Nowadays, CFS structures are employed in a wide range of applications, such as roof purlins, stud walls, storage racks, wall and roof cladding, and more recently even as primary load-bearing members in low to medium rise buildings. 
[image: https://c2.staticflickr.com/8/7026/6692550565_4fc5afd1f7_z.jpg]
[bookmark: _Ref429735196][bookmark: _Toc495159503]Fig. 1.1 Cold-formed steel structural members
CFS has many advantages, such as a high strength-to-weight ratio and a relatively straightforward and versatile manufacturing process, leading to a high flexibility in the cross-sectional shapes which can be obtained. However, the manufacturing process limits their wall thickness and, as a result, they are susceptible to various instabilities. These may include coupled instabilities, where buckling modes of different types interact with each other. 
In order to gain an in depth understanding of coupled instabilities, it is useful to analyse it using a modal decomposition method. In this method, the deformed shape of a buckled CFS member is decomposed into a linear combination of individual buckling modes, each with a specific mechanical significance. In doing so, it is possible to study the behaviour of each isolated buckling mode, as well as determine their contributions to the overall behaviour of the member when coupled instabilities occur. 
[image: ]The involvement of coupled instabilities adds to the design complexity of CFS member. Current design codes for CFS, including the European Eurocode 3 and the American AISI codes, are typically based on the effective width method, which is based on the fact that after a simply supported plate buckles, the central part of the plate carries a reduced load due to the large out-of-plane displacements (Fig. 1.2). As a result, the load becomes concentrated in strips adjacent to edges of the plate. Therefore, it is assumed in the effective width concept that only a certain width of plate next to the edges plays a role in the load-carrying capacity of the member, while the contribution of the reminder of the plate is neglected. The combined width of the load-bearing parts is named ‘the effective width’. The design codes based on it are inevitably suffering from some disadvantages. First, in these design codes the effective width of each flat element of the cross-section has to be determined. As a result, the computation procedure becomes more tedious for members having complex cross-sections, such as lipped channel sections with additional return lips, and sections with stiffeners. Second, each element is considered separately, ignoring the rotational restraints provided by the adjacent elements.[bookmark: _Toc495159504]Fig. 1.2 Effective width method

With the purpose of overcoming the deficiencies, a new design methodology called the direct strength method (DSM) is proposed. In this method, the load carrying capacity of a CFS member is linked to its slenderness by empirical formulas, subject to the type of buckling it undergoes. In this regard, the DSM is deemed to be an extension of the established column design method to new types of instability. The critical stresses used to calculate the slenderness associated with different types of buckling are determined using the signature curve obtained from the FSM.
[bookmark: _Toc496973315]Necessity of research
Current modal decomposition methods are suffering from a couple of deficiencies. First, they adopt the idealised assumptions for distortional and global modes, which neglect, for example, membrane transverse strains and shear strains that occur in these modes. This is especially problematic for the cFSM, where these assumptions are implemented in the context of the FSM with sufficient DOFs to account for the neglected strains resulting from the Poisson’s effect and the shear effect. Overly rigid idealised buckling modes are obtained [2] [3] [4]. Second, although these methods work well for simple sections (i.e. open sections without branches), the complexity of implementation is significantly increased when dealing with complex cross-sections (i.e. sections with closed parts or branches) [5] [6] [82]. Third, these method are unable to produce buckling modes strictly orthogonal to each other with respect to the global stiffness matrix K. In light of these, the current modal decomposition methods still have the space of improvement. In addition, the application of the modal decomposition method is currently restricted to the finite strip (FS) numerical model. However, cases exist where the finite element (FE) model rather than FSM model is preferable while still a modal decomposition is required. One of the examples is the modal decomposition of the post-buckling deformed shape. This calls for the extension of the application to the FE model. Furthermore, the modal decomposition method is also found useful for the statistical analysis of the geometric imperfections.
Regarding the design of CFS, the DSM has its limitations. First, it uses different formulas to predict the ultimate load associated with different types of buckling, causing inconvenience to the implementation of the method. Second, the member is treated differently when it undergoes pure instability or coupled instability. In addition, it gives underestimation of the ultimate load when one part of the section is extremely slender compared to the other parts [71] [73]. Therefore, improvement of the method is necessary.
[bookmark: _Toc398802856][bookmark: _Toc496973316]Aims and objectives
The main aim of the project is to propose a novel modal decomposition method and to extend its applications in both the analysis and design. The detailed objectives are as follows:
(1) To propose a new method of modal decomposition. In a first stage the new method will be implemented in the context of the FSM. The method should be consistent with the mechanical principle of the FSM, without being tied to the limiting assumptions of GBT. A MATLAB code will be developed implementing the new modal decomposition method. The software should have the capability to plot the critical stresses associated with different types of buckling against the half-wavelength, as well as visually present the modal shapes at a specific half-wavelength. The software should be able to deal with both simple and complex cross-sections with straight or rounded corners.
(2) To develop a framework in which the modal decomposition method can be applied to FE output. This is particularly useful in the modal decomposition of post-buckling deformed shapes. 
(3) To apply the modal decomposition method in the statistical analysis of initial geometric imperfections. 
(4) To determine the initial post-buckling stiffness of CFS columns using the perturbation method, and to implement this in two separate software programmes. The first software code will focus on open sections, I-sections and box sections undergoing local buckling, while the second software code is specialised in distortional buckling of open sections only. 
(5) To develop a framework in which the signature parameters regarding the buckling and initial post-buckling behaviour obtained from the software developed in (4) are used in a multi-linear model approximating the load versus end shortening curve of a CFS column undergoing elastic buckling.
(6) To propose a design approach predicting the ultimate load of a CFS column using the approximating model of the elastic buckling behaviour developed in (5). The approach will be able to deal with local, distortional and global buckling as well as local-distortional interactive buckling.
[bookmark: _Toc496973317]Thesis layout
The thesis consists of eleven chapters, of which a brief overview is given as follows:
Chapter 1 is introduction.
Chapter 2 presents a literature review. The first section reviews studies on the three major types of buckling involved in CFS structures, namely local, distortional and global buckling. The second section reviews the FSM, which is essential in the numerical analysis of CFS structures, followed by some basics about coupled instabilities and studies on the linear and non-linear coupled instabilities. The third section reviews studies on the calculation of the initial post-buckling stiffness, the secondary bifurcation, the geometric imperfections and the considerations of current design approaches on coupled instabilities. The last section reviews the experimental investigations on CFS.
Chapter 3 proposes the polarisation method of modal decomposition. The method is derived, implemented and validated against a variety of sections. Results obtained from the method are presented including critical stresses and modal shapes. 
Chapter 4 proposes the nodal force method of modal decomposition. The method is derived, implemented and validated against a variety of sections. Results obtained from the method are presented including critical stresses and modal shapes. 
Chapter 5 makes a comparison between the newly proposed and existing methods. The differences on the characteristic features and the modal decomposition results are unveiled and explained.
Chapter 6 discusses the further application of the modal decomposition method to post-buckling deformed shapes of CFS columns, whereby the participation factors of the buckling modes are traced beyond the critical point during the loading process. In addition, the sensitivity of the participation factors to the imperfection is studied. 
Chapter 7 discusses the application of the modal decomposition method in analysing the measured geometric imperfections, leading to a more scientific modelling of the imperfections based on statistical data. 
Chapter 8 discusses the calculation of the initial post-buckling stiffness of CFS columns using the perturbation method. The whole derivation of the method is given. Initially in the first part of the chapter the method focuses on local buckling but its application is then extended to distortional buckling in the second part. Two boundary conditions are discussed where the shift-of-centroid effect can either be considered or neglected.
Chapter 9 develops a multi-linear model approximating the load-end shortening curve of a CFS column undergoing elastic buckling. The signature parameters used in the model are obtained from the buckling and initial post-buckling analysis discussed in the previous chapters. The model is then verified against box sections and I-sections undergoing local buckling, and a variety of simple sections undergoing distortional buckling or local-distortional interactive buckling.
Chapter 10 develops a design approach predicting the ultimate load of a CFS column using the approximating model of the elastic buckling behavior. The relation is found between the average post-buckling stiffness and the residual load carrying capacity after buckling, which is applied in the design approach to bond the plastic buckling behaviour to elastic buckling behaviour. Finally the effectiveness of the approach is assessed using the ultimate load results obtained from both numerical modelling and experimental investigation.
Chapter 11 summarises the whole work and gives recommendations for future work.











CHAPTER 2. [bookmark: _Toc496973318]Literature Review

[bookmark: _Toc496973319]Instability types involved in cold-formed steel structures
Due to the thin-walled nature of CFS structures they are highly susceptible to instabilities (buckling), which are commonly categorised into different types based on their mechanical features. Early research distinguished between three types of buckling, namely local, distortional and global. Although there exists no full consensus on the definition of these types of buckling, commonly cited ones are given by Schafer [68]:
(1) Local buckling is normally defined as the mode which involves plate-like deformations alone, without the translation of the intersection lines of adjacent plate segments.
(2) Distortional buckling is a mode with cross-sectional distortion that involves the translation of some of the intersection lines of adjacent plate segments.
(3) Global buckling is a mode where the member deforms with no deformation in its cross-sectional shape, consistent with classical beam theory.  
In the above definition the term ‘plate segments’ refers to the flat plates constituting CFS structural cross-section. For instance, for a CFS member with a lipped channel cross-section, the cross-sectional displacements (see section 2.5 for definition) of different buckling modes are illustrated in Fig. 2.1. The original and deformed cross-sections are presented in blue and red lines, respectively.
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[bookmark: _Ref398921157][bookmark: _Toc495159505]Fig. 2.1 Buckling modes
Among the three types of buckling, local and global buckling also occur in traditional hot-rolled or welded steel structures, and have more extensively been studied than distortional buckling.
[bookmark: _Toc496973320]Local buckling 
Local buckling of CFS structures is closely related to the buckling problem of individual plates. The differential equation describing elastic buckling of a plate subject to in-plane loading was first derived by St. Venant [66]. When no transverse load is imposed on the plate, the equation reads:

	 	
where D is the flexural rigidity of the plate, w is the out-of-plane deflection, t is the thickness, σx, σy, τxy are the load membrane stresses. This equation forms the basis of the eigenvalue problem describing the elastic buckling of the plate. It was then noticed that the load membrane stresses were varying at the post-buckling stage due to the stretching of the plate. In light of this, Föppl [28] introduced the stress function Φ which paved the way for von Kámán [95] to derive the governing equation for perfect flat plates:

	 	
His theory was then generalised by Maguerre by considering initial imperfections and curved plates. The St. Venant’s equation was solved for the first time by Bryan [18] in close form for simply supported plates and then by Timoshenko [91] for generalised boundary conditions. The von Kámán’s equation was solved by Yamiki [102] for generalised boundary conditions. The equation was also solved for simply supported plates by Rhodes and Harvey [64] based on the energy methods, and by Walker [99] using the perturbation method. 
Local buckling is characterised by a large residual capacity after buckling especially when buckling occurs in the purely elastic range, less so for plates buckling close to the yield load. The ultimate capacity can be determined on the basis of von Kámán’s effective width method. Winter [101] proposed a formula to calculate the effective width be of a compressed plate simply supported along the unloaded edges:

	 	
where b is the plate width, t is the plate thickness, E is the Young’s modulus, fmax is the ultimate compressional stress, The formula was later modified by the same researcher [100] to improve the accuracy by slightly changing the factor 0.475 to 0.415:
[bookmark: _Toc496973321]Global buckling
As cited by Timoshenko and Gere [90], Euler pioneered solving the flexural global buckling problem of column using the equilibrium differential equation:

	 	
where EI is the flexural rigidity, w is the lateral deflection, and P is the concentric load. The critical load is calculated as: 

[bookmark: ZEqnNum911556]	 	
where Le is the effective length, which is a function of the column length and the boundary conditions. Thereafter, it was noticed that columns with open thin-walled sections due to their small torsional rigidities tend to bend and twist simultaneously under axial compression. As cited by Chai H Yoo [19] and Wai-Fah Chen [98], in 1929 Wagner did a pioneer work on torsional buckling of open thin-walled sections, followed by Wagner and Pretschner [96] and Kappus [40] focusing on flexural-torsional buckling. Goodier [32] then extended the governing differential equations to include beam-columns under biaxial bending with identical loading conditions at each end. All of these works are based on the assumption that while warping is allowed, the geometric of the cross-section is unchanged during buckling, which is consistent with the definition of global buckling. These theories were summarised by Bleich [17] and Timoshenko [90]. 
To take into account the plasticity of the material, in 1889 Engesser proposed the tangent modulus approach, where Eq.  is modified to Eq. :

[bookmark: ZEqnNum258154]	 	
where Et is the tangent modulus of the material. In this approach Engesser assumed that inelastic buckling occurs with no increase in load. However, the second-order moment of the load will produce incremental strains that will vary linearly and have a zero value at the centroid. The linear strain variation will have compressive and tensile values. The tangent modulus of the incremental compressive strain is equal to Et and that for the tensile strain is E. In 1898 Engesser corrected his original theory by accounting for the different tangent modulus of the tensile increment, leading to the new reduced modulus method. For decades engineers were faced with the dilemma that the tangent modulus method is closer to the experimental results while the reduced modulus method is correct. This dilemma was eventually resolved by Shanley [78].  He found that lateral deflection starts at a load very close to the critical load given by the tangent modulus method. However, as the lateral deflection develops, the load is increasing proportionally, approaching eventually (but never reach) the critical load given by the reduced modulus method. 
[bookmark: _Toc496973322]Distortional buckling
As cited by Schafer and Hancock [69], distortional buckling was first encountered by Thomasson [89], Desmond and Mulligan in the 1970s when studying local buckling of cold-formed steel members. However, most of them regarded distortional buckling as undesirable and failed to recognise its importance as a buckling type distinctive from local buckling. Thus it was not until the 1980s that researchers began focusing on distortional buckling. Lau and Hancock [46] studied the distortional buckling of storage rack columns, for which the optimised nature leads to the dominance of distortional buckling over local buckling. Hancock also contributed to the popularisation of the finite strip method as a numerical tool to understand buckling behaviour, especially distortional buckling behaviour, of CFS members. In addition, prediction methods for the elastic distortional critical stress based on hand calculations were proposed by Lau and Hancock [45]. 
Kwon and Hancock [43] performed more experimental research on distortional buckling and discovered that its post-buckling residual capacity is lower than for local buckling. They also proposed new column strength curves for distortional buckling [35], which later led to the development of the direct strength method (DSM). In parallel, Sean and Rhodes [77], according to their own experimental results, proposed a different design approach for distortional buckling based on the effective width method. 
[bookmark: _Ref468281474][bookmark: _Toc496973323]Finite strip method
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[bookmark: _Ref401051689][bookmark: _Toc495159506]Fig. 2.2 Definition of node types
The finite strip method (FSM) can be seen as a specialised finite element method (FEM), specifically developed to study buckling of prismatic thin-walled structural members. According to the summary by Cheung [21], the method differs from the FEM in that only a cross-sectional discretisation is required, leading to the emergence of ‘strips’ rather than elements. As a result, the number of degrees of freedom (DOF) involved in the analysis is significantly reduced, thus improving computational efficiency. The strips are separated by nodal lines, which are often simply referred to as ‘nodes’. At the very minimum, a cross-section needs to be discretised into a number of flat plate segments connected at main nodes, although each plate segment can be further discretised into smaller strips at sub-nodes. Main nodes associated with only one strip are termed external main nodes, as opposed to internal main nodes which connect multiple strips. The definition of the various types of nodes is illustrated in Fig. 2.2.
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[bookmark: _Ref409519613]      (a)                                                                          (b)
[bookmark: _Ref436388385][bookmark: _Toc495159507]Fig. 2.3 Coordinate systems and displacements
In the FSM, a local coordinate system is defined for each strip, as well as one global coordinate system shown in Fig. 2.3(a). In the global coordinate system, each of the nodal lines is associated with the following four DOFs:  the translations U in the X -direction measured at the specimen ends (which are assumed to be equal and opposite), in addition to the translations V and W in the global Y - and Z -directions and the rotation Θ about the X -axis, all measured at mid-length. In the local coordinate system associated with each strip, the corresponding DOF are the translations u in the x -direction measured at the specimen ends, as well as the translations v and w in the local y - and z -directions and the rotation θ about the x -axis, all measured at mid-length. In what follows, the displacements u, v, w will also be referred to as the warping, transverse and out-of-plane displacements, respectively. In addition, the displacements v and w are often termed ‘cross-sectional displacements’. The notations regarding local and global displacements are shown in Fig. 2.3(b) for a strip with length L and width b. 
In the FSM, the longitudinal shape functions are assumed to be trigonometric. Thus for a thin-walled member with pinned boundary conditions, the global displacements of the i th nodal line (subscript i) can be expressed as:

[bookmark: ZEqnNum832977]	 	




where m is the number of half-waves within the member length L. ,  and  are the amplitudes of the displacement values, and  is the amplitude of the rotation.
Similarly, the local displacements within the i th strip (superscript i) can be expressed as:

[bookmark: ZEqnNum630891]	 	






where, and are functions which allow interpolation between the local DOFs at the nodal lines adjacent to the strip. The functions and  take on a linear form, while  is a third degree polynomial. 
In the FSM, the buckling modes are obtained as the solutions of an eigenvalue problem:

[bookmark: ZEqnNum900968]	 	
where d is the deformed (buckled) shape, and K and G are the elastic and geometric stiffness matrices, respectively. 
[bookmark: _Toc496973324]Interaction among buckling modes
When two or more buckling modes contribute simultaneously to the overall buckling behaviour of a member, interaction occurs among these buckling modes. There are two types of interactions [37], being:
(1) Linear interaction where the interaction among buckling modes occurs at the same half-wavelength. 
(2) Non-linear interaction where short half-wavelength modes occur over multiple half-wavelength and interact with long half-wavelength modes.
Linear and non-linear interactions occur at the critical point among buckling modes having close critical loads. In addition, non-linear interaction could also occur at the post-buckling stage due to secondary bifurcation, where a buckling mode different from the original one emerges and start participating in the overall buckling behaviour. In this case, the closeness among the critical loads is not necessary for the interaction [26].
[bookmark: _Toc496973325]Linear interaction 
Linear interaction among buckling modes can be analysed by a modal decomposition method, which defines the buckling modes of different types and then decomposes the deformed shape into a combination of these buckling modes. A number of such methods have been developed, including primarily the generalised beam theory (GBT) and the constrained finite strip method (cFSM). 
[bookmark: _Ref399858302][bookmark: _Toc496973326]Generalised beam theory (GBT)
The generalised beam theory (GBT) is a semi-numerical method specialised in analysing prismatic thin-walled structural members and was invented by Schardt [76] and introduced to the English-speaking world by Davies [23]. As suggested by its name, in its original form it is an extension of the classic beam theories where Vlasov’s assumptions are implemented:
(1) The membrane transverse strain εyM is neglected.
(2) The membrane shear strain γxyM is neglected.
Based on these assumptions, the cross-sectional displacements and rotations are uniquely linked to the warping displacements, which are consequently identified as the only independent DOFs.
Each independent DOF is associated with a displacement function notated as kV for the k th DOF. The total internal virtual work of the system is expressed in terms of kV and its second and fourth derivatives with respect to the longitudinal coordinate, kV ″ and  kV ‴′. Finally, by setting the variation of the virtual work equal to zero, the fundamental equation of GBT is obtained: 

[bookmark: ZEqnNum115528]	 	

where V = [1V, …, kV]T, q is virtual work done by the external loads and C, D and B are matrices which depend on the cross-sectional geometry of the member. In Eq.  a coupled system of differential equations is defined, which cannot be solved until a decoupling process is carried out, where matrices C, D and B are diagonalised.  In this process V is converted to , which contains the re-orthogonalised displacement functions or modal shapes. Thus Eq.  is transformed to a group of uncoupled differential equations:

[bookmark: ZEqnNum693048]	 	
where nDOF is the number of independent DOFs, which equals the number of GBT modes.
As a result of the two initial assumptions, the application of the early GBT was limited to open sections and only Vlasov modes (i.e. modes satisfying the Vlasov’s assumption, also referred to as conventional modes) were included. However, more recently work by Gonçalves et al. [31], and Simão and Simões [84] has extended its application to closed sections and to complement the set of modes by unconventional modes such as the torsional mode of sections with closed parts, the transverse extension modes and the shear modes. In addition, early GBT was only able to deal with elastic prismatic members, while more recently GBT has been applied by Gonçalves and Camotim [29][30] to the analysis of stainless steel and aluminium columns accounting for plasticity, and by Silvestre [83] to the analysis of curved-wall members. 
Among the applications of GBT in the analysis of thin-walled structures, modal decomposition is one of great significance. The first approach was developed by Schardt himself [75], and is based on the fact that when an external load corresponding to one buckling mode is imposed on the modal shape of another bucking mode, it will generate work as a result of second-order effects. This leads to an additional term on the left-hand side of Eq.  as the second-order effect of the external load, which, along with the first-order effect q, constitutes the total contribution of the external load. 

	 	
where iW is the warping stress resultant in the i th mode, and ijkκ are terms reflecting the interactions between buckling modes. iW are the only unknowns in the equation, and the solution would be the critical load when multiple modes are involved in the buckling behaviour. More recently, an energy-based approach was developed by Simão and Simões [84]. In this method, the total potential energy function is expressed as a polynomial with up to fourth-degree terms. The critical load of the member is determined by setting the determinant of the Hessian Matrix of the total potential energy function, evaluated along the fundamental equilibrium path equal to zero.

	 	
where W is the total potential energy function, and iq is the amplitude of the i th mode. 
[bookmark: _Ref399858290][bookmark: _Toc496973327]Constrained finite strip method (cFSM)
The idea of integrating the basic assumptions of GBT into the framework of FSM resulted in the development of the constrained finite strip method (cFSM) by Ádány and Schafer [2] [3] [4]. In this method, the assumptions are used to define the Vlasov modes. The modes which violate the assumptions (named as ‘other’ modes) are defined by finding the orthogonal space to the Vlasov modes with respect to the global stiffness matrix K. Once the modal shapes belonging to one modal type (local, distortional, global or other) are defined, the critical load is determined by solving the eigenvalue problem:

[bookmark: ZEqnNum320753]	 	
where H is the constraint matrix containing in its columns the modal shapes of the concerning modal type, γ is the load factor, and a is a vector of the linear combination factors indicating the contribution of each mode to the compound modal shapes (i.e. amplification factors), among which the one with the lowest load factor would be critical. In the cFSM, the member deformation are then ‘constrained’ to the set of basic vectors of a given modal type, hence its name. 
Although the application of this method was at first limited to open sections due to the Vlasov’s assumptions, more recently it was extended to arbitrary sections by its original inventors [5] [6]. In this updated method, new mechanical criteria regarding the membrane strains and curvatures in the plate segments are applied to produce modal shapes of various types. This makes it possible to define shear modes and transverse extension modes for closed sections. Meanwhile, the definition of Vlasov modes remains unchanged and transverse extension and shear are not allowed to participate in these modes. Moreover, an extension of the cFSM to general boundary conditions was presented by Li and Schafer [48]
[bookmark: _Toc496973328]  Non-linear interaction
The interaction between local and global buckling has been extensively studied. Since global buckling has no post-buckling residual capacity, researchers have focused mainly on the determination of the global secondary bifurcation stress after local buckling occurs. This critical stress is reduced compared to pure global buckling due to the reduction of the stiffness of the cross-section as a result of local buckling.
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[bookmark: _Ref433288511][bookmark: _Toc495159508]Fig. 2.4 The van der Neut Curve (excerpt of [94])
Using a simplified column model, Van der Neut [94] studied the effect of the interaction of local and global buckling on the load carrying capacity of an elastic column with varying length. As shown in Fig. 2.4, only the two flanges of the simplified column are load-carrying. If the column length L>L1, the column will buckle globally and its load carrying capacity will take the value of the critical load of elastic global buckling. If L0<L<L1, the column is at unstable equilibrium when local buckling critical load is reached and will fail abruptly; if L2<L<L0, the column is at stable equilibrium when the local buckling critical load is reached. If L<L2, the column will buckle first locally and eventually globally and the critical load of global buckling is determined by the tangent modulus method as ηKE, where η is the ratio between the compressive stiffness of the flange after and before local buckling.
Graves Smith [34] investigated a problem similar to that of Van der Neut, but for a practical rectangular section and while considering material plasticity. The Rayleigh-Ritz method was used to solve von Kámán’s equations, while trigonometric displacement functions were assumed. The yield stress of the material was assumed to be considerably higher than the local critical stress to avoid the complexity incurred by the interaction between local buckling and plasticity. 
Rhodes and Harvey [62] studied the flexural overall buckling behaviour of a plain channel section column under either concentric or eccentric loading. The cross-section after local-buckling was considered as a beam-column element under a combination of axial force and bending moment. The deformations resulting from the load were described in terms of the average axial strain and curvature and the relation between the load and deformations was established through post-local-buckling analysis. This relation was then substituted into the differential equation governing the equilibrium of an eccentrically loaded column to analyse its flexural overall buckling behaviour. 
Pignataro [60] studied true local-global interaction of simply supported channel columns on the basis of Koiter’s theory [41] of elastic stability. The perturbation method was used in the analysis. Similar research was also conducted by Benito and Sridharan [15] , who widened the scope of research to include not only local-global interaction of I-section and channel section columns, but also the interaction between local and lateral-torsional buckling of T-section beams.
Rasmussen [61] and Young [105] developed a method to study the global secondary bifurcation of columns after local buckling. In this method, similarly to the finite strip method, the cross-section is discretised to an assembly of strips. Buckling causes a reduction to the various stiffness of the strips, including the compressional, bending and torsional stiffness, dependent on the extent of the out-of-plane displacements. Thus, the locally buckled section is replaced by an unbuckled section with a varying stiffness along the section. In this way, the secondary bifurcation problem is transformed into a much simpler primary bifurcation problem. This analysis is applicable to both elastic and inelastic materials, since yielding merely causes a further reduction of the stiffness.  
The research team led by Camotim [25] [51] [52] [82] conducted numerous numerical studies regarding local-distortional interactive buckling of common sections using the extended GBT. They initially focused on sections with similar local and distortional critical stresses before progressing further to sections with a greater range of the ratio between local and distortional critical stresses. Valuable conclusions were obtained about the buckling and post-buckling behaviour, including the elastic post-buckling equilibrium paths when different buckling modes are involved, the plastic equilibrium paths as a function of the slenderness of the column, the contribution of different bucking modes at the post-buckling stage subject to various imperfections, and the redistribution of the membrane longitudinal stress in the plates after buckling.
Another straightforward approach to investigate the non-linear interaction problem is to decompose the post-buckling deformed shapes obtained from finite element (FE) analysis using the FE buckling modes generated from cFSM output by extending the cross-sectional buckling deformation in a sinusoidal way in the longitudinal direction. Relevant research was carried out by Li et al. [47] involving the cFSM and by Nedelcu [57] involving GBT.
[bookmark: _Toc496973329]  Initial post-buckling stiffness
The load-end shortening curve of a cold-formed column under compression is shown in Fig. 2.5, where the horizontal axis represents the end shortening λ while the vertical axis represents the load P. It can be seen that the stiffness (slope of the curve) is reduced from K to Kp at the buckling point Pcr, and is further reduced gradually thereafter as the load increases. The stiffness Kp right after buckling occurs is defined as the initial post-buckling stiffness and is representative of the initial post-buckling behaviour of the column. 
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[bookmark: _Ref467505027][bookmark: _Toc495159509]Fig. 2.5 Load-end shortening curve of a buckled column
As previously addressed, early research conducted by Yamiki [102], Rhodes and Harvey [64], and Walker [99] concerned post-local buckling of a single plate and determined the initial post-buckling stiffness. However, as these methods accounted for the change of the deformed shape in both the transverse and longitudinal directions with increasing load, their complexity becomes a deterrent factor if they are used in the analysis of plate assemblies. For plate assemblies, Graves Smith and Sridharan [85] [86] and Hancock [36] developed a semi-analytical FSM to investigate the post-buckling behaviour of plate assemblies under either uniform or linear varying end shortening. Graves Smith and Sridharan focused on channel and rectangular box section columns, while Hancock focused on square box and I-section columns. In their methods, both out-of-plane and transverse displacements were considered as unknowns. At a later stage, Sridharan [87] extended the application of his method to distortional buckling. He also used the perturbation technique to approximate the initial post-buckling behaviour neighbouring to the critical point. In parallel, Rhodes and Harvey [63] developed a semi-energy method for the same purpose. In this method, only out-of-plane displacements were considered as unknowns, while transverse displacements were determined by invoking the principle of minimum potential energy. Another noticeable feature of this method is that cross-sectional discretisation is performed at the minimum level by only introducing nodes at the junctions between the plate segments, thus reducing the complexity of the method. However, change of the deformed shape at the post-buckling stage was not considered. Finally, by incorporating the FSM into the semi-energy method, Ovesy [58] proposed a novel method combining the features of the aforementioned methods.
[bookmark: _Toc496973330]  Secondary bifurcation
The phenomenon of secondary bifurcation can be explained by the system with two DOFs shown in Fig. 2.6, where the deformed shape can be decomposed into a linear combination of two buckling modes:

	 	
where Q1, Q2, a1, a2 are buckling modes and their amplification factors. Stable equilibrium paths are plotted in solid line while unstable equilibrium paths are plotted in dashed line. It can be seen that when the load is below the critical load (λ < λcr), only one solution can be found for the equilibrium equations, which corresponds to the unbuckled state, and is shown in Fig. 2.6 as the unbuckled equilibrium path. The natural loading path (i.e. the path with the load increasing from zero) follows initially this path. However, as load is increased to the critical load (λ = λcr), an additional solution (or multiple solutions) emerges, which corresponds to the buckled state, and is shown in Fig. 2.6 as the primary buckling path. This path bifurcates from the unbuckled equilibrium path at the critical point associated with the critical load (also termed the bifurcation point). Since the unbuckled equilibrium path becomes unstable starting from the critical point, while the primary post-buckling path is stable, the natural loading path will follow the primary buckling path after the critical point, and the deformed shape consists purely of the first mode. However, this primary buckling path becomes unstable again after passing the secondary bifurcation point. This results in the switching of the natural loading pass from the unstable primary buckling path to the stable secondary buckling path through a transition path, incurring a sudden change of the deformed shape from pure first mode to pure second mode.  
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[bookmark: _Ref484524953][bookmark: _Toc495159510]Fig. 2.6 Secondary bifurcation 
Secondary bifurcation has been studied in sandwich struts [38], which is important because the neutral primary buckling path of such type of structural component is followed by an unstable secondary buckling path. This makes it unsafe to merely keep the load below the critical value without considering the effect of secondary bifurcation. 
Secondary bifurcation is also important for local buckling of plates due to the considerable residual capacity after buckling, which makes it necessary to study the effect of secondary bifurcation in order to determine the ultimate capacity. Researcher has been conducted on local buckling of simply supported plates. Supple [88] developed a simplified model to investigate the problem, which considered only two purely local modes and one interactive mode, assuming that the number of half-waves stays unchanged under progressive loading. He then studied the effect of imperfections on the occurrence of the secondary bifurcation. Nakamura [56] also studied the problem using a more complicated but more accurate method, where he allowed the involvement of buckling modes with a different number of half-waves at the post-buckling stage. He calculated secondary buckling loads for plates with various aspect ratios, and compared the results when different levels of approximation were applied. Similar research was conducted by Uemura [92] [93]. 
Mennink [53] developed a prediction model for local buckling, where secondary bifurcation was considered. In this model, the plate segments constituting the cross-section can be divided into two groups, namely plate groups 1 (pg1) and 2 (pg2), with critical stresses lower and higher than the critical stress of the whole cross-section, respectively. Therefore, two local modes are relevant, being the primary mode and the secondary mode, where only the plates of pg1 and pg2 buckle, respectively. As shown in Fig. 2.7, at the critical strain εcr1, as only the plates of pg1 buckle, the cross-section buckles in a primary mode (the path L between εcr1 and εcr2 in the figure). Then at the critical strain εcr2, as the plates of pg2 also buckle, the cross-section buckles in an interactive mode between the primary and secondary modes (the path LL between εcr2 and εp in the figure). The cross-section finally fails at the strain εp due to material yielding. The application of this model was then extended by Kutanova [42] to distortional bucking of C-shaped specimen, where local-distortional (LD), distortional-local (DL) or distortional-local (DD/DL) interactive buckling occurs, as shown in Fig. 2.7. It can be seen that the stiffness of the specimen is reduced after primary buckling, and further reduced after secondary buckling. As a safe approach, the stiffness after secondary buckling is neglected, apart from the case where local-local interactive buckling occurs.
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[bookmark: _Ref487311894][bookmark: _Toc495159511]Fig. 2.7 Illustration of the Kutanova/Mennink model (excerpt of [42])
[bookmark: _Toc496973331]  Geometric imperfections
Geometric imperfections are the deviations from the perfect nominal geometry. Since the buckling behaviour of CFS members is dependent on the geometric imperfections, especially when coupled instabilities are involved, they play an important role in the design and analysis of CFS structures. Therefore, much work has been done on assessing the magnitude of imperfection and simulating then in numerical modelling. As cited by Zeinoddini [111], two types of imperfections are relevant, namely global imperfections and cross-sectional imperfections (local and distortional imperfections). Generally, more research has been done studying the former than the latter, including Dat [22], Mulligan [55], Young [109], Shifferaw et al. [79], Peterman and Schafer [59]. As for cross-sectional imperfections, two approaches have been developed. Early work was based on the simple approach that the imperfections at two specific points on the cross-section are used as representative of the type 1 (local) and type 2 (distortional) imperfection magnitudes respectively, as shown in Fig. 2.8, including Dat [22], Mulligan [55], Ingvarsson [39], Thomasson [89], Lau [45], Kwon [43] and Bernard [16]. Later on, a more advanced alternative approach was used by Young [109], Shifferaw et al. [79], and Peterman and Schafer [59] where the imperfection magnitudes were determined by seeking an optimal fit between the combined buckling modal shapes and the measured imperfection shape. 
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[bookmark: _Ref484533843][bookmark: _Toc495159512]Fig. 2.8 Points representative of imperfection magnitudes
The global and cross-sectional imperfection magnitudes are commonly expressed as fractions of the specimen length and the plate thickness, respectively. In addition to these conventional expressions, Dowson and Walker [27] proposed two other methods to consider the magnitude of imperfections for plates: imperfection magnitude as a constant coefficient multiplied by the element slenderness, or a constant coefficient multiplied by the square of the element slenderness. Furthermore, Schafer and Peköz [70] performed a simple linear regression based on the plate width w for the type 1 imperfection (as shown in Fig. 2.8), yielding an approximate expression:

	 	
They also proposed an alternative rule based on an exponential curve fit to the thickness t:

	 	
Once the statistical imperfection magnitudes are determined, they are applied in imperfection simulation in numerical modelling. In [111], three approaches for this purpose are compared, including the traditional modal approach, the random field (2D) spectra approach and the 1D modal spectra approach. 
In the traditional modal approach, imperfections are modelled as a combination of five buckling modes, including one local mode, one distortional mode, two flexural global modes and one torsional global mode. For each type of buckling modes, the mode with the lowest critical load is selected. The magnitudes of each mode is assumed to be a random value having mean and variance determined from available statistics of the measurements.
In the random field (2D) spectra approach, it is assumed that if the section is unfolded, the imperfection shape becomes a 2D random field superposed on the nominal geometry of the specimen. The random field is represented by a 2D power spectrum, which is determined also from available date about imperfections.
The traditional modal approach is easy to use but not so accurate while the random field (2D) spectra approach is accurate but difficult to implement. In order to combine the advantages of these two methods, the 1D modal spectra approach is proposed. In this method, the cross-sectional imperfection shape is assumed to be a combination of five buckling modes, while the longitudinal variation of the imperfection is modelled using a 1D power spectrum.
[bookmark: _Ref487635776][bookmark: _Toc496973332]  Design approaches for coupled instabilities 
The erosion of the ultimate load due to coupled instabilities is considered in the existing design approaches, including the effective width method (EWM) and the direct strength method (DSM), through different strategies.
[bookmark: _Toc496973333]Effective width method
The effective width method, as the conventional design approach for CFS, works on the principle of load redistribution in the post-buckling range. Its consideration of coupled instabilities can be illustrated by the example of a lipped channel section under bending shown in Fig. 2.9.  
The determination of the ultimate strength involves the following steps: First, the main nodes of the section are kept in place, and the effective widths are calculated in pure local buckling. Second, the reduction effect of distortional buckling on the design strength of the beam is considered by releasing the above restriction and introducing a spring at the centroid of the effective area of the edge stiffener, which also includes the adjacent effective area of the flange. As the design strength of the stiffener is limited by the critical stress of its flexural buckling, the effective width for the stiffener is recalculated, which in turn affects the design strength. After several such iterations are performed, the effective width of the edge stiffener is obtained as be2,n. Rather than reducing the effective width, distortional buckling is accounted for by reducing the effective thickness from t to tred. Once the effective portion of the section in load-bearing is determined, so is the ultimate strength. It can be seen that in this procedure, the coupled instabilities regarding local and distortional buckling have been considered. 
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[bookmark: _Ref402341719][bookmark: _Ref402341716][bookmark: _Toc495159513]Fig. 2.9 Bending resistance of a lipped channel section
[bookmark: _Toc496973334]Direct strength method
The direct strength method is a more recently developed design method for CFS members aiming at overcoming some of the shortcomings of the traditional effective width method. The history of this method can be dated back to the research on distortional buckling of rack post sections at the University of Sydney [35] [43] [45]. Later on, the method is further developed by Schafer [72] [74] to be applied to local, distortional and global modes, as well as interactions between the modes.
In this method, the ultimate capacity of a CFS member is evaluated by linking it to the critical load obtained from elastic buckling analysis via empirical formulas. As the post-buckling residual capacity differs greatly subject to the buckling type (local, distortional or global), different formulas are given for different instabilities. The formulas for members under compression are given as follows:
(1) Global Buckling
The nominal axial strength Pne for flexural, torsional or torsional- flexural buckling is:




[bookmark: ZEqnNum701223][bookmark: ZEqnNum757693]For             		 
For             		 

where the slenderness ,		 
the yield load Py = Agfy, with Ag being the gross area of the cross-section,
Pcre is the minimum of the critical elastic column buckling load in flexural, torsional, or torsional-flexural buckling.
(2) Local Buckling

The nominal axial strengthfor local buckling is:




[bookmark: ZEqnNum726527][bookmark: ZEqnNum238809]For             		 
For             	 

where the slenderness ,
Pcrl is the critical elastic local column buckling load,
Pne is the predicted ultimate load of global buckling given in Eq.  and Eq. .
(3) Distortional Buckling

The nominal axial strengthfor distortional buckling is:




[bookmark: ZEqnNum766231][bookmark: ZEqnNum810765]For             		 
For             	 

where the slenderness ,
Pcrd is the critical elastic distortional column buckling load,
Py is the previously defined yield load. 
It is noted that in Eq.  and Eq. , local-global interaction is considered by replacing the yield load Py by the predicted ultimate load of global buckling Pne. Although the current DSM cannot deal with local-distortional interactive buckling, its effect on the ultimate load can be considered using a similar strategy. Two approaches for this purpose have been proposed by Schafer [74]:
(1) The nominal strength against local-distortional (NLD) interaction approach
The predicted ultimate load of global buckling Pne in Eq.  and Eq.  when local-global interactive buckling occurs is replaced by the predicted ultimate load of distortional buckling Pnd.




For             		 
For             	 

where the slenderness .
(2) The nominal strength against distortional-local (NDL) interaction approach
The yield load Py in Eq.  and Eq.  when pure distortional buckling occurs is replaced by the predicted ultimate load of local buckling Pnl.




[bookmark: ZEqnNum333729]For             		 
For             	 

where the slenderness .
According to the assessment by Dinis [25] and Silvestre [80], the performances of these two methods are basically equivalent, although the NDL approach provides marginally better results. Nevertheless, it was found by the same researchers that these approaches give unduly conservative predictions of the ultimate load at high levels of slenderness. Thus in order to achieve accurate predictions over the whole slenderness range, they proposed a refined DSM termed the modified NDL (MNDL) approach, which takes into account the intensity of the interaction between local and distortional buckling, reflected in the ratio between the half-wavelengths of the local and distortional modes. The approach adopts the current DSM distortional strength curve for stocky columns with λd < 1.5, while for slender column with  
λd > 1.5, it prescribes an ultimate load equal to Pndl in Eq.  with Pnl replaced by Pnl*:


For             		 


For       	 


For             		 
It is noted that as Lcrd /Lcrl increases, the ultimate strength decreases since the interaction effect becomes more pronounced. Conversely, as Lcrd /Lcrl decreases, the interaction effect diminishes and the buckling becomes progressively ‘more distortional’. This novel DSM approach was extensively tested against lipped channel sections, as well as a variety of simple sections including Z-sections, hat sections and rack sections. Satisfactory results were achieved. 
[bookmark: _Toc496973335]  Experimental studies 
Experimental studies have been conducted extensively on CFS columns involving a variety of sections and buckling types. 
Tomasson [89] studied local-global interactive buckling by testing 46 columns with lipped channel sections. The sections were categorised into type A, B and C, among which sections of type A had no stiffener, while sections of type B and C had one and two web stiffeners respectively, as shown in Fig. 2.10. Three different sizes of stiffeners were used, where the nominal values of dr equal 9, 14 and 17 respectively. The measured yield stress of the material ranging from 288 to 464 MPa. The columns were consistently 2500 mm long, and were tested between pin ends. 
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[bookmark: _Ref494460995][bookmark: _Toc495159514]Fig. 2.10 Sections tested by Tomasson
Loughlan [50], Rhodes and Loughlan [65] studied local-global interactive buckling by testing 33 columns with lipped channel sections. The sections had four different web widths (102, 127, 152 and 187 mm), two different flange widths (51 and 64 mm), and two different lip widths (19 and 25 mm). The average measured yield stress of the material was 242 MPa for the 0.79 mm thick plate, and 233 MPa for the 1.6 mm thick plate. The columns had three different nominal lengths (1219, 1524 and 1829 mm), and were tested between pin ends. 
As cited by Loughlan et al.[49], Adetoro [10] studied local buckling by testing 20 columns with lipped channel sections. The sections had four different web widths (102, 127, 152 and 187 mm), three different flange widths (51, 56 and 64 mm), and three different lip widths (9, 11 and 12 mm). The average measured yield stress of the material was 209 MPa. The columns had five different nominal lengths ranging from 1000 to 1800 mm in 200 mm increments, and were tested between fixed ends. 
Mulligan and Peköz [54] studied local buckling by testing 22 columns with lipped channel sections. The sections had three different web widths (90, 120 and 180 times the plate thickness) and three different flange widths (30, 60 and 90 times the plate thickness), while the plate thickness was 1.2 mm. The lip width was determined in proportional to the web and flange width, so that it was adequate to prevent distortional buckling. The measured yield stress of the material was varying around 220 MPa among the specimens. The columns had several different measured lengths ranging from 507 to 3073 mm, with the longitudinal ends pinned about the weak axis and fixed about the strong axis.
Lau et al. [46] studied distortional buckling by testing 68 columns with various sections, including lipped channel sections (CH), rack column upright sections (RA), rack column upright sections with additional lip stiffeners (RL) and hat sections (HA). The measured dimensions of the sections are tabulated in Table 2.1, where the definitions of the notations are shown in Fig. 2.11. The plates with a thickness of 1.6, 2.0 and 2.4 mm were made of HR 340, HR2 and G450 steel respectively. For each of the sections, columns with six different nominal lengths (300, 700, 1100, 1370, 1640 and 1900 mm) were tested between fixed ends. 
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[bookmark: _Ref494545835][bookmark: _Toc495159515]Fig. 2.11 Sections tested by Lau et al.
[bookmark: _Ref494545982]Table 2.1 Dimensions of the sections tested by Lau et al.
	Test Section
	t
(mm)
	bw
(mm)
	bf or b1
(mm)
	b2
(mm)
	d or d1
(mm)
	d2
(mm)
	r
(mm)

	CH17
	1.670
	83.0
	61.8
	-
	10.2
	-
	2.8

	CH20
	1.996
	82.7
	62.1
	-
	10.1
	-
	2.5

	CH24
	2.394
	81.4
	58.8
	-
	10.5
	-
	2.1

	RA17
	1.652
	76.2
	32.5
	25.4
	13.4
	-
	2.8

	RA20
	1.982
	76.1
	32.8
	25.8
	13.9
	-
	2.5

	RA24
	2.395
	80.3
	29.3
	28.2
	12.8
	-
	2.1

	RL17
	1.658
	85.1
	36.7
	22.1
	11.9
	3.7
	2.8

	RL20
	2.015
	81.3
	38.2
	21.0
	13.2
	3.5
	2.5

	RL24
	2.386
	81.2
	28.3
	26.4
	13.2
	4.2
	2.1

	HA17
	1.666
	83.8
	71.6
	-
	10.1
	-
	2.8

	HA20
	1.976
	84.2
	72.2
	-
	10.1
	-
	2.5

	HA24
	2.381
	78.4
	81.5
	-
	10.7
	-
	2.1


Young and Rasmussen [106] studied distortional buckling by testing 42 columns with plain and lipped channel sections. The nominal web width was 96 mm for all sections. The nominal lip width was 12 mm for all lipped channel sections. The nominal flange width was either 36 or 48 mm. The nominal yield stress of the material was 450 MPa. The columns had several different nominal lengths ranging from 280 to 3500 mm. The columns were grouped, and were tested between fixed ends and pin ends respectively. 
Kwon et al. [44] studied interactive buckling by testing 28 columns with lipped channel sections. The sections were categorised into type A, B and C, among which sections of type A had no stiffener, while sections of type B and C had one web stiffener and two flange stiffeners respectively. The nominal dimensions of the sections are tabulated in Table 2.2, where the definitions of the notations are shown in Fig. 2.12. The nominal yield stress of the material was 560 MPa. The columns had four different lengths (400, 800, 1000, 1200 mm), and were tested between fixed ends. 
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[bookmark: _Ref494552736][bookmark: _Toc495159516]Fig. 2.12 Sections tested by Kwon et al.
[bookmark: _Ref494552817]Table 2.2 Dimensions of the sections tested by Kwon et al.
	Specimens
	t (mm)
	b (mm)
	h (mm)
	s1 (mm)
	d1 (mm)
	s2 (mm)
	d2 (mm)
	ls (mm)

	A-6-1
	0.6
	40
	40
	-
	-
	-
	-
	10

	A-6-2
	0.6
	50
	50
	-
	-
	-
	-
	8

	B-6-1
	0.6
	40
	40
	12
	6
	-
	-
	10

	B-6-2
	0.6
	80
	40
	14
	7
	-
	-
	10

	C-6-1
	0.6
	90
	40
	-
	-
	10
	5
	10

	A-8-1
	0.8
	50
	40
	-
	-
	-
	-
	10

	A-8-2
	0.8
	40
	40
	-
	-
	-
	-
	10

	A-8-3
	0.8
	80
	40
	-
	-
	-
	-
	10

	A-8-4
	0.8
	80
	40
	-
	-
	-
	-
	5

	B-8-1
	0.8
	50.0
	50.0
	12.0
	6.0
	-
	-
	10.0


Santos et al. [67] studied interactive buckling by testing 12 columns with lipped channel sections. The nominal dimensions of the columns are tabulated in Table 2.3, where bw, bf and bs are the widths of the web, flange and lip respectively, L is the column length, and t is the plate thickness. The measured yield stresses for specimens C1-10 and C21-22 were 342 MPa and 407 MPa respectively. The columns were tested between fixed ends.  
[bookmark: _Ref494554613]Table 2.3 Dimensions of the columns tested by Santos et al.
	Specimens
	bw
(mm)
	bf
(mm)
	bs
(mm)
	L
(mm)
	t
(mm)

	C1-3
	81
	78
	12
	2850
	1.11

	C4-6
	75
	65
	11
	2350
	1.11

	C7-8
	71
	60
	11
	2100
	1.11

	C9-10
	62
	55
	11
	1650
	1.11

	C21-22
	76
	60
	11
	2350
	1.11


Kwon and Hancock [43] studied local-distortional interactive buckling by testing 22 columns with lipped channel sections. The sections were categorised into two types named CH1 and CH2. CH1 sections had no stiffener, while CH2 sections had one web stiffener. The measured dimensions of the columns are tabulated in Table 2.4, where the definitions of the notations are shown in Fig. 2.13, and L is the column length. The columns were formed from AS 1397 grade 500 steel with a specified minimum yield stress of 500 MPa, and were tested between fixed ends.
Yang and Hancock [103] studied local-distortional interactive buckling by testing 21 columns with lipped channel sections. The sections had stiffeners on both the web and the flanges, as shown in Fig. 2.14. The nominal cross-sectional dimensions of the columns were consistent: b = 120, h = 90, sw = 20, sd = 10, and d = 12.5 (all in mm), leaving column length the only variable being one of the four values: 360, 800, 1300 and 2000 mm. The nominal yield stress of the material was 550 MPa. The columns were tested between fixed ends.
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[bookmark: _Ref494567752][bookmark: _Toc495159517]Fig. 2.13 Sections tested by Kwon and Hancock
[bookmark: _Ref494567060]Table 2.4 Dimensions of the columns tested by Kwon and Hancock
	Specimen
	t
(mm)
	L
(mm)
	bw
(mm)
	bf
(mm)
	d
(mm)
	r
(mm)
	s1
(mm)
	s2
(mm)

	CH1-5-800
	1.085
	800
	119.55
	89.65
	4.80
	1.30
	-
	-

	CH1-6-800
	1.085
	800
	119.80
	89.75
	6.00
	1.30
	-
	-

	CH1-7-400
	1.095
	400
	120.80
	89.70
	7.00
	1.30
	-
	-

	CH1-7-600
	1.095
	600
	120.40
	89.55
	7.00
	1.30
	-
	-

	CH1-7-800
	1.100
	800
	120.50
	89.50
	7.00
	1.30
	-
	-

	CH2-7-800
	1.100
	800
	120.50
	90.15
	7.00
	1.30
	10.00
	20.00

	CH2-7-1000
	1.100
	1000
	120.50
	89.80
	7.20
	1.30
	10.30
	19.50

	CH2-8-1000
	1.095
	1000
	119.95
	89.95
	8.00
	1.30
	10.15
	20.00

	CH2-10-1000
	1.105
	1000
	116.00
	89.95
	10.00
	1.30
	10.30
	20.00

	CH2-12-1000
	1.100
	1000
	120.50
	89.95
	12.00
	1.30
	10.00
	19.50

	CH2-14-1000
	1.105
	1000
	116.60
	89.85
	14.00
	1.30
	10.30
	20.00
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[bookmark: _Ref494569168][bookmark: _Toc495159518]Fig. 2.14 Sections tested by Yang and Hancock
Young and Yan [108] studied distortional-global interactive buckling by testing 30 columns with lipped channel sections. The sections had complex edge stiffeners. The measured dimensions of the sections are tabulated in Table 2.5, where the definitions of the notations are shown in Fig. 2.15. The nominal yield stress of the material was 450 MPa. The columns had seven different nominal lengths ranging from 500 to 3500 mm in 500 mm increments, and were tested between fixed ends.
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[bookmark: _Ref494570785][bookmark: _Toc495159519]Fig. 2.15 Sections tested by Young and Yan
[bookmark: _Ref494570755]Table 2.5 Dimensions of the sections tested by Young and Yan
	Test series
	brl 
(mm)
	bl 
(mm)
	bf 
(mm)
	bw 
(mm)
	t
(mm)
	ri
(mm)

	T1.5F80
	17.6
	28.0
	83.5
	153.6
	1.482
	2.0

	T1.5F120
	17.4
	28.1
	123.8
	153.4
	1.478
	2.0

	T1.9F80
	18.8
	28.4
	83.4
	154.7
	1.884
	2.0

	T1.9F120
	18.9
	28.2
	123.3
	155.1
	1.871
	2.0


Charnvarnichborikarn [20] studied distortional buckling by testing 123 columns with Z-sections. The nominal web width of the sections bw was consistently 102 mm, while the nominal flange width bf  had four different values (38, 51, 64 and 178 mm), and the lip width bl had eight different values (0, 4, 6, 13, 19, 25, 38 and 51 mm). The nominal yield stress of the material was 345 MPa. The columns had three different lengths (457, 610 and 1219 mm), and were tested between pin ends. 
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Young [107] studied local-distortional interactive buckling by testing 26 columns with lipped channel sections. The specimens had nominal web, flange, and lip widths ranging from 95 to 235, 45 to 190, and 15 to 30 mm, respectively. The measured yield stress of the material ranging from 336 to 589 MPa. The columns had length ranging from 616 to 2499 mm, and were tested between fixed ends. 










CHAPTER 3. [bookmark: _Toc496973336]The polarisation method of modal decomposition 

[bookmark: _Toc496973337]Introduction 
In order to gain a deeper understanding of the buckling behaviour, the deformed shape of a buckled thin-walled member can be expressed as a linear combination of a number of basic components, each having a clear mechanical description. The set of pure (local, distortional, global…) buckling modes, due to their natural orthogonality, are obvious candidates for these basic components. The process of generating these buckling modes and determining their contributions in the overall buckling behaviour is termed modal decomposition. 
In this and the following chapters, the application of modal decomposition method is limited to analysing linear interaction between buckling modes at the critical point, although it should be stressed that the method itself has much wider applicability. An example of such kind of interaction is provided by the so-called signature curve shown in Fig. 3.1, where the critical load of a thin-walled member under pure compression is plotted against the half-wavelength. The dark blue line represents the results when all buckling modes are allowed to participate. The light blue line, the green line and the red line represent the curves for a constrained member when only the local, distortional or global modes are included, respectively. It can be seen that interaction between local and distortional buckling occurs at the same half-wavelength of approximately 350mm. The deformed shape of the coupled instability is illustrated in the bottom right corner, where it is clearly seen that both local and distortional modes play a role in the deformed shape.  
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[bookmark: _Ref399495748][bookmark: _Toc495159520]Fig. 3.1 Linear mode interaction
Before proceeding with a full explanation of the proposed modal decomposition method, definitions of the membrane and bending components of strains and stresses which occur in a thin-walled member need to be provided. The longitudinal strain εx, the transverse strain εy, the shear strain γxy and their corresponding stresses σx, σy, τxy can be expressed as the summation of two components related to (1) bending and twisting and (2) membrane deformations. For example: σx = σxB + σxM. While the bending component varies linearly along the z -axis, the membrane component is constant (Fig. 3.2). 
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[bookmark: _Ref436146706][bookmark: _Toc495159521]Fig. 3.2 Membrane and bending components
The basic categories of buckling types include local, distortional and global buckling. In the cFSM the following criteria are used to identify the distortional and global modes:
(1) The membrane shear strains are zero.
(2) The membrane transverse strains are zero.
(3) The warping displacements are linear within each flat plate segment
In addition, the global modes are characterised by rigid cross-section movement, and the transverse curvature of the plate segments is zero. However, these idealised assumptions are problematic when implemented in the FSM, where sufficient DOFs are present to account for the Poisson’s effect, resulting in membrane transverse strains and the transverse curvature, and the shear effect, resulting in membrane shear strains and non-linear warping displacements within each flat plate segment. Consequently, when maintaining the above assumption within the context of the FSM (as the cFSM does), overly rigid idealised buckling modes are obtained. This is illustrated, for instance, by the inconsistency between the distortional or global modal shapes obtained from the cFSM, and the shapes obtained from the FSM when pure distortional or global buckling is perceived to occur. 
In modal decomposition methods, the local, distortional and global modes (shown in Fig. 2.1) alone do not constitute a complete set of basis vectors. In order for an arbitrary deformed shape to be expressed as a linear combination of buckling modes, the number of buckling modes should be equal to the number of degrees of freedom (DOFs) of the discretised section, which outnumber the total number of local, distortional and global modes. Therefore, extra modes need to be added to the set, namely the transverse extension modes and shear modes. Contrary to local, distortional and global modes, these modes are unlikely to be seen occurring independently in practice but are theoretically important. According to the discussion by Ádány [9] and Gonçalves et al. [31], shear modes are uniquely characterised by the presence of membrane shear strain. Two examples of such modes are illustrated in Fig. 3.3, where the one on the left is termed a transverse-only shear mode displaying only cross-sectional displacements, while the one on the right is termed a warping-only shear mode containing only warping displacements. The buckling mode on the very right side is the global mode associated with these two shear modes. It can be seen that the global mode can be expressed as a linear combination of these two shear modes, or in other words, any two of the three modes are linearly independent. Transverse extension modes are characterised by the presence of membrane transverse strain, as shown in Fig. 3.4. It is noted that these shear and transverse extension modes are established in the cFSM at the cost of significant programming effort, which is further increased for complex cross-sections. On the other hand, the aforementioned problems caused by the idealised assumptions for the distortional and global modes in the cFSM can be solved partially by allowing the shear and transverse extension modes to participate so as to re-introduce the neglected effects. However, this solution does not secure that these effects are properly considered and not exaggerated. Furthermore, these assumptions are prohibitive in achieving a complete orthogonal set of buckling modes, an issue which will be discussed later in section 3.2.2. Therefore, a novel modal decomposition method is needed, which does not rely on the idealised assumption of GBT. 
In this study, two novel modal decomposition methods are proposed in the framework of the FSM, namely the polarisation method (PM), discussed in this chapter, and the nodal force method (NFM), discussed in the next chapter.
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[bookmark: _Ref399000127][bookmark: _Toc495159522]Fig. 3.3 Shear modes obtained from cFSM
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[bookmark: _Ref494724555][bookmark: _Toc495159523]Fig. 3.4 Transverse extension modes obtained from cFSM
[bookmark: _Toc496973338]Introduction to the polarisation method
In this method, buckling modes are categorised into five types including local, distortional, global, transverse extension and shear. The shear modes are neither transverse-only nor warping-only but have non-zero values for all displacements. In this method, buckling modes are identified according to the proportion of the plate bending strain energy to the total strain energy in the modal shape. The buckling modes are sorted in an order from the highest proportion to the lowest. The different classes of modes can then be delineated based on the known number of modes associated with each type, which is calculated prior to the modal decomposition process. In general, local modes are associated with the highest proportions, while transverse extension and shear modes are associated with the lowest. Since transverse extension and shear modes contain similarly low proportions of the plate bending strain energy to the total strain energy, transverse extension modes are filtered out using the criterion of null membrane transverse stress. This is done in advance before the sorting process of the buckling modes. 
[bookmark: _Ref468808262][bookmark: _Ref468808411][bookmark: _Toc496973339]Number of modes
The calculation of the number of buckling modes is important for the polarisation method, which will be discussed in section 3.3.2. In the cFSM, the number of buckling modes associated with each type is calculated using the formulas tabulated in the second column of Table 3.1.
[bookmark: _Ref404198304][bookmark: _Toc491872256]Table 3.1 Number of modes
	Mode type
	cFSM
	PM

	Local
	nm + 2ne + 2ns
	nm + 2ne + 2ns

	Distortional
	2nm + ne − np + D − 3
	2nm + ne − np + D − 3

	Global
	3
	3

	Transverse extension
	ns + np − D
	ns + np

	Shear
	nm + ne + ns
	nm + ne + ns − D



where nm, ne, and ns are the number of internal main nodes, external main nodes, and sub nodes as previously defined in section 2.5. Moreover, np is the number of plate segments, and D is the static indeterminacy of the 2D truss analogous with the cross-section, as shown in Fig. 3.5 (b). If the truss is statically determinate or a mechanism, then D = 0, and all of the plate segments can extend or contract independently without resulting in any membrane transverse strain in other plate segments. In this case, the number of transverse extension modes equals to the number of strips in the discretised cross-section. Otherwise, if the truss is statically indeterminate and D > 0, as is the case in Fig. 3.5, the extension (or contraction) of some of the plate segments is coupled so that they cannot occur independently. Thus, the number of transverse extension modes is reduced by D. However, in the here proposed polarisation method, the defining feature of the transverse extension modes is altered from non-zero membrane transverse strain to non-zero membrane transverse stress. The membrane transverse stress is dependent on not only the membrane transverse strain but also the membrane longitudinal strain because of the Poisson’s effect. Therefore, a membrane transverse stress can occur independently in any of the plate segments, regardless of the cross-sectional geometry. Thus, the number of transverse extension modes will always equal the number of strips in the section. On the other hand, in the shear modes, the warping displacements are combined with extension or contraction in the plate segments to ensure that the assumption of null membrane transverse stress is obeyed. In the case where D > 0, since the extension or contraction in some of the plate segments cannot occur independently, the warping displacement cannot occur arbitrarily in all nodes without introducing transverse stress. Therefore, the number of shear modes is reduced by D in the proposed method. The number of buckling modes associated with each type in the polarisation method is summarised in the third column of Table 3.1. The difference is noted in the number of shear and transverse extension modes compared to the cFSM.
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                                               (a)                                              (b)
[bookmark: _Ref409622735][bookmark: _Toc495159524]Fig. 3.5 Cross square section and its analogous truss
The number of local modes is determined in Table 3.1 based on the defining feature of the local modes that translation of the main nodes is prohibited. However, for sections with rounded corners this definition is too stringent. In this case, all nodes associated with a rounded corner are regarded as internal main nodes since they connect non-aligned plate segments. They are thus obliged to remain in place during local buckling, so that the corner is prohibited from rotating, thus virtually clamping the adjacent plate segments. This is contradictory to our intuitive understanding of the local modes where the corners are free to rotate. Therefore, the definition of main and sub nodes should be altered at the corner, which should be considered to contain only one internal main node, with the others counted as sub-nodes. For example, for the section shown in Fig. 3.9, each rounded corner consists of three nodes, among which one should be counted as an internal main node while the other two are sub nodes. Therefore, the section possesses a total 4 internal main nodes, 8 sub nodes and 2 external main nodes, resulting in 24 local modes according to the formula in Table 3.1.
[bookmark: _Ref468109667][bookmark: _Toc496973340]Orthogonality of modal shapes
It is necessary that the buckling modes form a set of linearly independent basis vectors of the deformation space. In addition to that, it is desirable that they are orthogonal with respect to the global stiffness matrix K. This orthogonality facilitates the decomposition of a random deformed shape, which can then be achieved by simply projecting the shape onto the basis vectors. The choice that they are orthogonal with respect to K is logical for two reasons [12]: First, the solution of the eigenvectors in Eq.  (i.e. the buckling deformed shapes) are orthogonal with respect to K. Therefore, if the buckling modes are also orthogonal with respect to K, there exists a rotation that transforms the buckling deformed shapes into pure buckling modes, given that the modes are normalised and correctly oriented along their axes (+1 or -1). Second, orthogonality with respect to K is associated with the physical meaning that the stresses resulting from one mode will not do any work in the strains of another mode. However, the assumption of null membrane transverse strain used in the cFSM for the distortional and global modes prohibits orthogonality among the buckling modes. This is attributed to the fact that the condition of zero membrane transverse strain will result in membrane transverse stress in the distortional and global modes. These transverse stresses, as a result of the Poisson’s effect, do work in the membrane transverse strains associated with the transverse extension modes. However, in our method orthogonality is regained. 
The orthogonality consists of (1) the orthogonality among modal shapes of different types; (2) the orthogonality among modal shapes of the same type. The deformed shapes satisfying orthogonality (1) but not orthogonality (2) are termed non-orthogonal basis vectors of the mode space. These basis vectors can be further transformed to modal shapes by performing re-orthogonalisation on them, where the following eigenvalue problem is solved [8]:

[bookmark: ZEqnNum435066]	 	

where H is the matrix containing in its columns the non-orthogonal basis vectors of the mode space; A is the matrix containing in its columns the vectors of the linear combination factors (i.e. amplification factors); Λ = diag[λ1, λ2, …, λn] is the matrix containing the load factors. Therefore, the matrix containing modal shapes  is expressed as:

[bookmark: ZEqnNum519217]	 	
[bookmark: _Toc496973341]Modal identification
[bookmark: _Ref410030305][bookmark: _Toc496973342]Modal identification step 1
The local, distortional, global and shear modes are distinguished from the transverse extension modes by assuming that the membrane transverse stress σy = 0. However, in the transverse extension modes the membrane transverse strain εy and the membrane shear strain γ are allowed.
According to the constitutive relations, the transverse stress can be expressed as:

	 	 
Since εx varies linearly along the local y -axis within each strip, εy has to vary linearly as well in order for σy to vanish. This is contradictory to the observation in the FSM that εy is constant, because in the FSM transverse displacements vary linearly along the local y -axis within each strip, thus its derivative is constant. Therefore, an equivalent assumption is used instead stating that within each strip the average value of transverse stress is zero:

[bookmark: ZEqnNum383251]	 	 

where the membrane transverse strain and the average membrane longitudinal strain are expressed as follows:

[bookmark: ZEqnNum519601]	 	
In the above equations v1 , u1 and v2, u2 are the displacements of the start and end nodes of the strip, respectively. When a transformation of the coordinate systems is carried out:

[bookmark: ZEqnNum485281]	 	
where α is the inclination angle of the plate segment with respect to the Y -axis, as shown in Fig. 3.6. 
[image: ]
[bookmark: _Ref485211979][bookmark: _Toc495159525]Fig. 3.6 Transformation from global to local displacements
Therefore, for a section discretised into np strips, Eq.  after substituting Eq.  and Eq.  becomes:

[bookmark: ZEqnNum784747]	 	
where the superscript i refers to the i th strip. 
Eq.  can be summarised as Ch = 0, where C is a constraint matrix, and h is a basis vector of the space where the null membrane transverse stress assumption is valid . 
Therefore, the matrix containing the non-orthogonal basis vectors of the local, distortional, global and shear space Hldgs is obtained by finding the null space of C:

[bookmark: ZEqnNum569250]	 	
Since the basis vectors of the transverse extension space ht need to be orthogonal to the basis vectors of the local, distortional, global and shear space with respect to K, they must satisfy

	 	
Thus, the matrix Ht containing the non-orthogonal basis vectors of the transverse extension space is obtained as follows:

	 	
Once the basis vectors of the transverse extension space are obtained, they are re-orthogonalised to obtain the modal shapes using Eq.  and Eq. :

	 	

where At is the matrix containing the amplification factors of the basis vectors in forming the transverse extension modal shapes contained in .
[bookmark: _Ref494724756][bookmark: _Toc496973343]Modal identification step 2
The deformations of a thin-walled member consist of two components: bending and membrane deformations, of which the corresponding strain energies are notated as UB and UM , respectively. For local buckling modes the total strain energy is virtually entirely composed of plate bending energy, while for global buckling modes membrane deformations contribute the most. Consequently, in terms of the difference UB  − UM , maximum values are reached when local buckling happens while the minimum values are witnessed when global buckling occurs. This suggests the possibility of determining the pure buckling modes by finding the extremum values of the function UB  − UM . 
In order to make the values of UB  − UM associated with different deformed shapes comparable, the deformed shapes need to be normalised so that the total strain energy U is 1. This is added to the problem as a constraint. The constrained optimisation problem is solved through the Lagrange multiplier method, where the problem is equivalent to finding the optimum values of the Lagrange function

[bookmark: ZEqnNum455785]	 	
In the finite strip method (FSM), the strain energies associated with the deformed shape d are calculated as:

[bookmark: ZEqnNum494117]	 	
where KB and KM are the components of K associated with bending and membrane deformations respectively.
After the transverse extension modes have been filtered out, we have:

[bookmark: ZEqnNum732136]	 	 
where aldgs is the matrix containing in its columns the amplification factors of the basis vectors of the local, distortional, global and shear spaces. Substituting Eq.  into Eq.  and the result into Eq.  and then setting the derivative of the function to zero yields:

[bookmark: ZEqnNum293956]	 	

Thereby the modal decomposition problem is transformed into an eigenvalue problem, where indicates the proportion of bending strain energy in the total strain energy: 

	 	
It is noted that local modes are associated with UB /UM ratios close to 1 (or λ close to 1) while global and shear modes are characterised by UB /UM ratios close to 0 (or λ close to -1). This ‘polarisation’ of the λ values has given the method its name. Meanwhile, distortional modes possess UB /UM and λ values in between. Therefore, if the deformed shapes obtained from Eq.  are sorted in a descending sequence by their λ values, the local basis vectors will come first, followed by the distortional and global basis vectors. The shear basis vectors come last as their transverse plate bending is negligible. Since this sequence persists regardless of the half-wavelength, different mode spaces can be extracted as long as the number of buckling modes in each space is calculated using Table 3.1. For example, for the lipped channel section with sharp corners shown in Fig. 3.7, the local, distortional, global and shear modal shapes obtained after step 2 are shown in Table 3.2, along with the corresponding values of λ. In this and the following chapter, all illustrative examples of modal shapes are associated with an arbitrarily chosen half-wavelength of 1000 mm without further specification. 
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref400294046][bookmark: _Ref468202111][bookmark: _Ref468290571][bookmark: _Toc495159526]Fig. 3.7 Lipped channel section
[bookmark: _Ref470531051][bookmark: _Toc491872257]Table 3.2 Modal shapes
	Local
	Distortional
	Global

	1
	1
	1
	1
	1
	1
	1
	1
	-0.039
	-0.370
	-0.998
	-1
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	Shear
	

	-1
	-1
	-1
	-1
	-1
	-1
	-1
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[bookmark: _Toc496973344]Modal identification step 3




Finally, within each space a re-orthogonalisation is performed according to Eq. , and the orthogonal buckling modes obtained are put in the matrixes , , and  for local, distortional, global and shear respectively. The full set of modal shapes is then given by: 

	 	
Table 3.3 illustrates the full set of modes for the lipped channel section in Fig. 3.7.
[bookmark: _Ref400294119][bookmark: _Ref404777177][bookmark: _Ref468205940][bookmark: _Toc491872258]Table 3.3 Modal shapes
	Local
	Distortional
	Global
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	Transverse-extension
	Shear
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[bookmark: _Toc496973345]Modal decomposition
As modal shapes are vectors that can be arbitrarily scaled, they need to be normalised before being used in modal decomposition. The chosen normalisation criterion is that the strain energy resulting from each modal shape is equal to unity:

[bookmark: ZEqnNum800704]	 	


where  is the normalised modal shape. After the full set of normalised modes shapesis obtained, an arbitrary deformed shape d can be decomposed into a linear combination of the buckling modes: 

[bookmark: ZEqnNum480535]	 	
where a is the vector containing the amplification factors of the pure buckling modes in forming the deformed shape, for which the modal participation is determined. Also:

	 	
where n is the total number of buckling modes or DOFs. There are two common definitions of modal participation [8], which are based on either displacements or energy. Among the two options the energy-based definition of modal participation was selected in this thesis, which determines the contribution of each mode in the total strain energy associated with the deformed shape. Thus, the participation factor of the i th mode is calculated as follows: 

[bookmark: ZEqnNum887133]	 	

where  is the total number of DOFs. 
[bookmark: _Ref410030326][bookmark: _Toc496973346]Illustrative examples
The method was tested on a variety of sections.
The mechanical properties of the material were assumed to be: E = 210000 MPa, ν = 0.3. The plate thickness was 1mm.
First, the lipped channel section with sharp corners shown in Fig. 3.7 was studied, whose modal shapes were previously established. The critical stress (signature curve) and modal participation are plotted against the half-wavelength in Fig. 3.8. 
Second, the lipped channel section with rounded corners shown in Fig. 3.9 was studied. The modal shapes established are shown in Table 3.4. The critical stress and modal participation are plotted against half-wavelength in Fig. 3.10. 
Third, the double-cell box section shown in Fig. 3.11 was studied. The modal shapes are shown in Table 3.5. The critical stress and modal participation are plotted against the half-wavelength in Fig. 3.12. 
Fourth, the hollow-flange channel section shown in Fig. 3.13 was studied. The modal shapes are shown in Table 3.6. The critical stress and modal participation are plotted against the half-wavelength in Fig. 3.14. 
Fifth, the Single-cell box section shown in Fig. 3.15 was studied. The modal shapes are shown in Table 3.7. The critical stress and modal participation are plotted against the half-wavelength in Fig. 3.16. 
Finally, the multi-cell square section shown in Fig. 3.17, associated with a statically indeterminate analogous truss was studied. The modal shapes are shown in Table 3.8. It can be seen according to the formulas in Table 3.1 that since the degree of static indeterminacy is 1, there exists no distortional mode but there are four shear modes. It is also noted that the fourth transverse extension modal shape from the left looks more like a shear mode, displaying negligible cross-sectional displacements compared to the warping displacements. However, it is still identified as a transverse extension mode according to our definition since transverse stresses occur in the plate segments. The critical stress and modal participation are plotted against the half-wavelength in Fig. 3.18.
[image: ]
[bookmark: _Ref404777530][bookmark: _Ref404777526][bookmark: _Toc495159527]Fig. 3.8 Critical stress and modal participation
 [image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref404784096][bookmark: _Toc495159528]Fig. 3.9 Lipped channel section with rounded corners
[bookmark: _Ref404784113][bookmark: _Toc491872259]Table 3.4 Modal shapes
	Local
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	Distortional
	Global
	Transverse-extension
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	Shear
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[bookmark: _Ref404785015][bookmark: _Ref404785012][bookmark: _Toc495159529]Fig. 3.10 Critical stress and modal participation
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref404791722][bookmark: _Ref404791312][bookmark: _Toc495159530]Fig. 3.11 Double-cell box section



[bookmark: _Ref404791450][bookmark: _Toc491872260]Table 3.5 Modal shapes
	Local
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	Distortional
	Global
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	Transverse-extension
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	Shear
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[bookmark: _Ref404791473][bookmark: _Toc495159531]Fig. 3.12 Critical stress and modal participation
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref404791736][bookmark: _Toc495159532]Fig. 3.13 Hollow-flange channel section
[bookmark: _Ref404791749][bookmark: _Toc491872261]Table 3.6 Modal shapes
	Local
	Distortional
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	Global
	Transverse-extension
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[bookmark: _Ref404791912][bookmark: _Toc495159533]Fig. 3.14 Critical stress and modal participation
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref404792003][bookmark: _Ref446418635][bookmark: _Toc495159534]Fig. 3.15 Single-cell box section
[bookmark: _Ref404792044][bookmark: _Toc491872262]Table 3.7 Modal shapes
	Local
	D
	Global
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	Transverse-extension
	Shear
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[bookmark: _Ref404792033][bookmark: _Toc495159535]Fig. 3.16 Critical stress and modal participation
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref468801523][bookmark: _Toc495159536]Fig. 3.17 Multi-cell square section
[bookmark: _Ref468801539][bookmark: _Toc491872263]Table 3.8 Modal shapes
	Local
	Global
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[bookmark: _Ref468801529][bookmark: _Toc495159537]Fig. 3.18 Critical stress and modal participation



















CHAPTER 4. [bookmark: _Toc496973347]The nodal force method of modal decomposition 

[bookmark: _Toc496973348]Introduction to the nodal force method








[image: ]According to Eq. , the global displacements and rotation obey trigonometric longitudinal shape functions, with their amplitudes , , ,  defined as the nodal displacements in the FSM. In order to generate such a deformed shape, nodal line loads are imposed on the 3D model equivalent to the 2D model used in the FSM, as shown in Fig. 4.1. These nodal line loads obey the longitudinal shape functions: , ,  and , representing the intensity of the loads per unit length. Therefore, the nodal forces in the FSM are defined as integrations of these nodal line loads over the length L: [bookmark: _Ref494738893][bookmark: _Toc495159538]Fig. 4.1 Nodal line loads 


	 	
In the nodal force method, the buckling modes are generated by applying precisely defined nodal forces f, obeying a definitive set of criteria for each of the buckling types. The corresponding modal shape h is obtained from a first-order elastic equation, which in the context of the FSM is given by:

[bookmark: ZEqnNum798077]	 	 
where K is the global stiffness matrix, and f is the nodal force vector. Similarly to what was adopted for the polarisation method in the previous chapter, in the nodal force method buckling is categorised into five types including local, distortional, global, transverse extension and shear. In summary, the criteria used to achieve modal identification include (1) the criterion of non-zero longitudinal force to extract shear modes from the other modes, (2) the criterion of non-zero membrane transverse stress to identify the transverse extension modes, and (3) the equilibrium of cross-sectional forces and moments to distinguish the distortional modes from the global modes. In addition, the orthogonality with respect to K is consistently maintained during the establishment of buckling modes.  
[bookmark: _Toc496973349]Modal identification
The different types of modes are established as follows:
[bookmark: _Toc496973350]Local modes
It is assumed that the local modes obey two assumptions. 
(1) The longitudinal nodal forces associated with the displacement U are zero.  
(2) Only a subset of DOFs, which includes the rotations of all nodes and the out-of-plane displacements w of sub nodes and external main nodes, takes on non-zero values. These DOFs are here termed local buckling DOFs. The reader is referred to section 2.5 for the definitions of the coordinate systems, displacements and node types.
The first assumption is also valid for the distortional, global and transverse extension modes. It is based on the fact that these modes can be generated by only applying transverse forces, without being accompanied by any longitudinal forces. 
The second assumption is rooted in the characteristic feature of local buckling that only transverse plate bending occurs. The assumptions are enforced by converting Eq.  to Eq.  where the matrices and vectors are partitioned. The subscript 2 represents the DOFs associated with the displacements V and W of the internal main nodes, while the subscript 1 represents the remaining DOFs. 

[bookmark: ZEqnNum933241]	 	
With h2 = 0, we obtain:

[bookmark: ZEqnNum847955]	 	
By imposing on the member, in turn, a unit nodal force (or moment) corresponding to one local buckling DOF while setting all other DOFs to zero, one basis vector of the local space is established. A transformation from the local to the global coordinate system is thereby required so that global nodal force vector f1 can be determined: 

	 	

where α is again the inclination angle of the plate segment with respect to the Y –axis as shown in Fig. 4.2, fz and m are the nodal force and the moment corresponding to the local displacements w and θ, fY, fZ and Mx are the nodal forces and moment corresponding to the global Y - and Z – displacements and the rotations Θ. It is noted that since the components of f1 corresponding to the longitudinal displacements U are consistently zero, assumption (1) is satisfied. Once f1 is determined, the corresponding basis vector h1 is obtained from Eq. . Subsequently h1 is expanded to h by setting the additional elements, corresponding to h2, equal to zero. The matrix Hl is then defined, containing in its columns all the established non-orthogonal basis vectors of the local space. Finally, the matrix Hl can be transformed to the matrix containing all the orthogonal local modes by performing re-orthogonalisation as described in the previous chapter by Eq.  and Eq. . This procedure is illustrated with an example in which the lipped channel section in Fig. 4.3 is studied. The number of local modes equals the number of local buckling DOFs: Nl = nm + 2ne + 2ns, where nm, ne, ns are the number of internal main nodes, external main nodes, and sub nodes. 
[image: ]
[bookmark: _Ref487657000][bookmark: _Toc495159539]Fig. 4.2 Transformation from local to global nodal forces
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref485230227][bookmark: _Toc495159540]Fig. 4.3 Lipped channel section
In Fig. 4.3, the out-of-plane displacements of the eight basis vectors before re-orthogonalisation are shown in the middle panel; The corresponding cross-sectional nodal forces are shown in the upper panel, and the out-of-plane displacements of the final modal shapes are shown in the lower panel.  In the nodal force diagram, nodal forces corresponding to f1 in Eq.  are presented in red, while nodal forces corresponding to f2 are presented in blue.
[image: ]
(a) Nodal forces of the basis vectors
[image: ] 
(b) Cross-sectional displacements of the basis vectors
[image: ]
[bookmark: _Ref409691827](c) Cross-sectional displacements of the buckling modes
[bookmark: _Toc495159541]Fig. 4.4 Local modal shapes and nodal forces
[bookmark: _Ref495069163][bookmark: _Toc496973351]Distortional modes
It is assumed that the distortional modes obey four assumptions:
(1) The longitudinal nodal forces are zero.  
(2) The membrane transverse stresses σy = 0. 
(3) The cross-sectional nodal forces (i.e. nodal forces corresponding to the cross-sectional displacements) and moments are in translational and rotational equilibrium.
(4) They are orthogonal to the previously established local modes with respect to K.
The second assumption replaces the assumption of null membrane transverse strain applied in GBT and the cFSM and instead allows extension and contraction of the strips as a result of the Poisson’s effect. Meanwhile, the third assumption ensures that any overall lateral translation or rotation of the cross-section is prohibited in distortional buckling, which distinguishes it from global buckling. 
These assumptions are enforced as follows:
Assumption 1: 
This assumption is enforced by performing the following transformation:

[bookmark: ZEqnNum743817]	 	

where  is the reduced nodal force vector containing all nodal forces except the longitudinal ones. If n is defined as the total number of nodes in the cross-section, then the transformation matrix T contains in its rows a 3n × 3n identity matrix I and an n × 3n zero matrix 0. 
Assumption 2: 
For the implementation of this assumption the reader can be referred back to section 3.3.1, where it was shown to lead to Ch = 0. While C is constraining the basis vector h, its equivalent matrix C2 constraining the nodal force vector f is defined by: 

	 	
Assumption 3: 
This assumption requires that the resultant forces and torque of the nodal forces vanish: 

[bookmark: ZEqnNum933223]	 	
where fYi and fZi are the nodal force components in the global Y and Z directions at node i, and Yi and Zi are global coordinates of node i with respect to any chosen origin. Eq.  can be summarised in matrix form as C3 f = 0.
Assumption 4:
Given that Hl contains the basis vectors of the local space, the orthogonality is expressed as 

. 

Therefore, the reduced nodal force vectors generating the distortional modes should satisfy:

	 	

Thus, the matrix  containing all the distortional reduced nodal force vectors is calculated by finding the null space of Cd:

	 	

Subsequently  is transformed to the matrix Fd containing all the full-size nodal force vectors as follows:

	 	
The matrix Hd containing the basis vectors of the distortional space is then calculated as:

	 	


The matrix C2 is (np + ns) × 4n in dimensions, where np + ns is the number of strips, and np is the number of plate segments. The matrix C3 has size 3 × 4n, and the matrix HlT has size  
Nl × 4n. Since the matrix T is  in size, the matrix Cd is a (np + ns + Nl + 3) × 3n matrix. If the rows in C2T are linearly independent, the number of distortional modes 
Nd = 2nm + ne – np − 3. However, this is only the case when the analogous truss introduced in section 3.2.1 is statically determinate. Otherwise, some rows in C2T will become linearly dependent, which physically means that the transverse stress cannot occur independently in each of the plate segments assuming that the longitudinal nodal forces are all zero. In this case the number of distortional modes is increased by the degree of static indeterminacy of the truss D. After performing a re-orthogonalisation, the matrix Hd can be transformed to the matrix  containing all the distortional modes, as previously explained by Eq.  and Eq. .
Reverting back to the example introduced in Fig. 4.3, the cross-sectional displacements of the two distortional modal shapes are shown in the middle panel of Fig. 4.5; the warping displacements are shown in the lower panel, and the corresponding cross-sectional nodal forces are shown in the upper panel. 
[image: ]
(a) Nodal forces
[image: ]
(b) Cross-sectional displacements
[image: ]
(c) Warping displacements
[bookmark: _Ref409692143][bookmark: _Toc495159542]Fig. 4.5 Distortional modal shapes and nodal forces
[bookmark: _Toc496973352]Global modes
It is assumed that the global modes obey four assumptions:
(1) The longitudinal nodal forces are zero. 
(2) The membrane transverse stresses σy = 0. 
(3) They are orthogonal to the previously established local modes with respect to K.
(4) They are orthogonal to the previously established distortional modes with respect to K.
Similarly, the reduced nodal force vectors for global modes should satisfy:

	 	
Thus, the matrix Hg containing the basis vectors of the global space is calculated as:

	 	

The number of global modes is always three. After performing a re-orthogonalisation, the matrix Hg can be transformed to the matrix  containing all the global modes.
In Fig. 4.6, the cross-sectional displacements of the three global modal shapes for the lipped channel in Fig. 4.3 are shown in the middle panel; the warping displacements are shown in the lower panel, and the corresponding cross-sectional nodal forces are shown in the upper panel. 
[image: ]
(a) Nodal forces
[image: ]
(b) Cross-sectional displacements
[image: ]
(c) Warping displacements
[bookmark: _Ref409692203][bookmark: _Toc495159543]Fig. 4.6 Global modal shapes and nodal forces
[bookmark: _Toc496973353]Transverse extension and shear modes
It is assumed that the transverse extension modes obey four assumptions:
(1) The longitudinal nodal forces are zero. 
(2) They are orthogonal to the previously established local modes with respect to K.
(3) They are orthogonal to the previously established distortional modes with respect to K.
(4) They are orthogonal to the previously established global modes with respect to K.
Similarly, the reduced nodal force vectors for transverse extension modes should satisfy:

	 	
Thus, the matrix Ht containing the basis vectors of the transverse extension space is calculated as:

	 	

If the analogous truss is statically determinate, the number of transverse extension modes equals the number of strips Nt = np + ns. Otherwise, some combinations of the transverse stresses in the plate segments cannot satisfy the assumption that the longitudinal nodal forces are all zero, and the number of transverse extension modes is reduced by D. After performing re-orthogonalisation, the matrix Ht can be transformed to the matrix  containing all the transverse extension modes.
Finally, the shear modal shapes are established via the assumption that they are orthogonal to all the other modes established previously with respect to K. Thus, the nodal force vectors for the shear modes should satisfy:

	 	
The matrix Hs containing the basis vectors of the shear space is thus calculated as:

	 	

The number of shear modes is calculated by deducting the total number of local, distortional, global and transverse extension modes from the total number of DOFs, namely
Ns = 4n – Nl – Nd – Ng – Nt = n. After performing a re-orthogonalisation, the matrix Hs can be transformed to the matrix  containing all the shear modes.
In Fig. 4.7, the cross-sectional displacements of the transverse extension modal shapes of the lipped channel in Fig. 4.3 are shown in the middle panel. The warping displacements are shown in the lower panel, and the corresponding cross-sectional nodal forces are shown in the upper panel.
[image: ]
(a) Nodal forces
[image: ]
(b) Cross-sectional displacements
[image: ]
(c) Warping displacements
[bookmark: _Ref409720235][bookmark: _Toc495159544]Fig. 4.7 Transverse extension modal shapes and nodal forces
[image: ]
(a) Cross-sectional nodal forces
[image: ]
(b) Longitudinal nodal forces
[image: ]
(c) Warping displacements
[bookmark: _Ref409692798][bookmark: _Toc495159545]Fig. 4.8 Shear modal shapes and nodal forces
In Fig. 4.8, the warping displacements of the shear modal shapes are shown in the lower panel. The corresponding cross-sectional nodal forces are shown in the upper panel, and the longitudinal nodal forces are shown in the middle panel. It should be noted that the latter, of course, act perpendicular to the plane of the cross-section.
In summary, the validity of the assumptions defined in section 4.2.2 for different types of modes are tabulated in Table 4.1, where the ticks mean that the assumptions must be satisfied, while the crosses mean that the assumptions may or may not be satisfied.
[bookmark: _Ref409692849][bookmark: _Ref468290499][bookmark: _Toc491872264]Table 4.1 Assumptions for different mode types
	
	Asm. 1
	Asm. 2
	Asm. 2

	Local
	√
	√
	√

	Distortional
	√
	√
	√

	Global
	√
	√
	×

	Transverse extension
	√
	×
	×

	Shear
	×
	×
	×


[bookmark: _Toc496973354]Illustrative examples
The method was tested on the same sections used in the previous chapter.
First, the lipped channel section shown in Fig. 4.3 was studied, whose modal shapes were already shown in the derivation of the method. The critical stress and modal participation are plotted against the half-wavelength in Fig. 4.9. 
Second, the double-cell box section shown in Fig. 4.10 was studied. The modal shapes are shown in Table 4.2. The critical stress and modal participation are plotted against the half-wavelength in Fig. 4.11. 
Third, the hollow-flange channel section shown in Fig. 4.12 was studied. The modal shapes are shown in Table 4.3. The critical stress and modal participation are plotted against the half-wavelength in Fig. 4.13. 
Fourth, the Single-cell box section shown in Fig. 4.14 was studied. The modal shapes are shown in Table 4.4. The critical stress and modal participation are plotted against the half-wavelength in Fig. 4.15. 
Finally, the cross square section shown in Fig. 4.16 was studied. The modal shapes are shown in Table 4.5. It is noted that compared to Table 3.8, presenting the results of the polarisation method, this method leads to one more shear mode but one less transverse extension mode. The critical stress and modal participation are plotted against the half-wavelength in Fig. 4.17.
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[bookmark: _Ref404936055][bookmark: _Ref468290609][bookmark: _Toc495159546]Fig. 4.9 Critical stress and modal participation
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref476236262][bookmark: _Toc495159547]Fig. 4.10 Double-cell box section
[bookmark: _Ref405471252][bookmark: _Toc491872265]Table 4.2 Modal shapes
	Local
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	Global
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[bookmark: _Ref405887952][bookmark: _Toc495159548]Fig. 4.11 Critical stress and modal participation
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref476236331][bookmark: _Toc495159549]Fig. 4.12 Hollow-flange channel section
[bookmark: _Ref405888451][bookmark: _Toc491872266]Table 4.3 Modal shapes
	Local
	Distortional
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	Global
	Transverse-extension
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[bookmark: _Ref405888468][bookmark: _Toc495159550]Fig. 4.13 Critical stress and modal participation
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref476236424][bookmark: _Toc495159551]Fig. 4.14 Single-cell box section
[bookmark: _Ref405888713][bookmark: _Toc491872267]Table 4.4 Modal shapes
	Local
	D
	Global
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	Transverse-extension
	Shear
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[bookmark: _Ref405888731][bookmark: _Toc495159552]Fig. 4.15 Critical stress and modal participation
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref476236431][bookmark: _Toc495159553]Fig. 4.16 Cross square section
[bookmark: _Ref468804423][bookmark: _Toc491872268]Table 4.5 Modal shapes
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[bookmark: _Ref468804438][bookmark: _Toc495159554]Fig. 4.17 Critical stress and modal participation














CHAPTER 5. [bookmark: _Toc496973355]Comparison between the modal decomposition methods 

[bookmark: _Toc496973356]Introduction
In this chapter, a comparison is made between the available modal decomposition methods, including the polarisation method (PM) and the nodal force method (NFM) as newly proposed methods, together with the generalised beam theory (GBT) and the constrained finite strip method (cFSM) as existing methods. The version of GBT discussed in this chapter is the one implemented in GBTUL 2.0.4.3 [11], and the cFSM is implemented according to [5] [6].
[bookmark: _Toc496973357]Comparison between the newly proposed methods
[bookmark: _Toc496973358]Similarities
The newly proposed polarisation method and the nodal force method are sharing four common features, among which the first three are advantages over the existing methods:
(1) Both of the methods are able to deal with complex cross-sections (sections with closed part or branches) without any increase in computational effort. Although these sections are not yet classified to be designed using the DSM, the improved computational efficiency of the proposed methods will facilitate the future extension of the application of the DSM. Moreover, the polarisation method can also deal with sections with rounded corners. This contributes to the improved accuracy of this method compared to other methods, where the influence of rounded corners can only be taken by analysing an otherwise similar cross-section with sharp corners.
(2) In both of the methods, the Poisson’ s effect and the shear effect are accounted for in the distortional and global modes, thus allowing membrane transverse strains, transverse curvature, membrane shear strain and non-linear warping displacements within each flat plate segment. The distortional or global modal shapes obtained from these modal decomposition methods coincide with the shapes obtained from the FSM when pure distortional or global buckling occurs.
(3) In both of the methods, all modes are orthogonal to each other with respect to K. This orthogonality simplifies the decomposition of a random deformed shape, as discussed in section 3.2.2.
(4) In both of the methods, modal shapes vary with the half-wavelength. This is due to the fact that the Poisson’s effect and the shear effect have more relative importance at short half-wavelengths.
[bookmark: _Toc496973359]Differences
One major difference between these two methods resides in the treatment of shear modes and transverse extension modes. The criterion of null membrane transverse stress is valid for the shear modes in the PM but not for the same type of modes in the NFM. On the other hand, the criterion of null longitudinal force is valid for the transverse extension modes in the NFM but not for the same type of modes in the PM. This accounts for the difference in the number of buckling modes which emerges when the analogous truss addressed in section 3.2.1 is statically indeterminate. As shown in Table 5.1, the number of transverse extension modes is then reduced by the degree of static indeterminacy D in the NFM but not in the PM. Conversely, the number of shear modes is reduced by D in the PM but not in the NFM. It is also noted that the number of various types of buckling modes in the NFM is consistent with that in the cFSM.[bookmark: _Ref468808739][bookmark: _Toc491872269]Table 5.1 Number of modes
Mode type
PM
NFM
Local
nm + 2ne + 2ns
nm + 2ne + 2ns
Distortional
2nm + ne − np + D − 3
2nm + ne − np + D − 3
Global
3
3
Transverse extension
ns + np
ns + np − D
Shear
nm + ne + ns − D
nm + ne + ns
  Note:   nm 		number of internal main nodes
              ne		number of external main nodes
              ns 		number of sub nodes
              np		number of plate segments
              D		static indeterminacy of the analogous 2D truss 
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                                 (a) Nodal force method                         (b) Polarisation method
[bookmark: _Ref404939929][bookmark: _Toc495159555]Fig. 5.1 Flexural global mode
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(a) Shear flow                                     (b) Equivalent nodal force
[bookmark: _Ref404941407][bookmark: _Toc495159556]Fig. 5.2 Shear flow and equivalent nodal force configuration
Another difference is unveiled when the double-cell box section in Fig. 3.11 is studied. For this section, the modal shapes of the same flexural global mode obtained from the two methods are shown in Fig. 5.1, where the cross-section translates upwards as a whole. In both (a) and (b) the tension side of the section (top) contracts while the compressive side (bottom) extends due to the Poisson’s effect. However, the two sections distort differently. The difference is attributed to the shear flow pattern shown in Fig. 5.2 (a) with two shear flows of the same magnitude but opposite direction occurring in the two closed cells of the section. The equivalent nodal force configuration shown in Fig. 5.2 (b) obeys the equilibrium assumption imposed on the distortional modes in the NFM, and this shear flow pattern is thus allowed to participate in the distortional modal shapes obtained from the NFM. Consequently, it is prohibited in the global modal shapes in the NFM due to the orthogonality requirement. On the other hand, this shear flow pattern is allowed in the global modal shapes obtained from the PM, resulting in the modal shape shown in Fig. 5.1 (b) where plate bending is minimised.
In summary, the definitions of various types of buckling modes are slightly different in these two methods. However, it will be proved in the next section that the influence of these differences on the local, distortional and global critical stresses is negligible.
[bookmark: _Toc496973360]Comparison between the newly proposed and existing methods
It is also important to compare the newly proposed methods with the existing methods (GBT and cFSM), which leads to some interesting observations.
[bookmark: _Toc496973361]Mode generation
In the cFSM and the NFM, the basis vectors associated with a specific type of buckling modes are generated by making assumptions associated with their mechanical features. For example, in the cFSM global modes are characterised by rigid translation or rotation of the section, while in the NFM two assumptions are made to global modes that they have null longitudinal nodal force and membrane transverse stress. 
In the PM, first the transverse extension modes are distinguished from other modes through the assumption of non-zero membrane transverse stress. Then other buckling modes are identified according to the proportion of the plate bending strain energy to the total strain energy in the modal shape.
In all the three methods, within each type of buckling, the basis vectors are transformed to buckling modes by performing the re-orthogonalisation process. 
In GBT, the conventional buckling modes are generated in a process similar to the re-orthogonalisation process in Eq.  to transform basis vectors to buckling modes. First, initial basis vectors are defined, each with the displacement value associated with one specific DOF set equal to unity while all other displacement values are set equal to zero. During the process of mode generation, the initial basis vectors are transformed to buckling modes, while simultaneously the matrices in Eq.  are diagonalised. The obtained set of conventional modes is subsequently complemented by transverse extension and shear modes generated independently using mechanical assumptions.
[bookmark: _Toc496973362]Orthogonality
In the cFSM, a number of different orthogonality criteria are used regarding displacements and strains, including the warping displacements U, the membrane shear strains γxy, the membrane transverse strains εy and the transverse curvatures κy = ∂2 w/∂2 y, as shown in Fig. 5.3. The buckling type labels are coloured according to the orthogonality criterion used within the class between two buckling modes of the same type. The arrows in different colours linking two labels represent the orthogonality criterion used between two buckling modes of different types. For the distortional modes, either the orthogonality criterion regarding U or κy can be used. Alternatively, the buckling modes within each type can also be re-orthogonalised using Eq.  so that they are orthogonal with respect to matrices K and G.
[image: ]
  Note:   L		local modes
              D		distortional modes
              G		global modes
              SDw 		warping-only shear modes associated with distortional modes
              SGw 		warping-only shear modes associated with global modes
              SDt 		transverse-only shear modes associated with distortional modes
              SGt 		transverse-only shear modes associated with global modes
[bookmark: _Ref476069982][bookmark: _Toc495159557]Fig. 5.3 Orthogonality among buckling modes in the cFSM
In the GBT, the conventional modes are orthogonal with respect to the matrices C and BB (i.e. the component of B associated with transverse plate bending). While part of the conventional mode space, the global modes are also orthogonal with respect to the matrices C and D1 (i.e. the component of D associated with shear). Within the global mode space, the axial compression mode and the flexural global modes are orthogonal with respect to the matrices C and Χ. Matrix X takes into account the geometrically non-linear effect, and is calculated as

	 	


where the integration is performed along the cross-sectional mid-line S, σx is the membrane longitudinal stress,   and  are longitudinal amplitudes of the cross-sectional displacements. In addition, the natural shear modes (main nodes are allowed to move) are orthogonal with respect to the matrices BB and D1, while the local shear modes (only sub nodes are allowed to move) are orthogonal with respect to the matrices CM (the component of C associated with longitudinal membrane deformation) and D1M (the component of D1 associated with shear resulting from membrane deformation). Finally, the transverse extension modes are orthogonal with respect to the matrices BM (the component of B associated with transverse membrane deformation) and D1.
Contrarily to the complicated framework in the existing methods where a number of different orthogonality criteria are used linked to the mechanical features of the buckling modes, in the newly proposed methods a unified orthogonality criterion with respect to K is used among all the buckling modes.
[bookmark: _Toc496973363]Scope of applicability to various cross-sections
Although all of the methods are able to deal with arbitrary sections, computational effort is increased for GBT when analysing complex cross-sections. In such cases, the conventional modes obtained from the classic GBT are complemented by independently generated shear modes and transverse extension modes. Moreover, since Vlasov’s assumption is violated, the approximation used in the classical beam theory is abandoned. Consequently, the simplicity of the method is lost. Similar problems occur for the cFSM, where shear modes and transverse extension modes are established at the cost of significant programming effort, especially for complex cross-sections. In the newly proposed methods, there is no increase in computational effort when dealing with complex cross-sections. Finally, the cFSM, GBT and the NFM are able to deal with only cross-sections with sharp corners, while the PM is able to deal with cross-sections with rounded corners.
[bookmark: _Toc496973364]Constitutive relations
Concerning the constitutive relations for the membrane deformations, the cFSM, the PM and the NFM adopt the exact equations:

[bookmark: ZEqnNum913740]	 	
In GBT, the expressions of the membrane longitudinal and transverse stresses are uncoupled so that:

[bookmark: ZEqnNum914454]	 	
[bookmark: _Toc496973365]Membrane strains and stresses
Since different definitions are attached to different types of buckling modes in various modal decomposition methods, membrane strains and stresses can differ. This is summarised in Table 5.2, where the ticked components are allowed (meaning they may or may not occur) while the crossed components are prohibited (meaning they must not occur). In the PM and the NFM, the majority of the strain and stress components are allowed, except for the transverse stress σy , which is prohibited for the conventional modes in both the PM and the NFM, and for the shear modes only in the PM. In the cFSM and GBT, in light of the fact that the shear modes in GBT are equivalent to the warping-only shear modes in the cFSM, identical assumptions are used regarding the strains. First, no transverse extension or shear are allowed for the conventional modes. Second, since no warping displacements are allowed in the transverse extension modes, the longitudinal strain εx is zero. However, in these transverse extension modes as the plates extend or contract, membrane transverse strains εy and shear strains γxy are introduced. Third, for the shear modes, εx and γxy are allowed while εy is prohibited. In particular, for the transverse-only shear modes in the cFSM, which are generated by adopting the cross-sectional displacements of the corresponding conventional modes while eliminating the warping displacements, εx and εy are prohibited while γxy is allowed. Based on these assumptions regarding the strains, the existence or non-existence of stresses is determined using the constitutive relations in Eq.  and Eq. .
[bookmark: _Ref448233584][bookmark: _Toc491872270]Table 5.2 Relevant membrane strains and stresses
	Method
	PM
	NFM
	cFSM
	GBT

	Mode type
	C
	TE
	S
	C
	TE
	S
	C
	TE
	St 
	Sw
	C
	TE
	S

	εx
	√
	√
	√
	√
	√
	√
	√
	×
	×
	√
	√
	×
	√

	εy
	√
	√
	√
	√
	√
	√
	×
	√
	×
	×
	×
	√
	×

	γxy
	√
	√
	√
	√
	√
	√
	×
	√
	√
	√
	×
	√
	√

	σx
	√
	√
	√
	√
	√
	√
	√
	√
	×
	√
	√
	×
	√

	σy
	×
	√
	×
	×
	√
	√
	√
	√
	×
	√
	×
	√
	×

	τxy
	√
	√
	√
	√
	√
	√
	×
	√
	√
	√
	×
	√
	√


  Note:   C 		conventional modes
             TE		transverse extension modes
              S 		shear modes
              St 		transverse-only shear modes
              Sw 		warping-only shear modes
             εx , σx		membrane longitudinal strain and stress
             εy , σy		membrane transverse strain and stress
             γxy , τxy		membrane shear strain and stress

[bookmark: _Toc496973366]Case studies 
[bookmark: _Ref486083534][bookmark: _Toc496973367]Lipped channel section
First, the lipped channel section shown in Fig. 5.4 was studied, and the critical stresses obtained from various modal decomposition methods are compared. For GBT and the cFSM, the critical stresses of distortional and global modes in two cases are calculated. In the first case, only distortional or global modes are allowed. In the second case, the transverse extension and shear modes are also allowed, which couple with distortional or global modes. Due to the straightforward definition of the local buckling modes, which is consistent across all presented modal decomposition methods, the local critical stresses given by the various methods are perfectly consistent. Therefore, local buckling is not included in the here presented comparison. The critical stresses associated with distortional and global buckling are plotted in Fig. 5.5 and Fig. 5.6 respectively. 
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref476236588][bookmark: _Toc495159558]Fig. 5.4 Lipped channel section
Some remarks can be made on the outcomes. For both distortional and global buckling, as the half-wavelength becomes extremely short, as shown in Fig. 5.5 (a) and Fig. 5.6 (a): (1) The critical stresses obtained from GBT will become infinite, while a very large finite maximum value is reached for the cFSM, which according to [7] is E/(1 − v2) for global buckling. (2) Considerably smaller finite maximum values can be found for the critical stresses obtained from the PM and the NFM. (3) The critical stresses obtained from GBT and the cFSM with coupled shear modes and transverse extension modes are at the lowest. This divergence is attributed to the different involvement of the membrane transverse and shear strains in distortional and global modes obtained from the various methods. Since these strains are increasingly important at short half-wavelengths, the results diverge. In (1), none of these strains are allowed. In (2), these strains can develop, but under the condition that the membrane transverse stress is zero in both the PM and the NFM, and the longitudinal nodal force is zero in the NFM. In (3), these strains are free to develop without constraints of any kind. In the first two cases, the constraints on the membrane transverse and shear strains increase the stiffness of the column, thus increasing the critical stresses. Furthermore, at short half-wavelengths it is evident that the global critical stress obtained from PM is higher than that obtained from the NFM. This suggests that more membrane transverse and shear strains are allowed in the NFM when generating global modes. 
In addition, a drop in the critical stresses obtained from PM is noted at extremely short half-wavelengths. This is attributed to the fact that in PM local, distortional, global and shear modes are identified by evaluating the contribution of strain energy resulting from plate bending in the total strain energy. Among the components of the bending strain energy, at extremely short wavelengths the one resulting from longitudinal bending is dominant over that resulting from transverse bending. Thus, bending strain energy plays an increasingly important role not only in local and distortional modes, but also in global modes. Therefore, at extremely short half-wavelengths sometimes changes happen to the ranking of buckling modes by the proportion of bending strain energy, which accounts for the drop of the critical stresses. This is more evident for the next example regarding the single-cell box section. However, it is found that the problem is resolved if the mesh of the cross-section is refined, as shown in Fig. 5.6 (b). The same issue for distortional buckling is shown when comparing Fig. 5.5 (a) and (b).
Although discrepancy exists among the results obtained from various methods at extremely short half-wavelengths, this is of limited importance for the applicability of these methods since these very short half-wavelengths are of very little practical interest.
At longer half-wavelengths for global buckling, as shown in Fig. 5.6 (c), a good correlation is achieved between the NFM and the PM, while the cFSM gives slightly higher results and GBT gives slightly lower results. These differences reside in the previously addressed discrepancies regarding the constitutive relation of the membrane deformations. It is noted that the results obtained from the cFSM are approximately 10% higher than those from GBT, which derives from the ratio 1/(1 − v2) in Eq. . However, when transverse extension and shear modes are allowed to participate in the global modes, the critical stresses obtained from the cFSM are lowered to a level close to that of the NFM and the PM, but is still slightly higher than that of GBT.
It is known from the modal participations shown in Fig. 3.8 and Fig. 4.9 that at half-wavelengths over 5000 mm the column buckles solely in the global mode, thus the critical stress obtained from the FSM equals real global critical stresses. Therefore, it is worthwhile to verify the global critical stresses obtained from various modal decomposition methods against the the critical stress obtained from the FSM at long half-wavelengths, as shown in Fig. 5.6 (d). It can be seen that a better correlation is achieved by the NFM and the PM compared to the cFSM and GBT, which suggests that the proposed methods provide better results of the global critical stresses.
Similar remarks can be made on the distortional critical stresses shown in Fig. 5.5 (c), while the difference between the results obtained from the cFSM and GBT is lessened. This is due to the fact that as opposed to global buckling, in distortional buckling the longitudinal stress plays a less relevant role [7].
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(a) Distortional critical stresses over extended range of half-wavelength
[image: ][image: ]
(b) Distortional critical stresses (dense discretisation) over extended range of half-wavelength
[image: ]
(c) Distortional critical stresses at intermediate half-wavelengths
[bookmark: _Ref446342367][bookmark: _Toc495159559]Fig. 5.5 Distortional buckling critical stress of lipped channel section
     [image: ]
(a) Global critical stresses over extended range of half-wavelength
[image: ] [image: ]
(b) Global critical stresses (dense discretisation) over extended range of half-wavelength
[image: ]
 (c) Global critical stresses at intermediate half-wavelengths
[image: ]
(d) Global critical stresses verified against the FSM 
[bookmark: _Ref446342369][bookmark: _Toc495159560]Fig. 5.6 Global buckling critical stress of lipped channel section
[bookmark: _Toc496973368]Single-cell box section
Second, the single-cell box section shown in Fig. 5.7 was studied, whose critical stresses for distortional and global buckling are plotted in Fig. 5.8 and Fig. 5.9 respectively. It is important to note that for the cFSM and GBT, the global modes consist of only those modes obeying the null-membrane-shear-strain criterion. Since a shear flow occurs in the torsional mode of the box section, it is not considered to be a global mode. 
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref476236638][bookmark: _Ref487727820][bookmark: _Toc495159561]	Fig. 5.7 Single-cell box section	
At extremely short half-wavelengths, the discrepancy among the critical stresses obtained from various methods is due to the reasons explained for the lipped channel section. The sudden drop of the distortional critical stress obtained from the PM in Fig. 5.8 (a) disappears when the cross-section is discretised, as shown in Fig. 5.8 (b).
Again at intermediate and long half-wavelengths, a good correlation is achieved between the NFM and the PM, while the difference between the distortional and global critical stresses obtained from the cFSM and GBT can be explained similarly as in the previous section. Nevertheless, while for the lipped channel section the global critical stress obtained from GBT was slightly lower than that obtained from the NFM and the PM, this time for the single-cell box section it is found to be slightly higher. This suggests that when the simplified constitutive relation in Eq.  is replaced by the exact relation in Eq. , and the membrane transverse and shear strains are allowed, the global critical stress for the lipped channel section is slightly increased while for the box section it is slightly lowered. 
It is known from the modal participations shown in Fig. 3.16 and Fig. 4.15 that at half-wavelengths around 1000 mm the column buckles solely in the distortional mode, thus the critical stress obtained from the FSM equals real distortional critical stresses. Therefore, it is worthwhile to verify the distortional critical stresses obtained from various modal decomposition methods against the the critical stress obtained from the FSM at intermediate half-wavelengths, as shown in Fig. 5.8 (d). It can be seen that a better correlation is achieved by the NFM and the PM compared to the cFSM and GBT, which suggests that the proposed methods provide better results of the distortional critical stresses.
[image: ] 
(a) Distortional critical stresses over extended range of half-wavelength
[image: ][image: ]
(b) Distortional critical stresses (dense discretisation) over extended range of half-wavelength
[image: ]
(c) Distortional critical stresses at intermediate half-wavelengths
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(d) Distortional critical stresses verified against the FSM
[bookmark: _Ref446419328][bookmark: _Toc495159562]Fig. 5.8 Distortional buckling critical stress of single-cell box section
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(a) Global critical stresses over extended range of half-wavelength
[image: ][image: ]
(b) Global critical stresses (dense discretisation) over extended range of half-wavelength
[image: ]
      (c) Global critical stresses at intermediate half-wavelengths
[bookmark: _Ref446502738][bookmark: _Toc495159563]Fig. 5.9 Global buckling critical stress of single-cell box section
[bookmark: _Toc496973369]Hollow-flange channel section
Finally, the hollow-flange channel section shown in Fig. 5.10 was studied, whose critical stresses for distortional and global buckling are plotted in Fig. 5.11 and Fig. 5.12 respectively. It is important to note that for the cFSM and GBT, the global and distortional modes consist of only those modes obeying the null-membrane-shear-strain criterion. For example, the torsional mode is not considered to be a global mode, and the GBT modes 5 and 6 shown in Fig. 5.13 are not considered to be distortional modes due to the existence of membrane shear strains.
[image: ]
(All dimensions are measured in mm from mid-lines)
[bookmark: _Ref476236671][bookmark: _Toc495159564]Fig. 5.10 Hollow-flange channel section
In Fig. 5.11 a good correlation is again achieved between the distortional critical stresses obtained from the PM and the NFM despite the expected discrepancy at extremely short half-wavelengths. Nevertheless, in addition to the expected minor differences between the results obtained from the cFSM and GBT, and the results obtained from the PM and the NFM at half-wavelengths shorter than 500 mm, significantly different results are seen for longer half-wavelengths.
[image: ]
(a) Distortional critical stresses over extended range of half-wavelength
[image: ]
    (b) Distortional critical stresses at intermediate half-wavelengths
[bookmark: _Ref446508778][bookmark: _Toc495159565]Fig. 5.11 Distortional buckling critical stress of hollow-flange channel section
[image: ]
(a) Global critical stresses over extended range of half-wavelength [image: ] 
(b) Global critical stresses at intermediate half-wavelengths
[bookmark: _Ref446508787][bookmark: _Toc495159566]Fig. 5.12 Global buckling critical stress of hollow-flange channel section
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]

	cross
-sectional
	warping
	cross
-sectional
	warping
	cross-sectional
	warping

	GBT mode 4
	GBT mode 5
	GBT mode 6

	[bookmark: _Ref448153829][image: ]
	[image: ]
	[image: ]
	[image: ]
	
	

	cross
-sectional
	warping
	cross
-sectional
	warping
	
	

	GBT mode 7
	GBT mode 8
	


[bookmark: _Ref468894058][bookmark: _Toc495159567]Fig. 5.13 GBT modes
The critical distortional modal shape obtained from the NFM at a half-wavelength of 300 mm is presented in Fig. 5.14 (a), which switches to the modal shape shown in Fig. 5.14 (b) at a half-wavelength of 800 mm. The modal shapes obtained from the PM are not shown here since they are identical to NFM. Modes at the same half-wavelengths are shown for the cFSM in Fig. 5.14 (c) and (d), and for GBT in Fig. 5.14 (e) and (f). It can be seen that the modal shapes obtained from various methods are identical at a half-wavelength of 300 mm, with corresponding coinciding curves. On the other hand, the divergence of the various curves at half-wavelengths longer than 800mm is attributed to the differences in modal shapes. The critical distortional modal shapes obtained from the NFM and the cFSM shown in Fig. 5.14 (b) and (d) consist mainly of GBT modes 4 and 6. Mode 4 is thereby more prominently present in the cFSM mode compared to the NFM mode. The coupling of the GBT torsional global and distortional modes leads to the occurence of the second local minimum on the curves associated with the NFM, the PM and the cFSM in Fig. 5.11, while the difference in relative participation of those modes between the cFSM and the NFM (or the PM) is responsible for the difference between the critical stresses at half-wavelengths longer than 800 mm. On the other hand, the critical distortional modal shape obtained from GBT shown in Fig. 5.14 (f) consists predominantly of GBT mode 8. Since the torsional global mode is completely filtered out of the distortional modal shapes, the second minimum is absent in the curve associated with GBT in Fig. 5.11, which diverges from the curves associated with other methods at longer half-wavelengths. 
The previous remarks made in section 5.4.1 for global bucking can also be applied to the global mode results shown in Fig. 5.12.
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[bookmark: _Ref447550727][bookmark: _Toc495159568]Fig. 5.14 Switch of dominant modal shape
[bookmark: _Toc496973370]Summary
It can be concluded from the comparisons that the critical stresses obtained from the two newly proposed methods are generally very consistent with each other, both correlate well with the critical stresses obtained from the FSM when pure buckling occurs. Moreover, a good correlation was found between the critical stresses obtained from the newly proposed methods and the existing methods, except for: (1) extremely short half-wavelengths, where the critical stresses obtained from the newly proposed methods were significantly lower than those obtained from the existing methods due to the involvement of the Poisson’s effect and shear deformation in the distortional and global buckling modes. (2) distortional buckling of the hollow flange channel section, where a noticeable divergence in results was observed due to the difference in the definition of the distortional mode adopted by different methods.











CHAPTER 6. [bookmark: _Toc496973371]Modal decomposition of post-buckling deformed shapes

[bookmark: _Toc496973372]Introduction
In the numerical analysis of the post-buckling behaviour of CFS members, the FEM instead of the FSM is often the natural choice of analysis method for its capacity to handle the typical change of the longitudinal shape in the post-buckling stage, and its flexibility in dealing with general geometries and boundary conditions. However, as the FEM itself provides no means of modal identification, the modal decomposition can only be performed qualitatively rather than quantitatively using visual inspection of the deformed shape. Moreover, the modal participation factors are not constant but tend to vary in the post-buckling range. Therefore, in order to obtain a more scientific modal decomposition process and a more accurate evaluations of the modal participation factors in the post-buckling stage, an approach is needed to allow application of the modal decomposition methods to FE shell models.
Relevant research in this area has been done by Schafer [47]. In this method, the buckling modes are obtained from the modal decomposition method in the cFSM before being transformed into FE based modes. One of the main issue with this transformation is the unequal number of DOFs in the FE and FSM models (shown in Fig. 6.1). In FE models, each node is associated with six DOFs, namely the translations and rotations with respect to the three perpendicular axes. In FSM models on the other hand, as only cross-sectional discretisation is conducted, each node (or nodal line) is associated with four DOFs only, specifically the translations along three axes and the rotation about the longitudinal X -axis. The aim of the transformation is to determine the displacements in the FE modes using the information provided by the FSM modes. In Schafer’s method, the nodal displacements in the FE model are determined as the product of the displacement values in the FSM model and the values of the trigonometric longitudinal shape function at the global longitudinal coordinate of the node. In order to determine the displacements associated with the additional DOFs in the FE models, first the global displacements are transformed into local displacements, and then, for all the nodes on a given nodal line, the rotation about the local z -axis θz is neglected while the rotation about the local y -axis θy is determined as the slope of the longitudinal shape function, as shown in Fig. 6.2. Once the FE modes are obtained, the modal participations of these modes are determined by solving an optimisation problem where the error between a linear combination of pure modes and the real deformed shape is minimised. The advantage of this method is that orthogonality among buckling modes is not required. However, it has the disadvantage that the calculated modal participation factors are dependent on the selection of modes.
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[bookmark: _Ref448320465][bookmark: _Toc495159569]Fig. 6.1 DOFs involved in FS and FE models
[bookmark: _Toc496973373]Transformation from FSM to FE modes
In this study, an alternative approach is proposed using the basic principle of the nodal force method that buckling modes can be generated by imposing precisely defined nodal forces on the FE model. The resulting displacements are determined by performing a linear elastic analysis. The nodal forces are determined in three steps.
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[bookmark: _Ref448324356][bookmark: _Toc495159570]Fig. 6.2 Calculation of local rotations
 [image: ]
[bookmark: _Ref472959554][bookmark: _Toc495159571]Fig. 6.3 Nodal line loads
[bookmark: _Toc496973374]Determination of line loads in the FE model
First, using the NFM the nodal forces associated with the various buckling modes are determined. These are translated in the FE model into line loads imposed on the equivalent of the nodal lines, as shown in Fig. 6.3. It can be proved that if the trigonometric longitudinal shape functions in Eq.  are used, the longitudinal distribution of the loads obeys the same trigonometric functions, namely: 

[bookmark: ZEqnNum311575]	 	




where , , ,  are the longitudinal amplitudes of the line loads qX,i, qY,i, qZ,i and mX,i to be imposed on the i th nodal line in the FE model. qX,i, qY,i, qZ,i and mX,i correspond to the global translations U, V, W and the rotation Θ. In addition, m is the number of half-waves within the member length L.
The proof of Eq.  is given as follows: In a plate with thickness t, the stress resultants (per unit width of plate) are given as follows:

[bookmark: ZEqnNum260493]	 	
where Nx, Ny and Nxy are the membrane forces, Qx and Qy are the out-of-plane shear forces, and Mx, My and Mxy are the bending moments and torque, respectively.
When generating buckling modes in the FE model, all the loads are imposed on the nodal lines while no surface loads are imposed on the strips. In a geometrically linear analysis, the equilibrium equations of the deformed strips are:

[bookmark: ZEqnNum361412]	 	
The membrane stress-strain relations take the form:

[bookmark: ZEqnNum127676]	 	
while the bending moments and torque are linked to the curvatures and twist as follows:

[bookmark: ZEqnNum372112]	 	
In the above equations, the flexural rigidity of the plate D = Et3/12(1-v2).
The strains can be expressed in terms of displacements using the relations:

[bookmark: ZEqnNum718005]	 	
along with curvatures and twist:

[bookmark: ZEqnNum638789]	 	
Substituting Eq.  into Eq.  and Eq., and then into Eq. , Eq.  and Eq.  we obtain:

[bookmark: ZEqnNum137844]	 	






where , , , , and  are functions representing the cross-sectional distributions of the membrane forces, moments and torque in the i th strip. 
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(c)
[bookmark: _Ref472961123][bookmark: _Toc495159572]Fig. 6.4 Equilibrium at strip junction
At the i th nodal line, equilibrium is examined for an element of length dx, which consists of the nodal line itself and a small portion of the (i -1) th and i th strips with width dy. When dy is chosen to be infinitesimally small compared to dx, the forces and moments applied on the transverse edges of the element vanish. Therefore, the moments in the y -direction (Fig. 6.4 (a)) need to satisfy:

[bookmark: ZEqnNum308421]	 	
where Myi-1 and Myi are bending moments in the (i -1) th and i th strip respectively, and mX,i is an applied distributed moment, with all resultants considered at the i th nodal line. Since My obeys a sinusoidal longitudinal shape function according to Eq. , we obtain from Eq.  that:

	 	
Substituting the last two equations of Eq.  into the last equation of Eq.  yields:

[bookmark: ZEqnNum696866]	 	
For the same element, equilibrium of the in-plane and out-of-plane forces (Fig. 6.4 (b) and (c)) requires:

[bookmark: ZEqnNum433500]	 	
where Qyi-1  and Qyi are the out-of-plane shear forces, Nyi-1  and Nyi are the membrane normal forces, and Nxyi-1  and Nxyi are the membrane shear forces of the (i -1) th and i th strip respectively, with all resultants considered at the i th nodal line. αi-1 and αi are the inclination angles of the strips. Considering the longitudinal profiles of Qy, Ny, Nxy indicated by Eq.  and Eq. , it is seen from Eq.  that:

	 	
Thus Eq.  has been proved.   
[bookmark: _Toc496973375]Determination of the nodal loads in the FE model
Second, the equivalent nodal forces and moments of the line loads established in the previous step are determined in the FE model. 
[image: ]
[bookmark: _Ref448436557][bookmark: _Toc495159573]Fig. 6.5 Transformation from line loads to nodal forces
For each element, this is done by integrating the product of the distribution load and the shape functions over the element length, as shown in Fig. 6.5. Considering an element with one longitudinal edge coinciding with the i th nodal line, we define first a local coordinate 

[bookmark: ZEqnNum843304]	 	
where x1 and x2 are the global X -coordinates of node 1 and node 2. Substituting Eq.  into Eq. , considering that the shape functions have the form:

	 	

[bookmark: ZEqnNum776315]the equivalent nodal forces associated with the warping displacement are determined as:	 	
and the equivalent nodal forces and moments associated with the other displacements are determined as:

[bookmark: ZEqnNum196370]	 	
[bookmark: _Toc496973376]Generating FE modes
Third, once the nodal forces are determined, they are applied to the FE model in ABAQUS [1], where the boundary conditions are defined as presented in Fig. 6.6. In the model, edges 1 and 3 are constrained regarding translations in the Y - and Z -directions and rotation about the X -axis. Meanwhile, node 2 is constrained regarding translation along the X -axis. Since the loads applied to the column are in equilibrium, it is sufficient to constrain only one node to avoid overall longitudinal translation of the column.
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[bookmark: _Ref439010598][bookmark: _Toc495159574]Fig. 6.6 Boundary conditions applied to the FE model
[image: ]
[bookmark: _Ref469404691][bookmark: _Toc495159575]Fig. 6.7 Flow chart of the mode generation process
After applying the nodal forces to the FE model, a linear static analysis (Nlgeom off) is performed, resulting in the sought FE modal shapes.
The FE buckling modes are generated using a PYTHON script (see appendix A) run in ABAQUS, as shown in Fig. 6.7. First, according to the input variables defining the geometry of the structural member and the material properties, an FE model is established, from which the FE nodal coordinates are extracted. Second, according to the FE nodal coordinates obtained in the previous step the corresponding FSM model is created. The buckling modes of this FSM model are obtained using NFM along with the corresponding nodal forces. Third, the nodal forces associated with the FSM modes are transformed to the corresponding FE nodal forces and applied to the FE model. Fourth, a linear elastic analysis is performed, yielding the deformed shapes of the FE modes. It is noted that in the deformed shapes, due to the constraint placed at node 2, an overall translation along the X -axis is introduced compared to the FSM mode, where the end displacements are equal in magnitude. This is corrected by finding the average of the maximum and minimum values of the longitudinal displacements and deducting it from the deformed shape. An example of a FE generated distortional buckling mode is shown in Fig. 6.8. Finally, the post-processed nodal displacements associated with the FE modes, along with their nodal forces, are output to two .txt files.
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[bookmark: _Ref449532102][bookmark: _Toc495159576]Fig. 6.8 FE buckling mode
[bookmark: _Toc496973377]Orthogonalisation and normalisation
The work done by the line loads associated with one buckling mode in the displacements associated with another buckling mode is expressed as:

[bookmark: ZEqnNum150735]	 	
where α is a factor subject to m and n, fipm is the nodal force value corresponding to the i th FSM mode with m half-waves in the longitudinal direction, and djpn is the displacement value corresponding to the j th FSM mode with n half-waves. The proved consistency between the longitudinal shape functions of the nodal forces and displacements is reflected in Eq. , where fpm (x) and fpn (x) are the longitudinal shape functions with m and n half-waves respectively, both associated with the p th DOF. nDOF is the total number of DOFs in the FSM model. It can be seen that the work vanishes when m ≠ n due to the orthogonality between the harmonics and when i ≠ j due to the orthogonality between FSM modes. Therefore, orthogonality of the modes with respect to the global stiffness matrix is in principle satisfied. However, since in the FE model the shape functions of the elements are linear (when using ABAQUS shell element S4R) rather than trigonometric as assumed in the proof, small but acceptable error in orthogonality is incurred. 
The FE modes are normalised so that the strain energy resulting from the displacements is unity:

	 	
where fi and di are the nodal force and displacement vectors corresponding to the i th FE mode.
[bookmark: _Toc496973378]Modal decomposition of post-buckling deformed shapes
[bookmark: _Toc496973379]Determination of modal participation
The displacements obtained from an ABAQUS non-linear analysis are measured with respect to the initial position of the nodes, which deviates from the nominal position due to imperfection. Nevertheless, in order to know the contributions of modes to not only the deformed shape, but also the imperfection shape, they are summed up and contained in the vector dFEM representing the displacements of the nodes with respect to their nominal positions. This displacement can be decomposed to a linear combination of buckling modes: 

[bookmark: MTBlankEqn][bookmark: ZEqnNum604997]	 	
where Hfull is the matrix containing in its columns the buckling modal shapes, equal in number to the DOFs of the FE model, and afull is the vector containing the amplification factors of the modes. However, this complete modal decomposition is impractical due to the typically very large number of FE buckling modes. Moreover, it is unnecessary since the amplification factors of a large number, if not most, of the modes are negligible. For most purposes, only a limited number of modes are relevant and need to be included in the study. Thus, Eq.  is converted to:

[bookmark: ZEqnNum956408]	 	
where the matrix H and the vector a contain selected buckling modal shapes and their corresponding amplification factors, dr is the vector containing the residual displacements and dapx is the combined modal shape.
Taking advantage of the orthogonality among buckling modes with respect to the global stiffness matrix in the FE model KFEM, the modal amplification factors are simply determined as follows:

[bookmark: ZEqnNum507640]	 	
where F is the matrix containing in its columns the FE nodal force vectors associated with the FE buckling modes as previously determined in section 6.2. In this method, the amplification factors are independent of the initial selection of modes. Once the amplification factors are determined, the participation factors can be calculated using the energy-based definition in Eq. :

	 	
[bookmark: _Ref454374879]where pi and ai are the participation factor and amplification factor of the i th mode.
[bookmark: _Ref487114379][bookmark: _Toc496973380]Boundary conditions
Until now only buckling modes associated with sinusoidal longitudinal shape functions are discussed, which is sufficient for the modal decomposition of the deformed shapes of FE models with simple-simple and fixed-fixed boundary conditions. However, it is important to be able to deal with general boundary conditions, including: (1) simple-simple, (2) fixed-fixed, (3) simple-fixed, (4) fixed-free, (5) simple-guided and (6) fixed-guided. With respect to local and distortional buckling, the boundary conditions associated with the FSM displacements and rotation are as shown in Table 6.1, where the tick marks and crosses mean ‘allowed’ and ‘prohibited’ respectively. 
[bookmark: _Ref474244880][bookmark: _Toc491872271]Table 6.1 Boundary conditions
	
	U
	V
	W
	Θx
	θy

	simple
	√
	×
	×
	×
	√

	fixed
	×
	×
	×
	×
	×

	guided
	×
	√
	√
	√
	×

	free
	√
	√
	√
	√
	√


According to [48], in a version of the cFSM developed for generalised end boundary conditions, the following longitudinal shape functions can be used for the displacements V, W and the rotation Θ, while the derivative of those shape functions is used for the displacement U:

(1) simple-simple: 

(2) fixed-fixed: 

(3) simple-fixed:  

(4) fixed-free:  

(5) guided-simple:  

(6) fixed-guided:  
In cases (1) and (5) each shape function takes the form of a single trigonometric function. In case (3) the shape function is a summation of two sinusoidal functions. Therefore it is equivalent to case (1). In cases (2) and (6) the shape functions are products of two sinusoidal functions. With the help of the product-to-sum identities they are transformed to be equivalent to case (3), except that the components of the shape functions are cosinusoidal rather than sinusoidal. Case (4) is equivalent to case (5) apart from the constant component. It is thus concluded that the deformed shape of FE models subject to any set of boundary conditions can be decomposed solely into buckling modes associated with sinusoidal and cosinusoidal shape functions. The method in which modes associated with sinusoidal shape functions are generated can be slightly altered to generate modes associated with cosinusoidal shape functions. To achieve this it is first noted that the nodal forces in the FSM model remain unchanged and so do the longitudinal amplitudes of the line loads applied to the FE model. This is verified as follows: According to [48], the elements of the stiffness matrices K and G in the FSM are obtained through the following integrations:

	 	
where Ym and Yn are shape functions associated with m and n half-waves. It can be seen that if the shape functions Ym = sin (mπx/L) are replaced with Ym = cos (mπx/L), due to the properties of trigonometric functions, the values of the integrations are unchanged. Therefore, the nodal forces obtained from the nodal force method, which makes use of the matrices K and G are unchanged. However, when determining the nodal forces in the FE model the transformation equations in Eq.  and Eq.  need to be changed accordingly. In addition, the boundary conditions of the FE model shown in Fig. 6.6 are altered to those shown in Fig. 6.9. Edges 1 and 3 are constrained with respect to their warping displacements. Meanwhile, Node 2 is constrained with respect to the translations in the Y - and Z -directions. Node 4 is constrained with respect to the rotation about the X -axis. Since the loads applied to the column are in equilibrium, it is sufficient to constrain only two nodes to avoid overall translation and rotation of the column. The reason for separating the two constraints lies in the fact that if all DOFs of one node were constrained, the node would be omitted in the ABAQUS output file, thus causing mistakes when the output file is read by the PYTHON script. Finally the overall translations in the Y - and Z -directions, and the overall rotation about the X -axis in the deformed shapes are corrected, so that the end displacements are equal in magnitude, as in the FSM mode.
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[bookmark: _Ref453768442][bookmark: _Toc495159577]Fig. 6.9 Boundary conditions applied to the FE model
[bookmark: _Toc496973381]Illustrative examples
In this section the method is illustrated with a number of examples. First, representing the simplest cases, FE models with simple-simple and fixed-fixed boundary conditions are studied using only modes associated with sinusoidal longitudinal shape functions. Thereafter, more complicated cases with general boundary conditions are studied by also using modes associated with cosinusoidal longitudinal shape functions.
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[bookmark: _Ref449559349][bookmark: _Toc495159578]Fig. 6.10 Single-cell box section
[bookmark: _Ref488412281][bookmark: _Toc496973382]Local buckling under simple-simple boundary condition
First, the method is used to study the post-buckling behaviour of a single-cell box (Fig. 6.10) column, with the following dimensions: web width bw = 100, flange width bf  = 100, web plate thickness tw = 2, flange plate thickness tf  = 1 and column length L = 213 (all in mm). The mechanical properties of the material are assumed to be: E = 210000 MPa, ν = 0.3. Both ends of the column are subject to the simple boundary conditions that the plates are free to rotate about the transverse edges, while any transverse, out-of-plane and non-uniform warping displacements are prohibited. The column is loaded by symmetrically applying end shortenings. 
This study will focus on local buckling while the effects of other mode types are neglected. Since the cross-sectional deformations obtained from an ABAQUS geometrically non-linear analysis appear to be symmetric with respect to both principle axes of the cross-section, only modes exhibiting this symmetry are selected for the modal decomposition process. These are the first local mode (associated with the minimum critical stress) shown in Fig. 6.11 (a), and the fourth local mode (associated with the fourth smallest critical stress) shown in Fig. 6.11 (b), while the second and third local modes have antisymmetric modal shapes. Since the column length is chosen as three times the critical half-wavelength of the first local mode (associated with the minimum local buckling critical stress in the signature curve), three half-waves are contained in the deformed shape when buckling occurs. In addition, in the post-buckling stage the contributions of modes associated with other harmonics are small. Both of the modes selected in the modal decomposition process are associated with three half-waves and are notated as L1-3 and L4-3. It is noted that because the web is significantly thicker than the flange, only the flange buckles in mode L1-3. In addition to these buckling modes, a uniaxial compressive mode representing the pre-buckled deformed shape is also included, which is generated by simply applying a uniform compressive load to the column shown in Fig. 6.6. Since this uniaxial compressive mode has non-zero longitudinal nodal forces, it is identified as a shear mode according to the criteria of NFM, and is thus orthogonal to the local modes. 
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	(a) L1-3
	(b) L4-3


[bookmark: _Ref449532720][bookmark: _Toc495159579]Fig. 6.11 Cross-sectional deformations of selected buckling modes 
By performing a buckling analysis in ABAQUS the critical buckling modal shape associated with the lowest critical stress is obtained, in which the participation of mode L1-3 is 95%. The geometric imperfection is then defined as the critical buckling modal shape with a magnitude of 0.1tf (i.e. the maximum deviation from the nominal position is 0.1 mm), as suggested by Zeinoddini [111].
The modal participations are calculated for increasing load and the results are shown in Fig. 6.12. The horizontal axis represents end shortening strains ε (i.e. the end shortening on each side divided by half of the column length), and the vertical axis represents the participation of each mode. The vertical dashed line indicates the critical end shortening strain when buckling occurs. In light of the limited number of buckling modes considered, instead of absolute participations relative values are used calculated by dividing the participation of each mode by the total participation of both modes. It can be seen that the relative participation of mode L1-3, which nearly coincides with the imperfection shape and the buckling shape, is 100% in the pre-buckling stage, and is predominant in the initial post-buckling stage. However, as the load increases, mode L4-3 increasingly participates until finally a state is reached where the relative participations of both modes stabilises. The results are illustrated in Table 6.2, where the cross-sectional deformed shapes are presented along with the corresponding end shortening strains. The deformed shapes are extracted from the cross-section at 1/6 of the column height where the cross-sectional displacements reach maximum values. It can be seen that the deformed shape, initially coinciding with the modal shape of L1-3, evolves towards a combination of L1-3 and L4-3 where the flange and web buckle with equal amplitudes.
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[bookmark: _Ref449533378][bookmark: _Toc495159580]Fig. 6.12 Modal participations



                     
[bookmark: _Ref426548079][bookmark: _Toc491872272]Table 6.2 Cross-sectional deformed shapes with increasing load.
	ε (×10-3)
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	ε (×10-3)
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	Deformed
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	ε (×10-3)
	2.5
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	Deformed
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[bookmark: _Ref453514322][bookmark: _Toc496973383]Local-distortional interactive buckling under fixed-fixed boundary condition
In a second example, the method is used to study the post-buckling behaviour of a lipped channel column (Fig. 6.13), with the following dimensions: web width bw = 119.55, flange width bf = 89.65, lip width d = 4.80, inner radius of the corner r = 1.30, thickness t = 1.085 and column length L = 400 (all in mm). The column is loaded by symmetrically applying end shortenings. In this example both ends are subject to fixed boundary conditions, where plate rotations about the transverse edges are prohibited. Other boundary conditions will be studied in the next section. With the purpose of avoiding the complexity incurred by rounded corners in the original section, the analysis is performed on the equivalent section with sharp corners instead.
[image: ]
(All dimensions are measured from the outer edge of the section)
[bookmark: _Ref473201266][bookmark: _Toc495159581]Fig. 6.13 Lipped channel section
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	(a) D
	(b) L1
	(c) L3


[bookmark: _Ref451347040][bookmark: _Toc495159582]Fig. 6.14 Cross-sectional deformations of selected buckling modes 
The study will focus on local-distortional interactive buckling while the effect of global buckling is neglected. Since the cross-sectional deformations obtained from an ABAQUS geometrically non-linear analysis appear to be symmetric, only modes exhibiting this symmetry are selected for the modal decomposition process. These are the first distortional mode (D) as shown in Fig. 6.14 (a), and the first and the third local mode (L1 and L3) as shown in Fig. 6.14 (b) and (c). The second local mode has an antisymmetric shape, and is therefore not considered. Since the deformed shape is also longitudinally symmetric, all the modes selected for the modal decomposition process are associated with an odd number of half-waves ranging from 1 to 7. Again, a uniaxial compressive mode is also included, which is orthogonal to the local and distortional modes.
The imperfection is again defined as the critical buckling modal shape (in this case distortional) with a magnitude of 0.1t.


The modal participations for increasing loads are presented in Fig. 6.15, where the horizontal axis represents end shortening strains. The modal participations of individual modes and mode types are presented in Fig. 6.15 (a) and (b) respectively, both divided by the total participation of all selected modes. The vertical dashed line indicates the critical end shortening strain when buckling occurs. It can be seen that the participation of the distortional modes is dominant in the pre-buckling stage and the initial post-buckling stage, which indicates the occurrence of distortional buckling as the critical buckling mode. However, as the load increases, local modes also become involved and local-distortional interactive buckling ensues.  Soon thereafter, the participation of the local modes surpasses that of the distortional modes and eventually the relative participation of both types of modes stabilises. The results are further illustrated in Table 6.3, where the deformed shapes of the column are presented along with the corresponding end shortening strains. It can be seen that, initially, for end shortening strains smaller than  the buckled shape appears to be purely distortional. When the strain is increased to , two buckles emerge in the web between the column ends and mid span, which indicates local buckling. As the load is further increased, the buckles are ‘stretched’ in the transverse direction, transforming their shape from round to elliptical. This is attributed to the involvement of a second local buckling mode such as mode L3.
[bookmark: _Ref434425984][bookmark: _Ref434425968][bookmark: _Toc491872273]Table 6.3 Change of displacement pattern with increasing load
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	ε (×10-3)
	0.8
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	Deformed
shape
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	ε (×10-3)
	1.5
	2.0

	Deformed
shape
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(a) Modal participations of individual modes
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(b) Modal participations of mode types
[bookmark: _Ref451351154][bookmark: _Toc495159583]Fig. 6.15 Modal participations (fixed-fixed)
[bookmark: _Toc496973384]Illustrative examples with general boundary conditions
Two examples with fixed-fixed (case (2) according to the discussions in section 6.3.2) and fixed-free (case (4)) boundary conditions are discussed. First, for case (2) the column previously considered in section 6.4.2 is studied. And the following longitudinal shape functions was used:

[bookmark: ZEqnNum198310]	 	 
It is noted that when m = 1, the first component of the longitudinal shape becomes a constant.
The modal participations are plotted for increasing loads in Fig. 6.16. When compared to Fig. 6.15, where the decomposition was made in terms of modes with pinned end conditions, it can be seen that the total participation of the distortional modes is consistent despite the use of different basis vectors in the distortional space.
Second, for case (4) the same column is studied. The longitudinal shape function consists of cosinusoidal terms and a constant term:

	 	
Case (4) is equivalent to case (5) apart from the constant component. After deducting this constant component, the longitudinal shape function consists of only cosinusoidal terms. Meanwhile, the deformed shape is transformed from Fig. 6.17 (a) to (b).  In order to generate the cosinusoidal modes associated with 0.5, 1.5, 2.5… half-waves, the boundary conditions in the FE models are altered to those shown in Fig. 6.18. Edge 1 is constrained with respect to the cross-sectional displacements while edge 2 is constrained with respect to the warping displacements. 
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(a) Modal participations of individual modes
[image: ]
(b) Modal participations of mode types
[bookmark: _Ref453943146][bookmark: _Toc495159584]Fig. 6.16 Modal participations (fixed-fixed)  
Regarding the warping displacement at the free end, two examples are studied with different boundary conditions. In the first example, the end is completely free and any warping displacement is allowed. On the other hand, in the second example a rigid end plate is added to the free end of the cantilever column so that any non-uniform warping displacements are prohibited. This additional constraint introduces more shear deformation in the deformed shape of distortional and global buckling, where the warping displacements are non-uniform. The shear deformation can be reflected in the increased modal participations of shear modes, if they are included in the set. However, according to the feature of our modal decomposition method, it will not affect the modal participations of other modes. 
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	(a) before
	(b) after


[bookmark: _Ref474358516][bookmark: _Ref474358511][bookmark: _Toc495159585]Fig. 6.17 Shifting of the deformed shape
[image: ] 
[bookmark: _Ref454198379][bookmark: _Toc495159586]Fig. 6.18 Boundary conditions applied to the FE model
The free end in the first example is enforced in ABAQUS by using a structural distributing coupling between the column end section (slave) and the reference point (master). A structural distributing coupling distinguishes itself from a kinematic coupling in that the relative movement between the master and slave nodes is not strictly prohibited. Instead a load is applied to the slave nodes to prevent their average movement relative to the master node.  As a result, the non-uniform warping displacements resulting from buckling are allowed at the free end, while the column can still be loaded by applying end shortenings. 
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(a) Modal participations of individual modes
[image: ]
(b) Modal participations of mode types
[bookmark: _Ref487566397][bookmark: _Toc495159587]Fig. 6.19 Modal participations (fixed-free without end plate)
[image: ]       
(a) Modal participations of individual modes[image: ]
(b) Modal participations of mode types
[bookmark: _Ref454200477][bookmark: _Toc495159588]Fig. 6.20 Modal participations (fixed-free with end plate) 
The geometric imperfection is again defined as the critical buckling modal shape (which in this case is a coupled local and distortional mode) with a magnitude of 0.1t.
The modal participations are plotted for increasing load for both examples in Fig. 6.19 and Fig. 6.20 respectively. It can be seen that in Fig. 6.19 that the distortional component of the deformed shape is consistently dominant, while in Fig. 6.20 the local component has more contribution. This difference is confirmed by inspection of the final deformed shapes (ε = 4 × 10-3) shown in Fig. 6.21. In case (a) pure distortional buckling is observed while in case (b) local-distortional interactive buckling takes place.
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	(a) without end plate
	(b) with end plate


[bookmark: _Ref474758423][bookmark: _Toc495159589]Fig. 6.21 Final deformed shapes
[bookmark: _Toc496973385]Evaluation of the error
If the deformed shape is approximated by a limited number of buckling modes, as in Eq. , an error exists, which can be evaluated either based on displacements, using Eq. , or based on energy, using Eq. . 

[bookmark: ZEqnNum552509]	 	

[bookmark: ZEqnNum113853]	 	
In the above equations dr represents the residual displacements, as previously defined in Eq. . The energy-based error indicates the contribution of the strain energy resulting from dr in the total strain energy present in dFEM, which is the deformed shape to be decomposed.
First, the error is calculated, using both definitions, for the local buckling example shown in Fig. 6.22 (a). It is shown in Fig. 6.12 that in the post-buckling range the error is increasing steadily as loading proceeds, reaching a maximum of 19.3% based on displacements and 61.4% based on energy within the range of end shortening strains considered. The accuracy of the approximation can be evaluated visually by inspection of the deformed shapes shown in Fig. 6.23, among which the top one represents the combined modal shape dapx, the middle one represents the residual displacement dr and the bottom one represents the original deformed shape dFEM. The good agreement observed between dapx and dFEM indicates that the error tends to be overestimated if calculated based on energy. An in-depth comparison between the displacements of dapx and dFEM reveals that, while the differences regarding the cross-sectional displacements are negligible, a noticeable difference regarding the warping displacements is observed in Fig. 6.24. The difference at the ends is attributed to the discrepancy between the boundary conditions applied to the FE model when generating the uniaxial compressive mode representing the pre-buckled deformed shape, and when performing geometrically non-linear analysis. In the latter case, end plates are attached to the column prohibiting non-uniform end warping displacements in dFEM. On the other hand, the difference near midspan is due to the second-order geometric effect of the out-of-plane displacement on the warping displacement. In other words, out-of-plane bending of the plates causes an axial shortening of the plate. This effect is considered in dFEM , which is generated using a geometric non-linear analysis, but neglected in dapx as a linear analysis is performed when generating the buckling modes. These non-uniform warping displacements of dFEM inadvertently generate a significant proportion of the strain energy when this strain energy is calculated based on the elastic stiffness matrix KFEM. This yields an unduly higher strain energy associated with dFEM compared to the energy associated with dapx, despite the good correlation between the deformed shapes. Therefore, the error is overestimated. 
The situation is similar for the distortional buckling example, where the displacement-based and energy-based errors reach a maximum of 13.0% and 90.7% respectively, within the range of end shortening strains considered in Fig. 6.15. Judging from the deformed shapes shown in Fig. 6.25, the overestimation of the error when calculated based on energy is even more. Again, the pronounced difference in the distributions of the warping displacement along the cross-section, witnessed in Fig. 6.26 for dapx and dFEM can be held responsible for this.
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(a) Local buckling of box section
[image: ]
(b) Local-distortional interactive buckling of lipped channel section
      Displacement-based error          Energy-based error
[bookmark: _Ref477464298][bookmark: _Toc495159590]Fig. 6.22 Error when only conventional modes are involved
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[bookmark: _Ref475190996][bookmark: _Toc495159591]Fig. 6.23 Comparison between the total displacement magnitudes
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[bookmark: _Ref475192265][bookmark: _Toc495159592]Fig. 6.24 Comparison between the warping displacements
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[bookmark: _Ref475198501][bookmark: _Toc495159593]Fig. 6.25 Comparison between the total displacement magnitudes
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[bookmark: _Ref475198698][bookmark: _Toc495159594]Fig. 6.26 Comparison between the warping displacements
It is concluded from the two examples that the second-order membrane deformations need to be considered if the energy-based error is to be evaluated correctly. This can be done by introducing the transverse extension and shear modes into the modal decomposition process. It is noted that the uniaxial compressive mode representing the pre-buckled deformed shape overlaps the shear modes newly added to the set. Therefore, in order to regain orthogonality among all selected modes, the contributions of the shear modes need to be deducted from the uniaxial compressive mode:

	 	

where dUA is the original uniaxial compressive modal shape,  is the same modal shape after processing. Hs is the matrix containing in its columns the shear modal shapes. KFEM is the global stiffness matrix of the FE model. 
After including all transverse extension and shear modes associated with a number of half-waves ranging from 1 to 7, the maximum energy-based error is reduced from 61.4% to 17.7% for the first example regarding local buckling, and from 90.7% to 31.3% for the second example regarding local-distortional interactive buckling. Meanwhile, the maximum displacement-based error decreases slightly from 19.3% to 18.3% for the first example and from 13.0% to 10.7% for the second example.
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(a) Local buckling of box section
[image: ]
(b) Local-distortional interactive buckling of lipped channel section
      Displacement-based error          Energy-based error
[bookmark: _Toc495159595]Fig. 6.27 Error when transverse extension and shear modes are included
After including the transverse extension and shear modes, the errors of the other three examples with general boundary conditions are as shown in Fig. 6.28. In the example with fixed-fixed boundary conditions the maximum displacement-based and energy-based errors are 12.1% and 30.4%, respectively. In the example with fixed-free boundary conditions without an end plate at the free end, the maximum displacement-based and energy-based errors are 20.8% and 24.0%, respectively. In the example with fixed-free boundary conditions with an end plate at the free end, the maximum displacement-based and energy-based errors are 20.7% and 46.4%, respectively.
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(a) Fixed-fixed
[image: ]
(b) Fixed-free without end plate at the free end
[image: ]
(c) Fixed-free with end plate at the free end
[bookmark: _Ref477468588][bookmark: _Toc495159596]      Displacement-based error          Energy-based error 
Fig. 6.28 Error of the examples with general boundary conditions
[bookmark: _Toc496973386]Effect of imperfection
[bookmark: _Toc496973387]Introduction
In this section the effect of imperfections on the participation factors in the post-buckling stage is studied for a column with fixed-fixed boundary conditions. The modal decomposition process is performed repeatedly for a variable geometric imperfection. The columns taken in section 6.4.1 and 6.4.2 as examples are thereby reconsidered. In the first example, only the two local modes L1 and L4, both associated with three half-waves, are considered in the modal decomposition. Combinations of these two modes also constitute the imperfection shapes. In order to generate the imperfection shapes of the FE model, the buckling modes are first normalised so that the maximum cross-sectional displacement is unity before being combined in various ratios using a method proposed by Dinis and Camotim [25]. Fig. 6.29 (a) provides a visualisation of the imperfection shapes: each point on the unit radius circle defined by the angle α measured counter-clockwise from the horizontal axis represents a particular imperfection shape generated by combining the two modes in a specific proportion. The points associated with α = 0° and α = 180°, for example, represent the imperfection shapes consisting exclusively of mode L1 with a positive and negative amplitude, respectively. Similarly the points associated with α = 90° and α = 270° represent the imperfection shapes corresponding to the pure mode L4. The points associated with angles in-between represent imperfection shapes with contributions from both modes.  In the second example, the FSM modes D1, L1and L3 are considered in the modal decomposition with different longitudinal harmonics. While the effect of mode L3 is negligible, the two modes D1 and L1 are used to generate the imperfection shapes. The longitudinal shapes of both modes are made correlating to the buckled shapes under the same fixed-fixed boundary condition, with high-frequency harmonics omitted. The resulting longitudinal shapes are plotted in Fig. 6.30.
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                                  (a)                                                                         (b)
[bookmark: _Ref454375843][bookmark: _Toc495159597]Fig. 6.29 Imperfection shapes as combinations of buckling modes
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[bookmark: _Ref454976586][bookmark: _Toc495159598]Fig. 6.30 Longitudinal shapes of modes constituting imperfection shapes
[bookmark: _Toc496973388]Local buckling
The results for local-local interaction of box-sections are shown in Fig. 6.31, where the vertical axis represents the participation of mode L1 relative to mode L4, while the horizontal axis represents the end shortening strain. Local buckling is symmetric, in the sense that the buckling behaviour is identical regardless of the direction in which out-of-plane displacements develop. Therefore, only imperfection shapes corresponding to angles ranging from 0° to 180° are studied, which amount to the same effect as angles ranging from 180° to 360°. The right and left halves of the graph show the results associated with imperfection shapes with angles ranging from 0° to 90° and from 90° to 180°, respectively. The curves associated with different angles are distinguished by the different colours introduced in Fig. 6.29. For example, the red curves in both halves represent the same angle of 90°. The green curve in the left half represents an angle of 180°, while the green curve in the right half represents an angle of 0°. In addition, the post-buckling deformed shapes at ε = 5.6 × 10-3 for various imperfections are tabulated in Table 6.4.
The column buckles initially in mode L1, while mode L4 becomes involved at a later stage and interactive buckling takes place. Therefore, buckling associated with mode L1 is referred to as primary buckling, while buckling associated with mode L4 is designated secondary buckling. It can be seen in Table 6.4 that the direction in which primary buckling occurs correlates with the sign of the imperfection component associated with mode L1. For angles ranging from 0° to 60°, the imperfection component is positive, and primary buckling occurs with the flanges bulging outwards. On the other hand, for angles ranging from 120° to 180° the imperfection component is negative and primary buckling occurs with the flanges bulging inwards. In addition, for an angle of 90° the imperfection component associated with mode L1 vanishes, and primary buckling occurs in the same direction as for angles ranging from 0° to 60°.  However, unlike in primary buckling, the direction in which secondary buckling occurs is independent of the sign of the imperfection component associated with mode L4, but is subject to the direction in which primary buckling occurs. For angles ranging from 0° to 90°, the primary buckling occurs in the positive direction, and secondary buckling also occurs in the positive direction, which means that the flanges bulge inwards. In this case, the direction of secondary buckling is consistent with the sign of the corresponding imperfection component L4, which is always positive within the range of angles studied. For angles ranging from 120° to 180°, primary buckling occurs in the negative direction, and secondary buckling consequently also occurs in the negative direction, meaning that the flanges bulge outwards. In this case, however, the direction of secondary buckling is opposite to the sign of the corresponding imperfection component L4. 
[image: ]
[bookmark: _Ref454875441][bookmark: _Toc495159599]Fig. 6.31 Modal participation factors subject to imperfection
It can be seen in the right half of Fig. 6.31 that, although the curves start at different initial values, indicating different participations of mode L1 in the imperfection, they eventually converge to approximately the same value of around 0.3. In addition, the curves are ‘laminated’ which means that they do not intersect. This reveals that, while the participation of mode L1 at buckling and in the initial post-buckling stage positively correlates with its participation in the initial imperfection, the participation far into the post-buckling stage is independent of the initial imperfection. Even if the imperfection shape consists of only one mode, the other mode will still participate as the column buckles. In the left half of Fig. 6.31 similar convergence of the curves is seen, although intersections do occur due to the fact that the direction of secondary buckling is opposite to the sign of the corresponding imperfection component. Therefore, the overall conclusion can be drawn that the participation of mode L1 in the advanced post-buckling stage is independent of the imperfection.



[bookmark: _Ref455495210][bookmark: _Toc491872274]Table 6.4 Post-buckling deformed shapes subject to imperfection 
	Angle
	Deformed shape
	Angle
	Deformed shape
	Angle
	Deformed shape

	0°
	[image: ]
	30°
	[image: ]
	45°
	[image: ]

	60°
	[image: ]
	90°
	[image: ]
	120°
	[image: ]

	135°
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	150°
	[image: ]
	180°
	[image: ]



[bookmark: _Toc496973389]Local-distortional interactive buckling

The results for local-distortional interaction of a lipped channel are shown in Fig. 6.32, where the vertical axis represents the participation of the distortional modes. Since distortional buckling is asymmetric when non-uniform warping displacements are prohibited [81], it is necessary to study the full set of imperfection shapes corresponding to angles ranging from 0° to 360°. The four quarters of Fig. 6.32, starting from the top-right and moving counter-clockwise represent imperfection combinations corresponding to angles α ranging from 0° to 90°, 90° to 180°, 180° to 270° and 270° to 360°. In addition, the post-buckling deformed shapes at  for various imperfections are tabulated in Table 6.5.
The column initially buckles in the distortional mode before local modes become involved and interactive buckling takes place. Therefore, primary buckling is distortional buckling, while secondary buckling is local buckling. It can be seen in Table 6.5 that the direction in which the primary buckling occurs correlates primarily to the sign of the corresponding distortional imperfection component, but is also affected by the sign of the local imperfection component. For angles ranging from 0° to 30°, and from 240° to 360° (0°), primary buckling occurs in the positive direction, meaning that the flanges of the section opens up. Contrarily, for angles ranging from 45° to 210° primary buckling occurs in the negative direction and the section closes up with the flanges moving inwards. In particular, for an angle α = 225° primary buckling occurs in the positive direction but the longitudinal shape is different from that in all other cases. Again the direction in which secondary buckling occurs is subject to the direction of primary buckling. Thus the deformed shape of the column without sign is roughly consistent for the whole range of angles except when α = 225°, which is veriefied by Table 6.5.
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[bookmark: _Ref454895008][bookmark: _Toc495159600]Fig. 6.32 Modal participation factors subject to imperfection
As previously addressed, this example differs from the last one mainly because distortional buckling is asymmetric. Therefore, the direction in which the out-of-plane displacement develops will affect the buckling behaviour, including the total participation of the distortional modes. When comparing Table 6.5 with Fig. 6.32, it can be seen that for positive distortional buckling the participation of the distortional modes will reach a final steady value of approximately 0.3, while for negative distortional buckling the final value is around 0.2. For an angle α = 225°, while the longitudinal shape is different from all the other cases, the final value is close to 0.35.
[bookmark: _Ref455434478][bookmark: _Toc491872275]Table 6.5 Post-buckling deformed shapes subject to imperfection 
	Angle
	Deformed shape
	Angle
	Deformed shape

	0°
	[image: ]
	30°
	[image: ]

	45°
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	60°
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	90°
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	120°
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	135°
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	150°
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	180°
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	210°
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	225°
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	240°
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	270°
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	300°
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	315°
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	330°
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Note: deformations are not illustrated at the same scale
[bookmark: _Toc496973390]Conclusion
It is concluded that for local buckling, the initial imperfection does not affect the modal participations in the post-buckling stage while for distortional buckling it does. This is due to the fact that distortional buckling is asymmetric so that the buckling behaviour varies with the direction in which the out-of-plane displacement develops, which is dependent on the initial imperfection.











CHAPTER 7. [bookmark: _Toc496973391]Modal decomposition of geometric imperfections
[bookmark: _Toc496973392]Introduction
This chapter provides a methodology for the characterisation of geometric imperfections, which provides a foundation for the computational modelling of CFS members. Rather than determining deterministic imperfections from simple empirical rules, a probabilistic concept is introduced leading to a more scientific characterisation of geometric imperfections. Spectrums of the imperfection magnitudes against the buckling mode half-wavelengths are established with the purpose of creating random imperfections for the computational modelling process. First, 3D imperfection shapes of CFS specimens are measured. Then, the spectrums of the imperfection magnitudes associated with various buckling modes, are obtained by performing a modal decomposition of the measured imperfection shape. 
[bookmark: _Toc496973393]Imperfection measurements
[bookmark: _Toc496973394]Equipment
The geometric imperfections of 88 CFS specimens were measured at the University of Sheffield. The measuring facility was similar to the one used by Schafer [70]. The difference resided in the fact that the direct-current differential transformer (DCDT) was replaced by a laser transmitter/receiver, which continuously measured distance to the face of cold-formed steel specimens placed on a stable table. Readings were taken every 1 mm along the specimen length. The laser transmitter/receiver was driven by electric motors and could move in a horizontal plane in two perpendicular directions. The electric motors were controlled by a computer programme so that the laser transmitter/receiver could move according to a predefined pattern. The complete imperfection measurement set-up is shown in Fig. 7.1. In order for the imperfection measurements to be accurate and reliable, the frame itself has to be perfectly flat. In a first step, this was ensured roughly by calibrating the six adjustable supports of the frame using a dumpy level. Second, any residual deflection of the frame was detected by measuring a liquid level. Milk was used for this purpose. The imperfections of the frame itself were then deducted from the imperfection measurements. In order to estimate the measurement error, the imperfections along a longitudinal line on the specimen was measured. Then the specimen was flipped and the same line was measured again. By comparing the imperfection shapes obtained from the two measurements, it was found that the maximum difference was around 0.1 mm, which indicated a measurement error of around 0.05 mm.
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[bookmark: _Ref457400643][bookmark: _Toc495159601]Fig. 7.1 Imperfection measurement set-up 
[bookmark: _Toc496973395]Specimen dimensions
The specimens with five different cross-sections were measured, including four plain channel sections and one lipped channel section. The specimen geometries are tabulated in Table 7.1, with the notations defined in Fig. 7.2. For each geometry, several specimens were available.

[bookmark: _Ref480987739][bookmark: _Toc491872276]Table 7.1 Nominal dimensions of specimens
	Section
	Section
type
	h
(mm)
	b
(mm)
	c
(mm)
	t
(mm)
	L
(mm)
	Number of specimens

	T12012
	[bookmark: OLE_LINK3][bookmark: OLE_LINK4][bookmark: OLE_LINK5][bookmark: _Hlk480906083]Plain Channel
	120
	40
	-
	1.2
	3000
	26

	T13014
	[bookmark: OLE_LINK6][bookmark: OLE_LINK7][bookmark: OLE_LINK8][bookmark: OLE_LINK9]Plain Channel
	130
	36
	-
	1.4
	3000
	12

	T15414
	Plain Channel
	154
	54
	-
	1.4
	1800
	4

	
	
	
	
	
	
	2500
	8

	T7914
	Plain Channel
	79
	37
	-
	1.4
	1800
	4

	
	
	
	
	
	
	2500
	9

	S11012
	Lipped channel
	110
	50
	9.8
	1.2
	3000
	25


[image: ]
(a) Lipped-channel section                   (b) Plain channel section
[bookmark: _Ref480987753][bookmark: _Toc495159602]Fig. 7.2 Definition of notations
[bookmark: _Toc496973396]Imperfection measurements
For each of the specimens, measurements were taken along evenly spaced lines on each of the plate segments, as shown in Fig. 7.3 (a) (b) and Fig. 7.4. The lines close to the corners were measured 5mm away from the corners in order to ensure that the measurements were taken on the flat plate. For the webs and flanges, four lines were measured. Using the imperfection values along these lines, a 2D imperfection profile was obtained for each cross-section along the length. Imperfection values in between the measured lines were interpolated using a third degree polynomial. On the other hand, since the lips were relatively too narrow, only two lines were measured, and linear interpolation was used in the transverse direction.
In order to assemble the 2D imperfect geometries of the web, flanges and lips into a 3D imperfect geometry of the entire specimen, the corners were also measured by tilting the specimen and moving the transmitter/receiver in the transverse direction along a single line close to the edge of the specimen, as shown in Fig. 7.3 (d). Due to the limited range of the laser when measuring distances, when measuring the web-flange corner, it was impossible to enclose all four nodes of the web and all four nodes of the flange in one measurement. Therefore, it was decided to enclose two nodes on the web close to the corner and all four nodes on the flange. An exception was made for sections T15414 and S11012. For these sections, only three nodes on the flange close to the corner could be enclosed due to the large flange width. For section T15414, the web was so wide that it was impossible to reach the second node on the web. Therefore two additional lines were measured on the web between lines 1 and 2, and 3 and 4. These two lines were used only for the purpose of assembling the imperfect geometry of the flange and the web, while the imperfect geometry of the web itself was still defined using only the data measured along the four original lines. 
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 (a) Web                                            (b) Flange
[image: ]
 (c) Lip                                              (d) Corner
[bookmark: _Ref480997074][bookmark: _Toc495159603]Fig. 7.3 Imperfection measurements
[bookmark: _Ref456644363][image: ]
                                 (a) Lipped-channel section              (b) Plain channel section
[bookmark: _Ref485644397][bookmark: _Toc495159604]Fig. 7.4 Imperfection measurement locations along cross-section
[bookmark: _Toc496973397]Post-processing of the data
[bookmark: _Toc496973398]Assembly of the imperfect geometry
In order to explain the assembly process of the imperfect geometries of the different plate segments, an example is given regarding the right half of a sample specimen as shown in Fig. 7.5. A plain channel is considered to facilitate the explanation, one end section of the specimen is marked ‘side 1’, while the other is marked ‘side 2’. The imperfect geometry consists of four components, including the imperfect geometry of the right half of the web and the right flange, and the imperfect geometry in the transverse direction of the corners on side 1 and side 2. Since the imperfect geometry of the corner includes two nodes on the web and all four nodes on the flange, there exist 12 pairs of matching nodes in total, among which four pairs connect the web and the corner profile, while eight pairs connect the corner profile and the flange. The total error of assembly is the root mean square of the distances between the matching nodes:

	 	
The aim is to find the optimal relative position of the four components of the imperfect geometry so that the total error is minimised. 
Reference lines are needed to represent the positions of the imperfect geometry, as shown in Fig. 7.5 with dashed lines. For the imperfect geometry of the right half of the web, the reference line is drawn between the two nodes on lines 5 and 6 in Fig. 7.4 (b) at each specimen end. For the imperfect geometry of the right flange, the reference line is defined by connecting the two nodes on lines 1 and 4 in Fig. 7.4 (b) at each specimen end. In Fig. 7.5 (b), the inclination angles of the reference lines of the right half of the web with respect to the horizontal axis on side 1 and side 2 are θ1 and θ2 respectively. In Fig. 7.5 (c), the angle between the two flange reference lines on side 1 and side 2 is Δβ. In Fig. 7.5 (d), the corners are placed relative to the web so that the angles between their reference lines on side 1 and side 2 are η1 and η2 respectively. In Fig. 7.5 (e), the flange is placed relative to the corners so that the angles between their reference lines are η3 and η4, and the distances are d3 and d4 respectively. In Fig. 7.5 (f) and (g), the opening angles of the corner on side 1 and side 2 are α1 and α2 respectively. For the flange part of the corner on side 1, the deviations of the two intermediate nodes from the reference line are p1 and p2, and for the flange the deviations are p1′ and p2′. The corresponding deviations on side 2 are p3, p4, p3′ and p4′. We define Δpi = pi′ − pi (i = 1,2,3,4).
The total error consists of four components, namely the errors between the web and the corner profile on side 1 (E1) and on side 2 (E2), and the errors between the corner profile and the imperfect flange geometry on side 1 (E3) and on side 2 (E4). The squared errors can be expressed as:

	 	
And

	 	
where b1 and b2 are the spacing between two measurement lines on the web and the two lines on the flange respectively, as shown in Fig. 7.3 (a) (b). It is noted that, while η1, η2, η3, d3, d4 are independent variables, η4 is dependent and can be expressed as

	 	
The optimal values of the independent variables are determined by setting the derivatives of the total squared error E equal to zero:

	 	
Once the relative positions of the components of the imperfect geometry are determined, the real positions of the nodes are taken as the midpoint of two matching nodes. This procedure of assembling the imperfect geometry is repeated for the left flange and for the lips when dealing with lipped channel sections, so that the complete imperfect geometry of the specimen can be determined. Finally, in order to compare the imperfect geometry with the nominal (perfect) geometry, the overall position of the former has to be defined in 3D space with respect to the latter. This relative position is defined so that the imperfection values of the web at three of the four corners are equal to zero, as shown in Fig. 7.5 (a). It will be shown later that any effect on the imperfection shape caused by different relative positions can be eliminated during the post-processing of the data before modal decomposition is performed.
The average errors of the assembly of the imperfect geometry for various sections are listed in Table 7.2. Considering a measurement error of around 0.05 mm, the error of assembly is satisfactory.
[bookmark: _Ref489878482][bookmark: _Toc491872277]Table 7.2 Errors of the assembly of the imperfect geometry
	Section
	T12012
	T13014
	T15414
	T7914
	S11012

	Average error (mm)
	0.05
	0.02
	0.04
	0.06
	0.07
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                                   (a)
[image: ]         
                                   (b)                                                                         (c)                                                  
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[bookmark: _Ref484090228]                                   (d)                                                                         (e)      
[image: ]                 
                                   (f)                                                                         (g)      
[bookmark: _Ref489710276][bookmark: _Toc495159605]Fig. 7.5 Assembly of the imperfect geometries
[bookmark: _Toc496973399]Calculation of imperfection magnitudes


Deviations of the nodes from their positions in the nominal geometry are calculated based on the imperfection values as shown in Fig. 7.4, and are determined in the global coordinate system by the translations U, V, W and the rotation Θ. Among the displacements, the warping displacements U are indeterminate. However, since the corresponding nodal forces vanish for local, distortional and global modes according to the assumptions of the nodal force method, they have no effect on the modal decomposition process (as will be explained later) and they can thus be set equal to zero. The translations and can be easily determined from the imperfection measurements by performing simple coordinate transformations. Meanwhile, the rotations Θ are calculated by assuming a shape function for the out-of-plane displacements of each plate along the cross-sectional mid-line, which is a third degree polynomial for the web and flanges, while being linear for the lips. 
[image: ]
[bookmark: _Ref484090280][bookmark: _Toc495159606]Fig. 7.6 Calculation of node rotations

For the lipped channel sections with 16 points of measurement, in Fig. 7.6 the local rotation angles θ1, θ21 ~ θ24, θ31 ~ θ34, θ41 ~ θ44 and  are calculated by finding the derivatives of the assumed shape functions. Thus, the global rotations of the nodes are calculated as:

	 	
The nodal deviations of all sampling points are calculated and contained in a matrix D = [ dij ], where the row label i indicates the cross-sectional DOF, while the column label j indicates the longitudinal sampling point. For example, the row corresponding to the i th DOF is:

	 	
The nodal deviations associated with one cross-sectional DOF are shown schematically in Fig. 7.7 (a) along the specimen length. 
Since the longitudinal sampling interval of the imperfect geometry is constant, the modal decomposition of the imperfection shape is performed in a way similar to the discrete Fourier transform (DFT), which uses sine and cosine waves with even numbers of half-waves. However, practically the magnitude of the global modes associated with one single half-wave is important since this is the shape of the critical flexural mode. The contribution of this mode would not be obtained if even numbers of half-waves were used. Therefore, sine and cosine waves with odd numbers of half-waves are used instead, as shown in Fig. 7.7 (c) (d) (e) (f). The selected set of harmonics results in an approximated imperfection shape with equal and opposite imperfection values at both ends, which is usually not the case for the measured imperfection shape. This difference in imperfection values at the ends results in unfavourable sharp bends in the approximated imperfection shape, as shown in Fig. 7.8 (a). In order to solve this problem, the imperfection shape is pre-processed by deducting a longitudinally constant component so that the end values become equal and opposite, as shown from Fig. 7.7 (a) to (b). The effectiveness of the pre-processing process is verified in Fig. 7.8 (b), where the sharp bends in the approximated imperfection shape disappear. This pre-processing of the imperfection does not affect the load carrying capacity of the specimen, which is not sensitive to a longitudinally constant imperfection shape. Another benefit of the pre-processing process is that any effect caused by different relative positions of the imperfect geometry with respect to the nominal geometry is eliminated, which justifies the decision previously made to set the imperfection values of three nodes at the web corners equal to zero.
The normalised nodal force vector associated with a particular mode is then obtained from the FSM using the NFM modal decomposition method and then is expanded into a matrix F =[ fij ] by multiplying the nodal force values with longitudinal harmonics. Again, in F the row label i indicates the cross-sectional DOFs, while the column label j indicates the longitudinal sampling points. For example, the row corresponding to the i th DOF in F is:

	 	
The nodal forces associated with one cross-sectional DOF are shown schematically in Fig. 7.7 (c) - (f). Due to the orthogonality of the buckling modes with respect to the global stiffness matrix K, as explained in chapter 6, the modal participation of this particular mode can be calculated as:
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[bookmark: _Ref484090298][bookmark: _Toc495159607]Fig. 7.7 Sampling of imperfection and nodal forces
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(a) Before pre-processing 
[image: ]
(b) After pre-processing
[bookmark: _Ref489724308][bookmark: _Toc495159608]Fig. 7.8 Effectiveness of the pre-processing process 
To achieve modal decomposition of the imperfections in the channel under consideration, six FSM modes were considered, including the critical and second critical local modes L1 and L2, the critical and second critical distortional modes D1 and D2 (only for lipped channel sections), the flexural global modes G1 and G2 and the torsional mode G3, as shown in Fig. 7.9. Each FSM mode is associated with multiple harmonics. 
The modal participation factors are then transformed to modal magnitudes. For the local and distortional modes the maximum cross-sectional displacement is divided by the plate thickness δ0/t, for the flexural global modes the maximum overall translation is divided by specimen length δ0/L, and for the torsional mode the maximum overall rotation is divided by specimen length θ0/L (measured in deg/m).
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[bookmark: _Ref485652796][bookmark: _Toc495159609]Fig. 7.9 Modes involved in the modal decomposition of imperfection shape
[bookmark: _Toc496973400]Results
The modal magnitudes of various modes are plotted against the number of half-waves for section T12012 in Fig. 7.12. The plots for sections T13014, T15415 (L=1800, L=2500), T7914 (L=1800, L=2500), and S11012 are included in appendix B. 

The goal is to establish a database of imperfection magnitudes which can be used in the modelling of geometric imperfections of a specimen with general geometry. In light of this, it is important to make the imperfection data associated with different specimen lengths comparable to each other. Therefore, they are rearranged according to the ‘relative half-wavelength’, which is defined as the critical half-wavelength of the concerning buckling mode (e.g.  for the critical local mode) divided by the half-wavelength L of the harmonic. For the local and distortional modes, the critical half-wavelength corresponds to the minimum critical stress in the signature curve, as shown in Fig. 7.10. For the global modes, since the signature curve is monotonically decreasing, the critical half-wavelength equals the specimen length, and thus, the relative half-wavelength equals the number of half-waves. The calculated critical half-wavelengths of local and distortional modes of the five cross-sections under consideration are tabulated in Table 7.3. For local and distortional imperfections, the reason why the relative half-wavelength is used to present the data, rather than the absolute half-wavelength or the number of half-waves, can be explained by two examples. First, we consider two specimens with identical cross-sections, but one specimen is two times as long as the other one. In this case only imperfection data associated with the same half-wavelength are comparable, such as in Fig. 7.11 (a) and (b). Therefore, the half-wavelength is preferred over the number of half-waves. On the other hand, consider two other specimens with all the geometric dimensions of one specimen twice as large as those of the other one. In this case only imperfection data associated with the same number of half-waves are comparable, such as in Fig. 7.11 (a) and (c). In this case, the number of half-waves is preferred over the half-wavelength. In can be concluded that neither the number of half-waves nor the half-wavelength is universally preferred. However, this problem is resolved if the relative half-wavelength is used. In the first example, in Fig. 7.11 (a) and (b), since the cross-section is identical, the critical half-wavelengths are equal. Thus, comparable imperfection data associated with the same half-wavelength also have the same relative half-wavelength. In the second example, since the cross-sectional dimensions are doubled, the critical half-wavelengths are also doubled. Thus, comparable imperfection data associated with the same number of half-waves also have the same relative half-wavelength. In both cases the imperfection data associated with the same relative half-wavelength are comparable. The imperfection data points of various sections are combined and plotted in Fig. 7.13.
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[bookmark: _Ref461633234][bookmark: _Toc495159610]Fig. 7.10 Critical half-wavelengths determined from the signature curve
[bookmark: _Ref461635764][bookmark: _Toc491872278]Table 7.3 Critical half-wavelength for local and distortional modes
	section
	
(mm)
	
(mm)
	
(mm)
	
(mm)

	T12012
	124
	85
	-
	-

	T13014
	128
	81
	-
	-

	T15414
	164
	115
	-
	-

	T7914
	96
	72
	-
	-

	S11012
	83
	49
	336
	268
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[bookmark: _Ref461721764][bookmark: _Toc495159611]Fig. 7.11 Comparable imperfection data
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[bookmark: _Ref485653341][bookmark: _Toc495159612]Fig. 7.12 Imperfection modal magnitudes of section T12012
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[bookmark: _Ref486518269][bookmark: _Toc495159613]Fig. 7.13 Imperfection modal magnitudes of various sections
Using these data points it is possible to obtain the mean and standard deviation of the imperfection magnitudes. For each buckling mode, this is achieved by dividing the data into 10 groups according to the x -axis value from the lowest to the highest (i.e. the relative half-wavelength for local and distortional buckling, or the number of half-waves for global buckling). Within each group, the mean and standard deviation of the data are obtained, as shown in Fig. 7.14, where the red solid dots represent the mean values of the imperfection magnitudes, while the red hollow dots represent the mean values plus/minus the standard deviations. Next interpolation can be performed between the points using the following formula:

	 	
This produces the red solid lines representing the mean values, and the red dashed lines representing the mean values plus/minus the standard deviations. 
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[bookmark: _Ref486518785][bookmark: _Toc495159614]Fig. 7.14 Mean and variance of imperfection modal magnitudes
The 3D imperfection shape associated with the i th mode can be expressed as follows:

[bookmark: ZEqnNum747160]	 	

[image: ]Where A is the imperfection magnitude, which can be determined from Fig. 7.14 and is always positive,  is a function of the transverse local coordinate representing the cross-sectional modal shape of the i th mode, n is the number of half-waves, x is the longitudinal coordinate, L is the specimen length, and φ is the phase angle ranging from 0 to 2π. The statistical distribution of φ is shown in Fig. 7.15. Contrary to the uniform distribution suggested by Zeinoddini [111], it is clearly seen that the phase angle has significantly greater chance of taking a value close to 0, π or 2π, and slightly greater chance of taking a value close to π/2 or 3π/2. Since the probability [image: ]distribution is symmetric with respect to π/2, π and 3π/2, it is converted to the distribution shown in Fig. 7.16 (a) with φ ranging from  0 to π/2, by folding over the probability mass corresponding to other values of φ. The probabilistic density function of φ is assumed to be polynomial, and is plotted in Fig. 7.16 (b). Therefore, φ in Eq.  is determined as follows:[bookmark: _Ref495157924][bookmark: _Toc495159615]Fig. 7.15 Statistical distribution of the phase angle
[bookmark: _Ref495157973][bookmark: _Toc495159616]                   (a)                                                                (b)
Fig. 7.16 ‘Folded’ Statistical distribution of the phase angle


[bookmark: ZEqnNum853494]	 	
where φr is a random value obeying the probabilistic density function in Fig. 7.16 (b), while r1 and r2 are two independent random values being either 0 or 1.
In summary, the imperfection of a specimen can be simulated statistically taking the following steps. First, it is decided which imperfection shapes associated with which FSM modes and harmonics are to be involved in the simulation. Second, the critical half-wavelengths of the local and distortional modes are calculated, along with the relative half-wavelengths for different numbers of half-waves. Third, for each mode a random number is generated for the imperfection magnitude A in Eq. , using the obtained mean and standard deviation values corresponding to either the relative half-wavelength for the local and distortional modes, or the number of half-waves for the global modes. Fourth, the phase angle is determined using Eq. , and the imperfection shape associated with each mode is determined from Eq. . The final imperfection shape of the specimen is the combination of the imperfection shapes associated with the various modes.











CHAPTER 8. [bookmark: _Ref486598272][bookmark: _Ref486598328][bookmark: _Toc496973401]Calculation of initial post-buckling stiffness

[bookmark: _Toc496973402]Introduction
This and the following two chapters discuss the application of the modal decomposition method to the design of CFS columns undergoing coupled instabilities. The development of the design approach is based on the same observation exploited in the DSM, that, while in general the ultimate load can only be obtained computationally by performing time-consuming non-linear inelastic analysis, the critical load can be obtained through easy to perform linear elastic analysis. The DSM links the former to the latter via empirical formulas so that the ultimate load can be obtained via simple elastic analysis. In addition, the DSM design approach is advantageous over full computational analysis as it helps to better understand the nature of the buckling behaviour and thus provides a pathway to design.
Currently in the DSM the critical load is the only input parameter characterising the elastic buckling behavior, which contributes to the simplicity of the approach while on the other hand some notable deficiencies are incurred. First, the design approach is cumbersome to implement since different empirical formulas are proposed to give predictions of the ultimate load of members undergoing pure local, distortional and global buckling. An extra formula is proposed to deal with local-global interactive buckling, where the yield stress of the material in the formula for pure local buckling is replaced by the ultimate load associated with pure global buckling. Although research has been done on other types of interactive buckling, such as local-distortional interactive buckling [74] [80] [81], the proposed formulas have not been included in the design approach. In addition to true interactive buckling due to the closeness of critical stresses of different buckling modes, although it has been found that the ultimate load can also be eroded by interactive buckling due to secondary bifurcation [51], it is not considered in the design approach. Second, an overly conservative prediction of the ultimate load is obtained for sections where there is significant disparity between the slenderness values of different parts [71] [73]. This is attributed to the fact that the prediction of the ultimate load is based on the critical load. When one part of the section is extremely slender, it will dramatically lower the critical load of the cross-section to the critical load of this individual part, thus incorrectly lowering the predicted ultimate load ignoring that the rest of the section still has a large residual load carrying capacity.  
In the proposed improvement of the DSM, the initial post-buckling stiffness is added as a parameter to the design formula in addition to the critical load. Despite the increased complexity, this will help to overcome the above deficiencies. With regard to the first deficiency, as different types of buckling are associated with different post-buckling stiffness, it is possible to unify the design formulas when the initial post-buckling stiffness is added to the design parameters. With regard to the second deficiency, when one part of the section buckles far prior to the other parts, this causes a relatively minor reduction of the stiffness, compared to the case where all parts of the section buckle simultaneously. Thus, the design formula will be able to give more accurate predictions of the load-carrying capacity. In addition, when interaction occurs between buckling modes, its negative effect on the ultimate load is reflected in a further reduction of the post-buckling stiffness compared to pure buckling. This reduction can be either a reduction to the stiffness in the initial post-buckling stage due to true interactive buckling, or in the far post-buckling stage due to secondary buckling. Using the initial post-buckling stiffness of both the primary and the secondary buckling mode, it is possible to establish an approximating model being able to cover both the two cases of reduction to the stiffness. This is achieved by figuring out the average post-buckling stiffness, which is an average of the post-buckling stiffness from the critical point to the ultimate point, before adding it to the design formula. In this way, when the initial post-buckling stiffness is added to the parameters, the same design formula used for pure buckling can also be applied to coupled instabilities. In conclusion, it is anticipated that the introduction of the initial post-buckling stiffness will lead to an improved design approach.
The implementation of the improved design approach will take three steps. First, the critical stresses and the initial post-buckling stiffness are calculated. These parameters characterising the elastic buckling behavior are then used in an approximation of the elastic post-buckling behaviour. Finally, the ultimate load is linked to the elastic post-buckling behaviour using empirical formulas. 
The investigation of the proposed design approach will focus on pure local and distortional buckling, and local-distortional interactive buckling, although it is also applicable to pure global buckling. The proposed design approach is initially applied to the less complicated case of local-local interaction, which paves the way for its application to the more complicated local-distortional interaction. Due to the unique property of global buckling that no (or negligible) post-buckling residual capacity is present, interactions involving global buckling are not considered at the current stage.
This chapter deals with the calculation of the initial post-buckling stiffness of columns undergoing local and distortional buckling, which lays the foundation for the discussions in the following two chapters. The columns are perfect (i.e. without geometric imperfection), and are made of a purely elastic material. After assessing the balance between the complexity and accuracy of various methods described in the literature, the method proposed by Graves Smith and Sridharan [85] [86] [87] was selected for the purpose of this study. In addition, it is the only known method which is able to deal with distortional buckling.
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      (a)                                                                          (b)
[bookmark: _Ref488062276][bookmark: _Toc495159617]Fig. 8.1 Coordinate systems and displacements
[bookmark: _Toc496973403]Local buckling
In a first stage, the initial post-buckling stiffness is calculated when only local buckling is involved. This is the simplest case since only the out-of-plane displacements w appear in the first-order components of the deformed shape after buckling. For the convenience of the reader, the coordinate systems and displacements are shown again in Fig. 8.1.
[bookmark: _Ref485484269][bookmark: _Toc496973404]Governing equations
In a plate of thickness t, the stress resultants (per unit width of plate) are as follows:

[bookmark: ZEqnNum288695]	 	
where Nx, Ny and Nxy are the membrane forces; Qx and Qy are the shear forces; Mx, My and Mxy are the bending moments and twisting torque; and t is the plate thickness.
For an initially flat plate without lateral load, the equilibrium equations after deformation are:

[bookmark: ZEqnNum226449]	 	
The first two equations are satisfied if the membrane stresses obey Airy’s stress function defined as:

[bookmark: ZEqnNum747417]	 	
Eliminating Qx and Qy, the last three equations in Eq.  are condensed into one equation. After substituting Airy’s stress function into this equation, it becomes:

[bookmark: ZEqnNum402115]	 	
The stress-strain relations take the form:

[bookmark: ZEqnNum754638]	 	
while bending moments and twisting torque are linked to curvatures and twist:

[bookmark: ZEqnNum251196]	 	
In the above equations, the flexural rigidity of plate D = Et3/12(1-v2).
The strains can be expressed in terms of displacements using the relations:

[bookmark: ZEqnNum481098]	 	
along with curvatures and twist:

[bookmark: ZEqnNum555980]	 	
Eliminating displacements u and v in Eq.  while leaving w as the only independent displacement, the three equations are condensed into one equation.  After incorporating Eq.  and Eq.  into this equation, the compatibility equation is obtained:

[bookmark: ZEqnNum303819]	 	
Using Eq.  and Eq. , Eq.  is transformed into:

[bookmark: ZEqnNum246376]	 	
Eq.  and Eq.  are called von Kármán’s equations, where w and Φ are the unknowns. They constitute the governing equations for local buckling.
[bookmark: _Ref485484287][bookmark: _Toc496973405]Displacement functions
It is assumed that for local buckling, the following boundary conditions are present. At the junctions between the plate segments, the out-of-plane displacement w = 0, and the membrane transverse stress σy = 0 in both plate segments. At the column ends, the out-of-plane displacement w = 0, the out-of-plane curvature ∂2 w/∂ x2 = 0, and the warping displacement is constant along the edges: u = ± Lλ/2, where λ is a dimensionless end compression factor. The last condition is only valid for the end boundary condition further referred to as ‘uniform compression’, and is altered for other end boundary conditions. Also at the column ends, the membrane in-plane shear stress τxy = 0.
Since we are only interested in the initial post-buckling behaviour close to the critical point, the perturbation technique is applied to find approximate solutions to von Kármán’ s equations, where the out-of-plane displacements and Airy’s stress function are expressed in a formal power series in terms of a small parameter known as the perturbation parameter:

[bookmark: ZEqnNum592802]	 	
In the above, s is the perturbation parameter and the factors w(i) and Φ(i) are functions of y. The term Φ(0) = − Eλy2/2 represents the contribution of the unbuckled configuration to Φ. It is assumed that w(i)  is independent from Φ(i). Meanwhile, the functions w(i)  are orthogonal to each other, as are the functions Φ(i) to ensure the uniqueness of the expressions in Eq. .
Substituting Eq.  into Eq.  and Eq.  , the following equations result:

[bookmark: ZEqnNum534776]	 	
where 

	 	
Since s is arbitrary, we obtain for the first-order factors:

[bookmark: ZEqnNum342582]	 	

[bookmark: ZEqnNum442921]	 	
 and for the second-order factors:

[bookmark: ZEqnNum999593]	 	

[bookmark: ZEqnNum181250]	 	
With similar equations for the higher order terms of s are included in Eq. .
Eq.  expresses the eigenvalue problem associated with the buckling analysis while due to the independence of Φ(1) from w(1) Eq.  always gives the trivial solution 

[bookmark: ZEqnNum217866]	 	
Due to the need to satisfying the boundary conditions specified at the beginning of section 8.2.2, the solution to Eq.  takes the form:

[bookmark: ZEqnNum328483]	 	
where n0 is the number of half-waves of the buckled shape. Substituting Eq.  into Eq.  noting that w(2) is orthogonal to w(1) and independent of Φ(2), results in:

	 	
Substituting Eq.  into Eq. , and taking the boundary conditions into account, the solution to  takes the form:

	 	
Continuing the calculation with the higher order terms leads to: 

[bookmark: ZEqnNum232768]	 	

[bookmark: ZEqnNum694457]	 	

[bookmark: ZEqnNum746662]	 	

[bookmark: ZEqnNum722143]	 	
Substituting Eq. , Eq. , Eq.  and Eq.  into Eq.  yields:

	 	

	 	
Using the stress-strain relations in Eq.  and the strain-displacement relations in Eq. , along with the boundary conditions, u and v can be obtained in the form

	 	

	 	
The displacements u and v can be expressed in a formal power series similar to w:

[bookmark: ZEqnNum281847]	 	
where u(0)  and v(0) are displacement terms associated with the unbuckled configuration. 
It results from Eq.  that

	 	
For our purpose of calculating the initial post-buckling stiffness, it is sufficient to consider only the first-order term w(1) for w, and up to the second-order terms u(2) and v(2) for u and v. Therefore the following displacement functions are produced:

	 	
where the terms associated with the unbuckled configuration are:

	 	
The first-order terms are:

[bookmark: ZEqnNum997923]	 	
The second-order terms are:

[bookmark: ZEqnNum141864]	 	
It is important to note that since the displacements u and v are associated with different longitudinal trigonometric functions, compatibility is not satisfied at the junctions where two plates meet each other at an angle. Thus it is neither necessary nor possible to establish a system of nodal global displacements. In light of this, an approximation is made that, while the out-of-plane displacements vanish at the corner, the transverse displacements can develop independently in each of the two plates, allowing membrane transverse stress to be released at the junction. 
In addition, for each plate, the overall transverse translation is eliminated by setting v0(2) equal to zero at one of the two transverse edges of the plate:

	 	
where b is the plate width.
[bookmark: _Ref436907681][bookmark: _Toc491872279]Table 8.1 Constraints on DOFs of a lipped channel section
	Section
	Location
	v0
	vm
	w
	θ

	[image: ]
	1
	×
	√
	√
	√

	
	2
	√
	√
	×
	√

	
	3
	×
	√
	×
	√

	
	4
	√
	√
	×
	√

	
	5
	×
	√
	×
	√

	
	6
	√
	√
	×
	√

	
	7
	×
	√
	×
	√

	
	8
	√
	√
	×
	√

	
	9
	×
	√
	×
	√

	
	10
	√
	√
	√
	√



[bookmark: _Ref436907686][bookmark: _Toc491872280]Table 8.2 Constraints on DOFs of an I-section
	Section
	Location
	v0
	vm
	w
	θ

	[image: ]
	1
	√
	√
	√
	√

	
	2
	×
	√
	×
	√

	
	3
	√
	√
	√
	√

	
	4
	√
	√
	×
	√

	
	5
	×
	×
	√
	×



The constraints applied to the cross-sectional DOFs are illustrated by the following examples of a lipped channel section (Table 8.1) and an I-section (Table 8.2). In these tables v0 is the component of v which is longitudinally constant, vm is the component of v which varies longitudinally obeying trigonometric functions.
[bookmark: _Toc496973406]Potential energy
The total potential energy (which is here equal to the internal strain energy) associated with each strip Ustrip is expressed as

[bookmark: ZEqnNum221052]	 	
where Astrip is the surface area of the strip. Substituting Eq. , Eq. , Eq.  and Eq.  into  yields the total potential energy of the strip expressed in terms of the local displacements:

[bookmark: ZEqnNum792749]	 	
where q and r stand for the local displacement vectors corresponding to first- and second-order displacements respectively. The i, j, k, l and n, p range over the total number of DOFs associated with first- and second-order displacements respectively.
On the basis of Eq.  it is possible to generate an expression of the total potential energy of the structural member in terms of the global displacements:

[bookmark: ZEqnNum451504]	 	
where Q and R stand for the first- and second-order global displacement vectors containing the local displacement values of all strips. It should be noted that the displacements in Q and R associated with different strips are independent from each other while no transformation is performed from local to global coordinate system due to the aforementioned reasons. 
[bookmark: _Toc496973407]Equilibrium equation
In a state of equilibrium, Eq.  is stationary with respect to Q. When only the lowest order terms are included in Eq. , this results in the usual eigenvalue problem associated with buckling analysis:

[bookmark: ZEqnNum372162]	 	
Once Q is obtained from Eq.  as the eigenvector, it is expressed in terms of the perturbation parameter:

[bookmark: ZEqnNum278410]	 	
Eq.  also has to be stationary with respect to R, which yields:

[bookmark: ZEqnNum355432]	 	
Substituting Eq.  into Eq.  results in the solution of R in terms of the perturbation parameter:

[bookmark: ZEqnNum430172]	 	
Substituting Eq.  and Eq.  into Eq.  yields the following expression of the total potential energy:

[bookmark: ZEqnNum336171][bookmark: _GoBack]	 	
In order for expression  to be stationary with respect to s at equilibrium, we require:

[bookmark: ZEqnNum939050]	 	
Thus, the solution of λ can be found from  and takes the form:

	 	
where

[bookmark: ZEqnNum416732]	 	
[bookmark: _Toc496973408]Compressive force
The compressive force associated with the column is expressed as

	 	 
where A is the surface area of the column. The longitudinal stress σx is calculated using Eq.  and Eq. . In Eq.  only terms up to the second order in s are included: ∂u(0)/∂x, ∂v(0)/∂y, ∂u(2)/∂x, ∂v(2)/∂y, (∂w(1)/∂x)2/2 and (∂w(1)/y)2/2. The compressive force P can be written as:

[bookmark: ZEqnNum577593]	 	 
where Pc is the critical compressive force when the column buckles.
While λ = λc + λ(2)s(2), the post-buckling stiffness Kp can be expressed in a form independent of the perturbation parameter s:

[bookmark: ZEqnNum312303]	 	 
[bookmark: _Toc496973409]Distortional buckling
Compared to local buckling, distortional buckling is more complicated, because, apart from the out-of-plane displacement w, the displacements u and v are also involved in the buckling behaviour. In light of this, the calculation method of the initial post-buckling stiffness developed for local buckling needs to be altered.
[bookmark: _Toc496973410]Governing equations
First, the first two equilibrium equations in Eq.  are altered to take into account the second-order effects of the longitudinal stress resultant Nx in producing a deviation force in the y -direction:

[bookmark: ZEqnNum733468]	 	
Consequently, Airy’s stress function, as derived from the original two equations, is abandoned. 
Second, an extra term (the underlined term in Eq. ) is added to the strain-displacement relations in Eq.  to take into account the non-linear effects of the transverse displacement v:

[bookmark: ZEqnNum615337]	 	
Consequently, Eq.  is no longer valid, and is replaced by Eq. , which now constitutes, along with Eq. , the governing equations for distortional buckling: 

[bookmark: ZEqnNum214099]	 	

[bookmark: ZEqnNum887904]	 	

[bookmark: ZEqnNum602368]	 	
[bookmark: _Toc496973411]Displacement functions
The boundary conditions used for local buckling are no longer valid for distortional buckling, and more approximations have to be made.
Expanding all the variables involved in Eq.  using the perturbation technique results in:

[bookmark: ZEqnNum621133]	 	
where Nx(0) = − Etλ is the contribution of the unbuckled configuration to the longitudinal stress resultant. 
Substituting Eq.  into Eq. , Eq.  and Eq.  yields the following equations:

	 	
where the A, B, and C terms are derived from Eq. , Eq.  and Eq.  respectively. Since s is arbitrary, the first-order terms are obtained from:

[bookmark: ZEqnNum104673]	 	

[bookmark: ZEqnNum881577]	 	

[bookmark: ZEqnNum226459]	 	
with the second-order terms being determined by:

[bookmark: ZEqnNum403435]	 	

[bookmark: ZEqnNum567761]	 	

[bookmark: ZEqnNum371742]	 	
With a similar procedure for the higher order terms when they are include in Eq. .
Eq. , Eq.  and Eq.  constitute the eigenvalue problem for buckling analysis where w and v are uncoupled. The solution gives the first-order displacement terms:

[bookmark: ZEqnNum283372]	 	
Substituting Eq.  into Eq. , Eq.  and Eq.  yields the following solution of the second-order displacement terms:

[bookmark: ZEqnNum829716]	 	
It can be seen that if n0 is even, the second-order displacement terms are orthogonal to their corresponding first-order counterparts, which is necessary for the uniqueness of the displacement decompositions in Eq. . In the particular case where n0 = 2, the displacement functions shown in Eq.  and Eq.  satisfy the boundary conditions illustrated in Fig. 8.2, on the condition that the origin of the coordinate system is relocated to the mid-height of the column. Both ends of the column are assumed to be attached to a frictionless rigid end plate to ensure a uniform end shortening, while the cross-sectional displacements are free to develop. 
[image: ]
[bookmark: _Ref439606029][bookmark: _Toc495159618]Fig. 8.2 Boundary conditions for distortional buckling
In contrast to local buckling, for distortional buckling local displacements u, v, w and θ can be transformed to global ones U, V, W and Θ, since the longitudinal trigonometric functions attached to displacements v and w are consistent. 
The overall rotation Θ0(2) and the translations V0(2) and W0(2) of a single node of the column should be set equal to zero to eliminate any overall translation and rotation.  
[bookmark: _Toc496973412]Potential energy
The expression of the total potential energy in Eq.  is altered to

[bookmark: ZEqnNum242887]	 	
[bookmark: _Toc496973413]Equilibrium equation 
The derivation of equilibrium equation follows the same procedure as for local buckling, except that Eq.  is altered to

	 	
[bookmark: _Toc496973414]Compressive force
The calculation of the compressive force follows the same procedure as for local buckling. However, regarding the terms in Eq.  up to the second order in s, in addition to ∂u(0)/∂x, ∂v(0)/∂y, ∂u(2)/∂x, ∂v(2)/∂y, (∂w(1)/∂x)2/2 and (∂w(1)/y)2/2, new terms emerge, namely the second-order term (∂v(1)/∂x)2/2, and the first-order terms ∂u(1)/∂x and ∂v(1)/∂y. However, when n0 is even, the integrations of both first-order terms along the column length vanish, and the expression of the compressive force P in Eq. , where the first-order term in s is absent, remains valid. Therefore, an exact value of initial post-buckling stiffness can still be calculated. 
[bookmark: _Toc496973415]End boundary conditions
In the previous discussion, the ‘uniform compression’ boundary condition shown in Fig. 8.3(a) was assumed, where the warping displacements at the column ends are constant along the cross-section. Another option can be envisaged, here termed the ‘load through centroid’ option and shown in Fig. 8.3(b). In both cases, both ends of the column are connected to rigid-body end plates. While in the ‘uniform compression’ case the overall rotation of the end plate is constrained, it is allowed in the ‘load through centroid’ case. This difference in end boundary condition has repercussions when shift of effective centroid is considered. After the column buckles, the longitudinal stress is no longer uniformly distributed across the cross-section, but concentrates at the plate junctions. This re-distribution of the longitudinal stress introduces an eccentricity between the centre of the stress resultant and the centroid of the cross-section (Fig. 8.4 (a)). In the ‘uniform compression’ case this induces a bending moment on the end plate, while contrarily in the ‘load through centroid’ case this bending moment is released as the end plate is allowed to rotate. Thus, the ‘uniform compression’ case is valid for columns with fixed ends while the ‘load through centroid’ case is valid for columns with simply-supported ends. 
[image: ]
                                  (a)  Uniform compression              (b) Load through centroid
[bookmark: _Ref415582722][bookmark: _Toc495159619]Fig. 8.3 Boundary conditions
The calculation of the initial post-buckling stiffness is slightly more complicated for the ‘load through centroid’ end boundary condition. It takes the following steps: First, the solutions of Q and R are found for the ‘uniform compression’ end boundary condition. Then the corresponding end moment is calculated. Second, the end plate is rotated about the minor axis by applying additional linear end warping displacements to the original shape, which causes a change in the total potential energy expression in Eq. :

	 	
where λ* is the parameter related to the modification of the end warping displacements. Since λ* is a function of Q and R, it can also be expanded as:

	 	
Thus, the solution of λ is found from Eq. , and takes the form:

	 	
where

[bookmark: ZEqnNum512460]	 	
In Eq.  which the first-order term is negligible [87], and thus a closed-form solution of the initial post-buckling stiffness Eq.  can still be found.
[image: ]
(a) Distribution of σx
[image: ]
(b) Distribution of u
[bookmark: _Ref457485382][bookmark: _Toc495159620]Fig. 8.4 Shift of centroid
[bookmark: _Toc496973416]Programme development
A programme was developed in MATLAB to calculate the initial post-buckling stiffness of columns using the previously described method. The programme has four variations, which deal, respectively, with local buckling of a simple open section, distortional buckling of a simple open section, local buckling of a box section, and local buckling of an I-section. The variation for local buckling of a simple open section is taken as an illustrative example. 
As seen in the main flow chart presented in Fig. 8.5, inputs from the user include the nodal coordinates, the plate thickness, the mechanical properties of the elastic material, and the cross-sectional meshing size. The programme then performs a cross-sectional discretisation of the section, resulting in the coordinates of the sub nodes. Thereafter the programme performs one of the three functions according to user selection. The first function displays the discretised cross-section for the user to verify the inputs. The second function performs a buckling analysis of the section, and returns the minimum local buckling critical stress and the corresponding half-wavelength. The third function performs the second function first, and then carries out initial post-buckling analysis of the section, which returns the initial post-buckling stiffness.
The flow chart of the m-file ‘IniPost.m’, which performs the initial post-buckling analysis, is presented in Fig. 8.6. First, all input values are collected. Second, the multi-dimensional arrays Aij, Bij, Enp, Anij and Aijkl in Eq.  are established and initialised as zero. Third, a loop is performed to go through each of the strips constituting the discretised cross-section, calculating the local multi-dimensional arrays aij, bij, enp, anij and aijkl before adding them to the global multi-dimensional arrays as part of the assembly process. Once the global multi-dimensional arrays are obtained, the elements in these arrays associated with the constrained DOFs are eliminated using the boundary conditions. Finally, the first-order deformed shape Q, the critical load λc, the second-order displacements R and the second-order load coefficient λ(2) are calculated using Eq.  to Eq. . The results are displayed to the user.
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[bookmark: _Ref467765341][bookmark: _Toc495159621]Fig. 8.5 Main flow chart of the programme
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[bookmark: _Ref467767910][bookmark: _Toc495159622]Fig. 8.6 Flow chart of the m-file IniPost.m












CHAPTER 9. [bookmark: _Toc496973417]Elastic post-buckling behaviour

[bookmark: _Toc496973418]Introduction
This chapter focuses on obtaining a multi-linear approximation of the load-end shortening curve of a perfect column made of an elastic material. It relies on the methodology developed in the previous chapter, where the initial post-buckling stiffness is calculated via the perturbation method. However, as the load increases further in the post-buckling stage, the stiffness is further reduced, either gradually or in some cases abruptly. This reduction of stiffness is attributed to the involvement of buckling modes other than the critical one in the deformed shape in the post-buckling stage. 
[bookmark: _Toc496973419]Local-local interactive buckling
Local buckling of box sections and I-sections is first studied, as relatively straightforward cases. The study focuses particularly on the cases where there is significant disparity between the slenderness of different parts constituting the cross-section. The slender plates with critical buckling loads lower than the critical buckling load of the cross-section as a whole are put in plate group 1 (pg1), while other plates with higher critical buckling loads are put in plate group 2 (pg2). In such cases, the DSM gives unduly conservative results because it links the ultimate load to the critical buckling load. The plates of pg1 with low critical buckling loads will dramatically lower the critical buckling load of the cross-section as a whole and consequently yield conservative predictions of the ultimate load, ignoring that the rest of the section still has a large residual load carrying capacity. In addition, in such cases there are two relevant local modes, being the primary and the secondary modes, where only the plates of pg1 and pg2 buckle, respectively. The column buckles initially in the primary mode when the plates of pg1 buckle. Then as the load increases and the plates of pg2 also buckle, the column buckles in an interactive mode between the primary and the secondary modes.
[bookmark: _Toc496973420]Approximating model
The multi-linear model for local buckling is schematically shown in Fig. 9.1, where the compressive load on the vertical axis is transformed to a longitudinal stress (i.e. load P divided by cross-sectional area A), and the end shortening on the horizontal axis is transformed to a longitudinal strain (i.e. end shortening ΔL divided by column length L). In Fig. 9.1, ε1, σ1, ε2 and σ2 are the longitudinal strains and stresses when primary and secondary buckling occurs, respectively. When the longitudinal strain is lower than ε1, the column is unbuckled, and thus the stiffness K equals the Young’s modulus of the material E. Subsequently, when the longitudinal strain increases to a value between ε1 and ε2, the column is in a state of pure primary local buckling, and the stiffness is reduced to the initial post-buckling stiffness K1. Finally, when the longitudinal strain increases beyond ε2, the column undergoes interactive buckling with the stiffness further reduced to Kmix.
[bookmark: _Ref457911239][bookmark: _Ref457911236] [image: ]
[bookmark: _Ref457917050][bookmark: _Ref461442073][bookmark: _Toc495159623]Fig. 9.1 Multi-linear model with involvement of two modes
Four signature parameters are essential in characterising the multi-linear model, namely ε1, ε2, K1 and Kmix. In the proposed model, these parameters are determined using the results of buckling and initial post-buckling analyses. First, they are determined under the idealised conditions that the column is simply supported at both ends while warping displacements are allowed, and that its length is an integer multiple of the half-wavelengths of both the primary and the secondary mode.
· Determination of ε1 and ε2
The primary buckling strain ε1 and stress σ1 equal the minimum critical strain εl1 associated with the primary local buckling mode L1 and its corresponding stress σl1 = Eεl1. The minimum critical strain εl1 = σ l1/E can be determined from the signature curve shown in Fig. 9.2 and corresponds to the critical half-wavelength Ll1. On the other hand, the determination of the secondary buckling strain ε2 and stress σ2 is a complicated problem of secondary bifurcation, which does not lend itself to an exact solution within a practical engineering design approach. In light of this, the problem is simplified by assuming that ε2 is equal to the critical strain εl2 = σl2/E associated with the secondary local buckling mode L2, which corresponds to the critical half-wavelength Ll2, shown in Fig. 9.2. This assumption is consistent with the one used in the Kutanova/Mennink model [42] [53] intended to predict the ultimate loads of local-local and local-distortional interactive buckling. The stress σ2 is determined from Fig. 9.1 taking into account the reduction of stiffness after primary buckling occurs: 
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[bookmark: _Ref459708929][bookmark: _Toc495159624]Fig. 9.2 Critical half-wavelengths of local modes
· Determination of K1 and Kmix
K1 is the initial post-buckling stiffness of the column, and is determined by the approach described in chapter 8. Kmix is the interactive buckling stiffness after interaction occurs between the primary and the secondary buckling mode. In order to determine Kmix, the initial post-buckling stiffness associated with the secondary buckling mode K2 is first calculated. It is obvious that Kmix is dependent on the proportion between the modal participations of the two modes. However, an exact solution of Kmix is unfeasible within a design approach. Alternatively, an approximating formula is proposed to estimate Kmix:

[bookmark: ZEqnNum812940]	 	
where the relative stiffness kmix = Kmix/E, k1 = K1/E, and k2 = K2/E. This formula results in the following features of the interactive buckling stiffness: First, the relative interactive buckling stiffness ranges between 0 and 1. Second, the interactive buckling stiffness is lower than both of the pure buckling stiffness values. Third, when one of the pure buckling stiffness values is zero, the interactive buckling stiffness is also zero. The second feature accounts for the additional reduction in stiffness when the secondary buckling mode enters participation. The third feature accounts for the fact that when a global buckling mode with zero (or negligible) stiffness emerges, the overall column stiffness becomes zero. 
In the above the signature parameters were determined under idealised conditions, while in practice these conditions are not always satisfied. For example, the column may have fixed ends, or its length may not be a multiple of the critical half-wavelengths. However, these changes in boundary conditions and column length are expected to have little effect on the signature parameters for local buckling, due to its short half-wavelength compared to the column length. Usually, a considerable number of half-waves can be accommodated within the column length, and thus the effects of the boundary conditions and a slightly modified half-wavelength, are minimised. Therefore, the previously determined signature parameters are still deemed to be applicable in the design approach.
[bookmark: _Toc496973421]Verification against numerical results
· Box sections
The multi-linear model is first verified for a series of box sections, of which the corresponding cross-sectional dimensions along with the signature parameters, are tabulated in Table 9.1. The notations tw, bw, tf and bf are the thickness and the width of the webs and the flanges, respectively.

[bookmark: _Ref427160435][bookmark: _Toc491872281]Table 9.1 Buckling parameters
	bw, bf, tf
(mm)
	tw
(mm)
	Ll1
(mm)
	Ll2
(mm)
	σl1
(MPa)
	σl2
(MPa)
	kl1
	kl2

	bw = 100,
bf  = 100,
tf  = 1
	1
	100
	66
	75.9
	132.3
	0.41
	0.48

	
	1.2
	97
	69
	91.4
	163.5
	0.48
	0.54

	
	1.4
	89
	74
	105.7
	201.2
	0.64
	0.57

	
	1.6
	79
	79
	115.6
	243.9
	0.75
	0.57

	
	1.8
	74
	83
	121.1
	291.9
	0.80
	0.57

	
	2
	71
	87
	124.3
	345.6
	0.82
	0.57

	bw, bf, tf
(mm)
	tw
(mm)
	Ll1
(mm)
	Ll2
(mm)
	σl1
(MPa)
	σl2
(MPa)
	kl1
	kl2

	bw = 100,
bf  = 110,
tf  = 1
	1
	105
	69
	68.0
	122.1
	0.45
	0.54

	
	1.2
	100
	73
	79.5
	155.3
	0.57
	0.61

	
	1.4
	92
	78
	89.3
	193.6
	0.68
	0.61

	
	1.6
	85
	82
	96.0
	236.5
	0.75
	0.61

	
	1.8
	80
	86
	100.1
	284.8
	0.79
	0.60

	
	2
	78
	89
	102.7
	338.9
	0.81
	0.59

	bw = 100,
bf  = 120,
tf  = 1
	1
	111
	71
	60.2
	116.1
	0.50
	0.63

	
	1.2
	105
	76
	68.8
	150.1
	0.61
	0.65

	
	1.4
	97
	81
	76.0
	188.4
	0.70
	0.64

	
	1.6
	91
	85
	80.9
	231.3
	0.75
	0.63

	
	1.8
	87
	88
	84.2
	279.7
	0.78
	0.62

	
	2
	85
	90
	86.3
	333.8
	0.80
	0.61

	bw = 100,
bf  = 130,
tf  = 1
	1
	117
	73
	53.1
	112.3
	0.55
	0.68

	
	1.2
	110
	78
	59.8
	146.4
	0.63
	0.68

	
	1.4
	103
	82
	65.2
	184.5
	0.70
	0.66

	
	1.6
	98
	86
	69.2
	227.3
	0.74
	0.64

	
	1.8
	94
	89
	71.8
	275.4
	0.77
	0.63

	
	2
	92
	91
	73.5
	329.4
	0.79
	0.62

	bw = 100,
bf  = 140,
tf  = 1
	1
	123
	75
	46.9
	109.7
	0.57
	0.71

	
	1.2
	116
	80
	52.2
	143.6
	0.64
	0.70

	
	1.4
	110
	84
	56.6
	181.3
	0.70
	0.67

	
	1.6
	104
	87
	59.8
	223.7
	0.73
	0.65

	
	1.8
	101
	90
	61.9
	271.5
	0.76
	0.63

	
	2
	99
	92
	63.4
	324.9
	0.78
	0.62

	bw = 100,
bf  = 150,
tf  = 1
	1
	130
	76
	41.5
	76.2
	0.58
	0.73

	
	1.2
	123
	81
	45.9
	141.2
	0.65
	0.71

	
	1.4
	116
	85
	49.5
	178.4
	0.69
	0.68

	
	1.6
	111
	88
	52.2
	220.3
	0.73
	0.66

	
	1.8
	108
	91
	54.0
	267.4
	0.75
	0.63

	
	2
	105
	92
	55.2
	319.9
	0.77
	0.61



The modal shapes of the primary and secondary local modes (L1 and L2) are presented in Table 9.2 for sections with bw = 100, bf  = 100, tf  = 1 and with tw varying from 1 to 2 (all in mm), while the modal shapes of the remaining sections are tabulated in Table 1 in appendix D. It is seen that when the flange and the web have similar slenderness, they tend to bend with similar amplitude in the primary local buckling mode. Thus, the end rotation of one plate is little restrained by the adjacent plates, which leads to near independent buckling of each plate under simple-simple boundary condition along the longitudinal edges. Meanwhile, the secondary local buckling mode is characterised by independent buckling of each plate under boundary conditions which can be considered nearly fixed along the longitudinal edges. On the other hand, when the webs become increasingly stocky compared to the flanges, the end rotations of the flanges are restrained by the web. In the corresponding secondary local mode, the webs develop the largest out-of-plane displacements. 
[bookmark: _Ref433124541][bookmark: _Toc491872282]Table 9.2 Buckling modal shapes
	[bookmark: _Ref426026984]bw, bf, tf
(mm)
	tw
(mm)
	L1
	L2

	bw = 100,
bf  = 100,
tf  = 1
	1
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	1.2
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	1.4
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	1.6
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	1.8
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	2
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[bookmark: _Ref491532046][bookmark: _Toc491872283]Table 9.3 Verification of the multi-linear model
	bw = 100 mm, bf  = 100 mm, tf  = 1 mm 

	tw = 1 mm, L = 300 mm
	tw = 1.2 mm, L = 292 mm

	
	

	tw = 1.4 mm, L = 267 mm
	tw = 1.6 mm, L = 237 mm

	
	

	tw = 1.8 mm, L = 221 mm
	tw = 2 mm, L = 213 mm

	
	

	          Multi-linear model            ABAQUS analysis


In Table 9.3, the multi-linear model (plotted in red) is verified against the results from an elastic geometrically non-linear ABAQUS analysis (plotted in blue) for sections with bw = 100 mm, bf = 100 mm, tf  = 1 mm and with tw varying from 1 to 2 mm. The length of the column L was taken as three times the half-wavelength of the primary local buckling mode. The horizontal and vertical axes represent the longitudinal strain and stress (in MPa), respectively. The results of the remaining sections are tabulated in Table 1 in appendix E. Since a post-buckling analysis of a geometrically perfect column in ABAQUS typically does not yield satisfactory results, with the analysis continuing on the (unstable) fundamental equilibrium path above the buckling load, a small imperfection was applied with the magnitude being a coefficient of the flange thickness, i.e. 0.1tf as suggested by Zeinoddini [111]. In a few cases a slightly larger imperfection had to be applied to avoid this difficulty.
[bookmark: _Ref459812177][bookmark: _Toc491872284]Table 9.4 Buckling parameters
	bw, bf, tw
(mm)
	tf
(mm)
	Ll1
(mm)
	Ll2
(mm)
	σl1
(MPa)
	σl2
(MPa)
	kl1
	kl2

	bw = 150,
bf  = 100,
tw = 1
	1
	174
	95
	36.3
	74.6
	0.51
	0.55

	
	1.2
	165
	106
	44.1
	92.2
	0.59
	0.58

	
	1.4
	127
	117
	50.9
	112.2
	0.75
	0.59

	
	1.6
	112
	129
	54.1
	134.4
	0.82
	0.60

	
	1.8
	106
	141
	55.7
	158.8
	0.84
	0.60

	
	2
	104
	153
	56.6
	185.6
	0.85
	0.60

	
	2.2
	102
	164
	57.2
	214.9
	0.87
	0.60

	
	2.4
	102
	176
	57.6
	246.6
	0.88
	0.61


· I-sections
Second, the multi-linear model is verified for I-sections, of which the cross-sectional dimensions, along with the corresponding signature parameters, are tabulated in Table 9.4.
The modal shapes of the primary and secondary local modes (L1 and L2) are presented in Table 9.5. Similarly to the box sections, when the flange and web are approximately equally slender, the rotations of the plates at the junctions are not mutually restrained, which leads to independent plate buckling of the web and the flange under the simple-simple and simple-free boundary conditions, respectively. The secondary local buckling mode is in this case characterised by independent plate buckling of the web and the flange under nearly fixed-fixed and fixed-free boundary conditions respectively. On the other hand, when the flange becomes increasingly stocky compared to the web, the rotations of the junctions are increasingly restrained, which leads to buckling of the web and the flange under boundary conditions resembling fixed-fixed and fixed-free conditions, respectively. The out-of-plane displacement at the mid span of the web is then significantly larger than that at the free end of the flange. The opposite occurs in the secondary local mode, where the flange buckles under near simple-free boundary conditions, developing significantly greater out-of-plane displacements at the free end than that at the mid span of the web. 
In Table 9.6, the multi-linear model is verified against the results from an elastic geometrically non-linear ABAQUS analysis.
It can be seen for both box-sections and I-sections that in general a good agreement is observed between the multi-linear model and ABAQUS analysis, except in some cases where different parts of section are approximately equally slender. In these cases, the contribution of the secondary mode in the interactive buckling is overestimated by the multi-linear model, thus yielding an underestimation of the post-buckling stiffness. For example, regarding the box section with bw = 100, bf  = 100, tw = 1, tf  = 1 (all in mm), the longitudinal stress-strain curve of elastic buckling is plotted in Fig. 9.3. The blue curve represents the results from an elastic geometrically non-linear ABAQUS analysis, while the solid red curve represents the multi-linear model with an initial post-buckling stiffness of k1, which is reduced to kmix = k1k2 after secondary bifurcation. It can be seen that the post-buckling stiffness is underestimated. On the other hand, the dashed red curve represents a different multi-linear model with a constant post-buckling stiffness of k1, which correlates better with the results of ABAQUS analysis. Therefore, it is decided that in these cases the second model is used, and the column is considered to buckle solely in the primary mode. It is also noted that for such sections, the initial post-buckling stiffness associated with the primary mode is lower than that associated with the secondary mode: k1 < k2, which serves as the criterion to judge whether the second model should be used instead of the original model.[bookmark: _Ref496968527]Fig. 9.3 Verification of the multi-linear model

[bookmark: _Ref434324001][bookmark: _Ref496968168][bookmark: _Ref434323989][bookmark: _Toc491872285]Table 9.5 Buckling modal shapes
	bw, bf, tw
(mm)
	tf
(mm)
	L1
	L2

	bw = 150,
bf  = 100,
tw = 1
	1.0
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	1.2
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	1.4
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	1.6
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	1.8
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	2.0
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	2.2
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	2.4
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[bookmark: _Ref459812070][bookmark: _Ref489122341][bookmark: _Toc491872286]


[bookmark: _Ref496969611]Table 9.6 Verification of the multi-linear model
	tf  = 1 mm, L = 521 mm
	tf  = 1.2 mm, L = 494 mm

	
	

	tf  = 1.4 mm, L = 382 mm
	tf  = 1.6 mm, L = 335 mm

	
	

	tf  = 1.8 mm, L = 319 mm
	tf  = 2 mm, L = 311 mm

	
	

	tf  = 2.2 mm, L = 307 mm
	tf  = 2.4 mm, L = 305 mm (imp = tw)

	
	

	          Multi-linear model            ABAQUS analysis



[bookmark: _Toc496973422]Local-distortional interactive buckling
[bookmark: _Toc496973423]Introduction
Among the coupled instabilities which occur in CFS columns, considerable research work has been devoted to local-distortional interactive buckling, particularly in the last decades. Particularly promising outcomes of the work are the complements to the DSM design approach to account for local-distortional interaction. Various methodologies have been proposed, including the nominal strength against local-distortional (NLD) and distortional-local (NDL) interactions approach, and the modified NDL (MNDL) approach (see section 2.12). Nevertheless, all of these approaches have limitations. First, since design formulas for interactive buckling are different from the ones for pure buckling, it is difficult to make an objective judgement in a particular case whether the interaction should be considered and the corresponding formulas are used. Second, they work only for ‘true interaction’, stemming from a comparable magnitude between the local and distortional critical stresses. However, even if these critical stresses are not close, interaction can still happen in the post-buckling stage due to secondary bifurcation, which consequently significantly erodes the ultimate load [52], but is not currently considered by the DSM design approaches.
[bookmark: _Toc496973424]Approximating model
In this section, the multi-linear model proposed in the previous section is further developed to apply to local-distortional interactive buckling, and a new way to determine the four signature parameters ε1, ε2, K1 and Kmix is proposed. Under the same idealised conditions as assumed for local buckling, the strains ε1 and ε2 are the minimum critical strains of the primary and secondary modes, respectively, being either the primary local mode L1 or the distortional mode D, which correspond to the critical half-wavelengths Ll1 and Ld, as shown in Fig. 9.5. K1 is the initial post-buckling stiffness associated with the critical mode. Kmix is the interactive buckling stiffness when interaction occurs between the local and the distortional mode. The relative interactive buckling stiffness kmix is again calculated as:[bookmark: _Ref495239644][bookmark: _Toc495159626]Fig. 9.4 Multi-linear model with involvement of three modes
[bookmark: _Ref495239627]Fig. 9.5 Critical half-wavelengths of local and distortional modes


	 	

where k1 and k2 are the relative stiffness values associated with the primary and the secondary mode, respectively. In some cases where the slenderness of the column  is high, in addition to the primary local mode and the distortional mode, the secondary local mode L2 also needs to be considered. Thus the more complicated multi-linear model shown in Fig. 9.4 is applied, where the secondary local mode becomes involved when the longitudinal strain exceeds ε3. The strain ε3 is determined as the critical strain associated with the secondary local bucking mode εl2, and the corresponding stress σ3 is calculated as:

	 	
After participation of the secondary local mode, the relative stiffness of the column is further reduced to:

	 	
where k3 = kl2 is the relative stiffness associated with the secondary local mode. 
In the above the signature parameters are determined under the idealised conditions. However, in reality these conditions are not always satisfied. For example, in practical experiments the ends of the column are usually attached to a rigid end plate so that any non-uniform distribution of the warping displacement is prevented. While these changes in boundary conditions and column length have little effect on the signature parameters for local buckling, they do make a difference when the distortional buckling mode is involved due to its relatively longer half-wavelength. 
In order to study the significance of the changes in the assumed idealised conditions, a lipped channel section is studied with the cross-sectional geometry defined in Table 9.7. The definitions of the notations are shown in Fig. 9.6, where r is the inner radius. The signature parameters are tabulated in Table 9.8, and the modal shapes are shown in Fig. 9.7. 
[image: ]
[bookmark: _Ref427236192](All dimensions are measured from the outer edge of the section)
[bookmark: _Ref459721825][bookmark: _Toc495159628]Fig. 9.6 Simple lipped channel (CH1)
[bookmark: _Ref427159078][bookmark: _Ref434406189][bookmark: _Toc491872287]The verification of the multi-linear model is carried out in two steps. First, the model is verified under the idealised conditions. Second, it is verified with fixed-ended boundary conditions (consistent with most of the experiments when distortional buckling is studied) and with varying column length, for the purpose of investigating the effect on the signature parameters when the idealised conditions are violated.
[bookmark: _Ref495239876]Table 9.7 Section geometry 
	section
	t
(mm)
	bw
(mm)
	bf
(mm)
	d
(mm)
	r
(mm)

	CH1-5-800
	1.085
	119.55
	89.65
	4.80
	1.30


[bookmark: _Ref427669861][bookmark: _Ref434330383][bookmark: _Toc491872288]Table 9.8 Buckling parameters (independent of column length)
	section
	Ll1
(mm)
	Ll2
(mm)
	Ld
(mm)
	σl1
(MPa)
	σl2
(MPa)
	σd
(MPa)
	kl1
	kl2
	kd

	CH1-5-800
	101
	72
	332
	81.7
	149.7
	37.6
	0.70
	0.60
	0.67



	section
	D
	L1
	L2

	CH1-5
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[bookmark: _Ref459733686][bookmark: _Toc495159629]Fig. 9.7 Cross-sectional modal shapes of buckling modes selected

In the first step, the column length takes the value of  in the ABAQUS model. Edge 3 of the column in Fig. 9.9 is in frictionless contact with a rigid end plate, so that cross-sectional displacements in the plane of the cross-section are free to develop while only uniform warping displacements are allowed. Edge 1 is constrained with respect to its warping displacement. Both edge 1 and edge 3 are constrained regarding rotations about the Y - and Z -axis. Node 2 at midspan is constrained regarding Y - and Z -axis translation and rotation about the X -axis to avoid rigid-body movement of the column. The loading is displacement-controlled through imposing an X -axis translation of the end plate. This model is advantageous over the fixed-ended or simply supported model in reflecting the nature of distortional buckling because of the unconstrained development of the warping displacements. This brings two benefits: First, in the fixed-ended or simply supported model, in order to minimise the effects of constrained end warping displacements, it is required to extend the column length to multiple times the half-wavelength. In contrast, in the proposed model the column is much shorter with a length equal to the half-wavelength, thus increasing the efficiency of the numerical calculations. Second, in the fixed-ended or simply supported model the distortional buckling load-end shortening curve is asymmetric, which means the curve is different whether the flanges of the deformed cross-section move inwards or outwards. This adds to the complexity of the analysis. In contrast, in the proposed model the load-end shortening curve is symmetric. The result is shown in Fig. 9.10, where the red curve represents the multi-linear model based on the parameters tabulated in Table 9.8, while the blue curve represents the result from an elastic geometrically non-linear ABAQUS analysis using the aforementioned model. It is seen that the agreement between the two is satisfactory. [bookmark: _Ref495239939][bookmark: _Toc495159630]Fig. 9.9 ABAQUS model of distortional buckling

[bookmark: _Ref427236790]In the second step, where the idealised conditions are not satisfied, the signature parameters are modified. Taking into account the significant computational effort involved in calculating the stiffness under non-idealised conditions, the simplifying assumption is made that only the critical stresses are altered while the stiffness remains unchanged. The validity of this assumption is verified using the above example. The critical stresses of fixed-ended columns with various lengths L are calculated using the CUFSM programme and are tabulated in Table 9.9, which lists σl1 and σl2 determined when only local buckling is allowed, σd when only distortional buckling is allowed and σ when both local and distortional buckling are allowed. It can be seen that, while σl1 and σl2 do not change significantly with L, σd is quite dependent on L. 
The multi-linear approximations, using the above data, are tabulated in Table 9.10, where L is the length of the column. It can be seen that although the same stiffness parameters are used in the multi-linear model, as obtained under the idealised conditions, satisfactory agreement is achieved between the multi-linear model and the results from an ABAQUS analysis. Thus, the stiffness values in Table 9.8 are still applicable.[bookmark: _Ref495239960][bookmark: _Toc495159631]Fig. 9.10 Verification of the multi-linear model

[bookmark: _Ref427591622][bookmark: _Toc491872289]Table 9.9 Critical stresses subject to column length (fixed ends)
	L (mm)
	400
	600
	800
	1000

	σl1 (MPa)
	89.4
	86.4
	85.4
	84.9

	σl2 (MPa)
	159.1
	156.3
	155.3
	155.1

	σd (MPa)
	60.4
	52.3
	44.9
	43.1

	σ (MPa)
	56.1
	49.0
	43.2
	41.5


[bookmark: _Ref459811193][bookmark: _Toc491872290][bookmark: _Ref434329584]



[bookmark: _Ref496969410]Table 9.10 Verification of the multi-linear model
	L = 400 mm
	L = 600 mm

	
	

	L = 800 mm
	L = 1000 mm (imp = 0.5t)

	
	

	          Multi-linear model            ABAQUS analysis



[bookmark: _Toc496973425]Verification against numerical results
The multi-linear model approximating the load-end shortening curve of a perfect column made of an elastic material is verified against an elastic geometrically non-linear ABAQUS analysis for various sections, obtained from [43] and [25].
In [43], lipped channel sections with and without web stiffeners are studied experimentally. Their cross-sectional geometry is listed in Table 9.11 and Table 9.12. The notations needed to define section CH1 were previously shown in Fig. 9.6, while those of section CH2 are shown in Fig. 9.11. In [25], a range of sections are studied numerically including hat sections, Z-sections and rack sections. Their cross-sectional geometry is shown in Table 9.13 and Table 9.14, along with the corresponding signature parameters. 

It is important to note that only part of the data included in [43] and [25] were selected for this study. One of the criteria of selection was that the slenderness of the column should be high so that it has a considerable residual capacity after buckling. Another criterion was that the global critical stress should be significantly higher than the local and distortional critical stresses as well as the yield stress of the material, so that global buckling and elastic-plastic interactive buckling are absent.
The signature parameters are tabulated in Table 9.16. For the stiffened lipped channel sections CH2, the secondary local modes are not considered due to their very high critical stresses. The modal shapes of the modes involved are presented in Table 9.17 for a limited number of the sections, while the results of the remaining sections are presented in Table 2 in appendix D.
[image: ]The results for the selected sections are presented in Table 9.18, while the results of the remaining sections are shown in Table 2 of appendix E. It can be seen that a good agreement is observed between the multi-linear model and ABAQUS analysis.(All dimensions are measured from the outer edge of the section)
[bookmark: _Ref495239986][bookmark: _Toc495159632]Fig. 9.11 Stiffened lipped channel (CH2)

[bookmark: _Ref434430134][bookmark: _Toc491872291]Table 9.11 CH1 section geometry
	section
	L
(mm)
	t
(mm)
	bw
(mm)
	bf
(mm)
	d
(mm)
	r
(mm)

	CH1-5-800
	800
	1.085
	119.55
	89.65
	4.80
	1.30

	CH1-6-800
	800
	1.085
	119.80
	89.75
	6.00
	1.30

	CH1-7-400
	400
	1.095
	120.80
	89.70
	7.00
	1.30

	CH1-7-600
	600
	1.095
	120.40
	89.55
	7.00
	1.30

	CH1-7-800
	800
	1.100
	120.50
	89.50
	7.00
	1.30


[bookmark: _Ref434430147][bookmark: _Ref496969925][bookmark: _Toc491872292]


[bookmark: _Ref496970123]Table 9.12 CH2 section geometry
	section
	L
(mm)
	t
(mm)
	bw
(mm)
	bf
(mm)
	d
(mm)
	r
(mm)
	s1
(mm)
	s2
(mm)

	CH2-7-800
	800
	1.100
	120.50
	90.15
	7.00
	1.30
	10.00
	20.00

	CH2-7-1000
	1000
	1.100
	120.50
	89.80
	7.20
	1.30
	10.30
	19.50

	CH2-8-1000
	1000
	1.095
	119.95
	89.95
	8.00
	1.30
	10.15
	20.00

	CH2-10-1000
	1000
	1.105
	116.00
	89.95
	10.00
	1.30
	10.30
	20.00

	CH2-12-1000
	1000
	1.100
	120.50
	89.95
	12.00
	1.30
	10.00
	19.50

	CH2-14-1000
	1000
	1.105
	116.60
	89.85
	14.00
	1.30
	10.30
	20.00


[image: ][image: ]
(All dimensions are measured from the mid-line of the section)
[bookmark: _Toc495159633]Fig. 9.11 Section geometry notations
[bookmark: _Ref434579711][bookmark: _Toc491872293]Table 9.13 Hat section geometry
	section
	L
(mm)
	t
(mm)
	bw
(mm)
	bf
(mm)
	bs
(mm)

	H5-1
	1030
	1.9
	180
	110
	10

	H5-2
	1030
	1.9
	180
	130
	10

	H5-3
	1030
	1.9
	180
	90
	10

	H12-1
	1850
	1.5
	200
	190
	12.5

	H12-2
	1850
	1.5
	200
	190
	14

	H12-3
	1850
	1.5
	200
	190
	11

	H11-1
	1430
	1.2
	150
	140
	10

	H11-2
	1430
	1.2
	150
	130
	10

	H11-3
	1430
	1.2
	150
	150
	10

	H13-1
	1950
	1.9
	235
	160
	12.5

	H13-2
	1950
	1.9
	235
	160
	14

	H13-3
	1950
	1.9
	235
	160
	11


[bookmark: _Ref434579715][bookmark: _Toc491872294]Table 9.14 Z-section geometry
	section
	L
(mm)
	t
(mm)
	bw
(mm)
	bf
(mm)
	bs
(mm)

	Z2-1
	1030
	1.9
	180
	110
	10

	Z2-2
	1030
	1.9
	180
	130
	10

	Z2-3
	1030
	1.9
	180
	90
	10

	Z8-1
	1400
	1.0
	100
	50
	5

	Z8-2
	1400
	1.0
	100
	45
	5

	Z8-3
	1400
	1.0
	100
	55
	5

	Z12-1
	1850
	1.5
	200
	190
	12.5

	Z12-2
	1850
	1.5
	200
	190
	14

	Z12-3
	1850
	1.5
	200
	190
	11

	Z5-1
	1150
	1.5
	114
	80
	10

	Z5-2
	1150
	1.5
	120
	80
	10

	Z5-3
	1150
	1.5
	108
	80
	10

	Z11-1
	1430
	1.2
	150
	140
	10

	Z11-2
	1430
	1.2
	150
	130
	10

	Z11-3
	1430
	1.2
	150
	150
	10

	Z13-1
	1950
	1.9
	235
	160
	12.5

	Z13-2
	1950
	1.9
	235
	160
	14

	Z13-3
	1950
	1.9
	235
	160
	11


[bookmark: _Toc491872295]Table 9.15 Rack section geometry
	section
	L
(mm)
	t
(mm)
	bw
(mm)
	bf
(mm)
	bs
(mm)
	bl
(mm)

	R11-1
	1850
	2.0
	175
	120
	10
	10

	R11-2
	1850
	2.0
	160
	120
	10
	10

	R11-3
	1850
	2.0
	190
	120
	10
	10

	R13-1
	1300
	2.0
	200
	175
	10
	10

	R13-2
	1300
	2.0
	175
	175
	10
	10

	R13-3
	1300
	2.0
	225
	175
	10
	10


[bookmark: _Ref489124343][bookmark: _Toc491872296]Table 9.16 Buckling parameters
	section
	Ll1
(mm)
	Ll2
(mm)
	Ld
(mm)
	σ
(mm)
	σl1
(MPa)
	σl2
(MPa)
	σd
(MPa)
	kl1
	kl2
	kd

	CH1-5-800
	101
	72
	332
	43.2
	85.4
	155.3
	44.9
	0.70
	0.60
	0.67

	CH1-6-800
	101
	72
	396
	57.3
	85.1
	155.9
	61.0
	0.70
	0.60
	0.66

	section
	Ll1
(mm)
	Ll2
(mm)
	Ld
(mm)
	σ
(mm)
	σl1
(MPa)
	σl2
(MPa)
	σd
(MPa)
	kl1
	kl2
	kd

	CH1-7-400
	101
	72
	445
	85.1
	88.1
	160.3
	130.8
	0.71
	0.61
	0.66

	CH1-7-600
	101
	72
	445
	78.4
	85.2
	157.6
	87.1
	0.71
	0.61
	0.66

	CH1-7-800
	101
	72
	445
	72.9
	84.1
	156.5
	80.4
	0.71
	0.61
	0.66

	CH2-7-800
	76
	—
	464
	84.8
	147.8
	— 
	89.0
	0.67
	—
	0.67

	CH2-7-1000
	76
	—
	464
	73.2
	147.4
	—
	75.7
	0.67
	—
	0.67

	CH2-8-1000
	76
	—
	512
	88.6
	148.2
	—
	92.0
	0.67
	—
	0.66

	CH2-10-1000
	76
	—
	596
	123.4
	149.9
	—
	128.1
	0.68
	—
	0.65

	CH2-12-1000
	76
	—
	683
	148.0
	150.2
	—
	153.6
	0.68
	—
	0.64

	CH2-14-1000
	76
	—
	757
	150.5
	151.6
	—
	191.2
	0.68
	—
	0.64

	H5-1
	147
	94
	605
	113.2
	114.2
	288.0
	147.5
	0.73
	0.67
	0.66

	H5-2
	152
	108
	670
	104.2
	110.4
	212.0
	113.3
	0.71
	0.62
	0.66

	H5-3
	143
	79
	539
	116.4
	117.2
	420.6
	181.1
	0.72
	0.70
	0.65

	H11-1
	143
	105
	848
	53.7
	54.4
	81.7
	63.0
	0.50
	0.50
	0.65

	H11-2
	137
	101
	809
	57.3
	57.8
	89.9
	71.9
	0.60
	0.50
	0.66

	H11-3
	150
	108
	885
	49.4
	50.4
	76.4
	55.7
	0.44
	0.61
	0.65

	H12-1
	193
	142
	1126
	46.2
	47.0
	70.4
	53.0
	0.48
	0.52
	0.65

	H12-2
	193
	142
	1220
	46.5
	47.1
	70.5
	60.7
	0.48
	0.52
	0.65

	H12-3
	193
	142
	1032
	40.6
	46.9
	70.3
	45.2
	0.47
	0.52
	0.65

	H13-1
	196
	135
	930
	64.5
	64.9
	137.4
	74.2
	0.72
	0.64
	0.66

	H13-2
	196
	135
	1005
	64.6
	64.9
	137.9
	88.5
	0.72
	0.65
	0.66

	H13-3
	196
	135
	853
	58.8
	64.9
	136.9
	62.4
	0.72
	0.64
	0.66

	Z2-1
	147
	94
	607
	112.9
	114.2
	288.0
	145.2
	0.73
	0.67
	0.65

	Z2-2
	152
	108
	671
	103.1
	110.3
	212.0
	112.5
	0.71
	0.62
	0.66

	Z2-3
	143
	79
	541
	116.0
	117.2
	420.6
	174.5
	0.72
	0.70
	0.63

	Z5-1
	96
	67
	501
	169.2
	170.5
	348.6
	190.7
	0.73
	0.65
	0.65

	Z5-2
	100
	67
	505
	154.5
	155.8
	345.3
	186.1
	0.74
	0.66
	0.65

	Z5-3
	91
	66
	496
	181.4
	193.3
	354.5
	197.0
	0.72
	0.62
	0.66

	Z8-1
	79
	44
	271
	102.0
	103.4
	438.1
	116.6
	0.72
	0.71
	0.60

	Z8-2
	78
	40
	249
	104.6
	104.6
	572.6
	130.7
	0.71
	0.71
	0.56

	Z8-3
	80
	48
	291
	95.1
	102.2
	345.9
	102.6
	0.73
	0.70
	0.62

	Z11-1
	143
	105
	833
	53.4
	54.4
	81.8
	63.0
	0.50
	0.51
	0.65

	Z11-2
	137
	102
	795
	57.1
	57.8
	90.3
	71.4
	0.61
	0.50
	0.65

	Z11-3
	150
	108
	870
	49.2
	50.4
	76.4
	55.8
	0.44
	0.61
	0.64

	Z12-1
	193
	142
	1102
	46.0
	47.0
	70.7
	53.0
	0.48
	0.53
	0.64

	section
	Ll1
(mm)
	Ll2
(mm)
	Ld
(mm)
	σ
(mm)
	σl1
(MPa)
	σl2
(MPa)
	σd
(MPa)
	kl1
	kl2
	kd

	Z12-2
	193
	142
	1194
	46.3
	47.1
	70.9
	60.7
	0.48
	0.53
	0.64

	Z12-3
	193
	142
	1007
	38.2
	46.9
	70.6
	45.0
	0.47
	0.53
	0.64

	Z13-1
	196
	135
	904
	64.2
	64.9
	138.4
	73.3
	0.72
	0.65
	0.63

	Z13-2
	196
	135
	978
	64.4
	64.9
	138.9
	87.2
	0.72
	0.65
	0.63

	Z13-3
	196
	135
	827
	55.7
	64.9
	137.9
	61.8
	0.72
	0.64
	0.63

	R11-1
	141
	87
	797
	130.0
	132.6
	346.7
	143.6
	0.76
	0.69
	0.63

	R11-2
	131
	86
	785
	139.7
	155.9
	353.9
	148.9
	0.76
	0.67
	0.63

	R11-3
	151
	88
	807
	111.9
	114.0
	341.4
	138.3
	0.75
	0.70
	0.62

	R13-1
	169
	122
	1047
	91.7
	96.9
	160.4
	104.4
	0.73
	0.59
	0.63

	R13-2
	155
	117
	1025
	97.2
	116.9
	172.3
	108.3
	0.61
	0.52
	0.63

	R13-3
	185
	124
	1067
	76.7
	79.6
	155.8
	100.5
	0.75
	0.65
	0.63


[bookmark: _Ref459812886][bookmark: _Toc491872297]Table 9.17 Buckling modal shapes
	section
	D
	L1
	L2

	CH1-6
	[image: ]
	[image: ]
	[image: ]

	CH2-7
	[image: ]
	[image: ]
	None

	H5-1
	[image: ]
	[image: ]
	[image: ]

	Z2-1
	[image: ]
	[image: ]
	[image: ]


[bookmark: _Ref459814211][bookmark: _Toc491872298]Table 9.18 Verification of the multi-linear model
	CH1-5-800
	CH1-6-800

	
	

	CH2-7-800
	 CH2-7-1000 

	
	

	H5-1
	Z2-1

	
	

	          Multi-linear model            ABAQUS analysis




[bookmark: _Toc496973426]Verification against experimental results
Young [107] conducted experimental research of local-distortional interactive buckling of lipped channel sections, where one example of the load-end shortening curves is obtained. Thus the multi-linear model approximating the load-end shortening curve of a perfect column made of an elastic material is verified against this example. The geometry of the lipped channel section is tabulated in Table 9.19. The definitions of the the notations were shown in Fig. 9.6.
[bookmark: _Ref494898574]Table 9.19 Section geometry
	section
	L
(mm)
	t
(mm)
	bw
(mm)
	bf
(mm)
	d
(mm)
	r
(mm)

	T1.5-HSS-3
	1852
	1.478
	203.7
	192.7
	19.0
	2.42



The result of the comparison is shown in Fig. 9.12, where the red curve represents the multi-linear model based on the parameters tabulated in Table 9.20, while the blue curve represents the experimental result. It is seen that the agreement between the two is satisfactory in a range of longitudinal stress from the critical stress of 46 MPa to around 80 MPa, while beyond 80 MPa the blue curve deviates from the red curve due to the yielding of the material.
[bookmark: _Ref495065473]Table 9.20 Buckling parameters
	section
	Ll1
(mm)
	Ll2
(mm)
	Ld
(mm)
	σl1
(MPa)
	σl2
(MPa)
	σd
(MPa)
	kl1
	kl2
	kd

	T1.5-HSS-3
	192
	141
	1411
	45.9
	68.8
	81.1
	0.5
	0.52
	0.69



[bookmark: _Ref495065457][bookmark: _Toc495159634]Fig. 9.12 Verification of the multi-linear model










CHAPTER 10. [bookmark: _Toc496973427]DSM equations for CFS column

[bookmark: _Toc496973428]Introduction
This chapter focuses on improving the current version of the DSM design equations, while making use of the multi-linear model proposed in the previous chapter.
[bookmark: _Toc496973429]Design approach
[bookmark: _Toc496973430]Design formula
In addition to the slenderness parameters, which are currently already incorporated in the DSM, a new parameter is introduced to the design formula, namely the average post-buckling stiffness Kp = Δσ/Δε. As shown in Fig. 10.1, the solid line represents the longitudinal stress-strain curve of elastic buckling of a geometrically perfect column, while the dashed line represents the stress-strain curve of elastic-plastic buckling of the same column but with geometric imperfections. Δσ and Δε are the increments of stress and strain on the elastic buckling curve between the critical stress σcr and the ultimate stress σult. Correspondingly, the relative value of Kp is defined as kp = Kp/E.
 [image: ]
[bookmark: _Ref459900033][bookmark: _Toc495159635]Fig. 10.1 Average post-buckling stiffness
In general, the design formula should satisfy the following requirements in two extreme cases:
· When kp = 0, which means the column has no residual capacity after buckling, such as in the case of global buckling, the ultimate load should equal the critical load: 
Pu = Pcr or Pu = (Pcr/Py) Py = λ-2 Py ≤ Py, where λ is the slenderness.
· When kp ≈ 1, which means that the influence of a minor part of the section buckling is so small that the column as a whole can be considered unbuckled, the ultimate load should equal the yield load: Pu = Py.
Therefore, the following formula is proposed:

[bookmark: ZEqnNum157056]	 	
where g is a function of kp, and reflects the effect of kp on the ultimate load. The function g should satisfy:  g(1) = 0 and g(0) = 1.
Practically, a reduction should be applied to the ultimate load to take into account the effect of imperfections. The proposed approach is inspired by the EC3 design formula for global buckling of hot-rolled and welded members, where the ultimate load Pu = λ-2 Py ≤ Py is reduced using the Ayrton-Perry formula:

[bookmark: ZEqnNum260589]	 	
where α is the imperfection factor. A similar formula is adapted in our design approach. Since in Eq.  the power of λ is not necessarily equal to 2, but changes depending on the value of kp, the formula is revised accordingly:

[bookmark: ZEqnNum163374]	 	
where it is ensured that 

	 	
Meanwhile, the imperfection factor α, which is constant in Eq. , needs to be inversely proportional to kp in Eq.  in order to reflect the reduced imperfection sensitivity when kp is high. Since kp is also inversely proportional to g, the imperfection factor α can be made directly proportional to g, and is assumed to take the form:

[bookmark: ZEqnNum919618]	 	

where α0 is a constant factor indicating the magnitude of imperfection. It is found that when 
α0 = 0.3, a best agreement is observed between the proposed and current design formulas, as illustrated in Fig. 10.2, where the horizontal axis represents the slenderness , with σy and σcr being the yield stress of the material and the critical stress of the column, respectively. The vertical axis represents the ratio of the ultimate load to the yield load. The dark blue curves represent (from the bottom to the top) the current DSM design formulas for global, distortional and local buckling respectively. The dashed lines in varying colours represent the proposed design formulas for the perfect column using Eq., while the solid lines in the same colours represent the design formulas for the imperfect column using Eq.. It can be seen that the reduction of the ultimate load due to imperfections is maximal when the slenderness λ = 1, which reflects the fact that the imperfection sensitivity of the column is high when the yield stress of the material coincides with the critical stress of the column. This has been confirmed by Becque in his previous studies [13]. In addition, it is also noted that for a slenderness λ = 1, the reduction of the ultimate load is directly proportional to g, as previously addressed. [bookmark: _Ref488591357][bookmark: _Toc495159636]Fig. 10.2 Illustration of the design formula

[bookmark: _Toc496973431]Determination of the function g
Since the factor g in the design formula in Eq.  is a function of the average post-buckling stiffness kp, the exact relation can be found by following two steps. First, by substituting the slenderness and the ultimate load, known from either experimental study or numerical modelling, into the design formula, a solution for g can be found. Second, when the ultimate load is known, kp can be determined from the longitudinal stress-train curves obtained from an elastic geometrically nonlinear ABAQUS analysis and used in the previous chapter to verify the multi-linear model. The calculated values of kp and g for pure local buckling are tabulated in Table 10.1, while those of distortional and local-distortional interactive buckling are tabulated in Table 10.2. The ultimate loads of local buckling are obtained from numerical studies, while those of local-distortional interactive buckling are obtained from experimental [25] and numerical studies [43], marked by ‘*’ and ‘Δ’ respectively.


[bookmark: _Ref461538401][bookmark: _Toc491872299]Table 10.1 kp and g for local buckling of box-section
	bw, bf, tf, fy
(mm, MPa)
	tw
(mm)
	Pu
(MPa)
	kp
	g
	bw, bf, tf, fy
(mm, MPa)
	tw
(mm)
	Pu
(MPa)
	kp
	g

	bw = 100,
bf = 100,
tf = 1,
fy = 350
	1
	138.6
	0.35
	0.53
	bw = 100,
bf = 110,
tf = 1,
fy = 350
	1
	134.3
	0.35
	0.52

	
	1.2
	149.4
	0.36
	0.54
	
	1.2
	144.3
	0.37
	0.52

	
	1.4
	159.8
	0.40
	0.54
	
	1.4
	155.3
	0.43
	0.50

	
	1.6
	173.7
	0.56
	0.50
	
	1.6
	168.6
	0.55
	0.47

	
	1.8
	191.6
	0.71
	0.44
	
	1.8
	186.1
	0.71
	0.41

	
	2
	213.8
	0.78
	0.36
	
	2
	205.5
	0.76
	0.35

	
	2.2
	234.1
	0.82
	0.30
	
	2.2
	224.6
	0.82
	0.29

	bw, bf, tf, fy
(mm, MPa)
	tw
(mm)
	Pu
(MPa)
	kp
	g
	bw, bf, tf, fy
(mm, MPa)
	tw
(mm)
	Pu
(MPa)
	kp
	g

	
	2.4
	253.1
	0.84
	0.24
	
	2.4
	243.2
	0.83
	0.24

	
	2.6
	268.8
	0.85
	0.19
	
	2.6
	259.3
	0.84
	0.19

	
	2.8
	279.8
	0.86
	0.16
	
	2.8
	271.2
	0.85
	0.17

	
	3
	288.4
	0.87
	0.14
	
	3
	279.4
	0.86
	0.15

	
	4
	309.5
	0.90
	0.09
	
	4
	303.4
	0.89
	0.09

	
	5
	316.2
	0.91
	0.07
	
	5
	311.3
	0.91
	0.08

	bw = 100,
bf = 120,
tf = 1,
fy = 350
	1
	129.8
	0.35
	0.50
	bw = 100,
bf = 130,
tf = 1,
fy = 350
	1
	125.6
	0.35
	0.49

	
	1.2
	140.0
	0.38
	0.50
	
	1.2
	136.3
	0.41
	0.48

	
	1.4
	151.1
	0.44
	0.48
	
	1.4
	147.2
	0.46
	0.45

	
	1.6
	165.0
	0.54
	0.44
	
	1.6
	159.9
	0.56
	0.42

	
	1.8
	179.6
	0.67
	0.40
	
	1.8
	176.2
	0.65
	0.37

	
	2
	197.7
	0.75
	0.34
	
	2
	192.3
	0.72
	0.33

	
	2.2
	250.1
	0.81
	0.20
	
	2.2
	211.2
	0.80
	0.28

	
	2.4
	235.7
	0.82
	0.24
	
	2.4
	257.2
	0.81
	0.17

	
	2.6
	252.0
	0.83
	0.19
	
	2.6
	245.5
	0.82
	0.19

	
	2.8
	264.4
	0.84
	0.17
	
	2.8
	258.0
	0.83
	0.17

	
	3
	272.7
	0.85
	0.15
	
	3
	266.3
	0.84
	0.15

	
	4
	297.8
	0.88
	0.09
	
	4
	292.2
	0.87
	0.10

	
	5
	306.7
	0.90
	0.08
	
	5
	302.2
	0.89
	0.08

	bw = 100,
bf = 140,
tf = 1,
fy = 350
	1
	121.5
	0.36
	0.48
	bw = 100,
bf = 150,
tf = 1,
fy = 350
	1
	117.7
	0.35
	0.47

	
	1.2
	132.1
	0.39
	0.46
	
	1.2
	128.4
	0.40
	0.45

	
	1.4
	143.5
	0.45
	0.44
	
	1.4
	140.0
	0.47
	0.42

	
	1.6
	157.3
	0.55
	0.40
	
	1.6
	154.0
	0.53
	0.39

	
	1.8
	170.8
	0.65
	0.36
	
	1.8
	167.2
	0.63
	0.35

	
	2
	187.8
	0.72
	0.32
	
	2
	184.0
	0.67
	0.31

	
	2.2
	206.2
	0.79
	0.27
	
	2.2
	201.9
	0.78
	0.26

	
	2.4
	223.9
	0.81
	0.23
	
	2.4
	219.3
	0.80
	0.22

	
	2.6
	239.8
	0.82
	0.19
	
	2.6
	234.6
	0.81
	0.19

	
	2.8
	252.2
	0.83
	0.17
	
	2.8
	246.7
	0.82
	0.17

	
	3
	260.4
	0.83
	0.15
	
	3
	254.9
	0.83
	0.15

	
	4
	286.7
	0.87
	0.10
	
	4
	281.3
	0.86
	0.10

	
	5
	297.5
	0.89
	0.08
	
	5
	293.0
	0.88
	0.08
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[bookmark: _Ref489122239][bookmark: _Toc491872300]Table 10.2 kp and g for distortional buckling
	section
	fy
(MPa)
	Pu
(MPa)
	kp
	g
	section
	fy
(MPa)
	Pu
(MPa)
	kp
	g

	CH1-5-800*
	590
	147.8
	0.32
	0.50
	CH2-7-1000*
	590
	193.2
	0.53
	0.49

	CH1-6-800*
	590
	147.3
	0.31
	0.56
	CH2-8-1000*
	590
	192.1
	0.55
	0.54

	CH1-7-400*
	590
	160.0
	0.26
	0.62
	CH2-10-1000*
	590
	202.2
	0.40
	0.60

	CH1-7-600*
	590
	155.7
	0.31
	0.61
	CH2-12-1000*
	590
	206.2
	0.47
	0.66

	CH1-7-800*
	590
	149.5
	0.29
	0.61
	CH2-14-1000*
	590
	214.4
	0.42
	0.64

	CH2-7-800*
	590
	198.5
	0.55
	0.51
	
	
	
	
	

	H5-1Δ
	250
	133.0
	0.45
	0.57
	H5-2 Δ
	250
	120.0
	0.44
	0.63

	
	350
	158.0
	0.48
	0.57
	
	350
	143.0
	0.39
	0.62

	
	550
	198.0
	0.42
	0.57
	
	550
	181.0
	0.33
	0.60

	
	750
	233.0
	0.32
	0.56
	
	750
	213.0
	0.28
	0.59

	H5-3 Δ
	250
	147.0
	0.70
	0.48
	H11-1 Δ
	250
	82.0
	0.27
	0.64

	
	350
	160.0
	0.70
	0.57
	
	350
	99.0
	0.24
	0.62

	
	550
	219.0
	0.53
	0.52
	
	550
	125.0
	0.21
	0.60

	
	750
	254.0
	0.44
	0.53
	
	750
	148.0
	0.19
	0.58

	H11-2 Δ
	250
	86.0
	0.28
	0.64
	H11-3 Δ
	250
	77.0
	0.26
	0.65

	
	350
	104.0
	0.25
	0.61
	
	350
	92.0
	0.23
	0.63

	
	550
	132.0
	0.22
	0.59
	
	550
	118.0
	0.20
	0.60

	
	750
	155.0
	0.20
	0.58
	
	750
	139.0
	0.18
	0.59

	H12-1 Δ
	150
	58.0
	0.29
	0.67
	H12-2 Δ
	150
	58.0
	0.35
	0.67

	
	250
	76.0
	0.26
	0.63
	
	250
	76.0
	0.28
	0.64

	
	350
	92.0
	0.23
	0.61
	
	350
	91.0
	0.25
	0.62

	
	550
	117.0
	0.20
	0.59
	
	550
	112.0
	0.21
	0.61

	H12-3 Δ
	150
	59.0
	0.35
	0.61
	H13-1 Δ
	150
	76.0
	0.53
	0.59

	
	250
	76.0
	0.29
	0.59
	
	250
	99.0
	0.35
	0.58

	
	350
	90.0
	0.26
	0.59
	
	350
	117.0
	0.30
	0.58

	
	550
	116.0
	0.22
	0.57
	
	550
	144.0
	0.25
	0.58

	H13-2 Δ
	150
	0.64
	0.64
	0.63
	H13-3 Δ
	150
	78.0
	0.44
	0.53

	
	250
	0.66
	0.66
	0.73
	
	250
	100.0
	0.36
	0.55

	
	350
	0.35
	0.35
	0.61
	
	350
	119.0
	0.32
	0.54

	
	550
	0.27
	0.27
	0.59
	
	550
	150.0
	0.27
	0.54

	
	
	
	
	
	
	750
	175
	0.25
	0.54

	Z2-1 Δ
	250
	132.0
	0.65
	0.58
	Z2-2 Δ
	250
	120.0
	0.37
	0.63

	
	350
	157.0
	0.41
	0.58
	
	350
	143.0
	0.33
	0.61

	
	550
	197.0
	0.34
	0.57
	
	550
	182.0
	0.29
	0.59

	section
	fy
(MPa)
	Pu
(MPa)
	kp
	g
	section
	fy
(MPa)
	Pu
(MPa)
	kp
	g

	Z2-1 Δ
	750
	231.0
	0.30
	0.57
	Z2-2 Δ
	750
	215.0
	0.26
	0.58

	Z2-3 Δ
	250
	145.0
	0.70
	0.49
	Z5-1 Δ
	350
	178.0
	0.37
	0.65

	
	350
	178.0
	0.61
	0.49
	
	550
	229.0
	0.37
	0.62

	
	550
	225.0
	0.46
	0.50
	
	750
	261.0
	0.32
	0.62

	
	750
	264.0
	0.37
	0.50
	
	
	
	
	

	Z5-2 Δ
	350
	184.0
	0.63
	0.57
	Z5-3 Δ
	350
	196.0
	0.62
	0.58

	
	550
	222.0
	0.39
	0.61
	
	550
	233.0
	0.40
	0.63

	
	750
	260.0
	0.33
	0.60
	
	750
	269.0
	0.33
	0.63

	Z8-1 Δ
	250
	126.0
	0.47
	0.58
	Z8-2 Δ
	250
	129.0
	0.49
	0.56

	
	350
	151.0
	0.41
	0.57
	
	350
	151.0
	0.50
	0.58

	
	550
	185.0
	0.36
	0.58
	
	550
	186.0
	0.44
	0.58

	
	750
	207.0
	0.34
	0.60
	
	750
	206.0
	0.41
	0.60

	Z8-3 Δ
	250
	123.0
	0.44
	0.57
	Z11-1 Δ
	150
	67.0
	0.26
	0.63

	
	350
	145.0
	0.42
	0.57
	
	250
	77.0
	0.25
	0.68

	
	550
	186.0
	0.37
	0.56
	
	350
	105.0
	0.22
	0.59

	
	750
	208.0
	0.35
	0.57
	
	550
	126.0
	0.20
	0.60

	
	
	
	
	
	
	750
	148.0
	0.18
	0.59

	Z11-2 Δ
	150
	62.0
	0.48
	0.73
	Z11-3 Δ
	150
	58.0
	0.33
	0.71

	
	250
	86.0
	0.32
	0.64
	
	250
	81.0
	0.27
	0.63

	
	350
	102.0
	0.28
	0.62
	
	350
	97.0
	0.24
	0.61

	
	550
	113.0
	0.27
	0.66
	
	550
	120.0
	0.21
	0.60

	
	750
	131.0
	0.24
	0.65
	
	750
	145.0
	0.19
	0.58

	Z12-1 Δ
	150
	58.0
	0.28
	0.68
	Z12-2 Δ
	150
	58.0
	0.36
	0.68

	
	250
	72.0
	0.26
	0.67
	
	250
	76.0
	0.28
	0.64

	
	350
	84.0
	0.24
	0.66
	
	350
	91.0
	0.25
	0.62

	
	550
	117.0
	0.20
	0.59
	
	550
	112.0
	0.21
	0.61

	
	750
	137.0
	0.18
	0.59
	
	750
	133.0
	0.19
	0.60

	Z12-3 Δ
	150
	59.0
	0.34
	0.58
	Z13-1 Δ
	150
	73.0
	0.51
	0.64

	
	250
	76.0
	0.28
	0.58
	
	250
	99.0
	0.35
	0.59

	
	350
	91.0
	0.25
	0.57
	
	350
	117.0
	0.30
	0.58

	
	550
	116.0
	0.21
	0.55
	
	550
	144.0
	0.26
	0.58

	
	750
	135.0
	0.18
	0.55
	
	750
	169.0
	0.23
	0.58

	Z13-2 Δ
	150
	72.0
	0.62
	0.65
	Z13-3 Δ
	150
	84.0
	0.43
	0.45

	
	250
	82.0
	0.61
	0.72
	
	250
	100.0
	0.36
	0.53

	
	350
	111.0
	0.36
	0.61
	
	350
	115.0
	0.33
	0.55

	section
	fy
(MPa)
	Pu
(MPa)
	kp
	g
	section
	fy
(MPa)
	Pu
(MPa)
	kp
	g

	Z13-2 Δ
	550
	145.0
	0.28
	0.58
	Z13-3 Δ
	550
	155.0
	0.27
	0.51

	
	750
	170.0
	0.24
	0.57
	
	750
	185.0
	0.24
	0.51

	R11-1 Δ
	250
	148.0
	0.47
	0.53
	R11-2 Δ
	250
	155.0
	0.55
	0.50

	
	350
	170.0
	0.36
	0.58
	
	350
	162.0
	0.53
	0.64

	
	550
	193.0
	0.31
	0.64
	
	550
	200.0
	0.37
	0.64

	
	750
	219.0
	0.27
	0.64
	
	750
	229.0
	0.30
	0.64

	
	1000
	255.0
	0.22
	0.63
	
	1000
	262.0
	0.26
	0.63

	
	1200
	282.0
	0.20
	0.61
	
	1200
	288.0
	0.23
	0.62

	R11-3 Δ
	250
	143.0
	0.65
	0.50
	R13-1 Δ
	250
	109.0
	0.32
	0.66

	
	350
	166.0
	0.42
	0.54
	
	350
	115.0
	0.31
	0.72

	
	550
	192.0
	0.34
	0.59
	
	550
	155.0
	0.25
	0.64

	
	750
	221.0
	0.29
	0.59
	
	750
	182.0
	0.22
	0.63

	
	1000
	254.0
	0.25
	0.59
	
	1000
	209.0
	0.20
	0.62

	
	1200
	277.0
	0.22
	0.58
	
	1200
	227.0
	0.19
	0.62

	R13-2 Δ
	250
	109.0
	0.29
	0.68
	R13-3 Δ
	250
	99.3
	0.46
	0.67

	
	350
	126.0
	0.34
	0.68
	
	350
	118.0
	0.36
	0.65

	
	550
	160.0
	0.28
	0.65
	
	550
	149.0
	0.28
	0.62

	
	750
	188.0
	0.25
	0.63
	
	750
	175.0
	0.25
	0.61

	
	1000
	217.0
	0.22
	0.62
	
	1000
	201.0
	0.22
	0.60

	
	1200
	236.0
	0.21
	0.61
	
	1200
	219.0
	0.20
	0.60


Note: Sections with the ultimate load obtained from experimental and numerical studies are marked by ‘*’ and ‘Δ’ respectively.
Once both g and kp are known, the former is plotted against the latter in Fig. 10.3, where the light blue dots represent the data points associated with distortional buckling and local-distortional interactive buckling, while the red dots represent the data points associated with pure local buckling. The dark blue line represents the proposed design formula to predict g when kp is known, which reads:

	 	
[image: ]
[bookmark: _Ref461200197][bookmark: _Toc495159637]Fig. 10.3 Relation between kp and g
[bookmark: _Toc496973432]Predicting ultimate loads 
After calibrating the proposed model in the previous section, a further verification is carried out, whereby the relative average post-buckling stiffness kp is determined using the multi-linear model proposed in the previous chapter. We define the ultimate stress σu = Pu/Ag, where Ag is the gross area of the cross-section. It can be seen that kp is a function of the ultimate stress σu: kp = f1 (σu). For example, for the multi-linear model shown in Fig. 9.1, the function f1 reads: 

[bookmark: ZEqnNum552839] 	

The function f1 is monotonically decreasing, reaching its minimum value kpmin when the ultimate load equals σy, i.e. f1(σy) = kpmin. On the other hand, when σ1 ≤ σu ≤ σ2, the function f1 reaches its maximum value k1. Therefore the relative average post-buckling stiffness .
Two considerations are important when applying Eq. . First, it is proved in the previous chapter that when the initial post-buckling stiffness associated with the primary mode is lower than that associated with the secondary mode: k1 < k2, the column should be considered to buckle solely in the primary mode so that kp = k1. Second, while the multi-linear model simulates the elastic post-buckling behaviour of a geometrically perfect column, in practice, due to imperfections, the post-buckling stiffness is not reduced abruptly as simulated at bifurcation points, but gradually. This results in an overestimation of kp. Therefore, a reduction factor β = 0.55 is applied to reduce the stresses of the secondary and tertiary bifurcation points as follows: 

	 	

As previously pointed out, kp is a function of the ultimate load σu. Conversely, according to Eq., σu is also a function of kp: σu = f2 (kp). The function f2 is monotonically increasing, with .
We now define the monotonically increasing function 

[bookmark: ZEqnNum462298]	 	
Then the goal of the design process is to find the solution of the equation

	 	
Since F(kpmin) < 0 and F(k1) > 0, a unique solution of kp can be found.
Finally, the ultimate load predictions made by the improved DSM are verified against ultimate loads obtained from experiments and numerical modelling. The results for pure local buckling of box-sections are tabulated in Table 10.3, while the results for distortional and local-distortional interactive buckling of various open sections are tabulated in Table 10.4. In both tables, σu′ and σu″ are the ultimate loads predicted by the proposed design approach and the DSM, respectively, σu is the ultimate load obtained from either numerical or experimental study. 


[bookmark: _Ref461541195][bookmark: _Toc491872301]Table 10.3 Predictions of the ultimate load of box-sections in local buckling
	bw, bf, tf, fy
(mm, MPa)
	tw
(mm)
	σu′
(MPa)
	σu″
(MPa)
	σu
(MPa)
	σu′/σu
	σu″/σu

	bw = 100,
bf = 100,
tf = 1,
fy = 350
	1
	130.0
	174.5
	138.6
	0.94
	1.26

	
	1.2
	148.5
	186.6
	149.4
	0.99
	1.25

	
	1.4
	160.4
	196.7
	159.8
	1.00
	1.23

	
	1.6
	189.0
	203.1
	173.7
	1.09
	1.17

	
	1.8
	212.6
	206.5
	191.6
	1.11
	1.08

	
	2
	233.9
	208.4
	213.8
	1.09
	0.97

	
	2.2
	258.3
	209.6
	234.1
	1.10
	0.90

	
	2.4
	289.0
	210.5
	253.1
	1.14
	0.83

	
	2.6
	301.4
	211.0
	268.8
	1.12
	0.79

	
	2.8
	304.0
	211.5
	279.8
	1.09
	0.76

	
	3
	306.3
	211.8
	288.4
	1.06
	0.73

	
	4
	314.8
	212.5
	309.5
	1.02
	0.69

	
	5
	320.5
	212.8
	316.2
	1.01
	0.67

	bw = 100,
bf = 110,
tf = 1,
fy = 350
	1
	125.8
	167.6
	134.3
	0.94
	1.25

	
	1.2
	148.1
	177.4
	144.3
	1.03
	1.23

	
	1.4
	152.6
	185.1
	155.3
	0.98
	1.19

	
	1.6
	178.1
	190.0
	168.6
	1.06
	1.13

	
	1.8
	199.3
	192.9
	186.1
	1.07
	1.04

	
	2
	219.2
	194.6
	205.5
	1.07
	0.95

	
	2.2
	241.7
	195.8
	224.6
	1.08
	0.87

	
	2.4
	271.1
	196.6
	243.2
	1.11
	0.81

	
	2.6
	286.2
	197.1
	259.3
	1.10
	0.76

	
	2.8
	295.8
	197.5
	271.2
	1.09
	0.73

	
	3
	298.4
	197.8
	279.4
	1.07
	0.71

	
	4
	308.1
	198.5
	303.4
	1.02
	0.65

	
	5
	314.7
	198.8
	311.3
	1.01
	0.64

	bw = 100,
bf = 120,
tf = 1,
fy = 350
	1
	122.8
	160.3
	129.8
	0.95
	1.23

	
	1.2
	150.5
	168.3
	140.0
	1.07
	1.20

	
	1.4
	146.7
	174.5
	151.1
	0.97
	1.15

	
	1.6
	168.3
	178.6
	165.0
	1.02
	1.08

	
	1.8
	187.8
	181.1
	179.6
	1.05
	1.01

	
	2
	207.0
	182.8
	197.7
	1.05
	0.92

	
	2.2
	227.5
	183.8
	250.1
	0.91
	0.74

	
	2.4
	253.9
	184.6
	235.7
	1.08
	0.78

	bw, bf, tf, fy
(mm, MPa)
	tw
(mm)
	σu′
(MPa)
	σu″
(MPa)
	σu
(MPa)
	σu′/σu
	σu″/σu

	bw = 100,
bf = 120,
tf = 1,
fy = 350
	2.6
	267.4
	185.1
	252.0
	1.06
	0.73

	
	2.8
	279.7
	185.5
	264.4
	1.06
	0.70

	
	3
	290.5
	185.8
	272.7
	1.07
	0.68

	
	4
	301.4
	186.5
	297.8
	1.01
	0.63

	
	5
	308.8
	186.7
	306.7
	1.01
	0.61

	bw = 100,
bf = 130,
tf = 1,
fy = 350
	1
	119.3
	153.0
	125.6
	0.95
	1.22

	
	1.2
	147.8
	159.8
	136.3
	1.08
	1.17

	
	1.4
	139.8
	165.1
	147.2
	0.95
	1.12

	
	1.6
	159.2
	168.6
	159.9
	1.00
	1.05

	
	1.8
	177.1
	170.9
	176.2
	1.01
	0.97

	
	2
	196.0
	172.4
	192.3
	1.02
	0.90

	
	2.2
	215.9
	173.4
	211.2
	1.02
	0.82

	
	2.4
	235.0
	174.1
	257.2
	0.91
	0.68

	
	2.6
	248.8
	174.6
	245.5
	1.01
	0.71

	
	2.8
	261.6
	175.0
	258.0
	1.01
	0.68

	
	3
	272.5
	175.3
	266.3
	1.02
	0.66

	
	4
	291.8
	175.9
	292.2
	1.00
	0.60

	
	5
	300.0
	176.2
	302.2
	0.99
	0.58

	bw = 100,
bf = 140,
tf = 1,
fy = 350
	1
	117.2
	146.1
	121.5
	0.96
	1.20

	
	1.2
	142.9
	152.1
	132.1
	1.08
	1.15

	
	1.4
	132.9
	156.6
	143.5
	0.93
	1.09

	
	1.6
	150.5
	159.8
	157.3
	0.96
	1.02

	
	1.8
	168.0
	161.9
	170.8
	0.98
	0.95

	
	2
	185.9
	163.3
	187.8
	0.99
	0.87

	
	2.2
	205.2
	164.3
	206.2
	1.00
	0.80

	
	2.4
	216.9
	164.9
	223.9
	0.97
	0.74

	
	2.6
	228.6
	165.4
	239.8
	0.95
	0.69

	
	2.8
	235.6
	165.7
	252.2
	0.93
	0.66

	
	3
	242.2
	166.0
	260.4
	0.93
	0.64

	
	4
	273.2
	166.7
	286.7
	0.95
	0.58

	
	5
	288.1
	166.9
	297.5
	0.97
	0.56

	bw = 100,
bf = 150,
tf = 1,
fy = 350
	1
	113.8
	139.7
	117.7
	0.97
	1.19

	
	1.2
	137.3
	145.0
	128.4
	1.07
	1.13

	
	1.4
	126.3
	149.1
	140.0
	0.90
	1.07

	
	1.6
	142.8
	152.0
	154.0
	0.93
	0.99

	bw, bf, tf, fy
(mm, MPa)
	tw
(mm)
	σu′
(MPa)
	σu″
(MPa)
	σu
(MPa)
	σu′/σu
	σu″/σu

	bw = 100,
bf = 150,
tf = 1,
fy = 350
	1.8
	159.3
	153.9
	167.2
	0.95
	0.92

	
	2
	176.5
	155.2
	184.0
	0.96
	0.84

	
	2.2
	194.4
	156.1
	201.9
	0.96
	0.77

	
	2.4
	199.4
	156.8
	219.3
	0.91
	0.71

	
	2.6
	204.0
	157.2
	234.6
	0.87
	0.67

	
	2.8
	208.9
	157.5
	246.7
	0.85
	0.64

	
	3
	215.7
	157.8
	254.9
	0.85
	0.62

	
	4
	245.6
	158.4
	281.3
	0.87
	0.56

	
	5
	272.7
	158.6
	293.0
	0.93
	0.54


[bookmark: _Ref461541306]
[bookmark: _Ref488756750][bookmark: _Toc491872302]Table 10.4 Predictions of the ultimate load in distortional buckling
	Section
	fy
(MPa)
	σu′
(MPa)
	σu″
(MPa)
	σu
(MPa)
	σu′/σu
	σu″/σu

	CH1-5-800
	590
	117.4
	119.1
	147.8
	0.79
	0.81

	CH1-6-800
	590
	134.7
	141.5
	147.3
	0.91
	0.96

	CH1-7-400
	590
	169.0
	214.8
	160.0
	1.06
	1.34

	CH1-7-600
	590
	158.5
	172.4
	155.7
	1.02
	1.11

	CH1-7-800
	590
	152.5
	164.9
	149.5
	1.02
	1.10

	CH2-7-800
	590
	187.3
	174.4
	198.5
	0.94
	0.88

	CH2-7-1000
	590
	175.0
	159.6
	193.2
	0.91
	0.83

	CH2-8-1000
	590
	189.7
	177.6
	192.1
	0.99
	0.92

	CH2-10-1000
	590
	221.1
	212.4
	202.2
	1.09
	1.05

	CH2-12-1000
	590
	240.1
	233.8
	206.2
	1.16
	1.13

	CH2-14-1000
	590
	245.5
	261.9
	214.4
	1.15
	1.22

	H5-1
	250
	142.8
	149.0
	133.0
	1.07
	1.12

	
	350
	166.7
	177.4
	158.0
	1.06
	1.12

	
	550
	199.7
	221.4
	198.0
	1.01
	1.12

	
	750
	227.2
	256.0
	233.0
	0.98
	1.10

	H5-2
	250
	131.1
	131.3
	120.0
	1.09
	1.09

	
	350
	150.1
	155.3
	143.0
	1.05
	1.09

	
	550
	181.7
	192.5
	181.0
	1.00
	1.06

	
	750
	207.0
	221.9
	213.0
	0.97
	1.04

	H5-3
	250
	152.5
	163.6
	147.0
	1.04
	1.11

	
	350
	173.0
	196.0
	160.0
	1.08
	1.23

	Section
	fy
(MPa)
	σu′
(MPa)
	σu″
(MPa)
	σu
(MPa)
	σu′/σu
	σu″/σu

	H5-3
	550
	212.7
	246.2
	219.0
	0.97
	1.12

	
	750
	240.4
	285.6
	254.0
	0.95
	1.12

	H11-1
	250
	80.6
	97.4
	82.0
	0.98
	1.19

	
	350
	91.9
	113.9
	99.0
	0.93
	1.15

	
	550
	108.9
	139.7
	125.0
	0.87
	1.12

	
	750
	122.1
	160.1
	148.0
	0.83
	1.08

	H11-2
	250
	86.6
	104.4
	86.0
	1.01
	1.21

	
	350
	99.0
	122.3
	104.0
	0.95
	1.18

	
	550
	118.1
	150.3
	132.0
	0.90
	1.14

	
	750
	132.9
	172.4
	155.0
	0.86
	1.11

	H11-3
	250
	76.8
	91.2
	77.0
	1.00
	1.18

	
	350
	87.6
	106.5
	92.0
	0.95
	1.16

	
	550
	104.0
	130.4
	118.0
	0.88
	1.11

	
	750
	116.9
	149.3
	139.0
	0.84
	1.07

	H12-1
	150
	60.0
	69.6
	58.0
	1.03
	1.20

	
	250
	73.4
	88.9
	76.0
	0.97
	1.17

	
	350
	83.5
	103.7
	92.0
	0.91
	1.13

	
	550
	99.0
	126.8
	117.0
	0.85
	1.08

	H12-2
	150
	60.6
	74.5
	58.0
	1.04
	1.28

	
	250
	74.0
	95.5
	76.0
	0.97
	1.26

	
	350
	84.1
	111.6
	91.0
	0.92
	1.23

	
	550
	99.6
	136.8
	112.0
	0.89
	1.22

	H12-3
	150
	55.6
	64.1
	59.0
	0.94
	1.09

	
	250
	67.9
	81.6
	76.0
	0.89
	1.07

	
	350
	77.1
	95.0
	90.0
	0.86
	1.06

	
	550
	91.2
	116.0
	116.0
	0.79
	1.00

	H13-1
	150
	81.3
	82.2
	76.0
	1.07
	1.08

	
	250
	100.5
	106.1
	99.0
	1.01
	1.07

	
	350
	115.7
	124.4
	117.0
	0.99
	1.06

	
	550
	139.7
	152.9
	144.0
	0.97
	1.06

	H13-2
	150
	84.2
	89.4
	73.0
	1.15
	1.22

	
	250
	102.2
	116.1
	80.0
	1.28
	1.45

	
	350
	117.4
	136.6
	111.0
	1.06
	1.23

	
	550
	141.9
	168.4
	142.0
	1.00
	1.19

	H13-3
	150
	76.9
	75.5
	78.0
	0.99
	0.97

	Section
	fy
(MPa)
	σu′
(MPa)
	σu″
(MPa)
	σu
(MPa)
	σu′/σu
	σu″/σu

	H13-3
	250
	95.2
	96.9
	100.0
	0.95
	0.97

	
	350
	109.6
	113.3
	119.0
	0.92
	0.95

	
	550
	132.3
	138.9
	150.0
	0.88
	0.93

	
	750
	150.6
	159.2
	175.0
	0.86
	0.91

	Z2-1
	250
	141.5
	147.9
	132.0
	1.07
	1.12

	
	350
	165.7
	176.0
	157.0
	1.06
	1.12

	
	550
	198.8
	219.5
	197.0
	1.01
	1.11

	
	750
	226.4
	253.9
	231.0
	0.98
	1.10

	Z2-2
	250
	130.5
	130.9
	120.0
	1.09
	1.09

	
	350
	149.3
	154.7
	143.0
	1.04
	1.08

	
	550
	180.6
	191.8
	182.0
	0.99
	1.05

	
	750
	205.8
	221.0
	215.0
	0.96
	1.03

	Z2-3
	250
	149.6
	160.9
	145.0
	1.03
	1.11

	
	350
	170.5
	192.6
	178.0
	0.96
	1.08

	
	550
	209.6
	241.5
	225.0
	0.93
	1.07

	
	750
	236.8
	280.1
	264.0
	0.90
	1.06

	Z5-1
	350
	200.1
	200.9
	178.0
	1.12
	1.13

	
	550
	244.9
	252.7
	229.0
	1.07
	1.10

	
	750
	279.5
	293.5
	261.0
	1.07
	1.12

	Z5-2
	350
	194.2
	198.6
	184.0
	1.06
	1.08

	
	550
	235.9
	249.6
	222.0
	1.06
	1.12

	
	750
	268.4
	289.8
	260.0
	1.03
	1.11

	Z5-3
	350
	202.6
	204.0
	196.0
	1.03
	1.04

	
	550
	251.3
	256.9
	233.0
	1.08
	1.10

	
	750
	287.4
	298.6
	269.0
	1.07
	1.11

	Z8-1
	250
	130.5
	133.2
	126.0
	1.04
	1.06

	
	350
	154.9
	157.6
	151.0
	1.03
	1.04

	
	550
	191.9
	195.5
	185.0
	1.04
	1.06

	
	750
	217.5
	225.4
	207.0
	1.05
	1.09

	Z8-2
	250
	131.8
	140.7
	129.0
	1.02
	1.09

	
	350
	155.0
	167.0
	151.0
	1.03
	1.11

	
	550
	192.4
	207.7
	186.0
	1.03
	1.12

	
	750
	220.3
	239.9
	206.0
	1.07
	1.16

	Z8-3
	250
	124.8
	125.0
	123.0
	1.01
	1.02

	
	350
	148.9
	147.5
	145.0
	1.03
	1.02

	Section
	fy
(MPa)
	σu′
(MPa)
	σu″
(MPa)
	σu
(MPa)
	σu′/σu
	σu″/σu

	Z8-3
	550
	181.1
	182.5
	186.0
	0.97
	0.98

	
	750
	206.1
	210.1
	208.0
	0.99
	1.01

	Z11-1
	150
	66.6
	75.9
	67.0
	0.99
	1.13

	
	250
	81.7
	97.4
	77.0
	1.06
	1.26

	
	350
	93.2
	113.9
	105.0
	0.89
	1.08

	
	550
	110.7
	139.7
	126.0
	0.88
	1.11

	
	750
	124.3
	160.1
	148.0
	0.84
	1.08

	Z11-2
	150
	71.4
	80.7
	62.0
	1.15
	1.30

	
	250
	87.1
	104.0
	86.0
	1.01
	1.21

	
	350
	99.5
	121.9
	102.0
	0.98
	1.19

	
	550
	118.7
	149.7
	113.0
	1.05
	1.32

	
	750
	133.6
	171.8
	131.0
	1.02
	1.31

	Z11-3
	150
	63.1
	71.4
	58.0
	1.09
	1.23

	
	250
	77.7
	91.3
	81.0
	0.96
	1.13

	
	350
	88.6
	106.6
	97.0
	0.91
	1.10

	
	550
	105.3
	130.5
	120.0
	0.88
	1.09

	
	750
	118.2
	149.5
	145.0
	0.81
	1.03

	Z12-1
	150
	60.5
	69.6
	58.0
	1.04
	1.20

	
	250
	74.2
	88.9
	72.0
	1.03
	1.23

	
	350
	84.4
	103.7
	84.0
	1.00
	1.23

	
	550
	100.0
	126.8
	117.0
	0.85
	1.08

	
	750
	112.2
	145.2
	137.0
	0.82
	1.06

	Z12-2
	150
	60.9
	74.5
	58.0
	1.05
	1.28

	
	250
	74.5
	95.5
	76.0
	0.98
	1.26

	
	350
	84.7
	111.6
	91.0
	0.93
	1.23

	
	550
	100.4
	136.8
	112.0
	0.90
	1.22

	
	750
	112.4
	156.8
	133.0
	0.85
	1.18

	Z12-3
	150
	53.6
	64.0
	59.0
	0.91
	1.08

	
	250
	65.5
	81.4
	76.0
	0.86
	1.07

	
	350
	74.3
	94.8
	91.0
	0.82
	1.04

	
	550
	87.9
	115.7
	116.0
	0.76
	1.00

	
	750
	98.4
	132.3
	135.0
	0.73
	0.98

	Z13-1
	150
	80.6
	81.7
	73.0
	1.10
	1.12

	
	250
	99.7
	105.4
	99.0
	1.01
	1.06

	
	350
	114.8
	123.6
	117.0
	0.98
	1.06

	Section
	fy
(MPa)
	σu′
(MPa)
	σu″
(MPa)
	σu
(MPa)
	σu′/σu
	σu″/σu

	Z13-1
	550
	138.5
	151.9
	144.0
	0.96
	1.05

	
	750
	157.6
	174.3
	169.0
	0.93
	1.03

	Z13-2
	150
	82.6
	88.8
	72.0
	1.15
	1.23

	
	250
	101.1
	115.2
	82.0
	1.23
	1.41

	
	350
	116.0
	135.5
	111.0
	1.04
	1.22

	
	550
	139.6
	167.1
	145.0
	0.96
	1.15

	
	750
	158.7
	192.0
	170.0
	0.93
	1.13

	Z13-3
	150
	74.0
	75.2
	84.0
	0.88
	0.89

	
	250
	91.6
	96.4
	100.0
	0.92
	0.96

	
	350
	105.3
	112.7
	115.0
	0.92
	0.98

	
	550
	127.0
	138.2
	155.0
	0.82
	0.89

	
	750
	144.3
	158.4
	185.0
	0.78
	0.86

	R11-1
	250
	148.4
	147.1
	148.0
	1.00
	0.99

	
	350
	177.3
	175.0
	170.0
	1.04
	1.03

	
	550
	216.9
	218.3
	193.0
	1.12
	1.13

	
	750
	247.7
	252.4
	219.0
	1.13
	1.15

	
	1000
	280.2
	287.7
	255.0
	1.10
	1.13

	
	1200
	302.7
	312.2
	282.0
	1.07
	1.11

	R11-2
	250
	149.3
	149.6
	155.0
	0.96
	0.97

	
	350
	180.8
	178.2
	162.0
	1.12
	1.10

	
	550
	222.1
	222.5
	200.0
	1.11
	1.11

	
	750
	253.1
	257.3
	229.0
	1.11
	1.12

	
	1000
	286.2
	293.5
	262.0
	1.09
	1.12

	
	1200
	309.0
	318.6
	288.0
	1.07
	1.11

	R11-3
	250
	140.4
	144.5
	143.0
	0.98
	1.01

	
	350
	166.8
	171.8
	166.0
	1.00
	1.03

	
	550
	202.7
	214.0
	192.0
	1.06
	1.11

	
	750
	230.5
	247.3
	221.0
	1.04
	1.12

	
	1000
	260.1
	281.9
	254.0
	1.02
	1.11

	
	1200
	280.7
	305.8
	277.0
	1.01
	1.10

	R13-1
	250
	118.5
	126.1
	109.0
	1.09
	1.16

	
	350
	136.5
	148.9
	115.0
	1.19
	1.29

	
	550
	165.2
	184.2
	155.0
	1.07
	1.19

	
	750
	187.8
	212.2
	182.0
	1.03
	1.17

	
	1000
	211.5
	241.2
	209.0
	1.01
	1.15

	Section
	fy
(MPa)
	σu′
(MPa)
	σu″
(MPa)
	σu
(MPa)
	σu′/σu
	σu″/σu

	R13-1
	1200
	227.7
	261.2
	227.0
	1.00
	1.15

	R13-2
	250
	118.8
	128.4
	109.0
	1.09
	1.18

	
	350
	135.5
	151.7
	126.0
	1.08
	1.20

	
	550
	162.4
	187.9
	160.0
	1.02
	1.17

	
	750
	183.6
	216.5
	188.0
	0.98
	1.15

	
	1000
	205.1
	246.1
	217.0
	0.95
	1.13

	
	1200
	220.2
	266.7
	236.0
	0.93
	1.13

	R13-3
	250
	114.0
	123.8
	99.3
	1.15
	1.25

	
	350
	131.1
	146.0
	118.0
	1.11
	1.24

	
	550
	159.0
	180.5
	149.0
	1.07
	1.21

	
	750
	181.2
	207.7
	175.0
	1.04
	1.19

	
	1000
	204.1
	236.1
	201.0
	1.02
	1.17

	
	1200
	220.3
	255.7
	219.0
	1.01
	1.17


[bookmark: _Ref488769377]The mean and standard deviations of the ratio between the predicted and the real ultimate loads are tabulated in Table 10.5. It can be seen that when compared to the DSM, the proposed approach gives significantly better predictions of the ultimate load for local buckling of box sections, since it overcomes the deficiency of the DSM that the ultimate load is underestimated when one part of the section is extremely slender. Meanwhile, it gives similar predictions for local-distortional buckling of open sections. The ratio is also plotted against the slenderness λ in Fig. 10.4, offering a more vivid insight into the performance of the design approaches. 
[bookmark: _Ref489126622][bookmark: _Toc491872303]Table 10.5 Comparion between the design approaches
	
	Proposed approach
	DSM

	
	Mean
	St. Dev.
	Mean
	St. Dev.

	Local buckling
of box sections
	1.00
	0.07
	0.88
	0.22

	Distortional buckling 
of open sections
	0.99
	0.09
	1.11
	0.10


[image: ]
(a) Local buckling
[image: ]
(b) Distortional buckling
[bookmark: _Ref496962906]Fig. 10.4 Performance of the design approaches












CHAPTER 11. [bookmark: _Toc496973433] Summary and recommendations for future work

[bookmark: _Toc496973434]Summary
This thesis presents a comprehensive study on modal decomposition and its applications in the analysis and design of cold-formed steel structures. The research consists of three parts, namely (1) the development of two new modal decomposition methods in the context of the FSM, (2) the application of these methods to the modal decomposition of post-buckling deformed shapes and the statistical analysis of geometric imperfections, and (3) the development of a design approach based on the direct strength method.
Two new modal decomposition methods, namely the polarisation method (PM) and the nodal force method (NFM), were derived, implemented in software, and validated against a variety of sections including both simple open sections and complex cross-sections with closed parts. In both methods, buckling modes are categorised into five types including local, distortional, global, transverse extension and shear. In the PM, buckling modes are identified according to the proportion of the plate bending strain energy to the total strain energy in the buckled shape. The buckling modes are sorted in an order from the highest proportion to the lowest. The different types of modes can then be identified based on the number of modes associated with each type, which is calculated prior to the modal decomposition process. The local modes are associated with the highest proportions of plate bending energy, while the transverse extension and shear modes are associated with the lowest. Since the transverse extension and shear modes have similar proportions of plate bending energy, the transverse extension modes are first filtered out using the criterion of null membrane transverse stress. This is done in advance, before the sorting process of the buckling modes. On the other hand, in the NFM, the buckling modes are generated by applying precisely defined nodal forces, obeying a definitive set of mechanical criteria for each of the buckling types. The criteria applied for modal identification include the criterion of non-zero longitudinal force to separate the shear modes from the other modes, the criterion of non-zero membrane transverse stress to identify the transverse extension modes, and the equilibrium of the cross-sectional forces and moments to distinguish the distortional modes from the global modes. In addition, orthogonality with respect to the global stiffness matrix K is consistently maintained while establishing the buckling modes.  
A comparison was made between the newly proposed methods and the existing methods, namely the constrained finite strip method (cFSM) and generalised beam theory (GBT). The two new modal decomposition methods are distinct from the existing methods because of a number of features. First, they are able to deal with complex cross-sections without any increase in computational effort. Second, the Poisson’s effect and the shear effect are accounted for in the distortional and global modes, thus allowing the associated membrane transverse strain, the transverse curvature, the membrane shear strain and the non-linear warping displacements within each flat plate segment. Consequently, the problem of generating overly rigid distortional and global modal shapes, which incurs an up to 10% overestimation of the critical stress and is typical for the existing methods, is resolved. Third, all modes are consistently orthogonal to each other with respect to K. Finally, as a result of the second feature, the cross-sectional deformations of the modal shapes vary slightly with the half-wavelength due to the increased importance of the Poisson’s effect and the shear effect at short half-wavelengths. The critical stresses of various modes of various sections obtained from the different methods were compared. It was found that in general the results of different methods correlate well with each other, with exceptions at very short half-wavelengths, where the critical stresses of the newly proposed methods are significantly lower than those of the existing methods due to the Poisson’s effect and the shear effect.
In chapter 6 the NFM was applied to the analysis the post-buckling deformed shapes of cold-formed steel columns with various cross-sections. A limited number of orthogonal buckling modes were selected for the modal decomposition process. Box-sections undergoing local-local interactive buckling were initially studied, followed by lipped channel sections undergoing local-distortional interactive buckling. A methodology was developed to accommodate general end boundary conditions, including simple-simple, fixed-fixed and fixed-free conditions. Finally, the effect of geometric imperfections on the modal participations in the post-buckling stage was studied. It was found that for the box-sections, the column buckles initially in the primary local mode. Then as the load increases, the secondary local mode is also involved and a local-local interactive buckling occurs. The proportion between the modal participations of the two local modes in the interactive buckling is independent of the geometric imperfection. On the other hand, for the lipped channel sections, the column buckles initially in the local or distortional mode. Then as the load increases, the distortional or local mode is also involved and a local-distortional interactive buckling occurs. However, the proportion between the modal participations in the interactive buckling is dependent on the geometric imperfection.
In chapter 7 the NFM was applied to the statistical analysis of geometric imperfections, which would lead to a more scientific charactorisation of geometric imperfections. The imperfections of 88 specimens with plain and lipped channel sections were measured. First, the imperfect geometries of the plate and corner zones constituting the cross-section were measured independently using a frame with a laser transmitter/receiver which continuously sampled the distance to the faces of the plates. The obtained imperfect geometries were then assembled to form the 3D imperfect geometry of the specimen as a whole. This geometry was then decomposed into modes generated using the NFM, namely the first and second critical local and distortional modes, the flexural global modes and the torsional global mode. The imperfection magnitudes associated with these modes were plotted against the relative half-wavelength for all geometries. The mean and standard deviation values of the imperfection magnitudes as a function of the relative half-wavelength were obtained, which is useful in generating random imperfection magnitudes.
Finally, a design approach was developed based on the concept of the direct strength method (DSM). In the proposed design approach, the initial post-buckling stiffness is considered as an input parameter in addition to the critical load, which improves the current DSM in three aspects. First, since different types of buckling are associated with different post-buckling stiffness, it is possible to unify the design formulas. Second, in those cross-sections where one part of the section buckles far prior to the other parts, a relatively minor reduction of the stiffness is incurred, compared to the case where all parts of the section buckle simultaneously. Thus, the unduly conservative prediction of the ultimate load given by the current DSM in those cases can be avoided. Third, when interaction occurs between bucking modes (this being either a ‘true interaction’ due to the closeness of the critical stresses or interaction due to secondary bifurcation), the erosion of the ultimate load is reflected in a further reduction of the stiffness. Therefore, it is possible to cover both pure buckling and both types of interactive buckling using a unified design formula. The investigation of the design approach focused on pure local and distortional buckling, and local-distortional interactive buckling, although it is also applicable to pure global buckling. The development of the design approach followed three steps. First, the initial post-buckling stiffness of columns was calculated using the perturbation method, in which the columns are perfect and are made of a purely elastic material. Second, the initial post-buckling stiffness, along with the critical stresses, were used to establish a multi-linear model approximating the elastic post-buckling behaviour. Finally, the ultimate load was linked to the elastic post-buckling behaviour using empirical formulas.
[bookmark: _Toc496973435]Recommendations for future work
One of the merits of the newly proposed modal decomposition methods over the existing methods is that it can deal with complicated sections without any increase in computational effort. In order to take full advantage of this, in addition to the sections already discussed in this thesis, the method could also be applied to built-up sections, which are becoming increasingly popular in the construction industry. In these sections, the components are assembled using bolted connections so that some plates are in contact with each other. An additional constraint can be added to the contacting plates with respect to the out-of-plane displacements, so that plates can either deform in the same direction or separate, as shown in Fig. 11.1 (a) and (b), but cannot violate contact as shown in (c). The implementation of this additional constraint in the FSM and further in the PM and NFM needs to be studied. After extending the application of the modal decomposition methods to built-up sections, research could proceed on analysing the post-buckling deformed shapes and geometric imperfections of such sections using the modal decomposition methods. It would also be interesting to compare the imperfection magnitudes before and after the assembly of the section.                   (a)                                (b)                                (c)
[bookmark: _Ref488591358][bookmark: _Toc495159638]Fig. 11.1 Out-of-plane displacements of plates in contact

As for the design approach, more work could be done aimed at improving the method and extending its application. First, currently the buckling modes are considered as either involved or absent, while their exact modal participations are not taken into account. If these modal participations were added to the input parameters, the stiffness of interactive buckling could be determined more accurately. Second, the methodology currently lacks a design approach for the cases where the cold-formed structural member buckles initially in a local or distortional mode, but fails in a local-global or distortional-global interactive mode due to secondary bifurcation. In a more complicated case, the member may fail in local-distortional-global interactive buckling. Due to the property of global buckling that it has no post-buckling residual load-carrying capacity, the structural member will fail almost instantly after global buckling emerges. Therefore, the proposed design approach for local and distortional buckling no longer works. Further work in this direction is required before a design approach covering all types of pure and interactive buckling can be proposed. Third, the effect of geometric imperfections on the ultimate load needs to be further studied, especially with respect to the sensitivity of the ultimate load to imperfections. It is already known that when elastic-plastic buckling occurs, the sensitivity is high, which suggests that the sensitivity may depend on the slenderness. In addition, it has been found that the sensitivity of the critical load to imperfections is inversely proportional to the initial post-buckling stiffness. For example, the critical load of local buckling, which has a positive initial post-buckling stiffness, is not quite dependent on imperfections. In contrast, the critical load of cylindrical shell buckling, which has a negative initial post-buckling stiffness, is very sensitive to imperfections. Whether this conclusion can be generally extended remains to be unveiled. Fourth, the application of the design approach could be extended to beams.
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[bookmark: _Toc496973437]APPENDIX A. Python Script generating FEM buckling modes  
from numpy import *
from abaqus import *
from abaqusConstants import *
import sketch
import part
import regionToolset

################### Input #####################

web=117.39
flange=87.49
lip=3.72
t=1.085
# full length
L_t = 400
# mesh size
mesh_size=10
#
Eel=210000
v=0.3
# number of half-waves
num_hw=2
# mode select
Type='G'
mode_sel=1

################# Trans Input #################

web=float(web)
flange=float(flange)
lip=float(lip)
t=float(t)
L_t=float(L_t)
Eel=float(Eel)
v=float(v)
L=L_t/num_hw

################# Functions ###################

## find null space

def nullspace(A, atol=1e-13, rtol=0):
    A = atleast_2d(A)
    u, s, vh = linalg.svd(A)
    tol = max(atol, rtol * s[0])
    nnz = (s >= tol).sum()
    ns = vh[nnz:].conj().T
    return ns

## create model in abaqus part 1

def  Model_1(): 
    global Coor,myModel,new_name
    # Create the model

    new_name='mode '+Type+str(mode_sel)+'_'+str(num_hw)
    mdb.models.changeKey(fromName='Model-1', toName=new_name)
    myModel=mdb.models[new_name]

    # Create the part

    mySketch=myModel.ConstrainedSketch(name='Column Profile', sheetSize=100)
    mySketch.Line(point1=(-web/2+lip,0), point2=(-web/2,0))
    mySketch.Line(point1=(-web/2,0), point2=(-web/2,flange))
    mySketch.Line(point1=(-web/2,flange), point2=(web/2,flange))
    mySketch.Line(point1=(web/2,flange), point2=(web/2,0))
    mySketch.Line(point1=(web/2,0), point2=(web/2-lip,0))

    myPart = myModel.Part(name='Column', dimensionality=THREE_D, type=DEFORMABLE_BODY)
    myPart.BaseShellExtrude(sketch=mySketch, depth=L_t)

    # Material 

    material=myModel.Material(name='steel')
    material.Elastic(table=((Eel,v), ))

    # Section 

    # create

    myModel.HomogeneousShellSection(name='section', material='steel', thickness=t)

    # assignment

    pickregion = regionToolset.Region(faces=myPart.faces)
    myPart.SectionAssignment(region=pickregion, sectionName='section')

    # Assembly 

    import assembly

    myAssembly=myModel.rootAssembly
    myInstance=myAssembly.Instance(name='Column Instance',part=myPart,dependent=ON)

    # Step 

    myModel.StaticStep(name='Step-1', previous='Initial', nlgeom=OFF)

    # Boundary conditions 

    myPart.Set(edges=myPart.edges.findAt(((-web/2+lip/2,0,L_t),), ((-web/2,flange/2,L_t),),((-web/4,flange,L_t),),((web/4,flange,L_t),),((web/2,flange/2,L_t),),((web/2-lip/2,0,L_t),)),name='end')
    region1=myInstance.sets['end']
    myModel.DisplacementBC(name='end', 
        createStepName='Initial', region=region1, u1=SET, u2=SET, u3=UNSET, 
        ur1=UNSET, ur2=UNSET, ur3=SET, amplitude=UNSET, fixed=OFF, 
        distributionType=UNIFORM, fieldName='', localCsys=None)

    myPart.Set(edges=myPart.edges.findAt(((-web/2+lip/2,0,0),), ((-web/2,flange/2,0),),((-web/4,flange,0),),((web/4,flange,0),),((web/2,flange/2,0),),((web/2-lip/2,0,0),)),name='start')
    region2=myInstance.sets['start']
    myModel.DisplacementBC(name='start', 
        createStepName='Initial', region=region2, u1=SET, u2=SET, u3=UNSET, 
        ur1=UNSET, ur2=UNSET, ur3=SET, amplitude=UNSET, fixed=OFF, 
        distributionType=UNIFORM, fieldName='', localCsys=None)

    myPart.Set(vertices=myPart.vertices.findAt(((web/2-lip,0,0),)),name='node')
    region3=myInstance.sets['node']
    myModel.DisplacementBC(name='node', 
        createStepName='Initial', region=region3, u1=UNSET, u2=UNSET, u3=SET, 
        ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, fixed=OFF, 
        distributionType=UNIFORM, fieldName='', localCsys=None)

    # Mesh 

    import mesh

    elemType1 = mesh.ElemType(elemCode=S4R, elemLibrary=STANDARD)
    myFaces= myPart.faces
    pickregion = regionToolset.Region(faces=myFaces)
    myPart.setElementType(regions=pickregion, elemTypes=(elemType1,))
    myPart.seedPart(size=mesh_size, deviationFactor=0.1, minSizeFactor=0.1)
    myPart.generateMesh()

    # Node coordinates 

    Coor=[]
    for i in myPart.nodes:
        coor=i.coordinates
        Coor.append(coor)
    Coor=array(Coor)

## solve generalised eigenvalue problem

def geneigsympos(A,B):
    #fixme: input checks on the matrices
    LI = asmatrix(linalg.cholesky(B)).I
    C = LI * asmatrix(A) * LI.T
    evals, evecs = linalg.eigh(C)
    if type(A) == type(asarray(A)): output = "array"
    # A was passed as numpy-array
    else: output = "matrix"
    #but the evecs need to be transformed back:
    evecs = LI.T * asmatrix(evecs)
    if output == "array": return evals, asarray(evecs)
    else: return asmatrix(evals), evecs

## discretisation

def disc():
    global c
    #
    c=[]
    L_set=round(float(Coor[0][2]),3)
    for i in range(0,len(Coor)):
        for j in range(0,3):
            Coor[i][j]=round(float(Coor[i][j]),3)
        if float(Coor[i][2])==L_set:
            c.append([Coor[i][0],Coor[i][1],0])
    c=array(c)
    #
    center=[(min(c[:,0])+max(c[:,0]))/2,(min(c[:,1])+max(c[:,1]))/2]
    angle=zeros(len(c))
    for i in range(0,len(c)):
        dist=sqrt((c[i][0]-center[0])**2+(c[i][1]-center[1])**2)
        sin=(c[i][1]-center[1])/dist
        cos=(c[i][0]-center[0])/dist
        if cos>=0:
            angle[i]=arcsin(sin)
        else:
            angle[i]=pi-arcsin(sin)
    c=c[argsort(angle)]
    # node type 
    # 0 sub
    # 1 internal main
    # 2 external main
    c[0][2]=2
    c[len(c)-1][2]=2
    for i in range(0,len(c)):
        if abs(c[i,0])==max(c[:,0]) and abs(c[i,1]-center[1])==max(c[:,1])/2:
            c[i][2]=1
    return c

## matrices

def Matrices():
    # initialisation
    K=zeros([4*len(c),4*len(c)])
    G=zeros([4*len(c),4*len(c)])
    #
    for i in range(0,len(c)-1):
        # initialisation
        K11=zeros([4,4])
        K22=zeros([4,4])
        # Calculating width of element, bel
        bel=sqrt((c[i+1][0]-c[i][0])**2+(c[i+1][1]-c[i][1])**2)
        # Calculating K11
        S11=1/(1-v**2)*(t**3/12)*Eel*(pi**4*bel/L**3)
        S12=1/(1-v**2)*(t**3/12)*Eel*v*(pi**2/(bel*L))
        S21=S12
        S22=1/(1-v**2)*(t**3/12)*Eel*(L/bel**3)
        S33=(t**3/12)*Eel/2/(1+v)*(pi**2/(bel*L))

        K11[0][0]=S11/2
        K11[0][1]=S11/4
        K11[0][2]=S11/6-S12
        K11[0][3]=S11/8-3*S12/2

        K11[1][0]=S11/4
        K11[1][1]=S11/6+2*S33
        K11[1][2]=S11/8-S12/2+2*S33
        K11[1][3]=S11/10-S12+2*S33

        K11[2][0]=S11/6-S21
        K11[2][1]=S11/8-S21/2+2*S33
        K11[2][2]=S11/10-S21/3-S12/3+2*S22+8*S33/3
        K11[2][3]=S11/12-S21/4-3*S12/4+3*S22+3*S33

        K11[3][0]=S11/8-3*S21/2
        K11[3][1]=S11/10-S21+2*S33
        K11[3][2]=S11/12-3*S21/4-S12/4+3*S22+3*S33
        K11[3][3]=S11/14-3*S21/5-3*S12/5+6*S22+18*S33/5
        # Calculating K22
        F11=1/(1-v**2)*Eel*(pi**2*bel*t/L)
        F12=v/(1-v**2)*Eel*pi*t
        F21=F12
        F22=1/(1-v**2)*Eel*(L*t/bel)
        F33=Eel/2/(1+v)*(pi**2*bel*t/L)

        K22[0][0]=F33/2
        K22[0][1]=F33/4
        K22[0][2]=0
        K22[0][3]=F33*L/(2*bel*pi)

        K22[1][0]=F33/4
        K22[1][1]=F22/2+F33/6
        K22[1][2]=-F21/2
        K22[1][3]=F33*L/(4*bel*pi)-F21/4

        K22[2][0]=0
        K22[2][1]=-F12/2
        K22[2][2]=F11/2
        K22[2][3]=F11/4

        K22[3][0]=F33*L/(2*bel*pi)
        K22[3][1]=F33*L/(4*bel*pi)-F12/4
        K22[3][2]=F11/4
        K22[3][3]=F11/6+F33*L**2/(2*bel**2*pi**2)
        # Calculating K element matrix
        C=matrix([[1,0,0,0,0,0,0,0],[0,bel,0,0,0,0,0,0],[-3,-2*bel,3,-bel,0,0,0,0],[2,bel,-2,bel,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,-1,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,-1,0,1]])
        R=matrix([[0,-(c[i+1][1]-c[i][1])/bel,(c[i+1][0]-c[i][0])/bel,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,-(c[i+1][1]-c[i][1])/bel,(c[i+1][0]-c[i][0])/bel,0],[0,0,0,0,0,0,0,1],[0,(c[i+1][0]-c[i][0])/bel,(c[i+1][1]-c[i][1])/bel,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,(c[i+1][0]-c[i][0])/bel,(c[i+1][1]-c[i][1])/bel,0],[0,0,0,0,1,0,0,0]])
        Kel_core=zeros([8,8])
        Kel_core[0:4,0:4]=K11
        Kel_core[4:8,4:8]=K22
        Kel=R.T*C.T*Kel_core*C*R
        # Calculating G element matrix
        H=(bel*t*pi**2/(2*L))*matrix([[1.0/1,1.0/2,1.0/3,1.0/4,0,0,0,0],[1.0/2,1.0/3,1.0/4,1.0/5,0,0,0,0],[1.0/3,1.0/4,1.0/5,1.0/6,0,0,0,0],[1.0/4,1.0/5,1.0/6,1.0/7,0,0,0,0],[0,0,0,0,1.0/1,1.0/2,0,0],[0,0,0,0,1.0/2,1.0/3,0,0],[0,0,0,0,0,0,1.0/1,1.0/2],[0,0,0,0,0,0,1.0/2,1.0/3]])
        Gel=R.T*C.T*H*C*R
        # Assembling K Global matrix
        K[(4*i):(4*i+8),(4*i):(4*i+8)]+=Kel
        # Assembling K Global matrix
        G[(4*i):(4*i+8),(4*i):(4*i+8)]+=Gel
    return K,G

## modal decomposition

def MD():
    #
    row=len(c)
    NDF=4*row
    # labels of external main and sub nodes
    EndSubNode=[]
    for i in range(0,row):
        if c[i][2]==0 or c[i][2]==2:
            EndSubNode.append(i)
    EndSubNode=array(EndSubNode)
    # number of local modes
    num_sub_node=0
    num_in_main_node=0
    num_ex_main_node=0
    for i in range(0,row):
        if c[i][2]==0:
            num_sub_node+=1
        elif c[i][2]==1:
            num_in_main_node+=1
        elif c[i][2]==2:
            num_ex_main_node+=1
    num_local=2*(num_sub_node+num_ex_main_node)+num_in_main_node
    # plate angles
    CosSin=[]
    for i in range(0,len(EndSubNode)):
        if i==len(EndSubNode)-1:
            node=EndSubNode[i]-1
        else:
            node=EndSubNode[i]       
        bel=sqrt((c[node+1][0]-c[node][0])**2+(c[node+1][1]-c[node][1])**2)
        Cos=(c[node+1][0]-c[node][0])/bel
        Sin=(c[node+1][1]-c[node][1])/bel
        CosSin.append([Cos,Sin])
    #
    K,G=Matrices()

    # local modes

    DOFl=concatenate([arange(4,NDF+1,4),4*EndSubNode+2,4*EndSubNode+3])
    NumDOFl=len(DOFl)
    DOFk=concatenate([DOFl,arange(1,NDF+1,4)])
    NumDOFk=len(DOFk)
    Rk=zeros([NumDOFk,num_local])
    Rk[0:row,0:row]=eye(row)
    for i in range(0,len(EndSubNode)):
        Rk[NDF/4+i][NDF/4+i]=-CosSin[i][1]
        Rk[NDF/4+len(EndSubNode)+i][NDF/4+i]=CosSin[i][0]
    Kkk=K[DOFk-1,:][:,DOFk-1]
    Vk=linalg.solve(Kkk,Rk)
    Vl=zeros([NDF,num_local])
    Vl[DOFk-1,:]=Vk
    # sort local
    Vl=matrix(Vl)
    Sl,Al=geneigsympos(array(Vl.T*K*Vl),array(Vl.T*G*Vl))
    Vl=Vl*Al

    # assumptions

    # null warping nodal forces
    Trans=eye(NDF)
    Trans=delete(Trans,arange(1,NDF+1,4)-1,1)
    # null transverse stress
    Cond1=zeros([row-1,NDF])
    for i in range(0,row-1):
        b=sqrt((c[i+1][0]-c[i][0])**2+(c[i+1][1]-c[i][1])**2)
        Cos=(c[i+1][0]-c[i][0])/b
        Sin=(c[i+1][1]-c[i][1])/b
        Cond1[i][4*i+1]=Cos/b
        Cond1[i][4*i+2]=Sin/b
        Cond1[i][4*(i+1)+1]=-Cos/b
        Cond1[i][4*(i+1)+2]=-Sin/b
        Cond1[i][4*i]=pi/L/2*v
        Cond1[i][4*(i+1)]=pi/L/2*v
    Cond1=matrix(Cond1)
    Cond1=Cond1*linalg.inv(K)
    # equilibrium of nodal forces
    Cond2=zeros([3,NDF])
    Cond2[0,arange(2,NDF+1,4)-1]=1
    Cond2[1,arange(3,NDF+1,4)-1]=1
    for i in range(0,NDF/4):
        Cond2[2][4*i+1]=-c[i][1]
        Cond2[2][4*i+2]=c[i][0]

    # distortional modes

    Vd=linalg.solve(K,Trans*nullspace(concatenate([Cond1,Cond2,Vl.T],axis=0)*Trans))
    # sort distortional
    Vd=matrix(Vd)
    Sd,Ad=geneigsympos(array(Vd.T*K*Vd),array(Vd.T*G*Vd))
    Vd=Vd*Ad

    # global modes

    Vg=linalg.solve(K,Trans*nullspace(concatenate([Cond1,Vl.T,Vd.T],axis=0)*Trans))
    # sort global
    Vg=matrix(Vg)
    Sg,Ag=geneigsympos(array(Vg.T*K*Vg),array(Vg.T*G*Vg))
    Vg=Vg*Ag

    # select modal shape
    if Type=='L':
        V_type=Vl
    elif Type=='D':
        V_type=Vd
    elif Type=='G':
        V_type=Vg        
    
    V=V_type[:,mode_sel-1]
    # normalisation
    V=V/sqrt(V.T*K*V)
    # nodal force
    F=K*V
    return F

## match FE and FS nodes

def MN():
    global POS
    POS=zeros([len(Coor),2])
    for i in range(0,len(Coor)):
        x_match=[j for j,x in enumerate(c[:,0]) if x==Coor[i][0]]
        y_match=[j for j,y in enumerate(c[:,1]) if y==Coor[i][1]]
        POS[i,0]=[val for val in x_match if val in y_match][0]
        POS[i,1]=Coor[i][2]

## transform FS to FE nodal forces

def Trans():
    F_FE=zeros([len(POS),4])
    lon_coord=sort(list(set(POS[:,1])))
    mesh_lon_size=lon_coord[1]-lon_coord[0]
    for i in range(0,len(POS)):
        node=POS[i][0]
        Z=POS[i][1]
        U=F[4*node+0]
        V=F[4*node+1]
        W=F[4*node+2]
        Sita=F[4*node+3]
        # calculating nodal force by integrating force 
        # notations: 
        # Z11: left element left node
        # Z12: left element right node
        # Z21: right element left node
        # Z22: right element right node
        if Z==0:
            Z21=0
            Z22=mesh_lon_size
            # right element contribution
            IntU=(-cos(num_hw*pi/L_t*Z22)+cos(num_hw*pi/L_t*Z21)-num_hw*pi/L_t*(Z22-Z21)*sin(num_hw*pi/L_t*Z21))/(num_hw*pi/L_t)**2/(Z22-Z21)**2
            Int=(sin(num_hw*pi/L_t*Z21)-sin(num_hw*pi/L_t*Z22)+num_hw*pi/L_t*(Z22-Z21)*cos(num_hw*pi/L_t*Z21))/(num_hw*pi/L_t)**2/(Z22-Z21)**2
        elif Z==L_t:
            Z11=L_t-mesh_lon_size
            Z12=L_t
            # left element contribution
            IntU=(cos(num_hw*pi/L_t*Z12)-cos(num_hw*pi/L_t*Z11)+num_hw*pi/L_t*(Z12-Z11)*sin(num_hw*pi/L_t*Z12))/(num_hw*pi/L_t)**2/(Z12-Z11)**2
            Int=(-sin(num_hw*pi/L_t*Z11)+sin(num_hw*pi/L_t*Z12)-num_hw*pi/L_t*(Z12-Z11)*cos(num_hw*pi/L_t*Z12))/(num_hw*pi/L_t)**2/(Z12-Z11)**2
        else:
            Z11=Z-mesh_lon_size 
            Z12=Z
            Z21=Z
            Z22=Z+mesh_lon_size
            # left element contribution
            IntU1=(cos(num_hw*pi/L_t*Z12)-cos(num_hw*pi/L_t*Z11)+num_hw*pi/L_t*(Z12-Z11)*sin(num_hw*pi/L_t*Z12))/(num_hw*pi/L_t)**2/(Z12-Z11)**2
            Int1=(-sin(num_hw*pi/L_t*Z11)+sin(num_hw*pi/L_t*Z12)-num_hw*pi/L_t*(Z12-Z11)*cos(num_hw*pi/L_t*Z12))/(num_hw*pi/L_t)**2/(Z12-Z11)**2
            # right element contribution
            IntU2=(-cos(num_hw*pi/L_t*Z22)+cos(num_hw*pi/L_t*Z21)-num_hw*pi/L_t*(Z22-Z21)*sin(num_hw*pi/L_t*Z21))/(num_hw*pi/L_t)**2/(Z22-Z21)**2
            Int2=(sin(num_hw*pi/L_t*Z21)-sin(num_hw*pi/L_t*Z22)+num_hw*pi/L_t*(Z22-Z21)*cos(num_hw*pi/L_t*Z21))/(num_hw*pi/L_t)**2/(Z22-Z21)**2
            # sum
            IntU=IntU1+IntU2
            Int=Int1+Int2
        #
        F_FE[i][0]=U*IntU;
        F_FE[i][1]=V*Int;
        F_FE[i][2]=W*Int;
        F_FE[i][3]=Sita*Int;
    #
    return F_FE

## write FE nodal force

def WNF():
    trans_dof=[3,1,2,6]
    load_text=''
    for i in range(0,len(Coor)):
        for j in range(0,4):
            mag=F_FE[i][j]
            dof=trans_dof[j]
            load_text+="""Assembly."Column Instance"."""+str(i+1)+','+str(dof)+','+str(mag)+'\n'
    return load_text

## create model in abaqus part 2

def Model_2():
    # Load 

    myModel.keywordBlock.synchVersions(storeNodesAndElements=False)
    myModel.keywordBlock.insert(32,"""*Cload\n"""+load_text)
    myModel.keywordBlock.insert(37,"""*NODE PRINT\nU""")

    # Job 

    import job

    mdb.Job(name='mode', model=new_name)
    mdb.jobs['mode'].submit()
    mdb.jobs['mode'].waitForCompletion()

## output FE nodal forces

def output_NF():
    if os.path.isdir('results') == False:
        os.mkdir('results')

    with open('results/nodal forces '+new_name+'.txt','w') as f:
        f.write('X\tY\tZ\tRX\tRY\tRZ\n')
        for i in range(0,len(F_FE)):
            f.write(str(F_FE[i][1])+'\t'+str(F_FE[i][2])+'\t'+str(F_FE[i][0])+'\t0\t0\t'+str(F_FE[i][3])+'\n')

## output FE nodal displacements

def output_ND():
    with open('mode.dat') as f:
        flag=0
        for i, line in enumerate(f, 0):
            if line.find("N O D E   O U T P U T")!=-1:
                start_line=i+10
                flag=1
            elif flag==1 and line.find("MAXIMUM")!=-1:
                end_line=i-2
                break
                
    with open('mode.dat') as f:
        s=f.readlines()

    # eliminate overall translation along Z-axis
    minU=0
    maxU=0
    for i in range(start_line,end_line+1):
        line_content=s[i].split()
        if float(line_content[3])>maxU:
            maxU=float(line_content[3])
        if float(line_content[3])<minU:
            minU=float(line_content[3])        
    averU=(minU+maxU)/2        

    if os.path.isdir('results') == False:
        os.mkdir('results')
    
    with open('results/nodal displacements '+new_name+'.txt','w') as f:
        f.write('X\tY\tZ\tRX\tRY\tRZ\n')
        for i in range(start_line,end_line+1):
            line_content=s[i].split()
            f.write(line_content[1]+'\t'+line_content[2]+'\t'+str(float(line_content[3])-averU)+'\t'+line_content[4]+'\t'+line_content[5]+'\t'+line_content[6]+'\n')
    
#################### Main #####################

Model_1()
disc()
F=MD()
MN()
F_FE=Trans()
load_text=WNF()
Model_2()
output_NF()
output_ND()

[bookmark: _Toc496973438]APPENDIX B. Imperfection modal magnitudes
The imperfection modal magnitudes of section T13014, T15414 (L=1800, L=2500), T7914 (L=1800, L=2500), S11012 are shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6 respectively. 
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[bookmark: _Ref485653346]Fig. 1 Imperfection modal magnitudes of section T13014[image: ]
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[bookmark: _Ref485653347][bookmark: _Ref486522654]Fig. 2 Imperfection modal magnitudes of section T15414 (L=1800)
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[bookmark: _Ref485653349][bookmark: _Ref486522656]Fig. 3 Imperfection modal magnitudes of section T15414 (L=2500)
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[bookmark: _Ref485653352][bookmark: _Ref486522657]Fig. 4 Imperfection modal magnitudes of section T7914 (L=1800)
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[bookmark: _Ref485653353][bookmark: _Ref486522659]Fig. 5 Imperfection modal magnitudes of section T7914 (L=2500)
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[bookmark: _Ref485653354][bookmark: _Ref486522660]Fig. 6 Imperfection modal magnitudes of section S11012


[bookmark: _Toc496973439]APPENDIX C. Total potential energy expression for the initial post-buckling analysis
The expression of the total potential energy in Eq. (8.37) is expanded as shown in Table 1, where only terms associated with second- or fourth-order s are considered, including λQiQj, λRnRp, QiQj, RnRp, RnQiQj and QiQjQkQl , as shown in Eq. (8.66).
Table 1 Expansion of the expression of the total potential energy
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Note:  
(1) Terms involved in both local and distortional buckling analysis are coloured in red, while terms involved only in distortional buckling analysis are coloured in black.
(2) The underlined terms are associated with ∂u0/∂y, and are thus only involved in cases other than ‘uniform compression’ (compression applied by ‘load through centroid’ or bending).
(3) The crossed out terms are associated with ∂v0/∂x, and thus vanish since ∂v0/∂x = 0.
We define

	 



 
The terms involved in the ‘uniform compression’ case (neither underlined nor crossed out terms) are calculated and tabulated in Table 2 and Table 3.
[bookmark: _Ref420674850]Table 2 Multipliers for ‘uniform compression’ terms
	
	
	Coef. 1
	Coef. 2
	

	Int. x
	Int. y

	I
	11
	1 
	1
	

	
 
	


	
	12
	1
	1
	
 
	

	


	
	21
	1
	1/4
	

	

	


	
	31
	1
	1/4
	

	

	


	
	41
	1
	1
	-1
	

	


	
	42
	1
	1
	-1
	

	


	
	43
	1
	1
	

	

	


	
	44
	1
	2
	

	

	


	
	51
	1
	1
	-1
	

	


	
	52
	1
	1
	-1
	

	


	
	53
	1
	1
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	1
	1/2
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	1
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	1
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	1
	1
	

	

	


	
	31
	1
	1
	ν
	

	


	
	32
	1
	1
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	33
	1
	1
	

	

	


	
	34
	1
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	III
	11
	1
	2ν
	

	

	


	
	12
	1
	2ν
	

	

	


	
	21
	1
	2ν(1/2)
	-1
	

	


	
	22
	1
	2ν(1/2)
	-1
	

	


	
	23
	1
	2ν(1/2)
	

	

	


	
	24
	1
	2ν
	

	

	


	
	31
	1
	2ν(1/2)
	ν
	

	


	
	32
	1
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	t2/12
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	t2/12
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	42
	t2/12
	2(1- ν)
	

	

	




We define 

	 










[bookmark: _Ref457489703]Table 3 Results for ‘uniform compression’ terms
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Table 1 Buckling modal shapes
	bw, bf, tf
(mm)
	tw
(mm)
	L1
	L2

	bw = 100,
bf  = 110,
tf  = 1
	1
	[image: ]
	[image: ]

	
	1.2
	[image: ]
	[image: ]

	
	1.4
	[image: ]
	[image: ]

	
	1.6
	[image: ]
	[image: ]

	
	1.8
	[image: ]
	[image: ]

	
	2
	[image: ]
	[image: ]

	bw = 100,
bf  = 120,
tf  = 1
	1
	[image: ]
	[image: ]

	
	1.2
	[image: ]
	[image: ]

	
	1.4
	[image: ]
	[image: ]

	
	1.6
	[image: ]
	[image: ]

	
	1.8
	[image: ]
	[image: ]

	
	2.0
	[image: ]
	[image: ]

	bw = 100,
bf  = 130,
tf  = 1
	1
	[image: ]
	[image: ]

	
	1.2
	[image: ]
	[image: ]

	
	1.4
	[image: ]
	[image: ]

	
	1.6
	[image: ]
	[image: ]

	
	1.8
	[image: ]
	[image: ]

	
	2
	[image: ]
	[image: ]

	bw = 100,
bf  = 140,
tf  = 1
	1
	[image: ]
	[image: ]

	
	1.2
	[image: ]
	[image: ]

	
	1.4
	[image: ]
	[image: ]

	
	1.6
	[image: ]
	[image: ]

	
	1.8
	[image: ]
	[image: ]

	
	2
	[image: ]
	[image: ]

	bw = 100,
bf  = 150,
tf  = 1
	1
	[image: ]
	[image: ]

	
	1.2
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	1.4
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	1.6
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	1.8
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	[image: ]

	
	2
	[image: ]
	[image: ]



Table 2 Buckling modal shapes
	section
	D
	L1
	L2

	CH1-7
	[image: ]
	[image: ]
	[image: ]

	CH2-8
	[image: ]
	[image: ]
	None

	CH2-10
	[image: ]
	[image: ]
	None

	CH2-12
	[image: ]
	[image: ]
	None

	CH2-14
	[image: ]
	[image: ]
	None

	H5-2
	[image: ]
	[image: ]
	[image: ]

	H5-3
	[image: ]
	[image: ]
	[image: ]
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	[image: ]
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	[image: ]
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	[image: ]
	[image: ]
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	[image: ]
	[image: ]
	[image: ]
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	[image: ]
	[image: ]
	[image: ]
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	[image: ]
	[image: ]
	[image: ]

	Z8-3
	[image: ]
	[image: ]
	[image: ]
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	[image: ]
	[image: ]
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APPENDIX E. Verification of the multi-linear model
Table 1 Verification of the multi-linear model
	bw = 100 mm, bf  = 110 mm, tf  = 1 mm

	tw = 1 mm, L = 316 mm
	tw = 1 mm, L = 300 mm

	
	

	tw = 1.4 mm, L = 276 mm
	tw = 1.6 mm, L = 254 mm

	
	

	tw = 1.8 mm, L = 241 mm
	tw = 2 mm, L = 233 mm

	
	

	bw = 100 mm, bf  = 120 mm, tf  = 1 mm

	tw = 1 mm, L = 333
	tw = 1.2 mm, L = 314 mm

	
	

	tw = 1.4 mm, L = 292 mm
	tw = 1.6 mm, L = 273 mm

	
	

	tw = 1.8 mm, L = 262 mm
	tw = 2 mm, L = 254 mm

	
	

	bw = 100 mm, bf  = 130 mm, tf  = 1 mm

	tw = 1 mm, L = 351 mm
	tw = 1.2 mm, L = 331 mm

	
	

	tw = 1.4 mm, L = 309 mm
	tw = 1.6 mm, L = 293 mm

	
	

	tw = 1.8 mm, L = 282 mm
	tw = 2 mm, L = 275 mm

	
	

	bw = 100 mm, bf  = 140 mm, tf  = 1 mm

	tw = 1 mm, L = 370 mm
	tw = 1.2 mm, L = 349 mm

	
	

	tw = 1.4 mm, L = 329 mm
	tw = 1.6 mm, L = 313 mm

	
	

	tw = 1.8 mm, L = 303 mm
	tw = 2 mm, L = 296 mm

	
	

	bw = 100 mm, bf  = 150 mm, tf  = 1 mm

	tw = 1 mm, L = 391 mm
	tw = 1.2 mm, L = 368 mm

	
	

	tw = 1.4 mm, L = 348 mm
	tw = 1.6 mm, L = 333 mm

	
	

	tw = 1.8 mm, L = 323 mm
	tw = 2, L = 316 mm

	
	

	          Multi-linear model            ABAQUS analysis



Table 2 Verification of the multi-linear model
	CH1-7-400
	CH1-7-600

	
	

	CH1-7-800
	CH2-8-1000

	
	

	CH2-10-1000 
	CH2-12-1000 

	
	

	CH2-14-1000 
	H5-2

	
	

	H5-3
	H8-1 (imp = 0.5t)

	
	

	H8-2 (imp = t)
	H8-3 (imp = 0.5t)

	
	

	H11-1
	H11-2 (imp = 0.5t)

	
	

	H11-3
	H12-1

	
	

	H12-2
	H12-3

	
	

	H13-1
	H13-2

	
	

	H13-3
	Z2-2

	
	

	Z2-3
	Z5-1

	
	

	Z5-2
	Z5-3

	
	

	Z8-1
	Z8-2 (imp = 0.5t)

	
	

	Z8-3
	Z11-1

	
	

	Z11-2
	Z11-3

	
	

	Z12-1
	Z12-2

	
	

	Z12-3
	Z13-1

	
	

	Z13-2
	Z13-3

	
	

	R11-1 (imp = 0.5t)
	R11-2 (imp = 0.5t)

	
	

	R11-3
	R13-1

	
	

	R13-2 (imp = t)
	R13-3

	
	

	          Multi-linear model            ABAQUS analysis
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0	1.3712718546451835E-4	2.7425437092903671E-4	4.1138155639355503E-4	5.4850874185807341E-4	6.8563592732259174E-4	8.2276311278711007E-4	9.598902982516285E-4	1.0970174837161468E-3	1.234144669180665E-3	1.3712718546451835E-3	0	28.830454545454543	56.981363636363632	80.642727272727285	96.415909090909096	109.05977272727273	120.55022727272727	131.38613636363635	141.745	151.71136363636364	161.33409090909092	0	4.3523069242724574E-4	7.7874238095238099E-4	1.401005684742578E-3	0	91.398445409721603	126.02442361305523	160	0	1.4981273408239701E-4	2.9962546816479402E-4	4.4943820224719097E-4	5.9925093632958804E-4	7.4906367041198505E-4	8.9887640449438195E-4	1.0486891385767792E-3	1.1985018726591761E-3	1.348314606741573E-3	1.4981273408239701E-3	1.647940074906367E-3	1.7977528089887639E-3	1.947565543071161E-3	2.0973782771535584E-3	2.2471910112359548E-3	2.3970037453183522E-3	2.5468164794007491E-3	2.696629213483146E-3	2.8464419475655433E-3	2.9962546816479402E-3	3.1460674157303371E-3	3.295880149812734E-3	3.4456928838951313E-3	0	31.591666666666665	62.733333333333334	91.085624999999993	112.183125	127.75833333333334	140.90875	152.97395833333334	164.40687500000001	175.38374999999999	185.98916666666668	196.27041666666668	206.25916666666666	215.97708333333333	225.44374999999999	234.67291666666668	243.67708333333334	252.46666666666667	261.05416666666667	269.45	277.66041666666666	285.69375000000002	293.56041666666664	301.26666666666665	0	5.0354887618932382E-4	9.5829047619047614E-4	2.7193680550276073E-3	0	105.745263999758	166.86253503991287	300	0	1.6877637130801687E-4	3.3755274261603374E-4	5.0632911392405066E-4	6.7510548523206748E-4	8.438818565400844E-4	1.0126582278481013E-3	1.1814345991561183E-3	1.350210970464135E-3	1.5189873417721519E-3	1.6877637130801688E-3	1.8565400843881857E-3	2.0253164556962027E-3	2.1940928270042194E-3	2.3628691983122365E-3	2.5316455696202532E-3	2.7004219409282699E-3	2.8691983122362871E-3	3.0379746835443038E-3	0	35.647884615384619	70.809615384615384	103.40211538461539	130.9501923076923	153.03019230769229	169.94423076923076	184.15019230769232	197.12884615384615	209.41923076923078	221.22884615384615	232.65769230769232	243.75961538461539	254.5653846153846	265.10192307692307	275.38653846153846	285.43461538461537	295.25769230769231	304.86538461538464	0	5.5040687327995717E-4	1.1614919047619047E-3	2.1378890714596039E-3	0	115.58544338879101	211.83133584719775	300	0	1.8099547511312217E-4	3.6199095022624434E-4	5.4298642533936645E-4	7.2398190045248867E-4	9.049773755656109E-4	1.0859728506787329E-3	1.2669683257918553E-3	1.4479638009049773E-3	1.6289592760180996E-3	1.8099547511312218E-3	1.990950226244344E-3	2.1719457013574658E-3	2.3529411764705885E-3	2.5339366515837107E-3	2.7149321266968325E-3	2.8959276018099547E-3	3.0769230769230774E-3	3.2579185520361991E-3	3.4389140271493214E-3	3.6199095022624436E-3	0	38.276428571428568	76.063928571428576	111.42214285714286	143.13285714285712	172.10500000000002	196.82678571428571	216.08035714285714	231.82142857142858	245.92857142857142	259.18928571428569	271.90892857142859	284.22678571428571	296.21428571428572	307.91607142857146	319.35714285714283	330.56071428571431	341.53928571428571	352.30892857142857	362.87857142857143	373.25714285714287	0	5.7654427772615242E-4	1.3898071428571433E-3	2.6558272291459786E-3	0	121.074298322492	257.70245966449846	380	0	1.8779342723004695E-4	3.755868544600939E-4	5.6338028169014088E-4	7.511737089201878E-4	9.3896713615023483E-4	1.1267605633802818E-3	1.3145539906103288E-3	1.5023474178403756E-3	1.6901408450704224E-3	1.8779342723004697E-3	2.0657276995305163E-3	2.2535211267605635E-3	2.4413145539906103E-3	2.6291079812206576E-3	2.8169014084507039E-3	3.0046948356807512E-3	3.1924882629107984E-3	3.3802816901408448E-3	0	39.72	78.899833333333333	115.69566666666665	149.50133333333335	181.77333333333334	212.44666666666666	239.965	262.07833333333332	279.44499999999999	294.37333333333333	308.10833333333335	321.14666666666665	333.70499999999998	345.88499999999999	357.74666666666667	369.32499999999999	380.64666666666665	391.72833333333335	0	5.9197021551149996E-4	1.6455685714285714E-3	2.6005495020634782E-3	0	124.31374525741499	305.74338214633468	400	ABAQUS	0	1.3340003335000832E-4	2.6680006670001664E-4	4.0020010005002498E-4	5.3360013340003328E-4	6.6700016675004168E-4	8.0040020010004997E-4	9.3380023345005837E-4	1.0672002668000666E-3	1.200600300150075E-3	1.3340003335000834E-3	1.4674003668500915E-3	1.6008004002000999E-3	0	27.872	54.019750000000002	72.554749999999999	85.648250000000004	97.132750000000001	107.82350000000001	117.9605	127.64875000000001	136.94925000000001	145.90299999999999	154.54049999999998	162.887	Model 1	0	3.6152405783626096E-4	6.3004095238095243E-4	2.0833416616817943E-3	0	75.920052145614804	98.961370209364631	160	Model 2	0	3.6152405783626096E-4	6.3004095238095243E-4	1.5744418390547501E-3	0	75.920052145614804	98.961370209364631	180	ΔL/L
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0	7.6775431861804221E-5	1.5355086372360844E-4	2.3032629558541266E-4	3.0710172744721688E-4	3.8387715930902113E-4	4.6065259117082533E-4	5.3742802303262957E-4	6.1420345489443377E-4	6.9097888675623796E-4	7.6775431861804226E-4	8.4452975047984646E-4	9.2130518234165065E-4	9.9808061420345495E-4	1.0748560460652591E-3	1.1516314779270633E-3	1.2284069097888675E-3	1.3051823416506719E-3	1.3819577735124759E-3	1.4587332053742803E-3	1.5355086372360845E-3	1.6122840690978887E-3	0	16.101542857142856	30.913999999999998	40.724857142857147	48.748285714285721	56.276285714285713	63.528285714285715	70.580285714285708	77.470571428571432	84.221428571428575	90.848857142857142	97.363428571428557	103.774	110.08657142857143	116.30657142857143	122.43771428571428	128.48314285714287	134.44571428571427	140.32714285714286	146.12885714285713	151.85028571428572	157.49057142857143	0	1.7285714285714284E-4	3.552380952380952E-4	2.1778061224489794E-3	0	36.299999999999997	55.832999999999998	163	0	8.0971659919028339E-5	1.6194331983805668E-4	2.42914979757085E-4	3.2388663967611336E-4	4.0485829959514174E-4	4.8582995951417001E-4	5.6680161943319844E-4	6.4777327935222671E-4	7.2874493927125499E-4	8.0971659919028347E-4	8.9068825910931175E-4	9.7165991902834002E-4	1.0526315789473684E-3	1.1336032388663969E-3	1.2145748987854252E-3	1.2955465587044534E-3	1.3765182186234819E-3	1.45748987854251E-3	1.5384615384615385E-3	0	17.037615384615385	33.551794871794876	46.064871794871792	55.254358974358979	63.502307692307696	71.352051282051278	78.962564102564102	86.396923076923088	93.687179487179492	100.85282051282051	107.90666666666667	114.85871794871795	121.71589743589743	128.48435897435897	135.16897435897437	141.77384615384616	148.30179487179487	154.75564102564101	161.13743589743589	0	2.1000000000000001E-4	4.3904761904761907E-4	1.6788375350140054E-3	0	44.1	72.478999999999999	161	0	1.0471204188481675E-4	2.094240837696335E-4	3.1413612565445024E-4	4.18848167539267E-4	5.2356020942408382E-4	6.2827225130890048E-4	7.3298429319371735E-4	8.3769633507853401E-4	9.4240837696335077E-4	1.0471204188481676E-3	1.1518324607329843E-3	1.256544502617801E-3	1.3612565445026178E-3	1.4659685863874347E-3	0	22.061488372093024	43.153953488372096	60.040465116279073	72.749534883720926	83.275813953488367	93.036046511627902	102.45534883720931	111.66604651162791	120.71953488372094	129.64069767441862	138.44348837209301	147.1379069767442	155.73093023255814	164.22790697674418	0	2.4238095238095236E-4	5.3428571428571436E-4	1.2499242424242425E-3	0	50.9	96.875	163	0	1.1940298507462687E-4	2.3880597014925374E-4	3.5820895522388057E-4	4.7761194029850748E-4	5.9701492537313433E-4	7.1641791044776114E-4	8.3582089552238815E-4	9.5522388059701496E-4	1.0746268656716418E-3	1.1940298507462687E-3	1.3134328358208956E-3	1.4328358208955223E-3	0	25.166382978723405	49.10829787234043	70.024042553191492	88.067021276595739	102.0195744680851	113.60404255319149	124.35659574468085	134.74446808510638	144.91319148936171	154.92063829787233	164.79468085106382	174.55085106382978	0	2.5761904761904765E-4	6.4000000000000005E-4	1.1653061224489798E-3	0	54.1	119.946	174	0	1.2539184952978057E-4	2.5078369905956113E-4	3.7617554858934167E-4	5.0156739811912227E-4	6.2695924764890286E-4	7.5235109717868335E-4	8.7774294670846405E-4	1.0031347962382445E-3	1.1285266457680251E-3	1.2539184952978057E-3	1.3793103448275863E-3	1.5047021943573667E-3	0	26.58235294117647	52.910980392156858	75.281764705882352	96.614705882352936	115.69450980392156	130.85960784313724	143.1841176470588	154.46235294117648	165.32333333333332	175.94921568627453	186.40941176470588	196.7372549019608	0	2.6523809523809524E-4	7.5619047619047627E-4	1.3056761904761906E-3	0	55.7	142.304	200	0	1.2861736334405144E-4	2.5723472668810288E-4	3.8585209003215432E-4	5.1446945337620576E-4	6.4308681672025725E-4	7.7170418006430863E-4	9.0032154340836024E-4	1.0289389067524115E-3	1.1575562700964629E-3	1.2861736334405145E-3	1.4147909967845659E-3	1.5434083601286173E-3	1.6720257234726689E-3	1.8006430868167205E-3	1.9292604501607716E-3	2.057877813504823E-3	2.1864951768488746E-3	2.3151125401929258E-3	0	27.123818181818184	53.052181818181822	76.829454545454539	99.807272727272732	121.99054545454545	141.67363636363638	157.30654545454547	169.71327272727274	173.87090909090909	185.81636363636363	197.46363636363637	208.88727272727272	220.13454545454545	231.24181818181819	242.23090909090908	253.11636363636364	263.9127272727273	274.62727272727273	0	2.6952380952380951E-4	8.8380952380952391E-4	1.9459010270774977E-3	0	56.6	166.25	280	0	1.3029315960912051E-4	2.6058631921824102E-4	3.9087947882736156E-4	5.2117263843648204E-4	6.5146579804560263E-4	7.8175895765472312E-4	9.1205211726384371E-4	1.0423452768729641E-3	1.1726384364820846E-3	1.3029315960912053E-3	1.4332247557003258E-3	1.5635179153094462E-3	1.6938110749185669E-3	1.8241042345276874E-3	0	27.487118644067795	53.84271186440678	78.223728813559319	101.96576271186441	125.31322033898306	148.06084745762712	167.24813559322033	181.9864406779661	195.14745762711865	207.35084745762711	211.37796610169491	223.32881355932204	235.05084745762713	246.59491525423729	0	2.7238095238095239E-4	1.0233333333333333E-3	1.5325E-3	0	57.2	194.399	250	0	1.3114754098360657E-4	2.6229508196721314E-4	3.9344262295081965E-4	5.2459016393442627E-4	6.5573770491803279E-4	7.868852459016393E-4	9.1803278688524603E-4	1.0491803278688525E-3	1.1803278688524591E-3	1.3114754098360656E-3	1.4426229508196721E-3	1.5737704918032786E-3	1.7049180327868853E-3	0	25.503968253968253	50.544126984126983	75.218888888888898	99.590952380952388	123.68047619047618	147.44603174603174	170.68730158730159	191.54285714285714	207.17619047619047	221.02857142857144	233.96031746031747	246.37619047619049	258.4873015873016	0	2.7428571428571427E-4	1.1742857142857143E-3	1.492451499118166E-3	0	57.6	223.92	260	ABAQUS	0	1.1730205278592375E-4	2.3460410557184751E-4	3.5190615835777126E-4	4.6920821114369501E-4	5.8651026392961877E-4	6.7448680351906158E-4	7.624633431085044E-4	8.504398826979471E-4	9.6774193548387097E-4	1.0850439882697947E-3	1.2023460410557185E-3	1.3196480938416422E-3	1.436950146627566E-3	1.5542521994134897E-3	1.6715542521994133E-3	1.7888563049853372E-3	1.906158357771261E-3	2.0234604105571845E-3	2.1407624633431083E-3	2.2580645161290325E-3	0	24.531914893617024	43.811112811878161	58.994030307668766	72.859023419562234	80.977804990050529	86.533598652992509	91.832542476656968	96.883514465023737	103.29159651002603	109.38588703505282	115.21200061227614	120.80453084341039	126.18827491198532	131.38343793050666	136.40655135466096	141.27353436399818	145.99755089545386	150.59054033369051	155.06291137302927	159.42262360324509	Model	0	1.7904761904761904E-4	3.8904761904761905E-4	7.1285714285714279E-4	2.142857142857143E-3	0	37.6	67.147000000000006	99.106999999999999	183.19100000000003	ΔL/L
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Table 6.1

				tf		tw				CSl1		CSl2				Kl1		Kl2		Kmix		fy		fdsm2		Kav dsm				fu		fdsm2/fu				Kav exact		g(x)

		bw=100		1		1				75.9		132.3				0.41		0.48		0.41		350		130.85		0.41				138.6		0.94				0.35		0.52

		bf=100		1		1.2				91.4		163.5				0.48		0.54		0.48		350		152.89		0.48				149.4		1.02				0.36		0.53

		pure local		1		1.4				105.7		201.2				0.64		0.57		0.36		350		163.48		0.48				159.8		1.02				0.40		0.53

		box-section		1		1.6				115.6		243.9				0.75		0.57		0.43		350		193.40		0.65				173.7		1.11				0.56		0.49

				1		1.8				121.1		291.9				0.80		0.57		0.46		350		217.23		0.78				191.6		1.13				0.71		0.42

				1		2				124.3		345.6				0.82		0.57		0.47		350		240.90		0.82				213.8		1.13				0.78		0.33

				1		2.2				126.4		405.4				0.83		0.57		0.47		350		258.62		0.83				234.1		1.10				0.82		0.25

				1		2.4				127.8		471.5				0.84		0.56		0.48		350		274.49		0.84				253.1		1.08				0.84		0.18																y=ax+b

				1		2.6				128.8		544.0				0.85		0.56		0.48		350		289.97		0.85				268.8		1.08				0.85		0.14										0.1		0.75				a		b

				1		2.8				129.5		622.8				0.86		0.55		0.48		350		306.52		0.86				279.8		1.10				0.86		0.11										0.8		0.26				-0.7		0.82

				1		3				130.0		708.0				0.87		0.55		0.48		350		327.87		0.87				288.4		1.14				0.87		0.08										0.85		0.08				-3.6		3.14

				1		4				131.4		838.6				0.90		0.90		0.81		350		302.53		0.90				309.5		0.98				0.90		0.04										0.95		0				-0.8		0.76

				1		5				131.8		839.8				0.91		0.92		0.84		350		311.53		0.91				316.2		0.99				0.91		0.03

		bw=100		1		1				68.0		122.1				0.45		0.54		0.45		350		128.96		0.45				134.3		0.96				0.35		0.51

		bf=110		1		1.2				79.5		155.3				0.57		0.61		0.57		350		156.47		0.57				144.3		1.08				0.37		0.51

		pure local		1		1.4				89.3		193.6				0.68		0.61		0.42		350		161.51		0.55				155.3		1.04				0.43		0.49

		box-section		1		1.6				96.0		236.5				0.75		0.61		0.46		350		185.06		0.67				168.6		1.10				0.55		0.45

				1		1.8				100.1		284.8				0.79		0.60		0.47		350		206.57		0.78				186.1		1.11				0.71		0.39

				1		2				102.7		338.9				0.81		0.59		0.48		350		219.90		0.81				205.5		1.07				0.76		0.32

				1		2.2				104.4		399.1				0.82		0.59		0.48		350		237.45		0.82				224.6		1.06				0.82		0.25

				1		2.4				105.6		465.5				0.83		0.58		0.48		350		253.08		0.83				243.2		1.04				0.83		0.19

				1		2.6				106.4		538.2				0.84		0.57		0.48		350		267.83		0.84				259.3		1.03				0.84		0.15

				1		2.8				107.0		617.1				0.85		0.56		0.48		350		282.52		0.85				271.2		1.04				0.85		0.12

				1		3				107.4		702.2				0.86		0.55		0.48		350		298.00		0.86				279.4		1.07				0.86		0.10

				1		4				108.5		693.0				0.89		0.89		0.79		350		295.10		0.89				303.4		0.97				0.89		0.05

				1		5				108.9		694.0				0.91		0.91		0.82		350		304.73		0.91				311.3		0.98				0.91		0.04

		bw=100		1		1				60.2		116.1				0.50		0.63		0.50		350		129.88		0.50				129.8		1.00				0.35		0.50

		bf=120		1		1.2				68.8		150.1				0.61		0.65		0.40		350		133.71		0.47				140.0		0.95				0.38		0.49

		pure local		1		1.4				76.0		188.4				0.70		0.64		0.45		350		156.39		0.58				151.1		1.03				0.44		0.47

		box-section		1		1.6				80.9		231.3				0.75		0.63		0.47		350		176.97		0.68				165.0		1.07				0.54		0.42

				1		1.8				84.2		279.7				0.78		0.62		0.48		350		196.99		0.78				179.6		1.10				0.67		0.38

				1		2				86.3		333.8				0.80		0.61		0.48		350		202.74		0.80				197.7		1.03				0.75		0.31

				1		2.2				87.7		394.0				0.81		0.60		0.48		350		217.35		0.81				250.1		0.87				0.81		0.16

				1		2.4				88.7		460.4				0.82		0.59		0.48		350		232.76		0.82				235.7		0.99				0.82		0.20

				1		2.6				89.4		532.8				0.83		0.58		0.48		350		247.25		0.83				252.0		0.98				0.83		0.16

				1		2.8				89.9		611.4				0.84		0.57		0.48		350		261.29		0.84				264.4		0.99				0.84		0.13

				1		3				90.2		580.0				0.85		0.85		0.73		350		275.34		0.85				272.7		1.01				0.85		0.11

				1		4				91.2		582.3				0.88		0.88		0.78		350		287.75		0.88				297.8		0.97				0.88		0.06

				1		5				91.5		583.2				0.90		0.90		0.81		350		297.99		0.90				306.7		0.97				0.90		0.04

		bw=100		1		1				53.1		112.3				0.55		0.68		0.55		350		129.92		0.55				125.6		1.03				0.35		0.49

		bf=130		1		1.2				59.8		146.4				0.63		0.68		0.43		350		130.96		0.51				136.3		0.96				0.41		0.47

		pure local		1		1.4				65.2		184.5				0.70		0.66		0.46		350		150.45		0.60				147.2		1.02				0.46		0.44										1370		73		18.7671232877

		box-section		1		1.6				69.2		227.3				0.74		0.64		0.48		350		169.21		0.69				159.9		1.06				0.56		0.41

				1		1.8				71.8		275.4				0.77		0.63		0.48		350		187.22		0.77				176.2		1.06				0.65		0.36

				1		2				73.5		329.4				0.79		0.62		0.48		350		192.53		0.79				192.3		1.00				0.72		0.31

				1		2.2				74.7		389.3				0.80		0.60		0.48		350		198.41		0.80				211.2		0.94				0.80		0.25

				1		2.4				75.5		455.1				0.81		0.59		0.48		350		213.67		0.81				257.2		0.83				0.81		0.13

				1		2.6				76.1		526.8				0.82		0.57		0.47		350		227.90		0.82				245.5		0.93				0.82		0.16

				1		2.8				76.5		493.3				0.83		0.84		0.70		350		241.59		0.83				258.0		0.94				0.83		0.13

				1		3				76.9		494.2				0.84		0.85		0.71		350		255.01		0.84				266.3		0.96				0.84		0.11

				1		4				77.7		496.2				0.87		0.88		0.76		350		350.00		0.87				292.2		1.20				0.87		0.06

				1		5				78.0		496.9				0.89		0.90		0.80		350		291.33		0.89				302.2		0.96				0.89		0.05

		bw=100		1		1				46.9		109.7				0.57		0.71		0.57		350		127.28		0.57				121.5		1.05				0.36		0.48

		bf=140		1		1.2				52.2		143.6				0.64		0.70		0.45		350		126.90		0.53				132.1		0.96				0.39		0.46

		pure local		1		1.4				56.6		181.3				0.70		0.67		0.47		350		144.55		0.61				143.5		1.01				0.45		0.43

		box-section		1		1.6				59.8		223.7				0.73		0.65		0.48		350		162.07		0.69				157.3		1.03				0.55		0.39

				1		1.8				61.9		271.5				0.76		0.63		0.48		350		177.86		0.76				170.8		1.04				0.65		0.35

				1		2				63.4		324.9				0.78		0.62		0.48		350		183.12		0.78				187.8		0.97				0.72		0.30

				1		2.2				64.4		384.1				0.79		0.60		0.47		350		187.21		0.79				206.2		0.91				0.79		0.25

				1		2.4				65.1		448.8				0.81		0.58		0.47		350		195.71		0.81				223.9		0.87				0.81		0.20

				1		2.6				65.6		424.4				0.82		0.82		0.67		350		209.69		0.82				239.8		0.87				0.82		0.16

				1		2.8				66.0		425.3				0.83		0.83		0.68		350		223.04		0.83				252.2		0.88				0.83		0.14

				1		3				66.3		426.1				0.83		0.84		0.70		350		236.12		0.83				260.4		0.91				0.83		0.12

				1		4				67.0		427.8				0.87		0.87		0.75		350		305.68		0.87				286.7		1.07				0.87		0.07

				1		5				67.2		428.4				0.89		0.89		0.79		350		284.78		0.89				297.5		0.96				0.89		0.05

		bw=100		1		1				41.5		76.2				0.58		0.73		0.58		350		123.13		0.58				117.7		1.05				0.35		0.47

		bf=150		1		1.2				45.9		141.2				0.65		0.71		0.46		350		122.56		0.55				128.4		0.95				0.40		0.44

		pure local		1		1.4				49.5		178.4				0.69		0.68		0.47		350		138.70		0.62				140.0		0.99				0.47		0.42

		box-section		1		1.6				52.2		220.3				0.73		0.66		0.48		350		155.20		0.69				154.0		1.01				0.53		0.37

				1		1.8				54.0		267.4				0.75		0.63		0.48		350		169.23		0.75				167.2		1.01				0.63		0.34

				1		2				55.2		319.9				0.77		0.61		0.47		350		174.43		0.77				184.0		0.95				0.67		0.29

				1		2.2				56.1		366.7				0.78		0.79		0.62		350		178.56		0.78				201.9		0.88				0.78		0.24

				1		2.4				56.7		368.5				0.80		0.80		0.64		350		181.96		0.80				219.3		0.83				0.80		0.20

				1		2.6				57.1		369.7				0.81		0.81		0.66		350		192.66		0.81				234.6		0.82				0.81		0.17

				1		2.8				57.5		370.5				0.82		0.82		0.67		350		205.73		0.82				246.7		0.83				0.82		0.14

				1		3				57.7		371.1				0.83		0.83		0.68		350		218.41		0.83				254.9		0.86				0.83		0.12

				1		4				58.3		372.7				0.86		0.86		0.74		350		276.97		0.86				281.3		0.98				0.86		0.08

				1		5				58.6		373.2				0.88		0.88		0.78		350		278.32		0.88				293.0		0.95				0.88		0.06

		bw=150		1		1				36.3		74.6				0.51						350								138.9						0.41		0.37

		bf=100		1		1.2				44.1		92.2				0.59						350								151.0						0.43		0.36

		pure local		1		1.4				50.9		112.2				0.75						350								160.1						0.45		0.35

		I-section		1		1.6				54.1		134.4				0.82						350								167.6						0.50		0.34

				1		1.8				55.7		158.8				0.84						350								175.9						0.58		0.32

				1		2				56.6		185.6				0.85						350								185.5						0.61		0.29

				1		2.2				57.2		214.9				0.87						350								190.5						0.73		0.28

				1		2.4				57.6		246.6				0.88						350								197.3						0.82		0.26

				1		2.6				57.9						0.88						350								207.5						0.85		0.23

				1		2.8				58.1						0.89						350								224.3						0.89		0.19

				1		3				58.2						0.90						350								240.6						0.90		0.15

				1		4				58.6						0.92						350								298.3						0.92		0.05

				1		5				58.7						0.93						350								314.9						0.93		0.03

		CH1-5-800								43.2		43.2										590		0.00		0.00				147.8						0.32		0.50

		CH1-6-800								57.3		57.3										590		0.00		0.00				147.3						0.31		0.56

		CH1-7-400								85.1		85.1										590		0.00		0.00				160.0						0.26		0.62

		CH1-7-600								78.4		78.4										590		0.00		0.00				155.7						0.31		0.61

		CH1-7-800								72.9		72.9										590		0.00		0.00				149.5						0.29		0.61

		CH2-7-800								84.8		84.8										590		0.00		0.00				198.5						0.55		0.51

		CH2-7-1000								73.2		73.2										590		0.00		0.00				193.2						0.53		0.49

		CH2-8-1000								88.6		88.6										590		0.00		0.00				192.1						0.55		0.53

		CH2-10-1000								123.4		123.4										590		0.00		0.00				202.2						0.40		0.60

		CH2-12-1000								148		148										590		0.00		0.00				206.2						0.47		0.66

		CH2-14-1000								150.5		150.5										590		0.00		0.00				214.4						0.42		0.64

		H5-1								113.2		113.2										250		0.00		0.00				133.0						0.45		0.55

										113.2		113.2										350		0.00		0.00				158.0						0.48		0.56

										113.2		113.2										550		0.00		0.00				198.0						0.42		0.57

										113.2		113.2										750		0.00		0.00				233.0						0.32		0.56

		H5-2								104.2		104.2										250		0.00		0.00				120.0						0.44		0.62

										104.2		104.2										350		0.00		0.00				143.0						0.39		0.61

										104.2		104.2										550		0.00		0.00				181.0						0.33		0.59

										104.2		104.2										750		0.00		0.00				213.0						0.28		0.58

		H5-3								116.4		116.4										250		0.00		0.00				147.0						0.70		0.44

										116.4		116.4										350		0.00		0.00				160.0						0.70		0.56

										116.4		116.4										550		0.00		0.00				219.0						0.53		0.51

										116.4		116.4										750		0.00		0.00				254.0						0.44		0.52

		H8-1								102.5		102.5										250		0.00		0.00				127.0						0.49		0.55

										102.5		102.5										350		0.00		0.00				152.0						0.45		0.56

										102.5		102.5										550		0.00		0.00				185.0						0.39		0.58

										102.5		102.5										750		0.00		0.00				207.0						0.34		0.59

		H8-2								103.7		103.7										250		0.00		0.00				129.0						0.45		0.54

										103.7		103.7										350		0.00		0.00				152.0						0.54		0.56

										103.7		103.7										550		0.00		0.00				186.0						0.47		0.58

										103.7		103.7										750		0.00		0.00				206.0						0.42		0.60

		H8-3								100.0		100.0										250		0.00		0.00				118.0						0.38		0.62

										100.0		100.0										350		0.00		0.00				146.0						0.39		0.58

										100.0		100.0										550		0.00		0.00				187.0						0.36		0.56

										100.0		100.0										750		0.00		0.00				207.0						0.34		0.59

		H11-1								53.7		53.7										250		0.00		0.00				82.0						0.27		0.64

										53.7		53.7										350		0.00		0.00				99.0						0.24		0.62

										53.7		53.7										550		0.00		0.00				125.0						0.21		0.60

										53.7		53.7										750		0.00		0.00				148.0						0.19		0.58

		H11-2								57.3		57.3										250		0.00		0.00				86.0						0.28		0.63

										57.3		57.3										350		0.00		0.00				104.0						0.25		0.61

										57.3		57.3										550		0.00		0.00				132.0						0.22		0.59

										57.3		57.3										750		0.00		0.00				155.0						0.20		0.58

		H11-3								49.4		49.4										250		0.00		0.00				77.0						0.26		0.65

										49.4		49.4										350		0.00		0.00				92.0						0.23		0.63

										49.4		49.4										550		0.00		0.00				118.0						0.20		0.60

										49.4		49.4										750		0.00		0.00				139.0						0.18		0.59

		H12-1								46.2		46.2										150		0.00		0.00				58.0						0.29		0.67

										46.2		46.2										250		0.00		0.00				76.0						0.26		0.64

										46.2		46.2										350		0.00		0.00				92.0						0.23		0.61

										46.2		46.2										550		0.00		0.00				117.0						0.20		0.59

		H12-2								46.5		46.5										150		0.00		0.00				58.0						0.35		0.68

										46.5		46.5										250		0.00		0.00				76.0						0.28		0.64

										46.5		46.5										350		0.00		0.00				91.0						0.25		0.62

										46.5		46.5										550		0.00		0.00				112.0						0.21		0.61

		H12-3								40.6		40.6										150		0.00		0.00				59.0						0.35		0.60

										40.6		40.6										250		0.00		0.00				76.0						0.29		0.59

										40.6		40.6										350		0.00		0.00				90.0						0.26		0.59

										40.6		40.6										550		0.00		0.00				116.0						0.22		0.57

		H13-1								64.5		64.5										150		0.00		0.00				76.0						0.53		0.58

										64.5		64.5										250		0.00		0.00				99.0						0.35		0.58

										64.5		64.5										350		0.00		0.00				117.0						0.30		0.58

										64.5		64.5										550		0.00		0.00				144.0						0.25		0.58

		H13-2								64.6		64.6										150		0.00		0.00				73.0						0.64		0.62

										64.6		64.6										250		0.00		0.00				80.0						0.66		0.74

										64.6		64.6										350		0.00		0.00				111.0						0.35		0.61

										64.6		64.6										550		0.00		0.00				142.0						0.27		0.59

		H13-3								58.8		58.8										150		0.00		0.00				78.0						0.44		0.51

										58.8		58.8										250		0.00		0.00				100.0						0.36		0.54

										58.8		58.8										350		0.00		0.00				119.0						0.32		0.54

										58.8		58.8										550		0.00		0.00				150.0						0.27		0.54

										58.8		58.8										750		0.00		0.00				175.0						0.25		0.54

		Z2-1								112.9		112.9										250		0.00		0.00				132.0						0.65		0.56

										112.9		112.9										350		0.00		0.00				157.0						0.41		0.57

										112.9		112.9										550		0.00		0.00				197.0						0.34		0.57

										112.9		112.9										750		0.00		0.00				231.0						0.30		0.57

		Z2-2								103.1		103.1										250		0.00		0.00				120.0						0.37		0.62

										103.1		103.1										350		0.00		0.00				143.0						0.33		0.61

										103.1		103.1										550		0.00		0.00				182.0						0.29		0.59

										103.1		103.1										750		0.00		0.00				215.0						0.26		0.58

		Z2-3								116.0		116.0										250		0.00		0.00				145.0						0.70		0.46

										116.0		116.0										350		0.00		0.00				178.0						0.61		0.47

										116.0		116.0										550		0.00		0.00				225.0						0.46		0.49

										116.0		116.0										750		0.00		0.00				264.0						0.37		0.50
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Table 5.1

		bw=100		bf=100		tw=1		tf=1				3L=		300						bw=100		bf=100		tw=1.2		tf=1				3L=		292

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-11148.8		0.0001334		27.872		0.35		75.9		132.3		98.9613702094				-0.02		-12685.4		0.0001371272		28.8304545455		0.36		91.4		163.5		126.0244236131

		-0.04		-21607.9		0.0002668001		54.01975				Kl1		Kmix						-0.04		-25071.8		0.0002742544		56.9813636364				Kl1		Kmix

		-0.06		-29021.9		0.0004002001		72.55475				0.41		0.2						-0.06		-35482.8		0.0004113816		80.6427272727				0.48		0.26

		-0.08		-34259.3		0.0005336001		85.64825												-0.08		-42423		0.0005485087		96.4159090909

		-0.1		-38853.1		0.0006670002		97.13275				0		0						-0.1		-47986.3		0.0006856359		109.0597727273				0		0

		-0.12		-43129.4		0.0008004002		107.8235				0.0003615241		75.9						-0.12		-53042.1		0.0008227631		120.5502272727				0.0004352307		91.4

		-0.14		-47184.2		0.0009338002		117.9605				0.000630041		99.0						-0.14		-57809.9		0.0009598903		131.3861363636				0.0007787424		126.0

		-0.16		-51059.5		0.0010672003		127.64875				0.0020833417		160						-0.16		-62367.8		0.0010970175		141.745				0.0014010057		160

		-0.18		-54779.7		0.0012006003		136.94925												-0.18		-66753		0.0012341447		151.7113636364

		-0.2		-58361.2		0.0013340003		145.903												-0.2		-70987		0.0013712719		161.3340909091

		-0.22		-61816.2		0.0014674004		154.5405

		-0.24		-65154.8		0.0016008004		162.887

		bw=100		bf=100		tw=1.4		tf=1				3L=		267						bw=100		bf=100		tw=1.6		tf=1				3L=		237

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-15164		0.0001498127		31.5916666667		0.40		105.7		201.2		166.8625350399				-0.02		-18536.9		0.0001687764		35.6478846154		0.56		115.6		243.9		211.8313358472

		-0.04		-30112		0.0002996255		62.7333333333				Kl1		Kmix						-0.04		-36821		0.0003375527		70.8096153846				Kl1		Kmix

		-0.06		-43721.1		0.0004494382		91.085625				0.64		0.36						-0.06		-53769.1		0.0005063291		103.4021153846				0.75		0.43

		-0.08		-53847.9		0.0005992509		112.183125												-0.08		-68094.1		0.0006751055		130.9501923077

		-0.1		-61324		0.0007490637		127.7583333333				0		0						-0.1		-79575.7		0.0008438819		153.0301923077				0		0

		-0.12		-67636.2		0.0008988764		140.90875				0.0005035489		105.7						-0.12		-88371		0.0010126582		169.9442307692				0.0005504069		115.6

		-0.14		-73427.5		0.0010486891		152.9739583333				0.0009582905		166.9						-0.14		-95758.1		0.0011814346		184.1501923077				0.0011614919		211.8

		-0.16		-78915.3		0.0011985019		164.406875				0.0027193681		300						-0.16		-102507		0.001350211		197.1288461538				0.0021378891		300

		-0.18		-84184.2		0.0013483146		175.38375												-0.18		-108898		0.0015189873		209.4192307692

		-0.2		-89274.8		0.0014981273		185.9891666667												-0.2		-115039		0.0016877637		221.2288461538

		-0.22		-94209.8		0.0016479401		196.2704166667												-0.22		-120982		0.0018565401		232.6576923077

		-0.24		-99004.4		0.0017977528		206.2591666667												-0.24		-126755		0.0020253165		243.7596153846

		-0.26		-103669		0.0019475655		215.9770833333												-0.26		-132374		0.0021940928		254.5653846154

		-0.28		-108213		0.0020973783		225.44375												-0.28		-137853		0.0023628692		265.1019230769

		-0.3		-112643		0.002247191		234.6729166667												-0.3		-143201		0.0025316456		275.3865384615

		-0.32		-116965		0.0023970037		243.6770833333												-0.32		-148426		0.0027004219		285.4346153846

		-0.34		-121184		0.0025468165		252.4666666667												-0.34		-153534		0.0028691983		295.2576923077

		-0.36		-125306		0.0026966292		261.0541666667												-0.36		-158530		0.0030379747		304.8653846154

		-0.38		-129336		0.0028464419		269.45

		-0.4		-133277		0.0029962547		277.6604166667

		-0.42		-137133		0.0031460674		285.69375

		-0.44		-140909		0.0032958801		293.5604166667

		-0.46		-144608		0.0034456929		301.2666666667

		bw=100		bf=100		tw=1.8		tf=1				3L=		221						bw=100		bf=100		tw=2		tf=1				3L=		213

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-21434.8		0.0001809955		38.2764285714		0.71		121.1		291.9		257.7024596645				-0.02		-23832		0.0001877934		39.72		0.78		124.3		345.6		305.7433821463

		-0.04		-42595.8		0.000361991		76.0639285714				Kl1		Kmix						-0.04		-47339.9		0.0003755869		78.8998333333				Kl1		Kmix

		-0.06		-62396.4		0.0005429864		111.4221428571				0.80		0.46						-0.06		-69417.4		0.0005633803		115.6956666667				0.82		0.47

		-0.08		-80154.4		0.0007239819		143.1328571429												-0.08		-89700.8		0.0007511737		149.5013333333

		-0.1		-96378.8		0.0009049774		172.105				0		0						-0.1		-109064		0.0009389671		181.7733333333				0		0

		-0.12		-110223		0.0010859729		196.8267857143				0.0005765443		121.1						-0.12		-127468		0.0011267606		212.4466666667				0.0005919702		124.3

		-0.14		-121005		0.0012669683		216.0803571429				0.0013898071		257.7						-0.14		-143979		0.001314554		239.965				0.0016455686		305.7

		-0.16		-129820		0.0014479638		231.8214285714				0.0026558272		380						-0.16		-157247		0.0015023474		262.0783333333				0.0026005495		400

		-0.18		-137720		0.0016289593		245.9285714286												-0.18		-167667		0.0016901408		279.445

		-0.2		-145146		0.0018099548		259.1892857143												-0.2		-176624		0.0018779343		294.3733333333

		-0.22		-152269		0.0019909502		271.9089285714												-0.22		-184865		0.0020657277		308.1083333333

		-0.24		-159167		0.0021719457		284.2267857143												-0.24		-192688		0.0022535211		321.1466666667

		-0.26		-165880		0.0023529412		296.2142857143												-0.26		-200223		0.0024413146		333.705

		-0.28		-172433		0.0025339367		307.9160714286												-0.28		-207531		0.002629108		345.885

		-0.3		-178840		0.0027149321		319.3571428571												-0.3		-214648		0.0028169014		357.7466666667

		-0.32		-185114		0.0028959276		330.5607142857												-0.32		-221595		0.0030046948		369.325

		-0.34		-191262		0.0030769231		341.5392857143												-0.34		-228388		0.0031924883		380.6466666667

		-0.36		-197293		0.0032579186		352.3089285714												-0.36		-235037		0.0033802817		391.7283333333

		-0.38		-203212		0.003438914		362.8785714286

		-0.4		-209024		0.0036199095		373.2571428571

		bw=100		bf=100		tw=2.2		tf=1				3L=		208						bw=100		bf=100		tw=2.4		tf=1				3L=		206

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-26045.1		0.0001923077		40.69546875		0.82		126.4		405.4		357.957435539

		-0.04		-51747.8		0.0003846154		80.8559375				Kl1		Kmix

		-0.06		-75980.6		0.0005769231		118.7196875				0.83		0.34

		-0.08		-98485.4		0.0007692308		153.8834375

		-0.1		-120246		0.0009615385		187.884375				0		0

		-0.12		-141507		0.0011538462		221.1046875				0.0006018481		126.4

		-0.14		-162104		0.0013461538		253.2875				0.0019304157		358.0

		-0.16		-181390		0.0015384615		283.421875				0.0025192471		400

		-0.18		-197984		0.0017307692		309.35

		-0.2		-211058		0.0019230769		329.778125

		-0.22		-221703		0.0021153846		346.4109375

		-0.24		-231125		0.0023076923		361.1328125

		-0.26		-239899		0.0025		374.8421875

		-0.28		-248271		0.0026923077		387.9234375

		-0.3		-256355		0.0028846154		400.5546875

		bw=100		bf=150		tw=1		tf=1				3L=		391						bw=100		bf=150		tw=1.2		tf=1				3L=		368

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-10681		0.0001023018		21.362		0.35		41.5		76.2		61.6234308367				-0.02		-12286.3		0.0001086957		22.7524074074		0.40		45.9		141.2		107.8608273258

		-0.04		-19771.4		0.0002046036		39.5428				Kl1		Kmix						-0.04		-23168.9		0.0002173913		42.9053703704				Kl1		Kmix

		-0.06		-26062.4		0.0003069054		52.1248				0.58		0.42						-0.06		-31347.6		0.000326087		58.0511111111				0.65		0.46

		-0.08		-31150.1		0.0004092072		62.3002												-0.08		-38149.7		0.0004347826		70.6475925926

		-0.1		-35552		0.000511509		71.104				0		0						-0.1		-43902.9		0.0005434783		81.3016666667				0		0

		-0.12		-39524.7		0.0006138107		79.0494				0.0001978332		41.5						-0.12		-48928.1		0.0006521739		90.6075925926				0.0002187425		45.9

		-0.14		-43203.8		0.0007161125		86.4076				0.000362681		61.6						-0.14		-53488.1		0.0007608696		99.052037037				0.0006724048		107.9

		-0.16		-46665.1		0.0008184143		93.3302				0.0013646829		150						-0.16		-57732		0.0008695652		106.9111111111				0.0016262264		200

		-0.18		-49954		0.0009207161		99.908												-0.18		-61741		0.0009782609		114.3351851852

		-0.2		-53099.8		0.0010230179		106.1996												-0.2		-65562.5		0.0010869565		121.412037037

		-0.22		-56122.6		0.0011253197		112.2452												-0.22		-69227.4		0.0011956522		128.1988888889

		-0.24		-59037.1		0.0012276215		118.0742												-0.24		-72757.3		0.0013043478		134.7357407407

		-0.26		-61854.8		0.0013299233		123.7096												-0.26		-76168.2		0.0014130435		141.0522222222

		-0.28		-64585.1		0.0014322251		129.1702												-0.28		-79473		0.0015217391		147.1722222222

		-0.3		-67235.9		0.0015345269		134.4718												-0.3		-82681.8		0.0016304348		153.1144444444

		-0.32		-69814		0.0016368286		139.628												-0.32		-85803.4		0.0017391304		158.8951851852

		-0.34		-72325.1		0.0017391304		144.6502												-0.34		-88844.9		0.0018478261		164.5275925926

		-0.36		-74774.6		0.0018414322		149.5492												-0.36		-91812.7		0.0019565217		170.0235185185

		-0.38		-77166.8		0.001943734		154.3336												-0.38		-94712.1		0.0020652174		175.3927777778

																				-0.4		-97547.9		0.002173913		180.6442592593

																				-0.42		-100324		0.0022826087		185.7851851852

																				-0.44		-103045		0.0023913043		190.8240740741

																				-0.46		-105713		0.0025		195.7648148148

																				-0.48		-108332		0.0026086957		200.6148148148

																				-0.5		-110904		0.0027173913		205.3777777778

		bw=100		bf=150		tw=1.4		tf=1				3L=		348						bw=100		bf=150		tw=1.6		tf=1				3L=		333

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-13978		0.0001149425		24.1		0.47		49.5		178.4		138.4825927744				-0.02		-15637.3		0.0001201201		25.2214516129		0.53		52.2		220.3		174.9230173282

		-0.04		-26635.4		0.0002298851		45.9231034483				Kl1		Kmix						-0.04		-29993.1		0.0002402402		48.3759677419				Kl1		Kmix

		-0.06		-36765		0.0003448276		63.3879310345				0.69		0.47						-0.06		-41942.7		0.0003603604		67.649516129				0.73		0.48

		-0.08		-45685.3		0.0004597701		78.7677586207												-0.08		-52932.6		0.0004804805		85.3751612903

		-0.1		-53455.5		0.0005747126		92.1646551724				0		0						-0.1		-63087.3		0.0006006006		101.7537096774				0		0

		-0.12		-60086.9		0.0006896552		103.5981034483				0.0002358868		49.5						-0.12		-72157.3		0.0007207207		116.3827419355				0.0002483722		52.2

		-0.14		-65864		0.0008045977		113.5586206897				0.0008497333		138.5						-0.14		-80000.6		0.0008408408		129.0332258065				0.0010491867		174.9

		-0.16		-71090.6		0.0009195402		122.57				0.00147301		200						-0.16		-86811.4		0.000960961		140.0183870968				0.001793998		250

		-0.18		-75955.6		0.0010344828		130.9579310345												-0.18		-92921.5		0.0010810811		149.8733870968

		-0.2		-80561.3		0.0011494253		138.8987931034												-0.2		-98579.6		0.0012012012		158.9993548387

		-0.22		-84965		0.0012643678		146.4913793103												-0.22		-103929		0.0013213213		167.6274193548

		-0.24		-89201.8		0.0013793103		153.7962068966												-0.24		-109051		0.0014414414		175.8887096774

		-0.26		-93295.2		0.0014942529		160.8537931034												-0.26		-113992		0.0015615616		183.8580645161

		-0.28		-97262.2		0.0016091954		167.6934482759												-0.28		-118781		0.0016816817		191.5822580645

		-0.3		-101116		0.0017241379		174.3379310345												-0.3		-123439		0.0018018018		199.0951612903

		-0.32		-104866		0.0018390805		180.8034482759												-0.32		-127979		0.0019219219		206.4177419355

		-0.34		-108523		0.001954023		187.1086206897												-0.34		-132413		0.002042042		213.5693548387

		-0.36		-112092		0.0020689655		193.2620689655												-0.36		-136749		0.0021621622		220.5629032258

		-0.38		-115581		0.002183908		199.2775862069												-0.38		-140995		0.0022822823		227.4112903226

		-0.4		-118994		0.0022988506		205.1620689655												-0.4		-145157		0.0024024024		234.1241935484

		bw=100		bf=150		tw=1.8		tf=1				3L=		323						bw=100		bf=150		tw=2		tf=1				3L=		316

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-17169.2		0.000123839		26.0139393939		0.63		54.0		267.4		214.0645909799				-0.02		-18623.1		0.0001265823		25.8654166667		0.67		55.2		319.9		259.0167337584

		-0.04		-33038.4		0.000247678		50.0581818182				Kl1		Kmix						-0.04		-35933.3		0.0002531646		49.9073611111				Kl1		Kmix

		-0.06		-46573.3		0.000371517		70.5656060606				0.75		0.47						-0.06		-50942.5		0.0003797468		70.7534722222				0.77		0.47

		-0.08		-59293.2		0.000495356		89.8381818182												-0.08		-65210.5		0.0005063291		90.5701388889

		-0.1		-71454.2		0.000619195		108.2639393939				0		0						-0.1		-79065.6		0.0006329114		109.8133333333				0		0

		-0.12		-82919.8		0.0007430341		125.6360606061				0.0002570079		54.0						-0.12		-92497.6		0.0007594937		128.4688888889				0.0002629362		55.2

		-0.14		-93393.4		0.0008668731		141.5051515152				0.001273471		214.1						-0.14		-105376		0.0008860759		146.3555555556				0.0015232957		259.0

		-0.16		-102590		0.0009907121		155.4393939394				0.0016375582		250						-0.16		-117449		0.0010126582		163.1236111111				0.0019385264		300

		-0.18		-110526		0.0011145511		167.4636363636												-0.18		-128378		0.0011392405		178.3027777778

		-0.2		-117509		0.0012383901		178.0439393939												-0.2		-137945		0.0012658228		191.5902777778

		-0.22		-123862		0.0013622291		187.6696969697												-0.22		-146263		0.0013924051		203.1430555556

		-0.24		-129802		0.0014860681		196.6696969697												-0.24		-153664		0.0015189873		213.4222222222

		-0.26		-135452		0.0016099071		205.2303030303												-0.26		-160451		0.0016455696		222.8486111111

		-0.28		-140883		0.0017337461		213.4590909091												-0.28		-166828		0.0017721519		231.7055555556

		-0.3		-146139		0.0018575851		221.4227272727												-0.3		-172913		0.0018987342		240.1569444444

		-0.32		-151247		0.0019814241		229.1621212121												-0.32		-178779		0.0020253165		248.3041666667

		-0.34		-156227		0.0021052632		236.7075757576												-0.34		-184469		0.0021518987		256.2069444444

		-0.36		-161093		0.0022291022		244.0803030303												-0.36		-190013		0.002278481		263.9069444444

		bw=100		bf=110		tw=1		tf=1				3L=		316						bw=100		bf=110		tw=1.2		tf=1				3L=		300

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-11129.2		0.0001265823		26.4980952381		0.35		68.0		122.1		92.3765814605				-0.02		-12896		0.0001333333		28.0347826087		0.37		79.5		155.3		122.7070250706

		-0.04		-21515.7		0.0002531646		51.2278571429				Kl1		Kmix						-0.04		-25370.6		0.0002666667		55.1534782609				Kl1		Kmix

		-0.06		-28600.5		0.0003797468		68.0964285714				0.45		0.24						-0.06		-35262.9		0.0004		76.6584782609				0.57		0.35

		-0.08		-33678.2		0.0005063291		80.1861904762												-0.08		-42047.2		0.0005333333		91.4069565217

		-0.1		-38173.6		0.0006329114		90.8895238095				0		0						-0.1		-47601.2		0.0006666667		103.4808695652				0		0

		-0.12		-42367.4		0.0007594937		100.8747619048				0.0003240272		68.0						-0.12		-52643.1		0.0008		114.4415217391				0.0003784597		79.5

		-0.14		-46345.2		0.0008860759		110.3457142857				0.0005814967		92.4						-0.14		-57390.2		0.0009333333		124.7613043478				0.0007396167		122.7

		-0.16		-50145.7		0.0010126582		119.3945238095				0.002716882		200						-0.16		-61922.8		0.0010666667		134.6147826087				0.0024714939		250

		-0.18		-53792		0.0011392405		128.0761904762												-0.18		-66279.3		0.0012		144.0854347826

		-0.2		-57300.1		0.0012658228		136.4288095238												-0.2		-70482		0.0013333333		153.2217391304

		-0.22		-60682.2		0.0013924051		144.4814285714												-0.22		-74545.7		0.0014666667		162.0558695652

		-0.24		-63948.3		0.0015189873		152.2578571429												-0.24		-78481.7		0.0016		170.6123913043

		-0.26		-67107.1		0.0016455696		159.7788095238												-0.26		-82299		0.0017333333		178.9108695652

		-0.28		-70166.5		0.0017721519		167.0630952381												-0.28		-86005.3		0.0018666667		186.9680434783

		-0.3		-73133.4		0.0018987342		174.1271428571												-0.3		-89607.6		0.002		194.7991304348

		-0.32		-76014.5		0.0020253165		180.9869047619												-0.32		-93112.1		0.0021333333		202.4176086957

		-0.34		-78815.7		0.0021518987		187.6564285714												-0.34		-96524.6		0.0022666667		209.8360869565

		-0.36		-81542.7		0.002278481		194.1492857143												-0.36		-99850.5		0.0024		217.0663043478

		-0.38		-84200.4		0.0024050633		200.4771428571												-0.38		-103095		0.0025333333		224.1195652174

		-0.4		-86793.8		0.0025316456		206.6519047619												-0.4		-106262		0.0026666667		231.0043478261

		-0.42		-89327		0.0026582278		212.6833333333												-0.42		-109357		0.0028		237.7326086957

		-0.44		-91804.2		0.0027848101		218.5814285714												-0.44		-112383		0.0029333333		244.3108695652

		-0.46		-94228.9		0.0029113924		224.3545238095												-0.46		-115344		0.0030666667		250.747826087

		-0.48		-96604.6		0.0030379747		230.010952381												-0.48		-118244		0.0032		257.052173913

		-0.5		-98934.2		0.003164557		235.5576190476

		-0.52		-101221		0.0032911392		241.0023809524

		-0.54		-103466		0.0034177215		246.3476190476

		bw=100		bf=110		tw=1.4		tf=1				3L=		276						bw=100		bf=110		tw=1.6		tf=1				3L=		254

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-15267		0.0001449275		30.534		0.43		89.3		193.6		160.1987880159				-0.02		-17939		0.0001574803		33.2203703704		0.55		96.0		236.5		201.4059659633

		-0.04		-30172.4		0.0002898551		60.3448				Kl1		Kmix						-0.04		-35487.7		0.0003149606		65.717962963				Kl1		Kmix

		-0.06		-43050.4		0.0004347826		86.1008				0.68		0.41						-0.06		-51173.8		0.0004724409		94.7662962963				0.75		0.46

		-0.08		-52861.8		0.0005797101		105.7236												-0.08		-64587.2		0.0006299213		119.6059259259

		-0.1		-60414.5		0.0007246377		120.829				0		0						-0.1		-75806		0.0007874016		140.3814814815				0		0

		-0.12		-66761.7		0.0008695652		133.5234				0.0004252748		89.3						-0.12		-84642.7		0.0009448819		156.7457407407				0.0004571913		96.0

		-0.14		-72538.8		0.0010144928		145.0776				0.000921711		160.2						-0.14		-91992		0.0011023622		170.3555555556				0.001126371		201.4

		-0.16		-77989.5		0.0011594203		155.979				0.0025454184		300						-0.16		-98622.9		0.0012598425		182.635				0.0021470131		300

		-0.18		-83210.4		0.0013043478		166.4208												-0.18		-104860		0.0014173228		194.1851851852

		-0.2		-88247.1		0.0014492754		176.4942												-0.2		-110834		0.0015748031		205.2481481481

		-0.22		-93125		0.0015942029		186.25												-0.22		-116605		0.0017322835		215.9351851852

		-0.24		-97860.3		0.0017391304		195.7206												-0.24		-122206		0.0018897638		226.3074074074

		-0.26		-102464		0.001884058		204.928												-0.26		-127656		0.0020472441		236.4

		-0.28		-106947		0.0020289855		213.894												-0.28		-132968		0.0022047244		246.237037037

		-0.3		-111314		0.002173913		222.628												-0.3		-138153		0.0023622047		255.8388888889

		-0.32		-115573		0.0023188406		231.146												-0.32		-143218		0.002519685		265.2185185185

		-0.34		-119730		0.0024637681		239.46												-0.34		-148171		0.0026771654		274.3907407407

		-0.36		-123790		0.0026086957		247.58												-0.36		-153016		0.0028346457		283.362962963

		-0.38		-127757		0.0027536232		255.514												-0.38		-157759		0.002992126		292.1462962963

		-0.4		-131637		0.0028985507		263.274												-0.4		-162406		0.0031496063		300.7518518519

		-0.42		-135433		0.0030434783		270.866												-0.42		-166959		0.0033070866		309.1833333333

		-0.44		-139149		0.0031884058		278.298

		-0.46		-142788		0.0033333333		285.576

		-0.48		-146356		0.0034782609		292.712

		-0.5		-149853		0.0036231884		299.706

		-0.52		-153284		0.0037681159		306.568

		bw=100		bf=110		tw=1.8		tf=1				3L=		241						bw=100		bf=110		tw=2		tf=1				3L=		233

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-20332.6		0.0001659751		35.0562068966		0.71		100.1		284.8		246.0418478452				-0.02		-22492.8		0.0001716738		36.2787096774		0.76		102.7		338.9		294.0415463239

		-0.04		-40270.1		0.0003319502		69.4312068966				Kl1		Kmix						-0.04		-44561.9		0.0003433476		71.8740322581				Kl1		Kmix

		-0.06		-58395.7		0.0004979253		100.6822413793				0.79		0.47						-0.06		-64805.5		0.0005150215		104.525				0.81		0.48

		-0.08		-74718.5		0.0006639004		128.825												-0.08		-83442		0.0006866953		134.5838709677

		-0.1		-89836.6		0.0008298755		154.8906896552				0		0						-0.1		-101336		0.0008583691		163.4451612903				0		0

		-0.12		-103105		0.0009958506		177.7672413793				0.0004767637		100.1						-0.12		-118417		0.0010300429		190.9951612903				0.0004890401		102.7

		-0.14		-113812		0.0011618257		196.2275862069				0.0013563386		246.0						-0.14		-134023		0.0012017167		216.1661290323				0.0016139262		294.0

		-0.16		-122556		0.0013278008		211.3034482759				0.0029161983		400						-0.16		-147131		0.0013733906		237.3080645161				0.002863514		420

		-0.18		-130283		0.0014937759		224.625862069												-0.18		-157687		0.0015450644		254.3338709677

		-0.2		-137480		0.001659751		237.0344827586												-0.2		-166683		0.0017167382		268.8435483871

		-0.22		-144352		0.0018257261		248.8827586207												-0.22		-174870		0.001888412		282.0483870968

		-0.24		-150993		0.0019917012		260.3327586207												-0.24		-182601		0.0020600858		294.5177419355

		-0.26		-157449		0.0021576763		271.4637931034												-0.26		-190032		0.0022317597		306.5032258065

		-0.28		-163748		0.0023236515		282.324137931												-0.28		-197241		0.0024034335		318.1306451613

		-0.3		-169908		0.0024896266		292.9448275862												-0.3		-204271		0.0025751073		329.4693548387

		-0.32		-175940		0.0026556017		303.3448275862												-0.32		-211146		0.0027467811		340.5580645161

		-0.34		-181854		0.0028215768		313.5413793103												-0.34		-217883		0.0029184549		351.4241935484

		-0.36		-187657		0.0029875519		323.5465517241												-0.36		-224495		0.0030901288		362.0887096774

		-0.38		-193354		0.003153527		333.3689655172												-0.38		-230989		0.0032618026		372.5629032258

		-0.4		-198952		0.0033195021		343.0206896552												-0.4		-237373		0.0034334764		382.8596774194

		-0.42		-204454		0.0034854772		352.5068965517												-0.42		-243653		0.0036051502		392.9887096774

		-0.44		-209864		0.0036514523		361.8344827586												-0.44		-249834		0.003776824		402.9580645161

		bw=100		bf=120		tw=1		tf=1				3L=		333						bw=100		bf=120		tw=1.2		tf=1				3L=		314

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-11067.6		0.0001201201		25.1536363636		0.35		60.2		116.1		88.1651020127				-0.02		-12847.1		0.0001273885		26.7647916667		0.38		68.8		150.1		118.3788960311

		-0.04		-21247.6		0.0002402402		48.29				Kl1		Kmix						-0.04		-25086.9		0.0002547771		52.264375				Kl1		Kmix

		-0.06		-28049.7		0.0003603604		63.7493181818				0.50		0.3						-0.06		-34431.4		0.0003821656		71.7320833333				0.61		0.4

		-0.08		-33070.1		0.0004804805		75.1593181818												-0.08		-41205.2		0.0005095541		85.8441666667

		-0.1		-37507.1		0.0006006006		85.2434090909				0		0						-0.1		-46783.5		0.0006369427		97.465625				0		0

		-0.12		-41631.4		0.0007207207		94.6168181818				0.000286821		60.2						-0.12		-51800.8		0.0007643312		107.9183333333				0.0003276383		68.8

		-0.14		-45532.7		0.0008408408		103.4834090909				0.0005528467		88.2						-0.14		-56495.6		0.0008917197		117.6991666667				0.0007146395		118.4

		-0.16		-49253		0.000960961		111.9386363636				0.0031216546		250						-0.16		-60961.6		0.0010191083		127.0033333333				0.0022815574		250

		-0.18		-52817.3		0.0010810811		120.0393181818												-0.18		-65243.5		0.0011464968		135.9239583333

		-0.2		-56242.7		0.0012012012		127.8243181818												-0.2		-69366.8		0.0012738854		144.5141666667

		-0.22		-59542.4		0.0013213213		135.3236363636												-0.22		-73348.2		0.0014012739		152.80875

		-0.24		-62727.1		0.0014414414		142.5615909091												-0.24		-77200.2		0.0015286624		160.83375

		-0.26		-65806.1		0.0015615616		149.5593181818												-0.26		-80932.9		0.001656051		168.6102083333

		-0.28		-68787.6		0.0016816817		156.3354545455												-0.28		-84554.9		0.0017834395		176.1560416667

		-0.3		-71678.8		0.0018018018		162.9063636364												-0.3		-88073.5		0.001910828		183.4864583333

		-0.32		-74486.6		0.0019219219		169.2877272727												-0.32		-91495.5		0.0020382166		190.615625

		-0.34		-77217		0.002042042		175.4931818182												-0.34		-94827.2		0.0021656051		197.5566666667

		-0.36		-79875.7		0.0021621622		181.5356818182												-0.36		-98074.1		0.0022929936		204.3210416667

		-0.38		-82467.7		0.0022822823		187.4265909091												-0.38		-101241		0.0024203822		210.91875

		-0.4		-84997.9		0.0024024024		193.1770454545												-0.4		-104334		0.0025477707		217.3625

		-0.42		-87470.4		0.0025225225		198.7963636364												-0.42		-107356		0.0026751592		223.6583333333

		-0.44		-89889.2		0.0026426426		204.2936363636												-0.44		-110313		0.0028025478		229.81875

		-0.46		-92257.7		0.0027627628		209.6765909091												-0.46		-113206		0.0029299363		235.8458333333

		-0.48		-94579.2		0.0028828829		214.9527272727												-0.48		-116041		0.0030573248		241.7520833333

		-0.5		-96856.6		0.003003003		220.1286363636												-0.5		-118821		0.0031847134		247.54375

		-0.52		-99092.4		0.0031231231		225.21

		-0.54		-101289		0.0032432432		230.2022727273

		-0.56		-103449		0.0033633634		235.1113636364

		-0.58		-105574		0.0034834835		239.9409090909

		-0.6		-107666		0.0036036036		244.6954545455

		bw=100		bf=120		tw=1.4		tf=1				3L=		292						bw=100		bf=120		tw=1.6		tf=1				3L=		273

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-14997.1		0.0001369863		28.8405769231		0.44		76.0		188.4		154.6435520731				-0.02		-17296.6		0.0001465201		30.8867857143		0.54		80.9		231.3		193.7480350139

		-0.04		-29467.5		0.0002739726		56.6682692308				Kl1		Kmix						-0.04		-34057.8		0.0002930403		60.8175				Kl1		Kmix

		-0.06		-41509		0.0004109589		79.825				0.70		0.45						-0.06		-48594.8		0.0004395604		86.7764285714				0.75		0.47

		-0.08		-51084.4		0.0005479452		98.2392307692												-0.08		-61266.5		0.0005860806		109.4044642857

		-0.1		-58715.1		0.0006849315		112.9136538462				0		0						-0.1		-72257.7		0.0007326007		129.0316071429				0		0

		-0.12		-65088.5		0.0008219178		125.1701923077				0.0003617184		76.0						-0.12		-81237.5		0.0008791209		145.0669642857				0.0003854759		80.9

		-0.14		-70816.7		0.0009589041		136.1859615385				0.0008969748		154.6						-0.14		-88701.4		0.001025641		158.3953571429				0.0011016543		193.7

		-0.16		-76180.1		0.0010958904		146.5001923077				0.0019060377		250						-0.16		-95346.5		0.0011721612		170.2616071429				0.0021781686		300

		-0.18		-81295.5		0.0012328767		156.3375												-0.18		-101544		0.0013186813		181.3285714286

		-0.2		-86217.9		0.001369863		165.8036538462												-0.2		-107456		0.0014652015		191.8857142857

		-0.22		-90976.9		0.0015068493		174.9555769231												-0.22		-113159		0.0016117216		202.0696428571

		-0.24		-95591.3		0.0016438356		183.8294230769												-0.24		-118692		0.0017582418		211.95

		-0.26		-100074		0.0017808219		192.45												-0.26		-124079		0.0019047619		221.5696428571

		-0.28		-104435		0.0019178082		200.8365384615												-0.28		-129335		0.0020512821		230.9553571429

		-0.3		-108682		0.0020547945		209.0038461538												-0.3		-134471		0.0021978022		240.1267857143

		-0.32		-112822		0.0021917808		216.9653846154												-0.32		-139495		0.0023443223		249.0982142857

		-0.34		-116862		0.0023287671		224.7346153846												-0.34		-144415		0.0024908425		257.8839285714

		-0.36		-120807		0.0024657534		232.3211538462												-0.36		-149235		0.0026373626		266.4910714286

		-0.38		-124662		0.0026027397		239.7346153846												-0.38		-153961		0.0027838828		274.9303571429

		-0.4		-128431		0.002739726		246.9826923077												-0.4		-158598		0.0029304029		283.2107142857

		-0.42		-132120		0.0028767123		254.0769230769												-0.42		-163149		0.0030769231		291.3375

		bw=100		bf=120		tw=1.8		tf=1				3L=		262						bw=100		bf=120		tw=2		tf=1				3L=		254

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-19317		0.0001526718		32.195		0.67		84.2		279.7		236.6757586876				-0.02		-21263.7		0.0001574803		33.22453125		0.75		86.3		333.8		284.3254256124

		-0.04		-38055.3		0.0003053435		63.4255				Kl1		Kmix						-0.04		-41912.9		0.0003149606		65.48890625				Kl1		Kmix

		-0.06		-54656.6		0.0004580153		91.0943333333				0.78		0.48						-0.06		-60432.7		0.0004724409		94.42609375				0.80		0.49

		-0.08		-69773.7		0.000610687		116.2895												-0.08		-77628.7		0.0006299213		121.29484375

		-0.1		-83926.3		0.0007633588		139.8771666667				0		0						-0.1		-94203.9		0.0007874016		147.19359375				0		0

		-0.12		-96645.3		0.0009160305		161.0755				0.0004008349		84.2						-0.12		-110091		0.0009448819		172.0171875				0.0004108263		86.3

		-0.14		-107255		0.0010687023		178.7583333333				0.001331851		236.7						-0.14		-124823		0.0011023622		195.0359375				0.0015897067		284.3

		-0.16		-115931		0.001221374		193.2183333333				0.0019600676		300						-0.16		-137605		0.0012598425		215.0078125				0.0023251253		360

		-0.18		-123454		0.0013740458		205.7566666667												-0.18		-148089		0.0014173228		231.3890625

		-0.2		-130356		0.0015267176		217.26												-0.2		-156900		0.0015748031		245.15625

		-0.22		-136886		0.0016793893		228.1433333333												-0.22		-164768		0.0017322835		257.45

		-0.24		-143158		0.0018320611		238.5966666667												-0.24		-172100		0.0018897638		268.90625

		-0.26		-149231		0.0019847328		248.7183333333												-0.26		-179089		0.0020472441		279.8265625

		-0.28		-155137		0.0021374046		258.5616666667												-0.28		-185833		0.0022047244		290.3640625

		-0.3		-160898		0.0022900763		268.1633333333												-0.3		-192383		0.0023622047		300.5984375

		-0.32		-166527		0.0024427481		277.545												-0.32		-198769		0.002519685		310.5765625

		-0.34		-172035		0.0025954198		286.725												-0.34		-205012		0.0026771654		320.33125

		-0.36		-177430		0.0027480916		295.7166666667												-0.36		-211125		0.0028346457		329.8828125

		-0.38		-182719		0.0029007634		304.5316666667												-0.38		-217118		0.002992126		339.246875

		-0.4		-187906		0.0030534351		313.1766666667												-0.4		-223001		0.0031496063		348.4390625

		-0.42		-192998		0.0032061069		321.6633333333												-0.42		-228778		0.0033070866		357.465625

		-0.44		-197998		0.0033587786		329.9966666667												-0.44		-234455		0.0034645669		366.3359375

		bw=100		bf=130		tw=1		tf=1				3L=		351						bw=100		bf=130		tw=1.2		tf=1				3L=		331

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-10971.1		0.0001139601		23.8502173913		0.35		53.1		112.3		85.6581347375				-0.02		-12797.8		0.0001208459		25.5956		0.41		59.8		146.4		114.3343724527

		-0.04		-20838.7		0.0002279202		45.3015217391				Kl1		Kmix						-0.04		-25586.5		0.0002416918		51.173				Kl1		Kmix

		-0.06		-27424.4		0.0003418803		59.6182608696				0.55		0.37						-0.045		-28708.5		0.0002719033		57.417				0.63		0.43

		-0.08		-32445.8		0.0004558405		70.5343478261												-0.05		-30901.4		0.0003021148		61.8028

		-0.1		-36851.6		0.0005698006		80.112173913				0		0						-0.055		-32852		0.0003323263		65.704				0		0

		-0.12		-40916.1		0.0006837607		88.9480434783				0.0002528828		53.1						-0.0625		-35597.6		0.0003776435		71.1952				0.0002845421		59.8

		-0.14		-44742		0.0007977208		97.2652173913				0.0005347248		85.7						-0.07375		-39333.9		0.0004456193		78.6678				0.0006970933		114.3

		-0.16		-48378.7		0.0009116809		105.1710869565				0.0016845557		175						-0.090625		-44233.8		0.0005475831		88.4676				0.0013135455		170

		-0.18		-51855.6		0.001025641		112.7295652174												-0.110625		-49358.2		0.000668429		98.7164

		-0.2		-55192.6		0.0011396011		119.9839130435												-0.130625		-54068.1		0.0007892749		108.1362

		-0.22		-58404.4		0.0012535613		126.9660869565												-0.150625		-58513.2		0.0009101208		117.0264

		-0.24		-61502.9		0.0013675214		133.7019565217												-0.170625		-62758.7		0.0010309668		125.5174

		-0.26		-64497.8		0.0014814815		140.2126086957												-0.190625		-66838.6		0.0011518127		133.6772

		-0.28		-67397.9		0.0015954416		146.517173913												-0.210625		-70774		0.0012726586		141.548

		-0.3		-70210.8		0.0017094017		152.632173913												-0.230625		-74579.6		0.0013935045		149.1592

		-0.32		-72943.4		0.0018233618		158.5726086957												-0.250625		-78266.7		0.0015143505		156.5334

		-0.34		-75601.7		0.0019373219		164.3515217391												-0.270625		-81844.9		0.0016351964		163.6898

		-0.36		-78191.3		0.0020512821		169.9810869565												-0.290625		-85322.1		0.0017560423		170.6442

		bw=100		bf=130		tw=1.4		tf=1				3L=		309						bw=100		bf=130		tw=1.6		tf=1				3L=		293

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-14696.9		0.0001294498		27.2164814815		0.46		65.2		184.5		148.7093465699				-0.02		-16664.1		0.0001365188		28.7312068966		0.56		69.2		227.3		186.1571135868

		-0.04		-28617.6		0.0002588997		52.9955555556				Kl1		Kmix						-0.04		-32553.9		0.0002730375		56.1274137931				Kl1		Kmix

		-0.06		-39912.6		0.0003883495		73.9122222222				0.70		0.46						-0.06		-46031		0.0004095563		79.3637931034				0.74		0.47

		-0.08		-49281.6		0.0005177994		91.2622222222												-0.08		-58029.4		0.0005460751		100.0506896552

		-0.1		-56991.6		0.0006472492		105.54				0		0						-0.1		-68706.3		0.0006825939		118.459137931				0		0

		-0.12		-63431.1		0.000776699		117.465				0.0003107058		65.2						-0.12		-77689.1		0.0008191126		133.9467241379				0.0003293118		69.2

		-0.14		-69143.1		0.0009061489		128.0427777778				0.0008784686		148.7						-0.14		-85161.1		0.0009556314		146.8294827586				0.0010822181		186.2

		-0.16		-74438.6		0.0010355987		137.8492592593				0.0019270261		250						-0.16		-91701.7		0.0010921502		158.1063793103				0.0019316901		270

		-0.18		-79458.8		0.0011650485		147.1459259259												-0.18		-97715.5		0.0012286689		168.475

		-0.2		-84271.2		0.0012944984		156.0577777778												-0.2		-103400		0.0013651877		178.275862069

		-0.22		-88912.3		0.0014239482		164.6524074074												-0.22		-108849		0.0015017065		187.6706896552

		-0.24		-93404.4		0.0015533981		172.9711111111												-0.24		-114112		0.0016382253		196.7448275862

		-0.26		-97762.7		0.0016828479		181.042037037												-0.26		-119219		0.001774744		205.55

		-0.28		-101999		0.0018122977		188.887037037												-0.28		-124186		0.0019112628		214.1137931034

		-0.3		-106122		0.0019417476		196.5222222222												-0.3		-129029		0.0020477816		222.4637931034

		-0.32		-110140		0.0020711974		203.962962963												-0.32		-133755		0.0021843003		230.6120689655

		-0.34		-114059		0.0022006472		211.2203703704												-0.34		-138375		0.0023208191		238.5775862069

		-0.36		-117886		0.0023300971		218.3074074074												-0.36		-142893		0.0024573379		246.3672413793

		-0.38		-121625		0.0024595469		225.2314814815												-0.38		-147317		0.0025938567		253.9948275862

		-0.4		-125283		0.0025889968		232.0055555556												-0.4		-151650		0.0027303754		261.4655172414

		-0.42		-128862		0.0027184466		238.6333333333

		-0.44		-132368		0.0028478964		245.1259259259

		-0.46		-135803		0.0029773463		251.487037037

		bw=100		bf=130		tw=1.8		tf=1				3L=		282						bw=100		bf=130		tw=2		tf=1				3L=		275

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-18527.4		0.000141844		29.8829032258		0.65		71.8		275.4		228.588140319				-0.02		-20226.2		0.0001454545		30.6457575758		0.72		73.5		329.4		275.6404652838

		-0.04		-36282.9		0.0002836879		58.5208064516				Kl1		Kmix						-0.04		-39631.3		0.0002909091		60.0474242424				Kl1		Kmix

		-0.06		-51712.9		0.0004255319		83.4079032258				0.77		0.49						-0.06		-56752.5		0.0004363636		85.9886363636				0.79		0.49

		-0.08		-65935.3		0.0005673759		106.3472580645												-0.08		-72790.9		0.0005818182		110.2892424242

		-0.1		-79377.5		0.0007092199		128.0282258065				0		0						-0.1		-88297.8		0.0007272727		133.7845454545				0		0

		-0.12		-91727.9		0.0008510638		147.9482258065				0.0003417336		71.8						-0.12		-103227		0.0008727273		156.4045454545				0.0003500127		73.5

		-0.14		-102450		0.0009929078		165.2419354839				0.0013115795		228.6						-0.14		-117270		0.0010181818		177.6818181818				0.0015684443		275.6

		-0.16		-111424		0.0011347518		179.7161290323				0.0021999358		320						-0.16		-129865		0.0011636364		196.7651515152				0.0019995379		320

		-0.18		-119147		0.0012765957		192.1725806452												-0.18		-140552		0.0013090909		212.9575757576

		-0.2		-126137		0.0014184397		203.4467741935												-0.2		-149543		0.0014545455		226.5803030303

		-0.22		-132690		0.0015602837		214.0161290323												-0.22		-157432		0.0016		238.5333333333

		-0.24		-138956		0.0017021277		224.1225806452												-0.24		-164670		0.0017454545		249.5

		-0.26		-145009		0.0018439716		233.885483871												-0.26		-171502		0.0018909091		259.8515151515

		-0.28		-150892		0.0019858156		243.3741935484												-0.28		-178053		0.0020363636		269.7772727273

		-0.3		-156631		0.0021276596		252.6306451613												-0.3		-184391		0.0021818182		279.3803030303

		-0.32		-162244		0.0022695035		261.6838709677												-0.32		-190558		0.0023272727		288.7242424242

		-0.34		-167741		0.0024113475		270.55												-0.34		-196578		0.0024727273		297.8454545455

		-0.36		-173133		0.0025531915		279.2467741935												-0.36		-202467		0.0026181818		306.7681818182

		-0.38		-178425		0.0026950355		287.7822580645												-0.38		-208240		0.0027636364		315.5151515152

		-0.4		-183624		0.0028368794		296.1677419355												-0.4		-213903		0.0029090909		324.0954545455

		-0.42		-188736		0.0029787234		304.4129032258												-0.42		-219466		0.0030545455		332.5242424242

		bw=100		bf=140		tw=1		tf=1				3L=		370						bw=100		bf=140		tw=1.2		tf=1				3L=		349

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-10851		0.0001081081		22.60625		0.36		46.9		109.7		82.6663842433				-0.02		-12494.1		0.0001146132		24.0271153846		0.39		52.2		143.6		110.673867212

		-0.04		-20352.1		0.0002162162		42.4002083333				Kl1		Kmix						-0.04		-23872.7		0.0002292264		45.9090384615				Kl1		Kmix

		-0.06		-26774.9		0.0003243243		55.7810416667				0.57		0.4						-0.06		-32367.6		0.0003438395		62.2453846154				0.64		0.45

		-0.08		-31826.5		0.0004324324		66.3052083333												-0.08		-39177.2		0.0004584527		75.3407692308

		-0.1		-36222.1		0.0005405405		75.4627083333				0		0						-0.1		-44863.2		0.0005730659		86.2753846154				0		0

		-0.12		-40234.1		0.0006486486		83.8210416667				0.0002232427		46.9						-0.12		-49864.9		0.0006876791		95.8940384615				0.0002486249		52.2

		-0.14		-43982.7		0.0007567568		91.630625				0.0005222019		82.7						-0.14		-54454.4		0.0008022923		104.72				0.0006836148		110.7

		-0.16		-47529.4		0.0008648649		99.0195833333				0.0013237926		150						-0.16		-58764		0.0009169054		113.0076923077				0.0013114045		170

		-0.18		-50910.9		0.000972973		106.064375												-0.18		-62860.4		0.0010315186		120.8853846154

		-0.2		-54151.1		0.0010810811		112.8147916667												-0.2		-66781.8		0.0011461318		128.4265384615

		-0.22		-57267.5		0.0011891892		119.3072916667												-0.22		-70553		0.001260745		135.6788461538

		-0.24		-60273.2		0.0012972973		125.5691666667												-0.24		-74191.5		0.0013753582		142.6759615385

		-0.26		-63178.9		0.0014054054		131.6227083333												-0.26		-77710.9		0.0014899713		149.4440384615

		-0.28		-65993.5		0.0015135135		137.4864583333												-0.28		-81122.3		0.0016045845		156.0044230769

		-0.3		-68724.8		0.0016216216		143.1766666667												-0.3		-84435		0.0017191977		162.375

		-0.32		-71379.6		0.0017297297		148.7075												-0.32		-87656.8		0.0018338109		168.5707692308

		-0.34		-73963.9		0.0018378378		154.0914583333

		bw=100		bf=140		tw=1.4		tf=1				3L=		329						bw=100		bf=140		tw=1.6		tf=1				3L=		313

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-14296.3		0.0001215805		25.5291071429		0.45		56.6		181.3		143.8811375117				-0.02		-16252.7		0.0001277955		27.0878333333		0.55		59.8		223.7		179.4474308967

		-0.04		-27563.9		0.0002431611		49.22125				Kl1		Kmix						-0.04		-32413.9		0.0002555911		54.0231666667				Kl1		Kmix

		-0.06		-38209.1		0.0003647416		68.2305357143				0.70		0.47						-0.06		-44814		0.0003833866		74.69				0.73		0.47

		-0.08		-47345.1		0.0004863222		84.5448214286												-0.08		-56063.3		0.0005111821		93.4388333333

		-0.1		-55102.9		0.0006079027		98.3980357143				0		0						-0.1		-66383.8		0.0006389776		110.6396666667				0		0

		-0.12		-61634.7		0.0007294833		110.0619642857				0.0002695065		56.6						-0.12		-75357.7		0.0007667732		125.5961666667				0.0002845687		59.8

		-0.14		-67360.5		0.0008510638		120.2866071429				0.0008632805		143.9						-0.14		-82914.5		0.0008945687		138.1908333333				0.0010653124		179.4

		-0.16		-72602.7		0.0009726444		129.6476785714				0.001735812		230						-0.16		-89454.6		0.0010223642		149.091				0.0017801307		250

		-0.18		-77529.9		0.0010942249		138.44625												-0.18		-95385.7		0.0011501597		158.9761666667

		-0.2		-82226.5		0.0012158055		146.8330357143												-0.2		-100940		0.0012779553		168.2333333333

		-0.22		-86738.6		0.001337386		154.8903571429												-0.22		-106236		0.0014057508		177.06

		-0.24		-91094.2		0.0014589666		162.6682142857												-0.24		-111333		0.0015335463		185.555

		-0.26		-95312.1		0.0015805471		170.2001785714												-0.26		-116267		0.0016613419		193.7783333333

		-0.28		-99406.3		0.0017021277		177.51125												-0.28		-121060		0.0017891374		201.7666666667

		-0.3		-103388		0.0018237082		184.6214285714												-0.3		-125728		0.0019169329		209.5466666667

		-0.32		-107265		0.0019452888		191.5446428571												-0.32		-130281		0.0020447284		217.135

		-0.34		-111046		0.0020668693		198.2964285714												-0.34		-134729		0.002172524		224.5483333333

		-0.36		-114738		0.0021884498		204.8892857143												-0.36		-139080		0.0023003195		231.8

		-0.38		-118346		0.0023100304		211.3321428571												-0.38		-143338		0.002428115		238.8966666667

		-0.4		-121875		0.0024316109		217.6339285714												-0.4		-147510		0.0025559105		245.85

		-0.42		-125329		0.0025531915		223.8017857143												-0.42		-151600		0.0026837061		252.6666666667

		-0.44		-128714		0.002674772		229.8464285714

		-0.46		-132033		0.0027963526		235.7732142857

		bw=100		bf=140		tw=1.8		tf=1				3L=		303						bw=100		bf=140		tw=2		tf=1				3L=		296

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-17773.1		0.0001320132		27.77046875		0.65		61.9		271.5		221.1911724881				-0.02		-19340.4		0.0001351351		28.4417647059		0.72		63.4		324.9		267.3830398852

		-0.04		-34519.2		0.0002640264		53.93625				Kl1		Kmix						-0.04		-37636.7		0.0002702703		55.3480882353				Kl1		Kmix

		-0.06		-48885.4		0.0003960396		76.3834375				0.76		0.48						-0.06		-53589.7		0.0004054054		78.8083823529				0.78		0.48

		-0.08		-62267		0.0005280528		97.2921875												-0.08		-68651.8		0.0005405405		100.9585294118

		-0.1		-74993.9		0.000660066		117.17796875				0		0						-0.1		-83251.6		0.0006756757		122.4288235294				0		0

		-0.12		-86855.5		0.0007920792		135.71171875				0.000294838		61.9						-0.12		-97363.5		0.0008108108		143.1816176471				0.0003018004		63.4

		-0.14		-97436.8		0.0009240924		152.245				0.0012928029		221.2						-0.14		-110787		0.0009459459		162.9220588235				0.0015472519		267.4

		-0.16		-106475		0.0010561056		166.3671875				0.0018762238		280						-0.16		-123144		0.0010810811		181.0941176471				0.0020692456		320

		-0.18		-114202		0.0011881188		178.440625												-0.18		-134006		0.0012162162		197.0676470588

		-0.2		-121069		0.001320132		189.1703125												-0.2		-143285		0.0013513514		210.7132352941

		-0.22		-127409		0.0014521452		199.0765625												-0.22		-151338		0.0014864865		222.5558823529

		-0.24		-133403		0.0015841584		208.4421875												-0.24		-158599		0.0016216216		233.2338235294

		-0.26		-139149		0.0017161716		217.4203125												-0.26		-165359		0.0017567568		243.175

		-0.28		-144703		0.0018481848		226.0984375												-0.28		-171783		0.0018918919		252.6220588235

		-0.3		-150099		0.001980198		234.5296875												-0.3		-177963		0.002027027		261.7102941176

		-0.32		-155356		0.0021122112		242.74375												-0.32		-183953		0.0021621622		270.5191176471

		-0.34		-160492		0.0022442244		250.76875												-0.34		-189785		0.0022972973		279.0955882353

		-0.36		-165515		0.0023762376		258.6171875												-0.36		-195482		0.0024324324		287.4735294118

		-0.38		-170437		0.0025082508		266.3078125												-0.38		-201059		0.0025675676		295.675

		-0.4		-175262		0.002640264		273.846875												-0.4		-206527		0.0027027027		303.7161764706

		-0.42		-179997		0.0027722772		281.2453125												-0.42		-211894		0.0028378378		311.6088235294

		bw=150		bf=100		tw=1		tf=2				3L=		311						bw=150		bf=100		tw=1		tf=1				3L=		521

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-14918.1		0.0001286174		27.1238181818		0.61		56.6		185.6		166.25				-0.02		-5635.54		0.0000767754		16.1015428571		0.41		36.3		74.6		55.833				m=3		0		0.0002749507		0.0002759507		0.0002959507		0.0003159507		0.0003359507		0.0003559507		0.0003759507		0.0003959507		0.0004159507		0.0004359507		0.0004559507		0.0004759507		0.0004959507		0.0005159507		0.0005359507		0.0005559507		0.0005759507		0.0005959507		0.0006159507		0.0006359507		0.0006559507		0.0006759507		0.0006959507		0.0007159507		0.0007359507		0.0007559507		0.0007759507		0.0007959507		0.0008159507		0.0008359507		0.0008559507		0.0008759507		0.0008959507		0.0009159507		0.0009359507		0.0009559507		0.0009759507		0.0009959507		0.0010159507		0.0010359507		0.0010559507		0.0010759507		0.0010959507		0.0011159507		0.0011359507		0.0011559507		0.0011759507		0.0011959507		0.0012159507		0.0012359507		0.0012559507		0.0012759507		0.0012959507		0.0013159507		0.0013359507		0.0013559507		0.0013759507		0.0013959507		0.0014159507		0.0014359507		0.0014559507		0.0014759507		0.0014959507		0.0015159507		0.0015359507		0.0015559507		0.0015759507		0.0015959507		0.0016159507		0.0016359507		0.0016559507		0.0016759507		0.0016959507		0.0017159507		0.0017359507		0.0017559507		0.0017759507		0.0017959507		0.0018159507		0.0018359507		0.0018559507		0.0018759507		0.0018959507		0.0019159507		0.0019359507		0.0019559507		0.0019759507		0.0019959507		0.0020159507		0.0020359507		0.0020559507		0.0020759507		0.0020959507		0.0021159507		0.0021359507		0.0021559507		0.0021759507		0.0021959507		0.0022159507		0.0022359507		0.0022559507

		-0.04		-29178.7		0.0002572347		53.0521818182				Kl1		Kl2		Kmix				-0.04		-10819.9		0.0001535509		30.914				Kl1		Kl2		Kmix						0		57.5776364661		57.7570742257		61.3427642191		64.9225117392		68.4961351448		72.0634085689		75.6240539278		79.1777310874		82.7240259273		86.2624353891		89.7923493189		93.3130277583		96.8235727976		100.3228935604		103.8096626374		107.2822619839		110.7387160422		114.176609788		117.5929897885		120.9842476359		124.3459880497		127.6728896365		130.9585762011		134.195531856		137.3751135509		140.4877350836		143.5233038285		146.4719629809		149.3251069027		152.076502069		154.7232227961		157.2660977363		159.7095117644		162.0606485275		164.3284427297		166.5225420246		168.6524816886		170.7271430411		172.7544699901		174.7413756953		176.6937683167		178.6166398454		180.5141804989		182.3898965147		184.2467198376		186.087104792		187.9131105535		189.7264701168		191.52864728		193.3208833965		195.1042356004		196.8796080155		198.6477772518		200.4094132622		202.1650964495		203.9153317313		205.6605601477		207.4011684697		209.1374971856		210.8698471588		212.5984852061		214.3236487798		216.04554992		217.7643785987		219.4803055596		221.1934847402		222.9040553422		224.6121436076		226.3178643481		228.0213222663		229.7226130987		231.4218246098		233.1190374546		234.8143259375		236.5077586711		238.1993991595		239.8893063079		241.5775348728		243.264135863		244.9491568923		246.6326424918		248.3146343919		249.9951717686		251.6742914696		253.3520282103		255.0284147561		256.7034820802		258.3772595105		260.0497748595		261.7210545424		263.3911236839		265.0600062142		266.7277249589		268.3943017167		270.0597573336		271.7241117694		273.3873841576		275.0495928602		276.7107555203		278.3708891073		280.0300099597

		-0.06		-42256.2		0.0003858521		76.8294545455				0.85		0.6		0.51				-0.06		-14253.7		0.0002303263		40.7248571429				0.51		0.55		0.28				m=2		0		0.0003151381		0.0003161381		0.0003261381		0.0003461381		0.0003661381		0.0003861381		0.0004061381		0.0004261381		0.0004461381		0.0004661381		0.0004861381		0.0005061381		0.0005261381		0.0005461381		0.0005661381		0.0005861381		0.0006061381		0.0006261381		0.0006461381		0.0006661381		0.0006861381		0.0007061381		0.0007261381		0.0007461381		0.0007661381		0.0007861381		0.0008061381		0.0008261381		0.0008461381		0.0008661381		0.0008861381		0.0009061381		0.0009261381		0.0009461381		0.0009661381		0.0009861381		0.0010061381		0.0010261381		0.0010461381		0.0010661381		0.0010861381		0.0011061381		0.0011261381		0.0011461381		0.0011661381		0.0011861381		0.0012061381		0.0012261381		0.0012461381		0.0012661381		0.0012861381		0.0013061381		0.0013261381		0.0013461381		0.0013661381		0.0013861381		0.0014061381		0.0014261381		0.0014461381		0.0014661381		0.0014861381		0.0015061381		0.0015261381		0.0015461381		0.0015661381		0.0015861381		0.0016061381		0.0016261381		0.0016461381		0.0016661381		0.0016861381		0.0017061381		0.0017261381		0.0017461381		0.0017661381		0.0017861381		0.0018061381		0.0018261381		0.0018461381		0.0018661381		0.0018861381		0.0019061381		0.0019261381		0.0019461381		0.0019661381		0.0019861381		0.0020061381		0.0020261381		0.0020461381		0.0020661381		0.0020861381		0.0021061381		0.0021261381		0.0021461381		0.0021661381		0.0021861381		0.0022061381		0.0022261381		0.0022461381		0.0022661381		0.0022861381

		-0.08		-54894		0.0005144695		99.8072727273												-0.08		-17061.9		0.0003071017		48.7482857143														0		66.1695341199		66.3516302104		68.1704725358		71.7959021197		75.4033034515		78.9903062675		82.5540816462		86.0912630176		89.5978636712		93.0691990521		96.4998283846		99.883538323		103.2134009292		106.4819448325		109.6814768709		112.8045722259		115.8447082866		118.796956095		121.6585869012		124.429436652		127.1119226326		129.710709634		132.23212676		134.683489086		137.0724660808		139.4065847217		141.6928952197		143.937784678		146.1469041526		148.325171733		150.4768202946		152.6054671665		154.7141909418		156.805606733		158.8819353466		160.9450644691		162.9966014922		165.0379184035		167.07018956		169.0944232706		171.1114881146		173.1221348404		175.1270145703		177.1266939627		179.1216678489		181.1123697869		183.0991809002		185.0824372948		187.0624363096		189.0394417879		191.0136885439		192.9853861591		194.9547222114		196.9218650419		198.8869661206		200.8501620829		202.8115764815		204.7713213142		206.729498325		208.6862001599		210.641511355		212.5955092134		214.5482645651		216.4998424375		218.4503026447		220.3997003084		222.3480863172		224.2955077334		226.2420081564		228.187628041		230.1324049893		232.0763740028		234.0195677118		235.9620165844		237.9037491074		239.8447919545		241.7851701348		243.7249071285		245.6640250052		247.6025445409		249.5404853172		251.4778658047		253.4147034529		255.3510147662		257.2868153683		259.2221200671		261.156942911		263.0912972441		265.0251957508		266.9586505019		268.8916729969		270.824274196		272.7564645597		274.688254081		276.6196523074		278.5506683771		280.4813110401		282.4115886743		284.3415093228		286.2710807011		288.2003102169

		-0.1		-67094.8		0.0006430868		121.9905454545				0		0						-0.1		-19696.7		0.0003838772		56.2762857143				0		0						m=1		0		0.00048417		0.00048517		0.0004890162		0.0005090162		0.0005290162		0.0005490162		0.0005690162		0.0005890162		0.0006090162		0.0006290162		0.0006490162		0.0006690162		0.0006890162		0.0007090162		0.0007290162		0.0007490162		0.0007690162		0.0007890162		0.0008090162		0.0008290162		0.0008490162		0.0008690162		0.0008890162		0.0009090162		0.0009290162		0.0009490162		0.0009690162		0.0009890162		0.0010090162		0.0010290162		0.0010490162		0.0010690162		0.0010890162		0.0011090162		0.0011290162		0.0011490162		0.0011690162		0.0011890162		0.0012090162		0.0012290162		0.0012490162		0.0012690162		0.0012890162		0.0013090162		0.0013290162		0.0013490162		0.0013690162		0.0013890162		0.0014090162		0.0014290162		0.0014490162		0.0014690162		0.0014890162		0.0015090162		0.0015290162		0.0015490162		0.0015690162		0.0015890162		0.0016090162		0.0016290162		0.0016490162		0.0016690162		0.0016890162		0.0017090162		0.0017290162		0.0017490162		0.0017690162		0.0017890162		0.0018090162		0.0018290162		0.0018490162		0.0018690162		0.0018890162		0.0019090162		0.0019290162		0.0019490162		0.0019690162		0.0019890162		0.0020090162		0.0020290162		0.0020490162		0.0020690162		0.0020890162		0.0021090162		0.0021290162		0.0021490162		0.0021690162		0.0021890162		0.0022090162		0.0022290162		0.0022490162		0.0022690162		0.0022890162		0.0023090162		0.0023290162		0.0023490162		0.0023690162		0.0023890162		0.0024090162		0.0024290162		0.0024490162

		-0.12		-77920.5		0.0007717042		141.6736363636				0.0002695238		56.6						-0.12		-22234.9		0.0004606526		63.5282857143				0.0001728571		36.3								0		101.6754313251		101.8394082224		102.4683893118		105.6959495055		108.852740594		111.9419593528		114.967793027		117.9350676422		120.8489174344		123.7145104194		126.5368442408		129.3206109331		132.0701201037		134.7892666285		137.4815294124		140.1499898941		142.7973618243		145.4260262142		148.0380675991		150.6353091724		153.2193454212		155.7915717054		158.3532105227		160.905334556		163.4488867565		165.9846977113		168.5135006083		171.0359441273		173.552603494		176.0639900044		178.5705591715		181.0727177638		183.5708298795		186.065222112		188.5561880763		191.0439923464		193.5288737672		196.0110484667		198.4907123677		200.9680434236		203.4432035941		205.9163405214		208.3875890652		210.8570726018		213.3249042064		215.7911876573		218.2560183983		220.7194842731		223.181666299		225.6426393076		228.1024724705		230.561229862		233.0189708869		235.4757506848		237.9316205169		240.3866281129		242.8408178841		245.294231323		247.7469071202		250.1988814889		252.6501882861		255.1008592439		257.5509240856		260.0004107451		262.4493454546		264.8977528686		267.3456561887		269.7930772959		272.2400367647		274.686554045		277.1326475046		279.5783345014		282.0236314023		284.4685537558		286.9131162715		289.3573328913		291.8012168082		294.2447805599		296.6880360774		299.130994681		301.5736671151		304.0160636306		306.4581939597		308.9000674444		311.341692847		313.7830787123		316.2242329859		318.6651634563		321.1058774012		323.5463818487		325.9866835552		328.4267889389		330.8667040643		333.3064348975		335.7459870684		338.1853659579		340.6245767947		343.0636245025		345.5025138688		347.9412494833		350.3798357596

		-0.14		-86518.6		0.0009003215		157.3065454545				0.0008838095		166.3						-0.14		-24703.1		0.000537428		70.5802857143				0.0003552381		55.8

		-0.16		-93342.3		0.0010289389		169.7132727273				0.001945901		280						-0.16		-27114.7		0.0006142035		77.4705714286				0.0021778061		163

		-0.18		-95629		0.0011575563		173.8709090909												-0.18		-29477.5		0.0006909789		84.2214285714

		-0.2		-102199		0.0012861736		185.8163636364												-0.2		-31797.1		0.0007677543		90.8488571429

		-0.22		-108605		0.001414791		197.4636363636												-0.22		-34077.2		0.0008445298		97.3634285714

		-0.24		-114888		0.0015434084		208.8872727273												-0.24		-36320.9		0.0009213052		103.774

		-0.26		-121074		0.0016720257		220.1345454545												-0.26		-38530.3		0.0009980806		110.0865714286

		-0.28		-127183		0.0018006431		231.2418181818												-0.28		-40707.3		0.001074856		116.3065714286

		-0.3		-133227		0.0019292605		242.2309090909												-0.3		-42853.2		0.0011516315		122.4377142857

		-0.32		-139214		0.0020578778		253.1163636364												-0.32		-44969.1		0.0012284069		128.4831428571

		-0.34		-145152		0.0021864952		263.9127272727												-0.34		-47056		0.0013051823		134.4457142857

		-0.36		-151045		0.0023151125		274.6272727273												-0.36		-49114.5		0.0013819578		140.3271428571

		-0.38		-156898																-0.38		-51145.1		0.0014587332		146.1288571429

		-0.4		-162712																-0.4		-53147.6		0.0015355086		151.8502857143

		-0.42		-168492																-0.42		-55121.7		0.0016122841		157.4905714286

		bw=150		bf=100		tw=1		tf=1.2				3L=		494						bw=150		bf=100		tw=1		tf=1.4				3L=		382

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-6644.67		0.0000809717		17.0376153846		0.43		44.1		92.2		72.479				-0.02		-9486.44		0.000104712		22.0614883721		0.45		50.9		112.2		96.875

		-0.04		-13085.2		0.0001619433		33.5517948718				Kl1		Kl2		Kmix				-0.04		-18556.2		0.0002094241		43.1539534884				Kl1		Kl2		Kmix

		-0.06		-17965.3		0.000242915		46.0648717949				0.59		0.58		0.34				-0.06		-25817.4		0.0003141361		60.0404651163				0.75		0.59		0.44

		-0.08		-21549.2		0.0003238866		55.2543589744												-0.08		-31282.3		0.0004188482		72.7495348837

		-0.1		-24765.9		0.0004048583		63.5023076923				0		0						-0.1		-35808.6		0.0005235602		83.2758139535				0		0

		-0.12		-27827.3		0.00048583		71.3520512821				0.00021		44.1						-0.12		-40005.5		0.0006282723		93.0360465116				0.000242381		50.9

		-0.14		-30795.4		0.0005668016		78.9625641026				0.0004390476		72.5						-0.14		-44055.8		0.0007329843		102.4553488372				0.0005342857		96.9

		-0.16		-33694.8		0.0006477733		86.3969230769				0.0016788375		161						-0.16		-48016.4		0.0008376963		111.6660465116				0.0012499242		163

		-0.18		-36538		0.0007287449		93.6871794872												-0.18		-51909.4		0.0009424084		120.7195348837

		-0.2		-39332.6		0.0008097166		100.8528205128												-0.2		-55745.5		0.0010471204		129.6406976744

		-0.22		-42083.6		0.0008906883		107.9066666667												-0.22		-59530.7		0.0011518325		138.4434883721

		-0.24		-44794.9		0.0009716599		114.8587179487												-0.24		-63269.3		0.0012565445		147.1379069767

		-0.26		-47469.2		0.0010526316		121.7158974359												-0.26		-66964.3		0.0013612565		155.7309302326

		-0.28		-50108.9		0.0011336032		128.4843589744												-0.28		-70618		0.0014659686		164.2279069767

		-0.3		-52715.9		0.0012145749		135.168974359

		-0.32		-55291.8		0.0012955466		141.7738461538

		-0.34		-57837.7		0.0013765182		148.3017948718

		-0.36		-60354.7		0.0014574899		154.7556410256

		-0.38		-62843.6		0.0015384615		161.1374358974

		bw=150		bf=100		tw=1		tf=1.6				3L=		335						bw=150		bf=100		tw=1		tf=1.8				3L=		319

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-11828.2		0.000119403		25.1663829787		0.50		54.1		134.4		119.946				-0.02		-13557		0.0001253918		26.5823529412		0.58		55.7		158.8		142.304

		-0.04		-23080.9		0.000238806		49.1082978723				Kl1		Kl2		Kmix				-0.04		-26984.6		0.0002507837		52.9109803922				Kl1		Kl2		Kmix

		-0.06		-32911.3		0.000358209		70.0240425532				0.82		0.6		0.49				-0.06		-38393.7		0.0003761755		75.2817647059				0.84		0.6		0.5

		-0.08		-41391.5		0.0004776119		88.0670212766												-0.08		-49273.5		0.0005015674		96.6147058824

		-0.1		-47949.2		0.0005970149		102.0195744681				0		0						-0.1		-59004.2		0.0006269592		115.6945098039				0		0

		-0.12		-53393.9		0.0007164179		113.6040425532				0.000257619		54.1						-0.12		-66738.4		0.0007523511		130.8596078431				0.0002652381		55.7

		-0.14		-58447.6		0.0008358209		124.3565957447				0.00064		119.9						-0.14		-73023.9		0.0008777429		143.1841176471				0.0007561905		142.3

		-0.16		-63329.9		0.0009552239		134.7444680851				0.0011653061		174						-0.16		-78775.8		0.0010031348		154.4623529412				0.0013056762		200

		-0.18		-68109.2		0.0010746269		144.9131914894												-0.18		-84314.9		0.0011285266		165.3233333333

		-0.2		-72812.7		0.0011940299		154.9206382979												-0.2		-89734.1		0.0012539185		175.9492156863

		-0.22		-77453.5		0.0013134328		164.7946808511												-0.22		-95068.8		0.0013793103		186.4094117647

		-0.24		-82038.9		0.0014328358		174.5508510638												-0.24		-100336		0.0015047022		196.737254902

		bw=150		bf=100		tw=1		tf=2.2				3L=		307						bw=150		bf=100		tw=1		tf=2.4				3L=		305

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-16217.4		0.0001302932		27.4871186441		0.73		57.2		214.9		194.399				-0.02		-16067.5		0.0001311475		25.503968254		0.82		57.6		246.6		223.92

		-0.04		-31767.2		0.0002605863		53.8427118644				Kl1		Kl2		Kmix				-0.04		-31842.8		0.0002622951		50.5441269841				Kl1		Kl2		Kmix

		-0.06		-46152		0.0003908795		78.2237288136				0.87		0.6		0.52				-0.06		-47387.9		0.0003934426		75.2188888889				0.88		0.61		0.54

		-0.08		-60159.8		0.0005211726		101.9657627119												-0.08		-62742.3		0.0005245902		99.590952381

		-0.1		-73934.8		0.0006514658		125.313220339				0		0						-0.1		-77918.7		0.0006557377		123.6804761905				0		0

		-0.12		-87355.9		0.000781759		148.0608474576				0.000272381		57.2						-0.12		-92891		0.0007868852		147.446031746				0.0002742857		57.6

		-0.14		-98676.4		0.0009120521		167.2481355932				0.0010233333		194.4						-0.14		-107533		0.0009180328		170.6873015873				0.0011742857		223.9

		-0.16		-107372		0.0010423453		181.986440678				0.0015325		250						-0.16		-120672		0.0010491803		191.5428571429				0.0014924515		260

		-0.18		-115137		0.0011726384		195.1474576271												-0.18		-130521		0.0011803279		207.1761904762

		-0.2		-122337		0.0013029316		207.3508474576												-0.2		-139248		0.0013114754		221.0285714286

		-0.22		-124713		0.0014332248		211.3779661017												-0.22		-147395		0.001442623		233.9603174603

		-0.24		-131764		0.0015635179		223.3288135593												-0.24		-155217		0.0015737705		246.3761904762

		-0.26		-138680		0.0016938111		235.0508474576												-0.26		-162847		0.001704918		258.4873015873

		-0.28		-145491		0.0018241042		246.5949152542												-0.28		-170349

		-0.3		-152218																-0.3		-177758

		-0.32		-158873																-0.32		-185094

		-0.34		-165467																-0.34		-192367

		bw=150		bf=100		tw=1		tf=2.6				3L=		303						bw=150		bf=100		tw=1		tf=2.8				3L=		305

		Displacement		Load		Displacement		Load												Displacement		Load		Displacement		Load

		0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)				0		0		0		0		exact Kaver		CSl1		CSl2		CSl2(m)

		-0.02		-17292.5		0.0001320132		25.8097014925		0.85		57.9		280.8		254.052				-0.02		-16067.5		0.0001311475		25.503968254		1.00		57.6		246.6		223.92

		-0.04		-34295.9		0.0002640264		51.1879104478				Kl1		Kl2		Kmix				-0.04		-31842.8		0.0002622951		50.5441269841				Kl1		Kl2		Kmix

		-0.06		-51075.4		0.0003960396		76.2319402985				0.88		0.61		0.54				-0.06		-47387.9		0.0003934426		75.2188888889				0.88		0.61		0.3602684564

		-0.08		-67676.6		0.0005280528		101.0098507463

		-0.1		-84125.2		0.000660066		125.56				0		0

		-0.12		-100428		0.0007920792		149.8925373134				0.0002757143		57.9

		-0.14		-116566		0.0009240924		173.9791044776				0.0013371429		254.1

		-0.16		-132448		0.0010561056		197.6835820896				0.0016541446		290

		-0.18		-146618		0.0011881188		218.8328358209

		-0.2		-156919		0.001320132		234.2074626866

		-0.22		-166244		0.0014521452		248.1253731343

		-0.24		-175077		0.0015841584		261.3089552239

		-0.26		-183586		0.0017161716		274.0089552239

		-0.28		-191877		0.0018481848		286.3835820896

		-0.3		-200011

		-0.32		-208030

		-0.34		-215956

		-0.36		-223807

		-0.38		-231592

		-0.4		-239319

		-0.42		-246992

		-0.44		-254614

		-0.46		-262189

		-0.48		-269718

		-0.5		-277202

		-0.52		-284642

		-0.54		-292041

		-0.56		-299398

		-0.58		-306714

		-0.6		-313991

		-0.62		-321229

		-0.64		-328429

		-0.66		-335591

		-0.68		-342716
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		bw=120		bf=90		lip=4.8		tf=1.1		lipped-channel

		standard								L=400								L=600								L=800								L=1000

		Displacement		Load		Displacement		Load		Displacement		Load		Displacement		Load		Displacement		Load		Displacement		Load		Displacement		Load		Displacement		Load		Displacement		Load		Displacement		Load

		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		0.04		8013.35		0.0001173021		24.5319148936		-0.02		-6970.12		0.0001		21.4280619774		-0.02		-4637.25		0.0000666667		14.2561792917		-0.02		-3473.54		0.00005		10.6786153468		-0.02		-2755.93		0.00004		8.4724852435

		0.08		14310.9		0.0002346041		43.8111128119		-0.04		-13907.7		0.0002		42.7560870635		-0.04		-9271		0.0001333333		28.5015986227		-0.04		-6944.67		0.0001		21.3498216921		-0.04		-5489.26		0.00008		16.8754918839

		0.12		19270.4		0.0003519062		58.9940303077		-0.06		-19277		0.0003		59.2627889818		-0.06		-13871.2		0.0002		42.6438760453		-0.06		-10404.9		0.00015		31.9875184456		-0.06		-8156.95		0.00012		25.0767031481

		0.16		23799.4		0.0004692082		72.8590234196		-0.08		-22841.7		0.0004		70.2216551894		-0.08		-17483.7		0.0002666667		53.7496925726		-0.08		-13657.9		0.0002		41.9881333005		-0.08		-10628.6		0.00016		32.6752336449

		0.2		26451.4		0.0005865103		80.9778049901		-0.1		-25595.9		0.0005		78.688821938		-0.1		-20155.2		0.0003333333		61.9626168224		-0.1		-15994.4		0.00025		49.1711756026		-0.1		-12764.3		0.0002		39.2409616331

		0.23		28266.2		0.0006744868		86.533598653		-0.12		-27955.5		0.0006		85.9428799803		-0.12		-22464.5		0.0004		69.0620388588		-0.12		-18047.3		0.0003		55.4823536645		-0.12		-14654.9		0.00024		45.0531849484

		0.26		29997.1		0.0007624633		91.8325424767		-0.14		-30147.4		0.0007		92.6813821938		-0.14		-24465.1		0.0004666667		75.212432366		-0.14		-19954		0.00035		61.3440727988		-0.14		-16414.4		0.00028		50.4623708805

		0.29		31647		0.0008504399		96.883514465		-0.16		-32232.4		0.0008		99.0912444663		-0.16		-26259.3		0.0005333333		80.7282956222		-0.16		-21699.6		0.0004		66.7105263158		-0.16		-18082.8		0.00032		55.5914904083

		0.33		33740.2		0.0009677419		103.29159651		-0.18		-34233.4		0.0009		105.2428676832		-0.18		-27879.8		0.0006		85.7101574029		-0.18		-23258.1		0.00045		71.5017830792		-0.18		-19664.3		0.00036		60.4534554845

		0.37		35730.9		0.001085044		109.3858870351		-0.2		-36162.6		0.001		111.1737579931		-0.2		-29362		0.0006666667		90.2668470241		-0.2		-24641.6		0.0005		75.7550418101		-0.2		-21145.7		0.0004		65.0076856862

		0.41		37634		0.001202346		115.2120006123		-0.22		-38028.3		0.0011		116.9094318741		-0.22		-30772.5		0.0007333333		94.6031111658		-0.22		-25908.8		0.00055		79.6507624201		-0.22		-22509.6		0.00044		69.2006886375

		0.45		39460.8		0.0013196481		120.8045308434		-0.24		-39837.1		0.0012		122.4701795376		-0.24		-32136.6		0.0008		98.796728972		-0.24		-27104.4		0.0006		83.3263649779		-0.24		-23760.1		0.00048		73.0450688637

		0.49		41219.4		0.0014369501		126.188274912		-0.26		-41594.4		0.0013		127.8726020659		-0.26		-33461.1		0.0008666667		102.8686055091		-0.26		-28250.1		0.00065		86.8485612395		-0.26		-24923.7		0.00052		76.6222946385

		0.53		42916.4		0.0015542522		131.3834379305		-0.28		-43304.8		0.0014		133.1308411215		-0.28		-34749.9		0.0009333333		106.8307304476		-0.28		-29356.8		0.0007		90.2508607969		-0.28		-26024.8		0.00056		80.0073782587

		0.57		44557.2		0.0016715543		136.4065513547		-0.3		-44972.5		0.0015		138.2578086572		-0.3		-36005.7		0.001		110.6914043286		-0.3		-30431.1		0.00075		93.5535538613		-0.3		-27078		0.0006		83.2452041318

		0.61		46147		0.0017888563		141.273534364		-0.32		-46600.9		0.0016		143.2639572061		-0.32		-37230.9		0.0010666667		114.4580054107		-0.32		-31477.4		0.0008		96.7701672405		-0.32		-28092		0.00064		86.3625184456

		0.65		47690.1		0.0019061584		145.9975508955		-0.34		-48193.3		0.0017		148.1594318741		-0.34		-38427.8		0.0011333333		118.1376045253		-0.34		-32498.9		0.00085		99.9105386129		-0.34		-29072.5		0.00068		89.3768445647

		0.69		49190.4		0.0020234604		150.5905403337		-0.36		-49752.5		0.0018		152.9528406296		-0.36		-39598.6		0.0012		121.7369650762		-0.36		-33498.1		0.0009		102.9823536645		-0.36		-30023.9		0.00072		92.3017092966

		0.73		50651.3		0.0021407625		155.062911373		-0.38		-51280.8		0.0019		157.651254304		-0.38		-40745.2		0.0012666667		125.2619281849		-0.38		-34477.2		0.00095		105.9923757993		-0.38		-30949.2		0.00076		95.1463354648

		0.77		52075.4		0.0022580645		159.4226236032		-0.4		-52780.5		0.002		162.2617437285		-0.4		-41869.3		0.0013333333		128.7177201181		-0.4		-35437.6		0.001		108.9449090015		-0.4		-31851		0.0008		97.918716183

										-0.42		-54253.6		0.0021		166.790457452		-0.42		-42972.5		0.0014		132.1092597147		-0.42		-36380.9		0.00105		111.8448721102		-0.42		-32731.6		0.00084		100.6259222823

										-0.44		-55701.6		0.0022		171.2420068864		-0.44		-44056.2		0.0014666667		135.4408509592		-0.44		-37308.3		0.0011		114.6959542548		-0.44		-33592.9		0.00088		103.2737948844

										-0.46		-57126.3		0.0023		175.6219257255		-0.46		-45121.7		0.0015333333		138.7164904083		-0.46		-38220.7		0.00115		117.5009222823		-0.46		-34436.4		0.00092		105.8669454009

										-0.48		-58528.9		0.0024		179.9339030989		-0.48		-46170.1		0.0016		141.9395597639		-0.48		-39119.2		0.0012		120.2631578947		-0.48		-35263.6		0.00096		108.4099852435

										-0.5		-59910.6		0.0025		184.1816281358		-0.5		-47202.5		0.0016666667		145.113440728		-0.5		-40004.5		0.00125		122.9848130841		-0.5		-36075.6		0.001		110.9062961141

										-0.52		-61272.7		0.0026		188.369097393		-0.52		-48219.6		0.0017333333		148.2402852927		-0.52		-40877.3		0.0013		125.6680398426		-0.52		-36873.6		0.00104		113.3595671422

										-0.54		-62616.1		0.0027		192.4990777177		-0.54		-49222.4		0.0018		151.3231677324		-0.54		-41738.4		0.00135		128.3152975898		-0.54		-37658.5		0.00108		115.7725651746

										-0.56		-63941.7		0.0028		196.5743359567		-0.56		-50211.6		0.0018666667		154.3642400394		-0.56		-42588.3		0.0014		130.9281234629		-0.56		-38431.1		0.00112		118.1477496311

										-0.58		-65250.4		0.0029		200.5976389572		-0.58		-51187.7		0.0019333333		157.3650393507		-0.58		-43427.5		0.00145		133.5080545991		-0.58		-39192.1		0.00116		120.4872725037

										-0.6		-66542.8		0.003		204.5708312838		-0.6		-52151.5		0.002		160.3280250861		-0.6		-44256.5		0.0015		136.0566281358		-0.6		-39942		0.0012		122.7926709297

										-0.62		-67819.8		0.0031		208.4966797836		-0.62		-53103.5		0.0020666667		163.2547343827		-0.62		-45075.8		0.00155		138.57538121		-0.62		-40681.6		0.00124		125.0664043286

										-0.64		-69082		0.0032		212.3770290212		-0.64		-54044.2		0.0021333333		166.1467043778		-0.64		-45885.8		0.0016		141.0655435317		-0.64		-41411.3		0.00128		127.3097024102

										-0.66		-70329.9		0.0033		216.2134161338		-0.66		-54974		0.0022		169.0051647811		-0.66		-46686.8		0.00165		143.5280373832		-0.66		-42131.4		0.00132		129.523487457

										-0.68		-71564.1		0.0034		220.0076856862		-0.68		-55893.4		0.0022666667		171.83165273		-0.68		-47479.3		0.0017		145.9643999016		-0.68		-42842.6		0.00136		131.7099114609

										-0.7		-72785.1		0.0035		223.7613748155		-0.7		-56802.9		0.0023333333		174.6277053615		-0.7		-48263.4		0.00175		148.3749385145		-0.7		-43545.1		0.0014		133.8695892769

										-0.72		-73993.4		0.0036		227.4760206591		-0.72		-57702.7		0.0024		177.3939375307		-0.72		-49039.6		0.0018		150.7611903591		-0.72		-44239.4		0.00144		136.0040580423

										-0.74		-75189.4		0.0037		231.1528529267		-0.74		-58593.3		0.0024666667		180.1318863748		-0.74		-49808.1		0.00185		153.1237702902		-0.74		-44925.8		0.00148		138.1142400394

										-0.76		-76373.5		0.0038		234.7931013281		-0.76		-59474.9		0.0025333333		182.8421667486		-0.76		-50569.2		0.0019		155.4636005903		-0.76		-45604.6		0.00152		140.2010575504

										-0.78		-77546		0.0039		238.3976881456		-0.78		-60347.9		0.0026		185.526008362		-0.78		-51323.1		0.00195		157.7812961141		-0.78		-46276.2		0.00156		142.2657402853

										-0.8		-78707.3		0.004		241.967843089		-0.8		-61212.6		0.0026666667		188.1843334973		-0.8		-52070		0.002		160.0774717167		-0.8		-46940.9		0.0016		144.3092105263

										-0.82		-79857.8		0.0041		245.5047958682		-0.82		-62069.2		0.0027333333		190.8177570093		-0.82		-52810.3		0.00205		162.3533571077		-0.82		-47598.9		0.00164		146.3320831284

										-0.84		-80997.6		0.0042		249.0088539105										-0.84		-53544		0.0021		164.6089522873		-0.84		-48250.5		0.00168		148.3352803738

										-0.86		-82127		0.0043		252.4809394983										-0.86		-54271.4		0.00215		166.8451795376		-0.86		-48896.1		0.00172		150.3200319725

										-0.88		-83246.4		0.0044		255.9222823414										-0.88		-54992.6		0.0022		169.0623462863		-0.88		-49535.8		0.00176		152.2866453517

										-0.9		-84355.8		0.0045		259.3328824397										-0.9		-55707.9		0.00225		171.2613748155		-0.9		-50169.8		0.0018		154.2357353665

										-0.92		-85455.5		0.0046		262.7136620757										-0.92		-56417.3		0.0023		173.4422651254		-0.92		-50798.4		0.00184		156.1682242991

										-0.94		-86545.6		0.0047		266.0649286768										-0.94		-57121.2		0.00235		175.6062469257		-0.94		-51421.8		0.00188		158.0847270044

																										-0.96		-57819.5		0.0024		177.753012789		-0.96		-52040.1		0.00192		159.98555091

																										-0.98		-58512.4		0.00245		179.8831775701		-0.98		-52653.5		0.00196		161.8713108706

																										-1		-59200.2		0.0025		181.9976635514		-1		-53262.3		0.002		163.7429291687

																										-1.02		-59882.8		0.00255		184.0961633055		-1.02		-53866.4		0.00204		165.6000983768

																										-1.04		-60560.5		0.0026		186.1795991146		-1.04		-54466		0.00208		167.4434333497

																										-1.06		-61233.4		0.00265		188.2482784063		-1.06		-55061.4		0.00212		169.2738563699

																										-1.08		-61901.4		0.0027		190.3018937531		-1.08		-55652.5		0.00216		171.0910600098

																										-1.1		-62564.9		0.00275		192.3416748647		-1.1		-56239.6		0.0022		172.8959665519

																																		-1.12		-56822.7		0.00224		174.6885759961

																																		-1.14		-57401.9		0.00228		176.4691957698

																																		-1.16		-57977.2		0.00232		178.2378258731

																										Kav		0.3243137173

																																				1		62.1		16.2		1		1		1		1		1				1		1		2		1.652		100

																																				2		53.1666666667		16.2		1		1		1		1		1				2		2		3		1.652		100

																																				3		44.2333333333		16.2		1		1		1		1		1				3		3		4		1.652		100

																																				4		35.3		16.2		1		1		1		1		1				4		4		5		1.652		100

																																				5		35.3		8.1		1		1		1		1		1				5		5		6		1.652		100

																																				6		35.3		0		1		1		1		1		1				6		6		7		1.652		100

																																				7		26.475		0		1		1		1		1		1				7		7		8		1.652		100

																																				8		17.65		0		1		1		1		1		1				8		8		9		1.652		100

																																				9		8.825		0		1		1		1		1		1				9		9		10		1.652		100

																																				10		0		0		1		1		1		1		1				10		10		11		1.652		100

																																				11		0		9.875		1		1		1		1		1				11		11		12		1.652		100

																																				12		0		19.75		1		1		1		1		1				12		12		13		1.652		100

																																				13		0		29.625		1		1		1		1		1				13		13		14		1.652		100

																																				14		0		39.5		1		1		1		1		1				14		14		15		1.652		100

																																				15		0		49.375		1		1		1		1		1				15		15		16		1.652		100

																																				16		0		59.25		1		1		1		1		1				16		16		17		1.652		100

																																				17		0		69.125		1		1		1		1		1				17		17		18		1.652		100

																																				18		0		79		1		1		1		1		1				18		18		19		1.652		100

																																				19		8.825		79		1		1		1		1		1				19		19		20		1.652		100

																																				20		17.65		79		1		1		1		1		1				20		20		21		1.652		100

																																				21		26.475		79		1		1		1		1		1				21		21		22		1.652		100

																																				22		35.3		79		1		1		1		1		1				22		22		23		1.652		100

																																				23		35.3		70.9		1		1		1		1		1				23		23		24		1.652		100

																																				24		35.3		62.8		1		1		1		1		1				24		24		25		1.652		100

																																				25		44.2333333333		62.8		1		1		1		1		1				25		25		26		1.652		100

																																				26		53.1666666667		62.8		1		1		1		1		1				26		26		27		1.652		100

																																				27		62.1		62.8		1		1		1		1		1

				0		0

		37.6		0.0001790476		37.6

		81.7		0.0003890476		67.147

		149.7		0.0007128571		99.107

		450		0.0021428571		183.191

				L=400

						0		0

				60.4		0.000287619		60.4

				89.4		0.0004257143		79.83

				159.1		0.000757619		112.589

				550		0.0026190476		222.041

				L=600

						0		0

				52.3		0.0002490476		52.3

				86.4		0.0004114286		75.147

				156.3		0.0007442857		108

				500		0.0023809524		204.236

																																				65		87.84		112.87		1		1		1		1		1

				L=800

						0		0

				45.5		0.0002166667		45.5

				82.6		0.0003933333		70.357

				155.3		0.0007395238		104.526

				550		0.0026190476		215.042																0.2220408163

				L=1000

						0		0

				43.1		0.0002052381		43.1

				84.9		0.0004042857		69.434

				155.1		0.0007385714		102.428

				500		0.0023809524		199

						0		0

				46		0.0002190476		46

				80		0.0003809524		67.42

				80.3		0.000382381		67.516

						0.0021683983		150

																										0.3423357664





		





		





		





		





		





		





		Section		Ll1		Ll2		Ld		Cs		Csl1		Csl2		Csd		Kl1		Kl2		Kd		Kmix1		Kmix2

		CH1-5-800		101		72		332		43.2		85.4		155.3		44.9		0.7		0.6		0.67		0.34		0.22

		CH1-6-800		101		72		396		57.3		85.1		155.9		61		0.7		0.6		0.66		0.34		0.22

		CH1-7-400		101		72		445		85.1		88.1		160.3		130.8		0.71		0.61		0.66		0.34		0.22

		CH1-7-600		101		79		452		79.8		84.0		140.9		89.3		0.71		0.64		0.66		0.34		0.22

		CH1-7-800		101		79		452		75.0		82.9		140.9		83.5		0.71		0.64		0.66		0.34		0.22

		CH2-7-800		77		76		464		84.8		147.7		147.8		89		0.67		0.67		0.67		0.34		0.22

		CH2-7-1000		77		76		464		73.2		147.2		147.4		75.7		0.67		0.67		0.67		0.34		0.22

		CH2-8-1000		76		76		512		88.6		148.1		148.2		92		0.67		0.67		0.66		0.33		0.22

		CH2-10-1000		76		76		596		123.4		149.7		149.9		128.1		0.67		0.68		0.65		0.33		0.22

		CH2-12-1000		76		76		683		148		150.1		150.2		153.6		0.68		0.68		0.64		0.33		0.22

		H1-1		99		87		749		285.8		287.4		345.1		300.9		0.48		0.64		0.63		0.27		0.19

		H5-1		147		94		605		113.2		114.2		288		147.5		0.73		0.67		0.66		0.35		0.23

		H5-2		152		108		670		104.2		110.4		212		113.3		0.71		0.62		0.66		0.34		0.22

		H5-3		143		79		539		116.4		117.2		420.6		181.1		0.72		0.7		0.65		0.34		0.23

		H8-1		79		44		288		102.5		103.4		374.9		119.8		0.72		0.7		0.67		0.35		0.23

		H8-2		78		40		272		103.7		104.6		456.4		136		0.71		0.7		0.67		0.34		0.23

		H8-3		80		48		304		100		102.2		312.5		104.7		0.72		0.69		0.67		0.35		0.23

		H11-1		143		105		848		53.7		54.4		81.7		63		0.5		0.5		0.65		0.28		0.18

		H11-2		137		101		809		57.3		57.8		89.9		71.9		0.6		0.5		0.66		0.31		0.19

		H11-3		150		108		885		49.4		50.4		76.4		55.7		0.44		0.61		0.65		0.26		0.18

		H12-1		193		142		1126		46.2		47		70.4		53		0.48		0.52		0.65		0.28		0.18

		H12-2		193		142		1220		46.5		47.1		70.5		60.7		0.48		0.52		0.65		0.27		0.18

		H12-3		193		142		1032		40.6		46.9		70.3		45.2		0.47		0.52		0.65		0.27		0.18

		H13-1		196		135		930		64.5		64.9		137.4		74.2		0.72		0.64		0.66		0.34		0.22

		H13-2		196		135		1005		64.6		64.9		137.9		88.5		0.72		0.65		0.66		0.34		0.23

		Z2-1		196		135		853		58.8		64.9		136.9		62.4		0.72		0.64		0.66		0.34		0.22

		Z2-2		147		94		607		112.9		114.2		288		145.2		0.73		0.67		0.65		0.34		0.23

		Z2-3		152		108		671		103.1		110.3		212		112.5		0.71		0.62		0.66		0.34		0.22

				143		79		541		116		117.2		420.6		174.5		0.72		0.7		0.63		0.34		0.23





		CH1-6-800										CH1-7-400										CH1-7-600										CH1-7-800										CH2-7-800										CH2-7-1000										CH2-10-1000										CH2-8-1000										CH2-12-1000										CH2-14-1000										H1-1										H5-1										H5-2										H5-3										H8-1										H8-2										H8-3										H11-1										H11-2										H11-3										H12-1										H12-2										H12-3										H13-1										H13-2										H13-3										Z2-1										Z2-2										Z2-3

		Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load				Displacement		Load		Displacement		Load

		0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0				0		0		0		0

		-0.02		-3507.18		0.00005		10.6358756634				-0.02		-7095.8		0.0001		21.1234817814				-0.02		-4725.24		0.0000666667		14.0665634675				-0.02		-3540.15		0.00005		10.5386699214				-0.02		-3617.98		0.00005		10.5277890939				-0.02		-2892.85		0.00004		8.417767561				-0.02		-2913.87		0.00004		8.3794501639				-0.02		-2912.04		0.00004		8.4558917475				-0.02		-2990.4		0.00004		8.4177339901				-0.02		-2989.55		0.00004		8.37338599				0.02		3042.37		0.0000227273		4.7798428908				-0.02		-6527.93		0.000038835		8.1803634085				-0.02		-7154.65		0.000038835		8.1860983982				-0.02		-5905.25		0.000038835		8.1790166205				-0.02		-1222.74		0.0000285714		5.8225714286				-0.02		-1092.98		0.0000285714		5.4649				-0.02		-1317.67		0.0000285714		5.9894090909				-0.02		-3174.96		0.000027972		5.8795555556				-0.02		-2942.95		0.000027972		5.7033914729				-0.02		-3321.87		0.000027972		5.8898404255				-0.02		-4127.94		0.0000216216		4.5486942149				-0.02		-4146.75		0.0000216216		4.546875				-0.05		-10276.7		0.0000540541		11.380620155				-0.05		-11890		0.0000512821		10.7894736842				-0.05		-11951.3		0.0000512821		10.7961156278				-0.05		-11834.9		0.0000512821		10.7953115023				-0.05		-16316.5		0.0000970874		20.4467418546				-0.05		-17884.3		0.0000970874		20.4625858124				-0.05		-14760		0.0000970874		20.4432132964

		-0.04		-7013.42		0.0001		21.2689006823				-0.04		-14172.7		0.0002		42.1907001667				-0.04		-9448.98		0.0001333333		28.1286615861				-0.04		-7079.58		0.0001		21.0751964754				-0.04		-7235.31		0.0001		21.0536867834				-0.04		-5785.27		0.00008		16.8342838852				-0.04		-5827.37		0.00008		16.7578363145				-0.04		-5823.68		0.00008		16.9106219873				-0.04		-5980.43		0.00008		16.8344264602				-0.04		-5978.4		0.00008		16.7448113604				0.04		6084.53		0.0000454545		9.5593558523				-0.04		-13054.2		0.0000776699		16.3586466165				-0.04		-14308.4		0.0000776699		16.3711670481				-0.04		-11809		0.0000776699		16.3559556787				-0.04		-2440.3		0.0000571429		11.6204761905				-0.04		-2179.1		0.0000571429		10.8955				-0.04		-2634.49		0.0000571429		11.9749545455				-0.04		-6347.29		0.0000559441		11.7542407407				-0.04		-5855.97		0.0000559441		11.3487790698				-0.04		-6643.41		0.0000559441		11.7790957447				-0.04		-8254.23		0.0000432432		9.0955702479				-0.04		-8291.23		0.0000432432		9.0912609649				-0.1		-20550.8		0.0001081081		22.7583610188				-0.1		-23772.4		0.0001025641		21.5720508167				-0.1		-23894.8		0.0001025641		21.5851851852				-0.1		-23667.5		0.0001025641		21.5885250388				-0.1		-32618.1		0.0001941748		40.8748120301				-0.1		-35762.5		0.0001941748		40.9181922197				-0.1		-29506.4		0.0001941748		40.8675900277

		-0.06		-10518		0.00015		31.8968915845				-0.06		-21150.1		0.0003		62.9617170755				-0.06		-14170.1		0.0002		42.1829602286				-0.06		-10618.1		0.00015		31.609014051				-0.06		-10851.9		0.00015		31.577431182				-0.06		-8677.23		0.00012		25.2494616772				-0.06		-8740.5		0.00012		25.1351584517				-0.06		-8734.92		0.00012		25.3641907196				-0.06		-8970.09		0.00012		25.2500774103				-0.06		-8966.46		0.00012		25.1140240316				0.06		9126.48		0.0000681818		14.3385388845				-0.06		-19578.4		0.0001165049		24.5343358396				-0.06		-21461.1		0.0001165049		24.5550343249				-0.06		-17710.9		0.0001165049		24.53033241				-0.06		-3651.87		0.0000857143		17.3898571429				-0.06		-3258.01		0.0000857143		16.29005				-0.06		-3950.23		0.0000857143		17.9555909091				-0.06		-9515.35		0.0000839161		17.6210185185				-0.06		-8727.86		0.0000839161		16.9144573643				-0.06		-9964.58		0.0000839161		17.6676950355				-0.06		-12378.1		0.0000648649		13.6397796143				-0.06		-12432.3		0.0000648649		13.6319078947				-0.15		-30810.9		0.0001621622		34.1205980066				-0.15		-35638.4		0.0001538462		32.3397459165				-0.15		-35821.5		0.0001538462		32.3590785908				-0.15		-35496.9		0.0001538462		32.3788196661				-0.15		-48886.3		0.0002912621		61.2610275689				-0.15		-53632.5		0.0002912621		61.364416476				-0.15		-44223.7		0.0002912621		61.2516620499

		-0.08		-14017.5		0.0002		42.5094768764				-0.08		-27168.9		0.0004		80.879078352				-0.08		-18881.9		0.0002666667		56.20951417				-0.08		-14155.3		0.0002		42.1389021196				-0.08		-14467.5		0.0002		42.0982948263				-0.08		-11568.6		0.00016		33.6629226561				-0.08		-11653.2		0.00016		33.5112440329				-0.08		-11645.7		0.00016		33.816423718				-0.08		-11959.4		0.00016		33.6647431386				-0.08		-11953.6		0.00016		33.4806598885				0.08		12168.2		0.0000909091		19.1173605656				-0.08		-26100		0.0001553398		32.7067669173				-0.08		-28612.9		0.0001553398		32.7378718535				-0.08		-23610.5		0.0001553398		32.7015235457				-0.08		-4856.54		0.0001142857		23.1263809524				-0.08		-4329.34		0.0001142857		21.6467				-0.08		-5264.58		0.0001142857		23.9299090909				-0.08		-12675.9		0.0001118881		23.4738888889				-0.08		-11543.4		0.0001118881		22.3709302326				-0.08		-13285.3		0.0001118881		23.5554964539				-0.08		-16497.9		0.0000864865		18.1795041322				-0.08		-16567.7		0.0000864865		18.1663377193				-0.1625		-33342.3		0.0001756757		36.9239202658				-0.2		-47454.3		0.0002051282		43.0619782214				-0.2		-47697.8		0.0002051282		43.0874435411				-0.2		-47318.9		0.0002051282		43.1623643163				-0.2		-65036.1		0.0003883495		81.4988721805				-0.2		-71471.8		0.0003883495		81.7755148741				-0.2		-58844.7		0.0003883495		81.5023545706

		-0.1		-17472.6		0.00025		52.9874147081				-0.1		-30529.3		0.0005		90.8826506311				-0.1		-23418		0.0003333333		69.7130269112				-0.1		-17688.7		0.00025		52.6574779709				-0.1		-18081.3		0.00025		52.6139207356				-0.1		-14459.1		0.0002		42.0738520631				-0.1		-14565.6		0.0002		41.8864669006				-0.1		-14556		0.0002		42.2672629073				-0.1		-14948.3		0.0002		42.0782547502				-0.1		-14939.7		0.0002		41.844382825				0.1		15209.8		0.0001136364		23.8959937156				-0.1		-32618.3		0.0001941748		40.8750626566				-0.1		-35763.5		0.0001941748		40.9193363844				-0.1		-29507.1		0.0001941748		40.8685595568				-0.1		-6053.31		0.0001428571		28.8252857143				-0.1		-5392.74		0.0001428571		26.9637				-0.1		-6577.1		0.0001428571		29.8959090909				-0.1		-15821.4		0.0001398601		29.2988888889				-0.1		-14283.1		0.0001398601		27.6804263566				-0.1		-16605.3		0.0001398601		29.4420212766				-0.1		-20610.7		0.0001081081		22.7115151515				-0.1		-20693.3		0.0001081081		22.6900219298				-0.175		-35556.5		0.0001891892		39.3759689922				-0.25		-59031.7		0.0002564103		53.5677858439				-0.25		-59338.9		0.0002564103		53.6033423668				-0.25		-59079		0.0002564103		53.8894463194				-0.25		-80525.1		0.0004854369		100.9086466165				-0.25		-86961.1		0.0004854369		99.497826087				-0.25		-72974.4		0.0004854369		101.0725761773

		-0.12		-20214.7		0.0003		61.3031084155				-0.12		-32818.9		0.0006		97.6985591808				-0.12		-26288.2		0.0004		78.2573231722				-0.12		-21200.6		0.0003		63.1120504882				-0.12		-21689.9		0.0003		63.1144154106				-0.12		-17348.1		0.00024		50.4804166909				-0.12		-17477.5		0.00024		50.2602519123				-0.12		-17465.7		0.00024		50.7163598351				-0.12		-17936.7		0.00024		50.4903589022				-0.12		-17924.5		0.00024		50.2044646108				0.12		18251.1		0.0001363636		28.6741555381				-0.12		-39131.7		0.0002330097		49.0372180451				-0.12		-42912.7		0.0002330097		49.0991990847				-0.12		-35399.5		0.0002330097		49.0297783934				-0.12		-7241.03		0.0001714286		34.4810952381				-0.12		-6447.87		0.0001714286		32.23935				-0.12		-7887.14		0.0001714286		35.8506363636				-0.12		-18933.3		0.0001678322		35.0616666667				-0.12		-16923.6		0.0001678322		32.7976744186				-0.12		-19923.7		0.0001678322		35.3257092199				-0.12		-24709.4		0.0001297297		27.2279889807				-0.12		-24799.6		0.0001297297		27.1925438596				-0.1875		-37121.1		0.0002027027		41.1086378738				-0.3		-69526.1		0.0003076923		63.0908348457				-0.3		-69943.6		0.0003076923		63.1830171635				-0.3		-68582		0.0003076923		62.5576940618				-0.3		-94050.1		0.0005825243		117.8572681704				-0.3		-95961.5		0.0005825243		109.7957665904				-0.3		-85564.5		0.0005825243		118.5103878116

		-0.14		-22237.7		0.00035		67.4380591357				-0.14		-34885.3		0.0007		103.8500238152				-0.14		-28385.3		0.0004666667		84.500178614				-0.14		-24300.1		0.00035		72.3389497499				-0.14		-25253.6		0.00035		73.4842576966				-0.14		-20232.4		0.00028		58.8733050108				-0.14		-20389		0.00028		58.6328866394				-0.14		-20374.4		0.00028		59.1625529938				-0.14		-20924.8		0.00028		58.9016185785				-0.14		-20907.6		0.00028		58.559784892				0.14		21292.2		0.0001590909		33.4520031422				-0.14		-45637.8		0.0002718447		57.1902255639				-0.14		-50060.3		0.0002718447		57.2772311213				-0.14		-41285.9		0.0002718447		57.1826869806				-0.14		-8418.49		0.0002		40.088047619				-0.14		-7494.4		0.0002		37.472				-0.14		-9193.7		0.0002		41.7895454545				-0.14		-21958.5		0.0001958042		40.6638888889				-0.14		-19440.6		0.0001958042		37.6755813953				-0.14		-23234.9		0.0001958042		41.1966312057				-0.14		-28775.6		0.0001513514		31.7086501377				-0.14		-28863		0.0001513514		31.6480263158				-0.2		-38495.4		0.0002162162		42.6305647841				-0.35		-78342.6		0.0003589744		71.0912885662				-0.35		-79101.9		0.0003589744		71.456097561				-0.35		-74580.6		0.0003589744		68.0293715224				-0.35		-105644		0.0006796117		132.3859649123				-0.35		-103073		0.0006796117		117.9324942792				-0.35		-96871		0.0006796117		134.1703601108

		-0.16		-24011.7		0.0004		72.8178923427				-0.16		-36851.3		0.0008		109.7026077638				-0.16		-30273.2		0.0005333333		90.1202667302				-0.16		-26385.4		0.0004		78.5466777804				-0.16		-28241.7		0.0004		82.1791887331				-0.16		-23089.6		0.00032		67.1873363208				-0.16		-23300		0.00032		67.0040835107				-0.16		-23281.1		0.00032		67.6029386143				-0.16		-23912.5		0.00032		67.3117522871				-0.16		-23888.7		0.00032		66.9095034031				0.16		24333.1		0.0001818182		38.2295365279				-0.16		-52132.2		0.0003106796		65.3285714286				-0.16		-57205.2		0.0003106796		65.452173913				-0.16		-47162.5		0.0003106796		65.3220221607				-0.16		-9584.4		0.0002285714		45.64				-0.16		-8532.01		0.0002285714		42.66005				-0.16		-10495.3		0.0002285714		47.7059090909				-0.16		-24755.3		0.0002237762		45.8431481481				-0.16		-21813.5		0.0002237762		42.2742248062				-0.16		-26387.8		0.0002237762		46.7868794326				-0.16		-32752.8		0.000172973		36.0912396694				-0.16		-32818.1		0.000172973		35.9847587719				-0.21875		-40283.6		0.0002364865		44.6108527132				-0.4		-83814.5		0.0004102564		76.0567150635				-0.4		-87228.9		0.0004102564		78.7975609756				-0.4		-79494.7		0.0004102564		72.5118124601				-0.3625		-107919		0.0007038835		135.2368421053				-0.4		-109144		0.000776699		124.8787185355				-0.4		-107466		0.000776699		148.8448753463

		-0.18		-25552.7		0.00045		77.4911296437				-0.18		-38746.1		0.0009		115.3432364849				-0.18		-32059.7		0.0006		95.4384972613				-0.18		-27975.7		0.00045		83.2808406764				-0.18		-30703.7		0.00045		89.3432462317				-0.18		-25641.3		0.00036		74.6124076122				-0.18		-26210.3		0.00036		75.3732673837				-0.18		-26181.2		0.00036		76.0241593588				-0.18		-26899.7		0.00036		75.7204785362				-0.18		-26866.8		0.00036		75.2508192589				0.18		27373.8		0.0002045455		43.0067556952				-0.18		-58605.8		0.0003495146		73.4408521303				-0.18		-64345.1		0.0003495146		73.621395881				-0.18		-53022.6		0.0003495146		73.4385041551				-0.18		-10737.5		0.0002571429		51.130952381				-0.18		-9560.39		0.0002571429		47.80195				-0.18		-11789.4		0.0002571429		53.5881818182				-0.18		-27123.5		0.0002517483		50.2287037037				-0.18		-24030.5		0.0002517483		46.5707364341				-0.18		-28144.3		0.0002517483		49.9012411348				-0.18		-36459		0.0001945946		40.1752066116				-0.18		-36491.9		0.0001945946		40.0130482456				-0.246875		-42530.2		0.0002668919		47.0987818383				-0.45		-88072.5		0.0004615385		79.9205989111				-0.45		-93532.2		0.0004615385		84.491598916				-0.45		-83988.1		0.0004615385		76.6105080726				-0.375		-109850		0.0007281553		137.656641604				-0.45		-114891		0.0008737864		131.4542334096				-0.45		-117337		0.0008737864		162.5166204986

		-0.2		-26907.6		0.0005		81.6				-0.2		-40581.7		0.001		120.8076327697				-0.2		-33773.8		0.0006666667		100.5412002858				-0.2		-29351		0.0005		87.374970231				-0.2		-33084.3		0.0005		96.2704417156				-0.2		-27686.3		0.0004		80.5630565093				-0.2		-29119.5		0.0004		83.7392879738				-0.2		-29033.8		0.0004		84.3074510715				-0.2		-29886.3		0.0004		84.1275158339				-0.2		-29841		0.0004		83.5812116629				0.2		30414.3		0.0002272727		47.7836606441				-0.2		-65039.4		0.0003883495		81.5030075188				-0.2		-71470.7		0.0003883495		81.7742562929				-0.2		-58852.3		0.0003883495		81.5128808864				-0.2		-11876.4		0.0002857143		56.5542857143				-0.2		-10579.3		0.0002857143		52.8965				-0.2		-13072		0.0002857143		59.4181818182				-0.2		-29044.3		0.0002797203		53.7857407407				-0.2		-26091.8		0.0002797203		50.565503876				-0.2		-29398.9		0.0002797203		52.1257092199				-0.2		-39554.5		0.0002162162		43.5862258953				-0.2		-39630.8		0.0002162162		43.4548245614				-0.289063		-45528.7		0.0003125005		50.419379845				-0.5		-92035.8		0.0005128205		83.5170598911				-0.5		-97480.1		0.0005128205		88.0579042457				-0.5		-88179.2		0.0005128205		80.4334579951				-0.378125		-110284		0.0007342233		138.2005012531				-0.5		-120355		0.0009708738		137.7059496568				-0.5		-126178		0.0009708738		174.7617728532

		-0.22		-28149.4		0.00055		85.3658832449				-0.22		-42365		0.0011		126.1163372231				-0.22		-35426.1		0.0007333333		105.4599309359				-0.22		-30629.7		0.00055		91.181531317				-0.22		-35429.9		0.00055		103.0957923529				-0.22		-29616.5		0.00044		86.1796543095				-0.22		-32026.8		0.00044		92.0998447116				-0.22		-31464.6		0.00044		91.365932981				-0.22		-32872.3		0.00044		92.5328641802				-0.22		-32809.1		0.00044		91.8945186679				0.22		33454.5		0.00025		52.5600942655				-0.22		-71389.7		0.0004271845		89.4607769424				-0.22		-78531.4		0.0004271845		89.8528604119				-0.22		-64621.4		0.0004271845		89.5033240997				-0.22		-13000		0.0003142857		61.9047619048				-0.22		-11588.4		0.0003142857		57.942				-0.22		-14336.5		0.0003142857		65.1659090909				-0.22		-30462.6		0.0003076923		56.4122222222				-0.22		-28008		0.0003076923		54.2790697674				-0.22		-30542		0.0003076923		54.1524822695				-0.22		-41893.3		0.0002378378		46.163415978				-0.22		-42219.9		0.0002378378		46.29375				-0.33125		-48314.9		0.0003581081		53.5048726467				-0.55		-95751.9		0.0005641026		86.8892014519				-0.55		-101015		0.0005641026		91.251129178				-0.55		-92121		0.0005641026		84.0290066588				-0.382813		-110857		0.0007433262		138.9185463659				-0.55		-125562		0.0010679612		143.6636155606				-0.55		-133673		0.0010679612		185.1426592798

		-0.24		-29321.2		0.0006		88.9194844579				-0.24		-44101.1		0.0012		131.2845320314				-0.24		-37022.8		0.0008		110.2131459871				-0.24		-31840.6		0.0006		94.786258633				-0.24		-37746.4		0.0006		109.8364662748				-0.24		-31507.5		0.00048		91.6821858814				-0.24		-34927.7		0.00048		100.4419968942				-0.24		-33470.7		0.00048		97.191184157				-0.24		-35857.4		0.00048		100.9356790992				-0.24		-35768.1		0.00048		100.1823376187				0.24		36494.6		0.0002727273		57.3363707777				-0.24		-77566.7		0.0004660194		97.2013784461				-0.24		-85074.6		0.0004660194		97.3393592677				-0.24		-70266.8		0.0004660194		97.3224376731				-0.24		-14107.1		0.0003428571		67.1766666667				-0.24		-12587.6		0.0003428571		62.938				-0.24		-15571.8		0.0003428571		70.7809090909				-0.24		-31554.2		0.0003356643		58.4337037037				-0.24		-29793.6		0.0003356643		57.7395348837				-0.24		-31553.3		0.0003356643		55.9455673759				-0.24		-43553.4		0.0002594595		47.9927272727				-0.24		-44461.5		0.0002594595		48.7516447368				-0.373437		-50964.6		0.0004037157		56.4392026578				-0.6		-99256.3		0.0006153846		90.0692377495				-0.6		-104378		0.0006153846		94.2890695574				-0.6		-95864.4		0.0006153846		87.4435829609				-0.389844		-108245		0.0007569786		135.6453634085				-0.6		-130543		0.0011650485		149.3627002288				-0.6		-139948		0.0011650485		193.8337950138

		-0.26		-30442.7		0.00065		92.3205458681				-0.26		-45793.9		0.0013		136.3238271017				-0.26		-38568.7		0.0008666667		114.8151345558				-0.26		-32992.9		0.00065		98.2165396523				-0.26		-40031.4		0.00065		116.4854798347				-0.26		-33370.8		0.00052		97.1041145318				-0.26		-37790.1		0.00052		108.673434175				-0.26		-35388.7		0.00052		102.760613276				-0.26		-38840.8		0.00052		109.3337086559				-0.26		-38712.3		0.00052		108.4287034703				0.26		39534.4		0.0002954545		62.1121759623				-0.26		-83441.3		0.0005048544		104.5630325815				-0.26		-90191		0.0005048544		103.1933638444				-0.26		-75687.8		0.0005048544		104.8307479224				-0.26		-15196.9		0.0003714286		72.3661904762				-0.26		-13576.6		0.0003714286		67.883				-0.26		-16761.7		0.0003714286		76.1895454545				-0.26		-32574.2		0.0003636364		60.3225925926				-0.26		-31449.9		0.0003636364		60.9494186047				-0.26		-32514.5		0.0003636364		57.649822695				-0.26		-45012.5		0.0002810811		49.6005509642				-0.26		-46508		0.0002810811		50.9956140351				-0.423438		-53971.8		0.0004577708		59.7694352159				-0.65		-102586		0.0006666667		93.0907441016				-0.65		-107592		0.0006666667		97.1924119241				-0.65		-99452.5		0.0006666667		90.7165009578				-0.396875		-109097		0.0007706311		136.7130325815				-0.65		-135326		0.0012621359		154.8352402746				-0.65		-145416		0.0012621359		201.4072022161

		-0.28		-31524.2		0.0007		95.60030326				-0.28		-47446.8		0.0014		141.2443438914				-0.28		-40068.6		0.0009333333		119.2801857585				-0.28		-34091.4		0.0007		101.4866634913				-0.28		-42278.5		0.0007		123.024209975				-0.28		-35208.1		0.00056		102.4503870104				-0.28		-40218.2		0.00056		115.6559498476				-0.28		-37270.8		0.00056		108.2257970846				-0.28		-41820.3		0.00056		117.7207600281				-0.28		-41631.8		0.00056		116.6058874604				0.28		42574.1		0.0003181818		66.8878240377				-0.28		-88948.4		0.0005436893		111.464160401				-0.28		-94460.6		0.0005436893		108.0784897025				-0.28		-80811.1		0.0005436893		111.9267313019				-0.28		-16268.8		0.0004		77.4704761905				-0.28		-14555.2		0.0004		72.776				-0.28		-17886.3		0.0004		81.3013636364				-0.28		-33548.4		0.0003916084		62.1266666667				-0.28		-32874.2		0.0003916084		63.7096899225				-0.28		-33444.9		0.0003916084		59.2994680851				-0.28		-46381.8		0.0003027027		51.1094214876				-0.28		-48389.2		0.0003027027		53.0583333333				-0.473437		-56857.1		0.0005118238		62.9646733112				-0.7		-105775		0.0007179487		95.9845735027				-0.7		-110679		0.0007179487		99.9810298103				-0.7		-102916		0.0007179487		93.8757639332				-0.403906		-109948		0.0007842835		137.7794486216				-0.7		-139939		0.0013592233		160.1132723112				-0.7		-150382		0.0013592233		208.2853185596

		-0.3		-32572.8		0.00075		98.780288097				-0.3		-49063		0.0015		146.0556084782				-0.3		-41526.8		0.001		123.621100262				-0.3		-35140.8		0.00075		104.6106215766				-0.3		-44477.9		0.00075		129.4241401385				-0.3		-37018.5		0.0006		107.7183844497				-0.3		-42016.7		0.0006		120.8279174096				-0.3		-39125.5		0.0006		113.6114176201				-0.3		-44784.8		0.0006		126.0655876144				-0.3		-44508.6		0.0006		124.6634736577				0.3		45613.5		0.0003409091		71.6630007855				-0.3		-94134.8		0.0005825243		117.9634085213				-0.3		-98200.1		0.0005825243		112.3570938215				-0.3		-85663.1		0.0005825243		118.6469529086				-0.3		-17322.2		0.0004285714		82.4866666667				-0.3		-15523.3		0.0004285714		77.6165				-0.3		-18930.4		0.0004285714		86.0472727273				-0.3		-34486		0.0004195804		63.862962963				-0.3		-33969.1		0.0004195804		65.8315891473				-0.3		-34350.5		0.0004195804		60.905141844				-0.3		-47684.4		0.0003243243		52.5447933884				-0.3		-49850.3		0.0003243243		54.6604166667				-0.523438		-59626.6		0.0005658789		66.0316722038				-0.75		-108848		0.0007692308		98.7731397459				-0.75		-113663		0.0007692308		102.6766034327				-0.75		-106274		0.0007692308		96.9387941257				-0.410937		-110795		0.0007979359		138.8408521303				-0.75		-144401		0.0014563107		165.2185354691				-0.75		-155015		0.0014563107		214.7022160665

		-0.32		-33593.4		0.0008		101.8753601213				-0.32		-50644.9		0.0016		150.7647654203				-0.32		-42947.4		0.0010666667		127.8500833532				-0.32		-36148.1		0.0008		107.6092522029				-0.32		-46617.1		0.0008		135.6488971658				-0.32		-38799.8		0.00064		112.9017051737				-0.32		-43679.3		0.00064		125.6090757462				-0.32		-40952.8		0.00064		118.9174748824				-0.32		-47639		0.00064		134.099929627				-0.32		-47311.5		0.00064		132.5140744475				0.32		48652.7		0.0003636364		76.437863315				-0.32		-99075.5		0.0006213592		124.1547619048				-0.32		-101388		0.0006213592		116.004576659				-0.32		-90317.3		0.0006213592		125.0932132964				-0.32		-18356.9		0.0004571429		87.4138095238				-0.32		-16480.9		0.0004571429		82.4045				-0.32		-19891.5		0.0004571429		90.4159090909				-0.32		-35393.6		0.0004475524		65.5437037037				-0.32		-34948.9		0.0004475524		67.7304263566				-0.32		-35235.3		0.0004475524		62.4739361702				-0.32		-48934.5		0.0003459459		53.9223140496				-0.32		-51111.3		0.0003459459		56.0430921053				-0.573438		-62276.7		0.000619933		68.9664451827				-0.8		-111825		0.0008205128		101.4745916515				-0.8		-116561		0.0008205128		105.2944896116				-0.8		-109541		0.0008205128		99.9188178418				-0.421484		-112059		0.0008184155		140.4248120301				-0.8		-148731		0.0015533981		170.1727688787				-0.8		-159413		0.0015533981		220.7936288089

		-0.34		-34589.6		0.00085		104.8964366945				-0.34		-52195.2		0.0017		155.3798523458				-0.34		-44334.3		0.0011333333		131.9787449393				-0.34		-37121.5		0.00085		110.5069659443				-0.34		-48687.3		0.00085		141.6728743526				-0.34		-40549.5		0.00068		117.9930745504				-0.34		-45279		0.00068		130.2093518146				-0.34		-42749.8		0.00068		124.1355479412				-0.34		-49957.4		0.00068		140.6260380014				-0.34		-49990.7		0.00068		140.018205753				0.34		51691.7		0.0003863636		81.2124116261				-0.34		-103818		0.0006601942		130.0977443609				-0.34		-104221		0.0006601942		119.2459954233				-0.34		-94831.6		0.0006601942		131.3457063712				-0.34		-19373.1		0.0004857143		92.2528571429				-0.34		-17427.8		0.0004857143		87.139				-0.34		-20777.8		0.0004857143		94.4445454545				-0.34		-36276.3		0.0004755245		67.1783333333				-0.34		-35885.9		0.0004755245		69.5463178295				-0.34		-36101.6		0.0004755245		64.009929078				-0.34		-50142.4		0.0003675676		55.2533333333				-0.34		-52330.1		0.0003675676		57.379495614				-0.623438		-64804.2		0.000673987		71.765448505				-0.85		-114720		0.0008717949		104.1016333938				-0.85		-119388		0.0008717949		107.8482384824				-0.85		-112726		0.0008717949		102.8240445134				-0.437305		-113935		0.0008491359		142.7756892231				-0.85		-152940		0.0016504854		174.9885583524				-0.85		-163631		0.0016504854		226.635734072

		-0.36		-35564.4		0.0009		107.8526156179				-0.36		-53715.7		0.0018		159.9062276733				-0.36		-45690.7		0.0012		136.0166110979				-0.36		-38068.9		0.0009		113.3272803048				-0.36		-50690.6		0.0009		147.5021823896				-0.36		-42264.1		0.00072		122.9823080952				-0.36		-46812.7		0.00072		134.6198309081				-0.36		-44511.3		0.00072		129.2505371973				-0.36		-51894		0.00072		146.0774102745				-0.36		-52494.3		0.00072		147.0305016385				0.36		54730.5		0.0004090909		85.9866457188				-0.36		-108354		0.0006990291		135.7819548872				-0.36		-106979		0.0006990291		122.4016018307				-0.36		-99239.6		0.0006990291		137.4509695291				-0.36		-20370.9		0.0005142857		97.0042857143				-0.36		-18364.1		0.0005142857		91.8205				-0.36		-21598.9		0.0005142857		98.1768181818				-0.36		-37137.4		0.0005034965		68.772962963				-0.36		-36793.7		0.0005034965		71.305620155				-0.36		-36951.1		0.0005034965		65.5161347518				-0.36		-51315.8		0.0003891892		56.5463360882				-0.36		-53517.9		0.0003891892		58.6819078947				-0.673437		-67216.4		0.00072804		74.4367663344				-0.9		-117544		0.0009230769		106.664246824				-0.9		-122154		0.0009230769		110.3468834688				-0.9		-115838		0.0009230769		105.662683572				-0.461035		-116702		0.0008952136		146.2431077694				-0.9		-157039		0.0017475728		179.6784897025				-0.9		-167706		0.0017475728		232.2797783934

		-0.38		-36520		0.00095		110.7505686126				-0.38		-55208.6		0.0019		164.3504405811				-0.38		-47019.2		0.0012666667		139.9714217671				-0.38		-38996.1		0.00095		116.0874613003				-0.38		-52637.5		0.00095		153.1673747308				-0.38		-43940.2		0.00076		127.8595123087				-0.38		-48232		0.00076		138.7013285788				-0.38		-46230		0.00076		134.2412451362				-0.365		-52341.5		0.00073		147.3370865588				-0.38		-54812.9		0.00076		153.5246337843				0.38		57769.1		0.0004318182		90.7605655931				-0.38		-112415		0.0007378641		140.8709273183				-0.38		-109680		0.0007378641		125.4919908467				-0.38		-103557		0.0007378641		143.4307479224				-0.38		-21350.8		0.0005428571		101.6704761905				-0.38		-19289.7		0.0005428571		96.4485				-0.38		-22361.8		0.0005428571		101.6445454545				-0.38		-37979.8		0.0005314685		70.332962963				-0.38		-37677.1		0.0005314685		73.0176356589				-0.38		-37784.9		0.0005314685		66.9945035461				-0.38		-52460.2		0.0004108108		57.8073829201				-0.38		-54678.3		0.0004108108		59.9542763158				-0.723437		-69533.4		0.0007820941		77.0026578073				-0.95		-120305		0.000974359		109.1696914701				-0.95		-124865		0.000974359		112.7958446251				-0.95		-118882		0.000974359		108.4392958132				-0.496631		-120746		0.000964332		151.3107769424				-0.95		-161038		0.0018446602		184.2540045767				-0.95		-171661		0.0018446602		237.7576177285

		-0.4		-37458.1		0.001		113.5954510993				-0.4		-56675.4		0.002		168.7169564182				-0.4		-48322.4		0.0013333333		143.850916885				-0.4		-39907.1		0.001		118.7994165277				-0.4		-54539.4		0.001		158.7016236978				-0.4		-45574.7		0.0008		132.6156666473				-0.4		-49601.8		0.0008		142.6404785184				-0.4		-47897.6		0.0008		139.0835704745				-0.37		-52764.4		0.00074		148.5275158339				-0.4		-56910.1		0.0008		159.3986499734				0.4		60807.4		0.0004545455		95.5340141398				-0.4		-115773		0.000776699		145.0789473684				-0.4		-112329		0.000776699		128.5228832952				-0.4		-107786		0.000776699		149.2880886427				-0.4		-22313.3		0.0005714286		106.2538095238				-0.4		-20204.6		0.0005714286		101.023				-0.4		-23073.7		0.0005714286		104.8804545455				-0.4		-38805.3		0.0005594406		71.8616666667				-0.4		-38538.8		0.0005594406		74.6875968992				-0.4		-38603.7		0.0005594406		68.4462765957				-0.4		-53579.5		0.0004324324		59.0407713499				-0.4		-55813.8		0.0004324324		61.1993421053				-0.773438		-71777.3		0.0008361492		79.4875968992				-1		-123009		0.001025641		111.6234119782				-1		-127526		0.001025641		115.1996386631				-1		-121863		0.001025641		111.1584420323				-0.546631		-126217		0.0010614194		158.1666666667				-1		-164944		0.0019417476		188.7231121281				-1		-175513		0.0019417476		243.0927977839

		-0.42		-38380.4		0.00105		116.3924184989				-0.42		-58117.9		0.0021		173.0111336032				-0.42		-49602.2		0.0014		147.6607525601				-0.42		-40804		0.00105		121.4693974756				-0.42		-56403.4		0.00105		164.1255892452				-0.42		-47166.1		0.00084		137.2464063318				-0.42		-50949.7		0.00084		146.516650371				-0.42		-49509.6		0.00084		143.7644462512				-0.3775		-53364.7		0.000755		150.2173117523				-0.42		-58595.1		0.00084		164.1181413327				0.42		63845.6		0.0004772727		100.3073055774				-0.42		-118661		0.000815534		148.6979949875				-0.42		-114924		0.000815534		131.4919908467				-0.42		-111923		0.000815534		155.0180055402				-0.42		-23259.2		0.0006		110.7580952381				-0.42		-21109		0.0006		105.545				-0.42		-23744.8		0.0006		107.9309090909				-0.42		-39615.6		0.0005874126		73.3622222222				-0.42		-39380.9		0.0005874126		76.3195736434				-0.42		-39407.9		0.0005874126		69.8721631206				-0.42		-54676.6		0.0004540541		60.2496969697				-0.42		-56926.9		0.0004540541		62.4198464912				-0.823438		-73961.9		0.0008902032		81.9068660022				-1.05		-125661		0.0010769231		114.0299455535				-1.05		-130143		0.0010769231		117.5636856369				-1.05		-124785		0.0010769231		113.8237708656				-0.596631		-131457		0.0011585068		164.7330827068				-1.05		-168765		0.002038835		193.0949656751				-1.05		-179273		0.002038835		248.3005540166

		-0.44		-39288		0.0011		119.1448066717				-0.44		-59537.4		0.0022		177.2368421053				-0.44		-50860.4		0.0014666667		151.4062872112				-0.44		-41688.2		0.0011		124.1015718028				-0.44		-58233.4		0.0011		169.4506197986				-0.44		-48715.3		0.00088		141.7543502299				-0.44		-52276.6		0.00088		150.332432277				-0.44		-51070		0.00088		148.2954875428				-0.385		-53948.4		0.00077		151.8603800141				-0.44		-59992.1		0.00088		168.030977789				0.44		66883.5		0.0005		105.0801256874				-0.44		-118106		0.0008543689		148.0025062657				-0.44		-117466		0.0008543689		134.4004576659				-0.44		-115951		0.0008543689		160.5969529086				-0.44		-24188.9		0.0006285714		115.1852380952				-0.44		-22002.9		0.0006285714		110.0145				-0.44		-24385.8		0.0006285714		110.8445454545				-0.44		-40412		0.0006153846		74.837037037				-0.44		-40204.8		0.0006153846		77.9162790698				-0.44		-40197.6		0.0006153846		71.2723404255				-0.44		-55753.9		0.0004756757		61.4368044077				-0.44		-58019.5		0.0004756757		63.617872807				-0.873438		-76094.5		0.0009442573		84.2685492802				-1.1		-128266		0.0011282051		116.3938294011				-1.1		-132717		0.0011282051		119.8888888889				-1.1		-127653		0.0011282051		116.4398431086				-0.646631		-136475		0.0012555942		171.0213032581				-1.1		-172506		0.0021359223		197.3752860412				-1.1		-182949		0.0021359223		253.391966759

		-0.46		-40181.9		0.00115		121.8556482183				-0.46		-60935.2		0.0023		181.3979518933				-0.46		-52098.3		0.0015333333		155.0913908073				-0.46		-42560.8		0.00115		126.6992140986				-0.46		-60031		0.00115		174.6813711226				-0.46		-50225.5		0.00092		146.1488098702				-0.46		-53581.9		0.00092		154.0860988095				-0.46		-52588.1		0.00092		152.7036994018				-0.3925		-54527.1		0.000785		153.4893736805				-0.46		-61306.7		0.00092		171.7130213147				0.46		69921.2		0.0005227273		109.8526315789				-0.46		-120748		0.0008932039		151.313283208				-0.46		-119956		0.0008932039		137.2494279176				-0.46		-119847		0.0008932039		165.9930747922				-0.46		-25102.8		0.0006571429		119.5371428571				-0.46		-22886.5		0.0006571429		114.4325				-0.46		-25004.6		0.0006571429		113.6572727273				-0.46		-41195.2		0.0006433566		76.2874074074				-0.46		-41011.7		0.0006433566		79.4800387597				-0.46		-40972.4		0.0006433566		72.6460992908				-0.46		-56812.9		0.0004972973		62.6037465565				-0.46		-59093.1		0.0004972973		64.7950657895				-0.923437		-78179.8		0.0009983103		86.5778516058				-1.15		-130828		0.0011794872		118.7186932849				-1.15		-135252		0.0011794872		122.1788617886				-1.15		-130469		0.0011794872		119.0084830794				-0.696631		-141283		0.0013526816		177.0463659148				-1.15		-176172		0.0022330097		201.5697940503				-1.15		-186548		0.0022330097		258.3767313019

		-0.48		-41063.1		0.0012		124.5279757392				-0.48		-62312.5		0.0024		185.4980352465				-0.48		-53317.1		0.0016		158.7196356275				-0.48		-43422.3		0.0012		129.2638128126				-0.48		-61796.1		0.0012		179.8175522319				-0.48		-51700.2		0.00096		150.4399697375				-0.48		-54865.1		0.00096		157.7762121125				-0.48		-54071.8		0.00096		157.012021604				-0.4		-55103.6		0.0008		155.112174525				-0.48		-62588.1		0.00096		175.3020754558				0.48		72958.7		0.0005454545		114.6248232522				-0.48		-123352		0.0009320388		154.5764411028				-0.48		-122393		0.0009320388		140.0377574371				-0.48		-123577		0.0009320388		171.1592797784				-0.465		-25328		0.0006642857		120.6095238095				-0.48		-23759.9		0.0006857143		118.7995				-0.48		-25606.1		0.0006857143		116.3913636364				-0.48		-41966.3		0.0006713287		77.7153703704				-0.48		-41801.7		0.0006713287		81.0110465116				-0.48		-41731.7		0.0006713287		73.9923758865				-0.48		-57855.1		0.0005189189		63.7521763085				-0.48		-60149.1		0.0005189189		65.9529605263				-0.973437		-80221.5		0.0010523643		88.8388704319				-1.2		-133347		0.0012307692		121.0045372051				-1.2		-137749		0.0012307692		124.4345076784				-1.2		-133237		0.0012307692		121.5333394144				-0.746631		-145893		0.0014497689		182.8233082707				-1.2		-179768		0.0023300971		205.6842105263				-1.2		-190077		0.0023300971		263.2645429363

		-0.5		-41932.3		0.00125		127.1639120546				-0.5		-63670.4		0.0025		189.540366754				-0.5		-54517.6		0.0016666667		162.2934031912				-0.5		-44273.2		0.00125		131.7968563944				-0.5		-63528.3		0.00125		184.8579991852				-0.5		-53142		0.001		154.635395449				-0.5		-56124.9		0.001		161.3990337609				-0.5		-55525.8		0.001		161.2341018642				-0.4075		-55678.9		0.000815		156.7315974666				-0.5		-63847.9		0.001		178.8306304792				0.5		75996		0.0005681818		119.396700707				-0.5		-125917		0.0009708738		157.790726817				-0.5		-124780		0.0009708738		142.7688787185				-0.5		-127098		0.0009708738		176.0360110803				-0.4725		-25617.1		0.000675		121.9861904762				-0.5		-24623		0.0007142857		123.115				-0.5		-26193.7		0.0007142857		119.0622727273				-0.5		-42725.8		0.0006993007		79.1218518519				-0.5		-42574.7		0.0006993007		82.5091085271				-0.5		-42474.8		0.0006993007		75.309929078				-0.5		-58881.4		0.0005405405		64.8830853994				-0.5		-61188.8		0.0005405405		67.0929824561				-1.02344		-82222.3		0.0011064216		91.0545957918				-1.25		-135828		0.0012820513		123.2558983666				-1.25		-140211		0.0012820513		126.6585365854				-1.25		-135959		0.0012820513		124.0162364316				-0.796631		-150319		0.0015468563		188.3696741855				-1.25		-183299		0.0024271845		209.7242562929				-1.25		-193540		0.0024271845		268.0609418283

		-0.52		-42790.2		0.0013		129.7655799848				-0.52		-65009.8								-0.52		-55700.4		0.0017333333		165.814479638				-0.52		-45114		0.0013		134.2998332936				-0.52		-65226.3		0.0013		189.7989291742				-0.52		-54552.7		0.00104		158.7403247396				-0.52		-57353.5		0.00104		164.932133203				-0.52		-56952.3		0.00104		165.3763284744				-0.41875		-56539.3		0.0008375		159.1535538353				-0.52		-65089.2		0.00104		182.3073691286				0.52		79033.1		0.0005909091		124.1682639434				-0.52		-128440		0.0010097087		160.9523809524				-0.52		-127116		0.0010097087		145.4416475973				-0.52		-130372		0.0010097087		180.5706371191				-0.48		-25844.2		0.0006857143		123.0676190476				-0.52		-25476.1		0.0007428571		127.3805				-0.52		-26769.5		0.0007428571		121.6795454545				-0.52		-43474.3		0.0007272727		80.507962963				-0.52		-43332.1		0.0007272727		83.9769379845				-0.52		-43202.1		0.0007272727		76.5994680851				-0.52		-59892.9		0.0005621622		65.9976859504				-0.52		-62212.9		0.0005621622		68.2158991228				-1.07344		-84183		0.0011604757		93.2259136213				-1.3		-138272		0.0013333333		125.4736842105				-1.3		-142638		0.0013333333		128.8509485095				-1.3		-138638		0.0013333333		126.4599106084				-0.846631		-154578		0.0016439437		193.7067669173				-1.3		-186766		0.0025242718		213.6910755149

		-0.54		-43637.3		0.00135		132.3344958302				-0.54		-66331.7								-0.54		-56865.8		0.0018		169.2837580376				-0.54		-45945.1		0.00135		136.7739342701				-0.54		-66888.8		0.00135		194.6365593901				-0.54		-55933		0.00108		162.7567945062				-0.54		-58513.6		0.00108		168.268246391				-0.54		-58352.2		0.00108		169.4413148266				-0.435625		-57823.8		0.00087125		162.7693173821				-0.54		-66312.7		0.00108		185.7342520236				0.54		82069.9		0.0006136364		128.9393558523				-0.54		-130922		0.0010485437		164.0626566416				-0.54		-129405		0.0010485437		148.0606407323				-0.54		-133384		0.0010485437		184.7423822715				-0.4875		-26066.7		0.0006964286		124.1271428571				-0.54		-26318.9		0.0007714286		131.5945				-0.54		-27334.7		0.0007714286		124.2486363636				-0.54		-44212.4		0.0007552448		81.8748148148				-0.54		-44076.8		0.0007552448		85.4201550388				-0.54		-43915.8		0.0007552448		77.864893617				-0.54		-60890.1		0.0005837838		67.0965289256				-0.54		-63222.5		0.0005837838		69.3229166667				-1.12344		-86102.2		0.0012145297		95.3512735327				-1.35		-140679		0.0013846154		127.6578947368				-1.35		-145032		0.0013846154		131.0135501355				-1.35		-141275		0.0013846154		128.8652741038				-0.896631		-158688		0.0017410311		198.8571428571				-1.35		-190174		0.0026213592		217.590389016

		-0.56		-44474.3		0.0014		134.8727824109				-0.56		-67636.8								-0.56		-58013.9		0.0018666667		172.70153608				-0.56		-46766.8		0.0014		139.2200523934				-0.56		-68514.2		0.0014		199.3662340686				-0.56		-57282.9		0.00112		166.6848047489				-0.56		-59671.3		0.00112		171.5974578708				-0.56		-59725.4		0.00112		173.4287705442				-0.455625		-59336.1		0.00091125		167.0263194933				-0.56		-67518.7		0.00112		189.1121194297				0.56		85106.6		0.0006363636		133.710290652				-0.56		-133360		0.0010873786		167.1177944862				-0.56		-131648		0.0010873786		150.6270022883				-0.56		-136162		0.0010873786		188.5900277008				-0.49875		-26395.7		0.0007125		125.6938095238				-0.56		-27151.2		0.0008		135.756				-0.56		-27890.4		0.0008		126.7745454545				-0.56		-44940.5		0.0007832168		83.2231481481				-0.56		-44810.2		0.0007832168		86.8414728682				-0.56		-44617.9		0.0007832168		79.109751773				-0.56		-61873.9		0.0006054054		68.1806060606				-0.56		-64218.2		0.0006054054		70.4146929825				-1.17344		-87975.9		0.0012685838		97.4262458472				-1.4		-143051		0.0014358974		129.8103448276				-1.4		-147393		0.0014358974		133.1463414634				-1.4		-143872		0.0014358974		131.234151236				-0.946631		-162666		0.0018381184		203.8421052632				-1.4		-193525		0.0027184466		221.4244851259

		-0.58		-45301.5		0.00145		137.3813495072				-0.58		-68926								-0.58		-59144.7		0.0019333333		176.0678137652				-0.58		-47579.4		0.00145		141.6390807335				-0.58		-70101.1		0.00145		203.9838794157				-0.58		-58602.2		0.00116		170.5237734971				-0.58		-60815.6		0.00116		174.8881348134				-0.58		-61071.3		0.00116		177.3369533655				-0.475625		-60837.1		0.00095125		171.251513019				-0.58		-68706.8		0.00116		192.4398509929				0.58		88143		0.0006590909		138.4807541241				-0.58		-135753		0.0011262136		170.1165413534				-0.58		-133847		0.0011262136		153.143020595				-0.58		-138755		0.0011262136		192.1814404432				-0.515625		-26880.7		0.0007366071		128.0033333333				-0.58		-27972.4		0.0008285714		139.862				-0.58		-28437.2		0.0008285714		129.26				-0.58		-45658.9		0.0008111888		84.5535185185				-0.58		-45533.5		0.0008111888		88.2432170543				-0.58		-45310.3		0.0008111888		80.3374113475				-0.58		-62844.6		0.000627027		69.2502479339				-0.58		-65200.7		0.000627027		71.491995614				-1.22344		-89805.7		0.0013226378		99.4526024363				-1.45		-145390		0.0014871795		131.9328493648				-1.45		-149723		0.0014871795		135.251129178				-1.45		-146432		0.0014871795		133.5692784822				-0.996631		-166525		0.0019352058		208.6779448622				-1.45		-196821		0.002815534		225.1956521739

		-0.6		-46119.5		0.0015		139.8620166793				-0.6		-70199.9								-0.6		-60258.2		0.002		179.3825910931				-0.6		-48383.3		0.0015		144.03221005				-0.6		-71647.7		0.0015		208.4842576966				-0.6		-59890.2		0.0012		174.2716638538				-0.6		-61942		0.0012		178.1273365158				-0.6		-62389.2		0.0012		181.1638306522				-0.495625		-62326.9		0.00099125		175.4451794511				-0.6		-69876.7		0.0012		195.7166064476				0.6		91179.2		0.0006818182		143.2509033778				-0.6		-138100		0.0011650485		173.0576441103				-0.6		-136003		0.0011650485		155.6098398169				-0.6		-141210		0.0011650485		195.5817174515				-0.535625		-27443.3		0.0007651786		130.6823809524				-0.6		-28780.7		0.0008571429		143.9035				-0.6		-28975.5		0.0008571429		131.7068181818				-0.6		-46368		0.0008391608		85.8666666667				-0.6		-46247.3		0.0008391608		89.6265503876				-0.6		-45993.7		0.0008391608		81.5491134752				-0.6		-63802.8		0.0006486486		70.3061157025				-0.6		-66170.5		0.0006486486		72.555372807				-1.27344		-91599.4		0.0013766919		101.4389811739				-1.5		-147697		0.0015384615		134.0263157895				-1.5		-152022		0.0015384615		137.3279132791				-1.5		-148956		0.0015384615		135.8715680015				-1.04663		-170280		0.0020322913		213.3834586466				-1.5		-200062		0.0029126214		228.9038901602

		-0.62		-46928.5		0.00155		142.3153904473				-0.62		-71459.1								-0.62		-61354.5		0.0020666667		182.6461657538				-0.62		-49178.7		0.00155		146.4000357228				-0.62		-73152		0.00155		212.8615492056				-0.62		-61146.2		0.00124		177.9264389222				-0.62		-63049.1		0.00124		181.3110369817				-0.62		-63677.9		0.00124		184.9059178814				-0.515625		-63805.2		0.00103125		179.6064743139				-0.62		-71028.2		0.00124		198.9418256169				0.62		94215.1		0.0007045455		148.020581304				-0.62		-140397		0.0012038835		175.9360902256				-0.62		-138119		0.0012038835		158.0308924485				-0.62		-143559		0.0012038835		198.8351800554				-0.555625		-27993.9		0.00079375		133.3042857143				-0.62		-29567.1		0.0008857143		147.8355				-0.62		-29505.9		0.0008857143		134.1177272727				-0.62		-47068		0.0008671329		87.162962963				-0.62		-46952		0.0008671329		90.992248062				-0.62		-46668.7		0.0008671329		82.7459219858				-0.62		-64748.9		0.0006702703		71.3486501377				-0.62		-67128		0.0006702703		73.6052631579				-1.32344		-93362.5		0.0014307459		103.3914728682				-1.55		-149971		0.0015897436		136.0898366606				-1.55		-154291		0.0015897436		139.3775971093				-1.55		-151445		0.0015897436		138.1419319529				-1.09663		-173941		0.0021293786		217.9711779449				-1.55		-203252		0.0030097087		232.5537757437

		-0.64		-47729		0.0016		144.7429871114				-0.64		-72704.3								-0.64		-62434.2		0.0021333333		185.8603238866				-0.64		-49965.9		0.0016		148.7434508216				-0.64		-74612		0.0016		217.1099342373				-0.64		-62369.4		0.00128		181.48577082				-0.64		-64136.2		0.00128		184.4372232127				-0.64		-64936		0.00128		188.5591497764				-0.535625		-65271.5		0.00107125		183.7339901478				-0.64		-72160.9		0.00128		202.1143881467				0.64		97250.9		0.0007272727		152.790102121				-0.64		-142644		0.0012427184		178.7518796992				-0.64		-140196		0.0012427184		160.4073226545				-0.64		-145826		0.0012427184		201.9750692521				-0.575625		-28533.5		0.0008223214		135.8738095238				-0.64		-30212.6		0.0009142857		151.063				-0.64		-30028.5		0.0009142857		136.4931818182				-0.64		-47759.3		0.0008951049		88.4431481481				-0.64		-47648.2		0.0008951049		92.3414728682				-0.64		-47335.6		0.0008951049		83.9283687943				-0.64		-65683.3		0.0006918919		72.378292011				-0.64		-68073.8		0.0006918919		74.6423245614				-1.37344		-95097.8		0.0014848		105.3131782946				-1.6		-152215		0.0016410256		138.1261343013				-1.6		-156530		0.0016410256		141.4001806685				-1.6		-153902		0.0016410256		140.3831068138				-1.14663		-177519		0.002226466		222.454887218				-1.6		-206391		0.0031067961		236.1453089245

		-0.66		-48521.2		0.00165		147.1454131918				-0.66		-73936								-0.66		-63498.1		0.0022		189.0274470112				-0.66		-50745.1		0.00165		151.0630507264				-0.66		-76025.6		0.00165		221.2233021009				-0.66		-63559.2		0.00132		184.9479136356				-0.66		-65203.4		0.00132		187.5061827802				-0.66		-66161.8		0.00132		192.1185899297				-0.555625		-66724.9		0.00111125		187.8251935257				-0.66		-73274.6		0.00132		205.2337338599				0.66		100286		0.00075		157.5585231736				-0.66		-144837		0.0012815534		181.5				-0.66		-142233		0.0012815534		162.73798627				-0.66		-148024		0.0012815534		205.0193905817				-0.595625		-29063		0.0008508929		138.3952380952				-0.66		-30740		0.0009428571		153.7				-0.66		-30543.8		0.0009428571		138.8354545455				-0.66		-48442.1		0.0009230769		89.7075925926				-0.66		-48336.1		0.0009230769		93.6746124031				-0.66		-47994.7		0.0009230769		85.0969858156				-0.66		-66606.2		0.0007135135		73.395261708				-0.66		-69008.2		0.0007135135		75.6668859649				-1.42344		-96807		0.0015388541		107.2059800664				-1.65		-154428		0.0016923077		140.1343012704				-1.65		-158739		0.0016923077		143.3956639566				-1.65		-156326		0.0016923077		142.5941804251				-1.19663		-181023		0.0023235534		226.8458646617				-1.65		-209481		0.0032038835		239.680778032

		-0.68		-49305.5		0.0017		149.5238817286				-0.68		-75154.6								-0.68		-64547.2		0.0022666667		192.1505120267				-0.68		-51516.5		0.0017		153.3594308169				-0.68		-77390.8		0.0017		225.1958330908				-0.68		-64714.8		0.00136		188.3105394867				-0.68		-66250.8		0.00136		190.5182032553				-0.68		-67353.7		0.00136		195.5795923108				-0.575625		-68164.9		0.00115125		191.878676988				-0.68		-74369.4		0.00136		208.3001428451				0.68		103322		0.0007727273		162.328358209				-0.68		-146975		0.0013203883		184.179197995				-0.68		-144233		0.0013203883		165.0263157895				-0.68		-150164		0.0013203883		207.9833795014				-0.615625		-29583.2		0.0008794643		140.8723809524				-0.68		-31255.8		0.0009714286		156.279				-0.68		-31051.9		0.0009714286		141.145				-0.68		-49116.6		0.000951049		90.9566666667				-0.68		-49016.1		0.000951049		94.9924418605				-0.68		-48646.3		0.000951049		86.2523049645				-0.68		-67518		0.0007351351		74.4				-0.68		-69931.6		0.0007351351		76.6793859649				-1.47344		-98491.5		0.0015929081		109.0714285714				-1.7		-156612		0.0017435897		142.1161524501				-1.7		-160918		0.0017435897		145.3640469738				-1.7		-158720		0.0017435897		144.7778892639				-1.24663		-184459		0.0024206408		231.1516290727				-1.7		-212524		0.0033009709		243.1624713959

		-0.7		-50082.1		0.00175		151.8789992419				-0.7		-76360.8								-0.7		-65582.8		0.0023333333		195.2333889021				-0.7		-52280.5		0.00175		155.6337818528				-0.7		-78705.4		0.00175		229.021125531				-0.7		-65836.1		0.0014		191.5733573881				-0.7		-67278.8		0.0014		193.4744349226				-0.7		-68509.8		0.0014		198.9366397584				-0.595625		-69590.9		0.00119125		195.8927515834				-0.7		-75445.5		0.0014		211.3141752794				0.7		106357		0.0007954545		167.0966221524				-0.7		-149058		0.0013592233		186.7894736842				-0.7		-146196		0.0013592233		167.2723112128				-0.7		-152252		0.0013592233		210.8753462604				-0.635625		-30094.7		0.0009080357		143.3080952381				-0.7		-31763		0.001		158.815				-0.7		-31553.2		0.001		143.4236363636				-0.7		-49782.9		0.000979021		92.1905555556				-0.7		-49688.5		0.000979021		96.2955426357				-0.7		-49290.7		0.000979021		87.394858156				-0.7		-68418.8		0.0007567568		75.3926170799				-0.7		-70844.3		0.0007567568		77.6801535088				-1.52344		-100153		0.0016469622		110.911406423				-1.75		-158766		0.0017948718		144.0707803993				-1.75		-163066		0.0017948718		147.3044263776				-1.75		-161085		0.0017948718		146.9351454894				-1.29663		-187834		0.0025177282		235.380952381				-1.75		-215521		0.0033980583		246.5915331808

		-0.72		-50851.4		0.0018		154.2119787718				-0.72		-77554.8								-0.72		-66605.7		0.0024		198.2784591569				-0.72		-53037.2		0.0018		157.8864015242				-0.72		-79967.9		0.0018		232.6948146424				-0.72		-66922.8		0.00144		194.735494384				-0.72		-68287.9		0.00144		196.3763156381				-0.72		-69628.1		0.00144		202.1839247343				-0.615625		-71002.9		0.00123125		199.8674173118				-0.72		-76500.8		0.00144		214.269949304				0.72		109391		0.0008181818		171.8633150039				-0.72		-151084		0.0013980583		189.328320802				-0.72		-148121		0.0013980583		169.4748283753				-0.72		-154293		0.0013980583		213.7022160665				-0.655625		-30597.7		0.0009366071		145.7033333333				-0.72		-32262.8		0.0010285714		161.314				-0.72		-32047.7		0.0010285714		145.6713636364				-0.72		-50441.2		0.001006993		93.4096296296				-0.72		-50353.6		0.001006993		97.584496124				-0.72		-49928.1		0.001006993		88.525				-0.72		-69309		0.0007783784		76.373553719				-0.72		-71746.5		0.0007783784		78.6694078947				-1.57344		-101791		0.0017010162		112.7253599114				-1.8		-160892		0.0018461538		146				-1.8		-165180		0.0018461538		149.2140921409				-1.8		-163422		0.0018461538		149.0668612606				-1.34663		-191152		0.0026148155		239.5388471178				-1.8		-218475		0.0034951456		249.971395881

		-0.74		-51613.5		0.00185		156.5231235785				-0.74		-78737.1								-0.74		-67616.9		0.0024666667		201.2886996904				-0.74		-53786.7		0.00185		160.1175875208				-0.74		-81177.3		0.00185		236.2139905721				-0.74		-67975.1		0.00148		197.7975324449				-0.74		-69278.5		0.00148		199.2249956864				-0.74		-70707.3		0.00148		205.3176723387				-0.635625		-72401.2		0.00127125		203.8035186488				-0.74		-77509.3		0.00148		217.0946419068				0.74		112426		0.0008409091		176.6315789474				-0.74		-153053		0.0014368932		191.7957393484				-0.74		-150010		0.0014368932		171.6361556064				-0.74		-156293		0.0014368932		216.472299169				-0.675625		-31092.8		0.0009651786		148.060952381				-0.74		-32755.8		0.0010571429		163.779				-0.74		-32535.9		0.0010571429		147.8904545455				-0.74		-51091.7		0.001034965		94.6142592593				-0.74		-51011.6		0.001034965		98.8596899225				-0.74		-50558.7		0.001034965		89.6430851064				-0.74		-70188.6		0.0008		77.3428099174				-0.74		-72638.5		0.0008		79.6474780702				-1.62344		-103408		0.0017550703		114.5160575858				-1.85		-162989		0.0018974359		147.9029038113				-1.85		-167253		0.0018974359		151.0867208672				-1.85		-165732		0.0018974359		151.1739487367				-1.39663		-194418		0.0027119029		243.6315789474

		-0.76		-52368.6		0.0019		158.813040182				-0.76		-79908.1								-0.76		-68617.1		0.0025333333		204.266194332				-0.76		-54529.3		0.0019		162.3282329126				-0.76		-82333.1		0.0019		239.5771983938				-0.76		-68993.6		0.00152		200.7612174824				-0.76		-70251.1		0.00152		202.0219129234				-0.76		-71746.8		0.00152		208.3361403101				-0.640625		-72748.6		0.00128125		204.7814215341				-0.76		-78478.3		0.00152		219.8086995491				0.76		115460		0.0008636364		181.3982717989				-0.76		-154965		0.0014757282		194.1917293233				-0.76		-151863		0.0014757282		173.7562929062				-0.76		-158255		0.0014757282		219.1897506925				-0.695625		-31580.1		0.00099375		150.3814285714				-0.76		-33242.7		0.0010857143		166.2135				-0.76		-33017.8		0.0010857143		150.0809090909				-0.76		-51734.5		0.0010629371		95.8046296296				-0.76		-51662.7		0.0010629371		100.1215116279				-0.76		-51182.8		0.0010629371		90.7496453901				-0.76		-71057.9		0.0008216216		78.3007162534				-0.76		-73520.4		0.0008216216		80.6144736842				-1.67344		-105005		0.0018091243		116.284606866				-1.9		-165058		0.0019487179		149.780399274				-1.9		-169277		0.0019487179		152.9150858175				-1.9		-168015		0.0019487179		153.2564079175				-1.44663		-197633		0.0028089903		247.6604010025

		-0.78		-53117.1		0.00195		161.0829416224				-0.78		-81068.1								-0.78		-69607		0.0026		207.2130269112				-0.78		-55265.2		0.00195		164.5189330793				-0.78		-83436		0.00195		242.7864750044				-0.78		-69979.1		0.00156		203.6288773788				-0.78		-71206.2		0.00156		204.768505205				-0.78		-72747.6		0.00156		211.2422324177				-0.645625		-73095.3		0.00129125		205.7573539761				-0.78		-79404.7		0.00156		222.4034394869				0.78		118494		0.0008863636		186.1649646504				-0.78		-156819		0.0015145631		196.515037594				-0.78		-153681		0.0015145631		175.8363844394				-0.78		-160182		0.0015145631		221.8587257618				-0.715625		-32059.8		0.0010223214		152.6657142857				-0.78		-33723.8		0.0011142857		168.619				-0.78		-33493.6		0.0011142857		152.2436363636				-0.78		-52369.7		0.0010909091		96.9809259259				-0.78		-52307.2		0.0010909091		101.3705426357				-0.78		-51800.5		0.0010909091		91.844858156				-0.78		-71916.8		0.0008432432		79.2471625344				-0.78		-74392.6		0.0008432432		81.5708333333				-1.72344		-106581		0.0018631784		118.0299003322				-1.95		-167097		0.002		151.6306715064				-1.95		-171254		0.002		154.7009936766				-1.95		-170274		0.002		155.3169752805				-1.49663		-200801		0.0029060777		251.6303258145

		-0.8		-53859.1		0.002		163.33313116				-0.8		-82217.4								-0.8		-70587		0.0026666667		210.1303881877				-0.8		-55994.6		0.002		166.6902834008				-0.8		-84487.2		0.002		245.8453122272				-0.8		-70932.6		0.0016		206.4034219868				-0.8		-72144.4		0.0016		207.4664979582				-0.8		-73711.2		0.0016		214.040304315				-0.646875		-73181.8		0.00129375		206.0008444757				-0.8		-80259.3		0.0016		224.797075876				0.8		121528		0.0009090909		190.931657502				-0.8		-158608		0.0015533981		198.7568922306				-0.8		-155466		0.0015533981		177.8787185355				-0.8		-162076		0.0015533981		224.4819944598				-0.735625		-32531.8		0.0010508929		154.9133333333				-0.8		-34199.4		0.0011428571		170.997				-0.8		-33963.5		0.0011428571		154.3795454545				-0.8		-52997.4		0.0011188811		98.1433333333				-0.8		-52945.2		0.0011188811		102.6069767442				-0.8		-52412.1		0.0011188811		92.9292553191				-0.8		-72765.5		0.0008648649		80.182369146				-0.8		-75255		0.0008648649		82.5164473684				-1.77344		-108138		0.0019172324		119.7541528239				-2		-169104		0.0020512821		153.4519056261				-2		-173196		0.0020512821		156.4552845528				-2		-172509		0.0020512821		157.3556508255

		-0.82		-54594.7		0.00205		165.5639120546				-0.82		-83356.4								-0.82		-71557.7		0.0027333333		213.020064301				-0.82		-56717.5		0.00205		168.8422838771				-0.82		-85488.6		0.00205		248.7592387825				-0.82		-71855.5		0.00164		209.0889251004				-0.82		-73066.1		0.00164		210.1170414678				-0.82		-74640		0.00164		216.7373250479				-0.648125		-73268.4		0.00129625		206.2446164673				-0.82		-81143.3		0.00164		227.2730582864				0.82		124561		0.0009318182		195.6967792616				-0.82		-160325		0.001592233		200.9085213033				-0.82		-157219		0.001592233		179.8844393593				-0.82		-163939		0.001592233		227.0623268698				-0.755625		-32996		0.0010794643		157.1238095238				-0.82		-34669.9		0.0011714286		173.3495				-0.82		-34427.6		0.0011714286		156.4890909091				-0.82		-53617.8		0.0011468531		99.2922222222				-0.82		-53576.9		0.0011468531		103.8312015504				-0.82		-53017.7		0.0011468531		94.0030141844				-0.82		-73604.1		0.0008864865		81.106446281				-0.82		-76107.7		0.0008864865		83.4514254386				-1.82344		-109677		0.0019712865		121.4584717608				-2.05		-171079		0.0021025641		155.2441016334				-2.05		-175111		0.0021025641		158.1851851852				-2.05		-174720		0.0021025641		159.3724345526

		-0.84		-55324.2		0.0021		167.7761940864				-0.84		-84485.2								-0.84		-72519.4		0.0028		215.882948321				-0.84		-57434.1		0.0021		170.9755298881				-0.84		-86442.5		0.0021		251.5349473317				-0.84		-72749.4		0.00168		211.6900424838				-0.84		-73972.1		0.00168		212.722436303				-0.84		-75536		0.00168		219.3391021546				-0.648438		-73290		0.001296876		206.3054187192				-0.84		-82030.9		0.00168		229.7591238831				0.84		127595		0.0009545455		200.4634721131				-0.84		-161949		0.001631068		202.9436090226				-0.84		-158941		0.001631068		181.8546910755				-0.84		-165775		0.001631068		229.6052631579				-0.775625		-33452.4		0.0011080357		159.2971428571				-0.84		-35135.5		0.0012		175.6775				-0.84		-34886.1		0.0012		158.5731818182				-0.84		-54231		0.0011748252		100.4277777778				-0.84		-54202.5		0.0011748252		105.0436046512				-0.84		-53617.5		0.0011748252		95.0664893617				-0.84		-74432.4		0.0009081081		82.0191735537				-0.84		-76950.8		0.0009081081		84.375877193				-1.87344		-111198		0.0020253405		123.1428571429				-2.1		-173018		0.0021538462		157.0036297641				-2.1		-177005		0.0021538462		159.8961156278				-2.1		-176909		0.0021538462		161.3691507799

		-0.86		-56047.8		0.00215		169.9705837756				-0.86		-85604.3								-0.86		-73472.6		0.0028666667		218.7205286973				-0.86		-58144.6		0.00215		173.0906168135														-0.86		-73615.7		0.00172		214.2108479311				-0.86		-74862.7		0.00172		215.2835451774				-0.86		-76401.4		0.00172		221.8520239271				-0.648672		-73306.2		0.001297344		206.3510204082				-0.86		-82907.9		0.00172		232.215500098				0.86		130627		0.0009772727		205.2270227808				-0.86		-163448		0.0016699029		204.8220551378				-0.86		-160634		0.0016699029		183.7917620137				-0.86		-167583		0.0016699029		232.1094182825				-0.795625		-33900.7		0.0011366071		161.4319047619				-0.86		-35596.3		0.0012285714		177.9815				-0.86		-35339.1		0.0012285714		160.6322727273				-0.86		-54836.9		0.0012027972		101.5498148148				-0.86		-54822.1		0.0012027972		106.244379845				-0.86		-54211.6		0.0012027972		96.119858156				-0.86		-75250.7		0.0009297297		82.9208815427				-0.86		-77784.2		0.0009297297		85.2896929825				-1.92344		-112702		0.0020793946		124.8084163898				-2.15		-174926		0.0022051282		158.7350272232				-2.15		-178878		0.0022051282		161.5880758808				-2.15		-179075		0.0022051282		163.3448873484

		-0.88		-56765.6		0.0022		172.1473843821				-0.88		-86713.7								-0.88		-74417.4		0.0029333333		221.5331031198				-0.88		-58849.2																		-0.88		-74456.3		0.00176		216.6568701624				-0.88		-75738.7		0.00176		217.8026686605				-0.88		-77238.1		0.00176		224.2816075266														-0.88		-83771.2		0.00176		234.6335041873				0.88		133660		0.001		209.9921445405				-0.88		-164794		0.0017087379		206.5087719298				-0.88		-162302		0.0017087379		185.700228833				-0.88		-169367		0.0017087379		234.58033241				-0.815625		-34340.6		0.0011651786		163.5266666667				-0.88		-36052.5		0.0012571429		180.2625				-0.88		-35786.8		0.0012571429		162.6672727273				-0.88		-55435.7		0.0012307692		102.6587037037				-0.88		-55436		0.0012307692		107.4341085271				-0.88		-54800.1		0.0012307692		97.1632978723				-0.88		-76058.9		0.0009513514		83.8114600551				-0.88		-78607.8		0.0009513514		86.1927631579																																		-2.2		-181221		0.0022564103		165.3023807352

		-0.9		-57477.7		0.00225		174.306899166				-0.9		-87813.7								-0.9		-75354.4		0.003		224.322457728				-0.9		-59547.8																		-0.9		-75272.8		0.0018		219.0327649421				-0.9		-76600.5		0.0018		220.2809570369				-0.9		-78047.9		0.0018		226.6330797375														-0.9		-84619.9		0.0018		237.0106153545				0.9		136691		0.0010227273		214.7541241163				-0.9		-166024		0.0017475728		208.0501253133				-0.9		-163946		0.0017475728		187.5812356979				-0.9		-171126		0.0017475728		237.0166204986				-0.835625		-34772		0.00119375		165.580952381				-0.9		-36504.4		0.0012857143		182.522				-0.9		-36229.2		0.0012857143		164.6781818182				-0.9		-56027.1		0.0012587413		103.7538888889				-0.9		-56044.2		0.0012587413		108.6127906977				-0.9		-55383.2		0.0012587413		98.1971631206				-0.9		-76856.8		0.000972973		84.6906887052				-0.9		-79421.5		0.000972973		87.0849780702																																		-2.25		-183347		0.0023076923		167.2416309404

		-0.92		-58184.4		0.0023		176.4500379075				-0.92		-88904.5								-0.92		-76283.6								-0.92		-60240.8																		-0.92		-76066.9		0.00184		221.34347902				-0.92		-77448.6		0.00184		222.7198481624				-0.92		-78832.6		0.00184		228.9116673442														-0.92		-85453.6		0.00184		239.3457132454				0.92		139723		0.0010454545		219.517674784				-0.92		-167240		0.0017864078		209.5739348371				-0.92		-165569		0.0017864078		189.438215103				-0.92		-172863		0.0017864078		239.4224376731				-0.855625		-35194.5		0.0012223214		167.5928571429				-0.92		-36951.7		0.0013142857		184.7585				-0.92		-36666.4		0.0013142857		166.6654545455				-0.92		-56610.4		0.0012867133		104.8340740741				-0.92		-56646.8		0.0012867133		109.780620155				-0.92		-55961.1		0.0012867133		99.2218085106				-0.92		-77644.4		0.0009945946		85.5585674931				-0.92		-80224.8		0.0009945946		87.9657894737																																		-2.3		-185452		0.0023589744		169.161725805

		-0.94		-58885.7		0.00235		178.5768006065														-0.94		-77205.4								-0.94		-60928.1																		-0.94		-76840.3		0.00188		223.5939591457				-0.94		-78283.4		0.00188		225.1204923219				-0.94		-79593.5		0.00188		231.1211452465														-0.94		-86272.3		0.00188		241.6387978601				0.94		142753		0.0010681818		224.2780832679				-0.94		-168498		0.0018252427		211.1503759398				-0.94		-167171		0.0018252427		191.2711670481				-0.94		-174578		0.0018252427		241.7977839335				-0.875625		-35607.9		0.0012508929		169.5614285714				-0.94		-37393.7		0.0013428571		186.9685				-0.94		-37098.5		0.0013428571		168.6295454545				-0.94		-57184.2		0.0013146853		105.8966666667				-0.94		-57244.1		0.0013146853		110.9381782946				-0.94		-56533.8		0.0013146853		100.2372340426				-0.94		-78421		0.0010162162		86.4143250689				-0.94		-81017.7		0.0010162162		88.8351973684																																		-2.35		-187539		0.0024102564		171.0654018061

		-0.96		-59581.7		0.0024		180.6874905231														-0.96		-78119.9								-0.96		-61609.8																		-0.96		-77594.4		0.00192		225.7882791131				-0.96		-79105.5		0.00192		227.4846149422				-0.96		-80331.9		0.00192		233.2652883443														-0.96		-87076.1		0.00192		243.8901492872				0.96		145782		0.0010909091		229.0369206599				-0.96		-169799		0.0018640777		212.7807017544				-0.96		-168756		0.0018640777		193.0846681922				-0.96		-176272		0.0018640777		244.1440443213				-0.895625		-36012.2		0.0012794643		171.4866666667				-0.96		-37822.1		0.0013714286		189.1105				-0.96		-37525.6		0.0013714286		170.5709090909				-0.96		-57743.2		0.0013426573		106.9318518519				-0.96		-57836.2		0.0013426573		112.0856589147				-0.96		-57101.4		0.0013426573		101.2436170213				-0.96		-79185.5		0.0010378378		87.2567493113				-0.96		-81799.6		0.0010378378		89.6925438596																																		-2.4		-189606		0.0024615385		172.9508346256

		-0.98		-60272.7		0.00245		182.7830174375														-0.98		-79027.6								-0.98		-62286.1																		-0.98		-78330.9		0.00196		227.9313856719				-0.98		-79915		0.00196		229.8125035946				-0.98		-81049.1		0.00196		235.3478715373														-0.98		-87865.4		0.00196		246.1008878806				0.98		148810		0.0011136364		233.7941869599				-0.98		-171135		0.0019029126		214.454887218				-0.98		-170325		0.0019029126		194.8798627002				-0.98		-177946		0.0019029126		246.4626038781				-0.915625		-36407.1		0.0013080357		173.3671428571				-0.98		-38224.9		0.0014		191.1245				-0.98		-37947.7		0.0014		172.4895454545				-0.98		-58259.5		0.0013706294		107.887962963				-0.98		-58423.1		0.0013706294		113.2230620155				-0.98		-57664.1		0.0013706294		102.2413120567				-0.98		-79934.8		0.0010594595		88.0824242424				-0.98		-82569.7		0.0010594595		90.5369517544																																		-2.45		-191655		0.0025128205		174.8198485816

		-1		-60958.8		0.0025		184.8636846096														-1		-79928.5								-1		-62957.1																		-1		-79050.8		0.002		230.0261886749				-1		-80712.4		0.002		232.105596135				-1		-81745.8		0.002		237.3709274638														-1		-88640.1		0.002		248.2707335518				1		151836		0.0011363636		238.5483110762				-1		-172492		0.0019417476		216.1553884712				-1		-171879		0.0019417476		196.6578947368				-1		-179601		0.0019417476		248.7548476454				-0.935625		-36792.7		0.0013366071		175.2033333333				-1		-38606.3		0.0014285714		193.0315				-1		-38365		0.0014285714		174.3863636364				-1		-58765.6		0.0013986014		108.8251851852				-1		-59004.9		0.0013986014		114.3505813953				-1		-58222		0.0013986014		103.2304964539				-1		-80662		0.0010810811		88.8837465565				-1		-83326.4		0.0010810811		91.3666666667																																		-2.5		-193687		0.0025641026		176.6733558333

																						-1.02		-80822.9								-1.02		-63622.9																		-1.02		-79755.4		0.00204		232.0764709306				-1.02		-81497.9		0.00204		234.3644677058				-1.02		-82423		0.00204		239.3373598931														-1.02		-89400.5		0.00204		250.4005265664				1.02		154858		0.0011590909		243.2961508248				-1.02		-173864		0.0019805825		217.8746867168				-1.02		-173418		0.0019805825		198.4187643021				-1.02		-181238		0.0019805825		251.0221606648				-0.955625		-37169.1		0.0013651786		176.9957142857				-1.02		-38970.7		0.0014571429		194.8535				-1.02		-38777.3		0.0014571429		176.2604545455				-1.02		-59295.4		0.0014265734		109.8062962963				-1.02		-59581.9		0.0014265734		115.4687984496				-1.02		-58775.1		0.0014265734		104.2111702128				-1.02		-81360.9		0.0011027027		89.6538842975				-1.02		-84064.8		0.0011027027		92.1763157895																																		-2.55		-195701		0.0026153846		178.5104442215

																						-1.04		-81710.9								-1.04		-64283.4																		-1.04		-80445.8		0.00208		234.0854332771				-1.04		-82271.9		0.00208		236.5902685915				-1.04		-83081.4		0.00208		241.2492014635														-1.04		-90146.9		0.00208		252.4911071899				1.04		157873		0.0011818182		248.0329929301				-1.04		-175244		0.0020194175		219.6040100251				-1.04		-174945		0.0020194175		200.1659038902				-1.04		-182856		0.0020194175		253.2631578947				-0.975625		-37536.3		0.00139375		178.7442857143				-1.04		-39320.2		0.0014857143		196.601				-1.04		-39184.8		0.0014857143		178.1127272727				-1.04		-59830.1		0.0014545455		110.7964814815				-1.04		-60154.1		0.0014545455		116.5777131783				-1.04		-59323.5		0.0014545455		105.1835106383				-1.04		-82057.3		0.0011243243		90.4212672176				-1.04		-84738.9		0.0011243243		92.9154605263																																		-2.6		-197698		0.0026666667		180.3320259053

																						-1.06		-82592.7								-1.06		-64938.9																		-1.06		-81122.7		0.00212		236.0551126113				-1.06		-83034.5		0.00212		238.7832863634				-1.06		-83721.9		0.00212		243.1090655671														-1.06		-90879.3		0.00212		254.5424754222				1.06		160874		0.0012045455		252.7478397486				-1.06		-176629		0.0020582524		221.3395989975				-1.06		-176459		0.0020582524		201.8981693364				-1.06		-184457		0.0020582524		255.4806094183				-0.995625		-37894.5		0.0014223214		180.45				-1.06		-39656		0.0015142857		198.28				-1.06		-39587.4		0.0015142857		179.9427272727				-1.06		-60364.8		0.0014825175		111.7866666667				-1.06		-60721.6		0.0014825175		117.6775193798				-1.06		-59867.4		0.0014825175		106.1478723404				-1.06		-82762.5		0.0011459459		91.1983471074				-1.055		-85103.8		0.0011405405		93.3155701754																																		-2.65		-199678		0.0027179487		182.1381008848

		CH1-6-800																CH1-7-400														-1.08		-65589.4																		-1.08		-81786.9		0.00216		237.9878368155				-1.08		-83786		0.00216		240.944383735				-1.08		-84345.5		0.00216		244.9198559731														-1.08		-91598.1		0.00216		256.5557516175				1.08		163839		0.0012272727		257.4061272584				-1.08		-178016		0.0020970874		223.0776942356				-1.08		-177962		0.0020970874		203.6178489703				-1.08		-186041		0.0020970874		257.6745152355				-1.01563		-38244.1		0.0014509		182.1147619048				-1.08		-39979.4		0.0015428571		199.897				-1.08		-39985.3		0.0015428571		181.7513636364				-1.08		-60897.8		0.0015104895		112.7737037037				-1.08		-61284.5		0.0015104895		118.7684108527				-1.08		-60406.8		0.0015104895		107.1042553191				-1.08		-83471.1		0.0011675676		91.9791735537				-1.07		-85620.4		0.0011567568		93.8820175439																																		-2.7		-201641		0.0027692308		183.9286691599

				0		0														0		0										-1.1		-66235																		-1.1		-82438.7		0.0022		239.8844788454				-1.1		-84526.8		0.0022		243.074710991				-1.1		-84953.1		0.0022		246.6841860735														-1.1		-92303.4		0.0022		258.5312158642				1.1		166690		0.00125		261.8853102907				-1.1		-179402		0.0021359223		224.8145363409				-1.1		-179453		0.0021359223		205.323798627				-1.1		-187610		0.0021359223		259.8476454294				-1.03562		-38585.2		0.0014794571		183.739047619				-1.1		-40291.1		0.0015714286		201.4555				-1.1		-40378.3		0.0015714286		183.5377272727				-1.1		-61428.4		0.0015384615		113.7562962963				-1.1		-61843		0.0015384615		119.8507751938				-1.1		-60941.7		0.0015384615		108.0526595745				-1.1		-84179.2		0.0011891892		92.7594490358				-1.085		-86146.5		0.001172973		94.4588815789																																		-2.75		-203588		0.0028205128		185.7046428897

		61		0.0002904762		61												88.1		0.0004195238		88.1										-1.12		-66875.8																		-1.12		-83077.9		0.00224		241.7444567305				-1.12		-85257		0.00224		245.1745557025				-1.12		-85545.7		0.00224		248.4049596376														-1.12		-92995.4		0.00224		260.4694283394				1.12		169100		0.0012727273		265.671641791				-1.12		-180786		0.0021747573		226.5488721805				-1.12		-180933		0.0021747573		207.0171624714				-1.12		-189162		0.0021747573		261.9972299169				-1.05562		-38918.1		0.0015080286		185.3242857143				-1.12		-40592.2		0.0016		202.961				-1.12		-40766.4		0.0016		185.3018181818				-1.12		-61956.1		0.0015664336		114.7335185185				-1.12		-62397		0.0015664336		120.9244186047				-1.12		-61472.3		0.0015664336		108.9934397163				-1.12		-84885.2		0.0012108108		93.5374104683				-1.1		-86675.4		0.0011891892		95.0388157895																																		-2.8		-205518		0.0028717949		187.4651099152

		85.1		0.0004052381		76.906												130.8		0.0006228571		118.417										-1.14		-67511.9																		-1.14		-83701.5		0.00228		243.5590409125				-1.14		-85976.9		0.00228		247.2447805832				-1.14		-86124.1		0.00228		250.0844996806																								1.14		170752		0.0012954545		268.2670856245				-1.14		-182168		0.0022135922		228.2807017544				-1.14		-182402		0.0022135922		208.6979405034				-1.14		-190699		0.0022135922		264.1260387812				-1.07562		-39243.1		0.0015366		186.8719047619				-1.14		-40883.3		0.0016285714		204.4165				-1.14		-41149.7		0.0016285714		187.0440909091				-1.14		-62480.8		0.0015944056		115.7051851852				-1.14		-62946.8		0.0015944056		121.9899224806				-1.14		-61998.6		0.0015944056		109.9265957447				-1.14		-85588.1		0.0012324324		94.3119559229				-1.12		-87380.8		0.0012108108		95.8122807018																																		-2.85		-207430		0.0029230769		189.2091580772

		155.9		0.000742381		100.978												160.3		0.0007633333		128.447										-1.16		-68143.4																		-1.16		-84231		0.00232		245.0998079497				-1.16		-86686.9		0.00232		249.2865359176				-1.16		-86689.2		0.00232		251.7254195946																								1.16		172153		0.0013181818		270.4681853888				-1.16		-183545		0.0022524272		230.0062656642				-1.16		-183860		0.0022524272		210.3661327231				-1.16		-192221		0.0022524272		266.2340720222				-1.09563		-39560.4		0.0015651857		188.3828571429				-1.16		-41165		0.0016571429		205.825				-1.16		-41528		0.0016571429		188.7636363636				-1.16		-63002.3		0.0016223776		116.6709259259				-1.16		-63492.4		0.0016223776		123.0472868217				-1.16		-62520.7		0.0016223776		110.8523049645				-1.16		-86287.5		0.0012540541		95.0826446281				-1.14		-88084.6		0.0012324324		96.5839912281																																		-2.8625		-207904		0.0029358974		189.6415214813

		500		0.0023809524		176.68												500		0.0023809524		203.181										-1.18		-68770.4																		-1.18		-84768.7		0.00236		246.6644357795																																												1.18		173532		0.0013409091		272.6347211312				-1.18		-184917		0.0022912621		231.7255639098				-1.18		-185309		0.0022912621		212.02402746				-1.18		-193728		0.0022912621		268.3213296399				-1.11563		-39870.2		0.0015937571		189.8580952381				-1.18		-41437.9		0.0016857143		207.1895				-1.18		-41901.4		0.0016857143		190.4609090909				-1.18		-63520.5		0.0016503497		117.6305555556				-1.18		-64033.9		0.0016503497		124.0967054264				-1.18		-63038.6		0.0016503497		111.7705673759				-1.18		-86982.9		0.0012756757		95.8489256198				-1.16		-88785.7		0.0012540541		97.3527412281																																		-2.88125		-208611		0.0029551282		190.2864179513

		Kav		0.310668787														Kav		0.255398524												-1.2		-69392.9																		-1.2		-85306.5		0.0024		248.2293545947																																												1.2		174907		0.0013636364		274.7949725059				-1.2		-186284		0.0023300971		233.4385964912				-1.2		-186747		0.0023300971		213.6693363844				-1.2		-195222		0.0023300971		270.3905817175				-1.13563		-40172.7		0.0016223286		191.2985714286				-1.2		-41702.5		0.0017142857		208.5125				-1.2		-42269.8		0.0017142857		192.1354545455				-1.2		-64035.4		0.0016783217		118.5840740741				-1.2		-64571.4		0.0016783217		125.138372093				-1.2		-63552.3		0.0016783217		112.6813829787				-1.2		-87674.3		0.0012972973		96.6107988981				-1.18		-89483.4		0.0012756757		98.1177631579																																		-2.88301		-208677		0.0029569333		190.3466204506

																																-1.22		-70011.2																		-1.22		-85837.3		0.00244		249.7739044404																																												1.22		176201		0.0013863636		276.827965436				-1.22		-187646		0.002368932		235.1453634085				-1.22		-188176		0.002368932		215.3043478261				-1.22		-196701		0.002368932		272.4390581717				-1.15562		-40468.1		0.0016508857		192.7052380952														-1.22		-42633		0.0017428571		193.7863636364				-1.22		-64547		0.0017062937		119.5314814815				-1.22		-65105		0.0017062937		126.1724806202				-1.22		-64062		0.0017062937		113.585106383				-1.22		-88361.5		0.0013189189		97.3680440771				-1.2		-90177.5		0.0012972973		98.8788377193																																		-2.88564		-208775		0.0029596308		190.4360120405

																																																				-1.24		-86359.6		0.00248		251.2937205377																																												1.24		177057		0.0014090909		278.17282011				-1.24		-189002		0.002407767		236.8446115288				-1.24		-189595		0.002407767		216.9279176201				-1.24		-198167		0.002407767		274.4695290859				-1.17562		-40756.4		0.0016794571		194.0780952381														-1.24		-42991		0.0017714286		195.4136363636				-1.24		-65055.2		0.0017342657		120.4725925926				-1.24		-65634.7		0.0017342657		127.1990310078				-1.24		-64567.6		0.0017342657		114.4815602837				-1.24		-89044.5		0.0013405405		98.120661157				-1.22		-90867.7		0.0013189189		99.6356359649

																																																				-1.26		-86873.6		0.00252		252.7893848571																																												1.26		177718		0.0014318182		279.2113118617				-1.26		-190352		0.0024466019		238.5363408521				-1.26		-191005		0.0024466019		218.5411899314				-1.26		-199620		0.0024466019		276.4819944598				-1.19562		-41037.8		0.0017080286		195.4180952381														-1.26		-43343.8		0.0018		197.0172727273				-1.26		-65560.2		0.0017622378		121.4077777778				-1.26		-66160.8		0.0017622378		128.2186046512				-1.26		-65069.3		0.0017622378		115.3710992908				-1.26		-89723.3		0.0013621622		98.8686501377				-1.24		-91554		0.0013405405		100.3881578947

																																																				-1.28		-87379.4		0.00256		254.2611883839																																												1.28		178339		0.0014545455		280.1869599372				-1.28		-191695		0.0024854369		240.2192982456				-1.28		-192406		0.0024854369		220.1441647597				-1.28		-201060		0.0024854369		278.4764542936				-1.21563		-41312.6		0.0017366143		196.7266666667														-1.28		-43691		0.0018285714		198.5954545455				-1.28		-66061.8		0.0017902098		122.3366666667				-1.28		-66683.2		0.0017902098		129.2310077519				-1.28		-65567		0.0017902098		116.2535460993				-1.28		-90397.7		0.0013837838		99.6117906336				-1.26		-92236.3		0.0013621622		101.1362938596

																																																				-1.3		-87877.4		0.0026		255.7102950591																																												1.3		178944		0.0014772727		281.137470542				-1.3		-193032		0.0025242718		241.8947368421														-1.3		-202487		0.0025242718		280.4529085873				-1.23563		-41580.7		0.0017651857		198.0033333333														-1.3		-44032.5		0.0018571429		200.1477272727				-1.3		-66560.1		0.0018181818		123.2594444444				-1.3		-67202		0.0018181818		130.2364341085				-1.3		-66060.8		0.0018181818		117.1290780142				-1.3		-91067.9		0.0014054054		100.3503030303				-1.28		-92914.5		0.0013837838		101.8799342105

																																																																																																						1.32		179538		0.0015		282.0706991359				-1.32		-194363		0.0025631068		243.5626566416														-1.32		-203902		0.0025631068		282.4127423823				-1.25563		-41842.5		0.0017937571		199.25														-1.32		-44368.1		0.0018857143		201.6731818182				-1.32		-67055.2		0.0018461538		124.1762962963				-1.32		-67717.4		0.0018461538		131.2352713178				-1.32		-66550.7		0.0018461538		117.9976950355				-1.32		-91733.8		0.001427027		101.084077135				-1.3		-93588.7		0.0014054054		102.6191885965

		CH1-7-600																CH1-7-800																																																																																				1.34		180124		0.0015227273		282.9913589945																								-1.34		-205305		0.0026019417		284.3559556787				-1.27562		-42097.9		0.0018223143		200.4661904762														-1.34		-44697.3		0.0019142857		203.1695454545				-1.34		-67547.1		0.0018741259		125.0872222222				-1.34		-68229.3		0.0018741259		132.2273255814				-1.34		-67036.7		0.0018741259		118.8593971631				-1.34		-92395.5		0.0014486486		101.8132231405				-1.32		-94258.7		0.001427027		103.3538377193

				0		0														0		0																																																																																1.36		180703		0.0015454545		283.9010212097																								-1.36		-206695		0.0026407767		286.2811634349				-1.29562		-42347.2		0.0018508857		201.6533333333														-1.36		-45019.6		0.0019428571		204.6345454545				-1.36		-68035.7		0.0019020979		125.992037037				-1.36		-68737.9		0.0019020979		133.2129844961				-1.36		-67518.9		0.0019020979		119.7143617021				-1.36		-93053		0.0014702703		102.5377410468				-1.34		-94924.9		0.0014486486		104.0843201754

		85.2		0.0004057143		85.2												80.4		0.0003828571		80.4																																																																																1.38		181276		0.0015681818		284.8012568735																																		-1.31562		-42590.5		0.0018794571		202.8119047619														-1.38		-45334.4		0.0019714286		206.0654545455				-1.38		-68521.1		0.0019300699		126.8909259259				-1.38		-69243.2		0.0019300699		134.192248062				-1.38		-67997.3		0.0019300699		120.5625886525				-1.38		-93706.3		0.0014918919		103.257630854				-1.36		-95587		0.0014702703		104.8103070175

		87.1		0.0004147619		86.549												84.1		0.0004004762		82.842																																																																																1.4		181844		0.0015909091		285.6936370778																																		-1.33563		-42827.8		0.0019080429		203.9419047619														-1.4		-45642.1		0.002		207.4640909091				-1.4		-69003.4		0.001958042		127.7840740741				-1.4		-69745.4		0.001958042		135.165503876				-1.4		-68471.9		0.001958042		121.4040780142				-1.4		-94355.4		0.0015135135		103.972892562				-1.38		-96245.3		0.0014918919		105.532127193

		157.6		0.0007504762		110.519												156.5		0.0007452381		107.458																																																																																1.42		182407		0.0016136364		286.5781618225																																		-1.35563		-43059.3		0.0019366143		205.0442857143																								-1.42		-69482.4		0.001986014		128.6711111111				-1.42		-70244.4		0.001986014		136.1325581395				-1.42		-68942.6		0.001986014		122.2386524823				-1.42		-95000.4		0.0015351351		104.6836363636				-1.4		-96899.6		0.0015135135		106.2495614035

		600		0.0028571429		207.847												500		0.0023809524		183.028																																																																																1.44		182966		0.0016363636		287.4564021995																																		-1.36063		-43116.3		0.0019437571		205.3157142857																								-1.44		-69958.4		0.002013986		129.5525925926				-1.44		-70740.4		0.002013986		137.0937984496				-1.44		-69409.6		0.002013986		123.0666666667				-1.44		-95641.3		0.0015567568		105.389862259				-1.42		-97550.1		0.0015351351		106.9628289474

		Kav		0.3148250854														Kav		0.2882685322																																																																																		1.46		183519		0.0016590909		288.3252160251																																		-1.3625		-43137.7		0.0019464286		205.4176190476																								-1.46		-70431.1		0.002041958		130.427962963				-1.46		-71233.4		0.002041958		138.0492248062				-1.46		-69872.7		0.002041958		123.8877659574				-1.46		-96278.1		0.0015783784		106.0915702479				-1.44		-98196.8		0.0015567568		107.6719298246

				0		0														0		0																																																																																1.48		184069		0.0016818182		289.189316575																																		-1.36268		-43139.7		0.0019466857		205.4271428571																								-1.48		-70900.7		0.0020699301		131.2975925926				-1.48		-71723.5		0.0020699301		138.9990310078				-1.48		-70332.1		0.0020699301		124.7023049645				-1.48		-96910.9		0.0016		106.7888705234				-1.46		-98839.6		0.0015783784		108.376754386

		79.8		0.00038		79.8												75		0.0003571429		75																																																																																1.5		184614		0.0017045455		290.0455616654																																																																-1.5		-71367.1		0.0020979021		132.1612962963				-1.5		-72210.7		0.0020979021		139.9432170543				-1.5		-70787.7		0.0020979021		125.510106383				-1.5		-97539.6		0.0016216216		107.4816528926				-1.48		-99478.8		0.0016		109.0776315789

		79.8		0.00038		79.8												75		0.0003571429		75																																																																																1.52		185156		0.0017272727		290.89709348																																																																-1.52		-71830.2		0.0021258741		133.0188888889				-1.52		-72695.1		0.0021258741		140.8819767442				-1.52		-71239.6		0.0021258741		126.3113475177				-1.52		-98164.3		0.0016432432		108.1700275482				-1.5		-100114		0.0016216216		109.774122807

		140.9		0.0006709524		100.574												140.9		0.0006709524		97.406																																																																																1.54		185694		0.00175		291.7423409269																																																																-1.54		-72290.2		0.0021538462		133.8707407407				-1.54		-73176.7		0.0021538462		141.8153100775				-1.54		-71687.7		0.0021538462		127.1058510638				-1.54		-98785		0.0016648649		108.8539944904				-1.52		-100746		0.0016432432		110.4671052632

		500		0.0023809524		179.576												500		0.0023809524		176.408																																																																																1.56		186228		0.0017727273		292.5813040063																																																																-1.56		-72746.8		0.0021818182		134.7162962963				-1.56		-73655.6		0.0021818182		142.7434108527				-1.56		-72132.3		0.0021818182		127.8941489362				-1.56		-99401.7		0.0016864865		109.533553719				-1.54		-101374		0.0016648649		111.1557017544

																																																																																																						1.58		186758		0.0017954545		293.413982718																																																																-1.58		-73200.1		0.0022097902		135.5557407407				-1.58		-74131.9		0.0022097902		143.6664728682				-1.58		-72573.5		0.0022097902		128.6764184397				-1.58		-100015		0.0017081081		110.2093663912				-1.56		-101999		0.0016864865		111.8410087719

		CH2-7-800																CH2-7-1000																																																																																				1.6		187285		0.0018181818		294.241948154																																																																-1.6		-73649.9		0.0022377622		136.3887037037				-1.6		-74605.6		0.0022377622		144.584496124				-1.6		-73011.5		0.0022377622		129.4530141844				-1.6		-100623		0.0017297297		110.879338843				-1.58		-102620		0.0017081081		112.5219298246

				0		0														0		0																																																																																1.62		187808		0.0018409091		295.0636292223																																																																-1.62		-74096.3		0.0022657343		137.2153703704				-1.62		-75076.7		0.0022657343		145.4974806202				-1.62		-73446.4		0.0022657343		130.2241134752				-1.62		-101228		0.0017513514		111.5460055096				-1.6		-103237		0.0017297297		113.1984649123

		89		0.0004238095		89												75.7		0.0003604762		75.7																																																																																1.64		188328		0.0018636364		295.8805970149																																																																-1.64		-74539.4		0.0022937063		138.0359259259				-1.64		-75545.3		0.0022937063		146.405620155				-1.64		-73878.4		0.0022937063		130.990070922				-1.64		-101829		0.001772973		112.2082644628				-1.62		-103851		0.0017513514		113.8717105263

		147.7		0.0007033333		128.329												147.2		0.0007009524		123.605																																																																																1.66		188844		0.0018863636		296.6912804399																																																																-1.66		-74979		0.0023216783		138.85				-1.66		-76011.4		0.0023216783		147.3089147287				-1.66		-74307.5		0.0023216783		131.7508865248				-1.66		-102426		0.0017945946		112.8661157025				-1.64		-104462		0.001772973		114.5416666667

		500		0.0023809524		248.111												500		0.0023809524		243.557																																																																																1.68		189357		0.0019090909		297.4972505892																																																																-1.68		-75415.5		0.0023496503		139.6583333333				-1.68		-76475.1		0.0023496503		148.2075581395				-1.68		-74733.8		0.0023496503		132.5067375887				-1.68		-103019		0.0018162162		113.5195592286				-1.66		-105069		0.0017945946		115.2072368421

																																																																																																						1.7		189867		0.0019318182		298.2985074627																																																																-1.7		-75848.9		0.0023776224		140.4609259259				-1.7		-76936.4		0.0023776224		149.1015503876				-1.7		-75157		0.0023776224		133.2570921986				-1.7		-103609		0.0018378378		114.1696969697				-1.68		-105673		0.0018162162		115.8695175439

		Kav		0.5476397422														Kav		0.5302595741																																																																																		1.72		190374		0.0019545455		299.0950510605																																																																-1.72		-76279.2		0.0024055944		141.2577777778				-1.72		-77395.4		0.0024055944		149.9910852713				-1.72		-75577.3		0.0024055944		134.0023049645				-1.72		-104194		0.0018594595		114.8143250689				-1.7		-106274		0.0018378378		116.5285087719

																																																																																																						1.74		190877		0.0019772727		299.8853102907																																																																-1.74		-76706.5		0.0024335664		142.0490740741				-1.74		-77852.1		0.0024335664		150.8761627907				-1.74		-75994.3		0.0024335664		134.7416666667				-1.74		-104775		0.0018810811		115.4545454545				-1.72		-106871		0.0018594595		117.1831140351

																																																																																																						1.76		191378		0.002		300.672427337																																																																-1.76		-77130.8		0.0024615385		142.8348148148				-1.76		-78306.5		0.0024615385		151.7567829457				-1.76		-76408.1		0.0024615385		135.4753546099				-1.76		-105352		0.0019027027		116.0903581267				-1.74		-107465		0.0018810811		117.8344298246

																																																																																																						1.78		191875		0.0020227273		301.4532600157																																																																-1.78		-77552		0.0024895105		143.6148148148				-1.78		-78758.6		0.0024895105		152.6329457364				-1.78		-76818.6		0.0024895105		136.2031914894				-1.78		-105926		0.0019243243		116.7228650138				-1.76		-108055		0.0019027027		118.4813596491

																																																																																																						1.8		192369		0.0020454545		302.2293794187																																																																-1.8		-77969.7		0.0025174825		144.3883333333				-1.8		-79208.5		0.0025174825		153.5048449612				-1.8		-77226.8		0.0025174825		136.9269503546				-1.8		-106495		0.0019459459		117.349862259				-1.78		-108643		0.0019243243		119.1260964912

		CH2-10-1000																CH2-8-1000																																																																																				1.82		192861		0.0020681818		303.0023566379																																																																-1.82		-78383.3		0.0025454545		145.1542592593				-1.82		-79656.3		0.0025454545		154.3726744186				-1.82		-77633.3		0.0025454545		137.6476950355				-1.82		-107060		0.0019675676		117.9724517906				-1.8		-109227		0.0019459459		119.7664473684

				0		0														0		0																																																																																1.84		193349		0.0020909091		303.7690494894																																																																-1.84		-78791.4		0.0025734266		145.91				-1.84		-80101.9		0.0025734266		155.2362403101				-1.84		-78038.6		0.0025734266		138.3663120567				-1.84		-107621		0.0019891892		118.5906336088				-1.82		-109808		0.0019675676		120.4035087719

		128.1		0.00061		128.1												92		0.0004380952		92																																																																																1.86		193834		0.0021136364		304.5310290652																																																																-1.86		-79191.1		0.0026013986		146.6501851852														-1.86		-78443		0.0026013986		139.0833333333				-1.86		-108179		0.0020108108		119.2055096419				-1.84		-110386		0.0019891892		121.0372807018

		149.7		0.0007128571		142.14												147.2		0.0007009524		128.432																																																																																1.88		194317		0.0021363636		305.2898664572																																																																-1.88		-79575.8		0.0026293706		147.3625925926														-1.88		-78846.3		0.0026293706		139.7984042553				-1.88		-108732		0.0020324324		119.8148760331				-1.86		-110960		0.0020108108		121.6666666667

		500		0.0023809524		257.739												500		0.0023809524		248.384																																																																																1.9		194797		0.0021590909		306.0439905734																																																																-1.895		-79856.7		0.0026503497		147.8827777778														-1.9		-79248.2		0.0026573427		140.5109929078				-1.9		-109281		0.0020540541		120.4198347107				-1.88		-111532		0.0020324324		122.2938596491

																																																																																																						1.92		195274		0.0021818182		306.793401414																																																																-1.91		-80142.4		0.0026713287		148.4118518519																								-1.92		-109826		0.0020756757		121.0203856749				-1.9		-112100		0.0020540541		122.9166666667

		Kav		0.4015419455														Kav		0.5488790558																																																																																		1.94		195748		0.0022045455		307.5380989788																																																																-1.925		-80432.7		0.0026923077		148.9494444444																								-1.94		-110367		0.0020972973		121.6165289256				-1.92		-112665		0.0020756757		123.5361842105

																																																																																																						1.96		196219		0.0022272727		308.2780832679																																																																-1.94		-80724.4		0.0027132867		149.4896296296																								-1.96		-110904		0.0021189189		122.2082644628				-1.94		-113227		0.0020972973		124.1524122807

																																																																																																						1.98		196688		0.00225		309.0149253731																																																																-1.955		-81016.6		0.0027342657		150.0307407407																								-1.98		-111437		0.0021405405		122.7955922865				-1.96		-113786		0.0021189189		124.7653508772

																																																																																																						2		197154		0.0022727273		309.7470542027																																																																-1.975		-81405.6		0.0027622378		150.7511111111																								-2		-111967		0.0021621622		123.3796143251				-1.98		-114341		0.0021405405		125.3739035088

		CH2-12-1000																CH2-14-1000

				0		0														0		0

		150.1		0.0007147619		150.1												151.5		0.0007214286		151.5

		153.6		0.0007314286		152.48												191.2		0.0009104762		178.496

		280		0.0013333333		194.192												450		0.0021428571		263.9

		Kav		0.4689305263														Kav		0.4198153345

		H1-1																H5-1

				0		0														0		0

		287.4		0.0013685714		287.4												114.2		0.0005438095		114.2

		300.9		0.0014328571		293.88												147.5		0.000702381		138.509

		400		0.0019047619		320.637												288		0.0013714286		187.684

																		550		0.0026190476		247.944

																		Kav		0.6740997855

																				0.4928367549

																				0.402211188

																				0.3200427089

		H5-2																H5-3

				0		0														0		0

		110.4		0.0005257143		110.4												117.2		0.0005580952		117.2

		113.3		0.0005395238		112.459												181.1		0.000862381		163.208

		212		0.0010095238		146.017												420.6		0.0020028571		244.638

		550		0.0026190476		220.377												550		0.0026190476		274.4

		Kav		0.4368657407														Kav		0.7041392555

				0.3915489972																0.7013443874

				0.325836267																0.531205186

				0.2842470555																0.4448264248

		H8-1																H8-2

				0		0														0		0

		103.4		0.000492381		103.4												104.6		0.0004980952		104.6

		119.8		0.0005704762		115.208												136		0.000647619		126.894

		374.9		0.0017852381		204.493												380		0.0018095238		209.854

		450		0.0021428571		221.766												380		0.0018095238		209.854

		Kav		0.4886866267														Kav		0.4527820268

				0.4471595702																0.536387316

				0.3866932746																0.4670134605

				0.3360293788																0.4180311093

		H8-3																H11-1

				0		0														0		0

		102.2		0.0004866667		102.2												54.4		0.0002590476		54.4

		104.7		0.0004985714		104												63		0.0003		58.7

		312.5		0.0014880952		176.73												81.7		0.0003890476		63.936

		450		0.0021428571		208.355												550		0.0026190476		148.23

		Kav		0.3812454545														Kav		0.2685837862

				0.393718652																0.2436273734

				0.3596863261																0.2100449329

				0.3358252841																0.1867056352

		H11-2																H11-3

				0		0														0		0

		57.8		0.0002752381		57.8												50.4		0.00024		50.4

		71.9		0.000342381		66.26												55.7		0.0002652381		52.732

		89.9		0.0004280952		71.84												76.4		0.0003638095		58.114

		500		0.0023809524		149.759												550		0.0026190476		143.362

		Kav		0.2775890109														Kav		0.2606641855

				0.253521926																0.2345768174

				0.2237802443																0.2018192084

				0.2027163549																0.1798014878

		H12-1																H12-2

				0		0														0		0

		47		0.0002238095		47												47.1		0.0002242857		47.1

		53		0.000252381		49.88												58.4		0.0002780952		52.524

		70.4		0.0003352381		54.752												70.5		0.0003357143		55.791

		450		0.0021428571		123.08												450		0.0021428571		124.101

		Kav		0.2896756833														Kav		0.3457848808

				0.2573229815																0.279753797

				0.2287599413																0.2485315767

				0.1963032902																0.211471359

		H12-3																H13-1

				0		0														0		0

		45.2		0.0002152381		45.2												64.9		0.0003090476		64.9

		46.9		0.0002233333		46.305												74.2		0.0003533333		71.596

		70.3		0.0003347619		52.623												137.4		0.0006542857		93.084

		450		0.0021428571		120.969												450		0.0021428571		161.856

		Kav		0.3451970035														Kav		0.5337026495

				0.2944251942																0.3531912935

				0.2631289691																0.3009680046

				0.223050439																0.25468919

		H13-2																H13-3

				0		0														0		0

		64.9		0.0003090476		64.9												62.4		0.0002971429		62.4

		88.5		0.0004214286		81.892												64.9		0.0003090476		64.05

		137.9		0.0006566667		98.688												136.9		0.0006519048		88.53

		450		0.0021428571		170.471												550		0.0026190476		179.412

		Kav		0.6357294457														Kav		0.4424716078

				0.6587019725																0.362255782

				0.353951604																0.3187450236

				0.2742712897																0.2744571981

																				0.2474338919

		Z2-1																Z2-2

				0		0														0		0

		114.2		0.0005438095		114.2												110.3		0.0005252381		110.3

		145.2		0.0006914286		136.83												112.5		0.0005357143		111.862

		288		0.0013714286		185.382												212		0.0010095238		145.692

		600		0.0028571429		257.142												650		0.0030952381		242.052

		Kav		0.6534869228														Kav		0.3743835398

				0.4115223432																0.3347610633

				0.340132657																0.2854734508

				0.2990422186																0.2559099595

		Z2-3

				0		0

		117.2		0.0005580952		117.2

		174.5		0.0008309524		158.456

		420.6		0.0020028571		242.13

		600		0.0028571429		283.392

		Kav		0.6972428196

				0.6127974107

				0.4566853302

				0.3650366462





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		





		CH1																CH2																		H																Z

		t		web		flange		lip		r		rp						t		web		flange		lip		r		s1		s2		rp				t		web		flange		lip										t		web		flange		lip

		1.095		120.8		89.7		7		1.3		1.8475						1.105		116.6		89.85		14		1.3		10.3		20		1.85				1.9		235		160		11										1.9		180		90		10

		87.52		5.91														87.66		12.90																160.00		-11.00														-90		10

		87.52		0.00										A				87.66		0.00										s1p		s2p		A		160.00		0.00				A										-90		0				A

		0.00		0.00				118.62		87.52		5.91		334.51				0.00		0.00				114.41		87.66		12.90		9.20		18.58		357.03		0.00		0.00				1096.30										0		0				722

		0.00		118.62														0		47.91																0.00		235.00														0		180

		87.52		118.62														9.195		57.20																160.00		235.00														90		180

		87.52		112.71														0		66.50																160.00		246.00														90		170

																		0.00		114.41

																		87.66		114.41																C														C

																		87.66		101.50																t		web		flange		lip		a'		dr				t		web		flange		lip

																																				1.4		299.4		98.8		25.2		139.8		9.8				1.64		152.3		49.28		17.74

																																				98.8		25.2												49.28		17.74

																																				98.8		0				A		P						49.28		0				A		P

																																				0		0				777.6445125594		92		118.3059849509				0		0				469.5976		92		195.9124152253

																																				0		139.8												0		152.3

																																				9.8		149.7												49.28		152.3

		1		-130		10		1		1		1		1		1				1		1		2		1.9		100								0		159.6												49.28		134.56

		2		-130		0		1		1		1		1		1				2		2		3		1.9		100								0		299.4

		3		-120		0		1		1		1		1		1				3		3		4		1.9		100								98.8		299.4

		4		-110		0		1		1		1		1		1				4		4		5		1.9		100								98.8		274.2

		5		-100		0		1		1		1		1		1				5		5		6		1.9		100

		6		-90		0		1		1		1		1		1				6		6		7		1.9		100

		7		-80		0		1		1		1		1		1				7		7		8		1.9		100

		8		-70		0		1		1		1		1		1				8		8		9		1.9		100

		9		-60		0		1		1		1		1		1				9		9		10		1.9		100

		10		-50		0		1		1		1		1		1				10		10		11		1.9		100

		11		-40		0		1		1		1		1		1				11		11		12		1.9		100

		12		-30		0		1		1		1		1		1				12		12		13		1.9		100

		13		-20		0		1		1		1		1		1				13		13		14		1.9		100

		14		-10		0		1		1		1		1		1				14		14		15		1.9		100

		15		0		0		1		1		1		1		1				15		15		16		1.9		100

		16		0		10		1		1		1		1		1				16		16		17		1.9		100

		17		0		20		1		1		1		1		1				17		17		18		1.9		100

		18		0		30		1		1		1		1		1				18		18		19		1.9		100

		19		0		40		1		1		1		1		1				19		19		20		1.9		100

		20		0		50		1		1		1		1		1				20		20		21		1.9		100

		21		0		60		1		1		1		1		1				21		21		22		1.9		100

		22		0		70		1		1		1		1		1				22		22		23		1.9		100

		23		0		80		1		1		1		1		1				23		23		24		1.9		100

		24		0		90		1		1		1		1		1				24		24		25		1.9		100

		25		0		100		1		1		1		1		1				25		25		26		1.9		100

		26		0		110		1		1		1		1		1				26		26		27		1.9		100

		27		0		120		1		1		1		1		1				27		27		28		1.9		100

		28		0		130		1		1		1		1		1				28		28		29		1.9		100

		29		0		140		1		1		1		1		1				29		29		30		1.9		100

		30		0		150		1		1		1		1		1				30		30		31		1.9		100

		31		0		160		1		1		1		1		1				31		31		32		1.9		100

		32		0		170		1		1		1		1		1				32		32		33		1.9		100

		33		0		180		1		1		1		1		1				33		33		34		1.9		100

		34		10		180		1		1		1		1		1				34		34		35		1.9		100

		35		20		180		1		1		1		1		1				35		35		36		1.9		100

		36		30		180		1		1		1		1		1				36		36		37		1.9		100

		37		40		180		1		1		1		1		1				37		37		38		1.9		100

		38		50		180		1		1		1		1		1				38		38		39		1.9		100

		39		60		180		1		1		1		1		1				39		39		40		1.9		100

		40		70		180		1		1		1		1		1				40		40		41		1.9		100

		41		80		180		1		1		1		1		1				41		41		42		1.9		100

		42		90		180		1		1		1		1		1				42		42		43		1.9		100

		43		100		180		1		1		1		1		1				43		43		44		1.9		100

		44		110		180		1		1		1		1		1				44		44		45		1.9		100

		45		120		180		1		1		1		1		1				45		45		46		1.9		100

		46		130		180		1		1		1		1		1				46		46		47		1.9		100

		47		130		170		1		1		1		1		1





				L (in.)		w (in.)		bf (in.)		c (in.)		r (in.)		t (in.)		δ (in.)		Ptest (kips)				L (in.)		w (in.)		bf (in.)		c (in.)		r (in.)		t (in.)		δ (in.)		Ptest (kips)				L (mm)		t (mm)		w (mm)		bf (mm)		c (mm)		r (mm)		δ (mm)		Ptest (kN)		Ap(mm2)		(Mpa)

		1.5-0.00-1a		18.03		4.03		1.5		-		0.28		0.06		0.08		11.9				18.0		4.0		1.5		-		0.3		0.1		0.1		11.6				457.7		1.5		101.9		38.3		-		7.1		2.2		51.7

		1.5-0.00-2a		18.03		3.99		1.51		-		0.28		0.059		0.08		11.05

		1.5-0.00-3a		18		4.02		1.51		-		0.28		0.058		0.1		11.9

		1.5-0.25-1		18		3.96		1.5		0.29		0.28		0.06		0.12		18.9				18.0		4.0		1.5		0.3		0.3		0.1		0.1		18.6				457.6		1.5		100.8		38.3		7.3		7.2		3.0		82.5		355.3		232.2

		1.5-0.25-2		18.03		3.97		1.5		0.29		0.29		0.059		0.1		17.45

		1.5-0.25-3		18.02		3.98		1.52		0.28		0.28		0.059		0.13		19.3

		1.5-0.50-1		18		3.97		1.5		0.52		0.29		0.059		0.09		17.9				18.0		4.0		1.5		0.5		0.3		0.1		0.1		17.7				457.4		1.5		100.9		38.2		13.5		7.3		3.0		78.7		374.1		210.3

		1.5-0.50-2		18		3.98		1.51		0.54		0.29		0.059		0.13		19.9

		1.5-0.50-3		18.02		3.97		1.5		0.53		0.28		0.059		0.13		15.25

		1.5-0.75-1		18.03		3.98		1.5		0.78		0.28		0.058		0.13		18.1				18.0		4.0		1.5		0.8		0.3		0.1		0.1		19.6				457.6		1.5		101.0		38.3		19.6		7.2		3.1		87.1

		1.5-0.75-2		18		3.99		1.52		0.77		0.28		0.058		0.11		19.8

		1.5-0.75-3		18.02		3.96		1.5		0.76		0.29		0.059		0.13		20.87

		1.5-1.00-1		18.02		3.97		1.51		1.01		0.28		0.059		0.14		20.9				18.0		4.0		1.5		1.0		0.3		0.1		0.1		19.5				457.5		1.5		101.3		38.3		25.7		7.2		3.3		86.7

		1.5-1.00-2		18		3.99		1.5		1.01		0.29		0.059		0.12		19.3

		1.5-1.00-3		18.02		4		1.51		1.02		0.28		0.059		0.13		18.25

		2.0-0.00-1a		18		4.04		2		-		0.29		0.059		0.08		11.2				18.0		4.1		2.0		0.0		0.3		0.1		0.1		11.7				457.5		1.4		102.9		50.8		0.0		7.2		2.2		51.8

		2.0-0.00-2a		18.02		4.04		2		-		0.29		0.05		0.08		11.85

		2.0-0.00-3a		18.02		4.07		2		-		0.27		0.058		0.1		11.9

		2.0-0.25-1		18.02		4.01		2		0.3		0.2		0.05		0.1		17.48				18.0		4.0		1.7		0.3		0.2		0.1		0.1		17.2				457.7		1.4		100.5		43.0		7.5		5.8		2.7		76.6		333.5		229.7

		2.0-0.25-2		18.02		3.96		1.99		0.28		0.29		0.059		0.1		17.7

		2.0-0.25-3		18.02		3.9		1.09		0.3		0.2		0.059		0.12		16.49

		2.0-0.50-1		18		3.95		2.01		0.53		0.28		0.059		0.11		17.6				18.0		4.0		2.0		0.5		0.3		0.1		0.1		17.6				457.2		1.5		100.3		50.9		13.5		7.1		3.0		78.2

		2.0-0.50-2		18		3.97		2		0.54		0.28		0.059		0.1		15.1

		2.0-0.50-3		18		3.93		2		0.52		0.28		0.059		0.14		20.05

		2.0-0.75-1		18.02		3.99		1.98		0.78		0.29		0.058		0.14		16				18.0		4.0		2.0		0.8		0.3		0.1		0.1		18.3				457.7		1.4		101.3		50.4		19.8		7.4		3.0		81.2

		2.0-0.75-2		18.02		3.99		1.98		0.79		0.29		0.05		0.12		20.08

		2.0-0.75-3		18.02		3.99		1.99		0.77		0.29		0.058		0.1		18.7

		2.0-1.00-1		18.02		4		2		1		0.28		0.058		0.14		18.15				18.0		4.0		2.0		1.0		0.3		0.1		0.1		18.3				457.8		1.5		101.2		50.8		25.7		7.2		3.1		81.4

		2.0-1.00-2		18.03		3.98		2		1.02		0.28		0.057		0.1		17.35

		2.0-1.00-3		18.02		3.97		2		1.01		0.29		0.059		0.13		19.4

		2.5-0.00-1a		18.03		4.06		2.48		-		0.29		0.059		0.09		12.05				18.0		4.1		2.5		0.0		0.3		0.1		0.1		12.2				458.0		1.5		103.0		63.2		0.0		7.3		2.4		54.4

		2.5-0.00-2a		18.03		4.07		2.48		-		0.29		0.059		0.09		12.45

		2.5-0.00-3a		18.03		4.03		2.5		-		0.28		0.059		0.1		12.2

		2.5-0.25-1		18.03		3.96		2.52		0.27		0,29		0.059		0.1		15.8				18.0		4.0		2.5		0.3		0.2		0.1		0.1		17.7				458.0		1.5		101.3		63.7		7.0		6.2		2.9		78.9		414.2		190.5

		2.5-0.25-2		18.03		3.99		2.5		0.28		0.29		0.058		0.1		17.6

		2.5-0.25-3		18.03		4.02		2.5		0.28		0.2		0.059		0.14		19.8

		2.5-0.50-1		18.02		3.96		2.51		0.53		0.28		0.057		0.1		16.4				18.0		4.0		2.5		0.5		0.3		0.1		0.1		18.1				457.7		1.3		100.3		63.6		13.6		6.5		3.0		80.3

		2.5-0.50-2		18.02		3.94		2.49		0.54		0.29		0.05		0.13		19.1

		2.5-0.50-3		18.02		3.95		2.51		0.54		0.2		0.05		0.12		18.65

		2.5-0.75-1		18.02		3.93		2.49		0.7		0.29		0.05		0.13		18.6				18.0		4.0		2.5		0.7		0.3		0.1		0.1		19.2				457.7		1.4		100.5		63.2		19.0		7.4		3.4		85.6

		2.5-0.75-2		18.02		3.97		2.49		0.77		0.29		0.059		0.13		20

		2.5-0.75-3		18.02		3.97		2.49		0.77		0.29		0.059		0.14		19.1

		2.5-1.00-1		18.02		3.95		2.52		1.01		0.23		0.057		0.13		19				15.4		4.0		2.5		1.0		0.3		0.1		0.1		18.6				390.0		1.5		100.5		63.9		25.8		6.8		3.4		82.9

		2.5-1.00-2		18.02		3.96		2.52		1.02		0.28		0.058		0.12		18.89

		2.5-1.00-3		10.02		3.96		2.51		1.02		0.29		0.057		0.15		18

		2.7-0.00-1a		23.99		7.7		2.83		-		0.16		0.058		0.15		12.4				24.0		7.7		2.8		0.0		0.2		0.1		0.1		12.0				609.6		1.5		195.7		71.0		0.0		3.8		3.3		53.5

		2.7-0.00-2a		23.99		7.69		2.81		-		0.15		0.058		0.12		10.6

		2.7-0.00-1b		24.02		7.72		2.75		0		0.14		0.058		0.12		13.05

		2.7-0.00-2b		24		7.6		2.7		0		0.16		0.058		0.13		11.15				24.0		7.6		2.7		0.0		0.2		0.1		0.1		12.1				609.6		1.5		194.1		68.2		0.9		3.9		3.6		53.8

		2.7-0.15-1		24		7.65		2.68		0.05		0.15		0.058		0.14		12.8

		2.7-0.15-2		24		7.67		2.68		0.06		0.15		0.058		0.15		12.35

		2.7-0.25-1		24		7.62		2.65		0.22		0.15		0.058		0.15		15.2				24.0		7.7		2.7		0.3		0.2		0.1		0.2		16.5				609.9		1.5		194.5		67.6		7.8		3.8		3.8		73.2

		2.7-0.25-2		24.01		7.67		2.7		0.23		0.15		0.058		0.14		15.3

		2.7-0.50-1		24.02		7.68		2.64		0.47		0.15		0.058		0.16		18.9

		2.7-0.50-2		24		7.64		2.67		0.48		0.14		0.058		0.14		18.25				24.0		7.7		2.7		0.6		0.2		0.1		0.2		19.7				609.5		1.5		194.5		67.7		16.3		4.1		3.8		87.8

		2.7-0.75-1		24		7.67		2.66		0.72		0.17		0.058		0.15		20.56

		2.7-0.75-2		23.99		7.66		2.67		0.73		0.17		0.058		0.16		20.4

		2.7-1.00-1		24		7.72		2.66		0.96		0.16		0.058		0.16		20.7				24.0		7.7		2.7		1.1		0.2		0.1		0.2		21.4				609.8		1.5		196.7		67.5		26.7		4.0		4.1		95.1

		2.7-1.00-2		24		7.73		2.66		0.96		0.16		0.058		0.17		20.35

		2.7-1.25-1		24.02		7.78		2.65		1.23		0.15		0.059		0.15		23.1

		2.7-1.25-2		24.01		7.64		2.66		1.22		0.15		0.059		0.16		21.25				24.0		7.7		2.7		1.4		0.2		0.1		0.2		22.2				609.9		1.5		194.3		67.5		35.1		3.8		4.2		98.7

		2.7-1.50-1		24.01		7.66		2.65		1.47		0.15		0.059		0.17		23.4

		2.7-1.50-2		24.01		7.65		2.66		1.46		0.15		0.059		0.17		21.9

		2.7-2.00-1		24.02		7.6		2.67		1.98		0.15		0.058		0.18		23.3				32.0		7.7		2.7		2.0		0.2		0.1		0.2		18.6				813.3		1.5		194.9		68.7		50.4		3.9		4.2		82.6

		2.7-2.00-2		24.01		7.67		2.63		1.99		0.15		0.058		0.17		20.9

		2.7-0.00-1a		48.03		7.75		2.81		-		0.16		0.058		0.15		11.5

		2.7-0.00-2a		48		7.66		2.81		-		0.17		0.058		0.17		12.7				48.0		7.6		2.7		0.1		0.2		0.1		0.2		12.3				1219.5		1.5		193.3		67.4		2.0		4.1		4.2		54.7

		2.7-0.00-1b		48.03		7.56		2.57		0.08		0.16		0.058		0.15		12.55

		2.7-0.00-2b		48		7.61		2.58		0.08		0.16		0.058		0.18		11.65

		2.7-0.15-1		48.03		7.58		2.55		0.07		0.17		0.058		0.16		12.9				48.0		7.6		2.6		0.1		0.2		0.1		0.2		13.1				1219.6		1.5		192.8		65.1		2.6		4.4		3.8		58.3

		2.7-0.15-2		48		7.6!		2.57		0.07		0.17		0.058		0.15		12.7

		2.7-0.25-1		48,01		7.6		2.57		0.17		0.18		0.058		0.14		13.7

		2.7-0.25-2		48.03		7.62		2.58		0.16		0.18		0.058		0.15		14.3				48.0		7.6		2.6		0.3		0.2		0.1		0.2		16.9				1219.5		1.5		192.6		65.6		8.6		4.4		4.3		75.0

		2.7-0.50-1		48.01		7.54		2.56		0.44		0.17		0.059		0.18		19.4

		2.7-0.50-2		48		7.59		2.61		0.41		0.17		0.059		0.18		16.9

		2.7-0.75-1		48.01		7.63		2.62		0.67		0.16		0.059		0.21		20.95

		2.7-0.75-2		48.03		7.62		2.61		0.69		0.16		0.059		0.17		20.8

		2.7-1.00-1		48.03		7.64		2.62		0.94		0.16		0.058		0.17		21.45

		2.7-1.00-2		47.99		7.64		2.62		0.92		0.16		0.058		0.18		19.6

		2.7-1.25-1		48.03		7.64		2.6		1.19		0.16		0.058		0.2		20.55

		2.7-1.25-2		48		7.64		2.6		1.19		0.16		0.058		0.21		22.3

		2.7-1.50-1		48.02		7.64		2.63		1.43		0.16		0.059		0.2		20.75

		2.7-1.50-2		48		7.61		2.62		1.44		0.16		0.059		0.22		21.45

		2.7-2.00-1		48.03		7.63		2.62		1.94		0.16		0.058		0.21		21.75

		2.7-2.00-2		47.97		7.61		2.57		1.94		0.18		0.058		0.22		22.55





		0		0		0		0

		-0.02		-2158.87		0.0000218723		4.5972529813

		-0.04		-4317.45		0.0000437445		9.1938884157

		-0.06		-6475.73		0.0000656168		13.7898850085

		-0.08		-8633.67		0.0000874891		18.3851575809

		-0.1		-10791.2		0.0001093613		22.9795570698

		-0.12		-12948.4		0.0001312336		27.573253833

		-0.14		-15105		0.0001531059		32.1656729131

		-0.16		-17261.2		0.0001749781		36.7572402044

		-0.18		-19416.6		0.0001968504		41.3471039182

		-0.2		-21571.4		0.0002187227		45.9356899489

		-0.22		-23725.2		0.0002405949		50.5221465077

		-0.24		-25877.9		0.0002624672		55.1062606474

		-0.26		-28029.3		0.0002843395		59.6876064736

		-0.28		-30178.8		0.0003062117		64.2649063032

		-0.3		-32326.1		0.000328084		68.8375212947

		-0.32		-34470.4		0.0003499563		73.4037478705

		-0.34		-36610.6		0.0003718285		77.9612436116

		-0.36		-38745		0.0003937008		82.5063884157

		-0.38		-40871.3		0.0004155731		87.0342844974

		-0.4		-42985.6		0.0004374453		91.5366269165

		-0.42		-45082.1		0.0004593176		96.0010647359

		-0.44		-47151.6		0.0004811899		100.4080068143

		-0.46		-49179.7		0.0005030621		104.7267887564

		-0.48		-51145		0.0005249344		108.9118398637

		-0.5		-53015.8		0.0005468066		112.8956558773

		-0.52		-54750.1		0.0005686789		116.5887989779

		-0.54		-56309.8		0.0005905512		119.9101362862

		-0.56		-57693.3		0.0006124234		122.8562606474

		-0.58		-58929.7		0.0006342957		125.4891396934

		-0.6		-60046.9		0.000656168		127.8681856899

		-0.62		-61061.8		0.0006780402		130.0293867121

		-0.64		-61983.9		0.0006999125		131.9929727428

		-0.66		-62819.4		0.0007217848		133.7721465077

		-0.68		-63573.7		0.000743657		135.378407155

		-0.7		-64251.7		0.0007655293		136.8221890971

		-0.72		-64858.9		0.0007874016		138.1152044293

		-0.74		-65401.2		0.0008092738		139.2700170358

		-0.76		-65884.5		0.0008311461		140.2991908007

		-0.78		-66314.7		0.0008530184		141.2152896082

		-0.8		-66697.4		0.0008748906		142.0302385009

		-0.82		-67038.1		0.0008967629		142.7557495741

		-0.84		-67341.6		0.0009186352		143.402044293

		-0.86		-67612.2		0.0009405074		143.9782793867

		-0.88		-67853.9		0.0009623797		144.4929727428

		-0.9		-68070.2		0.000984252		144.9535775128

		-0.92		-68263.9		0.0010061242		145.3660562181

		-0.94		-68437.8		0.0010279965		145.7363713799

		-0.96		-68594.2		0.0010498688		146.0694207836

		-0.98		-68734.9		0.001071741		146.3690374787

		-1		-68861.9		0.0010936133		146.6394804089

		-1.02		-68976.5		0.0011154856		146.8835178876
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