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Abstract

We use the theory of action operads and their algebras to study a class of associated
monoidal categories, particularly those that are freely generated by some number
of invertible objects. We first provide some results about Gn, which is known to
be both the free EG-algebra and the free G-monoidal category over n objects, for a
given action operad G. Then we deduce the existence of LGn, the free algebra on n

invertible objects, and show that its objects and connected components arise as a group
completion of the data of Gn. In order to determine the rest of LGn, we will prove
that this algebra is the target of a surjective coequaliser q of monoidal categories; that
collapsing the tensor product and composition into a single operation forms one half of
an adjunction M( _ )ab ⊣ B; that its action operad G embeds into its group completion;
and that its morphisms are a semidirect product (s× t)(LGn) n LGn(I, I) of a chosen
subgroup by the unit endomorphisms. With these and other assorted results, we will
compile a method for constructing LGn for most action operads, and from this produce
descriptions of the free symmetric, braided, and ribbon braided monoidal categories on
invertible objects.
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Introduction

The central goal of this thesis is to determine how one can construct free monoidal
categories over invertible objects, for as many different kinds of monoidal category as
possible. This will be achieved by framing the problem in terms of the theory of action
operads, and then gradually exploring the features possessed by their algebras.

The motivation for this topic came from earlier work by the author which attempted
to produce a classification theorem for 3-groups. In general, n-groups are a higher
dimensional categorification of the standard notion of a group. While a group can
be seen as a monoid in which all elements are invertible, a 2-group is a monoidal
category in which all objects and morphisms are invertible in the appropriate sense,
a 3-group is a monoidal 2-category with all data invertible, and so on. Much has
already been written on the subject of 2-groups [2], including a theorem which classifies
them completely in terms of group cohomology. The original intention of the author

— which will hopefully still form the basis of a future paper — was to generalise this
classification theorem to work for 3-groups, by taking each step in the proof and
replacing it with a version using concepts from one dimension up. In particular, to
replace the sections that involved group cohomology it would be necessary to develop
a theory of braided 2-group cohomology. A cohomology of symmetric 2-groups already
exists [25], but proving that it is well-defined involves exploiting certain facts about
symmetric monoidal categories, ones that do not immediately transfer to the braided
case.

Thus the key to resolving the whole issue is to understand the behaviour of braided
monoidal categories whose objects are all invertible. Indeed, it would suffice to know
how to construct the free braided monoidal category on n invertible objects, for any
value of n ∈ N, but this in turn is fairly tricky. Over the course of the following
chapters we shall see how to accomplish this task, as well as how to find the analogous
free entity for a large class of similar structures, what we will call the G-monoidal
categories. These include the familiar symmetric monoidal categories, but also more
unusual cases, such as ribbon braided monoidal categories.



x Introduction

First, we shall spend most of Chapter 1 covering definitions and results from the
existing literature which will be relevant for reaching our objective. After beginning
with a quick review of the concepts of monoidal categories and operads, we will
introduce the main objects of study for this thesis, the so-called ‘action operads’. First
appearing with extra restrictions as ‘categorical operads’ in the thesis of Nathalie Wahl
[26], before being studied later in full generality by Alex Corner and Nick Gurski [6],
action operads are kind of operad which generalise the notion of a group action upon
a set. We will see how many common examples of operads-with-extra-structure —
including the founding example of operad theory, the symmetric operad [20] — can be
united into a single framework by viewing them as G-operads, ones that are acted on by
some suitable action operad G. The translation operad EG will also be introduced at
this point, as a way to categorify certain aspects of a given action operad G. Following
on from the discussion of G-operads will be a look into what the appropriate algebras
for these operads should be. In particular, we will see how they differ slightly from
the more typical definition of an operad algebra, due to an additional equivariance
condition. During this we will see that a certain monoidal structure, present in all
action operads G, will be inherited by the algebras of both G and EG. Then at last all
of the work in this chapter will come to a head in Theorem 1.31, a result of Gurski [11],
where we learn that algebras of the G-operad EG are equivalent to kind of monoidal
category, one equipped with extra permutative structure dictated by the nature of
the action operad G. These are the G-monoidal categories, and thus by framing our
questions about free braided monoidal categories in the language of action operad
algebras, we will be able to produce results which are applicable to a much wider range
of situations.

Next, Chapter 2 will begin our investigation into the free EG-algebras. We will
open with a look at Gn, the free algebra on some number n ∈ N of not-necessarily
invertible objects. After providing a description for Gn, we will also be able to surmise
the existence of free EG-algebra on n invertible objects, denoted LGn, through the use
of some monad theory. Then we shall see how this LGn can be viewed as the initial
object in a certain comma category of algebras, when paired with the obvious map
between free algebras η : Gn → LGn. From this initial algebra perspective it will be
possible for us to extract several important pieces of information about the structure
of LGn, using a technique where we exploit the properties of adjoint functors. First,
by showing that the previously mentioned translation functor E forms an adjunction
with the object monoid functor Ob, we will demonstrate that the objects of LGn are
the group completion of the objects of Gn. Likewise, forming an adjunction between
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discrete category functor D and the connected component functor π0 will let us prove
that the components of LGn are the group completion of π0(Gn). However, a way
of using this method to find the morphisms of LGn will remain elusive. The closest
we can get is by showing that the delooping functor B is right adjoint to a certain
functor M( _ )ab : MonCat → CMon, which describes what we will call the ‘collapsed
morphisms’ of a given monoidal category. In order to salvage this approach, we must
therefore try to translate the defining property of LGn into one that works solely
within the category MonCat, and then also prove that both the algebra structure and
the true morphisms of a given EG-algebra can be recovered from these new collapsed
morphisms. This task will form the majority of the remaining three chapters.

Chapter 3 will bring a couple of new ways for us to think about the algebra LGn.
Instead of viewing it as part of an initial object like in Chapter 2, we will instead
show that it forms the target of a coequaliser map q : G2n → LGn, whose source now
has twice as many generating objects as before. The simplest way to do this involves
exhibiting q as the cokernel of an algebra map δ : G2n → G2n, which is designed in such
a way that the additional n generators of G2n will get sent by q onto the inverses of
the n generators of LGn. Through this new perspective we will learn several important
facts about the action α of LGn, including how we will eventually be able to reconstruct
it from LGn’s monoid of morphisms, once we finally understand them. This insight
will then indicate how we can subtly change the coequaliser diagram for q, so that the
preservation of the EG-action is now a consequence of the way that we have built it,
rather than just an automatic feature of q being an algebra map. In other words, we
will have demonstrated that the underlying monoidal functor of q is also a coequaliser,
and thus have found a property which marks the free algebra LGn as special within
the world of monoidal categories. This is exactly what we need in order to leverage
the left adjoint status of the functor M( _ )ab, since it lives over the category MonCat
and commutes with all colimits, like coequalisers. With a little work, our approach
will then yield a description of the abelian group of collapsed morphisms M(LGn)gp,ab

as a quotient of the larger group of collapsed morphisms of G2n.

In Chapter 4, we will see how to use the information that we’ve accumulated up
to this point to build the morphisms of LGn. The idea is that the invertibility of
the objects in this category will let us split the monoid Mor(LGn) into two relevant
pieces. The first is a subgroup (s × t)(LGn), which encodes all of the ordered pairs
of objects that appear as the source and target data of at least one morphism. The
fact that there is such a subgroup — that we can choose a representative morphism
for each source/target pair in a way which respects the tensor product of LGn — is
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a consequence of the way that the morphisms of the free algebra Gn are structured.
Specifically, the source and target monoid (s × t)(Gn) is free, which lets us easily
construct an inclusion (s× t)(Gn) → Mor(LGn), whose image under the coequaliser
q then forms the required inclusion for (s × t)(LGn). By comparison, the second
subgroup that we need is much simpler, as it is just the homset of endomorphisms
of the unit object, LGn(I, I). Together, these two subgroups shape the whole of
Mor(LGn), in the sense that the latter is a semidirect product of the former. Moreover,
under certain circumstances which will include all of the motivating examples for
this research, this semidirect product is actually direct. This will allow us to easily
perform abelianisations, group completions, and repeated quotients of Mor(LGn) until
we arrive at the same the collapsed M(LGn)gp,ab we had before, after which we will have
successfully described a path from the morphisms of the free algebra G2n to those of
the invertible LGn. The rest of the chapter will then be concerned with simplifying this
description, by carrying out some calculations that do not change for different instances
of LGn. This will include an investigation into the way that action operads and the
monoids we’ve built out of them will act under group completion and abelianisation.

Finally, in Chapter 5 we will compile all of the major results of the previous chapters
into a single account of the free EG-algebra on n invertible objects. The only piece
of data still missing at this stage will be the action α, but a method for recovering
it will have already been established back in Chapter 3, so this will not present any
further challenges. Theorems 5.3 and 5.5 are the focal point of the thesis, providing
a step-by-step construction of the algebra LGn for all values of n ∈ N and all action
operads G. The remainder of the thesis will then consist of applications of these
theorems to specific examples of free G-monoidal categories on invertible objects —
the symmetric, the braided, and the ribbon braided.



Chapter 1

Operads and their algebras

Before we can talk about the main focus of this thesis, the free EG-algebras on n

invertible objects, we will need to work our way through several intermediate concepts.
This chapter will cover the background material needed to understand each of these
other structures in turn — monoidal categories, operads, action operads, G-operads,
and operad algebras. Most of this content is due to other authors, and the reader
is encouraged to refer to the given sources if they are interested in a more complete
analysis of any of the featured topics.

1.1 Basic definitions

In this section we shall briefly review some standard definitions from category theory
that will be used throughout the thesis. Everything in this section can be found in any
good introductory text on category theory, such as the foundational ‘Categories for
the Working Mathematician’ [17] by Saunders Mac Lane.

We will start with the notion of an adjunction.

Definition 1.1. Let C and D be categories, and F : C → D, G : D → C be functors.
Then we say that F is left adjoint to G, and that G is right adjoint to F , if for any
objects X in C and Y in D there exists an isomorphism

D
(
F (X), Y

) ∼= C
(
X, G(Y )

)
natural in both variables. Equivalently, F and G are adjoints if there exist natural

transformations η : idC ⇒ G ◦ F and ϵ : F ◦G ⇒ idD which obey the so-called zig-zag
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identities,

F FGF G GFG

F G

idF ◦η

idF

ϵ◦idF

η◦idG

idG

idG◦ϵ

This adjunction is denoted F ⊣ G.

First described by Daniel Kan in [12], adjoint functors are an incredibly common
mathematical structure. They appear in group theory, with the forgetful functor
U : Grp → Set and its right adjoint the free group functor F : Set → Grp, or the
inclusion of abelian groups into groups Ab ↪→ Grp and its right adjoint abelianisation
ab : Gp → Ab. They appear in topology, where the suspension functor Σ is left adjoint
to the loop space functor Ω, and in logic, where the act of substituting by a variable is
left adjoint to universal quantification and right adjoint to existential quantification
[14]. Indeed, the aforementioned ‘Categories for the Working Mathematician’ [17]
opens by saying that its slogan is "Adjoint functors arise everywhere". For our purposes,
the most important feature of adjoint functors is the following:

Proposition 1.2. Left adjoints preserve colimits. Right adjoints preserve limits.

In particular, Chapters 2 to 4 will all utilise the fact that left adjoints can be
commuted past colimits at some point.

Next, this thesis will also rely upon the concept of the monoidal category.

Definition 1.3. A monoidal category is a category C equipped with

• a functor ⊗ : C × C → C, called the tensor product of C

• an object I ∈ C, called the unit

• a natural isomorphism a, called the associator, with components

ax,y,z : (x⊗ y) ⊗ z −→ x⊗ (y ⊗ z)

• two natural isomorphisms l and r, called the left and right unitors, with compo-
nents

lx : I ⊗ x −→ x, rx : x⊗ I −→ x
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which satisfy two coherence conditions. The first of these, the pentagon identity, is
best displayed as the commutative diagram

(w ⊗ x) ⊗ (y ⊗ z)

((w ⊗ x) ⊗ y) ⊗ z w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y)) ⊗ z w ⊗ ((x⊗ y) ⊗ z)

aw,x,y⊗zaw⊗x,y,z

aw,x,y⊗idz

aw,x⊗y,z

idz⊗ax,y,z

and shows that the operation ⊗ is weakly associative. Likewise the second condition,
the triangle identity, corresponds to the diagram

(x⊗ I) ⊗ y x⊗ (I ⊗ y)

x⊗ y

ax,I,y

rx⊗idy idy⊗ly

and represents the fact that I is a weak unit. A monoidal category in which the natural
isomorphisms a, l, r are all identities — and thus the two coherence conditions hold
trivially — is said to be strictly monoidal. For contrast, we will therefore sometimes
refer to the above kind of category as weakly monoidal.

While it isn’t explicitly stated in Definition 1.3, notice that the functoriality of ⊗
induces the following relationship between the tensor product and composition in C:

(f ′ ◦ f) ⊗ (g′ ◦ g) = (f ′ ⊗ g′) ◦ (f ⊗ g)

This is known as the interchange law of C. We will use this equality frequently in
later chapters, especially when investigating its interaction with invertible objects —
those objects x in a monoidal category which possess an inverse x∗ satisfying

x⊗ x∗ = I = x∗ ⊗ x

Monoidal categories are also found everywhere throughout mathematics. Commonly
studied examples include the category of sets Set with the cartesian product ×, the
category of abelian groups Ab under direct sum ⊕, and the category of K-vector spaces
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K − Vect with its usual tensor product ⊗K . Part of the reason for their ubiquity is
that monoidal categories are, in some sense, really degenerate versions of a higher
dimensional category, specifically a one-object bicategory.

Definition 1.4. A bicategory B consists of

• a collection of objects Ob(B)

• for each pair of objects x, y, a category B(x, y), whose objects are called 1-
morphisms from x to y, and whose morphisms are called 2 −morphisms

• for each triple of objects x, y, z, a functor ◦ : B(y, z) ×B(x, y) → B(x, z), called
the horizontal composition of B

• for each object x, an 1-morphism 1x ∈ B(x, x), called the identity on x

• for each quadruple of objects w, x, y, z, a natural isomorphism a : B(y, z) ×
B(x, y) ×B(w, x) → B(w, z), called the associator, with components

af,g,h : (f ◦ g) ◦ h −→ f ◦ (g ◦ h)

• for each pair of objects x, y, two natural isomorphisms l, r : B(x, y), called the
left and right unitors, with components

lf : 1y ◦ f −→ f, rf : f ⊗ 1x −→ f

Like with monoidal categories, the associators in a bicategory satisfy a pentagon
identity and the unitors each satisfy triangle identities.

Bicategories are sometimes known as weak 2-categories, and moreover if all of
the natural isomorphisms a, l, r are identities then B is said to be a strict 2-category.
We will not be exploring the concept of higher categories too closely in this thesis
(see for example [15] for a proper treatment), but suffice it to say that there are
also other kinds of degenerate n-categories which appear to be common kinds of
category-with-extra-structure.

Definition 1.5. A braided monoidal category is a monoidal category C equipped with
an additional natural isomorphism,

βx,y : x⊗ y −→ y ⊗ x
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called the braiding, which satisfies the hexagon identities,

(x⊗ y) ⊗ z z ⊗ (x⊗ y)

x⊗ (y ⊗ z) (z ⊗ x) ⊗ y

x⊗ (z ⊗ y) (x⊗ z) ⊗ y

βx⊗y,z

ax,y,z a−1
z,x,y

idx⊗βy,x βz,x⊗idy
a−1

x,z,y

x⊗ (y ⊗ z) (y ⊗ z) ⊗ x

(x⊗ y) ⊗ z y ⊗ (z ⊗ x)

(y ⊗ x) ⊗ z y ⊗ (x⊗ z)

βx,y⊗z

a−1
x,y,z ay,z,x

βx,y⊗idz idy⊗βz,x
ay,x,z

Again, though it isn’t directly mentioned in, the above definition also implies
another pair of coherence conditions for the unit in C, namely

x⊗ I I ⊗ x I ⊗ x x⊗ I

x x

βx,I

rx lx

βI,x

lx rx

Definition 1.6. A symmetric monoidal category is a braided monoidal category C

whose braiding satisfies an extra symmetry condition, β−1
x,y = βy,x.

Braided monoidal categories can be seen as the ‘same’ as doubly-degenerate tricat-
egories, while symmetric monoidal categories ‘are’ triply-degenerate weak 4-categories.
For a more thorough explanation of this relationship, see [4] and [5].

Strict symmetric monoidal categories are sometimes known as ‘permutative cate-
gories’, and it is not hard to see why. If we set a, l, r = id, then in the symmetric case
the diagrams from Definition 1.5 simplify to

βx⊗y,z = (βz,x ⊗ idy) ◦ (idx ⊗ βy,x), βx,I = idx
βx,y⊗z = (idy ⊗ βz,x) ◦ (βy,x ⊗ idx), βI,xI = idx

Collectively, these identities represent the fact that for any collection of distinct objects
x1, ..., xn in a strict symmetric monoidal category X and any permutation σ ∈ Sn,



6 Operads and their algebras

there exists a unique isomorphism

x1 ⊗ ...⊗ xn −→ xσ−1(1) ⊗ ...⊗ xσ−1(n)

built out of the symmetries β. In other words, elements of the symmetric groups Sn
act like n-ary operations, which take in an appropriate number of objects and return
some data for a strict symmmetric monoidal category. This is a fairly vague statement
however; it would be nice if we could make it more rigorous.

1.2 Operads

What we need is the concept of an operad. These were first introduced by Peter May
in the book ‘The Geometry of Iterated Loop Spaces’ [20], though our usage will be
slightly different, for reasons discussed later.

Definition 1.7. An operad O in a symmetric monoidal category (C,⊗, I) is a structure
consisting of

• a family of objects, O(n) for n ∈ N,

• a morphism 1 : I → O(1), called the identity

• a family of morphisms,

µn;k1,...,kn : O(n) ⊗O(k1) ⊗ ...⊗O(kn) −→ O(k1 + ...+ kn)

called operadic multiplication.

This data is then subject to the unitality conditions

I ⊗O(n) O(n) ⊗ I ⊗ ...⊗ I

O(1) ⊗O(n) O(n) O(n) ⊗O(1) ⊗ ...⊗O(1) O(n)

1⊗idO(n)
lx idO(n)⊗1⊗...⊗1 rx⊗I⊗...⊗I ◦...◦ rx

µ1;n µn;1,...,1
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for all n ∈ N, and the associativity conditions

O(n) ⊗∏
O(mi) ⊗∏

O(k1,j) ⊗ ...⊗∏
O(kn,j)

O(n) ⊗∏(
O(mi) ⊗∏

O(ki,j)
)

O(m1 + ...+mn) ⊗∏
O(ki,j)

O(n) ⊗∏
O(ki,1 + ...+ ki,mi

) O(k1,1 + ...+ kn,mn)

µ⊗id
β

id ⊗
∏
µ µ

µ

for all n,m1, ...,mn, k1,1, ..., k1,m1 , ..., kn,1, ..., kn,mn ∈ N.

The idea behind operads is that they are supposed to generalise the notion of
‘operations’. That is, objects O(n) are to be thought of as somehow representing
collections of n-ary operations, with the identity as a distinguished unary operation.
Multiplication in an operad is then motivated by the intuition that we can plug the
outputs of n given operations into the inputs of an n-ary operation.

n-ary operation Identity Operadic multiplication

As an example, if we were to represent some operations pictorially as in the dia-
gram above, then the figure on the right is what is meant by the multiplication
µ : O(3) × O(2) × O(0) × O(1) → O(2 + 0 + 1). Under this interpretation, each
of the coherence conditions for an operad represents some obvious fact about how
generic n-ary operations should interact with one another. For instance, unitality of
the identity is simply

µ(x ; 1, 1, 1 ) = x = µ( 1 ; x )

As with most mathematical structures, operads naturally form a category, together
with a suitable notion of morphisms between operads.
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Definition 1.8. Given two operads O,O′ in a symmetric monoidal category (C,⊗, I),
a map of operads between them is a family of maps between their operations which
preserve operadic composition. That is, any f : O → O′ is composed of morphisms
fn : O(n) → O′(n), n ∈ N which satisfy

I O(n) ⊗O(k1) ⊗ ...⊗O(kn) O(k1 + ...+ kn)

O(1) O′(1) O′(n) ⊗O′(k1) ⊗ ...⊗O′(kn) O′(k1 + ...+ kn)

1O 1O′

fn⊗fk1 ⊗...⊗fkn

µO

fk1+...+kn

f1 µO′

for all n, k1, ..., kn ∈ N. The category of operads and maps of operads in (C,⊗, I)
is denoted Op(C), though in the case of Set we will just call it Op. Composition
in this category is defined by term-wise composition of families fn : O(n) → O′(n),
gn : O′(n) → O′′(n), and the identity morphisms idO : O → O are simply the families
idO(n) from C.

For a far more in depth explanation of operads and their intimate relationship
with category theory, see the book ‘Higher Operads, Higher Categories’ [15] by Tom
Leinster.

When we are working with operads in the category of sets, (Set,×, 1), the objects
O(n) genuinely are collections of elements, with a distinguished identity 1 ∈ O(1).
However, these elements still do not have to be operations in any way other than that
they satisfy Definition 1.7, as we will see in the following examples.

Example 1.9 (The symmetric operad).
There is an operad in Set whose sets of operations S(n) are the underlying sets of the
symmetric groups Sn. The identity element of this symmetric operad S is the identity
permutation of a single object, e1 ∈ S1, and the operadic multiplication is defined in
the following way:

• First, there exist maps ⊗ : Sm × Sn → Sm+n called the direct sum or block sum
of permutations. For any σ ∈ Sm and τ ∈ Sn, these are given by

(σ ⊗ τ)(i) =

 σ(i) 1 ≤ i ≤ m

τ(i−m) +m m+ 1 ≤ i ≤ m+ n

As the name suggests, this direct sum is usually denote by the symbol ⊕, but
we will stick with ⊗ so that our notation here matches all of the other tensor
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products we will see throughout this thesis. Also, notice that the value of these
direct sums are determined in general by those specific cases where one of the
inputs is an identity permutation:

σ ⊗ τ = (σ ⊗ en) · (em ⊗ τ) = (em ⊗ τ) · (σ ⊗ en)

Here · is simply multiplication in the group Sm+n.

• Next, we’ll define functions ( _ )(k1,...,kn) : Sn → Sk1+...+kn for all n, k1, ..., kn ∈ N.
These will act by taking a σ which permutes n individual objects and sending it
onto a σ(k1,...,kn) that permutes n blocks of objects of size k1, ..., kn in the same
way. More concretely, if k1 + ...+ ki−1 < j ≤ k1 + ...+ ki then

σ(k1,...,kn)(j) = j − k1 − ...− ki−1 + kσ−1(1) + ...+ kσ−1(σ(i)−1 )

• Finally, the multiplication maps µ : Sn × Sk1 × ...× Skn → Sk1+...+kn are given by

µ(σ; τ1, ..., τn) := σ(k1,...,kn) · (τ1 ⊗ ...⊗ τn)
= (τσ−1(1) ⊗ ...⊗ τσ−1(n)) · σ(k1,...,kn)

In other words, the operadic multiplication of permutations comes from both
permutating objects within distinct blocks and also permuting the blocks them-
selves.

If we decide to represent elements of the symmetric operad pictorially — for example
as strings which cross over another according to the appropriate permutation — then
both σ ⊗ τ and σ(k1,...,kn) have rather nice interpretations.

⊗ =

σ τ σ ⊗ τ

The direct sum of two permutations is just the result of placing two permutations ‘next
to’ each other, as above, and block permutations are given by expanding each string
into some number of parallel strings:
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7→

σ σ(3,2)

With a little work, we can actually replace the functions ( _ )(k1,...,kn) with an explicit
combination of group multiplication and tensor product. This is due to basic fact
about the symmetric groups Sn, which is that they possess a presentation in terms of
the elementary transpositions (i i+ 1).

Lemma 1.10. The group Sn is generated by the permutations (1 2), ..., (n − 1 n),
subject to the relations

(i i+ 1)2 = e

(i− 1 i)(i i+ 1)(i− 1 i) = (i i+ 1)(i− 1 i)(i i+ 1)
(i i+ 1)(j j + 1) = (j j + 1)(i i+ 1), i+ 1 < j

Thus if σ ∈ Sn is a permutation with a decomposition σ = σm · ... · σ1 in terms of
elementary transpositions σi ∈ Sn, we can break down the block permutation σ(k1,...,kn)

into the m ‘elementary block transpositions’ (σi)(k1,...,kn):

σ(k1,...,kn)(j) = j − k1 − ...− ki−1 + kσ−1(1) + ...+ kσ−1(σ(i)−1 )

= j − k1 − ...− ki−1

+ kσ−1
1 (1) + ...+ kσ−1

1 (σ1(i)−1 )

− kσ−1
1 (1) − ...− kσ−1

1 (σ1(i)−1 )

+ k(σ2σ1)−1(1) + ...+ k(σ2σ1)−1(σ2σ1(i)−1 )
...
− k(σm−1...σ

−1
1 (1) − ...− k(σm−1...σ1)−1(σm−1...σ1(i)−1 )

+ k(σm...σ1)−1(1) + ...+ k(σm...σ1)−1(σm...σ1(i)−1 )

=
(

(σm)(k1,...,kn) · ... · (σ1)(k1,...,kn)
)
(j)

However, since elementary transpositions only really permute two objects, they can
be written as a block sum in the operad S involving the sole transposition of S2, plus
some number of identity permutations.

(i i+ 1) = ei−1 ⊗ (1 2) ⊗ en−i−1
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This means that the elementary block transpositions are

(i i+ 1)(k1,...,kn) = (ei−1 ⊗ (1 2) ⊗ en−i−1)(k1,...,kn)

= ek1+...+ki−1 ⊗ (1 2)(ki,ki+1) ⊗ eki+1+...+kn

So all we need to know to fully understand the functions ( _ )(k1,...,kn) are the values
they take on the transposition (1 2). These can be defined recursively, via

(1 2)(0,n) = en, (1 2)(m+m′,n) =
(

(1 2)(m,n) ⊗ em′

)
·
(
em ⊗ (1 2)(m′,n)

)
,

(1 2)(m,0) = em, (1 2)(m,n+n′) =
(
en ⊗ (1 2)(m,n′)

)
·
(

(1 2)(m,n) ⊗ en′

)
(1 2)(1,1) = (1 2),

which all follow from the definition of ( _ )(k1,...,kn). Therefore all σ(k1,...,kn) and hence
all µ(σ; τ1, ..., τn) can be expressed in terms of group multiplication · and direct sum
⊗, and the elementary permutations which constitute σ, τ1, ..., τn.

Something very important to notice about the symmetric operad is that while its
sets of operations Sn are groups, it is not an operad in the category of groups, because
the operadic multiplication we have just outlined is not a group homomorphism. If it
were, then it would obey

µ(σ; τ1, ..., τn) · µ(σ′; τ ′
1, ..., τ

′
n) = µ(σσ′ ; τ1τ

′
1, ..., τnτ

′
n )

for all σ, σ′ ∈ Sn, τi, τ ′
i ∈ Ski

, but this is clearly false. As a counterexample, consider
the fairly simple case

µ
(

(1 2) ; e2, e1
)

= (1 2)(2,1) · (e2 ⊗ e1) = (1 2 3) · e3 = (1 2 3)
µ
(
e2 ; (1 2), e1

)
= (e2)(2,1) ·

(
(1 2) ⊗ e1

)
= e3 · (1 2) = (1 2)

µ
(

(1 2) ; (1 2), e1
)

= (1 2)(2,1) ·
(

(1 2) ⊗ e1
)

= (1 2 3) · (1 2)

Then we have

µ
(
e2 ; (1 2), e1

)
· µ
(

(1 2) ; e2, e1
)

= (1 2) · (1 2 3)

which is not the same as

µ
(
e2 · (1 2) ; (1 2) · e2, e1 · e1

)
= µ

(
(1 2) ; (1 2), e1

)
= (1 2 3) · (1 2)

At first this seems like pretty strange behaviour. After all, the symmetric groups play
a central role in the theory of groups, so it would be reasonable to assume that their
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operad would be similarly crucial for the theory of group operads. But S is not the
only family of groups whose operad is fundamentally set related.

Example 1.11 (The braid operad).
The braid groups Bn are the family of groups that result from taking the symmetric
groups and removing the requirement that the generators are self-inverse. That is,
the group Bn has a presentation on some elementary braids b1, ..., bn−1, given by the
relations

bibi+1bi = bi+1bibi+1, bibj = bjbi, i+ 1 < j

As might be expected, the underlying sets of these groups also form an operad in Set
known as the braid operad B, and they do so in a way directly analogous to the operad
S. That is, the identity element of B is e1 ∈ B1, and the operadic multiplication is
constructed as follows:

• Tensor products ⊗ : Bm ×Bn → Bm+n are determined by setting

x⊗ y = (x⊗ en) · (em ⊗ y) = (em ⊗ x) · (y ⊗ en)

for all x ∈ Bm, y ∈ Bn, and also

bi = ei−1 ⊗ b⊗ en−i−1

for any elementary braid bi ∈ Bn, where b is the only elementary braid in B2.

• The functions ( _ )(k1,...,kn) : Bn → Bk1+...+kn are first defined recursively on the
elementary braid b ∈ B2 by

b(0,n) = en, b(m+m′,n) = (b(m,n) ⊗ em′) · (em ⊗ b(m′,n))
b(m,0) = em, b(m,n+n′) = (en ⊗ b(m,n′)) · (b(m,n) ⊗ en′)
b(1,1) = b

then on arbitrary elementary braids bi ∈ Bn via

(bi)(k1,...,kn) = ek1+...ki−1 ⊗ b(ki,ki+1) ⊗ eki+1+...kn

and finally on all elements of the braid groups by using their presentation in
terms of the bi,

x = bim · ... · bi1
=⇒ x(k1,...,kn) = (bim)(k1,...,kn) · ... · (bi1)(k1,...,kn)
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• Then as in the symmetric case, the multiplication maps µ : Bn×Bk1 × ...×Bkn →
Bk1+...+kn are just

µ(x; y1, ..., yn) := x(k1,...,kn) · (y1 ⊗ ...⊗ yn)

These operations are exactly what they need to be in order for them to possess the
same pictorial representations as the operations in S, but with actual braids replacing
simple crossings. That is, the tensor product x⊗y is the braids x and y laid side-by-side,

⊗ =

x y x⊗ y

and the ‘block braids’ are multiple strings braided together in parallel,

7→

x x(3,2)

1.3 Action operads
It is not hard to see that the symmetric and braided operads both share certain features
which are not otherwise common among operads of sets. This fact has been noticed
by several different authors, each of whom proposed a slightly different definition
and terminology for these sorts of structures. While older treatments exist — see for
example [26] and [27] — in this thesis we will be following the conventions laid out in
[6], since they are the most general.

Definition 1.12. An action operad (G, π) consists of

• an operad G in the category of sets, whose G(n) are also all groups

• a map of operads π : G → S whose components πn : G(n) → Sn are also group
homomorphisms

where the operadic multiplication of G and the group multiplication of the G(n) are
linked via the map π in the following way:

µ( gg′ ; h1h
′
1, ..., hnh

′
n ) = µ(g;hπ(g′)−1(1), ..., hπ(g′)−1(n)) · µ(g′;h′

1, ..., h
′
n)
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The element π(g) is called the underlying permutation of g, and as we can see the
role it plays is to permute the inputs of an operadic multiplication when two of them
are multiplied as group elements. This is exactly the behaviour we observed before
with the symmetric operad; for instance, recalling our previous example we see that
what we should have had was

µ
(

(1 2) ; e1, e2
)

= (1 2 3)
µ
(
e2 ; e1, (1 2)

)
= (e2)(1,2) ·

(
e1 ⊗ (1 2)

)
= e3 · (2 3) = (2 3)

µ
(

(1 2) ; (1 2), e1
)

= (1 2 3) · (1 2)

=⇒ µ
(
e2 ; (1 2), e1

)
· µ
(

(1 2) ; e2, e1
)

= (2 3) · (1 2 3)
= (1 2 3) · (1 2)
= µ

(
(1 2) ; (1 2), e1

)
= µ

(
e2 · (1 2) ; (1 2) · e2, e1 · e1

)
The effect that this has on the map µ also mirrors the way that we had to define

operadic multiplication for S and B in stages. Specifically, if for any action operad G

we define

g(k1,...,kn) := µ(g; ek1 , ..., ekn), g1 ⊗ ...⊗ gn := µ(en; g1, ..., gn)

then it follows from Definition 1.12 that

µ( g ; h1, ..., hn ) = µ( g · en ; ek1 · h1, ..., ekn · hn )
= µ( g ; eπ(en)−1(k1)..., eπ(en)−1(k1) ) · µ( en ; h1, ..., hn )
= µ( g ; ek1 ..., ek1 ) · µ( en ; h1, ..., hn )
= g(k1,...,kn) · (h1 ⊗ ...⊗ hn)

for all g ∈ G(n), hi ∈ G(ki), n, k1, ..., kn ∈ N.

Now we can also see the reason why we chose the tensor product notation for the
operation µ(en; _, ...,_) before. Just like the tensor product of a monoidal category,
the definition of this ⊗ in G immediately implies an interchange law:

(g · g′) ⊗ (h · h′) = µ( e2 ; gg′, hh′ )
= µ(e2; g, h) · µ(e2; g′, h′)
= (g ⊗ h) · (g′ ⊗ h′)
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This interaction between the operad and group structures of G places some restrictions
on which groups we may build action operads from. One such consequence that we
will refer to in later chapters is the following:

Lemma 1.13. For any action operad G, the group G(0) is abelian.

Proof. This lemma is an example of the classic Eckmann-Hilton argument, first put
forth in [8]. The idea is that if a set is equipped with two binary operations which
obey some form of interchange, and both of them possess the same unit element e,
then they are in reality a single, commutative operation.

In the case of G(0), we know that it is closed under group multiplication ·, and the
unit of this is the identity element e0. But the operadic multiplication of G includes a
map

µn;0,...,0 : G(n) ×G(0) × ...×G(0) −→ G(0 + ...+ 0) = G(0)

which means that tensor products of elements in G(0),

g1 ⊗ ...⊗ gn = µn;0,...,0(en; g1, ..., gn)

are also in G(0). This ⊗ has unit e0 as well; since (e2; e1, e0) is the identity of
G(2) ×G(1) ×G(0), the operadic associativity, unitality, and group homomorphism
property µ gives

g ⊗ e0 = µ(e2; g, e0)
= µ

(
e2 ; µ(e1; g), µ(e0; −)

)
= µ

(
µ(e2; e1, e0) ; g

)
= µ(e1; g)
= g

and likewise for e0 ⊗ g = g. Moreover, we’ve just seen that the group multiplication
and tensor product of G obey an interchange law. Therefore we can apply the Eckmann-
Hilton argument: for any g, h ∈ G(0),

g ⊗ h = (g · e0) ⊗ (e0 · h) = (g ⊗ e0) · (e0 ⊗ h) = g · h

and also

h⊗ g = (e0 · h) ⊗ (g · e0) = (e0 ⊗ g) · (h⊗ e0) = g · h

In other words, tensor product and group multiplication coincide on G(0), and are
commutative, so that G(0) is an abelian group.
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Much like standard operads, we can pair action operads with a natural notion of
maps between them in order to form a category.

Definition 1.14. Given action operads G,G′, a map of action operads f : G → G′

is a map of operads in Set whose components fn : G(n) → G′(n) are all group
homomorphisms, and which preserve all underlying permutations:

G(n) G′(n)

Sn

fn

πG
πG′

The identity maps idG : G → G and the composites of action operad maps g ◦ f :
G → G′ → G′′ in Op are all well-defined maps of action operads themselves, and so
together these constitute a category of action operads and their maps, called AOp.

There are a couple of operads which trivially have the structure of an action operad.
First we have the terminal operad T, which has a single operation for each arity, so
that T(n) = {en}. Each of these sets can be seen as the trivial group, and it follows
from this that the πT : T(n) → Sn must be the respective zero maps, the terminal
homomorphisms in the category of groups. The action operad condition is then

µ(en; ek1 , ..., ekn) · µ(en; ek1 , ..., ekn) = µ(en; ek1 , ..., ekn)

which is really just
ek1+...+kn · ek1+...+kn = ek1+...+kn

and hence is trivially true. As its name suggests, the terminal operad is the terminal
object in the category Op, but it is also the initial object in AOp. This is because for
any other G in the category of action operads, the zero homomorphisms T(n) → G(n)
define the unique map of operads f : T → G.

On the other hand, the symmetric operad S itself functions as the terminal object in
AOp. Its action operad structure is just given by the standard group multiplications on
the Sn, with the identity maps idSn : Sn → Sn functioning as its πn. To see terminality,
notice that for any other action operad G a valid morphism f : G → S in AOp must
obey

πS ◦ f = πG =⇒ f = πG
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Thus there is only one map of action operads G → S: the very underlying permutation
structure used to define G in the first place.

There are more interesting examples of action operads we can look at too. For
instance, we know that the braid groups Bn have the same presentation as the symmetric
groups, except without the relations b2

i = e. Thus if we take their quotients by
these relations we will obtain a sequence of homomorphisms Bn → Sn, each sending
bi 7→ (i i+ 1). This provides a natural way to describe the underlying permutation
of any braid, and indeed choosing these maps to form πB gives a valid way of seeing
the braid operad as an action operad. Another example can also be built from the
so-called ribbon braid groups.

Definition 1.15. For each n ∈ N, the ribbon braid group RBn is the group whose
presentation is the same as that of the braid group Bn, except with the addition of
n new generators t1, ..., tn, known as the twists. These twists all commute with one
other, and also commute with all braids except in the following cases:

bi · ti = ti+1 · bi, bi · ti+1 = ti · bi

The ribbon braid operad RB is then the operad made up of these groups in a way
that extends the definition of the braid operad. In other words, the identity is still
e1 ∈ RB1, and the operadic multiplication is built up in stages in exactly the same
ways as in Example 1.11, but with some additional rules for dealing with twists. With
regards to the tensor product, we have that for any twist ti ∈ RBn,

ti = ei−1 ⊗ t⊗ en−i

where t is the sole twist in RB1, and for the ‘block twists’ t(m) we again work recursively:

t(0) = en, t(m+m′) = (t(m) ⊗ t(m′)) · b(m′,m) · b(m,m′)

Much as the symmetric groups can be represented by crossings of a collection of
strings, and the braid groups by braidings of strings, the ribbon braid groups deal with
the ways that one can braid together several flat ribbons, including the ability to twist
a ribbon about its own axis by 360 degrees.
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b t

This operad RB is also clearly an action operad, since we can just define πRB : RBn →
Sn to act like πB on any braids, at which point the fact that π(t) ∈ S1 = {e1} will
automatically take care of the twists. To learn more about the ribbon braids and their
operads, see Natalie Wahl’s thesis [26] on the subject, or her subsequent paper with
Paolo Salvatore [22].

The fact that the ribbon braid operad seems to contain the whole of the braid
operad is the key to easily understanding its operadic structure. We can formalise this
kind of relationship in the following way:

Definition 1.16. An action operad G is said to be a sub action operad of some other
action operad G′ if for all n ∈ N we have

G(n) ≤ G′(n), µG(g;h1, ..., hn) = µG
′(g;h1, ..., hn), πG(g) = πG

′(g)

The most important example of sub action operads are those of the symmetric
operad, S. This is because Definition 1.12 itself makes explicit reference to the symmetric
groups, and so every action operad will end up being related to some sub-operad of S:

Definition 1.17. For any action operad G, the images of the underlying permutation
maps πGn : G(n) → Sn naturally form an action operad im(πG), where

• the sets of operations are the images of G’s sets of operations under the homo-
morphisms πG:

im(πG)(n) := im(πGn )

• the underlying permutation maps are the evident inclusions:

πim(πG)
n : im(πGn ) ↪→ Sn

• the operad multiplication is the appropriate restriction of the multiplication of S:

µim(πG)( g ; h1, ..., hn ) := µS( g ; h1, ..., hn )

Clearly this im(πG) is a sub action operad of the symmetric operad S, and so we will
call it the underlying permutation operad of G.
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For example, consider the action operad B we just saw in Example 1.11. For a given
n, the braid group Bn is generated by n − 1 elementary braids. But the underlying
permutations of these braids are just the n−1 elementary transpositions which generate
the symmetric group Sn, and so the underlying permutation maps πBn : Bn → Sn are all
surjective. Thus the underlying permutation operad of B is just the whole symmetric
action operad, im(πB) = S.

It is even easier to see that S itself will have underlying permutations S, as the
maps πS

n = id : Sn → Sn are obviously surjective. Similarly, the trivial operad T is also
its own underlying permutation action operad, as the image of the homomorphisms
πT
n : {e} → Sn are trivial. Faced with rather dull examples like these, it might be

tempting to try and construct some new action operads with more exotic underlying
permutations, like maybe the alternating groups An ⊂ Sn. But it turns out that this
is not possible; when it come to their underlying permutation operad, action operads
come in exactly two flavours, as seen in [27].

Definition 1.18. Let G be an action operad where im(π)(n) is the trivial group for
each n ∈ N. Then we say that G is non-crossed, since its operad multiplication will be
a true group homomorphism:

µ( gg′ ; h1h
′
1, ..., hnh

′
n ) = µ( g ; hπ(g′)−1(1), ..., hπ(g′)−1(n) )µ( g′ ; h′

1, ..., h
′
n )

= µ( g ; h1, ..., hn )µ( g′ ; h′
1, ..., h

′
n )

Likewise, a crossed action operad will refer to any that has a non-trivial underlying
permutation operad.

Lemma 1.19. An action operad G is crossed if and only if it has surjective underlying
permutation maps πn : G(n) → Sn. In other words, the underlying permutations operad
of G must be either the trivial operad T or the symmetric operad S.

Proof. Let im(π) be the underlying permutation operad of G, and let us assume that
G is crossed, so that im(π) is not the trivial operad. This means that for some natural
number n, the n-ary operations of im(π) include at least one permutation σ which is
not the identity element of the relevant symmetric group Sn. Put another way, there
must be some σ and some 1 ≤ i ≤ n for which σ(i) ̸= i. But now consider evaluating
the expression

µim(π)(σ ; e0, ..., e0, e1, e0, ...., e0, e1, e0, ..., e0 )

where the e1’s above are appearing in the ith and σ(i)th coordinates, which we know
are distinct. From the definitions of im(π)(n) and of operad multiplication in S, this
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permutation is really just

µS(σ ; e0, ..., e0, e1, e0, ...., e0, e1, e0, ..., e0 ) = (1 2)

the only non-identity element of S2. This proves that the map π2 : G(2) → S2 is
indeed surjective, but more than that it shows that im(π) must contain every possible
adjacent transposition, since for any m ∈ N we have

µim(π)( en ; e1, ..., e1, (1 2), e1, ...., e1 )
= µS( en ; e1, ..., e1, (1 2), e1, ...., e1 )
= (m m+ 1) ∈ Sn

Then because adjacent transpositions generate the symmetric groups Sn, it follows
that every permutation is actually an operation in im(π), so that it is really just the
full symmetric operad S. Thus by only assuming that our action operad G was crossed,
we have shown that all of the maps πn must be surjective.

1.4 G-Operads

The most important feature of action operads, and the reason for giving them that
name in the first place, is that they are able to ‘act’ on other operads. The way that
this is done for operads in the category of sets is a direct generalisation of the more
familiar notion of group actions on sets. Before we begin then, we should recall what
exactly is meant by an action of a group on a set.

Definition 1.20. For any set S and group H, a (right) action of H on S is a function
· : S ×H → S which respects the group multiplication of H. That is,

x · e = x, x · (hh′) = (x · h) · h′

for any x ∈ S, h, h′ ∈ H, and e the identity of H. The set S equipped with this action
is known as an H-set.

In more categorical terms, an H-set is simply a functor BH → Set. Here the
notation BH refers to the category that has a single object ∗, and a homset BH(∗, ∗)
which is just isomorphic to the group H when viewed as a monoid under composition.
The bridge between these two perspectives is that if the functor BH → Set sends ∗ 7→ S,
then the rest of the functor constitutes a monoid homomorphism H → Set(S, S). We
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can then see this as a special kind of function S ×H → S, via the (right) tensor-hom
adjunction for the category of sets:

Set(A×B,C) ∼= Set
(
B, Set(A,C)

)

Now we take the idea of H-sets and generalise it to the domain of operads and
action operads.

Definition 1.21. Let G be an action operad. Then a G-operad in the category of sets
is an operad O in Set, equipped with an action of the group G(n) on the set O(n) for
each n ∈ N, which respect the operadic multiplications of G and O in the following
sense:

µO(x · g ; y1 · h1, ..., yn · hn ) = µO(x; yπ(g)−1(1), ..., yπ(g)−1(n)) · µG(g;h1, ..., hn)

Additionally, if a map of operads f : O → O′ between two G-operads preserves all of
the actions, so that the diagrams

O(n) ×G(n) O′(n) ×G(n)

O(n) O′(n)

fn×idG(n)

fn

commute for each n ∈ N, then we say that f is a map of G-operads in Set. Together
G-operads of sets and their maps form a category, which we shall call G-Op.

It is a well-known fact that every group H can itself be seen as an H-set, with
the action H ×H → H being given by multiplication on the right. The equivariance
axiom above has been chosen in such a way that we can immediately conclude an
analogous result about operads. That is, any action operad G is also G-operad with
actions G(n) ×G(n) → G(n) given by multiplication on the right, because under those
conditions the defining equation of a G-operad simply becomes the defining equation
for an action operad.

For certain specific G, the G-operads are already well-studied objects. If we take
our action operad G to be the symmetric operad S, then since the map πS is trivial we
arrive at a rather straightforward variety of G-operads, those whose equivariance is
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given by

µO(x · σ ; y1 · τ1, ..., yn · τn ) = µO(x; yσ−1(1), ..., yσ−1(n)) · µS(σ; τ1, ..., τn)

These S-operads are nowadays generally known as symmetric operads, or sometimes
permutative operads. However, May’s original definition [20] for ‘operads’ was actually
this symmetric version, and so some authors prefer to reserve that term for these
structures, instead calling the subject of Definition 1.7 ‘planar operads’, or ‘operads
without permutation’. This should give an idea of just how important these symmetric
operads really are. Prominent examples include the ‘little cubes’, ‘little discs’, and
similar operads which helped motivate the development of operad theory. There are
also braided operads, which are B-operads for the braid operad B — these appear in
the work of Zbigniew Fiedorowicz [9].

As one might expect, the notion of G-operads can be extended from Set to work in
other symmetric monoidal categories (C,⊗, I), by instead working with the operads
within that category. Since we are aiming to connect action operads to symmetric and
braided monoidal categories, the particular context we will be interested in is Cat, the
category of (small) categories. Here the concept of a group action is particularly simple

— it is just like a group action on sets, applied to both the objects and morphism of a
category.

Definition 1.22. Let X be a category, and H a group which we will also think of as a
discrete category. Then a (right) action of H on X is a functor · : X ×H → X which
respects the group multiplication of H. That is,

x · e = x, x · (hh′) = (x · h) · h′

f · ide = f, f · idhh′ = (f · idh) · idh′

for any objects x and morphisms f of X, and elements h, h′ ∈ H with e the identity.

As before, we can view a group action like this as a functor BH → Cat where the
sole object ∗ of BH is sent to the category X in question. This is because these are
equivalent to monoid homomorphisms H → Cat(X,X), which we can see as functors
X ×H → X using the fact that Cat is copowered (on the right) over Set:

Cat(X × S, Y ) ∼= Set
(
S, Cat(X, Y )

)
Here S is a set which again we identify with a discrete category.
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Definition 1.23. Let G be an action operad. Then a G-operad in Cat is an operad
O in (Cat,×, 1), equipped with an action of the group G(n) on the category O(n)
for each n ∈ N, which respect the operadic multiplications of G and O via a higher
dimensional version of the equation in Definition 1.21. Specifically, we require that the
diagram

O(n) ×G(n) ×∏(
O(ki) ×G(ki)

)
O(n) ×∏

O(ki)

O(n) × Sn ×G(n) ×∏(
O(ki) ×G(ki)

)

O(n) × Sn ×∏
O(ki) ×G(n) ×∏

G(ki)

O(k1 + ...+ kn) ×G(k1 + ...+ kn) O(k1 + ...+ kn)

id×(π,id)×id

µO
β

µ̃O×µGµ̃O×µG

commutes for all n, k1, ..., kn ∈ N. Here we are using µ̃O to refer to the obvious functor
Sn ×O(n) ×∏

O(ki) → O(k1 + ...+ kn) which acts like µO but with suitably permuted
inputs:

µ̃O(σ, x ; y1, ..., yn ) := µO(x ; yσ−1(1), ..., yσ−1(1) )

The easiest way to produce examples of G-operads in Cat is to simply build them
out of existing operads in the category of sets. In particular, if we design our categories
of operations so that the morphisms are determined entirely by their source and target,
then a single operad in Set will suffice to create one of these new higher dimensional
operads.

Definition 1.24. For any set S, we will define its translation category ES to be the
category whose objects are the elements of S, and whose morphisms consist of a unique
isomorphism between each pair of objects. Also, for any function f : S → S ′ we can
define a functor

Ef : ES → ES ′

: s 7→ f(s)
: s → s′ 7→ f(s) → f(s′)

This definition of Ef obviously respects composition and identities, and so together
with ES it describes a functor E : Set → Cat.
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Likewise, for any operad O in the category of sets we can define its translation
operad EO to be the operad in Cat given by the data

(EO)(n) := E
(
O(n)

)
, 1EO = E(1O), µEO = E(µO)

For each of the coherence conditions which EO must satisfy in order to be a well-defined
operad in Cat, we can obtain them from the corresponding conditions that make O an
operad in Set, by simply applying the functor E everywhere.

EO can be seen as a categorified version of the operad O. That is, it may live in
Cat rather than Set, but in many other respects it behaves the same way that O does.
Of particular interest to us is what this means in the case when O is really an action
operad G. We saw earlier that any G is always a G-operad in the category of sets, with
an action given by group multiplication. The categorified variant of this statement is
the following:

Lemma 1.25. For any action operad G, the translation operad EG is a G-operad in
Cat, with actions

EG(n) ×G(n) → EG(n)
(g, h) 7→ gh

(g → g′, idh) 7→ gh → g′h

The proof of this fact can be found in [11].

1.5 Operad algebras

As with many mathematical structures, we are not merely interested in operads for
their own sake, but also for their algebras.

Definition 1.26. Let O be an operad in the symmetric monoidal category (C,⊗, I).
Then an algebra of O is an object X in C, equipped with a family of morphisms
αn : O(n) ⊗ X⊗n → X, n ∈ N called the action of O on X, which obey axioms that
mirror those needed to define an operad. In other words, we a unitality condition

I ⊗X

O(1) ⊗X X

1⊗idX
lX

α1
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and then for all n, k1, ..., kn ∈ N we have an associativity condition,

O(n) ⊗∏
O(ki) ⊗∏

X⊗ki

O(n) ⊗∏(
O(ki) ⊗X⊗ki

)
O(k1 + ...+ kn) ⊗X⊗(k1+...+kn)

O(n) ⊗X⊗n X

µ⊗id
β

id ⊗
∏
α α

α

As one might expect, a map of algebras f : (X,αX) → (Y, αY ) between two algebras of
O is then simply a map between their underlying objects, f : X → Y , which preserves
this algebra structure:

O(n) ×Xn O(n) × Y n

X Y

idO(n)×fn

αX αY

f

Together these form the category OAlg of all O-algebras and their maps.

When O is an operad in Set, an algebra of O is simply a realisation of the elements
of the O(n) as actual n-ary operations on some set. A similar statement is true in any
concrete category, though with extra structure or restrictions depending on the nature
of (C,⊗, I). Also, when O is an operad in Cat we can upgrade the category OAlg into
a 2-category, by simply adding in monoidal natural transformations as the 2-morphisms
between algebra maps. We will use the notation OAlgS for this 2-dimensional structure
to indicate that everything involved is still strict, unlike the weaker pseudoalgebras
which have been studied elsewhere [6].

As we’ve seen many times already, when the operad we are working with is actually
an action operad, the presence of the additional group structure will cause something
more interesting to happen. Specifically, the operadic multiplication µG(en; _ , ..., _ )
can be interpreted as a tensor product, and so the operad algebras of G will end up
inheriting a monoidal structure of their own.



26 Operads and their algebras

Lemma 1.27. Let G be an action operad, and X an algebra of G in the category of
sets. Then X is a monoid with respect to the binary operation

x⊗ x′ := α(e2;x, x′)

whose n-fold repetitions are given by

x1 ⊗ ...⊗ xn = α(en;x1, ..., xn)

Also, there exists a forgetful functor GAlg → Mon sending the algebras of G to this
underlying monoid structure.

Similarly, let Y be an algebra of EG in Cat. Then Y is a strict monoidal category
with respect to the operation

y ⊗ y′ := α(e2; y, y′), f ⊗ f ′ := α(e2; f, f ′)

which satisfies

y1 ⊗ ...⊗ yn = α(en; y1, ..., yn), f1 ⊗ ...⊗ fn := α(en; f1, ..., fn)

and there is a forgetful 2-functor EGAlgS → MonCatS sending these algebras to their
underlying strict monoidal structure.

Proof. We’ll start by checking that the n-fold tensor products on X defined above
make sense. Firstly, for any element x ∈ X we want the one-fold tensor product of x
with itself to just be x again. This is ensured by the unitality of the action αX , which
says that α(e1;x) = x. Next, we need to make sure that the tensor products for each
arity are all compatible with each other, which follows from the associativity axiom for
αX :

(x1 ⊗ ...⊗ xk1) ⊗ ...⊗ (xk1+...+kn−1+1 ⊗ ...⊗ xk1+...+kn)
= α

(
en ; α(ek1 ;x1, ..., xk1), ..., α(ekn ;xk1+...+kn−1+1, ..., xk1+...+kn)

)
= α

(
µ(en; ek1 , ..., ekn) ; x1, ..., xk1 , ..., xk1+...+kn−1+1, ..., xk1+...+kn

)
= α( ek1+...+kn ; x1, ..., xk1+...+kn )
= x1 ⊗ ...⊗ xk1+...+kn

Perhaps unsurprising, this means that the associativity axiom also forces the binary
operation ⊗ to be associative. Finally, a special case of the above — where n = 2 and
the ki are 0 and 1 — shows that the empty tensor product α(e0; −) acts as the unit of
⊗. Thus X is indeed a well-defined monoid under the tensor product that comes from
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its action. Moreover, since all algebra maps f : X → X ′ preserve actions they will also
preserve this monoid structure.

f(x⊗ x′) = f
(
αX(e2;x, x′)

)
= αX

′(
e2 ; f(x), f(x′)

)
= f(x) ⊗ f(x′)

Therefore if we forget all of the features of our G-algebras other than the tensor
product, what we are left with are monoids and monoid homomorphisms, and this
defines an obvious functor GAlg → Mon.

Turning now to the category Y , if we think of all of the functors in the unitality
and associativity axioms for αY as acting just on objects, the exact same arguments we
employed above will show that (Ob(Y ),⊗) is well-defined monoid. Likewise, restricting
our view to morphisms will let us prove that (Mor(Y ),⊗) is a monoid, and then
functoriality of αY tells us that we can stitch these two tensor products together into a
single functor ⊗ : Y × Y → Y .

(f : x → y) ⊗ (f ′ : x′ → y′) = α(e2; f, f ′) : α(e2;x, x′) → α(e2; y, y′)
= f ⊗ f ′ : x⊗ x′ → y ⊗ y′

Thus Y as a whole has a tensor product, and because it comes from a monoid at
both levels it will be strictly associative and unital. Therefore EG-algebras are strict
monoidal categories, and since any algebra map F : Y → Y ′ will preserve this monoidal
structure for the same reason we had before, there is an associated forgetful 2-functor
EGAlgS → MonCatS onto the 2-category of strict monoidal categories.

In general, the algebras of G and EG will have a lot more structure to them than
just this tensor product. For example, any algebra for the symmetric operad S will
have an extra binary operation coming from the elementary permutation in S2:

X ×X → X

(x, x′) 7→ α
(

(1 2) ; x, x′
)

However, the rules that govern operad algebras do not put any extra constraints on
these operations, which makes the category SAlg far too broad to say anything useful
about. The problem is that by using the concept of a standard operad algebra, we are
ignoring the group multiplication of our action operads, since this is not something
that every operad of sets can be expected to have.

What we need is a notion for algebras of a G-operad. Of course, as operads
themselves any G-operad will already have algebras in the sense of Definition 1.26, but
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in general these won’t respect the G-operadic actions, which anything worthy of the
name ‘G-operad algebra’ should do. We can fix this by simply demanding that the
action α coequalises certain maps, chosen in a way which will force the equivariance to
hold.

Definition 1.28. For any operad O in Set or Cat, a G-operad algebra X of O is just
an operad algebra of O whose actions αn : O(n) × Xn → X coequalise two maps
O(n) ×G(n) ×Xn → O(n) ×Xn, one coming from the action of G(n) on O(n), and
the other from the reordering of Xn by the underlying permutations of G(n).

More precisely, recall that the symmetric monoidal structures of (Set,×, 1) and
(Cat,×, 1) provide us with several different isomorphisms β : Xn → Xn. Indeed, there
will be one for each permutation in Sn, and this gives rise to a natural embedding
of monoids Sn → Set(Xn, Xn) or Sn → Cat(Xn, Xn). We can then use the (left)
copower isomorphisms of the given categories to turn these embeddings into maps
β̃ : Sn ×Xn → Xn. With this notation, we define a G-operad algebra of O to be any
operad algebra X of O for which the following two composites are equal:

O(n) ×G(n) ×Xn O(n) × Sn ×Xn

O(n) ×Xn

X

· ×idXn

idO(n)×π×idXn

idO(n)×β̃

α

Since we don’t really have a reason to care about the non-G-operad algebras of a
G-operad O, from now on we will use the notation OAlg to refer to this new category
instead.

So, what are the algebras of an action operad G like in this context? Unfortunately,
this version of GAlg is even less interesting than the one before; it is simply the category
of monoids, Mon. To see this, notice that if we view an action operad G as a G-operad
with multiplication for its action, then the equivariance condition for an algebra X
will become

α(g;x1, ..., xn) = α( en · g ; x1, ..., xn )
= α( en ; xπ(g)−1(1), ..., xπ(g)−1(n) )
= xπ(g)−1(1) ⊗ ...⊗ xπ(g)−1(n)
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That is, the action αX is entirely determined by the tensor product of X, and as we’ve
already seen that this is unrestrained by the axioms for an operad algebra, so X is
just an undecorated monoid.

However, the 2-category EGAlgS is far more exciting. Sure, the same argument
we’ve just used for G will ensure that the action reduces to the tensor product on
objects, but on morphisms the underlying permutative structure π will finally come
into play. As an example, for the symmetric operad S we know that any ES-algebra X
must contain action morphisms of the form

α
(
e2 → (1 2) ; idx, idy

)
: α

(
e2 ; x, y

)
→ α

(
(1 2) ; x, y

)
: x⊗ y → y ⊗ x

for all objects x,y. Indeed, it is not to difficult to see that these morphisms are really
the symmetries βx,y for a strict symmetric monoidal category. For instance, the relation
βy,x ◦ βx,y = idx⊗y comes from the S-operad algebra equivariance axiom, and the fact
that the functor α preserves composition:

α
(
e2 → (1 2) ; idy, idx

)
◦ α

(
e2 → (1 2) ; idx, idy

)
= α

(
(1 2) · (1 2) → e2 · (1 2) ; idy, idx

)
◦ α

(
e2 → (1 2) ; idx, idy

)
= α

(
(1 2) → e2 ; idx, idy

)
◦ α

(
e2 → (1 2) ; idx, idy

)
= α

(
e2 → (1 2) → e2 ; idx ◦ idx, idy ◦ idy

)
= α(ide2 ; idx, idy)
= idα(e2;x,y)

= idx⊗y

The questions that should follow from this observation are obvious. What about the
braid operad B? Are the objects of EBAlgS braided monoidal categories, in the same
way that those of ESAlgS are symmetric monoidal? What about the algebras of the
ribbon braid operad, what sort of monoidal category are they? And do the S-operad
algebras of ES have any additional structure, other than their symmetries?

It turns out that there is a theorem which answers all of these questions at once,
for all possible G. To properly state it though, we’ll need some new terminology.

Definition 1.29. A (G,R)-monoidal category is a strict monoidal category X, equipped
with a set of natural isomorphisms

G =
{

(f ; πf ) : x1 ⊗ ...⊗ xn
f−→ xπ−1

f
(1) ⊗ ...⊗ xπ−1

f
(n)

}
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which are subject to some set of relations R. Each of the relations r ∈ R will be of
the form

r : (f1,1 ⊗ ...⊗f1,k1)◦ ...◦(fn,1 ⊗ ...⊗fn,kn) = (f ′
1,1 ⊗ ...⊗f ′

1,k′
1
)◦ ...◦(f ′

n′,1 ⊗ ...⊗f ′
n′,k′

n′
)

for its own collection of elements f1,1, ..., fn,kn , f
′
1,1, ..., f

′
n′,k′

n
∈ G and indexing variables

n, n′, k1, ..., kn, k
′
1, ..., k

′
n ∈ N.

Definition 1.30. Let G be an action operad. Then a G-monoidal category will refer
to the notion of (G,R)-monoidal category we get from G by setting

G =
{ (

g ; π(g)
)

: ∀ g ∈ G
}

and having R contain one element (r;n, n′, k, k′, g, g′) for each relation

r : (g1,1 ⊗ ...⊗ g1,k1) · ... · (gn,1 ⊗ ...⊗ gn,kn) = (g′
1,1 ⊗ ...⊗ g′

1,k′
1
) · ... · (g′

n′,1 ⊗ ...⊗ g′
n′,k′

n′
)

satisfied by the action operad G.

Theorem 1.31. For any action operad G, the algebras of EG are precisely the G-
monoidal categories. Furthermore, any given notion of (G,R)-monoidal category is
equivalent to the G-monoidal categories for some action operad G, and thus also the
EG-algebras.

Proof. See [11], Theorem 3.11 and Corollary 3.12.

This powerful result lets us to freely move back and forth between the worlds of
action operads and strict monoidal categories, allowing us to reframe our questions
about the latter into ones concerning the former. For instance, it is not difficult to
see that the action operad corresponding to braided monoidal categories is the braid
operad B. Thus if we want to describe certain kinds of free braided monoidal category,
we can instead choose to look for the same sorts of free EB-algebra. Moreover, this
equivalence reveals a way to generate new examples of either structure. Using an earlier
example, we know that the ribbon braid groups form an action operad RB, and so we
can immediately conclude that there exists some notion of ribbon braided monoidal
category [26], sometimes also known as balanced monoidal categories [23]. Conversely,
if we had already known about these ribbon categories then we could have surmised
from their strict versions that the ribbon braid groups formed an action operad.

Also, Theorem 1.31 will lead to a simplification for how we describe the action α of
an EG-algebra X. First, from now on we will generally only speak of the action as
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an operation that can be applied to the morphisms of X, because while α is really a
functor its effect on objects is already covered by any discussion of the tensor product
⊗. Secondly, when the EG coordinate of α contains the unique morphism g → h, we
can always use the action of G on EG to rewrite things so that we have the morphism
e → hg−1 instead. We saw this briefly in the symmetric example we looked at, but the
definition of G in Definition 1.30 along with Theorem 1.31 shows that this shift to a
single variable will never cause any problems or additional considerations. Thus from
now on we will freely identify the morphism g → h in EG with the element hg−1.





Chapter 2

Free EG-algebras

From here on out, everything we do in this thesis will be geared towards goal of
describing the free EG-algebras on n invertible objects, for each action operad G. By
Theorem 1.31, this will then tell us how to construct the equivalent free structure for
whole host of strict monoidal categories. Specifically, we will proceed by showing that
such algebras are the initial objects of a particular comma category, in accordance
with some well known properties of adjunctions and their units. Using this initial
object perspective will allow us to recover all of the data associated with the objects of
a given free invertible algebra — what those objects are, how they act under tensor
product, and which pairs of objects form the source and target of at least one morphism.
Unfortunately, a concrete description of the morphisms themselves will ultimately
remain elusive. We can get tantalisingly closer though, and an examination of the
exact way that this method fails will provide the necessary insight to motivate a more
successful approach in later chapters.

2.1 The free EG-algebra on n objects
Before we attempt any of this though, it is crucial that we understand a much simpler
case, where we do not require that our objects be invertible.

Proposition 2.1. There exists a free EG-algebra on n objects. That is, there is an
EG-algebra Y such that for any other EG-algebra X, we have an isomorphism of
categories

EGAlgS(Y,X) ∼= Xn

The proof of this fact is fairly standard. There is an obvious 2-functor U : EGAlgS →
Cat, sending each EG-algebra to its underlying category and each algebra map to its
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underlying functor. These sort of structure-discarding functors are informally referred
to as ‘forgetful functors’, and it is very common for them to possess a left adjoint. It
is not surprising then that U has one too [11], which we will call the free EG-algebra
2-functor F : Cat → EGAlgS. It follows immediately that

U(X)n = Cat({z1, ..., zn}, U(X))
∼= EGAlgS(F ({z1, ..., zn}), X)

where {z1, ..., zn} is any set with n distinct elements. Since X and U(X) are obviously
isomorphic as categories, this shows that F ({z1, ..., zn}) is the required free algebra. It
is also not to difficult to describe which category this F ({z1, ..., zn}) is.

Definition 2.2. Let G be an action operad. Then for any category X and k ∈ N, we
will denote by EG(k)×G(k)X

k the coequaliser of the two functors EG(k)×G(k)×Xk →
EG(k) ×Xk from Definition 1.28:

EG(k) ×G(k) ×Xk EG(k) × Sk ×Xk

EG(k) ×Xk

EG(k) ×G(k) X
k

· ×id
Xk

idEG(k)×π×id
Xk

idEG(k)×β̃

Proposition 2.3. Let {z1, ..., zn} be an n-object set, which can also be considered as
a discrete category. Then the free EG-algebra on n objects is the algebra Gn whose
underlying category is

Gn :=
∐
k∈N

EG(k) ×G(k) {z1, ..., zn}k

where for all m, k1, ..., km ∈ N, g ∈ G(m), xi ∈ {z1, ..., zn} the action is given by

α
(
g ; (h1; idx1 , ..., idxk1

), ..., (hm; idx1 , ..., idxkm
)
)

=
(
µ(g;h1, .., hm) ; idx1 , ..., idxkm

)
In other words, for any EG-algebra X,

EGAlgS(Gn, X) ∼= Cat({z1, ..., zn}, X) ∼= Xn
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Again, this is something already covered by the work of Gurski and Corner [6], so
we won’t go through all of the details here. The basic idea is that since the actions
αm : EG(m)×Xm → X of any EG-algebra coequalise the diagram from Definition 1.28,
the universal property of EG(k) ×G(k) X

k will allow us to factor them uniquely though
some α′,

EG(k) ×Xk

EG(k) ×G(k) X
k X

αk

α′
k

This then lets us upgrade any choice f : {z1, ..., zn} → X of n objects from X into an
algebra map Gn → X:

∐
k∈N EG(k) ×G(k) {z1, ..., zn}k ∐

k∈N EG(k) ×G(k) X
k X

∐
id×fk

∐
α′

k

Proposition 2.3 serves as a fairly opaque definition of Gn at first, so we’ll spend a little
time now unpacking it. Recall that ∐k∈N EG(k) ×G(k) {z1, ..., zn}k is the coequaliser of
the maps

∐
k∈N EG(k) ×G(k) × {z1, ..., zn}k ∐

k∈N EG(k) × {z1, ..., zn}k

that come from the action of G(k) on EG(k) by multiplication on the right,

EG(k) ×G(k) → EG(k)
(g, h) 7→ gh

( ! : g → g′, idh ) 7→ ! : gh → g′h

and the action of G(k) on {z1, ..., zn}k by underlying permutations,

G(k) × {z1, ..., zn}k → {z1, ..., zn}k

(h ; x1, ..., xk ) 7→ (xπ(h−1)(1), ..., xπ(h−1)(k))
(idh ; id(x1,...,xk) ) 7→ id(xπ(h−1)(1),...,xπ(h−1)(k))

Thus objects in this algebra are equivalence classes of tuples (g;x1, ..., xm), for some
g ∈ G(m) and xi ∈ {z1, ..., zn}, under the relation

( gh ; x1, ..., xm ) ∼ ( g ; xπ(h)−1(1), ..., xπ(h)−1(m) )
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But we can use this relation to rewrite any (g;x1, ..., xm) uniquely in the form
(em;x′

1, ..., x
′
m) = x′

1 ⊗ ... ⊗ x′
m where x′

i = xπ(g)(i), and this means that each such
equivalence class is just a tensor product for some unique sequence of generators zi.
More concretely, we have:

Lemma 2.4. Ob(Gn) is the free monoid on n generators, which is N∗n, the free product
of n copies of N.

Similarly, the morphisms of Gn are all of the form

(g; idx1 , ..., idxm) : x1 ⊗ ...⊗ xm → xπ(g−1)(1) ⊗ ...⊗ xπ(g−1)(m)

for some g ∈ G(m) and xi ∈ {z1, ..., zn}. However, notice the definition of the action
α of Gn, we can rewrite these as

(g; idx1 , ..., idxm) =
(
µ(g; e1, ..., e1) ; idx1 , ..., idxm

)
= α

(
g ; (e1; idx1), ..., (e1; idxm)

)
= α(g; id(e1;x1), ..., id(e1;xm))
= α(g; idx1 , ..., idxm)

That is, the free EG-algebra Gn does not have any objects or morphisms that do not
arise straightforwardly from the tensor product and action.

Lemma 2.5. Every morphism of Gn can be expressed uniquely as an action morphism

α( g ; idx1 , ..., idxm ) : x1 ⊗ ...⊗ xm → xπ(g)−1(1) ⊗ ...⊗ xπ(g)−1(m)

for some g, g′ ∈ G(m) and xi ∈ {z1, ..., zn}.

As an immediate consequence of this, the source and target of any given morphism
in Gn must be related to one another via some permutation of the form π(g). This
gives us an easy way to calculate the connected components of Gn, which are just
the equivalence classes of objects under the relation x ∼ y if there exists a morphism
f : x → y or f : y → x.

Proposition 2.6. Considered as a monoid under tensor product, the connected com-
ponents of Gn are

π0(Gn) =

 Nn if G is crossed
N∗n otherwise
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Also, the canonical homomorphism sending objects in Gn to their connected component,

[ _ ] : Ob(Gn) → π0(Gn)

is the quotient map of abelianisation

ab : N∗n → (N∗n)ab = Nn

when G is crossed, and the identity map idN∗n otherwise.

Proof. By Lemma 2.5, all morphisms in Gn can be written uniquely as α(g; idx1 , ..., idxm),
for some g ∈ G(m) and xi ∈ {z1, ..., zn}. Since maps of this form have source x1⊗...⊗xm
and target xπ(g−1)(1) ⊗ ...⊗ xπ(g−1)(m), we see that the only pairs of object which might
have a morphism between them are those that can be expanded as tensor products
that differ by some permutation.

If our action operad G is crossed, then for any two objects like this — say source
x1 ⊗ ...⊗xm and target xσ−1(1) ⊗ ...⊗xσ−1(m) for an arbitrary σ ∈ Sm — we can always
find a map α(g; idx1 , ..., idxm) between them, because by Lemma 1.19 the underlying
permutations maps πm : G(m) → Sm are all surjective and so there must exist at least
one g with π(g) = σ. In particular, for any two generating objects zi and zj of Gn

there must exist at least morphism between zi ⊗ zj and zj ⊗ zi, and therefore

[zi] ⊗ [zj] = [zi ⊗ zj] = [zj ⊗ zi] = [zj] ⊗ [zi]

Thus the canonical map [ _ ] : Ob(Gn) → π0(Gn) is the one that makes the free product
of N∗n commutative; that is, the quotient map for the abelianisation ab : N∗n → (N∗n)ab.
Hence π0(Gn) = Nn.

Conversely, if G is non-crossed then its underlying permutation operad im(π) is
trivial, and so the only morphisms we have in Gn will be those of the form

α( em ; idx1 , ..., idxm ) = idx1 ⊗ ...⊗ idxm = idx1⊗...⊗xm

Therefore the map [ _ ] just sends each object to its identity morphism, and since that
function is one-to-one and onto it follows that

π0(Gn) = Ob(Gn) = N∗n, [ _ ] = idN∗n

by Lemma 2.4.
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Proposition 2.6 is not the only way that the behaviour of Gn is contingent on
whether G is crossed. Consider the following common property of monoidal categories:

Definition 2.7. A monoidal category X is said to be spacial if all of its identity
morphisms commute with the endomorphisms of the unit object:

f ⊗ idx = idx ⊗ f, x ∈ Ob(X), f ∈ X(I, I)

The motivation for the name ‘spacial’ comes from the context of string diagrams
[23]. In a string diagram, the act of tensoring two strings together is represented
by placing those strings side by side. Since the defining feature of the unit object is
that tensoring it with other objects should have no effect, the unit object is therefore
represented diagrammatically by the absence of a string. An endomorphism of the unit
thus appears as an entity with no input or output strings, detached from the rest of
the diagram. In a real-world version of these diagrams, made out of physical strings
arranged in real space, we could use this detachedness to grab these endomorphisms
and slide them over or under any strings we please, without affecting anything else in
the diagram. This ability is embodied algebraically by the equation above, and hence
categories which obey it are called ‘spacial’.

It turns out that the crossedness of an action operad has a direct effect on the
spaciality of algebras.

Lemma 2.8. If G is a crossed action operad, then all EG-algebras are spacial.

Proof. Let G be a crossed action operad, let X be a EG-algebra, and fix x ∈ Ob(X)
and f : I → I. From Lemma 1.19 we know that π : G(2) → S2 is surjective, so that the
set π−1( (1 2) ) is non-empty, and from the rules for composition of action morphisms
we see that for any such g ∈ π−1( (1 2) ),

α( g ; idx, idI ) ◦ α( e2 ; idx, f ) = α( g ; idx, f )
= α( e2 ; f, idx ) ◦ α( g ; idx, idI )

Thus in order to obtain the result we’re after, it will suffice to find a particular
g ∈ π−1( (1 2) ) for which

α( g ; idx, idI ) = idx

However, since
α( g ; idx, idI ) = α( g ; idx, α(e0; −) )

= α(µ(g; e1, e0) ; idx )
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all we really need is to find a g ∈ π−1( (1 2) ) for which

µ(g; e1, e0) = e1

To this end, choose an arbitrary element h ∈ π−1( (1 2) ). This h probably won’t
obey the above equation, but we can use it to construct a new element g which does.
Specifically, define

k := µ(h ; e1, e0 )

and then consider
g := h · µ(e2; k−1, e1)

To see that this is the correct choice of g, first note that we must have π(k) = e1, since
this is the only element of S1. Following from that, we have

π
(
µ(e2; k−1, e1)

)
= µ

(
π(e2) ; π(k−1), π(e1)

)
= µ

(
e2 ; e1, e1

)
= e2

and hence
π(g) = π

(
h · µ(e2; k−1, e1)

)
= π(h) · π

(
µ(e2; k−1, e1)

)
= (1 2) · e2

= (1 2).

So g is indeed in π−1( (1 2) ), and furthermore

µ(g; e1, e0) = µ
(
h · µ(e2; k−1, e1) ; e1, e0

)
= µ(h ; e1, e0 ) · µ

(
µ(e2; k−1, e1) ; e1, e0

)
= µ(h ; e1, e0 ) · µ

(
e2 ; µ(k−1; e1), µ(e1; e0)

)
= µ(h ; e1, e0 ) · µ( e2 ; k−1, e0 )
= k · k−1

= e1
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Therefore, h · µ(e2; k−1, e1) is exactly the g we were looking for, and so working
backwards through the proof we obtain the required result:

µ(g; e1, e0) = e1

=⇒ α( g ; idx, idI ) = idx

α( g ; idx, idI ) ◦ α( e2 ; idx, f ) = α( e2 ; f, idx ) ◦ α( g ; idx, idI )
=⇒ α( e2 ; idx, f ) = α( e2 ; f, idI )

Finally, Lemma 2.5 also gives a complete description of how the morphisms of Gn

interact as a monoid under tensor product, though to best express this we need a bit
of new terminology.

Definition 2.9. Let G be an action operad. Then we will also the notation G to denote
the underlying monoid of this action operad. This is the natural way to consider G as
a monoid, with its element set being all of its elements together, ⊔mG(m), and with
tensor product as its binary operation, g ⊗ h = µ(e2; g, h).

Also, note that this monoid comes equipped with a homomorphism | _ | : G → N,
sending each g ∈ G to the natural number m if and only if g is an element of the group
G(m). We’ll call this number |g| the length of g.

Definition 2.10. Let S be a set and F (S) the free monoid on S, the monoid whose
elements are strings of elements of S and whose binary operation is concatenation.
Then we will denote by

| _ | : F (S) → N

the monoid homomorphism defined by sending each element of S ⊆ F (S) to 1, and
therefore also each concatenation of n elements of S to the natural number n. Again,
we will call |x| the length of x ∈ F (S).

Lemma 2.11. The monoid of morphisms of the algebra Gn is

Mor(Gn) ∼= G×N N∗n
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where this is a pullback taken over the respective length homomorphisms,

G×N N∗n N∗n

G N

y

| _ |

| _ |

using the fact that N∗n is the free monoid F
(

{z1, ..., zn}
)
.

Proof. An element of G ×N F ( {z1, ..., zn} ) is just an element g ∈ G(m) for some m,
together with an m-tuple of objects (x1, ..., xm) from the set of generators {z1, ..., zn}.
Thus the action on Gn defines an obvious function

α : G×N F
(

{z1, ..., zn}
)

→ Mor(Gn)
: (g;x1, ..., xm) 7→ α(g; idx1 , ..., idxm)

But by Lemma 2.5, each element of Mor(Gn) can be expressed in the form α(g; idx1 , ..., idxm)
for a unique collection (g;x1, ..., xm), and so this function α is actually a bijection of
sets. Furthermore, this function preserves tensor product, since

α
(

(g; f1, ..., fm) ⊗ (g′; f ′
1, ..., f

′
m)
)

= α( g ⊗ g′ ; f1, ..., fm, f
′
1, ..., f

′
m )

= α( g ; f1, ..., fm ) ⊗ α( g′ ; f ′
1, ..., f

′
m )

and hence it is a monoid isomorphism, as required.

2.2 The free EG-algebra on n invertible objects

We saw in Proposition 2.1 that the existence of a free EG-algebra on n objects can
be proven by taking the left adjoint of a 2-functor which forgets about the algebra
structure. Now we want to extend this idea into the realm of algebras on invertible
objects. For the analogous approach, we will need to find a new 2-functor that lets us
forget about non-invertible objects, and then hopefully we can find its left adjoint too,
and use it to freely add inverses to Gn. First though, we need to make this concept of
‘forgetting non-invertible objects’ a little more precise.

Definition 2.12. Given an EG-algebra X, we’ll denote by Xinv the sub-EG-algebra
of X containing all objects which are invertible under tensor product, and all of the
isomorphisms between them.
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Note that this is indeed a well-defined EG-algebra. If f1, ..., fm are isomorphisms
from invertible objects x1, ..., xm to invertible objects y1, ..., ym, then α(g; f1, ..., fm) is
a map from the invertible object α(g;x1, ..., xm) to the invertible object α(g; y1, ..., ym),
and it has an inverse α(g−1; f−1

π(g)(1), ..., f
−1
π(g)(m)), since

α
(
g−1 ; f−1

π(g)(1), ..., f
−1
π(g)(m)

)
◦ α( g ; f1, ..., fm )

= α
(
g−1g ; f−1

1 f1, ..., f
−1
m fm

)
= idx1⊗...⊗xm

α( g ; f1, ..., fm ) ◦ α
(
g−1 ; f−1

π(g)(1), ..., f
−1
π(g)(m)

)
= α

(
gg−1 ; fπ(g)(1)f

−1
π(g)(1), ..., fπ(g)(m)f

−1
π(g)(m)

)
= idyπ(g)(1)⊗...⊗yπ(g)(m)

Clearly then, Xinv is the correct algebra for our new forgetful 2-functor to send X to.
Knowing this, we can construct the rest of the functor fairly easily.

Proposition 2.13. The assignment X 7→ Xinv can be extended to a 2-functor (_)inv :
EGAlgS → EGAlgS.

Proof. Let F : X → Y be a (strict) map of EG-algebras. If x is an invertible object in
X with inverse x∗, then F (x) is an invertible object in Y with inverse F (x∗), by

F (x) ⊗ F (x∗) = F (x⊗ x∗) = F (I) = I

F (x∗) ⊗ F (x) = F (x∗ ⊗ x) = F (I) = I

Since F sends invertible objects to invertible objects, it will also send isomorphisms
of invertible objects to isomorphisms of invertible objects. In other words, the map
F : X → Y can be restricted to a map Finv : Xinv → Yinv. Moreover, we have that

(F ◦G)inv(x) = F ◦G(x) = Finv ◦Ginv(x)
(F ◦G)inv(f) = F ◦G(f) = Finv ◦Ginv(f)

and so the assignment F 7→ Finv is clearly functorial. Next, let θ : F ⇒ G be a
monoidal natural transformation. Choose an invertible object x from X, and consider
the component map of its inverse, θx∗ : F (x∗) → G(x∗). Since θ is monoidal, we
have θx∗ ⊗ θx = θI = I and θx ⊗ θx∗ = I, or in other words that θx∗ is the monoidal
inverse of θx. We can use this fact to construct a compositional inverse as well, namely
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idF (x) ⊗ θx∗ ⊗ idG(x), which can be seen as follows:
(
idF (x) ⊗ θx∗ ⊗ idG(x)

)
◦ θx = θx ⊗ θx∗ ⊗ idG(x) = idG(x)

θx ◦
(
idF (x) ⊗ θx∗ ⊗ idG(x)

)
= idF (x) ⊗ θx∗ ⊗ θx = idF (x)

Therefore, we see that all the components of our transformation on invertible objects
are isomorphisms, and hence we can define a new transformation θinv : Finv ⇒ Ginv

whose components are just (θinv)x = θx. The assignment θ 7→ θinv is also clearly
functorial, and thus we have a complete 2-functor (_)inv : EGAlgS → EGAlgS.

Now we just need to show that this (_)inv forms the right-hand part of an adjunction.
The easiest way to do this kind of thing is with an adjoint functor theorem. These
are a collection of similar results, each of which provides some sufficient conditions
for the existence of a left adjoint to a given functor. The first such theorem, what is
now known as the ‘General Adjoint Functor Theorem’, is due Peter Freyd [10], and a
discussion of this and other versions can be found in [17]. The variation we will be
using comes from the work of Adámek and Rosicky [1], and concerns locally finitely
presentable categories.

Definition 2.14. A filtered diagram is a diagram D where every finite subdiagram has
a cocone in D. That is, D is non-empty and within it we know that:

• for each pair of objects x, y, there exists at least one object z equipped with
morphisms x → z and y → z

• for each pair of parallel morphisms f, g : x → y, there exists at least one morphism
h : y → z for which h ◦ f = h ◦ g

A colimit over a filtered diagram is called a filtered colimit.

Definition 2.15. Let X and Y be categories and F : X → Y a functor. The we say
that

• an object x in X is finitely presented if the functor HomX(x,−) : X → Set
preserves filtered colimits

• X is finitely accessible if it has all finite filtered colimits and every object in X is
finitely presented

• F : X → Y is finitely accessible if both X and Y are finitely accessible and F

preserves filtered colimits between them
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• X is locally finitely presentable if it is finitely accessible and has all finite colimits

Proposition 2.16 (The AFT for LFP categories).
Let X and Y be locally finitely presentable categories. Then a functor F : X → Y has
a left adjoint if and only if it is finitely accessible and preserves all finite limits.

Now, one might ask why we would choose to use this adjoint functor theorem in
particular, when we don’t even know whether EGAlgS is locally finitely presentable.
The answer is that all of the work needed to prove this fact has already been done for
us elsewhere. To see this though, we are going to need to use a little bit of the theory
of 2-monads. We won’t be doing much more than mentioning certain concepts here,
but if the reader is interested in exploring this topic more thoroughly they can refer to
[24] [13] for background on monads and [3] for 2-monads.

Definition 2.17. A monad on a category X is an endofunctor T : X → X along with
natural transformations η : idX ⇒ T and µ : T ◦ T ⇒ T which satisfy the coherence
conditions

µ ◦ µT = µ ◦ Tµ, µ ◦ ηT = idT = µ ◦ Tη

Similarly, a 2-monad on a 2-category X is a 2-functor T : X → X together with 2-
natural transformations η : idX ⇒ T and µ : T ◦T ⇒ T which obey the same coherence
conditions before, but this time only up to isomorphism, with those isomorphisms then
obeying their own set of coherence conditions. The 2-monad is said to be strict if these
new isomorphisms are actually still identities.

These monads come with their own notion of algebras, each of which forms a
category TAlg or TAlgS.

There is a strong link between these structures and the ones we have been working
with so far, proven in [6]:

Proposition 2.18. Let G be an action operad, and let O be a G-operad in the category
Set. Then there exists a monad O : Set → Set whose category of algebras OAlg is
isomorphic to the category OAlg.

Likewise, if O is a G-operad in Cat, then there exists a 2-monad O : Cat → Cat
whose strict algebras OAlgS are isomorphic to OAlgS.

Because of this, if we want to show that EGAlgS is a locally finitely presentable
category, it will suffice to show the same thing for EGAlgS. Luckily, from the very
same paper we also learn the following:

Proposition 2.19. For any G-operad O, the associated O preserves filtered colimits.
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Since Cat is finitely accessible, this means that the 2-monad EG : Cat → Cat is
as well. Finally, to see what impact this has on its category of algebras, we can use a
result from [1]:

Proposition 2.20. If T : X → X is a finitely accessible monad, then TAlg is locally
finitely presentable.

When everything is kept strict this carries through to the 2-monad case as well, so
at last we see that EGAlgS really is a locally finitely presentable category. Obtaining
our left adjoint functor is now a simple matter of applying the adjoint functor theorem.

Proposition 2.21. The 2-functor (_)inv : EGAlgS → EGAlgS has a left adjoint,
L : EGAlgS → EGAlgS.

Proof. Since we already know that EGAlgS is locally finitely presentable, the conditions
for Proposition 2.16 amount to showing that (_)inv preserves both limits and filtered
colimits.

• Given an indexed collection of EG-algebras Xi, the EG-action of their product∏
Xi is defined componentwise. In particular, this means that the tensor product

of two objects in ∏
Xi is just the collection of the tensor products of their

components in each of the Xi. An invertible object in ∏
Xi is thus simply a

family of invertible objects from the Xi — in other words, (∏Xi)inv = ∏(Xi)inv.

• Given maps of EG-algebras F : X → Z, G : Y → Z, the EG-action of their
pullback X ×Z Y is also defined component-wise. It follows that an invertible
object in X×Z Y is just a pair of invertible objects (x, y) from X and Y , such that
F (x) = G(y). But this is the same as asking for a pair of objects (x, y) from Xinv

and Yinv such that Finv(x) = Ginv(y), and hence (X ×Z Y )inv = Xinv ×Zinv Yinv.

• Given a filtered diagram D of EG-algebras, the EG-action of its colimit colim(D)
is defined in the following way: use filteredness to find an algebra which contains
(representatives of the classes of) all the things you want to act on, then apply the
action of that algebra. In the case of tensor products this means that [x] ⊗ [y] =
[x⊗y], and thus an invertible object in colim(D) is just (the class of) an invertible
object in one of the algebras of D. In other words, colim(D)inv = colim(Dinv).

Preservation of products and pullbacks give preservation of limits, and preservation of
limits and filtered colimits give the result.
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With this new 2-functor L : EGAlgS → EGAlgS, we now have the ability to ‘freely
add inverses to objects’ in any EG-algebra we want. The algebra LGn is then a clear
candidate for our free algebra on n invertible objects, and indeed the proof of this is
very simple.

Theorem 2.22. There exists a free EG-algebra on n invertible objects. Specifically,
the algebra LGn is such that for any other EG-algebra X, we have an isomorphism of
categories

EGAlgS(LGn, X) ∼= (Xinv)n

Proof. Using the adjunction from Proposition 2.21 along with the one from Proposi-
tion 2.1, we see that

U(Xinv)n = Cat({z1, ..., zn}, U(Xinv))
∼= EGAlgS(F ({z1, ..., zn}), Xinv)
∼= EGAlgS(LF ({z1, ..., zn}), X)

Xinv and U(Xinv) are obviously isomorphic as categories, and so LF ({z1, ..., zn}) = LGn

satisfies the requirements for the free algebra on n invertible objects.

2.3 LGn as an initial object

We have proven that a free EG-algebra on n invertible objects indeed exists, but this
fact on its own is not very helpful. To be able to actually use the free algebra LGn,
we need to know how to construct it explicitly, in terms of its objects and morphisms.
We could do this by finding a detailed characterisation of the 2-functor L, and then
applying this to our explicit description of Gn from Proposition 2.3. However, this
would probably take far more effort than is required, since it would involve determining
the behaviour of L in many situations that we aren’t interested in. Also, we wouldn’t
be leveraging Gn’s status as a free algebra to make the calculations any easier. We
will try a different strategy instead, one that begins by noticing a special property of
the functor L.

Proposition 2.23. For any EG-algebra X, we have L(X)inv = L(X).

Proof. From the definition of adjunctions, the isomorphisms

EGAlgS(LX, Y ) ∼= EGAlgS(X, Yinv)
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are subject to certain naturality conditions. Specifically, given F : X ′ → X and
G : Y → Y ′ we get a commutative diagram

EGAlgS(LX, Y ) EGAlgS(X, Yinv)

EGAlgS(LX ′, Y ′) EGAlgS(X ′, Y ′
inv)

G◦_◦LF

∼

Ginv◦_◦F

∼

Consider the case where F is the identity map idX : X → X and G is the inclusion
j : L(X)inv → L(X). Note that because j is an inclusion, the restriction jinv :
(L(X)inv)inv → L(X)inv is also an inclusion, but since ((_)inv)inv = (_)inv, we have that
jinv = id. It follows that

EGAlgS(LX,LXinv) EGAlgS(X,LXinv)

EGAlgS(LX,LX) EGAlgS(X,LXinv)

j◦_

∼

∼

Therefore, for any map f : LX → LX there exists a unique g : LX → LXinv such
that j ◦ g = f . But this means that for any such f , we must have im(f) ⊆ L(X)inv,
and so in particular L(X) = im(idLX) ⊆ L(X)inv. Since L(X)inv ⊆ L(X) by definition,
we obtain the result.

This result is not especially surprising. Intuitively, it just says that when you freely
add inverses to an algebra, every object ends up with an inverse. But the upshot of
this is that we now have another way of thinking about L(X): as the target object of
the unit of our adjunction, ηX : X → L(X)inv. This means that we don’t really need
to know the entirety of L in order to determine the free algebra LGn, just its unit. To
find this unit directly, we can turn to the following fact about adjunctions, for which a
proof can be found in Lemma 2.3.5 of Leinster’s Basic Category Theory [16].

Proposition 2.24. Let F ⊣ G : A → B be an adjunction with unit η. For any object
a in A, let (a ↓ G) denote the comma category whose objects are pairs (b, f) consisting
of an object b from B and a morphism f : a → G(b) from A, and whose morphisms
h : (b, f) → (b′, f ′) are morphisms f : b → b′ from B such that G(f) ◦ f = f ′. Then
the pair

(
F (a), ηa : a → GF (a)

)
is an initial object of (a ↓ G).

Corollary 2.25. ηGn : Gn → (LGn)inv = LGn is an initial object of (Gn ↓ inv).
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Being able to view LGn as the initial object in the comma category (Gn ↓ inv) is
pretty useful. This is because it lets us think about the properties of LGn in terms of
maps ψ : Gn → Xinv, and this is exactly the context where we can exploit Gn’s status
as a free algebra. As a result, it is worth taking some time to think about what exactly
this map ηGn is.

Lemma 2.26. The initial object ηGn : Gn → LGn is the obvious map from the free
EG-algebra on n objects into the free EG-algebra on n invertible objects. That is, ηGn

is the algebra map defined by

ηGn : Gn → LGn

: F ({z1, ..., zn}) → LF ({z1, ..., zn})
: zi 7→ zi

Proof. Consider the n-tuple (z1, ..., zn) in (Gn)n. Clearly the image of (z1, ..., zn) under
the functor L is just the object (z1, ..., zn) in the algebra

L
(

(Gn)n
)

= (LGn)n = LF ({z1, ..., zn})n

But the image of (z1, ..., zn) ∈ (Gn)n under the isomorphism

EGAlgS(Gn,Gn ) ∼= (Gn)n

is just the identity map idGn . Thus by functoriality of L, the map L(idGn) = idLGn

must be the one which corresponds to the n-tuple (z1, ..., zn) ∈ (LGn)n image via the
isomorphism

EGAlgS(LGn, LGn ) ∼= (LGn)n

Furthermore, the Gn component of the unit η is by definition the image of the identity
map idLGn under the isomorphism

EGAlgS(LGn, LGn ) ∼= EGAlgS(Gn, LGn )

Hence it follows that ηGn is the map that corresponds to (z1, ..., zn) via

EGAlgS(Gn, LGn ) ∼= (LGn)n

which is exactly the definition given in the statement of the lemma.
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This incredibly simple description makes the map ηGn very easy to work with.
For example, we immediately obtain the following property, one which we will use
frequently throughout the rest of this thesis:

Corollary 2.27. ηGn is an epimorphism in EGAlgS.

Proof. Let φ, ψ : LGn → X be a pair of algebra maps for which φ ◦ ηGn = ψ ◦ ηGn .
Then on the generators of LGn we have

φ(zi) = φηGn(zi) = ψηGn(zi) = ψ(zi)

and thus also in the restricted case φinv(zi) = ψinv(zi). But LGn is the free EG-algebra
on n invertible objects, so maps LGn → Xinv are determined uniquely by where they
those generating objects. It follows that φinv = ψinv, and if i : Xinv → X is the obvious
inclusion,

φ = iφinv = iψinv = ψ

Before moving on, we’ll make a small change in notation. From now on, rather than
writing objects in (Gn ↓ inv) as maps ψ : Gn → Yinv, we will instead just let X = Yinv

and speak of maps ψ : Gn → X. This is purely to prevent the notation from becoming
cluttered, and shouldn’t be a problem so long as we always remember that the targets
of these maps only ever contain invertible objects and morphisms. We’ll also drop the
subscript from ηGn , since it is the only component of the unit we’ll ever use.

2.4 The objects of LGn

So LGn is an initial object in the category (Gn ↓ inv). But what does this actually
tell us? After all, we do not currently have a method for finding initial objects in an
arbitrary collection of EG-algebra maps. Because of this, we’ll have to approach the
problem step-by-step, using the initiality of η to extract different pieces of information
about the algebra LGn as we go. We’ll begin by trying to find its objects.

Definition 2.28. Denote by Ob : EGAlgS → Mon the functor that sends EG-algebras
X to their monoid of objects Ob(X), and algebra maps F : X → Y to their underlying
monoid homomorphism Ob(F ) : Ob(X) → Ob(Y ).

In order to find Ob(LGn), we’ll need to make use of an important result about the
nature of Ob — it is part of an adjunction.
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Recall from Definition 1.24 that given a set S, the category ES is the one whose
set of objects is S and which has a unique isomorphism between any two objects.
Hopefully it is not hard to see that if our chosen set happens to be monoid, M ,
then the corresponding EM will be a monoidal category. But we can view EM as
not just a category but an EG-algebra, by letting the action on morphisms take
the only possible values it can, given the required source and target. Then for any
monoid homomorphisms h : M → M ′, the definition of Eh : EM → EM ′ given in
Definition 1.24 must be a well-defined map of EG-algebras, by functoriality. Thus we
get the following:

Definition 2.29. The functor E : Set → Cat extends naturally to a functor Mon →
EGAlgS, which we will also call E.

Proposition 2.30. E : Mon → EGAlgS is a right adjoint to the functor Ob :
EGAlgS → Mon.

Proof. For any EG-algebra X, a map F : X → EM is determined entirely by its
restriction to objects, the monoid homomorphism Ob(F ) : Ob(X) → M . This is
because functoriality of F ensures that any map x → x′ in X must be sent to a map
F (x) → F (x′) in EM , and by the definition of E there is always exactly one of these
to choose from. In other words, we have an isomorphism between the homsets

EGAlgS(X, EM ) ∼= Mon( Ob(X), M )

Additionally, this isomorphism is natural in both coordinates. That is, for any
G : X → X ′ in EGAlgS and h : M → M ′ in Mon, the diagram

EGAlgS(X,EM) Mon(Ob(X),M)

EGAlgS(X ′,EM ′) Mon(Ob(X ′),M ′)

Eh◦_◦G

∼

h◦_◦Ob(G)

∼

commutes, because

Ob( Eh ◦ F ◦G ) = Ob(Eh) ◦ Ob(F ) ◦ Ob(G) = h ◦ Ob(F ) ◦ Ob(G)

Therefore, Ob ⊣ E.

What Proposition 2.30 is essentially saying is that the functor Ob provides a way for
us to move back and forth between the categories EGAlgS and Mon. By applying this
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reasoning to the universal property of the initial object η, we can then determine the
value of Ob(LGn) in terms of a new universal property of Ob(η) in the category Mon.
In particular, the algebras in (Gn ↓ inv) are those whose objects are all invertible, and
so the induced property of Ob(η) will end up saying something about the relationship
between Ob(Gn) and groups — those monoids whose elements are all invertible.

Definition 2.31. Let M be a monoid, Mgp a group, and i : M → Mgp a monoid
homomorphism between them. Then we say that Mgp is the group completion of
M if for any other group H and homomorphism h : M → H, there exists a unique
homomorphism u : Mgp → H such that u ◦ i = h.

There are several different ways to actually calculate the group completion of a
monoid. One is to use that fact that Mgp is the group whose group presentation is
the same as the monoid presentation of M . That is, if M is the quotient of the free
monoid on generators G by the relations R, then Mgp is the quotient of the free group
on generators G by relations R. This makes finding the completion of free monoids
particularly simple.

Proposition 2.32. The object monoid of LGn is Z∗n, the group completion of the
object monoid of Gn. The restriction of η on objects, Ob(η), is then the obvious
inclusion N∗n ↪→ Z∗n.

Proof. Let H be a group, and h : Ob(Gn) → H a monoid homomorphism. By
Proposition 2.30 we have an isomorphism of homsets

EGAlgS(Gn, EH ) ∼= Mon( Ob(Gn), H )

Denote by h′ : Gn → EH the map of EG-algebras corresponding to h under this
isomorphism. Since H is a group, every object in EH is invertible, and so h′ is an object
of (Gn ↓ inv). Thus, by initiality of η, there must exist a unique map u : LGn → EG
making the left-hand triangle below commute:

Gn Ob(Gn)

LGn EH Ob(LGn) H

η h′
Ob(η) h

u Ob(u)
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It follows that the righthand triangle — which is the image of the first under Ob —
also commutes. Hence for any group H and homomorphism h : Ob(Gn) → H, there is
at least one map which factors h through Ob(η).

But now recall from Corollary 2.27 that η is an epimorphism. Left adjoint func-
tors preserve epimorphisms, which means that Ob(η) is one too, and so for any
v : Ob(LGn) → H,

v ◦ Ob(η) = h =⇒ v ◦ Ob(η) = Ob(u) ◦ Ob(η)
=⇒ v = Ob(u)

Thus there is actually only one possible map which factors h through Ob(η), and
therefore every homomorphism from Ob(Gn) onto a group factors uniquely through the
group Ob(LGn). In other words, Ob(LGn) is the group completion Ob(Gn)gp. Since
by Lemma 2.4 the object monoid of Gn is N∗n, the free monoid on n generators, we
can conclude that

Ob(LGn) = Ob(Gn)gp = (N∗n)gp = Z∗n

the free group on n generators. Moreover, the map Ob(η) is then the inclusion of
Ob(Gn) into its completion, which is just N∗n ↪→ Z∗n.

2.5 The connected components of LGn

The core result of Proposition 2.32 — that Ob(LGn) is the group completion of
Ob(Gn) — makes concrete the sense in which the functor L represents ‘freely adding
inverses’ to objects. Extending this same logic to connected components as well, it
would seem reasonable to expect that π0(LGn) is also the group completion of π0(Gn).
This is indeed the case, and the proof proceeds in a way completely analogous to
Proposition 2.32.

First, we want to show that the process of taking connected components forms
part of an adjunction. To do this we are going to need a category from which we can
draw the kind of structures that can act as the components of an EG-algebra. Exactly
which category this should be will depend on our choice of action operad G, or more
precisely its underlying permutations.

Definition 2.33. For a given action operad G, denote by im(π)-Mon the full subcate-
gory of Mon on those monoids whose multiplication is invariant under the permutations



2.5 The connected components of LGn 53

in im(π). That is, a monoid M is in im(π)-Mon if and only if

m1, ...,mn ∈ M, g ∈ G(n) =⇒ m1 · ... ·mn = mπ(g)−1(1)...mπ(g)−1(n)

Of course, by Lemma 1.19 there are really only two examples of such an im(π)-Mon.
If the underlying permutations of G are trivial, then im(π)-Mon is just the whole
of the category Mon; if instead G is crossed then we are asking for monoids whose
multiplication is invariant under arbitrary permutations from S, and so im(π)-Mon is
just the category of commutative monoids, CMon. Regardless, when we are working
with an arbitrary action operad G, the category im(π)-Mon is exactly the collection of
possible connected components that we were looking for.

Lemma 2.34. Let G be an action operad and im(π) its underlying permutation action
operad. Then there is a functor

π0 : EGAlgS → im(π)-Mon

which sends each algebra X to its monoid of connected components π0(X), and
sends each map of algebras F : X → Y to its restriction to connected components
π0(F ) : π0(X) → π0(Y ).

Proof. Let x1, ..., xn be an arbitrary collection of objects from the algebra X, and g

an element of the group G(n). Then the action of G guarantees the existence of a
morphism

α(g; idx1 , ..., idxn) : x1 ⊗ ...⊗ xn → xπ(g−1)(1) ⊗ ...⊗ xπ(g−1)(n)

By definition the source and target of this morphism belong to the same connected
component, and hence

[ x1 ⊗ ...⊗ xn ] = [ xπ(g−1)(1) ⊗ ...⊗ xπ(g−1)(n) ]
=⇒ [x1] ⊗ ...⊗ [xn] = [xπ(g−1)(1)] ⊗ ...⊗ [xπ(g−1)(n)]

But since the xi are just arbitrary objects of X, the components [xi] are an arbitrary
collection of elements from π0(X), and likewise for the group element g and the
permutation π(g). Therefore multiplication in the monoid π0(X) is invariant under all
permutations in the images of the homomorphisms πn : G(n) → Sn, and thus π0(X) is
an object of im(π)-Mon, as required. Well-definedness of the functor π0 on morphisms
then follows immediately from the fullness of im(π)-Mon.
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Now that we have a functor which represents the act of finding the connected
component monoid of an algebra, we need another functor heading in the opposite
direction, so that we can construct an adjunction between them.

There exists an inclusion of 2-categories D : Set ↪→ Cat which allows us to view any
set S as a discrete category, one whose objects are just the elements of S and whose
morphisms are all identities. If the given set also happens to be a monoid M , then
there is an obvious way to see the discrete category DM as a monoidal category, and so
we have a similar inclusion Mon ↪→ MonCat. Moreover, for any action operad G and
object M of the category im(π)-Mon, there is a unique way to assign an EG-action to
the discrete category DM . This works because for any elements m1, ...,mn ∈ M and
g ∈ G(n), the morphism α(g; idm1 , ..., idmn) must have source and target

m1 ⊗ ...⊗mn = mπ(g−1)(1) ⊗ ...⊗mπ(g−1)(m)

and therefore it can only be the morphism idm1⊗...⊗mn . As in the previous section,
this ability to assign an algebra structure uniquely will gives us exactly the adjoint
functor we need.

Definition 2.35. The functor D : Set ↪→ Cat extends naturally to a functor im(π)-Mon →
EGAlgS, which we will also call D.

Proposition 2.36. D : Set ↪→ Cat is a right adjoint to the functor π0 : EGAlgS →
im(π)-Mon.

Proof. Consider a map of F : X → DC from some EG-algebra X onto the discrete EG-
algebra for a monoid M in im(π)-Mon. For any f : x → x′ in X, the morphism F (f)
must be an identity map in DM , since these are the only morphisms that DM has. It
follows that x and x′ being in the same connected component will imply F (x) = F (x′),
and so F is determined entirely by its restriction to connected components, the monoid
homomorphism π0(F ) : π0(X) → M . In other words, we have an isomorphism between
the homsets

EGAlgS(X,DM ) ∼= im(π)-Mon(π0(X),M )

This isomorphism is natural in both coordinates, since for any G : X → X ′ in EGAlgS
and h : M → M ′ in im(π)-Mon,

π0( Dh ◦ F ◦G ) = π0(Dh) ◦ π0(F ) ◦ π0(G) = h ◦ π0(F ) ◦ π0(G)
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and so the diagram

EGAlgS(X,DM) im(π)-Mon
(
π0(X),M

)

EGAlgS(X ′,DM ′) im(π)-Mon
(
π0(X ′),M ′

)
Dh◦_◦G

∼

h◦_◦π0(G)

∼

commutes. Therefore, π0 ⊣ D.

Now we can utilise Proposition 2.36 to draw out a universal property of π0(LGn),
just as we did with Ob(LGn) in Proposition 2.30.

Proposition 2.37. The connected components of LGn are the group completion of
the connected components of Gn. Also, the restriction of η onto connected components,
π0(η), is the canonical map π0(Gn) → π0(Gn)gp associated with that group completion.

Proof. Let H be a group which is also an object of im(π)-Mon, and let h : π0(Gn) → H

be a monoid homomorphism. By Proposition 2.36 there is a homset isomorphism

EGAlgS(Gn, DH ) ∼= im(π)-Mon(π0(Gn), H )

and thus some EG-algebra map h′ : Gn → DH corresponding to h. As H is a group,
every object of DH is invertible, and so h′ is an object of (Gn ↓ inv). It follows that
there exists a unique map u : LGn → DM which factors h′ through the initial object η:

Gn π0(Gn)

LGn DH π0(LGn) H

η h′
π0(η) h

u π0(u)

Applying the functor π0 everywhere, we see that π0(u) must also factor h through
the homomorphism π0(η). Moreover, since η is an epimorphism and π0 a left adjoint
functor, π0(η) is an epimorphism too, and so π0(u) is the only map with this property.
Therefore, any monoid homomorphism π0(Gn) → H will factor uniquely through
π0(LGn), so long as H is in im(π)-Mon.

Now consider another monoid homomorphism k : π0(Gn) → K, where this time K
is still a group but not necessarily in im(π)-Mon. From Lemma 2.34, we know that
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π0(Gn) is still an object of im(π)-Mon, and from this we can conclude that the image
im(k) will be too:

x1, ..., xm ∈ π0(Gn), g ∈ G(n)
=⇒ x1 ⊗ ...⊗ xm = xπ(g)(1) ⊗ ...⊗ xπ(g)(m)

=⇒ k(x1 ⊗ ...⊗ xm ) = k(xπ(g)(1) ⊗ ...⊗ xπ(g)(m) )
=⇒ k(x1) ⊗ ...⊗ k(xm) = k(xπ(g)(1)) ⊗ ...⊗ k(xπ(g)(m))

Also, since im(k) is a submonoid of the group K, it is a group as well. Thus if we
denote by kim : Ob(Gn) → im(k) the restriction of k to it image, then kim is a map
in im(π)-Mon out of Ob(Gn) and onto a group, and therefore by what we showed
earlier there exists a unique homomorphism v : Ob(LGn) → im(k) with the property
v ◦ π0(η) = kim. Composing this v with the inclusion i : im(k) ↪→ K, we see that

i ◦ v ◦ π0(η) = i ◦ kim = k

and i ◦ v must be the only map for which this is true, for restricting this equation
back onto im(k) yields the unique property of v again. Thus π0(η) will actually take
any homomorphism from Ob(Gn) onto a group and factor it through π0(LGn) in a
unique way, not just those homomorphisms in im(π)-Mon. In other words,

π0(LGn) = π0(Gn)gp

and π0(η) is the canonical map of this group completion.

As we’ve said before, this result is a reflection of the fact that the functor L is
trying to add inverses the objects of Gn freely, that is, with as little effect on the rest of
the algebra as possible. Indeed, if we happen to know whether or not our action operad
G is crossed then we can now calculate exactly what the effect on the components will
be.

Corollary 2.38. If G is a crossed action algebra then

• the connected components of LGn are the monoid Zn

• the restriction of η to components is the obvious inclusion Nn ↪→ Zn

• the assignment of objects to their component is given by the quotient map of
abelianisation ab : Z∗n → Zn

If instead G is non-crossed, then
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• the connected components of LGn are the monoid Z∗n

• the restriction of η to components is the obvious inclusion N∗n ↪→ Z∗n

• the assignment of objects to their component is idZ∗n

Proof. Combining Propositions 2.6 and 2.37, we see that

π0(LGn) = π0(Gn)gp =

 (Nn)gp = Zn if G is crossed
(N∗n)gp = Z∗n otherwise

Moreover, Proposition 2.37 says that restriction of η to connected components, π0(η),
will be the homomorphism associated with these group completion, which means the
inclusion Nn ↪→ Zn when G is crossed and N∗n ↪→ Z∗n when it is not.

Next, by Proposition 2.6 we know that the map [ _ ] : Ob(Gn) → π0(Gn) sending
objects of Gn to their connected component is either the quotient map of abelianisation
N∗n → Nn or the identity on N∗n, depending on whether or not it is crossed. If we also
use [ _ ] to denote the map sending objects of LGn to their components, it then follows
from functoriality of η that the corresponding choice of the following two diagrams
will commute:

N∗n Z∗n N∗n Z∗n

Nn Zn N∗n Z∗n

[ _ ]

Ob(η)

[ _ ] [ _ ]

Ob(η)

[ _ ]

π0(η) π0(η)

Using the values of [ _ ] from Proposition 2.6, Ob(η) from Proposition 2.32, and π0(η)
from earlier in this proof, it follows that for any generator zi of Z∗n,

[zi] = [Ob(η)(zi)] = π0(η)([zi]) = π0(η)(zi) = zi

But this description of [ _ ] : Ob(LGn) → π0(LGn) on generators is either the definition
of the quotient map ab : Z∗n → (Z∗n)ab or the identity id : Z∗n → Z∗n, depending on
the value of target monoid, as required.

2.6 The collapsed morphisms of LGn

Now that we understand the objects and connected components of the algebra LGn,
the next most obvious thing to look for are its morphisms, Mor(LGn). It would be nice
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to construct this collection in the same way we constructed Ob(LGn) and π0(LGn), by
applying the left adjoint of some adjunction to the initial map η. Before we can do
this however, we need to ask ourselves a question. What sort of mathematical object
is Mor(LGn), exactly?

Given a pair of morphisms f : x → y, f ′ : y′ → z in an EG-algebra X, there are
two basic binary operations we can perform. First, we can take their tensor product
f ⊗ f ′, and this together with the unit map idI imbues Mor(X) with the structure of
a monoid. Second, if we have y = y′ then we can form the composite morphism f ′ ◦ f .
However, these two operations are not as different as they first appear.

Lemma 2.39. Let f : x → y and f ′ : y → z be morphisms in some strict monoidal
category, and y is an invertible object of that category. Then

f ′ ◦ f = f ′ ⊗ idy∗ ⊗ f

Proof. By the interchange law for monoidal categories,

f ′ ◦ f = (f ′ ⊗ idI) ◦ (idI ⊗ f)
= (f ′ ⊗ idy∗ ⊗ idy) ◦ (idy ⊗ idy∗ ⊗ f)
= (f ′ ◦ idy) ⊗ (idy∗ ◦ idy∗) ⊗ (idy ◦ f)
= f ′ ⊗ idy∗ ⊗ f

In other words, composition along invertible objects in X can always be restated
in terms of the tensor product. Thus in cases where every object of X is invertible,
the monoidal structure together with knowledge of each morphism’s source and target
will be enough to determine X uniquely. Since all objects in LGn are invertible, this
means that we could choose to ignore composition of elements of Mor(LGn) for the
time being, and focus on its status as a monoid under tensor product.

However, we are trying to extract information about the morphisms of LGn by
building some sort of left adjoint functor. Presumably we will also be able to apply
it to other EG-algebras, some of which won’t have all of their objects invertible, and
so we can’t just use Mor(−) : EGAlgS → Mon. What we need is a way to modify
the morphism monoid of a category so that both composition and tensor product are
recoverable from a single operation. Of course, there is one very easy method for
achieving this — simply force ⊗ and ◦ to be equal.
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Definition 2.40. Let M : MonCat → Mon be the functor which sends monoidal
categories X to the quotient of their monoid of morphisms by the relation that sets
⊗ = ◦.

MX = Mor(X)�f ′ ◦ f ∼ f ′ ⊗ f

Each monoidal functors F : X → Y is then sent to the monoid homomorphism

M(F ) : MX → MY

: M(f) 7→ M
(
F (f)

)
where M(f) refers to the equivalence class of the map f under the quotient Mor(X) →

M(X). This homomorphism is well-defined, since it respects the relation ⊗ = ◦:

M(F )( f ′ ◦ f ) = M
(
F (f ′ ◦ f)

)
= M

(
F (f ′) ◦ F (f)

)
= M

(
F (f ′)

)
◦ M

(
F (f)

)
= M

(
F (f ′)

)
⊗ M

(
F (f)

)
= M

(
F (f ′) ⊗ F (f)

)
= M

(
F (f ′ ⊗ f)

)
= M(F )( f ′ ⊗ f )

We will call MX the collapsed morphisms of X.

From now on we will generally refer to the single operation in MX as ⊗ rather than
◦, unless we are focusing on some aspect best understood using composition. This
convention makes it easier to remember that because the tensor product is defined
between all pairs of morphisms in X, the equivalence class M(f ′) ⊗ M(f) will always
contain the morphism f ′ ⊗ f , but not necessarily f ′ ◦ f , as it might fail to exist.

Now we need a candidate for the right adjoint to the functor M.

Definition 2.41. For a given monoid M , let BM represent the one-object category
whose morphisms are the elements of M , with monoid multiplication as composition.
This is known as the delooping of M , for reasons that come from homotopy theory.
Likewise, for any monoid homomorphism h : M → M ′, denote by Bh : BM → BM ′

the obvious monoidal functor which acts like h on morphisms. This defines a delooping
functor B : Mon → Cat from the category of monoids onto the category of small
categories.

Moreover, let C be a commutative monoid. Then we can view BC as a monoidal
category, with the tensor product also given by the multiplication in C, and the sole
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object as the unit I. Clearly for any homomorphism between commutative monoids
h : C → C ′ the corresponding functor Bh : BC → BC ′ will preserve this monoidal
structure, as it is already preserving it as composition. Thus the restriction of B to
commutative monoids also gives a functor CMon → MonCat, which we will still call B.

The reason that commutativity is required in order for BC to be a well-defined
monoidal category is because we need its operations ◦ and ⊗ to obey the interchange
law for monoidal categories:

(idI ◦ f) ⊗ (f ′ ⊗ idI) = (idI ⊗ f ′) ◦ (f ⊗ idI)
=⇒ idI · f · f ′ · idI = idI · f ′ · f · idI
=⇒ f · f ′ = f ′ · f

Proposition 2.42. B : CMon → MonCat is a right adjoint to the functor M( _ )ab :
MonCat → CMon.

Proof. Let X be a monoidal category, C a commutative monoid, and F : X → BC a
monoidal functor. For any f : x → x′ in X, the morphism F (f) is just an element of
the monoid C, and so F can be used to define a function

F ′ : M(X)ab → C

: ab ◦ M(f) 7→ F (f)

where ab is the quotient map of abelianisation M(X) → M(X)ab. This F ′ is a well-
defined monoid homomorphism; it preserves multiplication and respects the relation
⊗ = ◦ because the monoid multiplication of C is acts as both tensor product and
composition in BC.

F ′
(

abM(f ′ ◦ f)
)

= F (f ′ ◦ f)
= F (f ′) ◦ F (f)
= F (f ′) · F (f)
= F (f ′) ⊗ F (f)
= F (f ′ ⊗ f)
= F ′

(
abM(f ′ ⊗ f)

)
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Conversely, if h : M(X)ab → C is a monoid homomorphism, we can define from it a
monoidal functor

h′ : X 7→ BC
: x 7→ I

: f : x → y 7→ h
(

abM(f)
)

: I → I

Yet again, the monoidal functor h′ is well-defined because the fact that ⊗ = ◦ in BC
forces h′ to respect that relation.

h′(f ′ ◦ f) = h
(

abM(f ′ ◦ f)
)

= h
(

abM(f ′) ◦ M(f ′)
)

= h
(

abM(f ′)
)

◦ h
(

abM(f ′)
)

= h
(

abM(f ′)
)

· h
(

abM(f ′)
)

= h
(

abM(f ′)
)

⊗ h
(

abM(f ′)
)

= h
(

abM(f ′) ⊗ abM(f ′)
)

= h
(

abM(f ′ ⊗ f ′)
)

= h′(f ′ ⊗ f)

But these assignments F 7→ F ′ and h 7→ h′ are clearly inverse to one another. For any
F : X → BC applying them twice gives

F ′′ : X → BC
: x 7→ I

: f : x → y 7→ F ′
(

abM(f)
)

: I → I = F (f)

and similarly for h : MX → C we get

h′′ : M(X)ab → C

: abM(f) 7→ h′(f) = h
(

abM(f)
)

In other words, we have an isomorphism between the homsets

MonCat(X,BC ) ∼= CMon( M(X)ab, C )

This isomorphism is natural in both coordinates, as for any monoidal functor G : X →
X ′ and homomorphism h : C → C ′ between commutative monoids,

abM( Bh ◦ F ◦G ) = abM(Bh) ◦ abM(F ) ◦ abM(G) = h ◦ abM(F ) ◦ abM(G)
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and so the diagram

MonCat(X,BC) CMon
(

M(X)ab, C
)

MonCat(X ′,BC ′) CMon
(

M(X ′)ab,M ′
)

Bh◦_◦G

∼

h◦_◦abMG

∼

commutes. Therefore, M( _ )ab ⊣ B.

Proposition 2.42 seems at first glance very similar to Propositions 2.30 and 2.36.
However, our goal was to discover the relationship between the morphisms of Gn and
LGn, paralleling what we did in Propositions 2.32 and 2.37, and in that regard M falls
short in two very important ways.

1. What we really wanted to have was an adjunction involving EGAlgS, not MonCat.
This is because our previous methodology involved applying our left adjoint
functors to η and then using its initial property to factor various maps through
LGn. But η is an initial object in (Gn ↓ inv), and so we only know how to use it
to factor algebra maps Gn → Xinv, and not general monoidal functors.

2. Even if we do find a way to use this adjunction to extract information about
LGn, it will not be the monoid Mor(LGn) we were originally after, only a strange
abelianised version where tensor product and composition coincide.

Unfortunately, this adjunction seems to be the best that we can do. There is a way
to assign an EG-action to the monoidal category BC for an arbitrary commutative
monoid C, which is to simply set all of the action morphisms α(g; idI , ..., idI) to be idI ,
and doing so would let us turn B into a functor CMon → EGAlgS, solving problem
1. However, any new left adjoint M′ : EGAlgS → CMon to this ‘fixed’ B would then
have to send LGn to the trivial monoid, 1 = {∗}. This is because under the adjunction
the homomorphisms M′(LGn) → C would correspond to algebra maps LGn → BC,
which by the free property of LGn are just choices of n invertible objects from BC.
Deloopings only have one (invertible) object, and so there is only one way to choose
such an n-tuple, and hence only one homomorphism M′(LGn) → C for each C, which
is a property unique to the trivial monoid. Thus by editing our adjunction in an
attempt to fix problem 1, we have significantly worsened problem 2. It was already
going to be hard to recover the details of Mor(LGn) from the collapsed M(LGn)ab, but
it would be impossible to do so from just {∗}.
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So it seems that we are stuck with the adjunction M( _ )ab ⊣ B. Luckily, it turns
out that or previous approach can be amended to work with this, and to that end we
will spend the bulk of the next two chapters directly addressing problems 1 and 2. For
now though, we will make one last small alteration to our plan going forward. Instead
of working directly with the functor M( _ )ab : MonCat → CMon, we will instead focus
on its composite with the group completion functor, ( _ )gp : CMon → Ab. It may not
be clear yet why we would choose to do this, but over the next couple of chapters we
will frequently find ourselves having to form quotients of certain algebraic objects. If
we were to stick with the functor M these would all be commutative monoid quotients,
whereas by making the switch to M( _ )gp,ab they will be abelian groups instead, which
are far easier to work with. Also, notice that since the process of group completion is
left adjoint to the forgetful functor Ab → CMon, its composite with the left adjoint
M( _ )ab will be a left adjoint functor too. Thus with this new functor we will be able
use all of the same important properties that we would have done with M( _ )ab, such
as the preservation of colimits. Moreover, while we won’t prove this for some time,
it turns out that the morphisms of LGn actually form a group under tensor product.
This means that whatever method we would have used to recover Mor(LGn) from
M(LGn)ab will still let us recover Mor(LGn) = Mor(LGn)gp from M(LGn)gp,ab.

Before we move on, we should spend a little time thinking about this new functor
M( _ )gp,ab. Specifically, we might ask in what order do we have to carry out its
constituent parts: the collapsing of ◦ and ⊗ into a single operation, group completion,
and abelianisation. It is a well known fact that group completion and abelianisation
commute:

Mon Grp

CMon Ab

( _ )gp

( _ )ab ( _ )ab

( _ )gp

Indeed, we already assumed this when talking of ‘the’ canonical map M(X)gp,ab. But
a more interesting question is whether it matters if we choose to group complete or
abelianise the tensor product of a monoidal category before or after we collapse its
morphisms.

Lemma 2.43. For any monoidal category X, define

Mgp(X) ∼= Mor(X)gp�gp(f ′ ◦ f) ∼ gp(f ′ ⊗ f)

Mab(X) ∼= Mor(X)ab�ab(f ′ ◦ f) ∼ ab(f ′ ⊗ f)
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Then
Mgp(X) = M(X)gp, Mab(X) = M(X)ab

Proof. Consider the following commutative diagram

M(X) M(X)gp

Mor(X)

Mor(X)gp Mgp(X)

gp

v

u′

M

gp

M

u

v′

Here all of the solid arrows are the respective canonical homomorphisms.
Starting from the left, the top edge of the diagram is a map coming out of Mor(X)

and going into a group, and so by the universal property of the group completion there
is a unique homomorphism u factoring it through Mor(X)gp. But now this u is a map
out of Mor(X)gp and into group where tensor product and composition are equal, and
so by the universal property of the quotient this factors once more through the map
u′. On the other hand, the bottom edge of the diagram will factor through the map v
because of the collapsed morphisms property, and then through the map v′ due to the
group completion property. Then this diagram says that

v′ ◦ u′ ◦ gp ◦ M = v′ ◦ u′ ◦ u ◦ gp
= v′ ◦ M ◦ gp
= u ◦ gp
= gp ◦ M

But M : Mor(X) → M(X) is the map associated with a quotient, and so it is an
epimorphism. Thus we can cancel it out on the right, leaving just

v′ ◦ u′ ◦ gp = gp

Then from this we can conclude that for any M(f) ∈ M(X),

v′u′
(

gpM(f)
)

= gpM(f)
v′u′

(
gpM(f)∗

)
= v′u′

(
gpM(f)

)∗
= gpM(f)∗

All elements of M(X)gp can be written as gpM(f) or gpM(f)∗ for at least one f , so
this really says that v′ ◦ u′ is the identity homomorphisms on M(X)gp.
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A completely analogous argument can also be by made starting from the bottom
edge of the diagram instead, and then concluding that u′ ◦ v′ = idMgp(X). Furthermore,
we can construct another diagram using the universal property of the abelianisation,

M(X) M(X)ab

Mor(X)

Mor(X)ab Mab(X)

ab

v′′

u′′′

M

ab

M

u′′

v′′′

and then through another series of analogous arguments conclude that v′′′ ◦ u′′′ =
idM(X)ab and u′′′ ◦ v′′′ = idMab(X). All together, these yield the two isomorphisms given
in the statement of the proposition.

In other words, we do not need to worry about order of operations when using the
left adjoint functor M( _ )gp,ab. This is very convenient, and later on when we actually
need to evalute particular M(X)gp,ab, we will use this fact to carry out the calculation
in whichever order proves easiest.





Chapter 3

Free invertible algebras as colimits

In the previous chapter, we made progress towards understanding the structure of
LGn by showing that the algebra was an initial object in a certain comma category.
Specifically, we saw that the map η : Gn → LGn is initial among all EG-algebra maps
Gn → Xinv. This fact is the rigorous way of expressing a fairly obvious intuition about
LGn — that we should expect the free algebra on n invertible objects to be like the
free algebra on n objects, except that its objects are invertible.

However, this not the only way of thinking about LGn. Consider for a moment
the free EG-algebra on 2n objects, G2n. Intuitively, if we were to take this algebra
and then enforce upon it the extra relations zn+1 = z∗

1 , ..., z2n = z∗
n, then we would

be changing it from a structure with 2n independent generators into one with n

independent generators and their inverses. That is, there seems to be a natural way
to think about LGn as a quotient of the larger algebra G2n. In this chapter we will
work towards making this idea precise, and then examine some of its consequences,
the most important of which will be allowing us to describe the group M(LGn)gp,ab.

3.1 LGn as a cokernel in EGAlgS
We’ll begin with some definitions.

Definition 3.1. Let δ be the map of EG-algebras defined on generators by

δ : G2n → G2n

: zi 7→ zi ⊗ zn+i

: zn+i 7→ zn+i ⊗ zi

for 1 ≤ i ≤ n. We will also denote by q : G2n → Q the cokernel this map.
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Note that the above definition does actually make sense. The given description of δ
is enough to specify it uniquely because G2n is the free EG-algebra on 2n objects, and
hence algebra maps G2n → G2n are canonically isomorphic to functions {z1, ..., z2n} →
Ob(G2n). Also we can be sure that the map q exists, because EGAlgS is a locally
finitely presentable category and thus has all finite colimits.

The goal of this approach will be show that Q is in fact that same algebra as LGn.
In order to do this, it would help if we could easily compare q : G2n → Q to our
initial object η : Gn → LGn. We really want to show that the composite of q with
the inclusion Gn ↪→ G2n is an object of (Gn ↓ inv) — in other words, that Q has only
invertible objects. This can be done using the adjunction we found in Proposition 2.30.

Proposition 3.2. The object monoid of Q is Z∗n, and the restriction of q to objects
Ob(q) : Ob(G2n) → Ob(Q) is the monoid homomorphism defined on generators as

Ob(q) : N∗2n → Z∗n

: zi 7→ zi

: zn+i 7→ z∗
i

Proof. Consider Ob(δ), the restrictions on objects of the algebra maps δ : G2n → G2n.
By Lemma 2.4, this is a monoid homomorphism N∗2n → N∗2n, and since Mon is
cocomplete it too must have a cokernel. This will be a new homomorphism whose
source is N∗2n and whose target is the quotient of N∗2n by the relations Ob(δ)(x) = I.
Remembering Definition 3.1, and that N∗2n is the free monoid on 2n generators, this
quotient monoid will have the following presentation:

Generators: z1, ..., z2n

Relations: zi ⊗ zn+i = I,

zn+i ⊗ zi = I

This is just the same as
Generators: z1, ..., z2n

Relations: zn+i = z∗
i ,

which is the presentation of Z∗n.
But by Proposition 2.30, Ob is a left adjoint and hence preserves all colimits.

Thus the cokernel of Ob(δ) is just the underlying homomorphism of the cokernel of δ.
Therefore Ob(Q) = Z∗n, and Ob(q) is the quotient map N∗2n → Z∗n sending zi 7→ zi

and zn+i 7→ z∗
i for 1 ≤ i ≤ n.
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Thus every object of the cokernel algebra Q is invertible, and so q : G2n → Q can
be composed with an inclusion to give a well-defined object of the category (Gn ↓ inv).
Hence we can use the initiality of η to determine the following result:

Proposition 3.3. Let i : Gn → G2n be the inclusion of EG-algebras defined on
generators by i(zi) = zi. Then i ◦ q is an initial object of (Gn ↓ inv). In particular, this
means that

Q ∼= LGn

Proof. Let ψ : Gn → X be an arbitrary object of (Gn ↓ inv). Since Gn is the free
EG-algebra on n objects, we can use it and ψ to define a new map, ψ∗ : Gn → X,
which takes the values

ψ∗(zi) := ψ(zi)∗

on generators. Then using these functors we can define another new map, ψ + ψ∗, via
the universal property of the coproduct:

Gn + Gn

Gn Gn

X

ψ+ψ∗

i

ψ

i′

ψ∗

But because Gn is the free algebra on n objects, and the free functor F : Cat → EGAlgS
is a left adjoint and thus preserves colimits, we must have

Gn + Gn = F ({z1, ..., zn}) + F ({z′
1, ..., z

′
n})

= F ( {z1, ..., zn} + {z′
1, ..., z

′
n} )

= F ({z1, ..., z2n})
= G2n

This means that we can compose ψ + ψ∗ : G2n → X with the map δ : G2n → G2n,
though we need to be careful to specify exactly which inclusions we used in the definition
of ψ + ψ∗. Suppose that the left-hand inclusion is i, the one given in the statement
of the proposition, and the other is defined by the assignment zi 7→ zi+n. Then for
1 ≤ i ≤ n,

(ψ + ψ∗)δ(zi) = (ψ + ψ∗)(zi ⊗ zn+i)
= ψ(zi) ⊗ ψ(zi)∗

= I
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(ψ + ψ∗)δ(zn+i) = (ψ + ψ∗)(zn+i ⊗ zi)
= ψ(zi)∗ ⊗ ψ(zi)
= I

That is, (ψ+ψ∗) ◦ δ = I. But we’ve already defined q : G2n → Q to be the cokernel of
δ, the universal map with this property, and so there must exist a unique EG-algebra
map u : Q → X making the right-hand triangle below diagram commute:

Gn G2n Q

X

i

ψ

q

ψ+ψ∗

u

The other triangle commutes by the definition of ψ + ψ∗, and so together the diagram
tells us that for any object ψ of (Gn ↓ inv), there exists at least one morphism u in
(Gn ↓ inv) going from q ◦ i to ψ.

Next, let v : Q → X be an arbitrary morphism q ◦ i → ψ in (Gn ↓ inv). By
definition, this means that

ψ = vqi

=⇒ ψ + ψ∗ = vqi+ (vqi)∗

Also, for 1 ≤ i ≤ n we have

q(zi) ⊗ q(zn+i) = q(zi ⊗ zn+i) = qδ(zi) = I

q(zn+i) ⊗ q(zi) = q(zn+i ⊗ zi) = qδ(zn+i) = I

=⇒ q(zn+i) = q(zi)∗

Therefore,
(ψ + ψ∗)(zi) =

(
vqi+ (vqi)∗

)
(zi)

= vqi(zi)
= vq(zi)

(ψ + ψ∗)(zn+i) =
(
vqi+ (vqi)∗

)
(zn+i)

= vqi(zi)∗

= v
(
q(zi)∗

)
= vq(zn+i)
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or in other words ψ + ψ∗ = v ◦ q for any morphism v : q ◦ i → ψ in (Gn ↓ inv). But
this is the property that the map u was supposed to satisfy uniquely, and thus it must
be the only morphism q ◦ i → ψ in (Gn ↓ inv). Therefore q ◦ i is an initial object,
and hence it is isomorphic in (Gn ↓ inv) to any other initial object, such as η. It
follows that the targets of these two maps, Q and LGn respectively, are isomorphic as
EG-algebras.

It’s worth noting that we have not given a method for actually taking cokernels in
EGAlgS, and so Proposition 3.3 doesn’t immediately provide an explicit description for
the whole of LGn. However, it does offer us another way to extract partial information,
like what we were doing in Chapter 2. Consider Proposition 3.2; now that we know
that Q is actually LGn, the statement of this proposition is just the same as that of
Proposition 2.32. But the proof of the former uses the ability of cokernels to preserve
left adjoint functors, rather than any of the initial algebra and group completion
properties that appear in the latter.

Of course, by Proposition 3.3 the fact that q is a cokernel is equivalent to it being
initial, and so while they may not look it at first glance, these two approaches are
secretly the same. Thus from now on whenever we are trying to determine some aspect
of LGn, we will make sure to take a look at both methods, just in case there are some
properties of our free algebra which are more readily apparent from one description
than another.

3.2 LGn as a surjective coequaliser

An immediate consequence our new cokernel perspective of LGn is that, since left
adjoint functors all preserve colimits, Propositions 2.30 and 2.36 now both imply results
about the partial surjectivity of this new map q. The former says that since Ob(q) is a
cokernel map of monoids, and hence that every object of LGn is the image under q of
some object of G2n; the latter says a similar thing for connected components. From
this one might guess that q will just turn out to be a surjective map of EG-algebras,
and indeed this is the case.

Unfortunately, we can not go about proving that q is surjective on morphisms by a
similar adjunction technique, since the best we have is the one from Proposition 2.42
and it will only tell us about the map M(q)gp,ab. However, there is a general result
about the coequalisers of EG-algebras that we can prove to get around this.
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Proposition 3.4. Let φ, φ′ : X → Y be a pair of EG-algebra maps, and k : Y → Z

their coequaliser in EGAlgS. If the monoid Ob(Z) is also a group, then the functor k
is surjective.

Proof. We begin by mirroring the proof of Proposition 3.2. We know that the functor
Ob : EGAlgS → Mon is a left adjoint, by Proposition 2.30, and thus preserves all
colimits. It follows that the monoid homomorphism Ob(k) : Ob(Y ) → Ob(Z) is the
coequaliser of the parallel pair Ob(φ),Ob(φ′) : Ob(X) → Ob(Y ) in Mon, or in other
words

Ob(Z) = Ob(Y )�∼

where ∼ is the relation defined by

Ob(φ)(y) ∼ Ob(φ′)(y), a ∼ a′, b ∼ b′ =⇒ ab ∼ a′b′

The map Ob(k) : Ob(Y ) → Ob(Y )/ ∼ is then clearly surjective.
Next, let f : v → w and f ′ : w′ → v′ be any two morphisms of the algebra Y for

which k(f) and k(f ′) are composable in Z. Since these maps are composable we know
that k(w) and k(w′) must be the same object of Z, and since Z is a group we know this
object has an inverse k(w)∗ = k(w′)∗. So by the surjectivity of k we can find another
object y of Y for which k(y) = k(w)∗. Using this, define the morphism h : x → x′ to
be the tensor product f ′ ⊗ idy ⊗ f . Then

k(h) = k(f ′ ⊗ idy ⊗ f)
= k(f ′) ⊗ idk(y) ⊗ k(f)
= k(f ′) ⊗ idk(w)∗ ⊗ k(f)

But by Lemma 2.39, this is really just the composite k(f ′) ◦ k(f). Thus the set of
morphisms of Z which are images of morphisms of Y is closed under composition.

So now consider k(Y ), the subcategory of Z that contains every object x′ for which
there exists x in Y with k(x) = x′, and every morphism f ′ for which there exists f in
Y with q(f) = f ′. We know that the morphisms of k(Y ) are closed under composition,
and so this is indeed a well-defined category. Moreover, for any collection of morphisms
f ′

1, ..., f
′
m of k(Y ) we’ll have

αZ(g; f ′
1, ..., f

′
m) = αZ

(
g ; k(f1), ..., k(fm)

)
= k

(
αY (g; f1, ..., fm)

)
∈ k(Y )
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for some f1, ..., fm, since k is a map of EG-algebras. Thus k(Y ) is also a well-defined
sub-EG-algebra of Z. There is also clearly a canonical map k′ : Y → k(Y ), the unique
surjective map of EG-algebras with the property that k′(x) = k(x) for any object x and
k′(f) = k(f) for any morphism f . If we denote by i the evident inclusion of algebras
i : k(Y ) ↪→ Z, then these maps are related by the fact that i ◦ k′ = k.

X

Y

k(Y ) Z U

φ φ′

k′
k

j

i u

Given all of this, let j : Y → U be any map of EG-algebras with the property that
j ◦ φ = j ◦ φ′. Since h is the coequaliser of φ and φ′, it follows that there exists a
unique map u : Y → U such that j = u ◦ k. This means that j = u ◦ i ◦ k′, and hence
there is obviously at least one map, u ◦ i, which lets us factors j through k′. But for
any other map v : k(Y ) → U that factors j like this, we’ll have

v ◦ k′ = j

= u ◦ i ◦ k′

=⇒ v = u ◦ i

because k′ is surjective, and thus u ◦ i is the unique map with this property. That
is, k′ is also a coequaliser of φ and φ′. But colimits are always unique up to a unique
isomorphism, and so there should be a unique invertible map k(Y ) → Z factoring k
through k′. This is clearly just the inclusion i, and as a result k(Y ) = Z and k′ = k.
In other words, the coequaliser map k is surjective.

Because the cokernel of a morphism is just its coequaliser with the zero map, and
since we know that the objects of LGn form a group, we can immediately apply this
result to the functor q.

Corollary 3.5. The cokernel map q : G2n → LGn is surjective.

This is probably the single most important step in our effort to determine the
morphisms of LGn, in the sense of how many of the results hereafter rely on this
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relatively simple property. Indeed this result is so strong that after a cursory glance,
one might be forgiven for thinking that it will immediately provide for us the main
thing we have been working towards this chapter — the value of M(LGn)gp,ab.

After all, every surjective functor is an epimorphism in the category MonCat. We
know that left adjoint functors preserve epimorphisms, and that M( _ )gp,ab is a left
adjoint, so from Corollary 3.5 we can surmise that M(q)gp,ab is also an epimorphism,
this time in Ab. But an epimorphic map of abelian groups is nothing other than a
surjective homomorphism, and thus we may apply the First Isomorphism Theorem of
groups to get the following:

M(LGn)gp,ab = M(G2n)gp,ab�ker
(

M(q)gp,ab
)

So if we knew what the kernel of M(q)gp,ab was, we would be done. And it seems like
we should know this; q was defined to be the cokernel of δ, and by preservation of this
colimits means that M(q)gp,ab is the cokernel of M(δ)gp,ab. Then since we are working
with abelian groups, kernels and cokernels interact in a nice way:

ker coker
(

M(δ)gp,ab
)

= im
(

M(δ)gp,ab
)

However, this last step doesn’t actually work — q was defined to be coker(δ), but
only in the category of EG-algebras. In general this will not be the same thing as the
cokernel of δ in MonCat, which is what we would really need in order for M( _ )gp,ab

to preserve it.
Still, this is a pretty reasonable guess for what M(LGn)gp,ab is, and provides an

indication of how we should proceed in order to find its true value. We will pick up on
this idea again in Section 3.4.

3.3 Action morphisms of LGn

One important consequence of the surjectivity of q is that it will allow us to import
certain results about the free algebra G2n into the free invertible algebra LGn. In
fact, we have done this once already; looking back at Proposition 3.2 with our current
knowledge that Q = LGn, we can see that it is a direct analogue of Lemma 2.4, using
the fact that q is surjective on objects.

In that same vein, one might ask if we can take Lemma 2.5, a statement about the
morphisms G2n, and extend it to an analagous result on LGn, using surjectivity of q



3.3 Action morphisms of LGn 75

on morphisms instead. That is, since every morphism of G2n is an action morphism,
and since EG-algebra maps always send action morphisms to action morphisms, we
should be able to use q to identify every morphism of LGn as an action morphism.
This is indeed pretty simple to show.

Lemma 3.6. Every morphism in LGn can be expressed as αLGn(g; idx1 , ..., idxm), for
some g ∈ G(m) and xi ∈ {z1, ..., zn, z

∗
1 , ..., z

∗
n}.

Proof. Let f be an arbitrary morphism in LGn. By surjectivity of q, there must exist
at least one morphism f ′ in G2n such that q(f ′) = f , and from Lemma 2.5 we know
that this f ′ can be expressed uniquely as α(g; idx′

1
, ..., idx′

m
) for some g ∈ G(m) and

x′
i ∈ {z1, ..., z2n}. Thus, because q is a map of EG-algebras, we will have

f = q(f ′)
= q

(
αG2n( g ; idx′

1
, ..., idx′

m
)
)

= αLGn( g ; idq(x′
1), ..., idq(x′

m) )

Therefore there is at least one collection of xi = q(x′
i) for which the statement of the

proposition holds.

Lemma 3.6 formalises a certain intuition about how the functor L should act
on algebras, the idea that a ‘free’ structure really shouldn’t have any ‘superfluous’
components, only whatever data is absolutely required for it to be well-defined. In the
case of LGn, we have proven that the only morphisms contained in the free EG-algebra
on invertible objects are EG-action morphisms. However, while this is very similar to
what we have in the non-invertible case, it should be stressed that Lemma 3.6 does not
prove that the morphisms of LGn have unique representations α(g; idw1 , ..., idwm), as
morphisms of Gn do.

Also, notice that when we eventually find a complete description of LGn as a
monoidal category, we will be able to use the surjective algebra map q to determine it’s
EG-action as well. This follows from the same reasoning we used to prove Lemma 3.6,
but in reverse:

αLGn( g ; idx1 , ..., idxm ) = αLGn( g ; idq(x′
1), ..., idq(x′

m) )
= q

(
αG2n( g ; idx′

1
, ..., idx′

m
)
)

In fact, since we do know that q is a cokernel of the map δ, we can even extract some
information about this action right away, before we have built an understanding of the
morphisms of LGn.
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Lemma 3.7. For any element g ∈ G(m),m ∈ N of an action operad G,

αLGn( g ; idI , ..., idI ) = idI

Equivalently, for any element h ∈ G(0),

αLGn(h ; − ) = idI

Proof. First, let g ∈ G(m). Then because q is the cokernel of δ in EGAlgS,

αLGn( g ; idI , ..., idI ) = αLGn( g ; idq(I), ..., idq(I) )
= q

(
αG2n( g ; idI , ..., idI )

)
= q

(
αG2n( g ; idδ(I), ..., idδ(I) )

)
= qδ

(
αG2n( g ; idI , ..., idI )

)
= idI

Clearly this result implies that

αLGn(h ; − ) = idI

for any element h ∈ G(0), but the implication also goes the other way, since

α( g ; idI , ..., idI ) = α
(
g ; α(e0; −), ..., α(e0; −)

)
= α

(
µ(g; e0, ..., e0) ; −

)
and µ(g; e0, ..., e0) ∈ G(0).

This is a pretty interesting result. By Lemma 2.5, morphisms of the form
αGn(g; idI , ..., idI) make up the entirety of the homset Gn(I, I). Now we see that
their image under the algebra map η : Gn → LGn is always idI , and so it follows that
the unit endomorphisms of free algebras are wholly unrelated to the unit endomor-
phisms of the corresponding free invertible algebras. In particular, when constructing
LGn it seems that it should not matter whether our chosen action operad G has
nontrivial G(0), since all morphisms αLGn(g; −) for g ∈ G(0) are going to end up as
the identity regardless. In order to state this idea more concretely though, we need
some way of ‘removing’ the group G(0) from G.

Proposition 3.8. Let G be a crossed action operad. Then there exists another crossed
action operad G′ which has G′(m) = G(m)/G(0) for all m ∈ N.
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Proof. For any elements g ∈ G(m) and h ∈ G(0), their tensor product h ⊗ g :=
µ(e2;h, g) is also an element of G(m). This defines a map G(0) × G(m) → G(m),
which is both a group homomorphism and a group action:

(hh′) ⊗ (gg′) = µ( e2 ; hh′, gg′ ) e0 ⊗ g = g

= µ( e2 ; h, g ) · µ( e2 ; h′, g′ )
= (h⊗ g) · (h′ ⊗ g′) h′ ⊗ (h⊗ g) = (h′ ⊗ h) ⊗ g

= (h′h) ⊗ g

The last step here uses the fact that tensor product and group multiplication coincide
on G(0), by Lemma 1.13. We can thus take the quotient of each G(m) by the action
of G(0), which will amount to quotienting out the image in G(m) of the subgroup
G(0) ∼= G(0) × {em} ⊆ G(0) ×G(m).

In order for these new groups G′(m) = G(m)/G(0) to form an action operad,
we’ll need operadic multiplication maps µG′ and underlying permutation maps πG′ .
These will be defined from µG and πG using the universal property of the quotient.
Specifically, let h, h1, ..., hm ∈ G(0) and k1, ..., km ∈ N. Then we have

µG(h⊗ em ; h1 ⊗ ek1 , ..., hm ⊗ ekm ) = µG
(
µG(e2;h, em) ; h1 ⊗ ek1 , ..., hm ⊗ ekm

)
= µG

(
e2 ; µG(h; −), µG(em;h1 ⊗ ek1 , ..., hm ⊗ ekm)

)
= µG(h; −) ⊗ µG(em;h1 ⊗ ek1 , ..., hm ⊗ ekm)
= h⊗ h1 ⊗ ek1 ⊗ ...⊗ hm ⊗ ekm

= ek1 ⊗ ...⊗ ekm ⊗ h⊗ h1...⊗ hm

= ek1+...+km ⊗ h⊗ h1...⊗ hm

Here we’ve used that G1 is spacial by Lemma 2.8, and so since its morphisms are just
elements of G, the ek commute with elements of G(0).

G(0) ×G(0) × ...× ...G(0) G(0)

G(m) ×G(k1) × ...×G(km) G(k1 + ...+ km)

G(m)�G(0) ×G(k1)�G(0) × ...×G(km)�G(0)
G(k1 + ...+ km)�G(0)

⊗

µG
m

[ _ ]×...×[ _ ] [ _ ]

µG′
m
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In other words, we know that the upper square in the diagram above commutes. Now,
the composite on the right-hand side of the diagram is by definition the zero map, and
so too is its composite with the (m+ 1)-fold tensor product G(0)m+1 → G(0). Using
commutativity of the upper square, it follows that the composite of the inclusion on
the left and the upper-right path in the bottom square is also zero, and so this upper-
right path will factor uniquely through the quotient of that inclusion. The resulting
homomorphism µG

′
m is then exactly the operadic multiplication map we are looking

for; the and associativity condition is immediate consequence of the corresponding
conditions for µG,

µG
′
(

[g] ; µG′
(

[g1] ; [h1,1], ..., [h1,k1 ]
)
, ..., µG

′
(

[gm] ; [hm,1], ..., [hm,km ]
))

= µG
′
(

[g] ;
[
µG(g1;h1,1, ..., h1,k1)

]
, ...,

[
µG(gm;hm,1, ..., hm,km)

] )
=

[
µG
(
g ; µG(g1;h1,1, ..., h1,k1), ..., µG(gm;hm,1, ..., hm,km)

) ]
=

[
µG
(
µG(g; g1, ..., gm) ; h1,1, ..., h1,k1 , ..., hm,1, ..., hm,km)

) ]
= µG

′
( [

µG(g; g1, ..., gm)
]

; [h1,1], ..., [h1,k1 ], ..., [hm,1], ..., [hm,km ]
)

= µG
′
(
µG

′
(

[g] ; [g1], ..., [gm]
)

; [h1,1], ..., [h1,k1 ], ..., [hm,1], ..., [hm,km ]
)

and likewise for unitality,

µG( g ; e1, ..., e1 ) = g = µG( e1 ; g )
=⇒

[
µG( g ; e1, ..., e1 )

]
= [g] =

[
µG( e1 ; g )

]
=⇒ µG

′
(

[g] ; [e1], ..., [e1]
)

= [g] = µG
′
(

[e1] ; [g]
)

Similarly, for any h ∈ G(0) and m ∈ N we know that

πG(h⊗ em) = πG(h) ⊗ πG(em) = e0 ⊗ em = em

and so the top square in the diagram below will commute:

G(0) S0

G(m) Sm

G(m)�G(0) Sm

πG
m

[ _ ]

πG′
m
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Using the same reasoning as before this will define the homomorphisms πG′
m uniquely,

and the conditions for them to be underlying permutation maps of an action operad
follow from those of πG.

πG
′( [e1]

)
= πG(e1) = e1

πG
′
(
µG

′
(

[g] ; [h1], ..., [hm]
))

= πG
′
( [

µG(g;h1, ..., hm)
] )

= πG
(
µG(g;h1, ..., hm)

)
= µS

(
πG(g) ; πG(h1), ..., πG(hm)

)
= µS

(
πG

′
(

[g]
)

; πG′
(

[h1]
)
, ..., πG

′
(

[hm]
) )

µG
′
(

[g] ; [h1], ..., [hm]
)

· µG′
(

[g′] ; [h′
1], ..., [h′

m]
)

=
[
µG(g;h1, ..., hm)

]
·
[
µG(g′;h′

1, ..., h
′
m)
]

=
[
µG(g;h1, ..., hm) · µG(g′;h′

1, ..., h
′
m)
]

=
[
µG
(
gg′ ;hπG(g′)(1)h

′
1, ..., hπG(g′)(m)h

′
m

) ]
= µG

′
(

[gg′] ; [hπG(g′)(1)h
′
1], ..., [hπG(g′)(m)h

′
m]
)

= µG
′
(

[g] · [g′] ; [hπG(g′)(1)] · [h′
1], ..., [hπG(g′)(m)] · [h′

m]
)

= µG
′
(

[g] · [g′] ; [hπG′ ( [g′] )(1)] · [h′
1], ..., [hπG(g′)(m)] · [h′

m]
)

Thus G′ really is a well-defined action operad.

For crossed G, this notion of quotient by G(0) does exactly what we wanted it to
do — remove certain information which is unnecessary for forming the algebra LGn.

Proposition 3.9. Let G be a crossed action operad, and let G′ be the action operad
with G′(m) = G(m)/G(0) for all m ∈ N. Then for any n ∈ N,

LG′
n

∼= LGn

both as EG-algebras and as EG′-algebras. That is, every free invertible algebra over a
crossed action operad is the same as one over an action operad with trivial G(0).

Proof. It is fairly easy to see that the maps [ _ ] : G(m) → G(m)/G(0) sending elements
to their equivalence class under the quotient must be surjective. Because of this, we
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will be able to use the action αLG
′
n of LG′

n not just as an EG′-action, but also as an
EG-action, which we’ll call α̃LG′

n for the same of keeping the two concepts distinct.
That is,

α̃LG
′
n( g ; idx1 , ..., idxm ) := αLG

′
n

(
[g] ; idx1 , ..., idxm

)
Likewise, the EG-action of LGn is also an EG′-action, via

α̃LGn

(
[g] ; idx1 , ..., idxm

)
:= αLGn( g ; idx1 , ..., idxm )

Lemma 3.7 ensures that this statement makes sense; whenever we have [g] = [g′] it is
because there is some h ∈ G(0) for which g′ = h⊗ g, and so

αLGn( g′ ; idx1 , ..., idxm ) = αLGn(h⊗ g ; idx1 , ..., idxm )
= αLGn

(
µ(e2;h, g) ; idx1 , ..., idxm

)
= αLGn

(
e2 ; αLGn(h; −), αLGn(g; idx1 , ..., idxm)

)
= αLGn(h; −) ⊗ αLGn(g; idx1 , ..., idxm)
= idI ⊗ αLGn(g; idx1 , ..., idxm)
= αLGn(g; idx1 , ..., idxm)

By Proposition 2.32 we already know that LGn and LG′
n have isomorphic object sets,

and so by using the universal properties of Gn and G′
n we can produce maps

Gn −→ LG′
n and G′

n −→ LGn

which correspond to the same choices of n invertible objects that the maps ηG and ηG′

do. The universal properties of LGn and LG′
n will then make these new maps factor

through the respective η’s, and so there must exist an EG-algebra map

LGn → LG′
n

x 7→ x

αLGn(g; idx1 , ..., idxm) 7→ α̃LG
′
n(g; idx1 , ..., idxm)

= αLG
′
n

(
[g] ; idx1 , ..., idxm

)
and an EG′-algebra map

LG′
n → LGn

x 7→ x

αLG
′
n

(
[g] ; idx1 , ..., idxm

)
7→ α̃LGn

(
[g] ; idx1 , ..., idxm

)
= αLGn(g; idx1 , ..., idxm)
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These functors are clearly inverses, and also algebra maps for both G and G′. Therefore

LG′
n

∼= LGn

in both senses, as required.

For non-crossed G we cannot so easily remove the group G(0) like this, as without
being spacial we have no way to draw its elements out from in between elements of the
higher G(m). Still, there is one more thing about the morphisms of LGn that we can
deduce from Lemma 3.7.

Definition 3.10. Let G be a non-crossed action operad in which every element of
each G(m) can be written as µ(g; em) for some G ∈ G(1). Then we say that G is a
G(1)-generated action operad.

Lemma 3.11. If G is a G(1)-generated action operad, then LGn(I, I) is the trivial
group.

Proof. First we need to check that this claim makes sense, that elements of the required
form are indeed closed under operadic multiplication so that they may make up a valid
G. This is the case, as we have

µ
(
µ(g; em) ; µ(h1; ek1), ..., µ(h1; ekm)

)
= µ

(
g ; µ

(
em ; µ(h1; ek1), ..., µ(hm; ekm)

))
= µ

(
g ; µ

(
µ(em;h1, ..., hm) ; ek1 , ..., ekm

))
= µ

(
g ; µ

(
µ(h; em) ; ek1 , ..., ekm

))
= µ

(
g ; µ

(
h ; µ(em; ek1 , ..., ekm)

))
= µ

(
g ; µ(h ; ek1+...+km )

)
= µ

(
µ(g;h) ; ek1+...+km

)
where µ(h; em) is any way of writing µ(em;h1, ..., hm) = h1 ⊗ ...⊗hm in the required

form.
Now let f be an arbitrary element of LGn(I, I). By Lemma 3.6 there must be some

objects x1, ..., xm such that f = α(g; idx1 , ..., idxm). Then by assumption there must
also exist some h ∈ G(1) for which g = µ(h; em). With this in mind, we see that

α(g; idx1 , ..., idxm) = α
(
µ(h; em) ; idx1 , ..., idxm

)
= α

(
h ; µ(em; idx1 , ..., idxm)

)
= α(h ; idx1⊗...⊗xm)
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But this is supposed to be a morphism f : I → I, so we know that x1 ⊗ ...⊗ xm = I,
and therefore by Lemma 3.7

f = α(h ; idI) = idI

As f was chosen arbitrarily, it follows that LGn(I, I) = {idI}.

Ultimately, we will see that there is very little we can say for sure about the unit
endomorphisms of LGn when G is not crossed, other than Lemma 3.11. For this reason,
the main theorems of this thesis, Theorems 5.3 and 5.5, will end up describing only
those invertible EG-algebras whose action operads are either G(1)-generated or crossed,
respectively.

3.4 LGn as a coequaliser in MonCat

Looking back at the proof of Proposition 3.4, notice that we never needed to use the
fact that φ, φ′ and k were maps of EG-algebras, only that they were monoidal functors.
We did at one point have to show that the category k(Y ) was an algebra so that
we could then use the universal property of k in EGAlgS, because we had assumed
from the beginning that we were working in that category, but if k had just been a
coequaliser in MonCat from the start then this part would not have been necessary.
We also had to invoke Proposition 2.30 — which says that Ob : EGAlgS → Mon is a
left adjoint — so that we could exploit preservation of colimits. But since Ob clearly
doesn’t care about the morphisms of an algebra, it doesn’t really matter whether we
are applying it to an algebra in the first place. The actions of X, Y and Z just never
came into play.

With that in mind, we can co-opt all of these previous proofs about EG-algebra
maps to prove the analogous statements about monoidal functors.

Proposition 3.12. Let the functors

Ob : MonCat → Mon, E : Mon → MonCat

be defined exactly as those from Definitions 1.24 and 2.28, except without the require-
ment that the monoidal categories be EG-algebras. Then E is a right adjoint to the
functor Ob.

Proof. The same as the proof of Proposition 2.30.
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Proposition 3.13. Let φ, φ′ : X → Y be a pair of monoidal functors, and k : Y → Z

their coequaliser in MonCat. If the monoid Ob(Z) is also a group, then the functor k
is surjective.

Proof. The same as the proof of Proposition 3.4, but with Proposition 3.12 in place of
Proposition 2.30, and no reference to k(Y ) being a sub-EG-algebra.

Further, these new propositions prove a surjectivity statement just like Corollary 3.5.

Definition 3.14. Let the monoidal functor c : G2n → C onto some monoidal category
C be the cokernel of the underlying monoidal functor of δ in MonCat. This map
definitely exists because MonCat is cocomplete, and like with q we can show that its
target has a group of objects.

Proposition 3.15. The object monoid of C is Z∗n, and the restriction of c to objects
Ob(c) : Ob(G2n) → Ob(C) is the monoid homomorphism defined on generators as

Ob(c) : N∗2n → Z∗n

: zi 7→ zi

: zn+i 7→ z∗
i

Proof. The same as the proof of Proposition 3.2, but with c : G2n → C in place of
q : G2n → Q and Proposition 3.12 in place of Proposition 2.30.

Propositions 3.13 and 3.15 then immediately combine to give:

Corollary 3.16. The cokernel map c : G2n → C is surjective.

This statement is actually pretty unusual. In Corollary 3.5 it made sense that q
would be surjective, but that was because its source and target were special. G2n is
the free EG-algebra on 2n objects, and LGn is the free EG-algebra on n objects and
their n inverses, and so intuitively the map identifying those sets’ generators would
tell us everything we need to know about the algebra structure of LGn. And since by
freeness we expect algebra maps to be all there really is to LGn, it was a safe bet that
q was going to be surjective.

But none of that is true for c. The underlying monoidal category of G2n is not
anything special in MonCat, and neither is C. So what is going on here? The answer
is that category C is almost the algebra LGn, and likewise the functor c is almost the
map q. To see this, consider the following naive method for assigning an EG-action αC

to C:
αC( g ; c(f1), ..., c(fm) ) := c

(
αG2n( g ; f1, ..., fm )

)



84 Free invertible algebras as colimits

Any action on C that made c into a map of EG-algebras would have to satify this
condition, of course. But because c is surjective, every collection of morphisms in C

can be written as c(f1), ..., c(fm), and this forces αC to take a unique value everywhere,
assuming it is well-defined. Then, since the the cokernel of δ in MonCat would be an
EG-algebra map, we could conclude that it was also the cokernel of δ in EGAlgS too.
However, ‘assuming it is well-defined’ is where the problems lie. In particular, since
c is not injective on objects we can find w1, ..., wm and w′

1, ..., w
′
m in G2n for which

c(wi) = c(w′
i), and so αC would only be well-defined if

c
(
αG2n( g ; idw1 , ..., idwm )

)
= c

(
αG2n( g ; idw′

1
, ..., idw′

m
)
)

which we have no reason to believe is true.
To fix this issue, what we need is a way of describing the map q as a colimit of a

slightly different diagram in EG-algebras, one whose colimit in MonCat will have all
of the same properties that c does but will also satisfy the condition above. To that
end, consider the following EG-algebra maps:

Definition 3.17. Let δ̃ := idG2n + δ be the map defined from δ and the identity by
using the universal property of the coproduct G4n = G2n + G2n in EGAlgS. That is, δ̃
is the map of EG-algebras which acts on generators by

δ̃ : G4n → G2n

: zi 7→ zi

: zn+i 7→ zn+i

: z2n+i 7→ zi ⊗ zn+i

: z3n+i 7→ zn+i ⊗ zi

for 1 ≤ i ≤ n. Similarly, let Ĩ := idG2n + I be the EG-algebra map defined in the same
way but from the constant map on the unit I instead of δ:

Ĩ : G4n → G2n

: zi 7→ zi

: zn+i 7→ zn+i

: z2n+i 7→ I

: z3n+i 7→ I

Lemma 3.18. q is the coequaliser of δ̃ and Ĩ in EGAlgS.
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Proof. Let ψ : G2n → X be an map of EG-algebras. Then

ψ ◦ (idG2n + δ)(zi) = ψ ◦ (idG2n + I)
⇐⇒

ψ ◦ idG2n = ψ ◦ idG2n , ψ ◦ δ = ψ ◦ I

and hence

coeq( idG2n + δ, idG2n + I ) = coeq(δ, I) = coker(δ) = q

While this proof may seem rather trivial, notice that it does rely on the fact that
the + here represents the coproduct in the category of EG-algebras. There is no reason
to expect that the coequaliser of the underlying monoidal functors of these maps would
also be equal the cokernel of the underlying monoidal functor of δ. Thus these new
maps will give rise to a new map which is distinct from the cokernel functor c, yet
possesses many of the same properties.

Definition 3.19. Denote by c̃ : G2n → C̃ the coequaliser of δ̃ and Ĩ in the category
MonCat.

Lemma 3.20. The object monoid of C̃ is

Ob(C̃) = Ob(C) = Z∗n

and the restriction of c̃ to objects Ob(c̃) : Ob(G2n) → Ob(C̃) is just the monoid
homomorphism Ob(c) : N∗2n → Z∗n from Proposition 3.15.

Proof. Consider the monoid homomorphisms Ob(δ̃) : N∗4n → N∗2n and Ob(Ĩ) : N∗4n →
N∗2n. These are fully determined by the descriptions of the corresponding algebra
maps in Definition 3.17, and as such they are obviously just

Ob(idG2n + δ) = idN∗2n + Ob(δ) Ob(idG2n + I) = idN∗2n + Ob(I)
= idN∗2n + I

where the + on the righthand side of the equations means the coproduct in the
category of monoids. Therefore

coeq
(

Ob(idG2n + δ), Ob(idG2n + I) ) = coeq
(

Ob(δ), I
)

= Ob(c)



86 Free invertible algebras as colimits

and thus Ob(C̃) = Ob(C).

Corollary 3.21. The coequaliser map c̃ : G2n → C̃ is surjective.

Proof. Lemma 3.20 says that the monoid C̃ is a group, so we may apply Proposition 3.13.

So why bother with any of this? What features do δ̃ and Ĩ have that will make an
action possible on C̃ when it wasn’t on C? The answer is that unlike δ and I, these
new maps form a reflexive pair — a parallel pair of functors which share a right-inverse.

Lemma 3.22. Let ι : G2n → G4n be the inclusion of algebras defined on generators by
zi 7→ zi. Then ι is a right-inverse of both δ̃ and Ĩ.

Proof. For 1 ≤ i ≤ 2n,

δ̃ι(zi) = δ̃(zi) = zi = Ĩ(zi) = Ĩι(zi)

=⇒ δ̃ ◦ ι = idG2n = Ĩ ◦ ι

In other words, c̃ is a reflexive coequaliser in the category MonCat. This is the key
difference which will eventually let us prove that c̃ respects action morphisms in the
way that we need it to. First though, we will need a few intermediate results.

Definition 3.23. If w is an element of N∗m, then we can use the definition of the free
product of groups to decompose it uniquely as a tensor product of the m generators
z1, ..., zm. We’ll denote this by

w =:
|w|⊗
i=1

d(w, i), d(w, i) ∈ {z1, ..., zm}

If instead w is an element of Z∗m, then we can use the definition of the free product
of groups to decompose x uniquely as a tensor product, but this time one made up of
the m generators z1, ..., zm and their inverses z∗

1 , ..., z
∗
m. As before we’ll denote this by

w =
|w|⊗
i=1

d(w, i)

where d(w, i) ∈ {z1, ..., zm, z
∗
1 , ..., z

∗
m}, and also for any 1 ≤ i < |w| we will always have

d(w, i+ 1) ̸= d(w, i)∗. By analogy with Definition 2.10, we will call the upper bound
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of this tensor product the length of the element w, and denote it by |w|, but be aware
that this number is the one that comes from the monoid homomorphism

F
(

{z1, ..., zm, z
∗
1 , ..., z

∗
m}

)
→ N

that sends each generator to 1, and not the perhaps more obvious group homomorphism

F
(

{z1, ..., zm}
)

→ Z

Proposition 3.24. Let w be an object of G2n. Then there exist objects w(1), ..., w(k)

in G2n and u(1), ..., u(k) in G4n, for some value of k ∈ N, such that

w(1) = w, u(k) = ι(w(k)), Ĩ(u(i−1)) = w(i) = δ̃(u(i))

for 1 ≤ i ≤ k, and for any object u of G4n,

δ̃(u) = w(k) ⇐⇒ u = u(k)

Proof. From Definitions 2.10 and 3.17, we know that for any generator zi of G4n,

|δ̃(zi)| =

 1 if 1 ≤ i ≤ 2n
2 if 2n+ 1 ≤ i ≤ 4n

 ≥ 1

|Ĩ(zi)| =

 1 if 1 ≤ i ≤ 2n
0 if 2n+ 1 ≤ i ≤ 4n

 ≤ 1

Also these lengths are additive across tensor products, since | _ | is a monoid homo-
morphism G2n → N. Thus for any object u in G4n, we can conclude that

|δ̃(u)| = | δ̃
( |u|⊗
i=1

d(u, i)
)

| =
|u|∑
i=1

| δ̃
(
d(u, i)

)
| ≥

|u|∑
i=1

1 = |u|

|Ĩ(u)| = | Ĩ
( |u|⊗
i=1

d(u, i)
)

| =
|u|∑
i=1

| Ĩ
(
d(u, i)

)
| ≤

|u|∑
i=1

1 = |u|

Also, since the only generators that have |δ̃(zi)| = |Ĩ(zi)| = 1 are those from the G2n

subalgebra associated with ι, the inequalities above becomes equalities if and only if u
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is in the image of ι. That is,

|Ĩ(u)| = |u| = |δ̃(u)| ⇐⇒ ∃ v ∈ N∗2n : u = ι(v)

Next, consider the set

δ̃−1(w) := {u ∈ N∗4n : δ̃(u) = w }

of all objects in G4n which δ̃ sends to w. This set is always nonempty, since by
Lemma 3.22 ι is a right-inverse of δ:

δ̃ι(w) = w =⇒ ι(w) ∈ δ̃−1(w)

Moreover, ι(w) is the only element of δ̃−1(w) which can be expessed as ι(v) for some
object v in G2n, because

δ̃
(
ι(v)

)
= w =⇒ v = w

With all of this now in place, we can begin constructing the sequences w(1), ..., w(k)

and u(1), ..., u(k). Start by setting w(1) = w and i = 1, then apply the following
algorithm:

1. If δ̃−1(w(i)) is just the set {ι(w(i))}, choose u(i) = ι(w(i)), set k to be the current
value of i, and terminate.

2. Otherwise, choose u(i) to be any element of δ̃−1(w(i)) other than ι(w(i)).

3. Set w(i+1) = Ĩ(u(i)).

4. Increase the value of i by 1, then return to step 1.

By design, none of the u(i) produced by this process can be expressed as u(i) = ι(v) for
some v in G2n, with the possible exception of uk if the algorithm terminates. This is
because ι(w(i)) is the only element of δ−1(w(i)) that can be expressed that way, and
the above process will terminate the first time it has to pick u(i) = ι(w(i)), at which
point i is set equal to k. Thus given what we found earlier in the proof, for any i ≠ k

we must have the following strict inequalities:

|w(i+1)| = |Ĩ(u(i))| < |u(i)| < |δ̃(u(i))| = |w(i)|
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That is, the w(i) produced by this algorithm form a sequence with strictly decreasing
length. However, it is impossible to have a infinite sequence of strictly decreasing
natural numbers, and hence we can be sure that this process will terminate at some
finite k.

But in order for the algorithm to terminate, it must be the case that

δ̃−1(w(k)) = {ι(w(k))}

and hence
δ̃(u) = w(k) ⇐⇒ u = ι(w(k)) = u(k)

Thus the sequences w(1), ..., w(k) and u(1), ..., u(k) satisfy all of the conditions in the
statement of the lemma.

The intuition behind Proposition 3.24 is that we are successively removing parts of
the object w, without changing its image under c̃. The map δ̃ sends z2n+i 7→ zi ⊗ zn+i

and z3n+i 7→ zn+1 ⊗ zi while Ĩ sends these all to I, and so for any u in G4n the
object Ĩ(u) will look like δ̃(u) except missing some number of zi ⊗ zn+i or zn+1 ⊗ zi

substrings. But since c̃ sends zn+i 7→ z∗
i , these are exactly the sort of omissions which

the coequaliser doesn’t care about. If we repeat this process then it will eventually
terminate at u(k) = ι(w(k)), so we really have a method for removing all of the relevant
substrings from objects of G2n. In other words, w(k) has the smallest possible length
while still having c̃(w(k)) = c̃(w). In fact, we will show that it is the unique shortest
object of G2n with this property.

Proposition 3.25. Let w, w′ be objects of G2n such that c̃(w) = c̃(w′). If w(1), ..., w(k)

and u(1), ..., u(k) are the sequences generated from w via Proposition 3.24, and likewise
w′ (1), ..., w′ (k′) and u′ (1), ..., u′ (k′) from w′, then w(k) = w′ (k′) and u(k) = u′ (k′).

Proof. Consider the decomposition of the object w(k) ∈ N∗2n as in Definition 3.23.
Assume, for the sake of contradiction, that there exist 1 ≤ j < |w(k)| and 1 ≤ m ≤ n

such that
d(w(k), j) = zm, d(w(k), j + 1) = zn+m

Then we can use j and m to contruct a new element u ∈ N∗4n, defined by

|u| = |w| − 1, d(u, i) =


ι
(
d(w(k), i) ) if 1 ≤ i < j

z2n+m if i = j

ι
(
d(w(k), i+ 1) ) if j < i ≤ |u|
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This u will then have the property that

δ̃(u) = δ̃
( |u|⊗
i=1

d(u, i)
)

=
|u|⊗
i=1

δ̃
(
d(u, i)

)

=
j−1⊗
i=1

δ̃ι
(
d(w(k), i) ) ⊗ δ̃(z2n+m) ⊗

|u|⊗
i=j+1

δ̃ι
(
d(w(k), i+ 1)

)

=
j−1⊗
i=1

d(w(k), i) ⊗ zm ⊗ zn+m ⊗
|u|+1⊗
i=j+2

d(wk, i)

=
j−1⊗
i=1

d(w(k), i) ⊗ d(w(k), j) ⊗ d(w(k), j + 1) ⊗
|u|+1⊗
i=j+2

d(wk, i)

= w(k)

But this is impossible, since by Proposition 3.24 u(k) is the only object of G4n whose
image under δ̃ is w(k), and this u we have constructed is manifestly not w(k). Thus we
can conclude that there are no values of j and m for which

d(w(k), j) = zm, d(w(k), j + 1) = zn+m

An analogous line of reasoning — using z3n+m rather than z2n+m in the definition of u
— demonstrates that there are also no j,m with

d(w(k), j) = zn+m, d(w(k), j + 1) = zm

As a result, for all 1 ≤ i < |w(k)|

c̃
(
d(w(k), i+ 1)

)
̸= c̃

(
d(w(k), i)

)∗

and this combined with the fact that

|w(k)|⊗
i=1

c̃
(
d(w(k), i)

)
= c̃

( |w(k)|⊗
i=1

d(w(k), i)
)

= c̃(w(k))

shows that the unique decomposition of c̃(w(k)) ∈ Z∗n as in Definition 3.23 is given by

|c̃(w(k))| = |w(k)|, d
(
c̃(w(k)), i

)
= c̃

(
d(w(k), i)

)
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Next, let r be a function — not a homomorphism — defined by

r : Z∗n → N∗2n

: zi 7→ zi

: z∗
i 7→ zn+i

: x 7→ ⊗|x|
i=1 r

(
d(x, i)

)
Then for 1 ≤ i ≤ n,

rc̃(zi) = r(zi) = zi, rc̃(zn+i) = r(z∗
i ) = zn+i

and so it follows that

rc̃(w(k)) =
|w(k)|⊗
i=1

rc̃
(
d(w(k), i)

)
=

|w(k)|⊗
i=1

d(w(k), i) = w(k)

Finally, notice that the exact same logic as we’ve used above will work for w′ (k′) as
well, so that rc̃(w′ (k′)) = w′ (k′).

Therefore, putting everything together tells us that

wk = rc̃(w(k)) = rc̃Ĩ(u(k−1)) = rc̃δ̃(u(k−1))
= rc̃(w(k−1)) = ... = ...
...
= rc̃(w(1))
= rc̃(w)
= rc̃(w′)
= rc̃(w′ (1)) = rc̃δ̃(u′ (1)) = rc̃Ĩ(u′ (1))
= rc̃(w′ (2)) = ... = ...
...
= rc̃(w′ (k′))
= w′ (k′)

as required.

It is this special property — shared by all w, w′ for which c̃(w) = c̃(w′) — that
will now let us prove that the coequaliser c̃ satisfies the condition which we couldn’t
prove about the cokernel c. In other words, with Propositions 3.24 and 3.25 we can
now construct a valid EG-action on the monoidal category C̃.
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Proposition 3.26. There is a unique action αC̃ making the category C̃ into EG-algebra
and the functor c̃ : G2n → C̃ into a map of EG-algebras.

Proof. We will try to affix an action to C̃ in the same way we thought about doing
with the category C. In order for the functor c̃ : G2n → C̃ to be an EG-algebra map
with respect to some αC̃ , it must satisfy

c̃
(
αG2n( g ; f1, ..., fm )

)
= αC̃( g ; c̃(f1), ..., c̃(fm) )

for all morphisms f1, ..., fm in G2n, though given Lemma 2.5 it will be enough to have

c̃
(
αG2n( g ; idw1 , ..., idwm )

)
= αC̃( g ; c̃(idw1), ..., c̃(idwm) )
= αC̃( g ; idc̃(w1), ..., idc̃(wm) )

But since we know from Corollary 3.21 that c̃ is surjective, this condition will actually
suffice as a definition for αC̃ , provided that we can prove it to be well-defined.

To that end, let w1, ..., wm and w′
1, ..., w

′
m be any two sequences of objects in G2n

that have c̃(wi) = c̃(w′
i) for all 1 ≤ i ≤ m. Then using Proposition 3.24, let w(1)

i , ..., w
(k)
i

and u(1)
i , ..., u

(k)
i be the sequences we get from each wi and w′ (1)

i , ..., w
′ (k′)
i , u′ (1)

i , ..., u
′ (k′)
i

those we get from w′
i. It follows that

c̃
(
αG2n( g ; id

w
(i)
1
, ..., id

w
(i)
m

)
)

= c̃
(
αG2n( g ; id

δ̃(u(i)
1 ), ..., idδ̃(u(i)

m ) )
)

= c̃δ̃
(
αG2n( g ; id

u
(i)
1
, ..., id

u
(i)
m

)
)

= c̃Ĩ
(
αG2n( g ; id

u
(i)
1
, ..., id

u
(i)
m

)
)

= c̃
(
αG2n( g ; id

Ĩ(u(i)
1 ), ..., idĨ(u(i)

m ) )
)

= c̃
(
αG2n( g ; id

w
(i+1)
1

, ..., id
w

(i+1)
m

)
)

and likewise for the w′. Thus from Proposition 3.25 we can conclude that

c̃
(
αG2n( g ; idw1 , ..., idwm )

)
= c̃

(
αG2n( g ; id

w
(1)
1
, ..., id

w
(1)
m

)
)

= c̃
(
αG2n( g ; id

w
(2)
1
, ..., id

w
(2)
m

)
)

...
= c̃

(
αG2n( g ; id

w
(k)
1
, ..., id

w
(k)
m

)
)

= c̃
(
αG2n( g ; id

w
′ (k′)
1

, ..., id
w

′( k′)
m

)
)

...
= c̃

(
αG2n( g ; idw′

1
, ..., idw′

m
)
)



3.5 Extracting M(LGn)gp,ab from G2n 93

Thus the value of αC̃(g; idc̃(w1), ..., idc̃(wm)) we gave earlier does not depend on our
particular choice of wi. Therefore αC̃ is indeed a well-defined EG-action on C̃, and the
coequaliser c̃ from MonCat is a map of EG-algebras with respect to αC̃ .

3.5 Extracting M(LGn)gp,ab from G2n

We are now finally ready to address problem 1 from the end of the previous chapter:
how can we deal with the fact that our adjunction M( _ )gp,ab ⊣ C involves monoidal
categories rather than full EG-algebras? It turns out that this is all we really needed,
as despite us originally conceiving of LGn as a colimit in EGAlgS it can equally be
viewed as a slightly more complicated colimit in MonCat.

Proposition 3.27. The coequaliser functor c̃ : G2n → C̃ defined in Definition 3.19 is
isomorphic as a map of EG-algebras to q : G2n → LGn, the cokernel of δ in EGAlgS.

Proof. First, consider what we know of the functor c̃. By definition it has the property
for any 1 ≤ i ≤ 2n

c̃δ(zi) = c̃δ̃(z2n+i) = c̃Ĩ(z2n+i) = c̃(I) = I

so that c̃ ◦ δ is the constant functor on the unit object I. Moreover, given what we
saw in Proposition 3.26 we know that c̃ is map of EG-algebras which has this property.
But the cokernel map q is universal among maps like these, and so it follows that
there must exist a unique map of EG-algebras u : LGn → C̃ factoring c̃ through q.
Conversely, the algebra map q is a monoidal functor for which q ◦ δ = I, while c̃ is the
universal map in MonCat with this property. Thus there also exists a unique monoidal
functor v : C̃ → LGn which factors q through c̃.

Putting these facts together with the surjectivity of q and c̃ (from Corollaries 3.5
and 3.21 respectively), we can conclude that the maps u and u′ form a isomorphism of
monoidal categories:

u ◦ v ◦ c̃ = u ◦ q = c̃ =⇒ u ◦ v = idC̃
v ◦ u ◦ q = v ◦ c̃ = q =⇒ v ◦ u = idLGn

Furthermore, not only is u an algebra map, but v is one too. To see this, use the
surjectivity of c̃ to find for any morphism fi in C̃ a corresponding f ′

i in G2n with
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c̃(f ′
i) = fi. Then

v
(
αC̃( g ; f1, ..., fm )

)
= v

(
αC̃( g ; c̃(f ′

1), ..., c̃(f ′
m) )

)
= vc̃

(
αG2n( g ; f ′

1, ..., f
′
m )

)
= q

(
αG2n( g ; f ′

1, ..., f
′
m )

)
= αLGn

(
g ; q(f ′

1), ..., q(f ′
m)
)

= αLGn

(
g ; vc̃(f ′

1), ..., vc̃(f ′
m)
)

= αLGn

(
g ; v(f1), ..., v(fm)

)
Therefore (u, v) is also an isomorphism of EG-algebras C̃ ∼= LGn, and up to this

isomorphism the algebra maps q and c̃ are the same.

With our newfound ability to express the map q : G2n → LGn as a colimit of
monoidal categories, we can now set about using the adjunction from Proposition 2.42
to calculate M(LGn)gp,ab. The most obvious way to do this is to mimic what we did in
Proposition 3.2 — apply the left adjoint functor to q and then commute it with the
colimit to get a formula in terms of the known monoid Mor(G2n).

Proposition 3.28. Let ∆ be the subgroup of M(G2n)gp,ab generated by elements of the
form

M(δ̃)gp,ab(f) ⊗ M(Ĩ)gp,ab(f)∗, f ∈ M(G4n)gp,ab

Then the abelianisation of the group completion of the collapsed morphisms of LGn is

M(LGn)gp,ab =
M(G2n)gp,ab�∆

with M(q)gp,ab acting as the appropriate quotient map.

Proof. From Proposition 2.42, we know that M( _ )gp,ab : MonCat → Ab is a left
adjoint functor. This means that it preserves all colimits in MonCat, including the
coequaliser use to define c̃, which from Proposition 3.27 we now know is really q. Thus

coeq
(

M(δ̃)gp,ab, M(Ĩ)gp,ab
)

= M
(

coeq(δ̃, Ĩ)
)gp,ab

= M(q)gp,ab

or in other words, the following is a coequaliser diagram in the category of abelian
groups:

M(G2n)gp,ab M(G2n)gp,ab M(LGn)gp,ab
M(δ̃)gp,ab

M(Ĩ)gp,ab

M(c)gp,ab
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But the coequaliser of two abelian group homomorphisms is just the quotient of their
common target by the image of their difference. Hence in this case we have

M(LGn)gp,ab =
M(G2n)gp,ab�im

(
M(δ̃)gp,ab − M(Ĩ)gp,ab ) =

M(G2n)gp,ab�∆

Notice that the subgroup ∆ contains all elements of the group im(M(δ)gp,ab), but
in general these two are not the same subgroup of M(G2n)gp,ab. This means that the
naive approach we could have taken at the end of Section 3.2 was indeed a mistake,
and thus all of the effort we have put into circumventing it has been worthwhile.

Now, at some point later on we will actually want to evaluate the quotient in
Proposition 3.28 for particular values of action operad G. This would be fairly tricky
without an explicit description of the elements of ∆, so we need to take a moment to
think about what we really mean when we say M(δ̃)gp,ab(f) ⊗ M(Ĩ)gp,ab(f)∗.

Lemma 3.29. ∆ is the subgroup of M(G2n)gp,ab whose elements are tensor products
of equivalence classes[

αG2n

(
µ( g ; e|δ̃(x1)|, ..., e|δ̃(xm)| ) ; idx′

1
, ..., idx′

m′

) ]
⊗[

αG2n

(
µ( g ; e|Ĩ(x1)|, ..., e|Ĩ(xm)| ) ; idx′′

1
, ..., idx′′

m′′

) ]∗
where g ∈ G(m), the xi are generators of N∗4n, the x′

i, x
′′
i are generators of N∗2n, and

δ̃(x1 ⊗ ...⊗ xm) = x′
1 ⊗ ...⊗ x′

m′

Ĩ(x1 ⊗ ...⊗ xm) = x′′
1 ⊗ ...⊗ x′′

m′′

Proof. Let f be an element of M(G4n)gp,ab. By definition this means that f is an
equivalence class of morphisms from G4n, and so by Lemma 2.5 there must exist
g ∈ G(m) and x1, ..., xm ∈ {z1, ..., z4n} for which

f = [αG4n(g; idx1 , ..., idxm) ]

Thus
M(δ̃)gp,ab(f) = M(δ̃)gp,ab

(
[αG4n(g; idx1 , ..., idxm) ]

)
=

[
δ̃
(
αG4n(g; idx1 , ..., idxm)

) ]
= [αG2n(g; idδ̃(x1), ..., idδ̃(xm)) ]
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But again using Lemma 2.5, we know it must be possible to express the action morphism
αG2n(g; idδ̃(x1), ..., idδ̃(xm)) as an action morphism on the identities of generators. Since
the source of this map is

δ̃(x1) ⊗ ...⊗ δ̃(xm) = δ̃(x1 ⊗ ...⊗ xm) =: x′
1 ⊗ ...⊗ x′

m′

clearly the x′
i are the generators we want, and so by expanding the δ̃(xi) as tensor

products of these we find that

[αG2n(g; idδ̃(x1), ..., idδ̃(xm)) ] =
[
αG2n

(
µ( g ; e|δ̃(x1)|, ..., e|δ̃(xm)| ) ; idx′

1
, ..., idx′

m′

) ]
For analogous reasons we also get

M(Ĩ)gp,ab(f) = [αG2n(g; idĨ(x1), ..., idĨ(xm)) ]
=

[
αG2n

(
µ( g ; e|Ĩ(x1)|, ..., e|Ĩ(xm)| ) ; idx′′

1
, ..., idx′′

m′′

) ]
and using these equations the lemma follows immediately from the definition of ∆.



Chapter 4

Morphisms of free invertible
algebras

The goal of this chapter will be to show that we can reconstruct all of the morphisms
of LGn from the abelian group M(LGn)gp,ab, and therefore that we can actually use
the adjunction from Proposition 2.42 to help find a description of the free EG-algebra
on n invertible objects.

The first step towards this goal will involve splitting Mor(LGn) up as the product
of two other monoids. The first of these will encode all of the possible combinations
of source and target data for morphisms in LGn, while the second will just be the
endomorphisms of the unit object, LGn(I, I). In other words, we will see that the
monoid Mor(LGn) can be broken down into a context where source and target are the
only thing that matter, and another where they are irrelevant.

Once we have done this, we can then use the fact that LGn(I, I) is always an abelian
group to rewrite Mor(LGn) in terms of its abelian group completion, Mor(LGn)gp,ab.
This is not quite the same thing as M(LGn)gp,ab, but they are close enough that we
can find a simple equation linking the two, which will in turn allow us to frame the
former in terms of the quotient of M(G2n)gp,ab we described last chapter. All together,
this will constitute an expression for Mor(LGn) that is built up of pieces which we
know how to calculate.

4.1 Sources and targets in LGn

To get things started, we will spend this section considering the source and target
information of morphisms in LGn.
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Definition 4.1. For any EG-algebra X, denote by s : Mor(X) → Ob(X) and t :
Mor(X) → Ob(X) the monoid homomorphisms which send each morphism of X to its
source and target, respectively. That is,

s( f : x → y) = x, t( f : x → y) = y

If we use the universal property of products, we can combine these source and
target homomorphisms into a single map, s × t : Mor(X) → Ob(X) × Ob(X). The
monoid we are interested in finding is the image LGn under its instance of this map,
which can be described using a pullback as follows:

Lemma 4.2. Let X be an EG-algebra, and s× t : Mor(X) → Ob(X)2 the map built
from s and t using the universal property of products. Then the image of this map is

(s× t)(X) = Ob(X) ×π0(X) Ob(X)

where this pullback is taken over the canonical maps sending objects of X to their
connected components:

Ob(X) ×π0(X) Ob(X) Ob(X)

Ob(X) π0(X)

y

[ _ ]

[ _ ]

Proof. By definition, there exists a morphism f : x → y between objects x, y of X if
and only if they are in the same connected component, [x] = [y]. Thus

(x, y) ∈ (s× t)(X) ⇐⇒ ∃ f : s(f) = x, t(f) = y

⇐⇒ [x] = [y]
⇐⇒ (x, y) ∈ Ob(X) ×π0(X) Ob(X)

as required.

Recalling Lemma 2.4, Propositions 2.6 and 2.32, and Corollary 2.38, we can
immediately conclude the following:
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Corollary 4.3.

(s× t)(Gn) =

 N∗n ×Nn N∗n if G is crossed
N∗n otherwise

(s× t)(LGn) =

 Z∗n ×Zn Z∗n if G is crossed
Z∗n otherwise

where the pullbacks are taken over the quotients of abelianisation for (N∗n)ab = Nn

and (Z∗n)ab = Zn respectively.

Next, we want to show that this (s × t)(LGn) we have described is in fact a
submonoid of Mor(LGn). This is a little tricky though, since we don’t currently know
what the morphisms of LGn even are. We will sidestep this problem by first proving
the analogous statement for all Gn, and then recovering the LGn version from it later.

Now, by Lemma 2.11 we know that wanting (s×t)(Gn) to be a submonoid of Mor(Gn)
is the same as asking if we can find an injective homomorphism N∗n×NnN∗n → G×NN∗n,
assuming G is crossed, or N∗n → G ×N N∗n if it is not. The latter case is pretty
obvious, so we’ll focus on crossed G for the moment. Creating a injective function
N∗n ×Nn N∗n → G×N N∗n is not especially hard. For any pair (w,w′) ∈ N∗n ×Nn N∗n,
the image of w and w′ in the abelian group Nn is the same, which is to say that if
x1, ..., xm ∈ {z1, ..., zn} are the collection of generators for which

w = x1 ⊗ ...⊗ xm

and there exists at least one permutation σ ∈ Sm such that

w′ = xσ(1) ⊗ ...⊗ xσ(m)

Then since the underlying permutation maps π : G(m) → Sm of a crossed action
operad G are all surjective, we can always find an element of g ∈ G(m) for which
π(g) = σ. Thus in order to make our injective function all we need to do is make a
choice g =: ρ(w,w′) like this to represent each (w,w′), and then set

N∗n ×Nn N∗n → G×N N∗n

(w,w′) 7→ ( ρ(w,w′), w )
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Injectivity follows because given a specific (g, w), the only element that could map
onto it is (w, π(g)(w)).

So how do we know if we can choose these representatives ρ(w,w′) in such a way
that the resulting function i is also a monoid homomorphism? If we could find a
presentation of N∗n ×Nn N∗n in terms of generators and relations then this would help
a little, since we would only need to pick a ρ(z, z′) for each generator (z, z′), and then
define all other ρ(w,w′) by way of tensor products:

ρ(v ⊗ w, v′ ⊗ w′) = ρ(v, v′) ⊗ ρ(w,w′)

But then we would still need make sure that our choice of ρ(z, z′) obeyed the necessary
relations on the generators of N∗n ×Nn N∗n. Luckily for us though, this turns out to be
no problem at all.

Proposition 4.4. N∗n ×Nn N∗n is a free monoid.

Proof. Given an element (w,w′) of the monoid N∗n ×Nn N∗n, let D(w,w′) be the
following set:

D(w,w′) =


(w,w′) = (u, u′) ⊗ (v, v′),

(u, u′), (v, v′) ∈ N∗n ×Nn N∗n : (u, u′) ̸= (I, I),
(v, v′) ̸= (I, I)


We can use these sets to recursively define a decomposition of any element (w,w′)

as a product of other elements of N∗n ×Nn N∗n. Specifically, if D(w,w′) is empty
then we say that the decomposition of (w,w′) is just (w,w′) itself, and otherwise we
choose any

(
(u, u′), (v, v′)

)
∈ D(w,w′) and say that the decomposition of (w,w′) is

the concatenation of the decomposition of (u, u′) with the decomposition of (v, v′).
Note that when we look at the lengths of these elements, as defined in Definition 2.10,
|u| and |v| are always strictly smaller that |w|, and any strictly decreasing sequence of
natural numbers is finite, so this process definitely terminates.,

Of course, we need to check that this decomposition of (w,w′) is well-defined, which
amounts to checking that the choice of (u, u′), (v, v′) we make at each stage won’t
change the eventual output. To that end, suppose for the sake of contradiction that
(u1, u

′
1), ..., (um, u′

m) and (v1, v
′
1), ..., (v′

m, v
′
m′) are distinct decompositions of (w,w′) we

could arrive at using the above process. Notice that we can assume without loss of
generality that |u1| < |v1|. If instead |u1| > |w1|, we can just swap the labels of the
sequences, and if |u1| = |v1| then we can just discard those elements and instead consider
the decompositions (u2, u

′
2), ..., (um, u′

m) and (v2, v
′
2), ..., (v′

m, v
′
m′) of (u2, u

′
2) ⊗ ... ⊗
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(um, u′
m) = (v2, v

′
2) ⊗ ...⊗ (v′

m, v
′
m′). Since (u1, u

′
1), ..., (um, u′

m) and (v1, v
′
1), ..., (v′

m, v
′
m′)

were distinct decompositions of (w,w′), in this way we will eventually reach some
subsequences whose first elements are different; once we have, we can relabel them so
that |u1| < |v1|. Then by definition,

u1 ⊗
( m⊗
i=2

ui ) = w = v1 ⊗
( m′⊗
i=2

vi )

But w, u1, v1,
⊗m

i=2 ui,
⊗m′

i=2 vi are all elements of N∗n, which is a free monoid, and so
they each have a unique decomposition as products of the generators {z1, ..., zn}, and
these all respect tensor products. Therefore, since |u1| < |v1|, there must exist some
element a of N∗n such that

w = u1 ⊗ a⊗
( m′⊗
i=2

vi ) =⇒ v1 = u1 ⊗ a

Since
|u′

1| = |u1| < |v1| = |v′
1|

we can also use exactly the same reasoning to find an a′ in N∗n with v′
1 = u′

1 ⊗ a′, and
hence (v1, v

′
1) = (u1, u

′
1) ⊗ (a, a′). Moreover, this (a, a′) is an element of N∗n ×Nn N∗n,

because
v1 = u1 ⊗ a

=⇒ [v1] = [u1 ⊗ a] = [u1] + [a]

v′
1 = u′

1 ⊗ a′

=⇒ [v′
1] = [u′

1 ⊗ a′] = [u′
1] + [a′]

=⇒ [a] = [v1] − [u1]
[v′

1] − [u′
1] = [a′]

In other words, we have shown that the pair
(

(u1, u
′
1)(a, a′)

)
is an element of D(v1, v

′
1).

But by assumption (v1, v
′
1), ..., (v′

m, v
′
m′) was a decomposition of (w,w′), and hence the

D(vi, v′
i) were supposed to be empty for each i, since that is when the decomposition

finding process terminates. This is a contradiction, and hence our assumption that
(u1, u

′
1), ..., (um, u′

m) and (v1, v
′
1), ..., (v′

m, v
′
m′) were distinct decompositions of (w,w′) is

false. Therefore, each (w,w′) in N∗n ×Nn N∗n has a unique decomposition in terms of
elements (vi, v′

i) for which D(vi, v′
i) is empty, and so N∗n ×Nn N∗n is the free monoid

whose generators are all such elements.
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It follows immediately from this that our earlier construction of an injective function
N∗n ×Nn N∗n → G×N N∗n can always be extended to be an inclusion of monoids.

Proposition 4.5. (s× t)(Gn) is (isomorphic to) a submonoid of Mor(Gn)

Proof. First, assume that the action operad G is non-crossed. Then there exists an
obvious injective monoid homomorphism

i : (s× t)(Gn) → Mor(Gn)
: N∗n → G×N N∗n

: w 7→ ( e|w|, w )

The homomorphism property follows from the fact that the length |w| defined in
Definition 2.10 is itself a homomorphism, so |w ⊗ w′| = |w| + |w′|. Thus (s× t)(Gn) ⊆
Mor(Gn) for non-crossed G.

Now assume that G is crossed. For each generator (z, z′) of N∗n ×Nn N∗n, the
words z, z′ ∈ N∗n are permutations of each other, and the map π : G(|z|) → S|z| is
surjective, and so there must be some g ∈ G(|z|) with the property that π(g)(z) = z′.
Choose from among these a representative element, which we’ll call ρ(z, z′). Then
because N∗n ×Nn N∗n is a free monoid by Proposition 4.4, these choices will extend to
a well-defined, monoid homomorphism

ρ : N∗n ×Nn N∗n −→ G

which preserves underlying permutation. This map will now possess the property that

π(ρ(w,w′))(w) = w′

for any (w,w′) ∈ N∗n ×Nn N∗n, not just the generators. Then from ρ we’ll define the
homomorphism i to be

i : (s× t)(Gn) → Mor(Gn)
: N∗n ×Nn N∗n → G×N N∗n

: (w,w′) 7→ ( ρ(w,w′), w )

Moreover, for any two elements (v, v′), (w,w′) of N∗n ×Nn N∗n we’ll have

( ρ(v, v′), v ) = ( ρ(w,w′), w ) =⇒ ρ(v, v′) = ρ(w,w′), v = w

=⇒ v′ = π(ρ(v, v′))(v) = π(ρ(w,w′))(w) = w′
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and thus i is injective. Therefore the image of this i is a submonoid of G×NN∗n which
is isomorphic to N∗n ×Nn N∗n, so again (s× t)(Gn) ⊆ Mor(Gn) as required.

In other words, this result says that the source and target data of Gn is isomorphic
to the monoid made up of action morphisms

α
(
ρ(x1 ⊗ ...⊗ xm, xσ(1) ⊗ ...⊗ xσ(1)) ; idx1 , ..., idxm

)
when G is crossed, and

α(em; idx1 , ..., idxm) = idx1⊗...⊗xm

otherwise, for σ ∈ Sm, x1, ..., xm ∈ {z1, ..., zn}. Now, in theory the map ρ :
N∗n×NnN∗n → G that we use to choose representatives can be any valid homomorphism
between those monoids for which

π(ρ(w,w′))(w) = w′

but later on we will be able to make things easier on ourselves by making a more
systematic choice.

So now we have shown that (s× t)(Gn) is a submonoid of Mor(Gn), but what we
were really interested in is whether or not (s×t)(LGn) is a submonoid of Mor(LGn). To
recover the latter result from the former, we will use our cokernel map q : G2n → LGn.
In particular, the surjectivity of q combined with the case (s × t)(G2n) ⊆ Mor(G2n)
from Proposition 4.5 immediately gives us what we need.

Corollary 4.6. (s× t)(LGn) is (isomorphic to) a submonoid of Mor(LGn)

Proof. Let i : (s × t)(G2n) ↪→ Mor(G2n) be an inclusion which allows us to view
(s × t)(G2n) as a submonoid of Mor(G2n), as in Proposition 4.5. Also, let Mor(q) :
Mor(G2n) → Mor(LGn) the restriction of the cokernel map q : G2n → LGn onto
morphisms. Then the image of the composite of these two homomorphisms,

im
(

Mor(q) ◦ i
)

= q
(

im(i)
) ∼= q

(
(s× t)(G2n)

)
is clearly a submonoid of Mor(LGn).

But by Corollary 3.5 q is a surjective functor. This means that there can exist a
morphism w → v in LGn if and only if there exists at least one morphism w′ → v′ in
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G2n, for some w′, v′ which have q(w′) = w and q(v′) = v. In other words,

q
(

(s× t)(G2n)
)

= (s× t)(LGn)

and therefore the monoid im
(

Mor(q) ◦ i
)

that we saw above is really a submonoid of
Mor(LGn) isomorphic to (s× t)(LGn), as required.

4.2 Unit endomorphisms of LGn

To help us understand Mor(LGn), we decided to break it down into two smaller pieces.
The first of these was the source/target data (s× t)(LGn), which we explored in the
previous section. The other piece that we now have to consider is the monoid of unit
endomorphisms, LGn(I, I).

This is a particularly important submonoid of the morphisms Mor(LGn), since it is
the only submonoid which is also a homset of the category LGn. Moreover, because
the maps in LGn(I, I) all share the same source and target, what we have is not just a
monoid under tensor product but also under composition as well. This fact leads to a
series of special properties for LGn(I, I), the first of which is just another instance of
the classic Eckmann-Hilton argument.

Lemma 4.7. LGn(I, I) is a commutative monoid under both tensor product and
composition, with f ⊗ f ′ = f ◦ f ′.

Proof. Let f, f ′ be arbitrary elements of the monoid LGn(I, I). Since both of these
are morphisms in the monoidal category LGn, we can use the law of interchange to
show that

f ⊗ f ′ = (f ◦ idI) ⊗ (idI ◦ f ′)
= (f ⊗ idI) ◦ (idI ⊗ f ′)
= f ◦ f ′

= (idI ⊗ f) ◦ (f ′ ⊗ idI)
= (f ′ ◦ idI) ⊗ (idI ◦ f)
= f ′ ⊗ f

In fact, since we already proved that the morphisms of LGn are all actions mor-
phisms, we can take this one step further.

Proposition 4.8. LGn(I, I) is an abelian group.
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Proof. From Lemma 3.6 we know that every morphism f in LGn is of the form
α(g; idx1 , ..., idxm), for some g ∈ G(m) and xi ∈ Z∗n. It follows immediately that

α( g ; idx1 , ..., idxm ) ◦ α( g−1 ; idxπ(g−1)(1)
, ..., idxπ(g−1)(m)

)
= α( gg−1 ; idxπ(g−1)(1)

, ..., idxπ(g−1)(m)
)

= α( em ; idxπ(g−1)(1)
, ..., idxπ(g−1)(m)

)
= idxπ(g−1)(1)⊗...⊗xπ(g−1)(m)

α( g−1 ; idxπ(g−1)(1)
, ..., idxπ(g−1)(m)

) ◦ α( g ; idx1 , ..., idxm )
= α( g−1g ; idx1 , ..., idxm )
= α( em ; idx1 , ..., idxm )
= idx1⊗...⊗xm

In other words, every morphism f : w → v in LGn has an inverse under composition,

f−1 := α(g−1; idxπ(g−1)(1)
, ..., idxπ(g−1)(m)

)

But we know from Lemma 4.7 that tensor product and composition are the same
for endomorphisms of the unit object of LGn. In particular this means that if some
morphism f : I → I has a compositional inverse f−1, then it will also be its monoidal
inverse f ∗. Thus every element of the commutative monoid LGn(I, I) is invertible, or
in other words LGn(I, I) is an abelian group.

Indeed, by using a slightly broader argument we can extend this result to every
morphism of LGn.

Proposition 4.9. Every morphism f : w → v in LGn has an inverse under tensor
product, f ∗ : w∗ → v∗. That is, the monoid Mor(LGn) is actually a group.

Proof. For any f : w → v in LGn, consider the map idw∗ ⊗ f−1 ⊗ idv∗ , where f−1 is
the compositional inverse of f , as in the proof of Proposition 4.8. This morphism has
source w∗ ⊗ v ⊗ v∗ = w∗ and target w∗ ⊗ w ⊗ v∗ = v∗, which allows us to apply the
law of interchange to get

f ⊗ (idw∗ ⊗ f−1 ⊗ idv∗) =
(
f ◦ idw

)
⊗
(

idv∗ ◦ (idw∗ ⊗ f−1 ⊗ idv∗)
)

=
(
f ⊗ idv∗

)
◦
(

idw ⊗ (idw∗ ⊗ f−1 ⊗ idv∗)
)

= (f ⊗ idv∗) ◦ (f−1 ⊗ idv∗)
= (f ◦ f−1) ⊗ (idv∗ ◦ idv∗)
= idv ⊗ idv∗

= idI
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and likewise

(idw∗ ⊗ f−1 ⊗ idv∗) ⊗ f =
(

(idw∗ ⊗ f−1 ⊗ idv∗) ◦ idw∗

)
⊗
(

idv ◦ f
)

=
(

(idw∗ ⊗ f−1 ⊗ idv∗) ⊗ idv
)

◦
(

idw∗ ⊗ f
)

= (idw∗ ⊗ f−1) ◦ (idw∗ ⊗ f)
= (idw∗ ◦ idw∗) ⊗ (f−1 ◦ f)
= idw∗ ⊗ idw
= idI

In other words, f ∗ := idw∗ ⊗ f−1 ⊗ idv∗ is the inverse of f in the monoid Mor(LGn),
as required.

So Mor(LGn) and LGn(I, I) both turn out to be groups under tensor product.
Obviously it follows from this that LGn(I, I) is a not just a submonoid of Mor(LGn)
but a subgroup — in particular an abelian subgroup, going by Proposition 4.8. But
LGn(I, I) is actually an even more special subgroup than this.

Proposition 4.10. LGn(I, I) is a normal subgroup of Mor(LGn). Moreover, if G is
a crossed action operad, then LGn(I, I) is a subgroup of the center of Mor(LGn).

Proof. From Propositions 4.8 and 4.9, we know that LGn(I, I) is a subgroup of
Mor(LGn). For normality, we need to again consider both crossed and non-crossed
action operads separately.

If G is non-crossed, then by Corollary 2.38 we know that the map assigning objects
of LGn to their connected component is just the identity idZ∗n . In other words, every
object belongs to its own unique component, so that every morphism of LGn is actually
an endomorphism. It follows that the group LGn(I, I) is the kernel of the source
homomorphism s from Definition 4.1 — or equally the target homomorphism t.

LGn(I, I) Mor(LGn) Ob(LGn)s

The kernel of a group homomorphism is always a normal subgroup of that homomor-
phism’s source, and so in our case we have LGn(I, I) ≤ Mor(LGn).

For crossed G, recall from Lemma 2.8 that all crossed EG-algebras are spacial, and
so in particular LGn is. This means that for any h ∈ LGn(I, I) and w ∈ Ob(LGn) we
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will always have h⊗ idw = idw ⊗ h. Thus for any f : w → v in Mor(LGn), we get

h⊗ f = (idI ◦ h) ⊗ (f ◦ idw)
= (idI ⊗ f) ◦ (h⊗ idw)
= (f ⊗ idI) ◦ (idw ⊗ h)
= (f ◦ idw) ⊗ (idI ◦ h)
= f ⊗ h

That is, LGn(I, I) is a subgroup of the centre of Mor(LGn). Then because

f ⊗ h⊗ f ∗ = h⊗ f ⊗ f ∗ = h ∈ LGn(I, I)

it follows that LGn(I, I) is a normal subgroup of Mor(LGn).

4.3 The morphisms of LGn

We have finally described all of the important properties of (s× t)(LGn) and LGn(I, I)
that we will need. Putting these results together will let us characterize the morphisms
of LGn as a product of groups, as promised at the beginning of the chapter. Before we
do though, it will be worth going over a few well-known pieces of group theory (from
for example [21]) that we will be using in the proof of Proposition 4.14.

Definition 4.11. Let H, K and N be groups. Then we say that H is a group extension
of K by N if there exists a short exact sequence

0 N H K 0i p

In other words, H is an extension of K by N whenever we have K = H/N . Moreover,
if N is a subgroup of the centre of H, we say that this is a central extension, and if
the map p has a right-inverse, r : K → H, p ◦ r = idK , then we say that it is a split
extension.

Definition 4.12. Let H be a group with subgroup K and normal subgroup N . Then
we say that H is a semidirect product K nN if the underlying set of H is the same as
underlying set of K ×N , but multiplication is given by

(k, n) · (k′, n′) = ( kk′, nkn′k−1 )
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Lemma 4.13. If H is a split extension of K by N then H = K nN , with r : K → H

acting as the subgroup inclusion. Further, if H is split and central, then H ∼= K ×N .

Proof. Define a group homomorphism f : H → K nN by

f(h) :=
(
p(h), h · rp(h)−1

)
This is a well-defined homomorphism, since

f(hh′) =
(
p(hh′), hh′ · rp(hh′)−1

)
=

(
p(h) · p(h′), h · h′ · rp(h′)−1 · rp(h)−1

)
=

(
p(h) · p(h′), h · rp(h)−1 · rp(h) · h′ · rp(h′)−1 · rp(h)−1

)
=

(
p(h′), h · rp(h)−1, p(h)

)
·
(
h′ · rp(h′)−1

)
= f(h) · f(h′)

Next, define another map f−1 : K ×N → H by

f−1(k, n) := n · r(k)

f−1 is also well-defined, because

f−1
(

(k, n) · (k′, n′)
)

= f−1
(
kk′, n · r(k) · n′ · r(k)−1

)
=

(
n · r(k) · n′ · r(k)−1

)
· r(kk′)

= n · r(k) · n′ · r(k)−1 · r(k) · r(k′)
= n · r(k) · n′ · r(k′)
= f−1(k, n) · f−1(k′, n′)

and due to the fact that p : N ↪→ H → K is the zero map, f and f−1 are inverses:

f−1f(h) = f−1
(
p(h), h · rp(h)−1

)
=

(
h · rp(h)−1

)
· r
(
p(h)

)
= h · rp(h)−1 · rp(h)
= h

ff−1(k, n) = f
(
n · r(k)

)
=

(
p
(
n · r(k)

)
, n · r(k) · rp

(
n · r(k)

)−1
)

=
(
p(n) · pr(k), n · r(k) · rpr(k)−1 · rp(n)−1

)
=

(
e · k, n · r(k) · r(k)−1 · e

)
= (k, n)
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Thus f is an isomorphism of groups H ∼= K nN . Also, if N is in the center of H
then the multiplication in K nN becomes

(k, n) · (k′, n′) = ( kk′, nkn′k−1 )
= ( kk′, nn′kk−1 )
= (kk′, nn′)

and so H really is the direct product of groups K ×N .

With that out of the way, we can now produce an expression for the morphisms of
the algebra LGn.

Proposition 4.14. For any action operad G,

Mor(LGn) ∼= (s× t)(LGn) n LGn(I, I)

Moreover, if G is a crossed action operad, then

Mor(LGn) ∼= (s× t)(LGn) × LGn(I, I)

Proof. We just saw in Proposition 4.10 that LGn(I, I) is a normal subgroup of
Mor(LGn), so we can consider the quotient group

LGn(I, I) Mor(LGn) Mor(LGn)�LGn(I, I)

By the universal property of quotients, the map Mor(LGn) → Mor(LGn)/LGn(I, I)
will uniquely factor any homomorphism whose composite with the inclusion LGn(I, I) ↪→
Mor(LGn) is the zero map. But our source/target map s×t : Mor(LGn) → (s×t)(LGn)
is one such homomorphism, since for any h : I → I clearly (s× t)(h) = (I, I), which is
the identity element in (s×t)(LGn). Therefore there must exist a unique homomorphism
u making the triangle below commute:

Mor(LGn)

Mor(LGn)�LGn(I, I) (s× t)(LGn)

s×t

u
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This map u will be surjective — because s× t is — but in fact it will also be injective.
This is because if two morphisms f, f ′ of LGn have the same source and target, then
the map h = f ∗ ⊗ f ′ is an element of LGn(I, I) for which f ⊗ h = f ′, and so clearly f
and f ′ are part of the same equivalence class in Mor(LGn)/LGn(I, I). More precisely,

[f ] ̸= [f ′] =⇒ [f ]∗ ⊗ [f ′] ̸= [I]
=⇒ [f ∗ ⊗ f ′] ̸= [I]
=⇒ f ∗ ⊗ f ′ /∈ LGn(I, I)

=⇒ (s× t)(f ∗ ⊗ f ′) ̸= (I, I)
=⇒ (s× t)(f)∗ ⊗ (s× t)(f ′) ̸= (I, I)
=⇒ (s× t)(f) ̸= (s× t)(f ′)

Thus u is bijective, so that

Mor(LGn)�LGn(I, I) ∼= (s× t)(LGn)

In other words, what have here is a group extension

0 LGn(I, I) Mor(LGn) (s× t)(LGn) 0s×t

But recall from Corollary 4.6 that (s × t)(LGn) is also a submonoid (and hence
subgroup) of Mor(LGn), so that we have another map i : (s× t)(LGn) → Mor(LGn)
for which (s× t) ◦ i = id(s×t)(LGn). That is, the above is a split extension of groups, or
equivalently Mor(LGn) is a semi direct product (s× t)(LGn) n LGn(I, I). However,
if G is crossed then we also saw in Proposition 4.10 that LGn(I, I) is a subgroup
of the center of Mor(LGn), and so it will follow that Mor(LGn) is also a central
extension of (s × t)(LGn). In that case Mor(LGn) is really just the direct product
(s× t)(LGn) × LGn(I, I), as required.

In certain select cases, Proposition 4.14 will actually be sufficient to fully deter-
mine Mor(LGn) — specifically, whenever we know that the unit endomorphisms of
LGn are trivial. We already know of two examples like this, due to Proposition 3.9
and Lemma 3.11.

Corollary 4.15. If G is a crossed action operad with G(m) = G(0) for all m ∈ N,
then

Mor(LGn) = (s× t)(LGn) = Z∗n ×Zn Z∗n
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Instead if G is a G(1)-generated action operad, then

Mor(LGn) = (s× t)(LGn) = Ob(LGn) = Z∗n

In the latter case, what this is saying is that every morphism in LGn is just the
identity element of some object.

But what about for more general LGn with nontrivial unit endomorphisms? For
crossed G, the key insight is that one half of the product in Proposition 4.14, LGn(I, I),
is always an abelian group. This means that it will remain untouched if we were to
abelianise the entire product, thus providing a link between Mor(LGn) before and after
abelianisation.

Proposition 4.16. Let G be a crossed action operad. Then the endomorphisms of the
unit object of LGn are

LGn(I, I) =
Mor(LGn)ab�(s× t)(LGn)ab

and therefore

Mor(LGn) = (s× t)(LGn) ×
Mor(LGn)ab�(s× t)(LGn)ab

Proof. From Proposition 4.14, we know that

Mor(LGn) = (s× t)(LGn) × LGn(I, I)

Abelianising both sides of this equation, we get

Mor(LGn)ab =
(

(s× t)(LGn) × LGn(I, I)
)ab

= (s× t)(LGn)ab × LGn(I, I)ab

= (s× t)(LGn)ab × LGn(I, I)

since LGn(I, I) is already abelian. Now, there is an obvious inclusion (s× t)(LGn)ab ↪→
(s × t)(LGn)ab × LGn(I, I), and since everything here is abelian, all subgroups are
normal subgroups. Thus we can take the quotient of the above equation by this map,
to obtain

LGn(I, I) =
Mor(LGn)ab�(s× t)(LGn)ab
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Finally, we can now substitute this expression back into our original equation, giving

Mor(LGn) = (s× t)(LGn) ×
Mor(LGn)ab�(s× t)(LGn)ab

as required.

Unfortunately, there is no general version of Proposition 4.16 for when G is not
crossed. This is because if we try to abelianise the semidirect product from Proposi-
tion 4.14, we will arrive at a product of the relevant abelian group, but a new term will
also appear indicating the degree to which LGn(I, I) and (s× t)(LGn) fail to commute.

Lemma 4.17. If H is semidirect product K nN , then its abelianisation is

Hab = Kab × Nab�[N,K]

where [N,K] is the commutator of N with K.

We do not know what the unit endomorphism of LGn are yet – indeed, that’s the
one thing we are trying to figure out using this abelianisation tactic — and so this
new term [LGn(I, I), (s× t)(LGn)] is not something we can understand. The obvious
exception to this is when our non-crossed G is G(1)-generated, where we do know that
LGn(I, I) is trivial and so of course [LGn(I, I), (s× t)(LGn)] = (s× t)(LGn).

If we stick to working with crossed action operads however, we are now only one
step away from a complete expression for Mor(LGn). The last term whose value
we do not know is Mor(LGn)gp,ab = Mor(LGn)ab, and as one might expect this is
related to the value that the algebra takes under the collapsed morphism left adjoint,
M(LGn)gp,ab = M(LGn)ab

Proposition 4.18. Let X be any monoidal category whose objects are morphisms are
all invertible under tensor product. Then the group completion of the abelianisation of
the collapsed morphisms of X are

M(X)ab ∼= Mor(X)ab�Ob(X)ab

where we are viewing Ob(X) as a subgroup of Mor(X) under tensor product by using
the inclusion

Ob(X) → Mor(X)
x 7→ idx
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Proof. Recall Lemma 2.39, which says that in any monoidal category with invertible
objects,

f ′ ◦ f = f ′ ⊗ idy∗ ⊗ f

We will proceed by checking what effect this relation in Mor(X) will have on the two
quotients that we are comparing.

First, consider the canonical homomorphism ψ : Mor(X) → M(X) → M(X)ab,
where Mor(X) is being considered as a group under ⊗. Also M(X) is a group rather
than just a monoid, since if f ∗ is the inverse of f under tensor product in Mor(X),
then the equivalence class M(f ∗) is an inverse of M(f) under the collapsed product of
M(X). Clearly this map obeys the relation ψ(f ′ ◦ f) = ψ(f ′ ⊗ f) for any f : x → y,
f ′ : y → z in X, because it passes through M(X), and so we also have

ψ(f ′ ⊗ f) = ψ(f ′ ◦ f)
= ψ(f ′ ⊗ idy∗ ⊗ f)
= ψ(f ′) ⊗ ψ(idy∗) ⊗ ψ(f)
= ψ(f ′) ⊗ ψ(f) ⊗ ψ(idy∗)
= ψ(f ′ ⊗ f) ⊗ ψ(idy∗)

=⇒ ψ(idy∗) = e

But since ψ is also a map from Mor(X) onto an abelian group, we know that it must
factor uniquely though some other homomorphism Mor(X)ab → M(X)ab, which we
will call ψ′. This map will inherit from ψ the property that

ψ′
(

ab(idx)
)

= ψ(idx) = e

for all x ∈ Ob(X).

Now let A be an abelian group and φ : Mor(X)ab → A any homomorphism of
groups which satisfies the condition φ(ab(idx)) = e for all objects x. Then

φ
(

ab(f ′ ◦ f)
)

= φ
(

ab(f ′ ⊗ idy∗ ⊗ f)
)

= φ
(

ab(f ′)
)

⊗ φ
(

ab(idy∗)
)

⊗ φ
(

ab(f)
)

= φ
(

ab(f ′)
)

⊗ φ
(

ab(f)
)

= φ
(

ab(f ′ ⊗ f)
)

By Lemma 2.43 this is the defining relation for the group M(X)ab. It follows that for
any φ with φ(ab(idx)) = e, there must exist a unique homomorphism M(X)ab → A
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which factors φ through ψ′. But this in turn is just the universal property of the
quotient Mor(X)ab/Ob(X)ab in Ab. Since colimits like quotient groups are unique up
to isomorphism, we can therefore conclude that

M(X)ab ∼= Mor(X)ab�Ob(X)ab

Now at last we are finished. All that remains for us to do is simply chain together
all of our previous results from this chapter into a single description of the group
Mor(LGn).

Proposition 4.19. For crossed action operads G, the morphism monoid of LGn is
equal to

Mor(LGn) = Z∗n ×Zn Z∗n ×

(
M(G2n)gp,ab

�∆

)
(

(Z∗n ×Zn Z∗n)ab
�Zn

)

Proof. Consider the quotient group

LGn(I, I) =
Mor(LGn)ab�(s× t)(LGn)ab

This quotient clearly depends on the way that have chosen to see (s× t)(LGn) as a
subgroup of of the morphisms LGn. Recall that back in the proof of Proposition 4.5,
we used the freeness of the monoid N∗n×Nn N∗n to define a subgroup by choosing values
for some function ρ on generators. Since these ρ(z, z′) can be whichever element of the
appropriate G(m) we want, we can retroactively pick them in a way that makes our
current calculations easier. Specifically, if we let ρ(zi, zi) = e1 for each generator zi of
N∗n, then the corresponding element of the subgroup (s× t)(LGn) will be

αLGn(e1; zi) = idzi

Given this choice, clearly the group

Ob(LGn) ∼= { idx ; x ∈ Ob(LGn)}
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will be a subgroup of (s × t)(LGn), and thus Ob(LGn)ab a normal subgroup of
(s× t)(LGn)ab. It follows that

Mor(LGn)ab�(s× t)(LGn)ab =

(
Mor(LGn)ab

�Ob(LGn)ab

)
(

(s× t)(LGn)ab
�Ob(LGn)ab

)

Using Proposition 4.18 to change the numerator and Proposition 2.32 and Corollary 4.3
to simplify the denominator, this quotient becomes

Mor(LGn)ab�(s× t)(LGn)ab =

(
M(G2n)gp,ab

�∆

)
(

(Z∗n ×Zn Z∗n)ab
�Zn

)

But from Proposition 4.16 we know that

Mor(LGn) = (s× t)(LGn) ×
Mor(LGn)ab�(s× t)(LGn)ab

and together these give the required description of the morphisms of LGn.

4.4 Abelianising sources and targets

To say that the expression for Mor(LGn) we just found is ‘complicated’ would probably
be an understatement. If we are to have any hope of eventually being able to use
Proposition 4.19, we need to work out a more explicit presentation for its quotient part.
We’ll start by trying to find the value of (s × t)(LGn)ab for crossed G, the abelian
group (Z∗n ×Zn Z∗n)ab. This will require some careful consideration, since in general
limits such as the pullback do not interact with abelianisation in a simple way. What
would help is a suitable presentation of Z∗n ×Zn Z∗n in terms of some generators and
relations.

Proposition 4.20. The pullback group Z∗n ×Zn Z∗n is generated by two families of
elements,

⟨x⟩ := (x, x) and ⟨xy⟩ := (xy, yx)
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where x, y ∈ {z1, ..., zn, z
∗
1 , ..., z

∗
n} are generators of the free group Z∗n or their inverses.

These are subject to the relations

⟨x⟩−1 = ⟨x∗⟩, ⟨xy⟩−1 = ⟨y∗x∗⟩

⟨xx∗⟩ = e = ⟨x∗x⟩, ⟨xx⟩ = ⟨x⟩2

⟨xy⟩⟨x∗⟩⟨xy∗⟩ = ⟨x⟩

⟨xy⟩⟨x∗⟩⟨y∗⟩⟨yx⟩ = ⟨x⟩⟨y⟩ = ⟨yx⟩⟨x∗⟩⟨y∗⟩⟨xy⟩

⟨xy⟩⟨x∗⟩⟨xz⟩⟨x∗⟩⟨z∗⟩⟨y∗⟩⟨yz⟩⟨y∗⟩⟨yx⟩⟨y⟩⟨x∗⟩⟨z∗⟩−1⟨zx⟩⟨z∗⟩⟨zy⟩ = ⟨x⟩⟨y⟩⟨z⟩

Proof. We’ll begin by constructing a certain monoidal category, which we’ll call Z.

• The objects of Z are the elements of the group Z∗n, with the usual multiplication
as the tensor product.

• There is a unique morphisms between any two objects x and y for which ab(x) =
ab(y), where ab : Z∗n → Zn is the quotient map of abelianisation. In other words,
the morphisms of Z are the elements of Z∗n ×Zn Z∗n, with multiplication as the
tensor product and composition given by

(x, y) ◦ (y, z) = (x, z)

• The identity map on an object x is then the unique map (x, x) : x → x.

Z is almost the subcategory of LGn whose morphisms are the subgroup isomorphic
to (s × t)(LGn) that we chose in Corollary 4.6. However, we never required those
representatives to be closed under composition, so Z is a strictly formal version of the
subcategory on (s× t)(LGn), one that doesn’t involve any specific choice of the map ρ.
It is a well-defined monoidal category; the only thing that might not be immediately
clear is the law of interchange, which is just given by(

(x, y) ◦ (y, z)
)

⊗
(

(x′, y′) ◦ (y′, z′)
)

= (x, z) ⊗ (x′, z′)
= (xx′, zz′)
= (xx′, yy′) ◦ (yy′, zz′)
=

(
(x, y) ⊗ (x′, y′)

)
◦
(

(y, z) ⊗ (y′, z′)
)
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But now recall from Lemma 2.39 that in any monoidal category the composition
of morphisms along an intertible object can be rewritten in terms of only the tensor
product. In the case of Z, where all of the objects have inverses, we will have

(x, y) ◦ (y, z) = (x, y) ⊗ (y∗, y∗) ⊗ (y, z)

Using this composition operation will make it easier to understand the structure of
the group Z∗n ×Zn Z∗n.

Next, let S2n be the free ES-algebra on 2n objects, where S is the symmetric action
operad. Then there is an obvious monoidal functor ψ : S2n → Z, given by

ψ : S2n → Z

: zi 7→ zi

: zn+i 7→ z∗
i

: α(σ; idx1 , ..., idxm) 7→ (x1 ⊗ ...⊗ xm, xσ(1) ⊗ ...⊗ xσ(m))

A necessary condition for (y, y′) to be an element of Z∗n ×Zn Z∗n is that there exists
some sequence of generators and their inverses x1, ..., xm ∈ {z1, ..., zn, z

∗
1 , ..., z

∗
n} and

some permutation σ ∈ Sm for which

y = x1 ⊗ ...⊗ xm, y′ = xσ(1) ⊗ ...⊗ xσ(m)

Hence the functor ψ is clearly surjective. It follows from this that if we can find a
collection of morphisms which generate Mor(S2n) under composition and tensor product,
their images under ψ will also generate Mor(Z) = Z∗n ×Zn Z∗n under composition and
tensor product, and hence under just tensor product. To begin, we know that any
permutation σ ∈ Sm can be written as a product σik ·...·σi1 of elementary transpositions,
giving

α(σ ; idx1 , ..., idxm ) = α(σik · ... · σi1 ; idx1 , ..., idxm )
= α(σi1 ; idx1 , ..., idxm )

◦α(σi2 ; idxσi1 (1) , ..., idxσi1 (m) ) ◦ ...
◦α(σik ; idxσik−1 ·...·σi1 (1) , ..., idxσik−1 ·...·σi1 (m) )

Then if σi = (i i+ 1) ∈ Sm is some elementary transposition we will have

α( (i i+ 1) ; idx1 , ..., idxm ) = α( ei−1 ⊗ (12) ⊗ em−i−1 ; idx1 , ..., idxm )
= idx1⊗...⊗xi−1 ⊗ α( (12) ; idxi

, idxi+1 ) ⊗ idxi+2⊗...⊗xm
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Therefore all of the morphisms of S2n are generated by just the identities and the
action maps α( (12) ; idx1 , idx2 ) for all pairs x1, x2 ∈ {z1, ..., z2n}. Passing through ψ,
this means that elements of Z∗n ×Zn Z∗n can always be expressed as a tensor product
of elements of the form

(x, x) or (xy, yx), x, y ∈ {z1, ..., zn, z
∗
1 , ..., z

∗
n}

These are exactly the ⟨x⟩ and ⟨xy⟩ given in the statement of the proposition.

Now we need to consider what relations these generators will obey. Firstly, their
definitions overlap in the following case:

⟨xx⟩ = (xx, xx) = (x, x) ⊗ (x, x) = ⟨x⟩⟨x⟩

Next we have to account for the law of interchange we discussed earlier. Using
Lemma 2.39, we see that this condition will induce the following relation:

⟨xy⟩⟨x∗⟩⟨y∗⟩⟨yx⟩ = (xy, yx) ⊗ (x∗, x∗) ⊗ (y∗, y∗) ⊗ (yx, xy)
= (xy, yx) ⊗ (yx, yx)∗ ⊗ (yx, xy)
= (xy, yx) ◦ (yx, xy)
= (yx, xy) ⊗ (yx, yx)∗ ⊗ (yx, xy)
= (yx, xy) ⊗ (x∗, x∗) ⊗ (y∗, y∗) ⊗ (xy, yx)
= ⟨yx⟩⟨x∗⟩⟨y∗⟩⟨xy⟩

Also, by functoriality these generators will inherit any relations are obeyed to the
corresponding morphisms of S2n, which in turn are just relations among different
elementary transpositions. Each symmetric group Sm is subject to three families of
these, namely

(σi)2 = e

σiσj = σjσi, j ̸= i± 1
(σiσi+1)3 = e

The first one, the symmetry condition, corresponds to the relation

(xy, yx) ◦ (yx, xy) = (xy, xy)
=⇒ (xy, yx) ⊗ (yx, yx)∗ ⊗ (yx, xy) = (x, x) ⊗ (y, y)
=⇒ (xy, yx) ⊗ (x∗, x∗) ⊗ (y∗, y∗) ⊗ (yx, xy) = (x, x) ⊗ (y, y)
=⇒ ⟨xy⟩⟨x∗⟩⟨y∗⟩⟨yx⟩ = ⟨x⟩⟨y⟩
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The second relation is just an example of interchange, which we have already looked
at. The third yields

(xy, yx)(x∗, x∗)(xz, zx)(x∗, x∗)(z∗, z∗)(y∗, y∗)(yz, zy)
(y∗, y∗)(yx, xy)(y∗, y∗)(x∗, x∗)(z∗, z∗)(zx, xz)(z∗, z∗)(zy, yz) = (x, x)(y, y)(z, z)

or more simply,

⟨xy⟩⟨x∗⟩⟨xz⟩⟨x∗⟩⟨z∗⟩⟨y∗⟩⟨yz⟩⟨y∗⟩⟨yx⟩⟨y∗⟩⟨x∗⟩⟨z∗⟩⟨zx⟩⟨z∗⟩⟨zy⟩ = ⟨x⟩⟨y⟩⟨z⟩

Finally, we need to check how the invertibility of the objects of Z interacts with these
generators. Most obviously, we have

⟨x⟩−1 = (x, x)∗ = (x∗, x∗) = ⟨x∗⟩
⟨xy⟩−1 = (xy, yx)∗ = (y∗x∗, x∗y∗) = ⟨y∗x∗⟩

⟨xx∗⟩ = (xx∗, x∗x) = (I, I) = e

⟨x∗x⟩ = (x∗x, xx∗) = (I, I) = e

But we can also insert an element and its inverse into different points of the source
and target:

⟨x⟩ = (x, x)
= (xyy∗, yy∗x)
= (xyy∗, yxy∗) ◦ (yxy∗, yy∗x)
= (xyy∗, yxy∗) ⊗ (yxy∗, yxy∗)∗ ⊗ (yxy∗, yy∗x)
= (xy, yx) ⊗ (y∗, y∗) ⊗ (y, y) ⊗ (x, x)∗(y∗, y∗) ⊗ (y, y) ⊗ (xy∗, y∗x)
= ⟨xy⟩⟨x∗⟩⟨xy∗⟩

The relations (xy, yx) = (zz∗xy, yzz∗x) and so forth are all composed of successive
instance of the above, so these are all of the relations on our generators ⟨x⟩ and
⟨xy⟩.

Of course, the collection of relations we just gave in Proposition 4.20 are nowhere
near minimal. Many of them clearly interact with each other in ways that would let us
simplify or cancel some relations, or even generators. However, we will not expend any
effort trying to do this, because we do not need to. With this inefficient presentation of
Z∗n ×Zn Z∗n in hand, we have in a sense already found its abelianisation. After all, for
any presentation of some group H, the group Hab possesses a presentation consisting
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of the exact same generators, subject to the same relations, plus a commutativity
condition. This too will not normally be the most efficient description of the new group,
but that remains true even if the presentation of H we started with was minimal, and
so any time spent finding one will just be wasted. Instead, we’ll suppress the urge to
simplify Proposition 4.20 and move straight on to tackling (Z∗n ×Zn Z∗n)ab.

Proposition 4.21.
(Z∗n ×Zn Z∗n)ab = Zn × Z(n

2)

Proof. It follows immediately from Proposition 4.20 that the group (Z∗n ×Zn Z∗n)ab

has a presentation on generators

⟨x⟩, ⟨xy⟩, x, y ∈ {z1, ..., zn, z
∗
1 , ..., z

∗
n}

subject to the relations

⟨x⟩−1 = ⟨x∗⟩, ⟨xy⟩−1 = ⟨y∗x∗⟩

⟨xx∗⟩ = e = ⟨x∗x⟩, ⟨xx⟩ = ⟨x⟩2

⟨xy⟩⟨x∗⟩⟨xy∗⟩ = ⟨x⟩

⟨xy⟩⟨x∗⟩⟨y∗⟩⟨yx⟩ = ⟨x⟩⟨y⟩ = ⟨yx⟩⟨x∗⟩⟨y∗⟩⟨xy⟩

⟨xy⟩⟨x∗⟩⟨xz⟩⟨x∗⟩⟨z∗⟩⟨y∗⟩⟨yz⟩⟨y∗⟩⟨yx⟩⟨y∗⟩⟨x∗⟩⟨z∗⟩⟨zx⟩⟨z∗⟩⟨zy⟩ = ⟨x⟩⟨y⟩⟨z⟩

but then also the commutativity conditions

⟨x⟩⟨y⟩ = ⟨y⟩⟨x⟩, ⟨x⟩⟨yz⟩ = ⟨z⟩⟨xy⟩, ⟨wx⟩⟨yz⟩ = ⟨yz⟩⟨wx⟩

Rearranging all of the former equations with the latter in mind, we get

⟨x⟩−1 = ⟨x∗⟩, ⟨xy⟩−1 = ⟨y∗x∗⟩

⟨xx∗⟩ = e = ⟨x∗x⟩, ⟨xx⟩ = ⟨x⟩2 = ⟨xy⟩⟨xy∗⟩

⟨xy⟩⟨yx⟩ = ⟨x⟩2⟨y⟩2

⟨xy⟩⟨yx⟩⟨xz⟩⟨zx⟩⟨yz⟩⟨zy⟩ = ⟨x⟩4⟨y⟩4⟨z⟩4
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The last of these relations is just a consequence of the one above that,

⟨xy⟩⟨yx⟩⟨xz⟩⟨zx⟩⟨yz⟩⟨zy⟩ =
(

⟨x⟩2⟨y⟩2
)(

⟨x⟩2⟨z⟩2
)(

⟨y⟩2⟨y⟩2
)

= ⟨x⟩4⟨y⟩4⟨z⟩4

and in turn, the second-to-last follows from the relation above it,

⟨x⟩2⟨y⟩2 =
(

⟨xy⟩⟨xy∗⟩
)(

⟨yx⟩⟨yx∗⟩
)

= ⟨xy⟩⟨yx⟩⟨xy∗⟩⟨xy∗⟩−1

= ⟨xy⟩⟨yx⟩

Without these, we are just left with equations in two or fewer variables. Then for any
two zi, zj ∈ Z∗n, i < j, the first three relations tell us that we only need to consider
generators of the form

⟨zi⟩, ⟨zj⟩, ⟨zizj⟩, ⟨z∗
i zj⟩, ⟨ziz∗

j ⟩, ⟨z∗
i z

∗
j ⟩

Finally, the remaining relation ⟨x⟩2 = ⟨xy⟩⟨xy∗⟩ induces a system of four linear
equations on these six generators, which can be solved to give

⟨z∗
i zj⟩ = ⟨zj⟩2⟨zizj⟩−1

⟨ziz∗
j ⟩ = ⟨zi⟩2⟨zizj⟩−1

⟨z∗
i z

∗
j ⟩ = ⟨zi⟩−2⟨zj⟩−2⟨zizj⟩

and three independent variables, ⟨zi⟩, ⟨zj⟩, and ⟨zizj⟩. In other words, (Z∗n ×Zn Z∗n)ab

is the free abelian group generated by elements of this form, for 1 ≤ i < j ≤ n, which
means that

(Z∗n ×Zn Z∗n)ab = Zn × Z(n
2)

From this presentation, it should be immediately obvious how to calculate the
denominator from Proposition 4.19.

Corollary 4.22.
(Z∗n ×Zn Z∗n)ab�Zn =

Zn × Z(n
2)�Zn

= Z(n
2)
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Proof. The Zn term in the product of Proposition 4.21 represents the free abelian
group generated by the morphisms

⟨x⟩ := (x, x) = idx

But this is exactly the same Zn group that appears in the denominator of our quotient,
Ob(LGn)ab, so they cancel straightforwardly.

Before moving on, we should be clear about exactly which Z(n
2) subgroup of

M(LGn)ab we have just identified — after all, we will eventually need to perform a
quotient involving it. In Proposition 4.20 we defined the generators ⟨zizj⟩ to be the
elements (zi ⊗ zj, zj ⊗ zi) of the monoid Z∗n ×Zn Z∗n, which are the source/target
combinations of morphisms of LGn. Using Corollary 4.6 we can identify this with a
particular submonoid of the morphisms of LGn, specifically the image under q of the
submonoid N∗2n ×N2n N∗2n = (s × t)(G2n) ⊆ Mor(G2n) we chose in Proposition 4.5.
In particular, since on objects we have q(zi) = zi for all 1 ≤ i ≤ n, the generators
(zi ⊗ zj, zj ⊗ zi) of Z∗n ×Zn Z∗n are clearly the image of the generators (zi ⊗ zj, zj ⊗ zi)
of N∗2n ×N2n N∗2n.

Thus, consider the following commutative diagram, whose top-left region comes
from Corollary 4.6, bottom-left from the naturality of the adjoint functor M( _ )gp,ab,
and right-hand square from Proposition 4.18.

(s× t)(G2n) (s× t)(LGn)

Mor(G2n) Mor(LGn) (s× t)(LGn)ab

Ob(LGn)ab

M(G2n)gp,ab M(LGn)gp,ab

q

q

M(q)gp,ab

What we’ve just said that if we start with the element (zi ⊗ zj, zj ⊗ zi) of (s ×
t)(G2n), moving clockwise around the diagram will send it to the generator ⟨zizj⟩ in
(s× t)(LGn)ab/Ob(LGn)ab = Z(n

2). If we instead move anticlockwise, then we will first
pass to our chosen representative αG2n(ρ(zi ⊗ zj, zj ⊗ zi); idzi

, idzj
) in Mor(G2n), then

its equivalence class in M(G2n)gp,ab, then its equivalence class in M(LGn)gp,ab, using
the fact that M(q)gp,ab is the canonical map associated with the quotient

M(LGn)gp,ab =
M(G2n)gp,ab�∆
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which we proved back in Proposition 3.28. Since the bottom-right inclusion completes
this circuit, we see that the specific subgroup we are talking about in Corollary 4.22 is

Z(n
2) =

{ [
αG2n

(
ρ(zi ⊗ zj, zj ⊗ zi) ; idzi

, idzj

) ]
: 1 ≤ i < j ≤ n

}
⊆ M(LGn)ab

Of course, ρ was an arbitrary permutation-preserving map N∗n ×NN∗n → G, chosen
using the freeness of its source monoid. Thus if we wanted to we could just pick the
same element ρ(2) ∈ π−1((1 2)) to act as ρ(zi ⊗ zj, zj ⊗ zi) for all i, j. For simplicity’s
sake, we will indeed be assuming this from now on.

4.5 Freely generated action operads
The next group we are interested in understanding a little better is M(G2n)gp,ab. Per
Lemma 2.43, the operations needed to produce this group out of Mor(G2n) = G×NN∗2n

can be done in any order we choose, and so we will save the identification of ⊗ and ◦
until last. This will let us keep the tensor product as simple as possible whilst we are
in the process of group completing and abelianising it.

So the obvious place to start is to ask how to simplify the expression (G×N N∗2n)gp.
In principle we might not be able to, since for genericG we lack any sort of a presentation
by generators and relations. It would help if we at least knew that the group completion
map gp : G → Ggp was injective — or equivalently, that there exists any group H and
injective homomorphism G → H — but proving this kind of statement is notoriously
tricky. In 1935, a paper by Anton Sushkevich ‘proved’ that a semigroup, and thus a
monoid, could be embedded into a group if and only if it was cancellative.

Definition 4.23. We say that a monoid M is left-cancellative if for any a, b, c ∈ M ,
we have

ab = ac =⇒ b = c

That is, common factors may be cancelled out on the left. Similarly, we call M
right-cancellative if common factors can be cancelled on the right:

ac = bc =⇒ a = b

A monoid that is both left- and right-cancellative is simply referred to as cancellative.

However, just two years later Anatoly Malcev published a simple counterexample
[18] to Sushkevich’s proposition. To make matters worse, in 1939 Malcev would go on
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to show that the actual set of necessary and sufficient conditions for a semigroup to be
embeddable in a group consisted of an infinite collection of independent relations [19].
Thus the requirement that the group completion of monoid be injective is a deceptively
complicated one.

Luckily for us though, there does exist a much simpler set of sufficient-but-not-
necessary conditions for embeddability which all action operads G happen to satisfy.
These come from a 1948 paper by Raouf Doss [7], and in addition to cancellativity
they depend on the way that a monoid deals with multiples of different elements being
equal.

Definition 4.24. An element a of a monoid M is said to be regular on the left if it
shares a common left-multiple with every other element of M . That is,

∀ b ∈ M, ∃ c, d ∈ M : ca = db

The monoid as a whole is said to be regular on the left if all of its elements are, but
we can also define a notion of M being quasi-regular on the left. This means that any
two elements a, b of M will share a common left-multiple if and only if

∃ c, d ∈ M : ca = db, c or d is regular in M

Again, we can define a similar condition for being quasi-regular on the right, and we
say that a monoid is quasi-regular when it is both.

Proposition 4.25. If a monoid M is cancellative and quasi-regular on the left, then
it can be embedded into a group.

For a given action operad, both of these conditions will follow from the way that
operadic multiplication interacts with the elements of the abelian group G(0).

Proposition 4.26. Every action operad G is both cancellative and quasi-regular as a
monoid under tensor product.

Proof. Let g and g′ be any elements of G which share a left-multiple, so that there
exists at least one pair h, h′ in G for which

h⊗ g = h′ ⊗ g′

and without loss of generality assume that |g| ≥ |g′|, so also |h| ≤ |h′|. The operadic
product µ(h; e0, ..., e0) is clearly an element of the group G(0), and we know from
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Lemma 1.13 that this is an abelian group under tensor product, so also let µ(h; e0, ..., e0)∗

be its inverse. Then

g = µ(h; e0, ..., e0)∗ ⊗ µ(h; e0, ..., e0) ⊗ µ(g; e1, ..., e1)
= µ(h; e0, ..., e0)∗ ⊗ µ

(
e2 ; µ(h; e0, ..., e0), µ(g; e1, ..., e1)

)
= µ(h; e0, ..., e0)∗ ⊗ µ

(
µ(e2;h, g) ; e0, ..., e0, e1, ..., e1

)
= µ(h; e0, ..., e0)∗ ⊗ µ

(
h⊗ g ; e0, ..., e0, e1, ..., e1

)
= µ(h; e0, ..., e0)∗ ⊗ µ

(
h′ ⊗ g′ ; e0, ..., e0, e1, ..., e1

)
= µ(h; e0, ..., e0)∗ ⊗ µ

(
µ(e2;h′, g′) ; e0, ..., e0, e1, ..., e1

)
= µ(h; e0, ..., e0)∗ ⊗ µ

(
e2 ; µ(h′; e0, ..., e0, e1, ..., e1), µ(g′; e1, ..., e1)

)
= µ(h; e0, ..., e0)∗ ⊗ µ(h′; e0, ..., e0, e1, ..., e1) ⊗ µ(g′; e1, ..., e1)
=

(
µ(h; e0, ..., e0)∗ ⊗ µ(h′; e0, ..., e0, e1, ..., e1)

)
⊗ g′

=: k ⊗ g′

Put another way,

∃ e0, k ∈ G : e0 ⊗ g = g = k ⊗ g′

and e0 obviously regular, since it is the unit I in G. Thus G is quasi-regular on the left.
For quasi-regularity on the right, there is an argument which is completely analogous
to what we have done already, but which lets us rewrite h′ as h⊗ k′ for some k′ ∈ G.

Moreover, if we set h = h′ then we see that

k = µ(h; e0, ..., e0)∗ ⊗ µ(h; e0, ..., e0) = I

and so
h⊗ g = h⊗ g′ =⇒ g = g′

which is left-cancellativity. Right-cancellativity follows from quasi-regularity on the
right in the same way.

Corollary 4.27. The canonical map gp : G → Ggp associated with the group completion
of G is an inclusion.

As a result of this, from now on we can just write g for gp(g) and g∗ for gp(g)∗ in
order to save on space.

Knowing that the monoid G×N N∗n always has a particularly well-behaved group
completion is a good first step towards finding a description for said completion.
However, it is worth noting that Corollary 4.27 is true for all action operads G, which
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is more than we really need. After all, the only reason we care about M(G2n)gp,ab is
that we know from Proposition 4.19 that it is crucial to understanding the morphisms
of crossed action operads. Thus it would be nice if we could use some consequence of
crossedness to tell us even more about the inclusion map gp : G×NN∗n → (G×N N∗n)gp.

One such consequence was given back in Proposition 3.9. If G is a crossed action
operad, then the action operad G′ defined by G′(m) = G(m)/G(0) possesses the same
free algebra on invertible algebra that G does. In other words, we don’t even need to
worry about finding M(G2n)gp,ab for all crossed G, merely those which have a trivial
G(0). As it turns out, this fact is hugely relevant to our search for group completions,
since elements of G(0) are the only ones in G which might already have an inverse
under tensor product. This follows from additivity of lengths:

g ⊗ h = e0 =⇒ |g| + |h| = |e0| = 0
=⇒ |g| = −|h|, |g|, |h| ∈ N
=⇒ |g| = |h| = 0

Cancellativity, quasi-regularity, and lack of invertible objects then combine to give
something much stronger than mere injectivity of the group completion map.

Proposition 4.28. If G is an action operad with trivial G(0), then G is a free monoid
under tensor product.

Proof. Let G be a subset of the monoid G, and R a collection of relations on the
elements of G, such that (G,R) is a presentation of G. Notice that every relation in
R can be written in the form h ⊗ g = h′ ⊗ g′, where g, g′ ∈ G are generators and
h, h′ ∈ G some other elements. This is because the only other kind of relations are one
like h⊗ g = e0, and as we’ve seen this is not possible if G(0) is trivial. We’ll assume
that in this case |g| ≥ |g′| and hence |h| ≤ |h′|. Using the reasoning from the proof of
Proposition 4.26, we can then find k, k′ ∈ G for which

g = k ⊗ g′, h′ = h⊗ k′

It follows that

h⊗ k ⊗ g′ = h⊗ g = h′ ⊗ g′ = h⊗ k ⊗ g′

and thus by left- and right-cancellativity, k = k′. In other words, the relation
h⊗ g = h′ ⊗ g′ implies and is implied by a pair of relations g = k ⊗ g′, h′ = h⊗ k.

There are a few scenarios to consider here.
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• |k| = |g|. This is actually not possible, as it would follow from additivity of
length that |g′| = 0, and thus by assumption g′ = e0, which is not a generator of
G.

• |k| = 0. This would mean that k = e0, and so we’d also get g = g′ and
h = h′. Thus we could simplify the presentation of G by replacing the relation
h⊗ g = h′ ⊗ g′ in the set R with h′ = h.

• 0 < |k| < |g|. In this case |g| > |g′| and thus g ̸= g′, and so we could change
our presentation of G by replacing g with k in the generator set G, and also
h⊗ g = h′ ⊗ g′ by h′ = h⊗ k in the relations R.

Notice that in the latter two cases, we are always changing generators for ones that have
strictly smaller lengths, and replacing relations with ones whose left- and right-hand
side have strictly smaller total length. But lengths are natural numbers, and therefore
if we choose any relation in R and repeatedly apply this process to it, after a finite
number of steps we will find that we have replaced it with e0 = e0, the only relation
whose sides have total length 0. Proceeding like this will let us eliminated all of the
relations in R, leaving us with a set G that freely generates the action operad G under
tensor product.

Whenever we can be sure of that G is a free monoid — whether by using Proposi-
tion 4.28 or some other method — this freeness will carry over directly to the algebras
Gn, giving us a new way to represent their morphisms.

Proposition 4.29. Let G be a set that freely generates the action operad G under
tensor product, and for each m ∈ N define Gm := G ∩ G(m), the subset of G containing
all elements of length m. Then the monoid Mor(Gn) is

G×N N∗n = N∗( |G0|+n|G1|+n2|G2|+... )

Proof. Let (g, w) be an arbitrary element of G×N N∗n. The monoid G is free of the
generators G, and N∗n is free on {z1, ..., zn}, so we can find unique expansions of g and
w as tensor products

g = g1 ⊗ ...⊗ gk, g1, ..., gk ∈ G

w = x1 ⊗ ...⊗ xm, x1, ..., xm ∈ {z1, ..., zn}

But each of the generators z1, ..., zn has length 1, so the index m here is really just the
length |w|, which by the definition of G×N N∗n is also the length |g| = |g1| + ...+ |gk|.
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Therefore we may write

(g, w) = (g1 ⊗ ...⊗ gk, x1 ⊗ ...⊗ x|w|)
= (g1, x1 ⊗ ...⊗ x|g1|) ⊗ (g2, x|g1|+1 ⊗ ...⊗ x|g1|+|g2|) ⊗ ...

⊗(gk, x|g1|+...+|gk−1|+1 ⊗ ...⊗ x|g1|+...+|gk|)

That is, every element in G×N N∗n may be expressed as a product of elements from
the subset G ×N N∗n. Furthermore, the freeness of G and N∗n make sure that this
expansion is unique, since

(g1, x1 ⊗ ...x|g1|) ⊗ ...⊗ (gk, x|g1|+...+|gk−1|+1 ⊗ ...⊗ x|g1|+...+|gk|)
= (g′

1, x
′
1 ⊗ ...⊗ x′

|g′
1|) ⊗ ...⊗ (g′

k′ , x′
|g′

1|+...+|g′
k′−1|+1 ⊗ ...⊗ x′

|g′
1|+...+|g′

k′ |
)

=⇒ g1 ⊗ ...⊗ gk = g′
1 ⊗ ...⊗ g′

k′ , x1 ⊗ ...⊗ xm = x′
1 ⊗ ...⊗ x′

m′

=⇒ gi = g′
i, 1 ≤ i ≤ k = k′, xj = x′

j, 1 ≤ j ≤ m = m′

Thus G×N N∗n is the free monoid on the set

G ×N N∗n = G0 × {z1, ..., zn}0 ∪ G1 × {z1, ..., zn}1 ∪ G2 × {z1, ..., zn}2 ∪ ...

which is just the m-fold free product of N with itself, where m is the number of
generators,

|G ×N N∗n| = |G0| · |{z1, ..., zn}0| + |G1| · |{z1, ..., zn}1| + |G2| · |{z1, ..., zn}2| + ...

= |G0| + n|G1| + n2|G2| + ...

This makes the group completion and abelianisation we want to do trivial.

Corollary 4.30. If G is a set that freely generates G under tensor product, and
Gm := G ∩ G(m), then the abelian group Mor(Gn)gp,ab is

(G×N N∗n)gp,ab = Z|G0|+n|G1|+n2|G2|+...

Now all that remains is to account for what happens when we collapse the morphisms
of Gn — that is, evaluate the quotient

M(Gn)gp,ab = Z|G0|+n|G1|+n2|G2|+...�⊗ ∼ ◦
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Unfortunately, because this will depend on the exact multiplicative structure of the
operad groups G(m), there is no way to carry out this computation in general. The
best we can say is that as composition in Mor(Gn) is partly determined by the group
multiplication of the G(m), then in place of G in the quotient in Corollary 4.30 it would
suffice to have some collection of elements which generate G when using multiplication
as well as tensor product.

Lemma 4.31. Let G be a subset of the action operad G that freely generates it under
tensor product, and let G′ be a subset of G which generates G under a combination of
tensor product and group multiplication. Also let Gm := G ∩G(m) and G′

m := G′ ∩G(m).
Then

Z|G0|+n|G1|+n2|G2|+...�⊗ ∼ ◦ = Z|G′
0|+n|G′

1|+n2|G′
2|+...�⊗ ∼ ◦

Proof. Compostion in Mor(Gn) is given by

α(g′; idxπ(g−1)(1)
, ..., idxπ(g−1)(m)

) ◦ α(g; idx1 , ..., idxm) = α(g′g; idx1 , ..., idxm)

which in G×N N∗n terms is
(
g′, π(g−1)(w)

)
◦ (g, w) = (g′g, w)

Thus any element (g, w) of G×NN∗n can be expressed in terms of elements of G′ ×NN∗n

by way of tensor product and compostion. All we need to do is find and expansion for
g using G′, and then pull all of the multiplication and tensors outside of the brackets
via the equation above and those we employed back in Proposition 4.4. This means
that when we take the quotient by the relation ⊗ ∼ ◦, the equivalence class for (g, w)
will be a tensor product of equivalence classes of elements from G′ ×N N∗n. In other
words, every generator of Z|G0|+n|G1|+n2|G2|+.../⊗ ∼ ◦ is contained within the subgroup
coming from G′, and therefore so is the whole of the group. That is,

Z|G0|+n|G1|+n2|G2|+...�⊗ ∼ ◦ = Z|G′ ∩G0|+n|G′ ∩G1|+n2|G′ ∩G2|+...�⊗ ∼ ◦

= Z|G′
0|+n|G′

1|+n2|G′
2|+...�⊗ ∼ ◦

Beyond this, the value of this quotient will have to be found separately for each
individual action operad.





Chapter 5

Complete descriptions of free
invertible algebras

At last, we finally have an expression for the morphisms of LGn, one built out of
smaller parts which we know how to calculate. This means that it is almost time
to draw together everything we have done over the past three chapters into a single,
complete description of free invertible EG-algebras — at least, in cases where G is
crossed or G(1)-generated.

5.1 The action of LGn

At this stage, there is only one part of this EG-algebra that we have yet to find — its
action, αLGn . When our action operad G is G(1)-generated, everything is so simple
that there is really only one thing the action could be.

Lemma 5.1. Let G be a G(1)-generated action operad, g an element of G(m) for
some m ∈ N, and x1, ..., xm elements of Z∗n. Then the action of LGn is given by

αLGn( g ; idx1 , ..., idxm ) = idx1⊗...⊗xm

Proof. In order for αLGn to be a well-defined EG-action, the map αLGn(g; idx1 , ..., idxm)
needs to have source x1 ⊗ ... ⊗ xm and target xπ(g−1)(1) ⊗ ... ⊗ xπ(g−1)(m), where by
non-crossedness of G the latter is also x1 ⊗ ...⊗ xm. But we know from Corollary 4.15
that all morphisms in this LGn are identities, and hence we get the result.

For crossed G, things are more complicated. What we need to do is employ the
trick that was previously mentioned in Section 3.3, where we exploit the surjectivity of
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the algebra map q : G2n → LGn. This will allow us to express αLGn in terms of the
action αG2n .

Proposition 5.2. Let G be a crossed action operad, and for some m ∈ N choose an
element g ∈ G(m) and morphisms (x1, y1, h1), ..., (xm, ym, hm) in LGn. That is, the
(xi, yi) are pairs of objects from (s× t)(LGn), and the hi are morphisms in LGn(I, I).
Then the action of LGn is given by

αLGn

(
g ; (x1, y1, h1), ..., (xm, ym, hm)

)
=( ⊗

i xi,
⊗

i yπ(g−1)(i), ΨαG2n( g ; idq−1(y1), ..., idq−1(ym) ) ⊗ (⊗i hi)
)

Here q−1 : Ob(LGn) → Ob(G2n) is the function

q−1 : Z∗n → N∗2n

: zi 7→ zi

: z∗
i 7→ zn+1

: w 7→ ⊗|w|
i=1 q

−1
(
d(w, i)

)
with ⊗|w|

i=1 d(w, i) the decomposition of w given in Definition 3.23, and Ψ : Mor(G2n) →
LGn(I, I) is the canonical map associated with the repeated quotient

Mor(G2n) M(G2n)gp,ab M(G2n)gp,ab�∆

M(LGn)gp,ab M(LGn)gp,ab�Z(n
2)

LGn(I, I)

Proof. Firstly, by the rules governing EG-actions and Lemma 2.39, we know that

αLGn

(
g ; (x1, y1, h1), ..., (xm, ym, hm)

)
= αLGn( g ; idy1 , ..., idym ) ◦

(
(x1, y1, h1) ⊗ ...⊗ (xm, ym, hm)

)
= αLGn( g ; idy1 , ..., idym ) ◦ (x1 ⊗ ...⊗ xm, y1 ⊗ ...⊗ ym, h1 ⊗ ...⊗ hm )
= αLGn( g ; idy1 , ..., idym ) ⊗ id∗

y1⊗...⊗ym
⊗ (x1 ⊗ ...⊗ xm, y1 ⊗ ...⊗ ym, h1 ⊗ ...⊗ hm )

Since we already understand tensor products of objects and unit endomorphisms, we
now only need to find the action morphisms on identities. Moreover, we know that the
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source and target of αLGn(g; idy1 , ..., idym) have to be y1 ⊗ ...⊗ ym and yπ(g−1)(1) ⊗ ...⊗
yπ(g−1)(m) respectively, so to see this morphism as an element of the monoid

Mor(LGn) ∼= (s× t)(LGn) × LGn(I, I)

all that is left to understand is its projection onto the unit endomorphisms.

Now, recall that q : G2n → LGn is a surjective map of EG-algebras, so that for any
fi ∈ Mor(LGn) there exist f ′

i ∈ Mor(G2n) with q(f ′
i) = fi, and hence

q
(
αG2n( g ; f ′

1, ..., f
′
m )

)
= αLGn( g ; f1, ..., fm )

In particular, for the identities idyi
∈ Mor(LGn) we can choose idq−1(yi) ∈ Mor(G2n),

as by design q(idq−1(yi)) = idqq−1(yi) = idyi
. This means that if we denote by pI :

Mor(LGn) → LGn(I, I) the projection onto unit endomorphisms, we will have

pI
(
αLGn( g ; idy1 , ..., idym )

)
= pIq

(
αG2n( g ; idq−1(y1), ..., idq−1(ym) )

)
But pI ◦ q is a map that can be described in a different way. Consider the commutative

diagram

Mor(G2n) Mor(LGn) LGn(I, I)

Mor(LGn)ab Mor(LGn)ab�(s× t)(LGn)ab

M(G2n)gp,ab M(LGn)gp,ab M(LGn)gp,ab�Z(n
2)

q

ab

pI

M(q)gp,ab

where all unlabelled arrows are the appropriate quotient maps. The region on the left
commutes by naturality of the adjoint functor M( _ )gp,ab, and the bottom-right square
uses the fact that

Mor(LGn)ab�(s× t)(LGn)ab =

(
Mor(LGn)ab/Ob(LGn)ab

)
(
(s× t)(LGn)ab/Ob(LGn)ab

) = M(LGn)gp,ab�Z(n
2)

As for the square on the top-right, remember that the split extension of groups

LGn(I, I) Mor(LGn) (s× t)(LGn)
s×t
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was the source of our product description of morphisms of LGn. Thus by the proof of
Lemma 4.13, the specific isomorphism we are using is

Mor(LGn) ∼= (s× t)(LGn) × LGn(I, I)
f 7→

(
s(f), t(f), f ⊗ i

(
s(f), t(f)

)∗
)

and so the projection pI is given by tensoring a morphism with the inverse of the
representative of its source and target under the inclusion (s× t)(LGn) ↪→ Mor(LGn).
But the monoid Mor(LGn)ab/(s× t)(LGn)ab is exactly what we get when we quotient
out by those representatives, so we see that

[ab(f)] = [ab(f)] ⊗
[
ab
(
i
(
s(f), t(f)

)∗
) ]

=
[

ab
(
f ⊗ i

(
s(f), t(f)

)∗
) ]

= ab
(
pI(f)

)
= pI(f)

Here we’ve used that fact that the equivalence class of a unit endomorphism under
the quotient map Mor(LGn)gp,ab → Mor(LGn)ab/(s × t)(LGn)ab = LGn(I, I) is just
the same endomorphism again, and also that LGn(I, I)ab = LGn(I, I).

Thus all of the regions within the diagram commute, and hence so will the outside.
That is, pI ◦ q is equal to the composite along the left and bottom edges, which is Ψ.
This means that the projection onto LGn(I, I) of our action on identities is

pI
(
αLGn( g ; idy1 , ..., idym )

)
= pIq

(
αG2n( g ; idq−1(y1), ..., idq−1(ym) )

)
= Ψ

(
αG2n( g ; idq−1(y1), ..., idq−1(ym) )

)
and therefore the action of LGn is given by

αLGn

(
g ; (x1, y1, h1), ..., (xm, ym, hm)

)
=

αLGn( g ; idy1 , ..., idym ) ◦ ⊗i(xi, yi, hi)
=( ⊗

i yi,
⊗

i yπ(g−1)(i), ΨαG2n( g ; idq−1(y1), ..., idq−1(ym) )
)

⊗ id∗
⊗iyi

⊗ (⊗i xi,
⊗

i yi,
⊗

i hi )
=( ⊗

i xi,
⊗

i yπ(g−1)(i), ΨαG2n( g ; idq−1(y1), ..., idq−1(ym) ) ⊗ (⊗i hi)
)

as required.



5.2 A full description of LGn 135

5.2 A full description of LGn

With this last proposition proven, the results in this thesis now collectively describe
how to construct the free EG-algebras on n invertible objects for most values of G.
However, since this characterization was discovered by us in such a piecemeal fashion,
we will now restate everything in one place, for ease of reading. We’ll begin with the
non-crossed case, or as much of it as we were able to draw a complete conclusion about.

Theorem 5.3. Let G be a G(1)-generated action operad. Then the free EG-algebra on
n invertible objects is just the discrete category

LGn = Z∗n

equipped with a tensor product which is the usual monoid multiplication, and an
EG-action given by

αLGn( g ; idx1 , ..., idxm ) = idx1⊗...⊗xm

Proof. The object monoid is from Proposition 2.32, the fact that LGn is discrete follows
from Corollary 4.15, and the action is given by Lemma 5.1.

It is a shame that we were not able to find a formulation for uncrossed LGn in full
generality. This will have to be the subject of future research.

By contrast, in the case of crossed action operads we were able to achieve a complete
description. First, using various results from Chapters 3 and 4 we showed that the
unit endomorphisms of LGn were isomorphic to a certain quotient of abelian groups,
which from now on we will refer to as A(G, n). The long process of calculating this
group can now be condensed down into a single definition:

Definition 5.4. Let G be a crossed action operad, and G′ the action operad defined
by G′(m) := G(m)/G(0). Choose a subset G that generates G′ under a combination of
tensor product and group multiplication, which itself has subsets Gm := G ∩ G′(m).
Then for each n ∈ N, we will denote by A(G, n) the abelian group obtained from the
free abelian group

F(G ×N N∗2n) = Z2n|G1|+(2n)2|G2|+...

via the following steps:

1. For all g, g′ ∈ G(m) and w ∈ N∗2n with |w| = m, quotient out by the relation

(g, w) ⊗
(
g′, π(g−1)(w)

)
∼ (g · g′, w)
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2. Quotient out by the subgroup ∆, which is generated by the equivalence classes of
elements of the form(

µ( g ; e|δ̃(x1)|, ..., e|δ̃(xm)| ), δ̃(x1 ⊗ ...⊗ xm )
)

⊗(
µ( g ; e|Ĩ(x1)|, ..., e|Ĩ(xm)| ), Ĩ(x1 ⊗ ...⊗ xm )

)∗

where g ∈ G(m), the xi are generators of N∗4n, and for all 1 ≤ i ≤ n,

δ̃(zi) = zi, δ̃(z2n+i) = zi ⊗ zn+i, Ĩ(zi) = zi, Ĩ(z2n+i) = I,

δ̃(zn+i) = zn+i, δ̃(z3n+i) = zn+i ⊗ zi Ĩ(zn+i) = zn+i, Ĩ(z3n+i) = I

3. Choose any ρ(2) ∈ π−1((1 2)), and then quotient out by the Z(n
2) subgroup generated

by the equivalence classes of the elements
(
ρ(2) ; zi, zj

)
, 1 ≤ i < j ≤ n

Also, we will use Ψ : G ×N N∗2n → A(G, n) to represent the corresponding quotient
map.

With this new notation, the main result of this thesis can be stated quite concisely.

Theorem 5.5. Let G be a crossed action operad. Then the free EG-algebra on n

invertible objects is the category

LGn = Z∗n ×Zn Z∗n × BA(G, n)

equipped with a component-wise tensor product,

(x′, y′, h′) ⊗ (x, y, h) = (x′ ⊗ x, y′ ⊗ y, h′h )

and the EG-action given in Proposition 5.2:

αLGn

(
g ; (x1, y1, h1), ..., (xm, ym, hm)

)
=( ⊗

i xi,
⊗

i yπ(g−1)(i), ΨαG2n( g ; idq−1(y1), ..., idq−1(ym) ) ⊗ (⊗i hi)
)
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Proof. The category Z∗n×ZnZ∗n×BA(G, n) is just the one which has objects Z∗n×ZnZ∗n,
morphisms Z∗n ×Zn Z∗n × A(G, n), and composition

(y, z, h′) ◦ (x, y, h) = (x, z, h′h)

We know that these objects and morphisms are correct by Propositions 2.32, 3.9, 4.19
and 4.29 and Corollary 4.22, and those results also tell us that the monoidal structure
is as given above. For composition, it follows from Lemma 2.39 that

(y, z, h′) ◦ (x, y, h) = (y, z, h′) ⊗ idy∗ ⊗ (x, y, h)
= (y, z, h′) ⊗ (y∗, y∗, idI) ⊗ (x, y, h)
= ( y ⊗ y∗ ⊗ x, z ⊗ y∗ ⊗ y, h′ ⊗ idI ⊗ h )
= (x, z, h′h)

The action we just found in Proposition 5.2 then completes this description of LGn.

5.3 Free symmetric monoidal categories on invert-
ible objects

Even collected all together, Theorem 5.5 is still a fairly opaque result. In the next
couple of sections we will work through some specific applications of the theorem,
which will hopefully prove enlightening in this regard. A good place to start will be
with the simplest of all the crossed action operads, the symmetric operad S. As one
might expect, the free invertible algebras LSn have a particularly straightforward form
when viewed as monoidal categories.

Proposition 5.6. For the symmetric operad S, the abelian groups A(S, n) are the
n-fold products of the cyclic group of order 2,

A(S, n) = Zn2

Thus by Theorem 5.5, the underlying monoidal category of the free ES-algebra on n

invertible objects is
LSn = Z∗n ×Zn Z∗n × BZn2

with component-wise tensor product.

Proof. The symmetric operad has only one nullary operation, e0, the identity permuta-
tion on 0 objects, and so the quotient operad S/S0 is still just S. Moreover, we saw
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back in Section 1.2 that the symmetric groups Sm are generated by the elementary
transpositions (i i+ 1), which in turn are tensor products

(i i+ 1) = ei−1 ⊗ (1 2) ⊗ em−i−1

= (e1)⊗(i−1) ⊗ (1 2) ⊗ (e1)⊗(m−i−1)

in the operad S. Therefore the set S = {e1, (1 2)} will suffice to generate S under
multiplication and tensor product, and so our search for the unit endomorphisms of
LSn can begin with the group

Z2n|S1|+(2n)2|S2|+... = Z2n+(2n)2

Following the steps of Definition 5.4, we first of all need to collapse the composition
and tensor product inherited from S2n into the same operation. For the generators
with permutation part e1, we have

(e1; zi) ⊗ (e1; zi) ∼ (e1 · e1; zi) = (e1; zi)
=⇒ (e1; zi) ∼ I

and this will allow us to immediately eliminate those elements, leaving the group
Z(2n)2 coming from the (1 2) generators. The effect that collapsing composition has
on these elements will depend on how elementary transpositions interact under group
multiplication. This comes down two three conditions from Lemma 1.10,

(i i+ 1)2 = e

(i− 1 i)(i i+ 1)(i− 1 i) = (i i+ 1)(i− 1 i)(i i+ 1)
(i i+ 1)(j j + 1) = (j j + 1)(i i+ 1), i+ 1 < j

The last of these will not induce any new relation on our generators, since they all
already commute. Likewise, we know that

(i i+ 1) = ei−1 ⊗ (1 2) ⊗ en−i−1, (e1; z1) ∼ I

for any i, and so the second condition is implied by the specific case

(1 2)(2 3)(1 2) = (2 3)(1 2)(2 3)

which only produces a commutativity condition on our generators:
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(
(1 2) ; zi, zj

)
⊗
(

(1 2) ; zi, zk
)

⊗
(

(1 2) ; zj, zk
)

∼ (e1; zk) ⊗
(

(1 2) ; zi, zj
)

⊗
(

(1 2) ; zi, zk
)

⊗ (e1; zj) ⊗ (e1; zi) ⊗
(

(1 2) ; zj, zk
)

∼
(

(e1 ⊗ (1 2)) · ((1 2) ⊗ e1) · (e1 ⊗ (1 2)) ; zi, zj, zk
)

=
(

(2 3)(1 2)(2 3) ; zi, zj, zk
)

=
(

(1 2)(2 3)(1 2) ; zi, zj, zk
)

=
(

((1 2) ⊗ e1) · (e1 ⊗ (1 2)) · ((1 2) ⊗ e1) ; zi, zj, zk
)

∼
(

(1 2) ; zj, zk
)

⊗ (e1; zi) ⊗ (e1; zj) ⊗
(

(1 2) ; zi, zk
)

⊗
(

(1 2) ; zi, zj
)

⊗ (e1; zk)
∼

(
(1 2) ; zj, zk

)
⊗
(

(1 2) ; zi, zk
)

⊗
(

(1 2) ; zi, zj
)

Thus the only restraint we need to impose on our remaining generators is the one
that comes from the symmetry condition,(

(1 2) ; zi, zj
)

⊗
(

(1 2) ; zj, zi
)

∼
(

(1 2) · (1 2) ; zi, zj
)

= (e2; zi, zj)
= (e1; zi) ⊗ (e1; zj)
= I

which can be treated as two different cases depending on the values of the indices.
From i ̸= j we will get

(
2n
2

)
pairs of distinct generators ((1 2); zi, zj), ((1 2); zj, zi) whose

equivalence classes are inverses of one other, and from i = j we see that the classes of
the 2n generators ((1 2); zi, zi) are all self-inverse. In other words,

Z2n+(2n)2�⊗ ∼ ◦ = Z2n
2 × Z(2n

2 )

where Z2 is the cyclic group of order 2.
For the next step, we need to consider the subgroup ∆, which comes from the

equivalence classes of elements of the form(
µ( g ; e|δ̃(x1)|, ..., e|δ̃(xm)| ), δ̃(x1 ⊗ ...⊗ xm )

)
⊗(

µ( g ; e|Ĩ(x1)|, ..., e|Ĩ(xm)| ), Ĩ(x1 ⊗ ...⊗ xm )
)∗

for xi ∈ {z1, ..., z4n}. At this point we are only interested in cases where g is (1 2), and
thus m = 2, so pick any 1 ≤ i, j ≤ n and then suppose that x1 = zi and x2 = zj. The
corresponding element will just be

(
µ( (1 2) ; e1, e1 ) ; zi, zj

)
⊗
(
µ( (1 2) ; e1, e1 ) ; zi, zj

)∗
= I
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which contributes nothing to the group ∆; the same is also true when instead either
x1 = zn+i or x2 = zn+j, or both. A more interesting result is what happens when
x1 = zi and x2 = z2n+j:(

µ( (1 2) ; e1, e2 ) ; zi, zj, zn+j
)

⊗
(
µ( (1 2) ; e1, e0 ) ; zi

)∗

=
(

( e1 ⊗ (1 2) ) · ( (1 2) ⊗ e1 ) ; zi, zj, zn+j
)

⊗
(
e1 ; zi

)∗

∼
(

( e1 ⊗ (1 2) ) · ( (1 2) ⊗ e1 ) ; zi, zj, zn+j
)

= (e1; zj) ⊗ ( (1 2) ; zi, zn+j ) ⊗ ( (1 2) ; zi, zj ) ⊗ (e1; zn+j)
∼ ( (1 2) ; zi, zn+j ) ⊗ ( (1 2) ; zi, zj )

The presence of elements like the above will mean that when we quotient out by ∆,
we will force equivalence classes of the generators ((1 2); zi, zj) and ((1 2); zi, zn+j) to
become inverses of one another. In an analogous way, setting x1 = z2n+j and x2 = zj

shows that ((1 2); zn+i, zj) will also become an inverse of ((1 2); zi, zj), which means that
((1 2); zn+i, zj) ∼ ((1 2); zi, zn+j), whilst the choices x1 = zn+i and x2 = z2n+j will yield
((1 2); zn+i, zj)∗ ∼ ((1 2); zn+i, zn+j), and hence ((1 2); zn+i, zn+j) ∼ ((1 2); zi, zj). All
other combinations of x1, x2 will end up repeating one of these relations, and so when
we are done all that is left are the n2 = n+

(
n
2

)
generators of the form ((1 2); zi, zj).

That is,
Z2n

2 × Z(2n
2 )�∆ = Zn2 × Z(n

2)

The last step needed to calculate the group A(G, n) is to quotient out by a Z(n
2)

subgroup, the one generated by equivalence classes of elements (ρ(2); zi, zj) for given
ρ(2) ∈ π−1((1 2)) and 1 ≤ i < j ≤ n. Of course, the underlying permutation map of
permutations πS is the identity, so ρ(2) must be (1 2) itself. This gives a nice easy final
quotient,

Zn2 × Z(n
2)�Z(n

2) = Zn2

Therefore by Definition 5.4, the family of abelian groups A(S, n) is indeed just given
by Zn2 , and hence Theorem 5.5 tells us that

LSn = Z∗n ×Zn Z∗n × BZn2

as a monoidal category.

If we are to understand LSn’s role as a symmetric monoidal category, we now just
need to use the rest of Theorem 5.5 to find its ES-action. This will dictate which
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morphisms act as the various symmetries βx,y. However, this operation too is incredibly
simple.

Proposition 5.7. The action of LSn is fully determined by two pieces of data. The
first is its values on pairs of generators,

α
(

(1 2) ; idzi
, idzj

)
=


(
zi ⊗ zj, zj ⊗ zi, (0, ..., 0)

)
if i ̸= j(

zi ⊗ zi, zi ⊗ zi, (0, ..., 0, 1, 0, ..., 0)
)

if i = j

where here the 1 appears in the ith coordinate of the group Zn2 , and the second is the
following identity which relate generators to their inverses:

α
(

(1 2) ; idzi
, idzj

)
= α

(
(1 2) ; idz∗

i
, idzj

)
= α

(
(1 2) ; idzi

, idz∗
j

)
= α

(
(1 2) ; idz∗

i
, idz∗

j

)

Proof. We know that all EG-actions obey the conditions

α(g; f1, ..., fm) = α(g; idy1 , ..., idym) ◦ (f1 ⊗ ...⊗ fm)

for all morphisms fi : xi → yi, and

α( g ; idx1 , ..., idxi−1 , idxi⊗x′
i
, idxi+1 , ...idxm )

= α
(
g ; α(e1; idx1), ..., α(e1; idxi−1), α(e2; idxi

, idx′
i
), α(e1; idxi+1), ..., α(e1; idxm)

)
= α

(
µ(g; e1, ..., e1, e2, e1, ..., e1) ; idx1 , ..., idxi−1 , idxi

, idx′
i
, idxi+1 , ..., idxm

)
for all elements g ∈ G and objects x1, ..., xm, x

′
i. Hence we can recover all values of

αS2n from those on identities morphisms, and more specifically identities of generators
and their inverses. Further, the fact that we can express any σ ∈ S in terms of e1 and
(1 2) via tensor product and group multiplication tells us that the action will also be
determined solely by its values on (1 2). Thus the equations in the statement of the
proposition really would suffice to fix αLSn ; all we need now is prove that they hold.
The sources and targets are easy enough, so we’ll focus on the Zn2 coordinate.

Per Theorem 5.5, we will start by forming the action morphisms

αS2n

(
(1 2) ; idq−1(zi), idq−1(zj)

)
= αS2n

(
(1 2) ; idzi

, idzj

)
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and then find their images under the map Ψ : S ×N N∗2n → Zn2 . However, we just saw
in Proposition 5.6 how this homomorphism is built up as a composite

S ×N N∗2n Z2n+(2n)2 Z2n
2 × Z(2n

2 ) Zn2 × Z(n
2) Zn2

When i ̸= j, the equivalence classes of the morphisms α((1 2); idzi
, idzj

) get sent to
zero by the rightmost arrow, whereas the α((1 2); idzi

, idzi
) are each sent to a different

generator of Zn2 , which is denoted by the appropriate n-tuple (0, ..., 0, 1, 0, ..., 0).
So now we just need to check the morphisms involving the inverses of generators as

well. The S2n versions of these are

αS2n

(
(1 2) ; idq−1(z∗

i ), idq−1(zj)
)

= αS2n

(
(1 2) ; idzn+i

, idzj

)
αS2n

(
(1 2) ; idq−1(zi), idq−1(z∗

j )
)

= αS2n

(
(1 2) ; idzi

, idzn+j

)
αS2n

(
(1 2) ; idq−1(z∗

i ), idq−1(z∗
j )
)

= αS2n

(
(1 2) ; idzn+i

, idzn+j

)
But again, we saw in the proof of Proposition 5.6 that the second-to-last arrow in the

above diagram — the one representing the quotient by ∆ — will make the equivalence
class of α((1 2); idzi

, idzj
) equal to that of α((1 2); idzn+i

, idzn+j
), and inverse to the class

containing both α((1 2); idzn+i
, idzj

) and α((1 2); idzn+i
, idzj

). Since every element of
the group Zn2 is self-inverse, this amounts to saying that all of these morphisms are
equivalent under Ψ, which completes the proof.

Thus we see that in the free symmetric monoidal category on n invertible objects,
every morphism can be expressed as a composite of tensor products of identities and
symmetries maps

βzi,zj
= α

(
(1 2) ; idzi

, idzj

)
Moreover, two parallel morphisms in LSn are equal if and only if the number of

symmetries from {
βzi,zi

, βz∗
i ,zi
, βzi,z∗

i
, βz∗

i ,z
∗
i

}
appearing in these two expressions has the same parity, for each 1 ≤ i ≤ n.

5.4 Free braided monoidal categories on invertible
objects

Having successfully understood the symmetric monoidal case, we should now be ready
to tackle the very similar world of braided monoidal categories. Indeed, since the only
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difference between the braid groups Bn and the symmetry groups Sn is the presence or
absence of a self-invertibility condition, the abelian group A(B, n) is simply the value
we would gotten for A(S, n) if we had never set ((1 2); zi, zj) ⊗ ((1 2); zi, zj) ∼ I.

Proposition 5.8. For the braid operad B, the abelian groups A(B, n) are all repeated
products of the integers, specifically

A(B, n) = Zn × Z(n
2)

Thus by Theorem 5.5, the underlying monoidal category of the free EB-algebra on n

invertible objects is

LBn = Z∗n ×Zn Z∗n × B(Zn × Z(n
2))

with component-wise tensor product.

Proof. The beginning of this proof is identical to that of Proposition 5.6. First, the
braid operad B has B0 = {e0}, so we don’t need to take a quotient of our action
operad. Next, we know from Example 1.11 that the braid groups Bm are generated by
the elementary braids bi, and these are just tensor products

bi = (e1)⊗(i−1) ⊗ b⊗ (e1)⊗(m−i−1)

where b is the elementary braid of B2. Thus we can generate B under multiplication
and tensor product from the set B = {e1, b}, and so as before we get

Z2n|B1|+(2n)2|B2|+... = Z2n+(2n)2

Collapsing the composition of B2n will then let us eliminate any generators involving
e1, since

(e1; zi) ⊗ (e1; zi) ∼ (e1 · e1; zi) = (e1; zi)
=⇒ (e1; zi) ∼ I

Moreover, the rules governing the elementary braids only state that

bibi+1bi = bi+1bibi+1, bibj = bjbi, i+ 1 < j
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both of which just produce commutativity conditions on the remaining generators. In
the latter case this should be obvious, and in the former it follows from the fact that

( b ; zi, zj ) ⊗ ( b ; zi, zk ) ⊗ ( b ; zj, zk )
∼ (e1; zk) ⊗ ( b ; zi, zj ) ⊗ ( b ; zi, zk ) ⊗ (e1; zj) ⊗ (e1; zi) ⊗ ( b ; zj, zk )
∼

(
(e1 ⊗ b) · (b⊗ e1) · (e1 ⊗ b) ; zi, zj, zk

)
= ( b2b1b2 ; zi, zj, zk )
= ( b1b2b1 ; zi, zj, zk )
=

(
(b⊗ e1) · (e1 ⊗ b) · (b⊗ e1) ; zi, zj, zk

)
∼ ( b ; zj, zk ) ⊗ (e1; zi) ⊗ (e1; zj) ⊗ ( b ; zi, zk ) ⊗ ( b ; zi, zj ) ⊗ (e1; zk)
∼ ( b ; zj, zk ) ⊗ ( b ; zi, zk ) ⊗ ( b ; zi, zj )

Thus we again arrive at a group Z(2n)2 , whose generators all have the form (b; zi, zj).
But without the self-invertibility that we had in the symmetric case we are already
done with step 1 of Theorem 5.5, so that

Z2n+(2n)2�⊗ ∼ ◦ = Z(2n)2

For step 2, we need quotient out by the subgroup ∆. For exactly the same reasons
as in Proposition 5.6, we see that it contains the equivalence classes of the elements

(
µ( b ; e1, e2 ) ; zi, zj, zn+j

)
⊗
(
µ( b ; e1, e0 ) ; zi

)∗

=
(

( e1 ⊗ b ) · ( b⊗ e1 ) ; zi, zj, zn+j
)

⊗ ( e1 ; zi )∗

∼
(

( e1 ⊗ b ) · ( b⊗ e1 ) ; zi, zj, zn+j
)

∼ (e1; zj) ⊗ (b; zi, zn+j) ⊗ (b; zi, zj) ⊗ (e1; zn+j)
∼ (b; zi, zn+j) ⊗ (b; zi, zj)

for 1 ≤ i, j ≤ n, as well as ones like

(b; zn+i, zj) ⊗ (b; zi, zj), (b; zn+i, zn+j) ⊗ (b; zn+i, zj)

and so forth. This means that our quotient group will be

Z(2n)2�∆ = Zn2

whose generators are the classes [(b; zi, zj)] = [(b; zn+i, zn+j)], with inverses [(b; zn+i, zj)] =
[(b; zi, zn+j)]. Moreover, this group clearly has a Z(n

2) subgroup coming from those
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classes [(b; zi, zj)] which have 1 ≤ i < j ≤ n. Thus if we choose ρ(2) ∈ π−1((1 2)) to be
the elementary braid b, the third and final quotient will give

A(B, n) = Zn2�Z(n
2) = Zn

2−(n
2) = Zn × Z(n

2)

and therefore
LBn = Z∗n ×Zn Z∗n × B(Zn × Z(n

2))

as a monoidal category.

Just to be clear, the first n generators of this group Zn ×Z(n
2) are the images under

q : B2n → LBn of the action morphisms αB2n(b; idzi
, idzi

), and the other
(
n
2

)
come from

the αB2n(b; idzi
, idzj

) for i > j. This seems a little strange at first — why would LBn
have this kind of directionality to it, where the i < j generators have been cancelled out
but the i > j remain? The important thing to realise is this group is representing the
unit endomorphisms LBn(I, I), which have the same source and target. By contrast, if
i ̸= j then αB2n(b; idzi

, idzj
) will have distinct source and target zi ⊗ zj ̸= zj ⊗ zi, and

thus the only way we can add it onto a composite without changing the source and
target is to also add in the corresponding αB2n(b; idzj

, idzi
) somewhere. Therefore we

really only need to keep track of one of these two kinds of morphisms, such as all of
the ones where i > j. This is also reflected in the action of this algebra.

Proposition 5.9. The action of LBn is fully determined by the values

α( b ; idzi
, idzj

) =


(
zi ⊗ zj, zj ⊗ zi, (0, ..., 0)

)
if i < j(

zi ⊗ zj, zj ⊗ zi, (0, ..., 0, 1, 0, ..., 0)
)

if i ≥ j

where the 1 appears in the ith coordinate of Zn when i = j, and the (i, j)th coordinate
of Z(n

2) when i > j, and also

α( b ; idzi
, idzj

) = α( b ; idz∗
i
, idzj

)∗

= α( b ; idzi
, idz∗

j
)∗

= α( b ; idz∗
i
, idz∗

j
)

Proof. Similarly to the symmetric case, the fact that any braid x ∈ Bm can be written
as tensor product and group multiple of e1 and b will let us recover all of the values of
αLSn from just those four families of action morphisms which appear in the proposition.
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Their sources and targets are clearly correct, so all we need to do examine their
Zn × Z(n

2) coordinates.
We saw in the the proof of Proposition 5.8 that under the map

B ×N N∗2n Z2n+(2n)2 Z(2n)2 Zn2 Zn × Z(n
2)

the action morphisms

αS2n( b ; idq−1(zi), idq−1(zj) ) = αS2n( b ; idzi
, idzj

)

are sent to one of the generators of Zn × Z(n
2) when i ≥ j, and are sent to zero

otherwise. Moreover, we also proved that the morphisms

αS2n( b ; idq−1(z∗
i ), idq−1(z∗

j )
)

= αS2n( b ; idzn+i
, idzn+j

)

are sent to the exact same generators as the αS2n(b; idzi
, idzj

), whilst the corresponding

αS2n( b ; idq−1(z∗
i ), idq−1(zj) ) = αS2n( b ; idzn+i

, idzj
)

αS2n( b ; idq−1(zi), idq−1(z∗
j ) ) = αS2n( b ; idzi

, idzn+j
)

are sent to that generator’s inverse. Thus by Theorem 5.5, we obtain the required
relations for the action αLSn .

To put this in a more categorical perspective, suppose that we decide to call the
following kinds of braiding isomorphisms ‘positive’,

βzi,zj
= α( b ; idzi

, idzj
), β−1

z∗
i ,zj

= α( b ; idz∗
i
, idzj

)−1,

β−1
zi,z∗

j
= α( b ; idzi

, idz∗
j

)−1, βz∗
i ,z

∗
j

= α( b ; idz∗
i
, idz∗

j
)

and likewise call their inverses ‘negative’. Then what Proposition 5.9 is saying is
that in the free braided monoidal category on n invertible objects, parallel morphisms
coincide only when the number of positive braidings minus the number of negative
braidings they contain is the same.

Something else to notice about LBn is that we’ve actually seen its unit endomorphism
group before. Back in Proposition 4.21 we proved that for any crossed action operad
G,

(s× t)(LGn)ab = (Z∗n ×Zn Z∗n)ab = Zn × Z(n
2)
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This means that in the case of the braid operad, we have the unusual identity

(s× t)(LBn)ab ∼= LBn(I, I)

What is the significance of this fact? It is not entirely clear, though certainly the
isomorphism involved is highly nontrivial. For example the Zn subgroup of (s×t)(LBn)ab

has generators representing maps with source and target zi → zi, 1 ≤ i ≤ n, while the
same generators of Zn ⊆ LBn(I, I) represent the braidings βzi,zi

= α(b; idzi
, idzi

). Of
course, it is possible that this connection between the groups that make up Mor(LBn)
could simply be a conincidence. It would help if we could compare B to another
action operad which shares this property — either another crossed G whose algebra
has the same underlying category as the LBn, or an uncrossed G whose algebra has
LGn(I, I) = (Z∗n)ab = Zn — but none of these are currently known to the author.

5.5 Free ribbon braided monoidal categories on in-
vertible objects

The last action operad whose invertible algebras we will calculate explicitly is the
ribbon braid operad, RB. The details will prove largely similar to those we saw for
the braided case in Proposition 5.8, much as the braided case itself was built upon the
symmetric case with a few small changes.

Proposition 5.10. For the ribbon braid operad RB, the abelian groups A(RB, n) are
all repeated products of the integers, specifically

A(RB, n) = Zn × Zn × Z(n
2)

Thus by Theorem 5.5, the underlying monoidal category of the free ERB-algebra on n

invertible objects is

LRBn = Z∗n ×Zn Z∗n × B(Zn × Zn × Z(n
2))

with componentwise tensor product. Moreover, the action of LRBn is determined by
its restriction to the subcategory LBn ⊆ LRBn, plus the values

α( t ; idzi
) =

(
zi, zi, (0, ..., 0, 1, 0, ..., 0)

)
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where the 1 appears in the ith coordinate of the copy of Zn which is not shared with
LBn, and

α( t ; idz∗
i

) = α( t ; idzi
)∗ ⊗ α( b ; idzi

, idzi
)⊗2

Proof. The ribbon braid operad has RB0 = {e0} and is generated under ⊗ and · by
the set RB = {e1, b, t}. Thus our starting point will be the group

Z2n|RB1|+(2n)2|RB2|+... = Z4n+(2n)2

Since the free EB-algebra B2n is clearly a subcategory of RB2n, when we collapse its
composition we will at the least have to quotient out by all of the same relations we
did in Proposition 5.8. This will amount to eliminating all of the e1 generators, which
will get us down to Z2n+(2n)2 . We also have to collapse our morphisms according to
the rules which govern multiplication by twists, but just as with the braids it turns
out that these are already implicit in commutativity. For example, in RB2 we have

( b ; zi, zj ) ⊗ ( t ; zi ) ∼ ( b ; zi, zj ) ⊗ ( t ; zi ) ⊗ (e1; zj)
∼

(
b · (t⊗ e1) ; zi, zj

)
= ( b1t1 ; zi, zj )
= ( t2b1 ; zi, zj )
=

(
(e1 ⊗ t) · b ; zi, zj

)
∼ (e1; zj) ⊗ (t; zi) ⊗ (b; zi, zj)
∼ (t; zi) ⊗ (b; zi, zj)

Therefore,
Z4n+(2n)2�⊗ ∼ ◦ = Z2n+(2n)2

The next step is to quotient out by ∆, and again this will at the very least end up
imposing all of the same constraints that we had in the braided case, namely

[ ( b ; zi, zj ) ] = [ ( b ; zn+i, zj ) ]∗ = [ ( b ; zi, zn+j ) ]∗ = [ ( b ; zn+i, zn+j ) ]

But we also have those elements of ∆ which come from the twist t:(
µ( t ; e2 ) ; zi, zn+i

)
⊗
(
µ( t ; e0 ) ; −

)∗

=
(

( t⊗ t ) · b · b ; zi, zn+i
)

⊗ (e0; −)∗

=
(

( t⊗ t ) · b · b ; zi, zn+i
)

∼ (t; zi) ⊗ (t; zn+i) ⊗ (b; zn+i, zi) ⊗ (b; zi, zn+i)
∼ (t; zi) ⊗ (t; zn+i) ⊗ (b; zi, zi)∗ ⊗ (b; zi, zi)∗
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Quotienting out by these will allow us to express twists on objects with index greater
than n in terms of the other generators,

[ ( t ; zn+i ) ] = [ ( t ; zi ) ]∗ ⊗ [ ( b ; zi, zi ) ]⊗2

and so overall we will get

Z2n+(2n)2�∆ = Zn+n2

Then the Z(n
2) coming from ρ(2) will be the same as in the braided case, so that

A(RB, n) = Zn+n2�Z(n
2) = Zn+n2−(n

2) = Zn × Zn × Z(n
2)

and therefore
LRBn = Z∗n ×Zn Z∗n × B(Zn × Zn × Z(n

2))

Finally, the same reasoning we have used previously tells us that we can recover
the whole action of LRBn from just the values

α( b ; idzi
, idzj

), α( b ; idz∗
i
, idzj

) α( b ; idzi
, idz∗

j
), α( b ; idz∗

i
, idz∗

j
)

α( t ; idzi
) α( t ; idz∗

i
)

The process for working out the first four is no different than before, which means
that αLRBn acts on the braids in the exact same ways that αLBn does. Furthermore, it
is not hard to see that

α( t ; idzi
) =

(
zi, zi, (0, ..., 0, 1, 0, ..., 0)

)
where the 1 corresponds to the (t; zi) generator of Zn × Zn × Z(n

2), and also that the
process of quotienting by ∆ will translate to

α( t ; idz∗
i

) = α( t ; idzi
)∗ ⊗ α( b ; idzi

, idzi
)⊗2

as required.
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