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ABSTRACT 

Microbubble mediated technologies are employed for pretreatment steps due to the 

characteristics of the gas-liquid interface. Traditionally, pretreatment processes are energy 

intensive operations and use hazardous chemicals such as sulfuric acid and hydrochloric acid, 

which need to be removed from the pretreatment slurry before feeding it to the fermentation 

process. Alternative approaches to microbubbles for pretreatment, however, have significant 

challenges. For example, conventional bubbles are several orders of magnitude larger than the 

bubble exit pore and therefore have less direct contact with the biomass or delivery the ozone 

efficiently to the pretreatment slurry. Consequently, these concerns have been addressed in this 

research, and microbubble-microbe synergy and Ozonolysis-microbe synergy for biomass 

pretreatment with the developing of microbubbles driven systems, were used to facilitate 

microbubble generation suitable for pretreatment processes.  

The first approach was achieved by exploiting the synergy between microbubble-microbe to 

pretreat lignocellulosic biomass and glucose was the target product. The effects of 

microbubbles, microbe and the synergy between them on morphology, functional groups and 

glucose yield were investigated. It was found that free radicals around the gas-liquid interface 

of the microbubble can readily attack and degrade lignocellulosic biomass, rendering it more 

amenable to digestion. The combination of microbubbles and Pseudomonas putida—a robust 

delignification and cellulolytic microbe, further improved biomass degradation and 

consequently, increased glucose production from wheat straw in comparison to solo 

pretreatment of the biomass with microbubbles and Pseudomonas putida respectively. In 

addition, it was found that the highest glucose achieved was 0.27 mg/ml.  

The second was conducted by exploiting ozonolysis-microbe synergy to pretreat lignocellulosic 

biomass and glucose was also the target product. The effects of ozonation at various pHs and 

ozone concentrations, biological pretreatment by Pseudomonas putida and the synergy between 

them on morphology, functional groups and glucose yield were explored. Ozone is a strong 

oxidative agent that reacts with lignin by attacking the carbon-carbon double bonds, while P. 

putida preferentially hydrolyses the exposed cellulolytic parts of the biomass to simple sugars. 

It was found that both lignin and cellulose contents were reduced under this pretreatment with 

relatively high glucose recovery. The highest glucose concentration reached was 1.1 mg/ml 

after 24 hr ozonation at 8.86 mg/L ozone and pH 3 with 50 % reduction in the biological 

pretreatment duration but crucially, increasing microbial biomass.  
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Using the synergetic approach for the biomass pretreatment is promising approach but leaves 

the pretreatment slurry contaminated with the cellulolytic microbe, Pseudomonas putida, which 

needs to be inactivated or removed before feeding the pretreatment slurry into the fermenter. 

The ability of carbon dioxide enriched microbubbles to inactivate Pseudomonas putida was 

subsequently investigated. Many drawbacks of the traditional sterilization methods were 

avoided by using carbon dioxide enriched microbubbles, such as high energy consumption and 

using toxic and corrosive reagents. It was found that 2-Log reduction in the bacterial population 

after 90 min was achieved using carbon dioxide enriched microbubbles. Further reductions 

were achieved by adding additives such as ethanol and acetic acid and the highest reduction 

performed was 3.5 Log with 10 % ethanol, while a 2.5-Log reduction was achieved with 0.5 % 

acetic acid. These reductions in the bacterial population were concurrent with changing cells 

shape from rod cells to coccus shape with cell damage such as lesions and cells death. 

Subsequently, aerobic fermentation with glucose as a carbon source proceeded with 

Zymomonas mobilis ZM4 as the microbial fermentation agent. Acetaldehyde has drawn the 

attention in this research because it is an important chemical, and it can be used in many 

processes such as plastic manufacturing and fuels production such as ethanol and butanol. 

Several attempts to produce acetaldehyde from Zymomonas mobilis or genetically modified 

microbes contained some genes from Zymomonas are reported, but the inhibition of microbial 

growth by the accumulated acetaldehyde was the main challenge to keep its continuous 

production. This challenge has been addressed in this study and microbubbles generated by 

fluidic oscillation were used to remove both acetaldehyde and carbon dioxide from the 

fermentation broth. Additionally, the oxygenation concurrent with the stripping process by 

microbubbles efficiently maintained the oxygen concentration in the fermentation broth above 

the critical oxygen concentration, leading to stable aerobic conditions. The results show that 45 

% yield of ethanol and 1 % yield of acetaldehyde with 110 % yield of microbial biomass in 

comparison with 70 %, 0.5 % and 90 % yield for ethanol, acetaldehyde, and biomass 

respectively in the initially sparged group were achieved. Also, acetaldehyde was removed from 

the fermentation broth with 99 % efficiency.  

Acetaldehyde production in the fermentation was enhanced by selecting the mutant cells with 

attenuated or modified alcohol dehydrogenase activity using increasing concentrations of allyl 

alcohol. The results show that 17-fold increase was achieved in the mutant strain in comparison 

with the wild strain. In addition, the mutant strain produced 90 % less ethanol than the wild 
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strain. Also, the acetaldehyde removal efficiency was 88.5 % in comparison with 42 % 

efficiency achieved with the fine bubbles (bigger bubbles). Additionally, biomass yield 

produced by the mutant strain was less by a half than the yield produced by the wild strain.  

To enhance the biomass yield of the mutant strain, different techniques were used to grow this 

bacterium aerobically, but maintaining sufficient oxygen concentration was challenging in the 

bacterial propagation stage. Oxygen is the limiting factor in the aerobically grown bacterial 

cultures, but similarly, the impact of mixing can be critical. The results show that the oxygen 

uptake rate and mass transfer coefficient are substantial increased using microbubbles 

technology and there were 41-fold and 150-fold increase in the oxygen uptake rate and mass 

transfer coefficient respectively in the microbubbles-dosed culture in comparison with the 

shaking flask culture. This technology can also achieve a proper mixing. Regarding the biomass 

yield, the mutant strain of Zymomonas mobilis shows an increased yield using the shaking flask 

(around 100 % and 133 % increases) in comparison with other (microbubbles-dosed and 

stationary respectively) techniques, while the wild strain produces more biomass in the 

microbubble-based technique (around 50 % and 100 %) than other (shaking flask and stationary 

respectively) techniques. In addition, a propagation unit was designed and simulated to grow 

the mutant strain aerobically in the propagation stage before using this grown biomass as an 

inoculum to the fermentation process. Fundamentally, the results obtained in this study are 

achieved in a laminar flow with several orders of magnitude lower energy density than 

conventional benchmarks, which are a highly turbulent flow.  
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r Specific oxygen uptake rate mmol. g (dry weight)-

1.hr-1 

RP Production rate (mM hr-1) 
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s The interface area of bubble (m2) 
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𝑪𝒅 Viscous drag coefficient (dimensionless) 
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𝝉 Time constant hr 
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Chapter 1   

General Introduction and Project Objectives 

1.1 Introduction  

Increasing global demand for energy and population increases have been causing many 

problems for the environment, resulting from increased use of fossil fuels, significant rainforest 

deforestation and expanding industrial operations. These factors are leading to the depletion of 

natural resources as well as producing various forms of toxic emission, which have many 

harmful effects on biota. These effects are in some cases short term, such as respiratory diseases 

like asthma, and are in some cases long term, such as mutations and genetic abnormalities 

(Commonwealth of Massachusetts, 2015). These emissions have also caused a crisis for the 

whole of Earth’s ecosystem, a symptom of which is climate change. However, until now there 

is still  no effective approach to reducing these emissions (Schrag, 2007). 

Seeking renewable fuels, which are from environmentally friendly sources, represents a priority 

for many researchers. Those researchers have been exploring many methodologies and 

technologies to generate energy in a way that causes less harm and might meet international 

requirements. One of the most encouraging sources of renewable energy is the biomass. 

McKendry (2002) defined “biomass” as any organic material that can be derived from plants. 

Plants convert solar energy into chemical energy using photosynthesis, which is stored in their 

tissues as chemical bonds. However, in nature, lignin, cellulose, and lignocellulose are the 

dominant sources of biomass (Pérez et al., 2002).  

Lignocellulosic biomass has drawn much attention as a natural and a renewable resource in 

developed societies, and this biomass is produced as a waste from many agricultural activities 

(Pérez et al., 2002). A lignocellulosic biomass might include a variety of materials such as 

sugarcane, bagasse, wheat, rice and barley straws as well as sawdust, poplar trees and 

switchgrass. Annually, lignocellulosic biomass accumulates in large quantities, and because its 

chemical composition is based on carbohydrates, it can be utilised to produce many highly 

valued products such as enzymes, alcohols, food additives and organic acids (Mussatto and 

Teixeira, 2010). Therefore, besides the problems caused by the accumulation of these wastes in 

the environment, these resources represent a worthy energy source that could replace fossil 

fuels.  
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Lignocellulosic biomass has three principal components, which are cellulose, hemicellulose, 

and lignin, and depending on the feedstock source lignocellulosic biomass has a different 

percentage of these three elements. Typically, it is made up of around 30-50 % of cellulose, 15-

35 % hemicellulose and 10-20 % lignin (Pettersen, 1984 cited in Limayem and Ricke, 2012).  

Commonly, there are two major routes for energy recovery from biomass, which are the 

thermochemical route and the biological route. The thermochemical route can be achieved by 

several methodologies such as air-steam gasification, direct combustion, liquefaction, 

pyrolysis, supercritical water extraction and ozonolysis (Balat et al., 2009). Some of these 

methods, however, are energy consuming and use a variety of chemicals, which are toxic, 

hazardous and corrosive and thus require a reactor (pretreatment vessel) to tolerate these harsh 

conditions, which are often very expensive. The biological route uses microbial-based methods 

such as a fermentation, biological water-gas shift reaction and biological pretreatment (Saxena, 

et al., 2009) but most biological methods use commercial enzymes, which are very costly and 

might represent a substantial part of operational expense for any industrial process.  

In order to improve the traditional pretreatment techniques, further work is necessary to 

understand the key physicochemical and biochemical mechanisms underpinning these 

techniques and to explore options to improve glucose yield. One option is to use the 

microbubble-microbe biomass processing technique, which offers many benefits including a 

decrease in capital and production cost in comparison with traditional techniques, which utilise 

a substantial amount of chemicals and enzymes as well as high temperature and pressure. 

Dosing ozone-enriched microbubbles is an alternative option, which has been proven as an 

efficient technique to degrade the lignin polymer, and also helps to oxide carbohydrates 

concurrently. Crucially, however, it also improves Pseudomonas putida growth and 

consequently the production of enzymes, as the latter plays an influencial role in glucose 

production.  

After finishing pretreatment, the inactivation of pretreatment slurries is conventionally achieved 

by autoclaving for 15 minutes at 121˚C and 1-1.5 bar. Autoclaving different slurries requires 

different operational conditions, such as increasing the autoclaving duration or doing the 

autoclaving in stages, as there is only a limited capacity for each autoclave. This will increase 

costs and it might take a long time to achieve the sterilisation process (McNeil and Harvey, 

2008). Therefore, an alternative inactivation (sterilisation) technique needs to be sought to avoid 

some or all of the drawbacks mentioned above. Using carbon dioxide-enriched microbubbles 
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is a relatively cheap option that works at ambient temperatures, and crucially it uses carbon 

dioxide, which is a byproduct gas produced by many bioprocesses as a waste gas. Also, carbon 

dioxide-enriched microbubbles can be applied in situ and thus can be performed simultaneously 

with pretreatment in the same pretreatment vessel.  

The inactivated pretreatment slurry can be then fed to the fermenter in order to conduct the 

fermentation process. Bacterial fermentation can be divided into two main categories, which 

are aerobic and anaerobic fermentation, depending on the final electron acceptor. Oxygen is the 

final electron acceptor in aerobically-grown microbes, whereas either organic or inorganic 

compounds act as a final electron acceptor (such as the sulfate compounds) in anaerobically-

grown microbes (Müller, 2001). Depending on the required product, microorganisms can grow 

either aerobically or anaerobically; however, some microorganisms can grow under both 

conditions (facultative anaerobic microbes). 

Zymomonas mobilis has long been known as the best ethanol producer, and it is widely used to 

produce a high quantity of ethanol in anaerobic conditions, offering many advantages over other 

ethanol producers such as Saccharomyces cerevisiae. While many researchers have mentioned 

that this bacterium produces considerable quantities of ethanol under anaerobic conditions, 

others have noticed that this bacterium can produce an amount of acetaldehyde with a lower 

quantity of ethanol in aerobic conditions (Wecker, 1987).  

Acetaldehyde is a substrate used in various industries such as plastic manufacturing and 

production of synthetic dyes, and is used as pyridine and pyridine bases, for butanol and as a 

food additive. Also, it is used to produce ethanol using Ni-based catalysts (Neramittagapong et 

al., 2008). These uses make acetaldehyde an extremely valuable product at a price near £57.90 

per liter according to the sigma-Aldrich website (07-03-2017). However, many researchers 

have noticed its toxicity to the microbial culture, causing severe inhibition of Zymomonas 

growth when it accumulates in the culture medium.  

Removing the final products (acetaldehyde and carbon dioxide) from the culture medium 

reduces the chemical activity in the liquid of these gaseous products with a negative value 

change in Gibbs free energy. For this reason, the biological reactions become 

thermodynamically favourable and provide momentum for the formation of more product. 

Indeed, removing acetaldehyde and carbon dioxide means removing the stresses that inhibit 

and prevent proper microbial functions. Theoretically, acetaldehyde can be removed at room 
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temperature using microbubble technology as this chemical has a boiling point of about 20.8℃, 

which is surpassed during the fermentation, which requires 30℃. The gaseous carbon dioxide 

can be removed from the fermentation broth using the same technology. Ethanol, however, 

tends to preferentially accumulate in the fermentation broth.  

1.2 Research Hypotheses  

The current project explores the use of a novel microbubble technology in lignocellulosic 

biomass pretreatment, the inactivation of microorganisms using carbon dioxide, and 

simultaneous fermentation and separation of bio-products from the fermentation broth of 

Zymomonas mobilis. The fluidic oscillator invented by Zimmerman and co-workers helps to 

generate micron-sized bubbles with low energy requirements. Reducing the time given to grow 

the generated bubbles from the pores of a diffuser prevents them from growing any bigger than 

micron size. 

The ability of collapsing microbubbles to enhance lignocellulosic biomass pretreatment is 

investigated through lignocellulosic biomass pretreatment processes. The increase in surface 

charge of a collapsing microbubble (ζ potential) supports the hypothesis that significant 

increase in ions concentrations around a shrinking gas-liquid interface provides a mechanism 

for free radical generation (Takahashi et al. 2007). When in contact with a solid body (particles), 

the charges are readily deposited and effectively attack the surface, consequently degrading the 

particle’s physical structure. Ranger et al. (1999) found that generated hydroxyl radicals 

resulted in extracting a hydrogen atom from the methyl groups or the carbon in the middle 

structure of lignin. The extent of surface damage can vary depending on the bubble’s surface 

charge magnitude, the particle size and the carrier gas. Dosing charge-laden microbubbles with 

ozone can play a crucial role in the catalysis and cleavage of cellulose and hemicellulose and, 

inadvertently, facilitate the release of sugar from the biomass.  

Ozone-enriched microbubbles are used to enhance the standard microbubble pretreatment 

process. Ozone is a strong oxidative agent, and it reacts with lignin by attacking the carbon-

carbon double bonds, and free radicals are generated from the reaction of ozone with an 

aromatic lignin unit. While ozone acts selectively on the carbon double bonds, free radicals act 

non-selectively and they react with both the lignin and carbohydrates within the biomass. 

Therefore, ozone can substantially reduce lignin content and increase biomass digestibility with 

many advantages over other pretreatment methods, such as producing almost no toxic 

compounds, being usable at room temperature and with standard pressure (Lee et al., 2010). 
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Traditional methods apply ozone with less attention to mass transfer optimality, resulting in 

low efficiency and high operating cost. However, the slow velocity of rising microbubbles and 

high surface-to-volume ratio allow efficient mass transfer to be achieved during the process 

(Kuvshinov et al., 2014). Direct ozone dosing is the most efficient way to deal with such a 

highly reactive and short-lived chemical. Both pretreatment methods are followed by a 

biological pretreatment with the cellulolytic bacterium Pseudomonas putida, which 

preferentially hydrolyses the exposed cellulolytic parts of the biomass to simple sugars. 

The ability of carbon dioxide-enriched microbubbles to inactivate microbes and decrease the 

energy consumed with high microbial reductions are also investigated in the current study. The 

efficacy of this process depends on the diffusion coefficient of carbon dioxide, which can be 

controlled by contact time and interfacial area. Microbubbles can significantly improve the 

efficiency of dosage due to their high surface area-to-volume ratio and their low-rise velocity, 

ensuring maximum gas-liquid contact time. This substantially cuts down on the operating time.  

Integration of the microbubble generation system into the fermentation vessel and testing the 

performance of this technology in its ability to remove some bioproducts from the fermentation 

broth are also explored in the current study. In addition, the collection of the stripped products 

and the behavior of microbial culture after this removal are considered. A fluidic oscillator is 

used to generate microbubbles from a ceramic diffuser at the bottom of the bioreactors.  

Based on the fascinating characteristics of microbubbles, this project investigates the ability of 

rising bubbles to remove some products from the fermentation medium through a mass transfer 

process, as the injected air bubbles are dry and have almost zero concentration of these products 

in them. The rising microbubbles are also expected to remove some heat, which is generated 

from metabolic activities of microorganisms, and thus might help to control the temperature 

within the system.  

1.3 Research Objectives  

Four main objectives are considered in the current study:  

(1) To use microbubble-meditated technologies in the pretreatment of lignocellulosic 

biomass in synergy with the cellulolytic bacterium Pseudomonas Putida.  

(2) To inactivate the cellulolytic bacterium with carbon dioxide-enriched microbubbles. 
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(3)  To oxygenate the microbial culture and strip out some fermentation products from the 

fermentation medium by integrating the microbubble generation system into the 

bioreactor.  

(4) To intensify the bacterial growth during the propagation stage.  

These objectives achieve an ultimate goal, which is simultaneous saccharification and 

fermentation integrated with in situ separation of some fermentation products (See Figure 1.1). 

Traditionally, these processes are conducted as stages, where the lignocellulosic biomass 

hydrolysis is followed by fermentation and then product recovery. The simultaneous process is 

a promising strategy for effective bioproducts production from lignocellulosic biomass because 

of the resulting reduction in utilities, which would reduce the investment cost and simplification 

of the operation but crucially, the avoidance of the process inhibition by the final products such 

as acetaldehyde and carbon dioxide and thereby increasing the process rate and products yield.  

Typically, the collected products can be used in numerous processes especially in fuels 

production such as ethanol and butanol, and the carbon dioxide can be recycled to use in the 

inactivation process as well as for algal growth.  

These objectives can be achieved by the following:  

➢ Investigation and characterisation of cellulolytic activity of Pseudomonas putida KT 

2440 as well as monitoring growth patterns on different culture media. This bacterium 

can then be used to hydrolysis the cellulose content of the biomass to produce sugar, 

glucose. 

➢ Designing and using a new prototype system to pretreat lignocellulosic biomass and 

investigate the potential effects of the generated microbubbles on lignocellulosic 

biomass. This is executed by examining the biomass before and after the pretreatment 

and testing it with FTIR-ATR and SEM in addition to measuring glucose concentration.  

➢ Carrying out microbubble-mediated ozonolysis as a step forward in the pretreatment of 

lignocellulosic biomass. Ozone is a highly reactive nonlinear triatomic molecule 

towards compounds containing double bonds and functional groups with high electron 

densities. Consequently, lignin is most likely to be oxidised in this process as it has a 

high content of double bonds. Pseudomonas putida is used in all pretreatment 

experiments as a source of cellulolytic activity, which used as an alternative to the 

expensive commercial enzymes.  
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All above three points are testing the first objective in the current study, which is using 

microbubble-meditated technologies in the pretreatment of lignocellulosic biomass in 

synergy with the cellulolytic bacterium Pseudomonas Putida. This objective is explored 

in chapter 4 and 5 and green-coded in Figure 1.1.  

➢ Using carbon dioxide-enriched microbubbles in the inactivation process. Because 

practical and economic aspects are crucial in the processes of producing highly valued 

products and biofuels, it is critical to consider the inactivation process of pretreatment 

and fermentation slurries. The fermentation process (downstream process) is prone to 

contamination by this adventitious agent (Pseudomonas Putida), which has a huge 

impact on the biological process as this bacterium might introduce product variability 

and can cause loss of potency due to degradation or modification of product by 

microbial enzymes, changes in impurity profiles, and an increase in the levels of 

bacterial endotoxins. In addition, it can result in lengthy shutdown periods and delays 

in fermentation operations that in turn, may sometimes result in shortages of products 

formation.  

The primary action of this inactivation process trigs the disturbance or damages the 

balance of the biological system of cells. This process can be enhanced by using added 

solutions such as mixed ethanol and acetic acid, which increases the solubility of carbon 

dioxide as well as working on different sites within the biological system.  

This point targets to test the second objective in the current study, which is using carbon 

dioxide-enriched microbubbles as an inactivation process. This objective is explored in 

chapter 6 and brown-coded in Figure 1.1. 

➢ Oxygenating the fermentation process as well as the stripping of some bioproducts from 

the fermentation broth of Zymomonas mobilis using air microbubbles generated by a 

fluidic oscillator. The provision of enough oxygen is crucial for keeping the aerobic 

fermentation process going, but similarly removing acetaldehyde and carbon dioxide 

might help to prevent the detrimental effect of these products on microbial cells, whilst 

increasing productivity from the microbial culture. 

To enhance the acetaldehyde productivity, mutant strain with attenuated or modified 

alcohol dehydrogenase activity can be selected using allyl alcohol but unfortunately, 

this strain has low biomass yield and therefore has limited acetaldehyde production as 

this product is directly associated with the biomass synthesis.  
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This point targets to test the third objective, which is to oxygenate the microbial culture 

and strip out some fermentation products from the fermentation medium by integrating 

the microbubble generation system into the bioreactor. These objectives are explored in 

chapter 7 and 8 and blue-coded in Figure 1.1. 

➢ Enhancing the biomass yield of the allyl alcohol selected strain. Generally, the wild 

strain of Zymomonas mobilis shows a relatively low biomass yield in comparison with 

other fermentative microorganisms under anaerobic conditions, but it shows an 

increased growth yield during the exponential phase of the aerobic growth. However, 

the selected strain of allyl alcohol, shows an even lower biomass yield and since the 

acetaldehyde production is directly associated with biomass synthesis, the biomass yield 

of the mutant strain needs to be enhanced. To enhance the biomass yield of the allyl 

alcohol selected strain, a microbubble-driven system can be used to grow this bacterium 

aerobically. Microbubbles are more efficient in mass transfer than larger bubbles due to 

their high surface area-to-volume ratio. It is also more efficient than traditional 

cultivating techniques, leading to the maintenance of sufficient oxygen concentration 

during the bacterial propagation stage.  

This point targets to test the fourth objective, which is intensifying the bacterial growth 

during the propagation stage by integrating the microbubble generation system into the 

propagation unit. This objective is explored in chapter 9 and black-coded in Figure 1.1.  

1.4 General benefits of the current project  

The processes of pretreatment, inactivation, propagation and fermentation are clean processes 

with very low pollution levels. In fact, the pretreatment process uses lignocellulosic biomass as 

a substrate; therefore, it contributes to the recycling of energy in the ecosystem. Wheat straw is 

cheap biomass, and it might reduce the total operational cost of the fermentation process. 

Microbubbles might decrease the total cost of the pretreatment process, and could help to avoid 

the formation of inhibitory compounds from the biomass and lead to increased productivity of 

the whole process (Arrows 1, 2 and 3 in Figure 1.2). 

The inactivation process is a relatively new, non-thermal method. It uses the byproduct of the 

downstream process, the fermentation process, to inactivate the Pseudomonas culture. Also, it 

can be applied in situ, which might shorten the number of stages to connect to the upstream 

stage, the pretreatment process, with the downstream process, the fermentation process. Carbon 
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dioxide-enriched microbubbles might substantially reduce the amount of consumed energy 

compared with thermal methods such as autoclaving (Arrow 4 in Figure 1.2).  

Stripping of acetaldehyde and carbon dioxide contributes significantly to increasing the 

productivity of the fermentation process. It is worth mentioning that this process might also 

contribute to an increase in productivity of other fuels, since acetaldehyde represents a precursor 

for fuel production, especially for ethanol and butanol, and hence this might help to meet the 

global demand for these fuels (Arrows 6, 7, 8 and 9 in Figure 1.2).  

Ethyl acetate can also be produced during the growth in the synthetic medium. Ethyl acetate is 

one of the most important volatile industrial compounds as it is used as a chemical solvent and 

in the synthesis of biodiesels, paints, adhesives, herbicides and resins. Its annual production 

volume reached around 3.5 million tons in 2015, which corresponds to a $3.7 billion global 

market (Kruis et al., 2017).  

Additionally, the results from the propagation study are crucial for bacterial-based industries 

such as the biofuel, food, pharmaceutical industries, for which microbial biomass growth is a 

premium (Arrows 5 and 10 in Figure 1.2). 

Furthermore, this project will provide useful information about the operational conditions of 

both the fermentation and stripping processes, which can be used to scale up the benchmark 

process to larger industrial plants.  

1.5 Thesis Organisation  

This thesis is organised in the following way:  

(1) The first chapter gives a general introduction and the project objectives.  

(2) The second chapter gives some general background and literature reviews on the basic 

topics covered in this study. 

(3)  The third chapter gives details about the study’s materials and experimental methods. 

(4)  The fourth chapter shows the obtained results from the exploiting of microbubble-

microbe synergy for biomass pretreatment, along with its discussion.  

(5) The fifth chapter shows the obtained results and discussion of the exploiting of 

ozonolysis-microbe synergy for biomass pretreatment.  

(6) The sixth chapter shows the obtained results and discussion of the inactivation 

combined with cell lysis of Pseudomonas putida at low pressure using carbon dioxide-

enriched microbubbles.  
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(7) The seventh chapter shows the obtained results and discussion of the fermentation 

process using wild type strain integrated with the in-situ stripping of the fermentation 

products using microbubble technology.  

(8) The eighth chapter shows the obtained results and discussion of the fermentation 

process integrated with in situ stripping using a mutant Zymomonas strain selected with 

allyl alcohol.  

(9) The ninth chapter shows the obtained results and discussion of the intensification of the 

bacterial growth of Zymomonas mobilis, both wild-type and mutant-type, using 

microbubbles driven system and compared with traditional methods.  

(10) The tenth chapter provides references relevant to this study.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: General flow chart of the current project. 
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Chapter 2  

                                              Literature Review 

This chapter provides a critical assessment of relevant literature on the structure and 

pretreatment of lignocellulosic biomass, inactivation of microorganims and fermentation 

processes using Zymomonas mobilis.  

Firstly, various pretreatment methods of ligncoellulosic biomass are critically evaluated and the 

concept and importance of these methods are considered. The evaluation starts with non-bubble 

based techniques such as mechanical, physiochemical, chemical and biological pretreatment 

methods, and then moves on to highlight the benefits of the application of microbubbles as part 

of a bubble-based technique. Using biological pretreatment  methods to pretreat lignocellulosic 

biomass will leave the pretreatment slurry contaminetd with cellulolytic microbes and, before 

using the sugary content in the pretreatment slurry, the slurry needs to be inactivated.  

Next, various inactivation methods are critically evaluated and the proposed mechansims of 

action of carbon dioxide are reported in some detail.  

The charcateristics of Zymomonas mobilis as a fermentive microorganim used in the current 

study to conduct the fermentation process and its metabolic pathaway are described, where 

particular attention is drawn to acetaldehyde as a target product. Acetaldehyde separation 

techniques are critically evaluated. The benefits of using gas stripping are discussed. 

Microbubble charcteristics are given and discussed with emphasis on their advantages in both 

oxygenation and stripping off. The generation of microbubbles with the fluidic oscillator and 

an overview of the working mechanism of the novel device are given, on which the research 

work is centred.  

An important part of the lietrature review considers the fundementals of the airlift loop 

bioreactor and the advantages of using this type of reactor to conduct the fermentation process.  

The last section presents an overview of the effects of chemical activity of both acetaldehyde 

and carbon dioxide on the fermentation process. 

2.1 Pretreatment methods of lignocellulosic biomass  

Many pretreatment methodologies have aimed to make cellulose more accessible for cellulase 

enzymes which eventually can break down cellulose (and probably hemicellulose) to its basic 

unit, glucose (Kumar et al., 2009). Typically, the main purpose of pretreatment is to break down 
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the shield formed by lignin and hemicellulose and to disrupt the crystalline structure and reduce 

the degree of cellulose polymerisation (Zheng et al., 2009).  

Lignin is the most complicated component in lignocellulosic materials, and it covers this 

biomass and prevents access of cellulase enzymes to hydrolyse cellulose. On the other hand, 

cellulose forms a backbone that is surrounded by hemicellulose and lignin (Mussatto and 

Teixeira, 2010). Figure 2.1 shows the main components of lignocellulosic biomass with the 

typical arrangement of these elements (Mussatto and Teixeira, 2010).  

 

Figure 2.1: The typical arrangement of lignocellulosic biomass components, showing 

cellulose, hemicellulose and lignin fractions (Adapted from Mussatto and Teixeira, 2010). 

Yang et al. (2011) reported that the degree of cellulose polymerisation represents a recalcitrance 

for hydrolysing of lignocellulosic biomass. In contrast, Ioelovich and Morag (2011) observed 

that the degree of polymerisation has a minor effect on cellulolytic activities when commercial 

cellulases were used to study these activities. On the other hand, Yang et al. (2011) claimed that 

the amorphous cellulose is easier to hydrolyse by cellulase enzymes in comparison with 

crystalline cellulose, in which glucose chains are connected to each other by hydrogen bonds. 

Furthermore, Hall et al. (2010) found that cellulose crystallinity plays a crucial role in 

determining the hydrolysis rate of this molecule, where an increase in the cellulases’ initial rate 

was noticed alongside a decrease of the degree of cellulose crystallinity.  

Pretreatment methods can be categorised into mechanical (such as milling and grinding), 

physicochemical (steam pretreatment/autohydrolysis, wet oxidation and hydrothermolysis), 

chemical (alkali, dilute acids and ozonolysis), biological (cellulolytic microorganisms and 

commercial enzymes) and electrical (negative and positive currents), or a combination of these 

methods (Kumar et al., 2009). Hsu et al. (1980) showed the main action of different 

pretreatment methods on lignocellulosic biomass (Figure 2.2).  
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Figure 2.2: The main action of various pretreatment methods, whereby both lignin and 

hemicellulose as well as reducing the cellulose crystallization and polymerisation are the main 

targets of these pretreatment methods (Adapted from Hsu et al. 1980). 

2.1.1 Mechanical pretreatment  

Lignocellulosic biomass can be mechanically pretreated using chipping, milling and grinding, 

and the main purposes of this pretreatment are to reduce biomass size to small particles, 

decrease cellulose crystallinity and increase the surface area of the produced particles to 

improve their digestibility. Different types of apparatuses are used to achieve this goal, such as 

vibrating ball milling, ordinary ball milling and mortar and pestle. A mortar and pestle was used 

in the current project to accomplish the above goals (Kumar et al., 2009). 

2.1.2 Physicochemical pretreatment  

 Lignocellulosic biomass can be physicochemically pretreated using steam explosion and 

Ammonia Fiber Explosion (AFEX). In the former method, biomass is treated with saturated 

steam at high pressure, and then this pressure is released to produce sudden decomposition of 

the biomass. This method is combined with using high temperatures starting at 160-260˚C for 

several seconds to few minutes, which ends with a biomass explosion. Also, this method 

increases hemicellulose hydrolysis and lignin transformation to its fundamental units and 

cellulose hydrolysis. However, the steam explosion has many limiting factors, such as a 

residence time, temperature, particle size, water content and generation of inhibitors 

(Gnansounou and Dauriat, 2005).  

AFEX represents another well-known physicochemical pretreatment method. In this method, 

lignocellulosic biomass is exposed to liquid ammonia at a high temperature and pressure for a 
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particular period, and the pressure is suddenly dropped to cause a biomass explosion. Typically, 

liquid ammonia doses are 1-2kg per kg of biomass at 90˚C (Teymouri et al., 2004).  

2.1.3 Chemical Pretreatment 

Chemically, lignocellulosic biomass can be pretreated using ozone, which can substantially 

reduce lignin content and increase biomass digestibility. This method has many advantages 

over other pretreatment methods, such as producing almost no toxic compounds. In addition, 

ozonolysis is carried out at room temperature with standard pressure, and ozone can then 

quickly decompose using a catalytic bed (Lee et al., 2010). In contrast, there are some 

disadvantages related with this process, such as expensive, as this process requires a massive 

amount of ozone to achieve this goal due to the technical limitation of the ozonation process 

(Kumar et al., 2009).  

Recently, Kuvshinov et al. (2014) reported an improved technology to enhance ozonolysis. This 

technology depends mainly on direct injection of ozone into a pretreatment reactor using 

microbubble technology. It was found that the efficacy of this technology depends on the 

diffusion coefficient of ozone, which relies on contact time with and interfacial area of the 

microbubbles, the carriers. Phorbol-12-myristate-13-acetate (TPA) was treated with ozonolysis, 

and the detoxification of this chemical was achieved in 30 minutes with 26ppm of dissolved 

ozone, and oil with highly nutritious value was produced as a final product (Kuvshinov et al., 

2014).  

Criegee (1975) described the mechanism of ozonolysis, and how the carbon double bond was 

the primary target of this cleavage mechanism. This mechanism has three steps to complete the 

cleavage of double bonds by ozone. In the first reaction, the carbon double bond is reacting 

with the ozone, forming primary ozonide according to the following reaction (Criegee, 1975):  

  

 

The primary ozonide is decomposed into two compounds in the second reaction, which are 

carbonyl compound and carbonyl oxide:  

 

 

In the third reaction, carbonyl oxide is added to the carbonyl compound (addition reaction).  
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According to the above reactions, carbon double bond is the principal goal for ozonolysis, and 

it is cleaved to produce double bond free compounds.  

Acid hydrolysis represents another chemical pretreatment method, which has been widely used 

to treat lignocellulosic materials. Acids such as HCl and H2SO4 have been extensively used for 

this purpose, resulting in an increase in enzymatic hydrolysis activities. However, these acids 

are toxic, hazardous and corrosive, and they require a withstandable reactor to tolerate these 

harsh conditions, and that makes the pretreatment method very expensive. These acids should 

be recovered from the pretreatment slurry after finishing hydrolysis (Sun and Cheng, 2002). On 

the other hand, diluted acids have been used as an alternative method for concentrated acids. 

Typically, diluted HCI and H2SO4 are used below 4% to treat lignocellulosic biomass as an 

effective and inexpensive method, and there are many other advantages of this method such as 

removing hemicellulose from lignocellulosic biomass and enhancing the digestibility of 

cellulose by cellulases (Sun and Cheng, 2002).  

2.1.4 Biological Pretreatment 

Biologically, lignocellulosic materials can be hydrolysed into fermentable sugars, which can be 

utilised as substrates for fermentation processes. While chemical and physicochemical methods 

require specific instrument design and have high energy requirements, the biological method 

uses various types of microorganisms to achieve this purpose. This method is environmentally 

friendly and does not need a high amount of energy. In addition to lignin and hemicellulose 

degradation, this method is very efficient in cellulolytic activity (Kumar et al., 2009).  

2.1.4.1 Cellulases applications  

Cellulolytic enzymes have drawn much attention as they can be used in the textile industry for 

improving fabric quality, and to improve the nutritional quality and digestibility of animal feed. 

These enzymes have also been utilised in the paper and detergent industries for several decades 

(Sukumaran et al., 2005). Recently, the fossil fuels shortage causes an increasing need for an 

alternative source of renewable energy, and lignocellulosic biomasses represent one promising 

sources of bioenergy. The cellulosic part of this biomass can be converted biologically to its 

fundamental unit, glucose, using cellulases. The production of theses enzymes and using them 

in different technologies has reached a stage where these enzymes become a vital element in 

these processes (Xia and Cen, 1999). For example, Belghith et al. (2001) used cellulases from 
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Penicillium occitanis in the bio-stoning of denim as an alternative to pumice stones, which are 

traditionally used in the textile industry. The enzymes act on cellulose fibers to release the 

indigo dye used to colour these fabrics, which consequently produces an etiolated view of the 

denim. However, On the other hand, pure enzymes are expensive, and they might take a major 

part of the capital costs (Sukumaran et al., 2005).  

Cellulolytic microorganisms can degrade cellulosic materials and convert them to glucose and 

other fermentable sugars, which can be used as a microbial substrate or fermentation substrate 

to produce a variety of products such as biofuels (Deshpande et al., 1986). While there are many 

cellulolytic microorganisms that have been described previously, none of them is effective 

enough alone to hydrolyse various components of lignocellulosic biomass. Currently, the 

strategy used in the production of biofuels from lignocellulosic feedstock is a multi-stage 

strategy including pretreatment of this biomass to extract lignin and hemicellulose, and residual 

cellulose is then converted to fermentable sugar at mild temperatures, which is eventually used 

by microorganisms to produce alcohols as final products (Rani et al., 1997). Much research has 

focused on the isolation of new cellulase systems and the optimisation of process conditions. 

Trichoderma reesei has been used to achieve this process in many bioethanol production plants, 

as it showed highly efficient cellulolytic activity (Sukumaran et al., 2005). To increase the 

efficiency of biofuels production, serious attempts have been made to identify efficient 

cellulolytic systems, and the current study puts the spotlight on the cellulolytic activity of 

Pseudomonas putida KT2440.  

2.1.4.2 Control the cellulases’ secretion  

Cellulolytic microbes are carbohydrate degrader microorganisms, which cannot use proteins or 

lipids as energy sources for their growth and propagation (Lynd et al., 2002). Various 

microbiological groups have shown cellulolytic activities, notably bacteria such as 

Cellulomonas and Cytophaga, while fungi tend to have a wide range of carbohydrate utilisation 

(Poulsen and Petersen, 1988; Rajoka and Malik, 1997). The ability to secrete large quantities 

of extracellular proteins is distinguishable among some fungi such as Trichoderma reesei, 

though this ability is less available in bacteria (Sukumaran et al., 2005).  

The cellulolytic systems can be divided into secreted and cell-associated enzymes according to 

their mode of action and structural properties (Henrissat et al., 1998; Crout and Vic, 1998). 

There are three major groups of enzymes:  

http://www.thesaurus.com/browse/distinguishing
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A- Endoglucanases (EC.3.2.1.4, 1,4-B-D-glucan-4-glucanohydrolases)  

This group of enzymes attacks cellulose chains at random sites and produces smaller chains. In 

addition, this group might release glucose and cellobiose, and create sites for the activity of the 

next group, exocellobiohydrolases (Ibrahim and El-diwany, 2007).  

B- Exocellobiohydrolases (EC.3.2.1.91, 1, 4-B-D-glucan-glucohydrolases)  

This group of enzymes attacks the non-reducing ends of cellulose chains and releases cellobiose 

as the main product of their activity (Ibrahim and El-diwany, 2007).  

C- β-glucosidases (EC. 4.2.1.21, β-D-glucoside – glucohydrolase) 

This group represents the last group of the cellulolytic system, and it cleaves cellobiose into 

two glucose molecules, the final product in cellulolytic activity (Bravo et al., 2002). Figure 2.3 

shows the mode of action of the three major groups of cellulases activities.  

Cellulase production is a growth-associated activity associated with increase in the biomass. 

During submerged fermentation, many factors can influence cellulase production, such as the 

type and concentration of the inducer, carbon sources, nitrogen sources and the mode of culture, 

i.e. batch, fed-batch, or continuous cultures.  

 

 

2.1.4.3 Characteristics of Pseudomonas putida as a cellulolytic agent  

Pseudomonas putida is a gram-negative, rod-shaped, aerobic bacterium. It shows significant 

metabolic diversity. It is adapted to different environments such as soils, aquatic systems, and 

the rhizosphere (Timmis, 2002). Dos Santos et al. (2004) described Pseudomonas putida as a 

Figure 2.3: Enzymatic degradation of cellulose by cellulolytic enzymes, involving 

cellobiohydrolases (CΒH), endoglucanases (EG), type1 and type 2 PMOs (PMO1 and 

PMO2, respectively). Cellobiose dehydrogenase (CDH) is a potential electron donor for 

PMOs. EGs and PMOs cleave internally cellulose chains releasing chain ends that are 

targeted by CBHs. CBHs generate cellobiose or oxidized cellobiose that are 

subsequently hydrolyzed by β-glucosidase (Adapted from Dimarogona 2012). 
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well-studied species in this genus, and its biological features have been intensively explored 

along with its underlying mechanisms. This bacterium has shown rapid growth behaviour and 

many fantastic features such as robustness. Amenability for genetic modifications makes this 

bacterium serve as a model microorganism for research on soil bacteria and the many processes 

that depend on the interaction between bacteria and soil (Timmis, 2002).  

Regarding cellulolytic activities, Fagade and Bamigboye (2012) studied the effects of cultural 

conditions on cellulase activities of different bacterial strains such as Pseudomonas putida, 

Bacillus subtilis, Bacillus lichenformis I and Bacillus licheniformis II, which had been isolated 

from corn cobs. Pseudomonas putida exhibited moderate cellulase activities at 28℃ and 40℃, 

where high cellulase activity was observed at 32℃. While highest cellulase activity was 

observed at pH7, the lowest cellulase activity was noticed at pH4 and pH5.5. Fagade and 

Bamigboye (2012) also examined cellulases activities with different nitrogen sources, and the 

highest cellulase activity was observed with yeast extract and NaNO3 as a nitrogen source, 

while moderate activities were observed with peptone, urea and NH4Cl. Dabhi et al. (2014) 

used bacterial consortia to hydrolyse banana waste and to produce cellulase enzymes. Four 

bacteria were used to produce these consortia: Cellulomonas cartae, Pseudomonas 

fluorescence, Pseudomonas putida and Bacillus megaterium. Finally, Pseudomonas putida was 

found to have all the cellulase enzymes required to hydrolyse lignocellulosic biomass (Dabhi 

et al., 2014).  

The cellulolytic enzymes of Pseudomonas putida have been tested. For example, filter 

paperase, carboxymethyl cellulase and β-D-glycosidase were tested, and the enzymatic 

activities were 0.3 U/ml, 0.2 U/ml and 0.02 U/ml after 25 days for β-D-glycosidase, CMCase 

and FPase respectively (Dabhi et al., 2014).  

Indeed, this microbe is a potent candidate for biological pretreatment of lignocellulosic 

biomass, and it has all of the important features to achieve this process. This bacterium is very 

efficient in phenol degradation, and because the fundamental unit of lignin is phenol propionic 

unit, Pseudomonas putida is likely to overcome this barrier.  

After using Pseudomonas putida in the biological pretreatment of lignocellulosic biomass, the 

pretreatment slurry should then be inactivated prior feeding it to the fermentation process. 

Various inactivation processes are critically evaluated and given in the below section.  
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2.2 Inactivation of microbial culture using carbon dioxide  

2.2.1 Inactivation processes  

Inactivation (disinfection) is a process of reduction of some contaminating organisms to a level 

that cannot cause infection. Conventionally, disinfection methods can be divided into two main 

categories, which are thermal and non-thermal methods. Thermal methods are used to sterilise 

various materials such as food, medical devices and water. However, many biomaterials are 

heat-sensitive materials, and they can be destroyed by heat such as removal of flavour, 

denaturation of proteins compounds, changing in physical, mechanical and optical 

characteristics of these materials (Nair, 1995). Steam sterilisation represents one of the most 

common techniques in this category, which has a reasonable operational cost and effectiveness,  

however, due to the drawbacks mentioned above, it is not suitable for many bioprocesses 

(Dillow et al., 1999).  

Consequently, there is increasing demand for non-thermal inactivation methods, such as 

ethylene oxide, 𝛾-irradiation and supercritical carbon dioxide. Ethylene oxide can be applied to 

heat-labile materials as an efficient sterilisation technique, but this chemical is toxic, flammable 

and carcinogenic, and it may cause hemolysis, and undesirable chemical changes in the treated 

biomaterials (Dillow et al., 1999). On the other hand, 𝛾-irradiation is suitable for heat sensitive 

materials as well, but it can cause harmful mechanical changes within biomaterials. In addition, 

the infrastructure of these biomaterials can also be affected, and its chains might be broken 

down by this radiation (Premnath et al., 1996). While ethylene oxide and 𝛾-irradiation might 

have destructive effects on treated biomaterials, inactivation with carbon dioxide does not have 

many of these limitations.  

Recently, CO2 has been used to preserve food as a non-thermal process as it can inactivate a 

wide range of microorganisms such as yeast and bacteria. The primary action of inactivation is 

triggered by disturbance of or damage to the balance of the biological system of cells (Hong 

and Pyun, 2001). There are many proposed targets for CO2 activities, which are discussed 

below.  

Previously, it was observed that CO2 has a very high tendency to dissolve in water, and this 

tendency becomes even greater with hydrophobic solutions such as ethanol and acetone. The 

CO2 solubility coefficient is approximately 1 at 15℃, and that means at 15℃, 1ml of CO2, 

dissolved in 1 ml of water, and this solubility decreases with increasing temperature (Slaughter, 

1989).  
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The survivor ratio can be calculated using the following equation, which described by 

(Spilimbergo and Bertucco, 2003):  

Log 
𝑁

𝑁𝑜
 = k .t .2.303     (Eq. 2.1) 

Where k is the sterilisation rate constant (h-1), and t is the time. 

2.2.2 Carbon dioxide mechanisms of action  

Carbon dioxide can inactivate microorganisms via various potential mechanisms, which have 

been reviewed by Garcia-Gonzalez et al., (2007). These mechanisms are arranged as steps to 

illustrate them and to explain their bacteriostatic actions. Figure 2.4 shows the potential 

mechanisms of carbon dioxide actions.   

 

2.2.2.1 Step one: Solubility of CO2 in the exterior liquid phase  

CO2 can dissolve in foodstuff and culture broths with high water content, after which it can be 

dissociated to form carbonic acid (H2CO3). This acid is dissociated into three other compounds, 

which are bicarbonate (HCO3−), carbonate (CO3
2−) and ionic species hydrogen (H+) (Garcia-

Gonzalez et al., 2007).  

The formation of carbonic acid and liberation of H ionic species can lower extracellular pH (pH 

ex) in the broth cultures, which may inhibit microbial growth (Valley and Rettger, 1927; 

Hutkins and Nannen, 1993). Decreasing extracellular pH may also reduce microbial resistance 

Figure 2.4: Actions of carbon dioxide on bacteria, besides the different steps of the inactivation 

mechanism–are① a phospholipid bilayer, ② integral membrane proteins, ③ a plasma membrane 

H+-ATPase, and ④intracellular substances (Adapted from Garcia-Gonazalez et al., 2007) 
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to an inactivation process due to increasing energy consumption by proton motive force to 

maintain the pH balance within microorganisms (Hutkins and Nannen, 1993; Hong and Pyun, 

1999). However, decreasing the pH of extracellular liquid cannot be the primary reason for the 

lethal effect of CO2, as the observed effect is greater than effects of other acids that have been 

typically used to increase medium acidity, such as HCl and H3PO4. In addition, these acids do 

not show a tendency to penetrate microbial cells, while CO2 seems to enter microbial cells 

quickly (King and Mabbitt, 1982; Debs-Louka et al., 1999; Ho-mu et al., 1993).  

2.2.2.2 Step two: Modification of cell membrane  

It has been noticed that CO2 diffuses through the cell membrane of microorganisms, and it can 

accumulate in the phospholipid layer of this membrane. This accumulation leads to an increase 

in the fluidity of the plasma membrane and causes an anesthesia effect on microbial cells 

(Isenschmid et al., 1995). Spilimbergo et al. (2002) noticed that CO2 is dissolved in the 

phospholipid layer to a very great extent.  

In addition, a decrease in the water permeability of the membrane was observed as an additional 

effect of treatment with CO2 (Glinka and Reinhold, 1972, cited in Jones and Greenfield, 1982). 

It was suggested that the formation of bicarbonate might change charged phospholipids head 

groups and integrated proteins with the plasma membrane, and this leads to alter the density of 

surface charges and optimal loss functions of the membrane (Garcia-Gonzalez et al., 2007).  

2.2.2.3 Step three: Decreasing the intercellular pH  

Increasing membrane permeability allows pressured CO2 to easily cross the cell membrane and 

accumulate within the cytoplasm. Initially, penetrated CO2 and HCO3- are controlled by the 

internal buffer within cell cytoplasm as there are many mechanisms to control and regulate pH 

within the cell such as cytoplasmic buffering, proton symport systems, production of acids and 

bases, and proton pumps (Booth, 1985). Membrane-bound H+- ATPase system might play the 

most important role in maintaining an almost constant internal pH. In this system, protons are 

expelled outside the cells against both pH gradient and electrochemical gradient, and both of 

these gradients are known as a motive proton force (Hutkins and Nannen, 1993). Under normal 

conditions, the cells can neutralise penetrated CO2 and keep the internal pH within a standard 

range, however, with increasing the dissolved CO2, the cells cannot expel all generated protons, 

and the internal pH will start to decrease. Subsequently, a cell’s viability can seriously be 

harmed if the internal pH severely decreases if there is a large difference between the internal 

and external pH (∆pH=pHi-pHex) (Hutkins and Nannen, 1993).  
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2.2.2.4 Step four: Inactivation of vital enzymes and inhibition of cellular metabolisms due to low 

internal pH  

Lowering the internal pH can affect a range of enzymes and proteins in the cytosol. Typically, 

these enzymes optimally work under optimum pH, while their activities are declined and 

impaired with decreased internal pH. Similarly, decreasing the internal pH can inhibit many 

metabolic systems such as glycolysis, amino acid, and peptide transport temporarily or 

permanently, leading to the inactivation of key enzymes (Hutkins and Nannen, 1993). 

Hong and Pyun (2001) studied the membrane damage and enzyme inactivation in Lactobacillus 

plantarum after treating it with pressured CO2. It was found that Lactobacillus cells suffer from 

irreversible changes in their cellular membrane, reducing glycolytic activities and inactivating 

constituent enzymes.  

2.2.2.5 Step five: Direct inhibitory effect of CO2 and HCO3
- on metabolism  

There are many factors that regulate enzymes’ reactions. As mentioned above, the intracellular 

pH represents one factor, as do the concentration of substrates, products, and cofactor, which 

regulate the enzymes’ activities. Jones and Greenfield (1982) found that many enzymes can be 

regulated (stimulated or inhibited) by bicarbonate anion as these enzymes have anion-sensitive 

sites in their structures. However, dissolved CO2 does not seem to have this function. 

2.2.2.6 Step six: Unbalancing the internal electrolytes  

Inorganic electrolytes have many roles inside microbial cells, such as maintaining an osmotic 

balance between cells and its surrounding environment, and they contribute in the stabilisation 

of the cell membrane and proteins. The applied CO2 can accumulate inside the cytoplasm of 

bacterial cells, where bicarbonate converts to carbonate. Carbonate can react with some of the 

inorganic electrolytes (such as Mg+2 and Ca+2), causing precipitation of these electrolytes. The 

precipitation of these electrolytes have harmful effects on volumes of cells, as these electrolytes 

contribute to the osmotic relationship of cells with their surroundings (Lin et al., 1993). In 

addition, carbonate can react with some of the proteins, which have magnesium and calcium 

binding to their structures, and this would precipitate these proteins after binding CO3
-2 to their 

binding sites (Gangola and Rosen, 1987).  

2.2.2.7 Step seven: Removal of vital moieties from cell membrane  

Lin et al. (1992) have shown that the accumulation of pressured CO2 within the cells has a high 

extracting power for vital constituents from cells and cells membranes. It was found that 

dissolved CO2 tends to build up to a critical level within cells, leading to the removal of some 

internal moieties such as phospholipid bilayers, and this will disturb the structure of the 
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cytoplasmic membrane (Lin et al., 1992). Furthermore, the rapid release of the applied pressure 

can enhance the movement of these internal constituents to the outer environment (Lin et al., 

1993).  

As will be shown later on in this chapter, microbubbles have many fantastic characteristics such 

as a high surface area-to-volume ratio, slow rising velocity and high solubility in water, and 

they can be used to increase the solubility of CO2 . Recently, Ying (2013) used CO2-enriched 

microbubbles to grow microalgae, and it was found that using 5% CO2 can enhance the mass 

transfer coefficient of CO2 (KLa) by 30-100% with different flow rates. Additionally, Al-

Mashhadani (2013) has shown pH responses during bubbling CO2  into water, where it was 

found that after 6 minutes the pH value dropped from 7 to 4.5 in a 8.3L reactor full of water. 

These two studies show the potential of using CO2-enriched microbubbles in the inactivation 

process of P.putida.  

The inactivated pretreatment slurry can be then fed to the fermenter in order to conduct the 

fermentation process. The bacterial fermentation in the current study is conducted using 

Zymomonas mobilis as a fermentative microbe and the metabolic features of Zymomonas 

mobilis is reviewed in the next section.  

2.3 Characteristics of Zymomonas mobilis in acetaldehyde and ethanol production  

2.3.1 Entner-Doudoroff (ED) pathway 

Zymomonas mobilis has long been used in equatorial regions to produce various sorts of 

alcoholic beverages. It uses the Entner-Doudoroff (ED) pathway to metabolise sugars (mainly 

glucose) to produce ethanol. This pathway (Figure 2.5) produces one mole of ATP for each 

mole of glucose being metabolised (Seo et al., 2005). Microorganisms have developed various 

glucose-consuming pathways as a part of the metabolism diversity, such as the Entner-

Doudoroff (ED), Embden-Meyerhof-Parnas (EMP) and phosphoketolase pathways. However, 

it has been argued that using any particular glucose metabolism pathway represents a bargain 

between the energy yield and the amount of proteins needed to catalyse the flux of the pathway 

(Flamholz et al., 2013). These glycolytic pathways are varied in the sequencing of their 

reactions and the amount of ATP produced from each mole of glucose being metabolised, which 

might range from 0 to 3 in many cases (Bar-Even et al., 2012). The typical scenario is the same 

in all these pathways, where glucose is phosphorylated and then dissected into two molecules 

of three-carbon atoms, pyruvate. These triplet molecules are eventually metabolised to produce 

ethanol.  
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Although it seems that the EMP pathway provides twice as much ATP as the ED pathway, the 

latter pathway has many advantages over using the classical EMP pathway. For example, 

microorganisms that are lacking the ED pathway cannot grow on the gluconate and ultimately 

cannot colonise many environments, such as a mammalian large intestine. Hence, the ED 

pathway represents an advantage for these microbes in such environments (Sweeney et al., 

1996). In addition, the ED pathway has more exergonic reactions than the EMP pathway, and 

that makes it thermodynamically favourable (Flamholz et al., 2013; Noor et al., 2012).  

Additionally, the EMP pathway has several more folds of enzymatic proteins than the ED 

pathway and many of them are thermodynamic bottlenecks, such as 6 biphosphate aldolase, 

while the ED pathway has several times fewer enzymes, and it avoids thermodynamic 

bottlenecks (which is thermodynamically unfavourable) by missing these reactions (Flamholz 

et al., 2013; Beard and Qian, 2007). The importance of the former feature is using very 

exergonic reactions (which is thermodynamically favourable), whereas the latter feature means 

that microorganisms avoid adverse effects of high enzymatic expressions, which could increase 

the misfolding probabilities of these enzymes (Drummond and Wilke, 2008) or the toxic 

activities of enzymes is being promiscuous (Eames and Kortemme, 2012). Moreover, these 

pathways differ in their requirements for cofactors such as NAD+ and NADP+ (Conway, 1992).  
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There are many advantages of using Z. mobilis in the fermentation processes. These include: i) 

large and specific uptake rates of glucose and ethanol production; ii) High ethanol productivity, 

which is close to theoretical productivity with relatively little amount of biomass formation; iii) 

Tolerance to high ethanol concentration, which may reach 16 % (v/v); and iv) Feasibility for 

genetic manipulation (Rogers et al., 1979). While the wild strain of Z. mobilis can use only a 

narrow range of sugars (such as glucose, fructose, and sucrose) as a sole carbon source, 

recombinant strains have been developed to utilise pentose sugars such as xylose and arabinose 

as well as hexoses sugars (Deanda et al., 1996).  

Interestingly, Z.mobilis has a respiratory electron transport chain, and it shows an increased 

growth yield during the exponential phase of the aerobic growth. Concurrently, ethanol 

productivity decreases and other products start to be accumulated, which are reduced 

metabolites such as acetaldehyde and acetate (Seo et al., 2005). This chain competes with the 

alcohol dehydrogenase reaction, as both reactions use reducing equivalents NAD (P) H as a 

cofactor (Kalnenieks et al., 2000). Figure 2.6 shows the competition between respiratory 

electron transport chain and alcohol dehydrogenases. 

Figure 2.5: Entner-Doudoroff pathway combined with Krebs cycle, enzymes missing from Z. 

mobilis are represented by red dotted arrow (Adapted from Seo et al., 2005). 
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Figure 2.6: The competition between the respiratory electron transport chain and alcohol 

dehydrogenase on reducing equivalent NAD (P)H (Adapted from Kalnenieks et al., 2000). 

While the respiratory chain consumption of NAD (P) H, limits the reduction of acetaldehyde to 

ethanol, the inhibition of the respiration chain leads to less acetaldehyde to be accumulated. 

The presence of the respiration chain in this bacterium leads to less NADH being available for 

the alcohol dehydrogenase reaction, which is responsible for converting acetaldehyde to ethanol 

and thus acetaldehyde accumulates. The accumulation of acetaldehyde might inhibit the 

bacterium growth.  

2.3.2 Putative energy dissipation mechanisms and carbon dioxide accumulation  

2.3.2.1 Putative energy dissipation mechanisms  

There are many ATP-hydrolysing activities in Zymomonas mobilis such as acid and alkaline 

phosphatases, a periplasmic 5’-nucleotidase and ATPase. However, ATPase has the highest 

contribution of the hydrolysis of the intracellular pool of ATP (Kalnenieks, 2006). ATPase 

hydrolysis activity contributes to about 20% of the total intracellular ATP hydrolysis according 

to the calculation based on the proton-pumping ATPase activity in the membrane preparations 

(Reyes and Scopes, 1991; Zikmanis et al., 1999). The membrane F0-F1 ATPase enzyme is the 

most likely candidate for recycling the excess ATP in the Zymomonas mobilis (Lazdunshi and 

Belaich, 1972; Reyes and Scopes, 1991; Kalnenieks, 2006). 

Other energy-consuming activities, such as kinase’s and phosphatase’s futile cycles, are less 

likely to be significantly involved in the energy-consuming reactions (Jones and Doelle, 1991). 

Lazdunshi and Belaich (1972) showed that ATPase enzyme exhibits two functions, which are 

a high-affinity system and a low-affinity system. While the high-affinity system is responsible 

for pumping the protons across the cytoplasmic membrane, the low-affinity system works as an 

ATPase only. Indeed, using a F0-F1 inhibitor such as dicyclohexylcarodiimide (DCCD) 

supported the key role of membrane–ATPase in the cellular energy dissipation in Zymomonas 

mobilis. The increase in growth yield on glucose was achieved when 0.5mM DCCD used during 
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the growing of Zymomonas cells (Kalnenieks et al., 1987, cited in Kalnenieks, 2006). Russell 

and Strobel (1990) also reported the same effect of DCCD in Streptococcus bovis, when the 

F0-F1 ATPase was completely inhibited by this inhibitor. It should be noted that this enzyme 

plays a major role in the energy-spilling reaction under plenty of glucose (Cook and Russell, 

1994). H+-ATPase, however, does not dissipate the energy itself but instead coverts it to the 

form of transmembrane proton-motive force (∆P) and thus the energy-dissipation problem is 

converted to an ∆P dissipation problem, which is a futile transmembrane proton cycle.  

2.3.2.2 Carbon dioxide accumulation  

Carbon dioxide is the second major end-product of Zymomonas mobilis catabolism. Several 

papers were published in the 1980s (e.g. Nipkow et al., 1985 and Veeramulla and Agrawal, 

1986) on CO2’s effect on the fermentative performance of Zymomonas mobilis. This bacterium 

is one of the most accelerated producers of CO2 in the microbial world. Seemingly, the major 

portion of this gas leaves the Zymomonas cell by passive diffusion as a neutral gas molecule 

(Kalnenieks, 2006). Forster et al. (1988) found that the lipid bilayer of the cell membrane does 

not represent a serious diffusion barrier for CO2 when erythrocytes were used as a model for 

CO2 permeability. Concurrently, some of the generated CO2 in the cytoplasm of bacterial cells 

might go through a hydration reaction catalysed by carbonic anhydrase. The produced carbonic 

acid is subsequently dissociated into a proton and bicarbonate anion (Merlin et al., 2003). 

Considering the equilibrium constants of the dissociation reactions (Merlin et al., 2003; Mills 

and Urey, 1940) and using 6.4 as an intracellular pH, it can be estimated that around 10% of 

CO2 can be present as a bicarbonate anion in Zymomonas mobilis culture under equilibrium 

conditions (Kalnenieks, 2006).  

Exporting these bicarbonate anions outside the cell represents an efficient ∆p (transmembrane 

proton-motive force) dissipation pathway, equivalent to importing mechanism of protons; a unit 

negative charge might be translocated into the extracellular medium due to this pathway (Figure 

2.7). This translocation would decrease the ∆Ψ (the transmembrane electric potential) by 

leaving a proton behind in the cytoplasm, and this eventually leads to a diminishing of the 

transmembrane pH gradient (Kalnenieks, 2006). 
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Figure 2.7: The putative energy-spilling pathways in Zymomonas mobilis (Adapted from 

Kalnenieks, 2006). 

Kalnenieks (2006) speculated that these pathways can work in Zymomonas mobilis as long as 

some conditions are met. These conditions are:  

1. A high intracellular concentrations of carbon dioxide;  

2. Equilibrium between the intracellular pools of carbon dioxide and bicarbonate; 

3. Enough membrane permeability of bicarbonate anions;  

4. An alkaline transmembrane gradient of pH. 

The first and the last conditions have been fulfilled (Kalnenieks, 2006), while the second and 

the third conditions need to be further explored.  

Carbonic anhydrase is a crucial enzyme for an efficient conversion of the carbon dioxide to 

bicarbonate anions (Merlin et al., 2003). The gene of this enzyme had already been identified 

in the genome of Zymomonas mobilis by Seo et al. (2005). However, no evidence for carbonic 

anhydrase activity in Zymomonas mobilis has been published so far. The permeability of the 

lipid bilayer for charged species is substantially lower than the neutral molecules; therefore, a 

specific transport system must be acted upon the bicarbonate ions to generate a computable 

depolarising effect (Kalnenieks, 2006).  

2.4 Acetaldehyde  

Acetaldehyde is a colourless, clear liquid with an acrid and fruity smell. It is extremely 

flammable, and its vapour will explode if it is exposed to outside factors such as a flame or heat. 

This chemical has the molecular formula C2H4O (Eckert et al., 2012). Acetaldehyde is also 
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called ethanal, and it has a structural formula shown in Figure 2.8 and chemical and physical 

properties shown in Table 2.1.  

 

Acetaldehyde molecule  

 

 

Ethanal naturally exists in many food and beverages such as fruit, vegetables, dairy products 

and bread, but its concentrations vary. It was found that its concentration ranges between 0.2-

230ppm, 0.2-400ppm, 0.001-76ppm and 4.2-9.9ppm in the above products, respectively (TNO, 

1996; Cantox Health Science International, 2003, cited in Food Safety Commission, 2005). 

Acetaldehyde is miscible with water and some other solvents such as benzene, gasoline and 

acetone (Department of Health and Human Services, 2014).  

Acetaldehyde has many industrial uses, and it has been suggested that the industrial production 

of acetaldehyde in large quantities is crucial to meet the industrial demands. For instance, 

acetaldehyde is used as an intermediate to produce products such as acetic acid, acetic 

anhydride, pyridine derivatives, plastic, butanol, dyes like aniline dye, and even synthetic 

rubber and pesticides (American Conference of Governmental Industrial Hygienists, 1991; 

United States National Library of Medicine, 1998, cited in WHO, 1999). In addition, 

acetaldehyde is produced naturally by many processes such as combustion and the photo-

Figure 2.8: Structural formula of acetaldehyde (Adapted from WHO, 1999). 

Table 2.2.1: Chemical and Physical properties of acetaldehyde (Adapted from EPA, 1987). 



Chapter two                                                                                                 Literature Review 

 

 

 31 

oxidation of hydrocarbons, but it is emitted to the atmosphere. Because it is an intermediate in 

the metabolism of ethanol and sugars, it could be found in small quantities in the human blood 

and alcoholic beverages (Jira et al., 1985; Hagemeyer, 1991, cited in WHO, 1999). 

Additionally, ethanal is added to some types of food and beverages as a flavouring agent or an 

additive. For example, it is added to some baked foodstuffs, desserts and candy, and is utilised 

to add a flavour to the dairy products and fruit juices (WHO, 1999).  

Acetaldehyde was previousely produced from different microorganisms for industrial purposes. 

For example, Romano et al. (1994) produced this chemical from S.cerevisiae in a synthetic 

medium and grape must, and it was found that acetaldehyde concentrations ranged from a few 

mg/L to 60 mg/L at 30˚C. It was concluded that its production is strain-dependent, and that 

there was no significant difference between those two media (Romano et al., 1994). Zhu (2011) 

studied the acetaldehyde production from E.coli K12 MG1655 after the genetic modification to 

produce a new strain (ZH88), and it was found that this bacterium could produce 4.91±0.29mM 

of acetaldehyde after cloning acetaldehyde dehydrogenase and acetyl-CoA reductase genes 

from Salmonella enterica.  

Wecker and Zall (1987), however, used Zymomonas mobilis ZM4 to produce acetaldehyde, 

when Zymomonas mobilis was selected using 100mM of allyl alcohol to produce a mutant 

strain, which can produce an elevated concentration of acetaldehyde. The highest concentration 

of acetaldehyde produced was 92mM in an aerated flask as an accumulated concentration 

(Wecker and Zall, 1987). In addition, Ishikawa and Tanaka (1992) compared the acetaldehyde 

production from Zymomonas mobilis in plugged flasks with its production in aerated flasks after 

considering the volatilisation rate constant (Kv) and the initial oxygen transfer coefficient 

(KLa). The authors found that the aerated flasks had more potential to produce acetaldehyde in 

large quantities than plugged flasks, and it was observed that cell growth of Zymomonas mobilis 

was strongly inhibited by acetaldehyde, and that makes acetaldehyde production very difficult 

in plugged flasks (Ishikawa and Tanaka, 1992). The jar fermenter was developed to scale up 

the acetaldehyde production from the aerated flasks, and it was used to produce about 150mM 

of acetaldehyde (Ishikawa et al., 1990).  

Growing Zymomonas mobilis under aerobic conditions has many physiological advantages over 

anaerobic conditions, including enhancing biomass growth and producing less reduced 

metabolites such as acetaldehyde. The produced acetaldehyde at the early stages of aerobic 

growth, however, provides a competitive growth strategy against other microorganisms, which 
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might exist in its environment (Kalnenieks et al., 2000). However, the production of inhibitory 

substances such as acetaldehyde can reduce the rapid growth of Zymomonas, and can also 

inhibit a wide range of microorganisms. This inhibitory effect for other bacteria was well-

studied in conjugation experiments (Pappas et al., 1997). Initially, it was thought that the 

inhibition of other bacteria was due to colicin production from this bacterium (Dos Santos et 

al., 2004; De Souza et al., 2011). However, it has been found that this bacterium has two 

competitive strategies to inhibit the growth of other bacteria. The first strategy is in anaerobic 

conditions in which Zymomonas has very high ethanol-specific production rates, as well as a 

high ethanol tolerance exceeding that of many other microorganisms. The second strategy is to 

use aerobic conditions in which Zymomonas shows high respiration rates with self-inhibition 

as a result of acetaldehyde production (Kalnenieks et al., 2000). 

2.5 Classification of Low-molecular-weight fermentation products  

The fermentation products can be classified according to the relationship between product 

synthesis and energy generation in the cell (Doran, 2013).  

2.5.1 Product formation directly coupled with the energy generation  

In this class, products are formed directly as end or by-products of the energy generation and 

synthesised using ATP production pathways. The classical examples for this category are 

ethanol, acetic acid, acetone, acetaldehyde, and butanol.  Growth is normally the principal 

energy requiring process of the microbial cells and thus; these products will be formed 

whenever there is growth within the fermentation process.  

 2.5.2 Product formation indirectly coupled with the energy generation  

This class is partly associated with the energy generation, but it requires further energy for 

synthesis these products. Examples of this category are amino acids, nucleotides, and citric 

acid.   

2.5.3 Product formation not coupled with the energy generation  

Formation of these products involves reactions, which are far from the energy generation 

pathways. Examples of this group are antibiotics such as Penicillin, Streptomycin, and vitamins.  

In addition, the production of these metabolites is complicatedly related with the growth as the 

growth and product synthesis are dissociated (Doran, 2013).  

2.6 Acetaldehyde as a precursor for fuels production 

Interestingly, acetaldehyde can also use as a potential substrate for fuels production. Mainly, 

there are two different ways to use this compound in fuels production, which are the chemical 
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and the biological methods. These methods have been used to produce ethanol and butanol from 

this compound. For example, Eram and Ma (2013) used the biological method to produce 

ethanol, and it was mentioned that aldehydes generally and acetaldehyde specifically can be 

reduced to ethanol by alcohol dehydrogenases and these enzymes have been widely 

characterised from various mesophilic, thermophilic and hyperthermophilic microorganisms. 

Neale et al. (1986) had purified two alcohol dehydrogenase enzymes in Zymomonas mobilis, 

which are responsible for converting acetaldehyde to ethanol and vice versa. Therefore, it is 

fair to say that many microorganisms use acetaldehyde as a substrate to produce ethanol inside 

their biological systems. However, the structure of these enzymes and cofactors are varied 

between microorganisms.  

Regarding the chemical methods, Dowson and Wass (2012) patented a novel method to convert 

ethanol to butanol using acetaldehyde as an intermediate. This method has two main stages. In 

the first stage, ethanol is dehydrogenated into acetaldehyde by a catalyst, which generates 

hydrogen as a by-product. The second stage includes a selective aldol condensation of two 

acetaldehyde molecules, which were generated in the first stage into one crotonaldehyde (but-

2-enal) molecule. The latter molecule is hydrogenated by hydrogen created in the first stage to 

yield butanol as a final product. Using acetaldehyde as a substrate can lead to avoiding the first 

stage, which is the endergonic stage (non-spontaneous and thermodynamically unfavourable).  

2.7 Recovery of final products from the fermentation broth by gas stripping  

Many methods have been developed for in situ recovery of a product from the fermentation 

broth. These methods, such as adsorption, liquid-liquid extraction, pervapouration, and reverse 

osmosis, can remove products from the fermentation broths in situ, but they have common 

problems of intensive energy consumption and low efficiency in product recovery with high 

concentrations of products and some of them use membranes, which might be fouled and need 

regular replacement (Xue et al., 2013). To remove the accumulated products (mainly 

acetaldehyde and carbon dioxide) from the fermentation broth, various separations processes 

can be used; however, the attention in the current study is drawn towards the gas stripping 

technique using microbubbles.   

Gas stripping is a promising alternative technique and is used in the current study. It involves 

sparging a gas through a bioreactor by using a sparger or perforated plates. Sparged gas can 

generate bubbles with different sizes, which rise and break to cause the removal of volatiles 

from the culture medium to the headspace. Alternatively, it can be defined as a physical 
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separation process, whereby one or more ingredients could be evacuated from the liquid phase 

to the gas phase (Yamane et al., 2013). Interestingly, there are many advantages of using this 

technique to remove a fermentation product as it is an easy technique, does not need an 

expensive instrument, and does not harm microorganisms within the bioreactor. In gas 

stripping, there are many gasses that can be used depending on the purpose of the process. This 

process does not discharge culture nutrients and other reactions intermediates (Qureshi and 

Blaschek, 2001; Inokuma et al., 2010).  

While using gas stripping can reduce the final product inhibition due to the product 

accumulation, it allows the use of concentrated sugar solutions in the bioreactor, which can 

cause microbial inhibition under normal fermentation processes (Ezeji et al., 2005). This 

technique has been used to remove some fermentation products such as isopropanol and 

butanol, which cause a reduction in production yields and inhibition of the microbial growth. 

However, most studies have focused on using gas stripping to remove butanol from the culture 

medium, and they used a sparger or perforated plates to produce coarse bubbles, which are less 

efficient than microbubble in gas stripping (Zimmerman et al., 2013).  

2.8 Acetaldehyde separation instead of ethanol distillation 

Pure acetaldehyde has a boiling point of around 20. 8℃, while ethanol boils at 78.5℃ (Doran, 

2013). At temperatures for mesophilic fermentations (~30℃), acetaldehyde is more readily 

stripped out from the fermentation culture than ethanol. Figure 2.9(A and B) shows the vapour-

liquid equilibrium data for both acetaldehyde in water and ethanol in water at 30℃ (D’Avila 

and Silva, 1970). It can be seen from this figure that at 30℃ a mole fraction of 0.025 (5.8 %) 

of acetaldehyde was in the liquid solution, while there was a mole fraction of approximately 

0.70 (85 %) in the vapour phase. This can be compared favourably with ethanol, where a mole 

fraction of 0.025 (6.2 %) of ethanol exists in the liquid phase, while a mole fraction of about 

0.22 (42 %) ethanol exists in the vapour phase. In addition to the advantage of being more 

volatile than ethanol, acetaldehyde does not form an azeotrope with water (Wecker, 1987). 
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                                                                     (A) 

 

                                                                                  (B) 

 

Figure 2.9: A comparison of the vapor pressure curves of acetaldehyde in water and ethanol in 

water at 30℃ (Adapted from d’avila and Silva, 1970, but redrawn using Aspen Plus software 

V8.4). 

On the other hand, the cost analysis of ethanol production shows that the major energy cost of 

ethanol production by biological methods is the separation and purification of the ethanol from 

the fermentation medium (Wecker, 1987). Indeed, it was estimated that ethanol distillation 

accounts for 63% of the total energy cost of ethanol production, which includes feedstock 

receiving, sterilisation, mixing and processing of feeds, fermentation, distillation, by-product 

recovery, and general plant management (Kalter, 1981). This estimation was based on a 

continuous-processing ethanol-producing plant that produced 27.5 million gallons of ethanol 
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y-x diagram for WATER/ETHANOL
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per year, where both corn and cheese whey were used as feedstock, and ethanol concentration 

was around 4.5% previous distillation. Katzen (1978) had assessed the ethanol production from 

corn economically, and the distillation process accounted for 8.8% of the total operating cost 

for a plant producing 50 million gallons of ethanol per year. These two studies used full stream 

stripping and vacuum distillation. Typically, the cost of distillation depends on the energy 

source used and the location. For example, in Brazil, sugar cane bagasse is used at only the cost 

of collecting it from nearby plantations, and generally, it is a waste with only limited alternative 

utility. The distillation cost per litre of ethanol decreases with the increase of ethanol 

concentration in the broth, but increases the product concentration result in the product 

inhibition and extends the fermentation times (Hacking, 1986).  

In contrast, using some continuous separation techniques can decrease the production cost of 

fermentation products. These techniques, such as solvent extraction, selective membranes and 

flash vapourisation, treat the recycling stream from the fermenter and selectively remove the 

products from the fermentation stream, and allow the use of higher sugar concentrations without 

inhibiting the microbial culture by accumulating the final products. Also, using high sugar 

concentrations means mitigating the operational costs of the plant, centrifugation and feed 

sterilisation (Maiorella et al., 1984). As product separation costs are lowered, waste recovery 

system will, in turn, become more economically feasible.  

A design project study was done in 2015 at the University of Sheffield under the supervision of 

Professor William Zimmerman and in cooperative with Vivergo Fuels Ltd, suggested that the 

incorporation of hot-microbubble technology into the fermentation process to produce ethanol 

has the potential to make the fermentation process 80% more productive. Also, this technology 

can increase the produced ethanol by about 70%.  

2.9 Microbubble technology  

A microbubble is a very fine bubble with a diameter of microns but below one millimetre. These 

bubbles have certain properties that make them attractive to use for various applications 

(Takahashi, 2005).  

2.9.1 Properties of microbubbles  

Microbubbles have a high surface area-to-volume ratio with high internal pressure, as the 

internal pressure increases inversely proportionately to its radius (Zimmerman et al., 2009). All 

interfacial transport phenomena such as heat, mass, and momentum transfers rely on the surface 
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area-to-volume ratio. As a spheroidal object, this ratio increases inversely proportionately to its 

radius (Figure 2.10):  

𝑠

𝑣 
 =  

4𝜋𝑟^2

(
4

3
)𝜋𝑟3

 =  
3

𝑟
                          (Eq. 2.2) 

Where s is the interface area, v is the volume, and r is the radius of the bubble.  

(A)                                                                       (B) 

 

In addition, the residence time of a microbubble in a viscous liquid can be anticipated via using 

Stokes’ law for rising velocity: 

U stokes =  
2

9
 
g ∆pd2

μl
                         (Eq. 2.3) 

  

 

(C) 

Figure 2.10: Benefits of microbubble technology. A) Benefit of dividing a volume ratio into smaller 

volumes produces additional surface area. (B)(C) Relationship between surface area and transfer rate with 

bubble size is a square of bubble size and cubic with its volume. 
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Where U is the rising velocity, g is the gravitational acceleration, ∆𝑝 is the liquid height and 𝜇𝑙 

is the liquid viscosity. 

According to Stokes’ law, it is clear that the residence time of a microbubble is remarkably 

longer than a fine bubble for the same height of liquid (Figure 2.11).  

 

 

Figure 2.11: The rise velocity of microbubble (Adapted from Levich, 1962 cited in 

Zimmerman et al., 2008). 

Using microbubbles allows a high gas dissolve rate because the surface area and internal 

pressure in these bubbles increase with the decrease of the radius. Also, the smaller bubble rises 

slower than the larger bubble. The latter feature allows an increased amount of gas to be 

exchanged between the microbubble and the surrounding area (Zimmerman et al., 2009). In 

addition, the inside of a microbubble is uniformly mixed at a much earlier residence time than 

for a fine or coarse bubble, and the time to achieve this mixing is sufficiently fast to enable the 

microbubble to reach equilibrium after a very short residence time (in the order of 10−3s) with 

a diameter of 100μm (Zimmerman et al., 2013). Figure 2.12 shows the internal mixing within 

a microbubble with a diameter of 100μm.  
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Figure 2.12: Microbubble profile after t=0.0001.5 s with radius R=100 μm. The arrows are the 

induced, steady state velocity field from bubble rising, imposed as the velocity field. The 

contours are concentration curves, with 20 contours rising from 0.002(inner) to 0.0032(outer) 

molar concentration (Adapted from Zimmerman et al., 2013).   

A fluidic oscillator was used in this study to generate microbubbles. Tesař and Zimmerman had 

invented in 2006 the fluidic oscillator as a novel method to generate microbubble. The fluidic 

oscillator was used in this study to generate microbubbles. In this method, air is oscillated by 

switching to one of the two output channels based on the Coanda effect and by providing it with 

a feedback loop. The generation of microbubbles by fluidic oscillator has many advantages, 

such as formation well-spaced and uniform clouds of microbubbles (Tesař et al., 2006). 

Additionally, microbubbles from fluidic oscillator can achieve up to 8-fold oxygen transfer 

coefficient rate than without it (Hu, 2006, cited in Zimmerman et al., 2009). In addition, this 

method can achieve high hold-ups, which is resulted from slow rising time and low coalescence 

rate, with low energy consumption and dissipation (Varma, 2007, cited in Zimmerman et al., 

2009). Figure 2.13 shows the design of fluidic oscillator with its main parts.  

 

 

 

 

(A) (B) 
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Figure 2.13: The fluidic oscillator. A) Stack of laser cut Perspex plate with its amplifier. B) 

Feedback loop connects to two control terminals to generate oscillation. C) History of flow 

rate for fluidic oscillator connected to a nozzle bank with 600 µm pore size. The oscillation 

frequency is ranged from 1-100 Hz, which is depending on the length of feedback loop 

(Adapted from Zimmerman et al., 2008). 

2.10 Thin film theory of mass transfer 

Bailey and Ollis (1986) comprehensively described gas-liquid thin film theory. It has been 

found that mass transfer rate is proportional to driving force, which is the difference in 

concentrations at the interface and interfacial area. The mass transfer flux can be calculated 

from following the mathematical relationship:  

   NA = KLa (CL – CG)                    (Eq. 2.4) 

Where NA is mass transfer flux, and KLa is mass transfer coefficient. CL is the concentration of 

dissolved gas in the bulk liquid phase, and CG is the concentration that is in equilibrium with 

initial bubble gas concentration. The latter concentration is sometimes called the equilibrium 

concentration. The mass transfer flux is shown in Figure 2.14.  

(C) 
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Figure 2.14: Interfacial dynamics of mass transfer for gas exchange (Adapted from Moo-

Young and Blanch, 1981). 

Moo-Young and Blanch (1981) described the potential constraints of oxygen transfer to the 

culture medium and then to microbial cells. It was reported that there are eight resistances to 

the oxygen transfer, which are: 

1. In a gas film inside the bubble  

2. At the gas-liquid interface  

3. In a liquid film at gas-liquid interface  

4. In the bulk liquid  

5. In a liquid film surrounding cell 

6. At the cell-liquid interface  

7. At the internal cell resistance  

8. At the sites of biochemical reactions. 

However, not all of the above resistances are significant, and some of these resistances are 

insignificant and can be ignored. For example, the resistance of liquid film that surrounds 

singled cells and dispersed mycelia can be ignored because the difference in density between 

microbial cells and suspended liquid is quite small, meaning that there is a stagnant liquid film 

surrounding microbial cells. The above eight resistances are shown in Figure 2.15.  
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Figure 2.15: General oxygen transport path to microorganisms (Adapted from Moo-Young and 

Blanch, 1981). 

In this study, an airlift loop bioreactor (the fermenter) is connected to a fluidic oscillator to 

produce microbubbles, where a grooved nozzle bank distribution system is a substitute for the 

traditional base. In the following section, the fundamentals of airlift loop bioreactors are 

considered.  

2.11 Airlift loop bioreactors (ALB)  

Williams (2002) defines a bioreactor as a system in which biological conversion occurs. It has 

been reported that the biological conversion can be achieved by whole cells such as microbial, 

animal and plant cells or by enzymes or other biological metabolites (Williams, 2002). An airlift 

loop bioreactor (ALB) is pneumatically agitated system device, which has been characterised 

by fluid circulation in a particular pattern through canals built mainly to achieve this purpose 

(Merchuk and Siegel, 1988). One of several mixing procedures can be used is the closed stirred 

tank, which can achieve a better performance in degradation processes compared with the ALB. 

However, when the energy requirements of the process are weighed against the yielded energy 

from produced biofuel, the process becomes economically unfavourable. Therefore, reduction 

of consumed energy for mixing purposes with in situ stripping off the fermentation products 

represents a major challenge to the development of biological processes (Al mashhadani, 2013). 

This reactor consists of an ALB base, internal draught tube, riser, downcomer and gas separator 

(Fatemeh et al., 2012). The properties of these parts are described below: 

2.11.1 ALB base 

Several studies have involved the ALB base area, the most promising of which was contributed 

by Merchuk and Gluz (1999), which showed that the base of an ALB has only a minor effect 
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on ALB performance (Merchuk and Gluz, 1999, cited in Zimmerman et al., 2009). In the current 

study, the ALB is connected to a fluidic oscillator to produce microbubbles, where a grooved 

nozzle bank distribution system substituted the traditional base in ALB. It should be noted that 

there must be a sufficient clear space between ALB base and draught tube, which allows moving 

liquid from the downcomer area to the riser area without considerable friction losses.  

2.11.2 ALB riser  

The riser is the phase transfer part of the airlift loop bioreactor, where mass transfer between 

gas-liquid and liquid-microbial cells is the most predominant feature (Zimmerman et al., 2009). 

In addition, this area has greater gas hold-up than downcomer region. The high gas hold-up, 

which is the result of the bubbly flow, is responsible for the difference in densities of liquid in 

both regions, causing liquid circulation in this reactor (Chisti et al., 1995). Using microbubbles 

can increase the mass transfer flux in comparison with traditional distribution methods. 

Accordingly, using microbubbles with an airlift loop bioreactor will increase mass transfer 

within the bioreactor. If nutrients are introduced as a gas phase, such as oxygen for aerobic 

cultivation, then a higher mass transfer rate might lead to enhance the growth of the microbial 

culture (Terasaka et al., 2011). 

2.11.3 ALB downcomer 

The downcomer region of airlift bioreactor has less gas hold-up than the riser, and this 

difference between two regions is the driving force for liquid circulation and mixing activity 

inside this reactor (Xu and Yu, 2008). This region has been described as a less dynamic region 

in the airlift bioreactor, and its composition depends mainly on the riser region with a large bulk 

of liquid in this region with less gas-hold-up (Zimmerman et al., 2009). 

2.11.4 Gas separator 

This region is at the top of the ALB, and connects the riser and the downcomer. It allows 

recirculation of liquid and disentangling of gas between those sections (Merchuk and Siegel, 

1988). The gas separator is the most sensitive area of the ALB and the occupation time of liquid 

in this area depends primarily on the design of bioreactor and operation conditions, which 

determine gas hold-up in both the riser and the downcomer (Zimmerman et al., 2009). Merchuk 

and Siegel (1988) described that when the gas separator is more effective in disengaging the 

gas phase, there are fewer bubbles recirculating into the downcomer, which eventually leads to 

increased liquid velocity because of the difference in liquid densities between the riser and the 

downcomer. 
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2.11.5 Draught tube  

Draught tubes are used in different kinds of bioreactors, which have been utilised to achieve 

the industrial production of enzymes, biomass and antibiotics. This tube is used to improve 

circulation of reactor components, and thereby enhance the performance of processes (Rayi and 

Ananthula, 2014). In Addition, Tekić, et al. (2014) reported many advantages of using a draught 

tube in airlift bioreactors, such as reducing turbulence inside the reactor and providing a clear 

circulation pattern for the liquid inside ALBs. The draught tube increases mixing time in the 

ALB in comparison to conventional bioreactors (Tekić et al., 2014). Additionally, Yakubu-

Gumery (2010) reported that the draught tube has an effect on mixing time and hydrodynamics, 

which includes liquid circulation, the velocity with gas hold-up, and shear rate with different 

geometries. Figure 2.16 shows the general geometry of the airlift loop bioreactor used in the 

current study.  

 

Figure 2.16: Diagram of airlift bioreactor with draught tube supplied from the outlets of fluidic 

oscillator, the microbubbles are rising in the riser region and dissociated at the gas separator, 

thereafter the liquid is circulated in the downcomer region (Adapted from Zimmerman et al., 

2009). 

2.12 Effects of the chemical activity on acetaldehyde and CO2 production 

Gibbs free energy (G) has been used to describe the spontaneity of a process. Gibbs free energy 

or free energy can be defined as the part of the total energy of a system that is available to do 

useful work (Devlin, 2002). This energy can be described by the following equation: 
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       ∆G = ∆H-T ∆S              (Eq. 2.5) 

Where ∆G is the changing in Gibbs free energy, ∆H is the changing in enthalpy or heat content, 

T is the absolute temperature and ∆S is the change in entropy.  

Typically, biological systems tend to work toward a status with a maximum entropy because a 

system cannot reach equilibrium with its surroundings without this kind of randomness or 

disorder. The sign and value of ∆G do not refer to the speed of reaction, but to the direction of 

the reaction. On the other hand, the equilibrium constant of this reaction is related to the change 

in free energy for that reaction, and it can be described as follows:  

     Keq = [products]/[reactants]                      (Eq. 2.6) 

It is suggested that living systems (such as microbial and animal cells) do not work under the 

standard conditions when pH equals 0 and concentrations of products and reactants is at 1M. It 

has therefore been proposed that the change in free energy at any concentration of substrates 

and reactants can be calculated by the following equation: 

     ∆G = ∆G˚ ́+ RT ln [products]/[reactants]   (Eq. 2.7) 

Burton (1974) measured the equilibrium constant of ethanol oxidation reaction. He found that 

it is as low as 6.92×10-12M, whereby ∆G˚ is equal to 63.7 KJ/mol (15. 23 Kcal/mol) at 25℃. 

Ethanol oxidation reaction can be shown as follows:  

Acetaldehyde + NADH + H+  ⇄ Ethanol + NAD+      (Eq. 2.8) 

Accordingly, the change in free energy of this reaction at the equilibrium can be calculated as 

follows:  

    ∆G = 63.7 + 0.0083 * 298 * ln (6.92 * 10-12) 

     ∆G= 63.7+ 63.7 

     ∆G = 0  KJ mol-1   

The above reaction happens spontaneously when the products (acetaldehyde) are removed, and 

is shown to be thermodynamically favourable as the final ∆G would have a negative sign.  

Gary (2004) mathematically described the relationship between Gibbs free energy and vapour 

pressure of reactants and products. This relationship is described as follows:  

aA + bB                        cC + dD              (Eq. 2.9) 
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        ∆𝐺 = ∆𝐺˚ + 𝑅𝑇 𝑙𝑛
[𝑝𝐶]𝑐×[𝑝𝐷]𝑑

[𝑝𝐴]𝑎×[𝑝𝐵]𝑏
                     (Eq. 2.10) 

Where: 

• ∆G is the Gibbs free energy change 

• ∆G˚ is the standard Gibbs free energy 

• R is the universal gas constant 

• T is the temperature of reaction 

• pA, pB, pC and pD are partial pressures of reactants and products respectively 

• a,b,c and d are the coefficients in the balanced chemical equation.  

Clearly, low partial pressure of products contributes to Gibbs free energy change with a 

negative sign (-∆G), whereas the high partial pressure of products contributes to Gibbs free 

energy change with a positive sign (+∆G). -∆G means that the bioreaction is spontaneous, and 

it is thermodynamically favourable and it is called exergonic reaction. +∆G, however, means 

that the bioreaction is unspontaneous and thermodynamically unfavourable, which is called an 

endergonic reaction (Gary, 2004).  

Unspontaneous reactions can be dealt by two approaches. One approach includes adding 

enough energy to convert endergonic reactions to exergonic reactions, which are spontaneous 

reactions. The other approach is to reduce the partial pressure of products, which eventually 

leads to converting unspontaneous reactions to spontaneous ones. The mathematical 

relationship between Gibbs free energy and partial pressure has been intensively examined in 

widespread applications. However, most data have come from biological processes, in 

particularly the production process of bio-hydrogen (Almashhadani, 2013).  

The simultaneous production and separation of acetaldehyde in an airlift loop bioreactor using 

microbubble technology, however, is a novel strategy used to grow Zymomonas mobilis. It 

promises to achieve a high acetaldehyde productivity by increasing the oxygen transfer 

coefficient and removing the produced acetaldehyde. In addition, the produced carbon dioxide 

can be removed by microbubble technology, and this might drive the reaction further towards 

becoming exergonic according to Le Chatelier’s principle. 
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Chapter 3  

Materials and Methods 

3.1 Introduction 

This project aims to develop a fluidic oscillator-powered microbubble generating system that 

can use lignocellulosic biomass as a substrate for the fermentation process with in situ 

separation after inactivation the pretreatment slurry with carbon dioxide enriched microbubbles. 

Also, it aims to develop a propagation unit that can be used to intensify the bacterial growth. 

All these processes are mass transfer limited processes and using microbubbles enhances the 

overall efficiency. In this chapter, details of the materials and methods used are presented and 

described. The size of microbubbles is considered in all processes. This chapter is divided into 

four main parts. The first presents the equipment and methods employed in the pretreatment of 

lignocellulosic biomass using both microbubble-microbe synergetic approach and ozonolysis-

microbe synergetic approach. In the second part, the materials and methods used in inactivation 

of Pseudomonas culture and in assessing the performance after adding additives such as 

(ethanol and acetic acid) are outlined. In the third part, the materials and methods used in the 

fermentation process of Zymomonas mobilis both the wild type and the mutant type under 

aerobic and anaerobic conditions are described in detail. The fourth part presents the materials 

and methods used in the bacterial propagation.  

3.2 Pretreatment of lignocellulosic biomass  

3.2.1 Microbubble-microbe synergetic approach 

3.2.1.1 Biomass and growth media preparation 

All the chemicals and reagents used in the current project were bought with ~ 98-99.9% purity 

from Sigma-Aldrich, UK unless different supplier has been mentioned and of them used in the 

media preparations were suitable for microbiological cultures. 

This study used wheat straw as a lignocellulosic biomass owing to its high cellulose and 

hemicellulose content, 29-35% and 26-32% respectively, with low lignin percent (16-21%) 

(McKendry, 2002) and availability.  

Wheat straw was prepared for pretreatment by mechanically reducing biomass particle size to 

≤ 1 mm using pestle and mortar and then sieved (Sigma-Aldrich, UK). The biomass was then 

washed using distilled water and oven-dried at 80℃ for 24 hrs.  Wheat straw solution (1% w/v) 

was prepared with distilled water, and the pH was set at 3, using concentrated HCl (Sigma-

Aldrich, UK). The growth medium with a composition of: 1 % wheat straw, 0.5 % yeast extract, 
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0.02% magnesium sulphate and 0.02% ammonium phosphate dibasic was prepared according 

to Abdul-Kadhim and Jarallah, (2013). The medium was sterilized by autoclaving at 121℃ for 

15 minutes and 1 bar pressure before cultivating with 10 % (v/v) of 18 hr grown Pseudomonas 

putida KT2440.  

3.2.1.2 Experimental Procedures  

The experimentation was divided into four (4) groups to study the effects of each pretreatment. 

The first group was a control group consisting with biomass in liquid at pH 3. The second group 

was pretreatment with microbubbles. In this case, wheat straw was treated for more than 3 hrs 

at pH 3, by sparging with fluidic oscillator generated microbubbles. The time of pretreatment, 

3.30 hrs, was selected after preliminary studies had revealed no additional glucose was 

produced after 4 hours. The third group was the combined pretreatment in which wheat straw 

was pre-treated with microbubbles for 3.30 hours and then, the pre-treatment continued with 

the application of Pseudomonas putida for an additional four (4) days. Conversely, the fourth 

group entailed pretreatment with only Pseudomonas putida.  

After pH adjustment of the wheat straw solution to 3, this solution was introduced into the 

pretreatment column, which was connected to the fluidic oscillator (Zimmerman et al., 2008).  

Figure 3.1 shows the experimental rig, which consists of a fluidic oscillator, a micro-porous 

diffuser, and a pretreatment column. On the other hand, the biological pretreatment was 

achieved using Pseudomonas putida KT2440 in a 500 ml Erlenmeyer flask at 30℃. All 

experiments were conducted at room temperature (~25 ℃), and untreated biomass was used as 

a control group to compare with other treated biomass. Samples were assayed daily by 

centrifuging for 15 minutes at 13000 xg and then filtered with a syringe filter unit (Whatman® 

Anotop® 25 Plus syringe filter, pore size 0.2 μm, Sigma- Aldrich) to measure glucose 

concentration using glucose assay kit (Sigma-Aldrich). 
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Figure 3.1: Schematic representation of the experimental set-up. Compressed air (1 bar) at 100 

ml/min flow rate is fed into the oscillator, and there are two outputs from the fluidic oscillator. 

While, one feeds the microbubbles diffuser, the other is bleed-off. The overall volume is 1.5 L 

and the working volume of the pretreatment column is 1 L. 

It should be mentioned that after biological pretreatment, samples were washed with normal 

saline for several times to remove bacterial cells, and then they dried in an oven at 80℃ for 

24 hrs before examining with SEM and FTIR-ATR.  

3.2.1.3 Testing the cellulolytic activity of Pseudomonas putida 

Pseudomonas putida is grown on M9 medium to test its ability to use Carboxymethyl 

cellulose (CMC) as a sole carbon and energy source. After growing on this medium, the 

bacterium then moved to Wheat straw medium (WS medium) to detect its ability to 

hydrolysis and use wheat straw as a carbon source. Moving the bacterium from WS medium 

to lignin medium (L medium) is to detect its ability to use lignin as a complex carbon source.  

Bacteria growing on different media were monitored using optical densities at 600 nm using 

spectrophotometer (DTSTM-1700, 1900 NIR) for all other culture media on an hourly basis 

(Douka et al., 1999).  

A.  Qualitative measurement of cellulolytic activity   

Cellulolytic activity of Pseudomonas putida was measured on both CMC and WS agar media 

and Lugol solution was used to cover the agar media, and it left for 10-15 minutes (Abdul-

kadhim and Jarallah, 2013). After that, pictures were taken to the hydrolysis zones (clear 

zones), and measured using ImageJ software (V1.48), and the results were recorded.  
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 B. Quantitative measurement of cellulolytic activity   

1.  Determination of protein concentrations  

 Bradford protein assay was used to measure protein concentrations within both CMC and 

WS media, and these concentrations can give valuable information about secreted enzymes.  

This assay was used according to the protocol provided by instruction manual of Bio-Rad 

Laboratories, Inc. In this test, 20 µl of samples were mixed with 1 ml of Bradford quick start 

reagent, which has a Coomassie Brilliant Blue G 250 dye. This dye binds to proteins and 

forms a stable protonated blue complex, which its absorbance and quantity can be measured 

at 595 nm. The protein concentration can be calculated using the following equation:  

        Protein concentration (mg/ ml) = 
𝑂𝐷 𝟓𝟗𝟓𝒏𝒎 𝑋 15

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 (μ𝑙)
              (Eq. 3.1) 

2. Enzymes activities  

 Endoglucanase activity (Carboxymethyl cellulase activity, CMCase) was measured 

according to Ghose, (1987). Concentrations of reducing sugar (glucose) were measured 

using glucose assay kit (Sigma-Aldrich, UK). One enzyme unit is defined as the amount of 

enzyme required to release 1 µmol of reducing sugar per min during the incubation time. 0.1 

ml of enzyme solution was added to 0.9 ml of substrate (CMC 0.5 %) in 50 mM citrate buffer 

pH 4.8, and this mixture was incubated for 30 minutes at 50℃. The amount of reducing sugar 

was calculated after finishing the incubation time.   

 Filter paper assay was used to measure Exocellobiohydrolase (FPase) activity of 

Pseudomonas putida according to Gilna and Khaleel, (2011). The concentrations of reducing 

sugar were also measured using glucose assay kit (Sigma-Aldrich, UK). One enzyme unit is 

defined as the amount of enzymes required to release 1 µmol of glucose per min during the 

incubation time. 50 mg of filter paper (Whatman, NO.1) were mixed with 1 ml of each 

enzyme solution and 1 ml of 50 mM citrate buffer pH 4.8, and this mixture was incubated 

for 2 hours at 50℃. After finishing the incubation time, the amount of released glucose was 

calculated.    

 β- glucosidase activity of Pseudomonas putida was measured according to Dashtban et al., 

(2010). The concentrations of released sugar were measured using glucose assay kit (Sigma-

Aldrich, UK). One enzymes unit is defined as the amount of enzyme required to release 1 

µmol of glucose per min during the incubation time. 0.9 ml of (5mM) of cellobiose was 

incubated with 0.1 ml of enzyme solution for 10 minutes at 50℃ . After 10 minutes, the 

concentration of glucose was calculated.  
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 It is worth noting that enzyme solution was prepared by centrifuging culture media for 15 

minutes at 13000 xg with a refrigerated centrifuge (Thermo Scientific, Multifuge 1S-R), and 

then filtrated it with syringe filtrated unit (Whatman® Anotop® 25 Plus syringe filter, pore 

size 0.2 μm, Sigma- Aldrich, UK).  

3. SDS-PAGE  

Sodium dodecyl sulfate (SDS) - Polyacrylamide gel electrophoresis (PAGE) preparations 

were performed using SDS-PAGE TM Novex 4-12% Bis-Tris Gel System with 17 slots 

(Invitrogen, Carlsbad CA) according to the company’s instructions. Protein samples were 

concentrated to reach approximately 1 mg/ml using Amicon Ultra centrifugal filter 10,000 

NMWL, 5 ml (Merck Millipore, UK). 10 – 20 µl of each sample were taken and loaded on 

a native gel in each well. These samples were mixed with 4X SDS-PAGE TM loading buffer 

(Invitrogen, Carlsbad CA) at a volume ratio 3:1. While, anode buffer was formed by diluting 

20X SDS-PAGE TM running buffer (Invitrogen, Carlsbad CA), the cathode buffer was made 

by mixing running buffer with cathode additive (Coomassie Blue G-250 dye, Invitrogen, 

Carlsbad CA). It is worth mentioning that all these steps were achieved according to the 

company’s instructions. Finally, the electrophoresis was run at 200 volts for 36 minutes 

using XCell SureLock™ Mini-Cell (Invitrogen), and the gel was stained using instant blue 

stain (Coomassie stain, Expedeon). The same protocol was applied for various protein 

fractions after fractionating these proteins with ammonium sulfate.  SDS-PAGE assay was 

done at Molecular Biology and Biotechnology Department, the University of Sheffield.  

4. Ammonium sulfate precipitation  

 This step was done to fractionate the secreted proteins on both wheat straw and 

carboxylmethyl cellulose media. Different percent saturations of ammonium sulfate (25 %, 

50 %, 65 % and 90 %) were used to achieve these fractionations and protein concentrations 

were measured after each precipitation step. Firstly, Pseudomonas putida was cultivated on 

both WS and CMC media for 4 days at 30℃, and then the media were centrifuged 

(Refrigerated Centrifuge, Beckman Avanti J-251, UK) for 20 minutes at 4℃ and 13000 xg 

to remove the bacterial cells. The final volumes were 500 ml and 400ml of cells free extracts 

of wheat straw and carboxymethyl cellulose media respectively. The amount of ammonium 

required to achieve each saturation was calculated according to the standard table provided 

by Harris and Angal, (1995). Ammonium sulfate was added gradually, while these media 

were stirred at 4℃. After dissolving all ammonium particles, these media were centrifuged 

using a refrigerated centrifuge at 17000 xg for 20 minutes, and pellets were collected and 
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supernatants used to prepare next percent saturation at 4℃ with continuous stirring. Protein 

concentrations were calculated for all pellets using Bradford method, and the enzymes 

activities were also measured for all pellets using protocols described above.     

3.2.2 Ozonolysis-microbe synergetic approach 

3.2.2.1 Material and culture medium preparation  

Two sets of experiments were conducted: the first was simply pretreatment with ozone-rich 

microbubble, referred to as microbubble mediated ozonolysis pretreatment (MMO). The 

second, however, was pretreatment with ozone-rich microbubbles followed immediately with 

the microbial application, referred to as microbubble mediated ozonolysis and microbial 

pretreatment (MMO-M). The untreated wheat straw is referred to as the control.  

Wheat straw was mechanically (Pestle and Mortar) prepared to obtain average particle size ~ 1 

mm. The biomass was then washed with distilled water and oven-dried at 80℃ for 18 h. Wheat 

straw solution (1 % w/v) was prepared with distilled water and the solution used for the MMO 

experiment. After MMO pretreatment, the wheat straw was collected and rinsed with distilled 

water for the MMO-M pretreatment.  

The culture medium for the MMO-M experiment was prepared according to Abdul-kadhim and 

Jarallah, (2013), with a composition of: 1% MMO pre-treated wheat straw (collected after the 

MMO experiment), 0.5% yeast extract, 0.02% magnesium sulfate and 0.02% ammonium 

phosphate dibasic. The medium was then sterilized by autoclaving at 121℃ and 1 bar for 15 

minutes before cultivating with Pseudomonas putida KT2440 at 30℃  and pH 6 for four (4) 

days. The pH was set with NaOH or concentrated HCl (Sigma-Aldrich, UK). 

3.2.2.2 Ozone generation and quantification  

An ozone generator (Dryden AQUA, UK) was used to generate ozone, and the concentration 

of the generated ozone was determined using the method described by Rakness et al., (1996). 

100 ml/min flow rate was calibrated to ascertain the ozone concentrations. Two ozone 

concentrations -- 6.67 mg/L and 8.87 mg/L -- were explored at varying exposure times (2, 6, 

12, 24 h) to determine a reaction time long enough to allow substantial oxidation of the biomass. 

The fluidic oscillator was connected to the ozone generator that fed a sintered glass diffuser 

(16-20 µm pore size) to produce ozone microbubbles (Figure.3.2).  
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Figure 3.2: Experiment set up. Gas from the fluidic oscillator passes through the fluidic 

oscillator to the ozone generator. The gas emerges as microbubble-rich ozone. The overall 

volume is 0.15 L and the working volume of the pretreatment column is 0.1L. 

3.2.3 Analytical methods  

3.2.3.1 Determination of glucose concentration 

Glucose concentration was determined enzymatically using Sigma-Aldrich(UK) reagent kit, 

which used hexokinase enzyme to phosphorylate glucose to glucose-6-phosphate and the latter 

product is dehydrogenised with glucose-6-phosphate dehydrogenase to 6- phosphogluconate 

and this reaction is combined with NAD+ reduction to NADH, combining with increasing in 

the absorbance at 340 nm. The spectrophotometer was used to measure the optical density at 

340 nm with a Spectrophotometer (DTSTM-1700, 1900 NIR). Samples preparation and 

procedures were achieved using methodologies, which were described by Sigma-Aldrich (UK) 

guidance sheet.  Glucose concentration is also measured using the protocol described by Miller, 

(1959) to validate the glucose concentration.  

Microbial biomass concentration was determined using the optical density at 600 nm using a 

spectrophotometer (DTSTM-1700, 1900 NIR)   

3.2.3.2 Scanning Electron Microscope (SEM) 

 Scanning Electron Microscopy (SEM) was used to examine morphological changes in 

lignocellulosic biomass after each pretreatment and compare it with untreated biomass.  The 

biomass was dried at 80℃ for 24 hours in the oven and then coated with gold and examine with 

SEM (Model S-360, Phillips), which it operated at 15KV.  
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3.2.3.3 Fourier transform infrared spectroscopy- Attenuated Total Reflectance (FTIR-ATR) 

FTIR-ATR (Perkin Elmer, UK) was used to examine changes in functional groups of biomasses 

after each pretreatment. These samples were examined with a spectrum range from 4000-650 

cm-1 and resolution 4 cm-1. Spectrum Software (V5.1) was used to show the results, which were 

background adjusted and normalize them at 1.5 A˚. It is worth mentioning that it is not always 

easy to detect small changes in functional groups absorbances, hence Essential FTIR software 

(V3.20.009 from operant LCC infrared, trail version) has been used to show these changes as 

it has a magnification tool to check the absorbance at each wavelength.  

3.3 Inactivation with CO2-eneriched microbubbles 

 3.3.1 Material and culture medium preparation   

 Pseudomonas putida was cultivated at 30℃ for 24 hrs on the nutrient broth, and this culture 

used in the inactivation process. Normal saline solution was prepared and kept in the fridge for 

24 hrs to cool down to reach 6℃. The diluted bacterial culture was prepared by mixing 900 ml 

of cold saline with 100 ml of bacterial culture, which was grown for 24 hrs, and the final 

temperature was set at 6℃.  

The system was erected where the reactor was connected to CO2 (100 %) gas cylinder through 

a diffuser (Ceramic diffuser, point four systems LTD, UK) at 100 ml/min (Figure 3.3). These 

experiment sets have stood for 90 min, and samples were drawn every 15 minutes except the 

first sample, which was drawn after 7 minutes. pH and temperature profiles were measured at 

the same time of drawing samples. Drawn samples were diluted with normal saline and 

aseptically cultivated on nutrient agar using inoculation loop at 30℃ for 24 hrs, and then grown 

colonies were counted manually. Also, the colonies number was also confirmed by using two 

software packages: ColonyCount, 2015 © Promega Corporation and a colony counter (Bio 

Spectrum 410 imaging system, UVP, UK). Petri dishes with 30 – 300 colonies were only 

counted, and colony-forming unit per ml was calculated for each sample.  

Survivor ratio is calculated and plotted by using Log (N/N0) on Y-axis and time on X-axis. 

While N refers to the number of colony forming unit for treated samples, N0 refers to the initial 

number of colony forming unit before CO2 treatment, which was calculated for each 

experimental set prior of application of carbon dioxide-enriched microbubbles.  
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Figure 3.3: Experiment set up. Carbon dioxide gas from the gas cylinder passes through the 

fluidic oscillator to feed the microbubbles diffuser. The gas emerges as microbubble-rich 

carbon dioxide at 100 ml/min flow rate and the working volume of the inactivation column is 

1L. 

3.3.2 Determination of carbon dioxide concentration  

Kinetically, conversion of carbon dioxide into carbonic acid is very slow, and there is only 0.2 

% of carbon dioxide can be converted to carbonic acid and its ions, while 99.8 % of carbon 

dioxide tends to remain as a dissolved gas, which can be shown in the dissociated equilibrium 

constraint (Al-Mashhadani et al., 2011 ):  

    CO2(g) ↔  CO2(aq)                                      (Eq. 3.2) 

   CO2(aq) +H2O ↔ H2CO3                        (Eq. 3.3) 

   𝐾ℎ = [𝐻2𝐶𝑂3]/[𝐶𝑂2(𝑎𝑞)]                            (Eq. 3.4) 

Carbonic acid is a diprotic acid, and it contains two hydrogen atoms ionizable in water and 

dissociates into bicarbonate and carbonate ions according to the following equations:  

   𝐻2𝐶𝑂3  ↔ 𝐻𝐶𝑂
−
3 +𝐻

+                           (Eq. 3.5) 

    𝐻𝐶𝑂−3  ↔ 𝐶𝑂−3 + 𝐻
+                             (Eq. 3.6) 

It is possible to infer the concentration of dissolved carbon dioxide from the pH assuming 

equilibrium and well-mixed system.  
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The equilibrium constraint for each dissociation reaction (Eq. 3.6) and (Eq. 3.6) are                                                                    

𝐾𝑎1 = [𝐻𝐶𝑂
−
3][𝐻

+]/[𝐻2𝐶𝑂3]                       (Eq. 3.7) 

𝐾𝑎2 = [𝐶𝑂3
−2][𝐻+]/[𝐻𝐶𝑂−3]                        (Eq. 3.8) 

 The system should satisfy the electroneutrality constraint, therefore   

[𝐻] = [𝑂𝐻−] + [𝐻𝐶𝑂−3] + 2[𝐶𝑂
−2
3]             (Eq. 3.9) 

 Dissociation of water to hydrogen and hydroxide ions with dissociation of carbon dioxide can 

give five equations, and the definitions of the pH relate with six unknowns, which are [H+], 

[OH-], [HCO3-], [H2CO3], [CO3 
2-] and [CO2 aq], which can be solved through set of nonlinear 

algebraic equations in standard packages such as MATLAB (Table 3.1). Accordingly, carbon 

dioxide concentration can be inferred from pH measurements as following:  

 [𝐶𝑂2(𝑎𝑞) ]  =
(10−𝑝𝐻)  ((10−𝑝𝐻)2−10−14 )

𝐾𝑎1𝐾ℎ [10
−𝑝𝐻]+2𝐾𝑎1𝐾𝑎2𝐾ℎ

        (Eq. 3.10) 

Therefore, the concentration of dissolved carbon dioxide was measured using (Eq. 3.10) based 

on pH values, which were measured by pH (Mettler Toledo™ S220) meter. It is worth to note 

that addition of ethanol to the inactivation solution did not influence the pH of the solution and 

thus, the same (Eq.3.10) above was used to calculate the concentration of dissolved carbon 

dioxide in the experimental sets when ethanol used as an additive. On the other hand, addition 

of acetic acid 0.5% (Fluka, UK) was strongly affected the pH value ( pH dropped to 3.34)  and 

therefore, the above (Eq. 3.10) was integrated to include the dissociation of acetic acid in the 

new (Eq. 3.11) and the concentration of acetic acid in (Eq. 3.12).  

[𝐶𝑂2] =
(10−𝑝𝐻)

2
(10−𝑝𝐻−

1.75𝑒−05[𝐴𝐴]

10−𝑝𝐻
−
10−14

10−𝑝𝐻
)

[𝐾𝑎𝐾𝑏 10
−𝑝𝐻+2𝐾𝑎𝐾𝑏𝐾ℎ]

       (Eq. 3.11)                                                                                                  

[𝐴𝐴] =
(10−𝑝𝐻)

2
−10−14

1.75𝑒−05
                           (Eq. 3.12)   
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Table 3.1: Shows the chemical reactions with their correspondent reaction rate constants used 

to integrate the carbon dioxide concentration equations in the current study 

Chemical reaction Reaction rate constant  Unit  Reference(s) 

𝐻2𝑂 
𝐾𝑓

→  𝐻+ + 𝑂𝐻− 𝐾𝑓 = 5.5 ∗ 10−6 1/s 
Chartterjee et al., (1983) 

Zhang and Houk, (2005) 

Garrett et al., (2005) 
𝐻+ + 𝑂𝐻− 

𝐾𝑟

→  𝐻2𝑂  

𝐾𝑟 = 3 ∗ 103 

𝐾𝑒𝑞 = 1.8 ∗ 10
−16 

𝐾𝑤 = 1 ∗ 10
−14 

1/mole/sec 

𝐶𝑂2+ 𝐻2𝑂 
𝐾𝑓

→   𝐻2𝐶𝑂3 𝐾𝑓 = 0.043 1/mole/sec 

Zhang et al., (2008) 

𝐻2𝐶03  
𝐾𝑟

→   𝐶𝑂2   +  𝐻2𝑂 

𝐾𝑟 = 14.98 

 

 

 

1/s  

𝐾𝑒𝑞 = 2.87 ∗ 10
−3 

 

𝐻2𝐶03  
𝐾𝑟

→   𝐻𝐶𝑂3 +   𝐻 𝐾𝑓 = 106.9 

𝐻𝐶03  + 𝐻
+
𝐾𝑟

→  𝐻2𝐶03   

𝐾𝑟 = 4.67 ∗ 1010 

 
1/mole/sec 

𝐾𝑒𝑞 = 1.7 ∗ 10
−4 

 

𝐻𝐶03  
𝐾𝑓

→  𝐶03  + 𝐻
+ 𝐾𝑒𝑞 = 5.62 ∗ 10

−11 1/mole/sec Khalilitehrani, (2011) 

 

 

𝐻𝐶2𝐻3𝑂2(𝑎𝑞) + 𝐻2𝑂  
𝐾𝑓

↔   

𝐻3𝑂(𝑎𝑞) + 𝐶2𝐻3𝑂2−(𝑎𝑞) 

 

 

𝐾𝑒𝑞 =  1.75x10-5 mole /L Skoog et al., (2000) 

 

3.3.3 Morphological examination of the bacterial cells  

3.3.3.1 Combined microscopy  

For the first experimental set, two slides for bacterial smear before and after the inactivation 

process were prepared and stained with Gram stain according to the standard protocol, which 

was described by Harely, (2002). After that, the combined microscopy (Olympus microscope, 
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CX23) was very limited to differentiate morphological changes on the microbial cells and thus, 

the microbial samples were examined using Scanning electron microscopy.  

3.3.3.2 Scanning electron microscopy   

 Microbial specimens were fixed chemically. Initially, the specimens were kept in normal saline 

to avoid any changes as a result of osmolality, and normal saline is the isotonic solution. After 

that, the specimens were placed in 2-3% Glutaraldehyde in 0.1 M sodium phosphate for 3 hours 

at 4℃ and then washed in 0.1M phosphate buffer pH 7.4, twice with 10 minutes intervals at 

4℃ . The second fixation with 1-2% aqueous osmium tetroxide for 1 hours at room temperature 

is followed. The samples, then dehydrated through series of ethanol concentrations (75, 95 and 

100) % respectively for 15 minutes before drying in absolute ethanol (100%) oven hydrous 

copper sulphate for 15 minutes. Specimen then dried  overnight again after placing them in 50-

50 mixture of 100% ethanol- 100% Hexamethyldisilazane  for 30 minutes followed by a further 

30 minutes with 100% Hexamethyldisilazane.  After drying, the specimens were mounted on 

12.5mm diameter stubs, attached with Carbon-Sticky Tabs, and then coated in an Edwards 

S150B sputter coated with approximately 25 nm of gold. The specimens were finally examined 

in a Philips/FEI- XL-20SEM at an accelerating voltage of 20Kv.  

3.4 Fermentation integrated with in situ separation of bioproducts 

3.4.1 Material preparation  

Zymomonas mobilis ZM4 (ATCC® 31821) was first activated using RM medium which was 

suggested by the provider (ATCC in partnership with LGC Standards), in 1L Erlenmeyer flask 

with continuous shaking at 100 rpm. Thereafter, the bacterium was cultivated on pre-inoculum 

medium and second stage inoculum medium (See appendix A) before starting the fermentation 

process using the fermentation media (See Appendix A).   

3.4.2 Experimental procedures  

Zymomonas mobilis was cultivated on the fermentation medium after pre-cultivating it on both 

pre-inoculum and second stage inoculum media. This bacterium was incubated at 30℃ and pH 

5.5 for several days (30-50 h), and acetaldehyde and ethanol concentrations were measured 

using gas chromatography (See Appendix F).  Firstly, the fermentation process was achieved 

under standard conditions without sparging microbubble (Preliminary studies). This step was 

done to study different aspects of bacterial growth and bioproducts production under standard 

conditions without sparging microbubble and with using the wild-type strain (Zymomonas 

mobilis ZM4). Secondly, the fermentation process was conducted using initial and periodical 
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sparging strategies with air microbubbles. Both durations of sparging and flow rate were chosen 

according to the experimental data (However, the flow rate was stabilized at 0.3 L/min). This 

process was achieved using an airlift loop bioreactor (See figure 3.4).  Samples were taken 

every 1 hour for the trial experiments to evaluate the system and to better understanding of the 

whole process, and then the sampling time was determined to be two hours. These samples 

were analyzed using GC to quantify the products (Acetaldehyde and Ethanol) and also glucose 

concentration using the protocol described by Miller, (1959). However, the biomass 

concentration was measured on an hourly basis and no samples were drawn overnight due to 

the safety rules of the university.  

 

 

 

 

 

 

 

 

 

 

 

Two identical bench-scale fermenters were used in the current study. Each fermenter has an 

overall volume of 15 liters with working volume of 9 liters (Figue 3.4). The time of each 

experimental set was determined according to the glucose consumption, biomass concentration 

and the results gained from the preliminary studies. These fermenters were operating under 

mesophilic conditions (~30℃).   

A PID controller was used to control the temperature in the reactor at 30℃. The reactor was 

also provided with a pH controller, type ON/OFF controller (Model BL931700 pH mini 

controller) to control the pH in the fermenter.  The solution used to adjust the pH during the 

fermentation process, is 1M sodium bicarbonate, and this solution has several advantages over 

other bases such as sodium hydroxide. For example, this solution is less corrosive and toxic 

than NaOH, it does not cause any precipitation in the fermenter, and more importantly, this 

Figure 3.4: Experiment set up. Air from the fluidic oscillator passes through the fluidic 

oscillator to feed the microbubbles diffuser. there are two outputs from the fluidic oscillator 

with two bleeding on both sides to control the oscillatory flow. 
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solution adjusts the pH gradually, and it does not cause change the pH value significantly with 

excessive doses. No acidic solutions were used to adjust the pH in the current study as the pH 

tends to decrease in the fermentation process due to carbon dioxide and acids production during 

the fermentation process and thus, only alkaline solutions were needed to adjust pH.   

Produced biogas (carbon dioxide) was measured every day, and this measurement was achieved 

by displacement of the aqueous acid solution (pH ≤ 3). All volumes of produced biogases 

mentioned in this study were corrected to 1 atm and at room temperature (~20℃). The carbon 

dioxide concentration was measured using carbon dioxide monitor (Data gas analyzer, Model 

0518) at 1 atm pressure.  

Vapour and gas collectors were designed to collect the stripped products and to measure the 

final concentration of each product (Carbon dioxide and acetaldehyde) after finishing the 

fermentation process, while ethanol accumulates in the fermentation broth. Figure 3.5 shows 

the experimental design of the fermentation process.  

 

 

Figure 3.5: Experimental design of the fermentation process using wild strain of Zymomonas 

mobilis ZM4. The initially sparged group is referred to as control group. 

3.4.3 Vapour collectors  

Two collection systems were tested to collect the stripped volatile compounds from the 

fermentation broth. The first system is a trapping system and the second is a condensation 

system. Regarding the trapping system, two solutions can be used to trap the produced 

acetaldehyde, either sodium bisulphite (Sodium hydrogen sulphite) at 0.02% concentration 
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(Wecker, 1987) or cold water (Tanaka et al., 1990) (Figure 3.6). While, using cold water can 

trap 93.2% of the produced acetaldehyde, sodium bisulphide solution, in contrast, can trap 79% 

of the produced acetaldehyde at pH equals or less than 2 (Tanaka et al., 1990).  

 

 

 

 

 

 

 

 

 

However, cold water followed by 3-methyl-2-benzothiazolinone hydrazone hydrochloride 

solution (MBTH) at 0.05% concentration was used in this study as it has the highest trapping 

efficiency (Tanaka et al., 1990) (Figure 3.6). 

The cold-water trapping system was made of 1 of 500 ml gas washing bottle containing 400 ml 

cold water (at around ~5 ℃ ) cooled by ice, and the trapped acetaldehyde was measured by gas 

chromatography. In addition, the gas leaving the system was bubbled through 250 ml gas 

washing bottles containing 150 ml of 0.05% (w/v) 3-methyl-2-benzothiazolinone hydrazone 

hydrochloride solution to monitor any acetaldehyde leakage from the trapping system. The cold 

water in the system was quickly replaced with new one as soon as the white precipitate seen in 

MBTH washing bottle. The trapped acetaldehyde in water does not need any treatment before 

analyzing it with GC in comparison with the one trapped by sodium bisulphite solution, which 

needs further treatment (Wecker, 1987). More importantly, acetaldehyde is highly volatile 

compound, and some of the produced acetaldehyde might be lost during the treatment of 

acetaldehyde-sodium bisulphite solution, resulting in inaccuracy of the results.  
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Figure 3.6: Schematic flow diagram of the fermenter connected with both trapping system 

and gas collector. 
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                                                        (A) 

 

                                                                           (B) 

 

Figure 3.7: (A) Schematic flow diagram of the fermenter connected with both condensation 

system and gas collector. (B) A picture of the final set up used in this study. 

Figure 3.7 shows the chosen system used in the current study to collect the volatile compounds. 

A condensation system was made from a condenser (C6/13/SC), approximal surface area 

(2.5*10-2 m2, Pyrex quickfit, UK) connected to 250 ml two neck round bottom Flask (Pyrex 

quickfit, UK). Cold water (~5℃) was supplied to the inlet of the condenser by a pump 

(superfish aqua-flow 50, flow rate 20L/hr). The gas leaving the system was bubbled through 

250ml gas washing bottles containing 150ml of 0.05% (w/v) 3-methyl-2-benzothiazolinone 
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hydrazone hydrochloride solution to make sure that all stripped acetaldehyde was condensed in 

the system, and the rest of the flow with carbon dioxide passes to the next collector, gas 

collector. This system avoids many difficulties associated with the cold-water trapping system 

such as the need to increase the flow rate to overcome the resistance in the gas washing bottles 

due to the pressure of the liquid height, which also affect the gas collection in the gas collector. 

3.4.4 Gas collector 

The main concept behind the design of gas collector is the communicating vessels phenomena. 

This phenomenon shows that the pressure of the liquid does not depend on the size or shape of 

containers, but instead, it depends on liquid height in these containers. Liquids with the same 

height have the same constant pressure regardless the shape or the size of containers. This fact 

can be changed if the ends of these vessels are closed, and vacuum pressure will be generated 

within these vessels. Therefore, this project uses the vacuum pressure to withdraw the gaseous 

products from the headspace of the fermentation vessel and eventually capture them in the 

storage column.  

The used collector consists of two cylinders; while the first cylinder is called the reference 

cylinder and its dimensions are 15 cm diameter and 1m height, the second cylinder is called the 

collection cylinder and its dimensions are 20 cm diameter and 1 m height as shown in Figure 

3.8. The upper end of the reference cylinder is exposed to the atmosphere, while the top end of 

the collection cylinder is provided with four exits, two of them will be used for samples 

withdrawal and gas analysis. The another exist was used to connect this collector with the 

vapour collector, while the fourth exist is for water supply.  
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Figure 3.8: The used gas collector which is connected to the vapor collector 

This vacuum is governed using the following mathematical equation:  

P = р g ∆H    (Eq. 3.13)   

 Where P is a hydrostatic pressure, ∆H is the height difference between two cylinders, р is the 

liquid density (kg/m3), and g is the gravitational acceleration (9.81 m /s2).  

The liquid levels must be kept the same in both collection cylinder and fermenter to prevent 

vacuum pressure formation among them. Avoiding vacuum formation between fermenter and 

collection tube can keep both headspaces of fermenter and collection cylinder at the same 

pressure, and stripping of gases can be achieved under atmospheric pressure (1 atm). It is worth 

mentioning that changing the liquid level can lead to either re-dissolution of produced gasses 

in the fermentation media (negative vacuum pressure), or it might extract some gasses from the 

fermentation medium (positive vacuum pressure). Therefore, it would be very helpful to 

establish a calibration between the fermenter and the collection tube. 

All produced gasses leave the headspace of the fermenter under the vacuum pressure leading to 

reduce the partial pressures of these gasses in the fermenter. Also, the current fermentation 

process is a closed system, where all products are collected at different stages. All produced 

carbon dioxide is collected and thus; the bespoke system reduces carbon dioxide emissions 

from the fermentation processes but importantly, the collected carbon dioxide can be recycled 

and used in other useful applications such as cultivation of algae.  
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  In addition, the volume of gas (carbon dioxide) was measured using the following equation:  

Vg= 
𝜋

4  
 DC

2Hhs                              (Eq. 3.14) 

Where Vg is the volume of gas (m3), Dc is the diameter of the collection tube (m2), and Hhs is 

the height of collected gas (m).  

Carbon dioxide solubility is decreased with decreasing the pH in the solution. Therefore, acid 

water (~ pH 3) was used to fill the gas collector and to minimize the dissolved carbon dioxide 

to its lowest.   

3.4.5 Analytical methods  

3.4.5.1 measurement of glucose concentration  

Miller, (1959) protocol was used to measure the glucose concentration during the fermentation 

process. A calibration standard curve was made for glucose concentrations with this method 

and used to work out the glucose concentration in a given sample.   

3 ml of a sample was mixed with 3 ml of solution 1 (1 % dinitrosalicylic acid, 0.2 % phenol, 

0.05 % sodium sulfite, and 1 % sodium hydroxide) and then the mixture was heated in water 

bath at 100℃ for 15 minutes. 1 ml of solution 2 (40 % Rochelle salts) was added into the mixture 

after heating. When the mixture is cooling down, the optical density of glucose was measured 

using spectrophotometer at 575 nm. Mixture of water with solution 1 and 2 was used as the 

blank. 

3.4.5.2 Biomass calibration curve  

Biomass was determined by the optical density at 600 nm using the uninoculated medium as a 

blank (Douka et al., 1999). Samples were centrifuged and the biomass at the bottom of the tube 

was dried in an oven at 80℃ for 18 hrs. A turbidity- dry weight calibration standard curve was 

then made and prepared to be used for calculating the biomass concentration.  

3.4.5.3 Detection of acetaldehyde production using acid fuchsin 

Acid fuchsin was used as an indicator for acetaldehyde production.  This pigment has specificity 

toward aldehydes and acetaldehyde specifically. This test consists of two parts. In the first part, 

Zymomonas wild strain was cultivated upon 4SSM agar plate for 48 hours. The second part 

includes overlaying previous plates with acid fuchsin contained agar medium (The overlay 

medium consisted of the following (in g/100 ml of distilled H20): acid fuchsin, 0.02; KH2PO4, 

3.18; Na2HPO4.7H20, 0.88; and agar, 2.0. Molten acid fuchsin medium at 45°C was decolorized 

with 0.5 M NaOH (Holman et al., 1914) before it was used as an overlay. The latter part was 



Chapter three                                                                                            Materials and Methods 

 

 

 66 

stood for 3-16 hours to appear pink to red colour range as a result of acetaldehyde production 

(Wecker, 1987).  

3.4.5.4 Selection of overproducing strains using allyl alcohol 

0.2 mM ally alcohol was used to select bacterial strains with decreased or altered alcohol 

dehydrogenases activity. Allyl alcohol can be oxidized by alcohol dehydrogenase to produce 

acrylaldehyde (Acrolein). The latter chemical is a toxic compound for a bacterial strain with 

normal or overactive alcohol dehydrogenase activity. Therefore, only cells with decreased or 

altered alcohol dehydrogenase activity can grow in the presence of allyl alcohol (Rando, 1974). 

The mechanism of alcohol dehydrogenase in converting allyl alcohol into acrylaldehyde can be 

shown in Figure 3.9. 

 

                                                       

                   Allyl alcohol                                 Acryladehyde (acrolein) 

Figure 3.9: The conversion of allyl alcohol to toxic acryladehyde by alcohol dehydrogenase 

(Adapted from Rando, 1974) 

Allyl alcohol was added to the molten culture medium (4SSM agar) to reach a final 

concentration 0.2 mM before pouring into Petri dishes. These dishes were inoculated with three-

day-old Zymomonas strain, and after four days of incubation, the grown colonies was streaked 

onto fresh 4SSM Agar. The concentration of allyl alcohol was increased gradually (2 mM, 10 

mM, 20 mM, 100 mM and 200 mM) by following the same procedure mentioned with 0.2 mM 

concentration and the final grown colonies were transferred to fermentation medium to 

determine acetaldehyde production (Wecker, 1987).  

3.4.5.5 Measuring of the relative alcohol dehydrogenase activity 

To measure the relative activity of alcohol dehydrogenase in both wild type and mutant type 

Z.mobilis, permeabilized cells need to be prepared. The permeabilized cells can be prepared by 

taking 1 ml of 24 hr grown cells suspended in 30 mM K2HPO4 buffer pH 6. These cells are 

collected by centrifugation for 5 mins at 1000 xg and the pellet is resuspended in 200 µl 30 mM 

K2HPO4 (pH6) with 1 g/l lysozyme (Sigma-Aldrich, UK). 15 µl chloroform was then added 

and vortex for 45 s, and immediately place on ice. The samples kept on ice for 10 min, then 800 

µl 30 mM K2HPO4 added. To measure the relative activity of alcohol dehydrogenase, 10 µl 

permeabilized cells was mixed with 990 µl of 30 mM TrisHCl buffer pH 8,5 contained 1M 

Alcohol dehydrogenase  
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ethanol and 33 mg NAD+, while the blank measurement is conducted with the buffer and 

ethanol plus NAD+ only. Changing in the optical density at 340 nm was recorded using a 

spectrophotometer (Ultraspec 2100 Pro, Biochem, UK) for 60 s. The absorbance for the wild 

strain is considered as a 100 % activity, the measurement for the mutant strain is then used to 

calculate the relative activity.   

3.4.5.6 Sampling 

Samples from the fermentation systems are collected hourly for biomass measurements, while 

samples are collected per two hours for glucose, acetaldehyde and ethanol measurements. 

Samples for bioproducts measurements are filtered with syringe filter unit (Whatman® 

Anotop® 25 Plus syringe filter, pore size 0.2 μm, Sigma- Aldrich, UK), and kept in airtight 

vials in an inverted position. These vials are fitted with crimp-top lids, accommodating septa in 

an airtight seal that can be pierced with a syringe needle. The septa is made of rubber and coated 

with teflon. Using these vials is to assure that all produced acetaldehyde is considered as this 

compound tends to be in a vapour phase at the room temperature as well as other volatile 

compounds such as ethanol.  Figure 3.10 shows pictures for the used vials in the current study. 

These samples were analyzed instantly, and if the GC instrument is not available on the day, 

the samples were kept in the freezer at 4℃.  

 

Figure 3.10: Pictures for the airtight vials used to storage the withdrawal samples. 

3.4.5.7 Product yield calculations 

The fermentation products were measured using millimolarity unit (mM), which prescribes 

mass of material to the volume of liquid. The yields of the fermentation bioproducts ( 

acetaldehyde and ethanol ) were calculated by considering 1 mole of glucose can be metabolised 

to produce 2 moles of acetaldehyde / ethanol with 2 moles of carbon dioxide. The percentage 
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yield is the ratio between the actual yield and the theoretical yield multiplied by 100%.  It 

indicates the percent of theoretical yield that was obtained from the final product in an 

experiment.  The actual yield is the amount of product (acetaldehyde and ethanol) actually 

produced in the fermentation process, which is mass of product formed per mass of substrate 

(glucose) consumed multiplied by 100. 

The chemical equation for acetaldehyde and ethanol production from glucose can be seen 

below:  

 

              1 C6H1206                                              2CH3CHO   + 2CO2                           

       

                             I   2CH3CH20H 

According to above equation, each mole of glucose, if Zymomonas mobilis was able to ferment 

100% of 1 mole of glucose, should yield 2 moles of acetaldehyde/ ethanol and 2 moles of 

carbon dioxide. To calculate the theoretical yield, the molar mass of each chemical involved in 

the above equation needs to be determined using the periodic table. After that, the theoretical 

yield was calculated by multiplying the number of produced moles by both actual moles and 

the calculated molar mass of each chemical.  

Regarding carbon dioxide, only the volume and concentration of carbon dioxide were reported 

in this study. No carbon dioxide yield was calculated because this gas can be produced as a 

byproduct by many reactions such as conversion of Phosphoenolpyruvate to Oxaloacetate, 

reduction of Acetyl-CoA to malate and conversion of pyruvate to acetaldehyde and carbon 

dioxide. Also, it tends to dissolve in the fermentation broth, and some of the dissolved carbon 

dioxide is dissociated into carbonic acid, bicarbonate, and carbonate, leading to decrease in the 

pH of the broth. Practically, the fermentation broth was kept at pH 5.5 and sodium bicarbonate 

was pumped to the fermentation broth to control any decrease in the pH.  

The calculation of biomass yield was based on that 10.5 g dry weight of Zymomonas mobilis is 

the highest biomass yield, which can be generated for each mole of glucose being consumed 

(Kalnenieks, 2006) and thus, 10.5 is considered as 100% yield.  

Zymomonas mobilis 

Zm4 

Fermented by  

ADH 
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3.5 Bacterial Propagation 

3.5.1 Experimental procedures 

Duran Conical Flasks Wm 2000ml were used in both stationary and shaking flask cultures. 1.5L 

cylindrical Airlift Loop Bioreactor (ALB) made of PerSpex measuring 0.16m and 0.125m in 

height and base respectively (Figure 3.11). The reactor was fitted with a microporous sprayer 

for bubble generation. The ALB supported pH, temperature and DO probe (Mettler Toledo, 

UK). The culture temperature was controlled using a microbiological incubator operating at 

30℃. Sterile 4% glucose standard medium (4GSM) is prepared according to (Feigl, 1955), was 

used for the experiment. Before culturing, the medium was autoclaved for 15 minutes at 121 

℃. Next, 1L of growth medium was used to conduct stationary, shaking flask and ALB 

experimental sets. 18hrs old inoculum was used to inoculate all the experimental sets. With 

stationary culture, 2000 mL Erlenmeyer flask with 1000 ml pre-inoculated medium was left 

static 8 hrs at 30℃. With shaking culture, 2000 mL Erlenmeyer flask with 1000 ml pre-

inoculated medium was kept in a rotary shaking incubator (INFORS HT, Germany) at 30°C on 

100 rpm. The control of pH was achieved using a pH controller, type ON/OFF controller 

(Model BL931700 pH mini controller) using 1M sodium bicarbonate solution to adjust the pH.  

3.5.2 Determination of KLa 

 Based on the metabolic oxygen uptake rate of the organism during propagation, the overall 

oxygen transfer coefficient was determined by the yield coefficient method. The oxygen 

transfer rate was calculated using the equation below:  

 

𝑑 𝐶𝐿

𝑑𝑡 
 =  𝐾𝐿𝑎 (𝐶

∗ − 𝐶𝐿)    (Eq. 3.15) 

Where  

• KL = is the liquid –phase mass transfer coefficient( 𝑚2/hr). 

• 𝑎 = is the interfacial surface area (𝑚2). 

• 𝐶∗= is the oxygen concentration at saturation conditions (mol/L). 

• 𝐶𝐿 = is the oxygen concentration in the culture medium (mol/L).  

Alternatively, the dynamic method suggested by Bandyopadhyay and Humphrey, (1967) was 

also used. This method is based on monitoring the dissolved oxygen concentration during a 

short period of aeration. Under steady state conditions, the oxygen uptake rate can be calculated 

from the following equation: 

http://www.infors-ht.com/
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                                                 O2 uptake = rX                                   (Eq. 3.16) 

                                                 O2 transfer rate= KLa(C*-C)               (Eq. 3.17) 

Where: 

• r = is the specific oxygen uptake rate per unit mass of fermenting microorganisms. 

• X= is the mass concentration of fermenting microorganisms in the fermenter. 

• KLa =  is the volumetric oxygen transfer coefficient. 

• C* =is the concentration of oxygen in the liquid that might be equilibrium with the 

partial pressure of the oxygen in the air.  

• C = is the concentration of the oxygen at a particular point in the fermenter.  

This method has two stages, which are gassing and non-gassing stage. In the latter, change in 

the dissolved oxygen concentration can be calculated from the following equation: 

Change in the dissolved oxygen concentration= 
dC

dt
= −rX       (Eq. 3.18) 

It is worth to note that this equation cannot be applied immediately after turning off the air 

supply, and sometimes need to escape the air bubbles from the bioreactor. The dissolved 

oxygen concentration is monitoring until it reaches to around the critical value, after which 

the airflow is turned on again. The former stage is called gassing stage, in which change in 

dissolved oxygen concentration can be calculated from the following equations:  

Change in dissolved oxygen concentration = 
dC

dt 
  = KLa (C*-C)-rX  (Eq. 3.19)                                                                          

rX value can be worked out from the non-gassing period.  

It is important to note that specific oxygen uptake rate is constant as long as the dissolved 

oxygen concentration is above the critical biological oxygen concentration when the organisms 

have not been starved yet.  The exact value of the critical oxygen concentration depends on the 

microorganism; however, this value usually falls between 5% and 10 % of the air saturation 

under the average operational conditions (Doran, 2013). 

On the other hand, the oxygen transfers rate (OTR) between the gas and liquid phase in shaking 

flasks can be described as: 

OTR = KLa (C
∗
L − CL) = KLa (po2 ∗ Lo2 − CL)                     (Eq. 3.20) 
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Where 

𝐾𝐿 = is the liquid –phase mass transfer coefficient ( 𝑚2/hr). 

  𝑎 = is the interfacial surface area (𝑚2). 

𝐶∗= is the oxygen concentration at saturation conditions (mol/L). 

𝐶𝐿 = is the oxygen concentration in the culture medium (mol/L).  

𝑝𝑜2 = the oxygen partial pressure (bar)  

According to above equation, oxygen saturation concentration depends on the oxygen solubility 

in the culture medium and the oxygen partial pressure in the headspace of the cultivation 

flask 𝑝𝑜2 . Moreover, the solubility of oxygen depends on both the medium composition and 

electrolyte concentration (Klӧckner and Bȕchs, 2012). The maximum oxygen transfer rate can 

be calculated using the following equation when 𝐶𝐿=0: 

𝑂𝑇𝑅 =  𝐾𝐿𝑎 ∗ 𝑝𝑜2 ∗ 𝐿𝑜2                          (Eq. 3.21) 

𝐾𝐿𝑎 in shaking flasks can be calculated from the below equation, which was developed by 

Henzler and Schedel, (1991):  

𝐾𝐿𝑎 = 0.5 ∗ 𝑑
73

38 ∗ 𝑛 ∗ 𝑑0
1

4 ∗ 𝑉𝐿
− 8

9 ∗ 𝐷
1

2 ∗ 𝑣
−13

54 ∗ 𝑔
−7

54                 (Eq. 3.22) 

Where  

d = is the maximum inner flask diameter (m) 

 n =is the shaking frequency (1/s)  

d0 = is the shaking diameter (m) 

 VL= is the filling volume (m3),  

D= is the diffusion coefficient (m2/s) 

v = is the kinematic viscosity (m2/s)  

g =is the acceleration of gravity (m/s2).  
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Figure 3.11: Schematic representation of the Airlift Loop Bioreactor. Microfiltered air was supplied through the 

sparger for bubble generation. The ALB is also fitted with pH, DO, thermocouple sensor. This reactor was 

incorporated in the microbiological incubator to regulate the temperature 
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Chapter 4  

Exploiting microbubble-microbe synergy for biomass processing: Application in 

Lignocellulosic biomass pretreatment 
 

Overview 

The potential of lignocellulosic biomass as a sustainable biofuel source is substantial. The 

development of an efficient and cost-effective pretreatment approach remains challenging. In 

this chapter, an attempt was made to explore a new, relatively cheap pre-treatment option that 

works at ambient temperatures. By using microbubbles generated by fluidic oscillation, free 

radicals around the gas-liquid interface of the microbubble readily attack and degrade 

lignocellulosic biomass, rendering it more amenable to digestion. The combination of 

microbubbles and Pseudomonas putida—a robust delignification and cellulolytic microbe, 

further improved biomass degradation and consequently, increased glucose production from 

wheat straw in comparison to solo pretreatment of the biomass with microbubbles and 

Pseudomonas putida respectively. The microbubble-microbe approach to making biomass 

more amenable to sugar production is potentially a valuable alternative or complementary 

pretreatment technique. Pseudomonas putida KT2440 was tested for its ability to secret 

cellulases and lignin hydrolysis enzymes, and these enzymes catalyse the degradation of 

cellulose and lignin polymer to its fundamental units, glucose, and aromatic compounds 

respectively. Pseudomonas putida is proven an effective pretreatment agent and can be used 

alternatively with the existing methodologies.  

4.1 Pseudomonas Putida growth on culture medium  

Figure 4.1 shows the growth pattern of Pseudomonas putida on different cellulosic and lignin 

media: carboxymethylcellulose (CMC), lignin medium (LM) and more complex biomass, 

wheat straw medium (WM). Selection of these three media was essential to ascertain the ability 

of the bacterium in utilizing and growing on different carbon sources. While Pseudomonas 

growth on CMC medium can be clearly seen as a monoauxic growth due to the single C-source, 

growth on LM was a diauxic growth as the two carbon sources (glucose and lignin) are available 

for metabolism by the microbe. WM culture, however, revealed a significant Pseudomonas 

putida growth due to several carbon sources found in wheat straw such as: hexoses, pentoses, 

and their complexes. The higher growth is attributable to the simultaneous utilization of the 

substrates, which is a typical microbial behavior when exposed to a mixture of carbon sources 

(Lendenmann et al., 1996). The limitation of carbon and energy sources explains the relatively 
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low growth rate and growth pattern recorded for both WS and LM media (Hadiati et al., 2014), 

in contrast to high nutritional performance and typical growth pattern recorded in CMC.  

It is noteworthy to mention that due to the maximum cellulolytic activities observed after four 

days, further experimentations on biological pretreatment were conducted for four days. 

(A)                                                                                 (B) 

 

Figure 4.1: Plot of the growth pattern of Pseudomonas putida KT2440 on three different 

culture media. (A) growth pattern on Carboxymethyl cellulose medium (CMC), Lignin medium 

(LM)and Wheat straw medium (WM).(B) Specific growth rates on the three different media. 

Error bars are representative of the standard error of triplicate results 

Figure 4.1B shows Specific growth rates of Pseudomonas putida on three different media, 

which are calculated using an equation described by Widdel, (2010): 

𝜇 =  
2.303 (log𝑂𝐷2−log𝑂𝐷1)

( 𝑡2−𝑡1)
         (Eq. 4.1) 

 Specific growth rate of Pseudomonas on CMC medium was the highest among specific growth 

rates on other media as the glucose was used as a carbon source for its growth and propagation, 

and it was around 0.12 hr-1.  While specific growth rate on wheat straw medium was 0.039 hr-

1, the growth on lignin medium was 0.030 hr-1. Structurally, wheat straw has high carbohydrates 

content such as hexoses and pentoses, with less lignin content, however the microbe showed a 

comparable specific growth rate on both wheat straw and lignin media. In general, the bacterium 

would be expected to need more time to adapt and survive in these harsh conditions.  
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4.2 Morphological changes on wheat straw  

Structural and physical changes are essential indicators of the effectiveness of a pretreatment 

process. To observe and characterize the morphological changes on the biomass, samples were 

examined by each pretreatment method under a SEM and result presented in Figure 4.2.  

 (A)                                                                  (B) 

 

(C)                                                                  (D) 

 

(E)                                                                  (F) 
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(G)                                                                  (H) 

 

Figure 4.2: Morphological changes on wheat straw after different pretreatment conditions. 

Images (A) and (B) are the untreated wheat straw; (C) and (D) are wheat straw after 

pretreatment with microbubble; (E) and (F) are the wheat straw after biological pretreatment 

with Pseudomonas putida; (G) and (H) are the wheat straw after the combined pretreatment 

with both microbubbles and the biological organisms  

Untreated straw (Figure 4.2 A and B) was observed to be physically intact with its morphology 

preserved, which is evidenced by the relatively smooth, densely packed surfaces. In contrast, 

the microbubble (see Figure 4.4 for size distribution) mediated treatment (Figure 4.2C and D) 

revealed wheat straw with clear porous structures on and through the straw surfaces. This effect 

results from the decreased rigidity and the re-ordering of fibers during pretreatment. This 

observation is corroborated by the findings of Cui et al., 2012 who reported a similar porous 

structure on wheat straw after pretreatment with a steam explosion at 200-220℃. Microbubble 

boundaries are highly charged interfaces, carrying and releasing potent free radicals in the 

containing medium. When in contact with a solid body (particles), the charges are readily 

deposited and effectively attack the surface, consequently degrading the particle physical 

structure. Ragnar et al., (1999) found that excited hydroxyl radicals resulted in the capture of 

one hydrogen from either the methyl groups or the carbon in the middle structure of lignin. The 

extent of surface damage can vary depending on the bubble surface charge magnitude, bubble, 

and particle size and carrier gas. Dosing charge-laden microbubbles can play a crucial role in 

the catalysis and cleavage of cellulose and hemicellulose and inadvertently, facilitating the 

release of sugar from the biomass.  

Glucose concentration measurement reveals a slight increase (0.08mg/ml after 3:30hrs) with 

the incorporation of microbubbles during lignocellulosic biomass pretreatment (see Figure 

4.3A). Typically, long glucose chains in cellulose link with each other via hydrogen bonds and 

are responsible for the formation of microfiber structures in cellulose. These bonds also connect 

microfibers with hemicellulose moiety of the biomass (Roman, 2004). The energy of these 
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interfibrillar hydrogen bonds must be overcome to break up these microfibers into separated 

fibers, and eventually release glucose moieties from the separated fibers (Janardhnan and Sain, 

2011). The low result, likely due to the relatively short retention time with microbubbles, 

demonstrates, however, the potential of a microbubble in the pretreatment of lignocellulosic 

biomass.  

In Figure 4.2 (E and F), there is a significant morphological change on wheat straw after 

pretreatment with Pseudomonas putida. The images reveal the presence of debris - crust-like 

fragments -- covered surface, known as fractions of the middle lamella. The presence of crust-

like fragments indicates the absence or partial degradation of hemicellulose since the middle 

lamella is mainly made from hemicellulose (Kristensen et al., 2008). This improved result 

(0.159 mg/ml Figure 4.3B), compared to microbubble pretreatment, suggests that enzymes play 

a more influential role in biomass hydrolyses. Degradation of lignocellulosic biomass by 

Pseudomonas putida is attributable to the secretion of various groups of enzymes. Cellulases 

attack cellulose chains at random sites to produce glucose as a final product (Ibrahim and El-

diwany, 2007). On the other hand, oxygenases cleave carbon double bonds in lignin by inserting 

oxygen atoms to form carbon monoxide as a final product (Bauer and Max, 1996). These results 

are consistent with the findings of Putnina et al., 2012 and Cui et al., 2012, when the authors 

pre-treated hemp fibers and wheat straw by steam explosure.  

The result of combined pretreatment - microbubbles and Pseudomonas putida is presented in 

Figure 4.2 (G and H). Under this pretreatment condition, the wheat straw structure appears 

relatively loose, largely irregular and highly fibrous. But equally remarkable are the pores 

observed across the material surface. Similar structural changes were also reported by Gould, 

1985 and Singh et al., 2013, who investigated the pretreatment of agricultural residues by alkali 

delignification combined with microwave. Considering the principal structure of 

lignocellulosic biomass, lignin is the most complicated component, and poses the greatest 

physical barrier for biomass hydrolysis. By disrupting the lignin structure of the biomass, 

microbubbles provide an easier and faster access for the enzymes realized from the microbe for 

cellulose digestion. The hydroxyl and superoxide radicals generated from collapsed 

microbubbles (Takahashi et al., 2007) readily attack hydrogen and β- glycosidic bonds in the 

biomass (Li et al., 2009a and b). In addition, hydroxyl radicals are easily transformed into 

superoxide radicals and vice versa (Ragnar et al., 1999), intensifying the metabolic process of 

P.putida.  
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This microbubble-microbe synergy should release more sugar than either of the individual 

methods. To test this, glucose concentration was measured for the combined pretreatment (see 

Figure, 4.3B). Here, wheat straw was first pre-treated with microbubbles for over three hours 

and the pretreatment continued with the addition of Pseudomonas putida for four (4) days. The 

final glucose concentration obtained from the combined pretreatment, was 0.27 mg/ml. The 

result of the combined technique is higher than either solo operations. However, the exact order 

in which the microbubble-microbe delignification of biomass occurs is largely unknown and 

therefore subject to further investigation. 

(A)                                                                                   (B) 

      

Figure 4.3: Plot of glucose concentration with time during pretreatment of lignocellulosic 

biomass. (A) Microbubble pretreatment. (Bi) Biological pretreatment of straw (BTS) (Bii) 

Combined pretreatment of straw (CTS) –microbubble and biological method. Increased glucose 

yield was reordered for combined pretreatment method. Error bars depict the standard 

deviations. 
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Figure 4.4: Microbubble size distribution plot. Sub-100 μm bubbles were largely produced. 

Second visible peak exists as a result of slight production damage on the microporous sparger 

Figure 4.4 shows the microbubble size distribution used in this study. In average, these bubbles 

have diameters around 50 μm. Bubbles around this diameter tend to have a high interior 

pressure, leading to the shrinkage and collapse of the microbubble beneath the solution surface 

because of the dissolution of the interior gas by the surrounding solution but crucially, the 

surface of these bubbles becomes charged due to the adsorption of ions at the gas-liquid 

interface. The interior gas pressure increases as bubbles become smaller but importantly, free 

radicals can be generated by the collapse of microbubbles, resulting in a hot spot with extremely 

high pressure and temperature (Li et al., 2009). 

4.3 Changes in the functional groups of the biomass  

Apart from the physical changes, chemical changes to the biomass were assayed to characterize 

the variations in functional groups under the experimental conditions studied.  

Figure 4.5 (A) presents FTIR-ATR readings of untreated wheat straw samples and wheat straw 

after treatment with microbubbles. At 750/710 cm-1 - a ratio of crystalline cellulose (1α/1β) in 

the biomass (Yamamoto et al., 1996; Boisset et al., 1999 and  Kumar et al., 2009). There was a 

slight but noticeable decrease in the absorbance, suggesting a crystalline cellulose decrease in 

the biomass. The decrease was in favor of the microbubble treated samples in comparison with 

the untreated samples. Boisset et al., (1999) observed a similar reduction on cellulosic substrate 

contents after treating with Clostridium thermocellum as did Yamamoto et al., (1996). 

Typically, the crystalline cellulose is more difficult to hydrolyse than amorphous cellulose. 

Therefore, reducing its amount in the biomass is crucial to the liberation of some inherent 
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glucose molecules and consequently, making the biomass more accessible for further digestion 

by cellulases (Boisset et al., 1999 and Yang et al., 2011). 

Further, the 1098/900 cm-1 ratio defines the ratio of crystalline cellulose to amorphous cellulose. 

The result reveals a slight decrease in this ratio after microbubbles pretreatment compared with 

the untreated samples. This decrease was consistent with the result at 900 cm-1, which is related 

to amorphous cellulose (Laureano-Perez et al., 2005). However, the amorphous cellulose 

absorbance at 900 cm-1 was unchanged after microbubbles pretreatment. The absorbance at 

1745 nm, which relates to the carbonyl groups - the side chains of lignin molecules (Windeisen 

et al., 2007), was slightly decreased after microbubbles pretreatment.  

The FTIR-ATR readings for both untreated wheat straw and bacterially treated wheat straw is 

presented in Figure 4.5(B). The absorbance of the crystalline ratio (1α/1β) decreased 

significantly after biological pretreatment compared to the untreated straw. Interestingly, this 

outcome differs from results from previous studies. For example, Yang et al., (2011) reported 

a decrease in amorphous cellulose degradation by cellulases compared to crystalline cellulose. 

Fan et al., (1980) also reported the inability of cellulases to attack the crystalline portion of 

cellulose, which led to an increase in crystalline. In their study, the amorphous cellulose content 

decreased after pretreatment with the bacterium (Fan et al., 1980) in comparison with untreated 

samples as well as with different microorganisms (Yang et al., 2011). Crystalline cellulose is 

less hydrolysable than its amorphous counterpart, especially to microbes. However, 

Pseudomonas putida is unique for its metabolic versatility, effectively producing enzymes for 

degrading crystalline cellulose. 

Additionally, the current results also revealed a decrease in the absorbance of carbon double 

bonds content of the biomass at 1595 cm-1, which is related to the aromatic ring in lignin. 

Cleavage of the carbon double bond has been reported as one activity of this bacterium. Bauer 

et al., (1996) found that dioxygenase enzymes present in Pseudomonas putida, facilitate the 

cleaving of the carbon double bond in N-heterocyclic rings by inserting oxygen atoms, leading 

to the formation carbon monoxide as a final product. Also, Tu et al., (2013) demonstrated that 

Pseudomonas spp are effective in degrading ciprofloxacin as a result of carbon double bond 

cleavage via oxidation with manganese.  

Further, the 1720 cm-1 absorbance identifies the carboxylic acids or ester groups in both 

hemicellulose and lignin (Sun et al., 2005). The result here shows a decrease in absorbance with 
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the microbe in comparison with the untreated biomass. At 1745 cm-1, there was a significant 

reduction in the absorbance in comparison with untreated samples. This absorbance relates to 

the carbonyl bonds as well as the side chains of lignin (He et al., 2008 and Windeisen et al., 

2007). Deconstruction of cellulose is problematic by the presence of lignin and hemicellulose 

as well as their derivatives. Delignification therefore, is an inevitable crucial step in 

deconstructing cellulose and eventually releasing exploitable monomers for microbial 

metabolism. Pseudomonas putida acts as a delignification agent, effectively decreasing the 

lignin content and complexes. 

Application of microbubbles and Pseudomonas putida for the pretreatment of lignocellulosic 

biomass has improved the hydrolysis of the biomass, showing both physical and chemical 

changes and the consequent production of glucose. To improve the commercial viability of the 

pretreatment technique, therefore, further work is necessary for understanding the key 

physicochemical and biochemical mechanisms underpinning the technique and exploring 

options to improve glucose yield. One option is to increase the surface area of microbubbles by 

further decreasing bubble size as cellulose is a composite material with the surface structure of 

3-5nm size. Dosing with hot microbubble to liberate cellulose is yet another. Crucially however, 

future studies to investigate methods to improve p. putida growth and consequently production 

of enzyme as the latter play a more influencial role in glucose production is expedient. Provided 

substantial glucose yield can be obtained; the microbubble-microbe biomass processing 

technique offers many benefits including: decrease in capital and production cost in comparison 

to traditional techniques that utilize a substantial amount of chemicals and enzymes and high 

temperature and pressure.  
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(A)                                                                 (B) 

   

Figure 4.5: (A) FTIR-ATR spectrum of biomass after pretreatment with microbubbles (MTS) 

(B) FTIR-ATR spectrum of biomass after pretreatment with a bacterium (BTS). A more 

pronounced difference in the mid part of the absorbance spectrum, showing the effect of 

Pseudomonas putida on lignocellulosic biomass pretreatment. UTS is untreated samples.  

4.4 Pseudomonas cellulolytic activities on Petri dishes  

The cellulolytic activity of Pseudomonas putida KT2440 was tested qualitatively using Petri 

dishes and quantitatively by measuring enzymes activities, proteins concentrations, and specific 

enzymes activities. Figure 4.6 shows the average of the cellulolytic activities of Pseudomonas 

Putida KT2440 on both carboxymethyl cellulose and wheat straw agar media.   

(A)                                                                                    (B) 
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        (C)                                                                                                    (D)     

 

Table 4.4.1: cellulolytic activities of Pseudomonas putida on Petri dishes 

Culture media  

                         

               Cellulolytic activity 

After 3 days  

(Diameter mm)±SD 

After 4 days  

( Diameter 

mm)±SD 

After 5 days  

( Diameter mm) 

±SD 

Carboxymethylcellulose  14  ±1 16±1 16±1 

Wheat straw  10±1 16±0.5 16±1 

  

Cellulolytic activity of Pseudomonas putida was observed at its highest between 3- 5 days as it 

can be seen in Figure 4.1A; however, there was not significant change between the activities 

after 4 and 5 days of incubation as shown in the Figure 4.6 and Table 4.1. Therefore, 4 days of 

incubation at 30℃  was chosen to collect cultural filtrates, to do the enzymatic activity tests and 

to finish the biological pretreatment with Pseudomonas putida.  These results were consistent 

with the growth patterns on CMC and wheat straw media, which showed that the microbial 

activity on CMC medium is higher than on WS medium and therefore; it can be concluded that 

the cellulolytic activity on CMC is greater than on WS as cellulose is the main carbon source 

in both media.  

Figure 4.6: Cellulolytic activities of Pseudomonas putida on two media. A and B represent the 

cellulolytic activity on CMC after 3 and 4 days respectively. C and D represent cellulolytic activity on 

WSM after 3 and 4 days respectively. 
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4.5 Proteomics of cellulases enzymes 

After the qualitative study, the next step was to measure this activity quantitatively by 

measuring the enzymes activities, protein concentrations, and specific enzymes activities. 

Knowing these parameters can build a milestone for future use and optimization of cellulases 

production and utilization from Pseudomonas putida KT 2440.  

4.5.1 Crude enzymes activities 

 Sodium dodecyl sulfate - Polyacrylamide gel electrophoresis (SDS-PAGE) was used to run the 

samples after concentrated them with amicon tubes. Different protein bands were seen on SDS-

PAGE, and their molecular weights were determined using the standard proteins M12 marker 

(See Figure 4.7). Crude enzymes activities were measured according to protocols described 

before at fourth day, when the cellulolytic activities reached its highest. Using amicon tubes 

increased the enzymes activities as a result of increasing the enzymes concentration. Using the 

amicon tubes increased the protein concentrations to about 280 % in wheat straw medium and 

about 61.5 % in CMC medium (Table 4.2). The membranes used in the amicon tubes have the 

ability to retain molecules above a specific molecular weight. However, the solutes with a 

molecular weight close to the nominal molecular weight limit may be only partially retained. 

Two factors can play important roles in the membrane retention, which are the molecular size 

and molecular shape. It is worth to note that the amicon Ultra 10K device — 10,000 NMWL 

was used in this study, and this is at least two times smaller than the molecular weight of protein 

solute mentioned in the literature reviews (Schell, 1987 and Lejeune et al., 1988). Concentrated 

proteins were applied on SDS-PAGE for 36 minutes and 200 voltages, and the resulting proteins 

bands with their approximate molecular weight can be seen in Figure 4.7.  

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Schell%20MA%5Bauth%5D
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                    Table 4.2: Initial protein concentrations and concentrated protein concentrations with 

corresponding cellulases activities. Results are rewpresentative of triplicate readings. 

 

4.5.2 Partial purification and precipitation of cellulases enzymes using ammonium 

sulfate salt 

 Ammonium sulfate was used to fractionate the produced proteins using different saturation 

concentrations. Following this step, enzymes activities were measured in every fraction. 

Different salt concentrations were used to precipitate different proteins in different fractions; 

however, 25 %, 50 %, 65 % and 90 % saturations with ammonium sulfate were utilized in this 

study. These saturations were chosen according to the protein concentrations in each step, 

precipitation of CMC material with proteins and depending on the information mentioned in 

Samples 

(Cultural 

filtrates) 

Initial Protein 

concentration 

(mg/ml) 

Concentrated 

Protein 

concentration 

(mg /ml) 

CMCASE 

activity 

(U/ ml) 

FPase 

activity 

(U/ml) 

β-glucosidase 

activity 

(U/ml) 

Specific 

activity of 

CMCASE 

(U/mg) 

Specific 

activity 

of FPase 

(U/mg) 

Specific 

activity of β-

glucosidase 

(U/mg) 

Wheat straw 0.15 0.57 0.014 0.004 0.011 0.093 0.026 0.073 

Carboxymethyl 

cellulose 
0.13 0.21 0.012 0.002 0.011 0.092 0.015 0.084 

W
h

eat straw
 (1

0
µ

L) 

W
h

eat straw
 (2

0
µ

L) 

 C
M

C
 (1

0
µ

L) 

 C
M

C
 (2

0
µ

L) 

 

Figure 4.7: SDS-PAGE of Pseudomonas putida KT 2440 cultural filtrates showing the produced 

proteins. The black-coded bands represents the bands used in the In-gel digestion and  analysed 

with LC-MS/MS, while the red-code band shows the identified protein, which has molecular 

weight around  96 kDa.  

Glycosyl hydrolase 

family 5 
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the literature reviews. Table 4.3 shows protein concentrations in each step of ammonium sulfate 

precipitation for both cultural media. 

It can be seen from Table 4.3 that the highest protein precipitation was observed in 65% 

saturation in both culture media. However, at 25 % saturation, 11mg/ml of protein were 

precipitated from carboxymethyl cellulose medium in compared to 13.2 mg/ml in wheat straw 

medium.  While, 0.8 mg/ml of protein was precipitated in CMC medium at 50 % saturation, 6 

mg/ml of protein were precipitated from WS medium. Finally, 4.2 mg/ml of protein precipitated 

from WS medium at 90 % saturation compared to 2.2 mg/ml of protein in CMC medium. The 

amounts of precipitated proteins are dependent on the ionic strength in the medium. Generally, 

proteins have low solubility in pure water; however, this solubility can increase with increasing 

the ionic strength as there are extra organic ions bound to the protein’s surface and this will 

prevent the aggregation of proteins. Adding ammonium sulfate to the protein’s solution can 

withdraw the water molecules from these proteins and this leads to aggregate and precipitate of 

protein’s molecules within the solution. While, the first case is called ‘salting in’, the second 

case is called ‘salting out’ (Koolman and Roeham, 2005). These samples were run on SDS-

PAGE for 36 minutes and 200 voltages, to identify proteins, which were precipitated in each 

fraction of ammonium sulfate saturation concentrations. However, there was an undesirable 

interaction between CMC material and the ammonium salt, and this led to form a gel-like 

aggregation at the bottom of precipitation vessel. Accordingly, it was suggested that using 

ammonium sulfate in precipitation of cellulases produced on CMC medium is not 

recommended and alternative method needs to be used for precipitation and purification 

purposes. Figure 4.8 shows SDS-PAGE for each fraction of ammonium sulfate saturation 

concentration. 
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Table 4.4.3: Enzyme activity of various cellulolytic enzymes during different steps of ammonium sulfate fractionation. The results are 

representative of triplicate readings.  

Medium 

Ammonium 

sulphate 

precipitation (% 

saturation) 

Precipitated 

volume (ml) 

Protein 

concentration 

mg/ ml 

Total protein 

concentration 

mg 

CMCASE 

activity 

(U/ ml) 

FPase 

activity 

(U/ml) 

β-

glucosidase 

activity 

(U/ml) 

Specific 

activity of 

CMCASE 

(U/mg) 

Specific 

activity of 

FPase 

(U/mg) 

Specific 

activity of 

β-

glucosidase 

(U/mg) 

C
M

C
 

0 44 0.11 4.84 0.012 0.002 0.011 0.092 0.015 0.084 

25 11 1 11 
0.09 

 

1.26 

 

0.03 

 

0.008 

 

0.114 

 

0.003 

 

50 5 0.16 0.8 
0.10 

 

0.093 

 

0.019 

 

0.12 

 

0.116 

 

0.024 

 

65 25 0.08 4 
0.022 

 

0.031 

 

0.058 

 

0.006 

 

0.008 

 

0.015 

 

90 22 0.1 2.2 
0.03 

 

0.010 

 

0.024 

 

0.012 

 

0.004 

 

0.011 

 

W
h

ea
t 

st
ra

w
 

0 40 0.08 3.2 0.014 0.004 0.011 0.092 0.015 0.084 

25 11 1.2 13.2 0.006 0.054 0.051 0.0004 
0.004 

 

0.004 

 

50 5 1.2 6 
0.2 

 

0.093 

 

0.19 

 

0.03 

 

0.02 

 

0.03 

 

65 5 0.85 4.25 
0.023 

 

0.073 

 

0.287 

 

0.006 

 

0.017 

 

0.067 

 

90 6 0.7 4.2 
0.06 

 

0.040 

 

0.08 

 

0.014 

 

0.001 

 

0.02 
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Figure 4.9 shows the enzymes activities in two cellulose-contained media, CMC, and wheat 

straw after different ammonium sulfate saturations. From Figure 4.9, it can be seen that 

CMCase enzymes were precipitated at 25 % and 50 % in CMC medium (Figure 4.9A), and at 

50% in wheat straw (Figure 4.9B). On the other hand, FPase enzymes were precipitated at 50% 

in both CMC and wheat straw media. In contrast, β-glucosidase enzymes were precipitated at 

65% in both CMC and wheat straw media.  It is worth to note that the ammonium salt could 

not precipitated these enzymes at any particular saturation and thus, the enzymes activities were 

observed in almost all the saturations with different percentages and this might suggest that 

cellulases are not recommended to be precipitated and/or purified using ammonium sulfate salts 

and other purification techniques need to be explored. Figure 4.10 shows the specific enzymes 

activities in two cellulose-contained media, CMC, and wheat straw after different ammonium 

sulfate saturations by dividing the enzymes activities over the protein concentration at each 

saturation.  

 

 

 

Precipitated proteins of WS 

medium at 0, 25, 50, 65, 90% of 

ammonium sulfate respectively 

Precipitated proteins of CMC 

medium at 0, 25, 50, 65, 90% of 

ammonium sulfate respectively 

  Figure 4.8: SDS-PAGE for proteins after fractionation with ammonium sulfate. 
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(A)  

 

 

(B) 

  

Figure 4.9: Enzymes activities of cellulases on different media. (A) CMC medium (B) Wheat 

straw medium 
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(A) 

 

 

(B)  

 

Figure 4.10: Specific enzymes activities on different cellulose contained media (A) CMC (B) 

wheat straw 
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Interestingly, this bacterium showed reasonable cellulolytic activity in comparison with other 

cellulolytic microbes reported previously. For example, Sethi et al., (2013) have studied the 

optimization of the cellulases production from bacterial species isolated from soil. The isolated 

species were Pseudomonas fluorescens, Bacillus subtilis, E. coli, and Serratia marcescens and 

comparing the cellulolytic activity of Pseudomonas putida KT 2440 with all the isolated 

species, it can be clearly observed that this bacterium has higher cellulolytic activity than all 

these isolates, except Pseudomonas fluorescens, which shows higher cellulolytic activity when 

the glucose concentration increased to 5% (Sethi et al., 2013). On the other hand, the fungal 

species were also isolated from soil by Ram et al., (2014), and all these fungal isolates showed 

a lower cellulolytic activity than Pseudomonas putida KT 2440, when the highest zone of 

clearance observed was 7 mm by PISS-3 fungal strain (Ram et al., 2014), while the highest zone 

clearance noticed in the current study was 16 mm on both carboxymethyl cellulose and wheat 

straw media. Also, this bacterium shows a comparable cellulolytic activity with Cellulomonas, 

Bacillus, and Micrococcus spp, which showed 0.0172, 0.0165 and 0.0121 U/ml respectively 

(Immanuel et al., 2006) in comparison with 0.014 U/ml obtained in the current study.  

4.5.3 LC-MS/MS analysis of cellulolytic proteins  

Trypsin is known as the most commonly used protease for in-gel protein digestion and it 

hydrolyses the peptide bonds in which the carbonyl group is followed by either Lysine (Lys) or 

Arginine (Arg) moiety, with one exception when Lysine and Arginine are N-linked to aspartic 

acid (Asp). In addition, this cleavage will not happen if the amino acid, Proline, is connected 

the carboxyl side of Lysine and Arginine. Because the long digestion times, the digestion 

process was kept overnight, and the post-digestion preparations steps were followed in the next 

day (Hustoft et al., 2010). Before Liquid chromatography–mass spectrometry (LC-MS) 

analysis (See appendix H), removing the buffers and salts added during the sample preparation 

were carried out using ZipTip, which helped to concentrate and purify the samples for delicate 

downstream analysis (Capelo et al., 2009). The results from the Proteome Discoverer 1.4 

software package showed that the cellulases were secreted by Pseudomonas putida KT 2440 to 

hydrolyse the cellulose content of wheat straw. Typically, these enzymes are classified into 

families, and the produced enzymes can be identified as a family rather than as an individual 

enzyme. LC-MS/MS analysis of cellulolytic proteins showed that glycosyl hydrolase family 5 

was produced with an average molecular weight about 96.6 (kDa), and the calculated isoelectric 

point was 6.40. The number of amino acids in the identified glycosyl hydrolase family protein 

was 868. This result is crucial for further production and purification of these enzymes and 
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represents supporting evidence about the ability of Pseudomonas to produce cellulases during 

its growth on wheat straw as a carbon source. The produced cellulases are different from what 

have been mentioned in the literature reviews of Pseudomonas as a genus (Schell, 1987 and 

Lejeune et al., 1988). Knowing the molecular weight, calculated pI and the number of amino 

acids are very important details for future separation and purification of cellulases enzymes 

from Pseudomonas putida KT2440. It is worth mentioning that the identified protein family 

was a part of large protein library, which was identified from around 500 proteins with various 

structural and catalytic activities.  

4.6 Conclusions  

An alternative lignocellulosic biomass pretreatment technique using microbubbles and 

Pseudomonas putida at room temperature has been investigated. Physical changes to the 

biomass structure as well as changes in the functional groups are aspects that were affected by 

the pretreatment technique. Microbubbles generated free radicals that attacked and 

disintegrated biomass lignin, making cellulose more accessible for hydrolysis. Further 

pretreatment with Pseudomonas putida caused considerable changes in both the morphology 

and functional groups content of the biomass, enhancing the glucose yield. The synergy 

between microbubbles and microbes in biomass processing offers some prospective benefits as 

a pretreatment technique for biofuel production. Finally, the cellulolytic activity of 

Pseudomonas putida KT 2440 was thoroughly investigated and cellulases activities were 

measured. Also, the molecular weight of glycosyl hydrolase family 5 (the family has all the 

cellulases enzymes from Pseudomonas) was determined as an outcome of this study as well as 

measuring the enzymatic activities. However, the main drawback to this pretreatment technique 

is the low glucose yield, which can be improved by increasing the biodigestibility of the 

biomass, and consequently release more glucose. To increase the biodigestibility of the 

biomass, a synergistic approach between ozonolysis and cellulolytic microorganism-

Pseudomonas putida at room temperature will be investigated in the next chapter. 

Subsequently, the produced glucose can be used as a carbon source in the fermentation process, 

which will be carried out by Zymomonas mobilis cells.  

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Schell%20MA%5Bauth%5D
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Chapter 5  

Exploiting ozonolysis-microbe synergy for biomass processing: Application in 

lignocellulosic biomass pretreatment 

Overview 

Pretreating lignocellulosic biomass is an energy and time-consuming process. To enhance the 

pretreatment method in chapter 4, a synergistic approach between ozonolysis and cellulolytic 

microorganism-Pseudomonas putida at room temperature is explored in this chapter. Ozone is 

a strong oxidative agent that reacts with lignin by attacking the carbon-carbon double bonds, 

while P. putida preferentially hydrolyses the exposed cellulolytic parts of the biomass to simple 

sugars. The results from SEM and FTIR-ATR show a significant reduction in lignin and 

cellulose contents, leading to relatively high sugar recovery. The glucose concentration 

increases coincidentally with the ozonation duration, and After 24 h however, the concentration 

reached 1.1 mg/ml, a 323 % increase compared with results after 2 h.  Increasing the ozonation 

time to 24 h reduced the biological pretreatment time by 50% but crucially, increases microbial 

biomass. This approach has potentially high ramifications particularly for industries exploiting 

lignocellulosic biomass as a feedstock for bioethanol production. 

5.1 Measuring the ozone concentrations  

An ozone generator (Dryden AQUA, UK) was used to generate ozone, and the concentration 

of the generated ozone was determined using the method described by Rakness et al., (1996). 

100 ml/min flow rate was calibrated to ascertain the ozone concentrations and used in all 

following experiments as it has the highest ozone concentration. Two ozone concentrations - 

6.67 mg/L and 8.87 mg/L -- were explored at varying exposure times (2, 6, 12, 24 h) to 

determine a reaction time long enough to allow substantial oxidation of the biomass. 
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Table 5.1: Ozone concentrations with flow rate 

 

 

 

Ozonation level mg/L 

 

 
 

1 

 
8.869 

2 6.678 

3 6.12 

 

 

5.2 Effect of pH and ozone on the functional groups  

Figure 5.1 presents the FTIR-ATR spectrum for wheat straw biomass after microbubble-

mediated ozonolysis (MMO) for 2 h at two pHs (3, 7) and ozone-rich microbubbles followed 

immediately with the microbial application (MMO-M). Two regions were identified as reaction 

sites for both ozone and microbial pre-treatment. The first is related to the cellulose content of 

the biomass, which ranges from ~710 cm-1 to ~ 1100 cm-1 wavelength for both amorphous and 

crystalline cellulose (Yamamoto et al., 1996; Boisset et al., 1999; Kumar et al., 2009 and 

Laureano-Perez et al., 2005). The second region is related to the lignin content of the biomass, 

~ 1595 cm-1 (Bauer et al., 1996). Under the acidic condition, the MMO-M pre-treatment (Figure 

5.1B) resulted in a considerable decrease in both amorphous and crystalline cellulose as well 

as lignin content, particularly at an ozone concentration of around 8 mg/L. There was not much 

difference however between MMO and MMO-M pretreatment under acidic condition and 6 

mg/L ozone concentration (Figure 5.1A). Pretreatment under neutral pH (Figure 5.1 C and D), 

only resulted in a slight decrease in cellulose and lignin contents of the biomass at ozone 

concentration around 6 mg/L and at higher ozone concentration, proved counter-productive. 

Also, there was no observable difference in performance between MMO and MMO-M 



Chapter five                                                                    Exploiting ozonolysis-microbe synergy  

 

 

 95 

pretreatments. pH is a system parameter that significantly affects the release and yield of 

radicals as well as their reaction rate during the ozonation process (Ragnar et al., 1999). Radical 

species yield increases under an acidic condition in comparison with the higher pHs, leading to 

more effective hydrolysis of organic substrates (Ragnar et al., 1999). Furthermore, 

microbubble’s acceleration of the formation of hydroxyl radicals during ozonation (Ragnar et 

al., 1999), contributes to the improved yield recorded.  

The cellulose crystalline ratio (ɪα/ɪβ), calculated by dividing absorbance at 750 cm-1 by 

absorbance at 710 cm-1, was slightly decreased during all pretreatment combinations, 

suggesting that cellulose crystallinity was decreased by ozone. Sakai and Uprichard, (1991) 

have reported the effect of ozone on β-glucosidic bonds of cellulose, and showed its cleavage 

rate as 1.8 times faster than α-glucosidic bonds. This rate relies, however, on diffusion rate of 

ozone in water (Sakai and Uprichard, 1991). The decrease in cellulose crystallinity means 

decreasing the complexity of cellulose hydrolyses by cellulases. The complexity of crystalline 

cellulose hydrolyses was reported by Fan et al., (1980) as a major barrier to cellulose 

digestibility by cellulases. Similarly, Park et al., (2010) also showed that amorphous cellulose 

was the easier part of cellulose to hydrolyse.  

The crystalline to amorphous cellulose ratio result was obtained by reading absorbance at 1098 

cm-1 and 900 cm-1. After MMO-M pretreatment, there was a small change recorded in the 

absorbance at 900 cm-1 (circled region in Figure 5.1B), which is absorbance of amorphous 

cellulose. The slight decrease in amorphous cellulose demonstrates the cellulolytic capability 

of Pseudomonas putida, but crucially, highlights its delignification tendencies. The implication 

of the latter is that Pseudomonas putida can also utilize lignin as a carbon source, and when 

present with cellulose, causes a diversion in the metabolic activity of the microbe. This outcome 

corroborates the earlier findings of Mulakhudair et al. (2016) who cultured Pseudomonas putida 

in lignin medium and observed an increase in microbial biomass. 

Clearly, there was a visible change in absorbance at 1595 cm-1(circled region in Figure 5.1B), 

which is the carbon double bonds absorbance. Carbon double bonds are typically the primary 

target site for cleavage by ozone. The result agrees with the findings of Kuvshinov et al., (2014) 

and García-cubero et al., (2009), who reported that ozone application was effective in attacking 

carbon double bonds, producing non-toxic esters. Kaneko et al., (1983) also reported the 

selective reaction of ozone with unsaturated carbon double bonds.  
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           (A)       (B) 

 

 (C)       (D) 

 

Figure 5.1: FTIR-ATP spectrum of lignocellulosic biomass after MMO and MMO-M pretreatments. 

(A) MMO at pH 3 and 6.67 mg/L ozone concentration and MMO-M at pH 3 and 6.67 mg/L zone 

concentration (B) MMO at pH 3 and 8.86 mg/L ozone concentration and MMO-M at pH 3 and 8.86 

mg/L ozone concentration (C) MMO at pH 7 and 6.67 mg/L ozone concentration and MMO-M at pH 7 

and 6.67 mg/L ozone concentration. (D) MMO at pH 7 and 8.86 mg/L ozone concentration and MMO-

M at pH 7 and 8.87 mg/L ozone concentration. The readings are representative of triplicate results.  

 

5.3 Effect of pH and ozone on the morphological characteristics 

Figure 5.2 shows a comparison between untreated and treated wheat straw under various pre-

treatment conditions. In Figure 5.2A, untreated biomass with its physical and morphological 

integrity are seen to be relatively intact. This is evident in the largely smooth surface with fewer 

cracks, and densely packed surface with ordered structure.  
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Figure 5.2:  Morphological changes on wheat straw after MMO and MMO-M pretreatments 

for 2 h. (A) Untreated wheat straw. (B) MMO at pH 7 and 6.67 mg/L ozone concentration. (C) 

MMO-M at pH 7 and 6.67 mg/L ozone concentration. (D) MMO at pH 7  and 8.86 mg/L ozone 

concentration. (E) MMO-M  at pH 7 and 8.86 mg/L ozone concentration. (F) MMO at pH 3 

and 6.67 mg/L ozone concentration. (G) MMO-M at pH 3 and 6.67 mg/L ozone concentration. 

(H) MMO at pH 3  and 8.86 mg/L ozone concentration. (I) MMO-M at pH 3 and 8.86 mg/L 

ozone concentration.  
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In contrast, Figure 5.2 (B, C, D, E, F, G, H and I) shows morphological changes in wheat straw 

after MMO pretreatment for 2 h at both pHs (3, 7), and ozone concentrations (6.67 and 8.87 

mg/L). From these images, it can be seen that there were substantial changes in the morphology 

of wheat straw and loss of its structure after pretreatment as well as rugosity on wheat straw 

surface (Figure 5.2B, C, D and G). However, MMO pretreatment at pH 3 and 8.86 mg/L (Figure 

5.2H and I) caused a substantial removal of lignin and some of the internal microfibers clearly 

appeared in comparison with other pre-treatments. Some of these changes have already been 

previously reported by others authors. For examples, Souza- Correîa et al., (2013) observed 

surface morphology in sugar cane after 4 h of ozone treatment and confirmed that these changes 

were due to oxidation by ozone. In addition, De Barros et al., (2013) exposed sugar cane bagasse 

and straw to ozone and observed the formation of multi-porous structures on the biomass 

surface after treatment for ~1 h. The reaction of ozone with organic substrates is achieved by 

ionic cyclo-addition, resulting in the cleavage of unsaturated bonds and activation of the 

aromatic bonds (Sakai and Uprichard, 1991).  

Figure 5.2I shows morphological changes on wheat straw after MMO-M (at pH3 and ozone 

concentration 8.87 mg/L). Holistically, there is a dramatic change in the visual aspect with 

much debris on its surface. Kristensen et al., (2008), described this debris, as part of the middle 

lamella (composed mainly from hemicellulose) of the cell wall, which separates primary and 

secondary cell walls in plants. The porous structures observed on the wheat straw used in this 

study is consistent with the result reported by Mulakhudair et al. (2016), when the authors 

explored microbubble mediated pretreatment of lignocellulosic biomass.  

Interestingly, glucose was liberated during the MMO process. This is largely attributable to 

microbubble as the free radicals generated around the gas-liquid interface can attack the lignin, 

facilitating hydrolysis (Doe., 2006 and Mulakhudair et al., 2016). The glucose concentration 

measured reached its highest after MMO at 8.87 mg/L and pH3 (Table 5.2) combined with 

MMO-M. These observations with other results from FTIR-ATR and SEM strongly suggest 

that acidic pH and 8.87 mg/L ozone concentration are effective conditions in the pretreatment 

of lignocellulosic biomass using MMO method. 
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Table 5.2: Glucose production at varying ozone and pH levels under both MMO and MMO-

M pretreatments. 

Treatment  Ozonation time (h) 

Glucose Produced 

(mg/ml)±SD 

MMO  MMO-M  

6.67 mg/L   at pH7 2 0.0145±0.002 0.071±0.005 

8.87 mg/L at pH7 2 0.022±0.007 0.16±0.004 

6.67 mg/L at pH3 2 0.015±0.002 0.057±0.008 

8.87 mg/L at pH3  2 0.057±0.005 0.26±0.01 

 

5.4 Effect of ozone exposure time on lignocellulosic biomass 

Results from table 5.2 reveals that acidic pH and an ozone concentration of 8.87 mg/L gave the 

best result. Subsequent experiments were conducted under these conditions while varying the 

exposure time (6, 12, 24) h to ascertain the effect of ozone exposure time. It is worth mentioning 

that in the subsequent tests, the morphological changes in the biomass were not reported, as no 

difference was noticeable on the physical appearance of the lignocellulosic biomass with 

prolonged pretreatment beyond 2 h. Therefore, the two parameters monitored in the subsequent 

experiments, are FTIR-ATR spectrum and glucose yield.  

 

Figure 5.3: FTIR-ATR spectrum of biomass after MMO and MMO-M pretreatment for 6 h at 

pH 3 and ozone concentration of 8.87 mg/L. Spectra have been normalised at 710-1100 cm-1 

and 1500-1600 cm-1. The readings are representative of triplicate results.  
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                                               (A)      (B)

  

Figure 5.4: Graph of glucose production after 6 h pretreatment. (A) MMO pretreatment (B) 

MMO-M pretreatment. Glucose at day fourth in the biological pretreatment was not reported 

due to its low concentration. The readings are representative of triplicate results. 

Increasing the MMO pretreatment duration to 6 h was expected to increase the biodigestibility 

of the biomass, and consequently, release more glucose. The results from the FTIR-ATR 

spectrum (Figure 5.3), shows a decrease in both the cellulose and lignin regions respectively. 

Additionally, the glucose concentration produced reached ~ 0.25 mg/ml at the end 6 h MMO 

pretreatment (Figure 5.4A), five times higher than the glucose produced after 2 h MMO 

pretreatment (Table 5.2). With the MMO-M pretreatment, two outcomes were observed during 

pretreatment: the first is that the microbial density increased, reaching maximum density in < 

72 h. The second is the decreased glucose level (see Figure 5.4B).  

Glucose production curve versus time was exponentially fitted to determine the average time 

constant of action during the MMO. The time constant (τ) of action of ozone on the 

lignocellulosic biomass to produce glucose was 3.9 h, and y0 was 0.188 mg/ml according to the 

following equations: 

𝑦 = 𝑦0 ∗ (1 − exp (−𝑘 ∗ 𝑡) 

τ =
1

𝑘
  

Where y represents glucose concentration (mg/ml), y0 is the initial glucose concentration 

(mg/ml), t is the treatment time (h), and τ is the time constant.                

y =yo*(1-exp(-k*X)

t= 3.9 hr

y0=0.188 

R² = 0.9378
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The reactions kinetics of ozone with an organic compound (lignocellulosic biomass) commonly 

displays as a time constant (exponential constant) during the decay of the reactant 

(lignocellulosic biomass). This constant characterizes the time response of glucose released 

during the MMO. In other words, time constant gives a timescale for first order kinetics process.  

Similarly, further exposure to 12 h MMO pretreatment caused a further decrease in the 

absorbance for both lignin and cellulose as seen in the absorbance at 710 cm-1 to around 1100 

cm-1 for both amorphous and crystalline celluloses (Figure 5.5). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: FTIR-ATR spectrum of lignocellulosic biomass after MMO and MMO-M 

pretreatment for 12 h at pH 3 and ozone concentration of 8.87 mg/L. Spectra have been 

normalised at 710-1100 cm-1 and 1500-1600 cm-1. The readings are representative of triplicate 

results. 

The glucose concentration, however, after 12 h MMO pretreatment reached ~ 0.3 mg/ml (Figure 

5.6A), greater than five times more glucose produced after 2 h MMO pretreatment (Table 5.2).  

Under MMO-M pretreatment, microbial biomass density increased and reached its maximum 

in ~ 72 h. There was an obvious decrease in the glucose concentration. The possible explanation 

for the result is that liberating glucose in the first pretreatment caused a decrease in the cellulose 

content of the lignocellulosic biomass, consequently reducing the extractable glucose from the 

biomass. Additionally, pretreatment of biomass for 12 h with MMO caused a substantial 

reduction in the main barrier of the biomass, lignin (Doe, 2006), and consequently accelerated 

Pseudomonas putida growth to reach its highest (Figure 5.6B).  
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(A)                                                               (B) 

 

Figure 5.6: Graph of glucose production after 12 h pretreatment. (A) MMO pretreatment (B) 

MMO-M pretreatment. Glucose at day fourth of the biological pretreatment was not reported 

due to its low concentration. The readings are representative of triplicate results.  

The change in functional groups after 24 h MMO pretreatment (Figure 5.7) shows a 

considerable decrease in both the cellulose and lignin regions respectively. On the other hand, 

during MMO-M pretreatment there was a substantial decrease in the cellulose region of the 

biomass. In addition, the delignification activity by the microbe was observed and can be seen 

as a reduction in absorbance at 1595 cm-1. Pseudomonas putida can concurrently exhibit 

cellulolytic and delignification activities (Mulakhudair et al., 2016). 
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Figure 5.7: FTIR-ATR spectrum of lignocellulosic biomass after MMO and MMO-M 

pretreatment for 24 h at pH 3 and ozone concentration of 8.87 mg/L. Spectra have been 

normalised at 710-1100 cm-1 and 1500-1600 cm-1. The readings are representative of triplicate 

results.  

After biological treatment, 85% of the cellulose in straw was degraded. Figure 5.8 presents the 

result of 24 h pretreatment. From Figure 5.8A, the glucose concentration reached 0.6 mg/ml, 

double the concentration at 24 h MMO-M pretreatment. Also, under 24 h MMO-M 

pretreatment, the Pseudomonas strain reached its peak growth density after 48 h (Figure 5.8B), 

a 50% reduction in the pretreatment time in comparison with the preliminary result at 2 h ozone 

pretreated sample. Further, this represents ~ 25 % reduction in the pretreatment time in 

comparison with MMO-M pretreatment at both 6 and 12 h respectively (Figures 5.4B and 

5.6B). However, the difference between the slope calculated from glucose production during 

12 h (Figure 5.6A) and the slope calculated from glucose concentration during 24 h (Figure 

5.8A) is not significantly different from each other with P-value 0.64 (p-value > 0.05). 
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(A)                                                                  (B) 

 

Figure 5.8: Graph of glucose production after 24 h pretreatment. (A) MMO pretreatment (B) 

MMO-M pretreatment. The readings are representative of triplicate results.  

Table 5.3 summarizes and presents the comparison between total glucose concentrations after 

MMO and MMO-M at various treatment durations. There is a clear relationship between 

glucose yield and pretreatment duration. Increasing the exposure time is proportionate to the 

glucose production.  

Table 5.3: Glucose production and accumulative produced glucose at the end of MMO and 

MMO-M of various prolonged exposure times. 

Ozonation Time (h) Glucose Produced (mg/ml)±SD 

MMO MMO-M 

2 0.057±0.005 0.26±0.01 

6 0.255±0.01 0.47±0.05 

12 0.3±0.06 0.5±0.07 

24 O.6±0.1 1.1±0.09 

 

The MMO and MMO-M techniques explored in degrading have proved effective in solubilizing 

lignocellulosic biomass and consequently, releasing glucose crucial for bioethanol production. 

The results here are both promising and offer huge prospects on an industrial scale as one of 

the shortcomings in bioethanol production is not only the high cost of enzymes but also, the 

difficulty in effectively degrading lignin with ozone due to the mass transfer limitations. 
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 Obviously, some improvements can be made to the study results. For instance, in exploring the 

limit of ozone concentration as well as the pretreatment exposure time. Nonetheless, the study 

outcome provides a significant background for future works. 

5.5 Bubble analysis  

The fluidic oscillator was connected to the ozone generator that fed a sintered glass diffuser 

(16-20 µm pore size) to produce ozone microbubbles. Several authors have extensively reported 

the fluidic oscillator, its mode of operation and application for microbubble generation. Readers 

are referred to earlier publications of Zimmerman et al., (2008), Tesař and Bandulasena, (2011), 

Hanotu et al., (2012) for more detailed information. 

After collecting photographs of the bubbles in the bubble column using the high-speed camera 

and analysis with ImageJ software, the bubble size distribution was plotted (Figure 5.9). More 

than 300 bubbles were measured for reliable results and the highest percentage of microbubbles 

ranges between 250-750 μm.  

The efficacy of the ozonation process depends on the diffusion coefficient of ozone, which is 

dependent on the gas-liquid contact time and interfacial area. The low-rise velocity of 

microbubbles and high surface to volume ratio can ensure efficient mass transfer. Direct ozone 

dosing is the most efficient way to deal with such highly reactive and short-lived chemical. 

Ozone can be dissolved into an aqueous solution from the gas- liquid interface, and this process 

is mass transfer limited. To enhance the mass transfer, ozone should be introduced to the bulk 

of liquid as microbubbles with high surface area to volume ratio. Microbubbles allow higher 

driving force in terms of mass transfer in the solution (Zimmerman et al., 2009 and Kuvshinov 

et al., 2014).  However, the average of bubble sizes generated in the ozonation process is more 

than 4 times the average of ones generated in the previous experimental set (Chapter 4) and this 

might be attributed to several reasons such as surface wettability, channelling in a nozzle bank 

of diffusers (Ceramic and glass) and pore size, which had been extensively studied by 

Zimmerman et al., (2008) and Wesley, (2015).  
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Figure 5.9: Microbubble size distribution plot 

5.6 Comparison of traditional methods with the microbubble-mediated technologies 

developed in the current study for lignocellulosic biomass pretreatment 

To illustrate how the various pretreatment technologies compare with the developed 

technologies, a comparison was made between the microbubble-mediated technologies 

developed in the current study with dilute-acid hydrolysis, which is the most widely used 

pretreatment technology for lignocellulosic biomass (Dussán et al., 2014). Diluted sulfuric acid 

at 0.75 % was used to do the pretreatment of 1 % wheat straw at 100 ℃ for 1 hr and the glucose 

concentration was measured at the end of the pretreatment duration using glucose assay kit 

(Dussán et al., 2014). This comparison is based on energy consumption, as this parameter is 

suitable for all pretreatment technologies. Calculating of the energy consumption was based on 

the consumed energy of air compressor, air compressor plus ozone generator and heating 

system in microbubble mediated technology, microbubble-mediated ozonolysis and dilute acid 

hydrolysis method respectively. Cost calculations of the chemicals consumption, however, 

shows that both the developed technologies and dilute acid hydrolysis method have almost 

similar costs for the chemicals added to prepare the growth medium of Pseudomonas puitda 

and sulfuric acid used in the dilute acid pretreatment process.  
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Table 5.4: Energy calculation of pre-treatment processes 

Processes  Duration  Glucose 

concentration 

(mg/ml) 

Energy 

consumption 

kWh/0.1L 

Microbubble-mediated technology  3.30 hr 0.2 0.05  

Microbubble-mediated ozonolysis  24 hrs  1.1 0.068 

Dilute acid hydrolysis  1hr 1.4  0.55 

 

Therefore, the energy consumption can be considered the main parameter of the comparison 

between these technologies. From Table 5.4, microbubble- mediated technology and 

microbubble-mediated ozonolysis were consumed 0.05 kWh and 0.068 kWh for more than 3 

hrs and 24 hrs respectively, while the dilute acid pretreatment consumed 0.55 kWh for just 1 

hr.  Interestingly, dilute acid pretreatment consumed around 89 % more energy than the energy 

consumed by the microbubble-mediated ozonolysis and 91 % more energy than microbubble-

mediated technology. This high-energy consumption by dilute acid pretreatment produced just 

21.5% higher glucose yield than microbubble mediated ozonolysis, but 86% higher glucose 

yield than microbubble- mediated technology. Also, the diluted sulphuric acid in the outcome 

slurry needs to be separated from the pretreatment slurry by the use of membranes before 

feeding this slurry to the fermentation process as this acid might show an inhibitory effect of 

the growing microbes in the downstream fermentation process.  Thus, separating this acid will 

add additional costs to the pretreatment operational costs. Therefore, both technologies 

developed in the current study represent promising technologies to pre-treat lignocellulosic 

biomass  

5.7 Conclusions  

Lignocellulosic biomass from wheat straw was pre-treated with microbubble-rich ozone and a 

cellulolytic and delignification microbe. Both physical and chemical changes to the biomass 

were observed. Ozone attacks the carbon double bonds in lignin, substantially degrading it and 

making cellulose more accessible for hydrolysis. pH, ozone concentration and pretreatment 

time are all factors affecting hydrolysis and glucose yield with the latter varying directly 

proportionate with ozone concentration and pretreatment time. Further pretreatment with 

Pseudomonas putida caused considerable changes in both the morphology and functional 

groups content of wheat straw as well as enhanced the glucose yield.  The produced glucose 

has been improved greatly using microbubbles enriched ozone and Pseudomonas putida 

synergetic approach  in comparsion with microbubble-microbe synergetic approach  shown in 
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the previous chapter. However, using ozonolysis –microbe synergetic approach leaves the 

pretreatment slurry contaminated with Pseudomonas cells, which need to be inactivated before 

feeding this slurry to the fermentation vessel. Therefore, the next chapter will be investiagted 

the inactivation process of  Pseudomonas putida.  
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Chapter 6  

Inactivation combined with cell lysis of Pseudomonas putida using a low-pressure 

carbon dioxide microbubble technology 

Overview  

The sugar content in the pre-treatment slurry produced from the previous pre-treatment 

processes (Chapter 4 and 5) is contaminated with Pseudomonas putida, which was used in the 

biological pre-treatment. This chapter investigates the inactivation of this microbe before 

feeding the slurry into the fermentation process in the coming chapters. The ability of carbon 

dioxide enriched microbubbles to inactivate Pseudomonas putida suspended in physiological 

saline at low pressure (~ 1 bar) and temperature (6 -12 ℃) was investigated. This process can 

be classified as a non-thermal sterilisation method, and it has many operational advantages over 

both traditional thermal and non-thermal sterilisation methods such as autoclaving, ethylene 

oxide treatment, and 𝛾-radiation. The advantages come from efficient energy consumption (no 

heat source), avoidance of toxic and corrosive reagents, and in situ treatment. Introducing 

carbon dioxide enriched microbubbles can achieve ~2-Log reduction in the bacterial population 

after 90 min of treatment, addition of ethanol to the inactivation solution enhanced the 

inactivation process to achieve 3, 2.5 and 3.5-Log reduction for 2%, 5% and 10 %( v/v) ethanol 

respectively. Additionally, using acetic acid as an additive decreased the survivor ratio of 

Pseudomonas cells to more than 2.5-Log reduction. A range of morphological changes were 

observed on Pseudomonas cells after each treatment, and these changes were extended from 

changing cells shape from rod shape to coccus shape to severe lesions and cell death. 

Pseudomonas putida was used as a model of gram-negative bacteria, and many observations 

from this study might apply on the other gram-negative bacteria.  

6.1 Inactivation of Pseudomonas putida using CO2 microbubbles with and without the 

additives 

 P. putida cells were treated with CO2 microbubbles for 90 min at 100 ml/min flow rate and ~1 

bar.  At equilibrium state, the inactivation efficiency was measured using two values, D-value 

and L-value.  D-value is defined as the time required for 1 log cycle reduction in microbial 

population, and calculated from the negative reciprocal of the slope of regression line from the 

straight part of the survivor curve (Watanabe et al., 2003) in Figure 6.1A. On the other hand, L 

value is the time during which the number of microbial cells remains constant before starting 

the inactivation of microorganisms (Oulé et al., 2006). The D-value for treatment with CO2 



Chapter six                                                     Inactivation combined with cell lysis of P. putida  

 

 

 110 

microbubbles was ~ 64.8 min, while there was ~ 2-log reduction in P. putida population. In 

contrast, L value was ~ 9.6 min. Two mechanisms are suggested to play a central role in this 

process: oxidative stress and the CO2 effects.  
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                                                                                      (E) 

 

Figure 6.1: Survivor ratio of Pseudomonas putida after treatment with. (A) CO2 microbubbles. 

(B) CO2 microbubbles plus 2% (v/v) ethanol. (C) CO2 microbubbles plus 5% (v/v) ethanol. (D) 

CO2 microbubbles plus 10% (v/v) ethanol. (E) CO2 microbubbles plus 0.5% (v/v) acetic acid. 

Error bars depict standard deviation.  

Regarding the oxidative stress, during microbubbles shrinkage and subsequent collapse, some 

hydroxyl radicals are generated (Li et al., 2009).  In addition, the generated hydroxyl radicals 

are readily converted to the superoxide radicals and vice versa (Ragnar et al., 1999). Previously, 

P. putida was reported to go through an oxidative stress, when exposed to the free radicals (Kim 

and Park, 2014). Free radicals are reactive oxygen species (ROS), and are injurious species, 

reacting with different components of cellular systems such as lipids, proteins and DNA (Imlay, 

2003). Fundamentally, lipids seem to be the major targets for these species during an event of 

oxidative stress, and interestingly, the free radicals that are formed, can directly react with the 

polyunsaturated fatty acids in the cell membrane, provoking lipid peroxidation. The latter 

reaction can change membrane properties and disrupt the membrane-bound proteins (Cabiscol 

et al., 2000). The amplification to this reaction occurs when more radicals are generated and 

more polyunsaturated fatty acids are broken down into other highly reactive products such as 

aldehydes. These highly reactive products can cause severe damage to vital compounds such as 

proteins (Sheu and Blass, 1999).  

The mechanisms of the action of CO2 were described in depth (Garcia-Gonzalez et al., 2007). 

CO2 is not a ‘natural product’ of the glucose metabolism pathway of P. putida, however, it can 

be produced during the catabolising of aromatic compounds by the β-Ketoadipate pathway 

(Ornston and Stanier, 1966). All these factors work together to achieve the elevated log 

reduction observed in P. putida using CO2 microbubbles. In contrast, other microorganisms 
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such as Zymomonas mobilis (another example of gram-negative bacteria) are expected to show 

high degree of adaptation to CO2 as it is produced naturally during metabolism in both aerobic 

and anaerobic conditions (Nipkow et al., 1985, Veeramulla and Agrawal, 1986 and Conway, 

1992). Figure 6.2 shows the temperature profile during the inactivation processes. 

 

Figure 6.2: Temperature profile during CO2 enriched microbubbles inactivation process, 

highlighting the range of temperatures used in the current study. Error bars depict standard 

deviation. 

Low temperature was used to increase the CO2 solubility in order to enhance the inactivation 

activity. At 0℃, the CO2 solubility is around 1.3 mol/L, decreasing to ~1 mol/L at 10 ℃. 

Moreover, increasing the temperature to 20 ℃ will decrease the CO2 solubility to ~0.7 mol/L 

(Carroll et al., 1991). From Figure 6.2, there was a gradual increase in temperature of the 

solution from ~ 6 ℃ to ~ 12 ℃.  

To enhance the inactivation activity of CO2 microbubbles, organic solvents, are employed. 

These solvents are toxic to some microbial cells due to their tendency to partition preferentially 

in the cytoplasmic membranes, increasing the fluidity of the cell membrane, and ultimately 

causing an increase in the unspecific permeabilization of the cytoplasmic membrane (Heipieper 

et al., 1991 and Heipieper et al., 1994). Moreover, the fatty acid composition in the cytoplasmic 

membrane of microbial cells can change significantly by these membrane-active solvents 

(Ingram, 1976 and Ingram, 1977). Isomerisation is a mechanism employed by P. putida to adapt 

its cytoplasmic membrane to ethanol toxicity. In this mechanism, the Cis-unsaturated fatty acids 

are isomerised to Trans unsaturated fatty acids, and the bacterial cells become much more 

robust to the ethanol stress (Heipieper et al., 1996). Figure 6.1B shows the survivor ratio of P. 
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putida cells after treatment with CO2 microbubbles combined with 2 % (v/v) ethanol for 90 min 

at 100 ml/min flow rate and ~1 bar.  

Adding 2% ethanol enhanced the inactivation process, and caused ~3-log reduction in the 

microbial population after 90 min. Interestingly, the time during which the number of microbial 

cells remains constant--L value-- was~30 min, ~4 times longer than the previous experimental 

set while the D value was almost identical between both experiments. Enhancement of the 

inactivation activity can be attributed to mechanisms of action of both ethanol and CO2 on the 

cytoplasmic membrane of Pseudomonas cells and the combined action of both elements. Both 

CO2 and ethanol work mainly on the fatty acid composition of the membrane.  

Changing the composition of the cytoplasmic membrane is not straightforward mechanism and 

certain threshold needs to be reached before observing any changes on the membrane. The exact 

duration to reach this threshold has not been studied yet for both CO2 and ethanol. However, 

previous studies on the changes in the fatty acids profile are helpful to predict the duration. For 

example, Mejia et al., (1999) reported the changes in the fatty acids profile of Escherichia coli 

(gram-negative bacterium) after exposure to heat shock stress for 30 min. Another example is 

the study by Boylan et al., (1993), where Bacillus subtilis (gram-positive bacterium) was 

exposed to environmental stresses such as salt stress and 15-30 min were required to accumulate 

β-galactosidase.  

During the first 30 min, the level of the Pseudomonas population was almost constant before 

the number of bacterial cells gradually decreased with time until the CO2 concentrations 

reached the equilibrium state. 

Additionally, it has been suggested that increasing the amount of ethanol used (the organic 

solvent) could intensify the inactivation process with CO2 microbubbles. Therefore, the 

concentration of ethanol was increased to 5% (v/v) to test this hypothesis. Figure 6.1C shows 

the survivor ratio of P. putida after the treatment with CO2 enriched microbubbles plus 5% 

ethanol. Interestingly, there was almost a 2.5 log reduction of Pseudomonas population after 

treatment. Further, it can be noticed that the time when the cell number remained constant was 

much less than the previous experiments, as well as the D-value, which reached around 46.8 

min.  This observation might not be expected but on the other hand, the L value was much lower 

than the previous experiment. While decreasing the log reduction in this treatment might have 

resulted from the increase in bacterial tolerance to ethanol, the microbial exposure to a sub-

lethal level of ethanol might promote a cellular response to encounter this stress. For example, 

Vanbogelen et al., (1987) and waston, (1990) reported induced expression of stress proteins as 
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a result of exposure to sub-lethal level of ethanol and the same proteins were expressed as a 

result of heat shock. Therefore, there might be a cross-protective response induced to face 

environmental stresses in the same manner. Indeed, this cross-protective response was seen 

previously in Pseudomonas spp, on exposure to different aromatic compounds and heat.  In all 

three cases, stress shock proteins were produced (Park et al., 2001).  

Furthermore, the concentration of the additive (ethanol) was increased to 10 % (v/v) to verify 

the combined effects of ethanol and CO2 and to enhance the whole inactivation process. It can 

be observed from Figure 6.1D that there was around 3.5 log reduction in the bacterial population 

after this treatment.  In addition, the D-value for this experimental set was 82.8 min, while the 

L-value was around 4.8 min. Both values were higher than the previous experimental set, and 

consistent with the original hypothesis. Indeed, the magnitude of ethanol toxicity is associated 

with its used concentration (Mrozik et al., 2004).  Increasing the ethanol concentration to 10% 

can represent a chemical stress on the bacterial cells, and this stress might be analogous to other 

stresses (Ingram, 1986). As mentioned above, P. putida can evolve adaptative mechanisms as 

a response for stresses (Ingram, 1977; Vanbogelen et al., 1987 and Heipieper et al., 1996). 

Therefore, it was speculated that increasing the ethanol concentration above a certain threshold 

could exceed the ability of Pseudomonas cells to tolerate and respond to the elevated level of 

toxicity, causing serious injuries to the cytoplasmic membrane and eventually failure to keep 

the biological system balanced. Another important concept to be considered is Chaotropicity.  

Ethanol is known as a Chaotropic solute, resulting in water stresses in bacteria at concentrations 

similar to levels in the environment (Hallsworth et al., 2003). Hallsworth et al., (2003) showed 

that ethanol did not affect cell turgor, but instead, perturbed macromolecule–water interactions 

and thereby destabilized cellular macromolecules, inhibited growth. This bacterium responded 

to ethanol chaotropicity by specifically up-regulating the synthesis of proteins involved in 

stabilizing protein structure, in lipid metabolism, and in membrane composition (Hallsworth et 

al., 2003). However, destabilization of macromolecules in the biological system is an elastic 

process in comparison with the specific inactivation (such as inactivation with carbon dioxide). 

Macromolecules destabilization can be reversed up to a critical thermodynamic point by using 

kosmotropic solutes that increase entropy and affect hydration of macromolecules, such as 

trehalose (Hallsworth et al., 2003). These solutes tend to order water, and strengthen 

electrostatic interactions within organic macromolecules (Mansure et al., 1994; Shah et al., 

1998 and Cray et al., 2015).  
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 Acetic acid is another additive used in this study and it is a weak organic acid but it is stronger 

than carbonic acid (carbon dioxide dissociated species), and it shows toxic effects to a range of 

microorganisms at concentration as low as 0.5% and its dissociation inside the microbial cells 

represents the cause of this toxicity. These toxic effects include decreasing the intracellular pH, 

and the metabolic disturbance through releasing anion and other deleterious effects (Trček et 

al., 2015). Additionally, the acetic acid dissociation constant is directly associated with the 

quantity of protonated and ionic forms of acetic acid as a function of the pH value of the 

inactivation solution. At a pH of 3.75, 90% of acetic acid is in its undissociated form 

(CH3COOH), and the undissociated acetic acid molecules are lipophilic molecules, which can 

permeate the cytoplasmic membrane by passive diffusion, thereby dissociating in the cytosol 

of bacterial cells directly. This dissociating causes a decrease of internal pH to values that might 

not be tolerable, leading to a strong reduction of metabolic activity and thereafter, to cell death. 

Cytosol acidification has another consequence, which is dissipation of the electrochemical 

gradient retained across the cytoplasmic membrane, which is a crucial demand for the 

secondary transport across this membrane (Trček et al., 2015). Interestingly, there was almost 

a 2.5-log reduction of Pseudomonas population after treatment with CO2-enriched 

microbubbles plus acetic acid (Figure 6.1E).    

Addition of this acid decreased pH of the inactivation solution to 3.34 before starting the 

sparging course (Figure 6.3E), and thereafter; pH was slightly increased during carbon dioxide 

sparging. Under acidic solution, carbon dioxide tends to be existed in an aqueous phase, and 

the concentrations of other carbonate species ([H2CO3], [HCO-
3] and [CO2

-3]) tend to be very 

limited at acidic conditions (Lower, 1999). As pH decreases below 4.5, the zeta potential of 

microbubbles has a positive value, and this increase with decreasing pH might cause a higher 

probability of negative charged bacterial cells (Bononi et al., 2008); which can be approaching 

the bubble interface (Li et al., 2009), and this might bring the bacterial cells in contact with 

CO2aq in the bubble interface. This approaching might facilitate the penetration of CO2 into 

microbial cells. Garcia-Gonzalez et al., (2007) hypothesised that CO2 has a direct effect on the 

microbial membrane, and CO2 in microbubbles at this low pH is probably the most important 

factor to explain the high penetration rate of carbon dioxide into bacterial cells.   

Additionally, this acid has a limited inhibitory effect in this concentration (0.5%) even it 

remains in the treated samples, which might be used as a substrate for the next process such as 

the fermentation process or foodstuffs. Previously, this acid was used as an additive and it was 

shown to courage the inactivation process with carbon dioxide (Kamihira et al., 1987). Many 
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industries have been used acetic acid as a preservative because its ability to inhibit a wide range 

of microorganisms, although acetic acid tolerated microbial strains have recently been emerged 

(Trček et al., 2015). 

6.2 CO2 concentrations during CO2-enriched microbubbles sparging with and without the 

additives 

The CO2 concentration was estimated using Eq. 3.10.  Figure 6.3 (A, B, C, D and E) presents 

the CO2 concentrations at different pHs for all experimental sets. From Figure 6.3, it can be 

noticed that the inactivation processes were increased in conjunction with increase in CO2 

concentration.This observation can be interpreted by the fact that the elevated CO2 

concentration tends to be accumulated in the phospholipid bilayers of cytoplasmic membrane, 

causing an increase in the penetrated CO2 (Isenschmid et al., 1995 and Spilimbergo et al., 2002). 

Also, increasing the dissolved concentration of CO2 was accompanied with decreasing the 

survivor ratio (Kobayashi et al., 2014).  

Regarding CO2 concentration when the acetic acid was added to the inactivation solution, the 

Eq. 3.11 was used to work out the CO2 concentration (Figure 6.3E). Adding the acetic acid to 

the inactivation solution decreases pH to around 3.34 and this low pH is a barrier for CO2 

dissociation. 
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Figure 6.3: CO2 concentrations with different pHs observed during sparging. (A)  CO2 

microbubbles.  (B) CO2 microbubbles plus 2% ethanol. (C) CO2 microbubbles plus 5% 

ethanol. (D) CO2 microbubbles plus 10% ethanol. (E) CO2 microbubbles plus 0.5% acetic 

acid. Readings are representative of triplicate results.  
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6.3 Morphological changes on Pseudomonas putida cells using CO2 microbubbles with and 

without the additives 

The inactivated cells with CO2-enriched microbubbles treatment were examined using 

microscopy to observe the morphological/numerical changes on the bacterial cells after 

treatment (Figure 6.4). There was a clear reduction in the number in comparison with the 

untreated cells. Further observation revealed changes in the morphology such as shortening and 

shrinkage of the cells. 

Much research was done on using supercritical CO2 in the inactivation process of 

microorganisms. For example, it was hypothesized that application of supercritical conditions 

can facilitate CO2 penetration into the cell membrane, consequently expanding the microbial 

cells and causing cell disruption (Darani and Mozafari, 2009). Indeed, the concept behind using 

supercritical CO2 was originally described by Fraser, (1951), when bacterial cells were burst 

after injecting the CO2 under high pressure. Thereafter, this concept was used to recover some 

cellular constituents such as intracellular enzymes and proteins (Lin and Chen, 1994). While, 

many of the previous studies on the inactivation with CO2 were achieved under high pressure 

and elevated temperature (~73 bars and 31.1℃) to reach the supercritical state (Diaaz-Reinoso 

et al., 2006), the current study was achieved under a relatively low-pressure CO2 (~1 bar) and 

low temperatures (6-12℃). Therefore, it suggests that high pressure and temperature are not 

the only factors affecting cell lysis by CO2 application.  

 

 

 

 

 

 

 

 

 

 

 



Chapter six                                                     Inactivation combined with cell lysis of P. putida  

 

 

 119 

                             (A)                                                                     (B) 

 

Figure 6.4: Numerical changes after treatment with CO2 microbubbles on 1000X. (A) Bacterial 

smears before sparging CO2. (B) Bacterial smear after treating with CO2-enriched microbubbles 

for 90 min. 

Figure 6.5 shows morphological changes on the Pseudomonas cells after treatment with CO2 

microbubbles plus ethanol as an additive. In Figure 6.5B, it is obvious that the Pseudomonas 

cells were aggregated after the treatment with CO2-enriched microbubbles plus 2 % ethanol. 

Many conditions can provoke microbial flocculation such as substrate acquisition, slow growth 

or starvation, physical and chemical stress and aggregation to protect against predation (Bossie 

and Verstraete, 1996). Moreover, formation of microbial flocs can also increase the metabolic 

activity of the stressed cells (McFeters et al. 1990) and to enhance the microbial resistance to 

toxic compounds such as biocidal compounds (Costerton et al., 1987; Giwercman et al., 1991 

and Anwer et al., 1992).  The changes in the cell shapes can also be noticed in Figure 6.5(B) in 

comparison with the normal bacterial cells in Figure 6.5(A) (the control); when Pseudomonas 

cells were observed to transition from rod cells to coccus cells. This transition might increase 

attachment of the bacterial cells, consequently leading to flocculation (Fakhruddin and Quilty, 

2006). Occasionally, the size reduction is accompanied by an increase in population under 

various environmental stresses (Novitsky and Morita, 1976; Amy and Morita, 1983; Givskov 

et al., 1994, Mueller, 1996 and Makarov et al., 1998). Interestingly, the decrease in cell size 

was not accompanied with an increase in the bacterial population in the current study, as shown 

in Figure 6.1B. Changing the cells shape from rod to round shape increases the cell surface area 

to volume ratio; a useful metabolic response under starvation stress condition. Bacterial cells 

are known to adjust in order to effectively transport nutrients with minimum energy 

consumption (Sanin et al., 2003). However, alternating the Pseudomonas cells shape from rod 
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to round shape in the current study is likely a consequence of changes due to the environmental 

stresses mentioned above.  

Figure 6.5 (C and D) shows the morphological changes that occurred in the Pseudomonas cells 

as a result of the treatment with CO2 enriched microbubbles plus 5% ethanol. It is apparent that 

the cells have lesions with loss of membrane integrity. Cell injury and death were previously 

observed, due to high pressure CO2 application (Hong et al., 1997). The current study however, 

was conducted under low pressure (~1 bar), and observing the same morphological changes on 

the bacterial cells is suggestive of an inactivation and subsequent cell lysis capability of CO2 

according to the mechanisms reviewed previously (Garcia-Gonzalez et al., 2007). Using CO2 

under high pressure can enhance the solubility of CO2 and consequently, accelerate cell injury 

and death (Hong et al., 1997). These changes are irreversible (Hong and Pyun, 2001). Therefore, 

application of high pressure is a way to enhance the CO2 inactivation activity but by no means 

the only factor responsible for inactivation.  

The morphological changes during the treatment with the CO2-enriched microbubbles plus 10 

% ethanol are presented in Figure 6.5 (E and F). Increasing the ethanol concentration can 

increase the membrane permeability of the bacterial cells, which is associated with chemical 

activities, inducing narcosis in biological systems (Isenschmid et al., 1995). This effect is 

followed by leakage of protons and some vital ions such as potassium ions from the cytoplasmic 

membrane of the bacterial cells (Leao and Uden, 1984 and Cartwright et al., 1986). Interaction 

of these compounds with the phospholipid bilayers of the cytoplasmic membrane could cause 

substantial changes in the membrane structure. For example, lipophilic compounds tend to 

accumulate in the hydrophobic part of the cytoplasmic membrane, disturbing the interaction 

between acyl chains of the phospholipid bilayers as well as changing the fluidity of the 

membrane. Eventually swelling of the phospholipid bilayers of the bacterial cells can occur, 

resulting in a ball-like shape (Sikkema et al., 1995). Figure 6.5 (G and H) shows the 

morphological changes during the treatment with the CO2-enriched microbubbles plus 0.5 % 

acetic acid. The size reduction might have resulted due to the inability of Pseudomonas to tackle 

the passive diffusion of acetic acid through the cytoplasmic membrane. Keeping the same cell 

size or reducing it (More relative area) can decrease the tolerance to acetic acid as this increases 

the relative area for passive diffusion and there is additional acid can be crossed the cytoplasmic 

membrane, which coincides with increasing the membrane permeability via CO2 enriched 

microbubbles (Trček et al., 2015). 
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(G)                                                                       (H) 

 

6.4 Conclusions 

Pseudomonas Puitda was used to conduct the biological pretreatment in the previous chapters 

and it needs to be inactivated before feeding the pretreatment slurry to the fermentation process 

in the coming chapters. P. Puitda is also used a model for gram-negative bacteria in the current 

study.  Survivor ratio after each experiment was calculated after streaking the bacterial samples 

on nutrient agar plates, and only the viable cells can grow to colonies on these plates. Using the 

additives to enhance the CO2 enriched microbubbles inactivation activity was chosen with 

considering the final concentration of these additives and the potential downstream processes 

such as the fermentations process (In the coming chapters) and foodstuff manufacturing. The 

highest concentration of both additives (ethanol and acetic acid) was not exceeded the inhibitory 

effects of these chemicals on the next fermentative microorganisms such as Zymomonas 

mobilis, which is used to carry out the fermentation process. The initial log reduction with 

carbon dioxide enriched microbubbles alone was around 2 Log, while best Log reductions were 

achieved by 10 %, 2% 5%and 0.5% of ethanol and acetic acid respectively. Using microbubble 

technology for CO2 sparging caused both an oxidative stress and disturbance to the biological 

system of Pseudomonas putida cells. Addition of ethanol and acetic acid were amplified the 

activities of CO2 enriched microbubbles and decreased the survivor ratio of Pseudomonas 

putida. Several morphological changes were observed after each treatment, and these changes 

were ranged from changing the cells’ shapes from rod shape to round shape, appearing lesions 

Figure 6.5: Morphological changes on. (A) Untreated Pseudomonas cells. (B) Pseudomonas 

cells after the inactivation process with CO2 microbubble plus 2% ethanol. (C) (D) 

Pseudomonas cells after the inactivation process with CO2 microbubble plus 5% ethanol. (E) 

(F) Pseudomonas cells after the inactivation process with CO2 microbubble plus 10% 

ethanol. (G) (H) Pseudomonas cells after the inactivation process with CO2 microbubble plus 

0.5% acetic acid. 
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on the bacterial cells, severe injurious signs and cells death. Finally, the CO2 concentration was 

monitored during the inactivation process using pH values as a basis for its calculations.  
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Chapter 7  

Aerobic fermentation integrated with in situ separation of bio-products using 

microbubble technology and wild type Zymomonas mobilis ZM4 strain 
 

Overview  

Zymomonas mobilis has long been known as the best microbial producer of ethanol, and it is 

widely used to produce a large quantity of ethanol in anaerobic conditions, offering many 

advantages over other ethanol producers such as Saccharomyces cerevisiae. This bacterium 

uses an Entner-Doudoroff (ED) pathway to metabolise glucose, which was seen to be produced 

from lignocellulosic biomass in Chapters 4 and 5, and being inactivated in chapter 6, to produce 

ethanol. Under aerobic conditions, however, this bacterium produces a reasonable amount of 

acetaldehyde and carbon dioxide with lower quantity of ethanol. This study investigates the 

performances of Zymomonas mobilis under aerobic conditions, whereby acetaldehyde is 

produced as a target product. Acetaldehyde and carbon dioxide accumulations in the 

fermentation broth severely inhibit the Zymomonas growth. Removing the accumulated 

acetaldehyde and carbon dioxide, however, reduces the chemical activity of the gaseous 

products with a negative value change in Gibbs free energy; hence the biological reactions 

become thermodynamically favourable and provides momentum for the formation of more 

products. Microbubbles generated by fluidic oscillation were used to remove both acetaldehyde 

and carbon dioxide from the fermentation broth. The fermentation conditions need to be aerobic 

and thus; so three scenarios of sparging with microbubbles were explored to choose the one 

most fit. In the first scenario, the fermentation process was achieved under standard conditions 

with the sparging of microbubbles at the beginning of the fermentation process. The second 

scenario was a continuous sparging strategy, whereby microbubble sparging continued 

throughout the duration of fermentation. Due to the inefficiency of this scenario in both 

acetaldehyde and carbon dioxide collection and because of high energy usage and gas wasting 

with a high operational cost, this scenario was avoided. In the third scenario, the fermentation 

process was conducted using a periodical sparging strategy, in which aeration took place at 

certain times during the fermentation process. Both the duration of sparging and flow rate were 

manipulated according to the experimental observations. The fermentation process was 

achieved using the bespoke airlift loop bioreactor. 
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7.1 Acetaldehyde accumulation and its inhibitory effect  

During the aerobic fermentation of Zymomonas mobilis, acetaldehyde accumulates as a less 

reduced metabolite, and the accumulated acetaldehyde can cause an inhibition of Zymomonas 

mobilis growth, both growth rate (μ) and cell yield (Yx/s) (Ishikawa et al., 1990, and Pentjuss 

et al., 2013). This accumulation starts immediately after the inoculation of Zymomonas mobilis, 

and acetaldehyde accumulation rate increases with time (Ishikawa et al., 1990). In an attempt 

to gain some insight into the inhibition mechanism of acetaldehyde, various concentrations of 

acetaldehyde were added extracellularly during the early stages of the exponential phase of 

Z.mobilis ZM4 growth (after 2 and 4 hours). Figure 7.1A shows that the microbial growth was 

strongly inhibited by the acetaldehyde addition after two hours, and the acetaldehyde inhibitory 

effect was proportional with its concentration. 

(A)                                                                          (B) 

 

Figure 7.1: (A) Effect of added acetaldehyde on exponential cell growth of Zymomonas mobilis 

ZM4 after 2 hours. The red arrow shows the time of the acetaldehyde addition (B) Specific 

growth rate of Zymomonas mobilis ZM4 after adding various concentrations of acetaldehyde. 

Error bars depict standard deviation.  

Figure 7-1B shows the specific growth rates of Zymomonas at various concentrations of 

acetaldehyde in comparison with the control group (without acetaldehyde addition). From 

Figure 7-1(A,B), increasing the acetaldehyde concentration is strongly inhibiting both the 

specific growth rate and cell biomass. Viikari and Korhola, (1986) were reported that the cell 

yield of Zymomonas mobilis decreased linearly with the acetaldehyde concentrations in the 

broth.  The results of the current study were consistent with theirs. In an attempt to gain more 

information about the inhibitory mechanism of acetaldehyde on Zymomonas mobilis ZM4 cells, 

the inhibited cells were examined using a scanning electron microscopy to investigate the 

morphological changes, which might be resulted from acetaldehyde inhibitory effects. Figure 
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7.2 shows a comparison between Zymomonas mobilis cells  before and after the acetaldehyde 

addition.  

(A)                                                                  (B) 

 

(C) 

 

Figure 7.2: The morphological changes on Zymomonas mobilis ZM4 cells after acetaldehyde 

addition. (A) The control group without acetaldehyde addition. (B) the morphological changes 

on the cells after adding 0.5 % of acetaldehyde. (C) the morphological changes on the cells after 

adding 1.0 % of acetaldehyde. 

From Figure 7.2B and C, bacterial cells have lesions on them, and that there was a loss of 

membrane integrity with cells’ flocculation. Cells injury might be irreversible and lead to the 

cells death (Hong et al., 1997). Seeing these morphological changes on the bacterial cells under 

acetaldehyde stress might prove the inactivation combined cell lysis as a result of acetaldehyde 

toxicity.  

To our knowledge, there is no clear mechanism of acetaldehyde inhibition mentioned 

previously. However, a mechanism was suggested by Bolstad, (2003), to show the combined 
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toxicity of acetaldehyde with oxygen radicals in mammalian liver cells. Figure 7.3 shows the 

suggested mechanism of acetaldehyde toxicity by Bolstad, (2003).  

 

 

 

 

 

 

 

 

Figure 7.3: Mechanism of acetaldehyde toxicity (Adapted from Bolstad, 2003). 

According to the above mechanism, it is unclear whether the toxicity is caused by producing 

oxygen radicals (O2.
- / H2O2) or whether the toxicity comes from the acetaldehyde/H2O2 adduct 

as shown below:  

 

Therefore, it is hypothesised that acetaldehyde forms toxic adducts with superoxide radical, 

hydrogen peroxide, and hydroxyl radicals, and these toxic compounds would decrease the 

survival of bacterial cells such as E.coli (Bolstad, 2003).  

Another scenario was tested by adding acetaldehyde after 4 hours of the inoculation. It was 

considered that four hours would be sufficient to accumulate acetaldehyde within the 

fermentation broth of Zymomonas mobilis under aerobic conditions compared with after two 

hours additions (Ishikawa et al., 1990). Figure 7.4A shows that the bacterial growth was 

strongly inhibited by the acetaldehyde addition after four hours, and the acetaldehyde effect 

was proportional to its concentration. Figure 7.4B shows that the specific growth rates of the 

Zymomonas culture at various concentrations of the added acetaldehyde in comparison with the 

control group (In which no acetaldehyde was added). Comparing the  specific growth rates in 

Figures 7.1B and 7.4B, it is clear that acetaldehyde accumulation at the early stage (after 2 

hours) of the exponential phase can substantially reduce the specific growth rates of 
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Zymomonas mobilis to about 83 % in comparison with acetaldehyde addition after 4 hours, 

which decreased the specific growth rates of the same bacterium to around 75 % for the same 

acetaldehyde concentration, 1 %.  

 Morphological and physiological features, as well as adaptation and genetic changes of various 

growth phases, are different. Susceptibility of bacterial cells for inhibition by chemicals such 

as acetaldehyde, is strongly related to the bacterial growth phase. Bacterial cells tend to be more 

susceptible to inhibitors at the early stages of exponential phase in the cell cycle than at the late 

stages of the exponential phase, but these cells become more resistance to the inhibitors in the 

stationary phase (Cherchi and Gu, 2011). Resistance during the exponential phase is associated 

with the induction of σ-independent resistance mechanisms, which are induced while going 

through this phase. On the other hand, resistance during the stationary phase is associated with 

the induction of other stress-resistant genes such as heat shock genes (Cherchi and Gu , 2011).  

(A)                                                                       (B) 

 

Figure 7.4: (A) Effect of added acetaldehyde on exponential cell growth of Zymomonas mobilis 

ZM4 after 4 hours. The red arrow shows the time of the acetaldehyde addition. (B) Specific 

growth rate of Zymomonas mobilis ZM4 after addition various concentrations of acetaldehyde 

at hour fourth. Error bars depict standard deviation.  

7.2 Combined accumulation of both acetaldehyde and carbon dioxide with their 

inhibitory effects             

In section 2.2, the potential scenarios of carbon dioxide accumulation were mentioned with a 

specific focus on the physiological effects of this accumulation, while in this section, attention 

is drawn to examine the potential morphological changes of carbon dioxide accumulation on 

Zymomonas cells. Additionally, the consequences of the combined accumulation of both carbon 

dioxide and acetaldehyde are also explored.  
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Two experimental sets were designed to study and to validate the morphological changes on 

the Zymomonas cells under the stresses of both carbon dioxide and acetaldehyde. In the first 

experimental set, samples were treated with carbon dioxide gas for around 20 mins until 

reaching an equilibrium concentration, where no further decrease in pH was noticed. Carbon 

dioxide is produced during the fermentation process in addition to acetaldehyde and ethanol, 

and some of the produced carbon dioxide remains dissolved in the liquid broth, and this broth 

reaches saturation during fermentation (i.e. contains the maximum possible amount of dissolved 

carbon dioxide) (Brown, 2001). In the second experimental set, Zymomonas cells were treated 

with both carbon dioxide for 20 mins and acetaldehyde then added to study the combined effect 

of both these products. Further, Zymomonas cells were collected from the real fermentation 

vessels in the initially-sparged group and periodically-sparged group to validate the observed 

morphological changes in the bacterial cells.  

(A)                                                         (B) 

 

 

(C )                                                                           (D) 

 

Figure 7.5: The morphological changes on Zymomonas mobilis ZM4 cells after carbon dioxide 

and acetaldehyde accumulation. (A) The control group before carbon dioxide and acetaldehyde 
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accumulation. (B) The morphological changes on the cells after carbon dioxide accumulation 

by sparging carbon dioxide for 20 mins at 0.3 l/min.(C) The morphological changes on the cells 

after addition of 0.5% of acetaldehyde after 2 hrs and carbon dioxide accumulation for 20 mins. 

(D) The morphological changes in the cells after addition of 1% of acetaldehyde after 2 hrs and  

carbon dioxide accumulation for 20 mins.  

Figure 7.5B shows the bacterial cells that remained intact but with shortening in size of some 

of them. In addition, some lesions on the cells’ membranes were observed, which might be 

resulted from the modification of the cell membrane composition and characteristics by 

increasing its fluidity and permeability due to the accumulated carbon dioxide ( Garcia-

Gonzalez et al., 2007). Figure 7.5C displays the Zymomonas cells after adding both 

acetaldehyde (0.5%) and carbon dioxide, and Zymomonas cells were transited from rod cells to 

coccus cells. This transition might increase the attachment activity of the bacterial cells and 

provoke cell flocculation (Fakhruddin and  Quilty, 2006). Occasionally, the size reduction is 

accompanied by an increase in population under various environmental stresses (Novitsky and 

Morita, 1976; Amy and  Morita, 1983; Givskov et al., 1994 ; Mueller, 1996 and Makarov et al., 

1998), and the surface area to volume ratio. This response is useful under starvation stress, 

when the bacterial cells tend to increase their ability to transport nutrients with minimum energy 

consumption due to the increase of the diffusibility of these nutrients (Sanin et al., 2003). 

However, the morphological changes on the Zymomonas cells is thought to be a consequence 

of changing the shape-determining mechanism due to the environmental stresses (carbon 

dioxide and acetaldehyde). In Figure 7.5D, the concentration of the added acetaldehyde was 

increased to double, but the morphological changes of the Zymomonas cells were almost the 

same as in the previous experiment, 0.5 % acetaldehyde concentration. This observation agreed 

with what was observed in Figures (7.1A and 7.4A), where Zymomonas cells performed almost 

the same under these two acetaldehyde concentrations (0.5 % and 1 %). Therefore, it is 

suggested that the acetaldehyde inhibitory effect starts as low as 0.1 %, and this effect 

maximises and becomes severe after increasing the acetaldehyde concentration to 0.5% and 

upwards. The same observeation was reported by Wecker and  Zall, (1987), who found that 

Zymomonas growth was inhibited at concentrations as low as 0.05 % acetaldehyde.  

7.3 Oxygen requirement of the fermentation system 

Oxygen plays a very important role in the fermentation process of Zymomonas mobilis ZM4. 

Depending on whether the process is aerobic or anaerobic, the fermentation products can be 

changed. Zymomonas mobilis tends to accumulate less reduced metabolite, acetaldehyde under 

aerobic conditions, while ethanol preferentially accumulates under anaerobic conditions. 

Sparging air-microbubbles in the fermentation system can achieve two main purposes. The first 
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is to provide enough oxygen for Zymomonas growth and propagation. The second is to strip out 

some fermentation products such as acetaldehyde, carbon dioxide and, to a lesser extent, 

ethanol.  

Three strategies can be used to provide oxygen to the bacterial culture, which are the initial 

sparging strategy, the continuous sparging strategy, and the periodical sparging strategy. 

 7.3.1 Initial sparging strategy 

Oxygen uptake rate is constant during the fermentation process as long as the oxygen 

concentration is above the critical biological concentration, where the microbial cells have not  

yet been starved for oxygen (Bandyopadhpay and Humphrey, 1967). The exact value of the 

critical oxygen concentration depends on the microorganism, and this value usually falls 

between 5 % and 10 % of the air saturation under average operational conditions ( Doran, 2013). 

Taking these values into account as well as considering studies from Ishikawa et al., (1990) and 

Bringer et al., (1984), 0.83 ppm was used as the critical oxygen concentration in these 

experimental sets, which equals more than 10 % of oxygen saturation in the fermentation 

medium. This oxygen concentration can be seen as a safe choice to keep the whole fermentation 

process aerobic. 

 In the initial sparging strategy, air microbubbles were sparged at the beginning of the 

fermentation process. This sparging can achieve two goals. The first is to provide oxygen to the 

bacterial culture until it reaches an equilibrium, at which point no further oxygen can be 

dissolved in the fermentation broth. The second is to distribute the bacterial inoculum within 

the fermentation broth evenly using fluid circulation generated by rising microbubbles in the 

airlift loop bioreactor. Oxygen concentration after turning off the air supply was monitored, and 

the initial 𝐾𝐿𝑎 was calculated using nitrogen degassing method, when ln(
𝐶∗− 𝐶0

𝐶∗−𝐶𝑡
) is plotted 

against time, and the slope is 𝐾𝐿𝑎.   

Figure 7.6A shows the oxygen concentration profile during the fermentation process using the 

initial sparging strategy. The calculated  𝐾𝐿𝑎 at 0.3 L/min and 30℃ is 31.8 hr-1. Figure 7.6B 

shows the typical plot for  𝐾𝐿𝑎  estimation for 0.3L/min at 30℃, where the slope of the straight 

line indicates a mass transfer coefficient  𝐾𝐿𝑎  (min-1). The calculated  𝐾𝐿𝑎 is valid as long as 

the following assumptions are met: the liquid phase is well mixed, the response time of the 

dissolved oxygen electrode is fast (the used oxygen electrode (Seven Dual pH and DO TM220, 

Mettler Toledo)  has a response time is just over 10 seconds), while the gas-phase dynamics are 

ignored as there are no expected changes in the properties of the gas dispersion with time.   
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The oxygen concentration had fallen below the proposed critical oxygen concentration after 

just 270 minutes (4.5 hours) Figure 7.6A, leading to a shift from aerobic conditions to anaerobic 

ones, which accumulate ethanol preferentially. It is worth emphasising that aerobic conditions 

need to be kept in order to accumulate acetaldehyde (the target product) in the fermentation 

broth as well as ethanol but to a lesser extent. Therefore, another sparging strategy needs to be 

used in order to maintain aerobic conditions during fermentation.     

(A)                                                                (B) 

 

Figure 7.6: (A) The dissolved oxygen concentration against time during the fermentation 

process of Zymomonas mobilis ZM4 using the initial sparging strategy. (B) Typical plot of 

initial  𝐾𝐿𝑎  estimation under initial sparging strategy, where the slope of straight line indicates 

mass transfer coefficient  𝐾𝐿𝑎  (min-1). The readings are representative of triplicate results.   

7.3.2 Continuous sparging strategy  

The dissolved oxygen concentration was monitored during the fermentation process under 

continuous sparging strategy (Figure 7.7). Using continuous sparging strategy kept the oxygen 

concentration high during the fermentation process with continuous mixing of the fermentation 

broth and stripping of the fermentation products such as acetaldehyde and carbon dioxide, and 

both of which are advantageous for the aerobic fermentation (Figure 7.7). On the other hand, 

using this strategy consumes high energy and gas with a high operational cost, because the used 

fluidic oscillator needs a high flow rate (60-80 L/min) to generate a pulse-jet stream. Dry air at 

only 0.3 L/min was fed to the diffuser, and the rest of the dry air (64.7 L/min) was purged as 

65 L/min of dry air at 1.5 bars was fed to the fluidic oscillator.  

Also, both biomass concentration and specific oxygen uptake rate are not considered in the 

 𝐾𝐿𝑎 calculation when using the nitrogen degassing method, because they need to be 
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determined by considering other parameters such as oxygen solubility, which is susceptible to 

experimental inaccuracies. To avoid some of these complications and making  𝐾𝐿𝑎  more 

representative to the real situation in the fermenter, a periodical sparging strategy was suggested 

to reduce cost, wasted gas and energy usage, and to make it more inclusive to the biomass 

concentration and ultimately to the oxygen uptake rate, r.  

 

Figure 7.7: The dissolved oxygen concentration against time during the fermentation process 

of Zymomonas mobilis ZM4 using the continuous sparging strategy, whereby the concentration 

of the dissolved oxygen is kept far from the critical oxygen concentration. The readings are 

representative of triplicate results.  

In addition, acetaldehyde and carbon dioxide cannot be collected efficiently under this strategy 

since both of those products are continuously stripped from the fermentation broth and; so their 

concentrations in the outlet stream are too low to be efficiently collected in both the vapour 

phase collection and the gas collection systems.  Therefore, it is suggested that the continuous 

sparging strategy is more suitable in systems with high acetaldehyde and carbon dioxide 

productivities that need more oxygen supply.  Such systems face inhibition problems due to the 

accumulation of by-products. Additionally, ethanol can be removed from the fermentation broth 

by the continuous stripping. This strategy can be a good option to provide enough oxygen to 

aerobically-grown microbial cultures, but using this strategy should be accompanied with high 

product concentrations.    

7.3.3 Periodical sparging strategy 

To save energy and to keep the operational cost low with efficient products stripping, air-

microbubbles were sparged periodicially. Air-microbubbles were introduced to the 

fermentation system until oxygen concentration equilibrium was achieved. Thereafter, the 

sparging was stopped, and the system was left to consume the provided oxygen. When the 
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oxygen concentration dropped to about the critical oxygen concentration, the air supply was 

turned on again. Two periods were identified during the aeration. The first period was at the 

beginning of the fermentation process, when the oxygen concentration reached its saturation 

concentration at 30℃ to ~ 8.28 ppm. In the second period, the system had already started to 

produce the fermentation products such as carbon dioxide (gas) and acetaldehyde (which tended 

to be vapor at 30℃), and this changed the equilibrium of oxygen in the system. The new 

equilibrium concentration was reached ~4.7 ppm.  

The rational interpretation for these two periods is that the oxygen mass transfer response 

follows the thin film theory, in which the mass transfer response is inherently transient in small 

microbubbles (Bredwell and Worden,  1998 and  Worden and Bredwell, 1998). In the first 

period, the oxygen mass transfer is sufficiently fast. Therefore, the internal concentration of 

oxygen in the microbubbles is significantly reduced as there is a significant driving force for 

oxygen transfer from the microbubble to the fermentation medium and eventually to the 

microbial cells. This nonequilibrium driving force is decreased as microbubbles rise in the 

fermentation broth. Ultimately, if the bubble composition of gases reaches equilibrium with the 

bulk liquid concentration, this driving force for the mass transfer vanishes (Al-Mashhadani et 

al., 2011). Concurrently, the bacterial culture would be in the lag phase, and will have just 

started to consume the oxygen.  

At the second period of the aeration, when the fermentation process has already begun, the 

bacterial culture started consuming oxygen, and many gaseous products have been produced. 

The equilibrium of the system changed and the bubble composition varied. During this period, 

the produced gases accumulated in the bulk liquid, and they tended to diffuse into microbubbles, 

and this might lead to reducing the equilibrium concentration, reducing the nonequilibrium 

driving force. Figure 7.8 shows the oxygen consumption pattern in the Zymomonas 

fermentation culture with a two-staged aeration pathway.  
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Figure 7.8: A model of periodical oxygen dosing and consuming in Zymomonas fermentation 

culture. Two periods were identified during the aeration. The first period was at the beginning 

of the fermentation process, while at the second period, fermentation process has already begun, 

and the cultured started consuming oxygen, and many gaseous products have been produced. 

The readings are representative of triplicate results. 

Table 7.1: The oxygen mass transfer coefficient (for 0.3 L min-1 dosing) with equilibrium 

concentrations and sparging time (mins) calculated during the experimental sets. 
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(A)                                                                                                        (B) 
 

 

Both Table 7.1 and Figure 7.9 show that the oxygen mass transfer coefficient in the first period 

is lower than that of the second period. Variations in the oxygen mass transfer coefficients 

happened at different bacterial growth stages (different growth rates) which can likely be 

attributed to the physicochemical features of the fermentation medium due to the bacterial 

propagation and product excretion from the cells. Both these two factors can play important 

roles in changing the characteristics of the fermentation broth (Bandyopadhpay and Humphrey, 

1967). After inoculating the fermentation medium with the Zymomonas inoculum, sometimes 

needs to be spent in the lag phase (adaptation phase) before the bacterial culture launches the 

log phase (exponential phase). During the lag phase and the early stage of the log phase, the 

biomass concentration was as low as 0.5 g/L, and this concentration was almost constant across 

the first three hours of the fermentation process before the culture launched into the exponential 

phase, when the biomass concentration started to grow exponentially (Figure 7.10B).  

The specific growth rate of the Zymomonas cells grown under the initial sparging strategy was 

around 0.39 hr-1, while the cells grown under the periodical sparging strategy showed an 

increased specific growth rate, which reached 0.44 hr-1, 13 % faster growth rate than the cells 

grown in the initially-sparged group.  
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Figure 7.9: Graphic determination of Volumetric oxygen transfer coeffcient for Zymomonas 

mobilis ZM4 culture (for 0.3 L min-1 dosing). (A) During the first period (8 mins). (B) During 

the second period (16.5 mins). The readings are representative of triplictae results.  
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                                                                      (A) 

   

(B) 

 

Figure 7.10: (A) A model of periodical oxygen dosing and consuming in Zymomonas 

fermentation culture. (B) Comparison between the growth pattern of Zymomonas mobilis under 

initial and periodical sparging strategies, highlighting the importance of keeping aerobic 

conditions. Error bars depict standard deviation. 

7.3.4 Specific oxygen uptake rate patterns  

Due to the low solubility of oxygen in fermentation broths, the dissolved oxygen concentration 

in these broths can become the limiting nutrient (Garcia-Ochoa et al., 2010). Decreasing the 

dissolved oxygen concentrations in the fermentation broth was described previously due to high 

demand during the fast growth in the exponential phase, however this demand became minor 
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in the stationary phase (Pinches and Pallent 1986). This behaviour fits most of the microbial 

cultures (Garcìa-Ochoa et al., 2000 and Çalik et al., 2006).  

The specific oxygen uptake rate(r or qO2) is characteristic for each microorganism, and it is 

commonly considered a constant during microbial growth but interestingly many experimental 

results show a disagreement with this presumption (Garcia-Ochoa et al., 2000 and Garcia-

Ochoa et al., 2010).  

The oxygen consumption and oxygen supply rate for Zymomonas mobilis cultures have been 

intensively studied (Mastroeni et al., 2003; Bringer et al., 1984; Kalnenieks et al., 2000  and 

Pentjuss et al., 2013). However, the specific oxygen uptake rate for various growth phases of 

Zymomonas mobilis has not been studied. Therefore, part of the current study was to monitor 

and to track the oxygen concentration profile during all phases of growth as well as working 

out the specific oxygen uptake rate for each phase of growth.  

During the first 2 to 3 hours of the fermentation process, specific oxygen uptake rate (r, qO2) 

was measured immediately after the inoculation, using the biomass dry weight concentration 

(from the biomass calibration curve) to calculate the initial biomass concentration in the 

fermenter. Figure 7.11 shows the growth curve of Z. mobilis in the periodically-sparged group 

labelled with specific oxygen uptake rates for each growth phase. In general, the specific 

oxygen consumption rate was proportional to the rate of the bacterial growth in the culture. 

Consequently, the highest value recorded in these experiments was related with the most rapid 

growth, during the exponential phase.  

As it can be seen from Figure 7.11, the specific oxygen uptake rate in the lag phase was 1.8 

mmol.g (dry weight)-1.hr-1 during the first two to three hours. After that, this rate was increased 

to more than double at the log phase to 4.2 mmol.g (dry weight)-1.hr-1, and it was almost 

uniformly constant from the 4 to 12 hours of the fermentation duration. The increase in the 

oxygen consumption coincides with an increase the metabolic rate in microbial cells, which 

occurs near the end of the lag phase and the log phase (Martin, 1932). The specific oxygen 

uptake rate in this study is defined as the population respiration rate normalised by the 

population biomass. This specific oxygen uptake rate is decreased as the microbial culture 

transited from the exponential phase to the stationary phase, when this rate reached 2.88 mmol. 

g (dry weight)-1.hr-1.   

Carbon limitation is an important factor in the launching of a microbial culture to the stationary 

phase in complex media (Chubukov and Sauer, 2014). Many bacteria catabolise a variety of 
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carbon sources to generate energy and such carbon starvation in the stationary phase causes a 

lack of the required energy for stationary phase responses (Chubukov and Sauer, 2014). 

Interestingly, glucose had not been yet depleted when the bacterial culture launched the 

stationary phase. Therefore, other factors might accelerate the Zymomonas culture’s entrance 

into the stationary phase. These factors such as accumulation of toxic metabolites, can provoke 

the launch to the stationary phase. The bacterial cells in this phase show a decrease in the 

resistance to antibiotics and other environmental stresses, and microbes need to resolve this 

dilemma, and solving it represents a trade-off between energy generation and resistance 

mechanisms (Benaroudj et al., 2001).   

The specific oxygen uptake rate decreased further in the death phase, reaching 1.56 mmol.g 

(dry weight)-1.hr-1. This observation disagrees with what was mentioned by Riedel et al., (2013), 

who observed an increase in the specific oxygen uptake rate during the death phase. The 

interpretation of this observation might be due the cryptic growth.  When nutrients are liberated 

from dead cells, these nutrients can be utilised by other cells for growth and propagation (Riedel 

et al., 2013). however, this rate was decreased in the death phase, and this probably happened 

because of the accumulation of the ethanol, increasing the death rate and depletion of the carbon 

source, glucose in this case.  

 

Figure 7.11: Zymomonas growth pattern during periodical sparing strategy (Flow rate 0.3 L/ 

min) labelled with the specific oxygen uptake rate(qO2) mmol.g(dry weight)-1.hr-1. The oxygen 

uptake rate hits its highest in the exponential phase, while it is gradually decreased in both 

stationary and death phases. The readings are representative of triplicate results. 
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7.4 Central metabolic routes  

Zymomonas mobilis is a facultative anaerobic, obligatory fermentative bacterium (Rogers et al., 

1982). It metabolises several sugars such as glucose, fructose and sucrose by an Entner-

Doudoroff pathway in combination with the enzymes of pyruvate decarboxylase to convert the 

pyruvate into carbon dioxide and acetaldehyde, along with alcohol dehydrogenase to produce 

ethanol as a final product ( Dawes et al., 1966).  

Generally, Zymomonas mobilis catabolises around 95-98 % of the carbon source (glucose) into 

ethanol and carbon dioxide, while just 3-5 % of this carbon source can be used in biomass 

formation and to serve an anabolic role (Swings and De Ley, 1977 and Rogers et al., 1982). 

Figure 7.12 shows the glucose consumption pattern and glucose consumption rate in both 

initially sparging group and periodically sparging group.  

(A)                                                                                 (B) 

 

Figure 7.12: Glucose consumption pattern in Zymomonas mobilis. (A) Glucose concentration 

against time. (B) Glucose consumption rate in both initially and periodically sparged groups, 

whereby Initially sparged culture consumed more glucose than that the periodically sparged 

group under anaerobic conditions. Error bars depict standard deviation. 

Carbohydrate metabolism in Zymomonas mobilis can be seen as a true catabolic highway 

(Sprenger, 1996). Anaerobically, Z. mobilis cells convert glucose into ethanol and carbon 

dioxide at 3 to 5 times faster than the glucose consumption rate in yeast (Rogers et al., 1982). 

Also, the glucose consumption rate in this bacterium is also 1.2 to 1.5 times faster than 

Streptococcus bovis, which is another promising obligatory fermentative microorganism (Cook 

and Russell, 1994).  
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Initially, both groups were started at the same level of oxygen, and both groups showed almost 

the same pattern of biomass production (Figure 7.10) and glucose consumption (Figure 7.12) 

at the first 3 hours of the fermentation process. Thereafter, the initial sparging group was kept 

without any oxygen supply, while the periodically-sparged group was regularly aerated. 4 hours 

were required to reach the critical level of oxygen in both groups (Table 7.1), and further oxygen 

starvation led to a shift in the metabolism pathway into the anaerobic fermentation. Ishikawa et 

al., (1990), reported the same observation. Two scenarios were expected depending on the 

dissolved oxygen level: the first happenes under high concentration of the dissolved oxygen 

(higher than the critical oxygen level), and the second occurres at relatively low dissolved 

oxygen concentration (lower than the critical oxygen concentration). NADH oxidase is 

responsible for the oxidation of NADH with oxygen, and thus, the oxygen consumption 

happens because of this activity (Bringer et al., 1984). Under the first scenario, the activity of 

NADH oxidase is directly adapted with dissolved oxygen concentration, and its activity 

increases as the concentration of the dissolved oxygen increases (Bringer et al., 1984). When 

the concentration of the dissolved oxygen is above the critical oxygen level, the NADH 

becomes limited because of the NADH oxidation by NADH oxidase, and therefore, less NADH 

(which is formed by an Entner-Doudoroff pathway) is available to reduce the acetaldehyde into 

ethanol by the alcohol dehydrogenase. In the second scenario, the concentration of the dissolved 

oxygen is nearly zero (lower than the critical oxygen level) when most of the formed NADH 

becomes available for the reduction of acetaldehyde into ethanol by alcohol dehydrogenase 

(Ishikawa et al., 1990). Figure 7.13 shows these two scenarios.  

                                                                                 (A) 
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  (B) 

 

Figure 7.13: Proposed scenarios of the products shifting in Z. mobilis. (A) Under the aerobic 

conditions (Higher than the critical oxygen level). (B) Under anaerobic conditions (Lower            

than the critical oxygen level) (Adapted from Ishikawa et al., 1990). 

Shifting from aerobic to anaerobic conditions can be observed in the changing of glucose 

consumption pattern in the initially- sparged group. Figure 7.12A shows that at the initial 3 

hours of the fermentation, both experimental sets showed almost the same glucose consumption 

patterns as they started with the same dissolved oxygen concentration (around 8.28 ppm). After 

that, the groups diverged, and more glucose was consumed by the initially- sparged strategy 

group when almost 100 % of the glucose had been utilised at the end of the fermentation process 

(around 27 hours). In comparison, there was 99 % of glucose utilised after the same duration 

by the periodically sparged group.  

Interestingly, the specific glucose consumption rate in initially- sparged group was almost 

double the specific rate in periodically-sparged group (Figure 7.12B). It can therefore be 

thought that more time is needed to consume the same amount of glucose by the aerobic culture.   

Therefore, the presence of oxygen alternated both the glucose consumption and specific glucose 

consumption rate of Zymomonas mobilis in the fermentation system. There are many 

explanations for this behavior. For example: this observation could be attributed to the type of 

products: Zymomonas mobilis tends to produce less reduced metabolites under the aerobic 

condition with less ethanol (Swings and De Ley, 1977, Bringer et al., 1984 and Ishikawa et al., 

1990). Also, Zymomonas mobilis ZM4 produces an increased amount of ethanol under 

anaerobic conditions, and growth in the presence of ethanol causes changes in the lipid 

composition as many lipids need to be synthesised (Tornabene et al., 1982 and Carey and 

Ingram 1983). The ability to synthesise a variety of lipids is essential to all organisms, and lipid 

biosynthesis pathways are endergonic: they use ATP as a source of the metabolic energy, and 

a reduced electron carrier as a reductant (Nelson et al., 2008). Therefore, it has been suggested 

that additional ATP needs to be generated to fulfill the energetic requirements of the lipids 

biosynthesis, which are used to change the composition of the bacterial membrane as an 
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adaptation strategy for the increasing ethanol concentration. This might also explain why 

anaerobically grown cells need to consume more glucose to meet this adaptation strategy. 

However, the difference in the glucose consumption at the end of the fermentation process was 

only 1 % between these two groups.  

7.5 Fermentation products (Acetaldehyde, ethanol, and carbon dioxide)  

Figure 7.14 (A, B) shows both acetaldehyde and ethanol production profiles during the 

fermentation process.  

(A)                                                                     (B) 

 

Figure 7.14: Acetaldehyde and Ethanol production during the fermentation course. (A) Ethanol 

production (B) Acetaldehyde production. Error bars depict standard deviation. 

The ethanol production was almost the same between the two groups during the first 10 hours, 

and therafter, the diversion between the two groups started and continued until the end of the 

fermentation process (Figure 7.14A). Interestingly, this deviation was expected to happen after 

almost 4 hours at the point at which the dissolved oxygen concentration was depleted and the 

metabolism was thought to shift to an anaerobic pathway gradually after this duration. In 

general, there was around 39 % more ethanol produced in the initially-sparged group in 

comparison with the periodically-sparged group. This result is consistent with the proposed 

scenarios in Figure 7.13, which suggested that there is less NADH available to the alcohol 

dehydrogenase to convert acetaldehyde to ethanol under aerobic conditions.  

On the other hand, in Figure 7.14(B), acetaldehyde started to accumulate in the fermentation 

broth after just 2 hours from the beginning of the fermentation, and continued to accumulate 

within the broth and reached its highest point after 10 hours. Therafter, the production decreased 

until the end of the fermentation process. The periodically-sparged group produced around 108 
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% more acetaldehyde than the initially- sparged group (Figure 7.14B). The accumulation of 

acetaldehyde in the periodically-sparged group during the first 10 hours might explain the 

increased concentration of ethanol, which was seen in this period as well. The concentration of 

substrate (acetaldehyde) is a key factor affecting the rate of reaction catalysed by an enzyme. 

Thus, increasing the acetaldehyde concentration in the periodically-sparged group increased the 

ethanol production by alcohol dehydrogenase, a linear increase with a concentration of 

acetaldehyde when it is at relatively low concentrations. With the further accumulation of 

acetaldehyde, the reaction velocity of alcohol dehydrogenase could increase by smaller and 

smaller amounts in response to an increase in the substrate (acetaldehyde) concentration. 

Eventually, the enzymatic reaction reaches a point, where the reaction velocity becomes very 

small as acetaldehyde concentration increases (Nelson and Cox, 2008). Figure 7.15 shows the 

total produced acetaldehyde and ethanol in both experimental groups.  

(A)                                                                     (B) 

 

Figure 7.15: Accumulated fermentation products, considering both the produced and stripped 

products from the fermentation broth. (A) Total produced ethanol. (B) Total produced 

acetaldehyde. Error bars depict standard deviation. * The mean difference is significant at the 

0.05 level.  

7.6 In situ removal of some fermentation products  

The production of acetaldehyde and its accumulation within the fermentation broth can severely 

inhibit the bacterial growth, and this might lead to deteriorate the culture progress before 

finishing the carbon supply. To solve this problem, a gas-stripping technique using microbubble 

technology is used to avoid the final product inhibition and to increase the substrate utilisation 

rate. In addition, in situ removal of the fermentation products (acetaldehyde and carbon dioxide) 

is accompanied with a decrease in the Gibbs free energy of the pyruvate decarboxylase reaction, 

and this will affect the driving force of the reaction in the direction of increased product 
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formation according to Equation 2.10. Removing both acetaldehyde and carbon dioxide has an 

entropic effect and replacing the removed acetaldehyde and carbon dioxide increases the 

entropy of the product-depleted state (Gary, 2004 and Al-Mashhadani et al., 2011).  

The stripping of acetaldehyde can be modelled as a first order process according to the equation 

reported by Truong and Blackburn, (1984):  

RS=
−𝑑𝐶𝑠   

𝑑𝑡
 = 𝐾𝑆𝑎 𝐶𝑆    (Eq. 7.1)                        

Where RS is the stripping rate, 
−𝑑𝐶𝑠      

𝑑𝑡
  is the change in the organic compound concentration 

with time and 𝐾𝑆𝑎 is the stripping rate constant. 

The gas-stripping rate increases proportionally for both changes in the concentration of organic 

solvent and the stripping rate constant, 𝐾𝑆𝑎 (Eq. 7.1). Acetaldehyde is both the desired product 

and the inhibitory compound to Zymomonas mobilis and the relationship between stripping rate 

and the acetaldehyde concentration are both favourable. The stripping rate constant can be 

determined as the slope of a plot of ln 𝐶𝑆0 𝐶𝑆𝑡⁄  versus time t, as a linear best-fitted curve. As 

Zymomonas mobilis ZM4 produces acetaldehyde, the rate at which it is removed from the 

fermentation broth is likewise increased according to the Equation 7.1. Moreover, acetaldehyde 

is being both produced and stripped in the current system, and if it is continuously removed, 

the change in the acetaldehyde concentration is given by the following equation (Ezeji et al. 

2005):  

−𝑑𝐶𝑆

𝑑𝑡
= 𝑅𝑆 − 𝑅𝑃 = 𝐾𝑆 a𝐶𝑆 − 𝑅𝑃       (Eq. 7.2) 

At steady state (  
d𝐶𝑆 

𝑑𝑡
= 0 ),  the following equation can be obtained: 

𝑅𝑆 = 𝑅𝑃  = 𝐾𝑆𝑎𝐶𝑆                               (Eq. 7.3) 

It can be concluded From Equation 7.3 that if 𝐾𝑆𝑎 can be increased, then Zymomonas mobilis 

ZM4 will expose to a lower concentration of acetaldehyde for any given rate of solvent 

production. The gas-stripping rate constant can be modelled from the two-film mass transfer 

model for volatilisation processes as follows:  

𝐾𝑠𝑎 =  
𝑎

𝑉 
[
1

𝑘1
+

𝑅𝑇

𝐻𝐶𝑘𝑔
]-1                       (Eq. 7.4) 
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The rate of mass transfer was increased by increasing the total interfacial surface area using 

microbubble technology, which gives a corresponding increase in 𝐾𝑆𝑎 as illustrated by 

Equation 7.4. From Equations 7.1 and 7.4, important relationships can be obtained (Ezeji et al., 

2005):  

𝑅𝑆  ∝   𝐾𝑆𝑎    (Eq. 7.5) 

𝐾𝑆𝑎 ∝   𝑎       (Eq. 7.6) 

In addition, a correlation was developed between the gas flow rate and   𝐾𝑆𝑎 for organic 

compounds in water (Truong and Blackburn, 1984):   

                                                           𝐾𝑆𝑎 
𝑉

𝑄 
 = 𝑏(𝐻𝐶 )

-1    (Eq. 7.7)  

The important relationship that can be obtained from Equation 7.7 as follows:  

𝐾𝑆𝑎 ∝  𝑄  (Eq. 7.8)   

Therefore, increasing the gas flow rate can increase 𝐾𝑆𝑎 as well. However, only one flow rate 

was used in the current study, which is 0.3 L/min. Several reasons were considered before 

choosing this flow rate. For example, fluid foam was seen to appear at higher gas flowrates 

(more than 0.5 L/min), and this foam became even worse due to the generated microbubbles 

(~500 microns), when the traditional foam regions (the foam and the froth) were merged into 

one frothy mass (Vardar-Sukan, 1998). Another reason came from the simulation study 

conducted by Al-Mashhadani et al., (2015), which showed that using 0.3 L/min flow rate with 

a bubbles size of around 500 microns with the same fermenter geometry achieved maximum 

circulating eddy with limited dead zones. 

On the other hand, the addition of antifoam compounds to the fermenter is well known to affect 

some parameters within the fermentation process such as hydrodynamics, bubble behaviour and 

interactions with other fermentation broth components, and it might also reduce the specific 

interfacial area available for mass transfer (Al-Masry, 1999). Importantly, 0.3 L/min is also 

suited both the vapour collection and gas collection systems because no acetaldehyde was 

detected in the output stream of the vapour collection system after passing it through 0.05% of 

3-Methyl-2-benzothiazolinone hydrazone hydrochloride hydrate (MBTH) solution at random 

times during the sparging process.   

Microbubbles provide high surface area to volume ratio (Zimmerman et al., 2009). 

Additionally, some fermentation products (such as acetaldehyde) flashes to its equilibrium 
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concentration of vapour on the surface layer of the microbubble, and the internal mixing of a 

microbubble is adequately rapid, and thus it reaches a uniformly-mixed status in a very short 

residence time (Zimmerman et al., 2013).  

Therefore, using microbubbles provides a high interfacial area, a, which is directly related to 

both stripping rate constant (𝐾𝑆𝑎) and stripping rate (𝑅𝑆 ) according to Equations 7.5 and 7.6.  

Figure 7.16 shows the variation in acetaldehyde concentration during the fermentation process 

combined with air microbubbles sparging.  

(A)                                                                       (B) 

 

Figure 7.16: Stripping process of acetaldehyde from the fermentation broth using air 

microbubbles. (A) Fluctuation of acetaldehyde concentrations within the fermentation broth 

after stripping it with microbubble. (B)  Variation of acetaldehyde concentrations with each 

sparging cycle and calculation of stripping rate constant 𝐾𝑆𝑎. Error bars depict standard 

deviation.  

The highest acetaldehyde concentration was 0.34 mM (0.015 g/L) (Figure 7.16A). This 

concentration is much lower than the inhibitory concentration of acetaldehyde. The stripping 

rate constant (𝐾𝑠𝑎) was calculated for the highest produced acetaldehyde at hour 10 when the 

acetaldehyde concentration reached around 0.34 mM. The application of microbubble 

technology decreased the acetaldehyde concentration to less than 0.022 mM after 16.5 minutes 

of sparging. Samples were withdrawn every 4 minutes and used to calculate the stripping rate 

constant (𝐾𝑠𝑎). The calculated stripping rate constant (𝐾𝑠𝑎) value was found to be 3.6 hr -1. 

This value can be multiplied by the accumulated acetaldehyde concentration plus the produced 

acetaldehyde during the sparging time to work out the acetaldehyde removal rate or 

acetaldehyde-stripping rate, as acetaldehyde is both being produced and stripped during the 

sparging course. The acetaldehyde production rate (In hour 10 when the acetaldehyde 
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concentration reached its highest) was around 0.15 mmol. g(dry weight)-1.hr-1.Therefore; the 

stripping rate was around 12.63 mM.hr-1.  

Figure 7.17 shows the total carbon dioxide produced at the end of the fermentation process 

(27 hours ) collected by the gas collection system.   

 

Figure 7.17: Cumulated collected carbon dioxide at the end of the fermentation process (27 

hrs), which was collected using the gas collection system. The readings are representative of 

triplicate results. * The mean difference is significant at the 0.05 level.  

Stripping carbon dioxide from the fermentation medium has many advantages for the 

fermentation process. For example, carbon dioxide is known to dissociate into carbonic acid, 

which can decrease the pH of the fermentation medium. To avoid pH variation, alkaline 

solutions need to be added to adjust the pH of the fermentation medium. The addition of the 

basic solutions means that it is expensive to maintain the suitable pH level for the fermentation 

process as well as increasing the maintenance and cleaning costs as some of these solutions are 

toxic and/or corrosive. Carbon dioxide accumulation can inhibit and inactivate the bacterial 

cells, and this might be combined with cell lysis, and then deteriorated the bacterial culture.   

It is worth noting that removing some fermentation products (acetaldehyde and carbon dioxide) 

decreases the chemical activity of these products, and that drives the reaction in the direction 

of greater product formation according to Le Chatelier’s principle. 
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(A)                                                                               (B)  

 

Figure 7.18: Bioproducts percent yields. (A) Ethanol and acetaldehyde yields. (B) Biomass 

yield. 

Figure 7.18 shows the yields of the fermentation bioproducts (acetaldehyde, ethanol, and 

biomass), which were calculated by considering that 1 mol of glucose can be metabolised to 

produce 2 mol of acetaldehyde/ ethanol with 2 mol of carbon dioxide. The percentage yield is 

the ratio between the actual yield and the theoretical yield multiplied by 100.  It indicates the 

percent of theoretical yield obtained from the final product in an experiment.  

Ethanol yield reached 70 % in the initially-sparged group in comparison with 45 % in the 

periodically-sparged group, while acetaldehyde yield hit about 1 % and 0.5 % in the 

periodically-sparged group and the initially-sparged group respectively. Biomass yield was 

maximised in the periodically-sparged group and reached 110 %, while its yield in the initially-

sparged group was around 90 %. The biomass yield calculation was based on the assumption 

that 10.5 g dry weight of Zymomonas mobilis cells can be generated for each mole of glucose 

being totally consumed (Kalnenieks, 2006).  

7.7 Bubble analysis  

Bubble size distribution was also considered in the current study, controlled using a ceramic 

diffuser with water as a liquid and air as a gas with a flow rate of  0.3 L/min. It is worth 

mentioning that the bubble analysis study was achieved using a high-speed camera photron 3 

(EPSRC, UK). The reactor used in the experiments is cylindrical in shape to increase the 

efficiency of mixing, however, it proved difficult to measure bubble size in the cylinder because 

it gives an image bigger than reality. Therefore, the cylindrical reactor was replaced with a 
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rectangular reactor. Measurement of bubble size was carried out by image analysis software 

(ImageJ software 1.48V), which gives the area of the bubbles in two dimensions. Images 

containing more than 150 bubbles were analysed, and the average diameter of these bubbles 

was ~500 μm. The microbubbles with diameter of 400 to 600μm have a relative frequency of 

0.37 higher than other diameters, while the lowest relative frequency was in the range of 0 to 

400 μm. It can certianly be said that the number of microbubbles in the range of 400 to 600 μm 

was more dominant than other sizes, which represents around 60 % of the total generated 

bubbles (Figure 7.19).  

(A)                                                                 (B) 

 

Figure 7.19: Bubble analysis. (A) bubble size measurement set up. (B) Bubble size 

distribution used in the current study, where the microbubbles with 400-600 μm were 

dominant than other sizes. The readings are representative of triplicate results.  

Using the fluidic oscillator helped to generate microbubbles with the reported size distribution. 

On the other hand, using a continuous air flow (after removing the fluidic oscillator) can 

generate much bigger bubbles (1,000-2,000 μm), which are no longer microbubbles (fine 

bubbles) at the same flow rate (0.3 L/min). Figure 7.20 shows a comparison between the 

oscillation flow fed by the fluidic oscillator and the continuous flow for the same flow rate, 

where micron-sized bubbles were generated from the diffuser with the oscillation flow without 

coalescence, and with almost uniform spacing/size (Zimmerman et al., 2013).  
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(A)                                                                       (B) 

 

Figure 7.20: A comparison between an oscillated flow and a continuous flow in water at the 

same flow rate 0.3 L/min. (A) Oscillated flow fed by the fluidic oscillator generated 

microbubbles with uniform spacing between them. (B) Continuous flow generated fine bubbles, 

which tend to coalescence, producing even bigger bubbles (Adapted from Al-Mashhadani, 

2013).  

At 0.3 L/min and 400-600 μm bubble diameters, the gas bubbles were not present in the 

downcomer region of the airlift loop bioreactor and thus, there is zero volume gas fraction in 

this region, which represents more than 60 % of the overall working volume of the reactor.  

Therefore, both mass and heat transfer are restricted to the riser region because the downcomer 

region is free of gas bubbles as the liquid circulation cannot overcome the higher buoyancy of 

these bubbles and therefore, can not circulate them. Figure 7.21 shows the distribution of gas 

volume fraction and liquid velocity streamlines at 400 μm and 600 μm bubble diameters (Al-

Mashhadani et al., 2015). In addition, the ratio of draft tube diameter to the bioreactor 

diameter(d/D) is an important parameter for internal loop bioreactors. (dD-1)  = 0.6 was used in 

the current study, which showed a good liquid circulation pattern that achieved good mixing 

within the fermentation reactor (Al-Mashhadani et al., 2015).  
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Figure 7.21: Snapshots of gas concentration (Kg/m3) at two bubble diameters (400 μm and 

600 μm) after steady state (Adapted from AL-Mashhadani et al., 2015) 

7.8 Reducing the cleaning requirements in the airlift loop bioreactor using microbubble 

technology  

An airlift loop bioreactor system was used in the current study. This bioreactor needs to be 

cleaned after finishing the batch culture and transferring the contents. Typically, the cleaning 

is done automatically using clean-in-place (CIP) techniques. Manual cleaning was used in the 

current study, and it achieved a contamination-free culture (which was examined by regular 

observation of the culture using both cultivations on the petri dishes and examination under a 

combined microscopy) and ensured consistency of the cleaning operation. Irrespective of the 

bioreactor type, i.e. stirred tank, bubble column, fluidised bed, external-loop airlift, or internal-

loop airlift reactors, the general cleaning requirements are similar (Chisti and Moo-Young 

1987). Controllable sensors, which can be replaced during the operation, have additional 

implications for the cleaning process. Applying microbubble technology, however, supplies 

oxygen to the culture and removes the fermentation products but importantly, prevention of 

microbial adhesion and detachment of adhering microorganisms on the bioreactor interface can 

also be achieved using this technology.  

The production of toxic substances from Zymomonas mobilis during the fermentation process 

such as acetaldehyde, ethanol, or even carbon dioxide can substantially impede the bacterial 

growth and cause a dramatic reduction in the production of these chemicals (Todhanakasem et 

al., 2014). The tolerance to these toxic compounds can be enhanced by the formation of biofilms 

(Li et al., 2006). A microbial biofilm can be defined as a single species or communities of 

microorganisms that attach to surfaces (biotic or abiotic) and are embedded in an extracellular 

polymeric substance (EPS) (Todhanakasem et al., 2014). Microbial cells in biofilms might 

differ totally regarding phenotypic characteristics or adaptive responses to stresses from their 

400 μm                    600 μm 
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planktonic counterparts, and this can provide survival advantages and protection from a range 

of environmental conditions (Hall-Stoodley et al., 2004). Zymomonas mobile ZM4 tends to 

form stable biofilms on hydrophobic plastic surfaces (Todhanakasem et al., 2014).  

Poly (methyl methacrylate) (PMMA) was tested as the resin of choice for the fabrication of 

many biological-based polymers (Park et al., 2009), and can be modified to increase its 

hydrophobicity. The walls of the used bioreactor in the current study were made from this 

polymer. The hydrophobic–hydrophobic interactions cause the attachment of Zymomonas 

mobilis cells to the bioreactor ‘s walls and then the formation of biofilms on the internal walls 

of the bioreactor. The same adhesion observed on PMMA denture resins by C. albicans (Park 

et al., 2009).  

Changing the carbohydrate concentration in the fermentation broth might change the cell 

surface’s hydrophobicity. Indeed, reducing of carbohydrates concentrations can enhance the 

development of the hydrophobicity of cell surface, lipopolysaccharide (LPS) fraction, of 

Zymomonas mobilis ZM4 cells (Shakirova et al., 2008), which tend to form dense, 

homogeneous biofilms in comparison with other Zymomonas mobilis strains (Todhanakasem 

et al., 2014). 

Using microbubbles can detach these bacterial biofilms from the internal surfaces of a 

bioreactor (Sharma et al., 2005), and this observation was proved by taking snapshots of the 

internal walls of the bioreactor under both the initial sparging and the periodical sparging 

strategies. 
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(A)                                                                       (B) 

 

Figure 7.22: Snapshots of the internal walls of the bioreactor. (A) Under initial sparging 

strategy, where the internal walls have bacterial biofilms, giving them the dirty appearance. 

(B) Under periodical sparging strategy, where the internal walls were clean without any 

bacterial biofilms. 

Passaging of air-liquid interfaces over substratum surfaces can involve in the detachment 

forces, which are perpendicular to the substratum surfaces and thus directly opposing the 

adhesion forces (Sharma et al., 2005). The surface tension forces involved in this detachment 

activity were previously reported for colloidal particles (Noordmans et al., 1997, and Suárez et 

al., 1999) and bacteria (Gómez-Suárez et al., 2001) in a parallel plate flow chamber. These 

sources are several orders of magnitudes larger than other forces that might act on 

microorganisms such as hydrodynamic, gravitational and buoyancy forces (Noordmans et al., 

1997). Passing microbubbles is more effective when it is at low velocities and high interface 

tensions (Sharma et al., 2005), and these features are typical of microbubbles (Zimmerman et 

al., 2009). Also, the detachment activity increases when multiple microbubbles are periodically 

passing alongside these walls (Sharma et al., 2005). 

7.9 Maintenance of asepsis conditions  

One of the great advantages of the biochemical processes is that they can be conducted at low 

temperatures, near-neutral pH and in an aqueous environment. On the other hand, there is a 

significant cost associated with maintenance of asepsis, as some of these fermentation processes 

suffer from contamination with undesirable microbes. Therefore, raw materials and media must 

be sterilised by heating them up to 120℃ and maintaining this temperature for 15-20 minutes 

at 1.1.5 bar before being cooled to operating temperature (autoclaving). Modern advances in 

sterilisation technologies have reduced costs, but these expenses are still considerable and has 
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a great impact on the bulk chemical market. However, the greatest cost is through the loss of 

production time (downtime) through contamination.  

In the current project, there are some measures considered to reduce or avoid the contamination 

during the fermentation process. The fermenter used in this study is an airlift loop bioreactor, 

which is made of PMMA. EVONIK Industries have manufactured PMMA as a sheet with 

different dimensions. However, this polymer is not recommended for treatment at high 

temperatures, and if used as such it must have its temperature increases gradually. Therefore, 

this reactor cannot be sterilised using an autoclave, and another sterilisation method should be 

used to achieve this purpose. Accordingly, the fermenter was sterilised chemically using a 

liquid disinfectant (Pursept®-A Xpress Disinfection solution, BRAND, Germany). The 

ingredients of Pursept®-A Xpress Disinfection solution are 55 g ethanol, 0.03 g n-alkyl-

aminopropyl-glycine, and auxiliary agents for each 100 ml of this solution. Surface disinfection 

with this solution can be as fast as 15 seconds and its activity can cover both bacteria and fungi 

(BRAND, Germany). 

In addition, the cultural medium was sterilised using an autoclave for 20 minutes at 120 ℃, a 

sterilisation technique that can destroy all microorganisms, including vegetative bacteria, 

mycobacteria, most viruses and most fungi (Doran, 2013). The sterilisation of air was also 

considered, and depth filters (Cole-Parmer, UK) were used in this process. Typically, the 

number of microbial cells in the air is in the order of 103 to 104/m3, and air filtration is the most 

common method used to sterilise air in bioprocesses, especially large-scale processes, while the 

heat sterilisation of the gasses is economically impractical. Depth filters can remove 

contaminants as small as 0.1 μm, and this pore size is up to 2 times smaller than the dimensions 

of the bacteria and spores to be removed (Doran, 2013). Samples were withdrawn at the 

beginning and the end of the fermentation process and used to prepare slides for microscopic 

examination. Figure 7.23 shows some pictures that were taken throughout this study to confirm 

that there was no or minimal contamination. 
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(A)                                                                (B) 

 

                               (C )                                                                          (D) 

 

 

 

 

Figure 7.23: Microscopic pictures for the bacterial culture at the beginning of and after finishing the 

fermentation process for both Wild and 200 mM allyl alcohol selected strain (In the next chapter). 

(A) Wild strain culture at the beginning of the fermentation process. (B) Wild strain culture after 

finishing the fermentation process. (C) 200 mM allyl alcohol selected strain at the beginning of the 

fermentation process (Next chapter). (D) 200 mM allyl alcohol selected strain after finishing the 

fermentation process (Next chapter). 
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7.10 Conclusions   

The aerobic fermentation process uses glucose as a carbon source, which was seen to be 

produced from the lignocellulose biomass pretreatment, as shown in Chapters 4 and 5 of the 

current study. Thereafter, the produced sugary content in the pretreatment slurry contaminated 

with Pseudomonas putida from the biological pretreatment was inactivated using carbon 

dioxide-enriched microbubbles, as shown in Chapter 6. This chapter focuses mainly on the 

fermentation process under aerobic conditions using Zymomonas mobilis ZM4 as a 

fermentative microorganism. Microbubble technology was used to supply oxygen to the 

bacterial culture in three different strategies: the initial sparging strategy, the periodical 

sparging strategy, and the continuous sparging strategy. While the initially-sparged group 

suffers from the oxygen starvation after around 3.5 hours, the continuously-sparged group keeps 

stable aerobic conditions, but this strategy causes a high-energy usage and gas wasting with a 

high operational cost. Beneficially, the periodical sparging strategy offers both enough oxygen 

supply and reduced energy usage, and provides efficient in situ separation of acetaldehyde, 

carbon dioxide, and to a much lesser extent ethanol. The results show that the Zymomonas 

growth is inhibited by acetaldehyde accumulation at a concentration as low as 0.1 % with 

several morphological changes seen on the bacterial cells by SEM. This inhibition can be 

avoided by stripping the inhibitors with microbubbles, which removes acetaldehyde from the 

fermentation broth with 99 % efficiency, leading to relatively high microbial growth. Using the 

periodical sparging strategy, however, gives 45 % yield of ethanol and 1 % yield of 

acetaldehyde with 110 % yield of microbial biomass in comparison with 70 %, 0.5 % and 90 

% yield for ethanol, acetaldehyde and biomass, respectively, in the initially-sparged group. The 

periodically-sparged group produces 1,000% more carbon dioxide than the initially-sparged 

group. The oxygenation concurrent with the stripping process by the periodical sparging 

strategy efficiently maintained the oxygen concentration in the fermentation broth above the 

critical oxygen concentration, leading to stable aerobic conditions. The developed periodical 

approach has potentially significant ramifications, particularly for fermentation-based 

industries, and it promises to offset many traditional aerobic fermentation deficiencies. 

The periodically-sparged group showed an elevated biomass and acetaldehyde production with 

less ethanol in comparison to the initially-sparged group. 

Additionally, using microbubble technology helped to detach bacterial biofilms from the 

internal surfaces of the bioreactor and therefore, reduced the cleaning requirements in the airlift 

loop bioreactor. 
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To enhance the acetaldehyde production, alcohol dehydrogenase reaction needs to be attenuated 

or modified, and therefore, allyl alcohol will be used to select Zymomonas mobilis cells with 

decreased alcohol dehydrogenase activity, as will be shown in Chapter 8. 
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Chapter 8  

Aerobic fermentation integrated with in situ separation of bio-products using 

microbubble technology and a mutant type Zymomonas mobilis ZM4 strain 

Overview  

Alcohol dehydrogenases catalyse the interconversion among ethanol and acetaldehyde 

(Lutstorf and Megnet, 1968; Beier et al., 1985). Alternatively, acetaldehyde can be oxidised to 

acetate by aldehyde dehydrogenases (Jacobson and Bernofsky, 1974; Dickinson, 1996 and 

Meaden et al., 1997). However, Zymomonas mobilis ZM4 does not show much activity of this 

enzyme and it was suggested that this bacterium might lack acetaldehyde dehydrogenase 

(Bringer-Meyer and Sahm, 1993). Also, acetate is not detected in the current study. 

One way to enhance the acetaldehyde production in the fermentation process as a target product 

(as shown in Chapter 7) is to attenuate or modify the alcohol dehydrogenase activity. This can 

be achieved by using either physiological selection techniques such as the use of allyl alcohol 

or molecular biology-genetic engineering techniques such as a directed deletion mutation. 

However, using molecular biology-genetic engineering techniques is out of the scope of the 

current project, and so allyl alcohol was chosen to select the cells with attenuated alcohol 

dehydrogenase activity.  

The acetaldehyde accumulation, however, can inhibit both the bacterial growth (as shown in 

Chapter 7) and pyruvate decarboxylase reaction by a product inhibition mechanism (Patel, 

2007); leading to the inhibition of decarboxylation of pyruvate and as a result more pyruvate 

starts to accumulate (Juni, 1961). The increase of the substrate concentration (pyruvate) is 

induced the pyruvate dehydrogenase complex activity, which has an exclusively anabolic role 

in Zymomonas mobilis to produce acetyl coenzyme A, CO2 and NADH (Sahm et al., 1992). 

The results show that the acetaldehyde production in the periodically-sparged group was 

increased to around 932 % more than the initially-sparged group. The mutant strain produced 

around 1,566.7 % more acetaldehyde than the wild strain (Seen in the Chapter 7). Regarding 

the ethanol production, there was around 42 % more ethanol produced in the initially-sparged 

group than in the periodically-sparged group. The mutant strain produced around 97 % less 

ethanol than the wild strain. Using the microbubble technology, however, removes 

acetaldehyde from the fermentation broth with 88.5 % efficiency in comparison with 42 % 

efficiency achieved with the fine bubbles. Additionally, Zymomonas biomass is preferably 

generated under the periodical sparging strategy with 50 % yield, and this is halved under the 

initially sparging strategy. Interestingly, the biomass yield produced by the mutant strain is less 
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than half the yield produced by the wild strain. In addition, the oxygenation concurrent with the 

stripping process by microbubbles efficiently maintained the oxygen concentration in the 

fermentation broth above the critical oxygen concentration, leading to stable aerobic conditions. 

8.1 Selection of acetaldehyde over-producing mutant strain using allyl alcohol 

Allyl alcohol was used to select Zymomonas mobilis cells with attenuated or modified alcohol 

dehydrogenase activity. Allyl alcohol can be oxidised by alcohol dehydrogenase to produce 

acryladehyde (Acrolein). The latter chemical is a toxic compound to bacterial cells with normal 

or overactive alcohol dehydrogenase activity and subsequently, only cells with modified or 

attenuated alcohol dehydrogenase activity can grow in the presence of increasing allyl alcohol 

concentrations (Rando, 1974). 

A mutant strain was selected using increasing allyl alcohol concentrations, which was 

ultimately expected to have higher acetaldehyde accumulation. Figure 8.1 shows the steps of 

the selection process using elevating allyl alcohol concentrations. 

The initial concentration of allyl alcohol used was 0.2 mM, as given previously in a study by 

Wills et al. (1981) and thereafter, the allyl alcohol concentration was gradually increased to 

reach 200 mM, as can be seen in Figure 8.1. 
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Figure 8.1: A sequential scheme using increasing allyl alcohol levels for the selection of Z. mobilis 

ZM4 mutant type with decreased or modified alcohol dehydrogenase activity. 
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Allyl alcohol is not known to change the metabolic pathway of Zymomonas mobilis but instead 

is just a methodology to select the bacterial cells with attenuated or modified alcohol 

dehydrogenase activity. Figure 8.2A shows that the increase in the acetaldehyde concentration 

corresponds with the increase in the allyl alcohol concentration to 100 mM, and also shows that 

the decrease in the ethanol concentration corresponds with the increase in the allyl alcohol 

concentration. In contrast, Figure 8.2B shows the shift in the Zymomonas mobilis ZM4 wild 

type population to a population with attenuated or modified alcohol dehydrogenase activity. It 

should be noted that allyl alcohol concentration was increased up to 200 mM during this study, 

and this concentration is double the concentration that was used in previous studies (Wecker, 

1987 and Wecker and Zall, 1987) and therefore, the activity of alcohol dehydrogenase is 

modified or reduced greater than to what was achieved before. 

(A)                                                                      (B) 

 

Similar initial sparging and periodical sparging strategies described in the previous chapter were 

applied to the work described in this chapter with the mutant strain, considering the biomass 

concentration, X and the changing in the sparging duration. 

It might be argued that the biomass concentration of the mutant strain is much lower than that 

of the wild strain and therefore, needs a shorter sparging duration. This is correct if the 

microbubble sparging is used to provide oxygen only. However, the microbubble technology is 

used to achieve two main goals: (i) to keep the oxygen concentration above the critical oxygen 
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Figure 8.2: (A) Acetaldehyde and ethanol production against used allyl alcohol concentration 

(Adapted from Wecker and Zall, 1987). (B) Shifting of wild type Zymomonas population to a 

population with attenuated or modified alcohol dehydrogenase activity in the mutant strain. 
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demand (i.e maintain aerobic conditions); and (ii) to strip out both acetaldehyde and carbon 

dioxide (primarily) along with ethanol and ethyl acetate (to a much lesser extent).  

Table 8.1 shows the details of the periodical sparging strategy applied with the mutant strain to 

satisfy the oxygen demand and to strip out of the accumulated products, while the initial 

sparging strategy was applied at the beginning of the fermentation process.  

The specific oxygen uptake rate was elevated in the mutant strain by an additional 6.67 %, 8.57 

%, 4.17 % and 15.38 % in the lag, log, stationary and death phases, respectively, measured per 

gram (dry weight) of the biomass per hour, in comparison to the wild strain. This elevation 

could be due to increasing the activity of the respiratory chain. Indeed, ethanol synthesis and 

the respiratory chain are the two main sinks of NADH in Zymomonas mobilis metabolism, and 

they are competing for the reducing equivalents (i.e. NADH) (Rutkis et al., 2016). Modifying 

or attenuating the alcohol dehydrogenase activity leads to redirect some of the metabolically-

available NADH towards respiratory NADH dehydrogenase (ndh), where oxygen, a final 

electron acceptor in the respiratory chain, is sufficiently plentiful in the fermentation broth. 

Table 8.8.1: The oxygen mass transfer coefficient (for 0.3 L min-1 dosing flow rate) with 

equilibrium concentrations and sparging time (mins) calculated during the experimental sets 

with Zymomonas mobilis mutant strain. 

Period  r (specific oxygen uptake rate)     

mmol. g (dry weight)-1.hr-1 

Growth phase r-value  
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8.2 Differentiation of the overproduced strain with the use of acid fuchsin 

Grown colonies of the mutant strain were overlaied with decolourised acid fuchsin agar. In the 

presence of the produced acetaldehyde, the acid fuchsin agar reacts with acetaldehyde and turns 

from nearly colourless to a range of colours from pink to red. The colour grade depends on the 

acetaldehyde concentration; a red colour can be seen as the highest acetaldehyde concentration. 

Figure 8.3 shows the acetaldehyde/acid fuchsin colony reaction in both wild and mutant strains.  

(A)                                                                     (B)           

 

 

 

 

 

 

 

 

The degree to which acid fuchsin reacts with Zymomonas colonies is correlated to the 

concentration of acetaldehyde produced by these colonies. It is worth noting that using acid 

fuchsin to differentiate acetaldehyde-overproducing strains is a qualitative test, and it can only 

give an idea about the increases of the acetaldehyde concentrations based on a subjective 

observation of changing reaction colour. Indeed, the resolution of this test is limited and some 

of the produced acetaldehyde might diffuse within the agar, and it will not react with the acid 

fuchsin. The pictures in figure 8.3 show that the wild strain tends to produce a limited amount 

of acetaldehyde, as shown in the previous chapter, while using allyl alcohol helps to select the 

acetaldehyde-overproducing mutant cells, which have one or more mutations in the gene(s) of 

alcohol dehydrogenases with modifying or attenuating alcohol dehydrogenase activity. In 

addition, allyl alcohol is not known to be mutagenic. The selected mutant strain might be due 

to spontaneous mutations(wecker and Zall, 1987). Consequently, it therefore may not be as 

Figure 8.3: The acetaldehyde/ acid fuchsin colony reaction. (A) Zymomonas mobilis wild 

strain, where limited amounts of acetaldehyde are produced to give the pink colour. (B) 

Zymomonas mobilis mutant strain, where increased amounts of acetaldehyde are produced 

to give the red colour. 
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stable as those produced by other molecular and genetic engineering techniques, such as 

deletion mutations. The allyl alcohol-selected mutant strain results from amino acid 

substitutions (Wills and Jӧrnvall, 1979 and Wecker and Zall, 1987) and Therefore, it is be more 

likely to revert than mutants produced by deletion techniques.  

Mutants that might have incidental mutations in their alcohol dehydrogenase without increasing 

the acetaldehyde production are not likely to be found, and this was verified in the experiments 

when more acetaldehyde was produced by the mutant strain. 

The attenuation in the alcohol dehydrogenase activity was confirmed by measuring the alcohol 

dehydrogenase relative activity in both wild type and mutant type. The results show that the 

activity of alcohol dehydrogenase in the mutant strain was reduced by 77 % in comparison to 

the wild strain. Figure 8.4 shows the enzymatic relative activities in both mutant and wild type 

strains.  

 

Figure 8.4:  Alcohol dehydrogenase relative activity in mutant type in comparison with the 

wild type, showing around 77 % reduction in the activity in mutant type compared to the wild 

type.  

8.3 Central metabolic routes 

Figure 8.5 shows the glucose consumption patterns in the Zymomonas mobilis mutant strain, in 

which it can be seen that the mutant strain used around 50 % of the available glucose in the 

initially-sparged group compared to around 25 % in the periodically-sparged group after more 

than 50 hr from the start of the fermentation process (Figure 8.5A). Figure 8.5B shows the 

glucose consumption rate in both groups. 
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Both groups started at the same level of oxygen. However, the initially-sparged group was 

shifted to anaerobic conditions after more than 3 hours. It is not proposed that Zymomonas 

metabolism can be shifted into anaerobic growth directly, but instead a transition stage between 

aerobic and anaerobic growth is taking place, where the metabolism is gradually shifted from 

aerobic to anaerobic. 

Additionally, these groups show different patterns of biomass production (Figure 8.6): at the 

first ten hours of the fermentation process, the initially-sparged group showed a hyperbolic 

growth pattern, while the periodically-sparged group showed a normal sigmoid growth pattern. 

The hyperbolic growth pattern might be attributed to the concentration of acetaldehyde (the 

inducer), which started to accumulate in the fermentation medium. Indeed, the existence of low 

concentrations of acetaldehyde can markedly reduce the lag phase of the growth curve (Stanley 

et al., 1993; Stanley et al., 1996; Hansson and Pamment, 2000; Aranda and del Olmo, 2004) 

and both sulphur amino acids metabolism and polyamine transporter genes can be induced by 

acetaldehyde (Aranda and Del Olmo, 2004). Two specific growth rates were observed during 

the growth in the initially-sparged group, the first specific growth rate was 0.168 hr-1, which 

was seen during the first 10 hours of the fermentation. Thereafter, the specific growth rate 

dropped to 0.064 hr-1 during the rest of the exponential phase. In contrast, the periodically-

sparged group showed almost consistent growth rate at the exponential phase, which was 

around 0.094 hr-1. 

Regarding the oxygenation process, the initially-sparged group was started at the same oxygen 

level as the periodically-sparged group but kept without any oxygen supply thereafter, while 

air-microbubbles were sparged into the periodically-sparged group at the fourth hour of the 

fermentation time. Five hours were required to reach the minimum threshold of the proposed 

oxygen critical level in both groups, and further oxygen consumption might lead to shift the 

metabolism to an anaerobic fermentation. Ishikawa et al. reported the same observation in their 

1990 study. In Figure 8.5B, this observation is supported and the glucose consumption rate in 

the initially-sparged group increases further after shifting to anaerobic conditions (after more 

than five hours). The same proposed scenarios of the products shifting in Zymomonas mobilis 

in figure 7.13 are also applied here, with the same previous observations of the effects of 

oxygenation process. 
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(A)                                                     (B) 

 

Figure 8.5: Glucose consumption pattern in Zymomonas mobilis ZM4 mutant strain. (A) 

Glucose concentration with time, whereby more glucose consumption was recorded under the 

anaerobic growth. (B) Glucose consumption rate in both initially and periodically sparged 

groups. Error bars depict standard deviations. 

 

 

Figure 8.6: Comparison between the growth patterns of Zymomonas mobilis mutant strain in 

the initially sparged group and periodically sparged group with the wild strain of Z.mobilis 

ZM4. Error bars depict standard deviation. 

8.4 Fermentation products (Acetaldehyde, ethanol, and carbon dioxide) 

Figure 8.7 (A,B) shows both acetaldehyde and ethanol production pathways during the 

fermentation process. 
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Acetaldehyde started to accumulate in the fermentation broth after around 2 hours of starting 

the fermentation process in both groups, and it continued to be produced within the broth, and 

reached its highest concentration after around 5 hours in the initially-sparged group and after 

20 hours in the periodically-sparged group. Thereafter, the production decreased until the end 

of the fermentation process (Figure 8.7A). 

The acetaldehyde production can begin immediately just after inoculation (within 2 hours) 

(Ishikawa et al., 1990), but it starts to be detectable in the fermentation broth after some time 

has passed, as this chemical tends to diffuse poorly across the plasma membrane compared to 

ethanol, leading to its intracellular accumulation. The accumulated intracellular acetaldehyde 

concentration can build up to several folds higher than the prevailing extracellular concentration 

(Aranda and del Olmo, 2004). 

The periodically sparged group produced around 433 % more acetaldehyde than the initially 

sparged group (Figure 8.7B). In addition, the accumulation of acetaldehyde in the periodically 

sparged group might also explain the increased concentration of ethanol, which also started to 

accumulate intensively during this period (Figure 8.7B) and this may due to that the 

concentration of substrate (acetaldehyde) is a key factor affecting the rate of a reaction catalysed 

by an enzyme (alcohol dehydrogenase) (Nelson and Cox, 2008). Clearly, increasing the 

acetaldehyde concentration in the periodically sparged group has raised the ethanol production 

by alcohol dehydrogenase. This increase was linearly related to the concentration of 

acetaldehyde for the period between hour tenth to hour twenty. The reaction velocity of alcohol 

dehydrogenase would be increased by smaller and smaller amounts in response to any further 

increase in the substrate (acetaldehyde) concentrations (Nelson and Cox, 2008). Subsequently, 

the enzymatic reaction has reached to its Michaels-Menton threshold, where the reaction 

velocity becomes very small as the acetaldehyde concentration increases (Nelson and Cox, 

2008). 

Another potential explanation for the increase in the ethanol production under the periodically-

sparged group is the Le Chatelier’s principle, whereby gaseous products are simultaneously 

produced and stripped out the fermentation broth (Al-Mashhadani et al., 2011). This removal 

can be accompanied by a decrease in the Gibbs free energy of the reaction, which would drive 

the reaction in the direction of greater volume of product (acetaldehyde, carbon dioxide and 

ethanol) formation, leading to their replacing the removed products (Gary, 2004). Figure 8.8 



Chapter eight                                                    Aerobic fermentation of mutant type Z. mobilis 

 

 

 169 

shows the concentrations of the accumulated fermentation products in both the initially and the 

periodically-sparged groups. 

The ethanol production in the mutant strain did not deviated from the wild type behavior (Figure 

8.7B). As expected, more ethanol was produced under anaerobic conditions in the initially 

sparged group and 42 % more ethanol was produced in the initially sparged group in 

comparison with the periodically sparged group.   

(A)                                                                                (B) 

 

Figure 8.7: Acetaldehyde and Ethanol production during the fermentation process. (A) 

Acetaldehyde production with time, whereby acetaldehyde produced preferentially in the 

periodical sparged group. (B) Ethanol production with time, whereby ethanol produced 

preferentially in the initially sparged group. Error bards depict standard deviation. 

(A)                                                                        (B) 

  

Figure 8.8: Accumulated fermentation products. (A) Produced acetaldehyde. (B) Produced 

Ethanol. Error bars depict standard deviation. * The mean difference is significant at the 0.05 

level. 
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Figure 8.9 shows the amount of produced carbon dioxide at the end of the fermentation process 

in both initially and periodically-sparged groups. Carbon dioxide production in the periodically-

sparged group was much higher than that produced by the initially-sparged group for the same 

duration (Figure 8.9). The reason for this carbon dioxide productivity might be due to the 

periodical stripping of the fermentation process according to Le Chatelier’s principle. Also, the 

majority of the carbon dioxide produced in the initially-sparged group remains dissolved in the 

liquid fermentation broth, while it is regularly being stripped out of the fermentation broth in 

the periodically-sparged group.  

When the fermentation broth in the initially-sparged reaches full saturation of carbon dioxide 

group (i.e. contains a maximum possible amount of dissolved carbon dioxide), the excess 

carbon dioxide might cause foaming (Brown, 2002), but also might inhibit the bacterial culture. 

On the other hand, stripping out carbon dioxide represents a removal of adverse effects of a 

potential inhibitor. Another advantage of the stripping out process is the reduction of the need 

to add more pH neutralisation solution (1M sodium bicarbonate) to neutralise the pH of the 

fermentation broth, and to keep it at pH 5.5 (the optimal pH level), as carbon dioxide can be 

dissociated into carbonic acid, bicarbonate and carbonate and the acidic species can decrease 

the pH of the fermentation medium (Mills and Urey, 1940 and  Merlin et al., 2003). 

Other authors also reported an enhancement of the bioprocess when carbon dioxide was 

stripped out, for example, the production of biohydrogen was increased when the partial 

pressure of carbon dioxide decreased (Tanisho et al., 1998; Park et al., 2005 and Alshiyab et 

al., 2008). According to those authors, the biohydrogen production increased by 43 % (Park et 

al., 2005) as part of a general increase in the biogas concentration after carbon dioxide removal 

(Alshiyab et al., 2008). 

The carbon dioxide yield is challenging to calculate, for several reasons: (i) carbon dioxide is 

produced mainly from the decarboxylation of pyruvate, but importantly, it can also be produced 

from other metabolic activities such as carboxylation of phosphoenolpyruvate to oxaloacetate 

and acetyl-CoA to malate; (ii) carbon dioxide tends to dissolve in the fermentation broth; and 

(iii) the dissolved carbon dioxide can be dissociated into carbonic acid, bicarbonate and 

carbonate and the acidic species can decrease the pH of the fermentation medium. It can be 

argued that the carbon dioxide concentration can be worked out from the equations developed 

in Chapter 6, but the fermentation process needs to be kept at pH 5.5 by adding sodium 
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bicarbonate, and this makes challenging to monitor the decrease in pH during the fermentation 

process. 

 

Figure 8.9: Accumulated produced carbon dioxide, whereby the amount of the produced 

carbon dioxide in the periodically sparged group was significantly higher than its counterpart 

in the initially sparged group. Error bars depict standard deviation. *The mean difference is 

significant at the 0.05 level. 

8.5 In situ removal of some fermentation products  

Stripping of both acetaldehyde and carbon dioxide was achieved using microbubble technology 

as well as a trace amount of ethanol (around 0.0017 mM was detected in the vapor collection 

system).  Figure 8.9A shows the fluctuation in acetaldehyde concentrations in the fermentation 

broth after each sparging course. Microbubble technology was efficient to decrease the 

acetaldehyde concentration in the fermentation medium and kept its concentration less than 

1.135 Mm (Figure 8.10A).  

(A)                                                                 (B) 

  

Figure 8.10: Stripping process of acetaldehyde from the fermentation broth using air 

microbubbles. (A) Fluctuation of acetaldehyde concentrations within the fermentation broth 

after each sparging course. (B)  Variation of acetaldehyde concentrations with each sparging 

0

1

2

3

4

Initially sparged group Periodically sparged group

C
ar

b
o

n
 d

io
xi

d
e

 (
m

M
)

*

0

10

20

30

40

50

60

70

80

0 20 40 60

To
ta

l p
ro

d
u

ce
d

 
ac

et
al

d
eh

yd
e(

m
M

)

Fermentation time (hrs) 

y = 0.0126x + 0.9968
R² = 0.9975

Ksa= 0.75 hr-1

0.98

1.03

1.08

1.13

1.18

1.23

1.28

1.33

0 10 20 30

ln
 C

S 0
/C

S t

Time (min)



Chapter eight                                                    Aerobic fermentation of mutant type Z. mobilis 

 

 

 172 

cycle and calculation of stripping rate constant (KSa). Error bars are representative of triplicate 

results.  

Figure 8.10B shows changes in the acetaldehyde concentrations during each sparging course. 

The stripping rate constant (𝐾𝑠𝑎) was calculated for the highest concentration of produced 

acetaldehyde at hour 20 when acetaldehyde concentration reached 4.54 mM. Even with this 

relatively high concentration, microbubble technology was efficient in decreasing the 

acetaldehyde concentration to less than 1.135 mM after 24 minutes of sparging. Samples were 

withdrawn every 4 minutes and used to calculate the stripping rate constant (𝐾𝑠𝑎). The 

calculated stripping rate constant (𝐾𝑠𝑎) value was found to be 0.75 hr-1. This value can be 

multiplied by the accumulated acetaldehyde concentration plus the produced acetaldehyde 

during the sparging time to work out the acetaldehyde removal rate or acetaldehyde stripping 

rate, as acetaldehyde is both being produced and stripped. The acetaldehyde production rate 

(during hour 20 when the acetaldehyde concentration reached its highest) was around 2.82 

mmol. g(dry weight) -1.hr-1.Therefore the stripping rate was around 79.05 mM.hr-1. 

Figure 8.11 shows the yields of the fermentation bioproducts (acetaldehyde, ethanol and 

biomass), which were calculated by considering that 1 mol of glucose can be metabolised to 

produce 2 mol of acetaldehyde/ethanol with 2mol of carbon dioxide. 

(A)                                                                      (B) 
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The mutant strain shows a promising performance in the aerobic environment of the 

periodically-sparged group (Figure 8.11). While the ethanol percent yield reached about 20 %, 

the acetaldehyde yield was built up to 35 % under the aerobic conditions in the periodically-

sparged group. On the other hand, the ethanol percent yield reached up to 30 %, while the 

acetaldehyde percent yield hit almost 10 % in the initially-sparged group. Regarding the 

biomass yield, the mutant strain flourished in the periodically-sparged group, and its yield 

reached almost 50 % in comparison with around 35 % under the anaerobic conditions of the 

initially-sparged group. Increasing biomass yield in the periodically-sparged group can be 

attributed to the in-situ removal of inhibitors by microbubble technology, especially 

acetaldehyde, as it tends to accumulate at the early stages of the exponential phase in the 

fermentation process under aerobic conditions. Also, microbubble technology removes carbon 

dioxide, which is another potential inhibitor of the fermentation process. Moreover, air 

microbubbles deliver oxygen efficiently to the fermentation medium and consequently to 

microbial cells, and this enhances the bacterial growth.  

8.6 Changing the glucose concentration to optimize the fermentation process   

The mutant strain consumed around 50 % of the provided sugar (40 g/L) in the batch culture of 

the initially-sparged group, while 25 % of glucose was consumed in the periodically-sparged 

group (Figure 8.5A). Consequently, the glucose concentration was halved to reduce the residual 

sugar, which would increase the performance and the productivity of the fermentation process. 

Bioproducts concentrations would tend to stay high as they depend on the consumed sugar 

rather than on the total provided sugar.  

Figure 8.12 shows glucose consumption pathways during the fermentation process, supplied 

with 20 g/L glucose as a carbon source. The glucose was fully consumed by the mutant strain 

after 52 hr in the initially-sparged group, while some glucose was left over in the fermentation 

medium in the periodically-sparged group. Both groups showed similar glucose consumption 

patterns at the beginning of the process, and thereafter, a slight deviation was seen between 

these groups, and the initially-sparged group consumed more glucose than the periodically-

sparged group. The glucose consumption rate was similar across both groups during the first 

12 hours of the fermentation process and after that, the initially-sparged group showed an 

increased consumption rate, which was around 66.7 % higher than the rate in the periodically-

sparged group. 
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Both groups, however, showed different patterns of the biomass production (Figure 8.13): at 

the first 10 hours of the fermentation process the initially-sparged group showed a hyperbolic 

growth pattern, while the periodically-sparged group showed a normal sigmoid growth pattern. 

Hyperbolic growth pattern was observed previously in the culture supplied with 40g/L glucose.    

The biomass concentration in the initially-sparged group was increasing even after shifting to 

the anaerobic conditions (after more than 5 hours) and the initially-sparged group showed two 

different specific growth rates: the first specific growth rate was 0.168 hr-1, which was seen 

during the first 10 hours of the fermentation. Thereafter, the specific growth rate dropped to 

0.064 hr-1 during the rest of the exponential phase (Figure 8.13). In contrast, the periodically-

sparged group showed almost consistent growth rate at the exponential phase, which was 

around 0.094 hr-1. Stripping out the fermentation products and providing high oxygen supply 

might be the reasons behind the enhanced growth in the periodically-sparged group in 

comparison with the initially-sparged group. 

(A)                                                            (B) 

 

Figure 8.12: Glucose consumption pattern in Zymomonas mobilis ZM4 mutant strain grown 

on 20 g/l glucose supplied medium. (A) Glucose concentration with time. (B) Glucose 

consumption rate in both initially and periodically sparged groups. Error bars depict standard 

deviation.  
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Figure 8.13: Comparison between the growth patterns of Zymomonas mobilis mutant strain in 

both initially and periodically sparged groups grown on fermentation medium supplied  with 

20 g/L glucose. Error bars depict standard deviation. 

(A)                                                                      (B) 

  

                             (C) 

 

Figure 8.14: Accumulated fermentation products. (A) Produced acetaldehyde. (B) Produced 

Ethanol. (C) Produced carbon dioxide. Error bars depict standard deviation. * The mean 

difference is significant at the 0.05 level. 
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Figure 8.14 shows the accumulated fermentation products concentrations in both the initially- 

and periodically-sparged groups. The accumulative acetaldehyde concentration in the 

periodically-sparged group was 1,486 % higher than its concentration in the initially-sparged 

group. There was 95 % more ethanol produced in the initially-sparged group than in the 

periodically-sparged group. In addition, the amount of carbon dioxide produced in the 

periodically-sparged group was 1650 % higher than in the initially-sparged group, after it was 

collected and measured at the end of the fermentation process. These results might be due to 

the simultaneous production and separation of these products according to Le Chatelier’s 

principle as well as the other reasons such as the removal of inhibitors, thereby removing the 

environmental stresses. 

(A)                                                            (B) 

 

Figure 8.15: Acetaldehyde and Ethanol production during the fermentation process. (A) 

Acetaldehyde production with time. (B) Ethanol production with time. Error bars depict 

standard deviation. 

 Acetaldehyde started to accumulate in the fermentation broth after around 2 hours of the start 

of the fermentation process in both groups, and it reached its highest concentration after around 

6 hours in the initially-sparged group (Figure 8.15). The periodically-sparged group, however, 

continues to produce acetaldehyde within the broth and reached its highest concentration after 

around 20 hr. After that, the production gradually decreased until the end of the fermentation 

process. At around 48 hours, the concentration of acetaldehyde built up to 3 mM as the culture 

was left without any sparging overnight. In Figure 8.15B, 80 % more ethanol was produced in 

the initially-sparged group than in the periodically-sparged group.  
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Figure 8.16A shows the fluctuation in the acetaldehyde concentration within the periodically-

sparged culture. The acetaldehyde concentration reached its highest concentration of 5.67 mM 

after 20 hr. Acetaldehyde was stripped out of the fermentation broth and its concentration 

remained below 1.135mM (less than the minimum inhibitory concentration). 

(A)                                                                   (B)     

 

Figure 8.16: Stripping process of acetaldehyde from the fermentation broth using air 

microbubbles. (A) Fluctuation of acetaldehyde concentrations within the fermentation broth 

after each sparging cycle. (B)  Variation of acetaldehyde concentrations with each sparging 

cycle and calculation of stripping rate constant (KSa). Error bars depict standard deviation.  

Microbubble technology was efficient in decreasing the acetaldehyde concentration in the 
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later concentration is less than the minimum inhibitory concentration. Figure 8.16B shows 

changes in the acetaldehyde concentrations during each sparging course. The stripping rate 

constant (Ksa) was calculated for the highest amount of produced acetaldehyde at the twenty 

hour when the acetaldehyde concentration reached around 5.67 mM. Even with this relatively 

high concentration, microbubble technology was efficient in decreasing the acetaldehyde 

concentration to less than 1.135 mM after 24 minutes of sparging. Samples were drawn every 

4 minutes and used to calculate the stripping rate constant (Ksa). 

The stripping rate constant (Ksa) value was found to be 1.18 hr-1. This value can be multiplied 
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20 when the acetaldehyde concentration reached its highest) was around 3.92 mmol. g (dry 

weight) -1. hr-1. Therefore, the stripping rate was around 82.94 mM.hr-1. Figure 8.17 shows the 

yields of the fermentation bioproducts (acetaldehyde, ethanol and biomass), which were 

calculated by considering that 1mol of glucose can be metabolised to produce 2mol of 

acetaldehyde/ethanol with 2 mol of carbon dioxide. 

(A)                                                                       (B) 

 

Figure 8.17: Bioproducts yields. (A) Ethanol and acetaldehyde yields. (B) Biomass yield. 

The mutant strain shows an exceptional performance in the aerobic environment of the 
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being metabolised as a maximum biomass concentration produced by Zymomonas mobilis 

(Kalnenieks, 2006). In contrast, these yields were higher than the yields obtained with the group 

supplied with 40 g/L glucose. Its yield was 50 % in the periodically-sparged group and 35 % in 

the initially-sparged group. Again, this can be attributed to the initial glucose supply, which 

was consumed efficiently without any residual glucose in the culture. 

To illustrate how the results obtained from the current study compare with previous studies, a 

comparison was made between the acetaldehyde results obtained from the bespoke 

microbubble-mediated systems with selected previous, promising studies. This comparison is 

based on the accumulative acetaldehyde concentration as this parameter is suitable for all 

studies and it represents the sum of the average concentrations of produced and stripped 

acetaldehyde from the fermentation process (Figure 8.18). 

 

Figure 8.18: A comparison between the acetaldehyde results obtained in the current study with 

previous promising studies, whereby acetaldehyde is both produced and stripped out from the 

fermentation broth. 
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alcohol selected strain grown in the airlift loop bioreactor driven by microbubbles (Figure 8.18). 
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of the acetaldehyde stripping process. The temperature of the mixture was kept at 30 ℃ during 

the sparging time.  

The stripping rate constant (Ksa) and the stripping rate were calculated during the sparging 

course for 24 minutes at 30 ℃ and 0.3 L/min flow rate, which is fed by the fluidic oscillator. It 

is worth noting that this experimental set represents the gas stripping efficiency in each sparging 

course at the point when the acetaldehyde concentration reached its highest. Figure 8.19B 

shows the decrease in the acetaldehyde concentration during the sparging course to less than 

1.13 mM (less than the minimum inhibitory concentration). The removal efficiency was 

calculated by applying the following equation:  

% removal efficiency =  
(𝑋0−𝑋𝑟)

𝑋0
∗ 100      (Eq. 8.1) 

where X0 is the initial acetaldehyde concentration (mM) and Xr is the residual acetaldehyde 

concentration (mM). 

(A)                                                                        (B) 

      

Figure 8.19: Stripping process of acetaldehyde from the acetaldehyde-water mixture using air 

microbubbles. (A) Calculation of stripping rate constant (KSa) during sparging course. (B)  

Decreasing of acetaldehyde concentrations within the mixture after sparging course. Error bars 

depict standard deviation. 

Figure 8.19A shows a decrease in the acetaldehyde concentration during the sparging course to 

calculate the stripping rate constant (KSa). The stripping rate constant (KSa) was calculated for 

the 81.72 mM acetaldehyde-water mixture, whereby microbubble technology was able to 

decrease the acetaldehyde concentration to less than 9.2 mM after 24 minutes of sparging. 
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Samples were drawn every 4 minutes and used to calculate the stripping rate constant (KSa). 

The calculated stripping rate constant (KSa) value was 0.294 hr-1. This value can be multiplied 

by the initial acetaldehyde concentration to work out the acetaldehyde removal rate or the 

acetaldehyde stripping rate, which was 24 mM.hr-1. 

In addition, the removal efficiency of acetaldehyde using microbubble technology reached 88.6 

%. This high efficiency can be explained as follows: Dry air microbubbles are injected into the 

liquid phase (acetaldehyde-water mixture) at 30 ℃, when a non-equilibrium driving force exists 

for mass transfer between the contact phases (bubble phase and liquid phase). The injected air 

microbubbles are dragged in a laminar regime which, in turn, acts to prevent the liquid and 

gaseous phases from reaching equilibrium rapidly, thereby ensuring a continuous mass transfer 

process. Subsequently, the acetaldehyde molecules (in a vapour phase at 30 ℃) are continuously 

transferred from the liquid side to the bubble side via both diffusion and internal convection 

due to bubble motion. Consequently, the equilibrium is disrupted according to Le Chatelier’s 

principle, and shifts towards more vaporisation to compensate of the removed acetaldehyde 

molecules from the liquid phase. According to this scenario, the acetaldehyde concentration in 

the bubble phase would be higher than its concentration in the liquid phase.  

In contrast, using continuous air flow (after removing the fluidic oscillator) generates much 

bigger bubbles (1,000-2,200 μm), which are no longer considered microbubbles (fine bubbles) 

for the same flow rate (0.3 L/min). Increasing the bubble sizes decreases the stripping efficiency 

of acetaldehyde from the binary mixture as increasing the bubble sizes reduces the surface area-

to-volume ratio and this minimises all interfacial transport phenomena such as heat, mass, and 

momentum transfers, which are heavily affcetd by surface area-to-volume ratio (Zimmerman 

et al., 2009). To validate this, a continuous air flow was fed to a ceramic diffuser at the same 

flow rate used before (0.3 L/min), and much bigger bubbles (1,000-2,200 μm) were generated 

under these operational conditions (Figure 8.20). 
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(A)                                                         (B) 

 

Figure 8.20: Stripping process of acetaldehyde from the acetaldehyde-water mixture using the 

continuous flow. (A) Calculation of stripping rate constant (KSa) during sparging course. (B)  

Decreasing  of acetaldehyde concentrations within the mixture after each sparging course. Error 

bars are representative of triplicate results. 

The stripping rate constant (KSa) was calculated for 81.72 mM acetaldehyde-water mixture, 

whereby fine air bubbles (without the use of a fluidic oscillator) were able to decrease the 

acetaldehyde concentration to 39 mM after 24 minutes of sparging. Samples were drawn every 

4 minutes and used to calculate the stripping rate constant (KSa). The calculated stripping rate 

constant (KSa) value was found to be 0.27 hr-1. This value can be multiplied by the acetaldehyde 

concentration to work out the acetaldehyde removal rate or the acetaldehyde stripping rate, 

which was 22 mM.hr-1 and this is 8 % decrease in the stripping rate in comparison with the 

microbubbles driven stripping process. 
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intensive (Zimmerman et al., 2013). Correspondingly, only limited acetaldehyde molecules are 
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comparison with microbubbles can strip less acetaldehyde out.  
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8.8 Testing the performance of the mutant strain in a synthetic medium     

All of the aforementioned works were done in a complex medium and only the glucose 

concentration was manipulated to optimise the performance in the complex medium. However, 

testing of the performance in a synthetic medium has many advantages, such as being very 

useful in understanding the bacterial metabolism as the chemical composition of this medium 

is exactly known. Another advantage is that this type of media can minimise variation in the 

results, since the results obtained using this medium are almost uniform and comparable, 

meaning that the bacterial metabolism stands out clearly amongst the results. This synthetic 

medium was reported to be used by Kremer et al., (2015). Two glucose concentrations were 

used to explore the performance of the Zymomonas mobilis mutant strain in this medium. Two 

glucose concentrations (20 g/L and 40 g/L) were used to show this performance and to compare 

it with the performance in the complex medium. 

A. 20 g/L glucose concentration 

20 g/L glucose concentration in the synthetic medium was used as an initial concentration to 

test both biomass and fermentation products formation using the bespoke periodical sparging 

strategy. Figure 8.21 shows biomass formation in the synthetic medium supplied with 20 g/L 

glucose. 

Interestingly, the Zymomonas mobilis mutant strain showed a slowly growing trend with 0.16 

hr-1 specific growth rate and the final biomass yield reached 59 %. Using the mineral salts 

medium requires the addition of supplements of both pantothenate and biotin in the absence of 

amino acids (Montenecourt, 1985). The reason behind this addition is that the enzymatic 

reactions that produce the precursors of biosynthesis, are exceptionally weak in Zymomonas 

mobilis in comparison with the primary catabolic reactions of the pyruvate decarboxylase and 

pyruvate kinase (Bringer-Mayer and Sahm, 1988). In complex media, yeast extract is used as a 

nitrogen source as well as a pantothenate source as it is rich with pantothenate with double the 

amount that can be supplemented artificially (0.005 g/L was used in the current study to prepare 

the synthetic medium) (Belaïch et al., 1965).  

Zymomonas mobilis catabolises around 95-98 % of the carbon source (glucose) into ethanol 

and carbon dioxide, while just 3-5 % of this carbon source can be served an anabolic role and 

biomass formation (Swings and De Ley, 1977 and Rogers et al., 1982).  



Chapter eight                                                    Aerobic fermentation of mutant type Z. mobilis 

 

 

 184 

 

Figure 8.21: Growth pattern of Zymomonas mobilis mutant strain in the synthetic medium 

under periodically sparging strategy supplied with 20 g/L glucose. Error bars are representative 

of the triplicate results. 

Figure 8.22 shows the glucose consumption pattern during the growth in the synthetic medium 

supplied with 20 g/L glucose. 

(A)                                                    (B) 

 

Figure 8.22: Glucose consumption pattern in Zymomonas mobilis ZM4 mutant strain grown in 

the synthetic medium supplied with 20 g/l glucose. (A) Glucose concentration with time. (B) 

Glucose consumption rate with time. Error bars depict standard deviation. 

The provided glucose was totally consumed within 34 hours, while the glucose consumption 

rate gradually increased during the fermentation process and reached its highest at the end of 

the fermentation process. 

Regarding the fermentation products, ethanol and carbon dioxide were only consistently 

produced in this experimental set, while acetaldehyde production was inconsistently produced 
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in the fermentation broth and its concentration was ranging from 0 to 2.58 mM. Figure 8.23 

shows the ethanol production during the fermentation time in the defined mineral salts medium 

supplied with 20 g/L glucose. The low ethanol productivity is combined with low biomass 

formation and the final ethanol yield reached 21.5 %. The decrease in the ethanol concentration 

at the end of the fermentation process is attributed to the ethyl acetate formation as well as 

ethanol stripping. 

   

Figure 8.23: Ethanol production during the fermentation in the defined mineral salts medium 

supplied with 20 g/L, where the highest ethanol concentration was at hour thirty and thereafter, 

the concentration decreased due to the stripping process as well as ethyl acetate formation. Error 

bars depict standard deviation. 

Under the aerobic fermentation of Zymomonas mobilis, numerous side products can be 

produced in addition to the main products, acetaldehyde, ethanol and carbon dioxide. These by-

products have great importance as they contribute greatly to the aroma of the fermentation 

process. These products, such as acetate, lactate, acetoin (Yang et al., 2009), and ethyl acetate 

(Viikari and Berry, 1988) have frequently been detected in aerobically-grown Zymomonas 

cultures. The formation mechanisms of some of these by-products in brewer’s yeast cultures 

were investigated previously (Genevois, 1951a, 1951b; Nordstrӧm, 1961, 1963; Yoshioka and 

Hashimoto, 1981 and Fukuda et al., 1998), and in Candida utilise culture (Armstrong et al., 

1983). However, the formation mechanisms of these by-products have not been fully explored 

in Zymomonas mobilis, although they have frequently been detected in fermentation broths of 

Zymomonas mobilis under aerobic conditions (Viikari and Berry, 1988; Seo et al., 2005 and 

Yang et al., 2009). 

 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

Et
h

an
o

l c
o

n
ce

n
tr

at
io

n
 (

m
M

)

Fermentation time (hr)



Chapter eight                                                    Aerobic fermentation of mutant type Z. mobilis 

 

 

 186 

Zymomonas mobilis catabolises glucose via the Entner-Doudoroff pathway to pyruvate, and up 

to 98 % of the produced pyruvate is converted to acetaldehyde and carbon dioxide (Neveling et 

al., 1998). However, only a small part (around 2 %) of the generated pyruvate is decarboxylated 

to acetyl coenzyme A, carbon dioxide, and NADH by the reaction of pyruvate dehydrogenase 

(PDH) complex (Sahm et al., 1992). Due to the lack of 2-oxoglutarate dehydrogenase complex 

and other enzymes of the tricarboxylic acid cycle in Zymomonas mobilis, the PDH complex 

plays an exclusively anabolic role in Zymomonas mobilis. This complex carries out 5 

consecutive reactions in the decarboxylation and dehydrogenation of pyruvate to produce 

acetyl–CoA (Nelson and Cox, 2004). 

Ethyl acetate is produced by alcohol acetyltransferase and hydrolysed by esterase. The 

combined action of these two enzymes determines the levels of ethyl acetate in fermentation 

broths. Various mechanisms are proposed to explain ethyl acetate formation, which are: (i) 

esterification of acetic acid in the fermentation broth using ethanol; (ii) enzyme-catalysed 

esterification in the fermentation broth; (iii) ester formation within the cell, and after that the 

ester diffuses into the fermentation broth; and (iv) transferring of the acetyl group from acetyl 

coenzyme A to ethanol, which is catalysed by alcohol acetyltransferase as ethanol accumulates 

in the fermentation broth. The formed ester (ethyl acetate) can be produced as a primary 

metabolite during the exponential phase’s combined processes, requiring energy, and through 

the later stages of the fermentation process.  

Seemingly, Zymomonas mobilis lacks the aldehyde dehydrogenase enzyme to oxidise 

acetaldehyde to acetic acid (Wecker and Zall, 1987; Bringer-Meyer and Sahm, 1993) and 

therefore ethyl acetate production using esterification of acetic acid is unlikely to take place. 

As a result, ethyl acetate is likely produced by transferring the acetyl moiety from acetyl 

coenzyme A produced by pyruvate dehydrogenase complex to ethanol (Figure 8.24). This 

mechanism was validated by monitoring the concentrations of both ethanol and ethyl acetate 

during the fermentation process, when the ethyl acetate yield reached 0.00044 (g/g) (Figure 

8.25). 

 

 
Figure 8.24: Proposed mechanism for ethyl acetate formation from both acetyl-coA and 

ethanol. 

http://www.abebooks.com/servlet/SearchResults?an=David+L.+Nelson%3B+Michael+M.+Cox&cm_sp=det-_-bdp-_-author
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(A)                                                                (B)                                                                               

 

Figure 8.25: Ethyl acetate production corresponding with ethanol production. (A) Ethanol 

production during the fermentation process. (B) Ethyl acetate production during the 

fermentation process. Error bars depict standard deviation. 

The ethanol accumulation in the fermentation broth can decrease both the rate of substrate 

conversion and the rate of product’s formation (Osman and Ingram, 1985). The main action of 

the accumulated ethanol, which results in a decreased rate of fermentation, is to increase the 

membrane leakage, reducing the intracellular concentrations of cofactors and coenzymes that 

are essential for activities of enzymes involved in both glycolysis and alcohol production 

(Osman and Ingram, 1985). 

The mechanism of the acetyl-CoA formation, which is another precursor for ethyl acetate 

formation, was described previously (Bringer-Meyer and Sahm, 1993).  

An experimental set was designed to test the inhibitory effects of ethyl acetate on Zymomonas 

mobilis mutant strain growth after adding different concentrations of ethyl acetate. Figure 8.26 

shows that the ethyl acetate accumulation has a minor effect on Zymomonas growth at various 

concentrations (ranging from 0.05 % (v/v) to 1 % (v/v)). Thus, this compound has a less 

inhibitory effect than both acetaldehyde and ethanol, which were studied previously. Indeed, 

the specific growth rate in the control group (the untreated group with ethyl acetate) was 0.60 

hr-1, while this rate decreased 35 % when 1 %(v/v) of ethyl acetate was added to the bacterial 

culture 2 hours after the beginning of the fermentation process. Interestingly, the addition of 

0.05 % (v/v) of ethyl acetate to the bacterial culture decreased the specific growth rate by only 

3 %, and the produced ethyl acetate in the current study was much lower than 0.05 % and 

therefore, no inhibitory effect is likely to happen due to the accumulation of ethyl acetate. 
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Physiologically, ethyl acetate has an unknown function, but its production is advantageous for 

Zymomonas mobilis as it is produced from ethanol and acetyl-CoA and therefore, its formation 

can be considered as a detoxification mechanism for ethanol under aerobic conditions, and also 

it can drive pyruvate dehydrogenase complex reaction forwards as acetyl-CoA is the final 

product of the pyruvate dehydrogenase complex activity. 

(A)                                                   (B) 

 

Figure 8.26: (A) Effect of added ethyl acetate on exponential cell growth of Zymomonas 

mobilis mutant strain after 2 hours, where the inhibitory effect of ethyl acetate is proportional 

to its concentration. (B) Specific growth rate of Zymomonas mobilis mutant strain after adding 

various concentrations of ethyl acetate. Readings are representative of triplicate results. 

Carbon dioxide was produced during the fermentation process, and it is continuously collected 

during the fermentation process and its final concentration reached 4.3 mM.  

B. 40 g/L glucose concentration  

The concentration of supplied glucose was doubled in order to explore whether increasing the 

glucose concentration to 40 g/L could enhance the performance of the Zymomonas mobilis 

mutant strain in the defined mineral salts medium, compared to its performance with the 20 g/L 

glucose supplied medium. 

Figure 8.27 shows the biomass formation in the synthetic medium supplied with 40 g/L. The 

Zymomonas mobilis mutant strain showed a slowly growing trend with 0.165 hr-1 specific 

growth rate, while the biomass yield reached 54.9 %. 
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Figure 8.27: Growth pattern of Zymomonas mobilis mutant strain in the synthetic medium 

under periodically sparging group supplied with 40 g/L glucose. Error bars depict standard 

deviation. 

Zymomonas mobilis generates 1 mol of adenosine triphosphate (ATP) per mole of glucose being 

metabolised, and its specific generation rate is considerably higher than the generation rate in 

some other microorganisms such as yeast. This high specific generation rate of ATP should be 

balanced by an equivalently rapid consumption rate. Undoubtedly, the cell-biomass formation 

is not the main consumer of ATP in Zymomonas mobilis, which grows in a low energetic 

efficiency (Kalnenieks, 2006). This relatively low biomass yield with high catabolic rate is 

caused by the presence of some ATP spilling reactions in this bacterium in the form of futile 

cycles or bypass reactions. The ATP spilling reaction allows glycolysis to proceed without 

coincidental biomass formation (Kalnenieks, 2006), under conditions when indispensable 

growth cofactors are absent or limited such as a pantothenate limitation condition (Belaich and 

Senez, 1965). The decoupling behaviour of biomass synthesis from bioproducts generation in 

batch cultures starts at relatively high glucose concentrations (e.g. between 4-6%) (Veeramallu 

and Agrawal, 1986).  
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(A)                                                     (B) 

 

Figure 8.28: Glucose consumption pattern in Zymomonas mobilis ZM4 mutant strain grown 

on 40 g/l glucose supplied the synthetic medium. (A) Glucose concentration with time. (B) 

Glucose consumption rate with time. Error bars depict standard deviation. 

65 % of the provided glucose was consumed by the Zymomonas mobilis mutant strain after 34 

hours, and around 14 g/L of glucose was left over in the fermentation broth when the bacterial 

culture approached the death phase (Figure 8.28). Moreover, the bacterial strain showed 

comparable glucose consumption rate with the growth in supplied with 20 g/L glucose. The 

biomass concentration in the 40 g/L glucose supplied culture was 11 % higher than the 

concentration in the 20 g/L glucose supplied culture; but, the 40 g/L glucose supplied culture 

showed less biomass yield (54.9 %) than the 20g/L glucose supplied culture (59.5 %). This 

result agrees with the result reported by Lawford and Stevnsborg (1986), who observed a 

decrease in the biomass yield from 9.0 to 7.2 g(dry)wt. (mol glucose)-1 when the concentration 

of glucose increased from 3 % to 6 % in the defined minimal medium. Decreasing the biomass 

yield can be attributed to two factors. The first is that the decoupling behavior of biomass 

synthesis from bioproducts generation in batch cultures begins at 40 g/L glucose concentration 

(Veeramallu and Agrawal, 1986). This behaviour is activated under high glucose excess 

conditions The second is that the biomass yield is markedly decreased under nutrients 

limitations conditions such as nitrogen, phosphate or potassium limitations (Lawford and 

Stevnsborg, 1986 and Jones and Doelle, 1991). Therefore, it is recommended that optimisation 

research needs to be undertaken to determine the most suitable composition to avoid any 

nutrient limitation during the fermentation process.  
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Figure 8.29: Ethanol production during the fermentation in the defined mineral salts medium 

supplied with 40 g/L. Error bars depict standard deviation. 

Figures 8.29 and 8.30 show the concentrations of both ethanol and ethyl acetate respectively in 

the fermentation broth supplied with 40 g/L glucose. It can be clearly seen that the concentration 

of ethyl acetate is gradually built up in the fermentation broth and its yield reached 0.00047 

(g/g), while there is a fluctuation in ethanol concentration especially at 26, 32 and 34 hours of 

the fermentation time and its yield reached 23 %. Acetaldehyde was also detected in the 

fermentation broth and its concentration varies from 0 to 5.5 mM. The fluctuated acetaldehyde 

concentration was also noted in the previous experiment, and this fluctuation is unclear to be 

interpreted. Carbon dioxide was produced during the fermentation, and it was continuously 

collected during the fermentation process and its concentration reached 4.3 mM. 

(A)                                                        (B) 

 

Figure 8.30: Ethyl acetate production corresponding with ethanol production. (A) Ethanol 

production during the fermentation process. (B) Ethyl acetate production during the 

fermentation process. Error bars depict standard deviation. 
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Importantly, the production of ethyl acetate was observed in the synthetic medium but it could 

not be detected in the complex medium under the same growth conditions. A reasonable 

interpretation for this observation is that the synthetic medium is a chemically known medium 

and is prepared by mixing compounds such as ZnSO4.7H2O, FeSO4.7H2O, MnSO4.7H2O, 

CuSO4.5H2O and Co(NO3)2.6H2O. Many of these compounds are cofactors and required by 

many important metabolic pathways. Also, it is possible for the concentration of a single 

cofactor to affect the fluxes of many different pathways. For example, alcohol dehydrogenases 

(ADH) are metal-dependent oxidoreductases, particularly for zinc and iron (Moon et al., 2011), 

and both these metals are used to prepare the synthetic medium but not the complex medium. 

In addition, copper is another metal used to prepare the synthetic medium and it can be used as 

a transition metal for several families of enzymes as well as for the formation of periplasm 

protein in the cell membrane (Finney and O’Halloran, 2003). Consequently, the composition 

of the used synthetic medium might play a fundamental role in producing the elevated 

concentration of ethyl acetate. 

8.9 Testing the performance of the mutant strain under anaerobic conditions  

This study examines the shifting of metabolism of the mutant Zymomonas strain from the 

aerobic metabolism, which is favourable to accumulate acetaldehyde, to anaerobic metabolism, 

which is favourable to accumulate ethanol. The growing of the mutant strain under anaerobic 

conditions enriches and compliments the work under aerobic conditions. 

The anaerobic conditions were achieved by sparging nitrogen-enriched microbubbles for less 

than 30 minutes at the beginning of the fermentation process and 15 minutes at the end of each 

day to remove any produced carbon dioxide and to maintain the anaerobic conditions. The 

lowest dissolved oxygen level achieved was 0.02 ppm at the end of the sparging course and the 

removal rate of dissolved oxygen was 0.6 mmol.hr-1 at 0.3 L/min flowrate of nitrogen, and this 

low dissolved oxygen concentration was maintained throughout the fermentation process 

(Figure 8.31). 

https://en.wikipedia.org/wiki/Metabolic_pathways
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Figure 8.31: The dissolved oxygen profile in the fermentation broth during the sparging with 

nitrogen-enriched microbubble, showing the anaerobic conditions were maintained throughout 

the fermentation process. Points are representative of triplicate results. 

Various parameters were monitored during the anaerobic fermentation, such as cell biomass, 

glucose concentration, and ethanol production. However, acetaldehyde was not detected in the 

fermentation broth under anaerobic conditions, as it is unlikely to accumulate in the 

fermentation broth at a detectable concentration under anaerobic conditions. The anaerobic 

fermentation process studied two glucose concentrations, 20 g/L and 40 g/L. It is worth 

mentioning that the anaerobic fermentation happened very intensively and bubbles (gaseous 

products) were generated from the fermentation activities, which rose within the reactor, 

creating a self-mixing inside the reactor, and ended up at the surface of the fermentation liquid. 

Although using a complex medium can provide greater biomass yields than a synthetic medium 

under anaerobic conditions, using a synthetic medium in physiological studies helps to focus 

on the metabolism and the regulation of the metabolic pathways, and the obtained data is easier 

to explain. As a result, a synthetic medium that supports both reasonable cell growth and 

products can be very useful in studies of gene regulation, protein expression, and metabolic 

fluxes. By systematically manipulating the components of the synthetic medium formulation, 

the specific nutritional and regulatory requirements for growth and targeted metabolic pathways 

can be determined. The unpredictability resulting from the complicated interactions among 

complex components and between the complex components and the products can also be 

minimised, or are at least easier to understand, and the cultivating environment is reproducible 

(Zhang et al., 2009).  

8.9.1 Synthetic medium  

Initially, a synthetic medium was used to conduct the fermentation process under anaerobic 

conditions in order to compare the mutant strain performance in both aerobic and anaerobic 
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conditions and to verify the original hypothesis, which stated that under anaerobic conditions 

acetaldehyde is unlikely to accumulate in the fermentation broth since all produced 

acetaldehyde is likely to be reudced to ethanol by alcohol dehydrogenase. 

Table 8.2: Cell biomass concentration (OD), glucose concentration and ethanol concentration 

of the fermentation process with 20 g/L and 40 g/L glucose under anaerobic conditions. The 

reading are reprsentative of triplicate results 

Glucose 

concentration 

Time 

(Hour) 

Optical Density of 

Biomass at 600 nm 

(Absorbance) 

Glucose Concentration 

(g/L) 

Glucose 

consumption 

rate (mmol.g 

dry weight -

1.min-1) 

Ethanol 

Concentration 

(mM) (error 

±1%) 

2
0
 g

/l
 

0 0.476 20 0 0 

1 0.497 - - - 

2 0.746 8.45 0.034 16.93 

3 1.085 - - - 

4 1.444 6.6 0.069 96.39 

5 1.757 - - - 

6 2.042 4.96 0.034 227.42 

7 2.210 - - - 

8 2.329 0.807 0.004 286.15 

24 2.453 0.351 0.001 293.5 

25 2.408 - - - 

26 2.362 0.184 0.0009 288.76 

27 2.297 0.137 0.0007 273.12 

4
0
 g

/l
 

0 0.640 40 0 0 

1 0.738 -  - 

2 0.910 15.260 0. 119 19.64 

3 1.252 -  - 

4 1.596 13.140 0.123 92.16 

5 1.868 -  - 

6 2.081 12.660 0.169 202.01 

7 2.358 -  - 

8 4.120 10.250 0.093 357.57 

24 4.607 1.580 0.114 438.88 

25 4.57 - 0.116 - 

26 4.581 1.249 0.116 425.097 

27 4.54 -  - 

28 4.536 0.501 0.116 422.81 

29 4.426 -  - 

30 4.321 0.35 0.116 405.66 
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Both cell biomass and ethanol concentrations are proportionally related as the time of the 

anaerobic fermentation proceeded. On the other hand, the glucose concentration is inversely 

proportional to both cell biomass and ethanol concentrations (Table 8.2). 

The highest optical density (OD) of biomass achieved was at 24 hours, while the highest ethanol 

concentration produced was 293.53 mM, and this was 67 % as a final yield.  The final glucose 

concentration was 0.137 g/L at the end of the fermentation process (27 hours). The fermentation 

process reached its highest activity at 24 hrs, when both the biomass and ethanol concentrations 

hit their highest. Increasing the ethanol toxicity resulting from increasing its concentration and 

depleting the energy source (glucose concentration), can reduce the microbial activity within 

the fermentation process, leading the microbial culture to launch the death phase. Decreasing 

the ethanol concentration in the fermentation broth was a result of microbubble sparging as 15 

minutes of nitrogen sparging was conducted at the beginning of the next day (after 24 hours), 

and some of the produced ethanol was stripped out the fermentation broth. In addition, the 

carbon dioxide was produced and collected during the fermentation process and its final carbon 

dioxide concentration was 2.05 mM. 

Further, the glucose concentration was increased to 40 g/L and the results of cell biomass 

concentration, glucose concentration, and ethanol production are shown in Table 8.2. The 

overall fermentation time for the anaerobic conditions with 40 g/L glucose was 30 hours, 

compared to 27 hours in the previous experimental set.  

The trend of cell biomass is similar to that with 20 g/L glucose and is inversely proportional to 

the glucose concentration, but it is proportional to the ethanol production. Increasing the carbon 

source (glucose) concentration from 20 g/L to 40g/L increases both the production of cell 

biomass and the ethanol concentration in the fermentation process. 

The highest biomass concentration was reached at 24 hours, and at the same time the ethanol 

concentration hit its highest (438.88 mM), which was 50 % as a final yield, while the glucose 

concentration dropped to around 0.50 g/L at the end of the fermentation process. Carbon dioxide 

was produced and collected in this experimental set, and its concentration reached 3.47 mM, 

41% more than the carbon dioxide produced in the 20 g/L glucose experimental set. 

8.9.2 Complex medium   

To test the performance of the mutant strain in the complex medium, a complex medium was 

used to conduct the fermentation process under anaerobic conditions. Ethanol is formed directly 

as the product of the energy generation and growth is normally the principal energy-requiring 
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process of the microbial cells. Therefore, this product (ethanol) is formed whenever there is 

growth within the fermentation process. 

Firstly, 20 g/L glucose was supplied to the complex medium and used to conduct the 

fermentation process under anaerobic conditions. Table 8.3 summaries cell biomass, glucose 

and ethanol concentrations during the fermentation course. 

Table 8.3: Cell biomass concentration (OD), glucose concentration and ethanol concentration 

of the fermentation process with 20 g/L and 40 g/L glucose supplied in complex medium under 

anaerobic conditions. The readings are representative of triplicate results. 

Glucose 

concentration 

 

Time (Hour) 

Optical Density 

of Biomass at 600 

nm (Absorbance) 

Glucose 

Concentration 

(g/L) 

Glucose 

consumption rate 

(mmol.g dry 

weight -1.min-1) 

Ethanol 

Concentration 

(mM) (error 

±1%) 

2
0
 g

/L
 

 

0 0.22 20 0 0 

1 0.396 -  - 

2 0.817 6.16 0.35 33.86 

3 1.239 -  - 

4 1.43 4.54 0.22 132.87 

5 1.58 -  - 

6 2.48 4.2 0.17 285.93 

7 2.501 -  - 

8 2.54 1.82 0.12 297.87 

24 2.8 0.61 0.11 302.78 

25 2.93 -  - 

26 3.24 0.5 0.110 293.96 

27 3.36 -   

28 3.07 0.37 0.35 282.67 

29 3.08 -  - 

30 3 0.35 0.22 
293.96 

 

4
0
 g

/L
 

0 0.5 40 0 0 

1 0.56 -  - 

2 0.68 17.50 0.35 15.50 

3 0.91 -  - 

4 1.31 16.03 0.22 72.71 

5 1.784 -  - 

6 2.18 12.99 0.17 159.39 

7 2.808 -  - 

8 4.62 2.76 0.18 282.12 

24 4.668 -  - 

25 4.83 2.51 0.11 346.27 

26 4.82 -  - 

27 4.81 2.01 0.11 340.07 
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The overall duration of the fermentation process of complex medium supplied with 20 g/L 

glucose was 30 hours. The trend of biomass growth is inversely proportional to the glucose 

concentration, but it is proportional to the ethanol production; the general trends are similar 

with previous experimental sets.  

The highest biomass concentration was reached at 27 hours but the ethanol concentration hit its 

highest (301.78 mM) at 24 hours, which was 69 % as a final yield, while the glucose 

concentration dropped to around 0.35 g/L. The ethanol yield using 20 g/L glucose in the 

complex medium was higher than its counterpart synthetic medium as well as the biomass 

concentration. However, the fermentation time in the complex medium was longer than the 

time in the synthetic medium for the same glucose concentration. Therefore, it can be concluded 

that the complex medium was more suitable to ethanol production from the mutant strain under 

anaerobic conditions with 20 g/L glucose concentration than the synthetic medium for the same 

glucose concentration and operational conditions. In addition, the collected carbon dioxide 

concentration was 4 mM, almost double of that produced in the synthetic medium for the same 

concentration of the used glucose. 

The glucose concentration in the complex medium was then doubled, aiming to increase the 

produced ethanol. The overall fermentation time in this experimental set was 29 hours, 

compared to the 30 hours shown in the previous experimental set. As shown in all previous 

experimental sets under anaerobic conditions, the trend of cell biomass is inversely proportional 

to the glucose concentration, but it is proportional to the ethanol production. Both cell biomass 

and the concentration of ethanol at 40 g/L glucose were higher than the 20 g/L glucose supplied 

fermentation process. Therefore, increasing the carbon source (glucose) concentration from 20 

g/L to 40 g/L also increases both the production of cell biomass and ethanol concentration in 

the fermentation process. 

The highest biomass concentration achieved at 25 hours and at the same time; the ethanol 

concentration hit its highest (346.26 mM), which equals to 40 % as a final yield, while the 

glucose concentration was dropped to around 1.90 g/L at the end of the fermentation process. 

Interestingly, the ethanol yield produced in the complex medium supplied with 40 g/L glucose 

was less by 10 % than the ethanol produced in the synthetic medium supplied with the same 

glucose concentration. In contrast, the ethanol yield in the complex medium supplied with 20 

28 4.78 -  - 

29 4.73 1.90 0.35 315.89 
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g/L glucose was higher than its counterpart the synthetic medium for the same glucose 

concentration by 2 %. Finally, the collected carbon dioxide at the end of the fermentation 

process was 4.7 mM, and this was 35 % more carbon dioxide produced than the synthetic 

medium for the same glucose concentration and 17.5 % higher than the complex medium 

supplied with 20 g/L.   

8.10 Conclusions  

 The performance of the wild type of Zymomonas mobilis under aerobic conditions and the 

production of acetaldehyde as a target product were investigated in chapter 7. To enhance the 

acetaldehyde production, a mutant Zymomonas strain was selected using increasing allyl 

alcohol concentrations up to 200 mM, which showed an elevated acetaldehyde accumulation in 

the fermentation broth. Two sparging strategies were used to supply oxygen, an initial sparging 

strategy, and a periodical sparging strategy. While the initially-sparged group suffered from 

oxygen starvation without any stripping activities, the bespoke periodical sparging strategy 

offered both enough oxygen supply and efficient stripping activities. Also, the periodically-

sparged group showed an elevated biomass and acetaldehyde production with less ethanol in 

comparison with the initially-sparged group. Optimising the glucose concentration, however, 

switched the ethanol to acetaldehyde yields ratio from 1:75 to 1:78 when the glucose 

concentration was halved. 

The mutant strain was also grown in the synthetic medium, and its performance was evaluated. 

In general, the performance of the mutant strain in the synthetic medium was not as good as in 

the complex medium, and the composition of the synthetic medium seems to have a major 

impact on this performance. 

Interestingly, ethyl acetate was produced as a by-product in the synthetic fermentation broth by 

the mutant strain, and there is a good agreement that this product is likely produced by 

transferring the acetyl moiety from acetyl coenzyme A produced by pyruvate dehydrogenase 

complex to ethanol, providing a mechanism of self-detoxification of the ethanol accumulation. 

Curiously, the mutant strain is also grown under anaerobic conditions in both complex and 

synthetic media, and the metabolic pathways of this bacterium were directed to produce ethanol 

and carbon dioxide without any acetaldehyde detected in the fermentation broths. The growing 

of the mutant strain under anaerobic conditions enriches and compliments the work under 

aerobic conditions. 

On the other hand, the mutant strain showed a weak biomass production and, to enhance the 

overall productivity of the fermentation process, an elevated biomass concentration needs to be 
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achieved. Chapter 9 explores various cultivating techniques to intensify the mutant strain 

growth.  
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Chapter 9  

Intensification of the Zymomonas growth using various cultivating techniques: 

Bacterial Propagation 

Overview  

Zymomonas mobilis wild strain shows an increased biomass growth under aerobic conditions 

(Chapter 7). In contrast, 200 mM allyl alcohol selected mutant Zymomomonas mobilis strain 

produces less biomass under aerobic conditions (Chapter 8). To enhance the biomass yield of 

the mutant strain, different techniques can be used to grow this bacterium aerobically, but 

maintaining sufficient oxygen concentration is a challenge in the bacterial propagation stage. 

Microbubbles are more efficient in mass transfer than larger bubbles due to their high surface 

area to volume ratio. The performance of the bespoke propagation unit equipped with a fluidic 

oscillator to generate microbubbles as well as traditional growing techniques such as stationary 

and shaking flask techniques are investigated. While the bacterial cells within traditional 

growing techniques suffer from oxygen limitation (and after that, shifting to a partial anaerobic 

state and anaerobic state), bacterial cells grown in microbubbles-dosed culture are kept distant 

from reaching to the oxygen-limited state.  Oxygen is the limiting factor in the aerobically 

grown bacterial cultures, but similarly, the impact of mixing can be critical. The highest 

biomass yield was achieved using shaking flasks cultures for the mutant strain, while biomass 

yield reached its highest in microbubble-dosed culture for the wild strain. Also, a design and 

simulation study on the proposed propagation unit was also conducted for understanding both 

mass and flow aspects of this unit. The results of this study are crucial for bacterial-based 

industries such as biofuel, food, pharmaceutical industries for which the microbial biomass 

growth is premium.  

9.1 Dissolved oxygen (DO) level  

A- Stationary cultures  

Figure 9.1 presents the profile of dissolved oxygen (DO) concentration in  the stationary culture 

during the propagation stage. The oxygen concentration in the microbial culture decreased 

below the critical oxygen concentration (which was used as a 5-10 % of saturation 

concentration) about 40 minutes after inoculation (Figure 9.1). After 40 minutes, the DO 

concentration reached around 0.75 ppm, and the metabolism is started to switch to a partially 

anaerobic metabolism, and thereafter to anaerobic metabolism. Therefore, decreasing the 

dissolved oxygen concentration and changing the metabolism to the anaerobic growth would 

decrease the biomass yield (Zikmanis et al., 1999) and this what observed during measuring the 

biomass concentration. Under anaerobic conditions, the bacterial culture needs an extra time to 
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reach the same biomass concentration seen in the aerobically grown culture. In addition, using 

stationary culture causes microbial cells aggregation near the bottom of the flask with poor 

mixing, thereby a region above these crowed cells is rich in nutrients and oxygen, but not 

available to the cells and this would lead to the microbial starvation state (Bandyopadhpay and 

Humphrey, 1967). Under the startvation state, microbial cells become unable to sustain the 

normal state, the dynamic state (Roszak and Colwell 1987). Being in a dynamic state, microbial 

cells can be readily adapted to a range of environmental stresses using a wide variety of 

genotypic and phenotypic responses.  For instance, enzymes synthesis rate can be regulated by 

an appropriate modification to take up growth-limiting nutrients, and uptake rates of nutrients 

available in excess can be modulated as well to face environmental stresses (Roszak and 

Colwell, 1987). These adaptive capabilities might account the ease with which microorganisms 

can respond to culture conditions in the laboratory as well as to their natural habits.   

 

Figure 9.1: The profile of dissolved oxygen levels against time during stationary culture, 

whereby the concentration of dissolved oxygen dropped below the critical oxygen 

concentration after 40 mins. Error bars depict standard deviation. 

B- Shaking flasks cultures  

Figure 9.2 shows the dissolved oxygen concentration during the shaking flask culture in the 

propagation stage. The dissolved oxygen concentration was decreased gradually during the 

growth in the shaking culture, and it reached below the critical oxygen concentration (reached 

around 0.66 ppm) after just 200 minutes from the inoculation start (Figure 9.2).  This decrease 

coincides with increasing the biomass concentration. Using the shaking strategy to grow 

microbial cells can achieve both aeration and mixing, which can result in better access to 

nutrients and increased mixing and more homogeneous cell distribution, encouraging the 
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microbial growth (Juergensmeyer et al., 2007). 𝐾𝐿𝑎 in the shaking flask was calculated 

according to equation (3.23) and it found to be 0.45 ℎ𝑟−1, while the oxygen transfer rate (OTR) 

was 0.002 mmol. g (dry weight)-1.hr-1 according to equation (3.21) under 100 rpm shaking speed 

and at 30℃. 

Clearly, using shaking flasks can achieve better aeration as well as mixing in comparison with 

the stationary culture. However, Zymomonas culture is still suffering from the oxygen limitation 

with shaking flasks strategy, and this problem becomes even worse with increasing the biomass 

concentration. The oxygen limitation can develop to partially anaerobic conditions, and after 

that to the anaerobic conditions. Therefore, even with the using of the shaking technique, 

another technique for oxygenation needs to be used to keep the microbial culture growing 

aerobically. Another option is to increase the shaking speed to achieve this purpose, but this 

option is not always applicable, depending on the container capacity and speed limitations of 

the shaking incubator. However, only one speed (100 rpm) was used in this study, which was 

mentioned in many studies related to the Zymomonas growing (Sootsuwan et al., 2013; Zhang 

et al., 2013 and Chou et al., 2015).  

 

Figure 9.2: The profile of dissolved oxygen level against time during shaking flask culture, 

where the concentration of dissolved oxygen dropped below the critical oxygen level after 

200 mins. Error bars depict standard deviation. 

C- Microbubble-sparged cultures  

Figure 9.3 shows the dissolved oxygen concentration in the microbubble-sparged culture during 

the propagation stage. the dissolved oxygen concentration was rapidly decreased in the airlift 

loop bioreactor (the proposed propagation unit), and reached to almost the critical oxygen 
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concentration after about half-hour (Figure 9.3). An oxygen-limited state can then be 

developed, where the biomass synthesis decreases in compared to the aerobic- grown biomass. 

To grow high cell density, Zymomonas culture needs to be kept growing aerobically (Zikmanis 

et al., 1999). Therefore, oxygen needs to be introduced periodically to the bulk of liquid using 

microbubbles, which rise slowly through the fermentation broth with its high surface area to 

volume ratio, allows efficient mass transfer to be achieved during the oxygenation process 

(Zimmerman et al., 2009).  In addition, efficient mixing can maintain a balanced distribution of 

gaseous and cells within the reactor, minimizing the constraints of oxygen transfer to the culture 

medium and then to microbial cells (AL-Mashhadani et al., 2015). 

 

Figure 9.3: The profile of dissolved oxygen level against time during microbubbles-sparged 

culture, where the concentration of dissolved oxygen dropped below the critical oxygen level 

after 30 mins. Error bars depict standard deviation. 

To avoid the oxygen limited state, oxygen was periodically introduced to the microbial culture 

to keep the dissolved oxygen concentration above the proposed critical oxygen concentration 

(Figure 9.4). An oxygen probe (SevenMulti™ dual meter pH/oxygen) was used to continuously 

monitor the oxygen concentration within the culture, and air-microbubbles were sparged to 

increase the oxygen concentration in the microbial culture until reaching to the equilibrium 

concentration when the air supply was turned off. A model for the periodical sparging strategy 

was developed to keep the oxygen concentration above the proposed critical oxygen 

concentration without the continuous sparging. The proposed model described the time needed 

to turn the air supply on until reaching to the equilibrium concentration and after that, turning 

off the gas supply.  The periodical sparging strategy has many advantages over continuous 

sparging such as the periodical gas supply can reduce costs, wasted gas and energy used  (Ying, 
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2013), and it also reduces the shear stress on the microbial cells and the foam formation (Smith, 

2005).  

 

Figure 9.4: A model of periodical sparging strategy for the oxygenation process of the mutant 

strain of Zymomonas culture using microbubble technology, which describes the time needed 

to turn the air supply on and the time required to leave the culture before the next sparging 

course. Error bars depict standard deviation 

In fact, the concentration of dissolved oxygen during the bacterial propagation depends on 

three main processes, which are the rate of oxygen transfer to the culture medium, the rate 

of oxygen transfer from the bulk medium to the bacterial cells and the rate of oxygen 

consumption by bacterial cells. However, the most important process from all three 

processes seems to be the dissolution of oxygen, considering the low dissolution of oxygen, 

which has been observed under traditional aeration systems. The calculated mass transfer 

coefficient 𝐾𝐿𝑎 is presented in Figure 9.5 using the dynamic method. 

 Using microbubbles generated by the fluidic oscillator provided high surface area and long 

residence time, leading to increase the dissolved oxygen concentration. In addition, the 

aerobic conditions were maintained through the propagation period using the periodical 

sparging strategy.  
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Figure 9.5: Calculation of the mass transfer coefficient and the equilibrium concentration. Error 

bars depict standard deviation. 

The specific oxygen uptake rate was calculated to be 0.84 mmol. g (dry weight)-1. hr-1. This 

rate is constant as long as the dissolved oxygen concentration is above the critical biological 

oxygen concentration when the microorganism has not been starved yet (Bandyopadhyay 

and Humphrey, 1967 and Doran 2013). The mass transfer coefficient was found to be 67.7 

ℎ𝑟−1 using the dynamic method, while the oxygen equilibrium concentration was almost 9 

ppm in the propagation culture. One of the most important features of this method is 

considering the oxygen transferred from microbubbles as well as the oxygen consumed by 

the growing bacterial cells as a dynamic parameter. Moreover, growing of Zymomonas cells 

aerobically can lead to accumulate less reduced metabolites such as acetaldehyde and acetate 

(Seo et al., 2005), and these metabolites can eventually inhibit the bacterial culture 

(Kalnenieks et al. 2000). Beneficially, microbubble sparging can effectively offset these 

toxic by-products and enhancing the biomass production during the propagation process.  

Additionally, the oxygen mass transfer coefficient was also measured using the nitrogen de-

gassing method (Figure 9.6). The rate of increase in the dissolved oxygen concentration is 

influenced by the aeration flowrate but equally, by the mixing effect in the airlift-loop 

bioreactor. The pressure-driven circulatory motion owing to the design is the main reason to 

use the airlift loop bioreactor in the biological processes in contrast to stirred tank reactors, 

which use impellers for mixing purposes, leading to consume a great deal of energy and 

limiting the total yield of the process.  

 

 

0

1

2

3

4

5

6

7

8

9

10

2.148 4.148 6.148 8.148 10.148D
is

so
lv

ed
 o

xy
ge

n
 C

o
n

ce
n

tr
at

io
n

 
(p

p
m

)

(dC/dt+rX) (ppm.min-1)

 
 



Chapter nine                                                                      Intensification of Zymomonas growth  

 

 

 206 

(A)                                                                                (B) 

 

                                                                                                       (C) 

 

Figure 9.6: Mass transfer rate against time at different flowrates. Rate of oxygen transfer 

increased directly with the increase in flowrate (Q). (A) Q= 0.1 L/min ; 𝐾𝐿𝑎 = 25.2 ℎ𝑟
−1.(B) 

Q= 0.3 L/min ; 𝐾𝐿𝑎 = 29.4 ℎ𝑟
−1. (C) Q= 0.5 L/min; 𝐾𝐿𝑎 = 33.6 ℎ𝑟

−1. 

9.2 Biomass concentration  

Figure 9.7(A) presents results of the bacterial growth expressed as an optical density during 

the propagation stage using various cultivation techniques. Under different cultivation 

systems, the biomass growth is generated in a different pattern and reached its highest in the 

shaking flask cultures. On the other hand, the biomass growth in the microbubbles- sparged 

culture was higher than in the stationary culture, but lower than that in the shaking flask 
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culture. When oxygen is delivered to the growing cells, the acetaldehyde accumulation 

increases. The difference in the biomass growth may be attributed to differences in the level 

of acetaldehyde produced by these cultures when they are grown under various oxygen 

concentrations. The dissolved oxygen concentration in the shaking flask culture decreased 

below the proposed critical oxygen concentration (Figure 9.2), and this oxygen limitation 

reduces the accumulated acetaldehyde. In contrast, the microbubbles-sparged culture was 

regularly oxygenated by the periodical sparging strategy and thus; the oxygen concentration 

kept above the critical oxygen concentration, where acetaldehyde preferentially 

accumulates. Regarding the stationary culture, the oxygen concentration in the culture 

medium decreased below the critical oxygen concentration after just 40 minutes from the 

beginning of the inoculation and thus, Zymomonas cells spent very short time growing under 

aerobic conditions before shifting to the anaerobic conditions. Consequently, ethanol 

preferentially accumulates within the stationary culture with very limited acetaldehyde if it 

exists at all. Figure 9.7 (B) shows the specific growth rates of this bacterial strain under 

different cultivation systems. The mutant Zymomonas strain showed its highest growth rate, 

more than 0.5 ℎ𝑟−1 , in the shaking flasks system in comparison with other culture systems, 

when it was grown at 0.3 ℎ𝑟−1and at 0.4 ℎ𝑟−1 in stationary and microbubble-sparged 

cultural systems respectively.  

                         (A)                                                                        (B) 

 

Figure 9.7: (A) The biomass concentration of the mutant strain of Zymomonas mobilis against 

time, where a variation in the growth patterns seen in different cultivation systems. (B) specific 

growth rates of the mutant strain within various cultivation systems. Error bars depict standard 

deviation. 
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The biomass growth of the wild strain of Zymomonas mobilis ZM4 was also tested under all 

three-cultivation systems, stationary, shaking flasks and microbubble- sparged cultural 

systems (Figure 9.8A).   

 

(A)                                                                                            (B) 

 

Figure 9.8: (A) The biomass concentration of the wild strain of Zymomonas mobilis ZM4 

against time, whereby the wild type shows its highest growth in the microbubble-dosed system. 

(B) Specific growth rates within various cultivation systems. Error bars depict standard 

deviation. 

The wild strain of Zymomonas has achieved its highest biomass growth within the 

microbubble-sparged system, while the lowest biomass growth was occurred in the 

stationary culture. The biomass growth of the wild strain differs from its counterpart the 

mutant strain in their growth, and the wild strain was preferentially grown in the 

microbubble-sparged culture with 733 % more biomass produced with almost double 

specific growth rate in comparison with the mutant strain (Figure 9.8B). In addition, the 

shaking flasks culture was also shown high biomass growth, but it was less than the biomass 

produced in the microbubble-sparged system. The same differences in the growth between 

the wild and the mutant strains of Zymomonas mobilis were reported previously by Wecker 

and Zall, (1987). In addition, the wild strain produced very limited acetaldehyde under 

aerobic conditions in comparison with the mutant strain as the latter strain was selected for 

its decreased alcohol dehydrogenase activity and consequently, an increased amount of 

acetaldehyde is likely to be accumulated in the culture medium. Therefore, the limited 

amount of produced acetaldehyde by the wild strain can be readily removed by sparging 

microbubbles and subsequently, Zymomonas cells are unlikely to be inhibited by the 
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acetaldehyde accumulation. In contrast, the shaking flasks technique provides mixing with 

inefficient aeration (Figure 9.2). 

9.3 Design and simulation of a propagation unit for Zymomonas mobilis 

To optimise both the operational conditions and the design of the propagation unit, flow and 

mass transfer models within the propagation unit are studied. An airlift loop bioreactor- 

based propagation unit was used. Critical design parameters for the propagation unit were 

considered taking into account the study done by Al-mashhadani et al., (2015). Al-

Mashhadani et al., (2015) studied the flow modelling of only one flow rate and the focus 

was given to study the effect of different bubble sizes without mass transfer modelling. Both 

flow modelling and mass transfer modelling of the propagation unit, however, are 

investigated in the current project. 150 𝜇𝑚-air microbubbles were introduced at the bottom 

of the propagation unit, which operates at 30℃ and pH 5.5, at different flowrates, 0.1, 0.3 

and 0.5 L/min until reaching the steady state. The liquid circulation (mixing) resulted from 

the introduction of microbubbles concurrent with the mass transfer achieved by 

microbubbles to efficiently maintain the oxygen concentration in the cultivation medium 

above the critical oxygen concentration was fundamentally explored. No antifoam was used 

in the current study and the used mass transfer coefficient (KLa) was measured 

experimentally in figure 9.6. The configuration of the propagation unit as follows: The radius 

of microbubble diffuser is 0.025 m. A draft tube is fitted inside the reactor with 0.035 m 

radius and 0.12 m height and it is based 0.02 m from the bottom of the reactor and 0.02 m 

from the headspace. The overall height of propagation unit, however, is 0.16 m and 0.0625 

m radius.  Figure 9.9 shows the 3D configuration of the bespoke propagation unit along with 

the meshing.  
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(A)                                                                 (B) 

   

Figure 9.9: Illustration and drawing of the propagation unit. (A) The fully assembled 

propagation unit. (B) Computational domain and mesh for the investigated propagation unit 

(Mesh-independent solutions were obtained with 7171 tetrahedral elements). 

To streamline the computation, a 2-D model was considered.  The axial symmetry of the unit 

allowed reduction of the computational domain to one fourth of the geometry. Figure 9.10 

shows the 2D axisymmetric configuration used in the current study to model the flow and 

mass transfer of the bespoke propagation unit.  

 

 

Figure 9.10: 2D axisymmetric domain used along with the meshing of the propagation region 

within the unit. 

9.3.1 Computational modelling 

The effect of gas flowrate on the liquid circulation in the propagation unit was investigated 

using numerical simulations. The experimental results show that using 0.1 L/min flowrate 
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preferably produces more biomass without the need to add any antifoam. Therefore, the 

oxygen concentration within the propagation unit using 0.1 L/min flowrate was explored 

with the mass transfer modelling. These computations provided system and operating 

parameters most suitable for conducting the propagation of bacteria using the bespoke 

propagation unit.  

9.3.2 Computational geometry  

The computational domain consists of the inlet channel, propagation unit chamber, draft tube 

and a section above the draft tube as shown in Figure 9.10. The main purpose of this 

simulation is to find out the flow distribution and the distribution of oxygen within the 

propagation unit, hence all the suitable operating conditions can be used.  

9.3.3 Governing equations 

Comsol Multiphysics was used to carry out the simulation study on the propagation unit that 

shown in Figure 9.10. This model was calculated according to following equation:  

    

Where  ρl is the density of liquid (kg/m3), ∅l is the liquid volume fraction (m3/ m3), ul is the 

velocity of liquid phase (m/s), P is the pressure (Pa), t is the time (sec), ηl is the dynamic 

viscosity of liquid phase (Pa.s) and g is the gravity(m/s2). 

For low gas concentrations, the liquid holdup coefficient (∅𝑙) is approximately one. 

Therefore, the change in ∅𝑙 can be neglected in the conservation equation (Eq. 9.2) (Bired 

et al., 1960), which simplifies to the common condition for divergence of free velocity fields 

in incompressible flow (Eq. 9.3): 

     
   𝜕∅𝑙

𝑑𝑡
 + ∇. (∅𝑙𝑢𝑙) = 0                                      ( Eq. 9.2)                                                                              

     ∇. 𝑢𝑙 = 0                                                      ( Eq. 9.3)                                                                                               

The momentum transport equation for the gas phase is illustrated as follows: 

       
𝜕𝜌𝑔∅𝑔

𝜕𝑡
+ ∇. (∅𝑔𝜌𝑔𝑢𝑔) = −𝑚𝑔𝑙  ( Eq. 9.4)                                                                                   

Where ρg is the density of gas phase (kg/m3), ∅l  is the gas volume fraction (m3/m3), ug is 

the velocity of gas and−mgl is the mass transfer rate (kg/m3/s).  

(Eq. 9.1) 
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The initial modelling approach was carried out with no mass transfer between gas and liquid 

phases, to illustrate the fluidic dynamics in isolation. Thus, the 𝑚𝑔𝑙 =0. Therefore, the 

continuity equation can be arranged for two phases (e.g. gas and liquid) but without mass-

transfer terms as follows: 

𝜕𝜌𝑔∅𝑔

𝜕𝑡
+ ∇. (∅𝑔𝜌𝑔𝑢𝑔) = 0           ( Eq. 9.5)                                                                                      

The ideal gas law was used to calculate the density of gas (𝜌𝑔): 

𝜌𝑔 =
𝑃 𝑀𝑤
𝑅𝑇

                                       ( Eq. 9.6)                                                                                       

Where Mw is the molecular weight of the gas bubble, R is the ideal gas constant (8.314 

J/mol/K) and T is the temperature of gas (K). 

The gas volume fraction is estimated by the following equation:  

∅𝑔 = 1 − ∅𝑙                                        ( Eq. 9.7)                                                                                     

The gas velocity can be determined as 𝑢𝑔 = 𝑢𝑙+ 𝑢𝑠𝑙𝑖𝑝, since 𝑢𝑠𝑙𝑖𝑝 is the relative velocity 

between two-phases (gas and liquid). 

Pressure-drag balance, which obtained from the slip model, was used to calculate the 𝑢𝑠𝑙𝑖𝑝. 

The assumption of this model suggests that there is a balance between viscous drag and 

pressure forces on the gas microbubble: 

3Cd

4db
𝜌𝑙|𝑢𝑠𝑙𝑖𝑝|𝑢𝑠𝑙𝑖𝑝 = −∇𝑃              ( Eq. 9.8)                                                                                    

Where Cd is the viscous drag coefficient (dimensionless), db is bubble diameter (m), because 

the microbubble diameter used in the simulation is equal or less than 150 µm, the Hadamard-

Rybczynski drag law was used, and hence: 

Cd =
16

𝑅𝑒𝑏 
                                        ( Eq. 9.9)                                                                                 

     Where:  

𝑅𝑒𝑏 =
dbρ𝑙|𝑢𝑠𝑙𝑖𝑝|

𝜂𝑙
                           ( Eq. 9.10)                                                                                     

Where 𝑅𝑒𝑏 is the Reynolds number. 
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In the second modelling development, the study assumed that there is a mass transfer taken 

place between two phases; therefore, the dilute species transport model was used for this 

diluted system using the convective diffusion reaction equation according to following 

equation: 

( Eq. 9.11)    

Where ci is the concentration of specie I (mol/L), u  is the velocity, Di is the diffusion 

coefficient and Ri is  the rate of reaction.   

9.3.4 Boundary conditions 

Since the two-dimensional axial – symmetry simplification was used to model the 

propagation unit in the current study, the boundary condition at r=0 must be zero flux in all 

dependent variables. On the draft tube and internal airlift and bioreactor walls, there was no 

slip (𝑢 = 0)  for liquid phase, whilst no gas flux values were used for the gas bubble phase, 

hence the values of 𝑢𝑙 and 𝑛(𝑢𝑔∅𝑔) equal to zero. On the other hand, the “gas outlet” and 

the slip (𝑛. 𝑢 = 0) BCs were used at the top of liquid phase for both liquid and gas phases 

respectively. The pressure point constraint of the upper right corner equals to zero. On the 

top of the diffuser, no slip boundary conditions were used for liquid phase and the “gas flux” 

boundary conditions for the gas phase. 

9.3.5 Numerical method 

The problem was solved using a commercial finite element code - Comsol MultiphysicsTM 

5.2. Mesh-independent solutions were obtained with 738 tetrahedral elements and the 

simulation time for each case was approximately 120 minutes on an Intel Core i5 64-bit 2.7 

GHz processor. 

9.3.6 Flow modeling of the propagation unit 

Figure 9.11 shows the distribution of gas volume fraction and the liquid velocity at different 

flow rates, 0.1 L/min, 0.3 L/min and 0.5 L/min for 200 seconds after reaching the steady 

state, and at bubble diameter 150 μm, which was measured experimentally. This time is 

increasing with decreasing the bubble size, and it reaches to 900 seconds when 50 μm was 

used (Al-Mashhadani et al., 2015). 
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Apparently, the gas bubbles are not present in the downcomer region for both 0.3 L/min and 

0.5 L/min flowrates, while a small fraction of gas bubbles is recirculated in the downcomer 

of 0.1 L/min sparged reactor (Figure 9.11). Therefore, both mass and heat transfers for 0.3 

L/min and 0.5 L/min are restricted to the riser region of the reactor (Figure 9.11), while these 

transfer phenomena can be taken place in downcomer region for 0.1 L/min flowrate as well 

as the riser region but to much lesser extent (Figures 9.11 and 12). The downcomer region 

is equivalent to 44 % of the total working volume of the used reactor, and thus, both mass 

and heat transfer can happen in both regions, and this helps the system to perform better 

when 0.1 L/min is used. Liquid circulation in both 0.3 L/min and 0.5 L/min is unable to 

overcome the tremendous buoyancy of the gas bubbles and thus; it is unable to circulate 

these bubbles in the downcomer, while it does with 0.1 L/min. The presence of these gas 

bubbles in the downcomer region allows mass transfer to occur in this region, and gas 

recirculation as microbubbles in 0.1 L/min flowrate increases the liquid circulation velocity 

and therefore, it gives the potential for better mixing. As mentioned above, 0.1 L/min is used 

in the current study to test the biomass productivity of the proposed propagation unit, which 

is chosen according to the modelling results. The experimental validation of the differences 

between these flowrates is challenging since the microbial culture overflows from the reactor 

m2/s 

T=50 Sec T=100 Sec T=150 Sec T=200 Sec 

Figure 9.11: Snapshots of gas fraction at different flowrates after steady state with 150 μm 

bubble diameter, where a small fraction of the gas can be seem in the downer comer of the 0.1 

L/min flowrate with no eddy currents. (A) At 0.1 L/min (B) At 0.3 L/min (C) At 0.5 L/min. 
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when 0.3 L/min and 0.5 L/min flowrates are used. To oppose overflowing, an antifoam agent 

needs to be added and this can adversely affect the mass transfer within the system as it 

enhances the bubbles coalescence, giving larger bubbles and vigorous vibration in the reactor 

(Al-Masry, 1999). Indeed, increasing the flowrate can increase the bubble coalescence 

(bigger bubbles), which can cause a substantial turbulence and developing eddy currents 

within the reactor (Kim et al., 2016). This observation can be seen in the snapshots of both 

0.3 L/min and 0.5 L/min flowrates (Figure 9.11B and C). This turbulence is increased by 

increasing the flowrate (Davies et al., 1986), which can stress the microbial cells and 

encourage them to form biofilms in the reactor (Pereira et al., 2002). These biofilms are 

three-dimensional aggregations of interacting unicellular microorganisms. It must be noted 

that the cell concentration is low at the beginning of the propagation stage and thus; the 

competition between these cells for the nutritional resources is minor. Therefore, single cells 

have better access to these resources than cells in the aggregates and the cells in the 

aggregates interior in particular (Kragh et al., 2016). As a result, single cells are fitter than 

aggregated cells to grow in the propagation unit.  

In contrast, the aggregated cells have a fitness advantage over single cells when the 

competition for resources is high. Consequently, production of single cells in the propagation 

unit when there is a low competition on the nutritional resources, has a fitness advantage 

over the aggregated cells, which has a net growth disadvantage because of the limited access 

of nutrients to the aggregate interior (Kragh et al., 2016).     

 

Figure 9.12: The gas fraction in a cross section of riser region at three different flowrates, 0.1, 

0.3 and 0.5 L/min, where the gas fraction is proportionate to the air flowrate. 

9.3.7 Mass transfer modelling of the proposed propagation unit 

From the flow modelling study, it is clear that using 0.1 L/min offers both good mixing and 

adequate oxygen supply without using antifoam agents, which can affect the performance of 
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the whole system. Consequently, a mass transfer model was built up using 0.1 L/min flow 

rate and the mass transfer coefficient (KLa), which was measured experimentally in Figure 

9.6. Figure 9.13 shows the oxygen concentration profiles in both the riser and downcomer 

regions during the sparging course for 30 seconds at 0.1 L/min.  

(A)                                                                   (B) 

     

Figure 9.13: Oxygen concentration profiles in the propagation unit at flowrate 0.1 L/min, where 

is a gradual increase in the oxygen concentration in both regions. (A) in the riser region (B) in 

the downcomer region.  

It can be observed from Figure 9.13 that there is a gradual increase in the oxygen 

concentration in both riser and downcomer regions during the air sparging. However, the 

oxygen concentration in the riser concentration was instantly increased at the beginning of 

the sparging course in comparison with the downcomer region, where the oxygen 

concentration started to increase after few seconds. These results can be explained by the 

fact that the mass phenomenon is mainly taken place in the riser region, which represents 56 

% of the total working volume of the used propagation unit and to less extent in the 

downcomer region. Figure 9.14 shows snapshots of oxygen concentration profiles during the 

sparging course at 0.1 L/min flowrate. 
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Figure 9.14: Snapshots of oxygen concentration at different times after steady state with 150 

μm bubble diameter and 0.1 L/min. 

It can be observed from Figure 9.14 that the oxygen concentration is increasing gradually within 

the propagation unit and the oxygen concentration  distributes homogenously within the whole 

system. This result is crucial as it ensures that the oxygen concentration in the downcomer 

region (represents 44 % of the total working volume) and the riser region (represents 56 % of 

the total working volume) is almost the same. This means that the microbial cells within the 

propagation unit are exposed to uniform concentrations of oxygen. Certainly, using the current 

propagation unit avoids the localized oxygen depletion, which might have a significant impact 

on the physiology of the microbial culture (Konz et al., 1998). On the other hand, exposure to 

elevated oxygen concentrations may stress the microbial cells as some detrimental products, 

such as superoxide (O2-) and hydrogen peroxide (H2O2), can be accumulated as byproducts of 

the elevated aerobic metabolism (Baez and Shiloach, 2014). These products are toxic to 

microorganisms since they are more reactive than the molecular oxygen (Imlay, 2013), and they 

might promote metabolic changes, protein oxidation, DNA oxidation and plasmid replication 

(Konz et al., 1998). Therefore, providing an adequate oxygen supply is vital to the growth, 

leading to avoid harmful effects of both high and low oxygen concentrations. Table 9.1 shows 

a summary of the objectives, predictions and learning outcomes of the modelling approach.  

 

5 Sec 10 Sec 15 Sec 
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Table 9.1: A summary of the objectives, predictions and earning outcomes of flow and mass 

modelling developed in the current study  

Objectives Predictions Learning outcomes 

F
lo

w
 m

o
d
el

li
n
g
 a

p
p
ro

ac
h

 

Choosing the best 

flow rate to conduct 

the propagation stage 

-Using 0.3 l/min and 0.5 

l/min flowrates provide 

higher liquid velocity than 0.1 

l/min 

-Both mass and heat transfer 

are restricted to the riser 

region but they are also taken 

place in the downcomer 

region with 0.1 l/min 

 

Using 0.1 l/min flowrate 

can achieve good liquid 

velocity without the need 

to add antifoam agents to 

oppose overflowing. 

Avoiding overflowing 
With 0.1 l/min flowrate, 

mass transfer can take 

place in both riser and 

downcomer regions and 

therefore, more biomass 

can be produced. 

Avoiding dead zones 

No dead zones were seen 

with all flowrates used in the 

current study. 

Reduce turbulence in 

the propagation unit 

Neither  turbulence nor eddy 

currents are developed in the 

propagation unit. 

M
as

s 
m

o
d
el

li
n
g
 

ap
p
ro

ac
h

 

Study mixing inside 

the propagation unit. 

A good mixing can be 

achieved using 0.1 l/min 

Microbial cells within the 

propagation unit are 

exposed to uniform 

concentration of oxygen 

and thus, more biomass 

can be produced. 

Monitoring the oxygen 

concentration within 

the unit  

Uniform oxygen distribution 

can be achieved using 0.1 

l/min. 

9.4 Effect of the inoculum size on the fermentation process  

Initial conditions such as the inoculum size, can determine the productivity of the fermentation 

process (Webb and Kamat, 1993). Both quality and quantity of the inoculum influences the 

type and yields of the fermentation process. In this study, the inoculum volume was (10% v/v), 

to be transferred to the fermentation broth. Using this inoculum volume was based on both 

experimental observations and the study conducted by Sivamani et al., (2015), who studied the 

effect of inoculum size on the ethanol production by Z.mobilis. According to the Sivamani, et.al 

(2015) study, the inoculum size was varied from 5 to15% (v/v) and the ethanol production was 

altered significantly by increasing the inoculum size, and the best ethanol yield was achieved 
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by using the 10 % (v/v) inoculum size. Interestingly, using the same inoculum volume does not 

mean that it has the same bacterial concentration as the bacterial growth tends to be varied with 

each cultural set due to various reasons such as the state of inoculum culture, the inoculum size 

of the original culture and other unidentified physiological factors.  

All inoculum preparations were conducted according to Saharkhiz et al., (2013), whereby the 

inoculum of the mutant strain was activated in Glucose standard medium (2% GSM) and then 

it was allowed growing for 18 hours at 30℃ and pH 5.5 under shaking flasks technique. 

Thereafter, 5-15% (v/v) inoculum sizes were used to inoculate the fermentation medium and   

the increase in the turbidity was monitored at 600 nm during the experimental duration. Figure 

9.15 shows biomass synthesis trends in different experimental sets, which were started at 

different inoculum concentrations. In general, inoculum size influences both the fermentation 

time and the fermentation performance. Faster fermentation is observed when high inoculum 

concentration (15% v/v) was used, when the highest biomass synthesis was noticed after 5 hrs 

and the bacterial culture then launched the stationary phase (Figure 9.15). The stationary phase 

can be very long as the carbon source is still present in excess with low concentrations of 

inhibitory compounds. Ethanol and acetaldehyde are formed directly as end or by-products of 

the energy generation, and the growth is normally the principal energy requiring process of the 

microbial cells. Therefore, these products will be formed whenever there is growth within the 

fermentation process (Doran, 2013). Due to the low biomass synthesis when high inoculum 

concentration used, low bioproducts (ethanol and acetaldehyde) concentrations were produced 

in the fermentation medium.  

 

Figure 9.15: Biomass synthesis trends at different inoculum concentrations. Using high 

inoculum size generated low biomass with limited ethanol, while low and middle inoculum 

sizes generated elevated concentration of biomass as well as ethanol and acetaldehyde. Error 

bars depict standard deviations.  
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Indeed, a trace amount of ethanol was detected in the fermentation broth, while no 

acetaldehyde was detected in the cultural broth when the high inoculum size used (Figure 

9.16).  

 

Figure 9.16: Ethanol and acetaldehyde production at high inoculum concentration, whereby it 

can be seen that only limited amount of ethanol produced in the fermentation broth without 

acetaldehyde. Error bars depict standard deviations.  

In contrast, the biomass synthesis was very slow (Figure 9.15), and it just started launching 

the exponential phase after 8 hrs when a low inoculum concentration (5% v/v) was used. In 

addition, the mutant strain did not reach the stationary phase after 8 hrs from the fermentation 

beginning. This slow growth is combined with low ethanol and acetaldehyde productions. 

Interestingly, the ethanol concentration was doubled when the low inoculum concentration 

was used in comparison with the high inoculum concentration, while the acetaldehyde 

concentration reached 12 mM at hour eighth (Figure 9.17). The reason behind the detection 

of acetaldehyde after 8 hrs is that this chemical tends to diffuse poorly across the plasma 

membrane compared to ethanol, leading to its intracellular accumulation as the accumulated 

intracellular acetaldehyde concentration can build up to several times than the extracellular 

concentration (Aranda and del Olmo, 2003). A third inoculum concentration (10% v/v) was 

chosen as a middle choice between the above two concentrations, and the initial inoculum 

concentration increased to around 0.4 (OD 600), and this is double the used low inoculum 

concentration and half the used high inoculum concentration. The bacterial culture grown 

with this inoculum concentration showed an accelerated growth trend without exhibiting Lag 

or stationary phases during the fermentation time (8 hrs). 
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Figure 9.17: Ethanol and acetaldehyde productions at low inoculum concentration. Error bars 

depict standard deviation. 

Both produced ethanol and acetaldehyde were doubled with this culture, but the 

acetaldehyde production was fluctuated (Figure 9.18). The reason behind this fluctuation is 

that the strategy used to supply oxygen to the bacterial culture is the periodically sparging 

strategy, which has been developed during this study and used to grow the mutant strain and 

to strip out acetaldehyde from the fermentation broth.  

 

Figure 9.18: Ethanol and acetaldehyde productions at medium inoculum concentration. Error 

bars depict standard deviation. 

The microbial biomass with middle inoculum size (10 v/v) is started to grow almost 

immediately after the inoculation and it continued to grow, reaching higher concentration than 

other groups, even the one used high inoculum concentration.  

To sum up, the acetaldehyde and ethanol productions are directly related to growing of the 

microbial cells. Using high inoculum concentration can speed up the fermentation process to 

reach the stationary phase without acetaldehyde production and with limited ethanol 

production. On the other hand, low growth trend can be seen in the culture, which inoculated 

with low inoculum concentration. Preferentially, using the suitable inoculum concentration is 
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crucial, and it can improve the biomass growth and consequently, acetaldehyde, and ethanol 

productions can surge.  

9.5 Conclusions  

Chapter 7 and 8 were tested the performance of wild and mutant strains under aerobic 

conditions. While the mutant strain shows elevated acetaldehyde and carbon dioxide 

productions, this strain shows a reduced biomass yield. To enhance the biomass synthesis, 

various propagation techniques are explored. To compare between different propagation 

techniques, two conventional growing techniques were investigated with a novel microbubble-

based propagation technique. Microbubble-based propagation process is an alternative 

technique, which can be used to grow bacteria generally, and to grow the bacterial inoculum 

for bacterial based industries. 

 Oxygen is a vital factor for the bacterial growth, and its limitation has a severe implication on 

the microbial growth. While bacteria grown under the traditional cultivation techniques suffer 

from the oxygen limitation, the microbubble-based technique can keep the aerobic conditions 

as well as provides a proper mixing. The results show that the dissolved oxygen concentration 

drops below the critical oxygen concentration after 40, 200 and 30 mins, for stationary, shaking 

flask and microbubble techniques respectively; however, the last technique can be readily 

adapted to work periodically, leading to maintaining the oxygen concentration above the critical 

oxygen concentration throughout the fermentation process. Both oxygen uptake rate and mass 

transfer coefficient are substantial increased using the microbubbles technology and there were 

41-fold and 150-fold increases in the oxygen uptake rate and mass transfer coefficient 

respectively in the microbubbles-dosed system in comparison with the shaking flask system. 

Using the periodically sparging strategy can achieve a better mixing during the propagation 

stage. Regarding the biomass yield, the mutant strain shows an increased biomass generation 

in shaking flasks technique (around 100 % and 133 %increase) in comparison with other 

(microbubbles-dosed and stationary respectively) techniques, while the wild strain produces 

more biomass in the microbubble-based technique (around 50 % and 100 %) than other (shaking 

flask and stationary respectively) techniques. Importantly, flow and mass transfer models are 

built and used to design and optimise the designed propagation unit.    
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Chapter 10  

Conclusions and Future Perspective 

This chapter presents the main findings and conclusions of this research study and the future 

perspective for further research works based on the obtained results. The main findings are 

chapter specific and might be in their respective chapters. Herein, an attempt is made to sum up 

these findings to address/answer the original research questions.  

10.1 General Conclusions  

The study was set out to use lignocellulosic biomass as a substrate to obtain the sugary content, 

which can be fed to the fermentation process. Three main objectives are addressed in the current 

study, which are using microbubble mediated and microbubble mediated ozonolysis 

technologies in pretreatment of lignocellulosic biomass (wheat straw) in combination with 

cellulolytic bacterium Pseudomonas Putida KT2440 as a biological pretreatment agent in the 

first upstream stage of the supply chain. The second objective is to inactivate the pretreatment 

slurry with carbon dioxide enriched microbubble in the midstream stage and to avoid any 

overlapping with the next stage. Finally, fermentation integrated with microbubble technology 

to strip out some bioproducts from the fermentation broth is the third objective and the 

downstream stage. 

The literature review in Chapter 2 starts with a detailed analysis of lignocellulosic biomass and 

their chemical and morphological characteristics. Subsequently, a review of the pretreatment 

techniques showed that four groups of pretreatment approaches exist for lignocellulosic 

biomass, which mechanical, physiochemical, chemical and biological pretreatment. However, 

most these methods are energy intensive and use a variety of chemicals, which are toxic, 

hazardous and corrosive that added more costs to the downstream processes (Dussán et al., 

2014). Also, biological methods use commercial enzymes, which are expensive and require 

keeping optimum and this will add a complexity to any industrial process. From the review, 

key examples of the pretreatment technologies were outlined such as steam explosion, acid 

hydrolysis and ozonolysis and subsequently, reviewed in detail. Of key importance however, 

are the disadvantages mentioned of these pretreatment techniques. Some of the main examples 

include: high energy consuming, increased pretreatment time, using expensive enzymes 

combinations and unsuitability for continuous large-scale production (Sukumaran et al., 2005). 

Owing to these shortcomings, the review revealed an industrial need for alternative techniques 

as a solution. 
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Following the pretreatment methodologies, a critical review of the fundamentals of inactivation 

processes was undertaken, highlighting the relevant and most applied processes. Each 

inactivation method focused on a different pertinent issue governing the inactivation, which 

generally underpinned the importance of inactivating and decreasing the number of microbial 

population. In addition, the processes emphasized the importance of both pressure and 

temperature and concluded that supercritical carbon dioxide trigs disturbance or damage the 

balance of the biological system of cells and subsequently, inactivates the microbial cells 

(Garcia-Gonzalez et al., 2007).  

The chapter further presented Zymomonas mobilis, as a potent fermentative bacterium. From 

the review, it was apparent that the success of acetaldehyde production is intrinsically linked 

with keeping the aerobic conditions, while shifting to anaerobic conditions leads to accumulate 

more ethanol (Kalnenieks et al., 2000 and Kalnenieks et al., 2006). Acetaldehyde is a substrate 

for fuels production and its can be separated efficiently from the fermentation broth with low 

energy consumption. On the other hand, ethanol separation is an energy intensive process and 

it can account for more than half the energy consumed by the ethanol production process. Thus, 

the fermentation process needs to be kept aerobic and different techniques can be used to 

provide oxygen as well as to strip out the acetaldehyde and carbon dioxide from the 

fermentation medium.  

The chapter closes by introducing microbubbles and their general characteristics, which are 

central to the in-situ separation and oxygenation processes.  Also, a review of the fundamentals 

of Airlift Loop Bioreactor (ALB) was undertaken highlighting the relevant and most applied 

features.  A critical review of the fluidic oscillator (an alternative bubble generating device) and 

its main features was presented with highlighting of the promise of energy efficiency. 

Particularly, the study highlights the mode of operation and previous applications of the fluidic 

oscillator and potential of the microbubbles generated by this system to meet the challenges of 

traditional aeration and separation systems. 

The experimental materials and methods were presented in Chapter3. The chapter was 

structured into four key parts. The first section dealt with the pretreatment of wheat straw with 

microbubble-mediated technology combined with the biological pretreatment. Also, this 

section reported the characterisation of Pseudomonas putida cellulolytic activity. In addition, 

the first section dealt with exploiting ozonolysis-microbe synergy for biomass processing with 

more detail about the ozone generating method.  
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In second section, the methodologies of inactivation combined cell lysis of Pseudomonas putida 

at low pressure were mentioned. The survivor ratio of the treated bacterial population using 

pure carbon dioxide and carbon dioxide plus additives were calculated. pHs of the bacterial 

culture during the carbon dioxide sparging course were monitored and used to work out the 

carbon dioxide concentration.  

In third section, the fermentation process with Zymomonas mobilis integrated with in situ 

separation using microbubble technology was presented. Both oxygen providing strategies and 

oxygen consumption rates were explored. Also, glucose consumption and products formation 

were monitored and subsequently, both the microbubble sparging duration and glucose 

concentration were manipulated.  

In this section, a mutant of Zymomonas mobilis was selected using elevating allyl alcohol 

concentrations. Sparging duration was manipulated to meet the oxygen demand as well as 

stripping the elevated acetaldehyde concentration out the fermentation broth.    

In the fourth section, the attention was drawn towards intensification of the bacterial biomass 

using various cultivating techniques. A promising new cultivating technique was developed 

using microbubble technology to enhance the oxygenation and mixing processes during the 

propagation stage and subsequently, increasing the biomass concentration. Also, another 

important aspect was the comparison between different cultivating techniques and the steps 

taken in designing and modelling of both flow and mass transfer of the proposed propagation 

unit were clearly outlined.  

The first experimental results were presented in Chapter 4. The chapter explored the exploiting 

of microbubble-microbe synergy for biomass pretreatment. Sub-100 μm bubbles were largely 

used in the microbubble-mediated part and thereafter, the treated biomass was used as a 

substrate to the next biological pretreatment with Pseudomonas putida. Sub-100 μm 

Microbubbles generate free radicals that attacked and disintegrated biomass lignin, making 

cellulose more accessible for hydrolysis. Further pretreatment with Pseudomonas putida 

enhanced the glucose yield. The synergy between microbubbles and microbes in biomass 

processing offers some prospective benefits as a pretreatment technique for biofuel production. 

A new, relatively cheap pre-treatment option that works at ambient temperatures was presented.  

This chapter is the first part of the upstream stage.  

In Chapter 5, the study further explored ozonolysis-microbe synergy for biomass pretreatment. 

Ozone is a strong oxidative agent that reacts with lignin by attacking the carbon-carbon double 

bonds (Sakai and Uprichard, 1991), while P. putida preferentially hydrolyses the exposed 
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cellulolytic parts of the biomass to simple sugars. Traditionally, the ozonation processes are 

mass transfer limited with confined interfacial area and this reduces the efficacy of the 

pretreatment process (Sakai and Uprichard, 1991). However, microbubbles used to introduce 

ozone to the bulk of liquid and these bubbles have high surface area to volume ratio with higher 

driving force in terms of mass transfer to the solution. It was found that pH 3 and 8.87 mg/L 

ozone are fitness conditions to conduct the ozonation process. The pretreatment efficacy 

increases coincidentally with the ozonation duration and After 24 h of ozonation combined with 

biological pretreatment, however, 85% of the cellulose in straw was degraded. 

The above two chapters concluded that the traditional pretreatment methodologies such as 

dilute acid hydrolysis (Dussán et al., 2014)., are energy intensive and using hazardous 

chemicals such sulfuric acid at high temperature, while microbubble-mediated and 

microbubble-mediated ozonolysis are less energy intensive and performed at room temperature 

and pressure without producing toxic residues that can affect the subsequent fermentation 

process.  

The results of the investigations on the performance of carbon dioxide enriched microbubbles 

for bacterial inactivation were presented and discussed in Chapter 6. Carbon dioxide enriched 

microbubbles is a technology developed during this study to inactivate combined with cell lysis 

of Pseudomonas putida cells. After biological pretreatment of the lignocellulosic biomass, the 

pretreatment slurry needs to be inactivated and traditionally, the inactivated processes need high 

temperature and pressure and these extreme conditions might caramelize the sugary yield from 

the upstream pretreatment method as well as consuming high energy. Alternatively, carbon 

dioxide enriched microbubble technology can achieve the inactivation process at room 

temperature and pressure without compromising on product quality and the total yield. In 

addition, this technology uses carbon dioxide, which is a by-product from the fermentation 

process and using it in this midstream stage is advantageous option. While, using carbon dioxide 

enriched microbubbles achieved around 2-Log reduction in the bacterial population of 

Pseudomonas putida after 1.30 hrs of treatment, addition of ethanol to the inactivation solution 

enhanced the inactivation process to achieve 3, 2.5 and 3.5-Log reduction for 2 %, 5 % and 10 

%( v/v) ethanol respectively. Furthermore, using acetic acid as an additive decreased the 

survivor ratio of Pseudomonas cells to more than 2.5-Log reduction. 

In Chapter 7, fermentation process of Zymomonas mobilis integrated with in situ separation 

using microbubble technology was reported. After feeding the fermentation broth to the 

fermentation vessel, the fermentation process can be started at 30 ℃ and pH 5.5. The aim of the 
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fermentation process is to enhance the production of acetaldehyde preferentially from 

Zymomonas mobilis, while both carbon dioxide and ethanol are also produced during the 

fermentation process. Wild type strain tends to accumulate ethanol with much less acetaldehyde 

(Kalnenieks et al., 2000). Conventionally, oxygenation and gas stripping are conducted by 

inefficient aeration techniques such as air distribution by an in-line cotton filter, which tend to 

generate millimetre to centimetre-bubbles with limited surface area to volume ratio, leading to 

inefficacious aeration and products stripping out (Zimmerman et al., 2009). Using microbubble 

technology, however, can substantially improve both the oxygenation and the stripping 

processes, leading to provide sufficient oxygen to the bacterial culture and to remove some of 

the by-products (the inhibitors) from the fermentation broth and that can enhance the microbial 

growth without compromising with the process yield. The results showed that ethanol yield 

reached 70 % in the initially sparged group in comparison with 45 % in the periodically sparged 

group. Acetaldehyde yield achieved about 1 % and 0.5 % in the periodically sparged group and 

the initially sparged group respectively. Additionally, biomass yield was maximized in the 

periodically sparged group and reached 110 %, while its yield in the initially sparged group was 

around 90 %. 

In Chapter 8, the study explored the fermentation process of a mutant of Zymomonas mobilis 

integrated with in situ separation using microbubble technology. The mutant strain (Or adapted 

strain) of Zymomonas mobilis was selected using increasing allyl alcohol concentrations and 

shown to have higher acetaldehyde productions.  Having generated microbubbles and obtained 

the optimum operating conditions from the previous chapter, the conditions were used for in 

situ separation of acetaldehyde and carbon dioxide from the fermentation broth. However, the 

sparging duration was extended to 24 mins to strip out the elevated level of acetaldehyde. The 

result from the selected strain showed that the ethanol yield reached about 20 %, the 

acetaldehyde yield was built up to 35 % under the periodically sparging group. In contrast, the 

ethanol yield reached up to 25 % and acetaldehyde yield hit 10 % in the initially sparged group. 

Regarding the biomass yield, the selected strain flourished in the periodically sparged group 

and its yield reached almost 50 % in comparison to around 35 % under anaerobic conditions 

(The initially sparged group). Under the 20 g/L glucose concentration, the selected strain 

reached almost 30 % of the acetaldehyde yield and more than 15 % of the ethanol yield, while 

the biomass yields reached 70 % and 50 % for the periodical sparged group and the initially 

sparged group respectively.  Fruitfully, the ethanol to acetaldehyde yields ratio was 1:75 using 
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40 g/L glucose, while this ratio was switched to 1:1.87 (ethanol to acetaldehyde yields) when 

20 g/L glucose was used. 

In Chapter 9, the study explored the intensification of Zymomonas biomass growth using 

various cultivating techniques. Traditionally, bacterial propagation is achieved using techniques 

such as stationary culture or shaking flask culture (Sivamani, et al., 2015), and these cultivating 

techniques are useful if the mixing and oxygen supply are less important than the nutritional 

requirements and incubation conditions for instance, temperature, pressure etc, as these 

cultivating techniques suffer from oxygen limitation and thereafter, shifting to a partial 

anaerobic state and the anaerobic state. Also, there is no convective mixing taken place in the 

stationary cultivating technique, while sufficient mixing occurs in the shaking flask technique.  

Microorganisms such as Zymomonas mobilis, however, are heavily reliant on the oxygenation 

conditions (aerobic or anaerobic) in their growth and propagation. Under aerobic conditions, 

Zymomonas mobilis shows an increased growth yield in comparison with the growth yield 

under anaerobic conditions, and this bacterium is also required to be shaken during the 

propagation stage to keep a homogeneous cell distribution, and this can encourage microbial 

growth. The performance of an airlift-loop bioreactor equipped with fluidic oscillator generated 

microbubbles in bacterial propagation was investigated and discussed in this chapter. Bacterial 

cells in microbubbles-dosed culture were kept growing under aerobic conditions but similarly, 

they were kept well mixed.  

The chapter closes by conducting a design and simulation study on the proposed propagation 

unit to show the advantages of having a microbubble-based propagation technique.  

10.2 Future works and perspective  

Results from this study have shown the advantages of integrating fluidic oscillator driven 

microbubbles generation in various stages of the current project. Following the findings from 

this work, there are several areas requiring further investigations, which can be sum up in the 

following sections:  

10.2.1 Lignocellulosic biomass pretreatment  

Owing to the fact that this research work was limited to wheat straw, it is recommended for 

future study, to investigate other lignocellulosic biomass such as agricultural resides (corn stove 

and bagasse) and herbaceous crops (alfalfa, switchgrass), and also it can be extended to 

municipal and industrial wastes, to improve our understanding of the system robustness and 

versatility. It is also important to conduct comprehensive study on the energy consumption 



Chapter ten                                                                          Conclusions and Future perspective  

 

 

 230 

aspect of microbubble- mediated technologies and draw comparisons with traditional 

pretreatment methods.  

Owing to the results obtained from the microbubble- microbe synergetic approach that shown 

application of microbubbles and Pseudomonas putida for the pretreatment of lignocellulosic 

biomass has improved the hydrolysis of the biomass, showing both physical and chemical 

changes and the consequent production of glucose. To improve the commercial viability of the 

pretreatment technique, therefore, further work is necessary for understanding the key 

physicochemical and biochemical mechanisms underpinning the technique and exploring 

options to improve glucose yield. One option is to increase the surface area of microbubbles by 

further decreasing bubble size (Li et al., 2009a) as cellulose is a composite material with the 

surface structure of 3-5 nm size (George and Sabapathi, 2015). The extent of surface damage 

can vary depending on the bubble surface charge magnitude, bubble size and particle size and 

carrier gas (Li et al., 2009b). Dosing charge-laden microbubbles can play a crucial role in the 

catalysis and cleavage of organic compounds, facilitating the release of sugar from the biomass 

(Mulakhudair et al., 2016).  

The application of microbubble mediated ozonolysis for the higher biomass concentration 

should be explored in the future works. Also, this study is limited of pretreatment 

lignocellulosic biomass under acidic and neutral pHs and thus, it is recommended to investigate 

the ozonation process under alkaline conditions. 

The efficacy of the ozonation process depends on the diffusion coefficient of ozone, which is 

dependent on the gas-liquid contact time and interfacial area (Sakai and Uprichard, 1991). This 

rate relies, however, on diffusion rate of ozone in an aqueous solution (Sakai and Uprichard, 

1991). Traditional ozonation processes are mass transfer limited. To enhance the mass transfer, 

ozone should be introduced to the bulk of liquid as microbubbles with high surface area to 

volume ratio (Kuvshinov et al., 2014). The low-rise velocity of microbubbles and high surface 

to volume ratio can ensure efficient mass transfer (Zimmerman et al., 2009). Microbubbles 

allow higher driving force in terms of mass transfer in the solution (Zimmerman et al., 2009 

and Kuvshinov et al., 2014).   

Given the high glucose concentration used in fermentation processes, increasing both the 

feedstock concentration and capacity is worth exploring. Due to the intensification of 

fermentation by microbubble-microbe synergy and pretreatment of lignocellulosic feedstocks 
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by microbubbles, releasing glucose more effectively, there is great potential to exploit these 

processes industrially.  

Investigating the performance of various species of cellulolytic microbes such as fungi, 

bacteria, yeast and gut cellulolytic organisms would make a valuable contribution to the 

biological pretreatment method and it might be a good replacement to the commercial enzymes 

(Behera et al., 2017). Also, insertion of the cellulolytic genes in the commercially valuable 

microbes such as yeast, would be valuable as the microbial biomass growth is coincidently 

produced during the biological pretreatment method (Chang et al., 2012).  

10.2.2 Inactivation of the microbial pretreatment agent  

Owing to the role played by cellulolytic microbe in the biological pretreatment method, future 

works should explore to enhance the effectiveness of carbon dioxide enriched microbubbles to 

inactivate the cellulolytic microbes. Also, it would be interesting to study the inactivation effect 

on an extended range of microorganisms such as fungi, yeast and algae; however, there are 

some indications that carbon dioxide enriched microbubbles can disrupt the algal cell 

membrane and this might help to release lipids for biodiesel production such as the study done 

by Kamaroddin et al., (2016).  

Also, the connection of this process with the previous pretreatment method should be explored 

to create a simultaneous process for both lignocellulosic biomass pretreatment and inactivation 

of the cellulolytic pretreatment agent.  

10.2.3 Fermentation integrated with in situ separation by microbubble technology   

Owing to the fact that this research work was limited to wild strain of Zymomonas mobilis and 

a selected mutant, it is recommended for future study, to investigate the acetaldehyde 

production from genetically modified strains to improve acetaldehyde production. there are 

several genetic modifications interesting to explore for their acetaldehyde production, which 

are being explored in collaboration with Prof. Uldis Kalnenieks and Dr. Katherine Pappas as a 

part of ongoing ERA-IB grant such as:  

B- Deletion of Alcohol dehydrogenase gene(s)  

The most straightforward way to stop the ethanol accumulation is by a knockout mutation of 

the alcohol dehydrogenase gene (adh), yielding a mutant which preferentially accumulates 

acetaldehyde and the later product can be stripped out using the microbubble technology.  

A- Over expression of NADH dehydrogenase (ndh) 

Z.mobilis respiratory chain competes with alcohol dehydrogenases as both reactions use 

reducing equivalents NAD (P) H as a cofactor. Respiratory chain consumption of NAD (P) H 
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limits the reduction of acetaldehyde to ethanol and thus; more acetaldehyde tends to be 

accumulated. Owing to the fact that this research work was limited to enhance the oxygenation 

process and selecting a mutant with decreased or attenuated alcohol dehydrogenase activity in 

spite of the ethanol yield is still elevated.  On way to rerouting the flux of reducing equivalent 

from alcohol dehydrogenase reaction towards respiration chain is by overexpressing the NADH 

dehydrogenase (ndh) gene in the Zymomonas mobilis selected strain and this can accelerate the 

fermentative catabolism of this bacterium by increasing the glucose consumption rate. 

Coincidently, all the accumulated acetaldehyde can be efficiently removed using microbubble 

technology.  

C- Enhance the diffusibility of acetaldehyde through the cytoplasmic membrane  

Acetaldehyde tends to diffuse poorly across the plasma membrane compared to ethanol, leading 

to its intracellular accumulation. This compound is a polar molecule because it has unbonded 

electrons on the O atom and acetaldehyde is a more polar molecule than ethanol, leading to pass 

slowly through the hydrophobic core of cell membranes. There are some indications that 

acetaldehyde changes the fatty acid composition of gram-negative bacteria differently from the 

changes induced by alcohols including ethanol due to the fact that acetaldehyde is more polar 

molecules and it would be more restricted to the external parts of the phosolipid bilayers. 

Acetaldehyde diffusibility can be enhanced using the facilitated diffusion in which 

acetaldehyde (charged molecule) can be passed through the cytoplasmic membrane without 

directly interacting with its the interior hydrophobic portions (phospholipid bilayer). This 

passage is mediated by carrier proteins in a direction determined by the electric potential across 

the membrane.  

Indeed, the intracellularly-accumulated acetaldehyde might reach several folds higher that its 

level in the fermentation broth and even with the external acetaldehyde stripped out from the 

fermentation broth, the intracellular accumulated acetaldehyde is still a problematic to the 

microbial cells.  

Ultimately, the aim of an engineering project is continuous large-scale production. Following 

the results of this study, subsequent works should be carried out on fed-batch and continuous 

fermentation, and on pilot scale with the aim of scaling up to industrial requirements. 
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Appendices 
Appendix A: Cultural media compositions  

M9 broth medium composition  

Components  Concentration as a percentage  

Sodium Carboxymethyl cellulose (CMC)  1% 

Na2HPO4 0. 12% 

K2HPO4 0.06% 

NaCl 0.01% 

NH4CL 0.02% 

MgSO4.7H2O 2 ml of 1M solution  

CaCL2 1 ml of 1M solution  

Water  Distilled water is used to dissolve components 

and to complete the final volume to 1 litre  

Carboxymethyl cellulose Medium (CMC Medium) composition  

 

Wheat straw Medium (WS Medium) composition  

Components Concentration as a percentage 

Wheat straw   1% 

Yeast extract  0.5% 

MgSO4.7H2O 0.02% 

NH4H2PO4 0.02% 

Agar ( Agar medium) 2% 

Water  Distilled water is used to dissolve components and 

to complete the final volume to 1 litre  

Lignin Medium (L Medium) composition  

Components Concentration as a percentage 

Lignin solution  0.5% 

Glucose  0.01% 

KH2Po2 0.05% 

(NH4)2So4  0.01% 

MgSO4.7H2O 0.05% 

Yeast extract 0.05% 

Water  Distilled water is used to dissolve components 

and to complete final volume to 1 litre 

 

4 % sucrose standard medium (4SSM) composition  

Components Concentration as a percentage 

Sucrose   4% 

Peptone  2% 

Yeast extract 1% 

 Components Concentration as a percentage  

Sodium Carboxymethyl 

cellulose (CMC)  

1% 

Yeast extract  0.5% 

MgSO4.7H2O 0.02% 

NH4H2PO4 0.02% 

Agar ( Agar medium ) 2% 

Water   Distilled water is used to dissolve components  and to 

complete the final volume to 1 litre 
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KH2po4 0.1% 

(NH4)2SO4 0.05% 

MgSO4.7H2O 0.05% 

Agar  ( agar medium) 2% 

Water  Distilled water is  used to dissolve components  

and to complete the final volume to 1 litre 

Acid fuchsin agar composition  

Components Concentration as a percentage 

KH2PO4 3.18% 

Na2HPO4.7H2O 0.88% 

Acid fuchsin 0.02% 

Agar  2%  

Water  Distilled water is used to dissolve components  

and to complete the final volume to 1 litre 

The fermentation medium (FM) composition 

Components Concentration 

Glucose ( hydrolysate)   4% 

Peptone  0.25% 

Yeast extract 1% 

KH2PO4 0.1% 

(NH4)2SO4 0.05% 

MgSO4.7H2O 0.05% 

Water  Distilled water is used to dissolve components 

and to complete the final volume to 1 litre. pH 

will be set to 5.5   

Pre-inoculum medium compsoition 

Components Concentration 

Glucose 50 g 

Yeast extract 10 g 

Water Distilled water is used to dissolve components 

and to complete the final volume to 1 litre. pH 

will be set to 5.5   

Second stage inoculum medium composition 

Components Concentration 

Glucose 50-150 g 

Yeast extract 10 g 

(NH4)2SO4 1 g 

MgSO4.7H2O 0.5 g 

Sorbitol  1 g ( if applicable) 

Water Distilled water is used to dissolve components 

and to complete the final volume to 1 litre. pH 

will be set to 5.5   

Storage medium composition 

Components Concentration  

Glucose 50 g 

Yeast extract 5 g 

Glycerol  200  

Water Water is used to dissolve components and to 

complete the final volume to 1 litre. pH will be 

set to 5.5   

-  This medium will be kept in a freezer at -20℃.  
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RM medium  

Components Concentration  

Glucose 20 g 

Yeast extract 10 g 

K2HPO4 2 g  

Agar (if needed)  15.0 g 

Water Distilled water is used to dissolve components 

and to complete the final volume to 1 litre. pH 

was set to 6   

The synthetic medium (SM) composition 

Components Concentration  

Glucose ( hydrolysate) 20 and 40 g 

NaCl 0.5 g 

Na2HPO4 0.82 g 

KH2PO4 0.95 g 

Trace elements 1 ml 

Metal 44 Solutions 1 ml 

Trace elements solution 

Nitrlotriacetic acid 20 g 

MgSO4 28.9 g 

CaCl2 6.67 g 

(NH4)6MO7.O24 18.5 g 

FeSO4 0.198 g 

Water Distilled water is  used to dissolve components  

and to complete the final volume to 1 litre 

Metal 44 Solution 

ZnSO4 .7H2O 10.95 g 

FeSO4.7H2O 5 g 

Sodium EDTA 2.5 g 

MnSO4.7H2O 1.54 g 

CuSO4.5H2O 0.392 g 

Co(NO3)2.6H2O 0.248 g 

Na2B4O7.10H2O 0.177 g 

Water Distilled water is used to dissolve components  

and to complete the final volume to 1 litre 

Calcium Pantothenate, 0.005 g 

MgSO4 0.12 g 

CaCl2 0.011 g 

NH4Cl 0.534 g 

Water 

 

 

Distilled water is used to dissolve components 

and to complete the final volume to 1 litre. pH 

will be set to 5.5 
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Appendix B: Measurement of ozone concentration using Potassium iodide method   

          Ozone concentration has been measured according to method, which has been proposed      

by Rakness et al., (1996).  

1- Reagents preparations  

A- Unbuffered KI: dissolve 20 g of KI into 1 litre of distilled water. 

B- Sulfuric acid 2N: Mix 56 ml of concentrated sulfuric acid with 946 ml of 

distilled water.  

C- Sodium thiosulfate (Na2S2O3) 1N: dissolve 250 g of sodium thiosulfate in 1 

L of distilled water.  

D- Zinc chorine starch: mix 4 g of soluble starch with a little amount of cold 

distilled water and then disperse a thin starch paste into 100 ml of water 

containing 20 g zinc chloride. The solution is boiled till the volume is 

reduced to 100 ml. Finally, the solution is diluted with distilled water to a 

total volume of 1 litre and is mixed with 2 g of zinc chloride.  

E- Potassium dichromate (K2Cr2O7) 0.1N: dissolve 4.904 g of potassium 

dichromate in 1 litre of distilled water.  

F- Distilled water: conductivity should be less than 10 micromhos/cm. 

2- Methodology  

A- Preparing the standardisation of titrant (0.1N sodium thiosulfate): these 

reagents, which consist of 150 ml of distilled water, 1 ml of concentrated 

sulfuric acid, 20 ml of 0.1N of potassium dichromate, and 2 g of KI are 

mixed togather in 250 ml of Erlenmeyer flask for 6 minutes in the dark. 

Sodium thiosulfate0.1N is utilised to titrate till the yellow colour is almost 

disappeared. One millilitre of the starch indicator solution is added and 

continuous titration until the blue colour is gone. The normality of Na2S2O3 

titrant = 2/ Na2S2O3 used.  

B- Fill the O.1N sodium thiosulfatetitrant in 50nml Class A burette.  

C- Fill unbuffered KI (400 ml) in the gas-washing bottle.  

D- Flow bubble of ozone through glass washing bottle at flow rate 1-2 L/min. 

The better accuracy is obtained when ozone volume is at least 2 litres.  

E- Quickly add 10 ml of the 2N of sulfuric acid after bubbling has stopped.  

F- Transfer the liquid from gas washing bottle to 1 litre of Erlenmeyer flask.  

G- Titrate with 0.1N of sodium thiosulfate till the solution becomes a pale 

yellow.  
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H- Add 5 ml of the starch indicator to Erlenmeyer flask and continue titration 

until the blue colour is gone.  

I- Record the used volume of the titrant.  

J- Calculate the ozone concentration using:  

Ozone concentration (mg/l) = 
24𝑋𝑉𝑡𝑋𝑁𝑡

𝑉
          (Eq. Ι) 

Where V is volume of bubble, Vt is volume of sodium thiosulfate used (ml), 

and Nt is normality of sodium thiosulfate.  

Appendix C: Preparing Zymomonas mobilis biomass standard curve  

Figure 1 describes the correlation of optical density from absorbance reading at 600 and Z. 

mobilis biomass concentration as dry weight (g/L). The optical density at 600 shows increasing 

in the turbidity due to increasing of cell number and density.  

 

 

Figure 1: Calibration curve of absorbance against biomass concentration (g/L). Error bars 

depict standard deviation. 

Figure 2 describes the correlation of the number of Z.mobilis cell (in CFU/mL) with the value 

of optical density from absorbance reading at 600. The number of cell is presented as CFU 

(Colony Forming Unit) which means the number of Z.mobilis cell that grows from a single 

colony.  
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Figure 2: Calibration curve of absorbance against biomass concentration (CFU/ml). Error 

bars depict standard deviation. 

The above two curves were used to work out the concentration of Zymomonas mobilis in the 

fermentation broth as a dry weight as well as CFU/ml. 

Appendix D: Preparing glucose standard curve  

Figure 3 describes the correlation of optical density from absorbance reading at 575 and glucose 

concentration (mg/ml). This curve is used to work out the concentration of glucose in the 

fermentation broth and the dilution was conducted to work out the concentration of glucose 

higher than 10 mg/ml. 

 

Figure 3: Calibration curve of absorbance against glucose concentration (mg/ml). Error bars 

depict standard deviation. 

y = 0.0951x + 0.4024
R² = 0.9923

0.33

0.53

0.73

0.93

1.13

1.33

1.53

0.053 3 11 31 35 50 55 200 300 1000

O
D

6
0

0

CFU/ML ( X 10^5)

y = 0.5823x + 0.2219
R² = 0.991

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 1010.5

O
p

ti
ca

l d
en

si
ty

 a
t 

5
7

5
 n

m
 

Glucose concentration (mg /ml)



Appendices 

 

 

 VII 

Appendix E: Identification of the fermentation products using GC/MS  

The fermentation samples were centrifuged to separate the bacterial cells from the supernatant. 

Refrigerated Centrifuge - Legend RT was set at 5000 rpm for 3 minutes and supernatant (1 µL) 

was injected via manual injection using a 10 μL syringe (Thermo Scientific) into Gas 

chromatography (GC) equipped with a GCMS-QP2010 SE sense mass spectrometer (MS) 

(Shimadzu, UK) chromatograph. The samples were analysed using a DB-1MS capillary column 

(60 m × 0.25 mm I.D., 0.25-m film thickness, Hewlett Packard, USA). The GC/MS was running 

with GCMSsolution, Shimadzu corporation version 4.4 software. The GC/MS method 

employed for the identifying of liquid products is described in Table 1: 

 

 

 

 

 

 

 

 

 

The sample was introduced to the injection port of the GC by injecting 1 μL via manual injection 

using a 10 μL syringe (Thermo Scientific).  Each sample was injected three times and the peak 

areas were averaged. Signal analysis was achieved using GCMSsolution, Shimadzu corporation 

version 4.4 software based on the library built in the system.  

Appendix F: Quantification of acetaldehyde and Ethanol in the fermentation broth and 

condensates  

Acetaldehyde, ethanol and ethyl acetate were analysed with the GC (Shimadzu, UK), equipped 

with FID detector and connected to a Varian Capillary column: CP-Sil 8 CB, model Agilent 

J&W (30 m L×0.32 mm ID×0.1 μm active phase thickness), with a maximum working 

temperature of 400 °C.  The GC was running with Chromeleon 7.2 SR4 software.  In this GC, 

the carrier gas was air, and N2 was used as the make-up gas.  A flow rate of 20 ml min-1 of N2 

Conditions (GC) Setting 

Injection temperature (°C) 250 

Split ratio 50 

Carrier flow rate (ml min-1) 3 

Initial column temperature (°C) 40 

Isothermal time 1 (min) 2 

Ramp rate 1 (°C min-1) 

 

 

3 

Second temperature (°C) 

 

87 

Isothermal time 2 (min)  1 

Ramp rate 2 (°C min-1) 

 

 10 

10 

Final column temperature (°C) 91 

Detector temperature (°C) 250 

Conditions (MS) Setting 

Ion source Temp (°C) 200 

Interface Temp (°C) 305 
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and 350 ml min-1 of air were used to generate the detector flame.  The GC method employed 

for the analysis of liquid products is described in Table 2: 

 

 

 

 

 

 

 

The sample was introduced to the injection port of the GC by injecting 1 μL via manual injection 

using a 10 μL syringe (Thermo Scientific).  Each sample was injected three times and the peak 

areas were averaged.  

Signal analysis was achieved using Chromeleon 7.2 SR4 software based on a calibration curve 

built in the system. Figure 4 shows the calibration curve used to calibrate the GC-FID system.  

 

Figure 4: Calibration curve of peak areas (counts) against. (A) Acetaldehyde 

concentration(mM). (B) Ethanol concentration (mM), used to calculate products concentrations 

in the fermentation broth. 

Appendix G: Quantification of Ethanol in the fermentation broth under anaerobic 

conditions  

The ethanol concentration was analysed with the gas chromatography (Varian CP-3900 gas 

chromatography, UK), equipped with thermal conductivity detector (TCD) and connected to 
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Conditions Setting 

Injection temperature (°C) 200 

Split ratio 150 

Carrier flow rate (ml min-1) 20 

Initial column temperature (°C) 35 

Isothermal time 1 (min) 2 

Ramp rate 1 (°C min-1) 

 

 

10 

Second temperature (°C) 

 

100 

Isothermal time 2 (min)  2 

Ramp rate 2 (°C min-1) 

 

 10 

10 

Final column temperature (°C) 150 

Detector temperature (°C) 250 
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glass column (2.08m x 6.0mm x 3.0mm), with a maximum working temperature of 350°C.  The 

GC was running with Varian chromatography workstation version 6.30.  In this GC, the carrier 

gas was N2 at a flow rate of 20 ml min-1.  The GC method employed for the analysis of ethanol 

under anaerobic conditions is described in Table 2: 

 

 

 

 

 

 

 

The sample was introduced to the injection port of the GC by injecting 0.5 μL via manual 

injection using a 10 μL syringe (Thermo Scientific).  Each sample was injected three times and 

the peak areas were averaged. Figure 5 shows the calibration curve used to calibrate the GC-

TCD system.  

 

Figure 5: Calibration curve of peak areas (counts) against ethanol concentration (%) used to 

calculate the ethanol concentration in the fermentation broth under anaerobic conditions. 

Appendix H: LC-MS/MS Analysis 

To identify the cellulolytic proteins separated on SDS-PAGE by Liquid chromatograph -mass 

spectrometry (MS)/ mass spectrometry, proteins bands ranged from 20-100 kDa (black-labelled 

in figure 4.7) on the SDS-PAGE of wheat straw were chosen. After several washes with ultra-

high purity H2O, bands were excised with a clean scalpel and transferred into LoBind Tubes 

(Eppendorf). Samples were reduced, by 10mM dithiothreitol at 56C for 1 hour, and alkylated, 
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Injection temperature (°C) 150 

Split ratio 100 

Carrier flow rate (ml min-1) 20 
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by 55 mM iodoacetamide for 30 min at room temperature in the dark, before in-gel tryptic 

(Sigma-Aldrich) digestion in a final concentration of 50mM ammonium bicarbonate pH 8 at 

37ºC for 16 hours, with a total of 0.4ug of trypsin in a final volume of 70 ul. Peptides were then 

collected / eluted by rounds of incubation with 100% acetonitrile, then 0.5% formic acid at 

37C for 15 minutes before being vacuum dried and subsequently being solubilized in 

Switchoss Solution (0.1% formic acid, 3% Acetonitrile).  

40% of the material was injected, using a Dionex Ultimate 3000 uHPLC, onto a PepMap100 

C18 2cm x75µm I.D. trap column (Thermo Fisher Scientific) at 5µL/min in 0.1% formic acid, 

2% acetonitrile and 35C in the column oven and 6C in the autosampler. The sample was 

separated, over a 35-minute gradient of increasing acetonitrile from 2.4% up to 72%, in 0.1% 

formic acid, using a 15cm PepMap100 C18 analytical column (2µm particle size, 100Å pore 

size 75µm I.D) (ThermoFisher Scientific) at 250nL/min and 35C. 

The mass spectrometer analyser used was the electron transfer dissociation (ETD) enabled 

ThermoFisher-Scientific Orbitrap Elite, equipped with an NanoSpray Flex Ion ESI source 

(ThermoFisher Scientific). Nanospray ionization was carried out at 1.8kV, with the ion transfer 

capillary at 250C, and S-lens setting of 60%.  MS1 spectra were acquired at a resolving power 

of 60,000 with an automatic gain control (AGC) target value of 1x106 ions by the Orbitrap 

detector, with a range of 350-2000 m/z. Following MS1 analysis the top 20 most abundant 

precursors were selected for data dependant activation (MS2 analysis) using collision induced 

dissociation (CID), with a 10ms activation time, and an AGC setting of 10,000 ions in the dual 

cell linear ion trap on normal scan rate resolution. Precursor ions of single charge were rejected, 

and a 30 second dynamic exclusion window setting was used after a single occurrence of an 

ion. Lock mass was enabled, scanning for the 445.120030 ion. 

The resulting spectra were searched with SequestHTt (ThermoFisher Scientific) against a 

Pseudomonas Putida KT2440.fasta database (obtained from Uniprot), and a decoy database, 

within the Proteome Discoverer 1.4 software package (ThermoFisher Scientific). Full trypsin 

enzymatic specificity was required with up to 2 missed cleavages permitted. Instrument was set 

to ESI-TRAP.  A mass tolerance of 5ppm was used for precursors and 0.2Da for fragment ions. 

Carbamidomethylation of cysteine (+57.021Da) was specified as a fixed modification. N 

terminal acetylation (+42.011Da) and oxidation of methionine (+15.995Da) were specified as 

a variable modification. Peptide-spectral match validation was carried out using the Target 

Decoy PSM validator node, within Proteome Discoverer 1.4. False discovery rates were set at 
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1% (strict) and 5% (relaxed) were used to distribute the confidence indicators for the peptide 

spectral matches. Proteins required a minimum of two peptides with a 95% confidence interval 

or above in order to be reported. 

 


