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Abstract  3 

Abstract 

This thesis investigates innovative wireless backhaul deployment strategies for dense 

small cells. In particular, the work focuses on improving the resource utilisation, 

reliability and energy efficiency of future wireless backhaul networks by increasing 

and exploiting the flexibility of the network. The wireless backhaul configurations 

and topology management schemes proposed in this thesis consider a dense urban 

area scenario with static users as well as an ultra-dense outdoor small cell scenario 

with vehicular traffic (pedestrians, bus users and car users). Moreover, a diverse 

range of traffic types such as file transfer, ultra-high definition (UHD) on-demand 

and real-time video streaming are used.  

In the first part of this thesis, novel dynamic two-tier Software Defined Networking 

(SDN) architecture is employed in backhaul network to facilitate complex network 

management tasks including multi-tenancy resource sharing and energy-aware 

topology management. The results show the proposed architecture can deliver 

efficient resource utilisation, and QoS guarantee. 

The second part of the thesis presents wireless backhaul architectures that serve ultra-

dense outdoor small cells installed on street-level fixtures. The characteristics of 

vehicular communications including diverse mobility patterns and unevenly 

distributed traffic are investigated. The system-level performance of two key 

technologies for 5G backhaul are compared: massive MIMO backhaul using sub-

6GHz band and millimetre (mm)-wave backhaul in the 71 – 76 GHz band.  

Finally, innovative wireless backhaul architectures delivered from street fibre 

cabinets for ultra-dense outdoor small cells with vehicular traffic is proposed, which 

can effectively minimise the need for additional sites, power and fibre infrastructure. 

Multi-hop backhaul configurations are presented in order to bring in an extra level 

of flexibility, and thus, improve the coverage of a street cabinet mm-wave backhaul 

network as well as distribute traffic loads. 
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1.1 Motivation 

Future networks are expected to be richer and more complex than those of today, 

supporting an increasingly diverse range of new applications and services such as 

device-to-device (D2D) communications, Ultra High Definition (UHD) video 

streaming, and cloud remote gaming. It is foreseen that 5G networks will provide 

high data rates and area capacity, reduced end-to-end latency, seamless mobility, and 

lower energy consumption compared to current 4G LTE networks [1]. The ever 

increasing capacity demand together with the introduction of new emerging 

applications is creating a significant burden on the existing networks.  

Denser deployment of infrastructure nodes will be a key enabler to boost the capacity 

of wireless systems [2]. A series of techniques such as coordinated multipoint 

(CoMP), enhanced inter-cell interference coordination (eICIC) and massive 

multiple-input multiple-output (MIMO) have been proposed to aid the small cell 

networks in achieving high capacity and spectrum efficiency [3]. These technologies 

present new challenges for backhaul networks as additional traffic and coordination 

information is needed among the base stations (BSs). Therefore, innovative backhaul 

architectures as well as networking mechanisms are needed to support the future 

flexible and cost effective networks. 
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Although fibre can provide a high-speed and high reliability backhaul to support the 

small cells, installing adequate fibre in every small cell for future networks may not 

be feasible due to the associated high deployment costs as well as operational 

challenges. Instead, wireless backhaul technologies have become a major focus of 

attention due to their high deployment flexibility and cost efficiency. The choice of 

wireless backhaul solutions for small cells depends on a number of factors, such as 

the required network capacity, access node density, data rate requirements, as well 

as energy consumption. Hence, 5G backhaul architecture should embrace a mix of 

technologies that could be deployed and scaled on demand to accommodate various 

use cases.  

Some of the revolutionary technologies can be applied to wireless backhaul 

networks, e.g. the introduction of Software Defined Networking (SDN) to manage 

the network resources, and employing Network Function Virtualisation (NFV) 

technologies to dynamically isolate and configure resources; the adoption of massive 

MIMO techniques to improve the spectral efficiency; as well as the use of millimetre 

wave (mm-wave) band to dramatically increase the bandwidth and therefore the 

capacity of the backhaul network. In addition, the system level evaluation of the 

impact of realistic vehicular traffic distribution on wireless backhaul performance, 

and QoS aware topology management in a highly dynamic backhaul topology need 

to be investigated. 

1.2 Hypothesis 

The hypothesis guiding the research presented in this thesis is as follows:  

“Introducing and exploiting an appropriate level of flexibility in wireless backhaul 

networks can improve network utilisation and user experience, enabling 

improvements in capacity, reliability and latency.”  

Flexibility has become a fundamental requirement for wireless backhaul network and 

will have a significant impact on the design of new backhaul network architectures. 
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The impact of increasing the flexibility in the backhaul network is assessed by 

evaluating the QoS performance of the proposed backhaul architectures in different 

large-scale small cell deployment scenarios.  

1.3 Thesis Outline 

The rest of the thesis is organised as follows:  

Chapter 2 provides a literature review on the established work related to this thesis. 

The use cases and key requirements for 5G are discussed. Small cell networks and 

the associated challenges are then introduced as a key enabler to 5G. It then reviews 

the wireless backhaul technologies including sub 6-GHz, mm-wave and free space 

optics (FSO). Finally, the cloud technologies including C-RAN, NFV and SDN are 

discussed. 

In Chapter 3, a SDN architecture for a 5G dense multi-infrastructure provider 

deployed wireless backhaul network is introduced. The architecture contains a two-

tier controller in a hierarchical setup aiming to offload some of the control 

functionalities from the central controller to a collection of logically distributed, 

dynamically configured, local controllers in order to balance the trade-off between 

scalability and system performance. A multi-tenancy dynamic resource sharing 

algorithm, together with a backhaul link scheduling strategy based on the proposed 

SDN architecture are introduced as case studies. 

Chapter 4 firstly introduces an ultra-dense outdoor small cell scenario with vehicular 

traffic (pedestrians, bus users and car users). It then proposes a mm-wave backhaul 

architecture, and compares it with a massive MIMO backhaul approach whereby the 

upper bound capacity and access network load balancing are considered. 

Chapter 5 presents a novel backhaul architecture where Edge Nodes (ENds) are co-

located with street fibre cabinets to provide a cost-effective and robust mm-wave 

backhaul network for outdoor dense small cells. An analytical framework for 

backhaul link outage and diversity analysis is then introduced. Next, the backhaul 
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path management procedure both in a distributed configuration and in a centralised 

configuration is explained. Finally, a case study is discussed to illustrate the 

feasibility of deploying existing street cabinets to deliver backhaul. 

Chapter 6 investigates various aspects of deploying multi-hop mm-wave backhaul 

network for outdoor small cells including the choice of relay node and the impact of 

full duplex capability. Next, several multi-hop topology management schemes for a 

street cabinet ENd multi-hop network are introduced. The schemes take into account 

traffic load at the access network, handover frequency, network resource utilisation 

conditions and QoS control. 

Chapter 7 presents the conclusions, summarises the orginal contributions and gives 

a number of recommendations for future work. 
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2.1 Introduction 

The responsibility of a backhaul network is to connect access networks to their core 

networks via a wired (e.g. fibre and copper) or wireless medium (e.g. microwave and 

mm-wave). Therefore, the design and optimisation of wireless backhaul networks 
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play a crucial role in future 5G networks. The purpose of this chapter is to provide 

the background knowledge related to this thesis.  

The rest of this chapter is organised as follows: the vision of 5G, its associated 

features and small cell networks are discussed first in Section 2.2. Next, the wireless 

backhaul design considerations are summarised in Section 2.3. Some of the key 

technologies for backhaul network design including C-RAN, SDN, and NFV are 

introduced in Section 2.4 

2.2 Small Cell Deployment for 5G Network 

This section first presents the emerging use cases in 5G era and a set of key 

performance indicators (KPIs) identified by the research initiatives. It then 

introduces one of the key technologies to boost the network capacity – small cells, 

and discusses their associated deployment challenges. 

2.2.1 5G Use Cases and Key Performance Indicators 

The emerging wide range of new applications is a major driving force which 

motivates moving towards 5G systems. UHD video streaming, video conference, 

augmented reality, virtual gaming, intelligent farming, and connected vehicles are 

examples of the services that the 5G system should support [4]. Among these, UHD 

video streaming on mobile devices experiences the most rapid increase [4]. Although 

this use case generally does not have stringent requirement for latency, bandwidth 

and end-to-end user perceived throughput requirements are relatively high. For 

example, 4K and 8K on-demand video streaming can require data rates up to 20 and 

100 Mbps respectively, and they are mainly characterised by a unidirectional 

continuous stream [5]. Real-time services, such as video conference and online 

gaming have also started to gain in popularity. In addition to high data rates, they 

have generic requirements for low latencies due to the conversational nature. 

Machine to Machine communication (M2M) such as smart cities, environmental 
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monitoring and autonomous vehicle control is another trend with billions of devices 

connected anywhere at any time [6]. While these applications have a broad range of 

requirements in terms of capacity, latency and information loss, the common 

challenge is to support a large amount of mobile devices/sensors over a wide area 

without affecting the performance of other services.  

Based on the requirements of the new applications and the ever growing number of 

mobile devices, industrial and research initiatives have identified a set of KPIs [7] 

[8] [1] [9]. Figure 2.1 shows a notable example on the expected enhancement of KPIs 

suggested for IMT-2020 [1].  

 

 

Figure 2.1: Enhancement of key parameters in 5G (directly reproduced from [1]) 

 

Some of the KPIs most relevant to this thesis are described in the following:  

• User perceived throughput measured in Mbps is the experienced data rate 

can be guaranteed for a given use case of a user. 
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• Area traffic capacity is the total amount of traffic capacity of a network in a 

given area and is measured in Mbps/km2 (or Gbps/km2). 

• Latency is the time it takes for a small data packet to be transferred over the 

network from initial generation to final usable reception in ms. 

• Mobility in km/h is the maximum speed between a vehicle and a radio node, 

at which the network is able to support the required QoS. 

2.2.2 Dense Small Cell Networks 

Dense small cell deployments which utilise low transmit power base stations (BSs) 

to provide localised coverage and capacity will be a key enabler to boost the capacity 

and coverage of future networks especially in city centres and other high traffic areas 

[2] [10]. Small cells usually have a coverage range of tens of metres to several 

hundred metres, and are referred to as femto-cells, pico-cells and micro-cells 

depending on the cell sizes and transmission power. They can be deployed both 

indoors and outdoors. A mix of different cell sizes and radio technologies results in 

a heterogeneous network (HetNet). Despite the benefits brought by small cells, there 

are many challenges need to be resolved. 

Interference management 

Interference management is a challenging issue due to the large-scale deployment of 

small cells. One of the key interference management technologies firstly defined in 

3GPP release 10 is known as enhanced Inter-cell Interference Coordination (eICIC) 

[11] [12]. It introduced the concept of Almost Blank Subframes (ABSs) and Cell 

Range Expansion (CRE) to reduce the inter-cell interference. ABSs sent by a macro 

eNodeB only contains reference signals but no data traffic, so that a pico/femto cell 

can send its data traffic to the UEs typically in the CRE region at a much higher data 

rate during the ABS periods.  
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Another emerging state-of-art technique for interference management is Coordinated 

Multipoint (CoMP) transmission and reception which can also improve the spectral 

efficiency and cell edge throughput [13] [14]. Unlike the traditional settings where a 

user equipment (UE) is connected to a single cell at a given time, a cooperating set 

consisting of geographically separated nodes can be used in CoMP to transmit data 

to a UE simultaneously. This technique give rise to the new concept of virtual cells, 

meaning that the traditional cell boundary is eliminated, and the UEs can be served 

by one or several access nodes to achieve an always cell-centre experience. A 

preferred set of ANds for a UE would form a virtual cell to track the UE and provide 

a similar experience throughout the entire network. In the later chapters of this thesis, 

this advanced CoMP technique is assumed in the access network to allow for a 

continuous user experience envisioned in future networks.  

3GPP has categorized CoMP schemes into the following mainly two categories 

depending on the amount of shared user data and the level of scheduling [15].  

• Joint Processing (JP): The data packets need to be available at all the 

coordinated points. The most promising implementation of JP is Joint 

Transmission (JT). In JT, multiple points can jointly transmit or receive the 

same data to/from UEs simultaneously. The signals are combined at the 

receiver in order to improve SINR gain. This technique requires the 

exchanging of channel state information (CSI) and user data among 

coordinated points, which leads to increased traffic in backhaul networks. In 

addition, latency and synchronization requirements are very tight. For 

example, for multi-user MIMO with a JT scheme, the UE perceived 

throughput gain with a backhaul delay of 15 ms is 26.6% less than the one 

with zero backhaul delay. Another form of JP is Dynamic Point Selection 

(DPS)/Muting. In this scenario, only one transmission point in the 

cooperating set can transmit data to a UE on a given time-frequency resource. 

The system can choose the most suitable transmission point and resources to 

convey the data. 
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• Coordinated Scheduling/Beamforming (CS/CB): The user data is available 

only at one coordinated point. Only CSI and scheduling information may be 

exchanged among coordinated points. CS/CB is an effective approach to 

minimise interference. In CS, transmission points and resources for the users 

in each time slot are carefully scheduled to reduce the unnecessary 

interference. In CB, transmit power and beamforming weights for each UE 

set are calculated to maximise the SINR and reduce inter-cell interference. In 

the later chapters, perfect coordinated beamforming is assumed in the access 

network, i.e., a data traffic flow is available and will be served from only one 

of the access nodes from the coordinated points. 

The backhaul capacity required for the networks with CoMP-JP increases linearly 

with the cooperating cluster size. When high data rate backhaul (fibre) is available, 

and the processing is centralised to a single entity, which is essentially a C-RAN 

architecture, CoMP is able to achieve a tight coordination. On the other hand, if the 

capacity of backhaul is limited, the high signalling overhead in wireless network may 

result in outdated CSI which can significantly reduce the efficiency of CoMP. In [16], 

possible solutions to alleviating backhaul bottleneck problem was discussed. Mode 

switching between CoMP-JP and CoMP-CB/CS based on backhaul constraints can 

improve overall throughput. This is because in high traffic and limited backhaul 

scenario, the performance of CoMP-CB/CS is better that that of CoMP-JP and vice 

versa. In [17], the impact of different backhaul topologies and clustering levels on 

the feasibility of CoMP was analysed. The results show that a more densely 

connected backhaul network can improve the cluster feasibility, at the expense of 

higher costs. Sometimes, even small wireless clusters are not feasible due to the 

constraints of backhaul network. Hence, they further proposed a backhaul network 

pre-clustering scheme which targets to exclude the BSs that is unable to participate 

in the data transmission based on the current conditions of backhaul. The signalling 

overhead can be significantly reduced, and the savings are between 55% and 90%. 
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User association 

User association is another issue which has drawn much attention in the wireless 

communication research community. The existing user association schemes use a 

mix of criteria such as link quality (Reference Signal Received Quality), available 

bandwidth and traffic type for improved network performance and low service 

interruption probability [18] [19] [20]. Two realistic factors have often been 

neglected: backhaul bottleneck and user mobility.  

Most of the researchers have assumed a reliable backhaul with infinite capacity and 

negligible latency. However, the emerging wireless backhaul solutions for small 

cells are far from ideal due to the limited bandwidth and reliability issues. Therefore, 

in addition to the traffic load and interference environment in the access network, 

new user association criteria are required taking into account backhaul capabilities 

in terms of capacity, latency. Examples addressing the backhaul issues can be found 

in [21] [22]. The authors of [21] presented a distributed load balancing user 

association scheme for fibre-wireless HetNets taking into account backhaul 

reliability and delay. In [22], a joint scheduling problem for user rate maximisation 

was investigated for a two-tier HetNet with backhaul bandwidth constraint. 

Mobility management is essential in order to provide a seamless uniform service 

when users move in or out of small cells. Most of the state-of-art algorithms for 

handover decision is received signal strength based. They compare the received 

signal strength of the serving and target cells directly or with a hysteresis margin to 

minimise the handover probability and ping-pong effect. In LTE, the UE measures 

the signal strength as an RSRP (Reference Signal Received Power) value which is 

the average power of all resource elements [23]. Another parameter can be calculated 

from this value is called Reference Signal Received Quality (RSRQ). It is the ratio 

between the RSRP and the Received Signal Strength Indicator (RSSI). RSSI is the 

total received wideband power including interference and thermal noise. These 

schemes perform well in conventional macro cell networks since the coverage of a 

macro cell is normally up to several kilometres. However, when a mobile user moves 

between small cells, handovers will be much more frequent even for low speed users 
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because of the much smaller coverage of each cell. The frequent handovers can cause 

significant signalling load to the core network entities. Hence, location and speed 

based handover decision algorithms have become increasingly popular in the small 

cell research communities. For example in [24], the impact of user mobility in multi-

tier heterogeneous network was investigated. Then a speed dependent bias factor was 

proposed in the tier association scheme to improve the coverage probability and the 

overall network performance. In [25], a reactive handover decision policy, based on 

the prediction of user movement and target handover cell, is proposed in order to 

eliminate frequent and unnecessary handovers. 

2.3 Wireless Backhaul Design Considerations 

In order to support the discussed new features in 5G, and roll-out a large number of 

small cells, more cost-effective and easy to install backhaul solutions are needed. In 

this section, wireless backhaul technologies and their deployment options are 

presented. 

2.3.1 Wireless Backhaul Technologies 

There are comprehensive studies that describe the evolution of backhaul, including 

wired and wireless backhaul technologies such as [26] [27]. With regard to the 

medium of backhauling, while fibre has been considered as an ideal backhaul 

solution that is able to provide almost unlimited capacity and high reliability, 

installing adequate fibre in every small cell for future networks is not feasible due to 

the associated cost issues as well as operational challenges. Instead, wireless 

backhaul technologies have become a major focus of attention due to their high 

deployment flexibility and cost efficiency. There are multiple candidate frequency 

bands for wireless backhaul, including sub-1 GHz band, 1-6 GHz band, and above 6 

GHz band especially mm-wave band. Besides, Free Space Optics (FSO) has also 

been considered as a promising technology for wireless backhaul [28].  
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2.3.1.1 Sub-1 GHz band 

Frequency bands below 1 GHz have significant potential in providing broadband 

services to underserved rural communities. Due to the favourable propagation 

characteristics, they can cover a wider area compared to those at higher frequencies. 

In particular, Television White Space (TVWS) technology is a promising low cost 

solution for data provision, which utilises the unused TV broadcasting spectrum on 

a secondary basis without causing harmful interference to the primary TV receivers 

[29]. Interference management is an important aspect in developing a TVWS based 

network. A classic approach to obtain the channel usage information is to use a geo-

location data base [30]. Unlike conventional cellular bands, TVWS bands have strict 

sharing criteria (e.g. transmit power) with the primary users (TV system). This is a 

limiting factor for small cell backhaul deployment.  

2.3.1.2 1-6 GHz band 

The 1-6 GHz band has been widely deployed in cellular mobile systems because of 

its propagation characteristics that can be used in non-line-of-sight (NLOS) point-

to-point and point-to-multipoint scenarios. The largest contiguous spectrum 

allocated for IMT is 200 MHz in the 3.5 GHz band [31]. This frequency band is 

chosen in the sub-6 GHz wireless backhaul deployment scenario in this thesis. As 

the rest of the frequency bands of this range are generally in high demand, it is 

difficult to provide the capacity and QoS required by 5G. This is why extensive 

research has been focusing on increasing the spatial spectral efficiency of the 

traditional frequency bands.  

In the FP7 BuNGee project, a dual-hop architecture was proposed in order to provide 

a capacity density of 1 Gbps/km2. A series of emerging technologies have been 

applied to the backhaul network to improve the spectral efficiency and resource 

utilisation, including the use of advanced antenna array and in-band backhaul, 

whereby the access network spectrum can also be used by backhaul. Some of the 

work in this thesis is based on the BUNGee backhaul architecture which will be 

discussed in detail in Chapter 3. 
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One of the key technologies to drastically increase the spectral efficiency is massive 

MIMO. It proposes to use a much larger number of antennas at the base stations than 

its serving devices and aggressive spatial multiplexing techniques to achieve high 

capacity [32]. Although originally proposed for access networks, the authors of [33] 

applied massive MIMO technology to in-band wireless backhaul for small cells. The 

results demonstrated that higher throughput can be expected with the massive MIMO 

technique.  

2.3.1.3 Millimetre-wave Band 

Millimetre-wave (mm-wave) in bands 60 GHz and 70 - 80 GHz are very promising 

Line-of-Sight (LOS) wireless backhaul solutions for future 5G networks, as they can 

offer abundant spectrum, therefore multi-gigabit data rates. In addition, “license 

exempt” or “light licensing” is possible in these bands, which can ensure efficient 

frequency reuse, allowing a significantly lower spectrum cost. For example, apart 

from 3.5 GHz band, BuNGee architecture also promoted to adopt mm-wave band for 

backhaul to achieve higher capacity [34]. 

High attenuation caused by oxygen absorption in 60 GHz and rainfall in 70 -80 GHz 

limits the propagation range. However, the total attenuation by atmospheric gases at 

sea level between 71 – 86 GHz is between 0.37 – 0.5 dB/km, which is negligible 

considering the dense deployment of small cells [35]. Rain attenuation is the 

dominant concern for mm-wave propagation. The rainfall rate in the UK that is 

exceeded for 0.01% of the average year as specified by ITU-R P.837 is 35 mm/hr, 

and this is categorised as very heavy rain [36]. The rain attenuation in this rainfall 

rate calculated according to ITU-R P.838 is between 14 – 15 dB/km [37]. For a 100 

m backhaul link, the attenuation due to rain is approximately 1.5dB. This is not an 

insurmountable challenge compared with the path loss over distance. Intensive work 

on the propagation modelling of mm-wave, through field measurements has been 

presented in [38]. Measurements showed that mm-wave in LOS environments has 

almost identical path loss as free space.  
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Two types of mm-wave link failure are usually considered because of its propagation 

characteristics: weather based outages and beam misalignment. The current attempts 

to increase the reliability of mm-wave links include using a microwave link as a 

backup link, deploying multiple nodes to provide link diversity, and multi-hop relay 

backhauling [39] [40] [41]. Using hybrid links which combine microwave and 

millimetre wave transceivers can improve reliability of the network when the 

millimetre wave links suffer from outages caused by rain or obstacles. However, 

switching to microwave wave when a millimetre wave link fails may not be able to 

support the capacity and QoS required in dense urban areas. These existing methods 

also assume several candidate links/paths are already available and focus on the 

link/path selection algorithms. The feasibility of deploying the backhaul aggregation 

nodes is often neglected. Due to the narrow antenna beamwidth, millimetre wave 

links are prone to misalignment outages caused by wind. The impact of wind sway 

on mm-wave beamforming misalignment has been investigated in [42]. It is shown 

that beam tracking on the order of milliseconds is required to overcome outage. 

Beam steering allows beam alignment during the initial stage and is resilient to the 

misalignments due to wind.  

2.3.1.4 Free Space Optics 

FSO uses laser light to transmit data through free space propagation [28]. FSO 

systems are able to provide point-to-point high bandwidth links without licensing 

requirements, and the installation and maintenance costs are relatively low. The 

transmission windows centred on the wavelengths of 850 nm and 1550 nm are 

suitable for FSO transmission because of their low attenuation, as well as the 

inexpensive transmitter and detector components. However, systems operating at 

wavelength around the 1550 nm band have lower risk in terms of the eye safety 

which allows approximately 55 times more transmit power than those at 850 nm [43]. 

In addition, wavelength division multiplexing (WDM) FSO is also feasible for 1550 

nm. 

The major disadvantages of the FSO are the vulnerability to certain weather 

conditions such as fog and snow. Although 99.999% availability is generally 
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achievable for FSO links ranges less than 140 m as suggested in [44], it requires a 

considerable link margin. For the dense fog situation for example, at least a 31.5 dB 

link margin needs to be included in the link budget. This may not be a cost-effective 

solution as a higher transmit power is needed. Besides, it is difficult to determine the 

availability of the FSO system based on the worst possible weather conditions which 

only apply to certain areas. Hybrid architectures of FSO and mm-wave have been 

proposed to increase availability because of their complementary propagation 

characteristics, but such benefits are only realised over long length links where rain 

and fog attenuation is significant. In a dense deployed small cell architecture, the rain 

attenuation at mm-wave is not a significant issue. Hence introducing FSO to the 

system may not able to bring benefits in terms of availability and energy efficiency. 

However, in the case where a future mm-wave access network is deployed, where 

increased bandwidths and data rates are being proposed, a FSO backhaul would be 

one way of providing the high link capacities needed to support this increased 

capacity. 

2.3.2 Topology 

The next generation wireless backhaul networks also need a rethink of the topologies, 

and the impact of the available options needs to be determined. In [45] and [46], tree 

topology which is a combination of star and chain topologies, and ring topologies for 

wireless backhaul were compared in terms of capacity, resiliency, latency, and costs. 

The mentioned topology options are shown in Figure 2.2. A mesh topology whereby 

each node in the network is interconnected with one another was also analysed. It 

can offer better robustness to traffic fluctuation and availability compared to the 

other two due to the path redundancy. However, these benefits come with associated 

costs, complexity of topology management, and scalability issues. Hence, there is no 

clear cut of which topology is superior as the deployments of the wireless backhaul 

are usually based on a combination of factors, such as geographical and business 

requirements. 
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Figure 2.2: Backhaul topology options (directly reproduced from [46]) 

2.3.3 Green Wireless Networks 

The densification of the network driven by increasing traffic volumes can lead to 

increased CAPEX and OPEX. Therefore, energy efficiency has become an important 

research topic. New designs of 5G need to reduce the energy consumption by 

considering all layers, from physical components up to network level. 

For hardware components, novel active antennas for MIMO can efficiently improve 

the data rates or reduce the transmit power [47]. Energy efficient power amplifiers 

and baseband processing are needed, since they contribute to the highest energy 

consumption of the BS. Innovative radio resource management (RRM) solutions and 

MAC protocols that can increase the utilisation of resources are also required. In [48] 

for example, variable power/bandwidth modulation schemes based on different 

spectrum occupancy probabilities are used in order to improve bandwidth efficiency 

and therefore reduce the energy consumption. From a network level perspective, 

since the traffic of mobile networks is usually non-uniform in both time and spatial 

domain, it is worth introducing novel network management paradigms. BS 

cooperation techniques such as CoMP we mentioned in Section 2.3.1 can be used to 

exploit the transmission diversity. Self-organizing capability is crucial for 

maximizing the resource utilisation in future complex network architectures. Energy 

efficient topology management strategies have been investigated on a large scale in 

wireless access networks. In [49], BSs can be activated or deactivated based on local 

traffic conditions, so that the energy consumption can be reduced. 

In [50], the overall network power consumption under different backhaul 

architectures has been assessed. The results showed that the power consumption of 
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the backhaul network can reach up to 50% of that of the wireless access network, 

and deployments of macro base stations (BS) with femto BSs being more cost-

effective than a macro-cell architecture only in very high traffic scenarios. Since 

backhaul networks play a key role in terms of the overall energy consumption, joint 

energy efficiency optimisation of access network and backhaul network need to be 

addressed. 

2.4 Cloud Technologies for 5G Backhaul 

The emerging diverse traffic patterns in small cells, both spatial and temporal, 

together with the increasing need in processing power, make the cloud technologies 

very attractive for facilitating complex network management tasks [51]. Backhaul 

networks need to adopt new flexible management mechanisms as the rest of the 

system in order to improve the flexibility and resource utilisation of the network. In 

this section, revolutionary technologies including centralised radio access network 

(C-RAN), NFV and SDN are introduced.  

2.4.1 Cloud-RAN 

By centralising baseband processing functions, C-RAN allows a full joint processing 

version of Coordinated Multipoint (CoMP) transmission to be readily implemented, 

which can significantly improve system performance and resource utilisation. The 

network between the remote radio heads (RRHs) and the baseband unit (BBU) 

carries digitised signals: for this reason, it is referred to as fronthaul rather than 

backhaul as in the conventional Distributed–RAN (D-RAN) architecture (as shown 

in Figure 2.3). However, high data rates and extremely low latency are required for 

fronthaul. In contrast to distributed-RAN (D-RAN) architectures, where BBUs are 

located close to antennas, C-RAN is able to reduce CAPEX and OPEX because of 

the simplified hardware and management control. It enables joint processing and 

scheduling, increased BBU utilisation, and reduced power consumption due to the 

enormous centralised functionalities and flexibility introduced to the networks. 
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Besides, advanced techniques, such as CoMP, eICIC, virtualisation, and multi-RAT, 

can be supported by C-RAN. 

 

 

Figure 2.3: Example D-RAN and C-RAN Architectures [51] 

 

In [52] and [53], it has been predicted that the maximum statistical multiplexing gain 

achieved in C-RAN by dynamically allocating BBU resources across the network 

compared to a D-RAN configuration is 4 based on their mobile traffic forecast. 

Although the result was obtained under the assumptions of specific proportion of 

different types of BSs, traffic distribution and modelling, and scheduling algorithms, 

it demonstrated the potential of C-RAN as a promising solution to CAPEX and 

OPEX reduction. After adding TCP/IP and Ethernet protocol processing, the 

multiplexing gain can reach up to 1.6. The authors also pointed out that C-RAN is 

more advantageous in a densely deployed urban area than in a sparsely populated 

one. 

In [54], the Next Generation Mobile Networks (NGMN) alliance described possible 

deployment scenarios for C-RAN, followed by main functionalities and 
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requirements. They then presented some reference C-RAN solutions to facilitate 

different network conditions. For example, it may not be economical to deploy a full 

mesh C-RAN architecture as a network grows, since the multiplexing gain achieved 

from resource sharing becomes marginal. Instead, a hierarchical BBU architecture, 

where the BBUs were split into several BBU sub-clusters, was encouraged due to 

scalability and flexibility reasons. They also illustrated that the connection between 

fronthaul networks could be in a centralised or distributed fashion. For the fronthaul, 

which is the link between RRHs and BBU pool, topology suggestions depending on 

different levels of resource availability were discussed. Last but not least, they 

suggested how traditional RAN could gradually evolve to C-RAN, which include 

three main phases: BBU centralisation, BBU pooling and Virtual RAN.  

High data rates are required for fronthaul, which is why the existing C-RAN 

architectures all rely on fibre. Approximately 10 Gb/s for TD-LTE with 20 MHz 

bandwidth is needed [55]. In addition, the interconnection between BBUs requires 

low latency and high reliability. As the size of C-RAN becomes bigger, more data 

needs to be backhauled, and more processing needs to be performed within the cloud. 

To strike a balance between centralised processing in C-RAN and decentralised 

processing using traditional backhaul, the iJOIN project has introduced the concept 

of RAN-as-a-Service (RANaaS), which enables flexible RAN functionality split 

between radio access point (RAP) and central entity based on the actual demand and 

conditions of the network [55]. This is particularly beneficial for backhaul networks 

as it is difficult to find a backhaul technology that is suitable for all the deployment 

scenarios. Heterogeneous backhaul solutions are needed. With a RANaaS platform, 

the system can adjust the functionality split according to the availability of backhaul 

resources as well as data rate and latency requirements. The challenges are to develop 

flexible Medium Access Control (MAC) protocols and radio resource management 

algorithms that can adapt to fluctuating backhaul requirements and access load 

conditions. 
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2.4.2 Network Virtualisation 

In [56], a unifying definition of network virtualisation is given as:  

Network virtualisation is any form of partitioning or combining a set of network 

resources, and presenting (abstracting) it to users such that each user, through its 

set of the partitioned or combined resources has a unique, separate view of the 

network. Resources can be fundamental (nodes, links) or derived (topologies), and 

can be virtualized recursively.  

With network virtualisation, the networks can achieve increased resource utilisation, 

reduced deployment and operational investment costs, and more flexibility in 

network management. While the concepts of network virtualisation were originated 

from wired networks, such as overlay networks, Virtual Private Networks (VPNs), 

and Virtual Sharing Networks (VSNs), there are good reasons to consider wireless 

network virtualisation [56] [57]. The overall costs can be reduced by sharing the 

network. According to [58], for urban dense area, sharing the wireless network can 

reduce 25% - 48% of CAPEX, and 16% - 18% of OPEX depending on different 

sharing configurations. The sharing elements could be antennas, BSs, Radio 

Network Controllers (RNCs), backhaul, or spectrum. The authors also stress that the 

spectrum sharing contributes the most to the difference of OPEX saving. Besides, 

network virtualisation opens the door for small companies to lease virtual networks 

with flexible and customized services without huge investments. Furthermore, it is 

more convenient to evaluate new technologies in the system due to the isolation 

among the virtual networks. 

In terms of the business roles of wireless network virtualisation, there are usually 

two types of entities in the network: infrastructure providers and service providers. 

An example of this model is shown in Figure 2.4, where the infrastructure providers 

own the physical network resources and provide an interface that can create virtual 

networks. On the other hand, service providers lease resources from one or more 

infrastructure providers, and offer end-to-end services to the end users, and do not 

necessarily have the knowledge of the underlying physical architecture. The model 
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can be further split up into more fine-grained models [57-60]. In 4WARD project for 

example, three roles including Infrastructure Provider, Virtual Network Provider 

(VNP), and Virtual Network Operator (VNO) are used [60]. With the more specific 

roles, new use scenarios can be supported, and the providers may have more 

flexibility in choosing different business strategies.  

 

 

Figure 2.4: An Example of Wireless Network Virtualisation Model 

 

Based on different types of resources that can be virtualised and the levels of 

virtualisation, three main perspectives of wireless network virtualisation are 

presented in [61]: flow-based virtualisation, protocol-based virtualisation, and 

spectrum-based virtualisation. In flow-based virtualisation, the virtualized resources 

could be radio resource blocks or traffic/ packet flows between uplink and downlink, 

hence more flexible and efficient flow provisioning can be achieved. However, it 

requires all the virtual slices share the same wireless protocol stack. Protocol-based 

wireless virtualisation on the other hand, focuses mainly on MAC/PHY layer, where 

multiple wireless protocols, such as MAC decision and configuration logic, PHY 

processing blocks can be virtualized. In this paradigm, different protocol stacks are 

allowed to run on the same radio hardware. In spectrum-based wireless virtualisation, 

Physical	BS2Physical	BS1

Virtualized	Networks

UE UE UEUE UE UE

InP	1 InP	2

VN	1
SP	1

VN	2
SP	2



Chapter 2. Literature Review 38 

dynamic spectrum allocation and RF frontend virtualisation are addressed. It 

involves cognitive radio, dynamic spectrum access techniques, as well as RF 

frontend circuit enhancements. In the case study presented in Section 3.4 of this 

thesis, both spectrum and backhaul infrastructures are virtualised to cater for 

different service providers.  

Several wireless network virtualisation proposals have been introduced in the last 

few years. A LTE wireless virtualisation framework was proposed in [62], which 

shows better performance and resource utilisation can be achieved by adding a 

“Hypervisor” on top of the physical resources allowing dynamic spectrum sharing 

among virtual service providers. The Hypervisor is responsible for virtualizing the 

LTE base stations, as well as scheduling the air interface resources among different 

virtual operators. Despite the benefits this framework can bring, there are still some 

issues: the coordination among service providers, the scalability of the framework, 

and the impact of extra signalling overhead. 

In [63] and [64], a network virtualisation substrate (NVS) based on a WiMAX test-

bed was presented. It is essentially a hierarchical scheduler which decouples the flow 

scheduling from the slice scheduler in order to facilitate different resource 

provisioning (resource-based and bandwidth-based) requirements simultaneously. It 

provides a higher level of flexibility and customization in slices. Here, a “slice” 

means a virtual network which consists of a collection of flows. The authors also 

analysed the trade-offs between the level isolation and virtualisation. Higher level 

virtualisation can achieve increased resource utilisation, but reduced isolation and 

flexibility, whereas virtualisation at a lower level leads to better isolation at the cost 

of resource utilisation efficiency.  

Although many advantages of wireless network virtualisation are identified, there 

are still some challenges to be addressed for 5G [56] [57] [59] [61]. The first one is 

the control framework. It should have a well-defined common interface with high 

flexibility and programmability that is able to coordinate among multiple service 

providers over different wireless technologies. High level control of wireless 

resources can offer efficient design, but also increased system overhead and latency. 
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Hence, it is important to balance the trade-off of flexibility and performance, all 

taking the QoS requirements from service providers into account. The second one is 

resource allocation fairness. Due to the variability of air interfaces, topologies, user 

mobility, power control, and interference of different service providers, it is more 

complicated to ensure the fairness of resource allocation in wireless network 

virtualisation compared to the wired ones. Robust resource scheduling and allocation 

mechanisms are needed to accommodate different provisioning requirements. 

Furthermore, due to the complex interference environment of wireless network, the 

isolation among different service providers is not straight-forward. The solution to 

wireless network virtualisation should be resilient to the fluctuation of channel 

conditions and traffic. 

2.4.3 Software Defined Networking 

With the conventional proprietary and distributed integrated infrastructure, 

launching new services and managing the networks are becoming exceedingly 

challenging for network operators, since they require significant investment in 

network deployments and fast reactions to network-wide dynamic changes with low-

level vendor-specific configuration [65]. The characteristics of SDN, such as a global 

network-wide view, unified network management and programmability, make it a 

suitable candidate for these new network management tasks. One of the main 

benefits of SDN is enhanced capability of deploying different devices and services. 

With the decoupled unified control plane, SDN is able to dynamically reconfigure 

the network from a centralised entity [66]. SDN can also improve the resource 

utilisation as well as network performance due to the ability of acquiring global 

network status instantaneously. Furthermore, the joint intra-tenant and inter-tenant 

control of multi-tenancy is possible with the help of SDN. Recently, researchers have 

applied SDN concepts to various scenarios, such as network virtualisation, and 

quality of experience (QoE) guarantee [67] [68]. The most common scenario of SDN 

is network virtualisation. OpenFlow for example, can be used to build virtual 
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networks by dynamically configuring the forwarding rules in physical and virtual 

switches.  

In [68], the authors envisioned that through the use of software defined wireless 

networking (SDWN) technology, an API may be able to dynamically change the 

traffic paths and priorities based on the network conditions and the agreements 

between infrastructure providers and service providers. It can also be aware of the 

user preference, as well as the service experienced by the user, and then make 

personalised adjustments according to the requirements. They then proposed a high-

level SDN architecture for wireless networks. Key interfaces for control plane 

functions regarding resource sharing of backhaul/access networks, third party 

applications, and programmability on the mobile node were defined. In [69], a SDN 

architecture for co-primary spectrum sharing was presented, which abstracts the 

control functionalities of all the base stations into one centralised entity. A SDN-

controlled topology-reconfigurable optical mobile fronthaul (MFH) architecture was 

proposed in [70], which can be used for bidirectional CoMP communication in 5G. 

With the centralised SDN-controller and tuneable switching, only one BBU is 

needed to send/receive the same message to/from RRHs for CoMP, whereas multiple 

BBUs are needed in the X2 interface with legacy distributed control and fixed 

topology. Computational complexity as well as latency can be reduced dramatically 

with the presented architecture when CoMP with massive MIMO is enabled in the 

system. 

Most SDN architectures we mentioned above utilise centralised SDN controller, and 

make decisions reactively which raises scalability concerns, moreover, some 

functionalities may be less time-critical, and just need a global view of the network. 

A multi-controller setup can be used [71] [72]. Kandoo use a two-level controller 

architecture consisting of a root controller dealing with the requests that need 

network-wide view, and a collection of local controllers processing time-critical 

requests [73]. Another concern of the all-centralised architecture is the resiliency to 

single point failures. A fast recovery mechanism is a must for the control applications. 
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2.5 Conclusion 

This chapter has provided the background information related to this thesis. The use 

cases and key requirements for 5G have been discussed. Small cell networks were 

then introduced as a key enabler to 5G. The challenges in deploying a small cell 

network including interference management and user association have also been 

discussed.  

Wireless backhaul technologies using different frequency bands and topologies have 

been summarised. Furthermore, the energy efficiency of wireless networks has been 

discussed. Enabling technologies to reduce the energy consumption have been 

reviewed.  

Innovative networking technologies including C-RAN, network virtualisation, and 

SDN have been extensively reviewed. To enable those techniques, high data rate, 

low latency, and scalable wireless backhaul solutions are needed.  
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3.1 Introduction 

As discussed in Section 2.4, new flexible management mechanisms need to be 

adopted in backhaul as the rest of the network in order to improve the flexibility and 

resource utilisation of the overall system. To this end, SDN has emerged as a 

promising paradigm to facilitate new network management tasks. Most of the SDN 

architectures for wireless networks as discussed in Section 2.4.3 utilise an all-

centralised architecture which raises scalability concerns. This is particularly 

challenging if such networks are deployed across different infrastructure providers, 

as there will be additional coordination messages and signalling overhead.  

In this chapter, a two-tier dynamic controller SDN architecture for wireless backhaul 

networks is applied to the backhaul network in order to strike a balance between 

scalability and system performance. Two use cases are presented using the SDN 

concept to address two increasingly popular research area in wireless backhaul 

network: multi-tenancy dynamic resource sharing with QoS guarantee and energy-

aware topology management for backhaul networks. These applications of the SDN 

architecture are not meant to be exhaustive and can be extended to other network 

management tasks discussed in the later chapters.  

The rest of the chapter is organised as follows: in Section 3.2, the proposed two-tier 

controller SDN architecture is introduced. The detailed backhaul network model is 

discussed in Section 3.3. In Section 3.4, two use cases leveraging the concept of SDN 

are presented. Finally, conclusions are given in Section 3.5. 

3.2 Software Defined Networking Architecture with Two-

tier Dynamic Controllers 

SDN proposes to decouple the control plane from the data plane enabling a 

centralised control over the entire network. Figure 3.1 shows a high-level view of a 



Chapter 3. Software Defined Networking for Wireless Backhaul Networks 44 

widely accepted SDN reference model [66]. It has three layers: an infrastructure layer, 

a control layer, and an application layer, described as follows: 

• Infrastructure Layer. This layer consists of SDN enabled switches and network 

devices. Each switch processes the incoming packets based on a flow table 

defined by the controllers. It also collects the network usage statistics such as 

traffic load and topology information, and then reports them back to the 

controllers via a south-bound interface which is responsible for the 

communication between the controllers and the switches.  

• Control Layer. A centralised controller is responsible for controlling the network 

behaviour via a standardized protocol such as OpenFlow, which is a widely 

adopted mechanism for SDN technology, whereby the switches can be 

programmed by open application program interfaces (APIs) [66] [71]. The 

central controller is located between the infrastructure layer and application 

layer. The responsibilities of this layer are reporting network status and deciding 

forwarding rules. 

• Application Layer. This layer allows third parties to program control algorithms 

using the APIs provided by the controller, and then push the policies to the 

controller via a northbound interface. 

In order to alleviate the scalability problem at the central controller, especially for a 

densely deployed network, we further split the control layer of the reference model 

into two hierarchical tiers: a logically centralised controller and a collection of 

reconfigurable local controllers as shown in Figure 3.2. The reconfigurable local 

controllers act as supplements to the systems that are required to scale down the 

control burden from the central controller if necessary, and can be disabled 

depending on the system requirements. This enables offloading the control 

functionalities, which require fast reactions (low latency) but not necessarily a global 

view of the network, to the local controllers. They reside near to the base stations 

separately or logically partitioned by the central controller based on the scalability 

requirements, and are periodically reconfigured to control and record the network 
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behaviours in the specific assigned areas. The central controller deals with the 

requests that are less time-critical yet need network wide knowledge. It provides the 

necessary network status to, and obtains the network policies from, the application 

layer using a northbound interface. 

 

 

Figure 3.1: SDN reference model 

 

 

Figure 3.2: SDN architecture with two-tier controllers 
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3.3 Network Modelling 

The proposed SDN architecture is applied to the wireless backhaul network derived 

from the BuNGee architecture proposed in the FP7 Beyond Next Generation Mobile 

Broadband project, which has been considered as a future 5G architecture providing 

a capacity density of 1 Gbps/km2 [34]. The details of the network modelling are 

described in the rest of this section.  

3.3.1 Network Architecture 

In order to achieve the high capacity density promised in 5G, a dual-hop system as 

illustrated in Figure 3.3 is used as the network architecture in this chapter and 

throughout the thesis. It has been shown that this architecture can significantly 

improve the coverage and capacity of a wireless network [34]. The Edge Nodes 

(ENds) providing the coverage and connection to the core network for the system are 

equipped with antenna arrays that can generate highly directional beams. Access 

Nodes (ANds), acting as relays from ENds to User Equipment (UE), are used to 

deliver high capacity density. They are low-cost, easy to install devices, and can be 

deployed below rooftops. Each ANd is co-located with a Mesh Node (MNd), which 

is used to provide connections between ENds and ANds. They can also be used to 

form a wireless mesh network which will be discussed in the later chapters. 

 

 

Figure 3.3: Dual-hop network architecture 
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3.3.2 Spectrum and Antenna Model 

In this chapter, each infrastructure provider in the system is allocated a 10 MHz 

bandwidth in the 3.5 GHz frequency band, which is divided into 30 channels. All 

simulations reported only focus on the downlink transmissions from ENds to MNds. 

The uplink transmission is not considered since a separate frequency band can be 

used, and it does not affect the key results investigated. 

The ENds are equipped with highly directional multi-beam antennas which can 

generate up to 24 beams pointing to their surrounding MNds. Each beam has a 15° 

azimuth beamwidth. 20 beams are used in this architecture [74]. At the MNd 

receiving end, an electronically steerable antenna array is deployed. A maximum of 

two beams can be generated by adjusting the antenna weight vectors on multiple 

antenna ports. The antenna model used in this chapter is derived from a practical 

product, which is designed specifically for the BuNGee architecture [34]. The beam 

pattern of a MNd antenna is shown in Figure 3.4.  

 

 

Figure 3.4: Antenna beam pattern of MNd antenna (directly reproduced from [74]) 
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3.3.3 Radio Propagation Model 

The propagation model used to calculate the path loss between the ENd and MNd in 

this chapter is WINNER II B5f, which describes the scenario of stationary BSs 

(rooftop-to-below/above rooftop) [75]. Specifically, the path loss can be calculated 

by: 

 

 𝑃𝐿 = 23.5𝑙𝑜𝑔+, 𝑑 + 57.5 + 23𝑙𝑜𝑔+,
01
2.,

+ 𝛾    (3.1) 

 

where 𝑃𝐿 is the path loss in dB, 𝑑 is the distance in metres between an ENd and a 

MNd, 𝑓5 = 3.5 is the carrier frequency in GHz, and 𝛾  is the shadow fading loss 

which is log-normal distributed with a 0 dB mean and a standard deviation of 8 dB. 

3.3.4 Link Model 

Channel capacity is the upper bound of the data rate that can be transmitted over a 

communication channel. In reality, the data rates are always constrained by physical 

layer. A Truncated Shannon Bound model proposed in [76] and is used in our system 

to determine the data rate of links. The throughput in bps/Hz of a link can be 

calculated by: 

 

 𝐶 =
0	,																							𝑆𝐼𝑁𝑅 < 𝑆𝐼𝑁𝑅?@A

𝛼𝐵𝑙𝑜𝑔D(1 + 𝑆𝐼𝑁𝑅),												𝑆𝐼𝑁𝑅?@A ≤ 𝑆𝐼𝑁𝑅 ≤ 𝑆𝐼𝑁𝑅?IJ
𝛼𝐵𝑙𝑜𝑔D(1 + 𝑆𝐼𝑁𝑅?IJ), 𝑆𝐼𝑁𝑅 > 𝑆𝐼𝑁𝑅?IJ

 (3.2) 

 

where 𝛼=0.65 is the attenuation factor. 𝑆𝐼𝑁𝑅  is the Signal-to-Interference plus 

Noise Ratio at the receiver. 𝑆𝐼𝑁𝑅?@A=1.8 dB is the minimum SINR threshold to 
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maintain transmission, and 𝑆𝐼𝑁𝑅?IJ =21 dB is the SINR when the maximum 

capacity of a link can be reached. Here, the SINR in linear form at a given receiver 𝑖 

on a channel can be obtained by:  

 

 𝑆𝐼𝑁𝑅M =
NOPQOPQRPNSP

TU

NOVQOVQRVNSV
TUW

VXU YsZ
     (3.3) 

 

where 𝑃[\ is the signal received from the transmitter 𝑥 (𝑥 = 𝑖: signal of interest; or 

𝑥 = 𝑗, (𝑗 = 1,… ,𝑁): all the other interfering signals using the same channel), 𝐺[\ 

and 𝐺a\  are the transmitter and receiver gain respectively, 𝑃𝐿\  is the path loss 

between a transmitter and receiver in linear form. Assuming a noise temperature of 

290 K and a noise figure of 8 dB, the noise floor sD is -111 dBmW.  

3.3.5 Traffic Model 

The 3GPP File Transfer Traffic (FTP) model 1 with a fixed file size of 2 Mbytes is 

used in this chapter to generate the traffic for the downlink [77]. It can capture the 

random bursty behaviour of the network traffic. The file arrival rate is modelled as a 

Poisson process with a mean arrival rate of 𝜆 , which can be adjusted to obtain 

different offered traffic densities.  

3.3.6 Resource Allocation Assumptions 

The network requires fast reaction upon changes in the current interference 

environment, hence the channel state information is collected and sent to the local 

controllers by SDN enabled switches. The local controller is assumed to assign a 

channel with the highest SINR from an ENd to its serving MNd which requires a 

new traffic flow. A traffic flow is assumed to occupy its assigned channel until the 

file transmission is completed, even when the data rate drops to zero temporarily 
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during the transmission. Hence, file dropping and retransmission are not considered. 

A new flow is blocked if no channel has a SINR above the minimum threshold of 

1.8 dB. In addition, the handovers of current transferring files are not considered, i.e., 

if a backhaul link is used for a MNd, it will remain connected until the current 

transferring files have finished transmitting. For the purposes of evaluating the 

performance of backhaul network, a perfect access network which simply delivers 

the data from the serving ANd to the UEs (or vice versa for the uplink) is assumed. 

In this circumstance, the throughput and capacity are constrained by the backhaul 

network alone. 

3.4 Use cases 

In this section, two use cases are presented using the SDN concept to address two 

increasingly popular research area in wireless backhaul networks in order to improve 

the flexibility and resource utilisation: multi-tenancy dynamic resource sharing with 

QoS guarantee and energy-aware topology management for backhaul networks. 

These applications of the SDN architecture are not meant to be exhaustive and can 

be extended to other network management tasks discussed in the later chapters.  

3.4.1 Multi-tenancy Resource Sharing in Backhaul Networks 

For a wireless network, the resources to be virtualised contain infrastructure as well 

as spectrum. As introduced in Section 2.4, increased resource utilisation can be 

achieved with inter-infrastructure virtualisation strategies as they can introduce new 

possibilities to optimise the resource allocation across the infrastructure providers in 

the same coverage area [56]. In this case study, we consider a scenario where the 

backhaul resources of two infrastructure providers are shared among 3 service 

providers in the same coverage area. 
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3.4.1.1 Deployment Scenario 

Figure 3.5 shows the network architecture, where 9 ENds and 60 ANds/MNds are 

distributed across a service area of 1.35×1.35 km2. Here, 5 of the ENds belong to 

InP1, and the other 4 belong to InP2. This type of independently deployed 

architecture by different providers having overlapped service coverage is very 

common in the existing wireless networks. Each infrastructure provider owns 10 

MHz of spectrum, which is divided into 30 logical channels. The service providers 

dynamically request resources; hence the network needs to be virtualised into 

maximum of three virtual networks. As 5G networks will introduce a wide range of 

new services, installing independent relay nodes for all the service providers is 

certainly not a cost-effective and space-saving solution for multi-hop systems. The 

trend towards 5G will be to increase the integration of multiple radio access 

technologies (RATs) into devices. Hence, we assume the MNds are multi-RAT 

enabled provided by a relay node infrastructure provider, and can be shared among 

different service providers. The antenna beams on the MNds point to the directions 

of the nearest two ENds from different infrastructure providers.  

 

 

Figure 3.5: Network architecture with 2 infrastructure providers providing the 

backhaul  



Chapter 3. Software Defined Networking for Wireless Backhaul Networks 52 

3.4.1.2 Different Control Level Comparison 

In the proposed architecture, the local controllers are reconfigured by the central 

controller periodically, and are responsible for requests which require immediate 

responses but not necessarily a global view of the entire network. During each time 

resolution, they take their local backhaul link and channel state information as input, 

and assign the resources allocated by the central controller to different traffic flows.  

The central controller is in charge of the issues which require coordination across 

infrastructure providers and service providers, such as mapping and allocating 

physical resources including infrastructure and radio resources to service providers, 

and configuring and managing the local controllers. It allocates a trunk of resources 

which may belong to either or both of the infrastructure providers to each service 

provider periodically or upon Packet-In messages indicating a new request cannot be 

handled by the current forwarding rules, for instance, a new service provider 

requiring access. In order to differentiate different service providers, a service 

provider identifier (e.g., PLMN-ID) can be used for data forwarding as well as 

measurement report. Since the pricing and business model of the involving partners 

in a virtualised network is out of the scope of this thesis, we assume the service 

providers are assigned half of the total allocated spectrum from each infrastructure 

provider.  

Assuming all the service providers (SPs) are served on best-effort basis, a 

proportional resource sharing scheme is used in the proposed SDN architecture. At 

each time interval 𝑇d, the estimated demands of service providers 𝐷fN 𝑗 , (𝑗 = 1,2,3) 

which are the average number of channels they have requested during the last 𝑇d  s 

are evaluated. Since the number of allocated channels is always an integer, the 

channel provision 𝐴fN 𝑖 , (𝑖 = 1,2)	 for SP1 and SP2 at a MNd is rounded to the 

nearest integer and the remaining channels are allocated to SP3. 𝐴fN 𝑖  can be 

calculated by: 
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 𝐴fN 𝑖 =
⌊ ijk M

ijk lm
VXU

𝑅[⌉		, 𝑖 = 1,2

𝑅[ − 𝐴fN 1 − 𝐴fN 2 , 𝑖 = 3
   (3.4) 

 

where RT is the total amount of channels on both of the backhaul links of a MNd.  

The multi-tenant resource sharing scheme enabled by the proposed two-tier 

controller SDN architecture is compared with two other control approaches: no 

control and all-centralised control. In the no control setup, all the service providers 

obtain equal shares of the spectrum from both of the infrastructure providers 

regardless of the demand, which is similar to the situation where the operators 

owning exclusive bandwidths share the same sites. The other extreme benchmark is 

that the central controller manages all the control functionalities and handles the 

requests on the fly.  

Results 

The described SDN framework and schemes were simulated in the wireless backhaul 

network introduced in Section 3.3 and 3.4.1.1. The simulation lasts for 10,000s, and 

the measurements are taken after 100 s when the system is relatively stable. Each 

data points are obtained by averaging 50 different simulations with randomly 

generated user location and traffic. Further parameters used in the simulation are 

listed in Table 3.1.  
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Table 3.1: Simulation Parameters 

Parameter Value 
MNd max antenna gain 17 dBi 

Carrier frequency 3.5 GHz 
ENd max antenna gain 20 dBi 

SINR threshold 1.8 dB 
Transmit power of ENd 5 W 

Number of users 400 users for each SP 
𝑇d for QoS guarantee scenario 1 s 

Thrthres 1.2 Mbit/s/CH 
TLthres 15 channels 

RT 60 channels 
Apre 5 channels 

 

Figure 3.6 shows the performance of the 3 multi-tenant resource sharing schemes 

enabled by different controllers. In order to evaluate the performance of the described 

control approaches in the scenario where the service providers have different 

capacity requirements, a relatively high user arrival rate 𝜆 = 0.2 is used for SP1, and 

a relatively low value 𝜆 = 0.05 is chosen for SP2 and SP3. For the no control fixed 

allocation approach, SP1 experiences extremely congested traffic and therefore high 

blocking probability, despite the fact that there are available resources within the 

local area. The two-tier controller scheme performs significantly better than the no 

control approach in terms of the blocking probability (approximately 20-21% lower) 

due to the efficient utilisation of the spectrum. Compared to the all-centralised 

scheme, the proposed scheme only experiences marginal performance deterioration, 

and yet delivers a more scalable control plane solution. With a shorter time resolution 

𝑇d = 1	𝑠, the performance of the proposed scheme approximates the all-centralised 

one better. However, there is no notable performance gain introduced by this shorter 

time resolution compared with that of 𝑇d = 20	𝑠 due to the relative static offered 

traffic load in the system. In a more dynamic scenario where the traffic load 

fluctuates rapidly over time and space, a short time resolution can be beneficial to 
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improving the resource utilisation. The time resolution also needs to be carefully 

controlled based on the scalability and performance requirements of the system.  

 

 

Figure 3.6: Blocking probability (%, left axis) and perceived throughput 

(Mbit/s/channel, right axis) against schemes 

 

3.4.1.3 Multi-tenant Resource Sharing – QoS Guarantee 
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network with service providers having different QoS requirements. As an early work 

of this thesis, we assume SP1 requires an average guaranteed user perceived 

throughput Thrtuvwx, whereas SP2 and SP3 agree on best-effort services. The central 

controller can obtain the network usage statistics including user perceived 

throughput and traffic load, and the locations of the ENds and MNds are fixed, 

therefore the required user perceived throughput of SP1 can be mapped to a 

maximum traffic load threshold 𝑇𝐿yz{|d, above which the required user perceived 
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including different traffic load levels as well as resource request from a new service 

provider. They are explained in the following: 

1) Low traffic demand, i.e. 𝐷fN(𝑗)}
l~+ ≤ 𝑇𝐿yz{|d . The resource provision 

𝐴fN 𝑖 , (𝑖 = 1,2,3)	  for a SP at one MNd is proportional to its estimated 

demand 𝐷fN(𝑖), and can be calculated using equation (3.4). 

2) Medium traffic demand, i.e. 𝐷fN(𝑗)}
l~+ > 𝑇𝐿yz{|d	&&	𝐷fN(1) ≤ 𝑇𝐿yz{|d. In 

this situation, the overall resource demand is higher than the maximum traffic 

the system can handle to maintain the acceptable QoS level for SP1. 

Meanwhile, there are still available resources that can be used by SP2 and SP3 

after the requirement of SP1 is fulfilled. Hence, 𝐴fN 𝑖  can be calculated by: 

 

 𝐴fN 𝑖 =
⌊ ijk(M)
[S�����

𝑅[⌉, 𝑖 = 1

⌊ 𝑅[ − 𝐴fN 1
ijk M
ijk lm

VXZ
⌉, 𝑖 ≠ 1

   (3.5) 

 

In other words, the central controller allocates the remaining channels which 

will not fail the QoS of SP1 to the other two SPs proportional to their demands. 

3) High traffic demand, i.e. 𝐷fN 1 ≥ 𝑇𝐿yz{|d. The requests from SP2 and SP3 

will be blocked, since the system is hardly able to provide the agreed user 

perceived throughput for the public safety provider SP1. 

 

 𝐴fN 𝑖 = 𝑅[, 𝑖 = 1
0, 𝑖 ≠ 1      (3.6) 

 

4) A new service provider requires access. The switch will immediately forward 

a Packet-In message to the central controller, and the central controller decides 
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whether the request can be accepted. The resource allocation of the new SP is 

determined by: 

 

 𝐴fN 𝑛𝑒𝑤 = min	(𝑅[ − 𝐴fN 1 − 𝐷fN�+, 𝐴�{|)  (3.7) 

 

where 𝐴�{| is a pre-defined value used to control the amount of resources that 

can be assigned to the new SP. 

Results 

The described scheme was simulated in the wireless backhaul network introduced in 

Section 3.3 and 3.4.1.1, with the parameters listed in Table 3.1. Figure 3.7 shows the 

number of demanded and actual allocated channels of the three service providers. 

Figure 3.8 and Figure 3.9 show the performance comparisons of the three operators 

in different time periods. During 100 – 700 s, only SP1 and SP2 are in the system. 

The number of allocated channels for each service providers are proportional to their 

demand due to the low level of traffic load. The performance of the two service 

providers is approximately the same in terms of blocking probability and perceived 

throughput. A new service provider SP3 joins the network from 700 s. Although the 

estimated demand of SP1 is lower than that of SP2 and SP3 during 700-1300 s, it 

receives more resource provision than the other two service providers because of the 

QoS protection. As a result, the performance of SP2 and SP3 deteriorate rapidly 

while the throughput of SP1 remains above 1.2 Mbit/s/channel. As the estimated 

demand of SP1 further increases, the system will not allocate any resources to the 

other two service providers to maintain the QoS for SP1. 
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Figure 3.7: Number of demanded/allocated channels against time (s) 

 

 

Figure 3.8: Average perceived throughput (Mbit/s/channel) against time (s) 
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Figure 3.9: Blocking probability (%) against time (s) 

 

3.4.2 SDN Opportunities for Green Wireless Backhaul Network 

Topology Management 

As discussed in Section 2.3.3, dense network deployment is characterised by high 

ratio of peak to average mobile data usage and it is more cost-effective than a macro-

cell architecture only in high traffic scenarios. Despite the extensive efforts that have 

been put into energy-efficient topology management strategies in wireless access 

networks such as [47] [78], relatively little attention has been paid to backhaul energy 

consumption management aspects. In this subsection, the SDN framework is applied 

to the backhaul network based on BuNGee architecture to facilitate a topology 

management strategy which can exploit the backhaul diversity in order to reduce the 

energy consumption of the backhaul network in low to medium traffic scenarios. We 

consider a network that is equipped with backhaul link diversity when the ANds in 

the system are able to connect to different available backhaul links. 
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3.4.2.1 Deployment Scenario 

In order to allow the use of a distant ENd and exploit the backhaul diversity, the 

network model used is similar to an extended version of Manhattan grid topology 

proposed in the BuNGee Project as shown in Figure 3.10 [34]. There are 13 ENds, 

244 ANds and their associated MNds serving a 2.25×2.25 km2 area. With the 

steerable antenna introduced in Section 3.3.2, the beam on each MNd antenna can 

be reconfigured as one to two beams. One of the beams is directed to the ENds in 

their own cell (home ENd) and the other one can be oriented to the direction of the 

beam belonging to another ENd on demand. The wireless connection between a 

home ENd to its associated MNd is called a main link and the connection between 

an available ENd from other cell to the MNd concerned is called an alternative link. 

In the conventional BuNGee architecture on the other hand, the MNds are only 

directed towards their home ENds. 

Assuming the same geographical layout as Figure 3.10, Figure 3.11 shows an 

example of a MNd using an alternative link. Here, the MNd is served by an 

alternative link and the main link is deactivated due to a low traffic load. 

 

 

Figure 3.10: Network architecture 
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Figure 3.11: An example of a MNd using an alternative backhaul link 

 

3.4.2.2 Backhaul Link Scheduling 

In order to minimise the backhaul network energy consumption, a backhaul link 

selection algorithm, which concentrates the distributed traffic on fewer beams within 

the network and puts the idle beams into sleep mode is developed. Using the SDN 

framework can provide an effective offloading evaluation process as well as reducing 

the need of handover.  

Since the position of the nodes are practically always known, the central controller 

is preconfigured with a list of candidate backhaul links for each MNd. Periodically, 

the network status information including active backhaul links, traffic load, link 

quality and resource utilisation is forwarded to the central controller. The central 

controller then runs the topology management application and carries out an 

evaluation of all the beams of the ENds to decide whether a certain MNd attached to 

an ENd should be offloaded to another backhaul link. We denote 𝑇d=10s as the 

minimum time a MNd has to stay on a backhaul link. This parameter can be adjusted 

in order to alleviate the problem of frequently switching backhaul links from one to 

ENd

ANd/MNd

Alternative backhaul links

Alternative backhaul link 
serves 2 MNd
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another. An ENd may offload a MNd to another backhaul link in the following two 

situations: 

• Offload a MNd from its main link to an alternative link in order to deactivate 

a beam when the average number of active users on the main link over 𝑇d is 

below the low traffic threshold and there are no other MNds from other cells 

attached to the concerned beam.  

• Offload a MNd from its alternative link to another alternative link or its main 

link (if no alternative link is available) when the average number of the active 

users on the concerned beam and either of its two adjacent beams is above the 

threshold of (1 − 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦	𝑚𝑎𝑟𝑔𝑖𝑛) which leaves a safety margin for the 

future file transferring request from the local MNds. Note that the total average 

number of active users of the concerned beam and either of its two adjacent 

beams are evaluated respectively since an approximate beam frequency reuse 

of two can be achieved using the multi-beam antennas in the BuNGee project 

[79]. 

After evaluation, the central controller checks the traffic load on the candidate 

backhaul links for the MNd which require offloading, and chooses the alternative 

link which has the maximum signal strength, and the active users on the link and 

either of its two adjacent beams are below the threshold of 	 1 −

𝑙𝑜𝑤	𝑡𝑟𝑎𝑓𝑓𝑖𝑐	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦	𝑚𝑎𝑟𝑔𝑖𝑛 . If no such link exists, the MNd will 

be offloaded to its main link. The central controller also runs the reconfiguration 

application to reconfigure the beams on the MNds pointing to their serving ENds. 

During each time interval, the local controllers coordinate and assign the available 

resources to individual flows in the network on event basis. 

3.4.2.3 Backhaul Energy Consumption Model 

Since the increase of energy consumption of the access network caused by the 

antenna configuration change of MNds is negligible, only the energy consumption 

of ENds is evaluated, as the energy consumption of the access networks remain 
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approximately constant irrespective of the schemes used. To quantify the energy 

savings of backhaul networks, it is necessary to use a suitable energy model. The 

EARTH project has provided a power consumption model for various BS types [47]. 

For the backhaul architecture we use, where highly directional array antennas are 

equipped on the ENds, it is similar to the scenario where multiple Remote Radio 

Heads (RRHs) are connected to a common central entity we introduced in Section 

2.3.3. Therefore, the base station energy consumption models described in EARTH 

project are used, and the parameters of RRH are chosen to calculate the energy 

consumption. In this case, the feeder and active cooling loss can be neglected [47]. 

The energy consumed by the ENds at the maximum load can be calculated by: 

 

 𝑃M� = 𝑁[aJ ∙
k���

ƞk�(UT�����)
YNR YN¡¡

(+¢£¤¥)(+¢£¦j)(+¢£1��§)
    (3.8) 

 

where 𝑁[aJ is the number of TRX chains (transmit/receive antennas per site), 𝑃 ©y 

is the power measured at the input of the antenna element in Watts, 𝑃aª is the power 

consumed in the small-signal RF TRX module, 𝑃«« is the power consumed in the 

BBU, 𝜂NI is the efficiency of the power amplifier (PA). 𝜎0||® ,𝜎i¯ , 𝜎?f and 𝜎5¨¨° 

are the loss factors of antenna feeder, DC-DC power supply, main supply (MS) and 

active cooling respectively. In our model, each beam of the ENd antenna can be 

considered as a RRH TRX chain.  

A linear approximation of the BS power model has also been formulated in [47] to 

calculate the energy consumption at variable traffic loads: 

 

 𝑃M� =
𝑁[aJ ∙ (𝑃, + ∆N𝑃 ©y), 0 < 𝑃 ©y ≤ 𝑃²³\

𝑁[aJ ∙ 𝑃d°||�,										𝑃 ©y = 0    (3.9) 
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where 𝑃²³\	is the maximum RF output power at maximum load, 𝑃,  is the linear 

model parameter to represent power consumption at the zero RF output power 

(estimated) and ∆N	is the slope of the load dependent power consumption. The sleep 

mode energy consumption 𝑃d°||� is introduced for future BSs with fast deactivation 

capability.  

Here, the input power for one beam of an antenna on an ENd is a fixed 15 W which 

makes the power consumption of a TRX chain at variable traffic loads and maximum 

load, approximately the same level as in the active mode [79]. We choose to use (3.8) 

to calculate the energy consumption in the active mode and (3.9) to calculate the 

energy consumption in the sleep mode. 

3.4.2.4 Results 

The developed topology management was simulated in the network we described in 

Section 3.3 and 3.4.2.1. In this section, we compare the performance of the developed 

topology management scheme with the existing BuNGee architecture without the 

backhaul link diversity capability to illustrate the potential energy savings from 

backhaul diversity in low traffic scenarios. There are 2000 users randomly 

distributed across the service area. Parameters used in the simulation are listed in 

Table 3.1 and Table 3.2. Fast deactivation of ENd’s TRX chains is assumed in all 

the schemes, i.e. the beams which have no data to transmit will enter sleep mode. 

Table 3.2 Simulation Parameters 

Parameter Value 
𝑃aª 6.8 W 
𝑃«« 29.6 W 
𝜂NI 31.1% 
𝜎i¯  7.5% 
𝜎?f 9.0% 
𝑃d°||� 56 W 
𝑃²³\ 20 W 
Low traffic threshold 9 (30% of the capacity) 
Capacity margin 3 (10% of the capacity) 
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Figure 3.12 shows the energy savings of the backhaul link diversity scheme with 

different numbers of maximum allowable alternative link requests and the existing 

BuNGee architecture only with sleep mode enabled scheme. Firstly, both of the 

schemes can achieve relatively high energy savings from the sleep mode at low 

traffic loads, and the energy reduction reaches zero at high traffic loads since all the 

links need to be active to deal with the traffic demands. Secondly, the backhaul link 

diversity scheme can achieve much higher energy savings (35% maximum) by 

allowing more links to enter sleep mode at low to medium traffic loads. Moreover, 

further exploitation of the backhaul link diversity by increasing the number of 

maximum allowable alternative links can only provide marginal benefits on energy 

saving (the scheme with 10 alternative links is only 3% higher than that with 3 

alternative links), but it will lead to increasing the size of the flow table for each 

MNd.  

Figure 3.13 and Figure 3.14 show the blocking probability and perceived throughput 

per channel of the schemes respectively. The performance of the schemes with 

backhaul link diversity is slightly worse than the one without backhaul link diversity, 

and the ones with a higher number of higher number of alternative links have worse 

performance. This is most obvious at medium traffic loads as the interference is also 

centralised to fewer beams in backhaul link diversity schemes. Such a decrease in 

performance is marginal compared with the level of energy savings obtained. The 

blocking probability of the scheme with 10 allowed alternative links increases almost 

linearly with the traffic load up to medium level. As the traffic further increases, the 

performance gets closer to the other schemes due to the less use of alternative links.  

Performance of the system has also been tested with different low traffic thresholds 

(20%-40% of the total capacity), capacity margins (10%-20% of the total capacity) 

and 𝑇d(0.01 s, 10 s, 100 s). Generally, the higher the low traffic thresholds and the 

lower the capacity margins the more energy reduction gain and worse performance 

achieved. Note that when 𝑇d is very small, the backhaul link switching frequency of 

the MNds is much higher than that with a relatively larger value without providing 

much energy saving gain, especially when the traffic is at medium level. 
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Figure 3.12: Energy Saving (%) against Offered Traffic (Mbit/s/km2) 

 

 

Figure 3.13: Blocking Probability (%) against Offered Traffic (Mbit/s/km2) 
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Figure 3.14: Perceived Throughput (Mbit/s/CH) against Offered Traffic (Mbit/s/km2) 

 

3.5 Conclusion 

In this chapter, a novel SDN architecture has been proposed to facilitate the flexible 

deployment of a 5G dense deployed wireless backhaul network. The architecture 

contains a two-tier controller in a hierarchical setup aiming to offload some of the 

control functionalities from the central controller to a collection of logically 

distributed dynamically configured local controllers in order to balance the trade-off 

between scalability and system performance.  

A multi-tenancy dynamic resource sharing algorithm based on the proposed SDN 

architecture were introduced as a case study. The results demonstrated the dynamic 

resource sharing scheme enabled by the proposed SDN architecture for multi-

tenancy cross-infrastructure scenarios can achieve good performance while 
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adjusting the time resolution. The architecture is capable of providing fairness in 

terms of resource allocation and supporting QoS guarantee functionality. 

As cost and energy efficiency will also be important factors in 5G backhaul networks, 

the proposed SDN framework has been used in the context of backhaul link diversity. 

Periodically, the central controller re-schedules the backhaul links for the access 

networks allowing the unused components in the idle links to be switched off. It 

significantly reduces the energy consumption by up to 35% at low to medium traffic 

loads by concentrating distributed traffic on fewer backhaul links. It has been found 

that the energy savings increase with the number of allowed alternative links up to a 

maximum of 3, after which it tends to saturate. In addition, the simulation results 

revealed the trade-off between energy saving and system performance including 

blocking probability and throughput.  

As discussed in the case studies, SDN paradigm provides a global view of the entire 

network and can facilitate network management tasks without a device-centric 

configuration. Such a decoupling of control and data plane results in improved 

network performance in terms of network management and resource utilisation. SDN 

is one of the key ingredients of future backhaul architectures to elastically support 

network functional demands.  
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4.1 Introduction 

The wireless backhaul deployment strategy and network management technique 

such as SDN investigated in Chapter 3 have been shown to be a promising approach 

to increasing resource utilisation and energy efficiency. In addition to providing cost-

efficient broadband service everywhere, the backhaul architectures in 5G should also 

be able to support a diverse range of new use cases, one of them being the emerging 

deployment of ultra-dense small cells. Although ultra-dense small cells are mainly 

deployed for indoor environments such as offices and shopping malls, operators have 

also started to investigate outdoor small cell deployments to accommodate the 

increase in outdoor traffic [80]. The reason is that people tend to access internet more 
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and more on the go: whether it is streaming HD videos or playing online games on a 

bus or using mobile banking on a street. It is becoming a requirement that a similar 

data experience should be achieved for both indoor and outdoor users. However, 

currently the satisfaction with the outdoor connectivity experience is significantly 

lower than that of indoor. In order to achieve high flexibility and capacity in future 

outdoor ultra-dense small cells while accommodating various use cases and 

deployment constraints, a number of novel backhaul architecture options are 

proposed in the following chapters.  

In this chapter, the performance of two of the key technologies for 5G backhaul are 

compared: massive MIMO with conventional frequencies and mm-wave backhaul at 

the 71 – 76 GHz band. The purpose is to show the upper bound capacity that can be 

achieved by applying massive MIMO technology and access network load balancing 

techniques to a capacity constraint network band, as well as to present the 

performance improvement by using mm-wave backhaul.  

4.2 Network Modelling 

In order to demonstrate the viability of the backhaul architectures, the simulation 

model chosen needs to be appropriately dimensioned capturing the relevant details 

of a realistic outdoor small cell scenario. However, since it is impossible to cover 

every possible situation, a dense urban street canyon scenario suggested by Huawei 

GREENBACK project is used. It reflects a typical densely populated urban area, 

where thousands of people per km2 are either walking or in moving vehicles using 

internet for data-hungry applications envisioned for 5G. The mobility model used 

enables to highlight the key challenges of designing a communication network for a 

dynamic vehicular environment including moving hot spot in buses and potential 

congested data traffic at the intersections. The goal of the project is to develop a high 

capacity and low latency wireless backhaul network solution that serves a dense 5G 

radio access network installed on street fixtures (e.g. street lights, building walls, and 

billboards).  
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Since 5G is expected to provide up to 1000 times higher area capacity than the 

current systems, the proposed backhaul architectures are tested against a wide range 

of offered area capacity (100 Gbps/km2 – 1000 Gbps/km2) in this thesis, whereas for 

the BuNGee architecture discussed in Chapter 3, a capacity density of 1 Gbps/km2 

was targeted. It is believed that the chosen test cases and parameters described in this 

section can be used to establish backhaul design requirements as well as compare the 

capabilities of different backhaul architectures. The detailed environment scenario 

and network modelling are described in the rest of this section. 

4.2.1 Environment Scenario and Network Architecture 

Figure 4.1 illustrates the environment scenario. Here, the small cell ANds are 

deployed on street light fixtures with a height of 8 m and inter-site distance of 

approximately 30 m to provide ultra-high capacity to the mobile users. A Manhattan 

grid topology with streets lined with high buildings is used in as depicted in Figure 

4.2, where 459 users (density: 5000/km2) are located across the outdoor area of three 

building blocks (block size: 150 m´150 m). The area is served by 72 ANds/MNds 

(density: 800/km2) uniformly distributed along both sides of the streets aiming at 

providing a capacity density of up to 1000 Gbps/km2.  

 



Chapter 4. Wireless Backhaul Deployments for Ultra-Dense Outdoor Small Cells 72 

 

Figure 4.1: Urban street canyon with ultra-small cells scenario 

 

 

Figure 4.2: Urban ultra-small cell network architecture with traffic lights at the 

intersections 

 

Vehicular communication in urban outdoor areas is characterized by diverse mobility 

patterns and unevenly distributed traffic. Hence three user groups are considered here: 

pedestrian users (50%), car users (30%, 2 users per car), and bus users (20%, 25 users 

per bus). Each street (width: 15 m) has four lanes (two in each direction) with cars 

ANd/MNd 
on street 
lights
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and buses driving with speed of 0-50 km/h. On the pavements (width: 5 m), 

pedestrians walk with speed of 0-6 km/h. Developing a microscopic mobility model 

is a complex research field in its own right, which involves defining car following 

model, lane changing model, and movement restrictions etc. [81] [82]. Hence a 

mobility simulation tool developed by Huawei, with which the mobility trace of each 

user can be extracted, is used in this thesis, and the traces are then fed into the 

network simulator. The mobility model parameters are listed in Table 4.1.  

Initially, the status and the remaining time of traffic lights, the speed of pedestrians 

and vehicles, and their turning directions in the next crossing are randomly initialised. 

The locations of the users are updated every 0.1 s. Periodically, the tool checks 

whether the vehicles need a lane changing, an update of acceleration/deceleration, or 

stopping. A safety distance of 1 m is assumed, below which the following vehicle 

would stop moving. If a vehicle is in the wrong lane of turning (driving on the right), 

a lane changing function is performed, allowing the vehicle to change to the next 

lane.  

The mobility traces including the geographic position of each user is recorded every 

1 second. This allows for the estimation of UEs’ candidate serving ANds which can 

be based on signal quality measurement (RSRP/RSRQ) reported. In order to avoid 

border effect and obtain statistically acceptable results from a limited simulated area, 

the UEs are assumed to be vertically and horizontally wrapped around at the edges 

of the service area, meaning that if a UE leaves the service area from one edge, it 

will re-enter the service area from the opposite edge. This makes the mobility pattern 

in the edge cells the same condition as that in the middle cells.  
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Table 4.1: Mobility parameters 

Types Description 

Car 

Length 5 m 

Width 2 m 

Maximum turning speed 15 km/h 

Maximum acceleration 10 km/h/s 

Turning 

probability(left/right) 
25% 

Bus 

Length 13.5 m 

Width 2.5 m 

Maximum acceleration 5 km/h/s 

Turning 

probability(left/right) 
0 

Pedestrian 

Maximum acceleration 1.2 km/h/s 

Turning 

probability(left/right) 
25% 

Traffic light 
Red/green light duration 100 s 

Yellow light duration 5 s 

 

4.2.2 Communications Traffic Models 

Measurements and analysis have shown that the traffic inter-arrival times and file 

sizes exhibit a heavy tail behaviour in a network which has unexpected and dynamic 

traffic demand (e.g. multimedia traffic, moving hot spots), providing bursts of traffic 

arrivals, long inter-arrival times and large files with finite probability [83]. This load 

statistics is typically represented by the Pareto distribution. In practical applications 
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however, generally there is an upper bound of the inter-arrival times and file sizes. 

A truncated Pareto distribution with an upper limit cut-off value has been considered 

to be a better fit to the internet traffic [84]. Hence, it is used in this thesis to model 

the outdoor traffic. The cumulative distribution function (CDF) is given by [85]: 
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)·
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where 𝛼  is the shape parameter, 𝑥²M�  and 𝑥²³\  are the minimum and maximum 

possible value of 𝑥 respectively. The mean value of the truncated Pareto distribution 

is: 
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Given a random variable 𝑈 which is uniformly distributed on [0,1], then the random 

samples of the inter-arrival times and file sizes which have the CDF of (4.1) can be 

generated by applying inverse transform sampling [86]: 
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It is expected that mobile videos will account for over 78% of the total mobile traffic 

by 2021 [4]. In order to evaluate the capability of backhaul deployments of 

supporting these resource hungry applications for outdoor users, two different traffic 

types are modelled, including on-demand video streaming and real-time services. 
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The detailed traffic model parameters are listed in Table 4.2, which are based on the 

streaming requirements of YouTube and Netflix [87] [88], and the recommendations 

suggested in [89]. 

 

Table 4.2: Traffic Model Parameters [87] [88] [89] [5] 

Traffic Type Description 

On-demand 

video 

Encoding rate  4K: 20 Mbps; 8K: 80 Mbps 

Mean video length 300 s (max 1000 s) 

Buffer size 40 s of a video 

Proportion of different 

video qualities  
4K: 25%; 8K: 25% 

Speed factor in steady state 1.25 

Real-time 

service 

Encoding rate/ playback rate  4K: 20 Mbps; 8K: 80 Mbps 

Mean video length 300 s (max 1000 s) 

Proportion of different 

video qualities  
4K: 25%; 8K: 25% 

 

4.2.3 Resource Allocation Schemes 

For each backhaul link, the mixed traffic flows arrive at random times and share the 

whole bandwidth. It is critical to meet the minimal QoS requirements of different 

traffic classes. The resource allocation scheme described in this section is based on 

LTE-Advanced Pro which aims at pushing LTE capabilities closer towards 5G. In 

3GPP TS 23.203, 15 QoS Class Identifiers (QCIs) and Allocation and Retention 

Priority (ARPs) are standardised which can also be pre-configured by the operators 

[90]. The QCI values are used to determine the packet forwarding treatment 
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including required resource type (GBR or non-GBR), packet delay budget (ranging 

from 50 ms to 300 ms), packet error loss rate (ranging from 10-6 to 10-2) and priority 

level. For example, real-time services such as video conferencing and mobile cloud 

gaming have very stringent requirements for data rate and latency, hence GBR 

bearers should be assigned to them. On the other hand, on-demand video streaming 

has a relatively high tolerance for delay, and can be carried by non-GBR bearers. 

ARP which defines the priority level, the pre-emption capability and the pre-emption 

vulnerability can be used in admission and congestion control [90]. In the situation 

when there is a lack of resource in the network, a service of a high priority can be 

configured to pre-empt the resource allocated to the service of a low priority whose 

ARP information element (IE) ‘pre-emption vulnerability’ is ‘pre-emptable’. In this 

thesis, the real-time services are considered as high priority. The low priority is given 

to the on-demand video. Based on the above information and the traffic 

characteristics, the resource allocation and QoS adaption for each of the traffic types 

are described as follows: 

On-demand videos 

An on-demand video is served with dynamic data rate based on its service type and 

the network condition. An on-demand video transmission begins with a buffering 

phase, where the video is downloaded with the highest data rate possible. After the 

buffer is full (40 seconds of the video), the transmission enters a steady phase with 

ON-OFF cycles in order to limit the data rate. A constant average data rate 

𝑟²Á_dy| = 𝑓²𝑟²
Á_{|Ã	(𝑚 = 1,… ,𝑀) can be assumed as shown in Figure 4.3 [5]. Here, 

𝑓² is called speed factor which is a factor of the video encoding rate 𝑟²
Á_{|Ã. 𝑓² ≥ 1 

is required in order to guarantee a smooth video playback.  
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Figure 4.3: Phases of on-demand video streaming 

 

If there are sufficient resources on the considered backhaul link, we assign the 

resources 𝑟²Á_³°°¨5³y| to the 𝑚yz on-demand video request according to the following: 

 

𝑟²Á_³°°¨5³y| =
𝑟²Á_dy| + 𝑟²Á_|\, 𝑚 ∈ 𝑭

𝑟²Á_dy|, 𝑚 ∈ 𝑩
    (4.4) 

 

where 𝑭	 and 𝑩	 denote the index sets of video streaming flows with their buffers full 

and buffers not full respectively. 𝑟²Á_|\ represents the amount of remaining resources 

on the link which can be used by the 𝑚yz on-demand video in its buffering phase, 

and can be expressed as:  

 

𝑟²Á_|\ =
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where 𝑤² denotes the weight of flow 𝑚 which is equal to 𝑟²
Á_{|Ã to ensure that the 

excess resources are allocated proportional to the requested demand. 𝑅³É³_a is the 
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amount of remaining resources after allocating resources to the real-time services, 

which is explained in the real-time service section. 

In case of congestion, a service can pre-empt resources from other services with the 

same or lower priorities. Hence here, no blocking or dropping is assumed for the on-

demand videos, and a new on-demand video can pre-empt resources from the 

ongoing on-demand traffic on the link. The resources are re-scheduled according to 

the weights of each flow, and the allocated resources 𝑟²Á can be obtained by: 

 

𝑟²Á_³°°¨5³y| =
Èµ

ÈV¦
VXU

𝑅³É³_a     (4.6) 

 

Real-time services 

Real-time services are served with their requested resources 𝑟Ëa(𝑘 = 1,… , 𝐾) . The 

ENd checks the resource usage of the ongoing 𝐾 GBR services on the considered 

backhaul link to determine whether it is possible to admit the (𝐾 + 1)yz real-time 

service connection request. For a backhaul link with a total amount of resource of 

𝑅y¨y, the amount of resources 𝑅³É³_a available or can be pre-empted from the on-

demand videos can be calculated by: 

 

𝑅³É³_a = 𝑅y¨y − 𝑟ËaÎ
Ë~+      (4.7) 

 

The request is blocked if 𝑅³É³_a < 𝑟ËY+a , meaning that there is insufficient resource 

that can be pre-empted from the services with lower priorities to support the 

connection request. However in this way, it is possible that the real-time services 

occupy significantly more if not all the resources on a congested link than that of the 

on-demand videos. In order to ensure a fair resource allocation between the two 
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traffic types, a factor representing the deterioration level of the allocated resources 

compared to the requested resources of the on-demand videos is incorporated into 

the decision process to block or drop some of the real-time services, and can be 

expressed as follows: 

 

𝛼 =
{V
Ï_��Ð¦

VXU ¢ {µ
Ï_¹§§�1¹��¦

µXU

{V
Ï_��Ð¦

VXU
    (4.8) 

 

A real-time service request is accepted if 𝑅³É³_a ≥ 𝑟ËY+a , and there are sufficient 

resources on the considered link that guarantee smooth playback for the on-demand 

videos, i.e. 𝛼 < 0. Otherwise if 𝛼 ≥ 0, new/handover real-time connection requests 

are randomly blocked/dropped with the probability of:  

 

𝛾 = 𝛼𝛽     (4.9) 

 

where 𝛽	(0 ≤ 𝛽 ≤ 1) is an adjustable factor used to control the priority level of real-

time services in terms of blocking and dropping probability, and a smaller value 

indicates that a real-time request is less likely to be blocked/dropped and thus 

increased priority. Generally, dropping an ongoing service during a handover process 

is far more frustrating than blocking a new service, hence a relatively smaller value 

(𝛽 = 0.2) and a larger value (𝛽 = 0.8) are used for dropping and blocking decision 

making respectively. The values chosen only affect the relative difficulty in terms of 

real-time service admission, and they can be changed without the loss of generality. 

The resource allocation scheme for mixed traffic is summarised as follows: 
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Algorithm: Resource allocation and QoS adaption for mixed traffic types 
1: Calculate 𝑅³É³_a using Equation (4.7) 
2: if new flow is real-time service then 
3:    if 𝑅³É³_a < 𝑟ÎY+a  then 
4:       Block/drop the new flow 
5:       return 
6:    else 
7:       Calculate 𝛼 
8:       if 𝛼 ≥ 0 then 
9:          Calculate 𝛾 using Equation (4.9) 
10:          Generate a random number 𝑥 from a uniform distribution over [0,1] 
11:          if 𝑥 ≤ 𝛾 then 
12:             Block/drop the new flow 
13:             return 
14:          end if  
15:          Accept the new flow; assign the requested resource 𝑟ÎY+a  
16:          Update 𝑅³É³_a ← 𝑅³É³_a − 𝑟ÎY+a  
17:       end if 
18:    end if 
19: end if 
20:  
21: Calculate aggregated resource requested for video streaming in the steady 

state: 𝑅Á_dy| ← 𝑟²Á_dy|?
²~+  

22: Streaming video flow weights: 𝑤² ← 𝑟²
Á_{|Ã 

23: Find the index sets of flows with buffers full 𝑭, and buffers not full 𝑩 
24: if 𝑅³É³_a > 𝑅Á_dy| 
25:    Assign resources using Equation (4.4) and (4.5) 
26: else 
27:    Assign resources using Equation (4.6) 
28: end if 

 

4.3 Choice of Technologies 

As discussed in Section 2.3.1, improving the spectrum efficiency and resource 

utilisation are the main approaches to provide high capacity in sub-6 GHz bands 

since the available spectrum is scarce. Massive MIMO proposes to use much a larger 

number of antennas at the base station than its serving devices in order to achieve 

high spectrum efficiency. It provides high capacity to the underlying tier of small 

cells. Another promising solution is to use millimetre wave, which is intended to 

significantly improve system performance and user experience. In this section, the 
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performance of the two backhaul options are compared, and thus, the appropriate 

backhaul technology for the ultra-dense outdoor small cell network introduced in 

Section 4.2 is proposed and used in the rest of this thesis.  

4.3.1 Massive MIMO Backhaul  

Currently, a relative small bandwidth such as 10 MHz used in Chapter 3 is often 

allocated to operators. However, with some of the dense urban use cases in 5G 

requiring an area capacity of over 500 Gbps/km2, it is envisioned that a wider 

bandwidth and more aggressive approaches improving spectral efficiency are needed. 

As introduced in Section 2.3.1, a maximum of 200 MHz bandwidth in the 3.5GHz 

band is available, and it is assumed in this chapter to provide higher data rates [31].  

By utilising a large number of antennas at the base station and aggressive spatial 

multiplexing, a massive MIMO system is able to push the system closer to a noise 

limited environment, and drastically increase the spectral efficiency [32]. This is 

achieved by appropriately shaping the signals emitted from different antennas so that 

they add up constructively at the desired terminals and destructively at other 

locations. In [91], a 128 element massive MIMO system operating at 3.5GHz is 

shown to support a simultaneous transmission of 22 user streams in a single 20 MHz 

channel and provide a spectral efficiency of 79.4 bits/s/Hz. With the rapid ongoing 

development of massive MIMO technology in physical layer, it is highly relevant to 

examine the potential capacity capability that a massive MIMO system can achieve 

on a system level. Here, the upper bound performance of a massive MIMO backhaul 

system is investigated to show whether it is possible to use massive MIMO 

technology for an ultra-dense small cell network. 

Assuming the same geographical layout as Figure 4.2, Figure 4.4 shows a possible 

backhaul network architecture with a centralised massive MIMO site on a rooftop. 

However, distributed antenna arrays across the geographical area can also be 

deployed. We assume that the intra cell interference can be mitigated, and the optimal 

max-min power control suggested in [32] which enables an equal SNR of 21 dB on 
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each of the backhaul link is applied to the system. The truncated Shannon Bound 

throughput estimation described in Chapter 3 is used here which upper bounds a 

fixed capacity of 900 Mbps for each massive MIMO site-MNd link. The aim here is 

to examine the capability of massive MIMO in serving an ultra-dense small cell 

network. Therefore, the physical layer aspects, for example the imperfections of the 

beamforming schemes and channel estimation errors are out of the scope of this 

thesis. However, it is expected that the performance of the massive MIMO backhaul 

approach presented later in this chapter may degrade when taking the physical layer 

implementation into consideration.  

 

 

Figure 4.4: Massive MIMO network architecture 

 

Bottleneck Issue and Access Network Load Balancing 

Moving crowd users, especially bus users will generate temporary hot spots in the 

network. This will bring a significant burden to the local access and backhaul 

network with constraint capacity if the crowd users only connect to their nearest ANd 

which can potentially offer the best link quality. For example in Figure 4.5 (a), the 
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users on the bus can only connect to the two green ANds depending on their locations. 

Since each ANd has a dedicated backhaul link, the traffic loads on these two 

backhaul links will become extremely congested, whereas some of the nearby ANds 

and their corresponding backhaul links may still have available resources. 

 

 

Figure 4.5: Example of bottleneck issue caused by temporary hot spot 

 

In order to improve the utilisation of the available network resources, we apply a 

load balancing scheme which can dynamically allocate ANd to users depending on 

their locations, and current traffic loads on their associated backhaul links. As 

illustrated in Figure 4.5 (b), an ANd service range is defined to reflect the acceptable 

signal quality threshold for a UE. Due to the dense deployment, a UE may be within 

the serving range of several ANds and backhaul link options to the core network. 

Since the access network is not the main focus of this thesis, we assume advanced 

interference management techniques such as eICIC mentioned in Section 2.2.2 can 

be used, and a UE is able to connect to any ANd within their service area. The access 

network simply delivers the data from the serving ANd to the UEs. In this 

circumstance, the throughput and capacity are constrained by the backhaul network 

alone. When a user moves outside of its serving ANd’s service area, a handover 

procedure will be triggered and it will connect to another ANd which has the lightest 

load within the connecting area. In Figure 4.5 (b), the users on the bus can be served 

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

(m)

(m
)

 

 

Bus 
users

Bus users

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

(m)

(m
)

 

 

**Bus users *** ***
(a) (b)



Chapter 4. Wireless Backhaul Deployments for Ultra-Dense Outdoor Small Cells 85 

by up to 6 ANds with the load balancing scheme which can effectively alleviate the 

bottleneck problems brought about by the moving hot spots.  

4.3.2 Millimetre Wave Backhaul 

Another emerging state-of-art technology for alleviating the backhaul bottleneck 

problem is the use of mm-wave band. Mm-wave in bands 71 - 76 GHz and 81 - 86 

GHz are very promising line-of-sight (LOS) wireless backhaul solutions for future 

5G networks, as they can offer abundant spectrum, and therefore multi-gigabit data 

rates [92]. As discussed in Section 2.3, distance-dependent path loss, high attenuation 

by atmospheric gases and rain are not insurmountable challenges since the distance 

between the nodes considered here is typically a few tens of metres. The street 

canyons with high buildings in the network model also add benefits, such as 

interference reduction and higher frequency reuse. A possible mm-wave backhaul 

deployment scenario is depicted in Figure 4.6. The ENds are mounted on tall 

structures such as building walls which ensure high LOS probability of the backhaul 

links. 

In accordance with the channelization regulation from ECC, it is assumed that each 

backhaul link uses a LOS 1 GHz bandwidth with a carrier frequency of 73.5 GHz 

[93]. In theory, it is also possible to use NLOS links by employing reflections from 

building walls and other objects. However, it is highly sensitive to node placement, 

antenna pattern and the local environment especially with the narrow beams. Hence, 

only LOS links are considered to deliver the backhaul connectivity. Electronically 

steerable antenna arrays are deployed at both the transmitting and receiving ends of 

a backhaul link with a 2 degree beamwidth [94] [95]. Beam steering allows beam 

alignment during the initial stage and is resilient to the misalignments due to wind. 

It will also allow the antenna beams to point at other nodes dynamically, without 

angular constraints. It is assumed that a maximum of 8 beams can be generated from 

the antenna module at the ENd end which is achievable based on the results 

demonstrated in MiWaveS project [96]. Although the maximum output power of E-

band specified by ETSI is 30 dBmW, most of the commercial E-band backhaul 
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output power ranges from 10 – 25 dBmW [97]. Here, the ENds use a fixed transmit 

power of 16 dBmW. 

The use of highly directional beams implies that both interference and multipath 

should be negligible, and the link is largely unaffected by its environment. Hence a 

simplified antenna model is used where only the main lobe with a fixed gain of 38 

dB (assuming the antenna efficiency is 70%) is considered. Moreover, since the 

transmitters and receivers are fixed and in known locations, the path loss can be 

treated as deterministic rather than stochastic. Measurements showed that mm-wave 

in LOS environments has almost identical path loss as free space [38]. The exception 

is the effect of rain and fog: however these effects are small and can readily be 

allowed for by means of a fade margin. Therefore, the path loss can be calculated by: 

 

𝑃𝐿 = 20𝑙𝑜𝑔+, 𝑑 + 20𝑙𝑜𝑔+, 𝑓5 + 32.45 + 𝛾𝑑    (4.10) 

 

Where 𝑃𝐿 is the LOS path loss in dB, 𝑑 is the distance in metres between an ENd 

and a MNd, 𝑓5 = 73.5 is the carrier frequency in GHz, and 𝛾 = 0.015 is the fade 

margin in dB/m which is consistent with the rain attenuation for heavy rainfall rate 

defined in ITU-R.P.838 [37]. The LOS propagation paths are also assumed to be 

vertically and horizontally wrapped around the edges of the service area in order to 

reduce border effects in the simulation and collect statistically acceptable results 

from all the cells. Moreover, for the purpose of avoiding beam overlapping, a shorter 

distance between a MNd and an ENd within 100 m is assumed. Assuming an 8 dB 

noise figure at the MNds and temperature of 290 K, then the noise floor is -166 

dBm/Hz, which gives a SNR of 56.2 dB for a 100 m link with a bandwidth of 1 GHz.  
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Figure 4.6: Backhaul deployment scenario: ENds installed on building walls 

 

4.3.3 Results 

The urban street canyon scenario with mixed traffic described in Section 4.2 is used 

to test the performance of the discussed backhaul deployment options for ultra-dense 

outdoor small cells. The simulation lasts 10,000 s for each traffic load, and the 

measurements are taken after 100 s when the system is relatively stable. The results 

are obtained by averaging 50 different simulations with randomly generated mobility 

traces and user traffic. To demonstrate the performance improvement of using mm-

wave backhaul compared to the sub-6 GHz band approach, it is assumed that each 

MNd has one backhaul link connection to an ENd. More realistic ENd deployment 

options including the location, density and their topology management strategies will 

be presented in Chapter 5 and Chapter 6. For the massive MIMO scenario, the 

scheme without load balancing, where a user always connects to its closest ANd, is 

compared with the load balancing scheme over different ANd service ranges ranging 

from 25 m to 100 m which covers a low coverage range and a relative high coverage 

range of small cells. For the mm-wave backhaul scenario, in order to evaluate the 

benefits purely brought by using mm-wave, no access network load balancing is 
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assumed in this chapter. The access network aspects in terms of load balancing and 

handover control will be discussed in Chapter 6. 

Average Performance 

Figure 4.7 and Figure 4.8 show the system throughput and perceived throughput (8K 

on-demand videos shown, 4K on-demand videos follow the same trend) for massive 

MIMO backhaul and mm-wave backhaul. Both plots demonstrate significant 

performance improvement by using mm-wave backhaul due to the wide bandwidth 

it can offer: a 21-53% increase in perceived throughput is achieved compared to the 

massive MIMO approach with an ANd coverage of 100m at medium to high traffic 

loads (above 500 Gbps/km2). Even the upper bound performance of the massive 

MIMO backhaul approach is not able to provide sufficient capacity due to the lack 

of resources. The upper bound perceived throughput achieved by using massive 

MIMO without load balancing decreases rapidly as the offered traffic increases. The 

deterioration actually starts at relatively low traffic load due to the uneven traffic 

loads. The average performance is improved with the lightest load balancing scheme. 

By increasing the coverage range of ANds, the congested traffic loads can be 

offloaded to more ANds and their associated backhaul links, therefore much higher 

data rates can be achieved. However, the improvement brought by further increasing 

the coverage range becomes marginal as the traffic loads on different backhaul links 

becomes more and more balanced. Moreover, the more coordinated ANds for a user, 

the tighter interference coordination and more control signalling exchange among 

the ANds are required, which may be challenging for a distributed control plane.  
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Figure 4.7: System throughput – mm-wave and massive MIMO with access network 

load balancing (upper bound) 

 

 

Figure 4.8: Average flow perceived throughput (8K on-demand videos) - mm-wave 

and massive MIMO with access network load balancing (upper bound) 
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Quality of Service for different user groups 

In order to evaluate the QoS for on-demand video in terms of the experienced 

interruptions throughout media playback, two states are defined: smooth playback 

state and interrupted state, and the number of interruptions represents the number of 

transitions from smooth playback state to the interrupted state. Figure 4.9 and Figure 

4.10 show the box plots of perceived throughput and number of interruptions of bus 

users versus car and pedestrian users at both low traffic load (200 Gbps/km2) and 

high traffic load (1000 Gbps/km2). The box plots are used to demonstrate the 

distribution information of the data points in terms of their range, median, and 

quartiles from all the 50 different simulations. The edges of the box are the 25th (𝑄1) 

and 75th (𝑄3) percentiles of the distribution, the line in the middle of each box shows 

the median value. The maximum whisker lengths equal 1.5×(𝑄3 − 𝑄1). Any results 

smaller than 𝑄1 − 1.5×(𝑄3 − 𝑄1)  or larger than 𝑄3 + 1.5×(𝑄3 − 𝑄1)  are 

considered as outliers, and are plotted as individual points. Figure 4.13 and Figure 

4.14 show the blocking and dropping probability comparison of real-time videos.  

Without the load balancing scheme, there is a significant performance difference in 

terms of perceived throughput and blocking probability between the bus and the 

other two types of users. This is due to the fact that the bus users generate temporary 

hot spots and bring significant burdens to the local backhaul links, whereas the 

performance of car and pedestrian users depends on their locations. The performance 

improves with the increase of ANd coverage in the load balancing schemes, and the 

performance difference between bus and the other two types of users becomes 

smaller. This can also be observed from Figure 4.12, which presents snapshots of the 

contour plots showing the spatial distribution of the user perceived throughput across 

the area (the corresponding user distribution of the snapshots is shown in Figure 

4.11). This illustrates the importance of generating flexibility within the 

communication system to help average out spatial traffic fluctuations. 

Although the number of interruptions of the massive MIMO scenario is far less than 

that of mm-wave, the majority of the videos are interrupted only once, and these 

videos remain in the interrupted state due to congestion, never returning to the 
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smooth playback state during the lifetime of the simulation. This can also be 

observed from the perceived throughput box plot, where the perceived throughput of 

the massive MIMO scheme are much lower than the required playback rate (20 

Mbps). In reality, the users may choose to pause or leave the video in this 

circumstance, however for simplicity, it is assumed that the users stay and play the 

videos as soon as there is sufficient content for playback.  

 

 

Figure 4.9: Perceived throughput (on-demand 4K videos) box plot - mm-wave and 

massive MIMO with access network load balancing (upper bound) 

(For each boxplot pair: left side: perceived throughput for car and pedestrian users; 

right side: perceived throughput for bus users) 
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Figure 4.10: Number of interruptions (on-demand videos): - mm-wave and massive 

MIMO with access network load balancing (upper bound) 

(For each boxplot pair: left side: perceived throughput for car and pedestrian users; 

right side: perceived throughput for bus users) 

 

 

Figure 4.11: Corresponding user locations of the perceived throughput snapshot 
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Figure 4.12: Spatial distribution of perceived throughput in Mbit/s (on-demand 4K 

videos, vehicles driving on the right side) - mm-wave and massive MIMO with access 

network load balancing (upper bound) 



Chapter 4. Wireless Backhaul Deployments for Ultra-Dense Outdoor Small Cells 94 

 

Figure 4.13: Blocking probability (real-time services) - mm-wave and massive MIMO 

with access network load balancing (upper bound) 

 

 

Figure 4.14: Dropping probability (real-time services) - mm-wave and massive 

MIMO with access network load balancing (upper bound) 
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4.4 Conclusion 

This chapter described the methodologies used for ultra-dense outdoor small cell 

backhaul networks. An outdoor small cell scenario which reflects a dense urban city 

centre with mixed vehicular-video traffic is used as the simulation model. Two 

different traffic types including on-demand video streaming and real-time services 

were modelled in order to evaluate the capability of backhaul architectures in terms 

of supporting high data rate and low latency. A resource allocation scheme which 

prioritises the real-time traffic and allocate dynamic data rates to the on-demand 

videos has been introduced and will be used in the simulations in the rest of this 

thesis. 

A moving crowd, especially bus users, results in a highly uneven traffic distribution 

across the small cells which may cause bottlenecks on their associated backhaul links. 

The upper bound simulation results demonstrated that by applying massive MIMO 

technology, the delivery of backhaul network is feasible at low to medium traffic 

loads if access network load balancing techniques is applied in the system (below 

500 Gbps/km2). By applying an access network load balancing technique, higher 

flexibility and therefore improved performance can be achieved. Tight interference 

coordination control and extensive signalling exchange are essential in order to 

guarantee the required QoS. In addition, the sub-6 GHz band may struggle to deliver 

the necessary capacity needed at high traffic loads due to insufficient frequency 

resources. For a congested network, mm-wave backhaul has proven to be able to 

significantly improve the system performance compared to massive MIMO approach 

using sub 6 GHz band due to its abundant spectrum.  

It is worth noting that there is no definite backhaul deployment strategy which is 

superior to all the others when it comes to 5G. Multiple factors need to be taken into 

consideration in designing an appropriate backhaul solution, such as the underlying 

environment and infrastructure, cost, energy consumption and required capacity, etc. 

For example in the relative low capacity required use case introduced in Chapter 3, 

the need to reduce energy consumption while maintaining the coverage and QoS 
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should be highlighted, whereas in a highly densely populated urban city centre where 

thousands of users use mobile data for communication and entertainment on the go, 

the mm-wave backhaul option is more desirable. Therefore, mm-wave backhaul is 

used for the outdoor small cell network in the rest of this thesis. A number of novel 

backhaul architectures are proposed in the following chapters. 
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5.1 Introduction 

Using a two-tier architecture investigated in Chapter 3 and 4 can reduce the 

deployment costs since the number of points where fibre needs to be available is 

significantly less than running fibre to each small cell. However, for a dense urban 
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city with streets lined with high buildings and a small cell size of a few tens of metres, 

installing these ENds can still be cost prohibitive. For example, in Figure 4.2, 

assuming the propagation range for millimetre wave is 100 m to avoid weather based 

link outage, more than 10 ENds are needed to provide direct LOS backhaul links to 

the small cells in the topology shown.  

The existing placement of outdoor ENds follows the similar approach as with macro 

sites deployments. The ENds with a fibre connection are typically mounted on tall 

structures such as cell towers and high buildings to increase LOS probability and 

avoid temporary outages caused by passing vehicles as depicted in Figure 5.1 (a). 

This requires installing fibre optic cables spanning the distance between a small cell 

access node (ANd) and a source fibre cabinet. In addition, the speed of deployment 

is another issue. It may take months to install the ENds on existing buildings, since 

such installations may be controversial especially if the route passes through private 

properties. In previous work on deploying multiple nodes to improve the flexibility 

and diversity of the backhaul, researchers usually assume several candidate 

links/paths are already available and focus on the link/path selection algorithms only 

[39] [40] [41]. The feasibility of deploying the backhaul aggregation nodes is often 

neglected. 

One way of reducing the deployment cost as well as increasing the flexibility of the 

backhaul network is to consider the points where the fibre access is already available. 

The purpose of this chapter is to report a novel backhaul architecture delivered from 

street fibre cabinets designed for outdoor dense small cells, which exploits path 

diversity within a network to mitigate the effect of link outage as well as provide 

high capacity density. The ENds are co-located with street fibre cabinets to provide 

a flexible and low cost millimetre wave mesh backhaul network.  

The remainder of the chapter is organised as follows: Section 5.2 introduces the street 

cabinet ENd and illustrates possible street cabinet ENd configurations along with 

antenna placement. In Section 5.3, an analytical framework for backhaul link outage 

and diversity analysis is developed. Section 5.4 explains the backhaul path 

management procedure both in a distributed configuration and in a centralised 
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configuration. In Section 5.5, a case study is discussed to illustrate the feasibility of 

deploying existing street cabinets to deliver backhaul. Finally, conclusions are given 

in Section 5.6. 

 

 

Figure 5.1: GREENBACK outdoor backhaul deployment scenarios 

 

5.2 Street Cabinet Edge Node 

Currently, operators have already installed a large number of street fibre cabinets in 

dense urban areas through their FTTx deployments, and these street cabinets already 

have fibre, power and implementation permits. Hence it is sensible to explore the 

possibility of using these existing street fibre cabinets to house ENds in order to 

overcome the need to run extra fibre and power cables between an ENd and a source 

cabinet. Depending on local fibre penetration level and capacity requirements, a 

backhaul network may be deployed exclusively by using street cabinet ENds as 

illustrated in Figure 5.1 (b) or a combination of existing backhaul infrastructure and 

street cabinet ENds as shown in Figure 5.1 (c). 

: ENd on high building

(a) (c)

: ANd/MNd on street light

: ENd at fibre cabinet

(b)

: Link blocked by vehicle
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The components of an ENd including RF processing unit (remote radio unit - RRU), 

path control/management unit, Baseband Unit (BBU, in a D-RAN configuration), 

and antenna array can be installed onto an existing street cabinet. The detailed path 

management unit will be discussed in Section 5.4.1. The street cabinet ENds can 

carry uplink/downlink traffic between mesh nodes and a core network using point-

to-point millimetre wave links. As shown in Figure 5.2 (a) and (b), an electronically 

steerable antenna array (planar array for example) is attached to the exterior of the 

street cabinet. It is also possible to install an electronically steerable antenna array 

(cylindrical antenna array for example) on a pole attached to the street cabinet as 

shown in Figure 5.2 (c). The height of the pole depends on the outage requirement 

and deployment constraints. 

 

 

Figure 5.2: Possible antenna placements on a street cabinet 

 

5.3 Backhaul Link Outage Analysis 

5.3.1 Analytical Model 

Although utilising existing street fibre cabinet ENds seems to be an extremely 

promising solution to deliver backhaul, the street-level millimetre wave backhaul 

links are more likely to be temporarily blocked by passing cars, human beings and 

(a) (b) (c)
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other obstacles compared with solutions where the ENds are installed above first 

storey height on building walls as illustrated in Figure 5.1 (b). Hence, it is important 

to examine the impact of link outage on system performance. A two-tier network 

model consisting of one MNd which has access to 𝑁 street cabinet ENds via mm-

wave backhaul links as shown in Figure 5.3 is considered. Due to the narrow 

beamwidth, the spatial separation of paths, and the static positions of the base station 

antennas, the millimetre wave links can be modelled without the need to consider the 

impact of mutual interference.  

 

 

Figure 5.3: 1 MNd N street cabinet ENd network model 

 

The backhaul link average outage percentage 𝑃 (𝑖) (𝑖 = 1, 2, … , 𝑁) here is defined 

as the average total amount of time of momentary outage that the 𝑖yz	backhaul link 

would experience during the entire time 𝑇d. For simplicity, we assume that all the 

links have the same average outage percentage 𝑃 . The value can be changed without 

the loss of generality. Assuming a backhaul link is in outage independently of other 

backhaul link states, then the amount of outage backhaul links out of 𝑁 follows the 

binomial distribution, and the probability of having 𝑚 outage backhaul links for a 

MNd on average can be calculated by:  
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𝜂² =
𝑁
𝑚 𝑃

²

1 − 𝑃 A¢² 

																												= A!
A¢² !²!

𝑃 ² 1 − 𝑃 A¢²                                  (5.1) 

 
It is assumed that each mm-wave link has 𝐾 channels, and that the total new traffic 

arrival for the MNd follows a Poisson process with rate 𝜆, and the service time is an 

exponential distribution with service rate 𝜇. It is also assumed that the idle channels 

on the accessible backhaul links can be randomly chosen with equal probability. In 

this network model, all the backhaul links are independent and statistically identical. 

Hence, we can model the system as a M/M/c/c queue which can be represented by a 

one-dimensional Markov chain [98]. The blocking probability for the M/M/c/c 

model can be obtained from the Erlang-B formula. 

In this street cabinet scenario, it is more likely that a group of traffic flows need to 

perform handover to another street cabinet ENd simultaneously in the event of link 

outage, hence modelling the enhanced arrival rate for new incoming traffic flows 

alone cannot capture the blocking caused by handover failures. In light of this, we 

classify the transmission blocking into two types: one is caused by the lack of idle 

channels for the new traffic; the other is caused by the handover failure for the 

ongoing traffic flows when a backhaul link is in outage. Given (𝑁 −𝑚) backhaul 

links are accessible to the MNd, then there are 𝐾(𝑁 −𝑚) channels in total. The 

blocking probability caused by the absence of available channels therefore can be 

given by: 

 

𝑃5 𝑚 = Ù Ú Û(WTµ) Î(A¢²)!

Ù Ú 1 5!Û(WTµ)
1XÜ

                                          (5.2) 

 
Therefore, we obtain 𝑃5Ý 𝑚 , the blocking probability for the new traffic when there 

are 𝑚 outage backhaul links in the system:  

 
																												𝑃5Ý 𝑚 = 𝜂²𝑃5 𝑚  
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= A!
A¢² !²!

𝑃 ² 1 − 𝑃 A¢² Ù Ú Û(WTµ) Î(A¢²)!

Ù Ú 1 5!Û(WTµ)
1XÜ

            (5.3) 

 
In the situation where there is no outage link in the system, the backhaul links are 

chosen with equal probability. Hence, the traffic arrival rate for each backhaul link 

can be expressed as 𝜆 𝑁, and the aggregated arrival rate of 𝑚 backhaul links is 

𝜆𝑚 𝑁. Therefore, the probability of having ℎ	(0 ≤ ℎ ≤ 𝑚𝐾) ongoing traffic flows 

(at state 𝑝 ℎ ) that need to handover to other links from the	𝑚 outage links can be 

calculated using the derivation of Erlang-B:  

 

																												𝑝 ℎ = 𝑝 0
𝜆𝑚 𝜇𝑁 z

ℎ!  

= Ù² ÚA � z!
Ù² ÚA V l!Ûµ

VXÜ
                                                                   (5.4) 

 
Similarly, the probability of having 𝑛	(0 ≤ 𝑛 ≤ 𝑁 −𝑚 𝐾) occupied channels on 

(𝑁 −𝑚) available backhaul links can be expressed as: 

 
𝑝 𝑛 = Ù(A¢²) ÚA ¶ �!

Ù(A¢²) ÚA Þ Ë!Û(WTµ)
ÞXÜ

                                        (5.5) 

 
The handover failure occurs when ℎ > 𝑁 −𝑚 𝐾 − 𝑛 , meaning that the idle 

channels on the available 𝑁 −𝑚  links cannot accommodate all the handover 

traffic flows. Hence the probability can be calculated by:  

 

𝑃zÝ 𝑚 = 𝑝 ℎ 𝑝 𝑛A¢² Î
�~ A¢² Î¢zY+

²Î
z~+                           (5.6) 

 

Based on the above analysis, the total blocking probability can be expressed as:  
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𝑃Ý = (𝑃5Ý 𝑚 + 𝑃zÝ(𝑚)A

²~, )                                              (5.7) 

 
Note that the first term represents the new traffic blocking probability, whereas the 

latter is the handover failure probability for ongoing traffic flows. Substituting 

Equation (5.1)-(5.6) in Equation (5.7), we obtain the overall probability that a 

transmission is blocked 𝑃Ý as: 

 

																	𝑃Ý = { A!
A¢² !²!

A
²~, 𝑃 ² 1 − 𝑃 A¢² Ù Ú Û WTµ Î A¢² !

Ù Ú 1 5!Û WTµ
1XÜ

+  

Ù² ÚA � z!
Ù² ÚA V l!Ûµ

VXÜ

Ù(A¢²) ÚA ¶ �!

Ù(A¢²) ÚA Þ Ë!Û(WTµ)
ÞXÜ

A¢² Î
�~ A¢² Î¢zY+

²Î
z~+ 	}						(5.8) 

 

5.3.2 Results 

The main aim of the model introduced above is to analyse the impact of high link 

outage and the system performance improvement by introducing path diversity to the 

network. In order to validate the accuracy of the analytical model, we also use 

MATLAB to simulate the described scenario. The parameters used in the network 

are listed in Table 5.1. The temporary outage probabilities are assumed to be 

independent between the different backhaul links, and the individual temporary 

outage duration is modelled as an exponential distribution with a mean duration of 

𝑇𝑜. The outage intervals (the time interval between the end of previous outage and 

the next outage) are also exponentially distributed, and the inter arrival rate 𝜆𝑛 is 

calculated as: 

 
𝜆� =

[�N�
[�[�

= N�
[�

                                                                 (5.9) 
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Note that the temporary outage probabilities for different backhaul links may not be 

fully independent in reality. For instance, neighbouring links may be blocked by a 

long vehicle. The temporary outage durations for backhaul links may also vary 

drastically with the time of day and between different locations. Hence, another 

approach would be to model the outages explicitly based on site-specific traffic and 

geographic data. We do not specifically model these correlations here, but further 

detailed modelling may be advantageous, if correlated link outage data is available. 

 

Table 5.1: Parameter values of the analysis and simulation 

Parameter Value 

Number of channels on each 

backhaul link: 𝐾 
25 

Traffic service rate: 𝜇 0.5/s 

Mean outage duration: 𝑇  20 s 

Total simulation time: 𝑇d 1000 s 

 

Figure 5.4 shows the blocking probability of the system with different numbers of 

backhaul links accessible to a MNd. It demonstrates a good agreement between 

analytical and simulation results (averaged over 100 trials), which means that the 

analytical approach provides an effective design tool for modelling the performance 

of the mm-wave backhaul system with link diversity. At low traffic loads, the 

performance is dominated by the outage caused by obstructions, where all the 

backhaul links for a MNd are in outage. At medium to high traffic loads, the blocking 

probability increases rapidly as the traffic increases. This is a result of the blocking 

caused by the lack of idle channels starting to dominate. By introducing path 

diversity to the network, the system performance improves significantly.  
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Figure 5.5 demonstrates the number of backhaul links needed at different outage 

levels: low (10%), medium (30%) and high (50%), in order to achieve an acceptable 

level of performance. The blocking probability of the system with building wall 

ENds acts as a benchmark. Since the street level obstructions are the major concern 

for link outage here, the link outage of a backhaul link delivered from building wall 

ENds are assumed to be 0%. Fewer backhaul links are needed for a system with a 

lower outage level as expected. With 10% link outage, three backhaul links per MNd 

are required at high traffic loads as opposed to two links needed for the benchmark 

scenario. However, this configuration provides better performance at high traffic 

loads compared to the benchmark due to the path diversity introduced to the network. 

 

 

Figure 5.4: Blocking probability – analytical vs simulation (50% outage) 
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Figure 5.5: Blocking probability (analytical) - number of backhaul links needed for 

different outage probability 

 

5.4 Management Procedure 

As discussed above, path diversity is essential to maintain the backhaul connectivity 

and required QoS. Depending on the capability of the ENd devices, the 

backhaul/fronthaul path management module may be either distributed within each 

ENd or centralised at the core network level. 

5.4.1 Distributed Configuration 

Figure 5.6 illustrates an example of the detailed breakdown of components in a street 

cabinet ENd along with a distributed Path Management Unit. The MNds are 

interconnected with each other via the X2 interface. When another backhaul link is 

required in response to the current backhaul link disruption or congestion, a MNd 

sends a broadcast request to any ENds which is capable of receiving the request if 

there is no pre-stored candidate path available. Alternatively it sends directed 

requests to the available candidate ENds to establish a backhaul link. The QoS 
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parameters QoS Class Identifier (QCI) and/or Allocation and Retention Priority 

(ARP) can be used to indicate the required resource type, packet delay budget 

(ranging from 50 ms to 300 ms), packet error loss rate (ranging from 10-6 to 10-2) and 

priority level. Note that the QCI can be defined by the operators. For more specific 

details, please see [90]. After receiving the acknowledgements from the ENds, a path 

selection scheme may be used to choose one or more backhaul/fronthaul links to 

establish based on link status, traffic loads, QoS requirements, etc. An example of 

the path management procedure is shown in Figure 5.7.  

 

 

Figure 5.6: A block diagram of an example street cabinet ENd configuration with a 

distributed Path Management Unit 
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Figure 5.7: Signalling flow of an example distributed path control method 

 

5.4.2 Centralised Configuration 

The Path Management Unit can alternatively be configured within a centralised 

controller. The Unit can be implemented in an operator’s core network. This may be 

realised by using SDN enabled architecture as described in Chapter 3. The SDN-

enabled switches which might be placed within MNds and ENds, process the 

incoming traffic based on a flow table defined by the central controller. The switches 

also collect network utilisation statistics such as current traffic load and backhaul 

link status, and report them back to the central controller via a south-bound interface. 

The backhaul path management algorithms and resource allocation policies can be 

implemented by using the application program interfaces (APIs) provided by the 

central controller and then push the policies to the controller via a northbound 

interface. The controller coordinates the available backhaul links for each MNd on 

event basis. This approach also significantly simplifies the components of street 
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cabinet ENds, which further reduces the associated costs. Higher flexibility and 

improved resource utilisation can also be expected from this approach. 

5.5 Proof-of-Concept Case Study 

In Section 5.3, the analytical model to evaluate performance of different levels of 

link outage and path diversity is derived for regular Poisson distributed voice call 

traffic. This section presents the results of simulating the proposed urban street 

cabinet backhaul architecture in the street canyon scenario with vehicles and 

pedestrians using different applications described in Section 4.2 and Section 4.3.2. 

The simulation lasts 10,000 s for each traffic load, and the measurements are taken 

after 100 s when the system is relatively stable. The results are obtained by averaging 

50 different simulations with randomly generated mobility traces and user traffic. In 

addition, the average link outage duration is assumed to be 100 s, which is the same 

as the red traffic light duration. The outage inter arrival rate can be calculated using 

Equation (5.9).  

The impact of different levels of temporary link outage on system performance with 

single backhaul links is evaluated first. We then explore the possibility of utilising 

street cabinet ENds to provide backhaul redundancy for a capacity constraint 

network. 

5.5.1 The Impact of Momentary Backhaul Link Outage on System 

Performance 

In order to evaluate the impact of momentary link outages on system performance, 

we assume all the ENds are installed on the street fibre cabinets as shown in Figure 

5.1 (b). Each MNd has one backhaul link connection. The outage percentage of the 

street cabinet links depends on the height of the antennas as well as the local 

environment. A lower outage percentage is possible when the antennas are placed at 

a greater height above ground level. On the other hand, in a dense urban city with 
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congested traffic, the outage might be higher. Hence, different levels of backhaul 

link average outage percentage 𝑃  are tested.  

In the simulation, the link outage probability values of 10%, 30% and 50% are tested 

respectively which are the same as the analytical analysis. A user is assumed to be 

able to connect to any ANds within a connecting range of 50 m (medium range as 

discussed in Section 4.3.3), and would initially connect to its nearest ANd which can 

potentially offer the best link quality. When a backhaul link experiences outage (the 

corresponding ANd cannot connect to the core network through a street cabinet 

ENd), the existing users on the link will be handed over to the next nearest ANd and 

its associated backhaul link. In Figure 5.8, the lines in Group 1 compare the average 

perceived throughput (8K on-demand videos shown, 4K on-demand videos follow 

the same trend) of different levels of link outage. 50% average outage performs the 

worst due to the high probability of the unavailable backhaul links which causes 

congested traffic loads on the available backhaul links. The performance is better 

with a lower probability of outage. 

 

 

Figure 5.8: Average perceived throughput per flow – different levels of outage and 

redundancy (8K on-demand videos) 
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5.5.2 Providing Backhaul Link Diversity Using Street Cabinet 

ENds 

Proving backhaul flexibility using street cabinet ENds provides an effective 

alternative to offload the traffic burden. In this subsection, we explore two possible 

configurations. The first one is to deploy ENds solely relying on the street cabinets 

as shown in Figure 5.1 (b). The other is a hybrid approach, whereby a MNd is served 

by a mixture of building wall and street cabinet ENds as shown in Figure 5.1 (c). 

Here, we assume 0% average outage for building wall ENd-MNd links, and 50% 

average outage for street cabinet ENd-MNd links as mentioned in Section 5.3.2.  

The lines of Group 2 in Figure 5.8 compare the average perceived throughput that 

can be achieved by introducing redundancy into the backhaul network. The average 

capacity offered in these options is equivalent to the capacity provided by 2 backhaul 

links from building walls for each MNd. The system with 1 backhaul link and 2 

backhaul links with ENds installed on building walls are the lower and upper 

benchmarks to evaluate the performance of the system with redundancy. Two 

simultaneous backhaul transmission links are allowed per MNd for the redundancy 

deployments, and a new flow will be allocated to the backhaul link with lower traffic 

load of the two. 

For an all-street-cabinet configuration, 4 LoS street cabinet backhaul links are 

accessible for each MNd with an average outage of 50% each. This configuration 

has the similar average performance to the lower benchmark (1 backhaul link on 

building wall). However, for low to medium traffic load, the average performance 

loss compared to the upper benchmark is marginal (2.7% maximum), and it supports 

a good service level overall. Note that the encode data rate (required smooth 

playback rate) for 8K video is 80 Mbps. 

For a hybrid configuration, 1 building wall ENd and two street cabinet ENds (with 

50% average outage each) are available for each MNd and this is assumed in order 

to match the average capacity provided by 2 building wall ENds. As shown in Figure 

5.8, it performs better than the all-street cabinet configuration (with only 1.5% 
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performance loss at medium traffic load) since each MNd has one reliable backhaul 

link on building walls, and the street cabinet ENds provides extra flexibility and 

capacity to the system.  

Figure 5.9 – Figure 5.11 show the performance comparison of this hybrid approach 

versus the lower and upper benchmarks. This configuration performs significantly 

better than the 1 building wall ENd backhaul link per MNd approach especially for 

the high traffic load. Figure 5.9 shows the perceived throughput box plot. Due to the 

lack of backhaul diversity for the 1 building ENd configuration, the performance of 

pedestrian and car users vary drastically depending on their local traffic load 

conditions on their serving backhaul, and the bus users suffer from severe congestion 

overall. Introducing extra diversity into the system (hybrid approach) results in an 

8.6% and 21% increase in median perceived throughput for pedestrian/car users and 

bus users respectively compared to the lower benchmark. Although the performance 

of the hybrid approach is not as good as the one supported by 2 building wall ENds 

per MNd configuration, it is able to provide satisfactory QoS to the end users with 

potentially lower costs and fewer deployment challenges (note that the smooth 

playback rate for 4K video is 20 Mbps). 
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Figure 5.9: Perceived throughput (on-demand 4K videos) box plot – different 

redundancy levels at different offered traffic load comparison 

(For each box plot pair: left side: perceived throughput for car and pedestrian users; 

right side: perceived throughput for bus users) 

 

 

Figure 5.10: Blocking probability – different levels of backhaul redundancy (real-

time videos) 
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Figure 5.11: Dropping probability – different levels of backhaul redundancy (real-

time videos) 

 

5.6 Conclusion 

In this chapter, a novel backhaul architecture where ENds are co-located with street 

fibre cabinets to provide a cost-effective and flexible millimetre wave backhaul 

network for outdoor dense small cells has been proposed. In the situation where 

installing adequate ENds with fibre connections on building walls incurs high costs 

and deployment challenges, the delivery of backhaul traffic directly from street 

cabinets with satisfactory QoS is feasible, even when there is high outage at each 

street cabinet. This is achieved by building sufficient path diversity within the 

network so that each MNd can connect to two or more street cabinet ENds to ensure 

high reliability of the backhaul connectivity.  

An analytical framework to examine the impact of the backhaul link outage and path 

diversity has been presented. With 10% link outage, three backhaul links per MNd 

are required at high traffic loads compared to two links needed for all-building-wall 

deployed scenario. However, it delivers better performance at high traffic loads 

resulting from the extra flexibility introduced to the system. Furthermore, two 
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backhaul path management approaches were described – distributed configuration 

and centralised configuration.  

Finally, a realistic simulation of a street canyon with vehicular traffic scenario 

showed that for an all-street-cabinet configuration, 4 street cabinet backhaul links 

per MNd is often sufficient, even with a conservatively high average outage of 50%. 

In addition, the street cabinet ENds can also be used in conjunction with building 

wall ENds to provide extra backhaul flexibility and capacity. The results showed that 

the hybrid approach with 1 building wall ENd and two street cabinet ENds per MNd 

achieved superior performance compared to the 1 building wall ENd per MNd 

configuration. It has comparable performance compared to the 2 building wall 

backhaul links per MNd approach, with potentially lower costs and fewer 

deployment challenges. 
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6.1 Introduction 

All the backhaul deployment strategies discussed in this thesis so far only consider 

one-hop relay: a backhaul link from an aggregation node (ENd) to a relay node 

(MNd). The main reason for this architecture is to reduce the system and relay node 
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complexity. The improvement of backhaul network flexibility is achieved by 

ensuring that the path diversity is created by network densification. However, in the 

situation where increasing the density of the infrastructure node is difficult to realise, 

multi-hop might be a viable solution to bringing in the extra level of flexibility, and 

thus improving the coverage of a mm-wave backhaul network. Here, how to design 

an appropriate topology management strategy is an important issue. 

There is a large amount of previous work addressing various aspects of multi-hop 

routing algorithms, such as link quality, system capacity, hop count, and end-to-end 

delay [99-102]. For example in [102], a bottleneck capacity aware routing algorithm 

which takes link quality, interference and traffic load into account is proposed to 

improve the system throughput. Despite the fact that each scheme brings certain 

benefits, the considered scenarios are rather limited and may not be suitable for 

practical mm-wave multi-hop deployment due to its unique propagation 

characteristics. In [103] and [104], multi-hop algorithms which exploits the access 

point diversity are proposed to solve the blockage problem in 60 GHz band. 

However, only one-hop relay and overall system capacity are considered. In fact, the 

impact of the features of a mm-wave multi-hop backhaul on system performance and 

user experience remains largely unclear. 

The purpose of this chapter is to investigate the dynamics of applying multi-hop 

technique to mm-wave backhaul when different aspects are considered in the system 

and, thus, to propose multi-hop schemes which account for relay node capability, 

end-to-end latency, QoS differentiation, and handover control.  
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6.2 Design Considerations on Multi-hop Millimetre Wave 

Backhaul 

6.2.1 Full Duplex Communications 

In wireless communication systems, half duplex solutions are widely adopted which 

means the transmission and reception of information cannot take place 

simultaneously. This is due to the fact that the received signal from a local 

transmitting node is much stronger than the arriving signal from a remote transmit 

antenna [105]. An attractive solution to significantly improving the network 

flexibility is full duplex. It allows a pair of nodes to transmit and receive information 

simultaneously under specific isolation conditions [105]. For example, frequency-

division duplexing (FDD) has long been adopted in wireless communication systems 

for establishing full duplex communication links using two different frequencies. 

With the rapid development of advanced radio techniques, an emerging technique 

called in-band full duplex has been envisioned as one of the main building blocks of 

5G. It allows transceivers to transmit and receive signals simultaneously over the 

same frequency. The resource utilisation can be significantly improved by this 

approach.  

There are two basic topologies for full-duplex systems: bidirectional full-duplex 

system and relay full-duplex system as illustrated in Figure 6.1. Assume a traffic 

flow needs to be transmitted from source node S to destination node D. In a relay 

topology, if a relay node R operates in a half-duplexing mode, then it would need to 

receive from the source node S and forward to the destination node D alternately. 

With full-duplexing however, R is able to receive and forward the flow 

simultaneously. In a bidirectional topology, node A and node B can transmit data 

flows to each other simultaneously.  
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Figure 6.1: Topology of full duplex: (a) Relay topology; (b) bidirectional topology 

 

The key challenge to design a full-duplex system is the isolation between 

transmission and reception. Emerging state-of-the-art techniques for self-

interference cancellation include analogue and digital cancellation, and antenna 

separation [106] [107]. Since the beams generated by mm-wave antennas are usually 

highly directional, a full-duplex node with multiple directional 

transmission/reception links is likely to be a feasible approach to increase the spectral 

efficiency, assuming sufficient spatial separation of the Tx and Rx beams can be 

guaranteed. In Figure 6.2 for example, two simultaneous transmission/reception 

links are used for MNd1 and three simultaneous transmission/reception links are 

used for MNd2, and for each relay node, the transmit and receive antennas of a 

backhaul link path point to different directions (for example: 

MNd1®MNd2®MNd3). Note that the bidirectional full duplex is not assumed in 

our deployment scenario since a Rx beam is always within the Tx range for a pair of 
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nodes connected via a direct link (for example: MNd1«MNd2). In this circumstance, 

the pair is assumed to share the resources for each direction. 

In terms of the practical implementation of the advanced transceivers, the full-duplex 

mm-wave relay node with multiple transmission links and a bandwidth of 1GHz is 

still in its development phase. In addition, analogue and digital cancellation as well 

as the isolation provided by beamforming needs to be improved to fulfil its promises. 

However, rapid progress is being made in this research area and, thus it is crucial to 

understand its impact on system performance. Based on the mesh node’s hardware 

capability, different numbers of simultaneous transmission/reception links using the 

same resource can be achieved and are compared in Section 6.4. 

 

 

Figure 6.2: Illustration of simultaneous transmission/reception links 

 

6.2.2 Choice of Relay Node 

MNd Multi-hop 

An intuitive multi-hop configuration to overcome the absence of the ENds is 

depicted in Figure 6.3, where a MNd can connect to an ENd with fibre connection 

via one or multiple MNds in a multi-hop fashion, and the MNds are not necessarily 

connected to their nearest peers. As discussed, sufficient spatial beam separation is 

MNd	1 MNd	2

MNd	3

ENd	1

ENd	2



Chapter 6. Multi-hop and Topology Management for Millimetre Wave Backhaul Network 122 

essential to achieving the relay type full duplex operation, therefore, the two MNds 

that carry backhaul traffic from hop to hop are assumed to be on the opposite sides 

of a street with a distance within 50 m as shown in Figure 6.3. Longer distances may 

cause the overlapping of the beams and introduce excessive signalling among MNds. 

This MNd multi-hop configuration requires MNds operating in full-duplex mode, 

hence additional complexity of the self-interference cancellation circuitry. 

Wireless ENd Multi-hop 

An alternative approach is shown in Figure 6.4, where a wireless ENd can be 

installed, and is able to connect to another ENd with fibre connectivity via one or 

multiple hops. Here, instead of using multi-hop links between MNds, the traffic will 

be aggregated at the wireless ENd, and then backhauled to/ from the wired ENds. 

The aggregated transmission can be directed to one or more ENds simultaneously or 

switched between them to improve reliability. The wireless ENds are assumed to be 

randomly placed on building walls between the height of a MNd (8 m) and a wired 

ENd (12 m) for improved spatial separation, and they can connect to another peer or 

ENd with fibre connection within 100 m as long as LOS is available and the beam 

separation can be guaranteed. No limitation on the number of simultaneous 

transmission links is assumed since only a small number of them are available. The 

rationale for this approach is that the overall backhaul deployment costs can be 

reduced by installing fewer wireless ENd aggregation nodes with high computational 

complexity and low cost MNds at every street lamp. Here, the MNds can operate in 

half-duplex mode receiving (downlink direction) traffic flows from the ENds, 

without forwarding the traffic to other peers using the same resource.  
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Figure 6.3: Example of using MNd as relay node 

 

 

Figure 6.4: Example of using wireless ENd as relay node 
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6.2.3 Latency Model 

Reduced latency is a key requirement of 5G. The backhaul latency depends heavily 

on the technology used. When multi-hop is used in the system, there is potential for 

latency to increase significantly, and therefore, it is important to estimate the end-to-

end latency budget. For a densely deployed backhaul network, the highly directional 

mm-wave links can be modelled as pseudo-wired, and the end-to-end latency is 

mainly from the processing latency in each hop [108]. A short physical frame 

structure of 50 µs to 0.25 ms for mm-wave which has the control symbols located at 

the beginning of a frame is envisioned in [109]. This allows fast pipeline processing 

in the relay nodes, i.e. a relay can receive a transmission in the 𝑛yz sub-frame, and 

then forward it in the (𝑛 + 1)yz sub-frame. 

Accordingly, the latency is modelled on per-hop basis in this thesis, and the end-to-

end latency is the summation of the cascaded per-hop latencies as shown in Figure 

6.5. There are various types of distributions have been used to model latency, such 

as truncated Gaussian, exponential and Gamma [110]. Here, a truncated Gaussian 

distribution is adopted (mean: 0.25ms; std: 0.1 ms; range: 0.05-0.45 ms). It is worth 

mentioning that there is no clear cut as to which distribution better describes the 

characteristics of the network latency since it depends on the backhaul technology 

used, frame structure, devices and etc. However, it is easy to adapt this per hop 

latency analysis approach to different models as required.  

The latency for a single hop is drawn randomly from the considered distribution. 

Along with the number of hop information obtained from the simulations, the end-

to-end cascaded latency of each flow can be calculated by:  

 

τM 𝑁 = 𝐺({𝜃+, 𝜃D, … , 𝜃Ë})A
�~+     (6.1) 
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where 𝑁 is the number of hops flow 𝑖 passes, 𝐺(𝑥) is a random variable drawn from 

a considered distribution with parameters {𝜃+, 𝜃D, … , 𝜃Ë}.  

 

 

Figure 6.5: Per hop latency 

 

6.3 Topology Management for Multi-hop Millimetre Wave 

Backhaul 

6.3.1 Multi-hop Topology Management with QoS Control 

The highly dynamic network topology in millimetre wave multi-hop networks 

presents major challenges to path selection and resource scheduling as it may cause 

unnecessary delay and lack of bandwidth for certain traffic flows. It is critical to 

make sure that appropriate QoS strategies are applied to different types of traffic 

flows. Here, a multi-hop scheme that accounts for relay node capability, end-to-end 

latency and QoS differentiation is proposed in this section. 

Figure 6.6 shows the process of initialising the possible multi-hop path for the MNds. 

Each MNd is preconfigured with a list of backhaul paths to an ENd with fibre 

connection, and the list can be pre-programmed since the position of the nodes are 

practically always known. The MNds which have direct fibre ENd connections is 

firstly found. The MNds then search other MNds within 50 m which have direct ENd 
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connections and store them as the two-hop links. The search continues until a 

maximum of 3 multi-hop links are found to make sure the end-to-end latency is 

within the 1 ms 5G target. 

 

 

Figure 6.6: Multi-hop path initialisation 

 

When a new/handover request which has a required capacity of 𝑟A and a maximum 

number of hops ℎ°M² is received at MNd 𝑖, the MNd checks the amount of available 

resources and number of hops on the active paths 𝑨M. Here, a maximum of two hops 

is used for the real-time services in order to ensure a low latency. It is assumed that 

the MNd maintains an up-to-date table of the capacity usage for each path to the 

ENds. This can be achieved by sending RESOURCE STATUS UPDATE message 

periodically among the neighbouring connected MNds. For any direct point-to-point 

link, the amount of resources 𝑅³É³ which are available or can be pre-empted from 

the on-demand videos without compromising their QoS can be calculated by: 

 

𝑅³É³ = 𝑅y¨y − 𝑟²Á_dy|?
²~+ − 𝑟ËaÎ

Ë~+    (6.2) 
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where 𝑟²Á_dy|	(𝑚 = 1,… ,𝑀)  and 𝑟Ëa	(𝑘 = 1,… , 𝐾)  are the required average data 

rates of the ongoing on-demand videos in steady state and real-time services on the 

considered link respectively. Since the real-time services have a more stringent 

requirement in terms of latency as well as capacity, a certain amount of capacity 𝑅{|d 

can be reserved on the backhaul links for them. In this case, 𝑅³É³  for a new on-

demand video becomes:  

 

𝑅³É³ = 𝑅y¨y − 𝑟²Á_dy|?
²~+ − 𝑚𝑎𝑥	( 𝑟ËaÎ

Ë~+ , 𝑅a|d)  (6.3) 

 

Note that the available capacity of a path is determined by the minimum available 

capacity of the point-to-point links along the path, i.e.: 

 

𝑅M\³É³ = 𝑚𝑖𝑛 𝑅M𝑷P¸
³É³ , 𝑷M\ ∈ 𝑷M   (6.4) 

 

where 𝑷M denotes the set of all possible backhaul paths for MNd 𝑖, and 𝑷M\ is the 

point-to-point links of path x for MNd 𝑖. The path management module described in 

Section 5.4 then searches the active path which has the maximum available capacity, 

and is able to meet the latency requirement, as follows: 

 

𝑙 = {𝑙|𝑙 ∈ 𝑨M 		∧ 	 	𝑅M°³É³ = max	{𝑅M𝑨P
³É³} 		∧ 	 	ℎM° ≤ ℎ°M²}   (6.5) 

 

Path 𝑙 can be chosen subject to: 
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𝑅M°³É³ ≥ 𝑟A      (6.6) 

 

Otherwise, a new path from the alternative list 𝑼M, 𝑼M ⊆ (𝑷M\𝑼M)	can be activated to 

offload the traffic, provided that the number of active links 𝐿M on the MNd is no more 

than a predefined value 𝐿yz{|d. The path for the new flow can be selected based on 

the following condition and Equation (6.6): 

 

𝑙 = {𝑙|𝑙 ∈ 𝑼M 		∧ 	 	𝑅M°³É³ = max	{𝑅M𝑼P
³É³} 		∧ 	 	ℎM° ≤ ℎ°M²}   (6.7) 

 

In the situation where there is no available path that is able to support the required 

capacity, the least loaded path of all the candidate paths 𝑷M  is chosen if the new 

request is an on-demand video. For a new real-time service flow, on the other hand, 

the amount of resources which can be pre-empted from the on-demand services on 

paths 𝑷Mare evaluated first, and the pre-emptable resources on a point-to-point link 

can be obtained by: 

 

𝑅³É³_a = 𝑅y¨y − 𝑟ËaÎ
Ë~+     (6.8) 

 

The path set 𝑺M  which is able to accept the real-time service request can then be 

obtained by: 

 

𝑺M = {𝑺M|𝑺M ⊆ 𝑷M 			∧ 			𝑅M𝑺P
³É³_a ≥ 𝑟A 			∧ 			 	ℎ𝒊𝑺P ≤ ℎ°M²}  (6.9) 
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Finally, the backhaul path for the real-time service is selected using the following 

principle:  

 

𝑙 = {𝑙|𝑙 ∈ 𝑺M 		∧ 		𝑅M°³É³ = 𝑚𝑎𝑥	(𝑅M𝑺P
³É³)}   (6.10) 

 

Algorithms 1 and 2 summarise the proposed multi-hop path selection schemes. 

Algorithm 1 shows the path selection scheme for a new on-demand video. Although 

HD on-demand videos generally require a high capacity, they have a relatively high 

tolerance for latency and, thus a least loaded path is chosen for them. Algorithm 2 

shows the path selection scheme for a new real-time service. Since real-time services 

are highly sensitive to latency and usually require a fixed data rate for each flow, a 

limit on the maximum number of hops a real-time flow is allowed to pass through 

can be used. Moreover, a certain amount of capacity can be reserved for them on 

each backhaul link to further reduce latency and possibly blockage. Depending on 

whether the QoS differentiation information including capacity reservation and 

latency control information for real-time services can be exchanged across the 

network, in Section 6.4, the proposed scheme is compared with a classical capacity 

based routing algorithm which aims to select a path with the maximum end-to-end 

capacity.  
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Algorithm 1: Path selection for a new/handover on-demand video 
1: Obtain possible backhaul paths for MNd 𝑖; 𝐿yz{|d; 𝑅a|d 
2: if the new flow is an on-demand video then 
3:    Calculate 𝑅³É³ using Equation (6.3) and (6.4) 
4:    Find path 𝑙 within active path set 𝑨M using Equation (6.5) and (6.6) 
5:    if 𝑙 does not exist 		∧  𝐿M < 𝐿yz{|d then 
6:       Find path 𝑙 within alternative path set 𝑼M Equation (6.6) and (6.7) 
7:       if 𝑙 does not exist then 
8:          Select the least loaded path of all the candidate paths 𝑷M 
9:       else 
10:          Select path 𝑙 
11:       end if 
12:    else 
13:       Select path 𝑙 
14:    end if 
15: end if 

 

Algorithm 2: Path selection for a new/handover real-time service 
1: Obtain possible backhaul paths for MNd 𝑖; 𝐿yz{|d; 𝑅a|d 
2: if the new flow is a real-time service then 
3:    Calculate 𝑅³É³ using Equation (6.2) and (6.4) 
4:    Find path 𝑙 within active path set 𝑨M using Equation (6.5) and (6.6) 
5:    if 𝑙 exists then 
6:       Select path 𝑙 
7:    elseif 𝑙 does not exist 		∧  𝐿M = 𝐿yz{|d 
8:          Calculate 𝑅³É³_a on active paths using Equation (6.8) 
9:          𝑺M ← {𝑺M|𝑺M ⊆ 𝑨M 				∧ 			𝑅M𝑺P

³É³_a ≥ 𝑟A 			∧ 			 	ℎ𝒊𝑺P ≤ ℎ°M²} 
10:          if 𝑺M ≠ ∅ then 
11:             Select path 𝑙 using Equation (6.10) 
12:          else 
13:             Block/drop the new flow 
14:          end if 
15:    else 
16:       Find path 𝑙 within alternative path set 𝑼M Equation (6.6) and (6.7) 
17:       if 𝑙 exists then 
18:          Select path 𝑙 
19:       else 
20:          Calculate 𝑅³É³_a on all possible paths using Equation (6.8) 
21:          Find path set 𝑺M using Equation (6.9) 
22:          if 𝑺M ≠ ∅ then 
23:             Select path 𝑙 using Equation (6.10) 
24:          else 
25:             Block/drop the new flow 
26:          end if 
27:       end if 
28:    end if 
29: end if 
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6.3.2 Smallest Angle Handover Control 

Several novel backhaul deployment strategies and mm-wave multi-hop schemes 

have been proposed so far to improve the flexibility of the backhaul network and 

alleviate the backhaul bottleneck and outage problems. However, the access network 

is also an inseparable part of completing the design of the whole network. In the 

context of outdoor vehicular traffic, two of the inevitable challenges for access 

networks need addressing are the handover control, and load balancing for small 

cells which has been discussed in Section 4.3. The purpose of this section is to 

propose a novel handover scheme which is able to dramatically reduce the handover 

frequency while maintaining a satisfactory level of user QoS performance. Although 

not the main focus of this thesis, the potential backhaul performance improvement 

introduced by integrating access network load balancing into the network is also 

explored. By distributing the traffic load among the small cells, the traffic burden on 

the associated backhaul links can also be reduced. 

Currently, 3GPP LTE-A uses similar handover decision schemes for small cells and 

macro cells. These schemes perform well for handovers in conventional macro cell 

networks since the coverage of a macro cell is normally up to several kilometres. 

However, when a mobile user moves between small cells, handovers will be much 

more frequent even for low speed users because of the much smaller coverage of 

each cell. The frequent handover will cause significant signalling load to the core 

network entities. Hence, instead of using received signal strength as the primary 

criterion, the triggering of the handover decision phase should be carefully 

reassessed for small cell networks.  

Here, a handover scheme which allows incorporating a UE’s moving direction and 

its relative position to ANds into a standard handover procedure in order to reduce 

unnecessary handovers is proposed. The scheme comprises maintaining a database 

of the network topology, obtaining an estimate of the moving direction of a UE, and 

then using this information to support the handover decision. Here, since wireless 

backhaul networks are relatively fixed after being established, a data base of the 
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network topology can be easily accessible. The locations of the UEs can be obtained 

using global navigation satellite systems (GNSS), and then broadcasted to the nearby 

ANds. Alternatively, the location information can be estimated through various 

measurements, for example direction of arrival (DoA) and time of arrival(ToA) 

discussed in [111]. 

A decision is made to handover a UE to a target ANd such that the angle 𝛼 between 

the UE’s moving direction and the vector from the UE to the target ANd is the 

smallest. By selecting the target BS in this manner, the chosen ANd is more likely to 

lie in the same direction to where the UE is heading towards, therefore providing a 

relatively long serving time, and reducing unnecessary handovers. Here, it is 

assumed that advanced interference management techniques such as eICIC discussed 

in Section 2.2.2, and MIMO can be used in the access network, such that a UE can 

successfully connect to an ANd which is not necessarily the nearest one. 

Figure 6.7 shows an example of this scenario. It is assumed that the last two (or more) 

location updates of the UEs can be obtained and ANds have the knowledge of the 

network topology information. Denote the vector from location 𝐿M¢+	 to the location 

of 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒	𝐴𝑁𝑑Ë as 𝑣Ë, (𝑘 = 1,… , 𝐾)	, and the UE moving vector from location 

𝐿M¢+ to location 𝐿M as 𝑣². After obtaining the candidate ANd list from the UE, the 

serving ANd calculates and compares all the angles between 𝑣Ë, (𝑘 = 1,… , 𝐾) and 

𝑣²  denoted as 𝛼Ë, (𝑘 = 1,… , 𝐾), and the candidate ANd with the smallest angle 

𝛼²M� can be chosen as the target ANd. In this example, 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒	𝐴𝑁𝑑+ is selected.  
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Figure 6.7: An example of choosing target BS for handover 

 

In addition to handover frequency, the traffic load on the candidate ANds is another 

important factor which needs to be taken into account when designing a handover 

scheme due to the possible temporary hot spot created by moving crowds. Here, the 

smallest handover scheme can also be combined with the access network load 

balancing scheme discussed in Section 4.3.1.2 in order to achieve improved 

performance.  

Figure 6.8 shows a flowchart of the handover procedure which is performed on per 

traffic flow basis, meaning that a UE with several ongoing traffic flows might be 

handed over to different ANds depending on the network conditions. This is 

consistent with the emerging research topic of user-centric concepts, whereby the 

UEs can be served by a cluster of access nodes simultaneously for improved QoS. 

The serving ANd configures the UE to measure the mobility level and the 

RSS/RSRQ of the nearby ANds, and then determine the candidate ANds for the UE. 

Since the access network is not the main topic in this thesis, an ANd coverage range 

of 50 m is used to reflect the acceptable signal quality threshold for a UE. In chapter 

4, different ANd coverage range is simulated and it is shown that 50 m is a suitable 

distance in terms of access network load balancing as well as signalling overhead.  
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The smallest angle handover scheme is triggered only if there exists at least two 

candidate ANds, of which the traffic load along with the handover request capacity 

𝑟A is below the threshold 𝐶yz{|. Here 𝐶yz{| is defined as the capacity of a backhaul 

link, above which the selection process of an additional backhaul link path is needed. 

If there is a high traffic load level at each candidate node, the least loaded ANd is 

chosen. In this handover scheme, the handover decision is performed only when a 

UE moves out of the coverage of its serving ANd. 

 

 

Figure 6.8: Handover procedure flow chart 
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6.4 Results 

In this section, the results of the discussed relay node design options and proposed 

multi-hop topology management strategies are presented via various comparisons 

which isolate the factors that may affect the system performance. The underlying 

access network architecture, user mobility model and traffic model are described in 

Section 4.2 and Section 4.3.2, and if not mentioned differently, the UEs connect to 

their nearest ANds and no access network load balancing is assumed in order to 

capture the temporary hotspot effect of the outdoor vehicular traffic. In Section 6.4.1 

– 6.4.3, the routing algorithm proposed in Section 6.3.1 is used, and the QoS 

differentiation between real-time services and on-demand videos in terms of latency 

is not considered. 

6.4.1 Choice of Relay Node 

Figure 6.9 and 6.10 compares the average perceived throughput and latency of using 

the two different relay node configurations discussed in Section 6.2.2: MNd multi-

hop and wireless ENd multi-hop. It is assumed that the ENds are installed on building 

walls and there is no link outage for backhaul links. For the ease of control of the 

level of fibre connectivity, the percentage of MNds which have direct connection to 

ENds with fibre connection is defined, whereby a wide range of fibre coverage levels 

are chosen: 50% (low fibre coverage), 75% (medium fibre coverage), and 100% 

(high fibre coverage), and the MNds which have connection to ENds with fibre 

connection are then randomly selected. In the MNd multi-hop scenario, each MNd 

is assumed to be able to operate in full duplex mode and allows up to three 

simultaneous transmission links to achieve an appropriate trade-off between system 

flexibility and infrastructure deployment cost, which is discussed in Section 6.4.2. 

For the wireless ENd multi-hop approach, both a low density (150/km2) and a high 

density (250/km2) of wireless ENds are simulated, and the MNds operates in half-

duplex mode with up to three beams pointing to the direction of the ENds. 
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Firstly, the performance of both schemes is affected by the level of fibre coverage, 

and a higher percentage of direct fibre access yield to better performance. Secondly, 

the MNd multi-hop scheme achieves a significantly higher throughput than that of 

the wireless multi-hop approach, with up to 82% throughput increase at a high traffic 

load of 1000 Gbps/km2 (with 50% direct fibre access). This is due to the fact that the 

number of wireless ENds (150/km2-250/km2) is far less than the number of MNds 

(800/km2), and only a limited level flexibility can be exploited, therefore the wireless 

ENd multi-hop links are more likely to suffer from congestion. The MNd multi-hop 

approach with 75% fibre coverage achieves comparable throughput compared to that 

of 100% fibre coverage across a wide range of traffic loads. This demonstrates that 

multi-hop links between MNds are highly advantageous in creating the spatial 

diversity which helps overcome the absence of fibre access as well as distributing 

the traffic load.  

In contrast to the results in Figure 6.9, Figure 6.10 indicates that the wireless ENd 

multi-hop configuration outperforms the MNd multi-hop configuration in term of 

latency performance at each fibre coverage level. This is largely because the path 

management module selects the least loaded path which tends to have smaller 

number of hops in case of congestion experienced on all candidate paths, as longer 

links are more likely to generate bottleneck issues caused by aggregated traffic. For 

example, although the wireless ENd multi-hop approach with a wireless ENd density 

of 150/km2 achieves the lowest latency level compared to other configurations, it 

results in a dramatic deterioration in average perceived throughput which cannot 

guarantee a smooth playback of the videos (smooth playback rate for 8K video: 80 

Mbps) at medium to high traffic loads. A suitable scenario for the wireless ENd 

approach is where the network is largely covered by fibre, above 75% for instance. 

Here, an appropriate trade-off between the number of wireless ENds and the QoS 

provided to the UEs is likely to be found. 

The plots confirm that introducing further flexibility provided by MNd multi-hop 

into backhaul networks makes a significantly bigger contribution to improving the 

QoS for the UEs, than the wireless ENd multi-hop approach. This comes with the 
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cost of greater investment in infrastructure. However with the rapid ongoing progress 

in the development of radio hardware, the infrastructure costs can be reduced 

dramatically. Hence, MNd multi-hop configuration is used for the rest of this chapter. 

 

 

Figure 6.9: Average flow perceived throughput (8K on-demand videos) – comparison 

of wireless ENd multi-hop and MNd multi-hop 
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Figure 6.10: Average latency - comparison of wireless ENd multi-hop and MNd 

multi-hop 

 

6.4.2 Impact of Full Duplex Capability 

The utilisation of street cabinet ENds proposed in Chapter 5 is a very promising 

approach to providing backhaul for outdoor small cells. However so far, we have 

assumed each MNd has a fixed number of direct LOS backhaul links. In reality, 

however, street cabinets are usually randomly deployed along the streets, which 

means that the number of street cabinets in a certain area may not be sufficient to 

adequately support the local wireless backhaul traffic, especially with lower densities. 

The results in Section 6.4.1 indicates that multi-hop communications between MNds 

can be a viable solution to improve the reliability and coverage of the street cabinet 

backhaul network which is likely to suffer from high link outages and coverage holes. 

In the following sections, the dynamics of utilising street cabinet ENd and MNd 

multi-hop to deliver mm-wave backhaul including multi-hop topology management 

with QoS control as well as integrating access network aspects in terms of load 

balancing and handover control into the system design is investigated, but firstly, an 
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important detail of this type of backhaul network configuration: the appropriate 

choice of the number of simultaneous links enabled by the full duplex technology, is 

assessed in this section.  

A system plan view with street fibre cabinet ENd randomly distributed along streets 

(density: 250/km2) with a relatively high outage probability of 50% is depicted in 

Figure 6.11. Assuming each street cabinet ENd is able to generate 8 beams as 

discussed in Section 4.3.2, this gives approximately 2 direct access of backhaul links 

per MNd. Figure 6.12 - Figure 6.14 show the performance comparison of different 

number of simultaneous transmission links enabled by the full duplex capability 

(beam isolation, self-interference cancellation) of the nodes. The plots demonstrate 

that by allowing three simultaneous transmission links compared to two links, a 

higher level of flexibility is generated, which substantially improves the reliability 

of the backhaul network and QoS performance. However, further increasing the 

complexity of the nodes may significantly increase the deployment costs without 

bringing any notable performance improvement. For example, the performance for 

three simultaneous transmission links is comparable to that of unlimited number of 

transmission links. As shown in Figure 6.12, only a very small proportion (<5%) of 

the nodes use more than three simultaneous transmission links even when there is no 

limit on the number of transmission links that can be used. It is apparent that the 

trade-off between the network flexibility and deployment costs needs to be controlled 

by carefully considering the choice of relay nodes as well as the hardware 

complexity. 

Although not shown, a relative low street cabinet density of 150 cabinets/km2 and 

high cabinet density of 350 cabinet/km2 with and without MNd multi-hop 

communication are also tested against the density of 250 cabinet/km2 in the 

simulation, which yield to approximately 1 and 3 direct access of backhaul links per 

MNd respectively. The results confirm that the backhaul network with a higher 

density of street cabinet ENds performs better due to the extra capacity introduced 

into the network. However, a high density of 350 cabinets/km2 without multi-hop 

approach does not produce any notable QoS performance improvement compared to 
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that of 250 cabinets/km2 with the multi-hop approach across the traffic loads 

considered. Based on the above argument, a street cabinet density of 250 

cabinets/km2 and three simultaneous transmission links per MNd are assumed in the 

following sections. 

 

 

Figure 6.11: System plan view with a street cabinet density of 250/km2 

 

 

Figure 6.12: CDF – number of simultaneous transmission link per MNd 
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Figure 6.13: Average flow perceived throughput (8K on-demand videos) – different 

number of simultaneous transmission links 

 

 

Figure 6.14: Average latency - different number of simultaneous transmission links 
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6.4.3 Applying Smallest Angle Handover Control and Access 

Network Load Balancing  

The results in this section compare the performance of the smallest angle handover 

scheme proposed in Section 6.3.2 with a classic nearest ANd handover scheme, and 

show the potential QoS improvement can be achieved by introducing access node 

balancing. A street cabinet density of 250 cabinets/km2 with an outage probability of 

50%, and three simultaneous transmission links per MNd - MNd multi-hop 

communication are assumed based on the discussion in Section 6.4.2. Here, four 

schemes are discussed:  

• Multi-hop & smallest angle handover (HO) – a UE is always handed over to 

the candidate ANd which can provide the smallest angle αñòó. No access 

network load balancing is assumed. 

• Multi-hop & nearest ANd – this is the benchmark scheme where by the UEs 

connect to their nearest ANds and no access network load balancing is 

assumed. 

• Multi-hop & access network load balancing (LB) - a UE connects to the least 

loaded ANd within its connecting range (50m).  

• Multi-hop & access LB & smallest angle HO – a UE connects to an ANd 

using the smallest angle criterion as long as the traffic loads on the candidate 

ANds are below the threshold discussed in Section 6.3.2. Otherwise, the UE 

connects to the least loaded ANd within its connecting range. 

Figure 6.15 and Figure 6.16 show the comparison of the average number of 

handovers each flow experiences and the average perceived throughput by using 

different schemes. They demonstrate that the Multi-hop & smallest angle HO scheme 

dramatically reduces the number of handovers by 35% - 54% compared to the classic 

Multi-hop & nearest ANd scheme with only marginal performance deterioration. 

With access network load balancing, the Multi-hop & access LB scheme can further 
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improve the QoS performance due to the extra level of flexibility introduced into the 

system. In addition, the number of handovers is significantly less than that of the 

benchmark since a handover procedure is only performed when a UE moves out of 

the service area of its serving ANd instead of always connecting to the ANd that 

provides the best quality link.  

Moreover, the plots show that the Multi-hop & access LB & smallest angle HO 

scheme is able to provide a good trade-off between QoS performance and handover 

frequency. At low to medium traffic loads (below 700 Gbps/km2), the scheme can 

achieve comparable a handover frequency level compared to the Multi-hop & 

smallest angle HO scheme, which provides up to 18.7% reduction in the number of 

handovers compared to the Multi-hop & access LB scheme without noticeable 

performance loss. At high traffic loads, the least loaded ANd is more likely to be 

chosen since the network becomes more congested. In this case, the Multi-hop & 

access LB & smallest angle HO scheme exhibits similar QoS and handover 

frequency performance as the Multi-hop & access LB scheme. 

 

 

Figure 6.15: Average number of handovers - access network load balancing and 

handover control 
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Figure 6.16: Average flow perceived throughput (8K on-demand videos) – access 

network load balancing and handover control 

 

6.4.4 Topology Management with QoS Control 

Figure 6.17 - Figure 6.20 compare the performance of topology management 

strategies with different levels of QoS control discussed in Section 6.3.1. Here, the 

same underlying deployment scenario, whereby a street cabinet density of 250 

cabinets/km2 with an outage probability of 50%, three simultaneous transmission 

links per MNd and MNd multi-hop communication are assumed. Depending on 

whether the QoS differentiation information including capacity reservation and 

latency control information for real-time services can be exchanged across the 

network, a certain amount of resources can be reserved and the maximum number of 

hops can be applied for a real-time service. Here, three different capacity reservation 

levels for real-time services are compared: 0% where only latency control for the 

real-time services are considered, medium (25%) and high (50%) level. If the QoS 

differentiation information is not available, the candidate path with the maximum 

end-to-end capacity is chosen.  
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The plots show that all the schemes can provide satisfactory performance in terms of 

perceived throughput (smooth playback rate for 8K video: 80 Mbps), blocking 

probability and dropping probability. With the latency control scheme, the path 

management module chooses the path with a lower number of hops for the real-time 

traffic, and therefore the latency for real-time traffic is lower than the on-demand 

traffic compared to the maximum capacity scheme. By allowing reserved capacity 

for real-time traffic on the backhaul links, further latency reduction can be achieved 

for the real-time services, ranging from 4% - 21% compared to the maximum 

capacity scheme. However, there is a trade-off between the latency of real-time 

traffic and the performance (latency and perceived throughput) of on-demand traffic. 

A higher percentage capacity reservation for real-time traffic results in performance 

deterioration for on-demand traffic. This is due to the fact that the on-demand traffic 

is more likely to use the path with higher number of hops (higher latency) and has 

less available capacity to use (lower perceived throughput). Even so, the perceived 

throughputs for the reservation schemes are higher than the required smooth 

playback data rate for an 8K on-demand videos. Hence, it is possible to trade off the 

on-demand performance for lower real-time latency.  

 

 

Figure 6.17: Average flow perceived throughput (8K on-demand videos) – different 

multi-hop topology management schemes with QoS control 
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Figure 6.18: Average latency - different multi-hop topology management schemes 

with QoS control 

 

 

Figure 6.19: Blocking probability (real-time services) - different multi-hop topology 

management schemes with QoS control 
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Figure 6.20: Dropping probability (real-time services) - different multi-hop topology 

management schemes with QoS control 

 

6.5 Conclusion 

In this chapter, various aspects of deploying multi-hop mm-wave backhaul network 

for outdoor small cells have been investigated, and it has become evident that one of 

the most desired 5G backhaul features is flexibility. The flexibility can be achieved 

in a number of ways. Firstly, the multi-hop configurations proposed are effective in 

overcoming the lack of fibre access as well as distributing traffic loads. In particular, 

the path diversity created by using multi-hop between MNds makes a more 

significant contribution to improving the system performance in the dynamic 

vehicular scenario considered, with up to 82% throughput increase than that of the 

wireless ENd multi-hop approach at a high traffic load of 1000 Gbps/km2. Full-

duplex capability is another key feature for future mm-wave backhaul mesh networks 

enabling multi-flow relaying at the MNds, which significantly improve the flexibility 

of the system. The results have demonstrated that for a mm-wave backhaul network 

with street cabinet density of 250 cabinets/km2, three simultaneous transmission 
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links per MNd are sufficient to provide satisfactory QoS for the UEs. Another critical 

factor of a backhaul network design discussed is the application of appropriate QoS 

strategies to support different applications such as bandwidth/latency constraint real-

time videos. The proposed QoS control schemes can effectively reduce the latency 

for real-time services, and by reserving capacity for real-time traffic on backhaul 

links, lower latency can be achieved (4% - 21%).  

In terms of combining access network design for outdoor small cells with vehicular 

traffic, a smallest angle handover algorithm has been proposed which is able to 

dramatically reduce the number of handovers by 35% - 54% compared to the classic 

connecting to the nearest ANd scheme without compromising the QoS of the UEs. 

Moreover, by using access network load balancing, better performance can be 

achieved. This is due to the fact that the traffic from congested hotspots can be 

spatially distributed to neighbouring areas, and therefore offload the traffic burden 

on the backhaul links. 
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7.1 Conclusions 

This thesis has highlighted that a high level of flexibility has become a fundamental 

requirement in order to provide a reliable and robust backhaul network which can 

accommodate various use cases. The work presented in this thesis has therefore 

focused on designing and evaluating novel wireless backhaul architectures that 

serves a dense 5G radio access network, and has been guided by the hypothesis 

mentioned in Chapter 1: 

“Introducing and exploiting an appropriate level of flexibility in wireless backhaul 

networks can improve network utilisation and user experience, enabling 

improvements in capacity, reliability and latency.”  

First, a dynamic two-tier SDN architecture and the concept of NFV has been 

employed in backhaul networks to facilitate network management tasks and on-

demand resource provision in Chapter 3. Two use cases were presented of the 

proposed SDN architecture to address two increasingly popular research area in 

wireless backhaul network: multi-tenancy dynamic resource sharing with QoS 

guarantee and energy-aware topology management for backhaul networks. I t has 

demonstrated that a higher level of flexibility in terms of resource allocation can be 

achieved with SDN and NFV technologies. The proposed architecture also enables 
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exploiting the backhaul diversity within the network, and thus delivers efficient 

resource utilisation and high energy savings.  

Next, the thesis has presented wireless backhaul architectures that serve ultra-dense 

outdoor small cells installed on street-level fixtures. The upper bound performance 

that a massive MIMO backhaul network can provide has been investigated in 

Chapter 4. An access network load balancing scheme has been applied to the system 

in order to alleviate the bottleneck problem caused by the uneven traffic loads. 

However, at high traffic loads, the massive MIMO backhaul cannot provide 

sufficient capacity to meet the requirement due to the lack of frequency resources. 

Mm-wave backhaul on the other hand, offering abundant spectrum and therefore 

multi-gigabit data rates can significantly improve system performance.  

Mm-wave backhaul links provided by ENds installed on building walls can provide 

reliable backhaul links and satisfactory QoS. However, in the situation where 

installing adequate ENds with fibre connections on building walls incurs high costs 

and deployment challenges, utilising existing street fibre cabinets is an extremely 

promising solution to provide backhaul, when link diversity is used, to overcome 

individual high link outages. Moreover, the street level backhaul links can provide 

extra flexibility to the system. It has been shown in Chapter 5 that backhaul networks 

can even rely solely on the street cabinet ENds, assuming sufficient cabinet ENd 

redundancy can be built into the system. 

In order to further increase the flexibility and coverage of the street fibre cabinet 

backhaul network, multi-hop backhaul configurations have been proposed in Chapter 

6. The path diversity created by using multi-hop between MNds has been shown to 

be highly advantageous in overcoming the negative impact of high link outages. 

Furthermore, topology management algorithms which aim to reduce the handover 

frequency and achieve appropriate QoS for different traffic types including 

bandwidth/latency constraint real-time videos are proposed.  

The proposed backhaul architectures and schemes are evaluated through large scale 

simulations, and in some cases theoretical analysis, shown significant improvements 
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in accommodating various use cases, resource utilisation and reliability in wireless 

backhaul networks when a higher level of flexibility can be exploited.  

7.2 Novel Contributions 

This thesis has proposed novel backhaul architecture options and evaluated various 

aspects of designing backhaul solutions that serves a dense 5G radio access network. 

These highlight the need to design flexible backhaul networks which can provide 

tailored services for different deployment scenarios that support a diverse range of 

applications with different performance requirements. The details of the original 

contributions are given in this section. 

Providing Backhaul Connectivity Utilising Street Fibre Cabinets 

A novel backhaul architecture where Edge Nodes (ENds) are co-located with street 

fibre cabinets to provide a cost-effective and robust millimetre wave backhaul 

network for outdoor dense small cells has been proposed. The access network is 

backhauled via wireless Mesh Nodes (MNd) linked directly to one or more ENds 

located on existing street fibre cabinets This approach can dramatically reduce the 

costs and deployment time compared to a more conventional approach whereby the 

ENds are typically mounted on high buildings, for example the BuNGEE backhaul 

architecture [34]. 

Exploiting Backhaul Flexibility in Multi-hop Backhaul Networks 

Two novel multi-hop mm-wave backhaul architectures have been proposed: MNd 

multi-hop; and wireless ENd multi-hop, where instead of using multi-hop links 

between MNds, the traffic is aggregated at a wireless ENd, and then backhauled to/ 

from the wired ENds. The latter approach can reduce the overall backhaul 

deployment costs by installing fewer wireless ENd aggregation nodes with high 

computational complexity and low cost MNds at every street lamp. This is motivated 

by the fact that although a large amount of previous work has addressed various 

aspects of multi-hop routing algorithms, such as link quality, system capacity, hop 
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count, and end-to-end delay, the impact of different mm-wave relay node design 

options on system performance and user experience remains largely unclear [99] 

[101].  

Angle Based Handover Control 

A smallest angle handover scheme which is able to dramatically reduce the handover 

frequency while maintaining a satisfactory level of user QoS performance has been 

proposed. Instead of using received signal strength as the primary criterion, another 

parameter angle α which considers a UE’s moving direction and the relative positions 

from ANds to the UE, is incorporated in a standard handover procedure. This 

approach can significantly reduce the number of handovers compared to the state-

of-art signal strength based handover scheme [20].  

Backhaul Topology Management with QoS Control 

A backhaul topology management scheme aiming to apply appropriate QoS 

strategies for different types of traffic flows has been proposed for mm-wave 

backhaul networks. The scheme takes into account the availability, capacity and the 

number of hops of the candidate backhaul paths in a highly dynamic network 

topology. The proposed method can effectively reduce the latency for real-time 

services, and by allowing reserved capacity for real-time traffic on backhaul links, 

lower latency can be achieved compared to a traditional maximum end-to-end 

capacity aware scheme.  

Wireless Backhaul Deployments for Ultra-Dense Outdoor Small Cells 

In order to achieve high flexibility and capacity for future outdoor ultra-dense small 

cells while accommodating various use cases and deployment constraints, a mm-

wave backhaul architecture has been proposed. It is compared with a massive MIMO 

backhaul approach whereby the upper bound capacity and access network load 

balancing are considered. Although a large amount of research on mm-wave and 

massive MIMO networks focuses on the hardware and physical layer design 

including antenna array implementation, beamforming and modulation schemes, the 
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system level evaluation of the backhaul solutions for ultra-dense small cells using 

the mentioned two key technologies has not been investigated [32] [41]. For a 

congested network, mm-wave backhaul is shown to be able to significantly improve 

the system performance compared to a massive MIMO approach using sub-6 GHz 

band due to its abundant spectrum.  

SDN for Wireless Backhaul Network Management 

A novel dynamic two-tier SDN architecture has been employed in backhaul network 

to facilitate complex network management tasks including multi-tenancy resource 

sharing and energy-aware topology management. The proposed architecture can 

deliver efficient resource utilisation, and QoS guarantees with marginal QoS 

compromises compared to an all centralised framework which requires on-the-fly 

control information exchange [65]. The trade-off between scalability and 

performance of the system can be controlled by adjusting the time resolution. 

7.3 Future Work 

This section presents recommendations for future work, mainly built on the work of 

this thesis. The potential related applications and the extension of the ideas proposed 

in the thesis are discussed. 

Energy Efficient Backhauling 

Although energy-efficient topology management strategies have been investigated 

on a large scale in wireless access network, relatively little attention has been paid to 

backhaul energy consumption management aspects. In Chapter 3, a backhaul link 

selection scheme is proposed for BuNGee architecture in order to minimise the 

backhaul network energy consumption. There, the base station energy consumption 

models described in EARTH project was used [47]. However for mm-wave backhaul 

architectures, the energy efficiency aspect has not been studied. To our knowledge, 

the research on energy consumption models for mm-wave base stations is still in its 

infancy, especially with the rapid ongoing progress in the development of radio 
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hardware. Hence it would be interesting to assess the benefits of switching part of 

the backhaul network off or switching them to adaptive sleep mode, and apply 

backhaul link scheduling schemes to evaluate the energy efficiency. 

Machine Learning Techniques for Backhaul Topology Management 

The complexity of future mobile networks presents new challenges for network 

management. Although centralised controlled network can offer high resource 

utilisation, it is also worth considering distributed solutions for flexibility and 

scalability reasons. For the highly dynamic network environment with vehicular 

traffic considered in Chapter 4, machine learning techniques including reinforcement 

learning and transfer learning can be used to improve performance. For example, the 

historical information of the mobility patterns can be used to predict the user 

movement and traffic load conditions for routing the backhaul network. Another 

possible method is a hybrid approach, which can possibly utilise both a centralised 

control, such as SDN to guide the learning process, and a localised distributed 

learning scheme to reduce the unnecessary signalling. Transfer learning is an 

effective approach to improve the localized learning process of target cognitive agent.  

In-band wireless backhauling 

In this thesis, the access network and backhaul network are assumed to use different 

frequency band. Another emerging research topic of in-band wireless backhaul can 

be studied, whereby the access and backhaul links operates in the same frequency 

band. When the in-band wireless backhaul approach is used for small cells, the joint 

management of the resources and interference for the access and backhaul networks 

are crucial.  

Millimetre Wave Link Outage Caused by Moving Obstacles 

The temporary link outage of mm-wave connections caused by moving obstacles are 

assumed to be independent between different links. However, the outage 

probabilities for adjacent backhaul links may not be fully independent in reality. For 

instance, neighbouring links may be blocked by a long vehicle. The temporary 
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outage durations for backhaul links may also vary drastically with the time of day 

and between different locations. Hence, another approach which can be explored 

would be to model the correlated temporary link outages either theoretically or 

explicitly based on site-specific traffic and geographic data.  

Millimetre Wave Massive MIMO 

The upper bound performance of sub-6 GHz massive MIMO backhaul has been 

evaluated in Chapter 4. Recently, the combination of mm-wave and massive MIMO 

has drawn an increasing interest. In addition to increased capacity and spectral 

efficiency, such systems also have compact dimensions. Signal processing issues 

including channel estimation, precoding need to be investigated. Moreover, 

innovative antenna architectures will be required to handle the wide channels. 
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Glossary 

ANd Access Node 

ABS Almost Blank Subframe 

ARP Allocation and Retention Priority 

API Application Program Interface 

BBU Baseband Unit 

BS Base Station 

CA Carrier Aggregation 

CAPEX Capital Expenditure 

CB Coordinated Beamforming 

CoMP Coordinated Multipoint 

CS Coordinated Scheduling 

C-RAN Cloud-RAN 

CRE Cell Range Expansion 

D2D  Device-to-Device 

D-RAN Distributed-RAN 

eICIC enhanced Inter-cell Interference Coordination 

eNB evolved Node B 

ENd Edge Node 

FSO Free Space Optics 

FTP File Transfer Traffic 

FTTx Fibre to the X 

GBR Guaranteed Bit Rate 
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HetNet  Heterogeneous Network 

JP Joint Processing 

KPI Key Performance Indicators 

LOS Line-of-Sight 

MIMO Multiple Input Multiple Output 

M2M Machine to Machine 

NFV  Network Function Virtualisation 

NLOS Non-Line-of-Sight 

MNd Mesh Node 

MS Mobile Station 

OPEX Operating Expense 

QCI QoS Class Identifiers 

QoS Quality of Service 

RAN Radio Access Network 

RAT Radio Access Technology 

RRH Remote Radio Head 

RSRQ Reference Signal Received Quality 

RSRP Reference Signal Received Power 

RSSI Received Signal Strength Indicator 

SDN Software Defined Networking 

SINR Signal-to-Interference plus Noise Ratio 

TL  Transfer Learning 

TVWS Television White Space 

UE User Equipment 

UHD  Ultra-High Definition 
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