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ABSTRACT 

In the mammalian ovary, little is known about the mechanisms that maintain the relatively 

quiescent phenotype in primordial follicles or trigger primordial follicle activation (PFA). 

Previous studies in our lab showed the TGFβ mediator and transcription factor SMAD2/3 

are detectable in granulosa cells (GCs) of primordial follicles. Since cell proliferation 

involves cell cycle progression, this thesis sought to investigate whether SMAD2/3 

regulates the expression of MYC oncogene and the cell cycle genes CCND2 and p27 in 

GCs in the mouse ovary, and whether this regulation is associated with the maintenance 

and activation of primordial follicles. Therefore, the first part of this thesis focused on the 

expression and localisation of these factors throughout the stages of early follicle 

development. SMAD3, CCND2 and p27 proteins co-localised in GC nuclei of primordial 

follicles while expression of each decreased in growing follicles. Furthermore, using co-

immunoprecipitation, CCND2 and p27 proteins associated in complexes in samples 

enriched in primordial follicles, and these complexes were lost in growing follicles, 

suggesting CCND2/p27 protein dynamics contributes to the maintenance of GC cell cycle 

arrest. Using ChIP-qPCR on immature mouse ovaries enriched with different proportions 

of small follicles, SMAD3 bound to the promoter of Ccnd2 and Myc, but not p27. Gene 

expression analysis using qPCR revealed that Ccnd2 was relatively higher in ovaries 

containing mostly primordial follicles, while Myc was relatively higher in older aged 

ovaries with many growing follicles. This suggests that SMAD3 promoted and repressed 

the expression of these genes, respectively. With this evidence, the effect of brief 

exposure to TGFβ1 ligand and TGFβ-receptor inhibitor on SMAD3-dependent regulation 

of cell cycle genes and PFA was examined in a validated neonatal mouse ovary culture 

model. TGFβ1 ligand increased Ccnd2 and Myc genes, while the inhibitor had no effect. 

SMAD3 binding to both genes was unchanged after any of the treatments; however, 

elevated pERK and pAKT indicated that changes in gene expression may be due to non-

canonical TGFβ signalling. TGFβ1 ligand had a small influence on promoting PFA 

whereas the inhibitor caused a slight delay in GC proliferation and increased the presence 

of multi-oocyte follicles. Taken together, these findings suggest that basal TGFβ levels 

maintain the primordial follicle phenotype via the regulation of Ccnd2 and Myc in GCs. 

Altering the balance of TGFβ exposure influences the expression of these genes and PFA. 

Understanding these molecular events may shed some light on the mechanisms leading 

to age-related infertility and ovarian dysfunctions from conditions such as POI or PCOS.  
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RhoA  Ras homolog family member A 

R-SMAD  Receptor-activated SMAD 

RSPO1 R-spondin 1 

RTK  Receptor tyrosine kinase 

RUNX  Runt-related transcription factor 

S6K  Protein S6 kinase 

SCP3  Signal peptidase complex subunit 3  

SHCA  SHC-transforming protein 1 

SOHLH Ocyte-specific basic helix-loop-helix (bHLH)  

SOX9  SRY box 9 

SP1  Specificity protein 1 

SRY  Sex-determining region Y 

STRA8 Retinoic acid gene 8  

STRAP Serine/threonine kinase receptor associated protein 

TAZ  Transcriptional coactivator with PDZ-binding motif 

TF  Transcription factor 

TLP  TRAP-1-like protein 

TMPEAi Prostate transmembrane protein, androgen induced 1 
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TRAF6 TNF receptor-associated factor 6 

TRAP-1 TNF receptor-associated protein 1 

TSC1  Tuberous sclerosis 1 

WNT4  wingless-type MMTV integration site family, member 4 

YAP  Yes-associated protein 
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1.1 Social impact of understanding ovarian biology 

Concern about female fertility is nowadays a major consequence of a profound social 

change. Since the late 20th century, changes in lifestyle have had a major influence in the 

reproductive lifespan of women. Women are born with a limited supply of primordial 

follicles in their ovaries, the ovarian reserve, which declines naturally with age in number 

and quality (Hansen et al, 2008; Pellestor et al, 2003). Moreover, the effect of lifestyle 

factors such as smoking (Sun L 1  2012) or the use of chemo-or radiotherapy (De Vos et 

al, 2010) seriously compromise the integrity of the follicles from the reserve and therefore 

accelerate women’s reproductive age. This can contribute to ovarian dysfunction, leading 

to for example, primary ovarian insufficiency (POI), or exacerbate symptoms associated 

with polycystic ovarian syndrome (PCOS).  

PCOS is the most common cause of anovulatory infertility in women and it is often 

associated with hyperandrogenism and major metabolic disorders, such as Type 2 

diabetes, insulin resistance and obesity. According to the Rotterdam criteria 2003, the 

prevalence of PCOS ranges from 5 to 10% of general female population and 30% of the 

infertile population (Baird et al, 2012). Although women with PCOS reach menopause at 

the average age of 50 years they suffer decreased rates of ovulation and higher rates of 

miscarriages during their reproductive life (Dumesic & Richards, 2013; Kamalanathan et 

al, 2013; Webber et al, 2003). 

POI is a condition associated with amenorrhea for more than 4 months, increased 

gonadotropin production and decreased levels of oestrogen, and has an incidence of 1% 

under the age of 40 and 0.1% under the age of 30 (Webber et al, 2016). Depending on the 

aetiology, it can be classified as spontaneous (caused by genetic or metabolic disorders) 

or induced (caused by iatrogenic factors such as radio-chemotherapy) (Jin et al, 2012). 

Spontaneous POI has serious social consequences nowadays. The increased opportunity 

of women to pursue a career results in a delay in childbearing. Therefore, when women 

with POI decide whether or not they want to have children, they are often infertile. In the 

cases with induced POI as a result of ovarian surgery or radio-chemotherapy treatment, 

major impact exists particularly in young girls, since they suffer the consequences of 

infertility from an early age and availability of fertility preservation strategies is more 

limited (De Vos et al, 2015).  
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Notwithstanding the impact on fertility, PCOS and POI can also precipitate serious 

consequences on women’s health and quality of life. The ovarian follicles are the source 

of steroid hormones which are necessary for the development and maintenance of the 

reproductive tissues, but also for the function of cardiovascular cells and maintenance of 

bone density (Compston, 2001; Knowlton & Lee, 2012). For this reason, the impact of 

ovarian dysfunctions transcends the fertility potential, since the loss of healthy growing 

follicles leads to impaired production of steroids hormones which subsequently increases 

the risk of cardiovascular diseases and osteoporosis (JC1., 2007; Joakimsen et al, 2000). 

As a consequence, these women often suffer from psychological disorders that seriously 

affect their quality of life (Acmaz et al, 2013; Jones et al, 2011; van der Stege JG 1  2008).  
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1.2 Introduction to mammalian follicle development 

The mammalian ovary is a heterogeneous organ with interstitial tissue made up of 

follicles set in stroma. These follicles and corpora lutea are present at various stages of 

development (McGee & Hsueh, 2000). The ovary is a dynamic organ: its function 

includes the development and maturation of oocytes for fertilization, the maintenance of 

menstrual/estrous cyclicity and metabolic activity and the consequential development of 

female secondary sex characteristics. All of these tasks are possible because of the 

synthesis and secretion of hormones and also intrinsic ovarian factors that play an 

important role at all stages of follicle development (Adhikari & Liu, 2009; Li et al, 2010). 

  

1.2.1 Overview of follicle development 

 

The mammalian follicles are the functional units of the ovary. The primordial follicles 

are the most immature form and constitute the limited supply of follicles, the ovarian 

reserve (Findlay  et al, 2015a). They consist of an immature oocyte surrounded by a layer 

of flattened granulosa cells (GCs) and eventually activate (primordial follicle activation, 

PFA) and start growing, in a process independent of gonadotrophins (Abel et al, 2000; 

Kumar et al, 1997; Peters et al, 1973). At this point, GCs rapidly proliferate and oocyte 

diameter also increases (McGee & Hsueh, 2000). During early ‘preantral’ development, 

GCs become more responsive to gonadotrophins and start expressing receptors for follicle 

stimulating hormone (FSH) (Figure 1.1). However, they are still able to grow in the 

absence of gonadotrophins where paracrine signalling between oocyte and GCs is 

essential (Eppig et al, 2002). Juxtracrine signalling enhances oocyte-GC communications 

due to the presence of connexin C37-dependent gap junctions, which allows the diffusion 

of growth factors and other intraovarian factors but also oxygen and nutrients, since 

follicles are avascular (Gittens & Kidder, 2005; Li et al, 2007; Veitch et al, 2004). As 

follicles develop, a condensation of ovarian stromal cells forms on the outer basement 

membrane, the theca cells, which will differentiate in two distinctive layers, theca interna 

and externa. Theca interna is stimulated by intra-ovarian factors to express luteinising 

hormone (LH) receptors and at this point follicles become dependent on gonadotrophins 

from the hypothalamic-pituitary-gonadal (HPG) axis (Edson et al, 2009). LH stimulation 

from the pituitary in theca interna allows the synthesis of androstenedione from 

cholesterol, which will be used by GCs for the synthesis of oestrogen in response to FSH. 
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This cooperation between theca and GCs for producing oestrogen corresponds to the 

“two-cell two-gonadotrophin” model (Liu & Hsueh, 1986). 

 

Antral follicle development is characterised by atretic degeneration of most of the 

follicles from the growing pool and is mainly driven by arrest of  granulosa cell (GC) 

proliferation and apoptosis (Matsuda-Minehata et al, 2006). Only a few follicles grow 

further and reach the preovulatory stage and although the mechanisms of follicle selection 

are still poorly understood, several intraovarian factors have been involved, favouring 

high production of oestrogen and competence (Mihm & Evans, 2008). The antrum 

(Figure 1.1) separates two functionally different GC populations, one promotes 

steroidogenesis, progesterone production and subsequent ovulation in response to LH 

surge (mural cells) and the other enhances further oocyte growth and competence 

(cumulus cells). Meiosis resumption depends on a decrease of cAMP levels in both oocyte 

and GCs that favours the activation of the maturation promoting factor (MPF) in the 

oocyte at the LH surge during ovulation (Shimada, 2012). Disruption of juxtracrine 

signalling between oocyte and granulosa-theca cells will cause the differentiation of 

follicle cells released after ovulation into lutein cells, the corpus luteum (CL). Supported 

by progesterone and LH in humans and prolactin in rodents (Malven PV 1966), the CL 

will eventually regress in absence of pregnancy. 

 

The mechanisms regulating the gonadotrophin-independent follicle growth by intra-

ovarian factors is yet to be fully deciphered. In particular, the molecular mechanisms 

necessary for the activation and maintenance of individual primordial follicles are still 

poorly understood. Understanding the biology of the primordial follicle pool has 

significant clinical implications; for instance, a better comprehension of the dynamics of 

age-related infertility and ovarian dysfunction from conditions such as POI and PCOS 

(see 1.3.2 below). Therefore, this thesis is focused on the study of the molecular 

mechanisms operating in primordial follicles during early follicle development. 
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Figure 1.1. Classification of the major stages of follicle development. Primordial follicles formed from 

primordial germ cells (PGCs) develop to primary follicles. Gonadotrophin-independence takes place from 

primordial to preantral stage (PFA). At preantral stage, follicles do not require stimulation by 

gonadotrophins but they are highly responsive. Antral follicle development is dependent on LH and FSH 

and will produce steroid hormones following the two-cell two-gonadotrophin model. 

 

1.2.2 Embryonic ovarian development and follicle formation  

 

The process of sex determination in the bipotential gonads takes place after formation of 

the genital ridges, where the pre-supporting somatic cells in XY and XX individuals 

(termed pre-sertoli and pre-GCs, respectively) differentiate based on the presence or 

absence of the sex-determining region Y (sry) gene (Koopman P 1991). This occurs 

between 11 to 12.5 dpc (days post coitum) in mice and around 7 weeks in human, and 

results in the expression or repression of genes such as SRY box 9 (Sox9, target gene of 

sry) in the developing testis and wingless-type MMTV integration site family, member 4 

(Wnt4), R-spondin 1 (Rspo1), bone morphogenetic protein 15 (Bmp15) and forkhead box 

L2 (Foxl2) in the developing ovaries (Harikae et al, 2013; Karkanaki et al, 2007). These 

testis and ovary-specific genes antagonise one another and a defect in one or more of 

them has been reported to cause sex-reversal (Maatouk et al, 2008). Between 10.5 and 

13.5 dpc in mice and from 6 weeks of gestation in human (Mamsen et al, 2012; Pepling 

& Spradling, 1998) primordial germ cells (PGCs) migrate from the yolk sac endoderm to 

the genital ridges.  
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The migrated PGCs in the developing ovary eventually undergo mitosis with incomplete 

cytokinesis, creating intercellular bridges (ring canals), giving rise to germ cell clusters 

that subsequently enter meiosis to become oocytes (Pepling  & Spradling 2001) (Figure 

1.2). At around 12.5 dpc, pre-GCs become mitotically arrested, expressing high protein 

levels of the cyclin-dependent kinase inhibitor 1B (p27) and FOXL2 (Gustin et al, 2016). 

 

Right after germ cell cluster formation, mitotically arrested pre-GCs start to invade and 

surround germ cell clusters (Pepling  & Spradling 2001) (Figure 1.2). At this time, up to 

98% of germ cells undergo programmed breakdown while only a small fraction survive 

to become potential mature oocytes (Pepling  & Spradling 2001) (Figure 1.2). This 

process causes a major reduction in the overall oocyte population. As happens in 

Drosophila with “nurse cells” (Cox & Spradling, 2003), it is possible that germ cell 

clusters create a source of nutrients, a good supply of organelles like mitochondria, and a 

genome free from defects that favour the quality of the surviving germ cells (Pepling et 

al, 2007). In the mouse ovary, it is proposed that a similar mechanism exists, with “nurse-

like” germ cells providing support to a single oocyte, although this requires further 

evidence (Lei & Spradling, 2013).  

 

Onset of meiosis in oocytes is a protracted process (approximately 4 days in mice) that 

begins around 13.5 dpc in mice and around embryonic week 11 in human (Childs et al, 

2011) (Figure 1.2). During this time, retinoic acid (RA) acts to induce and repress the 

expression of stimulated by retinoic acid gene 8 (Stra8) and the pluripotency marker 

organic cation/carnitine transporter4 (Oct4), respectively (Bowles & Koopman, 2007; 

Childs et al, 2011; Le Bouffant et al, 2010; Mu et al, 2013; Pesce et al, 1998). Although 

the “extrinsic” RA signalling suggests meiosis onset may be induced, there is evidence 

of “intrinsic” factors that are present during this window in germ cells. For instance, 

RNA-binding proteins DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (DDX4) and deleted 

in azoospermia-like (Dazl) are expressed in germ cells from the time they arrive in the 

gonad (Medrano et al, 2012). The functional role of DDX4 is not well defined although 

it is the most well-known germ cell marker and is highly conserved across species 

(Medrano et al, 2012). In contrast, Dazl is an important mediator of RA signalling and 

Stra8 gene induction (Lin et al, 2008). 
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Onset of meiosis occurs in a rostral to caudal wave in the gonad (Bullejos & Koopman, 

2004) and the most cited hypothesis states that the oocytes entering meiosis first are the 

first to enter follicle development. This is called the “production-line” theory (Henderson 

SA 1968) and was first demonstrated by studies using [3H]thymidine labelling in rats and 

mice (Hirshfield, 1992; Polani & Crolla, 1991).  

 

After cluster breakdown, the oocyte arrests meiosis in the diplotene stage of prophase I 

and pre-GCs start surrounding individual oocytes to be enclosed within a basement 

membrane that together constitute the fundamental functional unit of the ovary: the 

primordial follicle (Pepling & Spradling, 1998) (Figure 1.2). 

 
 

Figure 1.2. Timeline of primordial follicle formation in mice (Mo) and human (Hu). Three different 

events are depicted, 1) the changes experienced around clusters of primordial germ cells (PGC), 2) the 

somatic-dependent sex determination, the mitotic arrest and invasion of the surrounding pre-GCs and 3) 

the onset of meiosis in the oocyte (Oo). Time is referred as ED (months of embryonic development) in 

human and dpc (days post-coitum) and PND (post-natal day) in mice. 
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1.2.3 Primordial follicle activation 

 

The term of ‘primordial follicle activation’ (PFA) is employed to describe the process 

where individual follicles start growing in an irreversible manner, eventually leading to 

either atresia or ovulation (Li et al, 2010). Primordial follicles are still capable of 

developing up to the antral stage in mice deficient for FSH or FSHR (Abel et al, 2000; 

Kumar et al, 1997); moreover, injection of gonadotrophins into juvenile mice does not 

alter the rate of primordial follicle growth (Peters et al, 1973). Therefore, the process of 

PFA is believed to be independent of gonadotrophins and mainly driven by intra ovarian 

regulation.  

 

The adult ovary consists of a heterogeneous population of follicles at all stages of 

development. However, and in support of the production-line theory, the distribution of 

follicles is not random. Interestingly, primordial follicles accumulate in the cortical region 

and the growing follicles are more concentrated in the medulla. This pattern is particularly 

well illustrated in prepubertal (immature) mouse ovaries (Figure 1.3). This distribution is 

conserved among mammals including humans, where two distinct primordial follicle 

populations are activated at different times otherwise known as “waves” (Zheng et al, 

2014a). The first wave corresponds to the primordial follicles in the medulla and the 

second wave is the pool located in the cortex. By using primordial-follicle specific 

markers for GCs (e.g. FOXL2; described in section 1.4.2) it has been reported in mice 

that the difference between the follicles from the two waves relates to the time that the 

surrounding GCs are specified from their precursors (Mork et al, 2011). Some GCs 

differentiate during foetal development, giving rise to the first wave in the medulla, while 

others differentiate perinatally (up to day 7 of age), enclosing follicles from the second 

wave in the cortex (Figure 1.3) (Capel et al, 2012; Gustin et al, 2016). This finding 

suggests that the different timing in follicle activation is due to the timing of GC 

specification during follicle formation and challenged the production-line hypothesis, 

which is related to the oocyte. Furthermore, it was later observed that the first wave of 

primordial follicles grew fast and mainly persisted until puberty while the second wave 

of primordial follicles were slower and developed throughout adult reproductive life 

(Zheng et al, 2014b) (Figure 1.3).  
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Based on these results, it was suggested that their differential role was related to the 

hypothalamic-pituitary-gonadal (HPG) axis, where follicles from the first wave 

contribute to the establishment of the HPG while the follicles from the second wave 

maintain the axis during adult life. Another hypothesis suggested growing follicles from 

the first wave could influence the rate of growth of the second wave to prevent early 

depletion (Zheng et al, 2014a). For example, primordial follicles from the second wave 

could receive inhibitory signals from the existing growing follicles from the first wave 

(Da Silva-Buttkus et al, 2009; Durlinger et al, 1999) (Figure 1.3). Moreover, a stimulatory 

effect between the growing and the primordial follicles from the first wave has also been 

reported in immature mice (d4-d12 of age) (Da Silva-Buttkus et al, 2009) and could 

explain the high-rate of growth of these follicles (Figure 1.3). These spatial mechanisms 

of activation and inhibition may be key to regulate the rate of activation of the second 

wave from puberty, favouring the maintenance of the ovarian reserve of follicles that will 

be recruited to ovulate during adulthood (Zheng et al, 2014a). Whether the differences in 

rate of growth from the two waves and their initial recruitment is dependent on the 

temporal differences of their GCs is yet to be demonstrated. 

Figure 1.3. Sequential activation of the “two-waves” of primordial follicles in the mouse ovary. 

Follicles formed in the medulla of the ovary belong to the first wave and activate around day 4 after birth 

in mice (d4) following a high-rate of growth (solid red line) until puberty. Orange arrows indicate the 

hypothesised communication between follicles from the first wave and between the two waves (Da Silva-

Buttkus et al, 2009; Zheng et al, 2014a). The second wave of primordial follicles, located in the cortex, start 

activating around puberty and follicles grow in a slow-rate during adult life (dashed red line). 
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1.3 Clinical implications of investigating the primordial follicle pool 

1.3.1 Age-related infertility: Dynamics of follicle depletion 

 

Once primordial follicles are formed, they generally have three fates: to remain quiescent, 

to die directly by atresia or to activate and enter follicle development (Reddy et al, 2010). 

Direct primordial follicle loss by atresia is difficult to measure but is proposed to 

contribute a reduction in the primordial follicle supply (Tingen et al, 2009). Follicle 

growth through activation contributes to a progressive depletion of the ovarian reserve 

and it is a major determinant of the reproductive lifespan: when the reserve is near 

depleted, reproduction ceases and menopause starts. Many research groups have focused 

on determining the dynamics of follicle depletion by establishing the relationship between 

the number of remaining follicles and women’s age (Block, 1952; 1953; Forabosco & 

Sforza, 2007; Gougeon et al, 1994; Richardson et al, 1988). Using histological sections 

from ovaries from females across a range of ages, these studies include both primordial 

and primary follicles under the term non-growing follicles (NGF) to define the ovarian 

reserve and were able to show a decline in follicle number with age. However, the limited 

number of subjects, the use of different counting techniques, statistical analysis and 

modelling have been the main limitations to obtaining a definitive model (Faddy, 2000; 

Faddy & Gosden, 1996; Gougeon et al, 1994; Hansen et al, 2008). For example, the 

mathematical model used to represent the data was first considered to be biphasic-

exponential and showed an accelerated depletion in follicle number from 38 years of age 

(Faddy et al, 1992) (Figure 4, A). More recently, Hansen et al (2008) applied unbiased 

stereology techniques and an increased number of subjects (n=122) to derive an 

alternative “power model” in order to improve the description of age-related follicle loss 

in humans. This model shows that the decline in follicle number occurs at a constant rate 

throughout life until the onset of menopause (around 50 years) (Figure 4, B). 
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Figure 1.4. Relationship between non-growing follicles (NGF) of women and their age. Each point 

represents total follicle counts in each woman from the studies. The solid line in A) represents the classical 

biphasic-exponential model (Faddy et al, 1992) whereas B) represents the fitted power model (Hansen et 

al, 2008). In comparison with the classical model where there is an abrupt change in follicle depletion rate 

in late 30s, the power model shows how the number of follicles steadily declines throughout life with the 

onset of menopause around 50 years when very few follicles remain. Figures are reproduced with 

permission (Hansen et al, 2008) (Appendix 15). 

 

Apart from histological counts, several putative markers of the ovarian reserve have been 

studied and only serum levels of anti-Müllerian hormone (AMH) and antral follicle 

counts (AFC) using ultrasound have shown a similar trend with NGF count and age 

(Hansen et al, 2011; Rosen et al, 2012). However, AMH is expressed in GCs from primary 

follicle stage but not in primordials (Weenen et al, 2004). Consequently, any factors 

affecting the growing follicle population can lead to a change in any of these parameters, 

(e.g serum AMH levels) that does not necessarily implicate a change in the ovarian 

reserve (van Dorp et al, 2016). Therefore, although AMH and AFC are of especial interest 

in clinics as non-invasive diagnostic tools to predict women’s reproductive lifespan and 

assess follicle growth stimulation for assisted reproductive techniques (ART), they are 

not a direct measure of the primordial follicle population (Findlay  et al, 2015b). 

 

 

 

A) B) 
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In addition to the number, follicle quality could also be an additional variable to consider 

when evaluating reproductive potential. Aneuploidy is reported to be the main cause of 

oocyte quality decline with age (Kuliev et al, 2011; Pellestor et al, 2003). For instance, 

oocytes from adult human ovaries (45 years and above) showed 40% more frequency of 

chromosomal abnormalities than in younger women (35 years)(Kuliev et al, 2011). 

Notwithstanding this, the effect that the long-term quiescence of primordial follicles has 

on their quality and subsequently on their growth potential is still undetermined. 

Ultrastructural assessment of the human primordial follicle pool using transmission–

electron microscopy (TEM) has been proposed as a tool to determine follicle quality (de 

Bruin et al, 2002). By using ovary sections of young women, several signs of atresia in 

primordial follicles were studied. Notably, when healthy and atretic primordial follicles 

were compared, an increased number and ruptured mitochondria in oocyte and GCs from 

atretic follicles were described, respectively. Moreover, presence of vacuoles and 

dilatation of Golgi and rough endoplasmic reticulum (RER) were also observed in atretic 

primordial follicles (de Bruin et al, 2002). In another study, cytoplasmic vacuolization in 

oocytes of some primordial follicles were also observed in young rats (Devine et al, 

2000). The results from these investigations suggest that impaired quality of primordial 

follicles could contribute to the dynamics of follicle depletion with age. Therefore, the 

molecular pathways that may be affected in these atretic primordial follicles is still a field 

worth to be investigated. 

 

1.3.2 POI, PCOS and preservation of fertility  

 

Interestingly, both POI and PCOS have been associated with impaired rate of PFA. 

Afollicular POI is the result of an accelerated rate of PFA leading to early depletion of 

the ovarian reserve whereas follicular POI is characterised by follicles that fail to develop 

(Nelson, 2009). By comparison, induced POI (as a consequence of ovarian surgery, 

endometriosis or radio-chemotherapy treatments) is characterised by a lack of follicle 

activation due to a loss of ovarian tissue (De Vos et al, 2015). In the case of anovulatory 

PCOS, a higher rate of PFA has been observed, mirroring the characteristic arrest of 

follicle growth that is detected in PCOS at antral stages (Webber et al, 2003). It is then 

likely that the decreased rates of ovulation may be partially caused by this unbalanced 

rate of follicle activation and growth (Franks et al, 2008).  
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Therefore, understanding the molecular factors implicated in the maintenance, activation 

and early follicle development can provide a range of biomarkers for the early detection 

and diagnosis of POI and PCOS. 

 

Fertility preservation in women suffering from ovarian dysfunction, particularly with 

POI, can be considered from different options depending on the patient. In the case of 

patients with cancer that are planning to have ovarian surgery or chemo-radiotherapy 

there are two main techniques in the clinical practice: oocyte and embryo 

cryopreservation. However, none of these techniques are applicable to pre-pubertal girls 

and embryo cryopreservation is also limited to women with a male partner or sperm donor 

(Levine et al, 2010; Nyboe Andersen & Erb, 2006). Ovarian cortex cryopreservation and 

ex-vivo retrieval of immature oocytes are the other two alternatives for fertility 

preservation that can be applied to young women or prepubertal girls (Huang et al, 2008; 

Kuwayama et al, 2005). However, ovarian cortex transplantation is still experimental and 

reintroduction of malignant cells is a risk (Rosendahl et al, 2013). In vitro maturation of 

oocytes reduces all those issues but the fertilisation potential of in vitro matured oocytes 

is often compromised by the cryopreservation process (Brambillasca et al, 2013). 

Cryopreservation of primordial and preantral follicles for later culture have several 

advantages; firstly, women have relatively more follicles at these stages and secondly, in 

the case of cancer patients, there is a reduced risk of reintroduction of malignancy 

(Laronda et al, 2014). Furthermore, this technique could be offered to women with POI 

that have not planned to have a family at the moment of diagnosis. Although they suffer 

from follicle depletion, there is a low number of primordial follicles from the reserve and 

small antral follicles that can be preserved for in vitro maturation (IVM) and used for 

ART (De Vos et al, 2015; Suzuki et al, 2015). Considering these options, knowledge of 

the factors implicated in maintenance, activation and early follicle development will be 

extremely useful in developing systems to support viability in vitro.  

 

1.3.3 Oocyte renewal 

The general dogma of mammalian ovarian reserve consolidated by Zuckerman in 1951 

states that the number of primordial follicles originated from primordial follicle formation 

constitutes the maximum oocyte supply possible in a female mammal.  



40 
 

Since then, it has been generally accepted. However, a study from Johnson et al. in 2004 

challenged this dogma when they reported the presence of mitotically active cells in the 

ovarian surface epithelium (OSE) in mice that also expressed some meiotic markers, such 

as signal peptidase complex subunit 3 (SCP3), and the germ cell marker DDX4 (Johnson 

et al, 2004). With these findings, they postulated the existence of oocyte renewal as a 

mechanisms to supply the ovarian reserve and prevent the premature exhaustion of 

follicles due to follicle atresia. In order to test this phenomenon in vivo, the isolation of 

putative OGCs from young and adult mice ovaries was performed using the germ cell 

marker DDX4,  and isolated OGCs were able to restore ovarian function and generate 

new fertilisable follicles and offspring (Zou et al, 2009). In ovarian cortical biopsies from 

healthy young women, FACS-based techniques using DDX4 antibodies we used to isolate 

these putative OGCs and successfully propagate them in vitro (White et al, 2012). 

However, the isolation and maintenance of these putative OGCs has been difficult to 

replicate and whether cytoplasmic DDX4 has a FACS-detectable extracellular domain in 

OSCs has been also recently questioned (F. Hernandez et al, 2015; Zarate-Garcia et al, 

2016; Zhang et al, 2012). Moreover, the studies by Zou et al only demonstrated the 

potential of OSCs to generate new fertilisable oocytes but did not show their ability to 

generate primordial follicles in physiological conditions. However, a recent study using 

the stem cell marker Oct4  developed a tracing system in vivo by crossing Oct4 and YFP 

transgenic mice to generate a tamoxifen-inducible line, where they observed that these 

cells could become “meiotically active” cells and generate new primordial follicles (Guo 

et al, 2016).  

 

The extent to which these putative OSCs contribute to the ovarian reserve and their 

physiological function is still undetermined, however, their use could be a potential 

alternative strategy for preservation of fertility of women with compromised supply of 

follicles in their ovaries, for example, in young girls with induced POI.  
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1.4 Maintenance and activation of primordial follicles  

 

The biology of PFA is one of the major unanswered questions of reproductive biology: 

How are the individual follicles either maintained in relative quiescence or selected to 

activate and grow? The morphological and molecular events that a primordial follicle 

experience during activation have been described during recent decades. Earlier studies 

in mice suggested two important aspects about PFA, the pre-determined time of PFA and 

the ability of primordial follicles to grow without gonadotrophins, as explained above 

(see 1.2.3). Moreover, other studies observed that cuboidalisation and proliferation of 

GCs in mice were key morphological changes that occur during activation (Hirshfield, 

1992; Lintern-Moore & Moore, 1979). This process of transformation in GCs was further 

confirmed by later studies (Da Silva-Buttkus et al. 2008; Mora et al. 2012; Braw-Tal 

2002) and was proposed to be similar to an epithelial-mesenchymal transition (EMT), 

since GCs from growing follicles lack some of the common epithelial cell markers such 

as cytokeratin 8 and E-cadherin (Childs & McNeilly, 2012; Mora et al, 2012b; Samy et 

al, 2014). Oocyte growth occurs alongside this process; however, changes in GCs seem 

to precede major oocyte growth (Braw-Tal, 2002). The development of in vitro culture 

models has allowed to establish some hypotheses about the activation or maintenance of 

the primordial pool. First, the increased activation of primordial follicles in cultured 

bovine cortical biopsies when compared to ovaries in vivo suggested that the presence of 

inhibitory signals in vivo may maintain the primordial follicle population (Wandji et al, 

1996). It was later demonstrated that insulin in the culture medium is an activator of PFA 

in vitro and therefore the existence of inhibitory factors in vivo may exist (Fortune et al, 

2011). Moreover, a detailed spatial analysis in immature mouse ovaries allowed to 

establish some hypotheses about the source of these molecules (Da Silva-Buttkus et al, 

2009). It was proposed that primordial follicles are exposed to (i) stimulatory signals from 

growing follicles or (ii) inhibitory signals from neighbouring primordial follicles located 

in close proximity. However, the identity of these effectors and their molecular 

mechanisms are still yet to be clarified.  
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The mouse ovary as a model of PFA 

The neonatal mouse ovary culture was the first system to demonstrate the whole process 

of follicle development in vitro (Eppig & Brien, 1996). Since then, this model has 

provided a system to investigate in detail the molecular events leading PFA.  

The ovarian mouse model is ideal as a preliminary model, since it is easier to culture and 

a repertoire of novel molecular biology tools and transgenic possibilities can be applied 

to study in detail the molecular biology under PFA. In mice, primordial follicle formation 

occurs around 1-3 days after birth with some follicles initiating growth shortly after. This 

timing provides a short, well-defined window to observe the biological process of PFA. 

Moreover, a neonatal mouse ovary is approximately 1mm in diameter, meaning the small 

size allows the entire organ to be maintained in a culture environment. Notwithstanding 

this, follicle development in mice is different from that in human: they are poly-ovulatory 

and the follicle morphology, size and the time required for follicle growth are different 

(Griffin et al, 2006). Hence, the use of non-human primate models is essential to optimise 

effective culture methods that are more translatable to human (Telfer & Zelinski, 2013). 

For instance, the ovarian cortex culture has been developed in cattle and provided an 

improvement of the culture of human ovarian cortical biopsies (McLaughlin & Telfer, 

2010; Telfer et al, 2008).  

 

 

 

 

 

 

 

Figure 1.5. Morphological changes associated with primordial follicles during PFA. Primordial 

follicles with flat GCs start to cuboidalise and proliferate into a transitional follicle (a). At around the same 

time, or just after, a major increase in oocyte volume occurs as the follicle transitions into a primary follicle 

(b). 
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1.4.1 Molecular events in the oocyte 

 

The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway is involved in cell 

growth, division, survival and migration and has been well characterised in cancer 

biology (Chalhoub & Baker, 2009; Spoerke et al, 2012; Tran et al, 2013). The role of this 

signalling pathway during early follicle development, particularly in the activation of the 

primordial follicle pool has also been studied extensively (Reddy et al, 2005). Forkhead 

box family (FOXO) family, FOXO3a is a substrate of the PI3K mediator serine/threonine 

kinase AKT that normally regulates cell cycle arrest (Figure 1.6) (Brunet et al, 1999). 

Upon stimulation by AKT, FOXO3a relocates to the cytoplasm, triggering cell 

proliferation (Arden & Biggs, 2002) (Figure 1.6). PI3K pathway is negatively regulated 

intracellularly by the function of Phosphatase and Tensin Homolog (PTEN). It catalyses 

the hydrolysis of the phosphate group of Phosphatidylinositol-3,4-triphosphate (PIP3), 

impeding the recruitment by this factor of PDK1, necessary for AKT phosphorylation 

(Maehama & Dixon, 1998) (Figure 1.6). Pten-/- and Foxo3a-/- mice exhibit a similar 

ovarian phenotype, with an overgrowth of oocytes in all primordial follicles and increased 

PFA (Castrillon et al, 2003; Jagarlamudi et al, 2009; John et al, 2008). The accelerated 

growth of oocytes seemed to be promoted by the activation of AKT and mechanistic 

target of rapamycin (serine/threonine kinase) (mTOR) and its downstream molecules 

Ribosomal protein S6 kinase (S6K) and ribosomal protein S6 (rps6) (Jagarlamudi et al, 

2009). Therefore, PTEN and FOXO3a may be important for maintaining the dormancy 

of the primordial follicle pool. Pharmacologic inhibition of PI3K in Pten-/- suppresses 

oocyte growth, while treatment with the same inhibitor in Foxo3a-/- has no effect on the 

ovarian phenotype. This result suggests that FOXO3a acts downstream of PTEN which 

may regulate oocyte growth via PI3K, AKT and FOXO3a (John et al, 2008) (Figure 6) .  

 

The upstream regulator KIT ligand is shown to activate PI3K pathway in mice (John et 

al, 2008; Liu et al, 2007; Reddy et al, 2005; Thomas & Vanderhyden, 2006b). KIT ligand 

expression is detectable in GCs while its receptor, KIT proto-oncogene receptor tyrosine 

kinase (cKIT), is found in oocytes and theca cells in rodents and human (Horie et al, 1991; 

Merkwitz et al, 2011; Otsuka & Shimasaki, 2002; Tuck et al, 2015).  
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Mice harbouring non-functional mutations for KIT ligand exhibit growth-arrested 

follicles at the primary and secondary stage (two layers of GCs) with minimal oocyte 

growth (John et al, 2009). In addition, the FOXO3a protein is retained in the oocyte nuclei 

of these mice, suggesting that KIT ligand signalling is crucial for the regulation of the 

PI3K pathway via FOXO3a. Interestingly, the absence of KIT ligand does not influence 

GC cuboidalisation and proliferation but affects oocyte growth (John et al, 2009). Since 

GC proliferation has been proposed to initiate PFA (see 1.4), KIT ligand may be part of 

the paracrine signalling loop from GCs to the oocyte but once PFA has already taken 

place.  

 

The ocyte-specific basic helix-loop-helix (bHLH) transcription factor SOHLH1 and 

SOHLH2, specifically expressed in germ cells and oocytes from primordial follicles in 

mice (Pangas et al, 2006), are also important for PFA. Both Sohlh1-/- and Sohlh2-/- mice 

exhibit accelerated postnatal oocyte loss (Choi et al, 2008). Moreover, microarray 

analysis indicated that loss of Sohlh1 promotes down-regulation of other transcription 

factors, such as the newborn ovary homeobox NOBOX and the basic helix-loop-helix 

(bHLH) factor FIGLA (Pangas et al, 2006). Nobox-/- show arrest in PFA and eventual 

oocyte loss (Rajkovic et al, 2004). FIGLA controls the oocyte-specific expression of three 

zona pellucida genes (ZP1, ZP2 and ZP3) that constitute the glycoprotein-rich matrix that 

surrounds developing oocytes (Gupta et al, 2012). This factor is also important for 

primordial follicle formation, as increased oocyte loss is found in Figla-/- mice (Joshi et 

al, 2007; Soyal et al, 2000). 

 

Growth factors and cytokines produced by the oocyte also play an important role in early 

follicle development. Platelet-derived growth factor beta (PDGF) and basic fibroblast 

growth factor 2 (bFGF) are believed to be important regulators of PFA. PDGF and bFGF 

are expressed in oocytes and their receptors in GCs and theca cells in rat and pig ovaries 

(Okamura et al, 2001; Sleer & Taylor, 2007; Taylor, 2000). Treatment of cultured rat 

ovaries with either bFGF or PDGF leads to an upregulation of KIT ligand expression in 

GCs (Nilsson et al, 2001; Nilsson et al, 2006; Nilsson & Skinner, 2004).  
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In addition, oocyte-derived cytokines such as glial cell line derived neurotrophic factor 

(GDNF) or epidermal growth factor (EGF) are also believed to play a role in early follicle 

development. However, both may have a role after the primary follicle stage, since in 

cultured rat ovaries GDNF promotes changes in the expression of factors found in 

growing follicles (e.g. GDF9 and AMH) and in cultured goat ovarian cortex EGF 

enhances further oocyte growth after PFA (Dole et al, 2008; Silva et al, 2004). Other 

factors produced in the stroma or theca cells such as fibroblast growth factor 7 (FGF7, 

also known as KGF) also have a paracrine effect and influence on PFA by stimulating 

GC production of KIT ligand in cultured rat ovaries (Kezele et al, 2005). 

 

The characterisation of these molecular pathways in oocytes have been used to develop 

potential clinical strategies to induce PFA in vitro (Li et al, 2010; Reddy et al, 2010). For 

example, stimulation of early follicle growth using PTEN inhibitors on cultured cortical 

biopsies with subsequent transplantation has resulted in offspring in women seeking 

fertility treatment (Kawamura et al, 2013). However, although this clinical tool has a real 

impact for the production of fertilizable oocytes from women suffering from POI 

(Kawamura et al, 2013; Suzuki et al, 2015), their use in the in vitro activation of follicles 

still remains uncertain, as treated primordial follicles do not seem to show clear evidence 

of healthy development beyond the secondary stage (McLaughlin et al, 2014). 

 

A recent report has suggested the initiation of PFA triggered by primordial GCs as the 

molecular switch that allows further follicle development (Zhang et al, 2014). Therefore, 

any treatment that only targets the oocyte may enhance a shortcut in the process of 

activation. As a consequence, GC proliferation may be impaired, affecting further follicle 

development and oocyte quality (Eppig et al, 2002). Therefore, understanding the 

molecular events involved in GC transformation may be fundamentally important for 

developing future strategies that regulate PFA in vitro. 

 

 

 

 



46 
 

Figure 1.6. PI3K pathway and regulation. Extracellular ligands (L) (e.g KIT ligand) bind to RPK1 

receptors, which dimerise, phosphorylate and recruit the p85-p110 heterodimer. p85-p110 converts PIP2 

into PIP3 which recruits PDK1. PDK1 phosphorylates AKT which inhibits BAD, GSK3, TSC1/TSC2 

(described in 1.4.2), p27 and FOXO3a. As TSC1/TSC2 is inhibited, mTORC1 become phosphorylated and 

also its downstream molecules (S6K and rpS6). Inhibition of FOXOA3 leads to its relocation to the 

cytoplasm, promoting cell proliferation.    
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1.4.2 Molecular events in GCs 

 

Key GC markers and regulators 

 

FOXL2 is a forkhead domain/winged-helix (WH) transcription factor. A mutation in this 

gene is associated with human blepharophimosis/ptosis/epicanthus inversus syndrome 

(BPES) type I, an autosomal disorder associated with POI (Crisponi et al, 2001). Due to 

its specificity in GCs it is often used as GC marker (Capel et al, 2012). The role of FOXL2 

in PFA has been also reported (Schmidt et al, 2004; Uda et al, 2004). Foxl2lacZ 

homozygous mutant mice (obtained by replacing the coding region of Foxl2 gene by 

nlslacZ cassette) and also Foxl2-/- mice showed an absence of GC cuboidalisation during 

primordial to primary transition (Schmidt et al, 2004; Uda et al, 2004). Furthermore, 

although oocytes were able to grow, they underwent atresia and a progressive depletion 

of follicles was observed (Schmidt et al, 2004). These results suggest that a change in GC 

morphology is an important aspect that supports oocyte growth to later stages of follicle 

development. FOXL2 regulates the transcription of genes involved in primordial follicle 

maintenance; for example, p27, expressed in both oocyte and GCs (Garcia-Ortiz et al, 

2009). In p27-/- mice, the primordial pool was found to be prematurely activated 

(Rajareddy et al, 2007). Therefore, p27 is considered an important negative regulator of 

PFA. In other cells, p27 supresses cell growth when it is phosphorylated and excluded 

from the nucleus (Nakayama, 2004). Although initially believed to be downstream 

PTEN/PI3K-FOXO3a pathway, double knockout p27-/-FOXO3a-/- mice showed more 

PFA than mice lacking one of them, suggesting that the p27 cell cycle pathway and the 

PTEN/PI3K-Foxo3a pathway could act independently (Rajareddy et al, 2007).  

 

Since FOXL2 is mostly restricted to GCs, the gene promoter has been used to generate 

conditional knockout (cKO) mice targeting this lineage. Recent studies have exploited 

this to specifically study the role of the mTORC (mechanismtic target of rapamycin 

complex) signalling pathway in GCs (Zhang et al, 2014). Conditional deletion of the 

regulatory-associated protein of mTOR (Rptor) in GCs decreases PFA, while the opposite 

effect is observed when the mTORC inhibitor protein TSC1 (Tuberous sclerosis 1) is 

ablated in these cells.  
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Moreover, a relationship between mTOR and PI3K signalling is evident, since FOXO3a 

is confined to the oocyte cytoplasm in Tsc1-/- female mice. This suggests that constitutive 

mTOR activation leads to constitutive PI3K pathway inhibition. In addition, using 

cultured Tsc1-/- cKO ovaries, treatment with an inhibitor to KIT ligand prevented the 

global PFA phenotype, suggesting mTORC1 pathway could be the upstream mechanism 

upregulating KIT ligand, necessary for the further oocyte growth, as previously reported 

(John et al, 2009). Despite these findings, the upstream factors stimulating the mTOR 

pathway in primordial follicles are still unknown. The mTOR pathway is stimulated with 

factors such as oxygen, other growth factors and energy (Zhang et al, 2014).Whether this 

is the case for primordial follicles or other intra-ovarian factors are regulating this 

pathway has yet to be determined. Nevertheless, mTOR seems to play an important role 

in the initiation of PFA. 

 

Key ligands: TGFβ superfamily  

 

Other factors also play an important role in GCs during PFA. AMH, a TGFβ ligand is 

expressed in GCs of human preantral and small antral follicles in human and mice 

(Durlinger et al, 2002a; Weenen et al, 2004). AMH-/- mice exhibit an early depletion of 

primordial follicles within the ovary, with a corresponding increased rate of PFA, 

suggesting a role for AMH as an inhibitory signal (Durlinger et al, 2002a; Durlinger et al, 

1999). Furthermore, exogenous AMH in cultures of human cortical biopsies and the 

exposure to endogenous AMH of grafted neonatal mouse ovaries and bovine ovarian 

cortex (beneath the chorioallantoic membrane, CAM) showed an inhibition of PFA 

(Carlsson et al, 2006; Gigli et al, 2005). By comparison, GDF9 is an oocyte-derived 

TGFβ that promotes proliferation of GCs during early follicle development (Dong et al, 

1996). Studies have identified that some patients with POI exhibit different variants of 

the GDF9 gene (Persani, 2011; Qin et al, 2015). GDF9-/- mice show arrest of follicle 

development at the primary stage due to a failure in GC proliferation (Dong et al, 1996). 

Moreover, GDF9 plays an essential role in stimulating GCs and theca cell growth by 

influencing the expression of non-oocyte-derived ligands such as activin or KIT ligand 

(Dong et al, 1996; Elvin et al, 1999b; Joyce et al, 2000a; Myers et al, 2013; Thomas & 

Vanderhyden, 2006a).  
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Since AMH and GDF9 are not expressed in primordial follicles, it is unclear whether they 

contribute directly to the process of PFA; yet, may instead be important factors promoting 

transition through the small preantral stages. 

Activins and inhibins have a well-known role in FSH regulation during follicle 

development (Bernard, 2004; Ling et al, 1986; Suszko et al, 2005; Suszko et al, 2003; 

Vale et al, 1986). However, comparatively less is known about their role during the early 

gonadotrophin-independent phase. In terms of structure, activin and inhibin differ in the 

dimerization of their subunits: activins are composed by homodimers or heterodimers of 

beta A or B subunits while inhibins are heterodimers of one beta and one alpha subunit 

(Rabinovici et al, 1992). Inhibin and activin both bind to the same receptors, therefore 

they act by competitive binding (Zhu et al, 2012). In human, mutations in inhibin alpha 

gene (Inha) have also been found in POI patients (Qin et al, 2015). In mice, Inha-/-  are 

infertile and show decreased numbers of primordial follicles together with increased 

numbers of primary and secondary follicles suggesting accelerated PFA, possibly due to 

increased activin signalling (Matzuk MM 1992). Consistent with this, increased 

proliferation of GCs is also observed in these mice alongside reduced expression of KIT 

ligand and AMH (Myers et al, 2009). With regard to activin, activin A (homodimer of 

beta A subunits) stimulates growth of GCs in preantral follicles (Zhao et al, 2001).  

However, recent investigations showed that activin A enhances maintenance rather than 

activates the primordial pool (Childs & Anderson, 2009; Coutts et al, 2008; Ding et al, 

2010). Interestingly, mice null for the activin antagonist follistatin, exhibit an increased 

rate of PFA (Kimura et al, 2011; Yao et al, 2004), supporting the possible role for activins 

in maintaining the dormancy of primordial follicles. Despite this, the mechanism of action 

may be indirect, since activin A and its receptors activin A receptor type 2A (Acvr2a) and 

1B (ALK4) are expressed in oocytes (Martins da Silva et al, 2004) and GCs of follicles 

from primary stage, but not in primordial follicles (Coutts et al, 2008; Pangas et al, 2002).  

 

TGFβ1 ligand is detectable in mouse oocytes in follicles at all stages, including primordial 

follicles (Christopher, 2000; Gueripel et al, 2004). However, TGFβ1 staining in GCs is 

less clear, being detectable in small follicles in cattle and in large follicles in human but 

not in mice (Chegini N 1992; Nilsson et al, 2003; Wang et al, 2014b).  
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Treatment of cultured neonatal mouse and rat ovaries with TGFβ1 results in a reduced 

rate of PFA compared to controls (Ingman WV 1  2006; Ingman et al, 2006; Rosairo D 

2008; Wang et al, 2014b). Conversely, the addition of a TGFβ inhibitor specific to type I 

TGFβ receptor promotes follicle activation and growth (Wang et al, 2014a). Tgfβ1-/- 

knockout mice maintained until adulthood have a reduced number of oocytes in their 

ovaries. In addition, the extracellular antagonist Htra1 is highly expressed in GCs of 

mouse follicles from early stages of development but not primordial follicles in a pattern 

similar to follistatin (Fenwick et al, 2011). Therefore, like activin, TGFβ1 in primordial 

follicles may be important to maintain the primordial follicle pool. 

Bone Morphogenetic Proteins (BMPs) are also implicated in PFA. BMP15, belongs to 

the list of gene candidates implicated in POI (Persani, 2011). BMP15 mRNA and protein 

are predominantly expressed in oocytes of preantral and larger follicles of sheep and 

human and mutations in Bmp15 gene are involved in POI (homozygotes only in sheep 

and heterozygote carriers in human) (Di Pasquale et al, 2004; Galloway et al, 2000). 

Although BMP15 is not known to be involved in PFA in mice, it plays an important role 

in later steps of follicle development, as treatment of preantral follicles with exogenous 

BMP15 inhibits growth and promotes atresia (Fenwick et al, 2013). BMP4 and BMP7, 

are both expressed in theca cells of mice and rat ovaries and the addition of exogenous 

BMP4 and 7 to cultured rodent ovaries is thought to increase the rate of PFA (Ding et al, 

2013; Lee et al, 2001; Lee et al, 2004; Nilsson & Skinner, 2003). However, these proteins 

are not expressed in primordial follicles (Nilsson & Skinner, 2003; Shimasaki et al, 1999) 

suggesting that the actions of BMPs on primordial follicles may also be indirect.  

 

Smad Knockout mice to study TGFβ function in the ovary 

 

SMAD proteins are the canonical downstream signalling mediators of TGFβ ligands. Like 

TGFβ1, 2 and 3  or BMP 2, 4 and 7 (Lawson et al, 1999; Memon et al, 2008; Nilsson & 

Skinner, 2003; Ross et al, 2007; Solloway et al, 1998; Yan et al, 2001; Zhang & Bradley, 

1996), knockout mice (KO) for SMAD mediators often show embryonic/perinatal 

lethality (Pangas, 2012a), thereby impeding the study of their role in PFA (Pangas, 

2012b).  
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Interestingly, from the KO generated for the TGFβ/activin mediators SMAD2/3, Smad3-

/- mice (by deleting exon 2 from the gene, see table 1.2) often develop colorectal cancer 

and immune deficiencies but is fertile, whereas an alternative Smad3 -/- variant (deletion 

in exon 8) is viable but exhibits a reduced ratio of follicle growth and GC proliferation 

(Tomic et al, 2004; Zhu et al, 1998). The difference between the two variants resides on 

the activity of the truncated protein: in the case of exon2-deleted Smad3-/-, an inactive 

SMAD3 form is generated whereas exon8-deleted Smad3-/- translates a protein that 

although is not able to be phosphorylated by the receptor, maintains the MH1 active 

domain and linker region (responsible for its non-canonical activation) (see Figure 1.10). 

In order to clarify the role of SMADs and other TGFβ factors in follicle development, in 

vitro experiments with cultured ovaries would be a good alternative. The generation of 

cKO mice have also provided unique models to assess the role of various SMADs in GCs 

only. Using this approach, Smad2-/- and Smad3-/- cKO mice show normal fertility whereas 

double Smad2/3-/- cKO are subfertile, with a reduced number of antral follicles, reduced 

ovulation rates and cumulus cell defects (Li et al, 2008) (Table 1.2). This suggests that 

SMAD2/3 proteins may compensate for each other when one is absent. This 

“redundancy” can also explain the differential phenotype observed with the two Smad3-/- 

mice variants. Since SMAD2 may be able to replace the non-functional protein in exon2-

Smad3-/-, the presence of the truncated yet partially functional protein in exon8-Smad3-/- 

may not allow SMAD2 to replace SMAD3 function, hence its infertile phenotype. With 

regards to the BMP downstream mediators SMAD1/5 and 8; Smad1-/- and 5-/- cKO exhibit 

relatively normal fertility while triple Smad 1/5/8 and double Smad1/5 cKO mice in GCs 

develop GC tumours and are subfertile (Pangas et al, 2008) (Table 1.2). Interestingly, 

GCs from these mice show an upregulation of genes associated with SMAD2/3 

signalling, suggesting that SMAD1/5 pathway may contribute to normal follicle 

development as a tumour suppression mechanism in GCs particularly for TGFβ ligands 

and its downstream effectors (Pangas et al, 2008). 

 

Although the cKO models have demonstrated a clear role for the different SMADs in 

GCs of growing follicles, these mice were generated using the AMH receptor 2 gene 

promoter (AMHR2) as the locus for Cre recombinase. AMHR2 is expressed in GCs of 

growing follicles and therefore any ‘floxed’ allele is not found in primordial follicles. 

Therefore, these transgenic models do not address the function of the targeted gene in 

PFA. 
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In mice, SMAD1/5/8 is expressed in GCs of growing follicles while SMAD2/3 is 

predominantly expressed in small, single-layered (primordial and primary) follicles 

(Fenwick et al, 2013; Xu et al, 2002a). Likewise, SMAD2/3 is found in primordial 

follicles in the human foetal ovary (Coutts et al 2008). These results complement the 

findings from cKO mice, where SMAD2/3 signalling may be more involved in PFA 

whereas SMAD1/5/8 is likely to be more relevant after this initiation, probably as a 

tumour suppressor mechanism when GCs have a higher proliferative status (Pangas et al, 

2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1. Comparison of the different SMAD-/- KO and cKO mice phenotypes. 

 

 

 

 

Smad variant 

 

 

Fertility and ovarian phenotype 

 

 

References 

Smad3-/- (exon 2-3) KO 

 

 

Fertile 

 

(Zhu et al, 1998) 

Smad3-/- (exon 8) KO 

 

Subfertile, decreased follicle 

growth, GC proliferation and 

increased follicle atresia 

 

(Tomic et al, 2002) 

 

Smad1/5-/- cKO 

 

 

 Subfertile, GC tumours 

 

(Pangas et al. 2008) 

 

Smad1/5/8-/- cKO 

 

Subfertile, GC tumors 

 

(Pangas et al. 2008) 

 

Smad2-/- cKO (exon 9-10) 

 

Fertile 

 

(Li et al. 2008) 

 

Smad3-/- cKO (exon 2-3) 

 

Fertile 

 

    (Li et al. 2008) 

 

Smad2/3-/- cKO 

                 

Subfertile,  reduced number of 

antral follicles, reduced ovulation 

rates and cumulus cell defects 

 

               

 

(Li et al. 2008) 
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Recent immunohistochemistry data from our laboratory showed that there is a 

translocation of SMAD2/3 from the nucleus to the cytoplasm at the time GCs begin to 

proliferate (Figure 1.8). This potentially highlights a novel, and very early detectable 

molecular event in PFA, since it is seen to occur prior to the increase in oocyte size. This 

finding also suggests that SMAD2/3 is implicated in the maintenance of the primordial 

pool and initiation of PFA may be triggered by a signal that could either be, as mentioned 

above (see 1.4), an antagonist of TGFβ signalling. While others have studied the role of 

PI3K and mTOR signalling pathways in the oocyte and GCs of small follicles 

respectively, the relationship between TGFβ signalling and these pathways is unknown. 

As will be explained below, TGFβ signalling is able to modulate these pathways via non-

canonical mechanisms. It is then possible that the balance between canonical and non-

canonical TGFβ signalling regulates PI3K and mTOR signalling pathways in GCs of 

primordial follicles and allows the initiation of PFA. Therefore, in order to understand 

the role of SMADs in the ovary, the mechanisms of SMAD signalling in other cell types 

will be explained in detail in the next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. SMAD2/3 localisation during PFA. Primordial (A), primary (B) and multilayered (C) follicles 

labelled for SMAD2/3 (green) and DAPI (blue). (A’ –C’) ImageJ image of the green channel with a set 

threshold (red). Dotted lines delineate GC nuclei. SMAD2/3 appears in the nucleus of granulosa cells from 

primordial follicles, suggesting signalling activity. During PFA, when granulosa cells cuboidalise, 

SMAD2/3 proteins appear to be excluded from the nuclei (B) and this translocation increases as follicles 

continue to grow (C).White arrows indicate SMAD-negative nuclei and black arrows show SMAD-positive 

nuclei. 
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1.5 TGFβ superfamily pathway and GC proliferation  

 

The canonical TGFβ signalling pathway is well-known for its role in the control of growth 

arrest (Massague, 2012). To achieve this, the SMAD2/3 intracellular mediators and 

transcription factors “sense” ligand-receptor binding and form complexes with factors 

from other pathways to repress or enhance the expression of several genes, such as cell 

cycle proteins. However, the mechanism by which SMAD2/3 can regulate GC growth is 

poorly understood. Based on information from other developmental processes, a detailed 

explanation of SMAD2/3-dependent mechanisms of gene regulation and inhibition will 

be explained in the sections below. In addition, an overview of the cell cycle and its 

relationship with SMADs will also be introduced. 

 

1.5.1 Overview of intracellular signalling: SMADs  

 

There are 7 type I (also known as ALKs) and 5 type II TGFβ receptors and they form 

tetrameric complexes (two type I and two type II) upon ligand binding at the cell surface. 

These receptors are a family of serine/threonine kinases and activation of the pathway is 

promoted by phosphorylation of the type I receptor by the type II receptor (Massague, 

1998). Once the tetrameric receptor is activated, the type I receptors phosphorylate 

internal SMAD proteins. There are three subclasses of SMADs: receptor-activated 

SMADs (R-SMADs; SMAD1, 2, 3, 5 and 8), common-partner SMADs (Co-SMAD; 

SMAD4) (Moustakas et al, 2001) and inhibitory SMADs (I-SMADs; SMAD6 and 7) 

(Itoh et al, 2001). SMAD2 and 3 act downstream TGFβ/activin/nodal type I receptors and 

SMAD1, 5 and 8 act downstream of BMP type I receptors. Once these R-SMADs are 

phosphorylated, they interact with SMAD4 and form a complex, which enters the nucleus 

and regulates gene expression by binding to a specific SMAD-binding DNA element 

(SBE). I-SMADs compete for SMAD4 or associate with different proteins (such as 

SMAD specific E3 ubiquitin protein ligase Smurf, serine/threonine kinase receptor 

associated protein STRAP or neural precursor cell expressed, developmentally down-

regulated gene 4-like NEDD4-2) to inhibit phosphorylation of R-SMADs by the receptor 

(Kuo et al, 2011; Moustakas et al, 2001) (Figure 1.9).  
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Figure 1.9. Canonical intercellular signalling by SMAD proteins. TGFβ/ activin (green L) and BMP 

(purple L) ligands bind the type II receptor (TGFβRII, BMPRII) which dimerises with the type I receptor 

(TGFβRI, BMPRI). The tetrameric receptor complex is then phosphorylated. Upon receptor 

phosphorylation, either SMAD 2/3 or SMAD 1/5/8 are recruited and phosphorylated and bind SMAD 4, 

both entering the nucleus and regulating gene expression (T) by binding to a specific SMAD-binding DNA 

element (SBE). 

 

Structure of Co- and R-SMAD proteins 

 

SMAD proteins are made up of two globular domains (MH1 and MH2) connected by a 

linker region (Figure 1.10). The MH1 domain corresponds to the N-terminal region and 

is highly conserved among R- and Co-SMADs and absent in I-SMADs (Massague et al, 

2005b). The MH2 domain is located at the C-terminal region and is conserved in all 

SMADs. The MH1 domain is responsible for DNA binding activity due to its β-hairpin 

structure with a bound zinc atom, while the MH2 domain is required for the interaction 

with phosphorylated regions (present in the activated receptor or in the R-SMADs), 

cytoplasmic proteins and nucleoporins (Hill, 2008). However, both domains facilitate the 

interaction with other transcription factors and DNA-binding co-factors that stabilise the 

DNA-binding complex and determine gene regulation activity (Hill, 2008).  
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SMAD2 protein has a particular difference in the structure amongst the SMADs. Its most 

abundant isoform has an inserted sequence in exon 3 coding the MH1 domain that 

prevents its DNA binding activity (Shi et al, 1998; Sylviane et al, 1999). However, it is 

still capable of entering the nucleus and binding to different co-activators to regulate gene 

transcription, probably in a different manner to SMAD3 (Xu et al, 2002b). The linker 

region also has an important role in SMAD function as it harbours phosphorylation sites 

for the mitogen-activated protein kinase (MAPK) mediators ERK (extracellular regulated 

MAP kinase) or p38 (p38 mitogen activated protein kinase) (Hough et al, 2012; Matsuura 

et al, 2005b), Cyclin-dependent kinases (CDKs) (Alarcón et al, 2009), ubiquitin ligases 

binding sites (Gao et al, 2009) and in the case of SMAD1 and 4, the linker region also 

contains the nuclear export signal (NES) necessary for its export to the cytoplasm 

(Massague, 2012; Massague 2012 Oct; Massague et al, 2005b; Moustakas et al, 2001). 

 

 

 

 

 

 

 

 

 

Figure 1.10. Structure of R- and Co- SMADs. Differences between protein domains explain differences 

in their function. The DNA binding domain (DB) in SMAD3 and SMAD4 is not present in SMAD2 due to 

the inserted sequence in exon 3 (in red). However both SMAD2/3 have the ability to be phosphorylated (P) 

by the receptor on their MH2 domain (purple) and also by other stimulatory/inhibitory pathways on the 

linker region (orange) whereas the linker region in SMAD4 harbours the nuclear export signal (NES). All 

three proteins have binding sites for different nucleoporins (NP) on their MH2 domain that facilitate their 

import/export into the nucleus. 
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SMAD basal subcellular localisation  

 

Non-phosphorylated SMADs are capable of shuttling between the cytoplasm and the 

nucleus in the absence of receptor stimulation (i.e. basal conditions). However, at any 

given time, the majority of inactive (non-phosphorylated) SMADs will reside in the 

cytoplasm. This is the case for SMAD1, 2, 4 and 6 (Imamura et al, 1997; Nicolás et 

al, 2004; Xiao et al, 2001) whereas some studies have reported the presence of inactive 

SMAD3 and SMAD7 in the nucleus (Itóh et al, 1998; Schmierer et al, 2008). 

Furthermore, it is proposed that SMAD2/3 can translocate to the nucleus without being 

in complex with SMAD4 (Fink et al, 2003; Liu et al, 2016). Therefore, the presence of 

SMAD3 in the nucleus suggests that it may have transcriptional activity in the absence of 

a TGFβ signal (Liu et al, 2016), and any stimulation may further enhance or alter its 

transcriptional activity.  

 

SMAD nucleocytoplasmic shuttling 

 

SMAD import and export from the nucleus is mainly a consequence of receptor 

activation: as long as there is a ligand activating the receptor, the cascade of 

phosphorylation will trigger SMAD complex formation and import to the nucleus 

(Massague et al, 2005b). This SMAD shuttling requires nucleoporins from the nuclear 

pore complex (NPC) and/or importins/exportins (the transport receptors) that will allow 

SMAD shuttling via the Ran GTPase system, as passive diffusion of proteins bigger than 

30kDa is not possible (Hill, 2008). If the TGFβ signal is maintained, there is an 

accumulation of nuclear SMADs in complex (Hill, 2008). According to the “retention 

only” model (RO), SMAD binding to several “retention” factors increases their nuclear 

residence time (Figure 1.11). Moreover, a different translocation rate between SMAD 

complexes and monomeric SMADs has been observed where SMADs in complex 

translocate 5 times faster (Schmierer et al, 2008). Therefore, a “retention/enhanced 

complex import model” (RECI) is proposed to explain the increased nuclear 

accumulation of SMADs in complex (Schmierer et al, 2008).  
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Importins are required to translocate SMADs complexes into the nucleus (Kurisaki et al, 

2001). However, monomeric SMADs can also enter the nucleus via importin-independent 

mechanisms, which may explain the difference in import rate between basal and TGFβ-

stimulated cells (Kurisaki et al, 2001; Schmierer et al, 2008; Xu et al, 2003). In addition, 

the role of nuclear and cytoplasmic “adaptor” and “retention” factors play an important 

role in the rate of nuclear accumulation and therefore, signal maintenance. For instance, 

nuclear accumulation enhancers such as proteins like TNF receptor-associated protein 

1 (TRAP-1) or TRAP-1-like protein (TLP), facilitate SMAD2/3-4 complex formation by 

interacting with the TGFβ receptor (Felici et al, 2003; Wurthner et al, 2001). Also proteins 

such as the yes-associated protein (YAP) and transcriptional coactivator with PDZ-

binding motif (TAZ) from the Hippo signalling pathway bind to complexed SMADs in 

the nucleus to prevent their export (Figure 1.12) (Varelas et al, 2008). In contrast, nuclear 

accumulation inhibitors such as serine/threonine kinase receptor associated protein 

(STRAP) acts at the level of receptor, stabilising SMAD7 association to prevent further 

R-SMAD signalling (Datta & Moses, 2000). In addition, proteins such as SMAD anchor 

for receptor activation (SARA) or prostate transmembrane protein, androgen induced 1 

(PMEPA1) interact with R-SMADs and inhibit their nuclear translocation, playing a role 

in signal termination (Runyan et al; Watanabe  et al, 2010). Termination of TGFβ 

stimulation also occurs at different levels: from the receptor inhibition to the removal of 

cytoplasmic and nuclear retention factors, inhibitory phosphorylation by other pathways 

(Matsuura et al, 2005a), R-SMAD dephosphorylation by phosphatases such as protein 

phosphatase (Ppm1a) (Lin et al, 2016) and subsequent SMAD degradation mechanisms 

(Figure 1.11).    
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Figure 1.11. TGFβ signal transduction and termination. In the presence of ligand (1), nuclear retention 

enhancers (such as TRAP-1 or TLP) maintain the signal transduction from the receptor (2) and 

accumulation of SMADs in the nucleus (such as YAP/TAZ, 3). Several factors contribute to the termination 

of the signal transduction at three different levels: at the receptor level, the absence of ligand stimulation 

(1) and degradation (3), the role of proteins binding to either TGFβ receptor I or II (therefore impeding 

their phosphorylation, such as FK506 binding protein FKBP12(Yamaguchi et al, 2006), the inhibitory 

SMAD7 or STRAP) (4) or the effect of decoy receptors interrupting receptor complex formation (e.g BMP 

and activin membrane-bound inhibitor, BAMBI (not shown) (Onichtchouk et al, 1999)) (2); in the 

cytoplasm, mediators that interact with R-SMADs and block the residues important for nucleoporin 

interaction and transcriptional complex formation (e.g SARA or TMPEAi) (5) or SMAD inhibitory 

phosphorylation by MAPK pathway mediators (Erks) (6). At nuclear level, SMAD export from the 

nucleus to the cytoplasm may involve the removal of “retention factors” (8), SMAD dephosphorylation 

and dissociation of the SMAD complex or viceversa (e.g PPM1A) (9), SMAD inhibitory phosphorylation 

via CDKs and GSK3 (7) and the ubiquitination for degradation via proteasome (via Smurf1/2 or E3) (10).  
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Pathway integration and non-canonical TGFβ signalling 

 

TGFβ signalling is known as an important regulator of epithelial cell maintenance but 

also has a key role in EMT during processes such as organogenesis throughout embryonic 

development (Derynck & Akhurst, 2007). During EMT, cells experience a switch from 

polarised and static to depolarised and migratory with invasive capacities (Kalluri & 

Weinberg, 2009). Such scenarios are also associated with pathological situations related 

to fibrosis and cancer progression (López‐Novoa & Nieto, 2009). Although the canonical 

SMAD signalling pathway is a key initiator of EMT, it is proposed that the activation and 

crosstalk with non-canonical TGFβ signalling is crucial to complete the process (Jian et 

al, 2009; Massague, 2012). 

As well as promoting SMAD signalling, TGFβ receptors can activate MAPK and PI3K 

signalling pathways. Moreover, these pathways can also independently influence SMAD 

signalling. (Figure 1.12). Phosphorylation of serine and tyrosine residues of the TGFβRII 

and TGFβRI can lead to the recruitment of MAPK mediators such as TNF receptor-

associated factor 6 (TRAF6), triggering p38/JNK activation (Yamashita et al, 2008) or 

the activation of Ras-ERK pathway (Xie et al, 2004), both leading to a coordinated 

transcriptional regulation in conjunction with SMADs (Davies et al, 2005). Moreover, ras 

homolog family member A (RhoA), cell division cycle 42 (Cdc42) and Ras-related C3 

botulinum toxin substrate (Rac) can also be activated by TGFβRII and I, where they 

influence actin polymerisation and tight junction dissolution, which is an essential 

requirement for EMT (Bhowmick et al, 2001; Ozdamar et al, 2005; Wilkes et al, 2003). 

In addition, TGFβ-induced activation of PI3K pathway via AKT and mTOR act to 

promote an increase in cell size and protein synthesis in epithelial cells undergoing EMT 

(Lamouille & Derynck, 2007).  

Although there is minimal detailed knowledge of the physical interactions between the 

TGFβ receptors and the non-canonical factors described above  (Massague, 2012; Mu et 

al, 2012), the recruitment of TRAF6 (p38/JNK pathway), PAR6 (RhoA activation), p85 

(PI3K signalling) and ShcA (Ras-ERK pathway) can propagate SMAD-independent 

signals (Figure 1.12) (Jae et al, 2005; Lee et al, 2007; Ozdamar et al, 2005; Yamashita et 

al, 2008).  
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Nevertheless, the interaction of intracellular mediators of these pathways with TGFβ 

signalling is a key event for the spatial-temporal coordination of multiple biological 

signals (Xing & Xiao-Fan, 2008). For example, the PI3K signalling pathway is known to 

inhibit the canonical TGFβ pathway by inhibiting the nuclear localisation of Forkhead 

Box 1 (FOXO1) transcription factor and its interaction with nuclear SMADs (Seoane et 

al, 2004) or by sequestration of cytoplasmic SMAD3 by AKT during TGFβ mediated 

apoptosis (Conery et al, 2004). In addition, the Wnt signalling mediator beta-catenin is 

also known to interact with SMAD2/3 and regulate the expression of common genes 

(Attisano & Wrana, 2013). 

The SMAD2/3 linker region (see Figure 1.9) is the target for the phosphorylation by non-

canonical pathways. The MAPK signalling mediators p38/ERK are capable of 

phosphorylating this region to inhibit SMAD activity (Kretzschmar et al, 1999; Matsuura 

et al, 2005b). However, recent investigations have also observed a positive induction and 

maintenance of SMAD2/3 activity via SMAD2/3-linker-phosphorylation (Browne et al, 

2013; Hough et al, 2012). The linker region harbours several phosphorylation residues, 

each having different specificity to different mediators that either activate or inhibit 

SMAD2/3 activity. For instance, phosphorylarion in residues Ser207  (by ERK), Th179 

and Ser 208-213 (by CDKs) often lead to inhibition of SMAD2/3 activity, whereas 

phosphorylation in Ser 204 (by ERK) has been shown to activate SMAD2/3 activity of 

target genes (Browne et al, 2013; Matsuura et al, 2005a; Wang et al, 2009). 

As described in section 1.4, the initiation of PFA is proposed to show similarities with 

EMT (Mora et al, 2012b). Whether SMAD signalling with or without cooperation with 

different pathways is important in this context is currently unknown.  
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Figure 1.12. Non-canonical TGFβ-driven signalling pathways. After ligand stimulation, TGFβ receptor 

has the ability to recruit factors from other pathways such as PAR6 (1) which inhibits RhoA/Cdk42 activity; 

TRAF6 (2) and schA (3), which lead to p38/JNK and ERK phosphorylation and subsequent transcriptional 

regulation in the nucleus or cytoplasmic phosphorylation of Smad2/3 in the linker region (4); and the 

regulatory subunit of p85, triggering mTORC activation or Foxo3a inhibition (5). Activation of RhoA by 

the receptor is also possible (6), promoting actin polymerisation during EMT. In addition, independent 

canonical pathways activated by their ligands (7,8,9 and 10) can interact with SMADs in the cytoplasm (4) 

or in the nucleus (11) to regulate common biological processes. 

 

1.5.2 Cell cycle machinery, TGFβ signalling and the primordial follicle ovarian reserve  

 

Overview of cell cycle 

 

In every cell division an interplay of cyclins and their cyclin-dependent kinases (CDKs) 

allows the transition between G0/G1/S/G2/M phases. In mammalian cells, cyclins can be 

classified (in the order of their role in cell cycle) as cyclin D, E, A and B. In addition, 

their corresponding CDKs are CDK4, CDK6, CDK2 and CDK1 (Sherr & Roberts, 1999). 

During transition from G0 to G1, cyclin D assembles with CDK4 or 6, phosphorylating 

Retinoblastoma protein (Rb). This allows the release of the E2F transcription factor, 

which promotes the expression of genes such as cyclin E (Figure 1.13). 
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During the late G1 phase, CyclinE assembles with CDK2 and promotes again the 

phosphorylation of Rb with the subsequent E2F transcription promotion of genes such as 

cyclin A gene. CDK2 binds CyclinA and promotes the initiation of S phase with the 

phosphorylation of proteins implicated in DNA replication. The transition from G2 to M 

is regulated by CyclinA-CDK1 and completion of mitosis is dependent on CyclinB action 

(Sherr & Roberts, 1999) (Figure 1.13). The timing of these transitions is highly dependent 

on CDK inhibitors (CKIs) that allow the process to be coordinated but also to respond to 

different biological conditions (such as stress or DNA damage) (Satyanarayana & Kaldis, 

2009). Based on their structure and CDK targets, CKIs can be divided in two groups: 

INK4 proteins (p15, p16, p18, p19), which bind to CDK4 and 6; and Cip/Kip proteins 

(p21, p27, p57), which bind to either CDKs or cyclins. If p21 or p27 are not bound to 

CyclinD-CDK, they bind instead to CyclinE-CDK and form an inactive complex that 

impedes phosphorylation of Rb and further cell cycle progression. Upon mitogen 

stimulation, assembly of p21/p27 to CyclinD-CDK complexes sequesters its binding to 

CyclinE-CDK, when Rb can be phosphorylated and cell cycle can progress. In contrast, 

INK4 proteins are related to cell cycle arrest by binding to CDK4/6 and impeding the 

CyclinD-CDK assembly (Satyanarayana & Kaldis, 2009). 

 

 

Figure 1.13. Participation throughout the different phases of the cell cycle of Cyclins, CDKs and 

CKIs.  The simplified schematic shows the sequential activation of Cyclins once activated from G0 

(quiescence) until M (mitotis entry). Modulation of cell cycle progression is dependent on the different 

activation and binding of CDKs and CKIs to their corresponding Cyclin. 

 



64 
 

The role of cell cycle factors in the ovary 

 

Several KO models for cell cycle proteins have been generated and only p27, CyclinD2 

(CCND2) and Cdk4 KO mice exhibit impaired fertility (Moons et al, 2002; Rajareddy et 

al, 2007; Sicinski, 1996). More specifically, Cdk4-/- showed normal fertility, however, 

they presented abnormal CL maintenance due to a deficiency in prolactin production 

(Moons DS 1  2002). In Ccnd2-/- mice, follicles arrest with no more than 3-4 layers of 

GCs, indicating that the proliferation of GCs during these early stages requires Ccnd2 

gene expression (Sicinski, 1996). By comparison, p27-/- mice exhibit premature activation 

of the primordial follicle pool (section 1.4.2) suggesting that p27 is fundamentally 

required for the maintenance of follicle quiescence (Rajareddy et al, 2007).  

 

Other cell cycle regulators are also implicated in follicle development. The Cyclin-

dependent kinase inhibitor 1A (p21) has been reported to control GC proliferation during 

luteinization in cooperation with p27 (Jirawatnotai et al, 2003). The Cyclin dependent 

kinase inhibitor 2B (p15), one of the more well characterised target genes for SMAD3 

(Seoane et al, 2001), has not been investigated in the context of small follicles but is 

detectable in mouse luteal cells (Burns KH 1  2001) and is up-regulated in cases of ovarian 

cancer (Arcellana‐Panlilio et al, 2002). Therefore, it is unclear whether regulation of p15 

expression is important in the context of GC proliferation. Myelocytomatosis (MYC) 

oncogene has been extensively related to the cell cycle, and its overexpression is often 

associated with human cancers (Jonas & John, 2003). The MYC gene is a target of 

SMADs and its protein product is a transcriptional suppressor of the SMAD-regulated 

target genes, p15 and p21 (Seoane et al, 2001; Siqin et al, 2003). There is little information 

on the role of MYC in the context of the ovary, however, its expression has been observed 

in GCs of growing follicles, follicles undergoing atresia and luteal cells in human, mice 

and rat (Li et al, 1994; Nandedkar & Dharma, 2001; Putowski LT 1  1997).  
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TGFβ signalling and CCND2 in GC proliferation 

 

In GCs obtained from large, gonadotrophin-dependent follicles, activin promotes Ccnd2 

expression via SMAD2/3 (Park et al, 2005). Likewise, Ccnd2 gene expression is reduced 

in ovaries of exon 8-Smad3-/- mice (Looyenga & Hammer, 2007; Tomic et al, 2004). 

Furthermore, higher levels of SMAD3 and CCND2 are found in GC tumours (Anttonen 

et al, 2014a). Together these studies suggest that SMAD3 is an important regulator of 

Ccnd2 expression. Moreover, this expression was localised in GCs of follicles from all 

stages, including primordial follicles (Robker & Richards, 1998a). Since SMAD2/3 

proteins are predominantly expressed in GCs of small follicles (Fenwick et al, 2013), it 

is possible that the TGFβ-SMAD pathway is also inducing Ccnd2 gene expression in this 

context. Since CyclinD proteins tend to be expressed in the G0 phase of the cell cycle, 

the expression and regulation of Ccnd2 in quiescent primordial follicles may be key 

towards understanding how these follicles are maintained and subsequently activated to 

grow. 
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1.6 Hypothesis and objectives 

Within the process of follicle development, the transition between primordial to primary 

follicles is believed to be gonadotrophin-independent. Intraovarian factors are needed to 

monitor this transition to coordinate development of the oocyte and GCs. The 

proliferation of GCs is thought to precede oocyte activation and growth, marking the 

initiation of PFA. The presence of SMAD2/3 in the nuclei of GCs is clearly evident in 

primordial follicles and loss of this expression in the nuclei of GCs of growing follicles 

suggests SMAD2/3 is associated with PFA. SMAD2/3 transcription factors are critical 

modulators of many cellular processes; however, regulation of growth arrest and EMT 

transition are believed also to be important (Heldin et al, 2009). For instance, SMAD2/3 

regulation of cell cycle genes (such as MYC) is essential to maintain cell proliferation. 

The cell cycle regulators CCND2 and p27 are detectable in the ovary and have been 

implicated with GC function. However, the conditions by which these genes are 

regulated, and their role in primordial follicles are poorly understood. In the studies 

presented in this thesis it is hypothesised that SMAD2/3 transcription factors regulate 

the expression of key cell cycle genes in GCs to allow the maintenance and activation 

of primordial follicles. This will be tested by the following objectives: 

Objective 1: To determine the expression pattern and map the relationship of SMAD2/3, 

CCND2 and p27 throughout the different stages of early follicle development (chapter 

3).  

Objective 2: To establish the relationship between CCND2/p27 protein complexes in 

primordial and growing follicles and determine how this relates to maintenance and 

activation of primordial follicles (Chapter 4). 

Objective 3: To determine if SMAD2/3 directly regulates key cell cycle genes in different 

TGFβ conditions and determine how this relates to early follicle growth (Chapter 5).  
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Materials and Methods 
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2.1 Animals and tissue collection 

All mice used in this study were wild-type C57BL/6 genetic background. These mice 

were tissue donors only and no interventions were carried out on live animals. All mice 

were maintained, purchased, and killed by Schedule 1 procedures in accordance with UK 

Home Office regulations and adherence to the Animals (Scientific Procedures) Act, 1986, 

in the Biological Services Unit, at the University of Sheffield.  

In order to study the process of PFA, the molecular and morphological changes during 

the transition from primordial to large preantral follicle stages were the main focus of this 

thesis. For this, ovaries from immature (day 4,8 and 16) mice were used, since they 

contained a high proportion of these follicle stages. Based on estimate numbers from a 

large cross-section of day 4, day 8 and day 16 ovaries (Appendix 1A), day 4 ovaries 

mainly consist of primordial and transitional follicles (~45% of each stage), day 8 ovaries 

contain mostly primordial, transitional and a few small preantral and large preantral 

follicles (~38%, 27%, 16% and 13% respectively) and day 16 ovaries are exemplified by 

primordial, transitional and secondary follicles (~38%, 20% and 28% ,respectively) and 

also include small and large preantral follicles (~14%)  (Figure 2.1). This model has been 

used to profile morphological and gene expression changes during early follicle 

development previously (Drummond et al, 2002; Fenwick et al, 2011; Sharum et al, 

2016). 

For total RNA and protein extraction, ovaries from immature (day 4, 8 and 16) mice were 

dissected from the ovarian bursa and peri-ovarian fat under a dissection microscope in 

Leibovitz’s L-15 medium (Life Technologies) containing 1% (w/v) BSA (Vector 

Laboratories) before snap freezing in liquid nitrogen and storage at -80 ºC.   

For immunostaining, ovaries were immersed in 10% neutral buffered formalin solution 

(Sigma-Aldrich) for 24 hours and then transferred to 70% ethanol. Ovaries were 

processed in paraffin blocks (Appendix 1B), which briefly consisted of the following: 

dehydration in a graded series of ethanol, treatment with a clearing agent (HistoChoice, 

Sigma) to remove the ethanol and finally, submersion in melted paraffin for embedding. 

Solid paraffin blocks were removed from the metal molds and sectioned (5μm) using a 

microtome (Reichert-Jung 1150/Autocut). Wax sections were mounted on positively 

charged slides (Superfrost® Plus scientific slides, ThermoFisher Scientific) and dried 

overnight at 37ºC.  
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2.2 NIH3T3 and PHM1 cell lines 

The NIH3T3 fibroblastic cell line (ATCC) derived from a NIH Swiss mouse embryo 

contains endogenous CCND2 and p27. Therefore, this cell line was used as a positive 

control for some western blot and co-immunoprecipitation experiments. Cells were 

maintained in Dulbecco’s Modified Eagle Medium (Sigma) containing 10% (v/v) Fetal 

Calf Serum (FCS) (Sigma), 2mM L-glutamine (Sigma) and 0.01% 

penicillin/streptomycin (Sigma) and passaged every three days to avoid total confluency. 

The PHM1 cell line (ATCC) was derived from pregnant human myometrium at 39 weeks 

of gestation, during cesarean section. This cell line was used to study SMAD3 

phosphorylation with Western Blot. PHM1 cells were maintained in Dulbecco's Modified 

Eagle's Medium (Sigma) containing 10% (v/v) FCS (Sigma), 0.01% 

penicillin/streptomycin (Sigma) and Geneticin (0.1mg/ml) (Gibco).  

2.3 Neonatal mouse ovary culture 

As the ovary is an approximately spherical organ, oxygen access to the center of the tissue 

(ovarian medulla) is limited when a thick layer of culture medium is overlaid. Therefore, 

the use of permeable membrane inserts into culture plates (24mm Transwell® plates; 

Corning) was used for all day 4 mouse ovaries. Using these inserts, ovaries are maintained 

within a thin meniscus of culture medium, which permits oxygen and nutrient access to 

the whole organ. Ovaries were cultured in Waymouth medium 752/1 (Life Technologies) 

supplemented with 10% of fetal bovine serum (FBS) (Sigma), 0.23mM pyruvic acid 

(Sigma), 10µg/L streptomycin sulfate (Sigma), 75µg/L penicillin G (PENK; Sigma) and 

0.3mg/mL BSA. Medium (1.5ml) was filtered with a 0.2µm sterile syringe filter and 

added below the membrane insert. Ovaries were maintained in a 37ºC incubator (5% 

CO2) for 24h with either serum or serum-free medium, prior to any experiment.  

2.4 Histological analysis  

2.4.Haematoxylin and Eosin (H&E) staining 

 

In order to evaluate the morphology of follicles at different developmental stages, sections 

from paraffin embedded ovaries from mice at 4, 8 and 16 days of age were dewaxed with 

HistoChoice (2x 5 minutes) and rehydrated with gradient series of industrial methylated 

spirit (IMS) solutions (99%, 99%, and 70%, 1x 5 minutes each). Then, sections were 
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washed with tap water (1x 5 minutes), nuclei were stained with Gill’s haematoxylin 

(Surgipath Europe LTD, Peterborough, UK) for 120 seconds and immediately washed in 

tap water for 3 minutes in order to increase the nuclear staining contrast with the 

cytoplasm. Cytoplasm was stained (1x 5 minutes) with 1% aqueous eosin (Surgipath) and 

washed in tap water for 30 seconds. Sections were dehydrated using gradient series of 

IMS solutions (70% and 95% for 10 seconds each and 99% for 1 minute) and finally 

placed in HistoChoice to ensure total removal of IMS. Sections were mounted with DPX 

(Merck, Darmstadt, Germany), left to dry under the hood and imaged using an Olympus 

CKX41 microscope (Figure 2.1). 

 

2.4.2 Immunofluorescence staining 

 

Immunofluorescence staining was performed to localise all factors of the study within the 

ovary. Sections from paraffin embedded ovaries (5 μm) were dewaxed with HistoChoice 

(2x5minutes) and rehydrated with gradient series of IMS solutions (100%, 95%, and 70%, 

1x3 minutes each) and washed in distilled water (1x5 minutes) and microwaved in 0.1M 

citrate buffer (pH6.0) for antigen retrieval (20 minutes). Sections were washed in 0.1M 

PBS pH7.4 (2x 5 minutes) and blocked with CAS universal blocking reagent (Invitrogen) 

for 20 minutes at room temperature to reduce non-specific binding. Primary antibodies 

(Table 2.1) were diluted in blocking solution at a concentration previously optimised by 

titration and incubated overnight at 4ºC in a humidified chamber. Negative controls for 

the primary antibody (by using an isotype control IgG antibody at the same concentration) 

and secondary antibody (absence of primary antibody) were included in each experiment 

(Table 2.2). Sections of adult ovaries were used as a positive control for optimisation 

experiments.  

The following day, sections were washed in PBS (3x10 minutes) and incubated with 

secondary antibodies (Table 2.2) for 45 minutes at room temperature in the dark. Sections 

were washed in PBS (2x 5 minutes) and coverslips were mounted with a drop of Prolong® 

Gold anti-fade reagent with DAPI (ThermoFisher Scientific) onto each section. 

Specimens were analysed using an inverted fluorescence microscope Olympus IX73 and 

for better resolution, high quality images were obtained using an inverted Leica SP5 

confocal laser-scanning microscope (Leica Microsystems, Wetzlar, Germany). 
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 For TUNEL labelling, tissues were permeabilised for two minutes with a solution 

containing 0.1% (w/v) tri-sodium and 0.1% (v/v) triton X-100 in distilled water and were 

washed in PBS (2x2 minutes) prior to blocking. The TUNEL label mix (Roche) was 

applied to the slides and incubated for 1 hour at 37 ºC prior to secondary antibody 

incubation. 

Figure 2.1. H&E staining of day 4 (A), day 8 (B) and day 16 (C) mouse ovaries. The proportion 

of growing follicles increases with age due to progressive follicle activation (PFA). Higher 

magnification (A’, B’ and C’) shows primordial follicles (PF) with a few flat granulosa cells 

(GCs), transitional follicles (T) with a few cuboidalised GCs and secondary follicles (S) with two 

layers of cuboidalised GCs and multilayered follicles (M) with an antrum starting to form. Scale 

bar is 200µm (A, B, C) and 50 µm (A’, B’, C’) with magnification of 10X and 40X, respectively. 

2.4.3 Classification of small follicles for image analysis 

In order to perform image analysis of immunofluorescently-labelled ovary sections, a 

follicle classification system was used. As explained in chapter 1, a change in granulosa 

cell (GC) number and shape are key morphological events observed during PFA. Many 

of the factors studied in this thesis are mainly present in GCs; therefore, localisation was 

related to the morphological changes associated with PFA. Figure 2.2 shows the 

classification criteria considered for the analysis. As will be explained in more detail in 

chapter 3, sections of day 8 ovaries were used in the analysis. The ROI manager tool of 

Image J software was used to carefully select individual GC nuclei in follicles to quantify 

the percentage of specific staining (chapter 3). 
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Follicles were classified as primordial (PF) when 1 to 3 flat GCs were enclosing the 

oocyte; transitional (T) when follicles contained from 4 to 7 flat and cuboidal GCs; small 

primary (P) when a clear ring of cuboidalised GCs was observed (from 9-14); large 

primary (P+) when more than 14 cuboidalised cells were observed in a single layer and 

secondary (S) when a second layer of cuboidalised GCs started to form (Figure 2.2). For 

better accuracy in the classification, only follicles that contained a clear outline of the 

oocyte nucleus (indicating largest cross-section of the follicle) were selected for analysis. 

The classification criteria applied is similar to the previously reported for mouse follicles 

(Pedersen & Peters, 1968), however, the additional group of transitional follicles (T) was 

considered (different from primordial follicles, PF) as the PFs that have started or are in 

the process of activation. 

Figure 2.2. Classification of follicles according to GC number. First two columns show a 

representative example of each follicle stage, where individual GC nuclei are selected using the 

DAPI channel (blue). The staining for SMAD3 protein is shown in red for the same follicles. An 

example of a section from a day 8 ovary that was employed for the image analysis is also shown. 

Numbers shown in the table correspond to the number of GCs included for each group of follicles. 

Scale bar is 25µm for the two first columns and 100µm for the day 8 ovary section, with 

magnification of 63X and 20X, respectively. 
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2.5 Protein extraction, co-immunoprecipitation and western blot 

2.5.1 Protein extraction from cell lines 

For protein extraction, cells were washed in ice-cold PBS and the monolayer was 

removed with a cell scraper with a specific volume of Pierce IP lysis buffer 

(ThermoFisher Scientific) depending on the surface area (1ml for 75mm2 flask and 150µl 

for 6 well-plate culture dish). IP lysis buffer contained protease inhibitors (cOmplete TM 

Mini ULTRA tablets; Roche) and phosphatase inhibitors (PhosSTOPTM, Roche) to 

prevent protein/phosphate degradation. Cells were placed in 1.5ml Eppendorf tubes, 

vortexed briefly and placed on ice for 15 minutes. After centrifugation at 13,000x rpm 

for 10 minutes at 4 ºC, the supernatant containing total protein was collected and stored 

at -20ºC.   

2.5.2 Protein extraction from mouse ovaries 

Ovaries from day 4, 8 and 16 mice were used for total protein extraction. In order to 

obtain enough protein content, two ovaries per sample were used for day 4 and day 8 and 

one ovary for day 16. After washing with lysis buffer, samples were further disrupted 

with 25G needles. Different volumes of IP lysis buffer (ThermoFisher) were optimised 

and used to lyse the ovaries: 70µl for day 4, 100µl for day 8 and 80 µl for day 16 ovary 

samples. Samples were vortexed 6 times for 1 minute before leaving on ice for 15 minutes 

and finally centrifuged at 13,000x rpm for 10 minutes at 4 ºC. Supernatant containing 

total protein was collected and stored at -20ºC.   

2.5.3 Subcellular fractionation of proteins from day 4 and day 16 mouse ovaries 

In order to study the location of candidate proteins at the cellular level in primordial and 

growing follicles, a protein extraction protocol based on sequential cell lysis with three 

different extraction buffers containing increasing detergent strengths (Appendix 7) was 

used. The combination of the different extraction buffers and the different centrifugal 

forces to collect the subcellular fractions were based on a recent report (Baghirova et al, 

2015).  
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The key components from each buffer are digitonin (buffer A), a saponin that binds 

mainly to cholesterol on the plasma membrane and permeabilises it by pore formation, 

leaving the organelle membranes intact; igepal (buffer B), a non-ionic and non-denaturing 

agent that allows the disruption of endoplasmic reticulum membranes, golgi and 

mitochondria but not the nucleus and finally, the combination of sodium 

deoxycholate/SDS (buffer C) which increases nuclear membrane solubilisation and 

treatment with benzonase, an enzyme that digests DNA and RNA to allow the release of 

nuclear protein content. 

The protocol used for day 4 and day 16 mouse ovaries was adapted from the mentioned 

report (Baghirova et al, 2015) and was based on a combination of mechanical disruption 

of mouse ovaries (by brief vortexing) with the extraction buffers (containing proteases 

and phosphatases inhibitors) followed by the centrifugation at 4ºC and collection of each 

fraction.  First, three ovaries/sample from day 16 and six ovaries/sample from day 4 of 

age were disrupted with needles with 100 µl buffer A and incubated for 10 minutes with 

10 second vortex intervals (every 2 minutes). After centrifugation for 10 minutes at 

4000xg, supernatant containing the cytoplasmic fraction was collected. The pellet was 

resuspended in 100 µl of buffer B and incubated for 30 minutes with 5 second vortex 

intervals (every 5 minutes). After centrifugation for 10 minutes at 6000xg, the supernatant 

containing the membrane/organelle fraction was collected.  Two µl (500 units) of 

benzonase (Sigma) were added with 20 µl of water to the pellet and incubated at room 

temperature for 15 minutes. The pellet was then resuspended in 100 µl of buffer C and 

incubated for 10 minutes with 10 seconds vortex intervals (every 2 minutes). The nuclear 

fraction was obtained by collecting the supernatant after centrifugation at 6800xg for 10 

minutes and stored at -20 ºC. Equal amounts of the cytoplasmic, membrane and nuclear 

protein fractions (from a range of 3-5µg) were used for analysis by western blotting.  

 

2.5.4 Protein concentration determination 

Protein concentration from whole cell lysates, whole ovary lysates and subcellular 

fractions were measured according to the manufacturer’s guidelines using the Pierce BCA 

(bicinchoninic acid) protein assay kit (ThermoFisher Scientific).  
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Briefly, reagent B was diluted 1 in 50 with reagent B and 200 µl of the solution were 

added to each well in a 96-well plates. Then, 10 µl of protein standards (known 

concentrations of BSA from 25µg/ml to 2000µg/ml), negative control (lysis buffer) and 

protein lysate samples were added in duplicate to each well, incubated at 37 ºC for 30 

minutes and allowed to cool at room temperature.  Protein absorbance was measured on 

a POLARstar Galaxy microplate reader (BMG Labtech) at the wavelength of 562nm.  A 

standard curve by plotting the absorbance vs. the concentration of each BSA sample was 

generated in GraphPad Prism using a second order polynomial (quadratic) curve-fitting 

algorithm and the concentration of the protein lysate samples was determined by 

interpolation of their absorbance with the standard curve.  

2.5.5 Co-immunoprecipitation 

In order to study protein interactions, isolation of protein complexes was performed 

following protein extraction with Pierce IP lysis buffer containing protease inhibitors 

(cOmplete TM Mini ULTRA tablets; Roche) and phosphatase inhibitors (PhosSTOPTM, 

Roche). Twenty-five µg (ovaries) and 80µg (NIH3T3 cell line) of total protein extract 

were diluted up to 500µl with IP buffer. This facilitates the interactions with the 

immunoprecipitating antibody (2µg) which was incubated with the proteins for 1.5 hours 

at 4 ºC with rotation. Equal amounts of total protein and antibody concentration were used 

for the specific immunoprecipitated antibody and non-specific IgG to evaluate non-

specific binding (Table 2.2). After antibody incubation, 20 µl of Protein G magnetic beads 

(Millipore) were added to each aliquot and incubated with rotation for an additional hour. 

Magnetic beads with attached protein complexes were washed with 500ml of IP buffer 

3x 30 seconds at room temperature. Beads were collected each time by mild 

centrifugation at no more than 1000rpm. First and last unbound samples were saved for 

analysis. After the last wash, 35 µl of 5x loading buffer (EC-887, National Diagnostics) 

was used to elute the beads. Samples were boiled for 10 minutes at 100 ºC and stored at 

-20 ºC for further analysis with SDS-page electrophoresis. 
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2.5.6 SDS-page electrophoresis and semi-dry transfer of proteins from gel to membrane 

Protein samples were diluted to a final concentration of 20µg (NIH3T3 cell line ) or 15µg 

(ovaries) with 5x loading buffer (EC-887 National Diagnostics), boiled at 100ºC for 10 

minutes and briefly centrifuged for 30 seconds at 4000 rpm in a Sigma 1-14 

microcentrifuge. Proteins were separated in polyacrylamide gels (12% for separating gel 

and 4 % for concentrating gel from the stock solution 1.5M Tris-HCl pH 8.8, 1M Tris-

HCl pH 6.8, H2O, APS and TEMED). Electrophoresis was performed at 150V for 1.5 

hours at room temperature and proteins were transferred to a nitrocellulose membrane 

using a semi-dry transfer for 40-45 minutes at 20V. Membranes were stained using 

PonceauS solution (Sigma) to determine if the transfer was successful. 

2.5.7 Western blotting 

Membranes were washed with TBS-Tween and blocked in either 5% (w/v) BSA (Sigma) 

for phospho-protein detection or 5% (w/v) non-fat dried milk at room temperature for 2 

hours. Blots were washed in TBS-Tween for 3x 7 minutes each. Primary antibodies 

(Table 2.1) were incubated overnight at 4ºC. Blots were washed in TBS-Tween for 3x7 

minutes and HRP-conjugated secondary antibodies (Table 2.1) were applied for 1 hour at 

room temperature. Blots were developed using ECL reagents (Westar Supernova 

enhanced chemiluminescent HPR substrate; Cyanagen, Bologna, Italy) according to the 

manufacturer’s guidelines and imaged using the G:BOX iChemi and associated 

GeneSnap and GeneTools software (Syngene). 

2.6 Proximity Ligation Assay (PLA) 

The Proximity Ligation Assay (PLA) is immunostaining-based technique that allows the 

detection of closely associated proteins (maximum distance 30-40nm) on fixed tissue 

sections. Protein complexes were labelled using the Duolink In Situ Red Starter Kit 

(Sigma) according to the manufacture’s guidelines. Briefly, following incubation with 

primary antibodies as described in section 2.4.2 and after washing with PBS, secondary 

antibodies conjugated to specific PLA probes were applied at 37ºC for 1 hour.  
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After washing with Buffer A (provided with the kit) 2x 5 minutes each, ligation solution 

(containing oligonucleotides that will hybridise the PLA probes) and ligase enzyme were 

incubated at 37ºC for 30 minutes to allow the ligation of PLA probes that are in close 

proximity, creating a ligated product. After washing 2x2 minutes with Buffer A, 

amplification solution (containing fluorescently labelled nucleotides) and polymerase 

enzyme were incubated at 37ºC for 100 minutes. This allowed the amplification of the 

ligated product. Sections were imaged using an inverted Leica SP5 confocal laser-

scanning microscope (Leica Microsystems, Wetzlar, Germany).  

2.7 Chromatin immunoprecipitation (ChIP) - qPCR 

2.7.1 Crosslinking, lysis and sonication of ovary samples. 

Isolated ovaries were directly fixed with 1% formaldehyde (1/4 dilution of 10% neutral 

buffered formalin solution containing 4% formaldehyde; Sigma) in either Waymouth 

medium 752/1 (Life Technologies) or Leibovitz’s L-15 medium (Life Technologies) for 

30 minutes.  

An EZ- Magna ChIPTM G kit (Millipore) was used according to manufacturer’s 

instructions. Briefly, 10x glycine was added to a final concentration of 125mM for 10 

minutes to quench any unreacted formaldehyde. The quenching solution was removed 

and ovaries were washed with PBS. Then, 150 µl of cell lysis buffer containing protease 

inhibitors was added to each sample and ovaries were further disrupted with 25G needles 

and vortexed 6x for 1 minute each. Disrupted ovaries were centrifuged at 800g for 5 

minutes at 4ºC and then supernatant was discarded. Nuclear lysis buffer (170µl) was used 

to resuspend the disrupted ovaries and samples were transferred to 0.5ml tubes for 

sonication. Sonication was carried out using an ultrasonic liquid processor (vibra cell 150, 

Sonics) with an exponential probe at maximum amplitude for 3 times with 5-10 second 

intervals. Samples were transferred to 1.5ml tubes and then centrifuged at 10,000g for 10 

minutes at 4ºC to remove any insoluble material. To analyse the size of sheared 

chromatin, 5µl of the sample was loaded into a 1.5 % agarose gel and separated by 

electrophoresis. If the sonication was successful, sheared chromatin was then aliquoted 

(50-70µl), snap frozen in liquid nitrogen and then kept at -80 ºC. A detailed description 

of the optimisation of the starting material and sonication of the chromatin is shown in 

Appendix 2. 
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2.7.2 Immunoprecipitation (IP) of crosslinked protein/DNA 

Aliquots were diluted 1 in 10 with ChIP dilution buffer containing protease inhibitors 

(provided by the kit) and two % of the initial volume (undiluted) was taken as control for 

the IPs (Input). Then, 20 µl of Protein G magnetic beads (Millipore) were added to each 

aliquot along with 1.0 µg of immunoprecipitating antibody and non-immune mouse IgG 

(Table 2.1) as negative control for non-specific binding (1.0 μg). Samples were left to 

incubate overnight at 4ºC with rotation. After incubation, protein G beads were captured 

with a magnetic separator (Magna Grip Rack 8 Well)(Invitrogen) and complexes were 

washed for 5 minutes each with wash buffers (Millipore) containing increasing amount 

of salts (low salt buffer, high salt buffer, lithium chloride buffer and final wash with TE 

buffer). 

2.7.3 Elution of protein/DNA complexes and reverse crosslinking of protein/DNA to free 

DNA 

Chromatin:antibody:magnetic bead complexes were resuspended in 100µl ChIP elution 

buffer (Millipore) containing 1µl Proteinase K (Millipore) and incubated at 62ºC for 2 

hours followed by a 10 minute incubation at 95ºC using a standard PCR thermal cycler . 

After cooling samples to room temperature, the magnetic beads were captured using the 

magnetic separator and the supernatant containing the chromatin was removed to a fresh 

tube. The chromatin was purified using spin filters with collection tubes (provided by the 

EZ- Magna ChIPTM G kit). Briefly, 500 µl of Bind Reagent A was added to each 100µl 

ChIP sample (immunoprecipitations and inputs), mixed, added to the spin filter, 

centrifuged for 1 minute and flow through was discarded. Then, 500 µl of wash Reagent 

B was added, centrifuged and flow through was discarded. The spin filter was then re-

centrifuged to remove any residual solution and then placed in a clean collection tube. 

DNA was eluted from the filter by applying 50 µl of Elution Buffer C and centrifuged. 

Eluted DNA samples were stored at -20 ºC. All centrifugations were performed at 12,500 

x g. 
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2.7.4 Preparation of primers  

Primers were designed to detect the promoter of different mouse target genes using the 

Primer 3 Plus software (http://primer3plus.com/web_3.0.0/primer3web_input.htm), 

NCBI (https://www.ncbi.nlm.nih.gov) and Ensembl Genome Browser (www.ensembl.org) 

databases. If the sequence of the promoter region was not available in GenBank (NCBI), 

it was predicted by selecting 2000bp upstream of the first exon with ENSEMBL and 

GenBank genome databases. 

 Specific binding regions of SMADS and FOXL2 to the target promoters were selected 

according to literature (Tran et al, 2011) and by using  a predictive tool for transcription 

factor binding sites (TRANSFAC® software) (Appendix 3). The predicted promoter 

region with the highlighted binding sites was then introduced in Primer-3 Plus Software 

and at least two primer sets were designed for each promoter according to standard 

parameters including the product size (100-250bp), melting temperature TM (55-56ºC), 

primer GC content (40-60%) and a maximum self-pair complementarity of 4. Primer-

Blast tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast) was used to check primer 

specificity. 

Primers were reconstituted in RNase/ DNase free water (Roche) to obtain a concentration 

of 100 μM stock solution and heated at 65ºC for 15 minutes. Then, primers were diluted 

to a working solution of 20μM with RNAse/DNAse free water, aliquoted in 50µl aliquots 

to avoid freeze/thaw cycles and stored at -20ºC.  

Conventional PCR (section 2.7.5) using genomic DNA followed by 2% agarose 

electrophoresis was performed in order to assess the specificity of the primers. If primers 

showed single products of correct size, quantitative real-time PCR was then used to 

determine primer efficiency (section 2.7.7).  

2.7.5 Conventional PCR of ChIP samples 

In order to detect the presence of all gene promoters in the immunoprecipitated sample, 

conventional PCR was used. A PCR mixture was prepared in a reaction volume of 25μl 

consisting of 2μl of DNA template, 12.5μl of TaqRed Mix DNA polymerase (Bioline), 

0.5μl (20µM) of primers (forward and reverse) and 10μl of RNase/DNase water. Samples 

were incubated in a standard PCR thermal cycling and PCR products were analysed using 

2% (w/v) agarose gel electrophoresis.  

http://primer3plus.com/web_3.0.0/primer3web_input.htm
http://www.ensembl.org/
http://www.ncbi.nlm.nih.gov/tools/primer-blast
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2.7.6 Quantitative real-time PCR (qPCR) of ChIP samples 

For quantitative purposes, qPCR was performed to detect subtle differences in binding 

between immunoprecipitated samples (IPs), positive controls (input) and negative control 

(IgG) samples. SensiFAST™ SYBR® Hi-ROX kit (Bioline) was used according to 

manufacturers’ guidelines. Each reaction (20µl) contained 1xSensiFAST SYBR HI-Rox 

Mix (10 µl), 500nM of the premixed primer set (0.5 µl) and RNAse/DNAse free water 

(5.5 µl). An equal volume (4µl) of IP sample, control samples or RNAse/DNAse free 

water (additional negative control) was included in duplicate in 384 well-plates. The 

cycling conditions were set as follows: Activation step at 95°C for 3 minutes and then 40 

cycles of amplification (3 seconds at 95°C for DNA denaturation, 20 seconds at 60°C for 

primer annealing and 10 seconds at 72°C for primer extension) in a 7900HT Fast Real-

Time PCR System (Applied Biosystems). Fluorescence signals were collected after each 

cycle and also after a DNA melting/dissociation step to assess the identity of the products 

amplified. 

 

2.7.7 Primer efficiency  

 

Optimal efficiency of the primers is necessary for the quantitative analysis to be valid, 

especially when using low concentrations of DNA (e.g. ChIP-DNA). To determine 

efficiency, a sample of genomic DNA was extracted from two day 4 ovaries according to 

manufacturer’s guidelines (RNA/DNA/protein purification Plus Kit; Norgen Biotek 

Corp). This sample was used to prepare five, 5x dilutions (from a stock concentration of 

4.3 ng/µl; 1:1, 1:5, 1:25, 1:125, 1:625), which were then amplified by qPCR according to 

the protocol above. Values were plotted using the log concentration versus mean Ct value 

of three replicates and the % efficiency for each set of primers was calculated from the 

slope with the equation (Ginzinger, 2002): 

E (%) = [-1+ (10[-1/slope])]*100 

 

Primers with efficiencies ranging from 80-120% were considered optimal for quantitative 

analysis.  
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2.7.8 Analysis of qPCR data for ChIP samples 

Input, IPs and IgG control samples were analysed using the ‘% input’ method 

(http://www.thermofisher.com) where the mean Ct value of each IP and IgG sample was 

normalised against the input sample. The starting input sample was 2% of the initial 

chromatin, therefore a dilution factor of 50 or 5.64 cycles (log 2 of 50) needs to be 

subtracted. Calculations were performed as follows: 

1) Mean Ct INPUT – 5.64 

2) Mean Ct IP (or IgG) - Mean Ct INPUT= ΔCt 

3) % INPUT= (2 (-ΔCt)) x 100 

% input represents the % of initial chromatin in the IP and IgG control samples where the 

transcription factor was bound at the time ovaries were fixed. For an alternative 

description of the results, % input was categorised as low, medium and high. This 

classification was based on the full range of % input values for each target gene obtained 

with the specific (e.g SMAD2/3) antibodies. For example, if the full range of % INPUT 

was between 0 and 0.15%, values would be classified as low (≤0.05), medium (0.05-0.10) 

and high (≥0.15).  

2.8 Gene expression analysis 

2.8.1 Total RNA extraction from mouse ovaries 

Ovaries at different developmental stages (day 4, 8 and 16) were used for total RNA 

extraction using Qiagen RNeasy® Micro Kits (QIAGEN, Crawley, UK) according to 

manufacturer's instructions. Briefly, 75μl of Buffer RLT (β-ME -RLT) was added to each 

of the ovary samples and vortexed for 1-2 minutes to lyse the samples. Pre-diluted carrier 

RNA (5μl) was added to each sample to enhance capturing low concentrations of RNA 

and vortexed for 1-2 minutes. Ovaries from day 4 and 8 mice were previously disrupted 

by using 25G needles. Seventy-five μl of 70% ethanol was added to each sample to 

precipitate the RNA before adding to a micro-column. After brief centrifugation, samples 

were washed with Buffer RW1, centrifuged, and treated with DNase I for 15 minutes at 

room temperature to remove genomic DNA. Samples were washed again in Buffer RW1 

followed by Buffer RPE to remove traces of salts and then centrifuged.  

http://www.thermofisher.com/
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Membranes were washed by 80% ethanol and centrifuged at maximum speed for 5 

minutes. RNase/ DNase free water (14μl) was added to the membrane and centrifuged at 

maximum speed for 1 minute to elute the RNA sample. To concentrate RNA content, 

samples of day 4 and day 8 ovaries were additionally centrifuged under negative pressure 

for 4 minutes and 2 minutes at 23 degrees, respectively. Samples were stored at -80ºC. 

Concentration and purity of all RNA samples was assessed using the Agilent 2100 

Bioanalyzer. Samples with an RNA integrity number (RIN) between 8 and 10 were used 

for gene expression analysis.  

2.8.2 Reverse transcription PCR  

For reverse transcription of RNA samples into first strand DNA (cDNA), the SuperScript 

III Reverse Transcription kit (Invitrogen) was used according to the manufacturer's 

instructions. Briefly, the reaction mixture consisted of RNA from each of the ovary 

samples (50ng), random hexamers (50ng/μl) and dNTP Mix (10mM). RNase/DNase free 

water was added to complete a final volume of 10 μl. The mixture was incubated at 65°C 

for 5 minutes and then kept in ice for one minute. The complementary DNA Synthesis 

Mix was prepared by adding each of the following components per reaction in order: 10X 

RT Buffer (2µl), 25mM MgCl2 (4µl), 0.1M DTT (2ul), RNaseOUT, 40U/µl (1µl) and 

SuperScript® III RT, 200 U/µl (1µl). The synthesis Mix (10 μl) was added to each 10 µl 

RNA mix sample, mixed gently, and collected by brief centrifugation. Then, the mixture 

was incubated at 25°C for 10 minutes, followed by 50 minutes at 50°C and 85°C for 5 

minutes. Negative controls (without adding SuperScript® III RT) were included in each 

experiment. Samples were stored at -20°C. Conventional PCR using primers to detect 

mRNA for the reference gene Htrp1 (hypoxanthine phosphoribosyltransferase 1) was 

used to ensure cDNA synthesis was successful in all samples.  

2.8.3 Quantitative real-time PCR (qPCR) and analysis of qPCR data 

Primers were designed using Primer-3 Plus Software with the same parameters as 

explained in section 2.7.4. However, primer location was set to span an exon/exon 

boundary in order to reduce the likelihood of amplifying any residual genomic DNA. 

Primer efficiencies were calculated (section 2.7.7) using cDNA from a single day 4 or 

day 16 ovary sample.  
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SensiFAST™ SYBR® Hi-ROX kit (Bioline) was used, the cycling conditions were the 

same as in section 2.7.6 and samples (1µl per reaction) were also run in duplicate in a 384 

well-plate. Primers for the reference gene Atpb5 (PrimerDesign, Southampton, UK) were 

included in the analysis to normalise the amount of total cDNA in the different samples. 

This reference gene was chosen based on previous studies using similar ovary samples 

(Fenwick et al, 2011; Fenwick et al, 2013). Fold changes were calculated relative to one 

of the ovary samples (reference sample) using the 2 –ΔΔCt method below (Livak & 

Schmittgen, 2001): 

 

1) Mean Ct Target gene - Mean Ct Reference gene = ΔCt per sample  

2) Mean ΔCt Target sample - Mean Ct Reference sample= ΔΔCt 

3) Fold change= 2 –ΔΔCt 

 

2.9 Statistical analysis 

In order to compare the geometric mean of % intensities of the different factors across 

the different follicle stages, data from the image analysis of immunofluorescently-

labelled ovary sections was analysed using a non-parametric Kruskal-Wallis test with a 

post-hoc Dunn’s multiple comparisons test. Fold changes (2 –ΔΔCt method) obtained from 

gene expression analyses by qPCR were evaluated using one-way ANOVA with 

Bonferroni multiple comparisons post-hoc tests to determine differences between the 

mean values for each group. For the analysis of ChIP-qPCR data, non-parametric tests 

were used to compare the median value of % SMAD3 binding to the different target genes 

(Mann-Whitney U test for two groups and Kruskal-Wallis test with post-hoc Dunn’s 

multiple comparisons test for more than two groups). To compare the geometric mean of 

oocyte areas measured for the different treatments in cultured ovary sections, a Kruskal-

Wallis test with post-hoc Dunn’s multiple comparisons was used. Graphpad Prism 7.03 

was used to calculate and represent the data and differences were considered statistically 

significant when P <0.05.  
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Table 2.1 List of primary antibodies used for immunofluorescence staining, ChIP 

assay and Western Blot. Optimised working dilutions and concentrations for each 

antibody are shown. IF: Immunofluorescence; WB: Western blotting; ChIP: Chromatin 

immuno-precipitation.  

Primary antibody Company Stock 

conc. 

IF WB ChIP 

Goat anti-FOXL2  

sc-55655 

Santa Cruz 

Biotechnology 

200mg/ml    1:100 

(2µg/ml) 

- 1µg 

Goat anti-FOXL2  

NB100-1277 

Novus 

biologicals 

0.5mg/ml 1:2000 

(0.25µg/ml) 

1:2500 - 

Rabbit anti-

Smad3 

#9523 

Cell Signalling 

  

75mg/ml   1:100 

(0.75µg/ml) 

1:1000 - 

Rabbit anti-

phospho-Smad3 

ab52903 

Abcam        - - 1:1000 - 

Rabbit anti-

CyclinD2 

sc-593 

Santa Cruz 

Biotechnology 

200µg/ml    1:400 

(0.5µg/ml) 

1:500 - 

Rabbit anti-p27 

sc-528 

Santa Cruz 

Biotechnology 

200µg/ml 1:200 (1µg/ml) 1:300 - 

Mouse anti-p27 

sc-1641 

Santa Cruz 

Biotechnology 

50µg/ml 1:100 

(0.5µg/ml) 

- - 

Rabbit anti-

Smad2 

#5339 

Cell signaling 

  

237µg/ml    1:400 

(0.59µg/ml) 

1:1000 - 

Mouse anti-

Smad2/3 

sc-133098 

Santa Cruz 

Biotechnology 

    

200µg/ml 

   1:800 

(0.25µg/ml) 

1:1000 1µg 

Rabbit anti-NFκB 

p65 

 sc-372 

Santa Cruz 

Biotechnology 

200µg/ml   - - 1µg 

Rabbit anti-beta 

Actin  ab8227 

Abcam 0.5mg/ml  - 1:2500 - 

Rabbit anti-DDX4 

 ab13840 

Abcam 0.9mg/ml  - 1:1000 - 

Rabbit anti-ki67 

#12202 

Cell signalling - 1:200  - - 

Rabbit anti-

caspase3 #9664 

Cell signalling - 1:200 - - 

Rabbit anti-

GADPH (6C5) 

sc-32233 

Santa Cruz 

Biotechnology 

200µg/ml - 1:1000 - 
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Table 2.2 List of secondary and control antibodies used for immunofluorescence 

staining, ChIP assay and Western Blot. Optimised working dilutions and 

concentrations for each antibody are shown. IF: Immunofluorescence; WB: Western 

blotting.  

Secondary 

antibody 

Company IF (dilution) WB (dilution) 

Alexa fluor® 555 

Donkey- Anti-

mouse  

  

Santa Cruz 

Biotechnology 

         1:400                      - 

Alexa fluor® 488 

Donkey-Anti-

Rabbit  

  

Cell Signalling          1:400                      - 

Alexa fluor® 488 

Donkey-Anti-Goat 

  

Santa Cruz 

Biotechnology 

         1:400                      - 

Alexa fluor® 555 

Donkey-Anti-

Rabbit  

  

Cell signalling          1:400                      - 

Anti-rabbit HRP 

P0448 

  

DAKO                  -               1:20.000 

 Anti-goat HRP 

P0449 

DAKO                  -               1:20.000 

Anti-mouse HRP 

P0447 

DAKO  -               1:40.000 

Protein A (HRP) 

18-160 

Millipore  -                 1:5000 

Controls Company Stock (conc.) 

Normal mouse 

IgG  sc-2025 

Santa Cruz 

Biotechnology 

200µg/ml 

Normal mouse 

IgG I-200 

  

Vector 

laboratories 

         2mg/ml 

Normal rabbit 

IgG I-1000 

  

Vector 

laboratories 

         5mg/ml 

Normal goat IgG 

I-5000 

  

Vector 

laboratories 

         5mg/ml 
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Chapter 3. 

Localisation and expression of key TGFβ factors 

and cell cycle regulators during early follicle 

development 
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3.1 Introduction 

The mechanisms that lead to the activation of primordial follicles are still not well 

understood. Although primordial follicles have an oocyte in a state of meiotic arrest as 

well as a complement of GCs with relatively low rates of proliferation, the cells still 

express the molecular machinery that at some point will be necessary to respond to intra-

ovarian signalling and allow activation and growth. Why some primordial follicles 

respond to these signals and others remain unresponsive may partly be explained by the 

fact that GCs may be derived from different cell precursors (Mork et al, 2011). Several 

morphological changes are associated with PFA; however, it is generally believed that 

GC proliferation precedes oocyte growth (Braw-Tal, 2002; Da Silva-Buttkus et al, 2008; 

Mora et al, 2012a). Therefore, the “production line” hypothesis where PFA only depends 

on the time oocytes enter meiosis (Hirshfield, 1992) may not be supported and GCs could 

be functioning as drivers of follicle activation. Therefore, revealing the molecular 

mechanisms regulating GC proliferation may be key to understanding this initial 

proliferation and PFA.  

The TGFβ signalling pathway, well known for its role in growth arrest and EMT, has 

been implicated in GCs during early follicle development and PFA (Pangas, 2012b). The 

intercellular mediators of the canonical TGFβ signalling pathway, SMAD2/3, have been 

previously localised in GCs of primordial follicles in mice and implicated in the 

regulation of GC proliferation (Fenwick et al, 2013). However, as yet, it is not known 

whether SMAD2, SMAD3 or both are important. Cell proliferation involves cell cycle 

progression and in this context the cell cycle regulators CCND2 and p27 have been found 

in the ovary with specific functions during early follicle development (Rajareddy et al, 

2007; Sicinski, 1996).  

As well as proliferation, GCs also undergo a change in cell shape during PFA. The 

transcription factor FOXL2 is a lineage specific marker of GCs and mice deficient in this 

gene exhibit impaired GC proliferation and cuboidalisation during PFA (Uda et al, 2004). 

Moreover, FOXL2 has been reported to regulate the expression of some cell cycle genes, 

such as Ccnd2 and p27 (Bentsi-barnes et al, 2010; Garcia-Ortiz et al, 2009). Interestingly, 

Foxl2 and SMAD3 are known to interact and regulate common target genes in other 

systems, such as the pituitary, where they regulate the expression of follistatin (Blount et 

al, 2009).  



88 
 

Whether Foxl2 and SMAD3 cooperate to regulate the expression of genes in the ovary is 

not known, although some evidence has been reported in GC tumours for Ccnd2 gene 

(Anttonen et al, 2014a). 

Despite the associated roles of these factors in GC proliferation, their expression and role 

in regulating cell cycle genes has not been clearly mapped with early follicle 

development. Therefore, the following aims will be addressed: 

 

 To analyse the mRNA and protein expression pattern of Smad2, Smad3, Ccdn2, 

p27 and Foxl2 using ovaries from different ages containing different proportions 

of small (primordial and early growing) follicles by qPCR, Western blotting and 

immunofluorescence staining.  

 To analyse the relationship between GC number and oocyte area in small follicles 

and quantify the expression of the above proteins in GCs during early follicle 

development in immunofluorescently-labelled sections.  

 To determine whether the transcription factors FOXL2 and SMAD3 interact using 

an in situ proximity ligation assay (PLA). 

 To determine whether FOXL2 and SMAD3 bind to promoters of Ccnd2 and p27 

(and the SMAD3 positive control Myc) in primordial and growing follicles. 
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3.2 Materials and Methods  

 3.2.1 The ovary model and tissue collection  

Ovaries from postnatal age 4 (day 4) are mainly enriched in primordial/transitional 

follicles while ovaries from day 16 contain higher proportion of activated/growing 

follicles (see 2.1). Therefore, for molecular analysis, day 4 ovaries were used as a model 

of primordial/transitional follicles and day 16 ovaries represented the growing preantral 

follicle population. Ovaries from postnatal day 8 containing a balanced proportion of 

primordial/transitional and small/large preantral follicles (see 2.1) were mainly used to 

perform localisation studies and image analysis.  

Ovaries from day 4, 8 and 16 mice were dissected and either immersed in formalin for 

immunostaining purposes or flash frozen in liquid nitrogen for protein, RNA extraction 

and ChIP experiments as described in Chapter 2 (see 2.2). 

3.2.2 Western blotting  

Whole ovaries from day 4, 8 and 16 mice were used for protein analysis. Two ovaries 

were pooled from each age (day 4 and day 8) and 1 ovary from day 16 were used for each 

sample. The entire procedure was repeated twice (n=2). Protein extraction was performed 

using Pierce TM IP lysis buffer as described (see 2.5.1). The protein expression of SMAD2 

(#5339, Cell Signalling), SMAD3 (#9523, Cell Signalling), phospho-SMAD3 (ab52903, 

Abcam), CCND2 (sc-593, Santa Cruz), p27 (sc-528, Santa Cruz) and FOXL2 (NB100-

1277, Novus Biologicals) was analysed by using specific primary antibodies listed in 

Table2.1 and the loading control protein beta-actin was used to normalise protein content 

between samples (15µg). Optical density (OD) of the observed bands was measured using 

Ingenius Bioimaging software “GeneTools” with G:BOX iChemi (Syngene). The mean 

pixel value of specific bands and background were normalised against the pixel area. 

Background was then subtracted to the specific band value and referred as “OD value”. 

For each sample, the ratio between the OD value of each specific protein and beta-actin 

was used for normalisation and represented in graphs. 
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3.2.3 RNA extraction and qPCR 

For gene expression analysis, whole ovaries from day 4, 8 and 16 mice were used as 

biological replicates (five ovaries per age group, n=5). As one ovary per sample was used, 

additional vacuum centrifugation was necessary to concentrate day 4 and day 8 ovary 

samples (see 2.8.1). RNA concentration and quality was measured (RIN number) by 

using the Agilent 2100 Bioanalyser (Appendix 4, A) and cDNA synthesis was performed 

with SuperScript III Reverse Transcription kit (see 2.8.2). Conventional PCR using the 

housekeeping gene Htrp1 was employed to check the quality of cDNA prior to qPCR 

(Appendix 5, A). Quantivative PCR using primers for Smad2, Smad3, Ccnd2, p27, Foxl2 

and the TGFβ receptor Type I (Alk5) were used (Table 3.1) with the SensiFAST™ 

SYBR® Hi-ROX kit (Bioline) according to manufacturers’ guidelines (see 2.8.3). 

Samples (1µl per reaction) and the same volumen of distilled water (negative control) 

were run in duplicate in a 384 well-plate. PCR conditions were as follows: Activation 

step at 95°C for 2 minutes and then 40 cycles of amplification (3 seconds at 95°C for 

DNA denaturation, 20 seconds at 60°C for primer annealing and 10 seconds at 72°C for 

primer extension) in 7900HT Fast Real-Time PCR System (Applied Biosystems). Ct 

values were normalised against Atpb5 (PrimerDesign, Southampton, UK) and fold 

changes relative to day 4 ovaries were calculated for each gene according to the 2 –ΔΔCt 

method (see 2.8.3). 

 

Table 3.1. Primers sequences, amplification product size (bp) and primer efficiency (%) for qPCR 

assays.  

Primers 
 

      Sequence  (5’     3’) bp Primer efficiency (%) 

Smad3 F: GTCAAAGAACACCGATTCCA 

R: TCAAGCCACCAGAACAGAAG 
154 91 

Smad2 F: CGTCCATCTTGCCATTCAC 

R: GTCCATTCTGCTCTCCACCA 
102 113 

Foxl2 F: TCATAGCCAAGTTCCCGTTCTA 

R:GTAGTTGCCCTTCTCGAACATG 
179 89 

Ccnd2 F: CTTGTAGCCCATTCAGACACAG 

R:TATCATCCACGTGTGCTGTAGA 
165 93 

p27 F: AGTCAGCGCAAGTGGAATTT 

R: AGTAGAACTCGGGCAAGCTG 
100 130 

Alk5 F: CAGCAATAGAACAGCGTCGCG 

R: ATTGCTCCAAACCACAGAGTA 
157 - 

Htrp1 F: GTTGTTGGATATGCCCTTGAC 

R: GCGCTCATCTTAGGCTTTGTA 
105 - 
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3.2.4 Immunofluorescence staining and image analysis 

After embedding formalin-fixed tissues in paraffin (see 2.1), ovaries from day 4, 8 and 

16 were sectioned (5µm) and immunostained as described (see 2.4.2) with specific 

antibodies against SMAD2 (#5339, Cell Signalling), SMAD3 (#9523, Cell Signalling), 

CCND2 (sc-593, Santa Cruz), p27 (sc-528, Santa Cruz), FOXL2 (sc-55655, Santa Cruz) 

and Ki67 (#12202, Cell Signalling) (Table 2.1). Image analysis was performed for each 

protein using one of the largest cross sections per ovary from a total of 7 ovaries from 

different litters (four day 4 and three day 8 ovaries, n=7). Images were obtained with an 

inverted Leica with confocal laser SP5 scanning microscope (Leica Microsystems, 

Wetzlar, Germany). All sections were imaged at high power using a 63X oil immersion 

objective and the 488 and 555 laser lines. For each high power image, the digital gain and 

offset settings were maintained consistently for all sections.  

Images were stitched together using DoubleTake (http://echoone.com/doubletake/), 

which maintains the scale of all individual images to create a high resolution composite 

of each section (Figure 3.1).  

 

 

 

Figure 3.1. Representation of a 

composite image of a day 8 

ovary section from high power 

images using DoubleTake. 

Immunofluorescent localization 

of SMAD2/3 (red) and Ki67 

(green) is shown. Scale bar is 

25µm and magnification is 63X. 
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Threshold setup, selection of follicles and measurement parameters 

Images were obtained as 8 bit RGB stack file. The threshold for each channel in every 

composite section was set up with the same criteria across the different sections of the 

same staining (Figure 3.2). In general, the threshold was manually adjusted until the 

thresholded image matched with the original image from the analysis. In the case of 

FOXL2, where non-specific ooplasm staining was observed, absence of this staining was 

used to establish the threshold (Figure 3.2, B). This created a binary image for 

quantification; for example, pixels highlighted in red showed the pixels above the 

threshold and were considered as “positive pixels”, while the remaining pixels were 

registered as negative.  

Follicles with a visible outline of the oocyte nucleus were carefully selected across the 7 

sections with the region of interest (ROI) manager tool of Image J software. The number 

of follicles considered for analysis was variable between the different sections and 

therefore protein analysed (Figure 3.3A). The classification criteria for each follicle stage, 

according to GC number, was as described in Chapter 2 (see Figure 2.2). In order to 

quantify and compare the presence of each of the candidate proteins in different ROIs, 

such as different follicles or nuclei, the area of positive pixels “Area fraction” was 

calculated (Number of red positive pixels/Area of ROI) and referred as “Intensity” for 

simplicity. For the description of the results, intensities were considered low, medium and 

high when median intensities were 0-30%, 30-60% and 60-100%, respectively. 

 

 

 

 

 

 

 

 

Figure 3.2. Representation 

of threshold setup. Example 

of thresholded images for 

SMAD3 (A), FOXL2 (B), 

ki67 (C), CCND2 (D) and 

p27 (E). Scale bar is 25µm 

and magnification is 63X. 
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ROIs from each follicle were selected manually using the DAPI channel and the “measure 

and label” tool, which allowed the intensity of each ROI to be quantified (Figure 3.3). For 

each follicle, measurements were recorded for the intensities of individual GC nuclei 

(Figure 3.3B) and the intensity of the entire somatic (GC) cell compartment (Figure 3.3C). 

In any given follicle, the ratio between the geometric mean of the intensities for the GC 

nuclei, and the entire GC compartment were calculated as a measure of nuclear:cytoplasm 

expression. 

As the distribution of the data obtained was generally skewed (Shapiro-Wilk test) the 

geometric mean was plotted to determine the central tendency of the intensities obtained 

from each group of follicles.  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Number of follicles counted per section for each protein and example of the 

different ROI selections in a follicle. A) Total number of follicles counted across the 7 ovary 

sections from day 4 and day 8 ovaries. In B) and C) selection shows individual GC nuclei and the 

entire GC cell compartment. Definition of the different intensities calculated and plotted in graphs 

is also shown. 
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3.2.5 Chromatin Immunoprecipitation immunoprecipitation (ChIP)  

Whole ovaries from day 4 (2 ovaries/sample) and day 16 (1 ovary/sample) mice were 

used with SMAD2/3 (sc-133098, Santa Cruz) and FOXL2 (sc-55655, Santa Cruz) 

antibodies (Table 2.1) to study the level of binding of these factors to the promoter of 

Ccnd2, Myc and p27 genes. Sheared chromatin was analysed with a 1.5% agarose gel to 

visualise fragment size range (Appendix 6, C). Conventional PCR was performed using 

promoter specific primers (Table 3.2). A non-immune isotype (IgG) antibody (sc-2025, 

Santa Cruz) was used as negative control to determine the level of non-specific binding. 

Protocol used was as described (see 2.7). 

 

 

Table 3.2. Primer sequences, amplification product size (bp) and primer efficiency (%) for ChIP-

PCR of the promoter region of Ccdn2, Myc and p27 target genes. 

 

3.2.6 Proximity ligation assay (PLA) 

Sections of ovary from day 4 mice were used to study the putative interaction between 

SMAD3 and FOXL2 by localising both proteins using antibodies to SMAD3 (#9523, Cell 

Signalling) and FOXL2 (sc-55655, Santa Cruz) (Table 2.1). Protein complexes were 

labelled using the Duolink In Situ Red Starter Kit (Sigma) with anti-goat and anti-rabbit 

secondary antibodies conjugated to specific PLA probes (see 2.6). Two sections were 

used as negative controls to determine the level of the specificity of the antibodies and 

assay: One negative control was used with two antibodies raised against DDX4 and 

FOXL2 as putative non-interactive proteins, and another control contained only FOXL2 

primary antibody to check the level of background staining for the assay.  

 

 

Primer  
set 

      Sequence (5’     3’)  bp Primer efficiency 

(%) 

Ccnd2.1 F:TTCTGCAGGAGGGTCATATTCT 

R:AATGAGGAACAAGGAAAGGCTT 
207 102 

Myc.3 F:GGCATATTCTCGCGTCTAGC 

R:TGAAGACAAACGGATGAACAGT 
154 92 

p27.2 F:TTAGTGTCTGGGACGGCTCTAA 

R:GACCCCAGAAGTCTCTGCTATG 
175 93 
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3.2.7 Statistical analysis 

Data from the image analysis (section 3.1.2) was deemed to be not normally distributed 

(based on Shapiro-Wilk test in all groups); therefore, a non-parametric Kruskal-Wallis 

with post-hoc Dunn’s multiple comparisons test was used to compare the central tendency 

between % intensities of the different follicle stages. For gene expression analyses by 

qPCR, fold changes (2 –ΔΔCt method) relative to day 4 ovary samples were evaluated using 

one-way ANOVA with Bonferroni multiple comparisons post-hoc tests to determine 

differences between age groups. Graphpad Prism 7.03 was used to calculate and represent 

the data and differences were considered statistically significant when P <0.05.  

 

3.3 Results 

3.3.1 Gene and protein expression of TGFβ factors and cell cycle proteins in day 4, day 

8 and day 16 mouse ovaries. 

Gene expression analysis with qPCR was used to study the differences in steady state 

mRNA expression between each age group relative to day 4 (Figure 3.4). For the TGFβ 

factors, Smad2 expression did not vary between the three groups, while Smad3 decreased 

in older ovaries (day 8 and day 16) relative to day 4 (P<0.05). Although Alk5 expression 

also decreased in day 8 and day 16 ovaries, expression relative to day 4 was more reduced 

in day 8 ovaries (P<0.01). 

For the cell cycle factors, p27 expression was reduced in day 8 and day 16 ovaries 

(P<0.0001), whereas Ccnd2 expression was only decreased in day 16 ovaries relative to 

day 4 (P<0.01). Foxl2 transcript expression was not different between the three ages.  
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Figure 3.4. Expression of candidate TGFβ and cell cycle gene transcripts in juvenile mouse 

ovaries. Transcript levels were determined by quantitative PCR and were normalised against the 

endogenous reference Atpb5. Fold changes were calculated relative to day 4 using the 2 –ΔΔCt 

method as described in the methods. Each group contained 5 samples (n=5). Data are means 

±SEM and significant differences are relative to day 4 (*P<0.05, **P<0.01 and ****P< 0.0001). 

 

Next, total protein expression was analysed with western blotting (Figure 3.5).  SMAD3 

did not show any major changes in protein expression across ages, while phosphorylated 

SMAD3 (p-SMAD3) increased with age. This expression pattern was confirmed when 

bands were normalised against the loading control beta-actin. Based on visual inspection, 

CCND2 and p27 expression did not vary across ages, however, they showed decreased 

protein expression in day 16 ovaries when normalised against beta-actin and compared to 

other ages. Although SMAD2 also showed higher expression in day 16 ovaries, 

normalisation against loading control did not show major differences in protein 

expression. Moreover, FOXL2 showed a clear increase in expression across ages. 
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Figure 3.5.  Expression of candidate TGFβ and cell cycle proteins in juvenile mouse ovaries.  

A) Protein expression of SMAD3, CCND2, p27, FOXL2 and phospho-SMAD3 were analysed by 

western blotting (15µg). B) SMAD2 was analysed in a separate blot (10µg). C) OD values were 

normalised against beta-actin as described in the methods and means plotted (n=2).  
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3.3.2 GC proliferation and oocyte growth during early follicle development 

GC proliferation is a key morphological event during PFA, and some reports have 

proposed that GCs initiate proliferation before the oocyte starts its growth (Braw-Tal, 

2002; Da Silva-Buttkus et al, 2008; Mora et al, 2012a). Therefore, another objective was 

to examine this using the classification criteria applied in this thesis (see 2.4.3). Follicles 

from day 4 and day 8 were selected according to the criteria explained in the methods 

(see 3.2.3) and oocyte area and number of their surrounding GCs were measured. As 

expected, when follicles were classified according to GC number, oocyte areas increased 

from primordial to secondary follicle stages (Figure 3.6A). A significant increase in the 

oocyte area was observed from the transitional stage when compared to primordial 

follicles (P<0.0001). Then, oocyte areas from follicles up to small primary stage were 

calculated for each follicle with a specific GC number. Only a significant increase in the 

oocyte area was observed in follicles containing six GCs or more when compared to 

follicles with 3 GC (P<0.01) (Figure 3.6B). 

 

Figure 3.6. Relationship between oocyte area and GC number in small follicles. Oocyte areas 

of classified follicles according to GC number were measured. Each dot represents a follicle with 

specific GC number. Red and green dots in both graphs represent the follicles surrounded by 6 

and 7 GCs, respectively. Follicles were measured from day 8 (n=3) and day 4 (n=4) ovary 

sections. In A) all groups are significant relative to PF (P< 0.0001). In B) all follicles containing 

6 GCs or more are significant relative to the group of follicles containing 1 to 3 GCs (P<0.01 for 

the group with 6 GCs). Data are medians. PF, primordial; T, transitional; P, primary; P+, large 

primary; S, secondary follicle stages. 
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3.3.3 Localisation of SMAD2, SMAD3, FOXL2, CCND2, and p27 proteins in 

immature mouse ovaries.  

SMAD3 and SMAD2 protein localisation 

In all mouse ovary ages examined, SMAD3 was detectable in GCs in all follicle stages, 

but was absent in oocytes and other somatic compartments (Figure 3.7). In between the 

ovary ages, SMAD3 expression was reduced in day 8 and day 16 ovaries when compared 

to day 4 ovaries. In primordial and transitional follicles, SMAD3 expression was strong 

in the nucleus and cytoplasm of GCs. In growing follicles, a decrease in nuclear SMAD3 

was observed. The negative control section did not show any staining in any follicle. 

 Figure 3.7. Immunofluorescent localisation of SMAD3 in juvenile mouse ovaries. High 

power images of day 4 and day 8 ovaries show SMAD3 expression (red) in GC nuclei and 

cytoplasm (white arrows), while absence of nuclear SMAD3 in GCs of growing follicles (yellow 

arrows). Nuclei are counterstained blue with DAPI. A negative control with a non-immune rabbit 

IgG antibody is shown. PF, primordial; T, transitional; P+, large primary follicle stages. Low and 

high power images (20X and 63X magnification) from day 4 and day 8 ovaries are shown in the 

upper and lower panels, respectively. 
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In contrast to SMAD3, weak SMAD2 staining was observed in the cytoplasm of GCs, 

oocyte and other somatic compartments (stromal cells) in all mouse ovary ages (Figure 

3.8). Moreover, no difference in staining was observed between ovary ages. In primordial 

follicles, SMAD2 expression was not detected in GCs, while weak expression was 

observed in growing follicles. Oocyte staining was observed in all follicles stages, with 

similar intensity. No staining in any follicle stage was detected in the negative control 

section. 

Figure 3.8. Immunofluorescent localisation of SMAD2 in juvenile mouse ovaries. High power 

image of a day 4 ovary shows a primordial follicle with no SMAD2 staining (green) in GCs (white 

arrows) while cytoplasmic staining is observed in the GCs of larger follicles (yellow arrow, day 

8). Staining in oocyte and stromal cells is also detected (yellow arrows, day 4). Exposure of the 

day 4 high power image was increased for better visualization of the staining. Nuclei are 

counterstained blue with DAPI. A negative control with a non-immune rabbit IgG antibody is 

shown. PF, primordial; P+, large primary follicle stages. Low and high power images (20X and 

63X magnification) from day 4 and day 8 ovaries are shown in the upper and lower panels, 

respectively. 
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FOXL2, CCND2 and p27 protein localisation 

FOXL2 expression was observed in all ovary ages examined and was detectable in the 

nuclei of GCs, the ovarian surface epithelium (OSE) and stromal cells (Figure 3.9). 

FOXL2 was strongly expressed in GCs from all follicle stages and epithelial cells from 

OSE whereas stromal cells showed weaker staining. The ooplasm also showed weak 

FOXL2 staining, however, similar staining in the ooplasm was also found in the negative 

control. 

Figure 3.9. Immunofluorescent localisation of FOXL2 in juvenile mouse ovaries. High power 

images show nuclear FOXL2 staining (green) in GCs of primordial and transitional follicles (day 

4) and large primary follicles (day 8). Nuclei are counterstained blue with DAPI. A negative 

control with a non-immune rabbit IgG antibody is shown. PF, primordial; T, transitional; P+, 

large primary follicle stages. Low and high power images (20X and 63X magnification) from day 

4 and day 8 ovaries are shown in the upper and lower panels, respectively. 
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CCND2 expression was detected in all ovary ages analysed, however, a decrease in day 

8 and day 16 ovaries was observed when compared to day 4 ovaries. CCND2 was present 

in the nucleus of GCs and oocyte in all follicle stages but not in other somatic 

compartments (Figure 3.10). In primordial follicles, CCND2 expression was strong in all 

GCs. In transitional follicles, CCND2 expression was also strong in GCs, however, GCs 

with decreased expression were detected in some of these follicles. In larger follicles, 

CCND2 expression was generally reduced in GCs although the expression pattern was 

more variable between individual nuclei. Oocyte staining was observed in all follicles 

stages, with similar intensity. No staining was detected in the negative control section. 

 Figure 3.10. Immunofluorescent localisation of CCND2 in juvenile mouse ovaries. High 

power images show strong nuclear CCND2 staining (red) in GCs of primordial follicles (white 

arrows). Transitional follicles show nuclei with strong and reduced CCND2 (yellow arrows) 

whereas larger follicles show decreased CCND2 expression (P+). Nuclei are counterstained blue 

with DAPI. A negative control with a non-immune rabbit IgG antibody is shown. PF, primordial; 

T, transitional; P+, large primary follicle stages. Low and high power images (20X and 63X 

magnification) from day 4 and day 8 ovaries are shown in the upper and lower panels, 

respectively. 
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p27 expression was detectable in day 4 and day 8 ovaries whereas weak staining was 

observed in day 16 ovaries. p27 was observed in the nucleus and the cytoplasm of GCs 

and oocyte in all follicle stages (Figure 3.11). In primordial and transitional follicles, p27 

expression was strong in the nucleus of GCs while reduced expression was observed in 

growing follicles. From primary stage, p27 expression was not detectable in the nucleus 

of some GCs and in larger follicle stages, p27 was only detected in the cytoplasm of all 

GCs. Oocyte staining was observed in all follicles stages, with similar intensity. Negative 

control showed no detectable staining. 

 Figure 3.11. Immunofluorescent localisation of p27 in juvenile mouse ovaries. High power 

image of day 4 ovaries shows strong nuclear p27 staining (green) in GCs of primordial and 

transitional follicles (white arrows). In day 8 ovaries, primary follicles show GC nuclei with 

strong and decreased p27 expression (white and yellow arrow, P), whereas in larger follicles p27 

in GC nuclei is lost (S). Nuclei are counterstained blue with DAPI. A negative control with a non-

immune rabbit IgG antibody is shown. PF, primordial; T, transitional; P, small primary; P+, large 

primary follicle stages. Low and high power images (20X and 63X magnification) from day 4 

and day 8 ovaries are shown in the upper and lower panels, respectively. 
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3.3.4 Image analysis: Detailed quantification of protein expression 

Since all factors described above are detectable in GCs and GC proliferation has been 

shown to initiate before oocyte growth (see Figure 3.6), another objective was to establish 

whether there was a relationship between protein expression of these factors and GC 

proliferation. Image analysis of immunofluorescently-labelled ovary sections from day 4 

and day 8 ovaries (n=4 and n=3, respectively) was used to quantify their expression 

pattern in GCs of follicles classified according to GC number (see 2.4.3).  

Expression pattern of GC factors throughout early follicle development 

Since SMAD2 expression was very weak in small follicles (see Figure 3.8), image 

analysis was not carried out for this protein.  

SMAD3 in GCs 

When SMAD3 intensities in the whole GC compartment (including nuclei and 

cytoplasm) were measured, primordial follicles showed medium GC staining while 

transitional and primary follicles showed high GC staining (Figure 3.12B). Large primary 

and secondary follicles showed high and medium GC staining, respectively. When 

different follicles were compared, SMAD3 staining in transitional follicles was 

significantly increased when compared to primordial follicles (P<0.0001). Moreover, 

secondary follicles showed a significant decrease in staining when compared to 

primordial, transitional and primary follicle stages (P<0.05, P<0.0001 and p<0.01, 

respectively).  

SMAD3 in GC nuclei 

A decrease in nuclear GC staining was evident from primordial to secondary follicles 

(Figure 3.12A). Median values for primordial, transitional and primary follicles showed 

high nuclear SMAD3 staining whereas large primary and secondary follicles showed 

medium nuclear SMAD3 staining. When the different stages where compared, a 

significant decrease in nuclear SMAD3 intensity was observed in large primary and 

secondary follicles when compared to primordial follicles (P<0.001 and P<0.05, 

respectively). A significant decrease in large primary and secondary follicles were also 

observed when compared to transitional (P<0.01 and P<0.05) and primary follicle stages 

(both P<0.05).  
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When the ratio of SMAD3 intensities between GC nuclei and whole GC compartment 

were measured, a decrease in the ratios were observed across the different ages (Figure 

3.12C). Specifically, a significant decrease was observed from primary stage when the 

ratio was compared to primordial follicles (P<0.05) and in large primary and secondary 

follicles when compared to primordial (P<0.001 and P<0.0001, respectively) and 

transitional stages (P<0.001 and P<0.05; respectively). 

As expected with FOXL2, staining in GC nuclei was high in all follicle stages and no 

significant differences where observed when the different groups were compared (Figure 

3.12D). 

 Figure 3.12. Quantification of SMAD3 and FOXL2 staining in GCs during early follicle 

development. A) and B) show the measured intensities for SMAD3 in the whole GC 

compartment and in GC nuclei for each follicle stage, respectively. C) shows the ratio of both 

intensities across follicle stages. Image of SMAD3 staining (red) shows an example of primordial, 

transitional and large primary follicle stages, where SMAD3 nuclear exclusion is observed in 

large primary follicles (yellow arrows). D) shows FOXL2 staining (green) with examples of 

primordial, transitional, primary and large primary follicles. Measured intensities in GC nuclei 

are shown for the different follicle stages. Dashed lines in graphs delimit medium (blue line and 

above) and high (red line and above) intensities. Nuclei from the images are stained blue with 

DAPI. Data are medians ±interquartile range and significant differences for each group are 

relative to the follicle stage in parentheses (*P<0.05, **P<0.01, ***<P<0.001, ****P< 0.0001). 

PF, primordial; T, transitional; P, primary; P+, large primary; S, secondary follicle stages.  
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The intensity of cell cycle regulators CCND2 and p27 in GCs from the different follicle 

stages was also measured. For CCND2, a decrease in nuclear GC staining was observed 

across follicle stages (Figure 3.13A). However, median values in all stages showed high 

CCND2 staining with the exception of medium intensity in secondary follicles. When the 

different stages were compared, CCND2 intensity was significantly decreased in primary, 

large primary and secondary follicles when compared to primordial follicles (P<0.01, 

P<0.0001 and P<0.0001, respectively). When compared to transitional follicles, only 

large primary and secondary follicles showed significant differences (both P<0.0001). 

Only secondary follicles showed a significant decrease in CCND2 when compared to 

primary follicles (P<0.05).  

p27 nuclear staining in GCs showed an abrupt decrease across follicle stages. Median 

values in primordial and transitional follicles showed medium p27 staining whereas 

primary, large primary and secondary follicles showed low p27 staining. When follicle 

stages were compared, large primary and secondary follicle stages showed a significant 

decrease in p27 staining when compared to primordial and transitional follicle stages 

(P<0.0001). 

For each follicle stage, all GC factors analysed showed variability of intensities. When 

comparing the interquartile range of the different follicle stages, the primordial follicle 

population showed the highest variability for all factors. When the minimum and the 

maximum values of the interquartile range of the different factors was compared in 

primordial follicles, SMAD3 (39-85.9%) and p27 (28.7-74.1%) showed the highest 

variability in comparison to CCDN2 (69.1-88.1%) and FOXL2 (56.7-88.2%). 
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 Figure 3.13. Quantification of CCND2 and p27 staining in GCs during early follicle 

development. A) and B) show the measured intensities for CCND2 and p27 in GC nuclei for the 

different follicle stages, respectively. Image of CCND2 staining (red) shows an example of 

primordial, transitional and secondary follicle stages. Image for p27 staining shows an example 

of primordial, transitional and large primary follicle stages. Dashed lines in graphs delimit 

medium (blue line and above) and high (red line and above) intensities. Nuclei from the images 

are stained blue with DAPI. Data are medians ±interquartile range and significant differences for 

each group are relative to the follicle stage in parentheses (*P<0.05, **P<0.01, ***<P<0.001, 

****P< 0.0001). PF, primordial; T, transitional; P, primary; P+, large primary; S, secondary 

follicle stages.  

 

Association between SMAD3 expression and GC proliferation  

The expression of the proliferative marker Ki67 was also measured as a control to 

determine the proliferative state of the different follicles. As expected, an increased Ki67 

staining was detected from primordial to secondary follicle stages. In primordial and 

transitional follicles, absence of staining with the exception of few cells was observed, 

whereas in primary, large and primary follicles, more GCs Ki67 positive cells were 

observed but Ki67 staining was still low.   
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Therefore, when the different follicle stages were compared, a significant increase in Ki67 

staining was observed in primary, large primary and secondary follicles when compared 

to primordial and transitional follicles (P<0.0001). 

When sections were co-stained with SMAD3 and Ki67, very few Ki67 positive cells were 

observed in GCs of primordial and transitional follicles, the same cells that were positive 

for SMAD3 protein (Figure 3.13B). The incidence of Ki67 positive GCs increased in 

growing follicles around the same stage when SMAD3 is excluded from the GC nuclei.  

Figure 3.14. Quantification of Ki67 and co-localisation with SMAD3 during early follicle 

development. . A) shows the measured intensities for Ki67 in GC nuclei for the different follicle 

stages, respectively. Image of Ki67 staining (green) shows an example of primordial and large 

primary follicle stages (white arrows). A negative control with a non-immune rabbit IgG antibody 

is shown. B) shows the localization of SMAD2/3 (red) and Ki67 (green). White arrow shows a 

primordial follicle stained for SMAD2/3 but negative for Ki67. Yellow arrows show nuclear Ki67 

cells where SMAD3 is excluded from the nucleus in growing follicles. Dashed lines in graphs 

delimit medium (blue line and above) and high (red line and above) intensities. Nuclei from the 

images are counterstained blue with DAPI. Data are medians ±interquartile range and significant 

differences for each group are relative to the follicle stage in parentheses (P<0.05, **P<0.01, 

***<P<0.001, ****P< 0.0001). PF, primordial; T, transitional; P, primary; P+, large primary; S, 

secondary follicle stages. 
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3.3.5 FOXL2 and SMAD3 as transcriptional regulators of Ccnd2 and p27 

Although FOXL2 is expressed in GCs of follicles from all stages, its role in PFA has not 

been reported. Since FOXL2 and SMAD3 are both transcriptional regulators, the aim was 

to determine first whether these proteins co-localise and interact in GC nuclei of 

primordial/transitional follicles and secondly, whether they individually regulate the 

expression of Ccnd2 and p27.  

Foxl2 and SMAD3 co-localisation and protein interactions 

As expected from the image analysis and individual staining above, FOXL2 and SMAD3 

co-localised in GCs of primordial/transitional follicles (Figure 3.15A). To determine if 

they interact in situ, a proximity ligation assay was used. This assay works by ligating a 

molecular complex between two antibodies that are in close proximity. The complex is 

then labelled (indicated as red dots) to highlight protein interactions. Using FOXL2 and 

SMAD3 antibodies on day 4 ovary sections, no labelling/interactions were observed in 

any specific follicle cell type (Figure 3.15B). When FOXL2 was co-localised with the 

oocyte protein DDX4 as a negative control (since each factor is located in a different cell 

type), a signal was observed in the ooplasm. The negative control with only FOXL2 

primary antibody showed no red dots. 
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Figure 3.15. Co-localisation and interaction of FOXL2 and SMAD3 proteins in small 

follicles. A) shows the localisation of SMAD3 (red) and FOXL2 (green) in an example of 

primordial and large primary follicles. Yellow arrow indicates co-localisation in GC nuclei in 

primordial follicles.  B) shows the results from the PLA assay with FOXL2 co-localised with 

SMAD3, DDX4 and FOXL2 alone, respectively. White arrows show no signal in GCs from any 

follicle. Yellow arrows show red dots on the oocyte cytoplasm. Nuclei from the images are stained 

blue with DAPI. PF, primordial; P+, large primary follicle stages. 

 

Foxl2 and SMAD3 binding to Ccnd2 and p27 gene promoters 

The next aim was to determine whether FOXL2 and SMAD3 have the ability to bind and 

regulate the expression of Ccnd2 and p27 cell cycle genes in GCs, since they are all 

expressed in GCs primordial/transitional follicles. Ccnd2 and p27 are known targets of 

Foxl2 (Garcia-Ortiz et al., 2009; Bentsi-Barnes et al, 2010). SMAD3 regulation of Ccnd2 

gene has been proposed but direct SMAD3 binding has not been demonstrated (Park et 

al, 2005), therefore, the oncogene Myc was used as a positive control target gene for 

SMAD3 (Warnet et al., 1999).  
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Samples of day 4 and day 16 ovaries (enriched in primordial/transitional and large 

primary follicles, respectively)  were subjected to ChIP with SMAD2/3 (sc-133098, Santa 

Cruz) and FOXL2 antibodies (SC-55655, Santa Cruz) (Table 2.1), and a different binding 

pattern was observed (Figure 3.16A). In day 4 ovaries, SMAD3 bound to the promoter of 

Ccnd2 and Myc, but not p27, while in day 16 ovaries, SMAD3 bound to all three genes. 

By comparison, FOXL2 binding to Ccnd2 and Myc was not observed whereas binding to 

p27 was detected in day 4 ovaries. In day 16 ovaries, FOXL2 bound to all three genes. 

When gel images were quantified by optical densitometry, SMAD3 binding to Ccnd2 was 

higher in day 4 ovaries (relative to IgG control) whereas reduced to Myc and p27 (relative 

to IgG control) when compared to day 16 ovaries (Figure 3.16). In contrast, Foxl2 binding 

to Ccnd2 and Myc (relative to IgG control) was reduced in day 4 ovaries while higher to 

p27 (relative to IgG control) when compared to day 16 ovaries (Figure 3.16). 

Figure 3.16. ChIP with SMAD3 and FOXL2 antibodies in day 4 and day 16 mouse 

ovaries.A) B) and C) show amplification by conventional PCR of Ccnd2, Myc and p27 gene 

promoters with SMAD3, FOXL2, non-immune IgG antibodies and input (chromatin sample prior 

to ChIP). Data was obtained from 1 sample from each ovary age (n=1). Graphs represent the OD 

values relative to input sample. 
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3.4 Discussion 

GCs show a slow proliferative state in primordial follicles and their escape from this state 

and further proliferation marks the onset of the initiation of primordial follicle activation 

and growth. The TGFβ intermediates SMAD2/3, the cell cycle regulators CCND2 and 

p27 and FOXL2 are also key factors in the ovary; however, their specific function and 

expression pattern throughout early follicle development have not been mapped out in the 

context of PFA. The first aim of this chapter was to study the localisation and differential 

expression of these factors in detail in small follicles. Since GC proliferation has been 

previously proposed to precede oocyte growth during PFA (Braw-Tal, 2002; Da Silva-

Buttkus et al, 2008), the second aim was to establish the relationship between GC 

proliferation and oocyte growth using the classification criteria applied in this thesis. The 

next aim was to measure the expression pattern of the candidate factors across follicle 

stages. Finally, the last aim was to investigate whether there was a molecular link between 

them, specifically, whether SMAD3 and FOXL2 were able to interact and bind to the 

promoter of the candidate cell cycle regulators.  

SMAD3 but not SMAD2 may play an important role in primordial follicles 

The TGFβ mediators SMAD2/3 were previously localised in GCs of primordial follicles 

(Fenwick et al, 2013); however, whether SMAD2 or SMAD3 have a compensatory role 

in the ovary have solely been reported with double cKO (Li et al, 2008), where SMAD2 

and SMAD3 had the ability to overtake each other’s role when one of them is absent. As 

discussed in Chapter 1, it is important to note that these deletions were generated using 

the AMHR2 promoter, which is not expressed in primordial follicles (Durlinger et al, 

2002b). Therefore, whether SMAD2 and SMAD3 have the same function in primordial 

follicles in vivo remains undetermined. Interestingly, the level of Smad2 mRNA, although 

detectable, did not vary between the different ovary ages, and SMAD2 protein expression 

was low/absent in small follicles. By comparison, Smad3 mRNA expression was higher 

in day 4 ovaries (with higher proportion of primordial follicles) in comparison to older 

ages, whereas total protein levels by western blot did not show differences between ages, 

indicating that post-transcriptional/translational regulation of SMAD3 may help 

maintaining enough protein levels in all follicle stages.  
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However, a detailed image analysis of immunostained sections revealed that SMAD3 

protein was highly expressed in GC of primordial follicles with a slight reduction in these 

cells in more advanced stages. More specific analysis showed that SMAD3 was found in 

GC nuclei of primordial follicles, followed by a nuclear exclusion as follicles grow, 

specifically from primary stage (P). The strong presence in the nucleus and its exclusion 

in growing follicles may indicate that SMAD3 has a key role as transcription factor in 

primordial follicles. Moreover, the lack of co-localisation with the proliferative marker 

Ki67 indicates that SMAD3 may contribute to the maintenance of the slow-proliferative 

state of GCs in primordial follicles.  

Increased SMAD3 expression in transitional follicles may be essential for PFA 

Higher mRNA expression of TGFβ receptor I (Alk5) was observed in day 4 ovaries 

compared to day 8 ovaries, suggestive of TGFβ signalling in primordial follicles. In a 

recent study with the same ovary ages (Sharum et al, 2016), relative mRNA levels of 

TGFβ inhibitors Smad7 and Strap were significantly increased in day 4 ovaries compared 

to day 8 ovaries. Therefore, these findings suggest that levels of TGFβ signalling may be 

strictly controlled and regulated in primordial follicles. The low levels of phosphorylated 

SMAD3 in day 4 ovaries were an unexpected finding. However, it has been recently 

reported that SMAD3 can be located in the nucleus in basal conditions (Schmierer et al, 

2008) and another recent report has shown that transcriptionally active SMAD3 can reside 

in the nucleus in a low-phosphorylated form (Liu et al, 2016).  

When SMAD3 expression in GC nuclei was compared between primordial and 

transitional stages, no differences were observed. This was also confirmed when the 

nuclear/cytoplasmic SMAD3 ratio was calculated, where no significant differences in the 

nuclear exclusion were observed until primary stage. However, when SMAD3 expression 

of the whole GC compartment was measured, the transitional follicle stage showed an 

increased presence of SMAD3 protein when compared to primordial follicles, suggesting 

that the cytoplasm contains an increased presence of SMAD3 in transitional follicles. This 

increased cytoplasmic expression may be an indicative of increased canonical TGFβ 

signalling. At primary stage, significant nuclear exclusion was observed. Interestingly, a 

significant reduction in Alk5 gene expression in day 8 ovaries was also detected, 

coinciding with a decrease in Smad3 relative gene expression.  
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Since day 8 ovaries are more enriched in activated/growing follicles, a mechanism of 

inhibition of TGFβ signalling during or after PFA may be necessary to decrease the levels 

of expression of TGFβ factors and allow follicle growth. Since the transitional stage 

showed increased SMAD3 expression in the cytoplasm, it can be then proposed that an 

increase in TGFβ signalling is important to allow subsequent TGFβ inhibition. Whether 

the increase in TGFβ signalling and subsequent inhibition is the cause or the consequence 

of PFA (and therefore the GC escape from the slow proliferative state) is still 

undetermined with these results, therefore, the last chapter of this thesis (Chapter 5) aims 

to clarify this aspect. 

SMAD3, CCND2 and p27 have a common protein expression pattern during early follicle 

development 

The detailed image analysis of immunofluorescently-labelled ovary sections for all the 

candidates provided a better characterisation of their expression pattern. SMAD3, 

CCND2 and P27 where highly expressed in the nuclei of GCs of follicles up to the small 

primary stage (P) and their expression was reduced in nuclei of larger follicles. This 

expression pattern agrees with the mRNA data, where all factors show higher mRNA 

levels in day 4 ovaries when compared to day 16 ovaries. In contrast, the proliferative 

marker Ki67 was detected in only few GCs of primordial and transitional follicles, 

indicating that GCs have a slow proliferative phenotype. Increased Ki67 is observed as 

follicles grow and confirms that GCs in these follicles are highly proliferative (Figure 

3.17). Interestingly, increased number of GCs of some transitional follicles with no 

increased oocyte size was observed (particularly those with less than 6 surrounding GCs) 

indicating that GCs start proliferating before the oocyte grows. Since SMAD3, CCND2 

and p27 protein expression is strong in GCs from primordial stage (containing 1-3 GCs) 

and reduced from transitional stage (4-7 GCs), these findings further implicate these 

factors in PFA. 

Variability between the intensities for all these factors was observed in all follicle stages, 

however, the primordial follicle population showed the highest variability. This is 

suggestive of differences between follicles from the primordial follicle pool. Whether 

there is a relationship between differences in the expression of these factors in primordial 

follicles and their ability to activate is worth to be investigated.  
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Figure 3.17. Diagram summarising the protein expression pattern in GC nuclei during early 

follicle development of SMAD3, CCND2, p27 and Ki67. Based on the intensities obtained from 

image analysis and in comparison with the proliferation marker Ki67, all proteins show high 

presence in GCs of primordial and transitional follicles, where their proliferation is either absent 

or slow, and expression decreases as follicles grow where GCs proliferate rapidly.   

 

High levels of Ccnd2 are maintained in primordial follicles  

Results showed that Ccnd2 mRNA and protein levels were higher in day 4 ovaries 

compared to older ages. Moreover, image analysis showed that CCND2 protein 

expression was particularly strong in GCs of small follicles (primordial and transitional 

stages), followed by a decrease in growing follicles.  

Consistent with these results, high mRNA levels of Ccnd2 in primordial follicles have 

been observed before in mice, however, the molecular mechanisms regulating these levels 

were not further studied (Robker & Richards, 1998b). 
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CyclinDs are the main cyclins regulating cell cycle re-entry in quiescent cells and G1/S 

transition in proliferative cells (Sherr & Roberts, 1999). They can be regulated at 

transcriptional level by different pathways, such as the MAPK signalling pathway via 

RAS or the direct binding of MYC to Ccnd2 gene (Albanese et al, 1995; Bouchard et al, 

2001; Mathew et al, 2004; Meloche & Pouysségur, 2007).  

In the ovary, the combination of FSH stimulation and TGFβ ligands has been reported to 

induce the expression of Ccnd2 gene in GCs of growing follicles, however, direct binding 

of SMAD3 was not studied (Looyenga & Hammer, 2007). In this chapter, binding of 

SMAD3 to Ccnd2 gene was detected in day 4 ovaries. Since these ovaries contain a high 

proportion of primordial follicles, it is proposed that TGFβ signalling is a potential 

regulator of Ccnd2 gene in these follicles. 

Apart from transcriptional regulation, CCND2 levels can also be regulated post-

translationally. Inhibitory phosphorylation by GS3K or p38 (from PI3K and MAPK 

signalling pathways) have been determined as the main mechanisms to allow 

ubiquitination and degradation of CCND2 protein (Casanovas et al, 2000; Diehl et al, 

1998; Kida et al, 2007). However, although the inhibition of the mechanisms of CCND2 

degradation may be also important to maintain high CCND2 levels in primordial follicles, 

the same expression pattern observed for Ccnd2 mRNA and protein levels indicates that 

regulation of Ccnd2 gene may be primarily regulated transcriptionally during early 

follicle development.  

It has been proposed that induction of Ccnd2 expression may be an essential event in 

quiescent cells prior to cell proliferation. Interestingly, high Ccnd2 mRNA levels were 

reported in growth-arrested GC cultures in rat (Robker & Richards, 1998a) and CCND2 

protein was localised in proliferative and growth-arrested cells from hamster preantal 

follicles in vitro (Yang & Roy, 2004). In human primary cells and mouse fibroblastic cell 

lines, Ccnd2 levels are also abundant in contact-inhibited cells (Meyyappan et al, 1998) 

and specific molecular mechanisms based on the protein complex dynamics of CCND2 

with K4 and p27 have been proposed as determinants of the G0/G1 phase transition in 

mouse epithelial cell lines (Susaki E 1  2007). These findings together with the 

observations in this chapter suggest that high levels of Ccnd2 mRNA and protein may be 

necessary to provide the primordial follicle GCs with the cell cycle machinery necessary 

to allow follicle activation.  
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Ccnd2 and p27 expression levels are reduced in growing follicles 

In growing follicles, reduction in Ccnd2 mRNA and protein levels were observed in GCs. 

Overexpression of Ccnd2 has been found in GC tumours (Anttonen et al, 2014b), 

suggesting that a decrease in these levels may be necessary to control the level of 

proliferation in GCs of growing follicles after PFA. In a model of quiescent β-cells, high 

Ccnd2 protein and mRNA levels also decreases as cells acquire a high proliferative state 

(Salpeter et al, 2011). The exact mechanism by which these levels are reduced in 

proliferative β-cells was not determined, however, it was demonstrated that a decrease in 

glucose levels linked with low calcium influx and NFAT transcription factors 

downregulated Ccnd2 gene expression (Salpeter et al, 2011). In the ovary, growing 

follicles seem to be calcium-dependent to maintain the oocyte-GC interactions necessary 

for development (Mora et al, 2012a), therefore, it is possible that calcium signalling and 

NFATs participate in the regulation of Ccnd2 gene in growing follicles. 

p27 gene and protein levels were also high in GCs of primordial follicles and decreased 

as follicles grow. p27 has been reported to participate in the maintenance of the primordial 

follicle population, since p27-/- mice show premature PFA (Rajareddy et al, 2007). 

However, although increased kinase activity (specifically, Cdk2/Cdc2-CyclinA/B1) was 

reported in these mice, it was not determined whether these molecular mechanisms are 

triggered in the oocyte or GCs. From the results in this chapter, p27 in the oocyte showed 

no specific pattern across follicle stages. In GCs, p27 showed a clear nuclear reduction 

after primary stage whereas growing oocytes still expressed p27. Therefore, the decrease 

in p27 expression and degradation in GCs may be an essential mechanism to allow cell 

cycle progression after PFA. As mentioned above, the dynamics of CCND2/CDK4/p27 

complexes are key to allow entry to G1 phase, and translocation to the cytoplasm has 

been proposed as a mechanism that involves p27 degradation and subsequent cell cycle 

progression (Nakayama, 2004). The co-localisation and characterisation of the protein 

dynamics of these factors in primordial and growing follicles will be explained in the next 

chapter in order to determine whether this mechanism also operates in the ovary (Chapter 

4).  
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SMAD3 and FOXL2 differentially regulate common cell cycle genes  

Image analysis and localisation study did not relate the presence of FOXL2 to any 

particular stage of early follicle development. At the transcriptional level, Foxl2 did not 

show any difference in the mRNA levels between the ovary ages. However, total FOXL2 

protein levels were found to be elevated in older ovaries, suggesting a mechanism of post-

translational regulation may account to maintain high FOXL2 protein levels high in larger 

follicles. In fact, different FOXL2 protein isoforms can be generated by sumoylation, 

phosphorylation or acetylation and determine its binding to target genes and 

transcriptional activity (Benayoun & Veitia, 2009).  

Since transcription factors SMAD3 and FOXL2 are present in the nucleus of GCs, they 

can be involved, together or independently, in the regulation of cell cycle genes, such as 

Ccnd2 and p27. Although both genes are well-known targets of FOXL2 (Bentsi-Barnes 

et al, 2010; Garcia-Ortiz et al, 2009), SMAD3 binding to these genes has only been 

suggested for Ccnd2 (Park et al, 2005) and never demonstrated for p27. FOXL2 and 

SMAD3 have been reported to be transcriptional partners in the gonadotrope-derived 

αT3-1 cell line, a cell model used to study the pituitary (Blount et al, 2009). Therefore, 

the last aim of this chapter was to investigate first whether this was the case in primordial 

follicles and secondly, whether they had the ability to regulate Ccnd2 and p27 genes. 

Results from PLA assay did not show any relevant interaction between SMAD3 and 

FOXL2 in primordial follicles. Although the presence of some “dots” were observed, they 

were randomly localised. Moreover, the increased presence of signal in the ooplasm of 

the negative control section indicated that FOXL2 antibody binds in a non-specific 

manner to a protein in close proximity to DDX4 protein, also present in the ooplasm. 

Next, the results from the ChIP experiment using samples of day 4 and day 16 ovaries 

showed that FOXL2 and SMAD3 had a different binding pattern to the target genes 

Ccnd2 and p27 relative to IgG control. Binding of FOXL2 to p27 gene promoter was 

detected in these models of primordial and growing follicles and is consistent with the 

findings by other studies whereby FOXL2 regulates and maintains p27 gene expression 

levels in mice (Garcia-Ortiz et al, 2009; Mork et al, 2011). 
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Moreover, reduced FOXL2 binding to Ccnd2 was observed in primordial follicles 

whereas binding was increased in growing follicles. FOXL2 has been reported to bind 

and repress Ccnd2 gene in transfected ovarian cell lines (Bentsi-barnes et al, 2010). As 

the findings described in this chapter revealed that Ccnd2 levels (both mRNA and protein) 

are decreased in growing follicles, a mechanism of transcriptional repression via FOXL2 

can be proposed in these follicles. 

In contrast, SMAD3 binding was detectable in primordial follicles for Ccnd2 but not p27 

gene promoter, suggesting SMAD3 may not directly regulate p27 gene in primordial 

follicles. However, SMAD3 binding to Ccnd2 was evident in primordial follicles, 

indicating Ccnd2 may be a novel transcriptional target of SMAD3 in primordial follicles. 

SMAD3 binding to Myc oncogene was also detected in both primordial and growing 

follicles. Myc is a common target gene of SMAD3, where SMAD3 acts as a 

transcriptional repressor and therefore impedes Myc from repressing its target gene p15 

(CKI) (Joan et al, 2001), resulting in cell cycle arrest. The role of Myc in primordial 

follicles has not been reported before. Although SMAD3 binding to Myc gene was 

observed in day 4 and day 16 ovaries, higher binding was detected in day 16 ovaries. 

Therefore, a more detailed analysis of SMAD3 binding to Myc is worth to be investigated 

in order to determine whether this binding is also necessary in GCs to maintain the 

quiescent phenotype of primordial follicles. 

The differential binding pattern of FOXL2 and SMAD3 to the candidate target genes 

Ccnd2 and p27 in primordial and growing follicles indicates that they act independently 

in the regulation of these genes in the context of PFA. FOXL2 binds in both primordial 

and growing follicles whereas SMAD3 binding in primordial follicles is increased. 

Nevertheless, these findings suggest that FOXL2 and SMAD3 regulation of p27 and 

Ccnd2 genes in primordial follicles may have an essential role as transcription factors in 

the slow proliferative state of GCs in primordial follicles.  
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In summary, the descriptive analysis of SMADs and cell cycle factors in this chapter has 

revealed the following key findings: 

 SMAD3 is nuclear in cell cycle-arrested GCs of primordial follicles and is 

excluded as GCs proliferate in growing follicles. In the transitional stage, 

increased SMAD3 in the cytoplasm may indicate increased TGFβ signalling 

during PFA. 

 p27 and CCND2 are highly expressed in GC nuclei of primordial and transitional 

follicles and expression decreases in primary follicles, suggesting an important 

role of these proteins in PFA. 

 SMAD3 is a transcriptional regulator of Ccnd2 and Myc whereas p27 and Ccnd2 

are targets of FOXL2 in primordial and growing follicles. 

 

Since CCND2 and p27 have been found in primordial follicles and they are known to 

create a protein complex which is crucial for cell cycle re-entry in other models (Susaki 

E 1  2007); the next chapter aims to determine whether this also applies to the ovary, by 

examining CCND2/p27 co-localisation and determining whether these proteins exist in 

bound complexes in primordial and growing follicles.  
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Chapter 4. 

CCND2/p27 protein dynamics 

during early follicle development  
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4.1 Introduction 

Cell proliferation is strictly dependent on growth factor signalling and nutritional supply 

that will allow cell cycle factors to function towards four different phases: Gap phase 

1(G1), DNA synthesis phase (S), Gap phase 2 (G2) and mitosis (M). When cells are 

deprived of growth factors, they have the ability to exit the cell cycle and enter G0 phase, 

also known as quiescence (Mathew et al, 2004). Cells can only enter quiescence during 

G1 phase at two restriction points (also known as checkpoints). The first checkpoint (R1) 

is located in early G1 and is dependent on adequate supply of growth factors while the 

second checkpoint (R2) occurs later in G1 and relies on a good nutrient supply. After the 

second checkpoint, cells commit to enter the cell cycle in an irreversible manner (Figure 

4.1)(Foster et al, 2011).  

 

 

 

Figure 4.1. G1 phase checkpoints in the cell cycle.  After mitosis (M), cells enter the first restriction point 

(R1) of G1 phase, where a good supply of growth factors ensures G1 progression. A second restriction 

point (R2) exists before entering S phase, where cells with a good supply of nutrients (amino acids, fatty 

acids, energy, oxygen) enter irreversibly S phase towards M. If the cell lacks any of the requirements for 

R1 and R2, it exits the cell cycle and enters a reversible state of quiescence (G0). 

 

Cyclin Ds are the main cyclins at R1 and they are regulated transcriptionally and post-

translationally (Kida et al, 2007; Sherr & Roberts, 1999; Yen & Pardee, 1978). From all 

D- type Cyclins, CCND2 is expressed earlier in the cell cycle, being highly expressed in 

mid-G1 phase while CCND1 and 3 appear later during late G1 phase (Nakayama, 2004; 

Susaki et al, 2007). 
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At the transcriptional level, Ras is a well-known inducer of the Ccnd2 gene, which 

maintains high CCND2 levels during R1 to avoid exit from the cell cycle (Mathew et al, 

2004). At the post-translational level, Cyclin D association with Cdks and CKIs also 

determines G1 progression. TGFβ signalling arrests cells in R2 via the repression of Myc 

gene and induction of CKIs such p15, which inhibits Cyclin D/K4-6 assembly (Warner 

et al, 1999). CCND2 complex formation with Cdk4/6 (K4-6) has both catalytic and non-

catalytic actions (Blain, 2008). The catalytic function is important to allow the G1/S phase 

transition via the phosphorylation of Rb, subsequent release of E2F and induction of 

Cyclin E. The non-catalytic role involves assembly with p27, creating an “inactive” 

CCND2/K4-6/p27 ternary complex that confers the stability necessary to eventually 

allow cell cycle progression (Nakayama, 2004; Ray et al, 2009). 

Degradation of p27 has been related to its translocation to the cytoplasm during G1 phase, 

therefore allowing G1/S phase transition (Bagui TK 2003; Nakayama, 2004). Although 

initial hypotheses suggested that phosphorylation of p27 is key for this translocation 

(Ishida et al, 2002), it has been reported in epithelial cell lines that not only p27 but the 

whole ternary complex is exported and dependent on the phosphorylation of CCND2 on 

the Thr280 residue (Nakayama, 2004; Susaki et al, 2007) (Figure 4.2).  However, the 

kinases triggering this phosphorylation and therefore their signalling pathways are still 

unknown. Notwithstanding this, it is also proposed that high levels of CCND2 also result 

in the nuclear export of the ternary complexes (Nakayama, 2004). The results described 

in Chapter 3 showed SMAD3 binding to the gene promoters of Myc and Ccnd2 in GCs 

of primordial follicles, characterised by a non-proliferative phenotype. Therefore, Ccnd2 

was identified as a new transcriptional target of SMAD3, probably regulating its levels 

during G1 phase progression. In addition, image analysis performed in Chapter 3 showed 

that high CCND2 protein expression levels in GCs of primordial follicles coincided with 

p27 protein expression levels. Moreover, abrupt reduction in p27 expression was 

observed in growing follicles (particularly from primary stage). p27 is a well-established 

marker of G0/ early G1 phase, where it is expressed at maximum levels, immediately 

decreasing until total absence during G1/S transition (Toshihiko et al, 2014).  Therefore, 

expression of p27 may be an important switch for the transition from a slow proliferative 

GC phenotype in primordial follicles to a high proliferative phenotype in growing 

follicles. 
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From previous reports, it is proposed that the signalling pathways inducing Ccnd2 may 

also participate in the regulation of CCND2/K4-6/p27 complex dynamics (Foster et al, 

2011). This chapter is focused on CCND2 and p27 protein expression dynamics in 

primordial follicles. Based on the findings in the previous chapter and the model for 

CCND2/K4-6/p27 complex dynamics (Figure 4.2), it is hypothesised that dissociation 

of CCND2 and p27 protein complex (and subsequent p27 degradation) in GCs of 

primordial follicles is associated with PFA. Therefore, the first aim of this chapter is to 

determine whether CCND2 and p27 create a complex in primordial follicles. For this 

purpose, co-localisation with immunofluorescence staining and co-immunoprecipitation 

will be performed for both proteins using immature mouse ovaries. The second aim is to 

determine the subcellular localisation of these factors in order to determine whether the 

complexes are formed in the nucleus or in the cytoplasmic compartment of GCs in 

primordial and growing follicles. 

Figure 4.2. Model of CCND2/K4-6/p27 complex dynamics in epithelial cell lines. The ternary complex 

resides in the nucleus in G0/G1 after nuclear import by p27 (1 and 2) and after mitogen stimulation, the 

phosphorylation of CCND2 and p27 by yet unknown protein kinases is the trigger for the translocation of 

the whole complex to the cytoplasm (3), driving p27 towards degradation and entry to G1 (4) and eventually 

allowing the progression towards the S phase of the cycle (5). Transcriptional control is essential during 

this time, where CCND2 levels are regulated around R1 (X factor, such as Ras) and Myc and p15 expression 

is regulated around R2 (Y factor, such as SMAD3). 
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4.2 Methods 

4.2.1 Culture of NIH3T3 cell line and protein analysis 

The NIH3T3 cell line was maintained as described (see section 2.3) and used as a control 

to study the protein dynamics and complex formation of CCND2 and p27 during cell 

cycle entry. For that, cells were cultured to 80 % confluence, serum-deprived for 24h and 

then replaced with media supplemented with 10% FCS. Whole protein content was 

extracted at different time points and western blot with CCND2 (sc-593, Santa Cruz) and 

p27 (sc-528, Santa Cruz) antibodies (see Table 2.1) were performed as explained (see 

2.5). Results were obtained from three independent experiments (n=3). Co-

immunoprecipitation (using 80µg of total protein as starting material) was also performed 

with some of these time points. Half of the volume of the IP samples was loaded on the 

western blot and input samples (control for the IP) contained 5 times less protein than the 

initial amount used for the IPs.  

4.2.2 Ovary tissue collection and protein analysis 

Ovaries from day 4 and 16 mice were dissected as described (see 2.2) and either immersed 

in formalin for immunostaining purposes or flash frozen at -80ºC for protein extraction. 

Co-immunoprecipitation and western blot was performed as explained above for the cell 

line, instead using 25-30µg from a pool of three ovaries from different litters for each 

sample of day 4 and day 16 ovary ages. Results were obtained from one sample for each 

age (n=1). Moreover, to study in detail the location of CCND2 and p27 in the follicles 

contained in day 4 and day 16 ovaries, the protocol of subcellular fractionation described 

(see 2.5.3) was applied with six ovaries/sample (day 4) and three ovaries/sample (day 16) 

and equal amounts (3-5µg) of the cytoplasmic, membrane and nuclear fractions were 

analysed by Western blot. Results were obtained from one sample for each age (n=1). 

SMAD3 antibody (#9523, Cell Signalling) was used as control of nuclear fraction 

enrichment and GADPH antibody (sc-32233, Santa Cruz) was used as control for nuclear 

fraction purity (see Table 2.1). 

4.2.3 Visualisation and analysis of western blot images 

In order to obtain a better visualisation of the results from western blots, optical 

densitometry (OD) of the gel bands was measured with the Ingenius Bioimaging software 

“GeneTools” (Syngene). Mean pixel values of target bands and background were 
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normalised against the pixel area selection, and background was then subtracted from the 

target band value. Background subtracted values were referred as “OD value”. 

When a comparison of the protein content between samples was required, OD values of 

CCND2 and p27 were normalised with the loading control beta-actin (by calculating the 

ratio) (see Figure 4.3). For the immunoprecipitated samples with no loading control, only 

OD values of CCND2 and p27 were represented (see Figure 4.4).  

4.2.4 Immunofluorescence staining and image analysis 

In order to determine whether CCND2 and p27 co-localise across the different follicle 

stages; day 4, day 8 and day 16 ovary sections (one section per age group, n=1) were 

immunofluorescently-stained as described (see 2.4.2) and the “Colocalization threshold” 

pluggin from Image J software was used to obtain co-localised images from the different 

channels showing specific staining for CCND2 (green) and p27 (red). A minimum of 20 

individual GC nuclei from primordial (PF) and transitional (T) follicles (only from 

follicles with a clear oocyte nucleus outline) were selected from a single day 4 and day 8 

ovary section, thresholded and the area of positive pixels was measured and referred as 

“Intensity” of CCND2 and p27 (as explained in Chapter 3 (see 3.2.4). As CCND2 was 

normally the highest value, difference of intensities between CCND2 and p27 was 

represented as the increment relative to CCND2 ( 
𝐶𝐶𝑁𝐷2−𝑝27

𝐶𝐶𝑁𝐷2
 ) and referred as “ratio 

intensities”. Values exceeding 1 or -1 where given the values of 1 or -1. Moreover, values 

>0.5 were considered to have >50% decreased p27. 

4.2.5 Statistical analysis 

In order to compare the change in protein expression of CCND2 and p27 at different time 

points after serum stimulation, OD values (with subtracted background and normalised 

against a beta-actin) of CCND2 and p27 western blot bands from three independent 

experiments (n=3) were compared using a two-way ANOVA with Bonferroni multiple 

comparisons post-hoc test (Graphpad Prism 7.03). Differences were considered 

statistically significant when P<0.05.  
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4.3 Results 

4.3.1 CCND2 and p27 protein expression in NIH3T3 cells during cell cycle entry 

As previously reported, NIH3T3 cells express CCND2 and p27 proteins, and these 

proteins are key modulators of cell cycle progression (Susaki et al, 2007). Therefore, this 

cell line was used as a positive control for the experiments aiming to understand the 

complex dynamics of these two proteins in early follicle development. When serum was 

added to starved cells, p27 protein levels significantly decreased after 9 hours (Figure 

4.3).  By comparison, CCND2 protein levels remained steady and did not change in all 

time points analysed (Figure 4.3).  

 

 

 

 

Figure 4.3. Western blot of CCND2, p27 and beta-actin (loading control) expression after 

serum stimulation in NIH3T3 cells. Cells were serum- deprived for 24 hours and then stimulated 

with 10% FCS for the stated times (hours). OD values for each protein are normalised against 

beta-actin as described in the methods. The bar chart in the upper panel represents mean 

normalized OD values (±SEM) from three independent experiments (n=3) for CCND2 and p27 

following serum stimulation. Significant differences are relative to 0 hours of serum stimulation 

(*P<0.05). A representative blot at each time point is shown in the lower panel. 
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When whole protein lysates were immunoprecipitated with a p27 antibody, CCND2 

protein was detected in the same protein complex in all time points (Figure 4.4). 

Moreover, the amount of the bound CCND2 protein decreased after serum stimulation 

alongside the decrease in immunoprecipitated p27 protein. When CCND2 antibody was 

used for the immunoprecipitation, almost no p27 protein was found to be bound (Figure 

4.4).  

 

Figure 4.4. Western blot showing immunoprecipitation of CCND2 and p27 in NIH3T3 cells 

after serum stimulation. Whole cell lysates from different time points after treatment with serum 

were immunoprecipitated with a p27 antibody and probed with an antibody to CCND2 and p27 

(upper panel; A) The opposite was also performed, in that whole cell lysates were 

immunoprecipated with a CCND2 antibody and probed with an antibody to p27 and CCND2 

(upper panel; B). OD values for the bands from A and B corresponding to time points 0 and 24h 

are plotted in the lower panels. Eighty µg of total protein was used as starting material for the 

immunoprecipitated samples (IP) and half of the volume was loaded on a western blot. Input 

samples on the western blot contained 5 times less protein than the initial amount used for the IPs. 

Non-immune rabbit IgG control (IgG) is used as a control for immunoprecipitations. 
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4.3.2 CCND2-p27 co-localisation and comparison of intensities across follicle stages 

When immunofluorescence staining for both proteins was performed in day 4, day 8 and 

day 16 ovary sections, they were co-localised in GC nuclei of primordial follicles. From 

transitional stage, both CCND2 and p27 protein levels showed a progressive decrease in 

expression. The decrease in p27 was abrupt from the primary stage, where a loss of co-

localisation was observed in GCs of larger growing preantral follicles (Figure 4.5). Both 

CCND2 and p27 proteins were also weakly detected in the nucleus of the oocyte; 

however, no specific pattern of staining was observed in this cell type and co-localisation 

of both proteins was difficult to detect (Figure 4.5). 

Figure 4.5. Co-localisation of CCND2 and p27 in small follicles in juvenile mouse ovaries. 

High-power confocal images of day 4, day 8 and day 16 ovary sections show CCND2 (green) and 

p27 (red) staining. Primordial and transitional follicles show co-localisation of both proteins in 

GC nuclei (white arrows). Some GC nuclei from transitional follicles show loss of co-localisation 

(yellow arrows). Primary follicles (red arrow) and secondary follicles (shown in day 16 section) 

show an abrupt reduction of p27 expression. The oocyte nucleus shows no co-localisation of 

proteins in any follicle (yellow dashed circle). Images are counterstained blue with DAPI. The 

lower panels in day 4 and day 8 ovaries show the co-localised pixels of the thresholded image for 

the individual channels (in white). Negative control with combined non-immune rabbit and mouse 

IgGs is also shown. PF, primordial; T, transitional and P, primary follicle stages. Magnification 

is 63X for all images. 
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When the ratio of the intensities of CCND2 and p27 of individual GCs from primordial, 

transitional and primary follicles were measured, similar intensities of both CCND2 and 

p27 (ratios close to 0) were observed in primordial follicles with only 28 % and 23% of 

GCs with ratio values >0.5 and >-0.5, respectively (Figure 4.6). As explained in the 

methods, GCs with ratios >0.5 or >-0.5 have >50% decreased p27 or CCND2 expression 

relative to CCND2, respectively. By comparison, approximately 80% and 12% of the 

GCs from transitional and primary follicles had a ratio > 0.5 and >-0.5. However, positive 

ratios in primary follicles are higher than in the rest of the groups. 

Figure 4.6. Quantification of the ratio CCND2:p27 staining in GCs of small follicles of the 

mouse ovary. A) shows the ratio of intensities in individual GC nuclei for the different follicle 

stages. B) and C) show the percentage of GCs with ratios above 0.5 (decreased p27) and -0.5 

(decreased CCND2), respectively. Black and red bars in A) refer to increased p27 (+7) and 

increased CCND2 (+C), respectively.  PF, primordial; T, transitional and P, primary follicle 

stages. Numbers in parentheses refer to the GC number range for each follicle stage. 
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4.3.3 CCND2 and p27 complex dynamics in day 4 and day 16 ovaries 

In order to determine whether p27 and CCND2 were present in the same protein complex 

in the ovary, immunoprecipitation was performed. When whole protein lysates were 

subjected to IP using a CCND2 antibody, the amount of bound p27 was low. When 

samples from day 4 and day 16 ovaries were compared, higher amount of p27 was 

detectable in day 4 ovaries. By comparison, when p27 antibody was used for 

immunoprecipitation, the amount of bound CCND2 was high. When samples from day 4 

and day 16 ovaries were compared, higher amount of CCND2 was also detected in day 4 

ovaries. 

Figure 4.7. Western blot showing immunoprecipitation of CCND2 and p27 in mouse 

ovaries. Day 4 and day 16 ovaries were immunoprecipitated with a CCND2 antibody and probed 

with an antibody to p27 and CCND2 (A). The opposite was also performed, in that mouse ovaries 

were immunoprecipitated with a p27 antibody and probed with an antibody to CCND2 and p27 

(B). OD values for the bands from A and B are plotted in the lower panels. Thirty (A) and 25ug 

(B) were use as starting material for the IPs and half of the volume was loaded on the western 

blot. Input samples (IN) on the western blot contained 5 times less protein than 

immunoprecipitated samples (IP) as described in the methods. Input sample of day 16 ovaries 

contained 10 times less amount of protein than the used for the IP, due to a technical mistake. 

Non-immune rabbit IgG control (IgG) is used as a control for immunoprecipitations.  
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4.3.4 CCND2 and p27 subcellular localisation in primordial and growing follicles 

In order to determine whether both proteins are localised in the same subcellular 

compartment where they would create the protein complex, a subcellular fractionation of 

proteins from day 4 and day 16 ovaries was performed (Figure 4.8). GADPH protein was 

used as a positive control for the cytoplasmic fraction and as a negative control for nuclear 

fractions. In the fractions obtained from day 4 ovaries, GADPH showed a strong band in 

the cytoplasmic fraction whereas it was barely detectable in the nuclear fraction, 

indicating that the nuclear fraction was mostly free of cytoplasmic content. By 

comparison, protein fractions from day 16 ovaries showed higher levels of GADPH in 

the membrane fraction whereas the presence in the cytoplasmic fraction was reduced, 

suggesting that part of the cytoplasmic fraction may have been isolated with the 

membrane fraction. The presence of GAPDH in the nuclear fraction of day 16 samples 

also suggested a degree of contamination in this compartment. 

Considering the above, sub-cellular localisation of CCND2 and p27 was determined. In 

day 4 ovaries, both CCND2 and p27 were found to be enriched in the cytoplasmic fraction 

whereas in day 16 ovaries, strongest presence in the membrane fraction was observed 

(probably due to cytoplasmic enrichment in this fraction).  

Localisation of SMAD3 protein was also analysed. In day 4 ovaries, SMAD3 was 

relatively stronger in the nuclear fraction when compared to the cytoplasmic and 

membrane fraction. By comparison in day 16 ovaries, SMAD3 was also detected in the 

nuclear fraction, however, it was also observed with the same intensity as the membrane 

fraction.  
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Figure 4.8. Subcellular fractionation of CCND2, p27, SMAD3 and GADPH proteins in 

mouse ovaries. Day 4 and day 16 ovaries were pooled and total protein lysates were separated 

by subcelullar fractionation as described in the methods. Cytoplasmic (C), membrane (M) and 

nuclear (N) fractions were then subjected to western blotting. Three and 4µg of total protein from 

day 4 and day 16 ovaries was used, respectively. A representative blot is shown for CCDN2, p27, 

and SMAD3. GADPH is shown as cytoplasmic marker.  
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4.4 Discussion 

CCND2 and p27 have been shown in the image analysis in Chapter 3 to be expressed at 

high levels in GCs of primordial follicles. Since these factors are key regulators of the 

G0/G1 transition in the cell cycle and GCs from primordial follicles showed a slow 

proliferative phenotype, this chapter has aimed first to investigate whether CCND2/p27 

system functions in the ovary to regulate GC proliferation in primordial follicles and 

secondly to determine the subcellular compartment where these proteins are most likely 

to create a complex in these follicles.  

CCND2 and p27 co-localise in GCs of primordial follicles and co-localisation is lost 

when p27 is degraded in growing follicles 

When CCND2 and p27 are co-stained, it was apparent that both proteins co-localise in 

the nuclei of GCs of primordial follicles. When the ratio of CCND2 and p27 intensities 

was measured in some individual GC nuclei, the primordial follicles usually showed 

similar and high levels of both proteins, suggesting non-proliferative GCs are most likely 

present in G0/early G1 phase. As soon as follicles start growing in the transitional stage, 

GCs start proliferating and p27 was reduced relative to CCND2, in some but not all cells. 

Immunolocalisation of proteins represents a snapshot of their localisation at the time the 

ovaries are fixed. Therefore, if GCs are not synchronised, it would be expected to observe 

a variable pattern of phase-specific proteins where some GCs are highly stained while 

others show no presence of the proteins. Therefore, the variation observed between GCs 

of growing follicles indicates that GCs are not synchronised: while some cells are still in 

G0 (high p27), others are in mid-late G1 phase (decreased p27 and high CCND2). In 

primary follicles, the amount of p27 is mostly reduced relative to CCND2 and in larger 

follicles with highly proliferative GCs (e.g secondary follicles), CCND2 and p27 do not 

co-localise. p27 is mostly absent in these follicles, suggesting it is downregulated or 

degraded. Although CCND2 is still present in small growing follicles, a decrease was 

observed in highly proliferative GCs from larger follicles.  

These findings are supported with the results from chapter 3, where protein and mRNA 

levels for CCDN2 and p27 in day 16 ovaries (containing high proportions of large 

preantral follicles) are significantly decreased relative to day 4 ovaries (containing mainly 

primordial and transitional follicles).   
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CCND2 and p27 are in complex in primordial follicles 

The previous results showed that CCND2 levels are highly present in the GCs with high 

p27 and therefore, it is likely that CCND2/K4-6/p27 complexes are present in GCs of 

primordial follicles. Since CCND2 is a binding partner of K4-6 and p27 facilitates 

CCND2/K4-6 assembly (Cheng et al, 1999), the results referring to CCND2/p27 

complexes assume the presence of K4-6 protein. When the epithelial NIH3T3 cell line 

was used as a model, the CCND2/p27 complex was found in serum-starved conditions 

and was lost alongside the decrease in p27 expression, which was evident after 9 hours 

with serum. When CCND2/p27 complexes were compared between day 4 and day 16 

ovaries, a stronger signal was detectable in day 4 ovaries compared to day 16 ovaries. 

This suggests that the GCs of primordial follicles contain CCND2/p27 complexes and 

that these complexes are lost in growing follicles.  

Interestingly, the amount of p27 in complex with CCND2 was found to be the limiting 

step for the presence of the complex in both epithelial cells and ovary samples. When 

immunoprecipitation was performed with a p27 antibody, a high amount of CCND2 was 

found to be in complex. By comparison, when CCND2 was immunoprecipitated, only a 

limited amount of p27 was detectable. These findings suggest that a high amount of 

CCND2 is not present in complex with p27 (appendix 10). This p27-free CCND2 was 

detected in non-proliferative and proliferative epithelial cells (0 and 24h with serum) but 

also in both day 4 and day 16 ovary samples. Therefore, a fraction of non-catalytically 

active CCND2 exists in these follicles/ovaries. It is well-known that other cyclin kinase 

inhibitors (CKI) such as p15 can also bind to K4-6 and inhibit CCND2/K4-6 actions in 

G1 phase. In fact, SMAD3 has been reported to induce p15 gene, becoming one of the 

mechanisms by which TGFβ signalling allows cell growth arrest, as p15 binds to K4 

therefore impeding CCND2/K4 catalytic activity in cell cycle progression (Warner et al, 

1999). Interestingly, p15 mRNA levels were also found to be highly expressed in day 4 

ovaries compared to other ovary ages (appendix 9). Therefore, it is likely that other cell 

cycle inhibitors such as p15 also contribute towards maintaining inactive CCND2 levels 

in G0/G1 cells. 
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With the exception of few cells, a strong presence of CCND2 protein was generally 

observed in all GCs of primordial follicles. The levels of CCND2 in G0/G1 cells are 

tightly controlled transcriptionally and post-translationally in order to allow the G0/G1 

transition when the cell has synthesised all the necessary factors to allow its proliferation 

(Foster et al, 2011). However, a mechanism to prevent the GCs to become activated at 

the same time should exist. This mechanism may implicate p27. It has been reported that 

although non-complexed CCND2 can be imported into the nucleus, the import of 

CCND2/K4-6 complexes is more enhanced by the assembly with p27 in the cytoplasm 

(Labaer et al, 1997).  In the nucleus, phosphorylation of p27 determines whether the 

ternary complex is catalytic or non-catalytic (Nakayama, 2004). Non-catalytic complexes 

have been found in early G1 phase, where p27 confers stability to the ternary complex. 

The catalytic ternary complex appears more in late G1, and it releases Cyclin E from the 

inhibitions of p27, therefore allowing a more rapid G1/S transition (Nakayama, 2004). 

The presence of CCND2/p27 complexes were found in day 4 ovaries. Since most of their 

GCs in primordial follicles are not proliferative, it is likely that the CCND2/p27 

complexes are mostly non-catalytic.  

In p27 -/- mice, premature activation of primordial follicles was observed (Rajareddy et 

al, 2007). In cell lines were the p27 gene was deleted, the assembly and catalytic activity 

of CCND2/K4-6 complex was reduced (Cheng et al, 1999). Therefore, it seems that p27 

is important to prevent over activation of primordial follicles. It can be then proposed that 

the balance between appropriate levels of CCND2 and the formation of non-catalytic 

CCND2/K4-6/p27 complexes determines the time that a non-proliferative GC re-enters 

the cell cycle after a change in the extracellular mitogen. Whether GCs with more 

association of inactive ternary complexes have the ability to maintain their G0/early G1 

state for longer time that the GCs with less complexes remains unclear.  
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Subcellular localisation of p27 and CCND2 in the nucleus is not clear 

When subcellular fractionation of whole protein extracts was performed in day 4 and day 

16 ovary samples, both CCND2 and p27 proteins were not present in the nucleus, 

contrasting the immuno-localisation analysis of both proteins. The reduced amount of 

total protein used in the analysis is a limitation, as only abundant proteins in each fraction 

will be detected. Therefore, the absence of bands visualised with the western blot is not 

an indicative of a total absence of the protein in a particular fraction but is suggestive of 

low abundance.   

However, although the immunofluorescence staining appears to be in the nucleus, it is 

possible that the location of these proteins is not exactly inside the nucleus, but instead is 

surrounding the nuclear membrane, where CCND2/K4-6/p27 complexes reside in a non-

catalytic state (Wang et al, 2008). Although this possibility is consistent with the results 

in day 4 ovaries, where the CCND2/K4-6/p27 complexes in primordial follicles are non-

catalytic, the clear localisation of CCND2 and p27 in the nucleus of GCs in 

immunostained ovary sections argues with their presence out of the nucleus. Therefore, a 

more detailed analysis of their localisation by specific markers of nuclear envelope such 

as lamin, may help clarify their localisation (Holaska et al, 2002). 

Interestingly, SMAD3 was found in the nuclear fraction of day 4 ovaries, and supports 

the image analysis described in Chapter 3, where GCs of primordial follicles contain more 

nuclear presence of SMAD3. TFGβ signalling has been previously involved in cell cycle 

arrest via Myc repression in late G1 phase (Warner et al, 1999) and SMAD3 binding to 

Myc was observed in day 4 and day 16 ovaries in the previous chapter. However, SMAD3 

binding to Ccnd2 gene was also observed in these samples, where SMAD3 binding was 

higher in day 4 ovaries when compared to day 16 ovaries. Since CCND2/p27 complexes 

were also strongly detected in day 4 ovaries and increased levels of CCND2 have been 

proposed to regulate the formation of the complexes, it is likely that TGFβ signalling also 

contributes to the maintenance of CCND2/p27 complex dynamics though transcriptional 

regulation of Ccnd2 expression (Figure 4.9).  
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Figure 4.9. Model of CCND2/K4-6/p27 complex dynamics in non-proliferative GCs during G0/G1 

phase. If levels of p27 protein in the nucleus are high, GCs are mainly present in G0 and Ccnd2 gene 

expression levels are maintained transcriptionally by the binding of transcription factors such as SMAD3 

(1). At early G1, an increase in CCND2 protein levels allows both CCND2 alone and the ternary complex 

CCND2/K4-6/p27 to translocate to the nucleus (2). If levels of CCND2 are still increasing, the ternary 

complex translocates out from the nucleus, where p27 is degraded allowing transition towards S phase and 

initiating GC proliferation and PFA (3). 

 

In summary, the results obtained in this chapter have highlighted the following key 

findings: 

 CCND2 and p27 proteins co-localise in GC nuclei of primordial follicles, where 

they are bound in a complex. This complex (probably non-catalytic) is reduced in 

GCs of growing follicles.  

 CCND2 and p27 were detected in the cytoplasmic compartment of primordial and 

growing follicles, suggesting that the complex is being formed in this 

compartment rather than in the nucleus.  

 SMAD3 protein was localised in the nuclear compartment of primordial and 

growing follicles, although it was relatively stronger in the nuclear fraction of 

primordial follicles, consistent with the findings in Chapter 3. 
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This chapter has shown evidence of the putative role of CCND2/p27 protein complexes 

as cell cycle regulators during GC proliferation in primordial follicles. Transcriptional 

regulation of these factors is essential for their complex formation (Foster et al, 2011). 

Since SMAD3 binding to Ccnd2 gene was also detected in primordial follicles, the next 

chapter is focused on SMAD3 transcriptional regulation of Ccdn2, Myc and other 

candidate genes under different conditions of TGFβ signalling, and how this regulation 

finally relates to follicle activation and growth. 
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Functional role of TGFβ  

in primordial follicles: Cell cycle regulation and  

early follicle growth 
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5.1 Introduction 

The mechanisms regulating the relative quiescence of the primordial follicle or 

conversely, its activation, still remain unclear. In the previous chapter, the TGFβ mediator 

SMAD3 was detected in the nuclear fraction of day 4 ovaries, supporting the results of 

Chapter 3, where SMAD3 was expressed in the nuclei of GCs of primordial follicles. 

These findings implicate SMAD3 as an essential transcription factor in these cells. In 

support of this, ChIP-PCR experiments revealed that SMAD3 bound to the promoter of 

Myc and Ccnd2 genes in samples of day 4 ovaries, presumably repressing Myc and 

promoting Ccnd2. In other cell types, TGFβ inhibitory actions on cell proliferation have 

been reported through the repression of Myc gene during late G1 phase (Warner et al, 

1999). During early G1 phase, direct regulation by TGFβ ligands has not been 

determined, however, the results in Chapter 3 and 4 revealed that high levels of CCND2 

and CCND2/p27 complexes in GCs of primordial follicles are likely to be important for 

maintaining the non-proliferative state of GCs. Collectively, these findings suggest that 

TGFβ signaling is necessary to regulate Myc and Ccnd2 levels in GCs of primordial 

follicles to control their proliferation. 

 

It has been proposed that the TGFβ signaling switches from inhibitory to inducer of cell 

proliferation (and viceversa) and is related to the different repertoire of factors partnering 

with SMAD3 in the nucleus, creating alternative transcriptional complexes with different 

transcriptional activity (Massague, 2012). The identity of the different complexes, their 

mechanisms of gene regulation and the conditions that drive their formation (such as 

duration/dose of TGFβ ligand exposure) still remain under investigation, but are crucial 

to understand the reason why the same TGFβ ligands can trigger either growth arrest or 

cell proliferation.  

 

Several studies using different exogenous TGFβ ligands in cultured ovaries of different 

species including human have reported both stimulation and inhibition of follicle 

development (Childs & Anderson, 2009; Ding et al, 2010; Rosairo D 2008; Telfer et al, 

2008; Wang et al, 2014a; Zhao et al, 2001). However, it has been also demonstrated in 

cultured human cortical biopsies and cell line models that the length of exposure and dose 

of TGFβ ligand may provide a reasonable explanation for this apparent paradoxical effect 

of TGFβ signalling in follicle development (Ding et al, 2010; Zi et al, 2011).  
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Based on these findings and considering the “dual” role that TGFβ signaling has in growth 

arrest and induced cell proliferation in other models, it is hypothesised that a brief 

exposure to increased TGFβ signaling may initiate a change in SMAD3 regulation 

of cell cycle genes that allows primordial follicles to activate. Therefore, this chapter 

has the following aims:  

 To study in detail whether SMAD3 induces or represses Ccnd2 and Myc 

expression by comparing SMAD3 binding in primordial and growing follicles 

using ChIP-qPCR (binding) and qPCR (target gene expression) in biological 

replicates. 

 To validate a neonatal mouse ovary culture as an in vitro model of primordial 

follicle activation to be used in the subsequent aims. 

 To determine with the techniques above how SMAD3 binding and gene regulation 

changes with experimental modulation in TGFβ signaling using the in vitro model 

of cultured ovaries. 

 To identify the activation of non-canonical TGFβ signaling mechanisms. 

 To establish the relationship between the TGFβ-associated molecular events with 

follicle growth, using a quantitative morphological analysis of 

immunofluorecently labelled ovary sections.  
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5.2 Materials and Methods 

5.2.1 Tissue collection  

Ovaries from day 4 and 16 mice were dissected as described (see 2.2) and either placed 

in culture (day 4 only) or flash frozen in liquid nitrogen and stored at -80ºC for protein, 

RNA extraction and ChIP experiments.  

5.2.2 ChIP-qPCR and qPCR of day 4 and day 16 mouse ovaries 

Immunoprecipitation of fixed chromatin using a SMAD2/3 antibody (sc-133098; Santa 

Cruz) from day 4 and day 16 ovaries was performed as described (see 2.7.6) from five 

biological replicates (n=5) containing 2 ovaries/sample (day 4) and 1 ovary/sample (day 

16). Quantitative PCR (qPCR) was used to quantify the amount of DNA bound to SMAD3 

protein for the promoter regions of Ccnd2 and Myc genes with specific primers (see Table 

3.3) and the SensiFAST™ SYBR® Hi-ROX kit (Bioline) according to manufacturers’ 

guidelines (see 2.7.6).  Non-immune IgG antibody (sc-2025, Santa Cruz) was also used 

to determine the amount of non-specific binding. An equal volume of unknown 

concentration (4µl) of input, IP, IgG control or distilled water (negative control) was 

included in duplicate in 384 well-plates and the cycling conditions were set as follows: 

Activation step at 95°C for 3 minutes and then 40 cycles of amplification (3 seconds at 

95°C for DNA denaturation, 20 seconds at 60°C for primer annealing and 10 seconds at 

72°C for primer extension) in a 7900HT Fast Real-Time PCR System (Applied 

Biosystems). Fluorescence signals were collected after each cycle and also after a DNA 

melting/dissociation step to assess the identity of the products amplified. The analysis of 

the results was based on the % input method previously described (see 2.7.8). 

 

5.2.3 PHM1 cultures 

Although the main aim of this chapter is to evaluate the effects of modified TGFβ 

signalling in an ovary culture model, it was important first to determine if the reagents to 

be used are biologically active. For these preliminary optimisation experiments, the 

PHM1 cell line (derived from pregnant human myometrium) was used and maintained as 

described (see 2.2), since evidence of phosphorylaled SMAD3 was obtained in previous 

experiments.  
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In order to stimulate TGFβ signalling, the TGFβ1 ligand (R&D systems, 240-B-002) was 

chosen from all TGFβ ligands activating the canonical SMAD2/3 pathway, since it is 

widely used and has been previously associated with PFA (Rosairo D 2008; Wang et al, 

2014b). To reduce TGFβ signalling, the small molecule inhibitor A 83-01 (MedChem 

Press, 2939) with specificity for the type I receptors ALK5, ALK4 and ALK7 was used 

to block SMAD2/3 phosphorylation (Joseph et al, 2014; Tojo et al, 2005). Based on 

results from a meta-analysis for TGFβ1 ligand (see appendix 11), a range between 5 and 

10ng/ml was found for GC cultures and isolated follicle cultures whereas 10ng/ml was 

the most frequent dose for whole ovary cultures. Since short treatments in cell cultures 

may need lower amount of ligand than whole organ cultures for optimal stimulation, the 

amount of 10 ng/ml was considered appropriate for all experiments with neonatal ovary 

cultures. Therefore, no other concentration was optimized. With reference to the time of 

the treatments, two different early time points were used with 10 ng/ml of TGFβ1 ligand 

(30 min and 2 hours). By comparison, three different doses of A 83-01 (0.1 µM, 1µM and 

10 µM) were tested to assess TGFβ signalling inhibition. A 83-01 inhibitor showed no 

major p-SMAD3 inhibition in basal conditions at different time points (appendix 12). 

Therefore, based on the findings from previous reports (Tojo et al, 2005; Yamamura et 

al, 2012), the 30 minutes time point was chosen to optimise the three different doses of A 

83-01 inhibitor (0.1 µM, 1µM and 10 µM). To assess inhibitor specificity for the receptor, 

TGFβ1 ligand was added to some wells after the incubation with A 83-01 inhibitor. 

Protein extraction was performed and 20µg were used for western blotting as previously 

described (see 2.5.2 and 2.5.5, respectively) with antibodies against p-SMAD3 (ab52903, 

Abcam) (see Table 2.1). 

5.2.4 Neonatal ovary cultures  

Effect of culture conditions in the molecular biology of the ovary 

Preliminary experiments to assess the viability and protein expression pattern in neonatal 

(day 4) ovaries were performed under serum and serum-free conditions. For this, ovaries 

were cultured (using the culture conditions described in 2.3) in serum-free medium 

(without FBS) for one and three days. Two ovaries were used for each time point and the 

largest section per ovary (two ovary sections per time point, n=2) was used for 

immunofluorescence staining with specific antibodies for CCND2 (sc-593; Santa Cruz), 
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SMAD2/3 (sc-133098; Santa Cruz) and anti-CASPASE3 (#9664; Cell Signalling) as 

explained (see 2.4.2).  

In addition, the effect of serum on pathway activation was also analysed in ovaries 

cultured during 2, 4, 6 and 24 hours in culture medium with or without 10% FBS. Two 

ovaries/sample were used for protein extraction and 15µg were used for western blotting 

with antibodies against p-SMAD3 (ab52903, Abcam) and p-AKT (#4060, Cell 

Signalling) as described previously (see Table 2.1). One sample per time point and 

treatment was used for this experiment (n=1). 

Optimisation of the time point for short increased and decreased TGFβ signalling 

Based on the results obtained with PHM1 cells, 10ng/ml of TGFβ1 ligand and 1µM of A 

83-01 inhibitor were chosen for neonatal ovary cultures. However, a preliminary 

experiment was used to further optimize the time points for the treatments. Day 4 ovaries 

were cultured and exposed to TGFβ1 ligand during two different time points (30 minutes 

and 2 hours) to detect the best time for maximum SMAD3 phosphorylation. The same 

time points were used for A 83-01 inhibitor alone. Moreover, the specificity of A 83-01 

inhibitor to the TGFβ receptor I was also assessed by adding TGFβ1 (for 30 minutes and 

2 hours) to two wells previously supplemented with A83-01 for 30 minutes. Protein 

extraction from samples containing 2 ovaries was performed and 15µg were used for 

western blotting as previously described (see 2.5.2 and 2.5.5, respectively) with 

antibodies against p-SMAD3 (ab52903, Abcam) (see Table 2.1). Only one sample per 

time point and treatment was used for this experiment (n=1). 

Experimental design to evaluate molecular and morphological changes after treatments 

Based on the results obtained from the preliminary experiments described above (see 

5.2.4), ovaries were cultured for 24 hours in media containing 10% FBS and treatments 

were added to the ovaries in fresh serum-free media as indicated on the timeline in Figure 

5.1. A single time point (2 hours) and concentration for TGFβ1 ligand (10ng/ml) and A 

83-01 inhibitor (1µM) were selected.  

For the assessment of the molecular changes under different TGFβ conditions (SMAD3 

binding and gene regulation) cultured ovaries were classified in four groups: Control, 

TGFβ1 ligand, A 83-01 and A 83-01 + TGFβ1 ligand, according to the layout shown in 

Figure 5.1A and treated for 2 hours. Ovaries were collected (after 2 hours) and either 
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fixed and processed for ChIP-qPCR (see 2.7.1) or flash frozen in liquid nitrogen for gene 

expression analysis (see 2.8.1).  

For the assessment of the phenotypical changes (effect on follicle activation and growth) 

under different TGFβ conditions, cultured ovaries were classified as unstimulated 

(control), stimulated with TGFβ1 ligand and A 83-01 inhibitor alone (Figure 5.1) and 

treated for 2 hours. In the TGFβ1 treatment group, the addition of A 83-01 inhibitor for 

an extra 1 hour was used to block further TGFβ1 signalling as previously described 

(Clarke et al, 2009). After treatments, ovaries were left in culture for two additional days 

and collected after a total culture time of 72 hours. After this time, ovaries were collected, 

fixed in formalin and replaced next day with 70% ethanol until paraffin embedded. Six 

ovary sections (n=6) from 4 ovaries were used per treatment group in this experiment. 

Immunofluorescence staining with antibodies against DDX4 (ab13840, Abcam) and 

Smad3 (#9523, Cell Signalling) was performed as described previously (see 2.4.2). Image 

analysis of immunostained sections was performed with image J by counting and 

measuring the oocyte area of follicles with a clear and visible outline of the oocyte nucleus 

(Figure 5.1B). When more than one section from the same ovary was used, a minimum 

span of 2 sections (10µm) from the largest cross-section was considered to avoid double 

counting, Follicles were staged using the mean oocyte area as determined in Chapter 3 

(see Figure 3.6) as follows: Primordial (0-200µm2), transitional (200-400µm2), small 

primary (400-800µm2) and large primary (>800µm2). The proportion of the different 

follicle stages was also calculated for each treatment group. An additional morphological 

analysis by GC number of all classified follicles was also performed to validate the 

follicle stage classification.  
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Figure 5.1. Layout of the experimental design with whole neonatal ovary culture. A) For 

ChIP-qPCR experiments, five samples per treatment (two ovaries per sample) were used (n=5). 

For qPCR, five samples per treatment (one ovary in each sample) were used (n=5). B) For 

morphological assessment with immunofluorescence staining (IF), six large cross-sections per 

treatment (obtained from four ovaries) were used (n=6). Total number of follicles counted per 

section and treatment are shown in the table. Timeline with treatments (green arrows) and 

collection of ovaries (red arrows) is also shown at the specified time points.  
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Gene expression analysis: qPCR 

RNA was extracted from 1 ovary/sample as described previously (see 2.8.1). All samples 

were concentrated by vacuum centrifugation for 4 minutes at 23 degrees before evaluating 

quality and concentration using the Agilent 2100 Bioanalyser (Appendix 4, B). First 

strand DNA (cDNA) synthesis was performed followed by conventional PCR (see 2.8.2) 

with primers for the housekeeping gene Htrp1 to confirm that the cDNA samples were of 

sufficient quality to use for qPCR (Appendix 5, B). Quantitative PCR was performed to 

study the effect of the different treatments on the gene expression of Smad2, Smad3, 

Foxl2, p27, Myc and Ccnd2. The TGFβ inhibitor Smad7, an intracellular regulator of 

SMAD signalling (Itóh et al, 1998) and Gdf9, a gene expressed specifically in growing 

oocytes (Dong et al, 1996), were also used as controls  for TGFβ signalling activation and 

PFA, respectively (Table 5.1). SensiFAST™ SYBR® Hi-ROX kit (Bioline) was used and 

cycling conditions were the same as described above (see 5.2.2). Samples (1µl per 

reaction) and negative control with distilled water were also run in duplicate in a 384 

well-plate. Ct values were normalised against the endogenous gene Atpb5 (PrimerDesign, 

Southampton, UK) and fold changes relative to the control group were calculated for each 

gene according to the 2 –ΔΔCt method (see 2.8.3). 

 

Table 5.1. Primers sequences, amplification product sizes (bp) and primer efficiency (%) for 

qPCR assays. 

Primer  
set 

      Sequence (5’     3’) bp Primer efficiency (%) 

Smad3 F: GTCAAAGAACACCGATTCCA 

R: TCAAGCCACCAGAACAGAAG 
154 91 

Smad2 F: CGTCCATCTTGCCATTCAC 

R: GTCCATTCTGCTCTCCACCA 
102 113 

Foxl2 F: TCATAGCCAAGTTCCCGTTCTA 

R:GTAGTTGCCCTTCTCGAACATG 
179 89 

Myc F: AAATCCTGTACCTGGTCCGATT 
R:CCACAGACACCACATCAATTTCT 

184 104 

Ccnd2 F: CTTGTAGCCCATTCAGACACAG 

R:TATCATCCACGTGTGCTGTAGA 
165 93 

p27 F: AGTCAGCGCAAGTGGAATTT 

R: AGTAGAACTCGGGCAAGCTG 
100 130 

Smad7 F: AGTCAAGAGGCTGTGTTGCTGT 

R: CATTGGGTATCTGGAGTAAGGA 
130 - 

Gdf9 F:TCACCTCTACAATACCGTCCGG 

R:GAGCAAGTGTTCCATGGCAGTC 
139 - 

Htrp1 F: GTTGTTGGATATGCCCTTGAC 

R: GCGCTCATCTTAGGCTTTGTA 
105 - 
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ChIP-qPCR analysis 

Sheared chromatin from 2 ovaries/sample was isolated as explained previously (see 

2.7.1). All samples were analysed with 1.5% agarose gel electrophoresis to visualise 

fragment size range (Appendix 6). Quantitative PCR was used to quantify the amount of 

SMAD3 binding to Ccnd2 and Myc genes in the different groups. PCR conditions were 

as previously described (see 4.2.3) and primers used were Ccnd2.1 and Myc.3 (see table 

3.2). The analysis of the results was based on the % input method described in the methods 

(see 2.7.8). 

Western blotting 

In order to study the activation of canonical and non-canonical signalling pathways after 

the treatments, samples containing 2 ovaries/sample (n=1) were used for protein 

extraction and 15µg of total protein were used for western blotting as previously 

described (see 2.5.2 and 2.5.5, respectively). Antibodies against p-SMAD3 (ab52903, 

Abcam) (canonical activation), p-ERK1/2 (#4370, Cell Signalling) and p-AKT (#4060, 

Cell Signalling) (non-canonical activation of MAPK and PI3K signalling pathways, 

respectively) were used (see Table 2.1). 

5.2.5 Statistical analysis  

To compare the central tendency between groups from the ChIP-qPCR data, non-

parametric tests were used. In day 4 and day 16 ovaries, a Mann-Whitney U test was 

performed to compare the differences in % input between the two groups. To compare 

the differences in % input between the four different treatments in cultured ovaries, a 

Kruskal-Wallis test with post-hoc Dunn’s multiple comparisons was used. For qPCR 

analysis of day 4, 8 and 16 ovaries and the four different treatment groups in cultured 

ovaries, means were compared between groups by one-way ANOVA with Bonferroni 

multiple comparisons post-hoc test. To compare the central tendency of oocyte areas 

measured for the different treatments in cultured ovary sections, a Kruskal-Wallis test 

with post-hoc Dunn’s multiple comparisons was used. Finally, significant differences in 

the mean number of multi-oocyte follicles (MOFs) between the three treatment groups 

were compared by one-way ANOVA with Bonferroni multiple comparisons post-hoc 

test. Graphpad Prism 7.03 was used to calculate and represent the data and differences 

were considered statistically significant when P <0.05.  
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5.3 Results 

5.3.1 SMAD3 binding to Ccnd2 and Myc genes in day 4 and day 16 ovaries 

In order to quantify the amount of SMAD3 binding to Ccnd2 and Myc target genes in 

vivo, biological replicates of day 4 and day 16 ovary samples (n=5) were used and qPCR 

was performed instead of standard PCR (as presented in Chapter 3). The results obtained 

showed significant increased binding of SMAD3 to both target genes in day 4 ovaries 

when compared to IgG control (P<0.05). For Myc, SMAD3 binding in 16 ovaries was 

not significant when compared to IgG control whereas for Ccnd2 gene, significant 

differences in day 16 ovaries were observed when compared to IgG control (P<0.05) 

(Figure 5.2A). When the amount of SMAD3 binding was compared between day 4 and 

day 16 samples, no significant increased binding in day 4 ovaries was detected for Myc 

or Ccnd2 (Figure 5.2 B). However, more day 4 ovary samples contained medium and 

high SMAD3 binding for both Myc and Ccnd2 genes compared to day 16 ovaries, which 

was reduced for both genes (Figure 5.2B). 

In order to determine whether SMAD3 is a repressor or an activator of the genes in 

primordial follicles, qPCR was used to measure Ccnd2 and Myc mRNA expression in day 

4, 8 and 16 ovaries (Figure 5.2 C). Results showed a significant increase in Myc gene 

expression in day 8 and day 16 ovaries relative to day 4 ovaries (P<0.01 and P<0.001, 

respectively), whereas Ccnd2 was decreased in day 16 ovaries relative to day 4 (P<0.01). 
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Figure 5.2. ChIP-qPCR with SMAD3 antibody and qPCR data in juvenile mouse ovaries. 

A) shows qPCR amplification of Myc and Ccnd2 gene promoters in day 4 and day 16 ovaries 

after ChIP with SMAD3 and non-immune IgG antibodies. % input was calculated using the “% 

input” method. Each group contained 5 samples (n=5). Data are medians ± interquartile range and 

statistical differences are relative to IgG control (*P<0.05). B) represents the % input of SMAD3-

ChIP samples categorised as low (≤0.03), medium (0.03-0.06) and high (≥0.06) and medians 

plotted. C) shows transcript levels determined by qPCR and normalised against the endogenous 

reference Atpb5. Fold changes were calculated relative day 4 using the 2 –ΔΔCt method as 

described in the methods. Each group contained 5 samples (n=5). Data are means ± SEM and 

statistical differences are relative to day 4 (*P<0.05, **P<0.01, ****P<0.0001). 
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5.3.2 Optimisation and validation of TGFβ1 ligand and A3-801 inhibitor in PHM1 cells 

TGFβ1 ligand  

PHM1 cells were cultured in 6-well plates and 10 ng/ml of TGFβ1 ligand was used to 

study SMAD3 phosphorylation at 30 minutes and 2 hours (Figure 5.3). The earliest time 

point (30 minutes) showed higher SMAD3 phosphorylation and was therefore used for 

the optimisation of the concentration of the A 83-01 inhibitor. 

 

  

 

 

 

Figure 5.3. Western blot showing SMAD3 phosphorylation in PHM1 cells treated with 

TGFβ1.  PHM1 cells were grown in serum free media and were exposed for 30 minutes or 2 

hours in the presence or absence of 10ng/ml TGFβ1. Cells were collected at these time points and 

protein extracts (20µg) were assayed for p-SMAD3 by western blotting. Beta actin is shown as a 

loading control. Data was obtained from 1 sample from each group (n=1). Timeline with 

treatments (green arrow) and collection of cells (red arrows) is shown at the specified time points. 

A 83-01 inhibitor 

To determine the minimal amount of A3-801 inhibitor that can be used to block the TGFβ 

receptor and prevent TGFβ signalling, three different doses of inhibitor were used alone 

(0.1, 1 and 10µM) and with additional incubation with TGFβ1 ligand for 30 minutes. The 

amount of SMAD3 phosphorylation was used to assess the amount of TGFβ pathway 

inhibition after 30 minutes (Figure 5.4). All time points maintained the amount of 

phosphorylated SMAD3 under basal conditions even after the addition of TGFβ1 ligand, 

with the exception of the lowest concentration (0.1µM), which showed a slight increase 

after ligand addition (Figure 5.4). Based on these experiments in PHM1 cells, a 

concentration of 1µM of the A 83-01 inhibitor was considered for the neonatal ovary 

cultures. 
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Figure 5.4. Western Blot showing SMAD3 phosphorylation in PHM1 cells treated with A 

83-01 inhibitor. PHM1 cells were exposed for 30 minutes to 10ng/ml of TGFβ1 ligand and for 

30 minutes to 0.1µM, 1µM and 10 µM of A83-01 inhibitor. Samples were collected at these time 

points and protein extracts (20µg) were assayed for p-SMAD3 by western blotting. Beta actin is 

shown as a loading control. Control with DMSO was also included. Data was obtained from 1 

sample from each group (n=1). Timeline with treatments (green arrows) and collection of cells 

(red arrow) is shown. 

 

5.3.3 Effect of A 83-01 and TGFβ1 on cultured neonatal mouse ovaries. 

Morphological evaluation of cultured ovaries and protein expression pattern under 

serum-free conditions  

Immunofluorescent staining of day 4 ovaries cultured during one and three days in serum-

free conditions was performed in order to determine the effects of the in vitro environment 

on the normal protein expression of CCND2 and SMAD2/3 in small follicles. The 

staining pattern for both of these proteins was retained (Figure 5.5), suggesting that the 

culture system does not have an observable impact on the molecular biology and normal 

function of the ovaries, making its use suitable for functional studies.   
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Figure 5.5. Expression of CCDN2 and SMAD2/3 in the mouse ovary after culture. Day 4 

cultured ovaries in serum-free conditions for one and three days were immunofluorescently 

stained for SMAD2/3 (red) and CCND2 (green) and compared with non-cultured ovaries. Nuclear 

staining is evident in GCs of primordial follicles for both proteins (yellow arrows) while growing 

follicles (white arrow) show cytoplasmic SMAD2/3 in GCs. Merge of channels show co-

localisation of both proteins in primordial follicles. Nuclei are counterstained blue with DAPI. 

Cultured ovaries were imaged with an inverted fluorescence microscope Olympus IX73 at 

magnification 60X while non-cultured ovary sections were obtained with an inverted Leica SP5 

confocal laser-scanning microscope at magnification 63X. Scale bar is 20µm.  
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In addition, viability under serum-free conditions was assessed with anti-active Caspase3 

staining. A limited amount of apoptosis was observed in stromal cells and some GCs from 

primary follicles but not in primordials (Figure 5.6).   

 

Figure 5.6. Expression of Caspase 3 

and SMAD2/3 in the mouse ovary 

after culture. Day 4 cultured ovaries 

in serum-free conditions during one 

day were immunofluorescently 

stained for SMAD2/3 (red) and 

CASPASE 3 (green) Apoptosic GCs 

are observed in primary follicles 

(white arrows), and the surrounding 

stromal cells (yellow arrow). Scale 

bar is 200µm and magnification is 

20X. 

 

Effect of serum on SMAD3 and AKT phosphorylation in cultured neonatal ovaries 

In order to study the effect of serum on SMAD3 and AKT phosphorylation, day 4 ovaries 

were cultured for 24 hours under serum-free conditions and after this time, serum was 

added to some wells and ovaries were collected after different time points. No differences 

were observed in phosphorylation levels of SMAD3 and AKT at any time point between 

serum and serum-free conditions (Figure 5.7A). Phosphorylation levels of SMAD3 were 

also studied after treatment for 24 hours in serum conditions, where no differences were 

observed when compared to 6 hours and control treatment groups. These findings suggest 

that serum does not have a major influence on TGFβ and PI3K signalling pathways in 

this culture model. Thus, it was decided that the inclusion of serum to support long-term 

cultures may be more beneficial and will be used in all experiments for consistency. 
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 Figure 5.7. Western Blot showing SMAD3 and AKT phosphorylation in the mouse ovary 

after culture. Day 4 ovaries were cultured in either 10%FBS or serum-free conditions at different 

times. In A) ovaries were collected at these time points and protein samples (15µg) were assayed 

for p-SMAD3 and p-AKT by western blotting. In B) ovaries were left for 24 hours with 10%FBS 

and assayed for p-SMAD3 only. Beta actin is shown as a loading control. Data was obtained from 

1 sample from each group (n=1). Timeline with treatments (blue arrow) and collection of ovaries 

(red arrows) is shown. 

 

Time point optimisation of A 83-01 and TGFβ1 treatments in neonatal ovary cultures 

Since no effect on SMAD3 phosphorylation was observed in ovaries cultured under 

serum-free or serum (10% FBS), ovaries were allowed to settle in the culture plates for 

24 hours with 10% FBS prior to supplementation with either TGFβ1 ligand or A 83-01 

inhibitor.  Phosphorylated SMAD3 levels did not appear to differ from control levels after 

30 minutes with exogenous TGFβ1. By 2h, p-SMAD3 levels were elevated in TGFβ1 

treated ovaries. When ovaries were supplemented with A83-01, p-SMAD3 were reduced 

after 2 hours, even after addition of TGFβ1, indicating that A 83-01 inhibits and impedes 

canonical TGFβ stimulation with TGFβ1. Based on these findings, 2 hours was 

considered sufficient time to either stimulate or inhibit canonical TGFβ signalling and 

was therefore applied in the next experiments (Figure 5.8). 
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Figure 5.8. Western Blot showing SMAD3 phosphorylation in culture ovaries treated with 

TGFβ1 ligand and A83-01 inhibitor. Ovaries were treated for 30 minutes and 2 hours with 

10ng/ml of TGFβ1 ligand and 1µM A83-01 inhibitor alone and 30 minutes with 1µM A83-01 

inhibitor followed by 30 minutes and 2 hours with 10ng/ml TGFβ1. A control with 1 µM DMSO 

for 30 minutes and 2 hours was also included. Ovaries were collected at these time points and 

protein extracts (15µg) were assayed for p-SMAD3 by western blotting. Beta actin is shown as a 

loading control. Data was obtained from 1 sample from each group (n=1). Timeline with 

treatments (green arrows) and collection of ovaries (red arrow) is shown. 

5.3.4 Effect of TGFβ1 ligand and A 83-01 inhibitor on day 4 cultured neonatal mouse 

ovaries  

SMAD3 binding to Ccnd2 and Myc genes 

When SMAD3 binding to Myc was compared with the IgG control for all treatments, only 

SMAD3 binding in the control group was significantly increased (P<0.05), whereas the 

treatment with TGFβ1 ligand and A 83-01 inhibitor (alone or with TGFβ1) did not 

significantly increase SMAD3 binding (relative to IgG control) (Figure 5.9). When 

SMAD3 binding to Myc was compared between treatments, no significant differences 

were detected. However, more samples containing high and medium SMAD3 binding to 

Myc were observed in the control and TGFβ1 ligand groups in comparison with the low 

SMAD3 binding observed in the A 83-01 Inhibitor groups (Figure 5.9).  When steady 

state mRNA expression levels of Myc gene were compared between the treatment groups, 

a significant increase in transcript levels were detected with the TGFβ1 treatment group 

when compared to control and A 83-01 treated groups (P<0.05). No significant 

differences were observed in A 83-01 inhibitor-treated groups when compared to control 

(Figure 5.9).  
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Figure 5.9. ChIP-qPCR with SMAD3 antibody and qPCR data for Myc gene in neonatal 

mouse ovaries after culture. Ovaries were treated with 10ng/ml of TGFβ1 ligand, 1 µM A83-

01 inhibitor, 1µM A83-01 inhibitor followed by 10ng/ml TGFβ1 and non-treated (control). Upper 

panel in A) shows qPCR amplification of Myc gene promoter after ChIP with SMAD3 and non-

immune IgG antibodies. Lower panel represents the % input of ChIP samples categorised as low 

(≤0.05), medium (0.05-0.010) and high (≥0.10). % input was calculated using the “% input” 

method described in the methods. Each group contained 5 samples (n=5). Data are medians ± 

interquartile range and differences are relative to IgG control (*P<0.05). B) shows transcript 

levels determined by qPCR and normalised against the endogenous reference Atpb5. Fold changes 

were calculated relative to control (non-treated) group using the 2 –ΔΔCt method as described in 

the methods. Each group contained 5 samples (n=5). Data are means ± SEM and differences are 

relative to the treatment group in parentheses (*P<0.05). C, control; T, TGFβ1 ligand; I, A83-01 

inhibitor; IT, A83-01 inhibitor + TGFβ1 ligand. 

By comparison, when SMAD3 binding to Ccnd2 was compared with the IgG control for 

all treatments, SMAD3 binding in the control group was significantly increased (P<0.01) 

while the treatment with TGFβ1 ligand and A 83-01 inhibitor (alone or with TGFβ1) did 

not significantly increase SMAD3 binding relative to IgG control (Figure 5.10). When 

SMAD3 binding to Ccnd2 was compared between treatments, no significant differences 

were detected and SMAD3 binding was generally low (Figure 5.10).  
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However, medium and high values were observed in control and TGFβ1 treatment 

groups, while all samples in the A 83-01 inhibitor groups contained low SMAD3 binding 

values (Figure 5.10).  When steady state mRNA expression levels of Ccnd2 gene were 

compared between the treatment groups, a significant increase in transcript levels were 

detected with the TGFβ1 treatment group when compared only to A 83-01 treated group 

(inhibitor alone) (P<0.05). No significant differences were observed in A 83-01 inhibitor-

treated groups when compared to control (Figure 5.10).  

 

Figure 5.10. ChIP-qPCR with SMAD3 antibody and qPCR data for Ccnd2 gene in neonatal 

mouse ovaries after culture. Ovaries were treated with 10ng/ml of TGFβ1 ligand, 1 µM A83-

01 inhibitor, 1µM A83-01 inhibitor followed by 10ng/ml TGFβ1 and non-treated (control). Upper 

panel in A) shows qPCR amplification of Ccnd2 gene promoter after ChIP with SMAD3 and non-

immune IgG antibodies. Lower panel represents the % input of ChIP samples categorised as low 

(≤0.03), medium (0.03-0.06) and high (≥0.06). % input was calculated using the “% input” 

method described in the methods. Each group contained 5 samples (n=5). Data are medians ± 

interquartile range and differences are relative to IgG control (*P<0.05). B) shows transcript 

levels determined by qPCR and normalised against the endogenous reference Atpb5. Fold changes 

were calculated relative to control (non-treated) group using the 2 –ΔΔCt method as described in 

the methods. Each group contained 5 samples (n=5). Data are means ± SEM and differences are 

relative to the treatment group in parentheses (*P<0.05). C, control; T, TGFβ1 ligand; I, A83-01 

inhibitor; IT, A83-01 inhibitor + TGFβ1 ligand.  
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Effect of TGFβ1 and A83-01 on expression of TGFβ factors and cell cycle genes 

Steady state mRNA levels of Smad3, Foxl2, Smad2, p27 and Gdf9 remained unchanged 

between control and treatment groups. By comparison, mRNA levels of the early 

response TGFβ inhibitor Smad7 were significantly increased with TGFβ1 treatment 

relative to all other groups (P<0.0001) (Figure 5.11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11.  Expression of candidate TGFβ and cell cycle gene transcripts in neonatal 

mouse ovaries after culture. Ovaries were treated with 10ng/ml of TGFβ1 ligand, 1 µM A83-

01 inhibitor, 1µM A83-01 inhibitor followed by 10ng/ml TGFβ1 and non-treated (control). 

Transcript levels were determined by quantitative PCR and were normalised against the 

endogenous reference Atpb5. Fold changes were calculated relative to the control group using the 

2 –ΔΔCt method as described in the methods. Each group contained 5 samples (n=5). Data are 

means ±SEM and differences are relative to the treatment group in parentheses (****P< 0.0001). 

C, control; T, TGFβ1 ligand; I, A83-01 inhibitor; IT, A83-01 inhibitor + TGFβ1 ligand. 
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Effect of TGFβ1 and A83-01 on non-canonical TGFβ signalling  

It is well acknowledged that TGFβ ligands have the ability to activate non-canonical, 

SMAD-independent signalling pathways (Zhang, 2009). Therefore, to test this hypothesis 

in neonatal ovaries, a western blot analysis of the non-canonical mediators p-ERK and p-

AKT (belonging to MAPK and PI3K signalling pathways) was performed (Figure 5.12). 

Phosphorylation of both mediators was increased in TGFβ1 treated groups compared to 

control and inhibitor treated group, indicating that increased TGFβ signalling in neonatal 

ovaries also activates alternative pathways alongside the SMAD canonical pathway 

(Figure 5.12). 

 

Figure 5.12. Western Blot showing ERK1/2 and AKT phosphorylation in neonatal mouse 

ovaries in culture. Ovaries were treated 2 hours with 10ng/ml of TGFβ1 ligand, 30 minutes with 

1µM A83-01 inhibitor followed by 2 hours with 10ng/ml TGFβ1 and 2 hours with 1 µM DMSO 

(control). Timeline with treatments (green arrows) and collection of ovaries (red arrow) is shown. 

Ovaries were collected at these time points and protein extracts (15µg) were assayed for p-

SMAD3 by western blotting. Beta actin is shown as a loading control. Data was obtained from 1 

sample from each group (n=1). OD values for each protein are represented in the bar chart in the 

upper panel and are normalised against loading control beta-actin as described in the methods.  

  



162 
 

Effect of TGFβ1 and A83-01 on follicle activation and growth 

Immunofluorescence staining of day 4 cultured ovaries for a total of 3 days in culture of 

2 hours-treated with either TGFβ1 ligand or A 83-01 inhibitor (n=6 per treatment group) 

and control (non-treated) was performed for SMAD3 and DDX4 factors in order to 

visualise both oocyte and GCs. After measuring the oocyte area of all follicles with visible 

oocyte nucleus outline, the presence of a few large primary follicles (>800µm2) in all 

cultured ovaries confirmed their ability to grow in culture and in comparison with non-

cultured day 4 ovaries showed a significant increase in mean oocyte areas (Figure 5.13, 

A). A similar distribution of follicle stages was observed between all treatments groups.  

However, when the proportions of the different follicle stages in each group were 

calculated, an increase in the proportion of transitional/activated follicles in both TGFβ1 

ligand and A 83-01 inhibitor treatment groups was observed when compared with the 

control group (Figure 5.13, B). When oocyte areas of primordial and transitional follicle 

stages were compared between groups, only significant differences for the TGFβ1 treated 

ovaries were observed compared to the control group (Figure 5.13, C). 
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 Figure 5.13. Oocyte areas and proportion of different follicle stages in mouse ovaries 

treated with TGFβ1 ligand and A 83-01 inhibitor. Ovaries were exposed for 2 hours with 

10ng/ml of TGFβ1 ligand followed by 1 hour with 1µM A83-01 inhibitor, 2 hours with 1µM 

A83-01 inhibitor and 2 hours with 1 µM DMSO (control) and left for two additional days in 

culture. A) shows the distribution of all measured oocyte areas for the treatment groups and the 

non-cultured day 4 ovaries, where (n) shows the total number of follicles measured. In B) the 

proportion of the different follicle stages in the treatment groups and non-cultured day 4 ovaries 

is plotted and numbers are shown in the table. In C) the distribution of oocyte areas in primordial 

and transitional stages (areas up to 400µm) is shown. Data from cultured ovaries was obtained 

from six different ovary sections per treatment group (n=6). Four sections from 4 different non-

cultured ovaries (n=4) were used as a reference for the non-cultured control. Data in A) and C) 

are medians and significant differences are relative to the group in parentheses (*P<0.05, ****P< 

0.0001). C, control; T, TGFβ1 ligand; I, A83-01 inhibitor. 
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Follicle morphology assessment and validation of the follicle classification criteria 

In order to confirm that every classified follicle belonged to the correct follicle stage, 

additional morphology assessment by considering the number of surrounding GCs was 

applied in all sections. Classified follicles from control, TGFβ1 ligand and A 83-01 

treated ovaries according to oocyte area showed in general a good correlation with the 

classification taking into account the GC number (R2=0.83, R2=0.85 and R2=0.80, 

respectively)(Figure 5.14). However, the A 83-01 group showed increased oocyte area 

but decreased GC number in some follicles (Figure 5.14, C). Some follicles classified as 

primary (P) or large primary (P+) according to the oocyte area appeared to be similar to 

transitional (T) and primary (P) follicle stages (GC criteria) due to their low GC number 

(Figure 5.15). Moreover, the presence of small multi-oocyte follicles (MOFs) with a 

defined surrounding GC layer in A 83-01 treated ovaries were also observed and 

significantly more abundant that in control and TGFβ1 ligand treated ovaries (Figure 

5.16, A and C). In order to differentiate MOFs from a fusion of follicles as a side effect 

of the ovary culture conditions (loss of 3D structure), only follicles with fused ooplasm 

where considered as MOFs (Figure 5.16, B). 
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Figure 5.14. Relationship between oocyte area and GC number in small follicles from 

ovaries treated with TGFβ1 ligand and A 83-01 inhibitor. Ovaries were exposed for 2 hours 

with 10ng/ml of TGFβ1 ligand followed by 1 hour with 1µM A83-01 inhibitor, 2 hours with 1µM 

A83-01 inhibitor and 2 hours with 1 µM DMSO (control) and left for two additional days in 

culture. X and Y values for each dot on the graphs correspond to its classification according to 

the oocyte area (y-axis) and its classification according to its GC number (x-axis). Horizontal and 

vertical dashed lines delimit the classification between follicle stages shown in the table. 

Correlation between these classifications for all measured follicles is shown as R2 value. The A 

83-01 inhibitor group shows some follicles with increased oocyte and decreased GC number (red 

arrow). Oocytes are stained in red (DDX4) and GCs in green (SMAD3). Nuclei are counterstained 

blue with DAPI. Scale bar is 100µm and magnification is 20X. PF, primordial; T, transitional; P, 

small primary; P+, large primary follicle stages. 
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Figure 5.15. Relationship between oocyte area and GC number in small follicles from 

ovaries treated with A 83-01 inhibitor. Ovaries were exposed for 2 hours with 1µM A83-01 

inhibitor and left for two additional days in culture. X and Y values for each dot on the graph 

correspond to its classification according to the oocyte area (horizontal dashed lines in y-axis) 

and its classification according to its GC number (vertical dashed lines in x-axis). High power 

images (magnification of 63X) show an example of follicles classified as large primary (left 

panel) and small primary (right panel) with decreased number of surrounding GCs (indicated 

below the images). Oocytes are stained in red (DDX4) and GCs in green (SMAD3). Nuclei are 

counterstained blue with DAPI. PF, primordial; T, transitional; P, small primary; P+, large 

primary follicle stages. 
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Figure 5.16. Presence of small multi-oocyte follicles (MOFs) in mouse ovaries treated with 

TGFβ1 ligand and A 83-01 inhibitor. A) shows an example of the structures considered as 

MOFs, where two or three oocytes are enclosed in a unique layer of GCs. B) shows an example 

of fused follicles not considered as MOFs, where each oocyte is enclosed by a layer of GCs (white 

arrows) C) Total number of MOFs across six ovary sections (n=6) per treatment group were 

counted. Data are means ±SEM and differences are relative to the group in parentheses 

(***P<0.001, ****P< 0.0001). C, control; T, TGFβ1 ligand; I, A83-01 inhibitor. Oocytes are 

stained in red (DDX4) and GCs in green (SMAD3). Nuclei are counterstained blue with DAPI.  

Scale bar is 20µm and magnification is 63X. 
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5.4 Discussion 

SMAD3 binding to Ccnd2 and Myc genes detected in primordial follicles suggested the 

existence of an endogenous mechanism of control of GC proliferation and further 

implicated TGFβ signalling in the maintenance of the quiescent phenotype of primordial 

follicles. Both stimulation and inhibition of follicle development has been previously 

shown using different exogenous TGFβ ligands in cultured ovaries of different species 

(Childs & Anderson, 2009; Ding et al, 2010; Rosairo D 2008; Telfer et al, 2008; Wang et 

al, 2014a; Zhao et al, 2001). However, some studies in human ovaries and cell line 

models, reported a differential effect of TGFβ signalling depending on the length of 

exposure/dose to the TGFβ ligand, providing an explanation for this apparent paradoxical 

effect (Ding et al, 2010; Zi et al, 2011). From the repertoire of TGFβ ligands, TGFβ1 was 

used for the experiments in this chapter, as it is a well-studied TGFβ ligand. It has been 

implicated in the maintenance of the primordial follicle pool in several reports, where 

long-term treatments with the ligand preserved the amount of primordial follicles, 

suggesting its inhibitory actions (Rosairo D 2008; Wang et al, 2014a). However, the 

reduced proportions of growing follicles and increased apoptosis in TGFβ1-treated 

ovaries in both oocyte and GCs was also observed in one these studies (Wang et al, 

2014a). This was probably due to a detrimental effect of long exposures to the ligand. 

These observations contradict the suggested role of TGFβ1 as inhibitor of the primordial 

follicle pool and suggest instead that sustained TGFβ1 exposure induces follicle atresia, 

which could finally decrease the population of growing follicles. Therefore, this chapter 

aimed to investigate the effect of a short two hour exposure to TGFβ1 ligand and also A 

83-01 (TGFB1 receptor I inhibitor) in primordial follicles. In order to test this, differences 

in SMAD3 binding and gene regulation after treatment of day 4 ovaries in culture were 

investigated for Ccnd2 and Myc. Furthermore, in order to associate these molecular events 

with morphological changes, the assessment of follicle growth by measuring the 

proportions of the different follicle stages after the treatments was performed. 
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 Molecular analysis of in vivo conditions 

 

SMAD3 binding is reduced in Ccnd2 and Myc genes as follicles grow  

 

The findings obtained in Chapter 3 where SMAD3 binding to Ccnd2 and Myc genes was 

more evident in samples of day 4 ovaries compared to day 16 ovaries led to the hypothesis 

that this binding may be related to the maintenance of the quiescent phenotype of the 

primordial follicle population. In contrast, no evident binding to p27 gene promoter was 

observed, therefore, SMAD regulation of this gene was not further studied in this chapter. 

Therefore, in order to take the preliminary observation further, the SMAD binding pattern 

to Ccnd2 and Myc genes in primordial and growing follicles was compared and quantified 

using ChIP-qPCR with an increased number of samples (n=5). As expected, increased 

SMAD3 binding to Ccnd2 and Myc gene promoters was observed in day 4 ovary samples 

relative to IgG control, which was associated with reduced levels of Myc mRNA 

expression and elevated Ccnd2, suggesting that SMAD3 acts as repressor and activator 

of Myc and Ccnd2 genes in primordial follicles, respectively. Although repression of Myc 

gene by TGFβ signalling during late G1 phase is a well-described mechanism to maintain 

cell cycle arrest (Warner et al, 1999), there is little evidence about its specific role in the 

ovary (Li et al, 1994; Nandedkar & Dharma, 2001; Putowski LT 1  1997). Moreover, 

although TGFβ regulation of Ccnd2 levels has been suggested (Anttonen et al, 2014b; 

Looyenga & Hammer, 2007), the role of SMAD3 as transcriptional regulator of Ccnd2 

gene has never been reported before. 

 

Molecular and morphological analysis in vitro  

 

SMAD3 binding to Ccnd2 and Myc target genes is not affected after short TGFβ 

stimulation but gene expression is induced  

 

SMAD3 regulation of target genes is dependent on increased/decreased TGFβ stimulation 

(Massague et al, 2005a). By using day 4 ovaries in culture (a model to treat primordial 

follicles in vitro), short exposure to TGFβ1 ligand did not show any significant changes 

in SMAD3 binding to Myc and Ccnd2 genes, however, a significant upregulation in 

mRNA expression was observed for both genes.  
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As SMAD3 binding was not significantly changed after treatment, their induced gene 

expression was an unexpected finding. However, one possible explanation is that non-

SMAD signalling pathways may have contributed to the expression of both Ccnd2 and 

Myc genes. Several transcription factors acting as binding partners with SMADs have 

been reported to act as activators and repressors of Myc and Ccnd2 genes (Figure 5.17, 

C). Interestingly, ERK1/2 targets such as ETS proteins for Myc gene or Ap1 complex for 

Ccnd2, are transcriptional activators (downstream MAPK signalling pathway) that 

maintain high gene expression levels while transcriptional repressors such as the 

Inhibitors of differentiation (Id) factors or Foxo1 (inhibited by PI3K pathway) bind and 

repress the expression of Myc and Ccnd2 genes, respectively (Figure 5.17, C). It can be 

then proposed that the enhanced binding of activators and the release of repressors after 

TGFβ stimulation may be necessary to induce the expression of Ccnd2 and Myc genes 

(Figure 5.17, A). Therefore, in order to investigate non-canonical activation, the PI3K 

and MAPK signalling mediators p-AKT and p-ERK1/2, were analysed in a TGFβ treated 

sample (n=1). An increased detection of both factors was observed after TGFβ treatment, 

suggesting that the activation of non-canonical pathways can induce Myc and Ccnd2 gene 

expression through the recruitment of different transcription factors to the SMAD 

transcription factor complex) (Figure 5.17, A). However, a detailed experiment with more 

protein samples (n≥3) from TGFβ treated ovaries is necessary to confirm the activation 

of non-canonical mechanisms.  

 

Other mechanisms can also account for the induction of Myc and Ccnd2 under TGFβ 

stimulation. The family of calcium-binding transcription factors, the NFATs, have been 

reported to have an activating role on Myc gene promoter through the displacement of 

SMAD3 from its TGFβ inhibitory elements (TIE) after TGFβ stimulation. This 

displacement results in Myc gene upregulation (Figure 5.17, B). Although no significant 

changes in SMAD3 binding to Myc gene were detected with TGFβ stimulation, less 

amount of SMAD3 binding was observed in all samples compared to control. Presence 

of NFATs and their binding partner Calcineurin have been detected in day 4, 8 and 16 

ovaries (Appendix 14) suggesting that this mechanism can also contribute to Myc gene 

upregulation in the ovary.  
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The increase in Ccnd2 gene was not as evident as Myc gene. Myc gene belongs to the 

group of early response genes (Lau & Nathans, 1987) and after stimulation, Myc mRNA 

expression reaches maximum levels after 2-3 hours (Persson et al, 1985). In contrast, the 

induction of Ccnd2 mRNA expression has been reported to peak around 4 hours (Park et 

al, 2005). Interestingly, Myc protein is well-known to act as transcription factor of Ccnd2 

(Bouchard et al, 2001). Therefore, it is likely that upregulation of Myc gene expression 

contributes to the induction of Ccnd2 gene but later than 2 hours. Future studies could 

therefore focus on additional time points to determine the optimal time necessary to 

promote a significant induction of Ccnd2 gene. 

 

SMAD3 binding to Ccnd2 and Myc genes is reduced with A 83-01 inhibitor but gene 

expression is not altered 

 

In contrast to TGFβ treated ovaries, a short exposure to A 83-01 inhibitor showed reduced 

SMAD3 binding to both Myc and Ccnd2 genes, indicating that the inhibitor is able to 

disrupt SMAD3 nuclear translocation and binding to target genes. When gene expression 

was analysed after A 83-01 treatment, relative mRNA levels of Myc and Ccnd2 genes 

showed no significant differences relative to control. One explanation of this is that short 

disruption of basal levels of TGFβ signalling does not have a major effect on Myc and 

Ccnd2 gene expression as other transcription factors also binding to the gene promoter 

(e.g transcriptional repressors/activators, Figure 5.14, C) would still be bound to the 

promoters, maintaining basal Myc and Ccnd2 expression levels. However, Ccnd2 levels 

showed a slight decrease since differences were significant relative to the TGFβ-treated 

group. Therefore it is likely that more time of inhibition is required to detect a decrease 

in Ccnd2 gene expression levels. Based on the above findings, a hypothetical model of 

TGFβ regulation of target genes in GCs is proposed in Figure 5.17 below. 
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Figure 5.17. Hypothetical molecular model of the effect of short TGFβ stimulation (A, 2) 

and TGFβ inhibition (A, 3) on SMAD3 binding (and co-factors) and regulation of target 

genes. In basal conditions, the association of SMAD3 binding partners allows the repression of 

Myc and activation of Ccnd2 genes. Upon TGFβ1 ligand binding (A, 2), the association of 

SMAD3 binding partners with activating roles or the release of repressors allows the upregulation 

of both Myc and Ccnd2 genes. SMAD2/3 binding can also be reduced and displaced by NFATs 

to activate Myc gene (B, 1). Activation of Myc can act as transcriptional activator of Ccnd2, 

upregulating its expression (B, 2). When TGFβ pathway is inhibited (A, 3), SMAD2/3 binding is 

released but also the binding of transcriptional activators, allowing the repressors to maintain Myc 

and Ccnd2 expression levels. Table in C) summarises some examples of Myc and Ccnd2 

transcription factors (also reported as SMAD binding partners) and their role as activators and 

repressors. 
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Smad7 and Gdf9 gene expression is not affected by the A 83-01 inhibitor but is induced 

after TGFβ stimulation  

 

In neonatal ovaries, Smad7 gene expression was increased with TGFβ1 ligand, indicating 

that TGFβ signalling was active after treatment with the ligand. By comparison, Smad7 

remained unchanged in the presence of the inhibitor possibly suggesting poor disruption 

of canonical TGFβ signalling in these conditions. The Smad7 gene is also a target gene 

for SMAD3 and its co-factors (Nagarajan et al, 1999), therefore increased expression of 

Smad7 confirms that short treatment with the TGFβ1 ligand is able to induce a genomic 

effect and also the activation of a negative feedback loop to control excessive TGFβ 

signalling. Moreover, SMAD7 is also known to have a function as a transcription factor 

to control cell proliferation. For instance, it has been reported that SMAD7 has the ability 

to form a transcription factor complex with beta-catenin (activator of Myc) to induce Myc 

gene promoter (Edlund et al, 2005). This is consistent with the observed Myc and Smad7 

induction in the TGFβ1-treated group.  

Interestingly, Gdf9, expressed in oocytes of all follicle stages except primordial follicles 

(Dong et al, 1996) showed no significant differences in transcript levels in TGFβ1 ligand 

and A 83-01-treated groups when compared to controls. Since it is not a GC factor, it is 

likely that TGFβ treatment does not affect the expression of the gene after a short 

treatment with either TGFβ or A 83-01 inhibitor. However, insignificant upregulation in 

the TGFβ treated group was observed. An increase in Gdf9 gene expression is suggestive 

of enhanced follicle activation, as Gdf9 has been reported to promote GC proliferation of 

growing follicles (Dong et al, 1996; Joyce et al, 2000b) but also to contribute to the 

primordial to primary follicle transition (Vitt UA, 2000). Increasing the number of 

samples would help understanding whether there is significant Gdf9 upregulation or not. 

Nevertheless, significant changes in Gdf9 gene expression after TGFβ 

stimulation/inhibition would then be a direct consequence of uncharacterised TGFβ 

signalling in the oocyte or alternatively, an indirect paracrine or juxtacrine effect from 

GCs. 
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Smad2, Smad3, p27 and Foxl2 do not show significant differences between treatments 

 

Smad2 and Smad3 relative mRNA expression levels remained unchanged between 

treatment and control groups, indicating that short exposure to both TGFβ and inhibitor 

affects SMAD phosphorylation but does not have a genomic effect that alters the 

expression of both genes. In addition, Foxl2 and p27 mRNA levels neither showed any 

significant differences when compared to control, however, a subtle but insignificant 

downregulation in the TGFβ treated group was observed for both genes. FOXL2 has been 

reported to be a repressor of Ccnd2 (Frank et al, 2007) and therefore, the observed 

upregulation of Ccnd2 can be a consequence of the release from FOXL2 repressive 

actions. Moreover, a decrease in p27 protein and mRNA levels is observed in vivo after 

primary stage (Chapter 3, image analysis), therefore, the small downregulation after 

treatment with TGFβ1 ligand may be an indicator of follicle growth. However, the 

differences were not significant, probably because only detectable differences on the 

proportion of activated follicles were observed in TGFβ treated group when compared to 

controls but any differences were observed in primary follicles (as explained below). 

Alternatively, insignificant differences detected in these genes can also be due to the short 

time point employed for the treatments. Therefore, it is worth considering the addition of 

an increased time point in future experiments.  

 

In vitro treatments: Morphological assessment of follicle growth  

 

Short TGFβ1 treatment induces PFA  

 

In order to determine the effects on follicle activation and growth of a short two hour 

exposure to TGFβ ligand/inhibitor, ovaries were left in culture for two additional days in 

non-treated serum media. In order to avoid longer action of TGFβ1 ligand and inhibit the 

increased TGFβ signalling, treatment with A 83-01 inhibitor for one hour was used after 

the treatment with TGFβ1 ligand. The proportions of the different follicle populations in 

the different groups revealed a significant increased proportion of transitional/activated 

follicles in the TGFβ ligand group (Figure 5.18, A) whereas no differences in the 

proportions of larger follicles was detected when compared to controls. 
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Increased proportions of transitional follicles in the A 83-01 inhibitor group was also 

observed, however it was not significant when compared to the control group. These 

results suggest that short exposure to TGFβ1 ligand targets the primordial follicle 

population to enhance the molecular machinery necessary to favour the ratio of activated 

follicles. 

 

Figure 5.18. Overlayed graphs of 

follicle distribution according to 

oocyte area (A) and correlation 

between GC number and oocyte 

area classification (B) of control, 

TGFβ1 and A 83-01-treated ovaries. 

Graph in A) shows a shift on the 

follicle distribution towards oocyte 

areas >200um (transitional follicles, T) 

in TGFβ1 and A 83-01-treated ovaries 

compared to control (A, black arrow). 

Graph in B) compares the slopes of the 

different treatment groups, where a 

decreased slope in A 83-01-treated 

group indicates a reduced number of 

GCs in enlarged oocytes.  

 

The absence of differences between the proportions of larger follicles between groups can 

be explained by the short culture period after the treatments which may only allow to 

detect the growth of the activated primordial follicles to the transitional stage. These 

findings are supported by gene expression data, where Ccnd2 and Myc genes are 

upregulated with a short TGFβ treatment, indicating that this upregulation may be 

necessary to enhance the initiation of GC proliferation during follicle activation. 

Moreover, these observations suggest that a difference between short and sustained TGFβ 

exposure  have different effects on follicle growth: while a short TGFβ exposure followed 

by TGFβ inhibition enhances follicle activation, sustained and long-term exposures 

reverses the effect towards primordial follicle maintenance and follicle atresia (Rosairo 

D 2008; Wang et al, 2014b) (Figure 5.19). 
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Overexpression of SMAD3 has been found in GC tumours in mice (Pangas et al, 2008) 

and TFGβ-induced apoptosis have been reported in some cell types as a mechanism to 

prevent excessive cell proliferation (Schuster & Krieglstein, 2002). Therefore it is likely 

that sustained canonical TFGβ signalling overactivates the canonical SMAD3 pathway 

and accelerates growth of GCs of growing follicles, triggering GC apoptosis and later 

follicle atresia (Figure 5.19).  

 

Short TGFβ inhibition promotes impaired follicle activation and germ cell nest 

breakdown 

 

When the GCs of all measured oocytes were counted in each treatment group, a decreased 

number of GCs in some primary and large primary follicles was observed in the ovaries 

treated with A 83-01 inhibitor (Figure 5.18, B). As no differences in the proportions of 

the growing follicles was observed between treatment groups when oocyte area was 

measured, the impaired oocyte area/GC number can only be due to a reduced proliferation 

of GCs rather than accelerated oocyte growth. These findings further suggest that a short 

disruption of TGFβ signalling targets GCs by reducing their proliferative potential while 

the oocyte grows normally. However, long TGFβ inhibition has been reported to increase 

oocyte size (Wang et al, 2014a), suggesting that sustained disruption of TGFβ signalling 

releases the oocyte from a controlled growth (Figure 5.19). Although GCs showed some 

proliferation, the number of GCs surrounding the enlarged oocytes was reduced, 

indicating that increased TGFβ signalling might have been necessary at some point in 

GCs to allow sufficient GC proliferation.  

 

The presence of small multi-oocyte follicles (MOFs) was also observed in the samples 

treated with the A 83-01 inhibitor, where some somatic cells failed to enclose individual 

primordial follicles and therefore fused oocytes without separating basement membrane 

were observed (containing two or three oocytes). These findings further indicate that a 

disruption in TGFβ signalling affects the proliferation of pre-GCs and therefore reduces 

the number of cells necessary to encapsulate individual primordial follicles.  
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The presence of MOFs was also observed when the activin antagonist follistatin was used 

in day 0  mouse ovaries (Wang et al, 2015), supporting the essential role of active TGFβ 

signalling in GC proliferation. Interestingly, although GC proliferation was reduced, 

Ccnd2 and Myc gene expression levels were not significantly changed after treatment 

with A 83-01. The consequences of this forced maintenance of low levels of these cell 

cycle regulators in GCs during this period of time can therefore explain the lack of 

molecular competence necessary in primordial follicles to have a normal growth when 

ovaries were further maintained in culture without any treatment. These findings are also 

supported by the observations using PTEN inhibitors in primordial follicles, where PFA 

takes place but follicles showed atresia after secondary stage (McLaughlin et al, 2014). It 

is possible in this model, that oocytes were stimulated to grow before GCs had all the 

required molecular machinery to allow normal proliferation and follicle development. 

The consequences of short vs sustained TGFβ stimulation in primordial follicles are 

proposed in the depicted in Figure 5.19 below. 

 

 

 

Figure 5.19. Hypothetical model of the effect of short vs. sustained TGFβ stimulation (red) 

and TGFβ inhibition (green) during early follicle development. In basal TFGβ conditions, the 

population of primordial follicles is maintained. An increase in TGFβ levels allows PFA through 

the contribution of SMAD and non-SMAD signaling pathways (solid red line). A decrease in 

canonical TGFβ signalling avoids increased follicle atresia by preventing GC apoptosis (dashed 

red line). If primordial follicles are deprived of TGFβ signaling for a short time before PFA, 

follicles grow but GCs do not proliferate normally (solid green line). If TGFβ inhibition is 

sustained, oocyte increases in size but GCs show impaired proliferation (green dashed line). 
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From the results presented in this chapter and the discussion above, the following key 

findings can be summarised: 

 SMAD3 induces the expression of Ccnd2 and represses Myc by direct binding to 

their gene promoters in primordial follicles in vivo. 

 Short increase in TGFβ signaling increases the expression of Ccnd2 and Myc 

genes, probably through the contribution of non-canonical mechanisms, since 

SMAD3 binding remains unchanged. A decrease in TGFβ signaling does not alter 

their expression. 

  Short increase in TGFβ signaling promotes a subtle enhancement of PFA, while 

decreased TGFβ signaling delays GC proliferation and affects paired germ cell 

cyst breakdown.  
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Chapter 6. 

General discussion 

 

 

 

 

 

 



180 
 

6.1 Rationale of the thesis 

Primordial follicles are the most precious structures in the ovary. They constitute the 

ovarian reserve and although they can remain in a non-growing state for many years, they 

remain metabolically active and eventually activate and grow (Gallardo et al, 2007). The 

molecular events that trigger the switch from the non-growing to the growing state still 

remain poorly understood. For more than two decades, the development of in vitro 

cultures of ovarian cortex for different species including human (Telfer et al, 2008) or 

whole neonatal ovaries in mice (Eppig et al, 1996) have allowed researchers to study the 

effect of several candidate factors on primordial follicles. Since it was demonstrated that 

gonadotropins are dispensable for primordial follicles to grow (Abel et al, 2000; Kumar 

et al, 1997), the effect of a range of intraovarian factors such as the members of the PI3K 

and TGFβ signalling pathways has been broadly studied in vitro and most of them have 

been related to the maintenance and activation of the primordial follicle pool (Liu, 2010). 

Some of these candidates and signalling pathways have been further evaluated in vivo 

through the use of transgenic models, which provided a better physiological model to 

determine specific effects on early follicle development, including the morphological 

and/or molecular changes in the oocyte and granulosa cells (GCs). It is well established 

that the cross-talk between the oocyte and the surrounding GCs is essential for early 

follicle development (Eppig, 2001). However, since primordial oocytes can be induced 

to grow in vitro and in vivo (Jagarlamudi et al, 2009; Suzuki et al, 2015) less attention has 

been directed on the role of GCs during the primordial stage. Furthermore, primordial 

GCs are difficult to isolate and limited information is known about their molecular 

phenotype. Several reports have demonstrated that GC proliferation is one of the first 

morphological events observed during PFA (Braw-Tal, 2002; Da Silva-Buttkus et al, 

2008; Mora et al, 2012a). Most recently, the promoter of the GC marker FOXL2 

(expressed in all follicle stages including primordial follicles) has been employed as the 

locus for Cre recombinase to develop GC specific cKO mice and study the role of some 

factors from the mTOR pathway in GCs of primordial follicles. Interestingly, stimulation 

of the mTOR pathway (Tsc1-/- mice) in primordial follicles increased GC proliferation 

and promoted PFA, demonstrating for the first time in vivo that the initiation of GC 

proliferation is essential to allow PFA (Zhang et al, 2014).  
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In addition, in vitro treatment of human cortical biopsies with PTEN inhibitor, 

bpV(HOpic), showed unclear development beyond secondary stage (McLaughlin et al, 

2014). Since PTEN is a key regulator of PI3K signalling in oocytes, it can be proposed 

that the initiation of growth by the oocyte is not sufficient to allow a healthy follicle 

development. Therefore, a better understanding of the molecular events that initiate GC 

proliferation in primordial follicles may provide some insight about the mechanisms that 

allow individual follicles to activate and grow. Previous unpublished studies in our lab 

have identified the presence of SMAD2/3 in GCs of primordial follicles and loss of this 

expression in growing follicles suggested that SMAD2/3 is associated with PFA. 

Interestingly, SMAD2/3 transcription factors are essential regulators of cell proliferation 

and survival and have been also related with the EMT transition (Heldin et al, 2009). 

Since it has been proposed that GCs of primordial follicles experience partial EMT during 

PFA, SMAD2/3 may therefore be an important regulator of GC phenotype. Therefore, 

this thesis sought to investigate whether canonical TGFβ/SMAD signalling regulates the 

expression of target genes in GCs, specifically, cell cycle genes in primordial follicles. 

The cell cycle regulators p27 and CCND2 have been detected in the ovary and are 

involved in GC proliferation during PFA and early follicle development (Rajareddy et al, 

2007; Sicinski, 1996). They are important factors for the maintenance of the quiescent 

state in many cell types, and their regulation and function is essential to trigger cell cycle 

re-entry. Therefore, by using molecular techniques at all levels (pathway activation, TF 

binding to the chromatin, gene and protein expression) and detailed image analysis for 

the assessment of protein localisation and follicle growth, the expression pattern of 

SMAD2/3 and the cell cycle regulators CCND2 and p27 was analysed throughout the 

different stages of early follicle development (Chapter 3). Then, the analysis of 

CCND2/p27 complexes in primordial follicles was performed to better determine their 

role in the maintenance and activation of these follicles (Chapter 4). Finally, the 

development of an in vitro model (whole neonatal ovary culture) provided an approach 

to investigate the role of TGFβ signalling on cell cycle genes and the relationship of this 

regulation with PFA (Chapter 5).  
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6.2 Key findings  

The repertoire of techniques performed in this thesis has demonstrated the possibility of 

studying the function of different candidates during early follicle development in mice. 

Specifically, this work has included both descriptive and functional analysis of key 

factors from TGFβ signalling and the cell cycle using neonatal mouse ovaries in vivo and 

in vitro and has provided a better understanding of their relationship, as described by the 

main findings below. 

6.2.1 Smad3 is present in GC nuclei from primordial follicles and regulates Ccnd2 gene 

In Chapter 3, the protein expression pattern of SMAD3 but not SMAD2 was observed to 

be specific to GCs and changed as follicles developed, indicating that although both 

SMADs may compensate each other when one is absent (Li et al, 2008), SMAD3 likely 

plays a primary role during early follicle development. SMAD3 has the ability to bind to 

DNA acting as a transcription factor, and its nuclear presence was detected in GCs of 

primordial follicles. Moreover, higher mRNA expression of Smad3 and Alk5 (Type I 

TGFβ receptor) was detected in day 4 ovaries compared to older ovary ages, 

complementing the results from a recent study showing similar expression of 

TGFβ/SMAD2/3 pathway inhibitors SMAD7 and STRAP (Sharum et al, 2016). These 

results provide further evidence that TGFβ signalling is active and self-regulated in 

primordial follicles. Interestingly, co-localisation of SMAD3 with the proliferation 

marker Ki67 confirmed that SMAD3 is present in mitotically-arrested GCs from 

primordial follicles. Therefore, TGFβ signalling and SMAD3 regulation of target genes 

in GCs may be related to the maintenance of the slow proliferative phenotype of 

primordial follicles.  

TGFβ signalling is well-known for its role in cell growth inhibition through the regulation 

of Myc and p15 genes. There is also evidence that TGFβ signalling can influence the 

expression of Ccnd2 gene (Anttonen et al, 2014b; Looyenga & Hammer, 2007); yet, 

SMAD3 direct binding and regulation of the gene has not been studied. ChIP-PCR 

analysis described in Chapter 3 indicated that SMAD3 bound to the promoter of Ccnd2 

and Myc genes in day 4 ovaries and a more detailed analysis in Chapter 5 showed that 

relatively more SMAD3 binding was present in day 4 ovaries when compared to day 16 

ovaries, suggesting that SMAD3 regulated the gene expression of both genes in 

primordial follicles.  
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Since Myc mRNA levels are low in day 4 ovaries compared to day 16 ovaries whereas 

Ccnd2 was relatively higher in day 4 ovaries, suggests that SMAD3 is contributing to the 

repression of Myc while inducing Ccnd2 in GCs of primordial follicles. 

6.2.2 CCND2/p27 complexes in GCs of primordial follicles are lost in growing follicles 

SMAD3, CCND2 and p27 proteins were found to share a common expression pattern 

during early follicle development, since all three factors were highly expressed in the 

nucleus of GCs from primordial follicles and their expression decreased as follicles grow. 

As mentioned in the previous section, it is likely that SMAD3 regulates the expression of 

Ccnd2 gene, constitutively increasing its protein levels. CCND2 and p27 proteins are key 

regulators of the G0/G1/S cell cycle transition and their actions depend on the formation 

and dissociation of a protein complex together with the cyclin-dependent kinase K4/6.  

In Chapter 4, CCND2 and p27 co-localised in primordial follicles (1-3 GCs), suggesting 

that GCs in these follicles may be present in G0/early G1 phase. De-colocalisation was 

evident when p27 levels decreased in GCs at transitional stage (4-7 GCs), while CCND2 

levels were still high, indicating proliferative activity. CCND2 levels were then decreased 

from primary stage, where both factors were barely co-localised. Since p27 loss was 

evident as GCs started to proliferate, it is proposed that p27 degradation is one of the 

earliest key defining events that allow GC proliferation. This is supported by previous 

findings in cell line models where degradation of p27 is a requirement to allow G1 cell 

cycle progression (Nakayama, 2004).  

The presence of CCND2/p27 complexes was found in day 4 ovaries but was majorly 

reduced in day 16 ovaries. Since p27 presence was reduced in larger follicles, it is likely 

that the complexes are not required in proliferative GCs to facilitate cell cycle 

progression. Therefore, the main role of CCND2/p27 complexes is non-catalytic and 

probably involved in the maintenance of GCs in primordial follicles. However, their 

catalytic activity was not studied in this thesis and therefore it would be worth considering 

for future experiments.  
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It has been reported that dissociation of the complexes is triggered by mitogen 

stimulation, where the whole complex is translocated to the cytoplasm and p27 is 

degraded (Susaki E 1  2007). The increase in CCND2 levels and the phosphorylation on 

the Thr280 residue have been reported as the consequence of mitogen stimulation, together 

contributing to the translocation and dissociation of the complexes in the cytoplasm 

(Susaki E 1  2007). In this thesis, the absence of nuclear p27 was observed from the 

transitional follicle stage, becoming more evident at the primary stage, therefore, the 

dissociation of CCND2/p27 complexes in GCs is likely to be part of the process of PFA. 

Based on this, it is likely the initiation of PFA relies on the extracellular mitogen/s that 

trigger the increase in Ccnd2 expression levels. Since SMAD3 has been detected to be 

bound to Ccnd2 gene, the last Chapter of this thesis has focused on this aspect in detail.  

6.2.3 CCND2 is a positive regulator while p27 is a negative regulator of PFA  

Ccnd2-/- mice exhibit arrested follicle growth around the secondary stage with follicles 

surrounded by a decreased number of GCs (Sicinski, 1996). The high presence of CCND2 

protein until primary stage observed in the image analysis in Chapter 3 suggests that 

CCND2 is essential to enhance GC proliferation during early follicle development and 

therefore, absence of CCND2 protein in primordial follicles delays initiation of GC 

proliferation and impairs the GC number in growing follicles. As described above, 

increased levels of Ccnd2 mRNA and protein allows p27 degradation and G1 cell cycle 

progression (Susaki E 1  2007). Therefore, it is likely that maintenance of basal CCND2 

levels in GCs is necessary to eventually re-enter cell cycle. Extracellular mitogen/s may 

then increase these basal levels, initiating GC proliferation and follicle growth. In this 

thesis, SMAD3 regulation of Ccnd2 gene has been proposed to maintain Ccnd2 levels 

transcriptionally. However, post-translational regulation is also crucial at this point. For 

example, activation of PI3K pathway via AKT and mTOR has been reported to prevent 

CCND2 protein degradation via the inhibition of GSK3, which phosphorylates CCND2 

and allows its degradation (Morales & de Plata, 2012). Interestingly, the mTOR pathway 

has recently been implicated in the maintenance of GC proliferation in primordial follicles 

(Zhang et al, 2014). It can be further suggested that CCND2 levels may be lost (by 

degradation) in GCs with limited mTOR and therefore the absence of sufficient CCND2 

levels does not allow PFA.  
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p27-/- mice exhibited increased follicle formation and overactivation of primordial 

follicles (Rajareddy et al, 2007). Since CCND2/p27 complexes were observed in GCs 

from primordial follicles, the accelerated GC proliferation and PFA observed in p27-/-

mice supports the proposed hypothesis that CCND2/p27 complexes are non-catalytic 

whereas p27 acts mainly as negative regulator. Therefore, it can be postulated that 

adequate p27 protein levels in GCs of primordial follicles may allow the formation of 

non-catalytic complexes that prevents premature initiation of GC proliferation.  

Altogether, it can be proposed that the ratio of CCND2 and p27 proteins may be key 

determinants of GC cycle arrest.  

6.2.4 FOXL2 does not interact with SMAD3 in primordial follicles but may maintain high 

levels of p27 protein in GCs 

FOXL2 has been proposed to interact with SMAD3 and regulate the expression of 

common genes, such as the Follistatin gene in the mouse pituitary (Blount et al, 2009). 

In the ovary, FOXL2 was found to be specific to GCs and also to contribute to maintain 

high levels of p27 in primordial follicles by the transcriptional regulation of the gene in 

mice (Garcia-Ortiz et al, 2009; Mork et al, 2011). These aspects were supported by the 

findings of Chapter 3, where FOXL2 was detectable on the promoter of p27 gene in day 

4 ovaries. As explained above, high p27 levels may be important for the CCND2/p27 

complex formation in GCs and maintenance of the G0/early G1 phase, therefore, although 

FOXL2 may not directly interact with SMAD3, it likely plays an independent role in 

regulating GCs of primordial follicles. FOXL2 expression levels were detected 

throughout all stages of follicle development and binding to p27 was also observed in day 

16 ovaries, indicating that FOXL2 is an important transcriptional regulator in other stages 

of growth. In fact, FOXL2 binding to Ccnd2 was only detected in day 16 ovaries, 

therefore, it is likely that FOXL2 represses Ccnd2 gene after PFA as a mechanism to 

avoid excessive upregulation of Ccnd2 (e.g by an increase in TGFβ signalling)(Bentsi-

Barnes et al, 2010). 

 

 

 

 

 



186 
 

6.2.5 Increased TGFβ signalling upregulates Ccnd2 levels and triggers PFA 

 

 

The last chapter of this thesis is focused on SMAD3 regulation of target genes under 

different conditions of TGFβ signalling and its relationship on early follicle growth. 

SMAD3 is the canonical transcriptional regulator of TGFβ signalling and its regulation 

of target genes such as Myc and p15 is well-known to be involved in the maintenance of 

mitotic arrest (Joan et al, 2001). In contrast, TGFβ signalling has also been involved in 

triggering EMT via non-canonical signalling (Zhang, 2009).  

Association between PFA and EMT has been speculated, since a partial transition from 

epithelial to stromal-like phenotype has been observed in GCs as they initiate 

proliferation (Childs & McNeilly, 2012; Mora et al, 2012a). TGFβ signalling in 

primordial follicles is functioning probably at basal levels, consistent with the fact that 

Alk5 receptor expression was observed in day 4 ovaries (observed in Chapter 3). If TGFβ 

signalling is active in primordial follicles and TGFβ can drive EMT in GCs, it was 

proposed in this thesis that increased TGFβ signalling is the trigger of PFA, probably via 

canonical and non-canonical mechanisms. In vivo studies in mice have demonstrated that 

circulating TGFβ in serum is short lived  and therefore a short pulse is enough to trigger 

an effect on follicle development (Bristol-Gould et al, 2006). Therefore, a short exposure 

to increase TGFβ1 ligand was used in the in vitro experiments in this thesis, in parallel 

with a short inhibition of TGFβ signalling with an inhibitor of the ALK5 receptor, A 83-

01. The effect of these treatments was analysed by the changes in SMAD3 

phosphorylation, binding to target genes, regulation of their expression and finally, effect 

on follicle growth. It was observed that SMAD3 phosphorylation was induced and 

depleted with the TGFβ1 ligand and the inhibitor, respectively. Moreover, SMAD3 

binding to Ccnd2 and Myc remained unaffected with the ligand but was reduced with the 

inhibitor. Despite the unchanged binding of SMAD3 binding to target genes, Myc and 

Ccnd2 expression were upregulated, suggesting that non-canonical mechanisms 

involving SMAD3 binding may contribute to this upregulation. Several TFs acting as co-

partners of SMAD3 are known to differently modulate SMAD3 regulation of target genes 

(Figure 5.17C). Therefore, it is possible that non-canonical TGFβ activation of these 

SMAD3 co-partners induces an upregulation of Myc and Ccnd2 genes. In support of this, 

activation of the non-canonical mediators p-ERK1/2 and p-AKT was detected, suggesting 

MAPK and PI3K signalling pathways cooperate with SMAD3 signalling during PFA.  
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When follicle growth was evaluated, a subtle increase in the proportion of transitional 

follicles when compared to controls was observed in the TGFβ1 ligand-treated group. No 

effect in the proportions of primary or large primary follicles was observed. In contrast, 

treatment with A 83-01 inhibitor resulted in delayed GC proliferation and impaired germ 

cell cyst breakdown, as higher number of MOFs were observed, implying that the target 

cells for TGFβ treatment are the GCs and not the oocytes. Therefore, it was proposed that 

upregulation of cell cycle genes as a consequence of increased TGFβ signalling in 

primordial follicles may enhance GCs from some primordial follicles to re-enter cell cycle 

and initiate PFA. To evaluate the effect of the treatments in follicle growth, ovaries were 

left for two additional days in culture. A lack of effect in growing follicles suggested that 

TGFβ stimulation in GCs mainly targets primordial rather than growing GCs. The 

initiation of proliferation of primordial GCs is slow in physiological conditions. In fact, 

a previous report by Hirshfield in [3]thymidine-infused rats showed that only 11% of 

small follicles containing at least one proliferative GC were detected in a period of 48h 

(Hirshfield, 1991). Moreover, once a GC is active on the cell cycle, it took an average of 

24 hours to complete a whole cycle in growing follicles (Hirshfield, 1991). A more recent 

study using in vivo labelling and tracing with Sohl1-/- cKO mice (expressed in primordial 

oocytes) reported that primordial follicles need 7-8 days to develop into primary follicles. 

Therefore, it is then unlikely that GCs from primordial follicles performed more than two 

cell divisions after two days of induced activation with TGFβ1 and therefore, it explains 

why only increased proportion of transitional follicles (up to 7 GCs) were observed after 

culture.   

 

The observed effect of increased TGFβ signalling in PFA is supported by previous reports 

that focused on the potential sources of activating/inhibitory signals, where a positive 

effect (enhanced growth) from growing follicles was observed when located in close 

proximity with primordial follicles (Da Silva-Buttkus et al, 2009). Since it is well known 

that growing follicles produce several TGFβ ligands such as GFD9 and activins (Elvin et 

al, 1999a; Lee et al, 2004; Mizunuma et al, 1999; Nilsson & Skinner, 2003)) it can be 

postulated that when a “responsive” primordial follicle (e.g supplied with sufficient levels 

of CCND2/p27) is close to a growing follicle, it may be stimulated by the secreted ligand 

and activate. 
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6.2.6 Canonical TGFβ signalling is inhibited after PFA 

 

The nuclear exclusion of  SMAD3 in GCs from growing follicles observed in the image 

analysis and the decreased gene expression levels of Alk5 receptor in day 8 ovaries (when 

compared with day 4 ovaries), indicate that the canonical TGFβ/SMAD2/3 signalling is 

reduced in activated/growing follicles (Figure 6.1). Sustained secretion of TGFβ ligands 

(e.g from the growing follicles in close proximity) may cause an overactivation of 

canonical TGFβ signalling that immediately triggers endogenous negative regulation of 

SMADs in GCs such as SMAD7 or STRAP (Datta & Moses, 2000). Interestingly, 

increased nuclear SMAD3 and CCND2 staining was observed in some GCs from 

transitional follicles (Chapter 3), suggesting that at this stage the levels of canonical TGFβ 

signalling may reach their maximum. As a consequence, the activated non-canonical 

pathways such as the observed p-ERK1/2 (Chapter 5) can contribute to the inhibitory 

phosphorylation of Smad3. Activation of p38 or the inhibitory phosphorylation by K4-6 

can also participate in this inhibition, as previously reported in other models (Isao et al, 

2004; Matsuura et al, 2005a). Since sustained exposure to elevated levels of TGFβ ligand 

induces GC apoptosis (Chuan-Wei et al, 2001), inhibition of canonical TGFβ signalling 

seems to be an essential event to allow further follicle growth, and therefore, the canonical 

and non-canonical mechanisms of inhibition are worthy of further investigation in this 

context (Figure 6.1).  
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Figure 6.1. Hypothetical model of CCND2/K4-6/p27 complex dynamics and TGFβ regulation in GCs 

during PFA. (1) Basal TGFβ levels transcriptionally regulate Ccnd2 and Myc genes. (2)This allows the 

maintenance of CCND2/K4-6/p27 complexes in the nucleus of GCs in G0/G1 phase. (3) After increased 

TGFβ levels, induction of Ccnd2 and Myc genes facilitates G1 progression. (4) CCND2 levels increase and 

(5) phosphorylation of CCND2 protein via canonical and non-canonical mechanisms, allows the complex 

to (6) translocate to the cytoplasm and eventually (7) driving p27 towards degradation to finally, (8) ensure 

GC transition to S phase and subsequent PFA. (9) After PFA, inhibition of canonical TGFβ signalling is 

necessary to control proliferation (by self-regulatory mechanisms or inhibitory phosphorylation of Smad3 

from non-canonical pathways), releasing the binding of SMAD3 from the promoter of Ccnd2 and Myc. X 

represents any number of unknown SMAD3 binding partners at basal and increased TGFβ levels, that may 

participate in the modulation of the expression of Ccnd2 and Myc target genes.  
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6.3 General conclusion  

From the results in this thesis and along with previous findings, it can be concluded that 

PFA may be an event regulated by both endogenous competence and extracellular 

signalling, that will determine the order in which follicles activate. If the time that 

individual follicles activate is dictated by the time GCs specify from their precursors 

(Capel et al, 2012) a repertoire of factors, in between them, the right balance of CCND2, 

p27 and complexes may make them more “sensitive” or “responsive” to extracellular 

signalling. Moreover the location of the source of the “activating” extracellular signal 

may also determine the sequence of PFA, for instance, their proximity to sources of 

growth factors (e.g growing follicles) that may facilitate the passage through R1 and R2 

from the G1 phase of the cell cycle, respectively. The molecular pathways regulating 

Ccnd2 levels transcriptionally and post-translationally may play an important role during 

PFA. This thesis has focused on the regulation at transcriptional level, where SMAD3 

binding to Ccnd2 gene maintains its levels in GCs at G0/early G1 phase and upregulates 

them with the cooperation of additionally activated non-canonical mediators after a short 

increase in TGFβ extracellular signalling. This likely facilitates the passage of GCs to S 

phase, allowing cell cycle progression. After this stage, inhibition of the canonical TGFβ 

signalling while maintenance of non-canonical pathways may be necessary to control cell 

cycle progression in growing follicles (Figure 6.2). This switch from maintenance to 

activation explains the different effects reported about TGFβ treatment in primordial 

follicles and provides new molecular insight about how changes in TGFβ levels could 

probably induce a partial EMT-like phenotypical change in GCs.  

 

Figure 6.2. PFA depends on 

TGFβ levels.  GCs from 

primordial follicles remain in 

G0/early G1 phase under basal 

conditions of TGFβ signalling. 

Increase in TGFβ signalling 

upregulates CCND2 

expression and facilitates 

passage through S phase 

(PFA). Inhibition of canonical 

and maintenance of non-canonical TGFβ pathways may operate after this time to ensure GC proliferation.  
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6.4 Limitations 

The main limitation in this thesis is the use of the mouse model. Although early follicle 

growth in mice shows similar dynamics with human (Zheng et al, 2014b), differences in 

growth rates, size and follicle competence exist between them (Griffin et al, 2006). 

Moreover, since mice are poly-ovulatory and humans are mono-ovulatory, specific 

molecular pathways may operate differently between species. Therefore, the use of 

nonhuman primate and finally human ovary culture models is essential to validate the 

information obtained in mice. In addition, the mouse model used in this thesis focuses at 

pre-pubertal age. Although the mechanisms may be similar in small follicles in older ages, 

further work should be done to investigate whether the proposed mechanisms are also 

found in post-pubertal tissue. Concerning technical limitations, obtaining starting 

material from ovarian tissue has been the main difficulty. Since the use of whole ovaries 

have been used as a model in order to preserve the molecular biology of the intact tissue, 

a minimal number of animals was used for the experimental design. This was sometimes 

a limitation for the number of replicates per treatment/sample used, and reduced the 

statistical power in some occasions. Moreover, the low amount of chromatin, RNA, 

protein obtained from uncultured and cultured ovaries and the limited number of middle 

cross-sections from cultured ovaries also limited the range of factors that could be 

analysed. Another limitation has been the number of target genes that could be analysed; 

for instance, the poor DNA recovery after the ChIP procedure only provided enough 

material for Ccnd2 and Myc genes. It is entirely possible that SMAD3 binding to other 

cell cycle genes are increased or decreased after the treatments, providing a more defined 

scenario of the canonical/non-canonical activation in TGFβ-treated ovaries. In addition, 

although primers for ChiP-qPCR were designed to amplify regions enriched in SMAD3 

binding domains, the impossibility of designing good primers flanking only the repressive 

binding domains (TIE) and activating binding domains (SBE) was not possible, which 

would have provided a better idea of the repressive or activating effect of the TGFβ 

treatment/inhibition by the change in SMAD3 binding to this regions. With regards to the 

optimisation of the treatments in the ovary culture, only two short time points and a single 

dose (for both TGFβ1 and inhibitor) were chosen based on the treatments with the cell 

line. However, the selection of two additional time points (e.g 4 hours and 24 hours) 

would have been appropriate to map the differences in expression and follicle growth 

after longer treatments. Moreover, the addition of ovaries treated with a sustained TGFβ 

signalling (e.g 24 hours) for the assessment of follicle growth would have also allowed 
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results to be compared with previous reports that argue the inhibitory role of sustained 

TGFβ1 treatment. 

 

6.5 Future work  

This work has established the foundations of a new model of TGFβ regulation in the 

neonatal ovary and has used molecular tools and approaches to test the effect of this 

regulation on PFA. It also proposes a molecular model of PFA that relies on the balance 

between individual follicle competence (such as expression of Ccnd2 and presence of 

CCND2/K4-6/p27 complexes) and the exposure to extracellular ligands (such as TGFβ 

ligands). The ovary culture model employed in this thesis can be used to test this 

hypothesis further. Therefore, the next directions for the future work are described below: 

 

Cell cycle dynamics 

Since p27 is expressed in all mitotically arrested GCs from the fetal ovary (Gustin et al, 

2016) and CCND2 is proposed to be the trigger that allows GC exit from G0/G1 phase, 

the following experiments can be performed: 

1) Immunofluorescence staining and detailed quantification of the ratio of intensities of 

CCND2 and p27 in somatic cells surrounding GCs from primordial follicles can be 

performed to determine the moment where CCND2 increases its levels. This may identify 

a relationship between expression levels and location in the ovary, and also complement 

and provide new information to the existing evidence of the possible source/s of activation 

(e.g growing follicles)(Da Silva-Buttkus et al, 2009).  

2) IPs and/or PLA assay after treatment with TGFβ ligand or TGFβ inhibitor, to determine 

in which conditions CCND2/p27 complexes are maintained and dissociated, also 

studying the catalytic or non-catalytic activity of the detected complexes by using kinase 

assays (Warner et al, 1999). 

Effect of different ligands on follicle activation and growth 

This work has focused on the effect of TGFβ1 ligand at the molecular and morphological 

levels in early follicle development. However, future work may include the use of other 

TGFβ ligands (such as GDF9) either alone or in combination with other ligands.  
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For instance, since the use of PTEN inhibitors has shown impaired rate of GC 

proliferation and follicle atresia, the use of a combination of short treatment with TGFβ 

ligands followed by treatment with PTEN inhibitors may help determine whether the 

initial increase in TGFβ ligands facilitates follicles to enhance GC proliferation and grow 

normally.  

The ligands that show an effect in any aspect of PFA can then be tested in other ovary 

culture models in mice (such as the neonatal ovary fragment culture) or in other species 

such as nonhuman primates (Telfer & Zelinski, 2013). Finally, the potential candidates 

can be validated in human tissues in vitro, by using approaches such as the culture of 

ovarian cortical biopsies alongside a vital dye (neutral dye) for a more accurate 

determination of their effect on PFA (Soleimani & De Sutter, 2011).  

SMAD gene regulation, binding partners and non-canonical pathway activation  

The molecular techniques employed in this thesis can be used on a” –omic” scale in order 

to get a more detailed scenario of the molecular events operating in primordial follicles 

and PFA. The treatment model (short stimulation with TGFB1 ligand), can be used 

together with next-generation sequencing after ChIP (ChIP-Seq) and RNA sequencing 

(RNA-Seq) to map the different SMAD3 target genes in primordial follicles under basal 

conditions and to identify a snapshot of the key molecular changes after a short 

stimulation with TGFβ1. Moreover, the activation of different pathways (canonical and 

non-canonical) can also be studied by analysing the phospho-proteome of the ovaries 

under these treatments by non-targeted Mass Spectrometry (MS/MS), which will 

facilitate the identification of factors from other pathways that, in conjunction with 

Smads, play a role in cell cycle regulation during PFA.  
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6.6 Scientific and clinical implications   

The information obtained from this thesis and the proposed future work provides 

additional knowledge to the biology of the ovary, however, it also benefits other areas of 

research. Since understanding the mechanisms that regulate exit from the cell cycle still 

remains unresolved in many cell types, any novel molecular information related to the 

initiation of cell proliferation in GCs may also provide new insights in other systems, 

such as the activation and proliferation of beta-pancreatic cells (recently known to be 

dependent on CCND2) (Stamateris et al, 2016) or the development of some cancerous 

phenotypes by a TGFβ-driven EMT, such as the case of epithelial cells during mammary 

gland involution (Guo et al, 2017). With regards to ovary research, the identification of 

specific factors operating in primordial GCs may allow the development of transgenic 

cKO mice with promoters to be used as locus for Cre recombinase in primordial GCs, as 

with the already used GC marker FOXL2.  

The clinical implications of the present and future work are numerous. For instance, the 

knowledge of potential candidates that specifically target both the GCs and oocytes of 

primordial follicles and enhance/inhibit their activation may allow the development of 

specific small inhibitory molecules that “protect” the primordial follicles. This may give 

the opportunity to both young and adult women to preserve their ovarian reserve during 

cancer treatment or during the normal process of aging. Moreover, the identified 

candidates (if produced in sufficient amounts in body fluids) can be also employed as 

direct biomarkers of ovarian reserve, to complement or replace the currently used 

methods (AFC and determination of serum AMH). Finally, the relationship between these 

candidates and primordial follicle quality may also add another dimension to the 

assessment of the ovarian reserve, and allow an early diagnosis of the reproductive 

potential of women with specific fertility conditions such as POI and PCOS. 
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Appendix 1. Proportion of small follicles in day 4, day 8 and day 16 ovaries and 

steps for immature mouse ovary embedding in paraffin. A) Proportions were 

calculated using the largest cross-section of a single ovary. B) After dehydration with 

increasing gradients of ethanol, ovaries were placed in metal molds and solutions were 

replaced with a Pasteur pipette. Once the paraffin was melted, ovaries were embedded 

by using a plastic pipette and a plastic cassette lid was rapidly placed onto the metal 

mold and covered with more paraffin. All metal molds with paraffin were incubated 

for 15 minutes and allowed to cool down in ice. 
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Appendix 2. Optimisation of starting material and chromatin shearing from 

neonatal mouse ovaries for ChIP-qPCR. 

The amount of starting material used, the crosslinking process with the formaldehyde 

and the sonication of the chromatin require considerable optimisation for small ovary 

samples. In order to optimise the amount of starting material, a variable number of 

ovaries were initially used with a fixed crosslinking time (30 minutes) and sonication 

(three times during 10 seconds for day 16 and two times for day 4) (A and B). Highly 

sheared chromatin with a fragment size range of 100-400bp was obtained in all 

samples from day 16 ovaries (A) while larger fragments were observed from day 4 

ovary samples, suggesting extra sonication may be needed (B). As sufficient 

chromatin was observed in samples of two day 4 ovaries, extra sonication was applied 

(additional 5 seconds) (C) and the range was comparable to that of a single day 16 

ovary sample with more sonication (three times for 10 seconds).  

A second optimisation using two different lysis buffers (tissue vs. cell/nuclear lysis 

buffers, from Magna ChIPTM G Tissue kit, Millipore and EZ- Magna ChIPTM G kit, 

Millipore respectively) and two different sonication methods (bioruptor, Diagenode 

vs vibra cell 150 probe, Sonics) were initially used with samples of day 8 ovaries to 

compare the lysis power and sonication efficiency (D and E). Additionally, different 

sonication times and amplitudes with samples of day 8 ovaries were also performed to 

ensure maximum chromatin shearing between the desired fragment size range (F and 

G). Although transcription factor binding sites can be located in other regions apart 

from the promoter, they are usually located between 200 and 1000bp upstream the 

open reading frame (ORF) of the target genes(Chun-Ping et al, 2016). However, ideal 

fragment size range for ChIP experiments is from 100-300bp (Benjamin et al, 2011). 

Poorly sonicated chromatin is usually observed when using 50% maximum amplitude 

(fragment size 700-2000 bp; F). In contrast, when using 100% maximum amplitude, 

large fragments are not present (G) and the most abundant fragments are obtained in 

a range from 200 to 400 bp 
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Appendix 3. Promoter sequence for Ccnd2, p27, Myc, Follistatin and FSHb genes. 

Binding sites for FOXL2 (Tran et al, 2011) and binding sites for FOXL2 and SMADs 

(TRANSFAC® software) are highlighted in yellow and green, respectively. Primers 

designed to cover all possible binding sites are detailed in the tables below. 

FOXL2 binding site (FBE1 ATTTT, FBE2 TTTGT, FBE3 CTAAACAA) 

SMAD binding site (SBE AGACA, GTCTG, CAGACA, GGCGG TIE GNNTTGGtGa) 

 

 

Ccnd2 promoter 

CCTCCCGAGCCATTTCCTAGAAAGCTGTATCAATGTGGCCACGCTCCGCGCAGACACCTAGGGCGGCT

TGTCAGCAGATGCAGGGGCGAGGAAGCGGGTTTTTCCTGCGTGGCCGAGGCCCGCGGAGGAACCGCTG

CTAGCCCTGCCCCCGGTCTGGGGCCGCTCTGAGAGGCTGGCCGCGTTGCCCAATGGCGCCCCCAAGAA

CAGAAAGGTTTCTGCAGGAGGGTCATATTCTACTAGGCTTAAGAAGCACCCCTTTCTCCAACATCCAC

CCCTTCCTCCTCTTCCTCTCCACGCACGTGGCTCGGGGCGGACAACAGCTTGAAAGTTATCAGGAGTC

TAAGCTTGAGGGGCATAACCTTTATCCCTGGTTTGGCGAGGTTGCAATTTTCTCAAATAAGCCTTTCC

TTGTTCCTCATTTAGGGGTCTACTTCTAAGTTATCTGAACTCATCCACATGGTAAATCTATCTACCTG

AATCTTGAATAATGGGCTGTTTTTCTGATCACATTGCAAGCCTCCGAAGTTAGAGAGCACACACGTAC

ACACCCTTTATGCCCCCATGGTATGCCTACAGAATGTCAGAAAGGATAATCAATAGGAATCCATGGGG

TTTGTGGGTTCCCCTATCCGAGGCCCCTAGCATGCGGGGCTGGATGGGGAGAGGGCCTCGGAGAAGTA

GGGAGAGGGGTTGGGGGTGGGGAGCGGGGATCGTGTTTGAAGTTTGGTCAGGCCAGCTGCTGTGCTCC

TTAATAACAAGAGGGAAGGGGGGGGGGAGAGGGAGGGAAAGATTGAAAGGAGGGGAGGGACGCTAGAG

GAGGGGAGGAAAGGGGGAGGAGGAACCTGAGAGGGGGAGGAGATCTAACTGCCCTTCCAGCTTGCGTC

AC 

 

Primer set 

 

Primers sequence (5’     3’) 
Annealing 

Temperature  

(ATºC) 

 

bp 

Ccnd2.1 F:TTCTGCAGGAGGGTCATATTCT 

R:AATGAGGAACAAGGAAAGGCTT 

57 207 

Ccnd2.2 F:GTTAGAGAGCACACACGTACAC 

R:TGTTATTAAGGAGCACAGCAGC 

59 233 
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p27 promoter 

CTTTTTCAAAATTTAGTGTCTGGGACGGCTCTAAAGAGAGGCTTGGGAGAGCACTGGGGGTTTTCAAT

CTCGAGATCCTACGGTGGAAGCGCTTGGATTCAGAAACACCCTGATAAGAGCGGTCAGTCCTGGCTTC

TTTTTGAAACCGCCTCCTGGCCTGTCCTACATAGCAGAGACTTCTGGGGTCAGGCTAAGCGGCCGATT

CCGCACCCCAGCTAAGGCACCCTGCCGGTGGGGGTGGGTGGGCTGCCCCAGGCCCTGAGCAAGGTTTC

CTGAACTTTGCGCATAGCGCTCCTCCATTCCCACCTCGGCGAATCGAGGTGGCTGAACTAGCCACCGA

AGCTCCTAATAAGCCGCCAGCGACCTCGGAGCCACTGGTCCAGGCCCTAGGTTTCGCGGGCAAAGACC

TGGAGGTGCAGTCGGGAGCGGTGACGCTGCCAGCCAGCTCTGCGCCGGGACCTAGATCCCCGGGTCCC

TGCCTGCGCGGCTGGCCCCTCCCCAGCTCTCCGGCCGTTTGGCTAGTTTGTTTGTCTTATTTTTAATT

TCTCCGGGGCCAGCCAGAGCAGGTTTGTTGGCAGTCGTACACCTCCGGTAGTCACGCGACCAGCCAAT

GTCCTGGCGGCGCTACGGGGAGGCGGCTCGGGAGCGCGGAGAGCGGCGGCGCCGCGCCCCGGGCCACC

TTAAGAGCGCGCTCGCCAGCCTGGGCGGAGCGGCTCCCGGCGCCGAGACCAATGGAGCTCCTCCTCTG

TTTAAATAGACTTGCAGTGTCAATAATCTTCTTCTTCGTCAGCCTCCCTTCCACCGCCATATTGGGCA

ACTAAAAAAGAAGGGGGGCTCGTGCTTTTGGGGTGTTTTTCCCCCCTCATCCCTTGTCCCGACTCACT

CGCGGCTCCGAGACTGCGCGGCGGCAAGGTTTGGAGAGGGGCTGGTTCGCGGGACACACGGCTCGCCC

CAGCCTACGCTCCGACTGTTTGCCACCTCCTCCTGCCTCCTCCCCTCCCTTCCCCGCCCTCCAGTACA

CTTGATCACTGAAGCCTCGAGCTGCGCGGCGGCTGGGGTGTCCCTGCGCCTCTCTTCCCCAGACCTGC

GCGCTACTGCGGCTCGGGCGGTCGCTCGCCTGGCTCTGCTCCATTTGACTGTCTGTGTGCAGTCGCAG

AACTTCGAAGAGGGTTTTGCGCTCCATCCGTGGCGTTTCGCTTTTGTTCGGTTTTGTTGTTTATTTCA

TTTTTTTTTTTCCGGA 

 

 

 

 

Primer set 

 

Primers sequence (5’     3’) 
Annealing 

Temperature  

(ATºC) 

 

bp 

p27.1 F:GTCAGTCCTGGCTTCTTTTTGA 

R:ATTAGGAGCTTCGGTGGCTAGT 

60 231 

p27.2 F: TTAGTGTCTGGGACGGCTCTAA 

R: GACCCCAGAAGTCTCTGCTATG 

60 175 

p27.3 F: AGAGCAGGTTTGTTGGCAGT 

R:AGAGGAGGAGCTCCATTGGT 

- 188 

p27.4 F: ACTGTTTGCCACCTCCTCCT 

R: AGTTCTGCGACTGCACACAG 

60 182 
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Myc promoter 

TCTAGAACCAATGCACAGAGCAAAAGACTCATGTTTCTGGTTGGTTAATAAGCTAGATTATCGTGTAT

ATATAAAGTGTGTATGTATACGTTTGGGGATTGTACAGAATGCACAGCGTAGTATTCAGGAAAAAGGA

AACTGGGAAATTAATGTATAAATTAAAATCAGCTTTTAATTAGCTTAACACACACATACGAAGGCAAA

AATGTAACGTTACTTTGATCTGATCAGGGCCGACTTTTTTTTTTAAGTGCATAATTACGATTCCAGTA

ATAAAAGGGGAAAGCTTGGGTTTGTCCTGGGAGGAAGGGGTTAACGGTTTTCTTTATTCTAGGGTCTC

TGCAGGCTCCCCAGATCTGGGTTGGCAATTCACTCCTCCCCCTTTCTGGGAAGTCCGGGTTTTCCCCA

ACCCCCCAATTCATGGCATATTCTCGCGTCTAGCCTTGATTTCCCCACCCCAGCTCCTAAACCAGAGT

CTGCTGCAAACTGGCTCCACAGGGGCAAAGAGGATTTGCCTCTTGTGAAAACCGACTGTGGCCCTGGA

ACTGTGTGGAGGTGTATGGGGTGTAGACCGGCAGAGACTCCTCCCGGAGGAGCCGGTAGAGCGCACCC

GCCGCCACTTTACTGGACTGCGCAGGGAGACCTACAGGGGAAAGAGCCGCCTCCACACCACCCGCCGG

TGGAAGTCCGAACCGGAGGTGCTGGAGTGTGTGTGTGGGGGGGGGGGGGGGAATCTGCCTTTTGGCAG

CAAATTGGGGGGGGGGTCGTTCTGGAAAGAATGTGCCCAGTCAACATAACTGTACGACCAAAGGCAAA

ATACACAATGCCTTCCCCGCGAGATGGAGTGGCTGTTTATCCCTAAGTGGCTCTCCAAGTATACGTGG

CAGTGAGTTGCTGAGCAATTTTAATAAAATTCCAGACATCGTTTTTCCTGCATAGACCTCATCTGCGG

TTGATCACCCTCTATCACTCCACACACTGAGCGGGGGCTCCTAGATAACTCATTCGTTCGTCCTTCCC

CCTTTCTAAATTCTGTTTTCCCCAGCCTTAGAGAGACGCCTGGCCGCCCGGGACGTGCGTGACGCGGT

CCAGGGTACATGGCGTATTGTGTGGAGCGAGGCAGCTGTTCCACCTGCGGTGACTGATATACGCAGGG

CAAGAACACAGTTCAGCCGAGCGCTGCGCCCGAACAACCGTACAGAAAGGGAAAGGACTAGCGCGCGA

GAAGAGAAAATGGTCGGGCGCGCAGTTAATTCATGCTGCGCTATTACTGTTTACACCCCGGAGCCGGA

GTACTGGACTGCGGGCTGAGGCTCCTCCTCCTCTTTCCCCGGCTCCCCACTAGCCCCCTCCCGAGTTC

CCAAAGCAGAGGGCGGGGAAACGAGAGGAAGGAAAAAAATAGAGAGAGGTGGGGAAGGGAGAAAGAGA

GGTTCTCTGGCTAATCCCCGCCCACCCGCCCTTTATATTCCGGGGGTCTGCGCGGCCGAGGACCCCTG

GCTGCGCTGCTCTCAGCTGCCGGGTCCGACTCGCCTCACTCAG 

 

 

 

Primer set 

 

Primers sequence (5’     3’) 
Annealing 

Temperature  

(ATºC) 

 

bp 

Myc.1 F:CGAGATGGAGTGGCTGTTT 

R:TGTGTGGAGTGATAGAGGGT 

57 207 

Myc.2 F:GCGCTATTACTGTTTACACCC 

R: CCTCTCTTTCTCCCTTCCC 

57 233 

Myc.3 F:GGCATATTCTCGCGTCTAGC 

R:TGAAGACAAACGGATGAACAGT 

60 154 
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Follistatin promoter (2000bp upstream) 

 

ATAGTGGTGGGGACATAGGAAGGTGAATAACAAACTTCCTCAGTAGTACATCACAGCATAAGTATCTC

TGAGTAAAGAAGAAAACAGTTCAACTTTGAAATTCTGCCGTTAAGTGGCGGCTCCTGCAAGGGGGACA

GTTTGCTATTAATTGTTAATGTCGCCTACCATTAGAGGGCACTAAACAACTCCACATTAATGCGTTGG

AGGGAAGAGAAAAGGAAGCGAGGAAAGGGGAGGGAGAGTATGGGCAGAGTTCGGGGAGAGGGAGGGGA

GACCGAAGCCGGGAAGGGCTGGGAAAAAGAGATGTGGGGAGTGGGAGGAGGGAGGAGGGAGGAGGGAG

GAAAAAGCCTGAAGAGGAAGGAGACTGACAAACGGGCAGACAGACAGAAACAGACAAAATGAATCTGG

CAAGATTAAGAAGGATGTGAAGCCCCAGAGCCGTCTAAAGTGAGCAAAAAGCCGGCTCTCCCGGGTCA

CCCACTCCCCTCCCCGCCGCTCCGTCCTCATGACTGTAATTATAAAGCGAAAAGCGGCGGCGAGGTCA

CCCGTTTTTACCAGCCTGCTGCACCGAATGCGCGCGGTGCAGGTGCGGCGGCCGCGGGGCTTTGTGAT

TCATGCCCACTTTCAAAGGGGGGCTTGGGCCCGTCTGAGAGGCACCCAAACAACTGTCTTCTAATATT

AGCACGGCTGTATTTCGGGATCTATTATAGTCTGTCCAGACAGATCCCATTGTAATGGGACCTTTTAT

TAAAAGATTAGCACTATCTCCTGCAGTTGGTGGAAAAAAATCTGTTATCACTGAGTTATTTGCAGTTG

TGGAGGGGGTAGGAGGAGGGTGATGGAAGATGGGGGTGGGAGGATGAGAGGAGGACCGGGGGGGGGGG

GCGCTAGGGCTGGGGCTAGAGAAGAAGGGCGAATTTGAAATCCGTAAGAGCAAATCCCAATGACCTGG

GAATGTCCAAGAATTTTGTCTGTTTTGTTCGCTGTTTGTTGTCGTTCGGGCTTCAGAAGCGAAAAGAA

TAGAAATTTAAAAGGCAGCTTTGAAATAAACAATATAGCCTTTTCCGTGAAGTAATCGTTTTATATAA

AAGGAAATATCGCCTCCTCAGTTTCATTCAGCCGTGCCAGAAAATGTTATAAATGAGAAGACCCGCCA

ACTTTCGGCGAAGAATGCCAGGCATTGCACTCAATAAACTGAGGCTGCAGAAGTTCATTATCATGGTG

CAATCTTTTTTTTAAATAAGAGAGAGAGAGAGAGAGAGAGAGAGGAGTCGGGACAGAAACTGGGGCGT

CTCGGAGCGGGGGAGGAGGGGGGCAGACCGCCTACGTCGGCGCCCCCGCTCGGGGCTGCGACTCCAGA

CGCGACGAAGTGAAAGGGGAGAAAAGAAAGGGAGAGGGCGAGACTGCCGGGGGCGGCCGGCTCCGAGG

TGTTAAACATTTTTGTTTGCTTCTGACTTGTGGAGCCCGAGGGCCGCGTCTCCGCAGCGCTCGGCCCG

GGTGGAAGGTGCCCGGGGGTCGGGGTTCTTAGCAACCTACTCCAGGCTGGGGGGGGAGGGGGCGCGGG

AGGGAGTGGGAGGCGGGGGAGCTGGCAGGGTGGCCGCAAAGTAAGACACGTAAGAGACCTCGGGACAC

AAAACGTCTCCGGGACCCCGCGCCAAGGCTCTGCAGGGAGGCTCCTGAAACTGCTCCCCCGGGCATTG

AAGCAGCTCAGGGATCCTGCGGCGGGTTGCAGAAGTCTCATCCCGGAGCCCTGGAGCAGAGGTGCTGG

GGACCCATTCCCGGGGTCCTCCGGGGTCCCCGCGCTCCGCCGGCCGCCTCCTCCAGCGCCCTCACTCA

CACGCGCACACGCACACACGCGCGCACACACACACTCGCACGCCACCCCGGGCGCGCCGGCTCCGAGC

GGCGGCGTGCAGGACTGAAGTGGATGTTCCTCCCCACCCCCGACGCGTCGCCCCCAGCCCCCGCCCCT

GCCTCCTTCCCCCCTCCCCTCCCGCTCCTACGCAAATAAGAACTCGGCGATTCCCCTCCTGCCGCTTT

GATTTCGGGCACCTCCGACAGATAATTGGGAAGGGTTTCCAGAAGGTGGGAAATGTCACCTGATTCAC

ACTGAACTTTTAAAAGCTCCCCACCCCCAAAGAGCCGGCACACCCTCGGTCGCGGCCGCCCTCCCACA

GCCCCACACACTGGGAGACCGCCCACCGCAAACCTCGGAGACCCCCGTCTAGATTTAAAGCGCGGCTG

CGCCCGGCTTCT 
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Gene 

 

Primers Sequence (5’     3’) 

Annealing 

Temperature  

(ATºC) 

 

         bp 

Follistatin1 F:ACCTCCGACAGATAATTGGGAA 

R:CGCGCTTTAAATCTAGACGGG 

59 190 

Follistatin2 F:GCACCCAAACAACTGTCTTCTA 

R:CCCTCCACAACTGCAAATAACT 

59 170 

Follistatin3 F:AAGAGCAAATCCCAATGACCTG 

R:TGAATGAAACTGAGGAGGCGAT 

59 189 

Follistatin4 F:ATAAATGAGAAGACCCGCCAAC 

R:CAGTTTCTGTCCCGACTCCT 

59 150 

Follistatin5 F:GGCTCCGAGGTGTTAAACATTT 

R:TCTTACGTGTCTTACTTTGCGG 

59 201 
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FSHb promoter (2295bp upstream) 

ACCTGCCCTCCCACCACACCTGCCCTCCAACCACACCTGCCCTCCTACCACACCTGCCCTCCTACCAC

ACTTGTCCACCTACCACACCTGCCCTCCCAACCACACCTGCCCTCCCACCACACCTGCACTCCAACCA

CACCTGCCCACCTACCACACTTGTCCACCTACCACACCTGCCCTCCCAACCACACCTGCCCTCCAACC

ACACCTGTCCACCTACCACACCTGCCCTCCCAACCACACCTGCCCTCCAACCACACCTGTCCACCTAC

CACACCTGCCCTCTCATCACACCTGCCCACCTAGGACACCTGTTCATTAACCACTGAGCTCTATCTTT

CTGCTTGATTGGGGATTGAGCTCCCCCATGGTCCTGCCTAAAAGTAGAACCTCCATATACACTCTAAA

ACCATCTGTACTCTTGTCTTTAGAGACACTCAAAAATCTCTCTGGGTTTTCACTCTATATAAACATCC

CATCTCCATGTGAGCATTCATTTATTTCTTCCTCTTAAAAGTAAAAATAAATATAAAACTATTTTTAC

TCTACTTCTGCACTGCTCAATTATATATTTTTCTTGCTAATACTTATAAGAAAATTCTTAAAGAAGTT

ATCTATGTTCACTACATGTCACTTCCTCTCCCCTGACATGTGAGCCAAATGCTGCATAAAAGAAGGGC

TCAGAGTTATATAACATATCTTGAGATCTAATCCTTAGCTAGAGAAGTTGAATGGATGGAAGCTATAA

CCTAGTATTTGTTTAAAAGGTTGAGAAGAGATAACATGTACCTGACTTCTAGGAGACGATATTCTCCT

CAATTCATACACTACTCAATGACACTTCTCAACTTCATTTGGATAGAAGAAAGGAAGAAGAAAACAAA

GAGGATGAGGAAGAAGATTCATTGTATCCTTGAAATAGTAGTATTGGAGTTTAACCATCTTCAACTAT

TCTATTCTCATTCTCTGTTCTCTTCAGTCAAGATATGTCTCTAAATCTAGATTCACCAGTCTATGTAA

GTGTATTATAGACACATCACAGTCAACATATCTATACAGAATGTCTTAGGTTTTCCAAAATGCACATC

CTTAACCATTCCATCTTTAGACTCATCCTCACCTTTCTTCCATACTCAACATCAATCCAGCAGAAATG

TTCTTTCTAGTTTCAAAATATATCCAGAGTAATAGCATGACTCATAACATCCATTGTTCCCACATTGG

CCCAAACAAACACCATGCCTCACCTGTGTTACTACAAACCATCTTAGTAATATCTTCCTGCTTCTACC

GTGTTTCTCTTAGCAACAAAGAAATGAGAAGGATTCCTTTGAAGCAGATTATAAAACTCTCTACTTAA

AATCCTACAGTGGACCAAATCACACAGAGTGAAAATTGAAATACTTACATTGGGCTCTAAGTTCTATT

ACATTTCTGACATGCTCCCCTAACATTTTTACACTATTGATCCTTGTTTCTAATCATATTATTAATAA

ATGAATATTACAAATTAATAAATGAGTTAAACAGCCTCATTCTCTATAGAGTTCACAGAATCCTGATA

GAAATGGGTATATGAATAACTACAATCAGAAAGAGATTATAACTCTCCTTACCATTGGCCCTAAATTA

GAGGTGAAGCACCTCTGTGTGGTAAAGTTTCAAGAACTTTGTGGGAAAGAAAAGACAGAAAAGAAGCA

AGGGCATTGGTGACAGAGAGGACATCACATGCAGAGATCTGGAGGAACCCATCAGTATCATAATTAGG

GAATATTTAGGGAATTACAATTTCTGATGCTCTTCACAAAGCATCAGAAAAAGGGGGGTTGAGATCAG

GAGAACTGAATGTGGTCATAAAGAAAGACACAGCCCATAGGAACAAGATGCAGAAGTACTTCCTATTT

GTTCATACACTTGGAGTGTTCAGTCTGTTCTTGGATCAATTAAGACATATTTTGGTTTACCTTCGCAA

TGGAGCCAAAGCAATGTTCAGAAAGGATTCTGAGTTCGCCAAGTTAAAGATCAGAAAGAATAGTCTAG

ACTCTAGAGTCACATTTAATTTACAAGGTGAGGGAGTGGGTGTGCTGCCATATCAGATTCGGTTTGTA

CAGAAACCATCATCACTGATAGCATTTTCTGCTCTGTGGCATTTAGACTGCTTTGGCGAGGCTTGATC

TCCCTGTCCGTCTAAACAATGATTCCCTTTCAGCAGGCTTTATGTTGGTATTGGTCATGTTAACACCC

AGTAAATCCACAGGGTTTTAAGTTTGTATAAAAGATGAGGTGTAACTTGAC 

 

Gene 

 

Primers sequence (5’     3’) 
Annealing 

Temperature  

(ATºC) 

 

bp 

FSH.1 F: CCACTGAGCTCTATCTTTCTGC 

R: TTGAGCAGTGCAGAAGTAGAGT 

59 242 

FSH.2 F: AAAGGATTCTGAGTTCGCCAAG 

R: TTAGACGGACAGGGAGATCAAG 

59 198 
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Appendix 4. RNA quality and integrity of samples from day 4 , 8 and 16 mouse ovaries 

(A) and day 4 cultured ovaries (B) under control (C), TGFβ1 ligand (T), A 83-01 

inhibitor (I) and A 83-01 inhibitor +TGFβ1 (BO). Concentration and RIN number of all 

RNA samples used for gene expression analysis, determined with the Agilent Bio-analyser. 

An example of the electropherogram of a good sample (sample 1) is shown. 

 

RNA sample  11 12 13 14 15 

Day  16 16 16 16 16 

RIN 6.2 9.1 9.8 - - 

Concentration 

(ng/μl) 

34 28.7 40.6 20 20 

 

 

 

 

 

 

 

 

 

 

RNA sample  1 2 3 4 5 6 7 8 9 10 

Day  4 4 4 4 4 8 8 8 8 8 

RIN 9.5 9.7 10 9.5 9.5 7.8 9.8 9 9.7 9.4 

Concentration 

(ng/μl) 

13.5 15.6 3.15 6.3 15.3 16.8 9.8 8 6 11 

RNA sample  1 2 3 4 5 6 7 8 9 10 

Treatment  C C C C C T T T T T 

RIN 9.9 9.5 9.3 9.8 N/A 9.9 10 9.7 9.9 9.2 

Concentration 

(ng/μl) 

1.1 15.7 18.7 36 7.8 36 2.7 10.5 5.04 15 

RNA sample  11 12 13 14 15 16 17 18 19 20 

Treatment I I I I I BO BO BO BO BO 

RIN 10 8.7 9 9.9 10 2.5 N/A 9.3 9.6 9.4 

Concentration 

(ng/μl) 

34 13.9 8.5 10.2 15.8 0.4 9.3 13.8 15.1 11.3 

B)   

A)   
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Appendix 5. cDNA quality assessment with the reference gene Htrp1 of retro-transcribed 

RNA samples from day 4, 8 and 16 ovary samples and day 4 cultured ovaries. Day 4 (1-

5), day 8 (6-10) and day 16 (11-15). Day 4 cultured ovaries: control (1-5), TGFβ1 ligand (6-

10), A 83-01 inhibitor (11-15) and A 83-01 inhibitor +TGFβ1 (16-20). 
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Appendix 6. Antibody specificity and chromatin shearing. In A) a western blot with 

SMAD2/3 and FOXL2 antibodies used for ChIP (day 4, 8 and 16 ovary samples) showing the 

expected bands. In B), immunoprecipitation with SMAD2/3 antibody shows IP specificity. C) 

shows sheared chromatin from day 4 and day 16 ovary samples used in chapter 3. D) shows 

sheared chromatin from day 4 and day 16 ovary samples (n=5) used in chapter 5. E) shows 

sheared chromatin from day 4 cultured ovaries (n=5) under control (D), TGFβ1 ligand (T), A 

83-01 inhibitor (I) and A 83-01 inhibitor +TGFβ1 (BO) treatments.  
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Appendix 7. Composition of protein extraction buffers A, B and C for 

subcellular fractionation of proteins in day 4 and day 16 ovaries (Baghirova et 

al, 2015). 

 

Buffer Composition 

A NaCl                                          150mM 

HEPES (pH 7.4)                    50mM 

Digitonin (Sigma, D141)    25 μg/mL 

Hexylene glycol (Sigma, 112100)  1M 

B NaCl                                      150mM 

HEPES (pH 7.4)                    50mM 

Igepal (Sigma, I7771)                    1%v/v 

Hexylene glycol (Sigma, 112100) 1M  

C NaCl                                            150 mM 

HEPES (pH 7.4)                   50 mM 

Sodium deoxycholate                0.5% w:v 

Sodium dodecyl sulfate    0.1% w:v 

Hexylene glycol                1 M 
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Appendix 8. Western blot showing CCND2, p27 and beta-actin (loading control) 

protein expression in NIH3T3 cells. Graphs show the individual blots from three 

independent experiments (n=3) where cells were serum-deprived for 24 hours and then 

stimulated with 10%FCS for the stated times (hours). OD values for each protein are 

normalised against beta-actin.  

 

Appendix 9. Relative mRNA levels of p15 in day 4, day 8 and day 16 ovaries (A) and 

in day 4 cultured ovaries treated with TGFβ1 ligand and A 83-01 inhibitor (B).  
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Appendix 10. Diagram of Co-immunoprecipitation protocol with p27 and CCND2 

antibodies. Assuming p27 is present only in complex but CCND2 can be present alone, when 

p27 antibody is used for the IP, only CCND2 in complex is detected (A). When CCND2 

antibody is used for the IP, both CCND2 in complex and alone is bound, but only p27 in 

complex is detected (B).  
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Appendix 11. Literature search from PubMed database based on the search terms 

“TGF-beta-1” and “ovary”. From 210 papers identified after the search, individual papers 

were excluded based on the relevance to the topic and culture models. Selected papers are 

shown on the table and classified according to the culture system and dose used for TGFβ1 

ligand 

  

 

Search term 

 

TGFβ1 

ligand 

amount 
 

 

GC/follicle 

 culture 

 

Non-GC culture 
 

     Ovary  

    culture 

TGF-beta-1 

AND ovary 

 

 

 

 

≥10ng/ml 

(Rodrigues et al, 

2014) 

(Fang et al, 

2014) 

(Méndez et al, 

2006) 

(Kohan-Ivani et al, 

2016; Pan et al, 2015) 

(Kohan-Ivani et al, 

2016) 

(Wang et al, 

2014b) 

(2008; 

Rosairo D 

2008) 

(Schindler et 

al, 2010) 

≤5ng/ml (Yao et al, 

2010) 

(Liang et al, 

2013) 

(Yin et al, 2014) 

(Cheng et al, 

2015) 

(Fazzini et al, 

2006) 

(Yao et al, 2014) 

 

(2008; 

Rosairo D 

2008) 
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Appendix 12. Western Blot showing SMAD3 phosphorylation in PHM1 cells treated with 

A 83-01 inhibitor.  PHM1 cells were exposed for different time points to 1µM and 10µM of 

A83-01 inhibitor. Non-labelled lane corresponds to the ladder, where the 63kDa band is 

shown. 

 

Appendix 13. Positive correlation between oocyte area (µm2) and oocyte diameter (µm) 

in small follicles in the mouse ovary. Two representative sections are counted from the 

control group of day 4 cultured ovaries.  
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Appendix 14. Nfat and Calcineurin expression in juvenile mouse ovaries. 

Conventional PCR amplification of the different Nfats (C1, C2, C3 and C4) and 

Calcineurin (CA, CB and CC) isoforms are shown in day 4 and day 8 ovaries (A) 

together with GDF9 as control. Western blotting for Calcineurin in day 4, day 8 and 

day 16 ovaries shows protein expression in all ovary ages (B).  
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Appendix 15. Permission obtained for the use of Figure 1.4. 
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