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Section 1: Introduction to algorithm 

The method is designed to cluster multiple data of different types where each entity for clustering is 

described by a sets of binary and continuous variables. It is generically applicable to a range of different 

problems in biology. It uses a simple model based framework based on a joint probability distribution 

over binary and continuous variables that is a mixture over a variable number of clusters. It uses 

penalized maximum likelihood (ML) estimation of mixture model parameters using information criteria 

and meta-heuristic searching for optimum clusters by Monte-Carlo simulated annealing (SA). The 

program takes as input a mixture of binary data (e.g. presence/absence of mutations, motifs, regulatory 

input, epigenetic marks etc.) and continuous data (e.g. gene expression, protein abundance, metabolite 

levels) for a list of samples (e.g. genes, patients). This program works best with smaller and concise 

datasets, thus pre-filtered data to only important features is preferable. To date, this program works well 

with ~1000 rows in the input file (number of entities to cluster) and longer run time might be needed for 

larger datasets to converge to a good solution. An example of pre-filtering of a dataset would be 

reducing the number of genes to only highly variable genes. Upon taking the input files required, the 

program will run until either the termination or convergence criterion are met. The clustering solution is 

then refined using expectation maximization, taking the simulated annealing solution as the starting 

point.  

 

Platform Dependencies 

Task Type: Clustering of data points 

CPU Type: any 

Operating System: any 

Language: Java - JDK 1.8 

                    

                 

 

 



Section 2: How to run the Program 

? How to run the FlexiCoClustering using command-line interface (FlexiCoClustering-CLI) 

1. Download all the files from https://github.com/BioToolsLeeds/FlexiCoClusteringPackage/ 

2. To run the demo , use the following command: 

    java -jar <path to the FlexiCoClustering.jar/FlexiCoClustering.jar> Input.txt Output.txt 

    Press enter 

3. To re-submit the same job with restart after program termination: 

    Change Nrun: '0' to Nrun: '1' 

    Increase the MaxTemps to a higher value than the previous run if the MaxTemps iteration was 

    Completed or else just use default MaxTemps parameter. Then, use the following command:  

    java  -jar <path to the FlexiCoClustering.jar/FlexiCoClustering.jar> Input.txt Output.txt 

    Press enter 

4. The program can be terminated at any time by pressing Ctrl+C.    

A detailed description of the runtime parameters and input file format is given in section 3 below. 

? How to run the FlexiCoClustering using GUI based (FlexiCoClustering-GUI) 

1. Download all the files from https://github.com/BioToolsLeeds/FlexiCoClusteringPackage/ 

2. To run the demo, use the following command: 

    java -jar path to the FlexiCoClustering.jar/FlexiCoClustering.jar>   or      double click the .jar file 

3. A graphical user interphase (GUI) window will be opened and looks like this snapshot below:  
 

 

 
Figure 1: A snapshot of the FlexiCoClustering GUI upon submitting the java -jar command on the 

terminal/command prompt. Red arrow shows where user should change the NRun to ‘1’ after the initial 

run (NRun=0) have finished if it is required at all. 

https://github.com/BioToolsLeeds/FlexiCoClusteringPackage/
https://github.com/BioToolsLeeds/FlexiCoClusteringPackage/


4. On the GUI options (using demo example): 

 "ClustFile"              :  Name the ClustFile as i.e. Clustfile.txt 

 "Outfile"                  : Name an Outfile as i.e. Output.txt 

 "Select inputFile"    : Select <path to the FlexiCoClustering.jar>\example\input.txt 

 

For the real run using user own data, please change parameters accordingly. Parameters are described 

in table 2 on the next page. 

Press the "Execute" button. On default, this program will run for 100000 temperature steps (MaxTemps) 

and produce two real-time updated heat map image files (.png) in every 10 iterations interval for binary 

and continuous variables. The Output.txt and Clustfile.txt will be updated as the program progress and 

once the program terminated respectively. 

An EM refining file (EMRefinement.txt) containing all the marginal densities for the clusters will be 

produced automatically in the same working directory. 

If more than initially specified number of maximum temperature steps (MaxTemps) is required after 
step 2 had finished, re-run the program by first by replacing ‘0’ with ‘1’ in the Nrun. Increase the 
MaxTemps to a higher value than the previous run if the MaxTemps iteration was completed or else 
just use default MaxTemps parameter.  

Then, press the "Execute" button again. User can also terminate the run at any time by pressing ‘Stop’ 

button. 

 

Section 3: Package input and runtime parameters 

Input File 

Input file (e.g. input.txt): A space separated formatted text file containing the binary and continuous 

input dataset and runtime parameters (command line interface only). 

A.  

   
 

B.  

   
 

Table 1: Example of an input file for A. command line interphase (CLI) and B. graphical user interphase 

(GUI) based package. From 3rd or 21st row onwards of GUI or CLN based package respectively, first 

column shows the data points (i.e. gene names, sample names) and the second column onwards are 

the binary inputs ("1" and "0") followed by continuous values. 

 

 

 

 



Name Functional Description 

Nitems 
Number of data points to cluster. Must be equal to the number of data 

lines (rows) in the input file. 

Nbinary 
Number of binary variables per entity to be clustered. Must be equal to 

the number of 1/0s at the start of each data line in the input file. 

NContinuous 

Number of continuous variables in the input files. Must be equal to the 

number of floating point numbers at the end of each data line in the input 

file. 

Agglomerative/Divisive  
Starting point option for clustering, if agglomerative start with all data 

points in separate clusters, if divisive start with all in a single cluster. 

IC (AIC) 
Objective function/Information criterion (see table below for options 

available) 

MergeSplitProbability 

(0.25) 

Monte Carlo move: either an ordinary step (moving a data point between 

clusters) or a cluster merge/split according to this probability. 

MaximumIterations 

(100) 
Number of Monte-Carlo moves at each temperature  

StartTemp (500) 

Starting temperature of the simulated annealing. Higher temperature-

more random solution will be accepted at the beginning of simulated 

annealing.  

TempFactor (0.99) Temperature reduction factor at each iteration of the temperature loop. 

MaxTemps (100000) 
Maximum number of temperature to be simulated (termination criterion). 

Higher value will make the SA runs longer.  

MaxRepIters (100) 

Maximum number of simulated annealing best score repetitions. If the 

score does not change at up to this number of repetition, the SA will be 

terminated although the maximum temperature is not reached. 

Seed (1) The seed of the random number generator. 

EMIterations (100) Maximum number EM iterations 

OutInterval (10) 
Intervals at which the solution is printed to the output file and at which 

the heat maps are updated on GUI 

ClustFile  The name of the final clusters output file 

NormExp (0) 
Normalizes continuous inputs to zero mean and a standard deviation for 

each data points- z-scores.  

Nrun (0) Number of re-run of the program after initial run 

Table 2: Runtime parameters of both GUI and CLN based package. The underlined and bold values 

are the default values of the runtime parameters. 

 

Output file (e.g. Output.txt) 

A text file containing all the runtime updates such as score, current best modules/clusters, etc. 

EM refinement file (e.g. EMRefinement.txt) 

A text file containing all the marginal densities of each cluster found from the simulated annealing 

procedure. 

 

 

 

 

 



Section 4: Mathematical representation of score calculation 

Solution (clusters) score calculation: 

   …………………… (1) 

N : data points i, representing genes, tumour samples etc. 

𝑟𝑖𝑗 ∈ {0,1}, 𝑗 = 1, … , 𝑛𝑟 binary variables  

𝑒𝑖𝑙 , 𝑙 = 1, … , 𝑛𝑒 continuous variables 

𝛼𝑚 are mixing coefficients ∑ 𝛼𝑚 = 1. 

B denotes the Bernoulli distribution with parameter 𝑝𝑚𝑗, and N is a normal distribution with parameters  

𝜇𝑚𝑙 and𝜎𝑚𝑙.  

We assume a probability distribution (1) which is a mixture of Nm components (clusters). 

 

In the case of genetic regulation the mixture components represent the well-known concept of a cluster 

of co-regulated genes, with, for example, Bernoulli parameters 𝑝𝑚𝑗 representing the probability of 

binding for particular transcription factors in promoter/enhancer elements, and the 𝜇𝑚𝑙representing a 

shared average pattern of gene expression, which could be a time or developmental series but is not 

required to be. In the case of tumour samples, clusters could be related samples where Bernoulli 

parameters associate mutation probabilities at particular loci with shared patterns of oncogenic gene 

expression.  

 

Since the number of clusters in unknown and difficult to estimate, an initial heuristic search was adopted 

for an approximately optimal model, followed by refinement of the solution by expectation maximization. 

The heuristic search employed a Monte-Carlo simulated annealing algorithm (see Algorithm 1) to 

optimize objective functions of the form 

𝑶(𝑳, 𝒌) = −𝟐𝑳 + 𝒌𝝀(𝑵) …………………… (2) 

where L is the (maximized) log-likelihood from the distribution above, 𝜆 is a function of the number of 

data points 𝑁 and k is the number of parameters in the model.  

Several different functions 𝜆(𝑁) can be use with our algorithm as shown in table 3 below: 

 

 Criterion 𝝀 N Equation Reference 

a. AIC2 2 1 -2L + 2k Akaike, 1973 

b. AIC2.5 2.5 1 -2L + 2.5k - 

c. AIC3 3 1 -2L + 3k Bozdogan, 1993 

d. HQC 2 ln ln(Ng) -2L + 2k(ln(ln(Ng))) Hannan and Quinn, 1979 

e. AIC4 4 1 -2L + 4k - 

f. AIC5 5 1 -2L + 5k - 

g. BIC 1 ln Ng -2L + k(ln(Ng)) Scwarz,1978 

h. CAIC 1 ln Ng +1 -2L + k(ln( Ng )+1) Bozdogan, 1987 

Table 3: Different objective functions tested and can be chosen by user sorted ascendingly (from a. to 

h.) based on its stringency in penalizing free parameters and number of data points in the model. 

 

 



Monte-Carlo simulated annealing (SA) for clusters optimization. 

1: Normalize expression (genes)* 

2: Clusters = Initialize clusters (agglomerative/divisive) 

3: Best clusters = [list] 

4: Score = 0.0 

5: Old score = 0.0 

6: Best score = 0.0 

7: Difference = 0.0 

8:          Count temperature = 0 

9:          Temperature = Start temperature 

10:        While Count temperature < Maximum temperature: 

11:                    Temperature * Temperature decreasing factor 

12:  Score = Calculate modules score (clusters) 

13:  beta = 1.0/temp 

14:  While Iteration < Maximum iterations: ** 

15:   If random  > Merge and split probability: 

16:    Change (clusters)  

17:   Else: 

18:    If random > 0.5: 

19:     Merge (clusters) 

20:    Else: Split (clusters) 

21:              Old Score = Calculate clusters score (Clusters) 

22:              Difference = Difference + (Score-Old score) 

23:              If Difference < 0.0 or random < exponent(-beta*Difference): 

24:              ‘accept’ 

25:               if Score < Best score: 

26:                Best score = Score 

27:                Best clusters = Clusters 

28:              Else:  

29:             ‘reject’ 

30:              Score = Old score 

31:                    End while 

32:                    Count temperature + 1 

33:                    If Best score = Old Score: 

34:                                 Count score = Count score + 1 

35:                    If Count score == MaxRepIters: 

36:                                  break 

37:        End while                  

38:        Return Best score, Best clusters 

Algorithm 1: Pseudo-code for the Monte-Carlo Simulated annealing algorithm. 

**This step runs in parallel (5 parallel threads). 

 

Expectation-maximization 

The parameters of model produced as the best solution from the heuristic search can be refined by EM, 
with the useful side effect of estimating the degree of mixing between modules through the probability 
density that data point i is generated from mixture component m (3). 

…………………… (3) 

This is derived from Bayes’ rule: pm is the probability density for mixture component m defined in 2.2, θ 
denotes the (current) vector of parameters for all modules and the mixing coefficients αm can be 
interpreted as prior probabilities for membership of each module. The steps of the EM algorithm are 



showed in the figure as followed: 

 
 

 

Figure 1: Refinement of model parameters using EM which starts with the prior probability densities 
from the SA output and refinement of its parameters until convergence. Convergence here means, until 
the parameters values do not changed for 2 consecutive EM iterations or until the maximum number of 
iterations has been reached. 
 

 

 

 

 

 

 

 

 

 

 

 


