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Abstract 

Clustering is used widely in ‘omics’ studies and is often tackled with standard methods 

such as hierarchical clustering or k-means which are limited to a single data type. In 

addition, these methods are further limited by having to select a cut-off point at specific 

level of dendrogram- a tree diagram or needing a pre-defined number of clusters 

respectively. The increasing need for integration of multiple data sets leads to a 

requirement for clustering methods applicable to mixed data types, where the 

straightforward application of standard methods is not necessarily the best approach. A 

particularly common problem involves clustering entities characterized by a mixture of 

binary data, for example, presence or absence of mutations, binding, motifs, and/or 

epigenetic marks and continuous data, for example, gene expression, protein 

abundance and/or metabolite levels.  

In this work, we presented a generic method based on a probabilistic model for clustering 

this mixture of data types, and illustrate its application to genetic regulation and the 

clustering of cancer samples. It uses penalized maximum likelihood (ML) estimation of 

mixture model parameters using information criteria (model selection objective function) 

and meta-heuristic searches for optimum clusters. Compatibility of several information 

criteria with our model-based joint clustering was tested,  including the well-known 

Akaike Information Criterion (AIC) and its empirically determined derivatives (AICλ), 

Bayesian Information Criterion (BIC) and its derivative (CAIC), and Hannan-Quinn 

Criterion (HQC). We have experimentally shown with simulated data that AIC and AIC 

(λ=2.5) worked well with our method.  

We show that the resulting clusters lead to useful hypotheses: in the case of genetic 

regulation these concern regulation of groups of genes by specific sets of transcription 

factors and in the case of cancer samples combinations of gene mutations are related to 

patterns of gene expression. The clusters have potential mechanistic significance and in 

the latter case are significantly linked to survival. 
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 Introduction 

The enormous amount of biological data produced on a genomic scale requires 

analytical tools to understand the bigger picture of biological function, be it at the level of 

the cell or the level of the organism. This is also known as systems biology. In contrast 

with reductionist biology, which separates biological systems into their components in 

elucidating the biochemical basis of living processes, systems biology is a top down 

approach which deals with this enormous data in explaining complex cellular processes 

and larger organismal system functions [1]. Bioinformatics is a branch of biological study 

and also a computational study, where applications such as statistical tools are being 

developed to analyse and make sense of large and diverse genomic datasets (i.e. genes, 

proteins, and epigenetic states) produced from microarrays and high-throughput 

technologies.  

 Basic molecular biology 

A cell is a basic unit of life and recognized as a cell because it is surrounded by a 

membrane, also referred to as the plasma membrane.  A cell’s interior environment is in 

liquid form and called cytoplasm. There is the hereditary unit of life known as 

deoxyribonucleic acid (DNA) within a membrane-bound nucleus in eukaryotic 

multicellular organisms, or within the cytoplasm itself in a prokaryotic unicellular 

organisms. DNA is a blueprint that encompasses all the information required to build and 

maintain an organism’s biological system. It is made up of long chains of bases: Adenine 

(A), Guanine (G), Thymine (T) and Cytosine (C). Apart from the nucleus, the cytoplasm 

also accommodates organelles, proteins, carbohydrates, lipids which perform the cell’s 

functions. 

A functional unit of heredity of life is known as a gene. A gene is a section/region of the 

DNA which provides instruction to make a protein and other transcribed ribonucleic acids 

(RNAs) that do not undergo translation into proteins (e.g. rRNA, tRNA, miRNA, etc.). In 

humans, genes are arranged on chromosomes that are found in the cell’s nucleus. A 

human cell has 23 pairs of chromosomes and are made up of coding DNA (i.e. exons) 

that are interspaced with non-coding DNA (i.e. introns) (see Figure 1.1). Individual genes 

are separated by intergenic regions. Chromosomes are contained in every cell in human 

body except blood cells, and genes are carried on all chromosomes. Moreover all 

chromosomes exist in pairs except the XY sex chromosomes in males. The two copies 

of each gene is called an allele.  
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Figure 1.1 A section of a chromosome (a gene) containing exon in between of 

introns. 

Molecular biology explores cells, their parts and biological and chemical processes 

between biomolecules which includes DNA, RNAs and proteins. Regulation of the 

biosynthesis of proteins at the molecular level, specifically at the transcriptional level is 

important to dictate the function of a cell.  

 Central dogma 

A central dogma of biology states that, in each and every cell which makes up an 

organism, the flow of biological information is from DNA to messenger RNA (mRNA) and 

subsequently the formation of the protein [2]. The phenotypes observed in an organism 

result from the working forces of this central dogma. This process is quite straight forward 

in lower prokaryotic organisms such as bacteria where their gene expression is mainly 

controlled at the level of transcription [3]. However, for organisms with higher levels of 

organization such as mammals, it not as straightforward. Eukaryotic gene expression is 

controlled at the levels of transcription, epigenetics - any process other than DNA 

sequence that could alter gene activity which leads to heritable modifications - post-

transcription, translation and post-translation [3]. Eukaryotic cells function differently, and 

a multitude of combinations of different gene regulations, metabolic reactions, cell-cell 

signaling/interactions and responses to stimuli at the cellular, tissue, organ and organ 

system levels lead to the different phenotypes observed.  

The first portion of the central dogma is known as the transcriptome. This covers the 

transcription of DNA to mRNA inside the nucleus of a cell in eukaryote or in the cytoplasm 

itself in prokaryote. The second portion is known as the proteome, which is the translation 

from mRNA to protein in the cytoplasm of both prokaryotic and eukaryotic cells (see 

Figure 1.2 below). 
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Figure 1.2 Prokaryotic vs eukaryotic gene expression central dogmas of molecular 

biology.   
Prokaryotic (left) vs eukaryotic (right) gene expression central dogmas of molecular 

biology. The hereditary information flows from DNA to messenger RNA, known as 
transcription and then forming a protein through the translation process. Prokaryotic 
transcription and translation occur simultaneously in the cytoplasm whilst eukaryotic 
gene expression and translation take place in the nucleus and cytoplasm respectively. 
 
 

It is possible but often impractical to study both the transcriptome and proteome to 

uncover the working force behind each phenotypic observation due to the complexity of 

genome. However, some attempts on capturing the cross talk between omics levels have 

found that RNA levels can only explain a small portion of the protein abundance 

observed [4, 5], and metabolic/clinical traits were correlated better to RNA levels than 

the protein levels [4]. To this end, studies related to different omics layers have been 

done separately due to the difficulties mentioned above. This thesis will focus in 

understanding the transcriptome of organisms (i.e. yeast and human) and its related 

regulations. A method developed to assist the knowledge discovery from high-

throughput data will be described and discussed later in the chapters.  

 Chromatin 

A complete set of DNA in an organism is known as a genome. The genome of a 

prokaryote is mostly contained in a single chromosome, which is usually circular, 

whereas, the genome of eukaryote is composed of multiple chromosomes, each 

containing a linear double helix molecule of DNA [6]. A human contains approximately 

three billion nucleic acids base pairs [7]. The completion of Human Genome Project in 

2003 which was first articulated in 1988, had estimated there are about 19 000 to 20 000 

protein coding genes in the human genome [7, 8]. Genes encode protein and cell 

functions. The number of human protein coding genes is only moderately bigger than 

that of much simpler organisms (e.g. fruit fly; ~13 600 genes [9], round worm; ~20 500 

genes [10]). Thus, the size of the genome does not reflect the complexity of an organism. 
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Apart from this, a gene can also yield different proteins because of mRNA alternative 

splicing [6, 11]. In humans, each cell contains about 2 meters of DNA when (all 

chromosomes are included), and this long stretch of DNA can fit into the microscopic 

space of eukaryotic nucleus with the help of proteins known as histones which compact 

chromosomal DNA.The complex of DNA and histones formed then is called chromatin. 

Histones (positively charged proteins, i.e. H1, H2A, H2B, H3 and H4) alter the negatively 

charged DNA conformation by interacting with it and coiling and folding the DNA. DNA 

is packaged by a repeating unit of histones octamer which packages 147bp of DNA to 

give the nucleosome -a nucleosome is a unit of chromatin.  

 Transcription and transcription control 

The control of the transcriptional process is important in dictating the amount and which 

proteins will be produced. The timely expression of genes in a cell results from 

transcription regulator activity and gives rise to a variety of cell types. As mentioned 

previously, eukaryotic transcription is more complex than prokaryotic transcription where 

the transcription of eukaryotic gene has to deals with introns, the presence of 

activators/repressors as well as chromatin accessibility.  Here we will deal mainly with 

eukaryotic cells, since these are the main subject of the remainder of the thesis. 

 

Figure 1.3 Modulation of transcription of a eukaryotic gene in an active state.  

Figure 1.3 above shows the transcriptional regulation machineries in which the basal TFs 

and RNA polymerase II are recruited by transcription factors on a distal enhancer to the 

core promoter where the TATA box lies adjacent to the transcription start site (TSS). This 

distal interaction with the help of chromatin remodelers. Chromatin remodelers form a 
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loop which then initiates the transcription [12]. These kind of looping interactions have 

been captured using genome-wide chromosome conformation capture (Hi-C)  and 

related techniques [13].  

 Sequence-specific TFs and combinatorial regulation 

The transcriptional regulator also known as a transcription factor (TF) can either be an 

activator, a repressor or silencer (trans-acting elements) that bind to a particular binding 

motif in the non-coding DNA regions, which are also known as cis-regulatory elements 

(CREs). A TF is often composed of two domains: DNA-binding domain and activating 

regions which recognize and bind to DNA and interact directly/indirectly with the basal 

transcription machinery and other factors. When there are more than one or 

combinations of cis-regulatory elements occurring in regions on the DNA, they are called 

cis-regulatory modules. Cis-regulatory modules can affect transcription independently of 

location relative to the promoter [14].  

Current studies have addressed the combinatorial regulation of transcription by 

combinations of TFs and their co-regulator(s) (see Figure 1.3 for illustration of 

combinatorial binding) in exerting effects on gene expression, in many model organisms 

such as man, mouse, and fruit fly genomic systems [15-18]. TF binding patterns are 

important in elucidating the biological function of organisms. While a TF can bind onto 

many CREs, many CREs can also be bound by more than one TF, and not all binding 

events are important/relevant for genes expression. These prove to be a challenge in 

inferring functional regulation by TFs. 

 Epigenetics and its relationship to gene regulation 

We as human have the same number of genes in each of us, but we have different 

phenotypes. There are many factors that contribute to our diversity, from different spatial 

and temporal expression of genes and DNA differences (including mutations and copy 

number variations) in different cell types to the much less well-understood underlying 

factors such as environmental and epigenetic changes. Epigenetics is the second 

dimension to the genome and also known as epigenome, and it contains key information 

specific to every cell type [19]. Epigenetics literally refer to ‘outside conventional genetics’ 

[20] or in other words any process other than DNA sequence itself that modulate gene 

activity in a cell. Many reviews that discuss epigenetics have explained in detail the 

epigenetic alterations that could lead to downstream biological effects which include 

transcription factors, non-coding RNAs, DNA methylation, and histone modifications 

along the genome [19-21]. 
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 Chromatin modifications and DNA methylation 

As stated above, the primary components of chromatin are histones. Histones make up 

the chromosome and any alteration in histones will effect the DNA packaging and its 

accessibility. Chromatin in an active form for example, as in Figure 1.3, is where the 

important regulatory regions such as promoters and enhancers are more accessible, to 

allow transcription to occur. Histones can be post-translationally modified by acetylation 

and methylation of conserved lysine residues on the amino-terminal tail domain of 

histone proteins [22]. Active (open-chromatin) and inactive (heterochromatin) states of 

chromatin are usually associated with acetylation and deacetylation of histones 

respectively. On the other hand, methylation of different lysine residues of a histone 

protein can be markers for both active and inactive chromatin states. For example, 

methylation of lysine (K9) of H3 histone marks the silent DNA in heterochromatin. In 

contrast, methylation of lysine (K4) on the same histone protein marks active chromatin 

[22]. Similar to chromatin modifications by histones, DNA methylation of the promoter 

regions can lead to an aberrant transcription. Some promoter regions in mammalian 

genomes contain short regions (0.5-4 kb in length) which are rich in cytosine and guanine 

nucleotides also known as CpG islands [23] and mostly located proximal to the TSS. The 

addition of a methyl group cytosine residues, known as methylation often results in the 

repression of transcription. In normal cells, almost half of the genes promoters are found 

to be unmethylated [23]. 

 Open questions in eukaryotic gene regulation 

Some open questions in eukaryotic gene regulation that need to be answered are, 1) 

With the combinatorial binding of transcriptional factors, how do we differentiate between 

relevant and irrelevant TF binding which actually drive the transcription?, 2) More than 

one epigenetic alteration could be responsible for the altered gene expression levels, 

thus, what is the best way to compare epigenetic alterations to the expression levels 

observed?  

 Experimental techniques for studying regulation 

All of the possible ways of regulating mRNA levels mentioned above can be measured 

using high-throughput technologies (i.e. array based or sequencing based technologies). 

Microarrays and array techniques were the pioneering technologies to quantify the 

abundance of transcripts as well as estimating the physical interaction of TF with DNA. 

These have now been superseded by the development of the next-generation 

sequencing (NGS) technologies. NGS technology is a platform to do massive parallel 

short-read DNA sequencing and this comes at greater reduction of cost per base since 
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the first final draft of human genome was completed [7]. Both, microarray and NGS 

technologies adopt a similar framework in their library preparation.  

 

Figure 1.4 A genomic locus analysed by corresponding chromatin profiling 

experiments. 
A genomic locus analysed by corresponding chromatin profiling experiments. Order of 
steps varies on different chromatin profiling experiments. Figure was adopted from [24].  
 
 
Figure 1.4 above shows different types of experiment that can be done to analyze a 

genomic locus for TF binding (ChIP-chip and ChIP-seq), chromatin accessibility (DNAse-

seq), transcripts/mRNA expression (Microarray and RNA-seq) and DNA methylation 

(MeDIP). The general consensus of steps in NGS and microarray includes fragmentation 

of targeted DNA using sonication or nucleases, enrichment of targeted DNA or reverse 

transcribed RNA (complementary DNA, cDNA), amplification of enriched cDNA/targeted 

DNA using PCR to prepare a sufficient cDNA/targeted DNA library. The library products 

are then either hybridized to an array or are sequenced. Reads produced by the 

sequencing technique need to be mapped to a reference genome before being quantified 

and analyzed. This is contrast with microarray where array probes are known or already 

annotated with locus information.  

 Microarrays and RNA-seq 

Array-based technologies provide researchers with robust tools to measure the binding 

of TFs and the expression of genes, where thousands of probe intensities are analyzed 

in a single assay. Microarray probes represent collections of promoters, coding regions, 

transcripts 3’ ends, alternatively spliced exons, single nucleotide polymorphisms (SNPs) 

and disease-gene arrays [25]. Microarrays have been used for decades in profiling gene 

expression. Thousands of oligonucleotides (short cDNA molecules (25 to 60-bp)) are 8  
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immobilized on a solid support where either the array is spotted-on-glass array, an in-

situ synthesized array, or self-assembled microbeads in micro-wells [26]. In microarray 

technology, poly (A)-tailed mRNAs are first isolated, reverse transcribed to cDNA, 

purified and enriched, and followed by amplification by PCR and labeling (fluorescent 

tag or biotin). The labeled sample is then hybridized to a microarray. Depending on the 

type of labeling, the array is treated and scanned differently. A biotin-labelled sample 

array is stained with fluorescently labeled streptavidin to label cDNA and the fluorescent 

signal at each spot is measured. If different fluorescent dyes (Cy5- red and Cy3- green- 

to label cDNA samples from two different experimental conditions) are used, the 

differently labeled arrays are scanned using lasers with two different wavelengths 

corresponding to the dyes and the intensities are measured.  

There are several limitations in performing microarray such as its design requires a priori 

knowledge of the genomic features, cross-hybridization between similar sequences, high 

signal-to-noise ratios, bias from PCR-based amplification and reproducibility of 

microarray data due to many formats, methods and analytical approaches available [25].  

Next generation sequencing based approaches have overcome the limitations of 

microarray in many ways. For example, it has been used to assemble a genome de 

novo-without any a priori knowledge of genomic features. Moreover, DNA is directly 

sequenced hence, removing any issue of cross-hybridization. In addition, signals are 

quantified by counting the sequence tags rather than using relative measures between 

samples, and minute amounts of sample (nanograms) are sufficient, often without the 

need of PCR amplification [25]. However, the prominent feature of NGS is that the 

binding of TF (ChIP-seq) to the DNA and RNAs abundance (RNA-seq) data are collected 

genome-wide and from all genomic regions. Last but not least, NGS is more reproducible 

in term of the bioinformatics analysis where all NGS platforms have same data output 

and in similar formats.  



9 
 

 

Figure 1.5 Workflow of RNA-seq from library preparation to RNA profiles 

quantification. 
Workflow of RNA-seq from library preparation to RNA profiles quantification. Figure was 
redrawn based on [27]. 
 

Briefly, in the RNA-seq process, total mRNAs undergo a fragmentation process and are 

reverse transcribed into cDNA fragments. Adaptors are added to the 5’ end of each 

cDNA (red fragments in Figure 1.5), these fragments can be exons, junctions between 

exons, and poly (A) tails. Then, using high-throughput sequencing, short sequences 

obtained from cDNA fragments known as short reads are mapped to the reference genes 

[27]. cDNA fragments are generally sequenced at the 5′ ends. However, they can also 

be sequenced at both ends. These reads are used to generate a nucleotide resolution 

expression profiles for each gene as represented in Figure 1.5 (bottom most section). 

The abundance of reads (target transcripts) is quantitatively approximated in the form of 

counts.  By taking the sequencing depth and other technical biases from RNA-seq 

preparation steps as well as the transcript lengths into consideration, normalization 

methods were developed known as reads per kilobase per million (RPKM) and fragments 

per kilobase per million (FPKM).  
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RPKM =
number of mapped reads

(length of transcript in kilobase)/(million mapped reads)
 

FPKM =
number of fragments

(length of transcript in kilobase)/(million mapped reads)
 

RPKM and FPKM are analogous to each other and were made for single-end and paired-

end sequencing respectively. In RPKM, each read corresponds to a single fragment that 

was sequenced whereas, the latter one involves both 5’ ends reads of the same fragment 

that was sequenced. For FPKM, fragments are used to approximate the abundance of 

transcripts rather than read counts so fragments are not counted twice [28]. 

 ChIP-chip and ChIP-seq 

Chromatin immunoprecipitation on a chip (ChIP-chip) has a similar overall framework to 

the gene expression using microarray except that at the earlier stage in library 

preparation, formaldehyde is used to crosslink the DNA binding protein to DNA, followed 

by sonication to shear the bound DNA. The DNA fragments are subjected to an 

immunoprecipitation reaction where an antibody specific to the bound protein is used to 

precipitate the protein-DNA complexes [29]. Steps following the purification of the bound 

DNA after immunoprecipitation are similar to the gene expression microarray.  

Chromatin immunoprecipitation followed by sequencing offered higher resolution, less 

noise, and more coverage than ChIP-chip and can be used to profile DNA-binding 

proteins, histone modifications or nucleosomes on a genome-wide scale [30]. In ChIP-

seq, the crosslinking of DNA-binding protein to DNA, fragmentation, and 

immunoprecipitation steps are similar to ChIP-chip. The immunoprecipitated fragments 

are sequenced from the 5' end. Sequenced reads are aligned to the genome (e.g. using 

Mapping and Assembly with Qualities (MAQ)) [31]. This is followed by the identification 

of enriched regions relative to the control with statistical significance using a peak caller 

(e.g. MACS) [32]. As tags are sequenced from both strands, the alignment of the 

sequenced tags to the genome results in two peaks (one on each strand) that flank the 

binding location of the protein or nucleosome of interest [30]. 
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Figure 1.6 Representation of ChIP-seq of a DNA-binding protein on DNA.  

Representation of ChIP-seq of a DNA-binding protein on DNA. Figure was redrawn with 
permission from [30]. 
 
 

This should form two distributions (forward and reverse density profiles) and a smoothed 

profiles from each strand are combined by shifting each profile to the center [30]. Peaks 

then can be scored using different models for the tag distribution (e.g. Poisson model or 

the binomial model).  

 Cancer 

Cancer cells are different from normal cells in that they no longer respond to cellular 

growth and death signals and are independent of signals from other cells [11]. A group 

of cancer cells forms tumour and in the early stages of cancer, tumours are benign or 

occupy a specific region of tissue. However, as these benign tumours accelerate in 

growth, they can spread to other tissues or organ systems and become malignant. This 

process of invasion is known as metastasis [11]. There are many possible ways for 

normal cells to transition into cancerous cells. Cancer cells often result from the 

accumulation of mutations and copy number aberrations (CNAs) of genes that control 
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pathways related to cell proliferation. The main challenge in understanding mutations 

and CNAs is to distinguish the driver events that contribute to cancer progression from 

the passenger mutations and CNAs. Apart from mutations and copy number aberrations, 

it is well-known that epigenetics also contributes to human disease.  

 Basics of cancer hallmarks and mechanisms 

The six hallmarks found to be influencing cancer that were originally proposed by 

Hanahan and Weinberg in their review on cancer hallmarks [33] are as follows: 

1. Sustaining proliferative signaling 

2. Evading growth suppressors 

3. Activating invasion and metastasis 

4. Enabling replicative immortality 

5. Inducing angiogenesis 

6. Resisting cell death 

The ability of cancer cells to sustain proliferation independence may be acquired through 

deregulation of growth-promoting signals, deregulation of receptor signalling, constitutive 

activation of signalling pathways operating downstream of growth ligand receptors, 

constitutive activation of signalling circuits triggered by somatic mutations, and 

compromised negative-feedback loops that are supposed to weaken the proliferative 

signalling [33]. In contrast to the cell proliferation independence, disruption in negative 

regulation of cell proliferation usually, by the tumour suppressors (i.e. Tp53- a gene that 

provides instructions for making a protein called tumour protein p53) can hamper the 

decisions of cells to either proliferate or commit to apoptosis/death. Cell adhesion formed 

by dense populations of cells using, for example, E-cadherin is abolished in cancer cells 

[33]. Loss of E-cadherin affects tissue integrity which could lead to tumour abnormal 

cellular architecture and invasion [34]. In addition to uncontrolled cell proliferation, cancer 

cells progress in malignancy by invading local and distant cells or tissues (metastasis). 

This involves a multistep process where at first, localized invasion by cancer cells enter 

the nearby blood stream and lymphatic vessels (intravasation). Cancer cells in these 

vessels will transit through lymphatic and blood systems and then escape into distant 

tissues (extravasation) and forming a small colony of cancer cells. This small colony will 

grow into tumors (metastases), and this final step is known as colonization [33].  

In normal cells following embryogenesis, the sprouting of new blood vessel from the 

existing one (angiogenesis) is largely dormant except during wound healing and the 

female reproductive cycling system [33]. In contrast, angiogenesis is always activated 
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during tumor progression to help sustain tumor growth. As mentioned previously, Tp53 

plays an important role in triggering cellular apoptosis. This is mainly by up-regulating 

several apoptotic factors.  Another oncoprotein such as Myc plays a pivotal role in cell 

growth, increasing cell proliferation, tumorigenesis and in reprogramming stem cell state 

[35]. Tumor cells evolve by either loss of Tp53 or activation of Myc, increasing the 

expression of anti-apoptotic regulators, increasing survival signals, downregulation of 

apoptotic factors, or by disrupting the ligand-induced death pathway [33].   

Clinicians are trying to diagnose, prevent and/or eliminate cancer by implementing 

invasive surgery together with the therapeutic treatments such as radio-, chemo-, 

immuno-, targeted-, and/or hormone-therapy, as well as precision medicine. Parallel to 

the standard therapeutic strategies which generally kill proliferative cancerous cells as 

well as non-malignant  fast-growing cells (e.g. hair, intestine, and buccal cells), targeted-

therapy involves small-molecule drugs that can enter cells to targeting specific targets 

(e.g. oncogenic drivers) inside cancer cells or monoclonal antibodies that specifically 

attach to the outside of cancer cells without destroying the healthy cells [36]. Targeted-

therapy underpins the precision medicine where clinicians and scientists are trying to 

tailor the suitable drugs based on patient’s genetic aberrations (e.g. genes expression, 

mutations, methylations, and copy number) that drive cancer or block their effects [36]. 

By understanding precision medicine, more systematic and accurate diagnosis and 

cancer treatment could be realized in the future.  

 Different types of genetic aberrations 

Somatic mutations 

Humans are all unique because we all have small variations in our genetic code. Genetic 

variations can either be inherited from our ancestors or occur during our life from a variety 

of sources such as from the exposure to radiation, chemicals or even just by chance. 

Variation in genetic codes can be from insertion- addition of nucleotide base(s), deletion- 

removal of nucleotide base(s) or/and substitution-change of a nucleotide base. 

Variations sometimes do not affect the normal function of cells but sometimes can be 

associated with cancer and human diseases. Different cancer types can have different 

mutation signatures, but some genes appeared to be frequently mutated across different 

cancer types, for example, the tumor suppressor genes, Tp53 [6, 11]. Any mutations 

occurring in the cell in developing somatic tissue are not transmitted to progeny. On the 

other hand, mutations in the germ cells which used during reproduction may be 

transmitted to progeny.  
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Copy number variations 

Somatic copy number variations (CNVs) play a major role in most of cancer types. They 

act by activating oncogenes and deactivating tumor suppressors [37]. In diploid 

organisms such as man, our chromosomes have two copies of each gene. However, 

recent discoveries have revealed that large segments of DNA have varied copy number 

of genes (e.g. only one and more than two copies) and this could lead to biological 

imbalances and diseases [37, 38]. The imbalance in copy numbers affects each 

individual differently. For example, an individual who is heterozygous for a tumor 

suppressor gene, loss of the normal allele will produce a locus with malfunctioning tumor 

suppressor protein also known as the loss of heterozygosity (LOH). LOH is common in 

cancer.  

Aberrant methylations 

Hypermethylation of promoter regions in cells often silences the expression of linked 

genes. Figure 1.7 below shows how the hypermethylation blocks the proximal promoter 

from the binding of transcriptional machineries to initiate the transcription. DNA 

methyltransferase enzyme is responsible in adding a methyl group to the C5 position of 

the cytosine ring of DNA [22, 23, 39]. Aberrant methylations associated with cancer are 

widely studied, and it is found that disruption in the maintenance of methylation patterns 

causes the inactivation of broad range of genes including tumor suppressor gene 

expression. Different patterns of DNA methylation also correlate with the expression of 

genes in different cancer types [40].  

 

Figure 1.7 How DNA methylation silences a gene.  

 
 

Hypermethylation of promoter regions in cells often silences the expression of linked 

genes. Figure 1.7 above shows how the hypermethylation blocks the proximal promoter 

from the binding of transcriptional machineries to initiate the transcription. DNA 

methyltransferase enzyme is responsible in adding a methyl group to the C5 position of 

the cytosine ring of DNA [22, 23, 39]. Aberrant methylations associated with cancer are 
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widely studied, and it is found that disruption in the maintenance of methylation patterns 

causes the inactivation of broad range of genes including tumor suppressor gene 

expression. Different patterns of DNA methylation also correlate with the expression of 

genes in different cancer types [40].  

 Genomic projects – TCGA, etc. 

An abundance of datasets has been produced from high throughput technologies, and 

these are driving more novel discoveries associated with human and other model 

organisms’ transcriptional regulation as well as the regulation and subtypes of cancers 

in human. This usually involves collaboration of many research groups around the world 

such as the Encyclopedia of DNA Elements (ENCODE) and The Cancer Genome Atlas 

(TCGA) consortia. The benefit of such efforts is that data are made publicly available to 

the research community for them to come up with novel findings or comparison of 

common patterns existing in the publicly available data and locally generated data [41, 

42]. In addition, publicly available datasets can be used to test newly developed 

algorithms. 

The ENCODE project is an international collaboration of research groups funded by the 

National Human Genome Research Institute (NHGRI) [41]. It provides information about 

functional epigenetics of the human genome that is vital to the development and function 

of a human. This includes data on DNA methylation, histone modifications and TF 

binding that influence mRNA production. With the advancement of techniques, ENCODE 

also examines the accessibility of the genome using the DNA-cleavage protein DNase I 

as well as long-range chromatin interactions that could change the chromatin structural 

conformation and thus affect transcription [41].  

The Cancer Genome Atlas (TCGA) is a collaboration between the National Cancer 

Institute (NCI) and the National Human Genome Research Institute (NHGRI) that 

currently has generated multi-dimensional maps corresponding to different key genomic 

changes in thirty-three types of cancer [42]. Different types of data including DNA 

methylation, gene expression sequencing data, microRNA and protein expression 

(RPPA) have been made publicly available. The available and readily accessible data 

allows the cancer research community to improve the prevention, diagnosis, and 

treatment of cancer accordingly. New methodologies to learn and predict the prognosis 

of the cancer markers discovered using this datasets have contributed considerably  to 

the diagnosis and treatment for cancer patients.  
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 Data analytical techniques 

ChIP-seq and RNA-seq have produced wealth of information on the interaction of DNA-

binding proteins to DNA and the expression levels of genes, respectively. Some of them 

are irrelevant or do not contribute to the biological processes affecting the function of an 

organism. Hence, suitable methods need to be tailored to separate relevant from all 

irrelevant and relevant information and to put relevant information together (e.g. 

clustering, dimensional reduction and machine learning).  

 Clustering 

Clustering is an approach to extract useful information from a large dataset by collectively 

grouping objects which have similar features/properties together and separate them from 

other groups which are dissimilar. Clustering has been used earlier by chemists and 

biologists in constructing the periodic table of chemical elements as well as the 

classification of animals and plants into the hierarchies of kingdom, phylum, class, order, 

family, genus, and species [43]. Clustering provides researchers with an alternative to 

explore patterns existing in high dimensional data derived from microarray and next 

generation sequencing technology. With the advancement of algorithm development 

with more sophisticated computational techniques, various data types can be analysed 

and visualised, and integration of different datasets often promotes the understanding of 

the biological function of genetic components which make up the observable phenotypes 

effects in organisms.   

 Brief background on clustering methods 

Clustering of biological information (e.g. gene expression) could shed light into the 

regulation of genes as well as the functional biochemical components inside the gene 

regulatory network [44].  It has been used widely to annotate gene functions, predict 

diseases, derive gene regulatory networks, and guide the direction of experiments, as 

well as generating new hypotheses for further investigation [44, 45]. A process of 

organizing multivariate data into different classes is often achieved using a clustering 

algorithm [46]. Unsupervised clustering procedures (i.e. k-means, hierarchical clustering 

and self-organizing maps, see Figure 1.8 below) are the main methods used in analyzing 

genomic data compared to supervised machine learning due to its simplicity, and the fact 

that less computational power is required.   
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 The three main clustering methods 

Many similarity measures can be adopted in calculating the distance or similarity 

between objects, such as Euclidean distance (Equation 1) and Pearson correlation 

(Equation 2) below. A matrix of vectors can be described as n x d matrix, where n is a 

set of objects (e.g. genes) and each object represented by a set of d 

measurements/conditions (e.g. gene expression value across time points). For example, 

when clustering genes with expression values across time points (expression patterns), 

the clustering algorithm will calculate the distance between the gene expression patterns 

of pairs of genes and find the shortest distance between any two genes to be recognised 

as exerting a similar expression patterns.   

𝑑𝑓𝑔 =  √∑ (𝑒𝑓𝑐 − 𝑒𝑔𝑐)2
𝑐 ………………….…….Equation 1 

Here, 𝑑𝑓𝑔 is the Euclidean distance between object 𝑓 and object 𝑔. 𝑐 is the condition and 

𝑒 is the measurement value. 

𝑑𝑓𝑔 = 1 − 𝑟𝑓𝑔    𝑤𝑖𝑡ℎ     𝑟𝑓𝑔 =  
∑ (𝑒𝑓𝑐− 𝑒̅𝑓)(𝑒𝑔𝑐− 𝑒𝑔̅)𝑐  

√∑ (𝑒𝑓𝑐−𝑒̅𝑓)2 ∑ (𝑒𝑔𝑐−𝑒𝑔̅)2
𝑐𝑐

………………Equation 2 

Here, 𝑑𝑓𝑔 is the Pearson correlation between object 𝑓 and object 𝑔. 𝑒̅𝑔 is the mean of 

object 𝑔 and 𝑒̅𝑓 is the mean of object 𝑓. 𝑒𝑓𝑐  and 𝑒𝑔𝑐 are the measurement values of 

object 𝑓 and 𝑔 under condition 𝑐, respectively.   
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Figure 1.8 Clustering methods applied for 40 genes which have been measured 

under two different experimental conditions. 
Clustering methods applied for 40 genes which have been measured under two different 
experimental conditions. a) Known underlying cluster set of four clusters. b) The 

hierarchical clustering produces different level of clusters and the dendrogram shown on 
the right side of figure was cut at the level which produced four clusters. c) The 
partitioning method using k-means (k=4) based on the shortest distance to the cluster 
centroids (shown using stars). d) The self-organising map (SOM) method find clusters 

which are organized into a grid structure. Figure was reproduced with permission from 
[47]. 

 

There are two main approaches to cluster data: partitioning the data and hierarchical 

based approaches. Both types of clustering require either distance or correlation 

measurements to calculate the similarity and dissimilarity between and within clusters 

respectively. There are two sub-methods in the hierarchical based approach namely, 

agglomerative or bottom-up and divisive or top-down (shown in Figure 1.9) in building a 

hierarchical clustering tree. 
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Figure 1.9 Top-down (agglomerative) and bottom-up (divisive) strategies in 

hierarchical clustering of six data points in this example. 

Here, partitioning of data set can be obtained by cutting the dendrogram at a certain level 

(e.g. red arrow in Figure 1.8 b); usually the level where there is a large difference in the 

dendrogram would give a unique clustering. However, each cluster can have sub-

clusters even after cutting the dendrogram at a certain level, and the dendrogram might 

need to be cut at different levels for each branch to obtain sensible partitioning. In 

contrast to hierarchical clustering, k-means divides the data set into clusters by trying to 

minimize an error function (Equation 3) using pre-defined number of clusters (centroids) 

[48]. If the number of clusters is unknown, a k-means algorithm can be repeated for a 

set of different number of clusters, typically from two to √𝑁 where 𝑁 is the number of 

samples in the data set [47, 48]. In a k-means algorithm, the error function is minimized 

𝐸 =  ∑ ∑ ‖𝑥 − 𝑐𝑘‖2
𝑥𝜖𝑄𝑘 

𝐶
𝑘=1 ………………………Equation 3 

where 𝐶 is the number of clusters, 𝑐𝑘 and 𝑥 are the center of and sample in cluster 𝑘, 𝑄𝑘 

respectively. There are several approaches on how 𝑐𝑘 could be initialized. For example, 

we could start with a hierarchical clustering, cut the dendrogram at a certain level and 

use the mean calculated from each cluster produced. As for self-organising maps 

(SOMs), a user-defined number of centroids is required and these centroids are linked 

via a grid structure. At each iteration, a gene is chosen, and instead of moving the genes 

to the centroid, the centroid closest to the gene will be moved towards it as well as its 

neighboring centroids on the grid. Over time or iterations, the flexibility of grid of centroid 

will be reduced as the radius of this neighborhood shrinks resulting  in a grid of cluster 

(see Figure 1.8 d ) [47]. The neighboring clusters found using SOM show related 

expression patterns. 

An unsupervised model-based clustering is a generalization standard clustering method 

mentioned above where each object has a different degree of membership in all clusters 

and can also be based on mixture models [48]. Here, the data are assumed to be 

generated by probability distributions (e.g. a Gaussian distribution), and the parameters 
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of the probability distribution can be estimated using, for an example, the expectation 

maximization method. Data points are assigned to different clusters based on their 

probabilities in these distributions.  

Of all the methods discussed above, mixture model-based clustering provides more 

natural weighting of the underlying clusters as it takes into account of the different degree 

of membership of a data point in all clusters based on the parameters estimated from 

the data. This will be discussed in more depth in the next chapter. 

 Dimension reduction 

The high dimensionality of data sets and types per sample that we have make it difficult 

to currently visualize and limit the data exploration. However, a reduction to only most 

important features has been proven to be useful using principle component analysis 

(PCA) [49, 50]. PCA is a mathematical algorithm that reduces the dimensionality of data 

using a feature selection approach. The features (e.g. genes) are reduced by projecting 

each sample into different planes/directions called principal components (they are 

statistically independent from each other) in the n-dimensional plot (number principle 

components is less than the number of features). Then, the principal components that 

could explain the variations best in the dataset are selected [49]. Each principle 

component will have its proportion of variance based on the features contained within it. 

Selection to only subset of components that could capture ~90% of the original variance 

would reduce the number of features while retaining most of the variation in the dataset. 

In addition, it is also common practice to reduce the dataset to only most variably 

expressed genes as these genes usually being the key players in important cellular 

pathways (i.e. cells differentiation pathway, tumorigenesis pathway) in comparison with 

the housekeeping genes expression.           

 Supervised analysis (machine learning) 

Machine learning is a computational algorithm that improves the outcomes with 

experience. It is one of the useful methods for the interpretation of the genomic ‘big data’ 

by learning to recognize patterns in the problem given. One of the most useful uses of 

machine learning is to use input from the high-throughput technologies in distinguishing 

between different disease or sample phenotypes which leads to the identification of 

disease biomarkers [51]. In addition, it also has been used to predict gene expression 

using DNA sequence alone and sometimes  to take into account other epigenetic 

information at the gene promoter [51]. There are three stages in the machine learning 

method. First is the development of the algorithm itself that would produce a successful 

learning. Second, divide or prepare the data set into a training set and a testing set. The 
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data points in training data set are annotated, and this process known as labeling, and 

the annotation is called ‘label’. The labeled data points in the training data set are 

processed and stored as a model. Third, the testing data set are introduced to the 

algorithm, and which uses the model in second step to predict the labels. Successful 

prediction would predict most labels correctly. Given the known label of the testing set, 

the performance of the algorithm can be measured directly [51]. The learning process in 

machine learning algorithm can be in the form of generative models or and discriminative 

models (i.e. support vector machine). Given the two classes in the learning model, the 

generative approach constructs a full model based on the distribution of features in each 

class and then compares the difference between them. In contrast, the discriminative 

approach only focuses on modeling the boundary between those two classes [51].  

The decision of researcher regarding which data to provide as an input to the algorithm 

is important, as the prior knowledge of the data relevance could produce a good 

prediction. For example, in cancer patient classifications, the feature selection in the 

learning step which involves finding subsets of genes based on gene expression 

measurements, could be valuable in providing accurate diagnoses for patients.  

 Gene set analysis, GO, GSEA 

Clusters found using unsupervised/supervised clustering are usually subjected to a 

systematic evaluation to see if the objects in the same group are biologically correlated. 

Gene ontologies (GO) and gene set enrichment analysis (GSEA) are the most widely 

used criteria to see if the members of clusters are biologically homogeneous or not. The 

GO consortium provides a standard system to produce a structured, precisely defined, 

common, controlled vocabulary for describing the roles of genes and gene products in 

any organism [52]. There are three categories of GO namely, biological process, 

molecular function, and cellular component. Biological process refers to a biological 

objective to which the gene or gene product contributes. Molecular function is defined as 

the biochemical activity of a gene product. Lastly, cellular component refers to the place 

in the cell where a gene product is active [52]. There are several methods published to 

calculate the enrichment of GO terms for clusters such as The Database for Annotation, 

Visualization and Integrated Discovery (DAVID) [53] and GSEA [54]. Apart from GO 

terms, GSEA also incorporates eight major collections of annotated gene sets deposited 

as The Molecular Signature Database (MsigDB) [54]. A good clustering would result in 

clusters which have distinct and homogenous biological function enrichment between 

and within each cluster respectively.  
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 Aims and objectives of the thesis 

The main goal of the whole Ph.D. research was to develop, test and apply a model-

based joint clustering algorithm which is generic in nature where it accepts binary (e.g. 

TFs binding, mutation status) and continuous (e.g. gene expressions) inputs and predicts 

the relationship between these inputs based on the clusters found. There are few 

effective tools (will be explained in the next chapter) existed to perform the analysis that 

our tool now allows. This involved the following steps, 

a) Develop a joint clustering algorithm using a mixture model and simulated 
annealing 

b) Generate and run the program using simulated data to optimise the runtime 
parameters 

c) Test the program using suitable publicly available data sets 

d) Infer the transcriptional regulation of genes and classification of cancer 
patients  

e) Biological and statistical evaluation of the clusters found 

f) Publish the software on a software repository in the form of command-line-
interphase and graphical-user-interphase 

In this thesis, there are four results chapters to cover all of the objectives stated above, 

and they are as follows: 

Chapter 2: Developing and algorithm to jointly cluster binary and continuous inputs 

This chapter covers the background, mathematical representation, and simulation of the 

model-based joint clustering algorithm. 

Chapter 3: Modelling S. cerevisiae cell cycle transcriptional regulations using model-

based joint clustering algorithm 

Using relatively simple dataset of TF bindings and cell-cycle gene expression data from 

yeast, this chapter covers the benefits of integrating these data types in inferring the 

transcriptional regulatory networks in yeast cell-cycle. 

Chapter 4: Application of model-based joint clustering to cancer data 

In this chapter, we apply our method to another research area by identifying the sub-

types of cancer from integration of mutation with the gene expression data from Acute 

Myeloid Leukaemia patients which are publicly available from TCGA.  
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  Developing an algorithm to jointly cluster binary and 

continuous inputs 

 Introduction 

Scientists have predicted that by 2025, with the advancement of high-throughput 

technologies and drop in sequencing costs, between 100 million and 2 billion human 

genomes could have been sequenced [55]. This will generate a massive amount of data, 

also known as genomic ‘Big Data’. Clustering is one of the data mining methods always 

chosen by scientists to make sense of this massive amount of data. In our field, there 

are many examples of the need to cluster entities described by mixed variable types – 

mutations (discrete), binding (discrete), gene expression (continuous) etc.  

The main statistical basis used in well-known clustering methods (i.e. k-means, self-

organizing map, and hierarchical clustering) are either distance-, correlation-, or model-

based clustering of a single data type (i.e. continuous, order, nominal or binary data 

types). Clustering of a mixture of data types on the other hand is a much more complex 

process and it is possible to execute this using a stepwise approach for 

distance/correlation based clustering. Model-based clustering, however, can be 

manipulated using a mixture model approach and accordingly, in a single step instead 

of stepwise approach.  

We therefore set out to develop a method to cluster such entities that would be 

generically applicable to a range of different problems. Our specific goals were to 

generate a method able handle variable numbers and data set sizes common in the field, 

and where the optimum number of clusters is unknown and difficult to estimate, making 

manual experimentation impractical. We sought a method that would give clusters with 

clear biological interpretability, for instance a pattern of mutation or TF binding that 

relates to a shared pattern of expression in a cluster of genes. 

In this chapter, we introduce a novel method to cluster entities described by combinations 

of binary and continuous variables, for applications to several different problems in 

genomics research. Bernoulli and Gaussian distribution for categorical variables and 

continuous variables, respectively will be applied to our mixture model clustering. Models 

found by clustering at this stage can be subjected to expectation maximization (EM) for 

further refinement, in our context this would be optimizing the clusters membership with 

the pre-defined cluster numbers. This method would be complementary to those 

discussed above and would be applicable to several realistic current problems. 
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 Basic probability concepts 

A probability is a measure associated with an event/outcome and how likely this is to 

happen and presented as follow,  

Probability of an outcome =  
number of ways the outcome can happen

total number of possible outcomes
 

Taking the well-known example of tossing a fair coin, event A is the occurrence of a 

‘head’ when a coin is tossed and the probability of event A will occur, denoted by 𝑃(𝐴)  

would be the fraction of number of head to the all sides on a coin (a head and a tail) 

which equals to 1/2 or 𝑃(𝐴) =  0.5. 𝑃(𝐴) or probability of an outcome in general takes a 

value between 0 and 1, 0 ≤ 𝑃(𝐴) ≤ 1 [56]. A probability density function is a probability 

measure that gives us probabilities of the possible values for a random variable. Given 

𝑘 number of tosses, 𝑋 is a discrete/countable random variable (head or tail), a sample 

space,𝑆𝑥 =  {𝑥1, 𝑥2 , 𝑥3, … , 𝑥𝑘}  are possible values of the random variable 𝑋. Here, we are 

interested in finding the probabilities of 𝑋 =  𝑥𝑘. For example, if we toss a coin twice, a 

sample space we will get is, 𝑆 =  {ℎℎ, ℎ𝑡, 𝑡ℎ, 𝑡𝑡} where ℎ and 𝑡 are head and tail 

respectively. Here, we are interested in probabilities of observing head(s). The probability 

density functions of 𝑋 equal to  ℎℎ, {ℎ𝑡, 𝑡ℎ}, or 𝑡𝑡 are  

1. 𝑃(ℎℎ) =
1

4
 

2. 𝑃({ℎ𝑡, 𝑡ℎ}) =
1

4
+

1

4
 

3. 𝑃(𝑡𝑡) =
1

4
 

The probability density functions above can be presented in the form of a probability 

density distribution, as in Figure 2.1 below.  
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Figure 2.1 Probability distribution for random variables 𝑿 =  𝒙𝒌 from tossing a fair 

coin twice. 

 

For discrete variables given in the example above as well as other types, including binary 

variables, the probability distribution does give the probability of each value (i.e. ℎℎ, 

{ℎ𝑡, 𝑡ℎ}, and 𝑡𝑡). In contrast to discrete variables where we can assign probability to a 

single value, it is not possible to apply the same logic with the continuous variables. 

However, we can use probability density function to specify the probability of a random 

variable falling within a particular range of values or often represented as the area under 

the density function curve, above the horizontal axis and in between lowest and greatest 

values of the range (see Figure 2.2 below). 

 

Figure 2.2 Probability distribution for probability density function of random variables 

𝑋 =  𝑥𝑘 from a list of continuous values, 𝑘.  
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A probability distribution function also denoted by 𝑓(𝑥) rather than 𝑃(𝑥) is a mathematical 

formula that gives the probability of each value of random variable which can be either 

continuous or discrete [56]. There are many statistical distributions established by 

statisticians to accommodate different underlying data type’s and structures such as the 

Gaussian/normal, Bernoulli and mixture distribution. 

Gaussian distribution 

The Gaussian/normal distribution is a very common continuous probability distribution 

and it is described by the bell-shaped curve which is symmetrical about the mean [56]. 

The probability density function of the Gaussian distribution is, 

𝑁(𝑥) = (
1

𝜎√2𝜋
) 𝑒𝑥𝑝 (−

1

2
.

(𝑥−𝜇)2

𝜎2
)………………………Equation 4 

Here, 𝑥 is the value of a random continuous variable, and 𝜇 and 𝜎2 are the mean and 

variance of 𝑥.  

Bernoulli’s distribution 

The Bernoulli distribution is a probability distribution of a binary random variable, where  

𝐵(𝑥) = 𝑝𝑥(1 − 𝑝)1−𝑥   and    𝑝 =  𝑃(𝑥 = 1)…… ………Equation 5 

Here, 𝑥 is the value of binary variable which is either ‘1’ or ‘0’ and  𝑝 is the probability of 

getting ‘1’. 

Mixture distribution 

Clustering of multiple data types simultaneously using a probabilistic approach can be 

done using a finite mixture model. A finite mixture model is a linear combination of two 

or more component probability distributions. It is a natural representation of populations 

thought to contain relatively distinct groups of observations where each observation can 

be characterized by a number of variables which may be binary, continuous ordinal or 

nominal [56]. Finite mixture distributions are of the form: 

𝑓(𝑥; 𝜃𝑖) =  ∑ 𝛼𝑖  𝑝𝑖(𝑥; 𝜃𝑖)𝑘
𝑖=1 ……………………………..Equation 6 

Where 𝑥 is a 𝑛-dimensional random variable, αi are the mixing proportions, where  ∑ αi =

1 and  𝑝𝑖(𝑥; 𝜃𝑖), for  𝑖 = 1, … , 𝑘, are the component densities and 𝜃 is a set of component 

density parameters. Figure 2.3 below shows a representation of finite mixture 

distributions with 𝑘 = 2, for multiple components or distinct groups of observations. 
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Figure 2.3 Representation of finite mixture distributions for multiple components. 

Representation of finite mixture distributions for multiple components. Left: Finite mixture 
distributions for two normal components (one with lower mean and higher variation, and 
the other one with smaller variation and higher mean). Right: Finite mixture distributions 
for two Bernoulli components (lighter blue- higher 𝒑 and darker blue- lower 𝒑). 
 
 

 Likelihood and maximum-likelihood 

A measurable characteristic of a population, such as a mean, 𝜇 or standard deviation, 

𝜎2 is called a parameter. However, for a sample we acquired from a population, the 

measureable characteristic is known as estimated parameter. When the real population 

size is known and all are sampled (𝑛 ~ ∞), we can calculate the probability of getting an 

observation using the distribution parameter(s) (e.g.  𝑁( 𝑥|𝜃) for  𝜃 = { 𝜇, 𝜎2} ). Often in 

a real-life scenario, it is almost impossible to sample data from all members of a 

population and most studies use finite sampling instead. Thus it is biased to use the word 

probability to represent finite sampling observations. Instead, a more proper terminology 

for this is ‘likelihood’. The likelihood of observing a set of parameters values, 𝜃, given 

observed outcomes 𝑥, is equal to the probability of those observed outcomes given those 

parameters values [57]. The log-likelihood of finite mixture distributions is of form:  

𝑙𝑜𝑔 𝐿(𝑃, 𝜃|𝑥)  =  𝑙𝑜𝑔 𝑓(𝑥|𝑃, 𝜃)  = 𝑙𝑜𝑔 ∑ 𝛼𝑖  𝑝𝑖(𝑥; 𝜃𝑖̂)
𝑘
𝑖=1   …………..Equation 7 

Where the left hand side of the formula is the likelihood of the parameters given the data 

and the right hand side is the probability of data given the estimated parameter, 𝜃. 

According to Moon (1996), taking the logarithm of the likelihood often simplifies the 

maximization and yields equivalent results since log is an increasing function [58].  

The main idea of maximum-likelihood (ML) is estimating the parameters of a distribution 

based upon observed data drawn according to that distribution. This involves finding 

parameter 𝜃 for which the probability of observing 𝑥 is as high as possible.  
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 Information criterion in model selection 

Application of ML in clustering using a pre-defined number of clusters, is used ultimately 

to calculate likelihood from a fixed number of parameters and is fairly straightforward. 

However, with heuristic approach where the number of clusters needs to be optimized 

comes the problem of comparing models with different numbers of parameters between 

different optimization steps. Likelihood values are not comparable when the models have 

different numbers of parameters. On average, a higher likelihood results when more 

parameters are introduced and we have to take account of this. Penalizing this would 

discourage the over-estimation of the number of parameters. Information criterion (IC) 

based clustering is one way where extra parameters can be penalized. A few model 

selection criteria exist in the literature and many model selection criteria are in the form: 

O(L, k) =  −2L + kλ(N)……………………………Equation 8 

Where 𝐿 is the maximized log-likelihood, 𝜆 is a function of the number of data points 𝑁 

or in other word, cost for fitting an additional parameter, and 𝑘 is the number of 

parameters in the model.  

 Criterion 𝝀(𝑵) Equation Reference 

a. AIC1 1 -2L + k - 

b. AIC1.5 1.5 -2L + 1.5k - 

c. AIC 2 -2L + 2k Akaike, 1973 

d. AIC2.5 2.5 -2L + 2.5k - 

e. AIC3 3 -2L + 3k Bozdogan, 1993 

f. HQC 2 ln ln(𝑁) -2L + 2k(ln(ln(𝑁))) Hannan and Quinn, 1979 

g. AIC4 4 -2L + 4k - 

h. BIC ln 𝑁 -2L + k(ln(𝑁)) Scwarz,1978 

i. CAIC ln 𝑁 +1 -2L + k(ln(𝑁 )+1) Bozdogan, 1987 

Table 2.1 Penalty terms used in different information criteria. 
Penalty terms used in different information criteria sorted ascendingly (from a. to i.) 

based on its stringency 𝜆(𝑁) in penalizing extra parameters and the number of data 
points in the model. 
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The most well-known information criterion was introduced by Akaike (1973) known as 

Akaike Information criterion (AIC) (see Table 2.1c.) and was used in estimating the 

Kullback-Leibler’s distance between the estimated model and an underlying ‘true’ model 

of time series data [59]. Since then, this has given rise to several more information criteria 

which are based on different views of statistical theories in producing a parsimonious 

model [60]. The Bayesian information criterion (BIC) (see Table 2.1h.) was introduced 

later by Schwarz (1979) for the case of independent, identically distributed observations 

and linear models based on Bayesian point of view [61]. The penalty term of BIC,  𝜆(𝑁) =

ln(𝑁) is more stringent than the penalty term of AIC, 𝜆(𝑁) = 2 .  

The major difference between AIC and BIC is that the BIC penalty increases with 

increasing 𝑁 (more data) and BIC will always be the biggest penalty when 𝑁 is large 

enough. This means that BIC converges to a single model as 𝑁 gets very large, while 

AIC does not. Some statisticians like this property because it appeals to the idea that as 

the amount of data goes to infinity the model should converge on the ‘correct’ model. 

While the BIC penalty increases as ln(𝑁), the likelihood term, on average increases 

faster (proportional to 𝑁). Therefore with BIC, the likelihood dominates more over the 

penalty as 𝑁 increases. Consequently, BIC tends to favor smaller number of parameters 

than AIC as 𝑁 goes to infinity.  

Bozdogan (1993) suggested using AIC3 criterion where 𝜆(𝑁) = 3 instead of 𝜆(𝑁) = 2 to 

get a minimum plausible model. AIC3 (see Table 2.1e.) was found to be the best criterion 

for selecting the number of latent classes with a binary dataset and it is a good 

compromise between AIC overestimation and BIC [62]. Bozdogan (1987) has proposed 

another version of AIC which penalises the number of parameters more heavily than AIC 

and BIC, known as consistent AIC (CAIC) (Table 2.1l.) [63].  

Furthermore, if the penalty term increases quickly with an increasing number of 

parameters and 𝑁 in the model, this will favour underestimation. Hannan and Quinn 

(1979) introduced Hannan-Quinn criterion (HQC) (see Table 2.1f.) that will 

underestimate the model parameters less for larger 𝑁  than do CAIC and BIC.  The HQC 

criterion is an attempt to keep the favourable statistical properties of BIC while reducing 

the rate of increase of penalty with 𝑁 with more (ln(ln(N)) [64].  

Since all of these information criteria have a minus sign (-) in front of them, the lower the 

𝑂(𝐿, 𝑘), the better is the solution. By understanding the differences among the criteria 

and empirically testing them on our mixture model, a more succinct decision could be 

made on which is the best information criterion that should be applied.  
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 Maximum-likelihood optimization 

Maximum likelihood can be optimized or modelled either stochastically or 

deterministically. Usually, in deterministic modelling, with a known set of inputs, 

modelling will result in a unique set of outputs. On the other hand, stochastic modelling 

incorporates random inputs which then lead to random outputs. Generally, ML is 

deterministic when there is no missing information. In clustering however the information 

on which mixture component generated each data point is missing, and this needs to be 

handled by expectation maximization (EM). 

EM is not fully deterministic because it often has to be run from several different start 

points to get the best answer. Maximum likelihood of mixture components can be 

modelled using EM or simulated annealing (SA) which will be discussed later. EM and 

SA are partially deterministic and stochastic ways of optimizing ML, respectively. As 𝜃 is 

incomplete, we would like to find 𝜃 to maximize log 𝑓(𝑥|𝑃, 𝜃) by maximizing the 

expectation of log 𝑓(𝑥|𝑃, 𝜃) given the data. 

 Expectation maximization 

EM can achieve clustering using a mixture distribution if the number of parameters (i.e. 

mixture components/clusters) is fixed.  If the number of clusters is unknown, either EM 

needs to run with different candidate numbers of clusters, or some other solution is 

required. One possible solution is an optimization of the number of clusters, for example 

using simulated annealing. 

Here, given initial parameter(s), EM maximizes log 𝑓(𝑥|𝑃, 𝜃) by updating the initial 

parameter(s) using estimated data [58]. The basic steps involved in EM are as 

follows: 

1. Choose initial parameter(s) 𝜃[0] 

2. E-step : Estimate unobserved data using  𝜃[𝑠]  

3. M-step: Compute maximum likelihood estimate of parameter 

𝜃[𝑠+1] using estimated data from step 2 

4. E-step and the M-step are iterated (𝑠 → 𝑠 + 1) until the parameter 

estimate has converged 
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 Simulated annealing 

Annealing is the process by which a metal cools and freezes into a minimum energy 

crystalline structure. Kirkpatrick and co-workers (1983) developed an algorithm known 

as simulated annealing (SA) which exploits the analogy between annealing of a metal 

and the search for a minimum energy rigid structure [65]. Using a random starting point, 

SA uses a random search that always accepts better (lower energy) solutions and 

occasionally accepts worse (higher energy) solutions. It uses also a control parameter 

T, which by analogy of cooling of a metal is known as the system “Temperature”. T starts 

high and gradually decreases towards zero. At each temperature, the algorithm accepts 

higher energy solutions according to the acceptance probability, 

𝑃(∆𝐸, 𝑇) =  𝑒−
∆𝐸

𝑇     >     𝑅…….………………….Equation 9 

where ∆𝐸 is the increase in energy. Thus at high temperature many worse solutions are 

accepted, allowing the algorithm to escape from local energy minima, as illustrated in 

Figure 2.4 below. 

 

Figure 2.4 A graphical representation of the simulated annealing process. 

A graphical representation of the simulated annealing process. The red ball/circle is the 
solution and the small arrows in red and green are the moves which the red ball could 
make (solution acceptance). Here, at higher temperatures, bad move could be made 
(solution with higher energy) occasionally but not at the lower temperature. 
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As shown in Figure 2.4 above, SA explores the solution space and escapes local minima 

(false minimum) before reaching the global minimum solution. Given higher temperature 

steps and smaller temperature reduction rate, local minima could be escaped and global 

minimum would be reach. Simulated annealing can be used to optimize any criterion, for 

instance a likelihood (treating –L as the energy) or an information criterion (treating the 

criterion as the energy).  In this chapter we employ it for clustering by optimization of 

information criteria to determine an optimal number of clusters and initial estimates of 

cluster parameters. These parameters are then refined by expectation maximization. 

 A review on mixture model-based clustering methods of mixed data 

types 

Clustering of multivariate data using a mixture of multivariate normals for continuous 

variable data or a mixture of multivariate Bernoulli densities for binary data as proposed 

by Wolfe (1970) and Everitt (1984) respectively are the essential technique known as 

latent class analysis [66]. There are several approaches to cluster data described by 

different types of variable or mixed data. Some possible approaches are to perform a 

separate clustering on each type of variables, convert all types of variables to a single 

type of variable followed by a clustering or clustering data set with both continuous 

variables and binary or ordinal values as proposed by Everitt (1988)  [66]. The latter is 

important early work on model-based clustering of mixed mode data. Here, the authors 

proposed that the binary and ordinal variables come from an underlying continuous 

distribution of not-directly observable continuous variables. The method involves 

estimating the parameters of the unobservable continuous data by setting certain 

threshold values as the cut-off points.  

A similar attempt was by Morlini [67], where author proposed a model-based clustering 

approach based on a multivariate Gaussian mixture model in clustering binary and 

continuous variables using a mixture of discrete (multinomial) and continuous 

(multivariate) distributions. With the assumption that the observed binary values ‘0’ and 

‘1’ correspond to small and large latent continuous values/scores respectively, the author 

estimates the scores of the latent continuous variables which produces the observed 

binary values and then, combines this together with the scores of the original continuous 

variables for clustering. This involved deciding on the thresholds for each binary variable.  

These ideas were extended to ordinal and nominal variables by McParland and Gormley 

[68] in their clustering method called ClustMD. They proposed a method using a latent 

variable model with underlying mixture Gaussian distributions to estimate the mixed type 

observed data of any combination of continuous, binary, ordinal or nominal variables. 
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The latent continuous data underlying both the ordinal and nominal data were assumed 

to be Gaussian, as were any observed continuous data. Thus, the joint vector of 

observed and latent continuous data, 𝑧𝑖 was assumed to follow a multivariate Gaussian 

distribution, 𝑧𝑖  ~ 𝑀𝑉𝑁𝑝(𝜇,∑). 

In all of the approaches mentioned above, an expectation maximization framework was 

adopted in estimating the maximum likelihood of the observed data which requiring 

manual specification of cluster numbers, and methods were applied to problems with 

relatively small numbers of variables (<10 continuous and <20 other). Similar ideas have 

been explored by by Cai and co-workers in a Bayesian context [69]. Here, a generalized 

latent variable model was proposed with cumulative probabilities of various types of 

observed variables specified by a linear model of latent variables. Different density 

functions are applied for different types of data (i.e. Gaussian for continuous variable, 

Gaussian with thresholds for ordinal variable, Poisson or Binomial for count data, and 

multinomial logit link for nominal variable). Although this method can simultaneously 

model multiple data types, it is again dependent of the defined number of mixture 

components or prior Bayesian estimates and fairly large sample size is required to obtain 

accurate results.  

Alternatively, addressing problems with large numbers of variables of different types and 

incorporating dimension reduction as an integral component, iCluster [70] and integrative 

phenotyping framework (iPF) [71] were developed specifically for integrating and 

clustering mixed genome-scale (‘omics’) data for disease subtype discovery. In iCluster, 

the link between data types was achieved by assuming a shared underlying latent 

variable model representing the disease subtypes. It also utilizes the k-means procedure 

to find the actual cluster assignments given latent variable values. iPF is a workflow 

developed to integrate independent homogenous clustering from different omics data in 

an agglomerative manner. It utilizes a dissimilarity matrix of features from clusters across 

omics data. This then followed by visualization of heterogeneous clustering of pairwise 

omics sources.  

All of the approaches mentioned above assume a common clustering with a 

known/common set of clusters across all data types. A different approach was taken by 

the Bayesian MDI package [72, 73], which first cluster data sets based on pairwise 

relations (linking coefficients) between data sets, and then fusing entities together if they 

have same linking coefficients. MDI combines the entities into statistically distinct 

clusters while exploiting any latent structure in cluster allocations across data sets. A 

flexible Bayesian mixture modelling approach was applied.  Although MDI provides 

adequate flexibility for grouping of fused entities, it does not clearly encourage any 
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sharing of clusters across more than pairs of data sets. Thus, we think our work would 

fill this gap by making an algorithm that is truly flexible in term of entities cluster 

allocations while exploiting all data sets of different types simultaneously.  

 Methodology 

In this work, our intention was to use mixture-model clustering to cluster genes using 

both gene expression (continuous) and regulatory (binary) information (e.g. TF binding), 

and also to classify cancer patients into sub-classes based on gene expression 

(continuous) and mutation patterns (binary). The probabilistic model which will be 

explained below is in relation to the first one, where clustering expression of, and TF 

binding to genes is used to infer a relationship between them. This probabilistic model of 

genetic regulation for genes works the same way for clustering cancer patient data. In 

our genetic regulation framework, we refer to a set of genes that are regulated by a set 

of TFs as a regulatory module. Similarly, for the cancer patient classification, we refer a 

set of patients having different patterns of markers (i.e. gene expression and mutation) 

as a cluster.  

 The model 

We consider a set of data-points (e.g. genes, tumour samples, etc.) each having a set of 

binary/regulatory inputs {𝑟𝑖𝑗 ; 𝑗 = 1, … , 𝑛𝑟} where 𝑟𝑖  {0,1} and a set of 

continuous/expression values {𝑒𝑖𝑙  ; 𝑙 = 1, … , 𝑛𝑒} (we will investigate both un-normalized 

and expression values normalized to zero mean and unit standard deviation for each 

data-point). There are therefore 𝑛𝑟 regulatory inputs and 𝑛𝑒 expression values. Within 

each module/cluster, 𝑚, we assume that the regulatory inputs are characterized by a set 

of probabilities {𝑝𝑚𝑗 ; 𝑗 = 1, … , 𝑛𝑟} of the 𝑗𝑡ℎ regulatory input being equal to one for a data-

point within this cluster. It is further assumed that the expression values follow normal 

distributions with means, 𝜇𝑚𝑙  and standard deviations, 𝜎𝑚𝑙. This leads to the following 

probabilistic model of genetic regulation for gene 𝑖. 

𝑝(𝑟𝑖1, … , 𝑟𝑖𝑛𝑟
, 𝑒𝑖1, … , 𝑒𝑖𝑛𝑒

) = 

∑ 𝛼𝑚 ∏ 𝐵(𝑟𝑖𝑗; 𝑝𝑚𝑗) ∏ 𝑁(𝑒𝑖𝑙; 𝜇𝑚𝑙 , 𝜎𝑚𝑙)𝑛𝑒
𝑙=1

𝑛𝑟
𝑗=1

𝑁𝑚
𝑚=1 ………….Equation 10 

Here 𝐵 denotes the Bernoulli distribution with parameter pmj, and 𝑁  is the normal 

distribution with mean and standard deviation 𝜇𝑚𝑙 and 𝜎𝑚𝑙. An expression pattern is thus 

represented by a mean and standard deviation at each point the sequence. The 𝛼𝑚 are 

mixing coefficients where ∑ 𝑎𝑚 = 1𝑁
𝑚=1  and Nm is the number of clusters.  
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Following this we use the log-likelihood  

 𝑙𝑛 𝐿 =  𝑙𝑛 (∏ 𝑝(𝑟𝑖 , 𝑒𝑖)) = 
𝑁𝑔

𝑖=1
∑ 𝑙𝑛

𝑁𝑔

𝑖=1
𝑝(𝑟𝑖 , 𝑒𝑖) ………………Equation 11 

where Ng is the number of genes in cluster m and we adopted vector notation for the 

regulatory inputs and expression levels for gene i  for brevity.  

 Estimating model parameters 

A standard approach to estimating the parameters in the model above would be to f ix 

the number of mixture components or clusters, 𝑁𝑚 and then fit the parameters of the 

mixture distribution by expectation maximization (EM).  This process could be repeated 

for a selection of possible values of 𝑚 and an optimum chosen, but this procedure is 

difficult for a number of reasons. First we have no information from the application 

domain about the likely value of 𝑁𝑚, and second the EM optimization algorithm is local 

in nature and therefore needs to be started from a number of different initial points to 

investigate possible alternative minima. Therefore we have adopted an alternative 

approach, beginning with a meta-heuristic search over models with 1 < 𝑚 < 𝑁𝑚, and 

finally using EM to refine the best model found. The initial heuristic approach makes the 

assumption that the components in the mixture model above (equation 9 and 10) from 

which it is assumed the data are generated, are ‘well separated’, so that the contribution 

of each gene (data point) to the likelihood is dominated by a single mixture component.  

With this assumption, given a solution comprising 𝑚 clusters and the assignment of 

genes to clusters (let the set of genes assigned to cluster 𝑚 be 𝐺𝑚), the estimates of the 

maximum likelihood parameters for the component Bernoulli distributions are 

𝑃𝑚𝑗 =  
1

|𝐺𝑚 |
∑ 𝑟𝑖𝑗𝑔𝑖𝜖𝐺𝑚

…………………………………Equation 12 

and the estimates of the parameters of the normal distributions are 

𝜇𝑚𝑙 =  
1

|𝐺𝑚|
∑ 𝑒𝑖𝑙𝑔𝑖𝜖𝐺𝑚

…………………………………Equation 13 

𝜎2
𝑚𝑙 =  

1

|𝐺𝑚|
∑ (𝑒𝑖𝑙 − 𝜇𝑚𝑙)2

𝑔𝑖𝜖𝐺𝑚
……………………………Equation 14 

and the estimates of the mixing coefficients are  

𝛼𝑚 =  |𝐺𝑚|/𝑁𝑔………………………………………..Equation 15 
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 Model selection using simulated annealing 

We can then seek to find mixture components parameters that would maximize the 

likelihood by a suitable search algorithm over assignments of data points to clusters. 

Without penalizing the extra number of parameters, ML maximizing the likelihood by 

increasing number of parameters. Number of parameters is directly proportional to the 

number of clusters, thus, this would result in each data point assigned to its own cluster. 

Penalizing this, discourages the over-estimation of parameter numbers. We have used 

information criterion (IC) based models optimization where extra parameters will be 

penalized.  

We have compared different model selection criteria in selecting the best approximating 

model as there is no single best criterion for every underlying data structure. Moreover, 

as the number of data points, 𝑁𝑔  increases, different information criteria imply different 

trade-offs between the goodness of fit and model complexity. In reference to the 

Equation 5, in our method, 𝑘 =  𝑁𝑚  (1 + 𝑛𝑟 +  2𝑁𝑒) − 1, accounting for 𝑁𝑚 − 1 

independent mixing coefficients, and the Bernoulli parameters and Normal distribution 

parameters in each model.   

Simulated annealing algorithm with Monte-Carlo moves are used to cluster simulated 

data by optimizing the objective function and different objective functions are tested on 

different level of data complexity (see Table 2.1 in the section 2.1.3). The 

representation/pseudo-code of the SA algorithm is as follows: 
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Monte Carlo simulated annealing for clusters optimization 

1: Normalize expression (genes)* 

2: Clusters = Initialize clusters (agglomerative/divisive) 

3: Best clusters = [list] 

4:         Old clusters = [list] 

5: Score = 0.0 

6: Old score = 0.0 

7: Best score = 0.0 

8: Difference = 0.0 

9:         Count temperature = 0 

10:       Temperature = Start temperature 

11:        While Count temperature < Maximum temperature cycle: 

12:                   Temperature = Temperature * Temperature decreasing factor 

13:              Score = Calculate modules score (clusters) 

14:              beta = 1.0/temp 

15:                    Old clusters = clusters 

16:              While Iteration < Maximum iterations:  

17:   If random  > Merge and split probability: 

18:    Change (clusters)  

19:   Else: 

20:    If random > 0.5: 

21:     Merge (clusters) 

22:    Else: Split (clusters) 

23:                                    Old score = Score 

24:              Score = Calculate clusters score (Clusters) 

25:              Difference = (Score-Old score) 

26:              If Difference < 0.0 or random < exponent(-beta*Difference): 

27:              ‘accept’ 

28:               if Score < Best score: 

29:                Best score = Score 

30:                Best clusters = Clusters 

31:              Else:  

32:             ‘reject’ 

33:                                                      Clusters = Old clusters 

34:             Score = Old score 

35:                    End while  

36:                    Count temperature + 1 

37:                    If Best score = Old Score: 

38:                                 Count score = Count score + 1 

39:                    If Count score == MaxRepIters: 

40:                                  break 

41:          End while                  

42:          Return Best score, Best clusters 

Algorithm 1  Pseudo-code for the Monte-Carlo Simulated annealing algorithm.  
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The first step of the algorithm is to read and store the local copies binary inputs and 

continuous inputs. Then, if normalization of continuous inputs is chosen, it will be 

normalized to zero mean and one standard deviation also known as z-score (see line 1 

in Algorithm 1). This is then followed by initialization/starting point of clustering. We 

represent a clustering solution as an integer array of length 𝑁𝑔 where each element of 

the array holds the ‘cluster number’ to which the corresponding gene is assigned. Cluster 

numbers are thus integers in the range 1 to 𝑁𝑔. Depending on the initialization schedule 

either agglomerative or divisive, each data point will be given a different cluster number 

for agglomerative and one cluster number for all data points for divisive schedule. Below 

is a representation of the clusters initialization for 10 genes: 

Divisive:    

Agglomerative:     

The initial clustering solution (see line 2 in Algorithm 1) are stored in an array as shown 

above (e.g. 10 data points). Next, we initialized arrays for storing the solutions (see lines 

3 and 4) and values of 0.0 for scores and scores difference (lines 5 to 8). We then 

initialized the temperature for the simulation system as in lines 9 and 10.  

The main method or loop for simulated annealing is starting from line 11 onwards. While 

count temperature less than the maximum number of temperatures to be simulated 

(Maximum temperature), this program will run Monte-Carlo moves (lines 17 to 22) and 

acceptance probability (line 26) evaluation as in Equation 6. Furthermore, with different 

options of Monte-Carlo moves available, change, merge and split cluster’s member, we 

decided on arbitrary threshold of probability of either one of them. Here how it works: 

If a random uniformly distributed number, 𝑟 is greater than the specified probability of 

splitting (MergeSplitProbability is 0.25 as in Table 2.2), than any random data point in a 

cluster will be moved to another cluster. If 𝑟 is more than 0.5, two random clusters are 

merged into one cluster or else, a random cluster will be split into two new clusters. For 

every iteration of Monte-Carlo moves (line 16), a score will be calculated and accepted 

as the best score and clusters corresponding to this score will be accepted as the best 

clusters. These steps in Maximum temperature loop will run as long as the Maximum 

temperature has not been reached and the repetition of the same best score is less than 

MaxRepIters (line 40).  

For each subsequent solution following Monte Carlo randomization moves and simulated 

annealing, two genes are in the same cluster if and only if they have the same cluster 
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number. There is no requirement that all cluster numbers be used in a solution, for 

example, the following instance of a clustering solution for 10 genes 

Solution:    

represents a cluster solution with 3 clusters (labelled 1,3,4) where cluster 1 is genes 

1,2,3 and 10, cluster 3 is genes 4 and 8, and cluster 4 is genes 5,6,7 and 9. Clearly this 

solution could also be represented using cluster numbers 1, 2, 3 as 

Solution:    

but for algorithmic reasons it is easier to allow both representations to be used in the 

search procedure, only renumbering on completion. 

The configuration of clusters and its parameters will be sent to the EM to be further 

optimized locally.  

 Model refinement using expectation maximization 

The mixture density parameters estimation problem can be solved globally using SA. 

However, the mixture density parameters estimated by SA could still be improved by 

local refinement. EM is well-known for finding ML densities parameter estimation and 

this would help in refining the clusters found by SA. With an assumption that the ML 

models found by SA are incomplete, and given the current vector of parameters for all 

clusters, 𝜃 =  (𝛼1, … , 𝛼𝑚  , 𝑝1𝑗, … 𝑝𝑚𝑗 , 𝜇1𝑙 , … , 𝜇𝑚𝑙  , 𝜎1𝑙 , … , 𝜎𝑚𝑙), we can easily calculate the 

probability for gene i to be in for mixture component 𝑚 defined in 2.2.1 by using an 

equation derived from Bayes’ rule: 

𝑝(𝑖 𝜖 𝑚|𝜃) =  𝑝(𝑚|𝑖, 𝜃) =  
𝑎𝑚 𝑝𝑚 (𝑖|𝑚,𝜃)

∑ 𝛼𝑗
𝑁
𝑗=1 𝑝𝑗 (𝑖|𝑗,𝜃)

…………………………..Equation 16 

Equation 16 is for estimating the degree of mixing between clusters through the 

probability density that data point 𝑖 is generated from mixture component 𝑚 [74]. Mixing 

coefficients 𝛼𝑚 can be interpreted as prior probabilities for membership of each module. 

The steps of the EM algorithm are showed in the Figure 2.5 below: 
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Figure 2.5 Refinement of model parameters using EM. 

It starts with the prior probability densities from the SA output and refinement of its 
parameters until convergence. Convergence here means, until the parameters values 
do not change for two consecutive EM iterations or until the maximum number of 
iterations has been reached. 
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 FlexiCoClustering: A package for model-based co-clustering 

of binary and continuous inputs 

With a method for model-based joint clustering of binary and continuous inputs in hand, 

we packaged this algorithm which we named as ‘FlexiCoClustering’ into both, a 

command line interphase and also a Graphical User Interphase (GUI) which have been 

made freely available at a public data repository in GitHub. The link to both packages is:  

https://github.com/BioToolsLeeds/FlexiCoClusteringPackage/ 

For a GUI, we utilized the existing Java Graphics APIs called Swing which provides a 

huge set of reusable Graphical User Interphase (GUI) components, such as button, text 

field, label, choice, panel, and frame for building a user friendly GUI application. With 

these components which are the built-in components in NetBeans Interactive 

Development Environment (IDE) for Java [75], the process of building of this GUI 

application was straight forward.  

Figure 2.6 below shows a snapshot of the GUI application with the real-time probability 

densities for binary and continuous input parameters of each cluster. Alongside these, 

this GUI produced a real-time score and number of clusters as well. For details on how 

this application works and types of output produced, please refer to the software user 

manual in Appendix A. A full list of algorithm parameters is given in Table 2.2. Suitable 

values for these parameters were determined by examining algorithm performance on 

simulated data. 

 

 



 
 

 

Figure 2.6 A snapshot of the FlexiCoClustering GUI upon running the application. 

A snapshot of the FlexiCoClustering GUI upon running the application. Red arrow shows where user should change the NRun to ‘1’ after the initial run 
(NRun=0) have finished if it is required at all. 
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Table 2.2 A list of runtime parameters that were simulated in optimizing the model.  

Values in bold are the default parameters setting. Runtime parameters in red could be changed from default values (in bold) to the user specified values 
depending upon datasets which will be used as input. Parameters with ‘*’ are with default values and optional to change.  
 

Runtime parameter Functional description 

NItems Number of data points  

NBinary Number of binary variables in the input files 

NContinuous Number of continuous variables in the input files 

Agglomerative/Divisive 
Starting point option for clustering, if agglomerative start with all data points in separate clusters, if 

divisive start with all in a single cluster. 

IC (AIC/AICλ /BIC/HQC/CAIC) Scoring function/information criterion for the model selection (see section 2.2.2.1 for details). 

MergeSplitProbability (0.25) 

There are 3 possible Monte Carlo moves, chosen according to the following scheme. A standard move 

(swapping a single entity into another cluster) occurs with probability 1-MergeSplitProbability. Otherwise 

either merging two clusters into one, or splitting one cluster into 2 are chosen with equal probability.  

MaximumIterations (500) 
The maximum number iterations of the temperature loop, i.e. the maximum number of different 

temperatures (controls the lowest temperature used)  

StartTemp (500) 
Starting temperature for simulated annealing. Fixed by experimentation to give a high move acceptance 

ratio.  

TempFactor (0.999) 
Factor by which the temperature is reduced at each iteration of the temperature loop. Set to 0.999 by 

default (used in all optimizations reported in the paper). 

MaxTempCycle (100,000) Maximum number of temperature cycle (termination criterion) 

MaxRepIters (2000) Maximum number of best score repetition (convergence criterion) 
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Table 2.2 A list of runtime parameters that were simulated in optimizing the model.  

Values in bold are the default parameters setting. Runtime parameters in red could be changed from default values (in bold) to the user specified values 
depending upon datasets which will be used as input. Parameters with ‘*’ are with default values and optional to change. (Continued)  
 

Runtime parameter Functional description 

Seed (1) The seed of the random number generator used to produce permutations 

EMIterations (100) The maximum number of EM iterations if EM parameters values do not converged 

OutInterval Intervals at which the solution is printed in the output and at which the heat maps are updated on GUI 

ClustFile The name of the final clusters output file 

NormExp (1/0) Normalise continuous inputs to zero mean and a standard deviation for each data points- z-scores. 

Nrun (0/any integer) 
Number of re-run of the program after initial run. The final clusters found by SA will be use as a new 

starting point if user decided to increase the simulated annealing run 

61 

44
 



  45 
 

 Testing the algorithm on simulated data 

As an initial test of the methodology and objective functions, we examined their ability to 

find correct solutions for the number of mixture components and the assignment of data 

points to components in data simulated from the probability distribution explained 

previously. Both, binary and continuous data sets were simulated using following steps:  

1. The test case data sets were specified as 100, 200, 500 and 1000 number of 

data points with two sub sets each containing 10 and 20 clusters (e.g. the 500 

data point sets were 25 clusters of size 20, and 50 clusters of size 10). We have 

used 𝑛𝑟 = 20 for binary inputs and 𝑛𝑒 = 20 for continuous values for all data sets.  

2. The input file for simulated data generator is in the format of: 

NItems  : 200 
NBinary : 20 
NContinuous  : 20 
NClusters  : 20 
0.9  0.4  0.4  0.4  0.4    :     7.9  0.3   2.1  0.3  4.5  0.3  9.8  0.3  -8.0  0.3 
0.4  0.4  0.4  0.4  0.9    :    -2.9  0.3   8.1  0.3  5.5  0.3  9.7  0.3  -8.0  0.3 
0.9  0.4  0.4  0.4  0.9    :     9.9  0.3  -3.1  0.3  8.5  0.3  7.3  0.3  -1.0  0.3 

Here, NDataPoints is the number of data points (𝑛𝑟), RegulatoryInputs is 𝑛𝑟, 

ExpressionValues is 𝑛𝑒 and NClusters is 𝑛𝑚. The rest of the lines in the input file 

are the parameters needed to produce clusters where each line corresponds to 

binary inputs (in dark blue), 𝑝𝑚𝑗 and continuous expression patterns (on the right 

hand side after colon ‘ : ‘) for each cluster to be simulated. For continuous inputs, 

values in black are the mean, 𝜇𝑚𝑙 and in red are the 𝜎𝑚𝑙. 

3. Binary inputs from the Bernoulli distribution for each member of clusters were 

generated. Each cluster was specified with a distinct patterns of binary variables 

𝑝𝑚𝑗. To simulate the noise that exists in a real data set, the simulated data 

generator was seeded with two different combinations of Bernoulli parameters. 

The tight/less noisy simulated data sets were modelled using combination of 0.1 

and 0.9. On the other hand, noisy data sets were generated with combination of 

0.4 and 0.9 in the initial input vector.  

4. Continuous values from Gaussian distribution were generated for each 

continuous variable in each cluster. Again, to simulate the noise effects, we used 

two different Gaussian parameters. The tight/less noisy simulated data sets are 

with standard deviations of 0.01 and noisy data sets are with standard deviations 

of 0.3. The continuous expression values for each cluster were generated 

randomly using uniform distribution between -15.0 and 15.0.  
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5. Appropriate measures were taken to make sure that continuous and binary 

patterns are unique between clusters and random numbers from appropriate 

probability distributions were generated using standard functions in the Java 

programming language. 

 Summary of test data sets 

Different data sets were simulated from using the simulated data generator with a range 

of values for the various parameters and were used to test the search procedure and its 

ability to find the optimal model. Initially, we wanted to test the efficiency of SA and 

objective functions with an increasing number of data points. Table 2.3 below shows sets 

of simulated data used for studying the effects of increasing number of number of data 

points where the number of data points per cluster was set to be 10 and 20 for each data 

set.   

Data set 1 2 3 4 5 6 7 8 

Number of 

clusters 

5 10 10 20 25 50 50 100 

Number of 

data points 

100 100 200 200 500 500 1000 1000 

Number of 

data points 

per cluster 

20 10 20 10 20 10 20 10 

Table 2.3 Eight sets of simulated data with increasing number of genes and genes 

per module.  
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 Results 

We investigated the ability of our algorithm to find probable solutions using simulated 

data. The simulated data consist of 100-1000 data points and 5-100 mixture components 

as shown in Table 2.3 above.  

 Optimization of runtime parameters 

We determined the best way to run our algorithm before applying it to the real dataset. 

Three main algorithm runtime parameters, namely, Agglomerative or Divisive, Starting 

and Maximum Temperature, and MaxRepIters were optimised and the results are shown 

accordingly in the following sub-sections. 

Agglomerative/Divisive 

As our clustering is purely heuristic, random moves also known as Monte-Carlo moves 

such as splitting, shuffling and combining cluster members (data points) resulted in 

increasing and decreasing number of clusters as the algorithm runs. We are not sure if 

the starting points of clustering (i.e. agglomerative or divisive) would make any difference 

in the final solutions as it is important in other standard clustering methods that were 

mentioned in the introductory chapter. Based on Figure 2.7 below, agglomerative and 

divisive mode of clustering, starting points are not significantly differed from each other 

in term of scores produced as well as number of clusters found. The difference between 

them is the initialization of the clusters where agglomerative mode assigns every data 

point to its own cluster and divisive mode put all data points into a single cluster. This 

tells us that either agglomerative or divisive can be used with the clustering algorithm 

where both can find the true solutions independent of the starting points.    
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Figure 2.7 Comparison of scores between different starting points. 

The simulated scores for all relevant objective functions from starting the algorithm 
agglomeratively and divisively. A relevant set of runtime parameters used to produce this 
result: StartTemp=500; TempFactor=0.999; MaxTempCycle=100,000. 
 
 
Starting Temperature and Maximum Temperature 

As mentioned in the methodology section, start temperature (StartTemp) and maximum 

temperature cycle (MaxTempCycle) are changeable parameters, and therefore we tried 

few starting temperatures at the beginning of simulation study (i.e. 150 and 500). 

Maximum temperature cycle on the other hand was arbitrarily decided to be as high as 

possible (100,000) because it is just a secondary convergence criterion/termination 

criterion where if the Maximum number of best score repetition (MaxRepIters) have not 

been met after a long time, the algorithm will be terminated automatically. Although using 

both 150 and 500 as the starting temperature gave the same results, the times taken are 

slightly different. Higher starting temperature took longer time to converge but it did 

converge in the end, whereas with lower Starting temperature, it converged faster but 

with higher probability of false positive or converged to a local minimal (see Figure 2.4 

for illustration).  

Higher starting point takes a longer time because it explores more solutions at much 

higher temperatures in the beginning of the run. In our case, where we used a really high 

maximum temperature cycle or maximum number of temperatures to be simulated, this 

does help to overcome the problem observed at lower starting temperature. In Figure 

2.8 below, we can clearly see that acceptance ratio-percentage of acceptance of either 

random solution or correct solution are high at the beginning of the run where the 

temperature of the system is high. As the system temperature reduces, the acceptance 

ratio also decreases and eventually converged to a correct solution (see Figure 2.9).  
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Figure 2.8  The real-time simulated temperature and acceptance ratio from 

clustering using AIC2.0.  
The real-time simulated temperature and acceptance ratio from clustering using AIC2.0. 
A relevant set of runtime parameters: 𝑁𝑔= 200; 𝑛𝑟=20; 𝑛𝑒=20; 𝑁𝑚=20; StartTemp=500; 

TempFactor=0.999; MaxTempCycle=100,000. 
 
 

 

Figure 2.9 The real time simulated score and number of clusters from clustering 

using AIC2.0. 
The real time simulated score and number of clusters from clustering using AIC2.0. A 
relevant set of runtime parameters: 𝑁𝑔= 200; 𝑛𝑟=20; 𝑛𝑒=20; 𝑁𝑚=20; StartTemp= 500; 

TempFactor=0.999; MaxTempCycle=100,000. 
 

As this is a meta-heuristic approach, the number of clusters are fluctuating during the 

first half of the simulation resulted from the acceptance criterion imposed as previously 

explained from Equation 6. Scores on the other hand, always decreased with time and 

temperature. Here we could say that our simulated annealing is working and have been 

able to produce correct results for the chosen simulated dataset. 
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 Running simulation on simulated data 

Data were simulated for both low and high level of variability and results are presented 

in (Figure 2.10 and Figure 2.11) and (Figure 2.12 and Figure 2.13), respectively. 

 

Figure 2.10 Difference in scores result from our algorithm using a tightly clustered 

data and relatively little ‘noise’ data set simulated from the probability distribution 
assumed in our method. 
Result from our algorithm using a data set simulated from the probability distribution 

assumed in the method for 𝑛𝑟 = 20 regulatory inputs and 𝑛𝑒 = 20 expression values. In 
this case parameters of the simulation correspond to tightly clustered data and relatively 
little ‘noise’ (Bernoulli parameters of 0.1 or 0.9 at each regulatory input and expression 
standard deviations of 0.01). The cases simulated covering 100-1000 data points and 10 
or 20 data points per cluster in each case. This figure shows the difference in score, 
between the solutions found by the algorithm and the known true solutions. Results are 

shown for several objective functions arranged in order of increasing penalty value, 𝜆. 
Differences of zero in each case indicate that the algorithm found the true solution; 
negative score differences indicate objective function failures (solutions different to the 
true solution exist with better scores), and positive score differences indicate search 
algorithm failure (algorithm stopped at a solution scoring worse than the true solution). A 
relevant set of runtime parameters used to produce this result: StartTemp=500; 
TempFactor=0.999; MaxTempCycle=100,000. 
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Figure 2.11 Difference in number of clusters result from our algorithm using a tightly 

clustered data and relatively little ‘noise’ data set simulated from the probability 
distribution assumed in our method. 
Result from our algorithm using a data set simulated from the probability distribution 

assumed in the method for 𝑛𝑟 = 20 regulatory inputs and 𝑛𝑒 = 20 expression values. In 
this case parameters of the simulation correspond to tightly clustered data and relatively 
little ‘noise’ (Bernoulli parameters of 0.1 or 0.9 at each regulatory input and expression 
standard deviations of 0.01). The cases simulated covering 100-1000 data points and 10 
or 20 data points per cluster in each case. This figure shows the difference in the number 
of clusters between the solutions found by the algorithm and the known true solutions. 
Results are shown for several objective functions arranged in order of increasing penalty 

value, 𝜆. Differences of zero in each case indicate that the algorithm found the true 
solution. A relevant set of runtime parameters used to produce this result: 
StartTemp=500; TempFactor=0.999; MaxTempCycle=100,000. 

 

The results in Figure 2.10 and Figure 2.11 above show that for smaller numbers of data 

points (100-200), most of the objective functions with the exception of (𝜆 = 1.0, 1.5) 

successfully find the correct solution. Failure of 𝜆 = 1.0 and 1.5 by finding solutions with 

more mixture components (clusters) with lower objective value (score) than the true 

solution score generated from the underlying distribution, indicate too low a penalty in 

the objective functions. With the increase in number of data points (500-1000), the 

optimization procedure found solutions very similar and equal to the correct solution for 

𝜆 = 2.0 and 2.5 respectively.  

For larger numbers of data points, optimization algorithm with the stronger objective 

functions (AIC (𝜆 = 3.0) onwards, HQC, and BIC) have failed to find the correct solutions, 

generally finding alternatives with too few clusters. Further testing, by starting 

optimization algorithm at the correct solution in these cases, revealed the simulated 

solutions number of clusters are still smaller than the correct solution, indicating a failure 
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of the optimization algorithm rather than the objective function in these cases. By 

applying a more extensive annealing schedule with higher starting temperature, the 

solutions for these cases were not improved at all.  

 

Figure 2.12 Difference in scores result from our algorithm using a noisier data and 

less tight clusters data set simulated from the probability distribution assumed in our 
method. 
Result from our algorithm using a data set simulated from the probability distribution 

assumed in the method for 𝑛𝑟 = 20 regulatory inputs and 𝑛𝑒 = 20 expression values. In 
this case parameters of the simulation correspond to noisier data and less tight clusters 
(Bernoulli parameters of 0.4 or 0.9 at each regulatory input and expression standard 
deviations of 0.3). The cases simulated covering 100-1000 data points and 10 or 20 data 
points per cluster in each case. This figure shows the difference in score, between the 
solutions found by the algorithm and the known true solutions. Results are shown for 

several objective functions arranged in order of increasing penalty value, 𝜆. Differences 
of zero in each case indicate that the algorithm found the true solution; negative score 
differences indicate objective function failures (solutions different to the true solution exist 
with better scores), and positive score differences indicate search algorithm failure 
(algorithm stopped at a solution scoring worse than the true solution). A relevant set of 
runtime parameters used to produce this result: StartTemp=500; TempFactor=0.999; 
MaxTempCycle=100,000. 
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Figure 2.13 Difference in number of clusters result from our algorithm using a noisier 

data and less tight clusters data set simulated from the probability distribution assumed 
in our method. 
Result from our algorithm using a data set simulated from the probability distribution 

assumed in the method for 𝑛𝑟 = 20 regulatory inputs and 𝑛𝑒 = 20 expression values. In 
this case parameters of the simulation correspond to noisier data and less tight clusters 
(Bernoulli parameters of 0.4 or 0.9 at each regulatory input and expression standard 
deviations of 0.3). The cases simulated covering 100-1000 data points and 10 or 20 data 
points per cluster in each case. This figure shows the difference in the number of clusters 
between the solutions found by the algorithm and the known true solutions. Results are 

shown for several objective functions arranged in order of increasing penalty value, 𝜆. 
Differences of zero in each case indicate that the algorithm found the true solution. A 
relevant set of runtime parameters used to produce this result: StartTemp=500; 
TempFactor=0.999; MaxTempCycle=100,000. 

 

Using data simulated with higher variability within mixture components, similar 

observations which lead to the similar conclusions as with the lower variability data sets 

have been found (see Figure 2.12 and Figure 2.13 above). With  𝜆 = 2.0 and 2.5, 

solutions found are equal or closer to the correct solutions for 100 to 500 data points and 

for higher number of data points (i.e. 1000 data points), standard AIC solutions are closer 

to the correct solution than 𝜆 = 2.5. However, for higher penalty criteria (i.e. 𝜆 = 4.0, 5.0, 

HQC, BIC and CAIC), they fail at the level of the objective function (solutions with lower 

scores as well as too few number of clusters than the correct solutions). Clusters found 

by using the standard AIC were actually clusters which are sub-clusters of AIC (𝜆 = 2.5) 

bigger clusters (see Figure 2.14 below) and EM refinement of standard AIC clusters (see 

following Figure 2.15) gave no improvement over the marginal density for current 

solution, thus suggesting that standard AIC allowing more number of mixing components 

parameters can be considered to be as optimum solution. 
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Figure 2.14 Standard AIC (𝜆 = 2.0) clusters membership when compared with AIC (𝜆 

= 2.5) clusters member.  
Numbers in AIC2.5 columns are the cluster number of AIC2.5 clusters members. With 
the exception of the cluster members highlighted in yellow, data points in standard AIC 

(200 data points and 20 clusters) are sub-clusters of AIC (𝜆 = 2.5) bigger clusters. 
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Figure 2.15 Expectation maximization result.  

Marginal densities 𝑝(𝑚|𝑖,𝜃) for data point i being in each cluster m are shown for Standard 

AIC (𝛌 = 2.0). Colors: salmon (density approximately 0.0001), yellow (density 
approximately 1.0) and black (density approximately 0). Rows are the 200 data points 
and columns are the 47 clusters. 
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CPU time is another factor used to measure the performance of an algorithm and the 

result is shown in Figure 2.16 below. AIC (𝜆 = 2) and AIC (𝜆 = 2.5) perform similarly in 

terms of CPU times taken for small number of data points. However, a longer time 

needed by AIC (𝜆 = 2.5) to converge as the problem size gets bigger. In addition, with 

the exception of AIC (𝜆 = 2 and 2.5), the rest of the objective functions converged fairly 

quickly because their secondary convergence criterion (according to MaxRepIters 

criteria of 2000 repetitions) has been met with solution of really small number of clusters 

(~1). AIC (𝜆 = 2.5) managed to find solutions equal or near to the correct solutions for  

handful of data complexity and variation, thus, needed a longer time to optimize its 

solution. Longer CPU time is needed as the data complexity increases due to the wider 

solutions space used in optimizing the algorithm. 

 

Figure 2.16 CPU times taken to run the simulation. 

CPU times taken to run the simulation for several objective functions as a function of 
problem size (Number of data points; number of clusters) from using high variation data. 
A relevant set of runtime parameters used to produce this result: StartTemp=500; 
TempFactor=0.999; MaxTempCycle=100,000. 
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 Discussion 

We applied mixture model of Gaussian and Bernoulli distributions for continuous and 

binary variables respectively. As described previously, some published methods have 

used solely Gaussian distribution in describing the binary/categorical and continuous 

observations. Our method differed from the existing mixture model clustering where we 

have applied Bernoulli’s distribution to represent the binary variables instead of using the 

latent variables approach where converting binary values to continuous values and 

applying the Gaussian distribution to model both continuous variables and continuous 

latent variable is deemed to be a better approach.  

Some previous studies applied different modelling approach whereby nominal, binary 

and ordinal variables are represented as separate distributions (mostly derived from 

Gaussian distribution) and a mixture of these models which makes up the likelihood 

function. However, as more models are included, the computational cost will increase 

exponentially with the increase in model parameters. Hence, this will decrease the 

efficiency of the method. As a matter of simplicity and generality, nominal including binary 

variable and ordinal variable can be converted and represented by creating a separate 

binary variable for each nominal variable label and ordinal variable level. Furthermore, 

most existing approaches have used fixed cluster numbers followed by EM and we 

believe our method are more flexible in terms of this.  

We have found that, with a larger number of data points, the number of mixture 

components also increases and this comes with much expensive computational cost with 

our optimization method especially for stronger penalties ( 𝜆 = 3.0 and above including 

those with 𝑁 dependencies). The failure in optimization method suggests that it reflects 

optimization on a surface where the likelihood gives limited ‘downhill’ information 

compared the strong penalty on parameter numbers. The failure of the objective function 

on the other hand, reflects that the penalty (i.e. 𝜆 = 1.0, 1.5) might be too small and that 

the use of a larger penalty (𝜆 = 2.0, 2.5) is a pragmatic correction. Of the criteria using 

sample size, 𝑁 dependent corrections such as BIC, CAIC, and HQC, we found no 

significant advantage to the less penalized objective functions (𝜆 = 2.0, 2.5). 

 Conclusions 

In relation with the theory discussed above, these results with simulated data suggest 

that the optimization method is most successful with AIC type objective functions without 

N dependency on the penalty term, and that the actual AIC (𝜆 = 2.0) or the use of slightly 

higher penalties for small data sets AIC (𝜆 = 2.5) are effective choices with this simulated 

data.  Overall the results on simulated data indicate that the method is an effective way 
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of clustering data points described by a mixture of binary and continuous variables and 

support the its application to important problems in genomics as described in the 

Chapters which follow.  
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 Modelling S. cerevisiae cell cycle transcriptional 

regulation using a model-based joint clustering algorithm 

  Introduction 

The biology behind cellular behaviour is of fundamental interest most of the time in the 

cell biology field. It can be dictated by various complex factors such as interactions or 

relationships between molecules as well as responses from external environmental 

perturbations. Understanding some of the complex molecular interactions existing in 

cells has been made possible by representing them in sophisticated transcriptional 

regulatory networks (TRNs) using advanced molecular and computational biology 

methods. A TRN is a network that describes gene expression as a function of regulatory 

inputs specified by interactions between proteins and DNA [76]. This was inferred earlier 

just by using gene expression data. There is an enormous literature related to clustering 

of gene expression patterns, derived from measurements by microarrays or RNA-seq 

[77-79]. This has been applied to the discovery of transcriptional regulatory networks in 

S. cerevisiae [77, 78, 80, 81] as well as in other organisms. While this approach is useful, 

it is fundamentally limited by the fact that the regulators (transcription factors, signalling 

molecules) do not always share the expression patterns of the genes they regulate, 

making the discovery of some real regulatory interactions difficult. 

Regulation almost certainly depends on combinatorial binding of several transcription 

factors, where positive and negative regulation may correspond to different combinations 

[82]. TFs are also often post-transcriptionally or/and post translationally regulated and 

thus, the binding of TF proteins to DNA may provide direct evidence of gene expression 

regulation. Recently the techniques of ChIP-chip, ChIP-seq and DNAse-seq have 

enabled the direct measurement of regulation, at least in so far as regulation that is 

effected through the binding of relevant factors to genomic DNA in the vicinity of the 

regulated gene. Thus, a complementary approach in combining TF binding and gene 

expression profiling with the appropriate computational method could elucidate complex 

TRNs for yeast cellular processes (e.g. cell cycle progression).   

Since genes with similar expression profiles often function similarly, parallel information 

on regulation or TF binding to these gene promoters/enhancers could provide meaningful 

insights into the orchestration of gene activities of a cell. Previously, shared regulation 

was assumed to correlate with the co-expression of the target genes [78]. However, 

temporal delays for a TF in exerting its condition-specific regulatory function has often 

not been taken into account, as well as  the combinatorial effects of multiple TFs, thus, 

weakening this assumption [83]. This was then improved to include binding motifs 
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present in the upstream/promoter of co-expressed genes [84]. Motif data only indicates 

potential binding sites and thus provides less direct evidence of regulation.  

Using the developed clustering method as explained in the previous chapter, we are now 

going to test it further and try to address the aforementioned limitations by applying this 

method to jointly cluster yeast cell cycle gene expression patterns and regulatory 

information. The recent approach to discover  clusters/modules uses LeTICE [85]. This 

is a probabilistic approach where it maximizes the likelihood of binary binding matrix 

given the location data and expression data and removes genes to the background if it 

does not have similar expression and binding patterns. Our algorithm is different from 

LeTICE in the optimization approach where we sought to maximize the likelihood of a 

model or set of clusters using likelihood of binding and using meta-heuristic simulated 

annealing approach in searching for optimum model. In addition, we have applied 

information criteria in our model selection and we did not impose any pre-defined 

minimum number of genes in a cluster. A transcriptional regulatory network can be built 

by using confident regulatory predictions for each cluster by TF(s) whose binding 

probability/confidence is large enough to be considered as the cluster regulator. 

 Why yeast? 

First, Saccharomyces cerevisiae, has been a popular model organism and its usefulness 

in biological research has been demonstrated widely especially in understanding 

molecular mechanisms that govern the cell division and cell cycle progression in higher 

organisms including humans. Yeast has approximately 6000 genes and a large 

proportion are still uncharacterized experimentally since its genome was first published 

in 1996 [86]. Perturbations of yeast cells can provide clues about how our cells behave 

or even benefit ‘key players’ in the food industry such as bakers and brewers. Given the 

importance of yeast to biologists and the fact that it can be easily manipulated, grows 

and copes with different environmental perturbations, any hypothesis generated from 

computational modelling of molecular mechanisms that regulate yeast cell behaviour 

could be tested experimentally. Our case study here is the reconstruction of the yeast 

cell cycle transcriptional regulatory network, more specifically, to model the relationships 

between transcription factors and their target genes that regulate the yeast cell cycle.  

 Yeast cell cycle control 

Yeast cells divide rapidly with a cell cycle time of between 90 minutes and 2 hours. 

Budding of yeast involves a cycle of mitosis and is generally studied in the haploid state. 

The stages in the yeast cell cycle are similar to other eukaryotic cells. It involves two 
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main phases, namely, S phase and M phase with two gap phases, the G1 and G2 

between the main phases (see Figure 3.1 below).  

 

Figure 3.1 The events during the eukaryotic yeast cell cycle. 

The main events of cell cycle are chromosome duplication (S phase), and chromosome 
segregation, nuclear division, and cell division (M phase). G1 phase is the gap phase 
between M and S phases, whereas G2 is the gap phase between S and M phases. A 
yeast cell decides whether to commit to a new cell cycle during the start-transition 
(START) in the G1 phase. Also shown on this diagram is the canonical model of yeast 
cell cycle regulation from transcription factor binding data of eight well-known cell cycle 
transcription factors [87, 88]. 
 

During S phase, DNA is replicated and chromosomes are duplicated by proteins carrying 

out DNA synthesis. Protein synthesis (e.g. histone proteins) is required as the DNA 

needs to be packaged into chromatin (chromatin condensation). The duplicated 

chromosomes are known as sister chromatids. Cytoplasmic components are duplicated 

as well throughout the cell cycle. The transition phase between S phase to the next M 

phase is known as G2 phase. In G2 phase, additional time is provided for cell growth, 

duplication and segregation as well as protein synthesis, as the cell prepares for mitosis.  

During M phase, two major events occur which are mitosis and cytokinesis. During 

mitosis, sister chromatids are distributed equally into a pair of daughter nuclei [89]. This 

major phase is divided into two other sub-phases called metaphase and anaphase. In 

metaphase, pairs of sister chromatids are attached to the bipolar mitotic spindle 

oppositely. Contraction of spindle fibres forces sister chromatid separation towards 

opposite ends of the cell. During cytokinesis, the cell division occurs where a new plasma 

membrane and cell wall are generated and contraction of actin filaments and myosin 
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under the cell membrane takes place. The resulting two daughter cells fate will be 

determined at G1 phase which acts as the checkpoint of the cell cycle progression [89]. 

The start-transition (START) checkpoint at the end of the G1 phase will determine the 

cell cycle progression depending on cell mass as well as on environmental cues such as 

nutrient availability and mating pheromone [90]. 

Regulation of yeast cell-cycle dependent genes has been investigated rigorously. 

Transcription factors which regulate these genes have been identified and include Ace2, 

Mbp1, Mcm1, Ndd1, Swi4, Swi5, Fkh1, and Fkh2 [88, 89, 91]. MBF- a complex of Mbp1 

and Swi6 and SBF-a complex of Swi4 and Swi6 control the activation of genes required 

in the transition between G1 phase to S phase by binding to the DNA sequence elements 

called MCB and SCB respectively [88, 89]. The genes activated during this phase include 

the cyclins (Cln1,Cln2 and Cln3). Cyclins regulate cyclin dependent kinases (Cdks) e.g. 

Cdk1, which promotes cell cycle progression to the S phase [87]. In addition, SBF/MBF 

heterodimer also promotes the activities of S phase cyclins, Clb5 and Clb6. At the 

transition between G2/M phase, another regulatory protein complex, Mcm1-Fkh1/2-

Ndd1 activates the expression of G2/M genes responsible for mitotic regulatory proteins, 

e.g. Clb2 and Cdc20 which are required for mitotic entry and mitotic exit activity [87]. At 

the late mitosis M/G1 phase, TFs Swi5 and Ace2 stimulate expression of M/G1 genes 

responsible for mitotic exit and cytokinesis. 

Around 204 transcription factors have been identified in Saccharomyces cerevisiae but 

its functional regulatory networks have not been fully discovered. Mapping functional 

regulatory networks requires characterized functional interaction of TFs to their targets. 

The degree of complexity involved in the functional regulatory network mapping of this 

simple organism is high, where the observed TF-DNA interactions are not necessarily 

direct (i.e. through interaction of TF with other proteins) - and involves a cascade of 

downstream gene activation. 

Furthermore, not all TFs binding regulates gene expression. This is an inherent concept 

that should be noted in building gene regulatory networks. Haynes and co-workers 

(2013) have highlighted this issue of irrelevant binding of TFs where they found that 98% 

of yeast genes bound by TFs but only 45% of these genes were actually regulated by 

those TFs when perturbation on TFs were performed [92]. Joint clustering of gene 

regulatory information (i.e. TFs binding) with gene expression (i.e. cell cycle, knock out 

of the TFs, or other type of perturbations) could provide insights on functional as well as 

irrelevant binding of the TFs and could also discover new interactions in the networks. 

To date, investigations on regulatory control have been either in small-scale systems 

dealing with small genomic regions and a few genes, or focused on general properties 
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of genome scale systems neglecting the detail of control of any individual gene. We are 

aiming to generate models that yield greater mechanistic insight into the regulation of 

individual genes and groups of genes, using a novel probabilistic approach to jointly 

cluster regulatory information and gene expression patterns in yeast data.  

 Methodology 

To test if our flexible model-based clustering can be applied to genetic regulation, we 

used the well-studied yeast cell cycle system. The experimental data set includes ~6000 

genes from yeast cell cycle genes expression using microarray technology across 18 

time-points from Spellman and co-workers [77]. The yeast cells in this experiment were 

sampled in rich media at each time point following α-factor synchronization of cells at the 

very beginning of the experiment. For the transcription factor binding data set, 103 yeast 

transcription factors (TFs) from the regulatory map published by Harbison and co-

workers [93] were retrieved. Yeast TFs binding from [93] and yeast cell cycle genes 

expression from [77] are widely used for constructing yeast functional regulatory 

networks. Our working hypothesis is that yeast has an underlying gene regulatory 

network that is always the same, thus, using a combination of datasets from different 

experiments is possible and has been used previously in research that constructed the 

yeast transcriptional regulatory networks. Before proceeding to the clustering, both 

genes expression and TF binding data were subjected to pre-processing. 

 Pre-processing of genes expression data 

The gene expression data set has missing values. Imputation of the missing values was 

done by replacing the missing values with the newly calculated expression value, 𝑒𝑖 as 

follow, 

𝑒𝑖 =  𝑒𝑖−𝑦 + 𝑑𝑔  

𝑔 =  
𝑒𝑖+𝑥 − 𝑒𝑖−𝑦

(𝑖 + 𝑥) − (𝑖 − 𝑦)
  

where 𝑔 is the gradient between the nearest values before and after the missing value,  

‘𝑖 − 𝑦’ and ‘𝑖 + 𝑥’ are the previous and next available expression value index for missing 

expression value 𝑖, 𝑒𝑖 respectively, and 𝑑 is the difference between 𝑖 and 𝑖 − 𝑥. If the 

missing value located at the beginning and end of the dataset, we constitute the missing 

value with the nearest available value after or before them respectively. We reason that 

this is a viable approach as the data set involves a time series and generally, cell cycle 

gene expression gradually increases and decreases across small time interval, in this 
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case, an interval of 7 minutes. As a result, we have a complete expression dataset 

without any missing values.  

 Pre-processing of TFs binding data 

Given limited number of genes showing cell cycle expression patterns, not all TFs found 

by ChIP-chip regulate these yeast cell cycle genes. Based on the estimates from 

previous studies, around 10-20 TFs are likely to be involved in cell cycle related 

regulation [88, 94, 95]. We began with 525 genes identified by Spellman and co-workers 

as showing cell cycle related expression [77]. As for the TFs binding data, we used the 

publicly available data produced using the ChIP-chip technique. A pre-processed dataset 

for 103 TFs binding by Harbison and co-workers [93] was chosen and retrieved. 

Combining several motif discovery tools (i.e. AlignACE, MEME, Mdscan) with 

conservation information across yeast species and promoter regions bound by specific 

regulators, they discovered the putative sequence motifs that are bound by the 

transcription factors and mapped these binding sites (regulatory code) to the yeast 

genome. Each binding interaction was given a p-value by Harbison and co-workers and 

we have chosen a dataset with binary data matrix of TFs binding where ‘1’ corresponds 

to TF binding with a p-value less than 0.005 and intermediate-confidence conservation 

criteria.  

Our preselection of TFs was based on the pre-selection step for the LeTICE algorithm 

[85]. This is based on the hypothesis that if a TF is active in regulating any of the selected 

genes, then within the set of genes whose promoters it binds, there should be some gene 

pairs showing highly correlated expression patterns reflecting common regulation, even 

allowing for the possibility that the TF does not regulate all the genes that it binds. 

Therefore using the 95th percentile, ρ, of Pearson correlation coefficients over all gene 

pairs, the proportion of correlations greater than ρ in the gene set that the TF binds is 

calculated. This is then compared to the proportion of correlations greater than ρ in 

randomly selected gene sets of the same size, and an empirical p- value calculated. If 

this p-value is less than the generous threshold of 0.1 then it is assumed that the TF may 

regulate some genes and it is retained, otherwise the TF is removed from the set under 

consideration. In this case 17 TFs were retained for input to the main clustering 

algorithm, on the assumption that these TFs are the ones likely to be regulating cell cycle 

genes. The list of 17 TFs are shown in Table 3.1 below.  Following this, the set of 525 

genes was further reduced to 328 by eliminating genes not bound by any of the selected 

TFs. 
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 Comparison with an existing method 

LeTICE [85] was also used as an alternative method for comparison with our approach. 

LeTICE is not a generic clustering method but is designed specifically for the problem of 

genetic regulatory network prediction. It is based on integrating TF binding data with 

expression pattern data to define a genetic regulatory network, i.e. a set of clusters each 

comprising genes with a common TF binding pattern and a shared pattern of expression. 

This is achieved by finding the network, 𝐵, which maximizes  

𝑃 (𝐵|𝐿, 𝐸) 

where 𝐿 is a matrix of TF binding probabilities and 𝐸 a matrix of gene expression patterns. 

LeTICE location matrix consists of rows corresponding to genes and columns 

corresponding to TFs. According to LeTICE, the p-value (for the hypothesis that there is 

no interaction between a TF and the promoter of a gene) will be more pragmatic than 

deciding on a threshold for p-values. 

As such LeTICE is a method based on a similar premise of integrating TF binding data 

and expression data to find regulatory relationships, but being based on different 

underlying methodology it is an ideal comparator, albeit only relevant to the problem of 

genetic regulation. To provide a direct comparison of algorithms, LeTICE was applied to 

the dataset described above. Note that LeTICE takes binding p values directly as input 

and that it has its own TF and gene pre-selection criteria, in this case it selected 18 TFs 

and 289 genes. LeTICE was then run with the optimum runtime parameters suggested 

in the original paper. 

As part of this study we also examined the effect of using normalized (where each gene 

was normalized to zero mean and unit standard deviation) and un-normalized gene 

expression data. We also compared joint clustering to clustering expression data 

separately, which can be done by simply omitting binary variables in the input to our 

program. 



   
 

Table 3.1  The filtered TFs and their functional information.  

With the exception of TFs in blue, the rest of the TFs are with known involvement in cell cycle. The functional descriptions were retrieved from the 
Saccharomyces cerevisiae  Genome Database (SGD) [96]. 
 

TF Cell cycle related functions 

ACE2 Sequence-specific DNA binding RNA polymerase II transcription factor involved in G1/S transition of the mitotic cell cycle; activates 

cytokinetic cell separation; also regulates antisense transcription at diverse loci; localizes to both nucleus and cytosol 

ASH1 Sequence-specific DNA binding RNA Pol II transcription factor that up and down regulates transcription; its role as transcription repressor 

negatively regulates mating type switching, G1/S transition of mitotic cell cycle; its role as transcription activator positively regulates pseudo-

hyphal growth; subunit of the Rpd3L histone deacetylase complex; also localizes to the cellular bud 

DAL80 A RNA polymerase II transcription factor that binds specific DNA sequence; negatively regulates transcription and is involved in nitrogen 

catabolite repression of transcription; localized to the nucleus 

FKH1 Sequence-specific DNA binding transcription factor involved in chromatin remodeling, mitotic transcription regulation, transcription 

termination, mating-type switching, and pseudo hyphal growth; binds DNA replication origins and positively regulates replication initiation; 

also binds centromeres 

FKH2 RNA polymerase II transcription factor involved in positive and negative regulation of transcription during mitotic cell cycle; positively 

regulates DNA replication initiation; binds replication origins and promoters in sequence-specific manner; localizes to cytosol and nucleus 

GZF3 GATA zinc finger protein; negatively regulates nitrogen catabolic gene expression by competing with Gat1p for GATA site binding; function 

requires a repressive carbon source; dimerizes with Dal80p and binds to Tor1p 
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Table 3.1  The filtered TFs and their functional information.  

With the exception of TFs in blue, the rest of the TFs are with known involvement in cell cycle. The functional descriptions were retrieved from the 
Saccharomyces cerevisiae Genome Database (SGD) [96]. (Continued) 
 

TF Cell cycle related functions 

MBP1 Sequence-specific DNA binding transcription factor that positively regulates transcription by RNA polymerase II involved in the G1/S 

transition of mitosis; subunit of the MBF (Mlu1 cell cycle box Binding Factor) transcription complex 

MCM1 Transcription factor; involved in cell-type-specific transcription and pheromone response; plays a central role in the formation of both 

repressor and activator complexes; relocalizes to the cytosol in response to hypoxia 

MET31 Zinc-finger DNA-binding transcription factor; targets strong transcriptional activator Met4p to promoters of sulfur metabolic genes; involved 

in transcriptional regulation of the methionine biosynthetic genes 

NDD1 Transcriptional activator essential for nuclear division; localized to the nucleus; essential component of the mechanism that activates the 

expression of a set of late-S-phase-specific genes; turnover is tightly regulated during cell cycle and in response to DNA damage 

PDR1 Sequence specific DNA-binding polymerase II transcription factor that activates expression of genes involved in drug response 

RCS1 Sequence-specific DNA binding transcription factor that regulates chromatid cohesion, chromosome segregation, and cellular iron 

homeostasis; localizes to the cytoplasm, nucleus, and kinetochores 

STB1 Protein with role in regulation of MBF-specific transcription at Start; phosphorylated by Cln-Cdc28p kinases in vitro; un-phosphorylated form 

binds Swi6p, which is required for Stb1p function; expression is cell-cycle regulated 

SWI4 DNA binding component of the SBF complex (Swi4p-Swi6p); a transcriptional activator that in concert with MBF (Mbp1-Swi6p) regulates 

late G1-specific transcription of targets including cyclins and genes required for DNA synthesis and repair 
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Table 3.1  The filtered TFs and their functional information.  

With the exception of TFs in blue, the rest of the TFs are with known involvement in cell cycle. The functional descriptions were retrieved from the 
Saccharomyces cerevisiae Genome Database (SGD) [96]. (Continued) 
 

TF Cell cycle related functions 

SWI5 Transcription factor that recruits Mediator and Swi/Snf complexes; activates transcription of genes expressed at the M/G1 phase boundary 

and in G1 phase; required for expression of the HO gene controlling mating type switching; localization to nucleus occurs during G1 and 

appears to be regulated by phosphorylation by Cdc28p kinase 

SWI6 Transcription cofactor; forms complexes with Swi4p and Mbp1p to regulate transcription at the G1/S transition; involved in meiotic gene 

expression; also binds Stb1p to regulate transcription at START 

YHP1 Homeobox transcriptional repressor; binds Mcm1p and early cell cycle box (ECB) elements of cell cycle regulated genes, thereby restricting 

ECB-mediated transcription to the M/G1 interval 
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 Functional analysis of clusters  

In the evaluation of our method, we considered comparison with the known literature on 

gene regulation in the yeast cell cycle, as well as measures of the functional coherence 

of clusters based on Gene Ontology (GO). The GO enrichment was performed for each 

cluster using GO annotation from DAVID Bioinformatics Resources 6.7 [53]. The 

statistical significance of GO term enrichment was measured by the EASE score- a 

modified Fisher Exact P-value using the pre-selected 328 yeast cell cycle genes as 

background. However, as an overall performance of clustering, we have used the 

semantic similarity measure using the ‘Rel’ method in GOSemSim package in R [97]. It 

gives a value between 0 (un-enriched/not functionally similar cluster) and 1.0 

(enriched/functionally similar cluster) for GO terms (biological process) similarity for 

genes in a cluster. Higher score indicating higher similarity in GO terms for genes within 

a cluster.  

In order to test the significance overall of the clusters average score of GO semantic 

similarity, we randomly shuffled the genes between clusters but keeping the cluster sizes 

intact for all clusters. By doing this, we have reduced the bias that could be introduced 

when using different cluster sizes. After repeating this randomization 10000 times, we 

then calculate an empirical p-value, which is the frequency of random overall clusters 

average semantic similarity score occurs greater than the real average similarity score.  

Since our method can identify combinatorial regulation (a cluster of genes regulated by 

more than one TF), and this implies potential interactions between TFs, we also 

compared these implied interactions with physical and genetic evidence in BioGRID [98]. 

As for selecting a set of relevant regulators related to the well-known cell cycle regulators 

in the discussion section, KEGG was used to retrieve all genes related to the cell cycle 

pathway [99]. 

 Time-lagged correlation calculation for TF-gene interactions 

TF-gene interactions are widely inferred using the general framework of gene co-

expression. However, it is also well established that a TF exerts its regulatory effects on 

its target genes in a time-lag manner [91, 100]. We would like to evaluate the proportion 

of our TF-cluster of gene interactions inferred from our clustering output that are 

supported by a generic co-expression method (i.e. correlation coefficient, r) and as well 

as time-lag co-expression as the function for TF-gene interaction  method [100]. 

Correlation between two signals or in our case, between TF gene expression and its 

target gene expression is a linear measure of similarity between them.  Cross-correlation 

or what we referred to as time-lag correlation is somewhat a generalization of 
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the correlation measure where it takes into account the lag of one signal relative to the 

other. If the lag is equal to zero, then the time-lag correlation is equal to the generic 

correlation. Time-lag correlation is particularly important to assess the causal 

relationship between two signals in time, here, in our case, either the binding of the TF 

causing activation (positive time-lag correlation) or repression (negative time-lag 

correlation). Consider two time series, 𝑥(𝑖) and 𝑦(𝑖) where 𝑖 = 0,1,2, … , 𝑁 − 1. The time-

lag correlation, 𝑟 at lag, 𝑑 is defined as 

𝑟𝑑 =  
∑  [ (𝑥𝑖+𝑑 − 𝑥̅) . (𝑦(𝑖) − 𝑦̅)𝑖  ]

√∑ ( 𝑥𝑖+𝑑 − 𝑥̅ )2
𝑖  . √∑ ( 𝑦(𝑖) − 𝑦̅ )2

𝑖

 

Where 𝑥̅ and 𝑦̅ are the means of the corresponding series. The above is computed for 

lags, 𝑑 = 0, 1, …, 6. Here, we assumed that the time series is circular in nature in which 

case, the out of range indexes are ‘wrapped’ back within range, for example, 𝑥(−1) =

𝑥(𝑁 − 1) and 𝑥(𝑁 + 1) = 𝑥(1). This is represented in Figure 3.2 where the out-of-bound 

data point circled in red is wrapped back into the range as circled in purple.  

 

Figure 3.2 A representation of co-expression between a TF gene and an average 

expression pattern of genes in a cluster. 
Here, the average expression values of target genes is shifted to one time-point to the 
left (black arrows and blue dotted line ‘----’). Since cell cycle is cyclical in nature, we move 
the outlier circled in red to the same phase it is in the opposite/other side of the plot.  
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 Results 

We applied our method to yeast cell cycle data using parameters suggested from the 

simulation study. These parameters were set up same as with our simulation study prior 

to the program executions due to the small number of data points in yeast test case (328 

genes with 17 TFs). A relevant set of runtime parameters is, StartTemp=500; 

TempFactor=0.999; MaxTemp=100,000; MaxRepIters=2000. 328 yeast cell cycle genes 

considered here would fit with the simulated data of between 200-500 data points. 

Together with this, we have tested the method with expression only and regulatory input 

only data. LeTiCE was also tested using a similar input but with p-values as the location 

matrix not a binary binding matrix. We also examined the effect of refinement of clusters 

using the EM algorithm.  

 Overall clusters statistics 

The details of the results of clustering with different methods and parameters can be 

found in Table 3.2. The actual cluster solutions for AIC considered in this analysis can 

be found in Appendix B. Here, a different number of clusters were produced by using 

different clustering methods; AIC found the highest number of clusters (76 clusters) and 

both, using AIC (𝜆 = 2) and AIC (𝜆 = 2.5) with normalization produced smaller number of 

clusters than without normalization (see Table 3.2). Consistent with the simulation 

results, AIC (𝜆 = 2) produced a larger number of clusters with smaller cluster average 

size than AIC (𝜆 =2.5). Theoretically, by normalizing expression values across time-

points to the mean and one standard deviation (z-scores), we would expect that the 

number of clusters found will be smaller as genes with high and low expression levels 

but with similar patterns will be clustered together. In concordance with this theory, 

normalizing gene expression values results in fewer clusters compared to un-normalized 

expression patterns.  

Number of clusters alone would not be enough dictate the performance of each 

clustering method, hence, we used the functional analysis of clusters as a measure of a 

method’s performance. It is important to have good clusters as the basis for TRN 

construction. We acknowledge that some data points such as gene expressions and/or 

TF binding data from the chosen yeast datasets might be noisy and thus we could expect 

that some clusters will pose difficulty in interpretation. We defined a ‘clear’ cluster as a 

cluster which has at least one TF bound to more than half of the genes in the cluster and 

with correlation of genes expression patterns greater than 0.5. Essentially the ‘unclear’ 

clusters may represent genes that don’t have a strongly cell cycle related expression 

pattern or genes possibly regulated by other TFs. In other words they represent cases 
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where our filtering of genes and TFs may not have worked optimally. We consider these 

un-clear clusters contain limited information about the regulation of gene expression of 

the corresponding genes.  

Although most genes in clusters found using either AIC (𝜆 = 2 or 2.5) have correlated 

gene expression patterns, this is not the case with corresponding gene regulatory binding 

patterns. Most of the un-clear clusters have no TF bound to at least half of the genes. 

Examples of a clear cluster and an un-clear cluster are in Figure 3.3a and Figure 3.3b, 

respectively. Cluster 67 is a clear cluster with clear expression patterns and clear 

regulatory binding patterns. In contrast to cluster 67, cluster 11 has less clear binding 

patterns with the highest TF proportion of binding or TF binding probability (i.e. FKH2) 

less than 0.5. Only clear clusters were considered to be used in building the yeast cell 

cycle predicted TRN (see ‘Number of clear clusters (total genes)’ in Table 3.2). 

 

Figure 3.3 Two examples of clusters showing both expression patterns and 

regulatory binding patterns. 
The two examples of clusters showing both expression patterns and regulatory binding 
patterns were generated using the standard AIC objective function and normalized gene 
expression patterns. Panel A shows expression and regulatory binding patterns plots for 
genes in cluster 67: here a clear gene expression pattern is associated to a clear 
regulatory hypothesis involving high probability of binding by Mbp1, Swi4 and Swi6 (more 
than half of the genes are bound by TF(s) - see the red line cut off). On the contrary, 
clear regulatory hypotheses could not be made for cluster 11 in panel B: these genes do 
not have a very clear cell cycle expression pattern nor do they show a high probability of 
binding any transcription factor.  



   
 

Table 3.2 Statistics of clusters found by joint clustering of regulation and expression with different objective functions. 

Statistics of clusters found by joint clustering of regulation and expression with different objective functions, AIC (𝜆 = 2) and AIC2.5(𝜆 = 2.5), with and 

without normalization of gene expression, compared to using LeTICE and using expression alone. Gene symbols in red are the nine well known yeast 
cell cycle transcription factors. 1 ’Clear’ clusters have clear expression patterns (average pairwise Pearson correlation of expression > 0.5) and clear 
regulation (at least one transcription factor with binding probability > 0.5). Such TFs in clear clusters are considered candidate regulators for the cluster. 

* Statistically significantly different the values obtained by random assignment of genes to clusters with the same size distribution, 𝑝 < 0.01.  

 
 AIC normalized 

expression 
AIC un-normalized 

expression 
AIC2.5 normalized 

expression 
AIC2.5 Un-
normalized 
expression 

LeTICE Expression 
only 

Regulatory 
input only 

Number of 
clusters 

76 91 23 33 14 19 11 

Number of clear1 
clusters (total 

genes) 

52 (236) 64 (252) 15 (225) 26 (272) 14 (136) 14 (252) 1 (5) 

Average (+/- s.d.) 
size of clear1 

clusters 

5 ± 3 4 ± 3 15 ± 6 11 ± 10 10 ± 5 34 ± 14 5 

TFs found as 
candidate 

regulators for 
clear1 clusters 

Ace2  Ash1   Fkh1   
Fkh2 Gzf3   Mbp1   
Mcm1Met31Ndd1   
Pdr1 Rcs1 Swi4   

Swi5  Swi6 

Ace2  Ash1   Fkh1   
Fkh2  Gzf3  Mbp1    
Mcm1 Met31Ndd1  
Pdr1   Rcs1   Stb1  
Swi4 Swi5  Swi6 

Ace2  Fkh1   Fkh2    
Gzf3 Mbp1 Mcm1 
Ndd1  Pdr1  Swi4   

Swi5  Swi6 

Ace2  Fkh1   
Fkh2     Gzf3 
Mbp1 Mcm1 
Met31 Ndd1 
Pdr1   Swi4   
Swi5   Swi6 

Bas1 Fkh2   
HAP4 Mbp1 
Ndd1 Stp1   
Swi4   Swi5   

Swi6 

Ace2  Fkh1   
Fkh2 Mbp1   
Mcm1  Swi5  

Swi6 

Gzf3   
Pdr1 

Average GO 
Semantic 
Similarity 

(Mean+/-s.d. for 
random clusters) 

0.34* 
(0.27+/-0.02) 

0.32* 
(0.25+/-0.02) 

0.32* 
(0.26+/-0.02) 

0.30* 
(0.25+/-0.02) 

0.25 
(0.24+/-0.01) 

0.33* 
(0.24+/-0.02) 

- 
- 
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Next, we analysed the relevant TFs recovered using each method. Using LeTICE, we 

found that Ace2, Fkh1 and Mcm1 as not relevant and non-cell cycle specific TFs. In 

addition, clustering using expression or regulatory input only also failed to recapitulate 

all the known cell cycle specific TFs. Comparing our joint-clustering methods, AIC (𝜆 = 

2) and AIC (𝜆 = 2.5), with the clustering using expression only and regulatory input only, 

both were performed using AIC (𝜆 = 2) which we change all gene expression values to 

zero and all regulatory input values to zero, respectively before running our algorithm, 

we found that these approaches missed a few important cell cycle TFs as relevant TFs. 

Interestingly, clustering using regulatory input only found only two TFs and using 

expression patterns alone recovered seven cell cycle TFs out of nine well-known cell 

cycle TFs.  

An interesting finding here is that cell cycle genes with similar expression patterns tend 

to be regulated by similar sets of TFs but nonetheless, genes regulated by similar set of 

TFs are sometimes expressed differently. This has resulted in better recovery of clear 

clusters from using gene expression alone method compared to regulatory inputs alone. 

By combining both, gene expression and regulatory inputs, much smaller and specific 

clusters were recovered and in this case, clusters were found by both AICs. Furthermore, 

AIC (𝜆 =2) and AIC (𝜆 =2.5) both performed similarly in terms of cell cycle TFs recovered 

as relevant regulators.  

We then measured the functional coherence of the clusters using the average semantic 

similarity of Gene Ontology annotations of the clustered genes. By this measure, most 

methods produce clusters that are significantly better than a random assignment of 

genes to clusters of the same size distribution (see Table 3.2). For neither AIC type 

objective function is there any strong evidence of a difference in the results based on 

normalization of the expression data. When using LeTICE, the average GO term 

similarity is lower than AIC and its derivative, AIC2.5 with AIC being the best criterion in 

explaining the functional relationship of gene regulation to gene expression.  

We have also found that expression only information could explain the functional 

relatedness of genes with similar expression and regulation better than LeTICE.  Overall, 

by using AIC with normalization, better clusters were found compared to the rest of the 

objective functions and methods of clustering. Although clustering of normalized gene 

expression is generally a preferable method over using raw values, we have found and 

explained using evidence from our analysis that normalizing the gene expression across 

time-points resulted in more functionally related clusters membership compared to the 

un-normalized expression patterns in both AIC and AIC2.5.  
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Finally, based on GO criteria and the implication of more TFs in regulatory roles, we 

marginally preferred AIC (𝜆 = 2.0) with normalized expression and our subsequent 

analysis is based on these clusters. We chose to analyses our data in detail by extracting 

clear clusters found by AIC, in this case, of the 76 clusters produced (see Appendix B), 

52 (see Appendix C) met the ‘clear’ cluster criteria.  

 Marginal densities of modules found using SA 

Upon convergence, our Expectation Maximization (EM) refinement of cluster output from 

heuristic search, the simulated annealing (SA) algorithm is able to suggest the probability 

of a gene being in each and every cluster found by SA or generally known as marginal 

densities. Figure 3.4 shows the marginal densities for each gene in all AIC clusters sorted 

horizontally based on cluster numbers and clusters are sorted vertically based on the 

phases of the cell cycle (e.g. G1, S, G2/M and M/G1). Using yeast as the test case, 

biological interpretations of marginal densities could be made which we could not do with 

simulated data because in yeast data, we are able to capture the marginal densities for 

some genes. In this test case, none of yeast cell cycle genes have equal probability to 

be in more than one module (marginal density is equal or greater than 0.5) and most of 

the genes with marginal densities have minute marginal density value (~0.0001) for other 

cluster(s). Upon detailed inspection of genes marginal densities, we have found that 

genes with marginal densities and their alternative clusters are all either expressed in 

the same cell cycle phase or with adjacent cell cycle phase without skipping a phase. 

 

 



   
 

 
Figure 3.4 Expectation maximization 

results.  
Marginal densities (𝑝(𝑚|𝑖,𝜃) for gene 𝑖 and 
cluster m) are shown for all clusters found 
by AIC distributed over two heat maps. 
Figure legends are as follow: 
 
Salmon : density approximately 0.0001 

Yellow : density approximately 1.0 

Black : density approximately 0 

 Rows : Genes in the 76 clusters.  

Columns : 76 clusters sorted by peak of 

cell cycle phase from gene expression 

pattern in the cluster. 
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From Figure 3.4, we can see that all genes in cluster 1 have a high propensity to be in 

its own cluster (marginal density equals to 1.0). On the other hand, three genes in cluster 

2 (salmon in colour) have higher propensity to be in its own cluster and with smaller 

probabilities to be in alternative cluster, and genes in this alternative cluster are 

expressed in G2/M phase, which is a neighbouring phase to the current cluster S phase 

of the yeast cell cycle.  

In term of binding/Bernoulli’s parameter estimates, upon EM convergence, the updated 

Bernoulli’s parameter estimates (EM step 70) did not change much compared to the 

original clusters (EM step 0) as shown in Figure 3.5 below. Thus, the relevant TFs found 

after the EM refinement are still the same and this corresponds to the one presented in 

Table 3.2.  

 

Figure 3.5 Differences in Bernoulli’s parameter estimates.   

Cluster’s negative/positive value of differences in Bernoulli’s parameter estimates shows 
that the EM refined marginal densities have been updated since the SA solution.  On 
average, there are really minute differences in the updated solution by EM (maximum of 
0.0002 and minimum of -0.00025).  
 
We have come to a conclusion that EM refinement reveals little overlap of the clusters 

where no genes have significant probability of membership of clusters other than the one 

assigned by the SA algorithm and parameter estimates for the clusters did not change 

significantly after refinement genes in each cluster are closely related to its own cluster 

than to the other cluster(s). 
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 Statistical analysis of the clusters  

Usually, when working with distance-based clustering [101], or model-based clustering 

like LeTICE [102], a thresholding on the minimum cluster size is implemented for 

example five genes per cluster. This is a generic robust assumption that at least five 

genes are needed for a cluster with genes having higher chance to be functionally 

related. It is notable that our choice of AIC as objective function produces a relatively 

large number of clusters, some of which are quite small. However, even very small 

clusters can sometime contain genes with similar biological functionality. 

For example, clusters 40, 42, 48, 57 and 59 containing 2-3 genes each, have clear 

regulation (see Table 3.3) and contain genes with related functions. These clusters have 

statistically significant functional enrichment in cell division and cellular budding (clus. 

48), drug transport and response to drug (clus. 57), chromatin assembly and 

disassembly (clus. 40), cell separation after cytokinesis (clus. 42), and cell wall 

organization (clus. 59).  Hence, not limiting the minimum size of cluster during clustering 

is beneficial. Equally, there are often several clusters which are related in expression 

and regulation (see Table 3.4), for instance clusters 18, 29, 30, 49 and 67 whose 

expression patterns all peak in G1 phase and all show a high probability of regulation by 

the TFs SWI4, SWI6 and MBP1. These separate clusters have clearly different GO 

annotations: regulation of transcription (clus. 18), organelle organization (clus. 29), 

conjugation with cellular fusion (clus. 30), cellular budding (clus. 49) and deoxy-

ribonucleotide biosynthetic processes (clus. 67), and their separation reflects differences 

in the detail of the expression pattern and regulatory probabilities. 



 

Table 3.3 Example of small sizes clusters with significantly enriched GO terms.  

Clus. Expression Regulation Regulator Ensembl 

gene ID 

GO term enrichments (Biological process) 

P-value < 0.05 ; p-value > 0.05 

40   
Swi4 

Swi6 

YDR224C 

YDR225W 

Negative regulation of transcription, Chromatin 

assembly or disassembly 

42 

 

 
Ace2 

Fkh1 

Fkh2 

YER124C 

YLR286C 

YHR143W 

Cell separation after cytokinesis, cell wall organization 
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Table 3.3 Example of small sizes clusters with significantly enriched GO terms.  (Continued)  

Clus. Expression Regulation Regulator Ensembl 

gene ID 

GO term enrichments (Biological process) 

P-value < 0.05 ; p-value > 0.05 

48 

 

 

Ace2 

Fkh1 

Swi5 

YGR041W   

YBR158W 

 

Cell division, Cellular budding 

 

57 

  

Rcs1 YOR153W   

YML116W 

 

Drug transport, response to drug 
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Table 3.3 Example of small sizes clusters with significantly enriched GO terms. (Continued)  

Clus. Expression Regulation Regulator Ensembl 

gene ID 

GO term enrichments (Biological process) 

P-value < 0.05 ; p-value > 0.05 

59 

 
 

Ash1 

Mcm1 

Swi5 

 

YKL163W   

YJL159W 

 

Cell wall organization 
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Table 3.4 Example of clusters which are related in expression and regulation and with significantly enriched GO terms.  

Clus. Expression Regulation Regulator Ensembl 

gene ID 

GO term enrichments (Biological process) P-value < 

0.05 ; p-value > 0.05 

18  

 

Swi4 

Swi6 

Mbp1 

YMR179W   

YBR071W 

 

Regulation of transcription 

 

29 

 

 
Swi4 

Mbp1 

YPL267W   

YLR103C   

YPL124W 

 

Cell cycle process, organelle organization 
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Table 3.4 Example of clusters which are related in expression and regulation and with significantly enriched GO terms. (Continued) 

Clus. Expression Regulation Regulator Ensembl gene ID GO term enrichments (Biological 

process) P-value < 0.05 ; p-value > 0.05 

30 

 
 

Swi4 

Swi6 

Mbp1 

YGR189C   YKL103C   

YNL262W YMR305C   

YGR221C   YPL256C 

YKR013W      YGR238C 

Conjugation with cellular fusion, sexual 

reproduction 

49 

 

 
Swi4 

Swi6 

Mbp1 

YIL140W   YER001W   

YML027W   YER111C   

YPR120C   YHR149C  

YKL045W   YGR152C   

YMR199W 

G1/S transition of mitotic cell cycle, 

cellular budding, cell division 
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Table 3.4 Example of clusters which are related in expression and regulation and with significantly enriched GO terms. (Continued) 

Clus. Expression Regulation Regulator Ensembl gene ID GO term enrichments (Biological 

process) P-value < 0.05 ; p-value > 0.05 

67 

 
 

Swi4 

Swi6 

Mbp1 

YOR074C   YER070W 

YJL187C     YDR507C 

YCR065W   YGL038C 

YBR070C       YNL231C 

 

Deoxy-ribonucleotide biosynthetic 

process, cell cycle check point, 

glycosylation 
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 Yeast cell cycle TRN and regulators interactions 

For the purpose of cluster validation, guided by the findings in Table 3.2, we have built a 

transcriptional regulatory network (TRN) as shown in Figure 3.6 where nodes are the 

relevant TFs and edges are the relationship between relevant TF and clear clusters 

where the binding probability is greater than 0.5 as explained in Section 3.3.1. The 

summary statistics of the regulatory interactions in Figure 3.6-Panel B are in Table 3.5 

below. 

i. Total number of regulatory relationships in TRN 61 

ii. The number of i. that are known in the literature (true positive) 54 

iii. The number of i. that are not known in the literature (false positive) 6 

iv. The number of i. that are in the literature but not in the TRN (false 

negative) 

1 

Table 3.5 A summary statistics for the regulatory network of transcription factors 

and other regulators. 
 

The TRN was found to have a main component and two smaller disconnected 

components regulated by MET31 and RCS1. The regulation of the yeast cell cycle has 

been extensively studied both experimentally and in the context of algorithms aimed at 

reconstruction of the network from different sources of data (see [103] for a recent 

review). The regulatory relationships in Figure 3.6 are largely known, and most of the 

regulatory relationships in the lower panel are supported, as shown, by evidence from 

the literature (54 interactions out of 61 interactions are true positive). Some examples of 

known activation pathways of cell cycle related regulators that we have found are the 

regulation of Pcl2 through: Mbp1+Swi6 > Swi4 > Ndd1 > Swi5 > Pcl2; regulation of Ace2 

through: Mbp1+Swi6 > Swi4 > Ndd1 > Swi5 > Ace2, and regulation of important B-type 

cyclins which control cell cycle progression (i.e. Clb1 and Clb2) through: Fkh1+Fkh2 for 

both cyclins and through: Swi4+Swi6+Mbp1 > Ndd1 + Fkh2 > Clb2 for Clb2. There are, 

however, a few regulatory interactions that we could not find evidence from the literature, 

for example, regulation of Yox1, Cln1 and Yhp1 by Mbp1, Swi4 and Mbp1/Swi6 

respectively. Although there is not enough evidence or experiments have not been done 

on these interactions, it is possible that these regulatory interactions exist in vivo due to 

the fact that Mbp1, Swi4 and Swi6 are often found in a heterodimeric complex and act 

cooperatively.  
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Figure 3.6 Transcriptional regulatory networks and regulatory interaction of our 

‘clear’ clusters. 
Panel A: The transcriptional regulatory network obtained from clusters with clear 

regulation and expression using the AIC objective function. The hexagonal nodes 
represent transcription factors and circular nodes regulated clusters (labelled 1-72, only 
clear clusters shown): colours represent cell cycle phases (peak expression phase for 
clusters, and the main phase of the regulated clusters for each transcription factor). 
Panel B: The regulatory network of transcription factors and other regulators extracted 

from the above network. Transcription factors shown are those associated by our 
algorithm to the regulation of clear clusters, and other cell cycle regulators were identified 
in our gene set and overlapped with cell-cycle pathway map in KEGG[104]. 
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 Biological analysis of the clusters 

This section explains the biological relevance of the clusters found in Figure 3.6. To 

dissect this in an effective way, we described the TRNs and their regulation according to 

the cell cycle phases. All of the details of the clear clusters, such as expression, TF 

binding patterns and GO term enrichment can be found in Appendix C.  

G1 phase 

From Figure 3.6, we can clearly see that Mbp1, Swi4, Swi6 and Ace2 are the main 

regulators of G1 phase clusters and a few clusters in the S (clusters 2, 40, 45 and 55) 

and M/G1 (clusters 28, 44, 64, 75) phases. Mbp1/Swi6 and Swi4/Swi6 form 

heterodimeric complexes known as MBF and SBF, respectively [105, 106]. The G1 

cyclins Cln1 and Cln2 are expressed in late G1 phase when they associate with Cdc28, 

which is a cyclin dependent kinase (CDK), to activate its kinase activity and complete 

progression through START. G1 cyclin expression depends on the transcription factor 

complexes, MBF and SBF [88, 103, 105, 107].  This then leads to initiation of early cell 

cycle events. Furthermore, S phase cyclins, Clb5 and Clb6 will usually increase during 

this phase to eliminate the suppression of S phase CDK (Cdk1) activity in G1 phase and 

drive entry into S phase [108, 109]. We have found in our extended network in Figure 

3.6 (bottom) that Cln1 is regulated by SBF/MBF complexes and Cln2 by Swi6. In 

addition, SBF and Mbp1 but not Swi6 also promote the expression of S phase cyclins, 

Clb5 and Clb6, respectively. The enrichment of GO biological processes involved in 

these clusters include DNA replication, cellular response to stress, DNA replication, cell 

wall organization, regulation of kinase activity, re-entry to mitotic cell cycle, cytokinesis, 

cellular component disassembly and telomere maintenance. All these GO terms are 

involved in processes associated with cell cycle progression from G1 to S phase. Swe1 

is a protein kinase that regulates the G2/M transition and as a negative regulator of 

Cdc28 kinase. Swe1 transcription is controlled by SBF [110]. Here, we have found that 

SBF, together with MBF regulates Swe1 expression. Our cluster 67 genes, to which 

Swe1 together with Gin4 map, are enriched in cell morphogenesis checkpoint, 

cytokinesis checkpoint and cell wall organization and almost all of these genes are 

regulated by SBF and MBF, thus there is a high chance that these complexes regulate 

Swe1 as well as Gin4. Another G1 TF, Ace2 also regulates three G1 clusters, namely 

clusters 27, 42 and 48. However, these clusters have genes that are bound by a different 

set of TFs along with Ace2 (see Figure 3.7) and with exception of cluster 27, cluster 42 

and 48 are enriched in cell division, cell wall organization and cytokinesis GO terms. A 

separate G1 cluster (clus. 1) with three genes in it is regulated by Pdr1 and Gzf3 and all 
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are genes of uncharacterized protein function. There is no experimental evidence in the 

literature that, Pdr1 and Gzf3 are physically and/or genetically interacting. 

Expression pattern Regulatory inputs 

  

  

  

Figure 3.7  Cluster 27, 42, and 48 expression and binding patterns. 

Genes in this cluster are regulated by Ace2 and these clusters are maximally expressed 
in G1 phase.  
 
S phase 

In S phase, DNA in the cell must be replicated for it to produce two daughter cells. DNA 

replication occurs during this S (synthesis) phase. This is also a crucial point where cells 

have to decide whether to continue with the cell cycle or to arrest in G0 phase- a non-

dividing state. We would expect genes expressed in this phase are largely involved in 

biological processes related to this event. Regulation of S phase genes also by SBF and 



  89 
 
MBF [111], particularly histones and genes associated with chromatin organization, is 

evident in clusters 2, 22, 40 and 55. Other S phase clusters (clus. 33 and 72) are 

regulated by FKH1 and FKH2 and are enriched in cell wall organization (clus. 33), 

chromosome partitioning (clus. 72) as cell is preparing to enter into M phase where cell 

division occurs. We note also the interesting disconnected component in Figure 3.5, 

cluster 65 being regulated by MET31, comprising genes associated with S-

adenosylmethionine metabolism which has been linked to cell cycle control  [112, 113]. 

Sulphur metabolism is involved in budding yeast and regulated by a variety of 

environmental and intracellular factors such as methionine.  

G2/M phase 

Moving to G2/M and M phase, while SBF/MBF still participate in regulation, it becomes 

dominated by MCM1, NDD1, FKH1 and FKH2. G2/M phase is a period of rapid cell 

growth and protein synthesis during which the cell becomes ready for mitosis. G2/M 

phase clusters are 56 and 71 which are regulated by Fkh2/Fkh1/Swi6 and 

Ash1/Fkh1/Fkh2/Swi4 respectively. Only module 56 has an obvious functional 

enrichment in cell wall organization.  

M/G1 phase 

In mitosis, a budding yeast cell separates the chromosomes in its nucleus into two 

identical sets in two daughter nuclei. During the process of mitosis, condensation of 

chromosome occurs and then spindle fibres pull the sister chromatids to opposite poles. 

This then proceeds into cytokinesis which divides the cell into two daughter cells. Clb1 

and Clb2 are both M phase B-cyclins and both of them are expressed in M/G1 phase 

and regulate exit from mitosis [114]. The role of SBF in the regulation of Clb1 and Clb2 

[115] as well as the role of  Mcm1/Fkh2/Ndd1 in the regulation of Clb2 [116] are already 

known. However, our algorithm finds regulation of the key cyclins Clb1 and Clb2 by 

FKH1/2 and NDD1, but does not discover known links to SBF or MCM1. Other important 

M phase genes in the same cluster (Swi5 and Cdc20) and Ace2 in cluster 35 are 

regulated by Fkh1/Fkh2/Ndd1 and Mcm1/Fkh1/Fkh2/Ndd1, respectively. Zhu and co-

workers (2000) [116] have found these genes lose their cell cycle regulation role in a 

mutant that lacks Fkh1 and Fkh2. In addition, the Fkh1/ Fkh2 mutant also displays 

aberrant regulation of the 'Sic1' cluster and genes in this cluster that was discovered by 

Zhu and Co-workers (200) are involved in mitotic exit [116]. This could be explained by 

our extended regulatory network (bottom-in Figure 3.6), where Sic1 is regulated by Swi5, 

and knock-out of Fkh1/Fkh2 will effect Swi5 transcription thus effecting the Sic1 cluster 

in a cascade manner.  Apart from Fkh1/2 and Ndd1, few clusters in this phase are 
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regulated by RCS1 (clusters 57 and 54), MCM1 (clusters 52, 6, 13, 5, 58, and 59), 

MCM1/ASH1 (clus. 59) and SWI5 (clusters 74, 46, and 38). The RCS1 cluster mainly 

function in multidrug transporter activity, whereas, genes regulated by SWI5 are more 

enriched in sexual reproduction. Most of the genes in the clusters regulated by MCM1 

are not functionally enriched except for cluster 6 and cluster 59 which are involved in 

protein-DNA complex assembly and cell wall organization, respectively. These functions 

are important for preparation for M phase of the cell cycle.  

Overall, we were able to obtain high confidence models/clusters of yeast cell cycle 

genes, thus utilize it in building our TRMs networks. We have been able to recapitulate 

the known cell cycle regulations and some unknown/novel regulation. 

 TF-TF interactions inferred from the clustering output 

Combinatorial regulation of genes by multiple TFs is known to be important and several 

of our clusters exhibited a high probability binding by more than one TF (e.g. regulation 

by SWI4, SWI6 and MBP1 in Figure 3.6). Such multiple regulation implies possible 

interaction between the factors concerned and in Figure 3.8 below, we summarize 

genetic and physical interaction evidence supporting combinatorial interactions in our 

clusters using interaction data recorded in the Biological General Repository for 

Interaction Database (BioGRID) [98]. Saccharomyces Genome Database (SGD) and 

BioGRID define physical interactions as direct physical binding of two proteins or co-

existence in a stable complex and genetic interactions are indirectly inferred interactions 

between two or more mutants [96, 98]. Here, all but one (Gzf3-Pdr1-Swi5) identified 

combinatorial interaction is supported by evidence (i.e. physical and/or genetic 

interaction) from BioGRID [98] and most have extensive support.  
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Double Triple Quadruple 

Mbp1-Swi6 

 

Fkh2-Mcm1 

 

Swi4-Swi6 

 

Mbp1-Swi4 

 

Fkh2-Ndd1 

 

 

 

 

Gzf3-Pdr1-Swi5 

Mbp1-Swi4-Swi6 

 

Ace2-Fkh1-Fkh2 

 

Fkh2-Swi4-Swi6 

 

Fkh1-Swi5-Ace2 

 

Fkh1-Fkh2-Swi6 

 

Ash1-Mcm1-Swi5 

 

Ace2-Fkh1-Fkh2-Swi5 

 

Fkh1-Fkh2-Mcm1-Ndd1 

 

Fkh1-Fkh2-Ndd1 

 

Ash1-Swi4-Fkh1-Fkh2 

 

 

Figure 3.8 Combinatorial regulatory interactions found in AIC clear clusters. 

Combinatorial interactions derive from clusters regulated by more than one TF (for 
instance cluster 67 in Figure 3.6) is regulated by SWI4, SWI6 and MBP1), and are listed 
in each column. Below each combinatorial interaction is a Figure showing the extent of 
support of the combination in physical and genetic interaction data in yeast from the 

BioGRID data base.  denotes a genetic interaction and  is a physical 
interaction. TFs in red indicate combinatorial interactions from our algorithm that are not 
supported in genetic or physical interaction data [99]. 
 
 

 Time-lagged correlation analysis  

Previously, TF-gene interactions during the yeast cell cycle were inferred using co-

expression of a TF gene with its target genes across cell cycle time-points [77]. However, 

it is possible for a TF gene to be expressed with its target genes in a time-lag manner. 

We would like to investigate how many gene cluster transcriptional regulatory 

interactions (i.e. edges in Figure 3.6-above) are supported by TF gene-target gene with 

and without time-lag co-expressions. Figure 3.9 below shows an example of time-lag 

correlation where cluster 1 TFs are apparently more positively correlated at 4th lag (panel 

B) than at the real-time without time-lag (Panel A). In other words, TFs genes are 

expressed before their target genes expression. As we are interested in the activation of 

genes at specific cell cycle phase, when naturally interpreted, a lag means the time 

needed from the time a transcription factor is expressed until it acts on a gene.  
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Figure 3.9 Examples of time-lag correlation of average target genes expression and 

its corresponding TF(s) gene expression in cluster 1 and 6.  
Panel A shows the expression patterns of cluster 1 genes (TFs and average of target 
genes) without lag. Panel B shows the expression patterns of cluster 1 genes (TFs and 
average of target genes) with 4 lags. Panel C shows the expression patterns of cluster 
6 genes (TFs and average of target genes) without time-lag.  
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Figure 3.10 Time-lagged correlation 

starting from 0 time-point lag until 6 time-
points lag for TFs co-operation. 
 
TFs co-operation prediction based on 
normalized AIC transcriptional regulatory 
networks (52 ‘clear’ clusters). Darker red 
and blue colours represent high positive (r > 
0.5) and negative (r < -0.5) correlations 
respectively.        
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Figure 3.11 Number of TF-Gene cluster interactions supported by time-lag 

correlation. 
The TF-Gene cluster interactions were between TF gene expression and average target 
genes expression in a cluster and its correlation (positively or negatively correlated) was 
calculated at time lag, t = 0 to t = 6.  
 
 

If we were to build a transcriptional regulatory network of cell cycle genes based on the 

assumption of co-expression of TF gene with their target gene(s), only 18 interactions 

between TF and cluster are supported by a positive correlation (rows within yellow box 

in Figure 3.10) at t=0 or no time-lag/shift.  This could basically inform us that utilizing co-

expression of TF with target genes, which is a commonly used method, is not enough to 

infer transcriptional regulatory interaction. However, as we shifted the expression 

patterns from 1 time-point lag to 5 time-points lag, one time-point at a time, more 

regulatory interactions become apparent (see Figure 3.10). We did not use time-lagged 

information to dictate our gene regulations as it could suffer from the fact that the mRNA 

transcript could be regulated post-transcriptionally and its protein could be regulated 

post-translationally. However, it is noteworthy to see some combinatorial regulations 

found from our regulatory networks are also co-expressed with positive correlation in at 

least at one of the 5 time-point lags with their target genes expression. Interestingly, 

novel TF-TF interaction with no protein-protein interaction support, for example, 

GZF3/PDR1/SWI5 in cluster 1 (see Figure 3.10) is moderately supported by the time-

lagged correlation at the 4th time-lagged point. Another example is from a quadruplet 

combinatorial regulation such as cluster 27, ACE2/SWI5/FKH1/FKH2 co-regulates the 

genes and their genes are expressed in time-lagged manner with cluster 27 genes. This 

hypothesis is supported by genetic interaction but not from the known protein-protein 
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physical interaction (refer to Figure 3.6). This is novel where none of the existing 

regulation prediction algorithms have found this quadruplet co-regulation. We also 

discovered that some TFs are substantially time-lag correlated with their targets at a 

specific lag. For example, Fkh1 Fkh2 and Swi4 for quite a number of times, tend to lag 

at the first 3 time-lags, while Ace2 and Swi5 at the latter time-lags as shown in Figure 

3.12 below. 

 

Figure 3.12 Distributions of number of interactions with positive time-lag correlation 

(r > 0.5) for all 14 TFs. 

 

Finally we restate that of the regulatory interactions predicted between TFs and genes 

within our clusters, only 18% are supported by significant correlation between those 

genes’ expression patterns and the expression patterns of the regulating factors. 

Although this percentage increases if correlations off-set in time are considered, it shows 

that simple correlation of expression is not a good way of predicting regulation.  
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 Discussion 

By applying our algorithm to genetic regulation in yeast, we note that the method 

produces results that to a large extent recapitulate existing knowledge. We chose to 

compare to LeTICE as a recent method based on a similar underlying premise but 

otherwise the methodology is very distinct. In this study, we have inferred the 

transcriptional regulatory networks (TRNs) of genes based on meta-heuristic joint 

probabilistic model of gene regulatory input and gene transcriptional output. The 

advantages of our method and in comparison to LeTICE are, (1) It provides maximum 

automation of the clustering procedure without the need for user-defined minimal cluster 

size, (2) our method has the ability to refine the clusters found by SA further using EM. 

As a result, we could also identify genes that share more than one cluster. In this study, 

genes could share clusters of the same phase or adjacent phase. However, this requires 

the model parameters to be near the global optimal as the EM refinement step is local in 

nature and could not performed beyond the maximum likelihood SA itself, (3) our method 

has the capability to infer a high degree of combinatorial regulation. We have shown 

earlier that we can find triplet and quadruplet combinatorial TF binding. Some examples 

are supported by evidence from the literature (i.e. Mbp1/Swi4/Swi6) and PPIs database 

and some are not (i.e. Pdr1/Gzf3). In addition, some combinatorial interactions also 

appeared to be supported by time-lag correlation between them and the expression 

profiles of genes that they regulate, (4) our method could fit the model parameters 

according to the information criteria of choice, where stringent IC will result in fewer 

clusters with larger cluster size. On the other hand, the less stringent IC will result in 

more clusters with smaller cluster sizes. 

Last, our method produced arguably better results than LeTICE and our method 

performs at least as well in terms of biological relevance of the clusters found and in 

recovering known relevant cell cycle TFs. In this application we suggest that limitations 

to some degree are associated with the limited nature of the data. The transcription factor 

binding data is not resolved by time or cell cycle phase, and this limits how well any 

method could perform.  

 Conclusion  

In this yeast test case, our method was able to generate clusters with clear biological 

meaning and suggest transcriptional regulatory networks for yeast cell cycle using the 

discovered clusters. 
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 Application of model-based joint clustering to cancer 

data 

  Introduction 

Cancer is a class of different diseases that affect the population and is often 

characterized by abnormal cells that divide in an uncontrolled way and invade healthy 

cells in the body. It is driven by many different and complex molecular mechanisms that 

still need to be discovered. The commonly studied molecular data types include but are 

not limited to gene and protein expression, copy number variations, DNA methylation, 

and gene mutations. These multiple data types are usually evaluated independently and 

this leads to an increase in the number of independent features that need to be 

computationally analysed. Each independent molecular feature represents an 

incomplete view of biological processes. Thus, in this work, we proposed an approach 

that can integrate multiple data types of binary and continuous nature in order to model 

the cancer gene drivers and pathways they might be affecting. 

In tumour cells, there are genes that can potentially cause cancer and they are known 

as oncogenes. Oncogenes are often mutated and abnormally expressed in tumour cells. 

An example of oncogene group is the tumour suppressors. Tumour suppressor genes 

encode proteins that protect a cell from becoming cancerous by rapidly responding to 

diverse cellular stresses to regulate expression of target genes (e.g. cell cycle arrest, 

apoptosis, senescence, DNA repair, metabolic changes). Somatic mutations in driver 

genes functioning in important events of gene expression (i.e. signalling 

molecules/pathways, transcription factors, epigenetic modifiers) can cause changes in 

gene expression and hence, altered cell phenotypes. Changes in gene expression 

patterns can be driven by all the processes above and therefore it is interesting 

biologically to find cancer subgroups defined by characterised patterns of mutations and 

gene expression. Furthermore, it is important also to be able to distinguish driver gene 

mutations from passenger gene mutations. This problem is usually tackled by finding the 

recurrently mutated genes across samples. We are motivated to see if our method could 

delineate the driver gene mutations from passenger gene mutations. In addition, we want 

to investigate whether gene mutations together with aberrant gene expressions might or 

might not be able to group patients into prognostically relevant cancer subtypes. 

To demonstrate the applicability of our method on cancer data, we have chosen Acute 

Myeloid Leukaemia (AML) as our test case. The main classification systems of AML has 

always been via French-American-British (FAB) [117-119], which largely relies on cell 

histopathology, and from the World Health Organization (WHO) [120] classification 
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system which mainly deals with cytogenetic aberrations in order to group AML into 

subtypes. Recently, more efforts have been placed on finding molecular markers of AML 

to further characterize and refine AML subtypes. This includes using gene expression 

information alone  [121-123], gene mutations [124] and linking gene mutations to 

expression [125]. 

Patients with AML can be divided into subclasses (M0–M7) on the basis of morphology, 

and quantification of myeloblasts and erythroblasts. FAB consortium differentiated 

different groups of leukaemia based on the number of healthy blood cells, the size and 

number of leukaemia cells, the changes that appear in the chromosomes of the 

leukaemia cells and, the degree of cellular differentiation [119]. However, it was uncertain 

of whether FAB subtypes added prognostic information. The FAB classes include: 

 M0 : Undifferentiated acute myeloblastic leukaemia 

 M1 : Acute myeloblastic leukaemia with minimal maturation 

 M2 : Acute myeloblastic leukaemia with maturation 

 M3 : Acute promyelocytic leukaemia 

 M4 : Acute myelomonocytic leukaemia 

 M5: Acute monocytic leukaemia 

 M6: Acute erythroid leukaemia 

 M7: Acute megakaryocytic leukaemia 
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After decades of using FAB classifications, clinicians have now started to switch to the 

WHO classification as this is deemed to be more prognostically relevant with the 

recognition of cytogenetic diversity together with other molecular abnormalities. The 

WHO classification integrates genetic, immunophenotypic, biological, and clinical 

features in classifying patients/samples. However, for the not otherwise specified (NOS) 

cases which includes cases that do not belong to any of the classes, FAB is still used. 

However, Walter and co-workers (2013) have found that this is a flaw where FAB sub 

classification of NOS cases does not provide prognostic information and suggest to 

further use mutation related information (i.e.NPM1 and CEBPA) to improve the 

classification [126]. As a result, additional entities have been added to the WHO 

classifications: 

 AML with recurrent genetic abnormalities: 

 AML with translocation of RUNX1/RUNX1T1  

 AML with translocation of CBEB/MYH11  

 Acute promyelocytic leukaemia (APL) with translocation of PML/RARA  

 AML with translocation of MLLT3/MLL  

 AML with translocation of DEK/NUP214  

 AML with translocation of RPN1/EVI1  

 AML (megakaryoblastic) with translocation of RBM15/MKL1  

 Provisional entity: AML with mutated NPM1  

 Provisional entity: AML with mutated CEBPA  
 

 AML with myelodysplasia-related change 

 Therapy-related neoplasm 

 AML, not otherwise specified (NOS): 

 M0: Undifferentiated acute myeloblastic leukaemia 

 M1: Acute myeloblastic leukaemia with minimal maturation 

 M2: Acute myeloblastic leukaemia with maturation 

 M3: Acute promyelocytic leukaemia 

 M4: Acute myelomonocytic leukaemia 

 M5: Acute monocytic leukaemia 

 M6: Acute erythroid leukaemia 

 M7: Acute megakaryocytic leukaemia 

 Acute basophilic leukaemia 

 Acute panmyelosis with myelofibrosis 
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 How AML develops 

AML is a blood cancer that results from faulty haematopoiesis where bone marrow 

produces subnormal white blood cells. Acute myeloid leukaemia cells develop and 

proliferate very quickly and on entry into the bloodstream are circulated around the body. 

In AML, the haemopoietic stem cells of the bone marrow fail to become fully differentiated 

into white blood cells, red blood cells or platelets, and instead lead to clonal expansion 

of undifferentiated myeloid (immature white blood cells) also called myeloid blasts, as 

shown in Figure 4.1A above. The body has no use for these cells so they continue to 

build up. They will accumulate in the blood and leave little space for normal blood cells 

to grow and develop as illustrated in Figure 4.1B. The low count of blood cells may lead 

to anaemia, infection or bleeding. Given the importance of timely regulation of white 

blood cell differentiation, studying the aberrations at the molecular level which affect this 

is important for improving patient survival/prognosis and disease prevention. 

 

Figure 4.1 A. Basic normal blood cell development in bone marrow and B. abnormal 

blood cell production which leads to AML.  
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 Molecular aberrations of AML 

AML usually develops from cells with somatically acquired driver mutations (e.g. in FLT3, 

NPM1, CEBPA, KIT, N-RAS, MLL, WT1, IDH1/2, TET2, DNMT3A, and ASXL1) as well 

as other cytogenetic aberrations (i.e. translocations, inversions) to drive prognosis. 

Patient prioritization for ideal treatment after disease diagnosis can be improved by using 

integrated analyses of the co-occurrence of mutated genes and chromosomal 

aberrations [127].    

It has been suggested that AML arises from three complementary classes of mutations: 

class I (tyrosine kinases-FLT3, KIT, JAK1, JAK3, RAS pathway- NRAS,KRAS; Protein 

phosphatases-PTPTN11; Ubiquitin pathway-CBL), class II which contains transcription 

factors genes (RUNX1, PML/RARA, CBFB/MYH11, GATA2, DEK/NUP214, CEBPA, 

PU1, MLL fusion, NPM1), a newly formed class III with genes associated with DNA 

methylation (TET2, IDH1, IDH2, DNMT3A, ASLX1, EZH2) and other class associated 

with tumour suppressor (WT1 and TP53) mutations  [127, 128]. It has been shown that 

genetic heterogeneity in AML is not random. There is a risk stratification according to 

genetic heterogeneity [129].  

The good risk group includes recurrent translocations such as PML/RARA, 

MYH11/CBFB and RUNX1/RUNX1T1. The high-risk group includes patients with the 

DEK/NUP214 and RPN1-EVI1 translocations. Often, AML patients with complex 

karyotypes (more than 3 chromosomal aberrations) are also in the high risk group and 

AML with normal cytogenetics are in the intermediate risk group [129]. In terms of 

somatic mutations, the poor prognosis group is also associated with DNMT3A, MLL and 

all the class III mutations. On the contrary, patients with class II mutations usually have 

better outcomes than class I and III [127].  

Molecular classification using gene expression profiling was able to sub-classify patients 

into different groups and resulted in sub classes with clear favourable and unfavourable 

prognosis [121-123].  These discoveries of driver mutations and gene expressions 

provide insight into the biological details of AML, but how they both contributed 

cohesively on patient’s prognosis are unclear. More data has emerged indicating that 

gene mutations and gene expressions may be useful in patient prioritization and/or 

selection for optimal AML therapy [130, 131]. 
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 Methodology 

To test the application of our methodology to data from cancer samples, we applied it to 

the Acute Myeloid Leukaemia (AML) mutation and gene expression data generated by 

The Cancer Genome ATLAS (TCGA) Research Network [42, 132]. We downloaded 

RNA-seq and mutations data from TCGA AML cohort; data were available for 200 

patients with 314 gene mutations. However, these data were subjected to pre-processing 

which is explained in this section. 

 Selecting mutated genes and variably expressed genes 

Datasets from TCGA were retrieved through using cBioPortal for Cancer Genomics tool 

[133, 134]. In accordance with the TCGA data usage guidelines and policy, samples 

were selected based on the availability of mutation and RNA-seq gene expression data. 

For gene mutation, genes which were mutated in at least two patients were chosen and 

samples with no mutation were removed, resulting in 170 samples and 154 gene 

mutations.  

For gene expression, we first normalized the data set to remove systematic variation 

between different experiments or batch effects using quantile normalization. Quantile 

normalization is used widely to make the distributions the same across samples. We 

then chose to do an exploratory approach of data pre-selection by selecting the most 

variably expressed genes similar to what has been done in this field previously [135, 

136]. The less variable genes are less informative in our study where we required genes 

that would contribute to the different classes of AML patients. 

We used coefficient of variation, 𝑐𝑣 and standard deviation to represent variation 

between samples for each gene. Coefficient of variation was calculated using: 

𝑐𝑣 =  
𝜎

𝜇
 . 100 

Here, 𝜎, 𝜇 are the standard deviation and mean and of gene expression across 

samples/patients, respectively. The higher the 𝑐𝑣, the greater the level of 

dispersion/inconsistency around the mean. Following calculation of 𝑐𝑣 for all genes, 

genes were then ranked from highest to lowest 𝑐𝑣. However, genes with higher 𝑐𝑣 in the 

black region (see Figure 4.2) have lower expression values compared to the intermediate 

region. Genes with higher variable with subsequent high expression are preferable. In 

our case, we use rank order by sorting on rank of standard deviations (largest to smallest) 

for the top 10,000 genes previously sorted using 𝑐𝑣. By doing this, genes with higher 

expression values and variably expressed will be at the top of the list. 
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Figure 4.2 Gene expression patterns for AML patients.  

Columns are the 170 AML patients and rows are 20,502 genes ranked from highest to 
lowest coefficient of variation across patients. The region in black shows genes with 

higher standard deviation and lower mean or in other words, higher 𝑐𝑣. The region in red 

shows genes with intermediate 𝑐𝑣 and favorable to be used with our clustering where 
the expression values are slightly higher.  
We chose the top 500 genes with highest ranked-based coefficients of variation and 
standard deviation across these samples (details of samples, mutations and chosen 
genes are given in Table 4.1 below). 
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Table 4.1 Input data points and variables for AML dataset. 

Input data consist of 170 samples, 154 mutated genes and 500 most variably expressed genes.  
* Genes which are mutated in at least 2 samples. ** Genes which are variably expressed based on ranked coefficient of variation and standard deviation. 

Sample (AML patients) Mutated genes* Variably expressed genes** 

TCGA-AB-2948-03 , TCGA-AB-2853-03 , TCGA-AB-2942-03 

TCGA-AB-2909-03 , TCGA-AB-2970-03 , TCGA-AB-2825-03 
TCGA-AB-3000-03 , TCGA-AB-2985-03 , TCGA-AB-2987-03 
TCGA-AB-2910-03 , TCGA-AB-2994-03 , TCGA-AB-2812-03 

TCGA-AB-2890-03 , TCGA-AB-2980-03 , TCGA-AB-2857-03 
TCGA-AB-3008-03 , TCGA-AB-2862-03 , TCGA-AB-2943-03 
TCGA-AB-2866-03 , TCGA-AB-2904-03 , TCGA-AB-2982-03 

TCGA-AB-2835-03 , TCGA-AB-2863-03 , TCGA-AB-2859-03 
TCGA-AB-2933-03 , TCGA-AB-2879-03 , TCGA-AB-3007-03 
TCGA-AB-2837-03 , TCGA-AB-2963-03 , TCGA-AB-2860-03 

TCGA-AB-2995-03 , TCGA-AB-2869-03 , TCGA-AB-2988-03 
TCGA-AB-2944-03 , TCGA-AB-2818-03 , TCGA-AB-2916-03 
TCGA-AB-2847-03 , TCGA-AB-2931-03 , TCGA-AB-2981-03 

TCGA-AB-2956-03 , TCGA-AB-2881-03 , TCGA-AB-2816-03 
TCGA-AB-2903-03 , TCGA-AB-2833-03 , TCGA-AB-2929-03 

TCGA-AB-2977-03 , TCGA-AB-2813-03 , TCGA-AB-2950-03 
TCGA-AB-2992-03 , TCGA-AB-2927-03 , TCGA-AB-2964-03      
TCGA-AB-2954-03 , TCGA-AB-2884-03 , TCGA-AB-2901-03 

TCGA-AB-2848-03 , TCGA-AB-2998-03 , TCGA-AB-2811-03 
TCGA-AB-2815-03 , TCGA-AB-2843-03 , TCGA-AB-2959-03 
TCGA-AB-2880-03 , TCGA-AB-2971-03 , TCGA-AB-2855-03 

TCGA-AB-2973-03 , TCGA-AB-2928-03 , TCGA-AB-2967-03 
TCGA-AB-2836-03 , TCGA-AB-2821-03 , TCGA-AB-2870-03 
TCGA-AB-2873-03 , TCGA-AB-2882-03 , TCGA-AB-2839-03 

TCGA-AB-2845-03 , TCGA-AB-2840-03 , TCGA-AB-2972-03 
TCGA-AB-2832-03 , TCGA-AB-2949-03 , TCGA-AB-2937-03 
TCGA-AB-2940-03 , TCGA-AB-2895-03 , TCGA-AB-2877-03 

TCGA-AB-2856-03 , TCGA-AB-2810-03 , TCGA-AB-2849-03 
TCGA-AB-2841-03 , TCGA-AB-2965-03 , TCGA-AB-2865-03 
TCGA-AB-2911-03 , TCGA-AB-2861-03 , TCGA-AB-2806-03 

TCGA-AB-2842-03 , TCGA-AB-2930-03 , TCGA-AB-2925-03 
TCGA-AB-2823-03 , TCGA-AB-3002-03 , TCGA-AB-2887-03 
TCGA-AB-3011-03 , TCGA-AB-2914-03 , TCGA-AB-2918-03 

TCGA-AB-2991-03 , TCGA-AB-2969-03 , TCGA-AB-3006-03 
TCGA-AB-2896-03 , TCGA-AB-2913-03 , TCGA-AB-2826-03 

TCGA-AB-2838-03 , TCGA-AB-2897-03 , TCGA-AB-2814-03 
TCGA-AB-2941-03 , TCGA-AB-2891-03 , TCGA-AB-2934-03 
TCGA-AB-2851-03 , TCGA-AB-2886-03 , TCGA-AB-2805-03 

TCGA-AB-2986-03 , TCGA-AB-2828-03 , TCGA-AB-2803-03 
TCGA-AB-2990-03 , TCGA-AB-2844-03 , TCGA-AB-2819-03 
TCGA-AB-2820-03 , TCGA-AB-2978-03 , TCGA-AB-2808-03 

TCGA-AB-2921-03 , TCGA-AB-2858-03 , TCGA-AB-2983-03 
TCGA-AB-2867-03 , TCGA-AB-2999-03 , TCGA-AB-2888-03 
TCGA-AB-2955-03 , TCGA-AB-2919-03 , TCGA-AB-2996-03 

TCGA-AB-2898-03 , TCGA-AB-2846-03 , TCGA-AB-2854-03 
TCGA-AB-2935-03 , TCGA-AB-2976-03 , TCGA-AB-3001-03 
TCGA-AB-2979-03 , TCGA-AB-2966-03 , TCGA-AB-2908-03 

TCGA-AB-2932-03 , TCGA-AB-2885-03 , TCGA-AB-2872-03 
TCGA-AB-2824-03 , TCGA-AB-2868-03 , TCGA-AB-2917-03 
TCGA-AB-2899-03 , TCGA-AB-3012-03 , TCGA-AB-2938-03 

TCGA-AB-2939-03 , TCGA-AB-2952-03 , TCGA-AB-2875-03 
TCGA-AB-2924-03 , TCGA-AB-2912-03 , TCGA-AB-2874-03 

TCGA-AB-2830-03 , TCGA-AB-2993-03 , TCGA-AB-2915-03 
TCGA-AB-2936-03 , TCGA-AB-2817-03 , TCGA-AB-3009-03 
TCGA-AB-2834-03 , TCGA-AB-2807-03 , TCGA-AB-2920-03 

TCGA-AB-3005-03 , TCGA-AB-2900-03 , TCGA-AB-2871-03 
TCGA-AB-2984-03 , TCGA-AB-2822-03  

FRYL BMPER OR13H1 PHACTR1 
PRPF8 GLTSCR1L CACNA2D3 PDCD2L 

SEMA4A ARAP2 TUBA3C GJB3 
PPP1R3A MED12 RYR3 FLG 
CACNA1E KMT2C PLEKHH1 PSME4 
MTMR8 CROCC ZC3H18 TNC 
LRRC37B P2RY2 NUP98 APOB 
ATP1B4 CADPS ZNF687 TTBK1 
FCGBP NMUR2 GATA2 DIS3 

DDX41 SAXO2 NRXN3 CALR 
MEFV E2F8 GRM3 PRAMEF2 
SCARB1 SCN1A DNMT3B PICALM 
FOXP1 GSTK1 DOCK2 SMG1 
DCLK1 CUL1 SETBP1 MUC16 
PKHD1L1 RNF213 THRAP3 SPEN 
C17ORF97 ASXL1 EPPK1 NF1 

UNC5B GBP4 ADGRG4 NSD1 
ZBTB33 CACNA1B ATP10B COL12A1 
TRPM3 BCR DCHS2 GRID1 
OR11H12 PTPRT CDK11B TFG 
FAM57B EZH2 LRBA TMEM255B 
ETV6 SUZ12 DDR2 GAS6 
DNAH9 ADGRG7 HECW1 PLCE1 

HNRNPK ABL1 TOP3B ELL 
CD74 RAD21 GIGYF2 BRINP3 
CSMD3 TTN CSMD1 STAG2 
MUC5B PHF6 KCNA4 MLLT10 
STRIP2 KRAS MECOM KIT 
KDM3B SMC1A BSN SMC3 
KDM6A KMT2A PHIP U2AF1 

DLC1 PTPN11 RIMS1 RUNX1T1 
KDR MYH11 ILDR1 WT1 
TET1 CBFB WAC NRAS 
TCEAL6 TP53 SCAF8 CEBPA 
SEMA3A TET2 CADM2 RARA 
GRIK2 PML GRIK4 IDH1 
GALNT18 IDH2 SI RUNX1 

CNTNAP4 DNMT3A CMYA5 FLT3 
 MAP2 NPM1 

UBE2V1 AHSP SH3BP4 GLT1D1 MYCT1 FAM127A ZFY NPR3 CSMD1 RNF217 GABRE           
CYorf15B    JPH1 BAALC C20orf54 DOCK1 EPCAM ELN LIFR MYOF LUM EPB42         

UTY CT45A5       ASS1 CCNA1 GPR12 HOXB8 KIAA0087 HMGA2 DUSP27 PTPN20B AREG    
VENTX ZNF711        FERMT1     LHX6 TM4SF1 CYP1B1 NPTX2 PDK4 UNC13B NAPSB GPR126 
SNCAIP CD200 TOM1L1 VCAM1        SLC28A3 SLCO5A1 NLRP2 FBLN1 C5orf23 DTNA RFPL1S 
DEFA4 MECOM CLEC7A HTR1F THNSL2       RETN LOC100101938 NRP1 PRLR HBM   
SEMA3C PTGER3 ITGB3 VGLL3 PPARGC1A  EPX            UGGT2        IRX5 LTBP1 FGD5 MEIS1        
HBB             HDC IRX1 FBN2 ANO7 HOXB3        LDLRAD3    MYCL1       IRX3            SLC24A3 PHACTR3      
TRPM4        NKX2-3 TMSB4Y SLITRK4 ABO CLDN10 MSR1 MAFB          VCAN         SLITRK5 CTSG  

CLC EPHB2 S100A12 PF4 PPP1R9A TPSAB1 NUDT10 FCN1 MS4A2        DEFA1B      MEG3          
CA1 COL5A1 PLCB4 MS4A3 SERPINA1   COL23A1 DKK2 CNNM1 PHKA1 S100A16     CPNE8           
GYPA           ANK1 CD109 CLEC9A MRC1 TMIGD2      GYPB TPSD1 HOXA7 IGLL1 LGSN           
C5orf20       CXCL12 LILRA6 HOXA6 LAMC1 DNTT CPNE7        PRRG1 LILRA5 HOXA5 PAX8  
RXFP1        LOC441666 LILRA3 HOXA4 SCUBE1 SNORD116-4 SIGLEC9     PRR16 LIN7A HOXA3 
FLJ22536 NDST3        OPALIN       GSTM1 SYCP2L COBL CYorf15A DSC2 BEX1           APOC2 TUSC1 
HOXA9 PROK2        NTRK1        MYCN         LOC284551 C5AR1 PTK2 ADAMTS2 NAV3 POU4F1      ITGA9  

PKP2 STAB1         HPGDS MPEG1       AR                CD1D          CHI3L1 BPI GPR173 TDRD9 GPC4              
CD1E FBLN2         SCN9A VAT1L DDX3Y         GPC6         CD1C CYP4F2 CLGN C17orf55 AOX2P 
DACH1        EVC            MS4A4A COL3A1 MDFI SPAG6        CLTCL1       MYO18B ADAMTS1 PRKY PTGFR   
HK3 SHANK1      PTGDS ADAMTS3 VSTM1 H2AFY2      ANXA8L2     CD163        VWDE DHRS9 LPHN3 
EIF1AY NEGR1        PTPRG       VPREB1 SAGE1 SCARA3 CYP2S1 HTR7          PTPRD        TNNT1 GNG11 
MTMR11 ADAMTS18 UMODL1 ZFP57          LILRB4 ADRA2C ZNF727 BCORL2 TSPAN7       PTRF          LILRB2 
CDH9 HOXA11AS KRT8 CACNA2D3  ALOX15B    NXF3 CDH2 SCN2A FAM38B SERPINB2     

PTPRM       SERPINB10                     CDH4         DNAJC12 HOXA11 CALN1 MYO7A       CCL23 DPP10 PACSIN1 
HOXA10 BMP3          SIGLEC1     HNMT        IL31RA          XIST PPBP ROBO1 C8orf79       SDK2 RAMP1 
C3orf50 STOX2        ROBO4       C20orf200                        HOXB9 PTH2R MS4A6A DSG2 HBG1 TEX15            
HOXB2 CYYR1 HBA1          C2 MEFV           KCNK17 LPO HBA2 SLC8A3 TMEM189- AADAT           
HOXB6 PROM1 PBX1          C7 L3MBTL4     UGT2B11    HOXB7 WIT1 CYP7B1 GPR85 KDM5D 
ELANE        HOXB4 APP            CLEC4E EPB41L3      DLK1          TTTY15       HOXB5 C1QC CLEC4D MYEF2 
TLR8 KIAA1462    PPARG       C1QB CLEC4C       NDN           SCN3A        PRSS21      COL4A5 C1QA ASGR2 

DDIT4L PXDN          SLC44A5     TSIX AZU1           C20orf103 LGALS2 CT45A1       FGF13         C10orf114 KIF17 
MOSC2       PAWR CT45A3 APBA1         TCN1          WNT7B MOSC1 FAM171A1 MAMDC2     CCDC48         
LOC654433                     VLDLR        MMP8 SLPI HBG2 PTPN14      KRT17 TBC1D3G MMP9 AIF1L 
DPPA4        ZNHIT2        CD14           UGT3A2 TGFBI LRP1 TIFAB          LOC644172                    SORT1 SPON1 
MMP2 LRP6 IL1R2           KIAA1598    FOXC1 SCHIP1 ANXA8 CDA             ST18 TMEM136    KRT18 
GTSF1 CRLF2 PRRT4 PPAN-P2RY11                SECTM1     SEPP1 LAMB2         SYTL4 GSTM5  CPA3              
PI15             NCRNA00185                 ARHGEF10L CD34           COL1A2      FAT1  HPGD         MKRN3  KIAA1324L 

BGN EREG           IGSF10       LTK              SLC4A1 MARCO MYL4 COL1A1       THBS1        ZNF334           
SHROOM4 CDC42BPA  CLEC14A  KIAA1217     PCBP3 ADCY2        COL2A1 CEACAM6  C7orf58 CDH11         TRH 
SPINK2        HTRA3  TACSTD2  RANBP17  TRIM71 TRO             KCNE1L     CLEC5A  CEACAM8  IL1RL1         KIRREL           
ENPEP  LTF              RPS4Y1  BMX  DCN NLRP12 MN1 CLEC10A      PRAME      VNN3          SELENBP1 
S100P          THSD7A  TMEM105    PTX4  VNN1 ZNF521 FCGR3B EVPL   ACY3          ALAS2         IGFBP2 
DLGAP2  LOXHD1     C10orf140   DEFB1        S100A9 SHD FAM110B USP9Y          PRDM16  MXRA5        S100A8 
IGFBP5  PRTN3  RUNX1T1    CES1  ARPP21      PKLR CCDC8 FCAR            SIX3  PLSCR4  TMEM176B    

END6  GJA1  FPR1   ALDH1A1    MPO           LOC728606                   BEND4          GJA3  FPR2  S100B   
PRODH        SORCS1     LOC399959  FLJ42875  TPSB2 KYNU          IL17RE          CHRDL1     CYP27A1   AQP9 
PLBD1          CD300E  OLL2A          MSLN  TMEM176A FAM171B TMED7-TICAM2               RHAG          GLI2 
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 Clusters analysis 

As the classes are unknown beforehand, using our un-supervised clustering, we were able to 

discover clusters which we analysed separately in terms of biological and statistical 

significances.   

 Kaplan-Meier survival estimate 

One way of evaluating the clusters found is by comparing treatment response, or the survival 

probability (i.e. that an individual survives since the beginning of diagnosis time), between 

clusters. It is sometimes the case that patients in different subtypes have distinct survival 

probability patterns and this can prove to be clinically relevant. To be able to segregate 

patients into subtypes with distinct survivals is the main goal in a patient’s treatment, even to 

the extent of implementing personalized cancer therapy. 

In cancer study, an important measure or event of interest is the time from cancer diagnosis 

and/or surviving a treatment until recurrence or relapse-free/disease-free. In the TCGA AML 

case, the patients’ recorded clinical information is the time period between first diagnosis and 

the months of surviving the cancer. There are different clinical observations of patients: (1) 

still alive and disease free (2) still alive but with recurred/progressed of disease (3) dead after 

having recurred/progressed disease (4) disease free but dead probably due to old age. 

However, with the status of survival –living or dead, and overall survival- months after 

diagnosis, we could use these information to predict the survival of patient from the time of 

diagnosis. The survival probability 𝑆(𝑡) is the probability that an individual survives from the 

time of diagnosis to a specified future time 𝑡 [137].  

𝑠(𝑡𝑗) = 𝑠(𝑡𝑗−1) (1 −
𝑑𝑗

𝑛𝑗
) 

Here, 𝑠(𝑡𝑗) is the probability of being alive at time 𝑡𝑗 and this can be calculated from the 

probability of being alive at 𝑡𝑗−1. 𝑛𝑗 and 𝑑𝑗 are the number of patients alive at 𝑡𝑗 and the number 

of death of event at 𝑡𝑗 respectively. The term event here refers to death and the probability of 

surviving from one interval to the next, 𝑗 = 1, … , 𝑘 can be multiplied together and cumulatively 

build up the survival probability. Starting at  𝑡0 = 0 and with 𝑠(0) = 1, the probability of survival 

for patients would simply reduce to the ratio (1 −
𝑑𝑗

𝑛𝑗
). The probabilities of survival, 𝑠(𝑡𝑗)  across 

time intervals,  𝑡𝑗 are usually represented using the Kaplan-Meier survival plot which contains 

survival curves of probability/proportion surviving versus time (i.e. months or years).  
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Figure 4.3 An example of the Kaplan-Meier survival plot.  

At the beginning (Time =0) all patients (i.e. seven patients) were alive and still in the curve. 
During the interval (i.e. 1-4 years), a patient was dead so that at the end of this interval, 6 
patients were still at risk (i.e. proportion surviving this interval is 6/7 or 0.86). For the following 
intervals, the proportion/probability of surviving is calculated cumulatively (i.e. proportion 
surviving at interval 4-10 multiply by the proportion surviving 1-4). 
 

Comparing between survival curves of two or more groups can be done using log-rank test, 

𝑥2 with the corresponding null hypothesis, that there is no difference between 

population/clusters survival curves or the probability of an event occurring at any time point is 

the same for each population/cluster, 𝑖:  

𝑥2 =  ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

𝐶

𝑖=1

 

Here, 𝐶 is the number of cluster, 𝑂𝑖  is the – counts of number of observed events in cluster 𝑖, 

and 𝐸𝑖 is the counts of number of expected events. This value then is compared to a 𝑥2 

distribution with (𝐶 − 1) degree of freedom and p-value may be calculated following this [137, 

138].  

 Comparative marker selection tool 

Finding a set of features/markers which can discriminate between distinct clusters of patients 

is an intuitive approach where genes which are differentially up and down regulated in each 

cluster might dictate the characteristics and prognosis of patient’s cancer. A comparative 

marker selection (ComparativeMarkerSelection(v10) ) tool in the GenePattern module 

provided by the Broad Institute is useful for this exercise [139]. This tool uses a test statistic, 
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t-test to evaluate the differential expression between two classes of samples. However, in this 

case where we have multiple phenotypes/clusters, one-versus-all comparisons were done for 

all 500 genes in each cluster. Up and down regulated genes which are significantly different 

between clusters (i.e. genes with FDR (Benjamini-Hochberg corrected) less than 0.005 and 

with -10.0 < score > 10.0) were selected. 

 DAVID functional analysis 

As briefly introduced in the Chapter 1, clustering of genes is usually subjected to a systematic 

evaluation to see if genes in the same group are biologically related. We would like to explore 

the biological meaning of the markers in each group in term of its molecular/biological 

processes and pathways. Furthermore, if they are to some degree correlated with prognosis 

of patient’s survival, this could explain why patients carrying this marker tend to survive for 

longer or shorter times. There are a lot of tools available for the discovery of enriched Gene 

Ontology (GO) terms, for example, Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) [140] , GOrilla [141] and Gene Set Enrichment  Analysis (GSEA) [142]. 

These tools statistically emphasize on the most enriched GO terms including but not limited 

to biological processes, molecular functions and cellular locations given lists of genes. Here, 

in our study, we used the most frequently used tool, DAVID which accepts as input lists of 

genes correspond to our clusters.  

 Results and discussion 

Based on our findings with simulated data, we investigated clustering of this mutation and 

expression data using the AIC related criteria with 𝜆 = 2.0 and 2.5. Again clustering with this 

real data set showed greater variability in results between these two penalty functions than 

was evident in simulations, with clusters predominantly very small (two samples per cluster) 

from 𝜆 = 2.0 and would be problematic for cluster validation later (e.g. survival probability 

analysis). Accordingly, we chose 𝜆 = 2.5 in this case on biological and statistical grounds. 

Figure 4.4 below shows a graphical representation of 18 clusters found by clustering patients 

according to their molecular signatures (i.e. gene mutational status and gene expression) and 

the overall survival curves for clusters. Following the 18 clusters found by using AIC (𝜆 = 2.5), 

the most differentially expressed genes in each cluster in comparison to the rest of the clusters 

were selected using the one-versus-all phenotype test in the Gene Pattern tool from [139] and 

the result is presented in Table 4.2 below.    

 



   
 

 

Figure 4.4 18 clusters found from using AIC (𝜆 = 2.5). 

Panel A. shows Clustering of AML samples shown in columns of 170 samples using AIC (𝜆=2.5) across most variably expressed genes (lower) 
with 500 genes and the mutated genes (above) with 18 genes coloured in dark purple. Genes with fusion mutation are marked within the blue-
dotted boxes. Panel B. is Kaplan-Meier estimators for the 10 clusters with more than 2 samples with survival information available in each cluster. 

The 10 Kaplan-Meier estimators perform differently with a significant p-value in the Log-Rank Test, p=0.00133.
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Table 4.2  Genes that are significantly differentially expressed between clusters determined using the one-versus-all phenotype test in the 

Gene Pattern tool from [139].  
Genes with FDR (Benjamini-Hochberg corrected) less than 0.005 and with -10.0<score>10.0 were selected. Genes in red are the highly 
expressed genes whereas genes in blue are less expressed genes. Cluster numbers highlighted in yellow are clusters with relevant mutations 
(i.e. genes in dark green at the bottom of the list)  

 
 

 

 

1 2 3 4 5 6 7 8 9 

SLITRK5 
DLK1 
CDH2 

FLJ42875 
DDIT4L 
ZNF727 

GPR173 
BEND4 
PAWR 

FAM127A 
 

ELL 

(1.0) 
 

KMT2A 

(1.0) 
 

C1QC 
DKK2 
MSR1 

LGALS2 
CD300E 
C5AR1 

C1QB 
LILRB2 
PTGFR 

HTR7 
FPR1 
HNMT 

LILRA5 
SIGLEC9 
MS4A4A 

MEFV 
HK3 

LDLRAD3 

ARHGEF10L 
SERPINA1 

MPEG1 

MS4A6A 
SIGLEC1 

KYNU 

CPNE8 
 

DLK1 
ZNHIT2 
SNCAIP 

ARPP21 
COL2A1 
NUDT10 

NCRNA00185 
BCORL2 
TMSB4Y 

TTTY15 
EIF1AY 

CYorf15A 

THSD7A 
CYorf15B 
USP9Y 

CYYR1 
KDM5D 
DDX3Y 

DLGAP2 

DSG2 
KIRREL 
ENPEP 

MXRA5 
VGLL3 
FAT1 

CDH11 
CHRDL1 
COL3A1 

PXDN 
COL1A2 

NDN 

DCN 
BGN 
APP 

COL1A1 
HBB 

 

NPM1 
(1.0) 

 

CYP4F2 
JPH1 

CLEC4C 

COBL 
ADRA2C 
NKX2-3 

KRT17 
BMX 

MARCO 

PRR16 
LIN7A 

GSTM1 

PLBD1 
CD14 

ADAMTS3 

MOSC2 
AREG 

RNF217 

FBN2 
MOSC1 

 

PHF6 
(1.0) 

 

PRDM16 
C10orf140 

NKX2-3 

FLJ42875 
HOXB3 
HOXB6 

COL4A5 
HOXB4 
HOXA5 

HOXA6 
HOXB2 
HOXB5 

HOXA3 
HOXA7 
IGSF10 

MEIS1 
HOXA4 
HOXA9 

TOM1L1 
CYP7B1 

TRH 

 
DNMT3A 

(0.66) 

 
FLT3 
(0.66) 

 

NPM1 
(1.0) 

 

HOXA3 
HK3 

HOXA4 

MAFB 
HOXA7 
HOXA5 

HOXA6 
CD300E 
LILRA6 

CDA 
SERPINA1 
HOXA10 

CCL23 
SIGLEC9 
TMEM105 

CHRDL1 
APP 

KIRREL 

 
FLT3 
(0.6) 

 
NPM1 
(0.73) 

COL4A5 
DNAJC12 
IGSF10 

CLEC4C 
CD1E 

SPAG6 

TACSTD2 
ASS1 

IL31RA 

NPTX2 
DDIT4L 
DLGAP2 

PRR16 
TSIX 

LGALS2 

CYP4F2 
CEACAM6 

S100A8 

PRLR 
S100A9 
MYOF 

BPI 
 

FLT3 

(1.0) 
 

CCNA1 
LOC399959 

THSD7A 

 
NSD1 
(0.75) 

 
FLT3 
(0.75) 

RUNX1T1 
TSPAN7 

MPO 

RFPL1S 
EVC 

HPGDS 

SLCO5A1 
PRRT4 

POU4F1 

SHANK1 
SLC24A3 

LPO 

PTX4 
DNTT 

C20orf54 

TRIM71 
 

ZNF711 
SEMA3C 
NEGR1 

DPP10 
KIAA0087 
DOCK1 

ABO 
C3orf50 
HOXB4 

HOXB5 
HTR1F 

PHACTR3 

HOXA5 
IL31RA 
HOXB3 

NKX2-3 
HOXB6 
DTNA 

MEIS1 
ZNF334 
HOXA3 

FLJ42875 
CPNE8 

PPARGC1A 

HOXA7 
HOXA6 

 
RUNX1T1 

(1.0) 
 

RUNX1 

(1.0) 

MSLN 
NRP1 

CYP2S1 

CLEC10A 
LRP6 

RXFP1 

MTMR11 
GPR12 
ST18 

KIF17 
FBLN2 
PTPRM 

TRIM71 
AR 

VSTM1 

TGFBI 
MARCO 
CD1E 

CLEC5A 
PLBD1 

DUSP27 

CD14 
GLT1D1 
CD1C 

 
 

DDIT4L 
PRDM16 
SLITRK4 

FAM38B 
HOXA6 
CYP7B1 

RANBP17 
FLJ42875 
COL4A5 

 
MYH11 

(1.0) 

 
CBFB 
(1.0) 
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Table 4.2  Genes that are significantly differentially expressed between clusters determined using the one-versus-all phenotype test in the 

Gene Pattern tool from [139].  
Genes with FDR (Benjamini-Hochberg corrected) less than 0.005 and with -10.0<score>10.0 were selected. Genes in red are the highly 
expressed genes whereas genes in blue are less expressed genes. Cluster numbers highlighted in yellow are clusters with relevant mutations 

(i.e. genes in dark green at the bottom of the list) (Continued)  

 

 

 

10 11 12 13 14 15 16 17 18 

ARHGEF10L 
MS4A6A 

UGGT2 
FAM127A 
C17orf55 

NPR3 
DNTT 

ARPP21 

SHD 
NTRK1 
C5orf23 

OPALIN 
HDC 

UMODL1 

UGT2B11 
 
 

ANK1 
MYL4 

VWDE 
PLSCR4 

CA1 

PTK2 
ADAMTS18 

ZNHIT2 

NKX2-3 
GPR12 

SORCS1 

LPO 
ACY3 

 SHANK1 

 
TP53 
(1.0) 

IL17RE 
SIX3 

FGF13 
PCBP3 
PTPRG 

NUDT10 
CLTCL1 

LPO 

PRRT4 
IGFBP2 
S100B 

ASS1 
IRX5 

PPARG 

LTK 
ELANE 
GABRE 

PTGDS 
LOC399959 

MPO 

STAB1 
COL23A1 
KCNE1L 

KRT17 
SLC24A3 

ANO7 

CPA3 
SLPI 

PRRG1 

UGT3A2 
MOSC2 

 

LIN7A 
RETN 

CCNA1 
ZNF711 
LAMC1 

PRODH 
ANXA8 
TDRD9 

AZU1 
CTSG 
STOX2 

MS4A3 
KRT18 
EVPL 

NDST3 
BEND6 
VSTM1 

MEG3 
FBN2 

PTGER3 

SHROOM4 
IRX1 

TEX15 

AR 
DDIT4L 
AADAT 

PROM1 
VNN3 

C20orf200 

 

SLC8A3 
DHRS9 

KIAA1598 
HOXA11AS 
LDLRAD3 

HOXA4 
HOXB2 

MN1 

HOXB5 
PRDM16 
HOXB6 

HOXA11 
CD109 
EREG 

CPNE8 
TMEM105 
KIAA0087 

HOXB3 
FLJ42875 
NKX2-3 

SLITRK5 
HOXB4 
HTR1F 

HOXA10 
CNNM1 

 

RARA 
(1.0) 

 

PML 
(1.0) 

 

HOXB6 
PHACTR3 

HOXB5 
APOC2 
CT45A1 

SCUBE1 
WNT7B 
NKX2-3 

HOXB4 
H2AFY2 
HOXA11 

HOXB3 
RPS4Y1 

C2 

HOXB2 
LOC728606 

CCL23 

HOXB7 
HOXA7 
HNMT 

ZFY 
CPNE8 
SORT1 

 
 

HOXA6 
HOXA11AS 

DDX3Y 
HOXA3 

UTY 

PRKY 
KDM5D 
GTSF1 

TLR8 
MYO7A 
OPALIN 

GPR12 
ZNF521 
CLEC9A 

CD34 
TMIGD2 

 TRH 

 
DNMT3A 

(0.71) 

 
NPM1 
(1.0) 

 

MYL4 
AHSP 

COL4A5 
DLK1 
JPH1 

CLEC4C 
GLI2 

OPALIN 

ALOX15B 
BCORL2 
SCN2A 

TTTY15 
EIF1AY 

CYorf15B 

USP9Y 
RPS4Y1 

UTY 

DDX3Y 
ZFY 

DLGAP2 

ANXA8 
TNNT1 
MARCO 

LPHN3 
LGALS2 

CLEC10A 

 MEFV 
 

STAG2 

(1.0) 

MSR1 
TMEM176A 

CD300E 
MTMR11 

TMEM176B 

PDK4 
TLR8 

MS4A6A 

CLEC7A 
KYNU 
DPP10 

HOXB9 
FGF13 
GLI2 

VAT1L 
SNCAIP 
CDH2 

LOC399959 
FLJ42875 

CDH4 

COL2A1 
NUDT10 
NKX2-3 

 
  
 

GABRE 
FERMT1 

GPR85 
PTPN20B 
C20orf200 

PTGFR 
NDST3 
DSG2 

CSMD1 
PAX8 

PPARGC1A 

APOC2 
MPO 

MOSC2 

KRT8 
PLCB4 

LOC654433 

BEND6 
CYP7B1 

NKX2-3 
HOXA5 

HOXA3 
SCARA3 
HOXA6 

HOXA4 
FAM38B 
LIN7A 

HOXB3 
ZNF521 
LTBP1 

SLC24A3 
HOXA9 
HOXB6 

HOXA7 
HOXB4 
CPA3 

MMP2 
FAM110B 

MEIS1 

HOXA10 
HOXB5 
MDFI 

DSC2 
WNT7B 

 

 

TRIM71 
SIGLEC1 

MPEG1 
PTX4 
PRLR 

PTK2 
KIF17 

OLFML2A 

MSR1 
RETN 

DUSP27 

CACNA2D3 
 

NPM1 

(1.0) 

UGT2B11 
APBA1 

HPGDS 
SHD 

C8orf79 

CYP7B1 
PROM1 
SLITRK5 

TRO 
GPR173 
HOXB6 

KIAA0087 
CES1 

HOXB3 

C20orf200 
MEIS1 
ELN 

HOXB4 
NKX2-3 
HOXB5 

KRT17 
HOXA10 
HOXA9 

HOXA7 
HOXA6 

 

CEBPA 
(0.9) 

APP 
CD34 

MN1 
PROM1 

FAM171B 

BAALC 
GPR173 

SDK2 

HMGA2 
LOC728606 

APOC2 
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It is well known that many genes are recurrently altered in AML including single to multiple 

genetic mutations and cytogenetic abnormalities such as translocation-mediated fusion events 

(i.e. PML/RARA, KMT2A/ELL, CBFB/MYH11, and RUNX1/RUNX1T1). Genetic fusion is 

considered as a type of mutation by Kihara and co-workers (2014) [143] and this is evident in 

several of the clusters that our method produces (see blue dotted-line boxes in Figure 4.4A). 

Here, cluster 18 in Figure 4.4A was found to be the largest cluster consisting of 55 patients 

having distinct patterns of expression but is not associated with any mutation at high 

probability but associated with TP53-RUNX1-DNMT3A mutations at much lower probabilities 

(less than 0.5). This cluster is similar to cluster 10 and 15 where both have clear gene 

expression patterns but do not associate with any mutation with a high probability. This 

illustrates that this method is sufficiently robust to discover gene expression based clusters 

without an associated mutational pattern in the dataset. These observations are potentially 

related to different oncogenic mechanisms other than the known mutations and cluster 15 and 

18 show statistically significant differences in survival. The rest of the clusters, with the 

exception of clusters 10, 15 and 18, mostly have a distinct mutation and expression patterns 

(see Figure 4.4A above, Table 4.3 and Table 4.4 below). Discussions on the clusters found 

are presented based on the prognostic properties of clusters as follows: 

Unfavourable clusters (clusters 1, 3, 4, 5, 7, 10, 11, 13, 14, 17, and 18 with overall survival 

probability < 0.5) 

From Figure 4.4A, we can see that not all unfavourable/poor prognosis clusters classified 

based on survival probabilities from Kaplan-Meier curves in Figure 4.3B are associated with 

high confidence (more than half of the patients annotated with certain risk) to the  ‘poor’ or 

‘intermediate’ molecular/cytogenetic risk annotation (i.e. Clusters 1, 7, 10, 11 and cluster 4, 

respectively). Here, we have found that clusters 3, 5, 13, 14 and 17 all have poor prognosis 

although they are mostly noted as with ‘intermediate’ risk. For details of the genes and 

mutational statuses related to these clusters, please see Table 4.2.  

Cluster 1 is a unique group for AML as both patients in this cluster are of poor prognosis. 

Notable genes in this cluster are KMT2A, ELL, and SLITRK5. MLL or its alias KMT2A- a 

homologue of Drosophila trithorax protein which has methyltransferase activity lies on 

chromosome 11, and is frequently involved in translocations with other genes including, but 

not limited to ELL thus, producing fusion proteins that lost methyltransferase activity and 

promotes transition of hematopoietic cell into becoming leukaemia stem cells [144, 145]. The 

most variably expressed gene in this cluster is SLITRK5. SLITRKs are expressed 

predominantly in neural tissues and have neurite-modulating activity [146]. Milde and co-

workers (2007) have found that SLTRIKs could be involved in normal as well as malignant 
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haematopoiesis and as novel marker of hematopoietic stem cells [147]. We also found that 

genes that are down-regulated involved in negative regulation of cell communication/signal 

transduction. 

Similarly, cluster 3 was made up of just two patients and both have recurrent PHF6 mutation. 

Amino acid mutation (i.e. arginine and lysine) of PHF6 protein domain causes it to lose its 

DNA-binding capacity. Todd and co-workers have come to the conclusion that PHF6 is a 

tumour suppressor based on coherent findings with another four cohorts of studies where 

mutation of PHF6 results in loss of function and correlates with enhanced tumour progression 

[148]. There is no clear link between up-regulation of the only significantly expressed gene, 

CYP4F2 (with GO annotations related iron ion binding and oxidoreductase) in cluster 3 (refer 

to Table 4.2) and poor prognosis of AML. The down-regulated genes are significantly enriched 

in GO terms for positive regulation of the innate immune response (see Table 4.3 below). This 

is clear evidence that loss of function of PHF6 together with down-regulation of innate immune 

response contributes to the overall poor prognosis of this cluster.   

Cluster 4, 5, and 13 were found with co-mutations between different classes of mutations (i.e. 

mutation class I-II-III, FLT3-NPM1-DNMT3A). Although cytogenetic/molecular risk for all three 

clusters was of ‘intermediate’ risk, Kaplan-Meier curves for cluster  4 and 5 show that both 

clusters were associated with low survival probability (~0.1 at 40 months) and cluster 13 has 

better survival probability. According to GeneCardV3 [149], FLT3 is a class III receptor tyrosine 

kinase that regulates haematopoiesis through pathways associated with apoptosis, 

proliferation, and hematopoietic cell differentiation. NPM1 encodes a phosphoprotein which 

travels between the nucleus and cytoplasm and its gene product is involved in the regulation 

of the ARF/p53 pathway [149]. DNMT3A gene encodes a DNA methyltransferase that 

functions in de novo methylation, rather than maintenance methylation [149]. Gene expression 

profiling for cluster 4 (refer to Table 4.2) strongly implicates that the HOX gene cluster together 

with MEIS1 (the HOX regulator) as the critical downstream target genes of cluster 4 genes co-

mutations. This gene family encodes DNA-binding transcription factors that may regulate gene 

expression, function in fertility, embryo viability, and the regulation of hematopoietic stem cell 

expansion and lineage commitment [149]. Genes that are up-regulated in all three clusters 

are mostly HOX gene cluster and functionally enriched in myeloid cell differentiation regulation 

and embryonic development.  

Cluster 7 with FLT3 and NSD1 co-mutations is also associated with a poor outcome. NSD1 is 

gene involved in epigenetic regulation, similar to DNMT3A, and could be classified similarly in 

class III. CCLA1 (Cyclin A1)- a cell cycle protein was overexpressed in cluster 7 and it plays 

a role in the growth and suppression of apoptosis in these leukemic cells [150]. TP53 mutation, 
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in cluster 11 is associated with the shortest survival and poor risk. This can be explained by 

its function as a tumour suppressor gene in keeping cells from dividing in an uncontrolled way. 

Genes responsible for cell communication are overexpressed in this cluster (see Table 4.3 

below). Cell-cell and cell-surrounding stroma/extracellular matrix communication plays an 

important role in promoting tumour/haematopoietic progenitor cell survival, expansion and 

differentiation [151].  

Cluster 14 and 17 are both associated with a single gene mutation, STAG2 and CEPBA, 

respectively. STAG2 protein is a subunit of the cohesion complex which is responsible for the 

separation of sister chromatids during cell division and any defects would resulted in 

aneuploidy in human cancer [149]. Cluster 17 is associated with intermediate 

molecular/cytogenetic risk and similar to the intermediate survival prognosis we have found 

from the survival curve. The CEBPA gene encodes a transcription factor that recognizes the 

CCAAT motif in the promoters of target genes to form homo- and heterodimers with CCAT 

and enhancer binding proteins [149]. CEBPA modulates the expression of cell cycle genes as 

well as homeostasis. It is known that mutation of CEBPA is associated with a favourable 

prognosis of AML. We have not found a strong association between STAG2 and CEBPA 

mutations and the genes that are aberrantly expressed in each of these clusters.  

The final cluster associated with unfavourable prognosis of AML is cluster 18. There are three 

genes co-mutated with low confidence (i.e. TP53, RUNX1, and DMNT3A) in this cluster. Co-

mutations of genes from three different classes of mutations associated with AML, Class II 

(TF- RUNX1), III (DNA methylation-DNMT3A), and tumour suppressor class (TP53) have 

resulted in the patient’s poor outcome with 20 percent chance of surviving by the age of 40. 

Genes that are over-expressed in this cluster are associated with negative regulation of 

neurogenesis and cell differentiation which could block the myeloid cell differentiation.  

 

 

 

 

 

 

 



  114 
 

Clus. Mutation Biological process enrichment (GO terms) 

C1 KMT2A / ELL 
Negative regulation of cell communication/signal 
transduction 

C3 PHF6 Positive regulation of innate immune response 

C4 NPM1 - FLT3 - DNMT3A 

Embryonic skeletal development; regulation of 
transcription; regulation of primary metabolic 
processes; hematopoietic/lymphoid organ 
development; immune system process/response; 

C5 
NPM1 - FLT3 - 

DNMT3A* 

Regulation of signal transduction; response to 
stimulus; Cell differentiation 
Embryonic development; negative regulation of 
immune system process/response; negative regulation 
of myeloid cell differentiation; blood vessel 
development 

C11 TP53 Response to stimulus; cell communication 

C13 NPM1 - DNMT3A 

Positive regulation of cytokine production; positive 
regulation of angiogenesis 
Embryonic development; hematopoietic/lymphoid 
organ development; immune system development; 
blood vessel morphogenesis; negative regulation of 
myeloid cell differentiation 

C18** 
TP53 - RUNX1 - 

DNMT3A 
Negative regulation of neurogenesis; negative 
regulation of cell differentiation 

Table 4.3 Poor prognosis clusters enriched with at least one statistically significant 

biological process GO term (P-value < 0.05). 
GO terms in blue and red are associated with the down- and upregulated genes. 
*   Lower confidence mutation. 
** Cluster 18 with less confident mutations (probabilities <0.5).  
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Favourable clusters (clusters 2, 6, 8, 9, 12, 15, and 16 with overall survival probability > 

0.5) 

From Figure 4.4A, we can see that clusters 8, 9, and 12 are annotated with ‘good’ 

molecular/cytogenetic risk from the clinical data provided and the rest are associated with 

‘intermediate’ risk. For details of the genes and mutational statuses related to these clusters, 

refer to Table 4.2. Cluster 2 and 16 are associated with NPM1 mutation, whereas cluster 6 is 

associated with FLT3 mutation. Although both genes have been implicated in the poor 

prognosis clusters previously, we do not have enough evidence to infer cluster 2 and 6 as 

mutations that play a role in the overall survival status (i.e. dead or alive) as there are only 2 

patients per cluster. However, for cluster 16, NMP1 mutation alone affects the patient’s 

survival probability less than when NPM1 is in combination with FLT3 (Cluster 5) or DMNT3A-

FLT3 (Cluster 4). Interestingly, although genes functional in the negative regulation of myeloid 

cell differentiation and the immune system and still over-expressed, the effects of these genes 

might be overcome by the down-regulation of genes responsible for positive regulation of cell 

proliferation and the negative regulation of apoptosis (see Table 4.4). This might support our 

hypothesis as to why co-mutations associated with NPM1 have worse outcomes than NPM1 

alone, suggesting that NPM1 co-mutations might cooperatively participate in the development 

of AML. 

The fusion mutations in cluster 8 (RUNX1/RUNX1T1), cluster 9 (CBFB/MYH11) and cluster 

12 (PML/RARA) are clustered well with their respective expression patterns [152]. We note a 

single sample in the middle of cluster 12 that has PML/RARA mutations and a distinct gene 

expression pattern but is not annotated with the accurate cytogenetic abnormality; this 

appears to be an annotation error. Clusters 8, 9 and 12 are also associated with survival 

differences (refer to Figure 4.4B). These fusion mutations are all associated with a favourable 

prognosis of AML based on Kaplan-Meier analysis in Figure 4.3B as well as established 

molecular and cytogenetic risks [143] in Figure 4.4A. Cluster 8, 9 and 12 mutations mostly fall 

into class II mutations (see section 4.1.2), where genetic alterations of these genes impair 

hematopoietic differentiation and might be responsible for the cell’s survival advantage by 

interfering with terminal differentiation and apoptosis [127, 153, 154].  

In the case of PML/RARA, transcript aberration can interfere with the signalling pathway of 

both PML and RARA. Moreover, with lower level of retinoic acids, PML/RARA can recruit co-

repressors and HDACs to its target genes and promotes cells growth by blocking the cell 

apoptosis and inhibit haematopoietic cell differentiation [155, 156]. As for CBFB- a core-

binding factor, fusion with MYH1- a gene coding for the myosin heavy chain, can interfere with 
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the core binding factor (CBF) and therefore block cell differentiation to promote cell 

proliferation [157-159].  

The last gene fusion observed is RUNX1/RUNX1in cluster 8. RUNX1/RUNX1T1 (also known 

as AML1/ETO) is the most common cytogenetic abnormality in AML. RUNX1 is a transcription 

factor from the class II of AML mutations and it forms a complex with the cofactor CBFB that 

binds to the core element of many enhancers and promoters of genes which are involved in 

the hematopoietic stem cell differentiation into myeloid and lymphoid cell lineage [149, 160]. 

RUNX1/RUNX1T1 adversely affects the HOX genes family by down-regulating these genes 

(see Table 4.4) in comparison to the unfavourable clusters. It is possible that the favourable 

outcome of this fusion may be facilitated by the down regulation of genes that function in 

blocking the myeloid cells differentiation. 

Clus. Mutation Biological process enrichment (GO terms) 

C8 RUNX1 / RUNX1T1 
Embryonic development; myeloid cell differentiation; 
angiogenesis; inflammatory response 
Response to oxidative stress; detoxification 

C9 MYH11/ CBFB 

Negative regulation of signal transduction; negative 
regulation of cell communication 
Innate immune response; negative regulation of 
programmed cell death 

C12 PML / RARA 

Embryonic development; negative regulation of 
myeloid cell differentiation, hematopoietic progenitor 
cell differentiation Cell proliferation; inflammatory 
response; myeloid mediated immune response 

C16 NPM1 

Positive regulation of cell proliferation; negative 
regulation of apoptosis; regulation of cell signalling 
Embryonic development, hematopoietic/lymphoid 
organ development; negative regulation of myeloid cell 
differentiation; negative regulation of immune system 
process 

Table 4.4  Iintermediate (C13 and C16) and good prognosis clusters enriched with at 
least one statistically significant biological process GO term (P-value < 0.05).  

GO terms in blue and red are associated with the down- and upregulated genes. 
*   Lower confidence mutation. 
** Cluster 18 with less confident mutations (probabilities <0.5).  
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 Comparison between our clusters and FAB classifications 

As mentioned before, the FAB classifications are purely based on cell histopathology or 

morphology, thus the grouping of patients might not be well correlated with survival, mutations 

and/or expression. We would like to compare our method with the FAB classification method 

in term of the prognosis of AML patients in each group. Using the same data and sorting 

patients based on FAB classifications has resulted in patients been grouped into 7 clusters 

corresponding to M0-7 FAB classes (see Figure 4.5-Right below). Our clusters are correlate 

with the cytogenetic/molecular risk or prognosis where good, intermediate and poor risks are 

clustered separately. In comparison with mixture of risks from using FAB classification (see 

top two rows in Figure 4.5), with the exception of cluster M3 from FAB classification (equivalent 

to our cluster 6), the rest of FAB clusters consist of mixture of mutations and expression 

patterns within cluster. We have explained earlier that mutational status is highly correlated 

with the survival of patients for AML, the Kaplan-Meier survival curves for FAB-based clusters 

are indistinct compared to our clusters survival curves. The Kaplan- Meier estimators for FAB-

based clusters are not significantly different with a high p-value from the Log-Rank Test, p = 

0.0813. There is not enough separation in the survival curves to be considered as good 

classifications of patients. On the contrary, our clusters are with the Kaplan- Meier estimators 

that are significantly different from each other and with lower p-value for the Log-Rank Test, p 

= 0.00. Hence, our method could separate the patients into groups with corresponding distinct 

survival probability and aberration markers better than the FAB classification.  



   
 

 

Figure 4.5 Comparison between 

our clustering method on AML patients 
and from using FAB classifications. 
 
Left: Heatmap and Kaplan-Meier 

survival plot of clusters from our 
clustering algorithm. 
 
Right: Heatmap Heat map and 
Kaplan-Meier survival plot of clusters 
from using FAB grouping 
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 Conclusion 

In this chapter, we have demonstrated that combination of different types of molecular 

aberrations including but not limited to gene mutations and expression are associated 

well with prognosis and have produced clusters which are biologically significant. This 

would need to be extended to a more complex study case where more data types and 

patients are becoming available before this could be implemented into the clinic. With 

just ~200 patients from AML, the variety of driver mutations and gene expressions we 

discovered would be less likely to be accepted as the model of AML patient classifiers 

as this requires a more thorough investigation once more patients, molecular and clinical 

data available. Until recently, FAB and WHO classifier are the main references for 

clinicians, but in the near future, combinatorial approach would be likely to be integrated 

into these existing classifications as we have demonstrated that combination of 

mutational status with gene expression contributes to a more prognostically distinct sub-

classification of patients. 
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 Discussion and future work 

The work described in this thesis covers a single topic with wide range of applications, 

from automated clusters finding by integrating binary and continuous inputs to its 

application in reconstruction of transcriptional regulatory networks in yeast and cancer 

subtypes discovery. In this chapter, I will discuss the overall performance and limitation 

of this method and the potential future application of this work. 

  Method development 

Our research began with the development of a method for clustering objects/data-points 

consisting of multiple data types simultaneously. The work carried out at this stage 

concentrate mostly on optimizing the proposed mixture model of maximum likelihood 

probabilities (i.e. Bernoulli’s and Gaussian’s distributions) in terms of the penalty criteria 

and runtime parameters. Initially, when we tested the algorithm with a range of 

penalty/information criteria (IC) on a lower-noise simulated dataset, it showed that most 

of them were able to find the correct solution. However, when we tested the algorithm on 

the yeast dataset, each IC produced different results, where stronger IC objective 

function produced fewer clusters than the less stringent penalty. Following this, we came 

to realized that our simulated data might not represent the real data well, hence, we 

introduced more noise into the simulated data to reflect the fact that variance exists in 

the real data. With more realistic simulated data, we were able to capture the different 

effects of ICs have on the results. An empirically derived AIC (𝜆 = 2.5) was found to be 

the optimum ICs to be used with the method. However, there is evidence that using the 

well-known AIC (𝜆 = 2) can sometimes produce much more biologically relevant clusters 

than AIC (𝜆 = 2.5) such as in the yeast case.  As the multitude of features greater than 

the sample size or vice versa, the limitation of this method comes into sight where 

optimization has failed due to a large computational power required to solve the 

simulated annealing optimization procedure. To address this problem, we suggest that 

dimensional reduction strategies should be applied prior to our program, as our program 

is not suitable for primary explorative approach in discovery of novel molecular features, 

but rather locally grouping objects using features of interest to imply any interesting 

relationship that could be observed between them.   
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 Transcriptional regulatory networks reconstruction 

In this work, we choose to apply our method to a simple model organism which is yeast 

and model its cell cycle transcriptional regulatory networks. Cell cycle is an important 

process in sustaining an organism’s life and knowing the complex mechanisms of this 

process would be useful in predicting similar behavior we would expect in much complex 

organism such as man. The availability of large scale TF ChIP-chip datasets and cell-

cycle genes expression across 18 time-points for yeast means that our method can 

explore the transcriptional regulatory circuit and predictions made of modulation of genes 

regulatory interaction could potentially be added to the existing yeast cell cycle 

knowledge-base. For example, from the clusters found, we have been able to 

recapitulate the important key regulators of cell cycle and 3 more TFs (i.e. Ash1, Gzf3, 

and Met31) as potentially having a cell cycle regulation role. As for the ‘unclear’ clusters, 

we have given less consideration throughout the discussion in Chapter 3 although they 

are mostly cell cycle genes, no confident regulatory information could be used to infer 

the regulation of these clusters. It might be a case of regulation by other TFs than the 

ones that are currently available in the database or by other mechanisms (i.e. post-

transcriptional and/or post-translational modifications). In addition, TF binding datasets 

at each time-point are not available at the time of writing and this incompleteness is 

limiting our ability to infer time-specific gene cluster regulation. Hence, we just inferred 

the regulatory hypothesis that a TF potentially regulates genes maximally expressed at 

specific stage of cell cycle.   

Another advantage of our method is that co-regulation of genes can be inferred easily 

by looking at the co-binding of TFs to the gene promoter. This is important as we have 

noted in the chapter 1 that TF most of the time regulates target gene cooperatively, be it 

forming a complex with other co-activator/repressor directly onto the gene promoter or 

through a mediator. Apart from single and double TF-TF interactions, we have found 

triplet and quadruplet TF-TFs interactions, many of whcih are supported by genetic 

and/or physical interaction database (i.e. Gzf3-Pdr1-Swi5 and Ace2-Fkh1-Fkh2-Swi5).  
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 Identification of cancer subtypes 

The work carried out in Chapter 4 was done using the clustering method we have 

developed and it represents the importance of the integrative approach for the 

identification of cancer subtypes in AML. As explained before, cancer subtypes are 

usually strongly related to the cancer patient’s prognosis as a result of different genetic 

aberrations. It is also important to note that proteomic and metabolomics aberrations 

might also contribute the prognostic properties observed. However, less data related to 

these omics are available and much attention has been given to molecular aberrations 

such as gene mutation (genomic data), methylation (epigenetic data), and expression 

(transcriptomic data) in this research area. Here, we have shown that our clustering 

method is capable of recapitulating the known fusion gene mutation into clusters which 

turned out to correlate well with gene expression and good prognosis or survival 

probability of patients. For example, PML/RARA, MYH11/CEPB, and RUNX1/RUNX1T1 

clusters are correlated with gene expression aberrations responsible for distinct 

biological functions (i.e. embryonic development and myeloid cell differentiation, innate 

immune response and regulation of apoptosis). Similar to the yeast test case, some 

double, triple and quadruplet co-mutations (i.e. NPM1 - FLT3 - DNMT3A, NPM1 - 

DNMT3A, and TP53 - RUNX1 - DNMT3A) have been found to be responsible for the 

clustering of poor prognosis patients. Interestingly, genes that are responsible for poor 

patient survival (i.e. embryonic development, hematopoietic/lymphoid organ 

development, immune system development, blood vessel morphogenesis, negative 

regulation of myeloid cell differentiation) are all over-expressed as opposed to the fusion-

related mutations. These validate our cluster-based AML subtypes as being functional 

subtypes thus suggesting that with the usage of appropriate dimensional reduction (here 

we used unsupervised dimensional reduction), our method can be applied to wide range 

of problems with different type of features from cancer related data. 
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 Future work 

In this work, we demonstrated a few valuable applications of this method and the whole 

research community working on gene regulations and cancer subtypes/classifications 

could be benefited from using our method. In relation to the first problem, this novel 

method could be expanded from the study of yeast to data generated from much more 

complex eukaryotes (i.e. mouse) to build transcriptional regulatory network (i.e. 

Transcriptional regulation of the hematopoietic stem cell differentiation by TFs at the 

promoter region or enhancer). Equally, another aspect of future work would be to try it 

on further cancer data. Application of this method in prognostically relevant grouping of 

cancer patients based on cancer driver-gene aberrations would interest the cancer 

related research groups (for example, the research consortium in the University of Leeds 

which is currently works on Diffused large B-Cell Lymphoma (DLBCL) genes expression 

and mutations).      

The prospective usage of this tool is broad and not restricted to just data related to 

molecular genetics. It can be applied to data generated from other fields such as, 

geology, economics, social sciences, and much more due to the nature of our method 

which is flexible in accepting any input that can be easily represented as binary and 

continuous. In addition, this method could be expanded to include other data types as 

well such as (ordinal or nominal data types) although these data types can easily be 

translated into binary form by renaming the features into orders or categories. In addition, 

this tool could contribute further to delineate relevant features from irrelevant features 

using over-represented features in each clusters found, be it biology related features of 

features from outside our biology-related field. Last but not least, if there is a way in the 

future to improve the speed of our method in optimizing the solution in order to 

accommodate larger dataset, an improvised version of this method could be used as the 

primary tool in discovering novel molecular features exploratively rather than locally such 

as what we are doing now.      
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Appendix A 

FlexiCoClustering User Manual 

 

Flexible model-based co-clustering – FlexiCoClustering manual 

Joint clustering of binary and continuous data 

 

Authors: Fatin Zainul Abidin*, David Westhead** 

Contacts:  

*bs12fnza@leeds.ac.uk 

**D.R.Westhead@leeds.ac.uk 

Section 1: Introduction to algorithm 

The method is designed to cluster multiple data of different types where each entity for 

clustering is described by a sets of binary and continuous variables. It is generically 

applicable to a range of different problems in biology. It uses a simple model based 

framework based on a joint probability distribution over binary and continuous variables 

that is a mixture over a variable number of clusters. It uses penalized maximum likelihood 

(ML) estimation of mixture model parameters using information criteria and meta-

heuristic searching for optimum clusters by Monte-Carlo simulated annealing (SA). The 

program takes as input a mixture of binary data (e.g. presence/absence of mutations, 

motifs, regulatory input, epigenetic marks etc.) and continuous data (e.g. gene 

expression, protein abundance, metabolite levels) for a list of samples (e.g. genes, 

patients). This program works best with smaller and concise datasets, thus pre-filtered 

data to only important features is preferable. To date, this program works well with ~1000 

rows in the input file (number of entities to cluster) and longer run time might be needed 

for larger datasets to converge to a good solution. An example of pre-filtering of a dataset 

would be reducing the number of genes to only highly variable genes. Upon taking the 

input files required, the program will run until either the termination or convergence 

criterion are met. The clustering solution is then refined using expectation maximization, 

taking the simulated annealing solution as the starting point.  
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Platform Dependencies 

Task Type: Clustering of data points 

CPU Type: any 

Operating System: any 

Language: Java - JDK 1.8 

Section 2: How to run the Program 

? How to run the FlexiCoClustering using command-line interface (FlexiCoClustering-
CLI) 

1. Download all the files from https://github.com/BioToolsLeeds/FlexiCoClusteringPackage/ 

2. To run the demo , use the following command: 

    java  -jar <path to the FlexiCoClustering.jar/FlexiCoClustering.jar>  <Input.txt> 
<Output.txt> 

    Press enter 

3. To re-submit the same job with restart after program termination: 

    Change Nrun: '0' to Nrun: '1' 

    Increase the MaxTemps to a higher value than the previous run if the MaxTemps 
iteration was 

    Completed or else just use default MaxTemps parameter. Then, use the following 

command:  

    java  -jar <path to the FlexiCoClustering.jar/FlexiCoClustering.jar>  <Input.txt> 

<Output.txt> 

    Press enter 

4. The program can be terminated at any time by pressing Ctrl+C.    

A detailed description of the runtime parameters and input file format is given in section 

3 below. 

? How to run the FlexiCoClustering using GUI based (FlexiCoClustering-GUI) 

1. Download all the files from https://github.com/BioToolsLeeds/FlexiCoClusteringPackage/ 

2. To run the demo, use the following command: 
    java -jar <path to the FlexiCoClustering.jar/FlexiCoClustering.jar>   or      double click 
the .jar file 

3. A graphical user interphase (GUI) window will be opened and looks like this 

snapshot below:  

https://github.com/BioToolsLeeds/FlexiCoClusteringPackage/
https://github.com/BioToolsLeeds/FlexiCoClusteringPackage/
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Figure 1: A snapshot of the FlexiCoClustering GUI upon submitting the java -jar 

command on the terminal/command prompt. Red arrow shows where user should 

change the NRun to ‘1’ after the initial run (NRun=0) have finished if it is required at all. 

4. On the GUI options (using demo example): 

 "ClustFile"              :  Name the ClustFile as i.e. Clustfile.txt 
 "Outfile"                  : Name an Outfile as i.e. Output.txt 
 "Select inputFile"    : Select <path to the 
FlexiCoClustering.jar>\example\input.txt 
 
For the real run using user own data, please change parameters accordingly. 
Parameters are described in Table 2 on the next page. 
Press the "Execute" button. On default, this program will run for 100000 temperature 
steps (MaxTemps) and produce two real-time updated heat map image files (.png) in 
every 10 iterations interval for binary and continuous variables. The Output.txt and 
Clustfile.txt will be updated as the program progress and once the program terminated 
respectively. 
An EM refining file (EMRefinement.txt) containing all the marginal densities for the 
clusters will be produced automatically in the same working directory. 
If more than initially specified number of maximum temperature steps (MaxTemps) is 
required after step 2 had finished, re-run the program by first by replacing ‘0’ with ‘1’ in 
the Nrun. Increase the MaxTemps to a higher value than the previous run if the 

MaxTemps iteration was completed or else just use default MaxTemps parameter.  

Then, press the "Execute" button again. User can also terminate the run at any time by 
pressing ‘Stop’ button. 
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Section 3: Package input and runtime parameters 

 

Input file (e.g. input.txt) 

 A space separated formatted text file containing the binary and continuous input dataset 

and runtime parameters (command line interface only). 

A

. 

 

   

 

B

. 

 

   

Table 1: Example of an input file for A. command line interphase (CLI) and B. graphical 

user interphase (GUI) based package. From 3rd or 21st row onwards of GUI or CLN 
based package respectively, first column shows the data points (i.e. gene names, sample 
names) and the second column onwards are the binary inputs ("1" and "0") followed by 
continuous values. 

 

Output file (e.g. Output.txt) 

A text file containing all the runtime updates such as score, current best 

modules/clusters, etc. 

EM refinement file (e.g. EMRefinement.txt) 

A text file containing all the marginal densities of each cluster found from the simulated 

annealing procedure. 
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Name Functional Description 

Nitems 
Number of data points to cluster. Must be equal to the 
number of data lines (rows) in the input file. 

Nbinary 
Number of binary variables per entity to be clustered. Must 
be equal to the number of 1/0s at the start of each data line 
in the input file. 

NContinuous 
Number of continuous variables in the input files. Must be 
equal to the number of floating point numbers at the end of 
each data line in the input file. 

Agglomerative/Divisive  
Starting point option for clustering, if agglomerative start with 
all data points in separate clusters, if divisive start with all in 
a single cluster. 

IC (AIC) 
Objective function/Information criterion (see table below for 
options available) 

MergeSplitProbability 
(0.25) 

Monte Carlo move: either an ordinary step (moving a data 
point between clusters) or a cluster merge/split according to 
this probability. 

MaximumIterations 
(100) 

Number of Monte-Carlo moves at each temperature  

StartTemp (500) 
Starting temperature of the simulated annealing. Higher 
temperature-more random solution will be accepted at the 
beginning of simulated annealing.  

TempFactor (0.99) 
Temperature reduction factor at each iteration of the 
temperature loop. 

MaxTemps (100000) 
Maximum number of temperature to be simulated 
(termination criterion). Higher value will make the SA runs 
longer.  

MaxRepIters (2000) 

Maximum number of simulated annealing best score 
repetitions. If the score does not change at up to this number 
of repetition, the SA will be terminated although the 
maximum temperature is not reached. 

Seed (1) The seed of the random number generator. 

EMIterations (100) Maximum number EM iterations 

OutInterval (10) 
Intervals at which the solution is printed to the output file and 
at which the heat maps are updated on GUI 

ClustFile  The name of the final clusters output file 

NormExp (0) 
Normalizes continuous inputs to zero mean and a standard 
deviation for each data points- z-scores.  

Nrun (0) Number of re-run of the program after initial run 

Table 2: Runtime parameters of both GUI and CLN based package. The underlined and 

bold values are the default values of the runtime parameters. 
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Section 4: Mathematical representation of score calculation 

Solution (clusters) score calculation: 

   …………… (1) 

N : data points i, representing genes, tumour samples etc. 

𝑟𝑖𝑗 ∈ {0,1}, 𝑗 = 1, … , 𝑛𝑟 binary variables  

𝑒𝑖𝑙 , 𝑙 = 1, … , 𝑛𝑒 continuous variables 

𝛼𝑚 are mixing coefficients ∑ 𝛼𝑚 = 1. 

B denotes the Bernoulli distribution with parameter 𝑝𝑚𝑗, and N is a normal distribution 

with parameters  𝜇𝑚𝑙 and𝜎𝑚𝑙.  
We assume a probability distribution (1) which is a mixture of Nm components (clusters). 

 
In the case of genetic regulation the mixture components represent the well-known 

concept of a cluster of co-regulated genes, with, for example, Bernoulli parameters 𝑝𝑚𝑗 

representing the probability of binding for particular transcription factors in 

promoter/enhancer elements, and the 𝜇𝑚𝑙representing a shared average pattern of gene 
expression, which could be a time or developmental series but is not required to be. In 
the case of tumour samples, clusters could be related samples where Bernoulli 
parameters associate mutation probabilities at particular loci with shared patterns of 
oncogenic gene expression.  
 
Since the number of clusters in unknown and difficult to estimate, an initial heuristic 
search was adopted for an approximately optimal model, followed by refinement of the 
solution by expectation maximization. The heuristic search employed a Monte-Carlo 
simulated annealing algorithm (see Algorithm 1) to optimize objective functions of the 
form 

𝑂(𝐿, 𝑘) = −2𝐿 + 𝜆𝑘(𝑁) …………………… (2) 

where L is the (maximized) log-likelihood from the distribution above, 𝜆 is a function of 
the number of data points 𝑁 and k is the number of parameters in the model.  

 

Several different functions 𝜆(𝑁) can be use with our algorithm as shown in table 3 
below: 
 

 Criterion 𝜆 N Equation Reference 

a. AIC2 2 1 -2L + 2k Akaike, 1973 

b. AIC2.5 2.5 1 -2L + 2.5k - 

c. AIC3 3 1 -2L + 3k Bozdogan, 1993 

d. HQC 2 ln 
ln(Ng) 

-2L + 
2k(ln(ln(Ng))) 

Hannan and Quinn, 1979 

e. AIC4 4 1 -2L + 4k - 

f. AIC5 5 1 -2L + 5k - 

g. BIC 1 ln Ng -2L + k(ln(Ng)) Scwarz,1978 

h. CAIC 1 ln Ng 
+1 

-2L + k(ln( Ng )+1) Bozdogan, 1987 

Table 3: Different objective functions tested and can be chosen by user sorted 
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ascendingly (from a. to h.) based on its stringency in penalizing free parameters and 
number of data points in the model. 

Monte-Carlo simulated annealing (SA) for clusters optimization. 

1: Normalize expression (genes)* 
2: Clusters = Initialize clusters (agglomerative/divisive) 
3: Best clusters = [list] 
4: Score = 0.0 
5: Old score = 0.0 
6: Best score = 0.0 
7: Difference = 0.0 
8:          Count temperature = 0 
9:          Temperature = Start temperature 
10: While Count temperature < Maximum temperature: 
11:                    Temperature * Temperature decreasing factor 
12:  Score = Calculate modules score (clusters) 
13:  beta = 1.0/temp 
14:  While Iteration < Maximum iterations: ** 
15:   If random  > Merge and split probability: 
16:    Change (clusters)  
17:   Else: 
18:    If random > 0.5: 
19:     Merge (clusters) 
20:    Else: Split (clusters) 
21:  Old Score = Calculate clusters score (clusters) 
22:  Difference = Difference + (Score-Old score) 
23:  If Difference < 0.0 or random < exponent(-beta*Difference): 
24:   ‘accept’ 
25:   if Score < Best score: 
26:    Best score = Score 
27:    Best clusters = clusters 
28:  Else:  
29:   ‘reject’ 
30:   Score = Old score 
31:                    Count temperature + 1 
32:                    If Best score = Old Score: 
33:                                 Count score = Count score + 1 
34:                   If Count score == 2000: 
35:                                  break 
36:        return Best score, Best clusters 

Algorithm 1: Pseudo-code for the Monte-Carlo Simulated annealing algorithm. 

*Optional  
**This step runs in parallel (minimum of 5 parallel threads). 
 

Expectation-maximization 

The parameters of model produced as the best solution from the heuristic search can be 
refined by EM, with the useful side effect of estimating the degree of mixing between 
modules through the probability density that data point i is generated from mixture 
component m (3). 

…………………… (3) 

This is derived from Bayes’ rule: pm is the probability density for mixture component m 
defined in 2.2, θ denotes the (current) vector of parameters for all modules and the mixing 
coefficients αm can be interpreted as prior probabilities for membership of each module.  
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The steps of the EM algorithm are showed in the figure as followed: 

 

 

Figure 1: Refinement of model parameters using EM which starts with the prior 
probability densities from the SA output and refinement of its parameters until 
convergence. Convergence here means, until the parameters values do not changed for 
2 consecutive EM iterations or until the maximum number of iterations has been reached. 
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Appendix B 

GO terms enrichment and regulators for AIC ‘clear’ clusters  

Clus Expression Regulation Regulator Gene 
GO term enrichments 

(Biological process) p-value < 

0.05 ; p-value > 0.05 

1 

  

PDR1 

GZF3 

SWI5 

 

 

 

YDR085C   YKR091W   YGL032C   

YCL027W 

 
 

 

 

 

Response to pheromone, 

sexual reproduction 
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7 

 
 

MBP1 

 

 

 

 

 

YOL017W   YNL233W   YJL115W 

YCL061C    YFR027W   

YER095W 

YJL073W    YDL018C   YBL035C 

YDL101C    YDL156W   YPL153C 

YOR317W 

 

DNA replication , cellular 

response to stress 

 

 

 

 

8 

  

MBP1 

 

 

 

 

 

YOR066W    YHR005C 

 

 

 

 

 

Regulation of biological 

process 
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10  

 

MBP1 

 

 

 

 

YLR383W   YDR528W 

 

 

 

 

Cellular process 

 

 

 

 

16  

 

SWI4 

SWI6 

 

 

 

 

YJR054W   YDR501W 

 

 

 

 

Cellular process 
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18 

 

 
SWI4 

SWI6 

MBP1 

 

 

 

 

YMR179W   YBR071W 

 

 

 

 

Regulation of transcription 

 

 

 

 

19 

 

 

 

MBP1 

 

 

 

 

 

 

YNL102W   YIL026C   YJR030C 

YKR077W   YHR153C  YLL066C 

YBR073W 

 

 

 

 

Chromosome segregation 
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21 

 

 

SWI6 

MBP1 

 

 

 

 

YDL003W   YKL113C 

 

 

 

 

DNA repair, DNA replication, 

reproductive process 

 

 

 

 

25   

MBP1 

 

 

 

 

 

YDR297W   YKL101W   YKL067W 

YFL008W   YNL312W   YPL241C 

YDR279W   YKL165C   YHR110W 

YMR076C 

 

 

DNA repair, mitotic sister 

chromatid cohesion 
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27 

 

 
ACE2 

FKH1 

FKH2 

SWI5 

 

 

 

YJL078C   YGL028C 

 

 

 

 

 

- 

 

 

 

 

 

29  
 

SWI4 

MBP1 

 

 

 

 

YPL267W   YLR103C   YPL124W 

 

 

 

 

 

Cell cycle process, organelle 

organization 
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30  
 

SWI4 

SWI6 

MBP1 

 

 

 

YGR189C   YKL103C   YNL262W 

YMR305C   YGR221C   YPL256C 

YKR013W  YGR238C 

 

 

 

Conjugation with cellular 

fusion, sexual reproduction 

 

 

 

 

34 
 

 

 

MBP1 

 

 

 

 

 

YJR043C   YNL263C 

 

 

 

 

 

- 
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41  

 

MBP1 

 

 

 

 

 

YBR007C  YLR342W 

 

 

 

 

 

Cell wall organization or 

biogenesis,  carbohydrate 

biosynthetic process 

 

 

 

 

42 
 

 

ACE2 

FKH1 

FKH2 

 

 

 

YER124C YLR286C YHR143W 

 

 

 

 

 

Cell separation after 

cytokinesis, cell wall 

organization 

 

 

 

 



151 
 

48  

 

ACE2 

FKH1 

SWI5 

 

 

 

YGR041W   YBR158W 

 

 

 

 

 

Cell division 

 

 

 

 

 

49 
 

 

SWI4 

SWI6 

MBP1 

 

 

 

YIL140W   YER001W   YML027W   

YER111C   YPR120C   YHR149C  

YKL045W   YGR152C   

YMR199W 

 

 

 

 

G1/S transition of mitotic cell 

cycle, cellular budding, cell 

division 
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61  

 

 

MBP1 

 

 

 

 

 

YPR135W   YAR007C   YOR033C 

YOL007C   YDR097C   YJL074C 

YPR174C   YPR175W 

 

 

 

DNA repair, cellular response 

to stimulus, chromosome 

organization, DNA replication 

 
 
 

 

 

62  
 

SWI4 

SWI6 

 

 

 

 

YGR014W   YDL055C 

 

 

 

 

 

Cell wall organization or 

biogenesis 
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63 
 

 
SWI4 

SWI6 

 

 

 

 

YNL300W   YPL163C 

 

 

 

 

 

- 

 

 

 

 

 

67 

 

 

SWI4 

SWI6 

MBP1 

 

 

 

 

YOR074C   YER070W   YJL187C 

YDR507C   YCR065W   YGL038C 

YBR070C   YNL231C 

 

 

 

 

Deoxy-ribonucleotide 

biosynthetic process, cell 

cycle check point, 

glycosylation 
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2 

  

SWI6 

MBP1 

 

 

 

 

YNR009W   YDR451C   

YOR247W 

YMR307W   YPL127C   YNL126W 

YDR113C 

 

 

 

Negative regulation of 

transcription, epigenetic 

 

 

 

 

22  

 

 

FKH2 

 

 

 

 

 

YMR198W   YHL028W 

 

 

 

 

 

Establishment of localization 

in cell 
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33 

  

FKH2 

 

 

 

 

 

YKL096W-A   YPL116W 

YEL017W 

YPL075W   YKL096W   YML064C 

YOL030W   YIL131C   YNL176C 

 

 

 

Cell wall organization, 

regulation of transcription 

40  

 

SWI4 

SWI6 

 

 

 

 

YDR224C   YDR225W 

 

 

 

 

 

Negative regulation of 

transcription, Chromatin 

assembly or disassembly 
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45  

 

SWI6 

MBP1 

 

 

 

 

YER003C   YLR437C   YJL092W 

 

 

 

 

 

Nucleobase, nucleoside, 

nucleotide and nucleic acid 

metabolic process 

 

 

 

 

55  
 

MBP1 

 

 

 

 

YBR010W   YNL031C   YBL002W 

YBL003C   YNL030W   YBR009C 

 

 

 

 

Chromatin assembly or 

disassembly 
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65 
 

 

MET1 

 

 

 

 

YOR152C   YLR180W   YLL061W 

YER091C   YKL001C   YGL184C 

 

 

 

 

Sulphur amino acid 

biosynthetic process, 

methionine metabolic process 

 

 

 

 

72 
 

 

FKH1 

 

 

 

 

 

YMR144W   YLR210W 

 

 

 

 

 

Spindle body separation, 

chromosome partitioning 
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56 

 
 

FKH1 

FKH2 

SWI6 

 

 

 

YFL037W   YMR215W   

YER032W 

YIL123W   YLR056W   YJL158C 

YCL063W 

 

 

 

Cell wall organization 

 

 

 

 

 

71  
 

ASH1 

FKH1 

FKH2 

SWI4 

 

 

YPR013C   YOL114C 

 

 

 

 

- 
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5  
 

MCM1 

 

 

 

 

YHR152W   YMR253C 

 

 

 

 

- 

 

 

 

 

6 
 

 

MCM1 

 

 

 

 

 

YEL032W   YAL040C   YMR031C 

YLR274W   YJL194W 

 

 

 

 

Interphase, pre-replicative 

complex assembly, DNA 

replication 
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13  

 
MCM1 

 

 

 

 

 

YOR066W   YHR005C 

 

 

 

 

 

Regulation of biological 

process 

14 

 
 

FKH2 

MCM1 

 

 

 

 

YBR094W   YDR191W   YLR254C 

YFL026W   YGR092W    

YDR190C 

YNL145W   YGR143W   YGL201C 

YAR018C   YGR138C   YBR139W 

YHR151C 

 

 

Pheromone-dependent signal 

transduction involved in 

conjugation with cellular 

fusion 
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24  

 

FKH2 

NDD1 

 

 

 

 

YDR033W   YGL008C 

 

 

 

 

 

Ion transport, establishment of 

localization 

 
 
 

 

 

 

26  
 

FKH2 

 

 

 

 

YOR058C   YBR138C 

 

 

 

 

- 
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28 
 

 

MBP1 

 

 

 

 

YLR273C   YOL011W    YLR049C 

YDL089W   YFL011W   YEL040W 

YPR018W   YNL225C   YGR153W 

YIL066C   YOR230W   YGR109C 

 

 

DNA metabolic process, DNA 

replication 

 

 

 

 

31 

 
 

 

 

FKH2 

NDD1 

 

 

 

 

 

YPR149W   YMR032W   

YLR084C 

YNL058C    YGL116W   YPL242C 

YPR156C 

 
 
 

 

 

Cell division, cytokinesis 
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35 

 

 

FKH1 

FKH2 

MCM1 

NDD1 

 

 

YJR092W   YLR131C   YGL021W 

YMR001C   YPL141C 

 

 

 

 

Mitotic cell cycle, post 

translational protein 

modification 

 

 

 

 

 

38 

 
 

SWI5 

 

 

 

 

 

YKL164C   YDL117W   YKL185W 

YLR194C   YNL078W   YIL009W 

YLR079W   YBR083W   YJL157C 

 

 

 

 

Reproduction, Filamentous 

growth 
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44  
 

FKH2 

SWI4 

SWI6 

 

 

 

YOR372C   YOR313C 

 

 

 

 

 

Cell cycle phase 

 

 

 

 

 

46  

 

SWI5 

 

 

 

 

YML100W   YKL043W 

 

 

 

 

Cellular Process 
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52  
 

MCM1 

 

 

 

 

 

YDR342C   YML110C 

 

 

 

 

 

Cellular Process 

 

 

 

 

 

54  
 

 

RCS1 

 

 

 

 

YGL055W   YDR309C 

 

 

 

 

Cellular compartment 

organization, Cellular process 
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57 

 

 

RCS1 

 

 

 

 

YOR153W   YML116W 

 

 

 

 

Drug transport, response to 

drug 

 

 

 

 

58  
 

MCM1 

 

 

 

 

YDR461W   YJL079C 

 

 

 

 

Cellular process 
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59 

  
ASH1 

MCM1 

SWI5 

 

 

 

YKL163W   YJL159W 

 

 

 

 

 

Cell wall organization 

 

 

 

 

 

64  
 

MBP1 

 

 

 

 

YOR342C   YPL014W 

 

 

 

 

- 

 

 

 

 



168 
 

70 
  

FKH1 

FKH2 

NDD1 

 

 

YOR315W   YGR108W  

YLR353W 

YLR190W   YNL172W   YJL051W 

YDR146C   YPR119W    

YMR183C 

YPL155C    YIL158W 

 

Regulation of microtubule 

cytoskeleton organization, M 

phase or mitotic cell cycle, 

nuclear division 

 

 

 

74 
 

 

SWI5 

 

 

 

 

 

YDL127W    YNL192W 

 

 

 

 

 

Sexual reproduction, cell 

division 
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75  
 

SWI4 

SWI6 

 

 

 

 

YBL030C   YNL289W 

 

 

 

 

 

Cellular process 

 

 

 

 

 

 

 

 

 


