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Abstract

Vortex states are interesting fundamental quantum states whilst

also finding many uses in photon optics. In 2010, propagating

electron vortices were experimentally produced for the first time

leading to the emergence of the field of electron phase shaping.

This thesis details the production of electron states containing

orbital angular momentum which produce a C-shaped intensity

in the focal plane. This C-shaped intensity has a diameter of

approximately 10 nm and can be used to lithographically pat-

tern nanometre scale split rings. The broken rotational sym-

metry also allows rotations to be viewed. The design theory

and orbital angular momentum analysis of the C-shaped states

is presented. Experimental results of the first production of C-

shaped electrons are then shown. The C-shaped electron beams

have been applied to lithographic patterning and future poten-

tial applications of C-shapes for both electrons and photons

are discussed. Photons have been shown to be able to couple

total angular momentum,both spin and orbital contributions,

to the orbital motion of two dimensional plasmon modes in

chiral structures. The similar transfer of orbital angular mo-

mentum between propagating electron and plasmon modes has

not yet been shown. This thesis provides the design of two

dimensional spiral structures to support plasmon oscillations

containing orbital angular momentum. Simulated electromag-

netic fields show the addition of a spiralling boundary can al-

low eigenmodes with orbital angular momentum. In addition,

the first analysis and electron energy loss experimental investi-

gation of free space electron states containing OAM with flat

chiral thin film structures supporting two dimensional surface

plasmon modes is presented, showing some initial evidence of

an energy signal dependent on the sign of topological charge.
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Chapter 1

Introduction

1.1 Electron microscopy history and recent

developments

Electron microscopy (EM) built upon cathode ray technologies which had

previously utilised magnetic fields to control electron trajectories [1, 2].

Ernst Ruska and Max Knoll [1] realised that magnetic fields could also

be used to focus electrons and these could then be used for imaging in

a transmission electron microscope (TEM). This was in direct analogy to

the use of glass lenses to control photons in light microscopy. Since their

creation in 1931, electron microscopes have become a key scientific tool for

gaining insight into many fundamental processes occuring on length scales

below the resolution limit of photon microscopy ( on the order of 100 nm).

The utility of these new microscopes was acknowledged by the Nobel prize

committee and the 1986 nobel prize in physics was awards partly to Ernst

Ruska ”for his fundamental work in electron optics, and for the design

of the first electron microscope” [2] . Initially the resolution was poor

by todays standards, an initial proof of principle prototype only managed

14.4 x magnification , increasing to 12,000 in 1933 [3]. This magnification

increased with the introduction of scanning TEM (STEM) mode which

uses a small focused probe. When raster scanned over a sample in STEM

mode this focused probe allowed an increase to angstrom resolution, mak-

ing atoms visible in the electron microscope [4]. In 1997 it was shown that

the invention and development of aberration correctors allows the spheri-
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cal aberrations in a beam to be overcome and forms very small probes in

TEM and STEM mode [5]. Sub angstrom resolution was then reported.

The field of electron microscopy continues to advance today, with the lat-

est superSTEM 3 microscope capable of resolutions below 0.7 angstrom

at 100kV [6]. In analogy to glass causing diffraction through a prism,

energy filters using magnetic fields were developed with the capability to

spread an electron beam, separating different energies (see figure 1.15) ,

and in addition to spatial image resolution the energy resolution of spectra

has also improved greatly with current TEM systems capable of achieving

15meV energy resolution (e.g. SuperSTEM3 [7]). However progress in res-

olution (spatial and energy) has plateaued with each new advance taking

much more effort. Due to this limitation researchers in the field of electron

microscopy are constantly looking for new ways to utilise electrons to in-

terrogate samples to provide scientists with more information. Some recent

developments include ultrafast TEM[8] using pulsed lasers to interact with

the sample and then using a second delayed laser pulse to produce very

short electron wavepackets which will interact with the sample at a set

time delay from the excitation. This allows pump probe EM experiments

to analyse dynamical processes with very high temporal resolution as well

as spatial resolution in pump probe type experiments. The production of

large plasmonic fields in metal structures when excited by a laser can also

be used to compress the electron pulse further[9]. In addition to improving

the data produced by the microscope, with the increase in computational

abilities there are many new data analysis methods being developed. Like

many fields in science, there is currently a trend towards analysis of large

data sets in microscopy one example being the 3d tomographical recon-

struction from images recorded with the sample tilted to different angles

[10]. Originally EM was only conducted with the sample in the vacuum of

the main electron column and subject to the temperature and pressure of

the column however there are new experiments being conducted utilising

pressure and temperature control in addition to some experiments allowing

the introduction of gas to the sample chamber whilst imaging [11].

A very recent field of research, and the focus of this thesis is the control

of the probe electron phase, specifically to produce electron vortex beams.

These beams are electrons propagating in free space which also have or-

bital angular momentum (OAM), usually associated with the bound states

of an atom. The OAM is related to circulation of the electron and means

each vortex state has an accompanying magnetic field much like a current

loop or solenoid. These vortex electrons can in theory provide magnetic
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contrast in electron microscope images which is not available to beams

without OAM. The vortex electrons also have the possibility of controlling

nanoscale particles in a similar manner to optical traps . This introductory

chapter will cover the foundational physics required for the description of

electron vortex experiments. This thesis concerns electron optics, as such

it will be useful to summarise some key concepts in optics in general, which

apply to both light (photon) optics and electron optics.

1.2 Introduction to waves

The standard pedagogical example for wave propagation is the one dimen-

sional classical mechanical wave on a string. In this case kinetic energy is

transferred from one part of the string to another via a coupling due to the

tension acting between positions on the string. The motion of one part of

the string is linked to the neighbouring sections in such a way that energy

is transferred along the string without transferring mass in the direction of

wave propagation. The displacement of the string in this basic example is

described by the familiar sinusoidal wave. Each collection of constant phase

positions is a series of points separated by the wavelength of the oscillation.

In two dimensions, such as mechanical waves at the surface of water, these

isophase points become isophase lines equally spaced by the wavelength

and in three dimensions, such as sound waves, the isophase collections are

surfaces. When modelling the waves as plane waves these surfaces are flat

planes separated by the wavelength along the normal to the planes. By ap-

plying a Fourier transformation any arbitrary three dimenional wavefront,

f(r) of position r,can be decomposed into the basis set of monochromatic

plane waves, with wavevector k, following the equation

F (k) =

∫
f(r) expik.r dr (1.1)

Whilst plane waves offer a simple basis set, each function has an

infinite extent and as such plane waves can never physically be produced.

A commonly used alternative is to describe a beam with an amplitude

envelope, such as Gaussian beams. In this case the intensity is no longer

constant and the wave can be normalised.
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Within this classical wave model oscillations at one point in space

affect the oscillations of neighbouring points in space. The local phase de-

fines how much of a single sinusoidal oscillation the oscillation has reached

locally, with respect to the surrounding oscillations. The two properties of

note for any wave oscillation are its amplitude and phase. If two positions

are in phase they have always completed the same amount of an oscillation.

1.3 Geometric ray optics for lenses

The concept of a ray is a basic model for describing how wave-based phe-

nomena will behave in an optical system. Ray diagrams, such as those in

figure 1.1, show trajectories of waves with straight arrows and optical sys-

tems can be shown with mulitple arrows, following different paths between

points. This method simpifies the action of a lens into a geometric oper-

ation mapping intensity on the lens to intensity in an image and ignores

the phase of the incident wave. It can be applied to simple imaging and

is applicable to incoherent illumination, where the image only relies on the

the amplitude of the wave travelling through the optical system.

Figure 1.1: Ray diagrams for lens focusing and imaging,where f is the focal

length showing a) the action of a lens on a plane wave allowing Fourier

optics and b) image formation
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1.4 Fourier optics

In ray optics [12] when a plane wave encounters a lens, the part of the

wave at the thicker center of the lens suffers a larger phase delay than the

positions at the edges, as such the phasefront is curved so that the energy

in the wave is transferred to a single point in the focal plane as shown in

figure 1.1.

This means that the wave in the front focal plane (the same side

as the object, left side in figure 1.1) is the Fourier transform of the wave

in the back focal plane (same side as the image, right in figure 1.1) . The

same analysis applies when considering point sources in the back focal

plane which will produce plane waves in the front focal plane. This type of

ray tracing analysis can be applied to explaining simple image formation as

shown in figure 1.1 b, where the object arrow on the left of the lens produces

a smaller image arrow on the right of the lens. This image is formed at the

plane where two rays meet, the first of which is the parallel ray which is

directed through the central point of the focal plane, the second is the ray

travelling through the center of the lens which continues without divertion.

Where these two meet all the intensity from the tip of the object arrow is

brought back to focus at the tip of the image arrow.

The Fourier transform relationship between the front and back

focal planes is the basis of local spatial frequency analysis when applied to

a phase distribution. In this analysis the local normal of a phase front is

considered to represent a contribution from a plane wave pointing along the

normal. When a plane wave is focused the transverse gradient of the phase

will determine the transverse component of the normal to the phasefront,

as shown in figure 1.2. The Fourier plane intensity of a plane wave can be

predicted by plotting the value of the transverse phase gradient as a dot in

reciprocal space. This can be understood by considering a monochromatic

plane wave travelling directly into a lens, with the wavevector parallel to the

lens optical axis. The image formed in the Fourier plane will be a focused

spot, corresponding to a wavevector with no transverse components, which

is centered at and defines the origin. When the plane wave is tilted the spot

will move depending on the direction of tilt. Figure 1.2 shows this effect for

a tilted plane wave, (a) shows a plot of the phase distribution and the arrow

highlights the phase gradient, (b) now considers the wavefront (isophase

surface) as such the coloured phase gradient in (a) now corresponds to a
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distance along propagation of the phase front, the phase gradient is the

local surface normal to the isopahse surface. Figure 1.2 c shows the spot

produced by the phase distribution in (a) is shifted from the origin in the

kx direction, by an amount corresponding to the size of the phase gradient

(i.e. the amount of tilt). When the wavefront incident on the focusing

lens is not a plane wave the contributions from many different local phase

gradients build up multiple spots in the predicted Fourier plane intensity.

Figure 1.2: Applying a local spatial frequency analysis, calculating the

local phase gradient of a tilted plane wave a) colour represents phase and

the black arrow shows the 2D phase gradient. b) the surface normal to the

isophase surface where colour now represents distance along propagation c)

the plane wave in (a) contributes a single spot (blue circle) at the end of

the black arrow in reciprocal space.

When sending a non-planewave through a lens the varying local

phase gradients can be considered as causing spots of intensity to appear

in the focal plane at positions corresponding to the local phase surface

normals of the non-planewave which is incident on the lens. This is a

simplified model and does not account for the phase differences between

contributions from different points which may end up at the same focal

plane position. As such any interference effects are not captured by this

geometric ray model.
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1.5 Wave optics

In contrast to the ray model a wave optics description can be used to predict

the intensity in experiments involving wave phenomena, whilst including

interference effects by considering phase terms. This model uses the Huy-

gens Fresnel principle [12] where each local oscillation is viewed as a source

of secondary complex waves, following the equation

E(d, t) =
E0

|d|
exp i(k.d− ωt). (1.2)

where k is the wavevector and d is the displacement vector from the source,

Figure 1.3: The field at a position p caused by a source in the aperture plane

at position r can be described by considering the total vector separating the

two, p-r

ω is the waves frequency and t is the time at which the field is measured.

The overall wave can then be described by the summation of the entire

collection of complex secondary waves. This means the diffraction pattern

at a position p at a plane after an aperture ( as shown in figure 1.3) can

be expressed as a integration of infinitely many individual sources over the

aperture area

E(p) = exp iωt

∫
Eap(r)

|p− r|
exp i(k.(p− r))dA (1.3)

where p and r are shown in figure 1.3 along with z, the distance between

the measurement plane which contains p and is parallel to the aperture
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plane. This wavelet analysis can be used to derive different integral equa-

tions describing the wavefield after an aperture. There are two distinct

regions where approximations to 1.3 can be taken [12]. The far field where

curvature of the wavefront can be ignored, known as the Fraunhofer regime

and the near field where the curvature of the wavefront must be taken into

account, known as the Fresnel regime.

1.5.1 Fraunhofer diffraction

Considering the limit of the separation, z between aperture and screen, z →
∞, in the far field Fraunhofer case, the distance |p−r| is predominantly z.

This means the main variation is taken to be mostly from the exponential

and so the factor 1/|p−r| is considered to be approximately constant over

the aperture and is taken outside the integral. Thus from the aperture field

Eap, the screen plane field E(p) can be approximated by

Efraun(p) =
exp iωt

|p− r|

∫
Eap(r) exp i(k · (p− r))dA (1.4)

the angular spread of light coming from the aperture and reaching

the screen reduces until the light at point p is due to rays travelling from the

aperture at the same angle. This can be experimentally achieved by placing

the screen in the back focal plane of a focusing lens with the aperture in

the front focal plane. The lens imparts a phase distribution such that all

wavelet source rays travel towards the center of a circle, and so we only

need to consider the phase delay of each wavelet source in reaching the

lens. In this picture the phase difference k · (p− r) across the mask will

depend on the path length difference δ = rsin(θ), as shown in figure 1.4,

causing a phase delay |k|sin(θ)k̂t · r where k̂t is the transverse unit vector

of k.

Due to the mapping of a single angle onto a single point when

z →∞, the transverse component of p, pt in the screen plane corresponds

to the transverse reciprocal space wavevector component |k|sin(θ)k̂t. This

relationship means that the summation of |ksin(θ)|k̂t ·r terms is equivalent

to a summation of pt · r.

However in real space the physical size of pt depends upon the

focal length ,f through |pt| = ftan(θ) this shows that a larger focal length
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Figure 1.4: When considering diffraction from an aperture, collected onto

a screen by a lens, plane waves will be collected to a point on the screen if

it is placed in the focal plane of the lens. a labels the path length difference,

which is a function of position in the aperture plane.

increases the physical image size, through a simple magnification, but the

position pt still represents the same incident wavevector on the lens. The

optical system is then characterised by this angular mapping , in electron

microscopy the effective focal length is called the ’camera length’. Within

the paraxial (small angle) approximation, sin(θ) ≈ tan(θ), meaning that

an integration of ksin(θ).r terms with respect to r is equivalent to an

integration of ktan(θ).r = (k/f) × pt.r terms . This means in the field

can be calculated by considering each position r as contributing a term

|k|(|pt|/f)p̂t · r = (k/f)pt · r. This means the total field as z → ∞ is

expressed as

Efraun(pt) =
exp iωt

|p− r|

∫
Eap(r) exp i((|k|/f)(pt.r)dA (1.5)

, which is only valid at large z and for small angles where sin(θ) ≈ tan(θ) ≈
θ. This is proportional to the Fourier transform of the aperture field.

1.5.2 Fresnel diffraction

For small angles the separation rrp = p − r, in the denominator outside

the integral of equation 1.3 is approximately equal to z. The phase delay of
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each wavelet contribution depends on the term |p− r| =
√
R2 + z2 where

R = |pt − r| with subscript t representing a transverse component. This

square root can be approximated , to first order terms, using a Taylor series

expansion as z(1 + R2

2z
). This means the field the field at a plane z away

from a known field distribution E0 is

E(pt) =
exp(ikz)

z

∫
E(r)

z
exp(i(π/λz)|pt − r|2)dA (1.6)

Mathematically the integral in 1.6 is equivalent to convolution of

the aperture field, E(r) with a propagator function Fprop(z, r) ≡ exp( iπ
λz
|r|2).

This means the Fourier transform of the Fresnel propagation equation can

be expressed in reciprocal space as a product of the two separate Fourier

transforms.

Gp(k) = FTr(k)× FTp(k) (1.7)

where FTr is the Fourier transform of the aperture field E(r) and FTp is

the Fourier transform of Fprop(z, r). This can been shown to be equal to

[13]

FTp(z,k) = exp(iπλz|k|2) (1.8)

Thus the field at a distance z away from a known field can be

expressed via the equation

E(p) =
exp(ikz)

z
FT (Gp(k)) (1.9)

where FT denotes the Fourier transform. When calculating the Fresnel

propagation close the Fourier plane from an apertured mask, the mask

plane is the Fourier transform of the diffraction (Fourier) plane, as such

when simulating propagation the mask function can be used as Gp(k) in

equation 1.9.

1.6 Gouy phase

When focusing a wave the energy density increases and then after the focal

plane the energy density decreased, as the wavefronts expand outward.
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This is shown schematically in figure 1.5 a This physical process can be

described with a Laguerre-Gaussian function,

LGp,l = eikzz
N√
z2
R + z2

Llp(
2ρ2

ω2(z)
)
eilφ

w(z)
[
ρ

w(z)
]l

×exp(i kzρ
2z

2(z2
R + z2)

− ρ2

w2
− iδGouy)

(1.10)

where the l is the azimuthal quantum number which determines the OAM

and p is the radial quantum number and determines the number of nodes

as the radius is increased, the Gouy phase term is defined by δGouy =

[2p + l + arctan( z
ZR

)]. This δGouy leads to an extra phase where zR is the

rayleigh length defined as the distance away from focus at which the inten-

sity is 1/e of its maximum value. This is extra Gouy phase is related to the

Figure 1.5: a) a schematic of the focusing of wavefronts showing a cross

section of a focused spherical wave. Black lines are isophase lines,solid blue

lines mark the top and bottom of the volume in which the highest intensity

is. ZR is the distance at which the maximum intensity falls to 1/e of the

maximum intensity at z = 0 b)A plane wave wavector (blue arrow) at an

angle to a second plane wave wave vector (orange arrow), the first will need

to travel further to reach the same distance in the direction of the second

plane wave, suffering a phase delay δ. c) A similar position dependent

phase delay δ is also present when a plane wave wavefront is curved, which

occurs whilst focusing.
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uncertainty principle [14]. Any finite wave must necessarily be composed of

multiple plane waves. This can be clarified by noting that for a wave to be

finite there must be an uncertainty in the position which is less than infinity,

as such the corresponding uncertainty in momentum (i.e. the wavevectors

of the plane waves) must be non zero. As explained by Feng and Winful

[14], by focusing a wave with a lens the spread of the intensity is decreased

and so is the uncertainty in the position. This leads to an increase in the

spread of the component wavevectors which produce the total wave. Any

second plane wave at an angle to a first will undergo more oscillations when

travelling the same distance in the direction parallel to the first wavevec-

tor, as shown in figure 1.5 a. Therefore by increasing the uncertainty in

the modulus of the transverse wavevector components producing the total

wavefront, a lens transfers more intensity to wave components travelling at

higher angles to the forward wave propagation direction and increases the

phase gained upon propagation.

1.7 Astigmatism

When forming an image physical systems can suffer from imperfections

which can cause distortions to the image, these are known as aberrations.

One key aberration which is experienced in many imaging systems includ-

ing electron microscopes is astigmatism [15]. When producing physical

optical components it is likely they will not be perfectly symmetric, if an

optical lens or magnetic lens field has a slightly cylindrical curvature rather

than a spherical curvature then the wavefronts leave the lens with different

radii of curvature along two perpendicular directions as shown in figure

1.6(firstly along the height of the cylindrical distortion and then perpen-

dicularly around the curvature of the cylinder). This distortion is what is

meant by the term astigmatism, it means rays dispersed along the hori-

zontal axis (sagittal) are brought into focus at a different point along the

propagation direction to those dispersed along the vertical axis (tangen-

tial) , as shown in figure 1.6 . This causes circular details to be imaged as

ovals. The effect of astigmatism can be mathematically represented as an

extra phase term χ(ρ, φ) added to the ideal phase following the equation

χ(ρ, φ) = 2πAρ2cos2(φ) where (ρ, φ) are polar co ordiates and A is an am-

plitude determining the strength of the astigmatism. The distortion could
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also be measured with an ellipticity of a circle defined as a−b
a

for an ellipse

of large horizontal radius a and short vertical radius b.

Figure 1.6: a) In an astigmatic optical system the tangential rays (vertical

spread) and the saggital rays (horizontal spread) are brought to focus at in

planes located at two different distances along the beam axis. b) a cylindrical

curvature causes two different radii of curvature along the height (dashed-

dotted line) and the curve (dashed line).

1.8 Vortex physics

A complex field given by Aexp(iχ) has an amplitude A and a phase χ.

If the phase χ is proportional to the circular polar angular co ordinate

φ this means that the phase must increase as you circulate the axis. As

such there is a singularity at ρ = 0 where φ and so χ is undefined. If

such a complex function is associated with a travelling wave oscillation

then the corresponding wavefronts produced are twisted (see figure 1.7).

These twisted vortex states can offer an alternative complete basis set of

functions as they themselves are a combination of plane waves. Through

the combination of plane waves travelling in all directions on a circle in the

transverse plane the vortex beam has a circulation associated with it. Each

vortex mode can be considered to be a combination of plane waves with

a constant transverse amplitude as shown by the phase surface normals in

figure 1.8.

13



Figure 1.7: Flat isophase fronts of a plane wave (a) form stacks of non

intersecting planes at different propagation distances. When the phase is

twisted in beams with topological charge l=1 (b) each sheet is deformed such

that it meets the neighbouring sheets to form a spiralling ramp of equal

phase. For l=3 (c) there are 3 lines along which neighbouring planes meet.

Colour shows the distance along propagation of the isosurface.

Figure 1.8: A side on view with propagation upwards (left) and a top down

view with propagation out of the page (right) of a vortex isophase surface.

Colour represents distance along propagation and arrows show the local

surface normal vector.

By considering these local normals to the phasefront, local spatial

frequency analysis ([16])can explain the ring distribution of a vortex beam.

As discussed in section 1.3, each normal contributes a point of intensity in

the focal plane. As shown by the right image in figure 1.8, these points
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will cover all angles and all have an identical radius , as such the intensity

distribution in the Fourier plane of a vortex phase will be a ring. By plot-

ting out Fourier plane points from local phase gradients sampled around

an apertured vortex phase function the Fourier plane intensity can be pre-

dicted (see figure 1.9). Areas of higher density of points in these scatter

diagrams correspond to higher Fourier plane intensities, colours distinguish

between phase gradients at different radii on the mask.

Figure 1.9: The scatter diagram from a local spatial frequency analysis of

an l = 1 vortex. The local gradients at constant radius form rings of points

in the reciprocal plane scatter diagram. Different colours are gradients mea-

sured at different radii. Gradients are sampled at a discrete collection of

angles, producing the separate radial lines .

It must be noted here that this ignores any interference effect

between rays coming from different parts of the vortex phase distribution

, this shows up particularly for non-integer vortex states. In this case the

phase gradients would still point in the same direction but the discontinuity

in the phase creates a region of low intensity which is not captured by

15



the simple geometric ray analysis. However this analysis provides a useful

rational for understanding the implications of varying the mask plane phase

and explaining the breaking of the symmetry seen for C-shaped intensity

as will be discussed later in this thesis. In general it is simplest to choose

basis functions which match the symmetry of the physical system, this

means vortex beams are useful basis functions for problems with cylindrical

symmetry, especially those containing phase singularities.

1.9 Fourier Transform Trucated Bessel Beam

modes (FT-TBBs)

To describe phase structured beams produced by apertured masks, it is

useful to define a basis set of functions which are themselves produced

by an apertured mask. As such one can consider an apertured Bessel

function[17], ψ, with a vortex phase term following the equation

ψ(ρ, φ)p,l = Np,lA(ρ)Jl(kp,lρ)eilφ (1.11)

where Np,l is a constant normalisation factor, l is the azimuthal index of the

mode and p is the radial index. The phase term (kp,lρmax) is the argument

at the (p+ 1)th zero of the Bessel function, and the aperture A(ρ) = 1 for

ρ < ρmax and 0 elsewhere . The normalisation factor can be calculated by

applying the two identities∫ ρmax

0

(Jl(kp,lρ))2ρdρ =
(Jl+1(kp,lρmax)

2

2
) (1.12)

and ∫ 2π

0

eimφeinφdφ = 2πδmn (1.13)

this means Npl = 1√
2πJl+1(kp,lρmax)

.

Taking the Fourier transform of this function can then define the

FT-TBB modes, Up,l, as

Up,l(k, φk) = FT (ψ(ρ, φ)p,l) =

∫
ψ(ρ, φ)eik·ρdρ (1.14)

This can be rewritten using the jacobi-Anger relationship

eik·ρ = ei|k||ρ|cos(θ−φ) = Σ∞n=−∞i
nJn(kρ)ein(φ−θ) (1.15)
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where θ and φ are the in plane azimuthal angles of vectors k and ρ respec-

tively. k and ρ are the modulus of the wavevectors k and ρ respectively.

Application of identity 1.15 gives

Up,l(k, φk) =

∫ 2π

0

dφ

∫ ρmax

(ψ(ρ, φ)p,l)Σ
∞
n=−∞i

nJn(kρ)ein(φ−θ)ρdρ (1.16)

Using the relation 1.13 the integral becomes

Figure 1.10: The amplitude (a,c) and phase (b,d) of a l = 4 p = 5

bessel mode for the Truncated bessel mask function(a,b) and the Fourier

transform of the mask function (c,d). The mask aperture boundary was set

to the p+ 1th zero of the bessel function.

Up,l(k, θ) = Npli
leilθ

∫ ρmax

0

(Jl(kρ)Jl(kp,lρ)ρdρ (1.17)

the identity∫ a

0

(Jl(k1ρ)Jl(k2ρ)ρdρ =
a

k2
1 − k2

2

[k2Jl(k1a)J ′l (k2a)− k1Jl(k2a)J ′l (k1a)]

(1.18)
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can then be applied to calculate the FT-TBB modes as

Up,l(k, θ) = Npli
leilθ

ρmax
k2 − k2

p,l

[kp,lJl(ka)J ′l (kp,la)− kJl(kp,la)J ′l (ka)] (1.19)

Alternatively the Fourier transform can be evaluated numerically as shown

in figure 1.10 for the example of U5,4, these modes .

Figure 1.11: A decomposition of an l = 1 vortex function into FT-TBB

modes, using the edge of the aperture as a zero in the bessel function. left:

a full map of l and p values. right: the normalised intensities after sum-

mation over p as a function of l.

These TBB and FT-TBB modes offer alternative circularly sym-

metric basis sets with which to decompose fields instead of Laguerre-Gauss

modes or Bessel functions. Due to the requirement of using an aperture in

a physical experiment these basis sets are useful when describing diffraction

experiments through an aperture in an electron microscope [17] . Figure

1.11 shows the decomposition of an l = 1 integer vortex function into FT-

TBB modes, the x axis corresponds to the radial index,p and the y axis

is the azimuthal index, l, the intensity goes from blue to yellow showing

the major component is the l = 1, p = 1 FT-TBB mode(i.e. the mask

radius is the first zero in the Bessel function), as expected. Alternatively

the argument (kp,lρmax) could also be defines as the p + 1th maximum or

minimum in the Bessel function, this would give a second set of TBB and

FT-TBB modes. Unless stated otherwise the condition of a Bessel function

zero at the boundary at ρmax will be used in this thesis.
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1.10 Quantum waves

The Schrodinger equation, (equation 1.20), describes the link between the

spatial and temporal variations in a quantum wavefunction, ψ and is a very

useful mathematical description to predict quantum experiments.

−~2

2m
(∇2 + V )Ψ = −i~∂Ψ/∂t (1.20)

When considering the quantum entities as harmonic waves with

wavefunctions dependent on a term eiωt then the schrodinger equation can

be expressed in a time independent form.

(−i ~
2

2m
∇2 + [V − ~ω])Ψ = 0 (1.21)

These harmonic solutions have an identical mathematical descrip-

tion to classical waves, except that instead of |Ψ(r)| determining the am-

plitude of displacement , it now determines the probability of interacting

with the quantum entity at position r. By analogy with descriptions of

classical waves, quantum phenomena can be predicted with wave-like solu-

tions to the time independent Schrdinger equation. As will be shown this is

a very useful method for describing the diffraction experiments with freely

propagating electron waves conducted in this thesis. The square brackets

of equation 1.10 contains the difference between the energy of the electron

and the background potential V . This difference determines the wavevec-

tor of the electron compared to a free space electron with the same energy.

Thus when encountering a potential well compared to a free electron (i.e.

V < 0) the square bracketed term (V − ~ω) becomes (−|V | − ~ω). The

wavevector depends on the equation k =
√

2mE/~ where the total energy

E = V −~ω is related to the square bracketed term. In a potential well the

increased (−|V | − ~ω) term means the wavevector is increased compared

to a free space electron which has escaped the well. Due to this effect the

potential of a solid can act as a potential well and increase the wavevector

of an electron travelling through the medium. In a similar manner to light

travelling through the glass of a lens this means some materials can act as

a phase object for electrons, slowing the electron down and compressing

the wavelength. This effect will be used later on to produce phase masks

out of Silicon nitride membranes.
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1.10.1 Quantum phase vortices

When predicting experimental results involving quantum entities the wave

model can be used to describe the transfer of energy from one point to an-

other. In contrast to a classical wave, for the case of electrons, mass is also

transferred. The wave model allows recorded intensities to be explained in

terms of interferences. This means photons and electrons can effectively

be cancelled out or excluded from regions of space depending upon the

experimental conditions. The simplest example of this is the double slit

experiment where the measured intensity on a screen has bright fringes

and dark fringes, regardless of whether the incident quantum phenomena

is laser light [12], single photons [18] or single electrons [19]. Within a wave

description of quantum phenomena the relative distribution of phases de-

termines where energy (or mass) are transported. So a complex wave am-

plitude tells you about the probability of where a quantum particle is and

the complex phase tells you about how it is moving. In this framework

optical experiments involving photons or electron can be viewed as a quan-

tum mechanical measurement where a complex wavefunction propagates

towards the measurement device (usually a CCD or similar sensor) and

upon meeting the device the wavefunction collapses to produce a single

measurement (i.e. a count on a CCD sensor) an image is then built upon

over time of many individual wavefunction collapses. It is this mechanism

through which the double slit interference fringes become visible. The elec-

tron based experiments described in this thesis rely on this idea of multiple

counts of a set of electrons, building up a statistical picture of the complex

wavefunction. However it must be noted that these measurements can only

directly record the amplitude (where the particle was). It is only by using

specialised experimental set ups (such as biprisms [20]) and applying prior

knowledge that the phase can be extracted from these amplitude measur-

ments. These were not available in the microscopes used in this project,

however algorithms will be used to calculate approximations to the phase

of the wave, these will be described in the appendix chapter A section A.2.

Vortex states have long been known for classical waves in nature,

for example, tornadoes or whirlpools and are related to circulation around a

point. In these cases the central node corresponds to zero mechanical flow,

hence the calmness in the ’eye of the storm’. The twisted nature of phys-

ical wavefronts was first experimentally described by Nye and Berry [21]

when the reflections of ultrasound from a rough surface was analysed, in
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order to explain experimental data of radio waves reflected by the Antarc-

tic ice sheets. It was not until 1992 when Allen et al applied a similar

description to light and realised that vortex photons could carry orbital

angular momentum [22]. The advent of laser technology allowed coherent

light sources to produce photons suitable for interference experiments and

optical vortices have since found applications in diverse fields including,

optical particle trapping and manipulation[23], astronomy [24] and data

transfer for communications [25].

Within the Copenhagen interpretation of quantum physics particles can

be described by complex functions and as such the phenomena associated

with other waves and the maths of phase vortices can be applied to elec-

trons. This was achieved in the first explicit theoretical description of

freely propagating electron vortices as allowed solutions to the schrodinger

equation[26], carrying OAM. The development of nanoscale manufacturing

has now made it possible to produce structures on the nanometer scale,

which is close enough to the wavelength of electrons (of the order of pi-

cometers for 200keV) such that the structures can interact with electrons

and alter the phase of the electron. This allowed the beginning of the field

of experimental electron vortex research. Since its beginning around 2010

there has been a lot of fundamental progress in experimental production

and theoretical understanding of electron vortices, which will be described

in section 2.

1.11 Optical trapping of particles and atoms

Photon vortices can be used to manipulate the motion of transparent par-

ticles such as silica spheres [27] or small atoms [28]. As explained in 1970

by Ashkin [27], for transparent particles there are two main forces present

during the interaction with a photon. Firstly there is the transfer of mo-

mentum in the direction of propagation, known as the radiation or scatter-

ing force, this pushes the particles along the direction the light is travelling

in. Secondly the light undergoes refraction when travelling through the

particle and the exchange of momentum, as shown in figure 1.12, leads to a

restoring force acting towards regions of high intensity, following the local

intensity gradient, due to this it is known as the gradient force.
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Figure 1.12: A particle within a laser beam path will experience net forces

(green arrows) corresponding to momentum transfer between incoming pho-

tons(leftmost blue arrows) and the refracted (solid blue arrows) and reflected

(dashed arrows) photon paths. The resultant forces are shown in dashed

orange arrows for the reflection and solid orange for the refraction. The

combination of both orange arrows gives the net green arrows. If the lower

intensity is weaker than the higher then the forces at the top will be larger

(represented by larger solid green arrows), moving the particle upwards to-

wards the higher intensity region.

Figure 1.12 shows the forces responsible for the momentum trans-

fer during the refraction of light inside a transparent dielectric sphere.

There are two sets of forces acting on the sphere as the light enters and

exits the sphere. The first forces shown by dashed orange arrows in figure

1.12 are from the reflection of light from the boundaries and point along the

normal to the surface (shown in grey dash-dot lines). These dashed orange

lines have a net force along the direction of propagation. The second set

of forces are due to the transmission of the light, these are shown as bold

orange arrows. For a uniform intensity the net radial force (component of

green arrows in figure 1.12 transverse to propagation) will be zero.However,

for an uneven intensity the half of the sphere in the more intensity region

will experience a greater set of forces (shown by larger green arrows in the

upper section in figure 1.12) and as such the net force will act towards re-

gions of high intensity. It was shown in 1986 [29] that for a tighly focused

beam this leads to a trapping force along the propagation axis as well as

in the transverse plane. When the light distribution contains an azimuthal

phase gradient the scattering force will gain an azimuthal component, al-

lowing the vortex beam to impart a torque on the trapped particle, creating

a trap known as an ’optical spanner’, [30].
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Similar trapping effects can be achieved when trapping atoms

however the physical nature of the force is slightly different, this was ini-

tially discussed in terms of a simple standing wave by Letokhov [31] and

the furthered to describe a trapping geometry by Ashkin [32]. There is a

scattering force which can be viewed as due to absorption and subsequent

spontaneous emission of photons. There is also a dipole force which is re-

lated to the average induced dipole moment of the atom. The potential

energy of a dipole moment d in an electric field E is given by d.E thus

the force experienced by a dipole is given by the gradient in this potential

and as such is related to the direction of ∇.E. However the dipole force

can be aligned with this direction or in the opposite direction depending

on whether the laser frequency is above or below resonance. As explained

by Chu [33] this is related to the phase relation between the driving oscil-

lations of the laser field and the response oscillations of the dipole moment

of the atom. If the atom is viewed as an oscillating dipole acting as a

harmonic oscillator, then when driven below the transition frequency (red

detuned) then the atom will respond in phase with the Electric field, the

interaction energy will be lower and the force will be towards positions of

high E intensity. However alternatively, when the laser is above the atom

transition the atom dipole will oscillate out of phase and the force will be

away from areas of high E intensity.

1.12 Transmission electron microscopy (TEM)

The lenses in an electron microscope are coils of wire, inside a polepiece,

which is shown in figure 1.13. This structure is designed to focus the mag-

netic field induced by the coil and produce an inhomogeneous magnetic

field which deflects electron trajectories at larger radii to a greater extent,

acting to focus the electron wave, just like a glass lens does for light. These

magnetic lenses can be used to manipulate the complex waves of the beam

electrons following the wave optics theory introduced in section 1.5. The

ray diagram for a TEM imaging mode is shown in figure 1.14, here the

condenser lens forms a demagnified image of the condenser aperture, to be

used to illuminate the sample plane from which an image is formed. The

diffraction plane of the condenser aperture shown in figure 1.14 allows the

production of vortex electrons to be understood as similar to a double slit

diffraction with light with the diffraction plane being the Fourier transform
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Figure 1.13: A schematic diagram of an electron lens,the circles represent

cross sections thorough a coil of wire with current going into (crosses) or

out of (dots) the page. The square outline shows the cross section through a

magnetic polepiece. The solid blue arrows are the magnetic flux lines which

leak out of the gap in the polepiece causing an inhomogeneous magnetic

field which acts as a focusing lens for the electrons. Dashed blue lines show

the electron trajectories are focused back to a point.

of the field in the condenser aperture. However the electrons take the place

of photons and magnetic fields take the place of the electric potential of

the glass lenses. During Lorentz imaging, electrons can be used to image

the magnetic induction of a sample by using the fact that electrons are

deflected by magnetic induction [34]. At a domain wall the direction of

deflection changes and this can be made to produce a variation in recorded

intensity. The two main methods are Fresnel and Foucault. In the Fresnel

method the image is recorded with the objective lens turned off as usually

this causes a large magnetic field which magnetises the sample to satura-

tion (completely magnetised aligned with the field). By relying on lens

fields away from the sample an image can be formed without saturating

the sample. When defocusing this image the varying deflection cause elec-

tron intensity to either build up or decrease along domain walls depending

on whether the deflections are moving towards or away from each other

respectively. Alternatively in Foucault mode an aperture is placed in the
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Figure 1.14: A schematic ray diagram of the lenses in TEM mode imaging.

A defocused source image is used to illuminate the sample from which a

sample image is formed by the imaging system.

Fourier plane of the sample plane to then form an image only from (or with

a majority of) deflected electrons. In a similar method to dark field imaging

where a ring detector records intensity at high angles, the Foucault method

allows areas of high deflection (and so high magnetic field) to be recorded.

Whilst these two modes of Lorentz imaging require either working with a

defocus or a specialised aperture experimental set up to control the angles

collected, vortex beams offer the potential to be developed into a magnetic

imaging tool which can be used at focus and one long term goal would be

to allow images to be collected more similarly to a standard TEM images.

1.13 Inelastic scattering and EELS

A simple example of a dispersive scattering experiment is when white light

is refracted through a prism. Light waves of different wavelengths (different

energies) take different paths through the prism and thus leave the prism

travelling at different angles. In a similar manner the electrons leaving
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Figure 1.15: Electron trajectories for different energies when travelling

through filter lenses, which act like a prism on the electron beam. Dif-

ferent energies exit the filter at different angles. Image adapted from York

Nanocentre 2200 handbook.

a sample can be considered as a mix of different energies. The spread

of energies is larger than before the sample due to some electrons losing

energy through inelastic scattering processes during the interaction with

the sample. Following the same overall principle as a prisms effect on light,

correctly designed magnetic fields can cause electrons travelling at different

velocities (with different energies) to follow different paths (an example of

these filter lenses is shown in figure 1.15). This allows electrons to be

separated depending on their energies, forming an energy loss spectrum,

during electron energy loss spectroscopy (EELS). The current state of the

art energy resolution can be achieved by using an energy filter before the

sample (called a monochromator) and the superSTEM facility in the UK

can achieve an energy resolution of 15 meV on their superSTEM3 TEM

machine [6]. The JEOL 2200 FS microscope used in this project has an

energy filter which can provide a zero loss peak (intensity representing

electrons with 0 energy loss), with a full width half maximum of between

1-1.5eV. It is this width which determines the resolution as all peaks are

convoluted with the spread of the zero loss peak. One of the ways in which

the work in this thesis could be furthered would be the study of similar
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structures as chapter 7 but on the superSTEM3 machine or a microscope

with a resolution better than 1eV.

Angular broadening of the source (a finite spread in incoming

angles) will cause spreading perpendicular to the dispersion axis. Alterna-

tively a slit in the spectrum plane can be used to select only electrons within

a certain energy loss window, these selected electrons can then be used to

form an energy filtered TEM (EFTEM) image. EFTEM can be used to

calculate the thickness of a material in terms of the electrons mean free

path when travelling through the material following the log ratio equation

[35]

t/L = loge(It/I0) (1.22)

where t is the thickness of the material, L is the mean free path of the

electron due to inelastic scattering, I0 is the integrated intensity of the

zero loss peak and It is the integrated intensity of the whole spectrum.

Alternatively in STEM mode an EELS spectrum can be acquired

at multiple positions across the sample producing STEM EELS maps. This

produces datacubes with a stack of images equivalent to energy filtering

around successive energies. The technique can be used for elemental anal-

ysis (L,K transition edges) at higher energies but has also been shown to

give information on surface plasmon modes. [36] This energy loss to sur-

face plasmons can be modelled as a transfer of a virtual photon from the

electron to the surface plasmon oscillation. Alternatively the energy loss

can be viewed as the work done by the electron in travelling against the

electric field of the plasmon which the electron induced in the sample. The

energy transfer to plasmon modes will be discussed further after an initial

description of surface plasmons.

1.14 Plasmonics

Maxwell’s equations describe the creation and propagation of Electric and

magnetic fields by charges and currents. The dielectric constant describes

a materials response to changes in the electric field and as such can mea-

sure how much material resists the flow of electro magnetic waves in that

medium. Maxwell’s equations predict the requirement of boundary condi-

tions between two different materials, for zero divergence of the magnetic
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field the tangential magnetic field component must be continuous and for

no net surface currents the tangential displacement field must be constant.

This means that unlike free space when an electromagnetic wave encounters

a boundary there will only be certain modes of oscillation which the electric

field can undergo, one such mode of oscillation is the surface plasmon.

1.14.1 Surface plasmons

Surface plasmons are the energy quanta of surface charge density oscilla-

tions which are coupled to oscillations in the local electromagnetic field.

These are solutions to Maxwell’s equations which are allowed at the inter-

face of a dielectric and a metal[37]. The analytical dispersion for surface

plasmon waves at the interface between non-magnetic materials, 1 and 2,

with corresponding dielectric constants ε1 and ε2 can be shown to follow

equation 1.23. [38][37][39]

ksp =
ω

c
(
ε1ε2
ε1 + ε2

)1/2 (1.23)

where ω is the frequency of plasma oscillation, ksp is the wavevector and c

is the speed of light in a vacuum. The dispersion for a Si3N4/Al interface

has been calculated using equation 1.23 with values for ε taken from Palik

[40] and is shown in figure 1.16. This calculation uses the convention of

choosing a real frequency and imaginary wavevector which results in the

observed back bending as discussed by Archambault et al. [41]

The states on the plasmon dispersion curve shown in figure 1.16

occur for much larger wavevectors (smaller wavelengths) than for free space

light. This causes a momentum mismatch between photons and surface

plasmons. To overcome this various mechanisms have been devised to cou-

ple incident photons to plasmons. These include using a periodic variation

in the surface to create a grating using a resonance effect with a periodicity

which defines modes carrying a momentum matching the missing momen-

tum. Alternatively a double interface can be used as shown in the upper

inset of figure 1.16, material 3 is chosen such that the photon dispersion line

intersects the surface plasmon dispersion at the interface between materi-

als 1 and 2. This intersection means the light can be angled in such a way

that the projection of the wavevector onto a first interface (2-3 interface in

upper inset of figure 1.16) surface matches the modes defined by equation

28



Figure 1.16: The standard calculated dispersion for SiN/Al (blue) and

Al/Vacuum interfaces (red). Upper inset: a multi interface can be used

to couple light in medium 3 into surface plasmons between mediums 1 and

.

1.23 for a second interface (1-2 interface in figure 1.16). This is known as

the attenuated total reflection method [? ]. By matching the momentum,

it is possible for these quasi particles to couple to light and allow the en-

ergy in a photon to be confined to regions much smaller than its free space

wavelength. Due to this ’shrinking’ of length scales associated with light,

plasmonics is an active area of research with many varied applications in

fields such as metamaterials, surface enhanced spectroscopies and plasmon

enhanced light harvesting (see references within [42] and [43])) . In ad-

dition electrons can transfer energy to these charge density oscillations as

they pass through thin metallic films as initially described by Ritchie [44].

It has been shown that chiral structures in thin films can support plasmons

which carry orbital angular momentum [45]. The exchange of orbital an-

gular momentum between vortex electrons and these plasmon modes has

not yet been shown experimentally.
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1.15 Energy transfer to plasmon modes

Electrons can be modelled as providing a pulse of electric field as they

pass through a sample, this time varying E field can be decomposed into

harmonic oscillations of different frequencies. As such a passing electron

can be viewed as a white light source and can couple to all frequencies. The

energy loss of an electron can be related to the work done in moving against

the electric field which is induced in the sample, following the integral

∆E = e

∫
dtv ·Eind(re(t), t) (1.24)

where e is the charge on an electron, v is the velocity of the electron and

Eind is the induced electric field in the sample due to the travelling elec-

tron. The integral with respect to time integrates along the parameterised

electron trajectory re(t) and the total energy lost includes energy at all

frequencies. This can be rewritten as an integral over frequency

∆E =

∫
dω~ωΓEELS(ω) (1.25)

where

ΓEELS(ω) =
e

π~ω

∫
dtRe[exp−iωt v.Eind(re(t), t)] (1.26)

is the probability of energy loss at a particular frequency ω. The EELS

problem now only requires solving for the induced field in the sample. This

is related to the boundaries of the sample as it is these which distinguish

the finite structure from a continuous homogeneous medium. The fields

inside the structure are completely determined by the value of the surface

charges at the boundaries. Continuity at the boundary of transverse E field

means that these induced boundary charges need to follow an eigenvalue

equation [46] [47]

2πλiσi(s) =

∮
ds′F (s, s′)σi(s

′) (1.27)

here σi(s) is a surface charge eigenfunction, F (s, s′) is the normal derivative

of the free space greens function. Greens functions summarise effects from

one position to another. In this case it is the electric field at test position s′

caused by a surface charge at source position s. Equation 1.27 thus states

that the electric fields caused by all other points,s′, of the eigenmode charge
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distribution add up to create a scalar amount of the eigenmode charge

distribution at s. In this way eigenmodes are the charge distributions which

map back onto themselves and can be thought of as ’self re-enforcing’.

It has been shown [46] that the eigenvalue, λi, only relies on the

geometry of the boundary. The particular frequency at which solutions are

found is then dependent on the material dielectric response described by

εi(ω) where i = 1, 2 corresponds to materials either side of the boundary.

This link is expressed through the equation

λi =
ε1(ω) + ε2(ω)

ε1(ω)− ε2(ω)
(1.28)

The total induced charge can be written as a summation of sup-

ported eigenmodes at different frequencies .

The probability of energy loss is proportional to the local density

of plasmon mode states available, this is related to both the amplitude of

the eigenmode fields and the dielectric response of the material at the eigen-

frequencies. Thus EELS can be seen to measure the local density of states

(LDOS), reflecting both the combined amplitude of the supported modes

and the polarisability of the material at the corresponding mode frequen-

cies. Approximating a thin film as a homogeneous dielectric material the

EELS maps can be seen to reflect the underlying geometry of the LDOS.

If there is only one dominant mode in a particular energy range then the

EELS map will show the distribution of electric field for that mode. When

there are multiple modes within the energy range of the EELS map then

the intensity will be a weighted combination of each mode distribution.

As such care needs to be given when evaluating EELS maps and decid-

ing on whether the intensity is from a single or multiple modes of Electric

field oscillation. It is here where numerical simulation of single modes can

vastly aids the interpretation of EELS intensity maps, as has previously

been shown, for example, with nanotriangles [48].

1.16 Thesis contribution and outline

As will be shown in chapter 2, the majority of the literature concerning elec-

tron vortex research has focused on integer vortices. This thesis focuses on

using electron phase shaping methods to produce a new vortex beam formed
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from a superposition of integer vortex states. This beam forms a C-shape

when focused and carries fractional orbital angular momentum. This beam

has not been described before in the photon or electron vortex literature,

as such this thesis represents the first time the beam has been analysed and

experimentally produced for electrons inside a TEM. Chapter 2 will also

show that OAM transfer has been shown experimentally for interactions

between incident photons and plasmons in chiral structures. Many of these

experiments use circularly polarised light and the conversion of spin angu-

lar momentum to orbital angular momentum during the photon-plasmon

interaction. In contrast to photon optics, the transfer of OAM from freely

propagating probe electron vortices with plasmon modes has theoretically

been described [49] however there is a lack of experimental evidence of

such an interaction with only one arXiv paper . In their paper, Harvey

et al investigate and describe interactions with 3D plasmon systems [50]

where interactions between separated spheres in a chiral arrangement is re-

sponsible for determining the OAM of the localised plasmon mode. A weak

difference in the EELS spectra recorded from different vortex beams occurs

around 3.5eV which the authors attribute to OAM dependent coupling to

a chiral plasmon mode delocalised over the arrangement of particles. Sim-

ilarly to the 3D arrangement of particles the interaction of electrons with

flat 2D chiral plasmon modes and possible OAM transfer has been looked

at theoretically but only in one paper by Ugarte and Ducati [51] and ex-

perimental results have not been published. This thesis investigated the

interaction of electron vortices with flat chiral structures which in contrast

to reference [51] have broken rotational symmetry.In chapter 6, the plasmon

modes in flat chiral structures are simulated. The addition of chirality to

a nanodisk will be shown to produce chirality in the plasmon eigenmodes

and induced electric fields, giving the plasmon modes OAM . Descriptions

of a similar effect have only been discussed previously for slits in continuous

metal films and not for isolated spirals . Finally, chapter 7 investigates the

interaction of C-shaped beams as well as integer vortices with 2D plasmon

modes. Conclusions and possible future work are then discussed. Finally,

an appendix is included to give details of analysis of energy loss spectra as

well as the iterative algorithm used in this thesis. This thesis represents

the first experimental investigation of the interactions between travelling

electrons with OAM and 2D plasmon modes containing OAM. The theory

for these interactions has also not yet been calculated, but is not included

in this thesis, and is left open as an area for future research.
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Chapter 2

Literature review

2.1 Literature review: experimental

Since the first theory paper explicitly describing electron vortex wavepacket

solutions was published in 2007 [26], attempting to experimentally control

the phase of electrons , mostly to form vortex states, has been an active

area of research. The first part of this review chapter will describe the main

methods and experiments which have been used to produce phase controlled

electrons in a TEM. These include; amplitude contrast masks,phase con-

trast masks, direct phase masks, and the application of magnetic fields.

The second part of this review section describes interactions with samples

both experimental and simulated, including TEM based experiments inter-

acting with plasmons and previous work done involving transfer of OAM

between photons and plasmons. Finally previous papers showing states

with phase vortices containing an opening are described.

2.1.1 Direct phase masks

The first vortex type electron beam reported was actually with an approxi-

mation to a direct phase mask where graphite sheets had randomly stacked

to produce a height which increased stepwise around a point [52] figure 2.1

a. This was shown to lead to a fork dislocation when the transmitted beam

was interfered with a reference plane wave and proved electron beams with
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Figure 2.1: a) Stacked graphite sheets used as a phase mask in [52]. b)

The pixellated Silicon Nitride phase mask from [53] c) the Fourier plane

intensity distribution produced by the mask in b)

a central phase singularity could be experimentally produced. Recently

progress in focused ion beam milling technology has allowed more precise

control over the thickness of substrates, allowing direct modification to the

phase of the electron wavefront. Shiloh et al[53] have shown a linear az-

imuthal phase ramp creating vortex beams, and have used very fine (60nm

diameter) pixels of varying thickness (figure 2.1 b to successfully imprint

a Fourier transform of arbitrary patterns (figure 2.1 c) onto a phase mask.

Whilst this does highlight the ability to manipulate the spatial phase de-

pendence directly, the vortex beams produced in this paper are still not

ideally symmetric, highlighting the difficulty of achieving an exact 2π phase

change around the centre. There will always be a physical limitation that

real surface gradients cannot be infinitely large, as such there will be an

inner cut off radius below which the gradient will be above the maximum

resolution of the production method.

A recent improvement in producing a spiral phase plate for elec-

trons is the used of focused electron beam induced deposition to precisely

control the thickness of a deposited SiO2 layer from a tetraethyl orthosili-

cate (TEOS) precursor [54]. After this spiral had been built up a platinum

block was deposited in the center of the spiral to block the non diffracted

beam caused by inability of the physical production process to produce the

ultimately infinite gradients required at the central region. The mask was

finally carbon coated to limit the effects of sample charging under the elec-

tron beam illumination. This was placed in the sample plane and the far

field diffraction pattern was imaged in diffraction mode. It appears that

a vortex was successfully generated with an estimated 60% l = 1 in its
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OAM mode decomposition. However even with this advanced production

technique the phase step was still only 0.8 of the full 2π required for an

l = 1 beam. The drawbacks are that this type of phase mask only works

at a particular energy and being a physical mask it can degrade with use.

2.1.2 Amplitude masks

Figure 2.2: a) the mask and fourier plane intensity from [55]. b) The

mask and vortex beams produced in reference [56].

The simplicity of only requiring binary control on the structure

of amplitude diffraction masks has meant that these are the type which

have been used for many electron vortex experiments. The first was in

2010 by Verbeeck et al. [57] (figure 2.2 a, where the experiment used a

Pt foil roughly 100nm thick and focused ion beam ( FIB) milling to create

2.5um and 5um diameter binarised hologram gratings. These successfully

demonstrated the expected far field diffraction pattern with a central zeroth

order beam and two side beams with a ring shaped intensity distribution

(figure 2.2 a.

The mask was then used as an analyser whilst placed after an Fe

sample. The beam from the sample underwent diffraction into different

vortex orders and EELS spectra were gained for the +1 and -1 orders

individually by using the energy filter entrance aperture. The difference

between these two spectra was show an EMCD signal resembling the X-

ray Magnetic Circular Dichroism (XMCD) from the L2,3 spin polarised
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transition in the Fe crystal. This is a key result which highlighted the

possible magnetic interactions vortex beams offer, however the results are

still not fully understood and there has not been any further reproduction

of these types of signal. In 2011 Verbeeck placed the same grating mask in

the condenser aperture of a TEM and produced smaller vortex beams with

a diameter of 1.2Å at focus, in the sample plane [58]. This is shown to be of

a similar scale in intensity and phase distribution to atomic p orbital and

highlights the possibility of probing vortex beam interactions with atomic

resolution.

Hologram masks created from the interference of a spherical wave

have also been successfully produced (figure 2.2 b). For these masks the

intensity measured at a plane is a sum of many different orders each focused

by a different amount. The patterns produced are thus not ideal rings but

as Saitoh et al. show they appear as interference fringes around a circle

with intensity spiralling outward [59] (figure 2.2 b). The aim of separating

orders along the z axis is to be able to switch which OAM value has the

highest peak intensity simply by changing the z defocus. For interactions

depending on intensity, Z axis separation also prevents other orders from

interacting with large samples during TEM by ensuring they are out of

focus at the sample plane.

Verbeeck experimentally showed that these vortex probes from

spiral masks can successfully be used in a STEM set up to give 1.413Å

resolution [60]. This shows that even with current technology, electron

vortex probes have the potential for real world atomic scale applications.

Amplitude masks have allowed very large values of OAM to be

experimentally shown, this is one of the most important properties of elec-

tron vortex beams as they are freely propagating and unlike atomic bound

states can have an arbitrarily large OAM. The spiral mask in [59] showed

OAM up to 90~ per electron. McMorran et al have managed to show some

intensity in a 4th order 100~ OAM from a fork dislocation mask made

from Gold supported by a Silicon Nitride membrane, however the relative

intensity was very low and the images do not show full rings (figure 2.3

a).[61]

In addition to the potential applications in STEM imaging and

probing chiral transitions, amplitude masks have been used to measure in-

duced rotations of electron vortex states. Larmor rotations due to Zeeman

36



Figure 2.3: a) The large OAM electron vortex beams produced in [61]. b)

the knife edge diffraction experimental set up used in [62]

coupling of OAM to a magnetic field have been experimentally demon-

strated by Guzzinati et al. and have been predicted [63] and visualised

separately to the rotations due to the Gouy phase [64]. An amplitude

contrast hologram mask was used to create a superposition of topological

charges and the intensity pattern of the superposition experimentally shows

distinct Gouy and Larmor rotations . The Larmor rotations are objective

lens field dependent rotations explained by classical cyclotron orbits but

can also explained by quantum zeeman phase difference between opposite l

values (as mentioned in [65] ). Larmor rotations were produced by altering

the objective imaging lens strength, a stronger B field in the lens created

a rotation of the entire final image. As a separate effect Gouy rotations

of superpositions are due to the l dependence of the Gouy phase. This

was achieved by changing what plane was being imaged by the imaging

lens by varying the condenser lens strength. Building upon these results

the same group went on to measure the rotational frequency of different

topological charges when the radius of the electron ring is matched to the

Landau level (natural states encircling a magnetic flux) [62]. This showed

varying rotational frequencies depending upon the topological charge (fig-

ure 2.3 b), theoretically this is due to the link between velocity and phase

gradients in addition to the magnetic moment of the vortex aligning with

or against the magnetic field [63]. When the beam waist is equivalent to the

magnetic length
√
~/meΩ (where the Larmor frequency Ω = |eBz/2m|),

this leads to only 3 allowed rotational frequencies,zero, Larmor or cyclotron

(double Larmor) frequencies. This experiment highlights the interactions

with magnetic fields which only electron vortices can show, thus separat-
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ing them from photon vortices, and increasing our understanding of vortex

beam propagation in a TEM column.

2.1.3 Phase contrast masks

Phase contrast masks are produced by using the binarised holograms de-

scribed in chapter 3, section 3.2, to produce two different thickness values

determines by the binary hologram. These type of masks act as phase

objects and should produce higher transmitted intensities, due to allowing

the entire electron beam through all of the mask aperture. In addition, if

the phase contrast is π radians, there will be reduced zeroth order inten-

sity due to destructive interference between intensity from thick and thin

parts of the mask. A key paper showing the use of phase contrast holog-

raphy is by Grillo et al [66], who successfully produce a blazed diffraction

grating based on an l=1 hologram. The blazed grating has a saw-tooth

thickness profile which adds an additional phase change across the mask ,

this diverts intensity into a non zero order side beam , dependent on the

saw-tooth angle. The group successfullly diverted intensity into the m=1

side beam. This technique promises to be useful in increasing the signal

to noise ratio of experiments relying on single values of topological charge.

Recently in a paper by Hossein et al the same group managed to use elec-

tron beam lithography to produce very fine structures on phase contrast

masks produced by the high resolution EBL resist Hydroxysilsesquioxane

(HSQ). With these masks an OAM of approximately 1000~ was obtained

[67]. This is a huge step towards amplifying interactions between incident

vortex electron magnetic moments and magnetic samples, which is required

if electron vortices are to become routine scientific tools.

Phase contrast holography has also been used to produce Bessel

beams using a mask with thickness variations to show phase contrast[68].

These masks were FIB milled with very narrow 100nm periodicity on a

10µm diameter area. The beams produced showed minimal variation in

transverse distribution over 0.4m of effective propagation distance, and

show the production of ’non diffracting’ electron beams showing the wave

physics known for optical vortices [69]. This increased stability upon prop-

agation could allow electron vortex probes to be less susceptible to changes

in height and also allow interaction with thicker samples.
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2.1.4 Magnetic field vortex creation

In addition to the interaction with the inner electrostatic potential, mag-

netic fields can also alter an electrons phase and have been shown to pro-

duce electron vortices. One approach utilises the aberration correctors

present in a TEM to create an exp(ilφ) phase dependence but selects a

ring shaped region from this using an annular aperture and then views the

diffraction pattern of this [70] (figure 2.4 a).This is an experimental ap-

proximation to the idealised infinitely narrow delta ring of an exact Bessel

function Fourier transform. The ring aperture blocked sections where the

radial dependence of the aberrations distorted the phase from an azimuthal

gradient. Whilst this is in theory a promising technique as it can be applied

to all correctors currently installed in TEM machines the resulting vortex

state is not very pure. The paper claims the rings of a Bessel function are

visible however the intensity is broken up into spots and the central vortex

ring is not well defined showing the electron is not in a pure OAM l=1

state. Indeed the paper calculates a decomposition of the Fourier series

used to approximate an l=1 state and shows contributions from l values

between -5 and 5, caused by a non-linear azimuthal phase gradient. Al-

though it is shown that 65% of the transmitted beam intensity is in the

l=1 state compared to 17% for an amplitude hologram, in the current state

the probes formed by this method would not be as useful for atomic resolu-

tion applications due to distortions. A second technique, also based upon

magnetic fields, uses a very thin magnetic needle placed in the path of

the electron beam [71] (figure 2.4 b). The field surrounding the needle is

a physical approximation to a magnetic monopole with flux lines spread-

ing radially outward from the tip. A magnetic monopole flux causes an

aharanov bohm phase shift creating the exp(ilφ) phase dependence in the

beam. The approximate monopole field cannot create an exact 2π phase

change due to flux lines re-entering the needle within the aperture. The

needle also blocks some of the beam and so the beam produced appears

as a beam with fractional topological charge, having a radial nodal line in

the intensity distribution (figure 2.4 b). This method offers much higher

beam intensity than the popular amplitude masks and the possibility of the

vortex to heal itself as it propagates is mentioned, however this relies on

working out of focus and would most likely not be suited to atomic sized

probes.
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Figure 2.4: The electron vortex intensity formed by aberration correctors

in [70]. b) the magnetic needle and vortex intensity presented in [71].

2.1.5 Measuring OAM

To gain more information about a specimen (e.g. magnetic information

or available electron transitions) a method for measuring the OAM of the

electron will be required. To achieve this, experiments involving two am-

plitude masks have been conducted where the second mask is used as an

analyser of the beams produced by the first. Saitoh has used the same

spiral mask mentioned above in an experiment to produce electron vortex

beams which were then analysed by a forked mask [72] (figure 2.5). The

diffraction pattern from the final forked mask showed a ring of dots at each

order , the zeroth central ring having a number of dots equal to the input

pattern. The + 1 and -1 side beams had either one more or one less dot

respectively, showing that diffraction from the second mask transfers OAM

between each side of the mask (each side gains OAM in opposite directions).

It is suggested that moving a pinhole between diffraction orders will allow

an analyser to be made where intensity is only found once the pinhole is

over the order corresponding to total loss of OAM from the incoming beam

(i.e the -1 order for an l=1 incoming beam).

Guzzinatti et al have also investigated some possible OAM mea-

surement methods [73], these include methods which utilise a secondary

structured mask (a diffraction amplitude mask, triangular aperture and a

40



Figure 2.5: The experimental set up used to measure OAM of electron

vortices produced with a spiral mask from [72].

knife edge) for the electron vortex to diffract from. The intensity distribu-

tion after the mask is then characteristic of the topological charge. This

work has recently been furthered by Clark et al. [74] where the diffraction

pattern from a multihole aperture was analysed with a computer algorithm

to give an OAM spectrum of the vortex state.

This initial analysis method is limited by aliasing produced by the

necessity for a finite number of holes and frequency information limitations

due to sampling. A secondary method, also investigated by Thirunavukkarasu

et al [17] , involves an astigmatic deformation of the vortex beam which

creates intensity fringes, the number of which shows the topological charge

of the undeformed beam. This has the benefit of being able to be applied

by the correcter lenses currently installed in many TEM machines and the

effect could be removed once the OAM measurement has been done.

2.1.6 Sample interactions

Propagation of vortices after interaction with a non-circular aperture was

investigated theoretically and expreimentally by Clark et al. [75]. They

showed that vortex antivortex pairs can be created by diffraction from

edges and the topological charge of the incident beam can be found by

counting the number of lobes in the diffracted intensity . Higher order off
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axis vortices were found to split up upon propagation however the central

vortex splitting only occurs when the topological charge is greater than half

of the rotational symmetry order of the aperture . It has been shown that

rotations of particles is possible with vortex electrons [76] [77]. Verbeeck

et al showed elastic and inelastic scattering causes angular momentum to

be transferred to Au particles on Si3N4 membrane approximately 3nm

diameter particle from 3nm diameter vortex. The direction of rotation

depends upon sign of topological charge. Elastic transfer of OAM is caused

by the radiation force arising from the local phase gradient in the beam .

Juchtmans et al have shown that by analysing the OAM content

of the first order Laue zone, produced by an incident plane wave elec-

tron beam after diffraction from a chiral crystal , it would be possible to

determine the crystal chirality[78]. This was a theoretical study utilising

multislice simulations and is yet to be shown experimentally. Further to

this Juchtmans et al. considered instead an incident vortex electron being

scattered by a chiral array of scatterers as would be found in a chiral crystal

[79]. Through analytic derivation, multislice simulations and experimental

diffraction it was shown that the symmetry of higher order diffraction zones

reveal the crystal chirality. This provides another application for electron

vortices as a scientific tool.

Juchtsman et al have shown that due to the complex phase term

the Fourier transform of vortex phase does not have to be centrosymmetric

as it would for a solely real function [80]. The diffraction pattern from

oppositely charge vortices follows an inversion of intensity from -k to k

which in 2 dimensions means that the amplitudes for +/- l are rotated by

π compared to one another. This rotational symmetry of the first order

diffraction intensities means that higher order diffraction spots would need

to be used to see variations due to interactions which vary with the chirality

of the incident vortex beam.

When assessing the feasibility of measuring chiral dichroism from

the interaction with the L2,3 of a ferromagnetic atom, it was predicted that

the difference signal for vortices of opposite chirality is does not survive

past 1nm distance from the atom [81]. As such the authors suggest that

chiral dichorism will not be observable with current microscope technology

unless the particles are below 2nm diameter. This is supported by the lack

of difference in experimental EELS recorded for a thin film Fe sample.

42



2.1.7 Other phase shaping

By placing a magnetised needle across an aperture the phase of an incom-

ing electron beam has been shaped such that there is a π phase change

between opposite halves of the aperture[82]. When interacting with 200nm

long metallic rods the EELS recorded is shown to depend upon whether

the probing electron is unstructured or structured. This is explained by an

increased probability of exciting plasmon modes when the phase of the in-

coming electron matches the phase distribution of the plasmon mode. This

is experimentally verified by altering the incoming electron probe and also

the orientation of the plasmonic structure relative to the incident electron

beam.

Two biprisms were used to produce an intensity grid in an electron

microscope image [83]. Through comparison with theoretical amplitudes

the presence of a grid of phase vortices was presumed. The observed pat-

terns showed similar patterns to different phase offsets between the two

outputs of the biprisms however the spatial variation of this phase was not

explained as the paper only wanted to show the experimental results. If cor-

rect these arrays of vortices could be used to analyse larger samples without

needing to align a single vortex beam exactly, with the array increasing the

overlap with structures and potentially increasing the probability of any

chirality dependent interaction.

2.1.8 OAM exchange with a sample

Despite being a fascinating fundamental physical phenomenon in its own

right , one major goal of investigating vortex beams is to add extra utility

to the TEM allowing more information to be gained from samples. This

is mostly focused on magnetic contrast in images reliant on interactions of

spin in the sample with the magnetic moment of the electron vortex states.

To achieve this an understanding of the interaction of vortex beams with

atoms and crystals is required and has been studied by various groups.

The first experimental results of vortex-sample interactions came

from a key paper by verbeeck et al. [57] This paper was also the first to

experimentally produce vortex beams via a holographic amplitude contrast
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mask. The mask was placed after a magnetic Fe sample, the electron en-

ergy loss spectroscopy (EELS) spectra were then recorded for the l=+1 and

l=-1 separately and a difference spectra was gained showing an energy loss

magnetic chiral dichroic (EMCD) signal. This matched the L2,3 dichroic

signal seen for Fe between oppositely circularly polarised photons in X-ray

magnetic circular dichroism (XMCD) however the explanation for these

results is still not clear. The basis of such a dichroic signal is that each

electron vortex is associated with a circulation of charge and so a corre-

sponding magnetic field and this can be aligned or against the local spins in

the sample, thus causing differing interaction strengths and different energy

loss probabilities.

In an attempt to gain a better understanding of Verbeeck’s dichroic

signal and sample interactions in general, Lloyd et al. derived a transition

matrix for the interaction of a vortex Bessel beam with a hydrogenic atom

[84]. This was conducted within the dipole approximation, such that the

distance from the electron vortex beam to the atom is considered as much

larger than the atomic electron orbital and thus the vortex electron effec-

tively sees the electron and nucleus as a dipole. Schattsneider et al. com-

mented on this paper in [85] questioning the use of an approximation that

the distance between the internal electron and the atomic centre is much

smaller than the distance between the vortex electron and the atomic cen-

tre (dipole approximation). They stated that the final state need not be of

integer topological charge or an eigenstate of OAM and so OAM exchange

does not always occur with quantised transfer of ~ OAM. This is cleared

up by a reply from Lloyd et al. [86] explaining the dipole approximation

is a first order expansion of the electron-atom polarisation field and that

the assumption will be valid even when the distance from the nucleus ap-

proaches that of the atomic electron due to the first order term still being

the largest term. The aim of the first paper was not to state that all trans-

fer is quantised, only to show theoretically that quantised OAM transfer

can occur between vortex beam and atomic electron.

The initial paper by Lloyd et al, [84], showed there are 3 types

of transition possible which transfer quantised amounts of OAM ; from

the electron vortex or atomic centre to the atomic electron, the reverse

process, from the atomic electron to the vortex beam or atomic centre and

finally one which involves the transfer from the vortex beam to the internal

atomic electron state. These are dipole transitions which are not possible
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for optical vortices interacting with the same atom. These interactions

offer a possible explanation for the dichroic signal found by Verbeeck et

al. Which could be due to different density of final states for different

topological charge, in magnetic materials.

A paper aimed at explaining chiral specific effects by Yuan et al.,

[87] describes the expansion of a Bessel vortex beam in off axis co-ordinates

, effectively how off an axis atom ’sees’ the vortex beam. This is actually

as a superposition of different topological charges. Using this type of ex-

pansion a new transition matrix is gained with an operator including a

term dependent on the integral of 1/Q2where Q is the scattering wavevec-

tor. This operator is shown to lead to selection rules agreeing with the

previous findings that OAM can be transferred in quantised amounts of

~. The expansion into off axis components shows that variations in the

amount of topological charge l do not always mean interactions resulting

in an exchange of l OAM, as these interactions most likely occurred off

axis. Forbidden transition probabilities actually peak off axis and so could

contribute more than expected from a purely on axis consideration in real

samples. The effect of these off axis forbidden transitions should be min-

mised by well focused probes, but will still need to be considered if vortex

beams are to be used experimentally.

In addition to OAM transfer to atomic nuceli or individual elec-

trons, the transfer of OAM from vortex electrons to chiral plasmon oscilla-

tions has been theoretically studied by Asenjo-Garcia and Garcia de Abajo

[49]. This paper used a Greens tensor analysis for a chiral arrangement

of 4 metallic nanospheres, 30nm diameter separated by 5nm gaps. They

assume the spheres are small enough to apply a scalar electric polarisability

but large enough to model with a local classical theory. Their calculations

predict the possibility of a 10% difference in intensity between opposite chi-

rality of vortex beam, when recording EELS over the chiral arrangement of

particles. The chiral interaction is due to the electron vortex being a chiral

entity and thus the interaction with substrates of two different chiralities

represents two distinct physical situations. Each vortex electron can be

thought of as acting like a current loop with its own magnetic moment,

this can interact with the magnetic properties in the sample, in this case

the circulating plasmon current.
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2.1.9 Modelling

Due to the difficulty of producing pure high intensity vortex states com-

puter simulations are a valuable tool for gaining an understanding of how

electron vortex beams will behave when interacted with a sample. Multi-

slice simulations involve condensing atomic potentials into slices (projec-

tions a set distance along propagation), the electron wavefunction then

interacts with this 2d potential slice and then undergoes free space Fresnel

propagation until it meets the next slice. Multislice simulations have been

used to simulate the effect of propagating vortex electron Bessel beams

through an Fe BCC crystal [88]. Modelling magnetic interactions is still

computationally difficult and so these simulations only investigate the effect

of the electrostatic potential in the sample.

The phase at the exit plane of a 200A thick crystal shows the

vortex structure is strongly affected by the crystal potential and is sensi-

tive to the beam position relative to atomic columns. The vortex phase

structure is channelled along atomic columns(which agrees with Lubk et al.

[89]), meaning close to atoms the phase structure is distorted more than

inbetween atomic columns. However when directly on an atomic column

the local azimuthal phase gradient appears to be maintained within a small

radius of the atomic column. Due to the OAM exchange occuring between

the vortex beam and the crystal the expectation value of OAM is no longer

constant and oscillates as the beam propagates through the sample. The

propagation dynamics of the phase distribution of vortex beams were stud-

ied by Lubk et al. [89] , where vortex nodes were mapped out as they

propagated. It was found that small perturbations for l=1 beams only lead

to a shifting or tilting of the nodal line, whilst for higher orders multiple

first order beams are created. Vortex beams were found to be attracted

to the positive coulomb potential of atomic columns. These effects lead

to three key feature of the simulated vortex node maps:1) the creation of

vortex-antivortex pairs either along the direction of propagation or in rings

around the main vortex, 2)off centre vortex nodes will circulate an atomic

column and 3) the splitting of l > 1 modes can create higher orders as

long as total winding number is conserved from the creation of opposite

topological charges. The channeling along atomic columns is due to the

similarity between the vortex phase and intensity distribution and that of

the atomic 2p states ( specifically a combination of Px and Py orbitals ),

as shown in simulations by Xin et al the ring intensity structure of on axis
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vortex states can persist for much larger propagation distances than the

equivalent off axis [90] .

Juchtmans has also shown that a spiral phase plate of topological

charge −m could potentially map the local m component by cancelling out

the +m phase and creating on axis intensity [91]. The −m topological

charge is added by a spiral phase plate in the Fourier plane and then the

transform of this produces an intensity with an on axis value determined

by the coefficient of the +m component. The image formed has intensity

related to the local m component taken with respect to an axis centered

at that point. As has been discussed, there are currently multiple ways of

producing electron vortex beams each with its advantages , binary ampli-

tude masks are simple to produce but split intensity into unwanted orders,

phase contrast masks could increase the intensity ending up in the vortex

beams but are much harder to produce. Direct phase masks or altering

the phase with magnetic fields offer the possibility of a purer, brighter vor-

tex beam however their implementation is very difficult and the ideal pure

vortex probe has yet to be produced in an easy, reproducible way.

2.1.10 STEM EELS and plasmons with OAM

STEM EELS has proved to be a very useful tool for analysing plasmon

modes in thin metal films at nanometre scales, providing experimental evi-

dence for non-dipolar plasmon breathing modes which cannot couple to EM

radiation and as such are ’dark’ and not observable when interacting with

photons [92, 48]. Previous studies of Aluminium structures have shown the

size dependence of small nanodisks follow a standard plasmon dispersion

when using the fitting of integer half wavelengths to the diameter. Schmidt

et al have suggested a universal dispersion [93] for straight edges and nan-

odisks constructed from edge modes and breathing modes, similar to the

plasmon breathing modes found for silver nanodisks by Schmidt previously

in 2012. However the edge modes do not appear to follow the predicted

dispersion relation when assuming a simple standing wave model either

along the edge of a nano rod or around the circumference of a nanodisk.

Much like other wave phenomena surface plasmon oscillations

can be travelling waves (often referred to as surface plasmon polaritons,

SPPs) or standing waves (called localised surface plasmons, LSPs) and
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these standing waves are produced when multiple travelling waves inter-

fere. [94]

2.1.11 Chiral interactions during TEM EELS

It has recently been shown that 2D plasmon states can carry OAM. Kim et

al. excited plasmons with laser irradiation and then measured the induced

plasmon field with scanning near field optical microscopy (SNOM) and have

shown coupling of photon SAM to plasmon OAM [45] (figure 2.6). This

highlighted the capability of plasmonic lenses to exhibit chiral interactions

with left and right hand circularly polarised light .

Figure 2.6: The recorded SNOM intensity measurement of a plasmon mode

with OAM from [45].

Gorodetski et al . have shown that the OAM of incident pho-

tons survives transformation into a plasmon mode, propagation through

an aperture and subsequent reemission as a photon mode [95]. This was

achieved by measuring the transmitted intensity of right and left circularly

polarised vortex photon beams after interaction with a plasmonic lens. Sim-

ilarly Yu et al. showed different vortex beams produce different intensities

after interaction with a plasmon mode and by matching the amplitude with

that predicted for different vortex states they showed experimental evidence

for the conservation of OAM throughout the interaction. Although direct

measurement of the phase of plasmon modes has not been acheived, the

interaction of plasmon vortex modes with gold particles has been shown

by Shen et al. [96]. The particles were diffused in water above a plasmonic
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structure designed to produce a vortex plasmonic near field proportional to

the incident laser topological charge. The particles were recorded rotating

at a rate dependent on the incident topological charge.

Entanglement of orbital angular momentum states has also been

shown to survive when one photon of an entangled pair undergoes the con-

version from photon to plasmon and back to a photon again [97] . Following

these experiments, the interaction and possible transfer of OAM between

an incident electron and a 2D plasmon mode is an untested avenue of re-

search. There has been one study of the interaction of vortex electrons with

a three dimensional arrangement of aluminium nanoparticles of roughly

100nm diameter. An arXiv paper [50] reports a difference in energy loss

around 3.5eV for vortex electrons of opposite chirality. Ugarte and Ducati

have theoretically modelled the interaction of electron vortex beams with

surface plasmons of varying rotational symmetry [98]. They approached

the problem by considering an ensemble of classical electron trajectories

distributed around a ring and found that there can be an enhancement of

energy loss to surface plasmons if the phase of the vortex matches the phase

distribution of the plasmon mode. As such an l = 1 vortex beam can also

excite a plasmon mode if focused onto a position corresponding to a node,

so that the phase of the plasmon mode undergoes a π change either side of

the vortex probe.

This work builds upon previous findings by investigating the effect

of a spiralling boundary, which reduces the rotational symmetry disks,

going beyond the triangles studied in [98] , it is shown that the EELS

maps produced have a features which differ from what would be predicted

by the standard dispersion relation for reflection and interference from a

straight boundary. The interaction between photons and spiral plasmonic

lens structures have previously been studied [45]. However these use a

laser of approximately 660nm, exciting low energy plasmons and only those

plasmons with a frequency matching the incident laser wavelength. The

size of the structures is also fairly large compared to the wavelength ( 8µm

diameter) such that with a long decay length (430µm) multiple oscillations

are seen in the recorded SNOM (scanning nearfield optical microscopy)

field. In contrast to these studies, in this chapter EELS is used to study

structures of dimensions much closer to the wavelength of surface plasmon

and multiple plasmon wavelengths can be excited by the incident beam

electron.
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This thesis involved measuring the energy loss of electrons car-

rying OAM after interacting with isolated thin metallic film structures

designed to sustain plasmon modes with OAM. In the following chapters

the plasmon modes present in Aluminium thin film structures are mapped

by means of STEM EELS. After this the TEM EELS are compared for

opposite signs of C-shaped beam after interaction with the Aluminium

structures.

2.1.12 Previous vortices with openings

Previous work in the field of photon vortices has studied fractional OAM

[99] [100][101] [102]. This has been both theoretical [99] and experimental

[102]. The main findings have been that fractional OAM is associated with

lines of vortices of alternating charge, producing a low intensity opening

in an otherwise circular ring. The OAM carried by such fractional vor-

tices has been shown to follow a step profile when plotting OAM against

topological charge. The fractional OAM states are generally considered un-

stable and the intensity breaks up upon propagation, although one study

showed by carefully controlling the Gouy phase of individual integer vor-

tex components the fractional state can be stabilised [103]. Previous work

has mostly concentrated on the wavefunction directly after phase modifi-

cation [100] [99], and then propagation from this plane is considered [102],

with only a few papers looking explicitly at the Fourier plane, for example

[104] [105]. In common with the latter set of papers this thesis concerns

the wavefunction in the Fourier plane of the phase modification and the

Fresnel propagation before and after this Fourier plane. Fractional optical

vortex states have successfully transferred angular momentum to 3.1µm

diameter spherical latex particles [106], proving the OAM associated with

fractional states is not merely a theoretical idea. Furthering this an array of

fractional OAM vortices was used to achieve optical sorting of polymer mi-

croparticles (refractive index of 1.59) with diameters of 3.1µm and 1,5µm.

The two different sizes experienced two distinctly different alterations to

their trajectories providing the basis for optical particle sorting [107].

Extending the work on fractional optical vortices, Alonzo pro-

duced helico conical beams by including radial phase gradients in the phase

profile [16], from which the Fourier transform produces the intensity. The

intensity in these types of beam has been seen to spiral [16][108][109][110].
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Studies of fractional vortex states has shown that the branch cut used to

define the phase discontinuity is a parameter which defined the quantum

state [102] such that different branch cut orientations are no longer identical

states. This chapter describes how the idea of using an alternative branch

cut (i.e. a phase range of −π to π) can be applied to the use of radial phase

gradients. This allows the formation of more symmetric C-shaped inten-

sity structures, of which the size and opening angle can be easily controlled.

This control can be explained using a local spatial frequency analysis using

the method shown by Alonzo et al [16]. A selection of previously described

Figure 2.7: Fractional OAM modes taken from references [99], [102], [111],

[103] and [112]

states with an opening are shown in figure 2.7. As can be seen most of the

simualted (figure 2.7 a,b) and experimental results ( figure 2.7 c,d) show a

narrow opening and multiple rings of intensity. The closest to a C shape is

the error function ’erf-G’ beams described by Fadeyeva [104] (figure 2.7 e)

however this paper focuses more on the polarisation state of the beam, the

beam has a much more complicated phase structure due to the use of error

functions and there is no discussion of controlling the opening angle size.

The beam also appears to break up from the C like shape as it propagates.

For these reasons the C-shaped beams described in this thesis represent a

furthering of the field going beyond the C like states produced previously.
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Chapter 3

Methods

The main experimental method used for the results in the thesis was elec-

tron microscopy, either transmission or scanning, the details of the micro-

scope used are given below. In addition, brief descriptions of techniques,

apparatus and simulation methods is given in this section. Focused Ion

Beam milling (FIB) was used to produce the amplitude and phase masks

shown in chapter 5 and some of the spiral structures shown in chapter 7.

Iterative Fourier transform algorithm (IFTA) methods were used to calcu-

late an example phase which produces a C like shape for comparison with

the C-shaped beams. IFTA methods were also applied to experimental

data to retrieve estimates of the phase associated with the measured in-

tensity. The boundary element method (BEM) and Finite element method

were used to simulate the electromagnetic eigenmodes supported by the

metal structures described in chapters 6 and 7 .Electron beam lithography

(EBL) was used to produce a grid of structures which were then analysed

by Electron Energy loss spectroscopy (EELS) and Cathodoluminescence

(CL) in chapter 7. Both EELS and CL were used to look for evidence of

energy loss characteristic of surface plasmon modes.

3.1 The JEOL 2200 FS Microscope

The microscope used in the experimental sections of this thesis was a JEOL

2200FS with aberration correction at the Unviersity of York Nanocenter.
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Figure 3.1: A schematic of the main lenses and apertures in the 2200

microscope.

The main lenses and apertures are shown schematically in figure 3.1. Dur-

ing beam shaping experiments diffraction masks were placed in the 2mm

condenser aperture holder or the 3mm sample plane holder. The ray dia-

grams for 3 different convergence angles along with nano beam diffraction

(NBD) mode are shown in figure 3.2. In figure 3.2, Cl1 and Cl2 are the

condenser lenses close to the condenser aperture, CM is the condenser mini

lens, which is used to alter the angle of incidence on the sample. Diffraction

masks were placed in the condenser aperture (if 2mm) and also inserted

as a sample into the sample holder plane (if 3mm). To vary the defocus

of the condenser aperture mask diffraction pattern the condenser lens was

varied, during TEM mode. In addition to TEM mode the illumination can

be changed to a very small spot, useful for recording diffraction from a

well defined area, for this application the microscope can be operated in

NBD mode (figure 3.2) in this case weaker lens currents are used , in the

condenser lens 2 (Cl2 in figure 3.2) and condenser lens mini (CM in figure

3.2), this reduces the effect of lens aberrations, increasing the coherence of

the illumination and allows a smaller spot size to be produced. In section

5.2.1 NBD mode is used to produce a C-shaped probes and shows more

fine structure. In TEM mode this sample plane is illuminated with plane

waves (or the diffraction pattern of the condenser aperture mask) and it is

this plane whose image is formed onto the CCD at the ’end’ of the micro-

scope column. For the sample plane masks the TEM was changed to low

magnification mode (see figure 3.3). In figure 3.3 IL1,IL2,IL3 an Il4 are
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the intermediate lenses inbetween the sample and the spectrometer, PL1

and PL2 are the final projector lenses which form the image recorded by

the CCD. The two post-sample plane apertures shown are the selected area

aperture and the EELS spectrometer entrance aperture. In low mag mode

the Objective lens is turned off reducing the overall magnification however

the sample plane is still the conjugate plane to the CCD image. To vary

the defocus of the sample plane mask the first intermediate lens ’IL1’ was

varied in this low magnification mode . In spectrum mode the filter lenses

are used to disperse electrons according to their energy and it is this dis-

persion plane (labelled spectrum plane in figure 3.3) which is imaged onto

the CCD. In this way the probability of losing a certain energy is recorded

by imaging the intensity of electrons after travelling through the filter.

Figure 3.2: Illumination ray diagram for TEM mode and NBD mode.

Image taken from York Nanocentre 2200 handbook. Cl1, Cl2 are condenser

lenses, CM is the condenser mini lens. OL prefield and OL postfield are

ways of modelling the optical effect of the objective lens. α is the angle of

rays entering the objective lens.

54



Figure 3.3: Ray diagrams of the 3 main microscope modes used in this the-

sis, low magnification , TEM mode (40,000-600,000 times magnification)

and spectrum mode.Image taken from York Nanocentre 2200 handbook.

3.2 Holographic reconstruction

Holographic reconstruction is a way of imparting a desired phase distribu-

tion onto an incoming wave. This utilises the fact that the intensity in an

interference pattern between two complex fieldsA1exp(iφ1) and A2exp(iφ2)

is determined by the phase difference (φ1−φ2) and amplitudes(A1 and A2)

as shown below.

55



|A1exp(iφ1) + A2exp(iφ2)|2 =

|A1cos(φ1) + A2cos(φ2) + i ∗ (A1sin(φ1) + A2sin(φ2))|2

= A2
1cos

2(φ1) + A2
2cos

2(φ2) + 2A1A2cos(φ1)cos(φ2)+

A2
1sin

2(φ1)− A2
2sin

2(φ2) + 2A1A2sin(φ1)sin(φ2)

= A2
1 + A 2

2 + 2A1A2cos(φ1 − φ2)

To use this interference effect, the interference pattern of a target

phase distribution and an angled plane wave is calculated. The resulting

amplitude distribution can be imprinted onto a plane wave, via the use of

an amplitude mask with the same amplitude distribution. The field after

the mask is then a combination of the input plane wave and fields with the

target phase distribution travelling at an angle. The mask made in this

manner can be thought of as the combination of modes, when illuminating

the mask you excite this combination of modes. If the interference pattern

is binarised ( as being above or below a threshold value) then multiple

higher order modes are produced too. This can be rationalised by con-

sidering that to form a straight edge, like a top-hat function, many larger

frequencies are required compared to a single sine wave oscillation. An ex-

ample of a simple holographic reconstruction mask is a linear grating. This

is calculated by the interference of two plane waves travelling at an angle to

one another. When illuminated with a plane wave the field after the mask

contains other plane waves travelling at an angle, thus producing the well

known diffraction spots in the far field [113] (see figure 3.4). The diffraction

angles are determined by the ratio of the slit width d to the wavelength λ

by Φ = λ/d, which for the electron experiments described here gives angles

of the order of 2.5E − 12/1E − 7 = 2.5E − 5rad = 25µrad. As described

in section 1.3, by looking at the far field of the field after the mask you are

visualising the Fourier transform of that field. This allows fields which are

travelling at different angles to be separated. This is one of the methods

which is used in this thesis to produce the phase structured electron states

in the subsequent chapters. When discussing this experimental set up the

’mask plane’ refers to the field just after the input wave has interacted

with the mask being used. Alternatively the ’Fourier plane’ or ’diffraction

plane’ is in the focal plane of a lens system performing a Fourier transform

of the mask plane field. In practice, the interference pattern is calculated

numerically to produce a computer generated hologram (CGH) mask.
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Figure 3.4: A schematic diagram of diffraction pattern intensity from a

plane wave on a linear diffraction grating. Energy is distributed between

the three main diffraction orders (+1, 0,−1). The yellow line plot is an

intensity profile through the diffraction orders.

3.3 Focused Ion Beam Milling

In a similar way to electrons, larger more massive particles can be ionised

and focused by magnetic or electric fields using analogies with photon optics

[114]. This is utilised in a focused ion beam (FIB) milling machine to

accelerate and focus a source of ions, for example Ga+, to a spot on a

sample. When the Ga+ ions hit the sample, they can impart enough energy

to cause sputtering and remove atoms from the sample wherever the beam

is focused, milling at very small scales. In addition to sputtering, the

incident ions can cause emission of secondary ions or electrons, which can

be used for imaging in a similar manner to scanning electron microscopy.

The lenses allow scanning of the focused beam to pattern samples ,this is

a useful method for producing structure on the nanometer scale for certain

samples. It is best suited to conductive metals which can dissipate any

charge build up from the bombarding ions. However if needed an electron

beam can be used to flood the sample with negative charge to help alleviate

any positive charge built up during FIB milling.
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3.4 Electron beam lithography (EBL)

In lithography a resist is a material which can undergo local changes in

physical properties, such as solubility in a particular solvent. This allows

areas to be defined which can be removed by such a solvent. Any areas

left can be used to block deposition of material in the pattern which was

defined on the resist. During electron beam lithography (EBL) electron

optics can be used to scan a focused electron beam over a resist which will

react to illumination by electrons and change its properties [115]. A first

work up step will remove some of the sample leaving either the exposed

region (negative resist) or unexposed resion (positive resist) [116]. A top

metal layer is then deposited over the resist whilst still leaving some of the

resist accessible. A final work up step removes the resist which was initially

left ,lifting off the metal which was on the resist left after the first work

up. This leaves behind a metal layer with the pattern determined by the

electron beam. Due to the small sizes an electron beam can be focused

to this is a useful high throughput method for controlling structure on the

nm scale. Researchers are constantly searching for new resists which can

achieve higher resolution patterns when interacting with ion beams. One of

the most widely used resists is polymethyl methacrylate (PMMA), which

has achieved resolutions of the order of 5nm (40nm PMMA resist layer,

30keV beamline dose of 1.2 − 1.3nCm−1 [116]). This has been pushed

further to 3-4nm by ultrasonic agitation during the work up process. How-

ever the highest resolutions have been produced for isolated structures and

PMMA still has a problem of instability and pattern collapse when produc-

ing dense features. Due to its limitations alternatives to PMMA are being

searched for with a recent higher resolution resist Hydroxysilsequioxane

(HSQ) becoming popular [116].

3.5 Cathodoluminescence

In a scanning electron microscope it is possible to include a collection mirror

above the sample to collect any photons emitted after electron excitation,

known as cathodoluminescence (CL)[117]. The energy of these photons can

be related to transitions between excited states from the sample of radia-

tive modes excited in the sample. The SEM used for this project used a
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hemispherical curved mirror to collect the intensity onto a CCD. The sys-

tem can produce either CL images or spectra. When forming CL images

the incident electron is focused to a spot and any photon emitted are col-

lected into a photomultipier tube which amplifies the incoming photon into

an electrical signal by a cascade of photoelectron emission. Filters can be

used to select different wavelength ranges. Similarly to STEM the focused

spot is scanned across the sample and at each point the emitted photon

intensity is recorded thus building up an image of local photon emission

at each point. Alternatively the collection time can be increased such that

the focused spot covers all of the sample multiple times, any emitted pho-

tons during this collection window can be collected into a spectrometer,

which separates out photons from the entire sample area depending on

their energies by using a diffraction grating to produce a spectrum.

3.6 Simulation Methods

3.6.1 Iterative Fourier transform algorithm to find a

phase mask

For a Fourier pair of planes, real and reciprocal, when an amplitude is

known in the reciprocal plane, the amplitude and phase required in the

real plane to form such an amplitude can be found by iteratively applying

a Fourier transform to complex functions in both planes. After each trans-

form the new phase is used to define the next function, using the desired

amplitude, gradually this should find the phase and amplitude in the real

plane which produces the best match in the reciprocal plane to the known

amplitude. The algorithm used followed the Gerchberg-Saxton method

[118][53]. A flow chart for this method is shown in the appendix in section

A.2. The assumption behind this method is that Fourier transforming a

similar phase distribution to the actual solution will reach a distribution

more similar to the actual solution. By imposing an amplitude condition

on each new phase the algorithm restricts the solutions it explores to those

similar to the recorded intensity and the true phase solution. The am-

plitude condition allows the algorithm to explore the possible solutions as

shown in figure 3.5, where each point on the real and reciprocal space planes

represents a different complex function.
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Figure 3.5: By imposing boundary conditions (represented by dashed ar-

rows) after each transformation (represented by solid arrows) an initial

guess A can be moved closer to the true solution B, during an iterative

Fourier transform algorithm.

The known reciprocal space intensity combined with a constant

phase is used as the initial reciprocal space guess, shown as circle A. By

performing a Fourier transform (shown as vertical blue arrow) an initial real

space solution is gained, shown as point 1. However if Fourier transformed,

the initial reciprocal plane guess will be returned to, by imposing an am-

plitude onto the Fourier transform you alter the real space solution guess,

this is shown as a red dotted arrow changing initial Fourier transform guess

point 1 to a different guess, point 2. This involves selecting only intensity

within an aperture. By Fourier transforming this reduced range (shown as

a solid red arrow from 2 to 3) the reciprocal solution moves closer to the

true reciprocal solution, shown as circle B. This is because the solution the

algorithm is designed to solve for a mask which only uses intensity within an

aperture, any intensity outside of the aperture represents deviations from

the final solution. Finally a new guess of the reciprocal space complex

function is gained by imposing an amplitude condition in the reciprocal

plane (shown as a dashed blue arrow from 3 to 4). This will have a similar

function to the real plane aperture, selecting only those contributions we

want in the final solution. Repetition of this sequence, should result in the

amplitude conditions being smaller changes to the overall functions (shown

with decreasing arrow size). This allows a pair of points in real and re-

ciprocal space to be found which satisfy the amplitude conditions in both
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planes and reproduce the known intensity in the real plane. This method

can either be used to solve for the real space phase distribution required to

form a desired reciprocal space intensity (beam shaping, appendix section

A.2 ) or it can retrieve the phase of a reciprocal complex function when

the reciprocal plane intensity and real plane amplitude are known (phase

retrieval, appendix section A.3).

The details of the IFTA algorithm used are in appendix chapter A

section A.3. Iterative algorithms can often get stuck in a local state where

the solution error does not decrease enough, going back and forth between

multiple unsatisfactory solutions. When performing phase retrieval the al-

gorithm was improved to include a method known as charge flipping [119].

This was used with the threshold value of 1.2ζ where ζ is the standard

deviation of the mask amplitude distribution. The charge flipping method

works as follows, instead of an ideal circular aperture binary mask, an

amplitude mask with a sign of ±1 depending on whether the calculated

amplitude in step 2. is above or below the 1.2ζ threshold. This replace-

ment of the binary circular aperture occurs for a series of 10 iterations

out of every 100 after which the previously described aperture condition is

used for another 90 iterations. Adding in this extra variation allows the

algorithm to explore more possible solutions whilst reducing the potential

for the algorithm to get stuck in an unsatisfactory local minimum. This

iterative algorithm, when used for phase retrieval, will converge on the

complex function which best matches the experimental amplitude. The

application of this phase retrieval algorithm to experimentally produced

C-shaped vortex intensity is shown in chapter 5, in section 5.1.3.

3.7 Boundary element method overview

To simulate electromagnetic fields Maxwells equations need to be solved

numerically. When using the Boundary element method (BEM) this is

achieved via a Greens function formalism, where the function G represents

the field created by a single point charge. The field inside a homogeneous

dielectric environment can then be described by the summation of effects

from any externally applied fields, φext, and the integrated effects of source

charge terms ,σ,distributed over the boundary between two different ma-

terials with dielectric constants ε1 and ε2. By applying the conditions of
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continuous parallel electric field and continuity of normal dielectric dis-

placement field across the boundary, a boundary integral equation can be

formed. To compute this integral it is approximated by a summation of

individual elements which, within the quasi-static approximation ( which

assumes that the dimensions considered are much smaller than the wave-

length of light being used), yields equation 3.1, linking the surface charge

at point i to contributions from points j. [120]

Λσi + Σj(
∂G

∂n
)ijσj = −(

∂φext
∂n

)i (3.1)

where

Λ = 2π
ε2 + ε1
ε2 − ε1

(3.2)

and n is the outer surface normal vector.

When the quasistatic approximation does not apply, the full maxwell

equations must be solved and this leads to a more complicated version of(

3.1) with multiple equations, however the principle is the same. Eigenvalue

equation (3.1) can then be solved by matrix inversion. To achieve this the

surface is split into a grid of elements joined by nodes. The field value at

each node relies on the effect of the fields from all other nodes in the sample

thus equation 3.1 is a collection of simultaneous equations from Maxwell’s

equations, using neighbouring nodes to calculate derivatives. The inputs

for the simulation consist of the dimensions of the geometry to be solved,

parameters controlling the mesh production and optical constants defin-

ing the materials. The MNPBEM (Magnetic Nano Particle BEM) toolkit

[121] then utilises the built in MATLAB function ’mldivide.m’ . This func-

tion checks the matrix for symmetries which could reduce computation

time if none of these checks are true then the default method is the LU

solver, which applies Lower -upper (LU) decomposition, thus allowing the

inverse of the matrix to be calculated.([122]) Once the surface charges have

been solved for (the eigenvector) then the fields can be calculated. The

MNPBEM toolbox also allows for the inclusion of a line current as a φext

and can thus model interactions with an electron beam [123]. The proba-

bility of energy loss (per unit of transferred energy) can be calculated by

evaluating 3.3, where Γbulk(ω) is the probability of energy loss at frequency

ω during propagation through a lossy medium and is proportional to the

imaginary term =[−1/ε(ω)] within the quasistatic approximation.

ΓEELS(, ω) =
e

π~ω

∫
<[e−iωtν.Eind(r(t), ω)]dt+ Γbulk(ω) (3.3)

62



In 3.3 the < is the real part, the integral calculates the work done by the

electron, with velocity ν, in moving against the electric field induced in the

sample, Eind, and can thus predict the energy loss probability.
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Chapter 4

C theory

4.1 C shape theory

4.1.1 C-shaped intensity

The theory behind producing a C-shape will now be presented. A C-shaped

vortex state removes the rotational symmetry of the standard annular in-

teger vortex and allows rotations of the intensity to be viewed as well as al-

lowing the production of split-ring structures via lithography. Throughout

this section the intensity produced by a phase alteration will be considered

where the intensity is in the diffraction plane (”Fourier plane”) of the phase

alteration plane (”mask plane”). The fields in the mask and Fourier planes

form a two dimensional Fourier transform pair. Both planes are perpendic-

ular to the overall propagation direction along the beam axis. When the

mask plane phase includes a product term of the form ρφ, where (ρ, φ) are

circular polar co ordinates in the perpendicular planes, the phase distribu-

tion in the mask plane contains a radial phase gradient. For helico-conical

beams, [108], this has been shown to produce a Fourier plane intensity with

spirals instead of the vortex rings produced by solely azimuthal φ dependent

phases of integer vortex beams [55]. This can be explained by considering

a simple geometric ray model where every point on the phase surface in the

mask plane provides a contribution with a transverse wavevector equal to

the transverse component of the surface normal vector of the mask phase

surface. This is known as a local spatial frequency analysis [16], each spatial
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frequency is directly mapped onto a point of intensity in the Fourier plane.

For an l = 1 vortex these phase gradients point in the direction of the

local azimuthal unit vector. For helico-conical beams these phase gradient

vectors are now off set by an additional radial vector component which in-

creases as you increase the azimuthal angle value. An additional parameter

which was not varied in the previous studies of helico-conical beams was

the distribution of angles used in the definition of φ, which in turn varies

the spatial variation in the size and sign of the contribution from the ad-

ditional ρφ term. In addition to this, the helico-conical paper was limited

to only integer coefficients in front of the topological charge and mixed ρφ

terms. Furthermore only differences, not summations, between these terms

were considered . Thus, by choosing summations of fractional topological

charges for symmetric |ψ| distributions new types of intensity distribution

and wavefunctions have been explored in this thesis. A C-shaped intensity

distribution can be produced by using the mask plane phase distribution,

U , of equation 4.1 ,where m and c are dimensionless non-integer constant

coefficients, ρ0 is the aperture radius, ρ̄ = ρ/ρ0 is the scaled radius and

φ0 is the offset from a 0 ≤ φ ≤ 2π range of angles for the definition of

φ values.An example of a phase mask using equation 4.1 is shown in the

lower left of figure 4.1.

U = (m+ cρ̄)(φ− φ0) (4.1)

Two key properties of the phase function (4.1) which determine

the intensity pattern produced are the range of angles used and whether

a summation or difference is used when combining the mφ and cρφ terms.

Previously shown helico-conical beams are reproduced by using an angle

defined between 0 and 2π (φ0 = 0) and by taking a difference between

the two terms m and cρ (c < 0). Using a symmetric range of values for

the polar angle (−π ≤ φ ≤ π, i.e. φ0 = π) along with a summation

(c > 0), the intensity can be made to create a C shape (shown in figure

4.1).The gap in the C-shape can be understood by returning to a local

spatial frequency analysis. Each point from the mask phase contributes a

wavevector, governed by its local phase gradient, which can be represented

by a dot in k space placed at the end of the vectors projection on the kx,ky

Fourier plane. The phase discontinuity in the mask plane removes any

phase gradient pointing solely along the azimuthal unitvector at φ− φ0 =

−π or φ − φ0 = π. Either side of the discontinuity there is an additional
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Figure 4.1: The mask plane phase and Fourier plane intensities for an

l=9 integer vortex (top) and an α = 45,D = 10 C-shaped beam (bottom).

The mask plane scale bar is 30µm and the scalebar on the Fourier plane

is 2.5× 105m−1. The orange arrows on the mask plane phase indicate the

local direction of largest phase gradient, at either side of the discontiuity

which only differ when radial phase components are added.

wavevector (phase gradient) component either in the positive or negative

radial direction as shown in figure 4.1 by the orange arrows on the phase

distributions. There are two arrows as one is for the phase gradient to

the left and one is for the phase gradient to the right of the discontinuity.

This means there are missing phase gradients, between the directions of the

two orange arrows there are no phase gradients with those angles. Thus

the ring in the integer vortex is split open to form a C, the missing local

phase gradients corresponding to those points in the Fourier plane with low

intensity. The phase gradient is predominantly in the φ̂ direction and as

such the Fourier space opening in the C is rotated 90o from the real space

mask discontinuity. As will be shown, analysis of the derivative of the

phase allows equations to be derived, linking the predicted shape opening

angle and radius to the mask parameters m and c.
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4.1.2 Control equation derivation

To predict the intensity distribution we initially require the phase gradient

as a function of polar co ordinates, ∇U(ρ, φ). Depending on how the sign

of the phase is defined, a mask plane phase gradient along a vector r̂ could

correspond to wavevectors travelling along r̂ or −r̂, however due to the mir-

ror symmetry of the C shape it is not important which convention is used.

The following calculations consider a mapping of a positive gradient onto

a positive wavevector. The gradients of the mask plane phase distribution

with respect to radial and angular coordinates (ρ, φ) can be calculated as

∂U

∂ρ̄
= c(φ− φ0) (4.2)

∂U

∂φ
= (m+ cρ̄) (4.3)

∇U =
∂U

∂ρ̄
ρ̂+

1

ρ̄

∂U

∂φ
φ̂ = (c(φ− φ0))ρ̂+ (

1

ρ̄
(m+ cρ̄))φ̂ (4.4)

Two useful limits can be used to define the C shape produced

when 0 < φ < 2π and φ0 = π. Firstly, for φ = π,

∇U = (
m

ρ̄
+ c)φ̂ (4.5)

this produces a dot in the scatter plot of figure 4.2 directly op-

posite the C opening, representing a gradient pointing solely in the φ̂ di-

rection. Smaller phase gradients occur for larger radii in the mask plane,

as such the smallest point on the scatter plot will be from positions where

ρ̄ = 1. This can be used to define a distance characterising the size of the

C shape, by looking at the smallest inner value for the gradient which gives

D = m + c as the radial dimension of the C shape size, as shown by the

distance between the green dashed lines in figure 4.2. The second useful

limit is for φ − π = ±π, where the scatter plot points create the opening

in the C shape. Here,

∇U = ±cπρ̂+ (
m

ρ̄
+ c)φ̂ (4.6)

The additional contribution in the ρ̂ direction leads to a redirecting of

phase gradients away from the φ̂ direction. This causes an absence of

phase gradients pointing solely along φ̂ and it is this effect which causes

the opening in the C-shaped beam, when compared to the full ring of the
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Figure 4.2: Markers are Fourier plane points representing local spatial

frequency analysis of mask plane phase gradients, the different coloured

groups are phase gradients from constant mask plane radius. The phase

gradient points from key mask plane angular co ordinates are shown by

circles (φ = −π), triangles (φ = 0) and crosses (φ = +π). The greyscale

colour is the corresponding Fourier plane intensity. The 2 characterisation

parameters α and D are also shown with the distance between the dotted

green lines and angle between the red lines respectively , α = 45o,m =

6..1161,c = 3.8839.

integer vortex (figure 4.3). For φ − π = ±π the reciprocal space phase

gradient vectors satisfy ρ̂ = ky and φ̂ = kx, as such the angle can be found

by using the equation

α = tan−1(
cπ

( m
ρ̄cut

+ c)
) (4.7)
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Figure 4.3: Markers are Fourier plane points representing local spatial

frequency analysis of mask plane phase gradients, The different coloured

groups are phase gradients from constant mask plane radius. The phase

gradient points from key mask plane angular co ordinates are shown by

circles (φ = −π), triangles (φ = 0) and crosses (φ = +π). The greyscale

colour is the corresponding Fourier plane intensity. (α = 0o, m = 10,

c = 0).

where a decision must be made for which scatter plot position is used to

measure the angle. This in effect is choosing a corrsponding mask plane

radius which produces that scatter plot point. This parameter is labelled

ρcut and as will be described the optimum value will depend on where you

decide to measure the opening angle from.

For a given half angle of opening α , m and c must satisfy for
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φ0 = π

α = (tan−1(
φ0

m
ρ̄cutc

+ 1
)) (4.8)

Ccut ≡ 1/ρ̄cut (4.9)

Ccut
m

c
=

π

tan(α)
− 1 (4.10)

Cα ≡
π

tan(α)
− 1 (4.11)

m

c
=

Cα
Ccut

(4.12)

Through the two dimensionless parameters Cα and Ccut , equation 4.12

defines a curve in the (m, c) plane, on which the pairs of m and c must lie

for a desired angle.Moving along the curve satisfying (4.12) will keep the

angle α constant whilst varying the size,D of the C shape (shown by path

A in figure 4.4) . By using the relationship 4.12, D can be written as

D = |∂ψ
∂x
|φ=0 = | −m− c| = m(1 +

c

m
) = m(1 +

Ccut
Cα

) (4.13)

and so pairs of m and c can be determined for a given set of α,D and Ccut

from

m = D(1 +
Ccut
Cα

)−1 (4.14)

c =
Ccutm

Cα
=
Ccut
Cα

D(1 +
Ccut
Cα

)−1 = D(
Cα
Ccut

+ 1)−1 (4.15)

from which is can be deduced that

(4.16)

m+ c = D([(1 +
Ccut
Cα

)−1 + (
Cα
Ccut

+ 1)−1]) = D (4.17)

(1 +
Ccut
Cα

)−1 + (
Cα
Ccut

+ 1)−1 = 1 (4.18)

the control parameters α and D are labelled on figure 4.2. Ccut is a fitting

parameter, by comparisons of simulated focal plane intensities, from a range

of Ccut values , it was judged by eye that a value of 1.36 gave a good

match with the predicted angle. This parameter was then used for the

production of the masks early on in the experimental work. For future

experiments, this method could be made more robust by plotting out the

azimuthal intensity and defining the ends of the C shape by looking where

the intensity goes below a threshold value. When using the Ccut value of

1.36 to design a C shape for an angle of α = 45, the intensity is 0.0764 of
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Figure 4.4: A contour plot showing values of m and c constants which

produce opening angle (α) and size (D) parameter pairs. The opening

angle and size of the C shape can be independently controlled by using simple

variations of m and c values. Path A represents a collection of (m,c) values

which give a constant opening angle of 2α = 90 for D = 5 to D = 15 whilst

path B shows a constant size of D = 15 and varying opening angle of

2α = 90 to 2α = 30.

the maximum intensity. This occurs as the intensity is increasing out of

the gap ( an intensity plot is given along with a more detailed discussion

in section 4.1.6). With hindsight the Ccut value should have been more

rigorously defined, the aim of this experiment was to show that C-shaped

electrons could be produced and that the opening angle could be varied and

a precise definition of how to measure the opening angle was not required. If

C-shaped beams are applied to processes with a natural intensity threshold

with which to define the ends of the C shape required then Ccut could easily

be changed and the methodology of this chapter could be applied to control

the C shape, as such the conclusions of this theory chapter are completely

valid. The ability to control the C shape described by equations 4.14 and

4.18 is shown in figure 4.4 by overlaying different C shapes onto the (α,D)
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Figure 4.5: Markers are Fourier plane points representing local spatial

frequency analysis of mask plane phase gradients, including Fresnel propa-

gator phase terms. The different coloured groups are phase gradients from

constant mask plane radius. The phase gradient points from key mask plane

angular co ordinates are shown by circles (φ = −π), triangles (φ = 0) and

crosses (φ = +π). The greyscale colour is the corresponding Fourier plane

intensity. The propagation distance is 10δz where δz = L2λe/(2πRmax)
2.

L = 0.016m is the camera length, λe = 2.5× 10−12m is the electron wave-

length and Rmax = 15× 10−6m is the aperture radius.

plane. One can collect (∂ψ/∂x, ∂ψ/∂y) Fourier plane co ordinates from

sampled (ρ̄, φ) mask plane. Representing each image plane co ordinate as a

dot adds some intensity produced by the local phase gradient in the mask

plane point. Showing many of these dots from evenly sample positions on

the mask plane allows the shape of the Fourier transform intensity to be

predicted. An additional Fresnel term can be added to the local spatial

frequency derivation to predict the intensity away from focus too ( figure

4.5). As described in chapter 1 section 1.5.2, this Fresnel term only affects
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the radial phase gradients such that

U = (m+ cρ̄)(φ− φ0) + (πρ̄2λz) (4.19)

∂U

∂ρ̄
= c(φ− φ0) + 2πρ̄λz (4.20)

where λ is the electron wavelength and z is the defocus distance from the

Fourier plane.

4.1.2.1 Controlling Fourier plane intensities

Using the equations derived in the previous sections it is now possible to

show the control of the Fourier plane intensity structure using the param-

eters α and D. When the defocus value is 0 the Fresnel propagator goes

to a factor of 1 and thus the at focus intensity distribution is the direct

Fourier transform of the mask plane wavefunction. Figure 4.6 shows exam-

ples where the analytic control equations of section 4.1.2 have been used

to produce simulated intensities with a controlled opening angle and size.

Figure 4.6: The Fourier plane amplitude (a,c) and phase (b,d) for

m=1.7119 c=8.2881 (a,b) and m=3.8839 c=6.1161 (c,d) for a mask of

radius 15µm. Axes are from −5× 105m−1 to −5× 105m−1

This plot shows that the gap in the at focus intensity is due to

the build up of vortex anti vortex pairs along a radial line from the center.

The increase of the ratio m/c causes more vortex anti vortex pairs to stack

up above and below this radial line thus opening the C gap to larger angles

(as can be seen in figures 4.6 f and 4.7 b ). This ability to produce larger
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Figure 4.7: A magnification of the the phase distribution in the gap of the

same C shapes as in figure 4.6. a)m=1.7119 c=8.2881 and b) m=3.8839

c=6.1161 .

opening angles is shown in figure 4.4 along with the ability to indepen-

dently control the size of the C shape. When angles above 2α = 100o are

used the C shape begins to form a cusp and the intensity becomes much

more concentrated half way around the C curve, with oscillations in in-

tensity around the curve due to interference between different OAM mode

components. This type of intensity oscillation for larger α angles can be

seen with a comparison of the two ends of path B in figure 4.4.

4.1.3 Astigmatism effect on C shape

When the phase in the mask plane has an astigmatism term χ = 2πAρ̄2cos2(φ+

φa) added to the phase structure, the C shape produced is distorted. A

is a constant which determines the strength of astigmatism and φa is an

angle determining the offset between the astigmatic axis and the phase dis-

tribution. For a circularly symmetric vortex the direction of the astigmatic

axes would not alter the intensity pattern, except for a simple rotation.

For the C-shape intensity however the alignment of the astigmatic axis

with the opening also varies the intensity pattern observed. As shown in

figure 4.8 vortices of opposite OAM are distorted along different directions

for the same astigmatic phase alteration. The patterns produced in the

focal plane of such astigmatic integer vortex phase masks produce chiral

intensity patterns which are related to one another by a reflection and a
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rotation of 90o. The ideal circle is now compressed along an axis, the direc-

tion of this compression depends upon the axis of astigmatism (determined

by φa) and the sign of the topological charge. When the same procedure is

applied to C-shaped beams the compression axis for one order is parallel

to the opening (C image in fig 4.8) whilst for the opposite sign C it is

perpendicular to the opening (D in fig 4.8). The distorted C-shapes pro-

duced in this way are 2D chiral intensity patterns. In general the effect

of the astigmatic phase deforms positive and negative C-shaped diffraction

orders into different shapes however, for C-shapes the astigmatic intensity

produced by a positive diffraction order is the mirror image of the intensity

from a negative diffraction order only when φa = 0. In this case the relative

deformations of the waves phase fronts are mirror images of one another.

Figure 4.8: Amplitude (left) and phase (right) distributions for astigmatic

beams with A = −0.8 for: A)m = 0, c = +9, B) m = 0,c = −9 C)

m = 3.889 c = 6.1161, D)m = −3.889 c = −6.1161. The astigmatic axis is

set to 45o to the vertical. There is mirror symmetry for integer topological

charge but there is no longer any symmetry between the +/- diffraction

orders for the C-shaped beam.

The lack of mirror symmetry for the intensities produced when

applying an astigmatic phase to the mask plane can be explained by con-

sidering the effect of a phase delay. Opposite diffraction orders will be

mirror images of one another in the plane which cuts the mask phase dis-

continuity. The mirror symmetry of opposite topological charges neces-

sarily inverts phase gradients normal to the mirror plane. This can be
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Figure 4.9: When adding astigmatism (A=1) to a 50:50 superposition of

l=8 and l=9 the Fourier plane intensity pattern depends on the relative

phase offset between the two modes. The amplitude (a,c) and phase(b,d)

for a phase offset of 1.1541 rad (a,b) and 2.6928 rad (c,d).

explored expressing each C shape as a summation of integer vortex beams

with amplitudes Am and phase offsets θm.

C+ = ΣmAme
imφeiθm (4.21)

C− = Σm′Am′eim
′φeiθm′ (4.22)

= C+mir = ΣmAme
−imφeiθm (4.23)

where the subscript mir implies reflecting in the mirror plane, and similarly

the Fourier transforms form a mirror pair

FT (C+)(k) = FT (C−)(kmir) (4.24)

and opposite C shapes are related by a reflection. However when imposing

an astigmatic phase χ on the Fourier transforms, which is the same for

each beam

FT [C ′+(k)] = FT [C+(k)eiχ(k)] (4.25)

FT [C ′−(k)] = FT [C−(k)eiχ(k)] (4.26)

FT [C ′−(kmir)] = FT [C+(k)eiχ(kmir)] (4.27)

and now the beams are in general no longer conjugate versions of each

other and the mirror symmetry is broken. A special case occurs when the

additional phase distribution has the same symmetry as the initial phase i.e.
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χ(k) = χ(kmir). For integer vortex states the rotational symmetry means

that the discontinuity can always be rotated to match the astigmatism,

as such the astigmatic integer vortices of opposite topological charge will

be related by a reflection. This can only occur for one orientation of the

astigmatic phase (φa=0) for C-shaped beams and fractional vortices.

A simpler situation is shown in figure 4.9 when a combination

of l = 8 and l = 9 integer vortices are Fourier transformed, including

astigmatism. There is a phase delay included between the two modes in

the mask plane. By varying this phase delay the type of intensity pattern

can be altered as shown for a phase delay of 1.1541 rad and 2.6928 rad.

Including a phase delay alters the angle of the line along which the phase

of the l = 8 will be equivalent to the phase of the l = 9 mode. It is the

angle between this line and the astimgatic axis which will determine the

pattern caused in the focal plane and for C beams of opposite order this

is different except for when the astimgatic axis is aligned with the phase

discontinuity in the mask plane.

4.1.4 Fresnel propagation simulations

To calculate the propagation of a wavefront over short distances relative to

the wavelength of radiation used close to focus, the Fresnel principle can be

applied, where each point on the wavefront is considered to be a source of

spherical waves. The wavefront at a distance further along the propagation

axis is then defined by the integral of all the contributions from wavefront

oscillations which occured previously in time. As was shown in chapter 1

section 1.5.2 a Fresnel type analysis leads to the equation for a propagated

wave

ψ(x, y, z + dz) = FT⊥(FT⊥(ψ)× exp(iπλ(k⊥)2dz) (4.28)

where FT⊥ is the two dimensional Fourier transform in the plane per-

pendicular to propagation and, kz ≈ k0 from the paraxial approximation

. Simulations can predict the intensities found at specific angles, however

experimentally these angles will be mapped to distances depending on the

effective camera length, following a right angled triangle with the camera

length as the adjacent side and the distance as the opposite side.
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Using experimental data the camera length of the microscope used

(2200fs in TEM mode) was calculated to be 0.016m when forming an image

from the condenser aperture onto the sample plane.The method to find the

camera length was to record the intensity distribution of a linear grating

and C-shaped mask. The recorded separation,d, of the +1 and -1 orders,

were then compared with with the calculated angles θ (found in the paraxial

approximation from the wavevectors). This method follows the diagram

shown in figure 4.10. The effective camera length L, is then calculated

Figure 4.10: A plane wave incident on a lens, at an angle θ to the lens

optical axis, will be focused by a an optical system to a point in the focal

plane with a distance from the beam axis ,d, dependent on the effective focal

length, known as the camera length, of the lens system,L.

using right angled triangles and the equation L = d/sin(θ). In simulations

a separation of 1.65E − 6 radians (found by dividing the wavenumber by

1/λ0), was experimentally measured (for the condenser aperture amplitude

mask) as 26.56nm this gives a camera length of 26.56E − 9/sin(1.65E −
6) = 0.016m. Using a camera length of 0.016m the simulated propagation

can be calibrated to reflect the distances predicted for the experiments in

chapter 5. To compare different optical systems, the distance from focus is

commonly transformed into normalised units[124] [125]

b = 2πN
z/L

1 + z/L
(4.29)
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where N = R2
max/λL is the Fresnel number of the optical system, Rmax is

the aperture radius and z is the propagation distance from the focal plane

. As such in the simulation defocus value range in the simulations was

±30δf where

δf = L/2πN = L2λe/(2πR
2
max) (4.30)

By using a scale of δf the normalised units are then the z/δf multiplied

by a 1/(1 + z/L) factor.For the the TEM mode experimental conditions of

chapter 5 equates to ±13.58µm above and below focus.

4.1.4.1 Simulated vortex trajectories

It is interesting and illuminating to investigate the trajectory of phase

singularities in the simulated propagation. Phase singularities are found

by applying the following algorithm in the matlab code:

1. Check if the phase at the current pixel and the pixel to the left has

a difference of more than π.

2. Check if the phase at the current pixel and the pixel above has a

difference of more than π.

3. Set any pixels for which step 1 and step 2 are true to 1 , set all other

pixels to 0. This forms lines from the pixels with a value of 1.

4. Use MATLAB built in code to find the endpoints of the lines produced

by step 3

This algorithm produces a binary array for each defocus value

with dots at each phase singularity. To save memory by working with

a single array (which helps when visualising the data), this binary array

of phase singularities (PS) can be added to the normalised intensity of

the complex wavefunction,NI, (normalised to maximum intensity pixel at

focus) to give the total intensity image (TI following the equation

TI = 0.5NI + 0.5PS (4.31)

This produces an image (TI) with the phase singularities over-

lapped onto the intensity distributions. The intensity is normalised by
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dividing by the maximum intensity for the image corresponding to a defo-

cus of 0. These overlapped images are then saved together in a tiff stack

file. This can be rendered by ImageSurfer2 software [126], as described

in appendix chapter A section A.5 . Below are renderings of initially an

l = 9 vortex shown in figure 4.11 and then the C-shaped beam propagation

shown in figure 4.12 formed by the method described above. Figure 4.11 a

Figure 4.11: The simulated propagation of an l = 9 vortex, the transparent

green volume is the high intensity region (i.e. the vortex ring). The blue

lines are the nodal lines tracing phase singularities and the green dots out-

side the volume are phase singularities outside the vortex ring. a) a side on

view with propagation up and down. b) a top down view along the propaga-

tion direction. c) The collection of phase singularities which are visible in

(a) and (b) inside the ring, but which can be considered as artefacts of the

simulation, they form pairs which come together to annihilate each other

only to reform at larger z.

shows a side on view of the propagation of an l = 9 vortex beam, the beam

propagation direction is vertically downwards on the page. The green vol-

umes for a structure which has circular cross sections of increasing radius

away from focus. The blue lines correspond to phase singularities. Figure
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4.11 b shows a view along the propagation direction, here it can be seen

that there is an outer collection of 8 blue lines with one central line, all of

which slowly rotate causing a projection onto the end on view which is a

small curved line. The presence of separate l = 1 phase singularities is con-

sistent with previous findings that higher order l > 1 vortices are unstable

upon propagation and break up into multiple l = 1 vortices [127]. There is

also an inner collection of blue lines which oscillate more and figure 4.11 c

shows the spatial distribution of this collection on its own looking at a slight

angle, mostly along propagation. These form pairs of opposite topological

charge which constantly form and then annihilate along the propa gation

direction and do not add any OAM to the beam. These pairs are artefacts

of the simulation and are related to the use of an aperture, which restricts

the high frequency components reducing the Fourier plane phase gradients

possible as well as the limited resolution of the arrays. This l = 9 simu-

lation acts as a check for the simulation procedure for Fresnel diffraction

and shows that the method does not add any additional OAM and cap-

tures the focusing trends of the ideal vortex. Figure 4.12 shows the focal

plane phase and intensities as well as the propagation renderings for both

a C shaped beam and a ’non-vortex’ beam found via iterative methods.

Figure 4.12 c presents a similar rendering for a C-shaped beam. In figure

4.12 c the green volume highlights regions of highest intensity and blue or

red lines show the position and trajectories of phase singularities. It can

be seen that there is also a collection of phase singularities (blue lines in

figure 4.12 c ) which propagate along with the beam and that the opening

is maintained throughout propagation whilst undergoing a slow rotation.

This rotation can be explained by considering the varying Gouy phase that

each individual OAM component in the C beam will have. Any arbitrary

field can be described by decomposing into a basis set of vortex states

with different OAM. When one OAM component gains a larger phase than

another, the angles for which the two destructively interfere rotates, thus

rotating the low intensity gap. This is similar to the analysis of superpo-

sitions of vortex modes as shown by Baumann et al.[128] This is the same

effect shown by the application of an astigmatic phase in figure 4.9, where

altering the phase delay causes a rotation of the area of low intensity in

the Fourier plane. The full analysis of the OAM components present, in

a C-shaped Fourier plane function, will be shown in section 4.1.9.2. The

slow rotation of mode combinations can be seen for an example of an equal

mix of l = 9 and l = 8 in figure 4.13. For this mixture, at focus, there

is a C like shape however this is not maintained for the same propagation

81



Figure 4.12: At focus phase and intensities (a and b) with simulated prop-

agation (c and d) for a vortex C beam (left) and the non vortex iterative

algorithm result (right). (Scale bar in i applies to i and ii and is 1µrad,

calculated for a mask of 30µm and an electron wavlength of 2.5pm travel-

ling ±13.58µm either side of the focal plane). In c and d the propagation is

vertically downwards, the green volumes show regions of high intensity in c)

this shows a gap which rotates whilst in d) the intensity disperses away from

the focal plane. The blue or red lines are positions of phase singularities,

in c) a group shown in blue travel along with the C shape giving it OAM ,

however no such group is found amongst the numerous phase singularities

in d.

distance as in figure 4.12. This shows that the specific combination of com-

ponents with varied OAM is what allows the C beam to maintain the gap

as it propagates.

As can be seen from figure 4.12 there are a collection of vortex

nodal lines that propagate along with the C beam which are indicative
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Figure 4.13: The propagation of an equal mixture of l = 8 and l = 9

vortices at the mask plane. The green volumes are high intensity regions

and the red lines are phase singularities. The red inner volume is the highest

intensity region. a) a view along the beam axis b) a side on view and c) an

angled side on view. d) the phase mask used to produce the mixture.

of the presence of OAM within the beam. This collection of nodal lines

appears to allow the C-shaped intensity to remain intact during propaga-

tion as is the case for other beams containing OAM and phase singularities

such as Bessel beams. The physical mechanism by which this is achieved

is unclear and presents an interesting starting point for future theoretical

research. The main section of the gap is caused by one vortex moving to

a further radius than the others and thus reducing the intensity in the gap

section of the ring.
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4.1.5 Iterative Fourier transform algorithm compar-

ison

The analysis in sections 4.1.4 and 4.1.9 has also been applied to the results

of an iterative Fourier transform algorithm (IFTA) method (see section

3.6.1). The IFTA method uses a target intensity distribution It = (R <

Cout)(R > Cin)(|φ| > π/4)(1 − (|R−Rav

diff
|)2) where Cin and Cout are inner

and outer radii, Rav = (Cout + Cin)/2 and Rdiff = (Cout − Cin)/2. This

target intensity is shown in figure 4.14 and is used in the iterative algorithm

detailed below.

Figure 4.14: The target intensity distribution used for the iterative Fourier

transform algorith.

This was applied to a C-shaped intensity distribution by using an

input intensity defined for step 1 by (R − RAv)/(Rout − Rin) where Rav =

(Rout + Rin)/2(this is shown in figure 4.14). The parameter used to check

the convergence of the algorithm was
∑
|Ires−Itar| where Ires and Itar are

the squared amplitudes of the complex fields in the current result field and

the target field respectively. The code was ran for 2000 iterations above

which this fitting error parameter did not significantly decrease. Using

the methods described in sections 4.1.4 and 4.1.9 the resulting mask can

be put into the MATLAB code used for the analysis of C-shapes and the

propagation of the beam around focus can be compared to the C-shape

described earlier.

The main findings when analysing the C-shaped intensity are that this

C-shaped wave has predictable OAM, a controllable opening angle and
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shows a slow rotation upon propagation. There are several key differences

between the C-shape and the ’non-vortex’ IFTA results as can be seen by

a comparison of figure 4.12 c and d. The iterative method produces an

intensity (green regions) which spreads out within shorter distances away

from focus and breaks up without maintaining a similar intensity pattern.

For the C-shape there are core phase singularities which are not present in

the iterative method these could be responsible for the reduced spreading

by some form of self-reenforcement however the exact physical mechanism

by which this is achieved is unclear.

4.1.6 Low intensity in the gap

The low intensity in the gap of the C shape is shown in figure 4.15, there is

a clear peak in the azimuthal and radial plots at low intensity. This is also

shown experimentally with a line of higher intensity connecting either side

of the large gap within the overall comparably low intensity region. (see

figure 5.5 in chapter 5). The sections of alternating intensity visible in figure

4.15 can be explained by looking at the phase gradients. These are shown in

figure 4.16, where the direction of the local phase gradient is shown by the

arrows, the length representing the amplitude of the phase gradient. The

alternating vortex-antivortex structure creates alternating areas of high and

low intensity where the combination of alternating circulation directions

either aligns with or against the overall circulation of the full C shape.

This is shown in the relatively long or short phase gradient arrows. Phase

gradients will determine how electron probability density flows, as such

the longer phase gradients act to ’funnel’ intensity away from areas of

flatter phase, thus creating the higher intensity channels linking the top

and bottom of the C shape.
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Figure 4.15: radial and azimuthal intensity distributions from a simulated

C-shaped intensity distribution.a) Intensity distribution with azimuthal

summation boundaries (red) and radial path (cyan).b)Angular intensity

summed between the circular boundaries (inset shows entire 2π range whist

main figure focuses on the gap area highlighted by the dashed green box). c)

Radial intensity line plot along the cyan radial path.
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Figure 4.16: An overlay of phase gradients (arrows) with the simulated

intensity (a,b) and phase distribution(c).
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4.1.7 Comparison propagation of fractional and he-

lico conical beams

Figure 4.17 shows simulated propagation for a fractional vortex with topo-

logical charge l = 8.5 and a helico-conical beam [16] defined with m = 3

and c = −3, in equation 4.1 and an angle defined between 0 and 2π. The

fractional vortex shows an opening away from focus in a spiral like shape

and has a well defined set of vortices (blue and turquoise lines in figure

4.17) however at focus there is a high intensity instead of a low intensity

gap. Conversely whilst the helico-conical beam does have a large opening

and is a spiral at focus, it lacks a clear set of vortices with only one vortex

(blue dots) following the beam center and the intensity is less constant as

the beam propagates. By comparison, the C-shaped beam shown in fig-

ure 4.12 combines the well defined set of vortices,propagation stability and

large opening size even at focus. These properties distinguish the C beam

from previously published ’C-like’ states as a new type of fractional vortex

wavefunction.

Figure 4.17: Simulated propagation from -30µm to +30 µm for helico-

conical (left) and fractional topological charge l = 8.5( right). Assuming

the same experimental conditions for a 200keV electron with an optical

system with a 0.016m camera length. Green volumes enclose regions of

high intensity, dots represent phase singularities. Dot colours are only for

distinguishing trajectories .
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4.1.8 Interference around the C

As the angle α or size D is increased the C shape shows an increased

amount of oscillations in intensity around the arc of the intensity. This is

shown in figures 4.18 and 4.19 .

In the upper part of figure 4.18 the azimuthal intensity is plotted

for C shapes of increasing opening angle α. The lower section shows the

azimuthal images of the intensity in both (ρ, φ) and cartesean plots for the 5

angles compared. Increasing α increases the amplitude and the frequency

of the oscillation in intensity around the C. This can be understood by

the use of different OAM modes to create an opening, this produces a

beating like interference effect between different topological charges. This

effect becomes more pronounced as the opening is increased and the OAM

distribution is less pure, as shown in figure 4.18. Figure 4.19 shows intensity

plots for three different size of C all with α = 22.5. The upper right

shows the intensity plots as a function of angle, the lower shows the (ρ, φ)

intensity images and the left images are the cartesean co ordinate images.

For larger D, modes of larger topological charge are used, producing larger

rings which include more phase oscillations and as such the circumference

increases allowing more maxima and minima to fit around the ring, shown

in figure 4.19.
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Figure 4.18: The upper graph shows line plots of intensity found by sum-

ming the azimuthal intensity between the red and green rings in the lower

C shape figures. The colour of the lineplot corresponds to the opening angle

as shown in the inset key. The azimuthal intensity images in (ρ, φ) co or-

dinates is shown below for increasing angles (smallest opening angle on top

with angle increasing for lower images), finally the cartesean co-ordinate

images are shown for the 5 opening angles increasing from left to right .

The intensity for the upper line plots was summed between the red and green

rings on the lower cartesean images.
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Figure 4.19: The upper right graph shows line plots of intensity found by

summing the azimuthal intensity between the red and green rings in the

cartesean intensity figures to the left. The azimuthal intensity images in

(ρ, φ) co ordinate space for the radii between the green and red rings on the

left images are shown below the line plots. The legend shows the value of

D used.
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4.1.9 OAM analysis

4.1.9.1 Numerical and analytical integration

For vortices propagating in free space, OAM is conserved along propagation

[26], so the OAM in the mask plane should be equivalent to the OAM in the

Fourier plane. To check this an analytical OAM expectation value in the

mask plane will be compared with a numerical integration in the Fourier

plane.. The mask plane integral is as follows:

OAM = −i~
∫
ψ ∗ ∂

∂φ
ψ dA∫

ψ ∗ ψ dA
(4.32)

= ~
∫ 1

0

∫ 2π

0
ψ ∗ (m+ cρ̄)ψ ρ0dρ̄ρ0ρ̄dφ∫ 1

0

∫ 2π

0
ψ ∗ ψ dρ̄ρ0ρ̄dφ

(4.33)

= ~
2πρ2

0[mρ̄2/2 + cρ̄3/3]10
2πρ2

0[ρ̄2/2]10
(4.34)

= ~[m+ 2c/3] (4.35)

This means that the cρφ term only contributes 2/3 of the OAM

that a cφ term, without any radial dependence, would. To check the conser-

vation of OAM between the mask plane and Fourier plane the amplitude

and phase in the Fourier plane is required. There is not a simple ana-

lytical form for the wavefunction in the Fourier plane, however the OAM

integral can be approximated by a numeric integration of the simulated

wavefunction. This uses the MATLAB gradient function applied to the

complex array. The OAM numeric integration of equation equation (4.32)

is evaluated using the following algorithm:

1. The complex array from Fresnel propagation is used as the input

wavefunction,ψ

2. Calculate the complex conjugate ψ∗, using built in matlab function

conj

3. Apply matlab gradient as [∇ψx,∇ψy] = gradient(ψ, dkx) where dkx

is the separation of array elements in reciprocal space in the Fourier

plane.
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4. These gradients are then converted into azimuthal gradient com-

ponents by multiplying components by the Fourier plane reciprocal

space radius, KR , in m−1

∇ψφ = KR. ∗ (∇ψxcos(θ)−∇ψysin(θ));

5. The integrand is formed by using these wavevectors along with ψ∗

from step 2 using ψ∗ ∂
∂φ
ψdA = ψ∗∇ψφ(dk2

x);

6. The integration is performed by using the function trapz in MATLAB

Figure 4.20: The calculated numerically integrated OAM as a function of

the integration radius in the Fourier plane for the C-shaped intensity.(inset:

the integration radius for xaxis values of 14.7 (left) and 25.1 (right) ). The

horizontal axis is the integration radius in units of (1.3653E+06/50) where

a value of 25 indicates a circular integration radius with a diameter equal

to the simulated array width (as shown in the insets). The vertical axis is

predicted OAM in units of ~.

An aperture is used to set the amplitude of ψ to 0 outside of a circular

aperture, thus the numerical integration is only evaluated within a circular

region of the Fourier plane, enclosing the C-shape. The total OAM result
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depends on the exact radius of the aperture chosen, as shown in figures

4.20 and 4.21. For smaller integration radii the phase gradients are not

large and the total OAM is small and close to 0. As the integration radius

is increased it begins to include the azimuthal phase variations and the

OAM rapidly increases up to > 8~ for the C shape in figure 4.20 but only

1.4 ~ for the iterative result in 4.21. For both figures 4.20 and 4.21, above

an integration radius of about 10 × 0.5/25 = 1/5 of the array width the

integration radius only includes phase oscillations which are due to the

finite width of the mask plane array. These do not add significant OAM

and the integrated OAM result plateaus.

Figure 4.21: The calculated numerically integrated OAM as a function of

the integration radius in the Fourier plane for the intensity from the IFTA.

The x axis scale is as defined for figure 4.20.

There is an extremely close match between the analytic and nu-

meric results (as shown by the matching red and blue lines in figure 4.22),

providing evidence for the conservation of OAM between the mask plane

and the Fourier plane which implies the conservation of OAM during prop-

agation of the C-shaped beam.
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Figure 4.22: The predicted OAM from both mask plane analytic integration

and Fourier plane numerical integration, as a function of opening angle.

4.1.9.2 Mode decomposition

To fully characterise the C-shaped beam,one can calculate the overlap in-

tegral with Laguerre-Gaussian (LG) modes defined by the complete basis

set functions

LGp,l = eikzz
N√
z2
R + z2

Llp(
2ρ2

ω2(z)
)
eilφ

w(z)
[
ρ

w(z)
]l

×exp(i kzρ
2z

2(z2
R + z2)

− ρ2

w2
− iδGouy)

(4.36)

where l is the azimuthal mode index and p is the radial mode index, w(z) =

w0

√
1− z

zR

2 is the distance away from the beam axis at which the intensity

falls to 1/e of its maximum in a transverse plane at z , zR = kzw
2
0/, L

l
p is a

Laguerre polynomial and δGouy = (2p+ |l|+ 1)ζ is the Gouy phase. Using

these basis set functions the overlap integrals

< LGp,l|ψ >=

∫
LG∗p,lψdA (4.37)

can be equated to the contribution from an OAM mode with l~ OAM to

the overall beam state. There is however ambiguity in what value should

be chosen as the beam waist w0. The LG modes are scaled by this arbi-

trary parameter. In order to be completely orthogonal all the basis modes
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require the same w0. In this thesis a beam waist was chosen so that the

l=0 mode matched the airy disk profile produced by a circular aperture in

the simulation. This ensures that all LG basis functions used to decompose

the Fourier plane have the same beam waist. If enough modes of differing p

values are used and the results summed over the p range then the resulting

OAM decomposition as a function of l should not depend upon the beam

waist used, the beam waist will, however alter the spread of p values re-

quired to form the radial mode structure [129]. A test decomposition with

the beam waist defined to match the full width half maximum to a circular

aperture airy function is shown for a function defined as ei4φ and indeed the

only mode with a significant overlap is the l = 4 as is shown in figure 4.23.

A decomposition with the beam waist matched to the l = 0 airy pattern is

implemented in matlab and performed over a selected area in the Fourier

plane defined by a circular aperture enclosing the C-shape. As can be seen

from figure 4.24 and 4.25 the largest contribution comes from the l = 9 LG

modes with some contributions from neighbouring modes l = 7 to l = 11,

which decrease away from l = 9.

Figure 4.23: Decomposition of ei4φ into LG modes. Left: (l,p) mode inten-

sity Right:summation of p = 1 to p = 20 values for individual l values
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Figure 4.24: left: (p,l) decomposition of a C shape l = 6.11 c = 3.89.

Right: Lineplots of intensity for an fitted LG(0,0) mode (red) and an airy

disk pattern (blue) from a constant phase circular aperture of the same size

as the LG phase mask.

Figure 4.25: A summation over p = 0 to p = 20 fitted LG mode overlap

integrals giving an l OAM decomposition, for a C shape l = 6.11 c = 3.89.
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Two alternate basis sets can be used, spiral harmonics with a

constant amplitude consisting of only a phase term exp(ilφ) or truncated

Fourier vortex modes produced by Fourier transforming a mask with a

phase term exp(ilφ) inside a circular top-hat function aperture. When us-

ing spiral harmonics for the nth OAM mode, the radially varying coefficient

an(k) can be calculated following the method of Molina-Terriza [130] by the

integral

an(k) = (1/2π)1/2

∫ 2π

0

ψ(k, φk)exp(inφ)dφ (4.38)

The power weighting of the nth mode can be calculated from an(k) as

Cn =

∫ k0

0

|an(ρ)|2kdk (4.39)

where k0 is the upper integration limit. Ideally this would be infinity, how-

ever, in practice, to be implemented numerically the OAM decomposition

is carried out for a finite k0 and a finite range of OAM harmonic terms. For

the following results, the calculation is only done for k0 = 12.5/ρmax, for

OAM modes between l = −20 to l = 20. The weightings are then plotted

as the normalised OAM distributions, defined by

Cn
20∑

n=−20

Cn

(4.40)

From these weightings the total OAM of the field can be approx-

imated with

~

20∑
n=−20

nCn

20∑
n=−20

Cn

(4.41)

To compare these basis sets an l = 4 mode of each basis set has been

decomposed into the two other basis sets. Decomposing a l = 4 spiral har-

monic into Fourier vortex modes produces the distribution shown in figure

4.26 left whilst decomposing an l = 4 Fourier vortex into spiral harmon-

ics is shown in figure 4.26 right. These show there is a stong similarity

between the spiral harmonics and Fourier vortex function but a broader

range of Fourier vortex modes are required to form a spiral harmonic than

the range of spiral harmonics required to form a Fourier vortex. This does

show however that by forming a vortex in the Fourier plane, even with an

ideal phase mask there will be contributions from spiral harmonics other

than the value of l for which the mask is designed.
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Figure 4.26: left: an l = 4 spiral harmonic decomposed into Fourier vortex

modes right: an l = 4 Fourier vortex decomposed into spiral harmonics.

4.1.9.3 Effects of astigmatism on mode decomposition

As is shown in the spiral harmonic decomposition of figure 4.27 and the

Fourier vortex decomposition of 4.28, by adding astigmatism to an ideal

l = 9 vortex the mode decomposition shows contributions from a wider

spread of l values at lower intensities. This can be rationalised by consid-

ering transforming a circle into an oval, in some sections the curvature is

decreased and in others the curvature is increased. These varying curva-

tures mean the phase profile is compressed in some sections and stretched

in others , thus requiring higher or lower phase gradients respectively.

When decomposing a C-shaped intensity (l = 6.11,c = 3.89) into

spiral harmonics the decomposition shows a spread of modes concentrated

between l = 5 and l = 11 with a peak at l = 9 (figure 4.29 a). The OAM

approximated within the modes l = −20 to l = 20 is 8.5299 (from equation

4.41). This is close to the total mask plane OAM analytically calculated

by equation 4.35. Similarly a decomposition into Fourier vortex modes

peaks at l = 9 with mode visible contributions between l = 7 and l = 11

(figure 4.29 b). The radial dependence of the amplitude of Fourier vortex

functions means the weighting for the l = 9 mode is a larger fraction of the

total summation of modes between l = −20 and l = 20.

The Fourier Transform Bessel beams (FTBBs) described in sec-

tion 1.9 can also be used as a convenient basis set to decompose the C-

shaped beam. When applying the same methods as LG modes and sum-

ming over p = 0 to p = 20 for different l modes the decomposition shown
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Figure 4.27: amplitude (a,d),phase(b,e) and decomposition into spiral har-

monics (c,f) of an l = 9 without (a,b,c) and with (d,e,f) astigmatism (χ

with A = 1). OAM expectation, found from weighted summation of mode

OAM, is shown in (c) and (f).

in figure 4.30 was obtained. Similarly to the previous 3 basis set functions

the dominant contributions are from l = 9 and l = 10 with larger contribu-

tions from l < 7 values than spherical harmonics or Fourier vortex modes.

All 4 decomposition methods show that even for a large opening angle of

2α = 90o the C-shaped beam is constructed from a narrow range of states.

This appears to allow the intensity and vortex structure to be fairly stable

upon propagation, compared to modes with a wider range of OAM basis

functions. This point will be shown in section 4.1.5 with a comparison

between the two types of state. However as has been discussed only mixing

l = 8 and l = 9 modes does not form a closed gap, thus it is the specific

combination and phase offsets of the narrow range which gives the C shape

its characteristic slowly rotating gap.

The iterative method produces many phase singularities in the

intensity , these make an assessment of nature of OAM of such a beam

difficult. The total OAM present in the beam is less than the equivalent

C-shape and many of the nodal lines form loops within the volume not

adding to the OAM in the focal plane. OAM mode decompositions of the

iterative result show it contains contributions from many different modes

both positive and negative as shown in figure 4.31. These will cancel each

other out , explaining the low calculated total OAM.
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Figure 4.28: decomposition of l=9 into Fourier vortices with astigmatism

(χ with A = 1)

Figure 4.29: a) decomposition of a C α = 45 ,m = 6.11 c = 3.89 with

spiral harmonics. b) a decompositon of C α = 45, m = 6.11 c = 3.89 with

Fourier vortex modes.
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Figure 4.30: A decomposition for a C shape m = 6.11 c = 3.89, using

truncated FT-TBB modes. The full p, l dependence (left) and summations

over p modes (right).

Figure 4.31: OAM decompositions of the result of an iterative algorithm

(shown in figure 4.12), using spherical harmonics (left) and Fourier plane

vortices (right).
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4.1.10 Dual C-shapes

Split ring resonators with two split rings facing in opposite directions have

been used in the study of left handed materials (see for example Smith et

al. [131]), as such the production of Dual C shapes could offer a one step

method for the production of such multiple split ring structures if used in

EBL . Cheng-Shan et al. [132]have shown that 2 different vortex rings can

be encoded on the same phase mask, in a similar way a phase mask with

two different C-shapes encoded into the inner radii (R < R0/2) and outer

radii (R > R0/2)of the mask can be used. This will produce 2 C-shapes

in the diffraction plane, one inside the other. The opening angle, size and

rotation can all be independently controlled as described in section 4.1.2.

Figure 4.32: a) Phase mask (diameter 30µm with 2 separate radial sections

used to produce a dual C-shape b) Fourier tranform amplitude for the phase

mask in (a) c) Fourier transform phase for the phase mask in (a) . Both

C-shapes can have the size, opening angle and relative orientation altered

independently.(for (b) and (c) the window size is 6.8µrad for a 200keV

beam in an imaging system with a camera length of 16mm.

In figure 4.32 the inner C-shape has a size of D = 10 and an

opening angle of 45o the larger C-shape has a size of D = 60 and opening

angle of 10o and the opening direction is rotated 1350 from the inner C.

There are certain limitations on the quality of the dual C-shapes. If the

C-shape radii are too similar then they will overlap and there will only

be one distinct shape. The same limits are present as for single C-shapes

with large sizes giving a more broken intensity around the ring. At very

large opening angles the outer C-shape can interfere with the inner C as

shown in figure 4.33. Upon propagation both C-shapes show the properties

described in section 4.1.4 with a rotating opening caused by a collection of
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Figure 4.33: A larger opening angle causes a cusp which interferes with the

inner C. The dual C-shape Fourier plane intensity is shown for an outer C

with half opening angles of 70o, 80o and 90o. The window size for all three

images is 6.8µrad for a 200keV beam in an imaging system with a camera

length of 16mm.

nodal loops and lines along with a collection of nodal lines travelling inside

the C-shape and slowly rotating (see figure 4.34).

The loops are easier to see and occupy less propagation distance

for the inner C whilst the nodal lines form larger loops and more compli-

cated connections at larger radii. The nodal lines at larger radii rotate

through a similar but slightly larger angle for the same propagation dis-

tance this can be seen by the relative angles formed by the openings in

figure 4.35. This means when considering how the phase singularities move

along the propagation direction, the outer phase vortices are rotating at a

similar angular rate and so a larger absolute rate as shown by the angle of

travel on the side on images in figure 4.35.

The two C-shapes are closest together when the smaller C is en-

coded on the inner part of the mask. This is because larger spatial frequen-

cies occur in the inner part of a phase mask encoding OAM. This means

the intensity from the inner section contributes to Fourier plane intensity

at larger radii than it would have in the outer phase mask, similarly the

outer phase mask contributes to smaller Fourier plane radii than if it was

encoded on the inner. These two effects bring the intensities closer together

in the Fourier plane.
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Figure 4.34: Both openings in the dual C-shape are caused by the collection

of phase singularities along nodal lines which can form loops as shown in

the insets, in the lower inset 2 loops have been higlighted with a transparent

black line. The camera is angled such that the propagation direction is

downwards and slightly into the page
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Figure 4.35: geometry of nodal lines in dual C shape beam, blue lines high-

light the angle for the inner C phase vortices and green lines highlight the

angles for the outer C phase vortices. a) a view perpendicular to beam prop-

agation, looking into outer opening. b) the view parallel to propagation. c)

a view perpendicular to propagation looking into inner gap.
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4.1.10.1 Dual C-shapes OAM

When performing a numerical integration analysis of the OAM content of

the dual C intensity distribution, there are 2 clear steps whilst increasing

the integration radius as the successive C-shapes are included (figure 4.36).

The inner values are m = 6.11 and c = 3.89 whilst for the outer the values

are m = 55.51 and c = 4.49. These would give individual predicted single

C OAM (calculated for the mask plane analytical function) values of 58.5h̄

and 7.96h̄ however the integral of 4.32 can be evaluated for the mixed mask

plane function to give equation 4.47

OAM = −i~
∫
ψ ∗ ∂

∂φ
ψ dA∫

ψ ∗ ψ dA
(4.42)

= ~
∫ 1/2

0

∫ 2π

0
ψ ∗ (m2 + c2ρ̄)ψ ρ0dρ̄ρ0ρ̄dφ∫ 1/2

0

∫ 2π

0
ψ ∗ ψ dρ̄ρ0ρ̄dφ

(4.43)

+~

∫ 1

1/2

∫ 2π

0
ψ ∗ (m2 + c2ρ̄)ψ ρ0dρ̄ρ0ρ̄dφ∫ 1

1/2

∫ 2π

0
ψ ∗ ψ dρ̄ρ0ρ̄dφ

(4.44)

= ~
2πρ2

0[mρ̄2/8 + cρ̄3/24]10
2πρ2

0[ρ̄2/2]10
(4.45)

+ ~
2πρ2

0[m2(1− 1/4)ρ̄2/2 + c2(1− 1/8)ρ̄3/3]10
2πρ2

0[ρ̄2/2]10
(4.46)

= ~[
m

4
+

c

12
+

6m2

4
+

7C2

12
] (4.47)

When the total integral is calculated the m and c inner mask terms (the

first two in 4.47 ) provide 1.85~ and the outer mask terms provide 44.25~
together giving the whole state 46.1~. These values are reflected in the

plateaus in the numerically calculated OAM as the integration radius is

gradually increased. These plateau values are at reduced values, close to

2h̄ and 46h̄ instead of close to 8~ and 58~. The OAM contributions from

each section of the dual C mask are reduced from the individual single OAM

states, due to the reduction in surface are necessitated by the presence of

the other in the dual C phase mask. This is shown in figure 4.36 where

a single C state the same as the inner of the dual C beam shows a much

higher numerical OAM when calculated for region only containing the inner

C shape.
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Figure 4.36: The results of numerical OAM integration for increasing radius

of integration area. The Dual C shapes show 2 plateaus one for the inner

and one for the outer ring intensities however the inner OAM is lower than

for a single C beam of the same type as the inner. The horizontal axis is the

radius in units of (1.3653E+06/50) where a value of 25 indicates a circular

integration region with a diameter equal to the simulated array width (as

for figure 4.20). The vertical axis is predicted OAM.

4.1.11 Potential applications

4.1.11.1 Optical trapping

Optical beam shaping can be achieved by using a spatial light modulator

(SLM) [133] , this used a liquid crystal array to impart a designed phase

change onto a laser whilst it is reflected from the device screen. The SLM

can be controlled as an external screen, allowing rapid updating of the phase

profile of a shaped laser beam. The ability to control the opening angle

of an optical trap intensity allows applications such as dynamical adaptive

particle sorting. Figure 4.37 A and B show the force distribution which

would be experienced by microparticle, calculated from intensity gradients

and phase gradients. The effects at play involve trapping along the ring

from the dipole potential and rotation around the ring from the optical

torque associated with the OAM. Optical C-shaped beams as described

in the preceding sections could be applied to laser trapping of particles

and atoms. As explained in chapter 1 optical beams can be used to trap

transparent particles and the intensity can be attractive or repulsive for
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Figure 4.37: Red and blue detuned optical traps based upon C-shaped in-

tensities. A) the dipole force due to amplitude gradients B the dissipative

force due to phase gradients C) a C-shaped arc trap D) A C-shaped box

formed from laser light.
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atoms.By combining a C-shaped beam with a single light sheet a thin C-

shaped region could be created which holds and traps particles or atoms ( if

laser is red detuned, as in figure 4.37 C). This could be used to confine par-

ticles or atoms to a broken ring whilst also imparting OAM to the particle

(figure 4.38). In a similar manner to previous particle rotation experiments

varying the gap via control of an LCD spatial light modulator, could vary

the rotation speed of the particle around the bright arc.

If a particles was accelerated by an integer vortex beam a SLM could be

used to quickly open a gap, potentially ejecting the particle or atom from

its orbit like an optical slingshot. This would require a low friction envi-

ronment but could have applications in sorting particles and light-matter

interactions. C-shaped intensity could be used to sort optically trapped

Figure 4.38: Blue areas represent vortex ring intensity orangle circles rep-

resent particles being trapped (e.g. Silica particles, or atoms) A)Paritcles

trapped and rotating in the left vortex B) Particles stopped from rotating by

right vortex C) Single particle transfer from left to right vortex D) Trapping

of transferred particle by a third vortex. E) particles larger than the gap

will not be transferred out of the left vortex.

particles by size. If silica microparticles are trapped in an integer vortex

beam by refraction they are confined to the bright ring and will rotate

around the ring (figure 4.38 A) . If a second laser, also shaped into a vortex

beam, is overlapped on the first as shown in figure 4.38 B then the intensity

gradient will slow down (or stop) this rotation, potentially leading to the

confinement of a particle to the position of overlapping intensity. This as-

sumes that the two vortex beams add incoherently and extra phase offsets,

potential time dependent, may be required to achieve this. If the integer
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vortex beam is then gradually changed to a C-shaped beam such that the

opening occurs over the particle then the particle could be transferred to

the second optical trap and continue rotating in the new trap, figure 4.38

C. A third ring could be used to hold the transferred particle away from

the intitial left ring, figure 4.38 D. This transfer could be dependent on the

size of the C with the transfer only occuring if the particle is smaller than

the opening size, larger particles would be held by the intensity either side

of the opening figure 4.38 E. This could lead to passive sorting of trapped

particles based on size. If arrays of this arrangement were produced then

the C-shaped slingshot could lead to only small particle being given a mo-

mentum kick , thus eventually separating out large collections of mixed size

particles. This transfer could be cascaded between multiple rings giving se-

lective transport of particles. If a particle is trapped between the two ends

of the C by the gradient forces at the tips , as shown in figure 4.38 E, then

gradually opening the C-shape could apply very small amounts of strain

onto trapped particles. This sort of fine control could allow the study of

very weak interactions, if two interacting entities could be pulled apart by

the opening of the gap in a controlled, repeatable manner.

Adjustable C-shaped optical beams can also have interesting ap-

plications in the emergent field of atomtronics - the physics and appli-

cations of guided current due to motion of atoms. For example, if we

place a light sheet beam to intersect the C-shaped beam at a right an-

gle (see figure 4.37C), the atoms are then trapped in the high intensity

regions if the frequencies of both laser beams are red-detuned from the

atomic resonance[28]. A Bose-Einstein condensate trapped in such a ring

circuit with a variable gap is an atomic equivalent quantum interference

device[134]. Such a circuitry allows an investigation into tunnelling through

the gap barrier, in a manner similar to a Josephson junction[135]. Previ-

ous experiments have used an additional laser spot to introduce a potential

barrier for a Bose-Einstein condensate, however a C-shaped intensity would

remove the need for this extra beam thus simplifying the experimental set

up. [136].

If a trapping experiment uses a blue detuned laser to interact with

an atom then the C-shaped intensity could be combined with a light sheet

above and below focus to provide repulsive intensity around the sides of

a ’light-box ’ which could have a section opened and closed by increasing

and decreasing α (figure 4.37 D). This could add another tool to optical
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trapping experiments to allow for controlled interaction or transport of

atoms.

4.1.11.2 Measuring rotations of vortex electron states

Due to the broken cylindrical symmetry of the C-shaped function rotations

of the intensity distribution would be measurable, if the C interacts with

magnetic fields. The C shape could thus act as a probe for local magnetic

environments, offering the possibility of gaining contrast on the scale of the

C shape intensity. This would offer a simplification to the experimental

setup used by Guzzinatti et al [64] where a knife edge is used to break the

symmetry of an integer vortex state. The theory of the interaction of these

C shapes with a magnetic field has not been included in this thesis and

represent a possible investigation which could continue this project. No

varying rotation was seen in the experimental set up when comparing the

results for opposite topological charges.

4.1.12 Chapter summary

This chapter has introduced the concept of a C-shaped intensity carry-

ing OAM due to phase vortices. This Fourier plane intensity is produced

by using radial phase gradients in the mask plane. This is the first time

these states have been reported and applies concepts previously applied to

fractional vortex states to radial phase gradients. Initially the C-shaped

state was described and explained in terms of local spatial frequency anal-

ysis from which control equations have been derived allowing the variation

of opening angle and size of the C by changing two control parameters.

Next the effect of astigmatism was shown to rely on the orientation of the

astigmatic axis relative to the phase discontinuity in addition to the rel-

ative phases of the constituent integer OAM modes. Simulations of the

phase structure of these C-shaped vortex states were analysed to track the

position of the phase singularities, tracing out nodal lines of the phase

vortices. The vortex structure of the C-shape contains a group of vortex

lines which circulate one another, appearing to give the C-shaped state

higher structural stability and OAM than a non vortex C-shape produced

by an iterative algorithm. Subsequently, the OAM of the C shape was dis-

cussed, starting by describing the effect of interference of different OAM

112



modes producing oscillations in intensity around the C. The phase struc-

ture of the C shape was numerically integrated to give a simulated OAM.

The phase structure was then decomposed into different OAM components

and it was shown that the C shapes has a narrow spread of OAM modes

centered around the numerically calculated OAM. Finally future develop-

ments and applications were discussed with Dual C shapes and applications

in trapping and lithography. This characterisation of the C-shaped state

adds to the library of known states containing phase vortices and could be

used in the future to design other intensity distributions without rotational

symmetry but containing OAM. Following this, chapter 5 will describe the

experimental production of the C shapes introduced in this chapter.
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Chapter 5

C experimental

To experimentally produce the C-shaped states described in chapter 4 a

variety of methods were used. Holographic reconstruction was used for the

amplitude contrast and phase contrast masks. However it must be noted

that the analytic phase only occurs in the mask plane and the C shape is

in the Fourier (diffraction) plane. All of the masks are designed to engineer

the phase of the wave at the mask plane to thus produce a C in the Fourier

plane.

5.1 Condenser Pt Foil amplitude mask

Amplitude contrast masks have sections which either block an incoming

wavefront or allow it to pass through (figure 5.1), following the shape of

the binarised interference pattern as described in chapter 3 section 3.2. For

electrons in the TEM a thin Pt foil mask was placed in the path of a TEM

electron beam (figure 5.2).

Figure 5.1: A schematic cross section through the Pt foil amplitude mask.

In this experiment the foil was 1µm thick.
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Figure 5.2: SEM images of the 1µm Pt foil amplitude mask produced by

FIB. The magnification increases from A-D , a)shows the substrate and the

foil which has been attached buy spot welding, b) shows the border of the

Pt foil rectangle, c) shows the central region of the film with the mask just

visible, d) shows the amplitude mask in the foil film.

To make this mask, 1µm Pt foil was attached to a Pt substrate by

using an ultrasonic wire bonder without wire. The wire bonder tip vibrates

rapidly, heating up the section of film it touches, effectively producing a

”spot weld” in each corner of the thin Pt square (see figure 5.2 a and b).

Once attached the foiled sample was place in a focused Ion beam machine

where a pattern was milled into the foil with accelerated Ga+ ions. This

procedure created the mask shown in figure 5.2 c and d, by using the

hologram shown in figure 5.3 c . The calculated hologram shows that as

the radius is increased along the discontinuity the bars and gaps spread

outward signifying a larger amount of phase being covered around one full

rotation, consistent with a mixed radius-azimuth product. These are not

present for fractional masks with only constant azimuthal phase gradients,

as shown in figure 5.3 e. The number of bars in the fork of a dislocation

grating represents how many times the the two waves come in and out of
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Figure 5.3: a) An SEM image of the Pt amplitude mask,b) the intensity

produced in the focal plane first diffraction order at 150K magnification

with 3 second exposure , c) the CGH design used to produce the mask.

d)a simulated intensity distribution of the C shape which should have been

produced. The simulated image is from 2E5 m−1 to 4.5E5 m−1 in kx and

-1.5E5 m−1 to 1.5E5 m−1 in ky.

phase, and is related to the topological charge, as such the average OAM

can be estimated by counting the number of bars at small and large radii.

For example figure 5.3 c shows the c mask has 8 bars close to the center

but this increases to 11 at the largest radius shown by the tip of the v

shape at the top of the mask discontinuity. This means the average OAM

is somewhere between 8 and 11, as will be discussed later this is correct.

This mask was placed into the condenser aperture of a JEOL

2200FS microscope and the diffraction pattern of the mask was brought

into focus at the sample plane by varying the condenser lens voltage. The

intensity distribution produced at the first diffraction order ,at focus, is

shown in figure 5.3 b. This was recorded at 150,000 times magnification

with an exposure time of 3 seconds. The opening angle in the experimental

intensity matches well with the simulated intensity and a comparison can

be made by plotting the intensity as a function of angle (figure 5.4) tracing

the intensity value around the C arc , following paths like the dashed white

lines in figure 5.3 b and d . Both the experimental and simulated distri-

116



butions are normalised such that the maximum intensity in the C takes a

value of 1. The experimental distribution can be characterised by finding

the angle at which the normalised intensity in the experiment equals the

normalised simulated intensity for a 45o opening angle. This analysis gives

44.7o however whilst there is definitely a strong match this value appears

to be fortuitously close. The actual experimental data show a shallower

intensity gradient than the simulation and, when normalised so that inten-

sities lie between 0 and 1, the experimental line crosses the simulated line.

This crossing occurs very close to the 45 degree angle, however if a compar-

ison was made at larger or smaller angles there would be a larger difference

between experiment and simulation. Looking at the finer structure, most

of minima and maxima are not resolved in the experimental data however

the experimental intensity does show a slight minima after the lowest in-

tensity point when moving around the arc to the highest intensity. This

experimental data shows successful control and production of an opening

angle in a vortex state for a C-shaped electron.

5.1.1 Amplitude within the gap

As discussed in chapter 4 section 4.1.6 there are still some areas of low-

intensity within the gap. The experimental intensity shows a region giving

a peak in the in both radial and azimuthal intensity plots (figure 5.5)

showing there is a linking intensity section between the two ends of the C

shape. This is consistent with the simulated intensity (figure 4.15) which

also shows a linking section of weak intensity between the upper and lower

ends of the C shape. The experimental intensity represents path electron

probability density can take when circulating from one tip to the other.

These results show that the electron beam can be predicted by the wave

model upon which the simulation is based and has some possibility to

circulate and maintain orbital angular momentum.
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Figure 5.4: A comparison between the simulated azimuthal intensity dis-

tribution and the experimental intensity recorded. The intensities are taken

around the curves as indicated by the dashed white paths in figure 5.3 b

and d. The upper image compares the experimental with an ideal C from a

direct phase mask, whilst the lower compares the experimental with a sim-

ulated first diffraction order. The first diffraction order (lower panel) has

less oscillations in the intensity close to the highest intensity around the

arc (π rad in lower and ±180 degrees in upper). This is due to overlap

with the zeroth order. 118



Figure 5.5: Radial (upper) and azimuthal (lower) plots of the experimental

C-shaped intensity. The line plots are intensities along the dotted red lines

overlain on the experimental intensity. The orange scale bar is 10nm and

applies to both upper and lower experimental images.
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5.1.2 Pt mask propagation

A through focus series of images was collected by varying the condenser

lens strength. These are rendered in figure 5.6 by stacking the images on

top of one another, ( as explained in appendix section A.5) with the green

volume enclosing regions of high intensity. Figure 5.6 a shows a side on

view of the first three diffraction orders showing the gap of the order closest

to the camera. Figure 5.6 b shows a top down view along the propagation

direction and all three diffraction orders can be seen, with the gaps on

opposite sides of opposite diffraction orders. The opening is clearly shown

to slowly rotate as explained in section 4.1.4.1 and shown in figure 4.12.

The opposite diffraction orders rotate in opposite directions showing this is

due to the varying relative Gouy phases of topological charge components

with different signs, as discussed in chaper 4 section 4.1.4.1.

Figure 5.6: An isosurface outlining regions of experimentally recorded high

intensity for the defocus C-shaped diffraction pattern. a) side on view, per-

pendicular to propagation showing the rotating gap on one diffraction order.

b) view along beam propagation axis showing both ±1 and 0 diffraction or-

ders.

5.1.3 Iterative phase retrieval

The iterative method describe in section A.3 can be used for phase retrieval

from an input intensity . The desired phase solution is now the phase in

the Fourier plane and not the mask plane. To improve the algorithm when
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applying it to a series of images , with an increasing distance from focus,

the output from the previous image in the series was used as the starting

guess for the next image in the series. To test out the algorithm an ideal

simulated C-beam (α = 45,D = 10) was used as the input intensity image

sequence. In this case for each slice the initial guess was the ideal at focus

simulated C. As is shown in figure 5.7 the algorithm successfully reproduces

the simulated phase singularities in the core and opening of the C shape

at focus. The trajectories of the retrieved phase singularities also match

extremely well with the simulated trajectories as shown by the overlapping

datasets in figure 5.7. When performing the OAM mode decomposition

described in section 4.1.9.2 the retrieved at focus phase gives very similar

results (figure 5.8) to the ideal simulation (in chapter 4 section 4.1.9.2)

showing the phase retrieval method does not introduce artefacts to the

ideal dataset. However whilst the numerical OAM values for the simulated

input and retrieved output match each other, 8.374 and 8.45 these do not

match the ideal 9.32~ this is due to the lower resolution required for the

iterative retrieval, higher resolutions give numerical OAM much closer to

the ideal prediction, however the long runtimes and memory requirements

for the phase retrieval algorithm limits the resolution which is feasible.

As a second check of the algorithm a simulated input from an

l = 1 vortex was used, whilst still having an initial guess as an ideal C

shape. Despite starting with the same high orbital angular momentum C

shape as before the algorithm successfully ends up at a single central vortex

line as shown in figure 5.9, proving the reliability of the algorithm.
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Figure 5.7: (a,b,c): For propagation along the z axis, these figures show an

overlay of vortex trajectories from the ideal simulation (green points and

the retrieved phase (blue points) showing a successful match.a)(x,z) plane

b) (y,z) plane c) (x,y) plane (d,e): The intensity (d) and phase (e) of the

wavefunction retrieved from the ideal simulated intensity at focus.
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Figure 5.8: OAM mode spiral harmonic decomposition for the phase re-

trieved from simulated input , OAM approximation by weighted summation

is 8.55 and the numerically evaluated integral gives OAM= 8.45 )

Figure 5.9: A rendering of the retrieved wavefunction from the iterative

algorithm, when applied to a simulated l = 1 input. Green volumes encose

regions of high intensity and red or blue dots are phase singualrities.
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5.2 TEM mode phase retrieval

The phase retrieval algorithm of section A.3 has been applied to experi-

mental images, the at focus simulated wavefunction was only used as the

initial guess for the central at focus experimental image. When moving

outwards away from the focus the solution from the previous image is used

as the initial guess for the current image. The results of this method when

applied to a C formed in TEM mode are shown in Figures 5.10 to 5.12.

Figure 5.10 shows the at focus retrieved wavefunction along with

its OAM decomposition. The retrieved phase shows a very similar OAM

mode distribution to the ideal simulated however there are increased con-

tributions from modes outside of the l = 5 to l = 11 range. This reduces

the OAM approximated by coefficients to less than 8~. The numerically

evaluated OAM expectation value is calculated as 8.26~ for the retrieved

phase , only slightly lower than that of the simulation. These results sug-

gest the electron beam produced in TEM mode has a phase structure very

similar to that of the designed C shape with only small deviations from the

theory.

Figures 5.11 and 5.12 shows the rendered wavefunction propaga-

tion of the solution retrieved from the TEM experimental intensities.

Different colours are only so that different vortex lines can be

distinguished when they overlap. There are a clear set of vortices which

propagate and circulate with the C shape, this can be seen as the long

lines in figure 5.11 and the collection of points within the grey ring in

figure 5.12. However the phase retrieved contains short nodal lines which

do not occur in the ideal simulation (e.g. the bright green points in the

lower image of figure 5.11). These end without annihilating by meeting

a vortex of opposite charge ( see shorter lines in figure 5.11) . This is

unphysical for a phase singularity to just end, the reason for this is unknown

and is most likely an artefact of the array resolution and finite arrays.

Future studies with larger computing power could increase the resolution

to investigate this further, seeing if these vortex lines are still present.

These short lines could also show that the experimental conditions create a

slightly different vortex structure when compared to the ideal simulations,

as would be expected.
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Figure 5.10: upper: spiral harmonic decomposition lower: Phase (right) and

amplitude (left) of retrieved wavefunction from TEM mode C shape using

previous image as the start for each slice. The numerical OAM integral is

8.26~.

A comparison of an ideal Fresnel propagation away from focus

with the retrieved vortex trajectories from the experimental intensities

shows a distinct mismatch (figure 5.13), this discrepancy between ideal and

experimental vortex trajectories can be attributed to the inhomogeneous

environment due to remaining aberrations in the TEM.
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Figure 5.11: Rendering of retrieved wavefunction using previous slice result

as the initial guess, working from focus outwards. Coloured lines track vor-

tex trajectories in the retrieved phase for the TEM mode C. The numerical

OAM of the retreived at focus phase is 8.26 ~
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Figure 5.12: A top down view of same distribution as figure 5.11

Figure 5.13: Retrieved phase vortex trajectoriesfrom TEM mode (red) and

simulated Fresnel propagation trajectories (blue) from the retrieved wave-

function at focus. The grey volume is simulated intensity. The mismatch

suggests the experimental conditions still contain aberrations.
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5.2.1 Phase retrieval on NBD focal plane intensity

When using the nanobeam diffraction mode of the JEOL 2200 there is more

fine detail in the C-shaped intensity compared to the previously shown re-

sults which were recorded in TEM mode. When using the ideal simulated

C shape as an initial guess for the phase the iterations gradually deform the

phase structure until a best match has been found for the measured ampli-

tude. The phase retrieval method described in section A.3 was applied to

a series of images taken in NBD mode. Figure 5.14 shows the results when

using an experimental C shape recorded at 600,000 times magnification

with an exposure time of 5 seconds. The retrieved phase shows vortices

with a distortion from the even distribution around a ring seen in the ideal

simulation. However the azimuthal phase gradient and alternating vortex

anti vortex pairs survive through the iterations. The OAM mode decom-

position of the retrieved phase shows significant contributions from OAM

mode between l = 7 and l = 10 as expected, but similarly to the TEM

mode there are larger contributions from outside this range. For the wave-

function retrieved from the amplitude recorded in NBD mode the spread of

prominent contributions to the decomposition is larger than the ideal simu-

lation and the numerically evaluated OAM expectation value is 7.7~, lower

than the equivalent for the analytical 9.32~ and ideal retrieved 8.24~. This

reduced OAM is most likely related to the presence of aberrations which as

shown for two-fold astigmatism can introduce a spread in the OAM mode

decomposition. The reduced OAM could also be due to any imperfections

in the mask structure. The phase retrieved and subsequent OAM analy-

sis of the NBD mode suggests that this mode in practice does not offer a

significant benefit in terms of increased OAM of the electron beam. The

phase retrieval finds a wavefunction with a similar OAM spiral harmonic

mode distribution and OAM from the coefficients calculated. The numeri-

cally evaluated OAM for the NBD mode is slightly lower than for the TEM

mode. The reason for this is unclear, however it must be noted that the

TEM mode images and NBD mode images were recorded in separate ses-

sions over a year apart and so variations in the lens calibration in between

mean it is not an ideal comparison and are a potential explanation for the

unexpected variation.
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Figure 5.14: The results of the phase retrieval algorithm when applied to a

C shape produced in NBD mode with magnification 600,000 times (scale bar

is 20 nm) . Top experimental input intensity (left), the retrieved intensity

(center) and the retrieved phase profile (right). Bottom: the OAM mode

decomposition of the retrieved phase with an approximated OAM of 8~. The

numerical OAM integral of the retrieved function is 7.7 ~.
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5.2.2 Phase retrieval of NBD propagation series

To characterise the C shape produced during the NBD mode the phase

retrieval was applied to a set of images recorded with different defocus.

The recovered vortex trajectories are shown as coloured lines in figures

5.15 and 5.16. These phases were found by working from the focal plane

Figure 5.15: Rendering of the retrieved wavefunction for the NBD series

containing the at focus distribution in figure . Vortex trajectories which

thread the central C ring have been highlighted, colour is only for distin-

guishing individual trajectories. (inset:a top down view along propagation)

outwards and using the previous image’s iterative result as the initial guess.

At focus there are 13 main vortices found within the ring (figure 5.15) ,

this contrasts the ideal simulated 9 and is due to 2 extra central vortex-

antivortex pairs forming inside the arc.

11 of the phase vortices are away from the gap and rotate inside

the high intensity arc as they propagate. Some of these vortices are only

found in the central region close to focus( black, light pink, salmon pink),

whilst others have trajectories from large defocus ( yellow, dark blue, light

blue, brown). These large defocus trajectories reproduce the qualitative

prediction from the simulations of chapter 4 figure 4.12, with the large

angle trajectories also shown in the dark blue line in figure 5.17.
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Figure 5.16: A rendering of the external vortices not included in figure 5.15.

The iterative algorithm also produced a phase distribution with

a collection of vortices outside the C arc opposite the gap (shown in light

green in figure 5.16. These were not expected from simulations the lack of

these in the retrieved phase from an ideal simulated series of images shows

these are not an artefact of the phase retrieval algorithm and are due to

some experimental conditions not captured in the simulation. This phase

retrieval analysis gives evidence for the OAM of the produced C-shaped

intensities and is broadly consistent with the vortex trajectories predicted

by simulations.
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Figure 5.17: Simulated vortex trajectories (blue dots) for large defocus of

a α = 45o C-shaped function. The green volume encloses high intensity

regions.
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5.2.3 Lithography of C shape and energy filtered imag-

ing

C-shaped beam intensity could be used in the formation of split ring struc-

tures for metameterials for light on the micron scale or for electrons at the

nanometer scale. C-shaped electron vortex beams can be directly used in

coherent electron beam lithography, for example, producing nanostructures

by exposing direct writing electron beam resists to such beams [137]. The

advantage is that no scanning beam is used, as such all the intensity in-

teracts with ‘virgin’ resist and the achievable resolution is not limited by

any previous exposures of the resist. Currently methods are being devel-

oped to utilise the electron probe in a STEM to construct materials by

moving individual atoms or causing structural changes at the nanoscale

[138][139]. This has mostly been limited to two dimensional patterning

however experimental methods such as focused electron beam induced de-

position (FEBID) have been shown to produce three dimensional spirals

[140]. In this emerging field, electron intensity shaped in three dimensions

will be extremely useful as it allows intensity to be defined in all three

dimensions simultaneously, potentially speeding up the writing process by

removing the need for separate probe positioning steps. The central left

inset in Fig. 4.12 E shows the regions of high intensity which form a spiral

close to the focal region. This high intensity spiral could be used to pro-

duce chiral spiral structures or spiral crystalline volumes where scanning a

focused probe may otherwise be time consuming or alter the resist through

its entire thickness.

The C-shaped beam produced in section 5.1 was used to litho-

graphically imprint a C shape into a resist. This could have a benefit over

scanning a focused probe in that all of the C can interact with new re-

sist, this is important for inorganic resists such as AlF3 for which a focused

probe causes beam damage around the interaction region ,coating the walls

surrounding the probe with metal [141]. Previous research using AlF3 has

shown it can be used as a self developing resist. Under lower electron beam

irradiation, the AlF3 is reduced to fluorine and Aluminium , for higher

irradiation holes can be produced [142]. In 1985 it was shown by Murray

et al. that holes can be produced down to 2nm diameter [143] and lines

of linewidths 5nm . This resolution still compares favourably to modern

resists [144] such as PMMA (line widths of 3-4 nm) and HSQ (line widths

of 6 nm).
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Using a pre-shaped probe provides a one-step stamping method,

avoiding the effect of previous pixel interactions when scanning a C shape.

This could find uses in the production of intricate or curved shapes such as

split ring structures for metamaterials and plasmonic applications. AlF3

was chosen to test the lithographic potential of C-shaped illumination due

to its self developing nature allowing instant feedback on the mechanism

and not requiring transfer of the sample from the electron microscope.

The AlF3 was deposited by thermal evaporation from a crucible at a rate

of 1.5 − 2 angstroms per second and a thickness of approximately 50nm

was achieved. A thin C-shaped hole was produced in the film as shown

Figure 5.18: A bright field TEM image of AlF3 substrate after illumina-

tion with C-shaped electron diffraction pattern. The three main diffraction

orders produced sets of curves either side of a dot, diffraction axis is along

the vertical. The horizontal bars are due to the defocused shadow of the

condenser aperture bars.

in figure 5.18, the 5 second exposure is shown in figure 5.19 along with

an intensity line plot showing that the image of the patterned film shows

line structure which is narrower than the image of the probe used to form

it. The explanation for this C shape on the image is that the resist has

been removed or reduced to decrease the thickness in the area exposed thus

forming a bright section in the bright field TEM image. This suggests that

the resist was only fully removed where the beam intensity was the high-

est,after an exposure of 5 seconds. Another brief exposure ( 10 seconds)

to the electron C-shaped beam the AlF3 resist showed a section which has

undergone beam induced reduction leaving behind Al metal. This is evi-

denced by the energy filtered TEM image around 15eV in figure 5.20 which

is the bulk plasmon of Al metal. However whilst testing this method it was
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Figure 5.19: A) The 5 second Bright field TEM from figure 5.18. B) A

comparison of a lineplot through the center of the 5 second exposure C

shape shown in (A) with a similar lineplot of the intensity recorded of the

C-shaped beam with no sample.

noticed that Al builds up in the center in addition to around the C curve.

If left for longer periods of time the aluminium builds up in an outline of

a C, as is shown for the energy filtered image of figure 5.21 showing the Al

bulk plasmon of 15eV. These points are both evidence for Al being ejected

away from the beam during the interaction, which is consistent with the

findings of Nikolaichik [142] and Chen et al. [145], who discuss the build

up of fluorine bubbles which then collapse, dispersing Al away from the

site of reduction. This means that the thermally deposited resist used in

this experiment would not be suitable for large scale repeatable production

of C-shaped structures, single crystal layers of similar resists may perform

better and react more uniformly. The production of a C shape after the

interaction shows that this method is feasible and would just require more

suitable resists and procedures to be found. This was however outside the

scope of this thesis project.

In the slightly defocused image of figure 5.18 the longer exposure

times show an increasing size of the central spot. The rings seen in the

image can be explained by Fresnel diffraction from the small hole created

by the intense central diffraction order. A similar effect on the C shapes

becomes more prominent for longer exposure times suggesting the 5 second

exposure does not produce a hole straight away and it is only after 10 sec-

onds that there is a C-shaped slit through which the electron diffracts to

form the oscillations associated with Fresnel rings. The patterning in AlF3
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was very difficult to reproduce exactly and the interaction was not even or

predictable around the C. This could be due to large grain size in the ther-

mally deposited AlF3 and shows that a different resist would be required,

one with higher homogeneity and one which is less reactive under electron

beam illumination, to offer more control over the patterning interaction. In

addition these feasibility tests showed that using thermally deposited AlF3

is not suitable to leave a metal deposit at sites of high intensity due to the

production of a hole surrounded by aluminium instead. Whilst the success

with this resist was limited, these tests show there is potential for shaped

electron beams to help in lithographic patterning of nanoscale structures

with features below 10nm size. The C-shaped electrons described in this

chapter could potentially be adapted to producing nanoscale variation in

crystal structures following the spatial spiral structure shown in figure 4.12

similar to the reported work by [138].

Figure 5.20: Energy filtered TEM images of AlF3 substrate after C-shaped

electron beam illumination for different exposure times. Recorded at 0eV

and 15eV.
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Figure 5.21: Energy filtered TEM images of AlF3 after C-shaped electron

beam illumination showing intensity around 0eV and 14 eV, revealing the

build up of Al around the outside of the C shapes.

5.3 Phase contrast masks

A second type of mask uses the same CGH as the amplitude contrast but

now the binary values correspond to differences in thickness of transparent

Silicon Nitride as shown schematically in figure 5.22. The silicon nitride

membrane samples were ordered from Silson [146] and were in 200µm thick

octagonal substrates to fit the 3mm diameter aperture of the TEM sample

holder, the membrane window area was 250µm× 250µm . To produce the

phase contrast masks 200 nm thick Silicon nitride membrane samples were

coated in approximately 50nm of Pt/Pd via plasma sputter coating. The

function of this is 2 fold, to act as a conductive charge alleviation layer

and to also reduce the electron intensity outside of a designated circular

aperture. Initially a circular aperture was milled into the sample by remov-

ing the Pt/Pd layer and once uncovered the mask pattern was milled into

the Silicon Nitride sample. The resulting phase contrast masks are shown

in figure 5.23 , the thickness was determined by energy filtered TEM (see

chapter 1 section 1.13 ) to be 0.8 mean free paths (this mean free path has

been estimated to be 135nm [147] ). Figure 5.23 shows that the thickness

profiles through the silicon nitride phase masks are closer to a sinusoidal

oscillations rather then ideal binary steps.

The Silicon Nitride substrates were 3mm diameter and as such
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Figure 5.22: A schematic of the Silicon nitride phasemasks.

Figure 5.23: Thickness maps from EFTEM of the produced phase contrast

sample plane masks.a) the mask for α = 45, b) the mask for α = 45,c) the

mask defined with α = atan(y/x) (d,e,f)Thickness plots across red lines in

(a,b,c) , distances are in µm and the thickness are in units of mean free

paths.

could not fit into the 2mm condenser aperture and needed to be placed in

the sample plane of the JEOL 2200 TEM. Free lens control was used during

low mag mode (see chapter 1) section 3.3) ,lenses IL1 and IL3 were used to

bring the diffraction pattern into focus on the CCD and lens IL1 was used

to vary defocus. The ratio of the widths for the milled an unmilled sections

of the masks produced in this manner varies from the ideal CGH. The

ideal mask is produced by a binarisation procedure which distinguishes

areas on the interference pattern above and below a threshold, taken to

be the minimum value plus 0.5 of the range of values. If this value is

higher or lower than the threshold then one set of bars will become wider

and the other narrower. This relative width change produces intensity in

a diffraction order at lower wavevectors (angles) than would be expected

from an ideal mask as shown in figure 5.24 . This can be seen for a simple
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1D case in figure 5.24 and for the C shapes in figure 5.25, where the second

order is not present when the step and gap widths are equal however it is

present when step and gap widths are unequal.

Figure 5.24: Simulated results: Fourier transforms of two 1D phase gratings

with different bar width ratios. A more uneven bar thickness ratio leads to

intensity in the otherwise ’missing’ second order.

In addition to uneven barwidths, the overall phase change induced

by the mask will deviate from the ideal π phase change. This will prevent

the destructive interference possible in the ideal case and allow intensity

into previously missing diffraction orders, most notably the zeroth order

(see figure 5.26).
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Figure 5.25: Simulated results: The effect of varying bar thickness on the

diffraction orders present in the Fourier plane. The top has equal bar widths

with an average cut off value of normalised intensity of 0.5 . The lower

images have a cut off value of 0.25 giving a bar width ratio of 1:3, this

allows intensity at smaller wavevectors.

Figure 5.26: Simulated results: The effect of varying phase contrast between

binary sections on the diffraction orders present in the Fourier plane. The

top has an ideal phase contrast of π however the lower image is formed

from a mask with 0.75π, as such the central order no longer has destructive

interference.
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5.3.1 Phase contrast mask for a C with α = 22.5o

For the values m = 7.91 and c = 2.09 the predicted half opening angle is

22.5o. The computer generated hologram is shown along with the mask pro-

duced and the resulting electron Fourier plane diffraction pattern intensity

in figure 5.27 b.

Figure 5.27: A) An SEM image of the Silicon Nitride membrane phase

mask B) the Fouier plane intensity of the right 1st diffraction order C) the

input hologram used to produce the mask in (A) D) the simulated C-shaped

target intensity. E) A rendering showing the region of high experimental

intensity as a function of propagation. Scale bars are A)1µm, B)500 µm

and D)1µrad (for a 200keV electron with an optical system with a 0.016m

camera length).

As can be seen the angle produced experimentally matches well

with the simulation however the lower part of the C-shaped structure is

less intense then the upper part. The reason for this is not known however

it could be related to the limitations in producing the central region of the

mask which requires very fine bars, another possibility is due to imperfec-

tions in the physical mask such as remaining bits of Pt or varying thickness

. The opening angle can be made more visible by varying the contrast in
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the image. A comparison of the normalised azimuthal intensities, shown in

figure 5.28, shows the good match between the simulated intensity opening

angle and the experimentally produced intensity. The reduced intensity in

the lower section of the C is shown by the lower values on the right hand

side of the plot. When normalised for values between 0 and 1 the experi-

ment is much lower than the simulation, this is potentially due to a lower

efficiency than the simulation leading to a zero order of increased bright-

ness. Overlap with this bright order thus makes the C shape intensities

further away (at smaller angles towards the center of the plot) less intense

relative to the peak value.

Figure 5.28: A comparison between the simulated azimuthal intensity dis-

tribution and the experimental azimuthal intensity oscillations. For a direct

phase mask, a phase contrast CGH mask with π and 0.75π phase contrasts.

Simulating a phase contrast mask with the ideal pi phase shift

produces a diffraction pattern without zeroth order intensity. This matches

well with the relative intensities predicted by a simple direct phase mask

only producing an isolated C shape. However when a phase contrast of

0.75π is used the intensity is reduced around the C. The experimental

intensity suffers from overlap with zeroth order intensity and as such the

intensity profile is more like the non ideal phase contrast. However this

zeroth order intensity could be due to other imperfections in the mask

such as bar widths . The peaks do align approximately with both the

phase contrasts of an ideal π and a reduced 0.75π, suggesting the phase

profile of the experimental C is as expected and different OAM modes
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interfere to produce these fringes. The propagation of the first order from

the diffraction mask is also shown in figure 5.27 where the presence and

rotation of the gap are shown. This matches what is expected from the

theory of chapter 4 and gives evidence that the beam produced has the

phase characteristics the experiment aimed to create.

5.3.2 Phase contrast for a C with α = 45o

For the values of m = 6.11 and c = 3.89 the half opening angle is predicted

to be 45o. Using these values the CGH mask produced the experimental

electron Fourier plane intensity shown in figure 5.29. When compared to

the previous 22.5 mask the higher orders have a higher intensity relative

to the first diffraction order. This can be seen by a comparison with figure

5.27. This is related to the bar width ratio between thick and thin sections

of the mask. As can be seen from figure 5.29 the mask produced has uneven

widths compared to the input CGH.

By making the ratio uneven one section has more intensity than

the other, thus one thickness dominates and the destructive interference

does not reduce the intensity as much. This means more intensity is found

in the previously missing second order compared to figure 5.27. The simu-

lated intensity shown in figure 5.29 uses a threshold value of the minimum

plus 0.25 of the range, giving uneven bar widths and intensity in the gap

which would not be present for even bar widths. The astigmatism present

means that a direct comparison to a circular intensity plot cannot be per-

formed for this intensity,

however the opening angle is clearly larger, showing the success-

ful control of the opening angle via the control equations in section 4.1.2.

Qualitatively the experimental intensity is recreated well in the simulation

even without astigmatism. The simulated intensity shows peaks of inten-

sity in the center and the tips of the C shape with fringes in the gap due

to overlap with a neighbouring C shape of a higher order. When counting

the fringes in the opening there appears to be an extra fringe in the experi-

mental image potentially caused by astigmatic deformation of the C shape.

Even with the experimental distortions the through focus series still shows

a robust gap which slowly rotates with propagation as shown in figure 5.30,

the green volume encloses the C-shaped intensity whilst the red volumes
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Figure 5.29: A) (scale bar 1 µm ) An SEM image of a phase mask de-

signed to produce an α = 45 C shape. B) the recorded intensity in the first

diffraction order C) the CGH used to produce the mask. D) the simulated

intensity from the mask including uneven barwidths. (scale bar 5µrad)

show the tips and center of the C curve which have higher brightness than

the rest of the curve. The astimatism breaks up the high intensity red

region into three sections. The two red sections closest to the camera in

figure 5.30 are the tips and the foremost gap is the opening. The back red

volume is the central intensity opposite the opening. This is similar to pre-

vious renderings with the gap rotating however there are two extra breaks

around the C shape. These results shows that it is diffcult to produce even

bar widths however the mask did successfully produc C-shaped electron

vortex states with a controlled opening angle.
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Figure 5.30: Rendering of recorded intensity defocus series of the first

diffraction order C shape from phase contrast mask for α = 45o. There

are 3 main columns of high intensity shown in red, the left and right at the

front of the image, correspond to the top and bottom of the C shape and the

central red column at the back is the section of the C closest to the zeroth

order. The gap between the front two red sections is the gap of the C shape

and shows slow rotation as expected.

5.3.3 Phase contrast mask for a C defined with an

angular co-ordinate rotation

In addition to the C shapes described previously there is another degree of

freedom when producing these C states , namely the relative orientation

of the C shape. This is achieved by using a different angle definition in

equation 4.1 of chapter 4. If a definition of φ = atan(Y/X) instead of

atan(X/Y ) a diffraction pattern where the openings point up and down

can be produced. A phase mask designed to produce this along with its

Fourier plane intensity, is shown in figure 5.31. As can be seen from both

experiment and simulation the openings for orders on opposite sides must

be related by a rotation of 180o, in this case the openings are up and down

instead of left and right. This shows the reflection symmetry plane cuts

the discontinuity line in the phase mask. The experiment shows the same

intensity distribution as the simulation with many of the fringing effect
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Figure 5.31: a) (scale bar 1 µm ) SEM image(left) of a phase mask

designed to produce a C shape with the opening along the vertical line per-

pendicular to the diffraction axis. b) The diffraction pattern of the mask in

(a). Due to symmetry of the measured pattern the experimental intensity

is shown with two different contrasts for the left and right side.c) the CGH

pattern used to produce the mask d) simulated diffraction pattern from such

a mask, also shown with two different contrasts for the left and right sides.

Scale bar in d applies to both b and d , and is 10µrad

reproduced. There is again an issue with low intensity in the right order at

the base of the C. The propagation of the first three orders either side of the

central beam is shown in figure 5.32, the grey volume outline the regions

of high intensity with the green volume being the highest intensity inside

this. This experimental data shows the openings are maintained with slow

rotation and that they occur on opposite sides of the propagation volume.

The size of the opening also appears to follow the predicted opening angle

of 45o well.
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Figure 5.32: Experimental results: a) a view along the propagation of the

first 3 diffraction orders from the mask shown in figure 5.31 showing 6 C

shapes and the zeroth order. Grey regions are of medium intensity and

green volumes enclose the high intensity regions. b) a side on view of the

same set of diffraction orders as in (a).
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5.3.4 C shapes produced with a blazed phase contrast

mask

The phase contrast masks can also be altered to include a blazing phase

ramp from one side of the mask to the other. This means the height

follows a path similar to a saw tooth function. This acts to divert intensity

preferentially into one sign of diffraction order as shown in figure 5.33 . This

mask was produced by starting with the interference CGH (from section

3.2) instead of a step function the left hand sides of the bars in the binarised

mask were then used to define the start of individual phase ramps in the

x direction (perpendicular to the phase discontinuity. The experimental

intensity distribution shows that the right order is brighter than the left,

however the C structure is less well defined than the other masks in this

chapter. The intensities for the at focus image in figure 5.33 are 59.8% in

0th order 25.74% in the right order and 14.47% in left order, as percentages

of the total intensity of the 3 orders. So, whilst the blazing did not make

the right order the most intense, it did increase the intensity above the

left order. This suggests that a different phase gradient may redirect more

intensity into the right order, if it is matched to the wavevector of the first

diffraction order.

Figure 5.33: a)(scale bar 1µm) a SEM image of a blazed phase mask de-

signed to produce a C shape. (contrast has been altered to improve visibility

of pattern) b-d) the recorded diffraction pattern at 3 different intermediate

lens voltages giving a defocus before (b),at (c) and after (d) focus.
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5.4 A C-shaped electron produced by a di-

rect phase mask

An alternative method is to use the transparent Silicon nitride to directly

imprint the desired phase onto the electron beam ([53]). This was done

using the mask shown in figures 5.34 . The drawback of this method is

the presence of usually unwanted zeroth order. This unwanted order lead

to interference patterns in the intensity as shown in figures 5.34and 5.35.

The C-shape is now split into prominent segments after interference with

the unwanted order. There is also internal structure inside the arc when

at defocus. These can be used to asses the presence of phase singularities

as it is essentially performing a sort of in line holography between the C

shape beam and the unaffected beam. These intensity distributions can

be modelled with interference between the C wavefunction and a spherical

wave. Close to focus the spherical wave component causes a bright spot to

appear along with the C shape (see figure 5.34 d). Upon propagation close

to focus this dots forms a ’bullet’ of high intensity as can be seen in figure

5.35 and at larger defocus there is a large amount of fringing and distor-

tion present in the C shape, compared to just the C on its own.Simulations

can recreate the experimental intensity seen when defocusing the C-shaped

beam, by using a phase contrast of 0.75π and by including astigmatism with

A = 0.5(figure 5.34 columns 3 and 4), yet the at experimental at focus in-

tensity is reproduced by simulations with no astigmatism. This suggests

that the experimental procedure for varying the defocus also added astig-

matism into the beam. This experimental data shows C-shaped electrons

can be made via direct phase alterations allowing them to be produced by

methods other than CGH masks.
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Figure 5.34: a) SEM image of the direct phase mask.(contrast has been

altered to improve visibility of pattern) b) the input phase distribution used

to produce the mask.c) defocused experimental intensity.d) at focus experi-

mental intensity
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Figure 5.35: (a,b,c): Simulated intensity distributions for a mask with phase

distribution 0.75× mod( ideal phase,2π) (mod is remainder function) for a)

at focus b) defocused with no astigmatism (middle) and c) defocused with

astigmatism coefficient A = 0.5. (d,e) recorded intensity propagation of C-

shaped electron formed by a direct phase mask d)view along propagation e)

view side on to propagation. Grey regions are medium intensity and green

regions are high intensity.
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5.5 Chapter summary

This chapter has detailed the experimental production of the C-shaped vor-

tex states described in chapter 4. The intensity produced by an amplitude

Pt foil mask placed in the condenser aperture was shown for both TEM

mode and NBD mode (see section 3.1 for ray diagrams). An estimate for

the phase of the electron was retrieved from the recorded amplitude using

iterative methods. Vortex trajectories were then plotted from the retrieved

phase of images recorded for different defocus values. These showed a clear

set of vortices within the C arc with additional vortices outside the arc, not

present in simulation suggesting the non uniform aberrations of the phys-

ical environment in the microscope cause distortions and extra vortices to

appear. One benefit of using an amplitude mask is that the edges of the

binarised image can be more clearly defined, allowing a C shape closer to

the ideal simulation. The results from direct write lithography with the C

shape produced in TEM mode was then shown. The AlF3 resist did show

patterning in the shape of a C but to improve the reproduction of the C

other resists with high resolution could be explored.

The intensity produced in low mag mode from sample plane Sili-

con Nitride phase masks was then shown for two different opening angles,

a blazed phase mask and a direct phase mask. Improvements to these

masks mostly rely on the nanofabrication procedure where it may be possi-

ble to use smaller ions such as Helium to pattern higher resolution masks.

Processes other than FIB could also be investigated to see if a less ran-

dom procedure could produce more equal thickness variations. Within the

JEOL 2200FS microscope , using the condenser aperture in TEM mode

produces C shapes which are much brighter than the sample plane phase

masks used in low magnification mode. If phase masks could be made to fit

the smaller condenser aperture then the intensity falling on the mask could

be increased and the phase masks should show higher intensity C-shaped

electrons than the equivalent amplitude masks. This is the first time such

C-shaped vortex states have been produced for photons or electrons, apply-

ing the techniques developed for integer vortex electron shaping to a sep-

arate state with fractional OAM. The C-shaped electron states produced

here highlight the flexibility of the phase shaping method and provide a

new experiment where the wave model of electron interference is useful for

predicting experimental results.
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Chapter 6

Simulation of 2D chiral

plasmon vortex modes

STEM EELS has proven itself a useful tool for characterising plasmon

modes [148], a useful review has been produced by Colliex et al [149].

This has mostly been for two dimensional structures but some studies have

measured interactions with three dimensional plasmon modes, such as those

in nanocubes. In 2D, the bound waves measured so far have been modes

reflected from either flat surfaces or circular boundaries. An interesting

situation arises when the radius of the boundary is nonuniform.As discussed

by Kim et al. [45], in this case reflections from the edge will add up to give

a wave travelling at an angle to the radial direction, adding a circulation

to the plasmon oscillation. The increasing distance from the central region

gives a phase delay proportional to angle, as is required for a vortex mode.

Initially this chapter will review the plasmon modes which have been found

for nanodisks, previously discussed in the literature. It will then be shown

that the eigenmodes of the nanodisk can be transformed by adding spiral

steps, breaking the circular symmetry. This causes the contributions from

OAM modes of±l to become unequal, giving the plasmon eigenmode OAM.
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6.1 Nanodisk simulations with COMSOL

Simulations of a nanodisk have been performed in COMSOL to compare

with previously published modes found [148]. Hobbs et al. used a line

current excitation and the frequnecy domain solver, the solutions shown in

this thesis used no exictation and the eigenvalue mode solver. The modes

of oscillation should be similar in nature regardless of the solution method.

It was found that both the edge ’SP’ solutions and centered ’CP’ solutions

were found by the eigenvalue mode solver ,matching the amplitude and

phase distributions found by Hobbs et al. The energies of these modes are

higher than reported by Hobbs et al, the simulations which produced figure

6.1 used an ideal cylinder of aluminium and used the built in Aluminium

and Silicon nitride materials. The modes distributions corresponding to

this plot are shown in figure 6.2.

Figure 6.1: A comparison between the modes found via the eigenvalue

solver method and the published modes from a frequency domain solver

[148]. For Aluminium nanodisks of different radiii.

The Hobbs et al. paper uses a 2.6nm aluminium oxide shell,

curved corners with 3nm curvature radius and constant dielectric values

for Silicon Nitride and Aluminium Oxide of 2.4 and 1.88 respectively. In-

cluding these conditions the eigenvalue solver finds a CP1 mode at very

similar energies to the published results as shown in figure 6.3. How-

ever, when using these conditions the eigenvalue solver did not find any

SP modes. Simulations of a 30nm silver nanodisk on 100nm Silicon nitride

have also been performed , when comparing to the published values report

by Schmidt et al.[92], the centered breathing modes were found at similar
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Figure 6.2: The mode distributions of Ez field for the SP, CP and multipole

modes in figure 6.1. (l,p) nomenclature signifies the number of azimuthal

nodes ,l and radial nodes ,p.

Figure 6.3: A simulated mode for a 30nm radius disk including a 2.6 nm

AlO shell, 3nm curvature rounded edges and a constant Silicon nitride and

aluminium oxide dielectric values of 1.88 and 2.4 respectively. The energy

of the CP1 mode energy matches that of Hobbs et al. Dimensions are in

µm.

energies, however the edge modes (similar to the SP modes of Hobbs et al)

were not found. Whilst it is unclear what the cause of these discrepancies

are, it is likely due to the use of perfect conductor boundary conditions

during the eigenvalue solver, adding a certain amount of confinement, rais-
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ing the energies. Whilst the energies only match the published values for

some modes, the discussion in this chapter is only concerned with the mode

distributions of amplitude and phase which all match the published modes.

As such the exact energies calculated do not effect the conclusions of this

chapter.

Figure 6.4: Rows 1 and 3 show Ez amplitude whilst rows 2 and 4 show

Ez phase. The modes found via the eigenvalue modes solver for a 30 nm

thick, 100 nm diameter cylinder of Aluminium on a 100 nm Silicon nitride

membrane.
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The localised plasmon modes have already been theoretically and

experimentally discussed for nanodisks [92]. These studies have shown

dipole like modes where there are multiple intensity lobes with a π phase

shift between different sections. Figure 6.4 shows the calculated eigenmodes

for a 100nm Al disk, with modes showing an increasing number of intensity

lobes and azimuthal phase discontinuities with increasing energy. The TBB

mode decomposition of these modes is shown in figure 6.5, showing these

can be considered as combinations of equal amounts of OAM modes of

equal and opposites topological charges. This is shown in the approximately

symmetric mode distributions.

Figure 6.5: OAM mode decompositions using a TBB basis set for a 100nm

diameter nano disk . The colours match the modes shown in figure ??, as

such data1 to data 7 are the modes from left to right in figure ??. The

outer radius of the spiral was set to a maximum in the bessel function.

6.2 Chiral plasmon spiral simulations with

COMSOL

To view the effect of adding a spiral step to a nanodisk, an l = 1 spiral of

135nm inner radius and 50nm step size was simulated. The eigenmodes

for this structure are solely at the edge boundary as can be seen in the

modes of figure 6.6. The decompositions of these modes (shown in figure

6.7) shows a larger range of l values and increased asymmetry compared

to the the nanodisk in figure 6.5. This shows evidence for the spiralling
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boundary breaking the symmetry of the mode decomposition. To confirm

this a further set of simulations were conducted, gradually increasing the

spiral step radius for smaller structures to reduce the computation time.

Figure 6.6: The Ez eigenmodes found for an l = 1 spiral structure of

Aluminium. Rows 1 and 3 show amplitudes rows 2 and 4 show phase dis-

tributions.

It can be seen in figure 6.8 that the dipole mode produced by

l = ±1 is still present for large spiral stepsizes however the mode energy

increases. When looking at the TBB mode decomposition of these modes it
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Figure 6.7: Decomposition into TBB modes of eigenmodes shown in figure

6.6. Summations for radial mode numbers 0 to 20. The outer radius of the

spiral was set to a maximum in the Bessel function.

Figure 6.8: Ez Amplitude(top) and Ez phase( bottom) for the p=0, l=1

dipole eigenmodes found for an l = 3 spiral with increasing spiral step

height left to right: 0,5,10,15,20 in nm.

can be seen from figure 6.9 that the contribution from the l = +1 increases

relative to the l = −1, this has been calculated using TBB modes with the

inner radius (25nm) being set to a maximum of the bessel function, however

similar results are found for the inner radius being a minimum. When using

the outer radius as a maximum or minimum there is a difference but not as

pronounced as for the inner being the limiting boundary. The same trend
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is seen for the dipolar like mode of a spiral with 4 steps, see figures 6.10

and 6.11. The l = 4 spiral also shows quadrupolar like modes (figure

These decompositions show that the steps in spiral structures

break the symmetry of the dipolar modes associated with a disk and confer

OAM to the plasmon eigenmodes. It can be seen that the field intensity

of these modes is located at the center as well as the edges, supporting the

interpretation of these modes as surface plasmon oscillations propagating

over the top surface. These results show that adding a spiral step to an

otherwise cirularly symmetric disk, breaks the asymmetry of the plasmon

modes supported at the surface of that structure, allowing eigenmodes con-

taining increased net OAM. This COMSOL method finds the eigenmode

solutions to maxwells equations for the structures. In the next section the

boundary element method will solve for the energy dependent field and en-

ergy loss for an electron, which can be formed from a weighted combination

of eigenmodes.

Figure 6.9: Decompositions into a TBB basis set for the Ez modes shown

in figure 6.8.Using the inner radius as a maximum of the bessel function

and summing radial mode numbers from 0 to 20 .
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Figure 6.10: Ez Amplitude(top) and Ez phase( bottom) for the l=1,p=0

eigenmodes found for an l = 4 spiral with increasing spiral step height.

Figure 6.11: . Decompositions into a TBB basis set for the Ez modes

shown in figure 6.10.Using the inner radius as a maximum of the bessel

function and summing radial mode numbers from 0 to 20 .

6.3 MNPBEM simulations

The boundary element method MATLAB code MNPBEM was used to

simulate the EELS spectra and induced Ez field in a set of spiral structures

of 30nm thick aluminium. The inner radius was 25nm and the stepsize was

varied between 0 nm,5 nm,10 nm,15 nm and 20 nm . As can be seen in
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figure 6.12 the EELS spectra has two main sets of peaks one at low energies

(2-2.4eV ) and one at higher energies (3-3.7eV). The higher energy modes

are from bessel like modes with different radial mode numbers as can be

seen by a comparison of figure 6.13 and figure 6.14.

Figure 6.12: Calculated EELS for spirals with an inner radius of 200

nm and different stepsizes as shown in the inset legends. Beam impact

parameter is centered on the spiral center , i.e. at the origin, at a radius

of 0.

As can be seen in figure 6.12 there are initially two main modes

for the nanodisk, which are bessel modes with different radial quantum

numbers. As the step size is increased the lower energy mode (green arrow,

figure 6.13) peak moved to lower energies but the higher energy mode (blue

arrow, figure 6.14), peak broadens (blue arrow and orange arrow, figure

6.15) and there is an appearance of a third higher energy peak (red arrow,

figure 6.16). This higher energy third mode (red arrow) has outer edge

intensity mostly around the base of the step and the broader lower energy

mode has a more even intensity around all of the edge.
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Figure 6.13: Examples of the Ez ampllitude (top) and Ez phase ( bottom

) for the lower energy peaks (green arrow) in the EELS spectra of figure

6.12.

Figure 6.14: Examples of the Ez amplitude (top) and Ez phase ( bottom )

for the mid energy peaks (blue arrow) in the EELS spectra of figure 6.12.
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Figure 6.15: Examples of the Ez ampllitude (top) and Ez phase ( bottom )

for the mid energy peaks (orange arrow) in the EELS spectra of figure 6.12.
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Figure 6.16: Examples of the Ez amplitude (top) and Ez phase ( bottom )

for the high energy peaks (red arrow) in the EELS spectra of figure 6.12.

Figure 6.17: A decomposition into TBB modes using the inner radius as a

maximum for the blue arrow mid energy Ez modes from figure 6.12.Colour

represents different step sizes.
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Larger step sizes show larger numerical OAM (calculated as de-

scribed in chapter 4 section 4.1.9), for lower energy peak field in upper

energy range. The mid energy EELS peak (blue arrow) E field shows an

increased contribution from the l=4 and a higher numerical OAM for larger

stepsizes, as shown in figure 6.17. Increasing the step size breaks up the

ring of constant phase present for the disk, producing pairs of vortices of

opposite charge. Vortices of one sign are pushed to smaller radii meaning

the OAM decompositions of the modes gain a contribution from one l > 0

mode, along with higher harmonics of that mode. Shifting the phase singu-

larities to different radii means that the numerical integral for the induced

Ez field increases, as is shown in figure 6.18.

Figure 6.18: Numerically calculated OAM for the Ez modes in figure 6.12.

Line colour corresponds to arrow colour in figure 6.12.

A larger structure was simulated to model a spiral with 400nm

inner radius and 100nm step size, the results are shown in figure 6.20. This

shows the EELS has two prominent modes between 2.5 eV and 4 eV, one

at 2.98 eV and one at 3.44 eV. The simulated field distributions for these

are shown in figure 6.19 and show the presence of a groove in the E field

induced by a centered probe.

These simulated modes suggest that in the recorded EELS maps (which

will be shown in chapter 7), the fields being induced have some off center

phase singularities and are of a similar type to those simulated. The phase

singularities caused by the spiralling edge appear to occur close to the edge,

in pairs of alternating sign as can be seen in figure 6.19 with the phase

increasing around the base of the spiral steps and also in the opposite

166



direction at a point removed from this. This second position can be seen

by following the line separating the minimum and maximum colours on

the figure. The simulated fields presented here show that in contrast to

coupling photons to plasmon modes at the outer edges, a centred electron

probe does not induce a centred vortex in the phase structure of the Ez

field, however it does produce off center vortices which will give the plasmon

mode some OAM.

Figure 6.19: Log(|(Ez)|2) (left) and phase (right) for modes at 2.98eV (up-

per) and 3.44eV (lower) for inner radius 200nm, stepsize 100. Modelling a

30nm Al layer on a 100nm Si3N4 substrate. For central impact parameter

(0,0)

Even for small structures the simulated induced E field shows

no central vortex for both on axis and off axis excitation. An example

is shown for a small l = 3 spiral with an innner radius of 25nm and a
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Figure 6.20: A simulated EELS spectra for an l = 4 spiral with dimeter

400nm and stepsize 100nm. For 30nm Al film on a 100nm silicon nitride

substrate. The impact parameter is centered at the origin.

stepsize of 25nm in figures 6.21 and 6.22. These suggest that excitation

with a single point beam cannot excite plasmon modes with OAM, however

a vortex electron beam with a radius similar to the outer edge may be able

to launch plasmons inwards which are in phase at the boundary and form

a vortex in the center.
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Figure 6.21: Log(|Ez|2) (left) and phase (right) of the induced field in an

l = 3 spiral with an inner radius of 25nm and a stepsize of 25nm. For

energies of 5eV (upper) and 10eV (lower).
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Figure 6.22: Log(|Ez|2) (left) and phase (right) of the induced field in an

l = 3 spiral with an inner radius of 25nm and a stepsize of 25nm. For an

energy of 5eV with an off axis incident beam position, represented in the

left image by a red cross.
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6.4 Chapter summary

This chapter has presented simulated eigenmodes and induced electric fields

initially for a nanodisk and then for sets of spiral structures with an in-

creasing stepsize. As the stepsize increases, both the normal electric field

eigenmodes found by COMSOL and induced normal electric fields found

by Matlab, show an increasing asymmetry to the TBB mode decomposi-

tion. This shows that structures with a spiralling boundary can support

plasmon modes with OAM. It was also shown that higher energy modes

in these structures have a larger amount of radial nodes similar to ideal

Bessel functions. These induced fields with OAM offer a potential mech-

anism through which chiral electron beams containing OAM could couple

selectively to thin metallic films depending on whether the electron chiral-

ity matches the induced fields. The transfer of OAM could be thought of

as via a virtual photon containing OAM. Alternatively it could be due to

the induced field of the plasmon containing some OAM, due to reflections

from the spiral boundary thus also exchanging momentum with the metal

structure .
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Chapter 7

EELS experimental

7.1 EELS studies

To experimentally excite vortex plasmons with a TEM beam electron, chi-

ral structures such as those introduced in chapter 6 were produced via

EBL. As shown schematically in figure 7.1,these were produced on 100 nm

thick silicon nitride membranes, which were 500µm×500µm in a substrate

200µm thick. These were bought from Silson as a 4 × 4 grid and were

separated after the patterning procedure. The input design for the EBL

tool was a grid of various shapes, including spiral structures (similar to the

upper image of figure 7.1), with inner diameters of 100nm to 1000nm in

steps of 100nm, the step size was varied from 50nm to 350nm in steps of

50nm. This 10 × 7 grid was produced for l = 1, 2, 3, 4, 5, 10 and 11 . In

addition to this a set of nanosquares and nanodisks with width 50nm to

225nm in steps of 25nm were present in the input design however most

of the structures below an outer radius of 100nm were not successfully

reproduced. The plasmon modes of similar shapes have been mapped by

scanning nearfield optical microscopy (SNOM) however, due to the size of

the shapes relative to the wavelength of plasmon, the analysis has focused

on the central field structure and not the structure near the edge.
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Figure 7.1: A schematic of a single l = 3 spiral island shape (upper) and

a cross section schematic (lower) of the array of multiple spiral islands

shapes. In the experiments the metal layer was 30 nm or 20nm Al and the

Silicon nitride membrane was 100nm thick

7.1.1 STEM EELS of nanoshapes

As an initial test of the procedure STEM EELS maps were gained for a nan-

odisk , nanorods, and a nanosquare produced on the sample array.Figure

7.2 shows STEM images at different energy ranges. The presence of max-

ima and minima can be seen in figure 7.2, for example the corners of the

nanosquare, an inner ring of the disk and the ends of the nanorods all

show reduced intensity. The patterns are indicative of interference occur-

ing within bound plasmon modes which have been reported for rods [150],

disks [148][92] and squares [151].

When considering localised surface plasmon modes on a nanodisk

the cylindrical symmetry means that solutions follow the function form of

Bessel modes where the radial oscillation is determined by a Bessel function.

The zeros and maxima of Bessel functions do not occur at arguments with

even π intervals like a sin function, as such the gap predicted between the

arguments of an edge maxima and the preceding minima will not be π/4.

The Bessel functions Jm for m > 0 give gaps which are larger than π/2 as

such the distances predicted for the minima to the edge will be larger than

would be predicted by a π/4 gap. Figure 7.3 plots the predicted difference

in argument for the first 5 maximum-minimum gas for bessel modes Ji for

i = 1 to i = 5. These are all larger than π/4 = 0.78539. This means
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Figure 7.2: STEM EELS maps for various shapes with 2.5eV on the left

images and 15eV on the right images for: A) Nanosquare,B) Nanodisk

C,D,E) Nanorods, F) the corner of a large cross structure

Figure 7.3: Difference in argument required between (n+ 1)th maxima and

nth minima for Bessel functions of order larger than 0. Colours show dif-

ferent bessel functions and the x axis is the index n.

later on it will be possible to rule out the higher order bessel modes as

the cause of the measured gaps, which will be shown to all be lower than

π/4. However the experimentally recorded minima for a 275nm diameter

nanodisk show smaller gaps than predicted by either the π/4 or a Bessel

,J1 function.
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The scale of the distance from maxima to minimum is the same

size as the Bessel J0 but the radius required to match the outer maximum

argument does not match the experimental 137.5nm radius. This was

calculated to be 3.83/3.5 × 107 = 109nm or 7.0156/3.5 × 107 = 200nm

using a wavevector of 3.5 × 107m−1 calculated for an energy of 3eV from

the standard surface plasmon travelling wave dispersion,thus meaning the

experimental intensity is not due to a pure J0 Bessel plasmon mode.

7.1.2 STEM EELS of spiral island structures

The measured EELS signal for a structure depend upon the local density

of states (determined by the material) and the supported geometric modes

(determined by the shape). It was unclear at which energy the electron

beam in the TEM would couple to the spiral structures so a collection of

spirals were made. This collection allowed the investigation of how the

energy loss spectra vary when the dimensions of the shape, in particular

the curvature of the boundary which depends upon the ratio of the step

size to the angle per step . A grid of structures were produced following

the equation s = rin + λspiralmod[(lφ/2π)], where s is the radius of the

shape, mod denotes the remainder, rin is the inner radius and λspiral is the

designed step size. This produces shapes similar to those shown in figure

7.1 which, due to their isolated nature, will be referred to as ’spiral island’

structures. For the set of produced spiral islands the parameters used were

rin(nm) = (50, 100, 150, 200, 250, 300, 350, 400, 450, 500) and

λspiral(nm) = (50, 100, 150, 200, 250, 300, 350). A selection of these shapes

were analysed by taking EELS maps with a dwell time of 0.32 seconds per

pixel. The recorded dm3 files were then read into MATLAB where the zero

loss peaks were aligned and intensities were scaled. The intensity maps at

energy cross sections show a low intensity groove close to the edge of the

spiral island structures as shown for l = 1 in figure 7.5 . This occurs for

energies of between 2-5eV with the gap, measured between the intensity

minimum and the bright edge maximum, reducing for higher energies.

This is similar to a maxima-minima gap in a standing wave pat-

tern as the wavelength decreases. To model the experimental data shown

in section 7.1.2 the MNPBEM toolkit for matlab was used to simulate the

EELS maps across the structures. To characterise the experimental STEM
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EELS maps and compare with simulations with angular-averaged gap size

was measured between the bright edge and closest radial minimum .

In figures 7.5 to 7.13 , each experimental and simulated EELS

intensity map has been analysed with the algorithm below.

For each energy analysed :

1. The 15eV image is used to set a binary mask outlining areas of high

intensity to outline the Al metal structure. Multiply STEM EELS

slice image by this binary mask.

2. sample image to transform to circular polar coordinates

3. for all angles;

3.1. find maximum intensity along radius

3.2. find minimum intensity within a selected region at lower radii

than maximum from previous step

3.3. measure maximum-minimum separation

4. find the average gap from all results of step 3.3.

The STEM images are low resolution due to experimental stability

limiting the imaging time. Due to the low signal to noise ratio and low

resolution of the images some error checking sections were added into the

code, to ensure the assigned position of the maxima and minima made

sense. One of which was to ensure the minima was at a smaller radius than

the maximum and to ensure that the minimum found was the minimum

which can be assigned to the groove by eye and not a minimum due to noise.

The overall radial minimum was not always the groove minimum due to

the low signal to noise ratio. The results for all l values are summarised

in figure 7.4, whilst the outputs of this algorithm for individual values are

shown for 3eV in figures 7.5 to 7.13.
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Figures 7.5 to 7.13 contain the polar plot with the measured min-

ima (red line) and maxima (green line) overlain. Figure 7.5 shows the l = 1

which was the smallest structure tested.

Figure 7.5: Left is an intensity slice at 3eV for the l=1 spiral and right is

a (ρ, φ) azimuthal plot of the left image with the measured maxima (green

line) and minima (red line) overlain.

The STEM EELS map at 3eV shows a prominent minimum close

to the edge which is also predicted in the simulation in figure 7.6,in addition

the minimum by the flat step edge is predicted by simulation and visible

in the experimental data.

However the fine structure of the central minimum is not seen in

the low resolution experimental data. For the l = 2 structure in figure 7.7

there is also a minimum close to the edge and edge step minimum found

in both simulation (figure 7.8) and experiment.

There are 4 main intensity spots in the simulation which are ac-

tually roughly visible in the experimental data, a pair at the base of the

steps and a pair in the central region. The l = 3 structure is slightly larger

again and both experiment (figure 7.9) and simulation (figure 7.10) shows

edge minima near the boundary and minima near the step edges.

The simulation also shows a detailed internal interference struc-

ture with 3 bright spots and spiralling intensity peaks, these are not seen in

the experimental data. The l = 4 structure shown in figures 7.11 and 7.12

show once again clear minima close to the boundary and flat step edges.
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Figure 7.6: The simulated EELS map at 3 eV for the dimensions of the

experimental l = 1 structure, shown in cartesean coordinates (left) and

polar co ordinates (right). The measured postitions of the radial minima

and maxima are shown with the green and red lines respectviely on the polar

plot image.

Figure 7.7: Left is an intensity slice at 3eV for the l=2 spiral and right is

a (ρ, φ) azimuthal plot of the left image with the measured maxima (green

line) and minima (red line) overlain.

The simulation now shows oscillations in intensity around the

curved boundary which were present but not as prominent in the lower

l value structures. This along with the fine central detail, like the previous

structures was not visible in the experimental data. The l = 5 structure
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Figure 7.8: The simulated EELS map at 3 eV for the dimensions of the

experimental l = 2 structure, shown in cartesean coordinates (left) and

polar co ordinates (right). The measured postitions of the radial minima

and maxima are shown with the green and red lines respectviely on the polar

plot image.

Figure 7.9: Left is an intensity slice at 3eV for the l=3 spiral and right is

a (ρ, φ) azimuthal plot of the left image with the measured maxima (green

line) and minima (red line) overlain.

is the largest structure and as such only a portion of the structure was

simulated (figure 7.14) due to computational constraints. The experimen-

tal data (figure 7.13) only shows a narrow minimum close to the boundary

edge and the resolution is not high enough to see any minima close to the
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Figure 7.10: The simulated EELS map at 3 eV for the dimensions of the

experimental l = 3 structure, shown in cartesean coordinates (left) and

polar co ordinates (right). The measured postitions of the radial minima

and maxima are shown with the green and red lines respectviely on the polar

plot image.

Figure 7.11: Left is an intensity slice at 3eV for the l=4 spiral and right is

a (ρ, φ) azimuthal plot of the left image with the measured maxima (green

line) and minima (red line) overlain.

step flat edges, even though these are predicted in the simulation.

Whilst the error in finding the correct minima is large for this

computational analysis the measured gap sizes are in general good agree-
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Figure 7.12: The simulated EELS map at 3 eV for the dimensions of the

experimental l = 4 structure, shown in cartesean coordinates (left) and

polar co ordinates (right). The measured postitions of the radial minima

and maxima are shown with the green and red lines respectviely on the polar

plot image.

Figure 7.13: Left is an intensity slice at 3eV for the l=5 spiral and right is

a (ρ, φ) azimuthal plot of the left image with the measured maxima (green

line) and minima (red line) overlain.

ment with the simulated EELS maps as is shown in figure 7.4. However

the resolution of the experimental data was limited by the limited acquisi-

tion time possible, due to beam stability and sample drift. For the smaller

structures a higher resolution dataset could potentially reveal these details.
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Figure 7.14: The simulated EELS map at 3 eV for the dimensions of the

experimental l = 5 structure, shown in cartesean coordinates (left) and

polar co ordinates (right). The measured postitions of the radial minima

and maxima are shown with the green and red lines respectviely on the polar

plot image.

However for the larger structures there was no sign of internal structure

and it appears this is more a limitation of the sample itself. This could be

related to inherent damping in the metal film or the quality of the film,

roughness and crystallinity, both of which would require future experiments

to investigate and are left open as a future direction of research. The broad

match between simulation and experiment shows the structures produced

successfully support the electromagnetic fields predicted by simulation, at

least close to the boundary. The maimum-minimum gaps measured are all

lower than would be predicted from a π/4 gap on the standard dispersion,

this agrees with the findings of Schmidt [93] that edge modes formed by

reflection from boundaries have lower energies than the standard dispersion

curve. The angular distance of step size per angle per step λspiral/(2π/l)

can give a measure of the spiralling nature of the boundary. A larger angu-

lar distance means that the boundary normal is directed at higher angles to

the radial unit vector. A surface plasmon wave directed at an angle to the

inwards radial unit vector would show a smaller gap in the interference pat-

tern than one travelling along the radius. This is because when compared to

a wavevector along the radial unit vector, a wavevector with an azimuthal

component will suffer the same phase delay when travelling a shorter radial

distance. The results for l = 2, 3, 4, 5 shown in figure 7.4 support this idea

with the modes having angular distances of 39.8, 47.7, 63.7, 71.6nm/rad re-
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spectively. The l = 2 has the smallest angular distance of 39.8 and shows

the largest gaps next the l = 3 and l = 4 have similar ratios and show

similar gap sizes , finally the l = 5 has the largest angular distance and

shows mostly the smallest gaps (above 2.5eV). However, the l = 1 mea-

sured and simulated gaps do not follow this trend and depsite having the

lowest angular distance it shows gaps closer to the l = 5 smaller than the

other l values. The trend of l = 2 > l = 3 > l = 4 > l = 5 is not always

followed and it is unclear why. This trend would support the idea that

the gaps are due to surface plasmon modes determined by the boundary

geometry. Future experiments would be required with higher spatial and

energy resolution STEM images to check these initial findings.

7.1.3 Cathodoluminescence experimental results

To produce structures which support plasmon modes with OAM both FIB

and EBL have been used to produce a variety of spiral slit and spiral island

structures. Figure 7.15 shows a collection of 11 structures for which the

cathodoluminescence signal was recorded in an SEM, this figure can be

used for reference when looking at the subsequent spectra to see which

shape gave which spectrum. Due to noise, to improve the visibility of the

key trends, 4 point moving averages of the CL spectra are shown in figures

7.16 and 7.17. The structures were of 30nm thick Al film which had been

FIB milled to produce a spiral boundary to reflect plasmons inward. The

CL spectra in figure 7.16 show that there is extra intensity around 350

nm above the background. This shows there is some coupling to a dipole

mode around 3.5 eV for these structures in the Al film. There is an even

more prominent peak at this energy for samples 8,9 and 10 which is likely

due to the increased efficiency of emission via coupling to cavity modes

in the closed slits. Sample 11 showed a very large peak around 420nm

(approximately 3 eV). As shown in figure 7.18 the cathodoluminescence

shows the same groove structure as the EELS intensity around 3 eV showing

it is not an artefact of the EELS appraratus and is most likely some form

of plasmon mode which can couple to photon emission to some extent.

The structures produced by FIB clearly shows strong visible coupling to

radiative modes in the metal film, which can be most easily explained by

low energy surface plasmons.
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Figure 7.15: SEM images of the 11 structures produced by

FIB and tested by CL, the results of which are shown in fig-

ures 7.16 and 7.17.Scale bars are 1) 1µm,2)1µm,3)1µm,4)2µm,5)

0.5µm,6)0.5µm,7)1µm,8)1µm,9)1µm,10)1µm,11)0.2µm.

As discussed in the appendix section A.4 EBL was also used to

produce spiral island structures and was much more efficient than the FIB

process, allowing a collection of different shapes to be produced in one

batch. Examples of l=1 spirals produced by this procedure are shown in

figure 7.19, these include both Al film and Ag film. Figures 7.20 to 7.22

show the four point moving averages (the mean of four sequential counts)

of the spectra from the Al film structures produced by EBL. These show

large intensity above the background between 350nm to 550nm with a peak

around 420-450 . By comparison to figure 7.16 it can be assumed that

there is likely a mode around 350nm and around 420nm. The Ag struc-
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Figure 7.16: CL spectra for the samples indicated in the legend. The Al

film shows peak around 350nm above the background.

Figure 7.17: CL spectra for the samples indicated in the legend. A strong

peak at 440nm is seen for the small l=1 spiral of sample 11. The samples

with slits (7,8,9,10) show a prominent 350nm mode (possibly the cavity

mode of the slit gap).

tures showed a more pronounced peak between 300-400nm indicative of

low energy plasmon modes, showing these structures can support plasmon

modes in the energy range 2-5eV ( 620nm-245nm). The results from both
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Figure 7.18: A cathodoluminescence image for sample 11 from figure 7.15

the FIB milled spiral islands and those produced by EBL gives weight to

the interpretation of the chiral EELS signals which will be discussed later

on in this chapter as being related to sample interactions and not artefacts.

Figure 7.19: SEM images of the Aluminium structures produced by EBL

and tested with CL. All scale bars are 200nm
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Figure 7.20: Cathodoluminescence of structures produced by EBL. Peaks

can be seen around 420nm with intensity from 350nm to 600nm. The in-

tensities for the background samples are much weaker but Silicon Nitride

shows some intensity around 400nm to 600nm.

Figure 7.21: Cathodoluminescence of structures produced by EBL. A large

peak is seen when an increased sensitivity is used, there are also some higher

intensity peaks above the background intensity, between 350nm and 400nm

.
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Figure 7.22: Cathodoluminescence of silver structures. Ag shows some

clear peaks around 400-500nm with a prominent second peak around 350nm.

These show that small spirals can support low energy modes.
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7.1.4 Atomic force microscopy of spiral structures

The lack of structure in the central region of the STEM EELS intensity

maps of figures 7.5 to 7.13 is most likely due to strong damping of plasmon

mode oscillations leading to a loss of coherence when reflections travel to

the center. This strong damping could be related to the surface roughness,

even though the surface plasmons match the dispersion for the Si3N4/Al

interface, roughness on the Al/vacuum interface could lead to variations in

coupling between the two surfaces and this inhomogeneity could ultimately

cause scattering. Figures 7.23 and 7.24 show atomic force microscopy im-

ages and line plots of surface height across example spiral structures show-

ing a surface with a height which varies by approximately 10nm for the FIB

structure and 5nm for the EBL structure. Future experiments may bene-

fit from improvements to the production procedure to create films which

are of a more uniform thickness, to offer less potential scattering centres

for travelling plasmon waves. A study of the surface roughness effect and

metal layer deposition techniques is left open as a area to be explored in

future research projects.

Figure 7.23: Results of an AFM line scan across a spiral island structure

produced by FIB in thermally deposited Al film. The lower line chart plots

the height measured aling the red arrow in the top AFM image.
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Figure 7.24: Results of an AFM line scan across a spiral island structure

produced by EBL. Left is an AFM images of the l = 5 structure and right

is the depth linescan along the white line in the left image. Distances are

in nm.

7.1.5 The nature of the recorded energy losses

The structure shown in the recorded energy loss intensity is most likely

due to coupling of the beam electron with surface plasmon modes at the

Al/Si3N4 interface. The EELS intensity is proportional to the local density

of states from all allowed eigenmodes in the structure. Away from the

edge, at the center the reflected plasmon waves have been scattered and

the amplitude is reduced too much to see any of the the struture which

is predicted by the MNPBEM code. The lack of interference and short

decay length can explain both the central intensity in the EELS maps at

2.5-5eV and the lack of difference in the TEM EELS of section 2.1.11. If

there are waves being reflected from the curve boundary then there must be

some inherent circulation of the plasmon mode close to the edge. However

it is unclear if this circulation is solely due to exchange of momentum

with the boundary upon reflection or if the electron is transfering any

OAM into this circulation. The experimental and simulated data show that

in order to create structures supporting plasmon modes containing OAM

which travel to the center of the shape, improved fabrication techniques

would be required to either produce smaller structures (less than 50nm) or

produce a metallic film with a larger decay length (higher purity or fewer

surface imperfections). Hobbs et al [148] show surface plasmon occuring
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only at the edges of 12nm diameter nano disks and volume plasmon in

the center. For the structured considered here the dimensions are much

larger and there is prominent intensity in the central region even at 3.5eV.

In the following section the interaction between these spiral structures and

C-shaped vortex electrons is discussed and EELS analysis is presented.

7.1.6 Chirality dependent EELS signals

EELS spectra have been recorded with C-shaped electrons after interaction

with the flat spiral island structures produced by electron beam lithography

(EBL) described in section A.4. These were placed in the sample plane of

the JEOL 2200 microscope whilst in TEM mode and electron energy loss

spectra (EELS) were recorded whilst the energy filter entrance aperture

was used to post select intensity coming from one diffraction order of the

condenser aperture mask described in chapter 5 section 5.1. The two ex-

perimental set ups used are shown in Figure 7.25, in A a hologram mask

produces diffraction orders separated in the transverse plane , whilst in B

the mask is a pinhole interference mask producing diffraction orders sep-

arated along the beam propagation direction. In both cases the entrance

aperture (EA) is used to select the intensity entering the filter however

it only excludes most intensity from unwanted orders for figure 7.25A. In

figure 7.25 B there is some intensity allowed through the on axis filter from

diffraction orders focused above or below the sample plane, however these

vortex rings will be larger away from their focus and less intensity will be

present within the EA.

For the aluminium samples used in this experiment there are 4

key regions of interest in the energy loss spectra. The first being from

3 to 5eV which can be assigned to low energy localised surface plasmon

modes [152][43], secondly, around 7eV which can be assigned to travelling

surface plasmon modes [153] thirdly a prominent peak around 15eV which

is produced by loss to the bulk Al plasmon oscillation[154]and finally 23eV

which is the bulk Silicon Nitride substrate plasmon mode and is also close

to the 22eV of the Al2O3[155]

There are also some multiple losses seen at 30eV, equivalent to an

electron losing energy twice to two 15eV plasmon oscillations. Additionally

this means some intensity could also be present, due to surface plasmons
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Figure 7.25: The two type of amplitude mask EELS experiments conducted.

A) The mask is an interference of angled plane waves and diffraction orders

are dispersed transverse to propagation direction, travelling at different an-

gles. B) The mask is an interference of spherical waves, diffraction orders

are dispersed along the propagation direction with different curvatures and

so different focal points. Also shown in the bottom left insets of each section

is the experimental intensity of the C-shaped or integer vortex diffraction

order in the entrance aperture shadow.

at the sum energies of from a combination of 3-5eV+7eV=10-12eV , 7eV

+15eV=22eV and 15eV+3to5eV=18 to 20eV. However these will be low

intensity compared to the main peaks.

7.1.6.1 EELS from a pinhole mask integer vortex

Electrons with OAM could potentially interact with chiral samples differ-

ently, leading to a measurable difference in observables. In general this can

give more information about the sample. Specifically comparisons of EELS

with electron beams of different chirality can potentially give information

about the allowed magnetic transitions. Initial experimental results of the

chirality dependent interaction with iron film has been shown by Verbeeck

[55]. The equivalent results for interaction which chiral plasmon modes

in 2 dimensional structures has not yet been published. If chiral depen-

dent interactions are possible this opens the way for plasmon OAM based
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sensing techniques, which has potential applications in the development

and optimisation of future plasmonic devices utilising OAM. With this in

mind, EELS was used to see if there are any chiral interactions with the

Al thin film structures the far field of a spiral sieve mask was used (figure

7.26 a). This had been previously designed and produced by the electron

vortex group at the University of York [156]. This pinhole mask was of the

type shown in figure 7.25B, and producing l=11 vortex beams in the first

diffraction orders above and below the l=0 diffraction order. An example

of this vortex beam is shown in figure 7.26 b, and shows the central vortex

surrounded by interference patterns from other defocused diffraction orders

. The condenser lens was varied to bring the desired diffraction order into

focus on the sample plane, in an identical experimental set up to chapter

5 section 5.1. However the variation of topological charge is achieved by

varying the defocus and not by shifting the beam.

Figure 7.26: (adapted from reference [156])) a) an SEM image of the pin-

hole mask used. b) A TEM image of one of the first diffraction orders

produced by the pinhole mask in (a).

For many shapes on the grid described in section A.4, the orders

above and below focus produced the same EELS spectra. However there

was one instance where one order showed increased intensity at approx-

imately 3.5eV , this is shown in figure 7.27. These EELS were recorded

from 50 spectra at 0.1 second exposure . At energies of 15eV and 23eV it is

the alternate order which has a higher intensity, showing the 3-5eV differ-

ence is not due to any tails from broadening of peaks from higher energies.
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When normalised to the integrated counts up to 27eV , the fact that a loss

of bulk intensity occurs which appears to compensate for the gain at 3.5eV

suggests the difference in EELS intensity is related to a surface state. It

was also tested defocusing the diffraction order such that only the inner

intensity is selected by the EA, excluding as much of the unwanted diffrac-

tion orders as possible. However this reduced the signal to noise ratio and

did not show any clearer difference signal.

Figure 7.27: Recorded EELS spectra, the 2nd order is the opposite opposite

side of focus along the propagation direction ot the 1st order. A difference

in EELS intensity can be seen between 3-5eV when comparing diffraction

orders either side of focus for a pinhole vortex mask.

7.1.6.2 EELS using a C-shaped electron

Based upon the initial pinhole mask result, the condenser aperture from

section 5.1 was used to create C-shaped diffraction orders in an EELS ex-

periment as shown in figure 7.25A. The EELS were compared when using

the EA to post select intensity in the left (’-C’) and right(’+C’) C-shaped

diffraction orders (an example is shown in the inset of figure 7.25 a) ). The

resulting energy loss spectra (summations of 10× 0.1sec exposures) can

then give information on differences between the probability of interaction

between the two C-shaped intensities and the sample. The left order (’neg-

ative’) has a higher intensity , as such all spectra need to be normalised

to be compared. The method chosen to normalise the intensities was by
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dividing by the summation of electron counts up to 27eV , this gives a rep-

resentation of the percentage of the electrons out of the beam which lose

energy and is not affected by different interaction strengths when multiple

loss mechanisms are present.

By overlapping the C shapes onto the central region of the chi-

ral aluminium structures the interaction of C beams and the film plasmon

modes can be examined. It was found that there are repeatable differ-

ences between vortex probe and C beams of opposite chirality, as shown

in figures 7.28 and 7.29. However, whilst the difference was initially pro-

Figure 7.28: A large difference signal was measured for the Al spiral

nounced it quickly reduced when subsequently repeating the measurement.

The reduction in the difference signal suggests there is some contamination

(potentially carbon based) of the sample which causes intensity at 3-5eV

which is not due to plasmon modes or chiral interactions. Under the same

conditions the l=0 bright dot gave a low intensity around 3-5eV showing

that it was only the -C which had a high intensity in the EELS spectra.

This would be consistent with a chiral coupling between the -C and a chi-

ral plasmon mode. However in later measurements the l=0 mode also gave

high intensities, and as will be shown the lack of repeatability of a large sig-

nal suggests the coupling is weak and at least shows it is extremely difficult

to measure with the experimental set up used in this study.
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Figure 7.29: The large difference signals measured on an Al spiral from the

spectra in figure 7.28. Different colours are for different repetitions of the

same measurement.

7.1.6.3 Background difference signals

As a background comparison measurement the apertured EELS for +/- C

were compared for the background Silicon nitride (figures 7.32 and 7.33)

and large areas of Aluminium (figures 7.30 and7.31). All of these figures

show a difference signal with the -C being higher intensity around 3.5eV

however the size of the signal was reduced when compared to the spiral

structures. The presence of a difference for the large aluminium structure

shows the difference in energy loss is not solely due to a localised surface

plasmon mode which should only occur for small structures with a defined

boundary. A nanodisk 225nm diameter was also tested (figure 7.32) and

showed a large difference signal , showing the difference cannot be solely

due to a chiral interaction related to the spiralling boundary.
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Figure 7.30: Difference signals (left order-right order) recorded for a large

Aluminium structure. The intensities were scaled to sum of intensities up

to 27eV.Different colours are for different repetitions of the same measure-

ment.

Figure 7.31: A zoomed in version of figure7.30
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Figure 7.32: The difference signal measured for a nanodisk (diameter 225

nm) and multiple sets with just the Silicon nitride substrate (used as a

background).

Figure 7.33: A zoomed in view of the graph shown in figure 7.32
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7.1.6.4 Point spread function recorded without a sample

There is still a large difference in the EELS from the diffraction orders

without any sample in the beam path (see figures 7.34 and 7.35). The zero

loss peak (ZLP) shows some asymmetry which occurs to different amounts

for the positive or negative diffraction orders. This could be related to

the different orientations of the opening angle , which may cause electrons

of opposite topological charge to produce different intensity distributions

when the filter lenses collect them to a line along the energy dispersive axis.

It should be noted that all of the spectra recorded contain low intensity

variations with multiple spectra showing identical structure showing this is

a systematic error due to the CCD rather than an experimentally produced

variation.

Figure 7.34: EELS spectra recorded for both right and left diffraction orders

with an empty sample holder.

After multiple attempts to recreate the difference signals seen in

figures 7.27 and 7.29 it was not possible to do so. The left C was consitently

higher in intensity however other parts of subsequent spectra were different

in intensity. By comparison with the background difference signals the later

differences are not significantly above the noise level and as such cannot be

considered as a clear chiral interaction signal. Figure 7.36 and 7.37 shows

the integrated difference signal between 3eV and 4eV for spiral structures

as well as the background. It shows there are only a few sets of data which

show a difference larger than the background levels, some of these have

higher intensity related to the zero loss peak tail.
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Figure 7.35: A zoomed in view of the graph shown in figure 7.34

Figure 7.36: A plot of the measured difference signal integrated between

3eV and 4eV of EELS spectra, normalised to zlp under different experi-

mental conditions, as shown in the legend.
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Figure 7.37: A plot of the measured difference signal integrated between

3eV and 4eV of EELS spectra, under different experimental conditions.

The spectra were normalised to the sum of intensities up to 27eV
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7.1.7 Chapter summary

This chapter has detailed the experimental investigation of energy loss be-

tween electron beams and spiral structures in thin metal films for plane

wave and C-shaped electrons. This is the first time such flat chiral spiral

island structures have been investigated, looking at their interaction with

a TEM electron beam. STEM EELS mapping showed interesting struc-

ture near to the objects boundary edge , suggesting interference between

incident and reflected surface plasmon modes. The central region of the

spiral structures did not show a vortex minima. Both cathodoluminescence

and EELS show energy loss between 3-5 eV, which has been attributed to

localised surface plasmon modes. The interaction of C-shaped electrons of

opposite chirality showed an initial difference signal. Whilst this is a very

exciting result, the inability to reproduce this and the presence of similar

level differences caused by experimental effects mean this cannot be un-

equivocally attributed to a chiral transfer of energy between the electron

and plasmon mode. If the initial signal was a chiral interaction the subse-

quent results show this is a weak interaction and difficult to repeat with the

experimental set up used. Future research could calculate the trajectories

of electron beams with OAM travelling through an energy filter, and future

experiments could investigate this signal further, improving the signal to

noise ratio and discovering the source of the background signal difference.

Whilst the analysis of the experimental results was ultimately unclear , for

completeness, section A.1 of the appendix presents a discussion of potential

causes of the measured difference in the EELS signal.
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Chapter 8

Conclusions

This thesis has added to the experimental data for electron beam shaping

experiments which has been lacking behind the theory developed to de-

scribe such states. For the first time it was shown how a C-shaped beam can

be produced by combining fractional topological charge and radial phase

gradients. Local phase gradient analysis was used to derive control equa-

tions to predict the size and opening angle of the C produced. The OAM

content has been analysed theoretically by numerical and analytical meth-

ods and the C shape is found to be made of a contributions from integer

vortices from a narrow spread of topological charge. The control of the

vortex C-shape is new and applicable to both photon and electron optics.

The theoretical control of the opening angle derived in chapter 4 was ex-

perimentally verified in a transmission electron microscope in chapter 5,

highlighting the versatility of electron beam shaping methods. This is the

first time a C-shape with controlled size and opening has been produced

either with photons or electrons.

The electromagnetic modes of small metallic spiral were then simulated,

it was found that by adding a spiralling step to a nanodisk the eigen-

mode solutions gained an increased asymmetry in their OAM mode de-

compositions, showing that spiral structures can support electromagnetic

oscillations containing OAM. Following this, in addition to furthering the

field of experimental electron beam shaping, this thesis investigated the

possibility of chirally selective OAM transfer to 2D chiral plasmon modes,

a subject as yet unexplored for electron vortices. Flat metal structures

were produced and EELS maps were recorded, showing a match to simu-

lated EELS. These EELS maps contain patterns characteristic of standing
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waves caused by interference of incident and reflected wave components

near the edge. Comparison with bessel mode functions suggests that the

edge boundary conditions are that the electric field is a maximum. Future

work could involve using near field measurement techniques such as SNOM

to probe the electric field directly to test this hypothesis.

Phase structured electron probes were used to gain EELS of the

chiral structures collecting signals from probes of one chirality at a time.

A difference signal was then measured to see if there was any interaction

similar to the chiral interactions observed between light and 2D chiral metal

structures. This is the first time such an experiment has been tried with

electrons. Whilst there was was some evidence of a CD like signal the

results in this thesis show it is not possible to show EMCD with 2D plasmon

structures under the experimental conditions available. This suggests either

the transfer of OAM to 2D plasmon modes is forbidden or requires much

finer control of experimental conditions than is currently possible.

8.0.8 Future prospects

The work in this thesis has the potential to be expanded and furthered in

many different ways. Due to spatial light modulator technology one of the

easiest experiments would involve producing C-shaped lasers and applying

some of the optical trapping appilcations mentioned in chapter 4. In addi-

tion to the ’low hanging fruit’ of optical trapping with silicon microparticles

, interactions of C-shaped beams with more exotic forms of matter such as

Bose-Einstein condensates could be explored, with the possibility to inves-

tigate a vast range of fundamental interactions in quantum physics, such

as OAM transfer or tunnelling through the potential barrier of the gap in

the C.

The theory behind single and multiple C-shapes could be applied to the

development of fast electron beam lithography of split ring structures for

metamaterial production. More broadly the possibility of having OAM

without circular symmetry could be explored by producing other states

with phase singularities but intensities other than a ring structure.

Whilst our understanding of free space and idealised electron vortices pro-

vides a solid foundation, there needs to be more work in understanding

the interactions of electron vortex probes with samples and how to extract
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information once the interaction has taken place. The simulations of elec-

tromagnetic modes with COMSOL could be furthered by trialling different

boundary conditions, to match the energies with previously published val-

ues and simulating different materials to test if the effect of increasing the

spiral stepsize is present for other materials.

The theory behind OAM transfer to 2D chiral plasmons still needs

to be fully developed, this would improve our understanding of the exper-

imental results presented in this thesis and aid the future design and fur-

ther experiments to record an EMCD signal proving chirality specific OAM

transfer from free space electrons carrying OAM. Modelling the effect of

external magnetic fields on C-shaped probes could expand our understand-

ing of these non integer OAM carrying states, and a detailed simulation of

the effect of an EELS spectrometer on C-shapes and indeed integer vortices

would be beneficial to the field. The interactions and transfer of OAM with

other quanta of energy such as magnons or spin waves offers a vast poten-

tial to explore the unique magnetic properties of phase structures electrons

carrying OAM. These interactions offer the potential to gain further in-

sight into the processes governing spin transport or magnetic properties,

both key properties underpinning current computer memory technologies.

Electrons are one of our most accessible tools for investigating materials

on the nanoscale and, as this thesis has shown, there is wide scope for the

application of phase control to further our fundamental understanding of

electrons and provide distinctly new tools with which to probe matter.
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Appendix A

Appendix

A.1 Discussion of potential causes of STEM

EELS signal

The possibility of the repeatable but small difference signal being due to

a chiral interaction appears to be low. Below the potential causes of this

difference signal are considered. During this analysis the abbreviation psf

is used for point spread function.

A.1.1 Ruled out causes of intensity difference between

3eV and 5eV

By comparison with the central order (l=0) and illumination from a circular

aperture (labelled CA# 2 in the spectra keys) some possible causes of the

difference can be ruled out.

peak intensity

Variations in the peak intensity between the two orders could potentially

cause a stronger interaction for the more intense order, however the highest

intensity of l=-1,0,+1 is the l=0 central diffraction order. This does not

always show a higher intensity around 3-5eV (see figure A.1) and shows

the variation in the counts at 3-5eV is not caused by intensity variations.
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Figure A.1: A comparison of EELS recorded with left and right C-shaped

beams, the central l=0 beam and a circular CA#2 aperture. These show

that the difference was not due to variations in the brightness or intensity

differences between the C shapes.

Figure A.2: A zoomed in view of the graph in figure A.1.

astigmatism

The holographic mask and lens system may introduce different amounts of

astigmatism in +/- 1 orders. Differences in astigmatism could potentially

alter the trajectory the beams take through the energy filter producing a

higher signal for one C than the other. This was checked by purposefully

adding in astigmatism in different directions (figure A.3). The difference

did not change senses with the -C remaining at higher intensity for both

directions of astigmatism. This rules out astigmatic variation as a cause of

the +/- C intensity differences.
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Figure A.3: The difference in EELS intensity between left and right C

shapes when applying astigmatism in 2 opposite directions. These show

that the difference is not due to any astigmatic effect.

Defocus

In a similar way to the astigmatism the effect of varying defocus was tested

by collecting spectra using purposefully defocused beams such that the

spiral fills the EA. The -C shows higher 3eV intensity even when defocused

in both directions (figure A.4 ) , as such it is unlikely that variations in the

defocus of -C and +C could explain the difference signal.

Figure A.4: Difference signals (left -right) for varying defocus conditions,

intensities have been scale to the zero loss peak.

Tilt

Differences in tilt of the +/-C diffraction orders relative to the sample

could be a cause of the intensity difference. The +/-C EELS difference
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Figure A.5: Difference signals (left -right) for different defocus conditions,

intensities have been scaled to the sum of intensities up to 27eV.

was recorded at different tilts (figure A.6) and did not show inversion of

the difference signal. This shows varying tilt angles cannot account for the

difference in EELS intensities. The reduction in signal intensity between 3-

5eV could be related to the three dimensional structure of the mode intense

region of the C spiral , tilting the sample reduces the overlap of the sample

plane with the high intensity region. This appears to affect both C shapes

EELS the same and cannot explain the differences seen.

Figure A.6: EELS recorded for +C and -C at different values of sample tilt.

Other peaks and FWHM of zero loss

A comparison of intensities at 3-5eV, 15eV and 23eV shows that there is

no correlation between the intensities. As such spectra showing the highest

intensity at 15eV does not necessarily show the highest intensity at 3-5eV.
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Figure A.7: Difference signals left-right (from figure A.6 for different

values of tilt with sample ’upside down’, with the electron interacting with

Silicon nitride membrane first.

Figure A.8: A zoomed in view of the graph in figure A.7

This shows the difference in intensities at 3-5eV is not due to the tail of the

bulk plasmon 15eV and 23eV peaks. When comparing +/-C spectra there

is some variation of the full width half maximum (FWHM) and asymmetric

shape of the zero loss peak. However as shown in figure A.9 there is no

correlation between either size of FWHM or symmetry of the peak which

would explain the difference in intensity as a simple artefact of the spectra

ZLP shape.

When flipping the sample over such that the electron beam is

incident from the opposite side the EELS intensity from the -C shape re-
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Figure A.9: Measured full width half maximum values for zero loss peaks

of different C orders.

mains the highest when compared to that of the +C. This shows that if

the 3eV-5eV intensity is due to a chiral interaction then the Silicon ni-

tride (Si3N4)/Al structure has some 3D chirality to it, due to the interface

Si3N4/Al having a sense of direction from Al to Si3N4. This would mean

that the sample would still lose more energy to the -C electron.

A.1.1.1 Potential explanations of EELS

Whilst the largest difference was seen for a patterned spiral structure as

shown in figure 7.29, there were also differences recorded for the Si3N4

background and the larger Al cross. The difference between the +/-C

EELS intensities was smaller for the background tests showing that the

initial difference signal was due to interaction with the Aluminium spiral

structure. This could be due to chiral interaction with bound plasmon

modes. However subsequent lower difference signals are not appreciably

above the size of the background differences.

The energy loss for the spiral is not due to a localised bound

mode, which is supported by the STEM images in section 7.1.2 showing

a lack of any nodes close to the central region of the Aluminium shape.

This implies that the plasmon mode decays before reaching the center of

the spiral shape, as such any chiral interaction at the center cannot be due

to the chiral boundary shape.
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This leaves a chiral transverse plasmon with an energy between 3-

5eV as a likely explanation for the differences seen on the Aluminium film.

This could be due to an uneven surface producing a chiral arrangements

of bumps with which there is a chiral specific interaction.Similar to an

arrangement of nanosphere surfaces Any smaller differences seen without

a sample or with the silicon nitride membrane could be due to different

trajectories caused by the asymmetrical nature of the C shapes. This in

turn leads to different shapes being formed by rays entering the aperture

with large angles. This effect is much less pronounced at smaller angles

however a small difference could be caused by this effect for rays entering

the spectrometer close to the entrance aperture edge.

A.1.1.2 Direct background subtraction

In an attempt to remove the ZLP background intensity a fitting function

’logfit’, available for MATLAB was used to fit a power law , y = 10intxsl

(int is the intercept , sl is the slope of a log log best fit line) , to the low

energy tail of the ZLP. This fit was then extended to the 2-10eV range and

subtracted from the normalised spectra. The results are shown in figure

A.10, this is the clear evidence that there is some energy loss peak around

3eV. By performing this ZLP subtraction it is clear that the difference

in intensity is not caused by differing shapes of the ZLP, otherwise the

differences would all be very similar. Interestingly high intensity around

3eV is seen for both C shapes and so the high intensity cannot be due

to an experimental artefact only affecting one shape. This double hump

structure is also seen for the Al cross spectra (825, 836), suggesting it is

not a localised plasmon mode.

A.1.1.3 Richardson-Lucy Matlab

To further analyse the spectra taken from the +/-C diffraction orders de-

convolution techniques have been applied to look for peaks in the low energy

region and assess the presence of differences in these peaks.

Initially a background spectra taken on the silicon nitride sub-

strate was used as the point spread function (PSF) as in input for the

Richardson lucy algorithm in matlab ”deconvlucy”. Figure A.11 shows the
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Figure A.10: The results of direct subtraction of the Silicon Nitride back-

ground,red or pink are -C blue or green colours are for +C. sets 836 and

825 are for a large aluminium cross, all other sets are for an l = 4 spiral.

Both 3eV and y=7eV show peaks however these are both present in Al cross

too

result of the psf with itself with iterations 1 to 5 (’Data 1’ to ’Data 5’). As

more iterations are performed the spectra peaks become narrower and af-

ter 5 iterations there is only some intensity around the Silicon Nitride bulk

plasmon peak (23eV) and either side of the zero loss peak (-5eV to -1eV

and 1eV to 10eV). When applying the deconvolution with the psf to the

initial spectra ’37’ which has a high intensity around 3.5eV (figure A.12)

there remains a peak shape between 2-5eV after 5 iterations.

However the intensity at 15eV reduces too much to be useful,

as such the first 3 iterations are compared in figures A.13,A.14 and A.15.

With 1 and 2 iterations there is distinct peak like structure between 2-5eV

for the first 4 spectra, however in subsequent spectra the deconvolution

leaves low intensity peaks and small differences between +/-C EELS. After

3 iterations the spectra are very distorted however there are 2 distinct

shapes for the +/- C spectra with only the +C retaining a peak at 0eV

however this is also present in the Silicon Nitride background and as such

is a characteristic of the probes and not the sample modes.
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Figure A.11: RL deconvolution of psf from no sample with psf 781 (from

only Silicon nitride) in matlab with data 1 to data 5 corresponding to 1 to

5 iterations respectively.
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Figure A.12: RL deconvolution of 12sept 37 (-C on l = 4 spiral) with psf

781 (only Silicon nitride) in matlab with data 1 to data 5 corresponding to

1 to 5 iterations respectively.

216



Figure A.13: RL deconvolution of 12sept sets with a psf taken without a

sample, in matlab for 1 iteration.Pink and red colours are -C blue and

green are +C. 781 and 792 are for the silicon nitride substrate background

all others are for an l = 4 spiral.

Figure A.14: RL deconvolution of 12sept sets with a psf taken without a

sample, in matlab for 2 iterations. Pink and red colours are -C blue and

green are +C. 781 and 792 are for the silicon nitride substrate background

all others are for an l = 4 spiral.
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Figure A.15: RL deconvolution of 12sept sets with a psf taken without a

sample, in matlab for 3 iterations.Pink and red colours are -C blue and

green are +C. 781 and 792 are for the silicon nitride substrate background

all others are for an l = 4 spiral.
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Deconvolution in matlab was also performed using a background

spectra recorded with no sample in the holder. This only contains a zero

loss peak. As is shown in figure A.16,a similar trend to before is seen as

the iteration number increases the spectra peaks get narrower, the 15eV

bulk plasmon Al peak is reduced relative to the bulk Si3N4 and AlO peaks

around 20-23eV. There is once again a peak in the range 2-5eV which gains

intensity with more iterations, as figures A.17,A.18 and A.19 show. Using

the MATLAB function deconvlucy there is some extra intensity around

3-5eV which appears as a peak after deconvolution but there is no clear

difference between +/-C so it cannot be ascribed to a chiral interaction. It

could potentially be caused by loss to a low lying plasmon mode, however

given the weak signal this is unclear.

Figure A.16: RL deconvolution of 12sept set 37 (-C on l = 4 spiral)

with 11 oct no sample PSF shows that increasing the number of iterations

distorts the relative intensities
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Figure A.17: RL deconvolution with 1 iteration. Pink and red colours are

-C blue and green are +C. 781 and 792 are for the silicon nitride substrate

background all others are for an l = 4 spiral.

Figure A.18: RL deconvolution with 2 iterations. Pink and red colours are

-C blue and green are +C. 781 and 792 are for the silicon nitride substrate

background all others are for an l = 4 spiral.
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Figure A.19: RL deconvolution with 3 iterations.Pink and red colours are

-C blue and green are +C. 781 and 792 are for the silicon nitride substrate

background all others are for an l = 4 spiral.
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A.1.1.4 Richardson lucy hyperspy

In addition to MATLAB code , Richardson-Lucy deconvolution has also

been performed in the software Hyperspy. This deconvolution algorithm

appears to distort the spectra less than for the same number of iterations as

MATLAB. Shown in figure is a deconvolution with the no sample psf with

5 iterations. A peak around 7eV is present in all spectra however there

is no clearer structure present in the 2-6eV range. The relative intensities

are still higher for the -C spectra showing that the difference seen in the

experiments are not simply due to a convolution of different PSFs due

to spectrometer optics. Figure A.21 is the same as figure A.20 but for

the spectra from a flipped sample. The -C is still higher and there is no

clear peak structure between 2eV and 6eV. Again this suggests the sample

requires three dimensional chirality if the difference is related to chiral

interactions.

Figure A.20: Hyperspy deconvolutions using RL 5 iterations 11th oct psf

,pink and red colours are -C blue and green are +C, all sets are for an l = 4

spiral.

A.1.2 Fourier Deconvolution reconvolution

As a comparison to the Richardson Lucy deconvolution a reconvolution

technique has also been used. This involves deconvolution by division of

the Fourier components from a spectra and by the fourier components of a

PSF then a reconvolution with a gaussian spectra to limit high frequency

noise.
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Figure A.21: Hyperspy deconvolutions using RL 5 iterations 11th oct psf

on flipped substrate, pink and red colours are -C blue and green are +C, all

sets are for an l = 4 spiral.

The background spectra of +C/-C silicon nitride can be used as

point spread functions (PSF’s), deconvoluted out of the signals which are

then reconvoluted with a gaussian. This accounts for any experimental

artefacts related to the optical set up when no Aluminium is present which

could account for the large difference seen in figure 7.28. Figure A.22

shows the result of a reconvolution of spectra ’37’ using varying gaussian

width values,wg, following the equation exp(−x2/wg) for −512 < x <

512. As can be seen the first width value produces a spectrum which still

shows high frequency oscillations. However by the fifth width the spectra

has been smoothed out. To maintain any low intensity features whilst

also removing high frequency noise the 2nd and 3rd widths were chosen

to further analyse the spectra. The results from these widths are shown

in figures A.23 and A.24. A similar pattern to previous deconvolutions

is seen , whilst there may be some secondary peak character around 3-

4eV in some spectra, this shape is not repeated in later spectra and no

clear assignment can be made to explain the reconvoluted shape. The

reconvoluted spectra still show a large difference between +/- C spectra

suggesting the differences recorded are related to interaction between the

beam and the Al film. Furthermore the reconvoluted spectra for the large

Al cross structures show lower intensity between 4-11 eV suggesting these

these interactions are only strong when the structures are small, what would

be expected for localised surface plasmons or interferences between reflected

surface plasmons.
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Figure A.22: reconvolutions with gauss widths 25,30,35,40,45 . No extra

low energy details were gained

When reconvoluting the spectra with the 3rd gaussian width using

the psf from no sample, the difference betwen the results for ’37’ and ’62’

(-C and +C) is more pronounced but again there is no consistent structure

repeated in the spectra.
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Figure A.23: Reconvolutions using the second gaussian width (equivalent

to 30in figure A.22) and using the 12th sept psf. The results do not show

any clear peaks

Figure A.24: Reconvolutions from 12th sept psf do not show any clear

peaks. Pink and red colours are -C blue and green are +C, sets 37-142 are

for an l = 4 spiral,781,792 are the PSFs used, 825,836 are for a large Al

cross and 618,638 are for the same l = 4 spiral but recorded during a later

TEM session.
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Figure A.25: reconvolutions from 11th oct no sample psf do not show any

clear peaks.Pink and red colours are -C blue and green are +C. 781 and 792

are for the silicon nitride substrate background all others are for an l = 4

spiral.
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A.2 IFTA implementation for beam shaping

The IFTA algorithm used in this thesis and is as follows:

IFTA algorithm

1. Define a target intensity distribution (figure 4.14)

2. Perform a Fourier transform on this distribution to produce an initial

guess at the mask wavefunction

3. Form an updated guess by setting the amplitude of the mask function

to a binary value defining an aperture. The phase is kept from the

initial guess in step 2.

4. Perform a Fourier transform of the updated guess from step 3 to

define a new resultant intensity.

5. Compare the resultant intensity with the target intensity from step

1 and calculate a fitting parameter

6. Compare the fitting parameter to a desired condition or criteria.If

the fitting parameter does not meet the pass criteria Replace the

amplitude of the resultant intensity with the target intensity, but keep

the phase producing an input wavefunction. If the fitting parameter

meets the pass criteria then stop the iterations.

7. Repeat steps 2.-6. using the new input from step 6. instead of the

target in step 1.

8. Stop if the number of iterations is above a pre determined cut off

value

This procedure is also shown in figure A.26. The final complex field in the

mask plane can then be used as a phase mask to produce an approximation

to the input intensity. The results of applying this algorithm to producing

a C-shaped focal plane intensity are shown in section 4.1.5. There are

multiple functions which can be used as the fitting parameter of step 5.,

all of which seek to quantify the match between the target intensity and

the current result. The parameter used in this thesis was
∑
|Ires − Itar|

where Ires and Itar are the squared amplitudes of the complex fields in the

current result field and the target field respectively.
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Figure A.26: The beam shaping method shown in a flow chart.

A.3 Iterative phase retrieval with function

seeding

A similar algorithm to the IFTA can be used to calculate an estimate of the

phase of a wavefunction for which the amplitude has only been recorded

from an intensity measurement. This can be improved if the target phase

or an estimate is known beforehand, then the initial guess used to seed the

algorithm is the ideal case and the algorithm will converge on the best fit

with the experimental data.

Phase retrieval algorithm

1. Use the square root of the recorded experimental intensity distribu-

tion as the amplitude for the initial guess. Use the ideal, simulated

phase distribution as the phase of the initial guess.

2. Perform a Fourier transform on the initial guess function to produce

an initial Fourier wavefunction

3. Form an updated Fourier wavefunction by setting the amplitude of

the results of step 2. to a value defined by an aperture. The phase is

kept from the initial Fourier function in step 2..
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4. Perform a Fourier transform of the updated Fourier function from

step 3 to define a new resultant intensity.

5. Compare the resultant intensity with the experimental intensity from

step 1 and calculate a fitting parameter

6. Compare the fitting parameter to a desired condition or criteria.If

the fitting parameter does not meet the pass criteria Replace the

amplitude of the resultant intensity with the target intensity, but keep

the phase producing an input wavefunction. If the fitting parameter

meets the pass criteria then stop the iterations.

7. Repeat steps 2.-6. using the new input from step 6. instead of the

target in step 1.

8. Stop if the number of iterations is above a pre determined cut off

value

This method is shown in the flow chart of figure A.27.

Figure A.27: The phase retrieval method shown in a flow chart.
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A.4 EBL of Al structures

A collection of spiral structures shown by the schematic of figure 7.1 were

produced by EBL. The EBL was conducted with Dr Mark Rosamond and

the method was as follows:

1. ZEP520A resist (ZEON CORPORATION) was diluted 1:1 by volume

in anisole

2. The resist mixture was spin coated onto a 4x4 Si3N4 membrane array

(Silson) at 4,000 rpm to give an approximate resist film thickness of

150 nm.

3. The membrane was baked at 180oC for 3 minutes

4. The EBL tool JEOL JBX-6300FS , used a beam current of 400pA,

in mode EOS6 (this means 5 lens (high resolution mode) was used at

100 kV. In this mode, the field size 62.5 x 62.5um and minimum step

0.125nm). The shot pitch (actual distance between exposure shots)

was 2.5 nm and the exposure dose was 343µC/cm2

5. The exposed sample was developed in ZED N-50 (n-Amyl acetate) at

room temperature for 1 minute.

6. The sample was rinse in propan-2-ol for 20 s and N2 dried

Once the membranes had been patterned they were transferred to

an electron beam evaporator( Oerlikon Univex 350 with Cryo pump) and

a metal layer was added following the method:

1. The pressure before evaporation was < 1.0e-6 mbar

2. Aluminium was evaporated at a rate of 2.5 A/s to a thickness of 30

nm (the pressure during evaporation was 1.4e-6 mbar)

OR Aluminium was evaporated at a rate of 1.7 A/s to a thickness of

20 nm (the pressure during evaporation was 1.5e-6 mbar)

3. Finally the ZEP resist was dissolved by immersing the samples in

cyclopentanone at 70oC, the samples were then rinsed in propan-2-ol

and N2 dried
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A.5 ImageSurfer visualisation

To produce the 3D visualisations used in this thesis the free software Im-

ageSurfer2 was used. To achieve this the dataset to be plotted was saved

as a tiff stack of images. It was then opened by ImageSurfer2 using the

load option. The tool ’transform’ was used to stretch the data in the z

direction such that the variations could be easily seen. The images used

were produced by the ’contour’ tool as shown in figure A.28. Occasionally

the ’clip’ tool was also used to focus on one section of the data (e.g. for

highlighting individual vortex trajectories).

Figure A.28: An example of the ImageSurfer2 software being used to pro-

duce a contour plot.
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[85] P. Schattschneider, S. Löffler, and J. Verbeeck. Comment on Quan-

tized Orbital Angular Momentum Transfer and Magnetic Dichroism

in the Interaction of Electron Vortices with Matter. Physical Review

Letters, 110(18):189501, may 2013.

[86] S. M. Lloyd, M. Babiker, and J. Yuan. Mechanical properties of

electron vortices. Physical Review A, 88(3):031802, sep 2013.

[87] J. Yuan, S. M. Lloyd, and M. Babiker. Chiral-specific electron-vortex-

beam spectroscopy. Physical Review A, 88(3):031801, sep 2013.
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