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Abstract

This thesis presents a novel path planning algorithm for robotic crowd navigation
through a pedestrian environment. The robot is designed to negotiate its way
through the crowd using considerate movements. Unlike many other path plan-
ning algorithms, which assume cooperation with other pedestrians, this algorithm
is completely independent and requires only observation.

A considerate navigation strategy has been developed in this thesis, which utilises
consideration as an directs an autonomous mobile robot. Using simple methods of
predicting pedestrian movements, as well as simple relative distance and trajectory
measurements between the robot and pedestrians, the robot can navigate through
a crowd without causing disruption to pedestrian trajectories.

Dynamic pedestrian positions are predicted using uncertainty ellipses. A novel
Voronoi diagram-visibility graph hybrid roadmap is implemented so that the path
planner can exploit any available gaps in between pedestrians, and plan considerate
paths. The aim of the considerate path planner is to have the robot behave in
specific ways when moving through the crowd. By predicting pedestrian trajectories,
the robot can avoid interfering with them. Following preferences to move behind
pedestrians, when cutting across their trajectories; to move in the same direction
of the crowd when possible; and to slow down in crowded areas, will prevent any
interference to individual pedestrians, as well as preventing an increase in congestion
to the crowd as a whole.

The effectiveness of the considerate navigation strategy is evaluated using simu-
lated pedestrians, multiple mobile robots loaded with the path planning algorithm,
as well as a real-life pedestrian dataset. The algorithm will highlight its ability to
move with the aforementioned consideration towards each individual dynamic agent.
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by evaluating how direct a head-on collision may be. It will quantify
the impact level between robot and agent, which ranges from head-on,
θ = 180o (1), to moving-with, θ = 0 (0). Additional Spatial areas are
added to the rear and front of the ellipse, which correspond to the
the robot’s radius, to include how much of the AMR may collide.
(b) An example of the AMR moving towards a hypothetical collision
with the rear of the ellipse, with a CLP value of θ

180(ct + cp). (c) An
example of the AMR moving away from a hypothetical collision with
the rear of the ellipse, with a CLP value of θ

180cp. . . . . . . . . . . 97

3.14 Example of the "Relative Trajectory Resistance, Ωθ" function. The
graphs show Ωθ (z-axis) from all positions surrounding the ellipse.
The magenta ellipse shows the actual ellipse and the arrows highlight
the direction of the agent. The blue vertical lines highlight examples
of 4 hypothetical collision points, cp, that the search/model robot
intersects the CLP, Fig. 3.13a (which is also shown above the ellipse
in cyan). The side of the graph with green arrows above it shows
examples of Ωθ as the search moves towards cp. The side of the graph
with red arrows above it shows examples of Ωθ as the search moves
away from cp. (a-d) Show the side of the graph where the search is
moving towards cp. (e-h) Show the same graphs as (a-d), but from
the other side where the search is moving away from cp. . . . . . . . 98

3.15 Example of the combined total resistance of "Proximity", Ωp (Fig. 3.12),
and "Relative Trajectory", Ωθ (Fig. 3.14), as defined by Eq. (3.13). All
sub-figures reflect the same perspective as the sub-figures of Fig. 3.14. 99
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3.16 Visualisation of how the buffer zone (BZ) that surrounds an exclusion
zone (EZ) affects resistance, Ωez, with four example robots, R1 to
R4. Only if the current trajectory of the robot will cause a potential
collision will it affect Ωez. R1 is outside the BZ (d2 > b) therefore
Ωez = 0. R2 is moving towards the BZ (θ2 < 90o), however it is too far
away to generate a resistance. R3 is inside the BZ (d3 < b), however
it is moving away (θ3 > 90o), therefore there is no collision potential.
R4 is inside the BZ (d4 < b) and is moving towards (θ3 < 90o),
therefore Ωez = θ4

d4
, as a collision is more likely to occur. The BF is

half the radius of the robot for a static EZ, and the diameter of the
entire robot when a collision EZ. . . . . . . . . . . . . . . . . . . . . 101

4.1 Demonstration of how the sweepline algorithm uses parabolas to de-
scribe the size and position of circles, using the circles’ directrices
as the green sweepline that translates down the page. (a) Visualisa-
tion of the original sweepline algorithm for the VD of circles. The
sweepline translates down the page, manipulating parabolas to de-
scribe the equal perpendicular distances from sweepline to parabola,
and parabola to circle edge (dashed lines). When two neighbouring
parabolas intersect, orange VD lines are traced. When three neigh-
bouring parabolas converge on the same point a VP is created, shown
with its red Apollonius circle. (b) The solid coloured areas above the
parabolas highlight the ‘safe’ areas, which will remain the same re-
gardless of any future event. All of the white space below the parabo-
las may be changed by a future event. . . . . . . . . . . . . . . . . . 106

4.2 Visualisation of how a PE is created, by tangentially aligning four
circles. (a) The original ellipse, with S-Ma axis a and S-Mi axis b.
(b) Four circles are aligned so that each one is tangential to an axis
limit of the ellipse. When correctly aligned, and appropriate radii are
appointed to each circle, each circle will tangentially align with its
neighbour (red dots). (c) The PE is created by only using the circle
arcs that align with the ellipse axes. Each circle arc will tangentially
align with its neighbour at the red dots, creating the smooth convex
shape of the PE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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4.3 Calculation steps required to compute the pseudo-ellipse, as per-
formed by Algorithm 1. (a) From the pedestrian’s observed position
at t = 0 (x0, y0), S-Ma axis, a, is calculated based on the predicted
velocity, v, at current time-step, t (vt). The S-Mi axis, b, is calculated
based on the uncertainty profile, Fig. 3.6. (b) (x0, y0) is positioned
at the origin, (0, 0), and the S-Ma axis is aligned with x-axis, for ease
of calculation. Using Algorithm 1 (Line 1) the centre point of the
circle is found, which will tangentially align with S-Mi axis of ellipse,
(xc, yc). The tangential intersection point between the larger S-Mi
and smaller S-Ma axis circles forms at (xt, yt). The x-coordinate of
the S-Mi circle, xc, is the mid-point between the agent circle at t = 0
and t. (c) Using Algorithm 1 (Line 3 to Line 7) the y-coordinate of
the S-Mi circle, yc, is calculated and its radius, rc, is easily found.
The coordinates that tangentially align the circle (xt, yt) are found
my comparing the comparing gradients of m1 and m2. . . . . . . . 108

4.4 Error between the original ellipse and the pseudo-ellipse. At the axis
limits of the ellipse the dimensions of the real and pseudo-ellipses are
identical. (a) Three examples of PEs over the original ellipses. The
coloured centre points are displayed in (b), to show their error values.
(b) Quantitative error with respect to the differences in area between
the ellipses and the PEs. The error converges at −15%, regardless of
the ratio between S-Ma and S-Mi axes. . . . . . . . . . . . . . . . . 110

4.5 Demonstration of the novel ‘tangent’ function, Section 4.1.2, merging
two parabolas together to form a super-parabola, used to describe
the shape of the PE. (a-b) Until the sweepline reaches the tangent
point only one parabola is used to describe the PE, which is the circle
the sweepline intersects. When the sweepline arrives at the tangent
point the parabolas associated with both circles tangentially align.
As the sweepline continues past the tangent point the two parabolas
continue to remain tangentially aligned. The parabolas each side of
the alignment describe their respective sections of the PE. The dashed
sections of the parabolas are then discarded. (c) The super-parabola
is formed by merging the remaining solid lines of the parabolas in (b).
By discarding the sections of the parabolas that are not describing
the circle segments of the PE, the super-parabola describes only the
edges of the PE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
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4.6 Demonstration of how the sweepline algorithm uses parabolas (red ex-
ternal, blue internal) to describe the size and position of PEs, using
the circles’ directrices as the green sweepline. The sweepline trans-
lates down the page, manipulating parabolas to describe the equal
perpendicular distances from sweepline to parabola, and parabola to
PE edge (dashed lines). When two neighbouring parabolas inter-
sect, orange VD lines are traced. When three neighbouring parabolas
converge on the same point a VP is created, shown with its red Apol-
lonius circle. (a-f) Six snapshots as the sweepline traces out the VD
of PE using the novel tangent function, Section 4.1.2. The novel su-
per-parabola, Fig. 4.5, describes the edge of the PEs. The solid lines
amongst the dashed highlight the tangent point where the super-
parabola merges two parabolas together. As the two S-Mi parabolas
of a PE intersect along the velocity line, (f), the point is treated as a
pseudo-tangent point to prevent a VD line being traced between the
PE’s own edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7 Demonstration of the novel adaptation to the sweepline algorithm
finding the VPs of the PEs within the robot’s FoV. The sweepline is
utilised in the same manner as the original algorithm, moving down
the workspace, whilst using the novel super-parabolas to describe the
circle segments that form the PEs. (a-f) Each consecutive sub-figure
shows the sweepline moving down the figure, revealing the VPs as it
goes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.8 As the PEs are only approximations of ellipses they will always be
smaller in area when they do not degenerate to a circle, Fig. 4.4.
Therefore, over small areas (pink square in (a)), there may be more
EVPs than PVPs, and so not all EVPs can be found. To increase
the chance of finding all the EVPs additional points are calculated,
Section 4.2, that should converge on EVPs not represented by PVPs.
(a) Using four ellipses there are ellipse-ellipse intersections that are
not represented with similar PE-PE intersections. The pink square
highlights small area where there are more EVPs than PVPs. (b) PVPs
that are found for the VD of PEs. (c) EVPs that are found for the
VD of ellipses, when using only the PVPs as initial approximations.
(d) EVPs that are found for the VD of ellipses, when using additional
approximations to the initial PVP approximations, Section 4.2.1.1. 116
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4.9 Visualisation of re-creating the PE with additional circles. An addi-
tional circle is introduced, which is tangential to the ellipse in between
the S-Ma and S-Mi axis limits. This will help to create a PE that is
more similar in shape to the original ellipse, resulting in a VD of PEs
that has a higher fidelity to the VD of ellipses. The addition of the ex-
tra circle will increase the processing time of the sweepline algorithm,
however it will still operate with a logarithmic time complexity, Sec-
tion 4.1.3. The introduction of a line segment must also be included
at the S-Mi axis limit, as the additional circle cannot tangentially
align with the axis and the new point of the ellipse. However, the line
segment is tangential to the circle, and so the novel tangent function,
Section 4.1.2, can still be applied. . . . . . . . . . . . . . . . . . . . 118

4.10 Example of all eight possible Apollonius circles (black) to three cir-
cles (red external, blue internal) [15]. Only the Apollonius circle that
is external to all other circles is valid for a VP (green box). . . . . . 120

4.11 Comparison between an example of PVPs of PEs, found using the
novel tangent function, with their equivalent EVPs of ellipses. The
positions between each PVP and EVP varied by only +0.00898% and
+0.00591% for x and y, respectively, highlighting the accuracy of the
PVP used for initial approximations. (a) The PVPs of PEs, found us-
ing a novel adaptation of the Voronoi diagram of circles, Section 4.1.2.
(b) The EVPs that the PVPs converge upon, and the MD lines that
the EVPs converge upon. (c) Graph that shows the convergence rate
of the PVPs to EVPs (blue), and EVPs to MDs (red). . . . . . . . 122

4.12 Visualisation of the polygons that form between the MD and ellipse-
ellipse connections. The polygons divide the model environment into
a configuration space, for the CPP to plan the AMR’s movement
around. The white areas inside the ellipses, that do not form poly-
gons, are areas inaccessible by the CPP. Green polygons are the safest
polygons, representing open-space areas of the virtual environment.
They are formed by tracing around ellipses, which connect to one
another with MD lines. The valid VPs between ellipses are also high-
lighted blue, with their corresponding Apollonius circle. . . . . . . 124
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4.13 Demonstration of collision testing MD lines so that they will only
create external ellipse-ellipse connections, and none intersect other
MD lines. (a) Visualisation of how a VP between ellipses 1, 4, and 5,
causes resultant MD connection between ellipse 1 and 5 to intersect
ellipse 2 and 3. (b) The MD between ellipse 1 and 5 is subdivided
and collision tested with the neighbouring MDs. The green divisions
are kept, whilst the red division is deleted. (c) The resultant VD
that also uses the mid-point of the MD subdivisions. (d) Table of the
execution stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.14 Demonstration of the novel VD-VG roadmap construction stages,
within the FoV. (a) Through appropriate connections between VPs
and MDs, a vector based network is created that represents a VD
roadmap. Connections are made regardless of whether they intersect
with any ellipses. (b) By creating connections between MD lines,
which cross their own polygons, the ‘shortcut’ roadmap is created.
This roadmap creates a network of vectors that move more in-line
with ellipses, allowing paths to be found that considerately move be-
hind pedestrians. Only vectors that do not intersect any ellipses are
included. (c) The final VD-VG roadmap will allow the CPP to move
between the ‘safest’ VD and the more ‘efficient’ VG shortcut network
at each node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.15 Visualisation of the decision tree required for calculating the VD. The
process begins from a point on an ellipse tangential to an Apollonius
circle of a VP. Searching either side of this point the next intersection
with the ellipse will either be another tangential Apollonius circle,
from another VP, or the connection of a MD between the ellipse and
a neighbour. (a) The decision tree can make connections with upto
two intersections either side of the initial VP. All the first potential
connections form simple Voronoi vectors. If connection 1.b is made,
then there may be another MD to connect the original VP to. (b) Ex-
ample of the various connections made by the decision tree. . . . . 127
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5.1 Overview of the CNS’s execution stages. Once data is obtained
from the real-world environment, the CPP begins its predictive ex-
ploration over a series of model environments within the prediction
time-horizon, T . A roadmap is created over the model environment,
detailed in Chapter 4. Considerate paths of one time-step in length
are then found. Within the model environment a model robot is also
moved along these one time-step paths. The predictions of the agents
are updated to t + 1. Once T has been reached, the most desirable
global path across the model environment is executed in the real-
world environment. The position of the robot is then evaluated to see
if it has arrived at the destination. If so the CPP has completed its
mission, else the algorithmic process repeats. . . . . . . . . . . . . . 133

5.2 Visualisation of robot’s movement when no agents are detected within
the robot’s FoV. As the real-world environment can only be observed
within the FoV the robot must also move within the same area. If the
robot moves outside of the FoV a collision with an unknown agent
could easily occur. (a) The robot can move directly towards the
destination as the turn will not cause the robot to leave the FoV, θ <
θfov

2 . (b,c) The robot cannot move directly towards the destination as
the turn will cause the robot to leave the FoV, θ >

θfov

2 . Therefore,
the robot moves along the FoV’s angular boundary that most directly
moves toward the destination, preventing it from entering unknown
territory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 Visualisation of how the agent data is obtained, by observing the real-
world environment in two consecutive frames, f . (a) The positions of
each agent in the first frame. (b) The positions of each agent in the
consecutive frame. (c) The dynamic environment perceived by the
robot, by using the positions of the agents in (a), and the velocity
obtained by comparing their displacement in (a) and (b). As a result
four dynamic agents, one in each corner, create uncertainty ellipses
to be used by the CPP. The central static agent is surrounded by the
EZ circle, as the CPP should avoid this area. . . . . . . . . . . . . . 136
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5.4 Visualisation of which input data should be recorded by the CPP
in each environmental frame, which covers dynamic agents and EZs,
Section 5.1.2. The blue robot detects agents (5 out of a potential 7)
within its FoV. Solid purple circles represent static agents. Solid yel-
low circles represent dynamic agents. Green circle outlines represent
what is stored in the robot’s memory. Red circle outlines represent
what is not in the robot’s memory. (a) The robot detects 5 agents
within the FoV, 2 static, 3 dynamic. (b) The robot collides with 5d

causing the robot to stop. An exclusion zone is added around 5d’s
position at the moment of impact. 3s becomes dynamic, however this
occurs outside the FoV so the robot keeps 3s’s original position in
memory. (c) The exclusion zone of 5d acts as an area to avoid in this
environmental frame. The remembered position of 3s is now observed
to be empty, therefore it is removed from memory. (d) Even though
the exclusion zone for 5d is outside the FoV it is removed, as the
collision as passed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5 Visualisation of how a roadmap vector is separated into unit mea-
surements for calculating resistance, Ω. Ω is calculated from each
segmentation of the vector and is summed along the complete length
the search has travelled, up until either the time-step has expired or
the robot’s destination line is reached. . . . . . . . . . . . . . . . . . 139

5.6 The resistance for each vector is added to it, therefore the search will
slow down along the real vector. . . . . . . . . . . . . . . . . . . . . 139

5.7 Visualisation of how resistance applied to the roadmap affects the
speed of the search algorithm as it travels along n vectors, V (n).
(a) All vectors connected to the start point of the search, ordered by
increasing values of Vd

′. The search moves uniformly at Sv = max(Rv)
along all active Vd

′ vectors, by the smallest value in the list, Vd
′(1).

(b) The relative distance the search moves along all associated vectors
of length Vd, which form the actual VD-VG. The time period remains
the same and so the speed of the search is altered along each vector
accordingly, t = V ′

d(1)÷max(Rv) ∴ Sv(n) = Vd(n)÷t. (c) The node at
the end of V (1) is connected to V (7, 8) and adds them to the ordered
list of V ′

d vectors. Similarly to (a) the search moves uniformly along
all vectors by the remaining distance to the end of V ′

d(2). (d) V (7, 8)
vectors are added to the active list and highlights the same process
shown in (b). (e) V (9, 10, 11) vectors are added to the active list and
highlights the same process shown in (c). (f) V (9, 10, 11) vectors are
added to the active list and highlights the same process shown in (d). 141



xxvi List of figures

5.8 Visualisation of how a new vector is created if the search enters an EZ.
A new vector is created between the unit measurement just outside
the EZ and an available node connected to end of the terminated
vector. A new vector will only be formed if it also does not intersect
the EZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.9 Visualisation of how homotopic path repetition is reduced. (a) Ex-
ample of the VD-VG roadmap for 4 ellipses, with the area of interest
outlined with the orange square. The search will propagate along
the roadmap beginning from the bottom-left. (b) There are 6 ho-
motopy classes that are formed by the different vector orientations,
highlighted in various shades of green. (c) If the search terminates
here the 3 vectors share two homotopy classes; 2 are chosen (green
markers), 1 ignored (red marker). The middle vector is more desirable
than the lower vector, which are homotopic, however the middle is
removed due to the upper vector and so the lower can remain. (d) If
the search terminates here the 5 vectors belong to 3 homotopy classes;
3 are chosen (green arrowheads) and 2 ignored (red arrowheads). The
search also terminated at the lower VP (red square marker) earlier
on, as the other nodes connected to it would be reached by alternative
vectors earlier, Algorithm 2. . . . . . . . . . . . . . . . . . . . . . . 146

5.10 Visualisation of how similar paths are avoided. A comparison is made
between the semi-major axis ends of the ellipse, e0 and ev, and the
position of the potential paths, p1 and p2, as well as their orientation
to the front or back of the robot (blue circle). (a) Choose the best
path, as p1 and p2 both collide with the ellipse. (b) Keep both paths,
as p1 collides with and p2 passes the ellipse. (c) Choose the best path,
as p1 and p2 both pass on same side of the ellipse. (d) Keep both
paths, as p1 and p2 pass on different sides of the ellipse. (e) Choose
one path, as p1 and p2 both move away from the ellipse. . . . . . . 147
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5.11 Visualisation of how paths (arrows pointing from the AMR’s centre)
are chosen, in order to aide exploration of the model environment.
A maximum of three paths (highlighted with green arrowheads) are
selected, with only one occurring in the left and right (dark blue), and
the front (light blue) quadrants of the circle. This path diversification
will force the CPP to explore the environment, allowing for consid-
erate paths to be discovered, and thus preventing three similar paths
all occurring around the same point. The yellow has highlights the
extension of the FoV beyond the path selection area. (a) An example
of a FoV with a viewing angle of 270o, with 3 separate 90o quadrants.
(b) An example of a FoV with a viewing angle of 135o, with 3 separate
45o quadrants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.12 Example of the maximum number of FGPs that can be calculated
for various prediction time-horizon lengths, T . (a) Each coloured box
represents the maximum number of branches that can be created at
that time-step (Green: 3, Yellow: 2, Red: 1). The numbers within
the boxes represent the maximum possible accumulating calculations
required at each time-step.(b) Example of tree when T = 4. . . . . 151

5.13 Demonstration of how the CPP moves along Pt paths at each time-
step, t, which corresponds with Fig. 5.14. The example uses a predic-
tion time-horizon of T = 3 with the number of potential paths and
calculations at each t dictated by Eq. (5.8), and shown in Fig. 5.12.
Eleven agents are all crossing a central point within the robot’s FoV,
in order to reach the opposite side of the environment (goal is orange
line in bottom-left corner). (a) A full view of the agents within the
AMR’s FoV. The orange box signifies the area focused on in the pro-
ceeding subfigures. (b) At t = 1 three Pt paths are selected from the
robot’s current location. (c) At t = 2 two Pt paths are selected from
the first two of the previous Pt paths. The remaining Pt only predicts
one unique Pt path. (d) At t = 3 one intermediate path is selected
from the 5 potential locations of the robot at t = 2. . . . . . . . . . 153
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5.14 Demonstration of all the PT paths predicted by the CPP for a pre-
diction time-horizon T = 3, which corresponds with Fig. 5.13. Eleven
agents are all crossing a central point within the robot’s FoV, in order
to reach the opposite side of the environment (goal is orange line in
bottom-left corner). (a) All the individual PT paths predicted by the
CPP, shown with the uncertainty ellipses expanded over the entire
prediction time-horizon. (b) All PT paths superimposed into one im-
age. (c) The most desirable PT path is chosen to be the FGP. The
FGP can also be seen to move in the same clockwise rotation as the
other agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.15 Visualisation of selecting the FMV. The purple ellipse represents the
uncertainty ellipse of a dynamic agent over one time-step. The blue
path represents the FGP over a prediction time-horizon of T = 6.
Connections are created between the robot’s current location to all of
the time-step paths along T , t1 to t6. The red lines are deleted due
to a collision with the ellipse, whilst the yellow lines represent the
potential FMVs available. The green FMV line is chosen as it is the
most desirable, using Eq. (5.7). . . . . . . . . . . . . . . . . . . . . 156

5.16 Visualisation of how relative agent orientations determine who col-
lided with whom, and therefore who is required to activate a collision
avoidance strategy. For illustrative purposes assume this is an AMR
only environment, with all AMRs loaded with the CPP algorithm.
An AMR activates collision avoidance when an external agent enters
into the buffer zone (BZ) that surrounds the front half of the AMR.
The BZ is red when collision avoidance is required, and green when
no action is required. (a) Both agents are mutually responsible for
avoiding a collision and must stop. Both agents intersect the other’s
BZ and both their trajectories collide. (b) Only A1 pauses to avoid
a collision, as A2 is within its BZ. A2 does not take any action as its
current trajectory will not create a potential collision. (c) Only A3

pauses to avoid a collision, as both the other agents are within it’s
BZ. A1 and A2 do not take any action, despite them entering each
other BZs, as their trajectories are diverging. This scenario helps
maintain traffic flow as only A1 needs to stop and manoeuvre around,
preventing those in front from also stopping and adding to congestion. 158
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5.17 Example of how the FMV the AMR moves along in the real-world,
is updated if a collision is about to occur. For illustrative purposes
assume this is a AMR only environment, with all AMRs loaded with
the CPP algorithm. (a) As a collision is about to occur between both
AMRs, both FMVs move away from the collision, θ1 and θ2. The
remainder of the FMV is rotated away from the collision, using the
AMR’s current position as the point of rotation. This incremental
rotation continues until the remainder of the FMV is aligned with a
collision free path. (b) Both FMVs have rotated away from the colli-
sion, and so both AMRs can now continue to move to the remainder
of the time-step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.18 Example of how the differential drive would move an AMR from the
origin facing right, to various destinations (green dots) all at 2m
distance from the AMR. The specifications of the model drive are:
Rv = 2.0ms−1, max(Rω) = π

4 rad · s−1, and t = 1s, whilst the AMR’s
position is updated every 0.1s (10Hz). The blue lines represent the
movement of the AMR for the length of t, as it moves towards the
goals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.19 Visualisation how AMRs (R1 − R4) move toward, and arrive at, the
destination line. (a-b) The most direct route to the destination line
is either perpendicular to it, or towards one of the ends. If other
agents arrived at the same destination, and block a direct route, the
approaching AMR moves along the shortest collision free path. (c-
d) If there is not a gap of at least twice the AMR’s radius along the
destination line (less than just the radius at the end points), it is
not possible for the AMR to reach its destination collision free. The
destination line will therefore expand outwards by the AMR’s radius,
until a gap occurs that is suitably large enough for the AMR to reach.
This new two-dimensional destination will allow the AMR to aim for
a destination that is as close as it can get to the original, collision
free. The pink bubbles represent the areas that the AMR can safely
reach without colliding with agents that are already positioned along
the 2D destination. Every time the destination becomes unreachable
without collision it continues to expand until there is suitable room
for the AMR to arrive. . . . . . . . . . . . . . . . . . . . . . . . . . 161
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6.1 Examples of how well the microscopic "PedSim" pedestrian simula-
tor [16] replicates the trajectories of pedesrian from the BIWI dataset [17],
using the social force (SF) model. (a-e) Examples of how much the
simulator deviates from the dataset for the initial timestep, t = 1. The
magenta dot is the location of the pedestrian in the dataset at t = 0.
The green and red dots show the position of pedestrians at t = 1 for
the dataset and simulator, respectively. Both green and red dots are
connected to their respective initial pedestrian’s position by a line of
the same colour. (a) SF = 0. (b) SF = 1. (c) SF = 5. (d) SF = 10.
(e) Superimposed image of all simulator results displayed in (a-c).
(f) The boxplots measures how accurately the simulator recreates the
movement of pedestrians, over a prediction time-horizon of T = 10,
by measuring the distance between the datapoints and the model po-
sitions at each timestep. The PedSim documentation recommends a
SF value anywhere between 0 to 10, and indeed the results plateau
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Chapter 1

Introduction

The Three Laws:
1. A robot may not injure a human being or, through inaction, allow a human being to come
to harm.
2. A robot must obey the orders given it by human beings, except where such orders would
conflict with the First Law.
3. A robot must protect its own existence as long as such protection does not conflict with
the First or Second Laws.

— Issac Asimov, Handbook of Robotics, 56th Edition, 2058 A.D.

R
obots have become ubiquitous in modern society, ranging from station-
ary industrial CNC machines with rigidly defined operational motions to
highly dexterous humanoid robots that can operate autonomously and

mimic many human movements [25–27]. The term robot was coined in the 1920
play Rosumovi Univerzální Roboti (Rossum’s Universal Robots) by Karel Čapek, and
since the first electronic computer to use integrated circuitry was invented (c.1950)
the technology has increased exponentially through the self-fulfilling prophecy of
Moore’s Law [28]. In recent years there have been vast increases in computer pro-
cessing power, including the advent of affordable super-computers [29, 30]. This
has allowed machines to become increasingly capable of performing more and more
complex computational tasks in a shorter time-frame.

This improvement is an underlying feature that allows robots to operate with
increased precision, speed, and efficiency. Robots do not suffer from fatigue and
can operate consistently operating in environments that are often unsuitable for
humans [31]. However, aside from using robots to outperform humans at certain
tasks, robots are being developed in an assistive capacity, whereby humans and
robots can interact with one another. The fast-paced and evolving field of robot
autonomy is resulting in robots becoming less segregated from humans through
human-robot interaction (HRI), and where less and less direct user control is required
for the robot to operate. This leads to the motivation behind this thesis, whereby
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if humans are to interact with more intelligent robots, then the robots must be able
to safely move around the same environment as a human.

Much of the HRI arena is dominated by socially assistive robots [32], used as
support for disabled people, autistic children, and therapeutic needs, etc. However,
outside the broad concept of Isaac Asimov’s three laws of robotics, which covers a
robot’s behaviour towards all humans, current realistic HRI involves a command flow
between robot and human in order to complete a particular task. Traditionally the
level of HRI is defined by the amount of input a robot requires in order to complete
a pre-determined task [33], using a robot that is already known to the user. Whilst
for more modern systems that have a higher level of versatility, the purpose of the
robot may be unknown to an interacting user.

Rather counter-intuitively the traditional rating system of HRI performance re-
sults in a higher score if the human provides less input. However, for assistive robots
additional human input would be required, allowing the robot to assist more effec-
tively. The input commands can take any form, including: remote control; verbal;
gesture recognition; etc; as long as an instruction is directed towards and able to be
processed by the robot. An overview is given to highlight these different approaches
toward defining HRI performance:

a1 Traditional: Increasing robot autonomy with Decreasing human input

a1.1 Human Control: The robot is directly controlled by explicit commands
from an experienced user, with an automatic pre-programmed response.

a1.2 Casual Commands: The robot’s purpose is known to the user, and
the commands given allow the robot to respond in a selection of pre-
determined ways it calculates to be the most suitable.

a1.3 Robot Control: Robot is able to complete a pre-determined task set
by the user from start to finish. All the user is required to do is set-up
the equipment appropriately.

a2 Modern: Increasing robot autonomy with Increasing human input

a2.1 Direct Learning: Each human input allows the robot to learn through
every experience. The robot may provide suggestions that make the task
more efficient, based on acquired knowledge through previous experience
of the task’s execution.

a2.2 Implicit Response: The robot’s purpose may not be known by the user,
however the robot can assess the situation independently and respond
without a users direct input, as the requirement is understood without
being stated.

a2.3 Independent Cognition: Theoretically, the machine can realise a task
should be undertaken without any prompt, or even prior knowledge, pre-
dicting possibilities from a related knowledge base. The roles of the hu-
man and robot may be reversed, with the robot seeking to ask assistance
from the human to complete a task or even offering advice.
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Increasing the level of human input does not mean more human control, rather
the human input should result in a collaborative effort between human and robot.
Although human input can be explicit and HRI can produce cooperative behaviour
through direct interaction, it can also be implicit and behave considerately through
passive observation. This latter notion of a robot’s considerate behaviour is the seed
to the motivation of this thesis, by using passive input from observing pedestrians
move.

1.1 Motivation

As observed through the evolving HRI field, robot interfaces are becoming more
human-like. Already humanoid robots are designed to walk like humans [26, 27], talk
like humans [34], even used to assist humans as they walk [35], and a robot should
be able to interact with a human as easily as another human would. Robots that
are achieving more collaborative interactions is developing the field social robots,
including how they move around with us. Designing a human-aware robot navigation
that can be implicitly understood by humans will increase the diversity of HRI
implementations.

HRI with autonomous mobile robots (AMRs) began in the previous century,
gaining notability with museum tour guides (e.g. [36, 37]). These implementations
relied heavily on patience towards pedestrians, pausing the AMR’s movement un-
til any pedestrians had moved out of the way. The AMRs navigated differently
from huamns and did not implement a co-operative interaction strategy with the
pedestrians in order to navigate, which is often how pedestrians themselves are ob-
served to work together [38, 39]. Even in recent implementations, which intend to
adapt more human-like behaviours (e.g [40–42]), the robots move at a much slower
pace than the pedestrians they navigate around. Pedestrians manoeuvre around
the robots, allowing the robots to move relatively unhindered along a straight path.
Even human-human navigation is still a highly researched area (e.g [43–45]), pro-
viding evidence that our knowledge of how people successfully navigate together is
insufficient. To design a robot capable of successfully navigating among pedestrians,
when even the navigation system of the pedestrians are unknown, presents a very
difficult real-world challenge.

1.1.1 Improving Human-Robot Interaction

Creating navigation systems capable of negotiating though crowded pedestrianised
environments can be beneficial to advancing all forms of autonomous robotics. It
can progress HRI by reducing the gap between the environments that humans and
robots can safely co-inhabit, as well as increasing navigational autonomy overall.
One of the main reasons for mobile robots still being segregated from humans is
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due to their inability to manoeuvre in similar ways. Even very slight adjustments
in movement can affect the equilibrium required for multiple dynamic agents to
successfully navigate together, such as with flocking algorithms [46], due to collective
behaviour and swarm intelligence [47]. For example, cyclists are segregated from
pedestrians due to their larger size, faster speed, and reduced ability to manoeuvre.
Despite the fact they are both moving humans the behaviour of the human cyclist
would not be able to navigate amongst human pedestrians because of these subtle
differences. Robots are segregated even more due to additional factors, such as:
slower movement speeds, no adaptability (a cyclist can always dismount and become
a pedestrian), and dissimilar navigation protocols.

For multiple dynamic agents to interact within the same space successfully, each
must be able to anticipate one another’s movements. If a pedestrian does not move
within a crowd with the same behaviour as the others, they will become a problem
for those they interact with. Their responses will be unexpected, which would in-
crease confusion, as well as increasing collision potential and congestion [39]. Some
current robots may be likeable to humans in regards to physical appearance, however
they have not been integrated into co-habitation environments as they are unable to
navigate within them effectively (e.g. [25]). Robots are unable to perfectly commu-
nicate with humans, due to a lack of advanced intelligence and adaptive cognitive
ability, associated with human reasoning. This means that each robot can only
operate within specific parameters, designed for specific environments.

For robots to manoeuvre through crowds of pedestrians they do not require the
ability to process information like a human1. However, they should at least appear
to adopt human-like qualities, so they are capable of easily integrating with mini-
mal disruption. The research presented in this thesis does not propose a complete
robot platform which is indistinguishable from a human, rather it provides a novel
framework for a robot’s navigation system. The focus is on the area of pedestrian
crowd navigation, using a novel path planner to predict paths in order to move
considerately around pedestrians and avoid potential collisions before they have a
chance of developing. This considerate navigation strategy (CNS) relies on an im-
plicit response, Item a2.2, to a minimal amount of passively observed pedestrian
input. Rather than requiring explicit command inputs from a user, the CNS will
move an AMR so that it causes minimal disruption to any surrounding pedestrians.
As well as provoking implicit cooperation between the AMR and other pedestrians,
by manoeuvring in ways similar to other pedestrians. A specific localisation system
is not considered within this thesis, as the focus is on planning considerate paths
using a novel considerate path planner (CPP). The AMR’s ability to correctly de-
termine its current position and goal location is a considerably large research area

1The Human Brain Project demonstrated the complexity of the human brain’s processing power,
with their simulation taking 20 minutes to emulate 1 second of brain activity [48]
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of its own, such as SLAM (simultaneous localisation and mapping), and the CPP is
only designed to plan considerate paths between AMR and goal from whatever data
is provided on their positions.

1.1.2 Real-World Applications

Applications of HRI with AMRs have already proved effective in assistance for reha-
bilitation [49–51]. The development of this thesis’ CPP will improve these current
applications. Especially for visually or physically impaired individuals, if imple-
menting it into autonomous mobility devices that can assist how they move. The
CNS can also be beneficial for emergency response services that require fast access
through a crowd, in order to attend a medical emergency. As the CNS navigates
with implicit consideration it will not rely on pedestrian cooperation, and so could
efficiently navigate through a crowd faster and without hindrance.

Autonomous Mobility Devices

For individuals suffering from blindness, or visual impairment, navigating through
a crowd can be difficult as it is not possible to assess how other pedestrians are
moving in front of them. Although audio and touch are still available, audible
details cannot define the locations or orientations of individuals whilst touch requires
a direct contact that should ideally be avoided. Current non-robotic methods of
navigation for the blind involve assistance from guide dogs, which are only capable
of manoeuvring around obstacles if the owner already knows the route2. Robotic
devices, such as the UltraCane [52], only detect objects in the immediate vicinity
and require the operator to decide on what action to take based on vibrations they
receive through the handle. The problem with these systems is that they only assess
immediate obstacles. The motivation for this thesis is to allow visually impaired
pedestrians to be lead through much more complex dynamic environments. The
CNS would not require any of the other crowd members to make allowances for it,
and the user will be directed through the crowd without hindrance.

A further possibility includes the integration of the CNS into autonomous wheelchairs,
to help benefit those with severe movement difficulties. For individuals that cannot
successfully move their wheelchairs around without assistance, the CNS will allow
the wheelchair to plot considerate paths that it can then move along by itself.

Emergency Response

When attending to someone who requires first aid often time is of the essence,
especially for those who have suffered a heart attack or stroke. If such an incident
occurs in a crowded area, being able to get to the scene as efficiently and quickly

2http://www.guidedogs.org.uk/
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as possible can add valuable seconds required to saving someone’s life. As the CPP
uses predictive models to anticipate crowd movements, the planned path could be
more efficient than if performed by a human. This is not only beneficial in getting
to someone as quickly as possible, but also moving them out and away from the
crowd (e.g. to an ambulance), in order to get them the attention they require as
soon as possible.

1.2 Overview of Related Research

Current research into AMRs focus on specific applications, such as [53]: moving
over challenging terrain, completing tasks dangerous for humans, and exploration.
The success of mobile robot autonomy within the field of navigation is dependent
upon the environment the robot navigates. Successful cooperation in a multi-robot
environment, such as swarm robotics and the Kiva robot system [54], have achieved
excellent navigational results. However, these occur in human-free zones, with both
systems failing if a pedestrian enters the environment. This limitation is assumed to
be because the dynamic behaviour of pedestrians is very difficult to predict, when
focusing on the interactions of individuals, as people are not just limited to moving
efficiently, but by a myriad of social, personal, and emotional issues [55, 56]. To
integrate a navigational robot into a pedestrian environment, both crowd behaviour
and path planning techniques must be investigated.

1.2.1 Pedestrian Modelling

Pedestrian crowd dynamics and modelling has been studied for many years, with
force-based models dating back to the 1950s [57]. Although these ansatz models pre-
dicted a generalised movement of a crowd they failed at predicting the exact move-
ment of individual pedestrians. Modern fluid dynamics offer an excellent method to
analyse the flow of large groups on a macroscopic level [58, 59], but again not the
individual.

At a microscopic level pedestrians can be observed to interact using cooperation
between individuals [60], using vision to assess collision potential [2]. They move
by predicting the locations of other pedestrians a few steps ahead of themselves,
whilst aiming to move as directly as possible towards their goal [61]. However,
unpredictable variables may prevent any model from producing a perfect movement
prediction of each pedestrian [62]. Only estimations can be made to within an
acceptable boundary. In order for microscopic pedestrian models to adopt more
behavioural predictions, goal orientation is assumed a priori. This has allowed order
to appear from chaos, producing uni/bi-directional traffic and lane formation [63, 64],
resulting in more easily predicted trajectories.
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(a) (b)

Fig. 1.1 Generic visualisation of how a pedestrian may select their trajectory based
upon the potential collisions with others, as suggested in [1, 2]. P1 is a pedestrian
walking towards a door (purple line) with a 90◦ FoV, which contains two more
pedestrians P2 and P3. (a) If no path planning is implemented P1 and P2 will
collide three time-steps into the future. Although P2 moves directly in front of P1,
the collision point of the two trajectories do not coincide. Therefore, the straight
line path of P3 can be maintained. (b) By implementing a simple form of considerate
path planning, both P1 and P2 begin to adjust their trajectories at t = 1. At t = 2,
P2 has moved out of the direct path of P1 and so resumes their original direction.
P1 considerately continues to move behind P2 until t = 3. Both P1 and P2 have
momentarily deviated form their ideal paths in order to avoid a collision.

Goal orientation is a key assumption that creates more elegant outputs, however
for a free-flowing environment (e.g. an exhibition space) this long-term prediction
horizon must be cropped. Pedestrians are generally observed to deviate as little as
possible from a straight path to their destination, deviating only to avoid collisions [1,
2], Fig. 1.1. Simple short-term linear trajectories predictions should therefore suffice
for predictive path planning in the near future [17], as unknown destinations need
not be assumed.

1.2.2 Human-aware Mobile Robot Navigation

Autonomous mobile robots that engage with HRI primarily began with the museum
tour guide RHINO [36] in 1998. Since then many AMR incarnations have attempted
to address the problem concerned with appropriate navigation in a pedestrian envi-
ronment, with one of the most recent being Obelix [40] in 2014. Unfortunately both
of these examples, including others (e.g [41, 42]), have produced a robot that moves
much slower then any of the crowd members. This fails to address the problems
of interdependent navigation, which occurs between pedestrians [60]. If the robot’s
move slower than a human they are navigating along a path that is irrelevantly
occupied by pedestrians, as the pedestrians navigate around the robot.

Robot path planners that are capable of navigating with real consideration is
currently an unexplored area in the path planning literature. Social path planners
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politely stop-and-wait if a pedestrian crosses their path (e.g [7, 65, 66]), which may be
considerate to the individual but not to other crowd members moving near the robot.
Collaborative path planners are also very optimistic in assuming a pedestrian will
engage in a joint form of collision avoidance (e.g [67–69]), which may lead the robot
into densely populated areas it can move though only if the pedestrians decide to
allow it. The CNS would allow consideration to be shown simultaneously to multiple
pedestrians within a crowded environment, via simple implicit reaction to predicted
pedestrian motion.

1.3 Proposal of A Considerate Navigation Strategy

This thesis proposes a CNS, designed specifically for a robot to move within an
environment of free-flowing pedestrians. No explicit input or interaction is required
from any pedestrian, only implicit input obtained from observation. A suitable path
planner, and the aims and objectives of the CNS as a whole is presented.

1.3.1 The Considerate Path Planner

The definition of "considerate" is subjective and dependent upon interpretation:

considerate /k@n"sId(@)r@t/

adjective
1. careful not to inconvenience or harm others.

(Oxford English Dictionary)

For the CNS to plan paths that respect this definition, the novel CPP has been de-
signed. Traditional path planners choose the path of shortest distance to the robot’s
destination. This is excellent within static environments, however in a dynamic en-
vironment the shortest distance does not guarantee the quickest time, let alone the
safest one.

Using a model to anticipate microscopic pedestrian movement will allow the
CPP to plan paths that avoid any potential collisions before they can occur. Paths
can be planned that not only do not interfere with pedestrian trajectories at the
current moment, but also cause minimal distruption in the future. Using linear ex-
trapolation over a short prediction time-horizon, the future positions of pedestrians
can be predicted. Whilst updating a model of the environment over this prediction
time-horizon will allow the CPP to exploit anticipated gaps in between individual
pedestrians, and allow considerate paths to be predicted through the crowd as a
whole.
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Fig. 1.2 Visualisation of how paths showing consideration (green/yellow) are advan-
tageous when compared to direct paths (red). Demonstrated over three time-steps,
t1 to t3, the considerate paths will prevent collisions and avoid congestion. p1 to p3
are pedestrians moving with a CVM, represented with a novel uncertainty ellipse
that elongates at each time-step. The blue ellipse area of p2 indicates the red direct
path is too close, cutting in front of the pedestrian at t = 2. Purple ellipse area
of p3 indicates a potential collision with the red direct path at t = 3. The green
most considerate path chooses to move behind p2, which sacrifices distance and time
for a collision free path. The yellow alternative considerate path shows an exam-
ple of an alternative path that moves behind p1 and p3 instead. This is a result
of the CPPs exploration of the model environment, allowing a number of paths to
predicted before the best one is chosen.
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Fig. 1.3 Overview of the CNS’s autonomy cycle. Each stage will consist of a number
of dynamical systems, from which each produce an output appropriate for the input
of the next stage. This repetition allows the robot to act autonomously without
requiring any explicit human operation. The robot can then manoeuvre through
the pedestrian crowd, fulfilling all objective requirements until it arrives at its des-
tination.

1.3.2 Aims and Objectives

The main aim for this thesis is to develop a considerate navigation algorithm that
can be implemented into any robotic system capable of moving within a pedestrian
environment. It will show consideration towards all agents within the environment,
as well as minimise the disruption to the overall flow of the crowd, by not increasing
congestion and reducing collision potential.

From the aim of the CNS the following targetable objectives can be defined for
the CNS and the CPP to achieve:

b1 Objectives for the CNS to fulfil when it is directing an AMR through a crowd

b1.1 Move with consideration towards other pedestrians
b1.2 Arrive successfully at a prescribed destination
b1.3 Avoid collisions with anything
b1.4 Minimize any additional congestion the robot may cause to the crowd as

a whole

b2 Objectives for the CPP to fulfil as it plans paths, which will allow the primary
objective, Item b1.1, to be achieved

b2.1 Plan paths that minimise potential collisions
b2.2 Plan paths that move in the same pedestrian direction
b2.3 Plan paths that avoid crossing another pedestrians path

The CPP objectives can be used to quantify the performance of the CNS, by also
ascribing them to the movement the AMR makes in the real-world.
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1.3.2.1 Quantifying Performance

To effectively evaluate the CNS’s performance, a number of quantitative perfor-
mance metrics must be established to quantify the success of the system. Although
the CPP aims to plan considerate paths, the CNS will not result in the AMR be-
having considerately if those planned paths are not executed well. For autonomous
navigation and obstacle avoidance a number of typical performance criteria exist,
however each vary dependent upon the specific goals of the system. Either the
use of a specific set of items to evaluate [70], or through physical tests [71]. The
metrics must be comparable with the specific objectives of the algorithm, which
when regarding the novelty of the CPP must orientate around consideration. The
performance of the CNS will be evaluated using a newly defined set of metrics for
consideration, defined in Section 6.2.3, as an AMR navigates around dynamic agents
from both a microscopic pedestrian simulator, Chapter 6, and a real-life pedestrian
dataset, Chapter 7. Using traditional metrics to evaluate journey efficiency, and
novel metrics that measure the objectives of the CPP.

1.4 Impact and Novel Contributions

In regards to human-robot navigation the CNS has real-world impact potential by
aiding in the development of autonomous mobility devices, which has been a moti-
vation for this thesis, Section 1.1.2. The CPP is a novel path-planner that generates
considerate paths, preventing a robot from interfering with the navigation of other
dynamic agents. This novel form of path planning is very useful as it will allow a
robot to be released into a high density dynamic environment and navigate with
minimal disruption toward any of the other agents.

When assessing a robot’s level of autonomy, traditional taxonomies consider the
level of human interaction as a negative effect on a robot’s autonomy, i.e. greater
human input results in a lower autonomy level. Developing autonomous robotics,
especially for HRI scenarios, actually requires input from humans in order to achieve
the highest level of autonomy. A new taxonomy is proposed to account for HRI and
autonomous mobile robots in Section 2.4.3, Table 2.5, which traditional definitions
of autonomy fail to successfully address.

The Voronoi diagram of circles [72] has been adapted in order to allow the CPP to
approximate the Voronoi diagram of fully-intersecting and arbitrarily placed ellipses
in Chapter 4, as an exact method for constructing one has not yet been developed.
The Voronoi diagram is achieved with an extremely high level of accuracy and
efficiency, including a time complexity nearly equal to the original Voronoi diagram
of circles algorithm.

Specific novel contributions are:
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c1 Section 2.4: A new taxonomy for autonomous mobile robot navigation in a
pedestrian environment

• A new taxonomy for human-mobile robot interaction, Table 2.5. True
autonomy must counter-intuitively require input from humans, either by
explicit or implicit means, which traditional methods do not account for.

c2 Section 3.2: The uncertainty ellipse, to embrace the uncertainty of pedestrian
movements

• Embracing the uncertainty, based on predictions from velocity. An un-
certainty profile, Fig. 3.6, used to create a split ellipse, Fig. 3.5, based on
pedestrian walking variations [73].

c3 Section 3.3: The Considerate Path Planner

• The function that allows considerate paths to be plotted. Simple mea-
surements, involving proximity and relative trajectory between robot and
pedestrian, can be applied to a search algorithm in order to plan consid-
erate paths as part of the CNS.

c4 Section 4.1: Approximating the Voronoi Diagram of Fully-Intersecting Ellipses

• Adapting the algorithm for the Voronoi diagram of circles [72] to create a
Voronoi diagram of pseudo-ellipses, formed from four tangentially aligned
circles.

c5 Section 4.4: A Voronoi diagram-visibility graph hybrid roadmap.

• A Voronoi diagram inspired roadmap, spliced with a modified visibility
graph. The roadmap can move along the safest path of the VD, but can
at any moment shift to a modified visibility graph that has a naturally
larger object clearance safety-margin.

c6 Section 6.2: Quantitative performance metrics for evaluating how considerately
the CNS performs:

• A novel quantitative performance metric that allows the consideration
performed by the AMR to be quantified, as the AMR moves within a
crowd.

The research developed in this thesis has contributed to [74]:

• R.Walker and T. Dodd, “A novel path planning approach for robotic navi-
gation using consideration within crowds,” in Towards Autonomous Robotic
Systems (C. Dixon and K. Tuyls, eds.), vol. 9287 of Lecture Notes in Computer
Science, pp. 270–282, Springer International Publishing, 2015.

1.5 Thesis Outline

The thesis is structured to show the CNS progress from its initial conception, through
to the development stages, before it is finally implemented and evaluated using
simulated pedestrians and a real-life pedestrian dataset.



1.5 Thesis Outline 13

Chapter 2 To begin with a comprehensive literature review is undertaken. This
is designed to highlight the current research being undertaken in the field of human-
aware mobile robot path planning. Current AMR path planning methods and col-
lision avoidance strategies are reviewed, as well as human-human path planning
and collision avoidance. Polite human-robot collision avoidance strategies are cur-
rently being developed by researchers, however these are not designed to perform
in a crowded environment. Those that are do no not exhibit human-like behaviour,
which is the aim of the CNS.

Chapter 3 This chapter begins with a problem statement that defines the current
challenges faced, following the review of the literature. An appropriate pedestrian
model is developed. The movement model is kept simple, whilst the uncertainty
of the model is embraced in order to cover more areas of where they may move.
These uncertainties are constrained to ellipses, modifiable due to: initial walking
speeds; movement likelihood; and spatial views of the pedestrians. The AMR model
is also defined, as well as the environmental mapping procedures. This includes
the development of the VD-VG roadmap, the search algorithm, and the considerate
weights that allow the most considerate paths to be planned.

Chapter 4 A novel approximation of the Voronoi diagram (VD) of ellipses imple-
mented. Using a novel adaptation of the VD or circles, ellipses are approximated
using tangentially aligned circles to create pseudo-circles. From the VD of pseudo-
circles, the VD of ellipses can be approximated by converging the vertex points of
the VD of pseudo-circles onto the vertex points for the VD of ellipses. The algorithm
is scalable as it executes with a logarithmic time complexity.

Chapter 5 The CNS is now implemented and all the relative stages of the algo-
rithm are detailed. This includes how the AMR obtains environmental data; how
the search algorithm is dynamically modified in order to search considerately; as
well how the search effort is reduced by preventing homotopic path repetition. Also,
steps are included that encourage paths diversity by exploring the surrounding en-
vironment. Finally, the execution of the most desirable path is covered, along with
the AMR movement model used.

Chapters 6 and 7 The CNS is evaluated to ensure that it fulfils all behavioural
objectives (Section 1.3.2) and behaves considerately. Each movement of the AMR is
quantified and evaluated using the proposed QPMs for considerate movement (Sec-
tion 1.3.2.1).

Chapter 6 is designed to discover the optimal system variables, by testing
various parameters and scenarios using an environment populated with simu-
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lated pedestrians, and the optimal prediction time-horizon required to produce
the most successful paths is determined. From review of the literature, pedes-
trians are observed to move with consideration to one another. Therefore, the
experimental set-up used in these empirical studies is used first. Consideration
and implicit cooperation are observed between the AMR and an individual dy-
namic agent. Experiments are then devised to evaluate how considerately the
AMR moves within a crowd, which are compared to both a traditional A*
search algorithm as well as a modified considerate A* search algorithm.

Chapter 7 then evaluates the CNS using a real-life pedestrian dataset, in or-
der to see how considerately the AMR responds to the movement of humans.
Experiments are set-up so that the AMR can move with the overall crowd flow,
as well as perpendicular to pedestrian traffic. The paths the AMR moves along
are shown to be considerate as they do not interfere with pedestrian trajecto-
ries (moving behind them rather than crossing in front) and do not attribute
towards increased congestion (moving in the same direction as neighbouring
pedestrians).

Chapter 8 The thesis concludes with an evaluation and summary of all the work
presented in the thesis, along with an appropriate critique how the objectives were
achieved. The potential for future work is also include, which would be to implement
the CNS on a real robot platform.



Chapter 2

Literature Review

"Everything should be made as simple as possible, but not simpler."

— Albert Einstein

T
his chapter will evaluate the present literature in the field of human-aware
mobile robot social path planning. An overview of autonomous mobile
robots (AMRs) is given, pertaining to how AMR’s are deemed autonomous

and perceived as intelligent, Section 2.1. The requirements of an AMR to then
navigate within a dynamic pedestrian environment is provided, which will initially
ascertain the AMR’s navigational and behavioural requirements. A review of current
path navigation strategies is then undertaken, Section 2.2, including what forms of
environmental mapping can be implemented, along with path planning collision
avoidance techniques.

As the AMR is required to navigate within a crowd of pedestrians human path
planning techniques are also investigated, Section 2.3. By understanding the me-
chanics of crowd phenomena a path planning algorithm can be devised that imitates
human motion. This is achievable by respecting social proxemics and modelling di-
rect human-human interaction. Various pedestrian models are evaluated, along with
empirical collision avoidance experiments between individual pedestrians.

Human-aware mobile robot path planning focuses on replicating human mo-
tion patterns. Therefore, the chapter concludes, Section 2.4, by evaluating current
algorithms against the aforementioned pedestrian path planning techniques and ob-
served interactions. Cooperation between human and AMR is a consistent assump-
tion made by most socially-aware path planners, with humans accepting the robot’s
presence as another human. The motion of the AMR must be "legible" to a human so
that they can anticipate the AMR’s movement, and vice-versa, so that cooperation
can be achieved. A novel taxonomy is also proposed that contests the traditional
view of robot autonomy stated at the start of the chapter. As an AMR receives
greater levels of input from a pedestrian its autonomy will actually increase, rather
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than decrease.

2.1 Autonomous Mobile Robots

"The problems of autonomous robotics include things such as: making
sure the robot is able to function correctly and not run into obstacles
autonomously." [75] (Dr. George A. Bekey)

This quote represents the difficulty associated with developing a successful AMR.
An AMR must be able to successfully differentiate between obstacles, and then be
capable of manoeuvring around them. This thesis focuses on developing an AMR
capable of independent navigation through a pedestrian crowd. To achieve this the
AMR must be able to perceive and interact with its surrounding environment, and
the objects within it, appropriately.

A classically defined robot is a machine that can carry out complex actions
automatically [76]. Depending on whether a human operator or the robot itself is in
control of these actions determines if the robot is not, or is, autonomous, respectively.
A robot could be considered as simply either autonomous or not autonomous [77].
However, this generalization is rather simplistic and autonomy is an elastic concept
that can change its definition based on the subject, as well as a subjective evaluation.
Robot autonomy is defined as being capable of carrying out all of its actions without
the input of a human operator [75, 78, 79]. Traditionally a robot’s autonomy directly
concerns the level of influence a human operator has over the robot’s behaviour.
Taxonomies that describe robot autonomy have levels that range anywhere between
4 and 12 [80], however 10, Table 2.1, is the most frequently used in order to describe
the separate levels of robot autonomy [81–83]1.

When robots are tasked to operate within uncertain environments, such as with
other dynamic agents, as the human control reduces the robot’s intelligence must
increase. This can sub-divide autonomous robots into three types [20]:

a1 Programmable Automatic Robots: Programmed to perform a set of
repetitive tasks in known environments. e.g. Industrial robot.

a2 Adaptive Robots: Capable of using sensors to detect surrounding obstacles
and adjust its output accordingly. e.g. Kiva robots [54] used for automated
material handling in warehouse organisation, controlled through a central com-
puter.

a3 Intelligent Robots: Capable of analysing a task and then choosing the most
appropriate course of action. e.g. Robots moving in uncertain and dynamic
environments.

1range from 1978 to 2013
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# Level of
Automation Description

1 Manual
Control

The human monitors, generates options, selects options
(makes decisions), and physically carries out options.

2 Action
Support

The automation assists the human with execution of
selected action. The human does perform some control
actions.

3 Batch
Processing

The human generates and selects options; then they are
turned over to automation to be carried out (e.g.,
cruise control in automobiles).

4 Shared
Control

Both the human and the automation generate possible
decision options. The human has control of selecting
which options to implement; however, carrying out the
options is a shared task.

5 Decision
Support

The automation generates decision options that the
human can select. Once an option is selected, the
automation implements it.

6
Blended
Decision
Making

The automation generates an option, selects it, and
executes it if the human consents. The human may
approve of the option selected by the automation,
select another, or generate another option.

7 Rigid System
The automation provides a set of options and the
human has to select one of them. Once selected, the
automation carries out the function.

8
Automated
Decision
Making

The automation selects and carries out an option. The
human can have input in the alternatives generated by
the automation.

9 Supervisory
Control

The automation generates options, selects, and carries
out a desired option. The human monitors the system
and intervenes if needed (in which case the level of
automation becomes Decision Support).

10 Full
Automation The system carries out all actions.

Table 2.1 Example levels of robot autonomy as defined by Endsley & Kaber (1999),
reproduced from [19]. The scale begins with a fully teleoperated robot with no
autonomy, over which a human operator has complete control. As the level of
autonomy increases the amount of human involvement gradually diminishes, until
the robot is able to operate without assistance.
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Table 2.2 Demonstration of how additional sub-systems are required if a robot is to
become more intelligent [20]. The various dynamic stages [21] are directly compared
to the sub-systems required for an AMR. The numbers represent the order of the
sub-system execution.

The definitions between autonomy and intelligence are often blurred, and intel-
ligence does not equal autonomy [84]. Autonomy [85] is considered as a system’s
ability to determine its actions for itself, be it exclusively through an internal state
or through a sensor monitoring some physical condition of the environment. Whilst
intelligence [86] is considered as a system’s ability to act appropriately in uncertain
environments, where the action increases the probability of success. For an AMR
to be considered fully autonomous it requires an environmental input, and then
through a series of internal dynamic operations it selects a movement via its own
decision process [84]. This can be can be divided into 3 main capabilities [87]

b1 Perception: The ability to recognise the surrounding environment

b2 Action: The ability to respond to a sensation

b3 Cognition: The ability to reason

The final point however progresses onto cognitive robotics whereby a response to
stimuli is insufficient, requiring interpretation of intention as well. To create a robot
robust enough to cope with life just like a human, the neural network of the human
brain could be utilised (e.g. [88]). The processing of simple animal brains has already
been used to control AMRs (e.g. [89]), however this area of robotics is beyond the
scope of this thesis.

Once the required level of autonomy is sufficiently defined for a robot’s purpose,
it must be implemented through a network of multiple systems integrated together.
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For example, an AMR will have several elements that perform separate functions,
each processing an output suitable for the next stage’s input, such as [21]:

Sensors → perception | modelling | planning | task execution | motor control →
Actuators

However, even these have additional sub-systems, thus highlighting the level of com-
plexity required to produce a perfect humanoid robot, with a huge number of inter-
active dynamic systems.

An AMR navigating through a crowd of people should require no human-operator
and be classified as intelligent, Table 2.2. This is only an emergent intelligence, a
result of the various interactions between the separate autonomous sub-systems.
Harmonising how the data is used at each step is vital to ensure they are all pro-
cessing data appropriately, allowing the subsequent stage to function. For an AMR
with at least adaptive autonomy it’s movements are not deterministic, as it chooses
its own motion patterns. How it behaves whilst in operation and how successfully
it reaches its sub-goals and final goal is the important factor [90]. Therefore, to ap-
propriately evaluate the success of a AMR’s autonomy requires specific performance
metric evaluation. Although evaluation criteria for specific scenarios has been previ-
ously created (e.g. search and rescue [91]), there is no defined test criteria involving
pedestrian navigation. The assumption that no collisions must occur can be made
for obvious reasons, but how the robot should move through the crowd is completely
dependent upon subjective design parameters. In response to this, an updated tax-
onomy is proposed in Section 2.4.3, Table 2.5, following a review of how current
AMR’s navigate with pedestrians.

2.1.1 The Autonomy Cycle

There are many scenarios and/or environments an AMR can be designed for. Each
involves different mission objectives, sensory inputs, enviromental factors, etc, which
lead to a very high level of customization. Conceptually, autonomy is a division
between environment and machine with a sensing and actuation process that allows
interaction between the two, Fig. 2.1a. In order to facilitate this interaction, the
navigation problem for an AMR can be divided into four sub-problems [4], Fig. 2.1b.
A task specific autonomy cycle can then be developed specifically for the goal of an
individual AMR, Fig. 2.1c.

Each stage of the generalised AMR autonomy cycle, Fig. 2.1b, is a highly diverse
and extensive research area. This thesis will focus primarily on the path planning
element, with the other elements of the autonomy cycle being simplified so that the
AMR can still be tested as a complete robotic system. As each step of the autonomy
cycle requires appropriate outputs from the previous in order to achieve its goal it
is important to consider each stage.
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(a) (b)

(c)

Fig. 2.1 Defining an AMR’s autonomy cycle. (a) Concept of dividing the envi-
ronment and the machine at an arbitrary line. Once the boundary is drawn it is
assumed that the machine interacts with the environment using sensing and actua-
tion [3]. (b) Initial definition of the navigation problem. The four basic elements that
must be considered to develop an AMR [4]. (c) Detailed example of the interaction
between the four basic elements of navigation [5].



2.1 Autonomous Mobile Robots 21

World Perception

To predict appropriate paths, the AMR must be able to extract information from
the environment. This can include dynamics agents, along with their respective
position, dimensions, and kinematics, as well as static obstacles such as walls [92].

A variety of sensors can be used to obtain information about the surroundings,
and each can provide a different form of output for the information. Common
exteroceptive sensors include [93]: optical, aural, and tactile

Accurate spatial extraction and identification of pedestrians within the AMR’s
immediate vicinity is required. To accurately assess the environment, detect obsta-
cles and their movement, and identify individual objects, a sensor based on the light
spectrum is ideal. Laser range-finders provide excellent low noise obstacle detection,
whilst camera based stereo vision provides depth perception, as well as the ability
for object recognition due to the high spectrum of visible wavelengths. Multisensor
fusion [94], such as combining a camera with a laser, can provide increased accuracy
for localisation problems [95].

Path Planning

The type of path an AMR can plan not only depends on the path planning objec-
tives, but also on what information the sensors have acquired from the environment
and how it has been processed. Two forms of path planning exist, which include:
local reactive object avoidance, and global preference-based behavioural path plan-
ning [92]. These are either mapless (reactive) or mapped (predictive) techniques,
respectivly.

For AMR navigation both local and global methods are required [96]. However,
global techniques should be used during this path planning stage and local tech-
niques should be used in the adaptive path control stage. Global path planning is
a preference-based method aimed at satisfying user preferences when designating a
path to move along. It allows a complete path from start to goal to be created and
have the AMR move in a specific manner. Therefore combining local path plan-
ning into the path control stage makes it excellent at correcting movement along a
pre-determined global path.

Locomotion

AMRs can be designed to move within almost any environment. The path planning
algorithm creates a path suitable for the environment that must consider how the
robot can move. To solve the locomotion problem the mechanism and kinematics,
dynamics and control theory of the robot must be considered [5]. Common locomo-
tion systems include [97]: wheels, tracks, and legs for land. Propellers, and jets for
air. Propellers, rotors, and paddles for sea.
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It is assumed that the AMR for this thesis will be confined to an urban envi-
ronment, the surface of which will be essentially flat, enabling extremely easy and
versatile manoeuvrability. Therefore, during the path planning stage no additional
strategy will be required in order to cope with any unknown terrain. Essentially
any land based locomotion system can be implemented, as long as the platform’s
dynamics can allow the AMR to execute the planned path with a mobility similar
to humans.

Adaptive Path Control

Successful global path planning is only the preliminary stage of an AMR, as the
robot must then correctly move along that path. It is essential to ensure that the
AMR moves along the path without causing any collisions, by adjusting for any
errors in the model of the environment. As well as ensuring correct localisation,
so that the AMR really does move along the planned path. Common path control
techniques include [98, 99]: proximity fields and tactile sensors, for local collision
avoidance. GPS, triangulation, landmark references, and dead reckoning, for locali-
sation.

2.1.2 Dynamic Environments

For an AMR to navigate successfully its autonomy cycle, Fig. 2.1, must be appro-
priately devised depending on the environment it will be subjected to and its path
planning objectives. A major difference between a dynamic and a static environ-
ment is the increased levels of uncertainty, relating to: identifying objects correctly;
obtaining accurate agent positions; self-localisation; and predicting how the envi-
ronment may change.

Within a dynamic environment an AMR must successfully interact with any
other dynamic agents. Any form of interaction requires at least an adaptive level
of autonomy [100, 101], Table 2.2, using sensors to detect and respond to other
agents. Unlike pre-programmed robots that repeat a set pattern, interactive robots
may change their behaviour based on the direct influence of elements around it.
The challenge is how to programme the robot to interact correctly. Systems that
incorporate multiple similar robots are highly effective and efficiently run, as the
‘intentions’ of the robots are known. It is the addition of humans that is a ma-
jor hurdle towards successfully achieving adaptable and cooperative human-robot
interactions [41, 102].

2.1.2.1 Mobile Robot Only Interaction

An AMR-only interactive system is typically one of swarm intelligence, involving
multiple similar robots of simple design [103]. Using these simple robots, pro-



2.1 Autonomous Mobile Robots 23

grammed with simple rules, organization2 can occur and result in more difficult
tasks being completed. Each robot is individually programmed with the same "rules",
achieving their combined goal through simple communication methods, resulting in
a decentralized system that has a high redundancy [104].

Alternative systems would typically be controlled by a centralized distribution
computer network. The Kiva Robot system [54] is such an example, operating with
high efficiency in the organisation of multiple robots simultaneously. All of this
is achieved without any human input or supervision, however the robots must be
confined to a Human Exclusion Zone. The system operates so effectively as all
the AMRs have their paths planned for them by a centralised computer network.
Therefore, the AMRs will never move along paths that conflict with paths given to
other AMRs at any given time, and so collisions are avoided.

2.1.2.2 Human and Mobile Robot Interaction

The introduction of independent and less predictable dynamic agents, such as hu-
mans, will be far more challenging as an AMR must anticipate their movement and
behaviour and react to them accordingly. The article: "Human-aware robot navi-
gation: A survey" [105] was published in Robotics and Autonomous Systems, Volume
61, Issue 12 in December 2013, and provides a comprehensive collection of literature
on human-aware robot navigation. When considering papers that explicitly deal
with human-aware robot navigation the area begins to gather interest in 2001, and
continues to grow. This coincides with the independent research undertaken for
this thesis, as navigation within pedestrian environments began with RHINO the
museum tour guide [36] in 1997, discussed later in Section 2.4.1. A total of 106
papers are reviewed, allowing for an insight to be formed into the current research
outcomes of various aspects of human-aware navigation systems. The categories,
challenges, and technologies the survey highlights are significant for human-aware
navigation are listed below, along with the number of publications associated with
each attribute.

c1 Categories focused on:

c1.1 Comfort, 44
c1.2 Naturalness, 38
c1.3 Sociability, 16
c1.4 Other, 19

c2 Specific challenges for robots navigating among humans:

c2.1 Follow a person, 8
c2.2 Solve blocked passage and dense crowd, 4

2can take many hours to organize correctly
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c2.3 Guide person, 3
c2.4 Move in formation, 3

c3 Technologies focused on:

c3.1 Pose selection, 14
c3.2 Global planning, 33
c3.3 Behaviour selection, 14
c3.4 Local planning, 27

The survey concludes that from the reviewed literature, the major human-aware
capabilities that a robot should exhibit during navigation are:

d1 Respect personal zones

d2 Respect affordance spaces

d3 Avoid culturally scorned upon behaviours

d4 Avoid erratic motions or noises that cause distraction

d5 Reduce velocity when approaching a person

d6 Approach a person from the front

This is a list that concurs with independent research conducted for this thesis,
specifically discussed in Behavioural Collision Avoidance (Section 2.2.3.1), Path
Planning Methodology and Interaction (Section 2.3.1), and Human-Mobile Robot
Interaction (Section 2.4).

A major element in dealing with these points is predicting what any pedes-
trian may do. When predicting pedestrians’ future positions, two approaches ex-
ist: 1) Prediction based on reasoning; and 2) Prediction based on learning. For
reasoning-based techniques, predictions are based on assumptions of how pedes-
trians behave in general. For learning-based techniques, predictions are based on
observations of how pedestrians behave, especially in particular circumstances and
within particular environments. Examples of prediction techniques for moving hu-
mans include:

e1 Linear [106]

e2 Likely state transitions in a grid [107]

e3 Using potential field with walls as repulsors and a perpendicular (dashed) line
in front of the person [108]

e4 Growing uncertainty [109]

e5 Using random samples and stochastic weights [110]
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Fig. 2.1b Table 2.2 Task

World Perception Sensors Spatial data collection of environment
Perception Individual pedestrian identification

Path Planning Modeling Spatio-temporal predictions of
individual pedestrian movements

Planning Global planning over prediction
time-horizon

Locomotion &
Adaptive Path

Control

Task Execution Select most ‘human-aware’ path

Motor Control Translate path prediction into
real-world movement

Actuators Move AMR along path

Table 2.3 A collation of the standard autonomy cycle for an AMR, Fig. 2.1b, and
the dynamic stages required for an AMR, Table 2.2. A statement of what task must
be performed is also included.

e6 Social Force model, person attracted to goal, to walking partner, but also
repulsed by partner when too close [111]

e7 Using library of observed paths [112]

e8 Using closest frontal annotated waypoints on map [113]

It can be assumed that to accurately navigate a pedestrian environment an appropri-
ate pedestrian model is required. Accurately predicting human behaviour is a means
to predict a suitable path that will conform to all the navigation requirements in
List d.

Table 2.3 provides a comparison between the basic autonomy cycle, Fig. 2.1b, and
the dynamic stages of an AMR, Table 2.2. As both the modelling and planning form
part of the dynamic stages the AMR can be classified as "intelligent". The autonomy
cycle for the AMR would therefore require a modelling and path cost assessment
stage when path planning, the data flow of which is represented in Fig. 2.2. Various
path planning strategies could be implemented, and so an evaluation of various forms
is undertaken in the next section.

2.2 Strategies for Navigation

To create an effective AMR navigation strategy both global path planning and local
collision avoidance must be used to implement the system as a whole [96]. The
autonomy cycle, Fig. 2.1b, makes it clear that global and local navigation techniques
are required for the path planning and adaptive path control sections, respectively.
Although local and global methods are both path planning strategies, local meth-
ods are generally implemented for the assessment of immediate collision avoidance,
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Fig. 2.2 Example of an additional predictive element added to the path planning
stage of an AMR’s autonomy cycle, Fig. 2.1b. This replicates the "tactical" level of
a pedestrian’s path planning choices, Fig. 2.9 discussed in Section 2.3.1.2.

whilst global methods plot a path from start to finish [114], "as local planning ap-
proaches are generally not able to solve complex interaction situations in a consistent
way due to the limited look-ahead". [7] However, local path planning has benefits
in: processing speed, navigation within unknown environments, and ease of imple-
mentation; whilst global path planning has benefits in: finding the optimal path,
allowing long-term behaviour to be implemented into the path, and anticipating po-
tential collisions. The effects of path planning for a simple object avoidance scenario
is demonstrated in Fig. 5.16.

2.2.1 Environmental Maps

The first stage of a path planning strategy is to map the AMR’s environment.
A 2D plan view traditionally represents whatever can be detected by the AMRs
sensors, with any objects typically either be static, such as walls, or dynamic, such
as pedestrians. The objects can be mapped onto occupancy grids, Section 2.2.1.1,
where the plan view is divided into cells, and if an object fills a cell it is occupied,
otherwise it is left empty. Alternatively the objects can be represented as geometric
shapes and a roadmap, Section 2.2.1.2, can be formed that represents how available
space in between obstacles can be connected, helping enhance certain path planning
attributes [115].
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(a) (b) (c)

Fig. 2.3 The three forms of collision avoidance that are involved with path planning.
The robot is represented by a green circle, whilst the number is relevant to its
progression along the path (larger number⇒ further along in time). (a) No collision
avoidance: The robot would immediately crash into the object ahead (red circle).
(b) Local collision avoidance: The robot would respond to the object as it is about
to collide. The robot moves right as that is the direction with the shortest distance
around the object, to the end point. As the gap between the edge of the environment
and the object is too small to fit through, the robot turns back and moves the other
way around. (c) Global collision avoidance: A path is planned before the robot
moves. The path extends from the robot’s start to the end point, and is free of
collisions. The robot can now move to the end point without having to reassess
another path, and can do so with the greatest level of efficiency.

2.2.1.1 Occupancy Grids

The intention of this method is to: "account for all of the free space" [6]. Free space
is partitioned into a collection of cells, and a connectivity graph is constructed by
connecting cells that share common boundaries [116].

Fixed Cell Decomposition This cell decomposition method [116] (Fig. 2.4a)
is excellent for systems with restricted processing speed, as unlike roadmaps such
as the VD or VG, or the vertical cell decomposition method, not everything must
be processed. Regardless of the environmental complexity a level of cellular de-
composition can be found. However, some complex shapes may not be described
appropriately as a grid of fixed resolution is applied over the plane, which segments
the environment into smaller sections that may not incorporate high levels of detail.

Quadtree Cell Decomposition This cell decomposition method [117] (Fig. 2.4b)
provides an expansion to the approximate method, where consecutively smaller res-
olutions are achieved. This rectifies the fixed resolution problem of fixed cell decom-
position, as a grid is applied over the plane. This is then subdivided into smaller
cells over areas where more detailed information can be extracted until either all
details have been appropriately considered or the time constraints of a deterministic
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systems have expired. This is very effective for deterministic systems that can utilise
the increase in resolution through parallel processing.

Costmaps In a standard occupancy grid the normalized state of a cell (0/1) rep-
resents the presence of some objects’ position, and prevents a path being planned
that enters an occupied cell (1). This limits a path planning algorithm by assigning
all free cells as equally valid (0), regardless of their position or orientation to the
object. For a human-aware path planner this can result in a path that does not
respect the requirements of socially acceptable behaviour, stated in List d. Rather
than assigning discrete values for unoccupied/occupied cells, their values could in-
stead range anywhere between these two values based on the cost, x, of planning a
path through them, where {x | x ∈ R, 0 ≤ x ≤ 1}. The cost attributed to each cell
could be based on anything, such as: proxemics surrounding pedestrians; dangerous
areas; traffic flow direction; etc, allowing a path to be planned that responds more
appropriately to different scenarios.

Traditionally a costmap stores the costs in a singular grid of values, which would
combine all the various costs together in a "monolithic" costmap. However, by storing
all compiled cost data in a single data structure the origins of the information, and
what each value represents, would be lost. An alternative is a layered costmap [118]
that maintains an ordered list of layers that each represent a certain attribute,
e.g. proxemics, obstacles, caution zones. Each individual layer can track data related
to a specific functionality, maintaining the context of the information and making
updates much easier. Layers of the costmap can also represent the dynamics of a
moving object, such as dynamic social costs of pedestrians [7]. Each layer represents
the social navigation constraints for one prediction time-step, Fig. 2.4c, allowing a
path to be planned that considers where the pedestrians will also be.

An initial static map can be created, in the form of a traditional occupancy grid,
and then any number of layers can be added to influence the behaviour of the AMR
when path planning. However, too many layers may lead to too much overall cost,
and a path planning search may not be able to find a route. This may lead to the
freezing robot problem [69] where a safe path cannot be found and the AMR does
not move, as the more layers produced the higher the overall costs.

2.2.1.2 Roadmaps

Using roadmaps is an excellent method to explore the environment in a host of
various ways. The intention is to: "reduce the N-dimensional configuration space to
a set of 1-dimensional paths to search" [6]. A number of nodes are positioned within
the environment, which forms a connectivity graph. These nodes in the graph can
then be connected in whatever way is desired, with the various node connections
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(a) (b) (c)

Fig. 2.4 Examples of occupancy grids. (a) Fixed (Reproduced from [6]).
(b) Quadtree (Reproduced from [6]). (c) Layered Costmap that uses social prox-
emics (Reproduced from [7])

making the resultant roadmap highly customizable [119]. The traditional and most
used roadmaps, Fig. 2.5, include:

Voronoi diagram This roadmap (Fig. 2.5a) [120] is formed from a set of points
that are equidistant between neighbouring objects. The VD therefore produces
the safest path, which is always simultaneously the farthest from all neighbouring
objects. Although this can mean that for sparsely populated environments large
detours may occur, for more densely populated environments the VD provides the
best chance at searching for a collision free path.

Visibility graph This roadmap (Fig. 2.5b) [121] is suited for polygonal obsta-
cles, nodes represent points on the polygons, and edges form between two visibly
connected nodes. The roadmap created allows the shortest path to be calculated,
without requiring any unnecessary detours. However, no consideration is made to-
wards a safety margin surrounding the objects, which can make potential collisions
more likely as paths pass very close to neighbouring objects.

Probabilistic roadmap This roadmap (Fig. 2.5c) [122] does not allow uniform
exploration of the environment, and consists of connections between randomly cre-
ated points that populate the configuration space. Therefore it is highly likely to
avoid small details of the environment, e.g. being unable to describe narrow pas-
sages. It is also likely to repeatedly sample large open areas where no additional
description of the environment is required. A roadmap is created with no specific
structure, and cannot divide the environment to describe certain desirable traits,
such as the equidistant or shortest connections between objects, like the VD or VG,
respectively.
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(a) (b)

(c) (d)

Fig. 2.5 Examples of roadmaps (Section 2.2.1.2). (a) Voronoi diagram . (b) Visibility
graph [8]. (c) Probabilistic roadmap [9]. (d) Topological map [10].

Topological map This roadmap (Fig. 2.5d) [123] is more conceptual and offers
a more abstract method of mapping, linking points based on distance and orienta-
tion through a connection of recognizable places. A local metric map is applied so
when the robot is at a distinctive place local sensory information and orientation is
assessed. When the robot moves, the position is described in relation to where it is
coming from, the distance travelled, lateral distance information, and current orien-
tation. This form of navigation could be deemed similar to human navigation [124],
using landmarks to manoeuvre between places. However the topological map only
ensures correct localisation for one map, without providing distinct characteristics
of obstacle clearance, as with the others.
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2.2.2 Path Planning

When calculating paths only two spatial dimensions are used, formed from a cross-
sectional plan view of a three dimensional environment. Local techniques are quick
reactive approaches that respond only to the robot’s immediate environmental ob-
stacles, without plotting a path all the way to the robot’s goal. Global techniques
employ search algorithms that attempt to find a path through the entire environment
all the way to the robot’s goal, which can allow more sophisticated paths to be plot-
ted via proactive obstacle avoidance. These methods are now discussed regarding
their effectiveness towards path planning in dynamic and uncertain environments.

2.2.2.1 Locally Reactive Movement

Local path planning techniques are designed to move an AMR directly towards
its goal, avoiding collisions as they occur en route by reacting to the immediate
presence of any obstacles. Collision avoidance was originally considered a high-level
planning problem (1986), when artificial potential fields [125] were developed, allow-
ing real-time robot operations in a complex environment. Alternatives to potential
fields include: virtual force fields [126], vector field histograms [127], and the dy-
namic window approach [128], Fig. 2.6e, which all generate movement using velocity
potentials of the AMR.

Artificial Potential Fields The method is very simple to implement, requiring
only two opposing elements: 1) An attractive potential is implemented at the goal,
drawing the robot towards it; and 2) Repulsive potentials are situated around the
obstacles to avoid, repelling the robot away from them, Fig. 2.6b. The gradient of
the combined potentials creates a path that the robot can move along. However,
due to these interacting fields local minima traps can occur [129], which create an
area of no potential that the AMR can become stuck in.

As this method is reactive, only plotting and moving along a path based on
the immediate environment, the processing speed of local collision avoidance is very
fast, allowing real-time implementation. Depending on the literature they have been
considered as either global [130] or local [131]. However, artificial field methods tra-
ditionally rely on reactive means of collision avoidance, rather than mapping the
entire environment [132]. For whatever purpose the fields are used for the same
characteristics still emerge, but on slightly different scales [133]. Due to this the
reactive nature of local path planning is limited for autonomous navigation as: "a
reactive agent running on a deterministic program would be considered autonomous,
but since such an agent has no intentions, and is incapable of introspection, auton-
omy seems to be a concept of limited usefulness in the context of strictly reactive
agents." [85].
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(a)

(b) (c) (d)

(e)

Fig. 2.6 Examples of local reactive path planning techniques (Section 2.2.2.1).
(a) For three circular objects, repulsive potential fields surround their central points
and add value to the cells of an occupancy grid, with a higher cost (y-axis) the
closer to each object centre. (c) An attractive potential field gradually decreases
the cost of cells from the top-right start position of the AMR to the bottom-left
goal. (d) An overall potential field map is produced by combining the two fields (a
and c), for a path to be found by constantly moving to an area of lower poten-
tial/overall cost. (e) A number of trajectories are plotted that accurately replicate
the AMR’s dynamics for the dynamic window approach. Each potential trajectory
incorporates information about the AMR’s acceleration and turning potential, and
current velocity, so that realistic trajectories can be produced.
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Dynamic Window Approach This approach [128] was developed for one of the
earliest AMRs to move within a crowd [36], discussed in Section 2.4.1, and adap-
tations have been used in many since (e.g. [41, 134]). Unfortunately, like potential
fields this reactive approach can still become trapped in local minima. However,
the technique works well as the planned movement is directly related to the AMR’s
mobile dynamics, using a "dynamic window" that consists of the velocities reachable
within a short time interval.

Firstly, the unreachable velocities are eliminated due to the AMR’s acceleration
limits. Secondly, a combination of translational and rotational velocity pairs that
cannot stop before colliding with obstacles are eliminated. Finally, an optimum
velocity pair is chosen from the remaining candidates, Fig. 2.6e, by maximizing the
objective function. This is a measure of the AMR’s progress towards the goal, the
forward velocity of the robot, and the distance to the next obstacle on the trajectory.
The approach predicts the results of each velocity pair candidate in terms of final
heading angle, minimum distance to obstacles, and linear velocity values. Therefore,
real-time collision-free motion trajectories can be predicted and executed.

2.2.2.2 Globally Proactive Searches

Search algorithms are a cornerstone of global path planning. They allow for routes
to be planned via graph/tree searches through various configuration space solutions
of node networks formed from occupancy grids, Section 2.2.1.1, or roadmaps, Sec-
tion 2.2.1.2. Traditionally AMRs would travel through static environments, and the
preferred path would be the one with the shortest distance to the goal. However,
for an AMR to move in real-time within a dynamic environment often heuristics are
added in order to increase processing speed and find appropriate solutions within
an expected time limit, sacrificing optimality, completeness, accuracy, etc. These
heuristics could also be utilised in order to modify the type of paths the AMR takes,
and generate paths that could be deemed "socially acceptable". Searches can be
either 1) Depth-first, where space and time complexity is O(longest path length
searched) and O(bd), respectively; or 2) Breadth-first, with a space and time com-
plexity are O(bd) and O(bd), respectively, where for both cases b is the branching
factor and d is the maximum depth. Both forms of search can find global solutions3

using a brute-force algorithm, guaranteed to find the best path possible by evaluat-
ing every single path combination it is possible to make within the network of nodes.
Unfortunately for that very reason it is also the least efficient algorithm possible.
Path planing search algorithms are often optimised by including a heuristic element:

3assuming a finite branching factor, b
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f(n) = g(n) + h(n) . (2.1)

where
f(n) = the evaluation function
g(n) = total cost from the start node to the current node
h(n) = heuristic to encourage a search that moves toward the goal

Dijkstra’s Algorithm This algorithm [135], Fig. 2.7a, has been a classical ap-
proach to path finding for over half a century, employing a breadth-first search from
the source node, located at the AMR’s current position. If the node network is
unweighted the front-end of the search (the set of nodes available for expansion
known as the "frontier" [136]) will appear as a wavefront moving outwards along all
connected node vertices uniformly, finding a global solution of the least number of
vertices traversed. As the algorithm expands in all directions, solutions to multiple
destinations can be found. The algorithm may also require exponential memory
growth if the environment is unbounded.

For Dijkstra’s algorithm each node is weighted based upon whatever cost-function
is applied, resulting in a uniform-cost search that finds a global solution of a path
with the lowest weight. The cost function for robot path planning is movement
related, and to encourage an AMR to move along certain types of paths a larger
weight is applied to nodes in areas that are undesirable and smaller weights in more
preferable areas. This will result in the frontier appearing to move between vertices
at different rates: faster in more preferable areas and slower in others.

The algorithm does not have a heuristic element and only includes the cost g(n)
of the optimal path from start to n, i.e. f(n) = g(n) + 0. However, priority queues
can be used in order to reduce the operation time of a naive implementation from
O(n2) to O(n log n) [137]. An alternative implementation is the bidirectional search,
whereby the algorithm is simultaneously executed forward from the source node and
backward from the goal node [137]. The search is terminated as soon as a node is
visited from both directions, and the overall path is stitched together from the front
and back segments.

Best-First The A* algorithm [138], Figs. 2.7b and 2.7c, is an extension of Dijk-
stra’s algorithm that uses a best-first search heuristic, optimised for a single desti-
nation. In its simplest form the heuristic is a Euclidean distance from the current
search location to the goal. Rather than expanding the search along all connected
vertices, only the vertices connected to the best node, min(f(n)), are used: i.e.
f(n) = g(n) + h(n), where g(n) is the actual cost of an optimal path from start to
n, and h(n) is the actual cost of an optimal path from n to a preferred goal node of
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(a) (b)

(c) (d)

Fig. 2.7 Examples of global path planning search algorithms (Section 2.2.2.2). (a) In
Dijkstra’s algorithm the frontier expands equally in all directions simultaneously, in-
creasing it exponentially until eventually it reaches the goal node. (b) A Euclidean
distance to the goal heuristic of the A* algorithm initially directs the search in a
straight line towards the goal. When the search hits the obstacle it explores alterna-
tive routes through nodes from the open set (green dots). The search area expands
until eventually it moves sideways enough to pass the obstacle, and continue almost
directly toward the goal. (c) An example of an A* search finding a sub-optimal path
by using a heuristic 10 times greater than the admissible heuristic limit, therefore
overestimating the cost of reaching the goal. (d) The jump point modification of the
A* search reduces the number of nodes explored along the optimal path from 13 to
4. Jumps are made to nodes that are either vertically, horizontally, or diagonally
visible from the current search node.
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n [138]. This informed search is facilitated by the heuristic in order to expand nodes
that are estimated to be closer to the goal. To find an optimal path, Fig. 2.7b, the
heuristic must also be "admissible", by which it does not overestimate the cost of
reaching the goal, otherwise a sub-optimal path will be found, Fig. 2.7c. If the cost
of the optimal path from start to n is not factored, the algorithm becomes a greedy
best-first search, i.e. f(n) = 0 + h(n), which is far from optimal as it can become
stuck in loops.

As A* is a best-first search, at any given time the ‘best path’ has been discov-
ered, making it excellent for a deterministic system. The algorithm is very popular
in a number of robot path planning challenges (e.g. [139–141]), as it reduces both
the memory requirements and increases the processing speed due to a much smaller
search area. However, if the path to the goal is not very direct then it has the poten-
tial to require exponential memory, similar to Dijkstra’s algorithm. The popularity
of the A* algorithm is apparent due to a large number of optimisations that have
further been developed for it, such as:

Simplified Memory Bounded: This modification [142] will produce the same
optimal path as the original A* algorithm, even if the available memory is not
sufficient to store all branches of open nodes. If there is no memory left, the nodes
with the highest cost max(f(n)) is removed from the queue. The algorithm must
store the cost of the best forgotten child node, f(n + 1), of the parent node, f(n).
If all explored paths are worse than any forgotten paths the path can re-generated
from the saved data.

Iterative Deepening Depth-First: This modification [143] can be applied
to searches in order to limit the memory requirements, offering a depth-first search
space-efficiency and breadth-first search completeness. Using the same cost, g(n),
and heuristic, h(n), as the standard algorithm a depth-first search is performed,
cutting off a branch when the total cost exceeds a given threshold, tmax, i.e: f(n) =
g(n) + h(n) > tmax. As A* potentially stores an exponential queue of unexplored
nodes, memory can fill up quickly. However, the algorithm differs from the standard
A* as a depth-first search requires only linear memory, storing only the nodes on
the current path. Unfortunately due to this the search may revisit the same node
whilst exploring various paths.

Jump Point: This modification [144] is designed to increase the processing
speed of the A* algorithm by making assumptions about a current node’s neigh-
bours on a uniform grid. Unlike the standard A* that expands its search along all
connected neighbouring cell nodes, this algorithm jumps either vertically, horizon-
tally, or diagonally to nodes that are further away. To make a jump the destination
node must be visible from the the current node. Although the jump will cost more,
there will be fewer of them as the search jumps across any neighbouring nodes be-
tween the current and destination node, Fig. 2.7d. This modification claims to have
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very few disadvantages: "it is simple, yet highly effective; it preserves optimality, yet
requires no extra memory; it is extremely fast, yet requires no preprocessing" [144].

Incremental Heuristic The A* algorithm is a very efficient informed best-first
search. However, the heuristic element that guides the search direction is pre-defined
before execution. Whilst this is fine for a static environment, within a dynamic
environment the search requirements may be required to change with it.

The generalized adaptive A* algorithm [145] updates the heuristic h(n) used in
a previous search, so that the next search is more informed, e.g. a moving goal.
The lifelong planning A* algorithm [146] reuses information from previous searches
so that the path can be quickly updated, e.g. moving obstacles. The initial search
is a standard A*, however consequent searches repeatedly recalculate the shortest
paths between start and goal node as the edge costs g(n) of a graph change. The
D* Lite algorithm [147] is based on the lifelong planning A* algorithm. The initial
search is again a standard A*, which originates at the goal node and terminates at
the AMR’s node. However, the second search of Lite expands only a subset of those
cells whose goal distances changed or have not been calculated before. This makes
the algorithm excellent for unknown environments as the path only need be updated
if the AMR identifies a hitherto unknown obstacle blocking the path.

Dynamic weighting, w(n), is another heuristic modification that can be per-
formed on-the-fly [148]: f(n) = g(n) + w(n) ∗ h(n), where w(n) ≥ 1. This could
be used to change the AMR’s necessity to reach the goal as directly, e.g. if the
environment becomes more densely populated with dynamic agents the weight can
be decreased so that actual cost of the path g(n) becomes more important. This
can allow more consideration to be paid to how the AMR interacts with the moving
agents, as the planned path will focus more on their costs.

2.2.3 Collision Avoidance

Dynamically reacting to any immediate collisions is inherent in all local path plan-
ning techniques, Section 2.2.2.1, whilst global path planning relies on the proactive
search for collision free paths, Section 2.2.2.2. Therefore, collision avoidance strate-
gies are required for an AMR to make adjustments as it moves along a global path
prediction, due to any prediction uncertainty in a dynamic environment. Collision
avoidance is also required in static environments in case any localisation errors occur
as the AMR moves.

A basic collision avoidance system would treat all obstacles the same. For static
obstacles only a simple geometric proximity check is required, whilst for dynamic
obstacles a surrounding "buffer zone" [149] should be added to account for any
uncertainty of sensor data. As this thesis focuses on navigation within a pedestrian
environment, proxemics must be incorporated in order to factor in the amount of
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space that people feel it necessary to set between themselves and others, discussed
later in Section 2.3.1.1. Pedestrians also expect certain navigational styles to be
adhered to, discussed later in Section 2.3.1.2, which the literature often regards to
as "social navigation".

2.2.3.1 Behavioural Collision Avoidance

The behaviour an AMR exhibits when moving is essential in order to avoid collisions,
as it helps other dynamic agents predict the AMR’s response to a upcoming poten-
tial collision [67, 139]. For an AMR to navigate in a particular dynamic environment
it should also adopt the same behaviour as the other dynamic agents. When con-
sidering these dynamic agents as pedestrians, the closer an AMR passes the more
uncomfortable the pedestrian becomes, especially for non-tech groups. Therefore,
a static proxemics field can be introduced around each pedestrian [150], in order
to influence how the AMR moves within the pedestrian’s immediate vicinity. By
surrounding a pedestrian with a dynamic circular costmap, the relative motion pro-
totype [151] constantly updates the "high-cost radius" over time in order to produce
a path for the AMR that resembles human motion behaviour. However, these results
are compared to a circular proxemics field rather than an elliptical one [150] which
should be elongated along a pedestrian’s velocity axis, discussed later in Section 2.3.

Passing a pedestrian on a corridor requires the aforementioned "social naviga-
tion", as pedestrians attribute to the AMR: "a rational mind similar to their own,
capable of making decisions and interacting in traditional human ways" [68]. This
behavioural collision avoidance extends beyond geometric proxemics and relies on
the optimistic assumption [67] that the pedestrian expects the behaviour of the
AMR to be the same as theirs. Although pedestrians do statistically behave in
certain ways, discussed later in Section 2.3.1, when calibrating the parameters of
the collision avoidance criteria for an AMR there are not always readily-found val-
ues that result in the desired behaviour [68]. Especially as humans will interact
differently towards robots than other humans [134].

Collision avoidance strategies also assume just that: collisions will be avoided.
However, these behavioural collision avoidance strategies focus on individual col-
lisions between one AMR and one pedestrian. In an environment with multiple
pedestrians the AMR may be in an inevitable collision state [152], whereby a colli-
sion is suddenly unavoidable. Although global path planners search to avoid these
potentialities, they may also be impossible in an overcrowded environment. There-
fore, overcrowding may lead to the freezing robot problem [69], a path that may have
to be planned requiring obstacles to be moved if a clear path is not available [153], or
a "minimum-conflict" path [154] where a path the the minimal number of collisions
is returned , addressed in Section 2.4.2 when evaluating human-aware path planners.
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2.3 Pedestrian Crowds

"Crowds are the elephant man of the social sciences. They are viewed
as something strange, something pathological, something monstrous. At
the same time they are viewed with awe and with fascination. However,
above all, they are considered to be something apart." [155]

(Professor Stephen D. Reicher)

This quote summarises the difficulties in how one can successfully evaluate a crowd.
The movement of a crowd, to the movement of pedestrians, to the individual interac-
tions between people and their individual psychology, makes it difficult to accurately
anticipate how a pedestrian will behave on their own, or within the presence of oth-
ers [156]. Unpredictible pedestrian behaviour also extends to social navigation for
AMRs [157], whilst "predictable behaviour" of humans is only achieved for simple
and limitied movements, such as arm movement exercises [158].

However, by reducing the elements to focus upon, and simplifying the interac-
tions that occurs, movement models can successfully predict crowd movements with
moderate success. Human crowds can be described in many different ways, depend-
ing on what kind of crowd is being assessed [159]. In order to plan paths within
crowds, appropriate models must be used in order to describe motion, as well as
behaviours, so that the AMR can move accordingly [55].

2.3.1 Path Planning Methodology and Interaction

The manner in which a pedestrian behaves and interacts with others and their cur-
rent environment, depends on factors concerning [55, 160]: the environment (present
and future); population density; gender; and personal preferences of individuals.
Such a large number of contributing factors makes it difficult to successfully predict
how an individual will behave. For example, certain environments or age groups will
express more likely behaviours, whilst the customs and traditions of individuals will
potentially limit the number of possible outcomes [160]. It is however difficult to
predict how everyone will react in a given situation as pedestrians exhibit free will.

Despite being able to potentially estimate movement through these stereotypes,
there are many more parameters concerning the complex nature of the individ-
ual, including [55]: will; communication; fitness; geographical knowledge, many of
which are conflicting. Pedestrian route choice and walking processes are mostly
subconscious, however it can be assumed that the route choice is based on utility
optimization [12] with the desirability of a route dependent upon factors such as:

f1 Distance or travel time between origin and destination, which is applied to all
environments
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f2 Proximity of obstacles or other physical obstructions; closeness to walls, which
is applied to basic maps, such as static environments

f3 Stimulation of environment, and attractiveness (e.g. ambience conditions,
shopping windows, shelter in case of poor weather conditions). Factors that
are determined by the individual pedestrian preferences

f4 Number of sharp turns and rapid directional changes (route directness), which
is applied to path planning optimisation

f5 Expected number of interactions with other pedestrians (level-of-service), rel-
evant to a pedestrian only environment

Empirical studies have shown these are not mutually consistent, whilst their im-
portance will vary between each pedestrian. To facilitate the development of the
AMR, these factors can be reduced to consider a pedestrian only environment. The
walking behaviours and interactions of individual pedestrians within a crowd can
be assumed and summarised as the desire to achieve the following, for Item f1:

g1 Arrive at their destination with a certain time (e.g. [161])

g2 Move at a constant preferred speed as they walk (e.g. [14, 162])

and for Item f5:

h1 Avoid collisions with other pedestrians (e.g. [73, 163])

h2 Find the easiest route through the crowd to their destination (one that involves
the least potential collisions) (e.g. [162, 164])

These points are the cornerstone of a pedestrian’s navigation in a pedestrian-only
environment [165], with the other points removed for the sake of simplifying the
number of unknown variables.

2.3.1.1 Proxemics

The most desirable trait would be for a pedestrian to avoid any direct collisions,
as well as to a lesser extent prevent violating the personal space of others [23].
Table 2.4 provides an example of the commonly desired spatial ranges that pedes-
trians prefer to remain between each other, dependent upon their relationships. For
a scenario that involves walking in a public environment it can be safely assumed
that the distance between individuals will be within a minimum of the "personal"
zone, as "close" and "intimate" zones are reserved primarily for stationary embraces.
However, groups of acquaintances moving together often walk within these proxim-
ities [43]. In order to best avoid collisions, violation of the ‘personal’ zone should
be avoided, which should also help prevent collisions with groups. Any gap between
two pedestrian of less than the ‘personal’ zone may mean cutting through a couple
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Spatial Zone Range Situation

Close Intimate 0 - 0.15m Lover or close
friend touching

Intimate Zone 0.15m - 0.45m Lover or close
friend only

Personal Zone 0.45m - 1.2m Conversation
between friends

Social Zone 1.2m - 3.6m Conversation to
non-friends

Public Zone 3.6m+ Public
Speaking

Table 2.4 Proxemics for human-human personal spatial
zones [22, 23]. The desirable zones regarding the proxim-
ity of one human to another. Study carried out on mainly
urban English-speaking parts of the world.

Fig. 2.8 Elliptical
proxemics distribu-
tion around a human,
elongated in front of
them (Reproduced
from [11]).

of friends, but also will create a higher collision potential on both sides of the pedes-
trian cutting through. For a moving pedestrian proxemics are often represented with
an elliptical distribution, Fig. 2.8, due to their current velocity. This is observed in
empirical studies discussed later in Section 2.3.2.4.

2.3.1.2 Navigation

Crowds can be unpredictable due to the heuristic methods pedestrian use to plan
their paths, which are excellent for complicated scenarios as it aims to improve
strategies in order to create better decisions [166]. Humans strategically plan a route
to their ultimate goal, but navigate along this route using a heuristic approach [167].
The "Categorization by Elimination" heuristic [168] uses successive visual cues to
reduce the set of possible categories objects may belong to until only a single category
remains, so that only necessary information is processed (e.g. when a pedestrian
walks along a pavement the heuristic eliminates everything except what is infront
of them on the pavement. For instance, cars on the road are of no concern until the
pedestrian desires to cross it, in which case heuristic will eliminate everything except
the cars passing and the distance required to cross the road. Once the pedestrian
has crossed, the heuristic eliminates everything except the upcoming pavement, as
before. This highlights the fact when undertaking a specific task, a human will be
very selective on what information to process, using only the minimal information
required. Complex behaviour can occur when responding to objects based on only a
few simple rules, which has been previously utilised for crowd modelling [169]. How
a pedestrian chooses to behave when path planning is split into three levels [12]:
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Fig. 2.9 Visualisation of the pedestrian path planning choices. Partially derived
from the text in [12], and inspired by the basic framework for applying a social
force model found in [13]. The diagram shows the three behavioural levels of how a
pedestrian plans their path, along with the three dimensional levels of how a human
operates. Within the "Dimensional Level" the "Action" level taken by pedestrians is
the same as the AMRs’ general autonomy cycle, Fig. 2.1b. Also, the "Spatial and
Temporal" level employs the same navigation strategies as an AMR, Section 2.2.

i1 Strategic level: Departure time choice, and activity pattern choice.

i2 Tactical level: Activity scheduling, activity area choice, and route-choice to
reach activity areas.

i3 Operational level: Walking behaviour.

Fig. 2.9 highlights the modelling framework for pedestrian behaviour when path
planning. Similar to robotic path planning [96] both global and local path plan-
ning is used. The "strategic" level (Item i1) involves deliberate global path plan-
ning that finds the most desirable paths that go from start to finish. The "tac-
tical" level (Item i2) involves selecting the best path en route that is influenced
by constantly acquired knowledge, updating the global path. The "operational"
level (Item i3) involves instinctive local collision avoidance, which is the immediate
response to something unpredictable in the immediate vicinity.

As mentioned in Section 2.3.1, movement and path planning is dependent upon
physical issues of crowd density, groups, and traffic direction. When focussing on
path planning and collision avoidance for pedestrians in a dense urban environment,
the most helpful and significant factors are ones that involve mutual interaction,
especially when trajectories intersect. To establish the significance of this particular
pedestrian interaction and collision avoidance scenario a number of empirical studies
are analysed, along with an evaluation of any associated model attributed to the
findings.
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2.3.2 Crowd and Pedestrian Modelling

Humans effectively utilise the same autonomy cycle as AMRs, Section 2.1.1, imple-
menting path planning and adaptive path control strategies. However, unlike the
majority of AMRs, which are designed for specific aims, environments, and path
planning techniques (e.g. local path planning in an urban environment, using macro-
scopic modelling of external dynamic agents), pedestrians use all of these techniques
for all situations. Global and local path planning, as well as macroscopic and mi-
croscopic movement analyses, are used both heuristically and intuitively, despite
pedestrian models only choosing a select few of these.

Models are critical as they represent how a system may behave based on pre-
defined data, preferably empirical in order to represent the correct behaviour, with
crowd modelling being key to ensure successful path planning [55]. Crowd and
pedestrian models are mathematical, using equations to describe likely dynamics and
interactions. Designing an appropriate model that estimates where each pedestrian
will be helps constrain any uncertainties by assessing probabilities of movement.
There are many different forms of model available [159] with each attributing to a
specific purpose, as no one model is able to account for all movement possibilities.
An appropriate crowd model relies on the choice between two forms of crowd motion:
microscopic and macroscopic [170, 171], each requiring a different form of analysis,
whilst mesocopic is a combination of the two [172]. The choice of model can be made
by asking the question: Is the model intended to describe the crowd (macroscopic)
or the pedestrians (microscopic)?

2.3.2.1 Macroscopic Modelling

This perspective of crowd modelling focuses on pedestrians being a continuum. The
flow of the crowd is typically modelled using partial differential equations, based on
fluid dynamics [58]. This approach uses few parameters as the individual agents are
ignored, making the model particularly good for optimization [173] and evacuation
testing [64]. A crowd of pedestrians can generally be treated as a continuum provided
the distance scale between pedestrians is significantly less than the distance scale of
the area the pedestrians are moving [64]. Therefore, the distance between individual
agents is considered negligible, with the hydrodynamic approach referring to locally
averaged quantities and ignoring local velocity fluctuations [174].

The macroscopic model is an excellent analysis tool in order to determine and
predict the general movement of a large mass of people. In a high density environ-
ment it allows environmental factors that increase congestion to be identified, such
as bottlenecks, corridors, tight corners, etc, allowing the route with the easiest flow
to be identified, and provide information on specific areas to avoid. This is clearly
beneficial when designing queing and exit systems for arenas where large volumes of
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people will move in confined and direction orientated spaces [175]. However, as the
individual is ignored it is not so good for analysing the interactions between each
pedestrian. Macroscopic approaches can model the average properties of the system
directly, without any explicit reference to its underlying microscopic nature. A cen-
tral assumption of macroscopic models is that no, or sufficiently little, significant
information is lost when the microscopic details are averaged out [13].

Modelling the crowd using continuum dynamics would be a poor choice for cre-
ating unique path predictions as the behaviour of the pedestrians is considered a
continuous mass rather than discrete particles. An AMR would be unable to plan
a path as its movement would be dictated only by the crowd. Therefore, plotting a
path through the pedestrians would be improbable to achieve if using a macroscopic
approach.

2.3.2.2 Microscopic Modelling

This perspective of crowd modelling represents pedestrians as individuals, which are
capable of interacting with one another. Each pedestrian is represented as an agent
with their dynamics defined by a continuous dynamical equation, or discrete cellular
automata.

To design a model there are multiple parameters available to describe the com-
plex nature of the individual [55], and so predict their behaviour. Microscopic pedes-
trian models are based on [176]:

j1 A detailed representation of space, to employ a uniform movement algorithm

j2 The representation of individual persons, which takes into consideration per-
sonal abilities and characteristics

To understand the collective behaviours observed in crowds lies in the different
natures of local interactions among individuals [177]. The mechanisms of crowd dy-
namics requires understanding the behaviour of pedestrians during local interactions.
This is any kind of social influence that motivates an individual to change or adapt
their behaviour, based on social cues originating from neighbouring individuals. In
pedestrian crowds there are at least five different types of interaction [178]:

k1 Collision avoidance: the strategic adaptation of walking speed and direction
to avoid an upcoming collision with another person

k2 Physical interaction: when people are in physical contact with one another, at
high density levels

k3 Social interaction: the behaviour of social groups of pedestrians, such as friends
going together to the same place.

k4 Imitation: modifying their walking destination to move in the same direction
as other surrounding individuals
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k5 Indirect interaction: adapting their walking behaviour on the traces left in the
environment by other pedestrians who are not present any more.

These cannot be performed using a macroscopic approach. As stated in [179]: "Real
pedestrians influence each other in their walking behaviour either with mutual or
reciprocal action. They need to avoid or overtake each other to be able to maintain
their speed, they need to change their individual speeds and direction and sometimes
they need to stop and wait to give others the chance to move first". Assessing
each individual separately creates a model to anticipate their next move, allowing
paths to be created that move around individual pedestrians. Unlike macroscopic
models the speed and direction of each individual is dictated by themselves, and
only influenced by the pedestrians directly surrounding them. The microscopic
model aims at describing the behaviour of individuals, which can become complex
when many individuals are interacting simultaneously and in close proximity [167,
180]. For this type of model a specific aim of how pedestrians should behave is
initially established, assuming a specific form of crowd behaviour. As pedestrians
exhibit free will it would be impossible to encompass all of the potential behaviour
and interactions. However, it allows unique path predictions to be made for each
individual pedestrian. Many variations of both agent-based models and Cellular
Automata exist, and each can be used to try and mimic a specific form of microscopic
pedestrian behaviour.

2.3.2.3 Phenomenological Microscopic Models

Cellular Automata (CA) could be regarded as similar to a form of cell decomposition
used in AMR path planning (Section 2.2.1.1). Pedestrians are represented by cells
in a grid that transition to empty neighbouring cells according to a set of simple
rules [181]. As the CA method is a discrete state system and the transition rules are
simple, the computational cost is far more efficient than solving partial differential
equations, such as with the SFM, however movements are not as smooth. CA
can be used to produce macroscopic behaviour for traffic analysis [181] by using
microscopic collision avoidance, which would be a mesoscopic mix of the two. Agent-
based models (ABM) are typically used to describe each pedestrian, simulating the
actions and interactions of each specific person [1, 182, 183]. The goal of an ABM
is to search for explanatory insight into the collective behaviour of agents (which
do not necessarily need to be "intelligent") obeying simple rules, often within the
immediate vicinity.

The Intuitive Crowd Behaviour Model (ICBM) is a collision avoidance sys-
tem, similar to CA, that uses rules based on [184]: distance (close / near / far),
behaviour (walking / waiting), and type of collision (front / following / perpen-
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dicular) that may occur between pedestrians. This forms 16 reactions for normal
conditions and 12 for traffic congestion. The movement model forms direction de-
cisions by using data ‘left behind’ by others, which creates a macroscopic model
effect by following pedestrians en masse. However, local laws allow for the presence
of individuals, similar to microscopic models, even if the overall outcome produces
macroscopic behaviour. The attempted crowd behaviour is to queue, rather than
overtake.

The Social Force Model (SFM) is an established method that mimics Newto-
nian mechanics, where the forces between pedestrians represent an impetus on their
motion [185]. The SFM was initially inspired by Boltzmann-like and Boltzmann-
Fokker-Plank equations [186]. The forces between pedestrians arise from a sensory
stimulus, and create a behavioural reaction depending on a set of behavioural alter-
natives attributed to personal aims. When formulating the SFM three main effects
that determine the motion of a pedestrian are described as:

l1 To reach their destination as comfortably as possible. i.e. the shortest path

l2 Their motion is influenced by others, which is dependent on the crowd density
and their desired speed

l3 They are sometimes attracted to other people, e.g. friends, street artists, etc,
and objects, e.g. window displays

These points are similar to the "utility optimisation" route choices made by pedes-
trians, as described in Section 2.3.1.

The SFM is commonly used to describe microscopic pedestrian behaviour when
simulating AMRs (e.g. [42, 187]). Simulation results of the SFM demonstrate self-
organization concerning lane formation and oscillatory changes in two crowds walk-
ing in opposite direction through narrow a passage. However, each pedestrian is
modelled as a homogeneous agent and so a level of cooperation between each pedes-
trian must be assumed, as defined by mutual Newtonian forces between each agent.
In reality crowds contain heterogeneous individuals with different behavioural con-
straints, many of which cannot be predicted. This would make the SFM unreliable
for anything more than assessing basic crowd phenomena at the operational level.
The forces between SFM agents only interact locally around their current positions
in a form of reactive collision avoidance path planning, as seen in the AMRs au-
tonomy cycle, Section 2.1.1, and local path planning methods, Section 2.2.2.1. The
SFM does not consider how pedestrians may use strategic path planning techniques
to avoid certain areas and potentially take longer routes, as the SFM assumes the
shortest path is always used (Item l1). This is again similar to the AMR’s autonomy
cycle, Section 2.1.1, as well as roadmaps used to find a suitable path, Section 2.2.1.2.
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This level of additional pedestrian navigation that must be considered is discussed
further in Section 2.3.3.

The Predictive Collision Avoidance Model (PCAM) is an excellent expan-
sion of the SFM, which considers what potential interactions may occur between
pedestrians [169]. Unlike the SFM, which produces relative forces between pedes-
trians’ at their current positions, the PCAM creates its reactive force based on
pedestrians’ predicted future positions. The applied forces relate to where the pedes-
trians are likely to meet, in order to move them off collision trajectories rather than
applying forces when they are about to collide. The reactive SFM adapts an agent’s
motion rather late and so paths have a high curvature and unnecessary movements,
whereas the PCAM’s predictive approach allows the agents to plan early for col-
lisions and avoid detours. In factors of time, path length, average speed, etc, the
predictive PCAM is able to outperform the SFM. The naturally forming crowd phe-
nomena of lane formation was more aesthetically pleasing, whilst the predictive
model demonstrated two pedestrian flows crossing very elegantly. (Please refer to
Fig. 4 in [169] for visual comparison to the SFM).

Conclusion Movement models do not seem to capture the social behaviour of
pedestrian movement. The SFM relates to social as a reference to a ‘public col-
lective’, whilst the social aspect regarding unique interpersonal behaviours, as well
as the individual idiosyncrasies of each person, are ignored. This is no doubt due
to a high level of unpredictability in crowds, as movement models often admit to
making significant assumptions about the chosen pedestrian behaviour in order to
achieve a desired outcome. The academic continuum crowd simulator [64] speci-
fies that it is not suitable for all crowd behaviour, and also includes the limitation
that pedestrians move with a common goal. The a priori knowledge of pedestrian
goal orientation is a common assumption (e.g. [64, 69]), with the models unable to
consider people "wandering aimlessly" without a purpose.

One issue regarding crowd models, that does not translate into the real-world,
is often the lack of spatial seperation between agents. Many of the aforementioned
models allow pedestrians to overlap, which is something that could never occur in
real-life. The Reciprocal Velocity Obstacle model [188] (not a pedestrian model,
however is discussed later in Section 2.3.3.2 when analyisng pedestrian navigation
as it does replicate empirical pedestrian interaction) removes this assumption and
more accurate microscopic movements are simulated. Although it works well at low
densities, when compared to the high density crowds it produces unrealistic motions
and causes the pedestrians to constantly alter speed or change orientations in order
to reach their goals [169]. It seems a model that respects the physicality of each
pedestrian can only operate for low density crowds. The combination of macroscopic
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and microscopic approaches is ideally required, unifying global navigation and local
collision avoidance into a single framework [64], respectively.

All models use homogeneous agents, assuming all pedestrians will behave the
same, with the same desires, strategies, etc. However all pedestrians in a real-life
crowd will behave differently at a microscopic level, moving around differently. In
order to develop a path planner, the assumption that the prediction of a pedes-
trian’s movement will be to a specific location must be avoided. A pedestrian’s
unpredictability must be effectively introduced into the model, preventing errors oc-
curring in the model’s prediction to detrimentally affect planning collision-free and
considerate paths. In order to establish what would be an effective pedestrian model
to use, real pedestrian interactions need to be studied.

2.3.2.4 Empirical Microscopic Models

In addition to using microscopic models to predict the individual movements of
pedestrians, models can be trained to estimate a pedestrian’s potential trajectory
and short-term path choice. By evaluating empirical data of pedestrians moving and
interacting with each other within a particular environment, models can be designed
that use probability distributions to predict the likelihood of them choosing a par-
ticular path. However, it must be assumed that the training data used for the model
must cover all meaningful behaviour, so as to make an informed decision. A Markov
Decision Process (MDP) is often used in order to predict the trajectory of a pedes-
trian (e.g. [189–191]), however the main drawback to this approach is that human
motion towards other humans differs from the motion towards robots [134]. There-
fore, typical human motion patterns cannot be learned from the motion patterns of
human-human interaction.

Robot-Human Hindrance Problem A simulation focusing on a robot-human
hindrance problem [189] used a soft-maximum MDP model to demonstrate the ben-
efits of trajectory forecasting. A dataset of 83 pedestrian trajectories for training
and 83 for evaluation was used to create the model. 200 hindrance-sensitive plan-
ning problems, corresponding to 22 different trajectories where naïve planning causes
hindrances, were then generated. By ignoring casual influence of robot’s action on
a person’s trajectory the trade-off between robot efficiency and interference with
pedestrian trajectory is made. The movement of pedestrians is predicted over a
floor grid in order to reason probabilistically where they will move to. Bayesian in-
ference is used over a prior distribution using the observed trajectories, and through
incorporation of uncertainty the shortest path may not be taken even though the
learned cost function may be higher. Although the model’s probability distribution
areas are successful, with a 64% success rate for predicting the correct trajectory
for each pedestrian, they cover large areas and do not accurately predict individual
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trajectories - only probability distributions form their current location.
The cost function is designed to best explain previous behaviour and therefore

predict future pedestrian positions. To make the cost function transferable to other
environments, six parameters are used. The first is a constant feature for every grid
cell of the configuration space. The second is an indicator for if an obstacle exists
in a particular cell. The third to sixth are four "blurs" of obstacle occupancies that
dissipate the cost in the cell into neighbouring ones (please see Fig. 4 in [189] for
visual demonstration). Using a small number of parameters is shown to be more
effective, as when comparing the results to a variable-length Markov model, the
paper for this model concludes that "the variable-length Markov model (and similar
directed graphical model approaches) are generally much more difficult to train and
do not generalize well because their number of parameters is significantly larger than
the number of parameters of the cost function employed in our approach" [189].

Predicting Pedestrian Trajectories A mixed Markov model [190] was also de-
veloped to predict pedestrian trajectories, evaluated using a museum environment.
A training dataset of 691 people was used, with an average participation time of 1h
31m per person. The model can predict the next discrete movement of a pedestrian
from a probability-distribution obtained when training, using a maximum likeli-
hood function. This can provide an informed approximation towards how individual
pedestrians may move by making discrete destination predictions. However, these
discrete predictions are not specific coordinates, but are topological points at exhi-
bitions in a museum. Using a pedestrian-flow simulator [192] the model produced
a 74.1% success-rate, as the more available history of transitions from exhibition to
exhibition was available the better it faired. However, this level of accuracy may
not be achievable if predicting movement trajectories of individual pedestrians. As
a provided comparison the more basic Markov model and Hidden-Markov Model
achieved much lower success rates of 16.9% and 4.2%, respectively. The model also
achieved a 64% success rate for the prediction of real pedestrian movements in a
real-life exhibition.

Learning Navigation Policies The Hamiltonian Markov Chain Monte Carlo
model [191] is designed to learn pedestrian navigation policies from 230 observa-
tions of two pedestrians and one wheelchair user crossing trajectories, which can
then be inferred onto an AMR under similar scenarios. To decipher if the "per-
ceived" pedestrian navigation policies really could be transferred into an AMR, ten
human subjects were asked to differentiate between recoded human behaviour and
behaviour generated from the algorithm [193]. The subjects were shown images
of completed trajectories, and each provided answers for what they considered hu-
man in order to generate a corroborative opinion. Unlike many other models which
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routinely evaluate the models success based on number of collisions, completed tra-
jectories, etc, this paper [193] evaluates its success based on what is considered
social motion. Out of the ten human subjects 79% correctly identified any recorded
human behaviour and 68% of the behaviour generated by the algorithm was mis-
taken for human behaviour. However, It can be assumed that an overall success
rate is actually closer to 54%, as only 79% of real human behaviour was correctly
identified (0.79× 0.68 = 0.537).

The SFM [185] is also evaluated using the same overlapping trajectories and
only 45% of the SFM’s behaviour was perceived as human. As this study was fo-
cused on individual pedestrian crossings, how the system would respond to multiple
overlapping pedestrian trajectories within a free-flowing crowd is unknown. It could
be assumed that within a high density crowd the total number of clashing pedes-
trian trajectories may lead to the freezing robot problem [69]. Predictions based
on machine learning result in worse predictions when compared to model-based ap-
proaches, as they are based on observations of one agent at a time and so the motion
of several agents is not taken into account [105].

Conclusion It is observed that taking the shortest distance path is not always
the most effective, as more potential collisions may occur along it. Using a soft-
maximum MDP, the movement of pedestrians is predicted over a floor grid in order
to reason probabilistically where they will move to. Bayesian inference is used over
a prior distribution using the observed trajectories, and through incorporation of
uncertainty the shortest may not be taken even though the learned cost function
may be higher. Although the model’s probability distribution areas are successful,
they cover large areas and do not accurately predict individual trajectories - only
probability distributions form their current location.

2.3.3 Analysis of Individual Collision Avoidance

One of the main conclusions taken from the literature thus far is that the most in-
efficient aspect of pedestrian models is how to effectively replicate the movement of
individual pedestrians that have conflicting trajectories. When considering the gen-
eral manner of how pedestrians path plan, Section 2.3.1, a model using microscopic
empirical evidence as training data can inform an AMR of a pedestrians statistical
and topological movement within a shared environment [113, 194]. This allows in-
formed global path planning strategies to be made that represent deliberate cognitive
reasoning, Fig. 2.9 (top row). Current pedestrian models such as the SFM account
for instinctive local collision avoidance of pedestrian behaviour, Fig. 2.9 (bottom
row). However, how individual pedestrians cognitively influence one another is a
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behavioural level, Fig. 2.9 (middle row), which is omitted from well known models
such as the SFM. These individual interactions are not based on physical Newtonian
mechanics between each pedestrian, but involve cognitive reasoning and anticipa-
tion from each pedestrian about how best to interact with one another and mutually
avoid a collision. This form of cooperation is something required for an AMR to
successfully move within a crowd, by anticipating how individual pedestrians will
mutually interact.

2.3.3.1 Empirical Studies

The microscopic models covered in Section 2.3.2.4 all attempt to train a model
to select trajectories that are similar to pedestrians. Only the final model [191]
evaluates how "human" these trajectories are when cooperation between pedestrians
is required, by deliberately employing scenarios where two pedestrians must cross in
front of one another. However, this study does not evaluate the specifics of how the
pedestrians respond to one another, simply that the model learns when to replicate
specific movement patterns. Two/Three studies are now presented that evaluate
the responses of two pedestrians crossing one another’s path, using a total of 1,350
trials. Studies such as these can help quantify the tactical path planning stage
level of pedestrians, Fig. 2.9 (middle row). The cognitive evaluation of potential
upcoming collisions, influenced by neighbouring pedestrians’ movements, can allow
for pro-active rather than reactive collision avoidance to be developed.

Perpendicular Path Crossing A study focusing on two walkers crossing paths at
a perpendicular angle [195] concludes that collision avoidance is collaborative. From
450 trials a sub-set of 260 were used that measured a risk of collision. Evasion was
performed by both pedestrians with a reaction occurring 3s before crossing paths
with a preference to change trajectory over speed. However, collision avoidance
behaviour is "role-dependent", i.e. the walker giving way contributes more to the
avoidance than the one passing first. This is related to the elliptical personal space
surrounding a moving pedestrian [196]. The asymmetry in collision avoidance also
stems from a difference in the visual field of each pedestrian, as perceiving someone
passing in front of oneself is very different to perceiving someone passing behind.

Non-Reactive Path Crossing Another study focuses on two walkers crossing
paths where only one pedestrian is influenced by the other [18]. One pedestrian
is non-reactive (interferer), continuing in a straight line, ignoring the pedestrian
which responds to a collision potential (participant), evaluated over 900 trials. The
two pedestrians are evaluated crossing trajectories at 45◦, 90◦, 135◦, and 180◦, as
well as a static pedestrian blocking a moving pedestrian’s path. For the participate
to avoid a collision with the interferer, their walking trajectory is locally adjusted
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according to the interferer’s crossing angle. Path adjustments were observed over
all angles, whilst speed adjustments were consistently evident only in scenarios with
perpendicular or less crossings.

Trajectories are locally planned and adjusted as pedestrians consider the dy-
namics of the interferer to predict a hypothetical collision, avoiding this position.
However, it is suggested that pedestrians also consider the uncertainty about this
hypothetical collision. They assume a higher uncertainty along the speed parame-
ter of the obstacle, as this would explain the braking behaviour for acute crossing
angles. Therefore, an elliptical uncertainty is placed around the potential collision
area. The participants chose a collision avoidance strategy of smooth spatial adjust-
ments, which was initiated early enough to render speed adjustments unnecessary.
These observations support the assumption of path adjustments as a default colli-
sion avoidance strategy in the presence of sufficient space. The results in this study
also claim that their results are "in line with the predictions of the smoothness-
optimization model of locomotion [197, 198], and are even more consistent with an
advanced model of this theory, which adds an extra term that penalizes large vari-
ations of the speed [199]. As speed variations are penalized, turning should clearly
be a favoured strategy."

Conclusion Both studies conclude similar results, including the fact that a vari-
ation in trajectory is preferable to a change in speed. Also, the personal space
surrounding a pedestrian and the area of uncertainty surrounding the anticipated
collision point are both represented elliptically, elongated along the velocity axis.
Regardless of either collaborative or considerate interaction between two pedestri-
ans, there is still a consistent you go first narrative based on the orientation be-
tween each pedestrian, with the pedestrian further from the collision point moving
behind the other. These are results drawn by other papers on simillar subject mat-
ters (e.g. [7, 65, 66]). Further to the remarks of how agent based models do not
replicate human movement in Section 2.3.2.2, the second study [18] concurs that
"models based on repulsive potentials principle (e.g. [169, 185]) are not suitable for
explaining general human locomotion and collision avoidance behaviour", and that
there has been no conclusive study to state exactly how humans do behave [18].

2.3.3.2 Predictive Collision Avoidance Models

Once conclusions on how pedestrians interact under various scenarios have been
drawn, they can then be mathematically expressed and developed into an appro-
priate model. All the pedestrians that participated in the Empirical Studies in
Section 2.3.3.1 behaved similarly, employing a similar collision avoidance system is
used by each pedestrian that focused on approximately anticipated points of colli-
sion in the future. The avoidance strategy is one where pedestrians considerately



2.3 Pedestrian Crowds 53

collaborate. The pedestrian furthest from the point of collision adjusts their tra-
jectory the most, moving behind the other pedestrian and allowing them to move
mostly uninhibited.

The Reciprocal Velocity Obstacle Model This algorithm [188] does not use
pedestrian dynamics, but does employ locally reactive collision avoidance in a simil-
lar manner. Cooperation is observed between multiple agents, mutually adjusting
their trajectories in order to avoid collisions. All agents choose the same side to
pass each other, creating "smooth and realistic motions". It is implicitly assumed
that each agent makes similar collision-avoidance reasoning. Due to this it can be
guaranteed that both collision-free and ocsillation-free navigation will be achieved.
The anecdotal evidence of agents directly crossing paths shows optimal smooth and
collision-free paths, especially when compared to the original velocity obstacle model
of 10 years prior [200]. The use of mutual cooperation highlights how this can achieve
more effective path planning and collision avoidance results. However, if non-similar
collision avoidance strategies are used for each agent, it can be assumed that these
navigation guarantees cannot be assured.

The Interaction Gaussian Process Model This algorithm [69] suggests that
within a dense enough crowd the robot will believe the environment to be unsafe,
i.e. "every path is expected to collide with an agent in the crowd due to massive
uncertainty". Within densely populated environments, avoiding collisions will natu-
rally become more difficult, therefore the robot will either freeze due to the freezing
robot problem (FRP), making no progress, or make extremely evasive manoeuvres.
In order to combat this, the robot and pedestrians must cooperate between one an-
other using "joint-collision avoidance". Using a human dataset, this is observed as
they move asymmetrically parallel to one another, with either a 0 or 180◦ relative
angle between them. However, to achieve this the model assumes a priori knowledge
regarding the pedestrians’ destination, and then Bayesian inference calculates a pos-
terior of movement. As the pedestrians do not exhibit complex behaviour or even
turning, just forward motion, the model is able to calculate trajectories that deviate
based on upcoming collisions with oncoming pedestrians, resulting in cooperative
collision avoidance. To evaluate the models success the robot replaces a pedestrian
in the dataset, therefore the robot’s movements can be compared to the pedestrians.
The model claims that over 10 runs 70% of the robot’s movements performed better
in distance travelled and in safety margin distances passing pedestrians compared to
the pedestrians themselves. However, the anecdotal results show the robot moving
1.2 seconds behind the pedestrian. From the Empirical Studies in Section 2.3.3.1,
pedestrians begin to react 3s before a collision, and so it is dubious that the model is
working as well as claimed. When examining the video footage the pedestrian that
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the robot replaces seems forceful as he/she moves through the crowd. The other
pedestrians cooperate by moving out of his/her way, as he/she moves in a straight
line. The crowd parts for the pedestrian, the robot follows, and it can be assumed
that similar results could be yielded using a simple pedestrian following robot.

Conclusion Both predictive models rely on cooperation in order to avoid colli-
sions, which for human-aware motion planning should be regarded as an "optimistic"
quality [67], covered earlier in Section 2.2.3.1 as well as later in Section 2.4.2.2. The
RVOm was designed to move an AMR around a dynamic environment with other
similar AMRs. Therefore, the cooperation between two AMRs is essentially guaran-
teed, as the algorithm will adjust each AMRs movement in order to accommodate
any predicted intersecting trajectories the same way for both. For multiple AMRs
with multiple trajectory intersections the exact response of each AMR may not
be completely predictable. In an experiment were a circle of 250 AMRs directly
crossed the circle’s circumference, the emergent behaviour involved pockets of clus-
tering and lane formation between AMRs that moved together towards similar arcs
on the opposite side of the circle where their goals were located. This macroscopic
phenomena reflects pedestrian behaviour observed in the academic continuum crowd
simulator [64].

Comparably, the IGPm is very optimistic at assuming cooperation between the
AMR and pedestrians. When employed on a real-robot platform [41], set to move
along a in a crowded cafeteria, the AMR is unable to move much at all. Pedestrians
successfully manoeuvre past it, however the AMR is unable to progress far along a
path, only really being able to rotate to a different heading. Although the algorithm
is able to plan a path, the fact that the AMR does not move well an argument can
be made that the model does not overcome the FRP it attempts to address. The
downfall of this implementation may be related to humans responding differently to
robots [134], but also due to the fact the assumption pedestrians will cooperate is
wrong, discussed further in Section 2.4.2.2, as at one point a pedestrian deliberately
tries to block the AMR from moving at all.

2.4 Human-Mobile Robot Interaction

The initial aim of human-robot interaction (HRI) was to have a robot capable of
some form of communication between human and robot [201]. The original Turing
test could be considered the first assessment of HRI, providing direct interaction
through means of textual communication [202]. Since its inception HRI has devel-
oped into a multi-field area and now covers a much broader spectrum, e.g. socially
assistive robots and socially interactive robots, robotic human perception/gestures,
cognitive models, and motion planning. The current research areas of HRI primarily



2.4 Human-Mobile Robot Interaction 55

concern assistive and interactive robots. The assistive robots [203] work alongside
care givers (e.g. [204]), physical therapists (e.g. [205]), autistic children (e.g. [206]),
etc, through physical contact. Thus providing benefits toward rehabilitation, cogni-
tive disorders, and education [207]. Interactive robots entertain through direct in-
teraction, recognise other agents, use natural cues, exhibit a distinctive personality,
etc, [208], providing educational tools, and research platforms. Three perspectives
on social interaction with robots [209] can be made:

m1 Visceral factors of interaction: instinctual reaction, e.g. emotional re-
sponse

m2 Social mechanics: higher-level communication and social techniques

m3 Social structures: development of changes to the social relationship and
interaction between robot and human

The robot can become anthropomorphic and develop from a standard task-orientated
machine into a relationship-orientated one. Regarding social structures (Item m3),
people would rather fix their robot than replace it, becoming saddened by the latter
alternative. Table 2.1 highlighted the fact that an autonomous system’s capacity
is defined by the HRI level, with many surveys that highlight the complexity and
expanse of the HRI arena (e.g. [105, 201, 208, 210, 211]), as well as HRI performance
metrics [212].

2.4.1 Mobile Robots in Human Environments

One of the original and most highly cited AMRs specifically designed to operate
within a human environment began with the museum tour guide RHINO (‘97) [36],
and its second generation incarnation MINERVA (‘98) [37]. These were deployed in
Deutsches Museum Bonn, Germany, and Smithsonian’s National Museum of Amer-
ican History, USA, respectively. Both proved to be very successful with RHINO
claiming a success rate of ‘99.75%’, based on the ratio between number of re-
quests (2,400) and number of collisions (6), and MINERVA claiming to be superior
still. This was due to the added facial features of MINERVA [213], as the anthropo-
morphism results in people preferring to interact co-operatively. The navigational
success of these two projects was only to move to their required locations without
colliding with pedestrians. Treating people as simple objects to locally avoid, rather
than incorporating social dynamics into a global path planner, would allow effective
collision avoidance, but does not address the mimicry of pedestrians.

Both RHINO and MINERVA used the DWA, Section 2.2.2.1, to navigate their
environments , which is a method still implemented in current H-Mobile-RI systems
such as seen in the STRANDS project [214]. It is long-term autonomy projects
such as STRANDS that focus on simple collision avoidance approaches towards
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pedestrians, involving the local DWA planner and a global costmap, that focus on
the long-term dynamics of mapped space rather than behavioural navigation. The
project operates at the Akademie für Alterforschung at the Haus derBarmherzigkeit
in Vienna, and the AMR uses topological maps, Section 2.2.1.2, in order to evaluate
the probability that someone will interact with the robot at a given location and
time, based on these long-term observations, which allows the robot to adapt to
working routines. This long-term autonomy is vital concerning the probability of
success, as only over large time periods can all faults be detected.

This thesis focuses on developing a navigational strategy and path planner that
results in an AMR employing considerate behaviour towards pedestrians. This is
an area of research that is being developed in robots with much more short-term
autonomy levels. In 2013 Obelix [40] travelled 3.2km in 1.5h from the Faculty
of Engineering, University of Freiburg, to the Bertoldsbrunnen in the inner city,
Frieiburg, Germany. However, despite Obelix being developed 17 years after RHINO
there has been little change in how it interacts with pedestrians, and it moves much
slower than any pedestrian it passes. Obelix does not employ any form of pedestrian
model when it navigates through the streets, and it never needs to evaluate how it
should respond to individual pedestrians as they move around the robot. Obelix
relies on SLAM in order to navigate and employs an unknown collision avoidance
strategy to avoid crashing. In addition to this, no moving pedestrians ever obstructed
its path4, and so even its limited collision avoidance could not be evaluated.

In a more localised indoor environment [42] demonstrates that a simple micro-
scopic pedestrian model is vital to recreate similar social movements. For a robotic
navigation system to operate like a pedestrian within a crowd, the pedestrians them-
selves must be appropriately modelled. This allows their movements to be predicted
so the manner in which the robot should behave and move can be correctly designed.
The social force model [185], is recalibrated from human-human to human-robot sit-
uations. This adaptation allows the robot to use a human-like collision avoidance
system in a real-world pedestrian environment. The robot recreates a collision avoid-
ance strategy that can be perceived as safe and natural by humans, with 96.4% in
agreement. The density of the crowd was however very low, with the robot only
interacting with a sparse number of pedestrians head-on, and moving a significant
distance of 8 metres before a collision potential. In a more crowded environment
such an early divergence from its trajectory may cause problems by moving into the
path of other pedestrians, as pedestrians only begin to path correct at an average
distance of 0.38 to 0.86m [195]. The negative effects of the original social force model
may then develop, where unnatural oscillation occur between neighbouring agents.

4https://www.youtube.com/watch?v=gPzC88HkgcU
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2.4.1.1 Vehicles

Aside from the aforementioned AMRs, which are human sized, larger autonomous
vehicles (AVs) tend not to deal with the intricacies of social navigation as they
are larger, move faster, and do so with more limited movements. Also, AVs are
often confined to roads, e.g. self-driving cars, whilst pedestrians remain on pave-
ments. Due to this the main interaction AVs have with pedestrians is when a person
crosses the road (e.g. [65, 66]). Any form of collision avoidance occurs as a "stop-
and-wait" policy, which is the only available method when an travels along a road
lane. However, some human-aware path planners still employ this method in both
path planning and collision avoidance strategies, discussed in Section 2.4.2.3 and
Section 2.4.2.1, respectively. If the stop-and-wait policy was to be employed in a
crowd this would increase congestion and cause movement oscillations, as observed
in microscopic pedestrian models, Section 2.3.2.2. Therefore, AVs must be able to
successfully predict if a pedestrian is to cross in front of it, and implement a navi-
gation strategy that will ensure the safety of: the pedestrian crossing in front of the
AV; the passenger of the AV (if there is one); and if the speed of the AV must be
reduced or stopped, the safety of any vehicle moving along behind the AV.

To ensure the safety of anyone crossing the raod, the intention of the pedestrian
must be evaluated to decipher if they are to cross or not. For methods that assume
the intentions of pedestrians do not change, and that they aim to move toward
their goal with a constant trajectory [65, 66], the AV will simply come to a stop if
a pedestrian is on the road, and continue to move once they are on the opposite
pavement. However, predicting when a pedestrian will cross at specified crossings
require a fast and reliable process, as they can "perform instantaneous changes in
motion behaviour following changes in intent." [215]. A "changepoint" must be iden-
tified whereby "observed data better fits a new behaviour model than the current
model to which it is being compared", as "agile dynamic agents such as pedestri-
ans may exhibit new behaviours or mid-trajectory changes in intent". Although a
stop-and-wait strategy is best, being able to detect a pedestrian’s crossing intent
should prevent collisions by reducing the AV’s velocity before the pedestrian begins
to cross.

The "Intention-Aware Online partially observable Markov decision process Plan-
ning" method is used to autonomously drive a golf buggy AV through a sparse
crowd [216]. An A* search, Section 2.2.2.2, is applied to find a minimum-cost path
to the goal. The positions of all detected pedestrians are anticipated over a 2 time-
step prediction horizon, and the path is planned using a simple 4-stage reward
model:

n1 To ensure safety a large penalty is applied if any pedestrian gets within a small
distance of the AV.
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n2 To encourage the AV to reach its goal the reward increases with a decreasing
distance to it.

n3 To encourage the AV to maintain a high speed, when safe to do so, a greater
penalty is applied the slower it moves.

n4 A small penalty is applied for any +/- acceleration in order to encourage
smooth driving.

The AV is able to move along relatively smooth trajectories, however the maximum
speed of the AV is 1.5ms−1 and an emergency brake is triggered when a pedestrian
gets within 0.5m of the buggy. As a result the AV still stops and starts, however
does not simply wait, but re-plots alternative paths.

For road bound AVs, the stop-and wait navigation strategy is not suitable to
be used in pedestrian crowds. Also, for all of these AVs the physical limitations do
not allow sufficient adaptability in order to manoeuvre like a human. However, the
latter system [216] does employ a reward strategy that is used in a crowd, although
with its increased speed it is suitable for sparse crowds rather than much denser
crowds where the CPP is intended to be implemented.

2.4.2 Human-Aware Path Planning

It can be assumed that the autonomy cycle of all AMRs follow the standard au-
tonomy cycle structure, Fig. 2.1b. The data processing within each stage, as well
as the interaction between each stage, is then modified for the selective purposes
of each AMR. As mentioned in, Section 2.1.2, careful consideration must be made
towards what type of dynamic agents the AMR will share the environment with.
The movement of an AMR around humans is very important [217] and should reflect
human-like motion [218]. To improve robot acceptance the AMR’s behaviour must
include naturalness, comfort, and sociability, as defined in [105]. An AMR cannot
simply plan global paths that find the shortest distance to the goal, using geometric
local collision avoidance as the AMR moves. Instead it must plan global paths that
are considered "human" [219], using proxemics influenced local collision avoidance
that respect socially acceptable human personal boundaries [150]. To generate "leg-
ible" robot behaviour, whereby humans can understand clearly what an AMR is
doing, assumptions made in the literature include:

o1 Model human-like behaviour [139, 220, 221]

o2 Generate stereotypical motions [220, 222]

o3 Generate efficient motions [139, 221, 223]

o4 Take into account social constraints, human abilities, and preferences [224–226]

o5 Robot motion must be as visible as possible [227, 228]
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o6 Add complementary motions (gestures) in order to clarify intentions (e.g. gaze,
pointing, use animation principles) [223, 229–231]

all of which can be constrained to the path planning stage, bar the final item which
would be a bi-product of the planning stage. These all aim to make the AMR appear
to move as humanly and therefore as predictably as possible, such as making the
AMR move ‘stereotypically’. This elaborates on the requirements for human-aware
navigation discussed in Section 2.1.2.2, List d.

2.4.2.1 Planning Paths

An AMR will often be designed to navigate within a specific type of environment
and interact with a specific type of obstacle. For instance, the Kiva robot system [54]
mentioned in Section 2.1.2.1 is designed to operate within a "Human-Exclusion
Zone", and the environment is kept relatively certain as the path for each robot
is calculated using a centralised architecture. For an AMR to navigate within a
pedestrian environment an appropriate model must be designed, Section 2.3.2, in
order to anticipate what any one pedestrian may do next. However, no model can
predict with 100% accuracy and so an AMR must continually re-plan multiple paths,
each belonging to a different homotopy class in order to aide diversity. This strategy
is superior to a greedy shortest-path as it allows the AMR to consider multiple alter-
native choices as well as interactions with neighbouring pedestrians [154]. Despite
the AMR only executing a small fraction of each path, the remaining unexecuted
path serves two important functions [232]: 1) To guarantee safety the planner needs
to look beyond the AMR’s minimum stopping distance; 2) The remaining path can
approximate what future paths may be, although there is no guarantee the next
planned path will contain along the remaining current path.

In a complex and changing real-world it is not possible for a programmer to
anticipate all the situations a robot may encounter [233]. Therefore, the pedestrian
model and the robot’s behaviour would be limited to set scenarios. As discussed
in, Section 2.3.3.1, in order for pedestrians to move fluidly their collision avoidance
strategies must be collaborative, with both pedestrian taking on a role and then
cooperating. As AMR human-aware path planning is akin to real human path
planning, this is essential in minimising the confusion that could occur if more
rudimentary collision avoidance was implemented. In more conservative planners a
passive reaction is preferred, implementing a "stop-and-wait" procedure and allowing
the pedestrian to move before the AMR continues [7]. However, within a crowded
environment this may add to congestion as a "traffic jam" scenario could develop,
as well as confusing pedestrians moving up behind the AMR.
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2.4.2.2 Assuming Cooperation

The cooperation paradigm is an optimistic assumption whereby potential collisions
will be mutually resolved between the robot and pedestrian as they get closer to-
gether, via trajectory and velocity adjustments [67]. This assumption will constrain
the uncertainty in the pedestrian model, as well as allowing paths to be predicted
that simulate human paths and behaviour. The now more ‘predictable’ pedestrian
paths will allow more potential space to become available for the AMR to predict its
own path. By assuming pedestrians cooperate it will be more efficient for the AMR
to continue along a currently occluded path than it will be choosing another [67].

For an AMR to move towards its goal, a global path must be planned from its
current position to the goal, Section 2.2.2.2. When assuming cooperation between
robot and pedestrian this becomes much more feasible in a crowded environment
due to the increased available space, and so also eliminating the potential "freezing
robot problem". However, within such a dynamic environment it may not be possible
for the AMR to predict a collision free path, in which case the AMR should pick
one that provides the least number of collisions. Even if collision free paths are
available, it may be preferable for the AMR to select a less "comfortable" path, as
long as the path length is considerably shorter than a path with minimal conflict,
and as long as it does not interfere with a pedestrian early on [154]. As the AMR
should only partially move along its path before recalculation, Section 2.4.2.1, there
is no necessity for the path to be collision free in the relative future.

The IGPm, discussed in Section 2.3.3.2, implemented a "joint-collision avoidance"
strategy for cooperation. During simulations the method claimed to execute paths
that were ‘safer’ than its pedestrian counterparts. However, when implemented on a
real-life AMR platform [41] the resultant motion did not replicate the results due to a
different dynamic structure of the crowd, as well as pedestrians individual reactions
to the robot itself. Cooperative strategies rely on pedestrians choosing similar nav-
igation principles, which also only occur under more structured environments [193],
such as moving past one another in a corridor. Lane-based pedestrian traffic flow is
required for the IGPm to be effective, with cooperation occurring between pedestrian
and AMR meeting head-on. As discussed when analysing the empirical evidence of
individual pedestrian collision avoidance, Section 2.3.3.1, pedestrians will behave
differently when approaching from different angles. Therefore, all reactions that
occur due to different angles of approach must be considered when developing a
cooperative path planner.

2.4.2.3 Avoiding Collisions

The IGPm fails as it does not consider all potential angles of approach between
the AMR and pedestrian. To prevent an AMR colliding with a pedestrian many
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papers (e.g. [7, 65, 66]) claim that the best method is for the AMR to "stop-and-
wait" until the pedestrian has passed before continuing along its path. Although
this is practical in a one-on-one scenario, this is clearly not suitable to a free-flowing
dense crowd. Although this method is considerate to an individual pedestrian,
considerate braking should be extended to considerate motion so that the AMR can
replicate empirical human collision avoidance, Section 2.3.3.1. Taken from various
studies (e.g. [18, 195]), generally when two human subjects cross paths they assume
a role of either a reactive or non-reactive agent. The pedestrian furthest from the
hypothetical collision point will remain non-reactive, whilst the other will adjust
their trajectory to move behind the other pedestrian as trajectory variations are
preferable to speed changes.

For successful HRI in this context, the pedestrian’s acceptance towards the AMR
plays an important role [140]. The acceptance of the AMR is influenced by: trust;
anxiety; perceived usefulness; and perceived enjoyment [234]. As well as "perceived
safety" [140]. Safety is a basic human need [235] and can be designated as a key
requirement of HRI, with the definition of perceived safety as: "Perceived safety
describes the user’s perception of the level of danger when interacting with a robot,
and the user’s level of comfort during the interaction" [236]. Due to this it can be
assumed that extra care and consideration be taken by the AMR, and so AMR-
human collision avoidance strategies must vary slightly from human-human ones
even if attempting to replicate human behaviour.

The ContextCost Costmap This algorithm [157] is implemented on an AMR
for a 90◦ path crossing scenario with a single pedestrian. However, as it is only
capable of slowing the AMR down and not alter its trajectory. This was a choice
based on the author’s previous publication [139] whereby analysis of 10 different
pedestrians crossing each other in the same scenario, over 4 trials, resulted in only
velocity deviations. This is a contradiction to far more comprehensive studies, Sec-
tion 2.3.3.1, which concludes there is more significant evidence for preferences of
trajectory changes instead. As a result the paper states that a "robot using cost
model ContextCost would not deviate from the straight line, but instead reduce it’s
velocity" and therefore a "robot path direction and human direction are considered
incompatible if the human and robot could frontally run into each other". This will
limit the application of the costmap to the specific scenario chosen, and unless the
context of the scenario is know by the pedestrian a priori if the robot stops then its
navigational intentions cannot be inferred by the pedestrian.

The Layered Social Costmap This algorithm [7] also behaves in the same way
for the same path crossing scenario. Similarly, when the resultant AMR’s behaviour
is compared to a path predicted using a static costmap, the same erratic motions
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are produced as the AMR tries to cross in front of the pedestrian. The social
costmap incorporates a constant velocity prediction model that projects an elliptical
proxemics distribution in front of the for several time-steps. As this clearly makes
passing in front more costly, if the AMR simply moved behind the pedestrian no
interference would occur. This would not only allow the AMR to maintain its speed
it would reach its goal faster and more efficiently. This is again why it is preferable to
change trajectory over speed, which is a more common pedestrian trait, and would
allow the model to be applied to more varied scenarios.

Conclusion The "legibility" in path planning discussed at the start of this sub-
section is so that another pedestrian can correctly interpret the AMR’s intentions.
For a "Human-Robot Path Crossing Task" [140] a video of an AMR approaching
a moving pedestrian from the front at 3 angles: right-diagonal; head-on; and left-
diagonal trajectory, is evaluated. Using a "Human-Aware" path planner that predicts
paths based on "social costs", the resultant behaviour taken by the AMR was per-
ceived as more human than with a more traditional path planner. Although this
reduced any confusion for the pedestrian, and it can be assumed that a ‘human-like’
collision avoidance was observed, no resultant paths the AMR took were provided.
Two AMRs working in close proximity [67] also adapt their trajectories in similar
ways to pedestrians, by both adjusting their trajectories early on. However, detailed
analytical comparisons between empirical pedestrian-pedestrian collision avoidance,
Section 2.3.3.1, and robot-pedestrian collision avoidance for multi-angle path cross-
ing scenarios has not yet been undertaken. Only social collision avoidance strategies,
Section 2.2.3.1, have been developed to replicate human behaviour, focusing on the
AMR replicating pedestrian trajectories rather than evaluating an AMR’s interac-
tion when directly crossing paths.

2.4.3 A Taxonomy for Interactive Robot-Pedestrian Navigation

A standardised taxonomy of something is an excellent way to classify and evaluate it
against similar things. Taxonomies for autonomous robots, Table 2.1, evaluate how
much human input is required in order for a robot to complete a task, whilst the task
itself can be arbitrarily defined. However, with increasingly diverse forms of robotic
autonomy, involving direct interaction with people, these previous definitions cannot
accurately translate into these areas. Traditionally robot autonomy was evaluated
for a single robot and single human interaction [19, 33, 85]. However, it is possible
for HRI to incorporate upto 8 possible combinations of single or multiple humans
and robots, acting as individuals or in teams [237].

Despite this update to include the ratio of humans to robots interacting, as
well as the consequent level of shared interaction, the autonomy evaluation still
splits into the "autonomy level" and the "intervention time" [237]: "The autonomy



2.5 Chapter Summary 63

level measures the percentage of time that the robot is carrying out its task on its
own; the amount of intervention required measures the percentage of time that a
human operator must be controlling the robot. These two measures sum to 100%".
Unfortunately this cannot be the case for an AMR navigating through a crowd of
pedestrians, as humans will indirectly influence an AMR’s behaviour. For human-
aware AMRs influence from humans is required in order to increase its level of
autonomy, rather than the traditional decrease.

What all these taxonomies still have in common is the concept of the human
interaction element as direct, rather than indirect. The information shared between
the human and robot is always considered a relationship where the human and robot
are working directly together to complete a task. However, for an AMR to navigate
through a crowd of pedestrians it must indirectly interact with all neighbouring hu-
mans as well. For an AMR in a HRI scenario, in order to achieve full autonomy
the robot must take input from humans in order to allow for cooperation and so-
cial mechanics, which is contrary to standard HRI taxonomies. Due to this a new
taxonomy is proposed, Table 2.5, specifically for evaluating robot autonomy with
indirect passive interactions from pedestrians, rather than a direct interaction from
a human controller.

The proposed taxonomy, Table 2.5, is divided into 10 levels. The AMR’s au-
tonomy level increases from "no autonomy" (level 1) to "full autonomy" (level 10),
in regards to the level of HRI it has with ‘passive’ surrounding pedestrians on the
crowd. However, the top and bottom 5 levels are divided into the input the AMR
receives from a direct operator and non-direct near-by pedestrians, respectively. The
first 5 levels are similar to traditional taxonomies, where the direct influence of a
human operator is inversely proportional to the autonomy level of the robot; i.e.
"These two measures sum to 100%" [237]. The latter 5 levels would be regarded
by traditional taxonomies as all fully autonomous. However, the more influence
taken from pedestrians results in AMR becoming more autonomous and indepen-
dent through cooperation. The resulting direct interaction will allow the AMR to
behave more like an agent similar to a human.

2.5 Chapter Summary

This chapter evaluated the necessities required for human-aware robot navigation.
Both the path planning process of AMRs and pedestrians parallel one another, and
the path planning choices made by an AMR should reflect the same behaviour as
a pedestrian. Global path planning and predictive modelling should be undertaken
by the AMR. This look ahead feature is not just for safety, but will aide in the AMR
achieving human-like motion by anticipating pedestrian motion so that paths are
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planned that foresee potential upcoming interactions. It is clear that cooperation is
not always available between AMR and pedestrian to the same extent as between
pedestrians only, and so a considerate approach must be undertaken instead. How-
ever, from empirical studies on pedestrian collision avoidance, considerate behaviour
generates implicit cooperation itself. The next chapter will use the acquired knowl-
edge in order to generate the model and requirements for the proposed considerate
path planner.





Chapter 3

Developing the Considerate
Path Planner

"And Now for Something Completely Different."

— Monty Python

T
he aim of this thesis is to design a considerate navigation strategy (CNS)
for an autonomous mobile robot (AMR), moving considerately through a
crowd of pedestrians. Therefore, this chapter focuses on developing the

novel considerate path planner (CPP), and the key problems and challenges faced
in the area of human-aware robot navigation are first addressed, Section 3.1.

An appropriate crowd model must also be implemented in order for the CPP
to successfully plan a path within a dynamic pedestrianised environment. This
can describe pedestrian behaviour mathematically and allow predictions of their
individual movements to be made. A pedestrian movement model is presented, Sec-
tion 3.2, which uses novel uncertainty ellipses that cover pedestrians’ movements
over a prediction time-horizon, so that global paths can be planned through an
evolving environment that will contain morphing pedestrian positions. The uncer-
tainty of each prediction must be contained enough in order to prevent the freezing
robot problem (FRP) [69]. It is also essential that the behaviour of each pedestrian is
modelled [55], in order to assess how the system works if it is impossible/impractical
to create experimental conditions in real life.

Finally, the design of the CPP is presented, Section 3.3, which provides the
basis for a considerate navigation strategy (CNS). This includes the design of the
novel Voronoi diagram-visibility graph hybrid (VD-VG) roadmap; the type of search
algorithm appropriate for the model robot is also presented; as well as the considerate
weights that modifies the search algorithm in order to find the considerate paths and
fulfil the aims and objectives, Section 1.3.2.
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3.1 A Novel Human-Aware Navigation System

Following on from the reviewed literature in the previous chapter, Human-Aware
Robot Navigation is a diverse research area. From developing an autonomous robot
that is capable of implementing suitable navigation strategies, Section 2.2; to mod-
elling pedestrians in a way that can most accurately predict their behaviour, Sec-
tion 2.3; to robot behaviour that can implement legible behaviour for human-robot
interaction, Section 2.4; each is fraught with assumptions and limitations that accu-
mulate with each separate stage, resulting in increasing uncertainty. For the CPP
this uncertainty is to be embraced, allowing for paths that can be planned and result
in the AMR’s behaviour being both consistent and legible to others.

3.1.1 Problem Statement

In crowds people expect other pedestrians to move in similar ways, moving both as
a macroscopic member of the crowd and as a microscopic individual Section 2.3.1.
The vision for a human-aware AMR, which moves within a pedestrian crowd, is
that it should also behave like another human. The AMR’s speed, manoeuvrability,
path planning, and interaction with others, should mimic as close as possible to
other pedestrians. This way any of the pedestrians will not be confused or unsure
about what the AMR may do next. Making the AMR’s behaviour legible to other
pedestrians Section 2.4.2 will make the AMR safer and easier to integrate into the
crowd.

Many current human-aware navigation systems, Section 2.4.1, are only capable
of interacting in limited and structured environments. Often, assumptions are made
about how a pedestrian will cooperate with the AMR, Section 2.4.2.2. However,
when a pedestrian does not behave as assumed, the AMR’s navigation system is not
robust enough to perform consistent behaviour under these alternative scenarios.
This will result in a reduction in legible behaviour of the AMR, making its behaviour
more confusing and thus less safe to the pedestrians.

To address this issue a CNS is proposed, which employs the novel CPP. Rather
than rely on pedestrians to behave in a certain way, and cooperate with the AMR,
the CPP will plan paths that do not assume the pedestrians will do anything other
than continue to move as they are. The CPP will exploit gaps that are already
present in between pedestrians in order to move past them, rather than requiring
the pedestrians to move as well. Even so, these movements of the AMR towards gaps
in the crowd will result in implicit cooperation between the AMR and pedestrians.
Just as how the AMR sees a pedestrian moving towards a new space in a certain
direction, the pedestrian will see the same for the AMR. As it is reasonable to assume
pedestrians will not want to walk into anything, the pedestrian will avoid the AMR
in the same way as the AMR avoids the pedestrian, by moving into their own free
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space. By having the CPP plan paths that result in the AMR moving along similar
paths as a pedestrian would, the AMR’s behaviour would be clearly legible to any
pedestrian and any collisions mutually avoided.

3.1.2 Current Challenges

As established in Section 2.1.1 the path planning stage of an AMR’s autonomy
cycle must also contain crowd modelling, Fig. 2.2. These two factors are dependent
upon each other due to the dynamic nature of crowds, in order to continually predict
pedestrian movements and plan suitable paths accordingly. The planned paths must
make the AMR’s movement legible to neighbouring pedestrians, Section 2.4.2. This
facilitates the overall flow of the crowd and eases individual interaction, by allowing
the pedestrians to infer what the AMR may do next. To achieve this the path
planner must also be able to infer what each pedestrian may do next.

3.1.2.1 Pedestrian Models

A suitable microscopic pedestrian model will allow the system to achieve this, how-
ever significant assumptions are currently made when modelling human behaviour,
Section 2.3.2, which include the following:

a1 Goal knowledge of pedestrians are known a priori, e.g. [64, 69]. This is used in
order to make the pedestrians’ intentions more predictable, but is something
that can only be known by each individual pedestrian.

a2 The chosen microscopic model accurately captures all pedestrian movement
dynamics and potentials.

a2.1 Agent Based Models, Section 2.3.2.3, such as Newtonian Mechanics, de-
scribes all interaction based on balancing forces between other pedes-
trians, objects, and goals. Attractive and repulsive forces allow exact
movements to be predicted for individual pedestrians.

a2.2 Empirical Models, Section 2.3.2.4, for inferring human-human collision
avoidance trajectories, provides a probability distribution for different
potential trajectories. Exact predictions are not made, only likelihoods,
using additional layers to the Markov model that pedestrians reflect.

The assumed a priori pedestrian goal knowledge forces the model to organise the
movement of pedestrians, and without it many well known pedestrians simulators
admit to failing. Many microscopic models also make this assumption, which leads
to limitations for the AMR by reducing the number of scenarios the AMR can be
used in. In an unstructured environment, e.g. wandering aimlessly at an exhibition,
no goal can either be known or even inferred. Only the pedestrian’s next move-
ment can be estimated based on their currently observed position and velocity, due
to a pedestrian’s Markovian behaviour [63]. Furthermore is the assumption that
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one model is used by all pedestrians. Of the pedestrian models evaluated in Sec-
tions 2.3.2.3 and 2.3.2.4, each produces different predictions, however all are valid
at describing pedestrian motion in some form. No mixture of models is ever used
as it is not possible to establish what form of navigation any one pedestrian will
undertake.

An assumption is now made that a much simpler pedestrian movement model
should be used, which can be continually modified based on known occurrences,
including a pedestrian’s: statistical walking deviations and their desired proxemics,
discussed later in Section 3.2.3.2 and Section 3.2.3.3, respectively. A model that does
not assume a priori goal knowledge of pedestrians, and creates a balance between
exact movement predictions and probability likelihood distributions. Embracing the
uncertainty and confidently confining it to within an elliptical distribution.

3.1.2.2 Legible Path Planning

To plan legible paths, current strategies seemingly either lack confidence in predic-
tions or are overtly optimistic in exactly how pedestrians will respond to the AMR.
These two opposites include:

b1 AMRs that exhibit cautious behaviour use very simple models, if any at all.

b1 The polite "stop-and-wait" policy, e.g. [7, 139, 157], is the wrong strategy
for a crowd, as any pedestrians moving along behind the AMR will be
blocked, causing congestion and interrupting pedestrian movement.

b2 Strategies that are more cautious, by providing a wide berth to upcom-
ing pedestrians, adjust the AMR’s trajectory too much when avoiding
upcoming pedestrians. As a result, avoiding a hypothetical collision with
one pedestrian can put the AMR on a hypothetical collision course with
another.

b2 AMRs that exhibit optimistic behaviour use more complex models, with far
greater assumptions. If "optimistically" assuming pedestrians will cooperate
with the AMR, Section 2.4.2.2, by using the same collision avoidance strategy,
the AMR cannot move if pedestrians do not cooperate.

Similarly to the two types of pedestrian model in Section 3.1.2.1, a balance must be
made between the conservative and hesitant, and the assuming and optimistic navi-
gation strategies. To generate legible behaviour the considerate navigation strategy
must firstly always be moving, so that the pedestrians can infer the AMR’s inten-
tions. Secondly, the AMR should not move into scenario that assumes cooperation,
but can cooperate if the pedestrian chooses. Finally, if in an identical scenario the
pedestrian chooses not to cooperate, the AMR can just as easily plan a considerate
path that does not require any direct cooperation from the pedestrian.
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3.1.3 Considerate Navigation Strategy

Considerate navigation addresses these challenges by exploiting potential space within
a crowd. Rather than the "optimistic" assumption of Human-AMR cooperation, Sec-
tion 2.4.2.2, consideration does not assume the pedestrian will react at all. Cooper-
ation assumes that both parties will work together to adjust their paths so that they
do not physically collide at the intersection points of their trajectories. Conversely,
consideration is designed to exploit gaps in between pedestrians so that the pedes-
trian need to react at all, but still produce similar behaviour. This is reflected in
the newly proposed "Interactive Robot-Pedestrian Navigation", Table 2.5, for which
considerate path planning is level 8, whilst "optimistic" cooperation would be level 9.

3.1.3.1 Pedestrians

When the pedestrian movement model is designed in Section 3.2, it will represent a
pedestrian’s walk, therefore only the x and y dimensions will be used. The model
environment will be represented by a 2D Euclidean plane, assuming the pedestrians’
walking surface has a flat topography

(x× y) ∈ R2 (3.1)

The central position of each pedestrian is represented using Cartesian coordinates,
(xp, yp). The dimension of each pedestrian will be represented by a geometric circle
with a radii of their largest cross-section, rp,

(x− xp)2 + (y − yp)2 = r2
p

Following the assumptions of how to physically represent pedestrians means that
path planning strategies can now be devised.

3.1.3.2 Considerate Path Planning

Empirical studies of pedestrian collision avoidance, Section 2.3.3.1, show that even
if one does not react to the other, the same collision avoidance strategy occurs as
when both can react: one pedestrian will adjust their trajectory and move behind
the other. This slight readjustment of their trajectory avoids the hypothetical colli-
sion without negatively affecting their overall path efficiency. Utilising this strategy,
the CPP can plot smooth paths around multiple pedestrians in a crowd without
assuming cooperation. By plotting entire paths that reflect the CNS over a predic-
tion time-horizon, the AMR can move towards areas where gaps between passing
pedestrians are likely to occur, even in a high density crowd. As the CPP will not
rely on cooperation, considerate path planning will reduce potential path conflict
between pedestrians and the AMR. However, if the pedestrian does choose to react,
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implicit cooperation would occur regardless as a gap will be made available for the
CPP to exploit through the design of an appropriate pedestrian model.

3.2 Designing a Pedestrian Movement Model

The freedom of a pedestrian allows them to alter their speed, direction, and be-
haviour almost instantly [239]. However, many current pedestrian models assume
a priori knowledge of each pedestrians goal in order to generate more predictable
behaviour, Section 2.3.2. Theoretically all pedestrians could begin to move in any di-
rection at their maximum speed in a moment. If this was accounted for in movement
models the model’s prediction would guarantee to cover the pedestrians’ future po-
sitions, however the "uncertainty explosion" [69] could easily result in the FRP. Any
currently available space would become too costly to move through as the prediction
time-horizon grew.

To restrict the uncertainty in predictions, pedestrian behaviour is often modelled
as a Markov process with various ‘hidden-layers’ added to more easily predict their
behaviour. However, the prediction of random pedestrians in unrestricted environ-
ments, and without a priori goal knowledge, can only be made on what is currently
observed. This makes them Markovian [63], as the probability of a pedestrian mov-
ing to another position only depends on their present state, as this includes data
from all previous states. The prediction is therefore applied using their currently
observed velocities. The result is a linear dynamic system commonly known as the
constant velocity model (CVM). Considerate paths are achievable when using the
much simpler CVM, as microscopic agent based movements are dominated by short
time-horizons, and crowds are partially stochastic [240]. Therefore, sophisticated
models are not required since displacements are so small that linear extrapolation
is sufficient [14]. To evaluate this claim a dataset of real-life pedestrian trajectories
is analysed in order to establish how any deviations from the CVM can be embraced
by the model.

3.2.1 Pedestrian Movement Analysis

In order to effectivly generate a model that describes real-life pedestrian motion, an
analysis of how a pedetrian’s velocity changes over time is made. The BIWI Walking
Pedestrians dataset [14] is a manually annotated .txt file of pedestrian positions,
Fig. 3.1 and Table 3.1, obtained from a video recording made from the top floor of
the ETH main building in Zurich, which covers pedestrians moving around outside
as they enter and leave the building, Fig. 3.2a. The video is 8 minutes and 38
seconds long, and contains a total of 367 pedestrians travelling a velocity range of
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Fig. 3.1 Pedestrian
trajectories over first
25 time-frames of the
dataset.

frame # ID Px Py Vx Vy

780 1 8.457 3.588 1.672 0.17630
786 1 9.126 3.659 1.663 0.32670
792 1 9.787 3.849 1.683 0.37110
798 1 10.470 3.955 1.599 0.26480

804 1 11.070 4.061 1.575 0.45640
2 13.020 5.783 −2.324 −0.07661
1 11.730 4.321 1.644 0.54440810 2 12.090 5.752 −1.589 −0.06597

816 1 12.380 4.497 1.624 0.44060
2 11.750 5.730 −1.141 0.10540

...
...

...
...

...
...

Table 3.1 Pedestrian data for the first 7 time-frames of the
video, stored in a .txt file.

(a) (b)

Fig. 3.2 Visualisation of the BIWI Walking Pedestrians dataset [14]. (a) All pedes-
trian trajectories within the dataset. (b) Pedestrian velocity distribution of the
dataset, with a mean velocity of 1.34ms−1.

0 − 2.84ms−1, µ = 1.34ms−1, Fig. 3.2b, over an average distance of 10.4m. The
frame-rate of the video file is 2.5Hz, with pedestrian positions recorded every 0.4s.
The dataset provides the following variations in pedestrian movement:

c1 Bidirectional Traffic: This ranges from two pedestrians moving in either
the same, or alternating, directions.

c2 Various crowd densities: These range from single pedestrians, to very large
groups of pedestrians.

The data will be evaluated over a prediction time-horizon of 1 ≤ T ≤ 10, which
would be a real-time span in seconds, s, of 0.4 ≤ s ≤ 4. Therefore, the model is
evaluated against all pedestrians that have their positions recorded in over 10 or
more consecutive frames, f to f + 10.

As linear extrapolation of movement is sufficient [14] the initial assumption is
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that the pedestrian model is based upon the CVM. Therefore, the analysis will
be of how velocities of the pedestrians in the dataset change between each time-
frame, Fig. 3.3. The speed and trajectory changes, Figs. 3.3a and 3.3c, can both
be fitted with a Gaussian distribution, which conforms to the model’s assumption.
The 2D distribution results in an ellipse with semi-major and semi-minor axes the
same as the covariances of their respective distributions, a = 0.296ms−1 and b =
0.249ms−1 respectively, highlighting that changes in speed occur slightly more than
trajectory changes, which may be due to pedestrians not crossing in front of each
other in the dataset. The mean of both distributions would be expected to be zero,
however as multiple pedestrians converge on a single doorway they would need to
slow down when entering the building, Fig. 3.2a, and so the mean speed change is
marginally negative and the resultant ellipse off centre at (−3.78×10−1ms−2,−2.50×
10−3ms−1).

The Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) in Matlab is
designed to interpolate all data points. Therefore, a negative skew develops for speed
changes, Fig. 3.3a, due to pedestrians that have suddenly stopped and the resulting
large negative velocity changes. These extreme outliers are insignificant in changing
the overall Gaussian distribution of the data, however it does show that pedestrians
will randomly stop on occasion. This initial evaluation reinforces elongating the
uncertainty ellipses from the pedestrians’ start positions in order to cover sudden
stops in movement. Using a PCHIP to interpolate all trajectory deviations, Fig. 3.3c,
a skew occurs to the right which may suggest a minor preference for pedestrians to
cross paths of the right-hand side, although not enough to influence the design of the
model. However, like the speed deviations these outliers are not significant enough
to affect the overall Gaussian distribution.

3.2.2 Spatio-temporal Representation

The pedestrian’s current velocity, vp, is also calculated by observing them at two
consecutive instances in time. The velocity of the pedestrian can then be easily
found by comparing their current position at frame f to their position in the previous
frame, f − 1

vp =
√

[xp(f)− xp(f − 1)]2 + [yp(f)− yp(f − 1)]2 (3.2)

The prediction made for the future position of a pedestrian is made in two
dimensions, whilst the CVM is a one-dimensional model. Due to this, the CVM can
become inaccurate faster if the pedestrian makes any lateral trajectory deviations
that occur orthogonally to their velocity.
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(a)

(b) (c)

Fig. 3.3 Analysis of the pedestrian velocity deviations within the BIWI Walking
Pedestrians dataset [14], from consecutive time-frames. (a) The distribution of speed
deviations can be modelled as Gaussian. (b) The change in velocity of each pedes-
trian in consecutive time-frames. The two-dimensional distribution generates an
ellipse that supports the use of an uncertainty ellipse, Section 3.2.3, to contain the
pedestrians’ potential movements. (c) The distribution of trajectory deviations can
be modelled as Gaussian.
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The position of a pedestrian in the future, (x′
p, y′

p), can then be calculated

x′
p = [xp(f)− xp(f − 1)] t (3.3)

y′
p = [yp(f)− yp(f − 1)] t

where t is the time-step along the prediction time-horizon, t ≤ T .

To also account for random sudden stopping of pedestrians all the space along
the pedestrian’s trajectory can be considered uncertain, from the pedestrian’s start
position to the CVM prediction at t. Other microscopic models attempt to either be
very accurate and make their prediction at only one point, Section 2.3.2.3, or produce
a likelihood distribution of potential trajectories from their current position to their
predicted goal, Section 2.3.2.4. This model embraces the uncertainty by covering
the potential area the pedestrians could have moved to within a set prediction time-
horizon, and marry the benefits of the accuracy of the exact prediction with covering
of inaccuracy with the distros.

A estimation of a pedestrian’s position can be made that will encompass the
prediction using a confidence interval to include velocity and lateral prediction errors,
assumed to be a normal distribution, based on the observations in Section 7.2. The
Gaussian distribution is an isocontour of an ellipse, and when mapped over two
perpendicular dimensions it creates an elliptical confidence interval, Fig. 3.4a, that
will more likely contain pedestrian’s position at any time-step along the prediction
time-horizon.

As an ellipse, Fig. 3.4b, is defined as a quartic, it satisfies the implicit equa-
tion [241]:

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (3.4)

providing
B2 − 4AC < 0.

The general equations coefficients are defined using the ellipse’s semi-major axis, a,
semi-minor axis, b, centre point, xe, ye, and angle of rotation, θe, as:

A = a2(sin θe)2 + b2(cos θe)2

B = 2(b2 − a2) sin θe cos θe

C = a2(cos θe)2 + b2(sin θe)2

D = −2Axe −Bye

E = −Bxe − 2Cye

F = Axe
2 + Bxeye + Cye

2 − a2b2
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(a) (b)

Fig. 3.4 (a) Pedestrians may deviate laterally (through trajectory change) and lon-
gitudinally (through speed change) from their current velocity, with a Gaussian
distribution. A Gaussian distribution is an isocontour of an ellipse, and so a two-
dimensional Gaussian distributed multivariate system would forms an elliptical prob-
ability range. This ellipse represents where the pedestrian may have moved to, and
is the initial stage of the novel uncertainty ellipse. (b) The resulting ellipse is ori-
entated along the original pedestrian’s velocity, θe, with the centre, (xe, ye), at the
pedestrian’s observed location. The semi-major axis, a, represents speed fluctuation,
and the semi-minor axis, b, represents trajectory deviations.

where
a > b, (xe, ye) ∈ R2, 0 ≤ θe < 2π.

For each pedestrian’s uncertainty ellipse, Fig. 3.5a, θe remains constant based on
the initially calculated velocity of the pedestrian, Eq. (3.2). (xe, ye) is dictated by a
ratio of between the pedestrian’s start position, (xp, yp), at t = 0 and their predicted
position, (x′

p, y′
p), at t ≤ T , Eq. (3.3). The semi-major, a, and semi-minor, b, axes

will be defined by the confidence of containing all the uncertainty, due to statistical
deviations, the pedestrian may make from the CVM when t ≤ T .

3.2.3 Calculating Uncertainty

Observed through empirical data the lateral trajectory deviations of pedestrians are
greater than their velocity deviations, Fig. 3.3. The uncertainty of the CVM will be
embraced and confidently confined to the uncertainty ellipse, allowing paths around
the pedestrians to be planned. The dimensions of the ellipse are modified by both
the statistical walking deviations of the individual pedestrian [160], as well as the
proximity of other pedestrians, based on standard proxemics, Table 2.4. These will
either increase or decrease the size of the ellipse’s axes based on four conditions:
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d1 Increase the semi-major axial length, a, based on the average walking speed
of the pedestrian

d2 Increase the semi-minor axial length, b, based on trajectory deviations

d3 Decrease semi-minor axis length on the side another pedestrian is too close

d4 Increase semi-minor axis length on the opposite side another pedestrian is too
close

The modification of the ellipse due to these factors can result in a multivariate split
Gaussian distribution of 2-dimensions along the semi-major axis, due to differeing
left and right trajectory deviation predictions. This will form an uncertainty ellipse
designed to encompass the possible locations of where the agents could be at a given
future time-step, Fig. 3.5b. As pedestrians walk in a forward motion, a velocity
model can be justified over a short time horizon. The uncertainty ellipse will adjust
for any factors involving velocity and lateral movement, providing a solid model
for any dynamic pedestrian’s motion. The uncertainty ellipse is calculated using
a 2-DoF Chi-square distribution [242] in order to confine these errors using 90%
confidence interval, Figs. 3.5c and 3.5d, over the prediction time-horizon.

3.2.3.1 Reducing Uncertainty

Removing uncertainty completely is impossible [62]. However, uncertainty is one of
the most commonly occurring problems in robotic path planning within a dynamic
environment [243], and to prevent collisions the three following sources of uncertainty
should be considered [244]:

e1 The robot’s own dynamics

e2 The environment’s future conditions and positions of objects

e3 Reasoning of the robot’s motion over an infinite time-horizon, or at least a
time-horizon required to reach the goal

One of the biggest contributors towards increasing collision potential is unreliable
predictions of where other dynamic agents may be in the future (Item e2). A predic-
tion time-horizon (Item e3) can be used to estimate their future positions though the
appropriate model, however for a microscopic agent-based crowd an infinite time-
horizon will undoubtedly contribute towards an uncertianty explosion. By limiting
the predictive time-horizon to a reasonable length, a large enough window can occur
for a considerate path to be plotted around the uncertainty ellipses.

The prediction time-horizon, T , is therefore limited due to:

f1 The Markovian nature of pedestrians [63], where by predictions can only be
made based on the pedestrian’s current state. Therefore, predictions too far
in the future would be assuming a continuation of past states.
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(a) (b)

(c) (d)

Fig. 3.5 Demonstration of how the uncertainty ellipse of a dynamic pedestrian is cal-
culated using their observed velocity, Pv. (a) The ellipse elongates along the same
trajectory, Pθ, as the pedestrian from its initial position, (Px, Py). This encompasses
the deviations of velocity, +∆v, and of lateral movement, +∆l and +∆r, the pedes-
trian may make. This will dictate the semi-major, a, and semi-minor, b, axes of the
ellipse. If the pedestrian’s velocity is zero the ellipse degenerates to a circle, with
radius Pr of a pedestrians shoulder width: 2Pr, representing the pedestrian’s posi-
tion. (b) Visualisation of how the uncertainty ellipse covers positions of where the
pedestrian starts (green circle at t = 0), and where they may be in the future (blue
circles at t > 0). The arrow represents a CVM (measured from the centre points
of the pedestrian’s circle), with a purple circle representing the CVM at t > 0.
(c-d) Examples of an uncertainty ellipse with a split-Gaussian trajectory deviation,
set over a prediction time-horizon of T = 5. (c) Using the maximum deviations at
each time-step, only a small portion of the left deviation prediction extend outside
of the ellipse at the last time-step. (d) Using a random deviation occurring at each
time-step, at the end of the prediction time-horizon all movements of the pedestrian
remain inside the ellipse.
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f2 The growing uncertainty accumulating with each consecutive prediction, Sec-
tion 3.2.3.1. Therefore, an "uncertainty explosion" can be avoided.

f3 Pedestrian’s only react to a hypothetical collision upto 3s before it occurs,
Section 2.3.3.1. Therefore, predicting what a pedestrian may do on a larger
time-scale is redundant.

f4 Confirms the generalisation that pedestrians move directly towards their goal [2,
245]. Therefore, at the current moment a short extrapolation of a pedestrian’s
velocity is a reasonable assumption.

With a limited prediction-time-horizon, the model must attempt to contain the
uncertainty as best possible. Making the predictions of where each pedestrian will
be as confident possible, given the statistical likelihood of each pedestrian deviating
from the CVM.

3.2.3.2 Statistical Uncertainty

Both the speed changes and trajectory deviations are modelled using statistical
data, formed from the normal distribution of sampled pedestrian walking speeds
when walking along sidewalks, wide sidewalks, and precincts [160], Fig. 3.6a. The
range between the distribution peaks, µmin to µmax, is considered the uncertainty
range of a pedestrian’s velocity. However, the speed of a pedestrian can typically
vary from 0 → 2ms−1 [246], and the uncertainty would differ for each pedestrian’s
own walking speed preference. Although the aim of the model is to embrace the
uncertainty, by increasing the uncertainty margin to cover all walking speeds (0→
2ms−1) the resultant uncertainty ellipses would make the model environment become
overcrowded, similar to an "uncertainty explosion". The uncertainty margin, u, is
therefore calculated based on the pedestrian’s observed velocity, vp, in relation to the
aforementioned walking speed distributions. This thesis postulates that the amount
of uncertainty to add can be confined to three separate scenarios:

g1 If the pedestrian is static, vp = 0, then:

g1.1 No uncertainty is added.
g1.2 Uncertainty ellipse degenerates to a circle.

g2 If the pedestrian is moving below the minimum mean, 0 < vp < µmin, then:

g2.1 Rate of change of uncertainty increases.
g2.2 Pedestrians more likely to speed up to the minimum level.
g2.3 Pedestrians more easily change direction.

g3 If the pedestrian is moving above the minimum mean, µmin ≤ vp < 2ms−1,
then:

g3.1 Deviation uncertainty is minimal.
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g3.2 Pedestrians less likely to speed up any more, as they approach the maxi-
mum.

g3.3 Pedestrians less likely to change direction.

This will create an ellipse that allows a higher uncertainty margin to occur if the
pedestrian is below the average speed, as a change in speed and direction could be
made much easier at lower speeds.

To ascertain real values of uncertainty, u, when vp = µmin ⇒ u = µmax −
µmin (the aforementioned pedestrians’ velocity uncertainty range). To describe this
mathematically and create the model, if vp ≤ µmin the uncertainty is be calculated
using

(x− x0)2

a2 + y2

b2 = 1 (3.5)

whilst, if vp ≥ µmin the uncertainty is calculated using

y =
(

1√
2πσ2

exp
{
−
[

(x− µ)2

2σ2

]}
+ vp(x)

)
b

max(y) (3.6)

where for both Eqs. (3.5) and (3.6)

x0 = µmin

a = µmin

b = µmax − µmin

µ = µmin

σ = (max(vp)− µmin)/3

y = u + vp

Under the given conditions Eq. (3.5) describes the arc for a quarter of a translated
canonical ellipse, whilst Eq. (3.6) is the RHS of a translated and normalised Gaussian
distribution with a 3-sigma rule, Fig. 3.6a. Eq. (3.5) is designed to more rapidly
increase the uncertainty that must be added, Item g2, whilst Eq. (3.6) is designed
to conform with standard pedestrian walking distribution, Item g3.

The uncertainty calculated thus far is based on velocity uncertainty, uv = u,
however both trajectory and speed deviations will be different, Fig. 3.3. As trajectory
deviations are assumed to be more likely when vp < µmin, the associated trajectory
uncertainty, uθ, is ratio of uv based on vp. Therefore, if vp ≤ µmin

uθ = uv

[
1− vp − µmin

µmin

]
otherwise if vp ≥ µmin

uθ = uv
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The semi-major, a, and semi-minor, b, axes of an uncertainty ellipse are defined by
the current time-step, t, along the prediction time-horizon, T , as well as the initial
radius of the pedestrian, rp, and additional buffer zone, BZ, that surrounds the
ellipse. Therefore, they are defined as:

a = rp + (vp + uv + bz)t

b = rp + (uθ + bz)t

Fig. 3.6b visualises the velocity uncertainty, uv, added to the semi-major axis, a,
and the trajectory uncertainty, uθ, added to the semi-minor axis, b, for the entire
pedestrian velocity range, 0 ≤ vp ≤ 2ms−1. Examples of final uncertainty ellipses
are provided in Figs. 3.6c to 3.6g, over different prediction time-horizons, {T ∈
Z | 1 ≤ T ≤ 10}.

3.2.3.3 Visual Proxemics

Humans favour distinct spatial zones that dictate how close they prefer to be to
others, Table 2.4 in Section 2.3.1. However, a pedestrian can only respond to a
violation of this space if they can see the violator. Therefore, a proxemics field of
view (PFoV), Fig. 3.7, is used to modify the uncertainty ellipse of a pedestrian by
evaluating the visible proximity of other pedestrians. The PFoV surrounds a pedes-
trian’s uncertainty ellipse, combining six visual zones with the preferred proxemics
of pedestrians. The shape of the PFoV will be anisotropic and extends father in
front of a person [247] where the pedestrian’s gaze focuses, as the situation in front
of a pedestrian has a larger impact on their behaviour than things happening behind
then [248].

Any other uncertainty ellipses that intersect the PFoV, as the positions of mul-
tiple pedestrians are predicted simultaneously, will adjust the lateral trajectory un-
certainty by modifying the semi-minor axis of the uncertainty ellipse for that pedes-
trian. Adjusting the ellipse through this method is representative of the pedestrian
marginally adjusting their trajectory if a collision is soon approaching, as observed
in empirical studies, Section 2.3.3.1.

The six zones are reflected along the semi-major axis, so they occur on both the
right and left of the ellipse with 12 areas in total, Table 3.2. Each area combines an
aspect of both the spatial area around the ellipse, as well as the pedestrian’s ability
to see other pedestrians. A weighting system has been devised based on what form
of collision could occur, ranging from insignificant (1), where little action need be
taken, to very significant (6), where a trajectory change is likely. A simple cross-
section between the ellipse and the PFoV polygons for each zone is taken when an
intersection occurs, with the assigned weighting factor applied. If another ellipse
intersects the outer layer of the PFoV (zones 4,10/6,12) the semi-minor axis on
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Fig. 3.7 Visualisation of the PFoV set-up placed around all currently visible pedes-
trians. Generated from a combination of the "Human-Human spatial zones" criteria,
Table 2.4 in Section 2.3.1, and the visual perception range of pedestrians. Defini-
tion of the spatial zones within the PFoV, displayed on top red half, and the visual
components of the field, displayed on the bottom blue half.

that side will decrease, as the pedestrian is less likely to move towards a potential
collision. If the inner of the PFoV (zones 3,9/5,11) is penetrated, the semi-axis of
that side reduces, whilst the axis on the opposite side increases, as the pedestrian
may potentially move away from an upcoming collision. If the actual uncertainty
ellipse is intersected (zones 1,7/2,8) both semi-minor axes increase, as the pedestrian
may move either side to avoid a potential collision, as there is likely to be a direct
collision.

A final uncertainty ellipse is generated that: 1) Predicts the potential locations
of pedestrians in the near future; 2) Covers any statistical deviations a pedestrian
may make over that time-frame; and 3) Modifies the trajectory uncertainty of the
pedestrian if their proxemics is violated, so that the ellipse can account for any
potential trajectory changes the pedestrian may make to avoid a collision. Now that
the pedestrian model has predicted where each pedestrian may move, the CPP can
exploit any gaps in between these ellipses and plan considerate paths through the
crowd.

3.3 The Considerate Path Planner

To behave considerately, the CNS must direct an AMR along paths that fulfil the
thesis’ aims and objectives, set out in Section 1.3.2. The CNS is capable of using
whatever environmental mapping or global path planning search techniques previ-
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# Zones Weight Justification of WeightingSpatial Visual (1-6)

1,7 Rear
Intersection

Rear
Intersection 5

Intersecting the uncertainty
ellipse, however SFoV relies on
pedestrian’s perception. From
behind the collision would not
be visible; requires physical
contact.

2,8 Front
Intersection

Front
Intersection 6

Exactly where the pedestrian
should be, causing a direct
collision; highest weighting.

3,9 Close /
Intimate

Immediate
Vision 4

Directly in front of pedestrian;
would want to move around
obstacle.

4,10 Personal /
Social

Extended
Vision 3

Ahead of pedestrian; not close
enough to be an immediate
issue, only potential.

5,11 Side Close Head
Movement 2

Roughly perpendicular to the
pedestrian; could see someone
next to them and may want to
move slightly away.

6,12 Side
Personal

Periphery
Vision 1

No collision path or any
proximity issue; a precautionary
measure to be ‘aware’ of
something next to them.

Table 3.2 The impact weights attributed to each area of the PFoV, Fig. 3.7. The
further another pedestrian enters the PFoV, the greater the weight becomes which
readjusts the semi-minor axes of the uncertainty ellipse.
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ously reviewed in Section 2.2.1 and Section 2.2.2.2, respectively. The novelty of
the CPP lies in the consideration weights, presented at the end of Section 3.3.4,
which allows the chosen search algorithm to plan considerate paths by evaluating
the current search position in much the same way as a standard heuristic would,
Eq. (2.1).

For the particular implementation of the CNS in this thesis, additional measures
are included so that the CPP can plan paths that help assist in avoiding collisions
with pedestrians. This is because prediction models cannot guarantee complete
accuracy [62], and so these extra elements help account for model errors. The search
uses the consideration weights and an AMR model to evaluate the current path at
each open search node, to predict how an AMR may interact with pedestrians in
the future.

The VD-VG is used in order to counteract the pedestrian model prediction errors.
The VD element of the roadmap will limit the location of the search to distances
that are equally the furthest distance from all neighbouring uncertainty ellipses
simultaneously, helping to avoid path collisions with pedestrians. At the same time,
the VG element will allow the paths to be planned that move more directly in
between pedestrians, if required.

3.3.1 Modelling the Autonomous Mobile Robot

The elements of the robot model, Fig. 3.8, have all been selected to share similar
attributes with the pedestrian model. The movement simplifies the robot’s move-
ment to be holonomic, where controllable degrees of freedom equals total degrees
of freedom. As the robot operates within a 2-dimensional space the mechanics of
motion only require the robot position and velocity. Comparable to the pedestrian
model, the robot will move along a velocity vector with instantaneous acceleration.
The robot model is defined as follows:

h1 Spatial Representation:

h1.1 Cartesian coordinates, (xr, yr), for the position of the AMR’s centre
within the modelled environment

h1.2 Dimension of the AMR to be represented as a circle, with radius rr

(x− xr)2 + (y − yr)2 = r2
r (3.7)

h1.3 Current bearing of the AMR, θr, in relation to the x-axis

h2 Forward Kinematics:

h2.1 Velocity , vr, with axial components vrx and vry over the 2 DoF
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vrx = vrcosθr (3.8)
vry = vrsinθr

h3 Input Sensors:

h3.1 The AMR’s field of view (FoV) has both a distance range, rfov, from
the AMR’s centre, and scanning range, θfov, equally spaced around the
AMR’s current bearing

FoV scan = θr ±
θfov

2 (3.9)

FoV area = rfov
2θfov

2 (3.10)

h3.2 A uniform exclusion zone, EZ, is added around the robot . This added
for the safety of pedestrians in order to prevent direct collisions, by im-
mediately stopping the AMR if a pedestrian enters it

(xr − xp)2 + (yr − yp)2 ≤ (rr + EZ)2 + rp
2 (3.11)

The robot model has been designed to have a windowed FoV, Item h3.1. This
more accurately replicates input sensors such as laser range-finders. Also, due to
the dynamic nature of the pedestrian environment, predictions made outside the
window will be unnecessary due to the increasing unreliability of the pedestrian
model further into the future.

3.3.2 Environmental Mapping

A roadmap, Section 2.2.1.2, has been selected as the form of environmental repre-
sentation, due to the customisation the resultant node network can provide [119]. As
the safety of the pedestrians is paramount, the Voronoi diagram (VD), Fig. 2.5a, is
chosen for the basic roadmap structure. The VD guarantees a roadmap of connected
nodes that provide a maximum distance safety margin between objects, Fig. 3.9a,
described by the vertex point (VP) in the centre of an Apollonius circle between 3
neighbouring objects and centre point of the minimum distance (MD) between each
of the neighbouring ellipses. Connecting these describing points will generate an
approximated VD of vectors, Fig. 3.9b, allowing the search algorithm to plan paths
that keep furthest away from any ellipses and potential collisions. Unfortunately,
the VD does not generate very direct paths when moving between objects, and so
the visibility graph (VG), Fig. 2.5b, is also used. The VG generates a roadmap
of connected nodes that ensures the most direct path can be taken when moving



88 Developing the Considerate Path Planner

Fig. 3.8 The model of the AMR. The robot’s spatial representation is modelled using
a circle with centre (Rx, Ry) and radii Rr. Its trajectory, Rθ, is orientated relative
to the x-axis, along which its velocity, Rv, is directed. The FoV the AMR uses to
detect objects within has a distance range, Rfov, beginning from the centre of the
AMR with a angular range, FoV θ, equally spaced either side of its front. The buffer
zone, BZ, surrounds the AMR as a safety precaution which stops the AMR moving
if a pedestrian enters it.
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(a) (b) (c) (d)

Fig. 3.9 Visualisation of the construction of the Euclidean vector roadmap. The
blue circle is the Apollonius circle, which has its centre at the Voronoi vertex point.
The orange lines are the MD between neighbouring ellipses. (a) The green nodes
of the VP and MDs are the connectivity graph, from which the roadmap is formed.
(b) The yellow lines are the approximated VD vectors. (c) The purple lines are the
shortcuts that occur between MDs, in order to create a more natural flow. (d) The
complete VD-VG roadmap of all interconnected nodes.

between objects, allowing more efficient paths to be planned. These connections
assist in aligning the search more with the direction of the crowd. Shortcuts via MD
connections are made that can jump between ellipses when planing paths, Fig. 3.9c,
not confining paths that detour along the VD connections. Therefore, for the CPP
to plan paths that are both safe and efficient a hybrid roadmap between the VD
and VG (VD-VG) has been developed, Fig. 3.9d.

3.3.2.1 Modifying the Visibility Graph for Closed Curve Conic Sections

A traditional VG roadmap is formed between multiple 2D polygons, by evaluating if
there is a direct line of sight between each polygon’s corners and any other polygon’s
corners. Unfortunately, as a circle or ellipse is a closed curve conic section, there are
no corner nodes to be connected between each shape. However, there are 4 distinct
tangent points on each shape that can be connected to one another, Fig. 3.10a. These
provide the most direct connections between objects, either moving alongside (non-
intersecting) or crossing between (intersecting) them. However, these connections
not only result in paths that are too close to the pedestrians, the tangent points that
create the nodes are unique for each conic sections pair, and therefore each node is
not guaranteed to connect to another.

To ensure nodes can connect to one another, an MD connection is made between
two neighbouring ellipses. Two nodes close to both ellipses are created along this
MD, Fig. 3.10b, which is also a describing point of the VD. By observing the resul-
tant node network, Fig. 3.10c, connections can be made that represent similar VG
connections, as seen in Fig. 3.10a, when travelling between ellipses. The result is a
large interconnected network that requires a large search in order to plan any path.
However, this approximated VG (aVG) can now have its node network reduced and
be combined with the VD.
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(a)

(b) (c)

Fig. 3.10 A demonstration of modifying a visibility graph of points to use with
ellipses. (a) Demonstration of up to four points connecting one ellipse to another,
which are tangential to both. Those connections directly visible from one ellipse to
another are comparable to traditional visibility graph connections. Multiple ellipses
are unlikely to share the same points with other ellipses, making a connected node
network not possible. (b) Proposed node network for the visibility graph of ellipses,
formed from the unobstructed connections that form the minimum distance between
ellipses. (c) A standard visibility graph can be generated from the proposed node
network in (b). The network produces many connections that are similar to those
seen in (a).
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3.3.2.2 Hybrid Voronoi Diagram-Visibility Graph Roadmap (VD-VG)

The aVG will have a lot of path connections, Fig. 3.10c, and provides a lot of
potential path diversity, which is beneficial in path planning [154] in order to evaluate
the potentials of different path possibilities, Section 2.4.2.1. Comparatively the VD,
Fig. 3.11a, provides more limited but very specific path connections that ensure
safe paths, by connecting vertex points with their associated MD connections. The
aVG uses the points near the ends of the MDs, whilst the VD uses the MD’s mid-
points. If the aVG used these mid-point connections instead, Fig. 3.11b, it would
still create connections that passed between all neighbouring ellipses, but with less
path diversity and a larger clearance of the ellipses. However, by only using the
MD mid-points the aVG can be fused with the VD to create created the VD-VG
roadmap hybrid, Fig. 3.11c, which would possess the safety of the VD and path
efficiency of the VG.

For whatever path finding search algorithm to be used, Section 2.2.2.2, it would
be able to plan a route that could mix both elements of the VD-VG and change
between safety and path efficiently at different moments along the overall path.
Figs. 3.11d to 3.11f highlight an example path through the VD element of the VD-
VG, from a start point at the bottom-left to three goals. Figs. 3.11g to 3.11i highlight
the VG element of the VD-VG for the same scenario. The effectiveness of the VD-
VG will be evaluated in Section 6.3 as an overall roadmap, as well as how effective
the VD and the VG elements are when used as separate roadmaps.

3.3.3 Search Algorithm

Choosing an appropriate environment model is very important for path planning
as it influences how the search algorithm is able to find a path to the goal [115].
As discussed in "World Perception" of the autonomy cycle, Section 2.1.1, the sen-
sor detection range limits how much of the environment can be detected, which
also limits how much of the environment can be searched for a path. The robot
model, Section 3.3.1, has been designed with a windowed FoV, which for a dynamic
environment is desirable as only what is within the FoV can be known for sure.

The windowed approach is beneficial at increasing search efficiency due to a
smaller search area. Commonly used search algorithms, Section 2.2.2.2, are heuris-
tic best-first searches such as A*. Variations of the A* algorithm have been de-
veloped for cooperative path planning [249] including "hierarchical" and "windowed
hierarchical" additions. These all have a priori knowledge of the other agents’ des-
tinations, which can be considered as a form of non-verbal communication and lead
to the assumption of cooperation. The cooperative windowed approach [249] limits
the search to a fixed depth specified by the current window and their results show
this has the highest destination arrival success rate. The benefits of this include the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3.11 Demonstration of how the Voronoi diagram of ellipses is combined with
the modified visibility graph for ellipses, to create the Voronoi diagram-visibility
graph roadmap. (a) A VD for ellipses that forms by connecting the vertex points
and minimum distance connections between neighbouring ellipses. (b) A modified
visibility graph for ellipses, Fig. 3.10c, which uses only one MD connection between
ellipses rather than two. This is the same point shared by the VD. (c) The VD-VG
formed from the original VD and the visible connections between the MDs in (b) (d-
h) Example of the different red paths that start from bottom-left and move through
the VD-VG to the 3 end points. (d-f) Demonstrates the VD paths possible. (g-
h) Demonstrates the VG paths possible. (i) Shows the missing VG connection that
was blocked by the ellipse on the left.
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sophistication of a global path planning technique, confined to a local vicinity.
As the CPP focuses on moving the AMR considerately, the search should be en-

couraged to explore the environment. A path that is not desirable at the beginning,
may be better overall come the end of the prediction time-horizon. The pedestrians
between the AMR’s sensor limits and the destination will be completely unknown.
Therefore, an A* search heuristic that is heavily influenced towards moving to the
goal does not benefit the path that the AMR may take. Rather the search should
explore every direction within the FoV equally, selecting the final path based in the
predicted interactions the AMR would have with pedestrians.

Therefore, a breadth-first Dijkstra’s algorithm with no search heuristic is prefer-
able to the best-first A* algorithm (as well as all other variants, Section 2.2.2.2).
Despite the fact heuristic searches are often much faster, a windowed Dijkstra’s al-
gorithm is best for global exploration of an unknown windowed environment. It will
search all of the area within the AMR’s FoV quickly without searching unnecessary
areas of the environment, which it will do in an unconstrained environment.

3.3.4 The Considerate Weights

The frontier of the windowed Dijsktra’s algorithm is a representation of all the po-
tential positions the AMR could be at a given moment. To plan a considerate path
the search is weighted with a resistance, Ω, that affects the speed of the search as it
moves along the VD-VG roadmap. Along the frontier of the search the model robot’s
dimensions are factored into the search as it is performed. This is to include the
impact the AMR may have on the pedestrians as it moves within the crowd. From
any point, p, within the Euclidean plane of the model environment Ω is calculated,
which predicts how considerate the AMR will be towards the surrounding pedestri-
ans from that point, Ω(p). The frontier of the search algorithm, S, moves along the
roadmap connections at the model robot’s maximum potential speed, max(vr), and
is slowed down based on Ω(p),

Sv(p) = max(vr)− f(Ω(p)) (3.12)

where Sv is the current speed at which S moves along a roadmap vector. A function
of Ω(p), covered later when implementing the algorithm in Section 5.2.1, therefore
reduces the speed at which the frontier travels along the roadmap. The resistance
is based on the relationships between the robot, R, described by:

i1 Position, Rx,y

i2 Radius, Rr

i3 Orientation, Rθ
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and the pedestrian, P , described by:

j1 Position, Px,y

j2 Radius, Pr

j3 Orientation, Pθ

j4 Velocity, Pv

Ω is calculated based on three separate elements, which include:

k1 Ωp - Euclidean proximity of the robot to neighbouring pedestrians

k2 Ωθ - Relative trajectory collision potential between robot and neighbouring
pedestrians

k3 Ωbz - Collision potential between robot and buffer zones that circle static
pedestrians

Ω = (αΩp × βΩθ) + γΩbz (3.13)

where α, β, γ are user defined weights.

3.3.4.1 Proximity Resistance, Ωp

Assessing the proximity of the robot to other pedestrians is an important factor
towards considerate movement for two reasons: 1) Moving too close to a dynamic
agent will increase the collision potential, as there will be less room to manoeuvre
away if the agent behaves unexpectedly; and 2) From a social point of view there are
certain distances that humans prefer to maintain between one another, which also
occurs between AMR’s and humans [218, 250]. Both of these will help to achieve
the objective of not increasing crowd congestion.

The resistance component for proximity, Ωp, is calculated based on the Euclidean
distance between the search and pedestrians. This concerns the desired spatial
ranges that surround people, Table 2.4, which will surround the entire uncertainty
ellipse, Fig. 3.12. The personal zone (PZ) has been selected for the robot to ideally
remain outside of, as it is assumed that the robot is not considered a "friend". If the
search is outside of the PZ, no resistance will be added. If the search enters the PZ
the Ωp will equal the distance to the PZ’s edge. If the search enters the uncertainty
ellipse Ωp will equal double the distance to the PZ’s edge. This is so the search can
incur an immediate penalty as the potential for a collision increases dramatically,
due to the model’s assumption that a pedestrian is inside the uncertainty ellipse.



3.3 The Considerate Path Planner 95

(a)

(b)

Fig. 3.12 Demonstration of how an AMR’s proximity to the uncertainty ellipse of a
pedestrian affects the related resistance, Ωp, due to the proxemics of the pedestrian’s
personal zone, Table 2.4. (a) The uncertainty ellipse is highlighted red and the
personal zone surrounding it in green. To measure the proximity of the AMR to
the ellipse the distance is taken from the AMR’s centre, and so the ellipse’s axes are
increased by the AMR’s radius, Section 3.3.1, to the red and green lines in order to
perform the calculations. (b) A visualisation of how the resultant resistance, Ωp, is
affected by the distance of the AMR to the uncertainty ellipse. If the AMR is inside
the green personal zone Ωp is calculated as the distance from the AMR to the ellipse
edge. If the AMR passes into the uncertainty ellipse Ωp is immediately doubled,
in order for the AMR to incur an immediate additional penalty. The uncertainty
ellipse is highlighted magenta, and the green and red ellipses in the horizontal plane
highlight the immediate increase of Ωp as the AMR enters the uncertainty ellipse.
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Zone Description Impact

Spatialr
Radius rr of robot
behind pedestrian

Collision potential rises as the robot begins to
intersect the rear of the ellipse

Rear Rear S-Ma axis of the
ellipse

Collision potential increases as pedestrian is
most likely in the front S-Ma axis of the
ellipse

Front Front S-Ma axis of the
ellipse

Maximum likelihood of a collision as most
likely area to collide with pedestrian

Spatialf
Radius rr of robot in
front of pedestrian

Area to avoid as much as a real collision, as
would be cutting directly in front of a
pedestrians trajectory

Velocity
The predicted
movement of the
pedestrian in the next ts

Collision potential decreases the further
ahead of the ellipse

Table 3.3 The five zones shown in Fig. 3.13a. The zones are used to calculate the
CoG, based on collision potential between robot and pedestrian.

3.3.4.2 Relative Trajectory Resistance, Ωθ

Assessing the relative trajectory between the robot and the agent will allow the CPP
to assess the impact of any upcoming potential collisions. The relative trajectory can
establish whether or not the search is moving in the same direction as the pedestrian.
By normalising the relative angle so that movement in the same direction is zero, and
movement in a head-on collision is one, the severity of a potential collision can be
established. For example, a path moving with the flow of a crowd would generate
minimal resistance, whilst a path moving against would generate a considerable
resistance. This will contribute towards achieving the objectives of, moving with
the flow of the crowd; and not cutting in front of pedestrian trajectories.

The resistance component for collision potential, Ωθ, is calculated based on the
relative trajectory and position of the search w.r.t. the pedestrian’s uncertainty
ellipse. There will always be a collision point between the trajectory of the model
robot, at the frontier of the search, and the pedestrian’s velocity line at cp. This
point then maps onto a collision likelihood profile (CLP), Fig. 3.13. The CLP is
divided into zones regarding factors that are likely to contribute towards different
forms of collision potential, Table 3.3. Where cp maps onto the CLP will determine
what kind of collision may occur, whilst the intersection angle, cθ, will establish the
intensity.

3.3.4.3 Buffer Zone Resistance, Ωbz
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(a)

(b)

(c)

Fig. 3.13 Demonstration of how the CLP is used to calculate the likelihood, and
severity, of a collision. (a) The CLP is outlined red, with five distinct regions along
the x-axis, Table 3.3, and a range 0 to 1 along the y-axis, f(CLP). The CoG is
calculated based on the intersection between the ellipse and the robot trajectories, ct,
and the AMR’s proximity, cp, calculating the CoG average from the area underneath
the CLP. The CoG will assess the likelihood of a potential collision, from least
likely (0) to most likely (1). The relative trajectory, θ, of the AMR to the ellipse
dictates the severity of the potential collision, by evaluating how direct a head-on
collision may be. It will quantify the impact level between robot and agent, which
ranges from head-on, θ = 180o (1), to moving-with, θ = 0 (0). Additional Spatial
areas are added to the rear and front of the ellipse, which correspond to the the
robot’s radius, to include how much of the AMR may collide. (b) An example
of the AMR moving towards a hypothetical collision with the rear of the ellipse,
with a CLP value of θ

180(ct + cp). (c) An example of the AMR moving away from a
hypothetical collision with the rear of the ellipse, with a CLP value of θ

180cp.
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As mentioned in Section 2.4.2.2, within a dynamic environment a path should always
be planned even if there are potential collision en route. This is achievable thus far
for the CPP as both Ωp and Ωθ only slow the search down, but do not stop it.
However, if pedestrians are stationary and the uncertainty ellipse degenerates to a
circle, this area should be avoided entirely due to the obvious risk of collision. These
are specific no-entry exclusion zones (EZ) that are also added around any points
where a collision has recently occurred as the AMR moves along in the real-world.
The latter is intended to avoid another collision again with the same pedestrian when
moving along the next planned path. Surrounding these EZs are buffer zones (BZ)
that attempt to discourage the search moving towards any EZ by increasing the
resistance it encounters, the closer and more directly it moves towards it.

The resistance component for the BZ, Ωbz, is calculated based on the position
and trajectory of the robot w.r.t. the EZ. Similarly to Ωp, the search must be
within a certain distance of the edge of the EZ for Ωbz to be calculated and is
dependent upon distance the search has entered the BZ, Fig. 3.16. The relative
angle, θbz, between the model robot at the frontier search and the center of the EZ,
is normalised. Therefore, when the robot directly faces the EZ θez = 1, and any
angle ± > 90◦ from the EZ θez = 0. This will help prevent the search colliding with
the EZ, as a path that moves away would incur less resistance.

3.4 Chapter Overview

This chapter has presented the requirements for developing a considerate path plan-
ning strategy. One of the key elements to path planning in a dynamic environment is
suitable modelling of the dynamic agents [55]. As pedestrians are agents, and agent-
based models are dominated by short time-horizons, the use of a CVM is justifiable
for short-term trajectory extrapolation. The uncertainty in the CVM predictions
can then be confidently calculated, so that the end prediction result becomes confi-
dent enough. Collisions can then be avoided, and the CPP can predict considerate
paths that will avoid all the potential positions of each pedestrian.

The direct movement of a pedestrian is dictated by what they can visually per-
ceive. Their Markov behaviour also means that a prediction of their future move-
ments can only be made on their current movement. The use of the CVM over a
limited time-horizon is reinforced by this, whilst the novel uncertainty ellipse sur-
rounding the pedestrian’s potential positions embraces the uncertainty. Applying
the ellipse to all individual pedestrians will cover their walking deviations, based on
their current velocity, and their adjustment for collisions due to the proximity of
other pedestrians within their FoVs, based on empirical proxemics.

The considerate weights are dynamically added alter the speed of the windowed
Dijkstra’s algorithm in order to search for a suitable path within the AMR’s FoV.
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Fig. 3.16 Visualisation of how the buffer zone (BZ) that surrounds an exclusion
zone (EZ) affects resistance, Ωez, with four example robots, R1 to R4. Only if the
current trajectory of the robot will cause a potential collision will it affect Ωez. R1 is
outside the BZ (d2 > b) therefore Ωez = 0. R2 is moving towards the BZ (θ2 < 90o),
however it is too far away to generate a resistance. R3 is inside the BZ (d3 < b),
however it is moving away (θ3 > 90o), therefore there is no collision potential. R4
is inside the BZ (d4 < b) and is moving towards (θ3 < 90o), therefore Ωez = θ4

d4
, as a

collision is more likely to occur. The BF is half the radius of the robot for a static
EZ, and the diameter of the entire robot when a collision EZ.
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This modifies the search to include how the AMR may interact with pedestrians
through proximity and relative trajectory between them both. The next chapter
will present the algorithmic implementation of the VD-VG roadmap for ellipses.



Chapter 4

A Novel Voronoi
Diagram-Visibility Graph
Hybrid Roadmap

"Nothing behind me, everything ahead of me, as is ever so on the road."

— Jack Kerouac, On the Road

T
he roadmap to be used by the considerate path planner (CPP) is a Voronoi
diagram-visibility graph (VD-VG) hybrid. As established in Section 3.3.2,
a Voronoi diagram (VD) provides an excellent fundamental roadmap for

the CPP, as it creates a roadmap that will always be the safest distance from any
object, whilst the visibility graph simultaneously generates more direct connections
of many shared nodes. The VD-VG uses the 2 describing points of the VD, the vertex
points (VP) and the minimum distances (MD) between neighbouring objects.

The pedestrian movement model developed in Section 3.2 represents each dy-
namic pedestrian using a uncertainty ellipse. However, a true VD of fully-intersecting
ellipses has currently not been solved, only a VD of partially-intersecting ellipses [251]
has been obtained. To combat this problem, approximations of the pedestrians’ un-
certainty ellipses are formed using tangentially aligned circles, hereby referred to
as pseudo-ellipses (PE). Using the VD of circles sweepline algorithm [72], a novel
modification is made that can generate the VD of PEs. The VD of these pseudo-
ellipses (PE) generates a very similar VD to the original ellipses, using an algorithm
with logarithmic time complexity.

This chapter begins with the novel adaptation of the VD of circles, Section 4.1,
used as a precursor to approximate the VD of real ellipses later. As the VD of
PEs will be only an approximation of the VD of ellipses, some VPs will not be
discovered. To try and discover these missing VPs, estimation methods are then
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used, Section 4.2, in order to increase the level of completeness when forming the
VD of real ellipses. Only a few iterations are required to find the VPs of real ellipses
to within a high degree of accuracy. The VD of real ellipses is then approximated,
Section 4.3, by converging the VPs of PEs onto the locations of the VPs of the
uncertainty ellipses. The associated MDs are then asymptotically converged upon
from the newly discovered ellipses’ VPs.

Finally, using the uncertainty ellipses’ VP and MD describing points of the asso-
ciated VD, the VD-VG roadmap is constructed, Section 4.4. The roadmap will be
confined to within the autonomous mobile robot’s (AMRs) field of view (FoV). As
covered by the model robot in Section 3.3.1, a roadmap within a dynamic environ-
ment should only be constructed using data that can be immediately observed by
the AMR.

4.1 A Novel use of Circles to Approximate the Voronoi
Diagram of Ellipses

As mentioned in Section 2.2.1, there are numerous methods of environmental seg-
mentation. The novel application of consideration, presented in Section 3.3.4, relies
on resistance being added to the path, which can be applied to any of these methods.
However, the VD inspired roadmap method was chosen for this thesis as it extracts
the equal spaces in between objects, allowing the robot to navigate effectively through
the crowd using a path that can maintain the safest distance.

Unfortunately a VD of arbitrarily placed and fully-intersecting (4 unique inter-
section points) ellipses has not yet been solved. Analytically it is intractable as
there are more unknown variables (9) than equations (3)1. However, the VD of
partially-intersecting (2 unique intersection points) ellipses has been solved by using
"smooth convex pseudo-circles" [251]. Unfortunately, this is insufficient for the CPP
as the pedestrian movement model, Section 3.2, can easily produce fully-intersecting
ellipses. To overcome this problem a novel adaptation of the VD of circles [72] is
proposed. Four circles are tangentially aligned to form PEs, for which the VD can
be easily found.

Sweepline algorithms are efficient methods for computational geometry in Eu-
clidean space [252]. The sweepline itself is a self-balancing binary tree, which gen-
erates a worst-case time complexity of O(n log n), where n = number of events to
assess. For a general sweepline algorithm the sweepline translates/sweeps a line in a
constant direction across a plane in 2D Euclidean space, pausing at points of interest.
Geometric operations are performed at every pause, describing objects the sweepline
is intersecting, as well as objects in the immediate vicinity of the line that it has

1the minimum distance between two ellipses requires a 12-dimensional polynomial
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already passed. The sweepline algorithm for the VD of circles [72] can be created
in this way by using a parabola, which forms a locus between the sweepline and a
circle. This allows the distances to be equated accurately wherever the sweepline is
positioned [253]. The VD is mapped according to the points of intersection between
neighbouring parabolas: two intersecting parabolas create vertex lines that trace a
line of equal distance between the circles, whilst three intersecting parabolas create
the VP between three neighbouring circles, Fig. 4.1. However, due to representing
the VD using particular geometric shapes, the sweepline algorithm must include
three assumptions [254], which apply to the VD of circles in the following ways:

a1 Numerical computation must be carried out with high precision arithmetic, as
parabola-parabola intersections are used to trace the VD lines. As a result,
the unique intersection point of 3 parabolas describes a VP.

a2 No four Apollonius points (points on the circles surface which correspond to
creating a VP between 3 circles) align on a common circle (assuming non-
degeneracy). This will cause two VPs to occupy the same space simultaneously.

a3 No two event points (points at either the top of the circle, bottom of the circle,
or circle-circle intersections) occupy the same space.

a4 The three circles that create a VP do not have horizontally aligned site events
(points at the top of the circle). Therefore, an Apollonius circle (circle which
aligns with 3 Apollonius points of 3 neighbouring circles, with the VP at its
centre) will not exist.

All circles have equidistant radii from their centre points, which is where the parabo-
las’ focus points are positioned. However, as the event point that creates the
parabola is at the top of the circle, this creates a shifted parabola relative to the
circle’s centre and radius. The outside of the circle is described using a standard
parabola, whilst the inside is described by an inverted parabola around the same
point, Fig. 4.1a.

This thesis presents a novel adaptation of the VD of circles, which takes advan-
tage of the nature in which these parabolas describe each circle, in order to estimate
the VD of ellipses. Approximations of real ellipses are formed using four tangentially
aligned circles, which create PEs, Fig. 4.2. Using the addition of a novel tangent
function, the VD of PEs can be found with only a minimal increase in time complex-
ity when compared to the original VD of circles: O(n2 log n) to O([n2 + 4n] log n),
where n = number of circles.

An ellipse can be approximated using four tangentially aligned circles that pro-
duce the same semi-major (S-Ma) and semi-minor (S-Mi) axes as the original ellipse,
creating a PE, Fig. 4.2. A novel tangent function is then implemented, which intro-
duces a new point-of-interest to the sweepline algorithm at this tangential intersec-
tion. It is at this point that the parabolas of these tangential circles are themselves
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(a)

(b)

Fig. 4.1 Demonstration of how the sweepline algorithm uses parabolas to describe the
size and position of circles, using the circles’ directrices as the green sweepline that
translates down the page. (a) Visualisation of the original sweepline algorithm for the
VD of circles. The sweepline translates down the page, manipulating parabolas to
describe the equal perpendicular distances from sweepline to parabola, and parabola
to circle edge (dashed lines). When two neighbouring parabolas intersect, orange
VD lines are traced. When three neighbouring parabolas converge on the same point
a VP is created, shown with its red Apollonius circle. (b) The solid coloured areas
above the parabolas highlight the ‘safe’ areas, which will remain the same regardless
of any future event. All of the white space below the parabolas may be changed by
a future event.



4.1 A Novel use of Circles to Approximate the Voronoi Diagram of Ellipses 107

(a) (b) (c)

Fig. 4.2 Visualisation of how a PE is created, by tangentially aligning four circles.
(a) The original ellipse, with S-Ma axis a and S-Mi axis b. (b) Four circles are aligned
so that each one is tangential to an axis limit of the ellipse. When correctly aligned,
and appropriate radii are appointed to each circle, each circle will tangentially align
with its neighbour (red dots). (c) The PE is created by only using the circle arcs that
align with the ellipse axes. Each circle arc will tangentially align with its neighbour
at the red dots, creating the smooth convex shape of the PE.

tangential. This remains true as the sweepline continues to translate, allowing both
parabolas to describe their respective circles, but also the point at which they tan-
gentially align. The execution process responds in the same way as the original
VD of ellipses, using parabolas to describe the outline of the 4 circle arcs that form
the PE. The VPs of the VD found through this method, provide excellent initial
approximations to the VPs of the original ellipses. Using the bi-section method the
VPs of the original ellipses can be found in only a few iterations.

4.1.1 Approximating the Uncertainty Ellipse with Circles

To convert the uncertainty ellipse into a PE, the edges of four circles must tangen-
tially align with the axes of the ellipse, as well as each other, Fig. 4.2. Two smaller
circles represent the S-Ma axis limits, whilst the positions and radii of two larger
circles, representing the left and right S-Mi axes, can easily be calculated using
the mid-point between the two smaller circles, Fig. 4.3. Algorithm 1 provides the
generic pseudo-code to describe mathematically how to convert an ellipse into an
approximated PE.

As the PE is an approximation of the ellipse there will be some errors, as the PE
will always be inside the ellipse. However, these errors are small, Fig. 4.4, and when
comparing the area of the ellipse to the converted PE, the area difference ranges from
zero to 15% smaller. This maximum error occurs regardless of the ratio between
the axes, whilst the axis limits of the ellipse remain flush with the PE. The tangent
points that align the four circles together now become individual events that the
sweepline must pause at and consider, as it translates across the workspace plane.
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(a)

(b)

(c)

Fig. 4.3 Calculation steps required to compute the pseudo-ellipse, as performed by
Algorithm 1. (a) From the pedestrian’s observed position at t = 0 (x0, y0), S-Ma
axis, a, is calculated based on the predicted velocity, v, at current time-step, t (vt).
The S-Mi axis, b, is calculated based on the uncertainty profile, Fig. 3.6. (b) (x0, y0)
is positioned at the origin, (0, 0), and the S-Ma axis is aligned with x-axis, for ease of
calculation. Using Algorithm 1 (Line 1) the centre point of the circle is found, which
will tangentially align with S-Mi axis of ellipse, (xc, yc). The tangential intersection
point between the larger S-Mi and smaller S-Ma axis circles forms at (xt, yt). The
x-coordinate of the S-Mi circle, xc, is the mid-point between the agent circle at t = 0
and t. (c) Using Algorithm 1 (Line 3 to Line 7) the y-coordinate of the S-Mi circle,
yc, is calculated and its radius, rc, is easily found. The coordinates that tangentially
align the circle (xt, yt) are found my comparing the comparing gradients of m1 and
m2.
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Algorithm 1: Ellipse to Pseudo-Ellipse conversion
/* Fig. 4.3 */
/* Assume original position of agent (x0, y0) is at origin (0, 0), and velocity is aligned

along the x-axis. This will make make calculation easier, and the final elements should
be rotated and positioned relatively to the real-data. */

1 Calculate the mid-point of the ellipse along S-Ma axis, which is the centre
point of the S-Mi axis circle, xc;
∴ if calculating the PE using ellipse parameters then

xc = a2 − b2

a
; // convert real ellipse into a pseudo-ellipse

else if calculating the PE directly from the agent velocity observation then
xc = vt

2 ; // create pseudo-ellipse straight away

2 x0 = 0; y0 = 0; // from initial assumption
3 for i = −1 to 1 do

// when i < 0 calculate left, when i > 0 calculate right
4 find the remaining elements of the S-Mi axis circle, y-coordinate, yc, and

radius, rc;
r = a− xc ; // radius of smaller S-Ma axis circle
x2

c + y2
c = (rc − r)2 ; // distance from S-Mi axis circle to tangent point

rc = b− yc ; // radius of the S-Mi axis circle

∴ yc =
(

r2 − xc
2 − 2rb + b2

2(r − b)

)
× i;

∴ rc = b− (yc × i);
/* circles tangentially align */

5 calculate the tangential point (xt, yt) between the 2 circles at t = 0 (left
S-Ma axis);

/* substitute following equation (1) into (2) */

(1) yt − y0
xt − x0

= yt − yc

xt − xc
; // gradients are equal

(2) (yt − yc)2 + (xt − yt)2 = rc
2; // distance from the circle centre to the

tangent point is also the radius
6 calculate the tangent between the 2 circles at current time-step, t (right

S-Ma axis);
∴ x0 = 2xc;

7 i = i + 2;
8 rotate and translate tangent points to their respective co-ordinates to the

ellipse’s original position and angle;
9 return;



110 A Novel Voronoi Diagram-Visibility Graph Hybrid Roadmap

a = 100, b = 90

a = 100, b = 50

a = 100, b = 10
(a) (b)

Fig. 4.4 Error between the original ellipse and the pseudo-ellipse. At the axis limits
of the ellipse the dimensions of the real and pseudo-ellipses are identical. (a) Three
examples of PEs over the original ellipses. The coloured centre points are displayed in
(b), to show their error values. (b) Quantitative error with respect to the differences
in area between the ellipses and the PEs. The error converges at −15%, regardless
of the ratio between S-Ma and S-Mi axes.
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4.1.2 The Novel Tangent Function

Similar to the original VD of circles sweepline algorithm, Fig. 4.1, the novel tangent
adaptation concerns the four parabolas associated with each of the four circles that
form the PE. The parabolas used to describe two tangential circles will also be
tangential at the same relative points as the circles themselves. The two parabolas
are merged together at this tangential point, Fig. 4.5a, clipping them both so that
the two segments of the parabolas describe their respective segments of the circles
Fig. 4.5b. This merged parabola forms a super parabola, Fig. 4.5c, allowing the
convex PE to be described in a same way as a circle. As the sweepline moves past
the tangent event the parabolas will continue to remain tangential at the point that
describes it on the PE, Fig. 4.6.

4.1.3 Executing the Modified Sweepline Algorithm

The novel modified sweepline algorithm for the VD of PEs executes in exactly the
same way as the original sweepline algorithm for the VD of circles [72], Fig. 4.1, with
comparable efficiency. The convex shape of the PE is described using exactly the
same principle as with the VD of circles, and can be easily modified to describe any
convex shape constructed from tangential circles; the corresponding time complexity
would be O([n2 + t.n] log n), where t = number of tangent points. Although the
algorithm continues to execute in the same way as the original, the PE only uses
segments of differently sized circles. Due to this a specific problem may occur along
the velocity line, which connects the two smaller S-Ma axis circles.

4.1.3.1 The Velocity Line Problem

During the execution of the novel VD of PEs, a problem may occur as certain
parabolas intersect along the velocity line of the PE. The velocity line connects the
two smaller S-Ma axis circles of the PE, and in the case of pedestrian prediction
is their predicted velocity. In the original VD of circles sweepline algorithm all the
inverted parabola intersections occur due to different circles, which in turn trace
the VD lines. This is the result of the circle having only one focus point, and so all
points on the inverted parabola will always describe the inside of the circle. However,
the shape of the PE is described by four separate parabolas, and the PE is again
analogous to a real ellipse by also having two pseudo-focus points. These points
occur at the centres of the smaller S-Ma axis circles. Also, the arcs of the PE that
represent the S-Mi axes of the ellipse are tangential to that smaller circle. Therefore,
effectively the focal points form a VP between these three circles. Due to this the
S-Mi axis parabolas intersect one another along the velocity line, Fig. 4.6f. In the
standard sweepline algorithm of circles this would create a Voronoi line between
the two circles. However, as both circle arcs belong to the same PE, no Voronoi
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(a)

(b) (c)

Fig. 4.5 Demonstration of the novel ‘tangent’ function, Section 4.1.2, merging two
parabolas together to form a super-parabola, used to describe the shape of the PE.
(a-b) Until the sweepline reaches the tangent point only one parabola is used to
describe the PE, which is the circle the sweepline intersects. When the sweepline
arrives at the tangent point the parabolas associated with both circles tangentially
align. As the sweepline continues past the tangent point the two parabolas continue
to remain tangentially aligned. The parabolas each side of the alignment describe
their respective sections of the PE. The dashed sections of the parabolas are then
discarded. (c) The super-parabola is formed by merging the remaining solid lines
of the parabolas in (b). By discarding the sections of the parabolas that are not
describing the circle segments of the PE, the super-parabola describes only the edges
of the PE.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.6 Demonstration of how the sweepline algorithm uses parabolas (red external,
blue internal) to describe the size and position of PEs, using the circles’ directri-
ces as the green sweepline. The sweepline translates down the page, manipulating
parabolas to describe the equal perpendicular distances from sweepline to parabola,
and parabola to PE edge (dashed lines). When two neighbouring parabolas inter-
sect, orange VD lines are traced. When three neighbouring parabolas converge on
the same point a VP is created, shown with its red Apollonius circle. (a-f) Six snap-
shots as the sweepline traces out the VD of PE using the novel tangent function,
Section 4.1.2. The novel super-parabola, Fig. 4.5, describes the edge of the PEs. The
solid lines amongst the dashed highlight the tangent point where the super-parabola
merges two parabolas together. As the two S-Mi parabolas of a PE intersect along
the velocity line, (f), the point is treated as a pseudo-tangent point to prevent a VD
line being traced between the PE’s own edges.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.7 Demonstration of the novel adaptation to the sweepline algorithm finding
the VPs of the PEs within the robot’s FoV. The sweepline is utilised in the same
manner as the original algorithm, moving down the workspace, whilst using the
novel super-parabolas to describe the circle segments that form the PEs. (a-f) Each
consecutive sub-figure shows the sweepline moving down the figure, revealing the
VPs as it goes.
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line should be traced. The problem is easily addressed by simply treating this
intersection point as a pseudo-tangent point, and the two intersecting parabolas as
one super-parabola.

The pseudo-focus points effectively increase the eccentricity, e, of the PE from a
standard circle (e = 0) to one similar to an ellipse (0 < e < 1, e =

√
1− b2

a2 ). This
causes the two inverted S-Mi axis parabolas of a PE to intersect along the velocity
line if there is nothing inside, as their corresponding circles are not tangentially
aligned. When merging all four individual PE parabolic segments together to form
the super-parabola, the intersection point between S-Mi axis parabolas are treated
as if it were a tangent point. This prevents the algorithm drawing an incorrect
Voronoi line along the velocity line, as the two parabolas are treated as a complete
parabolic curve.

The velocity line problem could also be used as an advantage if non-convex shapes
need to be described. Intersecting parabolic segments that describe the same shape
would not trace Voronoi lines, and instead would be treated as one parabolic curve.
Although not used in this thesis, this implementation could be used to describe other
aspects of the environment, such as irregular objects.

4.2 Enhancing Accuracy

The PVPs of the PEs are guaranteed to be successfully calculated by the sweepline
algorithm, provided the computational accuracy required can be achieved (Sec-
tion 4.1, Item a1). However, as PEs are approximations of ellipses, contained within
the ellipse, Fig. 4.4a, discrepancies between PVPs and EVPs may occur. Additional
EVPs may occur as a result of intersecting ellipses, Fig. 4.8, by creating more unique
neighbours between ellipses than there were between intersecting PEs. By compar-
ing the internal and external orientations of PVPs to its PE and associated ellipse,
it can be determined if an additional EVP may be required.

4.2.1 Accuracy Required for the Considerate Path Planner

The important EVPs occur externally to the ellipses, as this is the safest area of
the roadmap, allowing the CPP to generate a path that moves around potential
collisions. All external EVPs can be found through this novel algorithm as the PE
is enclosed within the ellipse, and so an external EVP will always begin with an
associated external PVP. Fortunately the errors that do occur involve only internal
VPs, and only arise over very small spaces, Fig. 4.8. Therefore, it does not affect
the performance of the CPP in any significant way, however it does mean that a
completely accurate VD may not be possible.

Measures are now introduced to find additional EVPs that cannot be found
through direct convergence of PVPs. These additional EVPs should occur approx-
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(a) (b)

(c) (d)

Fig. 4.8 As the PEs are only approximations of ellipses they will always be smaller
in area when they do not degenerate to a circle, Fig. 4.4. Therefore, over small
areas (pink square in (a)), there may be more EVPs than PVPs, and so not all
EVPs can be found. To increase the chance of finding all the EVPs additional
points are calculated, Section 4.2, that should converge on EVPs not represented
by PVPs. (a) Using four ellipses there are ellipse-ellipse intersections that are not
represented with similar PE-PE intersections. The pink square highlights small area
where there are more EVPs than PVPs. (b) PVPs that are found for the VD of
PEs. (c) EVPs that are found for the VD of ellipses, when using only the PVPs as
initial approximations. (d) EVPs that are found for the VD of ellipses, when using
additional approximations to the initial PVP approximations, Section 4.2.1.1.
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imately along the first internal edge of the ellipses. This additional accuracy will
therefore allow the VD to be approximated externally to the ellipses, as well as just
within their internal perimeter. Any VD further inside the uncertainty ellipses is
not beneficial, as the very nature of the ‘safest path’ that the VD provides would
form paths that actually increase the collision likelihood.

4.2.1.1 Estimating Additional Ellipse Vertex Points

To establish if an additional EVP may occur, the PVP must be external to the
PE and internal to its elliptical equivalent, or vice versa. This quick check will
establish if neighbouring ellipses have intersected when their PE approximations
have not. The bi-section method is used to converge on the EVP from an initial
approximation.

Approximating the new EVP If determined that an additional EVP may exist,
a normal intersection point, pp, is created between the PVP and the closest edge of
the ellipse that the PVP is on the opposite side of. From pp, normal intersections are
made between it and the other two ellipses that are represented by the other two PEs.
The intersection point between the perpendicular bi-section of these connections
then creates an additional PVP to be tested, this time on the correct side of the
ellipse.

Converging onto the EVP As a PVP converges on an EVP root, it may cross
an ellipse edge. This will be due to the orientation between three PEs differing to
their equivalent ellipses. If this occurs, an additional start point is created, to test
for alternative EVPs that occur due to additional ellipse-ellipse intersections.

Once the EVP is successfully converged upon, if it occurs on the opposite edge
of an ellipse edge, then a new start point is created to test for an additional EVP.
As with Approximating the new EVP, a normal intersection point, pp, is created
between the PVP and the closest edge of the ellipse the PVP is on the opposite
side of. This is repeated for the new EVP and creates another point, pe. The
intersecting perpendicular bisectors between PVP - pp and EVP - pe generate the
new start point.

When comparing the difference between enhancing the accuracy and not, Figs. 4.8c
and 4.8d, the enhanced accuracy appears to allow additional EVPs to be discovered
that cross the opposite edge of an ellipse. This level of accuracy is acceptable for
the CPP, as ideally the CPP will never venture far into an ellipse when predicting
a path. This will aide in avoiding paths that are likely to form collisions when
executed. In order to generate a perfect VD of ellipses, the construction of the PE
will have to be re-evaluated in order to be more similar in shape.
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Fig. 4.9 Visualisation of re-creating the PE with additional circles. An additional
circle is introduced, which is tangential to the ellipse in between the S-Ma and
S-Mi axis limits. This will help to create a PE that is more similar in shape to
the original ellipse, resulting in a VD of PEs that has a higher fidelity to the VD
of ellipses. The addition of the extra circle will increase the processing time of the
sweepline algorithm, however it will still operate with a logarithmic time complexity,
Section 4.1.3. The introduction of a line segment must also be included at the S-Mi
axis limit, as the additional circle cannot tangentially align with the axis and the
new point of the ellipse. However, the line segment is tangential to the circle, and
so the novel tangent function, Section 4.1.2, can still be applied.

4.2.2 The Potential for Complete Accuracy

When using just four circles to construct the PE, the accuracy is at worst 15% less
than the area of the ellipse, Fig. 4.4b, regardless of the ratio between the ellipse
axes. To create a better PE approximation, more tangential circles must be used.
Fig. 4.9 provides an example of introducing an additional point along the ellipse that
a circle can align tangentially with. The four circles of the PE used in this algorithm
align tangentially with the ellipse axes, with parametric values: 0, 1

2π, π, 3
2π. Intro-

ducing another tangent point half way between the ellipse axes, with parametric
values: 1

4π, 3
4π, 5

4π, 7
4π, causes the accuracy of the PE to increase by becoming more

comparable in shape.

Regarding the performance costs, the time complexity still remains logarithmic,
Section 4.1.3, however each new tangent point causes another event to be evaluated.
This version of the PE must also connect the two circles either side of the S-Mi axis
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with a line, as it is not possible to tangentially align the circle with the S-Mi axis as
well. Fortunately, the line segment is tangential to the tops of both of these circles,
and the same novel tangent function can still be used.

No additional problems should occur if using a different manifestation of the
PE. The velocity line problem, Section 4.1.3.1, would still be processed in the same
way, as the circle that represents the S-Ma axis limits remains the same. This
short example highlights the versatility of the novel tangent function presented,
Section 4.1.2. It will allow any shape to be traced that can be formed of tangentially
aligned circles and lines.

4.3 Approximating the Voronoi Diagram of Ellipses

The major components of the VD are the VPs and MDs. The VP describes the
single point equidistant to all three neighbouring ellipses, and the MD describes the
closest point between two neighbouring ellipses. By connecting either VP → VP or
VP → MD appropriately, a complete VD approximation can be created.

Initially the EVPs between three ellipses must be found, using the PVPs as initial
approximations. The convergence from PVP → EVP requires only a few iterations.
Secondly the MDs between neighbouring ellipses must be found, using the EVPs as
initial approximations. The convergence from EVP → MD occurs at an asymptotic
rate.

4.3.1 Converging on Vertex Points Between Three Ellipses

To approximate the VD of ellipses requires a conversion of the EVPs into VPs for
the real ellipses. To achieve this the problem of Apollonius must be solved [255],
which is to construct a circle that is tangential to three other neighbouring circles
in the same plane, Fig. 4.10. The VPs of a VD will always be the centre of an
Apollonius circle, which is true for the VD of circles, the VD of PE, and the VD
of real ellipses. However, as mentioned in Section 4.1, unlike an Apollonius circle
that is tangential to another circle, an Apollonius circle that is tangential to an
ellipse cannot be calculated analytically. Instead the tangential alignment of the
Apollonius circle must initially be estimated, and the closest root converged upon
to within an acceptable tolerance level. This is done by repositioning the PVP so
that it aligns with a standard conical ellipse.

From the canonical implicit equation of an ellipse,

x2

a2 + y2

b2 = 1 (4.1)
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Fig. 4.10 Example of all eight possible Apollonius circles (black) to three circles (red
external, blue internal) [15]. Only the Apollonius circle that is external to all other
circles is valid for a VP (green box).

where a > b

(x, y) ∈ R2

the normal intersection, n, at any point on an ellipse can be calculated through
implicit differentiation of Eq. (4.1),

2x

a2 +
2y ∆y

∆x

b2 = 0

therefore the normal gradient at any point around the ellipse is

n = −
(
− b2x

a2y

)−1

The perpendicular intersection of the line from the PVP, (xv, yv), and the ellipse
has a gradient n, which has an identical gradient, m,

m = yv − y

xv − x

Through substitution of both gradients into the standard linear equations,

y = mx + c
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and
y = nx + c

The y-axis intersection, c, can be eliminated and a suitable expression for y can be
found,

y2 = b2yvx

(b2 − a2)x + a2xv

Substituting y2 back into Eq. (4.1), the real-roots of the line-ellipse normal intersec-
tion from the VP can be expressed as

Ax4 + Bx3 + Cx2 + Dx + E = 0 (4.2)

where 

A = (a2 − b2)2

B = −2a2xv(a2 − b2)
C = a2

(
a2xv

2 + b2y2 − (a2 − b2)2
)

D = 2a4xv(a2 − b2)
E = −a6xv

2

a > b

(xv, yv) ∈ R2

From this quartic equation, there can either be 2 or 4 real roots, depending on
whether the point (xv, yv) resides outside or inside the ellipse’s convolute, respec-
tively. The corresponding y-values are calculated by substituting back into Eq. (4.1),

y = ±

√√√√b2

(
1− x2

a2

)

and the process must then be repeated for the remaining two ellipses.

By relatively orientating a VP of a PE, so that the corresponding ellipse is
canonical, the tangential alignment of a circle from that point can be calculated using
the aforementioned process. After repeating this process for all three ellipses the
real VP can be found in only a few iterations, using the bi-section method between
perpendicular intersections of two ellipses. This continues until the radius of the
circle is within an acceptable tolerance and the circle becomes a true Apollonius
circle to the real ellipse.

The PVPs obtained from the VD of PEs provide excellent initial approximations
to the EVPs of the real ellipses, Fig. 4.11. However, due to the fact that the PEs
will never be the same as an ellipse (unless degenerated to a circle) some PVPs may
not translate to a corresponding EVP. Due to this an initial comparison is made
between the internal and external position of a PVP to the PE, and associated
ellipse, Section 4.2.1.1.
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(a) (b)

(c)

Fig. 4.11 Comparison between an example of PVPs of PEs, found using the novel
tangent function, with their equivalent EVPs of ellipses. The positions between
each PVP and EVP varied by only +0.00898% and +0.00591% for x and y, respec-
tively, highlighting the accuracy of the PVP used for initial approximations. (a) The
PVPs of PEs, found using a novel adaptation of the Voronoi diagram of circles, Sec-
tion 4.1.2. (b) The EVPs that the PVPs converge upon, and the MD lines that the
EVPs converge upon. (c) Graph that shows the convergence rate of the PVPs to
EVPs (blue), and EVPs to MDs (red).
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4.3.1.1 Collision Checking

As mentioned in Section 4.2, the difference between PEs and ellipses may generate
different PVPs to EVPs. Over high densities neighbouring PEs may not accurately
represent neighbouring ellipses. Therefore, once an EVP is found the Apollonius
circle must be collision tested with all other ellipses. This will clarify if the ellipses
are just as neighbourly as their PE counterparts. If the Apollonius circle is only
intersected by three tangential alignments of its associated ellipses then it is con-
firmed as an accurate VP. If the circle intersects another ellipse the VP is deleted,
as its circle is not an Apollonius circle. The VP would therefore not be a point of
equal distance from the three closest ellipses.

4.3.2 Converging on Minimum Distances Between Two Ellipses

Once an EVP is found the associated MDs can also be found with the same bi-section
method used when converging on the EVP’s root. Using the EVP as the initial
estimate the normal intersections from the EVP to the surface of the neighbouring
ellipses intersect along the Voronoi line, and converge asymptotically, Fig. 4.11c, to
the MD. The CPP does not require a smooth VD, as movement predictions for the
robot will not require that level of accuracy. Therefore, only VPs and associated MDs
are used to create a VD of vectors between these points2. Using these components
the novel VD-VG roadmap can be created, which will allow the CPP to find a
considerate path through the crowd.

4.4 Creating the Roadmap

Using the EVPs and MDs of the ellipses found thus far, the area within the robot’s
FoV can be appropriately transformed.

4.4.1 Transforming the Robot’s Field of View

The roadmap must be confined to within the robot’s FoV. The area inside the FoV
is segmented into neighbouring polygons that form by tracing around ellipses and
MD connections, Fig. 4.12. Additional points are added around the perimeter of
the FoV to generate possible roadmap vectors that will allow the search algorithm
to explore all of the model environment, and not just the areas in between ellipses.

It is possible that an MD connection may intersect other ellipses, Fig. 4.13, in
which case it would be divided into additional ellipse-ellipse connections. It is also
possible for MD connections to intersect each other, which is not desirable as an

2directly intersecting ellipses have their MD at those intersection points
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Fig. 4.12 Visualisation of the polygons that form between the MD and ellipse-ellipse
connections. The polygons divide the model environment into a configuration space,
for the CPP to plan the AMR’s movement around. The white areas inside the el-
lipses, that do not form polygons, are areas inaccessible by the CPP. Green polygons
are the safest polygons, representing open-space areas of the virtual environment.
They are formed by tracing around ellipses, which connect to one another with MD
lines. The valid VPs between ellipses are also highlighted blue, with their corre-
sponding Apollonius circle.
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(a) (b) (c)

Stages Lines (# - #) Description
0 1 - 5 Initial MD connection

1 1 - 2 / 2 - 3 / 3 - 5 Segment MD from collisions with
neighbouring ellipses

2 1 - 2 / 2 - 3 / 3 - 5 Delete line segments that collide with
neighbouring MD lines

3 1 - 2 / 3 - 5 Final line segments

(d)

Fig. 4.13 Demonstration of collision testing MD lines so that they will only create
external ellipse-ellipse connections, and none intersect other MD lines. (a) Visual-
isation of how a VP between ellipses 1, 4, and 5, causes resultant MD connection
between ellipse 1 and 5 to intersect ellipse 2 and 3. (b) The MD between ellipse
1 and 5 is subdivided and collision tested with the neighbouring MDs. The green
divisions are kept, whilst the red division is deleted. (c) The resultant VD that also
uses the mid-point of the MD subdivisions. (d) Table of the execution stages.

intersection would interfere with the resultant polygons. If this scenario does occur,
the longest connection is simply deleted. The mid-points of the new ellipse-ellipse
connections will not be perpendicularly equidistant from the ellipses, however they
do provide extra roadmap nodes, Fig. 4.13c. This will help prevent collisions by cre-
ating additional movement vectors around ellipses that are in close proximity. From
the segmentation of the model environment within the robot’s FoV, the roadmap of
vectors can be constructed by connecting all of these neighbouring points together.

4.4.2 Connecting Roadmap Vectors

To create the full VD-VG roadmap, the VD of vectors, Fig. 4.14a, and the network
of shortcut vectors, Fig. 4.14b, must be formed. The correct VD connections can
be found using a simple decision tree. The VG shortcut connections are formed by
connecting a polygons sides together.
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(a)
(b)

(c)
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(a) (b)

Fig. 4.15 Visualisation of the decision tree required for calculating the VD. The
process begins from a point on an ellipse tangential to an Apollonius circle of a VP.
Searching either side of this point the next intersection with the ellipse will either be
another tangential Apollonius circle, from another VP, or the connection of a MD
between the ellipse and a neighbour. (a) The decision tree can make connections with
upto two intersections either side of the initial VP. All the first potential connections
form simple Voronoi vectors. If connection 1.b is made, then there may be another
MD to connect the original VP to. (b) Example of the various connections made by
the decision tree.

4.4.2.1 Voronoi Diagram

To create the VD of vectors a simple decision tree is used, Fig. 4.15, which demon-
strates which connection must be made. Vectors are formed by assessing the neigh-
bouring intersections around an ellipse. On either side of the tangential alignment
of the Apollonius circle, the neighbouring intersections are assessed.

4.4.2.2 Visibility Graph Shortcuts

Shortcuts comprise of MD → MD connections, which allow more direct paths to
be taken by the robot as it passes other agents. The connections are made by
joining the edges of a polygon, within the FoV, together. The shortcuts can align
more directly with the S-Ma axis of an ellipse and hence with the agents movement,
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allowing the robot to move more easily with the flow of the crowd. The connections
can also move directly in front or behind the ellipses, perpendicular to the S-Ma
axis, allowing consideration to be implemented by moving behind an agent if the
robot must cross its path.

4.5 Chapter Overview

This chapter has presented a novel method for approximating the Voronoi diagram
of fully-intersecting ellipses, from which the novel VD-VG roadmap can be formed.
As no methods currently exist for accurately generating the VD of ellipses, a novel
adaptation of the VD of circles [72] was presented to approximate the VD VPs.
The VPs of a VD are the essential element, which allows the unique point of equal
distance from three neighbouring objects to be identified. From this the roadmap is
produced that creates a VD of vectors, creating the safest path, along with shortcut
vectors that encourage flowing and considerate movement.

To begin the VD of ellipses approximation, the ellipses were approximated into
PEs using four tangentially aligned circles. This allowed a novel adaptation of the
VD of circles to be implemented. The VD of circles uses a sweepline algorithm to
manipulate parabolas, describing their size and position, using the circles directrix as
the sweepline. As the parabolas calculate the distance from the edges of the circles,
the novel adaptation presented exploits the parabolas behaviour at the points of
tangency between the circles. Due to the circles being tangential, the parabolas
that describe them must also be tangential. Therefore, by creating the PE from
circle arcs between these tangential points, a novel super-parabola was created by
removing the sections of the parabolas for the discarded circle arcs. The remaining
parabolic section can be merged together, and used to describe the PE in the same
way as a circle.

The algorithm’s execution is proven to be very efficient, with logarithmic time
complexity. The VPs of PEs that were found provide a very good approximation
of the VPs of the real ellipses. The PEs were at most 15% smaller in area, whilst
maintaining the same axial dimensions as the ellipses. Therefore, the VPs of the real
ellipses were converged upon in only a few iterations, due to the PVPs providing
excellent approximations to the correct root. Although not all of the EVPs may be
found, for the purposes of the CPP algorithm the accuracy was more than sufficient.
However, by utilising the novel tangent function, a PE described by more tangential
circles could easily provide a more accurate initial estimate of the EVPs.

The roadmap was easily generated by also finding the MDs between neighbouring
ellipses. Connecting EVPs and MDs appropriately easily generates a vector based
VD of ellipses. Whilst connecting MDs together can create shortcuts that will aide
the CPP to generate considerate paths. As the CPP is designed to plan paths within
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crowded and dynamic environment, the need to generate a completely accurate VD
was superfluous. When the robot moves in the real-world, even the most consider-
ately planned path will still need to be adjusted due to errors in predictions. Due to
this the vector roadmap is more than sufficient to have a considerate path planned
along it.

The next chapter will present the implementation of the CPP, using the roadmap
generated in this one. The chapter will cover all of the elements required for the
robot to manoeuvre considerately, from acquiring input data to executing the robot’s
movement in the real world.





Chapter 5

The Considerate Navigation
Strategy Algorithm

In algorithms, as in life, persistence usually pays off.

— Steven S. Skiena, The Algorithm Design Manual

T
he considerate path planner (CPP) is designed to plan a number of ex-
ploratory paths through a model environment, before the most desirable
path is chosen and executed by an autonomous mobile robot (AMR) in

the real-world. This chapter covers the considerate navigation strategy (CNS) algo-
rithm, and is structured to follow as closely as possible the order in which it executes,
Fig. 5.1.

The CPP’s input data, Section 5.1, is obtained by the AMR’s input sensors,
which for this implementation will be the AMR’s field of view (FoV), Section 3.3.1.
The input data must be able to uniquely identify each pedestrian, and their positions
within the FoV, for every observation made of the real-world environment. Once
the positions of each pedestrian is established the pedestrian model, Section 3.2, is
used to generate their uncertainty ellipses. A deterministic implementation of the
windowed Dijkstra’s algorithm, Section 3.3, is then used to search the model environ-
ment for one time-step, Section 5.2. The Voronoi diagram-visibility graph (VD-VG)
roadmap, Chapter 4, is used, and the consideration weights, Section 3.3.4, are dy-
namically calculated on-the-fly as the search propagates through the roadmap. At
the end of the time-step the frontier of the search is converted into path vectors that
connect back to the search’s start position, and are ranked by their desirability.

A number of path filtering techniques are employed to help remove paths that
belong to the same homotopy class, Section 5.3. As well as encouraging path di-
versity, Section 5.4, by selecting paths that explore the uncertain environment, as
pedestrian movements are predicted further into the future. Upon the completion



132 The Considerate Navigation Strategy Algorithm

of a search, and the selection of the most desirable path vectors, the uncertainty el-
lipses are updated in accordance with the pedestrian model. From the end of each of
the selected path vectors another deterministic implementation of the windowed Di-
jkstra’s algorithm is performed for another time-step. This is a process that repeats
until the end of a prediction time-horizon, in order to add the predictive element,
Fig. 2.2, required for a CNS. At the end of the prediction time-horizon a number of
possible global paths will have been planned, from which the most desirable can be
chosen for the AMR to execute.

Finally, the AMR will move within the real-world environment, Section 5.5, along
a movement vector the length of a time-step. At this stage local collision avoidance is
required in order to prevent the AMR impacting a pedestrian. The local movement
vector is calculated using the overall desirability of the chosen global path and the
immediate collision potential over the next time-step. The turn of the AMR is
limited to a 45o cap, and the speed of the AMR is proportional to the turning angle.
The AMR will change trajectory as it moves along the movement vector if a collision
is imminent, otherwise will continue uninhibited for the length of the time-step. The
entire algorithm repeats until the AMR reaches its destination.

5.1 Evaluating Input Data

As mentioned in Section 3.2.2, the movement of each agent within the environment
can be established through two consecutive observations of the real-world environ-
ment. The central positions of the agents over these two consecutive observations
are the only requirements for obtaining the necessary input to successfully execute
the CPP. As the CPP will plan paths along the ground, the data regards only their
2-dimensional (2D) Cartesian co-ordinates in a plan view Euclidean plane.

As stated in Section 3.3.1 only data within the robot’s FoV can be extracted
from the real-world environment. These data will be the positional data of any
observed agents, obtained from an observation frame of the real-world. The agents
will include pedestrians and other similar robots, and the algorithm will not differ-
entiate between what kind of agent each one is. The active agents within the FoV
have their data stored in a simple dynamic 3D matrix (n, 3, 2), which is measured
over two consecutive observation frames of the real-world environment: number of
agents (n), agent data (ID and Cartesian coordinates), and environmental frame (f)

Af =


ID1 x1 y1

ID2 x2 y2
...

...
...

IDn xn yn

 Af+1 =


ID1 x1 y1

ID2 x2 y2
...

...
...

IDn xn yn

 . (5.1)

All individual agents must be assigned a unique identification number, allocated by
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Fig. 5.1 Overview of the CNS’s execution stages. Once data is obtained from the
real-world environment, the CPP begins its predictive exploration over a series of
model environments within the prediction time-horizon, T . A roadmap is created
over the model environment, detailed in Chapter 4. Considerate paths of one time-
step in length are then found. Within the model environment a model robot is also
moved along these one time-step paths. The predictions of the agents are updated
to t + 1. Once T has been reached, the most desirable global path across the model
environment is executed in the real-world environment. The position of the robot
is then evaluated to see if it has arrived at the destination. If so the CPP has
completed its mission, else the algorithmic process repeats.
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the data collection procedure, in order for them to have their velocities calculated
between frames.

Additional exclusion zones (EZ) are included that encircle either static agents,
or areas where a collision has been avoided within the previous frame. The EZ of a
static agent is remembered by the robot, and included in the following environmental
frame even if it is now outside the FoV. Unlike a dynamic agent, which is assumed
to be always moving, static agents are assumed to be less volatile and more likely to
remain in-situ, therefore extra precautions are taken to avoid these areas. The EZs
are stored in a dynamic matrix (n,3): number of EZs (n), and Cartesian coordinates
and radius

EZf =


x1 y1 r1

x2 y2 r2
...

...
...

xn yn rn

 , (5.2)

which is updated at each environmental frame.

All data within the workspace that lies outside the FoV (excluding previously
observed static agent EZs) is ignored when obtaining data in each environmental
frame. The process of converting the agent objects into usable data is now presented.

5.1.1 A Robot’s View of the World

As mentioned when defining the model robot in Section 3.3.1, the roadmap for the
model environment is limited to within the robot’s FoV. Only agents within the
robot’s FoV are included when creating the model environment. Therefore, if no
agents are within the FoV, the robot can move as directly as possible towards its
destination, Fig. 5.2, as there is no fear of a collision. As the robot does not have
a 360◦ view of the real-world environment, the robot must only move within it’s
FoV limits if the destination is not in the robot’s line-of-sight, Figs. 5.2b and 5.2c.
This is to prevent the robot from moving into an unknown area of the real-world
environment, as the only certain knowledge of the real-world is confined to within
the FoV’s angular, FoVθ, and distance, FoVr, range limits.

The FoV is represented within the same 2D Euclidean perspective as the real-
world will be modelled on, Section 3.3.2. If agents are detected within the FoV then
the CPP algorithm is activated. The most desirable paths are then assessed through
a series of predictive model environments, described in the subsequent sections. If
the FoV is empty, the chosen path is one that moves as towards the destination as
directly as possible.
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(a) (b) (c)

Fig. 5.2 Visualisation of robot’s movement when no agents are detected within the
robot’s FoV. As the real-world environment can only be observed within the FoV
the robot must also move within the same area. If the robot moves outside of the
FoV a collision with an unknown agent could easily occur. (a) The robot can move
directly towards the destination as the turn will not cause the robot to leave the
FoV, θ <

θfov

2 . (b,c) The robot cannot move directly towards the destination as the
turn will cause the robot to leave the FoV, θ >

θfov

2 . Therefore, the robot moves
along the FoV’s angular boundary that most directly moves toward the destination,
preventing it from entering unknown territory.

5.1.2 Determining Agents’ Status

To determine each agent’s state (static or dynamic), a simple comparison between
two consecutive measurements of the environment is made, Fig. 5.3. If the position
of an agent appears at two different locations in consecutive environmental frames,
the agent is dynamic, otherwise it is regarded as static. The velocity of a dynamic
agent is calculated from the distance travelled between the two frames, as seen in
Eq. (3.2). Both the pedestrian and robot agents are observed in the same manner,
with the same method used to establish location and initial velocity.

At any moment it is possible for an agent to stop moving and become static.
The EZs are simple perimeter circles that surround either a static agent, or an agent
that caused the robot to stop and avoid a collision. They prevent the robot from
plotting any paths that may cause the robot to enter into the EZ, preventing any
collision with a static agent, and dramatically reducing the likelihood of re-colliding
with the same agent in the next environmental frame.

If an agent transitions from static to dynamic the EZ associated with that agent is
erased from memory, if observed within the FoV. If the robot moves and a previously
calculated EZ is outside the FoV, the EZ data is retained until that space can be
checked again. This is relevant for the robot as it moves towards its destination,
as static agents that may have been blocking the destination will be remembered.
Even if the FoV is currently clear of obstruction any blocked areas out of range
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(a) (b) (c)

Fig. 5.3 Visualisation of how the agent data is obtained, by observing the real-world
environment in two consecutive frames, f . (a) The positions of each agent in the first
frame. (b) The positions of each agent in the consecutive frame. (c) The dynamic
environment perceived by the robot, by using the positions of the agents in (a), and
the velocity obtained by comparing their displacement in (a) and (b). As a result
four dynamic agents, one in each corner, create uncertainty ellipses to be used by
the CPP. The central static agent is surrounded by the EZ circle, as the CPP should
avoid this area.

must still be taken into account. Fig. 5.4 provides a visual demonstration over four
consecutive frames of the real-world environment. Initial detection of agents within
the FoV is shown, and the CPP differentiates between static and dynamic agents.
All instances of dynamic agents, static agents, and EZs are covered.

In order to contain the uncertainty of the agent’s predicted future position, the
ellipse will not extend behind the agent’s initial position, only forward and laterally
along the same orientation. Only the S-Ma axis, a, the S-Mi axis, b, and the ellipse’s
centre, (xe, ye), will be updated accordingly, Fig. 3.5a. To ensure the potential
longitudinal and lateral deviations are confidently confined to within the ellipse a
Chi-squared distribution is applied, using a 95% confidence interval [242].

A snapshot of the real-world environment has now been taken, containing all
the objects within the robot’s FoV. From the objects’ data, obtained through two
consecutive measurements of their positions, an appropriate uncertainty ellipse can
be generated for their potential positions at each t within T . From a measurement
of each agent’s current velocity, a series of dynamic environments can be predicted
during the prediction time-horizon. Using these movement predictions, and the
uncertainty ellipses to ensure their confidence, the CPP can now plan paths around
the uncertainty ellipses and EZs that have the highest chance of moving the AMR
considerately.

5.2 The Windowed Dijkstra’s Search Algorithm

As stated in Section 3.3.3, the search used to find suitable paths will be a dynami-
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(a) f (b) f + 1

(c) f + 2 (d) f + 3

Fig. 5.4 Visualisation of which input data should be recorded by the CPP in each
environmental frame, which covers dynamic agents and EZs, Section 5.1.2. The
blue robot detects agents (5 out of a potential 7) within its FoV. Solid purple circles
represent static agents. Solid yellow circles represent dynamic agents. Green circle
outlines represent what is stored in the robot’s memory. Red circle outlines represent
what is not in the robot’s memory. (a) The robot detects 5 agents within the
FoV, 2 static, 3 dynamic. (b) The robot collides with 5d causing the robot to
stop. An exclusion zone is added around 5d’s position at the moment of impact.
3s becomes dynamic, however this occurs outside the FoV so the robot keeps 3s’s
original position in memory. (c) The exclusion zone of 5d acts as an area to avoid
in this environmental frame. The remembered position of 3s is now observed to be
empty, therefore it is removed from memory. (d) Even though the exclusion zone
for 5d is outside the FoV it is removed, as the collision as passed.
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cally weighted Dijkstra’s algorithm, windowed to within the FoV of the AMR. The
start of the search begins at the AMR’s current position (Rx, Ry) at t = 0. The
search algorithm’s frontier simulates the potential movement of the AMR, in order
to evaluate how the AMR may interact with agents in the future. As a path must
be planned through a dynamic environment, the search will be synchronised with
each time-step of the prediction time-horizon, T , used by the pedestrian model, Sec-
tion 3.2. The search will travel through the roadmap and explore the immediate area
for one time-step. The pedestrian model will then update the uncertainty ellipses
and the search will continue, repeating until t = T .

In the same way as a conventional search algorithm, there will be a list of open
and closed nodes that are being/have been evaluated. Each node is connected by
a vector, V , to at least one other node, in accordance to the VD-VG created for
the current configuration of uncertainty ellipses. Along each of these vectors the
calculated value of Ω acts as a dynamic weight that will impede rate of the search,
Section 3.3.4. As the function for calculating Ω is continuous, any point along a VD-
VG vector, V , can produce a unique value of resistance. Also, only a fragment of the
AMR’s FoV will be searched before the pedestrian model updates the uncertainty
ellipses. Therefore, the resistance for each VD-VG vector, VΩ, will be calculated
on-the-fly for all the unexplored vectors connected to each node the search arrives
at.

As the search algorithm’s frontier is designed to represent the AMR moving
through the environment, it will propagate at the same equal pace along all vectors
at the AMR’s maximum speed, max(Rv). Due to the continuous functions used
to calculate Ω any point along a VD-VG vector can produce a unique value of
resistance. To therefore limit the number of Ω values to calculate, each vector is
separated into manually defined unit measures, Fig. 5.5. Ω calculations can then be
made along equally sized intervals down the vector, regardless of its length.

5.2.1 Dynamically Calculating Consideration Weights

The frontier moves along each active search vector simultaneously, and proportion-
ally to the amount of resistance encountered along each. To slow down the pace at
which the frontier travels along each vector, Ω is added to the length of the VD-VG
vector, Vd, the search is to travel along, Fig. 5.6:

Vd
′ = Vd + VΩ

The increased length of the vector does not physically affect the VD-VG, and
is used purely for calculating the amount the search should move along V . Rather
than subtract Ω from max(Rv) to slow the wave down, as generically formulated
in Section 3.3.4 (Eq. (3.12)), increasing the distance of the vector from Vd to Vd

′
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Fig. 5.5 Visualisation of how a roadmap vector is separated into unit measurements
for calculating resistance, Ω. Ω is calculated from each segmentation of the vector
and is summed along the complete length the search has travelled, up until either
the time-step has expired or the robot’s destination line is reached.

Fig. 5.6 The resistance for each vector is added to it, therefore the search will slow
down along the real vector.
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will cause the time taken for the search frontier to travel along that vector, Vt, to
increase,

Vd
′

max(Rv) >
Vd

max(Rv) ⇒ Vt
′ > Vt , if VΩ > 0

Therefore, no matter how large Ω may be the speed of the search will never be nega-
tive. Whereas for Eq. (3.12), if Ω > max(vr) then Sv < 0, which would theoretically
send the search backwards along the vector. By adding Ω to the original vector
length, the speed of the search, Sv, will decrease, proved as follows:

Vd
′

Vt
′ >

Vd

Vt
′ ⇒ max(Rv) > Sv , if VΩ > 0 (5.3)

In areas of increasing collision likelihood (increased Ω), the frontier will slow down
the model AMR to be more cautious. The total resistance encountered along these
vectors is also considered when calculating the overall desirability of potential paths,
discussed later in Section 5.2.2.

5.2.1.1 Propogating the Frontier along Roadmap Vectors

To avoid excessive calculations VΩ is calculated by summing all values of Ω, at each
unit measure along V , prior to the search moving along it. The active vectors are
sorted by their relative lengths, Vd

′, from 0 → N in order to eliminate the need
for the frontier to be continually updated at each interval point along each active
vector. Instead the frontier is propagated at a discrete interval, determined by the
remaining distance to the node at the end of V (0). The frontier simultaneously
moves the same distance along all other active vectors.The distance the search must
move along all other active vectors is a simple ratio between the real and relative
vector lengths, Fig. 5.7,

Sd(n) = Vd
′(0)

[
Vd(n)
Vd

′(n)

]

where {n ∈ Z | 1 ≤ n ≤ N}, and Vd
′(0) is the remaining distance the frontier must

move along to reach the vector’s end. V (0) is now removed from the active list, as
the node at its end has been reached.

When a node is reached the nodes at the end of the associated new vectors are
compared with the currently active ones. This will determine if the destination nodes
of the new vectors share any destination nodes of the active vectors, i.e. to check
if the frontier is propagating toward the same node along two separate vectors. As
each node should only be visited once, Algorithm 2 is used to establish what actions
should be taken when the end of a vector is reached.

.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.7 Visualisation of how resistance applied to the roadmap affects the speed of
the search algorithm as it travels along n vectors, V (n). (a) All vectors connected
to the start point of the search, ordered by increasing values of Vd

′. The search
moves uniformly at Sv = max(Rv) along all active Vd

′ vectors, by the smallest value
in the list, Vd

′(1). (b) The relative distance the search moves along all associated
vectors of length Vd, which form the actual VD-VG. The time period remains the
same and so the speed of the search is altered along each vector accordingly, t =
V ′

d(1)÷max(Rv) ∴ Sv(n) = Vd(n)÷ t. (c) The node at the end of V (1) is connected
to V (7, 8) and adds them to the ordered list of V ′

d vectors. Similarly to (a) the
search moves uniformly along all vectors by the remaining distance to the end of
V ′

d(2). (d) V (7, 8) vectors are added to the active list and highlights the same process
shown in (b). (e) V (9, 10, 11) vectors are added to the active list and highlights the
same process shown in (c). (f) V (9, 10, 11) vectors are added to the active list and
highlights the same process shown in (d).
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Algorithm 2: Adding New Vectors
1 V ← active vector list;
2 V ∗ ← new vector list;
3 if node at end of V ∗ has not been previously visited then
4 if node at end of V ∗ is shared with node at end of V then
5 if Vd

′∗ is less than the remaining Vd
′ then

6 the V ∗ replaces V ;
7 else
8 V ∗ is ignored;
9 else

10 add V ∗ to V list;
11 else
12 V ∗ is ignored;

5.2.1.2 Avoiding Exclusion Zones

As the frontier moves along the roadmap vectors, it must also not enter an EZ. When
calculating VΩ, if the next unit measurement intersects an EZ, then the wave must be
terminated to prevent the search from colliding with it. In order to circumnavigate
the EZ an artificial node is positioned at the frontier, just outside the EZ, Fig. 5.8,
and the current vector is terminated. New vectors are created from this artificial
node to the nodes connected to the destination end of the terminated vector. If any
collision free vectors can be made, providing it does not intersect the EZ, these new
vectors are added to the active vector list.

5.2.1.3 A New Search at Each Time-Step

The search-time of the algorithm is synchronised with the update frequency of the
pedestrian model. Therefore, the search terminates once the time elapsed reaches
the value of the time-step, t, used in the pedestrian model. As the search executes
the time taken for the search to move along each vector is accumulated, tacc. When
the search begins tacc = 0, then for every discrete move along VD-VG the time taken
is added

tacc = tacc + Vt
′(0)

where Vd
′(0) is the distance the frontier must move to reach the end of the vector

with the shortest remaining relative distance to its end.
Before each new vector is evaluated by Algorithm 2, a inequality check is made

to determine if the end of the vector can be reached in the remaining time,

t− tacc < Vt
′∗ (5.4)

If this is satisfied, the search will terminate before the end node can be reached, in
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Fig. 5.8 Visualisation of how a new vector is created if the search enters an EZ. A
new vector is created between the unit measurement just outside the EZ and an
available node connected to end of the terminated vector. A new vector will only
be formed if it also does not intersect the EZ.

which case the new vector will automatically be added to the active list. As the
search will not explore the length of the entire vector, VΩ is only calculated along
a length up until Eq. (5.4) is no longer satisfied, Fig. 5.5. The cumulative time
the search would take to reach each consecutive unit measure along V is evaluated.
Therefore, any additional resistance that occurs when Eq. (5.4) is not satisfied will
not inflate Vd

′ to include resistance for areas the search will not be conducted, and
thus reduce Sv disproportionately. The frontier will make its final propagation along
the remaining distance of Vd

′(0) when tacc+Vt
′(0) = t, and the search will terminate.

A selection of the most desirable points from the search frontier at t are converted
into a selection of paths, Pt(0→ N). As linear predictions are suitable for dynamic
environments [17], each Pt that traces back along the VD-VG to the start point
of the search, P0, is stored as a simple vector. All Pt vectors calculated for each
consecutive time-step along T can then be connected to create global paths, PT .
The CPP will evaluate each PT to predict the most considerate, which will then be
executed by the AMR.

5.2.2 A Desirability Heuristic for Path Selection

Simply choosing a path that is of least resistance would create a very evasive AMR,
as it would choose open space over moving into areas of any population. Therefore,
the desirability of each path is calculated to encourage the CPP to choose paths
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that interact, rather then evade. A desirability heuristic, δ, will factor in the local
displacement of the paths, and the relative distance moved towards the AMR’s goal,
in order rank the paths.

The relative displacement moved locally for each path within the time-step, t,
is calculated using the ratio between the displacement the search has made in this
time-step, and the maximum displacement the search could achieve in one time-step,

δs(n) = |Pt(n)− P0|
(max(Rv)× t) (5.5)

where {n ∈ Z | 0 ≤ n ≤ N} and P0 is the origin of the path at the start of the
search. This contributes toward the CPP showing greater preference towards paths
that move the AMR away from its current position, exploring more of the model
environment.

The relative distance moved toward the AMR’s goal, G, is calculated using the
ratio between the distance from the search start to the goal, and the distance from
the frontier to the goal,

δd(n) = G− P0
G− Pt(n) , if Pt(n) ̸= P0 (5.6)

where {n ∈ Z | 0 ≤ n ≤ N}. This is a similar increasing reward for the AMR to
move towards its goal as seen in [216], which will get stronger as the AMR approaches
G. Planning considerate paths is more important than moving the AMR directly
towards its goal. Therefore, δd, enables longer detouring paths to be planned in
advance of the AMR converging on G, as the AMR will already have navigated
considerately en route. δd simply helps to encourage a general movement of the
AMR towards G, selecting paths that move in the general direction of the goal.

Paths are more desirable if they encourage the AMR to continually move at a
constant speed, Eq. (5.5), and so help to increase legibility, Section 2.4.2. As well as
paths that encounter less resistance, and so help promote considerate path selection.
The desirability of each Pt path is determined by these relative movements, along
with the accumulated resistance encountered along the search,

δt(n) = (Ω(n) + 1)× 1
δs(n) ×

1
δd(n) (5.7)

where {n ∈ Z | 0 ≤ n ≤ N}. As with Ω, where less encountered resistance is
preferable, the smaller the value of δ the more desirable the path. The addition of
"1" as a precursor to the resistance, allows the relative distances, Eqs. (5.6) and (5.7),
to decide the path desirability if Ω = 0. As the AMR approaches the goal, the final
movement to G is dictated primarily by the AMR’s proximity to it, as δs × δd >>

Ω. Although δs and δd provide an exploratory quality to path selection, explicit
instructions are employed in order to add diversity to the final selection of paths
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before the search resumes at t + 1.

5.3 Avoiding Homotopic Path Repetition

In the same way as other roadmaps, the VD-VG forms multiple connections that
converge on the same nodes. As mentioned in Section 5.2.1, the search along a vector
will automatically terminate if another frontier is propagating along another vector
that shares the same end node, and will arrive first. However, the paths converted
from the frontier, once the search terminates, can belong to the same homotopy
class by moving: between the same ellipses, in the same direction around an ellipse,
and when moving through open space.

Moving Through the Same Gap Between Two Ellipses

All VD-VG nodes are either VPs, with 3 ellipses in common or MDs with 2 ellipses
in common, which can either be inside or outside an ellipse, Fig. 5.9a. If any of the
frontier paths have at least 2 ellipses in common, and point in the same direction
with the same internal/external ellipse component, Fig. 5.9b, then only the most
desirable is chosen, as they belong to the same homotopy class, Figs. 5.9c and 5.9d.

Moving Around the Same Ellipse

To achieve considerate movement, one of the main principles set out in the aims &
objectives, Section 1.3.2, is to avoid interfering with a pedestrians’ trajectories. A
potential path can either collide with; pass on either side of; or move away from, an
agent’s uncertainty ellipse. As ellipse orientations represent agent movement vectors,
the orientations of the frontier paths are compared with them. Comparisons

between paths are made. Fig. 5.10, in order to determine if two paths are competing
to move in similar directions:

a1 Only the most desirable path is chosen if one of the following three criteria are
met:

a1.1 Both paths collide with the ellipse, Fig. 5.10a.

• As a collision will likely occur for both paths, increasing the number
of paths is not desirable.

a1.2 Both paths pass by the ellipse on the same side, Fig. 5.10c.

• This is particularly effective if the CPP searches an environment
where all agents appear only to one side of the AMR, as it will prevent
multiple paths repeating on the same side of the crowd.
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(a)

(b) (c) (d)

Fig. 5.9 Visualisation of how homotopic path repetition is reduced. (a) Example of
the VD-VG roadmap for 4 ellipses, with the area of interest outlined with the orange
square. The search will propagate along the roadmap beginning from the bottom-
left. (b) There are 6 homotopy classes that are formed by the different vector
orientations, highlighted in various shades of green. (c) If the search terminates
here the 3 vectors share two homotopy classes; 2 are chosen (green markers), 1
ignored (red marker). The middle vector is more desirable than the lower vector,
which are homotopic, however the middle is removed due to the upper vector and
so the lower can remain. (d) If the search terminates here the 5 vectors belong to 3
homotopy classes; 3 are chosen (green arrowheads) and 2 ignored (red arrowheads).
The search also terminated at the lower VP (red square marker) earlier on, as
the other nodes connected to it would be reached by alternative vectors earlier,
Algorithm 2.



5.3 Avoiding Homotopic Path Repetition 147

(a) (b)

(c) (d)

(e)

Fig. 5.10 Visualisation of how similar paths are avoided. A comparison is made
between the semi-major axis ends of the ellipse, e0 and ev, and the position of the
potential paths, p1 and p2, as well as their orientation to the front or back of the
robot (blue circle). (a) Choose the best path, as p1 and p2 both collide with the
ellipse. (b) Keep both paths, as p1 collides with and p2 passes the ellipse. (c) Choose
the best path, as p1 and p2 both pass on same side of the ellipse. (d) Keep both
paths, as p1 and p2 pass on different sides of the ellipse. (e) Choose one path, as p1
and p2 both move away from the ellipse.
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a1.3 Both paths are moving away from the ellipse, Fig. 5.10e.

• A special condition where the orientation of the ellipse is irrelevant,
and neither of the paths will interfere with the agent.

a2 Both paths are kept if one of the following two criteria are met:

a2.1 One path collides with the ellipse, whilst the other passes by, Fig. 5.10b.

• Both paths contribute differently, even if one has a much higher col-
lision potential.

a2.2 Both paths pass by the ellipse on opposite sides, Fig. 5.10d.

• Both paths will circumnavigate the agents via opposite routes, help-
ing to explore the environment more.

The procedure to determine which frontier paths to use involves a simple comparison
between which side of two frontier path vectors the ellipse’s S-Ma axis limits, e0 and
ev, lie (+ ⇒ left, − ⇒ right): If paths pass on the same side (the symbols are the
same) Then keep both paths Else choose the most desirable path only. However,
before this comparison can be made the orientation of the paths w.r.t. the ellipse
must be checked: If e0 or ev is behind a path vector (the perpendicular line at its
start) Then use the other vector to find the correct symbolinstead, e.g. Fig. 5.10c.

Moving into Open Space

A special condition arises if both paths move away from an ellipse, whereby the
orientation of the agent is irrelevant. If both paths remain behind the ellipse,
Then only the most desirable is chosen. No significant divergence is possible under
this condition, as there is no potential for the AMR to begin interacting with the
agent. This prevents multiple paths being created that would only ever move into
open space, where the agent will not be.

5.4 Exploring a Dynamic Environment

Planning paths around dynamic agents means they must be calculated quickly, and
in order to evaluate different potential paths they must also be diverse. In crowded
environments, paths that belong to different homotopy classes may still move in very
similar directions. Therefore, processing time would be wasted on planning paths
that do not offer any diversity between them. Also, the dynamic environment results
in any paths planned too far in the future becoming unreliable, due to escalating
prediction errors in the pedestrian model as T increases.

Both of these issues are now addressed in order to ensure the selected paths
move in different enough directions from one another. The number of paths will
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(a) (b)

Fig. 5.11 Visualisation of how paths (arrows pointing from the AMR’s centre) are
chosen, in order to aide exploration of the model environment. A maximum of three
paths (highlighted with green arrowheads) are selected, with only one occurring in
the left and right (dark blue), and the front (light blue) quadrants of the circle.
This path diversification will force the CPP to explore the environment, allowing
for considerate paths to be discovered, and thus preventing three similar paths all
occurring around the same point. The yellow has highlights the extension of the
FoV beyond the path selection area. (a) An example of a FoV with a viewing angle
of 270o, with 3 separate 90o quadrants. (b) An example of a FoV with a viewing
angle of 135o, with 3 separate 45o quadrants.

also be limited, preventing too many potential paths being calculated, whilst also
restricting the number to choose related to at what t along T , the CPP is planning
paths.

Ensuring Path Diversity

After an initial reduction in the repetition of paths, a more explicit method is used
to ensure the paths chosen are also divergent. Depending on the population density
of the crowd surrounding the AMR the number of potential paths may be very large.
Therefore, the maximum number of paths which can be chosen is limited to three,
reducing the algorithm’s processing speed and path redundancy. However, the three
most desirable paths may be very similar, e.g. three paths that move left, in between,
and right of two ellipses directly ahead. The three chosen paths are forced to diverge
by ensuring they are selected to the left, the right, and ahead of the search’s start
point at t, by positioning three circular quadrants at these locations around the
AMR, Fig. 5.11. Only the most desirable path is chosen from each quadrant, which
will force the CPP to move to different parts of the model environment at t + 1.

Limiting Paths Too Far in the Future
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The three paths selected will aide in producing globally diverse paths, however the
further into the prediction time-horizon, T , the CPP goes, the more unreliable and
repetitive the overall paths may become. To prevent predicting multiple paths with
less reliable data, the number of paths predicted at each time-step gradually reduced.
T is equally divided into thirds so that for the first third of T three paths are selected;
for the second third of T two paths are selected; and for the last third of T only
one path is selected. The number of paths at each time-step, pt, is dependent upon
the current time-step as well as the overall T value, which satisfies the following
inequality,

pt =


3, if ∆ < 1

3

1, if ∆ > 2
3

2, otherwise

(5.8)

where ∆ = t

T
− 1

T
. The maximum number of local path segments, Pt, is a summation

series of nested product series:

Pt =
T∑

t=1
pt = p1 + (p1 × p2) + · · ·+

T −1∏
n=1

pn +
T∏

n=1
pn (5.9)

The maximum number of PT paths, which occur by connecting consecutive Pt paths
together for the length of T , is a simple product series, seen as the nested product
series in Eq. (5.9):

PT =
T∏

t=1
pt = p1 × p2 × · · · × p(T −1) × pT (5.10)

The maximum number of searches required to create all the potential PT paths is
calculated using the difference between the maximum Pt and PT paths:

f(p) = 1 + Pt − PT

= 1 +
[
p1 + p2 + · · ·+ p(T −1) + pT

]
−
[
p1 + (p1 × p2) + · · ·+

T −1∏
n=1

pn +
T∏

n=1
pn

]
(5.11)

Fig. 5.12a shows the number of Pt paths, PT paths, and separate searches required
when increasing T from 1 to 12; Fig. 5.12b shows an visual example using a tree
structure when T = 4.
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(a)

(b)

Fig. 5.12 Example of the maximum number of FGPs that can be calculated for
various prediction time-horizon lengths, T . (a) Each coloured box represents the
maximum number of branches that can be created at that time-step (Green: 3,
Yellow: 2, Red: 1). The numbers within the boxes represent the maximum possible
accumulating calculations required at each time-step.(b) Example of tree when T =
4.
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Completing the Prediction Time-Horizon

By removing paths that share similar ellipses, limiting the number of Pt paths to a
maximum of three, and ensuring that of those three paths they diverge to the left,
the right, and forward from the search start, the CPP will be able to create multiple
unique, diverse, and considerate PT paths the length of T .

As can be seen in the CNS flow diagram, Fig. 5.1, if t < T the pedestrian model
will update the uncertainty ellipses according to the size and position they should
be at t + 1. The AMR’s FoV that limits what portion of the environment can be
searched remains the same, as the AMR has not yet moved. The VD-VG roadmap
is recalculated using the updated ellipses, and remains limited to within the FoV as
before. However, the searches that find the next Pt paths at t + 1 begin at the end
of the Pt paths selected at t. The search repeats for all Pt paths until t = T , along
with the same path filtering techniques, e.g. Fig. 5.13. Once all possible PT paths
have been calculated, as defined by Eq. (5.9), they can be connected to one another
to create a global path along the entire prediction time-horizon,

PT (n) = P1(n) + P2(n) + · · ·+ P(T −1)(n) + PT (n) (5.12)

where N is the number of potential PT paths defined by Eq. (5.10), and {n ∈ Z | 0 ≤
n ≤ N}. The most desirable global PT path can then be determined by the CPP
for the AMR to move along, e.g. Fig. 5.14.

5.5 Executing a Planned Path and Moving the Robot

From the end of the most desirable local Pt paths the search repeats, and the same
processes are repeated, Sections 5.2 to 5.4, until the consecutive number of path
vectors reaches the prediction time-horizon. Unlike a heuristic best-first search,
calculating multiple PT paths means that a full evaluation of how different paths
may be better suited at different times in the future can be made. PT paths that
have undesirable Pt path segments early on may have much less desirable paths
further along T , and a sacrifice of desirability early on in fact leads to a better
overall path the full length of T .

5.5.1 Finding the Most Desirable Global Path

Once the CPP has planned all PT paths, it must select the most desirable. As men-
tioned in Section 3.2, the pedestrian model will become less accurate as T increases.
Therefore the desirability, δ, is proportionately weighted along T in order to decrease
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(a) (b)

(c)

No Unique Path Found

(d)

Fig. 5.13 Demonstration of how the CPP moves along Pt paths at each time-step,
t, which corresponds with Fig. 5.14. The example uses a prediction time-horizon
of T = 3 with the number of potential paths and calculations at each t dictated
by Eq. (5.8), and shown in Fig. 5.12. Eleven agents are all crossing a central point
within the robot’s FoV, in order to reach the opposite side of the environment (goal
is orange line in bottom-left corner). (a) A full view of the agents within the AMR’s
FoV. The orange box signifies the area focused on in the proceeding subfigures.
(b) At t = 1 three Pt paths are selected from the robot’s current location. (c) At
t = 2 two Pt paths are selected from the first two of the previous Pt paths. The
remaining Pt only predicts one unique Pt path. (d) At t = 3 one intermediate path
is selected from the 5 potential locations of the robot at t = 2.



154 The Considerate Navigation Strategy Algorithm

No Unique Path Found

(a)

(b) (c)

Fig. 5.14 Demonstration of all the PT paths predicted by the CPP for a prediction
time-horizon T = 3, which corresponds with Fig. 5.13. Eleven agents are all crossing
a central point within the robot’s FoV, in order to reach the opposite side of the
environment (goal is orange line in bottom-left corner). (a) All the individual PT

paths predicted by the CPP, shown with the uncertainty ellipses expanded over
the entire prediction time-horizon. (b) All PT paths superimposed into one image.
(c) The most desirable PT path is chosen to be the FGP. The FGP can also be seen
to move in the same clockwise rotation as the other agents.
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latter time-steps having as much influence on the final path selection,

T∑
t=1

δT (n) = δt(1) + δt(2)
2 + · · ·+ δt(T − 1)

(T − 1) + δt(T )
T

(5.13)

where δt is the desirability for each individual Pt segment of the associated PT

defined by Eq. (5.7), N is the number of potential PT paths defined by Eq. (5.10),
and {n ∈ Z | 0 ≤ n ≤ N}.

The most desirable PT path, with the lowest δT value, is selected to be the final
global path (FGP), e.g. Fig. 5.14c. As global path planning allows many possible
eventualities to be assessed before any real movement is executed, the CPP is capable
of finding the most considerate paths possible. However, if T > 1 the entire FGP
cannot be implemented, as the robot only moves one time-step in the real-world.
Following this, a new model environment is created and the CPP recalculates a new
FGP from newly observed real-world data. Therefore, a suitable final movement
vector (FMV) for the AMR to move along is calculated, based on the FGP. Local
collision avoidance techniques are implemented in order to ensure the AMR does not
collide with any agents in the real-world as it moves along the FMV. Limitations
are also applied to the AMR’s velocity, Rv, and angular movement, Rθ, in order to
simulate more likely real-world kinematics.

5.5.1.1 Calculating the Robot’s Final Movement Vector

Rather than the AMR replicating the initial Pt path vector of the FGP, all con-
nections from the AMR’s position to all of the nodes along the FGP are evaluated,
Fig. 5.15. A vector from the AMR’s current position to an intermediate node along
the FGP, is assessed for collisions and resistance. If the AMR can move directly
toward an FGP node at t > 1, with no obstruction or collision potential, a more
efficient movement may be possible for the AMR to make.

As the FMV is to be implemented in the real-world, collision assessment is made
between vectors from the AMR’s position and Pt(1) to Pt(T ) of PT , with agent
uncertainty ellipses at t = 1, Fig. 5.15. Providing no collision occurs between the
vector1 and the ellipse, an appropriate resistance for the vector is calculated using
the method described in Section 3.3.4. The vector chosen as the FMV will be the
connection with the least resistance. The AMR can move more directly to where it
should be later on, exploiting an immediate shortcut. Whilst the speed the AMR
will move along the FMV is calculated in the same way as the the search speed is as
it propagates through the VD-VG, Eq. (5.3), with the resistance calculated during
the FMV’s selection.

1including the AMR’s radius
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Fig. 5.15 Visualisation of selecting the FMV. The purple ellipse represents the un-
certainty ellipse of a dynamic agent over one time-step. The blue path represents the
FGP over a prediction time-horizon of T = 6. Connections are created between the
robot’s current location to all of the time-step paths along T , t1 to t6. The red lines
are deleted due to a collision with the ellipse, whilst the yellow lines represent the
potential FMVs available. The green FMV line is chosen as it is the most desirable,
using Eq. (5.7).
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5.5.1.2 Collision Checking

The FMV is determined by the FGP, and is designed to produce a considerate
movement over one environmental frame of the real-world. However, despite how
well planned the vector may be the dynamic nature of the environment means that
there is no guarantee of avoiding any collisions, especially if the agents are not
behaving as predicted. As mentioned in Section 2.1.1, the path from the AMR’s
current position to its destination should be planned using global path planning
methods, whilst updates to the path as it moves should be performed by local
collision avoidance. A simple proximity buffer zone (BZ), Fig. 5.16, is applied around
the AMR as it moves, ensuring that a collision can never occur due to the AMR2. The
orientation at which the BZ of the AMR is intersected will determine the appropriate
action to take.

The Collider and The Collidee If the AMR’s BZ intersects an agent, the
relative orientation between the two agents will not only determine who collided
with whom, but can help maintain crowd flow, Fig. 5.16. In order to prevent a
complete halt to the AMR whenever their BZ is intersected, only if the AMR is
responsible for the collision will it stop, Fig. 5.16b. Much like in a normal crowd, if
someone walks behind a person only they can stop to avoid a collision, which helps
the flow of traffic as those in front continue unhindered, Fig. 5.16c.

Avoiding a Collision Although the FMV is chosen to avoid any collisions that
occur within the predicted model environment, this may not be reflected in the
reality of the real-world. As the AMR moves along the FMV, collision checking is
continually implemented to ensure that the BZ is not intersected. If an agent does
enter the BZ, rather than have the AMR simply stop for the remainder of the time-
step, the remaining segment of the FMV is adjusted to move away from the agent
until it provides a collision free trajectory, Fig. 5.17. The turn of the FMV occurs
incrementally in order to gradually move the AMR away, as aan instantaneous turn
would be unnatural. Upon finding a collision free trajectory, the AMR will continue
to move until the time-step expires.

5.5.1.3 Differential Drive Model

Although specific dynamics have not been applied to the AMR model used by the
search, Section 3.2, in order to move the AMR within the confines of simulating
the CNS limitations as to how it can move have been implemented to replicate the
kinematics a differential drive, Fig. 5.18. The AMR’s velocity, Rvms−1, is set by
the length of the FMV (m), divided by the length of the time-step (s) used by the

2this is not to say a pedestrian would not collide with the AMR
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(a) (b)

(c)

Fig. 5.16 Visualisation of how relative agent orientations determine who collided
with whom, and therefore who is required to activate a collision avoidance strategy.
For illustrative purposes assume this is an AMR only environment, with all AMRs
loaded with the CPP algorithm. An AMR activates collision avoidance when an
external agent enters into the buffer zone (BZ) that surrounds the front half of the
AMR. The BZ is red when collision avoidance is required, and green when no action
is required. (a) Both agents are mutually responsible for avoiding a collision and
must stop. Both agents intersect the other’s BZ and both their trajectories collide.
(b) Only A1 pauses to avoid a collision, as A2 is within its BZ. A2 does not take
any action as its current trajectory will not create a potential collision. (c) Only A3
pauses to avoid a collision, as both the other agents are within it’s BZ. A1 and A2
do not take any action, despite them entering each other BZs, as their trajectories
are diverging. This scenario helps maintain traffic flow as only A1 needs to stop
and manoeuvre around, preventing those in front from also stopping and adding to
congestion.
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(a) (b)

Fig. 5.17 Example of how the FMV the AMR moves along in the real-world, is
updated if a collision is about to occur. For illustrative purposes assume this is a
AMR only environment, with all AMRs loaded with the CPP algorithm. (a) As a
collision is about to occur between both AMRs, both FMVs move away from the
collision, θ1 and θ2. The remainder of the FMV is rotated away from the collision,
using the AMR’s current position as the point of rotation. This incremental rotation
continues until the remainder of the FMV is aligned with a collision free path.
(b) Both FMVs have rotated away from the collision, and so both AMRs can now
continue to move to the remainder of the time-step.
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Fig. 5.18 Example of how the differential drive would move an AMR from the origin
facing right, to various destinations (green dots) all at 2m distance from the AMR.
The specifications of the model drive are: Rv = 2.0ms−1, max(Rω) = π

4 rad · s−1,
and t = 1s, whilst the AMR’s position is updated every 0.1s (10Hz). The blue lines
represent the movement of the AMR for the length of t, as it moves towards the
goals.

CPP. The differential drive is set to move the AMR to the end of the FMV with
a maximum turning angle, max(Rω), of 45o. Therefore, it is only possible for the
AMR to arrive at the end of the FMV if its angle has not changed since from the
previous.

5.5.2 Arriving at the Destination

The underlying aim of the CPP is to navigate an AMR considerately to its destina-
tion. Rather than using a traditional destination point, which the AMR navigates
towards, a destination line is implemented. A line is used as it offers a more natural
object to aim for, such as a door, wall, or the edge feature of a map. A point also
requires a great deal of accuracy to position over, and if the AMR’s turning ability
is limited it may spend an inordinate amount of time unnecessarily re-positioning
itself. Also, if the environment contains multiple agents all heading for the same
point, collision potential will increase. Using the line method is preferable as it
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(a) (b)

(c) (d)

Fig. 5.19 Visualisation how AMRs (R1−R4) move toward, and arrive at, the destina-
tion line. (a-b) The most direct route to the destination line is either perpendicular
to it, or towards one of the ends. If other agents arrived at the same destination,
and block a direct route, the approaching AMR moves along the shortest collision
free path. (c-d) If there is not a gap of at least twice the AMR’s radius along the
destination line (less than just the radius at the end points), it is not possible for
the AMR to reach its destination collision free. The destination line will therefore
expand outwards by the AMR’s radius, until a gap occurs that is suitably large
enough for the AMR to reach. This new two-dimensional destination will allow the
AMR to aim for a destination that is as close as it can get to the original, collision
free. The pink bubbles represent the areas that the AMR can safely reach without
colliding with agents that are already positioned along the 2D destination. Every
time the destination becomes unreachable without collision it continues to expand
until there is suitable room for the AMR to arrive.

is similar to a race finish line; the AMR will have reached its destination when it
crosses the line, Figs. 5.19a and 5.19b.

As the AMR’s destination line is known only to the CPP, at any moment the
destination may become unknowingly blocked by another agent. It may also become
blocked if other agents have already reached the same destination and are positioned
over it. Under such circumstances the AMR should attempt to get as close as possible
to the original line. If there are no gaps along the line that the AMR can safely
fit into, the line expands outward in order to make gaps big enough for the AMR,
Fig. 5.19c. Whenever an updated expansion of the line has no more room for a
AMR to safely fit, it will continue to expand further, Fig. 5.19d. This ensures the
AMR makes it as close as possible to the destination, if reaching it is impossible.
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5.6 Chapter Overview

This chapter has presented the algorithmic implementation of CNS, which plans
and executes the most considerate paths through a dynamic environment. The CNS
models the real-world environment from what can be observed within the robot’s
FoV. The CPP then predicts a number of the most desirable paths at each time-step,
each of which will consecutively connect and form a number of final global paths
spanning the length of the prediction time-horizon. The most desirable paths are
chosen primarily due to the consideration resistance, Ω, encountered as the search
algorithm progresses. Ω inhibits the frontier’s search speed, which represents the
potential movement the AMR may take in the real-world. Two additional features
modify the desirability of each Pt path to incentivise the AMR to move towards the
destination, as well as encourage exploration of the model environment. The closer
each Pt path end is to the destination, and the larger the path end’s displacement
from the start, results in additional desirability being added, respectively.

The FGP selected for the AMR to move along, is chosen using the cumulative
desirability acquired at each Pt, within the selected PT . By updating the model
environment at each time-step, the CPP can evaluate potential paths that evolve
with the crowd. As the model environment is a prediction of how the real-world en-
vironment might change over the prediction time-horizon, the likelihood of the robot
experiencing a collision is reduced. Therefore, only simple local collision avoidance
is used, which will adjust the AMR’s trajectory if it is about to cause a collision.

The novel ability for the CPP to generate considerate paths is calculated us-
ing very simple but effective means. By embracing the uncertainty when using a
simple CVM, in place of an alternative complex model, areas the CPP is unsure
an agent may be can simply be avoided. Alternative path planners, which assume
more accurate agent trajectory predictions, cannot handle much prediction error,
which will may result in more potential collisions if the agents do not behave as
expected. The CPP provides a novel and effective alternative, enabling the inher-
ent unpredictability of a dynamic environment, such as a crowd, to be used to its
advantage.

The next chapter will evaluate the CNS’ performance within a simulated envi-
ronment, using a microscopic pedestrian simulator. The movement of the AMR will
be evaluated using a set of novel quantitative performance metrics that will quantify
that amount of considerate movement the CNS exhibits towards an approximation
of reality.



Chapter 6

Testing the Considerate
Navigation Strategy

"Klaatu barada nikto"

— Edmunh H. North, The Day the Earth Stood Still

T
he considerate navigation strategy (CNS) is intended too operate within a
dynamic pedestrianised environment. This chapter is designed to evaluate
specific design elements of the considerate path planner (CPP), and estab-

lish the optimal parameters for the CNS so that it can be successfully implemented
as intended. Initial test variables and parameters are first established, Section 6.1,
so that suitable simulations can be run. A virtual environment will be loaded with
multiple dynamic agents, including similar autonomous mobile robots (AMRs) oper-
ating with the same CNS strategy, and microscopically modelled pedestrians from a
simulator. The performance of the CNS will be evaluated against novel quantitative
performance metrics (QPMs), Section 6.2. These will allow the specific objectives
set out at the start of this thesis, Section 1.3.2, to be evaluated, and establish if the
CPP can produce considerate paths that the CNS can then successfully execute.

An assessment for each of the design elements of the CPP is then made, Sec-
tion 6.3. The reliability of the pedestrian model, presented in Section 3.2, is per-
formed to see how accurately its predicts the movement of pedestrians, over an
increasing prediction time-horizon, T . By recreating empirical studies discussed in
Section 2.3.3.1, an evaluation of the novel Voronoi diagram-visibility graph (VD-
VG) roadmap, presented in Chapter 4 is made, as well as the VD and VG elements
when used as individual roadmaps.

Finally, the CNS is evaluated, Section 6.4, using simulated pedestrians and sim-
ilar AMRs. A number of different scenarios are trialled, each of which will require
multiple dynamic agents to interact with one another from various angles. Using
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the novel QPMs for consideration, the CNS is evaluated to see how well the AMR
performs at various values of T , so that the optimal prediction time-horizon can be
found. The results are also compared to a standard A* algorithm, as well a modi-
fied considerate A* (CA*) search, in order to highlight the CNS’s improvements of
pre-existing searches.

6.1 Establishing Test Variables and Parameters

This section presents the configuration requirements needed in order to implement
the full CNS, which occur before the input and after the output of the CPP One
of the most significant factors to impact the CPP’s ability to predict global paths
is the size of the AMR’s field of view (FoV), as anything outside the FoV will
be undetectable. It will also directly limit the maximum length of the prediction
time-horizon, T , as predictions should not go beyond the FoV into unknown areas.
How various prediction time-horizon lengths affect the behaviour of the CPP will
therefore be investigated, to demonstrate its affect on global path planning.

6.1.1 Robot Model Parameters

The AMR model, Section 3.3.1, can now have appropriate parameters set so that
the CNS can be simulated. The range and span of the AMR’s input FoV will be
based upon HOKUYO UST-10LXa high precision laser range-finder. The variable
prediction time-horizon parameter of the CPP to be tested will be vary from the local
vicinity to the range of the FoV. The AMR’s differential drive movement kinematics
will remain the same as described in Section 5.5.1.3, using the Milvus Robotics
MRP2 platofrm as a basis.

a1 Input: Real-world data obtained from within the AMR’s FoV,

a1.1 FoV distance range, FoVr = 5m - also approximate human visual range
of interest [2].

a1.2 FoV angular range, FoVθ = 270◦ - allows the 90◦ left-forward-right areas
in front of the robot, Fig. 5.11, to be equally divided.

a2 Processing: The customisable CPP parameters that affect consideration to
be tested,

a2.1 Variable prediction time-horizon, T = 1 to 7
a2.2 Variable maximum speed of the robot, max(Rv) ≤ 2.0ms−1

a3 Output: The AMR’s kinematics, Section 5.5.1.3,

a3.1 Turn of the robot, −45◦ ≤ Rθ ≤ 45◦.
a3.2 Speed of the robot, Rv ≤ max(Rv)
a3.3 Wheeled platform operated using a differential drive
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Operational: Local Tactical: Sub-Global Strategic: Global
(0 < t < 1

3T ) (1
3T < t < 2

3T ) (2
3T < t < T )

t 1 2 3 4 5 6

Table 6.1 The division of the robot’s FoV distance range, FoVr, is representive of
the spatial path planning ranges observed in humans, Fig. 2.9. For the FoVr used
in these simulations the maximum prediction time-horizon cannot exceed T = 6.

The range of T values is reflective of the spatial path planning ranges of a human,
Fig. 2.9. By dividing the range of the FoV into thirds the three resultant ranges of
T should provide the same strategic, tactical, and operational levels of behaviour,
Table 6.1.

6.1.2 Adding Noise Variables

The CPP is to be implemented in the real-world environment, which will inevitably
result in errors regarding sensor measurements, and the execution of the final move-
ment vector (FMV), Section 5.5.1.1. To make the simulations more realistic, noise
will been introduced to both the input and output stages of the CPP to corrupt the
data [256]. To further replicate noise levels encountered in the real-world, the data
will be corrupted in accordance to the accuracy levels of genuine products. The
noise is expressed as a percentage of the values it is corrupting, assuming a uniform
distribution.

6.1.2.1 Input Noise

Object detection errors, within the robot’s FoV, will contribute towards errors in
the positions of agents within the model environment. For the purposes of these
simulations positional noise will be added to the positional Cartesian co-ordinates
of all agents within the robot’s FoV. The error will be in reference to radii of the
agents detected, e.g. if applying a noise level of 1%, to an agent with a radius of
10, the agent’s position will range from ±10 × 1

100 ⇒ (Ax ± 0.1, Ay ± 0.1). The
uncertainty ellipse of each agent will also be affected, as the data used to produce
it will be noisy.

6.1.2.2 Output Noise

The robot platform used by the robot model will have a differential drive and a
maximum speed of 2.0ms−1. Noise is added to the robot’s trajectory (direction of
the FMV) and the the robot’s velocity (length of the FMV). The noise has been
added to the FMV as it is assumed that there will be no wheel slippage of the AMR
platform.
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Angular noise will corrupt the turn the robot makes for every FMV, e.g. applying
a noise level of 5% to a robot with a turn of 45◦, will result in the FMV differing
from the original by ±45 × 5

100 ⇒ FMVθ = 45 ± 2.25◦. Velocity noise will corrupt
the length of the FMV, which will therefore affect the robot’s velocity as the FMV
represents the AMR’s velocity trajectory in the next timestep, e.g. applying a noise
level of 5% to a robot with a velocity of 2.0ms−1, will result in the robot’s velocity
ranging from ±2× 5

100 ⇒ Rv = 2± 0.1ms−1.

6.1.3 Dynamic Movement & Interaction

When the AMR executes the paths planned by the CPP the movement and interac-
tion of the AMR with other dynamic agents will be evaluated. Scenarios are devised
that involve multiple dynamic agents crossing each others paths, at different crowd
densities. To test how considerate the overall CNS is, each scenario is repeated
using dynamic agents of similar AMR’s programmed with the CPP; and dynamic
agents from the microscopic pedestrian simulator "PedSim", which uses the social
force model.

6.1.3.1 Crowd Densities

Different levels of crowd density (people, p, per square metre, m−2) will result in
different behaviours due to the "level of service" [24], Table 6.2. In low density
crowds (p ≤ 0.6) pedestrian behaviour is typically to walk directly towards one’s
goal, reactively avoiding collisions en route. For the AMR, traditional object avoid-
ance path planning strategies can be used. In medium density crowds (0.6 < p ≤
0.75) pedestrian behaviour can be replicated by developing non-disruptive path plan-
ning techniques that consider proxemics and respect each pedestrian’s spatial zones.
This is achieved via the accurate prediction of pedestrian intentions, allowing the
AMR to avoid a hypothetical collision with a neighbouring pedestrian. In high
density crowds (0.75 < p ≤ 2), collaborative path planning between AMR and
pedestrian can allow mutual collision avoidance of hypothetical collision points to
be achieved together. For higher crowd densities (p > 2) the individual microscopic
crowd dynamics are replaced by macroscopic dynamics, as the crowd becomes too
dense.

6.1.3.2 The "PedSim" Microscopic Simulator

As it is not yet possible to implement the CNS onto a real-life robot platform, it
must be simulated under an approximation of reality. This pedestrian simulator [16]
is based upon the popular agent-based social force model, Section 2.3.2.3, often used
for pedestrian simulation. To establish what level if social force, SF , is required (the
accompanying documentation recommends a SF of 1 to 10), the positions of each
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Crowd
Density

People (p) per
square metre

Flow
Description Example locations

Low p ≤ 0.6 Free Public Parks
Medium 0.6 < p ≤ 0.75 Impeded Shopping Centres

High 0.75 < p ≤ 2 Dense Central Transit Centres
Very High 2 < p Jammed Not Recommended

Table 6.2 Values for various crowd densities, formulated from [24]

pedestrian that appear in 10 consecutive frames of the BIWI pedestrian dataset [17]
are recorded. For each recorded pedestrian path the start and end points are loaded
into the simulator. To see how closely the simulator directs the simulated pedestrians
to their goal, in comparison to the dataset, the difference in the position between
each individual pedestrian’s datapoint and the associated simulated pedestrian are
evaluated at each timestep, Fig. 6.1. From these observations it is deemed that
SF = 1 is the closest approximation of reality, as the simulated pedestrians deviated
the least from their real-life counterparts.

6.1.3.3 Similar Robots

This will test the hypothesis that two considerate navigation strategies can mutually
respond to one another and become implicitly cooperative, which is observed to be
the case between pedestrian interaction, Section 2.3.3. Robots will be set up with
the same prediction time-horizons and speeds in order to evaluate them equally.
Also, whenever more than one is tested together, each AMR will use the same T

value for the CPP.
Using similar AMRs is also beneficial at aiding the CNS evaluation. When an

AMR moves towards the end of the FMV, Section 5.5.1.1, it does so for the full
timestep, without the CPP replanning any other path; readjusting only if a collision
occurs, Section 5.5.1.2. Therefore, each AMR moves for upto 0.56m (0.4s×1.4ms−1)
along only one path planned by the CPP. However, the PedSim constantly updates
each pedestrian’s position using the social force model as the AMR moves within the
environment. As the PedSim pedestrians’ movements can change direction without
turning limitations, by using similar AMR’s bound by the differential drive kinemat-
ics, Section 5.5.1.3, this will help evaluate the CNS at manoeuvring around dynamic
agents with more limited movements.

6.1.4 Assumptions & Limitations

As the CNS is evaluated by simulation, both the collection of input data to be used
by the CPP and the movement of the AMR are all artificial. The introduction of
noise, Section 6.1.2, helps to replicate real-world variability, i.e. input noise imitat-
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(a) (b) (c) (d)

(e) (f)

Fig. 6.1 Examples of how well the microscopic "PedSim" pedestrian simulator [16]
replicates the trajectories of pedesrian from the BIWI dataset [17], using the social
force (SF) model. (a-e) Examples of how much the simulator deviates from the
dataset for the initial timestep, t = 1. The magenta dot is the location of the
pedestrian in the dataset at t = 0. The green and red dots show the position of
pedestrians at t = 1 for the dataset and simulator, respectively. Both green and red
dots are connected to their respective initial pedestrian’s position by a line of the
same colour. (a) SF = 0. (b) SF = 1. (c) SF = 5. (d) SF = 10. (e) Superimposed
image of all simulator results displayed in (a-c). (f) The boxplots measures how
accurately the simulator recreates the movement of pedestrians, over a prediction
time-horizon of T = 10, by measuring the distance between the datapoints and the
model positions at each timestep. The PedSim documentation recommends a SF
value anywhere between 0 to 10, and indeed the results plateau beyond this range.
Although the difference is minimal between the various values of SF, SF = 1 does
provide the most accurate reproduction, indicating that pedestrians deviate only
minimally from a constant velocity.
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ing distance measurement errors; and output noise imitating AMR wheel slippage.
However, a number of assumptions are made concerning the dynamic agents, and
how their relevant data is processed, given below:

b1 Dynamic Agents: Behaviour

b1.1 All agents do not respond abnormally to the presence of the AMR
b1.2 All pedestrian data is reliably pedestrian in behaviour

b2 CNS Input: Agent data

b2.1 All agents are individuals of the same size, based on the average shoulder
width of a human

b2.2 All agents within the FoV range are guaranteed to be detected, with no
occlusion

b2.3 All agents are uniquely identifiable, Section 5.1, which is required to
calculate their velocity

b3 CNS Processing: The CPP algorithm

b3.1 The timsetep used for these experiments is 0.4s. This is assumed to
be reasonable as the BIWI dataset of pedestrians used in this thesis is
sampled at this rate [17].

b3.2 The path is calculated instantaneously, and the real-world does not change
during the interim

b4 CNS Output: AMR kinematics

b4.1 Instantaneous acceleration
b4.2 Velocity constant when moving during each time-step
b4.3 Localisation of the AMR is perfect when calculating the distance to the

goal

Limitations occur when the CPP is processing, due to software/hardware specifica-
tions: as the CPP plans the path the world does not change in the interim. This
would limit the application of the CPP in a real-world environment, due to process-
ing speed. However, all assumptions and limitations are acceptable for evaluating
how considerate the CNS will be, and now how to measure consideration is defined.

6.2 Measuring Consideration

The FGP is the most desirable path plotted within a model environment of the
real-world, whilst the FMV is the robot’s movement in the actual real-world. Novel
QPMs for consideration are defined to evaluate how considerate the robot is when
moving along the FMV, and determine the CNS’s navigational performance.

Consideration can be observed through how the robot directly and in-directly
interacts with pedestrians:
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c1 Direct (Active) Considerate Behaviour

c1.1 Move behind pedestrians if needing to move across their trajectory

c1.2 Avoid moving directly in-front of pedestrians

c1.3 Move out of a pedestrian’s path if moving towards each other

c2 In-direct (Passive) Considerate Behaviour

c2.1 Maintain a constant velocity

c2.2 Maintain a minimum distance between pedestrians

c2.3 Move with crowd flow

Although a quantitative assessment allows the most desirable FGP to be chosen,
Section 5.2.2, the AMR’s performance must be evaluated using QPMs as it travels
along the FMV in the real-world environment. Novel QPMs must be explicitly
defined for an AMR’s movement along the FMV, as none yet exist to evaluate
considerate behaviour.

Traditional metrics are first assessed in order to establish what is currently used
by AMR’s to evaluate their performance. Novel modifications are made based on
near-miss collisions, so that each one is not considered the same. Finally, a list of
novel QPMs for consideration is defined in order to asses how considerate the AMR
actually is, as it moves along the planned considerate paths.

6.2.1 Traditional Metrics

Traditional robot path planners are optimized to find the shortest route (either time
or distance) from the robot’s current location to its destination, and for any AMR
collision free navigation is essential. Instinctively this infers the four primary QPMs
used in many systems [70]:

d1 Journey Success: How many times the AMR arrived at its destination

d2 Journey efficiency: ideal vs. executed

d2.1 Time: how quickly did the AMR arrive at its destination

d2.2 Distance: how long was the route the AMR took to its destination

d3 Collisions: Number of collisions experienced or prevented en route

These basic QPMs are essential to evaluate an AMR’s autonomy level. Additional
QPMs can then be used, specific for each AMR’s purpose.



6.2 Measuring Consideration 171

6.2.2 Appraising Near Misses

As mentioned in Section 5.5.1.2, the AMR is surrounded by a buffer zone and will
perform an emergency stop if intersected, so as not to collide with anything. This
is also dependent upon whether the robot is responsible or not, i.e. has the robot
moved along a path that has contributed towards colliding with a pedestrian?

Often collisions will be inevitable [152], especially in a crowded and dynamic
environment. However an AMR may have only grazed past a pedestrian, making it
unfair to regard each emergency stop as a simple near collision. Therefore, each is
evaluated in order to establish the collision intensity that would have occurred had
the AMR not stopped:

e1 Near-miss Velocity: normalised velocity of the robot at the moment of
emergency brake. This measures the potential force the robot would impart
on the pedestrian. e.g. a faster the robot the more forceful the collision.

e2 Near-miss Incidence: normalised impact angle between the robot and pedes-
trian at the moment of emergency brake. This measures the severity of the
impact, based on how direct the collision was. e.g. the smaller the angle the
harsher the collision.

e3 Near-miss Collision Intensity: total magnitude of the emergency brake, as
a product of the near-miss velocity and near-miss angle of incidence together.

By assessing the total intensity of a near-miss collision that intersects the robot’s
buffer zone, minor bumps, or slight deflections, will not carry the same gravitas as
a more brutal head-on collision at full speed.

6.2.3 Novel Quantitative Performance Metrics for Considerate Nav-
igation

At the beginning of this section the list of considerate behaviours, (Items c1 and c2),
have not been previously defined by as QPMs. Therefore, a novel set of QPMs for
considerate behaviour will be constructed, using the orientation between a dynamic
agent and the AMR. All metrics are measured when the AMR is within an elliptical
proxemics field that surrounds the agent, and orientated along the agent’s current
trajectory, which would make the AMR close enough to the agent for interaction to
occur.

The metrics will quantify how the AMR crosses a pedestrian’s trajectory or moves
with the crowd flow, in order to evaluate the thesis’ aims & objectives, Section 1.3.2.
The rules are generalised to evaluate how the AMR crosses in front or behind a
pedestrian, or flows with or against their movement, Fig. 6.2, within a ±45o viewing
angle. The rule base is defined as follows, providing the AMR is within the proxemics
field:
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f1 Trajectory Crossing: The AMR must be orientated ±45o from a perpen-
dicular intersection with the pedestrian’s trajectory line.

f1.1 Behind: Considerate movement in accordance with Item c1.1.
f1.2 In front: Inconsiderate movement in accordance with Item c1.2.

f2 Flow Motion: The AMR must be orientated ±45o from the pedestrian’s
trajectory line.

f2.1 Behind: Considerate movement in accordance with Item c2.3.
f2.2 In front: Considerate movement in accordance with Item c2.3, and in-

considerate movement in accordance with Item c1.3.

A tally will be made based on considerate or inconsiderate positions of the AMR at
each updated position as it moves toward the end of the FMV.

The metrics will be normalised so that the higher the value of each metric, and
so the total combined value of all, represents the best performance. Therefore, it
may appear counter-intuitive when tabulating, but larger values for distance and
time taken, and number of inconsiderate movements, are actually preferable when
presented in graphs. Establishing considerate behaviour is paramount, therefore
traditional metrics will not be included as it is acceptable for the CNS to take a
longer route to the goal if it means behaving more considerately. The near-miss
metric, Item e3, will be included to allow an evaluation of how accurate the CPP
was at planning paths with minimal collisions.

6.3 Testing the Considerate Path Planner Design Ele-
ments

Before the CNS is tested on a crowd in the proceeding section, each of the CPP
design elements are evaluated. A simple scenario designed that recreates the empir-
ical studies of human-human collision avoidance in [18], with two dynamic agents
crossing a hypothetical collision point at the centre of the environment, Fig. 6.3.

6.3.1 The Pedestrian Model

The uncertainty ellipse is designed to embrace any uncertainty in a pedestrians
predicted movement, therefore as long as the pedestrian remains in the ellipse its
purpose has been fulfilled. However, as mentioned in Section 3.2, by not limiting the
uncertainty enough can lead to an uncertainty explosion. Therefore, to establish the
effectiveness at estimating the level of uncertainty required by the pedestrian model,
Eqs. (3.5) and (3.6) and Fig. 3.6, the distance from the pedestrian to the ellipse edges
will be calculated at each t along T , Fig. 6.4. The results are compared to ellipses
that are sized based on only the statistical deviations to a CVM, as observed in
Section 3.2.1.
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(a)

(b)

Fig. 6.2 Visualisation of how the 4 consideration metrics, Section 6.2.3, are calcu-
lated, using an ellipse orientated around each pedestrians position in the style of a
standard proxemics field [11]. (a) The rules dictating considerate movement simply
depends on the angle the AMR (orange circle) moves with respect to the pedestrian.
If the AMR moves along a trajectory within the 90o range of any green quadrant, the
movement is considerate; i.e. Moving with the pedestrian flow, or crossing behind
the pedestrian. If the AMR moves along a trajectory within the 90o range of any red
quadrant, the movement is inconsiderate; i.e. Moving against the pedestrian flow, or
crossing in front of the pedestrian. (b) If the AMR enters the ellipse, its orientation
will determine if it is moving considerately (green arrow) or inconsiderately (red
arrow) If the AMR is moving against the flow behind the pedestrian, the movement
is neither considerate or inconsiderate (blue arrow).
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(a) (b) (c) (d) (e)

Fig. 6.3 Set-up used in the empirical studies of human-human collision avoidance [18].
The dynamic agent (red line) always moves down, and the AMR (blue line) moves
across at 5 separate angles. (a) 0o relative angle between the agent and AMR.
(b) 45o relative angle between the agent and AMR. (c) 90o relative angle between
the agent and AMR. (d) 135o relative angle between the agent and AMR. (e) 180o

relative angle between the agent and AMR.

6.3.2 The Considerate Path Planner

When recreating the empirical studies, the AMR will interact with non-reactive
agents in order to evaluate its behaviour regarding pure consideration, as well reac-
tive agents in order to evaluate its behaviour regarding implicit cooperation. Having
the CNS move an AMR around only one dynamic agent will allow the baseline per-
formance of the system to be analysed. The direct response of the CNS to a dynamic
agent can be clearly observed, as multiple agents would not necessarily make it clear
what aspect the CNS was responding to.

The dynamic agents (light blue paths) will move down the environment, whilst
the CNS will move AMRs (dark blue paths) at angles of 0o, 45o, 90o, 135o, and
180o relative to the initial agents position, Fig. 6.3. Within each example, the
hypothetical collision point will be in the centre of the environment, and both AMR
and dynamic agent will be set to travel at a maximum speed of 1.4ms−1.

6.3.2.1 A Demonstration of Consideration & Implicit Cooperation

To evaluate the very basic notions of consideration, a simple experiment is first
presented of an AMR moving past a dynamic agent at 180o, Fig. 6.5. The experiment
is performed over all variable prediction time-horizon values of the CNS (T = 1−6),
and is tested against a non-reactive agent; a similar AMR using the same value of
T ; and a simulated pedestrian from the PedSim simulator.

For all three dynamic agents in each experimental set-up, it is clear that in-
creasing T results in a smoother movement of the AMR. The uncertainty ellipse of
the non-reactive agent, Fig. 6.5a to Fig. 6.5f, is guaranteed to contain its predicted
movement, as the agent will not deviate from its trajectory nor change in speed from
the observed data used by the pedestrian model. Therefore, only a small amount
of prediction is required, T = 2, effectively emulating local collision avoidance, Ta-
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Fig. 6.4 Validation of the success of the uncertainty ellipse of the pedestrian model,
Section 3.2, at containing the prediction of a dynamic agent’s movement. The
PedSim simulator is used to have dynamic agents cross each others paths (using all
the scenarios designed to replicate empirical studies, Fig. 6.3, simultaneously). The
accuracy of the pedestrian model is evaluated by calculating the average distance
the agent is from the ellipse edge, using the 2 or 4 normal intersections to the
ellipse from the agent, Eq. (3.4). The results are compared to an ellipse generated
from the statistical deviations found in the BIWI pedestrian dataset, Fig. 3.3. The
uncertainty ellipse clearly contains the agents more accurately (top graph), as the
uncertainty profile limits the increases of ellipse sizes. If the agent does move outside
the ellipse (bottom graph), again the uncertainty ellipse is superior. This is due its
design to cover random stopping, and trajectory deviations.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 6.5 A basic example of the CNS demonstrating consideration and implicit coop-
eration. The CNS moves an AMR upwards, whilst various forms of dynamic agents
move downwards, forcing the CNS to negotiate past a head-on collision. Each sce-
nario is repeated consecutively for T = 1, 2, 3, 4, 5, 6, with path efficiency plateauing
at T = 4. (a-f) A non-reactive agent moves down. The CNS is forced to instigate all
collision avoidance and demonstrates considerate behaviour. (g-l) A similar AMR
using the same CNS moves down. As expected both AMRs respond in similar ways,
demonstrating implicit cooperation though mutual consideration. (m-r) A reactive
agent from the PedSim simulator moves down. Both respond to the upcoming colli-
sion, demonstrating implicit cooperation without the requirement of "optimistically"
assuming cooperation, Section 2.3.3.2.
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ble 6.1. As the agent is non-reactive, the CNS must perform all collision avoidance,
and so demonstrates considerate behaviour by not requiring a pedestrian to move
out of the way.

When two AMRs using the CNS move past one another, Fig. 6.5g to Fig. 6.5l,
they are both successful at passing considerately when T = 2. However, a larger
prediction is required to make movement smoother, plateauing at T = 4, due to less
easily predicted movement. As both agents are programmed with the same CNS,
their movements at each timestep are very similar due to the CPP planning nearly
the same paths for each. This experiment demonstrated that implicit cooperation
can mutually occur when each agent behaves considerately.

When the CNS responds to a simulated pedestrian, Fig. 6.5m to Fig. 6.5r, similar
results are also produced. The pedestrian responds identically each time, as the same
social force is used for each, SF = 1. Whilst the AMR’s path becomes smoother as
the CNS increases the prediction time horizon, plateauing again at T = 4. As both
agents are able to respond to the upcoming collision, this experiment demonstrates
implicit cooperation can occur without the requirement of "optimistically" assuming
cooperation, Section 2.3.3.2, requiring only consideration.

To create the smoothest and most efficient path, the CPP must plan paths with
a prediction time horizon of T ≥ 4. As the time-step used by the CNS is 0.4s, this
would be a 1.6s prediction window for T = 4 and 2.4s for T = 6. This compares
to the evidence observed through empirical studies, which shows that pedestrians
begin to respond to a collision between from 3s before [195]. The move lasts for
1.4s, so the CNS should react within a similar time-window as normal pedestrians.
This is a simple experiment with only one agent to avoid, a prediction time-horizon
of T > 4 would likely be required if navigating amongst multiple dynamic agents.
This hypothesis will be evaluated in the proceeding section, Section 6.4.

6.3.2.2 Path Selection

As discussed in Section 5.4, the number of potential paths is determined by the
length of the prediction time-horizon. The larger T becomes the greater the upper
limit of the potential paths. This adds to path diversity and contributes to exploring
the environment more effectively. As just discussed, a minimum of T = 4 is required
for smooth path planning. To provide a further example, using a non-reactive agent
when T = 1, Fig. 6.6, the CPP performs a local search, Table 6.1, of the immediate
environment. Consequently the CNS causes the AMR to behave as a reactive agent,
by performing collision avoidance only in response to an immediate collision. As seen
in Fig. 6.6d, this occurs too late and it results in a collision. At every attempt made
by the CNS to pass the agent the movement is neither smooth, nor considerate.

When T = 5, Figs. 6.7a to 6.7d , the CPP performs a global search, Table 6.1,
of the majority of the AMR’s FoV. In comparison to T = 1, Fig. 6.6, the paths
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are adjusted to avoid collisions well in advance, and the overall paths are much
smoother. Comparing Fig. 6.7c to Fig. 6.6b, the larger prediction time-horizon
shows that deviating to move behind the agent well before it passes, results in no
collisions along a minimally altered path. It is the path diversity used when exploring
the environment, Section 5.4, that allows this to be successful. Comparing it to when
the CPP uses a "best-first" path selection at each t, Fig. 6.7e, the CNS replicates a
similar path as T = 1, albeit a lot smoother. An individual Pt path at each timestep
may be better at t, but the consequent ones much worse. The most desirable PT

path the length of T , Section 5.2.2, may be slightly worse at an early stage, but
overall much more suitable.

6.3.2.3 The Voronoi Diagram-Visibility Graph Roadmap

A global path that explores the environment is able to outperform a simpler "best-
first" approach. However, the directions the search can move in is dictated by the
roadmap, and the interconnectivity of its nodes. The previous examples all use the
full VD-VG roadmap, which combines the VD and VG roadmaps to create an overall
superior roadmap.

When using just the VD, Figs. 6.8a to 6.8d the paths become much more ir-
regular. This is due to the vertex points of the VD, Fig. 6.8e, causing the CPP to
select a much more limited number of paths that move either side of the agent. As
seen in Fig. 6.8a, the path begins by snaking, due to the CPP selecting a path on
the opposite side of the agent’s uncertainty ellipse at each timestep. This limited
number of Pt paths available at each timestep, which each diverge largely from each
other, allows safer paths to be chosen by moving away from the agent, but are much
less consistent.

When using just the VG, Figs. 6.9a to 6.9a, the paths become more similar to
the VD-VG, Fig. 6.7. This is due to the greater number of interconnected vectors,
Fig. 6.9e, making it much more likely to select a path along the VG. This is expected
when moving though an open space, as the saftey of the VD is not required, rather
the path efficiency of the VG preferable. When the AMR crosses the agent at a 90o

angle, Fig. 6.9c, the VG alone begins to perform worse. The VG does not provide the
diverging path potential of the VD, for the CPP to select paths that move around
the uncertainty ellipse. This can be seen in the form of the slant at the beginning
of Fig. 6.8c. However, the path begins to snake again later for that very reason, as
mentioned earlier, at which point when using the full VD-VG it would have switched
back to a VG path.

At the end of each time-step the diversity of the VD-VG roadmap means that
many potential Pt paths for that time-step are available. By filtering the paths
to avoid homotopic path repetition, Section 5.3, and to ensure the environment is
explored, Section 5.4, the search effort is significantly reduced, Fig. 6.10a. The FMV,
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(a) (b)

(c) (d)

Fig. 6.6 Examples of the paths taken by an AMR using the CNS, with a non-reactive
agent moving down. The CPP uses the full VD-VG roadmap and a prediction time-
horizon of T = 1. Both agents are shown with their respective uncertainty ellipses.
(a) The AMR considerately moves with the pedestrians flow. (b) The AMR is
constantly trying to move past the agent, before being moved away, creating the
path’s wobble. (c) The AMR moves with the pedestrian’s flow, until it must turn
back on itself in order to realign with its goal. (d) The AMR is unable to adjust its
path soon enough, causing a collision with the agent. The agent is then forced to
react, violating one of the main principles of the CNS.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.7 Examples of the paths taken by an AMR using the CNS, with a non-reactive
agent moving down. The CPP uses the full VD-VG roadmap and a prediction time-
horizon of T = 5. Both agents are shown with their respective uncertainty ellipses.
(a-d) The AMR moves considerately by moving behind each agent in all cases.
(e) Using a "best-first" path selection, the CPP is unable to explore the environment
sufficiently and move considerately behind the agent without colliding. (f) Example
of the VD-VG roadmap used for (c).
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(a) (b)

(c) (d)

(e)

Fig. 6.8 Examples of the paths taken by an AMR using the CNS, with a non-reactive
agent moving down. The CPP uses only the VD element of the VD-VG roadmap and
a prediction time-horizon of T = 5. (a-d) The AMR moves along very inconsistent
paths, due to the limited number of paths available by the VD. (e) Example of the
VD roadmap used for (c).
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(a) (b)

(c) (d)

(e)

Fig. 6.9 Examples of the paths taken by an AMR using the CNS, with a non-reactive
agent moving down. The CPP uses only the VG element of the VD-VG roadmap
and a prediction time-horizon of T = 5. (a-d) The AMR moves much very smoothly,
due to the large number of of paths available by the VG. (e) Example of the VG
roadmap used for (c).



6.4 Testing the Considerate Navigation Strategy in a Crowd 183

(a) (b)

Fig. 6.10 An example of how avoiding homotopic path repetition, Section 5.3, and
ensuring the environment is explored, Section 5.4, helps reduce the search effort
and let the CPP plan more efficient paths. The experimental set-up is of Fig. 6.3c.
(a) Frontier of the windowed Dijkstra’s search at the end of t = 1 (red dots on
magenta search paths). Out of the 64 frontier points, the 3 selected are highlighted
green. Had the 3 circular quadrants, Fig. 5.11, around the search start (orange lines)
not forced the Pt paths to diverge, the three chosen (highlighted with green circles)
would all produce similar paths. (b) By selecting the FMV, Fig. 5.15, rather than
the first Pt path segment of the PT path, the AMR begins to move behind the agent
early on.

Fig. 5.15, also enables the AMR to begin avoiding hypothetical collisions early on,
and ensure the smooth path planning and movement, Fig. 6.10b.

6.4 Testing the Considerate Navigation Strategy in a
Crowd

The empirical studies recreated in the previous section has allowed the design el-
ements of the CNS to show its benefit, and similarities in recreating pedestrian
collision avoidance strategy. In order to more thoroughly evaluate the CNS’s ef-
fectiveness at navigating amongst multiple pedestrians, two scenarios have been
devised, Fig. 6.11, that potentially require the avoidance of multiple hypothetical
collision points between all dynamic agents simultaneously.

To establish the CNS’s improvement of current alternative methods, each test
will be ran in parallel with a traditional A* and a Considerate A* modified with a
cost of the consideration resistance of the CPP, Section 3.3.4. The novel QPMs, Sec-
tion 6.2.3, will provide consistent performance evaluations to establish how consid-
erately the AMR navigates. To further demonstrate the requirement for prediction
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(a) (b)

Fig. 6.11 Visualisation of the ideal robot-destination paths for each test scenario.
(a) 10 robots converge on the same destination line. This will evaluate the CPPs
ability to perform competitive collision avoidance over a small area.

of pedestrian movements and the accompanying path diversity of potential paths,
each scenario will be evaluated over a prediction time-horizon of length T = 1 to 6,
Fig. 6.12 and Table 6.1. For each scenario the PedSim maximum speed will be set at
the average pedestrian walking speed of 1.4ms−1, and each scenario will be repeated
twice, with the AMR’s maximum speed set to the average and maximum pedestrian
walking speed, 1.4ms−1 and 2.0ms−1, respectively. When using the PedSim simu-
lator, each time the scenario is ran the position of each pedestrian in turn will be
substituted with an AMR, so that the CNS can be trialled from all start positions
within the crowd. The more traditional QPMs will also be used to evaluate the
AMR’s efficiency in completing its journeys.

6.4.1 A Considerate A* Path Planner for Comparison

The traditional A* path planner, Section 2.2.2.2, is common in many modern AMR
navigation systems, including the field of HRI (e.g. [151]). The A* best-first heuristic
is one of a Euclidean distance from the search’s current position to the goal, which
provides effective path selection of one that moves closer to the goal. However, the
downfall of the A* is that the cost of the search’s progresses is dictated only by the
total distance moved from the start point to the search’s current position. When the
node network/occupancy grid, Section 2.2.1.1, is created the environmental obstacles
provide a barrier that the search cannot penetrate. Therefore, although a clear path
can be planned, if available, it only avoids any direct collisions with them.

The Considerate A* (CA*) search is a modified version of the A* search that
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(a) (b)

Fig. 6.12 Example of the maximum distance the CPP can predict paths into the
AMR’s orange FoV, dependent upon the prediction time-horizon used. Red lines
indicate ideal straight paths outward from the AMR’s initial position. Green dots
give an example of the maximum distance the AMR could move for every time-step.
(a) Medium prediction time-horizon, T = 3. (b) Maximum prediction time-horizon,
T = 6.

uses the same considerate weights, Section 3.3.4, as used by the CPP. As the search
explores the environment, the consideration weights are calculated as the search
moves to the next node, in the same manner as the consideration resistance is calcu-
lated as it moves along the VD-VG of the CPP, Section 3.3.3. The total resistance
calculated at each move is added to the total cost of the search point thus far, along
with the total distance travelled thus far as with the standard A* search. As with
the CPP, both alternative A* searches will move for either the distance possible
within one time-step, or until the AMR’s goal is reached. Once the best path is
selected after each time-step, the pedestrian model, Section 3.2, will update the
pedestrian’s uncertainty ellipses, Fig. 6.13. The search will begin again for the con-
secutive time-step at the end of the previous time-step’s search, as done so by the
CPP.

6.4.2 All Agents Moving Towards the Same Goal

This scenario, Fig. 6.11a, analyses how much impact the AMR’s have on contributing
towards congestion, by setting all agents to converge on the same destination. When
the AMR moves at 1.4ms−1, it will evaluate how well the AMR will follow the flow
of the other agents to the destination. When the AMR moves at 2.0ms−1, it will
evaluate whether the AMR will attempt to overtake other agents to reach its goal
faster, or queue behind them and move with the flow of the crowd.
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(a) (b)

(c) (d)

Fig. 6.13 Example of the considerate A* search algorithm finding a path for three
consecutive timesteps, using the empirical studies set-up shown in Fig. 6.3d. The
yellow circle represents a distance possible to cover in one timestep, with close nodes
shown in red and open nodes in green. Path selected at each timestep is shown in
magenta. (a) Pt path selected for t = 0 to t = 1. (b) Pt path selected for t = 1 to
t = 2. (c) Pt path selected for t = 2 to t = 3. (c) PT path selected for t = 0 to t = 3.
The AMR’s final movement vector, Section 5.5.1.1, is highlighted red.
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The triangle that forms between all agents, a, and their destinations has an
area of 18m2. The crowd density, Table 6.2, of the scenario can be deemed as
10
18 ≈ 0.667am−2, which would be "medium". When observing the results, the agents
move within a continually reducing area which clearly exceeds 0.955am−2, which
becomes "very high", and is "not recommended" This scenario is able to specifically
evaluate the CNS at how well the AMR moves with the crowd flow, and avoids
adding as much additional congestion as possible.

PedSim Simulator

From an evaluation of the QPMs, Fig. 6.14a the CPP has an optimal prediction time-
horizon of T = 2. When moving with the crowd a smaller T allows the CNS to exploit
the gaps in between pedestrians before the predictions overcrowd the environment,
which makes collision free paths less likely. This is why the best performance is from
the A* and CA* searches whilst T = 1, as these planners plot direct paths to the
goal, along with the pedestrians, Figs. 6.15a to 6.15f. However, aside from this the
CPP outperforms the A* search for the other 6 prediction lengths, T = 2− 6. The
CA* also outperforms the A* search for T = 2, 3, 6, and marginally outperforms
the CPP for T = 3 and 6 as well. This is due to the "best-first" heuristic pushing
the search into the crowd, rather than exploring around the environment in other
directions as well, like the CPP. This experiment shows that search algorithms that
utilise consideration are more successful at navigating along with crowd flow than
standard search algorithms that prioritize only the distance to the goal.

Similar AMRs

Due to the fact that each AMR moves within the environment for the entire timestep
based on the planned FMV, more inconsiderate behaviour is expected. This is
because if predictions of pedestrian movement is incorrect (as is possible in crowded
environments, Fig. 6.4), the AMR may be set on a collision course with another
AMR. Due to this the CPP was not expected to perform consistently until T ≥
4, which is when the smoothest paths are formed, as seen in Fig. 6.5, due to an
adequate length of prediction. From an evaluation of the QPMs, Fig. 6.14b, the
most preferable prediction time-horizon is the longer T = 5. When T ≥ 4 both
considerate searches outperform the A*, although the CA* outperforms the CPP in
2 of the 3 T values. This is due to the same reason, when the PedSim experiment
was performed.
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(a)

(b)

Fig. 6.14 The "Converge" scenario, Fig. 6.11a. (a) The CPP has an optimal pre-
diction time-horizon of T = 2. The A* search is outperformed by at least one
considerate search (4 CA* and 5 CPP) for each prediction length, T . (b) The CPP
has an optimal prediction time-horizon of T = 5. The A* search is outperformed by
4 considerate searches (4 CA* and 4 CPP) for each prediction length, T .
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(a) T = 2 (b) T = 4 (c) T = 6

(d) T = 2 (e) T = 4 (f) T = 6

(g) T = 2 (h) T = 4 (i) T = 6

Fig. 6.15 Random sample of the CNS navigating an AMR (magenta line) through a
a simulated pedestrian crowd, using the PedSim simulator. The scenario displayed
is of the multiple pedestrians converging on the same goal, Fig. 6.11a, with the
AMR set at a maximum of 2.0ms−1, in order to analyse how it moves through the
crowd. Each image is of the 10th AMR moving diagonally-upwards from left to
right at t = 8. (a-c) The A* search algorithm: This is "best-first" search the AMR
attempts to move through the crowd whilst also moving faster than the surrounding
pedestrians. It ends up readjusting its path more as T increases, due to the blocked
path ahead. (d-f) The Considerate A* search algorithm: There is very little change
to the AMR’s movements as T increases. This is due to the consideration weights
causing the search to plan paths that move with the crowd flow, regardless of the
prediction length. The AMR simply slows down and follows the crowd. (g-i) The
CPP algorithm: As the CPP explores more of the surrounding environment, the
AMR moves to circumnavigate the crowd as T increases, rather than pushing past
the pedestrians.
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6.4.3 A Shared Hypothetical Collision Point for All Agents

This scenario has been designed to evaluate the potential for the CNS to circum-
navigate an area of a high number of potential head-on collisions, Fig. 6.11b. The
scenario is an expansion of the empirical study, Fig. 6.3, by increasing the number of
crossing angles, whilst all paths are executed simultaneously. The dynamic agents
must pass directly past each other, which without any path planning or collision
avoidance would see each agent simultaneously collide with one another. The
AMR will move across the environment from each position in turn, and travel at
the average and maximum pedestrian walking speed, 1.4ms−1 and 2.0ms−1, respec-
tively.

The convex polygon (dodecagon) that forms between all agents, a, and their
destinations has an area of 75m2. The crowd density, Table 6.2, of the scenario can
be deemed as 12

75 = 0.16am−2, which would be "low". When observing the results,
the agents move around the central point in a circular fashion with a radius of
approximately 2m, which would have an area of approximately π22 ≈ 12.6m2. The
crowd density within this area would be approximately 12

12.6 ≈ 0.955am−2, which is
"high". This scenario is therefore able specifically evaluate how well the CNS avoids
high density areas and avoid crossing other pedestrians’ paths, as well as all other
objectives, Section 1.3.2.

PedSim Simulator

From an evaluation of the QPMs, Fig. 6.16a, the CPP has a marginally optimal
prediction time-horizon of T = 3. However, the CPP significantly outperforms the
other searches when T = 5. This scenario was expected to perform with less consis-
tent results, as the PedSim pedestrians are not limited in their turning. As seen in
all the visual examples, Fig. 6.17, the pedestrians movement is often stuttered due
to the social force model moving them using Newtonian mechanics so they behave
similar to particles. Therefore, when the pedestrian suddenly changes direction,
the proxemics field used to calculate the considerate QPMs, Fig. 6.2, may register
an inconsiderate movement that is not the fault of the CNS, Fig. 6.18. However,
both the considerate searches have outperformed the A* search, with the CPP out-
performing the A* an additional time. A look at the visual examples, Figs. 6.17g
to 6.17i, shows qualitatively the intent of the CPP attempting to manoeuvre round
the crowded centre of the environment, much clearer than the alternative searches.
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(a)

(b)

Fig. 6.16 For the "Head-On" scenario, Fig. 6.11b. (a) The CPP has an optimal
prediction time-horizon of T = 3. The A* search only outperforms both considerate
searches when T = 1, and is outperforms by at least one considerate search (2 CA*
and 4 CPP) for each prediction length if T > 1. (b) The CPP has an optimal
prediction time-horizon of T = 6. The CPP outperformed the A* in all prediction
lengths, aside form being marginally beaten at T = 2. For T = 2, 3, and 6 the
CA* did not finish any journeys, as well as the majority of journeys for the other T
values. Although, for the few successful journeys it outperforms all others.
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(a) T = 2 (b) T = 4 (c) T = 6

(d) T = 2 (e) T = 4 (f) T = 6

(g) T = 2 (h) T = 4 (i) T = 6

Fig. 6.17 Random sample of the CNS navigating an AMR (magenta line) through a
a simulated pedestrian crowd, using the PedSim simulator. The scenario displayed
is of the multiple head-on hypothetical collisions, Fig. 6.11b, with the AMR set at
a maximum of 1.4ms−1. Each image is of the 9th AMR moving diagonally-upwards
from left to right at t = 12. (a-c) The A* search algorithm: There is very little
difference as T increases, moving almost straight through the centre. The pedestrians
move out of the way of the AMR more often than the AMR moves out of the way
of the pedestrians. (d-f) The Considerate A* search algorithm: Although the path
moves almost straight through the centre as T increases, the slight adjustments its
makes do not significantly affect the pedestrians. (g-i) The CPP algorithm: As T
increases the AMR becomes much more evasive as it attempts to find a suitable gap
to move through. Beyond T = 4, it appears that an overprediction of where the
pedestrians may be results in the CPP being unable to plan an efficient path.
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(a) (b)

Fig. 6.18 Example of the PedSim simulator changing the direction of 4 pedestri-
ans in the centre of the environment during for the "Head-On" scenario, Fig. 6.11b.
The AMR is highlighted magenta, the pedestrians in blue, and the positions of
each are updated 25 times during each time-step, which results in an update every
0.4s
25 = 0.016s (62.5Hz). Because of the particle-like nature of the social force model,

the pedestrians can change their direction instantaneously and without turning lim-
itations. This can easily cause the proxemics ellipses that surround each pedestrian,
Fig. 6.2, to be moved over the AMR’s position. This may artificially inflate any in-
considerate movement metrics being tabulated by effectively having the pedestrian
behave inconsiderately to the AMR. (a) The initial proxemics ellipses for each of the
4 pedestrians. (b) The new location of the proxemics ellipses have rotated almost
90o for 3 of the pedestrians, in only 0.016s.
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(a) (b)

Fig. 6.19 Example of how the maximum turning angle of the differential drive model,
Fig. 5.18, can prevent the AMR’s from moving. (a) All AMRs begin to show the
initial signs of self-organisation in: 7/4 AMRs begin turning right/left in order to
avoid the centre of the environment, whilst 1 exploits the now free space in the
centre (far right). (b) A few timesteps later the AMRs become stuck as they do not
have enough space to turn.

Similar AMRs

From an evaluation of the QPMs, Fig. 6.16b, the CPP has a marginally optimal
prediction time-horizon of T = 6. This is due to the AMR avoiding the congested
central area of the environment (the AMR can also be seen avoiding the centre when
navigating amongst simulated pedestrians, Fig. 6.17i). The CPP outperformed the
A* search for all prediction lengths, except for the marginal loss at T = 2. When
navigating an environment with so many hypothetical collision points concentrated
in one area (the environment centre, Fig. 6.11b), simply evaluating a path based on
distance to the goal (A*) is inefficient. As the paths planned by the CPP factored
in both the position of each pedestrian and the direction they are moving, many
collisions are avoided. Unfortunately, the CA* failed to complete most of its jour-
neys. However, this is may only be due to the limitations of the differential drive
model each AMR operates with, Fig. 5.18, as they would become stuck between one
another due to a lack of available turning space, Fig. 6.19.
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6.4.4 The Optimal Prediction Time-Horizon

After evaluating all of the test scenarios it can be seen that when a search algorithm
uses considerate weights, Section 3.3.4, more often than not it will be able to plan
paths that do not negatively affect the movement of other dynamic agents. The
CA* was able to plan more considerate paths than the standard A*, showing the
simple rules dictating how consideration is calculated can improve an already well
established search algorithm.

From an evaluation of the QPMs for all scenarios, Figs. 6.20a and 6.20b, the
most preferable prediction time-horizon for the CPP is T = 5, when moving amongst
both simulated pedestrians and similar AMRs. As stated in Section 6.3.2.1 it was
anticipated that for efficient path planning the prediction length must be T ≥ 4
when navigating amongst larger numbers of dynamic agents. When evaluating all
scenarios using all QPMs, Fig. 6.20c, as stated in Section 6.2, the A* becomes more
successful due to being able to often reach its destination more directly. However,
aside from when the A* does perform better than the considerate searches in T = 4,
it is only marginal. When it is outperformed by the CPP for T = 1 and T = 5
its performance is significantly worse. In overall behaviour, the considerate searches
outperform the A* algorithm, and more often than not outperform it when being
evaluated against all metrics.

6.5 Chapter Summary

This chapter has successfully established that the CNS is capable of qualitatively
planning considerate global paths through a model of the real-world environment,
be recreating empirical human-human collision avoidance experiments. An AMR
is then able to move considerately in the real-world environment, by evaluating its
movements using a set of novel QPMs that were designed specifically to evaluate
considerate behaviour.

When analysing the QPMs for each test scenario it is clear that for the CNS
to move an AMR considerately a global prediction length of T = 5 must be used.
When observing the movements of an AMR, the CNS is able to implicitly cooperate
with other dynamic agents that do not necessarily operate with the same navigation
strategy. When using the considerate weights to modify the path selection of an
A* algorithm, its performance is also improved. Therefore, the CNS is not only
diverse because it does not rely on knowing the specific behaviours of other agents,
it can act as an improvement of pre-existing search algorithms. The next chapter
will evaluate the CNS using real-life pedestrian data.
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(a)

(b)

(c)

Fig. 6.20 Combination of all QPMs for all scenarios and all dynamic agents. (a) The
CPP has an optimal prediction time-horizon of T = 5. The A* search only out-
performs both considerate searches when T = 1, and is outperforms by at least one
considerate search (3 CA* and 3 CPP) for each prediction length if T > 1. (b) The
CPP has an optimal prediction time-horizon of T = 5. Both considerate searches
outperformed the A* for 4 prediction lengths, being beaten in T = 2 and 3. (c) The
CPP has an optimal prediction time-horizon of T = 5. Both considerate searches
outperformed the A* for 4 prediction lengths, being beaten in T = 3 and 4.



Chapter 7

Evaluating the Considerate
Navigation Strategy with Real
Pedestrian Data

"A computer would deserve to be called intelligent if it could deceive a human into believing
that it was human."

— Alan Turning

T
he considerate path planner (CPP) has successfully demonstrated its ability
to plan considerate paths, and the considerate navigation strategy (CNS)
has successfully shown its ability to execute them in an approximation of

reality. However, this chapter will evaluate the CNS’ ability to respond to real-life
pedestrian data.

Using a dataset of real-life pedestrian movements [14], suitable configurations of
naturally moving and free-flowing pedestrians will be obtained, Section 7.1. Each
configuration will contain pedestrians moving in the same direction as one another,
as well as in alternating directions. The ability for the CNS to direct an autonomous
mobile robot (AMR) through each sample of the dataset, at various orientations,
will be evaluated, Section 7.2, using the same novel quantitative performance met-
rics (QMPs) devised in Section 6.2.3. Finally, a qualitative examples will be given of
the AMR moving within the crowd. These will reflect the results of the QPM eval-
uation, demonstrating that the CNS can successfully navigate amongst pedestrians
with considerate motion.

7.1 Finding Suitable Pedestrians within the Dataset

To evaluate the performance of the CNS, appropriate pedestrian data must be
selected from the dataset, initially presented in Section 3.2.1. The CPP will be
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made to plan paths that travel in parallel and perpendicular to the pedestrians’
movements, up/down and left/right, respectively. This is to observe the thesis’
objectives, Section 1.3.2, for the CPP to "plan paths that move in the same pedes-
trian direction" (Item b2.2), and "plan paths that avoid crossing another pedestrians
path" (Item b2.3).

7.1.1 Suitable Crowd Scenarios

Crowd scenarios must be chosen that challenge the CNS to behave considerately,
evoking the same direct (active) and in-direct (passive) qualitative considerate be-
haviour established in Section 6.2. The variations in the bi-directional traffic in the
dataset will allow these behaviours to be challenged:

a1 Uni-directional Traffic: more than 2/3 of the crowd population is moving
in the same direction. This will evaluate if the CPP is capable of predicting
paths that allow the robot to move with the flow of the crowd. Pedestrians
moving in the same direction should greatly reduce the number of conflicting
trajectories, resulting in the following behaviour:

a1.1 A lower collision likelihood
a1.2 A more ordered crowd, as pedestrians should flow together
a1.3 More predictable movements, more likely to follow the CVM

a2 Uni-directional Traffic: more than 2/3 of the crowd population is moving
in opposing parallel directions. This will evaluate if the CPP is capable of
exploiting any gaps that are formed as pedestrians adjust their own trajectories
to avoid collisions with one another, resulting in the following behaviour:

a2.1 A higher collision likelihood
a2.2 A more dispersed crowd, as pedestrians avoid collisions
a2.3 Less predictable movements, less likely to follow the CVM

The CNS should be evaluated using a combination of the two directional possibilities
of the crowd, and the AMR moving in parallel or perpendicular to their flow. The
dataset is now analysed in order to find scenarios that will suit these tests. The
workspace for which the AMR must operate within is also defined, Fig. 7.1, so that
it navigates through a populated area.

7.1.2 Finding Appropriate Pedestrian Dataset Frames

To ensure the CPP predicts paths through the crowd from different orientations, the
AMR will begin at three evenly spaced intervals along one edge of the workspace.
Three destinations lines are then placed at evenly spaced intervals along the opposite
side. The ideal paths are formed by connecting each start to each end, creating 9
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(a) (b)

Fig. 7.1 Visualisation of the pedestrian dataset. (a) The trajectories of all pedestrians
over the entire dataset. When selecting the pedestrian data to use, it is initially
evaluated within the red box. This ensures the CPP predicts a path through the
crowd, rather than around it, as the robot’s ideal paths will be located over the area
of the crowd with the highest continuity. (b) Exaggerated path for the CPP to plan,
highlighting that the AMR (yellow circle) must considerately navigate (yellow path)
around multiple pedestrians simultaneously, to reach its destination (yellow ‘E’).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7.2 The ideal paths that cross the workspace Up (↑), Down (↓), Left (←), and
Right (→), from one workspace edge to the opposite. The CPP will predict paths
from three evenly spaced start points, to three evenly spaced destination lines. The
CPP will predict paths from each start point to each destination line, creating nine
journeys in one general direction. This is repeated for all all 4 sides, generating 36
paths in total. (a-b) Moving directly parallel to crowd. (c-d) Moving diagonally
parallel to crowd. (e-f) Moving directly perpendicular to crowd. (g-h) Moving
diagonally perpendicular to crowd.
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Initial Crowd Crowd Analysis
Demo Direction People Up Down Groups

Fig. 7.4a Same 5 0 5 2
Fig. 7.4b Direction 9 2 7 4, 2
Fig. 7.4c Alternating 7 3 4 3, 4
Fig. 7.4d Direction 8 3 5 0

Table 7.1 The data for each crowd scenario tested.

unique paths that cross the workspace at different angles. This process is repeated
for each edge of the workspace, creating a total of 36 unique ideal paths, Fig. 7.2.

To evaluate the CPP using the pedestrian data file, the crowd scenarios must
occur within the workspace, Fig. 7.1a. Not only do all pedestrian trajectories consis-
tently pass though this area, the dataset includes their trajectories beyond it. This
is beneficial as it aims to prevent the CPP predicting paths that will move the robot
around the area where the pedestrians’ trajectories are recorded. This will force the
CPP to predict paths that cross the crowd, rather than circumnavigating the crowd
entirely.

To find suitable pedestrian data, the workspace area must contain pedestrians
that meet the directional requirements of Items a1 and a2. The area of interest is
also extended outward by 1.5 times the robot’s radius, 1.5rr, to include pedestrians
that may be just behind the robot, Fig. 7.3. Therefore, when the robot begins its
journey pedestrians can potentially approach the robot from all angles. Finding the
instances within the datafile that fulfil the requirements requires qualitative analysis
of the video. The four combinations of pedestrian direction and crowd density were
found by examining the video and dataset simultaneously, in order to select the
appropriate video frames, Table 7.1 and Fig. 7.4.

7.2 Evaluating the Considerate Navigation Strategy

The AMR’s movement will be evaluated using each crowd scenario, along all 36
trajectories, with a maximum velocity limit the average pedestrian walking speed,
max(vr) = 1.4ms−1 [246]. The prediction time-horizon will be set to a constant
T = 5, as this was proved to be to overall optimal value in the previous chapter,
Section 6.4.4 (Fig. 6.20).

The evaluation of the AMR’s movements will be performed with the same novel
QPMs used when testing the CNS in the previous chapter experiments, Section 6.2.2.
As the pedestrians cannot interact with the AMR collisions may occur more fre-
quently, due to the pedestrians walking into the AMR. The user defined weight,
α, that can be applied to the proximity consideration resistance, Ωp (Eq. (3.13),
Section 3.3.4), could have been increased so that the CPP did not predict paths in
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Fig. 7.3 Demonstration of how video frames that fulfil the requirements of the pedes-
trian scenarios are obtained. Pedestrians are represented by sky blue circles inside,
and green circles outside of the red box, respectively. For a frame to be selected,
the appropriate pedestrians must be within the red box, and also not intersect with
any purple circles that represent any of the robot’s start positions. The green dots
in front of each pedestrian is its position in the next frame, used to calculated the
pedestrians’ velocities. The red convex polygon over the pedestrians represents a
group of six pedestrians, and the two red lines indicate two couples moving together.
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(a) f : 9159 (b) f : 10791

(c) f : 4265 (d) f : 7481

Fig. 7.4 Scenarios to be tested, with either uni-directional pedestrian traffic (a-b)
or bi-directional pedestrian traffic (c-d). Pedestrians begin at the chosen frame, f ,
marked with a red dot, which overlays their position in the video. Their trajectories
are then mapped over the next to frames to highlight their behaviour, with the
end of their path marked with a green dot. The robot’s ideal movements would
occur within the yellow box, with the pedestrian data recorded beyond its limits.
(a) Pedestrians travel down, with one couple. (b) Pedestrians travel down, with a
group of 4. A couple travel up. (c) Two groups of 3 and 4 move past each other.
(d) All pedestrians individually move past one another.
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Ideal path Ideal paths’ relative direction to the crowd
orientation Parallel Perpendicular

Direct
Move along with the crowd

flow, adopting similar
movements to the pedestrians

Move behind pedestrians in
order to cut directly across the

crowd (should provide the
biggest challenge for the CPP)

Diagonal

Filter between pedestrian
traffic lanes, in order to

smoothly move across the
crowd

Take advantage of the overall
crowd flow when crossing

individual pedestrian
trajectories

Table 7.2 Subdivision of QPM assessment for crowd scenarios. Each of the four
configurations is designed to test a certain aspect of how the AMR should ideally
behave, in order to move towards its destination.

such a close proximity to pedestrians. However, the CNS would have resulted in an
AMR that is very evasive and would have circumnavigated the crowd instead.

The QPMs will compare how well the CNS moves the AMR through the crowd,
along all 36 paths that cross the workspace, Fig. 7.2. All paths will be grouped into
the four categories:

b1 Moving directly parallel to crowd.

b2 Moving diagonally parallel to crowd.

b3 Moving directly perpendicular to crowd.

b4 Moving diagonally perpendicular to crowd.

The purpose for these sub-divisions is highlighted in Table 7.2. These will also
be evaluated against uni-directional pedestrian traffic (Item a1) and bi-directional
pedestrian traffic (Item a2), making a total of 8 classes.

When evaluating the QPMs of the CNS’ ability to navigate through a crowd of
pedestrians moving in the same direction as the crowd, Fig. 7.5, and to navigate
through a crowd of pedestrians moving in the alternating directions, Fig. 7.6, the
results were just as expected. The results reflect the behaviour anticipated when
subdividing these classes in Table 7.2.

When the AMR moves with the crowd (in parallel to each pedestrians move-
ments), the QPMs show that it took less time and distance to reach its goal. This
is due to the fact that the CPP planned paths that moved with the crowd flow.
The diagonal variation of this took slightly longer as it must filter across pedestrian
trajectories. When the AMR moves across the crowd (perpendicular to each pedes-
trians movements), the QPMs show that the direct paths took the longest in 3 out
of the 4 cases. Also, the total value for all combined metrics show this has the worst
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performance rating. This is due to the fact that the CPP had to plan paths that
moved across pedestrian trajectories. The diagonal variation of this would perform
better as it can filter across pedestrian trajectories, rather than cutting directly
across them.

7.3 Qualitative Examples of the Considerate Navigation
Strategy

Eight examples are given of the AMR behaving considerately, when moving along
paths stated in Table 7.2, and are repeated for uni-direction and bi-directional traffic
flow. The captions of all figures provide the following information:

• Ideal path direction: e.g. LEFT/RIGHT/UP/DOWN : Diagonal/Direct

• Dataset frame number, f : Relevant information to be found in Table 7.1

• Start and destination positions, in relation to their order along the workspace
edges: e.g. 1 to 3

The uncertainty ellipses of each pedestrian overlay their position in the video frame,
and have arrow indication their direction. The FGP predicted by the CPP is the
purple line with corresponding dots for each time-step, and a green Bezier curve,
starting from the orange robot circle. The pink line behind the robot shows its path
taken since the start of the simulation. The destination of the AMR is highlighted
with an orange line.

7.4 Chapter Overview

This chapter has provided an initial evaluation of how well the CNS is capable
of predicting considerate paths within a dynamic environment of real pedestrians.
The BIWI Walking Pedestrians dataset provided crowd data of a number of real-
life pedestrian trajectories, for which the CPP was able to predict a number of
qualitative considerate paths through.

Despite the fact that the pedestrian data does not respond to the AMR, the
QPMs provided evidence that the AMR behaved as indented. Corroborated by
the qualitative examples, the CPP was able to plan paths that exploited the gaps
made available inbetween pedestrians. Coupled with the considerate weights that
cause the CPP to select paths that encourage movement with the crowd, and to
move behind a pedestrian when crossing, truly considerate paths were planned and
executed as the pedestrians did not need to react.
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(a)

(b)

Fig. 7.5 QPMs for an AMR moving within a crowd of uni-directional pedestri-
ans. (a) This scenario relates to the pedestrian data configuration seen in Fig. 7.4a
(b) This scenario relates to the pedestrian data configuration seen in Fig. 7.4b
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(a)

(b)

Fig. 7.6 QPMs for an AMR moving within a crowd of bi-directional pedestrians.
(a) This scenario relates to the pedestrian data configuration seen in Fig. 7.4c.
(b) This scenario relates to the pedestrian data configuration seen in Fig. 7.4d.
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Chapter 8

Summary & Future Work

People call me a perfectionist, but I’m not. I’m a rightist. I do something until it’s right,
and then I move on to the next thing.

— James Cameron

T
his chapter summarises the work completed within this thesis, along with
an evaluation of the novel contributions, and the potential for additional
work. This thesis has presented a novel robot navigation strategy designed

to move an autonomous mobile robot (AMR) within a crowded and dynamic envi-
ronment whilst exhibiting considerate behaviour. The fundamental element of this
considerate navigation strategy (CNS) is the novel considerate path planner (CPP),
designed to plan considerate paths through a crowd of free-flowing pedestrians. Us-
ing a novel hybrid roadmap that combines a Voronoi diagram (VD) with a visi-
bility graph (VG), the CPP calculates safe and considerate paths. The CNS im-
plements movement of an AMR, the performance of which is analysed using a set
of novel quantitative performance metrics (QPMs) designed to evaluate considerate
behaviour.

8.1 Aims and Objectives Completion

The aims and objectives defined for the CNS, Section 1.3.2, were all successfully
completed. Details of which are now given of how the objectives for the CNS were
achieved:

a1 "Move with consideration towards other pedestrians"

a1.1 By recreating the empirical studies designed to evaluate human-human
collision avoidance strategies, the CNS was able to avoid a collision with
another dynamic agent, Fig. 6.5. The collision avoidance was not only
considerate when the oncoming agent was non-reactive, it was implicitly
cooperative when the agent was reactive.
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a2 "Arrive successfully at a prescribed destination"

a2.1 The AMR was able to arrive successfully at its destination in all but two
cases, Section 6.4.2 (Fig. 6.14b. This was due to the the AMR becoming
stuck in between other dynamic agents that had moved around it.

a3 "Avoid collisions with anything"

a3.1 The use of a buffer zone that surrounded the AMR, Section 3.3.1 (Fig. 3.8),
causes the AMR to automatically stop if another agent was too close.

a4 "Minimize any additional congestion the robot may cause to the crowd as a
whole"

a4.1 When testing the CNS in a crowd, Section 6.4, the AMR was shown to
prefer movement that was in the direction of crowd flow, so as not to
act as a blockage that other dynamic agents must pass. The AMR also
avoided areas where the crowd became too dense, which did not reduce
the amount of available space for other agents any further.

Details are now given of how the objectives for the CPP were achieved:

b1 "Plan paths that minimise potential collisions"

b1.1 When possible, the CPP was shown to successfully exploit available and
upcoming gaps within the predicted positions of crowd members, Sec-
tion 7.3.

b2 "Plan paths that move in the same pedestrian direction"

b2.1 Due to the relative trajectory resistance, Section 3.3.4.2, more desirable
paths were ones that moved in the same direction as neighbouring pedes-
trians. The final global paths planned were a reflection of this calculation,
which is made during the path planning stage, Fig. 5.14.

b3 "Plan paths that avoid crossing another pedestrians path"

b3.1 Due to the proximity and relative trajectory resistance, Sections 3.3.4.1
and 3.3.4.2, the CPP was shown to successfully plan paths that avoided
crossing in front of the predicted locations of any dynamic agents, Sec-
tion 7.3, wherever possible. When a clear choice can be seen between
moving behind or in-front, the CPP consistently planned a path that
moved behind any dynamic agent.

The objectives of the CNS have been achieved by using novel path planning and
search techniques. An evaluation of the specific contributions will be presented
next.

8.2 Contributions Evaluation

This section provides a summary of all the novel strategic, algorithmic, and analyt-
ical components of this thesis.
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A New Taxonomy for AMR-human navigation, Table 2.5 No taxonomies
exist to evaluate mobile robot autonomy within a pedestrian environment. In the
advent of Human-Robot Interaction, autonomy can now no longer be defined by
how little direct human controlled input is needed.

The updated taxonomy includes the level of input chosen to be taken by the
AMR. Instead of a direct human input that controls of the AMR’s movement, the
AMR exchanges information between itself and a human in order to act collabora-
tively with them. Also, "passive" input is introduced, whereby input is taken from
neighbouring humans in order for the AMR to make decisions, and so responsibly
act around other people.

The Pedestrian Model, Section 3.2 This was designed to "embrace" the uncer-
tainty of pedestrian movement predictions with an uncertainty ellipse. By assuming
a simple constant velocity model, movements of an agent can be easily predicted.
Any likely deviations in speed and trajectory can be confidently contained by in-
creasing the ellipses’ axes. Any path planned around the ellipses will therefore be
less likely to cause a collision.

When evaluating the uncertainty ellipse’s ability to contain pedestrian move-
ments in the future, Section 6.3.1 (Fig. 6.4), it was shown to outperform containment
based on purely statistical deviations seen in Fig. 3.3. The results can be confidently
confirmed to contain pedestrians movement, as a pedestrian simulator was used to
evaluate them.

Approximation of the Voronoi Diagram of Ellipses, Section 4.3 Currently
the VD of fully-intersecting ellipses has not yet been found. Therefore, to approxi-
mate one, a novel modification was made of the VD of circles by generating pseudo-
ellipses made from four tangentially aligned circles. The VD of pseudo-ellipses can
be implemented with logarithmic time complexity, and produces very accurate pre-
dictions of the VD’s vertex points. From he roots of the vertex points belonging to
the pseudo-ellipses the vertex points of real ellipses, can be converged upon in only
a few iterations, Fig. 4.11.

All vertex points external to the ellipses are guaranteed as the pseudo-ellipses
are constructed inside the real ellipses. The only potential missing vertex points are
inside ellipses over high density areas, Section 4.2 (Fig. 4.8). For the purposes of
the CPP the external vertex points are most important, and so this accuracy level
is sufficient.

The Voronoi Diagram-Visibility Graph Hybrid Roadmap, Section 4.1 A
novel combination of the VD and VG roadmaps was created, to be used as the CPP’s
roadmap. The VD element was easily created following the novel approximation of
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the VD of ellipses. However, the visibility graph (VG) traditionally connects polygon
nodes together, Section 2.2.1.2 (Fig. 2.5b), and so a modified VG was developed for
closed curve conic sections, Section 3.3.2.1 (Fig. 3.10).

The VD-VG roadmap can provide both the safest route, via the VD, as well as
more direct and efficient routes, via the VG, Section 6.3.2.3. This allows a search
algorithm to find a route along the roadmap that can switch from safest route, to
more efficient root, at every node, successfully planing paths that are both a safe
and efficient.

Considerate Weights, Section 3.3.4 For the CPP to plan considerate paths, a
resistance is applied to the windowed Dijkstra’s algorithm in order to slow the search
down if it moves into inconsiderate areas, Section 5.2.1. This resistance, Eq. (3.13),
is based on: proximity, and relative trajectory between the search frontier and any
neighbouring uncertainty ellipses.

The CPP to plan considerate paths from an evaluation of the accumulated re-
sistance along each search path. Seen in Chapters 6 and 7, the final global path
of the CPP was able to produce paths that allowed the CPP objectives to be ful-
filled (i.e. Fig. 6.10 and Section 7.3). This considerate weights were also used to
modify the A* search algorithm, Section 6.4.1, which was shown to improve its
performance, Sections 6.4.2 and 6.4.3.

Quantitative Performance Metrics, Section 6.2.2 Traditional QPMs focus
on easily quantifiable measurements of distance, time, collision number, etc, Sec-
tion 6.2.1. Novel QPMs were designed to both appraise the intensity of a near-miss
collision, Section 6.2.2, as well as to measure considerate movements of an AMR,
Section 6.2.3.

For the CNS to have an AMR behave considerately, the paths planned by the
CPP must also be considerate. To achieve this paths were evaluated over variable
prediction time-horizon, in order to evaluate how the environment may change using
the pedestrian model, Section 3.2. When testing the CNS, Section 6.4, a variable
prediction time-horizon of T = 1 − 6 was evaluated using the QPMs. The optimal
prediction range was T ≥ 4 when recreating empirical studies, Fig. 6.5, and T = 5 for
more crowded environments, Fig. 6.20. For range of the AMR’s field of view,T ≥ 5 is
reflective of a global path planning range, Table 6.1, which is required for considerate
navigation to occur.

For crowded scenarios where qualitative analysis may not be possible, the QPMs
provided much needed analysis around the CNS’ ability to successfully move an AMR
considerately. The validity of the considerate QPMs is corroborated by comparing
the movement of the AMR through the dataset of real pedestrians, Section 7.2. The
QPMs, Figs. 7.5 and 7.6, numerically reflect the qualitative observations, Section 7.3.
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8.3 Potential Future Work

The CNS presented was able to move an AMR considerately within a crowd of both
simulated pedestrians, a real pedestrian dataset, and amongst similar simulated
AMRs. Currently the CNS is only a simulated algorithm, and the recursive serial
implementation used to plan the paths means that the CPP cannot operate in real-
time. However, an immediate improvement would be be implement the CPP using
parallel processing.

Each unique Pt path is dependent only upon the end of the previous Pt path
the search next search begins at. All path reduction methods to increase search
efficiency and remove homotopic paths are also independent. Therefore, all new
searches that begin at the end of each Pt path at t can perform the search for all
PT paths at t + 1 independently. Also, the execution speed of an individual CPP
iteration is only 75ms, approximately. Therefore, if the timestep remains at 0.4s,
theoretically the CPP can plan a final global path to be executed in 375ms, which is
25ms less than the time-step used. A more complex movement model for the AMR
to use would also be an immediate improvement. To prevent the AMR getting stuck
in between other dynamic agents, updating the differential model so that the AMR
can rotate on the spot would allow it to potentially free itself. If the only available
space is outside the drives maximum turning angle, this would remedy the problem
and allow the AMR to move again.

The results obtained for the CNS were based on only an approximation of reality,
using reactive simulated pedestrians or non-reactive pedestrian data. Therefore, the
next stage would be to implement the CNS on a real-life robot platform. The AMR
model used has already been based on a real-life sensor and platform, therefore if
this was coupled with converting the CPP onto a parallel processing architecture,
the CNS would be ready for real-world testing.
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