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Abstract

In this thesis, the uplink of distributed massive MIMO where a large number of distributed

access point antennas simultaneously serve a relatively smaller number of users is consid-

ered. Lattice network coding (LNC), which comprises compute and forward (C&F) and

integer forcing (IF), is employed to avoid the potentially enormous backhaul load. Firstly,

novel algorithms for coefficient selection in C&F are proposed. For the first time, we

propose a low polynomial complexity algorithm to find the optimal solution for the com-

plex valued case. Then we propose a sub-optimal simple linear search algorithm which is

conceptually sub-optimal, however numerical results show that the performance degrada-

tion is negligible compared to the exhaustive method. The complexity of both algorithms

are investigated both theoretically and numerically. The results show that our proposed

algorithms achieve better performance-complexity trade-offs compared to the existing al-

gorithms. Both algorithms are suitable for lattices over a wide range of algebraic integer

domains. Secondly, the performance of LNC in a realistic distributed massive MIMO

model (including fading, pathloss and correlated shadowing) is investigated in this thesis.

By utilising the characteristic of pathloss, a low complexity coefficient selection algo-

rithm for LNC is proposed. A greedy algorithm for selecting the global coefficient matrix

is proposed. Comprehensive comparisons between LNC and some other promising lin-

ear strategies for massive MIMO, such as small cells (SC), maximum ratio combining

(MRC), and minimum mean square error (MMSE) are also provided. Numerical results

reveal that LNC not only reduces the backhaul load, but also provides uniformly good

service to all users in a wide range of applications. Thirdly, the inevitable loss of infor-

mation due to the quantisation and modulo operation under different backhaul constraints

are investigated. An extended C&F with flexible cardinalities is proposed to adapt to the

different backhaul constraints. Numerical results show that by slightly increasing the car-

dinality, the gap between C&F to the infinite backhaul case can be significantly reduced.
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Chapter 1

Introduction

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Overview

Fading and interference are the two fundamental challenges to the design of wireless

communication systems. The former is caused by the propagation characteristics of elec-

tromagnetic waves, such as path loss, shadowing by obstacles, and the effect of multipath.

The latter is due to the fact that each transmitter-receiver pair can not be regarded as an

isolated channel link in wireless transmission. Fading is generally inevitable in wireless

environments, while the interference is traditionally avoided by performing some form

of orthogonal transmission which enables different users to be distinguished by time or

frequency. However, future wireless systems are more interested in increasing spectral

efficiency, and this encourages the use of the same time-frequency resources by different

users. Thus, the mitigation of fading and interference will still remain the key challenge

1
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CHAPTER 1. INTRODUCTION 2

in 5G wireless and beyond.

Multiple-input and multiple-output (MIMO) [1] techniques, have been widely applied

to combat fading and interference over the past two decades. These employ multiple

antennas at both source and destination devices. On the one hand, it mitigates the effect

of deep fading by providing multiple effective channel links, which is referred to as the

diversity gain. On the other hand, the addtional antenna elements enable the receiver

to exploit the interference rather than treating it as pure nuisance. Thus, multiple data

streams can be simultaneously transmitted, and this is referred to as the multiplexing

gain. Theoretically, the spectral efficiency increases monotonically with the number of

antennas, and hence recent focus has shifted towards massive MIMO [2] which employs

a large number of antennas to serve a relatively smaller number of users.

An important application of MIMO is in distributed antenna systems (DAS), where

multiple distributed access points (APs) are connected and cooperate via backhaul (or

‘fronthaul’) links to form a giant ‘virtual access point’. Typical examples are ‘network’

MIMO [3], and ‘cloud’ radio access networks [4]. Compared to the collocated MIMO, the

distributed topology reduces the correlation between the access points, which effectively

increases the diversity order. The distributed topology also has the advantage in serving

the cell edge users, since the access poins are distributed more evenly across the coverage

area.

Distributed massive MIMO which combines the concepts of both ‘network’ MIMO

and ‘massive’ MIMO has attracted a lot interest very recently. It benefits from the lower

path loss while maintaining the diversity gain achieved by employing a large scale ‘virtual

antenna array’. However, these benefits are typically achieved at the expense of enormous

backhaul load. For example, assume signal bandwidth 100MHz; 2x oversampling; 8 bits

quantisation; 4 antennas; 2 polarisations; the backhaul required per AP is 100× 2× 8×
4× 2 = 12.8 Gbps.

Lattice network coding (LNC) is considered as a promising technique to avoid the

enormous backhaul load for distributed massive MIMO systems. It allows each AP to

infer and decode a linear combination of the transmitted codewords. The nested structure

in lattice coding ensures the linear combination of the codewords is a codeword itself,
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CHAPTER 1. INTRODUCTION 3

hence the cardinality expansion is avoided. In this thesis, we will study the applications

of LNC in distributed massive MIMO systems. The objective of this thesis is to find the

answers to the following questions:

• How to select the optimal mapping function at each AP?

The performance of LNC greatly depends on the selected mapping function at each

AP. Finding the optimal coefficients in LNC has commonly been treated as a short-

est vector problem (SVP), which is N-P hard. Fortunately, this problem can be

much simpler in a fully distributed system (single antenna at APs), and the cor-

responding LNC scheme for this case is called compute-and-forward (C&F). Our

objective is to propose low polynomial complexity algorithms for C&F to find the

optimal mapping function which maximises the achievable rate at each AP.

• How will LNC perform in realistic distributed massive MIMO systems?

The research on LNC so far focusses on the baseline Gaussian or Rayleigh fading

model. Our objective is to evaluate the performance of LNC in a realistic dis-

tributed massive MIMO model [5] which considers the effects of both large scale

and small scale fading. We consider two applications of LNC: C&F in fully dis-

tributed deployment and integer-forcing (IF) in partially distributed deployment.

For both cases, we aim to propose low complexity algorithms to select both the

locally and globally optimal coefficients, and provide comprehensive comparisons

with the benchmarks.

• How much information will inevitably be lost in LNC?

LNC employs some quantisation and modulo operations to achieve the minimum

backhaul load, and this will definitely lead to some performance degradation. Thus,

we aim to find the inevitable gap between LNC to the ideal case (infinite backhaul),

and investigate the tradeoff between backhaul capacity and performance.

1.2 Contributions

Based on the discussions above, the main contributions of this thesis are listed as follows:

2017



CHAPTER 1. INTRODUCTION 4

• For the real valued case, two novel low complexity approaches are proposed to se-

lect the locally optimal equation for C&F: reduced candidate set aided algorithm

and linear search algorithm. The former reduces the number of candidate vectors

in the exhaustive search; the latter employs sampled values as candidates to acquire

some sub-optimal solutions. In terms of the computation rate, both proposed al-

gorithms outperform the LLL, and have negligible performance degradations com-

pared to the exhaustive search. In terms of the complexity, both algorithms have

much lower complexity compared to the exhaustive search, and lower than the LLL

except at very high SNR.

• For the complex valued case, there are also two local selection algorithms proposed

for C&F: complex-exhaustive-II algorithm and the linear search algorithm. The for-

mer extends the exhaustive-II algorithm in [6] to complex integer based lattices, and

it ensures the optimality of the acquired equation; the latter applies a pre-defined

step size to both real and imaginary parts for sampling, in order to discard the ‘un-

necessary’ candidates while avoiding performance degradation. The optimised step

sizes are related to the number of users and SNR. Theoretical analysis indicates

that both our proposed algorithms have low polynomial complexities. Numerical

results illustrate that both proposed algorithms have better complexity-performance

tradeoff, compared to the existing algorithms. In addition, it is possible to extend

our proposed algorithms to some other algebraic integer based lattices, without en-

hancing the complexity.

• As previously mentioned, we consider two applications of LNC in realistic dis-

tributed massive MIMO systems: C&F and IF. For both cases, we propose novel

algorithms to reduce the complexity for selecting the locally optimal coefficients

by exploiting the properties of pathloss, and their complexity reductions are inves-

tigated numerically. We also propose a greedy algorithm to select the globally op-

timal integer coefficients, and this approach is applicable for both C&F and IF. The

system behaviour of LNC is evaluated in the following aspects: 1) the probabilities

of rank deficiency corresponding to different numbers of the locally forwarded can-

didates; 2) the achievable rates corresponding to different numbers of antennas on

each AP; 3) the achievable rates under different levels of interference. We consider

small cells (SC), maximal ratio combining (MRC), and the centralised MMSE as

benchmarks to provide comprehensive comparisons. Numerical results show that
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CHAPTER 1. INTRODUCTION 5

LNC always attains higher capacity than small cells, and outperforms MRC and the

centralised MMSE for a wide range of applications. Their respective complexities

and required backhaul are also discussed qualitatively.

• We propose an ‘extended’ network coding scheme for distributed massive MIMO

to allow a flexible backhaul load. Similar to standard C&F, it also comprises lattice

quantisation and the modulo operation, but with a flexible modulus to the modulo

operation. We evaluate the outer bound of this scheme under different backhaul

loads by employing jointly optimised scaling factors at APs. The loss of infor-

mation due to the quantisation and the modulo operation is calculated by two ap-

proaches: Monte Carlo integration and an approximate closed form expression. The

former aims to acquire an accurate outer bound, while the latter is proposed to select

the scaling factors from a practical perspective. We show that the gap between the

standard C&F scheme and the infinite-backhaul case can be significantly reduced

by slightly increasing the cardinality of the modulo operation at APs.

1.3 Thesis Outline

The structure of the thesis is listed as follows:

• In Chapter 2, a literature review of the techniques that are relevant to this thesis are

presented. The review begins with the concepts and properties of ‘network MIMO’

and massive MIMO, followed by an introduction to the principles of physical layer

network coding, particularly lattice based schemes: C&F and integer forcing. Some

basic knowledge of nested lattices is also introduced.

• In Chapter 3, three novel coefficient selection algorithms for C&F are presented:

1) reduced candidate set aided algorithm for the real valued case; 2) complex-

exhaustive-II algorithm for the complex valued case; 3) a linear search algorithm

which can be applied to both cases. For all proposed algorithms, the corresponding

complexities are investigated both theoretically and numerically. The achievable

rate comparisons with the benchmarks are also given.
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CHAPTER 1. INTRODUCTION 6

• In Chapter 4, both C&F and IF strategies are investigated under a realistic dis-

tributed massive MIMO model. Low complexity algorithms for selecting both lo-

cally and globally optimal coefficients are presented. Comprehensive comparisons

with the benchmarks are also given.

• In Chapter 5, we evaluate the inevitable information loss due to the quantisation and

modulo operation. We present two method to calculate the mutual information: 1)

Monte Carlo integration; 2) closed form expression. Then we analyse the tradeoff

between the performance and backhaul load.

• In Chapter 6, the conclusions and possible future work are presented based on the

content of the thesis.

1.4 Notation

Unless noted, we use plain letter, boldface lowercase letters and boldface uppercase letters

to denote scalars, vectors, and matrices respectively. All vectors are column vectors.

Some special symbols and operations are listed as follows:

R Real numbers

C Complex numbers

Z Real integers

Z[i] Gaussian integers

Z[ω] Eisenstein integers

P Average power constraint

x Vector channel input

y Vector channel output

z Vector Gaussian noise

Nr Number of antennas per access point

L Number of users

N (µ, σ2) Real Gaussian random variable with mean µ and variance σ2

CN (0, σ2) Circularly symmetric complex Gaussian random variable: both real and

imaginary parts are i.i.d. N (0, σ2/2)

Q(·) Quantisation
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CHAPTER 1. INTRODUCTION 7

Pr{A} Probability of an event A

diag{a1, · · · , an} Diagonal matrix with the diagonal entries equal to a1, · · · , an
mod Modulo operation

(·)T Transpose

(·)H Conjugate transpose

(·)† Pseudo inverse

Λ Lattice

V(λ) Voronoi region of a lattice point λ

∪ Union of sets

∩ Intersection of sets
∼= Congruence/Isomorphic⊕

Summation over finite field

erfc Complementary error function

IN N ×N identity matrix

‖ · ‖ Euclidean norm/Euclidean distance

| · | Cardinality
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2.1 Introduction

In this chapter, we review the fundamental techniques utilised throughout the thesis. We

first introduce the concept of distributed massive MIMO which is referred to as a combi-

nation of ‘network’ MIMO and massive MIMO, an introduction to the properties of both

aspects are presented. Then we review the principles and recent developments of physi-

cal layer network coding, particularly the compute and forward scheme. Some essential

preliminaries in abstract algebra are also presented.

9
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2.2 Network MIMO

2.2.1 Architectures of Network MIMO

Network MIMO: Conventional View

A conventional cellular network is formed by distinct cells, and each user is served by

a unique base station, that means the cell edge users are poorly served due to the exis-

tence of inter cell (in some form of co-channel) interference. The concept of ‘network’

MIMO [3], or coordinated multipoint (CoMP) [7] was originally proposed for dealing

with such problem. It allows a cluster of BSs to form a ‘virtual’ BS via backhaul links to

serve a group of users simultaneously, as illustrated by the blue text in Figure 2.1. Joint

processing can be performed by the CPU and inter cell interference becomes intra cell

interference.

AP 1 AP m · · ·· · · AP M

CPU

Backhaul/Fronthaul

BS/RRH

Hub station/BS

User 1 User l User L

CPU: central process unit

RRH: remote radio head

AP: access point

BS: base station

cell 1

cell m

Figure 2.1: A general model of the uplink Network MIMO (or ‘Cloud’ RAN)

Cloud-RAN

Compared to the traditional view, the relatively newer concept of ‘Cloud’ radio access

networks (C-RAN) [4] can also be treated as a ‘network’ MIMO architecture. It deploys

distributed antenna elements, namely, remote radio heads (RRHs) within a conventional
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cell, and RRHs are connected to the BS via fronthaul links. In this architecture, RRHs

and BS act as APs and CPU respectively, as illustrated by the red text in Figure 2.1. The

main idea of both ‘network’ MIMO and C-RAN is to exploit additional spatial degrees of

freedom from other APs, which means each user is effectively served by multiple APs.

As the ‘degree of cooperation’ increases (larger coverage of the ‘virtual BS’, denser APs

and higher bandwidth of backhaul links), the concept of the ‘cell’ is not as important as it

used to be. The cellular network tends to be ‘cell-free’, as will be described later.

2.2.2 Relaying Strategies in Network MIMO

The performance of cooperative MIMO systems greatly depends on the relaying strategy

performed at the intermediate APs. The ideal relaying strategy is obviously that each

AP forwards the received signal precisely to the CPU via perfect backhaul (infinite band-

width, noise-free), hence the distributed system becomes effectively collocated, and the

optimal performance can be achieved by performing joint maximum likelihood (ML) de-

coding at the CPU. Regardless of the infeasible assumption of perfect backhaul, there are

three relaying strategies commonly used in practice.

• Decode-and-Forward (DF): each AP decodes one or more user messages indepen-

dently, and the recovered messages are then re-encoded for the next transmission.

The DF scheme provides near-optimal performance for the Wyner model, in which

each AP only see three input signals and decodes the intended user from the two

neighbouring users [8]. For a more general scenario, DF is nowadays performed by

small cell systems. The cooperative gain can be achieved by employing AP selec-

tion for a specific user. The main drawback of this scheme is the poor interference

mitigation due to the independent decoding performed at the APs [9, 10].

• Compress-and-Forward: the received signal at each AP is vector quantised and then

forwarded to the hub station. Clearly, the performance depends on the quantisation

level, finer quantisation leads to lower information loss, however, more backhaul

load is required. Since no error correction coding is applied at intermediate APs,

noise is therefore accumulated during retransmission [8, 9, 11]. Another approach

to compress data is to employ Wyner-Ziv coding [9,12] at the relays (the quantised
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signals at the relays are correlated since they arise from the same data), when side

information is available.

• Amplify-and-Forward (AF): each AP simply acts as a repeater and forwards an am-

plified version of received signal to compensate the propagation loss. The simplicity

of AF gives significant adavantage to systems with symple relay units. However,

similar to compress-and-forward, noise is also accumulated during retransmission.

The error performance of such a scheme is analysed in [13]

2.3 Massive MIMO

Massive MIMO was originally proposed by Marzetta in his landmark paper [2] which

considers a system model with an unlimited number of base station antennas. Following

the pioneering work in [2], many developments have been carried out during the past few

years. Intuitively, massive MIMO implies that the MIMO system goes to a larger scale.

It comprises two aspects:

• Denser antenna elements: both of the number of users and APs (more precisely the

number of total antennas on APs) are significantly increased within a certain area.

• Larger ratio of AP/user antennas: the main point of massive MIMO is to employ a

large number of receiver antennas to serve a relatively smaller number of users.

In this section we briefly review the basic characteristics of Massive MIMO. More details

can be found in [2, 14–16].

2.3.1 Asymptotic Properties of Massive MIMO

We consider a system with L single antenna users and M AP antennas (in this section, M

denotes the total number of AP antennas), where L�M . When the scale of the antenna

arrays increases, certain asymptotic properties of random matrices become deterministic,

as we will discuss below. For simplicity, we employ small scale fading channels to present
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the general properties of scaling up the dimension of channel matrix. The effect of large

scale fading (including pathloss and shadowing) depends on the specific deployment of

AP antennas, which will be introduced in section 2.3.2 and investigated in Chapter 4.

Asymptotic Capacity of Massive MIMO

We assume the channel coefficient between the lth user and the mth AP antenna is an

independent identically distributed (i.i.d) complex Gaussian variable with zero mean and

unit variance, denoted as hm,l ∼ CN (0, 1). Let hl = [h1,l, h2,l, · · · , hM,l]
T denote the

channel vector corresponding to user l, and H = [h1,h2, · · · ,hL] be the channel matrix.

The transmitted and received signal vectors are represented by x = [x1, x2, · · · , xL]T and

y = [y1, y2, · · · , yM ]T respectively. Assuming that the channel state information (CSI) is

perfectly known at the receiver, we have

y = Hx + z, y, z ∈ CM×1, (2.1)

where z denotes the additive white Gaussian noise (AWGN) vector with each element

zm ∈ CN (0, σ2). Let P = E[|xl|2] denote the power constraint of the transmitted symbol,

and SNR = P/σ2 denote the signal to noise ratio. The receiver applies an equalisation

matrix BL×M to recover x from y, expressed as

x̂ = By

= BHx + Bz

= x + (BH− IL)x + Bz, (2.2)

where IL denotes an L × L identity matrix. The achievable rate of the lth user for an

instantaneous channel H can be expressed as

Rl(H,B) = log2

(
1 +

SNR|bTl hl|2
SNR

∑
l′ 6=l |bTl hl′|2 + ‖bTl ‖2

)
(2.3)

where bTl denotes the lth row of B. The most commonly used equalisers in massive

MIMO are zero-forcing (ZF) and maximum ratio combining (MRC), denoted by BZF =

H† and BMRC = HH respectively. By substituting BZF and BMRC for B, the expression
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(2.3) can be rewritten as

Rl(H,BZF) = log2

(
1 +

SNR

‖h†l‖2

)
(2.4)

and

Rl(H,BMRC) = log2

(
1 +

SNR‖hl‖4

SNR
∑

l′ 6=l |hHl hl′ |2 + ‖hHl ‖2

)
(2.5)

for ZF and MRC respectively, where h†l denotes the lth row of H†. Since hm,l is i.i.d. and

hm,l ∼ CN (0, 1), some relevant expected values are given by [15]

E[‖hl‖2] = M, E[‖hl‖4] = M2 +M,

E[hHl hl′ ] = 0, E[|hHl hl′ |2] = M,
(2.6)

E
[ 1

‖h†l‖2

]
= M − L+ 1. (2.7)

It can be observed from (2.6) that the effective channel HHH tends to a scaled identity

matrix MIL as M → ∞, which means even BMRC is able to translate the network to

an interference free state as long as the number of AP antennas is extremely large. By

combining (2.4)∼(2.7), the corresponding asymptotic capacities of BZF and BMRC can

be respectively written as

Rl(H,BZF)M→∞ ≈ log2

(
1 + SNR(M − L+ 1)

)
(2.8)

and

Rl(H,BMRC)M→∞ ≈ log2

(
1 +

SNRM

SNR(L− 1) + 1

)
(2.9)

as long as SNR is finite. Clearly, the capacity for an instantaneous random H becomes

deterministic as M →∞, hence the expressions (2.8) and (2.9) also represent the ergodic

capacities as

Rl(BZF) = E
[
Rl(H,BZF)

]
= Rl(H,BZF)M→∞

Rl(BMRC) = E
[
Rl(H,BMRC)

]
= Rl(H,BMRC)M→∞.

(2.10)
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Average Noise Enhancement

On the one hand, massive MIMO nulls the interference components
∑

l′ 6=l |hHl hl′|2 in

MRC. On the other hand, it also averages the noise enhancement among users in ZF. For

example, equation (2.7) indicates that the noise scaling factor BZF of a random user is

asymptotically deterministic. From a more general perspective, the sum rate of an open-

loop system can be expressed as [17]

Rsum = log2 det
(
IL + SNRHHH

)
= log2 det

(
IL + SNRVDVH

)
(2.11)

=
L∑
l=1

log2(1 + SNRλl), (2.12)

where (2.11) comes from the eigenvalue decomposition of HHH, and λl denotes the

lth corresponding eigenvalue. The condition number Cond(HHH) which denotes the

ratio of the maximum and minimum eigenvalues (λmax

λmin
), approaches 1 as M → ∞, and

hence the probability that the channel is ill-conditioned is negligible. This property brings

significant benefit for the applications that all users transmit with the same rate, and the

throughput of the system is limited by the poorest user.

ZF tends to be Optimal in Massive MIMO

Let γA,u = M
L

denote the ratio of AP/user antennas. Another characteristic of massive

MIMO is that the ZF scheme tends to be optimal as γA,u →∞. The performance of a MU-

MIMO system can be roughly measured by the diversity-multiplexing tradeoff (DMT).

The multiplexing gain r and diversity gain d are said to be achieved if [18]

lim
SNR→∞

R(SNR)

log SNR
= r

lim
SNR→∞

log pe(SNR)

log SNR
= −d,

(2.13)

where pe denotes the error probability. The DMT achieved by the joint ML and the ZF

schemes can be expressed as
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dopt(r) = M
(

1− r

L

)
, (2.14)

and

dZF(r) = (M − L+ 1)
(

1− r

L

)
(2.15)

respectively. Assuming that a fixed rate transmission is employed (r=0), the diversity

orders achieved by ZF and optimal scheme are M −L+ 1 and M respectively. Hence the

gap of ZF to the joint ML scheme scales as γA,u

γA,u−1
, and tends to 0dB as γA,u →∞.

2.3.2 Deployment of Massive MIMO

In practice, massive MIMO can be implemented in either a collocated or distributed man-

ner. In this section, we present an intuitive comparison between these two schemes. For

the sake of fairness, we assume a common total number of AP antennas Nr,total for both

centralised and distributed schemes.

Centralised Massive MIMO

Centralised deployment utilises Nr,total antennas on one AP, hence M = 1 and Nr,total =

Nr. Apparently, the main advantage of this deployment is that the signals observed by

different antennas share a common physical location, and hence joint processing can be

performed without extra backhaul. The drawbacks are as follows:

• For a highly compacted antenna array, the propagation paths for a particular user

are subject to the same large scaling fading, hence the users far away from the AP

are poorly served.

• Correlation between AP antennas.

• The antenna array is expected to be implemented in a 2-dimensional or 3-

dimensional structure in massive MIMO, which increases the effect of mutual cou-

pling between antennas [14].
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Distributed Massive MIMO

Distributed massive MIMO separates Nr,total antennas over M distributed APs. It brings

APs closer to cell edge users, and averages the large scale fading vector among users,

hence uniformly good service for all users is expected to be achieved. Compared to the

centralised case, the distributed structure mitigates the drawbacks above. However, it

also brings two negative effects: 1) additional payloads for backhaul transmissions; 2)

latency caused by processes performed at the intermediate APs. The comparison between

centralised and distributed schemes is in some sense a performance-backhaul tradeoff.

The authors in [5, 19] proposed a fully distributed cell-free massive MIMO model

with Nr = 1 and M = Nr,total. Each AP employs a locally estimated channel vector to

perform MRC, and forwards the processed signal to the CPU via an unlimited capacity

backhaul network. It has been shown in [5, 19] that the cell free scheme outperforms the

uncoordinated small cell scheme for cell edge users. The energy efficiency for the cell-

free scheme is investigated in [20]. Massive MIMO can also be implemented in a partially

distributed deployment in which Nr ≥ 1 and Nr,total = MNr.

2.4 Physical Layer Network Coding

Previously we have reviewed that extra backhaul is required to attain the performance im-

provement provided by employing distributed deployment. Reducing the backhaul load

is usually a big challenge in distributed massive MIMO systems. Physical layer network

coding is a backhaul reduction technique which employs the theoretically minimum back-

haul load to achieve unambiguous transmission.

2.4.1 Principle of PNC

In this section, we employ the simplest 2 way relay channel (2-WRC) model to interpret

the principle of network coding (NC) and physical layer network coding (PNC). In a wired

network with multiple sources, the conventional routing strategy to avoid data collisions
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is that each node only transmits the data packet of an individual user via a unique time

slot. As shown in Figure 2.2(a), the data exchange between 2 users are performed in 4

orthogonal time slots.

Network coding is original proposed in [21] to increase the network throughput by

allowing relays to transmit a function of their observed packets rather than repeating them

individually. As presented in Figure 2.2(b), the relay broadcasts the exclusive or (XOR)

of xA and xB instead of occupying two time slots to forward the individual data, and

xB can be acquired by user A by performing xA ⊕ xA ⊕ xB, where xA acts as the side

information. The throughput per time slot is thus improved.

A

A

A

A

A

A

A

A

A

R

R

R

R

R

R

R

R

R

B

B

B

B

B

B

B

B

B

xA

xA

xA xA

xB

xB

xB

xB

xA ⊕ xB

xA ⊕ xB

Time Slot 1

Time Slot 2

Time Slot 3

Time Slot 4

(a) (b) (c)

Figure 2.2: Transmission schemes in 2-WRC: (a) TDMA (b) NC (c) PNC

Unlike network coding, the PNC [22] strategy directly on the electromagnetic signal,

and it comprises the multiple-access channel (MAC) phase and the broadcast channel

(BC) phase. All users transmit their signals to the relay simultaneously in the MAC

phase, and the relay naturally maps the superimposed signal to a network coded symbol

for broadcasting, as shown in Figure 2.2(c). The XOR operation can be treated as the

simplest linear mapping strategy, and the main task of PNC is to design proper mapping

strategies to adapt to the time variant channel.

2.4.2 Properties of PNC

In this section, we employ a general multi-way relay channel (M-WRC) to illustrate the

basic properties of PNC. We assume a total of L users, and that each user intends to

acquire the data from the other L − 1 users via one relay. The signal vector and channel
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vector are denoted by x = [x1, x2, · · · , xL]T and h = [h1, h2, · · · , hL]T respectively.

Cardinality Reduction

Let Xl denote the set of modulated symbols of the lth user. The cardinality of a set

is defined as the number of elements of the set, denoted as | · |. For example, BPSK

modulation indicates that Xl = {+1,−1} and |Xl| = 2. Let

xss = xTh (2.16)

denote the noise-free superimposed signal, and Xss denote the set of values of xss. PNC

employs a mapping defined as

M : xss → xPNC, (2.17)

where xPNC is the network coded symbol. Let XPNC denote the set of xPNC. The PNC

mapping (2.17) equivalently dividing the set Xss into several subsets, where each subset

corresponds to a unique network coded symbol. Clearly, the number of subsets is the

cardinality of XPNC, with |XPNC| < |Xss|, and the cardinality is thus reduced. It can

be obtained from (2.16) that the maximum of |Xss| for an arbitrary h is the possible

combinations of {x1, x2, · · · , xL}, which is the product of |Xl|, denoted as max |Xss| =∏L
l=1 |Xl|. Since user l has xl as side information, assuming a common modulation is

employed for all users, the theoretically minimum cardinality required by performing

PNC can be expressed as

min |XPNC| =
max |Xss|
|Xl|

. (2.18)

Note that more side information can be utilised to design PNC mapping when multiple

relays are employed, which enables a larger value to substitute |Xl| in (2.18), and hence

|XPNC| can be further reduced.

Exclusive Law

In order to achieve unambiguous data recovery, the PNC mapping has to meet the

exclusive law which is given by (2.19). There are L equations in (2.19), and each
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corresponds to a specific user l. Clearly, the exclusive law requires XPNC to include at

least
∏

l′ 6=l |Xl′| elements to distinguish all possible combinations of the other L − 1

users, which results in the same cardinality constraint as in (2.18).

M(x1, x2, x3 · · · , xL) 6=M(x1, x
′
2, x
′
3 · · · , x′L), ∀(x2, x3, · · · , xL) 6= (x′2, x

′
3, · · · , x′L)

M(x1, x2, x3 · · · , xL) 6=M(x′1, x2, x
′
3 · · · , x′L), ∀(x1, x3, · · · , xL) 6= (x′1, x

′
3, · · · , x′L)

...

M(x1, x2, x3 · · · , xL) 6=M(x′1, x
′
2, x
′
3 · · · , xL), ∀(x1, x2, · · · , xL−1) 6= (x′1, x

′
2, · · · , x′L−1).

(2.19)

Achievable Rate Region of PNC

Let y = xss + z denote the received signal by relay, with z is the Gaussian noise. The

achievable rate region of PNC is defined as the maximum rate which can be employed in

the MAC phase, expressed as

R1 = R2 = · · · = RL ≤ I(xPNC; y), (2.20)

where I(xPNC; y) denotes the mutual information between xPNC and y.

Singular Fading

A channel fading value h is said to be singular if

|Xss| <
L∏
l=1

|Xl|, (2.21)

which means that some points on the noise-free constellation diagram are merged, which

poses potential difficulties to meet the exclusive law. Therefore, choosing the optimal

PNC mapping for such singular fading states acts as a significant component in PNC

research.

For a 2-WRC with QPSK modulation, singular fading occurs when h1

h2
=
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{0,±1,±j, 1
2
(±1 ± j)}. By employing the minimum cardinality min |XPNC| = 4 (see

equation 2.18), the authors in [23] proposed an optimal 4-ary denoise-and forward map-

ping strategy to deal with the cases of h1

h2
= {±1,±j}. Also in [23], a 5-ary non-linear

mapping approach is presented to deal with the cases of h1

h2
= 1

2
(±1 ± j) which are un-

solvable with 4-ary mappings; however the cardinality is increased. The singular fading

states of 3-WRC and 4-WRC with QPSK modulation are investigated in [24] and [25]

respectively, and their corresponding PNC mappings are also given in [24, 25]. For the

more general multi-user multi-relay system shown in Figure 2.1, the authors in [26, 27]

proposed a binary matrix based PNC approach which selects the optimal mapping by eval-

uating all possible binary matrices. Additionally, the exclusive law in (2.19) is translated

to a ‘full rank constraint’ in a multi-relay system, and global selection is thus required at

the central hub station to ensure the overall matrix is full rank.

2.5 Compute and Forward

Singular fading states vary with different modulation types and different numbers of users.

Traditional PNC strategies reviewed so far analyse singular fading case by case. A flexible

PNC approach which adaptively fits more general system models is thus preferred.

Compute and forward (C&F), as proposed in [28] has attracted much interest in recent

years. It employs structured lattice codes for PNC. Each relay infers and forwards a linear

combination of the transmitted codewords of all users. The lattice structure makes C&F

stand out among many PNC schemes. In this section, we will review the fundamental

principle of C&F, and illustrate connections between C&F and traditional PNC.

2.5.1 Preliminaries of Lattices

We first introduce some essential concepts and definitions in C&F.
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Nested Lattice

Definition 2.5.1. An n-dimensional real lattice Λ is a discrete subset of n-space Rn. It is

generated by all integer combinations of the basis vectors, expressed as:

Λ = {GΛr : r ∈ Zk×1}, (2.22)

where GΛ = [g1,g2, · · · ,gk] ∈ Rn×k is a generator matrix for Λ, and each g ∈ Rn×1 is a

basis vector of GΛ.

For example, Λ = {αZ : α ∈ R} is a simple 1-dimensional lattice. The authors in [29]

employ the concept of the principal ideal domain (PID) to extend real lattices to complex

lattices for C&F. Let A denote a PID, which is an integer domain in which every ideal is

principal. The most commonly used PIDs are the integers Z, the Gaussian integers Z[i]

and the Eisenstein integers Z[ω]. Formal definitions of Z[i] and Z[ω] may be expressed as

Z[i] ={a+ bi : a, b ∈ Z}

Z[ω] ={a+ bω : a, b ∈ Z and ω=
1

2
(−1 +

√
3i)}.

(2.23)

Hence an n-dimensional lattice over A can be expressed as Λ = {GΛr : r ∈ Ak×1} with

GΛ ∈ Cn×k. The group property implies that any translation Λ + λ by a lattice point

λ ∈ Λ is Λ again, hence Λ is geometrically uniformly distributed. The decision region

of a lattice point λ ∈ Λ is called the Voronoi region of λ, denoted as VΛ(λ). Let QΛ(x)

denote a quantiser which finds the closest λ to x ∈ Cn, hence VΛ(λ) can be expressed as

VΛ(λ) = {x ∈ Cn : QΛ(x) = λ}. (2.24)

The Voronoi region of VΛ(λ = 0) is commonly used to represent the Voronoi region of

Λ, denoted as VΛ. Note that VΛ(λ) for all λ ∈ Λ are congruent.

Definition 2.5.2. A lattice Λ′ is said to be nested in a lattice Λ if Λ′ is a sub-lattice in

Λ, denoted as Λ′ ⊆ Λ, Λ and Λ′ are termed as the fine lattice and the coarse lattice

respectively. The quotient ring Λ/Λ′ is termed a lattice partition. A sequence of lattices

Λ1,Λ2, · · · ,ΛL are nested if Λ1 ⊆ Λ2 · · · ⊆ ΛL.

Definition 2.5.3. A nested lattice code C(Λ,Λ′) is defined as the set of all coset leaders
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in Λ/Λ′, expressed as

C(Λ,Λ′) = Λ mod Λ′ = {λ mod Λ′ : λ ∈ Λ}. (2.25)

where mod denotes the modulo operation. The Voronoi region of the coarse lattice VΛ′ is

usually referred to as the shaping region of C(Λ,Λ′). Note that when applied to a lattice

Λ, the modulo operation is defined as

x mod Λ = x−QΛ(x). (2.26)
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−1

0

1

2

3

4
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coset leader

fine lattice point

Voronoi region of Λ

coarse lattice point

Voronoi region of Λ’
(shaping region)

Figure 2.3: An example of lattice partition: Λ/Λ′ = Z[i]/(2 + 3i)Z[i] ∼= F13

Figure 2.3 demonstrates an example of a 2-dimensional lattice partition. The fine

lattice Λ = Z[i] and the coarse lattice Λ′ = (2 + 3i)Z[i] are represented by blue dots and

red squares respectively. The fine lattice Λ is divided into 13 cosets by Λ/Λ′, and each

coset can be represented by a coset leader which is located within the Voronoi region of

Λ′.

Lattice Construction A

Let π denote a prime in A, and C(n, k) be a linear code of length n defined on A/πA,

where k < n. For example, the binary code is defined on Z/2Z and 2 in a prime in Z. Let
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G ∈ (A/πA)n×k be the generator matrix of C(n, k), the codebook can be expressed as

C = {Gx : x ∈ (A/πA)k}. (2.27)

Hence, the codebook C contains |A/πA|k codewords. |A/πA| denotes the number of

cosets in A/πA which can be treated as the symbolwise cardinality. Based on C, a lattice

ΛC can be generated by employing lattice construction A, which can be expressed as

ΛC = {λ ∈ An : (λ mod π) ∈ C}, (2.28)

where the modulo operation is applied to each component of λ. Alternatively, (2.28) can

be expressed as

ΛC = πAn + C =
⋃
c∈C

(πAn + c), (2.29)

where c denotes the codeword in C. Let Λ = ΛC be the fine lattice, and Λ′ = πAn be the

coarse lattice. The quotient ring Λ/Λ′ has |A/πA|k cosets, and each coset corresponds to

a codeword in C, and this exactly corresponds to the definition 2.5.3. Since the codewords

in C(Λ,Λ′) are located within the fundamental region of Λ′, the intuitive function of con-

struction A is to generate shifted duplications of C, and thus Λ can be distributed over the

entire message space An.

Geometrical Parameters of Lattices

The main geometrical parameters of an n-dimensional lattice Λ are as follows [30, 31]:

• The minimum squared Euclidean distance between lattice points, denoted as

d2
min(Λ). It also represents the minimum weight (defined in an Euclidean sense

rather in a Hamming sense) among codewords.

• The volume of the Voronoi region VΛ, denoted as V (Λ).

• The nominal coding gain γc(Λ): defined as

γc(Λ) =
d2

min(Λ)

V (Λ)2/n
, (2.30)
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where the quantity V (Λ)2/n can be treated as the normalised volume of Λ per two

dimension (or per one complex dimension).

The main geometrical parameters of an n-dimensional nested lattice code C(Λ,Λ′) are as

follows:

• The volume of the Voronoi region of Λ′ (also known as the shaping region), denoted

as V (Λ′). It can be calculated by V (Λ) =
∫
VΛ′

dx.

• The second moment (average power) per dimension σ2(Λ′), expressed as [32]

σ2(Λ′) =
1

n

∫
VΛ′
‖x‖2dx

V (Λ′)
. (2.31)

• The normalised second moment G(Λ′), defined as

G(Λ′) =
σ2(Λ′)

V (Λ′)2/n
=

1

n

∫
VΛ′
‖x‖2dx

V (Λ′)1+2/n
. (2.32)

• The shaping gain γs(Λ
′) = 1/12

G(Λ′)
which measures the decrease in average energy of

Λ′ relative to a hypercubic region.

2.5.2 Standard Compute and Forward

Now we introduce the fundamental principle of C&F.

System Model

We assume that the system includes L users and M relays which are all equipped with

a single antenna. Without loss of generality, we employ complex valued channels with

lattices over complex integer domain A in this section, although C&F was originally

presented with real valued channels and Z-lattices [28]. The process of C&F can be

divided into 3 stages.
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Figure 2.4: System diagram of compute and forward

Encoding: the length kl original message of user l is denoted as wl ∈ (A/πA)kl . The

quotient ring A/πA is usually isomorphic to a finite field Fp, expressed as A/πA ∼= Fp,

where p is a prime in Z and |π|2 = p. For example, the lattice partition Z[i]/(2 + 3i)Z[i]

illustrated in Figure 2.3 is an isomorphism to F13.

C&F requires the lattices generated by all users to have a common structure, hence the

message vectors wl are zero-padded to a common length k = maxl kl before transmission.

The encoding process for user l is expressed as:

xl = El(wl), xl ∈ Λ mod Λ′. (2.33)

The encoder El employs a linear code C(n, k) with a generator matrix G ∈ (A/πA)n×k

to map wl to a length n codeword xl, and the corresponding Λ and Λ′ can be obtained by

employing lattice construction A which is expressed in (2.27)∼(2.29). The message rate

of user l is

Rl =
kl
n

log |π|2 (2.34)

per complex dimension. Note that the generator matrix G is not unique for a specific

lattice, hence users can utilise different encoders to obtain the desired structure Λ/Λ′, as

we will discuss in section 2.6.2.

In quantisation theory [33], a random dither vector dl ∈ Cn mod Λ′might be employed

to make the discrete input signal xl continuously uniform, written as xl = (xl+dl)modΛ′.

The dither vector is known by both transmitter and receiver, hence can be easily removed

at the relays. Since we are more interested in the lattice structure of C&F, the dither
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process is omitted here for simplicity.

Coefficient Selection: this is also a core component in C&F. Again, we use H =

[h1, · · · ,hM ], hm = [hm,1, · · · , hm,L]T and hm,l ∼ CN (0, 1) to denote channel coeffi-

cients. The received superimposed signal at the m-th relay can be expressed as:

ym =
L∑
l=1

hm,lxl + zm, ym ∈ Cn, (2.35)

where the noise zm ∼ CN (0, σ2In) is a length n circularly symmetrical complex Gaussian

random vector. Let 1
n
E(‖xl‖2) ≤ P as the power constraint per channel use. The signal

to noise ratio is thus SNR = P/σ2.

The received signal vector ym is first scaled by a factor αm ∈ C. The relay attempts to

choose an integer linear combination of the transmitted codewords to represent the scaled

received signal, written as

QΛ(αmym) =
L∑
l=1

amlxl, (2.36)

where QΛ quantises αmym to its closest fine lattice point in Λ. The quantisation error

contributes to the effective noise at relay m, expressed as

zeff,m =
L∑
l=1

(αmhml − aml)xl + αmzm, (2.37)

where aml is an integer in A, and hence the integer combination
∑L

l=1 αmlxl is also a

lattice point in Λ. Let am = [am1, am2, · · · , amL]T denote the coefficient vector of the

linear function. The scaling factor αm aims to force the scaled channel vector αmhm to

approximate an integer vector am. The effective noise comprises 2 components:

• Self noise: zself,m =
∑L

l=1(αmhml − aml)xl: caused by the mismatch between the

selected integer vector and the scaled channel.

• Scaled Gaussian noise zsg,m = αmzm: the Gaussian noise at them-th relay is scaled

by the scaling factor αm.

For a given coefficient vector am, the achievable computation rate per complex dimension

2017



CHAPTER 2. LITERATURE REVIEW 28

is given by [28]

Rm(hm, am) = max
α∈C

log+
( P

α2
mσ

2 + P‖αmhm − am‖2

)
(2.38)

bits per channel use, where log+(·) = max(log(·), 0), and

σ2
eff = α2

mσ
2 + P‖αmhm − am‖2 (2.39)

denotes the variance of the effective noise. The Minimum Mean Square Error (MMSE)

solution of αm for a given am is

αMMSE(am) =
SNRhHmam

1 + SNR‖hm‖2
, (2.40)

and hence (2.38) can be rewritten as

Rm(hm, am) = log+(
1

aHmMam
), (2.41)

where M = IL − SNR
SNR‖hm‖2+1

hmhHm. The target of each relay is to find the integer vector

am which maximises the computation rate, expressed as

aopt,m = argmax
am∈AL\{0}

R(hm, am). (2.42)

Note that the all zero vector {0} is not allowed as it contains no information. Specific

algorithms for coefficient selection will be investigated in Chapter 3.

Decoding: with the optimal integer vector aopt,m and its corresponding αm, the decod-

ing process comprises 3 steps as follows:

• αmym → Λ: decode an integer combination
∑L

l=1 am,lxl from αmym, as shown in

(2.36). The combination is a lattice point in Λ.

• Λ→ Λ/Λ′: map the integer combination to a codeword in C(Λ,Λ′) which is equiv-

alent to shifting the
∑L

l=1 am,lxl into VΛ′ , written as
∑L

l=1 am,lxl mod Λ′.

• Λ/Λ′ → (A/πA)k: map the length-n codeword back to the length k message, and

the integer combination of the codewords becomes the linear combination of the
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transmitted messages, expressed as

L∑
l=1

am,lxl → um =
L⊕
l=1

qm,lwl (2.43)

with qm,l ∈ A/πA. Note that the calculation of
⊕L

l=1 qm,lwl are operated over

A/πA. Both am,l and qm,l can be regarded as coefficients in C&F, the former cor-

responds to an integer domain A, and the latter corresponds to a lattice partition

A/πA (or a finite finite Fp).

Message Recovery

The last step in C&F is that the hub station recovers all individual wl from the M linear

equations (2.43) provided by the M relays. Let Q = [q1,q2, · · · ,qM ] be the overall

coefficient matrix, with qm = [qm,1, qm,2, · · · , qm,L]T as the coefficient vector selected

by relay m. The messages of all users can be recovered if and only if Rank(Q) = L.

Particularly, when M = L, it is equivalent to say the determinant of Q has to be non-

zero. Note that the elements in Q are defined on a quotient ring, and ‘non-zero’ here

implies that det(Q) cannot be any zero-divisor of A/πA [14, 34].

Connections with Traditional PNC

In this section, we review C&F from the traditional PNC perspective (section 2.4.2).

• Cardinality: traditional PNC schemes focus on the scenario that L users intend to

exchange data via one relay, and hence the minimum cardinality required at the

relay is
∏
l |Xl|
|Xl|

. In C&F, the minimum number of relays required is the number of

users. For a particular relay, the other L− 1 relays provide side information, hence

the minimum cardinality of the network coded symbol is
∏
l |Xl|∏

l′ 6=l |XPNC,l′ |
. Due to the

nested lattice structure in C&F, the cardinality of the network coded symbol is equal

to the cardinality of the modulated symbol, expressed as |XPNC| = |Xl|, hence C&F

employs the theoretical minimum cardinality.
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• Exclusive law: in traditional PNC schemes, unambiguous decodability is ensured

by the exclusive law. In C&F, the exclusive law can be simply regarded as the

rank-constraint of the overall mapping matrix Q.

• Singular fading: as we discussed previously, singular fading states greatly depend

on the number of users, and hence traditional PNC strategies have to deal with this

issue case by case. In C&F, the scaled channel vector αh is forced to an integer

vector a, and
∑L

l=1 alxl mod Λ′ ∈ C(Λ,Λ′) holds for any values of L. Hence, a

main benefit of C&F is that it adaptively fits for an arbitrary number of users.

• Achievable Rate: the achievable rate of PNC is defined as the mutual information

between the received signal and the network coded symbol, as expressed in (2.20).

Based on this, the achievable rate of C&F can be expressed as

Rm =
1

n
I
( L∑
l=1

amlxl mod Λ′;αmym
)

=
1

n
H
( L∑
l=1

amlxl mod Λ′
)
− 1

n
H
( L∑
l=1

amlxl mod Λ′|αmym
) (2.44)

bits per channel use. Since
∑L

l=1 amlxl mod Λ′ and xl have exactly the same con-

stellation, hence H(
∑L

l=1 amlxl mod Λ′) = H(xl). It is known that for a suffi-

ciently large n, the projection of a uniform probability distribution over an n-sphere

VΛ′ onto 1 or 2 dimensions is a nonuniform probability distribution that approaches

a Gaussian distribution [32], hence (2.44) can be rewritten as

Rm = log(2πeP )− log(2πeσ2
eff) = log(

P

σ2
eff

), (2.45)

which results in the same expression as (2.38).

2.5.3 Compute and Forward over Eisenstein Integers

Lattices over Eisenstein Integers

Previously we have mentioned that C&F can be applied in any PID A, however early work

in C&F associated with complex valued channels focusses on cubic or hypercubic lattices
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Figure 2.5: Lattice over Eisenstein integers: Z[ω]/(4 + 3ω)Z[ω] ∼= F13

based on Z[i] only. Recently, more focus is given to the Eisenstein integer Z[ω]-based

lattices [35–38]. Recall that Z[ω] takes form of a+bω where both a and b are integers and

ω = −1+
√

3i
2

. Figure 2.5 illustrates an example of a Z[ω]-lattice. Again, the fine lattices

and the coarse lattices are represented by blue points and red squares respectively. The

Eisenstein integers have a hexagonal shape which is the densest packing structure in the 2-

dimensional complex plane [30]. The denser packing structure implies that Z[ω]-lattices

are more energy efficient. Numerical results in [36] and [35] reveal that Z[ω]-based C&F

outperforms Z[i]-based C&F in terms of computation rate and symbol error performance

respectively.

Eisenstein Integers vs Gaussian Integers

The performance of a nested lattice code C(Λ,Λ′) is usually measured by the nominal

coding gain γc(Λ) and the shaping gain γs(Λ
′), which are defined in section 2.5.1. We

take a simple example to compare Z[i] and Z[ω] lattices. Let Λ1/Λ
′
1 = (Z[i]/π1Z[i])n and

Λ2/Λ
′
2 = (Z[ω]/π2Z[ω])n respectively denote lattice partitions over Z[i] and Z[ω], with

|π1| = |π2|. It is known that both γc(Λ1) and γs(Λ
′
1) are zero for cubic lattices.
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For Z[ω] lattices, the minimum distance and volume are d2
min(Λ2) = 1 and V (Λ2) =

(
√

3
2

)n respectively, and hence the nominal coding is γc(Λ2) =
√

3
2

= 0.625 dB. The

shaping region VΛ′2
is a product of n hexagons, and hence V (Λ′2) = (

√
3

2
|π2|2)n. By

applying continuous approximation, the second moment per complex dimension is given

by [35]

σ2(Λ′2) =
1

n

∫
VΛ′2
‖x‖2dx

V (Λ′2)
=

5

36n
|π2|2. (2.46)

By combining (2.46) and (2.32), the normalised second moment G(Λ′2) can be calculated

as 5
18
√

3
, and hence the shaping gain γs(Λ

′
2) is 1/6

G(Λ′2)
= 0.167 dB. The examples in Figure

2.3 and Figure 2.5 employ a common constellation size |π1|2 = |π2|2 = 13, and both have

dmin(Λ) = 1. It can be easily calculated that the average power of the constellation points

in Z[ω] case is less than in the Z[i] case.

Note that to achieve these gains above, the system only needs to utilise a Z[ω]-quantiser

instead of a Z[i]-quantiser, and this will slightly increase the cardinality due to the irra-

tional component in Z[ω].

2.6 Integer Forcing Linear Receiver

The C&F scheme deals with distributed systems with single antenna APs: hence each

linear combination is calculated based on one signal observation. In this section, we re-

view a centralised version of C&F, namely, integer forcing (IF) [39]. It combines multiple

received signals to obtain the integer coefficients.

2.6.1 System Model

Let L denote the number users and Nr be the number of AP antennas, with Nr ≥ L. Let

H ∈ CNr×L and X = [x1,x2, · · · ,xL]T denote the channel and signal matrix respectively,

where each xl ∈ Cn×1 is a length n codeword. Let Z ∈ CNr×n denote the noise matrix;

we have Y = HX + Z and Y ∈ CNr×n. As shown in Figure 2.6, the AP applies an
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Figure 2.6: System diagram of integer forcing linear receiver

equaliser B ∈ CL×Nr to obtain

Ỹ = BY = BHX + BZ

= AX + (BH−A)X + BZ, (2.47)

where A = {al′,l} ∈ AL×L represents the integer coefficient matrix, comprisingL linearly

independent equations over A. Letting ỹTl′ , bTl′ and aTl′ denote the l′-th rows of Ỹ, B and

A respectively, we have

ỹTl′ = aTl′X + (bTl′H− aTl′ )X + bTl′Z, (2.48)

where the 2nd and 3rd terms in (2.48) correspond to the self noise and the scaled Gaussian

noise respectively. Each data stream yTl′ is sent to a lattice decoder Dl′ which aims to

recover a linear combination

ul′ =
( L∑
l=1

al′,lwl

)
mod π =

L⊕
l=1

ql′,lwl, ql′,l ∈ A/πA, (2.49)

and the corresponding achievable rate of the l′th data stream is [39]

R(H, al′ ,bl′) = log+
(SNR

σ2
eff

)
= log+

( SNR

‖bl′‖2 + SNR‖bTl′H− aTl′ ‖2

)
. (2.50)
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Similar to C&F, there exists an MMSE solution of bl′ for given al′ , expressed as

bTMMSE(al′) =
SNRaTl′H

H

INr + SNRHHH
, (2.51)

and substituting (2.51) back in (2.50), we have

R(H, al′) = log+
( 1

aHl′ Mal′

)
, (2.52)

where

M = IL − SNRHH(INr + SNRHHH)−1H. (2.53)

Both of C&F and integer forcing consider the case that all user messages are encoded

with a common rate, hence the achievable rate of the system is determined by the worst

data stream. Thus the AP is required to find a proper matrix A to maximise

R(H) = max
A∈AL×L

L

min
l′=1
R(H, al′). (2.54)

Note that unambiguous decodability requires that the coefficient matrix Qπ = A mod π

has to be full rank over A/πA.

Integer Forcing vs Zero-Forcing

It is known that zero-forcing employs H† as the equaliser, hence it can be regarded as a

special case of IF setting the integer matrix A = IL. More precisely, the MMSE solution

in (2.51) makes the case of A = IL equivalent to MMSE equalisation (also known as the

regularised zero-forcing).

2.6.2 Lattice Reduction

It can be observed from (2.41) and (2.52) that maximising the computation rate is equiva-

lent to minimising aHMa. Since M is a positive definite matrix, which means that M has

a unique Cholesky decomposition M = LLH , where L is a lower triangular matrix. Thus,

the optimisation problem in C&F is actually to minimise ‖LHa‖, which is equivalent to
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finding the shortest vector in the lattice

Λ = {LHa : a ∈ AL}, (2.55)

where LH = [g1,g2, · · · ,gL] ∈ CL×L is the generator matrix of Λ. Correspondingly, the

problem for integer forcing is actually a shortest independent vectors problem (SIVP).

Basis Reduction

It is known that the generator matrix GΛ is not unique for a given Λ. The basic idea

of lattice reduction is that for a given GΛ, we employ a linear transform T ∈ AL×L

to construct a new generator matrix G′ = GΛT which comprises a shorter and more

orthogonal basis. As shown in Figure 2.7, Λ is a 2-dimensional lattice over Z. It can be

generated by either GΛ = [g1,g2] = [2 3; 2 2] (red arrows) or G′Λ = [g′1,g
′
2] = [1 0; 0 2]

(black arrows). Clearly, G′Λ is preferred as it has the shortest basis to generate Λ. Now

we briefly outline the process of acquiring G′Λ based on GΛ.

1. Sort g1, g2 in ascending order according to their Euclidean-norm.

2. Let η = 〈g1,g2〉
‖g1‖2 , and then g2 = g2 − bηeg1.

3. If g2 < g1, swap g1, g2 and then go back to step 2, otherwise stop.

Let θ denote the angle between g1 and g2, and 〈g1,g2〉 as their inner product. Note that
〈g1,g2〉
‖g1‖ = ‖g1‖‖g2‖ cos(θ)

‖g1‖ = ‖g2‖ cos θ is the projection of g2 on g1, hence by ignoring the

rounding opearation, the algorithm above can be regarded as the Gram-Schmidt process

[40]. This 2-Dimensional reduction method can be extended to other integer domains by

replacing the rounding operation in step 2 by other quantisations QA [35].

LLL Algorithm

For the case of large L, it is known that this problem is N-P hard [41], which means

that there is no polynomially solvable algorithm which ensures the optimal solution. The

2017



CHAPTER 2. LITERATURE REVIEW 36

−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

g
′

1

g
′

2

g2

g1

Figure 2.7: An example of reduced basis

Lenstra-Lenstra-Lovász (LLL) lattice reduction algorithm is commonly used to obtain

a sub-optimal reduced basis GΛ = [g1, · · · ,gL], with ‖g1‖ ≤ ‖g2‖... ≤ ‖gL‖ and

det(GΛ) = ±1. Similar to the above algorithm, the LLL algorithm is also based on

the Gram-Schmidt process, and performs QR decomposition after each swap; a detailed

description can be found in [41, 42]. Unlike the standard Gram-Schmidt process, the

quantisation QA(η) implies that the reduced basis is not fully orthogonal.

Definition 2.6.1. A basis {g1,g2, · · · ,gL} of Λ is called a reduced basis if the orthogonal

basis vectors {g∗1,g∗2, · · · ,g∗L} calculated by the Gram-Schmidt process satisfy ‖g∗l ‖2 ≤
‖g∗l+1‖2 for all 1 ≤ l < L [42].

It is known that ‖λ‖ ≥ min {‖g∗1‖, ‖g∗2‖, · · · , ‖g∗L‖} for any non-zero λ ∈ Λ [41].

Let λmin denote the actual shortest vector in Λ. From definition 2.6.1, we have ‖g∗l ‖2 ≥
2−(l−1)‖g∗1‖2 ≥ 2−(L−1)‖g∗1‖2,∀l. Thus, ‖λmin‖ ≥ 2

−(L−1)
2 ‖g∗1‖2. Since ‖g∗1‖ = ‖g1‖, it

can be concluded that the length of the LLL-acquired shortest vector g1 is at most 2
L−1

2

times the length of the actual λmin.
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2.6.3 Integer Forcing vs Lattice Reduction aided Detection

Lattice reduction aided (LRA) detection [43] treats the channel matrix H as the lattice ba-

sis, and employs a linear transformation T to obtained a reduced basis HT . The received

signal vector is hence expressed as y = (HT )(T −1x) + z. Thus, the effective channel

and input signal become HT and T −1x respectively. Clear, the effective channel HT has

better condition than H, which means that by employing ZF or MMSE equalisation, the

noise enhancements (HT )−1 are more evenly distributed across the data streams.

It can be observed that by regarding T −1 as the integer matrix A, the LRA strategy

seems similar to IF. Both aim to recover the linearly transformed x, in order to prevent

noise enhancement, and both achieve the optimal multiplexing-diversity tradeoff [39,44].

However, there are three distinctions between them.

• LRA deals with symbols while IF deals with codewords, hence LRA can be treated

as a special case of IF when lattice coding is not utilised.

• T is a unimodular matrix (det (T ) = ±1) over A, while the coefficient matrix Qπ

in IF is a full rank matrix over a finite field A/πA. It has been proved that such

difference results in IF outperforming the LRA for some channel realisations [39].

• LRA considers the system with Nr ≥ L while there is no such constraint in IF.

A detailed comparison is avaliable in [39, 45, 46].

2.7 Beyond Baseline Lattice Network Coding

Based on the fundamental work in [28], the authors in [47], [29] and [35] propose practical

code designs for C&F over Z, Z[i] and Z[ω] respectively. A reverse C&F scheme is

proposed for the downlink scenario in [48,49]. The authors in [50] show that with limited

feedback, C&F can adaptively choose the best ring to match the instantaneous channel

coefficients. C&F based on multilevel codes is proposed in [51, 52]. The main idea is

that a large ring can be expressed as the direct sum of some co-prime finite fields, hence
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the decoding complexity is significantly reduced. The successive version of C&F and IF

are proposed in [53] and [54] respectively, where the previously decoded functions can be

used as side information to generate a new effective channel.
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Chapter 3

Low Complexity Coefficient Selection

Algorithms for Compute-and-Forward
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3.1 Introduction

Due to their very high density, the next generation of wireless communication systems

will require enormous backhaul load to support the data transmission between the access

points and the central hub station. In Chapter 2, we have reviewed that PNC has been pro-

posed as a promising strategy to reduce the backhaul load. Among many PNC schemes,

C&F has attracted the most interest. The core aspect which dominates the performance

of C&F is the selection of the coefficient vectors. The process of selecting the optimal

coefficient consists of two stages:

39
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• local selection: each AP selects an integer vector to maximise its computation rate

Rm(hm, am) locally.

• global selection: in order to recover the data of all individual users without ambi-

guity, the vectors provided by the APs have to form a matrix whose rank is equal to

the number of users.

Much work has been carried out in the last few years on both stages. For the local

selection, the original paper of C&F [28] provides a bound for the coefficient vectors,

and the optimal solution can be obtained by performing an exhaustive search within that

boundary. The authors in [29] state that the coefficient selection issue is actually a short-

est vector problem (SVP). Any lattice reduction algorithm, such as the Lenstra-Lenstra-

Lovasz (LLL) algorithm [42], possibly followed by the Fincke-Pohst algorithm [55] can

be utilised to acquire sub-optimal solutions. There are two main drawbacks of these lat-

tice reduction algorithms: 1) the complexity increases very rapidly as the number of users

increases; 2) it becomes less accurate for large numbers of users. Recently, a polyno-

mially optimal algorithm proposed by Sahraei and Gastpar [6] significantly reduced the

number of candidate vectors of [28]. It translated the optimisation problem from multi-

ple variables to one variable. Based on the idea of [6], some improvements are proposed

in [56, 57] to further reduce the complexity.

Unfortunately, the methods in [6, 56, 57] are suitable for real valued channels and

integer lattices (Z-lattice) only. Finding the optimal solution in polynomial time over

complex integer based lattices is still an open problem. For the Gaussian integer based

lattices, the sub-optimal lattice reduction based algorithms, such as the complex-LLL [58]

and its extensions [59], [41] still work. However, they have the same drawbacks as in

real channel scenarios. Recently, more focus is given to the Eisenstein integer based

lattice: which has the densest packing strcuture in the 2-dimensional complex plane. A

lattice reduction method over the Z[ω]-lattice is proposed in [35], though for a two way

relay system only. An extended version of the algorithm in [6] for both Z[i] and Z[ω]

is proposed in [37], however it might sometimes miss the optimal solution. The latest

research in [50] illustrated that C&F can operate over many algebraic number fields not

restricted to PIDs. Unfortunately, efficient approaches for coefficient selection over these

non-cubic lattices are not available in the existing literature.
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For the second stage, the most commonly used approach to meet the requirement of

unambiguous decodability is for each relay to forward more than one linear equation to

the hub. The global optimal full rank matrix is selected by the hub and then fed back to

the APs [60]. An alternative approach is that the integer vector provided by each relay is

forced to include at least two users. This can significantly reduce the probability of rank

deficiency [61].

In this Chapter, we focus on local selection which finds the optimal integer vector for

a single AP. We consider both real and complex valued channels. For the real valued

scenario, we propose two novel approaches. One aims to reduce the number of candidate

vectors in the exhaustive search. The other finds the best scaling factor iteratively, and its

corresponding integer vector can be acquired immediately. There are two main benefits

of our proposed methods:

• In term of the computation rate: both of our algorithms outperform the LLL, and

achieve the same rate compared to the exhaustive search.

• In term of the complexity: our algorithms have much lower complexities compared

to the exhaustive search, and lower than the LLL except at very high SNR.

For the complex valued scenario, the main contributions are as follows:

• We propose a low polynomial complexity algorithm to ensure the optimal integer

vector can be acquired for both Z[i] and Z[ω] lattices. We also derive a theoretical

upper bound on the complexity.

• We propose a suboptimal linear search algorithm for coefficient selection which has

lower complexity. Compared to the optimal approach above, it aims to discard the

‘unnecessary’ candidates by employing a pre-defined step size which is related to

the number of users and SNR. The theoretical complexity is also investigated.

• We evaluate numerically the performance and complexity of our two proposed al-

gorithms, and compare them with existing approaches. Simulation results indicate

that our proposed algorithms have better complexity-performance tradeoff.
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• Our proposed algorithms can be easily extended to lattices over any other algebraic

integers without additional complexity.

The remainder of this Chapter is organised as follows: we briefly review the existing

selection algorithms as benchmarks in section 3.2. Then we propose novel selection ap-

proaches for the real valued case and the complex valued case in section 3.3 and 3.4

respectively. In section 3.5, we present the numerical results in terms of both achievable

rate and complexity for different types of lattices.

3.2 Existing Coefficient Selection Algorithms

3.2.1 Exhaustive-I Algorithm

In the original paper of C&F [28], the authors state that the Euclidean norm of the optimal

coefficient vector has an upper bound, expressed as ‖aopt‖ ≤ Φ =
√

1 + SNR‖h‖2,

hence an exhaustive search over all possible a within that range can be employed to obtain

aopt. The time complexity of this algorithm is O(Φ2L).

3.2.2 Exhaustive-II Algorithm (Real-valued only)

The authors in [6, 62] propose an exhaustive search algorithm with polynomial com-

plexity. They state that it suffices to search over the integer vectors generated by bαhe
only rather than considering all possible a ∈ ZL. Therefore, the optimisation problem

with an L-dimensional variable a is translated to an optimisation problem over the one-

dimensional variable α. The candidate vectors can be obtained by dividing all possible

α ∈ R into several intervals, where each interval corresponds to a unique candidate a.

The time complexity of this algorithm is O(LΦlog(LΦ)). For convenience, we name this

method ‘Exhaustive-II’ to distinguish it from the original exhaustive algorithm above.
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3.2.3 Lattice Reduction Algorithm

In section 2.6, we have reviewed that the maximisation of the computation rate is equiv-

alent to minimising aHmMam = ‖LHa‖2. The LLL and Complex-LLL lattice reduction

algorithms are most commonly used for dealing with such SVPs in the Z-lattice and Z[i]-

lattice respectively. However, these algorithms only ensure the selected vector is less than

2
L−1

2 times the actual optimal solution. Hence, they become less accurate as the number

of users increases.

3.2.4 Quantised Search

For Z[i]-lattices, an intuitive approach for coefficient selection is to employ some quan-

tised (sampled) values of α to generate the candidate set of a, expressed as a = QZ[i](αh).

The question is how to choose the quantiser. Since α ∈ C, the authors in [63] allocate

step sizes for both the magnitude and the phase of α. Clearly, this method is equivalent to

the exhaustive search when both of the step sizes tend to zero. However, zero step size is

definitely infeasible in practice. The core aspect of this quantised algorithm is the choice

of the step size, which is not analysed in [63].

The method described above leads to an oversampling for small magnitudes and un-

dersampling for large magnitudes. In section 3.4, we will propose a uniform quantiser

and describe how to choose the optimal step size.

3.2.5 L-L Algorithm

Very recently, Liu and Ling proposed an efficient algorithm (denoted here as the L-L

algorithm) for complex valued channels in [37]. The authors adapt the idea in [6] directly

for the complex integer based lattices. However, the algorithm in [37] might miss the

optimal solution for some channel realisations, though with a very small probability. A

detailed discussion of this approach will be presented in section 3.4.
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3.3 Proposed Algorithms for Real Valued Channels

3.3.1 Real Valued Channel Model

We consider a general multiple access system with L users and one AP in this Chapter.

In real valued channels, the original message wl ∈ Fkp ∼= (Z/pZ)k and the length n

codeword xl ∈ Rn rather than Cn. The noise vector z ∈ N (0, σ2In), and the channel

vector h = [h1, h2, · · · , hL]T with hl ∈ N (0, 1). Note that the computation rate in the

complex valued channel is measured in bits per complex dimension. For the real channel

case, we use bits per real dimension instead, and hence the expressions (2.38) and (2.41)

are rewritten as

R(h, a) = max
α∈R

1

2
log+

( P

α2σ2 + ‖αh− a‖2

)
(3.1)

and

R(h, a) =
1

2
log+

( P

aTMa

)
(3.2)

respectively, with M = IL − SNR
SNR‖h‖2+1

hhT . Note that the scaling factor α ∈ R and

integer vector a = ZL×1.

3.3.2 Reduced Candidate Set aided Algorithm

We have introduced the exhaustive-II algorithm which employs fewer candidates a com-

pared to the exhaustive-I. In this section, we propose an algorithm to further reduce the

number of candidates. The reduction comes from three aspects:

• A tighter upper bound of ‖a‖ can be acquired according to the bound of |α|.

• Set a threshold to distinguish the ‘unnecessary candidates’, and these candidates

can be discarded without loss of performance. The threshold can be drawn from an

off-line table.

• Set a break condition for the on-line search.
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1st Stage: Obtain the Candidate Set

To the best of our knowledge, the existing exhaustive search algorithms for C&F are all

based on the following bound:

|al| ≤ ‖a‖ <
√

1 + SNR‖h‖2, ∀l, (3.3)

that is, all elements in a share the same bound. Actually, it is more straightforward to con-

sider the bound of α rather than a. The expression ofR(h, a) in (3.1) can be equivalently

rewritten as a function of α, which is

R(h, α) = max
a∈ZL

1

2
log+

( P

α2σ2 + ‖αh− a‖2

)
. (3.4)

For a given α, maximising R(h, α) in (3.4) is equivalent to minimising ‖αh − a‖2.

Clearly, the MMSE solution of a is given by

aMMSE = bαhe, (3.5)

where the rounding operation is applied to each component of αh. Thus, we have

R(h, α) =
1

2
log+

( P

α2σ2 + ‖αh− bαhe‖2

)
≤ 1

2
log+

( P

α2σ2

)
,

(3.6)

where the equality holds if and only if the selected integer vector is a perfect approxima-

tion of the scaled channel. Clearly, the computation rate is zero when α ≥
√
P/σ2 =

√
SNR. By substituting bαhe for a, the effective noise in (2.39) can be rewritten as

σ2
eff(α) = α2σ2 + P‖αh− bαhe‖2 (3.7)

which is an even function of α, and hence it suffices to consider α > 0. The bound of α

is therefore expressed as

0 < α <
√

SNR, (3.8)
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and the bound of each element of a can be obtained immediately, expressed as:

al = bαhle ∈


(
0, d
√

SNRhle
]
∩ Z if hl ≥ 0[

b
√

SNRhlc, 0
)
∩ Z if hl < 0

(3.9)

Clearly, (3.9) gives a tighter bound than (3.3). For example, assume h = [−0.5, 1] and

SNR=100. By employing (3.3), we have a1, a2 ∈ {[−11, 11] ∩ Z}. By employing (3.9),

we have a1 ∈ {(0, 10] ∩ Z} and a2 ∈ {[−5, 0) ∩ Z}. Now we address the detailed

procedure of generating a complete candidate set for a:

1. Given the channel vector h = [h1, h2, · · · , hL]T and SNR, find all possible integers

for each al by employing (3.9). We use Φl = {a∗l,1, a∗l,2, · · · , a∗l,Kl} to denote the set

of all possible integers al, with cardinality Kl.

2. For each Φl, establish a set for α, denoted as Sl =

{a
∗
l,1−0.5

hl
,
a∗l,2−0.5

hl
, · · · , a

∗
l,Kl
−0.5

hl
} = {α∗l,1, α∗l,2, · · · , α∗l,Kl). The elements of Sl

represent the discontinuities of f(α) = bαhle.

3. Form a new set S = ∪Ll=1Sl, and sort the elements of S in ascending order. Let K̄

denote the the cardinality of S, clearly K̄ =
∑L

l=1Kl.

4. The elements in S are the discontinuities of f(α) = bαhe. In other words, the

range α ∈ (0,
√

SNR) is partitioned into K̄ + 1 intervals by these cut-off points,

and each interval corresponds to a unique a. Note that the very left interval (0, α1)

should be discarded as its corresponding a = bαhe is an all zero vector. Hence,

each α∗
k̄
∈ S can be utilised as the representative of its right interval [α∗

k̄
, α∗

k̄+1
) to

generate the corresponding a, and this requires

bα∗k̄he = bαhe, α ∈ [α∗k̄, α
∗
k̄+1). (3.10)

Since α∗
k̄

is a discontinuity, there exists hl that α∗
k̄
hl is precisely a half integer. In

order to cancel the uncertainty of bα∗
k̄
he and make (3.10) valid for all intervals, we

define a round operation b·e∞

bxe∞ =

sgn(x)dxe if x ∈ Z− 1
2

bxe else
(3.11)
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which rounds the half integers away from zero (towards infinity). The candidate set

can be obtained immediately, denoted as

I = {a : a = bα∗k̄he∞, ∀α∗k̄ ∈ S} (3.12)

2nd stage: Discard Unnecessary Candidates
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Figure 3.1: Sketch diagram of the reduced set aided algorithm

In the first stage, we have obtained the complete candidate set I. In this stage, we

select a subset of I which is referred to as the ‘necessary candidate set’. We take a

simple example to present how to select ‘necessary candidates’. Assume a 5-user system

with h = [−0.3246,−0.8164,−0.3153, 0.2208, 0.4958]T and SNR = 20dB. As shown in

Figure 3.1, the red line represents the variance of the effective noise calculated by (3.7).

The range of α is divided into 21 intervals with 21 cut-off points which are illustrated by

the blue dotted lines. The term bαhe∞ is invariant within each interval of α, which means

that the 1st and 2nd order derivative of σ2
eff can be expressed as:

dσ2
eff

dα
= 2ασ2 + 2α‖h‖2 − 2hT bαhe (3.13)

and
d2σ2

eff

dα2
= 2σ2 + 2‖h‖2 ≥ 0 (3.14)
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respectively. Clearly, within each interval, σ2
eff is a convex function with a local minimum,

as shown in Figure 3.1. At first glance, the global minimum is more likely to be located in

one of the largest parabolas, labelled with ρ1∼5, and it therefore seems possible to consider

the ‘wider’ intervals only rather than all of them.

Let dk̄ denote the length of the k̄th valid interval, and dopt be the length of the inter-

val which includes the global minimum. We define dmax = max(d1, d2, · · · , dK̄) as the

widest length among all intervals. We define γopt = dopt

dmax
and γk̄ =

dk̄
dmax

as the normalised

dopt and dk̄ respectively. Clearly, we have 0 < γopt, γk̄ ≤ 1. Our target is to find a thresh-

old of γopt, denoted as γthre to distinguish the ‘wider’ intervals whose γk̄ ≥ γthre . The

threshold can be determined by investigating the distribution of γopt.
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Figure 3.2: The cumulative distribution of γopt and γk̄

The cumulative distribution curves in Figure 3.2 are acquired over 1000 channel real-

isations, the solid lines illustrate the CDF of γopt in a 5-user system. The blue, red and

green lines represent the scenarios with SNR=20dB, 30dB and 40dB, respectively. It can

be seen that γopt ≥ 0.4 for all channel trials when SNR = 20dB. Therefore, we can treat

0.4 as the threshold of γopt to define the ‘wider’ interval. The corresponding γthre at SNR

= 30dB and SNR = 40dB can be determined in a same way, as labelled with arrows. It can

be observed that γthre increases monotonically with SNR, for convenience, the value of

γthre for SNR = 20dB can be used in the region of 20dB≤SNR<30dB, this modification

does not affect the accuracy.
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The value of γthre is only related to the number of users L and SNR, it does not depend

on the instantaneous channel realisation. Hence, we can establish a table Θ to store the

values of γthre corresponding to each L and SNR region, and this table can be obtained

off-line, and therefore does not bring extra complexity to the on-line search. Table 3.1

demonstrates a part of such a table.

Table 3.1: A partial table of Θ with L = 5, 8, 10 (real valued case)
PPPPPPPPPL

SNR (dB)
<5 [5 10) [10 15) [15 20) [20 25) [25 30) [30 35) [35 40) · · ·

5 0.05 0.07 0.15 0.32 0.4 0.48 0.53 0.58 · · ·
8 0.04 0.04 0.05 0.12 0.2 0.31 0.42 0.46 · · ·
10 0.03 0.03 0.04 0.05 0.15 0.22 0.35 0.39 · · ·

Algorithm 1 Reduced set aided algorithm
Output: the optimal coefficient vector aopt

Offline Search: obtain table Θ
1: For given L and SNR
2: for trial = 1 : 1000 do
3: generate htrial (hl ∈ N (0, 1)) and obtain the corresponding candidate set I.
4: obtain aopt,trial = argmaxa∈IR(htrial, a) based on (3.2).
5: calculate the normalised width γopt for aopt.
6: end for
7: set min1000

trial=1 γopt,trial → γthre(L, SNR)
Online Search: obtain aopt for instantaneous channel h

8: select γthre according to Θ, and obtain the candidate set I for h.
9: for all a ∈ I do

10: find γk̄ ≥ γthre and S̃ = {α̃∗1, α̃∗2, · · · , α̃∗J}.
11: end for
12: j = 2, aopt = bα̃∗1he∞, σ2

opt = aToptMaopt (3.2).
13: while (α̃∗jσ)2 ≤ σ2

opt and j ≤ J do
14: aj = bα̃∗jhe∞, σ2

eff = aTj Maj , σ2
opt = min(σ2

opt, σ
2
eff), aopt = argmin

a∈{aopt,aj}
aTMa.

15: j = j + 1
16: end while
17: Return aopt

From Figure 3.2, we can also estimate the complexity reduction resulting from this

stage. The dashed lines represent the CDF of γk̄ in the cases of SNR = 20dB, 30dB and

40dB. Since the wider intervals are selected according to γk̄ ≥ γthre, therefore, about

60% of the intervals are discarded (γk̄ < 0.4) when SNR=20dB, and the complexity is
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reduced by up to 80% at high SNR (SNR≥40dB). It can be observed that the CDF of γk̄ is

invariant for different values of SNR, which implies that the intervals of α are randomly

uniformly distributed within the valid range.

3rd Stage: On-line Search

In this stage, we will find aopt based on the ‘wider’ intervals acquired in the second stage.

Let S̃ = {α̃∗1, α̃∗2, · · · , α̃∗J} denote the cut-off points of the ‘wider’ intervals, with S̃ ⊆ S.

As the values of α̃∗j have an ascending order, we can set a break condition for the searching

procedure. When the scaled Gaussian noise of the current interval is already larger than

the minimum effective noise of the previous vectors, we terminate the procedure.

As shown in Figure 3.2, the green line represents the variance of the scaled Gaussian

noise σ2
sg = α2σ2. The selected ‘wider’ intervals are ρ1 ∼ ρ5, and α̃∗1 ∼ α̃∗5 are their

corresponding left endpoints. We terminate at ρ3 since it is impossible to find any bαhe∞
(with α ≥ α̃∗3 = 5.53) whose effective noise is smaller than the local minima of ρ2 which

is 0.2643, even with a zero self-noise. The whole procedure is outlined in algorithm 1.

3.3.3 Linear Search Algorithm for Real Lattices

In this section, we propose a conceptually simple method which employs a linear search

over values of α using a fixed step size ∆ for α, calculating for each value the corre-

sponding σ2
eff(α), and selects the one which minimises σ2

eff(α). Compared to the quanised

search algorithm in [63], we perform the following processes to make it more efficient.

• we set an initial value of α as 0.5+ξ
max(|h1|,|h2|,··· ,|hL|)

, where the symbol ξ is an arbitrarily

small number in order to ensure bαhe is not an all zero vector.

• we employ the same break condition used in the previous section to reduce the

‘valid range’ of α.

Compared to the reduced set aided algorithm, this method employs sampled values of

α rather than determining the intervals based on h, and without calculating the MMSE
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Algorithm 2 Linear Search Algorithm for Real Lattices

Input: channel vector h, step size ∆, thermal noise σ2, ξ
Output: the optimal coefficient vector aopt

1: Initialise: α = 0.5+ξ
max (|h1|,|h2|,··· ,|hL|)

, σ2
opt = σ2

eff(α). Equation (3.7)
2: then αsample = α + ∆, σ2

sg = α2
sampleσ

2.
3: while σ2

opt > σ2
sg and αsample ≤

√
SNR do

4: if σ2
eff(αsample) < σ2

opt then
5: α = αsample, σ2

opt = σ2
eff(αsample)

6: end if
7: αsample = αsample + ∆, σ2

sg = α2
sampleσ

2

8: end while
9: Return aopt = bαhe

solution for each candidate a. The performance of this algorithm greatly depends on the

choice of the step size. Theoretically, the step size should be small enough to ‘visit’ each

of the ‘wider’ intervals. Since we use sampled values of α rather than αMMSE to calculate

σ2
eff(α) during each comparison (line 4 in algorithm 2), it may sometimes miss the global

minimum. The worst case is that αMMSE is precisely the midpoint of two consecutive

sampled points and bαhe takes the same value for both. Since the second derivative of

σ2
eff(α) is a constant within a specific interval (3.14), the worst case error can be upper

bounded by

eub = σ2
eff(αMMSE +

∆

2
)− σ2

eff(αMMSE) =
∆2

4
(σ2 + ‖h‖2). (3.15)

Note that this method is mainly motivated by applications which employ complex lattices

over Z[i] and Z[ω]. For complex lattices, α is complex, and hence its intervals become

a set of Voronoi regions over a complex plane and the problem becomes much more

complicated. This will be investigated in the following section.

3.4 Proposed Algorithms for Complex Valued Channels

In this section, we propose two algorithms for the complex valued scenario. One extends

the exhaustive-II algorithm in [6] to complex lattices, which ensures the optimal solu-

tion. The other employs linear search with optimised step sizes to obtain the necessary

candidates.
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3.4.1 Exhaustive-II in Complex Valued Channel

Since the Exhaustive-II algorithm selects aopt with low polynomial complexity in the real

channel case, it is worthwhile to investigate the feasibility of Exhaustive-II in the complex

case. This section comprises three parts: we first propose the complex exhaustive-II

algorithm, then gives the complexity analysis, and finally a comparison with the L-L

method is provided.

Complex Exhaustive-II Algorithm

Previously we have discussed that the computation rate can be expressed as a function of

α. For the complex scenario, we rewrite (3.6) as

R(h, α) = log+
( P

α2σ2 + P‖αh−QA(αh)‖2

)
, (3.16)

where α ∈ C. Again, the quantisation QA(·) is applied to each αhl. Let αopt denote the

globally optimal α which maximises R(h, α) in (3.16). Now we provide the valid range

of αopt.

Proposition 1. The amplitude of αopt is upper bounded by
√

SNR, and it suffices to

restrict the phases of α to 0 ∼ π
2

and 0 ∼ π
3

for Z[i]-lattice and Z[ω]-lattice respectively.

Proof. The proof of |αopt| <
√

SNR is omitted here: see (3.4)∼(3.6).

Define u as a unit in A: we have:

R(h, α) = log+
( P

α2σ2 + P‖αh−QA(αh)‖2

)
= log+

( P

(uα)2σ2 + P‖uαh−QA(uαh)‖2

)
= R(h, uα)

(3.17)

Hence the complex plane of α is divided into several ‘equivalent regions’ due to the

existence of units. As the corresponding units in Z[i] and Z[ω] are {±1,±i} and

{±1,±ω,±ω2} respectively, hence the number of equivalent regions in Z[i] and Z[ω]

are 4 and 6 respectively, and hence it suffices to restrict the phase within 0 ∼ 2π
4

and
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0 ∼ 2π
6

respectively.

Recall that for the real valued case: the range of α ∈ R is divided into several in-

tervals. The quantised value bαhe is invariant within each interval. Hence each interval

corresponds to a unique candidate vector a, and the candidates can be acquired by choos-

ing a representative of α for each interval.

For the complex case, α ∈ C, and hence the intervals of α become a set of Voronoi

regions over a complex plane. We use hmax to denote the channel coefficient with the

largest amplitude in h. Let V0 denote the fundamental region of A, and AV0 be the area

of V0. Define a lattice as

Λl , {λ : λ =
al
hl
, al ∈ A}. (3.18)

Clearly, the generator matrix of Λl is 1
hl

BA, where BA is the generator matrix of A. For

example, BZ[i] = [1 0; 0 1] and BZ[ω] = [1 0; 0 ω]. According to (3.18), the Voronoi region

of a specific lattice point al
hl
∈ Λl, denoted as Vl,al , can be expressed as

Vl,al = {α : α ∈ C, QA(αhl) = al}, (3.19)

which means all values of α ∈ Vl,al result in the same quantised integer al. Due to the

lattice property, the Voronoi regions of Vl,al are congruent for all al ∈ A. Hence we use

AVl to denote the area of Vl,al , ∀al. SinceAV0 andAVl can be calculated by det(BA) and

det( 1
hl

BA) respectively, clearly we have

AVl = AV0/|hl|2, (3.20)

and hence we have the following results:

Proposition 2. The valid range of α is divided into several convex polygonal regions Va,

and each region corresponds to a unique candidate vector a. The area of each region is

upper bounded by AV0/|hmax|2.
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Proof. Let Va denote the Voronoi region of α for given a, expressed as

Va = {α : QA(αh) = a}

= {α :
L⋂
l=1

QA(αhl) = al}.
(3.21)

It can be obtained from (3.19) and (3.21) that Va is the intersection region of Vl,al for all

l, denoted as Va = ∩lVl,al . It is known that the intersection of convex sets is also convex.

Since each individual Vl,al is a convex polygon (square for Z[i] and hexagon for Z[ω]),

hence Va is also a convex polygon. As an intersection region, the area of Va can be upper

bounded by the smallest size among Vl,al , ∀l which is

min
l
AVl = min

l

AV0

|hl|2
=
AV0

|hmax|2
. (3.22)
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Figure 3.3: An example with Z[i]-lattices: h = [1, 1+i√
2

]T , a = [2 + 2i, 3i]T

We take a simple example to interpret the above proposition. We consider a 2 user

system employing the Z[i]-lattice, with h = [1, 1+i√
2

]T . As shown in Figure 3.3, the real
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and imaginary parts of α are represented by the x-axis and y-axis respectively. The lattice

points in Λl=1 and Λl=2 are represented by the red and blue dots respectively, and each

red (blue) square corresponds to a unique a1 (a2) respectively. For example, the red (blue)

solid square in the centre corresponds to V1,a1=2+2i and V2,a2=3i respectively. Hence in

order to acquireQZ[i](αh) = a = [2 + 2i, 3i]T , the value of α has to be chosen within the

region Va which is the black octagon in the centre.

Let Φ̃ denote the range of αopt acquired in Proposition 1. Since aopt = QA(αopth),

thus aopt must be in the set

aopt ∈ I = {a : a = QA(αh), α ∈ Φ̃}. (3.23)

According to Proposition 2, the candidate set I can be acquired by the following steps:

1. Select at least one representative of α within each Va. The set of these representa-

tives is denoted as S.

2. Use S to generate the candidate set I.

Clearly, the main challenge is to select the representatives of α. For the real valued sce-

nario, each Va is a 1-dimensional interval which can be simply represented by its endpoint

(discontinuity of f(α) = bαhe). However, in the complex case, each Va is a polygon,

and the discontinuities become the edges of Va. Hence the number of discontinuities be-

comes infinite. The vertices of each Va are the most easily calculated points among all

discontinuities: can we therefore use these vertices as the representatives?

Assume αv is a vertex of Va. Clearly, αv is shared by its adjacent polygons, which

means that αvh is singular to the quantisation operation QA(αvh) (due to the fact that

some components of av are precisely half integers). The singular quantisation is not a

problem for the real case. Since each Va has two ends, and hence if QZ(αh) is open at

one end, then it has to be closed at the other end as long as QZ rounds αh in the same

direction at both ends (see Eq 3.11). This is because each interval has redundancy (2

ends) to compensate the quantisation uncertainty (2 possibilities: round up or down), and

they are balanced for all intervals. However, for the complex channel, the redundancy and

the quantisation uncertainty are not always balanced. Take the Z[i]-lattice for example:
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Algorithm 3 Complex-Exhaustive-II Algorithm

Input: channel vector h = [h1, h2, · · · , hL] ∈ CL, SNR, integer domain A (Z[i],Z[ω],
etc) with basis BA

Output: optimal coefficient vector aopt

Phase 1: obtain the representatives of α, stored in set S. The initial S = ∅
1: According to Proposition. 1, calculate the range of α: Φ̃.
2: for l = 1 : L do
3: Generator Λl according to (3.18). Find {λ : λ ∈ Λl ∩ Φ̃}, and store these λ into

Ωl = {α∗l,1, α∗l,2, · · · , α∗l,Kl}
4: Sl = ∅, Ψl = ∅
5: for k = 1 : Kl do
6: al = α∗l,khl.
7: Find the vertices of the corresponding Vl,al , calculated by α∗l,k + 1

hl

z0
2

z0 = ±1± i for Z[i]

z0 = ±1±
√

3
3
i, ±2

√
3

3
i for Z[ω]

8: Store these vertices into set Sl
9: Calculate the linear equation of each edge of Vl,al , add them into set Ψl

10: end for
11: S = S ∪ Sl
12: end for
13: for l̄ = 1 : L− 1 do
14: for l̂ = l̄ + 1 : L do
15: Find all combinations of {c1, c2}, with c1 ∈ Ψl̄ and c2 ∈ Ψl̂. Calculate the

crossing point of c1 and c2: the crossing points which are not in Φ̃ should be
discarded. Store the remaining in set Sl̄,l̂

16: Sl̄ = Sl̄ ∪ Sl̄,l̂
17: end for
18: S = S ∪ Sl̄
19: end for

Phase 2: Obtain the candidate set I and select aopt

20: for all representative α ∈ S do
21: a = Q∗A(αh), discard the repeated a, take the remaining a as the candidate set I
22: end for
23: for all a ∈ I do
24: CalculateR(h, a) by equation (2.41)
25: end for
26: Return aopt = argmaxa∈IR(h, a)
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each QZ[i](αvh) has four possible values, while the number of vertices of each Va is

uncertain. Particularly for a triangle Va, the redundancy (3 vertices) is apparently not able

to compensate the quantisation uncertainty. This means if we set the quantiser to round

αvh in a specific direction for all vertices, we might miss that triangle Va (and also the

corresponding a). Hence, we define a ‘full direction’ quantiser Q∗A(·) which returns all

equal likely a. For example, Q∗Z[i](0.5 + 1.5i) = {1 + 2i, 1 + 1i, 0 + 2i, 0 + 1i}. The

modified quantiser ensures that all Voronoi regions Va can be ‘visited’ by considering αv

as the representative, thus all candidates vectors a ∈ I can be acquired.

The only issue remaining is to calculate the coordinates of the vertices. Clearly, each

vertex is a crossing point of two lines, denoted by c1 and c2, and each line is exactly an

edge of an individual Vl,al . Let Ψl denote the set which includes the edges of Vl,al , ∀al.
There are two kinds of vertex which can be acquired separately, which means S can be

divided into two subsets as follows:

• S-I: the vertices of individual Vl,al . This corresponds to the case that c1 and c2

belong to the same Ψl,

• S-II: intersection points of two sets of parallel lines, where one set belongs to Ψl̄

and the other belongs to Ψl̂,l̂ 6=l̄. This corresponds to the case that c1 and c2 belong

to different Ψl, denoted as c1 ∈ Ψl̄ and c2 ∈ Ψl̂.

Intuitively, the former indicates the vertices of the red/blue squares in Figure 3.3, and

these points can be easily acquired based on Λl which is defined in (3.18), while the

latter indicates the vertices of the parallelograms in Figure 3.3 (labelled by the black

shading). The proposed complex-Exhaustive-II algorithm is summarised in Algorithm 3,

and the corresponding procedure for acquiring S-I and S-II are outlined in steps 2∼12

and 13∼19 respectively. Starting with the obtained candidate set I, we employ (2.41) to

examineR(h, a) for all a ∈ I, and select the optimal one.
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Complexity of Complex-Exhaustive-II Algorithm

The complexity mainly depends on the number of candidates a, and this number is upper

bounded by the outputs of Q∗A(αh) for all α in S (step 20∼21 in Algorithm 3). Let ξ

denote the number of quantiser outputs for each α ∈ S, expressed as ξ = |Q(αh)|.
Clearly, each representative α ∈ S-I is shared by 4 and 3 adjacent Voronoi regions for

Z[i]-lattices and Z[ω]-lattices respectively, thus ξ = 4 (3) for Z[i] (Z[ω]) respectively. In

principle, the probability of more than 2 independent lines intersect at the same point is

infinitesimal, hence ξ = 4 for both Z[i] and Z[ω] cases if α ∈ S-II. Therefore, ξ can be

regarded as a constant, and hence the number of candidates a is bounded by ξ|S|. Since

the area of the valid range of α is bounded by SNR, the total number of Vl,al for all l is

therefore expected to be

∑
l

E
[SNR

AVl

]
=
∑
l

SNRE[|hl|2]

AV0

=
SNRL

AV0

, (3.24)

where AV0 is a constant for given integer domain A as described previously, and the

second equality is due to the assumption that hl ∼ CN (0, 1).

For each pair of sets of parallel lines from Ψl̄ and Ψl̂,l̂ 6=l̄, the expected number of

parallelograms for Z[i]-lattices is

E
[ SNR

Apara

]
=

SNRE[|hl̄||hl̂|sin(θl̄,l̂)]

AV0

(3.25)

=
SNRE[|hl̄|]E[|hl̂|]E[sin(θl̄,l̂)]

AV0

(3.26)

= 0.5
SNR

AV0

. (3.27)

Here Apara denotes the area of the parallelograms, and θl̄,l̂ denotes the intersection an-

gle of the two sets of parallel lines which is randomly distributed within 0 ∼ π
2
, hence

E[sin(θl̄,l̂)] = 2
π

. The expression (3.26) comes from the independence of the channel

components hl̂ and hl̄. Since the expected value of |h| equals
√

π
4

with h ∼ CN (0, 1),

the simplified expression is therefore written as (3.27). Similarly, we expect the number
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of parallelograms as

E
[ SNR

Apara

]
=

√
3

2
SNRE[|hl̄||hl̂|sin(θl̄,l̂)]

(1
2
)2AV0

=
√

3
SNR

AV0

. (3.28)

for Z[ω]-lattices. Since there are respectively 2 (3) sets of parallel lines for Z[i] (Z[ω]) in

each Ψl, the total number of parallelograms is therefore expected to be(
L

2

)(
2

1

)(
2

1

)
E
[ SNR

Apara

]
and

(
L

2

)(
3

1

)(
3

1

)
E
[ SNR

Apara

]
(3.29)

for Z[i] and Z[ω] respectively. The expressions (3.24) and (3.29) can be roughly regarded

as the the expected values of |S-I| and |S-II|. Since the total number of candidates is

ξ(|S-I| + |S-II|) and the computation rate can be calculated in O(L) for each candidate

a, hence the overall time complexity can be expressed as

O(SNRL2(L− 1)) +O(SNRL2). (3.30)

Note that the constant components are omitted in (3.30), and their effect will be evaluated

numerically in section 3.5.

L-L Algorithm vs Complex-Exhaustive-II Algorithm

The L-L algorithm in [37] is described as an optimal deterministic algorithm. Actually, it

does not ensure the optimal solution for some channel realisations. In this section, we will

present a comparison between the L-L algorithm and our proposed complex exhaustive-II

algorithm.

The main difference between these two algorithms is the representatives of α. The

exhaustive-II algorithm considers both S-I and S-II, while the L-L algorithm considers

the individual Vl,al only. Specifically, the vertices and the midpoints of edges of individual

Vl,al are considered for L-L, hence the representatives of α can be regarded as an extended

version of S-I (though the L-L algorithm is not interpreted in this manner in [37]). How-

ever, aopt is sometimes generated by Q∗A(αh) with α ∈ S-II. In this case, aopt is missed
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Figure 3.4: Comparison of L-L and complex exhaustive-II

by the L-L algorithm. In Figure 3.4, we present an intuitive comparison of these two

algorithms. A Z[i]-lattice based system is considered, with L = 5 and SNR = 10dB. The

channel components hl and their corresponding Vl,al , ∀l are denoted by different colours.

The representatives of α utilised in L-L are marked by the black dots, which result in

the ‘optimal’ solution âopt = [1i,−1i, 1,−1,−1] with R(âopt,h) = 0.585. However,

the actual optimal solution acquired by employing the complex exhaustive-II algorithm

is aopt = [1i, 1i, 1,−1,−1] with R(aopt,h) = 0.702. Let Vopt denote the correspond-

ing Voronoi region of aopt, which is represented by the blue solid polygon (labelled as

Exhaustive-II) in Figure 3.4. Clearly, Vopt can be ‘visited’ by the blue points marked with

blue circles from S-II. By contrast, none of the black dots are located within Vopt, and

hence aopt is not considered as a candidate in the L-L algorithm.

3.4.2 Linear Search Algorithm for Complex Lattices

The complex-exhaustive-II method requires the calculation of the vertices of all Va in

order to obtain the complete candidate set I. In this section we extend the linear search
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in section 3.3.3 to the complex case, in which we simply employ the sampled values of α

to acquire the candidate vectors. Recall that the candidates a which correspond to wide

intervals are referred to as the necessary candidates in the real valued scenario. In this

section, we will similarly show that the candidates a correspond to some large Va can be

regarded as the necessary candidates.

Note that the reduced candidate method in section 3.3.2 requires the length of all inter-

vals for each instantaneous h. For the complex case, calculating the area of each Va will

bring enormous complexity to the online search. Therefore, we alternatively combine the

algorithms in 3.3.2 and 3.3.3 in this section. We still investigate the threshold of necessary

candidates, and then take the threshold as the step size for sampling, in order to achieve a

good performance-complexity tradeoff.

Off-line Search: Obtain the Optimal Step Size

As previously discussed, the corresponding Va of a are uniformly distributed over the

valid range of α with random sizes. Hence we utilise the simplest uniform sampler to

generate α as

αsample = ∆(k1 + k2i), k1, k2 ∈ Z, (3.31)

where k1 and k2 are non-negative integers and not both zero. The positive real number

∆ denotes the step size which controls the sampling rate. The key factor is to choose a

proper step size.

Figure 3.5 gives an intuitive view of determining the step size. We adopt the same

channel and axis labelling as in Figure 3.3. Again the x-axis and y-axis denote the real

and imaginary parts of α respectively, and the corresponding effective noise calculated by

σ2
eff(α) = ‖α‖2σ2 + P‖αh−QA(αh)‖2 (3.32)

is shown in the colour bar. The 1st and 2nd order derivatives of σ2
eff(α) for complex

lattices are given by

dσ2
eff

dα
= 2ασ2 + 2Pα‖h‖2 − 2hHQA(αh). (3.33)
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Figure 3.5: The corresponding σ2
eff(α) of the example in Figure 3.3, SNR=30dB

and
d2σ2

eff

dα2
= 2σ2 + 2P‖h‖2 ≥ 0. (3.34)

respectively. Similar to the real case, QA(αh) is invariant within each Va, and the 2nd

derivative is the same for all candidates a. Thus, the global minimum is more likely to

be located in one of the larger Va. As shown in Figure 3.5, the dark blue regions corre-

spond to the large Va in Figure 3.3. Their corresponding a can be regarded as ‘necessary

candidates’ since they have lower effective noise.

Let g denote the number of edges of Vopt. For the example demonstrated in Figure 3.5,

the Voronoi region of the optimal vector Vopt corresponds to the black octagon labelled

in Figure 3.3. Let dopt denote the width of the largest square (with all sides vertical or

horizontal) that fits in Vopt, as shown in Figure 3.6. It can be observed that Vopt will def-

initely be visited if ∆ ≤ dopt. Finding the largest square in Vopt is a convex optimisation

problem described as:

maximise
m

mTQm

subject to Am ≤ b

and m1 +m2 = m3 +m4,
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Figure 3.6: Finding the step size according to Vopt

where Q =


0 1 0 −1

1 0 −1 0

0 −1 0 1

−1 0 1 0

, and m = [m1,m2,m3,m4]T , as labelled in Figure

3.6. The restriction Am ≤ b comprises 4g linear equations which correspond to the

condition that the 4 vertices of the square should be located within the g-edge convex

polygon. Such an optimisation problem is linearly solvable, with complexity O(g).

Similar to the real valued case: given SNR and L, the threshold of large Voronoi

regions Va can be determined by exploiting the statistical characteristic of dopt. As de-

scribed in Proposition 2, the area of Vopt is upper bounded by AV = AV0/|hmax|2 for a

particular h, hence we define the normalised dopt as γopt = dopt/
√AV . Let Vrand denote

a random Va within the valid range of α, and drand be the width of the largest square that

fits in Vrand. Similarly γrand = drand/
√AV . Clearly, 0 < γopt, γrand ≤ 1. Figure 3.7

illustrates the cumulative distribution of γopt in a 5-user, Z[i]-lattice based system. Again,

the results are acquired over 1000 channel trials. It can be observed that γthre = 0.28,

γthre = 0.39, and γthre = 0.47 can be assigned to SNR=20dB, 30dB and 40dB respec-

tively. As same as in the real valued case: the threshold γthre increases monotonically
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Figure 3.7: The cumulative distribution of γopt and γrand

with SNR, and hence the values of γthre for SNR=20dB can be used in the region of

20dB≤SNR<25dB without the loss of accuracy; the threshold of γopt also depends on

SNR and L only, and not on any particular instantaneous channel, hence an off-line table

Θ can be established to store the values of γthre corresponding to each L and SNR region,

which will not bring extra complexity to the online search.

Given a instantaneous channel h, we set the step size as

∆ = γthre

√
AV = γthre

√
AV0

|hmax|2
(3.35)

to capture the necessary candidates. Again, the complexity reduction resulting from this

stage can be estimated by investigating the distribution of drand. We can see that the

probability of drand ≤ 0.47 is roughly 70%, which means that about 70% of the candi-

dates examined in the complex-exhaustive-II search are ignored by the sampled values.

Thus, the complexity is potentially reduced by 70% when SNR=20dB, and this reduction

increases with SNR. Note that the meaning of the ‘ignored candidates’ here is slightly

different to the ‘discarded candidates’ in Figure 3.2. Unlike the reduced candidate set

aided algorithm, some of the ignored Va here might still be visited by the sampling values

of α, hence the proportions labelled in Figure 3.7 are referred to as a potential complexity

reduction.
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Table 3.2: A partial table of Θ with L = 5, 8, 10, 20 (complex valued case)
PPPPPPPPPL

SNR(dB)
<5 [5 10) [10 15) [15 20) [20 25) [25 30) [30 35) [35 40) · · · +∞

Z[i]

5 0.06 0.09 0.12 0.21 0.28 0.33 0.39 0.44 · · · 0.71
8 0.04 0.05 0.07 0.13 0.16 0.25 0.32 0.38 · · · 0.71
10 0.04 0.05 0.06 0.10 0.12 0.17 0.22 0.29 · · · 0.71
20 0.03 0.03 0.03 0.04 0.04 0.05 0.05 0.06 · · · 0.71

Z[ω]

5 0.06 0.10 0.12 0.20 0.29 0.33 0.40 0.44 · · · 0.71
8 0.05 0.05 0.08 0.11 0.16 0.24 0.32 0.37 · · · 0.71
10 0.04 0.05 0.06 0.09 0.13 0.18 0.23 0.28 · · · 0.71
20 0.03 0.03 0.03 0.03 0.04 0.04 0.05 0.05 · · · 0.71

Algorithm 4 Linear search algorithm
Output: optimal coefficient vector aopt

Offline Search: obtain table of Θ
Given particular L and SNR

1: for trail = 1 : 1000 do
2: generate htrial ∈ CL

3: obtain aopt,trial = argmaxR(htrial, a) by exhaustive-II, and acquire its corre-
sponding Vopt,trial

4: calculate the normalised width γopt,trial for Vopt,trial

5: end for
6: set min1000

trial=1 γopt,trial → γthre(L, SNR)
Online Search: obtain aopt for a given h

7: ∆ = γthre

√
AV0

|hmax|2 (Eq. 3.35)
8: Generate αsample within the valid range of α, and stored these samples in S.
9: Generate a = QA(αsampleh), ∀αsample ∈ S, and discard the repeated a.

10: Sort the remaining a in ascending order to their corresponding |αsample|, and store
these remaining a in I = {a1, · · · , aJ}, and αsample in S̃ = {α̃1, · · · , α̃J}.

11: j = 2, aopt = a1, σ2
opt = aHoptMaopt (Eq. 2.41).

12: while α̃2
jσ

2 ≤ σ2
opt and j ≤ J do

13: σ2
eff = aHj Maj , σ2

opt = min (σ2
opt, σ

2
eff), aopt = argmin

a∈{aopt,aj}
aHMa.

14: j = j + 1
15: end while
16: Return aopt = QA(αopth)

Online Search: Obtain the Optimal Integer Vector

Based on the table Θ, the step size for a instantaneous channel h is determined by (3.35).

The task of the online search is to check a = QA(αsampleh) one by one (the repeated
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candidates are discarded directly), and select aopt. As outlined in Algorithm 4, we employ

the following processes to make it more efficient.

• The values of αsample are sorted in ascending order to their amplitudes (line 10,

Algorithm 4). Note that the step size ∆ changes the scale of αsample only, and the

order of αsample is invariant to h. Thus, no extra complexity is required for sorting

αsample when h varies.

• We employ the same break condition as described in section 3.3: Let σ2
opt be the

minimum effective noise obtained from the preceding samples, the search termi-

nates when α̃2
jσ

2 ≥ σ2
opt (Line 12, Algorithm 4).

Note that we will not apply this online process to the complex-exhaustive-II algorithm for

the following reasons:

• In the complex-exhaustive-II algorithm, the representatives of α ∈ S do not have a

fixed meshed structure as the sampled valued in (3.31), and the order of these α ∈ S
varies with the instantaneous channel h. Thus, a complexity of n log(n) is required

for sorting these α, assuming that n = |S| is the total number of the representatives.

• In the reduced candidate set aided algorithm, each representative α∗
k̄

is the left end-

point of the corresponding interval [α∗
k̄
, α∗

k̄+1
). Since α > 0, α∗

k̄
has the small-

est amplitude in [α∗
k̄
, α∗

k̄+1
). Thus, (α∗

k̄
σ)2 ≥ σ2

opt is a sufficient condition of

α2σ2 ≥ σ2
opt, α ∈ [α∗

k̄
, α∗

k̄+1
). In contrast, each representative employed in the

complex-exhaustive-II method αv is a vertex of Va, having α2
vσ

2 ≥ σ2
opt is not suf-

ficient to obtain α2σ2 ≥ σ2
opt, α ∈ Va. Therefore, this break condition might lose

the optimality of the complex-exhaustive-II algorithm.

Complexity of the Linear Search Algorithm

The complexity of the linear search algorithm can be analysed from two perspectives.

On the one hand, the proportion of candidates ignored is quite small (γthre ≈ 0) in the

low SNR region, and hence the complexity of the linear search can be measured by the
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exhaustive-II search. On the other hand, the number of candidates for the high SNR case

can be expected to be

SNR

E[∆2]
=

SNR

AV0

E[
|hmax|2
γ2

thre

] =
SNR

γ2
threAV0

E[|hmax|2], (3.36)

where the first equality comes from (3.35), and the second is due to the fact that the

threshold γthre tends to a constant in the high SNR region: when SNR→ ∞, the optimal

α is free to be chosen as the least common multiple of { 1
hl

: l = 1 : L}. In this case, the

centre points of all individual Vl,al (see Prop. 2) overlap, and hence the optimal Voronoi

Vopt is very likely to be the smallest individual Vl,al . By employing the moment generating

function of |hmax|2, we have

E[|hmax|2] =
1

β
E[logeβ|hmax|2 ] (β > 0) (3.37)

≤ 1

β
logE[eβ|hmax|2 ] (3.38)

=
1

β
log

∫ ∞
0

Pr(eβ|hmax|2 ≥ x)dx (3.39)

≤ 1

β
log

∫ ∞
0

L∑
l=1

Pr(eβ|hl|
2 ≥ x)dx (3.40)

=
1

β
log

L∑
l=1

E[eβ‖hl‖
2

] (3.41)

=
1

β
log

L

1− 2β
(3.42)

=
1

β
(logL− log

1

1− 2β
) (3.43)

where (3.38) comes from Jensen’s inequality. (3.39) and (3.41) are based on the rela-

tion between the expected value and the survival function. (3.40) is obtained by Boole’s

inequality (also known as the union bound), and (3.42) is valid because the moment gen-

erating function of a chi-square variable |hl|2 is 1
1−2β

. Since (3.42) holds for any β > 0,

we can pick β to tighten this bound. According to Arithmetic Mean-Geometric Mean

(AMGM) inequality, the minimum value of (3.43) is attained by setting logL = log 1
1−2β

.

Hence, we have E[|hmax|2] ≤ 4logL

1− 1
L

. Again, the correspondingR(a,h) for each candidate

vector a can be calculated in O(L), and hence the time complexity for high SNR case is

given by

O(SNRL
logL

1− 1
L

) (3.44)
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with the constant components omitted.

3.5 Numerical Results and Discussions

3.5.1 Real Valued Channel
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linear search, 10 user

Figure 3.8: AverageR(h) comparison: real valued channel

In this section, we investigate both the computation rate the complexity of our pro-

posed algorithms in section 3.3, compared with the exhaustive-II search [6] and the LLL

algorithm [42]. We choose 0.4 as the step size of the linear search. The values of γthre

are drawn from Table 3.1. We consider two scenarios in which 5 users and 10 users are

employed respectively. All results are the average over 10000 channel realisations.

Figure 3.8 shows the rate comparison of the 4 algorithms. We use solid and dashed

lines to represent the case of 5 users and 10 users respectively. We use the exhaustive-

II search (marked with circles) as the benchmark since it ensures the optimal solution.

Compared to this, the reduced set aided algorithm attains the same computation rate,

which proves the reduced set is sufficient for finding the best vector. The linear search
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algorithm also achieves the optimal throughput with 5 users, and performs slightly worse

in low SNR with 10 users. This is because γthre is very small in such a scenario (see Table

1), and therefore ∆ = 0.4 is not small enough to visit every wide interval of α. Both of

our proposed methods outperform the LLL in both scenarios, and the gap increases with

the number of users.

The complexity is measured by the average number of the floating point operations per

channel realisation. In our simulation, each addition or multiplication is counted as 1, and

the rounding operations and comparisons are ignored. The results are demonstrated in

Figure 3.9. Unsurprisingly, the complexity of the exhaustive-II approach is much higher

than that of the other three. Among the remaining three, our proposed algorithms have

similar complexities. Since the LLL algorithm has a complexity of O(L4 logL) which

is not related to SNR, hence the comparison between our proposed algorithms with the

LLL is an SNR-L tradeoff. Compared with the LLL, both our algorithms have lower

complexities within a wide range of SNR, and the range gets wider as the number of users

increases. Actually, the most common SNR region in practical wireless environments

(10dB∼30dB) is covered by these ranges.
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Figure 3.9: Average complexity comparison: real valued channel
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3.5.2 Complex Valued Channel

In this section, we investigate both the computation rate and the complexity of our pro-

posed algorithms in section 3.4, compared with the CLLL method [58] and the L-L [37]

algorithm. Again, all results are acquired over 10000 channel realisations.

Computation Rate Comparison
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Figure 3.10: AverageR(h) comparison: complex valued channel, 5 users

Figure 3.10 shows the average R(h) of a 5 user scenario. We use solid and dashed

lines to represent the case of Z[i] (denoted as GI) and Z[ω] (denoted as EI) based lattices

respectively. Unsurprisingly, the denser structure of Z[ω] leads to a better performance

than the Z[i] based lattice. Previously we have established that both the L-L algorithm

and the linear search method might sometimes miss the optimal solution. However, the

numerical results reveal that the probability of missing aopt is quite small. The gaps to

the exhaustive-II algorithm are negligible for both algorithms, and they all outperform the

CLLL method. Similarly, Figure 3.11 reveals the rate comparison of a 10 user scenario.

Compared to the case of L = 5, the advantage of our proposed algorithms to the CLLL is

increased.

2017



CHAPTER 3. LOW COMPLEXITY COEFFICIENT SELECTION ALGORITHMS FOR

COMPUTE-AND-FORWARD 71

10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

co
m

pu
ta

tio
n 

ra
te

 c
om

pa
ris

on
 (

bi
ts

/ c
om

pl
ex

 s
ym

bo
l)

 

 
c−exhaustive−II, GI
linear search, GI
L−L algorithm, GI
CLLL reduction, GI
c−exhaustive, EI
linear search, EI
L−L algorithm, EI
CLLL reduction, EI

Figure 3.11: AverageR(h) comparison: complex valued channel, 10 users

Complexity Comparison

Again, we investigate the complexity by counting the flops. The number of flops required

for each complex addition and multiplication are 2 and 6 respectively, and the rounding

operations are ignored in the simulation. It suffices to consider Z[i]-based lattice only

(any other non-cubic lattices have a similar result). By considering hl ∼ CN (0, 1) and

E[‖h‖2] = L, the complexity of the L-L algorithm in [37] can be rewritten as

O
(
L2(SNRL+

√
SNRL+ 2)

)
. (3.45)

Compared with (3.30), we can see that the L-L algorithm and the exhaustive-II algorithm

have almost the same theoretical complexity, both being dominated byO(L3SNR). How-

ever, numerical results in Figure 3.12, 3.13, and 3.14 reveal that our proposed exhaustive-

II algorithm has less complexity than the L-L algorithm. The reasons are as follows:

• the L-L algorithm considers the bound of candidate a as

|al| ≤
√

1 + SNR‖h‖2, (3.46)
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while our complex exhaustive-II considers

|al| = QA(αhl) (3.47)

≤ QA(
√

SNRhl) (3.48)

≤ d
√

SNRhleA, (3.49)

where (3.48) is based on Proposition 1 and d·eA denotes the ceiling operation.

Clearly, (3.49) gives a tighter bound than (3.46).

• In section section 3.4.1, we have established that the S-II set in the exhaustive-II is

not considered in the L-L algorithm. However, many of the candidates a generated

by bαhe, α ∈ S-II are duplicates of the candidates generated from the set S-I.

These duplicates will not participate in the calculation ofR(h, a). Hence the actual

complexity of the exhaustive-II is slightly less than the expression of (3.30).
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Figure 3.12: Average complexity comparison: complex valued channel, 5 users

As discussed previously, the linear search reduces the complexity from two aspects: 1)

optimise ∆ to ignore the unnecessary candidates; 2) employ online process to narrow the

valid range of α. We can see that the linear search has less complexity than the L-L and

exhaustive-II in all figures. Since the the complexity of the linear search varies (see Table

3.2), the gap increases as with SNR. It can be also observed form Table 3.2 that for a given
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SNR, γthre decreases monotonically as L increases, hence the complexity advantage of the

linear search becomes less significant for large L, as shown in Figure 3.14. However, the

linear search algorithm is proposed for the application that all users have the same fading

statistic (hl ∼ CN (0, 1),∀l). In a practical distributed MIMO scenario, where the large

scale fading is considered, it is not usual to have more than 20 users with the same level

of signal power.
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Figure 3.13: Average complexity comparison: complex valued channel, 10 users

The comparison of the LLL and the other three is a tradeoff between L and SNR. In

the high SNR region, the LLL algorithm has the complexity advantage while for a large

number of users, our proposed algorithms have less complexity.

3.6 Concluding Remarks

In this Chapter, we have given novel coefficient selection algorithms for C&F in both real

and complex valued scenarios. A tighter bound of the candidate vectors is derived by

considering the valid range of the scaling factor, and this valid range is further reduced by

employing online process. We have determined threshold to discard (ignore) the ‘narrow’

intervals and ‘small size’ Voronoi regions for the real and complex valued case respec-

tively. The complex-exhaustive-II algorithms extended the idea of interval partition to
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Voronoi region partition to ensure the acquired coefficients are optimal. We have shown

the theoretical complexity for both algorithms. Numerical comparisons with other exist-

ing algorithms are also given. We have shown all of our proposed approaches have good

performance-complexity tradeoff.
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Figure 3.14: Average complexity comparison: complex valued channel, 20 users
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4.1 Introduction

Previously, we have reviewed massive MIMO as a promising technique to meet the capac-

ity density requirement in 5G wireless. By increasing the ratio of BS antennas to users,

wireless networks tend to a quasi-orthogonal, ‘interference free’ state [2, 14]. Recently,

distributed massive MIMO has attracted a lot interest [64–66]. Compared to collocated

massive MIMO, the distributed version brings the APs much closer to the the ‘cell edge’

users, which leads to a uniformly good service for all users. A traditional way to perform

75
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such distributed massive MIMO is by means of a small-cell [67] deployment, where users

benefit from selection between denser APs. Recently, the authors in [5, 19] proposed a

‘cell-free’ model, where a large number of randomly distributed single antenna APs serve

a much smaller number of users using the same time-frequency resource, hence there is

no cell partition. It is proved [5, 19] that by employing simple maximal ratio combining

(MRC), cell free massive MIMO gives better performance for the ‘cell edge’ users com-

pared to the small cell scheme. Further improvement can be attained by employing zero

forcing based algorithms for both uplink [68] and downlink [69] scenarios.

However, the existing performance evaluations of the distributed model are all based

on infinite backhaul capacity, which is clearly infeasible in practice. Previously we have

introduced C&F as an efficient approach to reduce the backhaul load. In Chapter 3, we

have studied the coefficient selection algorithms for a single AP. In this Chapter, we will

investigate the performance of both C&F and integer forcing in a distributed massive

MIMO model from the following aspects.

• Coefficient selection for large scale systems.

• Different deployment of C&F: distributed and partially distributed.

• The effect of realistic fading parameters on C&F, such as pathloss, shadowing etc.

• The comparison of C&F to other MU-MIMO detection strategies.

The research into C&F so far mainly focusses on two scenarios: general MAC models

and small scale MU-MIMO systems. The former corresponds to the local selection, and

the corresponding low-complexity algorithms for large L have been studied in the last

Chapter. For the latter scenario, the original paper of C&F [28] studied a 2 × 2 case,

and evaluated the probability of rank-deficiency. Recall that the standard C&F considers

L = M , hence each AP usually needs to forward a set of candidates for am to reduce the

probability of such rank-defciency [60]. For the case of L < M , a greedy algortihm [49]

and a game-theory based algorithm [70] can be applied to the AP selection to maximise

the system throughput, however, both [49] and [70] consider a small number of users

and single antenna APs. For the case of multiple-antenna APs, integer-forcing can be

applied to each AP, and forwards multiple linearly combined data streams (although IF is
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originally proposed as a centralised scheme). For simplicity, both C&F and IF are referred

to as lattice network coding (LNC).

The coefficent selection for lattice network coding greatly depends on the channel state

itself, and i.i.d Gaussian and Rayleigh distributed variables are usually utilised as the

baseline channel model. Beyond the baseline model, [49] employs a Bernoulli distributed

variable to simulate the effect of shadow fading. However, more comprehensive realistic

factors, such as the free space pathloss and the shadowing correlation are not considered

in [49].

It has been proved that with sufficiently high bandwidth backhaul, the area spectrum

efficiency increases as the distribution factor increases [65, 66]. However, very little lit-

erature focusses on the restricted bandwidth backhaul scenario, particularly for a large

number of users. In this case, the system throughput is dominated by the interference

rather than the thermal noise, and whether the minimum cardinality strategy C&F is still

able to effectively cancel the interference is unknown.

Since the primary advantage of distributed massive MIMO is to provide uniformly

good service for all users, we focus on the symmetric scenario where all users transmit

with a common rate. The main contributions of this Chapter are as follows:

• Exploiting the properties of pathloss, we propose a novel coefficient selection algo-

rithm to reduce the complexity for both C&F and IF.

• We propose a greedy algorithm to select the globally optimal integer coefficients.

• We study the performance of LNC in distributed massive MIMO systems from three

perspectives: 1) the probability of rank deficiency. 2) the outage probability for a

given rate. 3) the achievable throughput.

• We provide a comprehensive comparison between LNC, small cells, MRC and cen-

tralised MMSE. We show that LNC achieves better performance than small cells

and MRC, and outperforms the centralised MMSE for some applications. Their

respective complexities and required backhaul are also discussed.

The chapter is organised as follows. We introduce the wrap-around distributed model
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and the benchmarks in Section 4.2. Then we propose low complexity algorithms for

selecting both locally and globally optimal coefficients in Section 4.3. Numerical results

and discussions are given in Section 4.4. We conclude the chapter in Section 4.5.

4.2 Preliminaries

4.2.1 System Model

We consider an uplink distributed massive MIMO scheme which comprises access links

and backhaul links. There are M APs and L (M > L) users randomly deployed in a large

square with size Dkm × Dkm, and all devices share the same time-frequency resource.

We make two changes to the original cell free model [5,19]: 1) Each AP is equipped with

Nr ≥ 1 antennas. 2) Limited backhaul links are utilised.

AP 1
1 2 3

4 5 6

7 8 9

AP 2

AP 3

user 1

user 2

effective

actual

D

Figure 4.1: System model of distributed massive MIMO with wrap around topology

We consider a wrap-around topology [5,19,71] to avoid the boundary effect. As shown

in Figure 4.1, there exists an actual cell in the middle and some mirror cells surrounding

it. The mirror cells have exactly the same topology as the actual cell. It can be observed

that the cell edge user 1 is far away from AP 1 in the actual cell. However, there exists an

effective AP 1 in cell 9 which is much nearer to user 1, and hence the effective distance is
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significantly reduced (as denoted by the solid and dashed arrows). Letting the location of

actual AP m be the origin point, the set of equivalent APs can be represented as a lattice

generated by Λ = D(a+ bi), where a, b ∈ Z. Thus, the effective distance between AP m

and user l can be simply determined by

Loc(userl)−D ×QZ[i]

(Loc(userl)− Loc(APm)

D

)
, (4.1)

where Loc(·) denotes the corresponding location in the actual cell. Similarly, we obtain

the effective AP 2 and 3 in cell 8 and 6 respectively. Such wrap-around model enables

the effective serving area of user l can be regarded as a D width square with user l in the

centre (marked by the red dashed square), and hence the boundary effect is eliminated.

We still use xl ∈ Cn×1 and X = [x1, · · · ,xL]T to denote the codewords and signal

matrix respectively, with E[‖xl‖]2 ≤ nP . The channel vector gm,l ∈ CNr×1 between the

mth AP and the lth user is expressed as

gm,l = β
1/2
m,lhm,l, (4.2)

where βm,l and hm,l denote the large scale fading and the small scale fading respectively.

Each component in hm,l is i.i.d Rayleigh distributed with unit variance. βm,l is a scalar

for a given AP-user pair regardless of the number of antennas, and expressed as

β = PLm,lSHm,l, (4.3)

where PLm,l and SHm,l respectively denote the pathloss and shadow fading, and the cal-

culation of both parameters will be described in section 4.4. We assume the local channel

matrix Gm = [gm,1, · · · ,gm,L] is perfectly known at each AP m. The received signal of

the mth AP can be expressed as

Ym = GmXT + Zm, Ym ∈ CNr×n, (4.4)

where each noise component in Zm ∈ CNr×n has variance σ2, and SNR = P/σ2.

As previously mentioned, we consider two applications of LNC in this Chapter: C&F

in fully distributed models and IF in partial distributed models. To be fair, we assume the
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same total number of AP antennas for different deployments, denoted as Nr,total. For both

cases, each AP selects the locally optimal F integer vectors am according to

am,opt = argmax
am∈AL×1\{0}

Rm,LNC(Gm, am)

= argmax
am∈AL×1\{0}

log+
( 1

aHMa

)
,

(4.5)

where

M = IL − SNRGH
m(INr + SNRGmGH

m)−1Gm. (4.6)

The locally selected coefficients Am = [am,1, · · · , am,F ]T ∈ AF×L are then forwarded to

the hub, and the hub performs global optimisation to select L from the MF vectors.

4.2.2 Benchmarks

In this section, we introduce some existing strategies as benchmarks. To make a compre-

hensive comparison, our benchmarks include both finite and infinite backhaul techniques,

as well as the centralised strategies.

Centralised Massive MIMO with MMSE Equalisation

In the collocated scenario, the global channel matrix GNr×L is available at the AP. It

is well studied that zero-forcing and MMSE both achieve near-optimal performance in

massive MIMO. We consider the MMSE equaliser BL×Nr
MMSE as a benchmark, expressed as

BMMSE =
SNRGH

INr + SNRGGH
. (4.7)

According to the equalised signal matrix Ŷ = BY, the achievable rate for user l can be

expressed as

Rl,MMSE = log
(

1 +
SNR|bTl gl|2

SNR
∑

l′ 6=l |bTl gl′|2 + ‖bl‖2

)
, (4.8)

where bTl and gl denote the lth row in BMMSE and lth column in G respectively. Since we

focus on the symmetric scenario where all users transmit with a common rate, the system
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throughput per user is determined by the worst user, denoted as

RMMSE = min
l=1,··· ,L

Rl,MMSE. (4.9)

Small Cells

As for C&F, the small cell scheme is also a minimum backhaul strategy. We consider the

baseline non-cooperative small cell scheme in which each user is decoded and forwarded

by one AP only. The corresponding AP for the lth user is selected based on the strength

of the channel vector gm,l

argmax
available m

‖gm,l‖2. (4.10)

We assume AP selection is performed user by user with random priorities. To minimise

latency, an AP is selected by at most Nr users. If an AP has been chosen by Nr users, this

AP becomes unavailable. For the case of Nr = 1, users are served by APs in a one-to-one

manner. Let ml denote the index of the AP allocated to the lth user, then its achievable

rate can be expressed as

Rl,SC = log
(

1 +
SNR|gml,l|2

1 + SNR
∑
l′ 6=l

|gml,l′ |2
)
, Nr = 1. (4.11)

For the case of Nr > 1, each AP might be selected by more than one users. We assume

MMSE equalisation and parallel decoding are performed at each AP. Given the local

channel matrix Gml , the achievable rate of user l is expressed as

Rl,SC = log
(

1 +
SNR‖bTml,lgml,l‖2

SNR
∑

l′ 6=l ‖bTml,lgml,l′‖2 + ‖bml,l‖2

)
, Nr > 1, (4.12)

where bTml,l denotes the lth row in Bml,MMSE =
SNRGH

ml

INr+SNRGml
GH
ml

. Again, the achievable

rate per user is determined by the worst user, denoted as

RSC = min
l=1,··· ,L

Rl,SC. (4.13)

Note that in some works in the literature, the AP selection is based on large scale fading.

However, the coefficient selection in C&F is performed during the coherence time of small
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scale fading, hence we assume the AP allocation in the small cell system is also performed

during the small scale fading coherence time, in order to provide a fair comparison.

Maximum Ratio Combining (MRC)

In the original paper of cell free massive MIMO [5,19], the received signal at the mth AP

is multiplied by the conjugate transpose of the local channel matrix Gm; then the precise

signal matrix of Ym,MRC = GH
mYm is forwarded to the hub via infinite backhaul. The

hub combines the equalised signals from all APs, denoted as

YMRC =
∑
m

GH
mYm = GHY, (4.14)

where G ∈ CMNr×L = [GT
1 , · · · ,GT

M ]T denotes the global channel matrix. Let gl denote

the lth column of G, then the achievable rate of the lth user can be expressed as

Rl,MRC = log
(

1 +
SNR|gHl gl|2

‖gHl ‖2 + SNR
∑

l′ 6=l |gHl gl′ |2
)
, (4.15)

and the system rate per user is

RMRC = min
l=1,··· ,L

Rl,MRC. (4.16)

4.3 Lattice Network Coding in Distributed Massive

MIMO

In this section, we propose low complexity algorithms for selecting both locally and glob-

ally optimal coefficients, and then provide a qualitative comparison with the benchmarks.
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4.3.1 Local Selection

Previously we have stated that the computation rate in C&F can be expressed as a function

of the scaling factor α. It can be easily proved that the statement still holds for the IF

scenario (Nr > 1). For a given scaling vector bm, the optimal integer vector a can also be

expressed as QA(bTmGm), and hence the optimisation problem in (4.5) is equivalent to

bm,opt = argmax
bm∈CNt×1

R(Gm,bm)

= argmax
bm∈CNr×1

log+
( P

‖bm‖2σ2 + ‖GT
mbm −QA(GT

mbm)‖2P

)
.

(4.17)

Note that the quantisation is applied to each component of GT
mbm, denoted as am,l =

QA(gTm,lbm).

The local selection described in (4.5) and (4.17) are based on a MAC with L users.

Now we propose a simple algorithm to reduce the network size. Similar to C&F, we can

easily obtain a bound for the scaling vector bm from (4.17), denoted as

‖bm,opt‖ <
√
P/σ2 =

√
SNR. (4.18)

For the users which are located far away from the mth AP, particularly the strength of

their corresponding channel vectors ‖gm,l‖ ≤ 1
2
√

SNR
, we have

‖gTm,lbm‖ < ‖gm‖
√

SNR ≤ 1

2
, (4.19)

which means that the corresponding am,l = QA(gTm,lbm) for these users are definitely

zero, no matter what bm is selected. Therefore, these users are not able to contribute to the

linear equations of the mth AP, can be regarded as trivial users. Hence the L-dimensional

MAC is reduced to Leff,m-dimensions, expressed as

Leff,m = |Φm|, Φm = {gm,l : ‖gm,l‖ >
1

2
√

SNR
}, (4.20)

where Leff,m denotes the number of effective users, and Φm denotes the set of effective

channel vectors.
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C&F in Reduced Network

The trivial users can be simply treated as interference, which adds to the thermal noise. In

C&F, the channel vector gm,l is actually a scalar gm,l, which results in the effective SNR

is

SNReff,m =
P

σ2 + P
∑

gm,l /∈Φm
|gm,l|2

, (4.21)

with the updated SNR, we repeat the operation in (4.20) to further reduce the elements in

Φ until convergence. Then, the complex-exhaustive-II algorithm can be directly applied

to the finally reduced network.

IF in Reduced Network

Although the complex-exhaustive-II and the L-L algorithms can be extended to IF, the

complexity for both methods increases exponentially with Nr. Thus, we apply the sub-

optimal complex-LLL algorithm to the size reduced network for IF. Let Geff,m ∈ CNr×Leff

denote the effective channel which comprises gm,l ∈ Φm, and Gtri,m ∈ CNr×(L−Leff) as

the trivial components. Let aeff,m ∈ ALeff×1 denote the integer vector of the reduced

network. Hence, the σ2
eff,m term in (4.17) can be rewritten as

σ2
eff,m = ‖bm‖2σ2 + P‖GT

mbm − am‖2

= σ2bHmbm + P‖GT
eff,mbm − aeff,m‖2 + P‖Gtri,mbm‖2

= σ2bHmbm + P (bHmGeff,mGH
eff,mbm − 2bTmGeff,maeff,m + aHeff,maeff,m + bHmGtri,mGH

tri,mbm)

= bHm
(
σ2INr + P (Geff,mGH

eff,m + Gtri,mGH
tri,m)

)
bm − 2PbTmGeff,maeff,m + PaHeff,maeff,m

= bHm(σ2INr + PGmGH
m)bm − 2PbTmGeff,maeff,m + PaHeff,maeff,m.

(4.22)

The 1st order derivative of σ2
eff,m with respect to bm is

dσ2
eff,m

dbm
= 2(σ2INr + PGmGH

m)bm − 2PGeff,maeff,m, (4.23)

hence the MMSE solution of bm for given aeff,m is

bTopt,m(aeff,m) =
SNRaeff,mGH

eff,m

INr + SNRGmGH
m

. (4.24)

2017



CHAPTER 4. LATTICE NETWORK CODING IN DISTRIBUTED MASSIVE MIMO: GOOD

PERFORMANCE WITH MINIMUM BACKHAUL LOAD 85

We combine (4.22) and (4.24) to obtain

σ2
opt,m = SNRaHeff,m

(
ILeff,m

− SNRGH
eff,m(INr + SNRGmGH

m)−1Geff,m

)
aeff,m. (4.25)

Hence, the optimisation in (4.5) can be rewritten as

aeff,m,opt = argmax
aeff,m∈ALeff×1

log+
( P

σ2
eff,m

)
= argmax

aeff,m∈ALeff×1

log+
( 1

aHeff,mMeff,maeff,m

)
,

(4.26)

where Meff,m = ILeff,m
−SNRGH

eff,m(INr +SNRGmGH
m)−1Geff,m is an Leff,m dimensional

square matrix which is positive definite for any finite SNR, and hence it has a unique

Cholesky decomposition Meff,m = Leff,mLH
eff,m. We employ the CLLL algorithm to find

F locally optimal aeff,m,f which minimise ‖LH
eff,maeff,m‖, then the corresponding am,f can

be acquired immediately by zero-padding the L − Leff trivial components. Clearly, the

size-reduced network enables the lattice reduction to be performed with a lower dimen-

sional basis, which reduces the complexity. The procedure of the local selection with the

size-reduced network is outlined in Algorithm 5.

Algorithm 5 Local Selection with Size-Reduced Network
Input: local channel vector Gm, SNR
Output: F optimal integer vectors am,f

Compute and Forward with Nr = 1:
1: Φm = {gm,1, gm,2, · · · , gm,L}, Leff = L, SNReff = SNR, ∆Φm = Φm

2: while ∆Φm 6= ∅ do
3: ∆Φm = {gm,l : gm,l ∈ Φm and |gm,l| ≤ 1

2
√

SNReff
}

4: Φm = Φm \∆Φm

5: SNReff,m =
SNR

1 + SNR
∑

gm,l /∈Φm
|gm,l|2

6: end while
7: Based on the effective channel gm ∈ CLeff with gm,l ∈ Φm, and the effective SNReff ,

employ complex-exhaustive-II algorithm to obtain am,f .
Integer Forcing with Nr > 1:

8: Φm = {gm,l : ‖gm,l‖ > 1
2
√

SNR
}, Leff,m = |Φm|.

9: Based on the effective channel Geff,m ∈ CNr×L, employ CLLL to obtain aeff,m,f

according to equation (4.26).
10: am,f = aeff,m,f ∪ {0}L−Leff
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4.3.2 Global Selection

Each AP forwards the locally selected coefficients Am = {am,f} and their corresponding

R(am,f ) to the hub, and hence the hub has an integer matrix A = [AT
1 , · · · ,AT

M ]T .

Let J = MF denote the total number of equations in A. We sort these J equations in

descending order according to their corresponding computation ratesRLNC(am,f ), which

results in an equivalent J × L matrix Â = {âj}, where âTj denotes the jth row in Â.

Let mj denote the index of the source AP of âj , which means the candidate vector âj is

forwarded by the mj th AP, denoted as aj ∈ Amj .

The hub intends to select an L × L submatrix Âsub which is formed by taking rows

of Â with indices in S ⊂ {1, 2, · · · , J}, with |S| = L. Let Ωm = {âj : mj = m, j ∈
S} denote the globally selected equations from Am, and Fm = |Ωm| be the number of

equations in Ωm. Clearly, Fm ≤ F for all m and
∑
Fm = L. Note that Ωm is also the

candidate set to be fed back to the mth AP. The values of Fm do not have to be the same

for all m, which means that some APs are ‘passive’ during the backhaul transmission if

Ωm = ∅. As previously mentioned, the globally optimal sub-matrix Âsub,opt has to be

full rank, and the computation rate of the worst row (worst equation) in Âsub should be

maximised. This max-min optimisation problem is formally expressed as

maximise
Âsub,opt

min
j∈S
RLNC(âj) (4.27)

subject to Rank(Âsub) = |S| = L (4.28)

Fm ≤ Nr, ∀m. (4.29)

Rigorously, the rank constraint in (4.28) should be Rank(Q) = L, where Q =

Âsub mod π. However, the assessment of Q relies on a specific finite field A/πA. Hence

the integer matrix over A is commonly used instead of Q for the performance evaluation

in a general case. The constraint (4.29) is due to the fact that the maximum number of data

streams that can be simultaneously transmitted via the backhaul is limited byNr (although

each AP is able to decode more than Nr streams). When Fm > Nr, the Fm decoded linear

combinations D(âTj X), âj ∈ Ωm require more than 1 time slot to be transmitted, which

results in unnecessary latency.
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We propose a simple greedy algorithm to solve the problem above, and the optimality

of Âsub,opt is ensured. Since the equations in Â are sorted in descending order, we set the

first row (highest rate equation) âT1 as the initial Âsub,opt, and then add âTj to Âsub,opt one

by one. For each âTj , if its presence increases the rank of the current Âsub,opt, then we

keep it and save it to Ωm with m = mj , otherwise, we discard it. Note that when |Ωm| is
already equal to Nr, the remaining âj ∈ Am would be directly skipped. The procedure

terminates when Âsub,opt meets the rank requirement. Alternatively, we can set Â as the

initial Âsub,opt, and check âj one by one from the bottom row. For each âj , if its absence

would not change the rank, then it can be discarded.

Both the approaches above end up with the same solution, and the same criterion is

applied to both methods: whether a row is useful or not depends on whether it can replaced

by higher rate equations. The only difference between them is that the former intends

to keep L necessary rows while the latter discards MF − L unnecessary rows. Since

MF >> L in massive MIMO, we employ the former one, which has lower complexity.

The greedy algorithm for the global selection is outlined in Algorithm 6.

Algorithm 6 Greedy Algorithm for Global Selection

Input: J × L integer matrix A, computation rateRLNC(am,f ) ∀m, f
Output: selected equations to be fed back to APs: Ωm, ∀m

Initialisation : Ωm = ∅ ∀m, Fm = 0 ∀m, j = 1.
1: Sort the equations in A in descending order to acquire Â with respect to their corre-

spondingRLNC(am,f ).
2: Âsub,opt = âj , m = mj .
3: Ωm = Ωm ∪ âj and Fm = Fm + 1
4: j = 2
5: while Rank(Âsub,opt) < L and j ≤ J do
6: m = mj

7: if Fm = Nr then
8: break if loop and go to line 14.
9: else if Rank

(
[Âsub,opt; âj]

)
= Rank(Âsub,opt) then

10: break if loop and go to line 14.
11: else
12: Âsub,opt = [Âsub,opt; âj]; Ωm = Ωm ∪ âj; Fm = Fm + 1
13: end if
14: j = j + 1
15: end while
16: Return Âsub,opt and Ωm, ∀m

Note that there are two applications of the algorithm above:
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• For closed loop systems, the globally selected coefficients are fed back to the APs

at the beginning of each coherence time. Let R0 denote the common rate for the

access links, hence the total backhaul load is LR0 in this case.

• For open loop systems (feedback unavailable), each AP alternately transmits all F

decoded data streams to the hub, and then the hub performs the greedy algorithm

to select L equations for message recovery. The total backhaul load is JR0 in this

case.

Since the system throughput is determined only by which equations are selected, the two

applications above have the same performance if F ≤ Nr. The former minimises the

latency, while the latter minimises backhaul.

4.3.3 Qualitative Analysis

In this section, we compare LNC to the benchmarks from three aspects: backhaul load,

complexity and the system throughput.

Backhaul

Clearly, this is the primary advantage of lattice network coding compared to any other

linear processing schemes. Both small cells and LNC employ LR0 bits per channel use

for the backhaul transmissions, which is the theoretically minimum backhaul required to

achieve lossless transmission in a distributed system. Note that the extra bits needed to

convey the integer coefficients A and Ωm are negligible.

Complexity

Compared to the benchmark schemes, the extra complexity of lattice network coding

arises from the coefficient selection. In a quasi-static case, this additional complexity is
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negligible compared to channel coding and decoding. The number of decoders required

is equal to the number of intended data streams, which is L for all schemes.

Throughput

In small cells, each user is served by a unique AP (a unique equation more precisely). In

LNC, each equation provided by one AP might involve one or more users, and each user

might take part in multiple equations from many APs. Hence we conclude that small cell

transmission is a special case of LNC in which only one user is involved in each equation,

and we therefore expect LNC to achieve higher throughput than small cells.

MRC enables each user to be served by all APs. Unlike the collocated massive MIMO,

the channel strength for a specific user varies at different APs. MRC eliminates inter-user

interference only asymptotically, as the ratio of antennas to users tends to infinity. In

contrast, provided a full rank matrix is formed, LNC allows all users to be recovered,

analogously to zero-forcing, but without noise enhancement. Hence LNC may also out-

perform MRC.

4.4 Numerical Results and Discussions

In this section, we provide numerical results of LNC performance on distributed massive

MIMO systems, and compare it with the benchmarks.

4.4.1 Simulation Setup

We adopt the parameter settings in [5, 19] as the basis to establish our simulation model.

The pathloss PLm,l(dm,l) ∝ d−γm,l is a continuous function of dm,l (in km), where dm,l

denotes the effective distance calculated by (4.1). The exponent γ is a ‘three-slope’ vari-

able which relies on dm,l. It is equal to 0, 2 and 3.5, for dml ≤ d0, d0 < dml ≤ d1 and

d1 < dm,l respectively. The Hata-COST231 model [72] is employed to characterise the
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propagation, hence PLm,l are given by [5]

PLm,l(dm,l > d1) = PLm,l(1)− 35 log10 dm,l

PLm,l(d0 < dm,l ≤ d1) = PLm,l(1)− 35 log10 d1 − 20 log10(
dm,l
d1

),
(4.30)

where d0 = 0.01km and d1 = 0.05km, and PLm,l(1) denotes the 1km pathloss which is

given by [72]

PLm,l(1) = −46.3−33.9 log10 fc+13.82 log10 hAP+(1.1 log10 fc−0.7)hu−(1.56 log10 fc−0.8).

(4.31)

where fc, hAP, and hu denote the carrier frequency, the height of APs and the height of

users respectively.

We consider the shadow fading for both uncorrelated and correlated cases. The uncor-

related shadowing is denoted as

Sm,l = 10
σshcm,l

10 , (4.32)

where the standard deviation σsh is set to 8dB [5], and cm,l ∼ N (0, 1). For the correlated

case, cm,l is denoted as [73]

cm,l =
√

0.5cm +
√

0.5cl (4.33)

where cm ∼ N (0, 1) and cl ∼ N (0, 1) denote the shadowing caused by the obstacles

in the vicinity of the mth AP and the lth user respectively. {cm} and {cl} are generated

according to their covariance functions, denoted as

E{cmcm′} = 2−
dm,m′

0.1 , E{clcl′} = 2−
dl,l′
0.1 , (4.34)

where dm,m′ (in km) denotes the effective distance of the mth and m′th APs, and dl,l′

(in km) denotes the effective distance of the lth and l′th users. Clearly, the correlation

increases monotonically as the distance decreases. For the extreme case, the same geo-

graphical locations result in the same shadowing.

In all examples, we assume i.i.d small scale fading with hml ∼ CN (0, 1), and equal
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power allocation for all users. To maintain the comparability to the original work of cell-

free massive MIMO, we choose the following parameters as same as in [5]. The carrier

frequency fc = 1900MHz. The height of APs and user are hAP = 15m and hu = 1.65m

respectively. The system bandwidth is 20MHz, and the transmit power and the thermal

noise density are 200mW and -174dBm/Hz respectively.

4.4.2 Complexity Reduction of the Local Selection
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Figure 4.2: Average proportion of the trivial users E[Ltri

L
]: L = 40, Nr,total = 100

Algorithm 5 in section 4.3.1 enables Ltri trivial users to be selected which do not par-

ticipate in the selection procedure. Thus, the proportion of such trivial users, denoted as
Ltri

L
, can be used to measure the complexity reduction compared to the original network.

We consider 3 cases corresponding to Nr = 1, 5 and 10. The total number of AP antennas

is 100 for all cases, and the average results are obtained over 2000 channel realisations.

As shown in Figure 4.2, E[Ltri

L
] increases monotonically as the cell width D increases:

this is simply due to the larger pathloss for the bigger cell. Recall that the criterion for

trivial users is ‖gm,l‖ ≤ 1
2
√

SNR
. Since ‖gm,l‖ is expected to increase with Nr, hence

E[Ltri

L
] decreases monotonically as Nr increases. Compared to the uncorrelated case, the

correlated shadowing means that the component cm in (4.33) is the same for all Nr an-

tennas, which effectively reduces the ‘receiver-diversity’. Thus, the correlation increases
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the probability of ‖gm,l‖ ≤ 1
2
√

SNR
, as illustrated in Figure 4.2. Note that L = 40 is con-

sidered in all cases, but the same results can be acquired by applying different L, since

the density of users only affect the absolute number of Ltri rather than the proportion. It

can be observed that Algorithm 5 achieves considerable complexity reduction, especially

for the fully distributed scenario, and this reduction is caused by considering the range of

scaling factor |α| rather than the integer element |al|.

4.4.3 C&F in Fully Distributed Massive MIMI Model

Complexity-Performance Tradeoff of the Global Selection
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Figure 4.3: Throughput-F tradeoff of C&F: M = 100, L = 40, Nr = 1, D = 1km

The rank-deficient probability of the globally selected matrix Âsub,opt greatly depends

on the number of locally forwarded candidates F . Figure 4.3 demonstrates the cumula-

tive distribution of the system throughput per user which is the computation rate of the

worst equation in Âsub,opt. Again, the results are obtained over 2000 channel trials. The

zero-rate channel trials mainly correspond to the cases that the hub is not able to select a

full rank matrix from the MF candidates. As expected, this rank-deficiency probability

2017



CHAPTER 4. LATTICE NETWORK CODING IN DISTRIBUTED MASSIVE MIMO: GOOD

PERFORMANCE WITH MINIMUM BACKHAUL LOAD 93

decreases monotonically as F increases, however the selection complexity also increases.

We can also observe that the curves of F = 5&10 in the uncorrelated scenario are in-

distinguishable, which means that if F is sufficiently large to make Âsub,opt full rank,

the additional gain by further increasing F is negligible. As previously mentioned, the

correlation effectively decreases the ‘receiver-diversity’, and hence the rank-deficiency

problem is more serious for the correlated case. The choice of F depends on the system

preference. We focus on the performance preferred systems which employ relatively large

F to ensure Rank(Âsub,opt) = L.
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Figure 4.4: CDF of Rank(Âsub,opt): F = 1, Nr = 1, D = 1km, uncorrelated

In this section, we briefly investigate the performance of the complexity preferred sys-

tems which employ relatively smaller F , especially F = 1. It can be seen from Figure

4.3 that the probability of rank-deficiency is quite large for small F . Fortunately, rank-

deficiency does not imply that none of the L users is decodable, and the number of de-

codable users is actually determined by Rank(Âsub,opt). Figure 4.4 shows the cumulative

distribution of Rank(Âsub,opt) with F = 1 over 200 channel realisations. For the tradi-

tional MU-MIMO scenario withM = L = 40 (solid thin line), there are 100% of channel

trails end up with rank-deficiency (Rank(Âsub,opt) < 40), and this proportion is still as
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high as 77.5% for the distributed massive MIMO with M = 100 (dashed line). However,

the minimum number of guaranteed decodable user is significantly increased from 21 to

35. This implies that many more users can be recovered from Âsub,opt regardless of the

high probability of rank-deficiency. Therefore, if we allow a small group of users to be

passive for each transmission, C&F is still able to provide considerable performance even

with F = 1.
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Figure 4.5: CDF of achievable rate for given ρoutage, L = 40, M = 200, Nr = 1,
D = 1km, F = 1

Let R0 and Rl respectively denote the common transmission rate and the individual

achievable rate, and Noutage be the number of users in outage (or passive users) during

each transmission. We define the outage probability to be the expected value ofNoutage/L,

denoted as

ρoutage(R0) , Proutage(R < R0) = E[
Noutage

L
], (4.35)

and hence the achievable rate for a given target outage probability can be expressed as

Routage(ρ) , sup{R : ρoutage(R) ≤ ρ}, (4.36)

where sup stands for ‘supremum’. In this case, the rank constraint is relaxed to

Rank(Âsub,opt) ≥ L(1− ρoutage). For example, if we allow an outage probability 5%

with L = 40, then we only need to schedule 40×0.95 = 38 users and APs for each trans-
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mission. The achievable rate for these active users is determined by the computation rate

of the 38th best equation in Âsub,opt. Again, we treat the equations corresponding to insuf-

ficient rank as zero rate equations. Figure 4.5 illustrates the achievable rate Routage(ρ) for

different ρoutage. As expected, the probability of rank-deficiency is significantly reduced

with the relaxed condition. The achievable symmetrical rate can be greatly improved by

dropping a small proportion of users in each transmission for both correlated and uncor-

related scenarios.

Performance Comparison with Benchmarks
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Figure 4.6: Rate comparison for an example channel realisation: L = 40, M = 100,
Nr = 1, D = 1km, F = 5, uncorrelated

As previously mentioned, we focus on the performance preferred systems. Thus, we

consider the target outage probability ρoutage = 0 for the rest of this Chapter. We now

compare the performance of C&F, MRC and small cells. Figure 4.6 illustrates their

achievable rates under an example channel realisation. The black circles calculated by

(4.15) and red squares calculated by (4.11) represent the individual rates of 40 users for

MRC and small cells respectively. The blue crosses denote the corresponding computa-

tion rates of equations in Âsub,opt (if rank(Âsub.opt) < 40, use zero to denote the remain-

ing 40 − rank(Âsub.opt) computation rates). All rates are sorted in ascending order, and
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the y-axis denotes the index of users (or equations for C&F).

We can see that for both C&F and small cell schemes, the corresponding rates of the

top 4 users (or equations) are exactly the same (shown in the right top corner of Figure

4.6). This is due to the fact that when a user is located very close to a specific AP, the

equation provided by that AP is very likely to contain that user only, hence the C&F is

equivalent to small cells. For other APs, C&F provides higher rate equations compared

to the ‘single user access’ in a small cell. Thus small-cell is a special case of C&F as

discussed in section 4.3.3. It is also observed that C&F gives the best performance for

‘cell edge’ users (or lower rate users), and C&F achieves the highest symmetrical rate

(labelled in Figure 4.6) among these schemes.

Figure 4.7 shows the cumulative distributions of their corresponding achievable rates.

Again, their achievable rates are determined by the worst user/equation, respectively given

in (4.11), (4.16), and (4.27). We can see that with sufficiently large F , C&F provides

better performance compared to the benchmarks. For both uncorrelated and correlated

cases, the throughput of C&F is roughly 4 and 8 times better than MRC and small cells

respectively. Again, a relatively larger F is required for the correlated shadowing case to

meet the rank requirement.

4.4.4 IF in Partially Distributed Massive MIMO Model

In this section, we investigate the performance of IF in partially distributed systems. We

set F ≥ Nr to fully utilise the antenna elements at each AP. Figure 4.8 and 4.9 illustrate

the rate comparisons in the cases of Nr = 5 and Nr = 10 respectively. For all strategies,

the achievable rate depends on both SNR and SIR (signal to interference ratio). Since a

common Nr,total is employed, hence a larger Nr will lead to sparser APs. That means the

SNR at each AP antenna decreases as Nr increases for all schemes. The SIR in MRC

depends on the correlation between users, and such correlation depends on the distance

between users which is invariant with Nr. Thus, the larger the Nr employed, the worse

performance MRC will achieve. By contrast, the SIR in both SC and IF correspond to the

non-integer error ‖GT
mbm−am‖2. Theoretically, such mismatch between bTmGm and am

can always be reduced by scaling up the size of the equaliser bm. Thus, with sufficiently

2017



CHAPTER 4. LATTICE NETWORK CODING IN DISTRIBUTED MASSIVE MIMO: GOOD

PERFORMANCE WITH MINIMUM BACKHAUL LOAD 97

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Achievable rate per user: bits/s/Hz

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

 

 

SC, uncorr

MRC, uncorr

C&F, F = 2,
uncorr

SC, corr

MRC, corr

C&F, F = 2, corr

C&F, F = 5, corr
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large Nr, SC outperforms MRC in both correlated and uncorrelated cases, and the gap

increases with Nr, as shown in Figure 4.8 and 4.9.

Since the total number of candidate equations MF is the same in Figure 4.7 to 4.9,

the performance of IF is mainly determined by the locally selected equations. For each

AP, SC is equivalent to MMSE with the selected users. Recall that the gap between IF

and MMSE depends on the local channel matrix Gm, and this gap is particularly large for

the ill-conditioned Gm due to the inevitable noise enhancement of MMSE. As discussed

in section 2.3.1, the condition number of GH
mGm is expected to decrease as Nr increases.

Hence, the gap between IF and SC in Figure 4.9 is smaller than in 4.8. An extreme case

is that in centralised massive MIMO (M = 1, Nr � L), this gap is negligible and both

schemes approach the performance of joint ML decoding.
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Figure 4.10: Distributed vs centralised massive MIMO: L = 40, Nr,total = 200, D =
1km, correlated shadowing, 2000 channel trials

4.4.5 Distributed vs Centralised Massive MIMO

Now we take the collocated MMSE as the benchmark to provide the performance com-

parison over different sizes of coverage area. Again, we assume a common Nr,total to

make the comparison fair. Since the assumption of uncorrelated shadowing is not real-

istic for the fully centralised model, we consider the correlated case only in this section.

Figure 4.10 shows the rate comparison under a small-coverage region (D = 1km). Since

the performance in this case is dominated by the interference rather than noise, and cen-

tralised MMSE (dashed green curve) is the best for interference cancellation among these

schemes, it therefore attains the highest rate. We use solid curves to represent the per-

formance of LNC. As previously discussed, even with a single AP antenna, C&F (black

curve) is able to mitigate the interference caused by some ‘strong-signal’ users (by scaling

them to some non-zero integers). By slightly increasing Nr, the ability improvement of

interference cancellation is limited, while the received SNR is greatly degraded. Thus, the

corresponding performance of Nr = 1 is better than Nr = 2&5. By further increasing Nr,

LNC is able to deal with the interference caused by relatively weaker users. In this case,

the benefit from the interference cancellation is able to compensate the SNR degradation,
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which results in the performance of LNC increasing monotonically with Nr, and finally

ends with the fully centralised case.
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Figure 4.11: Distributed vs centralised massive MIMO: L = 40, Nr,total = 200, D =
4km, correlated shadowing, 2000 channel trials

Figure 4.11 illustrates the rate comparison over a relatively larger region (D = 4km).

In this case, the interference is not as dominant compared to SNR. The benefit of interfer-

ence cancellation from increasing Nr becomes negligible compared to the SNR degrada-

tion. Therefore, LNC outperforms the centralised MMSE, and the performance of LNC

monotonically increases as Nr decreases, and ends up with the fully distributed C&F.

For a large coverage region (D = 15km), the performance is dominated by the thermal

noise rather than the interference. Hence the centralised MMSE attains the lowest rate due

to the pathloss, as shown in Figure 4.12. Again, the performance of LNC monotonically

increases as Nr decreases. Unlike the previous two cases, the fully distributed MRC

here attains a slightly higher median rate than C&F. This is because the correlation is

negligible in such a sparse network and MRC is optimal for maximising the received

SNR. However, MRC requires infinite backhaul whereas C&F does not. This tradeoff

should be considered for the implementation issue. Additionally, it can be observed from

Figure 4.10∼4.12 that the gap between SC and C&F monotonically reduces as the level
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Figure 4.12: Distributed vs centralised massive MIMO: L = 40, Nr,total = 200, D =
15km, correlated shadowing, 2000 channel trials

of interference decreases.

4.4.6 Performance Comparison in One-Slope Pathloss Model

The results obtained so far are based on a three-slope pathloss model as described in

(4.30). To simplify the evaluation of the system behaviour, the pathloss is sometimes

measured as a one-slope model [71] where a unified exponent γ = 3.5 is employed

throughout the entire coverage area, expressed

PLm,l(dm,l) = PLm,l(1)− 35 log10 dm,l. (4.37)

The distinction between these two models is that for fixedM , L and relative positions, the

noise-to-interference ratio is invariant with different D in the one-slope model, while this

statement does not hold for a certain range of D in the three-slope model. In this section,

we will briefly investigate how this issue affects LNC and the benchmark strategies.
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Figure 4.13: Rate comparison in one slope model: L = 40, Nr,total = 200, D = 1km,
correlated shadowing, 2000 channel trials

Figure 4.13 applies the same parameters as in Figure 4.10 except the pathloss model.

It can be observed that for the LNC, SC and MMSE there is no distinct difference under

these two models, while there is a significant degradation for the MRC scheme in the one-

slope model. We can see from (4.30) and (4.37) that a unified γ = 3.5 will result in less

pathloss if and only if dm,l < 0.05km, which implies that the effect of this modification

is more significant on dense networks. Thus, we focus on the comparison in the fully

distributed case. Intuitively, the ‘good’ users which are very close to an AP will benefit

from the smaller pathloss. However, as the symmetrical rate is determined by the worst

user, the one-slope model might have a negative effect.

Let user l denote such a bad user which has no nearby APs, while there exists a user l′

which is very close to AP m. Since MRC combines the received signal from all APs, this

strong link gm,l′ will inevitably contribute to the interference to user l. In contrast, for SC

and LNC, this strong interference component can be avoided by selecting another AP m′

instead. Thus, the performance degradation for MRC is more significant while SC and

LNC are not sensitive to the change of pathloss model, as shown in Figure 4.14. Figure

4.15 provides the comparison withD = 15km: as expected, the curves for all schemes are
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Figure 4.14: 3-slope model vs 1-slope model in fully distributed systems: L = 40, M =
200, Nr = 1, D = 1km, correlated shadowing, 2000 channel trials

indistinguishable because the probability that dm,l < 0.05km is negligible in such sparse

networks.

4.5 Concluding Remarks

In this Chapter, we have applied the LNC scheme to the distributed massive MIMO sys-

tems to reduce the backhaul load, and analysed its benefits in such systems. Novel low

complexity local selection algorithms for both C&F and IF are proposed. Numerical re-

sults have shown that our proposed local selection algorithm significantly reduces the

number of effective users, particular for the fully distributed case with C&F. We have also

proposed a simple greedy method for the global selection, particularly for the IF case with

Nr > 1.

We have also given comprehensive comparisons between LNC with the benchmarks.

The LNC scheme has slightly higher complexity than the benchmarks, arising from se-
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Figure 4.15: 3-slope model vs 1-slope model in fully distributed systems: L = 40, M =
200, Nr = 1, D = 15km, correlated shadowing, 2000 channel trials

lecting the optimal integer vectors at the APs, and these processes also lead to some extra

latency. In terms of system throughput, numerical results have shown that LNC always

outperform small cells, and this gap increases as Nr decreases. In addition, the LNC

scheme outperforms centralised MMSE and distributed MRC for a wide range of appli-

cations.
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5.1 Introduction

Motivated by increasingly dense mobile user terminals, the next generation of wireless

network systems will require a very large number of access points within a certain area,

which might be compared with ‘massive MIMO’. In this Chapter, we still focus on the

distributed version of massive MIMO, since it allows APs to be located nearer to the users

while maintaining the benefits of employing large antenna arrays.

105
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In previous Chapters, we have introduced several promising techniques for future dis-

tributed massive MIMO systems, and these schemes can be roughly classified into two

types as follows:

• Quantise-and-Forward (Q&F) based schemes: each AP forwards a quantised ver-

sion of the received signal or a quantised version of the equalised signal to the

central hub, and then joint processing is performed at the hub. This type includes

MRC, Zero-forcing, MMSE, joint ML decoding, etc.

• Physical-layer Network Coding (PNC) based schemes: each relay decodes some

linear combinations of the source codewords, and then forwards the linearly com-

bined codewords to the hub for message recovery. As previously discussed, we

consider decode-and-forward as a special case of PNC. This type includes non-

cooperative small cells, C&F, integer forcing, etc.

Clearly, the Q&F based schemes will attain higher spectrum efficiency compared to the

centralised massive MIMO, but at the expense of very high backhaul load. The opti-

mal performance can be achieved by setting the quantisation precision of APs as high

as possible, which means that the received signals can be precisely forwarded to the hub

without loss of information [74]. This corresponds to ideal distributed massive MIMO or

ideal C-RAN [75]. In contrast, the PNC based schemes minimise the cardinality with a

relatively poorer performance. In Chapter 4, we have shown that the non-cooperative SC

usually attains lower rate compared to the centralised MMSE. Although C&F and IF have

stronger ability to mitigate the interference, however the system behaviour is still worse

than the centralised MMSE when the level of interference is very high. Therefore, it is

worthwhile to analyse the trade-off between the performance and the backhaul load. In

this Chapter, we will consider an intermediate case between these two types, which means

the backhaul load is between the theoretical minimum and infinite.

In practice there is an inevitable loss of information in distributed MIMO systems, aris-

ing from the quantisation and modulo operations which are required to restrict backhaul

load. Much work has been carried out to find the achievable rate region (inner bound)

of such systems [8, 26, 28, 76]. The authors in [77] proposed a ‘quantise-and-forward’

scheme with joint decoding. However, the rate region in [77] can be tightened by allow-
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ing adaptive quantisation rather than a fixed quantiser. Further more, the Gaussian input

assumed in [77] is not practical. Previously we have introduced C&F [28] as a promising

PNC scheme. Each relay employs lattice decoding which is in effect an adaptive lattice

quantiser followed by a modulo lattice operation which minimises the mean square error

of the effective noise. Most of related work on C&F so far (this also includes our work

in Chapter 3) focus on the achievable rate (inner bound) of one relay. The outer bound,

at least a tight outer bound of the overall system is still an open problem. It has been

shown in [28, 78] that the classic cut-set upper bound is not tight for C&F. The authors

in [76] [26] investigated the overall system performance of many PNC schemes (C&F,

binary matrix, etc), and the result in [26] has shown that all of these have significant gaps,

of at least 5 dB, compared to the ideal C-RAN. In this Chapter, our objective is to deter-

mine the inevitable gap of a backhaul capacity constrained system, at least for a specific

quantisation strategy, and hence to tighten the outer bound for such a system. This quan-

tisation strategy is a form of compress-and-forward relaying, but it can be regarded as

equivalent to a C&F scheme, albeit with only one-dimensional lattice quantisation and a

simple modulo operation. The main contributions of this Chapter are as follows:

• In this Chapter, we employ jointly optimised scaling factors to evaluate the outer

bound of a distributed MIMO system with uniform quantisation (equivalent to one

dimensional lattice quantisation) under different backhaul load constraints.

• We show that the gap between the standard PNC scheme and ideal distributed

MIMO can be significantly reduced by slightly increasing the cardinality of the

modulo operation at APs.

• For our proposed adaptive quantisation scheme with extended cardinality, we will

give brief guidance on optimising the scale factor of the adaptive quantiser based

on the global channel state.

The remainder of this Chapter is organised as follows. We introduce the system model

in Section 5.2. Then we provide the outer bound evaluation and implementation dis-

cussion in Section 5.3. Numerical results and discussions are given in 5.4. We finally

conclude the Chapter in Section 5.5.
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5.2 System Model and Preliminaries
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Figure 5.1: Sketch diagram of lattice network coding with extended cardinality.

The distributed model with a modified PNC scheme is illustrated in Figure 5.1. Again,

we assume L single antenna users are served by M single antenna APs simultaneously,

and the APs are connected via backhaul connections to a hub at which the signals are

integrated. We use wl to denote the original data of the lth user. The channel vector

corresponding to the mth AP is represented by hm = [hm1, hm2, · · · , hmL]T . Let H =

[h1,h2, · · · ,hL]T denote the global channel matrix. zm ∼ CN (0, σ2) is the complex

Gaussian noise added at the mth AP per channel use.

In this Chapter, we are interested in the outer bound calculated by the mutual infor-

mation for the uncoded scenario. All processes will be described from a one-dimensional

lattice perspective. For each user, the original data is modulated onto one of the coset

leaders of a quotient ring A/πA, where A denotes a principal ideal domain and π is a

prime number in A. Let xl ∈ A mod π denote the modulated symbol, and |π| be the car-

dinality of the finite ring. Note that the cardinality is |π2| when A is the complex integer

domain. Thus, the source rate Rs can be denoted either as log |π| bits per dimension or

log |π2| bits per complex dimension.

The received signal of the mth relay is expressed as:

ym = xThm + zm, ym ∈ C (5.1)

where x = [x1, x2, · · · , xL]T denotes the transmitted symbol vector. The received signal
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is scaled by the factor αm ∈ C and then quantised to the nearest integer in A, written as:

ȳm = QA(αmym), ȳm ∈ A (5.2)

We assume the global channel matrix H is known to the hub, and the scaling factors

{αm}, ∀m are jointly optimised by the hub, and then fed back to the corresponding APs.

In the quasi-static fading scenario, the extra load for sharing H and {αm} is negligible

compared to the data load.

Let V (Λ) denote the normalised volume of the fundamental region of Λ. Given αm,

the equivalent quantisation interval is V (A)/|αm| per dimension. From the average per-

spective, a fixed larger scaling factor will lead to a lower quantisation error. However, this

does not hold for every situation. For example, suppose a sequence of BPSK modulated

signals are transmitted through a point to point channel with h = 2
3
. It is clear that the

equivalent quantiser 2
3
Z (with α = 1.5) outperfoms the equivalent quantiser 0.5Z (with

α = 2).

The final step is to take modulo operation to the quantised signal, expressed as:

ŷm = ȳm mod π′, (5.3)

with |π′| ≥ |π|. The modulo operation aims to meet the backhaul constraint. When

the cardinality employed at each AP is smaller than the product of source cardinalities

(|π′| < |π|L), it can be regarded as an extended PNC scheme. Particularly when |π′| = |π|,
it is exactly the standard PNC. In section 5.5, we will see this modification (increased

cardinality) improves the outer bound significantly. We assume the same π′ is applied at

all APs, in order to ensure that the data recovery at the hub operates over a unified finite

ring.

Note that the inner bound of C&F we have studied in Chapters 3 and 4 assumes that

both candidate vectors a and scaling factors α are optimised independently at each AP.

The global selection in section 4.3.2 only decides which candidates should be selected

without actually changing the values. Thus, we consider these jointly optimised {αm}will

lead to an outer bound. We should also note that the joint optimisation here is different to

the centralised IF and MMSE. The quantisation and the modulo operation here are applied
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to the scaled signal at each individual antenna element αmym. Although the equaliser

matrix bIF and bMMSE are also jointly determined at the hub, the quantisation and the

modulo operation are applied to the combined signal from all the M antenna elements,

denoted as bTMMSEy with y ∈ CM×1. That means the equalisation vector bIF and bMMSE

are not applicable for the distributed scenario, due to the backhaul capacity constraint.

5.3 Outer Bound Evaluation

Let y = [y1, y2, · · · , yM ]T and ŷ = [ŷ1, ŷ2, · · · , ŷM ]T denote the input and output re-

spectively of APs, and ȳ = [ȳ1, ȳ2, · · · , ȳM ]T be the quantised signal vector. From the

expressions in section 5.2, we have:

ŷ = ȳ mod π′

= QA
(
B(Hx + z)

)
mod π′,

(5.4)

where z = [z1, z2, · · · , zM ]T , and B = diag([α1, α2, · · · , αM ]) denotes a diagonal matrix

based on the scaling factors. Again, the quantisation QA and the modulo operation mod

π′ are applied to each element in ȳ and ŷ respectively. Given the channel matrix H,

we address the outer bound Rob as the maximum mutual information between x and ŷ

corresponding to the optimal scaling vector, expressed as:

Rob(H, C) = argmax
B∈CM

I(x; ŷ), (5.5)

where C = log |π′| denotes the backhaul capacity in bits per dimension.

5.3.1 Outer Bound of Ideal Distributed MIMO

The outer bound corresponding to the case of infinite backhaul has been investigated in

many works. However since we allow adaptive quantisation at APs, it is still necessary to

prove that the bound in such a scenario is invariant to scaling.

Proposition 3. The optimal scaling factors of ideal distributed MIMO are αm =
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+∞, ∀m, and the corresponding outer bound is:

lim
C→∞

Rob(H, C) = I(x; y)

Proof. C → ∞ implies the cardinality employed at APs |π′| also tends to infinity, and

hence the modulo operation ȳ mod π′ has no effect on the quantised signal ȳ. In this case,

the scaling factor intends to minimise the quantisation error only. Since the quantisation

error ‖y − ȳ‖2 is upper bounded by
∑

m

(V (A)
2αm

)2, which decreases monotonically as

αm increases. Thus, by setting αm = +∞ for all APs, the optimal solution in (5.5)

corresponds to the mutual information between x and y, which is independent of the

scaling vector B.

The calculation of I(x; y) is given as follows:

Rob(H) = I(x; y) = H(x)−H(x|y)

= MRs −
∑
x

∫
y

p(x,y)log
( 1

p(x|y)

)
dy (5.6)

= MRs −
∫
y

p(y)
∑
x

p(x|y)log
( 1

p(x|y)

)
(5.7)

where the conditional probability p(x|y) is expressed as:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)∑
x p(y|x)

(5.8)

=
M∏
m=1

pN (ym|xThm, σ)∑
x pN (ym|xThm, σ)

(5.9)

The expression (5.8) comes from the equiprobability of the source symbols, and (5.9)

comes from the assumption that the corresponding channels of the M APs are indepen-

dent. The term pN (ym|xThm, σ) denotes the probability density function of a Gaussian

variable ym with mean xThm and standard deviation σ, expressed as:

pN (ym|xThm, σ) =
1

σ
√

2π
exp
(
− ‖ym − xThm‖2

2σ2

)
(5.10)

Due to the continuous nature of the Euclidean space y ∈ CM , there is no closed form of

(5.7). Monte Carlo integration is commonly used to evaluate such expressions.
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5.3.2 Outer Bound of Constrained Fronthaul

We are more interested in a system constrained by a finite fronthaul load C = log|π′| with

π′ 6=∞. The mutual information of x and ŷ is written as:

I(x; ŷ) = H(x)−H(x|ŷ)

= MRs −
∑
x

∑
ŷ

p(x, ŷ)log
( 1

p(x|ŷ)

)
(5.11)

= MRs −
∑
ŷ

p(ŷ)
∑
x

p(x|ŷ)log
( 1

p(x|ŷ)

)
(5.12)

with the conditional probability p(x|ŷ) expressed as:

p(x|ŷ) =
p(ŷ|x)p(x)

p(ŷ)
=

p(ŷ|x)∑
x p(ŷ|x)

(5.13)

=
M∏
m=1

p(ŷm|x)∑
x p(ŷm|x)

(5.14)

Recall that the integers are uniformly distributed over the Euclidean space for any PID.

For simplicity, we employ a cubic lattice to present the remaining derivation, since the

integral of the PDF of the Gaussian noise over a cubic region can be expressed using

some Q-functions, which is a ‘presentation-friendly’ approach. The calculation of non-

cubic lattices can also be presented in a similar manner. In addition, since a hypercube

lattice can be constructed by a Cartesian product of Z-lattices, and the key geometrical

parameters of a lattice are invariant to Cartesian product [79], it suffices to consider a

1-dimensional Z-lattice with real valued channels only. Let Λ′c denote the coarse lattice

π′Z. For given αm, the term p(ŷm|x) in (5.14) can be expressed as:

p(ŷm|x) =
∑
λ′c∈Λ′c

p(ȳm = ŷm + λ′c|x) (5.15)

=
∑
λ′c∈Λ′c

∫ ŷm+Λ′c+0.5

αm

ŷm+λ′c−0.5
αm

p(ym|x)dym (5.16)

=
∑
Z

∫ ŷm+π′Z+0.5
αm

ŷm+π′Z−0.5
αm

pN (ym|xThm, σ)dym (5.17)

=
1

2

∑
Z

(
erfc
(βm,l − xThm√

2σ

)
− erfc

(βm,r − xThm√
2σ

))
(5.18)
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where the expression (5.15) comes from the reverse process of (5.3), and (5.16) is obtained

based on (5.2). Combined with (5.10), the integral in (5.17) is further expressed as the

complementary error function in (5.18), where βm,l = (ŷm + π′Z− 0.5)/αm and βm,r =

(ŷm + π′Z+ 0.5)/αm denote the left and right boundaries of the Voronoi region of (ŷm +

π′Z)/αm respectively.

Note that p(ŷm|x) is a summation of infinite terms of p(ȳm = ŷm + λ′c|x), which

makes the Monte Carlo integration unavailable. Fortunately, the probability of a Gaussian

variable decreases exponentially with the Euclidean distance. Hence the infinite number

of terms of p(ȳm = ŷm + λ′c|x) can be reduced to a finite number by discarding those

whose corresponding λ′c ∈ Λ′c are far away from αmxThm. In our simulations in section

5.4, we will discard all λ′c with the corresponding p(ȳm = ŷm+Λ′c|x) < 2.2251×10−308.

Note that 2.2251× 10−308 is the minimum positive number in Matlab.

Based on the derivations above, we are able to calculate the corresponding I(x; ŷ) for

any scaling vector B ∈ RM . Then the outer bound can be obtained by an exhaustive

search over all possible B.

• For a very large scaling factor α, the mutual information is dominated by the scaled

Gaussian noise αz rather than the interference. Unlike the unlimited backhaul sce-

nario, the folded scaled Gaussian noise αz mod π′ tends to be uniformly distributed

for finite π′. In this case, the channel capacity approaches zero since the effec-

tive constellation points are indistinguishable. Hence it is sufficient to conduct the

search within a region of B ∈ [0, b)M rather than RM .

• The continuous region of B can be replaced by a set of discrete points by setting a

fixed step size ∆α per dimension. In this case there are d b
∆α
eM candidate vectors

of B to be searched.

It is obvious that a larger b and a smaller ∆α will lead to a more accurate evaluation.

From many observations, we found ∆α = 0.01π and b = 10π′ are sufficient to obtain

accurate results.
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5.3.3 Implementation Discussion

The outer bound in section 5.3.2 is obtained based on two assumptions which are not

always feasible in practice.

• The selection of the scaling vector is completely done by the hub station. The

optimisation of a M -dimensional variable leads to high complexity.

• The mutual information, which is required to optimise the scaling factor, is calcu-

lated by Monte-Carlo integration.

As addressed in previous Chapters, the former issue can be solved by allowing each

relay to select its best several scaling factors locally, and then forward them to the hub to

process global selection. The original optimisation problem is decomposed to M optimi-

sations with 1-dimensional variables, which will end up with the achievable inner bound

in Chapter 3 and 4.

To overcome the latter one, we derive an approximate closed form expression for the

mutual information in the rest of this section. In section 5.4 we will show that this closed

form expression gives almost the same result as the Monte Carlo does.

As discussed in section 5.3.2, most points of λ′c ∈ Λ′c can be eliminated due to the

rapid decline of the the probability for larger distances. Can we keep only the closest

point around αmxThm in Λ′c and discard all others?

−3 −2 −1 0 1 2 3
−0.5

0

0.5

αmym

αmxThm ŷm
ȳm

Voronoi Region of
QΛ′

c
(αmxThm)

Figure 5.2: illustration of ‘wrap-around’ error

To answer this question, we need to investigate the additional error caused by the mod-

ulo operation. LetQΛ′c(αmxThm) denote the closest coarse lattice point around αmxThm.

If the Gaussian noise moves αmym out of the Voronoi region of QΛ′c(αmxThm), the

2017



CHAPTER 5. DISTRIBUTED ANTENNA SYSTEMS: OUTER BOUND WITH QUANTISATION

AND CONSTRAINED BACKHAUL LOAD 115

value of ŷm will be wrapped to the opposite end after the modulo operation. Figure

5.2 illustrates an example of this wrap around error. We assume Λ′c = 5Z, and the

Voronoi region of QΛ′c(αmxThm) is an interval from -2.5 to 2.5. The Gaussian noise

moves the signal from αmxThm (red cross) to αmym (red circle), and this leads to an

error ȳm = −2 → ȳm = −3. The modulo operation ‘amplifies’ this error by map-

ping ȳm = −3 to ŷm = 2 which results in a total error of ŷm = −2 → ŷm = 2.

Clearly, when ŷm is located at the edge of the Voronoi region (ŷm = ±2), the corre-

sponding ȳm is more likely to be ȳm = ŷm + QΛ′c(αmxThm) ∓ π′, while the points

in the middle (ŷm ∈ {−1, 0, 1}) are less sensitive to this ‘wrap around’ error. Thus,

we consider λ′c = QΛ′c(αmxThm), λ′c ∈ {QΛ′c(αmxThm),QΛ′c(αmxThm) + π′} and

λ′c ∈ {QΛ′c(αmxThm),QΛ′c(αmxThm) − π′} for the middle points, left edge point and

right edge point respectively. The term p(ŷm|x) in (5.15) can be approximated by

• If ŷm = −π′−1
2

(left edge point)

p(ŷm|x) =
∑

λ′c∈{QΛ′c
(αmxThm),QΛ′c

(αmxThm)+π′}

p(ȳm = ŷm + λ′c|x) (5.19)

• If ŷm = π′−1
2

(right edge point)

p(ŷm|x) =
∑

λ′c∈{QΛ′c
(αmxThm),QΛ′c

(αmxThm)−π′}

p(ȳm = ŷm + λ′c|x) (5.20)

• If ŷm 6= ±π′−1
2

(middle points)

p(ŷm|x) = p
(
ȳm = ŷm +QΛ′c(αmxThm)|x

)
(5.21)

and hence the probability p(ŷm) can be written as:

p(ŷm) =
∑
x

p(ŷm|x)∑(π′+1)/2
λ=−(π′+1)/2 p

(
ȳm = λ+QΛ′c(αmxThm)|x

) (5.22)

and the term p(ŷ) can be easily obtained by p(ŷ) =
∏M

m=1 p(ŷm). Plugging this p(ŷ)

back into (5.12), the mutual information can be estimated by a closed form expression.
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5.4 Numerical Results and Discussions

In this section, we evaluate the throughputs in different scenarios based on the formulae

obtained in section III. We apply A/πA = Z/3Z (xm ∈ {−1, 0, 1}) to all source symbols.

The signal-to-noise ratio (SNR) is defined as E[|xm|2]/σ2.

5.4.1 Multiple Access Channel with Fixed Fading
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Figure 5.3: I(x, ŷm) : hm = [1
2
, 1

3
]T , SNR=10dB

In many distributed MIMO applications, the local optimisation at each AP plays a fun-

damental role. In this part, we consider a 2 by 1 multiple access channel with fixed fading

hm = [1
2
, 1

3
]T . Figure 5.3 illustrates the throughput I(x; ŷm) for a low SNR case. The

curves with circle markers show the throughputs obtained by the Monte Carlo method in

section 5.3.2, and the curves without marker are calculated by the closed form expres-

sions in 5.3.3. We use black, green, blue and red colours to present the cases of Λ′c = 3Z

(standard PNC), Λ′c = 5Z, Λ′c = 7Z and infinite load (ideal case), respectively.

The throughput of a low SNR system is dominated by the ‘wrap around’ error. It can

be seen that the function of I(x; ŷm) has a single maximum. The peak points corresponds
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Figure 5.4: I(x, ŷm) : hm = [1
2
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3
]T , SNR=30dB

to the points at which the ‘wrap around’ error begins to dominate, and the distribution

of the ‘folded noise’ tends to uniform as the scaling factor increases. Additionally, these

curves show that our closed form expression provides a good approximation of I(x; ŷm)

(note that the mismatch in the large α region does not affect the selection of optimal α),

and this expression is a summation of a finite number of differentiable terms. Hence, any

hill climbing method can be used to find the local optimal α.

Figure 5.4 shows the I(x|ŷm) with SNR=30dB. Since the noise is small, the middle

points are hardly affected by the ‘wrap around’, and hence a sufficiently good approx-

imation can be acquired by considering the effect on the edge points only. Therefore,

the closed form expressions in (5.19)∼(5.21) give a more accurate approximation com-

pared to the low SNR case. It can be observed that the curves calculated by Monte Carlo

and the closed form are indistinguishable in Figure 5.4). Due to the relatively lower

probability of ‘wrap around’, the mutual information is dominated by the quantisation

error. The quantisation error can be roughly measured by the variance of the ‘self noise’,

which denotes the mismatch between the scaled channel and its quantised value, written

as σ2
self = ‖αhm −QA(αhm)‖2. It is clear that the peak points of I(x; ŷm) correspond to

the trough values of σ2
self (represented by the dashed black curve), and the corresponding

values of α are not sensitive to different cardinalities of A/π′A. Hence, the selection of

the local optimal αm can be implemented by the following 2 steps:
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• Find the candidates of αm according to σ2
self

• For each candidate, calculate the corresponding I(x; ŷm) based on the closed form

expression, and selects the one with the maximum I(x; ŷm)

5.4.2 MIMO with Fixed Fading

Figure 5.5: SNR = 10dB: (a) Λ′c = 3Z (b) Λ′c = 5Z (c) Λ′c = 7Z (d) infinite backhaul

In this section, we consider a 2 by 2 MIMO system in which the hub selects αm for

both relays. The channel matrix H = [3
4
, 1

4
; 1

2
, 1

3
]. Figure 5.5 and 5.6 respectively show

the cases of SNR = 10dB and SNR=30dB. In both figures, the x-axis and y-axis denote

α1 and α2 respectively. The values of I(x; ŷ), calculated by the Monte Carlo integration

in section 5.3.2, are represented in the colour bar. It can be observed from Figure 5.5

that the function of I(x; ŷ) has single maximum for the low SNR case which means

that the optimal scaling vector B can still be acquired by employing some hill climbing

methods. For high SNR there are many values of B which correspond to a near-maximum

throughput, hence a linear search (similar to Algorithm 4 we have addressed in Chapter

3) with a relatively wider step size can be utilised to reduce the complexity. Again, the

performance in high SNR is dominated by the quantisation error, and the quantisation
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Figure 5.6: SNR = 30dB: (a) Λ′c = 3Z (b) Λ′c = 5Z (c) Λ′c = 7Z (d) infinite backhaul

error can be measured by the non-integer noise. At first glance, {α1 = 4, α2 = 6} is

one set of optimum scaling factors since it precisely scales the channel matrix H to an

integer matrix [3, 1; 3, 2]. However, when a mod 3 operation is applied, it becomes a

rank-deficient matrix [0, 1; 0, 2] over F3. This results in a great loss of information as

shown in Figure 5.6(a). This issue can be solved by employing extended C&F, as shown

in (b), (c), and (d). Note that when α1 ≈ 3 and α2 ≈ 4, the effective integer channel

QZ(BH) = [2, 1; 2, 1] is singular no matter which moduli is applied, and hence the

corresponding performance is relatively worse than other values of B in all sub-figures in

5.6 .

5.4.3 Fading Channel

Finally, we evaluate the average I(x; ŷ) of a 2 by 2 system. The results are obtained based

on 1000 channel realisations, with each element hm,l ∼ N (0, 1). As shown in Figure

5.6, the outer bound can be significantly improved by slightly increase the cardinality.

Specifically, if a half rate FEC code is employed (represents by the dashed red line), there
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is a 5dB gap between standard PNC (with circle marker) and ideal distributed MIMO

(without marker), and this gap can be reduced to less than 2dB(1dB) if we increase the

cardinality to 5(7) respectively. Note that in those cases, the backhaul loads are only

increased by log5/log3 = 1.46 and log7/log3 = 1.77 times respectively.
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Figure 5.7: Average throughput over 1000 channel realisations

5.5 Concluding Remarks

In this Chapter, we have extended a standard PNC scheme for distributed massive MIMO

to allow a flexible backhaul load. The lattice quantisation and modulo operations make it

possible to be implemented as a C&F strategy. We have investigated the outer bound of

this scheme under different backhaul constraints by maximising the mutual information

rather than minimising the mean square error of the quantisation noise. The maximum

mutual information is acquired by jointly optimising the scaling factors of all distributed

APs. We have proposed two approaches to evaluate this outer bound: Monte Carlo inte-

gration based method and an approximately closed form expression based method. The

former provided an accurate evaluation and the latter significantly reduced the computa-

tional complex. From a practical perspective, the scaling factor can be optimised indepen-

dently at each AP, and a linear search with relatively wider step sizes can be employed.

2017



CHAPTER 5. DISTRIBUTED ANTENNA SYSTEMS: OUTER BOUND WITH QUANTISATION

AND CONSTRAINED BACKHAUL LOAD 121

Simulation results have shown that the outer bound of this scheme can be significantly

improved by slightly increasing the cardinality of the modulo operation.
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Chapter 6

Conclusions and Future Work
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6.1 Summary of the Work

In this thesis, we have investigated the applications of LNC in distributed massive MIMO

systems, for the purpose of avoiding the enormous backhaul load. Specifically, we have

given novel algorithms for the coefficient selection in LNC, and analysed the system

behaviour in a realistic distributed massive MIMO model. Additionally, the outer bound

evaluated under different backhaul constraints is presented.

In the following, we summarise the work by answering the questions proposed at the

very beginning of this thesis.

1) How to select the optimal mapping function at each AP?

For the real valued scenario, we have given two novel algorithms for the coefficient se-

lection in C&F: the reduced candidate set aided algorithm and the linear search algo-

rithm. The former employs pre-determined thresholds to discard the ‘narrow’ intervals,

while the latter utilised a fixed step size for sampling the scaling factor α, and selects the

122
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sample which minimises the effective noise. For the complex valued scenario, complex-

exhaustive-II and complex linear search algorithm are proposed. The former extends the

interval partition to Voronoi region partition, and selects at least one representative for

each region to acquire a complete candidate set. The optimality is ensured by this com-

plete candidate set; the latter applies the optimised step size in both x-axis and y-axis

directions, to ignore the ‘small size’ Voronoi regions. The complexity of these algorithms

is analysed both numerically and theoretically. Numerical results have shown that our

proposed algorithms have better performance complexity tradeoff, compared to the exist-

ing approaches.

2) How will LNC perform in realistic distributed massive MIMO systems?

We have evaluated the performance of LNC in a realistic distributed massive MIMO sys-

tem, which considers both large scale and small scale fading. Novel algoritms for both

local and golbal selections are proposed by exploiting the properties of pathloss. We have

compared the LNC scheme with distributed MRC (with infinite backhaul), distributed

small cells, and the centralised MMSE scheme. Numerical results have shown LNC al-

ways outperform SC since SC can be treated as a special case of LNC; LNC outperforms

centralised MMSE when the interference is not very strong, since LNC benefits from

the distributed deployment; LNC outperforms MRC except in a thermal noise-dominated

system, since LNC has a stronger ability to mitigate the interference.

3) How much information will inevitably be lost in LNC?

We have extended standard C&F to allow a flexible cardinality (slightly larger cardinality)

at the APs, in order to meet the different backhaul constraint. The loss of information in

LNC is due to some quantisations and modulo operations. We employ jointly optimised

scaling factors at the APs to evaluate the inevitable loss of information. A Monte Carlo

based calculation is proposed to give an accurate evaluation of the outer bound. A sim-

plified closed form expression is proposed for coefficient selection in this extended C&F,

for the purposed of approaching the performance of the ideal distributed MIMO (infinite

backhaul).
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6.2 Future Work

Future avenues of relevant research are listed as follows:

• The investigation of LNC in this thesis assumes that the channel fading is quasi-

static and the electromagnetic waves arrive simultaneously at APs. The impact of

fast fading and imperfect synchronisation [80] might be considered in the future.

• The complex-exhaustive-II algorithm proposed in Chapter 3 assumes the integer

domain A is a principal ideal domain (PID). When A is not a PID, the Voronoi

region of each integer element in A might not be a regular polygon: whether the

complex-exhaustive-II still applicable for this case should be investigated in the

future.

• The comparisons between the distributed LNC scheme and the centralised MMSE

scheme are based on perfect channel estimation and independent small scaling fad-

ing. The impact of channel estimation error and correlated small scale fading will

be further investigated. On the one hand, the correlated small scale fading will

bring more performance degradation to the centralised massive MIMO. On the other

hand, the sensitivity of both schemes to the channel estimation error is unknown.

• ‘One-bit’ massive MIMO [81] approach is proposed very recently for centralised

systems. It applies a simple sgn quantiser to each antenna element to reduce the

complexity. It can be potentially applied to distributed system to reduce the back-

haul load. The comparison between LNC and this ‘one-bit’ scheme with limited

number of AP antennas will be investigated in the future.

• According to the description of the extended C&F in Chapter 5, practical designs

with multilevel lattice codes will be explored. A straightforward approach is that

each user employs a linear code over A/πA, while the APs decode the message

over A/πmA. In order to increase the flexibility, the decoding process at the APs

might be performed over A/ππ′A, where π and π′ are co-prime in A.

• Performance comparison between the lattice quantiser (uniform) and the Lloyd-

Max quantiser (non-uniform) will be studied.
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Glossary

AF Amplify-and-Forward

AP Access Point

AWGN Additional White Gaussian Noise

BC Broadcast Channel

BER Bit-Error-Rate

BPSK Binary Phase Shift Keying

CDF Cumulative Distribution Function

CPU Central Process Unit

C-RAN Cloud Radio Access Network

C&F Compute-and-Forward

CSI Channel State Information

dB Decibel

DF Decod-and-Forward

IF Integer-Forcing

Hz Hertz

MAC Multiple Access Channel

MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MRC Maximum Ratio Combining

MU-MIMO Multiple User-MIMO

LNC Lattice Network Coding Error

PAM Phase Amplitude Modulation

PDF Probability Density Function
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PID Principal Ideal Domain

PNC Physical-layer Network Coding

QAM Quadrature Amplitude Modulation

SC Small Cells

SIC Successive Interference Cancellation

SINR Signal to Interference plus Noise Ratio

SIR Signal to Interference Ratio

SNR Signal to Noise Ratio

SVD Singular Value Decomposition

SVP Shortest Vector Problem

ZF Zero Forcing
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