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string-nets. Papić and Pachos directed the work.

The work in Chapters 3,6 of the thesis has appeared in publication as follows:

Optimal free descriptions of many-body theories

Christopher J. Turner, Konstantinos Meichanetzidis,
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Abstract

Quantum matter involves the study of entanglement patterns in the

ground states of many-body systems. Of significant interest have re-

cently been topological states of matter, which exhibit characteristics

only described globally. As such they are robust to local deforma-

tions. In this thesis, we study inter-correlations of many-body states

through the entanglement spectrum, obtained by a bipartition of both

topological and non-topological systems.

In particular, we introduce two novel diagnostics which operate on

entanglement spectra. For topological phases supporting edge states

on open boundaries we take a quantum-information inspired approach

by invoking the monogamy relations obeyed by multi-partite systems.

Within a strictly single-particle framework, we establish a correspon-

dence between highly entangled mode and the existence of edge states.

In the many-body context, we introduce the interaction distance of

a mixed state. Exclusively via the entanglement spectrum it deter-

mines how close a free-fermion state lies and what the emergent free

quasiparticles are.

We apply these two measures to diagnose the properties of a variety

of free and interacting fermionic topological systems and reinterpret

their properties from a fresh point of view. Our case studies revolve

around Kitaev’s honeycomb model, which supports both short-range

and long-range topological order, constituting it thus relevant to both

the monogamy qualifier and the interaction distance. The possibility

to diagnose whether a model has zero interacting distance or if it

supports maximally entangled states provides central and compact

information about the behaviour of complex quantum systems.
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Chapter 1

Introduction

1.1 In Search of Structure

A most challenging aspect of theoretical physics is the understanding of emer-

gence. One can argue that all interesting phenomena are emergent. Even when a

simple description of a macroscopic system is possible, it is in terms of effective

objects whose complexity we completely disregard. On the other hand, when a

microscopic system allows for a low-complexity description, its properties become

trivial. There is however a sweet-spot where objects are regarded as elementary

but are allowed to interact and thus non-trivial collective behaviour arises.

A natural setting to study emergent phenomena is condensed matter physics,

where materials exhibiting various phases emerge out of interactions between

quantum particles. Modern condensed matter physics entails the study of the

structure of entanglement in many-body systems. Entanglement properties allow

classification as well as possess powerful diagnostic value. In general, zero tem-

perature phases and transitions between them are characterised by qualitative

differences of local correlation patterns.

In this thesis, we focus on topological states of matter. In the simplest manner

they can be described as states which cannot be identified by any local quantity,

and global order parameters instead need to be defined to map out their phase di-

agrams. As they are realised by microscopic interacting particles, but nevertheless

can only be characterised non-locally, they are a profound example of emergence.

Their properties are imprinted in their entanglement patterns. Throughout the

1



1.2 Structure of Thesis

thesis we construct diagnostic tools, such as the monogamy qualifier and the in-

teraction distance. Their purpose is to extract signatures of topological properties

from the study of the correlation structure of many-body quantum states.

1.2 Structure of Thesis

In Chapter 2 we establish the theory behind correlations in fermionic many-body

systems. From these correlations we define the topological invariants that charac-

terise topological states of matter. Chapter 3 contains novel diagnostics of quan-

tum correlations that were established during this PhD, namely the monogamy

qualifier and the interaction distance.

In Chapter 4 we study Kitaev’s honeycomb model and fully study its entan-

glements properties. This model has been thoroughly studied in the literature.

We use this model as our exemplar on which we apply the tools we have intro-

duced in Chapters 2 and 3 and show consistency with existing understanding.

Since this model is exactly solvable in its symmetry sectors, we can obtain an-

alytical results in certain cases. Using the monogamy qualifier, we also connect

properties of certain symmetry sectors to those of Kitaev’s wire. Insight attained

from Kitaev’s model is usually transferable to other models.

Branching out from the Kitaev model we delve into other models that are

connected to it in some way and study their entanglement properties. The con-

nections to other models are shown in Fig.1.1. In Chapter 5 we study free fermion

models using the diagnostic of monogamy as it manifests in their covariance ma-

trices. In particular we study Haldane’s Chern insulator and the Su-Schrieffer-

Heeger model. We find that properties of the latter are reflected in the former.

We also introduce a new free fermion model, the Duffin-Kemmer-Petiau Chern

semimetal, inspired by Haldane’s Chern insulator.

In Chapter 6 we analyse interacting fermionic models. We extract the monogamy

signature corresponding to edge states in the Su-Schrieffer-Heeger model using

the monogamy qualifier. We then use the interaction distance on the transverse

field Ising model with longitudinal field, parafermion chains, as well as string-nets,

and in the process we obtain surprising results.

Throughout the thesis, we introduce only concepts necessary for our purposes.

2



1.2 Structure of Thesis

Kitaev’s
honeycomb

No	
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Figure 1.1: Relations between models studied in this thesis with Kitaev’s model

as common ground. The blue box contains short-range entangled topological

phases and the red box long-range. Kitaev’s honeycomb in the purple box hosts

both short- and long-range topological order. Throughout the thesis we make

explicit the relations we establish between these models. The labels on the arrows

representing the relations become apparent in the context of each Chapter.
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Chapter 2

Correlations and

Topological Quantum Matter

2.1 Introduction

As this thesis is mainly concerned with correlations in ground states of topological

quantum matter, it is useful to clarify our language. For the purposes of this work,

we use Kitaev’s definition of topological order [1] and reserve the term topological

phase to define a state characterised by a non-vanishing topological invariant

which is robust under adiabatic deformations of the Hamiltonian. According to

this convention, a system with no boundaries is topologically ordered when its

ground state degeneracy depends on the genus of the surface it is defined on.

Topological phases, on the other hand, have a unique ground state on any closed

surface.

2.2 Topological Phases

For a major part of this thesis we are concerned with topological phases that can

be realised by free fermionic lattice models. The ground state of such systems is

unique for periodic boundary conditions. We call a free-fermion Hamiltonian, H,

on a lattice or more generally graph Λ, one that is quadratic in fermion operators

4



2.2 Topological Phases

{fi, fj} = 0, with {f †i , fj} = δij, for i, j ∈ Λv, (2.1)

where Λv is the set of vertices or sites of the lattice. The fermions are allowed to

tunnel between sites, reflected by the quadratic “hopping” terms hijf
†
i fj + h.c.

in H, as well as to feel a background potential landscape modelled as an on-site

energy cost, or “chemical potential”, hiif
†
i fi. The hoppings can be thought of as

decorations of the links of the graph (i, j) ∈ Λl, and the chemical potentials can

be viewed as weights on the vertices. Finally, if the hoppings are complex, then

the graph becomes a directed graph where the direction of the link flips when the

time reversal operator acts. In general we represent such Hamiltonians as

H = f †hf, (2.2)

where f is a column vector containing the fermionic operators and the |Λv|× |Λv|
matrix h contains the hoppings and chemical potentials. Note that the number of

fermions in the system, F , is a good quantum number since hoppings and chemical

potentials commute with the population operator F =
∑

i ni with ni = f †i fi.

The model is solved when h is diagonalised,

h = V †EV, (2.3)

where now E is diagonal with the energies εi of the normal modes, c = fV ,

whose amplitudes occupy the columns of matrix V . The energy of the ground

state is Egs =
∑F

i=1 εi and is realised by occupying the F smallest energy states,

c†1 . . . c
†
F |0〉, where we have ordered the energies as εi ≤ εj for i < j. Any other

many-body state then is represented by different occupation patterns {ni} of the

normal modes as ⊗Fi=1c
†
i

ni |0〉. The wave function in real space is simply the Slater

determinant of the populated eigenmodes.

In case the Hamiltonian also contains pairing terms fifj + h.c., we can write

it in the Majorana basis by splitting the fermions into their real and imaginary

parts as

fi =
1

2
(γ2i−1 + iγ2i), with γ†i = γi and {γi, γj} = 2δij (2.4)
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2.2 Topological Phases

This can also be done when there are no pairings, but it is redundant. Now the

Hamiltonian is written as

H = γhγ, where h = iA, (2.5)

with A real and anti-symmetric so that the 2|Λv|-dimensional matrix h is hermi-

tian. Diagonalising the hopping-pairing (or Majorana hopping) matrix h we have

h = U †DU, (2.6)

where the diagonal matrix D contains pairs of energies ±εi with their correspond-

ing eigenvectors being conjugate pairs of each other and occupying columns of

U . This means we can think of the system as decoupled two-level systems, and

the ground state is obtained when all of them are de-excited and has energy

Egs = −∑|Λv |i=1 εi. We can arbitrarily call this state the vacuum |0〉 and excited

states are realised by exciting these two-level systems in particular patterns.

Since h grows polynomially with |Λv|, then it is efficient to perform the diag-

onalisation in (2.3) and (2.6). In this sense, free fermions (or free Majoranas) are

said to be efficiently simulatable on a classical computer, as diagonalisation cost

of a N ×N matrix scales as O(N3) in the worst case. Throughout this thesis, all

free-fermion systems are solved in real-space by numerically diagonalising their

h-matrices. Note, that even though this procedure is exact, we shall restrain from

referring to it as ‘exact diagonalisation’, since this name is reserved for the method

of building and diagonalising the Hamiltonian matrix in the full Hilbert space of

the problem, for example in the 2|Λv |-big Fock Space for fermions or the d|Λv | for

d-level spins. We would resort to exact diagonalisation in the case of a generic

fermionic Hamiltonian which includes non-quadratic terms in the fermionic oper-

ators. A common physical example of this would be density-density interaction

terms of the form
∑

i<j Uijninj.

Translation Symmetry

In case Λ is a d-dimensional lattice decomposable into unit-cells which contain an

N number of sites, it preserves translation invariance along the lattice directions
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2.2 Topological Phases

and thus momentum is conserved. As would be the case for any other symme-

try, the hopping matrix can be block-diagonalised into sectors labelled by the

symmetry’s eigenvalues, which in this case are the lattice momenta along the d

directions, h = ⊕ph(p). We can then Fourier transform the operators a = f, γ as

ar =
∑

p e
−iprap, with r being d-dimensional vector labelling the unit-cells and

p ∈ [0, 2π)×d the lattice momentum in the d-dimensional Brillouin zone. Then

the Hamiltonian can be written as

H =
∑
p

H(p) , H(p) = a†h(p)a, (2.7)

where a† = (a†1 a
†
2 . . . a

†
N). The band structure of the model can then be extracted

from h(p), whose N -many eigenvalues En(p) are functions of momentum and play

the role of the energy bands with Bloch vectors |n(p)〉.

2.2.1 Topological Invariants

Now we define the topological invariants that are used in this thesis, namely the

winding number w for 1D systems composed of 2-site unit cells and the Chern

number ν for 2D lattices [2, 3].

These quantities characterise ground states which are separated from the ex-

cited states by an energy gap, G. For free fermion Hamiltonians, G can be

obtained from the eigenvalues εi of the matrix h. As stated above, if the ground

state energy is Egs =
∑F

i=1 εi, then the energy of the first excited state would be

E1st = εF+1 +
∑F−1

i=1 εi. Thus, the gap in this case is G = E1st−Egs = εF+1− εF .

In the case where the Hamiltonian is written in terms of free Majoranas, the

gap corresponds to exciting the two-level normal-mode with the smallest energy,

G = 2 mini∈{1,...,|Λv |} εi.

The invariants are extracted from the hopping matrix in momentum space

h(p) and are robust under continuous deformations of the Hamiltonian. In par-

ticular, let λ be a collection of external parameters that adiabatically deform the

hopping matrix, h(λ, p). Then the topological numbers of h remain unchanged

as long as G(λ) 6= 0, ∀λ. In other words, they define the parameter range of

a topological phase and they can only change at quantum critical points where

G = 0 (singular points).
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2.2 Topological Phases

Winding Number

Since we will be interested in chains with 2 sites in the unit-cell we present the

winding number for the case of 2-dimensional matrices h(p) where p ∈ [0, 2π).

Any such matrix is decomposable on the basis of the 2 × 2 Pauli matrices,

I, X, Y, Z. Defining the Pauli vector σ = (X Y Z)T and discarding any terms

proportional to I from the Hamiltonian, there exists a vector Σ for which

h(p) = Σ(p)σ. (2.8)

Normalising the 3D vector Σ(p) we can study the path it inscribes on the surface

of the unit sphere as we vary the momentum p along the 1D Brillouin zone. In

the presence of time-reversal symmetry the winding number is defined as

w =

∫
dp (Σ(p)× ∂pΣ(p))z . (2.9)

If we call the initial point of Σ(0) the north pole of the sphere, the integral 2.9

counts how many times the Σ passes through the south pole Σ(π) before returning

to the north pole again at Σ(2π). In some examples studied in this thesis we will

explicitly plot Σ’s path in order to draw conclusions.

Chern Number

For 2D systems, the Chern number of the band with Bloch vector |n(q, p)〉 is

defined as

νn =
−i
2π

∫
dqdp (∂qAp − ∂pAq) , Ap = 〈n(q, p)| ∂p |n(q, p)〉 , (2.10)

where A is the Berry connection and (2.10) is the surface integral of the Berry

curvature in the 2D Brillouin zone. This integral counts how many times the

path of Σ(q, p) covers the whole surface of the unit sphere. For our numerics, we

use the discretised version of (2.10) derived in Ref. [4], which has the advantage

to be independent of the Brillouin zone’s density, or equivalently of the system’s

size. The idea is to compute the overlaps dictated by the Berry connection

for all dq × dp squares that make up the discrete Brillouin zone and then take

their product. This is equivalent to calculating the Berry phase accumulated by
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2.2 Topological Phases

a particle travelling on the boundary on the Brillouin zone as can be seen by

applying Stoke’s theorem on (2.10). Remarkably, such adiabatic manipulations

of single particle states in momentum space can be realised in cold-atoms systems

in order to measure topological invariants [5, 6].

Edge States

The topological invariants can be considered a property of the bulk of the system,

as we have defined them in momentum space, and momentum space is defined for

periodic boundary conditions for a system of finite size, or for an infinite system.

However, when we impose open boundary conditions on such topological phases,

the non-triviality of the invariants w, ν manifests as exponentially localised states

on the edges of the system [3]. The energies corresponding to these edge modes

appear mid-gap, and their appearance can be understood in terms of quantum

phase transitions in real space. The edge of the system can be thought as an

interface between the topologically non-trivial bulk and the trivial vacuum. As

both these bulks are gapped, and the gap closes when an topological number

changes, we realise that edge states necessarily form with mid-gap energies. One

of the goals of the thesis is to establish diagnostic measures for their existence in

a given free Hamiltonian.

2.2.2 Single-Body Correlations

In order to study the correlations in the ground state of topological free-fermion

systems we employ the correlation matrix C, which contains all two-point cor-

relations of the state, Cij = 〈f †i fj〉. It is then quite simple to confirm that its

elements are given by

Cij =
F∑
k=1

V ?
ikVjk, (2.11)

and its eigenvalues are such that λ ∈ [0, 1].

For free Majoranas we can collect the two-point correlations in the correlation

matrix Cij = 〈γiγj〉, which we can easily construct by replacing ±εi → 0, 1 respec-

tively in the diagonal of D and conjugating with U . Creating single excitations

is straight-forward as we just need to excite one of the two-level systems and so
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2.2 Topological Phases

for that pair of energies we would substitute ±ε → 1, 0. We recall that any free

fermion system can be written in terms of Majoranas, and this is why we denote

with C the covariance matrix of both free fermions and free Majoranas.

From the Majorana-Majorana correlation matrix we can construct the covari-

ance matrix Γ. This is done in accord with the language of Gaussian quantum

information. The matrix Γ, containing all the second moments, is defined via the

Majorana correlation matrix as [7, 8, 9, 10, 11],

Γ = i(C − CT ). (2.12)

It is a real anti-symmetric matrix, that is ΓT = −Γ, with eigenvalues coming in

imaginary pairs ±iµj with µj ∈ [−1, 1]. It satisfies ΓTΓ ≤ I, with equality holding

for pure states. The matrix inequality is understood by the definition of a positive

semidefinite matrix, X ≥ 0, being such that all its eigenvalues are non-negative.

A free state ρ is called Gaussian because its second moments determine all higher

moments. That is, all expectation values of monomials of an even number of

Majorana operators can be calculated through Wick’s theorem as [12]

〈γj1γj2 . . . γj2l〉 =
∑
π

sgn(π)
l∏

k=1

Γjπ(2k−1)jπ(2k) , (2.13)

where the j-indices are pairwise different, the sum runs over pairings π of the

j-indices and sgn(π) is the parity of the pairing. Any odd Majorana monomial

has vanishing expectation value.

2.2.3 Chern Number from Correlation Matrix

𝐴 𝐵

𝐶
Figure 2.1: Tripartition for com-

putation of Chern number or

the topological entanglement

entropy.
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2.2 Topological Phases

Having defined the correlation matrix, C, we introduce a useful expression

of the Chern number which is formulated in real space in terms of the elements

Cij, which we will use when translation invariance is broken due to disorder. We

create three non-overlapping partitions A,B,C ⊂ Λv with common boundaries

that form a triple point as shown in Fig.2.1. The Chern number is defined as

[13, 14, 15, 16, 17],

ν = 12πi
∑
j∈A

∑
k∈B

∑
l∈C

(CjkCklClj − CjlClkCkj) , (2.14)

and the prefactor ensures that ν ∈ Z. As Kitaev defines it, intuitively this is

understood as a chiral sum of “correlation currents”.

Note that Hastings [18] has proved that when the ground state is gapped, the

correlations decay exponentially, Cjk ∼ e−
|j−k|
ξ , where the correlation length is

related to the gap as ξ ∼ 1
G

and in particular for frustration free Hamiltonians [19]

as ξ ∼ 1√
G

. Therefore, the partitions need to be chosen so that their linear size is

larger than ξ. Indeed, numerically it is observed that ν as computed from (2.14)

converges to its integer value as the system size is increased [20, 21].

2.2.4 Single-Body Entanglement Spectrum

One of the fundamental objects studied in this thesis is the entanglement spec-

trum. We first need to bi-partition the graph into A,B ⊂ Λv. Then the single-

particle entanglement spectrum is obtained by the sub-matrix Cij∈A and is simply

its spectrum, λ = spec(CA). What is important about λ is that it resembles the

edge energy spectrum because partitioning the system simulates an open bound-

ary. A topological phase characterised by a winding or Chern number exhibits

“virtual” edge states appearing mid-gap in λ. Indeed, Fidkowski [7] has proved

that the entanglement spectrum of a partition is adiabatically connected, or topo-

logically equivalent, to the energy spectrum of the Hamiltonian restricted to that

region. Specifically, λ is the band-flattened version of spec(hij∈A). The impor-

tant fact that makes Fidkowski’s proof work is that CA and hA have the same

eigenvectors. As we will see in later Chapters, the single-body entanglement spec-

trum will be used to detect edge states in ground states of topological phases,

supplemented with a theorem from quantum information.

11



2.2 Topological Phases

Spectral Asymmetry

Here we make some comments on the structure of λ depending on the symmetries

that H respects [22]. First, note that, for a Hamiltonian with no pairings where

particle numbers are conserved, we have that spec(CA) = 1 − spec(CB). This

inspires an interpretation of λ as probabilities of particles being in A, consistent

with assigning the same probabilities of holes to be in B, where we view λj >
1
2

as

corresponding to particles and λj <
1
2

to holes. From this we suspect and confirm

that states corresponding to λj ≈ 1
2

are localised on the virtual boundary, as other

studies have shown as well [23]. Therefore, λ ∈ [0, 1] can have a “virtual particle

hole symmetry” around 1
2
, when a spatial symmetry, like inversion through the

partition boundary or translation invariance, is present and so particles or holes

have no bias towards a particular partition. However, one can lift such symmetry

by introducing disorder or a chemical potential with a gradient. Now let H

respect particle-hole symmetry, in which case, even if the system is disordered

and no spatial symmetry is present, we still have a virtual particle hole symmetry

because we can both exchange particles with holes and regions A with B, thus

leaving λ invariant. Another way to see this is that when pairings are included

the natural way to express H is through Majoranas so then λ is symmetric around
1
2

by construction.

A simple way to capture the asymmetry in λ is to compute its skewness. For

a discrete distribution X = x1, . . . , xL it is defined as [24]

α3(X) =
m3(X)

m2(X)3/2
, (2.15)

wheremr(X) = 1
L

∑L
i=1 (xi − 〈X〉)r is the rth central moment and 〈X〉 = 1

L

∑L
i=1 xi

is the arithmetic mean. We will use skewness as a measure of the asymmetry of

a given spectrum. We also normalise (2.15) by the maximal possible value it can

acquire, αmax
3 = L−2√

L−1
. Finally, note that in general, the number of λj >

1
2

is

different than that of λj <
1
2
. For example this is the case when |A| 6= |B|, or

when the particle number is smaller than the sizes of either A or B. In such cases

the skewness would be artificially finite. It is easy to fix this by discarding the

λjs outside of a symmetric window centred around 1
2
.
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2.2 Topological Phases

2.2.5 Entropy from Correlation Matrix

The entanglement entropy of the reduced state of the partition A, can then be

expressed in terms of the correlation matrix eigenvalues as [25]

S = −
∑
k

(1− λk) log(1− λk) + λk log λk. (2.16)

If the correlation matrix is in terms of Majoranas, then (2.16) inherits a 1
2

factor

to take care of double-counting degrees of freedom due to the Majorana reality

condition. For more details see Appendix A.1.

In terms of the covariance matrix, Γ, the entanglement entropy can similarly

be obtained from the eigenvalues µAj of the sub-matrix ΓA as [26]

S = −1

2

∑
j

1 + µAj
2

log
1 + µAj

2
. (2.17)

As stated above, edge states in the entanglement spectrum have energies λ ≈ 1
2

or µA ≈ 0. From (2.16) and (2.17) we see that they contribute maximal entropic

contributions. In the context where we interpret the entanglement spectrum of

free fermions with particle conserving Hamiltonian as probabilities of particles

and holes being in region A, the maximal entropy is understood as maximal un-

certainty about a particle or equivalently the corresponding hole to be in either

A or B. It is thus supported on the boundary, ∂A. Supplemented with the

finite correlation length induced by the spectral gap, then the mode is exponen-

tially localised at the boundary. This is consistent with Klich’s [27] work showing

that the reduced state of a particle-conserving Hamiltonian can be written in a

Bardeen-Cooper-Schrieffer form which describes superconducting states. A su-

perconducting Hamiltonian does not respect particle populations and the analogy

holds due to the fact that the particle number in region A or B is not conserved,

but only their sum is. For Majoranas, the maximal entropy contributed is under-

stood as uncertainty about the parity of Majorana modes shared between A and

B (or equivalently living on ∂A).

We remind here that the entropy of independent states is additive. A case

where this is used is in the presence of a symmetry in the system, such as
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2.3 Topological Order

translation invariance, when the single particle Hamiltonian matrix can be block-

diagonalised h = ⊕ph(p). Then the entropy of, say, the ground state, is additive

in the symmetry sectors, S =
∑
S(p).

2.3 Topological Order

We are interested in studying correlations in topologically ordered states, that is,

ground states whose degeneracy depends on the topology of the lattice on which

the Hamiltonian is defined, and for our purposes we focus on two-dimensional

cases only. The low energy physics of such systems is described by topologi-

cal quantum field theories [28] and the excitations have exotic exchange statis-

tics. These quasiparticles, called anyons define a Hilbert space from their fusion

rules [2] and together with braiding operations they define a platform for topo-

logical quantum computation [29, 30, 31]. Their study is immensely rich and

interesting and extends to higher dimensions. However, we will keep the discus-

sion minimal by focusing on aspects of topological orders that are relevant to our

diagnostics.

For a general anyon model in 2D with point-like anyons, J ,J ′, . . . , the fusion

rules are written as J × J ′ =
∑
J ′′ N

J ′′
JJ ′J ′′, where N J

′′
JJ ′ is the multiplicity of

the fusion channel J × J ′ → J ′′. All anyons have an anti-particle which they

fuse to the anyonic vaccum, denoted as 1. When for each pair J ,J ′ there exists

a single J ′′ such that N J
′′

JJ ′ = 1 and N J
′′′

JJ ′ = 0 for any other J ′′′, the anyons

are called Abelian. In the non-Abelian case the multiplicity makes the fusion

outcome non-deterministic. Topological orders with such fusion rules are called

bosonic. One can generalise to fermionic topological order by introducing a Z2

grading to the fusion rules accommodating the enrichment of the Hilbert space

with a fermionic Fock space [32]. In this thesis we study bosonic cases.

Each anyon has a quantum dimension, dJ , defined such that dJ × dJ ′ =∑
J ′′ N

J ′′
JJ ′dJ ′′ . The quantum dimension is understood as the local Hilbert space

dimension associated with that anyon. For a number M of anyons of the same

species, J , the dimension of their fusion space asymptotically grows as dM−2
J ,

hence the name [33]. For Abelian anyons we have dJ = 1, ∀J and on an infinite
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2.3 Topological Order

plane the ground space is one-dimensional. On the other hand, for non-Abelian

anyons there exists at least one J for which 1 < dJ ∈ R.

The fact that the quantum dimension can be non-integer for non-Abelian

anyons signifies the non-locality of their growing fusion space. This is the reason

that they are regarded promising for storing quantum information as it should

be inaccessible to local noise. Of course, when one can store information, one

wonders how to manipulate it. Given a certain anyonic state, adiabatically ex-

changing the positions of anyons, or braiding them, corresponds in general to

performing a unitary operation to the state. The term braiding is understood by

picturing the worldlines of the anyons as they are slowly moved in the 2D plane.

The aforementioned unitary is interpreted as the computation whose input is a

state of anyons created pairwise from the anyonic vacuum and output the fusion

outcomes when the anyons are fused pair-wise after the braiding. The computa-

tion can be universal in certain cases, as it is for the Fibonacci anyons realised

when J are irreducible representations of the quantum group SU(2)3. We remind

that universality means that braiding of Fibonacci anyons corresponds to unitary

operations that densely cover U(N) to arbitrary accuracy [34]. This formalism

for quantum computation is connected to knot invariants, since a braid together

with the state preparation and the readout forms a knot, providing another setup

where a topological quantum computer would be useful [35].

2.3.1 Many-Body Correlations

Topological order as it is described above emerges in interacting many-body sys-

tems, i.e. Hamiltonians with non-quadratic terms in the fermion or Majorana

operators. In contrast, topological phases characterised by an invariant and dis-

cussed in 2.2.1 can also arise in free systems.

In terms of correlations, the free topological phases are attributed to short

range entanglement. These phases are protected by a local symmetry and so they

are also called symmetry protected phases and their symmetries are employed in

order to classify them [36]. In other words, any local unitary transformation that

respects the symmetry, cannot induce a phase transition. However, if the unitary

is allowed to break the symmetry, then the invariant can change without the gap
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vanishing [37]. The language of local unitary circuits is useful as their job is to

alter the entanglement locally and thus change the entanglement pattern of a

state.

Topological order is understood via global constraints on the many-body cor-

relations due to long-range entanglement and does not arise in free systems. The

ground state is massively entangled as a superposition of all states that respect the

global conditions dictated by the Hamiltonian. Similarly to the quantum phase

transitions for free systems, however, a topological order arising in an interacting

model cannot change to another topological order, i.e. one with different anyonic

content, without a quantum phase transition. The topological invariants in this

case are the genus-dependent ground state degeneracy and exchange statistics of

the anyons, as they are stable to local perturbations [38]. That is, a unitary trans-

formation needs to close the gap in order to change the topological order [39, 40],

and equivalent topological orders are those connected by unitaries. Symmetries

of the Hamiltonian make their classification a rich endeavour by defining equiv-

alence classes of states connected by symmetry respecting unitaries [41]. In gen-

eral, a state can possess both a non-trivial topological invariant like a winding or

Chern number and topological order with anyonic quasiparticles, such as quan-

tum Hall states [42] and the relevant example to this thesis is Kitaev’s honeycomb

model [13]. These short- and long-range features are distinguished by identifying

the entanglement patterns in the state.

2.3.2 Many-Body Entanglement Spectrum and Entropy

We can identify entanglement patterns that characterise a many-body state from

the entanglement spectrum. As we mentioned, topological orders appear in inter-

acting systems, and thus we need to work with many-body wave functions. We

then cannot only use the correlation matrix to obtain the entanglement spectrum.

Rather, in principle, one needs to compute all exponentially-many higher order

correlation functions in order to fully determine the wave-function. For a ground

state |Ψ〉 the entanglement spectrum is defined as [43]

Ee = spec(He) , where He = − log ρ , and ρ = trB |Ψ〉〈Ψ| (2.18)
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with ρ being the reduced to A density matrix, and He is the entanglement Hamil-

tonian. The entanglement spectrum captures universal properties of H which are

reflected in He [43, 44, 45, 46]. The eigenvalues pj ∈ [0, 1] of ρ are 2min |A|,|B|

in number, and their logarithms define the entanglement energies Ee ∈ [0,∞).

Details on performing the partial trace in (2.18) as well as obtaining the state’s

entanglement matrix can be found in Appendix A.2.

The intuition around the partial trace over B is that assuming that we have

access only to A, then we need to integrate over all possible configurations of B.

This loss of information is then reflected in the ρ being in general a mixed state.

The amount of entanglement between A and B is quantified by the von Neumann

entropy of ρ as

S = −
∑
j

pj log pj. (2.19)

2.4 Area Law and Topological Entropy

Finally, since the states that we examine in this thesis are gapped, and for the free

systems that we study the Fermi surface is at most zero-dimensional, this implies

that the entropy follows the area law [47], in contrast with cases where power-law

correlation decay in 1D or a finite dimensional Fermi surface in higher dimensions

leading to logarithmic corrections [48, 49]. Area laws for entanglement entropies

were established in the context of attempting to derive the Hawking-Bekenstein

entropy of a black hole which scales as the area of its event horizon [50]. Since

then, an extensive amount of work followed spreading eventually to condensed

matter physics [10].

In particular, the entropy S of a partition A whose linear size is sufficiently

larger than the correlation length ξ follows

S = (α + Stopo)|∂A| − Stopo +O(|∂A|−β), (2.20)

where β > 0 and the area law pre-factor α > 0 is generally considered to be

non-universal. In Ref. [51] it is argued that α can be arbitrarily tuned by varying

the microscopic parameters of a free model. In Section 3.2, however, we point to

a universal part of it due to the existence of edge states which holds for non-free

systems as well.
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The constant shift by Stopo > 0 signifies the presence of topological order,

where Stopo is the topological entanglement entropy. This reduction in entropy is

interpreted as global information that cannot be lost by tracing out a partition

and is a manifestation of the global constraints that the Hamiltonian imposes

on the topologically ordered state. It is universal as it depends only on the

anyonic content of the topological order which is unchanged under microscopic

deformations of the system.

In order to identify whether a given gapped state is topologically ordered, one

can perform a scaling of region A and identify Stopo as the off-set at |∂A| → 0.

Importantly, Kitaev and Preskill introduced a method to compute Stopo for 2D

systems involving a linear combination of entropies of a tripartition A,B,C with

a triple point [52]. Such a tripartition is depicted in Fig. 2.1. The topological

entanglement entropy of a 2D system is defined as

Stopo = SA + SB + SC − SAB − SAC − SBC + SABC . (2.21)

The idea is that the terms proportional to the boundaries of the partitions cancel

out, leaving only the constant term. Levin and Wen in an independent study

proposed a different partition with the same principle in mind [53]. The anyons,

J , emerging in the topological order, manifest in the topological entanglement

entropy as Stopo = logD, where D =
√∑

J d
2
J is the total quantum dimension.

2.5 Summary

We have introduced the entanglement spectrum in the single- and many-body

contexts, obtained from a bipartition of a many-body fermionic state. The former

is relevant for topological phases realised by quadratic Hamiltonians, while for

topological orders one needs to study the latter, since topological order only arises

in interacting systems. The entanglement spectrum’s usefulness stems from the

fact that it reflects universal properties of the Hamiltonian through the bulk-

boundary correspondence. Its von Neumann entropy measures the amount of

entanglement across the cut, and its behaviour with respect to the cut can provide

information about the short- and long-range topological order in the state.
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Chapter 3

Entanglement Diagnostics

3.1 Introduction

In this chapter we introduce two novel diagnostic measures capturing interesting

properties of topological ground states. These measures take as input only corre-

lations of the state. First, we invoke the monogamy of entanglement in order to

capture the existence of edge states in a given fermionic state from their signa-

ture in the state’s covariance matrix. Second, we define the interaction distance,

a measure of the non-Gaussianity of the state, as captured by the structure in

the entanglement spectrum.

3.2 Entanglement Monogamy and Edge States

For an arbitrary bi-partition of the system in regions A and B the covariance

matrix can be written as

Γ =

[
ΓA ΓAB
−ΓTAB ΓB

]
, (3.1)

with ΓA containing the second moments of the reduced state ρ and ΓAB capturing

correlations between A and B.

If Γ corresponds to a pure Gaussian state, which implies ΓTΓ = I, then the

singular values ξAB of ΓAB and the eigenvalues µA of ΓA satisfy

(µAj )2 + (ξABj )2 = 1. (3.2)
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3.2 Entanglement Monogamy and Edge States

𝐴

𝐵

Figure 3.1: Illustration of

monogamy among modes (dots)

supported in A or B. Entangle-

ments are represented by lines

(grey scale). Maximally entangled

(black lines) modes localised on ei-

ther side of ∂A contribute ξAB = 1

and maximal entropy 1
2

log 2. The

thickness of ∂A represents the

correlation length ξ. Weaker

entanglements (grey lines) crossing

∂A contribute ξAB < 1.

This relation can be easily checked for the simplest case of the pure state of two

modes, given below in Eq. (3.3) ( in that particular case one has ΞTΞ = I leading

to where one finds a2 + b2 = 1). The modes in region A with µAj = 0, which

always come in pairs, are uncorrelated with the rest of the modes supported in

A. Consequently, they are maximally entangled with modes in B as captured by

their corresponding ξABj = 1. As stated in Section 2.2, they manifest as virtual

edge states identified in the entanglement spectrum of topological free fermion

systems, and contribute a maximal entropy of 1
2

log(2) per mode [7]. Note that

this contribution is none other than what the quantum dimension dγ =
√

2 that

a Majorana dictates.

3.2.1 Entanglement Monogamy

Monogamy of entanglement states that two maximally entangled modes in a

many-body state cannot be entangled with any other mode. For our bipartitioned

system this means that no mode in A which is maximally entangled with a mode

in B can be entangled with any other mode in A or B [54, 55]. In general,

maximally entangled modes across ∂A are witnessed by singular values ξABj = 1

of ΓAB. These then imply corresponding eigenvalues µAj = 0. However, the

converse is not true in general, save for free systems. Monogamy relations can

also be quantified with entanglement measures and so the same statements are
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3.2 Entanglement Monogamy and Edge States

made for highly entangled modes being minimally entangled with the rest. In

Fig. 3.1 we illustrate the monogamy relations.

Now we can employ the monogamy relations between modes of a multi-mode

system to argue about the existence of edge states in gapped phases. For a

physical edge, one in principle can construct operators with exponentially decay-

ing support in the bulk that create edge states in many-body systems [56]. Via

the bulk-boundary correspondence, we argue that the same the same pattern is

followed by the virtual edge states on ∂A. These operators commute with the

Hamitlonian to exponential precision. They, however, anticommute with a sym-

metry of the Hamiltonian and thus induce a ground state degeneracy for open

boundaries which is exponentially precise as a function of the system size. The

fact that these operators commute with H means that the states they create are

decoupled from the rest of the modes, and thus uncorrelated with them. Invoking

the monogamy signature witnessed by the ΓAB block of the covariance matrix we

conclude that its ξAB ≈ 1 singular values correspond to the existence of virtual

edge states localised at ∂A.

To exemplify this behaviour we focus on the generic covariance matrix Ξ of

the state σ of two fermionic modes. In its normal form it reads

Ξ =

[
ΞA ΞAB

−ΞT
AB ΞB

]
, ΞA =

[
0 a
−a 0

]
, ΞB =

[
0 d
−d 0

]
, ΞAB =

[
0 b
c 0

]
,

(3.3)

to which it is possible to rotate by conjugating with OA ⊕ OB. The rotations

OA,B ∈ SO(2) act independently on each partition and thus do not change the

entanglement across ∂A. This covariance matrix corresponds to a pure maximally

entangled state when ΞTΞ = I, which occurs for |b| = |c| = 1, and as a conse-

quence a = d = 0. Now let the min(|b|, |c|) > 1−ε be the smallest singular value

of ΞAB. Performing a Jordan-Wigner transformation on the state of the A and

B fermions with covariance matrix given by (3.3) we see that the state σ can be

written as σ = (1− ε)ω+ εη, where ω is a maximally entangled state of minimal

rank and η an orthogonal residual state. In particular, for min(|b|, |c|) > 1 − ε,
we can estimate that

D(σ, ω) ≤ ε, (3.4)
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3.2 Entanglement Monogamy and Edge States

where

D(α, β) =
1

2
tr|α− β| (3.5)

is the trace distance for α, β Hermitian matrices. Hence, by considering the

singular values ξAB of ΞAB we can deduce how close σ is to a maximally entangled

state ω. The argument generalises to a multi-mode setting. If there exist many

singular values such that ξABj ≥ 1 − ε, j = 1, . . . , 2k then one can identify a

subspace of the Hilbert space containing k pairs of fermionic modes that are

highly entangled. In other words, their trace distance is ε-close to a product

state of k-many maximally entangled pairs.

Furthermore, the monogamy relations in the many-body setting dictate that

these almost maximally entangled modes are largely disentangled from the rest of

the fermionic modes [54, 55]. This can be quantified by entanglement measures

which we define below. Let us first focus on the reduced state supported on

modes F1 and F2 of the multi-mode state. Suppose they are close to a maximally

entangled state in the sense that their state is written as σ = (1 − ε)ω + εη, as

above. Then the mode F1 will be little entangled with any Fj mode of the system,

and F1 and F2 as a pair are disentangled from the rest of the modes.

These properties can be captured by the entanglement of formation which for

a specific bipartition is defined as [57]

EF (ζ) = min
{pi,|ψi〉}

∑
i

piSi, (3.6)

where the minimum is taken over the ensemble of pure states |ψi〉 that realises

the mixed state ζ =
∑

i pi |ψi〉〈ψi|, with
∑

i pi = 1. Here, Si is the von Neumann

entropy of each pure state for that bipartition.

For mode F1 we have that the sum of all entanglements of formation EF (1 : j)

between S1 and any other mode Fj, except F2, is upper bounded [58, 54, 55],

N∑
j=3

EF (1 : j)2 ≤
(
1− (1− ε)2

)
log2 2, (3.7)

and is hence small if ε is close to zero. The notation EF (1 : j) means that the

bipartition is between modes F1 and Fj and the rest of the modes Fk 6=1,j have been
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3.2 Entanglement Monogamy and Edge States

traced out. This bound is derived considering the tangle, a measure of mixedness

similarly defined to the entanglement of formation. The tangle is defined as

τ(ζ) = min
{pi,|ψi〉}

∑
i

piSLi, (3.8)

where SLi is the linear entropy of each reduced |ψi〉〈ψi| for the bipartition in

question. The linear entropy is simply the opposite of the purity and for a density

matrix α it is defined as SL(α) = 1 − tr(α2), where tr(α2) ≤ 1 is the purity

achieving equality when α is pure. The two entanglement monotones are related

as [54, 55] EF ≥ τ log 2 and E2
F ≤ τ log2 2. This implies that EF (1 : 2) ≥

(1− ε) log 2, with the convention that EF (ω) = log 2. Then to derive the bound

(3.7) we invoke the multi-partite monogamy relation derived by Osborne and

Verstraete in Ref.[55],

τ(1 : 2) + τ(1 : 3) + · · ·+ τ(1 : n) ≤ 1. (3.9)

The situation is equivalent for F2 and its entanglement with the other Fj modes.

We point to Appendix B.2 for the proof of this bound. For the pair F1 and F2

we can see that it is minimally entangled with all other modes as a whole, in the

sense that

EF (1, 2 : 3, . . . , N) ≤ ε2 log 2. (3.10)

This bound is derived by using the fact that τ , and consequently EF , is a con-

vex function over the set of density matrices [57], and using that a maximally

entangled fermion pair contributes log 2 entanglement. Again, we can straight-

forwardly generalise to the case where we have ξABj ≥ 1− ε, j = 1, . . . , 2k. Then

there exist k-many modes that are at most 2kε log 2 entangled with the modes

forming the complement of the system.

This result is general and applies to both free and interacting fermionic sys-

tems alike, where only the covariance matrix has been considered. It states that,

due to their maximal correlations across ∂A, virtual edge modes appear as largely

disentangled from the rest of the system. In 1D systems this decoupling dictates

that the edge states appear as zero modes in the entanglement spectrum. In 2D

systems they appear as mid-gap states in general. Thus, simply by investigat-

ing the singular values of ΓAB we can diagnose the existence of edge states in a

many-body system.

23



3.2 Entanglement Monogamy and Edge States

3.2.2 Entropic Lower Bound

Going further, the existence of edge states in topological systems implies a lower

bound for the entanglement entropy. The existence of virtual edge states implies

a lower bound for the entanglement entropy. In terms of the covariance matrix

we have (see Appendix B.3 for proof)

S(ρA) ≥ 1

2
‖ΓAB‖2

2 log 2, (3.11)

where the 2-norm for a Hermitian matrix X is defined as ‖X‖2
2 = tr(X2) and

corresponds to the sum of the squared singular values. For its interpretation

note that the entropic contributions from the bulk states can be adiabatically

removed. However, virtual edge states are topologically protected in the sense

that they are robust under adiabatic deformations of the corresponding physical

Hamiltonian [59, 60].

This has a consequence regarding the area law coefficient α in (2.20). In

general α depends on microscopic parameters of a given model describing a many-

body system. However, since topological phases are characterised by ‖ΓAB‖2
2 6= 0

and the lower bound (3.11) for them is non-trivial, then the area law coefficient

α can never be made zero. On the other hand, for a topologically trivial system,

one can always tune α → 0 by increasing the energy gap so that the correlation

length shrinks.

3.2.3 Entanglement Qualifier

Using monogamy of entanglement we have concluded that almost maximally en-

tangled modes of a many-body system are witnessed by singular values ξABj ≈ 1

of ΓAB. In analogy with the entanglement gap [61], they are separated by a

covariance gap from the lower ξABj corresponding to non-universal bulk states.

This allows the definition of a diagnostic tool that extracts the signature of the

maximally entangled pairs, thus probing the topological character of the system.

To count the number of such modes in a way robust to imperfections and finite

system sizes, we define the entanglement qualifier Sq as

Sq = tr(Γ†ABΓAB)q, with 0 < q ∈ N. (3.12)

24



3.3 Entanglement Freedom

In the limit q → ∞ this quantity converges to the number of maximally en-

tangled modes across ∂A in units of Majoranas. A Dirac mode counts as two

Majoranas. This qualifier, therefore, detects the existence of physical edge states

at open boundaries only by considering correlations in the ground state for closed

boundaries.

3.2.4 Open Questions

Now we pose open questions regarding monogamous edge states in systems com-

posed of particles more exotic than fermions, such as parafermions [62] or other

fractionalised quasiparticles with exotic exchange statistics [42]. Such systems

also host edge states whose dimensionality cannot be counted in units of Majo-

ranas as we have done for fermionic systems. Moreover, monogamy relations can

be violated [63] for higher dimensional local Hilbert spaces [64]. Another direc-

tion regarding fermions is that of Floquet topological systems. They are trivial

states which under periodic driving acquire a topological invariant [65] and edge

states in the time domain. The question is whether monogamy relations [66] can

be formulated for such cases.

3.3 Entanglement Freedom

As stated in subsection 2.2.2, the computation of expectation values of free sys-

tems only involves polynomials of covariance matrix elements. Furthermore, time

evolution is executed by conjugating operators with the time evolution operator

which is Gaussian since the Hamiltonian is quadratic. Thus we know that free

fermion systems are efficiently simulatable on a classical computer. In contrast,

interacting systems pose the hardest problems in theoretical physics, as their

complexity is in general exponential. This is due to the fact that a many-body

state needs an exponentially large number of parameters to be specified.

Traditionally one uses mean-field, density functional, or perturbation theory

to expand around points in the parameter space where the solution is known

because this instance of the model is non-interacting. These approaches can be

employed when correlations are weak, or interactions induce small corrections
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3.3 Entanglement Freedom

to the state of the solvable point. The idea commonly is to smoothly connect

the physics back to a local free theory. There is also the special case of inte-

grable systems [67], which have an extensive number of integrals of motion. They

accept complete analytical solutions but they are not robust to perturbations

of the Hamiltonian. Importantly, their correlations, even though they may be

structured, they are not all contained in the covariance matrix as is the case for

free-systems.

Commonly interesting many-body phenomena are emergent, and so they can-

not be treated perturbatively. Examples from condensed matter physics are

high-Tc superconductivity or the fractional quantum Hall effect. Huge leaps

in understanding of such systems have been obtained using variational ansätze

[68, 69, 70, 71]. However, these results were based on highly non-trivial physical

intuition on the physicist’s part about the nature of the emerging free quasi-

particles. Modern methods in condensed matter physics such as tensor net-

works [72, 73, 74] or neural networks [75, 76, 77] aim to compress the description

of a many-body state in order to efficiently compute observables and simulate

time evolutions. Again, these methods are variational in nature.

In this section we introduce our contribution towards this endeavour. We

define the interaction distance, a measure of the effect that interactions have on

the correlations of a quantum many-body state, i.e. the entanglement spectrum.

Simultaneously, the interaction distance determines the emergent quasiparticles

in which the state can be regarded as Gaussian. In order to achieve this, we have

generalised the meaning of “freedom” and allowed the emergent modes on which

the state is free to be non-local. The computation of the interaction distance is

shown to be efficient and so we envision that it can be combined with existing

variational ansätze for many-body states or that it will aid numerical simulations

of interacting systems so that they scale favourably with the system size.

3.3.1 Free-Fermion Many-Body Entanglement Spectrum

For a bipartition A,B, the eigenvalues λ of the reduced correlation matrix CA,

which we defined as the single-body entanglement spectrum in 2.2.4, are “1− 1”

related with the single-body entanglement energies ε, as proved by Peschel [25].
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3.3 Entanglement Freedom

That is, for free-fermion Hamiltonian, the reduced ground state of partition A

can be written as a Gaussian

ρ =
e−H

[
A

Z
, (3.13)

where Z = tre−H
[
A , and H[

A =
∑

ij∈A h
[
ijf
†
i fj is the bland-flattened free-fermion

Hamiltonian restricted to region A, as mentioned in 2.2.4. See Appendix A.1

for more details. The set ε is the eigenvalue set of the matrix h[ij∈A, and natu-

rally there exist corresponding normal modes c with support on partition A. The

modes c are a polynomially large subset (single particle sector) of the exponen-

tially large set of the Fock basis of A (left Schmidt vectors). This is seen when

the Gaussian state is written in the diagonal basis as ρ = 1
Z
e−

∑|A|
i=1 εic

†
i ci .

The set ε constructs the free many-body entanglement spectrum comprising

the entanglement energies Ee in Eq.(2.18), as a consequence of Wick’s theorem

and Fermi-Dirac statistics. For N single-particle entanglement energies εi, we

have the 2N energies [8]

Ef
e(ε) = Ee0 +⊕Ni=1{0, εi}, (3.14)

where Ee0 = −∑i logZi is the normalising background energy with Zi = 1+e−εi

being the normalisation of each entanglement mode εi. Note that this is also the

structure of the energy spectrum of a free fermion system at zero temperature.

Equivalently, in terms of the eigenvalues p of the free reduced density matrix ρf,

we have

pf = ⊗Ni=1

1

Zi
(1, e−εi), (3.15)

reflecting the fact that each mode can have occupation ni = 0, 1 according to

Fermi-Dirac statistics with Boltzmann-like probabilities weighted by their ener-

gies. Our convention is to order the energies as ascending εi ≤ εj, i ≤ j, and

so Eei ≤ Eej, i ≤ j. The corresponding probability spectrum is then ordered in

descending order pi ≥ pj, i ≥ j.

3.3.2 Many-Body Spectral Asymmetry

Now let Ee be a generic entanglement spectrum. We would like to measure its

Gaussianity, i.e. to what extent it obeys the structure of (3.14) which is dictated
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Figure 3.2: Illustration of emer-

gent freedom. Gaussian ground

state ρf ∈ F in the free mani-

fold F gains finite interaction dis-

tance DF(ρ(λ)) > 0 from a Gaus-

sian σ ∈ F when interactions tuned

by parameters λ are introduced to

the Hamiltonian. It is possible that

there exist λf such that ρ(λf) ∈ F ,

which is embedded in the space of

density matrices of the entangle-

ment Hilbert space, D(He).

by Wick’s theorem. Observe that any free spectrum is symmetric around its mean

〈Ee〉. Explicitly, this means that ∀Ej ≤ 〈Ee〉, there exists a Ek ≥ 〈Ee〉 with j ≤ k

such that |Eej − 〈Ee〉| = |Eek − 〈Ee〉|. Then the addition of non-quadratic terms

in the Hamiltonian does not allow for a description of the state through only its

second moments and so the asymmetry of the entanglement spectrum quantifies

how invalid Wick’s theorem becomes.

Interestingly, it is not disallowed that the state has an effective free description

even in the presence of interactions. Then the symmetry in the entanglement

spectrum will re-emerge, and obey the free structure (3.14). These cases are of

particular interest as they would be truly emergent phenomena.

A naive simple measure of the asymmetry is the third moment, or the skewness

α3(Ee), which is defined in (2.15). Of course, α3(Ee) = 0 when the spectrum is

symmetric level-wise as described above, but the converse is not true. This is

reasonable as only the third moments do not fully characterise a distribution.

However, we can use it as a first easily applicable diagnostic.
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3.3.3 Interaction Distance

The interaction distance, DF(ρ), of a state ρ ∈ D(He) in the entanglement Hilbert

space, is defined as the trace distance to the closest Gaussian state σ

DF(ρ) = min
σ∈F

D(ρ, σ), (3.16)

where D(·, ·) is the trace distance defined in (3.5) and F is the manifold of all

Gaussian states. In other words, σ is any state of the form of (3.13). We have

chosen this distance measure as it has an operational interpretation in terms of

distinguishability between ρ and σ when measuring observables [78]. In particu-

lar,

D(ρ, σ) = max
P

tr(Pρ− Pσ), (3.17)

where 0 ≤ P ≤ I is a positive semidefinite matrix representing a measurement.

Thus D(·, ·) is the maximal probability of distinguishing between two states by

measuring in the optimal basis of observables. In case DF(ρ) = 0 exactly, there

exists a Gaussian σ with the same spectrum. Finally, since the trace distance

is upper bounded by unity, we know that DF shares the same upper bound. A

geometric interpretation of DF is illustrated in Fig.3.2 and for further comments

on this figure see Appendix B.6.

Efficient Representation of the Optimisation Problem

In order to compute DF , we need to perform the minimisation in Eq. (3.16).

Consider the trace distance between two density matrices D(α, β). In general,

α, β ∈ F need not be diagonal in the same basis. Let us rotate to the basis of

one of them, say α. The matrix β is relatively rotated by some unitary W with

respect to α. Now we invoke the result of Ref [79] which states that D(α,W †βW )

is minimised when W = I, and so the two density matrices are simultaneously

diagonal. Furthermore, their spectra need to be sorted in the same order, as any

other relative shuffling increases the trace distance. This is because for diago-

nal matrices the trace distance (or Kolmogorov distance) is just the sum of the

absolute values of the pairwise differences of their eigenvalues.

We can gain intuition by considering the trivial case where α and β each

represent a single mixed qubit. In such a set-up D(α, β) is proportional to the
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Euclidean distance of their corresponding Bloch vectors Σα,β. Suppose that we

work in the computational basis of α so that Σα lies on the positive z-axis. In

general, Σβ is at an angle θ relative to the z-axis. Then varying the length of Σβ

we can find how mixed it has to be so that D(α, β) is minimised. However, this

minimum is as low as possible when θ = 0. In this particular case D(α, β) = 0 is

always achievable.

Using this result, we consider that ρ is diagonal so its entanglement spectrum

Ee is accessible, and also the basis is permuted so that it is rank-ordered. Then

we need to vary only the spectrum of σ. Having to minimise only with respect

to the spectrum of σ is a significant reduction in complexity of minimising DF .

Another consequence is that the eigenstates of the optimal model σ are the same

as the eigenstates of ρ. Now recall that σ’s entanglement spectrum is constructed

by εs as (3.14). Thus the interaction distance can be cast as

DF(ρ) = min
ε

1

2

∑
k

|e−Ek − e−Ef
k(ε)|. (3.18)

Note that even if the search-space of the problem is exponentially large, this prob-

lem is classified as efficient as the set of variational parameters ε is polynomially-

large. For more details see Appendix B.5. We provide details on how this opti-

misation is performed numerically in Appendix B.4.

Properties of the Interaction Distance

Now that we are equipped with an efficient way to compute DF numerically for

any given entanglement spectrum, we can ask what its distribution is over generic

states. In Appendix B.6 we present a numerical study on random states sam-

pled from D(He). We find that DF follows accurately a log-normal distribution

over the sample. Furthermore, we confirm that the maximal value attainable

is Dmax
F = 3 − 2

√
2, which is significantly lower than the naive upper bound at

unity concluded by the upper bound of the trace distance. Note that the most

common value of DF , as observed numerically from sampling random states, is

approximately 1
5
Dmax
F . Furthermore, our numerical results confirm our conjec-

ture, DF (ρ) = DF
(

1
2

(ρ⊕ ρ)
)
, stating that a doubly degenerate spectrum has

the same interaction distance as its non-degenerate version. This we interpret as
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the existence of a zero-mode ε = 0 in the entanglement spectrum. We can now

use the monogamy relations discussed in Section 3.2 to argue that such a mode

would be decoupled from the rest and so would not participate in correlations

induced by interactions.

Note that besides DF being a well defined quantity with an operational in-

terpretation, a practical reason to use it instead of simpler measures, such as

moments of Ee, is that it is quite common that the orders of magnitude spanned

by Ee are not accommodated by machine precision. The interaction distance

on the other hand, does not need all of the entanglement spectrum to faithfully

diagnose the entanglement freedom of the state since it exponentially favours the

low-lying entanglement levels which are the most physically relevant ones as they

correspond to highest Schmidt weights. In addition, by the operational interpre-

tation of the trace distance, we can understand DF as a measure of the error one

makes in computing expectation values using the optimal free state σ instead of

the original state ρ.

Alternative state-distance measures may equally well be employed, such as

the relative entropy [80]. Throughout this thesis, however, the convention is that

DF is measured with D(·, ·). We have found that the numerical investigations

presented in Chapter 6 and in Appendix B.6, are qualitatively unaffected by the

choice of the relative entropy.

The Role of the Partition

Recalling that ρ depends on the bipartition, we expect that DF(ρ) depends on

it as well. Depending on the dimensionality and the correlation length in the

system, DF(ρ) behaves accordingly. To be more precise, we define a system as

free if DF = 0 for all partitions. Note, that the partitions need to be large enough

compared to the correlation length of the interacting system.

We can precisely comment, on extreme and trivial cases. Let the biparition

be such that A contains one site and B all the other sites. According to the

Schmidt decomposition, He is 2-dimensional, and so the entanglement spectrum

has 2 eigenvalues. Then a single ε can be found to recreate this spectrum. Next,

consider the case of the trivial cut, i.e. either A or B contain no sites. Let the
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empty partition be A. We can tensor a third system C which is disentangled

with B. Now the cut is between B and C and the reduced state of either is pure

with spectrum of one non-trivial eigenvalue at 1 and the rest are zeros. Then

this spectrum is trivially constructed by setting εj → ∞, ∀j, and so DF = 0.

In this way the interaction distance treats the whole of B as a mode which is

occupied with probability 1. In other words the interaction distance measures

how interacting a partition is with its complement.

From a quantum information point of view, the partial trace for a particular

bipartition can be seen as a quantum channel which maps the pure ground state

to the reduced mixed state. Here, by quantum channel is meant a trace-preserving

map which keeps the eigenvalues non-negative. Furthermore, a channel is called

Gaussian if it preserves the Gaussianity of a state [81], and we remind that a

pure state is considered Gaussian. Thus, by matching the spectrum of ρ with a

Gaussian spectrum we are searching for modes c defined on the partition so that

the partial trace is a Gaussian map, the extent of which is measured by DF .

On the Nature of the Optimal Free Modes

We now refer to previous works defining correlation measures of mixed states

[82, 83, 84, 85, 86, 87]. What is novel in our approach is that F over which we

are optimising contains all Gaussian states. That is, we allow them to be defined

on any set of fermionic quasiparticle operators c.

We can gain insight about the modes c of σ by following the argument which

reduced (3.16) to (3.18), and is a generalisation of our two-qubit example. The

free state manifold F is decomposed in equivalence classes of unitarily equivalent

Gaussian states. Within each class, the trace distance is minimised by a certain

representative σ which commutes with ρ [79]. Then, DF is obtained by taking the

minimum over representatives of each class. Since the trace distance is minimised

when σ and ρ are simultaneously diagonal, the free modes c are the Schmidt vec-

tors corresponding to the single-particle entanglement levels ε we have optimised

for. Importantly, these unitarily transformed modes are, in general, a non-linear

combination of the modes of the microscopic model. That is, for the cost of

freedom, we have abandoned simplicity of the quasiparticles’ internal structure.
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In addition, we consider that the entanglement spectrum generically separates

into a long-wavelength part (low entanglement energies), carrying universal in-

formation about the system, and a short-distance part which is non-universal.

These different physical regimes can be probed by varying the linear size of the

partition A relative to the size of quasiparticles. Assuming A is much larger than

that, the long-wavelength information in the entanglement spectrum comes from

correlated quasiparticle excitations across the cut. For small partitions the struc-

ture of the quasiparticles becomes apparent and DF in general is finite since the

quasiparticles emerge out of interactions.

3.3.4 Generalised Freedom and Generalised DF

According to (3.18) the interaction distance vanishes when the entanglement spec-

trum of ρ satisfies the free fermion structure given in (3.14) for certain single-

particle energies, ε. This generalises the concept of “freedom” in fermionic models.

In general no ε’s exist that satisfy all the constraints imposed by the free-fermion

entanglement structure, as their number grows exponentially with the system

size, while the number of ε’s grows only linearly. With this in mind we can inter-

pret the interaction distance as a measure of the complexity of a state. Naturally,

this point of view defines free states as those of lowest complexity. Note also that

the notion of freedom is tied to the statistics of the free modes c we are optimising

over. Changing the entanglement structure that we consider free corresponds to

changing the free manifold F from which the interaction distance is measured. In

general, the corresponding “free” structure might imply that single-body levels

themselves are occupation-dependent.

Now a concern arises regarding the incompatibility of the size of reduced

density matrices of degrees of freedom with unequally large local Hilbert spaces.

Considering that these reduced states live on He obtained after a Schmidt decom-

position of the state, it is possible to tensor ancillary modes to either partition,

which are orthogonal to all other modes, that contribute no entanglement across

the cut. This amounts to padding the spectrum of ρ or σ with zeros, which

changes their dimension but not their rank which is of physical importance. If

the dimension of HE is made to exceed the Hilbert space dimension of either
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3.3 Entanglement Freedom

subsystem, then upon Schmidt recomposition non-physical states with highest

entanglement energies are projected out.

3.3.5 Comments on the Efficiency of Computing DF

Our motivation to use the entanglement spectrum to diagnose the effect of in-

teractions is that He inherits universal properties of H for a generic many-body

system. Importantly, the calculation of DF requires only the knowledge of the

ground state, thus it is more efficient than examining freedom in the energy spec-

trum which is more expensive to compute in general.

In Appendix B.5 we elaborate on the efficiency of the optimisation that com-

putes DF . The efficiency of determining the ground state in the first place de-

pends on the dimension of the system. For critical 1D systems, logarithmic

corrections to the area law are possible, which leads to the polynomial com-

plexity in determining ρ. For critical 1D states, a multi-scale renormalisation

ansatz [74] can be implemented in order to obtain the entanglement spectrum.

For higher-dimensional systems, our method is reliant on the efficiency of the

current methods in the literature for computing the entanglement spectrum of

the ground state. For 2D systems, one can use iterative methods such as the

Lanczos algorithm in order to access only the ground state in the exact diago-

nalisation framework. Furthermore, Monte-Carlo algorithms [88] and 2D tensor

networks [73, 72] can be used in a variety of systems to variationally approximate

the ground state in a framework where the entanglement spectrum is naturally

obtained.

3.3.6 Open Questions

A central open question remains. Is there a procedure to determine the free

effective physical Hamiltonian acting as parent of the reduced state σ? Recall

that c and σ change depending where we cut. So the free parent Hamiltonian

needs to have a ground state which is compatible with all cuts larger than ξ.

This procedure need not be unique, as a ground state can have many parents.

An approach utilising two-point correlations is presented in Refs. [7, 89].
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We have observed that DF is sensitive to the renormalisation flow of given

models. It is an open question whether this can be formulated concretely. Now,

a property of the trace distance is that it decreases under a lossy quantum chan-

nel. In other words, two states become more indistinguishable when we lose

information about them. Interestingly, renormalisation can be viewed as a lossy

quantum channel. Hence, this formalism may pave the way to understanding

DF ’s behaviour under the renormalisation.

Finally, we mention another measure relying on reduced states to which DF

can be connected. First, there has been considerable research on generalised

Pauli constraints [90]. There, a one-particle density matrix is obtained by tracing

out all other Fock states. Then its spectrum is used to define coordinates in a

hypercube, one of the corners of which is the Hartree Fock point containing all

free states. It is an interesting question how DF is related to the distance of

that vector from the free corner. Note that in our formalism the manifold F in

general extends throughout D(He) since we cut in real space where the particles

are delocalised, in contrast with the Hartree Fock corner which is localised due

to single particle states being a subset of the Fock basis.

3.4 Summary

In this chapter we introduced two novel entanglement diagnostics; the monogamy

qualifier that diagnoses edge states and the interaction distance which measures

the non-Gaussianity of a state. Their common trait is that they accept as ex-

clusive input correlations of the state and search for particular patterns in them.

For the monogamous edge states, the pattern one looks for is the high singular

values of the correlation block of the covariance matrix, which are separated with

a covariance gap from the rest. The interaction distance measures how accu-

rately the free-fermion entanglement structure is satisfied by a given many-body

entanglement spectrum. Since both the covariance matrix and the entanglement

spectrum can be obtained for any state, these measures are straightforwardly

applicable in a generic setting.
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Chapter 4

Kitaev’s Honeycomb Model

4.1 Introduction

Kitaev’s honeycomb model is an interacting spin model, solvable through fermion-

isation [91, 92, 93, 94]. Its gapless phases are important in the context of quantum

spin liquids [95]. In its gapped phases it supports topological order and one of

them also supports a topological phase with non-trivial Chern number. This

richness of behaviour renders it suitable for demonstrating the entanglement di-

agnostics we introduced in Chapter 3. We also analyse in detail its fermionic

entanglement in gapped and gapless phases by reducing the problem to the study

of 1D systems. Furthermore, we build effective models capturing the universal

signatures. Our results supplement the conclusions we draw regarding monoga-

mous edge states and the ground state’s entanglement freedom.

4.2 The Model

Kitaev’s honeycomb model [13] describes spin-1/2 degrees of freedom residing on

the vertices Λ9
v of a hexagonal lattice Λ9 subject to the Hamiltonian

H =
∑

r=x,y,z

∑
〈i,j〉

Jrσ
r
i σ

r
j +K

∑
〈〈i,j,k〉〉

σxi σ
y
jσ

z
k, (4.1)

where Jr > 0 are nearest neighbour spin exchange couplings dependent on the

link’s orientation, r, and K is the magnitude of a three spin term which explicitly
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4.2 The Model

breaks time reversal symmetry, as illustrated in Fig. 4.1.

Every hexagon hosts a Z2 valued six spin operator W9 = σxσyσzσxσyσz, with

the σr ordered in a clockwise or anti-clockwise fashion around the hexagon, and

is a symmetry of the Hamiltonian, [H,W9] = 0. Thus the Hilbert space of the

spin model thus breaks into sectors, which we refer to as vortex sectors, labeled

by the Z2-eigenvalue patterns, {W9 = ±}. The convention is that W9 = − is a

π-flux vortex in the hexagon. The ground state, |Ψ〉 lies in the no-vortex sector,

{W9 = +}, as dictated by Lieb’s theorem [96].

4.2.1 Exact Solution with Free Majoranas

In order to exactly solve the model, Kitaev then embeds the two-dimentional

Hilbert space of each vertex to the four-dimensional Fock-space of two fermions.

Each fermion is then broken down to two Majoranas and the dimensional redun-

dancy is taken care of by projecting to the one parity-sector.

This is realised by substituting σri = ibriγi, where b, γ are Majoranas, in the

Hamiltonian, which as illustrated in Fig. 4.1 becomes

H =
i

2

∑
〈ij〉

Jijuijγiγj +
i

2
K
∑
〈〈ij〉〉

uikukjγiγj, (4.2)

where k is the connecting site between sites i and j and Jij = Jr depending on the

orientation r of (i, j)-link. The operators uij = ibri b
r
j are interpreted as Z2-valued

gauge fields living on the links, and are static in that they satisfy [H, uij] = 0.

The projection to the physical subspace of the model dictates that Di =

ibxi b
y
i b
z
i ci = 1, where [H,Di] = 0. It, however, anti-commutes with the three

gauge fields sharing a vertex, thus acting as a local gauge transformation. The

integrals of motion, W9, are gauge-invariant and are written as

W9 =
∏

(ij)∈9
uij. (4.3)

Since both W9 and uij are symmetries, by fixing a gauge in terms of a pattern

{u = ±}, a vortex sector {W9} is determined. There are exponentially many

gauges corresponding to a vortex sector. Gauge-fixing turns (4.2) into a free

Majorana Hamiltonian, in which case it models a p-wave superconductor. Each
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4.3 Topological Phases and Topological Order

vortex sector can then be in a gapless phase or a topological phase characterised

by a Chern number [97, 98, 99]. We can reinterpret the gauge field by absorbing

it into the Jij hoppings thus allowing them to be negative. One can work with

(4.2) and tune between vortex sectors by flipping signs of the Jijs.

The state of a vortex sector {W9} is the gauge-symmetrisation

|Ψ〉{W9}
∝

∑
{u}|{W9}

|u〉 ⊗ |γu〉 , (4.4)

where γu is the gauge-invariant fermionic ground state for that sector and is found

by diagonalising (4.2) for any {u} that respects the chosen {W9}. Kitaev also,

independently from Lieb, numerically found that the ground state is |Ψ〉{+}, to

which there correspond 2|Λ
9
v |+1-many gauges.

4.3 Topological Phases and Topological Order

As is already established, each vortex sector is a free-Majorana system with some

supporting a topological phase characterised by a Chern number ν 6= 0.[20]. In

the later sections we will analyse the entropic properties of Kitaev’s model by

building upon the work of Yao and Qi [100]. They found that the partial trace

respects the tensor product structure of eigenstates of the form (4.7). Therefore

the entanglement entropy is composed of two independent contributions

S = Sγ + Su, (4.5)

allowing us to study the entanglement of the topological phases supported in

some vortex sectors separately from the entanglement of the gauge field which is

responsible only for the topological order.

The fermionic contribution, Sγ, is due to only short-range entanglement and

satisfies an area law. The free Majoranas are exclusively responsible a vortex

sector’s Chern number, given that that vortex sectors supports it a topological

phase [20]. Their contribution is non-universal as the edge velocities can be tuned

by the microscopic parameters Jij and K [51]. However, Sγ is lower bounded

by the topologically protected edge states that cannot be adiabatically removed

without a phase transition. We capture this by our monogamy qualifier.

38



4.4 Chain Decomposition and Phase Diagram

After the gauge symmetrisation (4.7) the gauge fields uij become fluctuating

and give rise to an entanglement entropy Su. It was shown that Su contains

both an area law and an constant reduction signalling the presence of topolog-

ical order. The area law part is understood as the entanglement generated by

sequential Hadamard gates on the bi and bj Majoranas which compose the uij

lying on the links cut by the partition boundary, which are needed to rotate to

another Majorana basis which is factorised across the cut [2, 100]. The topologi-

cal entanglement entropy [52] takes the value Stopo = log 2. It can be understood

as a bit of information on the partition boundary storing knowledge about the

boundary’s parity.

In the following we will examine some important topological phases that arise

in this model, and to this end, unless explicitly stated, we will be concerned

with the fermionic part, Sγ, of the entanglement entropy, and we will drop the

subscript. In any case, Su is unaffected by the phase in which the Majoranas are.

4.4 Chain Decomposition and Phase Diagram

For convenience we deform the honeycomb into a brick-wall by setting the lattice

vectors to vx = (1, 0) and vy = (0, 1), which only deforms the energy spectrum

leaving the topological aspects invariant. We will study the no-vortex sector,

which hosts a Chern number |ν| = 1, and the full-vortex sector, {W9 = −},
characterised by |ν| = 2. As argued in Ref. [20, 98], the ν = 2 phase nucleates

from the ν = 1 phase due to anyon-anyon interactions, where the role of anyons

is played by Majoranas trapped in the center of vortices. We set |Jz| = 1 and

|Jx| = |Jy| = J and by tuning |J | ∈ (0, 1] we can induce a quantum phase

transition to trivial phases with ν = 0.

The gauge chosen for no-vortex is {uij = +} and corresponds to the hoppings

Jij, K being positive along the arrows in Fig. 4.1. Full-vortex is realised by

setting uij = − on every other y-link along rows of the honeycomb, equivalent

to flipping the sign of the Jy and overlapping K hoppings [101, 102] denoted by

red in Fig. 4.1. Both sectors gap out upon letting |K| > 0. To implement the

interpolation we multiply Θj = (1−θ)+θ(−1)j, where j enumerates z-links along
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Jx

Jz

Jy

K

vxvy

𝐴 𝐵

Figure 4.1: (Left) Anisotropic nearest neighbour couplings Jx,y,z (solid) and chiral

next nearest neighbour couplings K (dashed) with lattice vectors vx,y (blue).

Black and white discriminates between sublattices. The Majorana hoppings are

chosen to be positive along the arrows. In red we denote the hoppings whose

value is dictated by θ, enabling the interpolation between no-vortex and full-

vortex. (Right)(Top) The partition boundary, ∂A, along which virtual edge states

propagate (arrows), respects translation invariance along vy and (Bottom) the

partition boundary (red dashed) cuts between a p-chain’s unit-cells (blue dashed).

vx. The parameter θ ∈ [0, 1] continuously flips the signs and allows interpolating

between no-vortex for θ = 0 and full-vortex for θ = 1.

Lahtinen and Pachos [97, 99, 20, 98] mapped out the phase diagram over the

no-vortex and full-vortex sectors and found that vortices bind localised Majorana

modes and behave as anyons under braiding, which is realised by interpolating

between vortex sectors and is implemented by adiabatic tuning of the couplings,

Jij [13, 102, 101].

The no-vortex sector (θ = 0) hosts an achiral topologically trivial phase with

ν = 0 for J < 1/2. However it exhibits Abelian topological order as Kitaev

showed that in this limit the model reproduces the toric code [29]. This is visu-

alised by the honeycomb being deformed into a square lattice of strongly coupled

dimers on each z-link behaving effectively as spins. For J > 1/2 the system is in a

gapless spin-liquid phase for K = 0 and attains a gap for |K| > 0 realising a chiral

topological phase with ν = sgn(K). The topological order is non-Abelian and
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4.4 Chain Decomposition and Phase Diagram

the vortices behave as Ising anyons [13, 91]. In the full-vortex sector (θ = 1), the

toric code Abelian phase occurs for J <
√

1−K2

2
, while for J >

√
1−K2

2
the system

is in a chiral Abelian phase with ν = sgn(K)2 [20]. Note that in full-vortex the

phase boundaries are K-dependent, contrary to no-vortex. Both chiral phases of

no-vortex and full-vortex with ν 6= 0 exist only for K 6= 0. For K = 0 time-

symmetric gapless semi-metallic phases occur which can be interpreted as critical

points between where the chirality flips manifesting as sign flipping of ν. Finally,

for J = 1, where one can visualise the hexagons as being canonical, tuning be-

tween |ν| = 1 no-vortex to the ν = |2| full-vortex by tuning θ we find that the

quantum phase transition occurs at θc = 3+K2

4
[99]. In Fig. 4.2 we show the bulk

energy gap G vanishing at all of these critical points (ν1 ↔ ν2) between phases

with Chern numbers ν1,2. The gap G is defined as explained in 2.2.1 for free

Majoranas and is readily obtained from the eigenvalues of the hopping-pairing

matrix corresponding to a vortex-sector for an instance of parameters J and K of

the Hamiltonian (4.2). The phase transitions are also witnessed by the divergence

of the fermionic entanglement entropy, S, which is given by (2.16).

Under the gauge choice imposed by Θ and parametrisation of the Jijs, the

Hamiltonian (4.2) can be written as

H = i
2

∑
j,k J

(
γb
j,kγ

w
j−1,k + Θjγ

b
j,kγ

w
j,k−1

)
+ γb

j,kγ
w
j,k

+K
(

Θjγ
b
j,kγ

b
j+1,k−1 + Θjγ

b
j,kγ

b
j,k+1 + γb

j,kγ
b
j−1,k

)
+K

(
Θjγ

w
j,kγ

w
j−1,k+1 + Θjγ

w
j,kγ

w
j,k−1 + γw

j,kγ
w
j+1,k

)
+h.c., (4.6)

where γb,w
j,k live on the black or white sublattice on the z-link with coordinates

(1 < j < Lx, 1 < k < Ly) in the vx,y basis as illustrated in Figure 4.1. The

parametrisation Θj respects translational invariance along vy and a Fourier trans-

form of the Majorana operators, γb,w
j,k =

∑
p e
−ipkγb,w

j,p , with p ∈ [0, 2π) leads to

H(p) = i
2

∑
j J

(
γb†

jγ
w
j−1 + Θje

−ipγb†
jγ

w
j

)
+ γb†

jγ
w
j

+K
(

Θje
−ipγb†

jγ
b
j+1 + Θje

ipγb†
jγ

b
j + γb†

jγ
b
j−1

)
+K

(
Θje

ipγw†
jγ

w
j−1 + Θje

−ipγw†
jγ

w
j + γw†

jγ
w
j+1

)
+h.c.. (4.7)
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Figure 4.2: (Left) Energy gap G (defined in 2.2.1) in the no- (θ = 0) and full-

vortex (θ = 1) sectors. For no-vortex the (0 ↔ 1) phase transition occurs at

Jc = 1/2, while in full-vortex the (0↔ 2) transition takes place at Jc =
√

1−K2

2
.

(Inset) (1 ↔ 2) occurs for staggered couplings corresponding to θc = 3+K2

4
.

(Right) Divergence of the rate of change of S (given by (2.16)) correlates with

the phase transitions. Here Lx = Ly = 144 in the main figures and Lx = Ly = 100

in the insets.

where the momentum index, p, of the fermionic operators γb,w
j,p is suppressed.

An easy way to implement the Fourier transform such of quadratic Majorana

Hamiltonians is to just give a momentum-phase to terms which describe hoppings

outside the unit-cell, with the angle of the phase being the neighbouring degree

of the hop, as can be see by comparing (4.6) and (4.7).

Note that apart from the time-symmetric momenta p = 0, π, each p-chain

for p ∈ (0, π) ∪ (π, 2π) describes complex fermions. Furthermore, the condition

γ†p = γ−p implies that the truly independent chains are those for p ∈ [0, π] as it

is easy to confirm that H(p) = H(−p). For independent systems the entropy,

given by (2.16), is additive. The total fermionic entanglement entropy is S =

S(0) + S(π) +
∑

p∈(0,π) S(p) where the the first two terms are computed with

a factor of 1/2 reflecting the Majorana composition of the 0, π-chains. This is

equivalent to computing S =
∑

p∈[0,2π) S(p) where all terms contain a 1/2-factor.
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Figure 4.3: Energy spectrum E(p), obtained as the spectrum of the hopping-

pairing matrix of (4.7), on a cylinder and the corresponding the entanglement

spectrum λ(p), consisting of eigenvalues of the correlation matrix defined in 2.2.2,

and the entanglement dispersion S(p), given by (2.16), for the ν = 1 (Left) and

ν = 2 (Right) phases. The real space edge states are indicated in red. Here J = 1

and K = 0.1. The bulk energy gap, G = 2 minp |E(p)| is the minimal distance

between the two bands (black), as a special case of its definition in 2.2.1.
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4.5 Gapped Entanglement

4.5 Gapped Entanglement

In this section we dissect the entanglement in the gapped |ν| = 1 and |ν| = 2

topological phases of the honeycomb model, for the bipartition in Fig. 4.1. We

make the approximation to decompose the fermionic entropy into Sedge due to

edge states and to Sbulk due to bulk contributions

S ≈ Sedge + Sbulk. (4.8)

We focus on Sedge to study how it encodes the dominant part of the entanglement

and relate it to universal signatures of the topological phases. We obtain an

approximate expression for the Sedge that shows how it depends on the edge states’

velocity, reproducing the results regarding the entropic lower bound in topological

phases [7, 27]. We elaborate on the origin of this lower bound by showing that

it arises from 1D subsystems of the full 2D model having completely decoupled

Majorana modes which are topologically protected. Moreover, we construct a

simple effective model that accurately approximates the total fermionic entropy.

We then reinterpret the result via our monogamy qualifier.

4.5.1 Edge Velocity and Entropy

To study how the edge states contribute the dominant part of the fermionic

entropy we first focus on the no-vortex sector at the |ν| = 1 topological phase

with a single Majorana edge state per edge. To connect these edge states to the

entanglement entropy, we analytically evaluate their energy dispersion along the

edge [103, 104, 105]. Here we sketch the calculation and refer to Appendix C.5

for details.

In the no-vortex sector, the p-chains in (4.7) can be written as

H(p) =
∑
j

χ†jG1χj + χ†jG2χj−1 + χ†jG†2χj+1, (4.9)

where χ†j =
[
γb
j
†
γw
j
†
]
, G1 =

[
g1 g2

g2
∗ −g1

]
, and G2 =

[
g3 g4

0 −g3

]
, with g1 =

−K sin p, g2 = i
2
(Je−ip + 1), g3 = i

2
K(1− eip), and g4 = i

2
J . We express the edge

state as Ψ =
∑∞

j=1 χ
†
jΨj |0〉 with Ψj =

[
Ψ1
j Ψ2

j

]T
.
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4.5 Gapped Entanglement

Placing the system on a semi-infinite cylinder with circumference along vy,

the Schrödinger equation H(p)Ψ = EΨ leads to the following recursive equation

G2Ψj−1 + (G1 − E)Ψj + G†2Ψj+1 = 0, (4.10)

and imposing semi-infinite boundary conditions such that the cylinder is open at

j = 1 and extends to j → +∞ we have (G1 − E)Ψ1 + G†2Ψ2 = 0. Multiplying

(4.10) by zj ∈ C, summing over j, definining the generating function G(z) =∑∞
j=1 z

j−1Ψj, we obtain

G(z) =
(
z2G2 + z(G1 − E) + G†2

)−1

G†2Ψ1. (4.11)

The energy dispersion E(p) can be obtained from an analysis of the poles of

G(z). In general an edge mode exists at the ends of a p-chain if the all the poles

lie outside of the unit circle [103]. Imposing this condition leads to a system of

constraints allowing us to solve for the energy dispersion E±(p) as a function of

the microscopic parameters J,K, with the ± subscript indicating the right- and

left-moving edge mode that can be localised on that edge. If the system is placed

on a finite cylinder, one boundary hosts an edge mode with E+ and the other

with E−. Linearising its expression around the momentum where the zero energy

occurs, p? = π as shown in Fig. 4.3, we get

E± = ±vE(p− π) + . . . , vE = (2J + 1) cos tan−1

(
J

4K

)
(4.12)

This analytic expression for the velocity is valid in the momentum range ∆p

where the pole conditions for the edge states’ existence are satisfied (see App

and App of Ref. [106]). The range ∆p is determined numerically by tracking

the behaviour of the poles of G(z) as J,K are varied. We find that ∆p coincides

accurately with the distance between the Fermi momenta, between which the

edge states exist.

After obtaining this expression for the velocity of the edge states, vE we want

to relate it to the velocity of the virtual edge states, vλ, appearing in the en-

tanglement spectrum. We recall that the energy spectrum with open boundaries

and the entanglement spectrum for periodic boundaries are adiabatically con-

nected [7], i.e. the latter is a band-flattened version of the former. Furthermore,
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Figure 4.4: (Left) The correspondence between the physical velocities vE and

the virtual velocities vλ. The analytic expression (solid line) given by (4.12)

for the physical velocities agrees with the numerical values (dots). Via the

ansatz (4.13) (dashed line) it reproduces the numerically obtained virtual ve-

locities (squares).Numerically the velocities are obtained by a linear fit at p = π.

Entanglement spectrum (Top) and entropy (Bottom) in the momentum inter-

val ∆p (between vertical lines) in the no-vortex (θ = 0) sector with J = 1 and

K = 0.12. A linear approximation λ± with velocity vλ obtained form (4.13)

contributes almost all of the entropy inside ∆p (blue circles). The analytic ex-

pression (4.15) (red dashed) as a quadratic approximation to Sedge(p) reproduces

the entropy within accuracy of 0.1% inside ∆p.

since both velocities are the slopes of the edge state as it crosses the p? momentum

it is reasonable to relate them with a proportionality constant,

vλ ≈ κvE. (4.13)

To obtain an ansatz for κ, we first assume that the energy spectrum is flattened

around its half-bandwidth energy at p? and the energy of this band is rescaled

to unity. Subsequently, we center the entanglement spectrum around zero and

rescale it as λ→ 2(λ− 1
2
) such that every entanglement level takes values between

±1. This leads to the ansatz κ = (2G(p?) +W (p?))−1, whereG(p?) andW (p?) are
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Figure 4.5: Area law S = αLy

obeyed by total entropy (see

(2.16)) for cut-lengths Ly large

enough so that there are no finite

size effects. The area law coef-

ficient, α, which is obtained by

just dividing S by Ly and is up-

per bounded by log 2, increases

as the virtual velocity vλ (see

(4.13)) decreases as a function of

J (Insets). Here K = 0.12.

the energy gap and the bandwidth at p?, respectively. In Fig. 4.4 we demonstrate

that this phenomenological ansatz provides a good approximation of vλ for a wide

range of couplings J and K.

The entanglement spectrum can then be approximated by the linearized ex-

pression around p?

λ±(p) = ±vλp+
1

2
, p ∈ ∆p. (4.14)

Inserting this into (2.16) and expanding around p?, the dominant entropy contri-

butions can then be approximated by

Sedge(p) ≈ log 2− 2v2
λp

2 +O(p4). (4.15)

In Fig. 4.4 we show that this expression provides an excellent approximation of the

entropy within the momentum interval ∆p where the virtual velocity is accurately

obtained from the physical velocity of the edge states via the phenomenological

ansatz.

Our analysis, although simple, it demonstrates general properties of the entan-

glement, quantified by the entropy, for systems that host topologically protected

edge states. The inability to remove the edge states without a phase transition

implies the existence of at least one p? momentum. As the velocity of the edge

traversing the gap at p? can be made arbitrarily large, vλ → ∞, by tuning the

microscopics of the model without inducing a phase transition [51], the total en-

tropy has a theoretical lower bound of log 2, consistent with earlier studies [7, 27].
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4.5 Gapped Entanglement

Furthermore, the contribution by each momentum p is upper bounded by log 2

for these gapped phases, as the bulk can be adiabatically made to contribute no

entropy and the maximal contribution from a pair of Majorana edge modes is

log 2 with the contribution decreasing with increasing velocity vλ. As the perime-

ter of the cut ∂A is directly proportional to the momentum range ∆p, this means

that the area law contribution S ∼ α|∂A| should be smaller when the velocity

increases. Indeed, Fig. 4.5 shows that as the microscopic parameters are tuned

to give smaller velocities, the entanglement entropy grows faster with increasing

of the cut length |∂A|, i.e. the area law coefficient α increases.

4.5.2 Reinterpretations of the Entropic Lower Bound

As the entanglement entropy in the gapped phases is lower bound by irremovable

log 2-contributions of the edge states at momenta p?, we proceed to investigate

its origin in the no-vortex sector for which p? = π. Focusing on the p?-chain we

examine the zero-dimensional edge states it hosts. Finally, we construct a four-

Majorana toy model for the edge entanglement of the 2D model and reinterpret

the result in terms of our entanglement monogamy qualifier.

Lower Bound from Kitaev’s Chain

To this end we focus first on the 1D wire corresponding to the only crossing point

of the edge states at p? = π in the vortex free sector, as shown in Fig. 4.3. For

θ = 0 the general Hamiltonian (4.7) takes the simple form

H(π) = i
∑
j

(
(1− J)γb

j γ
w
j + Jγb

j γ
w
j−1 + h.c.

)
+K(γb

j γ
b
j−1 − γw

j γ
w
j−1), (4.16)

where γb,w are Majoranas due to p? being a time-symmetric momentum point.

We suspect and confirm that H(p?) is mappable to Kitaev’s superconducting

wire whose Hamiltonian is

H = −1

2

∑
j

µnj + (tf †j fj+1 + ∆eiφfjfj+1 + h.c), (4.17)

where nj = f †j fj the on-site occupation of the fermions. The phase is quite

simple. For |t| < |µ| it is a trivial insulator with w = 0 winding number and
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4.5 Gapped Entanglement

for |t| > |µ| it obtains a winding number |w| = 1 which manifests as a strong

zero-mode [56] for open boundary conditions. These unpaired Majoranas at the

edges of the chain lead to a doubly-degenerate energy spectrum, with degeneracy

exponentially decreasing as a function of the chain’s length.

Upon decomposition fj = 1
2
(γb
j +iγw

j ) of the complex fermions into Majoranas

H = i
∑

j

(
µ

2
γb
j γ

w
j +

t+ Re(∆)

4
γb
j γ

w
j−1 +

t− Re(∆)

4
γb
j γ

w
j+1 + h.c.

)
+

Im(∆)

4

(
−γb

j γ
b
j−1 + γw

j γ
w
j−1

)
, (4.18)

where Re(∆) = ∆ cosφ and Im(∆) = ∆ sinφ. Setting t = Re(∆) to kill the third

term we can read off the corresponding couplings µ = 2 (1− J), Re(∆) = 2J

and Im(∆) = −4K. The topological phase of Kitaev’s chain occurs for |t| >
|µ| corresponding exactly to the parameter range of the no-vortex sector of the

honeycomb model, J > 1/2.

Then the entropic lower bound of the gapped no-vortex sector is understood as

follows. Let’s take the J = 1 case where the hopping in the black-white unit-cell

vanishes and the majoranas at the end of the chain completely decouple. When

the wire with periodic boundary conditions is partitioned into A and B, we are

cutting through two γw
j − γb

j Majorana dimers, one per ∂A-component. Each

dimer can be fused to a complex fermionic mode which can be occupied or not.

Tracing out one of the Majoranas of each dimer makes the parity of the combined

occupations of the fermionic modes uncertain since each fermion needs both of its

Majoranas in order to know its occupation. Thus we lose one bit of information

corresponding to even versus odd parity giving rise to a log 2 entropy, which can

be viewed as 2 log
√

2 where
√

2 is the quantum dimension of a Majorana, leading

to S ≥ 2 log
√

2. Following then the same argument for the full-vortex sector, we

interpret the origin of its entropic lower bound, S ≥ 4 log
√

2 as the 2 log
√

2 from

each of its p?-chains that host zero modes at their ends.

Toy Model for Edge Entanglement

We now construct an effective model, for the entropy of the no-vortex sector,

comprising four Majoranas representing the virtual edge states on either side of
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Figure 4.6: (Left) Toy model for the entropy S. Partitioning the system on a

torus into A,B gives rise to virtual edge states on either side of the cut which we

treat as 0D Majorana modes aL and aR living on the edges of A and bL and bR

living on the edges of B. They hybridize according to the effective Hamiltonian

(4.19), where the solid arrows correspond to strong hopping set to unity and weak

to wp. (Right) Entropy Stm (red dots) between the Fermi points obtained from

the effective model reproduces accurately the entropy S (black line) of the ν = 1

phase of the honeycomb model. Here Lx = 24, Ly = 60, K = 0.125. (Inset) The

value of the optimized proportionality constant κtm as the function of K.

the entanglement cut on a torus. The two virtual Majorana edge modes aL and

aR that appear at the boundary of the cylindrical region A are entangled with

their counterparts bL and bR in B as shown in Fig. 4.6. The motivating question

is how much of the total entropy can be attributed to the edge states alone. The

toy model Hamiltonian is

H = i(aLbL − aRbR) + iwp(aLaR + bLbR), (4.19)

where the signs are chosen such that a π-flux threads the chain, the inter-partition

hopping is set to unity and the intra-partition hopping to wp.

Since the we have fixed the hopping across the cut arbitrarily, we define

wp = κtm|E±(p)|, where κtm is a proportionality constant to be determined. The

connection with the no-vortex sector is made by the use of its edge dispersion

relation E±(p). The intuitive justification for the use of E±(p) is as follows. We

know that at p? the edge states of that p?-chain for open boundaries are com-

pletely decoupled from the bulk so that E±(p?) = 0 and as we move away from

50



4.5 Gapped Entanglement

that momentum the edge states of that p-chain start penetrating into the bulk

obtaining a finite energy E±(p?) > 0 due to their hybridisation. We interpret

their overlap through the bulk as an effective hopping between them, and after

adopting the same intuition for the virtual edge states by viewing each partition

as an effectively open chain, we arrive at the proposed form of wp. Of course, at

p? we have wp = 0 and the model is reduced to two Majorana dimers which are

cut in half by ∂A and we recover the entropic lower bound.

The entanglement entropy Stm(wp) of such a small system can be obtained

analytically (see Appendix C.6) by computing by tracing out the Majoranas bL

and bR in B, as shown in Fig. 4.6, and is given by

Stm(wp) =
1

1 + s2
(−2s2 log s+ (1 + s2) log(1 + s2)), (4.20)

where s = −wp−
√
w2
p+4

2
. To compare this expression with S obtained from the no-

vortex sector, we optimise the proportionality constant κtm such that |S−Stm|
S

<

1% in the momentum interval ∆p. In Fig. 4.6 we show that Stm accurately

approximates Sedge demonstrating that the behaviour of the entropy of the edge

states dominates that of the total entropy of the model.

Monogamy and its Robustness

We can reinterpret the entropic behaviour of the virtual edge states in terms of

entanglement monogamy. For the no-vortex and full-vortex sectors placed on a

torus where regions A,B are cylindrical, since there is maximal entanglement

across the cut from the p?-chains, which also gives rise to the lower bound of

the total fermionic entropy, the virtual edge states have to be decoupled from

their corresponding A,B-bulks and contribute maximal singular values to the

off-diagonal block of the covariance matrix, ΓAB. We capture the signatures of

these highly entangled monogamous Majorana pairs with our qualifier Sq. The

convergence of the qualifier to the number, S∞, of such pairs is shown in Fig. 4.7

and is consistent with the dimensionality of the edge states.

Moreover, we know that the entropy is lower bounded as S ≥ trΓ2
AB log

√
2,

where trΓ2
AB is the sum of the squared singular values. Furthermore, the only

singular values that cannot be adiabatically removed are those ξAB = 1 due to
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Figure 4.7: (Left) Convergence of qualifier Sq (given in (3.12)) for the Kitaev and

Haldane models. For Kitaev’s model we find Sq→∞ → 2ν consistent with each

phase and for Haldane’s model we have Sq→∞ → 4ν as a Dirac mode corresponds

to two Majorana modes. Here J = 1 for the topological and J = 0.35 for the

trivial phases respectively for the Kitaev model, withK = 0.15 and Lx = Ly = 16.

For Haldane t1 = 1, t2 = 1/3, φ = π/3, and Lx = Ly = 12. (Right) System size

L = Lx = Ly dependence of Sq for no-vortex Kitaev with ν = 1, in the presence

of disorder of amplitude ∆ = 0.5. Here J = 0.8, K = 0.15. The data is averaged

over 50 disorder realisations.

the topologically protected edge states and their number is equal to S∞. Thus

the entropic lower bound is S ≥ 2 log
√

2.

Topological phases are robust against local disorder in the form of randomness

in the hoppings Ji,j, K. Disorder is introduced as Jαd i,j = Jαi,j(1 + δJ i,j), where

δJ i,j is drawn uniformly from |δJ i,j| ≤ ∆. The couplings K are randomised

similarly as Kdi,j = K(1 + δK i,j), where δKi,j with |δK i,j| ≤ ∆2. As long as the

disorder amplitude is low compared to the energy gap G, the phase is stable and

no quantum phase transition occurs. Thus we expect that as long as 〈G〉∆ > 0

then 〈Sq�1〉∆ is almost quantised and equal to the number S∞ of maximally

entangled Majorana pairs. The average is taken over disorder realisations of

amplitude ∆. We demonstrate the robustness in Fig. 4.8 (Right). Disorder

causes the the maximal singular values of ΓAB to decrease slightly from the exact

values 1, an effect which can be compensated against by growing the system size,

and so it suffices to tune q to a finite value so that the phase diagram can be

identified. The existence of the topological phases for the gapped cases shown in
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Figure 4.8: (Left) Energy gap for the disordered no-vortex sector of Kitaev’s

model as a function of the coupling J and the disorder ∆. The topological phases

with ν = 0 and ν = 1 are separated by a phase transition at Jc = 0.5 for ∆ = 0.

The data is for Lx = Ly = 30 averaged over 50 disorder realisations of J and

K. (Right) The same phase diagram diagnosed by Sq showing extended regions

where S240 = 2|ν| identifies the topological phases even for strong disorder. The

non-quantized behaviour for ∆ > 1 identifies the thermal metal phase

Fig. 4.8 (Left) can be also verified by computing the Chern number ν in real-space

from the Majorana-Majorana correlation matrix Cij as defined in (2.14), which is

also averaged over disorder realisations and converges to a quantised value as the

system size as well as the partitions A,B,C used to compute it incerease [20].

In Appendix C.7 we provide details regarding finite size effects in the presence

of disorder. We also make a connection between the effect of disorder and of

finite temperature, T > 0, in the no-vortex sector, since they both drive the

system into a thermal metal when either the ∆ or T are comparable to the

energy gap. [107, 108]. The thermal metal occurs when disorder or temperature

create spurious vortices which after arriving at a critical density close the energy

gap turning the system into a metal. In Appendix C.8 we describe how the the

covariance matrix is obtained at T > 0 with the insertion of Boltzmann weights in

the occupations of the two-level systems that make up the model as is performed

by Self in Ref. [109], and we present numerical results supporting this connection.
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Figure 4.9: Energy, entanglement spectrum and entropy for gapless phases and

criticalities of no-vortex (θ = 0). (Left) Tricriticality (ν = 0 ↔ ±1 at J = 1
2
,

K = 0 which becomes (Middle) a (0↔ 1) criticality for K = 0.1. (Right) Gapless

phase, or (−1↔ 1) criticality, at J = 1, K = 0.

4.6 Gapless and Critical Entanglement

We now study the entanglement, again for the bipartition of Fig. 4.1, in the

gapless (semimetallic) phases and criticalities related to the no-vortex and full-

vortex sectors again from the viewpoint of the p-chain decomposition. For a

quantum critical point between two topological phases with Chern numbers ν1,2

we denote the criticality (ν1 ↔ ν2). Representative band structures as well as

entanglement spectra and entropies are shown in Fig. 4.9, Fig. 4.10, and Fig. 4.11.

For a vanishing energy gap G(pc) = 0 the correlation length along chains

located at critical momenta, pc, diverges. In 1D quantum systems second-order
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Figure 4.10: Energy, entanglement spectrum and entropy for gapless phases and

criticalities of full-vortex (θ = 1). (Left) Tricriticality (ν = 0 ↔ ±2) at J = 1√
2
,

K = 0 which becomes (Middle) a (0↔ 2) criticality K = 0.1 with K dependent

boundary at J =
√

1−4K2

2
. (Right) Gapless phase, or (−2 ↔ 2) criticality, at

J = 1, K = 0.

phase transitions with linearly dispersing gapless excitations are described by

conformal field theory (CFT) capturing the universal behaviour of all correlations

functions [110]. In this context, the entropy, Sc, of a line segment of length x

violates the area law and follows the Cardy-Calabrese scaling [111]. Moreover,

the chains around the Fermi points for momenta such that |p − pc| � π, are

gapped, with however the gap being so small so that they deserve to be called

“quasicritical”. It is known that their entropy, Sc, obeys the area law [111, 10].
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Figure 4.11: Energy, entanglement spectrum and entropy for criticality between

no-vortex and full-vortex occuring at θ = 3+4K2

4
for K = 0 (Left) and K = 0.1

(Right). Here J = 1.

These two cases are given by

Sc =
c

3
log(

Lx
π

sin
xπ

Lx
) + const., Sqc =

c

3
log ξ + const., (4.21)

where c is the central charge of the conformal field theory that describes the

criticality, Lx is the chain’s length, and ξ(p) ≈ 1/G(p) is the correlation length.

Finally, for the p-chains between Fermi points, exact zero modes occur. We

treat those chains as in the previous section 4.5 as the zero modes contribute a

log 2 to the entropy and their bulk’s contribution can be considered negligible,

in accord with (4.15). They compose non-dispersing edge states connecting the
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Fermi points which are located at the tips of local cones formed the nodal points

of the band structure as displayed in Fig. 4.9 and Fig. 4.10. We thus write the

total fermionic entanglement entropy as

S ≈ Sc + Sqc + Sedge, (4.22)

where Sc is the contribution from critical chains at the Fermi points, Sqc contains

the quasi-critical contributions with long correlation lengths and Sedge symbolises

the contribution of the chains hosting zero-modes.

4.6.1 Entropic Lower Bound

As we interpreted the entropic lower bound for the gapped topological phases to

be stemming from Majorana zero modes localised at the ends of the p?-chains,

the same analysis holds for the gapless phases (K = 0).

Let’s take the the isotropic case with J = 1. For the no-vortex sector, notice

that the phase diagram of the π-chain given by (4.18) is K-independent since

the gauge freedom in φ allows us to remove ∆I . Thus this wire exhibits also a

topological phase with Majorana edge states for K = 0, consistent with Fig. 4.9

showing a flat band of edge states between the Fermi points. The cones however

move towards each other by deforming the honeycomb [99] by taking J < 1 and

thus the collection of zero-modes between the Fermi points can shrink. On the

other hand, the π-chain’s edge states are topologically protected by its winding

number and hence can not be adiabatically removed,[112]. Therefore, the total

entropy of the gapless phase of the no-vortex sector satisfies S ≥ 2 log
√

2.

Similarly, for the full-vortex sector,at p? = 0 the Hamiltonian isK-independent

leading to one decoupled Majorana at each edge of the chain exactly as in the

no-vortex case. For p = π the Hamiltonian has three decoupled Majoranas at

its edges, one of the completely decoupled and the other two coupled together.

The two coupled Majoranas form a gapped fermion consistent with the finite

energy edge state observed in Fig. 4.10. Following then the same argument as

for no-vortex, the the lower bound to the entropy of the full-vortex sector is

S ≥ 4 log
√

2.
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4.6.2 Central Charge of Critical Chains

The critical momenta pc at which the bulk gap closes, G(p) = 0, for the gapless

phases and critical points examined here can be obtained exactly from the an-

alytic form of the energy gap along both momentum directions G(q, p) which is

presented in Appendix C.2.

In the previous section we saw that in the gapped topological phases edge

states give rise to gapless entanglement spectra. At critical points, however,

the entanglement spectra are gapped and exhibit nesting of entanglement levels

in the vicinity of the critical momenta pc (see Fig. 4.9 (Left,Middle), Fig. 4.10

(Left,Middle), and (see Fig. 4.11 (momentum pc = 0)). Correlations in critical

chains obey a power law decay and this is responsible for the critical entanglement

scaling. Since power law correlations imply the lack of a characteristic length

scale, the correlations inherit a self-similar structure. Note, this is not the case

for the gapless phases, which are the K → 0 limit of topological phases (see

Fig. 4.9 (Right), Fig. 4.10 (Right)).

By growing a linear partition on the pc-chains we extract their central charge

which appears as the proportionality factor in scaling of the entropy with the par-

tition’s chord length as in (4.21). We present our linear fits in Fig. 4.13 and we

find that all scale with c = 1/2 consistent with linearly dispersing fermions [110].

Based on Refs [113, 114, 115], Lahtinen argues in Ref [106] that we can under-

stand the value of the central charge in terms of the CFT that characterises the

critical chains of gapless and critical points of the honeycomb model. This in

turn characterises the 2D model’s universality class.

More specifically, the gapless phase (K = 0) in the vortex free sector the single

independent critical chain corresponding to the critical momenta pc is given by

H(pc) =
i

2

∑
j

Jγb†
jγ

w
j−1 +

(
1 + Je−ipc

)
γb†

jγ
w
j + h.c., (4.23)

describing free fermions on a staggered chain. At the honeycomb’s critical point,

J = 1
2
, where it transitions to the gapped ν = 0 phase, there critical momentum

is pc = π where the chain describes Majoranas on a staggered chain which is

simply Kitaev’s wire [116]. It and has a phase transition at J = 1
2

where the

winding number changes from |ν| = 1 (J > 1
2
) to ν = 0. The low energy theory
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Figure 4.12: Real space phase transition induced by a varying J = sin( πx
2Lx

),

where x is the vx coordinate. Edge states (red) appear at the x for which J = 1
2

for no-vortex and J =
√

1−4K2

2
for full-vortex. Here K = 0.1.

of the critical point is of a linearly dispersing gapless fermion and since the Kitaev

chain is dual via the Jordan-Wigner transformation to the quantum Ising chain,

is known that this criticality has c = 1
2
. For J > 1/2 there are two momenta pc

where linearly dispersing chiral fermions appear, but only one is independent due

to the Majorana condition. Then, at one of the critical momenta 3π
2
≤ pc < π

the chain describes complex fermions with staggered complex hopping. The low

energy theory is again of a dispersing fermion, with E = ±| sin( q−2π/3
2

)| for J = 1

at pc = 2π
3

, as the function of the momentum q ∈ [0, 2π] along the chain, again

consistent with c = 1
2
.

For K 6= 0 the criticality again occurs for J = 1/2 at pc = π, as seen from 4.9,

and the gapped topological phase for J > 1
2

has |ν| = 1 with chirality depending

on sgn(K). We can think of the criticality as an interface between the trivial

phase, playing the role of the vacuum, and the topological phase. As we see from

Fig. 4.12, where we vary the J-hopping along the p-chains as J = sin πj
2Lx

, so

that one part of the torus is in the trivial and another in the topological phase,

there are chiral gapless dispersing Majoranas appearing on the interface. They

are described by a c = 1
2

CFT [13] and they are viewed as an achiral fermion,

again consistent with c = 1
2
, same as for K = 0.

In the full-vortex sector the gapless phase (K = 0) has four Fermi points. At
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J = 1 the two at pc = π
6
, 5π

6
are independent and look like

H(pc) =
i

2

∑
j

γb†
jγ

w
j−1 + ((−1)je−ipc + 1)γb†

jγ
w
j + h.c., (4.24)

with dispersion E = ±
√

3±
√

6 + 2 cos(2pc) + cos(2pc − 2q)− cos 2q which is

linear around pc = π
6
, 5π

6
at q = π

3
, 2π

3
, respectively. These two fermions contribute

total c = 1. The transition between the ν = 0 phase and the gapless phase occurs

at J = 1/
√

2. Now the critical chains at pc = 0, π are staggered Majorana

chains with dispersion E = ±
√

2±
√

(7− cos q)/2 and so they both describe

independent linearly dispersing fermions contributing c = 1.

When K 6= 0, the transition may occur at a different point, J =
√

1−K2

2
, but

as there are still two independent Fermi points, the understanding of c = 1 for

the (0 ↔ ±2) transition is the similar. The edge spectra of the ν = ±2 phases

for K 6= 0 are again described by the same CFT and coexist at the critical point

J =
√

1−4K2

2
(see Fig. 4.12).

Finally, the spectrum at the no-vortex to full-vortex (± ↔ ±2) transition is

shown in Fig. 4.11. For J = 1 and K 6= 0 it occurs at θ = 3+4K2

4
, and the gap

closes at pc = 0. This critical point as well is described by a c = 1/2 CFT. For

K = 0 the critical point is (0↔ ±1↔ ±2) and is described by a c = 1.

4.6.3 Anatomy of Critical Entanglement

We now turn to dissect the entanglement (4.22) of the gapless phase (J > 1
2
,

K = 0) in the no-vortex sector (θ = 0). This is a semimetallic case of Majorana

fermions with two Fermi points which are furthest away from each other at pc =

±2π
3

for J = 1 and their distance shrinks as J → 1
2
. As we see in Fig. 4.9, the

phase exhibits flat edge states between the Fermi points.

We then approximate the entropy per momentum p as arising from three

components

Scomp(p) =


Sedge = log 2 p ∈ ∆p,
Sc p = pc,
Sqc p /∈ {∆p ∪ pc}.

(4.25)
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Figure 4.13: (Left) Entropy scaling of pc-chains as a function of the chord length

dictated by (4.21) for the criticalities studied and characterised by the Chern

number on either side of the transition, (ν1 ↔ ν2). For each critical chain, linear

fit (solid lines) implies central charge c = 1/2. (Right) Composite entropy, Scomp,

in the gapless no-vortex phases K = 0, J = 1. The flat band contributes Sedge

between the Fermi points pc = ±2π
3

, exactly where the critical contributions Sc

arise, and quasi-critical chains contribute Sqc outside of pc. The non-universal

constant in (4.21) is chosen such that Sqc(0) = S(0). Here Lx = Ly = 300.

(Inset) Even if the system is gapless, for a fixed partition size x the system still

obeys the area law. Here x = 105.

The range ∆p for the edge state contributions, which due to the edge velocity

vanishing coincides with 2π
3
≤ p ≤ 4π

3
, can be obtained analytically for K = 0

(see Appendix C.5).

For the correlation length of a quasi-critical p-chain we write ξ(p) ≈ 1/G(p).

The energy gap of each chain is known analytically and we refer to the Appendix

C.2 for its form. Neglecting the quasi-critical contributions between the Fermi

points and assuming that the edge states are the only contribution, we find that

the approximation is satisfactory, |S−Scomp|
S

≈ 6% as we shown in Fig. 4.13. The

presence of edge states implies that also the gapless phase exhibits a lower bound

of entanglement, that is now given by S ≥ Ly
2π

∆p log 2. We also find that even

if the system is critical, for a fixed partition length x the entanglement entropy
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4.6 Gapless and Critical Entanglement

still obeys the area law.

Such decomposition of the entropy is straight-forwardly generalisable to the

full-vortex case. For the gapless phase 1√
2
< J < 1 and K = 0 we can decompose

the entropy into three analogous contributions. Furthermore, the other criticali-

ties presented above adhere to the same decomposition, with the absence of the

Sedge contribution.

4.6.4 Lower Bound for Effective Central Charge

Recalling that the independent p-chains are those for p ∈ [0, π], implying that

H(pc) = H(−pc), we conclude that the total entropy at a critical point containing

Nc critical p-chains with p ∈ [0, π] scales with an effective central charge

c̃ ≥ cNc. (4.26)

The lower bound becomes apparent for an appropriate aspect-ratio of the system

as well as that of the partition. As shown in Fig. 4.14, the lower bound is

saturated in the thin-torus limit Ly � Lx when Ly is commensurate with the

critical momenta pc. As Ly → Lx and the p-momentum density increases, the

effective central charge is always c̃ > cNc as quasi-critical chains appear around

pc and add to the scaling for small compared to their correlation length partition

lengths x. Thus in the thermodynamic limit, the lower bound of the effective

central charge can only be reliably obtained in the large partition limit x→ Lx/2,

i.e. as the partition size approaches half the system size [62] and the system has

its best chance to appear quasi-1D.
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Figure 4.14: Scaling of the total en-

tropy S in the gapless no-vortex

phase (θ = 0, J = 1, K = 0) as

a function of the partition-length

x for cut-lengths Ly commensurate

with pc = 2π
3

. (Left) For a thin

torus, Ly � Lx, the quasi-1D sys-

tem exhibits effective central charge

c̃ = 1/2. For a fat torus, Ly ≈ Lx,

the lower bound of c̃ is approached

as x → Lx
2

. (Right) For Ly � Lx

(Bottom) the pc-chain dominates

the scaling. For Ly ≈ Lx (Top)

Quasi-critical chains show scaling

even when x → Lx thus contribut-

ing to c̃. Here Lx = 210.

4.7 Entanglement Freedom

Reflecting on how remarkable it is that such a simple exactly solvable model can

host both topological phases and topological order, we are inspired to compute

the interaction distance, given by (3.16), of the ground state, |Ψ〉{+}. As we will

see, our result allows us to draw conclusions about states of other vortex sectors,

as well. First we create a partition A which we take to be deformable to a disk,

which is not our usual cylindrical cut on a torus, as here we are not interested in

edge properties, but rather in just the structure of the many-body entanglement

spectrum, and let the reduced density matrix supported on A be ρ.

Now recall Yao and Qi’s result presented in section 4.3, stating that the cor-

relations of the fermions and the gauge field across an entanglement cut are

independent. In particular, in Ref [100] it is proven that the spectrum of ρ is the

direct product of two spectra ρ = ρ[u ⊗ ργ, as the separability of the state into

a u and a γ component is respected under reduction to A. The ρ[u contribution

stems from the Z2 gauge field and ργ is the density matrix obtained from the free
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4.7 Entanglement Freedom

Majoranas. In particular, for a partition boundary of length |∂A| (this is how

many (i, j)-links are cut) the spectrum of ρ[u has one eigenvalue with 2|∂A|−1-fold

degeneracy. We will call such spectra “flat”. Now, DF(ργ) = 0 by definition of

the interaction distance. Furthermore, a flat spectrum of degeneracy equal to a

power of 2 can be recreated by zero-modes whose number is equal to that power.

We will explore this further in Section 6.5 for more generic flat spectra.

This means that ρ[u and ργ both satisfy a tensor product structure over free-

fermion modes and as a result so does ρ. Therefore, DF(ρ) = 0, and since this

argument holds for any cut, it renders |Ψ〉{+} free. This is a surprising result as

it holds regardless of the coupling regime of the model, that can support Abelian

anyons in the Toric Code extreme dimerisation limit and SU(2)2 non-Abelian

anyons for Jx ≈ Jy ≈ Jz. However, these free fermions are in general non-local,

and in fact in this case they are as articulated by the Z2 symmetrisation. We

remind that this is also the source of the topological entanglement entropy [100].

Again from the Appendix of Ref [100] we conclude that the above analysis

holds for any vortex sector, as also for them the entanglement spectrum is a direct

product of a power-of-2 flat spectrum with a free-fermion one, giving again DF =

0. We note here that when analysing other eigenstates of the honeycomb one

needs to enforce a the parity constraint on the fermions which is compatible with

the number of vortices present in the system and the boundary conditions [117].

This however does not alter our result.

Finally, it is important to acknowledge that even if we have diagnosed the

eigenstates (4.7) as free, the energy spectrum of the Honeycomb model is not one

of free fermions. This can be confirmed as follows. We know that the Hamiltonian

is a direct sum of free-fermion vortex sectors each with its own free-fermion energy

spectrum and that DF = 0 for any free-fermion entanglement spectrum. Thus,

given an energy spectrum we can rescale it so that it is normalised and then

compute its DF . However, since the vortex sectors of a large system are too

many to efficiently carry out this computation, and exact diagonalisation of the

model in the spin language restricts us to too small system sizes compared to the

correlation length, we work with random free spectra without loss of generality.

That is, we take ρf
1 and ρf

2 diagonal matrices with random free fermion spectra

generated as described in Appendix B.6.5. By construction each hasDF(ρf
1,2) = 0.
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4.8 Summary

Then we compute DF
(

1
2

(
ρf

1 ⊕ ρf
2

))
and realise that in general it is non-zero. The

numerical results presented in Appendix B.6.1 we show that for the special case

ρf
1 = ρf

2 the interaction distance of their direct sum is again zero. Regarding

now the model’s ability to host anyons, this can only be appreciated when one

interpolates adiabatically between vortex sectors [91].

4.8 Summary

We have examined properties of both the fermionic and gauge part of the en-

tanglement in Kitaev’s honeycomb model. We have extracted universal manifes-

tations of the edge states in the topological phases via our monogamy qualifier

and provided consistent alternative interpretations to the origin of the entropic

lower bound. For other topological phases of free Majorana fermions we expect

that these results will hold, up to modifications to accommodate edge state de-

formations that can change the number of crossings without a phase transition in

multilayer systems [118]. Furthermore, we explored the meaning of entanglement

freedom in this model and connected it with the topological order, reinforcing the

reason why this model is so important. In the next chapter we use the arguments

and results obtained from this model to identify universal features of models that

are related to the honeycomb directly or indirectly.
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Chapter 5

Related Free Models

5.1 Introduction

We begin with Haldane’s honeycomb model, a modification of graphene host-

ing a topological phase. In the same way that a Kitaev wire is located at the

p? = π momentum in the no-vortex sector, we find a Su-Schrieffer-Heeger chain

in Haldane’s case. Finally, we introduce a novel model which we name Chern

semi-metal, exhibiting a vanishing indirect gap separating bands characterised

by Chern numbers. These models are studied with our entanglement diagnostics

and analogues of results obtained from the analysis of Kitaev’s model.

5.2 Haldane’s Honeycomb Model

Haldane’s honeycomb is a toy model for the integer quantum Hall effect [119]. It

is a modification of graphene, which describes free complex fermions with nearest-

neighbour hoppings. Graphene is able to host edge states on its boundaries [120].

Haldane added chiral next-nearest neighbour hoppings to induce a gap while

having vanishing net flux through the system. The hopping pattern is the same

as that of Kitaev’s no-vortex sector (see Fig.4.1) and the Hamiltonian is

H =
∑
〈i,j〉

t1f
†
i fj +

∑
〈〈i,j〉〉

t2e
iφf †i fj + h.c.. (5.1)
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Figure 5.1: Energy on a cylinder (Top) and entanglement spectrum on a torus

(Bottom) of Haldane’s model for t1 = 1, t2 = 0.1. For φ = π
2

(Left) the energy

spectrum has a fake particle-hole symmetry and for φ = π
4

(Right) it is mirror-

symmetric around p = π due to sub-lattice symmetry

where t1, t2 > 0, and the sign of φ ∈ [0, 2π) is consistent with a chosen chiral-

ity. The model also invites a staggered chemical potential term which creates an

imbalance between the black and white sublattices and breaks inversion symme-

try. The robustness of the topological phase to this staggering is highest when

|φ| = π/2. Here we do not explore the effect of this term, as the universal

signatures we are interested in are easily generalisable to that case.

5.2.1 Monogamy

To get the covariance matrix for the Haldane model, we decompose the fermions

in the Hamiltonian into Majoranas and then proceed as for the Kitaev model.

That is, we compute their Majorana-Majorana correlations and then we obtain

Γ. When φ 6= 0, π the system is in a gapped topological phase characterised

by Chern number |ν| = 1 and exhibits a single Dirac edge state per boundary.

Placing the system on a torus and partitioning into two cylinders as was done
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5.2 Haldane’s Honeycomb Model

for the Kitaev’s honeycomb, the monogamy qualifier Sq captures the signatures

of maximally entangled pairs across the cut. In Fig. 4.7 (Left) we see S∞ = 4.

This is the same result obtained for the full-vortex sector since in that case we

have two Majorana edge states per edge whose dimensionalities combine to that

of a singe Dirac fermion arising at the boundaries of Haldane’s model. Thus the

lower bound to the entropy is again S ≥ 4 log
√

2.

We expect this signature to be robust under disorder as it is for Kitaev’s

no-vortex sector. Disorder is added to the hoppings as is done for the Kitaev

model with the addition of an on-site random chemical potential. As illustrated

in Appendix D.1, the monogamy signature is stable under weak disorder. For

strong disorder we observe the highest resilience deepest in the topological phase.

5.2.2 Chain Decomposition and SSH Model

Performing a Fourier transformation of the complex fermions in one direction, the

Haldane model is decomposed into p-chains. Representative band structures and

corresponding entanglement spectra are shown in Fig. 5.1 and are deformable to

those obtained from the no-vortex sector of Kitaev’s model (Fig. 4.3). Since we

do not break sub-lattice symmetry the edge states cross at p? = π.

Haldane’s p?-chain is mappable to the 1D Su-Schrieffer-Heeger model [121] of

spinless fermions on a chain with alternating weak-strong hoppings

H =
∑
j

−[t+ δt(−1)j]fi
†fj+1 + h.c.. (5.2)

The momentum kernels of Kiteav’s p?-chain in the no-vortex sector as well as

Haldane’s p?-chain have unitarily equivalent q-momentum kernels to that of the

SSH model. This is because all these three models have winding number w = 1 in

their topological phase as demonstrated in Fig. 5.2. In particular, when SSH is at

its topological fixed point for t = δt and the fermionic sites decouple completely

from the Hamiltonian for open boundaries, its kernel becomes exactly equal to

that of Haldane’s p? chain for φ = π
2
modπ−q and t = − t1

2
. We refer to Appendix

D.2 for more details on the mapping of the p?-chain to SSH and to Appendix D.3

for a brief study of SSH’s resilience to the introduction of disorder.
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Figure 5.2: Winding of Pauli vector of q-momentum kernels obtained for Kitaev’s

no-vortex p?-chain (J = 1, K = 0.1) (Left), Haldane’s p?-chain (t1 = 1, t2 = 0.1,

φ = π
2
), and the SSH model (t = 1, δt = 0.1).

Origin of Entropic Lower Bound

In analogy with the Kitaev model, where the entropic lower bound arises from the

existence of edge states in the Kitaev chain, the Haldane model’s lower bound

is due to the edge states of the SSH model. They cannot be adiabatically be

removed and contribute the maximal entanglement of log 2 entropy per edge.

Thus from an entropic point of view we could call the no-vortex sector of Kitaev

a “half Haldane model”.

Entropy Toy Model

To push the analogy further, we can again capture the behaviour of the entropy

considering only the edge states by constructing a toy model comprising four

complex fermions

H = (a†1a4 + a†2a3) + iwp(a
†
1a2 + a†3a4) + h.c. (5.3)

with a π-flux through the 4-site chain implemented by making the weak hopping,

wp = κtmE±(p) imaginary since the ground stat. Its entropy, Stm, is computed

numerically via the correlation matrix which we restrict to sites 1, 2 and κtm is

again optimised so that |S−Stm|
S
≈ 1%. The form of the toy model’s entropy can

be calculated analytically as well as shown in the Appendix D.4.

69



5.3 DKP Semimetal

5.3 DKP Semimetal

In this section we present a novel model which we call Chern semi-metal and

present its energy and entanglement spectrum and interpret them in light of our

previous results obtained by our entanglement diagnostics. This model hosts

gapless topological phases that share several properties with the Chern insulators

like a well-defined Chern number associated to each band, topologically protected

edge states and topological phase transitions that occur when the bands touch

each, with linear dispersion around the contact points.

5.3.1 The Model

Our model describes free-fermions on a Lieb lattice (face-centered square) with

hopping pattern shown in Fig.(5.3) (Left). The Hamiltonian is

H =
∑
j,k

J(a†j,kbj,k + b†j,kcj,k) +K(a†j,kbj+1,k + b†j,kcj,k+1) +Mc†j,kaj,k + h.c., (5.4)

where aj,k, bj,k, cj,k are complex fermions, represented by triangles, circles, and

squares respectively in Fig.(5.3) (Left), living in the unit-cell with coordinates j, k

on the square lattice, where J,K > 0 and M = meiθ. The model is constructed

to resemble properties of the Haldane model. Note that the net flux through each

square is zero.

5.3.2 Phase Diagram

Since the unit-cell contains three sites, there are three energy bands. For m = 0

there is a Dirac-like cone with tip at zero energy and a zero-energy flat band shown

in Fig.(5.3). The flux threading the triangles breaks time-reversal symmetry

and for appropriate flux-values detaches the bands but keeps a zero indirect gap

and gives a Chern number to two of the bands as indicated in Fig.(5.3). In

Appendix D.5 we present details regarding the quantum phase transitions in the

phase diagram. The Chern number can be computed by integrating the Berry

curvature on the bands since they do not touch and we present the phase diagram

in Fig(5.4).

70



5.3 DKP Semimetal

𝐽 𝐾

𝑚𝑒%&

−π 0 π
−π

0
π

−5

0

5

 

pxpy
 

E

−π 0 π
−6

−3

0

3

6  

ν = 1

ν = 0

ν = −1

py

 

E

Figure 5.3: (Left) Hopping pattern on the Lieb lattice. The dashed line encloses

the unit-cell. Intra-unit-cell hoppings (J) are in red lines and inter-unit-cell ones

with blue (K). The flux-inducing complex hopping (meiθ), represented in green,

breaks time-reversal symmetry. (Middle) For M = 0 the cone touches the flat

band and for M = 0.5i the cone gaps out and the flat band is deformed so that

the system is gapless. Here K = −J = 1.

5.3.3 Relativistic Dispersion

Focusing on the cone appearing for the time-symmetric M = 0 case at momentum

px = py = 0, we expand the Hamiltonian’s momentum kernel, which is presented

in the Appendix, around the tip of the cone and verify that the dispersion is

linear. The linearised kernel, heff , is a relativistic first-order Hamiltonian,

heff = K
[
βx, β0

]
px +K

[
βy, β0

]
py +Mβ0, (5.5)

where we fixed J = −K and the matrices

β0 =

 0 0 −1
0 0 0
1 0 0

 , βx =

 0 0 0
0 0 i
0 −i 0

 , βy =

 0 −i 0
i 0 0
0 0 0

 (5.6)

satisfy, as confirmed by Palumbo [21], the Duffin-Kemmer-Petiau algebra [122],

βµβνβσ + βσβνβµ = βµηνσ + βσηνµ, (5.7)

where ηµν is the Minkowski metric with signature diag(ηµν) = (−1, 1, 1). The

DKP theory describes relativistic spin-0 and spin-1 particles by employing the
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5.3 DKP Semimetal

Figure 5.4: (Up) Chern number phase diagram in function of J and m with

K = 1 and θ = π/2 when the lowest band is completely filled. (Low) Phase

diagram in function of m and θ with K = −J = 1.

same formalism used by Dirac for spin-1/2 particles, i.e. it is first order in the

fields contrary to the second order Klein-Gordon equation. The effective Hamil-

tonian, heff , is thus fully relativistic but from a Dirac Hamiltonian. This implies

that this model does not fit in the periodic table of topological gapless phases

which classifies Hamiltonians constructed out of Pauli matrices [36].

The actual development of the model begun from the DKP algebra itself.

The question was to find the simplest algebra of 3 × 3 matrices out of which to

construct a three-band model which is gapless but still exhibits Chern numbers.

Since the DKP algebra describes bosons, one would be sceptical to implement it

in a fermionic system. However, starting from heff, we turn the imaginary unit

in the βx,y matrices into phases that will play the role of momentum and obtain

a matrix that can be interpreted as the kernel of a Hamiltonian of a condensed

matter system and choose to fill these bands with fermions.

5.3.4 Edge States

Since two of the three bands can have a |ν| = 1 Chern number, we the existence

of edge states. After performing a Fourier along vx we plot in Fig. 5.5 the

energy spectrum on a cylinder as well as the entanglement spectrum on a torus

which is computed by reducing the correlation matrix 〈f †i fj〉 on a cylinder, where

f = a, b, c. This is done for 1
3
-filling, and the results are equivalent for 2

3
-filling.

Edge states that traverse the gaps connect bands with opposite ν and flat edge
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Figure 5.5: Energy on cylinder and entanglement spectrum on torus for K =

−J = 1 and 1/3-filling. The edge states cross bands with opposite Chern numbers

ν = ±1 and the other band has has ν = 0, (Left) m = 0.5, θ = π
2

and (Right)

m = 1.3 and θ = π
4
. When the flux is too large, m = 2.1 and θ = π

4
the system

is an trivial insulator with all bands having ν = 0. (Bottom) The entanglement

spectrum captures the dispersing edge states.

states traverse the vanishing indirect gap to connect a non-trivial band with a

trivial one as shown in Fig. 5.5.

5.3.5 Resilience Against Disorder

We then show that the Chern semi-metal is robust under disorder. Disorder is

introduced in all of the hopping amplitudes t = K, J,m in the form t(1 ± δt),

with |δt| ≤ ∆. In Fig. 5.6 we present the Chern number, ν, computed in

real space from the correlation matrix as in (2.14) and averaged over disorder

realisations, as a function of θ and ∆ is shown in Fig. 5.6 (Left). The phase

diagram is reminiscent of that obtained for the Haldane model in Fig. D.1. For

weak disorder, ∆ < 0.5 the topological phase is robust showing a non-trivial value

of the Chern number. In order to identify the semi-metallic band structure, we

compute the average density of states for weak disorder and plot it in Fig. 5.6

(Right). In the clean case the density of states shows minima at the energies where

the zero indirect gaps are located. The minima are not lifted for weak disorder
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Figure 5.6: (Left) Chern number, ν, against θ and Jd. The filling is 1
3

and the

system size Lx = Ly = 20. Each disorder realisation was averaged 20 times. For

weak disorder, ∆ < 0.5, the topological phase is robust and for strong disorder

the ν vanishes. (Right) Density of states, ρ(E), for ∆ < 0.5 (Legend). Here

we averaged over 103 disorder realisations for Lx = Ly = 26. The two minima

correspond to the zero indirect gap. The density of states profile does not change

around the zero indirect gaps. Here K = −J = 1, m = 0.5 and θ = π/2.

consistent with the non-trivial Chern number, |ν| ≈ 1, showing the robustness of

the Chern semi-metallic phase.

5.4 Summary

In this chapter we studied free-fermion models, namely Haldane’s honeycomb, the

Su-Schrieffer-Heeger chain, and our novel Chern semi-metal. Entropically, we in-

terpreted the Haldane model as a double no-vortex sector of Kitaev’s honeycomb

and equivalent to the full-vortex sector. Furthermore, we traced the origin of its

entanglement in the gapped phase to the topological robustness of an SSH chain,

in analogy with Kitaev’s no-vortex sector and its robust Kitaev wire. Finally, the

Chern semi-metal was examined using tools like the entanglement spectrum and

parallels with Haldane’s model.
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Chapter 6

Related Interacting Models

6.1 Introduction

In this chapter we explore entanglement patterns in interacting fermionic lattice

models. We start with the Su-Schrieffer-Heeger-Hubbard model, an interacting

version of the SSH chain, and show that the monogamy argument holds in this

case as well, rendering the monogamy signature non-trivial. Then we turn to cap-

turing the effect that interactions have on the ground state. As a simple example

we take interacting spinless fermions on a chain and capture the effect of interac-

tions with the skewness of the entanglement spectrum. For a more sophisticated

measure we then apply the interaction distance to the quantum Ising chain, as

well as to parafermionic chains. Finally, we make remarks on Abelian string-nets,

whose entanglement spectra resemble those obtained by parafermionic chains.

6.2 SSHH

The Su-Schrieffer-Heeger-Hubbard model describes spinful fermions hopping on a

chain of length L with alternating weak-strong hoppings like the SSH model [121]

with on-site Hubbard interaction of strength U . The Hamiltonian is

H =
∑
s

L∑
i=1

(
−
(
t+ δt(−1)i

)
f si
†f si+1 + h.c.

)
+
U

2

L∑
i=1

(n↑,i + n↓,i − 1)2. (6.1)

75



6.2 SSHH

0 1 2 3 4
−8

−6

−4

−2

0

U

E

 

 

Edge

Bulk

0 1 2 3 4
0

0.5

1

U
 

 

Bulk

Edge

ξAB2

δt = 0.1
δt = 0.5
δt = 0.9

Figure 6.1: (Left) Spectrum of the twelve lowest many-body states of the SSH

model with interactions U for L = 6 and open boundaries terminating on weak

bonds, δt = 0.75. The black lines are two-fold degenerate. The ground state

degeneracy reduces from four-fold (U = 0) to two-fold (U > 0). (Right ) The

M -fold degenerate squared singular values ξABj
2

of ΓAB with periodic boundary

conditions. Region A (B) contains sites 1, 2, 3 (4, 5, 6), where we have allowed an

entanglement cut through a unit-cell leading to M = 4.

where s =↑, ↓ and nsi = f si
†f si populations for each spin with total population in

that spin component Ns =
∑L

i n
s
i . The total spin is defined as Sz =

N↑−N↓
2

and is

a conserved quantity since the Hamiltonian conserves the particle number. Thus

the Hamiltonian splits into Sz-sectors determined by numbers of particles which

can take the values N↑ = 0, 1, . . . , L and N↓ = L−N↑.
Let us take U = 0. Then the chain decouples into two SSH chains, one for each

spin component. For periodic boundary conditions the ground state is unique and

lies in the Sz = 0 sector to which we restrict. For open boundary conditions there

are L− 2 single-body states in the lower band and L− 2 in the upper band and

four zero-energy modes. We work at half filling and we choose L to be even so

that N↑ +N↓ = L. The lower band is fully occupied and the many-body ground

state degeneracy is the number of ways 2 particles can occupy four zero-modes,

which is six. Two of these many-body ground states have Sz = ±1 and the Sz = 0

has a four-fold degeneracy in the ground state. When interactions are turned on,

U > 0, the degeneracy of the ground state becomes two-fold as shown in Fig. 6.1

(Left). This is due to the Hubbard interaction penalising triplets and favouring

singlets on each site [123]. The intuition employed to construct the toy model for
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the edge entropy for Kitaev’s no-vortex sector and Haldane’s honeycomb can be

used again to reason about the entropy of the edge under the hubbard.

6.2.1 Monogamy

Consider now the system in terms of correlations. The many-body entanglement

spectrum was later studied in Ref [124] extending the study also for U < 0. For

periodic boundary conditions, when U = 0 and δ > 0 so that each SSH s-chain is

in the topological phase, and the covariance matrix Γ contains all the information

about the ground state, the monogamy qualifier converges, Sq→∞ → 8, indicating

M = 8 maximally entangled Majorana pairs across the cut, consistent with two

Dirac fermion virtual edge modes per ∂A-component. Since in the topological

phase the weak bond is inside the unit-cell, ∂A cuts through strong bonds. On

the contrary, in the trivial phase, the cut occurs on weak bonds leading to M = 0.

For U > 0 we evaluate the Γ of the ground state by exact diagonalisation, which

we expand upon in the Appendix. In this case, however, it does not contain

all the information about the ground state. Then we proceed to extract the

monogamy signatures from the singular values, ξAB, of ΓAB. In Fig. 6.1 we see

that while the degeneracy of the energy is lifted from four- to two-fold for open

boundaries, all four virtual Majorana modes that are highly entangled across ∂A

behave identically in terms of ξAB. They remain at high entanglement and are

separated from the bulk contributions, through a “covariance gap”. Interestingly,

this behaviour holds also when U is large enough so that the energies of the edge

states enter the bulk’s energies.

We understand this result via the monogamy argument, in that high monogamy

signature ξAB ≈ 1 corresponds to localisation of the state when the boundary is

physical and not virtual. In other words, some edge states may go up in energy

but their localisation is unaffected. To verify this, we tune the dimerisation of

the chain so that δt→ 1, reducing thus the localisation length of the edge states.

This in turn results in an increase of the maximal ξAB for finite U -values. We

claim that this procedure is analogous to increasing the system size, which is

however prohibited by exact diagonalisation’s runtime.
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Figure 6.2: Winding of the vectors 〈Σ↑〉 (blue dot) and 〈Σ↓〉 (red cross) as the

momentum p is varied from 0 to 2π for the interacting SSH model for L = 8 and

U = 2. The vectors wind on the x− y plane. The winding that is present in the

non-interacting case U = 0 persists when interactions are turned on U = 2.

Furthermore, we reconcile the signature obtained by the qualifier Sq with

the chain’s non-trivial winding number. Indeed, there are no topological phase

transitions and the winding number [125, 126] remains unchanged in the presence

of interactions, U > 0. In other words, interactions only change adiabatically the

edge spectrum and the edge modes remain well-defined. We underline that the

key result here is that the covariance matrix can detect edge states also in the

presence of interactions even though Γ no longer fully characterises the ground

state nor is in one-to-one correspondence with the entanglement spectrum.

The edge entropy of the SSHH model is also studied in Ref [123]. There,

the edge degeneracy is obtained from the difference of the entanglement entropy

between open and periodic boundary conditions. This method thus captures the

drop of the edge degeneracy from four to two. However, the difference from our

method is that the monogamy signature indicates the existence of edge states

regardless of their energy for open boundaries. In the Appendix E.2 we present

a toy model for the edge entropy of the SSHH which is also compatible with the

effective edge picture presented in Ref [123].

6.3 Interacting Spinless Fermions

We place spinless femions to hop on a chain with repulsive nearest neighbour

interactions. Turning on the interactions, we see the effect on the entanglement
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6.3 Interacting Spinless Fermions

spectrum. The Hamiltonian on an 2L-long chain is

H =
2L−1∑
j=1

(
−f †j fj+1 + h.c.

)
+ Unini+1. (6.2)

6.3.1 Asymmetry in the Entanglement Spectrum
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Figure 6.3: (Left) Entanglement spectrum, ξ, for N = L = 5, symmetric

at U = 0 and in the large-U limit. (Middle) This behaviour is captured by

the skewness, α3. (Right) For large U the skewness and the correlation length

behave similarly, and for a bigger system size the skewness is suppressed. The

discontinuity in ξ is attributed to the ground state degeneracy changing.

The ground state is obtained in Fock space via exact diagonalisation. We equipar-

tition the 2L-long chain into regions into two segments containing L sites. For

periodic boundary conditions we have a unique ground state. However, in the

large-U limit the ground state degeneracy exponentially converges to two-fold.

Increasing the repulsive interaction U > 0 we see the asymmetry in the entan-

glement spectrum Ee rising, α3(Ee) > 0. Then, the symmetry is restored in the

large U limit where U � 1 witnessed by the skewness approaching zero α3 → 0

as shown in Fig. 6.3. In the large U limit, the restoration of the symmetry in Ee

implies that Wick’s theorem effectively holds again and an effective free descrip-

tion of the ground state can be found in terms of the degrees of freedom that

correspond to the Schmidt vectors of those symmetric entanglement eigenvalues.

Finally, we observe that the correlation length and the skewness behave similarly

under increase of U , as shown in Fig. 6.3. That is, there is a better chance that
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6.4 Quantum Ising Model

there exists an effective free description of the state when the correlation length is

small. Here the correlation length is computed as the characteristic length-scale

from the decay of the off-diagonal elements in the correlation matrix, as well as

setting it inversely proportional to the energy gap.

6.4 Quantum Ising Model

Going beyond the simple example of the previous section, we turn to the quantum

Ising chain. We consider the ferromagnetic (FM) and antiferromagnetic (AFM)

cases. The Hamiltonians are given by

H±(hz, hx) = −
L∑
j=1

(±XjXj+1 + hzZj + hxXj), (6.3)

where H+ stands for FM and H− for AFM [127], the transverse and longitudinal

local magnetic fields are denoted hz and hx respectively, and we set periodic

boundary conditions, L+ 1→ 1.

Since we are interested in the effect that interactions have in this model, in

the fermionic sense, we perform a Jordan-Wigner transformation (see Appendix

E.3). When there is no longitudinal field, hx = 0, the model (6.3) reduces to the

Kitaev chain with the topological phase for hz < 1. For finite longitudinal field,

hx, a non-local non-quadratic term is introduced.

6.4.1 Entanglement Freedom

We find the entanglement spectrum of the ground state as a function of (hz, hx)

by exact diagonalisation. We then examine the phase diagram by use of the

interaction distance, DF , defined in (3.18).

Freedom Phase Diagram

For a given system size, L, we find that DF acquires the lowest values away from

the critical point for FM (Fig. 6.4 (Left)) and critical line for AFM (Fig. 6.4

(Right)). In those regions, the single-body entanglement energies, ε, of the effec-

tively free state σ, converge exponentially with the system size to their asymptotic
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values (see Appendix E.4). Around criticality, the correlation length diverges and

the effect of interactions is most significant as indicated by higher values of DF .

Typically, we find that where mean-field theory is applicable then we find low

DF -values. However the converse is not necessarily true.

Dependence on System Size

We now examine the behaviour of the phase diagram as we vary the chain’s size.

By increasing L we observe a difference in the behaviour of the regions with non-

trivial DF -values between the FM and AFM cases. For FM the non-free region

resembling a tilted lobe (Fig. 6.4 (Left)) shrinks towards the critical point situated

infinitesimally above the phase transition point of the Kitaev chain, (1, δhx).

Moreover, the value of DF diverges with L, thus costituting the interaction as

strongly relevant. A plot of DF exponentially close to (1, 0) is shown in Fig. 6.5.

It is important to note here that since DF is upper-bounded by construction, this

divergence needs to be regulated. Turning to the AFM case, we see that the non-

trivial region, again resembling a lobe following the critical line (Fig. 6.4 (Right)),

shrinks towards the classical critical point (0, 2). Importantly, DF decreases as

L increases, rendering the ground state free over the whole line (except at (0, 2)

where it’s ill-defined due to its degeneracy extensively diverging with L).

A detailed scaling analysis is performed in Ref [128], where the entanglement

spectrum of the ground state was obtained by DMRG [129] and thus larger L

is accessible. There it is shown that it is possible to extract critical exponents

corresponding to the correlation length around the criticalities of FM and AFM

from the scaling of DF with L. The interaction distance is computed along paths

(dashed lines in Fig. 6.4) in the phase diagrams that cross the criticalities and

for each system size this data-set is denoted DL
F . Then, a scaling ansatz, which

accommodates the upper bound of DF , is used to collapse the DL
F curves and the

numerical values for the exponents obtained are confirmed by the existing values

in the literature [128].

Finally, an observation regrading the renormalisation flow of the model should

be made. We hint that it is parallel to the gradient of DF (colour gradient of

6.4) with respect to the fields hz,x. Reinterpreting this observation, we state that
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6.4 Quantum Ising Model

an important property of DF is that it is able to diagnose the renormalisation

profile of a given model from data obtained for one choice of system size.

Mapping to the Free Line

We conclude that the ground state can be faithfully described by a Slater de-

terminant everywhere in the phase diagram, save at (hz = 1, hx = δhx) and at

(hz = 0, hx = 2). We underline that this is a surprising result because the Hamil-

tonian is non-integrable as the energy scales of the Hamiltonian’s terms are all

comparable in magnitude in these regions of the phase diagram where we find

the ground state to be almost free. Therefore now we may ask what the par-

ent Hamiltonian of the free state might be. In this case we take the “free line”

hx = 0 and identify a free Ising model H±(hf, 0) with reduced ground state ρ(hf)

for which the trace distance D(σ(hz, hx), ρ(hf )) between the optimal σ(hz, hx) at

point (hx, hz) and ρ(hf) is minimised.

The results of this mapping are shown in Fig. 6.6. We observe that in the

FM case adding infinitesimal interactions δhx to the free Ising model with hz < 1

maps the model to a free Ising with hz > 1 in a discontinuous way, as shown

in For hz > 1, on the other hand, the map is continuous. In the AFM case the

map flows parallel to the critical line and continuously maps the whole phase

diagram on the free line. The distance minhf D(σ(hz, hx), ρ(hf)) is shown by the

colour scale in Fig. 6.6, where also the equi-hf contours are shown. We observe

that away from criticality the mapping is most accurate. In the thermodynamic

limit we expect the critical line of AFM to also be identified with a free Ising

model because minhf D(σ, ρ(hf)) decreases with L. Furthermore, the CFT which

describes this critical line is proposed to be free [127]. Importantly, note that the

parent Hamiltonian that we attributed to the ground state is local with respect

to the Hamiltonian whose ground state the freedom we diagnose. This need not

in general be the case.
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𝐷ℱ

𝐷ℱ

Figure 6.4: Interaction distance, DF in the (hz, hx)-plane for L = 12 (Top) and

L = 16 (Bottom). For FM (Left) we have DF higher around the a critical point

(1, 0) and for AFM (Right) around the critical line connecting (1, 0) and (0, 2).

Increasing system size L, the non-trivial regions shrinking around (1, 0) for FM

and (0, 2) for AFM. Rogue points are attributed to local minima of DF ’s cost

function.
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𝐷ℱ

Figure 6.5: Interaction distance

close to the critical point (1, 0)

for the FM case, where the lon-

gitudinal field is in log-scale. In-

finitesimally close above the free

line’s critical point the interac-

tions become a strongly relevant

and DF diverges. Impurities in

the figure are attributed to local

minima of DF .
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Figure 6.6: Mapping of σ(hz, hx) to reduced ground states of the free line for FM

(Left) and AFM (Right) model both at system size L = 16. Contours indicate the

transverse-field hf, dashed lines for those in the symmetry broken phase and solid

otherwise (including the critical value hf = 1). The background colour plot gives

the distance minhf D(σ, σf) (log scale) signifying the success of the mapping. In

this way the interacting system is given a description in terms of a free-fermion

model. Unreliable data points due to unresolved ground state degeneracy is

discarded (grey region).
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6.5 Parafermionic Chains

For the quantum Ising chain studied in the previous section we found that the

interaction distance, DF , is almost zero almost everywhere in the phase diagram.

The natural question arising now is now what a simple example of a model is

for which DF is non-trivial in the thermodynamic limit or at least some stable

fixed point of the model. Here we recall two facts. One, the size of the entan-

glement spectrum of a ground state composed of complex fermions is 2min(|A|,|B|),

where 2 is the local Hilbert space dimension of a fermion and |A| is the size of

region A resulting from the bipartition. Second, there exist models comprising

parafermions hopping on a chain which we choose as candidates for models that

exhibit finite DF . The reason these models are considered is that they allow us

to vary the rank of the the entanglement spectrum of their ground states at their

topologically non-trivial fixed point. This is a result of their local Hilbert space

not being in general a multiple of 2. Thus we expect that there will be instances

where it is impossible for a given parafermionic entanglement spectrum to be

matched with a free-fermion one leading to a non-trivial interaction distance.

As stated in section 6.4, the Ising model with a transverse field can be mapped

to Kitaev’s Majorana chain via the Jordan-Wigner transformation [130, 116].

Parafermionic chains are the ZN generalisation of Majorana chains, which are

obtained for N = 2. These ZN -spins are known as quantum clock or Potts

models [131, 62]. The parachains are modelled by the Hamiltonian

H =
∑
j

−fγb
j

†
γw
j − γw

j
†γb
j+1 + h.c., (6.4)

where parafermionic operators γj satisfy γjγk = ωsgn(k−j)γkγj, where ω = ei2π/N

the N -th root of unity. We also have γ†j = γN−1
j and γNj = 1. It is obvious from

these definitions that Majoranas correspond to N = 2. Recently, phase diagrams

of such models have been mapped out numerically [132, 133, 134]. Note that this

is not the most generic parafermion Hamiltonian as more terms can be added

that respect the ZN symmetry. Here however we choose to work with this simple

case as our priority is to provide a simple model in properties of the interaction

distance.
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Figure 6.7: (Left) Flat spectrum E[(N) (solid black) and the entanglement

energies − log spec(σguess) (dashed). Green arrows denote the differences between

levels that contribute to D(ρ[(N), σguess).

In analogy with the Majorana case where the Hamiltonian respects fermionic

parity, here the generalised ZN -version of parity, Q =
∏

j γ
b
j
†
γw
j , is conserved. For

open boundaries this leads to an N -fold degenerate ground state in the topological

phase |f | < 1 and we again understand this in terms of parafermionic zero-modes

localised at the ends of the chain. At the topological fixed point, f = 0, the

parafermions at the ends completely decouple and the physics reduces to that

of two parafermions or one-clock (on a site j). For periodic boundaries, unique

ground state gives an N -fold degenerate entanglement spectrum [135], reflecting

theN -fold degenerate ground state when the entanglement cut becomes a physical

cut and can be understood in terms of parity compatibility between regions A,B

into which we have bi-partitioned the chain. For f > 0 the ground state acquires

a finite correlation length and we will explore the behaviour of the interaction

distance away from the following, as well.

6.5.1 Guess for Optimal Free State

We denote an N -fold degenerate entanglement spectrum as E[
e(N) and a density

matrix with such a flat spectrum is symbolised ρ[(N). Now we make a guess for
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the optimal free state, σguess, such that D(ρ[(N), σguess) = DF(ρ[(N)). Define

n ∈ N as the greatest natural number to not violate 2n ≤ N . We conjecture that

the optimal free spectrum to a N -flat spectrum is

spec(σguess) =
(
N−1, . . . , N−1︸ ︷︷ ︸

2n

, p0, . . . , p0︸ ︷︷ ︸
2n

)
, (6.5)

where p0 = 1
2n
− 1

N
for normalisation.

The thinking behind this form of σguess is as follows. Recall the free fermion

entanglement structure spec (σguess) = e−E
0
e ⊗i=1 (1, e−εi). The conjecture is it

is optimal to match as many levels of E[
e(N) as possible by using zero-modes,

εi = 0, i = 1, . . . , n, with background entanglement energy E0
e = logN . Then,

the remaining mode is fixed by normalisation of σguess to εn+1 = log 2n

N−2n
and

creates the 2n entanglement levels at − log p0.

Note that E[
e needs to be padded with ∞s, or equivalently spec(ρ[) is padded

with zeros so that the sizes of ρ[ and σguess are equal. Then the interaction

distance arises from the unmatched levels. In particular, there are two contri-

butions to D(ρ[, σguess). The first is from the entanglement levels E[
e2n+1 . . . E

[
eN

mismatching the corresponding levels of σguess at value − log p0. The second is

from the tail of the levels σ[N+1 . . . σ
[
2n+1 . The matching is illustrated in Fig. 6.7.

In the trivial case where the flat spectrum is actually of power-of-two size,

N = 2n for some n ∈ N, then ρ[(N) can be reproduced entirely by zero-modes

εj = 0, j = 1, . . . , n, and thus the spectrum is free, DF(ρ[(2n)) = 0. In these

cases, the entanglement spectrum is equivalent to that of n stacked Kitaev chains.

6.5.2 Form of the Interaction Distance

Plugging ρ[(N) and the corresponding σguess in the trace distance we obtain

D(ρ[, σguess) = 3− N

2n
− 2n+1

N
. (6.6)

To find for which N the we have the maximum of (6.6), we make an analytic

parametrisation of the interval 2n ≤ N ≤ 2n+1. We parametrise N between two

consecutive powers of 2 with a parameter α ∈ [0, 2] such that N = α2n ∈ R,

yielding D(α) = 3− α− 2
α

. By setting ∂αD(α) = 0 we find

αmax =
√

2 , with Dmax(ρ[, σguess) = 3− 2
√

2. (6.7)
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Figure 6.8: Interaction distance, DF(ρ̄), for flat spectra E[
e(N). The blue line is

D(ρ[, σguess) given in (6.6) with maximal value 3 − 2
√

2 (dashed). The dots are

numerical results for DF(ρ[(N)). Data up to N = 28 is shown in Appendix E.5.

Because N ∈ N and αmax =
√

2 is irrational, we can approximate Dmax in the

N →∞ limit, i.e. when ZN → U(1) for the parafermions.

Formally, what we have is just an upper bound, DF(ρ[) ≤ D(ρ[, σguess), since

we have not proved that our guess is indeed the correct one. In Fig. 6.8 we

plot D(ρ[, σguess) as well as DF(ρ[(N)) computed numerically with Monte-Carlo

basin-hopping as a function of N . The numerical results always converge on

the conjectured form (6.6) for a large enough number of basins and we never

find a value below it. Therefore, we take this numerical evidence to confirm our

conjecture that σ = σguess and thus indeed

DF(ρ[) = D(ρ[, σguess), (6.8)

and parafermions on a chain behaving according to the simple Hamiltonian (6.4)

provide an example of a model with non-trivial interaction distance. In other

words, the correlations in the ground state cannot even effectively be described

in terms of free fermions, constituting it a purely interacting system.

Some comments now are in order. The maximal value Dmax
F (ρ[) = 3 − 2

√
2

coincides with the numerical value for Dmax
F (ρ[) obtained by maximising DF (see

Appendix B.6). We thus conclude that the parafermion chains can achieve DF

arbitrary close to Dmax
F for appropriate group-order N ∈ N. Moreover, we observe
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in Fig. 6.8 a log-periodic pattern, that is DF(ρ[(2N)) = DF(ρ[(N)). This again

is a special case of our numerically supported conjecture DF (ρ) = DF
(

1
2

(ρ⊕ ρ)
)

(see Appendix B.6). Finally, we point to analytical results in Ref.[128] showing

that DF(ρ[(3)) = 1
6
, as well as that DF(ρ[(2n+1 − 2)) = DF(ρ[(2n − 1)) by

using the entanglement renormalisation argument, i.e. by integrating out the

lowest lying single-body entanglement energy (see Appendix of Ref. [136]). We

have confirmed these results with our numerical maximisation of the interaction

distance.

6.5.3 Off the Fixed Point and Excited States

We now briefly examine what the case f > 0. Off the fixed point the sys-

tem acquires a correlation length ξ, the degeneracy of the ground state for open

boundaries splits with a gap exponentially suppressed by the system size L, and

the intuition is the same as for Kitaev’s wire. The same argument follows for the

virtual edge states after a bi-partition. That is, if the partitions are large enough

L|A,B| � ξ they do not overlap through the bulks of A,B and the degeneracy

in the entanglement energies is protected. This leads to DF being stable away

from the fixed point and its value becoming more robust under system size scal-

ing. An illustration of this effect studied with exact diagonalisation performed

is presented in Appendix E.5 for Z3 and Z4. Also, it is important to note that

DF depends only on N and not the position of the cut. When there is a finite

correlation length then this statement is true for reasonably large partitions.

We also can draw conclusions about excited states on the fixed point. For f =

0 the problem reduces to a one-clock and so excited states are all combinations of

rotations of the individual clocks and each eigenstate belongs to a parity sector.

The entanglement spectrum arises from the loss of knowledge about the parity

when we cut through a clock. Thus it again is an N -fold degenerate spectrum

and the analysis that was done for the ground state holds here again. Thus, the

Z2n-parachains have DF = 0 for all eigenstates at the fixed point. However, at

f > 0, the excited states of ZN 6=2n in general have non-zeroDF , with the exception

of single-clock excitations above the ground state, which remain approximately

free for f > 0 close to the fixed point. This is consistent with the models, e.g.,
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Z4, being non-integrable for general f [135], although its ground state remains

Gaussian.

6.5.4 Equivalent Interaction Distance

Leads to Equivalent States

Finally, inspired by the observation that at the fixed point the ground state of a

Z2n chain has equivalent entanglement with that of n decoupled Z2 chains for any

cut, we comment on the equivalence between the states. The intriguing element

in this is that the group Z2n is not in general isomorphic to ×ni=1Z2. And even

more generally, we can confirm that same equivalence holds for parachains with

groups Zpq and Zp×Zq. We stress here that this equivalence holding for any cut is

a stronger than what is allowed by the definition of DF ; the effective free-fermion

modes on which the optimal free state is defined are allowed to be non-local inside

the partitions but they can be different modes for different cuts, in general. Here

however we have that for any cut we obtain the same σ.

In Ref. [136], the language of matrix product states (MPS) is employed in

order to prove that at the fixed point there exists in fact a local unitary (tensor

product of site-local unitaries) which maps the ground state of a Z4-chain to that

of a Z2 ×Z2-chain. This is consistent with the fact that no symmetry-respecting

unitary can map between distinct symmetry-protected topological phases [37]

because our unitary need not respect the symmetry of either chain. We also

expect the mapping for the ground state to hold off the fixed point as well, since

our numerical results suggest that the interaction distance is stable for f > 0.

Regarding excited states, it is shown that if the local unitary that performs

the mapping for the ground state is used on them, then the equivalence stops

holding. We thus conclude that a single unitary cannot be chosen to map all

the eigenstates of the Zp×Zq chain onto the Zpq chain, and that each eigenstate

requires a different unitary, even if their corresponding entanglement spectra are

equivalent.
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6.6 String-nets

In our final section we will discuss the interaction distance in the context of

string-nets [137, 138]. Beginning with Abelian ZN string-nets we see that the

results obtained for the ZN parafermion chains in the previous section apply here

as well. We conclude with a brief study of non-Abelian string-nets and view our

results through the lens of understanding that we shaped by studying Kitaev’s

honeycomb.

String-nets are 2D discrete fixed-point models of topological quantum field

theories (TQFTs). Their Hamiltonians are of the stabiliser formalism and are

defined on a honeycomb lattice and by construction they support topological

order and consequently anyonic excitations. It is useful here to keep in mind

the gauge part of Kitaev’s honeycomb as the analogy is enough to understand

what is needed for our purposes. On the links of the honeycomb, i, anyonic

“charges”, Ji, are defined as irreducible representations of a finite group of our

choice and this group determines the topological order of the theory. We can view

each trivalent vertex of the lattice as a fusion process, J × J ′ → J ′′, where two

anyons fuse to a third one according to the fusion rules of the group. Similarly to

Kitaev’s honeycomb, whose gauge part is a superposition of closed vortex loops,

the ground state of a string-net model is a superposition of closed loops carrying

certain charges, and once a loop is opened into a string, the end-points act as

anyonic excitations.

6.6.1 String-net Entanglement Spectrum

We create a bipartition of the honeycomb. The entanglement spectrum, which

here we call just the spectrum of the reduced density matrix, p = spec(ρA) is

given by [139]

ρa =

∏
i∈j dJi

D2(|∂A|−b0)
, (6.9)

where j labels charge configurations along the boundary, ∂A, which have the

vacuum as a fusion channel, and Ji is an element of the boundary configuration

j. The number of components of |∂A| is denoted b0, and we will be concerned

with cases for which b0 = 1. In particular, a cut so that A is deformable to a disk
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6.6 String-nets

is shown in Fig. 6.9. We can now directly evaluate the entanglement spectra of

any string-net models, Abelian or non-Abelian, and for any partition [139]. In

Appendix E.6 we provide a simple example for the calculation of (6.9) for Abelian

and non-Abelian groups, which we study in the following.

𝒥!

𝒥!

𝒥!

𝐴

𝐵𝜕𝐴
𝒥!𝒥|!"|

Figure 6.9: Bipartition of a 2D string

net. Charges on the boundary (red

dashed) are labelled Ji, i = 1, . . . , |∂A|.
The ground state demands that they fuse

to the vacuum.

6.6.2 Abelian String-nets

We begin by considering string-nets endowed with the Abelian group ZN . All

charges, J = 0, 1, . . . , N − 1, have trivial quantum dimension dJ = 1 and thus

D =
√
N . The calculation of the entanglement spectrum entails the enumeration

of charge configurations on ∂A that fuse to the vacuum, which here we choose to

be the element 0. Then, these configuration are determined then by the condi-

tion (
∑

i Ji) modN = 0. Consequently, Eq. (6.9) tells us that the entanglement

spectrum for any bipartition is a flat one, E[
e(N

|∂A|−b0). Hence, we can refer

to our result for the interaction distance in Eq. (6.6) obtained in the context

of parafermion chains. We underline here an important difference between the

1D parafermion chains and the Abelian string-nets. The entanglement spectrum

of the former does not depends on the cut’s position. However, for string-nets,

the entanglement spectrum depends on the length and the topology of the cut,

property which we will put into context in the following.
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Free Abelian String-nets

WhenN = 2n we haveDF = 0 for any partition and the correlations in the ground

state admit a free-fermion description in terms of zero-modes. This might, at first

glance, be a surprising result as anyons are expected to emerge in interacting

systems. Nevertheless, the corresponding free states are not necessarily local as

discussed in paragraph 3.3.3. While this analysis is performed for the correlations

in the ground state, the energy spectrum of these models is not necessarily be

given by occupying fermionic single-body modes.

To stretch the analogy with Z2n string-nets whose entanglement spectrum

is the same as that obtained from n stacked Kitaev chains, the entanglement

spectrum obtained from Z2n string-nets can be recreated by n layers of Z2 string-

nets. Note that this is the case for any cut. Furthermore, as local unitaries

map between the ground states of Z4 and Z2 × Z2 parachains, we expect there

to be local unitaries that map between the analogous string-nets. This again

is consistent with the fact that these topological orders cannot be adiabatically

connected [41], since we do not require this unitary to map all eigenstates to

each other, but only one of them, namely the ground state. A different local

unitary, however, is expected to exist for each pair of eigenstates between which

one wishes to map. Indeed, the excited states of Z2n string-nets are again free.

The only thing that changes is that the fusion condition for the boundary charges

has to match the charges that are enclosed by |∂A|, with the vacuum being the

corresponding special case for the ground state.

An interesting fact about the N = 2 case is that it corresponds to the Toric

Code [29, 28], which is also obtained as the J � 1 limit of Kitaev’s honey-

comb [13]. As we saw in section 4.7, Kitaev’s honeycomb gives rise to two in-

dependent contributions to the entanglement from a bi-partition, one from free

fermions and one from a Z2 gauge field. The latter being reproducible with entan-

glement zero-modes is crucial to deem the ground state free, which is consistent

with interaction distance being zero for the Z2 string net.
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Non-Free Abelian String-nets

Finally, for string nets with N 6= 2n, we have DF > 0 for any cut and its value

depends on |∂A|. To see what this entails we argue as follows. We recall that

DF(ρ[) is log2 periodic and that the degeneracy of the entanglement spectrum is

Nk, where we defined k = |∂A| − b0 ∈ N. Let us see what values DF takes when

we increase k. If N 6= 2n then log2N ∈ RrQ. and we define a = k log2Nmod1

which parametrises the interval [0, 1] under the DF curve periodically. Then,

we see that if one takes k-many steps of irrational length, log2N , one samples

a uniformly, P (a) = 1. Thus values of DF are sampled densely, and the dis-

tribution obtained for the interaction distance, P (DF) is given in the Appendix

of Ref. [136]. In other words, for Abelian string-nets for given N there exist

partitions that asymptotically maximise DF for all N 6= 2n. Another way to un-

derstand this is to consider that since we are at a fixed point, boundary length’s

don’t matter and what is important is the topology of the boundary. The case

where k is fixed and the group order, N ∈ N, is varied is also studied. For a value

of k, we imagine that k-many steps of irrational length log2N are taken, but the

length is different for each N -choice. This is studied in detail by in the Appendix

of Ref. [136] where it is shown that a is again sampled uniformly in [0, 1]. Thus,

we conclude that a ZN string net is either free or not free with no intermediate

options.

6.6.3 Non-Abelian String-nets

We next consider non-Abelian string-nets with charges taking values from the

group SU(2)k, k ≥ 2 as J = 0, 1
2
, 1, . . . , k

2
and the fusion rules are given by

J ×J ′ = ∑min (J+J ′,k−J−J ′)
J ′′=|J−J ′| J ′′. The level k = 2 gives rise to Ising anyons, which

have exchange statistics similar to Majoranas and occur in Kitaev’s honeycomb

model. Fusing Ising anyons σj and σk is equivalent to measuring the parity of two

Majoranas iγjγk, and assigning the ±1 outcomes to the anyonic vacuum 1 or the

fermion ψ. For an example using Ising anyons see Appendix E.6. For k = 3 we

have Fibonacci anyons, which are universal for quantum computation [140, 2].

Here we cut around one vertex on the honeycomb lattice on which the string-

net is defined, so that |∂A| = 3, and examine how the interaction distance of
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the ground state behaves with the group level, k. We find that DF 6= 0 for all

k ≤ 20, as shown in Appendix E.7. Hence, it is not possible to find a free fermion

description of these non-Abelian string-net models.

However, it is known that Kitaev’s honeycomb supports Ising anyons and we

found that for this model we have DF = 0 for any eigenstate. The reconciliation

happens when we realise that Kitaev’s honeycomb is chiral and not at a fixed

point. Furthermore, it may be that eigenstates are free, but the modes in which

they are free in general differ among eigenstates. More importantly, the properties

of the anyons arise under braiding, and braiding is achieved when one interpolates

between fixed vortex-sectors.

Finally, in contrast with Abelian string-nets, the topology of the entanglement

cut, ∂A, affects the entanglement spectrum. In particular for a 2D string-net,

when region A is equivalent to a disk, it is only the fusion rules that determine

the entanglement spectrum and the braiding properties do not come into play.

However, there exist 3D string-nets, called Walker-Wang models [141]. Now

∂A can be deformable to spherical surface, or a toroidal surface. Computing

numerically DF for various k-levels for the two cases we observe that indeed

there is a difference, something that does not occur for the Abelian case.

6.7 Summary

In conclusion, we have employed the diagnostics of monogamy and interaction dis-

tance on ground states of interacting models. For the SSHH model we found that

the monogamy signature remains robust as long as the edge states are localised.

For the quantum Ising chain, we compute the interaction distance over the phase

diagram. Then, the ground state at every point in the phase diagram is mapped

to the free line. In this way, the mapping is accurate when the interaction dis-

tance is almost equal to zero. Therefore, we have found a free parent Hamiltonian

for ground states whose spectrum is free according to the interaction distance.

Then we generalised the local degrees of freedom to parafermions. Interestingly

we found that the interaction distance approaches its maximal value for certain

parafermion chains, rendering them purely interacting. For Abelian string-nets
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we found that they either are free or there exists a cut for which the interac-

tion distance is approximately maximal. On the other hand, the correlations in

non-Abelian string-nets cannot be desribed by free fermions.

Finally, we mention that we have obtained preliminary results on entangle-

ment spectra of the integer and fractional quantum Hall states. The integer case

for filling factor 1 shows DF = 0 to numerical precision with respect to free

fermions, as expected, since this physics can be reproduced by Haldane’s honey-

comb model. The fractional cases are considered purely interacting. For filling

factors 1
2

for bosons and 1
3

for fermions, we obtain a decaying DF with system size,

compatible with the composite fermion effective picture also confirmed by Ref.

[142]. There, a similar approach to ours is taken, where the entanglement spec-

trum of the fractional state is constructed as a weighted combination of spectra

of integer states, with the weights as variational parameters.
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Appendix A

Correlations and

Topological Quantum Matter

Appendix

A.1 Single-particle Entanglement Entropy

Consider the mixed gaussian state ρ = e−H
[
A

Z
, where Z = tre−H

[
A , representing

the reduced density matrix of region A and H[
A =

∑
ij∈A h

[
ijf
†
i fj is the bland-

flattened free-fermion Hamiltonian restricted to region A. Peschel proved that

the eigenvalues λk of the sub-matrix CA, are related to the eigenvalues ε of h[A
via [25]

e−εj =
λj

1− λj
. (A.1)

We can use this relation to derive the expression of the entropy for free sys-

tems by writing the state in terms of the normal modes of A as ρ = ⊗kρk with

ρk = e−εknk
Zk

where Zk = tr(e−ε
A
k n̂k) and nk is the population of the k-th mode

annihilated by f̃k. Since each mode is independent the entropy is additive over

their contributions S = −∑k,nk
pnkk log pnkk , where pk = e−εk

1+e
−εA
k

. Using (A.1), the

von Neumann entropy (2.19) gives

S = −
∑
k

(1− λk) log(1− λk) + λk log λk. (A.2)
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If the Hamiltonian is written in terms of Majoranas, then (2.16) inherits a 1
2

factor to take care of double-counting degrees of freedom due to the Majorana

reality condition. This can be seen as follows. Considering N fermions with 2N

Majoranas defined as ãj = f̃ †j + f̃j and b̃j = 1
i
(f̃j − f̃ †j ) we find their correlations

C̃jk = 〈γ̃j γ̃k〉, where γ = a, b. Computing the correlations we find 〈ãj ãk〉 =

〈b̃j b̃k〉 = δjk and 〈ãj b̃k〉 = −i(2λj − 1)δjk. Thus the correlation matrix in the

Majorana basis is

C̃ =
1

2

[
1 −i(2λn − 1)

i(2λn − 1) 1

]
, (A.3)

with eigenvalues tk given by (1
2
− µk) = ±(λk − 1

2
), which implies that the eigen-

values of the correlation matrix C and the covariance matrix C̃ are related by

tk = λk, (1−λn). Thus if one inserts the ts in (2.16) to calculate the entropy, one

obtains twice the value that one would obtain by inserting the λs, and hence the

need for the 1
2

factor in the entropy.

A.2 Many-Body Entanglement Spectrum

Here we present ways of obtaining the entanglement spectrum of a many-body

state. A many-body fermionic state |Ψ〉 on L sites can be written as a convex

combination of Fock basis vectors |b〉 , b = 1, 2, . . . , 2L,

|Ψ〉 =
∑
b

ab |b〉 (A.4)

where b labels binary words n1n2 . . . nL representing the occupations on the sites.

Now assume that we have enumerated the sites so that they respect the bi-

partition such that binary words n1n2 . . . n∂A represent occupations in A and are

labelled by the Fock basis |bA〉, and similarly for region B. Now we write the

state as

|Ψ〉 =
∑
bA

∑
bB

MbAbB |bAbB〉 , (A.5)

where M is the entanglement matrix. Now the entanglement spectrum can be

obtained in two ways. We can create the pure density matrix |Ψ〉〈Ψ|. In Fig.A.1

we represent the reduced density matrix obtained by tracing out the B-basis.
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Then the entanglement spectrum is simply obtained by (2.18). On the other hand

we can reshape the vector |Ψ〉 into the 2|A| × 2|B| entanglement matrix, M , and

perform a singular value decomposition to get its singular values svd(M). Since

ρ = M †M , we have that spec(ρ) = svd(M). Of course, if the basis is ordered in

a different way, we can always compute the elements of the entanglement matrix

as MbAbB = 〈bAbB| b〉.

…
…

1!1!

…

1!2|!|!
2!1!

2!2|!|!

2|!|!1!

2|!|!2|!|!

…
…

1!1! 1!2|!|!

𝜌 =

2!1! 2!2|!|! 2|!|!1! 2|!|!2|!|!

Figure A.1: Depiction of reduced density matrix ρ = trB |Ψ〉〈Ψ|. The rows and

columns are spanned by the binary words bAbB corresponding to the Fock basis

vectors |bAbB〉. The 2|B| × 2|B| grey blocks are in general dense and their traces

(red lines) are the elements of the resulting 2|A| × 2|A| matrix ρ.

For quantum spin or clock models, the Hamiltonian is constructed as usual as

a sum of terms of tensor products of the local spin/clock operators with weights

the corresponding couplings. Then diagonalising the Hamiltonian matrix, the

lowest eigenvector is the ground state. We can then use the reshape method to

form M and then obtain the entanglement spectrum.
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Appendix B

Entanglement Diagnostics

B.1 Jordan-Wigner of Two-Mode State

Let σ be two-fermion density matrix, with corresponding covariance matrix given

by (3.3). Applying a Jordan-Wigner transformation on the two-fermion system

the state can be written as [143]

σ =
I
4

+
1

4


η11 0 0 η14

0 η22 η23 0
0 η32 η33 0
η41 0 0 η44

 , (B.1)

with η11 = −(a+d)+(ad+bc), η22 = (a−d)−(ad+bc), η33 = −(a−d)−(ad+bc),

η44 = (a+ d) + (ad+ bc), η14 = η41 = −b− c, and η23 = η32 = −b+ c.

For σ to be pure and maximally entangled we substitute a = d and b = c.

Using also that the squared eigenvalues of ΞA plus the squared singular values of

ΞAB sum to unity we have b =
√

1− a2, and σ depends only on a.

B.2 Monogamy Bound

From the relationship between the entanglement of formation and the tangle [54],

one finds that E2
F ≤ τ log2 2 and EF ≥ τ log 2. Then, if the state of modes 1 and

2 is of the form σ = (1− ε)ω+ εη in terms of a maximally entangled pair ω then

it follows that

EF (1 : 2) ≥ (1− ε) log 2, (B.2)
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making use of the convexity of EF and taking the convention that EF (ω) = log 2.

The monogamy of entanglement property derived in Ref. [55] reads as

τ(1 : 2) + τ(1 : 3) + · · ·+ τ(1 : n) ≤ 1, (B.3)

from which it follows that

N∑
j=3

EF (1 : j)2 = log2 2
N∑
j=3

τ(1 : j)

≤ log2 2 (1− τ(1 : 2))

≤ log2 2− EF (1 : 2)2

≤ log2 2
(
1− (1− ε)2

)
. (B.4)

B.3 Entropy Lower Bound

In order to show the validity of (3.11) it is instructive to first consider a two-mode

problem, with quantum state σ. The covariance matrix of σ has again the form

Ξ =


0 a 0 b
−a 0 c 0
0 −c 0 d
−b 0 −d 0

 =

[
ΞA ΞAB

−ΞT
AB ΞB

]
. (B.5)

On using the Jordan Wigner transformation and the concavity of the von-Neumann

entropy, one finds that

S(σ) ≥ 1

2
(|c+ b|+ |c− b|). (B.6)

The right hand side, in turn, can be lower bounded by ‖ΞAB‖2
2/2. The general-

isation of this to a bi-partitioned N mode fermionic system with even N can be

performed by making use of the fact that by means of suitable special orthogonal

mode transformations OA, OB, UA, UB ∈ SO(N) local to A and B, one can bring

the off-diagonal block ΓAB into the form

(OA ⊕OB)ΓAB(UA ⊕ UB)† =

N/2⊕
j=1

[
0 bj
cj 0

]
. (B.7)
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Therefore,

S(ρA) ≥ 1

2
‖ΓAB‖2

2 log 2, (B.8)

A related lower bound to the entropy in terms of Bogoliubov quasiparticles has

been presented in Ref. [27].

B.4 Optimisation Details

for the Interaction Distance

The optimisation to find σ and DF in (3.18) is performed by Monte Carlo basin-

hopping [144]. A Nelder-Mead algorithm finds a local minimum in the landscape

of the cost function, in which case is the trace distance, thus defining a basin.

Then another basin is randomly chosen by a hopping of empirically specified step

size and its local minimum is found. The more basins we allow, the more minima

are collected, and the probability that we obtained the global one is higher.

Before the optimisation beings, we need to provide an initial guess for ε, and

we describe it as it was implemented by Turner. Most important during this step

is the size of the initial guess, i.e. how many single-body energies ε are going to

be the variational parameters of the minimisation. The initial guess for an input

entanglement spectrum Ee, consisting of energies Ee1 < Ee2 < Ee3 < . . . , with a

background entanglement energy Ee0 ensuring normalisation. First we choose an

entanglement energy cut-off Ecoff
e . First we take E1 and E2 and subtract them

from Ee0 to produce the single-particle levels ε1 and ε2. Then we generate the

four many-body levels out of these εs according to (3.14) and discard those that

exceed Ecoff
e . If |Ee3 − (ε1 + ε2)| ≤ Etol, where Etol is a tolerance we specify,

then we mark level Ee3 as matched. We iterate this process by taking the lowest

unmatched level in the spectrum and subtracting Ee0 to produce a new single-

particle level εk. Then we again generate, according to (3.14), the many-body

energies caused by the inclusion of εk to our set of single particle levels, discard

those above Ecoff
e , and mark as matched the Ee levels that are Etol-close to them.

The process halts when all of the input spectrum is either matched or included

to the single-particle set.
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B.5 Efficiency of DF

Finally, the calculation of DF is a search problem. Its runtime complexity is

polynomial in its input, i.e. the number, |ε|, of entanglement levels. This is

performed efficiently by using well known minimisation methods as mentioned

above (B.4). Furthermore, considering that region A is a disk (reducing to a

line interval in 1D) and symbolising the correlation length with ξ, we have the

following for the runtime T . In 1D, for gapped states |ε| = const. and for gapless

states |ε| ∼ L, and thus typically T ∼ poly(logL). In dD, we have for gapped

states |ε| ∼ exp ξd−1 due to the area law leading to T ∼ poly(|ε|d−1), while

gapless states have a logarithmic correction [145] so that |ε| ∼ exp ξd−1 log ξ giving

T ∼ poly(|ε|d−1 log ξ). Thus, since T is polynomial in the number of variational

parameters, we can call it the optimisation efficient. Note that providing a good

initial guess to the optimisation significantly reduces T . The construction of the

initial guess is described above (B.4).

B.6 Properties of DF for Generic States

In this section we present numerical evidence for conjectures regarding the inter-

action distance. First, we provide results supporting that for any input entangle-

ment spectrum which is doubly degenerate the interaction distance is the same

as for the spectrum without the degeneracy. Second, we present evidence for

the conjectured maximal value for the interaction distance. Finally, we explore

the distribution of the interaction distance over random states and pose open

questions of future work.

B.6.1 Numerical Evidence for the

Degenerate Spectrum Conjecture

Let ρ represent a generic diagonal density matrix. The random ρ is simply a

random probability distribution, which albeit an improper way to sample states,

it is sufficient for our purposes here. Its doubly degenerate version, 1
2
(ρ ⊕ ρ),

can be interpreted as the result of adding a zero-entanglement-energy in the

103



B.6 Properties of DF for Generic States

system, where entanglement energy is defined as the negative logarithm of a

probability [43]. This becomes clear when considering that each member of a

degenerate pair of eigenvalues corresponds to the zero-mode being occupied or

not. We compute Ddiff
F = DF(ρ) − DF(1

2
(ρ ⊕ ρ)) for random diagonal density

matrices. The distribution P (Ddiff
F ) is peaked at zero indicating the validity of the

zero-mode conjecture, as shown in Fig.B.1 (Top). The peak is more prominent

when the number of basins is increased. Note that DF(1
2
(ρ ⊕ ρ)) ≤ D(1

2
(ρ ⊕

ρ), 1
2
(σ ⊕ σ)) = DF(ρ), where σ is the optimal free state of ρ. The inequality

holds because 1
2
(σ ⊕ σ) ∈ F is a member of the variational class F . Thus, we

attribute Ddiff
F < 0 to failure of the minimisation in finding the global minimum

for D(1
2
(ρ⊕ ρ) due to the greater number of input probabilities.

B.6.2 Numerical Evidence

for Maximal Interaction Distance

Regarding the maximal DF , we use yet again basin-hopping in order to perform

the maximisation maxρDF(ρ), where ρ is diagonal by definition (see 3.3.3) and

so the variational parameters of the maximisation are its entanglement energies.

For each instance of ρ, we find DF by the Nelder-Mead method. To take care of

local minima, we put the condition that if the cost function is greater than the

conjectured value 3−2
√

2, then basin-hopping is performed to ensure that it was

not a false outcome. Indeed, the maximisation of DF never manages to exceed

3− 2
√

2 as shown in Fig.B.1 (Bottom).

B.6.3 Interaction Distance for Random States

It is known that the entanglement spectrum ratio-statistics can characterise the

degree of scrambling of information in a state when viewed as the output of a

random time-evolution with input a product-state [146]. When the ratio distri-

bution follows what is dictated by a Poisson process then the state is not truly

scrambled and the evolution is reversible. On the other hand, if the ratio dis-

tribution is of a Wigner-Dyson form, i.e. corresponding either to GOE or GUE

depending whether the state is real or complex, then the evolution is characterised

irreversible and the the information encoded in the state is scrambled.
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The reversibility of a quantum evolution is defined by the runtime complexity

of the optimisation whose goal is to completely disentangle an output state with

local unitary gates. Polynomial time corresponds to reversible evolutions and

exponential to irreversible.

In the following we sample Σ-many entanglement spectra, Eσ
e , obtained by

equi-partitioning random states |ψσ〉 of L-many 2-level degrees of freedom, where

σ = 1, . . . ,Σ. We either generate random states by sampling their amplitudes

ψσj ∈ C from a normal distribution centred at the origin of the complex plane, or

we get them as outputs of a random quantum circuit whose input is a random

product state. Note that whenever we sample from the normal distribution we

mean N(0, 1). After sampling, we compute the ratio-statistics P (r) and the

interaction distance distribution P (DF). The fitting of the former to Poisson

or Wigner-Dyson distributions characterises the scrambling and we find that the

latter fits to a log-normal distribution.

B.6.4 Ratio Level Statistics

The ratio-statistics is computed as follows. For each instance of the entangle-

ment spectrum Eσ
e we sort it in descending order Eek

σ ≥ Eek+1
σ, compute its

consecutive spacings sσk = Eek
σ − Eek+1

σ, and then their consecutive ratios,

rσk = min (sσk , s
σ
k+1)/max (sσk , s

σ
k+1). After collecting all sets of ratios in r = ∪σrσ,

we can obtain the normalised histogram P (r).

B.6.5 Random Free Entanglement Spectra

Free fermionic Ef
e spectra of the form (3.14) have by definition zero free-fermion

interaction distance, DF(Ef
e) = 0. After sampling Σ-many Gaussian spectra Ef,

we compute the ratio distribution, P (r). A random free entanglement spectrum

is generated by picking N single-body entanglement energies from the normal

distribution such that εi ≤ εi+1, i = 1, . . . , N − 1. After creating the many body

entanglement spectrum we can normalise it by shifting all εs by log
∑

k e
−Ef

ek .

As expected, P (r) for free spectra follows the Poisson distribution, PPoisson(r) ∝
1

(1+r)2
as shown in Fig.B.2. We understand these states as the outputs of Gaus-

sian channels with input a random product state. Gaussian channels are of the
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form eiHt where H is a quadratic in fermions. Thus populations are not coupled

and the correlations remain Gaussian and thus DF = 0.

B.6.6 Random Entanglement Spectra

We now sample random states from the Hilbert space constructed on L-many

2-level degrees of freedom. A random state |ψ〉 is represented as a 2L × 1 array

with elements ψj = αje
iβjθ, j = 1, 2, . . . , 2L where αj are random numbers from

the normal distribution β ∈ [0, 1] box-random numbers. The angle θ ∈ {0, 2π}
determines whether the amplitudes are real or complex. Then we normalise

by dividing the amplitudes by
∑

j |ψj|
2. To get the entanglement spectrum for

an equipartition of |ψ〉 we use the reshape method. In Fig. B.3 (Left) we then

confirm that P (r) fits the Wigner-Dyson distributions, PGOE
WD or PGUE

WD , for ψj ∈ R
or ψj ∈ C respectively, as expected. These are given by

PWD(r) ∝ 1

Z

(r + r2)
β

(1 + r + r2)1+3β/2
, (B.9)

with Z = 8
27

and β = 1 for PGOE
WD and Z = 4

81
π√
3

and β = 2 for PGUE
WD [146].

Proceeding to compute DF for the sample, we find that its distribution,

P (DF), is fitted well with a log-normal distribution

PLN(r, µLN, δLN) =
1

rδLN

√
2π
e−(ln r−µLN)2/2δ2LN , (B.10)

as demonstrated in Fig.B.3 (Right). Note the steep tail of the distribution for

high values of the interaction distance indicating how rare maximally interacting

states are.

B.6.7 Random Quantum Circuits

Another way to sample random states from the Hilbert space of L qubits is from

outputs of random circuits C, as illustrated in Fig. B.4. These can be seen as

time evolutions with input a random product state of L qubits, |ψσ0 〉 = ⊗j |qj〉
with |qj〉 = cos

θj
2
|0〉+ eiφj sin

θj
2
|1〉 where θj ∈ [0, π] and φj ∈ [0, 2π] box-random

angles on the j-th Bloch sphere.
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For a each Cσ, we repeatedly apply a random quantum gates to a randomly

chosen qubit or pair of neighbouring qubits. What is important here is that the

gate set from which gate gt is drawn can be non-universal or universal. For the

former case, we choose gt by picking from the set {NOT,H,CNOT} uniformly.

For the latter case we apply a U(4) Haar-random 2-qubit unitary at each t. A

Haar random matrix in U(N) is generated as follows. We create X = 1√
2
(A+ iB)

where A,B are N × N matrices with elements in N(0, 1). Then we perform

a QR decomposition of X and get the orthogonal Q and upper-triangular R

matrices. Now redefine R so that it is diagonal keeping only the phases of its

original diagonal, R→ diag(diag(R)/|diag(R)|), where the division and absolute

functions act element-wise. Finally, recompose to obtain Haar random U = QR.

The entanglement spectrum Eσ
e t is obtained by equi-partitioning the state at

a certain time-step t, and from it we can obtain the entanglement entropy St

and interaction distance DF
σ
t . We then sample Σ-many circuits Cσ and compute

their averages at each time step, 〈St〉 and 〈DF t〉, and find that they saturate at

approximately the same time, t = T , see Fig. B.5 and Fig. B.6. For each Cσ,

at saturation time T we stop the evolution and obtain the mixed output state

|ψσT 〉 which is accompanied by its DF
σ
T . For these states we can compute the

distribution P (DF) over the sample of outputs |ψσT 〉 and the ratio-statistics P (r)

over the spectra Ee
σ
T .

If gt ∈ {NOT,H,CNOT}, then |ψT 〉 is not scrambled, consistent with P (r)

following PPoisson, see Fig. B.5. If gt ∈ U(4), then it is scrambled, consistent with

P (r) following PGUE
WD , see Fig. B.6. In particular, if we project the amplitudes of

the outputs to their real components Re(ψσT j) then P (r) fits to PGOE
WD , shown in

Fig. B.6, still capturing the fact that the evolution is chaotic. The DF -statistics

again fits a log-normal.

B.6.8 Comments and Open Questions

Free-fermion states have by definition DF = 0, and their Poisson ratio-statistics

shows non-scrambling. However, obvserving Poisson r-statistics for generic ran-

dom states, as observed for outputs of non-chaotic circuits using non-universal

gates, still allows for finite DF -values. This is due to the fact that any two-qubit
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gate, in our case CNOT as part of the non-universal gate set we used, can be

seen as a time evolution with a Hamiltonian containing quartic fermion terms.

In any case, we found that the distribution of interaction distance follows the

log-normal distribution, for both scrambled and non-scrambled states. However,

we notice that consistently the non-scrambled states (Fig.B.5) have the absolute

value of the log-normal fitting parameter |µLN| almost three times that of the one

for scrambled states (Figs.B.3 and B.6). However it is a quantitative difference

and not a qualitative one. Nevertheless, it seems consistent and robust. For

example, when the random state’s amplitudes are sampled from a uniform or a

power-law distribution these results remain unaltered.

As an open question, we aks how the free states σ ∈ F are distributed in the

space of reduced statesD(He). This question is left for future work to explicitly be

fleshed out. However we can make some first observations. We know that D(He)

can be represented as a sphere of unit radius in in units of the trace distance due

to this distance’s upper bound. We also found that ∀ρ there exists a σ at most

Dmax
F far. This means that the illustration in Fig.(3.2) is not accurate. More

accurate would be to depict a foam-like distribution of free states around every

ρ ∈ D(He). Finally, we hint towards future work entailing the use of the results

obtained for outputs of random circuits to detect the localisation-delocalisation

transition. Of relevance is the work of Ref. [147] where the XXZ model is studied.

At each time-step of the circuit, we can obtain the distribution P (DF). Since

we know that in the infinite time limit it should converge to the Wigner-Dyson

distributions we can construct the Kolmogorov distance between them and track

its decay in time. In the delocalised phase the decay should be exponential, but

a polynomial decay would signal the onset of the many-body localised phase.
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Figure B.1: (Top) Distribution P (Ddiff
F ) of Ddiff

F = DF(ρ) − DF(1
2
(ρ ⊕ ρ)) for

random states ρ and their doubled versions 1
2
(ρ ⊕ ρ). The sample contains 300

instances of ρ. Increasing the number of basins in the minimisations of DF(ρ)

and DF(1
2
(ρ ⊕ ρ)), indicated as a tuple (Legend), reinforces our conjecture that

Ddiff
F = 0. (Bottom) Distribution of outputs of maxρDF(ρ) performed 400 times

where ρ’s rank is randomly selected between 3 and 8. Here, the number of

basins in DF ’s minimisation is 30. The number of basins for the maximisation

is randomly selected from the set {5, 15, 50}. The maximisation achieves the

conjectured upper bound 3− 2
√

2 ≈ 0.1716 but never exceeds it.
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Figure B.2: P (r) for free spectra Ef
e of

N = 10 fermions, with energies ε sam-

pled from N(0, 1) for Σ = 104 samples.

P (r) fits PPoisson showing that the free

states are non-scrambled.
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Figure B.3: P (r) and P (DF) for Σ = 103 states of L = 10 degrees of freedom.

P (r) follows PGOE when ψj ∈ R (Top) and PGUE when ψj ∈ C (Bottom). Interac-

tion distance distribution P (DF) is fitted with PLN given by (B.10) with (µLN =

−0.15, δLN = −3.41) when ψj ∈ R (Top) and with (µLN = 0.13, δLN = −3.52)

when ψj ∈ C (Bottom).
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Figure B.4: Example of random circuit C. A random one- or two- qubit gate gt is

applied at a random quibit or neighbouring qubits respectively at every time-step

t = 0, 1, . . . , T .
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Figure B.5: We realise Σ = 150 circuits Cσ, with σ = 1, . . . ,Σ, comprising

randomly selected non-universal gates gt ∈ {NOT,CNOT,H}, with t = 1, . . . , T

and T = 1200 gates. Average entropy 〈S〉 and interaction distance 〈DF〉 saturate

at the same time t ≈ 1100. Ratio distribution P (r) of the outputs |ψσT 〉 follows

PPoisson, thus the evolution is reversible. Interaction distance distribution P (DF)

follows PLN with µLN = 0.42 and δLN = −3.44.
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Figure B.6: We realise Σ = 100 circuits Cσ, with σ = 1, . . . ,Σ, consisting of Haar-

random two-qubit unitary gates gt ∈ U(4), t = 1, . . . , T and T = 600. Average

entropy 〈S〉 and interaction distance 〈DF〉 saturate at the same time t ≈ 300.

Ratio distribution P (r) of the outputs |ψσT 〉 follows PGUE
WD , thus the evolution is

chaotic. Interaction distance distribution P (DF) follows PLN with µLN = −0.12

and δLN = −3.50. If the amplitudes of the output state are projected to their real

part Re(ψj
σ
T ), then P (r) follows PGOE

WD and the chaotic evolution is still apparent.

Also P (DF) again follows PLN now with µLN = 0.14 and δLN = −3.44.
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Appendix C

Kitaev Model

C.1 Band Structure

Here we present the momentum kernels of the no- and full-vortex sectors, obtained

by a Fourier both along vx and vy to get the corresponding momenta q, p.

For the no-vortex sector we have

h(q, p) =
i

2

[
K(ei(q−p) + eip + e−iq) J(e−ip + e−iq) + 1

0 K ∗ (ei(p−q) + e−ip + eiq)

]
+ h.c.. (C.1)

In the full-vortex sector we have unit-cells containing two z-links along the x

direction and so the Bravais vector that enumerates them is 2vx and thus

h(q, p) = diag (−K sin p, K sin p, K sin p, −K sin p)

+( i
2


0 (1 + Je−ip) K(e−ip + e−iq + ei(p−q) − 1) Je−iq

0 0 −J K(ei(p−q) − e−iq + e−ip + 1)
0 0 0 1− Je−ip
0 0 0 0


+h.c.). (C.2)

Their spectra for J = 1 and K = 0.1 are shown in Fig. C.1.
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Figure C.1: Spectra of no-vortex and full-vortex momentum-kernels.

C.2 Analytic Forms of the Energy Gaps

The eigenvalues for the above kernels h(q, p) can be found analytically and the

energy gap G(p) for each p chain can be found from them as the difference of the

two eigenvalues closest to zero and then minimizing over the q-momentum. In

the vortex-free sector we have

G(p) = min
q

√
|f(q, p)|2 + g(q, p)2, (C.3)

f(p, q) = 2i(1 +
1

2
eiq +

1

2
eip),

g(p, q) = 4K(sin p− sin q + sin (q − p)),

where q ∈ [0, 2π]. For K = 0, in the full-vortex sector the gap is given by

G(p) = min
q

2

√
1 + 2J2 − J

√
2g(q, p), (C.4)

g(p, q) = 2 + cos 2p− cos 2q + J2(1 + cos 2(p− q)),

and for K > 0 its form is unpleasantly complicated.

C.3 J − θ Phase Diagram

Here we compute the Chern number (Eq. (2.10)) of Kitaev’s honeycomb as a

function of the microscopic parameters J and θ for a finite K > 0. In Fig. C.2

we plot the energy gap (Left) and the Chern number (Right). We observe a
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Figure C.2: Kitaev model’s phase diagram showing the energy gap G (Left) and

the corresponding Chern number ν, for K > 0.

ν = 1 phase between the ν = 0 and ν = 2 phases for θ > 1/2. We conjecture

that effectively there we have a Hofstadter model with staggered strips, and

leave this exploreation for future work. The apparent non-trivial phases phase

between the no-vortex and full-vortex trivial phases for J ≈ 0 are attributed to

the unreliability of the method used to compute the Chern number since that

regions seems gapless. The trivial phases, the gapped topological phases for

K > 0, and the phase boundaries between them that are studied in Chapter 4

are located at the boundary of the phase diagram of Fig. C.2.

C.4 Winding Numbers of No-vortex p-chains

In this section we investigate the relation between the the |ν| = 1 Chern number

of the no-vortex sector with the winding number of its p-chains (Eq. (4.7)) to

which it decomposes after a Fourier transformation. We Fourier transform along

the p-chains whose momentum we call q and obtain Hamiltonian kernel h(q, p)

for each p-chain. In the Fig. C.3 we show the q-paths traced by the pauli vector

Σp(q) of the kernel for each p-chain. We see that only the p-chains with p between

the Fermi points, where edge states exist, give paths that when projected to the

x − y plane enclose the origin. Increasing the system size, or equivalently the

momentum density we recover the picture consistent with chern number |ν| = 1.
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Figure C.3: Paths traced by pauli vectors Σp(q) for each p-chain on the surface

of the unit sphere. (Top) Those corresponding to 2π
3
< p < 4π

3
(red) enclose

the origin when projected to the x − y plane to which we assign w = 1(Left).

Chains at p outside those Fermi points (blue) do not enclose the origin, and for

p = ±2π
3

(black) the path intersects the origin. We also show the projection to

the x − z plane (Right). (Bottom) By increasing momentum density the paths

densely cover the sphere once, giving rise to Chern number |ν| = 1.

C.5 Edge Velocity and Entropy for No-vortex:

Generating Function Method

We present here the details of the calculation by Cirio based on Refs [104, 105],

mainly following the calculation in the Appendix of Ref [103], and presented in

even more detail in the Appendix of Ref [106].

In the no-vortex sector, the p-chains in (4.7) look like

H(p) =
∑
j

χ†jG1χj + χ†jG2χj−1 + χ†jG†2χj+1, (C.5)
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where χ†j =
[
γb
j
†
γw
j
†
]
, G1 =

[
g1 g2

g2
∗ −g1

]
, and G2 =

[
g3 g4

0 −g3

]
, with g1 =

−K sin p, g2 = i
2
(Je−ip + 1), g3 = i

2
K(1− eip), and g4 = i

2
J . We express the edge

state as Ψ =
∑∞

j=1 χ
†
jΨj |0〉 with Ψj =

[
Ψ1
j Ψ2

j

]T
.

Placing the system on a semi-infinite cylinder with circumference along vy,

the Schrödinger equation H(p)Ψ = EΨ leads to the following recursive equation

G2Ψj−1 + (G1 − E)Ψj + G†2Ψj+1 = 0, (C.6)

and imposing semi-infinite boundary conditions such that the cylinder is open at

j = 1 and extends to j → +∞ we have

(G1 − E)Ψ1 + G†2Ψ2 = 0. (C.7)

We then multiply (C.6) by zj ∈ C and sum over j. The generating function is

defined as G(z) =
∑∞

j=1 z
j−1Ψj. Gathering the terms proportional to G(z) and

imposing the boundary condition (C.7) we obtain(
z2G2 + z(G1 − E) + G†2

)
G(z) = G†2Ψ1, (C.8)

and thus the generating function is given by

G(z) =
(
z2G2 + z(G1 − E) + G†2

)−1

G†2Ψ1. (C.9)

More explicitly we write

G(z) =
1

det ∆

[
φ̃1

φ̃2

]
, with

[
φ̃1

φ̃2

]
=

[
g̃1 g̃2

g̃3 g̃4

] [
φ1

φ2

]
,

[
φ1

φ2

]
= G†2Ψ1,

(C.10)

where ∆ = z2G2 +z(G1−E)+G†2, g̃1 = −g3z
2 +(−g1−E)z−g∗3, g̃2 = −g4z

2−g2z,

g̃3 = −g∗2z − g∗4, g̃4 = g3z
2 + (g1 − E)z + g∗3, and φ̃1,2 are quadratic in z.

The energy dispersion E(p) can be obtained from an analysis of the poles

of G(z). Since det ∆ is quartic in z, it has four roots. However, note that for

a root z0 6= 0 we have that ∆( 1
z∗0

) = 1
z∗2 ∆∗(z0) = 0, and so the poles of G(z)

come in pairs, (z1,2,
1
z1,2

). In general an edge mode exists at the ends of a p-chain

if the all the poles lie outside of the unit circle [103]. Since the poles of the

generating function come in inverse pairs, at least two of them are inside the unit
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circle in any case. Therefore, for an edge mode to exists, the poles z1,2 of G(z)

must cancel with the roots of both φ̃1 and φ̃2. Imposing that these binomials

are proportional to (z − z1)(z − z2) leads to to the requirement that the pre-

factors of their corresponding powers of z must be proportional to each other

with the same proportionality constant, t, leaving us with three equations with

which to work. From the z2- and z0-equations we get φ1 = ξ±φ2, with ξ± =
−|g4|2±

√
|g4|4+4|g3|2|g4|2
−2g3g∗4

, which by substitution back to either of them determines

the proportionality constant t± = −g3ξ±−g4
g3

. Finally, from the z-equation we solve

for the energy

E± =
t± (g1 − g∗2ξ±) + g1ξ± + g2

t± − ξ±
, (C.11)

with the subscript indicating the right- and left-moving edge mode that can be

localised on that edge.

The process can be repeated for semi-infinite boundary conditions with the

p-chains extending to j → −∞ resulting in the reversal of the chirality of the

edge modes, E∓. Furthermore, the magnitude of the poles of G(z) between the

two choices of boundary conditions are inversely related. This means that if the

system is placed on a finite cylinder, one boundary hosts an edge mode with E+

and the other with E−. Linearising its expression around the momentum where

the zero energy occurs, p? = π as shown in Fig. 4.3, we get

E± = ±vE(p− π) + . . . , vE = (2J + 1) cos arctan

(
J

4K

)
(C.12)

This analytic expression for the velocity is valid in the momentum range ∆p

where the pole conditions for the edge states’ existence are satisfied (see App

and App of Ref. [106]). To find ∆p we need to study numerically the behaviour

of the roots of φ̃1, or equivalently φ̃1
φ2

and ∆. For a choice of J,K, we denote

N±(p) the set of roots of the former and D(p) of the latter, and we collect the

poles of G(z) in the set Z± = {z|z ∈ D(p) ∧ z 6∈ N±(p)} containing all the

roots of ∆ not cancelled by the numerator φ̃1. Then ∆p is the momentum range

for which poles of G(z) are all either inside or outside of the unit circle, that is

p ∈ ∆p⇔ |z0| > 1∨|z0| < 1, ∀z0 ∈ Z±}. Numerically, one finds that ∆p coincides

accurately with the distance between the Fermi momenta, between which the edge

states exist as shown in the Appendix of Ref [106].
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Fog E± = 0, the determinant, ∆, of the generating function G(z) given by

(C.9) has two roots (z1 → 0, 1
z1
→ ∞) and two roots (z2 = 1+Jeip

J
, 1
z2

). The

condition for existence of edge states then is {p : |z2| < 1} which implies |Jeip +

1| ≤ J which is satisfied in the momentum interval ∆p = 2 arccos 1
2J

.

C.6 Entropy from Edge Toy Model

The four-Majorana Hamiltonian of the toy model is

H = i(aLbL − aRbR) + iwp(aLaR + bLbR). (C.13)

The von Neumann entropy of the ground state can be computed analytically by

combining the Majoranas aL,R and bL,R pairwise into into complex fermions fa

and fb. We then perform a Jordan-Wigner transformation to obtain the 2-spin

Hamiltonian

H =


w
2

0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 −w

2

 , in the basis{|↑↑〉 , |↑↓〉 , |↓↑〉 , |↑↑〉}. (C.14)

The ground state is |Ψ〉 = 1
s2+1

(s |↑↑〉 + |↓↓〉) with s = −wp−
√
w2
p+4

2
and the

reduced density matrix after tracing out one of the spins is ρr = 1
s2+1

diag (s2, 1).

Its Neumann entropy can be readily calculated.

C.7 Comments on Finite-Size Effects

in Kitaev’s Honeycomb

In the ideal case of maximal entangled virtual edge modes q can in princible be

infinite. This is not always the case for finite-size systems or with the introduc-

tion of disorder, as shown Fig. 4.7 (Right). In finite-size systems the edge states

can hybridise leading to smaller entanglement between them, and hence a smaller

lower bound. Moreover, the entanglement spectrum can exhibit even-odd effects

in |∂A| that can wash out lower bound completely [123]. Nevertheless, due to
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C.8 Monogamy and Temperature

the exponential localisation of the edge states, the lower bound can still be re-

covered in all cases by increasing the system size sufficiently and tuning q to an

appropriately large but finite value. Even-odd effects should vanish polynomi-

ally in |∂A|, while decoupling of edge states occurs exponentially in the distance

between boundary components.

C.8 Monogamy and Temperature

0.08 0.1 0.12 0.14
0.445

0.45

0.455

0.46

K

T
?

Figure C.4: Critical tem-

perature T ? for which the

maximal entanglement condi-

tion max ξAB > 0.98 is violated

for arbitrary cutoff at 0.98, as a

function of K.

The T > 0 case is studied in Ref [109] where the energy current I appearing

at open boundaries in the no-vortex sector is numerically demonstrated to scale

as I ∝ cT 2, confirming Kitaev’s prediction (see Appendix of Ref [13]), with

c = 1
2

being the central charge of the CFT describing the chiral Majorana edge.

For J = 1 and fixed K it is shown that there exists a critical temperature T ?

at which I deviates from the conformal field theory prediction to an arbitrarily

chosen degree. Then it is found that T ? ∝ K, and as a consequence proportional

to the energy gap since G ∝ K.

Here we want extract the signature of this phenomenon via the singular values

ξAB. First of all we describe how temperature is introduced to Γ. As we saw

in section 2.2.2 for T = 0 one needs to replace ±εi → 0, 1 in the diagonal of

D. Finite temperature is captured by introducing Botlzmann weights instead of

definite occupations as ±εi → e∓εi/T
Zi

, where Zi = e−εi/T + e+εi/T .

For each instance of K, we obtain the highest singular values max ξAB(T ).

As the critical amount of deviation from the I ∝ cT 2 scaling was arbitrary, we

also set an arbitrary critical ξAB
?
< 1 and T ? is identified as the temperature at

which max ξAB drops below ξAB
?
.
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Appendix D

Related Free Models

D.1 Disorder on Haldane

We add disorder to the Haldane model and examine the resilience of the edge

states with the monogamy qualifier Sq. Disorder of amplitude ∆ is added to the

hoppings as in is done for the Kiteav honeycomb’s Js and Ks plus local disorder

in the form of random on-site energies implemented by adding
∑

j wjf
†
j fj to the

Hamiltonian, with 0 < wj < ∆. The stability of such Chern insulating phases

is studied in Refs. [16, 15] and we conclude here that as long as the disorder

amplitude is smaller compared to the energy gap, ∆ � G, then the monogamy

signature is reliable. In Fig. D.1 the monogamy signature is captured by Sq given

by (3.12) for an appropriately large q. Deep in the topological phase, φ ≈ π
2
, 3π

2
,

the edge entanglement persists for higher disorder amplitudes ∆.

−π 0 π
0

0.5

1

1.5  

φ
 

∆

0

0.5

1

Figure D.1: Haldane’s phase diagram

showing the resilience of the topolog-

ical Haldane phase, measured by 1
4
Sq

for finite q � 1, against disorder am-

plitude ∆. The monogamy signature

is most robust deep in the topological

phase. Here Lx = Ly = 30 unit-cells

and the data is averaged over 30 dis-

order realisations.
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D.2 From Haldane to SSH

D.2 From Haldane to SSH

As mentioned in 5.2.2, we label the lattice as shown in Fig. 4.1 and perform a

Fourier transformation along vy for the Haldane model. Focusing at the p?-chain,

we can obtain its momentum kernel by performing a Fourier transformation along

this chain to obtain

hHal(q) = (t1 cos q)X + (t1 sin q)Y + 2t2 (− cos (φ+ q)− cosφ+ cos (φ− q))Z.
(D.1)

Now, performing a Fourier along the SSH chain written in (5.2) we find its

momentum kernel to be

hSSH(q) = (−(t− δt)− (t+ δt) cos q)X + ((t+ δt) sin q)Y. (D.2)

The winding number of hSSH is w = 1 as long as |δt| < t and a quantum

phase transition to the trivial phase with w = 0 occurs when δt = 0, i.e. when

the hoppings are uniform. On the other hand, the winding number of hHal, under

the physically reasonable assumption that |t2| < |t1|, is w = 1, ∀φ 6= κπ, κ ∈
Z. These statements are extremely simple to confirm numerically by plotting

the Σ(q) vector of both kernels and tracking its winding on the unit sphere.

Specifically, we can choose t1 = −(t+ δt). Then we can set the SSH model to be

at its topological fixed point with t = δt. Finally, to make the two kernels equal

we impose (− cos (φ+ q)− cosφ+ cos (φ− q)) = 0 which results in the solution

φ = −2 arctan
(

2 sin q −
√

4 sin2 q + 1
)

.

D.3 Disorder on SSH

Here we examine the effect that disorder has on the correlations of the SSH

model 5.2 at half-filling. This we measure by the skewness, α3 given by (2.15),

of the single-body entanglement spectrum, i.e. the eigenvalues of the restricted

to a segment of the chain. Disorder of amplitude ∆ is added to the hoppings

t±δt as symmetric and uniform randomness. A local random chemical potential,∑
j 2(∆j − 1

2
)f †j fj, where |∆j| < ∆ a uniform random number, is also added to

the Hamiltonian.
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D.4 Analytic Form of Toy Model’s Entropy
for Haldane’s Honeycomb
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Figure D.2: Skewness α3 increasing

with disorder amplitude ∆ for a

uniform-hoppings chain at half filling

F = L = 100 for Anderson (red) and

SSH (blue). For each ∆-value we av-

eraged 100 disorder realisations. SSH

is protected by the gap and for large

∆ behaves as Anderson.

For every value of w we obtain α3 for 300 disorder realisations and average

over them. In Fig. D.2 we show α3 as a function of disorder amplitude ∆. Setting

uniform hoppings we have the Anderson model [148], δt = 0, and α3 increases

with ∆. We then set alternating hoppings δt = 1
2

and see that the effect disorder

has on the SSH model is suppressed by the gap for small w and then it behaves

like the Anderson model for large ∆.

D.4 Analytic Form of Toy Model’s Entropy

for Haldane’s Honeycomb

The Haldane model hosts Dirac edge states. Thus the analogue of the toy model

constructed for the no-vortex sector of Kitaev’s Honeycomb in this case is a four-

site complex-fermion hopping model,

H = (d†4d1 + d†2d3) + iw(d†1d2 + d†3d4) + h.c. (D.3)

where w represents a weak tunneling amplitude through the bulk. Higher hy-

bridisation w represents moving away from the ideally decoupled end state case,

or equivalently moving away from the p?-momentum which contributes maximal

entropy.

Performing a Jordan-Wigner transformation we get a 4-spin Hamiltonian of

size 16× 16 in the 4-spin basis {|s0s1s2s3〉 |si =↑, ↓}. The reduced density matrix

of the ground state, |gs〉 with energy Egs = −
√

2− 5w2 + 2|1 + 2w2|, is obtained
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D.5 Chern Semi-metal Phase Transition

by tracing out two of the spins in ρ = |gs〉 〈gs| and its von Neumann Entropy is

S2spin = − 1

8N
(16 log

1

N
+ (F −GR) log

(F −GR)

8N
(D.4)

+(F +GR) log
(F +GR)

8N
), (D.5)

where

N = 2−
(w

2

)2

+ 2s2
1 + s2

2 , F = −w2 + 8s2
1 + 4s2

2,

G = iw + 2s2 , R =
(
−w2 − 4iws2 + 4

(
4s2

1 + s2
2

))frac12
,

s1 =
4− w2

2|Egs|
, s2 =

iw(4− w2)

2E2
gs

.

D.5 Chern Semi-metal Phase Transition

Here we present details regarding the phase transitions of the Chern Semi-metal.

For simplicity, we fix K = −J = 1 and θ = π
2

the kernel of the Hamiltonian in

momentum space is

h =

 0 e−ipx − 1 −im
eipx − 1 0 e−ipy − 1
im eipy − 1 0

 , (D.6)

Because the kernel is traceless, only two of its eigenvalues, Ei(px, py,m) with

i = 1, 2, 3, are independent. Therefore we find the parameter values for which

the higher band E1 touches the middle band E2 in order to identify the phase

transitions. Furthermore, we notice that the extrema of these bands occur on

the diagonal of the Brillouin zone. and so we set px = py. In particular, the

minimum of the higher band, Emin
1 is unique and located at px = 0 for any value

of m < mc. At the same time, the maximum of middle band Emax
2 is located

at px ≈ 1.583 for any value of m ≤ mc, see Fig.(D.3) (Left). We determine the

value of mc numerically to be mc ≈ 1.4 as shown in Fig.(D.3) (Right).
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D.5 Chern Semi-metal Phase Transition
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Figure D.3: (Left) Opening of the indirect gap ∆E = E1 − E2 of the model

when mc is reached. (Right) The momenta pmax
x , pmax

y where the maximum of the

middle band occurs. As the parameter m is varied and as long as m ≤ mc, the

position of the maximum does not move. The lines are degenerate because the

extrema of the bands occur on the diagonal of the Brillouin Zone.

When a phase transition occurs for m = mc, the bands touch each other. In

this critical case, Emin
1 becomes doubly degenerate, i.e. at another momentum

px ≈ 1.583 the higher band comes down to the same value as the value it has for

px = 0. The value of the minimum of the higher band which coincides with the

maximum of the middle band is a function of m for m ≤ mc, given by

Emin
1 = Emax

2 =

√
3

2
m. (D.7)
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Appendix E

Related Interacting Models

E.1 Covariance Matrix for the SSHH Model

The Fock basis is
∣∣∣b↑1, . . . , b↑L, b↓1, . . . , b↓L〉 where bsi ∈ {0, 1}, or fermionic occupa-

tions on each site, for spin s =↑, ↓. The constraint for half filling and Sz = 0

demands
∑

i,s b
s
i = L and

∑
i b
↑
i =

∑
i b
↓
i . The dimension of the Fock space is the

number of the binary words that satisfy these two conditions.

After exact diagonalisation for periodic boundary conditions, we find the

unique ground state vector to be a superposition on this basis

|gsPBC〉 =
∑
b↑,b↓

Ab↑,b↓
∣∣b↑, b↓〉 . (E.1)

From the correlation matrices Cs,s′
i,j = 〈f si †f s

′
j 〉 and C̃s,s′

i,j = 〈f si f s
′
j 〉, which are

expressed in terms of the amplitudes Ab↑,b↓ we get 〈γkγl〉 and so we compute Γ

as follows. We begin by decomposing fj in terms of Majorana fermions γ2j−1 =
1√
2
(fj+f

†
j ) and γ2j = −i√

2
(fj−f †j ). From the correlation matrices 〈f †i fj〉 and 〈fif †j 〉

we get the correlations of Majoranas in the matrix Pkl = 〈γkγl〉 whose dimension
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E.1 Covariance Matrix for the SSHH Model

is double that of the correlation matrices’ and whose elements are

P2i−1 2j−1 =
1

2
〈fifj + fif

†
j + f †i fj + f †i f

†
j 〉

P2i−1 2j =
−i
2
〈fifj − fif †j + f †i fj − f †i f †j 〉

P2i 2j−1 =
−i
2
〈fifj + fif

†
j − f †i fj − f †i f †j 〉

P2i 2j =
−1

2
〈fifj − fif †j − f †i fj + f †i f

†
j 〉.

If there are no pairing terms in the Hamiltonian, then the terms 〈fifj〉 = 0. ∀i, j.
From P we can now build the Covariance matrix Γ = i

(
P − P T

)
.

E.1.1 Winding Number for the SSHH Model

The SSHH model supports a non-trivial winding number |w| = 1 for δt > 0.

We want the winding number as the winding of a unit vector 〈Σs(p)〉 on the

surface of the sphere, where p ∈ [0, 2π) is the momentum in the Brilluin zone.

We rename the fermionic operators that act on either site in the unit cell as

f s2x−1 → asx, f
s
2x → bsx and define the observables that will give us a winding

number for each spin component as Σs
x = as†pb

s
p+ bs†pa

s
p, Σs

y = −ias†pbsp+ ibs†pa
s
p,

Σs
z = as†pb

s
p − bs†pa

s
p, where s =↑, ↓, as is done in Refs [125, 126]. In order to

calculate its expectation value with the ground state for periodic boundaries,

〈gsPBC |Σs(p) |gsPBC〉, we Fourier transform the fermionic operators asp, b
s
p back

to real space to obtain

Σs
x =

L/2∑
x′,x=1

Cs,s
2x′−1,2xe

ip(x−x′) + Cs,s
2x,2x′−1e

−ip(x−x′), (E.2)

Σs
y =

L/2∑
x′,x=1

−iCs,s
2x′−1,2xe

ip(x−x′) + iCs,s
2x,2x′−1e

−ip(x−x′), (E.3)

Σs
z =

L/2∑
x′,x=1

Cs,s
2x′−1,2x′−1 − Cs,s

2x,2x. (E.4)

Each vector 〈Σ↑(p)〉, 〈Σ↓(p)〉 gives a winding number |w| = 1 in the topological

phase (δt > 0) in the free limit U = 0 and still does so when we turn on the

interactions U > 0. In Fig. 6.2 we show how the winding number is robust under

interactions in the topological regime (δt > 0).
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E.2 Toy Model for SSHH’s Virtual Edge

Figure E.1: Toy model for the virtual edges on either side of an entanglement

cut (dashed blue line). Each spin component is shown as a separate chain. The

virtual edge modes are shown as blue dots and would become physical ones if the

cut was physical. The cross-cut hopping isset to 1 and we also add a repulsive

interaction U between ↑, ↓ on each 1, 2 site.

E.2 Toy Model for SSHH’s Virtual Edge

The toy model Hamiltonian for the SSHH’s edge is illustrated in Fig. E.1 and

given by

H = −a†↑1a↑2 − a†↓1a↓2 + h.c. + U(n↑1n↓1 + n↑2n↓2). (E.5)

The Fock basis at half filling with Sz = 0 is {|1010〉 , |0101〉 , |0110〉 , |0101〉}, where

the first two bits refer to ↑ and the last two to ↓. The first and third bit refer to

site 1 and the second and fourth to 2.

The ground state is

|gs〉 =
1√
N

(|1010〉+ |0101〉+
1

2

(
U +
√

4 + U2
)

(|1001〉+ |0110〉)), (E.6)

where N = 2 + 1
2
(U +

√
4 + U2)2. From it we obtain the reduced density matrix,

ρ1 = tr2 |gs〉 〈gs| whose entropy is

S =
1

U2 +
√
U2 + 4U + 4

(2 log

(
1

U2 +
√
U2 + 4U + 4

)
(E.7)

+
(
U2 +

√
U2 + 4U + 2

)
log

( (√
U2 + 4 + U

)2

4
(
U2 +

√
U2 + 4U + 4

))).

The 2-point correlation matrix is C = 〈gs| a†σiaσ′j |gs〉, i, j = 1, 2 and is 4× 4

in size. When non-interacting, C contains all the information of the system and

it has eigenvalues µ with µj = 1 for as many particles occupying the lattice and
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E.2 Toy Model for SSHH’s Virtual Edge

0 0.5 1 1.5
0.925
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0.975

1

U

ξ
A
B Figure E.2: Signatures ξAB of

highly entangled pairs as a func-

tion of the interaction U . In red

dots are numerical results from

SSHH at the fixed point, δt = 1,

for L = 6. Black line is the toy

model’s result.

the rest are µk = 0. When interactions are turned on then this stops being true,

as information about the system is spread into all high-order correlations and the

µ move away from 0 and 1. Note that the interaction does not induce 2-point

correlations between ↑, ↓, so C always remains block-diagonal.

Its correlation block CAB is 2× 2 in size and looks like

CAB = diag

(
U +
√
U2 + 4

1
2

(
U +
√
U2 + 4

)2
+ 2

,
U +
√
U2 + 4

1
2

(
U +
√
U2 + 4

)2
+ 2

)
. (E.8)

The two maximally entangled fermion pairs appear as eigenvalues ξAB ≈ 1 of the

matrix 4CT
ABCAB. This matrix is 2× 2 and its spectrum is

κ =

{
4

U2 + 4
,

4

U2 + 4

}
(E.9)

which we plot in FIG.16 as a function of U . We see that the two pairs lose their

entanglement as the interaction becomes stronger.

This toy model captures the bahaviour of the virtual edge modes around an

entanglement cut. For the spinful SSHH model we performed two entanglement

cuts which can be regarded as independent due to a finite localisation length of

the virtual edge states. This explains the four highly entangled fermion pairs,

correspoinding to an M = 8 signature in terms of Majorana pairs, all losing

their entanglement together. Finally, in Fig. E.2 we show how the expression

ξAB = 4
U2+4

from the toy model captures the shift from maximal entanglement

for the SSHH model. We argue that if the covariance matrix were expressed in

the basis in which the operators that create the edge states are decoupled from

the Hamiltonian, then the monogamy signature would not decrease.
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E.3 Jordan Wigner on the Ising Chain

E.3 Jordan Wigner on the Ising Chain

The non-local relations between fermionic operators and Pauli spin-1
2

operators

are given by [149]

Zj = 1− 2nj , nj = f †j fj

Xj = −
∏
l<j

Zl(fj + f †j )

Yj = i
∏
l<j

Zl(fj − f †j ). (E.10)

Substituting the expressions for X and Z in the quantum Ising’s Hamiltonian

given by 6.3 we obtain

H± =
L∑
j=1

∓f †j fj+1 + fjfj+1 + hznj − hx
∏
l<j

(1− 2nl)fj + h.c.,

where nj = f †j fj the on-site fermionic population. When hx = 0 this model

is Kitaev’s wire, given by 4.17, for t = ±2, ∆ = 2, φ = 0, and µ = −2hz.

The topological phase occurs for |t| > |µ| implying hz < 1. Note that the sign

determining ferromagnetism or anti-ferromagnetism does not change the physics

due to particle-hole symmetry which allows f †j ↔ fj. The hx-term makes the

model non-quadratic for finite hx with the introduction of an annihilation which

non-locally depends on the parity of the chain-segment before it before it.

E.4 Convergence of Ising’s

Single-body Entanglement Levels

Here we present details on the rate of convergence to the optimal set of single

body energies, ε, for the quantum Ising chain as a function of its length, L. We

find that they converge exponentially, as shown in Fig. E.3. This is the case

even near criticality due to the finite size induced gap. In the thermodynamic

limit, however, the entanglement spectrum is gapless at criticality [44]. Hence

the convergence to the optimal model is expected to be polynomial in L. We

observe that a power law convergence can be well fitted around criticality, with

the goodness of the fit decreasing away from it.
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E.5 Parachains: Higher N and
Off the Fixed Point
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Figure E.3: Exponential convergence of lowest lying single-body entanglement

energies εs with system size L for FM (Left) and AFM (Right) at a non-critical

generic point (hz = 0.88, hx = 0.16).

E.5 Parachains: Higher N and

Off the Fixed Point

In Fig. E.4 (Left) we present supplementary data for the support that the analytic

form of DF for flat spectra is indeed given by 6.6. In Fig. E.4 (Right) we present

results obtained by Farjami and Turner. We see that DF for N = 3 and N = 4

off the fixed point. We see that Z4 has DF = 0 for any f > 0, while the DF value

for Z3 persists throughout the topological phase.

The entanglement spectra used for computing DF are obtained by exact di-

agonalisation of the parafermion Hamiltonian (6.4) in the clock basis. We trans-

form the parafermions to the quantum clocks via the parafermionic version of the

Jordan-Wigner transformation [150]

γb
l =

(∏
k<l

τk

)
σl , γw

l = −ω 1
2

(∏
k≤l

τkσl

)
. (E.11)

The N × N clock matrices have elements τ2,1 = τ3,2 = ... = τN,N−1 = 1 =

τ1, N and σ = diag(1, ω, . . . , ωN−2, ωN−1). We then treat it like a usual spin

Hamiltonian which conserves the parafermionic parity, Q =
∏

l τl, the operator

that winds each clock on the chain a phase ω. Obtaining the ground state in a
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E.5 Parachains: Higher N and
Off the Fixed Point
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Figure E.4: (Left) Interaction distance, DF , for E[
e(N). Numerical results (black

dots) agree with the conjectured form of DF given by 6.6 (blue line). The dots

floating above the line are attributed to failure of the numerical optimisation to

find the global minimum. We confirm this by increasing the number of basins

the algorithm visits and observe that they land on the line. (Right) Interaction

distance for the Z4 parafermion chains of length L = 8 and Z3 of length L = 12,

with various partition sizes, LA, as we move away from the fixed point, f = 0.

While DF = 0 for Z4 for all values of f , it becomes a step function for Z3 as the

partition size increases. (Inset) log(DF(ρ[(3))−DF) for the Z3 chain shows that

DF converges exponentially to its fixed point value DF(ρ[(3)) as we increase LA.

Q-sector we can obtain the entanglement spectrum by reshaping the ground state

in order to create the entanglement matrix and take its singular values.

Interestingly, there exists a parafermionic Fock space [151]. There exist ana-

logues of creation and annihilation operators which are non-linear in terms of the

parafermions for N > 2 with the difference that the vacuum is not annihilated but

instead it transitions to the highest state as a clock should behave. The graded

tensor product structure of fermions that takes care of the minus signs arising

from fermionic exchange now turns into an ω-graded tensor product which intro-

duces phases ω upon exchanging para-creation and para-annihilation operators.

Then one can construct the Hamiltonian in the paraFock vectors compatible with

a particular Q-sector and compute desired quantities as is done in ref [134], and

in our case that would be the entanglement matrix.
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E.6 Entanglement Spectrum for String-nets

E.6 Entanglement Spectrum for String-nets
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Figure E.5: (Left) Entanglement cut around a vertex cutting three links on a

string-net. Charges Ji occupy the i = 1, 2, 3 links. (Right) Charge configurations

on ∂A for Z3 and SU(2) together with their correspoinding propability.

Here we provide two simple examples, one for an Abelian and one for a non-

Abelian group, of calculating the entanglement spectrum on a string-net using

(6.9). The topologically trivial region we are cutting contains only one vertex of

the honeycomb and thus the boundary ∂A cuts three links, |∂A| = 3, as shown

in Fig. E.5 (Left).

Take for the Abelian case the group Z3 with charges J = 0, 1, 2. The cal-

culation of the entanglement spectrum entails the enumeration of charge con-

figurations on ∂A that fuse to the vacuum, which here we choose to be the

element 0. These configurations of charges are determined then by the condi-

tion
(∑3

i=1 Ji
)

mod3 = 0. For the non-Abelian case we take the group SU(2)2

which gives rise to Ising anyons. Each charge can take values J = 1, σ, ψ, where

1 denotes the vacuum. The Ising fusion rules are σ × σ = 1 + ψ, σ × ψ = σ,

and ψ × ψ = 1. The allowed configurations on ∂A are those which have a fi-

nite probability to fuse to the vacuum. In Fig. E.5 (Right) we show the charge

configurations which can fuse to the vacuum for both cases.
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Figure E.6: (Left) Interaction distance DF vs k for string-net endowed with group

SU(2)k for a trivial entanglement cut deformable to a disk. (Right) When the

entanglement cut has non-trivial topology, braiding properties affect the entangle-

ment spectrum and DF behaves differently quantitatively but not qualitatively.

E.7 Interaction Distance

for Non-Abelian String-nets

Here we show numerical results for 2D and 3D string-nets endowed with the non-

Abelian group SU(2)k with total quantum dimension D = (
√

2
k+2

sin π
k+2

)−1 [52].

In Fig. E.6 (Left) we see that DF for a 2D string net were we cut around a vertex

as in Fig. E.5(Left) is finite for all k ≥ 2 that we examined. Furthermore, we

observe that DF converges to ≈ Dmax
F
5

which is the most common value as seen

from our numerical experiments with random states. Considering that for large k

the multiplicities of the fusion channels of the anyons diverge and the vertices of

the string-net represent random processes, we conjecture that the entanglement

spectrum, and thus the interaction distance, resemble that of a random state.

In the 3D case we compare DF from a spherical cut and from a toroidal cut.

In Fig. E.5(Right) we observe that indeed the braiding affects the entanglement

spectrum and thus the interaction distance.
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