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Abstract

We proceed to study the symmetries of integrable open boundaries in the one

dimensional Hubbard model, the Heisenberg XXX spin chain and Inozemtsev’s

hyperbolic spin chain.

For the Hubbard model, we show that when placed on the left half-line, the

known integrable open boundaries (a magnetic field and chemical potential) break

the bulk Yangian symmetry to a twisted Yangian corresponding to the (sl2, u1)

symmetric pair. Furthermore, we consider two additional boundaries, corresponding

to the symmetric pairs (so4, sl2) and (sl2, sl2) and construct their twisted Yangian

symmetries. This provides a step forward in the classification of integrable boundaries

of the open Hubbard model. We conclude our study of this model by examining

the symmetries of its bulk and open SU(n) generalisation.

For the Heisenberg XXX spin chain and Inozemtsev’s hyperbolic spin chain we

construct a procedure to, given the integrable bulk models, systematically obtain

their integrable boundaries and corresponding Yangian symmetries for the symmetric

pairs (sl2, u1), (so4, sl2) and (sl2, sl2). We call this method ‘folding’, and it is

motivated by the wish to study integrable boundaries for long-range spin chains.

We test this procedure by first applying it on the Heisenberg XXX spin chain

and confirming it reproduces well known results. We then apply the folding to

Inozemtsev’s hyperbolic spin chain and classify its integrable open boundaries and

their twisted Yangian symmetries.
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Introduction

This thesis studies the symmetries governing the integrable structure of several

models in 1+1 dimensions. More specifically, we will be looking at the different

ways one can impose a open boundary condition which preserves integrability in

the Hubbard model, the Heisenberg XXX spin chain and Inozemtsev’s hyperbolic

spin chain.

The study of symmetries has always had a immense role in our attempt at understanding

reality. This role is explicitly stated in what is arguably the most powerful theorem

in mathematical physics: Noether’s theorem. Noether proved that for every continuous

symmetry of a physical model there is a corresponding quantity that is conserved

in time. The consequences of this theorem range across all of physics, from the

solution of the spinning top in classical mechanics to restriction and prediction of

particle interactions in the Standard Model of Particle Physics.

The ability to solve – i.e find the quantities of interest of, like energy or momentum

and the spectra of their values – any of these systems depends on how many

symmetries it possesses. The more symmetries, the more conditions in the equations

of motion, and if one has as many conditions as degrees of freedom, the system can

be solved, and it is known as a solvable, or integrable, system.

Integrable systems appear everywhere in physics and mathematics. The most

famous one in statistical physics is the Heisenberg XXX spin chain, which is used

to study the properties of materials at the quantum level. Bethe found a procedure

to solve this model in 1931, known today as the Bethe ansatz method. As expected,

this method has implications for the symmetry type of the model which, as we will

see soon, allows one to construct an infinite set of conserved quantities.

The study of integrable systems via algebraic methods flourished in the 1970s and

80s, when it was found that the existence of infinitely many conserved quantities

was deeply connected to the scattering (or R-) matrix of the model in question. This

enabled the unification of previous work started by Bethe and algebraic properties

studied in solvable systems by Yang, Baxter and many others into the Quantum

Inverse Scattering Method (QISM).

All these models possess a common algebraic structure derived from theirR-matrix.

However, the slightest perturbation of their Lagrangian may have non-trivial consequences

so as to destroy integrability. Yet integrability is surprisingly frequent in fundamental

physics. The most natural of these perturbations is caused by the imposition of a
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boundary. Which boundaries preserve integrability and their symmetries is the

focus of this thesis. It is organised as follows:

Chapter 1: The QISM and Yangian symmetries. In the first Chapter we will

introduce the QISM and several integrable models, all of which are relevant for the

results in the next two Chapters. Starting from the Yang-Baxter equation, we will

show how an integrable model is obtained, and present the XXZ spin chain as a first

example. We will then use the Heisenberg spin chain to show how the Algebraic

Bethe Ansatz works, and unravel the full set of symmmetries behind its solvability:

the Yangian. To conclude this Chapter, we will introduce the boundary QISM and

show how, for some special open boundary conditions, there is still a remnant of

such symmetry that ensures integrability: a twisted Yangian symmetry. We will

look at a specific integrable boundary for the Heisenberg spin chain, but leave the

additional possible cases for future Chapters.

Chapter 2: Twisted Yangian symmetry of the open Hubbard model. This

Chapter will deal with one of the most intriguing and rich integrable models in

condensed matter physics: the Hubbard model. Its exoticity comes with a price:

it exhibits a bizarre integrable structure, which is why its R-matrix took much

longer to construct than that of any other known solvable model. We will give an

overview of how the model was conceived, its symmetries and Shastry’s construction

of its R-matrix. We will then introduce the SU(n) generalisation of the Hubbard

model, which will be used to point out how special the n = 2 case is. Then, we

will make connections between the Hubbard model and AdS/CFT integrability –

in particular, the role of the partial particle-hole transformation. Until this point,

the vast majority of the material is not the author’s work, excluding the Yangian

symmetry of the SU(n) Hubbard model in Section 2.3 and the role of the partial

particle-hole transformation in connecting its R-matrix to that of the AdS5 × S5

superstring in Section 2.4. Some introductory material aside, Sections 2.5, 2.6 and

2.7 are based on papers [121, 89] and some unpublished work by the author and

collaborators, where we constructed twisted Yangian symmetries corresponding to

three different open boundary conditions in the half-infinite Hubbard chain.

Chapter 3: Folding a spin chain. This Chapter closely follows the paper by

the author and collaborators [137]. We explore a procedure to obtain integrable

boundary Hamiltonians and their corresponding twisted Yangian symmetries for

integrable models in the bulk. This method is shown to work for known boundaries

of the Heisenberg spin chain and proves to be remarkably useful when applied to
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long-range spin chains, where no other clear treatment of integrable boundaries is

known.

Chapter 4: Conclusion and Outlook. In this Chapter we sum up our results and

list several directions this research could take next. This is based on the concluding

statements of the papers by the author and collabotators [89, 121, 137].
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Chapter 1

The QISM and Yangian symmetries

1.1 Integrability in classical physics

Before venturing ourselves into the world of quantum integrable models, it is useful

to briefly state how these arise in classical physics for motivational purposes. At the

classical level [1, 2], integrable models live in a symplectic manifold (M, ω). This

is a manifoldM of dimension 2n equipped with a closed, non-degenerate 2-form: a

map

ω : TM× TM→ R, (1.1.1)

where TM is the tangent bundle of M. In other words, at any point p ∈ M, ω

maps a pair of vectors in the tangent space TpM×TpM to a number. Locally, one

can assign coordinates (q1, . . . qn, p1, . . . pn) to each point in M such that

ω =
n∑
i=1

dqi ∧ dpi i = 1, ...n. (1.1.2)

Non-degeneracy of ω implies there is a one-to-one correspondence of one-forms

and vector fields through the following statement: for every differentiable function

H :M→ R, there exists an unique vector field XH such that

dH(Y ) = ω(XH , Y ) ∀ Y ∈ TM. (1.1.3)

We call XH the Hamiltonian vector field of the Hamiltonian H. Using (1.1.3)

and writing XH =
∑n

i=1

(
ai

∂
∂qi

+ bi
∂
∂pi

)
, where ai and bi are functions of the local

coordinates, we have that

dH(Y ) =
∂H

∂qi
dqi(Y ) +

∂H

∂pi
dpi(Y ) (1.1.4)
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Chapter 1. The QISM and Yangian symmetries

and

ω(XH , Y ) =

(
n∑
i=1

dqi ∧ dpi

)
(XH , Y ) =

n∑
i=1

aidpi(Y )− bidqi(Y ), (1.1.5)

so that, in terms of the coordinates pi and qi, the Hamiltonian vector field is given

by

XH =
n∑
i=1

∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
. (1.1.6)

If x(t) = (pi(t), qi(t)) is an integral curve of XH for any i then dH(XH(x(t))) = 0,

so that Hamilton’s equations hold:

ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
∀ i (1.1.7)

and thus the Hamiltonian H is constant along the integral curves. The physical

interpretation is conservation in time of energy of a system with n degrees of freedom

characterised by the positions qi(t) and corresponding momenta pi(t) on the phase

space M. Additionally, H determines how other functions on M evolve in time:

using (1.1.6) and (1.1.7), we obtain that for any function F on M,

dF

dt
=

n∑
i=1

∂F

∂qi
q̇i +

∂F

∂pi
ṗi =

n∑
i=1

∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi
= XH(F ) = {H,F} (1.1.8)

where {H,F} is the Poisson bracket of H and F . This is a binary operation on any

two differentable functions F and G on M, given by

{F,G} =
n∑
i=1

∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi
. (1.1.9)

One can check this operation is skew-symmetric and satisfies the Jacobi identity,

thus the set of differentiable functions on M with the Poisson bracket is a Lie

algebra. The coordinates pi and qi are canonical, meaning they satisfy

{pi, qj} = δij, {qi, qj} = {pi, pj} = 0. (1.1.10)

The system described by the Hamiltonian H is Liouville integrable, or integrable

in the Liouville sense, if there are at least n − 1 quantities F1, F2 . . . Fn−1 which

Poisson-commute with each other and with the Hamiltonian

{Fi, Fj} = 0, {Fi, H} = 0 ∀ i (1.1.11)
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1.1. Integrability in classical physics

and thus these quantities are not only in involution, but also conserved in time. If

one then constructs a canonical – (1.1.10)-preserving – transformation (pi, qi) 7→
(Fi, ψi) (details on how to do this can be found in [1]) then Hamilton’s equations

can be easily solved

Ḟi = 0 =⇒ Fi(t) = Fi(0),

ψ̇i =
∂H

∂Fi
= Θi =⇒ ψi(t) = ψi(0) + Θit, (1.1.12)

the second equation being a consequence of the possibility of writing H as a linear

combination of all charges in involution.

From Noether’s theorem [3], the conserved quantities {Fi} should be connected

to continuous symmetries of the system, and hence integrability is achieved due to

a large number of symmetries which highly constrain the possible solutions. An

illustrative example of a system with this property is the Kepler 2-body system,

which is actually ‘superintegrable’: due to the conservation of the Laplace-Runge-Lenz

vector, it possesses a number of conserved quantities higher than number of degrees

of freedom. In fact, it is ‘maximally superintegrable’: it possesses 2n− 1 conserved

charges for n degrees of freedom (where n = 3). This is a consequence of its so3

symmetry being enhanced by hidden symmetries of inverse square forces to so4 [6].

A considerable amount of work has been devoted, and still is, to the study of

classical integrable systems. Like the aforementioned example, these appear in

everyday classical models like the harmonic oscillator and the Euler top. In 1+1D

classical field theory, other relevant examples are the sine-Gordon model, Toda

field theory and the Korteweg–de Vries (KdV) equation [1, 4]. A variety of tools,

including Lax pairs and the Inverse Scattering Transform [1, 5], are employed to

find their conserved quantities and solutions.

At the quantum level, however, there are new things to consider other than simply

the usual procedure to transition from the classical to the quantum world, which is

given by the change of functions to operators and the Poisson bracket of functions

to the commutator of operators:

F 7→ F̂

{F,G} 7→ 1

i~
[F̂ , Ĝ]. (1.1.13)

The problem we face in this transition is due to the infinite degrees of freedom

a quantum theory may possess, making it difficult to define what it means to

be integrable i.e. even in the case where the model possesses an infinite set of

13



Chapter 1. The QISM and Yangian symmetries

commuting operators, how can we use it to find solutions? The goal is to discover a

method of 1) finding and/or constructing a large – possibly infinite – set of operators

{F̂i} which commute with the Hamiltonian operator Ĥ and each other, and 2) such

that solutions of the system can be found. This is known as the Quantum Inverse

Scattering Method (QISM) [19, 21].

Starting in the next Section, we introduce the fundamental objects which play a

role in the QISM, beginning with its protagonist: the R-matrix. Many reviews have

been done in the subject matter, with their applications in high energy physics and

condensed matter physics [7, 8, 9, 10] and the introductory Section of [11]. We will

follow the common structure of these reviews and introduce additional concepts

when relevant.

1.2 The Yang-Baxter equation

The main subject of study in this Section is the R-matrix R(u, u′), which is a map

R(u, u′) : V ⊗ V ′ → V ⊗ V ′. (1.2.1)

Here V and V ′ are vector spaces and u, u′ ∈ C are the so-called spectral parameters

[7]. When acting on the space V1 ⊗ V2 ⊗ . . . ⊗ VL, where Vi are Hilbert spaces for

i = 1 . . . L, we will denote by Rij(ui, uj) the object acting as R(ui, uj) on the space

Vi ⊗ Vj and the identity everywhere else. For example:

R12(u1, u2) = R(u1, u2)⊗ 1V3 ⊗ . . .⊗ 1VL (1.2.2)

where 1Vi is the identity map in End(Vi). For computational and visualisation

purposes, it is convenient to represent Rij(ui, uj) pictorially [11], with different

spaces corresponding to different lines

Rij(ui, uj) = i
ui

j

uj

(1.2.3)
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1.2. The Yang-Baxter equation

and the arrows specify the order in which the product of R-matrices act e.g.

R13(u1, u3)R12(u1, u2) = 1
u1

2

u2

3

u3

(1.2.4)

Although it is a priori not clear how to approach integrability for a 1+1D QFT with

an number of degrees of freedom which could be infinite, one can obtain quantum

integrable models from R-matrices that satisfy a special property. It was discovered

[13, 14, 15, 16] that, for one and two dimensional systems in statistical mechanics,

the ability to calculate every eigenvalue of the transfer matrix required an associated

R-matrix to satisfy the star-triangle relation, which is now called the Yang-Baxter

equation (YBE)

R12(u1, u2)R13(u1, u3)R23(u2, u3) = R23(u2, u3)R13(u1, u3)R12(u1, u2). (1.2.5)

This is an equality between two maps acting on V1⊗ V2⊗ V3, and can be expressed

pictorially as

1

u1

2

u2

3

u3

1

u1

2

u2

3

u3

(1.2.6)

The simplestR-matrix solution of the YBE for End(V ⊗2) is the permutation operator

P

P : x⊗ y 7→ y ⊗ x x, y ∈ V (1.2.7)

As before, we denote Pij as the object acting as P on the i-th and j-th spaces in

the tensor product and the identity everywhere else. One can easily check that Pij

satisfies the YBE:

P12P13P23(v1 ⊗ v2 ⊗ v3) = (v3 ⊗ v2 ⊗ v1) = P23P13P12(v1 ⊗ v2 ⊗ v3). (1.2.8)
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Chapter 1. The QISM and Yangian symmetries

In fact, if R(u, u′) satifies the YBE, then Ř(u, u′) = PR(u, u′) provides an equivalent

way of writing the YBE acting on V ⊗3 [8]

(Ř(u, u′)⊗ 1V )(1V ⊗ Ř(u, u′′))(Ř(u′, u′′)⊗ 1V ) =

= (1V ⊗ Ř(u′, u′′))(Ř(u, u′′)⊗ 1V )(1V ⊗ Ř(u, u′)). (1.2.9)

Indeed, the two most trivial solutions of the YBE are the identity, where Ř = P ,

and the permutation operator, so we denote by (u0, u
′
0) the pair of points in the

spectral parameters such that Ř(u0, u
′
0) = 1V⊗V or

R(u0, u
′
0) = P. (1.2.10)

Using all the concepts we have introduced, we will proceed to show that an R-matrix

which satisfies the YBE leads to an integrable model and a method of solving it:

the QISM [7, 19, 21]. We will assume that the R-matrix acts on a Hilbert space V
given by the L-fold tensor product of finite-dimensional vector spaces V :

V =
L⊗
i=1

Vρi (1.2.11)

where the subscript denotes that the space Vρi is in a representation ρi of a Lie

algebra g. Thus Rij(u, u
′) ∈ End(Vρi ⊗ Vρj). In particular, the fundamental

representation will be denoted by the label ρa. In the case where we are dealing

with more than one space in the fundamental representation, these will be labeled

Vρa , Vρb , etc. The Lax matrix, or Lax operator, is defined as

Lj(u) := Raj(u, u
′
0) ∈ End(Vρa ⊗ Vρj). (1.2.12)

Since

Rab(u1, u2)Ra1(u1, u
′
0)Rb1(u2, u

′
0) = Rb1(u2, u

′
0)Ra1(u1, u

′
0)Rab(u1, u2), (1.2.13)

we have that the Lax matrix satisfies the RLL relation

R(u, u′)(Lj(u)⊗ 1Vρb )(1Vρa ⊗ Lj(u
′)) = (1Vρa ⊗ Lj(u

′))(Lj(u)⊗ 1Vρb )R(u, u′).

(1.2.14)
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1.2. The Yang-Baxter equation

We can construct the monodromy matrix Ta(u) from Lax matrices

Ta(u) = LL(u)LL−1(u)...L1(u) ∈ End(Vρa ⊗
L⊗
j=1

Vρj) (1.2.15)

Here the space in the fundamental representation is known as the auxiliary space,

and the L-fold tensor product to the right of it as the quantum space [7]. We

note that the auxiliary space could be in any other representation as long as it is

a common space in all Lax matrices. The pictorial expression of the monodromy

matrix follows from (1.2.4)

Ta(u) = a
u

1

u′0

2

u′0

L

u′0

(1.2.16)

Using this picture, one can easily show the defining relation of the Yang-Baxter

algebra (or the so-called RTT-relation)

Rab(u, u
′)Ta(u)Tb(u

′) = Tb(u
′)Ta(u)Rab(u, u

′) (1.2.17)

by using the RLL relation [19] or, equivalently, proving the equivalence between the

diagrams corresponding to the right and left expressions using the picture of the

YBE [11].

At the special value u = u0, the trace of the monodromy matrix over the auxiliary

space becomes the shift operator U

U = traPa,LPa,L−1 . . . Pa1 = P12P23 . . . PL−1,L (1.2.18)

which shifts elements of the quantum space from positions i to i − 1 in the tensor

product, with periodicity 0 ≡ L. Being a translation operator, we naturally define

the momentum operator p̂ of the quantum model via the formula eip̂ = U, where

i =
√
−1.

We shall assume the R-matrix to be invertible. Acting on both sides of the RTT

relation by R−1
ab (u, u′), we have that

R−1
ab (u, u′)Tb(u)Ta(u

′) = Ta(u
′)Tb(u)R−1

ab (u, u′) (1.2.19)
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Chapter 1. The QISM and Yangian symmetries

and thus, for some scalar function µ(u, u′), we see that

R−1
ij (ui, uj) = µ(ui, uj)Rji(uj, ui). (1.2.20)

Since multiplying the R-matrix by a scalar factor does not affect the YBE, R(u, u′)

can always be rescaled by a function ν(u, u′) such that

ν(u, u′)ν(u′, u) =
1

µ(u, u′)
(1.2.21)

and R(u, u′) satisfies the unitarity condition:

Rji(uj, ui)Rij(ui, uj) =

i
ui

j
uj

uj

ui

i
ui

j
uj

= 1Vρi⊗Vρj

(1.2.22)

There is still freedom to multiply the R-matrix by an additional scalar function

κ(u, u′) such that κ(u, u′)κ(u′, u) = 1, so if one wishes to restrict its form even more,

we may require a condition which arises in 2d QFTs known as crossing unitarity

[12]

Rtri
ij (−ui, uj)Rtri

ji (uj,−ui) = 1Vρi⊗Vρj . (1.2.23)

where tri denotes the transpose of the i-th space.

If we act on the RTT-relation from the left (or right) by R−1
ab (u, u′) and take the

trace over auxiliary spaces a and b, using the cyclicity of the trace, we obtain

[τ(u), τ(u′)] = 0 (1.2.24)

where the operator τ(u) = traTa(u) is the transfer matrix [16]. Consider the power

series of τ(u) around the point u0

τ(u) =
∞∑
n=0

tn(u− u0)n. (1.2.25)

From the definition of the monodromy matrix, τ(u) is a polynomial of at least

degree L. Then, from (1.2.24), we have that there is a family of at least L operators

tn that commute with one another

[tn, tm] = 0. (1.2.26)
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1.3. The XXZ spin chain

Picking one of these operators to be the Hamiltonian with periodic boundary

conditions – induced by the shift operator U – the quantum model it describes

has at least as many conserved quantities tn as degrees of freedom, and thus it must

be integrable. We pick the Hamiltonian of the model to be its logarithmic derivative

at the point u = u0, which is the linear term in the expansion of τ(u0)−1τ(u):

H =
d

dt
ln τ(u)|u=u0 . (1.2.27)

Picking this Hamiltonian instead of the linear term in τ(u) does not affect the

number of conserved charges as [τ(u0)−1τ(u), τ(u0)−1τ(u′)] = 0 follows from (1.2.24).

From now on, if an R-matrix satisfies the YBE, we will say it is the R-matrix of the

model whose Hamiltonian appears in its the logarithmic derivative of its transfer

matrix.

1.3 The XXZ spin chain

Solutions of the YBE are, in general, difficult to find. To make life easier, we can

impose certain conditions on the R-matrix which come from the model itself. For

example, let the Hilbert space of a 1+1D quantum model be V = V ⊗L with V = C
2.

The basis for each of these vector spaces is given by ‘spin up’ |↑〉 and ‘spin down’

|↓〉, which are eigenvectors of the spin operator Sz = ~
2
σz with eigenvalues ~

2
and −~

2

respectively. These can be intepreted as the basis of spin 1
2

states. The R-matrix

is then a member of End(C2 ⊗ C2). Furthermore, let us assume the R-matrix is of

‘difference form’ i.e. R(u, u′) = R(u−u′)1. Upon setting u = u1−u3 and u′ = u2−u3,

the YBE becomes

R12(u− u′)R13(u)R23(u′) = R23(u′)R13(u)R12(u− u′) (1.3.1)

and the RTT relation becomes

Rab(u− u′)Ta(u)Tb(u
′) = Tb(u

′)Ta(u)Rab(u− u′). (1.3.2)

In the system described, an orthonormal basis in C2⊗C2 is given by |↑↑〉 , |↑↓〉 , |↓↑〉
and |↓↓〉, where |jk〉 = |j〉 ⊗ |k〉. Due to Sz symmetry (conservation of spin), we

1We shall make a note, however, that although very common, this is not true in general. For
example: the R-matrix of the Hubbard model does not satisfy this property.
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Chapter 1. The QISM and Yangian symmetries

have that the action of the R-matrix on this basis is

R(u) |↑↑〉 = a(u) |↑↑〉 , R(u) |↑↓〉 = b(u) |↑↓〉+ c(u) |↓↑〉

R(u) |↓↓〉 = f(u) |↓↓〉 , R(u) |↓↑〉 = d(u) |↑↓〉+ e(u) |↓↑〉

where a(u) through f(u) is a set of complex functions, and we have omitted the

subscripts of R(u) because we are considering its action on 2 spaces of our choice.

Since we picked one of two ways we could label the basis of C2, the system must

remain unchanged under the relabeling ↑ ↔ ↓, so we must have that f(u) = a(u),

d(u) = c(u) and e(u) = b(u). Thus, the form of the R-matrix acting on the column

vector (|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉)T is

R(u) =


a(u) 0 0 0

0 b(u) c(u) 0

0 c(u) b(u) 0

0 0 0 a(u)

 . (1.3.3)

Having significantly reduced the number of independent entries, it is relatively easy

to check that R(u) obeys the YBE if

∆(u) = ∆(u′) = ∆(u− u′) (1.3.4)

where

∆(u) =
a(u)2 + b(u)2 − c(u)2

2a(u)b(u)
. (1.3.5)

This implies that ∆(u) does not depend on u, and thus shall be from now on denoted

as ∆q, where q ∈ C. An elegant set of functions which satisfy (1.3.4) is given by

a(u; q) = 1, b(u; q) =
[u]q

[u+ 1]q
, c(u; q) =

[1]q
[u+ 1]q

, (1.3.6)

where [x]q = qx−q−x
q−q−1 . In this case, ∆q = q+q−1

2
. Hence the R-matrix

R(u; q) =


1 0 0 0

0 [u]q
[u+1]q

[1]q
[u+1]q

0

0 [1]q
[u+1]q

[u]q
[u+1]q

0

0 0 0 1

 (1.3.7)
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1.3. The XXZ spin chain

satisfies the YBE and is therefore the R-matrix of an integrable model [16, 27]. To

infer more about the model, let us derive its Hamiltonian. We have that

R(u; q) =
1

2

(
1 +

[u]q
[u+ 1]q

)
σ0 ⊗ σ0 +

1

2

(
1− [u]q

[u+ 1]q

)
σz ⊗ σz

+
[1]q

[u+ 1]q
(σ+ ⊗ σ− + σ− ⊗ σ+), (1.3.8)

where the Pauli matrices, together with the identity form the fundamental representation

of gl2
2

σ0 = 12 =

(
1 0

0 1

)
, σ+ =

(
0 1

0 0

)
, σ− =

(
0 0

1 0

)
, σz =

(
1 0

0 −1

)
,

(1.3.9)

and satisfy the usual gl2 relations

[σz, σ±] = ±2σ±, [σ+, σ−] = σz, {σ+, σ−} = σ0. (1.3.10)

This R-matrix becomes the permutation operator at u0 = u′0 = 0. The Lax matrix

Lj(u; q) = Raj(u; q) is obtained by mapping elements of the second space of (1.3.8)

to the set of spin operators

ΣL = {σ+
i , σ

−
i , σ

z
i , σ

0
i , i = 1, . . . L} (1.3.11)

which satisfy

[σai , σ
b
j ] = δijf

ab
cσ

c
i , {σ+

i , σ
−
j } = δijσ

0
i (1.3.12)

where fabc are the sl2 structure constants in (1.3.10). More specifically, this map is

given by

σa ⊗ σb 7→ σa ⊗ σbj (1.3.13)

Thus the Lax matrix is:

Lj(u; q) =
1

2

(
(1 + σzj ) + [u]q

[u+1]q
(1− σzj )

2[1]q
[u+1]q

σ−j
2[1]q

[u+1]q
σ+
j (1− σzj ) + [u]q

[u+1]q
(1 + σzj )

)
. (1.3.14)

2From now on, 1n will denote the n× n identity matrix.
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Chapter 1. The QISM and Yangian symmetries

The monodromy matrix is then Ta(u; q) = LL(u; q)LL−1(u; q) . . . L1(u; q). Using

(1.2.27), we have that the Hamiltonian for this model is

Hq =
d

du
lnτ(u; q)|u=0

=
4q log(q)

q − q−1

(
L∑
i=1

σ+
i σ
−
i+1 + σ−i σ

+
i+1 +

∆q

2
(σzi σ

z
i+1 − 1)

)
(1.3.15)

with periodic boundary conditions σaL+1 = σa1 . This is the Hamiltonian of the XXZ

spin chain [15, 27]. The integrable structure of this model was one of the main

focuses in the introduction of the QISM, and it is used as an example in several

introductory reviews on quantum integrability [8, 23] and this thesis. Its physical

intepretation is that of a 1 dimensional chain of sites labeled 1 to L populated

by spin-1
2

particles that are allowed to interact between nearest-neighbouring sites.

Each site is occupied by a particle with spin up or spin down:

Note the interaction between spins in the z direction – if q 6= 1 – is different than the

other two directions; hence the name of the spin chain. The quantity ∆q is known as

the anisotropy parameter, and measures how far the model deviates from the soon

to be discussed XXX model. We will drop the scalar multiplying the Hamiltonian

and the constant term in (1.3.15) and set the XXZ Hamiltonian to be

Hq = −

(
L∑
i=1

σ+
i σ
−
i+1 + σ−i σ

+
i+1 +

∆q

2
σzi σ

z
i+1

)
. (1.3.16)

It is an easy exercise to check that the two site XXZ Hamiltonian eigenvector-eigenvalue

pairs [8] are

{|↑↑〉 ,−∆q

2
}, {|↓↓〉 ,−∆q

2
}, {|↑↓〉+ |↓↑〉 ,−1+ ∆q

2
}, {|↑↓〉−|↓↑〉 , 1+ ∆q

2
} (1.3.17)
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1.3. The XXZ spin chain

and hence the ground state is ferromagnetic when ∆q > 1 and antiferromagnetic

when ∆q < 1. Furthermore, the system ‘prefers’ both unaligned ground states when

∆q < −1.

The main object governing the integrability of this model is the quantum group

Uq(sl2) [20, 22, 24, 25]. This is the q-deformed universal enveloping algebra of sl2,

generated by four elements K,K−1, X± satisfying

KK−1 = K−1K = 1, KX± = q±2X±K, [X+, X−] =
K −K−1

q − q−1
. (1.3.18)

A representation of these generators in terms of the pauli matrices is given by

X± = σ±, K = qσ
z

, (1.3.19)

which act on V = C
2. Uq(sl2) acts on C2⊗C2 via the coproduct ∆, which is a map

Uq(sl2)→ Uq(sl2)⊗ Uq(sl2) that preserves the relations (1.3.18) [24]. In particular,

∆(X+) = X+ ⊗ 1 +K ⊗X+, ∆(X−) = X− ⊗K−1 + 1⊗X−

∆(K) = K ⊗K, ∆(K−1) = K−1 ⊗K−1. (1.3.20)

The generators act on the Hilbert space being V = (C2)⊗L via the L-th coproduct

[27]

∆L(K) = K⊗L, ∆L(X+) =
L∑
i=1

K⊗(i−1) ⊗X+ ⊗ 1
⊗(L−i)
2 ,

∆L(K−1) = (K−1)⊗L, ∆L(X−) =
L∑
i=1

1
⊗(i−1)
2 ⊗X− ⊗ (K−1)⊗(L−i), (1.3.21)

which in terms of the spin operators is given by

∆L(K) =
L∏
j=1

qσ
z
j , ∆L(X+) =

L∑
j=1

(
j−1∏
k=1

qσ
z
k

)
,

∆L(K−1) =
L∏
j=1

q−σ
z
j , ∆L(X−) =

L∑
j=1

(
σ−j

L∏
k=j+1

q−σ
z
k

)
. (1.3.22)

If we consider the XXZ spin chain Hamiltonian with the following open boundary

conditions

Hopen
q = −

(
L−1∑
i=1

σ+
i σ
−
i+1 + σ−i σ

+
i+1 +

∆q

2
σzi σ

z
i+1

)
− q − q−1

4
(σz1 − σzL) (1.3.23)
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Chapter 1. The QISM and Yangian symmetries

then we have that [Hopen
q ,∆L(g)] = 0 for g = X±, K and K−1 [26]. Hence the XXZ

spin chain possesses an Uq(sl2) symmetry in this way. In addition, the symmetry of

the XXZ Hamiltonian can be enhanced even further to the affine quantum group

Uq(ŝl2) when the length of the chain is infinite

H∞q = −

(∑
i∈Z

σ+
i σ
−
i+1 + σ−i σ

+
i+1 +

∆q

2
σzi σ

z
i+1

)
. (1.3.24)

This is only possible in the antiferromagnetic regime ∆q < −1 (−1 < q < 0)

where one may neglect boundary terms at ±∞ over the antiferromagnetic vacuum

[27, 28, 29, 30].

Quantum groups and their connections to the YBE are very interesting in their

own right and a major subject of study by both theoretical physicists and algebraists

[24, 31, 32, 33, 34]. I will however abstain from giving a formal review of them as

one cannot do so briefly and properly at the same time. Thus details about them

will be brought up when necessary. The question remains though: why bring up

the symmetry of the XXZ spin chain in the first place? The answer is simple:

integrable systems have many conserved charges which, intuitively, should come

from extended symmetries. Thus the set of symmetries is a natural starting point

in our investigation of the integrable structure of these models. But first, let us

look at a method of solving these models using the Yang-Baxter algebra.

1.4 The Algebraic Bethe Ansatz

Integrability provides a set of techniques to find the spectra of quantities of interest

of 1+1D quantum models, i.e. solve the equation

H |ψ〉 = E |ψ〉 , (1.4.1)

where H is the Hamiltonian of the model. A standard method to do this, pioneered

by Bethe in 1931, is the Coordinate Bethe Ansatz (CBA) [36], which assumes the

form of the n-particle eigenfunctions of the Hamiltonian to be

|ψn〉 =
∑

1≤x1<x2<...<xn≤L

∑
p∈Pn

Ap exp
(
ikp(1)x1 + . . .+ ikp(n)xn

)
|x1x2 . . . xn〉 (1.4.2)

where xi denotes the position of the particle on the spin chain and ki its quasimomentum.

The second sum runs over all elements of Pn, the permutation group of n elements.

Alternatively, an R-matrix that satisfies the YBE can also be used to solve the
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1.4. The Algebraic Bethe Ansatz

underlying model through a technique known as the Algebraic Bethe Ansatz (ABA)

[7, 19, 40, 38]. In this Section we will review how to do this for the most famous

spin chain model in the physics literature: the Heisenberg XXX spin chain [36, 37],

which is the case in (1.3.16) when q → 1:

HH = J lim
q→1

Hq = −J
L∑
i=1

(
σ+
i σ
−
i+1 + σ−i σ

+
i+1 +

1

2
σzi σ

z
i+1

)
. (1.4.3)

In the future we will refer to this model as simply the Heisenberg spin chain. The

coupling constant J does not affect the integrability of the model, but it is relevant

physically: depending on its sign, the lowest energy states of this Hamiltonian occur

when neighbouring spins are aligned or unaligned. Thus the Heisenberg spin chain

describes a ferromagnet when J > 0 and antiferromagnet when J < 0, giving an

explanation for the origins of magnetism at the quantum level. Additionally, one

can easily check that the operators

E±0 =
L∑
i=1

σ±i , E0 =
L∑
i=1

σzi (1.4.4)

commute with HH and satisfy the sl2 defining relations [Ez0,E
±
0 ] = ±2E±0 and

[E+
0 ,E

−
0 ] = Ez0. Hence the Heisenberg spin chain possesses an sl2 symmetry [7]

3. Its R-matrix, RH(u), is obtained by taking the limit of R(u; q) as q → 1 [34].

We set

RH(u) := (u+ 1) lim
q→1

R(u; q) =


u+ 1 0 0 0

0 u 1 0

0 1 u 0

0 0 0 u+ 1

 = u14 + P (1.4.5)

where P is the 4× 4 permutation operator.

The existence of anR-matrix allows for a procedure to construct n-particle eigenvectors

|ψn〉 of this Hamiltonian. Since HH commutes with the transfer matrix, they share

the same eigenvectors, and we can thus diagonalise HH using the latter. Let us write

the Lax matrix of the Heisenberg spin chain with a shift in the spectral parameter

so that LHj (1
2
) = Paj:

LHj (u) =

(
u+ 1

2
σzj σ−j

σ+
j u− 1

2
σzj

)
. (1.4.6)

This still leads to a monodromy matrix for the Heisenberg spin chain since, as we

3And the trivial symmetry, so that the actual symmetry of the model is gl2.
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Chapter 1. The QISM and Yangian symmetries

can see in (1.3.2), shifting the spectral parameters u and u′ by the same value does

not change the argument of R(u− u′). Writing the monodromy matrix as

TH(u) = LHL (u)LHL−1(u) . . . LH1 (u) =

(
A(u) B(u)

C(u) D(u)

)
, (1.4.7)

the n-particle eigenvectors |ψn〉 of HH must also be eigenvectors of the transfer

matrix

τH(u) = traT
H
a (u) = A(u) +D(u). (1.4.8)

Recall that in a QFT, |ψn〉 are usually written in terms of creation operators acting

on the vacuum. Our choice of pseudo-vacuum for the Hilbert space V = (C2)⊗L is

|Ω〉 =
L⊗
i=1

|↑〉i = |↑↑ . . . ↑〉 (1.4.9)

where a flip of the spin ↑ to ↓ in the i-th space would represent a particle excitation

in that position. Recall the action of the spin operators on the Hilbert space

σ+
i |↓〉i = |↑〉i , σzi |↑〉i = |↑〉i , σai |↑〉j = |↑〉j σ

a
i ,

σ−i |↑〉i = |↓〉i , σzi |↓〉i = − |↓〉i , σai |↓〉j = |↓〉j σ
a
i

(1.4.10)

and σ+
i |↑〉i = σ−i |↓〉i = 0. It is not difficult to see that the operatorial entries of

the monodromy matrix (1.4.7) act on |Ω〉 as

A(u) |Ω〉 = (u+ 1
2
)L |Ω〉 , D(u) |Ω〉 = (u− 1

2
)L |Ω〉 , C(u) |Ω〉 = 0. (1.4.11)

The Algebraic Bethe Ansatz (ABA) [7, 19] consists of assuming the C(u) are

annihilation operators and the B(u) are creation operators, such that any n-particle

eigenvector of the Heisenberg spin chain has the form4

|ψn〉 = |u1, . . . , un〉 = B(u1) . . . B(un) |Ω〉 . (1.4.12)

To obtain the necessary conditions such that |ψn〉 is an eigenvector of the transfer

matrix, we have to study how A(u) and D(u) act on it. Using the RTT relation,

4This is equivalent to [36].
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1.4. The Algebraic Bethe Ansatz

we obtain the following commutation relations between B(u), A(u) and D(u):

A(u)B(u′) =
1 + u′ − u
u′ − u

B(u′)A(u)− 1

u′ − u
B(u)A(u′),

D(u)B(u′) =
1 + u− u′

u− u′
B(u′)D(u)− 1

u− u′
B(u)D(u′),

B(u)B(u′) = B(u′)B(u). (1.4.13)

Acting with the transfer matrix on |ψn〉, and using the above commutation relations,

we have that

τH(u) |ψn〉 = A(u) |ψn〉+D(u) |ψn〉

=

(
(u+ 1

2
)L

n∏
i=1

(u− ui + 1)

u− ui
+ (u− 1

2
)L

n∏
i=1

(u− ui − 1)

u− ui

)
|ψn〉

+
n∑
i=1

(
(ui + 1

2
)L

(u− ui)

n∏
k 6=i

(ui − uk − 1)

(ui − uk)
−

(ui − 1
2
)L

(u− ui)

n∏
k 6=i

(ui − uk + 1)

(ui − uk)

)
× |u1, . . . ui−1, u, ui+1, . . . un〉 . (1.4.14)

So |ψn〉 is an eigenvector of the transfer matrix with eigenvalue

Λ(u, {ui}n) = (u+ 1
2
)L

n∏
i=1

(u− ui − 1)

u− ui
+ (u− 1

2
)L

n∏
i=1

(u− ui + 1)

u− ui
(1.4.15)

if the second line of (1.4.14) – called the ‘unwanted terms’ – vanishes i.e. if the

following equations hold(
uk + 1

2

uk − 1
2

)L
=

n∏
i 6=k

uk − ui + 1

uk − ui − 1
, k = 1, . . . n (1.4.16)

which are the famous Bethe equations [36]. Using these it is possible to find an

exact solution to the Bethe roots ui and obtain the exact form of any quantity of

the model as function of these. Using (1.4.15) and that the shift operator is related

to the momentum operator p̂ by the formula eip̂ = U = τ(1
2
), we have that the

momentum of an n-particle eigenstate is given by

pn = −i ln Λ(1
2
, {ui}n) = i

n∑
i=1

ln

(
ui − 1

2

ui + 1
2

)
. (1.4.17)
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Similarly, its energy is given by

En = −2J
d

du
ln Λ(u, {ui}n)|u= 1

2
= −2JL− 2J

n∑
i=1

1

u2
i − 1

4

. (1.4.18)

1.5 Yangian symmetries

A natural question to ask about the Heisenberg spin chain is the following: what

is the algebraic structure governing its integrability? To answer this question, we

have to take a look at the properties of the R-matrix that can be inferred from

the RTT relation. Let us direct our attention to the structure of the monodromy

matrix: can write TH(u) as a power series in u

TH(u) = uL14 + uL
∑
a,b

σa ⊗

(
L−1∑
n=0

u−n−1Qb
n

)
(1.5.1)

where the Qa
n, a = 0,+,−, z are operators built of the spin operators σaj . The

(a, b) in the expansion are (+,−), (−,+), (z, z) and (0, 0). One can easily see that

Q±0 = E±0 and Qz
0 = Ez0, the sl2 representation in terms of the spin operators

introduced in (1.4.4). The relations between operators Qa
n with different values of

n can be obtained using the RTT relation [42, 55]:

[Qa
0, Q

b
n] = fabcQ

c
n (1.5.2)

and

[Qz
n+1, Q

±
m]− [Qz

m+1, Q
±
n ] =∓ 1

2
([Qz

n, Q
±
m]− [Qz

m, Q
±
n ] + {Q0

m, Q
±
n } − {Q0

n, Q
±
m})

[Q+
n+1, Q

−
m]− [Q+

n , Q
−
m+1] =1

4
([Q0

n, Q
z
m]− [Q0

m, Q
z
n]).

(1.5.3)

Furthermore, if one collects terms of the expansion of TH(u) ⊗ TH(u′), taking the

tensor product in the quantum space and performing the usual matrix multiplication

on the auxiliary space [47, 48], we obtain the following properties:

[Qa
0 ⊗ 1 + 1⊗Qa

0, R
H(u)] = 0 (1.5.4)

and

[(Qa
1 + uQa

0)⊗ 1 + 1⊗ (Qa
1 + vQa

0) + 1
2
fa bcQ

b
0 ⊗Qc

0]RH(u− v) =

= RH(u− v)[(Qa
1 + uQa

0)⊗ 1 + 1⊗ (Qa
1 + vQa

0)− 1
2
fa bcQ

b
0 ⊗Qc

0] (1.5.5)
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for a = ±, z, 0. Hence the Heisenberg spin chain enjoys additional relations to

a standard gl2 symmetry. One may recognise (1.5.2) and (1.5.3) as the defining

relations of the Yangian algebra of gl2, Y(gl2), and the objects appearing in (1.5)

and (1.5.5) as the coproduct of its generators.

The Yangian Y(g) of a Lie algebra g first appeared in Drinfeld’s work [24, 44]

and was also implicit in [45]. If an integrable model has classical symmetry g,

preserved in the quantum theory, then the Yangian Y(g) (or Uq(ĝ) in the case g is

q-deformed by quantisation [25]) is responsible for its integrable structure. This has

been shown for a wide range of models, from the classical version in the Principal

Chiral Model (PCM) [46] to that of the AdS5×S5 superstring in the planar limit [43].

Several reviews have been done on their significance in the study of 1+1D integrable

models [42, 47, 48, 56], which we shall follow closely in the upcoming description.

Algebraically, it is defined as follows. Let the Lie algebra g be generated by {Qa
0},

a = 1, . . . , dim(g) with structure constants fabc and coproduct

∆ : Ug → Ug⊗ Ug

Qa
0 7→ Qa

0 ⊗ 1 + 1⊗Qa
0 (1.5.6)

where Ug is the universal enveloping algebra, i.e. the set of powers, polynomials

and series in Qa
0 subject to the Lie bracket. If g is the Lie symmetry of a 1+1D

quantum model living on V ⊗L where V is a Hilbert space, the coproduct ∆ defines

the action of the generators of g on V ⊗V and induces a Hopf algebra structure on

g [44]. For the Lie generators, ∆ is trivial; however in general the coproduct is a

map Ug to Ug⊗ Ug that is coassociative

(∆⊗ 1)∆(x) = (1⊗∆)∆(x), ∀x ∈ Ug (1.5.7)

and a Lie algebra homomorphism:

∆([x, y]) = [∆(x),∆(y)] ∀ x, y ∈ Ug. (1.5.8)

The Yangian Y(g) [47] is the enveloping algebra generated by g and a second set of

generators {Qa
1} satisfying

[Qa
0, Q

b
1] = fabcQ

c
1 (1.5.9)
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Chapter 1. The QISM and Yangian symmetries

with non-trivial coproduct

∆ : Y(g) → Y(g)⊗ Y(g)

Qa
1 7→ Qa

1 ⊗ 1 + 1⊗Qa
1 +

α

2
fabcQ

c
0 ⊗Qb

0 (1.5.10)

where α is proportional to the coupling constant of the theory. These operators

obey the so-called Drinfel’d ‘terrible’ relations [44]:

[Qa
1, [Q

b
1, Q

c
0]]− [Qa

0, [Q
b
1, Q

c
1]] =

α2

2
aabcdeg{Qd

0, Q
e
0, Q

g
0} (1.5.11)

and

[[Qa
1, Q

b
1], [Ql

0, Q
m
1 ]] + [[Ql

1, Q
m
1 ], [Qa

0, Q
b
1]] = α2(aabcdegfmlc + almcdegfabc){Qd

0, Q
e
0, Q

g
1}

(1.5.12)

where

{x1, x2, x3} =
∑
i 6=j 6=k

xixjxk, aabcdeg =
1

24
fadifbejfcgkfijk (1.5.13)

The generators Qa
0 and Qa

1 are referred to as level 0 and level 1 Yangian generators

respectively, and level n operators Ka
n – which may be a linear combination of

generators up to order n – are obtained by computing the commutator of k and

n− k level generators.

Finite dimensional representations of Y(g) are realized in one-parameter families

via the automorphism

φµ : Y(g) → Y(g)

Qa
0 7→ Qa

0

Qa
1 7→ Qa

1 + µQa
0 . (1.5.14)

This automorphism is of great importance. To illustrate this, let us remark that

for certain irreducible representations ρ of g, enumerated in [44], one can construct

a representation ρ̃ of Y(g)

ρ̃(Qa
0) = ρ(Qa

0), ρ̃(Qa
1) = 0, (1.5.15)

which combined with the automorphism (1.5.14), leads to the so called evaluation
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1.5. Yangian symmetries

representation of Y(g) with spectral parameter u, denoted ρu := ρ̃ ◦ φuα
2

:

ρu(Q
a
0) = ρ(Qa

0), ρu(Q
a
1) =

uα

2
ρ(Qa

0). (1.5.16)

This representation will become significant in the next Chapter, because in the

context of integrable boundaries, a reflection changes the sign of the spectral parameter.

Finally, let us state that Y(g) is equipped with the additional Hopf algebra

properties: a co-unit, physically interpreted as a ‘vacuum’

ε : Y(g) → C

Qa
n 7→ 0 (1.5.17)

and an antipode (physically a PT symmetry)

s : Y(g) → Y(g)

Qa
0 7→ −Qa

0

Qa
1 7→ −Qa

1 +
1

2
fabcQ

b
0Q

c
0 . (1.5.18)

For each Yangian algebra there is an associated R-matrix which satisfies the YBE:

relations (1.5.2) and (1.5.3) are true iff the RTT relation holds. Given a Yangian

Y(g), one can obtain a suitable R-matrix R(u) (in this particular case, of difference

form) by requiring the intertwining relation [48, 55]

(∆opx)R(u) = R(u)(∆x) ∀x ∈ Y(g). (1.5.19)

where ∆op = P∆.

For the Heisenberg spin chain, even though the Yangian algebra should be Y(gl2),

we are going to restrict our study to its more interesting subalgebra Y(sl2). This is

because

Y(gl2) ∼= Z(Y(sl2))⊗ Y(sl2) (1.5.20)

where Z(Y(gl2)) is the center, which will not be relevant in discussing symmetry

breakings.

The form of the level 0 and level 1 Y(sl2) generators can be easily extracted from

the expansion of the monodromy matrix of the Heisenberg spin chain. They are in

a representation ρL : U(sl2)→ ΣL given by ρL(Q±0 ) = E±0 , ρL(Qz
0) = Ez0, and, after

rescaling by the coupling constant −J ,

ρL(Q±1 ) = E±1 + JE±0 , ρL(Qz
1) = Ez1 + Ez0 (1.5.21)
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Chapter 1. The QISM and Yangian symmetries

where

E±1 = ±J
2

∑
1≤i<j≤L

(σ±i σ
z
j − σ±j σzi ), Ez1 = J

∑
1≤i<j≤L

(σ−i σ
+
j − σ−j σ+

i ) (1.5.22)

satisfy all properties of level 1 generators of Y(sl2) The shift in level 0 generators

to get (1.5.22) from (1.5.21) does not affect the integrability of the model since it is

an automorphism of the Yangian (1.5.14). Furthermore, one can check that in the

evaluation representation (1.5.16) with ρa(Q
a
0) = σa,

ρu(∆Q
a
0) = σa ⊗ 12 + 12 ⊗ σa

ρu(∆Q
a
1) =

J

2
(uσa ⊗ 12 + 12 ⊗ u′σa) +

J

2
fa bcσ

b ⊗ σc (1.5.23)

satisfy the intertwining relation (1.5.19) with RH(u− u′).
The Yangian Y(g) can be obtained from the quantum affine group Uq(ŝl2) in the

limit q → 1 [50]. Hence we expect the Yangian generators to be symmetries of the

Hamiltonian. However, we have

[HH ,E±1 ] = ±J
2

2

L−1∑
i=1

(σ±i+1 − σ±i ) = ±J
2

2
(σ±L − σ

±
1 ),

[HH ,Ez1] = J2

L−1∑
i=1

(σzi − σzi+1) = J2(σz1 − σzL), (1.5.24)

where HH is the Heisenberg spin chain Hamiltonian defined on the segment from

i = 1 to i = L. Thus it turns out that, as in the case of the affine quantum

group symmetry of the XXZ spin chain [27, 29], Y(sl2) is only a symmetry of

the Heisenberg spin chain Hamiltonian in the antiferromagnetic regime (J < 0)

if the length of the chain is infinite and we impose antiferromagnetic boundary

conditions at ±∞, as only then we can neglect the boundary terms (1.5.24). In

addition, as seen above, one may neglect these terms when working on asymptotic

states as one can intepret them the result of integrating discretised total derivatives

over the infinite interval [49]. In this case, commutators of the Yangian generators

will produce an infinite tower of symmetries of the Hamiltonian, thus ensuring

integrability.

1.6 The reflection equation

So far, we have focused almost completely on models living on the circle and the

infinite interival. For the periodic case, a variety of bonundary conditions are at our
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1.6. The reflection equation

disposal: if the model has Lie symmetry g, they are determined by a g-invariant

matrix M acting on the auxiliary space of the monodromy matrix

Ta(u)′ = MaTa(u). (1.6.1)

The matrix M will result in the usual periodicity when it is proportional to the

identity, and one can obtain the so called integrable twisted periodic boundary

conditions for more general forms of M (for example, in the Hubbard model it can

be seen in [120]) .

Now we will focus on integrable models with open boundary conditions. We are

interested on how these boundaries affect the mathematical structures underlying

the integrability of the bulk model. This is, in fact, the main subject of research

throughout this thesis. A similar procedure to the QISM, but for models with open

boundary conditions was invented in 1987 by Sklyanin: the boundary QISM [61].

It too is based around the construction of a family of mutually commuting transfer

matrices, which can be diagonalised using the ABA. This construction led to the

analysis of all possible integrable boundary conditions via algebraic study of how

the boundary breaks the symmetry of the bulk model - usually a quantum group or

a Yangian - and the necessary conditions to preserve enough symmetry so that the

model remains integrable. The ability to still generate an infinite tower of conserved

charges [52, 53, 54] depends on this boundary symmetry being a coideal subalgebra

of a quantum group [56] or twisted Yangian [55]. In this Section we will focus on the

latter. Both these symmetries have been studied extensively in many spin chains

[57] and D-brane configurations the AdS/CFT correspondence [58, 59, 60, 119, 135].

In addition to the R-matrix, in this Section we will consider the K-matrices

K±(u) : V → V (1.6.2)

where V is a Hilbert space and u is the spectral parameter. This operator represents

the reflection of a particle off a boundary, and it is also referred to as the reflection

matrix or the boundary S-matrix. K+(u) governs the reflection off a right boundary

and K−(u) that off a left boundary. When acting on V =
⊗L

i=1 Vρi , the operator

K±i (ui) acts as K±(ui) on the i-th space and the identity everywhere else. For

example,

K±1 (u1) = K±(u1)⊗
L⊗
i=2

1ρi . (1.6.3)

As in the case of the R-matrix, it is convenient to represent the K-matrices reflecting
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Chapter 1. The QISM and Yangian symmetries

off a left(right) boundary BL(R) diagrammatically

K−i (ui) =

−ui

i

ui

BL

K+
i (ui) =

i

−ui

ui

BR

(1.6.4)

The result in obtaining open boundary conditions assumes the R-matrix is of

difference form. However, we will not make this assumption and instead adapt the

procedure to a general R-matrix. Suppose R(u, u′) satisfies the YBE, and K±(u)

satisfies K−i (u0) ∝ 1Vρi , where R(u0, u0) = P . Furthemore, let us assume unitarity

R12(u1, u2)R21(u2, u1) = 1Vρ1⊗Vρ2 (1.6.5)

and crossing unitarity

Rtr1
12 (u1,−u2)Rtr1

21 (−u2, u1) = ν(u1, u2)1Vρ1⊗Vρ2 (1.6.6)

for some scalar function ν(u1, u2) that is symmetric in u1 and u2. Then, if the

K-matrix K−(u) is a solution of the left reflection equation (left RE)

R12(u1, u2)K−1 (u1)R21(u2,−u1)K−2 (u2) =

= K−2 (u2)R12(u1,−u2)K−1 (u1)R21(−u2,−u1) (1.6.7)

and K+(u) is a solution of the right reflection equation (right RE)

R12(−u1,−u2)K+
1 (u1)R21(−u2, u1)K+

2 (u2) =

= K+
2 (u2)R12(−u1, u2)K+

1 (u1)R21(u2, u1), (1.6.8)

then one can obtain a quantum integrable system with open boundaries from
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1.6. The reflection equation

R(u, u′) and K±(u) [61]. Both the left and right RE can be expressed pictorially:

2

−u2

1

−u1

2

−u2 1

−u1

(1.6.9)

2

u2

1

u1

2

u2
1

u1

(1.6.10)

We now proceed to show how to construct a commuting family of transfer matrices

using the left and right K-matrices. Let Ta(u) be the bulk monodromy matrix

(1.2.15). Then one can show [61] that the right boundary monodromy matrix,

defined as

T+
a (u) := T−1

a (−u)K+
a (u)Ta(u) (1.6.11)

satisfies boundary analogue of the RTT relation: the boundary Yang-Baxter algebra

Rab(−u,−u′)T+
a (u)Rba(−u′, u)T+

b (u′) = T+
b (u′)Rab(−u, u′)T+

a (u)Rba(u
′, u)

(1.6.12)

where a and b are auxiliary spaces in the fundamental representation, and the

K-matrices act on such spaces. If one defines the boundary or double row monodromy
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matrix

TBa (u) := K−a (u)T+
a (u) =

1 2 L− 1 L

u

−uu0
u0 u0

u0

(1.6.13)

then the boundary transfer matrices τB(u) = traT
B
a (u) form a commuting family

of operators:

[τB(u), τB(u′)] = 0 (1.6.14)

and thus, analogous to the case of periodic boundary conditions, the Hamiltonian

HB =
d

du
ln
(
τB(u)

)
|u=u0 (1.6.15)

describes an integrable 1+1D model with open boundary conditions. We have

provided the algebraic proof of (1.6.14) in the Appendix A.1. A proof specialised to

R-matrices of difference form can be found in the original paper [61] together with

the ABA for the open XXZ spin chain. An alternative, more general proof is given

in [62].

As an illustrative example of an integrable model with open boundaries, consider

the Heisenberg spin chain, with symmetric R-matrix R(u, u′) = RH(u − u′) ∈
End(C2 ⊗ C2), K-matrices K±(u) ∈ End(C2) and u0 = u′0 = 0. The REs become

RH(u− u′)(K−(u)⊗ 12)RH(u+ u′)(12 ⊗K−(u′)) =

= (12 ⊗K−(u′))RH(u+ u′)(K−(u)⊗ 12)RH(u− u′), (1.6.16)

and

RH(u′ − u)(K+(u)⊗ 12)RH(−u− u′ − 2η)(12 ⊗K−(u′)) =

= (12 ⊗K−(u′))RH(−u− u′ − 2η)(K−(u)⊗ 12)RH(u′ − u), (1.6.17)

where in the latter we have shifted the arguments of the R-matrix by a constant η.

This does not affect the RTT relation, and such constant is used to characterise the

R-matrix [61]. For the purpose of simplicity let us set η = 1. A diagonal solution
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1.7. Twisted Yangian symmetry

for the K-matrices of the left and right REs [51] is

K−(u, p−) =

(
p− + u 0

0 p− − u

)
, K+(u, p+) = K+(−u− 1, p+) (1.6.18)

where p± are constants related to the strength of the boundary fields. These are

the isotropic limit of the solutions found in [61]. Using the procedure from the

previous Section one obtains the following Hamiltonian, which we have rescaled for

convenience

HH
p,q = − J

4p−p+

d

du
ln
(
τB(u)

)
|u=0

= −J
L−1∑
i=1

(σ+
i σ
−
i+1 + σ−i σ

+
i+1 + 1

2
σzi σ

z
i+1) + µLσ

z
1 + µRσ

z
L (1.6.19)

where µL = −J
2p−

and µR = −J
2p+

. This is the well-known Hamiltonian of the

Heisenberg spin chain with a boundary magnetic fields. The strength of the fields

is given by µL at i = 1 and µR at i = L. This type of integrable boundary is

solvable by ABA [64]. The boundary terms break the sl2 symmetry of the model

to u1, generated by the cartan generator Ez0 (1.4.4). Since this model is integrable,

we expect it to preserve a remnant of the original Yangian symmetry, which we will

proceed to construct in the next Section.

1.7 Twisted Yangian symmetry

Consider the antiferromagnetic Heisenberg spin chain living on the left half-line

with a boundary, so that the Hilbert space is now half-infinite, and assume that the

boundary vector space in one-dimensional

V = (
⊗
i≤0

Vρi)⊗ VB, Vi = C
2 ∀i, VB = C. (1.7.1)

The resulting integrable Hamiltonian, obtained from the right boundary monodromy

matrix (1.6.11), possesses only the right boundary magnetic field [145]

HH
µ = −J

∑
i<0

(σ+
i σ
−
i+1 + σ−i σ

+
i+1 + 1

2
σzi σ

z
i+1) + µσz0, J < 0. (1.7.2)

One can interpret this model as the left side of (1.6.19) when the right and left

boundaries are really far apart. This model also breaks the sl2 symmetry of the

bulk model into an u1 generated by (Ez0) , where the left arrow upperscript denotes
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that the sum (1.4.4) runs only over the sites i ≤ 0.

What happens to the Yangian symmetry of the infinite chain when one constraints

it to the half-line is more intricate. The natural reaction is to think that Y(sl2)

breaks to Y(u1) – however, this does not not accurately represent its full action on

the Hilbert space, because if x ∈ Y(u1)

∆x ∈ Y(u1)⊗ Y(u1) (1.7.3)

and the left hand side of the coproduct should belong to Y(sl2). Thus, Y(sl2) must

break to an object which we will denote as Y(sl2, u1) such that, if x ∈ Y(sl2, u1),

then x is a symmetry of the antiferromagnetic HH
µ (neglecting boundary terms at

−∞) and

∆x ∈ Y(sl2)⊗ Y(sl2, u1). (1.7.4)

Such a property defines a right coideal subalgebra of Y(sl2). This is called the

twisted Yangian Y(sl2, u1) [47], also denoted by Y+(sl2) [55]. For this particular

model, it is generated by (Ez0) and [146, 147]

X± = (E±1 ) ± J
2
(E±0 ) (Ez0) + J

2

(
1∓ J

µ

)
(E±0 ) . (1.7.5)

In other words, although E±0 and E±1 are broken symmetries, there is a combination

of them and Ez0 which - up to terms at−∞ which may be neglected in the antiferromagnetic

regime - still commutes with the boundary Hamiltonian (1.7.2) and generates an

infinite set of conserved quantities. The latter property is only possible if the

relations of the twisted Yangian Y(sl2, u1), generated by Qz
0 and Q̂±1 , are satisfied:

[Qz
0, Q̂

±
1 ] = ±2Q̂±1 ,

[Q̂±1 , [Q̂
±
1 , [Q̂

∓
1 , Q̂

±
1 ]]] = 12J2Q̂±1 (Qz

0 + c)Q̂±1 . (1.7.6)

The twisted Yangian generators Qz
0 and Q̂±1 can be written in terms of operators

from the original Yangian as follows. Let α± ∈ C be such that α+−α− = 2c. Then

there is a natural embedding ϕ+ : Y(sl2, u1) ↪→ Y(sl2) of algebras:

Qz
0 7→ Qz

0, Q̂±1 7→ Q±1 ± J
2
Q±0 Q

z
0 + Jα±Q±0 . (1.7.7)

Set c = −J/µ. Let Σ−∞ denote the set of spin operators acting on the left half-line

Σ−∞ = {σai ; i ≤ 0, a = +,−, z}. (1.7.8)
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1.7. Twisted Yangian symmetry

The representation of the twisted Yangian Y(sl2, u1) on the left half-infinite Heisenberg

spin chain is given by the map ρ+
∞ : Y(sl2, u1)→ Σ−∞ defined by

Qz
0 7→ (Ez0) , Q̂±1 7→ X±. (1.7.9)

One can check that, up to terms at −∞ which we may neglect, these operators

commute with the Hamiltonian (1.7.2) and generate an infinite tower of symmetries

via the commutator.

Twisted Yangians Y(g, h) can be used, given a theory on the line, to classify all

possible left and right integrable boundary conditions and construct an infinite set

of non-local symmetries, under the suitable conditions in which boundaries at −∞
(for a right boundary) and∞ (for a left boundary) may be neglected e.g. the XXX

and XXZ spin chains must be in the antiferromagnetic regime. We have to consider

how the boundary at the site i = 0 breaks the symmetry of the model. Suppose a

1+1D quantum model on the line has Yangian symmetry Y(g) in this way. If the

model is on the half-line, the boundary will typically break g to a subalgebra h.

But if the boundary condition preserves integrability, h must be invariant under a

graded involution i [53]. One can split g = h⊕m under i such that i(h) = +1 and

i(m) = −1. Then

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h , (1.7.10)

and (g, h) are said to form a symmetric pair. This property, together with orthogonality

with respect to the Killing form, κ(h,m) = 0, guarantees the coideal property: that

the coproduct of any twisted Yangian charge Q̂ preserved at the boundary must be

in the tensor product of the bulk and twisted Yangian,

∆Q̂ ∈ Y(g)⊗ Y(g, h) (1.7.11)

where Y(g, h) is generated by h and a deformation of the grade-1 m generators

(indexed here by p) [52, 54], given by

Q̂p
1 = Qp

1 +
α

4
[Ch, Q

p
0] + βQp

0 (1.7.12)

where Ch is the Casimir operator of g restricted to h, and α and β are model

dependent constants. These deformed generators obey commutation relations analogous

to (1.5.11) and additional Drinfel’d terrible relations [65, 66].

Hence for an open boundary condition to preserve integrability, one must have the

Lie symmetry g broken to a subalgebra h thereof, and (g, h) must form a symmetric

pair. Thus it is possible to list all possible integrable open boundary conditions even
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before attempting to construct them and their twisted Yangian symmetries. The

formula above for the symmetric pair (sl2, u1) in (1.7.7). For example, if g = sln, all

possible symmetric pairs are given by h = son, spn (if n is even) and sln−m×slm. For

all of these breakings, the boundary conditions are integrable and twisted Yangians

can be constructed [52, 53, 54]. They will be discussed in three different models in

future Chapters.

Analogous to the case of the Yangian, the existence of the twisted Yangian is

equivalent to the boundary Yang-Baxter relation. It can often be more useful to

use these relations to compute K-matrices rather than to explicitly solve the REs,

and they have recently been used for several types of boundaries in the AdS/CFT

correspondence [119, 135, 58]. Suppose the twisted Yangian charges are in the

evaluation representation. Then these completely fix he K-matrix K−(u) via the

boundary intertwining relation [55, 56]

ρu(x)K−(u) = K−(u)ρ−u(x) ∀ x ∈ Y(g, h). (1.7.13)

Examples of this relation for the twisted Yangians Y(sl2, u1) and Y(sl2, sl2) used

to yield solutions for the RE of the Heisenberg spin chain are given in [68]. For a

classification of K-matrices for all symmetric pairs, see [69].
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Chapter 2

Twisted Yangian symmetries of the

open Hubbard model

2.1 Introducing the 1D Hubbard model

Now that we have provided the necessary tools from integrability, it is time to

take a look at one of the most intriguing integrable models in statistical physics:

the Hubbard model. The Hubbard model is used to describe strongly correlated

electrons, and the physical changes materials undergo when they transition from

being insulators to conductors and vice versa. It was first introduced by John

Hubbard in 1963 through a series of papers on electron correlations in narrow

energy bands [70, 71, 72, 73, 74, 75]. In the definitive guide [76] a vast amount

of information on its physical properties and algebraic structure in one spatial

dimension is available. The latter was shown to be integrable by Lieb and Wu

via CBA [77] shortly after its first appearance. However, the ABA approach took a

lot longer to be applied [78] because of the unusual structure of its R-matrix, which

we will cover in the next Section.

Hubbard’s original construction of the Hubbard model, restricted to a single band,

goes as follows [70]. Consider a static, one dimensional lattice of L ions numbered

from 1 to L, where N electrons can jump between the ions. Their Hamiltonian is

given by

H =
N∑
i=1

(
p2
i

2me

+ VI(xi)

)
+

∑
1≤i<j≤N

VC(xi − xj), (2.1.1)

where pi is the momentum of the i-th electron, VI(x) is the periodic potential of

the ions, me is the elecron mass and VC(x) is the usual Coulomb potential between

electrons

VC(xi − xj) =
e2

|xi − xj|
, (2.1.2)

where e is the electron charge. Because of the long-range nature of interactions

between electrons, this N -body problem is much too complicated to study. To
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Chapter 2. Twisted Yangian symmetries of the open Hubbard model

make things easier, one can add an auxiliary potential VA(x) to the one particle

part of H and substract it from the Coulomb potential such that the range of

two-particle interactions becomes much smaller [76]. This method is part of the so

called mean field approximation [79]. Explicitly, we have that

H =
N∑
i=1

h1(pi, xi) +
∑

1≤i<j≤N

U(xi, xj) (2.1.3)

where

h1(pi, xi) =
p2
i

2me

+VA(xi)+VI(xi), U(xi, xj) = VC(xi−xj)− 1
N−1

(VA(xi)+VA(xj)).

(2.1.4)

Since h1 is periodic, its eigenfunctions are Bloch states [82]:

ψk(x) = eikxuk(x) (2.1.5)

where uk(x) is periodic in x and k is the quasimomentum. A complementary set of

mutually orthogonal eigenfunctions of h1 is given by the Wannier functions φ(x−Ri)

[80, 81], where Ri is a lattice vector and

φ(x−Ri) =
1√
L

∑
k

e−ikRiψk(x). (2.1.6)

Now we can express the first set of eigenfunctions as sums over the ions on the band

ψk(x) =
1√
L

L∑
i=1

eikRiφ(x−Ri). (2.1.7)

We wish to second-quantise the Hamiltonian and express it in terms of the usual

fermionic creation and annihilation operators c† and c. In addition, we wish to

associate one of two spins σ =↑, ↓ to each electron. Take the Fourier transform

c†i,σ =
1√
L

∑
k

e−ikRic†k,σ, (2.1.8)

and the operators satisfy the usual fermionic anti-commutation relations

{c†iσ, cjτ} = δστδij, {c†iσ, c
†
jτ} = {ciσ, cjτ} = 0. (2.1.9)

Thus the fermionic fields we want to use can be expressed as sums over both the
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2.1. Introducing the 1D Hubbard model

quasimomenta and the ions on the band

Ψ†σ(x) =
∑
k

ψ∗k(x)c†k,σ =
L∑
i=1

φ∗k(x)c†i,σ. (2.1.10)

Finally, performing standard second-quantization [83], we obtain

Hh =
∑
σ=↑,↓

∫
dx Ψ†σ(x)h1Ψσ(x) + 1

2

∑
σ,τ=↑,↓

∫
dxdy Ψ†σ(x)Ψ†τ (y)U(x, y)Ψτ (y)Ψσ(x)

=
L∑

i,j=1

∑
σ=↑,↓

tijc
†
iσcjσ +

L∑
i,j,k,l=1

Uijklc
†
i↑c
†
j↓ck↓cl↑ (2.1.11)

where the matrix coefficients are given by

tij =

∫
dx φ∗(x−Ri)(h1φ)(x−Rj),

Uijkl =

∫
dxdy φ∗(x−Ri)φ

∗(x−Rj)U(x, y)φ(x−Rk)φ(x−Rl).(2.1.12)

Under the asumption that electrons are only allowed to move between neighbouring

ions, and the Coulomb force only affects electrons if they are located on the same

ion, we set

tij = tδ|i−j|,1, Uijkl = Uδijδjkδkl (2.1.13)

and define the number operator niσ = c†iσciσ. The Hamiltonian of the Hubbard

model then reads [70]

Hh = −t
L∑
i=1

∑
σ=↑,↓

c†iσci+1σ + c†i+1σciσ + U
L∑
i=1

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
(2.1.14)

with periodic boundary conditions cL+1,σ = c1,σ. We have performed a shift niσ →
niσ − 1

2
, which produces an external chemical potential that controls the particle

occupancy on the chain sites. In this case the model is at ‘half-filling’, meaning there

are half as many electrons living in it as the maximum number, and interestingly,

this model turns into the Heisenberg spin chain in the large U limit (see Appendix 2

in [76] and [85]). Here t measures the amplitude of the motion of electrons between

neighbouring ions, and U is the strength of the Coulomb repulsion between electrons

on the same ion. This is a periodic spin chain with L sites, which are the ions. The

first sum, known as the hopping term, is the discrete analogue of a kinetic term

in a continuous Hamiltonian, where particles are annihilated in a site and created

in a neighbouring one i.e. they ‘hop’ from site to site. The ratio t/U measures the
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Chapter 2. Twisted Yangian symmetries of the open Hubbard model

conductivity of the material it describes. The Hubbard model has been used in

condensed matter physics in one and several dimensions to describe, among other

phenomena, the electronic properties of solids with narrow bands, band magnetism

in several metals, the Mott metal-insulator transition and electronic properties of

high critical temperature cuprates in the normal state [76]. In one dimension,

a classification of the solutions to the Lieb-Wu equations [77] was proposed by

Takahashi in 1972 [85] under the so called ‘string hypothesis’, which led to a better

picture of the thermodynamics of the Hubbard model via the Thermodynamic Bethe

Ansatz [86, 87, 88].

However, despite the apparent simplicity of its Hamiltonian, there is no general

procedure for studying the Hubbard model in more than one dimension, and even in

one dimension it is not clear how to approach much of its structure. Nevertheless,

this Chapter hopes to shed some light in the integrable structure of the open

Hubbard model. In the first Section, we will describe the set of symmetries of

its Hamiltonian. Section 2.2 will be dedicated to reviewing Shastry’s construction

of its R-matrix from that of two free fermion models. Then we will introduce a

generalisation of the Hubbard model to higher symmetries, for which the Yangian

was constructed by the author. In section 2.4, we will point out some connections

between the Hubbard model and AdS/CFT correspondence. The construction of

the twisted Yangian symmetries in Sections 2.5 - 2.8 are results by the author and

collaborators, where three different types of boundaries are studied, and Sections

2.5 and 2.6 are based on papers [121] and [89].

2.2 Symmetries of the bulk Hubbard model

Let us analyse the symmetries of the Hubbard Hamiltonian. We will set t = 1 from

now on. This is equivalent to rescaling the Hamiltonian by 1/t and defining U to

be the ratio of the original U and t. The Hilbert space of the Hubbard model is

given by V =
⊗L

i=1 Vi where the vector spaces Vi are all four dimensional:

Vi = {|0〉i , c
†
i↓ |0〉i := |↓〉i , c

†
i↑ |0〉i := |↑〉i , c

†
i↓c
†
i↑ |0〉i := |↓↑〉i} ∀i. (2.2.1)

The model possesses a sls2×slc2 symmetry (which, via its inclusion in the sl(2|2)nR2

symmetry of worldsheet scattering in AdS/CFT [108], is the source of the renewed

recent interest from the string theory community [128, 129] and thereby in new

generalizations such as [98, 130, 131]). The labels s and c correspond to the the

given names of these symmetries: the ‘spin’ and the ‘charge’ sl2 respectively. One

must note that the latter symmetry is only present if the number of spin chain sites
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2.2. Symmetries of the bulk Hubbard model

is even, half-infinite or infinite [93]. If one defines the following operators

Esi,n = c†i↑ci+n↓ F
s
i,n = c†i↓ci+n↑ H

s
i,n = c†i↑ci+n↑ − c†i↓ci+n↓, n ∈ Z (2.2.2)

then sls2 is generated by

Es
0 =

L∑
i=1

Esi,0 F s
0 =

L∑
i=1

F si,0 Hs
0 =

L∑
i=1

Hs
i,0 (2.2.3)

satisfying the relations [Hs
0 , E

s
0] = 2Es

0, [Hs
0 , F

s
0 ] = −2F s

0 and [Es
0, F

s
0 ] = Hs

0 i.e.

they provide a representation of sl2 in terms of two sets of fermionic oscillators.

Similarly, if one defines the following operators

Eci,n = (−1)i+nc†i↑c
†
i+n↓ F

c
i,n = (−1)ici↓ci+n↑ Hc

i,n = c†i↑ci+n↑+ (−1)nc†i↓ci+n↓− δn,0,
(2.2.4)

then slc2 is generated by

Ec
0 =

L∑
i=1

Eci,0 F c
0 =

L∑
i=1

F ci,0 Hc
0 =

L∑
i=1

Hc
i,0. (2.2.5)

Interestingly, there is a connection between the charge and the spin symmetry. The

charge symmetry can be obtained from the spin symmetry through either of the

partial particle-hole transformations (PHTs) P↓ and P↑ [76, 89]. These are the

following maps for σ, τ =↑, ↓:

Pσ : (ciσ, c
†
iσ, ciτ , c

†
iτ , U) 7→ ((−1)ic†iσ, (−1)iciσ, ciτ , c

†
iτ ,−U) σ 6= τ. (2.2.6)
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Chapter 2. Twisted Yangian symmetries of the open Hubbard model

These operators act on states living in a single site according to the following

diagram (where Piσ is the partial PHT restricted to one site):

|0〉i |↑↓〉i

|↑〉i|↓〉i

Pi↓

Eci,0
Hci,0

Fci,0

Pi↑

Hci,0

Pi↓

Fsi,0
Hsi,0

Esi,0

Hsi,0 (2.2.7)

One can see that P↓ maps (2.2.3) to (2.2.5), effectively changing the label from s to c.

P↑ is equivalent to the same change of label but composed with the automorphism

of the algebra {Ec
0, F

c
0 , H

c
0} 7→ {F c

0 , E
c
0,−Hc

0}. One may think of Pσ as ‘almost’

supersymmetries of the model, aside from changing the sign of U . The full PHT,

P↑P↓, is indeed a symmetry of the Hubbard Hamiltonian. These transformations

are interesting on their own and will become important in making connections to

the AdS/CFT correspondence and constructing an integrable boundary in Sections

2.4 and 2.6 respectively.

As expected, the Hubbard model possesses a symmetry of Yangian type, which

has been additionally explored in the context of AdS/CFT [43]. This Yangian was

constructed for the infinite chain [90] and is composed of two copies of Y(sl2). One

of the copies, Y(sl2)s, is generated by sls2 and the following level 1 generators

Es
1 =

∑
−L<i<L

(Esi,1 − Esi+1,−1) + U
2

∑
−L≤i<j≤L

(Esi,0Hs
j,0 − Ecj,0Hs

i,0), (2.2.8)

F s
1 =

∑
−L<i<L

(F si,1 −F si+1,−1)− U
2

∑
−L≤i<j≤L

(F si,0Hs
j,0 −F sj,0Hs

i,0), (2.2.9)

Hs
1 =

∑
−L<i<L

(Hs
i,1 −Hs

i+1,−1)− U
∑

−L≤i<j≤L

(Esi,0F sj,0 − Esj,0F si,0). (2.2.10)

The other copy, Y(sl2)c, can be obtained through P↓ or P↑. These are symmetries of

Hh defined on the infinite chain (L→∞) limit over the antiferromagnetic, empty
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2.3. Shastry’s R-matrix

band vacuum [91]

|vac〉 =
⊗
k∈Z

|0〉k , (2.2.11)

where the monodromy matrix - which we shall construct shortly - is infrared

renormalisable and boundary terms may be neglected [92].

2.3 Shastry’s R-matrix

After the discovery of the QISM it quickly became apparent that most known

solvable models had an associated R-matrix that satisfied the YBE and from which

their Hamiltonian could be extracted. The Hubbard model, however, proved to be

much harder to crack, and it was conjectured [39] that finding its R-matrix was

so troublesome because it is not of difference form, i.e. it cannot be written as a

function of the difference between the spectral parameters appearing in the YBE.

It was not until nearly a decade later that Shastry found a suitable R-matrix for

the Hubbard model. His first results relied on heavy computations [94, 95], while

later he constructed such R-matrix through a remarkably beautiful procedure [96].

The latter was mainly clever guesswork, and it is the one that we will follow in this

Section.

Let us introduce the free fermion or XX model [35]. This the case when q = i (or

∆q = 0) in (1.3.16):

HXX =
L∑
i=1

(
σ+
i σ
−
i+1 + σ−i σ

+
i+1). (2.3.1)

We would like to write HXX in terms of fermionic creation and annihilation operators,

which are members of the fermionic oscillator algebra OscL = {c†i , ci; 1 ≤ i ≤ L}
and satisfy the usual relations

{c†i , cj} = δij, {c†i , c
†
j} = {ci, cj} = 0. (2.3.2)

This is achieved through a Jordan-Wigner transformation JW [41], which maps

OscL to the set of spin operators ΣL in the following way:

JW : OscL → ΣL

ci 7→

(
i−1∏
k=1

σzk

)
σ−i

c†i 7→

(
i−1∏
k=1

σzk

)
σ+
i (2.3.3)
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The Hamiltonian then becomes

HXX =
L∑
i=1

c†ici+1 + c†i+1ci, (2.3.4)

where, to switch to periodic boundary conditions in (2.3.4) we require(
L∏
k=1

σzk

)
σ−L+1 = σ−1 ,

(
L∏
k=1

σzk

)
σ+
L+1 = σ+

1 . (2.3.5)

This is the one of the simplest quantum many-body models one can construct: a

purely discrete kinetic (or ‘hopping’) term on a chain of sites going from 1 to L,

with periodic boundary conditions cL+1 = c1. It exhibits an Uq(sl2) symmetry with

q = i [100]. Interestingly, an extended version of (2.3.4) given by

HXX =
L∑
i=1

c†ici+1 + c†i+1ci + c†ici + c†i+1ci+1 (2.3.6)

commutes with the following operators

Q =
L∑
i=1

ci, G =
L∑
i=1

c†i , K =
L∑
i=1

c†ici, C = 1. (2.3.7)

These form a representation of the gl1|1 superalgebra in terms of fermionic oscillators,

which has the defining relations [97]

[K,Q] = −Q, [K,G] = G, {Q,G} = C. (2.3.8)

This algebra is extensively studied in the AdS/CFT correspondence – it appears as

a symmetry of the AdS3 and AdS2 superstrings [59].

One can see that the Hubbard model when U = 0 consists of two uncoupled

XX models. Hence, the natural point to start in constructing the R-matrix of the

Hubbard model is to look at that of the XX model

Řxx(u) = cos(u)PR(u; q → i) =


cos(u) 0 0 0

0 1 sin(u) 0

0 sin(u) 1 0

0 0 0 cos(u)

 (2.3.9)

which satisfies the YBE in the form (1.3.1). Using the Pauli matrices, one can write
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2.3. Shastry’s R-matrix

this R-matrix in the form

Řxx(u) =
∑
a,b

Řxx(u)abσa ⊗ σb, a, b = 0,+,−, z (2.3.10)

with Řxx(u)00 = 1
2
(cos(u) + 1), Řxx(u)zz = 1

2
(cos(u)− 1), Řxx(u)+− = Řxx(u)−+ =

sin(u) and every other coeffient is zero. One can build a 16×16 R-matrix ř(u) that

satisfies the YBE by ‘fusing’ two XX R−matrices

ř(u) = Řxx
↑ (u)Řxx

↓ (u) ∈ End((C2 ⊗ C2)⊗ (C2 ⊗ C2)) (2.3.11)

where

Řxx
↑ (u) =

∑
a,b

Řxx(u)ab(σa ⊗ 12)⊗ (σb ⊗ 12), (2.3.12)

Řxx
↓ (u) =

∑
a,b

Řxx(u)ab(12 ⊗ σa)⊗ (12 ⊗ σb). (2.3.13)

To construct the Lax matrix, we must take the second space of ř(u) to spin operators

in the following way

(σa ⊗ 12) 7→ σaj

(12 ⊗ σa) 7→ τaj (2.3.14)

where σaj and τaj are two independent sets of sl2 spin operators, i.e.

[σai , σ
b
j ] = δijf

ab
cσ

c
j , [τai , τ

b
j ] = δijf

ab
cτ
c
j , [σai , τ

b
j ] = 0. (2.3.15)

The explicit form of the Lax matrix is

lj(u) =
∑

a,b,a′,b′

Řxx(u)abŘxx(u)a
′b′(σa ⊗ σa′)σbjτ b

′

j (2.3.16)

and, consequently, ř(u) satisfies the Yang-Baxter algebra:

ř(u− u′)(lj(u)⊗ lj(u′)) = (lj(u
′)⊗ lj(u))ř(u− u′). (2.3.17)

The expansion of the corresponding transfer matrix is τσ,τ (u) = 1 + hσ,τu + O(u2)

where hσ,τ is the periodic Hamiltonian of uncoupled XX models in terms of spin
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operators

hσ,τ =
L∑
i=1

(
σ+
i σ
−
i+1 + σ−i σ

+
i+1 + (σ → τ)). (2.3.18)

Following Shastry’s work [96], we will use the XX R-matrix to construct that of the

Hubbard model. It is natural to guess that the Hubbard model Lax matrix, Lhi (u),

is given by

Lhi (u) = G(h(u)) li(u) G(h(u)) (2.3.19)

where G(h(u)) depends on the spectral parameter, acts on the auxiliary space and

it will be responsible for the appearance of the Coulomb interaction in the transfer

matrix. For (2.3.19) to be true, we need

τh(u) = ln
(
trLhL(u)...Lh1(u)

)
= 1 + uHh + ... (2.3.20)

and Hh must commute to all higher charges in the expansion. It should appear in

terms of the spin operators, an expression that must coincide with (2.1.14) after

the following Jordan-Wigner transformation [95]:

ci,↑ 7→

(
i−1∏
k=1

σzk

)
σ−i , ci,↓ 7→

(
L∏
i=1

σzi

)(
i−1∏
k=1

τ zk

)
τ−i . (2.3.21)

which yields

Hh =
L∑
i=1

σ+
i σ
−
i+1 + σ−i σ

+
i+1 + (σ → τ) +

U

4

L∑
i=1

σzi τ
z
i (2.3.22)

Shastry’s procedure was to construct a second charge Jh that commutes with the

Hamiltonian and impose that it appears in the quadratic term of the transfer matrix,

hence limiting the form that G(h(u)) can take. This charge is

Jh =
L∑
i=1

(σ−i+1σ
z
i σ

+
i−1 − h.c.) +

U

2

L∑
i=1

(σ+
i σ
−
i+1 − σ−i σ+

i+1)× (τ zi + τ zi+1) + (σ ↔ τ).

(2.3.23)

Simultaneously, by taking a linear combination of two equations in ř(u), he constructed

Řh(u, u′) such that

Řh(u, u′)(Lhi (u)⊗ Lhi (u′)) = (Lhi (u
′)⊗ Lhi (u))Řh(u− u′). (2.3.24)

Let us explain how this is achieved. Introduce the conjugation matrix Cα
i , α =↑, ↓.
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2.3. Shastry’s R-matrix

This is such that

Řxx
α,12(u)Cα

i = Cα
i Ř

xx
α,12(−u), i = 1, 2, α =↑, ↓ (2.3.25)

and in the fundamental representation, C↑ = σz ⊗ 12 and C↓ = 12 ⊗ σz, with

C↑i = (14)⊗(i−1) ⊗ (σz ⊗ 12)⊗ (14)⊗L−i, C↓i = (14)⊗(i−1)(12 ⊗ σz)⊗ (14)⊗L−i.

(2.3.26)

If one takes the YBE for Rxx
α (u) and acts with Cα

1 C
α
2 from the left and Cα

3 from the

right one obtains the decorated YBE [96], originally called by Shastry the decorated

star-triangle relation

Rxx
α,12(u+ u′)Cα

1 R
xx
α,13(u)Rxx

α,23(u′) = (2.3.27)

= Rxx
α,23(u′)Rxx

α,13(u)Cα
1 R

xx
α,12(u+ u′), α =↑, ↓ . (2.3.28)

This results in two equations ř(u) must satisfy: the defining relation of the Yang-Baxter

algebra

ř(u− u′)(li(u)⊗ li(u′)) = (li(u
′)⊗ li(u))ř(u− u′) (2.3.29)

and the decorated Yang-Baxter algebra

ř(u+ u′)(C↑C↓⊗14)(li(u)⊗ li(u′)) = (li(u
′)⊗ li(u))(14⊗C↑C↓)ř(u+ u′). (2.3.30)

Although in this case the latter is a consequence of the YBE, it is in general

an independent equation, which includes a particle-antiparticle map. These two

equations will be used to obtain a new R-matrix. We will furthermore assume

G(h(u))G(−h(u)) = 14. Then the Lax matrix li(u) = G(−h(u)) Lhi (u) G(−h(u)).

Set h(u) = h and h(u′) = h′, and define G(a, b) := G(a)⊗G(b). Now take a linear

combination of the YBE and decorated YBE. After some algebraic manipulation

we have that

G(h′, h)[αř(u− u′) + βř(u+ u′)(C↑C↓ ⊗ 14)]G(−h,−h′)(Lhi (u)⊗ Lhi (u′)) =

= (Lhi (u
′)⊗ Lhi (u))G(−h′,−h)[αř(u− h′) + β(C↑C↓ ⊗ 14)ř(u+ u′)]G(h, h′)

where α and β are scalar functions of the spectral parameters. Using this equation,

the R-matrix

Rh(u, u′) = G(2h′, 2h)[α(u, u′)ř(u−u′)+β(u, u′)ř(u+u′)(C↑C↓⊗14)]G(−2h,−2h′)

(2.3.31)
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satisfies the Yang-Baxter algebra with the Lax matrix Lhi (u) if

G(2h′, 2h)[αř(u− u′) + βř(u+ u′)(C↑C↓ ⊗ 14)]G(−2h,−2h′) =

= [αř(u− u′) + β(C↑C↓ ⊗ 14)ř(u+ u′)]. (2.3.32)

This condition, together with the requirement that Hh and Jh must appear as the

first two non-trivial terms in the expansion of the transfer matrix (2.3.20), leads to

the following results for G(h(u)):

G(h(u)) = exp
(
h(u)C↑C↓ ⊗ 14

)
,

sinh(2h(u))

sin(2u)
=

sinh(2h(u′))

sin(2u′)
=
U

4
(2.3.33)

and the functions α(u, u′) and β(u, u′)

α(u, u′) = 1, β(u, u′) =
cos(u+ u′)

cos(u− u′)
tanh(h(u)− h(u′)) (2.3.34)

and thus the R-matrix of the Hubbard model, or Shastry’s R-matrix, is

Rh(u, u′) = G(2h′, 2h)[ř(u− u′) + β(u, u′)ř(u+ u′)(C↑C↓ ⊗ 14)]G(−2h,−2h′).

(2.3.35)

It is difficult not to admire the ingenuity of Shastry’s procedure. This, however,

does not explicitly prove that Rh(u, u′) satisfies the YBE. This was shown later

using the tetrahedron Zamolodchikov algebra [99, 100] for both the Hubbard model

and its SU(n) generalisation [101], which we will also discuss in a future Section.

This actually led to the study of ways in which one could ‘couple’ (in the sense that

we have seen) XX R-matrices such that the resultant R-matrix satisfied the YBE

[99]. In fact, the Hubbard model is only one of many models that can be obtained

this way. All these models have the property that their R-matrix is not of difference

form. It is also worth noting this was done for the Hubbard model fermionic Lax

operator [102], which we will introduce in Section 2.5.

If one attempts to find the symmetry of Rh(u, u′) from scratch i.e. find matrices

M such that,

(M⊗ 14 + 14 ⊗M)Rh(u, u′) = Rh(u, u′)(M⊗ 14 + 14 ⊗M), (2.3.36)
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2.4. The SU(n) Hubbard model

one obtains

M =


C1 0 0 C2

0 S1 S2 0

0 S3 S4 0

C3 0 0 C4

 (2.3.37)

where the entries satisfy S1S4 − S2S3 = C1C4 − C2C3 = γ. We can set γ = 1 and we

have:

Ms =

(
S1 S2

S3 S4

)
∈ SL(2)s Mc =

(
C1 C2

C3 C4

)
∈ SL(2)c. (2.3.38)

Then one obtains a 4× 4 representation of the sls2 × slc2 symmetry of the Hubbard

model, which we will denote as ρh, given by

ρh(Es
0) = σ+ ⊗ σ−, ρh(F s

0 ) = σ− ⊗ σ+, ρh(Hs
0) = σz ⊗ 1− 1⊗ σz (2.3.39)

ρh(Ec
0) = σ+ ⊗ σ+, ρh(F c

0 ) = σ− ⊗ σ−, ρh(Hc
0) = σz ⊗ 1 + 1⊗ σz (2.3.40)

which is equivalent to performing the Jordan-Wigner transformation (2.3.21) on the

operators (2.2.3) for a single site, and using the inverse of (2.3.14).

2.4 The SU(n) Hubbard model

In this Section we will proceed to present an integrable generalisation of the sls2×slc2
Hubbard model. Its Hamiltonian and R-matrix were constructed by Maassarani

and collaborators [103, 105] by coupling two generalisations of XX models (also

constructed by the same author in [104]) using Shastry’s procedure and showing

their ansatz for the Hamiltonian appears in the expansion of the transfer matrix.

This generalisation is refered to in the literature as ‘the SU(n) Hubbard model’,

however we would like to point out this is not due to its symmetry algebra but the

dimension of the objects that are used to build it. Hence, when we refer to it as

such, it is only to avoid confusion when the material presented is compared to its

sources.

The construction of this model goes as follows. Let Eab be the n× n matrix with

a 1 in the (a, b) entry and zeros everywhere else. The set of these matrices satisfy

the usual sun relations

[Eab, Ecd] = δbcE
ad − δadEcb. (2.4.1)

In terms of these matrices, the free fermion R-matrix and Hamiltonian can be
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Chapter 2. Twisted Yangian symmetries of the open Hubbard model

written as

Rxx(u) = cos(u)
2∑

a=1

Eaa ⊗ Eaa + sin(u)
2∑

a,b=1
a6=b

Eaa ⊗ Ebb +
2∑

a,b=1
a6=b

Eab ⊗ Eba (2.4.2)

and

Hxx =
L∑
i=1

2∑
a,b=1
a6=b

(Eabi E
ba
i+1), Eabi = 1⊗i−1

n ⊗ Eab ⊗ 1⊗L−in , (2.4.3)

respectively. It was shown in [104] that a generalisation of this model to sun matrices

is possible so that integrability is not broken and it contains the usual XX model

as the n = 2 case as defined by the R-matrix

Rxx(u) = cos(u)
(
Enn ⊗ Enn +

∑
a,b<n

Eaa ⊗ Ebb
)

+ sin(u)
∑
a<n

(Enn ⊗ Eaa + Eaa ⊗ Enn)

+
∑
a<n

(Ena ⊗ Ean + Ean ⊗ Ena). (2.4.4)

One can easily check that this satisfies the YBE and its corresponding Hamiltonian

is

Hxx =
L∑
i=1

∑
a<n

(Enai Eani+1 + Eani Enai+1). (2.4.5)

We would like to stress that although it is built using sun matrices, the symmetry of

this model is not sun (as su2 is not the symmetry of the d = 2 case but its quantum

deformed version for a special value of q = i (1.3.18)). Its symmetry is actually

sun−1 × u1, given by

Iab =
L∑
i=1

∑
a<n

Eabi ∈ sun−1, C =
L∑
i=1

(∑
a<n

Eaai − (n− 1)Enni

)
∈ u1. (2.4.6)

To construct a generalisation of the Hubbard model analogous to that of the XX

model, we need to add an extra label α = σ, τ to the matrices Eabiα, which now satisfy

the relations

[Eabiα, E
cd
jβ] = δαβδij(δbcE

ad
iα − δadEcbiα). (2.4.7)

Maassarani’s generalisation of the Hubbard model [103] is built by coupling two

SU(n) XX models in the most intuitive way

Hh =
L∑
i=1

∑
a<n

∑
α=στ

EaniαE
na
iα + EnaiαE

an
iα +

L∑
i=1

(
Ciσ +

n− 2

2

)(
Ciτ +

n− 2

2

)
(2.4.8)
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2.4. The SU(n) Hubbard model

where Ciα =
∑

a<n E
aa
iα − (n− 1)Enniα is the largest Cartan generator of sun. For the

case n = 2, taking σ+ = E12
σ , σ

− = E21
σ , σ

z = E11
σ − E22

σ and (σ → τ), we recover the

usual Hubbard model Hamiltonian after the Jordan-Wigner transformation (2.3.21).

This Hamiltonian (2.4.8) exhibits a (sun−1 × u1)σ × (sun−1 × u1)τ symmetry given

by the following operators

Iabα =
L∑
i=1

∑
a,b<n

Eabiα, Cα =
L∑
i=1

(∑
a<n

Eaaiα − (n− 1)Ennαi

)
, α = σ, τ. (2.4.9)

Its R-matrix is constructed following of Shastry’s method for the n = 2 case, using

both the YBE and decorated YBE, and it has been shown to satisfy the YBE using

the tetrahedron Zamolodchikov algebra [101]. The solutions of this model via the

Coordinate Bethe Ansatz were computed in [106].

Note how in the n = 2 case the symmetry is u4
1, but we know from previous Sections

that the full symmetry of the Hubbard Hamiltonian is sls2× slc2. The reason for this

is that n = 2 is a special case, where matrices with labels σ and τ can be combined

to form operators that generate a larger algebra. This is due to proposition (3.3)

in [107] which, unfortunately, is not true for the general n case. Nevertheless, the

model being integrable, it implies the (sun−1 × u1)2 symmetry can be extended to

two copies of the Yangian Y(sun−1 × u1). The non-trivial level 1 generators are

given by

Jabα = U
∑
i<j

∑
c<n

(
EaciαE

cb
αj − EacαjE

cb
iα

)
. (2.4.10)

These satisfy the usual Yangian relations

[Iabα , J
cd
β ] = δαβ(δbcJ

ad
α − δadJcbα ) (2.4.11)

and the coproduct

∆(Jabα ) = Jabα ⊗ 1 + 1⊗ Jabα + U
∑
c<n

(Iacα ⊗ Icbα − Icbα ⊗ Iacα ). (2.4.12)

These commute with the SU(n) Hubbard Hamiltonian on the infinite chain if the

infinite interval limit is taken over the empty band vacuum, where one may neglect

boundary terms at ±∞. If one interprets the Enai and Eani for a < n as creation and

annihilation operators of a particle a at site i respectively [106], the empty band

vacuum is given by |vac〉 = |0〉⊗L as L → ∞, where |0〉 is the following vector of
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Chapter 2. Twisted Yangian symmetries of the open Hubbard model

size n:

|0〉 =


0

0
...

1

 . (2.4.13)

Again, note the difference in structure between these Yangian generators and the

n = 2 ones (2.2.10). They are effectively the two XX Yangian copies, so the its

structure is unaltered by the coupling. This is unexpected because the coupled and

uncoupled R-matrices are different.

2.5 The Hubbard model and AdS/CFT

Aside from its applications in condensed matter physics and unusual integrable

structure, the Hubbard model has gained interest lately from the high energy physics

community due to its connections with the AdS/CFT correspondence [98, 108, 110].

In this Section we will review the role integrability plays in this correspondence and,

more specifically, how the Hubbard model fits into the story. As this thesis does

not focus on this subject, we will keep this Section rather brief and concise, to

merely convey ideas of integrability that have added more value to the field of high

energy physics. The author would recommend a series of reviews [9, 113] for a more

detailed, thorough explanation on how the results mentioned here were obtained.

The AdS5/CFT4 correspondence is a gravity/gauge duality between Type IIB

superstring theory living in a AdS5 × S5 background and N = 4 Super Yang Mills

theory (SYM) in 4D Minkowski spacetime [112]. The latter is a conformal field

theory (CFT) with SU(N) gauge group, and as such, the form of its observables

is very restricted. It is found to exist at the 4D boundary of type IIB in AdS5.

The relevant parameters of the string theory are the effective tension T = R2/2πα′

and the string coupling gStr, and those of the gauge theory are the dimension of the

gauge group N and the ’t Hooft coupling λ = g2
YMN . Here α′ is the string tension,

R is the radius of the S5 and gYM is the CFT coupling. The correspondence relates

these as follows:

λ = 4π2T 2,
1

N
=

gstr
4π2T 2

. (2.5.1)

The discovery of this duality by Maldacena in 1997 encouraged the search for others

in smaller dimensions, which we now know exist for AdSd/CFTd−1 for d = 4, 3, 2

[114, 115, 116], even if in some cases it is still unclear what the corresponding CFT

is. Nevertheless, this correspondence allows for a better understanding of features

of a gravity theory and make progress in heavy computations by studying its dual
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2.5. The Hubbard model and AdS/CFT

gauge theory and viceversa.

The set of isometries of AdS5× S5 is SO(2, 4)× SO(6), which corresponds to the

bosonic symmetries of the theory. The existence of 32 supersymmetries enhances

this symmetry to PSU(2, 2|4). The particle content of the theory is composed of

an SU(N) gauge field, 6 scalars transforming under the fundamental representation

of SO(6), 4 chiral and 4 anti-chiral fermions transforming under the fundamental

and anti-fundamental representations of SU(4) ∼= SO(6).

The techniques in integrability can only be applied to 1+1D and in some cases,

2+1D quantum models. Hence one cannot seek to solve the aforementioned theories

in general. However, in the λ→∞ limit, the gauge theory becomes planar i.e. only

1+1D diagrams – or single trace operators –are allowed. Additionally, the dilatation

operator, which is measures the scaling dimension of operators in the CFT, becomes

the Hamiltonian of the SO(6) Heisenberg spin chain [117]. Hence one can compute

the spectrum of planar scaling dimensions, and in string theory this is dual to the

energy spectrum of free strings. Thus integrability allows for an agreement in the

perturbative regime of both theories.

To fit AdS/CFT integrability in the context of the QISM, we need to find the

R-matrix of AdS5/CFT4 in the planar limit. The full symmetry algebra being two

copies of psl2,2|4, picking light-cone gauge restricts the symmetry to two copies of

sl2|2 n R
2, each of which is generated by six bosonic operators {Lαβ,Ra

b} and eight

fermiomic ones {Qαa,Gbβ}, satisfying the following relations

[Lαβ,L
γ
ξ] = δγβL

α
ξ − δαξ L

γ
β, [Ra

b,Rc
d] = δcbRa

d − δadRc
b

[Lαβ,Q
γ
b] = δγβQ

α
b −

1

2
δαβQ

γ
b, [Lαβ,Gaγ] = −δαγGαβ +

1

2
δαβGaγ

{Qαa,Q
β
b} = εαβεabP , {Gaα,Gbβ} = εabεαβK

{Qαa,Gbβ} = δbaLαβ + δαβRb
a + δbaδ

β
αC (2.5.2)

where C, P and K are central elements. The superalgebra acts on two bosonic |φa〉
and two fermionic |ψα〉 states, a, α = 1, 2 in the following way:

Ra
b |φa〉 = δcb |φa〉 −

1

2
δab |φc〉 , Lαβ |ψγ〉 = δγβ |ψ

α〉 − 1

2
δαβ |ψγ〉 (2.5.3)

Qαa
∣∣φb〉 = aδba |ψα〉 Qαa

∣∣ψβ〉 = bεαβεab
∣∣φb〉 (2.5.4)

Gaα
∣∣ψβ〉 = cεabεαβ

∣∣ψβ〉 Gaα
∣∣φb〉 = dδβα |ψα〉 (2.5.5)

where a,b,c and d are complex numbers and the closure of the algebra requires that
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Chapter 2. Twisted Yangian symmetries of the open Hubbard model

ad− bc = 1, which implies

C =
ad + bc

2
, P = ab, K = cd. (2.5.6)

These generators admit a representation in terms of the fermionic oscillators [100].

The bosonic generators can be written as

R1
1 = −R2

2 =
1

2
(n↑ + n↓ − 1), R1

2 = (R2
1)† = c†↓c

†
↑

L1
1 = −L2

2 =
1

2
(n↑ − n↓), L1

2 = (L2
1)† = c†↑c↓ (2.5.7)

and, defining P to be the spin permutation operator, we can write the fermionic

generators as

Q1
1 = (a + (b− a)n↓)c

†
↑ = PQ2

1, Q1
2 = −(b + (a− b)n↑)c↓ = −PQ2

2

S1
1 = (d + (c− d)n↓)c↑ = PS1

2, S2
1 = −(c + (d− c)n↑)c

†
↓ = −PS2

2.

(2.5.8)

The form of these generators should already remind one of the symmetries of the

Hubbard model (2.2.3) and (2.2.5). The parameters a, b, c and d are usually

written in terms of the ‘AdS/CFT variables’ x+, x− and g [43],

a =

√
g

2
η, b =

√
g

2

i

η

(
x+

x−
− 1

)
, c =

√
g

2

η

x+
, d =

√
g

2
i(x− − x+) (2.5.9)

where η =
√
i(x− − x+) and x+, x− are connected to the momentum of the particle

as
x+

x−
= eip. (2.5.10)

The connection between AdS/CFT and the Hubbard model was initially found

in [109]. Indeed, if one considers only the even part of this algebra, this is just

the sls2× slc2 symmetry of the Hubbard model, and if one attempts to construct the

R-matrix for AdS/CFT by requiring invariance under the full algebra, the discovery

is that it is not of difference form and its corresponding Hamiltonian is that of an

extended Hubbard model [110, 100]. Furthermore, one finds that Shastry’s and the

AdS/CFT R-matrix are related by a similarity transformation and the following

identification of variables [111]:

g =
1

U
, x+ =

a(u)

b(u)
e2h(u), x− =

b(u)

a(u)
e2h(u), (2.5.11)
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2.5. The Hubbard model and AdS/CFT

with a(u)2 − b(u)2 = 1 and a(u)b(u) = 2i sinh(2h(u))U−1. The standard choice of

a(u) and b(u) is

a(u) = cos(u), b(u) = −i sin(u). (2.5.12)

But the Hubbard model is not supersymmetric, and even in the AdS/CFT side, the

bosonic symmetries sls2 × slc2 [110] can only be enhanced to sl2|2 if

(
x+

x−

)L/2
= 1. (2.5.13)

where L is the length of the chain. Note that this requires that the length of

the chain is even, so that the second sl2 symmetry is present, when it is also a

requirement in the Hubbard model (2.2.5). This condition is derived using the

Bethe ansatz method for a spin chain with sl2|2 n R
2 symmetry before identifying

variables according to (2.5.11) [110]. We know that, for the case of U = 0, the

Hubbard model becomes two uncoupled XX models and hence has a Ui(sl2)×Ui(sl2)

symmetry, which is too a case considered in [110]. However, we would like to shed

some light on the role of supersymmetry by carefully studying the full symmetry

algebra of the Hubbard model and an operator we have encountered before, which

relates the two copies of sl2. These are the partial PHTs (2.2.6)

P↓ : (ci↓, c
†
i↓, ci↑, c

†
i↑) 7→ ((−1)ic†i↓, (−1)ici↓, ci↑, c

†
i↑). (2.5.14)

and

P↑ : (ci↓, c
†
i↓, ci↑, c

†
i↑) 7→ (ci↓, c

†
i↓, (−1)ic†i↑, (−1)ici↑). (2.5.15)

Pσ is not necessarily a symmetry of the Hubbard model. However, both the

Hamiltonian and the R-matrix satisfy

PσZ(u, u′, U) = Z(u, u′,−U)Pσ, Z = Hh, Rh(u, u′). (2.5.16)

and hence the map Pσ combined with a change of sign in U is an additional

symmetry of the model – more specifically, a supersymmetry.

To see how this operator enhances the symmetry to sl2|2, let us write down the

supersymmetry generators in a complatible representation to (2.3.40) and relate

these to the partial PHT, for which there are a number of choices:

P±↓ (a1) = a1(12 ⊗ (σ+ ± σ−)), (2.5.17)

P±↑ (a2) = a2((σ+ ± σ−)⊗ 12), (2.5.18)
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Chapter 2. Twisted Yangian symmetries of the open Hubbard model

where a1 and a2 are nonzero complex numbers. The supercharges are

Q1
1(a,b) = ((a + b)12 − (a− b)σz)⊗ σ−, Q2

2(a,b) = ((a + b)12 + (a− b)σz)⊗ σ+,

Q1
2(a,b) = σ+ ⊗ ((a− b)12 + (a + b)σz), Q2

1(a,b) = −σ− ⊗ ((b− a)12 + (a + b)σz),

G1
1(c,d) = Q2

2(c,d), G2
2(c,d) = Q1

1(c,d),

G1
2(c,d) = −Q1

2(c,d), G2
1(c,d) = −Q2

1(c,d), (2.5.19)

where the bold variables are nonzero complex numbers satisfying ad − bc = 1. It

is now easy to see that the operators P±σ are sums of these supercharges with a

specific choice of variables:

P±↓ (a) = Q1
1(a,±a) +Q2

2(a,±a) = G2
2(a,±a) + G2

2(a,±a), (2.5.20)

P±↑ (c) = Q1
2(c,∓c) +Q2

1(c,∓c) = G1
2(c,∓c) + G2

1(c,∓c), (2.5.21)

and hence the supercharges can be obtained by computing commutators of the

partial PHT with the generators of the bosonic subalgebra. This is equivalent to

condition (2.5.13). In this case however, imposing the condition ad − bc = 1 is

equivalent to the following relation among the free parameters:

c = ± 1

2a
. (2.5.22)

Consequently, the superalgebra generated by sls2×slc2 and P±σ is sl2|2. This symmetry

lacks the central extension that governs the scattering of the AdS5×S5 superstring.

Instead, the possible central charges C, P and K generated by the supersymmetries

(see A.1) are

〈C,P ,K〉 = 〈 ad + bc

2
, ab, cd 〉 = 〈 0,∓a2,± 1

4a2
〉. (2.5.23)

We can see that the relations b = ∓ a and d = ± c are equivalent to condition

(2.5.13), which is ultimately due to the existence of the partial particle-hole transformation.

Thus we conclude that the existence of Pσ and a careful choice of parameters is

what allows us to connect the Hubbard model, which lacks supersymmetry, with

the integrable structure of the AdS5 × S5 superstring.

2.6 Boundary magnetic field and chemical potential

As one can gather by studying the literature on the 1-D Hubbard model [76], a

lot less is known about the symmetries governing its integrable structure with
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2.6. Boundary magnetic field and chemical potential

boundary conditions compared to the case of periodic boundary conditions and

infinite interval. This is due to the size and unusual structure of its R-matrix and

symmetries thereof. In the context of the QISM, only a boundary magnetic field and

chemical potential have been studied in detail [120] and solved via the ABA [132,

124]. These boundaries break one of the sl2 symmetries to a u1. This suggests the

question: does this boundary possess a twisted Yangian symmetry? Additionally,

are there other integrable boundaries corresponding to different symmetric pairs?

And if so, can they be constructed?

From this Section until the end of this Chapter we will proceed to answer these

questions. We will start with a review of the known construction of the fermionic

Lax operator of the Hubbard model and solutions to the graded reflection equation

[120, 122, 123]. We then present the results based on papers by the author and

collaborators [89, 121] at the end of this Section and 2.6 and additional unpublished

work on a new open integrable boundary in Section 2.7. This provides a classification

and construction of twisted Yangian symmetries and integrable boundaries for the

open Hubbard model for three types of symmetric pairs and twisted Yangians.

In Section 2.2, we showed how Shastry constructed a Lax operator and R-matrix

from which the Hamiltonian of the periodic Hubbard model could be extracted. If

we perform the Jordan-Wigner transformation (2.3.21) on such a Lax matrix we

obtain the so called fermionic Lax operator [125, 126]

Lfj (u) =


−eh(u)fj↑(u)fj↓(u) −fj↑(u)cj↓ ici↑fj↓(u) ieh(u)ci↑cj↓

−ifj↑(u)c†j↓ e−h(u)fj↑(u)gj↓(u) e−h(u)cj↑c
†
j↑ icj↑gj↓(u)

c†j↑fj↓(u) e−h(u)c†j↑cj↓ e−h(u)gj↑(u)fj↓(u) gj↑(u)cj↓

−ieh(u)c†j↑c
†
j↓ c†j↑gj↓(u) igj↑(u)c†j↓ −eh(u)gj↑(u)gj↓(u)


(2.6.1)

where the functions fjσ(u) and gjσ(u) are

fjσ(u) = sin(u) + eiunjσ,

gjσ(u) = cos(u)− eiunjσ. (2.6.2)

Because this is an object with fermionic entries acting on 2 fermionic states and

2 bosonic ones, one cannot perform usual matrix operations i.e. this is not an

actual matrix, but a Z2 graded object. The above is only useful for visualising the

components of such object, but formally, one should write [127]

Lfj (u) =
∑

1≤α,β≤4

Θαβ(u)Eαβ (2.6.3)
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where Θαβ(u) is the (α, β) entry of (2.6.1) and the Eαβ are the set of supermatrices,

satisfying the commutation relations

[Eαβ,Eγδ] = δβγEαδ − (−1)(deg(α)+deg(β))(deg(γ)+deg(δ))δδαEγβ. (2.6.4)

with grading

deg(1) = deg(4) = 0, deg(2) = deg(3) = 1. (2.6.5)

However, a trick to get around this problem is to define the graded tensor product:

[A⊗
s
B]ac,bd = (−1)[deg(a)+deg(b)]deg(c)AabBcd. (2.6.6)

Instead of dealing with Shastry’s R-matrix, we will focus on the so called ‘fermionic

R-matrix’ Rf (u, u′), whose relation to Rh(u, u′) is given in appendix B.1. The

fermionic R-matrix satisfies the Yang-Baxter algebra for graded models with the

fermionic Lax operator [122, 123]:

Řf (u, u′)(Lfj (u)⊗
s
Lfj (u

′)) = (Lfj (u
′)⊗

s
Lfj (u))Řf (u, u′). (2.6.7)

The monodromy matrix is constructed as usual

T fa (u) := LfL(u)LfL−1(u) . . . Lf1(u) (2.6.8)

and it satisfies the graded Yang-Baxter algebra, or graded RTT relation

Řf (u, u′)(T f (u)⊗
s
T f (u′)) = (T f (u′)⊗

s
T f (u))Řf (u, u′). (2.6.9)

When obtaining the transfer matrix, one must take the trace over the supermatrices:

the supertrace τ f (u) = str(T f (u)) = tr(σz ⊗ σz T f (u)). Then

[τ f (u), τ f (u′)] = 0 (2.6.10)

and the periodic Hubbard Hamiltonian (2.1.14) can be extracted from its expansion

[125, 126].

Now we will proceed to comment on the real diagonal K-matrix solutions of

the Hubbard model. These were computed in [120] and used for the ABA [124].

The graded reflection equation for the Hubbard model, as shown in the literature

is obtained from (1.6.8) and (1.6.7) by using the following property of fermionic

R-matrix

Rf
ij(ui, uj) = Rf

ji(−uj,−ui)∗ (2.6.11)

62



2.6. Boundary magnetic field and chemical potential

NowK±1 (u1) = K±(u1)⊗s 14 andK±2 (u2) = 14⊗sK±(u2). The left graded reflection

equation is identical to (1.6.7)

Rf
12(u1, u2)K−1 (u1)Rf

21(u2,−u1)K−2 (u2) =

= K−2 (u2)Rf
12(u1,−u2)K−1 (u1)Rf

21(−u2,−u1) (2.6.12)

and the right graded reflection equation is obtained by taking the complex conjugate

of (1.6.8) and using (2.6.11):

Rf
21(u2, u1)K+

1 (u1)Rf
12(−u1, u2)K+

2 (u2) =

= K+
2 (u2)Rf

21(−u2, u1)K+
1 (u1)Rf

12(−u1,−u2). (2.6.13)

We shall assume the K-matrix solutions to be diagonal and not operatorial:

K±(u, p±) =


x±1 (u) 0 0 0

0 x±2 (u) 0 0

0 0 x±3 (u) 0

0 0 0 x±4 (u)

 . (2.6.14)

For both left and right boundary, we have two solutions for the K-matrix [120].

One of them breaks the spin symmetry sls2 into us1: for the left boundary it is

x−1 (u) = x−4 (u) = e2h
(
1 + p−e−2h tanu

) (
1− p−e−2h tanu

)
,

x−2 (u) =
(
1− p−e−2h tanu

) (
1− p−e2h tanu

)
,

x−3 (u) =
(
1 + p−e−2h tanu

) (
1 + p−e2h tanu

)
. (2.6.15)

and for the right boundary it is

x+
1 (u) = x+

4 (u) = e−2h
(
p+ + e2h tanu

) (
p+ − e2h tanu

)
,

x+
2 (u) =

(
p+ + e2h tanu

) (
p+ + e−2h tanu

)
,

x+
3 (u) =

(
p+ − e2h tanu

) (
p+ − e−2h tanu

)
. (2.6.16)

The other breaks the charge symmetry slc2 into uc1: for the left boundary we have

x−1 (u) =
(
1− p−e−2h tanu

) (
1− p−e2h tanu

)
,

x−2 (u) = x−3 (u) = e−2h
(
1 + p−e2h tanu

) (
1− p−e2h tanu

)
,

x−4 (u) =
(
1 + p−e2h tanu

) (
1 + p−e−2h tanu

)
. (2.6.17)
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Chapter 2. Twisted Yangian symmetries of the open Hubbard model

and for the right boundary it is

x+
1 (u) =

(
p+ + e2h tanu

) (
p+ + e−2h tanu

)
,

x+
2 (u) = x+

3 (u) = e2h
(
p+ + e−2h tanu

) (
p+ − e−2h tanu

)
x+

4 (u) =
(
p+ − e2h tanu

) (
p+ − e−2h tanu

)
. (2.6.18)

Using these K-matrices one can obtain a commuting family of conserved quantities

by expanding the transfer matrix

τ fB(u) = str K−(u)(T f (−u)))−1K+(u)T f (u) = c1 + c2u+Hh
openu

2 +O(u3) (2.6.19)

where c1 and c2 are constants. The reason the Hamiltonian appears in the quadratic

term in the expansion is due to additional properties of the K-matrix [120]. There

are four different integrable choices for the Hamiltonian Hh
open

Hh
open = −

L∑
i=1

∑
σ=↑,↓

c†iσci+1σ + c†i+1σciσ + U
L∑
i=1

(ni↑ − 1
2
)(ni↓ − 1

2
)

−pc−(n1↑ + n1↓ − 1)− ps−(n1↑ − n1↓)

−pc+(nL↑ + nL↓ − 1)− ps+(nL↑ − nL↓) (2.6.20)

given by

(pc−, p
s
−, p

c
+, p

s
+) =



(pc−, 0, p
c
+, 0) sls2 × uc1

(pc−, 0, 0, p
s
+) us1 × uc1

(0, ps−, 0, p
s
+) us1 × slc2

(0, ps−, p
c
+, 0) us1 × uc1

One can also obtain off-diagonal boundaries which possess symmetries isomorphic

to these by performing an slc2 × slc2 rotation on the K-matrices [120].

We would like to construct the twisted Yangian symmetry for these boundaries

[121]. Since there are both right and left boundary reflection equations, we can

focus on left and right boundaries independently. Furthermore, since the left and

right K-matrices are related by a simple transformation (in Appendix B.4), we can

direct our attention to the right boundary alone. Let us set the Hubbard model on

a half-infinite chain with a right integrable boundary:

Hh
p = −

∑
i<0

∑
σ=↑,↓

c†iσci+1σ + c†i+1σciσ + U
∑
i≤0

(ni↑ − 1
2
)(ni↓ − 1

2
)− pB0 (2.6.21)
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2.6. Boundary magnetic field and chemical potential

where

B0 =

Hs
0,0 = n0↑ − n0↓ for a right boundary magnetic field

Hc
0,0 = n0↑ + n0↓ − 1 for a right boundary chemical potential

and p is the boundary field strength. Clearly, the Lie symmetry of the model has

now been broken to either us1 × slc2 or sls2 × uc1, but integrability is unaffected [132].

This and the fact that (sl2, u1) form a symmetric pair hint at the existence of a

boundary twisted Yangian symmetry, which we shall construct shortly. We will

focus on the case of a boundary magnetic field; the chemical potential case can be

obtained via the partial PHT. Specifically, the Lie symmetry breaking is

sls2 → us1

{Es
0, F

s
0 , H

s
0} → {Hs

0} (2.6.22)

so we expect Y(sl2)s to break to the twisted Yangian Y(sl2, u1)s, generated by Hs
0

and two other operators

Ês
1 = Es

1 +
U

2
Es

0H
s
0 , F̂ s

1 = F s
1 −

U

2
F s

0H
s
0 (2.6.23)

constructed using (1.7.12). These agree with the twisted Yangian found in [65], and

hence satisfy the terrible relations (1.7.6).

However, there exists a subtlety in the symmetry generators which cannot be

derived by any other method other than guesswork and computation of commutators.

For commutation with the Hamiltonian, one has to make use both of the evaluation

automorphism (1.5.14) and of the freedom to make it site-dependent, by adding a

boundary term. Doing so, we find (details in Appendix B.2) that

Ẽs
1 = Ês

1 + µ+E
s
0 − pEs0,0 ,

F̃ s
1 = F̂ s

1 + µ−F
s
0 + pF s0,0 , (2.6.24)

where

µ± =
U

2
±
(
p− 1

p

)
, (2.6.25)

together with Hs
0 , are the charges which commute with the half-infinite Hubbard

Hamiltonian over the antiferromagnetic vacuum (2.2.11) with right boundary−pHs
0,0

after neglecting boundary terms at −∞. These modifications do not change the

twisted Yangian defining relations, which in this particular case are (1.7.6) but

with functions of the coupling constant of the Hubbard model instead of that of the
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Chapter 2. Twisted Yangian symmetries of the open Hubbard model

Heisenberg spin chain. Namely, the operators (2.6.24) satisfy

[Hs
0 , Ẽ

s
1] = 2Ẽs

1, [Hs
0 , F̃

s
1 ] = −2F̃ s

1 (2.6.26)

which are preserved by the coproduct (Appendix B.3). Additionally, they satisfy

the property (1.7.6):

[Ẽs
1, [Ẽ

s
1, [Ẽ

s
1, F̃

s
1 ]]] = −12U2Ẽs

1

(
1

U

(
p− 1

p

)
+Hs

0

)
Ẽs

1

[F̃ s
1 , [F̃

s
1 , [F̃

s
1 , Ẽ

s
1]]] = 12U2F̃ s

1

(
1

U

(
p− 1

p

)
+Hs

0

)
F̃ s

1 . (2.6.27)

These charges satisfy the coideal property,

∆Hs
0 = Hs

0 ⊗ 1 + 1⊗Hs
0

∆Ẽs = (Ês + µ+E
s
0)⊗ 1 + 1⊗ (Ês + µ+E

s
0 − pEs0,0) + UEs

0 ⊗Hs
0

∆F̃ s = (F̂ s + µ−F
s
0 )⊗ 1 + 1⊗ (F̂ s + µ−F

s
0 + pF s0,0)− UF s

0 ⊗Hs
0 ,(2.6.28)

i.e. all these coproducts belong to Y(sl2)s ⊗ Y(sl2, u1)s (details in Appendix B.3).

Thus the modified Y(sl2, u1) generated by Hs
0 , Ẽ

s and F̃ s is the boundary twisted

Yangian of the half-infinite Hubbard chain in the presence of a right boundary

magnetic field. Further, taking the 4 × 4 sl2 representation given in (2.3.40), the

reflection matrix for a boundary magnetic field at site i = 0 satisfies the boundary

intertwining relation (1.7.13) (see Appendix B.4).

2.7 Achiral boundary

Now we will proceed to construct an integrable boundary which is characteristic

of models with a symmetry that can be represented by two copies of the same

symmetry algebra [89]. Suppose a 1+1D physical theory has symmetry algebra

gL × gR, where gL and gR are generated by {Qa,L
0 } and {Qa,R

0 } respectively (the

superscript’s only use is to label the copies). One can also decompose this symmetry

into g+ ⊕ g−, where Q±,a0 = Qa,L
0 ±Q

a,R
0 . If we were to impose an achiral boundary

condition on the real line [135], which satisfies α(Qa,L
0 ) = Qa,R

0 and α2 = id, gL×gL

would break to the subalgebra g+.

One can check that gL×gR and g+ form a symmetric pair, and hence an integrable

system with this type of boundary condition is expected to possess a remnant of

the original Y(g× g) symmetry. This is not Y(g), but rather, the twisted Yangian

Y(gL×gR, g+) [135]. Now the task is to construct its generators. It is generated by
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2.7. Achiral boundary

g+ and a deformation of the grade 1 generators Qa,−
1 = Qa,L

1 −Qa,R
1 [135] given by:

Q̂a,−
1 = Qa,−

1 + α[C+, Q
a,−
0 ] (2.7.1)

where α is a deformation parameter fixed by the theory (a coupling constant) and

C+ is the quadratic Casimir operator of gL × gR restricted to g+. These operators

need to satisfy additional relations [65, 66], which for the (so4, sl
∆
2 ) symmetric pair

are given by

[Qa,+
0 , Q̂b,−

1 ] = fabcQ̂
c,−

and

[Q̂z,−
1 , [Q̂+,−

1 , Q̂−,−1 ]] = λ2(Q̂−,−1 Q+,+
0 −Q−,+0 Q̂+,−

1 )Qz,+
0 (2.7.2)

This is the case of the Hubbard model on a chain of even length. The so4 algebra

may be generated by operators Aa and Ba, a = +,−, z, satisfying the following

relations

[Aa,Ab] = fabcA
c, [Ba,Bb] = fabcA

c, [Aa,Bb] = fabcB
c, (2.7.3)

where fabc are the sl2 structure constants. Note that {Aa} generate a full diagonal

sl2 algebra, which we will denote as sl∆2 . Since so4
∼= sl22, Aa and Bb can be

constructed via the sls2 × slc2 generators in the following way

A+
0 = Es

0 + Ec
0, A−0 = F s

0 + F c
0 , Az

0 = Hs
0 +Hc

0, (2.7.4)

B+
0 = Es

0 − Ec
0, B−0 = F s

0 − F c
0 , Bz

0 = Hs
0 −Hc

0. (2.7.5)

The level 1 generators of the Yangian symmetry are constructed similarly, changing

the level label from 0 to 1. Qa,+
n and Qa,−

n correspond to Aa
n and Ba

n respectively.

Let us now direct our attention to the left half-infinite Hubbard Hamiltonian, with

the limit as the left side of the chain goes to −∞ taken over the antiferromagnetic

vaccum. We would like to come up with a boundary term that only preserves

sl∆2 , which will correspond to the symmetric pair (so4, sl
∆
2 ) and hence allow for the

construction of a twisted Yangian. Interestingly, we have already encountered this

term: it is nothing other than the partial PHT (2.2.6). As an operator in terms of

fermionic oscillators, this can be represented as

P↓ =
∏
j

Pj↓, Pj↓ = (cj↓ − (−1)jc†j↓) (2.7.6)
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Chapter 2. Twisted Yangian symmetries of the open Hubbard model

which satisfies

P↓Xs
0P
†
↓ = Xc

0 for X = E,F,H, P2
↓ = 1 (2.7.7)

and thus

[P↓,Aa
0] = 0. (2.7.8)

Hence the following half-infinite Hubbard Hamiltonian

Hh
∆ = (Hh) + pP0↓, (2.7.9)

no longer possesses a full so4 symmetry but it is broken to sl∆2 . Here (Hh) denotes

the Hubbard Hamiltonian with sites on the left half-line. The boundary term pP0↓

acts on the basis of states by reflecting a particle as a hole and vice versa at site

0. In doing this, the states gain a factor of p, which is interpreted as a change in

phase, requiring |p|= 1. This is then an achiral boundary condition, and since so4

and sl∆2 form a symmetric pair, the model is expected to possess a twisted Yangian

symmetry Y(so4, sl
∆
2 ). Naively, one would attempt to construct the deformed level

1 generators using (2.7.1) and obtain, for example,

B̂+ = B+
1 +

U

4
(B+

0 A
z
0 −Bz

0A
+
0 ). (2.7.10)

However, just as in the case of other integrable open boundaries [121], there exist

two subtleties. First, one must make use of the automorphism (1.5.14). Secondly,

we note that the right Yangian copy is not only obtained through the operator

(2.7.6) but also by changing U to −U , and the boundary term in the Hamiltonian

does not ‘know’ about this. Hence, to satisfy the coideal property, the level 1

generators which must be deformed are Aa
1, a = +,−, z. One then finds that the

operator

B̃+
1 = A+

1 +
U

2
B+

0 +
U

4
(B+

0 A
z
0 −Bz

0A
+
0 ) (2.7.11)

commutes with Hh
∆ over the antiferromagnetic vacuum upon neglecting boundary

terms at −∞. Simlarly, the other twisted level 1 charges are:

B̃−1 = A−1 +
U

2
B−0 −

U

4
(B−0 A

z
0 −Bz

0A
−
0 ), (2.7.12)

B̃z
1 = Az

1 +
U

2
Bz

0 −
U

2
(B+

0 A
−
0 −B−0 A

+
0 ).
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2.8. Free boundary

Their coproducts are

∆B̃+
1 = B̃+ ⊗ 1 + 1⊗ B̃+ +

U

2
(B+

0 ⊗Az
0 −Bz

0 ⊗A+
0 ),

∆B̃−1 = B̃− ⊗ 1 + 1⊗ B̃− − U

2
(B−0 ⊗Az

0 −Bz
0 ⊗A−0 ),

∆B̃z
1 = B̃z ⊗ 1 + 1⊗ B̃z − U(B+

0 ⊗A−0 −B−0 ⊗A+
0 ). (2.7.13)

Thus the coideal property is satisfied and hence Y(so4, sl
∆
2 ) = 〈Aa

0, B̃
b
1〉 forms a

coideal subalgebra of Y(so4). Thus a partial PHT is an achiral boundary in the

half-infinite Hubbard chain, and possesses a twisted Yangian symmetry.

2.8 Free boundary

Although it may seem like we have exhausted all possible symmetric pairs, we still

have the case where the preserved subalgebra is sl2 itself: the trivial symmetric pair

(sl2, sl2). At the level of the open Hamiltonian, this is achieved by imposing an

object belonging to the center of sl2 at the boundary - which we may as well pick

the quadratic casimir C = Q+
0 Q
−
0 +Q−0 Q

+
0 + 1

2
(Qz

0)2

Hh
o = (Hh) + C, (2.8.1)

We call this type of boundary the free boundary1. One can check that all Lie

symmetry generators still commute with Hh
o . As in Section 2.1, we will focus on

sls2 since all results for the other sl2 copy can be obtained through the partial

PHT. Although the full Lie symmetry is preserved, the free boundary breaks all

of the Yangian level 1 generators. Due of the preservation of the Lie symmetry,

one cannot add a level 0 quadratic term to the level 1 generators – as in the case

of the u1 boundary – to restore the Yangian symmetry. This means all odd level

Yangian elements are broken by the free boundary. However, a modified version

of the even level generators is preserved [58, 137], which lets us build an infinite

tower of symmetries and thus ensure integrability of the model. This is the twisted

Yangian Y(sl2, sp2) ∼= Y(sl2, sl2), written in [55] as Y−(sl2). It is generated by the

1Called the open boundary in [137], but this could be confused with ‘open boundary conditions’
and hence we have decided to change the name here and in the next Chapter.
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elements Q±0 , Qz
0 and Q̂±2 , Q̂z

2 satisfying

[Qz
0, Q

±
0 ] = ±2Q±0 , [Q+

0 , Q
−
0 ] = Qz

0,

[Q̂z
2, Q

±
0 ] = [Qz

0, Q̂
±
2 ] = ±2Q±2 , [Q̂±2 , Q

∓
0 ] = ±Q̂z

2,

[Q̂z
2, [Q̂

+
2 , Q̂

−
2 ]] = 4α2

(
{Q+

0 , Q̂
−
2 , Q̂

z
2}

− {Q−0 , Q̂+
2 , Q̂

z
2}
)
, (2.8.2)

where α is a model dependent constant. If one takes the level 2 generators of Y(sl2)

to be

Q±2 = ±1
2
[Qz

1, Q
±
1 ], Qz

2 = [Q+
1 , Q

−
1 ]. (2.8.3)

then the twisted level 2 generators of Y(sl2, sl2) can be obtained by the embedding

ϕ− : Y(sl2, sl2) ↪→ Y(sl2) of algebras given by

Qa
0 7→ Qa

0, Q̂a
2 7→ Qa

2 + α[Qa
1, C] + βQa

0, (2.8.4)

where β is another model dependent constant. In the case of the Hubbard model,

the relevant operators are represented in terms of the fermionic operators of spin σ

OscσL by the map ρOsc : sls2 × slc2 → Osc↑L ×Osc↓L as follows

ρOsc(Q
+
n ) = Es

n, ρOsc(Qn)− = F s
n, ρOsc(Q

z
n) = Hs

n. (2.8.5)

Using the formula (2.8.4), the modified level 2 generators which come the closest

to commuting with Hh
o are

Ĥs
2 = Hs

2 − U(Es
1F

s
0 − Es

0F
s
1 ),

Ês
2 = Es

2 − U
2

(Hs
1E

s
0 −Hs

0E
s
1),

F̂ s
2 = F s

2 + U
2

(Hs
1F

s
0 −Hs

0F
s
1 ). (2.8.6)

One must add an extra term at the right boundary to obtain operators which

commute with Hh
o over the antiferromagnetic vacuum

H̃s
2 = Ĥs

2 − 2Hs
0,0, Ẽs

2 = Ês
2 − 2Es0,0, F̃ s

2 = F̂ s
2 − 2F s0,0. (2.8.7)

Details of this computation are given in Appendix B.7. Note the use of the site-dependent

evaluation automorphism, which is also present in the case of a boundary magnetic

field and chemical potential from Section 2.5. It seems that this automorphism

is of significant importance in the open Hubbard model. The coproduct of these
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generators is given by

∆H̃s
2 = Ĥs

2 ⊗ 1 + 1⊗ H̃s
2 − 2U(Es

1 ⊗ F s
0 − F s

1 ⊗ Es
0) + U2(...),

∆Ẽs
2 = Ês

2 ⊗ 1 + 1⊗ Ẽs
2 − U(Hs

1 ⊗ Es
0 − Es

1 ⊗Hs
0) + U2(...),

∆F̃ s
2 = F̂ s

2 ⊗ 1 + 1⊗ F̃ s
2 + U(Hs

1 ⊗ F s
0 − F s

1 ⊗ Es
0) + U2(...), (2.8.8)

where the U2 terms are all level 0 and thus commute with all of Hh
o . One can

see that generators to the right of the coproduct are symmetries of the boundary

and those to the left of the coproduct are symmetries of the bulk, and thus this

coproduct acts on the Hilbert space properly. This result can be derived from the

results in Appendix B.3.

2.9 The open SU(n) Hubbard model

We would like to explore the twisted Yangian symmetry after imposing different

boundary conditions on the SU(n) generalisation of the Hubbard model. Since a

remnant of the original Yangian is only present if the original Lie symmetry and

the subalgebra to which it is broken by the boundary form a symmetric pair, this

narrows down the types of integrable boundary conditions we can impose. More

specifically, we can add a boundary term pB in the half-infinite Hamiltonian as

HhB = (Hh) + pB. (2.9.1)

The structure of all these twisted Yangians follow straightforwardly from [55] and

therefore we will only illustrate their construction with the so called ‘grassmanian’

case [52, 54]: the breaking of sun−1 to sum × sun−1−m. Additionally we will focus

on a single spin label (and therefore remove it from our calculations), as the extra

twisted Yangian copy can be obtained by simply changing the spin label. We set

the boundary term to be

B = k1

m∑
a=1

Eaa0 + k2

n−1∑
a=m+1

Eaa0 + k3E
nn, (2.9.2)

where k1 6= k2 and k3 are nonzero complex numbers. Adding this boundary term

to an sun−1 invariant Hamiltonian breaks the symmetry to sum × sun−1−m × u1.

Note that if either k1 or k2 were zero the symmetry would break to sun−1−m or sun

respectively, and if k1 = k2 the symmetry would remain unbroken as this would just

give the quadratic casimir operator of sun−1.
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This breaks the grade 0 generators of the form Im+a,m−b and Im−a,m+b where a

and b are positive. It will also break the level 1 generators with such labels, but

this can be fixed by adding a quadratic term in the level 0 generators. Indeed, the

operator

Ĵ m+a,m−b = Jm+a,m−b + U(m− n+ 1)Im+a,m−b + U

(
m∑
c=1

−
n−1∑

c=m+1

)
Im+a,cIc,m−b

(2.9.3)

commutes with HhB if the limit as the left side of the model goes to −∞ is taken

over the empty band vacuum |vac〉 (2.4.13) - only then we may neglect boundary

terms at −∞. The coproduct satisfies the coideal property

∆(Ĵ m+a,m−b) = Ĵ m+a,m−b ⊗ 1 + 1⊗ Ĵm+a,m−b

−2U

(
m∑
c=1

Im+a,c ⊗ Ic,m−b −
n−1∑

c=m+1

Ic,m−b ⊗ Im+a,c

)
(2.9.4)

These operators, together with the unbroken subalgebra, form a coideal subalgebra

of the original Yangian: the twisted Yangian Y(sun−1, sum×sun−1−m×u1). Using the

evaluation representation of the level 1 generators, the K−matrix can be obtained

from the boundary intertwining relation (1.7.13)

ρu(Ĵ
m+a,m−b)K(u) = K(u)ρ−u(Ĵ

m+a,m−b) (2.9.5)

Solving this relation, one finds:

K(u) = ν(u)diag(1m,−1n−m−1, n(u)) (2.9.6)

where ν(u) is some prefactor such that ν(θ)ν(−θ) = 1, 1m is a sequence of m 1’s

and n(θ) is an arbitrary element of the K−matrix at the (n, n) entry due to the u1

symmetry. This element is not fixed by the Y(sun−1), and hence we need to check

the RE to obtain it. In the form

R(u−v)(K(u)⊗1n)R(u+v)(1n⊗K(v)) = (1n⊗K(v))R(u+v)(K(u)⊗1n)R(u−v),

(2.9.7)

this imposes n(u) = −1. Hence K(u) = ν(u)diag(1m,−1n−m) which agrees with

[53].
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Chapter 3

Folding a spin chain

The boundary QISM [61] contains an implicit idea of “folding”. As we have seen,

it begins with YBE and REs and their associated R- and K-matrices, and uses the

latter to construct a boundary transfer matrix from its bulk parent. This process

contains an implied folding of the infinite line (or chain) back on itself to create a

half-line, and thereby a boundary-integrable model on this half-line. This folding

is only rarely made explicit in the literature [138].

However, this process can be difficult to implement in explicit cases. It does not

begin with the Hamiltonian but rather extracts it, together with other conserved

quantities and symmetries, from the transfer matrix. If we instead begin with a

bulk Hamiltonian and wish to discover integrable boundaries and their symmetries,

a different, “bottom-up” procedure is needed. This procedure, which we refer to as

“folding”, is a map denoted by f (and f in the double-row case – see below) which

sends the spin operators and conserved charges of a model defined on an infinite

chain to those defined on a semi-infinite chain. The purpose of this Chapter is to

detail this procedure and apply it first to a classic and then to an overarching new

case.

We begin with the elementary examples of the classic Heisenberg spin chain

and a “double-row” model of two Heisenberg spin chains uncoupled except by

the boundary. The latter is motivated by a similar structure which emerges in

AdS/CFT [135] and also serves as a toy model for the open Hubbard chain with

an achiral boundary [89]. We then go on to construct integrable boundaries for the

Inozemtsev long-range infinite spin chain [139] and its doubling. In each case we

emphasize the Yangian symmetry of the bulk model, and from it derive a twisted

Yangian symmetry of the model with an integrable boundary.

The Heisenberg and Inozemtsev spin chains are the natural choices to work with.

The former is the most famous, prototypical spin chain in the physics literature.

It allows us to check that the results obtained in this paper are in agreement

with well-known ones, and also introduces the reader to our procedure through

a relatively simple example.
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Chapter 3. Folding a spin chain

The Inozemtsev chain, by contrast, is less well-known, but may be the more

fundamental. All famous sl2 spin chains are limiting cases of it (see Section 3.3).

It also possesses striking thermodynamic properties of its own [140]. But most

importantly for modern fundamental physics, it appears in the context of AdS/CFT

– in particular, the expression for the dilatation operator of N = 4 SYM in the

planar limit coincides with its conserved charges up to three loops [141, 142].

The main motivation for our folding procedure is that, to construct integrable

boundaries for long-range spin chains like Inozemtsev’s, one cannot use the REs in

the usual way and must instead rely on Dunkl operators [143, 144]. This is where

our bottom-up approach becomes useful: starting with a long-range Hamiltonian

defined on the infinite line, our folding procedure allows us to systematically construct

integrable boundaries without the explicit use of a monodromy matrix.

This Chapter is organized as follows. In Section 3.1 we set up the chain and explain

its folding. In Section 3.2 we study folding of the infinite Heisenberg spin chain. In

Section 3.3 we review the basics of Inoztemsev’s spin chain. The methods obtained

are then used in Section 3.4 to fold an Inozemtsev hyperbolic spin chain. Section

3.5 contains concluding remarks and a discussion of relevant open questions.

Most of the results presented were computed using the Wolfram Mathematica

computer algebra system. For readers’ convenience we have detailed explicitly

some of the computations that explain the folding of the Hamiltonian and Yangian

operators.

3.1 The folding procedure

Fix L ∈ N and consider a one-dimensional lattice with 2L sites that can be occupied

by spin-1/2 particles. Each lattice site is identified with a two-dimensional vector

space Vi ∼= C
2 spanned by vectors

Vi = span
C
{ |↑〉i , |↓〉i}, (3.1.1)

where −L < i ≤ L is the index of the site in the lattice. The entire lattice is the

2L-fold tensor product V :=
⊗
−L<i≤L Vi.

To describe dynamics of such a lattice, we employ spin operators σ+
i , σ−i , σzi and

the identity operator σ0
i that satisfy the usual (anti-)commutation relations (1.3.12)

We require that, for i 6= j, the operators act on the states as (1.4.10).

The σai provide a unitary representation of the universal envelope U(sl2) of the sl2
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3.1. The folding procedure

(a)
−L+1−L+2−1 0 1 2 L−1L −L+1−L+2−1 0

f

(b)

−L+1−L+2−1 0 1 2 L−1L

−L+1−L+2−1 0

f

Figure 3.1: Folding: (a) Single-row lattice, (b) Double-row lattice.

Lie algebra

ρL : Q±0 7→
∑
−L<i≤L

σ±i , Qz
0 7→

∑
−L<i≤L

σzi , (3.1.2)

whereQ±0 , Qz
0 are the standard generators of the sl2 Lie algebra satisfying [Q+

0 , Q
−
0 ] =

Qz
0 and [Qz

0, Q
±
0 ] = ±2Q±0 . The map (3.1.2) together with (1.4.10) turns the vector

space V into a left U(sl2)-module.

Folding. We fold the lattice by identifying sites labelled by indices 1 ≤ i ≤ L with

those labelled by 1− i as shown in Figure 3.1 (a). We say that the lattice is folded

over a link.

Let us explain how the folding acts on the matrices σai . Recall from the fundamental

representation of σai that

σ±i σ
z
i = ∓σ±i , σzi σ

±
i = ±σ±i , σzi σ

z
i = σ0

i ,

σ±i σ
±
i = 0, σ±i σ

∓
i = 1

2
(σ0

i ± σzi ),

which imply that any polynomial in σai can be written as a linear combinations of

monomials ∏
−L<i≤L

σaii with ai ∈ {±, z, 0}, (3.1.3)

or in other words the monomials (3.1.3) provide a vector space basis of ΣL =

{σ0
i , σ

a
i : a ∈ {±, z}, −L < i ≤ L 〉 over the field of complex numbers C. Note that

elements of Σ are also elements of EndV ; the element
∏
−L<i≤L σ

0
i is the identity

map. Set Σ−L = {σ0
i , σ

a
i : a ∈ {±, z}, −L < i ≤ 0 〉. We define the multiplicative

folding f : ΣL → Σ−L acting on monomials (3.1.3) by

f :
∏

−L<i≤L

σaii 7→
∏

−L<i≤0

kaia1−i σaii σ
a1−i
i , (3.1.4)
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Chapter 3. Folding a spin chain

where kaia1−i ∈ C are model-dependent folding constants that will be specified in

the examples studied below.

3.2 Integrable boundaries of the Heisenberg spin chain

It is well known that the Hamiltonian of the Heisenberg spin chain

HH = −J
∑
−L<i≤L

(
σ+
i σ
−
i+1 + σ−i σ

+
i+1 + 1

2
σzi σ

z
i+1

)
(3.2.1)

commutes with the Lie operators E±0 = ρL(Q±0 ) and Ez0 = ρL(Qz
0). We say that the

Hamiltonian HH exhibits a U(sl2) Lie algebra symmetry. In previous Chapters,

we resctricted to only talking about sl2 as the symmetry of this model, but for the

folding procedure, we need to consider its universal envelope.

Let us recall from Section 1.5 that when the chain is infinitely long, i.e. L → ∞,

the Hamiltonian HH for J < 0 additionally exhibits a Yangian symmetry. More

precisely, it commutes, up to terms at±∞ that may be neglected, with the operators

E′±1 = ±J
2

∑
i<j

σ±i σ
z
j , E′z1 = J

∑
i<j

σ+
i σ
−
j ,

E′′±1 = ∓J
2

∑
i<j

σzi σ
±
j , E′′z1 = −J

∑
i<j

σ−i σ
+
j ,

(3.2.2)

which, combined to

E±1 = E′±1 + E′′±1 , Ez1 = E′z1 + E′′z1 , (3.2.3)

satisfy the defining relations of the Yangian Y(sl2) (1.7.6).

Magnetic boundary. Let us now focus on the antiferromagnetic, semi-infinite

Heisenberg spin chain with a boundary magnetic field from Section 1.7 [145]

HH
µ = (HH) + µσz0, J < 0, (3.2.4)

and recall that the presence of the boundary term in (3.2.4) breaks the Y(sl2)

Yangian symmetry down to the Y(sl2, u1) twisted Yangian. In particular, the

Hamiltonian HH
µ commutes with (Ez0) and, up to terms at −∞ that can be

neglected in this regime, with twisted Yangian operators X± defined by [146, 147]

X± = (E±1 ) ± J
2
(E±0 ) (Ez0) + J

2

(
1∓ J

µ

)
(E±0 ) , (3.2.5)
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3.2. Integrable boundaries of the Heisenberg spin chain

that are elements in Σ∞ and satisfy the defining relations of Y(sl2, u1) (1.7.6). It is

worth noting that the operators

X′± = (E′±1 ) ∓ J2

4µ
(E±0 ) ,

X′′± = (E′′±1 ) ± J
2
(E±0 ) (Ez0) + J

2

(
1∓ J

2µ

)
(E±0 ) ,

(3.2.6)

satisfying X± = X′± + X′′±, are also symmetries of the antiferromagnetic HH
µ upon

neglecting terms at −∞. They can be viewed as analogues of the symmetries (3.2.2)

of HH .

Our goal is to demonstrate the method of obtaining the Hamiltonian HH
µ from

HH and twisted Yangian operators (3.2.5) from those in (3.2.3) by employing the

folding (3.1.4). The first step is to impose the following constraints on the folding

constants:

k±0 = −k0± = kz0 = k0z = 1, k±z = kz±, (3.2.7)

which ensure that Lie symmetries of HH are projected to those of HH
µ . Recall

that U(sl2), as a vector space, is linearly spanned by the monomials f lhmen with

l,m, n ∈ Z≥0. Thus we must make sure that any monomial (E−0 )l(Ez0)m(E+
0 )n for

any l,m, n ∈ Z≥0, each being a symmetry of HH , is folded into a symmetry of HH
µ ,

which exhibits a U(u1) ⊂ U(sl2) symmetry only. The first constraint in (3.2.7)

yields

f(E±0 ) = f(
∑
i

σ±i ) = (k±0 + k0±)
∑
i≤0

σ±i = 0,

f(Ez0) = f(
∑
i

σ±i ) = (kz0 + k0z)
∑
i≤0

σzi = 2
∑
i≤0

σzi = 2(Ez0) ,

while the second constraint in (3.2.7) additionally ensures that any monomial (E−0 )l(Ez0)m(E+
0 )n

is folded into a symmetry of HH
µ . In particular, for any l,m, n ∈ Z≥0, we have that

f((E−0 )l(Ez0)m(E+
0 )n) = δln

∑
0≤r≤l+m

cr ((Ez0) )r

for some cr ∈ C. Note that k±± do not play a role in the folding, since σ±i σ
±
i = 0.

We also set kzz = 1, so that f(ρL((Qz
0)l)) = f(ρL((Qz

0)m))f(ρL((Qz
0)n)) for any

l,m, n ∈ Z+ satisfying l = m + n. (We will comment on this property in Section

3.5).

Next, using (3.2.7) and splitting the sum
∑

i into three terms as
∑

i =
∑

i<0 +δi0+
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Chapter 3. Folding a spin chain

∑
i>0, we fold the Hamiltonian HH of the infinite chain:

f(HH) =

= −J

(∑
i<0

(
k+0k−0(σ+

i σ
−
i+1 + σ−i σ

+
i+1) + 1

2
(kz0)2σzi σ

z
i+1

)
+ k+−σ+

0 σ
−
0 + k−+σ−0 σ

+
0 + 1

2
kzzσz0σ

z
0

+
∑
i>0

(
k0+k0−(σ+

1−iσ
−
−i + σ−1−iσ

+
−i) + 1

2
(k0z)2σz1−iσ

z
−i
))

= 2(HH) − J
2

(
(k+− − k−+)σz0 + (1 + k+− + k−+)

)
. (3.2.8)

Choosing k−+ − k+− = 4µ
J

we have that f(HH) = 2HH
µ up to a constant term.

In order to fold the Yangian operators (3.2.3) we first split the sum
∑

i<j into four

terms ∑
i<j≤0 +δi+j 6=1

∑
i≤0<j +δi+j=1

∑
i≤0<j +

∑
0<i<j . (3.2.9)

By doing so for (3.2.3) and folding each sum individually we find

f(Ez1) = J

( ∑
i<j≤0

(
k+0k−0σ+

i σ
−
j − k−0k+0σ−i σ

+
j

)
+ k0−((E+

0 ) (E−0 ) −
∑
i≤0

σ+
i σ
−
i

)
− k0+

(
(E−0 ) (E+

0 ) −
∑
i≤0

σ−i σ
+
i

)
+
∑
i≤0

(
k+−σ+

i σ
−
i − k−+σ−i σ

+
i

)
+
∑

0<i<j

(
k0+k0−σ+

1−iσ
−
1−j − k0−k0+σ−1−iσ

+
1−j
))

= J
2
L(k−+ − k+−)− J

2
(k+− + k−+)(Ez0) , (3.2.10)
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3.2. Integrable boundaries of the Heisenberg spin chain

which commutes with f(HH); and

f(E±1 ) = ±J
2

( ∑
i<j≤0

(
k±0kz0σ±i σ

z
j − kz0k±0σzi σ

±
j

)
+ k0z

(
(E±0 ) (Ez0) −

∑
i≤0

σ±i σ
z
i

)
− k0±((Ez0) (E±0 ) −

∑
i≤0

σzi σ
±
i

)
+
∑
i≤0

(
k±zσ±i σ

z
i − kz±σzi σ±i

)
+
∑

0<i<j

(
k0±k0zσ±1−iσ

z
1−j − k0zk0±σz1−iσ

±
1−j
))

= 2
(
(E±1 ) ± J

2
(E±0 ) (Ez0) + J

2
(1− kz±)(E±0 )

)
, (3.2.11)

which commute with f(HH), up to the terms at infinity, only if

kz± = ∓ 4

k+− − k−+
= ±J

µ
, (3.2.12)

in which case we obtain f(E±1 ) = 2X±, as expected. We also have that f(E′±1 ) = 2X′±

and f(E′′±1 ) = 2X′′±, so that the summetries (3.2.2) of HH are folded into the

symmetries (3.2.6) of (HH) . Thus we have demonstrated that with a suitable

choice of the folding constants, which were deduced from the symmetry arguments,

the Hamiltonian HH of the infinite spin chain and its symmetries can be folded into

the Hamiltonian HH
µ of a semi-infinite spin chain with a magnetic boundary and

its symmetries.

In the remaining parts of this Section we will demonstrate how to obtain the

semi-infinite spin chain with a free boundary and a semi-infinite double-row spin

chain with a achiral boundary. The obtained results will then be used in Section 3.4

to obtain the corresponding boundary models for the Inozemtsev hyperbolic spin

chain.

Free boundary. Setting the boundary magnetic field strength to µ = 0 in (3.2.4)

we obtain a semi-infinite spin chain with a free boundary, namely

HH
0 = (HH) . (3.2.13)

This Hamiltonian exhibits a U(sl2) symmetry by commuting with operators (E±0 )

and (Ez0) , but does not commute with those in (3.2.3) viewed as elements in Σ∞.
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Chapter 3. Folding a spin chain

This is the same situation as in the free boundary of the Hubbard model in Section

2.7. In a similar fashion, upon defining higher-order Yangian operators

E±2 = ±1
2
[Ez1,E

±
1 ], Ez2 = [E+

1 ,E
−
1 ] (3.2.14)

the Hamiltonian HH
0 commutes, up to the terms at −∞ which may be neglected in

the antiferromagnetic regime, with the operators1

Gz = (Ez2) − J
(
(E+

1 ) (E−0 ) − (E+
0 ) (E−1 )

)
− J2

4
(Ez0) ,

G± = (E±2 ) ∓ J
2

(
(Ez1) (E±0 ) − (Ez0) (E±1 )

)
− J2

4
(E±0 ) ,

(3.2.15)

instead, that, together with (E±0 ) and (Ez0) , satisfy the defining relations of the

Y(sl2, sl2) twisted Yangian (2.8.2). To see how these twisted Yangian yields a

solution to the RE, see [68].

We now use the folding to obtain the Hamiltonian HH
0 and its symmetries (Ea0)

and Ga with a ∈ {±, z}. Since the model exhibits a U(sl2) symmetry it is natural

to choose kab = 1 for all a, b ∈ {±, z, 0}. This gives

f(E±0 ) = f(
∑
i

σ±i ) = (k±0 + k0±)
∑
i≤0

σ±i = 2
∑
i≤0

σ±i = 2(E±0 ) ,

f(Ez0) = f(
∑
i

σ±i ) = (kz0 + k0z)
∑
i≤0

σzi = 2
∑
i≤0

σzi = 2(Ez0) .

In a similar way one can check that with this choice of folding constants any

monomial (E−0 )l(Ez0)m(E+
0 )n for any l,m, n ∈ Z≥0 is folded into a symmetry of HH

0 .

By folding the Hamiltonian HH we get

f(HH) = 2(HH) − J
(
σ+

0 σ
−
0 + σ−0 σ

+
0 + 1

2
σz0σ

z
0

)
, (3.2.16)

which equals 2(HH) − 3
2
J and thus agrees with (3.2.13) up to the constant term.

Folding Yangian operators (3.2.3) we find f(Ea1) = −J(Ea0) , which can be easily

deduced from (3.2.10) and (3.2.11), and is in agreement with the fact that the

Y(sl2, sl2) twisted Yangian has elements of even grading only. Finally, we want

to obtain the operators (3.2.15). By folding the higher-order Yangian operators

(3.2.14) we obtain symmetries of HH
0 : folded operators f(E±2 ) and f(Ez2) commute

with HH
0 , upon neglecting terms at −∞ in the antiferromagnetic regime. However,

the obtained operators do not coincide with those in (3.2.15). It turns out that we

1It seems likely that these symmetries were observed before; however, we have been unable to
locate them in the literature available to us.
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3.2. Integrable boundaries of the Heisenberg spin chain

need to fold the following operators

Ẽ+
2 = E+

2 + 1
3

(
[E′z1 ,E

′′+
1 ] + [E′′z1 ,E

′+
1 ]
)

+ J2

3

(
E+

0 E
−
0 E

+
0 − 9

4
E+

0

)
,

Ẽ−2 = E−2 − 1
3

(
[E′z1 ,E

′−
1 ] + [E′′z1 ,E

′′−
1 ]
)

+ J2

3

(
E−0 E

+
0 E
−
0 − 9

4
E−0
)
,

Ẽz2 = Ez2 + 2
3

(
[E′+1 ,E

′−
1 ] + [E′′+1 ,E′′−1 ]

)
+ J2

6

(
(Ez0)3 − 7

2
Ez0
)
, (3.2.17)

instead. The additional terms in the expressions above are symmetries of HH
o and

are tailored in such a way that the operators Ẽ±2 and Ẽz2 fold precisely to those in

(3.2.15), up to an overall scalar factor,

f(Ẽ±2 ) = 8
3
G±, f(Ẽz2) = 8

3
Gz. (3.2.18)

The explicit form of computations in (3.2.18) is very similar to those presented in

(3.2.10) and (3.2.11), only the expressions are much more lengthy; thus we have

not written them out explicitly. It will be shown in Section 3.4 that long-range

analogues of Ẽ±2 and Ẽz2 fold into twisted Yangian symmetries of the long-range free

boundary model.

As the final remark, we note that the free boundary model also exhibits a number of

additional symmetries in the antiferromagnetic regime that are obtained by folding

quadratic combinations of the operators in (3.2.2).

Double-row chain with an achiral boundary. Our third example of an integrable

boundary model arises in the context of the double-row model consisting of two

uncoupled Heisenberg spin chains. The energy transport in the anisotropic version

of this model was studied in [149]. The Hamiltonian is given by

(HH)◦• = −J
∑
α=◦,•

∑
−L<i≤L

(
σ+
iασ
−
i+1,α + σ−iασ

+
i+1,α + 1

2
σziασ

z
i+1,α

)
, J < 0. (3.2.19)

In the L → ∞ limit taken over the antiferromagnetic vacuum this model exhibits

a Y◦(sl2) ⊗ Y•(sl2) ∼= Y(so4) symmetry expressed in terms of the Lie operators

Ea0α and Ea1α with a ∈ {±, z} and α ∈ {◦, •} that are the natural analogues of Ea0

and Ea1 for the double-row model. This resembles the case of the Hubbard model

with an achiral boundary from Section 2.6. As in the latter, we introduce linear

combinations of Lie operators

Aa
n = Ean,◦ + Ean,•, Ba

n = Ean,◦ − Ean,• (3.2.20)
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Chapter 3. Folding a spin chain

for all a ∈ {±, z} and n ∈ {0, 1}. Then the semi-infinite double-row Hamiltonian

with a achiral boundary

HH
∆ = (HH

◦•) − J
(
σ+

0,◦σ
−
0,• + σ−0,◦σ

+
0,• + 1

2
σz0,◦σ

z
0,•
)
, J < 0 (3.2.21)

exhibits a diagonal U(sl∆2 ) ⊂ U(sl◦2)⊗U(sl•2) symmetry; it commutes with operators

(Aa
0) only. The boundary term couples the two, otherwise uncoupled, spin-chains

and can be viewed as a permutation operator; a similar boundary in the context of

the Hubbard model was studied in [89]. Moreover, the double-row model with an

achiral boundary can also be viewed as an infinite spin-chain with a defect located

at the middle of the chain.

The Hamiltonian HH
∆ additionally commutes, up to the terms at −∞ which may

be neglected in the antiferromagnetic regime, with the twisted Yangian operators

Y± = (B±1 ) ± J
4
((B±0 ) (Az

0) − (A±0 ) (Bz
0) ),

Yz = (Bz
1) − J

2
((B+

0 ) (A−0 ) − (A+
0 ) (B−0 ) )

(3.2.22)

that, together with (Aa
0) , satisfy the defining relations of the mcY (so4, sl

∆
2 ) twisted

Yangian (2.7.2).

As for the free boundary case, we set kab = 1 for all a, b ∈ {±, z, 0}. Then a

straightforward computation shows that the folding f acts on the operators defined

in (3.2.20) by

f(Aa
0) = 2(Aa

0) , f(Ba
0) = 0,

and on the Hamiltonian (3.2.19) by

f(HH
◦•) =

= −J
∑
α=◦,•

∑
i<0

(
σ+
i,ασ

−
i+1,α + σ−i,ασ

+
i+1,α + 1

2
σzi,ασ

z
i+1,α

)
− 2J

(
σ+

0,◦σ
−
0,• + σ−0,◦σ

+
0,• + 1

2
σz0,◦σ

z
0,•
)

− J
∑
α=◦,•

∑
i<0

(
σ+

1−i,ασ
−
−i,α + σ−1−i,ασ

+
−i,α + 1

2
σz1−i,ασ

z
−i,α
)

= 2(HH
◦•) − 2J

(
σ+

0,◦σ
−
0,• + σ−0,◦σ

+
0,• + 1

2
σz0,◦σ

z
0,•
)
,

thus exactly reproducing (3.2.21).

Applying the folding to the operators Ba
1 we recover the ones defined in (3.2.22).
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3.2. Integrable boundaries of the Heisenberg spin chain

In particular

f(B±1 ) = ±J
2

( ∑
i<j≤0

(σ±i,◦σ
z
j,◦ − σzi,◦σ±j,◦ − σ±i,•σzj,• + σzi,•σ

±
j,•)

+ 2
(
(E±0,◦) (Ez0,•) − (E±0,•) (Ez0,◦)

−
∑
i≤0

(σzi,•σ
±
i,◦ − σzi,◦σ±i,•)

)
+ 2

∑
i≤0

(σ±i,◦σ
z
i,• − σ±i,•σzi,◦)

+
∑
α=◦,•

∑
0<i<j

(σ±1−i,ασ
z
1−j,α − σz1−i,ασ±1−j,α)

)
= 2B±1 ± J

(
(E±0,◦) (Ez0,•) − (E±0,•) (Ez0,◦)

)
= 2Y±

and

f(Bz
1) = J

( ∑
i<j≤0

(σ+
i,◦σ

−
j,◦ − σ−i,◦σ+

j,◦ − σ+
i,•σ

−
j,• + σ−i,•σ

+
j,•)

+ 2
(
(E+

0,◦) (E−0,•) − (E+
0,•) (E−0,◦)

−
∑
i≤0

(σ−i,•σ
+
i,◦ − σ−i,◦σ+

i,•)
)

+ 2
∑
i≤0

(σ+
i,◦σ

−
i,• − σ+

i,•σ
−
i,◦)

+
∑
α=◦,•

∑
0<i<j

(σ+
1−i,ασ

−
1−j,α − σ−1−i,ασ+

1−j,α)
)

= 2Bz
1 − 2J

(
(E+

0,◦) (E−0,•) − (E+
0,•) (E−0,◦)

)
= 2Yz.

Repeating the same steps for Aa
1 we find

f(A±1 ) = f(Az
1) = 0, (3.2.23)

as expected. We conclude this Section with a remark that the antiferromagnetic

double-row model on the infinite interval also exhibits additional symmetries that

are natural analogues of those in (3.2.2).
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Chapter 3. Folding a spin chain

3.3 Inozemtsev’s spin chain

Infinite chain. The Inozemtsev elliptic spin chain is the long-range analogue of

the Heisenberg spin chain with Hamiltonian

Hκ = −J
2

∑
−L<i,j≤L

i 6=j

℘L(i− j)
(
σ+
i σ
−
j + σ−i σ

+
j + 1

2
σzi σ

z
j

)
, (3.3.1)

where ℘L is the Weierstraß elliptic function with periods L and iπ/κ for κ ∈
R≥0. This model exhibits a U(sl2) symmetry identical to its nearest-neighbour

counterpart. By taking an appropriate limit of the parameter κ and the length L this

model specializes to the Haldane-Shastry, Heisenberg and Inozemtsev hyperbolic

(also called “infinite”) spin chain. To see this, we need to rescale the hopping

matrix of (3.3.1)

℘̂L(z) :=
sinh2(κ)

κ2

(
℘L(z) +

2κ

iπ
ζL

( iπ

2κ

))
, (3.3.2)

where ζL is the Weierstraß ζ-function with quasiperiods L and iπ/κ. In the κ→∞
limit one has

lim
κ→∞

℘̂L(z) = δz mod L,1, (3.3.3)

which recovers the Heisenberg spin chain [148]. One can also take the κ→ 0 limit

to obtain the Haldane-Shastry hopping matrix [150]:

lim
κ→0

℘̂L(z) =
π2

L2 sin2(πz/L)
. (3.3.4)

The limit we are interested in is when the length of the chain becomes infinite [140].

In this case,

pz := lim
L→∞

℘̂L(z) =
sinh2(κ)

sinh2(κz)
(3.3.5)

and, in the antiferromagnetic regime (J < 0), the U(sl2) symmetry can be enhanced

to the Y(sl2) Yangian by introducing the operators

E±κ,1 = ±J
2

∑
i,j

wi−jσ
±
i σ

z
j , Ezκ,1 = J

∑
i,j

wi−jσ
−
i σ

+
j , (3.3.6)

where wz = − coth(κz) when z 6= 0 and w0 = 0. These operators commute with

the Hamiltonian, up to the terms at ±∞ which may be neglected in this regime,

84



3.4. Integrable boundaries of Inozemtsev’s hyperbolic spin chain

and satisfy the defining relations of the Y(sl2) Yangian.

The Hamiltonian also commutes, in this way, with operators E′aκ,1 and E′′aκ,1 defined

analogously to Eaκ,1,

w′z =
e−κz

e−κz − eκz
and w′′z =

eκz

e−κz − eκz

respectively. We also set w′0 = w′′0 = 0, so that wz = w′z + w′′z . These operators are

the long-range analogues of those in (3.2.2). In particular,

lim
κ→∞

w′z = δz<0, lim
κ→∞

w′′z = −δz>0.

In the remaining part of this Section we will use foldings f and f studied in

Section 3.3 to obtain integrable long-range boundary Hamiltonians and operators

that commute with them. From now on, Hκ will denote

Hκ = −J
2

∑
i 6=j

pi−j
(
σ+
i σ
−
j + σ−i σ

+
j + 1

2
σzi σ

z
j

)
, (3.3.7)

so that lim
κ→∞

Hκ = HH when L→∞ . It is worth noting that the Haldane-Shastry

model on the circle also exhibits a Y(sl2) Yangian symmetry [151] and thus the

folding could be applied to its Hamiltonian to obtain integrable boundary long-range

Hamiltonians on a segment. Symmetries of the latter model using the transfer

matrix techniques were studied in [143].

3.4 Integrable boundaries of Inozemtsev’s hyperbolic

spin chain

Magnetic boundary. Our goal is to construct a long-range analogue of the Hamiltonian

(3.2.4), which exhibits a Y(sl2, u1) twisted Yangian symmetry. We will achieve this

by applying the folding f to Hκ and setting folding constants to the same values as

for the semi-infinite Heisenberg spin chain with magnetic boundary, i.e. those given

by (3.2.7) and

kzz = 1, k−+ − k+− = 4µ
J
, k±z = kz± = ±J

µ
. (3.4.1)

To avoid repetition, let us assume that the model is in the antiferromagnetic regime

(J < 0) for the rest of this chapter due to the reasons stated at the end of Sections

1.5 and 1.7 - it allows us to neglect boundary terms at ±∞ that may appear as a
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Chapter 3. Folding a spin chain

result of commutators. Introduce the operators

Hκ =J
2

∑
i 6=j
i,j≤0

pi+j−1

(
σ+
i σ
−
j + σ−i σ

+
j + 1

2
σzi σ

z
j

)
, (3.4.2)

Mµ
κ =− J

2

∑
i 6=j
i,j≤0

pi+j−1σ
z
i σ

z
j + µ

∑
i≤0

p2i−1σ
z
i , (3.4.3)

satisfying lim
κ→∞

(Hκ) = 0 and lim
κ→∞

Mκ
µ = µσz0. Then similar computations to those

in (3.2.8) yield

f(Hκ) = 2((Hκ) + (Hκ) + Mκ
µ) + J

2
(1 + k+− + k−+)

∑
i≤0

p2i−1. (3.4.4)

Let us explain the meaning of operators listed above: (Hκ) is the Hamiltonian

(3.3.7) restricted to a half-line, (Hκ) is the free boundary operator describing the

long-range interaction between the sites labelled i and j via the boundary, i.e. at

the distance i + j − 1, and Mκ
µ is the the long-range magnetic boundary operator;

for both (Hκ) and Mµ
κ their numerical values decay exponentially moving away

from the boundary. Hence, by neglecting the constant term in (3.4.4), we conclude

that

Hκ
µ := (Hκ) + (Hκ) + Mκ

µ (3.4.5)

is the Hamiltonian of the open Inozemtsev hyperbolic spin chain with a magnetic

boundary. It will be shown below that it is integrable, i.e. .exhibits a twisted

Yangian symmetry, only if µ = ±J .

We already know that f(Ea0) = 2δaz(E
a
0) , which remains the only Lie symmetry

of Hκ
µ. Under f , the operators (3.3.6) are mapped to

f(E±κ,1) =

= ±J
2

(∑
i,j≤0

k±0kz0wi−jσ
±
i σ

z
j +

∑
i,j>0

k0zk0±wi−jσ
±
1−iσ

z
1−j

+
∑

i≤0,j>0
i 6=1−j

k0zwi−jσ
±
i σ

z
1−j +

∑
j≤0,i>0
j 6=1−i

k0±wi−jσ
±
1−iσ

z
j

+
∑
i≤0

k±zw2i−1σ
±
i σ

z
i +

∑
i≤0

kz±w1−2iσ
z
i σ
±
i

)
= 2E±1 ± J

∑
i 6=j
i,j≤0

wi+j−1σ
±
i σ

z
j − J

2
(kz± + k±z)

∑
i≤0

w2i−1σ
±
i
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3.4. Integrable boundaries of Inozemtsev’s hyperbolic spin chain

and

f(Ezκ,1) =

= J

(∑
i,j≤0

k+0k−0wi−jσ
+
i σ
−
j +

∑
i,j>0

k0−k0+wi−jσ
+
1−iσ

−
1−j

+
∑

i≤0,j>0
i 6=1−j

k0−wi−jσ
+
i σ
−
1−j +

∑
j≤0,i>0
j 6=1−i

k0+wi−jσ
+
1−iσ

−
j

+
∑
i≤0

k+−w2i−1σ
+
i σ
−
i +

∑
i≤0

k−+w1−2iσ
−
i σ

+
i

)
= −J

2
(k+− + k−+)

∑
i≤0

w2i−1σ
z
i − J

2
(k+− − k−+)

∑
i≤0

w2i−1.

The folded operators f(E±κ,1) satisfy the defining relations of the Y(sl2, u1) twisted

Yangian provided (3.4.1) holds. It remains to verify if they are symmetries of Hκ
µ.

It is straightforward to see that [Hκ
µ, f(Ezκ,1)] = 0 . By computing the commutator

[Hκ
µ, f(E±κ,1)] we find that it equals to zero over the antiferromagnetic vacuum in

the limit as the left side of the chain goes to −∞ only and provided (3.2.7) and the

following constraints hold:

k+− = −k−+ = ±2, kz− = −kz+ = ∓1
2
. (3.4.6)

In other words, f(Eaκ,1) are symmetries of Hκ
µ only if µ = ±J and J < 0, thus

implying the aforementioned integrability condition for the long-range Hamiltonian

Hκ
µ. In particular, its twisted Yangian symmetries are

X±κ = (E±κ,1) ± J
2

∑
i 6=j
i,j≤0

wi+j−1σ
±
i σ

z
j ± J2

2µ

∑
i≤0

w2i−1σ
±
i , (3.4.7)

with µ = J or µ = −J the two cases being related to each other via the Lie algebra

automorphism θ : σ± 7→ σ∓, σz 7→ −σz. This automorphism leaves the Hamiltonian

Hκ (and (Hκ) , (Hκ) ) invariant, but maps HJ
κ to H−Jκ and X±κ to X∓κ .

We conclude this Section with two remarks. First, by applying the same folding

procedure to the symmetries E′±κ,1 and E′′±κ,1 of Hκ we obtain operators X′±κ = f(E′±κ,1)

and X′′±κ = f(E′′±κ,1) that are symmetries of Hµ
κ in the antiferromagnetic regime

provided (3.4.6) holds. They are long-range analogues of the operators (3.2.6).

Second, assuming that µ ∈ C is arbitrary and taking the κ → ∞ limit, operators

X±κ and X′±κ , X′′±κ specialize to their nearest-neighbour counterparts given in (3.2.5)

and (3.2.6).
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Chapter 3. Folding a spin chain

Free boundary. We want to construct a long-range analogue of the Hamiltonian

(3.2.13), which exhibits a Y(sl2, sl2) twisted Yangian symmetry. We will achieve

this by applying the folding f with kab = 1 to Hκ. In particular, we find that

f(Hκ) = 2((Hκ) + Hκ)− 3
2
J
∑
i≤0

p2i−1, (3.4.8)

which, after dropping the constant term, is the free boundary Hamiltonian as

expected from (3.4.4).

To obtain twisted Yangian symmetries of the long-range free boundary model we

need to fold the long-range analogues of the operators (3.2.17):

Ẽ+
κ,2 = E+

κ,2 + 1
3

(
[E′zκ,2,E

′′+
κ,2] + [E′′zκ,2,E

′+
κ,2]
)

+ J2

3

(
E+

0 E
−
0 E

+
0 − 9

4
E+

0

)
,

Ẽ−κ,2 = E−κ,2 − 1
3

(
[E′zκ,2,E

′−
κ,2] + [E′′zκ,2,E

′′−
κ,2]
)

+ J2

3

(
E−0 E

+
0 E
−
0 − 9

4
E−0
)
,

Ẽzκ,2 = Ezκ,2 + 2
3

(
[E′+κ,2,E

′−
κ,2] + [E′′+κ,2,E

′′−
κ,2]
)

+ J2

6

(
(Ez0)3 − 7

2
Ez0
)
.

By doing so we find

f(Ẽ+
κ,2) = 16

3
(E±κ,2)

+ J2

3

∑
i,j,k

aijk
(
σzi σ

z
jσ
±
k + 4σ+

i σ
−
j σ
±
k

)
+ 2J2

3

∑
i,j

bijσ
±
i ,

f(Ẽzκ,2) = 16
3

(Ezκ,2)

+ J2

3

∑
i,j,k

aijk
(
σzi σ

z
jσ

z
k + 4σ+

i σ
−
j σ

z
k

)
+ 2J2

3

∑
i,j

bijσ
z
i ,

where

aijk = 2− wi−j(wj−k + wi+k−1 − wi−k − wj+k−1)

− wi+j−1(wi−k + wj−k + wi+k−1 + wj+k−1),

bij = 5 + w2
i−j −

1

4
w2

1−2i − wi+j−1(wi+j−1 − 4w1−2j)

− 2wi−j(wi+j−1 + 2w1−2j).

The operators Gaκ = 3
8
f(Ẽaκ,2) together with (Ea0) satisfy the defining relations of

the Y(sl2, sl2) twisted Yangian and commute with the Hamiltonian Hκ
0 = +(Hκ) ,

up to the terms at −∞ which may be neglected since we are working in the

antiferromagnetic regime.

We also have that lim
κ→∞

Gaκ = Ga and there are a number of additional symmetries

of Hκ
0 that are obtained by folding quadratic combinations of the symmetries E′aκ,1
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3.4. Integrable boundaries of Inozemtsev’s hyperbolic spin chain

and E′′aκ,1 of Hκ.

Double-row chain with a achiral boundary. Let us now focus on the model

consisting of two uncoupled Inozemtsev hyperbolic spin chains described by the

Hamiltonian

Hκ
◦• = −J

2

∑
α=◦,•

∑
i 6=j

pi−j
(
σ+
iασ
−
j,α + σ−iασ

+
jα + 1

2
σziασ

z
jα

)
(3.4.9)

as the double-row Heisenberg spin chain this model exhibits a Y(so4) Yangian

symmetry generated by the Lie operators Ea0α and the double-row analogues Eaκ1α

of the ones defined in (3.3.6).

We use the folding f with kab = 1 to obtain an integrable long-range analogue of

the Hamiltonian (3.2.19) exhibiting a Y(so4, sl
∆
2 ) twisted Yangian symmetry.

Introduce the operator

Dκ = −J
2

∑
α 6=β

α,β=◦,•

∑
i,j≤0

pi+j−1

(
σ+
iασ
−
jβ + σ−iασ

+
jβ + 1

2
σziασ

z
jβ

)
. (3.4.10)

Proceeding in a similar way as for the double-row Heisenberg spin chain we have

that

f(Hκ
◦•) = 2

(
(Hκ
◦•) + Dκ

)
.

The operator Dκ is the long-range achiral boundary operator for the semi-infinite

long-range double-row model; it can also be viewed as a double-row analogue of the

free boundary operator (Hκ) . In the κ→∞ limit Dκ specializes to the boundary

term in (3.2.21).

Next we fold the the long-range analogues of the operators (3.2.20). Similarly as

before we have that f(Aa
κ,1) = 0 and

f(B±κ,1) = 2(B±κ,1) ± J
∑
i,j≤0

wi+j−1(σ±i,◦σ
z
j,• − σ±j,•σzi,◦),

f(Bz
κ,1) = 2(Bz

κ,1) − 2J
∑
i,j≤0

wi+j−1(σ+
i,◦σ

−
j,• − σ+

j,•σ
−
i,◦).

The operators Yaκ,1 = 1
2
f(Ba

κ,1) together with Aa
0 satisfy the defining relations of the

Y∆(sl2) twisted Yangian and commute with the Hamiltonian Hκ
∆ = (Hκ

◦•) + Dκ

up to the terms at −∞, which may be neglected in the antiferromagnetic regime.

In the κ → ∞ limit Yaκ,1 specialize to those given in (3.2.22). We also remark
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Chapter 3. Folding a spin chain

that there exists a number of symmetries of Hκ
∆ that are obtained by folding the

double-row analogues of the operators E′aκ,1 and E′′aκ,1. These also specialize to those

of the double-row Heisenberg spin chain.
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Chapter 4

Conclusions and outlook

In this thesis we have explored the symmetries of integrable boundaries in the

Hubbard model, the Heisenberg spin chain and Inozemtsev’s hyperbolic long-range

spin chain. As stressed in [76] (p284), the boundary Hubbard model continues to

require a deeper understanding of its algebraic structure. In principle, this should

be deducible from the supersymmetric structures of AdS/CFT string worldsheet

scattering, but in the absence of this we hope to have provided a useful step

by constructing explicitly the twisted Yangian symmetry for the open Hubbard

model with integrable boundary conditions in the form of a magnetic field, chemical

potential, achiral boundary and free boundary. We found that the twisted grade-1

generators include a boundary field term not observed in similar constructions for

other models.

From the point of view of the intrinsic study of the Hubbard model, the construction

of these ‘modified’ twisted Yangians lays the foundation for extended study of the

boundary scattering and associated bound states. The latter have been analyzed

using the Bethe ansatz (see [76], Sect. 8.3), but the K-matrix has hitherto been

computable only via the RE [120], and any boundary bound state scattering would

have to be computed by fusion. With the boundary’s hidden charges now known,

the linear conservation equations may be used instead.

In the context of the richness of the Hubbard model’s connections with other

topics in theoretical physics, and especially in AdS/CFT, our construction provides

a spur to further work in various directions. First, the connections with the twisted

Yangian of the Y = 0 and Z = 0 maximal giant gravitons [119, 58], that of the

D5 brane [135] and the deformed Hubbard model [98, 60] should be understood.

Secondly, the mathematics of the connection with the boundary analogue of the

tetrahedron equation should be established [133]. Finally, it would be interesting

to search for similar constructions in related models [130, 131, 134].

We have also shown that the partial PHT plays a crucial role in relating the

integrable structure of the Hubbard model to that of the AdS5 × S5 superstring.

Furthermore, we have shown that a particle-hole reflection is an achiral boundary in
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the half-infinite Hubbard chain, and constructed its corresponding twisted Yangian

symmetry. It would be interesting to see if extended Hubbard chains – possessing

an arbitrary symmetry group [130] – or those with variable range hopping [134] can

give rise to interesting integrable boundary theories, and whether these have any

relation to other integrable structures in AdS/CFT.

We should also attempt to construct the K-matrices for the achiral and free

boundary using invariance under the twisted Yangians, as it was done in [119, 135].

As in the latter case, we expect the free boundary K-matrix to be a solution of

the ‘vector boundary reflection equation’ [68], where the boundary space does not

transform as a singlet of the algebra and the K-matrix has the form Kij(u) ∈
End(Vρi ⊗ Vρj).

Finally, we presented a method for constructing integrable boundaries for sl2-symmetric

spin chains and their doublings without relying on the reflection. This method,

which we refer to as “folding”, consists in a map denoted by f (and f in the

doubled case) which sends the operators of a model defined on the infinite line to

those on the half-line.

More precisely, given a Hamiltonian H of an infinite spin chain and a family

of operators {Qα}α∈I indexed by a set I and commuting with the Hamiltonian,

[H,Qα] = 0 for all α ∈ I in a particular regime where boundary terms at ±∞ may

be neglected, the folding identifies the positive half-line with the negative half-line

in such a way that, for a suitable choice of the “folding constants”, the folded

Hamiltonian f(H), which now describes a semi-infinite spin chain, commutes with

the folded operators, namely [f(H), f(Qα)] = 0 for all α ∈ I.

The choice of the folding constants is dictated by the symmetry properties of

the Hamiltonian H and the would-be symmetries of the folded Hamiltonian f(H).

Integrability is then ensured by the existence of an infinite number of conserved

quantities, i.e. operators commuting with the Hamiltonian in this regime and satisfying

the defining relations of an infinite-dimensional algebra [47]. In the case when the

Hamiltonian exhibits a Y(sl2) Yangian symmetry there are three non-equivalent

boundary integrable models that can be obtained: a spin chain with a magnetic

boundary, a spin chain with an free boundary, and a double-row model with a achiral

boundary. These models exhibit Y(sl2, u1), Y(sl2, sl2) and Y(so4, sl
∆
2 ) twisted Yangian

symmetries, respectively. For the Heisenberg spin chain the corresponding models

are well-studied. However, this is not the case for the Inozemtsev hyperbolic

spin chain. Integrable boundary Hamiltonians for the latter were constructed in

[143, 144] using the Dunkl operators and, although similar in form, the results

obtained in loc. cit. differ from ours. It remains to be shown whether folding
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can yield those boundary Hamiltonians and if they exhibit any twisted Yangian

symmetries. This is natural to expect, since Hamiltonians of such type were shown

to obey infinite dimensional symmetries [152, 153].

The method presented in Chapter 3 can be easily applied to any integrable spin

chains. Let g be any simple Lie algebra of rank(g) ≥ 2 and let Hg be a spin chain

Hamiltonian exhibiting Y(g) Yangian symmetry. Let θ : g → g be an involutive

automorphism of g. Denote by h = gθ the θ-fixed subalgebra, so that (g, h) is

a symmetric pair. For such a pair there exists an infinite dimensional algebra,

the Y(g, h) twisted Yangian, which is a coideal subalgebra of Y(g) [154, 66], and

there must exist a boundary-integrable spin chain exhibiting such a symmetry in a

particular regime where terms at −∞ may be neglected, which can be constructed

using the folding method. While this might be rather straightforward for spin

chains with nearest neighbor interactions only, since the boundary term for such

models in many cases is a symmetry breaking term exhibiting h-symmetry only,

this is no longer true for the long-range spin chains, as we have shown in Chapter

3. Moreover, obtaining long-range Hamiltonians using the techniques of the inverse

scattering method is a rather challenging task, as was shown in [143, 144]; thus the

“bottom-up” approach provides a short-cut for constructing such models.

It is important to note that the folding f is generally not an algebra homomorphism.

It can only be so if h is a commutative subalgebra of g. The only symmetric pair

satisfying this requirement is (g, h) = (sl2, u1), which we have studied in this letter.

In all other cases the map f is effectively a projector.

Another important thing to note is that folding is only a good method of constructing

boundary-integrable models if it is defined over a link. If we instead fold at a site,

symmetry arguments force the folding constants associated with that site to be zero,

thus effectively turning folding over a site into folding over a link.

We finish by noting that a very interesting subject for our folding method would be

the Hubbard model [76] and its long-range analogue [134]. It would be interesting

to see if one can gain further insight into the unusual structure of the Hubbard

model’s known integrable boundaries [89, 120, 121] and perhaps obtain new ones.
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Appendix A

Appendix to Chapter 1

A.1 Commutativity of boundary transfer matrices

We would like to show that the boundary transfer matrices for R-matrices that are

not of difference form, as given in Section 2.6, commute. Suppose R(u, u′) satisfies

the YBE, unitarity

R12(u1, u2)R21(u2, u1) = 1V⊗V (A.1.1)

and crossing unitarity

Rtr1
12 (u1,−u2)Rtr1

21 (−u2, u1) = ν121V⊗V (A.1.2)

for some scalar symmetric function ν12. Label the auxiliary spaces 1 and 2. Then

τB(u)τB(v) = tr1(K−1 (u1)T+
1 (u1))tr2(K−2 (u2)T+

2 (u2))

= tr1(K−1 (u1)trT+
1 (u1)tr)tr2(K−2 (u2)T+

2 (u2))

= tr12(K−1 (u1)trT+
1 (u1)trK−2 (u2)T+

2 (u2))

= tr12(K−2 (u2)K−1 (u1)trT+
1 (u1)trT+

2 (u2))

= tr12(K−2 (u2)K−1 (u1)tr(Rtr1
21 (−u2, u1))−1Rtr1

21 (−u2, u1)T+
1 (u1)trT+

2 (u2))

= tr12((K−2 (u2)K−1 (u1)tr(Rtr1
21 (−u2, u1))−1)tr1(Rtr1

21 (−u2, u1)T+
1 (u1)trT+

2 (u2))tr1)

= tr12(K−2 (u2)(Rtr1
21 (−u2, u1))−1)tr1K−1 (u1)T+

1 (u1)R21(−u2,−u1)T+
2 (u2))

= ν12tr12(K−2 (u2)R12(u1,−u2)K−1 (u1)T+
1 (u1)R21(−u2, u1)T+

2 (u2)) . . . (A.1.3)

Now if one inserts 1V⊗V = R21(−u2,−u1)R12(−u1,−u2) in between K1(u1) and

T+
1 (u1), uses both (1.6.7) and (1.6.12) and the cyclicity of the trace, one obtains

· · · = ν12tr12(K−1 (u1)R21(u2,−u1)K−2 (u2)T+
2 (u2)R12(−u1, u2)T+

1 (u1)) (A.1.4)

which is exactly (A.1.3) with 1 and 2 interchanged. This is just τB(v)τB(u), and

thus the boundary transfer matrices commute.
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B.1 Shastry’s R-matrix

Shastry’s R-matrix Rh(u, u′) is related to the fermionic R-matrix Rf (u, u′) as

follows (with exact same parametrisation as in [120])

Řh(u, u′) = W−1Řf (u, u′)W, (B.1.1)

where W is a diagonal 16× 16 matrix

W = diag(1, 1,−i,−i,−i,−i, 1, 1,−1,−1, i, i, i, i,−1,−1).

and

Rf (u, u′) =

r+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −ir+2 0 0 e 0 0 0 0 0 0 0 0 0 0 0

0 0 −ir+2 0 0 0 0 0 r5 0 0 0 0 0 0 0

0 0 0 −r+3 0 0 ir6 0 0 −ir6 0 0 r+4 0 0 0

0 e 0 0 ir−2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −r−1 0 0 0 0 0 0 0 0 0 0

0 0 0 ir6 0 0 c− 0 0 −r−4 0 0 −ir6 0 0 0

0 0 0 0 0 0 0 ir−2 0 0 0 0 0 e 0 0

0 0 e 0 0 0 0 0 ir−2 0 0 0 0 0 0 0

0 0 0 −ir6 0 0 −r−4 0 0 r−3 0 0 ir6 0 0 0

0 0 0 0 0 0 0 0 0 0 −r−1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ir−2 0 0 e 0

0 0 0 d+ 0 0 −ir6 0 0 ir6 0 0 −c+ 0 0 0

0 0 0 0 0 0 0 r5 0 0 0 0 0 −ir+2 0 0

0 0 0 0 0 0 0 0 0 0 0 e 0 0 −ir+2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r+1



,

(B.1.2)
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where

r±1 = cos2(u− u′)
{

1± tanh(h1 − h2)
cos(u+ u′)

cos(u− u′)

}
,

r±2 = sin(u− u′) cos(u− u′)
{

1± tanh(h1 − h2)
sin(u+ u′)

sin(u− u′)

}
= sin(u− u′) cos(u− u′)

{
1± tanh(h1 + h2)

cos(u+ u′)

cos(u− u′)

}
,

r±3 = sin2(u− u′)
{

1± tanh(h1 + h2)
sin(u+ u′)

sin(u− u′)

}
,

r±4 = 1± tanh(h1 − h2)
cos(u− u′)
cos(u+ u′)

,

= 1± tanh(h1 + h2)
sin(u− u′)
sin(u+ u′)

,

r5 =
cos(u− u′)

cosh(h1 − h2)
, r6 =

sin(u− u′)
cosh(h1 + h2)

. (B.1.3)

B.2 Obtaining µ± for Y(sl2, u1)
s

Let Ẽs
1 = Es

1 + µ+E
s
0 + α

2
Es

0H
s
0 − p Es0,0. We will obtain the value of µ+ and α for

which Ẽs
1 commutes with the Hamiltonian Hh

p ≡ −K + UV − pHs
0,0. (We already

know that α = U , since it is the constant which determines the strength of the

interaction, but we will see it arise naturally from this computation). The limit as

the left side of the chain tends to −∞ is taken over the antiferromagnetic vacuum

|vac〉 (2.2.11), so if the commutator results in boundary terms at −∞, we may

neglect them and set the result to zero. We divide the computation of the full

commutator into smaller components:

[−K + UV,Es
1] = −2Es0,0

[−K,−pEs0,0] = p(Es−1,1 − Es0,−1)

[−K,µ+E
s
0 +

α

2
Es

0H
s
0 ] = 0

[UV, µ+E
s
0 +

α

2
Es

0H
s
0 − pEs0,0] = 0

[−pHs
0,0, E

s
1] = −p((Es−1,1 − Es0,−1)− U(Es0,0 + Es0,0Hs

0))

[−pHs
0,0, µ+E

s
0 +

α

2
Es

0H
s
0 − pEs0,0] = −2p((−p+ µ+)Es0,0 +

α

2
Es0,0Hs

0)
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Hence, for [Hh
p , Ẽ

s
1] = 0,

α = U, µ+ =
U

2
+

(
p− 1

p

)
, (B.2.1)

so that Ẽs
1 = Es

1 + µ+E
s
0 − pEs0,0 + U

2
Es

0H
s
0 is a conserved charge. Similarly, for

F̃ s
1 = F s

1 + µ−F
s
0 − α

2
F s

0H
s
0 + pF s0,0 to commute with Hh

p , we require the same value

of α, and µ− = U
2
−
(
p− 1

p

)
.

B.3 Computation of Y(sl2, u1)
s coproducts

Rewrite Es
1 as

Es
1 =

∑
i≤0

(Esi−1,1 − Esi,−1) +
U

2

∑
i,j≤0

sgn(j − i)Esi,0Hs
j,0 (B.3.1)

The coproduct of the first sum is trivial but that of the second is not. However, we

can use a standard trick and, for any x ∈ Z + 1
2
, split such a sum into left (i < x

and j < x) and right (i > x and j > x) factors, interpreting these as left and right

factors of the coproduct accordingly. The boundary terms Es0,0 and F s0,0 therefore

appear in the right factor only. For the quadratic term,

∑
i,j≤0

sgn(j−i)Ei,0Hj,0 =

 ∑
ı<x≤0
j<x≤0

+
∑
x<i≤0
x<j≤0

 sgn(j−i)Ei,0Hj,0+
∑
i<x≤0
x<j≤0

Ei,0Hj,0−
∑
x<i≤0
j<x≤0

Ei,0Hj,0

Hence

∆

(∑
i,j

sgn(j − i)Esi,0Hs
j,0

)
=

∑
i,j≤0

sgn(j − i)Esi,0Hs
j,0 ⊗ 1 + 1⊗

∑
i,j≤0

sgn(j − i)Esi,0Hs
j,0

+ Es
0 ⊗Hs

0 −Hs
0 ⊗ Es

0 (B.3.2)

and finally,

∆Ẽs = ∆Es
1 +

U

2
∆Es

0∆Hs
0 + µ+∆Es

0 − p(1⊗ Es0,0)

= (Es
1 + µ+E

s
0)⊗ 1 + 1⊗ (Es

1 + µ+E
s
0 + pE0,0) +

U

2
(Es

0 ⊗Hs
0 −Hs

0 ⊗ Es
0)

+
U

2
(Es

0H
s
0 ⊗ 1 + 1⊗ Es

0H
s
0 + Es

0 ⊗Hs
0 +Hs

0 ⊗ Es
0)

= Ẽs ⊗ 1 + 1⊗ Ês + UEs
0 ⊗Hs

0 . (B.3.3)
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One obtains ∆F̃ s
1 similarly, by replacing (p, U, µ+) with (−p,−U, µ−) (without

changing the sign of U in µ−). We will check that ∆ is a preserves the Lie bracket

using the latter result:

[∆Hs
0 ,∆Ẽ

s
1] = [Hs

0 ⊗ 1 + 1⊗Hs
0 , (Ê

s
1 + µ+E

s
0)⊗ 1 + 1⊗ (Ês

1 + µ+E
s
0 − pEs0,0)− UE0 ⊗H0]

= ([Hs
0 , Ê

s
1] + µ+[Hs

0 , E
s
0])⊗ 1 + 1⊗ ([Hs

0 , Ê
s
1] + µ+[Hs

0 , E
s
0]− p[Hs

0 , Es0,0])

− U [Hs
0 , E

s
0]⊗Hs

0

= 2((Ês
1 + µ+E

s
0)⊗ 1 + 1⊗ (Ês

1 + µ+E
s
0 − pEs0,0))− 2Es

0 ⊗Hs
0

= 2∆Ẽs
1. (B.3.4)

B.4 Generators of Y(sl2, u1)
s satisfying the boundary

intertwining relation with the K-matrix

Take the K-matrix K+(u, p) (2.6.18). We have that combining the evaluation

representation with the 4× 4 representation ρh into a representation ρu

ρu(E
s
1) =


√

1 + U2

16
sin2 2u

tanu

 ρh(Es
0), ρu(Es0,0) =

(
1 +

1

tan2 u

)
ρh(Es

0). (B.4.1)

This is equivalent to the evaluation representation of the Yangian generators of

AdS/CFT R-matrix [43] upon setting

u =
p

4
, U = 16g. (B.4.2)

These satisfy the boundary intertwining relation (1.7.13) with the K-matrix,

K+(u, p)ρu(Ẽ
s
1) = ρ−u(Ẽ

s
1)K+(u, p) . (B.4.3)

To interpret the u = 0 pole of the p-dependent term, consider our original reason

for adding Es0,0 to the twisted Yangian generator: that the quadratic deformation in

terms of level 0 generators alone cannot not fix the commutativity of Es
1 with the

open Hubbard Hamiltonian,

[HH
p , E

s
1 +

U

2
Es

0H
s
0 ] = p[Es

1,H
H
p ] 6= 0 . (B.4.4)
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B.5. Y(so4, sl
∆
2 ) as a symmetry of Hh

o

But by adding −pEs0,0 to the generator one obtains

[HH
p , Ẽ

s
1] = p[Es

1,H
H
p ] +

[∑
σ=↑,↓

c†−1σc0σ + c†0σc−1σ, pEs0,0

]
= 0 . (B.4.5)

Thus the existence of the conserved twisted Yangian generator is due to the interplay

of its p-dependent term with the hopping term in the Hamiltonian acting on the site

i = 0 and its neighbor i = −1. This hopping action corresponds to the annihilation

of a particle at one site and its creation at a neighboring site, interpreted as motion

of the particle. If such a particle has rapidity u = 0 at i = 0 then it is static at the

boundary, and the hopping term acting on site 0 must vanish. At that point the

K-matrix becomes trivial, and, expectedly, the Ẽs
1 symmetry degenerates to Es

0,

To conclude, note that for the left boundary, with K-matrices given in [120], one

can obtain the evaluation representation of the symmetry generators for these by

making use of the relation between left and right K-matrices

K−(u, p) = p2K+(−u, 1
p
). (B.4.6)

This corresponds to a weak↔ strong exchange p↔ 1
p

and a reversal of the direction

of the rapidity. Hence, if Q(u, p) is a symmetry of K−(u, p), then Q(−u, 1
p
) is a

symmetry of K+(u, p).

B.5 Y(so4, sl
∆
2 ) as a symmetry of Hh

o

We will proceed to show that B̃+
1 commutes with the achiral Hamiltonian Hh

∆, on

the half-infinite interval limit taken over the antiferromagnetic vacuum. Here we

will construct the half-infinite Hubbard chain by folding an infinite one at a spin

site, say N , and identifying sites N + n and N − n. Such identification commutes

with the partial PHT. Hence, since all components of B̃+ are already conserved

charges of an infinite Hubbard chain, we only need to show that

[P0↓, B̃
+
1 ] = 0. (B.5.1)

It is helpful to divide the commutator into components. First, let us compute

[P0↓,A
+
1 ] by dividing A+

1 into U -independent and dependent components A+0
1 and

A+U
1 . For the commutator with A+0

1 , it is convenient to write P0↓ in the fermionic

representation:

P0↓ = c†0↓ − c0↓. (B.5.2)
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Then we find that

[P0↓,A
+0
1 ] = [c†0↓ − c0↓, c

†
−1↑c0↓ − c†0↑c−1↓ + (c†−1↑c

†
0↓ + c†0↑c

†
−1↓)

= −(c†−1↑ − c
†
−1↑)

= 0. (B.5.3)

For A+U
2 , as we will see, it is not necessary to compute the commutator of P0↓ with

the different operators, but rather it is sufficient to know that [P0↓,B
+
0 ] = 2[P0↓, E

s
0],

which can be inferred from the relation (P0↓)
−1Ec0,0P0↓ = Es0,0. We find that

[P0↓,A
+U
2 ] =

U

2

∑
i<0

([P0↓, Es0,0](Hs
i,0 +Hs

0,0)− [P0↓,Hs
0,0](Esi,0 + E0

i,0)). (B.5.4)

If one makes the ansatz that the quadratic modification must be of the form X+
B =

µB+
0 + k(B+

0 A
z
0 −Bz

0A
+
0 ), then

[P0↓, X
+
B ] = −(4k−2µ)[P0↓, Es0,0]+2k

∑
i<N

([P0↓, Es0,0](Hs
i,0+Hs

0,0)−[P0↓,Hs
0,0](Esi,0+Esi,0))

(B.5.5)

Hence we arrive at the conclusion that [P0↓,A
+
1 +X+

B ] = 0 if

k =
U

4
, µ =

U

2
. (B.5.6)

B.6 Computation of Y(so4, sl
∆
2 ) coproducts

We will proceed to compute ∆B̃+
1 . Define

A+
i,n = Esi,n + Eci,n, A−i,n = F si,n + F ci,n, Az

i,n = Hs
i,n +Hc

i,n (B.6.1)

and

B+
i,n = Esi,n − Eci,n, B−i,n = F si,n −F ci,n, Bz

i,n = Hs
i,n −Hc

i,n (B.6.2)

so that we can rewrite

A+
1 =

∑
i

(Esi−1,1 − Esi,−1 + Eci−1,1 − Eci,−1) +
U

2

∑
i,j

sgn(j − i)(Esi,0Hs
j,0 − Eci,0Hc

j,0)

=
∑
i

(A+
i−1,1 −A+

i,−1) +
U

4

∑
i,j

sgn(j − i)(B+
i,0A

z
j,0 −Bz

i,0A
+
j,0) (B.6.3)
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Using the trick from Appendix B.3, one can show that

∆A+
1 = A+

1 ⊗ 1 + 1⊗A+
1 +

U

4
(B+

0 ⊗Az
0 +A+

0 ⊗Bz
0−Az

0⊗B+
0 −Bz

0⊗A+
0 ) (B.6.4)

Since ∆ is a homomorphism,

∆B̃+
1 = ∆A+

1 −
U

2
∆B+

0 +
U

4
(∆B+

0 ∆Az
0 −∆Bz

0∆A+
0 )

= A+
1 ⊗ 1 + 1⊗A+

1 +
U

4
(2B+

0 ⊗Az
0 − 2Bz

0 ⊗A+
0 + (B+

0 A
z
0 −B+

0 A
z
0)⊗ 1

+1⊗ (B+
0 A

z
0 −B+

0 A
z
0)) +

U

2
(B+

0 ⊗ 1 + 1⊗B+
0 )

= B̃+ ⊗ 1 + 1⊗ B̃+ +
U

2
(B+

0 ⊗Az
0 −Bz

0 ⊗A+
0 ) (B.6.5)

B.7 Construction of the Y(sl2, sl2)s generators

Here we will show the construction of the free boundary twisted Yangian generators.

As in previous boundary Hamiltonians, we will be working in the antiferromagnetic

regime and assuming the limit as the left side of the chain goes to −∞ to be taken

over the Hubbard model antiferromagnetic vacuum, so we can neglect boundary

terms at −∞ which may appear as a result of commutators.

Let us first compute [Hh
o , H

s
2 ]. Using the Jacobi identity,

[Hh
o , H

s
2 ] = [Hh

o , [E
s
1, F

s
1 ]]

= −[Es
1, [F

s
1 ,H

h
o ]]− [F s

1 , [H
h
o , E

s
1]]

= −2
(
[Es

1,F s0,0]− [F s
1 , Es0,0]

)
(B.7.1)

Now [Es
1,F s0,0]:

[Es
1,F s0,0] =

[∑
i≤0

(Esi−1,1 − Esi,−1),F s0,0

]
+
U

2

[∑
i<j≤0

(Esi,0Hs
j,0 − Esj,0Hs

i,0),F s0,0

]

= c†0↓c−1↓ + c†−1↑c0↑ −
U

2

(
Hs

0,0

∑
i<0

Hs
i,0 + 2F s0,0

∑
i<0

Esi,0

)
(B.7.2)
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and [F s
1 , Es0,0]:

[F s
1 , Es0,0] =

[∑
≤0

(F si−1,1 −F si,−1), Es0,0

]
+
U

2

[∑
i<j

(F si,0Hs
j,0 −F sj,0Hs

i,0), Es0,0

]

= c†0↑c−1↑ + c†−1↓c0↓ −
U

2

(
Hs

0,0

∑
i<0

Hs
i,0 + 2Es0,0

∑
i<0

F si,0

)
, (B.7.3)

so that the full commutator is

[Hh
o , H

s
2 ] = −2

(
Hs
−1,1 −Hs

0,−1 − U
∑
i<0

(Esi,0F s0,0 −F si,0Es0,0)

)
= −2(Hs

−1,1 −Hs
0,−1) + 2U

(
(Es

0 − Es0,0)F s0,0 − (F s
0 −F s0,0)Es0,0

)
= −2(Hs

−1,1 −Hs
0,−1) + 2U(Es

0F s0,0 − F s
0Es0,0 −Hs

0,0) (B.7.4)

and hence, using the fact that [Hh
o ,Hs

0,0] = (Hs
−1,1 − Hs

0,−1), one can see that the

twisted level 2 Yangian generator

Ĥs
2 = Hs

2 − U(Es
1F

s
0 − Es

0F
s
1 )− 2Hs

0,0 (B.7.5)

commutes with Hh
o .

Again, for Ês2, we start by using the Jacobi identity:

[Hh
o , E

s
2] = 1

2
[Hh

o , [H
s
1 , E

s
1]]

= −1
2

(
[Hs

1 , [E
s
1,H

h
o ]] + [Es

1, [H
h
o , H

s
1 ]]
)

= −([Hs
1 , Es0,0]− [Es

1,Hs
0,0]) (B.7.6)

Now [Hs
1 , Es0,0]:

[Hs
1 , Es0,0] =

[∑
i≤0

(Hs
i−1,1 −Hs

i,−1), Es0,0

]
+ U

[∑
i<j≤0

(Esi,0F sj,0 − Esj,0F si,0), Es0,0

]
= 2(Es−1,1 − Es0,−1)− U

∑
i<0

Esi,0Hs
0,0 (B.7.7)

and [Es
1,Hs

0,0]:

[Es
1,Hs

0,0] =

[∑
i

(Esi,1 − Esi,−1),Hs
0,0

]
+
U

2

[∑
i<j≤0

(Esi,0Hs
j,0 − Esj,0Hs

i,0),Hs
0,0

]
= −2(Es−1,1 − Es0,−1) + UEs0,0

∑
i<0

Hs
i,0, (B.7.8)
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so that the full commutator is

[Hh
0 , E

s
2] = −2(Es−1,1 − Es0,−1) + U

∑
i<0

(Esi,0Hs
0,0 −Hs

i,0Es0,0)

= −2(Es−1,1 − Es0,−1) + U
(
(Es

0 − Es0,0)Hs
0,0 − (Hs

0 −Hs
0,0)Es0,0

)
= −2(Es−1,1 − Es0,−1) + U(Es

0Hs
0,0 −Hs

0Es0,0 + 2Es0,0) (B.7.9)

and hence, using the fact that [Hh
o , Es0,0] = Es−1,1−Es0,−1, one can see that the twisted

level 2 Yangian generator

Ês
2 = Es

2 −
U

2
(Hs

1E
s
0 −Hs

0E
s
1)− 2Es0,0 (B.7.10)

commutes with Hh
o . Similarly, for F̂s2, let’s first compute [Hh

o , F
s
2 ]:

[Hh
o , F

s
2 ] = −1

2
[Hh

o , [H
s
1 , F

s
1 ]]

= 1
2

(
[Hs

1 , [F
s
1 ,H

h
o ]] + [F s

1 , [H
h
o , H

s
1 ]]
)

= ([Hs
1 ,F s0,0]− [F s

1 ,Hs
0,0]) (B.7.11)

Now [Hs
1 ,F s0,0]:

[Hs
1 ,F s0,0] =

[∑
i≤0

(Hs
i−1,1 −Hs

i,−1),F s0,0

]
+ U

[∑
i<j≤0

(Esi,0F sj,0 − Esj,0F si,0),F s0,0

]
= −2(F s−1,1 −F s0,−1)− U

∑
i<0

Hs
0,0F si,0 (B.7.12)

and [F s
1 ,Hs

0,0]:

[F s
1 ,Hs

0,0] =

[∑
i≤0

(F si−1,1 −F si,−1),H0
NL

]
− U

2

[∑
i<j≤0

(F si,0Hs
j,0 −F sj,0Hs

i,0),Hs
0,0

]
= 2(F s−1,1 −F s0,−1) + UF s0,0

∑
i<0

Hs
i,0, (B.7.13)

so that the full commutator is

[Hh
o , H

s
2 ] = −2(F s−1,1 −F s0,−1)− U

∑
i<0

(F si,0Hs
0,0 −Hs

i,0F s0,0)

= −2(F s−1,1 −F s0,−1)− U
(
(F s

0 −F s0,0)Hs
0,0 − (Hs

0 −Hs
0,0)F s0,0

)
= −2(F s−1,1 −F s0,−1)− U(F s

0Hs
0,0 −Hs

0F s0,0 + 2F s0,0) (B.7.14)

and hence, using the fact that [Hs
o,F s0,0] = F s−1,1 − F s0,−1, one can see that the
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Appendix B. Appendix to Chapter 2

twisted level 2 Yangian generator

F̂ s
2 = F s

2 +
U

2
(Hs

1F
s
0 −Hs

0F
s
1 )− 2F s0,0 (B.7.15)

commutes with Hs
o.
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