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Abstract

In this thesis we study problems in the theory of semigroups which arise from
model theoretic notions. Our focus will be on Nyp-categoricity and homogeneity of
semigroups, a common feature of both of these properties being symmetricity. A
structure is homogeneous if every local symmetry can be extended to a global sym-
metry, and as such it will have a rich automorphism group. On the other hand, the
Ryll-Nardzewski Theorem dictates that Ng-categorical structures have oligomorphic
automorphism groups. Numerous authors have investigated the homogeneity and
Ng-categoricity of algebras including groups, rings, and of relational structures such
as graphs and posets. The central aim of this thesis is to forge a new path through
the model theory of semigroups.

The main body of this thesis is split into two parts. The first is an exploration
into Ng-categoricity of semigroups. We follow the usual semigroup theoretic method
of analysing Green’s relations on an Ryp-categorical semigroup, and prove a finiteness
condition on their classes. This work motivates a generalization of characteristic
subsemigroups, and subsemigroups of this form are shown to inherit Rg-categoricity.
We also explore methods for building Ryp-categorical semigroups from given Wo-
categorical structures.

In the second part we study the homogeneity of certain classes of semigroups,
with an emphasis on completely regular semigroups. A complete description of
all homogeneous bands is achieved, which shows them to be regular bands with
homogeneous structure semilattices. We also obtain a partial classification of ho-
mogeneous inverse semigroups. A complete description can be given in a number
of cases, including inverse semigroups with finite maximal subgroups, and periodic
commutative inverse semigroups. These results extend the classification of homo-
geneous semilattices by Droste, Truss, and Kuske [27]. We pose a number of open

problems, that we believe will open up a rich subsequent stream of research.
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Preface

This thesis is a study into a pair of model theoretic properties applied to semigroups,
namely Ng-categoricity and homogeneity. A summary of the work in this thesis is

given below.

In Chapter 1 we present the background model theory required for this thesis.
The chapter ends on a result which gives a link between the properties of Ng-
categoricity and homogeneity, and provides further motivation for much of our work.
In Chapter 2 we give some preliminaries from semigroup theory. Emphasis is made
on exploring the structure of completely regular semigroups, and how isomorphisms

between them can be constructed.

Our main work begins in Chapter 3 with the study into the Wyp-categoricity of
structures, with emphasis on semigroups. In Section 3.1 we give an account of the
historical background to Ng-categoricity, showing it to be a popular area of research
in the last 50 years. In Section 3.2 we introduce the fundamental result on Wo-
categoricity: the Ryll-Nardzewski Theorem (RNT). We give a number of known
consequences of the RNT, such as that every Ng-categorical structure is uniformly
locally finite. Our various methods for proving Ng-categoricity are outlined, each
centring around the RNT. For illustration we use countable rectangular bands as

our main example, showing that any such semigroup is Ng-categorical.

In Section 3.3 we consider a generalization to a characteristic substructure which
arises from the model theoretic concept of a definable set. This is used to show that
No-categoricity is inherited by every Green’s class which forms a subsemigroup and,
in particular, by maximal subgroups. If I is one of the Green’s relations, then the
set of cardinals of K-classes of an Wp-categorical semigroup is shown to be finite.
We finish the section by examining when the Ny-categoricity of a semigroup passes
to its quotients. In particular, we show that Ng-categoricity passes to any quotient
of a semigroup by a Green’s relation which forms a congruence. These results
are then applied to the principal factors of an arbitrary Ng-categorical semigroup in
Section 3.4. The principal factors of an Ny-categorical semigroup are shown to be Np-
categorical completely (0)-simple or null semigroups, and the set of principal factors
is finite, up to isomorphism. This naturally leads us to consider the Ng-categoricity
of Rees matrix semigroups in Section 3.5. We follow a common method devised by

Graham of constructing a bipartite graph from the sandwich matrix of a Rees matrix
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10 Preface

semigroup S, and show that it inherits the Ny-categoricity of S. Examples of Ro-
categorical Rees matrix semigroups are then constructed from known Ny-categorical
groups and bipartite graphs. Our central result is that the Ng-categoricity of an
orthodox Rees matrix semigroup depends only on the Ny-categoricity of its maximal
subgroups and its induced bipartite graph.

In Sections 3.6 and 3.7 we examine the Ng-categoricity of a pair of well known
semigroup constructs: 0-direct unions and strong semilattices of semigroups. The
former construct allows a generalization of our results on Ny-categorical Rees matrix
semigroups to primitive regular semigroups. Finally, in Section 3.8 we discuss open
problems and future directions in the work on Ny-categorical semigroups.

The rest of this thesis is concerned with homogeneity of semigroups. Chapter 4
introduces the property of homogeneity from a general setting. A literature review
is given in Section 4.1, with an emphasis on the homogeneity of groups. The seminal
work of Fraissé is introduced in Section 4.2, which allows us to build homogeneous
structures from certain classes of finitely generated structures.

In Section 4.3 we discuss the importance of choice of signature for considering
homogeneity. Many of the semigroups we study can alternatively be considered
as I-semigroups, that is, semigroups with an additional unary operation satisfying
certain laws. Our choice of signature for a class of semigroups can often be naturally
dictated by the variety of semigroups or I-semigroups in which the class belongs.
Our motivating example is the class of completely regular semigroups. We also
describe a stronger form of homogeneity of a completely regular semigroup, which
further takes into consideration the automorphism group of the induced structure
semilattice.

The substructure of an arbitrary homogeneous structure is assessed in Section
4.4, and later applied to the case of semigroups. The main result of this section is
that the maximal subgroups of a homogeneous semigroup are homogeneous groups,
and are pairwise isomorphic. We then examine the homogeneity of non-periodic
semigroups in Section 4.5, and show that a completely regular non-periodic homo-
geneous semigroup is completely simple. The importance of the homogeneity of
completely simple semigroups is therefore pivotal, and is the subject of Section 4.6.

The results of Chapter 4 are used throughout Chapters 5, 6, and 7, where
the homogeneity of bands, inverse semigroups, and orthodox completely regular
semigroups are respectively studied. Our results are obtained by using a mix of
semigroup theory brute force and Fraissé’s method. A complete description of ho-
mogeneous bands is achieved in Chapter 5. An immediate consequence is that each
homogeneous band is a regular band and has a homogeneous structure semilattice.
On the other hand, a classification of homogeneous inverse semigroups is shown
to be a greater challenge, although a number of partial classifications are given.
In particular, all homogeneous inverse semigroups with finite maximal subgroups

are described, along with periodic homogeneous commutative inverse semigroups.
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Every homogeneous inverse semigroup is shown to be either bisimple or Clifford,
and in the latter case a decomposition into a spined product is obtained.

In Chapter 7 we combine our results on homogeneous bands and Clifford semi-
groups to produce examples of homogeneous orthodox completely regular semi-
groups. This thesis ends with a discussion into the key open problems which have
arisen during the work on homogeneity, and other directions that future research

into homogeneity may take.
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Chapter 1

Preliminaries I: An introduction to model

theory

In this chapter we outline the basic model theory required for this thesis. The results
and definitions are taken from a number of introductory text books, including [12],
[61] and [69]. In these books one can find the original citations.

Throughout this thesis, we write maps on the right of their arguments, so that

the composition of mappings are from the left to the right.

1.1 First order structures

Model theory can be seen as the study of structures from a logical viewpoint.
Defining model theory in such a succinct way is possibly controversial, and certainly
likely to annoy a handful of model theorists. Most famously is Chang and Keisler’s

attempt at a pithy definition, given in their 1990 text [12], which states:
“universal algebra + logic = model theory.”

This definition was soon seen as dated, as the field of model theory quickly grew and
evolved. The introduction to Hodges 1993 text [51] best sums up the trepidation
of defining such a changing theory:

“Should I begin by defining ‘model theory’? This might be unsafe...”
Here I shelter myself behind his attempt at a definition:

“Model theory is the study of the construction and classification of struc-

tures within specified classes of structures.”
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18 CHAPTER 1. PRELIMINARIES 1

For our work, ‘specified class of structures’ will mostly be the class of semigroups, al-
though we built our framework from complete generality. By ‘construction’, Hodges
means the building of structures which satisfy some desired property, such as hav-
ing a large automorphism group or being a commutative semigroup. Finally, by
‘classifying’ he means subdividing a class of structures into subclasses in a mean-
ingful way. A famous example from semigroup theory is the classification of inverse
completely 0-simple semigroups: they are classified by showing that every inverse
completely O-simple semigroup is determined, up to isomorphism, by its maximal
subgroups and cardinality of its subset of idempotents.

There is often a dividing line between relational structures, such as graphs and
partial orderings, and algebraic structures, such as semigroups and groups. A key
difference between these two classes of structures is examined in the subsequent
section. However, we begin by introducing the theory of structures from a general
setting, and one which can be seen to encompass both algebraic and relational
structures. It relies on the following description of relations and functions on a set.

Let X be a set and n a non-negative integer. A subset R of X" is called a
finitary relation of arity n or an n-ary relation. A map from X" to X is called a

finitary function of arity n or an n-ary function.

Definition 1.1.1. A (first order) structure M is a non-empty set M, called the

universe, together with:
(i) a set of finitary relations on M;
(ii) a set of finitary functions on M;
(iii) a set of elements of M called constant elements.

Each n-ary relation is named by an n-ary relational symbol, and if R is a relation
symbol then we denote R as the relation named by R. Similarly, we denote
fM as the n-ary function named by a m-ary function symbol f, and ¢™ as the
constant element named by a constant symbol c. We call RM, fM and ¢M the
interpretations of the symbols R, f and ¢, respectively. The cardinality of M is

defined as the cardinality of its universe M.

The structure M will often be written as
M= MR, fM M ReR, feF ced),

where R, § and € denote the sets of relational symbols, functional symbols and
constant symbols of M, respectively. Where no confusion may arise, we will not
distinguish between the relation R and its named relational symbol R. The set
L =9RUZFUC is called the signature of M, and M is called an L-structure. The
cardinality of the signature L is defined as the cardinality |L| of L.
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If L is a signature without functions or constant symbols, then an L-structure
is called a relational structure. If L is a language without relational symbols, then
an L-structure is called an algebraic structure.

Each signature gives rise to a language. The language consists of the symbols
from the signature together with logical symbols and punctuation, and forms the
framework of first order logic. This will be the main topic of the subsequent section.

We use standard notation by letting M, N, X etc. denote the universes of the
structures M, N and X. Where no confusion can arise, we occasionally abuse
notation by simply referring to a structure M as M. Signatures will usually be
denoted by L, or a subscript may be used to distinguish signatures that will be key
to this thesis.

Example 1.1.2. Let Lg = {-} be the signature consisting of a single binary function
symbol, which we call the signature of semigroups. Then a semigroup (5,-°) can

S

be regarded as an Lg-structure, where -° is an interpretation of -. Note that (Z,—)

is also an Lg-structure, despite it not being a semigroup.

Example 1.1.3. We may extend Lg by adding a constant symbol 1 to obtain the

signature of monoids Ly, = {-,1}.

Example 1.1.4. Now extend L)y, by adding a unary function symbol ~!, we obtain
the signature of groups Lg = {-,71,1}. A group (G, -G,(*l)G ,1¢) can be considered
as an Lg-structure, where the group operation -© interprets -, the inverse function

(-D¢ interprets ~! and 1¢ is the group identity interpreting 1.

When fixing a signature for groups, we could have defined a function symbol for,
say, the commutator. Alternatively, we could consider a group as an Lg-structure,
where we think of this as ‘forgetting’ the symbols ~! and 1. This is an example
of reduction, which we now formalise. Let L and L’ be a pair of signatures such
that L C L. Then every L’-structure M forms an L-structure simply by removing
the symbols in L'\ L. We observe that no elements of M are removed, despite the
fact that constants in M may no longer be constants in the new structure. The
resulting L-structure is called the L-reduct of M, denoted M|L, and M is called
an expansion of M|L. For example, the Lg-reduct of an Lg-structure (G,-,~%,1)
is (G, ).

The choice of signature for a structure is central to its study, and in most cases
should be done in a way such that fundamental concepts, such as morphisms and
substructures, agree with the corresponding concept from the relevant branch of
mathematics. Before giving an example of this phenomenon, we first define the
concepts raised here: morphisms and substructures. We fix the following standard

notation for maps.

Notation 1.1.5. Let ¢ : A — B be a map between sets A and B. If A’ is a subset
of A then we denote the restriction of ¢ to A’ as ¢|a.



20 CHAPTER 1. PRELIMINARIES 1

Notation 1.1.6. Let A and B be sets and {A; : ¢ € I} be a partition of A. If
¢i : A; — B is a map for each i € I, then we let | J;.; ¢; denote the map ¢ : A — B
given by

ap =agp; if a € A;.

Definition 1.1.7. Let M and N be L-structures with universes M and N, respec-
tively. An L-morphism ¢ : M — N is a map from M to N that preserves the

relations, functions and constants, that is, such that

(i) if R € R is of arity n and z1,...,2, € M then

(X1, 2n) € RM = (10, ..., 2,0) ERN;

(i) if f € § is of arity n and z1,...,z, € M then
((xh s 7xn)fM)¢ - <$1¢7 s 7$n¢)fN7

(iii) Mo = ¢V for all ¢ € €.

An L-morphism from a substructure M to itself is called an L-endomorphism.

An L-embedding ¢ : M — N is an injective L-morphism such that
(z1,...,2n) € RM & (210,...,2,0) € RV

for all R € R of arity n and x1,...,z, € M. A bijective L-embedding is called an
L-isomorphism. An L-isomorphism from M to M is called an L-automorphism,
and the set of all L-automorphisms of M forms a group under composition, denoted
by Aut(M). Each L-structure M possesses a trivial automorphism, denoted 1,
given by mlag = m for all m € M, which is the identity of Aut(M).

For example, let G and H be a pair of groups in the signature L, and ¢ : G — H
be an Lg-morphism. Then ¢ preserves both the group operations and the inverses,
and also maps the identity of G to the identity of H, that is,

(99)0 = (90)(d'¢), (90) " = (97 "o, ead=en,

for all g,¢g' € G, where e and ey are the identities of G and H, respectively. We
therefore have the usual concept of a morphism of groups. Note that every map
between groups which preserves multiplication gives rise to a group morphism. It
follows that even in the signature Lg, every Lg-morphism is a group morphism. We
will see an example of morphisms between relational structures in the subsequent

section.

Definition 1.1.8. Let L be a signature and let M and N be a pair of L-structures.
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Then we call N' a morphic image of M if there exists a surjective L-morphism

o M—N.

Definition 1.1.9. Let M be an L-structure with subset N. We call N charac-
teristic if it is invariant under automorphisms of M, that is if ¢ € Aut(M) then
Né = N.

The automorphism group of a structure M has a natural action on M", where
elements of Aut(M) act component-wise on the set M™. That is, if ¢ € Aut(M)
and (ai,...,a,) € M™ then define

(a1, ...,an)0 = (a10,...,a,0).

Definition 1.1.10. Let L be a signature and M an L-structure. A substructure
of M is an L-structure N such that N C M and the inclusion map ¢ : N — M is
an L-embedding.

It follows that if N is a substructure of M, then RN = RM N N™ for each n-ary
relation symbol R, fN = fM|yn for each n-ary function symbol f and N =M
for each constant symbol c. In particular, a substructure of an algebraic structure
M is a subset of M which is closed under the operations on M.

Returning again to groups in the signature Lg, then every substructure is a
subgroup, further highlighting the naturalness of this choice of signature. On the
other hand, by regarding a group in the signature Lg, the substructures need only
be subsets closed under the binary operation, that is, be subsemigroups. As such
the signature Lg is seen as a less natural choice. Note however that a finite sub-
semigroup of a group is a group, since each element of the subsemigroup will have
its inverse and the identity element as a power.

We now describe a method for constructing substructures from arbitrary sub-
sets of the universe. It relies on the fact that the intersection of a collection of
substructures is, if non-empty, a substructure.

Let M be an L-structure and A a subset of M. The substructure of M generated

by A is the uniquely determined substructure with universe

ﬂ{N : AC N, N is a substructure of M}

which we denote as (A) . We say that M is generated by A if (A)p = M, and
if further A is finite then we call M finitely generated (f.g.) or |Al-generated. The
set A is called a generating set of M.

In later chapters there will be a number of exceptions to this notation, most
prominently (A) will simply denote the substructure generated by A in the signature

of semigroups Lg.
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Example 1.1.11. In the group G = (Z,+,7!,0), with signature Lg, we have
<2>g = (227 +771 70)'

The following is a simple consequence of [96, Lemma 1.1.7], and shows that
L-isomorphisms between structures induces isomorphisms between their substruc-

tures.

Corollary 1.1.12. Let ¢ : M — N be an L-morphism and, for A C M, let
A = (A)p. Then ¢ induces an L-morphism

Pla: A= ({ad:a € A} m

determined by a — a¢ for each a € A. Moreover, if ¢ is an L-isomorphism then so

is Pl 4.
We may now define the first main property which is studied in this thesis.

Definition 1.1.13. An L-structure M is homogeneous if every L-isomorphism

between f.g. substructures extends to an L-automorphism of M.

We may study a weaker form of homogeneity by defining a structure M to
be n-homogeneous for some n € N, if every isomorphism between substructures
of cardinality n extends to an automorphism of M. A homogeneous structure is

clearly n-homogeneous for each n € N.

Definition 1.1.14. A structure M is locally finite if each of its f.g. substructures

is finite.
We study a stronger property than locally finiteness as follows.

Definition 1.1.15. We call M wuniformly locally finite (ULF) if there exists a
function f : N — N such that for every substructure N of M, if A has a generating
set of cardinality at most n, then A has cardinality at most f(n).

There are numerous ways of building new structures ‘from old’, and we now
study one of the more well known examples: direct products. The direct product
of algebraic structures such as groups and semigroups is well known, although for
relational structures such as graphs it is arguably less so. It will be fruitful to
define a notion of the direct product for arbitrary structures, and in such a way
that generalizes the algebraic direct product.

Let L be a signature and I a non-empty index set. For each i € I, let M; be
an L-structure with universe M;. Let X be the Cartesian product of the sets M;
(i € I), that is, the set of all maps 6 : I — J,c; M; such that i@ € M; for each
1 € I. We build an L-structure N with universe X in the following way:



1.1. FIRST ORDER STRUCTURES 23

(1) for each m-ary relation symbol R of L, and n-tuple a = (61, ...,60,) of X, we
define a € RV if and only if (i6,,...,i,) € RMi for each i € I;

(2) for each m-ary function symbol f of L, and n-tuple a = (61,...,6,) of X, we
define afV to be the element ¢ of X such that i) = (i61,...,i0,) fMi for
each i € [;

(3) for each constant symbol ¢ of L, we define ¥ to be the element ¢ of X such
that i@ = ¢ for each i € I.

Then N forms an L-structure, which we denote as [[;c; M;, or simply [[,c; M;
where no confusion may arise.

If |I| = r is finite, then we may adapt the construction above by letting X be
the simplified form of the Cartesian product

I Mi={(a1,...,a) : as € M;}.

1<i<r
The relations, functions and constants on the direct product N are then given by:
(1) for each n-ary relation symbol R of L, and n-tuple a = (ay, ..., a,) of X, where

ar = (a1, ..., ag), we define @ € RV if and only if (ay, ..., an;) € RMi for
each 1 <i <r;

(2) for each n-ary function symbol f of L, and n-tuple a = (ay,...,a,) of X,
where ay, = (ag1,...,ak ), we define ng to be the element (by,...,b,) of X

such that b; = (ay,. .., an;) fMi for each i € T;
(3) for each constant symbol ¢ of L, we define ¢V to be the element (¢, ..., M)
of X.

In this case the direct product N will be simply denoted by M1 x Mg x --- x M,..
We will be working with tuples of sets throughout this thesis, and it is worth

fixing the following notation.

Notation 1.1.16. Given a pair of tuples a = (ai,...,a,) and b = (b1,...,by), we
denote (a,b) as the (n + m)-tuple given by

(al,...,an,bl,...,bm),

and extend this notation for (a, b, ¢, ... ) etc. If z is an r-tuple, then we write |z| = r.
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1.1.1 Relational structures: graphs and posets

In this subsection we define a number of key relational structures for our work:
graphs, posets and linear orderings. In addition, this discussion provides further
examples of morphisms and substructures, defined in the previous subsection.

A (simple) graph G = (V, E) is a set V' of vertices together with a set F of edges,
where each edge is a set of two distinct vertices. Here, our graphs are undirected,
and have no loops or multiple edges. A graph (V| E) can be naturally considered
in the signature Lg, = {R}, comprising a single binary relation symbol R, where
R is interpreted as the edge relation. That is, (V, E) becomes the Lg,-structure
G = (V, RY), where (u,v) € RY if and only if {u,v} € E. Where no confusion may
arise, will usually write the symbol R as F, and call Lg, the signature of graphs.

Example 1.1.17. Let G = ({1,2,3},E) and G’ = ({4,5}, E’) be the graphs given
by

1 4
2
3 5
Figure 1.1: The graph G. Figure 1.2: The graph G'.

We observe that an Lg,.-morphism is a map between the vertices of a pair of
graphs which preserves edges, while an Lg,.-embedding is an injective map which

preserves edges and non-edges. For example, the map ¢ : G — G’ given by
1p =3¢ =4 and 2¢ =5

is an Lg,-morphism, since it preserves edges. However, ¢ is not an Lg,-embedding
since it is not injective.

The graph ({1,2},{{1,2}}) is a subgraph of the graph G, and is the subgraph
generated by the subset {1, 2} of {1, 2, 3}. However, the empty graph on two vertices
({1,2},0) is not a subgraph of G as {1,2} € F.

It is important to notice that any subset A of the graph (V, E) gives rise to a
subgraph (A, E’), where E' C E.
In general, if M = (M, fR) is a relational structure and A is a subset of M, then

(Am = (A,R)
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where, for each R € R, we have RMM = RM 0 A" Tt clearly then follows that
every relational structure with finite signature is ULF (a result which is given as
an exercise in [52, Exercise 1.2.6]).

This is one of the fundamental differences between relational structures and
arbitrary structures. Indeed, the existence of functions can add elements to our
generated set and, as seen in Example 1.1.11, even a single element generating set
can generate an infinite substructure.

Posets are our second example of relation structures, and are fundamental to
the study of semigroups. As such, a more leisurely exposition is required.

Given a binary relation o on a set X, we often denote (z,y) € o as zoy. We

define a binary relation o on a set X to be an equivalence relation if:
(i) (z,z) € o for all x € X (o is reflexive);
(ii) if (x,y) € o then (y,x) € o for any z,y € X (o is symmetric);
(iii) if (z,y) € o and (y, z) € o then (z,2) € o for any z,y,z € X (0 is transitive).

If o is an equivalence relation on a set X and = € X then we denote z7 as the
T-class containing x:

xr={y € X :(z,y) € o}

If Y is a subset of X, then 7 restricts to an equivalence relation on Y, and we abuse
notation somewhat by denoting Y/7 as the set of equivalence classes of ¥ under

the restriction of 7. That is,
Y/r={yrnY:yeY}.
A binary relation o on a set X is called anti-symmetric if
(Vx,y € X) (x,y) €0 and (y,x) €0 =z =1y.

We call the binary relation o a partial order if it is reflexive, transitive and anti-
symmetric. Given a partial order o, we use the standard convention of writing
(z,y) € o as either z < y or y > x. We write correspondingly z < y or y > x if
(z,y) € 0 and = # y. We call (X, <) a partially ordered set, or simply a poset. As
with graphs, we natural consider posets in the signature Lp = {<} consisting of a

single binary relation symbol <.

Example 1.1.18. Every set X forms a poset by letting < be the equality relation,
that is,
r<ly&sST=y.

A poset with partial order being equality is called an antichain.
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Notation 1.1.19. Let (X, <) be a poset with subsets Y and Z. We denote the
property that y > zforally € Y,z € ZasY > Z, and say that Y is an upperbound
of Z. Ity >zforally € Y,z € Z then we write Y > Z. 'Y = {y1,...,yn} is
finite, then we simplify this as yi,...,y, > Z, and similarly for Y > z,...,z,.
Given z,2' € X, if x # 2/ and 2/ # x then we say that x and x’ are incomparable,
denoted z L 2’

A partial order with the property that
(Va,ye X) z<yory<uz

is called a linear order or a chain.

An element x of a poset X is called minimal (maximal) if there are no elements
of X strictly less (greater) than x under the partial order. An element x of X is
minimum (maximum) if x < X (x > X), and if such an element exists it is unique.
The set of all minimal and maximal elements of X are called the endpoints of X,
and may not be unique. Given z,y € X, we call x an upper (lower) cover of y if
x>y (r <y)and whenever x > z >y (z < z < y), then x = z or z = y. If every
element of X has an upper and lower cover then X is called discrete. On the other
hand, X is called dense if, whenever x > y in X, then there exists z € X such that
x > z > y. In particular, X is dense if and only if no element has an upper and

lower cover.

Example 1.1.20. The integers Z form a discrete linear order under the natural
order. On the other hand the rationals Q form a dense linear order under the natural

order, and we have the following well known result.

Theorem 1.1.21. Every countable dense linear order without endpoints is isomor-

phic to the rationals Q under the natural order.

1.2 Formulas and models

In this section we explore the machinery used by model theorists for studying and
classifying structures. When defining a poset in the previous section, we gave
a list of axioms which needed to be satisfied. This is a common occurrence in
mathematics. For example, most introductory group theory courses will begin by
listing the three axioms of groups. Each of the axioms use only the symbols from
Lg, as well as quantifiers, logical connectives and so on.

We begin by formalizing this concept by using the symbols of a signature L,
together with the usual logical symbols, to build formulas which are interpreted in

any L-structure.
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Definition 1.2.1. Given a signature L, an L-formula is a finite string of symbols

built from
(i) the symbols from L;
(ii) the logical connectives A, V, =, —, <;
(iii) quantifiers 3,V
(iv) variables g, z1,... ;
(v) the equality symbol =;
(vi) parentheses ) and (.

Of course, not every finite string of these symbols is a formula, and the set of
formulas is defined inductively by certain syntactic rules. However, we may think
of a string of symbols to be a formula if it ‘makes sense’, as the following examples
highlight.

Example 1.2.2. The string (Vz(— 3 is clearly not a formula.

Example 1.2.3. In the signature of semigroups Lg = {-}, the string

(Fz)[(z-z=2)A(z-y=y- )
is a formula.

Given an L-formula ¢, we say that variable x is a free variable in ¢ if it is
not bound by a quantifier, and we call ¢ bound otherwise. A formula without free
variables is called a sentence, while a formula in which all variables are free is called
quantifier-free. As standard notation, we will often write ¢(x1,...,z,) to make
explicit that z1,...,x, are precisely the free variables in ¢, and will denote P™(L)

as the set of all L-formulae with exactly n free variables.

Example 1.2.4. The formula in Example 1.2.3 has x as a bound variable and y as

a free variable. By bounding y by a quantifier we obtain a sentence, for example
Fe)(vy) [(z -z =) N2y =y - 2)].

Any L-formula ¢(z1,...,2,) has a natural interpretation in an L-structure M,
and can be seen to express a property of elements of M™. We can therefore introduce
the notion of the truth of an L-formula in an L-structure. Much like the definition
of a formula, the truth of ¢(ay,...,ay,) in M for some (a1, ...,a,) € M™ is defined
inductively in a natural way, and denoted M | ¢(ay,...,a,). We will say that
a € M™ has first order property ¢(x1,...,x,) if M | ¢(a).
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An L-sentence can be interpreted as either true or false in an L-structure. We

call a property of M first order if it can be written as an L-sentence ¢ such that

M ¢.

Example 1.2.5. In the signature Lg, the property of commutativity is first order,
and is defined by the sentence

Pcomm = (vx)(vy) [I’ Y=vy- ZL’]
For example, (Z, X) E ¢comm-

Example 1.2.6. The formula in Lg,

o(y) = (Vo) [z -y =y ]

can be interpreted as the property of central elements, that is, elements which
commute with all other elements. For example, in a group GG with identity 1 we
have (G,-) = ¢(1), and if G is abelian then (G, -) = ¢(g) for all g € G.

Example 1.2.7. Both the property of being finite of cardinality n and the property
of being infinite, can be expressed using formulae. To see this, let ¢,, be the sentence
given by
o = (Fa1) -+~ (3zg) [\ s = aj),
i#]
for each n € N. Then we interpret ¢, as the property of the universe of a structure
having at least n elements. Hence, for any signature L and L-structure M, we have
|M| = n if and only if
M ): Gn N _‘¢n+1-

On the other hand, M is infinite if and only if M = ¢,, for all n € N.

Not every property of an L-structure can be expressed as an L-formula. Follow-
ing the example given by Rosenstein [84, p437] in the context of groups, to express

that an infinite semigroup is generated by a single element we cannot write

(32)(Vy)Bn)ly = ="]

or
Gr)(Vy)ly=2"Vy=a'Vy=a?Vv---]

since these expressions are not L-formulae. Indeed, in the first case a quantifier
ranges over N and not variables, and in the second infinite disjunction occurs. A
note of caution should be made, since this does not actually prove that the property
of being generated by a single element is not first order. The property is not first

order, but a proof would require machinery outside the scope of this thesis.
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Definition 1.2.8. Given a signature L, then we define an L-theory T to be a set
of L-sentences, where T is permitted to be finite or infinite. We say that an L-
structure M models T, denoted M = T, if all sentences in T" are true in M, that
is M= ¢ forall p eT.

A class K of L-structures is called aziomatizable if there exists a theory T such
that IC is precisely the class of L-structures which model T. Great progress has

been made into axiomatizability of S-acts (see [36] and [37], for example).

Example 1.2.9. The theory of semigroups, denoted T, in Lg consists of the single

sentence

(Vz)(Vy) (Vz2) [2(yz) = (zy)z],

which is interpreted as the property of associativity. While an Lg-structure need
not be a semigroup, we have that M = Ts if and only if M is a semigroup. That

is, the class of all semigroups in the signature Lg is axiomatizable by T%.

Example 1.2.10. The theory of linear orders without endpoints T, in the signa-

ture Lp = {<}, consists of the following L-sentences:

(Vx)[(z < z)] (reflexive),
Vx)Vy)lxr <yANy <z —z =y (anti-symmetric),
(Vo)(Vy)(V2)[(z <y Ay < z) = x < 2] (transitive),
(Vz)(Vy)lz <y Vy < a] (linear order),
(Vz)(3y)(32) [y <z Az < 2] (no endpoints).

The class of all linear orders without endpoints is axiomatized by Tro. If we add
the sentence
(Vz)(Vy)[(z < y) = [(F2) (@ < 2 Az < y)]] (1.1)

then we have the theory of dense linear orders without endpoints Tpro.

Similarly we form the theory of groups Tg in the signature Lg, the theory of
graphs Tg, in the signature Lg,, and the theory of posets Tp in the signature Lp,

etc.

Definition 1.2.11. Let T be an L-theory and ¢ an L-sentence. We call ¢ a logical
consequence of T, denoted T |= ¢, if M |= ¢ whenever M =T

Example 1.2.12. The sentence ¢comm from Example 1.2.5 is not a logical conse-

quence of T, since there exist non-commutative semigroups. However the sentence

(Va)[z? = 2 — 2% = 1]

is a logical consequence of Ty, since any idempotent of a semigroup is equal to any

of its powers.
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Given an L-structure M, then the full theory of M, denoted Th(M), is the set
of all L-sentences ¢ such that M = ¢. Notice that for any semigroup M in the
signature Lg,

Ts C Th(M),

and similarly for T, T, etc.

Definition 1.2.13. An L-theory T is called satisfiable if there exists an L-structure
M such that M |=T. An L-theory T is called complete if, for any L-sentence ¢,
either T = ¢ or T' = —¢.

Example 1.2.14. The full theory of a structure is complete.

Example 1.2.15. The theory Ts is not complete. For example, since there exist

both commutative and non-commutative semigroups, we have Ts ~ ¢comm and

TS I# _‘d)comm .

The full theory of a structure is, in general, too difficult to determine. We can
often overcome this problem by finding a ‘simpler’ complete L-theory T" such that
M = T. Indeed, let T be a complete theory such that M = T. Then for any
L-sentence ¢, if T' [~ ¢ then T' = —¢ by completeness, and so M | —¢. It follows
that M |= ¢ if and only if T' = ¢.

Definition 1.2.16. A pair of L-structures M and N are elementary equivalent,
denoted M = N, if they satisfy the same L-sentences, that is Th(M)=Th(N).

We observe that a pair of isomorphic structures are clearly elementary equiva-

lent, but the converse need not be true.

Example 1.2.17. In the signature of posets Lp = {<} we have that (Q, <) and
(Z,<) are not elementary equivalent, since the property of a poset being dense is
first order by (1.1).

The following result is immediate from the definitions given above, and provides

a useful test for the completeness of a theory.

Theorem 1.2.18. Let T be a satisfiable theory. Then T is complete if and only if
for each MN =T we have M = N.

Example 1.2.19. The theory of dense linear orders without endpoints is complete
[69, Theorem 2.4.1], and so (Q, <) = (R, <) by the theorem above.

One of the most fundamental questions in model theory is the following;:

Given a satisfiable theory T', how many countable models of T exist, up

to isomorphism?



1.2. FORMULAS AND MODELS 31

In [98], Vaught studied this question for complete theories, and showed a somewhat
surprising result that, assuming that the Continuum Hypothesis is true, no complete
theory has precisely 2 non-isomorphic countable models. On the other hand, for
any n € N\ {2}, there exist complete theories with precisely n non-isomorphic
countable models. The case when n = 1 is of particular interest, and studied in

greater detail in Chapter 3:

Definition 1.2.20. An L-theory T is Wg-categorical if all countable models of T'
are isomorphic. A countable L-structure M is Ng-categorical if Th(M) is an Ro-

categorical theory.

Hence if M is an Np-categorical L-structure then for every countable L-structure
N we have
N=MecN=M.

1.2.1 Definable sets

Let M be an L-structure and let A be a fixed subset of M™ for some n € N. Then we
call A definable if there exists an L-formula ¢(z1,...,Zn,y1,...,Ym) and b € M™
such that

A={aeM": ME ¢(ab).

We say that ¢(z1,...,2,,0) defines A. Given a fixed subset X of M, then A is
called X -definable or definable with parameters from X if there exists an L-formula
V(X1y .oy Ty Y1y -+, Ym) and b € X such that ¢(z1,...,zy,0) defines A.

Example 1.2.21. Let (S,-) be a semigroup in Lg. Then the set of all central
elements of S is defined by the formula ¢(y) = (Vz) [zy = yz] as

{a€eS:as=saforallse S} ={aecS:(S,:) =¢a)}

In a later chapter we will show that the property of a structure being No-
categorical translates to a property of its automorphism group. This is a common
occurrence in model theory, and is further highlighted in the following method for
proving that a subset is not definable.

Given an automorphism ¢ of a structure M with subset A, then we say that ¢
fizes A pointwise if a¢p = a for all A. We say that ¢ fizes A setwise if Ap = A.

Proposition 1.2.22. [69, Proposition 1.3.5] Let M be an L-structure and let A
be an X -definable subset of M"™ for some n € N. Then any automorphism ¢ of M

which fires X pointwise fixes A setwise.

On the class of Ng-categorical structures we have a partial converse to the propo-

sition above:
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Proposition 1.2.23. [73] Let M be an Rg-categorical L-structure, X a finite subset
of M and A C M™ for somen € N. Then A is X-definable if and only if any

automorphism of M which fizes X pointwise fives A setwise.

1.2.2 Quantifier elimination

Quantifier-free formulae are, in most cases, far simpler to work with than formulae
with quantifiers. For example, for any L-formula ¢ and variable x not given in ¢,
we have M = ¢ if and only if M = (Vz)¢ for all L-structures M. It therefore
makes more sense to work with ¢ rather than (Vz)¢.

Similarly, sets defined by quantifier-free formulae tend to be simpler to describe.
It is therefore often useful to find, if possible, a quantifier-free formula which is
‘equivalent’ to our given formula. A classical example in the language of fields
L ={+,—,-,0,1}, where +, — and - are binary function symbols and 0 and 1 are

constants, is the quadratic solution formula ¢(a, b, c) given by
(32)[az? + bx + ¢ = 0).
Then in the field of complex numbers we have
(C,+,—,-,0,1) E é(a,b,c) <> [(ra=0)V (=b=0) V (c=0)].

Definition 1.2.24. A theory T has quantifier elimination if, for every formula ¢,

there exists a quantifier-free formula ¢ such that

T E ¢ < .

Example 1.2.25. The theory of dense linear orders without endpoints Tpro has
quantifier elimination. Every formula is equivalent to a formula built in following

way. Let o : {(¢,7) : 1 <i,j <n} — 3, and ¢,(z1,...,2,) be the formula given by

N wi=ain N <oy n-w =) A [zj < @i A —wi = ).
0(i.4)=0 o(i.j)=1 o(i.j)=2

Although quantifier elimination is in no way central to this thesis, it serves both
as a model theoretic motivation for studying Xg-categoricity and homogeneity, and

gives a vital link between the two concepts:

Theorem 1.2.26. [51] Let L be a finite signature and M a countable L-structure.

Then the following are equivalent:

(i) M is homogeneous and ULF;
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(ii) M is Ng-categorical and has quantifier elimination.

An immediate consequence is that if M is a homogeneous relational structure
with finite signature L, then it is Rg-categorical.

We end this chapter by fixing the following notation.

Notation 1.2.27. In a given section of this thesis, we will predominantly be work-
ing in a fixed signature. Where no confusion may arise, the prefix L will then
be dropped from the concepts introduced in this section. For example, we write
structure instead of L-structure, formula instead of L-formula and theory instead
of L-theory.






Chapter 2

Preliminaries 1I: An introduction to

semigroup theory

In this section we outline the basic semigroup theory required in this thesis. The
definitions and results are taken from the standard books on introductory semigroup
theory: [20], [21], [55] and [72]. Here we mostly study semigroups as Lg-structures.
Concepts such as morphisms and subsemigroups then follow by the general defini-
tions given in the previous chapter, but are given here due to their importance in
this thesis.

2.1 Monoids and zeros

A semigroup (S,-) is a non-empty set S together with an associative binary opera-
tion - defined on S, so that if x,y, z € S then

(-y)-z=2-(y-2).

We follow the usual convention of denoting the product x - y by juxtaposition
xy. We say that S is commutative if xy = yx for all z,y € S. An element u of S is
called a left identity if ua = a for each a € S, and called a right identity if au = a
for each a € S. A left and right identity is called an identity, and it is unique (if it
exists). A semigroup with an identity is called a monoid. Dually, an element 0 of S
is called a left (right) zero of S if 0a = 0 (a0 = 0) for each a € S. A left and right
zero is called a zero, and it is unique (if it exists). If S contains a zero then we call
S a semigroup with zero.

If S is not a monoid, then we can adjoin an identity 1 to S to form a monoid.
That is, we take some 1 ¢ S and extend the binary operation on S to S U {1} by

35
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defining 1o = 1 = z for all z € S'. We then define

S if S has an identity element,
SuU{l} else.

St =

We call S the monoid obtained from S by adjoining an identity if necessary.
Similarly, if S does not contain a zero, then we adjoin a zero 0 to S to form a

semigroup with zero, and take

S if S has a zero,
SuU{0} else.

50 =

We call S° the semigroup obtained from S by adjoining a zero if necessary.

Example 2.1.1. A trivial semigroup {e} is a semigroup with cardinality one, so

that €2 = e. In this case e is both a zero and an identity element.

Example 2.1.2. A null semigroup is a semigroup in which the product of any pair
of elements is zero. That is, a semigroup N with zero is null if xy = 0 for each
T,y € N.

If A and B are subsets of a semigroup S, then we define the product of A and
B in the natural way as AB = {ab: a € A,b € B}. For singleton sets we simplify
our notation by writing, for example, aB instead of {a}B. For a € S we then have

three key subsets of S given by
(i) S'a = SaU{a};
(ii) aS! = aS U {a};
(iii) S'aS' = SaS U SauUaSU {a},

where the multiplication of subsets is taking place inside S*.

A non-empty subset T of S is called a subsemigroup if it is closed under the
operation of S, that is, if xy € T for each x,y € T. If T also forms a group under
the restriction of the operation of S to T', then T is called a subgroup of S. A
subsemigroup 7" of S is called a left ideal if ST C T, a right ideal if T'S CT and a
(two-sided) ideal if it is both a left and right ideal. For example, S forms an ideal
of itself, and if S contains a zero then {0} is an ideal. An ideal T" such that T is

non-zero and 7" C S is called a proper ideal.

Example 2.1.3. For any a € 5, the sets S'a, aS' and S'aS"' are left, right and
two-sided ideals of S, respectively, which we call the principal left, right and two-
sided ideals of S generated by a. They are, respectively, the smallest left, right and

two-sided ideals containing a.
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An element e of S is called an idempotent if e = e, and we denote the set of
idempotents of S as E(S). We observe that {e} is a trivial subsemigroup (indeed,
subgroup) of S for any e € E(S). The set E(S) comes equipped with a partial
order < defined by

e < fifand only if ef = fe =e.

We call < the natural order on E(S).
If E(S) = S then we call S a band. A commutative band is called an (algebraic)

semilattice, and the natural order simplifies to
e < fifand only if ef = e.

For any non-empty subset A of S, the intersection of all subsemigroups of S
containing A forms a subsemigroup of S, which we simply denote as (A), called the

subsemigroup of S generated by A. For example, if A = {a} is a singleton set, then
(a) = {a,a®,d®, ...},

which we call the monogenic subsemigroup of S generated by a. If S is a monoid,
then by working instead in the signature of monoids Lys,, the submonoid of S
generated by a non-empty set A is defined as the intersection of all the submonoids
of S containing A, and denoted by (A)s,. For example, if S is a monoid and a € S
then

(a)nro = {1, a,a’,a’,... }.

We define the order of an element a of a semigroup S as the cardinality of (a). Note
that, even if S is a monoid, our definition of order relies on (a) not (a)nr,. If a has
finite order then the sequence (a™),en contains repetitions, and we can define the

index of a, say m, to be the least element of
{reN:(FyeN)a® =a’,z #y}
It then follows that the set
{reN:a™™ =a™}
is non-empty, and has a least element r, known as the period of a.

Lemma 2.1.4. [55, Theorem 1.2.2] Let a be an element of a semigroup S of index

m and period r, so that a™ " = a™. Then:
(i) a™t9" = a™ for all ¢ € N;

(ii) (a) = {a,a?,...,a™" 1} and the order of a ism +r —1;
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(iii) the subset K, = {a™,...,a™" =1} of {a) is a cyclic group of order r. In

particular, K, contains an idempotent of S.

On the other hand, if @ € S has infinite order then there are no repetitions in
a,a?, a3, ..., and it follows that (a) is isomorphic to the semigroup (N, +) of natural
numbers under addition.

A semigroup in which all elements have finite order is called periodic, otherwise

it is called non-periodic.

2.2 Morphisms, congruences and direct products

By applying Definition 1.1.7 to the signature Lg, we obtain the concept of mor-
phisms between semigroups as follows. Given a pair of semigroups S and 7', a map

¢ : S — T is a morphism if it preserves the operation on S, that is, if

(Vz,y € S) (29)(yo) = (zy)¢.

Note that if S is a semigroup and ¢ is an endomorphism of S then we can
extend ¢ to an endomorphism of S!, simply by fixing 1. That is, take the map
¢ : S* — S given by ¢/|s = ¢ and 1¢ = 1. Dually we may extend endomorphisms
of S to endomorphisms of SY.

A relation o on a semigroup S is left compatible (with the operation on S) if
(Vz,y,z € S) (x,y) € 0 = (2z,2y) € 0.
Dually, o is right compatible if
(Vx,y,z€8) (z,y) € 0 = (x2,yz2) € o,
and is called compatible if
(Vz,y,2’,y € 8) |[(z,y) € o and (2/,y) € o] = (z2,yy) € 0.

An equivalence relation which is (left/right) compatible is called a (right/left)
congruence. Equivalently, an equivalence relation p is a congruence if and only if it
is a left and a right congruence.

Let o be a relation on a set X. Then the intersection of all congruences on X
containing o is a congruence, denoted o*, and is the unique minimum congruence on
X containing 0. We call of the congruence generated by o. We say that a congruence
p on a semigroup is finitely generated (f.g.) if there exits a finite relation o such
that p = of.
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There exists a particularly useful description of the congruence of, which we

now examine. Let ¢ be a relation on a semigroup S. If x,y € S are such that
T =uav, Y= ubv,

for some u,v € S, where either (a,b) € o or (b,a) € o, then we say that z is

connected to y by an elementary o-transition, denoted z — y.

Proposition 2.2.1. [55, Proposition 1.5.9] Let o be a relation on a semigroup S,
and let x,y € S. Then (x,y) € ot if and only if either x =y or, for some n € N,
there is a sequence

T=21 =22 > —=>2np=210

of elementary o-transitions connecting x to y.

If p is a congruence on a semigroup S then the binary operation on the set of

equivalence classes S/p given by

(ap)(bp) = (ab)p.

is well-defined and associative [55, Section 1.5]. Hence S/p forms a semigroup,

called a quotient semigroup. Clearly if S is a monoid, then so is S/p.

Given a proper ideal I of a semigroup .S, we define a relation p;y on S by
aprb <& eithera,be I or a=0.

Then p; forms a congruence, called the Rees congruence on S modulo I, and S/py
is called a Rees factor semigroup. Moreover, S/pr is a semigroup with zero element
I, and can be regarded as consisting of I together with the elements of S\ I with
product * given by

st if s, t,st € S\ 1,
Skt =
I else.

We write S/I instead of S/p; where no confusion can arise.

We apply our general definition of direct product of structures to Lg as follows.
Given a pair of semigroups S and So, then the direct product of S; and S5 is the

set S x Sy together with the (associative) operation
(s,t)(s,t) = (s8',tt),

so that S7 x S forms a semigroup.

If M =S8xTand M’ = S’ x T are a pair of direct products of semigroups, and
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¢:S8— S5 and ¢ : T — T’ are morphisms, then the map ® : M — M’ given by

(37 t)(I) = (S¢7 W)

is a morphism, which we denote as ¢ x 1. Clearly if ¢ and v are injective/surjective
then so is ¢ x .

We end the section by describing a second type of product of semigroups: spined
product. Let P and () be a pair of semigroups and § : P - M and ¢ : Q — M a
pair of surjective morphisms. Following [7], we define the spined product of P and
Q w.r.t. M to be the subset

PD<1M,9,¢Q:{(CL,Z))2a€P,bEQ,a9:b¢)}

of P x Q. The spined product P >z 4 @ forms a subsemigroup of P x Q.

2.3 Posets and semilattices

Let (X, <) be a poset. Then, given a subset Y of X, we call an element = of X a
lower bound of Y if x <Y. If the set of lower bounds of Y is non-empty and has a

maximum element y then we call y the meet of Y. If y exists, it is unique, and we

y:/\Y.

If Y = {a,b} then we simply write y = a A b.

denote it as

A lower semilattice is a poset in which the meet of any pair of elements exists. If
(Y, <) is a lower semilattice, then it is easily verifiable that (Y, A) forms a semigroup.
Furthermore, since xt Az = x and x Ay = y Ax for all z,y € Y, the semigroup
(Y,A) is an (algebraic) semilattice. We have proven the first half of the following

proposition.

Proposition 2.3.1. [55, Proposition 1.3.2] Let (Y, <) be a lower semilattice. Then

(Y, A) is an algebraic semilattice and
(Vx,yeY) xz<wyifandonlyifz Ny =x.

Conversely, if Y is an algebraic semilattice with natural order <, then (Y,<) is a

lower semilattice, where x N\ y = xy.

A lower semilattice (Y, <) can alternatively be considered as the structure
Y, <,n)

in the signature L;s = {<, A}, where < is a binary relation symbol, interpreted as
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the natural order, and A is a binary function symbol, interpreted as the meet. A
consequence of Proposition 2.3.1 is that, for many of the model theoretic notions
introduced in this thesis, it makes no difference to consider lower semilattices on
Lgor Lig.

Every linearly ordered set is a semilattice, where the meet function A is the
minimum of two elements. That is, every linear order (P, <) in the signature of

posets Lp may be regarded instead as a semilattice (P, <,A) in Lpg.

2.4 Green’s relations and regular elements

We now introduce a collection of relations on an arbitrary semigroup .S, known as
Green’s relations. Introduced by Green in [41], they describe the ideal structure of
S, and as such are fundamental to the study of semigroups.

Define the binary relations <;, <, and <; on S by

a<;b ifandonlyif S'aC S',

a <, b if and only if aS! C bSl,

a <; b if and only if Stast C S'pst.
The relations <;, <, and <; are called the Green’s left, left and two-sided orders,
respectively. Each relation is a reflective and transitive binary relation, which is

known as a quasi-order. Moreover, <;/<, is right/left compatible with the operation

on S. This follows immediately from the fact that
Ly, <L, and Ry < Rs (2.1)

for any a € S and z,y € S'.

The five Green’s relations are then given by:
(i) aLb if and only if S'a = Slb;
(ii) aRb if and only if aS! = bS?;
(ii) aHb if and only if aRb and aLb;
(iv) aDb if and only if Je such that aRcLb;
(v) aJb if and only if S'aS! = S1bS?t.

Each relation is an equivalence relation, with £, R and J being the corresponding
equivalence relations associated with <;,<, and <j;, respectively. Note that H =
LNR and D is the least equivalence relation containing £ and R. Moreover, £ and
R commute, with

D=LoR=RolL.
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It is clear that £ C 7 and R C J. Hence as D is the smallest equivalence relation
containing £ and R we have D C J. Figure 2.4 shows the corresponding Hasse

diagram.

J
A
L R
H
Figure 2.1: Hasse diagram of Green’s relations.

We call the equivalence classes of the Green’s relations the £L—, R— etc classes
of S. For each a € S we let L, denote the L-class containing a, and similarly
for Ry, Hy, Dy, J,. The three Green’s orders induce partial orders on the set of

equivalence classes of their corresponding Green’s relation as follows.

L, <L, ifandonlyif a<;b,
R, <Ry ifandonlyif a<,b,

Jo <Jp ifandonly if a <;b.

The D-classes of S are a union of the £-classes, and also a union of R-classes.

By the definition of the relation D we have
a'Db@LaﬂRb%@@RaﬂLb%@.

It therefore pays to visualize a D-class as an ‘eggbox’- a term coined by Clifford
and Preston. An eggbox is a grid in which each column represents an £-class, each
row represents a R-class, and each cell represents a H-class.

The following pair of results on the H-classes of S contained in the same egghox

are vital to the study of arbitrary D-classes of semigroups.

R, | a

Figure 2.2: D-class.
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Lemma 2.4.1. [55, Lemma 2.2.3] Let a,b be D-equivalent elements in a semigroup
S. Then |Hy| = |Hp|.

Theorem 2.4.2 (The Maximal Subgroup Theorem). [55, Corollary 2.2.6] If e is
an idempotent of a semigroup S then H. is a group with identity element e. No

H-class contains more than one idempotent.

An element a of a semigroup S is called regular if there exists b in S such that
a = aba. A semigroup is called regular if each of its elements is regular. Note that

if a = aba then ab and ba are idempotent as
(ab)(ab) = (aba)b = ab, (ba)(ba) = b(aba) = ba.

Example 2.4.3. Every group is regular as gg~'g = ¢g. Every band is regular since

eee = e for any idempotent e.

If a is a regular element, then it can be shown that every element in D, is regular,
and so we may speak of reqular D-classes without ambiguity. In particular, it follows

from Example 2.4.3 that every D-class containing an idempotent is regular.

Proposition 2.4.4. [55, Propositions 2.3.2, 2.3.3] In a regular D-class, each L-
class and each R-class contains an tdempotent. Moreover, every idempotent e is a
right identity for L, and a left identity for Re.

If a is an element of a semigroup S, then we say that a’ is an inverse of a if
!/ / / /
a=aaa, a =dadaa.

Of course every element with an inverse is regular. Conversely, regular elements
possess inverses, since if a = aba is regular then a’ = bab can be shown to be an

inverse of a. For each a € S we let V(a) denote the set of inverses of a.

Example 2.4.5. If S is a group then V(a) = {a=!} for any a € S. If N is a null
semigroup, then 0 is regular since it is an idempotent, and if a € N \ {0} then
aba = 0 for any b € S. It follows that V(a) = () for any a € N\ {0} and V(0) = {0}.

The following theorem gives a useful method for locating inverses of elements

in a semigroup.

Theorem 2.4.6. [55, Theorem 2.3.4] Let a be an element of a semigroup S con-

tained in a reqular D class D.

(i) If o’ € V(a), then o’ € D and the H-classes Ry, N Ly and L, N Ry contain

the idempotents aa’ and a’a, respectively.

(ii) Ifb € D is such that R,NLy and LoN Ry contain idempotents e, f, respectively,

then Hy contains an inverse a”’ of a such that aa” = e and a”a = f.
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(iii) No H-class contains more than one inverse of a.

We end this section by giving a pair of results which are of considerable use in
our later work. They dictate how the idempotents and the maximal subgroups of

a semigroup behave within a D-class.

Proposition 2.4.7. [55, Proposition 2.3.5] Let e, f be a pair of idempotents in a
semigroup S. Then eD f if and only if there exists a € S and a' € V(a) such that

Proposition 2.4.8. [55, Proposition 2.3.6] If H and H' are a pair of group H-

classes in the same D-class then H = H'.

2.5 0-simple semigroups and principal factors

A semigroup is called simple if it has no proper ideals. This is equivalent to a
semigroup having a single [J-class. A simple semigroup is completely simple if it
contains an idempotent which is minimal within the set of idempotents E(S) of S

under the natural order. That is, if it contains an idempotent e such that

(Vf e E(S)) ef=fe=f=f=e

A semigroup with a single D-class is called bisimple. Clearly every bisimple semi-
group is simple.

A semigroup with zero S is called 0-simple if {0} and S are its only ideals and
S? # {0}. This is equivalent to S not being a null semigroup and {0} and S\ {0}
being its only J-classes. A O-simple semigroup is called completely 0-simple if it
contains an idempotent which is minimal within the set of non-zero idempotents.

That is, if it contains an idempotent e such that

(VfeE(S) ef=fe=f#0=e=f.

We call such an idempotent primitive. It is known that a finite O-simple semigroup
is completely 0-simple, and every completely (0-)simple semigroup is regular.

We now describe a well known decomposition theorem of an arbitrary semigroup,
which highlights the importance of O-simple and simple semigroups to the theory of
semigroups. For each element a of a semigroup S, let J(a) = S'aS* and consider
the set

I(a) = J(a)\ Jqg-

If I(a) is empty, then J(a) = J, is the unique minimal ideal of S, which we call the
kernel of S, and is denoted K (.S). Note that such an ideal may not exist. If I(a)
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is non-empty then it forms an ideal of S, and thus also of J(a). The Rees factor
semigroups J(a)/I(a) (a € S) and K(S) are called the principal factors of S.

Theorem 2.5.1. [20, Lemma 2.39] The principal factors of a semigroup are either

0-simple, simple or null. The only simple principal factor is the kernel, if it exists.

Of course, for Theorem 2.5.1 to be of use we require a deeper understanding of
(0-)simple semigroups. The most famous breakthrough in this area came in 1940 by
Rees [78], where a recipe for constructing all completely 0-simple semigroups was

given. This result is commonly known as the Rees Theorem, which we now state.

Theorem 2.5.2 (The Rees Theorem). Let G be a group, let I and A be non-
empty index sets and let P = (py;) be an A x I matriz with entries in G U {0}.

Suppose no row or column of P consists entirely of zeros (that is, P is regqular). Let
S = (I x G x A)U{0}, and define multiplication x on S by

(i,9,\) * (j, h, p) = { (i, gpajh, i) if pa; #0

0 else

0% (i,9,\) = (4,9, \) x0=0%0=0.

Then S is a completely 0-simple semigroup, denoted M°[G; I, A; P], and is called a
(regular) Rees matriz semigroup (over G). Conversely, every completely 0-simple

semigroup is isomorphic to a Rees matrix semigroup.

The matrix P is called the sandwich matriz of S. The regularity of the matrix
P ensures that S forms a regular semigroup.
The strength in the Rees Theorem is that it permits a relatively simple isomor-

phism theorem, which follows from [55, Section 3.4].

Theorem 2.5.3. Let Sy = M°[Gy;I1,A1; P] and So = M°[Ga; Iz, A2; Q) be a pair
of Rees matriz semigroups where P = (py;) and Q = (q,;). Let ¥r : Iy — Iy and
YA 2 A1 — Ay be bijections, let 0 : Gu — Ga be an isomorphism and let u; and v,
be elements of Gy for each i € I1,\ € Ay. Then the mapping ¢ : S1 — So given by

(i7gv )‘)¢ - (iwh Us - (gH) T UN, )‘w/\)
is an isomorphism if and only if
Pri 0= U @iy - Ui

Moreover, every isomorphism from S1 to Sy can be described in this way.

Consequently, if S = MY[G; 1, A; P] is a Rees matrix semigroup then the rows
and columns of P can be permuted to obtain an isomorphic Rees matrix semigroup.

Formally, let ¢r and 15 be bijections of I and A, respectively, and let @ = (¢);) be
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the A x I matrix with ¢\ ; = Pyt it foreachi € I,A € A. Let u; =1 = vy, for
each i € I, A € A and let 8 be the identity automorphism of G. Then the mapping
¢: S — MO[G; 1, A; Q] given by

(4,9, \)¢ = (i1, ui(g0)vx, Mpa) = (irh1, g, M)

is an isomorphism by Theorem 2.5.3 since py ;0 = px; = VAQ i, Ui-

A non-trivial completely simple semigroup may be regarded as a completely
0-simple semigroup simply by adjoining a zero. However, it is worth noting that
not every completely 0-simple semigroups arises in this way, as the Rees Theorem

indicates. A simplified Rees Theorem for completely simple semigroups then follows:

Theorem 2.5.4. Let G be a group, let I and A be non-empty index sets and let
P = (px;) be an A x I matriz with entries in G. Let S = I x G x A, and define

multiplication x on S by

(Zagv)\) * (],hvﬂ) = (Lgp)\vjh”u')

Then S is a completely simple semigroup, denoted M|G; I, A; P]. Conversely, every

completely simple semigroup is isomorphic to a semigroup constructed in this way.

Notice that by adjoining a zero to a completely simple semigroup M|G; I, A; P]

we may apply a suitably simplified version of Theorem 2.5.3.

2.6 Semigroup and monoid presentations

Let A be a non-empty set. Let AT be the set of all finite, non-empty words
aias - - - a, formed from the alphabet A. Then A™ forms a semigroup with respect

to the binary operation of juxtaposition of words
(arag---ap)(biba -+ by) = arag -+ - apbiby - - by,

called the free semigroup on A. The set A is the unique minimal generating set
of AT. By adjoining an identity 1 to the free semigroup A", we attain the free
monoid, denoted A*. The element 1 corresponds to the empty product of elements
of A.

If S is a semigroup generated by a set A, then there exists a congruence p on
AT such that S is isomorphic to AT /p. If A is finite and there exists a finite set

R = {(ul,vl), ceey (ur,vr)} € AT x AT

such that S = A%/RF then S is called finitely presented, and that it has finite
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presentation

(A:uy =01, ..., up = Up).

We define a finitely presented monoid by replacing AT with A* in the definition

above.

Example 2.6.1. An example paramount to our study is the bicyclic monoid B, a

finitely presented monoid presented by

B = (p,q:pq=1)nr0,

so that B = {p, ¢}*/R* where R = {(pq,1)}. Note that B is simple, regular (indeed
inverse - see later) but not completely simple as its idempotents form an infinite

descending chain, and thus no principal idempotents exist.

2.7 Semilattices of semigroups

In this section we introduce the most important semigroup construction in this
thesis, and certainly the most used. Let Y be a semilattice. A semigroup S is a
semilattice Y of semigroups S, (v € Y) if S is the disjoint union of the semigroups
S, and, for each a, 8 € Y, we have

508 C Sag- (2.2)

The semilattice Y is called the structure semilattice of S. We follow the usual
convention of denoting an element a of S, as a,.

If S = Uyey Sa is a semilattice of semigroups, then the map o5 : S — Y
given by s,05 = « is a morphism since if o, 8 € Y and z, € S4,ys € Sg, then
Talyp € Sap, SO that

(zayplos = aff = (za0s)(ysos).

Let T' = |J,cy Ta be a semilattice of semigroups, with the same structure semilattice

as S. Then the spined product of S and T w.r.t. Y is given by
{(s,t) :s€ S,t €T, s05 =tor} ={(Sarta) : Sa € Sa,ta € Ta,a € Y},

which we denote by S T.

Notice that, by (2.2), we understand the ‘global’ structure of a semilattice Y of
semigroups Sy, but not its local structure. That is, given z € S, and y € Sg, we
know that xy lies in Sy, but not its exact location. One method for describing a

‘local’ structure is as follows.
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Let Y be a semilattice and let < be the natural order on Y. To each v € Y
associate a semigroup S,, and assume that S, NSz = 0 if o # B. For each pair
a,f €Y with a > B, let 9,5 : So — Sz be a morphism, and assume that the

following conditions hold:

forall @ € Y, Y0 = 1s,, (2.3)
for all a, B,v € Y such that a > 8 >, (2.4)
¢a,ﬂwﬂ,7 = ¢a,'y-

On the set S = (J,cy Sa define a multiplication by

a* b= (aa,as)(bVs,a8)

for a € S,,b € Sg, and denote the resulting structure by S = [Y'; Sq;¢q,p]. Then S
is a semigroup, and is called a strong semilattice Y of the semigroups S, (o € Y).
The semigroups S, are often referred to as the components of S. Note that S is
certainly a semilattice of the semigroups S, (o € Y).

The idempotents of S = [Y; Sa;%4,5] are given by E(S) = J,ey £(Sa), and if
E(S) forms a subsemigroup of S then

E(S) = [Y; E(Sa); Ya,s

E(Sa)-

We build morphisms between strong semilattices of semigroups in a natural way as

follows. The result is well known, but is proven here for completeness.

Theorem 2.7.1. Let S = [Y;S4;%ap] and T = [Z;Ty; 00| be a pair of strong
semilattices of semigroups. Let w:Y — Z be a morphism and, for each o € Y, let

O : Sa — Tor be a morphism. Assume further that for any o > 3, the diagram

S., _Oa Tor (2.5)

\L"Z}Q,B lﬂoamﬁﬂ—
05

Sﬁ — 13

commutes. Then the map 0 = J,cy o is a morphism from S into T, denoted
0 = [0a, T)acy .- Moreover, 6 is injective/surjective if and only if m and each 0, are

injective/surjective.

Proof. Let 0 be constructed as above. For a € S, and b € Sg we have

(a@)(b&) = (Cbga)(bgg) = (aeagpom,(aﬁ)ﬂ)(beﬁ(pﬁﬂ,(a/o’)ﬂ')
= (a¥a,080p) (0V5,08008) = ((0a,a8)(D5,0p))bap
= (ab)bop = (ab)0,
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and so @ is a morphism. The final result is easily shown. O

We denote the diagram (2.5) by [«, B; o, B7], or [a, B; arr, f7]° if the semigroup
S needs highlighting. The morphism 7 is called the induced (semilattice) morphism
from Y to Z. Note that for any morphism 7 : Y — Z and morphisms 6, : S, — Tox

(o €Y) then the diagram [o, o; ar, ] commutes for any o € Y since

¢a,a9a = 15(1904 =0q = OoleO(7T = Ha@aﬂ,om-

Consequently, we need only check that the diagram [« 3; amr, f7] commutes for each
a > . We use this fact throughout this thesis.

Unfortunately, not all morphisms between strong semilattices of semigroups can
be constructed as in Theorem 2.7.1. We call a class IC of strong semilattices of semi-
groups morphism-pure if every morphism (and thus every isomorphism) between
members of IC can be constructed as in Theorem 2.7.1. We call a strong semilattice
of semigroups S automorphism-pure if every automorphism of S can be constructed
as in Theorem 2.7.1. Hence if L = {S} is morphism-pure then S is automorphism-

pure.

2.8 Inverse semigroups

A semigroup S is inverse if every element has a unique inverse. Every group is
inverse, but the class of inverse semigroups is far broader than the class of groups.

The property of being inverse has a number of useful equivalent statements:

Theorem 2.8.1. [55, Theorem 5.1.1] Let S be a semigroup. Then the following are

equivalent:
(i) S is inverse;
(ii) S is regular, and its idempotents commute;
(iii) every L-class and every R-class contains a unique idempotent.

The following collection of basic facts of inverse semigroups is from [55, Chapter
5].

Proposition 2.8.2. Let S be a semigroup with set of idempotents E(S). Then

(i) E(S) forms a semilattice;

1 -1

(i) (™)' =a and (a1a2...a,) " =a;' - ayta;t for every a,ay, ... a, in S

(iii) aRb if and only if aa™' = bb~'; a Lb if and only if a='a = b~'b;
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iv) ife, f € E(S) then eD f if and only if there exists a € S such that aa=! = e
(iv) ife, f (S) I y if

and a 'a = f.

Every inverse semigroup S comes equipped with a partial order < defined by
a < b if and only if there exists e € E(S) such that a = eb.

We call < the natural order on S. Equivalently, a < b if and only if @ = aa™'b, and
we refer the reader to [55, Proposition 5.2.1] for a number of other characterizations
of <. Note that < reduces to the natural order on the semilattice E(S). Moreover,
the natural order restricts to equality on maximal subgroups, since if a,b € H, for
some e € E(S) then

a<bsa=ar 'besa=ebsa=0.
The natural order is compatible with the multiplication of S, so that,
a<band ce S = ac < bc and ca < cb.

Example 2.8.3. The bicyclic monoid B = (p, q : pqg = 1)y, is an inverse semigroup

1

with a single D-class and p~" = ¢. The idempotents of B form a chain given by

l=qg>q>¢p* >¢p*>---.

The second class of inverse semigroups we study are Clifford semigroups. An
inverse semigroup S is called Clifford if E(S) is central, that is, idempotents com-
mute with every element of S. The property of being Clifford has a number of

alternative statements, and the following list is in no way complete.

Theorem 2.8.4. [55, Theorem 4.2.1] Let S be a semigroup. Then the following

statements are equivalent:
(i) S is a Clifford semigroup;
(ii) S is a semilattice of groups;

(iii) S is a strong semilattice of groups;

(iv) S is regular and each D-class is a group;
(v) S is inverse and xx~! = 7 lx for all x € S.

Let S = [Y;Gq;va,p] be a Clifford semigroup. Then #H forms a congruence on
S with S/H = E(S). Furthermore, the natural order < on S is equivalent to

aq > bg if and only if o > 3 and aq¥, = bg
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for each aq,bg € S.

2.9 Unary semigroups, I-semigroups and varieties

A semigroup equipped with a unary function a — @’ is called a unary semigroup.
The signature of unary semigroups is defined to be the signature Lygs = {-, }, where
- is a binary function symbol and ’ is a unary function symbol.

A unary semigroup S is called an I-semigroup if
(") =a, ada=a,

for all @ € S, so that d’ is an inverse of a. Since we are studying [-semigroups in
the signature Lyg, concepts such as substructure, morphisms and direct products

of I-semigroups can be deduced from Preliminaries I.

Example 2.9.1. By Proposition 2.8.2, an inverse semigroup forms an /-semigroup,
with unary function a — a’. A band can trivially be regarded as an I-semigroup,

with identity unary function e — e.

A non-empty class V of I-semigroups is a variety if it is closed under morphic

images, I-subsemigroups and direct product, that is:
(1) f SeVand ¢: S — T is a morphism, then T € V;
(2) if S €V and T is an I-subsemigroup of S, then T" € V;
(3) if S; €V (i €I), then [[;c; 5 € V.

A subvariety of a variety V of I-semigroups is a subclass of V which is itself a variety
of I-semigroups.

Let A be a non-empty set, and let F51(A) be the set of all finite, non-empty
words in the alphabet AU {(,), }, defined by the rules:

(1) AC Fp1(A);
(2) ifae FQJ(A) then ((I)/ S FQJ(A);
(3) if a,be FQJ(A) then (a)(b) S F271(A).

Let u,v € F51(A), and let S be an I-semigroup. Then every map ¢ : A — S
can be shown to extend to a morphism ¢ : F51(A) — S. We say that S satisfies
the identity u = v if u¢p = v¢ for every map ¢ : A — S. That is, S satisfies u = v if
we obtain equality in S for every substitution in u and v by elements of S.

Let £ be a class of I-semigroups. Suppose there exists a countable set A and
R C F51(A) x F51(A) such that, for any I-semigroup S, we have S € £ if and
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only if S satisfies the identity u = v for each (u,v) € R. Then £ is called an
equational class, defined by the identities u = v for each (u,v) € R. In the context
of I-semigroups, the properties of a class of I-semigroups being a variety and being
an equational class are equivalent. We denote the variety defined by the identities
up = vi,Up = Vg,... as [u; = vi,up = va,...]. When listing the identities of a

variety of I-semigroups, the identities
2(yz) = (2y)z, (') =z, x2'z=u2x,

are taken as read. Examples include:

completely simple semigroups: CS = [v2' = o'z, zyx(xyz) = 22];
inverse semigroups: T = [z2'yy' = yy'x2'];

Clifford semigroups: CL = [vx' = 2z, z2'yy = yy'z2');
groups: G = [za' = yy].

Our work on varieties of I-semigroups can be generalized, and in particular can
be simplified to consider varieties of semigroups. For varieties of semigroups the

identity x(yz) = (zy)z is taken as read:

commutative semigroups:  C = [xy = yzl;
semilattices: SL =[x =z, 2y = yxl;
null semigroup: Z =[xy = zt].

However, the class of inverse semigroups does not form a wvariety of semigroups since
a subsemigroup of an inverse semigroup need not be inverse. This is crucial in the

context of homogeneity, which is explored in Chapter 6.

2.10 Bands

Much of the early work on bands was to determine their lattice of varieties; a feat
that was independently completed by Biryukov [9], Fennemore [31] and Gerhard
[33]. In addition, Fennemore determined all identities on bands, showing that every
variety of bands can be defined by a single identity. The lower part of the lattice

of varieties of bands, as shown in Figure 2.3, contains the following varieties which
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are required for our work:

left zero bands:
right zero bands:
rectangular bands:
semilattices:

left normal bands:

right normal bands:

normal bands:

left regular bands:

right regular bands:

regular bands:
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LZ =[xy = zl;
RZ =[xy = yl;
RB=LZVRZ = [xyx = z];

where the given relation characterizes the variety in the variety of bands, so the

identity 22 = x is given as read. The varieties [zzy = zz2y] and [yrz = yzaz]

are known as the varieties of left quasi-normal bands and right quasi-normal bands,

respectively, and are not required for this thesis.

Figure 2.3: Lower part of the lattice of varieties of bands.

We proceed to give alternative descriptions of a number of these varieties. Along

with semilattices, a variety of bands required for the construction of an arbitrary

band are rectangular bands, that is, bands satisfying the identity zyxz = x. A band

is rectangular if and only if it contains a single D-class, and is thus simple. Similarly,

left zero bands are precisely the bands with a single £-class, dually for right zero

bands.

The first fact on rectangular bands given in the proposition below is taken from
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[65, Theorem 1.1.3], the others are easily shown.

Proposition 2.10.1. Let L be a left zero semigroup and R a right zero semigroup.

Then Br.r = L x R forms a rectangular band, and the operation is given by

(,4) - (k, €) = (i, 0).

Conversely, every rectangular band is isomorphic to some By, g. The left and right

Green’s relations on Br, r simplify to
(1,7)) R (k,0) & i=Fk and (i,5) L(k,0) & j =1,
and B g forms an antichain under the natural order, so that
e< fee=f.

Consequently, rectangular bands are completely simple, and we can alternatively
consider the semigroup By r as M[{1};|L|, |R|; P], where {1} is the trivial group,
so that py; =1 for all i € I, A € A (although this form will not be used here). An
isomorphism theorem for rectangular bands follows immediately from [55, Corollary
4.4.3], and is stated below.

Proposition 2.10.2. A pair of rectangular bands By, r and By g are isomorphic
if and only if |L| = |L'| and |R| = |R'|. Moreover, if ¢r,: L — L' and ¢p: R — R’
are a pair of bijections, then the map ¢ : By, g — B/ r defined by

(i,5)¢ = (idL, j¢R)

is an isomorphism. Every isomorphism from Bp g to Brs g can be constructed in
this way, and is denoted ¢ = ¢, X PR.

For each n,m € N* = NU {R¢}, we let B, ;, denote the unique, up to isomor-
phism, rectangular band with n R-classes and m L-classes.

A structure theorem for bands was achieved by McLean in [63]:

Proposition 2.10.3. Let B be an arbitrary band. Then D is a congruence on
B and Y = S/D is a semilattice. Moreover, B = |J,cy Ba is a semilattice of

rectangular bands B, which are the D-classes of B.

By studying strong semilattices of rectangular bands we obtain alternative de-
scriptions of the varieties LN, RN and N.

Lemma 2.10.4. [55, Section 4.6] A band is normal if and only if it is isomorphic
to a strong semilattice of rectangular bands. A band is left (right) normal if and
only if it is a normal band with D-classes being left (right) zero, that is, if and only

if it is isomorphic to a strong semilattice of left (right) zero bands.
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2.11 Completely regular semigroups

In this section we describe a class of semigroups which generalize both Clifford
semigroups and bands.

A semigroup S is called completely reqular if every H-class is a group. Every ele-
ment a of a completely regular semigroup .S has an inverse with which it commutes,

1

namely its inverse in the group H,. We denote such an inverse as a=. Conse-

quently, every completely regular semigroup S has a unary operation a — a~! so
that S may be regarded as an I-semigroup. Furthermore, as we have remarked, the
class of completely regular semigroups forms an I-variety, which we call the variety

of completely reqular semigroups, defined by the identity zz’ = 2/x.

Theorem 2.11.1. [72, Theorem I1.1.4] A semigroup S is completely regular if and

only if S is a semilattice of completely simple semigroups.

If S = Uaey Sa is a completely regular semigroup then S/D = Y and the
completely simple semigroups S, are the D-classes of S. Each Green’s relation will
be shown to be preserved under morphisms in Chapter 3, and we thus have the

following result on morphisms between completely regular semigroups.

Proposition 2.11.2. Let S = {J ey Sa and T = {J ey Tor be a pair of completely
reqular semigroups, and ¢ : S — T a morphism between them. Then there exists
a morphism 7 :' Y — Y and morphisms ¢o : Sq — Tar for each o € Y such that

¢ = Uaey @a- Moreover, if ¢ is surjective/injective, then so are m and ¢q.

Following Theorem 2.7.1, we call the morphism 7 the induced semilattice mor-
phism of ¢. We may build isomorphisms between spined products of completely

regular semigroups via isomorphisms of their induced semilattices as follows.

Proposition 2.11.3. Let S; = U,y S and T; = Uareyr T be completely reg-
ular semigroups for i = 1,2. Let ¢; : S; — T; (i = 1,2) be a pair of isomor-
phisms, both with induced semilattice isomorphism ¢ :'Y — Y'. Then the map
X : S1xa Sy — 11 <1 Ty given by

(Gas o)X = (g1, had2) (9o € SV, ho € SP,a € Y)

s an tsomorphism.

A completely regular semigroup in which H is a congruence is called a cryp-
togroup. A normal cryptogroup is a cryptogroup S in which S/H forms a normal
band.

Example 2.11.4. Let S be a Clifford semigroup. Then the quotient S/H is a
semilattice, and is therefore a normal band. Hence every Clifford semigroup is a

normal cryptogroup.
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Example 2.11.5. The H-relation on a band is trivial, and so every band is a
cryptogroup. It is then trivial that a band is a normal cryptogroup if and only if it

is normal.

The fact that Clifford semigroups and normal bands are normal cryptogroups
are not random occurrences, and point towards the following alternative description

of normal cryptogroups.

Theorem 2.11.6. [72, Theorem IV.1.6] A semigroup is a normal cryptogroup if

and only if it is a strong semilattice of completely simple semigroups.

The justification for studying normal cryptogroups, and not strong semilattices
of arbitrary semigroups, is immediate from the following lemma, which follows from
[72, Lemma IV.1.8].

Lemma 2.11.7. The class of all strong semilattices of completely simple semigroups
is morphism-pure. Consequently, the same is true for the class of strong semilattices

of normal bands and the class of strong semilattices of groups.



Chapter 3

N-categorical semigroups

This chapter investigates the form of an Ng-categorical semigroup, as well as meth-
ods for constructing Ng-categorical semigroups from Ry-categorical components.

Throughout the rest of this thesis, all structures are assumed to be countable.

3.1 Historical background

In this section we give a brief historical survey of Ng-categorical structures. Orig-
inally, the concept of Ny-categoricity was purely of interest to logicians from a
model theoretic standpoint. A shift in direction came in 1959 with the much cele-
brated Ryll-Nardzewski Theorem. This result gives a number of characterisations of
Ng-categoricity, and in particular translates the concept to an algebraic viewpoint.
Since the publication of the Ryll-Nardzewski Theorem, it has motivated both model
theorists and algebraists to examine Ng-categoricity for a variety of structures.

The Ny-categoricity of linear orders were studied by Rosenstein in [83], and
a complete characterisation was achieved. Every Ng-categorical linear order was
shown to be finitely axiomatizable. The Ng-categoricity of arbitrary posets were
considered by Grzegorczyk [43], although no full description has been found. Exam-
ples of Ng-categorical relational structures also arose from studies into homogeneous
relational structures by Theorem 1.2.26.

For algebraic structures, the difficulty in achieving full classifications was ap-
parent from the start, although great progress has been made for groups and rings
by a number of authors. The early work of Wy-categorical rings was started by
Baldwin and Rose in [5], where the Jacobson radical of an Rg-categorical ring was
analysed, and by Macintyre and Rosenstein in [67], where a complete classification
of Ngp-categorical rings with 1 and without non-zero nilpotent elements was achieved.
Further studies were made in [14, 15, 60].

It is worthwhile going over the history of Wyp-categorical groups in greater de-

tail, since the Ng-categoricity of a semigroup will be seen to pass to its maximal

o7



58 CHAPTER 3. Ro-CATEGORICAL SEMIGROUPS

subgroups. Rosenstein was one of the first to examine Ny-categoricity for groups in
1973 in his seminal paper [84]. Here, Rosenstein considered the Ng-categoricity of
direct products of groups, direct limits of groups, and Burnside groups. Addition-
ally, a complete classification of Ng-categorical abelian groups were determined as

follows.

Proposition 3.1.1. An abelian group G is Ro-categorical if and only if it is of finite
exponent, that is, there exists a positive integer n such that ¢" = 1 for all g € G;

the least such n is the exponent of G.

This gives us a useful pool of infinite Ny-categorical groups, such as the group
@Dn Z2, and indeed any countably infinite direct sum of a finite abelian group.

Non-abelian examples of Ng-categorical groups arose from the work of Sabbagh
[89]. Here, Sabbagh showed that the group GL,(R), of invertible n x n matrices
with coefficients in R, is Ng-categorical when R is an Ng-categorical ring.

In [70], Olin constructed an example of an Np-categorical group with a non Ro-
categorical subgroup. In [1], Apps reduced the problem of classifying R¢-categorical
characteristically simple groups (that is, groups which contains no proper character-
istic subgroups) to studying non-abelian p-groups, and it is conjectured that no non-
abelian Rg-categorical p-groups exist. Further studies were made in [2, 4, 13, 30, 85].
Examples of Ng-categorical non-abelian groups also arise from studies into homoge-
neous groups, which will be discussed in the next chapter. Of course, unlike with
relational structures, we are required to restrict our attention to ULF homogeneous
groups.

Our final example is of a preservation theorem, attained by Grzegorczyk in [42],

which states that Ny-categoricity is preserved under finite direct product.

Proposition 3.1.2. Let M and N be a pair of Ng-categorical L-structures. Then
the L-structure M x N is Rg-categorical.

However little is known in the case of semigroups, and this chapter is an attempt
to bridge this gap in knowledge. Unless stated otherwise, we will assume throughout

this chapter that semigroups are Lg-structures.

3.2 Methods for proving Ny-categoricity

Recall that a (countable) structure M is Rg-categorical if every countable model of
Th(M) is isomorphic to M. In particular, a semigroup is Rg-categorical if it can be
characterized, within the class of countable semigroups, by its first order properties
up to isomorphism. To show that a semigroup S is Ng-categorical it suffices to find

a list T of first order properties of .S which no non-isomorphic, countable semigroup
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shares. The set T can be thought of as a set of axioms of S, or as a first order
definition of S.

Example 3.2.1. A countably infinite null semigroup N is Rg-categorical. To see
this, we note that two null semigroups are isomorphic if and only if they have the

same cardinality. Hence, if we define an infinite theory 1" by
(1) (Va)(vb)(Vc)[a(be) = (ab)cl;

(2) (a)(Vz)(Vy)lry = al;
(3) =(Fz1)3Fx2) - Fxn) YY)y =21 Vy =22V -+ Vy = 2] for each n > 1;

then N models T" and any countable model M of T is a null semigroup by (1) and
(2), and is infinite by (3), so that N = M.

However, at this stage proving that a semigroup is not Ngp-categorical would
require computing its full theory. We instead turn to the aforementioned Ryll-
Nardzewski Theorem (RNT), proven independently by Engeler [28], Ryll-Nardzewski
[88], and Svenonius [95]. For our study we require only one of the given character-
isations of Ny-categoricity, which relies on the following terminology.

Given a structure M, and n-tuples a = (ai,...,a,) and b = (by,...,b,) of M,
then we say that a is automorphically equivalent to/has the same n-automorphism
type as b (in M) if there exists an automorphism ¢ of M such that a¢ = b (so that
a;¢ = b; for each 7). That is, a pair of n-tuples are automorphically equivalent if
they lie in the same orbit of the natural group action of Aut(M) on M™. We denote
this equivalence relation by a ~as, b. We call Aut(M) oligomorphic if there are

only finitely many orbits in its action on M™ for each n > 1.

Theorem 3.2.2. (Ryll-Nardzewski Theorem) A structure M is Ng-categorical if
and only if |M™/ ~nrq | is finite for each n > 1, that is, if Aut(M ) is oligomorphic.

To prove that a structure M is Ny-categorical, it thus suffices to show that, for
each n > 1, there exists a finite list of n-tuples a,..., Qr(n) of M such that every
n-tuple of M is automorphically-equivalent to an element of the list.

On the other hand, to show that M is not Ry-categorical it suffices to show that
there exists, for some n, an infinite set {a; | # € N} of n-tuples of M such that
a; ~Mn a; if and only if i = j.

An immediate consequence of the RNT is that all finite structures are Ng-
categorical, and as such our interest is in determining the Ny-categoricity of infinite
structures. A second consequence is that Ny-categoricity is preserved under reducts.

The result is well known, but it will be insightful outline a proof.

Corollary 3.2.3. Let L and L' be signatures with L C L'. If M is an Rg-categorical

L'-structure, then its L-reduct M|L is an Ng-categorical L-structure.
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Proof. If ¢ : N — N’ is an L'-morphism of L’-structures N and N’, then clearly
¢ is also an L-morphism ¢ : N|L — N’|L between the L-reducts of N and N’,
respectively. The result then follows immediately from the RNT. O

An immediate consequence of Theorem 1.2.26 is that an Ng-categorical structure
with quantifier elimination is ULF. We now show, via the RNT, that the statement
still holds without the condition of quantifier elimination. This result is given in [51,

Corollary 7.3.2], but is proven here only using our simplified RNT for completeness.
Corollary 3.2.4. Let M be an Ng-categorical structure. Then M is ULF.

Proof. We first show that M is locally finite. Suppose, seeking a contradiction,
that X = (x1,...,2,)n is infinite, and take an infinite list wy, wo,... of distinct

elements of X. For each ¢ € N, let w; be the (n + 1)-tuple of M given by
w; = (xlv ) xn,'LUi)-

Then as |[M"™"!/ ~ps 41 | is finite by the RNT, there exist i # j and an automor-
phism 6 of M such that w;0 = w;. Since each generator of X is fixed by 6, the
substructure X is pointwise fixed by Corollary 1.1.12. However, w; = w; and so
w; = wj, and we arrive at our desired contradiction.

Let A= (ai,...,an)p and B = (by,...,b,) s be a pair of n-generated substruc-
ture of M. If (a1,...,an) ~nn (b1,...,by) via ¢ € Aut(M), say, then it follows
again by Corollary 1.1.12 that A¢ = B. Hence the number of distinct cardinalities
of n-generated substructures of M is bound by |M™/ ~pr,, |, which is finite by the

RNT, and so M is ULF. O

The following lemma is immediate from a simple counting argument, and as

such the proof is omitted.

Lemma 3.2.5. Let X be a set and v1, ..., be a finite list of equivalence relations

on X with y1 N v2 N--- N~ contained in an equivalence relation o on X. Then

(x/ol < T X/l

1<i<r

We use the RNT in conjunction with Lemma 3.2.5 to prove that a structure M
is Ng-categorical in the following way. For each n € N, let 71,...,7, be a finite list

of equivalence relations on M™ such that M™ /~; is finite for each 1 <4 <r and

1Y Ny S~y -

A consequence of the two aforementioned results that M is Ng-categorical.
This method is used throughout this chapter, and is particular suited for the

building of an Ry-categorical structure from a given list of Ny-categorical structures.
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For simplicity we will reference this method as Lemma 3.2.5. Moreover, where no
confusion may arise, it will often be used in a less formal way as follows. A condition
imposed on n-tuples of M will naturally translate to an equivalence relation, and we
will say that a condition has finitely many choices if its corresponding equivalence

relation has finitely many equivalence classes.

Example 3.2.6. Given a structure M, we may impose a condition on a pair of
n-tuples of M which states that if a pair of entries in one of the tuples are equal
then the same is true for the other tuple, and conversely. Formally, we define an

equivalence , on M™ by
(@1,...,apn) 0y (b1,...,by) if and only if [a; = a; & b; = bj, for each ¢,7]. (3.1)

it is easy to see that a pair of n-tuples a and b are f,-equivalent if and only if there
exists a bijection ¢ of M such that a¢ = b. Notice that

a ~Mmn bﬁghnb;

and the number of f,-classes of M™ is equal to the number of ways of partitioning

a set of size n, which is finite!.

Example 3.2.7. If M is a set, regarded as an ()-structure, then automorphisms
of M are simply bijections. Since any bijection between subsets of a set can be
extended to a bijection of the whole set, it follows that ~js,= B,. Hence, as
|M™ /| is finite for each n, the set M is Rp-categorical.

Let M be an L-structure with subsets M; (i € I), where I is a countable set. For
each ¢ € I, let Q; be a unary relation symbol, where Q); is interpreted as M;, and
set L' = LU{Q1,Qo,...}. We denote M := (M; My, Ms,...) as the L'-structure
such that its L-reduct is M. Then the universes of M and M are equal and

Aut(M) = {¢p € Aut(M) : M;¢p = M; for each i € I}.

Moreover, by Corollary 3.2.3, if M is Rg-categorical, then so too is its reduct M.
We call M the {My, My, ... }-extension of M or simply a set-extension of M.

Lemma 3.2.8. Let M be a structure and {M; : i € I} a set of pairwise disjoint
subsets of M. If M = (M; My, Ms,...) is No-categorical, then I is finite.

Proof. Fix x; € M, for each i € I. If ; ~p; 1 x; for some i,j € I, via ¢ € Aut(M),
say, then M;¢ = M; and x;¢ = x; € M;. Since the subsets M; are pairwise disjoint,
this forces i = j, and so |I| is bound by the number of 1-automorphism types of M,

which is finite by the RNT. O

!The number of ways of partitioning a finite set of size n is denoted by B, and is called the nth
Bell number, named after E. T. Bell (for a formulation, see [87]).
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Corollary 3.2.9. If B is a rectangular band and B, ..., B, is a finite list of sub-
bands of B, then B = (B; By, ..., B;) is Rg-categorical. In particular, a rectangular

band is Ng-categorical.

Proof. Let B =L x R be a rectangular band, where L is a left zero semigroup and

R is a right zero semigroup. For each 1 < k < r, let

BL ={i € L: (i,j) € By for some j € R},
BE={j€R:(i,j) € By, for some i € L}.

Define a pair of equivalence relations oy, and og on L and R, respectively, by

iorLj < [i € BF < je BE, for each k],

iorj < [i € B < j € BE, for each k].
The equivalence classes of oy, are simply the set L\ J, <k<r B,f together with certain
intersections of the sets B,’; . Since r is finite, it follows that L/oy is finite, and

similarly R/op is finite. Let a = ((41,71)- - -, (in,Jn)) and b = ((k1,41), ..., (kn, ln))

be a pair of n-tuples of B under the four conditions that
(1) isor ks for each 1 < s < n,
(2) jsorls for each 1 < s <mn,
(3) (ixs - yin) bn (K1s - - Kn),
(4) G- sdn) i (1, - ),

where f,, is the equivalence relation given by (3.1) (in fact, f,, is used twice, on

different ground sets). By conditions (3) and (4), there exist bijections

quI{il,...,in}%{kl,...,kn} andgf)R:{jl,...,jn}%{fl,...,én}

given by is¢r = ks and js¢pr = ls for each 1 < s < n. By condition (1), we can
pick a bijection ®;, of L which extends ¢y and fixes each op-classes setwise, and
similarly construct ®z. Then ® = & X P is an automorphism of B by Proposition
2.10.2. Moreover, if (i,j) € By then i € B,f and as ior, (i®r) we have i®y, € B,f.
Dually, j € B,f‘ and as jogr (j®gr) we have jOp € B,f‘. Hence there exist £ € L and
r € R such that (i®p,r) and (¢, j®R) are in By, so that

(i(I)La r)(£7]q)R) = (Z(I)L,](I)R) € Bk

as By is a subband. We have thus shown that (i,7)® = (i®p,jPgr) € By, and so
B, ® C Bj,. We observe that ! = @Zl X @1}1 is also an automorphism of B with

@Zl and @;21 setwise fixing the op-classes and og-classes, respectively. Following
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our previous argument we have B,®~! C By, and so B,® = B, for each k. Thus

® is an automorphism of B, and is such that

(isajs)Cb = (isq)Lajs(I)R) = (is¢L7js¢R) = (k87€S)

for each 1 < s < n, so that a ~p, b. Hence, as each of the four conditions on
a and b have finitely many choices, it follows that B is Ng-categorical by Lemma
3.2.5. 0

Let M be a set, and M, ..., M, be subsets of M. Equip M with a binary op-
eration - such that z -y = x for all z,y € M, so that (M, ) is a left zero semigroup.
Since left zero semigroups are rectangular bands, and as subsets of left zero semi-
groups are easily shown to form subbands, we have that B = ((M,-); My, ..., M,)
is Np-categorical by the Corollary 3.2.9. Hence by taking the {Q1, ..., Q,}-reduct
of the {-,Q1, ..., Q,}-structure B, the same is true for (M; My, ..., M,) by Lemma
3.2.3. We have proven the following result.

Corollary 3.2.10. Let M be a set, and My, ..., M, be a finite list of subsets of M.
Then (M; My, ..., M,) is Xg-categorical.

Let M be a structure and ¥ a subgroup of Aut(M). Then we say that M is
No-categorical over W if U has only finitely many orbits in its action on M™ for each
n > 1. We denote the resulting equivalence relation on M™ as ~ s w n-

We observe that if My, Ms,... are subsets of M and M = {M; My, M, ...}
then the equivalence relations ~ ;s au(57),n and ~; , coincide (on the universe of
M). That is, Ng-categoricity over subgroups of the automorphism group of M can
be seen as generalizing Rg-categoricity of set-extensions of M.

The following simple consequence of the RNT is a generalization of Exercise
7.3.1in [51]:

Lemma 3.2.11. Let M be a structure and T = {t1,...,t,} a finite subset of M.
Let U be the subgroup of Aut(M ) consisting of automorphisms of M which fiz T
pointwise. Then for any subset X of M, we have that | X"/ ~np | is finite for
all n > 1 if and only if | X"/ ~nrwy | is finite for all n > 1. In particular, M is

RNo-categorical if and only if M is Ng-categorical over W.

Proof. Suppose | X"/ ~prp | is finite for all n > 1. Let a = (a1,...,a,) and
b= (by,...,b,) be n-tuples of X such that

(Q>t17 cee atr) ~M,n+r (batlw . atr)

via ¢ € Aut(M), say. Then ¢ fixes T pointwise, so that ¢ € W. Moreover, a¢p = b,
so that
X"/ ~awn | <X ~aee | < Ro.
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The converse and the case when M = X are immediate. O

If T = {t1,...,t,} then the lemma above may be restated, albeit in a rather
clumsy way, as M being Ng-categorical if and only if (M;{t1},...,{tn}) is No-

categorical.

Corollary 3.2.12. Let M be a structure and T a finite subset of M. Then M is
Ro-categorical if and only if, for each n € N, [(M \T)"/ ~nmp | is finite.

Proof. If M is Ng-categorical then |M™/ ~p,, | is finite by the RNT, and thus so
is [(MA\T)"/ ~nn |

For the converse, we first fix some notation. Let X be a subset of M and
z = (z1,...,2,) an n-tuple of M. Then we let

z[X]:={ke{l,...,n}:z, € X}

be the set of entries of z which lie in X. If z[X] = {ki,...,k-} is such that
k1 < ke < --- < k, then we obtain an r-tuple of X given by
X — (

x Thoys ey Thy)-

We also let ¥ be the subgroup of Aut(M) consisting of automorphisms of M which
fix T pointwise.
Let a and b be n-tuples of M under the conditions that

(3) QM\T ~ ML g MT| QM\T'

Conditions (1) and (2) have a total of (|T"|+1)" choices, which is finite since T"is. By
Lemma 3.2.11, condition (3) also has finitely many choices since |(M\T)™/ ~nrm |
is finite for each m by our hypothesis. The total number of choices is therefore
finite. By condition (3) there exists an automorphism ¢ of M fixing T' pointwise
and with a™ \TqS =pM \T' Since T is fixed pointwise we have a’ ¢ = o’ = b and it

follows that a¢ = b. The result is then immediate from Lemma 3.2.5. O

Our final method for proving Ng-categoricity will be applied to cases where we
can build automorphisms of our structure via isomorphisms between certain sub-
structures. For example, for a strong semilattice of semigroups S = [Y'; Sa; a5,
we can construct automorphisms of S from certain isomorphisms between the semi-
groups S, by Theorem 2.7.1. In this example we also require an automorphism
between the index set of the semigroups, that is, an automorphism of the semi-

lattice Y. Occurrences of automorphisms with this additional property will need
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to be considered in our method, so that it may be flexibly used for a variety of

semigroups.

Notation 3.2.13. Given a pair of structures M and M’ of the same signature, we
let Iso(M; M") denote the set of all isomorphisms from M onto M.

Definition 3.2.14. Let M be an L-structure with fixed substructure M’. Let
A = {M; :i € N} be a set of substructures of M’ indexed by some K-structure
N such that M" = (J;cy M;. Let Ni,..., N, be a finite partition of N. Set N =
(N;Ni,...,N;). For each i,j € N, let ¥; ; be a subset of Iso(M;; M;) under the

conditions that
(A) if 4,5 € Ni for some 1 < k < r then ¥; ; # 0,
(B) if ¢ € ¥;j and ¢’ € U, then ¢p¢' € ¥, 4,
(C) if ¢ € U, j then ¢~ € U,

(D) if 7 € Aut(N) and ¢; € U, ;, for each i € N, then there exists an automor-
phism of M extending the ¢;.

Then A is called an (M, M’; N; ¥)-system (in M), where ¥ = [J
M' = M then we may simply refer to this as an (M; N; ¥)-system.

v If

i,jJEN i+

By Condition (A) if 4, j € N}, for some k, then M; = M;. Hence the number of
isomorphism types in A4 is bounded by r. Moreover, by Conditions (A), (B) and (C)
that U;; is a subgroup of Aut(M;) for each ¢ € N. If the sets M; are not pairwise
disjoint, then Condition (D) should be met with caution. Indeed, if z € M; N M;
then taking 7 to be the identity map of N, we have that z¢; € M; N M; for all
automorphisms ¢; of M; (dually for j). However, for our work the sets M; will
mostly be pairwise disjoint, or will all intersect at a fixed point of M, which is also
fixed by every isomorphism between the M;. For example, M could be a semigroup
containing a zero, and 0 is the intersection of each of the sets M;.

Note also that no link needs to exist between the signatures L and K, and for
most of our examples they will be the signature of semigroups and the signature of
sets (the empty signature), respectively.

For the remainder of the chapter, we will reference condition (A) as Condition
3.2.14(A), and similarly for conditions (B),(C) and (D).

Lemma 3.2.15. Let M be a structure, and A = {M; :i € N} be an (M, M'; N;¥)-
system for some substructure M' of M. If N is Ro-categorical and each M; is

No-categorical over W; ; then
(M) ) ~an | < Ro

for each n > 1.
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Proof. Let ¥ =, jey Pij. Let N = (N;Ny,...,N,) and, for each 1 < k < r, fix
some my, € Nj. For each i € Ny, let 6; € U, ,,,, , noting that such an element exists
by Condition 3.2.14(A) on . Let a = (ay,...,ay) and b = (b1, ...,by) be a pair of
n-tuples of M', with a; € M;, and b; € Mj,, and such that

(ilv v aln) ~N,n (jb v 7]?7,)

via 7 € Aut(N), say. For each 1 < k < 7, let ig1,i2, .. ,%kn, be the entries of
(i1,...,1n) belonging to Ni, where k1 < k2 < --- < kng, and set

a, = (akl,... ,aknk) € (M,)nk

We similarly form each b, observing that as i;m = j; for each 1 < ¢ < n we have
that jk1,Jk2, ..., Jkn, are precisely the entries of (ji,...,Jn) belonging to Nj, so
that b, = (bk1, ..., bgn, ) for some by, € M'. Notice that as Ny, ..., N, partition N
we have n = ny +ng + -+ - + n,.. Since g, e € Ni for each 1 <t < ng, we have

that ait);,, and by:0;,, are elements of M,,,. We may thus suppose further that

(ar10iyys - @hny Oy ) ~ Moy o g (O6105015 -5 b 05, )

via o € U, m,, say (where if g, is a O-tuple, then we take any oy, € Wy, 1, ). For
each 1 < k <r and each ¢ € N, let

¢i = ;04051 « My — My,

noting that ¢; € VU, ;> by Conditions 3.2.14(B) and 3.2.14(C) on ¥, since 6;, 0y
and 0;, are elements of ¥. Hence, by Condition 3.2.14(D) on ¥, there exists an
automorphism ¢ of M extending each ¢;. For any 1 < k <r and any 1 <t < ng

we have

-1 —1
akt = aktGiy, = by, 010, = brbj,, 05 = bie,

and so a ~r, b via ¢. Since N is Rg-categorical and each M; are Xg-categorical
over V¥; ;, the conditions imposed on the tuples a and b have finitely many choices,

and so by from Lemma 3.2.5 we have |(M')"/ ~r,, | is finite. O

In particular, by Corollary 3.2.10, the structure N in the lemma above can
simply be an indexing set. In most cases we take M’ = M, and the result simplifies
accordingly by the RNT.

Corollary 3.2.16. Let M be a structure, and A= {M; :i € N} be an (M; N; ¥)-
system in M, where ¥ = Ui,jGN V. If N is Wo-categorical and each M; is No-

categorical over W; ; then M is Ng-categorical.
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3.3 Relatively characteristic subsets and substructures

We now study the substructure of an Rg-categorical structure. Our first interest is
in determining classes of substructures which inherit Ny-categoricity, and applying
these general results to the case of semigroups. As remarked in Section 3.1, No-
categoricity is not inherited by every substructure, and an example is given in [70].

We begin by considering characteristic substructures, that is, substructures

which are invariant under automorphisms of the structure.

Example 3.3.1. For any semigroup S, the subsemigroup generated by the idem-
potents, (F(S)), is a characteristic subsemigroup. Indeed, for any automorphism ¢
of S and e € E(S5),

(e¢)? = €9 = eg)

so that E(S)¢ C E(S). Similarly E(S)¢~! C E(S), and so E(S)¢ = E(S). Hence
?l(k(s)) is an automorphism of (E(S)) by Corollary 1.1.12 as required.

This easily generalizes as follows. If A is a characteristic subset of a structure
M then (A)js is a characteristic substructure of M.

It is clear that the Ng-categoricity of a structure passes to characteristic sub-
structures. However the condition on a subset/substructures to be characteristic
is too restrictive, since many key subsemigroups of a semigroup, such as maximal
subgroups and principal ideals, are excluded. We instead study a weaker condition,
but one in which Ng-categoricity is still preserved. Our definition is motivated by

the Green’s classes of a semigroup.

Definition 3.3.2. Let M be a structure and, for some fixed t € N, let {X, : 7 € I}
be a collection of ¢-tuples of M. Let {A4; : i € I} be a collection of subsets of
M with the property that for any automorphism ¢ of M such that there exist
i,j € I with X;¢ = X, then ¢[4, is a bijection from A; onto A;. Then we
call A = {(A;,X;) : i € I} a system of t-pivoted pairwise relatively characteristic
(t-p.p.r.c.) subsets of M. The t-tuple X, is called the pivot of A; (i € I). If
further each A; forms a substructure of M, then we call A a system of t-p.p.7.c.
substructures of M. 1If |I| = 1 then, letting 4] = A and X; = X, we write
{(A,X)} simply as (A, X), and call A an X-pivoted relatively characteristic (X-
p.r.c.) subset/substructure of M.

Clearly if {(A4;, X;) : i € I} forms a system of ¢-p.p.r.c. subsets of M and J is
a subset of I then {(A4;, X ;) :j € J} is also a system of t-p.p.r.c. subsets of M. In
particular, each A; is an X;-p.r.c. subset of M.

Moreover, if A is an X-p.r.c. subset in M then A is a union of orbits of the set
of automorphisms of M which fixes X. Indeed, if a € A and ¢ € Aut(M) fixes X
then A¢ = A, so that a¢ € A.
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Definition 3.3.2 has strong links with the model theoretic concept of definably,
which we briefly outlined in Subsection 1.2.1. Let M be an Ng-categorical structure,
A a subset of M, and X = (z1,...,2,) an n-tuple of M. Then A is an X-p.r.c.
subset if and only if A is an {z1,...,z,}-definable subset of M by Proposition
1.2.23. In fact much of the work in this section could be given in terms of definable
sets, but in keeping with our algebraic viewpoint at this stage it is more natural to
use Definition 3.3.2.

The following lemma will be useful in many applications throughout this chap-

ter.

Lemma 3.3.3. Let M be a structure and, for some fixredt € N, let {X; :i € I} be
a collection of t-tuples of M. Then for any collection {A; : i € I} of subsets of M,

the following are equivalent:
(i) {(Ai,X;) i €I} is a system of t-p.p.r.c. subsets/substructures of M;

(ii) if ¢ € Aut(M) is such that there exist i,j € I with X;¢ = X;, then x¢ € A;
for all x € A;.

Proof. We prove the result for the case where each A; is a substructure of M, the
case where the A; are subsets is then immediate.

(i) = (ii). Immediate.

(ii) = (i). Let ¢ € Aut(M) be such that there exist i,j € I with X;¢ = X.
Then by our hypothesis ¢|4, is a map from A; to A; and, being a restriction
of an automorphism, is an injective morphism. Moreover, as X jqﬁ_l = X, and
¢! € Aut(M), we have that ¢~ € A; for all x € A;. Hence ¢|4, is surjective,

and thus an automorphism. O

We observe that if {(A;,X,) : ¢ € I} is a system of ¢t-p.p.r.c. subsets of a
structure M then {((A4;)nr, X;) : ¢ € I} forms a system of ¢-p.p.r.c. substructures
of M. For if ¢ € Aut(S) is such that X;¢ = X, for some i, j € I then A;¢ = Aj,
and so (A;)v¢ C (A;j)m. The result follows by Lemma 3.3.3.

Example 3.3.4. Let S be a semigroup. Then {(S'aS',a) : a € S} forms a system
of 1-p.p.r.c. subsets of S. To see this, let ¢ € Aut(S) be such that a¢ = b, and let
x € S'aS!. Then there exist u,v € S! with = uav, and so by interpreting 1¢ as

1 we have

2 = (u)(ad)(vd) = (ud)b(vg) € S'bS*,

and the result follows by Lemma 3.3.3. A similar result also holds for principal

left /right ideals of a semigroup.

Proposition 3.3.5. Let M be an Ny-categorical structure and {(A;, X;) :i € I} be

a system of t-p.p.r.c. substructures. Then each A; is Ng-categorical.
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Proof. Let X, = (1,...,24) (i € I). Let a = (ay,...,ay) and b = (b1,...,by,) be
pair of n-tuples of A; such that

(Qa Xz) ~Mn+t (bv Xz)

via ¢ € Aut(M), say. Then X,;¢ = X, and so ¢|4, is an automorphism of A; as
{(Ai, X;) : i € I} is a system of ¢-p.p.r.c. substructures. Moreover, ap|a, = ap =b

and so a ~4,, b. We have thus shown that
[A7) ~ain | < IMTH ~ppnge | < Ro

for each n > 1, since M is Wy-categorical. Hence A; is Ng-categorical by the RNT.
O

A partial converse to Corollary 3.2.10 can be achieved by restricting our subsets
to r.c. subsets as follows.
Lemma 3.3.6. Let M be an Ng-categorical structure and Ay, ..., A, a finite list of
subsets of M. Suppose there exist finite tuples X,..., X, of M such that A; forms
an X;-p.r.c. subset of M (1 <i <r). Then M = (M; Aq,...,A,) is Ro-categorical.

Proof. Suppose X; € M% for each 1 <i <r, and let k(n) =n+>_._;t;. Let a and
b be a pair of n-tuples of M such that

(Qv&lu ce. 7&7’) NM,k(n) (ba&l)’ .. a&r)

via ¢ € Aut(M ), say. Then for each 1 < i < r we have X;¢ = X, so that A;¢ = A4;
as A; is an X,;-p.r.c subset. Hence ¢ € Aut(M), and is such that a¢ = b. We have
thus shown that

IM" ~xp | < | M/ ~k(n) | < Ro

for each n since M is Ng-categorical. Hence M is Ry-categorical. O

We now give a method for constructing systems of ¢-p.p.r.c. subsets of a struc-
ture via certain equivalence relations. Let ¢ : M — N be an isomorphism between
structures M and N, and 7p; and 7 be equivalence relations on M and N, respec-
tively. We call 73y and 7n preserved under ¢ if aTyr b if and only if a¢ 7 bo for
each a,b € M. This is clearly equivalent to

(x1ar)p = (xp)Tv (Vo € M),

where (xmpr)¢ = {y¢ : y € x7ar}. If M = N then we say that 7y is preserved under
0.
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Note that if 7 is an equivalence relation on a structure M then
Aut(M)[7] :== {¢ € Aut(M) : 7 is preserved under ¢}

is a subgroup of Aut(M). Indeed, if ¢,v € Aut(M)[r] and a,b € M then

(agypy™ 1) 7 (bpyp™Y) & (agp™ )P 7 (b~ 1)y (as ¢ € Aut(M)[r])
& (ag) T (bo)
S ath (as ¢ € Aut(M)[7]).

Hence ¢p~! € Aut(M)[r] as required.
If Aut(M) = Aut(M)[r] then we call T preserved under automorphisms (of M).

The following lemma is then immediate.

Lemma 3.3.7. Let M be a structure and T be an equivalence relation on M, pre-
served under automorphisms of M. Then {(x1,z) : x € M} forms a system of

1-p.p.r.c. subsets of M.

For example, each Green’s relation is preserved by all isomorphisms between
semigroups, and thus by automorphisms. We prove the result for R, the other
cases being proved similarly. Let ¢ € Iso(S;T) for some semigroups S and 7. By
interpreting 1¢ as 1, we have for a,b € S,

aRb< a=bu,b= av for some u,v € S!
& ap = boug, b = apv for some ugp, vp € St
& ap Rbg.

Consequently, for any semigroup S, each of {(R4,a) : a € S}, {(Lq,a) : a € S},
{(Hg,a):a € S}, {(Dg,a):a€ S} and {(Jg,a) : a € S} form systems of 1-p.p.r.c.
subsets of S. Hence, by the Maximal Subgroup Theorem, {(H,,e) : e € E(S)} forms
a system of 1-p.p.r.c. subsemigroups of S. The following result is then immediate

from Proposition 3.3.5.

Corollary 3.3.8. The mazximal subgroups of an Ng-categorical semigroup are Ng-

categorical.

This raises the following question: given an equivalence relation 7 of an No-
categorical structure, is there a bound on the set of cardinals of the 7-classes?

This will be of importance in later sections when examining the Ry-categoricity
of semigroups built from possibly infinitely many subsemigroups, such as strong
semilattices of semigroups over an infinite semilattice. We consider the question

here in a more general setting.
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Proposition 3.3.9. Let M be an Wy-categorical structure and {(A;, X;) :1 € I} be
a system of t-p.p.r.c. subsets. Then {|A;| : i € I} is finite. Moreover, if each A;

forms a substructure of M, then {A; :i € I} is finite, up to isomorphism.

Proof. Suppose for some i # j we have X; ~y; X; via ¢ € Aut(M), say.
Then A;¢ = Aj; and it follows that {|A;| : ¢ € I} is bound by the number of ¢-
automorphism types of M, which is finite by the Wy-categoricity of M. The case

where each A; is a substructure of M also follows. ]

Corollary 3.3.10. An Ng-categorical semigroup has only finitely many maximal

subgroups, up to isomorphism.

We now mirror our generalization of characteristic subsets to automorphism

preserving equivalence relations.

Definition 3.3.11. Let 7 be an equivalence relation on a structure M and X a
finite tuple of M. Then we call 7 an X -relatively automorphism preserved (X-r.a.p.)
equivalence relation with pivot X, if whenever ¢ € Aut(M) is such that X¢ = X

then 7 preserves ¢.

Example 3.3.12. Clearly if 7 is an automorphism preserving equivalence relation,

then 7 is an X-r.a.p. equivalence relation for any finite tuple X of M.

More inspiring examples will be given in due course. We note that, as with X-
p.r.c. subsets, there are connections between definable sets and X-r.a.p. equivalence
relations. Indeed, if 7 is an X-r.a.p. equivalence relation on an Ny-categorical
structure M with pivot X = (z1,...,2¢) then 7, considered as a set of ordered

pairs, is an {1, ..., 2;}-definable subsets of M? by Proposition 1.2.23.

Lemma 3.3.13. Let M be a structure and T an X-r.a.p. equivalence relation on
M, where X € M*'. For each a € M, let X, be the (t + 1)-tuple given by (X, a).
Then {(a7,X,) : a € M} forms a system of (t + 1)-p.p.r.c. subsets of M.

Proof. Let ¢ be an automorphism of M such that X, ¢ = X, for some a,b € M.
Then X¢ = X so that 7 is preserved under ¢, and a¢ = b. Hence

(at)p = (ap)T = bT.
]

We now assess when the RNg-categoricity of a semigroup passes to its quotients,
and in particular to its Rees factor semigroups. Our work relies on the following

method for constructing isomorphisms between certain quotient semigroups.
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Proposition 3.3.14. Let ¢ : S — T be an isomorphism between semigroups S and
T. Let ps and pr be a congruences on S and T, respectively, which are preserved

under ¢. Then the map v from S/pg to T /pr given by

(aps)y = (ad)pr (aps € S/ps), (3.2)

18 an isomorphism.

Proof. The map v is well-defined and injective as

(aps)y = (bps)Y & (ad)pr = (bg)pr

< aps = bps.

Let tpr € T/pr. Then as ¢ is surjective, there exists s € S such that ¢t = s¢, so
that tpr = (s¢)pr = (sps)w. Hence 1) is surjective, and is a morphism as

(aps)¥(bps)¥ = (ag)pr(bd)pr = (adbd)pr
= ((ab)¢)pr = ((ab)ps)¥
= (apsbps)y.

Thus 1 is an isomorphism as desired. O

Proposition 3.3.15. Let S be an Ng-categorical semigroup and p an X-r.a.p. con-

gruence on S. Then S/p is Rg-categorical.

Proof. Suppose X € St and let a = (aip,...,a,p) and b = (b1p,...,byp) be a pair
of n-tuples of S/p such that

(ab ey anvi) ~Sn+t (bh ey b'nm&)

via ¢ € Aut(S), say. Then X¢ = X, so that p is preserved under the automorphism
¢. By Proposition 3.3.14, we can construct an automorphism 1 of S/p given by

(ap)y = (ad)p (ap € S/p).
Since (agp)y = (axg)p = bgp for each 1 < k < n we have a ~g/,,, b, and so
(5/0)" ) ~s/pm | <IS™H /) ~snst | < Ro.
as S is Nyp-categorical. Hence S/p is Wy-categorical. O

This naturally generalizes to any universal algebra, but requires a level of back-
ground material that we cannot justify explaining here, and is not needed for this

work.
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If we drop the condition on Proposition 3.3.15 that the congruence is relatively
automorphism preserving then the statement is no longer true. An example of an
No-categorical group with a non Ng-categorical quotient group is given by Rosenstein

[85).

Corollary 3.3.16. Let p be a finitely generated congruence on an Wg-categorical

semigroup S. Then S/p is No-categorical.

Proof. Let o = {(u1,v1),..., (ur,v.)} be a finite relation on S and let p = o¥. We
may assume w.l.o.g. that o is symmetric (adding (v;,u;) for each 1 < i < r if

necessary). We claim that p is an X-r.a.p. congruence with pivot
X = (ulu U1, U2,V2, ... 7u7“7/U7’)'

Let ¢ be an automorphism of S which fixes X and let a,b € S. Then by Proposition
2.2.1 and the symmetricity of o, we have that a pb if and only if for some n > 0,

there exist ¢1,...,cp,d1,...,d, in S', and (u;;,vy),. .., (u;,,v;,) € o such that

a:cl-uil-dl,
€1+ iy - dy = e - ugy - da,

C2 - Vi, - do = €3 - U4y - d3,

Cn - Vi, - dp =D.

Applying ¢ and ¢!, this occurs if and only if there exist ¢1¢, ..., cnd, di0, ..., dnd

in S (where we interpret 1¢ as 1) and (u;,,vs, ), -- -, (u4,,v;,) € o such that

ap = c1¢ - uj, - di @,
19 - vy - d1g = c20 - U4, - dao,
C2¢ - Viy - da¢ = 39 - Uy - d39,

et Vi, - dus = b,

for some n > 0, since X¢ = X, so that each u;, and v;, is fixed by ¢. Hence apb
if and only if a¢ p be, thus completing the proof of the claim. The result follows by
Proposition 3.3.15. ]

We now apply our recent results to the case of Rees factor semigroups. If I
is a characteristic ideal of S then it is easily shown that the Rees congruence p;
is preserved under automorphisms of S, and so the Ny-categoricity of S passes to
the Rees factor semigroup S/I by Proposition 3.3.15. On the other hand, if I is
relatively characteristic then, although p; may no longer be preserved under all
automorphisms of S, we can find a pivot X for p; such that p; is an X-r.a.p.

congruence as follows.
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Lemma 3.3.17. Let S be an Wg-categorical semigroup and I an X-p.r.c. ideal of
S. Then S/I is Ny-categorical.

Proof. We claim that py is an X-r.a.p. congruence. Let ¢ be an automorphism of
S which fixes X, so that I¢ = I since [ is an X-p.r.c ideal. Then, for any a,b € S,

we have
aprb<s[a=borabel]< [ap =bo or ap,bp € I| < ap pr b,

and so ¢ preserves pr as required. The result follows by Proposition 3.3.15. O

We end this section by studying a final class of equivalence relations on a semi-
group: those with finite equivalence classes. Let M be a structure and 7 an equiv-
alence relation on M. Define an equivalence relation ~js -, on the set (M/7)" by
(mat,...,muT) ~prp (My7,...,m),7) if and only if there exists an automorphism
¢ of M such that (my7)¢ = m 7 for each 1 < k < n. Note that the automorphism
¢ does not have to be 7 preserving. Moreover, by taking 7 to be the identity re-
lation ¢ we recover the usual definition of automorphic equivalence of the tuples

(mi,...,my) and (mf,...,m)).

Proposition 3.3.18. Let M be a structure and T an equivalence on M with each
T-class being finite. Then |(M/T)"/ ~pqrm | is finite for each n > 1 if and only if
M is Ng-categorical and A = {|m7|:m € M} is finite.

Proof. Given an n-tuple a = (aq,...,a,) of M, we let ar denote the n-tuple of M /7
given by

ar := (a17,...,a,T).

Suppose that |(M/7)"/ ~nrn | is finite for each n > 1. Let Z = {q; : i € N} be
an infinite set of n-tuples of M, where a; = (a1, ..., ain). Since |(M/T)"/ ~nrrrn |
is finite, there exists an infinite subset {a; : i € I'} of Z such that a;,7 ~nrn ;7
for each 7,7 € I. In particular, for each ¢ € I there exists an automorphism ¢; of

M with (a;7)¢; = a;7. Hence a;x¢; € a;7¢ = a7 for each 1 < k < n, and so

a;0i € {(z1,--.,2n) : 2k € a15T}.

Notice that set {(z1,...,2n) : 2k € a1x7} is finite since each 7-class is finite. Con-
sequently, there exist distinct 7,7 € I such that a;¢; = a;¢;, so that Qigzﬁicbj_l =a;.
Hence a; and a; are automorphically equivalent. It follows that M contains no in-
finite set of distinct n-automorphism types, and is thus Rg-categorical by the RNT.
Furthermore, by our usual argument we have that A is bound by |(M/7)/ ~n 1 |-

Conversely, suppose M is Ryp-categorical and A is finite. Let m = (my7,...,m,7)
and m’ = (m7,...,m} 7) be a pair of n-tuples of (M/7)", under the condition that

|my7| = |m).7| for each k. Since each entry of an n-tuple of (M /7)™ has |A| potential
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cardinalities, it follows that this condition has |A|™ choices. For each 1 < k < n, let
miT = {ag1, ..., ks, } and mjT = {bg1,...,bks, }, and let T'(n) = s1+s2+- -+ sp.
Suppose further that

(a11, ey Q15,0215 -0+ 5, Q2595 - - - ,ansn) ~ M, T(n) (bn, - ';b1517b21,- . .,b252, ces 7bnsn)7

via ¢ € Aut(S), say. Then (my7)¢ = m7 for each k, since ax,¢ = by, for each
1 <r <sy. Hencem ~ps -, m', and so |(M/7)"/ ~nr sy | is finite by Lemma 3.2.5
since |A" and each |[MT(/ ~ M,T(n) | are finite for each n > 1, thus completing
the proof. O

Corollary 3.3.19. Let S be a regular semigroup with each maximal subgroup being
finite. Then S is No-categorical if and only if |E(S)"/ ~gn | is finite for eachn > 1.

Proof. If S is Wy-categorical, then
[E(S)"/ ~sin | < 15"/ ~sn | <Ro

for each n > 1 by the RNT.

Conversely, suppose |E(S)"/ ~g, | is finite for each n > 1 and consider a pair
of n-tuples of S/H given by a = (Hy,,...,H,,) and b = (Hp,, ..., Hp, ). Since S
is regular, there exist idempotents e;, f;, &, f; of S with e; Ra; L f; and & Rb; L f;
for each 1 <4 < n, by Proposition 2.4.4. Suppose further that

(elaf17627f2> .. '7enafn) ~S.2n (él7flvé27f23 e 7én>fn)a

via ¢ € Aut(S), say. Then as R and £ are automorphism preserving we have that
Re;¢ = Re, and Ly,¢ = Ly, for each i, so that

Hy ¢ = (Rai N Lai)¢ = (Rei n Lf¢)¢ = Re, 0N Lfi(z) = Re, N Lf,- = Hbi'
Hence a ~s%.n b, and we have thus shown that
((S/H)") ~sm | < TE(S)™ ) ~san | < Ro.

Since each maximal subgroup of the regular semigroup S is finite, it follows from
Lemma 2.4.1 and Proposition 2.4.4 that every H-class of S is finite. Hence S is
Ng-categorical by Proposition 3.3.18. 0
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3.4 Principal factors of an Ny-categorical semigroups

Our interest in this section is in determining how Ng-categoricity effects the prin-
cipal factors of a semigroup. We observe first that the principal factors of an

Ng-categorical semigroup behave in much the same way as the maximal subgroups:

Theorem 3.4.1. The principal factors of an Ng-categorical semigroup S are Ng-
categorical, and either completely 0-simple, completely simple or null. Moreover, S

has only finitely many principal factors, up to isomorphism.

Proof. Since S is No-categorical, the ideals J(a) = S'aS! are Ng-categorical by
Example 3.3.4 and Proposition 3.3.5. Let ¢ be an automorphism of S such that a¢ =
b. Then J(a)¢ = J(b) as {(J(a),a) : a € S} is a system of 1-p.p.r.c. subsemigroups

of S. Moreover, as J is preserved under automorphisms we have J,¢ = Jp, and so
I(a)p = (J(a) \ Ja)o = J(b) \ Jp = 1(D).

Consequently, {(I(a),a) : a € S} is a system of 1-p.p.r.c. subsemigroups of S and,
in particular, I(a) is an a-p.r.c. ideal of J(a) for each a € S. Hence J(a)/I(a) is
No-categorical by Lemma 3.3.17. If the kernel K(S) of S exists, it is a J-class of
S, and is thus Ng-categorical. Hence each principal factor of S is Ng-categorical.

Moreover, as ¢| () is an isomorphism from J(a) to J(b) with I(a)@| ;) = I(b),
it follows that the isomorphism @|y(4) preserves p;(,) and prp), and so J(a)/I(a) is
isomorphic to J(b)/1(b) by Proposition 3.3.14. Hence the set

{J(a)/I(a):a€ S}

of non minimal ideal principal factors of S has at most |S/ ~g; | elements, up to
isomorphism. Since K (.5) is the unique minimal ideal of S, if it exists, S has only
finitely many principal factors, up to isomorphism.

By Theorem 2.5.1, the principal factors of a semigroup S are either O-simple,
simple or null. A periodic 0-simple semigroup is completely 0-semigroup by [20,
Corollary 2.56]. If M is a periodic simple semigroup then M? is completely 0-
simple, so that M = M?\ {0} contains a minimal idempotent under the natural
order. Hence M is completely simple. Since every ULF semigroup is periodic, each
principal factor is either completely 0-simple, completely simple or null by Corollary
3.2.4. O

By Example 3.2.1 we have that every null semigroup is Ng-categorical. To
understand the Np-categoricity of an arbitrary semigroup it is therefore essential to

examine the completely simple and completely O-simple cases.
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3.5 Ng-categorical Rees matrix semigroups

When studying the model theoretic properties of a semigroup S with zero it can
be important to distinguish which signature we are working over: the signature of
semigroups Lg or the signature of semigroups with zero, Ly = Lg U {0}, where 0
is a constant symbol. When applying the RNT to Lo, we are studying the action
of automorphisms of a semigroup S which fix 0, on n-tuples of S. However all
Lg-automorphisms of S necessarily fix 0, and so in the context of Ny-categoricity
it makes no difference which language we use. We have thus proven the following

proposition.

Proposition 3.5.1. Let S be a semigroup with zero. Then S is Ng-categorical as

a semigroup if and only if it is Ng-categorical as a semigroup with zero.

In keeping with previous sections, we continue to work over the signature Lg.
We also remark that much of the early work in this section can easily be transferred
to the signature of monoids Ljz, for working with the Rg-categoricity of monoids.

Given a semigroup S with zero, we denote S* = S\ {0}. The following result is

then immediate from Lemma 3.2.12.

Corollary 3.5.2. A semigroup with zero S is Ny-categorical if and only if
[(S)" ) ~sn | < No,

for each n > 1.

On the other hand, Ny-categorical semigroups can be built from a known Ng-

categorical semigroup simply by adjoining a zero:

Lemma 3.5.3. A semigroup without zero S is Wo-categorical if and only if S° is

RNo-categorical.

Proof. Recall that every automorphism of S extends to an automorphism of S°,
simply by fixing 0. Consequently, if S is Ro-categorical then so is S°. Conversely,

if SY is Wy-categorical, then so is its characteristic subsemigroup S. O

We remark that the lemma above still holds when we force a zero. That is,
if S = S° has a zero, then we may adjoin a new zero, say f#, to S by defining
s = st = § for all s € S. This way, we can build new Ry-categorical semigroups by
repeatedly forcing a zero.

Motivated by the previous section, we now examine the Ng-categoricity of a
completely (0-)simple semigroup. Note that if S is a completely simple semigroup,
then S is isomorphic to a Rees matrix semigroup with sandwich matrix without

zero entries [55, Section 3.3]. Consequently, by the Rees Theorem and Lemma 3.5.3,
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to examine the Wp-categoricity of both completely simple and completely 0-simple
semigroups, it suffices to study Rees matrix semigroups.
Given a Rees matrix semigroup S = MY[G; I, A; P] with P = (p,;), we let G(P)

denote the subset of G of all non-zero entries of P, that is,

G(P) :=={pxr;i : pr; # 0}

The idempotents of S are easily described [55, Page 71]:
E(S) = {(Zap;j’ )‘) PN 7& 0}

Since there exists a relatively simple isomorphism theorem for Rees matrix
semigroups (Theorem 2.5.3), we should be hopeful of achieving a thorough un-
derstanding of Ng-categorical Rees matrix semigroups via the RNT. However, from
the isomorphism theorem it is not clear how the Ny-categoricity of the semigroup
MPO[G; I, A; P] effects the sets I and A. We instead follow a technique of Graham
[38] and Houghton [53] of constructing a graph from the sets I and A. We first give

a brief outline of the material required for this construction.

A bipartite graph is a (simple) graph whose vertices can be split into two disjoint
non-empty sets L and R such that every edge connects a vertex in L to a vertex in
R. The sets L and R are called the left set and the right set, respectively. Formally,
a bipartite graph is a triple I' = (L, R, E') such that L and R are non-empty trivially
intersecting sets and

EC{{z,y}:z €L, yeR}.

We call L U R the set of vertices of I' and E the set of edges. An isomorphism
between a pair of bipartite graphs I' = (L, R, E) and I" = (L', R', E’) is a bijection
¥ : LUR — L' UR' such that Ly = L', Ry = R’ (so, 1 is the union of bijections
from L to L’ and from R to R') and {l,7} € F if and only if {ly),ry} € E'. We are
therefore regarding bipartite graphs in the signature Lpg = {Qr,Qr, F'}, where
Q1 and Qi are unary relations, which we interpret as the sets L and R, respectively,
and F is a binary relation interpreted as the edge relation (recalling our convention
of letting E denote the edge relation and the set of edges).

Let I' = (L, R, E) be a bipartite graph. Then I' is called complete if, for all
x € L,y € R, we have {z,y} € E. If E = () then T is called empty. If each
vertex of I is incident to exactly one edge, then I is called a perfect matching. The
complement of T is the bipartite graph (L, R, E’) with

E' ={{z,y}:x €L,y R,{x,y} ¢ E}.

Hence an empty bipartite graph is the complement of a complete bipartite graph,

and vice-versa. We call I' random if, for each k,/ € N, and for every distinct
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Tiyeeoy ThyYl,---,Ye in L (in R) there exist infinitely many v € R (u € L) such that
{u,2z;} € E but {u,y;} ¢ Eforeach 1 <i<kand1<j </l

It can be easily shown that, for each pair n,m € N*, there exists a unique (up
to isomorphism) complete bipartite graph with left set of size n and right set of
size m, which we denote as K, ,,. There also exists a unique, up to isomorphism,
perfect matching with left and right sets of size n, denoted P,. Similar uniqueness
holds for the empty bipartite graph F,, ,,, with left set of size n and right set of size
m, and complements of the perfect matching P,,, which we denote as C'P,. Less

obviously, any pair of random bipartite graphs are isomorphic [29].

Figure 3.1: K3p». Figure 3.2: Ps.

Homogeneous bipartite graphs have been classified by Goldstern in [35].

Theorem 3.5.4. A bipartite graph is homogeneous if and only if it is isomorphic

to one of:
(1) the complete bipartite graph K,
(11) the empty bipartite graph Ep .
(iii) a perfect matching Py,
(iv) the complement of a perfect matching CP,,
(v) a random bipartite graph,
for some n,m € N*.

Since bipartite graphs are relational structures and thus ULF, homogeneous
bipartite graphs are Np-categorical by Theorem 1.2.26. Unfortunately, no complete
classification of Rgy-categorical bipartite graphs exists.

Let I' = (L, R, E) be a bipartite graph. A path p in T' is a finite sequence of
vertices

p = (UI,UQ,...,Un)

such that v; and v;+1 are adjacent for each 1 < i < n — 1. For example, if {z,y} is

an edge in E then both (x,y) and (y,z) are paths in I'. A pair of vertices = and y
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are connected, denoted x X y, if and only if there exists a path (vi,ve,...,v,) in T
such that v; = z and v,, = y. It is clear that x is an equivalence relation on the set
of vertices of I', and we call the equivalence classes the connected components of I'.
We observe that each connected component is a sub-bipartite graph of I' under the
induced structure. We let C(I') denote the set of connected components of I

Let I' be a bipartite graph with C(I') = {I'; : ¢ € A}. For any automorphism
¢ of I' and =,y € " we have that (z,ve,...,v,_1,y) is a path in T' if and only
if (x¢,va,...,vp_10,y¢) is a path in I, since ¢ preserves edges and non-edges.
Hence x x y if and only if x¢ X y¢, and so there exists a bijection 7 of A such
that I';¢ = I';; for each ¢ € I. We have thus proven the backward direction to the

following result, the converse being immediate.

Proposition 3.5.5. Let I' = (L, R, E) be a bipartite graph with connected com-
ponents C(I') = {I'; : i € A}. Let w be a bijection of A and ¢; : I'; — T'ix an
isomorphism for each i € A. Then \J;c; ¢i is an automorphism of I'. Conversely,

every automorphism of I' can be constructed in this way.

Proposition 3.5.6. Let I' = (L, R, E) be a bipartite graph with connected compo-
nents C(I') = {T'; : i € A}. Then T is Ng-categorical if and only if each connected

component is Ro-categorical and C(I") is finite, up to isomorphism.

Proof. (=) By Proposition 3.5.5 we have that, for any choice of z; € I'; (i € A),
the set {(I';,x;) : i € A} forms a system of 1-p.p.r.c. sub-bipartite graphs of I". The
result then follows from Propositions 3.3.5 and 3.3.9.

(<) First we show that C(T) forms a (I'; A; ¥)-system in ' for some A and V.
Let Aq,..., A, be the finite partition of A corresponding to the isomorphism types
of the connected components of I', that is, I'; = I'; if and only if 7, j € A}, for some
k. Fix A = (A;Aq,...,A;). For each i,j € A, let U, ; = Iso(I';;T;) and fix ¥ =
Ui jea Vij- Then W clearly satisfy Conditions 3.2.14(A), 3.2.14(B) and 3.2.14(C).
Let m € Aut(A) and, for each i € A, let ¢; € U, r. Then by Proposition 3.5.5,
¢ = ;e @i is an automorphism of I', and so ¥ satisfies Condition 3.2.14(D). Hence
C(T') forms an (T'; A; ¥)-system. Each I; is Ng-categorical (over ¥;; = Aut(I;))
and A is Ry-categorical by Corollary 3.2.10, and so I is Rg-categorical by Corollary
3.2.16. O

Let S = MO[G; I, A; P] be a Rees matrix semigroup with P = (py;). Then we
form a bipartite graph I'(P) = (I, A, E') with edge set

E = {{i,\} : px; # 0},

which we call the induced bipartite graph of S.
This construct has long been fundamental to the study of Rees matrix semi-

groups, and has its roots in a paper by Graham in [38]. Here, it is used to describe
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the maximal nilpotent subsemigroups of a Rees matrix semigroup, where a semi-
group is nilpotent if some power is equal to {0}. All maximal subsemigroups of
a finite Rees matrix semigroup were described in the same paper, a result which
was later extended in [39] to arbitrary finite semigroups. In [54], Howie used the
induced bipartite graph to describe the subsemigroup of a Rees matrix semigroup
generated by its idempotents. Finally, in [53], Houghton described the homology of

the induced bipartite graph, and a detailed overview of his work is given in [80].
Example 3.5.7. Let S = MY[G;{1,2,3}, {\, u}; P] where
1 2 3
P [ a b 0 ]
w | 0 ¢ d

Then the induced bipartite graph of S is given in Figure 3.3.

Figure 3.3: Induced bipartite graph.

Example 3.5.8. Let S = M°[G; I, A; P] be such that P has no zero entries, so
that S is isomorphic to a completely simple semigroup with zero adjoined. Then

I'(P) is a complete bipartite graph.

Notation 3.5.9. Let S = MO[G;I,A; P] be a Rees matrix semigroup. Given
an n-tuple a = ((i1,91, M), - -+, (fns Gn, An)) of S*, we denote I'(a) as the 2n-tuple
(il, )\1, N ,in, )\n) of P(P)

Following [3], we adapt the isomorphism theorem for Rees matrix semigroups
(Theorem 2.5.3) to explicitly highlight the roll of the induced bipartite graph:

Theorem 3.5.10. Let Sy = MO[G1; 11, A1; Pi] and So = MO[Go; Iz, Ag; Py] be a
pair of Rees matriz semigroups with sandwich matrices Py = (px;) and Po = (quj),
respectively. Let ¢ : I'(Py) — I'(P) and 6 : Gi — G be isomorphisms, and
u;, vy € Go for each i € Iy, \ € A1. Then the mapping ¢ : S1 — So given by

(iv 9, )‘)¢ = ('“,ZJ, ui(ge)v)\a )‘¢)
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1 an tsomorphism if and only if

Pri 0 = U - @iy - Ui, whenever py; # 0.

Moreover, every isomorphism from S1 to Sy can be described in this way. [

The isomorphism ¢ will be denoted as (6,1, (u;)icr, (vx)rea). We also denote the

induced group isomorphism 6 as ¢¢, and the induced bipartite graph isomorphism
Y as Pr(py, so that ¢ = (¢, Yr(p), (wi)ier, (VA)ren)-

The composition and inverses of isomorphisms between Rees matrix semigroups

behave in a natural way as follows.

Corollary 3.5.11. Let Sy = MO[Gy; I, Ag; Pi] (k = 1,2,3) be Rees matriz semi-
groups. Then for any pair of isomorphisms ¢ = (0,1, (wi)ier,, (Vx)ren,) € Is0(S1;S2)
and ¢ = (6,9, (u ) eIy (V) )M€A2) € Iso(Sa; S3) we have

(i) P¢’ = (99’71/11#' (u w(uz ))iehv((v)\el)vg\qp)AGAJf
(i) ¢~ = (07,91, ((in—l)_le_l)ielza ((Uw—l)_le_l)/\eAz)-
Proof. If (i,g9,\) € Sy then

(1), ui(g8)vx, Mp)¢'

(zww, upy [ (1i(90)02) 8] A0 )

(10, (s (s0')) (968) (020" )0h) M)
(1,9, M) (00, 0, (i (i) - (000)000) )

(4,9, \)p¢’

and so the first result holds.

Now let @ = (071,971, ((u-1)"'07ien, (vrgp-1) "0 )aen,). Then by the
previous part we have

P = (99*1, Yy, (((WW,l)*le*l) (uﬂ’l))ieh, <W,1) (Orpy— )49*1))@1)
= (Lay, Irepyy, (uy 'u)0 e, (0avy DO )xen,)
= (1G17 1F(P1)7 (1)i'€f1? (1))\€A1)

fry 151
and similarly
o0 = (070,07, (i1 (i) 70710)) iy ((0rg-2) 707 0)0rg1)

= (1027 1F(P2)7 (1)i6127 (1)>\EA2)

:152

and so ¢ = ¢! as required. O
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Let I' = (L, R, E) be a bipartite graph. For each n € N, we let or, be the

equivalence relation on I'" given by
(1,...,xn)orn (Y1,...,yn) © i€ L& y; € L, for each 1 <i < n.
Since each entry of an n-tuple lies in either L or R we have that
[T /orn| =2",

for each n. Due to the automorphisms of I" fixing the sets L and R, it easily follows
that

~T'n C OTr'n-

Proposition 3.5.12. If S = MY[G; I, A; P] is Xg-categorical, then G and I'(P) are

RNo-categorical.

Proof. Given py; # 0, we have that {(i,g,\) : ¢ € G} is a maximal subgroup
of S isomorphic to G. Hence G is Ng-categorical by Corollary 3.3.8. Now let
a = (a,...,a,) and b = (b1,...,b,) be a pair of or ,-related n-tuples of I'(P).
Let i1 < i9 < --- < igand j; < jo < --- < j; be the indexes of entries of a lying
in L and R, respectively. Since aor,b we also have that i1y < i3 < --- < i3 and
j1 < jo < --- < jy are the indexes of entries of b lying in L and R, respectively.
Suppose further that there exist ¢ € I, A € A such that the n-tuples

((ai17 17 )\>7 ceey (G/is, 17 )‘)7 (27 17 ajl)? R (7’7 17 a’jt)) a'nd
((bila 1, /\)7 sy (bi37 1, /\)7 (i, 1, bj1)a cee (i, L, bjt))7
are automorphically equivalent via ¢ € Aut(S), say. Then a;.¢rp) = b;, and

aj, ¢r(py = bj,, for each 1 <r < s and 1 < 7' <t by Theorem 3.5.10. Hence

a ~r(p)n bvia ¢r(p), and we have thus shown that
IL(P)"/ ~rpyn | <2787/ ~sin |-

Hence T'(P) is Wy-categorical by the Ng-categoricity of S. O

In the next subsection we construct a counterexample to the converse of Proposi-
tion 3.5.12. Our method will be to transfer the concept of the connected components

of bipartite graphs to corresponding subsemigroups of Rees matrix semigroups.
3.5.1 Connected Rees components

Let S, = MO[G; I, Ay; Py] (k € A) be a collection of Rees matrix semigroups with
P = ( g\kz)) and S NSy, = {0} for each k,¢ € A. Then we may form a single
Rees matrix semigroup S = M°[G; I, A; P], where [ = Urea Ies A = Upea Ax and
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P = (px,;) is the A by I matrix defined by

{ pg\kz) if \,i € I'(Py), for some k
Pri = ’

0 else.

That is, P is the block matrix

P 0 0
0 P, 0

pP= (3.3)
0 0 B

We denote S by @kGE 4Sk. The subsemigroups Sy of S are called the Rees compo-
nents of S. Notice that each I'(P) is a union of connected components of I'(P).
The subsemigroup Sy will be called a connected Rees component of S if I'(Py) is
connected (and is therefore a connected component of I'( P)).

Conversely, for any Rees matrix semigroup S = MO[G; I, A; P] there exist par-
titions {I; : k € A} and {Ar : kK € A} of I and A, respectively, such that
C(I'(P)) = {Ax UI : k € A}. Consequently, for each k € A, the subsemigroup
Sy, = MO[G; It,, Ay; Py of S is a connected Rees component, where Py, is the Ay x Iy,
submatrix of P. It then follows by the observation following Theorem 2.5.3 that,
by permuting the rows and columns of P if necessary, we may assume w.l.o.g. that
P is a block matrix of the form (3.3).

Note that if S is a Rees matrix semigroup with connected Rees components
{S : k € A} then

E(S) = | E(Sk). (3.4)
keA
To see this, note that 0 € E(Sy) for each k € A, and if (i,p;;,/\) is a non-zero
idempotent of S then py; # 0. Hence ¢ and A are adjacent in the induced bipartite
graph of S, and thus lie in the same connected component. It is then immediate
that (i, p;;, A) is contained in some connected Rees component of S.

Since automorphisms of I'(P) arise as collections of isomorphisms between its

connected components, we reach the following alternative description of automor-

phisms of a Rees matrix semigroups.

Corollary 3.5.13. Let S = ®kGeASk = MY[G; 1, A; P] be a Rees matriz semigroup
such that each Sy = MC[G; Iy, Ay; Pi] is a connected Rees component of S. Let w
be a bijection of A and, for each k € A, let ¢ = (0,y, (ng))ielk, (vg\k)),\e/\k) be an
isomorphism from Sy to Skr. Then ¢ = (0,%, (u;)icr, (Vx)ren) is an automorphism
of S, where ¥ = Jyca¥r, and if i,\ € T'(P) then u; = ugk) and vy = vg\k).

Moreover, every automorphism of S can be described in this way.

Proof. Let S and ¢ be constructed as in the hypothesis of the corollary. Then the
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map ) is an automorphism of I'(P) by Proposition 3.5.5. Let ¢ € [ and A € A be
such that py,; # 0. Then i, A\ € I'(P}) for some k € A, and so by Theorem 3.5.10

we have

k k
Pl = Ug )pwk7iwkug ) = VADA, iap Wi+

since ¢y, is an isomorphism and ¢ extends ;. Hence, again by Theorem 3.5.10, ¢
is an automorphism of S as required.

Conversely, if (¢',4, (u})ier, (v))rea) is an automorphism of S then by Propo-
sition 3.5.5 there exists a bijection 7’ of A and isomorphisms v, : I'(Py) — I'(Prr),
for each k € A, such that ¢/ = [y, Hence (8,4, (uf)ier,, (vy)rea,) is an
isomorphism from Sj to Si,+ for each k € A. O

We observe that the induced group automorphisms of the isomorphisms ¢y, are
all equal (to 6).

Proposition 3.5.14. Let S = @geASk be an No-categorical Rees matriz semi-
group such that each S is a connected Rees component of S. Then each Sy is
No-categorical and S has finitely many connected Rees components, up to isomor-

phism.

Proof. We claim that {(Sk, ax) : k € A} is a system of 1-p.p.r.c. subsemigroups of S
for any ag € S}, to which the result follows by Propositions 3.3.5 and 3.3.9. Indeed,
let ¢ be an automorphism of S such that ap¢p = a; for some k,[. Then, by Corollary
3.5.13, there exists a bijection w of A with Sip¢ = Spr = 5; as required. [

Our interest is now in attaining a converse to the proposition above, since it
would provide us with a new method for building Ny-categorical Rees matrix semi-
groups from ‘old’. With the aid of Lemma 3.2.15, we prove that a converse exists in
the class of Rees matrix semigroups over finite groups. The case where the maximal
subgroups are infinite is an open problem.

Given a pair S = MOG;I,A;P] and §" = MO[G;I',A’;Q] of Rees matrix
semigroups over a group G, we denote Iso(S;S’)(1¢) as the set of isomorphisms

between S and S’ with trivial induced group isomorphism. That is,

Iso(S; S") (1) = {(0,v, (wi)icr, (VA)rea) € Iso(S;S") : 0 = 15}

If S = 5" we denote this simply as Aut(S)(1g), and notice that Aut(S)(1g) is a
subgroup of Aut(S) by Corollary 3.5.11.

Lemma 3.5.15. Let S = MO[G;1,A; P] be a Rees matriz semigroup over a fi-
nite group G. Then S is Ng-categorical if and only if if S is Ng-categorical over
Aut(S)(1¢q).
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Proof. Let S be Rg-categorical with G = {g1,...,9-}. Let a and b be a pair of
n-tuples of S. For some fixed p,, ; # 0, let g be the r-tuple of S given by

9= ((jaglﬂu“)a ] (jaghu))v

and suppose (a,g) ~snir (b,g) via ¢ = (6,0, (u)icr, (vn)rca), say. Then, for each
1 <k <r, we have

(j7 gknu)d) = (J¢auy(gk9)vy>ﬂ¢) = (j?gknu’)7

so that gpf = u;lgkvljl. For each i € I,\ € A, let u; = Uit Land oy = v;lw\.

Then, since g¢ = g, we have

(i, g0, Mp) = (it), (ugu; ") gr(vy, 'or), Mp)
= (10, ui(grd)va, \)
= (Z7 9k, )‘)¢a

for any (i, gr, A) € S. It follows that ¢ = (1g, %, (4i)icr, (Ua)rea) € Aut(S)(1g), so
that

(Qv g) ~S,Aut(S)(1g),n+r (b¢ g)

and in particular @ ~g Aut(5)(15),n 0- We have thus shown that

15"/ ~saut(s)(1e)m | < 1S/ ~gnar | < Ro,

as S is No-categorical. Hence S is Ny-categorical over Aut(S)(1¢g).

The converse is immediate. O

We now prove the converse to Proposition 3.5.14 in the case where the maximal

subgroups are finite.

Theorem 3.5.16. Let S = MV[G; I, A; P] be a Rees matrix semigroup such that G
is finite. Then S is Ng-categorical if and only if each connected Rees component of
S is Wo-categorical and S has only finitely many connected Rees components, up to

isomorphism.

Proof. (<) Let {S; : k € A} be the connected Rees components of S, which is
finite up to isomorphism and with each Sy being Ny-categorical. Define a relation n
on A by inj if and only if Iso(S;; S;)(1g) # 0. Hence by Corollary 3.5.11 we have
that 7 is an equivalence relation.

We prove that A/n is finite. Suppose, seeking a contradiction, that there exists
an infinite set X of pairwise n-inequivalent elements of A. Since S has finitely many
connected components up to isomorphism, there exists an infinite subset {i, : » € N}

of X such that S;, = S, , for each n, m. Fix an isomorphism ¢;, : S;, — S;, for each
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n € N. Since Aut(G) is finite, there exist distinct n,m such that qbiGn = qbZGm, and so
qbinqzﬁi_ml € Iso(S;,; Sj,,)(1g) by Corollary 3.5.11. Hence iy, 1)iy,, a contradiction, and
so A/n is finite.

Let S" = (Jgca Sk, noting that S’ is a subsemigroup of S as S;S; = 0 for each
k # 1 in A. We prove that {S}, : k € A} forms an (S; S’; A; ¥)-system in S for some
A and ¥.

For each i,j € A, let ¥; ; = Iso(S;;Sj)(1g) and fix ¥ = Uz’,jeA U, ;. Let A/n=
{A1,..., A} and set A = (A;Ayq,...,A;). Then, by our construction, if 7,j € A,,
for some m then ¥; ; # 0, and so ¥ satisfies Condition 3.2.14(A). Furthermore, it
follows immediately from Corollary 3.5.11 that ¥ satisfies Conditions 3.2.14(B) and
3.2.14(C). Finally, take any m € Aut(A) and, for each k € A, let ¢y, € Wy pr. Then
as gka = 1g for each k € A, we may construct an automorphism ¢ of S from the
set of isomorphisms {¢y, : k € A} by Corollary 3.5.13. Since ¢ extends each ¢y by
construction, we have that {Sy : k € A} forms an (S;5’; A; ¥)-system as required.
Since S}, is Ng-categorical, it is Ng-categorical over Wy, = Aut(Sy)(1g) by Lemma
3.5.15. By Corollary 3.2.10, A is Ry-categorical, and so

(S)"/ ~sm | < Ro
by Lemma 3.2.15. Given that F(S) C S’ by (3.4), we therefore have that
[E(S)"/ ~sin | < I(S)"/ ~sm | < Ro.

Hence S, being regular with finite maximal subgroups, is Rg-categorical by Corollary
3.3.19.

(=) Immediate from Proposition 3.5.14. O

Those familiar with semigroup theory will observe that the subsemigroup S’ of
S in the proof above is an example of a 0-direct union of semigroups, which will be

the topic of the subsequent section.

We now construct a counterexample to the converse of Proposition 3.5.12. By
Proposition 3.5.14, it suffices to find a Rees matrix semigroup over an Xg-categorical
group with Ng-categorical induced bipartite graph, but with infinitely many non-

isomorphic connected Rees components.

Example 3.5.17. Let G be an Ny-categorical infinite abelian group with identity
element 1, and {g; : i € N} be an enumeration of its non-identity elements (such a
group exists by Proposition 3.1.1). Let I = {i* : s € N} and Ay = {\F : ¢t € N}
be infinite sets for each k£ € N. Let P, = (p(k) ) be the Ay x I} matrix such that

Ak ik
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pf\%m = gy, for each 1 < m < k, and all other entries being 1, that is,

(gp 1 1 - 1 1 -]

1 ¢ 1 - 1 1

- o
Po=1: + "~ " 1 1

1 1 1 g 1

11 1 1 1

Then each I'(P;) is a complete bipartite graph, isomorphic to Ky, x,, and is thus
Np-categorical by Theorem 3.5.4. For each k € N, let S; be the connected Rees
matrix semigroup [G; Iy, Ag; Py|, and set

®_\ Sk = MO[G; T, A; P).

Then T'(P), being the disjoint union of the pairwise isomorphic Ny-categorical bi-

partite graphs I'(Py), is Ng-categorical by Theorem 3.5.6.

We claim that Sy =2 Sy if and only if & = 1. Let (6,4, (ui)icr,, (va)ren,) be an
isomorphism between Sy and Sy, and assume w.l.o.g. that k£ > £. Since there exist
only finitely many rows of P, and P, which have non-identity entries, there exists
M€ Ay such that both row A¥ of P, and row A4 of P, consist entirely of identity
entries. Then, for each zf € I,

pf\?iﬁ =10=1=wvy-p

st

() _
Mk if T UNE i

by Theorem 3.5.10, so that

—1
\k

s

v = Uk =U:k =" =U
Zl ’L2 ?

say. Dually, by considering the columns of P, and Py, we have

1

since v,, = u. Hence, for each 1 < m <k,
S

k - l l
gm = pgﬁ,z"fna =u! 'p(xblwm = pgﬁ,w,im €{o-. .0
as G is abelian. It follows that the automorphism 6 maps {g1,...,9x} to{g1,...,9¢}-
Since k > ¢, this means that k = [, thus proving the claim. We have shown that
MPO[G; I, A; P] has infinitely many non-isomorphic connected Rees components, and

is therefore not Ng-categorical by Proposition 3.5.14.
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A natural question is to ask whether the converse of Proposition 3.5.12 holds for
the class of Rees matrix semigroups with finitely many connected Rees components.
A negative answer can be obtained by our usual method, by taking G = {1,a} = Z,,
and letting P be the N x N matrix given by

1 ifi>j,
pl).]:

a ifi<j.
That is, i i

1 a a a a
1 1 a a a
1 1

P = a a
1 1 1 1 «a
1 1 1 1 1

Then I'(P) is isomorphic to the Rp-categorical complete bipartite graph Ky, x,-
However M°[G; N, N; P] is not Rg-categorical, since {((1,1,1),(i,1,1)) : i € N} can

be shown to be an infinite set of distinct 2-automorphism types.

3.5.2 Labelled bipartite graphs

The problem arising in Example 3.5.17 is that by shifting from the sandwich matrix
P = (px,;) to the induced bipartite graph I'(P) we have “forgotten” the value of the
entries py ;. In this subsection we extend the construction of the induced bipartite
graph of a Rees matrix semigroup to build classes of Ry-categorical Rees matrix
semigroups. This, together with the method devised in the previous subsection for
constructing No-categorical Rees matrix semigroups from sets of Rg-categorical (con-
nected) Rees matrix semigroups with finite maximal subgroups, will allow further

examples of Ng-categorical Rees matrix semigroups to be built.

Definition 3.5.18. Let I' = (L, R, F) be a bipartite graph, ¥ a set, and f : E — %
a surjective map. Then the triple (I', X, f) is called a X-labelled (by f) bipartite
graph, which we denote as T'/.

There is a natural signature in which to regard »-labelled bipartite graphs. For

each o € 3, take a binary relation symbol E, and let
Lpas = Lpg U {EJ S 2}.

Then we call Lpas; the signature of 3-labelled bipartite graphs, where we interpret
(z,y) € E, if and only if {z,y} € F and {z,y}f = 0.
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Let I/ = (I, %, f) and I'/" = (I, &, ) be a pair of %-labelled bipartite graphs.
Then, applying Definition 1.1.7 to the signature Lpgs, we have that I'f and T'f '
are isomorphic if there exists an isomorphism 1 : I' — I which preserves labels,

that is, such that
{z,y}f =0 & {ay,y}f =0

Let T/ be a X-labelled bipartite graph. Then for any set ¥’ and bijection
g: Y — Y, we can form a YX/-labelling of ' simply by taking I'/9, which we call a
relabelling of TY. Notice that if 1) is an automorphism of I, then 1 € Aut(I'f) if
and only if ¢ € Aut(I'/9). Indeed, if 1) € Aut(I'/) then for any edge {z,y} of T we

have

{z,y}fg=0 e {a,y}f=dg ' o {ap,y}f =09 " & {ay,yv}fg =0,

since g is a bijection. The converse is proven similarly, and the following result is

then immediate.

Lemma 3.5.19. Let '/ be a S-labelling of a bipartite graph T. Then T'Y is Ry-

categorical if and only if any relabelling of T is Rg-categorical.

Lemma 3.5.20. If T/ = (I', %, f) is an Ro-categorical labelled bipartite graph then
Y is finite and I' is Ng-categorical.

Proof. For each o € 3, let {x4,y,} be an edge in T" such that {z,,ys}f = 0. Then
{(2o,ys) : 0 € X} is a set of distinct 2-automorphism types of I'/, and so X is finite
by the RNT. Since I' is the Lpg-reduct of I'f, the final result is immediate from
Corollary 3.2.3. O

A consequence of the previous pair of lemmas is that, in the context of Ng-
categoricity, it suffices to consider finitely labelled bipartite graphs, with labelling
setm = {1,2,...,m} for some m € N. We now construct examples of X-categorical

labelled bipartite graphs.

Lemma 3.5.21. Let I'Y = ((L,R,E), m, f) be an m-labelled bipartite graph such
that either L or R are finite. Then T'f is Rg-categorical.

Proof. Without loss of generality assume that L = {ly,l2,...,l.} is finite. Define a
relation 7 on R by y 73 if and only if y and 3 are adjacent to the same elements
in L and {l;,y}f = {l;,y'}f for each such [; € L. Note that since both L and m
are finite, R has finitely many 7-classes, say R1,...,R;. Fix A= (R;Ry,..., Ry).
Since L is finite, to prove that T'/ is Ng-categorical it suffices to show that
(/' \ L)™ = R™ has finitely many ~rp; ,-classes for cach n € N by Lemma 3.2.12.
Let a = (r1,...,ry) and b = (r},...,7,) be n-tuples of R such that a ~4, b via
Y € Aut(A), say. We claim that the map ) : T/ — T/ which fixes L and is such

that ¢)|g = v is an automorphism of I'f. Indeed, as 1 setwise fixes the 7-classes,
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we have (A, \) € 7 for each A € R. Hence A and A\ are adjacent to the same

elements in L, and so
{llv)\} SRS {lla)\d)} SR {l{lj),)ﬂ/—)} € Ea

so that v is an automorphism of I'. Similarly {l;, \}f = {l;, Mo} f = {liwp, M)} f, so
that 1) preserves labels. This proves the claim.
For each 1 < k < n we have r,¢ =m0 = 7., 0 that a ~rf, b. We have thus

shown that
(DINL)") ~ops o | S A" ~an .

However A is Ny-categorical by Corollary 3.2.10, and so |A"/ ~ ., | is finite for
each n > 1. Hence I'/ is Ry-categorical by Lemma 3.2.12. O

Lemma 3.5.22. Let I/ = ((L, R, E), m, f) be such that there exists p € m with
{x,y}f = p for all but finitely many edges in T. Then T'f is Ry-categorical if and
only if I' is Rg-categorical.

Proof. Let p € m be such that {z,y}f = p for all but finitely many edges in T
Suppose I' is Nyp-categorical, and that {l1,71},...,{l;,r:} are precisely the edges of
I such that {I;,7.}f # p, where [; € L and r; € R. Let a and b be n-tuples of I'f
such that

(Qallu’rl)' . 'alt7rt) ~I'n+2t (bu ll,Tl, D 7lt),rt)

via 1) € Aut(T), say. We claim that v is an automorphism of I'f. For each 1 < k < ¢
we have [y = I, and rgy = 7 so that

Uk, e} f = L, reab £

It follows that {l,r}f = p if and only if {l¢), 7} f = p, and so 9 preserves all labels,
thus proving the claim. We have thus shown that a ~ps ,, b via ¢, so that

(rhyr/ ~ps g | ST ~op e | < Rg

by the No-categoricity of I'. Hence I' is Rg-categorical.

The converse is immediate from Lemma 3.5.20. OJ

Given a Rees matrix semigroup S = MO°[G; I, A; P], we form a G(P)-labelling
of the induced bipartite graph I'(P) = (I, A, E) of S in the natural way by taking
the labelling f : E — G(P) given by

{iv )‘}f = DPXji-

We denote T'(P)/ by T'(P)!, which we call the induced labelled bipartite graph of S.
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Note that, unlike the induced bipartite graph I'(P), the induced labelled bipar-
tite graph I'(P)! obtained from S is not uniquely defined up to isomorphism. That
is, there exist isomorphic Rees matrix semigroups with non-isomorphic induced la-
belled bipartite graphs. For example, let G be a non-trivial group and P and @ be

1 x 2 matrices over G° given by

P:<1 a> Q:<1 1)

where a ¢ {0,1}. Let S = M°[G;2,1;P] and T = M°[G;2,1;Q)], noting that
I'(P) = I'(Q) (and are isomorphic to K 1). Then (1g, 1r(py, (ui)ie2, (a)re1) is an
isomorphism from S to T, where u; = 1 = vy, and uy = a. However, since I'(P)’

and T'(Q)! have different labelling sets, they are not isomorphic.

Proposition 3.5.23. Let S = MY[G;1,A; P] be such that G and T'(P)! are No-

categorical. Then S is Ng-categorical.

Proof. Since I'(P)! is Ro-categorical, the set of group entries of P, G(P), is finite
by Lemma 3.5.20, say G(P) = {x1,...,2,}. Let a = ((41,91, 1), -, (ins Gn, An))
and b = ((j1,h1,p1)s- -+, (Jn, An, itn)) be a pair of n-tuples of S under the pair of

conditions that
(1) (gla ey Gny L1y - 7'1:7‘) ~G,n+r (hla ce. 7hn7$1? cee 7x1“)a

(2) T(a) ~rpy 2, T(b),

via @ € Aut(G) and ¢ € Aut(I'(P)!), respectively (noting the use of Notation
3.5.9 here). We claim that ¢ = (0,v,(1)ier, (1)xea) is an automorphism of S.
Indeed, if py; # 0 for some i € I,A € A, then py; = x;, for some k, so that

{i, \} f = {itp, My} f = x. Consequently,
Prif = Tkl = 2 = Pry iy,

and claim follows by Proposition 3.5.10. Hence

(its gt M) = (1), ge0, M) = (Gt has pit)

for each 1 <t < n, and we have thus shown that
1S/ s | S|G™T ) ~Gngr |- [(T(P))™ ) ~pepyan | < Ro,

as G and T'(P)! are Np-categorical. Hence S is Ro-categorical. O

The converse however fails to hold in general, and we will construct a coun-
terexample at the end of the section. Despite this, the proposition above enables us
to produce examples of Ng-categorical Rees matrix semigroups. For example, the

result below is immediate from Lemma 3.5.21.
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Corollary 3.5.24. Let S be a Rees matrixz semigroup over an Wg-categorical group
having sandwich matriz P with finitely many rows or columns, and G(P) being

finite. Then S is Ng-categorical.

We are now concerned with how Lemma 3.5.22 may be used in conjunction with
Proposition 3.5.23.

Following [58], we call a completely 0-simple semigroup S pure if it is isomorphic
to a Rees matrix semigroup with sandwich matrix over {0,1}. In [53], Houghton
considered trivial cohomology classes of Rees matrix semigroups, a property which
is proven in Section 2 of the article to be equivalent to being pure. Hence, by
[53, Theorem 5.1], a completely O-simple semigroup is pure if and only if, for each
a,be S,

[a,b € (E(S)) and aHb] = a =b.

It follows that all orthodox completely O-simple semigroups are necessarily pure,
but the converse is not true. Indeed, a completely 0-simple semigroup is orthodox
if and only if it is isomorphic to a Rees matrix semigroup with sandwich matrix
over {0,1} and with induced bipartite graph a disjoint union of complete bipartite
graphs [45, Theorem 6].

We observe that if the sandwich matrix of a Rees matrix semigroup is over
{0,1} then T'(P)! is simply labelled by {1}. Therefore all automorphisms of I'(P)
automatically preserve the labelling, and so I'(P)! is Rg-categorical if and only if
['(P) is Np-categorical. The following result is then immediate from Proposition
3.5.12 and Lemma 3.5.22.

Corollary 3.5.25. A pure Rees matriz semigroup MC[G; I, A; P] is o-categorical
if and only if G and T'(P) are No-categorical.

Since complete bipartite graphs are Ng-categorical by Theorem 3.5.4, a disjoint
union of complete bipartite graphs is Ng-categorical if and only if it has finitely many
connected components, up to isomorphism, by Proposition 3.5.6. The corollary

above thus reduces in the orthodox case as follows.

Corollary 3.5.26. Let S = MY[G; 1, A; P] be an orthodox Rees matriz semigroup.
Then S is Rg-categorical if and only if G is Ng-categorical and T'(P) has finitely

many connected components, up to isomorphism.

We can further restrict our conditions on our Rees matrix semigroups by study-
ing inverse completely 0-simple semigroups. These are necessarily orthodox, and
are isomorphic to a Rees matrix semigroup of the form M°[G; I, I; P] where P is
the identity matrix, that is, p;; = 1 and p;; = 0 for each i # j in I (see [55, Page
151], for example). Rees matrix semigroups formed in this way are called Brandt
semigroups, denoted B°[G; I]. Since the induced bipartite graph of a Brandt semi-
group is a perfect matching, it is Ng-categorical by Theorem 3.5.4. Corollary 3.5.26

then simplifies.
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Corollary 3.5.27. A Brandt semigroup B°[G; 1] is Ro-categorical if and only if G

18 No-categorical.

We are now able to construct a simple counterexample to the converse of Propo-

sition 3.5.23. Let G = {g; : i € N} be an infinite Ny-categorical group. Let
S = MY[G;N,N; P] = B°[G;N] and T = M°[G; N, N; Q],

where Q = (¢;,5) is such that ¢; ; = g; and ¢; ; = 0 for each i # j. Then I'(P) = I'(Q)
(and isomorphic to Py) and (1g, 1p(p), (97 Vien, (1)aen) is an isomorphism from S
to T" by Proposition 3.5.10 since

piile=1=gg; ' =1-q; g "

for each ¢ € N. Since S is Ryp-categorical by Corollary 3.5.27, the same is true of T'.
However, I‘(Q)l is a G-labelling, and is thus not Wy-categorical by Lemma 3.5.20,

and so T is our desired counterexample. This leads to the following open problem.

Open Problem 1. Does there exist an Nyg-categorical connected Rees matrix semi-
group over a finite group which is not isomorphic to a Rees matrix semigroup with

Ng-categorical induced labelled bipartite graph?

We could have introduced Houghton’s [53] stronger notion of an induced group
labelled bipartite graph, although this does not appear to be a first order structure. A
group labelled bipartite graph is a G-labelled bipartite graph I'/ = ((L, R, E), G, f),
for some group G, where an automorphism of I'/ is a pair (1, 6) € Aut(I') x Aut(G)
such that, for each £ € L,r € R,

() f =g (b, r)f = gb.

The induced group labelled bipartite graph of a Rees matrix semigroup S =
MO[G; I, A; P] is simply the G-labelled bipartite graph T'(P)/, with automorphisms
being pairs (1,0) € Aut(I') x Aut(G) such that pyy i = pa 0 for each i € I, A € A.
Clearly every automorphism of the induced group labelled bipartite graph produces
an automorphism of S, although we do not in general obtain all of Aut(S) in
this way. Similar problems therefore arise of when Wy-categoricity of .S ‘passes’ to
its induced group labelled bipartite graph (by which we mean the induced group

labelled bipartite graph has an oligomorphic automorphism group).

3.6 O-direct unions and primitive semigroups

In this section we study a well known decomposition of an arbitrary semigroup

with zero which was remarked upon in the previous section, and assess how Ng-
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categoricity effects such a decomposition. The basic definitions and results are
taken from [8].

A semigroup with zero S is a 0-direct union or orthogonal sum of the semigroups
S; (i € A), if the following hold:

(1) S; # {0} for each i € A;

(2 S= UiEA Si;
(3) SinsS; = 5;8; = {0} for each i # j.
We denote S as |_|?€A S;. The family & = {S; : ¢ € A} is called a 0-direct decom-

position of S, and the S; are called the summands of S. Note that each summand
of S forms an ideal of S. If S and S’ are a pair of 0-direct decompositions of S,
then we say that S is greater than S’ if each member of S is a subsemigroup of
some member of §’. We say that S is 0-directly indecomposable if {S} is the unique

0-direct decomposition of S.

Example 3.6.1. Let S be a Rees matrix semigroup with connected Rees com-
ponents S; (i € A) and consider the subsemigroup S = |J;c4Si of S. Then
S;NS; =5;5; =0 for each ¢ # j and so S’ = |_|?€A S;.

A subset A of a semigroup S is consistent if, for x,y € S, zy € A implies that
xz,y € A. A subset A of a semigroup with zero is 0-consistent if A* = A\ {0} is
consistent. The integral connection between 0-consistency and 0-direct decompo-
sitions is that a semigroup with zero S is 0-direct indecomposable if and only if S
has no proper 0-consistent ideals [8, Lemma 4]. Consequently, every Rees matrix
semigroup, being 0-simple, is 0-direct indecomposable.

The main result of [8] is in proving that every semigroup with zero has a greatest
0-direct decomposition, and the summands of such a decomposition are precisely
the 0-direct indecomposable ideals. The importance of the existence of a greatest 0-

direct decomposition for Rg-categoricity is highlighted in the following proposition.

Proposition 3.6.2. Let S be a semigroup with zero and let S = {S; : i € A} be the
greatest 0-direct decomposition of S. Let w: A — A be a bijection and ¢; : S; — Six
an isomorphism for each i € A. Then the map ¢ : S — S given by

5i0 = sipi;  (s; € 55)

is an automorphism of S, denoted ¢ = |_|?€A ¢i. Moreover, every automorphism of

S can be constructed in this way.

Proof. Let ¢ be constructed as in the hypothesis of the proposition. Since 0¢; = 0
for each i € A the map is well-defined, and it is clearly bijective. Let a € S; and
be S;. If i = j then

(ab)¢ = (ab)pi = (achi)(bo:) = (ag)(bg),
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and if ¢ # j then

(ab)g = 09 = 0 = (ags)(bg;) = (ag)(be).

Hence ¢ is an isomorphism.

Conversely, if ¢’ is an automorphism of S, then it easily follows that
S¢/ = {Sl¢/ NS A}

is a O-direct decomposition of S. For each summand S; there exists £k € A such
that S; C Sp¢ since S is the greatest 0-direct decomposition. If S; C Sip¢’ N Sk ¢’
then S; = {0} as S¢' is a 0-direct decomposition of S, a contradiction. Hence the
element k is unique. Suppose S;,S; C Sk¢’. Then S;¢'~1, S;¢'~1 C S, and so as
{S;¢/' 1 i € A} is also a O-direct decomposition of S, we have that i = j since
S is O-direct indecomposable. Hence there exists a bijection ' of A such that
S;¢' = S; for each i € A as required. O

Proposition 3.6.3. Let S be a semigroup with zero and let S = {S; : i € A} be the
greatest O0-direct decomposition of S. Then S is Rg-categorical if and only if each S;

s Ng-categorical and S s finite, up to isomorphism.

Proof. Tt follows immediately from Proposition 3.6.2 that {(S;,z;) : i € A} forms a
system of 1-p.p.r.c subsemigroups of S for any x; € S;. Hence if S is Np-categorical
then each S; is Wy-categorical and S is finite, up to isomorphism, by Propositions
3.3.5 and 3.3.9.

Conversely, we shall prove that S forms an (S; A; ¥)-system in S for some A
and W. Let Aq,..., A, be a partition of A corresponding to the isomorphism types
of summands of S, so that S; = S; if and only if 7,5 € Ay for some k. Let
A= (A;A;,...,A). Foreachi,j € A, let U; ; = Iso(S;; S;) and fix ¥ = Ui jea iy
Then Conditions 3.2.14(A), 3.2.14(B) and 3.2.14(C) are trivially satisfied by W.
Take any 7 € Aut(A) and, for each i € A, let ¢; € VU;ir. Then, as S; = Six by
our partition of S, we have that ¢ = |_|?6 4 @i is an automorphism of S extending
each ¢; by Proposition 3.6.2, and so Condition 3.2.14(D) is satisfied. Hence S forms
an (S; A; U)-system. Moreover, A is Ng-categorical by Corollary 3.2.10, and each
S; is No-categorical (over Aut(S;) = VU;;). Hence S is Ryp-categorical by Lemma
3.2.16. O

When studying Rg-categorical semigroups with zero, it therefore suffices to ex-
amine 0-direct indecomposable semigroups.

We observe that without the condition of § being the greatest 0-direct decom-
position of S, the converse of Proposition 3.6.3 need not be true. For example, for

each n € N, let N,, be a null semigroup on n non-zero elements. Then N = |_|?EN N;
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is a countably infinite null semigroup, and is thus Ng-categorical by Example 3.2.1.
However the set of summands of N is not finite, up to isomorphism.
Since each Rees matrix semigroup is O-direct indecomposable, we attain the

following immediate consequence to Proposition 3.6.3.

Corollary 3.6.4. Let S; = M°[G;; I;, \;, P;] (i € A) be a collection of Rees matriz
semigroups. Then |_|?€A Si is Wo-categorical if and only if each S; is Ng-categorical
and {S; : i € A} is finite, up to isomorphism.

Note that a Rees matrix semigroup is a 0-direct union of its connected Rees
matrix components if and only if it is a connected Rees matix semigroup. Conse-
quently, the corollary above does not imply Theorem 3.5.16, nor give us a method
for proving its generalization.

A semigroup S with zero is called primitive if each of its non-zero idempotents
is primitive. It follows from the work of Hall in [46] that a regular semigroup
S is primitive if and only if S is isomorphic to a O-direct union of Rees matrix
semigroups. A classification of primitive regular Ny-categorical semigroups via its

Rees matrix ideals then follows.

Corollary 3.6.5. A primitive reqular semigroup S is Ng-categorical if and only
S = U?eA MO[Gy; I, Ay; Pi] with each MP[Gy; I, Aj; Pi] being No-categorical, and
{MO[G; I;, \i; Py) - i € A} being finite, up to isomorphism.

In particular, since a primitive inverse semigroup is isomorphic to a 0-direct

union of Brandt semigroups, the corollary above simplifies accordingly:

Corollary 3.6.6. A primitive inverse semigroup S is Ro-categorical if and only if
S = U?EA B°[G; I;]) with each G; being No-categorical and the sets {G; :i € A} and

{I; : i € A} being finite up to isomorphism and bijection, respectively.

Proof. By Corollary 3.5.27 the Brandt semigroups B; = BY[G}; I;] are Rg-categorical
if and only if the groups G; are Ny-categorical. Since a pair of perfect matchings are
isomorphic if and only if they are of the same cardinality, we have by Proposition
3.5.10 that B; = B; if and only if G; = G; and |I;| = |I;| (a result which is also
stated in [65, Section 3.3]). The result then follows by Corollary 3.6.5. O

3.7 Ny-categorical strong semilattices of semigroups

We end the new results in this chapter by studying the Wy-categoricity of strong
semilattices of semigroups.
Let S = [Y;S54;%q,] be a strong semilattice of semigroups. We denote the

equivalence relation on Y corresponding to isomorphism types of the semigroups
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S« by ng, so that
ang B < Sy = S;.

Let Y/ns = {Y1,Ys,...}. Denote Y as the Y/ng-extended structure (Y;Y7,Ys,...)
of Y (so that Y is a semilattice with distinguished subsets Y;).

Lemma 3.7.1. Let S = [Y;S4;%q,] be a strong semilattice of semigroups such
that Y° is Wg-categorical. Then Y /ng is finite.

Proof. Since ng is an equivalence relation, the equivalence classes are pairwise dis-

joint, and so the result is immediate from Lemma 3.2.8. O

Recall that a strong semilattice of semigroups .S is automorphism-pure if every

automorphism of S can be constructed as in Theorem 2.7.1.

Proposition 3.7.2. Let S = [Y;Sy; 14 5] be automorphism-pure and No-categorical.

Then each Sy is No-categorical and Y is No-categorical.

Proof. For each o € Y, fix ¢4 € S,. We claim that {(Sa,2q) : @ € Y} forms a
system of 1-p.p.r.c subsemigroups of S. Indeed, let 8 be an automorphism of S
such that z,0 = zg for some «, 5 € Y. Since S is automorphism-pure, there exists
m € Aut(Y) and 0, € Iso(Sq; Sar) such that 6 = [0, 7]acy. Hence S,0 = Sg,
and the claim follows. Consequently, by the Ng-categoricity of S, each S, is No-
categorical by Proposition 3.3.5.

Let a = (a1,...,05,) and b= (B, ..., B,) be a pair of n-tuples of Y¥ such that
there exist aq, € So, and bg, € Sg, with (aa,,..-,0qa,) ~sn (bg,-..,bg,) via
[0, 7 |acy € Aut(S), say. Since m € Aut(Y) and S, = S, for each a € Y, it
follows that 7/ € Aut(Y®). Moreover, ay’ = By for each k, so that a ~ys,, b via
7’. We have thus shown that

(Y5)") s | 18"/ ~sm | < Ro,
as S is Ng-categorical. Hence Y is Ry-categorical. O

In this chapter we will only be concerned with the Ny-categoricity of strong
semilattices of semigroups in which all connecting morphisms are either constant
maps or all are injective maps. For arbitrary connecting morphisms, the problem of
assessing Ng-categoricity is extremely difficult, and this is discussed further at the
end of the chapter. We first consider the constant maps case.

Suppose that Y is a semilattice and, for each a € Y, S, is a semigroup containing
an idempotent e,. For each o > 8 in Y, let ¢, be the constant map with
image {eg}. It is easy to check that (with ¢, = lg, for all & € Y) we have
Yapsy = Yoy for all @ > 8 > v in Y. We follow the notation of [99] and let
Ya,p = Ca,e, for all a > B in Y. We have shown that S = [V; So; Cae,] is a strong
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semilattice of semigroups, which we call a constant strong semilattice of semigroups,

denoted S = [Y; Sa; €a; Caes)-

Example 3.7.3. Let Y = {0,7 : i € A} be a primitive semilattice with zero, that
is, such that it =7 and ij = 0 = ji for all ¢ # j in A. Let {S; : i € A} be a family
of pairwise disjoint semigroups with E(S;) # 0 (i € A), and set Sp = {0}. Then we
form a strong semilattice of semigroups by taking S = [Y; Sq; €a; Ca,eﬁ]. We claim
that S is a 0-direct union of the subsemigroups S, = S, U {0}. Indeed, if s; € S;
and s; € S; where i # j, then

sisj = (Sici7€0)(8j0j7eo) =00=0

so that S; N S; = 5;5; = {0}, and the claim follows.

Clearly not every O-direct union of semigroups can be written as a (constant)
strong semilattice of semigroups over a non-trivial semilattice, thus justifying the
previous section. A simple example is any 0-direct union of a pair of semigroups

without non-zero idempotents.

Notation 3.7.4. If S = [Y;S,;€n; C’meﬁ] is a constant strong semilattice of semi-
groups, then we denote the subset of Iso(Sy; Sg) consisting of those isomorphisms
which map e, to es as Iso(Sa; S5)l°°). Notice that the set Iso(Sa; Sa)lcail is
simply the subgroup Aut(Sy;{eq}) of Aut(Sy,).

Definition 3.7.5. Let S = [Y;Sa;ea;C’meﬁ] be a constant strong semilattice of

semigroups. Define a relation vg on Y by
avg < Iso(Sy; ng)[e"‘;eﬁ} #0,

so that vg C ng.

Then vg is reflexive since 1g, € Aut(Sy;{en}) for each a € Y, and it easily

follows that vg forms an equivalence relation on Y.

Proposition 3.7.6. Let S = [Y;54;€qa; Caeyl be such that Y/vs = {Y1,...,Y,} is
finite, Y = (Y;Y1,...,Y,) is Ro-categorical and each S, is Ng-categorical. Then S

18 No-categorical.

Proof. We prove that {S, : « € Y} forms an (S;); ¥)-system for some ¥. For each
a,feY,let ¥y = Iso(Sa;Sg)[emeﬁ] and fix ¥ = Ua,BEY VU, . Then Conditions
3.2.14(A), 3.2.14(B) and 3.2.14(C) are satisfied since vg forms an equivalence rela-
tion on Y. Let m € Aut(Y) and, for each a € Y, let 0, € Uy or. We claim that
0 = [0a, T|aey is an automorphism of S. Indeed, for any s, € S, and any § < «
we have

saCa,eﬁ% =eglg = egr = saeacamh
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so that the diagram [« §; am, f7] commutes. The claim then follows by Theorem
2.7.1. Since 0 extends each 6,, we have that {S, : « € Y} is an (5;); V)-system.
Moreover, as S, is Ng-categorical, it is No-categorical over ¥, o = Aut(Sq; {ea}) by
Lemma 3.2.11. Hence S is Ng-categorical by Corollary 3.2.16. ]

Examining our main two classes of automorphism-pure strong semilattices of
semigroups; strong semilattices of groups and of rectangular bands, the results of
this section reduce accordingly. If S = [Y; Gq; eq; Cae B] is a constant strong semilat-
tice of groups, then e, is the identity of Gy, and so Iso(Gy; Gj) = Iso(Gy; Gg)leaics]
for each o, 8 € Y. On the other hand, if S = [Y; By; €qa; Ca,es) is a constant strong

semilattice of rectangular bands, then
Is0(Ba; Bg) # 0 & Tso(Ba; B8] = () for any e, € Ba,es € Bg,

by Proposition 2.10.2. In both cases, we therefore have vg = ng and so by Lemma
3.7.1 and Proposition 3.7.6 we attain a converse to Proposition 3.7.2 in the case of
constant strong semilattices. Moreover, by Lemma 3.2.9, each rectangular band B,

is Ng-categorical, and we have thus proven the following result.

Corollary 3.7.7. Let S = [Y; Sq; €q; Coz,Eg] be a constant strong semilattice of rect-
angular bands (groups). Then S is Rg-categorical if and only if Y is Ng-categorical
(and each group Sy is Wo-categorical).

Consider now a strong semilattice of semigroups [Y'; Su; 1, g] with each connect-
ing morphism being injective. For each @ > f in Y, we abuse notation somewhat by
denoting the isomorphism @b;lﬁ\ Im b, 5 SIMPly by w;lﬂ We observe that if a > 8 > ~

and z, € Im v, say ¥, = T, then

:L"y¢;,1ﬂ/}a,5 = xai/)a,ﬂb(;}ywa,g = TaWap = mvzﬁﬁ_’ﬁ, (3.5)

Hence, on the restricted domain Im %, , we have 7/);,177/104,/3 = ¢E}{
Notice that an element of a semilattice Y is minimum under the natural order

if and only if it is a zero. If Y has a zero 0 we may define an equivalence relation

s on Y by afgsf if and only if Sptbao = SgPge. If s then 1/10470#)6_}) is an
isomorphism from S, onto Sg, and so {5 C 7g.

Proposition 3.7.8. Let S = [Y; Sq;%q,] be such that each 1o g is injective. Let
Y be a semilattice with zero and Y/{s = {Y1,...,Y;} be finite, with

{Sawoz,() oA Y} = {Tl, - ,Tr}.

Let Y = (Y;Y1,...,Y,) be a set-extension of Y and Sy = (So;Th,...,T) a set-

extension of So. Then S is Ng-categorical if Y and Sy are No-categorical. Moreover,
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if S is automorphism-pure and Rg-categorical, then conversely Y and Sy are Ng-

categorical.

Proof. Suppose first that Y = (Y;Y1,...,Y,) and Sy = (So; Th,...,T;) are No-
categorical. Let a = (aa;;---,0q,) and b = (bg,,...,bg,) be n-tuples of S with
(a1,...,00) ~yn (B1,...,5,) via ™€ Aut(Y), say. Suppose further that

(@a1¥a1,0;- -+ @ayVan0) ~Som (0818105, b8,¥8,.,0)

via 0y € Aut(Sp), say. Then for each o € Y we have Sqta,0 = Sartar,0, and so we
can take 0, € Iso(Sq; Sar) given by

604 = wa,O 00 ¢;7170-

For each oo > f in Y, the diagram [a, 8; am, f7] commutes as

Ya,808 = Yo (1p.000 Vgr o)
= a0 0o l%#,o
= 10,000 (Yp 0 Yo )
= b Yo pr,

where the penultimate equality is due to (3.5) as Im Y0 = Im ¥a,0 = (Im 14,0)60-

Hence 0 = [0,, T]acy is an automorphism of S by Theorem 2.7.1. Furthermore,

a0 = aa, 00, = oy ta,,060 d’o_zklw,o = bg, Vg0 wﬁ_kl,o = bg,

for each 1 < k < n, so that a ~g, b via 6. We thus have that
15" ~s | S|V ~yn | 180 ~som | < Ro

and so S is Ng-categorical.

Conversely, suppose S is automorphism-pure and Ng-categorical. For each 1 <
k < r, fix some 7 € Y}, where we assume w.l.o.g. that S,,1,, 0 = T}. For each
a €Y, fix some x4 € Sy. Let a = (aq,...,ap) and b= (B1, ..., Bn) be n-tuples of
Y such that

(Tars s Tans Tyrs oo Tyy) ~Smgr (TByy -y Ty s Tyys e vy Ty, )

via § € Aut(S), say. Since S is automorphism-pure there exist 7 € Aut(Y) and
0a € Is0(Sy; Sar) such that 8 = [0, 7]aey. The automorphism 7 fixes each 7y, so

that S,, 0 = S,,. Hence, as the diagram [, 0; 7, 0] commutes for each k, we have

T = Sy 0 = (Sy by )0 = Sy ¥ 000 = Tiwblo = Tieb.
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If a € Yy, then by the commutativity of the diagram [a; 0; amr, 0] we therefore have

Soﬂ/}a,() = Tk = Tka() = Socl/}a,()g() = Saeocz/}onr,o = Somwom,Oa

and so m € Aut()). We have thus shown that
V") oy | S S™T) s | <o

and so ) is Ng-categorical. Now suppose ¢ and d are n-tuples of Sy such that

(Q’ Lyyyeees 1:%) ~Sn+r (da Lypseeey :E’yr)a

via 0" = [0, 7']acy € Aut(S), say. Then arguing as before we have that 70" = Ty,
for each k, and it follows that 6, € Aut(Sp) and is such that ¢, = d. Hence

’SSL/ ~So,n | < ‘STH_T/ ~Sntr ‘ < No
and so Sy is Ng-categorical. O

Note that if Y is finite, then it has a zero (as the meet of all the elements of
Y). Then any set extension of Y is finite, and thus Rg-categorical, and so the result

above simplifies accordingly in this case:

Corollary 3.7.9. Let S = [Y;S4;%q,8] be such that each 14 g is injective and Y
is a semilattice with zero. Let Y/&s = {Y1,...,Y;} with

{So/(/}a,() oA Y} = {Tl, R ,TT}.

Let Y = (Y;Y1,....Y,) be a set-extension of Y and So = (So;Th,...,T}) a set-
extension of So. If Sy is No-categorical then S is Ng-categorical. Moreover, if S is

automorphism-pure and Ng-categorical then conversely Sy is Ng-categorical.

Example 3.7.10. An inverse semigroup with semilattice of idempotents E is called
E-unitary if, for all e € E and all s € S,

ese E=s¢eckE.

A Clifford semigroup S = [Y; Go;%¥q 5] is E-unitary if and only each 1), g is injective
by [55, Exercise 5.20]. Since Clifford semigroups are automorphism-pure by Lemma

2.11.7, we have the following simplification of Proposition 3.7.8.

Corollary 3.7.11. Let S = [Y;Gq; 0] be an E-unitary Clifford semigroup. Let
Y be a semilattice with zero and Y/{s = {Y1,...,Y;} be finite, with

{SQ’LZJQ,Q RS Y} = {Tl, . ,TT}.
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Let Y = (Y;Y1,...,Y,) be a set-extension of Y and Sy = (So;T11,...,T,) a set-

extension of So. Then S is Rg-categorical if and only if Y and Sy are Wg-categorical.

We can also consider a stronger condition on a strong semilattice of semigroups
S = [Y; Sa;¥a,p] by taking each connecting morphism to be an isomorphism. In
this case Y/{s = {Y'}, and so the result above simplifies accordingly. However we
can prove a more general result directly (without the condition that Y has a zero).
We first extend our connecting morphism notation by defining, for each o, 5 € Y,

the morphism v, g by
d}oc,ﬁ = ¢a,aﬁ(¢ﬁ,aﬁ)_l~

We observe that if o > 3 then v, g is the same as our original connecting morphism.

Furthermore, if o,y € Y then

wa,v = "/}a,oc'y(w%a’y)il = (wv,av(wa,aw)il)il = (w'y,a)il- (36)

A key property of our extended set of connecting morphisms is that transitivity
still holds:

Lemma 3.7.12. For each o, 3,7 € Y we have 1o = 1o g3,

Proof. Let o, 8 € Y and suppose § < «, 3. We claim that 1, 5 = 1q,6153. Since
a > af > 0 we have

Va,5 = Ya,aptaps
and so
Vo = Vas¥oss = Yo ss.ap
by (3.6). Hence

Ya,8 = Ya,a8Vap,B
= Ya,6¥5,a8VaB,8
= Ya,6Vs,8,

thus completing the proof of the claim. Let v € Y and fix 7 € Y such that
7 < «, 3,7. Then by the claim above,

Va,8U8y = WVa,r¥r8) (Vs rry)
= Yo, (Yr 597 5)ry
= Yo, rPry
= wa,'y

as required. O
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The Np-categoricity of strong semilattices of semigroups with connecting mor-
phisms being isomorphisms follows quickly from the next result. We remark that
only the first half of the result is required here, however the necessary and sufficient

statement will be used in later chapters.

Proposition 3.7.13. Let S = [Y;S4;%q] be such that each 1 p is an isomor-
phism. Then there exists a semigroup S such that S = S, for each o € Y and
S = 8 xY. Conversely, if T is a semigroup and Z is a semilattice then T x Z
is isomorphic to a strong semilattice of semigroups such that each connecting mor-

phism is an isomorphism.
Proof. For any o, 8 € Y, the map v, g is an isomorphism, and so the semigroups

S, are pairwise isomorphic. Fix § € Y. Then the map 6 : S — S5 X Y given by

ol = (xawaﬁ, a) (I‘a € S)

is a bijection. If an, by € S then, using Lemma 3.7.12, we have

(aa b’y)Ipa'yﬁ = (aozdjoe,a'y b'ywv,aw)l/}a'y,é
= (aa¢a,a7wa7,5)(bvwv,avwa'y,é)
- (aawaﬁ)(bvw'y,ﬁ)a

since 14,5 is a morphism. It follows that

(aaby)b = ((aaby)tay,s, )

((aatha,s)(byiby.s), a7)
= (aa¥a,s, @) (by¥q,5:7)
= aq0b,0.

Hence 6 is an isomorphism as required.

Conversely, let T, = {(a,a) : a € T} for each a € Z. Clearly each T, is a
semigroup isomorphic to T'. For each o > 8 in Z, let ¢, : T, — T3 be the
isomorphism given by

(@, )pap = (a, ).
Then it is easily shown that [Z;T,; pa,g] forms a strong semilattice of semigroups,

and is isomorphic to T' x Z by the forward direction to the proof. ]

Corollary 3.7.14. Let S = [Y;Sa;%a,] be such that each o is an isomor-
phism. If S, and Y are Ng-categorical, then S is Ng-categorical. Moreover, if S is

automorphism-pure then the converse holds.

Proof. By Proposition 3.7.13, S is isomorphic to Sy X Y for any a € Y. The first
half of the result then follows by Proposition 3.1.2.
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Suppose S is automorphism-pure. Since the components S, are pairwise iso-
morphic, we have Y5 = (YY), so clearly Aut(Y®)=Aut(Y). Hence Y7 is R-
categorical if and only if Y is Rg-categorical, and so the converse holds by Proposi-
tion 3.7.2. O

3.8 Further work

The study into the Ny-categoricity of semigroups described in this chapter is in no
way complete. In particular, we would like to be able to answer Open problem
1, and further describe the Np-categoricity of Rees matrix semigroups with ‘more
complicated’ sandwich matrices.

We have seen in this chapter that the property of Ng-categoricity passes to a
wide range of subsemigroups. Conversely however, building an Ng-categorical semi-
group from its Ng-categorical ‘parts’ is difficult, even for relatively easily described
semigroups, such as Rees matrix semigroups. One possible direction which we now
take is to apply Theorem 1.2.26 by switching our interest to (ULF) homogeneous
structures. This will allow more interesting examples of Rg-categorical semigroups

to be constructed in subsequent chapters.






Chapter 4

Homogeneous structures

Recall that a structure is homogeneous if every local symmetry is a part of a global
symmetry. Homogeneous structures are therefore highly symmetrical, and tend to
have rich automorphism groups. There are two main reasons why we are inter-
ested in the property of homogeneity. The first comes from an algebraic viewpoint,
where the definition of homogeneity not only arises naturally, but is seemingly
strong enough to allow for full classifications. The second is the aforementioned
link between homogeneity and Rgp-categoricity, given in Theorem 1.2.26.

The rest of this thesis is concerned with homogeneity of structures, the focus
being on semigroups. We proceed as follows. A literature review is given in Sec-
tion 4.1, and in Section 4.2 a well known construction of Fraissé is described. In
Section 4.3 we discuss how our choice of signature impacts on the homogeneity
of a semigroup, in particular for monoids and completely regular semigroups. In
Section 4.4 we describe substructures of a homogeneous structure and, by applying
these results to the signature Lg, show how these translate to the semigroup con-
text. In Section 4.5, the homogeneity of non-periodic semigroups is examined, our
main result being that a completely regular non-periodic homogeneous semigroup
is completely simple. This chapter ends with a brief discussion on the homogeneity
of completely simple semigroups, and finite regular homogeneous semigroups are
shown to be completely simple. The results of this chapter are then used through-
out Chapters 5, 6 and 7, where the homogeneity of bands, inverse semigroups and
orthodox completely regular semigroups are studied, respectively.

It should be noted that the order of the chapters does not reflect the order
of research. I began my study into homogeneity with bands, followed by inverse
semigroups. Much of the material of this chapter and Chapter 7 was produced
when attempting to place our results on homogeneous bands and inverse semi-
groups into a general setting (completely regular semigroups). As such, completely

simple semigroups and arbitrary completely regular semigroups have been the least
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investigated from the point of view of homogeneity, although we will highlight a

number of interesting open problems that naturally arise.

4.1 Literature review

The concept of homogeneity was introduced by Fraissé in 1954 in his seminal paper
[32]. Here he described a method for building homogeneous structures from certain
classes of finite structures. While he restricted his work to relational structures over
a finite signature, his construction was easily generalized to arbitrary structures.
His work is regarded as some of the most fundamental in model theory.

Since the work of Fraissé, there has been a continuous interest in homogeneous
structures. The following literature review is in no way complete, and centres on
classifications which in some way relate to, or are used in, our research. Much of
the early work was on the homogeneity of relational structures. There are a num-
ber of reasons for this, the first being a natural continuation to Fraissé’s relational
structure viewpoint. Secondly, the homogeneity of relational structures can be con-
sidered the most ‘natural’, for it is easier to picture a highly symmetric graph than,
say, a symmetrical semigroup. In addition, the f.g. substructures of a relational
structure are normally far easier to understand than for algebraic structures, since
they arise simply as the finite subsets under the induced structure. Due to this,
a complete classification of homogeneous relational structures such as graphs and
posets seems more likely to be obtainable than for algebraic structures. History
certainly backs up this point.

Finite homogeneous graphs were determined by Gardiner in [11], a result which
was later extended to all homogeneous graphs by Lachlan and Woodrow in [61].
Lachlan [62] classified homogeneous tournaments, and homogeneous posets were
determined by Schmerl [92]. The classification of homogeneous bipartite graphs by
Goldstern was given in Theorem 3.5.4. The weaker property of n-homogeneity has
been studied for graphs in [26] and for posets in [24].

There has also been much progress in the classification of homogeneous non-
relational structures. For groups and rings, the interest in homogeneity was kick
started by Macintyre [66] in 1971, where quantifier eliminable fields are described.
For finite structures, quantifier elimination is equivalent to homogeneity by Theo-
rem 1.2.26, but in general is far more restrictive. Macintyre’s work led to a burst
of research on quantifier elimination for classes of groups and rings, for example see
[16] and [91]. These results were later transferred to the homogeneous setting. One
occurrence of this transferal was in 1979, where interest in the quantifier elimina-
tion of solvable groups was started by Cherlin and Felgner, whose work in this area
continued throughout the 1980s. By the late 80s, their viewpoint was switched to

the homogeneity of solvable groups in [17], and the classification of homogeneous
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solvable groups was reduced to the case of nilpotent groups of class 2 and exponent
4. We refer the reader to [17] for a fantastic historical account of the problems
and successes during the 1970s and 80s in the researching of homogeneous groups
and rings. It is worth noting that Cherlin and Felgner were not alone in investi-
gating quantifier eliminable and homogeneous solvable groups. Indeed, the theory
was developed by Saracino [90] in 1982, where Fraissé’s method was used to prove
the existence of uncountably many homogeneous nilpotent groups of class 2 and
exponent 4. Furthermore, in 1984 Neumann independently classified all finite ho-
mogeneous solvable groups. This feat was soon eclipsed, and a description of all
finite homogeneous groups can be found in [19] and [64], although as Cherlin states
in [17],

“The history of the results in the finite case is fairly complicated.”

However, very little is known about the homogeneity of semigroups, with the excep-
tion of the classification of homogeneous semilattices by Droste, Truss and Kuske
[27], and a brief discussion on normals bands in [10]. The work in this thesis aims

to bridge this gap in knowledge.

4.2  Fraissé’s Theorem

Our methods for proving homogeneity come in two forms: either we prove it directly
with the help of certain isomorphism theorems, or we use the general method of
Fraissé. In this section we describe the latter method. All background material is
taken from [51, Chapter 7].

Let L be a signature and M an L-structure. The age of M is the class of all
f.g. L-structures which can be embedded in M.

Let IC be a class of f.g. L-structures. Then we say

(1) K is countable if it contains only countably many isomorphism types.
(2) K is closed under isomorphism if whenever A € K and B = A then B € K.

(3) K has the hereditary property (HP) if given A € K and B a f.g. substructure
of A then B € K.

(4) K has the joint embedding property (JEP) if given Bj, By € K, then there
exist C' € K and embeddings f; : B; = C (i =1,2).

(5) K has the amalgamation property' (AP) if given A, By, By € K, where A is
non-empty, and embeddings f; : A — B; (i = 1,2), then there exist D € K

!This is also known as the weak amalgamation property.



110 CHAPTER 4. HOMOGENEOUS STRUCTURES
and embeddings g; : B; — D such that
fiog1 = f20g.

For example, the age of any structure can be seen to be closed under isomorphism
and have HP and JEP. We may now state Fraissé’s Theorem, which can be found
in [51, Theorem 7.1.2].

Theorem 4.2.1 (Fraissé’s Theorem). Let L be a countable signature and K a non-
empty countable class of f.g. L-structures which is closed under isomorphism and
satisfies HP, JEP and AP. Then there exists a unique, up to isomorphism, countable
homogeneous L-structure M such that I is the age of M. Conwversely, the age of
a countable homogeneous L-structure is countable, closed under isomorphism, and
satisfies HP, JEP and AP.

We call M the Fraissé limit of K.

Example 4.2.2. The class of all finite graphs is a Fraissé class [51, Lemma 7.4.3],
and its Fraissé limit is a countably infinite graph called the random graph. This is
arguable the most famous example of a Fraissé limit, due to its numerous beautiful
properties and descriptions. An in-depth study of the random graph is given by
Cameron [11, Chapter VII].

Example 4.2.3. The class of all finite bipartite graphs is a Fraissé class [35]. The

Fraissé limit is the random bipartite graph, discussed in Section 3.5.

Example 4.2.4. In 1959, Hall proved in [44] the existence of a unique, up to
isomorphism, locally finite homogeneous group which embeds every finite group.
This group is the Fraissé limit of the class of finite groups, and is known as Hall’s

universal group.

Example 4.2.5. The class of all finite (inverse) semigroups does not satisfy the
AP [48]. As such, there does not exist an analogy of Hall’s universal group for semi-
groups or inverse semigroups. In [23], a weaker form of homogeneity is examined,

and an analogy can be constructed in this case.

Example 4.2.6. A famous solved problem in group theory [49] was the existence
of uncountably many 2-generated groups, up to isomorphism. Hence the class of all

f.g. groups, and thus the class of all f.g. semigroups, does not form a Fraissé class.

4.3 Choosing our signature: Lg versus Lyg

When studying the homogeneity of a semigroup, it is important to distinguish which

signature we are working over. For example, we could consider the homogeneity of a
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monoid S either in the signature of semigroups Lg or the signature of monoids Ljy,.
In the context of homogeneity, the key difference between these two signatures is
substructure: in Lg we consider f.g. subsemigroups, while in L,;, we consider f.g.
submonoids. This distinction is particularly important for the idempotents of S. In-
deed, for any e € E(S) we have that (e) = {e} is isomorphic to (1) = {1}, although
if e # 1 then no automorphism of S can extend the unique isomorphism between
them (since automorphisms of S must fix 1). It follows that if S is homogeneous in
Lg then 1 is its unique idempotent. On the other hand, in the signature of monoids
Ly, we have that (e)y, = {e,1} and (1)p7, = {1} are no longer isomorphic, and
so no such problem arises if S is homogeneous in L;;,. This occurrence is similar
for semigroups with zero, considered either in Lg or Lg. It is worth highlighting

the following result that we have proven here:

Lemma 4.3.1. Let S be either a monoid or a semigroup with zero, which is homo-

geneous in Lg. Then S contains a unique idempotent.

Our third example comes from studying I-semigroups, where we restrict our
choice to either Lg or the signature of unary semigroups Lygs. If S is a semigroup
with a unary operation such that S is a member of a variety of I-semigroups, then
it is more natural to consider it in the signature Lyg rather than Lg, since here
the f.g. substructures are f.g. I-subsemigroups and thus belong to the variety, and
isomorphisms are of the ‘correct type’. For example, the homogeneity of inverse
semigroups in Lg would amount to considering f.g. subsemigroups, which need not
be inverse. On the other hand, a substructure of an inverse semigroup in Lyg is
clearly an inverse subsemigroup (since closure under the unary operation x ~ =

gives rise to inverses).

Given that we are considering the homogeneity of both semigroups and I-
semigroups (the latter certainly being semigroups) we need to set up some clear
labelling conventions. First, if S is an I-semigroup, we will always make it clear
whether we are dealing with S in Lg or in Lyg. If P is an adjective describing
a property of I-semigroups, and S has property P, then we say that S is a ho-
mogeneous P semigroup if S is homogeneous in Lyg, and S is a P homogeneous
semigroup if S is a P semigroup that is homogeneous in Lg. The fundamental

example of completely regular semigroups is considered in the next subsection.

It is also worth fixing some notation for generating sets of I-semigroups. Let S
be an I-semigroup and A a subset of S. Then we denote (A); as the I-subsemigroup
of S generated by A. Much like the convention for our notation for (-), this goes
against the general convention of generating substructures, but no confusion should

arise.
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4.3.1 'The homogeneity of completely regular semigroups

While studying the homogeneity of bands and inverse semigroups, we will mostly
be working with completely regular semigroups. The task of choosing a suitable
signature for the homogeneity of completely regular semigroups is therefore pivotal.

Recall that completely regular semigroups form a variety of I-semigroups, with
unary operation a — a~!, where a~! is the inverse of a € S contained in H,.
We therefore have the concept of homogeneous completely regular semigroups (in
the signature Lyg). Since the class of all completely simple semigroups forms a
subvariety of the variety of completely regular semigroups, as given in Section 2.9,
we can also write homogeneous completely simple semigroups (again in Lyg).

The difference between considering completely regular homogeneous semigroups
and homogeneous completely regular semigroup lies solely in the f.g. substructures
(either f.g. subsemigroups or f.g. completely regular subsemigroups, respectively)
and not the isomorphisms. Indeed, if S and T are completely regular semigroups
and ¢ : S — T a semigroup morphism, then by [72, Lemma I1.2.4] ¢ also preserves
the unary operation, so that a='¢ = (ag)~! for all @ € S. Hence all semigroup
morphisms are also morphisms in Lgg.

Not every f.g. completely regular semigroup is a f.g. semigroup, and an example
is the free completely reqular semigroup of rank 2, discussed further in [94]. In the
non-periodic case we will later show that our two concepts of homogeneity for a
completely regular semigroup differ. On the other hand, for periodic completely

regular semigroups we have the following.

Lemma 4.3.2. Let S be a periodic completely reqular semigroup. Then S is a

homogeneous semigroup if and only if S is a homogeneous completely reqular semi-

group.

Proof. Suppose S = |J,cy Sa is a periodic completely regular semigroup. Let
T = {ai,...,a,) be a f.g. subsemigroup of S. Then by [72, Lemma I1.2.6], T" is a
completely regular subsemigroup if and only if a=! € T for each a € T. However,
as H, is a periodic group for each a € T, some power of a is equal to a~!, and thus

a~! € T. Hence T is a completely regular subsemigroup, and we thus have that

(a1,...,ap) = (a1,...,an)71.

Consequently, every semigroup isomorphism between f.g. subsemigroups of S is a
unary semigroup isomorphism between f.g. completely regular subsemigroups of S,

and conversely. The result is immediate. O

We now define a stronger notion of homogeneity on a completely regular semi-

group: structure-homogeneity. This will later be used for constructing homogeneous
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completely regular semigroups from a spined product of structure-homogeneous
completely regular semigroups. The definition emerges from the following result,

which is immediate from [72, Lemma I1.3.8].

Lemma 4.3.3. Let S = |J,cy Sa be a completely regular semigroup and T a com-
pletely reqular subsemigroup of S. Then there exists a subsemilattice Y' of Y such

that T' = \Jey+ Ta, where T, is a completely simple subsemigroup of Sy

It follows that an isomorphism between a pair of completely regular subsemi-
groups of a completely regular semigroup induce an isomorphism between their

structure semilattices, and the following property can therefore be defined.

Definition 4.3.4. Let S = |J,cy Sa be a completely regular semigroup. Then S
is called a structure-homogeneous completely reqular semigroup if, given any pair of
f.g. completely regular subsemigroups T' = U, e, To and 7" = J e T, and any
isomorphism 6 = [0, T]acz from T to T’ then for any automorphism 7 extending

7, there exists an automorphism 6 = [éa, Tlacy of S extending 6.

It is clear from the definition that if S is a structure-homogeneous completely
regular semigroup then it is a homogeneous completely regular semigroup. More-
over, if S is completely simple then, as S is a trivial semilattice of completely
simple semigroups, every homogeneous completely simple semigroup is structure-
homogeneous. On the other hand, a semilattice Y forms a semilattice of trivial
semigroups (which are completely simple) since Y = J ¢y {a}, and so structure-

homogeneity and homogeneity in L;;g are also equivalent in this case.

Lemma 4.3.5. Let S = |J,cy Sa be a structure-homogeneous completely regular
semigroup. Then for every automorphism w of Y, there exists an automorphism of

S with induced semilattice automorphism .

Proof. Let 7 be an automorphism of Y and fix & € Y. Then for any e, € E(S,)
and eqr € E(Sqr), the isomorphism ¢ between the trivial subsemigroups {e,} and
{ear} has induced semilattice isomorphism 7|4} : {a} — {am}. Since m extends
7| {a} and S is structure-homogeneous, there exists an automorphism of S with

induced semilattice automorphism 7 as required. O

We end this section by constructing a class of structure-homogeneous completely
regular semigroups, which will be vital to both the classification of homogeneous
bands and homogeneous inverse semigroups. Let Y be a semilattice and T be a
completely simple semigroup. Then S = Y x T is completely regular, and by
Proposition 3.7.13, is isomorphic to a strong semilattice of completely simple semi-
groups [Y;Sa;1a,p] with So = T and with each connecting morphism being an
isomorphism. We use the extended notation introduced in Section 3.7 by defining

a connecting morphism v, g = ¢a,aﬁ¢/§iﬁ for every o, 8 € Y. We aim to prove
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that S is structure-homogeneous if Y and T are homogeneous. We rely upon the

following description of the automorphisms of S.

Lemma 4.3.6. Let S = [Y;S4;%q,8] be a completely reqular semigroup such that
each connecting morphism 1o g is an isomorphism. Let m € Aut (Y) and, for a
fized o* €Y, let Qo € Is0(Sox; Sarr). For each § € Y, let 05 : S5 — Ssr be given
by

05 = V5,000 Yarr o (4.1)

Then 0 = [0q, T)acy s an automorphism of S. Conversely, every automorphism of

S can be so constructed.

Proof. Let m and 65 (§ € Y') be defined as in the hypothesis of the lemma. If § > ~
in Y, then by Lemma 3.7.12 we have

7[)677 97 = 71’5,7 w'y,a* 9&* ¢a*7r,’y7r
= V5.a+ 0o Vorr s Vorn
= 05 Vsr -
Hence the diagram [4,~y; d7,ym] commutes, and so € is an automorphism of S by
Theorem 2.7.1.
Conversely, suppose 0 = [0, T]acy is an automorphism of S, and fix any a* € Y.

Then for each § € Y, since the connecting morphisms are isomorphisms and both

the diagrams [, a*§; o*m, (o*0) 7| and [§, a*§; 07, (a*0) 7] commute, we have

1/}01*,04*6 Oors = Oar wa*ﬂ,(a*é)ﬂ
and
V5,075 Oars = 05 Vsr (ar5)r-

This gives
Yars.0 bar Yarr,(ar6)r = bars = Yars,6 05 Ysn (a*6)ms

by (3.6). Hence, again by Lemma 3.7.12 we have

-1 -1
s = @Z)a*(;,(; ¢a*§,a* o ¢a*w,(a*6)7r Q;Z)(;Tr’(a*(;)ﬂ

= ¢57a*6 wa*ﬁ,a* o wa*w,(a*(S)ﬂ ¢(o¢*5)7r,57r
= Q;[)(S,a* O wa*w,&r

as required. O

The following useful lemma is merely a simple extension of the homogeneity of

a structure, but we prove it for completeness.
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Lemma 4.3.7. Let M and M’ be isomorphic homogeneous L-structures for some
signature L. Then any isomorphism between f.g. substructures A and A’ of M and

M', respectively, can be extended to an isomorphism between M and M’'.

Proof. Let A and A’ be f.g. substructures of M and M’, respectively. Let 6 : A — A’

be an isomorphism and fix some isomorphism ¢ : M — M’. Then
0(¢p Ha): A= Alp™?

is an isomorphism between f.g. subgroups of M, which can thus be extended to an
automorphism x of M. The isomorphism ¢ : M — M’ extends 0, since if g € A
then

gx¢ = g(0(¢~ ar)) & = gb.
0

Proposition 4.3.8. Let S = [Y;S4;%a] be a strong semilattice of completely
simple semigroups S, with each conmecting morphism being an isomorphism. Let
Y be a homogeneous semilattice and each S, be a homogeneous completely simple

semigroup. Then S is a structure-homogeneous completely reqular semigroup.

Proof. Let A and A’ be a pair of f.g. completely regular subsemigroups of S given
by

A= (Z; Aa; ¥4 5
A/ = [Z,7A:3/7w;?’7ﬁ’]

where ¢£’ 5 and @b;?,: g being restrictions of isomorphisms, are embeddings. Let
0 = [0u, TT]acz be an isomorphism from A to A’, noting that all isomorphisms are of
this form by Lemma 2.11.7, and let 7 be an automorphism of Y extending 7. Denote
the minimum elements of Z and Z’ as o* and 3*, respectively. Then o*7 = 8*, and

for each § € Z, the diagram

Os

Ay —2> Al (4.2)
lwéa* lwﬁ,ﬁ*
[

Aa* 4>A/ *

commutes by Theorem 2.7.1. By the homogeneity of each S, we may extend 6.+ to
an isomorphism éa* : Sor — Sg« by Lemma 4.3.7. For each 6 € Y, let é(; 1 Ss — Ssa

be the isomorphism given by
05 = Y5 o O Vg 51

Then § = [01;, 7|scy is an automorphism of S by Lemma 4.3.6. Moreover, 05 extends
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65 for each 6 € Z, since by (4.2)
A A’ -1
96 = %,a* 6)oc" (w&r,ﬁ*) ’Im w?;ﬁ*a

and 15 o+ extends %Aa*, 0, extends 0o+, and g« 57 extends (1/13‘:; B*)_I‘Im WA
i K 67‘.,5*

Hence 6 extends 0, and S is structure-homogeneous. O

Hence if Y is a homogeneous semilattice and T is a homogeneous completely
simple semigroup, then by Proposition 3.7.13 we have that Y x T is isomorphic to
a structure-homogeneous completely regular semigroup. In this case, we will often

write that Y x T is structure-homogeneous, where no confusion can arise.

4.4 Substructure of a homogeneous structure

Mirroring our early study into Ng-categorical structures, we will now briefly examine
examples of substructures which inherit the property of homogeneity. For example,
it can be easily shown that the homogeneity of a structure will pass to characteristic
substructures, and the result for groups is given in [17, Lemma 1]. We instead view

a larger class of substructures: quasi-characteristic.

Definition 4.4.1. Let M be a structure with substructure A. Suppose for any
automorphism ¢ of M such that there exist a,b € A with a¢ = b, the map ¢|4 is

an automorphism of A. Then we call A a quasi-characteristic substructure of M.

Consequently, a substructure A of a structure M is a quasi-characteristic sub-
structure of M if and only if {(A,a) : a € A} forms a system of 1-p.p.r.c substruc-

tures. The following result is then immediate from Lemma 3.3.3.

Lemma 4.4.2. Let M be a structure with substructure A. Then the following are

equivalent:

(i) A is a quasi-characteristic substructure of M;

(ii) if ¢ € Aut(M) is such that there exist a,b € A with ap = b, then x¢ € A for
all x € A.

Remark 4.4.3. Every characteristic substructure is clearly quasi-characteristic.

Example 4.4.4. Let 7 be an equivalence relation on a structure M which is pre-
served under automorphisms. Suppose A is an equivalence class of 7 which is a
substructure of M, and ¢ € Aut(M) is such that Ap N A # (). Then Ap C A and

so A is quasi-characteristic.

Lemma 4.4.5. Let M be a homogeneous structure with a quasi-characteristic sub-

structure A. Then A is homogeneous.
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Proof. Let ¢ be an isomorphism between f.g. substructures N and N’ of A. Then
N and N’ are f.g. substructures of M, and so we may extend ¢ to ¢ € Aut(M).
Since N¢ = N’ and A is quasi-characteristic, we have ¢|4 € Aut(A), and so A is

homogeneous. 0

We proved in Proposition 3.3.9 that if 7 is an automorphism preserving equiva-
lence relation on an Np-categorical structure M, then {|z7|: x € M} is finite. The

analogous result for homogeneous structure is as follows.

Corollary 4.4.6. Let 7 be an equivalence relation on a homogeneous structure M
which 1s preserved under automorphisms. Let x,y € M be such that there exists an
isomorphism ¢ : (x)pr — (y)pr with x¢p = y. Then |xT| = |y7|, and if T forms a

substructure of M then xt = yT.

Proof. By the homogeneity of M we can extend the isomorphism ¢ to an automor-
phism 6 of M. Since 6 preserves 7 we have (z7)f = (2z6)7 = y7, and the result
follows (noting that by 6, we have that z7 forms a substructure if and only y7
does). O

We now apply our results on quasi-characteristic substructures to the case of
semigroups in the signature of semigroups Lg and Lyg. First, since Green’s rela-
tions are preserved under automorphisms of a (I-)semigroup, we have the following

result by Example 4.4.4 and Lemma 4.4.5.

Corollary 4.4.7. Let S be a homogeneous (I-)semigroup. Then any H/R/L/D/J -
class of S which forms a (I-)subsemigroup of S is a homogeneous (I-)semigroup.

Consequently, the maximal subgroups of S are homogeneous (I-)semigroups.

Note that a homogeneous group might not be a homogeneous semigroup, a
problem which we study in further detail in Chapter 6.

The set of idempotents E(S) of a (I-)semigroup S form a characteristic subset
of S by Example 3.3.1. Hence E(S) generates a characteristic (I-)subsemigroup,

and we arrive at the corollary below.

Corollary 4.4.8. Let S be a homogeneous (I-)semigroup. Then (E(S)) ((E(S))r)

is a homogeneous (I-)semigroup.

Given a subset N of a structure M, we say that Aut(M) acts transitively on N
if for any a,b € N, there exists an automorphism ¢ of M such that a¢ = b.

Lemma 4.4.9. If S be a homogeneous semigroup. Then Aut(S) acts transitively
on E(S).

Proof. Givene, f € E(S), we have (e) = {e} = {f} = (f). By extending the unique

isomorphism from {e} to {f} to an automorphism of S gives the result. O
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Let S be a homogeneous semigroup and 7 an equivalence relation preserved
by automorphisms of S. Then as any pair of idempotents e and f of S generate
isomorphic subsemigroups of S, it follows by Corollary 4.4.6 that |er| = |f7]|, and
if er is a subsemigroup of S then er = fr. By applying this to Green’s relations

we obtain the following.

Corollary 4.4.10. Let S be a homogeneous semigroup and IC be a Green’s relation
on S. Then |K.| = |Ky| for all e, f € E(S). Moreover, if for some e € E(S) the
set K. forms a subsemigroup of S, then K. = Ky for all f € E(S). Consequently,

the mazimal subgroups of S are pairwise isomorphic.

While the corollary above may not hold for all homogeneous I-semigroups, it
clearly will hold in the case where ¢ = e for all idempotents e, since in this case
(e)r = {e}. Our main example of this occurrence is completely regular semigroups,
where the unary operation sends idempotents to the inverse in their maximal sub-
group, and are thus fixed. Since the D-classes of a completely regular semigroup
Uaey Sa are the completely simple semigroups Sa, each of which contain an idem-

potent, we therefore have the following consequence of Corollaries 4.4.7 and 4.4.10.

Proposition 4.4.11. Let S = |J,cy Sa be a homogeneous completely regular semi-
group. Then each S, is a homogeneous completely simple semigroup, and S, = Sg
for each a, B €Y.

4.5 Non-periodic homogeneous semigroups

We now begin our study into the homogeneity of certain classes of semigroups,
starting in this section with non-periodic semigroups.

Given a semigroup S, we denote the set of elements of infinite order as
Inf(S) :={a € S : |{a)] = No}.

We observe that if S is a homogeneous semigroup then Aut(S) acts transitively on
Inf(S). Indeed, for each a,b € Inf(.S), we have

(a) = (N, +) = (b),

and the result then follows by the homogeneity of S. We claim that either all
elements of Inf(.S) lie in subgroups of S, or none of them do. Indeed, if a,b € Inf(S)
are such that a € H, for some e € E(S), then by taking an automorphism of S

sending a to b we have that b € H.y since H is preserved under automorphisms.
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Lemma 4.5.1. Let S be a homogeneous semigroup with a non-periodic element
contained in a mazimal subgroup of S. Then (E(S),<) is an anti-chain, where <

is the natural order on E(S).

Proof. The maximal subgroups of S are isomorphic by Corollary 4.4.10, and so each
maximal subgroup of S is non-periodic. Let e, f € E(S) be such that e > f, and
let x € Hf N1Inf(S). Then

ex =e(fz)=(ef)x=fr=x=xaf =z(fe) = (xf)e =ze

and so the map

¢ (e, x) = ({f,x)

determined by ep = f and x¢ = x is an isomorphism. By the homogeneity of
S, extend ¢ to an automorphism ¢ of S. Since H is preserved under ¢, we have
H.p = Hy and Hfé = H,¢ = H, = Hy. Hence H, = Hy and so e = f as
required. O

A regular semigroup S in which (E(S), <) forms an anti-chain is necessarily
completely simple since all idempotents are minimal, and so the following corollary

to Lemma 4.5.1 is immediate.

Corollary 4.5.2. Let S be a regular homogeneous semigroup. If S contains a non-
periodic element in a subgroup of S then S is completely simple. In particular,

non-periodic completely regular homogeneous semigroups are completely simple.

Open Problem 2. Do there exist a regular homogeneous semigroup with an ele-

ment of infinite order not contained in a subgroup of S7

This open problem can be extended by dropping the non-periodic condition.
That is, does there exist a regular homogeneous semigroup which is not completely
regular? Similarly, is a regular homogeneous I-semigroup completely regular? We
conjecture that a regular homogeneous (I-)semigroup is completely regular, and

results of the subsequent chapters back this stance.

4.6 The homogeneity of completely simple semigroups

In this chapter we have shown that understanding the homogeneity of completely
simple semigroups, both in Lg and Lyg, is vital for the homogeneity of completely
regular semigroups. Indeed, completely simple semigroups appear as D-classes of
completely regular semigroups, and are also key in comparing our two concepts
of homogeneity on a completely regular semigroup. Indeed, by Lemma 4.3.2 the

two properties of homogeneity can only disagree on non-periodic completely regular
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semigroups, and by Corollary 4.5.2 non-periodic completely regular homogeneous
semigroups are necessarily completely simple. Hence a completely regular homo-
geneous semigroup which is not a homogeneous completely regular semigroup is

completely simple.

Open Problem 3. How does the homogeneity of a completely simple semigroup

in Lg or Lyg differ?

We end by giving a third motivation for a further study into the homogeneity

of completely simple semigroups:

Proposition 4.6.1. Let S be a regular homogeneous semigroup with finite set of

idempotents E(S). Then S is completely simple.

Proof. Suppose, seeking a contradiction, that there exists an element e € E(S)
which is not minimal in E under the natural order < on E(S). Since E(S) is finite
there exists a minimal element f € F(S) with f < e. By Lemma 4.4.9 there exists
an automorphism of S sending e to f, which clearly contradicts the minimality of

f. Hence every idempotent of S is minimal, and so S is completely simple. 0

An attempt was made to classify homogeneous completely simple semigroups,
and great progress was made in both the idempotent-generated case, and the finite
case. In Chapter 7, the classification of orthodox homogeneous completely simple
semigroups will be given. However, this is still ongoing work, and time did not

permit a further discussion.



Chapter 5

Homogeneous bands

This chapter investigates the homogeneity of bands. Since bands form a variety
of semigroups and of completely regular semigroups (where the unary operation is
trivial), we could consider homogeneity in Lg or in Lyg. However, by Lemma 4.3.2
the two concepts of homogeneity intersect, and we may simply write homogeneous
band without ambiguity. This allows us to use the results and concepts introduced
in Subsection 4.3.1, and in particular write structure-homogeneous band to mean a
band which is a structure-homogeneous completely regular semigroup, again with-
out ambiguity. It follows from the work of Lean [63], that bands are ULF, and so
we need only look at isomorphisms between finite subbands.

Our main result is a complete description of all homogeneous bands, showing
them to be regular bands. We also examine how our results fit in with known
classifications, in particular showing that the structure semilattice of a homogeneous
band is itself homogeneous. The classification of homogeneous bands is therefore
an extension of the classification of homogeneous semilattices.

Interest in the homogeneity of bands began in [10], where Byleen states the
existence of a universal normal band which is homogeneous, although no formal
proof is given. The open problem of finding a representation of this band is also
stated. We aim to formalise Byleen’s brief work on homogeneous normal bands,

and obtain a number of properties of the universal normal band.

5.1 Homogeneous semilattices

The homogeneity of semilattices was first studied by Droste in [24] and, together
with Truss and Kuske in [27]. Note that both articles consider the homogeneity of

semilattices in the signature of lower semilattices Lrg = {<, A}. We first show that
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their work effectively considers homogeneity of (algebraic) semilattices, a result that

will be immediate from the following simple consequence of Proposition 2.3.1.

Corollary 5.1.1. Let (Y,<,A) and (Y',<,A) be a pair of lower semilattices and
¢:Y —Y' amap. Then ¢ is a lower semilattice morphism if and only if it is a

semigroup morphism from (Y, \) to (Y, A).

Proof. Let ¢ be a semigroup morphism from (Y,A) to (Y, A). For any e, f € Y,
we have

esf=ef=e=epfop=ep=ed<fo,

and so ¢ is a morphism preserving <, and is thus a morphism between lower semi-
lattices (Y, <,A) and (Y, <, A) as required.

The converse is trivial. O

Lemma 5.1.2. A semilattice (Y, \) is a homogeneous band if and only if (Y, A, <)

1s a homogeneous lower semilattice.

Proof. Let (Y, A\) be a semilattice which is a homogeneous band. Let (A4, A, <) and
(A, A, <) be a pair of f.g. lower subsemilattices of (Y,A,<), and ¢ : A — A’ a
lower semilattice isomorphism. Then by the corollary above ¢ is an isomorphism
between the subsemilattices (A, A) and (A", A) of (Y, A), which can thus extend to
an automorphism of (Y, A). Applying Corollary 5.1.1 again gives (Y, A, <) to be

homogeneous. The converse is proven similarly. O

We therefore simply refer to a homogeneous semilattice to mean homogeneous in
Lg or Lig, without ambiguity. Note however that a homogeneous semilattice need
not be homogeneous as a poset. Indeed, (Q, <) is the unique homogeneous semilat-
tice that is also homogeneous as a poset by Schmerl’s classification of homogeneous
posets [92].

A semilattice Y with natural partial order < is called a semilinear order if (Y, <)
is non-linear and, for all & € Y, the set {# € Y : § < a} is linearly ordered. This
is equivalent to Y not containing a diamond, where a diamond is a collection of
distinct 6, ar,7y, 5 € Y such that 6 > {a,v} > f and o L v with oy = S.

The class of all finite semilattices forms a Fraissé class, and its Fraissé limit
is called the wuniversal semilattice. It was shown [27] that every distinct pair of
elements in the universal semilattice has an upper bound, that is, an element strictly

greater than both elements, and that the upper bound is never unique.

Lemma 5.1.3. Let Y be the universal semilattice and Z a finite subsemilattice of
Y. Then for any finite semilattice Z' in which Z embeds, there exists X C Y \ Z
such that Z U X = 7.

Proof. Let Z' be a finite semilattice and 6 : Z — Z’ an embedding. Since Y is

universal, there exists an embedding ¢ : Z' — Y. Hence 0¢ is an isomorphism
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Figure 5.1: A diamond.

between Z and Z60¢, which we can extend to an automorphism y of Y, since the

1

universal semilattice is homogeneous. Then Z is a subsemilattice of (Z'¢)x ™" since

Zy = 206 C Z'¢.

Moreover, (Z'¢)x~! is isomorphic to Z’, and the result follows by taking X =
(Z'o)x '\ Z. O

In [24], every homogeneous semilattice forming a semilinear order was con-

structed, which led to the following classification.

Proposition 5.1.4 (Droste, Kuske, Truss [24, 27]). A non-trivial homogeneous
semilattice is isomorphic to either (Q, <), a semilinear order, or the universal semi-

lattice.

Note that not every semilinear order is a homogeneous semilattice. Moreover, a
non-trivial homogeneous semilattice is dense, a property of homogeneous semilat-

tices which we use throughout these final chapters without reference.

5.2 The homogeneity of an arbitrary band

In this section we recall some basic properties of bands, which are used to further
understand the homogeneity of an arbitrary band. By Proposition 2.10.3 a band
B is a semilattice of rectangular bands, and these rectangular bands form the D-
classes of B. We let < denote the natural order on B, given by e < f if and only
if ef = fe = e, where e, f € B. We are interested in understanding the D-classes,
the natural order, and the structure semilattice of a homogeneous band.

We first give the ideal structure on a band B, which is taken from [72]. Green’s

left and right quasi-orders simplify as

e < feef=e e< f& fe=e,
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for each e, f € B. The Green’s relations on B are then given by:

elLfeef=e fe=f;
eRfeef=f fe=e;
eHfee=f;
eDf<edfeefe=e, fef =f,

for each e, f € B.

After semilattices, the second variety of bands required for the construction of an
arbitrary band are rectangular bands. Determining the homogeneity of rectangular
bands will therefore be vital for a general study. Recall that B, ,, denotes the

unique, up to isomorphism, rectangular band with n R-classes and m L-classes.

Proposition 5.2.1. The rectangular band B, ,, is a homogeneous band for any
n,m e N*=NU{Xp}.

Proof. Let B,,,, = L x R be a rectangular band, and A; and Ay a pair of subbands
of B. Since the class of rectangular bands forms a variety, each A; is a rectangular
band and A; = L; x R; for some L; C L, R; C R. Let # : Ay — Ay be an
isomorphism. Then, by Proposition 2.10.2, there exist bijections 6, : L1 — Lo
and 0r, : Ry — Ry such that 8 = 01, x 0r,. Extend 61, to a bijection 0 of
L, and similarly construct the bijection 6z of R. Then 0 = 05, x Op extends 0 as
required. O

The D-classes of an arbitrary band are therefore homogeneous. However, note
that not every band is homogeneous, for homogeneous bands are restricted to having
isomorphic D-classes by Corollary 4.4.10. Since bands are completely regular, the
isomorphisms between a pair of bands can be obtained from Proposition 2.11.2 as

follows.

Proposition 5.2.2. Let B = |J,cy Ba and B = \J ey Bl be a pair of bands.
Then, for any isomorphism 6 : B — B’, there exists an isomorphism w:Y — Y’

and an isomorphism Oq : By — By, for every a €Y, such that 6 = ¢y ba-

We abuse notation somewhat by denoting 6 as [0, 7]aey. This notation is
normally reserved for strong semilattices of semigroups, but is used for arbitrary
semilattices of rectangular bands where no confusion may arise.

We fix a number of useful subsets of an arbitrary band B = J, ¢y Ba- If a > 3
inY and e, € B, then we let

(i) Bg(ea) = {65 € Bﬁ reg < ea};
(i) Ba,s =Uy en, Bs(fa) ={es € Bg:eg < fo for some fo € Ba};

(ili) R(Bglea)) :=={fs € Bg: f3 <r €a};
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and dually for £(Bg(eq)). Note first that

R(Bglea)) ={fp € Bg: Jep € Bg(ea), fp Res}-

Indeed, we claim that if fg € Bg and e, € B,, then fg <, e, if and only if
f8 R eafgea, to which the result follows as e fgeq < eq. If fg <; e, then fg = e, f3,
and so

fﬁ(eafﬁ€a) = (fﬁea)(fﬁea) = fﬁea = eafﬂea

so that fg >, eqfgen. Hence fz and e, fgeq, being elements of Bg, are R-related.
Conversely, if f3 R eq fgeq then

fs = (eafsea) fs = eafp

and the claim holds.

We observe that the set Bg(eq) is non-empty for each e, € B,, since for any
eg € Bg we have e, > eqnegen € Bg. Moreover, each of the sets defined above are
subbands of Bg. Indeed, if e, > eg and f, > f3 then

eﬂfﬁeafa = eﬂ(fﬁfa)eoafoa = eﬁfﬁ(faeafa) = eﬁfﬂfa = eﬂfﬂ7

and similarly enfaesfs = egfs. Hence enfo > esfs € Bap, and so B, g is a
subband. By taking e, = fo gives Bg(eq) to be a subband. Finally R(Bg(eq)),

being a collection of R-classes of Bg, is a subband.

Corollary 5.2.3. Let B = UaeY B, be a homogeneous band where B, = Ly X Ry,
Then, for alla > B and o/ > B inY, ey € By and ey € By, we have

(i) Aut(B) acts transitively on B;

(ii) Y is dense and without mazximal or minimal elements;
(iil) Ba 2 By, La 2 Lo and Ra = Ry
(iv) Bg(ea) = Bg(ea).

Proof. (i) Immediate from Lemma 4.4.9.

(ii) Suppose, seeking a contradiction, that 0 is maximal, and let 7 < d in Y. Then
for any es € Bs and e, € B, there exists by (i) an automorphism 6 of B mapping e;
to e,. Hence by Proposition 5.2.2, the induced semilattice automorphism of § maps
0 to 7, contradicting 0 being maximal. The result is proven similarly for minimal
elements.

Now suppose a > 8 in Y. Since [ is not minimal, there exists v € Y such
that v < 5. Let eq € Ba,eg € Bg(eq) and e € B, (eg), so ey € B,(eq). Then by

extending the isomorphism from {eq, e} to {eq,es} to an automorphism of B, it
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follows by taking the image of 8 under the induced automorphism of Y that there
exists 7/ € Y such that a >+’ > 3, and so Y is dense.

(iii) Each B, is a D-class of B, and so by Proposition 4.4.11 we have B, = By
for all o,/ € Y. The results for L, and R, are then immediate from Proposition
2.10.2.

(iv) Let eg € Bg(eq) and eg € Bgi(eq). Since {eq,eg} and {eq,ep } are iso-
morphic subbands, the result follows by extending the unique isomorphism between

them to an automorphism of B. O

If B is a band with non-trivial structure semilattice, then by the proof of (ii), it
is clear that B, regarded as a poset under its natural order, cannot have maximal
or minimal elements, since the natural order is preserved under automorphisms of
B. On the other hand, if B has trivial structure semilattice then it is a rectangular
band, and the ordering is an anti-chain.

One of our fundamental questions in this chapter is whether or not the homo-
geneity of a band is inherited by its structure semilattice. The answer is yes, but
surprisingly we have not been able to find a direct proof. For now we are only able

to partially answer this question:

Proposition 5.2.4. If B = (J,cy Ba is a homogeneous band, then its structure
semilattice Y is 2-homogeneous. Consequently, if Y is linearly or semi-linearly

ordered then Y is homogeneous.

Proof. Since the unique (up to isomorphism) 2 element semilattice is a chain, it
suffices to consider a pair ay; > 3; (i = 1,2) in Y. Fix ey, € B, for each i = 1,2 and
let eg, € Bg,(€eq;). By extending the isomorphism between {eq,,eg, } and {eq,,es,}
to an automorphism of B, it follows by Proposition 5.2.2 that Y is 2-homogeneous.

The final result is then immediate from [27, Proposition 2.1]. O

To avoid falling into already complete classifications, unless stated otherwise
we assume throughout this chapter that Y is non-trivial (so B is not a rectangular

band) and each D-class is non-trivial (so B is not a semilattice).

5.3 Regular bands

In this section we consider three of the varieties of bands given in Figure 2.3 which we
have so far neglected: left/right regular bands. We later prove that a homogeneous
band is necessarily regular. As such, it will be useful to obtain, in much the same
way as with normal bands, an alternative description of regular bands in which a
relatively simple isomorphism theorem arises.

Kimura showed in [59] that a band B is regular if and only if it is a spined prod-

uct of a left regular and right regular band (known as the left and right component
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of B, respectively). He additionally showed that a band is left (right) regular if and
only if it is a semilattice of left zero (right zero) semigroups.

Let B = L a1 R be a regular band. Then as the classes of left regular, right
regular and regular bands form varieties, every subband A of B is regular. Hence
by Lemma 4.3.3 we have that there exist subbands L’ of L and R’ of R such that
A=L"~<R.

The following isomorphism theorem, which gives a converse to Proposition 2.11.3
in the case of regular bands, was proven by Kimura, but given in the form below

(in the general context of morphisms) in [72, Lemma V.1.10]:

Proposition 5.3.1. Let B = L < R and B’ = L' <1 R’ be regqular bands with
structure semilattices Y and Y, respectively. Let 0! : L — L' and 6" : R — R’ be
isomorphisms which induce the same semilattice isomorphism 7w :Y — Y'. Define
a mapping 0 by

(1,r)0 = (18',70")  ((I,r) € B).

Then 6 is an isomorphism from B onto B', denoted 6 = 0" 1 0", and every isomor-

phism from B to B’ can be so constructed for unique 6* and 0" .

In general, a pair of regular bands with isomorphic left and right components
need not be isomorphic. Indeed, by the proposition above, there are required to be
isomorphisms between the left components and between the right components with
equal induced semilattice isomorphism. The ensuing lemma gives a condition on

the components of the regular bands which forces them to be isomorphic:

Corollary 5.3.2. Let B =L < R and B’ = L' >1 R be a pair of regular bands
with structure semilattices Y and Y', respectively, and with L and L' structure-
homogeneous. Then B = B' if and only if L = L' and R = R’ (dually for R and
R).

Proof. Let 6" : R — R’ and #' : L — L’ be isomorphisms with induced isomorphisms
m and m of Y into Y’, respectively. Then as L’ is structure-homogeneous there
exists an automorphism ¢! of L' with induced automorphism T L. of Y. Hence
0'¢! is an isomorphism from L to L’ with induced isomorphism m(m, 17rr) = 7, and
s0 0'¢!l > 0 is an isomorphism from B to B’ by Proposition 5.3.1.

The converse is immediate from the proposition above. ]

We are now able to give our first justification for studying the stronger property

of structure-homogeneity:

Corollary 5.3.3. Let B be the spined product of a homogeneous left reqular band L
and homogeneous right reqular band R. If either L or R are structure-homogeneous,
then B is homogeneous. Moreover, if both L and R are structure-homogeneous, then

so s B.
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Proof. Suppose w.l.o.g. that L is structure-homogeneous, with structure semilattice
Y. Let # = 6' b1 " be an isomorphism between finite subbands A; = L; 1 Ry
and Ay = Ly 1 Ry of B. Then by Proposition 5.3.1, the isomorphisms #' and 6"
both induce an isomorphism 7 between the structure semilattices Y7 and Y, of Ay
and As, respectively. Since R is homogeneous, we can extend " : Ry — Rs to an
automorphism 6" of R, with induced automorphism 7 of Y extending m. Since L
is structure-homogeneous, there exists an automorphism 6 of L extending 6 and
with induced automorphism 7 of Y. Hence 6 <1 0" is an automorphism of B, which

extends 6 as required. The final result is proven in a similar fashion. O

5.4 Homogeneous normal bands

In this section we classify homogeneous normal bands. Our aim is helped by not only
a classification theorem for normal bands which gives the local structure, but also
a relatively simple isomorphism theorem, since strong semilattices of rectangular

bands are morphism-pure by Lemma 2.11.7. Theorem 2.7.1 then simplifies:

Theorem 5.4.1. Let B = [Y;Bqy;tag] and B' = [Y'; B9, ] be a pair of
normal bands. Let m :' Y — Y’ be an isomorphism, and for every o € Y, let
0o : Bo — Bar be an isomorphism such that for any a > 8 in Y, the diagram

(o, B; amr, | commutes, that is,

B, —"~ B, (5.1)
\L¢'a,,@ lw;mﬁw
By~ B!
B B
commutes. Then |J,ey 0o = [0a, Tlacy is an isomorphism from B into B'. Con-

versely, every isomorphism of B into B’ can be so constructed for unique m and
O,

To understand the homogeneity of normal bands, we require a better under-
standing of the finite subbands. Since the class of all normal bands forms a variety,

the following lemma is immediate from Lemma 4.3.3.

Lemma 5.4.2. Let A be a subband of a normal band B = [Y; Ba;tbagl. Then
A=1[Z; A, wg‘ﬁ], for some subsemilattice Z of Y, subbands Ay of By (o € Z) and
;‘”B = tqapla for each o, 8 € Z with o > f5.

Given a normal band B = [Y; By; ¥4 5], we denote Im v, g as I, g, or Ifﬂ if we
need to distinguish the band B.
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Lemma 5.4.3. Let B = [Y; By;ag] be a homogeneous normal band. Then Bg =
Ua>5 I, for each B €Y.

Proof. As a consequence of Corollary 5.2.3, B contains no maximal elements under

its natural order. The result then follows as e, > eg if and only if o > 3 and

eaa,g = €3. ]

Lemma 5.4.4. Let B = [Y; Bo; ¢8| be a homogeneous normal band. If o > f3;
(1=1,2) in Y then there exist isomorphisms 0, : By, — Ba, and 03, : Bg, — Bjg,
such that

O, Vaz,8, = Yay,8.98

In particular 1o, g, = In, g, and q, g, is surjective/injective if and only if Va, g,

s also.

Proof. Let eo, € Ba, (i = 1,2) be fixed. By extending the unique isomorphism
between the 2 element subbands {eq,, €qa,Va,,8,} and {€as, €as¥as 8, to an auto-
morphism of B, the diagram [aq, 81; ag, B2] commutes by Proposition 5.4.1, and the

result easily follows. O

Since a normal band is regular, it can be regarded as the spined product of a left
regular and right regular band. The following results and subsequent Proposition
5.4.5 are taken from [55, Proposition 4.6.17]. Let B = [Y'; Bs;%q,g] be a normal
band, where B, = Ly X Ry, for some left zero semigroup L, and right zero semigroup
Ry. Then the connecting morphisms determine morphisms 1/1&7 g La — Lg and
Wgyﬂ : Ry — Rg such that

(lasTa)Va,p = (lat¥h g, Tatl, 5) (5.2)

for every (lo,7q) € Bo. Moreover, L = | J{L, : @ € Y} becomes a strong semilattice

of left zero semigroups [Y'; La; wéﬁ] under o, where for I, € L, and lg € Lg,

la o lﬁ - (lawla,aﬂ)aﬁwlﬁ,aﬁ) = lawla,aﬁ

since Log is left zero (dually for R). Hence by (5.2) we have B = L pa R, and we

arrive at the subsequent proposition.

Proposition 5.4.5. Every normal band B is isomorphic to a spined product of a

left normal and a right normal band.

Consequently, by Proposition 5.3.1, a pair of normal bands L <t R and L' <t R/
are isomorphic if and only if there exists an isomorphism from L to L’ and R to R’
with the same induced isomorphism between the structure semilattices.

A normal band is called an image-trivial normal band if the images of the non-

identity connecting morphisms all have cardinality 1. A normal band is called
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a surjective normal band if each connecting morphism is surjective. Note that a
normal band is both image-trivial and surjective if and only if it is a semilattice.
Moreover, a normal band L < R is an image-trivial/surjective normal band if and

only if both L and R are likewise image-trivial /surjective.

Lemma 5.4.6. Let B = [Y; Lq; ¢, 5] > [V Ra; ¢y, 5] = L > R be a homogeneous
normal band. Then R is either an image-trivial or surjective right normal band
(dually for L).

Proof. If R is a semilattice then B is isomorphic to L, and so the result is immediate.
Assume instead that |R,| > 1 for some o € Y. Then |R,| > 1 for all & € Y by
Corollary 5.2.3 (iii). Suppose there exists @ > [ in Y such that Iolzﬁ # Rg. Let
TaVp g = T8y Salh g = 83 (with ro # so) and tg & Ioliﬁ. Fix I, € L, and let
lawlaﬁ = lg. Note that for any g € Rz we have

(lasra)(g,x8) = (Ig,mpx8) = (Ig,x5) and (Ig,25)(la,Ta) = (I3,75).

Hence if zg # rg then ((la,7a), (I3, 23)) = {(las7a); (I8, 28), (I3, 75)} is a 3 element
subband. In particular, if sg # 75 then the map

¢ : ((ZOHTOL)7 (l5785)> - <(la7Ta)7 (l57t5)>

fixing (lo, 7o) and such that (Ig,s5)¢ = (Ig,t3) is an isomorphism. Extend ¢ to an
automorphism 0 1 0" of B. Then as 6" = [0],, T]aecy is an automorphism of R we

have, by the commutativity of [a, 8;«, 5] in R,

(8a00)Vas = (8a¥a3)05 = sp05 = tg,

contradicting tg & I f,g- Thus sg = rg, so that I, g has cardinality 1, and so R is
an image-trivial normal band by Lemma 5.4.4. The dual gives the result for left

normal bands. O

Hence if B = L <1 R is a homogeneous normal band then B is either an image-
trivial normal band (if L and R are image-trivial), or the images of the connecting
morphisms are a single £/R-class (if L/R is a surjective normal band and R/L is

an image-trivial normal band) or D-class (if L and R are surjective normal bands).

We split our classification of homogeneous normal bands into three parts. In
Section 5.4.1 we classify homogeneous image-trivial normal bands, and in Section
5.4.2 homogeneous surjective normal bands. Using the results attained in these

sections, the final case (and its dual) is easily achieved at the end of Section 5.4.2.
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5.4.1 Image-trivial normal bands

In this section we are concerned with the classification of image-trivial homoge-
neous normal bands. Following the notation of Section 3.7, we shall denote an
image-trivial normal band [Y'; Ba; 44 5] such that I, g = {€, 3} for each a > 3, as
[Y; Bai €85 ¥a,). Note that if a,y > 3 in Y are such that oy > 3 then

Bata,s = (Boﬂﬂa,cw)wcwﬁ = {eamﬁ} = (Bﬂ?%cw)?ﬁamﬁ = By

and so

€08 = €ay,8 = €v3- (5.3)

Notice that (5.3) automatically holds if o > v > .

Note that if Y = Q (under the natural ordering) then for any 5 € Q and o,y > 3
we have €43 = €,3 by (5.3). Hence any eg € Bg \ {€y,3} is a maximal element in
the poset (B, <). Consequently, an image-trivial homogeneous normal band with a
linear structure semilattice is isomorphic to Q by Corollary 5.2.3.

While the following lemma is stronger than what is required in this section, it

will be vital for later results, and the generalization adds little extra work.

Lemma 5.4.7. Let B = [Y;Ba;%a 3 = L > R be a homogeneous normal band
such that either L or R is a non-semilattice image-trivial normal band. Then'Y 1is

a homogeneous semilinear order.

Proof. Assume w.l.o.g. that L = [Y; L,; 651,55 d’fx,ﬁ] is a non-semilattice image-trivial
normal band, so that |Ly| > 1 for all @ € Y by Corollary 5.2.3 (iii). Note that R =
[Y; Ry; 1#27 B] is image-trivial or surjective by Lemma 5.4.6. Seeking a contradiction,
suppose that Y contains a diamond D = {4, «,~, f}, where § > {a,v} > 5. Fix
es = (ls,rs) € Bs and let

l

€a = €550 = (eé,wrl;wg,a)v
l

€y = 651/15,'7 = (65777 T(ﬂ/}g,'\/)7

eg = esths 3 = (65375; s 3),

noting that elaﬁ = efw = 61%6 by (5.3). By construction {es, €4, €4, €g} is isomorphic
to D. If there exists [g € Lg \ {efw}, then by Lemma 5.4.3 there exists 7 > [ such
that Ig = elﬂﬁ. Note that ar = 3, since if ar > 3 then Ig = elT’B = elaﬂ by (5.3). Let
k < B and e; = egyg, = (elﬁ’ﬁ,m@bg’n). Extend the unique isomorphism between
the 3-chains es > eq > eg and e, > eg > e, to an automorphism 0 = [0, 7|acy of
B. Let p € Y be such that e, = e,0 > egh = e,.. Then a > p > & (since 6 >y > f3),
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pB = K (since ya = () and

pT = (pa)T = p(aT) = pB = k.

We claim that there exists e, € B, such that e, > e,. For if R is also image-trivial
and B = [Y'; Ba; €485 Ya 5], then the claim holds for any e, by (5.3), as 7 > 8 > &,
so that €;, = €g, = ex. On the other hand, if R is surjective, then there exists

rr € Ry such that r-9¢7 o = rsif .. Thus, for any [, we have

(ley 17 )Yr s = (Elr,m TT/IID;,:,R) = (5lﬁ,nvr5¢g,n) = €k,

and so the claim is proven. Fix some e; > e;. By extending any isomorphism
between the 3 element non-chain semilattices (e,, er, ex) and (eq, e+, eg), it follows

that there exists o > p, 7 (as 6 > «, 7).

5
a v
g
o
p T
B
K

Figure 5.2: A subsemilattice of Y.

Since o > 7 > f and a >  we have ca > (. If ca = S then 5 > p (as o, > p),
and so as pff = k we have p = Kk, a contradiction. Hence ca >  and we thus arrive
at the subsemilattice of Y in Figure 5.2. Moreover,

! ! ! !

€a,6 = a8 = 0.5 = G, = g
by (5.3), contradicting lg # efm = efxﬂ. Hence no such g exists, and so Lg is trivial,
a contradiction of L being a non-semilattice. Hence, by Proposition 5.2.4, Y is a
homogeneous linear or semilinear order. Since B is a non-semilattice, the result

follows by the note above the lemma. O

In particular, an image-trivial homogeneous normal band has a semilinear struc-
ture semilattice. It is therefore crucial to better understand the structure of homo-
geneous semilinear orders.

Let Y be a dense semilinear order. We call a set Z C Y connected if for any
x,y € Z there exist z1,...,2, € Z (n € N) with z; =z, 2, =y, and z < z;41 or

ziv1 < z;foralll <i¢<n-—1. Given a € Y, we call the maximal connected subsets
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of {y € Y : v > a} the cones of c, and let C'(a) denote the set of all cones of a.

Remark 5.4.8 ([24, Remark 5.11]). Let « € Y, A € C(«) and v € A. Then for
any 6 € Y we have § € A if and only if o < 4.

Consequently, the cones of o € Y partition the set {y € Y : v > a}. If there
exists r € N* such that |C(«)| = r for all @ € Y, then r is known as the ramification
order of Y. Each homogeneous semilinear order has a ramification order [24].

Let B = [Y; By; €q.,8; Ya,8) be an image-trivial normal band, where Y is a semi-
linear order. Since B is image-trivial, we can define a cone of e, € B, as a maximal
connected subset of {y €Y : v > «, By, o = € }. Let C(eq) denote the set of all
cones of e,. Let 7,7 > a and suppose v is connected to 7/. From Remark 5.4.8
we have that vy' > « and so by (5.3) By1y,a = By 4. Consequently, the set
{y €Y :v>a,Byya = eq} is a union of cones of a, and C(a) =, _cp, C(ea)-

If there exists k € N* such that |C(ey)| = k for all e, € B, then k is called
the ramification order of B. If B is homogeneous then (as Y is homogeneous
and B is 1-homogeneous) the ramification orders exist for Y and B, say, r and k
respectively, and they are related according to r = k - |B,|. Moreover, by Lemma
5.4.3, Bg = Ua>B €q,3 for each f €Y.

As shown in [24, Theorem 6.21], there exists for each » € N* a unique (up
to isomorphism) countable homogeneous semilinear order of ramification order r,
denoted T,. Moreover, a semilinear order is isomorphic to 7} if and only if it is
dense and has ramification order r.

We can reconstruct T, from any « € T, inductively by following the proof of
Theorem 6.16 in [24], as we now explain, but omitting the proof. Consider an
enumeration of T, given by T, = {a; : i € N}, where a1 = a. Let Yy = () and
Y1 = Zy be a maximal chain in 7T, which contains a;. Suppose for some 7 € N, the
semilattices Y; and posets Z;_1 (j < i) have already been defined such that the
following conditions hold for each 1 < 5 < 1:

(i) Y;=Y;1UZ;_1 and a; € Y; (where U denotes the disjoint union);

(ii) if z € Z;_1, then there exists a unique maximal chain C' in 7. with z € C C Y}
and {ce C:2<c¢} C Zj_y;

(iii) if z € Zj_9 (j > 2) and D is any cone of z disjoint to Yj_1, then DNZ;_q # 0.

It follows from (ii) that whenever 1 < j <i,z€ Y, y €T, and y < z, then y € Y.
Moreover, the conditions above trivially hold for the case ¢ = 1.

If a;41 € Y; then it is shown that there exists z € Z;_1 such that a;11 belongs
to some (unique) cone A, of z which is disjoint to Y;. For each § € Z;_; take a
maximal subchain of each cone A € C(f8) such that Y; N A = (), where if 3 = z then

we take a maximal subchain of A, which contains a;11. By condition (ii) the set
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Figure 5.3: The case i = 2 [24, Page 68].

{y €Y, : B <y} is a chain, and thus contained in a single cone of 3, and so only
one cone will intersect Y; non-trivially.

Let C3 be the disjoint union of the » —1 (or r if r is infinite) maximal subchains
constructed. We construct Y; 41 by adjoining at each 8 € Z;_1 the set U3, that is,
let

Zi= || Cs and Yia=Y,UZ.
BEZ;i—1

Then conditions (i), (ii) and (iii) are shown to hold, and | J;cy Yi = T as desired.

We can use this construction to describe automorphisms of T,. Suppose we
also reconstruct T, from o € T} via sets Y/, Z],C} (so that ey Y = T;). Let
71 : Y7 — Y{ be an isomorphism such that am = o (such an isomorphism exists
as maximal chains are isomorphic to Q, and Q is homogeneous). Suppose the
isomorphism 7; : Y; — Y/ has already been defined for some i € N. Extend m;
to mit1 : Yir1 — Yz,+1 as follows. For each 8 € Z;_1 the posets Cg and Cga,, are
both disjoint unions of the same number of copies of Q, and are thus isomorphic

(as posets). Let ¢g : Cg — Cay, be an isomorphism, and let

/
Tip1 = m; U |_| ¢ Yir1 = Y.
BEZi—1
Then m;41 is an isomorphism, and so m = UiGN m; is an automorphism of 7.
Before classifying image-trivial homogeneous normal bands, it is worth giving a

simplified isomorphism theorem, which follows easily from Proposition 5.4.1.

Corollary 5.4.9. Let B = [Y; By;€q,p;Va,p] and B' = [Y'; B! €, 5/;1#;/ ﬁ/] be a

pair of image-trivial normal bands. Let w:Y — Y’ be an isomorphism, and for each
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a €Y let 0y : By — Bl be an isomorphism. Then |J,cy 0o is an isomorphism
from B into B’ if and only if €, 303 = €. for each o> 3 inY.

am, B

Given a subset A of a band B, we define the support of A as
supp(4) :={y €Y : AN B, # 0}.

If A is a subband of B then clearly supp(A) is simply the structure semilattice of
A.

A subsemigroup A of an image-trivial normal band [Y'; By;€q.8; 10, is called
a mazimal chain if A is a semilattice and supp(A) is a maximal chain in Y. Note

that if Y is a homogeneous semilinear order and A is a maximal chain in B then

A= |J  ep=Q

a>f in supp(A)

as A is a semilattice, so that |[Bg N A| < 1 for all 5 €Y. We use the construction

of T} above to prove the following:

Proposition 5.4.10. Let B = [T;; Bq; €a,8;Ya,p) and B’ = [TT;B&/;GZX/75/;w/O/,6/]
be a pair of image-trivial normal bands with ramification order k such that there
exist n,m € N* with By = B!, = By, ,,, for all o,/ € T,.. Lete € B and f € B,
and consider a pair of sub-rectangular bands M C B and N C B’ with M > e
and N > f. Then for any isomorphism ® : M U {e} — N U{f}, there exists an

isomorphism 0 : B — B’ extending ®. Consequently, B is 1-homogeneous.

Proof. Assume r > 1, else B and B’ are isomorphic to Q. Let ey, e, be elements
of B, M a rectangular subband of B,, and N a rectangular subband of Bgs, with

M > e, and N > e, for some o,0’,a,d € T,. Let ® be an isomorphism given by
®: MU{e,} = NU{e,},

so that M® = N and e, = e,s. Since rectangular bands are homogeneous, we
may extend ®|j; to an isomorphism @' : B, — Bj by Lemma 4.3.7. Fix some
o € M and let e,® = e5. Let {a; : i € N} and {b; : ¢ € N} be a pair of
enumerations of 7, such that &« = a1 and 6 = b;. Let A be a maximal chain
in B such that e,,e, € A, and let Y7 = Zy = supp(A4) (so Y1 = A). Similarly
obtain e,,e5 € A and Vi = Zp = supp(fl) (so Y, & A) Take an isomorphism
m™ Y] — Yl such that om = ¢’ and am = 0 (again this is possible as Y7 and Yl
are isomorphic to Q). For each g € Y7 \ {a}, take any isomorphism 63 : Bg — B/ﬁm
such that (BgNA)fs = Bj, NA (such an isomorphism exists by Proposition 2.10.2,
or simply by the homogeneity of rectangular bands), and let 6, = ®’. Letting
Dy = [Y1; B €a,8; Yo 5] and Dy = [vi; Bl € g3 Yo g, the map

01 = [95,71’1]563/1 : D1 — Dl
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is an isomorphism by Corollary 5.4.9, since BgNA = {e, g} for all v > 3 in Y7, and
Bﬁm N A = {e.ym,gm} for all ym; > Py in }}1

Suppose for some ¢ € N the semilattices Y}, YJ, posets Z;j_1, Zj_l, bands
Djj = [Yj; Bas €apivasl, Dj = [Vis Bui o g Yo 1)

and isomorphisms m; : Y; — 17j, 0; = [0a, Tjlacy; : Dj — Dj have already been
defined for each j < 4, and are such that Y}, Z;_; and Yj, Zj_l satisfy conditions
(i), (ii) and (iii). As in the semilattice construction, if a;1; ¢ Y; then we can fix
z € Z;—1 such that a;y; belongs to some cone of z which is disjoint to Y;, and let
Bai 1 Vaih,2 = €z

Consider the subset X;_1 = J ¢z, |, By of B. For each eg € X; (so B € Z;_1),
take a maximal subchain of each cone C' € C(eg) such that Y;NC' = 0. If eg = €, 3
for (any) y in the chain {y € Y; : 8 < y}, then by condition (ii) precisely one
cone will intersect Y; non-trivially. Otherwise, all cones of eg intersects Y; trivially.
Moreover, if a;11 € Y; and B = z, we further require the maximal subchain of a
cone of C(e;) to contain a;y;.

Let Ce, be the disjoint union of the k (or k — 1 if eg = ¢, g for some y € Y;, and

k is finite) maximal subchains and let

|_| Ce,.

eg€Xi—1

Let Y;11 = Y; U Z;, and note that v <+ for v, € Y; 1 if and only if

either 7,7 € Y; and v <+ in Yj;
or 7,7 € Ce, for some eg € X; 1 and v <+' in C;
orvy €Y,y € Ce, for some eg € X;—1 and 8 > v in Y;.

Similarly obtain C’e ZZ and Y,-H, noting that as B has ramification order k the

set Ce o will likewisﬁe be formed from k (or k — 1 if egr = €, 5 for some y' € Y;,
and k is finite) maximum subchains. Let D;y1 = [Yiy1; Bai€a,g;a,p) and Diyq =
[Yi+1§ Bg/; 6@75/;%/,5/]-

Recall that C(5) = UeﬁeBB C(eg) for all § € T,. Hence as UGBEBB es
of maximal subchains of the 7 —1 (or r if r is infinite) cones of C'(5) which intersect
Y; trivially, it follows that conditions (i), (ii) and (iii) are satisfied and |, Yi = T»
(similarly for ¥;). Consequently, B = Uien Di and B = U, en D;

For each eg € X;_1, let Oep C’eﬁ — éeﬂgi be an isomorphism (as posets), and
let

is a set

ieN

i1 = m U |_| :Yig1 — Yig1.
eﬁEXl 1

By the order on Y;;; defined above, the map m; 11 is an isomorphism, and so the



5.4. HOMOGENEOUS NORMAL BANDS 137

map m = [J;cy T 18 an automorphism of ;.. For each v € C¢; (eg € X;-1), let
0y : By — By, be an isomorphism such that e, 0, = €yr, | 4., for (any)

7" € Ce, with 4/ > . We claim that the map

0iv1=0; U |_| 0y = [0as Tit1]aeyis, : Dis1 — Dipa
Y€Ceg
65€X¢71

is an isomorphism. Suppose 7,7’ € Y;11 are such that v <~+/. If 7,7’ € Y}, then as

0; preserves the images of the connecting morphisms from Y;, we have

€y A biv1 = €y 3 0i = €yimy ymy = Eximy ymigy -

Similarly, if v, € Ce, for some eg € X;_; then by construction we have that
€y n0y = €yimi iy ymiyq - Finally, if v € Vi, o € Ce, for some eg € X; 1 and 8 > 7,
then

ey abiv1 = €grbit1 = €840i = g, ym; = €Briy ymins = Ey'miprmin

by (5.3) since v/ > § > v and ¥'m;11 > Bmit1 > Ymir1. The claim then follows from
Corollary 5.4.9. Hence 6 = |J;cn 0 is an isomorphism from B to B’ which extends
®. Taking B = B’ shows that B is 1-homogeneous. O

As a result, for each collection r, k,n,m € N* such that » = knm, there exists
a unique, up to isomorphism, image-trivial normal band [7T}; Ba;%¥a 3; €a,8] With
ramification order k£ and B, = By, ,, for all a € T;.. We denote such a band T;, ,,, .,

where r = nmk.

Proposition 5.4.11. An image-trivial homogeneous normal band is isomorphic to

Ty mk for some n,m,k € N*. Conversely, every band T,, p, . 15 homogeneous.

Proof. By Lemma 5.4.7 an image-trivial homogeneous normal band has a semilinear
structure semilattice, and has a ramification order by 1-homogeneity. By the preced-
ing results, it therefore suffices to prove that the band T, s, 1 = [T; Ba; €a,8; Ya,8) 18
homogeneous. Since T}, ,, » is 1-homogeneous by the proposition above, we proceed
by induction, by supposing all isomorphisms between finite subbands of size j — 1
extend to an automorphism of B. Let M = [Z3; Ma;q/)é\fﬁ],N = [ZQ;NQ;IZJ(])X/B] be
a pair of finite subbands of B of size j, and 6 = [0, T]aez, an isomorphism from
M to N. By Proposition 5.4.10 we assume that Z; and Zs are non-trivial, so that
N, M are not rectangular bands. Let § be maximal in Z;, and éw = ¢§’. Then by
the inductive hypothesis the isomorphism 0|yp g, : M\ Ms — N \ Ng extends to
an automorphism 6* = [0%, 7*],e1, of B.

Since Zj is a finite semilinear order, there exists a unique 5 € Z; which is the
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lower cover of 4. As 6 is an isomorphism, it follows from Corollary 5.4.9 that
€5,805 = €580 = €51, pn = €51 g~
For each e, € B, let [e;] be the subsemilattice of T, given by
ler]={y €T, : By =e;} =supp{e € B:e>e;}.

Note that [e;] is the union of the cones of e;, and so T \ [e;] forms a subsemilattice
of T,. Then 7* = 7*|1,\(¢; 5] : Tr \ [€5,8] = T3 \ [€s7 n+] is an isomorphism, and we

now aim to extend the isomorphism

Oyt heren: U B> U B
vET\[es,8] YETr\[es7, grx]

to an automorphism of B which extends 6.

Since 6 maps M; U {e53} to Nsr U {€s gx}, we can extend the isomorphism
0| M5Ufes 53 tO an automorphism 0* = [5,";, 7*]yer, of B by Proposition 5.4.10. Then
as Bn* = B7*, the bijection 7 = ﬁ-*’Tr\[Eé,ﬁ] L 7‘r*|[65’ﬁ] is an automorphism of 7.

We claim that § = [0, 7|7, where

7 0y ifye T\ esgl,
=

é:, if v e [65,5],

is an automorphism of T}, ,, . By Corollary 5.4.9 it is sufficient to prove that
67/,75 = €yzq7 for any 7 > v in T,. Note if v € [es5] then v/ > v > 3 and
so v € lesp] by (5.3). Hence, as 6* and §* are automorphisms of B (and by the
construction of #), we only need consider the case where v/ € [e5 5] and v € T\ [e5 g]-
If v # g then v > 3 > v, s0 €y, = €3, by (5.3), and so as 3,7 € T} \ [e5 ],

€y 70 = €510y = a0 = €pir yir = g = Eyink
with the final equality holding since v'7 > 57 > 7. Finally, if v = 8 then
€y n0 = €y 08 = €y 35 = €580 = €5 prx = €yar pie = €y pa

since 7/7* € [es pne] = lest ga+]). Thus @ is indeed an automorphism of B, and

extends 6 by construction. O

It is worth noting that the spined product of a left and right image-trivial ho-
mogeneous normal band need not be homogeneous. For example, suppose, seeking
a contradiction, that B = T5 1,1 > T 2,1 is homogeneous, and thus isomorphic to
some T}, y, x. Then n = 2,m = 2 and as B has structure semilattice 75, so must

T59k, and so 2.2.k = 4k = 2, contradicting £ € N*. Our aim is now to prove that
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the converse holds, that is, if an image-trivial normal band L <1 R is homogeneous,
then so are L and R.

Corollary 5.4.12. Let B = L <1 R be a homogeneous normal band such that L is

image-trivial. Then L is homogeneous (dually for R).

Proof. Let B = [Y; Lq; elaﬂ; 1/1[06”3] < [V Ry 1/1;5] be homogeneous. Then by Corol-
lary 5.2.3 (iii) there exists n € N* such that L, = By, ; for all & € Y, and by Lemma
5.4.7 we assume Y = T,., where r = nk for some k € N*. Moreover, L has a ramifi-
cation order, since if [, kg € L, then by fixing any r, € R, sg € Rg, there exists
an automorphism @' 1 0" of B sending (ln,7a) to (ks,sg) as B is 1-homogeneous
by Corollary 5.2.3 (i). In particular, [,0' = kg and so |C(ly)| = |C(ks)| = k. Hence
L =T, 1 by Proposition 5.4.10, and is thus homogeneous. ]

5.4.2  Surjective normal bands

We now study the homogeneity of surjective normal bands.

Lemma 5.4.13. Let B = [Y; By; ¢8| be a homogeneous surjective normal band.
Then for any finite subsemilattice Z of Y, there exists a subband A = [Z;{eq}; ¢£’5]
of B isomorphic to Z.

Proof. Suppose first that Y is a linear or semilinear order. The result trivially
holds for the case where |Z| = 1 by taking A to be a trivial subband. Proceed by
induction by assuming that the result holds for all subsemilattices of size n — 1, and
let Z be a subsemilattice of Y of size n € N. Let § be maximal in Z, so 2’ = Z\ {0}
is a subsemilattice of Y of size n — 1. By the inductive hypothesis, there exists a
subband A" = [Z'; {eq }; wilﬂ] and an isomorphism ¢ : A’ — Z’. Since Y is linearly
or semilinearly ordered and Z is finite, there is a unique 3 € Z’ such that § is a
lower cover of §. Let {eg} = A’ N Bg. Since 153 is surjective, there exists e5 € Bs
such that e;1)5 3 = eg. Let ¢’ be the map from A" U {es} to Z given by A'¢/ = A'¢
and es¢’ = §. Then ¢/ is clearly an isomorphism, and the inductive step is complete.

Suppose instead that Y contains a diamond 5 < {7,7} < 0. We claim that any
pair a,6 € Y with o L 6 has an upper cover. Let e,5 € B,s be fixed. Since the

connecting morphisms are surjective there exist e, € B, and es € Bs such that

€as = €aVa,a6 = €5Us,a8

Similarly for 7 and «, we have eg = e;9¢, 3 = e,1 3. The claim then follows by
extending the isomorphism from {eg, er, e} to {€qs, €q, €5} to an automorphism of

B. By a simple inductive argument we have that every finite subsemilattice of Y
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has an upperbound. Let Z be a finite subsemilattice of Y and a € Y be such that
« > Z. Then for any e, € B,,

{eatap:BeZ} =2,
as required. O

Corollary 5.4.14. Let B = [Y'; Ba;ta 8] be a homogeneous normal band. Then'Y

18 homogeneous.

Proof. Suppose first that B is a surjective normal band. Let w : Z — Z’ be an
isomorphism between finite subsemilattices of Y. By Lemma 5.4.13, there exist
subbands A = [Z; {ea};wiﬁ] and A" = [Z; {ea/};wéfﬁ,] isomorphic to Z and Z,
respectively. Hence [0, T]qcz is an isomorphism from A to A’, where 6, maps e,
to eqr, and the result follows by the homogeneity of B.

Now let B = L 1 R be an arbitrary homogeneous normal band. By Lemma
5.4.6, L and R are either image-trivial or surjective normal bands. If both L and R
are surjective, then clearly so too is B, and so Y is homogeneous by the first part.

Otherwise, Y is homogeneous by Lemma 5.4.7. ]

Corollary 5.4.15. Let B = L <1 R be a homogeneous surjective normal band.

Then L and R are homogeneous.

Proof. Since B is a surjective normal band, the normal bands L = [Y'; L,; wg ,3] and
R = [Y; Ra; 9y, 5] are also surjective. Let L; = [ZZ-;LQ;¢£Z'5] (i = 1,2) be a pair

of finite subbands of L and #' = [, T],cz, an isomorphism from L; to Ls. By
Lemma 5.4.13, there exist subbands A; = {(I!,,7%,) : « € Z;} of B isomorphic to Z;.

Hence R; = {1}, : a« € Z;} is a subband of R isomorphic to Z; for each i, and the
2

map 0" : Ry — Ry given by rl0” = r2_ is an isomorphism. By Proposition 5.3.1,
0! <1 67 is an isomorphism from L; <t Ry to Lo <1 Ro, which we may extend to
an automorphism 0 = 0' =1 0" of B. Then 6 extends 6! and so L is homogeneous.

Dually for R. O

Consider now the case where B = [Y'; B,; 14, is such that there exists a > 3 in
Y with 1, g an isomorphism. Then by Lemma 5.4.4 every connecting morphism is
an isomorphism, and so B is isomorphic to Y x B,, ,,, for some n, m € N* by Propo-
sition 3.7.13. Since each B, ,, is homogeneous by Proposition 5.2.1, the following

result is then immediate from Proposition 4.3.8 and Corollary 5.4.14.

Proposition 5.4.16. Let Y be a semilattice and n,m € N*. Then Y X B, is

structure-homogeneous if and only if Y is homogeneous.

Let R be a right normal band with homogeneous structure semilattice Y. Then

as Y x B, 1 is structure-homogeneous for any n € N*, it follows from Corollary 5.3.2
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that we can let (Y x B,, 1) > R denote the unique (up to isomorphism) normal band
with left component isomorphic to (Y x By, 1) and right component isomorphic to
R. We observe that

Y X Bypm = (Y X Bp1) > (Y X By ).

Furthermore, for any n € N* and homogeneous bands R and L, where R is right
normal and L is left normal, the bands (Y x By 1) ba R and L > (Y x By ,,) are
homogeneous by Corollary 5.3.3.

Finally, we examine the case where the connecting morphisms are surjective
but not injective (so that the D-classes are infinite). Let B = [Y; Bq;1q] be a
surjective normal band. For each a > 3, let K, g denote the congruence Ker 9 g
on B,, or Ko]iﬁ if we need to distinguish the band B. Note that if a > § > 7 then
K,p C K, for if et g = fatba,p then

eoﬂ/’a,’y = eoﬂ/’a,ﬁwﬁ,w = fal/}a,ﬁwﬂ,'y = fozwoz,v-

The dual of Lemma 5.4.7 is then obtained:

Lemma 5.4.17. Let B = L <1 R be a homogeneous normal band such that the
connecting morphisms of either L or R are surjective but not injective. Then Y is

the universal semilattice.

Proof. Suppose w.l.o.g. that R = [Y;Ra;wgﬂ] has surjective but not injective
connecting morphisms, so |R,| = N for all @« € Y. Suppose, seeking a contra-
diction, that Y is a linear or semilinear order. Let e, fo,ga € Ro be such that
(éa, fa) € Kf,ﬁ but (eq, ga) ¢ Kf;ﬁ, noting that such elements exist as ¢, 5 is sur-
jective but not injective. For any [, € L, extend the automorphism of the right
zero subband {(la, €q), (las fo); (la, 9o )} which fixes (l4,eq) and swaps (la, fo) and
(la, go) to an automorphism 6 = [0, 7]aey of B. Then by Proposition 5.3.1 we
have § = 0! >1 0" for some automorphisms 6! = [0!, T]acy and 0" = [07,, T]aey of L
and R, respectively. It follows by the commutativity of the diagram [a, 3; c, Br] P
(in R) that
(€as 9a) € Kapr and (€a, fa) & Ka,pr-

However as {7 : v < a} is a chain, either 5 < 7 or § > fm, which both contradict
the note above the lemma. Hence Y contains a diamond and, being homogeneous

by Corollary 5.4.14, is thus the universal semilattice. O

To complete the classification of homogeneous surjective normal bands, we
switch our methods to Fraissé’s Theorem. For the signature of semigroups, Fraissé’s

Theorem becomes:

Theorem 5.4.18 (Fraissé’s Theorem for semigroups). Let KC be a non-empty count-

able class of f.g. semigroups which is closed under isomorphism and satisfies HP,
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JEP and AP. Then there erists a unique, up to isomorphism, countable homoge-
neous semigroup S such that K is the age of S. Conversely, the age of a countable

homogeneous semigroup is closed under isomorphism, is countable and satisfies HP,
JEP and AP.

Let K be a Fraissé class contained in a variety of bands V defined by the identity
a1as -+ an = biby - - by,. Then the Fraissé limit .S of I is a member of V. Indeed,

if x1,20, ..., Tn,Y1,Y2, - --,Ym € S then

<x17x27"'>xn7y17y27"'>ym> ek

and so 1Ty Ty = Y192 - - Ym as required.

Example 5.4.19. The rectangular band By, , is homogeneous by Proposition
5.2.1, and clearly its age is the class of all finite rectangular bands. It follows that
the class of all finite rectangular bands forms a Fraissé class (with Fraissé limit
By .xo)-

Example 5.4.20. Let I be the class of all finite bands. Since the class of all bands
forms a variety, K is closed under both substructure and (finite) direct product,
and thus has JEP. However, it was shown by Imaoka [57, Page 12] that AP does
not hold.

Consequently, there does not exist a universal homogeneous band, that is, one
which embeds every finite band. However, if we refine our class to certain normal
bands, AP is shown to hold. To this end, let Ky, Krny and Ky be the classes of

finite normal, finite right normal and finite left normal bands, respectively.
Lemma 5.4.21. The classes Ky, Krn and Krn form Fraissé classes.

Proof. Since the class of (left /right) normal bands forms a variety, it is clear that the
classes are closed under subbands and have JEP. The weak amalgamation property
follows from [57, Section 2| by taking all bands to be finite. Finally, since bands
are ULF there exist only finitely many bands, up to isomorphism, of each finite

cardinality, and so each class is countable. O

Let By, Bry and By x be the Fraissé limits of Ky, Cry and Ky, respectively.
We prove that Bry is the unique homogeneous right normal band with surjective
but not injective connecting morphisms. This will follow quickly from the subse-

quent result.

Lemma 5.4.22. Let R = [Y; Ro; %4 5] be a homogeneous right normal band, where
each connecting morphism is surjective but not injective. Let B1,..., 3, be elements
of Y be such that B; L 8 for all i # j, where r € N. Then for any o > B1,..., 5,

and any eg, € Bg, such that (eg, : 1 <i < r) forms a semilattice, we have

{ea € Ra : €athap, = ep, for all 1 <i <r}| =N,
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Proof. Let a > B1,...,8.. We observe that Y is the universal semilattice by Lemma
5.4.17, and so every pair of elements has an upper cover. We first prove the result for
r =1 (relabelling 81 simply as ). Since the connecting morphisms are surjective,

there exists e, € B, such that e ¢, g = eg. Suppose, seeking a contradiction, that

eakag = {fa: (€a: fa) € Kag}

has finite cardinality n. Note that n # 1 since the connecting morphisms are not
injective and |eq Ko g| = e Ko p| for all o/ > ' and e € Ry, by a simple
application of homogeneity. Hence for any v < 8 we have that |eq Ky g| = |eaKa |
and Ko 3 C Kqp, and 5o ea Ko g = €a Ko as n is finite. Let egypg, = e,. Then
choosing any fg € egKpg,, with fg # eg there exists f, € R, such that fo, g = f3,
and thus

fatbay = [0y = €ptbpy = €y

Hence fo € eaKapy, but fo € eaKy g, a contradiction and thus n is infinite.

We now consider the result for arbitrary » € N. Let f, € R4, and let fotbg g, =
fs, for some fg,. Note that (fg, : 1 <i < r) is a semilattice, and is isomorphic to
(eg, : 1 < i < r). We can therefore extend the isomorphism between (fg, : 1 <1i <r)
and (eg, : 1 < i < 1) which sends fg, to eg, for each i, to an automorphism of B,
to obtain some 0 > 3; and es € Bs such that esis g, = eg, for each i. Since every
pair of elements in the universal semilattice has an upper bound, there exists 7 € Y

with 7 > «, 0. Let e; be such that e-1; s = es, and suppose e;9¢r o = €4. Then

eaa,p; = €rPrata,p = erthrp, = ertbrstbsp, = estbs g, = €p,.
By the case where r = 1 the set e, K ;5 is infinite, and thus so is the set
{er € Rr :estprp, = ep, forall 1 <i <r}.

The result then follows by extending the isomorphism between the semilattices
(er,ep, : 1 < i <r)and (eq,ep, : 1 < i < r), which sends e, to e, and fixes all

other elements, to an automorphism of R. O

Lemma 5.4.23. Let R = [Y; Ra;vYq 5] be a homogeneous right normal band, where

each connecting morphism is surjective but not injective. Then R is isomorphic to
Brn (dually for Bry ).

Proof. We prove that all finite right normal bands embed in R. We proceed by
induction, the base case being trivially true, by supposing that all right normal
bands of size n — 1 embed in R, and let A = [Z; Ay; ¢q,g] be of size n. Let o be
maximal in Z and fix e, € A,. Suppose « is the upper cover of f1,...,5, in Z,

and suppose e,¢q.p, = €g,. Then A" = A\ {e.} = [Z;Afl;qb’a’ﬁ] is a right normal
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band of size n — 1, and so there exists an embedding 6 : A" — R (which induces an
embedding 7 : Z — Y'). Since Y is the universal semilattice by Lemma 5.4.17, there
exists § € Y such that Zn U {§} = Z by Lemma 5.1.3, where we choose § = ar if
|Aq| > 1, that is, if Z = Z. Then by the previous lemma, we may pick an element
es of Rs such that es ¢ A'0 and es1)55, = ep,0. Then it is easily verifiable that
A'0 U {es} is isomorphic to A, and so the result follows by induction. By Fraissé’s
Theorem R is isomorphic to the Fraissé limit of Ky . ]

Corollary 5.4.24. The band By is isomorphic to Bry > Bry.

Proof. Let L 1 R be a finite normal band with structure semilattice Z. Then
there exist embeddings 0': L — By and 0" : R — Bry with induced embeddings
m and m, from Z to Y, respectively. Hence m = (m) 71|z, is an isomorphism
between Zm; to Zm,. By Lemma 5.4.13 there exist subbands A = {e, : @ € Zm} and
A" ={fo : @ € Zm,} of Bry isomorphic to Zm; and Z7,, respectively. Consequently,
the map ¢ : A — A’ given by e,¢ = for is an isomorphism, which we extend to
an automorphism 6 = [éfl,fr} of Brn. In particular, & extends m and 06! is an
embedding of L into Bry, with induced embedding m7 = m;(m) | Zm Ty = Ty Of
Z into Y. Hence 00! x 0" : L x R — Brny X Bry is an embedding, and so

Brn > Bry embeds all finite normal bands as required. O

We summarise our findings in this subsection.

Proposition 5.4.25. A surjective normal band is homogeneous if and only if it is
isomorphic to either Y X By p, (U X By 1) > By, By > (U x Byy,) or By, for
some homogeneous semilattice Y and some n,m € N*, where U is the universal

semilattice.

Proof. Suppose first that B = L > R is a homogeneous surjective normal band.
Then by Corollary 5.4.14 and Lemma 5.4.15, each of Y, L and R are homogeneous.
If a non-trivial connecting morphism of L is an isomorphism, then L is isomorphic
to Y x By, 1 by Lemma 5.4.4 and Proposition 3.7.13. Otherwise, the connecting
morphisms of L are non-injective and L is isomorphic to Bry by Lemma 5.4.23.
Dually for R. Since the band Y x B, ,, is structure homogeneous for any homo-
geneous semilattice Y by Proposition 5.4.16, the result follows by Corollary 5.3.2,
Lemma 5.4.17 and Corollary 5.4.24.

Conversely, By, Brn, Brn are homogeneous by Fraissé’s Theorem. Since each
Y x B, is structure-homogeneous, the final cases are homogeneous by Corollary
5.3.3. O

For a complete classification of homogeneous normal bands, it thus suffices to
consider the spined product of an image-trivial normal band with a surjective nor-

mal band.
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To this end, let B = L <t R be a homogeneous normal band, where L is
image-trivial and R is surjective. We assume that L and R are not semilattices,
since otherwise B would be image-trivial or surjective. Then L is homogeneous
by Corollary 5.4.12, and so L = T, 1 for some n,k € N*. Since the structure
semilattice of B is a semilinear order by Lemma 5.4.7, it follows from Lemma
5.4.17 that the connecting morphisms of R must be isomorphisms. Hence we may
assume that R = T, X By, for some m € N* by Proposition 5.4.16 and that
L =T, 1 by Corollary 5.3.2. Conversely, T}, 1 1 > (Tx X B1,m) is homogeneous for
any n,m,k € N* by Proposition 5.4.16 and Corollary 5.3.3.

This, together with Propositions 5.4.11 and 5.4.25, gives a complete list of ho-
mogeneous normal bands. In the classification theorem below, the three cases (up
to duality) are given by: image-trivial normal bands in (i), surjective normal bands
in (ii), (iii), (iv),(v), and finally the spined product of an image-trivial normal band

with a surjective normal band in (vi) and (vii).

Theorem 5.4.26 (Classification theorem of homogeneous normal bands). A nor-

mal band is homogeneous if and only if it is isomorphic to one of:
(1) Tom ks
(i) Y X Bym;

(i) By o< (U x Bim);

(iv) (U x Bp1) > Bgen;
(v) Bn;

(Vi) (Tonk % Bnj) o< T ks

(vil) To1 <0 (Tok X Bim);

for some homogeneous semilattice Y and some n,m,k € N*, where U is the uni-

versal semilattice.

We finish this section by giving a complete classification of structure-homogeneous

normal bands.

Proposition 5.4.27. A normal band is structure-homogeneous if and only if iso-

morphic to Y X By, for some homogeneous semilattice Y and n,m € N*.

Proof. Let B = [Y'; Ba; 1a,p] be a structure-homogeneous, so that Y is homogeneous
by Corollary 5.4.14. We show that each connecting morphism is an isomorphism,
so that the result will follow by Proposition 3.7.13. Suppose first that there exists
a > 3 in Y such that v, g is not surjective, say, eg € I, . Let f, € B, with
fatap = f3. Then by extending the isomorphism between {eg} and {fg} (with in-

duced isomorphism the trivial map fixing £) to an automorphism of B with induced
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automorphism 1y, a contradiction is achieved. Hence each connecting morphism is
surjective.

Suppose eq¥n,g = €3 = fala,p, and fix some § > a. Then as 15, is surjective
there exist es, fs € Bs with estbs o = eq and fs1)s5o = fo. Let m be an automor-
phisms of Y such that ar = 8 and ém = § (such a map exists by the homogene-
ity of Y'). Extend the isomorphism swapping {es} and {fs} to an automorphism
0 = [0, T)acy of B. Then as the diagram [d, «; 0, ] commutes,

eala = ess5.a0a = es0ss5 3 = fs0s3 = e

and similarly f,0, = eg. Hence e, = f,, and so 9, g is injective.

The converse follows from Proposition 5.4.16. O

5.5 Homogeneous linearly ordered bands

We call a band B = (J,cy Ba linearly ordered if Y is a linear order. A homoge-
neous linearly ordered band B has structure semilattice Q by Proposition 5.2.4. We
observe that if B is not normal, then there exist a > 8 and e, € B, such that the
subband Bg(en) of Bg contains more than one L-class or R-class. Hence if B is
homogeneous, then by Corollary 5.2.3 (iv) the same is true for B, (es) for any 6 >~
and e5 € Bg.

Lemma 5.5.1. Let B be a linearly ordered homogeneous non-normal band. If
Bg(eq) intersects more than one L-class, then Bg(eq) = R(Bg(eqn)). Dually, If
Bg(eqa) intersects more than one R-class, then Bg(eq) = L(Bg(eq)).

Proof. Suppose, seeking a contradiction, that there exists an element gg € Bg such

that gg <, en but gg £ eo. Then gz = enggs, so that

ggea = €agpeaRgs and ggeq € B/g(ea).

Since the subband Bg(e,) contains more than one L-class, there exists fz R ggeq
such that fg € Bg(eqa) \ {g9sea}. Extend the automorphism of the right zero sub-
semigroup {fg,gs, gsea} which fixes gge, and swaps fg and gg to 0 € Aut(B).
Then e, = eqt) > ggea, g and

ggea = (gea)l = ggbend = faeqy .

Hence

fﬁ(eaeo/eoz) = fﬁeo/eoz = 9p€afa = Jpfa
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and so fg £ eqeqeq. If @' > a then eqeneq = €4, contradicting e, > fg. Hence

o < a, so that eyeqey = €y and

9 = gpa’ = Jp€a’€ala’ = JB€aCa’ = Jgp€a;
a contradiction. O

Let B be a linearly ordered homogeneous non-normal band. By the lemma
above, if Bg(e,) contains a square (that is, it intersects more than one £ and R-
class) then Bg(eo) = Bg. Hence Bg(ey) is a single K-class, where K = L, R or
D. It follows from Corollary 5.2.3 (iv) that Bg(e,) is also a single K-class for all
o > " and ey € By. If K = D, then B has the following property, which we
follow Petrich [71] in calling D-covering:

If e, f € B, then either eD f ore > f ore < f.

Proposition 5.5.2. A homogeneous linearly ordered band is reqular.

Proof. Let B = UaeQ B, be a homogeneous non-normal linearly ordered band
(noting that if B was normal, then it would automatically be regular). By Lemma
5.5.1 we may assume first that for all « > § and e, € B, we have that Bg(e,) is
a union of R-classes. Hence L£(Bg(eq)) = Bg, and so fzeq = fp for all fg € Bg.
Given any 7, 7,0 € Y and any elements e, € B,, fr € B, and g, € B,, to show B

is a regular band it suffices to show that

ey freygoey = €y frgoey. (5.4)

If 7 < 7 then frey = f;, while if v < 7 then e, f; = e, and (5.4) is seen to hold in
both cases. Assume instead that 7 = v and 7 > o (since if v < ¢ then both sides
of (5.4) cancel to ey). Then eyg, L go L fr95 L e fr9s and

(e'yga)(efyf'ygcr) = e’ygaf'yga = €yJo

so that e,g, Re, fy9,, and thus e g, = e,f,9,. By post-multiplying by e, and
noting that e, = e, fre, we attain (5.4), and thus B is regular. The case where

each Bg(ey) is a union of L-classes is proven dually. O

Let B = L =1 R be a homogeneous non-normal linearly ordered band, where
L = UaeQ L, and R = UaeQ Rs. Then for any finite chain a3 > ag > -+ > an,
in Q, we pick lo, € Lo, to construct a chain l,, > ln, > -+ > Iy, in L. By an
identical argument to the proof of Corollary 5.4.15, we have that R is homogeneous,
and dually so is L. Hence by Lemma 5.5.1, each Lg(l,) is a single R or L-class of
L. Since Lg is left zero, the first case is equivalent to L being normal, and so by

the classification theorem for homogeneous normal bands we have L = Q x B, ;1 for
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some n € N*. Otherwise, each Lg(l,) is a single L-class, so that Lg(l,) = Lg and
L satisfies D-covering.
Consequently, it suffices to consider the homogeneity of linearly ordered bands

satisfying D-covering.

Proposition 5.5.3. Let B = J,cq Ba and B' = J,cq B, be bands satisfying D-
covering such that B, = Bg and B, = B/’8 for all a, 8 € Q. If m € Aut (Q) and

0o : By — Bl an isomorphism for each «, then 6 = J 0o is an isomorphism

a€eQ
from B to B'. Moreover, every isomorphism can be constructed in this way.

Proof. Clearly 0 is an bijection. If o > 3 then, for any e, € B, and eg € Bg,

(eaep)d = egtls = (eabla)(eslp) = (eat)(ept)

and similarly (egeq)f = (egh)(eqd). Since each of the maps 6, are morphisms, it
then follows that € is a morphism as required.

The converse is immediate from Proposition 5.2.2. O

We denote D, ., as the unique, up to isomorphism, linearly ordered band with
structure semilattice Q, satisfying D-covering, and such that B, = B, ,, for all
a € Q, where n,m € N*. We observe that, by this uniqueness property, we have
Dy = Dy > Dy .

Corollary 5.5.4. The band D, ,, is structure-homogeneous for any n,m € N.

Proof. Let A = U< Aa, and A" = ;4 A5, be a finite subband of Dy, n,
where a; > ag > -+ > ag and 81 > B2 > -+ > B Then A, > A, if and
only if o > ¢, and similarly for A’. Let § : A — A’ be an isomorphism, so
that there exist isomorphisms 6; : Ay, — Alﬁi such that § = Ulgigk 0;. Let m €
Aut (Q) extend the unique isomorphism between {ayq,...,ax} and {51,..., Bk} By
Proposition 4.3.7, we can extend each 6; to an isomorphism éa,- : By, — Bg,. For
each a & {a, ..., ap}, fix an isomorphism 0, : By — Bor. Then 6 = UaeQ 0, is an

automorphism of D,, ,,, by the previous proposition, and extends 6 as required. [

Now let B = L < R be a homogeneous non-normal linearly ordered band not
satisfying D-covering. If L = Q x B, then, as shown after Proposition 5.5.2, R
satisfies D-covering since B is not normal. Hence R = D ,, for some m € N*, and
so B = (Q x By,1) > Dy 4, by Corollary 5.3.2 as Dy p, is structure-homogeneous.
Dually for the case R = Q x By .

Conversely, the bands (Q x By, 1) > D1, and Dy, 1 > (Q X By ,,) are structure-
homogeneous, and thus homogeneous, by Corollary 5.3.3. We have therefore achieved
a complete classification of homogeneous linearly ordered bands, which is sum-

marised below.

Theorem 5.5.5. The following are equivalent for a linearly ordered band B:
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(i) B is homogeneous;
(ii) B is structure-homogeneous;

(iii) B is isomorphic to either Dy m,(Q X Bp1) < Dy, Dy > (Q X By ) or

Q X By m, for some n,m € N*.

5.6 The final case

The final case is to consider homogeneous bands which are non-normal and which
are also not linearly ordered. Our aim to show that these do not exist.

Throughout this section we let B = (J,cy Ba be a non-normal band, where Y
is non-linear, and fix a three element non-chain «,~, 3, where ary = 3. For e, € B,
and e, € By, let A be the subband of B given by

A = (eq,ey) = {€a, €y, €alty, €10, EalrEq, €x€aby},

as shown in Figure 5.6. Then A is isomorphic to one of 4 bands, depending on if
AN Bg is trivial, a left zero or right zero band of size 2, or a 2 by 2 square. We will

show that none of these possibilities can occur if B is homogeneous.

€ €y

€area| €aby

€yCa €+ CaCry

Figure 5.4: The subband A.

Lemma 5.6.1. For e, € B, and e, € B, we have |Bg(eq) N Bg(ey)| = 1 if and
only if Bg(ea) N Bg(ey) # 0 if and only if |AN Bg| = 1.

Proof. Suppose that eg < eq,ey. Then eqse, € Bg and, as < is compatible with

multiplication, eg < eqe, so that eg = eqe. Hence

Bg(ea) N Ba(ey) = {eaey} = {eyea}

and the result follows. O
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Lemma 5.6.2. For e, € B, and e € By we have
(i) [(ea,ey)| =6 if and only if

R(Bg(ea)) NR(Bg(ey)) = 0 = L(Bg(ea)) N L(Bs(ey));

(ii) |{easeqy)| = 4 with eqejeq = eyeq if and only if R(Bg(ea)) N R(Bg(ey)) is
non-empty and

L(Bg(ea)) N L(Bg(ey)) = 0.

Moreover, in this case

R(Bs(ca)) N R(Bp(es)) € Ree, = R

€q by €yea "

Dually for |(eq,ey)| = 4 with eqeyeq = €qes.

Proof. We first show that e e, = e e,e, if and only if
evea € R(Bg(ea)) NR(Bs(ey)).

Since eyeqeq = €€, We automatically have eye, <, e,. Hence if ejeq = eqeqeq
then ee, € Bg(eq). The converse holds trivially.

Now suppose eg <, €q,ey, s0 that eg <, eyeq, as <, is left compatible with
multiplication. Hence eg R e e, and so R(Bg(eq)) N R(Bg(ey)) is contained in
R
and only if it contains eye,. This, together with the first part of the proof gives the

In particular, we have shown that R(Bg(eq)) N R(Bg(ey)) is non-empty if

€aty*
results. O

Lemma 5.6.3. Suppose that there exist 0 > 6 > 7 in Y and e, > e5 in B such
that B-(es) = Br(es). Then B is not homogeneous.

Proof. Suppose, seeking a contradiction, that B is homogeneous and B:(e;) =
B;(es) for some 0 > 6 > 7 and e, > e5. Let 0/ > ¢ > 7' in Y and e,» > es. Then
by extending the isomorphism from e, > es > e, to e,» > eg > e, for some e, e,
it follows by the homogeneity of B that B,/(e,) = B (es). The semilattice Y is
a semilinear order, since if n > {p, e} > ( is a diamond in Y then for any e, € B,

with e; > e, e. we have

Be(en) = Belen) = Belee)

contradicting Lemma 5.6.1, as B is not normal. Hence Y is homogeneous by Propo-
sition 5.2.4. Suppose w.l.o.g. that B;(e,) has more than 1 R-class. We claim that
there exists g, € L(B-(es))\ Br(es). Seeking a contradiction, suppose that no such
gr exists. Then R(Br(ey)) = B, so that for any v € Y with vo = 7 and e, € B,



5.6. THE FINAL CASE 151

we would have

R(B:(es)) NR(Br(ev)) = R(Br(ev)) = Br

by the homogeneity of B. Hence B, has 1 R-class by the previous pair of lemmas,
a contradiction, and thus the claim holds.

Let g, € L(B-(eys)) \ Br(es). Then as g, <; e, we have gre; = gr, €x9r < €4
and e, g, L gr. Letting e,g, = e;, then as B;(e,) has more than one R-class, we
may pick fr € Br(e,) with fr Le; and f; # e.. Let A = {er, fr,9+}, a left zero
subsemigroup of B. By extending the automorphism 6 of A which fixes e, and
swaps fr and gr, to an automorphism 6 of B, we have e, = e, > e,, g, and
eo' fr=cer.

If |B-(es)| > 2 then there exists z. & {e;, fr} with z; € B.(e,) and z, being
L- or R-related to e,. We may assume that 6 also extends the automorphism
of AU {z;} which extends 6 and fixes ;. By the homogeneity of B we have

€y’ > €r, T, S0 that oo’ > 7 to avoid contradicting Lemma 5.6.1. Then
€s€s'Cs * fr = €olyl fr = €ger = €1

so that f; £ ese,re, and o # oo’ (else fr £ eyeqyes = e,). Hence eye e, < e,
and Br(e;) = Br(es€,r€5), contradicting f- & Br(eseyreq).
It follows that BT(eo) = {eT,fT}7 BT(eO'/) = {67—797}, oo’ = 7 and

€€yl Co = €xlCrCyl = €5

by Lemma 5.6.1. Now extend the automorphism of A which fixes g, and swaps e
and f; to an automorphism ¢ of B. Then e,¢ = ez > e, fr, so that 6o > 7 and
es9r = [fr since e,g; = e;. Since 6,0’ > T we have o’ > 7. Suppose, seeking
a contradiction, that o’ > 7. Then we claim that ¢ > {g0’,50} > 7 forms a
diamond. Notice that 6o’ # 6o, since otherwise 6o = gogo’ = 7, a contradiction.
If 3 = 60’ then 06 = 060’ = 7 since 00’ = 7, and so ¢ # 6o’, similarly 7 # Go.
Thus, as the elements are distinct, the set forms a diamond as claimed, which
contradicts Y being a semilinear order. Hence 6o’ = 7. Now e5,e, > e,, so that

e5€5 = €515 = e and So
€sdr = 66(60’97') =€érgr = €r

as e; L g,. However this contradicts g, = f, and B is therefore not homogeneous.
O

Lemma 5.6.4. Let B be homogeneous and oy, be distinct elements of Y with
ay = . Then for any eq, fa € By and ey € By such that eq, fo > €ae~yeq, falyfa;

we have eqeyeq = foey fa-
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Proof. Let 0 < 8 and choose e, fo € By(ea€yeq) such that (e, f,) is isomorphic
to (ea€yea, faly fa), noting that elements of this form exist by Corollary 5.2.3 (iv).

Extend the isomorphism from

<€oufoueaafa> to <€oc7foc;€ae eonfoce fa>
v Y

which maps the generators in order, to an automorphism of B. Then there exist

7 €Y and e; € B; (as the image of eqe,e,) such that o > 7 >  and

{eou fa} >er > {eaefyeou foae'yfa}'

Then

Catrea = €r(eneyen)er = (ereq)ey(eatr) = ereqer,

and similarly f,e,fo = ereyer, and the result follows. O

Lemma 5.6.5. If B is homogeneous, e, € By and ey € By then |(eq,ey)| # 6.

Proof. Suppose, seeking a contradiction, that |(eq,e)| = 6 and let eg € Bg(eq).
Note that any rectangular band D satisfies the identity zyz = xz since if x,y,z € D
then

xyz = (xy)(zx2) = z(yz)xz = x2.

We therefore have that

egeyes = eg(Catyeales = €3
evepey = (ey€a)es(eaty) = (ey€a)(€aty) = eyeaty.
By Lemma 5.6.2 (i), the element eg is not £- or R-related to e eqe~, so the subband
(ey,€5) = {ey, €8, 6468, €5y, €1€aey}

contains no repetitions. Hence for any eg, f3 < e, we have (e,,eg) = (e, fg). In
particular, the map fixing e, and swapping some eg € Bg(eq)\{eatyea} With eqe eq
is an isomorphism, which can extended to 6 € Aut(B). Then e, > eg, eqeyeq gives
el = eq > eqeqeq,es, so that ao’ > by Lemma 5.6.1. Moreover, (eqey€q)8 =

€a/Ex€q! = €3, SO
(atara)ey(eatata) = (€atar)(€atyen)(EarCa) = €atyen
since < is compatible with multiplication, and similarly

(ear€atar)ey(eqCatn’) = €qreyeq.
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Hence {eqen€q,€a’ata’} > {€neyeq,es} and

{eatrea,es} = {(eatuen)ey(entaen), (ear€atar)ey(earatnr)}

Since (') = B with aa’ # v we have eqe,eq = eg by Lemma 5.6.4, a contradic-
tion. O

Lemma 5.6.6. If B is homogeneous, e, € By and ey € By then |(eq,ey)| # 4.

Proof. Suppose, seeking a contradiction, that |(en,e,)| = 4, and assume w.l.o.g.

that eqeeq = €y€q, S0 eyeq€y = €qe,. By Lemma 5.6.2 (ii) we have

L(Bg(ea)) N L(Bs(ey)) = 0 and R(Bs(ea)) N R(Bs(ey)) C Reoeo, = Rene.,.

eyea

Suppose Bg(eq) has more than 1 L-class, so there exists eg € Bg(en) such that
eg Reyeq but eg # eyeq, noting that eg # eqey as |(eq, e4)| # 3 (see Figure 5.6).

Bﬂ (ea) i
|
]
|
....................... R
feaer | 22 200 20
1 |
| |
: Bg (ev) |
Bg

Figure 5.5: The rectangular band Bg.
Since eg, eveq <, €, and egey, = egeqney = €q€e, we have that the subband
C = (ey, €8, ev€a) = {€y,€8,€€q,€q6}

contains no repetitions. Extend the automorphism of C' which fixes e, and eqey
and swaps eg and e,e,, to an automorphism 6 of B. Then ey = e 0 > eg, e eq,
so that aa’ > 3, and (eyeq)0 = eyeqr = eg. Following the proof of the previous

lemma we have

{eatarea; eareatart > {(entaea)ey(€ataren), (Eaeatar)ey(€ar€ntar)}

and so eqeseq = ey = eg, a contradiction. Hence Bg(e,) is a left zero band.
Let 7 € Y and e; € B; be such that f < 7 < «, so 7y = 5, and e; < eq, SO
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that Bg(e;) C Bg(ea). If er # eyeq, then R(Bg(er)) N R(Bg(ey)) = 0 as Bg(er)
is also left zero by Corollary 5.2.3 (iv). Hence |(e;,e,)| = 6 by Lemma 5.6.2, a
contradiction, and thus e; > eye,. Suppose, seeking a contradiction, that e, % f3,
for some fg € Bg(es). Then by extending the automorphism of {e., f3, eyeq} Which
fixes e, and swaps fz with e, e, to an automorphism of B, we obtain some e, as
the image of e,, such that « > ¢ > 3 and e, # e,e,, a contradiction. Hence

er > fg, and so Bg(en) = Bg(e;). By Lemma 5.6.3, B is not homogeneous. O

Lemma 5.6.7. If B is a non-normal homogeneous band then it is linearly ordered.

Proof. Let B = |J, Ba be a non-normal homogeneous band. Suppose, seeking a
contradiction, that Y contains a three element non-chain «,~, 8, where avy = f.
Then by the preceding lemmas we have (eq,ey) = {€qa, €y, €qaey} for any e, € By
and e, € B,. Hence Bg(e,) N Bg(ey) = {eqey} and

Caly = €4 = €0€,Cq = €4€aCr.
For any o > 6 > 8 and e, > es we have e; > eqey. Indeed, if es # eqe, then as
Bg(es) N Bg(ey) € Bg(ea) N Bg(ey) = {eaty}

we have Bg(es) N Bg(ey) = 0 and so |({es,ey)| > 3, a contradiction. For any
eg € Bg(ea)\ Bs(es), extend the automorphism of {eq, eqe, €g} which fixes e, and
swaps eq€, and eg to an automorphism 6 of B. Letting es0 = e;, then e, < e, = €40
and e; % eqe,, a contradiction. Thus Bg(en) = Bg(es), contradicting Lemma
5.6.3. (]

This, together with the classification theorem for homogeneous normal bands

and Theorem 5.5.5 gives:

Theorem 5.6.8 (Classification theorem for homogeneous bands). A band is ho-
mogeneous if and only if isomorphic to either a homogeneous mormal band or a

homogeneous linearly ordered band.

An immediate consequence is that the structure semilattice of a homogeneous

band is homogeneous. We would be interested in obtaining a direct proof:

Open Problem 4. Prove directly that the homogeneity of a band is inherited by

its structure semilattice.

By Proposition 5.4.27 and Theorem 5.5.5 we achieve a complete list of structure-

homogeneous bands:

Theorem 5.6.9 (Classification theorem for structure-homogeneous bands). A band
is structure-homogeneous if and only if isomorphic to either Dy m, (Q X By 1) >
D1, Dy < (Q X Byyy) or'Y X By, for some homogeneous semilattice Y and

n,m € N*.



Chapter 6

Homogeneity of inverse semigroups

After classifying homogeneous bands, and working in the setting of completely reg-
ular semigroups, it may seem natural to examine the homogeneity of Clifford semi-
groups. However, in this chapter we work over a larger variety of I-semigroups;
inverse semigroups. Since inverse semigroups form a variety of I-semigroups, we
have the concept of a homogeneous inverse semigroup (HIS) in Lyyg. We will study
both homogeneous inverse semigroups and inverse homogeneous semigroups, and
show when they are equivalent. Additionally, we describe the homogeneity of certain
classes of inverse semigroups, such as inverse semigroups with finite maximal sub-
groups and periodic commutative inverse semigroups. Our results may be viewed as
extending both the classification of homogeneous semilattices and the classification
of certain classes of homogeneous groups, in particular homogeneous finite groups

and homogeneous abelian groups.

6.1 Properties of Homogeneity

Let S be an inverse semigroup. Given a subset A = {ay,...,a,} of S, it follows
from Lemma 2.8.2 that

(A = <a1,...,an,af1,...,a51).

Hence all f.g. inverse semigroups are f.g. semigroups, and so we obtain:
Lemma 6.1.1. Every inverse homogeneous semigroup is a HIS.

We later show that the converse to the lemma above does not hold, that is, the
class of HIS is more extensive than the class of inverse homogeneous semigroups.

Throughout this chapter, we define the order of an element a of S, denoted o(a), to

155
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be the cardinality of the monogenic inverse subsemigroup (a);. While this differs
from our previous notion of order, the two definitions coincide for Clifford semi-
groups. Moreover, it follows by the work of Preston [74] that, for any a € S, we
have (a); is finite if and only if (a) is finite. Hence we may call an inverse semigroup
periodic without ambiguity.

We now show that the results on homogeneous semigroups at the end of Section
4.4 also hold for HISs. Let S be an inverse semigroup. Then from Corollaries 4.4.7

and 4.4.8 we have the following lemma.

Lemma 6.1.2. Let S be a HIS. Then the mazimal subgroups of S are pairwise
isomorphic HISs and the semilattice of idempotents, E(S), is a HIS.

We now consider the property of homogeneity as an inverse semigroup for the
two key classes of inverse semigroups in Lemma 6.1.2: groups and semilattices. We
observe first that, for a group, the inverse of an element coincides with the group
inverse. Furthermore, since a finitely generated inverse subsemigroup of a group
will contain a unique idempotent, it will be a subgroup [55]. Hence a group is a
HIS if and only if it is a homogeneous group.

Given a semilattice Y, then (e1,...,en)r = (e1,...,ey,) for any e1,...,e, in Y

1

since e; = = ¢;. Hence a semilattice is a homogeneous semilattice if and only if it is

a HIS. Consequently, Lemma 6.1.2 may be restated in a more pleasing manor:

Corollary 6.1.3. Let S be a HIS with semilattice of idempotents Y. Then'Y is a
homogeneous semilattice and the maximal subgroups of S are pairwise isomorphic

homogeneous groups.

Since a homogeneous finite semilattice is trivial by Proposition 5.1.4, and an

inverse semigroup with a unique idempotent is a group, we have the following.

Corollary 6.1.4. Let S be a finite inverse semigroup. Then S is a HIS if and only

if it is a homogeneous group.
Lemma 6.1.5. If S is a HIS then Aut(S) acts transitively on E(S).

Proof. Given e, f € E(S), we have (e); = {e} = {f} = (f)r, and so the result
follows by the homogeneity of S. O

The inverse semigroup S is completely semisimple if no distinct D-related idem-
potents are related under the natural order on E(S). This is equivalent to S not
containing a copy of the bicyclic monoid, for if e, f € E(S) are such that e > f
and eD f then there exists + € S with zz~! = e and 27!z = f, and so (z); is
isomorphic to the bicyclic monoid (for further details, see [34]). The converse is

immediate.

Theorem 6.1.6. Let S be a HIS. If S is completely semisimple then it is Clifford,

otherwise S is bisimple.
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Proof. Let S be completely semisimple HIS. Suppose, seeking a contradiction, that
there exist distinct D-related idempotents e, f, so that e L f. Since D is preserved
by automorphisms of S, it follows by Lemma 6.1.5 that each D-class contains the
same number of idempotents. Indeed, if D, and D, are D-classes of S, where
u,v € E(S), then there exists an automorphism 6 of S with uf = v. Hence
D,0 = D,, so that E(D,)0 = E(D,) and in particular |E(D,)| = |E(D,)|.

In particular, there exists g € E(S) with gDef and g # ef. Then e > ef as
e L f, and so D, # Dy by the semisimplicity of S. We claim that e > g. If g > e
then g > ef, contradicting S being completely semisimple. If e L g then there
exists an isomorphism between (e, f); = {e, f,ef} and (e, g); = {e,g,eg}, which

fixes e and sends f to g. Extending to an automorphism ¢ of .S, we have
De¢ = De 7é Dg = Df¢v
contradicting D, = Dy, and the claim holds. Similarly, f > g, so that

e, f>ef >y,

and so ef = g, a contradiction. Hence e = f and §' is Clifford.

Suppose instead that S is not completely semisimple, so that there exist D-
related idempotents €', f' with ¢/ > f’. Let h,k € E(S). If h > k or k > h then
{h,k} = {¢, f'} and so h Dk by homogeneity. On the other hand, if h L k then
{h,hk} = {€, f'} =2 {k,hk} yields hDhkDk. Thus S is bisimple. O

Proposition 6.1.7. Let S be a non group bisimple HIS. Then each maximal sub-

group of S is infinite and H is not a congruence.

Proof. Since S is bisimple, there exists an element x of S with (z); isomorphic to

the bicyclic monoid, with chain of idempotents
zr > le > 2 > a3 >

For each n > 2, by the homogeneity of S, there exists an automorphism 6, of S

extending the unique isomorphism between the chain of idempotents
(7' 27 e, 2722} and  {za !z lz 22"},

For each n > 2, let 0, = y,. Then (zz~ 10, = y,y,' = zx~! and similarly

Y Yy = v, so that o H y, for each n. Furthermore,

(3;*2352)9” = y;zyg =g 2", (6.1)

n N —m,m

so that if y, = vy, then z7"z" = x7™2™, and so n = m. Hence {y, : n > 2} is

an infinite subset of H;, and thus each H-class (and in particular each maximal
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subgroup) is infinite by Lemma 2.4.1.
Suppose, seeking a contradiction, that H is a congruence on S. Then as z H y3
we have 22 H y2, and so by (6.1)

-3,.3 -2, 2 —2.2
T =y ‘ys =x "1,

a contradiction. O

Open Problem 5. Is a bisimple HIS a group?

We end this section by describing Fraissé’s Theorem for the class of inverse
semigroups. This will be of particular use when we examining the homogeneity of

commutative inverse semigroups in Section 6.3.

Theorem 6.1.8 (Fraissé’s Theorem for inverse semigroups). Let K be a non-empty
countable class of f.g. inverse semigroups which is closed under isomorphism and
satisfies HP, JEP and AP. Then there exists a unique, up to isomorphism, countable
HIS S such that K is the age of S. Conversely, the age of a countable HIS is closed
under isomorphism, is countable and satisfies HP, JEP and AP.

Example 6.1.9. Let K be a Fraissé class of commutative inverse semigroups. Then
the Fraissé limit S of K is commutative inverse, for if a,b € S then (a,b); € K, and

so ab = ba. This easily generalises to arbitrary varieties of inverse semigroups.

Example 6.1.10. Let K be the class of all f.g. Clifford semigroups. Then K
is closed under both substructure and (finite) direct product, and thus has JEP.
However it was shown in [48] that AP does not hold.

6.2 The Clifford case

In this section we consider the homogeneity of Clifford semigroups. Since the class
of Clifford semigroups forms a variety of completely regular semigroups, we could
follow our usual convention of writing homogeneous completely reqular semigroup,
or simply homogeneous Clifford semigroup, instead of Clifford HIS. We can therefore
draw upon the results and definitions in Section 4.3.1. However, in keeping with the
previous section we continue writing ‘Clifford HIS’, and we call a Clifford semigroup
a structure-HIS if it is a structure-homogeneous completely regular semigroup.

To understand homogeneity of Clifford semigroups, we require a better under-
standing of their f.g. inverse subsemigroups. The following result is a consequence

of Lemma 4.3.3, but is proven here for completeness.
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Lemma 6.2.1. Let S = [Y;Gqo; 104 ] be a Clifford semigroup with inverse subsemi-
group T. Then there exist a subsemilattice Y' of Y, and subgroups H, of G, for
each a € Y’ such that

T =[Y's Ho; Ya,plm,]-

Proof. Since T is an inverse subsemigroup, there exists a subsemilattice Y’ of Y
such that E(T) = {eq : @ € Y'}. If g, ha € T then ht € T since T is inverse, so
goh;t € T. Hence the maximal subgroup of T' containing e, is a subgroup H, of
Gq. Moreover, if o > fin Y’ then eg € T and so if g, € T then

gaes = (9aa,p)(ess,) = (9aVap)(€s) = gatas €T,

and so Hy1)o 8 € Hg. Hence the homomorphism ¢y, g|n,, : Ho — Hp is well-defined,
and the result follows. O

Since Clifford semigroups are morphism-pure by Lemma 2.11.7 we have the

following isomorphism theorem.

Theorem 6.2.2. Let S = [Y;Go;Vap) and T = [Z; Hy; ¢, 5] be a pair of Clifford
semigroups. Let m :'Y — Z be an isomorphism and let 0, : Go — Hyr be an
isomorphism for each o € Y. Assume further that for any o > (3, the diagram

(o, B; amr, | commutes, that is,

G~ Hor (6.2)

iwa,ﬁ l‘Poﬂr,Bw
05

Gp— Hgr

commutes. Then 0 = J,cy 0o = [0, Tlacy is an isomorphism from S to T. Con-

versely, every isomorphism from S to T can be so constructed for unique m and

-

Remark 6.2.3. If S = [Y;Gq; ¢0 5] and H, = G, for each o € Y then the isomor-
phism theorem above can be used to construct a Clifford semigroup isomorphic to
S with maximal subgroups H,. Formally, if 8, : G, — H, is an isomorphism for
each a € Y then 0 = [0,, ly]acy is an isomorphism from S to T = [Y; Hy; @0 ],

where

Pa,8 =05 Va,305.

In particular, maximal subgroups which can be written as a direct sum (d.s.) or a
direct product (d.p.) of groups, can be regarded as an internal or external d.s./d.p.
without problems arising.

We adopt a non standard notation by denoting the internal d.s. and internal
d.p. of a pair of groups H and H' as H & H' and H ® H', respectively. We denote
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the internal direct sum of n copies of a group H by H", where n € N* = NU {RXg}.

Unless stated otherwise, we assume that all d.s.’s of groups are internal.

If S =[Y;Gq;a,p] is a HIS, then as the groups G, are the maximal subgroups
of S and Y = E(S) we then obtain by Corollary 6.1.3:

Corollary 6.2.4. If S = [Y;Gqa;ap] is a HIS then Y is homogeneous and the

groups G, are pairwise isomorphic homogeneous groups.

Hence, if S = [Y;Ga; 0] is a HIS and G, = G then, by Remark 6.2.3, each
group G, can be taken as a labelling of G, and the morphisms v, g to be a labelling
of an endomorphism of G.

A subset T of a Clifford semigroup S will be called order-characteristic if when-
ever T' contains an element of order n, then every element of order n in S belongs
to T.

Given a group G with subset A, then we set

0(A) = {n : there exists a € A such that o(a) = n}.

Note that if an € S then, as a, is contained in the group G, the inverse subsemi-
group (a7 is a cyclic group. In particular, our definition of the order of an element
intersects with the group theory definition, that is o(a, ) is the minimal n > 1 such
that a = e,. Hence, as cyclic groups of the same cardinality are isomorphic, the

following generalization of [19, Lemma 1] and its corollary are easily verifiable:

Lemma 6.2.5. Let S a Clifford HIS with characteristic subset T'. Then T is order-

characteristic.

Corollary 6.2.6. Let S and S’ be a pair of isomorphic Clifford HISs with charac-
teristic inverse subsemigroups T and T', respectively such that o(T) = o(T"). Then
T=T, andif S=S" then T =T'.

Lemma 6.2.7. Let S = [Y;Gqo;%ag) be a Clifford semigroup. For each o € Y, let
H, be an order-characteristic subgroup of G, such that H, = Hg for all a, 3 €Y.
Then

T = [Y, Ha; wa,5|Ha]

18 an order-characteristic inverse subsemigroup of S. In particular, if S is a HIS

then so is T'.

Proof. Notice that as each H, are isomorphic order-characteristic subgroups, and
as o(Haa,8) C 0(Hpg), it follows that Hy1pq 3 € Hg for all a > B in Y, and so T is

well defined. The result is then immediate. O

In particular, if S in Lemma 6.2.7 is a HIS, then the result holds if H, is

characteristic by Lemma 6.2.5.
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A pair of subsets A and B of a group G are of coprime order if o(A)No(B) C {1}.
If G is periodic then this is equivalent to being of relatively prime exponent, defined
in [17], but does not require the theory of supernatural numbers. Note that if
G = A® B where A and B are periodic of coprime order, then clearly A and B are
order-characteristic subgroups of GG, and so the lemma above may be used in this

case.

Corollary 6.2.8. Let G be a homogeneous group with characteristic subsets H and
K such that HN K C {1}. Then H and K are of coprime order.

Proof. If h € H and k € K both have order n € N*, then by Lemma 6.2.5 H and
K both contain all elements of order n. Since H and K intersect trivially, it follows

that n = 1, and so the subsets are coprime. O

The subsequent pair of lemmas arise from basic group theory and proofs will be

omitted:

Lemma 6.2.9. Let G = H® K be a group with H and K periodic of coprime
order. Then, for each subgroup G' of G, there exist subgroups H' and K' of H and
K, respectively, such that G' = H @ K.

Lemma 6.2.10. Let Gy = H1 ® K1 and Gy = Ho ® Ko be a pair of groups with the
H; and K; periodic of coprime orders for each i = 1,2, and Hy = Hy, K1 = K.
Let G} = H{ ® K| and G4 = H) ® K/, be subgroups of G1 and G2, respectively, and
0 . H| — Hb and 0% : K| — K be a pair of morphisms. Then the map 0 given
by

(hk)8 = (h0")(k6) (h € H} k € K})

is a morphism from G to G%, and every morphism can be so constructed.

The homomorphism @ in the lemma above will often be denoted as 87 @ 6%,
We observe that Lemmas 6.2.9 and 6.2.10 fail in general if we drop the periodic
condition.

If G=H ® K is a group with H and K periodic of coprime order then clearly
H and K are characteristic subgroups. The following simplification of [17, Lemma

1] then follows from the pair of lemmas above.

Corollary 6.2.11. Let G = HRK be a group with the H and K periodic of coprime

order. Then G is homogeneous if and only if H and K are homogeneous.

Given a group G = H ® K where H and K are periodic of coprime order, let
S = [Y;Ga;9a,) be the Clifford semigroup with G, = G for each a € Y. Then
G, = Hy, ® K, where H, =2 H and K, = K, and by Lemma 6.2.10 we may let
Va8 = 1/}55 ®1/)§ﬁ where @Z)g’ﬁ : H, — Hg and 1!15”3 : Ko — Kp. It follows that the
sets
SH .= [v; Ha;wgﬁ] and S¥ = [Y;Ka;¢§5]



162 CHAPTER 6. HOMOGENEITY OF INVERSE SEMIGROUPS

are characteristic inverse subsemigroups of S by Lemma 6.2.7.

Corollary 6.2.12. Let S = [Y; H, ® Kqo;9a.8) be a periodic Clifford semigroup,
where each H, and K, are of coprime order. Let w be an automorphism of Y,
and 0 = [0 7)pey and 05 = [0K 7)aey be automorphisms of S* and SX,
respectively. Letting 0, = 95 ® 05, then 0 = [0y, T)acy is an automorphism of S,

and all automorphisms of S can be constructed in this way.

Proof. We show first that 6 is an automorphism of S. By Lemma 6.2.10 each 6, is
an isomorphism, so it remains to prove that the diagram |«, 5; am, f7] commutes
for any o > . Let g4 € Gq, say, ga = haka (ha € Hy, ko € K,). Then

9abatbar gr = (haOS I 5 ) (koKW 50)
= (hap X 508 (katX 505)
= gaa,plp

since [a,ﬁ;om,ﬁﬂ]SH and [a,ﬁ;aw,ﬂﬂ]sK commutes. Hence [a, 8; ar, f7]° com-
mutes and 6 is an automorphism of S. The converse follows from Theorem 6.2.2

and the fact that S and S¥ are characteristic inverse subsemigroups of S. O

Proposition 6.2.13. Let S = [Y; Hy, ® Ko;1q.8) be a periodic Clifford semigroup,
where each H, and K, are of coprime order. Then S is a structure-HIS if and only
if SH and SE are structure-HISs.

Proof. If S is a structure-HIS then S¥ and SX, being characteristic inverse sub-
semigroups with structure semilattice Y, are also structure-HISs.

Conversely, suppose S and S are structure-HISs. Let A and B be a pair of
f.g. inverse subsemigroups of S. From Lemmas 6.2.4, 6.2.9 and 6.2.10 we have that

A =2 H, ® K;9M5 @ ¢k
B=[2"; H! © K51 @ ¢k

where Hiy and K; are subgroups of H, and K., respectively, wgé = 15 H, and
¢£<,:S = ¢7,6|K;- Similarly for B.

Let § = [0y,7]ycz : A — B be an isomorphism, and 7 an automorphism of
Y which extends 7. Then for each v € Z’, we have 6, = 95/ ® 95/ for some
isomorphisms 95/ : HY, — HY and 95/ : K — K. Hence o' = [H,Iy{/,
isomorphism from [Z; H; wf;{;] to [Z"; HY; 11}71.{: |, and similarly for the isomorphism
oK = (o,

of the structure-HIS S¥ | we can extend 8" to an automorphism [0 #],ey of ST

F]VGZ’ is an
. /. . . . .
W]WEZ’- Since 0H 1S an ISOHIOI'phISHl between fg mverse subsemlgroups

and similarly extend %" to an automorphism [0X, #],cy of S¥. By Corollary 6.2.12

the map [0 ® 0K #],cy is an automorphism of S, and extends @ as required. [

A simple adaptation of the proof above gives the following result.
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Proposition 6.2.14. Let S = [Y; Hy, ® Kq;0.8] be a periodic Clifford semigroup,
where H, and K, are of coprime order, and S¥ is a structure-HIS. Then S is a
HIS if and only if S is a HIS.

Given a Clifford semigroup [Y; Ga;%q,] then, for each o > 3, we follow the

notation given for normal bands by setting

Ia,,B :=Im 1/}0[75 = {aﬁ S Gﬁ s dag € Ga,aaiﬁa,g = aﬁ},
Kop:=Ker o5 ={aa € Go : aathap = €5},

as the image and kernel of the connecting morphism %, g, respectively. Given
a>vy>finY and k, € K, 4, then

koo, = (katay) Py, = eyy 5 = g,

and so ko € K, 5. Thus K, , C K, g, and similarly I, g C I, g.
We define the absolute image I} and the absolute kernel K} of o € Y as the
subsets of G, given by

I, :={ga € In : 0(ga) = 0(gatba,p) for all § < a},

K} :={an € Go : aqthap =eg forall f < a} = ﬂ K,p.
B<a

The set K, being an intersection of subgroups of G, forms a subgroup, while

I may not.

Notation 6.2.15. Throughout the remainder of this subsection, S = [Y; Gqa; . g]
denotes a Clifford HIS, so that Y is a homogeneous semilattice and the G, are

pairwise isomorphic homogeneous groups.

The following lemma will be vital in our understanding of the images and kernels

of the connecting morphisms.

Lemma 6.2.16. Let a, o/, 3 € Y be such that o,/ > 3, and let gg, hg € G be of

the same order. Then the map

¢ (ea,98)1 — (€ars hp)1

given by eqp = ey and gé(ﬁ = hé for z € Z, is an isomorphism.

Proof. Note that (gg)r and (hg)s are isomorphic cyclic groups. Moreover, e, is the
identity in (eq, gs)1 since engg = (ea¥a.8)(98Y8,3) = €893 = gg = ggea and so

(easgp)r = {ea} U (gp)1-

Similarly for (en, hg)r, and it is routine to check that ¢ is an isomorphism. O
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Lemma 6.2.17. Let a,o/, € Y be such that a,o/ > 3. Then I, 3= I g.

Proof. Let gg € 1,3, say g3 = gata,s- By the lemma above, there is an isomor-
phism ¢ : (ea,95)1 — (ew’,9s)1 determined by en¢ = ey and ggp = gz. Extend ¢

to an automorphism 6 = [0, 7]acy of S, so that ar = o/ and S7 = 3. Then

gaeawa/,ﬁ = ga¢a7,305 = 9,395 =9s

since the diagram [o, 8; 0/, ] commutes. Hence gg € Iy g and In g C Iy g. The
dual gives equality. O

For each a € Y, we let I, denote the subgroup I, for (any) § > c. Since YV

has no maximal elements, I, is non-empty for all a € Y.

Lemma 6.2.18. For each a € Y, the subgroups I, and K} are characteristic
subgroups of G, and are thus homogeneous. Moreover, for each o > (3, the subgroup

K, g is homogeneous.

Proof. Let ¢ € Aut(G,) and go = ¢gs¥s5a € Io for some 6 > «. Then, by Lemma
6.2.16, there exists an isomorphism ¢ : {(es,g4)1 — (€5, gap)s fixing es and with
Ja® = gatp. Extending ¢ to 0 = [0, Tlaey € Aut(S), then as [, o; 4, ] commutes,
we have

9o = ga® = galbla = 951/}6,01004 = 9595¢5,a € I,

and so I, is characteristic. Now let k, € K}, and extend the isomorphism between
(ko) and (k,); which sends kq@ to kg, to 0 = [0, Tlacy € Aut(S). Then as

[a, B; v, B7] commutes for any f < «, and as ko € K, gz, we have

(koc@)wa,ﬂeﬁ = (kaﬁp)eawa,ﬁﬁ = kaVa,pr = €pr-

Hence kop € K, g for all 8 < «, that is, ko € K, and so K, is characteristic.
Finally, let ¢ be an isomorphism between f.g. subgroups A, and A, of K, 3.

Then the map ¢’ : Ay U{eg} — Al U{eg} such that A,¢' = An¢ and egd’ = ep

is an isomorphism between f.g. inverse subsemigroups of S. By extending ¢’ to an

automorphism of S, the result follows from Theorem 6.2.2. O
We now determine the Clifford semigroup form of Lemma 5.4.4 as follows.

Lemma 6.2.19. Ifa > S and o’ > 8/ in'Y then there exists a pair of isomorphisms
Oo : Ga — Gy and 05 : Gg — Gg such that Vo5 = Ga@balﬁxﬂ/gl. In particular,
if Yo 1S injective/surjective then so is Yo g, and Ig = Iz, Kop = Ky g and
K* =~ K¥,.

Proof. Clearly the map ¢ : {eq,e5} — {ew,€p} given by eq¢ = ey and egp = epr

is an isomorphism. By extending ¢ to an automorphism 6 = [0,,7]|aey of S,
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then the first result follows immediately from the commutativity of [«, §; am, f7] =
[a, B; ¢/, B']. The injective/surjective properties of the connecting morphisms follow.
We observe that

Ig05 = (Gatha,p)0p = Gabotbor pr = Gurbor pr = I

and so Ig = Ig. If k, € K, g then
kabatar,pr = katha,05 = el = g,

so that K, g0 C K g. If xov € Ky g, then there exists y, € Go With Y40, = z,
so that
Yaa,p0p = Tarar g = €pr.

Hence yata,g = eg, and so yo € K, 3. We have thus shown that K, g0 = K g,
and so Ka,,@ = Ka’,,B’~ Finally,

Kobo = (ﬂ Koy)bo = ﬂ (Kayba) = ﬂ Ko yr = Ka-
<o <o yr<la

since 7 is an automorphism of Y. Thus K, = K, as required. O]

We say that a subset A of a group G is closed under prime powers if, whenever

p € o(A) for some prime p, then every power of p in o(G) also lies o(A).

Lemma 6.2.20. The subgroups I, and K are closed under prime powers and
I, N K = {ea}. Moreover, every element in G, of prime order is contained in
either I, or K},

Proof. Let p € o(K}). Proceeding by induction, assume that

pp% ... € o(K])

for some € N. Then by Lemma 6.2.5, every element of G, of order p* is in K} for
1 <k <r—1. Let go € G4 be of order p". Then g5 is of order p" !, so that gh € K.
In particular, for any § < a we have (a0, 5)” = €. If 0(gatVa,s) = p then for any
o €Y with a > o > 8 we have 0(gata,or) = p and thus go¥a € K/, since
K>, = K} by Lemma 6.2.19. Hence (go¥a,a/)¥a’,8 = ga¥a,g = €, a contradiction,
and so g, € K. This completes the inductive step, and so K is closed under
prime powers.

Suppose, seeking a contradiction, that p € o(I,)No(K}) for some prime p. Then
I, U K} contains every element of G, of order p by Lemma 6.2.5. Let g, € G4 be
of order p, so that if 6 > « then there exists g5 € G5 with gsis50 = ga. Suppose
first that o(gs) = p™m is finite, where hcf(p™, m) = 1. Then g§*9)5., = g has order

p and g§* has order p". Since Kj is closed under prime order we have gj* € Kj,
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a contradiction. It follows that the pre-images of elements of order p under the
connecting morphisms are all of infinite order. Let § > 7 > « and let h; € G, be of
order p. The map from (es, go)1 to (€5, h;)r which fixes es and sends g, to h; is an
isomorphism by Lemma 6.2.16. By extending the isomorphism to an automorphism
6 of S, we have that gs;6 = hs € G5 is such that hsys, = hr, so that o(hs) = N
and hy € Ksqo. Since g§ € Ksq, both (hs,eq)r and (g5, eq)r are isomorphic to
an infinite cyclic group with zero adjoined. Hence the isomorphism from (hs,eq)r
and <g§ ,€eq)1 fixing e, and sending hs to gg is an isomorphism, which we extend
to an automorphism [0y, 7|acy of S. Then 6 = o7 > 7w > am = « and, by the

commutativity of [d, 7; 0, 77],

hr0; = h5¢6,707' = h595¢577'ﬂ' = g5pd)‘5777"'

Hence g515,7r is of order p, however (¢505x)Vrm,a = ga, 50 that gsis -« is of infinite
order, and our desired contradiction is achieved.

Now suppose x, € I, N K} has order n € N*. If n is finite, then there exists a
prime p with p|n, and so x?/ P € I, N K} has order p, a contradiction. If n is infinite
then there exist § > o and x5 € G with x515 4 = x4, so that x5 is of infinite order.
Since the absolute kernels are pairwise isomorphic we have Ny € o(K}) for each
o € Y. Hence Kj contains every element of infinite order in G5 by Lemma 6.2.5,
and so T5¥s. = €q, a contradiction. We have thus shown that I, and K have
trivial intersection.

We now prove that I, is closed under prime powers. Let p € o(1,) for some
prime p, and let z, € G, be of order p". If o(z4t0 ) < p" for all B < a then
ng_l € I, N K}, a contradiction. Hence there exists 8 with 2,14 g of order p", so
that p” € o(Ig). By Lemma 6.2.19 o(I3) = o(I) and so I, is closed under prime
powers.

Finally, let a, € G be of prime order p. If a, € K, then a1, g has order p for
some 3 < a, and so by the usual argument p € o(!, ), and the final result holds. [

Consequently, by corollary 6.2.8, the subgroups I, and K are of coprime order.
Furthermore, since I, and K, are characteristic subgroups of G, and in particular
are invariant under inner automorphisms of G, they are normal subgroups. Hence
(In, K3)1 = 1o ® K,

Lemma 6.2.21. If G, is periodic then G, = I, ® K. If G, is non-periodic then
either Go, = Iy or Go, = K, or I, ® K}, is the set of elements of finite order in G,,.

Proof. If go € G, has finite order n = p{* ... pJ'" for some primes p; then, by the
Fundamental Theorem of Finite Abelian Groups, go = ga,19a,2 - - ga,r for some

Ja,i € Go of order p;". By the previous corollary we have go; € Io U K}, and so

o

Jo € I, ® K. Consequently, the subgroup I, ® K contains every element of G,
of finite order, and so if G, is periodic then G, = I, ® K.
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Now suppose that G, contains an element x, of infinite order. Suppose first
that xo € I, ® K}, say o = gako. Then either g, or k, has infinite order, as I,
and K} are of coprime order. Hence, by Lemma 6.2.5, either I, or K} contains
all elements of infinite order, and so G, = I, ® K. If g, is of infinite order, then
for any m, € K} we have that g,m, has infinite order. Hence g_ Land gama,
being of infinite order, are in I,, and consequently so is g, (gama) = mq. Thus
Mo = €q, and it follows that G, = I,. The case where k, is of infinite order is
proven similarly.

If no such element z, exists, then I, ® K, is precisely the elements of finite

order as required. O

We now extend our knowledge of the final case of Lemma 6.2.21, and in partic-

ular show that each maximal subgroup is the union of its kernel subgroups.

Lemma 6.2.22. If G, is non-periodic and I, @ K} periodic, then the inverse
subsemigroup [Y; 1o ® K3, Yo gl1.oK:] of S is a HIS. Moreover, the absolute image
I of G, is trivial and G, = U5<a K, 5.

Proof. The first result is immediate from Lemma 6.2.7 since I, ® K, being the
subgroup containing all periodic elements of GG, is order-characteristic.

We claim that each element x, of infinite order in GG, is contained in the kernel
of some connecting morphism. For any 8 < a we have that 2,1, g has finite order,
say n, since g & o(l,). Hence z7 is an element of infinite order with z € K, g.
The claim easily follows by homogeneity.

Now suppose that g, € I>. Then 49, has infinite order, since otherwise z,94
is an element of I, ® K, and thus so is T4 = (¥aga)g, ' By the previous claim,

To € Ko p and 490 € Ko for some 3,7 < a. Hence

(xoéga)lbaﬂ'y = (xa¢a,ﬁ¢ﬁ,ﬁv)(9a¢a,ﬁw) = JaVa,py = €8y

and so g, = €. Hence I} is trivial as required.
Finally, if there exists z, ¢ Uﬁ<a K, p then 2z, € I for some 3 < a, a

contradiction, and the final result is obtained. ]

We call a Clifford semigroup in which each connecting morphism is surjective a

surjective Clifford semigroup.

Corollary 6.2.23. Let T = [Y; Hu; ¢a,8] be a surjective Clifford HIS. Then the

absolute kernels of T are trivial.
Proof. Immediate from Lemma 6.2.20. ]

Lemma 6.2.24. The inverse subsemigroup [Y; I4; wé 6] of S is a surjective Clifford

semigroup, where d}éﬂ = Yo pl1.-
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Proof. By definition I4ta g C Ig. Let 3 € Ig = Im 9, 3 (by Lemma 6.2.17). If
G, is periodic then by Lemma 6.2.21 there exist g, € I, and k, € K such that
(9aka)Va,p = . Hence gothe 3 = g and wé,g is surjective. If G, is non-periodic,
then the result is trivially true when G, = I, or when G, = K, since in this case
In = {ea}. IR € o(Io) Uo(KY), then as [Y; 1, @ Kj3;va,8l1.0K: ] forms a periodic
HIS by the previous lemma, the result follows by the periodic case. O

For each a > 8 in Y, we let 7, denote the trivial morphism from K} to
KE, and let 744 = 1gx. We call a Clifford semigroup in which each connecting
morphism is trivial an image-trivial Clifford semigroup. Note that this differs from
the image-trivial normal band case, since here the images of a connecting morphism
Yqa,p for a > 8 has to be {es}.

We observe that, for each a > 8, go € I, and k, € K, then

(9aka)Vas = (9ol 5)(kaTa,p)-
Hence S has two crucial inverse subsemigroups,
I(S) = [Y; In; ) 5] and K(S) := [Y; K}; 7a 4],
which are HIS by Lemma 6.2.7. If in addition S is periodic, then
S=1Y;1,® Ka;@bé,/j ® Ta,B)-

We summarise our current findings in this section as follows.

Theorem 6.2.25. If S is a periodic Clifford HIS, then S = [Y; [, K}; w£75®7a,5],

where:
(i) Y is a homogeneous semilattice;
(i) I(S) = [Y;Ia;wéﬁ] is a surjective Clifford HIS;
(ili) K(S)=[Y;K};7a) is an image-trivial Clifford HIS;

(iv) there exists a homogeneous group G = I ® K* where I and K* are of coprime
order, such that G = Gy, I, =1 and K} = K* for alla €Y.

A non-periodic Clifford semigroup is a HIS if and only if it is isomorphic to either
a surjective Clifford HIS, or an image-trivial Clifford HIS, or a Clifford HIS with

no elements of infinite order lying in the images or absolute kernels.

In the next subsection we shall prove a converse to the first result of Theorem
6.2.25. This relies on proving the stronger property of homogeneity for image-trivial

Clifford semigroups.
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Lemma 6.2.26. LetT = [Y;Gy; Ta8] be an image-trivial Clifford semigroup. Then

the following are equivalent:
(i) T is a structure-HIS;
(ii) T is a HIS;

(iii) Y is homogeneous and there exists a homogeneous group G such that G = G,
forallaeY.

Proof. (i) = (ii) Immediate, as every structure-HIS is a HIS.
(ii) = (iii) Immediate from Corollary 6.2.4.
(ili) = (i) Let Ay = [Z;A%;7 5] and Ay = [Z"; AT; 7] be a pair of f.g.

inverse subsemigroups of T, where the maps 7',; 5 and 7))

» being restrictions of

trivial morphisms, are trivial. Let 6 = [0, 7] cz, be an isomorphism from A; to
Ag and let 7 be an automorphism of Y which extends 7. By Lemma 4.3.7 we can
extend each 0, : A — A7 to an isomorphism 0 : Gy — Gor. For each a &€ 7y,
let 6, be any isomorphism from G, to Goz. We claim that § = [0, T|acy is an

automorphism of S. For any g, € G, and o > 3 we have
gaéaToﬁr,,Bfr = €pr = 65@5 = gaTa,BéB

and so the diagram [a, 8; a7, f7] commutes, thus proving the claim. By construc-

tion, 7 extends , and so # extends §. Hence T is a structure-HIS. 0

Let T' = [Y';Gq; Ta,8] be an image-trivial Clifford semigroup such that G, = G
for each a € Y. Let 0, : G, — G be an isomorphism for each @ € Y, and define a
bijection 0 : T'— Y x G by
gal = (aa gaea)7
for each g4 € G, @ € Y. Then we use 6 to endow the set Y x G with a multiplication

,

(angh) if a=p,
(B,h) ifa> B,
(ang)  ifa<p,
(aB,1) if alp.

(a, 9) % (B,h) =

We denote the resulting semigroup (Y x G, %) as [Y; G]. Notice that
V3 G] = [V; Gas Tasl,
where G = {(a, g) : g € G} and GoTa g = {(B,1)}. We have thus shown that:

Lemma 6.2.27. Let T = [Y;Gq; Ta,8] be an image-trivial Clifford semigroup such
that Go = G for each a« € Y. Then T = [Y; G].
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6.2.1 Spined product

In the previous chapter, it was often useful to decompose a normal band as a spined
product. In this section we use the spined product decomposition together with
Lemma 6.2.27 to give a more succinct form of a periodic Clifford HIS semigroup
il ® KZ; waﬂ ® Ta,8)-

Let S; = [Y7G£tZ ,11106”3] (1 = 1,2) be a pair of Clifford semigroups. Then we
recall that the spined product of S; and Sy w.r.t to Y is

S8y = {(aa,ba) 0o € Sl,ba S SQ,O[ S Y}

Lemma 6.2.28. Let S7 and So be defined as above. Then S > Sy is isomorphic
to the Clifford semigroup S = [Y; GS) ® Gg);ws’;ﬁ ® ¢é2,)3]

Proof. The map ¢ : S1 159 — S given by

(go“ ha)¢ = gaha

for each (ga, ha) € ¢ e c is clearly an isomorphism. O

Note 6.2.29. Since Clifford semigroups are completely reqular, we may build iso-
morphisms between strong semilattices of Clifford semigroups by usz'ng Pmposz'tz'on
2.11.3, which we briefly recap. Let S; = [Y; G&Z);¢s)ﬁ] and S} =Y’ , ,qﬁa ﬁ,]

Clifford semigroups (i = 1,2) and consider a pair of isomorphisms
0D = 09 7)aey : Si = S (i=1,2).

Then the map 0 : S1 1 So — S1 <1 Sh given by (ga, ha)l = (gaﬁg),haeg?)) is an

isomorphism, which we denote as ) 162,
We now construct the Clifford semigroup analogy of corollary 5.3.2 as follows.

Corollary 6.2.30. Let S = Sy 152 and S = 5] >1.5% be a pair of spined products
of Chﬁord sengmups such that Sy and S} are structure-HISs. Then S = S if

Proof. Let S have structure semilattice Y. Let (1) = [9&1),7@&@/ be an isomor-

phism from S; to S} and 62 = [0((1 ), 7Tlacy an isomorphism from Sy to S5. Then

77~ ! is an automorphism of Y, and so as S is a structure-HIS there exists an au-
tomorphism ¢ of S with induced automorphism 77~!. Hence ¢80 : Sy — S
is an isomorphism, with induced isomorphism 7, and so from the note above

D pq (¢0)) is an isomorphism from S to S’ as required. O
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However, unlike Corollary 5.3.2, the converse of the corollary does not hold
in general. Indeed, since homogeneous groups are trivially structure-HISs, coun-
terexamples easily arise by taking S and S’ to be certain homogeneous groups (for
example, take both S and S’ to be the infinite direct sum of a cyclic group).

Ifs=[wY;I,® K;;wéﬁ ® Ta,p] is a periodic HIS then, by Lemma 6.2.28, S
is isomorphic to [Y; I; 1/)&”3] > [Y; K57 5] and thus, by Corollary 6.2.30 and the
structure-homogeneity of [Y; K*], to [Y; Ia;¢£ﬁ] > [Y; K*], where K* = K.

We have proven the forward half of the periodic case of the following theorem.

Theorem 6.2.31. A periodic Clifford semigroup S is a HIS if and only if there
exist a homogeneous group G = I ® K*, where I and K* are of coprime order, and
a surjective Clifford HIS [Y; Io; 9! gl with Io = I such that

S 2V Ias ¥l 5] e [V K.

A non-periodic Clifford semigroup S is a HIS if and only if S is isomorphic to
either a surjective Clifford HIS, or [Y; G| for some homogeneous semilattice Y and
group G, or a Clifford HIS with no elements of infinite order lying in the images or

absolute kernels.

Proof. Let G and Y be as in the hypothesis of the theorem. Then as [Y; K*| is
structure-HIS semigroup by Lemma 6.2.26, the semigroup [Y'; I,; @/}éﬁ] > [V K*] is
a HIS if and only if [V In; 1) 5] is a HIS by Proposition 6.2.14. The non-periodic

case follows immediately from Theorem 6.2.25 and Lemma 6.2.26. O

It thus suffices to consider the homogeneity of both surjective Clifford semi-
groups with trivial absolute kernels, and the case where there exist elements of
infinite order lying outside the images and absolute kernels.

An immediate consequence of Theorem 6.2.31 is the following equivalence to a
Clifford HIS being surjective.

6.2.2 A pair of classifications

We examine the case where S = [Y'; Sq;%4,4] is a HIS such that there exist a > /8
in Y with v, g an isomorphism. By Lemma 5.4.4 every connecting morphism is an
isomorphism, and so S is isomorphic to Y x G for some group G by Proposition
3.7.13. The following result is then immediate from Proposition 4.3.8 and Corollary
6.1.3.

Proposition 6.2.32. Let Y be a semilattice and G be a group. Then Y x G is

structure-homogeneous if and only if Y and G are homogeneous.
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This result has a number of useful consequences. First, since all surjective mor-
phisms between finite groups are isomorphisms, the following theorem is immediate
by Proposition 6.1.7 and Theorem 6.2.31.

Theorem 6.2.33. Given a homogeneous semilattice Y and a pair of finite homoge-
neous groups I and K* of coprime orders, the Clifford semigroup (Y x I) < [Y; K¥]
is a HIS. Conversely, every HIS with finite mazximal subgroups is isomorphic to an

inverse semigroup constructed in this way.

A complete classification of all structure-HIS Clifford semigroups can also be

obtained.

Theorem 6.2.34. A periodic Clifford semigroup S is structure-HIS if and only if
there exists a homogeneous group G = I @ K*, where I and K* are of coprime

order, such that
S (Y xI)x[Y;K".

A non-periodic Clifford semigroup S is a structure-HIS if and only if S is isomorphic

to either Y x G or [Y;G] for some homogeneous semilattice Y and group G.

Proof. Let S = [Y;Gqa;1a,p] be a structure-HIS Clifford semigroup. Suppose that
there exist &« > v > fin Y and a, € G, such that ay € Ky \ Ko By
the homogeneity of Y there exists m € Aut(Y') extending the unique isomorphism
between {a,~} and {a,S}. Since S is structure-HIS and 7 extends the identity
isomorphism {a} — {a}, we extend the identity isomorphism fixing (as); to an

automorphism [0y, 7|aey of S. Then as [«,; a, ] commutes we have

aawa,wefy = aa9a¢a,ﬁ = aa¢a,ﬁ = €3

and so aq € K, , a contradiction. Hence K, 3 = K. If 8,7 < a then we thus
have
Kap = Kapr = Kar

and so K, g = K, for any 3 < a.

Suppose first that S is periodic. If S is surjective, then each K, g is trivial by
Corollary 6.2.23, so that v, g is an isomorphism. The periodic case then follows
from Theorem 6.2.31. If S is non-periodic, then the third possibility of the non-
periodic case of Theorem 6.2.31 cannot hold by Lemmas 6.2.21 and 6.2.22.

Conversely, if Y is a homogeneous semilattice and G is a homogeneous group
then Y x G and [Y; G| are structure-HISs by Proposition 6.2.32 and Lemma 6.2.26.
Hence if I and K* are homogeneous groups of coprime order then (Y x I) 1 [Y; K*]
is a structure-HIS by Proposition 6.2.13. O
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6.2.3 Non-injective surjective Clifford semigroups

Throughout this subsection we let S = [Y; Gq;%4,4] be a surjective Clifford HIS
such that each v, g is non-injective. Recall that the absolute kernels of S are
trivial by Corollary 6.2.23. Following in line with the general case, we attempt to
decompose the maximal subgroups into direct products of characteristic subgroups.

The group G, contains two key subsets: the absolute image I} and

To = {9ga € Go : 3B < av such that g, € K, 5} = U K, p.
[B<a

The set T;, forms a subgroup of G, since if k, € K,3 and m, € K, g then
kamea € Ko gg. While I, may not form a subgroup, it is closed under powers, since
if go € I} then for each » € N and 8 < a,

0(9a) = 0(ga¥a,8) = 0(9a) = 0((9a¥a,p)") = 0(9aa,s)

so that g/, € I7;.

By the usual arguments we have:

Lemma 6.2.35. For each o € Y, T, is a characteristic subgroup of Go and I}
is a characteristic subset of Go with I3 N T, = {ea}. Moreover, T, = Tg and
(I3)r = (I5)1 for each a, B €Y.

Consequently, o(I3) = o(I3) for each o, € Y and (I3)s is a characteristic
subgroup of G. Moreover, I and T}, are coprime by Corollary 6.2.8. We fix the

following subsets of S.
A(S) = [V (I2) 13k g] and T(S) := [V Tas 9L 6],

Where Qﬂéﬁ = ¢a75|(];>1 and ¢£ﬂ = ¢a76|Ta.

Lemma 6.2.36. For ecach o € Y, the subsets A(S) and T(S) of S are Clifford
HISs. Moreover, if S is periodic then A(S) and T'(S) are surjective.

Proof. To prove that A(S) and T'(S) are inverse subsemigroups, it suffices to show
that wgﬂ and wéﬁ map to T and (IE)I, respectively. If ko € Ty, say, ko € Ko,
then koo € Kgpgy € Tg. If go € I then as 0(ga) = 0(gata,3) we have that
ga¥a,p € I by Lemma 6.2.5, and so (Ig)ﬂﬁéﬂ C (I3)r as required. Hence A(S)
and T'(S) are inverse subsemigroups and, by Lemma 6.2.7, are HISs.

Finally, as G, has trivial absolute kernel, and do (I}}); and T,. Hence as S is
periodic then it follows from Theorem 6.2.31 that A(S) and T'(S) are surjective. [

Lemma 6.2.37. If a > 3> v then K, 5 C Ko 4.
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Proof. If K,3 = K,,, then it follows by a simple application of homogeneity
that Ko,3 = Ko p for all 3,6 < a. Hence T, = K, is the absolute kernel
of G, which, being trivial, implies that each connecting morphism is injective, a

contradiction. O

Lemma 6.2.38. For each o € Y we have G, = T, 1. Consequently, if 1% forms
a subgroup then Go = T, ® I, and if in addition G, is non-periodic, then I}, is
trivial, so that G, = Ty,.

Proof. Let aq € Go\ (T UI}) have finite order n. Then there exists § < «a such that
aaYa,p = ag has order m < n, say, n = mk. We choose 3 so that ag is of minimal
order, noting that ag # eg as aq ¢ To. Then ag € If, since if o(agsy) < m
for some v < B then o(anta,) < m, contradicting the minimality of m. Since

o(I:

o) = o(l3), it follows from Lemma 6.2.5 that a¥, being of order m, is in I%.

Moreover, ag'tha,p = aj' = eg, so that a' € T,,. Hence as T, is characteristic by
Lemma 6.2.35, T, contains all elements of order k¥ by Lemma 6.2.5. Since I} and

T, are coprime, there exist r, s € Z such that rm + sk = 1, and so
o = al™E = (™) (ak)® € T, I*.

Now let b, be an element of infinite order. If there exists 8 such that aqta g
has finite order n then a € T, and so T, contains all elements of infinite order.
Otherwise, no such f exists, so that b, € I} and I} contains all elements of infinite
order. Hence G, = T,1}. Now suppose I forms a subgroup. Then as I} and
T, are trivial intersecting characteristic, and thus normal, subgroups of G, and
Go = T,1}, it follows that G, = T, ® I. If G, is non-periodic, then we have
shown that every element of G of infinite order lies in T, U [}. By a similar
argument to the proof of Lemma 6.2.21 we have that G, equals T, or I}. Since the

connecting morphisms are non-injective we thus have G, = T,. O

Lemma 6.2.39. The subset I} is closed under prime powers. Moreover, I} forms

a subgroup if and only if (IX)1 and Ty, intersect trivially.

Proof. Suppose p € o(I}) for some prime p, and let g, € G, be of order p".
Then ggr_l has order p, and thus is an element of I} by Lemma 6.2.5. Hence
(gawa,g)pr_l = gﬁrilwaﬁ is of order p for any 8 < «, and (gata)? = es, so that
0(9gata,g) = p" = 0(ga). We thus have that g, € I}, and so I} is closed under prime
powers

Now suppose (IX); N T, = {ea} and let ga, ha € I%. If (guhg ') s has finite
order m for some 8 < a then (gohg')™ € Ko 5 C To. However as (goho )™ € (I2)1,
this forces (gohy,')™ = eq. It follows that g,h,! has order m, since its order

is at least the order of its image, and so goh,' € I:. On the other hand, if
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(gahgt)ba s has infinite order for all B < «, then gyh,! is also of infinite order,

and so goh,! € I*. The converse is immediate from Lemma 6.2.35. O]

This lemma points towards a positive answer to the following question.

Open Problem 6. Are the absolute images of a surjective Clifford HIS with non-

injective connecting morphisms necessarily subgroups?

Lemma 6.2.40. If the absolute images of S form subgroups isomorphic to I* then
S=ET(S)x (Y x IY),
where if S is non-periodic then I is trivial.

Proof. Suppose first that S is periodic. Since I} is a subgroup, the set [Y; I; wéﬂ] is
the surjective Clifford subsemigroup A(S) of S by Lemma 6.2.36. By Lemma 6.2.38
we have G, = T, ® I, where T,, and I are coprime, so that ¢, g = 1/12’5 ® wiﬁ
by Lemma 6.2.10. Hence S = T'(S) > I(S) by Lemma 6.2.28. By Lemma 6.2.35
we have I NT, = {es}, and so I} N Ker wéﬂ = {en}. Each connecting morphism
¢£z,b’ is therefore injective, and thus an isomorphism. Hence [Y; I; d}é,b’] XY xI*
by Proposition 3.7.13, where I* = [} for any o € Y. The first result then follows
from Corollary 6.2.30 and the fact that Y x I* is a structure-HIS by Proposition
4.3.8.

The final result is immediate from Lemma 6.2.38. O

We have proven the first half of the following theorem. The converse holds by
Proposition 6.2.14, since the inverse semigroup Y x I* is a structure-HIS if Y and

I* are homogeneous.

Theorem 6.2.41. Let S be a surjective Clifford semigroup such that each abso-
lute image forms a subgroup and the connecting morphisms are surjective but not
injective. Then S is a HIS if and only if there exist a homogeneous semilattice Y,
a homogeneous group G = T @ I where T and I* are of coprime order if G is

periodic, or I* is trivial otherwise, such that S is isomorphic to
Y5 Tasv0d 5] 0 (Y x 1)

where Ty, 2T for each o € Y and [Y;Ty; 1/1(7;5] is a surjective Clifford HIS with T,

being the union of the kernels, none of which are equal.

In the case when the absolute images form subgroups, it consequently suffices
to consider the homogeneity of a surjective Clifford semigroup [Y'; Ty; 9o g], with Y
and T, homogeneous, and T, being a (dense) union of the kernels of the connecting

morphisms, none of which are equal. This leads to the following open problem.
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Open Problem 7. Which homogeneous groups are a dense union of isomorphic

normal subgroups?

A group is co-Hopfian if it is not isomorphic to a proper subgroup'. This is
equivalent to every injective endomorphism being an automorphism [81]. Dually, a
group is Hopfian if it is not isomorphic a proper quotient or, equivalently, if every
surjective endomorphism is an automorphism. An immediate consequence of the

following lemma is that T, is both non Hopfian and non co-Hopfian:

Lemma 6.2.42. Let [Z; Hy; ¢o,) be a HIS with each connecting morphism surjec-
tive but not injective and such that H, = U,8<a Ker ¢qp for each oo € Z. Then H,
is non Hopfian and non co-Hopfian, with H, = Ker ¢, 3.

Proof. For each a > (3, let K, 3 = Ker ¢, g, noting that K, g is homogeneous by
Lemma 6.2.18. We claim that age(K, g)=age(H,), so that K, 3 = H, by Fraissé’s
Theorem. Because K, g is a subgroup of H, we have that age(K, g) is a subclass
of age(H,). Let A € age(H,). Then there exists a f.g. inverse subsemigroup
A" = (ga1,---,9an)1 of Hy isomorphic to A. For each 1 < i < n, there exists
Bi < asuch that go; € K, g,. Letting v = 5182 - - - By, then go; € K, , for all i and
so A’ C K, .. Hence, as K, 3 = K, by Lemma 6.2.19 we have A’ € age(K, 3).
Since the age of a structure is closed under isomorphism, we have A € age(K,g),
thus completing the proof of the claim, and so H, is non co-Hopfian.

By Corollary 4.4.10, there exists an isomorphism 6 : H, — Hg. The endomor-
phism of H, given by qﬁa,gQ—l is a surjective non-automorphism, and thus H, is

non Hopfian. O

6.3 Homogeneity of commutative inverse semigroups

Given that a full classification of homogeneous abelian groups is known, it is nat-
ural to examine an extension of this to commutative inverse semigroups. As an
immediate consequence of [55, Theorem 4.2.1], commutative inverse semigroups are
Clifford, and as such we may use the results of the previous sections to attempt to
classify commutative HIS. For consistency with earlier work, we continue with the
multiplicative notation, so that the operation is denoted by juxtaposition.

By Theorem 6.2.31 it suffices to consider the homogeneity of either surjective
Clifford semigroups or non-periodic Clifford semigroups with elements of infinite
order not lying in the images or absolute-kernels of the maximal subgroups. We
first give an overview of homogeneous abelian groups, and consider when such

groups are (co-)Hopfian.

'Non co-Hopfian groups are also known as I-groups.
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Given a prime p, the Priifer group Z[p*°] is an abelian p-group with presentation

(91,92:93,---: 8 = 1,05 = g1, 95 = g2, . )1I-

Alternatively, Z[p>°] can be thought of as a union of a chain of cyclic p-groups of
orders p, p?, p?, ..., so that o(Z[p>]) is the set of all powers of p. Each Priifer group
is divisible, that is, for each g € Z[p*°] and n € N, there exists h € Z[p*] such that
h"™ = g. The Priifer groups, along with Q, form the building blocks for all divisible
abelian groups. We refer the reader to Robinson’s book [82] for an in depth study
of divisible groups.

By [17, Theorem 2], an abelian group is homogeneous if and only if its isomorphic

to some

(®p€P1 ZZ&Z)) D (@pEP2 Z[p>]™) if G is periodic,
(Bpep Z[p™]™) @ (Q7) otherwise,

G — (6.3)

where Py and P, partition the set P of primes, n,,n € N* U {0} and m, € N. For
example, if n = Xy = n,, for each p € P then G is the universal abelian group, that
is the homogeneous abelian group in which every f.g. abelian group embeds.

Note that the groups Z,m»,Z[p™>]| and Q are indecomposable, that is, they are
not isomorphic to a direct sum of two non-trivial groups (again see [82]).

It follows by the work in [6] that the group G is co-Hopfian if and only if n and n,,
are finite, for all p € P. We call G component-wise non co-Hopfian if n,n, € {0,Ng}
for each p. That is, G is component-wise non co-Hopfian if and only if each of its
non-trivial p-components are non co-Hopfian and n € {0,Rg}.

Let H be an abelian group with subset A = {h; : ¢ € I} for some index set
I. We call A a disjoint subset if (A); = @,;c;(hi)1, or equivalently, if (h;); and
(A\{h:})1 have trivial intersection for each i € I. Note that if {g, h} form a disjoint
subset of H then o(gh) = lem (0(g),0(h)), where we define lem(RXy,n) = Xy for all
n € N*.

For example, if H = Z™, where n € N* and Z is either a finite cyclic p-group,
a Prifer group or Q, then a maximal disjoint subset of H is of size n since Z is

indecomposable.

6.3.1 Surjective commutative inverse semigroups

Throughout this subsection we let S = [Y;Gq;1a,5] be a surjective commutative
HIS with each G, isomorphic to the group G in (6.3) and connecting morphisms
non-injective. Recall that as S is surjective, each absolute kernel is trivial by Corol-
lary 6.2.23.

Lemma 6.3.1. For each o € Y, the absolute image of G, is a subgroup.
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Proof. By Lemma 6.2.38 the result is immediate if G, is non-periodic, and so we
assume G, is periodic. Let aq, by € I be of orders n and m, respectively. Suppose,
seeking a contradiction, that anb, ¢ I}, so that there exist § < a and k < o(aqba)
such that (agba)® € Ko p C Tyn. Notice that o((anba)¥) divides o(aqba), which in
turn divides nm since G, is abelian. This means that I, and K, g are not of coprime

orders, contradicting the work after Lemma 6.2.35, and so I} is a subgroup. O

By Theorem 6.2.41, it thus suffices to consider the case where the absolute image
of each maximal subgroup is trivial, so that G, = Uﬁ<a K, for each o € Y. By

Lemma 6.2.42, GG, is non Hopfian and non co-Hopfian.
Lemma 6.3.2. The group G is component-wise non co-Hopfian.

Proof. For each a € Y, let G4(p) denote the p-component of G,. Then Gy (p) is
an order-characteristic subgroup of G, so that the set S, of elements of S of order
some power of p forms a HIS by Lemma 6.2.7. Since S, is periodic with trivial
absolute kernel and absolute image, it follows from Theorem 6.2.31 and Theorem
6.2.41 that S, is a surjective Clifford semigroup with each G,(p) a union of kernel
subgroups. In particular, G,(p) is non co-Hopfian, and thus so is the p-component
of G, forcing n, = Ry by [6].

Suppose, seeking a contradiction, that 0 < n < Ny, so that G is non-periodic, and
let « > BinY. Pick a disjoint subset A = {gs,;: 1 <i < n} of Gg with o(gs,;) = No,
and let goi%q.8 = g, for each i, so clearly {ga,; : 1 <i < n} forms a disjoint subset
of G. Then for any x, € K, g of infinite order we have z} = ggfi = Gon for some
large enough m,m; € N, since otherwise {Zq, 00, : 1 < i < n} forms a disjoint

subset of G, of size n + 1. Hence
contradicting A being a disjoint subset. Consequently, n is infinite as required. [

In particular, age(G) is precisely the class of all f.g. abelian groups with elements
of order from o(G). We observe that if G is divisible then it is either periodic with
n, = 0 for each p € Py or non-periodic. Hence in both cases G is a characteristic

subgroup of the universal abelian group.
Lemma 6.3.3. The semilattice Y is the universal semilattice.

Proof. Suppose, seeking a contradiction, that Y is a linear or semilinear order and
leta > BinY. Let g, € K, g beof order n € N*. Since the absolute kernel is trivial,
there exists v < a such that g, € K. Then 8 # v, since otherwise K, g3 C Kq -
Hence as Y - « forms a chain, we have a > v > 3, so that K, , € K, g by Lemma
6.2.37. Since K,z = K, by Lemma 6.2.19 there exists an element h, € K, of

order n.
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Suppose first that n = p for some prime p. If there exists 0 < k, ¢ < p such that
g% = R, then

k ¢
9aVary = hatay = €y

and so g* € K, ,. However g,1a~ has order p, and thus g* = eq, so that k = p.
Hence ¢ = p as hy is of order p, and it follows that (ga,ha)r = Zp, ® Z,. In
particular, we may extend the isomorphism swapping g, and h,, to an automorphism
0 = [0, T|acy of S. Since Y is linear or semilinear either v > vm or ym > 7. By

the commutativity of the diagram [«, v; v, y7] we have

hoewa,wr = gaeoﬂ/}a;wr = goﬂ/}oc,'ye’y 7é Eym

as go ¢ Ko Hence hy & Kq 4r, and similarly as hofo = go we attain go € Ko yrx.
If v > «m then hy € Koy € Ko7, while if v > v then go € Ko yx € Kq 4, both
giving contradictions. Consequently no element of G can have prime order, and so
G is torsion free with n = Ny by Lemma 6.3.2.

If g% = h!, for some k,l € N then g* € K, ., and 0 (gata)* = €, contradicting
G being torsion free. Thus (ga, ha); = Z @ Z, and we argue in much the same way

as above to arrive at a contradiction. O

Let KC(G) denote the age of the group G, which is a Fraissé class by the homo-
geneity of G. Let K[G] denote the class of all f.g. commutative inverse semigroups
with maximal subgroups from K(G). That is, K[G] is the class of all f.g. commu-

tative inverse semigroups with elements of order from o(G).
Proposition 6.3.4. The class K[G] forms a Fraissé class.

Proof. Since K(G) is closed under substructure and direct product, so is K[G]. It is
then immediate that [G] has HP and JEP. To show closure under amalgamation,
we follow the construction of Imaoka in [56, Section 2]. Given T,7T" € K[G] with
common inverse subsemigroup U, we assume w.l.o.g. that T and T’ are strong
semilattice of groups, say, T = [Z; Ha; ¢a,s] and T = [Z';H),; ¢, 5]. We also
assume w.l.o.g. that TNT' =U. Let 1 ¢ T UT’, and form the semigroups 7" and
T" by adjoining the identity 1, so that 1t = ¢t1 = ¢ for each t € T UT'. We remark
that this goes against the common notion of adjoining an identity if necessary, where
here Imaoka forces an identity, even if T' or T" are already monoids (forcing a zero
was discussed briefly in Section 3.5).

The semigroup 7" is a commutative Clifford semigroup, and since the maximal
subgroups of T! are {1} and H, (a € Z), which are members of K(G), we have
T! € K[G]. Similarly so is 7" € K[G]. Hence W = T x T"*\ {(1,1)}, as an inverse
subsemigroup of T! x T' is a member of [G]. Imaoka then showed that there
exist a congruence p on W and embeddings 6 : T — W/p and 6’ : T — W/p given
by 26 = (x,1)p and 2’0" = (1,2")p (x € T, 2’ € T') such that U = U =TONT'Y'.
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Hence W/p is generated by the elements 26 and x6’, which are of orders from
o(T)Uo(T") C o(G). Since G is abelian, o(G) is closed under product and we thus
have o(W/p) C o(G). Consequently, W/p is a member of K[G], and AP holds.
Finally, Rédei’s Theorem [77] states that every f.g. commutative semigroup is
finitely presented (see also [21, Theorem 9.28]). It easily follows that the class of

all f.g. commutative semigroups, and thus its subclass K[G], is countable. O

We denote the Fraissé limit of K[G] as C[G], noting that C[G] = C[G’] if and
only if G = G’. We prove that C[G] is isomorphic to S.

Lemma 6.3.5. Let m,n € o(G,) be such that either m|n or n = Ng. Then:

(i) If o > 8 then for every xg € Gg of order m there exists an infinite disjoint

subset of G, of elements of order n which are the pre-image of xg under v g;

(ii) If a > {B,v} > T forms a diamond in Y, then for any x, € K, of order m,

there exists xo € Ko g of order n such that x40 = .

Proof. (i) Let @ > 8 and zg € Gg be of order m. We first claim that there exists
To € G of order m with z4%, 5 = xg. If m = Ny then the result is immediate as
o, p is surjective. Let m = p" for some prime p and r > 0 (the case r = 0 being
trivial). Suppose, seeking a contradiction, that for all v < 8 we have o(zg1)g~) < p".
Then ajgil € Kp, for all v < 3, contradicting the absolute kernel being trivial.
Hence there exists xy = xgig, of order p". By Lemma 6.2.16 we may extend
the isomorphism ¢ from {eg} U (z4)r to {ea} U (xg)r, determined by egp = e,
and x,¢ = xg, to an automorphism [0, 7]aey of S. Then the diagram [3,v; a, f]

commutes and so
z80p1a,s = 1ty = 240y = 2.

Since xgflz € G, has order p”, the claim holds for this case. Now suppose m =
p1ipy? - - - pye for some primes p; and r; € N. By the Fundamental Theorem of Finite
Abelian Groups, zg = xg1232 - ¥gs for some xg; € Gy of order p;* and so, by
the previous case, there exists z4; € Go of order p;* with z41a 3 = x5, for each
i. Then x4 = 24,1702 - Ta,s has order m and is such that z,v, 3 = 23, and the
claim holds in all cases.

Notice that the set x,K, g is precisely the elements of G, mapped to xz. Since
K, = G, by Lemma 6.2.42, K, g is component-wise non co-Hopfian. By Lemma
6.3.2 there exists an infinite disjoint subset {gq; : ¢ € N} of K, 3 of elements of
order n. Ifg’oii:mfx forsome()<k‘<nand0<l<mthen65:ef§:a:lﬁ,a
contradiction. It follows that each 494, has order n. We claim that {zqga; : ¢ € N}

forms an infinite disjoint subset of G,. If

k1 kt

(-Tozga,i)k = (xagam) T (xaga,jt)
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= ghik2ke—k by commutativ-

for some 0 < k,k1,...,k < n, then gfwg;]ﬁ g;]x
ity, and so eg = a:glkz'"kt*k. Hence m|(kiks - - - k; — k), so that zkikz-k=k — ¢ “and
we thus have
k _ k k
9ai = oojs - - o

contradicting {ga,; : ¢ € N} being disjoint, and the claim holds. The result then
follows as Taga,i € TaKa,g-

(i) Let a > {B,7} > 7 form a diamond in Y and z, € K, ; be of order m. By
part (i) there exists yo € G, of order n such that yata = -, so that y, € Kq 7.
Let yatha,3 = yp, so that yg € K. Then there exists ' € Y with > 3’ > 7 and
such that yg € K3 g, since otherwise 7 is a maximal element in the subsemilattice
{peY :ys € Ka,} of Y, which would clearly contradict homogeneity. Extend the

isomorphism between

(€arepr, @y, 7)1 = {eat U{eg} Ulzy)r U{er}
and {eas s, 2y, r)1 = {ea} ULesh U log)r U fer}

which sends eg to eg and fixes all other elements to an automorphism 6" = [0, 7']oey
of S. Then y.0 € G, is of order n with y,0' € K,pg by the commutativ-
ity of o, 55, 0] (as ya € Kop), and ya0'the = x, by the commutativity of
[, 5 0, 7] O

Lemma 6.3.6. Let o > {f,7} > 7 be a diamond in Y and let x3 € G and
T~ € Gy be of orders mi,ma € N*, respectively, such that xgig, = x; = T 7.
Then, for any n € o(G,) such that either miln (i = 1,2) or n = N, there exists

ZTo € Go of order n such that xoa g = g and Taay = T~.

Proof. We may assume that m; = mo = n. Indeed, as Y is the universal semilattice
there exist 3,7 € Y witha > ' > 3, a >+ > v and /7y = 7 by Lemma 5.1.3.
Hence by the previous lemma there exist g € Gy and x» € G of order n with
zgPg g = xg and w41y , = ., and so it would suffice to consider zg and x./
instead.

By Lemma 6.3.5 (i) there exists z, € G, of order n such that 2,19 3 = g, so
that 24%a,r = or. Let 24%q, = 2zy. Then there exists ~" such that v > +' > 7 and

0(2y1)~ ) = o(x7), else 7 would be a maximal element in the set

{p: O(va'y,p) = o(z,)},

and thus contradict the homogeneity of S. Let 2,1, ,» = 2y, and pick g € K/,
of order n, noting that such an element exists as o(G) = o(K ;). Arguing in much
the same way as in the proof of Lemma 6.3.5 (i), the element z, g,/ has order n.
By Lemma 6.3.5 (ii) there exists g, € K, g of order n with g4ta . = g,/. Then as

(2a9a)Va,p = xg has order n, it easily follows that z,g, has order n, and is such
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that
(Zaga)wa,b’ = Zawa,ﬁ =g and (Zaga)¢a,’y’ = Z4'g~'-

The map between the f.g. inverse subsemigroups {eq} U (xg) U (2ygy)1U(x;)r and
{ea} U (xg)r U (xy)1 U (x7)r which sends z,g, to x, and fixes all other elements,
is clearly an isomorphism. Extend the isomorphism to an automorphism 6 of S.

Then (2494)0 € G gives the required element. O

Corollary 6.3.7. Let 51, 32,...,8, €Y be such that 8; 1 B; for eachi # j, and let
zg, € Gpg, be such that if v < Bi, Bj, for some 4,7, then xp,Yp, o = wp,¢p, v Then
for any o € Y with o > f; for all i, and any n € o(G,) with either o(xg,)|n for
all i orm = Ny, there exists an infinite disjoint subset of G, of elements of order n

which are the pre-image of each xg, under 1o g, .

Proof. By Lemma 6.3.5 (i) the result holds when r» = 1. We proceed by induction
by supposing that the result holds when r = £ —1, and letting xg,, xg,,...,2g, and
n € o(G,) satisfy the conditions of the corollary. Since Y is the universal semilattice
there exists o/ € Y with a > o/ > fs,..., 8 but o/ # 51 by Lemma 5.1.3. By the
induction hypothesis there exists x, of order n such that x5, = xg, for all
2 <i<k. Since a > {d/, 51} > B forms a diamond in Y, there exists 2, € G4, of
order n such that x4, o = T4 and 24%Ya,3, = v, by the previous lemma. Hence
TaWa,p; = T, for all i. Let 6 € Y be such that o > ¢ > 3; for each i, again noting
that such an element exists by Lemma 5.1.3, and let £41q,5 = 5. By Lemma 6.3.5
(i) there exists an infinite disjoint subset of G, of elements of order n which are

mapped to x5, and thus to each xg,. This completes the inductive step. O

Proposition 6.3.8. The age of S is K[G].

Proof. Let K denote the age of S, noting that clearly K is a subclass of K[G].
Since a 1-generated Clifford semigroup is a cyclic group, each 1-generated member
of K[G] is a member of K(G), and thus of K. Proceeding by induction, assume
that every n-generated member of K[G] is contained in K, for some n € N. Let
A =[Z; Ay; ¢a,p] be an n+1-generated member of K[G]. To avoid A trivially being
a member of K(G) we may assume that Z is non-trivial. Let a be maximal in Z
and suppose Ay = (@a,1)1 B (@a2)1 @ - -+ B (@)1 is an r-generated abelian group,
where each (aq;)s is a cyclic subgroup. Let A’ be the inverse subsemigroup of A

given by

A\ Aq ifr=1,
(A\ Ap) U(an2)1 ® (an3)r & B (aar)r ifr>1.

A=

Then A’ is n-generated and with structure semilattice Z, where Z = Z\ {a} ifr = 1,
and Z = Z else. By the inductive hypothesis there exists an embedding 6 : A’ — S,
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with induced embedding 7 : Z — Y. Since Y is the universal semilattice there
exists § € Y such that Z7 U {6} = Z by Lemma 5.1.3, where we take § = ar if
r > 1. Let o be an upper cover of 31,...,8, in Z, and an,104,3 = ag, for each 7.
By Corollary 6.3.7, there exists a infinite disjoint subset {gs; : K € N} of G5 with
0(gs.k) = 0(aq,1) which are the pre-image of each ag,0 under 95 5, (1 < i < 7). Note
that A/, is f.g. since it is either empty or equal to (an2)1 ® (aa3)1 B - ® (aar)1-
On the other hand, @, cn(gsk)1 is infinitely generated, and it follows that there
exist only finitely many gs with (gs5x)r N AL0 # {e.}. Hence, for some k € N,
we have that (gsx)r ® AL is isomorphic to A,, and its easily shown that the map
¢ :A— AOU (g5k)1 given by A'0' = A'0 and an,10" = g5 is an embedding, thus

completing the inductive step. O

A full classification of surjective commutative HIS is now achieved. In particular
we may describe all periodic commutative HIS as follows (the non-periodic case will

be considered separately in the next subsection).

Theorem 6.3.9. Let I'*, K* and T be periodic homogeneous abelian groups of pair-
wise coprime orders and T component-wise non co-Hopfian. Let Y be a homoge-
neous semilattice, and let U denote the universal semilattice. Then the following

inverse semigroups are HIS:
(i) (Y x I*)pa [Y; K7
(il) (U x I*)>=C[T] > [U; K*];

Conversely, every periodic commutative HIS is isomorphic to an inverse semigroup

constructed in this way.

Proof. Let S be a periodic commutative HIS. Then by Theorem 6.2.31 S’ is isomor-
phic to I(S) > [Y; K*], where I(S) = [Y; In; @biﬁ] is a surjective Clifford HIS and
I, = I is coprime to the homogeneous group K*. By Corollary 6.2.23 the absolute
kernels of I(S) are trivial. If each wi,ﬂ is an isomorphism, then I(S) =2 Y x I*
by Lemma 3.7.13, which is structure-HIS by Proposition 6.2.32. We then have
case (i) by Corollary 6.2.30. Otherwise, as the absolute images form subgroups by
Lemma 6.3.1, we have I(S) = [Y;Ta;wgﬁ] 1 (Y x I*) by Theorem 6.2.41, where
T, is of coprime order to I}. Each group T, is isomorphic to some component-wise
non co-Hopfian group T by Lemma 6.3.2. By Propositions 6.3.4 and 6.3.8 we have
[Y;Tw; 1#575] = C[T], and we obtain case (ii) again by Corollary 6.2.30.

Conversely, the Clifford semigroups Y x I'* and [Y; K*] are structure-HIS by
Proposition 6.2.32 and Lemmas 6.2.27 and 6.2.26. The Clifford semigroup C[T] is
a HIS by Proposition 6.3.4. The result then follows by Proposition 6.2.14. O
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6.3.2 An open case

We now consider the final case, where S = [Y; G4; 94,3 is a commutative HIS such
that each Gy is isomorphic to the group G in (6.3) and elements of infinite order
are not contained in the image I, or absolute kernel K} of G,. We observe that as
G, # K}, the subgroup I, is non-trivial.

By Lemma 6.2.22 the absolute images of S are trivial, so that G, = U6<a Ku.p
and G, = K, by Lemma 6.2.42. By Lemma 6.2.21, the elements of G, of finite
order form precisely the subgroup I, K}, which is clearly a characteristic subgroup.
It follows by Lemma 6.2.7 that elements of S of finite order forms a HIS

T=[Y;Io® KLl 500k )

where wéﬁ DI 11)576 = Ya,l1,0K:. The inverse subsemigroup [Y; I,; wéﬁ] of T is a
periodic surjective commutative HIS with trivial absolute-images and, by Corollary
6.2.23, trivial absolute kernels. Consequently, by Theorem 6.3.9, [Y; Ia;ﬂ)iﬂ] is
isomorphic to C[I], where I = [, is component-wise non co-Hopfian, and that
Y is isomorphic to universal semilattice U by Lemma 6.3.3. Hence [Y; K ;;wcff’ B]
is isomorphic to the structure-HIS [U; K| by Lemmas 6.2.26 and 6.2.27, where
K = K. By Corollary 6.2.30, we have that 7' = C[I]| > [U; K], and it follows that

G=IoKaoQ" (6.4)

where I = D, cp, Z[p™]*0 and K = ®D,cp, Z[p™]" for some n,n, € N*, where P;
and P are disjoint subsets of P.

We let K£*[I; K;n] denote the class of all f.g. commutative inverse semigroups
A with maximal subgroups in K(G), where G is as in (6.4), and satisfying the

following properties:
1. every element of infinite order is maximal in (A4, <);
2. for each p € Pk, every element of order some power of p is maximal in (T, <);

where < is the natural order on A. In particular, if [Z; Ay; ¢o g] € K*[I; K;n] then
every element of infinite order is mapped to an element of finite order by non-trivial
connecting morphisms by (1) and, for each p € Pk, every non-trivial element of
order some power of p is not contained in an image of any connecting morphism by
(2), and so is contained in the absolute kernel of its maximal subgroup. Note that
K[I] is a subclass of K*[I; K;n].

Open Problem 8. For which conditions on K and n does K*[I; K;n| form a

Fralssé class?
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The problem we face when tackling this is open problem that the method in the
proof of Proposition 6.3.4 no longer applies. For example, let o > § and v > 5 be
a pair of chains, and let T = (zq)7 U {eg} and T" = {e,} U {eg} be f.g. Clifford
semigroups, with z, of infinite order. Note that T NT’" = {eg}. Let p be the
congruence on W = T! x T\ {(1,1)} as given by Imaoka. Then (x4,1)p and
(xa,eg))p have infinite order and (x4, 1)p > (za,es)p. Hence W/p does not satisfy
(2), and is thus not a member of K*[I; K;n).

We now prove that age(S) is £*[I; K; n| by following the methods of the previous

subsection.

Proposition 6.3.10. Let 31, f2,...,3, € Y be such that 3; L 3; for eachi # j. Let
xp, € Ip, be such that if v < B, Bj then xg,vp, v = xp;¥s; v Then for any a € Y
with o > fB; for all i, and any t € o(Gy) with either o(xzg,)[t for all i ort = Ny,
there exists a disjoint subset of Go of size Ng if t is finite, and size n otherwise,

consisting of elements of order t which are the pre-image of each xg, under 1, g, .

Proof. Recall that S contains the inverse subsemigroup [Y; I,; 1#{1, 5] isomorphic to
C[I], where I = I,. Hence if t is finite, then the result easily follows by Corollary
6.3.7, where the required disjoint subset of GG, is contained in 1.

Suppose instead that t = Ny. By the previous case there exists z, € I, of finite
order with x4, g, = xg, for all ¢. Since Y is the universal semilattice, we may fix
o €Y with a > o' > fp1,..., 5 by Lemma 5.1.3. Let {z; : i € N} be a disjoint set
of size n consisting of elements of infinite order and such that z; € K, o C K ;.
Note that such a set exists as K, o = Go. Then z,2; is a disjoint set of size n

consisting of elements of infinite order, and

(Tazi)Va,8, = Ta¥a,p = T8,
for each i € N. O
By a simple adaptation of Proposition 6.3.8 we have:

Corollary 6.3.11. The age of S is K*[I; K;n].

Theorem 6.3.12 (Classification theorem of non-periodic commutative HIS). Let
G be a homogeneous non-periodic abelian group, Y a homogeneous semilattice and

U be the universal semilattice. Then the following inverse semigroups are HIS:
(i) Y xG;
(i) [v:G);

(iii) C[G], with G component-wise non co-Hopfian;

(iv) the Fraissé limit of a Fraissé class K*[I; K*;n], where G =1® K ®Q™ and I

is component-wise non co-Hopfian.
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Conversely, every non-periodic commutative HIS is isomorphic to an inverse semi-

group constructed in this way.

Proof. By Theorem 6.2.31, A non-periodic commutative Clifford semigroup S is a
HIS if and only if isomorphic to either a surjective Clifford HIS, or [Y'; G| for some
homogeneous semilattice Y and group G, or a Clifford HIS with no elements of
infinite order lying in the images or absolute kernels. By the usual argument, a
surjective commutative Clifford is a HIS if and only if is isomorphic to either Y x G
for some homogeneous Y and G, or a HIS with connecting morphisms non-injective,
and G,, being a dense union of kernels by Theorem 6.2.41 (since the absolute image
forms a subgroup by Lemma 6.3.1). By Propositions 6.3.4 and 6.3.8 the second
possibility holds if and only if S isomorphic to C[G], where G is component-wise
co-Hopfian by Lemma 6.3.2. It thus suffices to consider the case where S has no
elements of infinite order lying in the images or absolute kernels. If S is a HIS
then age(S) is K*[I; K;n| by Corollary 6.3.11, and thus S is isomorphic to the
Fraissé limit of the Fraissé class K*[I; K;n]. The converse is immediate by Fraissé’s
Theorem. O

6.4 Inverse Homogeneous Semigroups

In this section we study the differences between the two concepts of homogeneity
for inverse semigroups, in particular when a HIS has the stronger property of being

an inverse homogeneous semigroup (HS).

Lemma 6.4.1. Let S be a periodic inverse semigroup. Then S is a HS if and only
if it is a HIS.

Proof. Suppose S is a HIS, so that, being periodic, S is a Clifford semigroup by
Theorem 6.1.6. Hence S is a HS by Lemma 4.3.2. The converse is by Lemma
6.1.1. O

Corollary 6.4.2. A non-periodic inverse HS is a group, homogeneous as a semi-

group.

Proof. Let S be a non-periodic inverse HS. Then S is a HIS by Lemma 6.1.1, and
is thus either Clifford or bisimple. If S is bisimple then there exists x € S such
that (x); is a bicyclic semigroup. Since z and z~! have infinite order and Aut(S)
acts transitively on Inf(.9), there exists an automorphism ¢ of S mapping = to 27!

Then 2z~ '¢ = z and so

(zzHNp=z"'z and (z7'2)¢ =zz7 !,
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contradicting zz~! > 2~ !'x. Hence S is Clifford, and is therefore completely simple
by Corollary 4.5.2. However a semilattice in which every element is minimal is

clearly trivial, and so S is a group. O

However the converse is not known, that is, is a homogeneous group a HS? We
give a positive answer for the class of abelian groups, thus completing our study

into the homogeneity of commutative inverse semigroups.
Proposition 6.4.3. A homogeneous abelian group is a HS.

Proof. If G is periodic then the result is clear, and so we assume G is a non-periodic
abelian homogeneous group with identity 1. Let ¢ : A — B be an isomorphism
between f.g. subsemigroups of G, and let Ag, Bg denote the finitely generated
subgroups of G generated by A and B, respectively. Since G is abelian, each
element of Ag is of the form uv™"! for some u,v € A and so we may take the map
qg : Aq — Bg given by

(™ )d = (ug)(ve) "

Then ¢ is well-defined and injective since, for any uv !

,st™1 € Ag we have

(™) = (st™1)o & (u)(ve) ™" = (s9)(t¢) "
S uptd = spue
& ut = sv

& wo = st™ L

If ab~! € Bg, then there exist u,v € Ag such that u¢ = a and v¢ = b since ¢ is

surjective. Hence (uv~1)¢ = ab~! and ¢ is surjective. Finally,

(™ )(st )b = (ug)(ve) " (s0)(td) ' = (us)d((vt)p)
= (us(vt) o = (wv ) (st 1))

and 16 = (uu")¢ = (u¢)(u¢)™' = 1 for any u € A. Tt follows that ¢ is an

isomorphism, and extends ¢ since for all u € A,

ud = up(1¢) ™" = ug.

Since any automorphism of G which extends (ZS additionally extends ¢, we have that
G is a HS by the homogeneity of G. O

From the proposition above and Theorem 6.3.9 we obtain a complete classifi-
cation of all commutative inverse HS, as either a periodic commutative HIS or a

homogeneous non-periodic abelian group.

Open Problem 9. Is a non-periodic homogeneous group a HS?
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We note that Open Problem 9 is simply a special case of Open Problem 3 on

completely simple semigroups.

Open Problem 10. If GG is a homogeneous group and 6 : S — T’ is an isomorphism
between f.g. subsemigroups S and T of GG, then can 0 be extended to an isomorphism
0:(S)r — (T);?

The two open problems are clearly closely linked. Indeed, if G is a homogeneous
group then it is a HIS, and so the isomorphism 6 : (S); — (T); of Open Problem
10 can be extended to an automorphism of G, thus showing G to be a HS.



Chapter 7

Homogeneous orthogroups

Given that we now have a full description of homogeneous bands, as well as a large
pool of homogeneous Clifford semigroups, the natural next step is to consider the
homogeneity of orthodox completely regular semigroups, being a generalization of
both bands and Clifford semigroups. We follow [72] in calling an orthodox com-
pletely regular semigroup S an orthogroup. If further we have that E(S) is a regular
band, then S is called a reqular orthogroup.

Let S be a orthogroup with band of idempotents E(S). Then as E(S) is a com-
pletely regular characteristic subsemigroup of .S, the homogeneity of S is inherited
by E(S). Furthermore, as homogeneous bands are regular bands by Proposition
5.5.2 and the classification theorem of homogeneous bands, we have the following

result.
Corollary 7.0.1. A homogeneous orthogroup is a reqular orthogroup.

A regular orthogroup in which H forms a congruence is called a regular or-
thocryptogroup. This is equivalent to a semigroup being a spined product of a reg-
ular band and a Clifford semigroup by [72, Lemma V.5.3]. The class of all regular
orthocryptogroups forms a subvariety of the variety completely regular semigroups,
defined by the identities [za’ = 2z, 2(yz) 'z = zy'2' 2 x].

A natural question then arises: is the spined product of a homogeneous band
with a homogeneous Clifford semigroup necessarily homogeneous?

While we are not able to fully answer this question, we follow the usual methods
from the past two chapters to obtain a generalization of Corollary 5.3.3 and Propo-
sition 6.2.14, which allows examples of homogeneous regular orthocryptogroups to
be formed ad-lib.

An isomorphism theorem for regular orthocryptogroups follows from [72, Propo-
sition V.5.7], and gives a converse to Proposition 2.11.3 in the case of regular or-

thocryptogroups:

189
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Proposition 7.0.2. Let B = J,cy Ba, B' = Uy ey Bl be a pair of reqular bands
and S = [Y;Gai¥apl, 8" = [Y;GL; ¢&,7ﬁ,] a pair of Clifford semigroups. Let
0:B— B and ¢: S — S’ be a pair of isomorphisms, both with induced semilattice
isomorphism w:Y — Y'. Then the map x : B< S — B’ <18 given by

(eaaga)x = (ea979a¢) (ea € Ba,ga € Goya € Y)

is an isomorphism from B <1 S to B’ xS, denoted by x = 6 >3 ¢. Conversely,

every isomorphism from B 1S to B' < S’ can be constructed in this way.

Proposition 7.0.3. Let B be a homogeneous band and S a homogeneous Clif-
ford semigroup, both with structure semilattice Y. If either B or S are structure-
homogeneous, then the reqular orthocryptogroup B <1 S is a homogeneous completely

reqular semigroup.

Proof. Suppose first that B is structure-homogeneous and let A; and Ay be f.g.
completely regular subsemigroups of B x1.S. Since the class of regular orthocryp-
togroups forms a subvariety of the variety of completely regular semigroups, it
follows by the usual argument that A; = B; < 5; for some f.g. subbands B; of B,
and f.g. Clifford subsemigroups S; of S (i = 1,2). Let A; have structure semilat-
tice Y;, and x be an isomorphism from A; onto As. Then by Proposition 7.0.2,
X = 0 1 ¢ for some isomorphisms 0 : By — By and ¢ : S — S2, both with induced
semilattice isomorphism 7 : Y1 — Y5, say. By the homogeneity of S we may extend
¢ to an automorphism (Z) of §. Let 7 be the semilattice automorphism of Y induced
by gzg Since B is structure-homogeneous and 7 extends 7, we may extend 6 to an
automorphism 0 of B with induced semilattice automorphism 7. Then 0 < (ZA) is
an automorphism of B xS by Proposition 7.0.2, and extends 6 < ¢ as required.
Hence B < S is homogeneous.

The proof in the case of S being structure-homogeneous is argued in the same

way. O

We showed after Lemma 6.1.5 that a group is homogeneous in the signature of
groups L¢ if and only if it is homogeneous in Ly g. It follows that every homogeneous
group is a structure-homogeneous Clifford semigroup, and so for any homogeneous
group G' and n,m € N*, the orthogroup S = B, ,, X G is homogeneous by the
proposition above. Moreover, by [72, Theorem II1.5.2] a semigroup is a direct
product of a group and a rectangular band if and only if it is an orthodox completely
simple semigroup. We have thus proven the backward direction of the following

corollary, the forward direction being immediate from Corollary 4.4.7.

Corollary 7.0.4. Let S = M|G;1,A; P] be an orthodoz completely simple semi-
group. Then S is a homogeneous completely simple semigroup if and only if G is a

homogeneous group.
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Proposition 7.0.3 does not give rise to all homogeneous regular orthocryp-
togroups, for it does not take into account the non structure-homogeneous bands, for
example. However, its strength lies in our complete descriptions of both structure-
homogeneous bands in Theorem 5.5.5, and structure-homogeneous Clifford semi-

groups in Theorem 6.2.34.

Open Problem 11. Is a homogeneous orthogroup necessarily a regular orthocryp-

togroup?

Open Problem 12. Is the spined product of a homogeneous band and a homoge-
neous Clifford semigroup (with equal structure semilattices) a homogeneous regular

orthocryptogroup?

We note that by Proposition 7.0.3, an example of a negative answer to Open
Problem 12 would necessarily be a spined product of a non structure-homogeneous

band and a non structure-homogeneous Clifford semigroup.

7.1 Further work on homogeneity

We end this thesis by considering future directions for the work on homogeneous
semigroups.

While a full classification of homogeneous bands has been given, we are inter-
ested in further understanding of the ‘universal normal band’ By. In particular,
since By is Ny-categorical, we would like to be able to give a first order definition
(that is, describe its full theory). A second direction is to follow the research in
[27] by studying the automorphism group of homogeneous bands. This task should
be relatively straight forward for structure-homogeneous bands, but more insightful
results are likely for the image-trivial and universal cases.

The future direction to the homogeneity of inverse semigroups is more obvious,
and several open problems are given in the previous chapter. Our main interest
is in determining whether or not bisimple homogeneous inverse semigroups which
are not groups exist. It was originally conjectured negatively, but my faith in this
conjecture has wavered in time. The final open problem of that chapter is also
worth highlighting, due to its sheer simplicity in its statement. It asks whether or
not the properties of group homogeneity and semigroup homogeneity for a group
are equivalent.

In terms of arbitrary completely regular semigroups, the first task is to deter-
mine the homogeneity of completely simple semigroups. A full classification would
both determine all non-periodic completely regular homogeneous semigroups by
Corollary 4.5.2, and answer Open Problem 3. We suspect that the difference be-

tween the homogeneity of a completely simple semigroup in Lg or Lys may depend
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solely on the group case. Finally, for orthodox completely regular semigroups it is
hoped that by further understanding the homogeneity of Clifford semigroups, Open
Problem 12 may be answered.

A research objective at the beginning of my PhD was to examine the property
of homomorphism homogeneity (hom-hom). A structure M is hom-hom if every
morphism between f.g. substructures extends to an endomorphism of M. Much
like with homogeneity, the hom-hom of semigroups has only been studied in the
context of semilattices in [22]. The reason for not studying hom-hom semigroups
during my PhD was a positive one: the homogeneity of semigroups was a far richer
field of study than expected. I hope to begin research into hom-hom semigroups

soon.
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