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Abstract

In this thesis we study problems in the theory of semigroups which arise from

model theoretic notions. Our focus will be on ℵ0-categoricity and homogeneity of

semigroups, a common feature of both of these properties being symmetricity. A

structure is homogeneous if every local symmetry can be extended to a global sym-

metry, and as such it will have a rich automorphism group. On the other hand, the

Ryll-Nardzewski Theorem dictates that ℵ0-categorical structures have oligomorphic

automorphism groups. Numerous authors have investigated the homogeneity and

ℵ0-categoricity of algebras including groups, rings, and of relational structures such

as graphs and posets. The central aim of this thesis is to forge a new path through

the model theory of semigroups.

The main body of this thesis is split into two parts. The first is an exploration

into ℵ0-categoricity of semigroups. We follow the usual semigroup theoretic method

of analysing Green’s relations on an ℵ0-categorical semigroup, and prove a finiteness

condition on their classes. This work motivates a generalization of characteristic

subsemigroups, and subsemigroups of this form are shown to inherit ℵ0-categoricity.

We also explore methods for building ℵ0-categorical semigroups from given ℵ0-

categorical structures.

In the second part we study the homogeneity of certain classes of semigroups,

with an emphasis on completely regular semigroups. A complete description of

all homogeneous bands is achieved, which shows them to be regular bands with

homogeneous structure semilattices. We also obtain a partial classification of ho-

mogeneous inverse semigroups. A complete description can be given in a number

of cases, including inverse semigroups with finite maximal subgroups, and periodic

commutative inverse semigroups. These results extend the classification of homo-

geneous semilattices by Droste, Truss, and Kuske [27]. We pose a number of open

problems, that we believe will open up a rich subsequent stream of research.
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Preface

This thesis is a study into a pair of model theoretic properties applied to semigroups,

namely ℵ0-categoricity and homogeneity. A summary of the work in this thesis is

given below.

In Chapter 1 we present the background model theory required for this thesis.

The chapter ends on a result which gives a link between the properties of ℵ0-

categoricity and homogeneity, and provides further motivation for much of our work.

In Chapter 2 we give some preliminaries from semigroup theory. Emphasis is made

on exploring the structure of completely regular semigroups, and how isomorphisms

between them can be constructed.

Our main work begins in Chapter 3 with the study into the ℵ0-categoricity of

structures, with emphasis on semigroups. In Section 3.1 we give an account of the

historical background to ℵ0-categoricity, showing it to be a popular area of research

in the last 50 years. In Section 3.2 we introduce the fundamental result on ℵ0-

categoricity: the Ryll-Nardzewski Theorem (RNT). We give a number of known

consequences of the RNT, such as that every ℵ0-categorical structure is uniformly

locally finite. Our various methods for proving ℵ0-categoricity are outlined, each

centring around the RNT. For illustration we use countable rectangular bands as

our main example, showing that any such semigroup is ℵ0-categorical.

In Section 3.3 we consider a generalization to a characteristic substructure which

arises from the model theoretic concept of a definable set. This is used to show that

ℵ0-categoricity is inherited by every Green’s class which forms a subsemigroup and,

in particular, by maximal subgroups. If K is one of the Green’s relations, then the

set of cardinals of K-classes of an ℵ0-categorical semigroup is shown to be finite.

We finish the section by examining when the ℵ0-categoricity of a semigroup passes

to its quotients. In particular, we show that ℵ0-categoricity passes to any quotient

of a semigroup by a Green’s relation which forms a congruence. These results

are then applied to the principal factors of an arbitrary ℵ0-categorical semigroup in

Section 3.4. The principal factors of an ℵ0-categorical semigroup are shown to be ℵ0-

categorical completely (0)-simple or null semigroups, and the set of principal factors

is finite, up to isomorphism. This naturally leads us to consider the ℵ0-categoricity

of Rees matrix semigroups in Section 3.5. We follow a common method devised by

Graham of constructing a bipartite graph from the sandwich matrix of a Rees matrix

9
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semigroup S, and show that it inherits the ℵ0-categoricity of S. Examples of ℵ0-

categorical Rees matrix semigroups are then constructed from known ℵ0-categorical

groups and bipartite graphs. Our central result is that the ℵ0-categoricity of an

orthodox Rees matrix semigroup depends only on the ℵ0-categoricity of its maximal

subgroups and its induced bipartite graph.

In Sections 3.6 and 3.7 we examine the ℵ0-categoricity of a pair of well known

semigroup constructs: 0-direct unions and strong semilattices of semigroups. The

former construct allows a generalization of our results on ℵ0-categorical Rees matrix

semigroups to primitive regular semigroups. Finally, in Section 3.8 we discuss open

problems and future directions in the work on ℵ0-categorical semigroups.

The rest of this thesis is concerned with homogeneity of semigroups. Chapter 4

introduces the property of homogeneity from a general setting. A literature review

is given in Section 4.1, with an emphasis on the homogeneity of groups. The seminal

work of Fräıssé is introduced in Section 4.2, which allows us to build homogeneous

structures from certain classes of finitely generated structures.

In Section 4.3 we discuss the importance of choice of signature for considering

homogeneity. Many of the semigroups we study can alternatively be considered

as I-semigroups, that is, semigroups with an additional unary operation satisfying

certain laws. Our choice of signature for a class of semigroups can often be naturally

dictated by the variety of semigroups or I-semigroups in which the class belongs.

Our motivating example is the class of completely regular semigroups. We also

describe a stronger form of homogeneity of a completely regular semigroup, which

further takes into consideration the automorphism group of the induced structure

semilattice.

The substructure of an arbitrary homogeneous structure is assessed in Section

4.4, and later applied to the case of semigroups. The main result of this section is

that the maximal subgroups of a homogeneous semigroup are homogeneous groups,

and are pairwise isomorphic. We then examine the homogeneity of non-periodic

semigroups in Section 4.5, and show that a completely regular non-periodic homo-

geneous semigroup is completely simple. The importance of the homogeneity of

completely simple semigroups is therefore pivotal, and is the subject of Section 4.6.

The results of Chapter 4 are used throughout Chapters 5, 6, and 7, where

the homogeneity of bands, inverse semigroups, and orthodox completely regular

semigroups are respectively studied. Our results are obtained by using a mix of

semigroup theory brute force and Fräıssé’s method. A complete description of ho-

mogeneous bands is achieved in Chapter 5. An immediate consequence is that each

homogeneous band is a regular band and has a homogeneous structure semilattice.

On the other hand, a classification of homogeneous inverse semigroups is shown

to be a greater challenge, although a number of partial classifications are given.

In particular, all homogeneous inverse semigroups with finite maximal subgroups

are described, along with periodic homogeneous commutative inverse semigroups.
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Every homogeneous inverse semigroup is shown to be either bisimple or Clifford,

and in the latter case a decomposition into a spined product is obtained.

In Chapter 7 we combine our results on homogeneous bands and Clifford semi-

groups to produce examples of homogeneous orthodox completely regular semi-

groups. This thesis ends with a discussion into the key open problems which have

arisen during the work on homogeneity, and other directions that future research

into homogeneity may take.
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Chapter 1

Preliminaries I: An introduction to model

theory

In this chapter we outline the basic model theory required for this thesis. The results

and definitions are taken from a number of introductory text books, including [12],

[51] and [69]. In these books one can find the original citations.

Throughout this thesis, we write maps on the right of their arguments, so that

the composition of mappings are from the left to the right.

1.1 First order structures

Model theory can be seen as the study of structures from a logical viewpoint.

Defining model theory in such a succinct way is possibly controversial, and certainly

likely to annoy a handful of model theorists. Most famously is Chang and Keisler’s

attempt at a pithy definition, given in their 1990 text [12], which states:

“universal algebra + logic = model theory.”

This definition was soon seen as dated, as the field of model theory quickly grew and

evolved. The introduction to Hodges 1993 text [51] best sums up the trepidation

of defining such a changing theory:

“Should I begin by defining ‘model theory’? This might be unsafe...”

Here I shelter myself behind his attempt at a definition:

“Model theory is the study of the construction and classification of struc-

tures within specified classes of structures.”

17



18 CHAPTER 1. PRELIMINARIES I

For our work, ‘specified class of structures’ will mostly be the class of semigroups, al-

though we built our framework from complete generality. By ‘construction’, Hodges

means the building of structures which satisfy some desired property, such as hav-

ing a large automorphism group or being a commutative semigroup. Finally, by

‘classifying’ he means subdividing a class of structures into subclasses in a mean-

ingful way. A famous example from semigroup theory is the classification of inverse

completely 0-simple semigroups: they are classified by showing that every inverse

completely 0-simple semigroup is determined, up to isomorphism, by its maximal

subgroups and cardinality of its subset of idempotents.

There is often a dividing line between relational structures, such as graphs and

partial orderings, and algebraic structures, such as semigroups and groups. A key

difference between these two classes of structures is examined in the subsequent

section. However, we begin by introducing the theory of structures from a general

setting, and one which can be seen to encompass both algebraic and relational

structures. It relies on the following description of relations and functions on a set.

Let X be a set and n a non-negative integer. A subset R of Xn is called a

finitary relation of arity n or an n-ary relation. A map from Xn to X is called a

finitary function of arity n or an n-ary function.

Definition 1.1.1. A (first order) structure M is a non-empty set M , called the

universe, together with:

(i) a set of finitary relations on M ;

(ii) a set of finitary functions on M ;

(iii) a set of elements of M called constant elements.

Each n-ary relation is named by an n-ary relational symbol, and if R is a relation

symbol then we denote RM as the relation named by R. Similarly, we denote

fM as the n-ary function named by a n-ary function symbol f , and cM as the

constant element named by a constant symbol c. We call RM, fM and cM the

interpretations of the symbols R, f and c, respectively. The cardinality of M is

defined as the cardinality of its universe M .

The structure M will often be written as

M = (M,RM, fM, cM : R ∈ R, f ∈ F, c ∈ C),

where R, F and C denote the sets of relational symbols, functional symbols and

constant symbols of M, respectively. Where no confusion may arise, we will not

distinguish between the relation RM and its named relational symbol R. The set

L = R ∪ F ∪ C is called the signature of M, and M is called an L-structure. The

cardinality of the signature L is defined as the cardinality |L| of L.
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If L is a signature without functions or constant symbols, then an L-structure

is called a relational structure. If L is a language without relational symbols, then

an L-structure is called an algebraic structure.

Each signature gives rise to a language. The language consists of the symbols

from the signature together with logical symbols and punctuation, and forms the

framework of first order logic. This will be the main topic of the subsequent section.

We use standard notation by letting M,N,X etc. denote the universes of the

structures M,N and X . Where no confusion can arise, we occasionally abuse

notation by simply referring to a structure M as M . Signatures will usually be

denoted by L, or a subscript may be used to distinguish signatures that will be key

to this thesis.

Example 1.1.2. Let LS = {·} be the signature consisting of a single binary function

symbol, which we call the signature of semigroups. Then a semigroup (S, ·S) can

be regarded as an LS-structure, where ·S is an interpretation of ·. Note that (Z,−)

is also an LS-structure, despite it not being a semigroup.

Example 1.1.3. We may extend LS by adding a constant symbol 1 to obtain the

signature of monoids LMo = {·, 1}.

Example 1.1.4. Now extend LMo by adding a unary function symbol −1, we obtain

the signature of groups LG = {·,−1 , 1}. A group (G, ·G,(−1)G , 1G) can be considered

as an LG-structure, where the group operation ·G interprets ·, the inverse function
(−1)G interprets −1 and 1G is the group identity interpreting 1.

When fixing a signature for groups, we could have defined a function symbol for,

say, the commutator. Alternatively, we could consider a group as an LS-structure,

where we think of this as ‘forgetting’ the symbols −1 and 1. This is an example

of reduction, which we now formalise. Let L and L′ be a pair of signatures such

that L ⊆ L′. Then every L′-structure M forms an L-structure simply by removing

the symbols in L′ \ L. We observe that no elements of M are removed, despite the

fact that constants in M may no longer be constants in the new structure. The

resulting L-structure is called the L-reduct of M, denoted M|L, and M is called

an expansion of M|L. For example, the LS-reduct of an LG-structure (G, ·,−1 , 1)

is (G, ·).
The choice of signature for a structure is central to its study, and in most cases

should be done in a way such that fundamental concepts, such as morphisms and

substructures, agree with the corresponding concept from the relevant branch of

mathematics. Before giving an example of this phenomenon, we first define the

concepts raised here: morphisms and substructures. We fix the following standard

notation for maps.

Notation 1.1.5. Let φ : A→ B be a map between sets A and B. If A′ is a subset

of A then we denote the restriction of φ to A′ as φ|A′ .
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Notation 1.1.6. Let A and B be sets and {Ai : i ∈ I} be a partition of A. If

φi : Ai → B is a map for each i ∈ I, then we let
⋃
i∈I φi denote the map φ : A→ B

given by

aφ = aφi if a ∈ Ai.

Definition 1.1.7. LetM and N be L-structures with universes M and N , respec-

tively. An L-morphism φ : M → N is a map from M to N that preserves the

relations, functions and constants, that is, such that

(i) if R ∈ R is of arity n and x1, . . . , xn ∈M then

(x1, . . . , xn) ∈ RM ⇒ (x1φ, . . . , xnφ) ∈ RN ;

(ii) if f ∈ F is of arity n and x1, . . . , xn ∈M then

((x1, . . . , xn)fM)φ = (x1φ, . . . , xnφ)fN ;

(iii) cMφ = cN for all c ∈ C.

An L-morphism from a substructure M to itself is called an L-endomorphism.

An L-embedding φ :M→N is an injective L-morphism such that

(x1, . . . , xn) ∈ RM ⇔ (x1φ, . . . , xnφ) ∈ RN

for all R ∈ R of arity n and x1, . . . , xn ∈ M . A bijective L-embedding is called an

L-isomorphism. An L-isomorphism from M to M is called an L-automorphism,

and the set of all L-automorphisms ofM forms a group under composition, denoted

by Aut(M). Each L-structure M possesses a trivial automorphism, denoted 1M,

given by m1M = m for all m ∈M , which is the identity of Aut(M).

For example, letG andH be a pair of groups in the signature LG, and φ : G→ H

be an LG-morphism. Then φ preserves both the group operations and the inverses,

and also maps the identity of G to the identity of H, that is,

(gg′)φ = (gφ)(g′φ), (gφ)−1 = (g−1)φ, eGφ = eH ,

for all g, g′ ∈ G, where eG and eH are the identities of G and H, respectively. We

therefore have the usual concept of a morphism of groups. Note that every map

between groups which preserves multiplication gives rise to a group morphism. It

follows that even in the signature LS , every LS-morphism is a group morphism. We

will see an example of morphisms between relational structures in the subsequent

section.

Definition 1.1.8. Let L be a signature and letM and N be a pair of L-structures.
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Then we call N a morphic image of M if there exists a surjective L-morphism

φ :M→N .

Definition 1.1.9. Let M be an L-structure with subset N . We call N charac-

teristic if it is invariant under automorphisms of M, that is if φ ∈ Aut(M) then

Nφ = N .

The automorphism group of a structure M has a natural action on Mn, where

elements of Aut(M) act component-wise on the set Mn. That is, if φ ∈ Aut(M)

and (a1, . . . , an) ∈Mn then define

(a1, . . . , an)φ := (a1φ, . . . , anφ).

Definition 1.1.10. Let L be a signature and M an L-structure. A substructure

of M is an L-structure N such that N ⊆ M and the inclusion map ι : N → M is

an L-embedding.

It follows that if N is a substructure ofM, then RN = RM∩Nn for each n-ary

relation symbol R, fN = fM|Nn for each n-ary function symbol f and cN = cM

for each constant symbol c. In particular, a substructure of an algebraic structure

M is a subset of M which is closed under the operations on M.

Returning again to groups in the signature LG, then every substructure is a

subgroup, further highlighting the naturalness of this choice of signature. On the

other hand, by regarding a group in the signature LS , the substructures need only

be subsets closed under the binary operation, that is, be subsemigroups. As such

the signature LS is seen as a less natural choice. Note however that a finite sub-

semigroup of a group is a group, since each element of the subsemigroup will have

its inverse and the identity element as a power.

We now describe a method for constructing substructures from arbitrary sub-

sets of the universe. It relies on the fact that the intersection of a collection of

substructures is, if non-empty, a substructure.

LetM be an L-structure and A a subset of M . The substructure ofM generated

by A is the uniquely determined substructure with universe⋂
{N : A ⊆ N,N is a substructure of M}

which we denote as 〈A〉M. We say that M is generated by A if 〈A〉M = M, and

if further A is finite then we call M finitely generated (f.g.) or |A|-generated. The

set A is called a generating set of M.

In later chapters there will be a number of exceptions to this notation, most

prominently 〈A〉 will simply denote the substructure generated by A in the signature

of semigroups LS .
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Example 1.1.11. In the group G = (Z,+,−1 , 0), with signature LG, we have

〈2〉G = (2Z,+,−1 , 0).

The following is a simple consequence of [96, Lemma 1.1.7], and shows that

L-isomorphisms between structures induces isomorphisms between their substruc-

tures.

Corollary 1.1.12. Let φ : M → N be an L-morphism and, for A ⊆ M , let

A = 〈A〉M. Then φ induces an L-morphism

φ|A : A → 〈{aφ : a ∈ A}〉M

determined by a 7→ aφ for each a ∈ A. Moreover, if φ is an L-isomorphism then so

is φ|A.

We may now define the first main property which is studied in this thesis.

Definition 1.1.13. An L-structure M is homogeneous if every L-isomorphism

between f.g. substructures extends to an L-automorphism of M.

We may study a weaker form of homogeneity by defining a structure M to

be n-homogeneous for some n ∈ N, if every isomorphism between substructures

of cardinality n extends to an automorphism of M. A homogeneous structure is

clearly n-homogeneous for each n ∈ N.

Definition 1.1.14. A structure M is locally finite if each of its f.g. substructures

is finite.

We study a stronger property than locally finiteness as follows.

Definition 1.1.15. We call M uniformly locally finite (ULF) if there exists a

function f : N→ N such that for every substructure N ofM, if N has a generating

set of cardinality at most n, then N has cardinality at most f(n).

There are numerous ways of building new structures ‘from old’, and we now

study one of the more well known examples: direct products. The direct product

of algebraic structures such as groups and semigroups is well known, although for

relational structures such as graphs it is arguably less so. It will be fruitful to

define a notion of the direct product for arbitrary structures, and in such a way

that generalizes the algebraic direct product.

Let L be a signature and I a non-empty index set. For each i ∈ I, let Mi be

an L-structure with universe Mi. Let X be the Cartesian product of the sets Mi

(i ∈ I), that is, the set of all maps θ : I →
⋃
i∈IMi such that iθ ∈ Mi for each

i ∈ I. We build an L-structure N with universe X in the following way:
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(1) for each n-ary relation symbol R of L, and n-tuple a = (θ1, . . . , θn) of X, we

define a ∈ RN if and only if (iθ1, . . . , iθn) ∈ RMi for each i ∈ I;

(2) for each n-ary function symbol f of L, and n-tuple a = (θ1, . . . , θn) of X, we

define afN to be the element ψ of X such that iψ = (iθ1, . . . , iθn)fMi for

each i ∈ I;

(3) for each constant symbol c of L, we define cN to be the element ϕ of X such

that iϕ = cMi for each i ∈ I.

Then N forms an L-structure, which we denote as
∏
i∈IMi, or simply

∏
i∈IMi

where no confusion may arise.

If |I| = r is finite, then we may adapt the construction above by letting X be

the simplified form of the Cartesian product∏
1≤i≤r

Mi = {(a1, . . . , ar) : ai ∈Mi}.

The relations, functions and constants on the direct product N are then given by:

(1) for each n-ary relation symbolR of L, and n-tuple a = (a1, . . . , an) ofX, where

ak = (ak1, . . . , akr), we define a ∈ RN if and only if (a1i, . . . , ani) ∈ RMi for

each 1 ≤ i ≤ r;

(2) for each n-ary function symbol f of L, and n-tuple a = (a1, . . . , an) of X,

where ak = (ak1, . . . , akr), we define afN to be the element (b1, . . . , br) of X

such that bi = (a1i, . . . , ani)f
Mi for each i ∈ I;

(3) for each constant symbol c of L, we define cN to be the element (cM1
1 , . . . , cMi

r )

of X.

In this case the direct product N will be simply denoted byM1×M2× · · · ×Mr.

We will be working with tuples of sets throughout this thesis, and it is worth

fixing the following notation.

Notation 1.1.16. Given a pair of tuples a = (a1, . . . , an) and b = (b1, . . . , bm), we

denote (a, b) as the (n+m)-tuple given by

(a1, . . . , an, b1, . . . , bm),

and extend this notation for (a, b, c, . . . ) etc. If x is an r-tuple, then we write |x| = r.
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1.1.1 Relational structures: graphs and posets

In this subsection we define a number of key relational structures for our work:

graphs, posets and linear orderings. In addition, this discussion provides further

examples of morphisms and substructures, defined in the previous subsection.

A (simple) graph G = (V,E) is a set V of vertices together with a set E of edges,

where each edge is a set of two distinct vertices. Here, our graphs are undirected,

and have no loops or multiple edges. A graph (V,E) can be naturally considered

in the signature LGr = {R}, comprising a single binary relation symbol R, where

R is interpreted as the edge relation. That is, (V,E) becomes the LGr-structure

G = (V,RG), where (u, v) ∈ RG if and only if {u, v} ∈ E. Where no confusion may

arise, will usually write the symbol R as E, and call LGr the signature of graphs.

Example 1.1.17. Let G = ({1, 2, 3}, E) and G′ = ({4, 5}, E′) be the graphs given

by

3

1

2

Figure 1.1: The graph G.

4

5

Figure 1.2: The graph G′.

We observe that an LGr-morphism is a map between the vertices of a pair of

graphs which preserves edges, while an LGr-embedding is an injective map which

preserves edges and non-edges. For example, the map φ : G → G′ given by

1φ = 3φ = 4 and 2φ = 5

is an LGr-morphism, since it preserves edges. However, φ is not an LGr-embedding

since it is not injective.

The graph ({1, 2}, {{1, 2}}) is a subgraph of the graph G, and is the subgraph

generated by the subset {1, 2} of {1, 2, 3}. However, the empty graph on two vertices

({1, 2}, ∅) is not a subgraph of G as {1, 2} ∈ E.

It is important to notice that any subset A of the graph (V,E) gives rise to a

subgraph (A,E′), where E′ ⊆ E.

In general, ifM = (M,R) is a relational structure and A is a subset of M , then

〈A〉M = (A,R)
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where, for each R ∈ R, we have R〈A〉M = RM ∩ An. It clearly then follows that

every relational structure with finite signature is ULF (a result which is given as

an exercise in [52, Exercise 1.2.6]).

This is one of the fundamental differences between relational structures and

arbitrary structures. Indeed, the existence of functions can add elements to our

generated set and, as seen in Example 1.1.11, even a single element generating set

can generate an infinite substructure.

Posets are our second example of relation structures, and are fundamental to

the study of semigroups. As such, a more leisurely exposition is required.

Given a binary relation σ on a set X, we often denote (x, y) ∈ σ as xσ y. We

define a binary relation σ on a set X to be an equivalence relation if:

(i) (x, x) ∈ σ for all x ∈ X (σ is reflexive);

(ii) if (x, y) ∈ σ then (y, x) ∈ σ for any x, y ∈ X (σ is symmetric);

(iii) if (x, y) ∈ σ and (y, z) ∈ σ then (x, z) ∈ σ for any x, y, z ∈ X (σ is transitive).

If σ is an equivalence relation on a set X and x ∈ X then we denote xτ as the

τ -class containing x:

xτ = {y ∈ X : (x, y) ∈ σ}.

If Y is a subset of X, then τ restricts to an equivalence relation on Y , and we abuse

notation somewhat by denoting Y/τ as the set of equivalence classes of Y under

the restriction of τ . That is,

Y/τ = {yτ ∩ Y : y ∈ Y }.

A binary relation σ on a set X is called anti-symmetric if

(∀x, y ∈ X) (x, y) ∈ σ and (y, x) ∈ σ ⇒ x = y.

We call the binary relation σ a partial order if it is reflexive, transitive and anti-

symmetric. Given a partial order σ, we use the standard convention of writing

(x, y) ∈ σ as either x ≤ y or y ≥ x. We write correspondingly x < y or y > x if

(x, y) ∈ σ and x 6= y. We call (X,≤) a partially ordered set, or simply a poset. As

with graphs, we natural consider posets in the signature LP = {≤} consisting of a

single binary relation symbol ≤.

Example 1.1.18. Every set X forms a poset by letting ≤ be the equality relation,

that is,

x ≤ y ⇔ x = y.

A poset with partial order being equality is called an antichain.
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Notation 1.1.19. Let (X,≤) be a poset with subsets Y and Z. We denote the

property that y ≥ z for all y ∈ Y , z ∈ Z as Y ≥ Z, and say that Y is an upperbound

of Z. If y > z for all y ∈ Y, z ∈ Z then we write Y > Z. If Y = {y1, . . . , yn} is

finite, then we simplify this as y1, . . . , yn > Z, and similarly for Y > z1, . . . , zn.

Given x, x′ ∈ X, if x 6≥ x′ and x′ 6≥ x then we say that x and x′ are incomparable,

denoted x ⊥ x′.

A partial order with the property that

(∀x, y ∈ X) x ≤ y or y ≤ x

is called a linear order or a chain.

An element x of a poset X is called minimal (maximal) if there are no elements

of X strictly less (greater) than x under the partial order. An element x of X is

minimum (maximum) if x ≤ X (x ≥ X), and if such an element exists it is unique.

The set of all minimal and maximal elements of X are called the endpoints of X,

and may not be unique. Given x, y ∈ X, we call x an upper (lower) cover of y if

x > y (x < y) and whenever x ≥ z ≥ y (x ≤ z ≤ y), then x = z or z = y. If every

element of X has an upper and lower cover then X is called discrete. On the other

hand, X is called dense if, whenever x > y in X, then there exists z ∈ X such that

x > z > y. In particular, X is dense if and only if no element has an upper and

lower cover.

Example 1.1.20. The integers Z form a discrete linear order under the natural

order. On the other hand the rationals Q form a dense linear order under the natural

order, and we have the following well known result.

Theorem 1.1.21. Every countable dense linear order without endpoints is isomor-

phic to the rationals Q under the natural order.

1.2 Formulas and models

In this section we explore the machinery used by model theorists for studying and

classifying structures. When defining a poset in the previous section, we gave

a list of axioms which needed to be satisfied. This is a common occurrence in

mathematics. For example, most introductory group theory courses will begin by

listing the three axioms of groups. Each of the axioms use only the symbols from

LG, as well as quantifiers, logical connectives and so on.

We begin by formalizing this concept by using the symbols of a signature L,

together with the usual logical symbols, to build formulas which are interpreted in

any L-structure.
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Definition 1.2.1. Given a signature L, an L-formula is a finite string of symbols

built from

(i) the symbols from L;

(ii) the logical connectives ∧,∨,¬,→,↔;

(iii) quantifiers ∃, ∀;

(iv) variables x0, x1, . . . ;

(v) the equality symbol =;

(vi) parentheses ) and (.

Of course, not every finite string of these symbols is a formula, and the set of

formulas is defined inductively by certain syntactic rules. However, we may think

of a string of symbols to be a formula if it ‘makes sense’, as the following examples

highlight.

Example 1.2.2. The string (∨x(→ ∃ is clearly not a formula.

Example 1.2.3. In the signature of semigroups LS = {·}, the string

(∃x) [(x · x = x) ∧ (x · y = y · x)]

is a formula.

Given an L-formula φ, we say that variable x is a free variable in φ if it is

not bound by a quantifier, and we call φ bound otherwise. A formula without free

variables is called a sentence, while a formula in which all variables are free is called

quantifier-free. As standard notation, we will often write φ(x1, . . . , xn) to make

explicit that x1, . . . , xn are precisely the free variables in φ, and will denote Pn(L)

as the set of all L-formulae with exactly n free variables.

Example 1.2.4. The formula in Example 1.2.3 has x as a bound variable and y as

a free variable. By bounding y by a quantifier we obtain a sentence, for example

(∃x)(∀y) [(x · x = x) ∧ (x · y = y · x)].

Any L-formula φ(x1, . . . , xn) has a natural interpretation in an L-structure M,

and can be seen to express a property of elements of Mn. We can therefore introduce

the notion of the truth of an L-formula in an L-structure. Much like the definition

of a formula, the truth of φ(a1, . . . , an) inM for some (a1, . . . , an) ∈Mn is defined

inductively in a natural way, and denoted M |= φ(a1, . . . , an). We will say that

a ∈Mn has first order property φ(x1, . . . , xn) if M |= φ(a).
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An L-sentence can be interpreted as either true or false in an L-structure. We

call a property of M first order if it can be written as an L-sentence φ such that

M |= φ.

Example 1.2.5. In the signature LS , the property of commutativity is first order,

and is defined by the sentence

φcomm := (∀x)(∀y) [x · y = y · x].

For example, (Z,×) |= φcomm.

Example 1.2.6. The formula in LS ,

φ(y) := (∀x) [x · y = y · x]

can be interpreted as the property of central elements, that is, elements which

commute with all other elements. For example, in a group G with identity 1 we

have (G, ·) |= φ(1), and if G is abelian then (G, ·) |= φ(g) for all g ∈ G.

Example 1.2.7. Both the property of being finite of cardinality n and the property

of being infinite, can be expressed using formulae. To see this, let φn be the sentence

given by

φn := (∃x1) · · · (∃xn)
∧
i 6=j
¬[xi = xj ],

for each n ∈ N. Then we interpret φn as the property of the universe of a structure

having at least n elements. Hence, for any signature L and L-structureM, we have

|M | = n if and only if

M |= φn ∧ ¬φn+1.

On the other hand, M is infinite if and only if M |= φn for all n ∈ N.

Not every property of an L-structure can be expressed as an L-formula. Follow-

ing the example given by Rosenstein [84, p437] in the context of groups, to express

that an infinite semigroup is generated by a single element we cannot write

(∃x)(∀y)(∃n)[y = xn]

or

(∃x)(∀y)[y = x0 ∨ y = x1 ∨ y = x2 ∨ · · · ]

since these expressions are not L-formulae. Indeed, in the first case a quantifier

ranges over N and not variables, and in the second infinite disjunction occurs. A

note of caution should be made, since this does not actually prove that the property

of being generated by a single element is not first order. The property is not first

order, but a proof would require machinery outside the scope of this thesis.
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Definition 1.2.8. Given a signature L, then we define an L-theory T to be a set

of L-sentences, where T is permitted to be finite or infinite. We say that an L-

structure M models T , denoted M |= T , if all sentences in T are true in M, that

is M |= φ for all φ ∈ T .

A class K of L-structures is called axiomatizable if there exists a theory T such

that K is precisely the class of L-structures which model T . Great progress has

been made into axiomatizability of S-acts (see [36] and [37], for example).

Example 1.2.9. The theory of semigroups, denoted TS , in LS consists of the single

sentence

(∀x)(∀y)(∀z) [x(yz) = (xy)z],

which is interpreted as the property of associativity. While an LS-structure need

not be a semigroup, we have that M |= TS if and only if M is a semigroup. That

is, the class of all semigroups in the signature LS is axiomatizable by TS .

Example 1.2.10. The theory of linear orders without endpoints TLO, in the signa-

ture LP = {≤}, consists of the following L-sentences:

(∀x)[(x ≤ x)] (reflexive),

(∀x)(∀y)[x ≤ y ∧ y ≤ x→ x = y] (anti-symmetric),

(∀x)(∀y)(∀z)[(x < y ∧ y < z)→ x < z] (transitive),

(∀x)(∀y)[x ≤ y ∨ y ≤ x] (linear order),

(∀x)(∃y)(∃z)[y < x ∧ x < z] (no endpoints).

The class of all linear orders without endpoints is axiomatized by TLO. If we add

the sentence

(∀x)(∀y)
[
(x < y)→ [(∃z)(x < z ∧ z < y)]

]
(1.1)

then we have the theory of dense linear orders without endpoints TDLO.

Similarly we form the theory of groups TG in the signature LG, the theory of

graphs TGr in the signature LGr, and the theory of posets TP in the signature LP ,

etc.

Definition 1.2.11. Let T be an L-theory and φ an L-sentence. We call φ a logical

consequence of T , denoted T |= φ, if M |= φ whenever M |= T .

Example 1.2.12. The sentence φcomm from Example 1.2.5 is not a logical conse-

quence of TS , since there exist non-commutative semigroups. However the sentence

(∀x)[x2 = x→ x3 = x]

is a logical consequence of TS , since any idempotent of a semigroup is equal to any

of its powers.



30 CHAPTER 1. PRELIMINARIES I

Given an L-structureM, then the full theory ofM, denoted Th(M), is the set

of all L-sentences φ such that M |= φ. Notice that for any semigroup M in the

signature LS ,

TS ⊆ Th(M),

and similarly for TG, TGr etc.

Definition 1.2.13. An L-theory T is called satisfiable if there exists an L-structure

M such that M |= T . An L-theory T is called complete if, for any L-sentence φ,

either T |= φ or T |= ¬φ.

Example 1.2.14. The full theory of a structure is complete.

Example 1.2.15. The theory TS is not complete. For example, since there exist

both commutative and non-commutative semigroups, we have TS 6|= φcomm and

TS 6|= ¬φcomm.

The full theory of a structure is, in general, too difficult to determine. We can

often overcome this problem by finding a ‘simpler’ complete L-theory T such that

M |= T . Indeed, let T be a complete theory such that M |= T . Then for any

L-sentence φ, if T 6|= φ then T |= ¬φ by completeness, and so M |= ¬φ. It follows

that M |= φ if and only if T |= φ.

Definition 1.2.16. A pair of L-structures M and N are elementary equivalent,

denoted M ≡ N , if they satisfy the same L-sentences, that is Th(M)=Th(N ).

We observe that a pair of isomorphic structures are clearly elementary equiva-

lent, but the converse need not be true.

Example 1.2.17. In the signature of posets LP = {≤} we have that (Q,≤) and

(Z,≤) are not elementary equivalent, since the property of a poset being dense is

first order by (1.1).

The following result is immediate from the definitions given above, and provides

a useful test for the completeness of a theory.

Theorem 1.2.18. Let T be a satisfiable theory. Then T is complete if and only if

for each M,N |= T we have M≡ N .

Example 1.2.19. The theory of dense linear orders without endpoints is complete

[69, Theorem 2.4.1], and so (Q, <) ≡ (R, <) by the theorem above.

One of the most fundamental questions in model theory is the following:

Given a satisfiable theory T , how many countable models of T exist, up

to isomorphism?
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In [98], Vaught studied this question for complete theories, and showed a somewhat

surprising result that, assuming that the Continuum Hypothesis is true, no complete

theory has precisely 2 non-isomorphic countable models. On the other hand, for

any n ∈ N \ {2}, there exist complete theories with precisely n non-isomorphic

countable models. The case when n = 1 is of particular interest, and studied in

greater detail in Chapter 3:

Definition 1.2.20. An L-theory T is ℵ0-categorical if all countable models of T

are isomorphic. A countable L-structure M is ℵ0-categorical if Th(M) is an ℵ0-

categorical theory.

Hence ifM is an ℵ0-categorical L-structure then for every countable L-structure

N we have

N ≡M⇔ N ∼=M.

1.2.1 Definable sets

LetM be an L-structure and let A be a fixed subset of Mn for some n ∈ N. Then we

call A definable if there exists an L-formula φ(x1, . . . , xn, y1, . . . , ym) and b ∈ Mm

such that

A = {a ∈Mn :M |= φ(a, b).

We say that φ(x1, . . . , xn, b) defines A. Given a fixed subset X of M , then A is

called X-definable or definable with parameters from X if there exists an L-formula

ψ(x1, . . . , xn, y1, . . . , ym) and b ∈ Xm such that ψ(x1, . . . , xn, b) defines A.

Example 1.2.21. Let (S, ·) be a semigroup in LS . Then the set of all central

elements of S is defined by the formula φ(y) = (∀x) [xy = yx] as

{a ∈ S : as = sa for all s ∈ S} = {a ∈ S : (S, ·) |= φ(a)}.

In a later chapter we will show that the property of a structure being ℵ0-

categorical translates to a property of its automorphism group. This is a common

occurrence in model theory, and is further highlighted in the following method for

proving that a subset is not definable.

Given an automorphism φ of a structure M with subset A, then we say that φ

fixes A pointwise if aφ = a for all A. We say that φ fixes A setwise if Aφ = A.

Proposition 1.2.22. [69, Proposition 1.3.5] Let M be an L-structure and let A

be an X-definable subset of Mn for some n ∈ N. Then any automorphism φ of M

which fixes X pointwise fixes A setwise.

On the class of ℵ0-categorical structures we have a partial converse to the propo-

sition above:
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Proposition 1.2.23. [73] LetM be an ℵ0-categorical L-structure, X a finite subset

of M and A ⊆ Mn for some n ∈ N. Then A is X-definable if and only if any

automorphism of M which fixes X pointwise fixes A setwise.

1.2.2 Quantifier elimination

Quantifier-free formulae are, in most cases, far simpler to work with than formulae

with quantifiers. For example, for any L-formula φ and variable x not given in φ,

we have M |= φ if and only if M |= (∀x)φ for all L-structures M. It therefore

makes more sense to work with φ rather than (∀x)φ.

Similarly, sets defined by quantifier-free formulae tend to be simpler to describe.

It is therefore often useful to find, if possible, a quantifier-free formula which is

‘equivalent’ to our given formula. A classical example in the language of fields

L = {+,−, ·, 0, 1}, where +,− and · are binary function symbols and 0 and 1 are

constants, is the quadratic solution formula φ(a, b, c) given by

(∃x)[ax2 + bx+ c = 0].

Then in the field of complex numbers we have

(C,+,−, ·, 0, 1) |= φ(a, b, c)↔ [(¬a = 0) ∨ (¬b = 0) ∨ (c = 0)].

Definition 1.2.24. A theory T has quantifier elimination if, for every formula φ,

there exists a quantifier-free formula ψ such that

T |= φ↔ ψ.

Example 1.2.25. The theory of dense linear orders without endpoints TDLO has

quantifier elimination. Every formula is equivalent to a formula built in following

way. Let σ : {(i, j) : 1 ≤ i, j ≤ n} → 3, and φσ(x1, . . . , xn) be the formula given by∧
σ(i,j)=0

xi = xj ∧
∧

σ(i,j)=1

[xi ≤ xj ∧ ¬xi = xj ] ∧
∧

σ(i,j)=2

[xj ≤ xi ∧ ¬xi = xj ].

Although quantifier elimination is in no way central to this thesis, it serves both

as a model theoretic motivation for studying ℵ0-categoricity and homogeneity, and

gives a vital link between the two concepts:

Theorem 1.2.26. [51] Let L be a finite signature and M a countable L-structure.

Then the following are equivalent:

(i) M is homogeneous and ULF;
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(ii) M is ℵ0-categorical and has quantifier elimination.

An immediate consequence is that if M is a homogeneous relational structure

with finite signature L, then it is ℵ0-categorical.

We end this chapter by fixing the following notation.

Notation 1.2.27. In a given section of this thesis, we will predominantly be work-

ing in a fixed signature. Where no confusion may arise, the prefix L will then

be dropped from the concepts introduced in this section. For example, we write

structure instead of L-structure, formula instead of L-formula and theory instead

of L-theory.





Chapter 2

Preliminaries II: An introduction to

semigroup theory

In this section we outline the basic semigroup theory required in this thesis. The

definitions and results are taken from the standard books on introductory semigroup

theory: [20], [21], [55] and [72]. Here we mostly study semigroups as LS-structures.

Concepts such as morphisms and subsemigroups then follow by the general defini-

tions given in the previous chapter, but are given here due to their importance in

this thesis.

2.1 Monoids and zeros

A semigroup (S, ·) is a non-empty set S together with an associative binary opera-

tion · defined on S, so that if x, y, z ∈ S then

(x · y) · z = x · (y · z).

We follow the usual convention of denoting the product x · y by juxtaposition

xy. We say that S is commutative if xy = yx for all x, y ∈ S. An element u of S is

called a left identity if ua = a for each a ∈ S, and called a right identity if au = a

for each a ∈ S. A left and right identity is called an identity, and it is unique (if it

exists). A semigroup with an identity is called a monoid. Dually, an element 0 of S

is called a left (right) zero of S if 0a = 0 (a0 = 0) for each a ∈ S. A left and right

zero is called a zero, and it is unique (if it exists). If S contains a zero then we call

S a semigroup with zero.

If S is not a monoid, then we can adjoin an identity 1 to S to form a monoid.

That is, we take some 1 6∈ S and extend the binary operation on S to S ∪ {1} by

35
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defining 1x = x1 = x for all x ∈ S1. We then define

S1 =

S if S has an identity element,

S ∪ {1} else.

We call S1 the monoid obtained from S by adjoining an identity if necessary.

Similarly, if S does not contain a zero, then we adjoin a zero 0 to S to form a

semigroup with zero, and take

S0 =

S if S has a zero,

S ∪ {0} else.

We call S0 the semigroup obtained from S by adjoining a zero if necessary.

Example 2.1.1. A trivial semigroup {e} is a semigroup with cardinality one, so

that e2 = e. In this case e is both a zero and an identity element.

Example 2.1.2. A null semigroup is a semigroup in which the product of any pair

of elements is zero. That is, a semigroup N with zero is null if xy = 0 for each

x, y ∈ N .

If A and B are subsets of a semigroup S, then we define the product of A and

B in the natural way as AB = {ab : a ∈ A, b ∈ B}. For singleton sets we simplify

our notation by writing, for example, aB instead of {a}B. For a ∈ S we then have

three key subsets of S given by

(i) S1a = Sa ∪ {a};

(ii) aS1 = aS ∪ {a};

(iii) S1aS1 = SaS ∪ Sa ∪ aS ∪ {a},

where the multiplication of subsets is taking place inside S1.

A non-empty subset T of S is called a subsemigroup if it is closed under the

operation of S, that is, if xy ∈ T for each x, y ∈ T . If T also forms a group under

the restriction of the operation of S to T , then T is called a subgroup of S. A

subsemigroup T of S is called a left ideal if ST ⊆ T , a right ideal if TS ⊆ T and a

(two-sided) ideal if it is both a left and right ideal. For example, S forms an ideal

of itself, and if S contains a zero then {0} is an ideal. An ideal T such that T is

non-zero and T ⊂ S is called a proper ideal.

Example 2.1.3. For any a ∈ S, the sets S1a, aS1 and S1aS1 are left, right and

two-sided ideals of S, respectively, which we call the principal left, right and two-

sided ideals of S generated by a. They are, respectively, the smallest left, right and

two-sided ideals containing a.
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An element e of S is called an idempotent if e2 = e, and we denote the set of

idempotents of S as E(S). We observe that {e} is a trivial subsemigroup (indeed,

subgroup) of S for any e ∈ E(S). The set E(S) comes equipped with a partial

order ≤ defined by

e ≤ f if and only if ef = fe = e.

We call ≤ the natural order on E(S).

If E(S) = S then we call S a band. A commutative band is called an (algebraic)

semilattice, and the natural order simplifies to

e ≤ f if and only if ef = e.

For any non-empty subset A of S, the intersection of all subsemigroups of S

containing A forms a subsemigroup of S, which we simply denote as 〈A〉, called the

subsemigroup of S generated by A. For example, if A = {a} is a singleton set, then

〈a〉 = {a, a2, a3, . . . },

which we call the monogenic subsemigroup of S generated by a. If S is a monoid,

then by working instead in the signature of monoids LMo, the submonoid of S

generated by a non-empty set A is defined as the intersection of all the submonoids

of S containing A, and denoted by 〈A〉Mo. For example, if S is a monoid and a ∈ S
then

〈a〉Mo = {1, a, a2, a3, . . . }.

We define the order of an element a of a semigroup S as the cardinality of 〈a〉. Note

that, even if S is a monoid, our definition of order relies on 〈a〉 not 〈a〉Mo. If a has

finite order then the sequence (an)n∈N contains repetitions, and we can define the

index of a, say m, to be the least element of

{x ∈ N : (∃y ∈ N) ax = ay, x 6= y}.

It then follows that the set

{x ∈ N : am+x = am}

is non-empty, and has a least element r, known as the period of a.

Lemma 2.1.4. [55, Theorem 1.2.2] Let a be an element of a semigroup S of index

m and period r, so that am+r = am. Then:

(i) am+qr = am for all q ∈ N;

(ii) 〈a〉 = {a, a2, . . . , am+r−1} and the order of a is m+ r − 1;
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(iii) the subset Ka = {am, . . . , am+r−1} of 〈a〉 is a cyclic group of order r. In

particular, Ka contains an idempotent of S.

On the other hand, if a ∈ S has infinite order then there are no repetitions in

a, a2, a3, . . . , and it follows that 〈a〉 is isomorphic to the semigroup (N,+) of natural

numbers under addition.

A semigroup in which all elements have finite order is called periodic, otherwise

it is called non-periodic.

2.2 Morphisms, congruences and direct products

By applying Definition 1.1.7 to the signature LS , we obtain the concept of mor-

phisms between semigroups as follows. Given a pair of semigroups S and T , a map

φ : S → T is a morphism if it preserves the operation on S, that is, if

(∀x, y ∈ S) (xφ)(yφ) = (xy)φ.

Note that if S is a semigroup and φ is an endomorphism of S then we can

extend φ to an endomorphism of S1, simply by fixing 1. That is, take the map

φ′ : S1 → S1 given by φ′|S = φ and 1φ = 1. Dually we may extend endomorphisms

of S to endomorphisms of S0.

A relation σ on a semigroup S is left compatible (with the operation on S) if

(∀x, y, z ∈ S) (x, y) ∈ σ ⇒ (zx, zy) ∈ σ.

Dually, σ is right compatible if

(∀x, y, z ∈ S) (x, y) ∈ σ ⇒ (xz, yz) ∈ σ,

and is called compatible if

(∀x, y, x′, y′ ∈ S) [(x, y) ∈ σ and (x′, y′) ∈ σ]⇒ (xx′, yy′) ∈ σ.

An equivalence relation which is (left/right) compatible is called a (right/left)

congruence. Equivalently, an equivalence relation ρ is a congruence if and only if it

is a left and a right congruence.

Let σ be a relation on a set X. Then the intersection of all congruences on X

containing σ is a congruence, denoted σ], and is the unique minimum congruence on

X containing σ. We call σ] the congruence generated by σ. We say that a congruence

ρ on a semigroup is finitely generated (f.g.) if there exits a finite relation σ such

that ρ = σ].
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There exists a particularly useful description of the congruence σ], which we

now examine. Let σ be a relation on a semigroup S. If x, y ∈ S are such that

x = uav, y = ubv,

for some u, v ∈ S1, where either (a, b) ∈ σ or (b, a) ∈ σ, then we say that x is

connected to y by an elementary σ-transition, denoted x→ y.

Proposition 2.2.1. [55, Proposition 1.5.9] Let σ be a relation on a semigroup S,

and let x, y ∈ S. Then (x, y) ∈ σ] if and only if either x = y or, for some n ∈ N,

there is a sequence

x = z1 → z2 → · · · → zn = y

of elementary σ-transitions connecting x to y.

If ρ is a congruence on a semigroup S then the binary operation on the set of

equivalence classes S/ρ given by

(aρ)(bρ) = (ab)ρ.

is well-defined and associative [55, Section 1.5]. Hence S/ρ forms a semigroup,

called a quotient semigroup. Clearly if S is a monoid, then so is S/ρ.

Given a proper ideal I of a semigroup S, we define a relation ρI on S by

a ρI b⇔ either a, b ∈ I or a = b.

Then ρI forms a congruence, called the Rees congruence on S modulo I, and S/ρI

is called a Rees factor semigroup. Moreover, S/ρI is a semigroup with zero element

I, and can be regarded as consisting of I together with the elements of S \ I with

product ∗ given by

s ∗ t =

st if s, t, st ∈ S \ I,

I else.

We write S/I instead of S/ρI where no confusion can arise.

We apply our general definition of direct product of structures to LS as follows.

Given a pair of semigroups S1 and S2, then the direct product of S1 and S2 is the

set S1 × S2 together with the (associative) operation

(s, t)(s′, t′) = (ss′, tt′),

so that S1 × S2 forms a semigroup.

If M = S×T and M ′ = S′×T ′ are a pair of direct products of semigroups, and
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φ : S → S′ and ψ : T → T ′ are morphisms, then the map Φ : M →M ′ given by

(s, t)Φ = (sφ, tψ)

is a morphism, which we denote as φ×ψ. Clearly if φ and ψ are injective/surjective

then so is φ× ψ.

We end the section by describing a second type of product of semigroups: spined

product. Let P and Q be a pair of semigroups and θ : P → M and φ : Q → M a

pair of surjective morphisms. Following [7], we define the spined product of P and

Q w.r.t. M to be the subset

P ./M,θ,φ Q = {(a, b) : a ∈ P, b ∈ Q, aθ = bφ}

of P ×Q. The spined product P ./M,θ,φ Q forms a subsemigroup of P ×Q.

2.3 Posets and semilattices

Let (X,≤) be a poset. Then, given a subset Y of X, we call an element x of X a

lower bound of Y if x ≤ Y . If the set of lower bounds of Y is non-empty and has a

maximum element y then we call y the meet of Y . If y exists, it is unique, and we

denote it as

y =
∧
Y.

If Y = {a, b} then we simply write y = a ∧ b.
A lower semilattice is a poset in which the meet of any pair of elements exists. If

(Y,≤) is a lower semilattice, then it is easily verifiable that (Y,∧) forms a semigroup.

Furthermore, since x ∧ x = x and x ∧ y = y ∧ x for all x, y ∈ Y , the semigroup

(Y,∧) is an (algebraic) semilattice. We have proven the first half of the following

proposition.

Proposition 2.3.1. [55, Proposition 1.3.2] Let (Y,≤) be a lower semilattice. Then

(Y,∧) is an algebraic semilattice and

(∀x, y ∈ Y ) x ≤ y if and only if x ∧ y = x.

Conversely, if Y is an algebraic semilattice with natural order ≤, then (Y,≤) is a

lower semilattice, where x ∧ y = xy.

A lower semilattice (Y,≤) can alternatively be considered as the structure

(Y,≤,∧)

in the signature LLS = {≤,∧}, where ≤ is a binary relation symbol, interpreted as
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the natural order, and ∧ is a binary function symbol, interpreted as the meet. A

consequence of Proposition 2.3.1 is that, for many of the model theoretic notions

introduced in this thesis, it makes no difference to consider lower semilattices on

LS or LLS .

Every linearly ordered set is a semilattice, where the meet function ∧ is the

minimum of two elements. That is, every linear order (P,≤) in the signature of

posets LP may be regarded instead as a semilattice (P,≤,∧) in LLS .

2.4 Green’s relations and regular elements

We now introduce a collection of relations on an arbitrary semigroup S, known as

Green’s relations. Introduced by Green in [41], they describe the ideal structure of

S, and as such are fundamental to the study of semigroups.

Define the binary relations ≤l,≤r and ≤j on S by

a ≤l b if and only if S1a ⊆ S1b,

a ≤r b if and only if aS1 ⊆ bS1,

a ≤j b if and only if S1aS1 ⊆ S1bS1.

The relations ≤l,≤r and ≤j are called the Green’s left, left and two-sided orders,

respectively. Each relation is a reflective and transitive binary relation, which is

known as a quasi-order. Moreover, ≤l/≤r is right/left compatible with the operation

on S. This follows immediately from the fact that

Lxa ≤ La and Rax ≤ Rs (2.1)

for any a ∈ S and x, y ∈ S1.

The five Green’s relations are then given by:

(i) aL b if and only if S1a = S1b;

(ii) aRb if and only if aS1 = bS1;

(iii) aH b if and only if aR b and aL b;

(iv) aD b if and only if ∃c such that aR cL b;

(v) aJ b if and only if S1aS1 = S1bS1.

Each relation is an equivalence relation, with L,R and J being the corresponding

equivalence relations associated with ≤l,≤r and ≤j , respectively. Note that H =

L∩R and D is the least equivalence relation containing L and R. Moreover, L and

R commute, with

D = L ◦ R = R ◦ L.
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It is clear that L ⊆ J and R ⊆ J . Hence as D is the smallest equivalence relation

containing L and R we have D ⊆ J . Figure 2.4 shows the corresponding Hasse

diagram.

L R

H

D

J

Figure 2.1: Hasse diagram of Green’s relations.

We call the equivalence classes of the Green’s relations the L−,R− etc classes

of S. For each a ∈ S we let La denote the L-class containing a, and similarly

for Ra, Ha, Da, Ja. The three Green’s orders induce partial orders on the set of

equivalence classes of their corresponding Green’s relation as follows.

La ≤ Lb if and only if a ≤l b,

Ra ≤ Rb if and only if a ≤r b,

Ja ≤ Jb if and only if a ≤j b.

The D-classes of S are a union of the L-classes, and also a union of R-classes.

By the definition of the relation D we have

aD b⇔ La ∩Rb 6= ∅ ⇔ Ra ∩ Lb 6= ∅.

It therefore pays to visualize a D-class as an ‘eggbox’- a term coined by Clifford

and Preston. An eggbox is a grid in which each column represents an L-class, each

row represents a R-class, and each cell represents a H-class.

The following pair of results on the H-classes of S contained in the same eggbox

are vital to the study of arbitrary D-classes of semigroups.

Ra a

b
Lb

Figure 2.2: D-class.
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Lemma 2.4.1. [55, Lemma 2.2.3] Let a, b be D-equivalent elements in a semigroup

S. Then |Ha| = |Hb|.

Theorem 2.4.2 (The Maximal Subgroup Theorem). [55, Corollary 2.2.6] If e is

an idempotent of a semigroup S then He is a group with identity element e. No

H-class contains more than one idempotent.

An element a of a semigroup S is called regular if there exists b in S such that

a = aba. A semigroup is called regular if each of its elements is regular. Note that

if a = aba then ab and ba are idempotent as

(ab)(ab) = (aba)b = ab, (ba)(ba) = b(aba) = ba.

Example 2.4.3. Every group is regular as gg−1g = g. Every band is regular since

eee = e for any idempotent e.

If a is a regular element, then it can be shown that every element in Da is regular,

and so we may speak of regular D-classes without ambiguity. In particular, it follows

from Example 2.4.3 that every D-class containing an idempotent is regular.

Proposition 2.4.4. [55, Propositions 2.3.2, 2.3.3] In a regular D-class, each L-

class and each R-class contains an idempotent. Moreover, every idempotent e is a

right identity for Le and a left identity for Re.

If a is an element of a semigroup S, then we say that a′ is an inverse of a if

a = aa′a, a′ = a′aa′.

Of course every element with an inverse is regular. Conversely, regular elements

possess inverses, since if a = aba is regular then a′ = bab can be shown to be an

inverse of a. For each a ∈ S we let V (a) denote the set of inverses of a.

Example 2.4.5. If S is a group then V (a) = {a−1} for any a ∈ S. If N is a null

semigroup, then 0 is regular since it is an idempotent, and if a ∈ N \ {0} then

aba = 0 for any b ∈ S. It follows that V (a) = ∅ for any a ∈ N \{0} and V (0) = {0}.

The following theorem gives a useful method for locating inverses of elements

in a semigroup.

Theorem 2.4.6. [55, Theorem 2.3.4] Let a be an element of a semigroup S con-

tained in a regular D class D.

(i) If a′ ∈ V (a), then a′ ∈ D and the H-classes Ra ∩ La′ and La ∩ Ra′ contain

the idempotents aa′ and a′a, respectively.

(ii) If b ∈ D is such that Ra∩Lb and La∩Rb contain idempotents e, f , respectively,

then Hb contains an inverse a′′ of a such that aa′′ = e and a′′a = f .
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(iii) No H-class contains more than one inverse of a.

We end this section by giving a pair of results which are of considerable use in

our later work. They dictate how the idempotents and the maximal subgroups of

a semigroup behave within a D-class.

Proposition 2.4.7. [55, Proposition 2.3.5] Let e, f be a pair of idempotents in a

semigroup S. Then eD f if and only if there exists a ∈ S and a′ ∈ V (a) such that

aa′ = e, a′a = f.

Proposition 2.4.8. [55, Proposition 2.3.6] If H and H ′ are a pair of group H-

classes in the same D-class then H ∼= H ′.

2.5 0-simple semigroups and principal factors

A semigroup is called simple if it has no proper ideals. This is equivalent to a

semigroup having a single J -class. A simple semigroup is completely simple if it

contains an idempotent which is minimal within the set of idempotents E(S) of S

under the natural order. That is, if it contains an idempotent e such that

(∀f ∈ E(S)) ef = fe = f ⇒ f = e.

A semigroup with a single D-class is called bisimple. Clearly every bisimple semi-

group is simple.

A semigroup with zero S is called 0-simple if {0} and S are its only ideals and

S2 6= {0}. This is equivalent to S not being a null semigroup and {0} and S \ {0}
being its only J -classes. A 0-simple semigroup is called completely 0-simple if it

contains an idempotent which is minimal within the set of non-zero idempotents.

That is, if it contains an idempotent e such that

(∀f ∈ E(S)) ef = fe = f 6= 0⇒ e = f.

We call such an idempotent primitive. It is known that a finite 0-simple semigroup

is completely 0-simple, and every completely (0-)simple semigroup is regular.

We now describe a well known decomposition theorem of an arbitrary semigroup,

which highlights the importance of 0-simple and simple semigroups to the theory of

semigroups. For each element a of a semigroup S, let J(a) = S1aS1 and consider

the set

I(a) = J(a) \ Ja.

If I(a) is empty, then J(a) = Ja is the unique minimal ideal of S, which we call the

kernel of S, and is denoted K(S). Note that such an ideal may not exist. If I(a)
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is non-empty then it forms an ideal of S, and thus also of J(a). The Rees factor

semigroups J(a)/I(a) (a ∈ S) and K(S) are called the principal factors of S.

Theorem 2.5.1. [20, Lemma 2.39] The principal factors of a semigroup are either

0-simple, simple or null. The only simple principal factor is the kernel, if it exists.

Of course, for Theorem 2.5.1 to be of use we require a deeper understanding of

(0-)simple semigroups. The most famous breakthrough in this area came in 1940 by

Rees [78], where a recipe for constructing all completely 0-simple semigroups was

given. This result is commonly known as the Rees Theorem, which we now state.

Theorem 2.5.2 (The Rees Theorem). Let G be a group, let I and Λ be non-

empty index sets and let P = (pλ,i) be an Λ × I matrix with entries in G ∪ {0}.
Suppose no row or column of P consists entirely of zeros (that is, P is regular). Let

S = (I ×G× Λ) ∪ {0}, and define multiplication ∗ on S by

(i, g, λ) ∗ (j, h, µ) =

{
(i, gpλ,jh, µ) if pλ,j 6= 0

0 else

0 ∗ (i, g, λ) = (i, g, λ) ∗ 0 = 0 ∗ 0 = 0.

Then S is a completely 0-simple semigroup, denoted M0[G; I,Λ;P ], and is called a

(regular) Rees matrix semigroup (over G). Conversely, every completely 0-simple

semigroup is isomorphic to a Rees matrix semigroup.

The matrix P is called the sandwich matrix of S. The regularity of the matrix

P ensures that S forms a regular semigroup.

The strength in the Rees Theorem is that it permits a relatively simple isomor-

phism theorem, which follows from [55, Section 3.4].

Theorem 2.5.3. Let S1 =M0[G1; I1,Λ1;P ] and S2 =M0[G2; I2,Λ2;Q] be a pair

of Rees matrix semigroups where P = (pλ,i) and Q = (qµ,j). Let ψI : I1 → I2 and

ψΛ : Λ1 → Λ2 be bijections, let θ : G1 → G2 be an isomorphism and let ui and vλ

be elements of G2 for each i ∈ I1, λ ∈ Λ1. Then the mapping φ : S1 → S2 given by

(i, g, λ)φ = (iψI , ui · (gθ) · vλ, λψΛ)

is an isomorphism if and only if

pλ,i θ = vλ · qλψ,iψ · ui.

Moreover, every isomorphism from S1 to S2 can be described in this way.

Consequently, if S = M0[G; I,Λ;P ] is a Rees matrix semigroup then the rows

and columns of P can be permuted to obtain an isomorphic Rees matrix semigroup.

Formally, let ψI and ψΛ be bijections of I and Λ, respectively, and let Q = (qλ,i) be
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the Λ × I matrix with qλ,i = pλψ−1
Λ ,iψ−1

I
for each i ∈ I, λ ∈ Λ. Let ui = 1 = vλ for

each i ∈ I, λ ∈ Λ and let θ be the identity automorphism of G. Then the mapping

φ : S →M0[G; I,Λ;Q] given by

(i, g, λ)φ = (iψI , ui(gθ)vλ, λψΛ) = (iψI , g, λψΛ)

is an isomorphism by Theorem 2.5.3 since pλ,iθ = pλ,i = vλqλψΛ,iψIui.

A non-trivial completely simple semigroup may be regarded as a completely

0-simple semigroup simply by adjoining a zero. However, it is worth noting that

not every completely 0-simple semigroups arises in this way, as the Rees Theorem

indicates. A simplified Rees Theorem for completely simple semigroups then follows:

Theorem 2.5.4. Let G be a group, let I and Λ be non-empty index sets and let

P = (pλ,i) be an Λ × I matrix with entries in G. Let S = I × G × Λ, and define

multiplication ∗ on S by

(i, g, λ) ∗ (j, h, µ) = (i, gpλ,jh, µ)

Then S is a completely simple semigroup, denotedM[G; I,Λ;P ]. Conversely, every

completely simple semigroup is isomorphic to a semigroup constructed in this way.

Notice that by adjoining a zero to a completely simple semigroupM[G; I,Λ;P ]

we may apply a suitably simplified version of Theorem 2.5.3.

2.6 Semigroup and monoid presentations

Let A be a non-empty set. Let A+ be the set of all finite, non-empty words

a1a2 · · · an formed from the alphabet A. Then A+ forms a semigroup with respect

to the binary operation of juxtaposition of words

(a1a2 · · · an)(b1b2 · · · bm) = a1a2 · · · anb1b2 · · · bm,

called the free semigroup on A. The set A is the unique minimal generating set

of A+. By adjoining an identity 1 to the free semigroup A+, we attain the free

monoid, denoted A∗. The element 1 corresponds to the empty product of elements

of A.

If S is a semigroup generated by a set A, then there exists a congruence ρ on

A+ such that S is isomorphic to A+/ρ. If A is finite and there exists a finite set

R = {(u1, v1), . . . , (ur, vr)} ∈ A+ ×A+

such that S ∼= A+/R] then S is called finitely presented, and that it has finite
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presentation

〈A : u1 = v1, . . . , ur = vr〉.

We define a finitely presented monoid by replacing A+ with A∗ in the definition

above.

Example 2.6.1. An example paramount to our study is the bicyclic monoid B, a

finitely presented monoid presented by

B = 〈p, q : pq = 1〉Mo,

so that B = {p, q}∗/R] where R = {(pq, 1)}. Note that B is simple, regular (indeed

inverse - see later) but not completely simple as its idempotents form an infinite

descending chain, and thus no principal idempotents exist.

2.7 Semilattices of semigroups

In this section we introduce the most important semigroup construction in this

thesis, and certainly the most used. Let Y be a semilattice. A semigroup S is a

semilattice Y of semigroups Sα (α ∈ Y ) if S is the disjoint union of the semigroups

Sα and, for each α, β ∈ Y , we have

SαSβ ⊆ Sαβ. (2.2)

The semilattice Y is called the structure semilattice of S. We follow the usual

convention of denoting an element a of Sα as aα.

If S =
⋃
α∈Y Sα is a semilattice of semigroups, then the map σS : S → Y

given by sασS = α is a morphism since if α, β ∈ Y and xα ∈ Sα, yβ ∈ Sβ, then

xαyβ ∈ Sαβ, so that

(xαyβ)σS = αβ = (xασS)(yβσS).

Let T =
⋃
α∈Y Tα be a semilattice of semigroups, with the same structure semilattice

as S. Then the spined product of S and T w.r.t. Y is given by

{(s, t) : s ∈ S, t ∈ T, sσS = tσT } = {(sα, tα) : sα ∈ Sα, tα ∈ Tα, α ∈ Y },

which we denote by S ./ T .

Notice that, by (2.2), we understand the ‘global’ structure of a semilattice Y of

semigroups Sα, but not its local structure. That is, given x ∈ Sα and y ∈ Sβ, we

know that xy lies in Sαβ, but not its exact location. One method for describing a

‘local’ structure is as follows.
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Let Y be a semilattice and let ≤ be the natural order on Y . To each α ∈ Y
associate a semigroup Sα, and assume that Sα ∩ Sβ = ∅ if α 6= β. For each pair

α, β ∈ Y with α ≥ β, let ψα,β : Sα → Sβ be a morphism, and assume that the

following conditions hold:

for all α ∈ Y, ψα,α = 1Sα , (2.3)

for all α, β, γ ∈ Y such that α ≥ β ≥ γ, (2.4)

ψα,βψβ,γ = ψα,γ .

On the set S =
⋃
α∈Y Sα define a multiplication by

a ∗ b = (aψα,αβ)(bψβ,αβ)

for a ∈ Sα, b ∈ Sβ, and denote the resulting structure by S = [Y ;Sα;ψα,β]. Then S

is a semigroup, and is called a strong semilattice Y of the semigroups Sα (α ∈ Y ).

The semigroups Sα are often referred to as the components of S. Note that S is

certainly a semilattice of the semigroups Sα (α ∈ Y ).

The idempotents of S = [Y ;Sα;ψα,β] are given by E(S) =
⋃
α∈Y E(Sα), and if

E(S) forms a subsemigroup of S then

E(S) = [Y ;E(Sα);ψα,β|E(Sα)].

We build morphisms between strong semilattices of semigroups in a natural way as

follows. The result is well known, but is proven here for completeness.

Theorem 2.7.1. Let S = [Y ;Sα;ψα,β] and T = [Z;Tα;ϕα,β] be a pair of strong

semilattices of semigroups. Let π : Y → Z be a morphism and, for each α ∈ Y , let

θα : Sα → Tαπ be a morphism. Assume further that for any α ≥ β, the diagram

Sα

ψα,β
��

θα // Tαπ

ϕαπ,βπ

��
Sβ

θβ // Tβπ

(2.5)

commutes. Then the map θ =
⋃
α∈Y θα is a morphism from S into T , denoted

θ = [θα, π]α∈Y . Moreover, θ is injective/surjective if and only if π and each θα are

injective/surjective.

Proof. Let θ be constructed as above. For a ∈ Sα and b ∈ Sβ we have

(aθ)(bθ) = (aθα)(bθβ) = (aθαϕαπ,(αβ)π)(bθβϕβπ,(αβ)π)

= (aψα,αβθαβ)(bψβ,αβθαβ) =
(
(aψα,αβ)(bψβ,αβ)

)
θαβ

= (ab)θαβ = (ab)θ,
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and so θ is a morphism. The final result is easily shown.

We denote the diagram (2.5) by [α, β;απ, βπ], or [α, β;απ, βπ]S if the semigroup

S needs highlighting. The morphism π is called the induced (semilattice) morphism

from Y to Z. Note that for any morphism π : Y → Z and morphisms θα : Sα → Tαπ

(α ∈ Y ) then the diagram [α, α;απ, απ] commutes for any α ∈ Y since

ψα,αθα = 1Sαθα = θα = θα1Tαπ = θαϕαπ,απ.

Consequently, we need only check that the diagram [α, β;απ, βπ] commutes for each

α > β. We use this fact throughout this thesis.

Unfortunately, not all morphisms between strong semilattices of semigroups can

be constructed as in Theorem 2.7.1. We call a class K of strong semilattices of semi-

groups morphism-pure if every morphism (and thus every isomorphism) between

members of K can be constructed as in Theorem 2.7.1. We call a strong semilattice

of semigroups S automorphism-pure if every automorphism of S can be constructed

as in Theorem 2.7.1. Hence if K = {S} is morphism-pure then S is automorphism-

pure.

2.8 Inverse semigroups

A semigroup S is inverse if every element has a unique inverse. Every group is

inverse, but the class of inverse semigroups is far broader than the class of groups.

The property of being inverse has a number of useful equivalent statements:

Theorem 2.8.1. [55, Theorem 5.1.1] Let S be a semigroup. Then the following are

equivalent:

(i) S is inverse;

(ii) S is regular, and its idempotents commute;

(iii) every L-class and every R-class contains a unique idempotent.

The following collection of basic facts of inverse semigroups is from [55, Chapter

5].

Proposition 2.8.2. Let S be a semigroup with set of idempotents E(S). Then

(i) E(S) forms a semilattice;

(ii) (a−1)−1 = a and (a1a2 . . . an)−1 = a−1
n · · · a−1

2 a−1
1 for every a, a1, . . . , an in S

(iii) aR b if and only if aa−1 = bb−1; aL b if and only if a−1a = b−1b;
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(iv) if e, f ∈ E(S) then eD f if and only if there exists a ∈ S such that aa−1 = e

and a−1a = f .

Every inverse semigroup S comes equipped with a partial order ≤ defined by

a ≤ b if and only if there exists e ∈ E(S) such that a = eb.

We call ≤ the natural order on S. Equivalently, a ≤ b if and only if a = aa−1b, and

we refer the reader to [55, Proposition 5.2.1] for a number of other characterizations

of ≤. Note that ≤ reduces to the natural order on the semilattice E(S). Moreover,

the natural order restricts to equality on maximal subgroups, since if a, b ∈ He for

some e ∈ E(S) then

a ≤ b⇔ a = aa−1b⇔ a = eb⇔ a = b.

The natural order is compatible with the multiplication of S, so that,

a ≤ b and c ∈ S ⇒ ac ≤ bc and ca ≤ cb.

Example 2.8.3. The bicyclic monoid B = 〈p, q : pq = 1〉Mo is an inverse semigroup

with a single D-class and p−1 = q. The idempotents of B form a chain given by

1 = q > qp > q2p2 > q3p3 > · · · .

The second class of inverse semigroups we study are Clifford semigroups. An

inverse semigroup S is called Clifford if E(S) is central, that is, idempotents com-

mute with every element of S. The property of being Clifford has a number of

alternative statements, and the following list is in no way complete.

Theorem 2.8.4. [55, Theorem 4.2.1] Let S be a semigroup. Then the following

statements are equivalent:

(i) S is a Clifford semigroup;

(ii) S is a semilattice of groups;

(iii) S is a strong semilattice of groups;

(iv) S is regular and each D-class is a group;

(v) S is inverse and xx−1 = x−1x for all x ∈ S.

Let S = [Y ;Gα;ψα,β] be a Clifford semigroup. Then H forms a congruence on

S with S/H ∼= E(S). Furthermore, the natural order ≤ on S is equivalent to

aα ≥ bβ if and only if α ≥ β and aαψα,β = bβ
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for each aα, bβ ∈ S.

2.9 Unary semigroups, I-semigroups and varieties

A semigroup equipped with a unary function a 7→ a′ is called a unary semigroup.

The signature of unary semigroups is defined to be the signature LUS = {·,′ }, where

· is a binary function symbol and ′ is a unary function symbol.

A unary semigroup S is called an I-semigroup if

(a′)′ = a, aa′a = a,

for all a ∈ S, so that a′ is an inverse of a. Since we are studying I-semigroups in

the signature LUS , concepts such as substructure, morphisms and direct products

of I-semigroups can be deduced from Preliminaries I.

Example 2.9.1. By Proposition 2.8.2, an inverse semigroup forms an I-semigroup,

with unary function a 7→ a′. A band can trivially be regarded as an I-semigroup,

with identity unary function e 7→ e.

A non-empty class V of I-semigroups is a variety if it is closed under morphic

images, I-subsemigroups and direct product, that is:

(1) if S ∈ V and φ : S → T is a morphism, then T ∈ V;

(2) if S ∈ V and T is an I-subsemigroup of S, then T ∈ V;

(3) if Si ∈ V (i ∈ I), then
∏
i∈I Si ∈ V.

A subvariety of a variety V of I-semigroups is a subclass of V which is itself a variety

of I-semigroups.

Let A be a non-empty set, and let F2,1(A) be the set of all finite, non-empty

words in the alphabet A ∪ {(, ),′ }, defined by the rules:

(1) A ⊆ F2,1(A);

(2) if a ∈ F2,1(A) then (a)′ ∈ F2,1(A);

(3) if a, b ∈ F2,1(A) then (a)(b) ∈ F2,1(A).

Let u, v ∈ F2,1(A), and let S be an I-semigroup. Then every map φ : A → S

can be shown to extend to a morphism φ̄ : F2,1(A) → S. We say that S satisfies

the identity u = v if uφ̄ = vφ̄ for every map φ : A→ S. That is, S satisfies u = v if

we obtain equality in S for every substitution in u and v by elements of S.

Let E be a class of I-semigroups. Suppose there exists a countable set A and

R ⊆ F2,1(A) × F2,1(A) such that, for any I-semigroup S, we have S ∈ E if and
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only if S satisfies the identity u = v for each (u, v) ∈ R. Then E is called an

equational class, defined by the identities u = v for each (u, v) ∈ R. In the context

of I-semigroups, the properties of a class of I-semigroups being a variety and being

an equational class are equivalent. We denote the variety defined by the identities

u1 = v1, u2 = v2, . . . as [u1 = v1, u2 = v2, . . . ]. When listing the identities of a

variety of I-semigroups, the identities

x(yz) = (xy)z, (x′)′ = x, xx′x = x,

are taken as read. Examples include:

completely simple semigroups: CS = [xx′ = x′x, xyx(xyx)′ = xx′];

inverse semigroups: I = [xx′yy′ = yy′xx′];

Clifford semigroups: CL = [xx′ = x′x, xx′yy′ = yy′xx′];

groups: G = [xx′ = yy′].

Our work on varieties of I-semigroups can be generalized, and in particular can

be simplified to consider varieties of semigroups. For varieties of semigroups the

identity x(yz) = (xy)z is taken as read:

commutative semigroups: C = [xy = yx];

semilattices: SL = [x2 = x, xy = yx];

null semigroup: Z = [xy = zt].

However, the class of inverse semigroups does not form a variety of semigroups since

a subsemigroup of an inverse semigroup need not be inverse. This is crucial in the

context of homogeneity, which is explored in Chapter 6.

2.10 Bands

Much of the early work on bands was to determine their lattice of varieties; a feat

that was independently completed by Biryukov [9], Fennemore [31] and Gerhard

[33]. In addition, Fennemore determined all identities on bands, showing that every

variety of bands can be defined by a single identity. The lower part of the lattice

of varieties of bands, as shown in Figure 2.3, contains the following varieties which
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are required for our work:

left zero bands: LZ = [xy = x];

right zero bands: RZ = [xy = y];

rectangular bands: RB = LZ ∨RZ = [xyx = x];

semilattices: SL = [xy = yx];

left normal bands: LN = [zxy = zyx];

right normal bands: RN = [xyz = yxz];

normal bands: N = LN ∨RN = [zxyz = zyxz];

left regular bands: LG = [xy = xyx];

right regular bands: RG = [xy = yxy];

regular bands: GG = LG ∨RG = [zxyz = zxzyz],

where the given relation characterizes the variety in the variety of bands, so the

identity x2 = x is given as read. The varieties [zxy = zxzy] and [yxz = yzxz]

are known as the varieties of left quasi-normal bands and right quasi-normal bands,

respectively, and are not required for this thesis.

Figure 2.3: Lower part of the lattice of varieties of bands.

We proceed to give alternative descriptions of a number of these varieties. Along

with semilattices, a variety of bands required for the construction of an arbitrary

band are rectangular bands, that is, bands satisfying the identity xyx = x. A band

is rectangular if and only if it contains a single D-class, and is thus simple. Similarly,

left zero bands are precisely the bands with a single L-class, dually for right zero

bands.

The first fact on rectangular bands given in the proposition below is taken from
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[55, Theorem 1.1.3], the others are easily shown.

Proposition 2.10.1. Let L be a left zero semigroup and R a right zero semigroup.

Then BL,R = L×R forms a rectangular band, and the operation is given by

(i, j) · (k, `) = (i, `).

Conversely, every rectangular band is isomorphic to some BL,R. The left and right

Green’s relations on BL,R simplify to

(i, j)R (k, `)⇔ i = k and (i, j)L (k, `)⇔ j = `,

and BL,R forms an antichain under the natural order, so that

e ≤ f ⇔ e = f.

Consequently, rectangular bands are completely simple, and we can alternatively

consider the semigroup BL,R as M[{1}; |L|, |R|;P ], where {1} is the trivial group,

so that pλ,i = 1 for all i ∈ I, λ ∈ Λ (although this form will not be used here). An

isomorphism theorem for rectangular bands follows immediately from [55, Corollary

4.4.3], and is stated below.

Proposition 2.10.2. A pair of rectangular bands BL,R and BL′,R′ are isomorphic

if and only if |L| = |L′| and |R| = |R′|. Moreover, if φL : L→ L′ and φR : R→ R′

are a pair of bijections, then the map φ : BL,R → BL′,R′ defined by

(i, j)φ = (iφL, jφR)

is an isomorphism. Every isomorphism from BL,R to BL′,R′ can be constructed in

this way, and is denoted φ = φL × φR.

For each n,m ∈ N∗ = N ∪ {ℵ0}, we let Bn,m denote the unique, up to isomor-

phism, rectangular band with n R-classes and m L-classes.

A structure theorem for bands was achieved by McLean in [63]:

Proposition 2.10.3. Let B be an arbitrary band. Then D is a congruence on

B and Y = S/D is a semilattice. Moreover, B =
⋃
α∈Y Bα is a semilattice of

rectangular bands Bα, which are the D-classes of B.

By studying strong semilattices of rectangular bands we obtain alternative de-

scriptions of the varieties LN ,RN and N .

Lemma 2.10.4. [55, Section 4.6] A band is normal if and only if it is isomorphic

to a strong semilattice of rectangular bands. A band is left (right) normal if and

only if it is a normal band with D-classes being left (right) zero, that is, if and only

if it is isomorphic to a strong semilattice of left (right) zero bands.
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2.11 Completely regular semigroups

In this section we describe a class of semigroups which generalize both Clifford

semigroups and bands.

A semigroup S is called completely regular if every H-class is a group. Every ele-

ment a of a completely regular semigroup S has an inverse with which it commutes,

namely its inverse in the group Ha. We denote such an inverse as a−1. Conse-

quently, every completely regular semigroup S has a unary operation a 7→ a−1 so

that S may be regarded as an I-semigroup. Furthermore, as we have remarked, the

class of completely regular semigroups forms an I-variety, which we call the variety

of completely regular semigroups, defined by the identity xx′ = x′x.

Theorem 2.11.1. [72, Theorem II.1.4] A semigroup S is completely regular if and

only if S is a semilattice of completely simple semigroups.

If S =
⋃
α∈Y Sα is a completely regular semigroup then S/D ∼= Y and the

completely simple semigroups Sα are the D-classes of S. Each Green’s relation will

be shown to be preserved under morphisms in Chapter 3, and we thus have the

following result on morphisms between completely regular semigroups.

Proposition 2.11.2. Let S =
⋃
α∈Y Sα and T =

⋃
α′∈Y ′ Tα′ be a pair of completely

regular semigroups, and φ : S → T a morphism between them. Then there exists

a morphism π : Y → Y ′ and morphisms φα : Sα → Tαπ for each α ∈ Y such that

φ =
⋃
α∈Y φα. Moreover, if φ is surjective/injective, then so are π and φα.

Following Theorem 2.7.1, we call the morphism π the induced semilattice mor-

phism of φ. We may build isomorphisms between spined products of completely

regular semigroups via isomorphisms of their induced semilattices as follows.

Proposition 2.11.3. Let Si =
⋃
α∈Y S

(i)
α and Ti =

⋃
α′∈Y ′ T

(i))
α be completely reg-

ular semigroups for i = 1, 2. Let φi : Si → Ti (i = 1, 2) be a pair of isomor-

phisms, both with induced semilattice isomorphism φ : Y → Y ′. Then the map

χ : S1 ./ S2 → T1 ./ T2 given by

(gα, hα)χ = (gαφ1, hαφ2) (gα ∈ S(1)
α , hα ∈ S(2)

α , α ∈ Y )

is an isomorphism.

A completely regular semigroup in which H is a congruence is called a cryp-

togroup. A normal cryptogroup is a cryptogroup S in which S/H forms a normal

band.

Example 2.11.4. Let S be a Clifford semigroup. Then the quotient S/H is a

semilattice, and is therefore a normal band. Hence every Clifford semigroup is a

normal cryptogroup.
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Example 2.11.5. The H-relation on a band is trivial, and so every band is a

cryptogroup. It is then trivial that a band is a normal cryptogroup if and only if it

is normal.

The fact that Clifford semigroups and normal bands are normal cryptogroups

are not random occurrences, and point towards the following alternative description

of normal cryptogroups.

Theorem 2.11.6. [72, Theorem IV.1.6] A semigroup is a normal cryptogroup if

and only if it is a strong semilattice of completely simple semigroups.

The justification for studying normal cryptogroups, and not strong semilattices

of arbitrary semigroups, is immediate from the following lemma, which follows from

[72, Lemma IV.1.8].

Lemma 2.11.7. The class of all strong semilattices of completely simple semigroups

is morphism-pure. Consequently, the same is true for the class of strong semilattices

of normal bands and the class of strong semilattices of groups.



Chapter 3

ℵ0-categorical semigroups

This chapter investigates the form of an ℵ0-categorical semigroup, as well as meth-

ods for constructing ℵ0-categorical semigroups from ℵ0-categorical components.

Throughout the rest of this thesis, all structures are assumed to be countable.

3.1 Historical background

In this section we give a brief historical survey of ℵ0-categorical structures. Orig-

inally, the concept of ℵ0-categoricity was purely of interest to logicians from a

model theoretic standpoint. A shift in direction came in 1959 with the much cele-

brated Ryll-Nardzewski Theorem. This result gives a number of characterisations of

ℵ0-categoricity, and in particular translates the concept to an algebraic viewpoint.

Since the publication of the Ryll-Nardzewski Theorem, it has motivated both model

theorists and algebraists to examine ℵ0-categoricity for a variety of structures.

The ℵ0-categoricity of linear orders were studied by Rosenstein in [83], and

a complete characterisation was achieved. Every ℵ0-categorical linear order was

shown to be finitely axiomatizable. The ℵ0-categoricity of arbitrary posets were

considered by Grzegorczyk [43], although no full description has been found. Exam-

ples of ℵ0-categorical relational structures also arose from studies into homogeneous

relational structures by Theorem 1.2.26.

For algebraic structures, the difficulty in achieving full classifications was ap-

parent from the start, although great progress has been made for groups and rings

by a number of authors. The early work of ℵ0-categorical rings was started by

Baldwin and Rose in [5], where the Jacobson radical of an ℵ0-categorical ring was

analysed, and by Macintyre and Rosenstein in [67], where a complete classification

of ℵ0-categorical rings with 1 and without non-zero nilpotent elements was achieved.

Further studies were made in [14, 15, 60].

It is worthwhile going over the history of ℵ0-categorical groups in greater de-

tail, since the ℵ0-categoricity of a semigroup will be seen to pass to its maximal

57
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subgroups. Rosenstein was one of the first to examine ℵ0-categoricity for groups in

1973 in his seminal paper [84]. Here, Rosenstein considered the ℵ0-categoricity of

direct products of groups, direct limits of groups, and Burnside groups. Addition-

ally, a complete classification of ℵ0-categorical abelian groups were determined as

follows.

Proposition 3.1.1. An abelian group G is ℵ0-categorical if and only if it is of finite

exponent, that is, there exists a positive integer n such that gn = 1 for all g ∈ G;

the least such n is the exponent of G.

This gives us a useful pool of infinite ℵ0-categorical groups, such as the group⊕
N Z2, and indeed any countably infinite direct sum of a finite abelian group.

Non-abelian examples of ℵ0-categorical groups arose from the work of Sabbagh

[89]. Here, Sabbagh showed that the group GLn(R), of invertible n × n matrices

with coefficients in R, is ℵ0-categorical when R is an ℵ0-categorical ring.

In [70], Olin constructed an example of an ℵ0-categorical group with a non ℵ0-

categorical subgroup. In [1], Apps reduced the problem of classifying ℵ0-categorical

characteristically simple groups (that is, groups which contains no proper character-

istic subgroups) to studying non-abelian p-groups, and it is conjectured that no non-

abelian ℵ0-categorical p-groups exist. Further studies were made in [2, 4, 13, 30, 85].

Examples of ℵ0-categorical non-abelian groups also arise from studies into homoge-

neous groups, which will be discussed in the next chapter. Of course, unlike with

relational structures, we are required to restrict our attention to ULF homogeneous

groups.

Our final example is of a preservation theorem, attained by Grzegorczyk in [42],

which states that ℵ0-categoricity is preserved under finite direct product.

Proposition 3.1.2. Let M and N be a pair of ℵ0-categorical L-structures. Then

the L-structure M ×N is ℵ0-categorical.

However little is known in the case of semigroups, and this chapter is an attempt

to bridge this gap in knowledge. Unless stated otherwise, we will assume throughout

this chapter that semigroups are LS-structures.

3.2 Methods for proving ℵ0-categoricity

Recall that a (countable) structure M is ℵ0-categorical if every countable model of

Th(M) is isomorphic to M . In particular, a semigroup is ℵ0-categorical if it can be

characterized, within the class of countable semigroups, by its first order properties

up to isomorphism. To show that a semigroup S is ℵ0-categorical it suffices to find

a list T of first order properties of S which no non-isomorphic, countable semigroup
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shares. The set T can be thought of as a set of axioms of S, or as a first order

definition of S.

Example 3.2.1. A countably infinite null semigroup N is ℵ0-categorical. To see

this, we note that two null semigroups are isomorphic if and only if they have the

same cardinality. Hence, if we define an infinite theory T by

(1) (∀a)(∀b)(∀c)[a(bc) = (ab)c];

(2) (∃a)(∀x)(∀y)[xy = a];

(3) ¬(∃x1)(∃x2) · · · (∃xn)(∀y)[y = x1 ∨ y = x2 ∨ · · · ∨ y = xn] for each n ≥ 1;

then N models T and any countable model M of T is a null semigroup by (1) and

(2), and is infinite by (3), so that N ∼= M .

However, at this stage proving that a semigroup is not ℵ0-categorical would

require computing its full theory. We instead turn to the aforementioned Ryll-

Nardzewski Theorem (RNT), proven independently by Engeler [28], Ryll-Nardzewski

[88], and Svenonius [95]. For our study we require only one of the given character-

isations of ℵ0-categoricity, which relies on the following terminology.

Given a structure M , and n-tuples a = (a1, . . . , an) and b = (b1, . . . , bn) of M ,

then we say that a is automorphically equivalent to/has the same n-automorphism

type as b (in M) if there exists an automorphism φ of M such that aφ = b (so that

aiφ = bi for each i). That is, a pair of n-tuples are automorphically equivalent if

they lie in the same orbit of the natural group action of Aut(M) on Mn. We denote

this equivalence relation by a ∼M,n b. We call Aut(M) oligomorphic if there are

only finitely many orbits in its action on Mn for each n ≥ 1.

Theorem 3.2.2. (Ryll-Nardzewski Theorem) A structure M is ℵ0-categorical if

and only if |Mn/ ∼M,n | is finite for each n ≥ 1, that is, if Aut(M) is oligomorphic.

To prove that a structure M is ℵ0-categorical, it thus suffices to show that, for

each n ≥ 1, there exists a finite list of n-tuples a1, . . . , aπ(n) of M such that every

n-tuple of M is automorphically-equivalent to an element of the list.

On the other hand, to show that M is not ℵ0-categorical it suffices to show that

there exists, for some n, an infinite set {ai | i ∈ N} of n-tuples of M such that

ai ∼M,n aj if and only if i = j.

An immediate consequence of the RNT is that all finite structures are ℵ0-

categorical, and as such our interest is in determining the ℵ0-categoricity of infinite

structures. A second consequence is that ℵ0-categoricity is preserved under reducts.

The result is well known, but it will be insightful outline a proof.

Corollary 3.2.3. Let L and L′ be signatures with L ⊆ L′. If M is an ℵ0-categorical

L′-structure, then its L-reduct M |L is an ℵ0-categorical L-structure.
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Proof. If φ : N → N ′ is an L′-morphism of L′-structures N and N ′, then clearly

φ is also an L-morphism φ : N |L → N ′|L between the L-reducts of N and N ′,

respectively. The result then follows immediately from the RNT.

An immediate consequence of Theorem 1.2.26 is that an ℵ0-categorical structure

with quantifier elimination is ULF. We now show, via the RNT, that the statement

still holds without the condition of quantifier elimination. This result is given in [51,

Corollary 7.3.2], but is proven here only using our simplified RNT for completeness.

Corollary 3.2.4. Let M be an ℵ0-categorical structure. Then M is ULF.

Proof. We first show that M is locally finite. Suppose, seeking a contradiction,

that X = 〈x1, . . . , xn〉M is infinite, and take an infinite list w1, w2, . . . of distinct

elements of X. For each i ∈ N, let wi be the (n+ 1)-tuple of M given by

wi = (x1, . . . , xn, wi).

Then as |Mn+1/ ∼M,n+1 | is finite by the RNT, there exist i 6= j and an automor-

phism θ of M such that wiθ = wj . Since each generator of X is fixed by θ, the

substructure X is pointwise fixed by Corollary 1.1.12. However, wiθ = wj and so

wi = wj , and we arrive at our desired contradiction.

Let A = 〈a1, . . . , an〉M and B = 〈b1, . . . , bn〉M be a pair of n-generated substruc-

ture of M . If (a1, . . . , an) ∼M,n (b1, . . . , bn) via φ ∈ Aut(M), say, then it follows

again by Corollary 1.1.12 that Aφ = B. Hence the number of distinct cardinalities

of n-generated substructures of M is bound by |Mn/ ∼M,n |, which is finite by the

RNT, and so M is ULF.

The following lemma is immediate from a simple counting argument, and as

such the proof is omitted.

Lemma 3.2.5. Let X be a set and γ1, . . . , γr be a finite list of equivalence relations

on X with γ1 ∩ γ2 ∩ · · · ∩ γr contained in an equivalence relation σ on X. Then

|X/σ| ≤
∏

1≤i≤r
|X/γi|.

We use the RNT in conjunction with Lemma 3.2.5 to prove that a structure M

is ℵ0-categorical in the following way. For each n ∈ N, let γ1, . . . , γr be a finite list

of equivalence relations on Mn such that Mn/γi is finite for each 1 ≤ i ≤ r and

γ1 ∩ γ2 ∩ · · · ∩ γr ⊆∼M,n .

A consequence of the two aforementioned results that M is ℵ0-categorical.

This method is used throughout this chapter, and is particular suited for the

building of an ℵ0-categorical structure from a given list of ℵ0-categorical structures.
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For simplicity we will reference this method as Lemma 3.2.5. Moreover, where no

confusion may arise, it will often be used in a less formal way as follows. A condition

imposed on n-tuples of M will naturally translate to an equivalence relation, and we

will say that a condition has finitely many choices if its corresponding equivalence

relation has finitely many equivalence classes.

Example 3.2.6. Given a structure M , we may impose a condition on a pair of

n-tuples of M which states that if a pair of entries in one of the tuples are equal

then the same is true for the other tuple, and conversely. Formally, we define an

equivalence \n on Mn by

(a1, . . . , an) \n (b1, . . . , bn) if and only if [ai = aj ⇔ bi = bj , for each i, j]. (3.1)

it is easy to see that a pair of n-tuples a and b are \n-equivalent if and only if there

exists a bijection φ of M such that aφ = b. Notice that

a ∼M,n b⇒ a \n b,

and the number of \n-classes of Mn is equal to the number of ways of partitioning

a set of size n, which is finite1.

Example 3.2.7. If M is a set, regarded as an ∅-structure, then automorphisms

of M are simply bijections. Since any bijection between subsets of a set can be

extended to a bijection of the whole set, it follows that ∼M,n= \n. Hence, as

|Mn/\n| is finite for each n, the set M is ℵ0-categorical.

Let M be an L-structure with subsets Mi (i ∈ I), where I is a countable set. For

each i ∈ I, let Qi be a unary relation symbol, where Qi is interpreted as Mi, and

set L′ = L ∪ {Q1, Q2, . . . }. We denote M̄ := (M ;M1,M2, . . . ) as the L′-structure

such that its L-reduct is M . Then the universes of M and M̄ are equal and

Aut(M̄) = {φ ∈ Aut(M) : Miφ = Mi for each i ∈ I}.

Moreover, by Corollary 3.2.3, if M̄ is ℵ0-categorical, then so too is its reduct M .

We call M̄ the {M1,M2, . . . }-extension of M or simply a set-extension of M .

Lemma 3.2.8. Let M be a structure and {Mi : i ∈ I} a set of pairwise disjoint

subsets of M . If M̄ = (M ;M1,M2, . . . ) is ℵ0-categorical, then I is finite.

Proof. Fix xi ∈Mi for each i ∈ I. If xi ∼M̄,1 xj for some i, j ∈ I, via φ ∈ Aut(M̄),

say, then Miφ = Mi and xiφ = xj ∈Mj . Since the subsets Mi are pairwise disjoint,

this forces i = j, and so |I| is bound by the number of 1-automorphism types of M̄ ,

which is finite by the RNT.
1The number of ways of partitioning a finite set of size n is denoted by Bn and is called the nth

Bell number, named after E. T. Bell (for a formulation, see [87]).
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Corollary 3.2.9. If B is a rectangular band and B1, . . . , Br is a finite list of sub-

bands of B, then B̄ = (B;B1, . . . , Br) is ℵ0-categorical. In particular, a rectangular

band is ℵ0-categorical.

Proof. Let B = L×R be a rectangular band, where L is a left zero semigroup and

R is a right zero semigroup. For each 1 ≤ k ≤ r, let

BL
k = {i ∈ L : (i, j) ∈ Bk for some j ∈ R},

BR
k = {j ∈ R : (i, j) ∈ Bk for some i ∈ L}.

Define a pair of equivalence relations σL and σR on L and R, respectively, by

i σL j ⇔ [i ∈ BL
k ⇔ j ∈ BL

k , for each k],

i σR j ⇔ [i ∈ BR
k ⇔ j ∈ BR

k , for each k].

The equivalence classes of σL are simply the set L\
⋃

1≤k≤r B
L
k together with certain

intersections of the sets BL
k . Since r is finite, it follows that L/σL is finite, and

similarly R/σR is finite. Let a = ((i1, j1), . . . , (in, jn)) and b = ((k1, `1), . . . , (kn, `n))

be a pair of n-tuples of B under the four conditions that

(1) is σL ks for each 1 ≤ s ≤ n,

(2) js σR `s for each 1 ≤ s ≤ n,

(3) (i1, . . . , in) \n (k1, . . . , kn),

(4) (j1, . . . , jn) \n (`1, . . . , `n),

where \n is the equivalence relation given by (3.1) (in fact, \n is used twice, on

different ground sets). By conditions (3) and (4), there exist bijections

φL : {i1, . . . , in} → {k1, . . . , kn} and φR : {j1, . . . , jn} → {`1, . . . , `n}

given by isφL = ks and jsφR = `s for each 1 ≤ s ≤ n. By condition (1), we can

pick a bijection ΦL of L which extends φL and fixes each σL-classes setwise, and

similarly construct ΦR. Then Φ = ΦL×ΦR is an automorphism of B by Proposition

2.10.2. Moreover, if (i, j) ∈ Bk then i ∈ BL
k and as i σL (iΦL) we have iΦL ∈ BL

k .

Dually, j ∈ BR
k and as j σR (jΦR) we have jΦR ∈ BR

k . Hence there exist ` ∈ L and

r ∈ R such that (iΦL, r) and (`, jΦR) are in Bk, so that

(iΦL, r)(`, jΦR) = (iΦL, jΦR) ∈ Bk

as Bk is a subband. We have thus shown that (i, j)Φ = (iΦL, jΦR) ∈ Bk, and so

BkΦ ⊆ Bk. We observe that Φ−1 = Φ−1
L × Φ−1

R is also an automorphism of B with

Φ−1
L and Φ−1

R setwise fixing the σL-classes and σR-classes, respectively. Following
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our previous argument we have BkΦ
−1 ⊆ Bk, and so BkΦ = Bk for each k. Thus

Φ is an automorphism of B̄, and is such that

(is, js)Φ = (isΦL, jsΦR) = (isφL, jsφR) = (ks, `s)

for each 1 ≤ s ≤ n, so that a ∼B̄,n b. Hence, as each of the four conditions on

a and b have finitely many choices, it follows that B̄ is ℵ0-categorical by Lemma

3.2.5.

Let M be a set, and M1, . . . ,Mr be subsets of M . Equip M with a binary op-

eration · such that x · y = x for all x, y ∈M , so that (M, ·) is a left zero semigroup.

Since left zero semigroups are rectangular bands, and as subsets of left zero semi-

groups are easily shown to form subbands, we have that B̄ = ((M, ·);M1, . . . ,Mr)

is ℵ0-categorical by the Corollary 3.2.9. Hence by taking the {Q1, . . . , Qr}-reduct

of the {·, Q1, . . . , Qr}-structure B̄, the same is true for (M ;M1, . . . ,Mr) by Lemma

3.2.3. We have proven the following result.

Corollary 3.2.10. Let M be a set, and M1, . . . ,Mr be a finite list of subsets of M .

Then (M ;M1, . . . ,Mr) is ℵ0-categorical.

Let M be a structure and Ψ a subgroup of Aut(M). Then we say that M is

ℵ0-categorical over Ψ if Ψ has only finitely many orbits in its action on Mn for each

n ≥ 1. We denote the resulting equivalence relation on Mn as ∼M,Ψ,n.

We observe that if M1,M2, . . . are subsets of M and M̄ = {M ;M1,M2, . . . }
then the equivalence relations ∼M,Aut(M̄),n and ∼M̄,n coincide (on the universe of

M). That is, ℵ0-categoricity over subgroups of the automorphism group of M can

be seen as generalizing ℵ0-categoricity of set-extensions of M .

The following simple consequence of the RNT is a generalization of Exercise

7.3.1 in [51]:

Lemma 3.2.11. Let M be a structure and T = {t1, . . . , tr} a finite subset of M .

Let Ψ be the subgroup of Aut(M) consisting of automorphisms of M which fix T

pointwise. Then for any subset X of M , we have that |Xn/ ∼M,n | is finite for

all n ≥ 1 if and only if |Xn/ ∼M,Ψ,n | is finite for all n ≥ 1. In particular, M is

ℵ0-categorical if and only if M is ℵ0-categorical over Ψ.

Proof. Suppose |Xn/ ∼M,n | is finite for all n ≥ 1. Let a = (a1, . . . , an) and

b = (b1, . . . , bn) be n-tuples of X such that

(a, t1, . . . , tr) ∼M,n+r (b, t1, . . . , tr)

via φ ∈ Aut(M), say. Then φ fixes T pointwise, so that φ ∈ Ψ. Moreover, aφ = b,

so that

|Xn/ ∼M,Ψ,n | ≤ |Xn+r/ ∼M,n+r | < ℵ0.
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The converse and the case when M = X are immediate.

If T = {t1, . . . , tn} then the lemma above may be restated, albeit in a rather

clumsy way, as M being ℵ0-categorical if and only if (M ; {t1}, . . . , {tn}) is ℵ0-

categorical.

Corollary 3.2.12. Let M be a structure and T a finite subset of M . Then M is

ℵ0-categorical if and only if, for each n ∈ N, |(M \ T )n/ ∼M,n | is finite.

Proof. If M is ℵ0-categorical then |Mn/ ∼M,n | is finite by the RNT, and thus so

is |(M \ T )n/ ∼M,n |.
For the converse, we first fix some notation. Let X be a subset of M and

x = (x1, . . . , xn) an n-tuple of M . Then we let

x[X] := {k ∈ {1, . . . , n} : xk ∈ X}

be the set of entries of x which lie in X. If x[X] = {k1, . . . , kr} is such that

k1 < k2 < · · · < kr then we obtain an r-tuple of X given by

xX := (xk1 , . . . , xkn).

We also let Ψ be the subgroup of Aut(M) consisting of automorphisms of M which

fix T pointwise.

Let a and b be n-tuples of M under the conditions that

(1) a[T ] = b[T ],

(2) aT = bT ,

(3) aM\T ∼M,Ψ,|aM\T | b
M\T .

Conditions (1) and (2) have a total of (|T |+1)n choices, which is finite since T is. By

Lemma 3.2.11, condition (3) also has finitely many choices since |(M \T )m/ ∼M,m |
is finite for each m by our hypothesis. The total number of choices is therefore

finite. By condition (3) there exists an automorphism φ of M fixing T pointwise

and with aM\Tφ = bM\T . Since T is fixed pointwise we have aTφ = aT = bT and it

follows that aφ = b. The result is then immediate from Lemma 3.2.5.

Our final method for proving ℵ0-categoricity will be applied to cases where we

can build automorphisms of our structure via isomorphisms between certain sub-

structures. For example, for a strong semilattice of semigroups S = [Y ;Sα;ψα,β],

we can construct automorphisms of S from certain isomorphisms between the semi-

groups Sα by Theorem 2.7.1. In this example we also require an automorphism

between the index set of the semigroups, that is, an automorphism of the semi-

lattice Y . Occurrences of automorphisms with this additional property will need
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to be considered in our method, so that it may be flexibly used for a variety of

semigroups.

Notation 3.2.13. Given a pair of structures M and M ′ of the same signature, we

let Iso(M ;M ′) denote the set of all isomorphisms from M onto M ′.

Definition 3.2.14. Let M be an L-structure with fixed substructure M ′. Let

A = {Mi : i ∈ N} be a set of substructures of M ′ indexed by some K-structure

N such that M ′ =
⋃
i∈N Mi. Let N1, . . . , Nr be a finite partition of N . Set N̄ =

(N ;N1, . . . , Nr). For each i, j ∈ N , let Ψi,j be a subset of Iso(Mi;Mj) under the

conditions that

(A) if i, j ∈ Nk for some 1 ≤ k ≤ r then Ψi,j 6= ∅,

(B) if φ ∈ Ψi,j and φ′ ∈ Ψj,` then φφ′ ∈ Ψi,`,

(C) if φ ∈ Ψi,j then φ−1 ∈ Ψj,i,

(D) if π ∈ Aut(N̄) and φi ∈ Ψi,iπ for each i ∈ N , then there exists an automor-

phism of M extending the φi.

Then A is called an (M,M ′; N̄ ; Ψ)-system (in M), where Ψ =
⋃
i,j∈N Ψi,j . If

M ′ = M then we may simply refer to this as an (M ; N̄ ; Ψ)-system.

By Condition (A) if i, j ∈ Nk for some k, then Mi
∼= Mj . Hence the number of

isomorphism types in A is bounded by r. Moreover, by Conditions (A), (B) and (C)

that Ψi,i is a subgroup of Aut(Mi) for each i ∈ N . If the sets Mi are not pairwise

disjoint, then Condition (D) should be met with caution. Indeed, if x ∈ Mi ∩Mj

then taking π to be the identity map of N̄ , we have that xφi ∈ Mi ∩Mj for all

automorphisms φi of Mi (dually for j). However, for our work the sets Mi will

mostly be pairwise disjoint, or will all intersect at a fixed point of M , which is also

fixed by every isomorphism between the Mi. For example, M could be a semigroup

containing a zero, and 0 is the intersection of each of the sets Mi.

Note also that no link needs to exist between the signatures L and K, and for

most of our examples they will be the signature of semigroups and the signature of

sets (the empty signature), respectively.

For the remainder of the chapter, we will reference condition (A) as Condition

3.2.14(A), and similarly for conditions (B),(C) and (D).

Lemma 3.2.15. Let M be a structure, and A = {Mi : i ∈ N} be an (M,M ′; N̄ ; Ψ)-

system for some substructure M ′ of M . If N̄ is ℵ0-categorical and each Mi is

ℵ0-categorical over Ψi,i then

|(M ′)n/ ∼M,n | < ℵ0

for each n ≥ 1.
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Proof. Let Ψ =
⋃
i,j∈N Ψi,j . Let N̄ = (N ;N1, . . . , Nr) and, for each 1 ≤ k ≤ r, fix

some mk ∈ Nk. For each i ∈ Nk, let θi ∈ Ψi,mk , noting that such an element exists

by Condition 3.2.14(A) on Ψ. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be a pair of

n-tuples of M ′, with at ∈Mit and bt ∈Mjt , and such that

(i1, . . . , in) ∼N̄,n (j1, . . . , jn)

via π ∈ Aut(N̄), say. For each 1 ≤ k ≤ r, let ik1, ik2, . . . , iknk be the entries of

(i1, . . . , in) belonging to Nk, where k1 < k2 < · · · < knk, and set

ak = (ak1, . . . , aknk) ∈ (M ′)nk .

We similarly form each bk, observing that as itπ = jt for each 1 ≤ t ≤ n we have

that jk1, jk2, . . . , jknk are precisely the entries of (j1, . . . , jn) belonging to Nk, so

that bk = (bk1, . . . , bknk) for some bkt ∈ M ′. Notice that as N1, . . . , Nr partition N

we have n = n1 + n2 + · · · + nr. Since ikt, jkt ∈ Nk for each 1 ≤ t ≤ nk, we have

that aktθikt and bktθjkt are elements of Mmk . We may thus suppose further that

(ak1θik1
, . . . , aknkθiknk ) ∼Mmk

,Ψmk,mk ,nk
(bk1θjk1

, . . . , bknkθjknk )

via σk ∈ Ψmk,mk , say (where if ak is a 0-tuple, then we take any σk ∈ Ψmk,mk). For

each 1 ≤ k ≤ r and each i ∈ Nk, let

φi = θiσkθ
−1
iπ : Mi →Miπ,

noting that φi ∈ Ψi,iπ by Conditions 3.2.14(B) and 3.2.14(C) on Ψ, since θi, σk

and θiπ are elements of Ψ. Hence, by Condition 3.2.14(D) on Ψ, there exists an

automorphism φ of M extending each φi. For any 1 ≤ k ≤ r and any 1 ≤ t ≤ nk

we have

aktφ = aktφikt = aktθiktσkθ
−1
iktπ

= bktθjktθ
−1
jkt

= bkt,

and so a ∼M,n b via φ. Since N̄ is ℵ0-categorical and each Mi are ℵ0-categorical

over Ψi,i, the conditions imposed on the tuples a and b have finitely many choices,

and so by from Lemma 3.2.5 we have |(M ′)n/ ∼M,n | is finite.

In particular, by Corollary 3.2.10, the structure N in the lemma above can

simply be an indexing set. In most cases we take M ′ = M , and the result simplifies

accordingly by the RNT.

Corollary 3.2.16. Let M be a structure, and A = {Mi : i ∈ N} be an (M ; N̄ ; Ψ)-

system in M , where Ψ =
⋃
i,j∈N Ψi,j. If N̄ is ℵ0-categorical and each Mi is ℵ0-

categorical over Ψi,i then M is ℵ0-categorical.
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3.3 Relatively characteristic subsets and substructures

We now study the substructure of an ℵ0-categorical structure. Our first interest is

in determining classes of substructures which inherit ℵ0-categoricity, and applying

these general results to the case of semigroups. As remarked in Section 3.1, ℵ0-

categoricity is not inherited by every substructure, and an example is given in [70].

We begin by considering characteristic substructures, that is, substructures

which are invariant under automorphisms of the structure.

Example 3.3.1. For any semigroup S, the subsemigroup generated by the idem-

potents, 〈E(S)〉, is a characteristic subsemigroup. Indeed, for any automorphism φ

of S and e ∈ E(S),

(eφ)2 = e2φ = eφ

so that E(S)φ ⊆ E(S). Similarly E(S)φ−1 ⊆ E(S), and so E(S)φ = E(S). Hence

φ|〈E(S)〉 is an automorphism of 〈E(S)〉 by Corollary 1.1.12 as required.

This easily generalizes as follows. If A is a characteristic subset of a structure

M then 〈A〉M is a characteristic substructure of M .

It is clear that the ℵ0-categoricity of a structure passes to characteristic sub-

structures. However the condition on a subset/substructures to be characteristic

is too restrictive, since many key subsemigroups of a semigroup, such as maximal

subgroups and principal ideals, are excluded. We instead study a weaker condition,

but one in which ℵ0-categoricity is still preserved. Our definition is motivated by

the Green’s classes of a semigroup.

Definition 3.3.2. Let M be a structure and, for some fixed t ∈ N, let {Xi : i ∈ I}
be a collection of t-tuples of M . Let {Ai : i ∈ I} be a collection of subsets of

M with the property that for any automorphism φ of M such that there exist

i, j ∈ I with Xiφ = Xj , then φ|Ai is a bijection from Ai onto Aj . Then we

call A = {(Ai, Xi) : i ∈ I} a system of t-pivoted pairwise relatively characteristic

(t-p.p.r.c.) subsets of M . The t-tuple Xi is called the pivot of Ai (i ∈ I). If

further each Ai forms a substructure of M , then we call A a system of t-p.p.r.c.

substructures of M . If |I| = 1 then, letting A1 = A and X1 = X, we write

{(A,X)} simply as (A,X), and call A an X-pivoted relatively characteristic (X-

p.r.c.) subset/substructure of M .

Clearly if {(Ai, Xi) : i ∈ I} forms a system of t-p.p.r.c. subsets of M and J is

a subset of I then {(Aj , Xj) : j ∈ J} is also a system of t-p.p.r.c. subsets of M . In

particular, each Ai is an Xi-p.r.c. subset of M .

Moreover, if A is an X-p.r.c. subset in M then A is a union of orbits of the set

of automorphisms of M which fixes X. Indeed, if a ∈ A and φ ∈ Aut(M) fixes X

then Aφ = A, so that aφ ∈ A.
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Definition 3.3.2 has strong links with the model theoretic concept of definably,

which we briefly outlined in Subsection 1.2.1. Let M be an ℵ0-categorical structure,

A a subset of M , and X = (x1, . . . , xn) an n-tuple of M . Then A is an X-p.r.c.

subset if and only if A is an {x1, . . . , xn}-definable subset of M by Proposition

1.2.23. In fact much of the work in this section could be given in terms of definable

sets, but in keeping with our algebraic viewpoint at this stage it is more natural to

use Definition 3.3.2.

The following lemma will be useful in many applications throughout this chap-

ter.

Lemma 3.3.3. Let M be a structure and, for some fixed t ∈ N, let {Xi : i ∈ I} be

a collection of t-tuples of M . Then for any collection {Ai : i ∈ I} of subsets of M ,

the following are equivalent:

(i) {(Ai, Xi) : i ∈ I} is a system of t-p.p.r.c. subsets/substructures of M ;

(ii) if φ ∈ Aut(M) is such that there exist i, j ∈ I with Xiφ = Xj, then xφ ∈ Aj
for all x ∈ Ai.

Proof. We prove the result for the case where each Ai is a substructure of M , the

case where the Ai are subsets is then immediate.

(i) ⇒ (ii). Immediate.

(ii) ⇒ (i). Let φ ∈ Aut(M) be such that there exist i, j ∈ I with Xiφ = Xj .

Then by our hypothesis φ|Ai is a map from Ai to Aj and, being a restriction

of an automorphism, is an injective morphism. Moreover, as Xjφ
−1 = Xi and

φ−1 ∈ Aut(M), we have that xφ−1 ∈ Ai for all x ∈ Aj . Hence φ|Ai is surjective,

and thus an automorphism.

We observe that if {(Ai, Xi) : i ∈ I} is a system of t-p.p.r.c. subsets of a

structure M then {(〈Ai〉M , Xi) : i ∈ I} forms a system of t-p.p.r.c. substructures

of M . For if φ ∈ Aut(S) is such that Xiφ = Xj for some i, j ∈ I then Aiφ = Aj ,

and so 〈Ai〉Mφ ⊆ 〈Aj〉M . The result follows by Lemma 3.3.3.

Example 3.3.4. Let S be a semigroup. Then {(S1aS1, a) : a ∈ S} forms a system

of 1-p.p.r.c. subsets of S. To see this, let φ ∈ Aut(S) be such that aφ = b, and let

x ∈ S1aS1. Then there exist u, v ∈ S1 with x = uav, and so by interpreting 1φ as

1 we have

xφ = (uφ)(aφ)(vφ) = (uφ)b(vφ) ∈ S1bS1,

and the result follows by Lemma 3.3.3. A similar result also holds for principal

left/right ideals of a semigroup.

Proposition 3.3.5. Let M be an ℵ0-categorical structure and {(Ai, Xi) : i ∈ I} be

a system of t-p.p.r.c. substructures. Then each Ai is ℵ0-categorical.
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Proof. Let Xi = (xi1, . . . , xit) (i ∈ I). Let a = (a1, . . . , an) and b = (b1, . . . , bn) be

pair of n-tuples of Ai such that

(a,Xi) ∼M,n+t (b,Xi)

via φ ∈ Aut(M), say. Then Xiφ = Xi and so φ|Ai is an automorphism of Ai as

{(Ai, Xi) : i ∈ I} is a system of t-p.p.r.c. substructures. Moreover, aφ|Ai = aφ = b

and so a ∼Ai,n b. We have thus shown that

|Ani / ∼Ai,n | ≤ |Mn+t/ ∼M,n+t | < ℵ0

for each n ≥ 1, since M is ℵ0-categorical. Hence Ai is ℵ0-categorical by the RNT.

A partial converse to Corollary 3.2.10 can be achieved by restricting our subsets

to r.c. subsets as follows.

Lemma 3.3.6. Let M be an ℵ0-categorical structure and A1, . . . , Ar a finite list of

subsets of M . Suppose there exist finite tuples X1, . . . , Xr of M such that Ai forms

an Xi-p.r.c. subset of M (1 ≤ i ≤ r). Then M̄ = (M ;A1, . . . , Ar) is ℵ0-categorical.

Proof. Suppose Xi ∈M ti for each 1 ≤ i ≤ r, and let k(n) = n+
∑r

i=1 ti. Let a and

b be a pair of n-tuples of M̄ such that

(a,X1, . . . , Xr) ∼M,k(n) (b,X1, . . . , Xr)

via φ ∈ Aut(M), say. Then for each 1 ≤ i ≤ r we have Xiφ = Xi, so that Aiφ = Ai

as Ai is an Xi-p.r.c subset. Hence φ ∈ Aut(M̄), and is such that aφ = b. We have

thus shown that

|M̄n/ ∼M̄,n | ≤ |Mk(n)/ ∼M,k(n) | < ℵ0

for each n since M is ℵ0-categorical. Hence M̄ is ℵ0-categorical.

We now give a method for constructing systems of t-p.p.r.c. subsets of a struc-

ture via certain equivalence relations. Let φ : M → N be an isomorphism between

structures M and N , and τM and τN be equivalence relations on M and N , respec-

tively. We call τM and τN preserved under φ if a τM b if and only if aφ τN bφ for

each a, b ∈M . This is clearly equivalent to

(xτM )φ = (xφ)τN (∀x ∈M),

where (xτM )φ = {yφ : y ∈ xτM}. If M = N then we say that τM is preserved under

φ.
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Note that if τ is an equivalence relation on a structure M then

Aut(M)[τ ] := {φ ∈ Aut(M) : τ is preserved under φ}

is a subgroup of Aut(M). Indeed, if φ, ψ ∈ Aut(M)[τ ] and a, b ∈M then

(aφψ−1) τ (bφψ−1)⇔ (aφψ−1)ψ τ (bφψ−1)ψ (as ψ ∈ Aut(M)[τ ])

⇔ (aφ) τ (bφ)

⇔ a τ b (as φ ∈ Aut(M)[τ ]).

Hence φψ−1 ∈ Aut(M)[τ ] as required.

If Aut(M) = Aut(M)[τ ] then we call τ preserved under automorphisms (of M).

The following lemma is then immediate.

Lemma 3.3.7. Let M be a structure and τ be an equivalence relation on M , pre-

served under automorphisms of M . Then {(xτ, x) : x ∈ M} forms a system of

1-p.p.r.c. subsets of M .

For example, each Green’s relation is preserved by all isomorphisms between

semigroups, and thus by automorphisms. We prove the result for R, the other

cases being proved similarly. Let φ ∈ Iso(S;T ) for some semigroups S and T . By

interpreting 1φ as 1, we have for a, b ∈ S,

aR b⇔ a = bu, b = av for some u, v ∈ S1

⇔ aφ = bφuφ, bφ = aφvφ for some uφ, vφ ∈ S1

⇔ aφR bφ.

Consequently, for any semigroup S, each of {(Ra, a) : a ∈ S}, {(La, a) : a ∈ S},
{(Ha, a) : a ∈ S}, {(Da, a) : a ∈ S} and {(Ja, a) : a ∈ S} form systems of 1-p.p.r.c.

subsets of S. Hence, by the Maximal Subgroup Theorem, {(He, e) : e ∈ E(S)} forms

a system of 1-p.p.r.c. subsemigroups of S. The following result is then immediate

from Proposition 3.3.5.

Corollary 3.3.8. The maximal subgroups of an ℵ0-categorical semigroup are ℵ0-

categorical.

This raises the following question: given an equivalence relation τ of an ℵ0-

categorical structure, is there a bound on the set of cardinals of the τ -classes?

This will be of importance in later sections when examining the ℵ0-categoricity

of semigroups built from possibly infinitely many subsemigroups, such as strong

semilattices of semigroups over an infinite semilattice. We consider the question

here in a more general setting.
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Proposition 3.3.9. Let M be an ℵ0-categorical structure and {(Ai, Xi) : i ∈ I} be

a system of t-p.p.r.c. subsets. Then {|Ai| : i ∈ I} is finite. Moreover, if each Ai

forms a substructure of M , then {Ai : i ∈ I} is finite, up to isomorphism.

Proof. Suppose for some i 6= j we have Xi ∼M,t Xj via φ ∈ Aut(M), say.

Then Aiφ = Aj and it follows that {|Ai| : i ∈ I} is bound by the number of t-

automorphism types of M , which is finite by the ℵ0-categoricity of M . The case

where each Ai is a substructure of M also follows.

Corollary 3.3.10. An ℵ0-categorical semigroup has only finitely many maximal

subgroups, up to isomorphism.

We now mirror our generalization of characteristic subsets to automorphism

preserving equivalence relations.

Definition 3.3.11. Let τ be an equivalence relation on a structure M and X a

finite tuple of M . Then we call τ an X-relatively automorphism preserved (X-r.a.p.)

equivalence relation with pivot X, if whenever φ ∈ Aut(M) is such that Xφ = X,

then τ preserves φ.

Example 3.3.12. Clearly if τ is an automorphism preserving equivalence relation,

then τ is an X-r.a.p. equivalence relation for any finite tuple X of M .

More inspiring examples will be given in due course. We note that, as with X-

p.r.c. subsets, there are connections between definable sets and X-r.a.p. equivalence

relations. Indeed, if τ is an X-r.a.p. equivalence relation on an ℵ0-categorical

structure M with pivot X = (x1, . . . , xt) then τ , considered as a set of ordered

pairs, is an {x1, . . . , xt}-definable subsets of M2 by Proposition 1.2.23.

Lemma 3.3.13. Let M be a structure and τ an X-r.a.p. equivalence relation on

M , where X ∈ M t. For each a ∈ M , let Xa be the (t + 1)-tuple given by (X, a).

Then {(aτ,Xa) : a ∈M} forms a system of (t+ 1)-p.p.r.c. subsets of M .

Proof. Let φ be an automorphism of M such that Xaφ = Xb for some a, b ∈ M .

Then Xφ = X so that τ is preserved under φ, and aφ = b. Hence

(aτ)φ = (aφ)τ = bτ.

We now assess when the ℵ0-categoricity of a semigroup passes to its quotients,

and in particular to its Rees factor semigroups. Our work relies on the following

method for constructing isomorphisms between certain quotient semigroups.
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Proposition 3.3.14. Let φ : S → T be an isomorphism between semigroups S and

T . Let ρS and ρT be a congruences on S and T , respectively, which are preserved

under φ. Then the map ψ from S/ρS to T/ρT given by

(aρS)ψ = (aφ)ρT (aρS ∈ S/ρS), (3.2)

is an isomorphism.

Proof. The map ψ is well-defined and injective as

(aρS)ψ = (bρS)ψ ⇔ (aφ)ρT = (bφ)ρT

⇔ aρS = bρS .

Let tρT ∈ T/ρT . Then as φ is surjective, there exists s ∈ S such that t = sφ, so

that tρT = (sφ)ρT = (sρS)ψ. Hence ψ is surjective, and is a morphism as

(aρS)ψ(bρS)ψ = (aφ)ρT (bφ)ρT = (aφbφ)ρT

= ((ab)φ)ρT = ((ab)ρS)ψ

= (aρSbρS)ψ.

Thus ψ is an isomorphism as desired.

Proposition 3.3.15. Let S be an ℵ0-categorical semigroup and ρ an X-r.a.p. con-

gruence on S. Then S/ρ is ℵ0-categorical.

Proof. Suppose X ∈ St and let a = (a1ρ, . . . , anρ) and b = (b1ρ, . . . , bnρ) be a pair

of n-tuples of S/ρ such that

(a1, . . . , an, X) ∼S,n+t (b1, . . . , bn, X)

via φ ∈ Aut(S), say. Then Xφ = X, so that ρ is preserved under the automorphism

φ. By Proposition 3.3.14, we can construct an automorphism ψ of S/ρ given by

(aρ)ψ = (aφ)ρ (aρ ∈ S/ρ).

Since (akρ)ψ = (akφ)ρ = bkρ for each 1 ≤ k ≤ n we have a ∼S/ρ,n b, and so

|(S/ρ)n/ ∼S/ρ,n | ≤ |Sn+t/ ∼S,n+t | < ℵ0.

as S is ℵ0-categorical. Hence S/ρ is ℵ0-categorical.

This naturally generalizes to any universal algebra, but requires a level of back-

ground material that we cannot justify explaining here, and is not needed for this

work.
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If we drop the condition on Proposition 3.3.15 that the congruence is relatively

automorphism preserving then the statement is no longer true. An example of an

ℵ0-categorical group with a non ℵ0-categorical quotient group is given by Rosenstein

[85].

Corollary 3.3.16. Let ρ be a finitely generated congruence on an ℵ0-categorical

semigroup S. Then S/ρ is ℵ0-categorical.

Proof. Let σ = {(u1, v1), . . . , (ur, vr)} be a finite relation on S and let ρ = σ]. We

may assume w.l.o.g. that σ is symmetric (adding (vi, ui) for each 1 ≤ i ≤ r if

necessary). We claim that ρ is an X-r.a.p. congruence with pivot

X = (u1, v1, u2, v2, . . . , ur, vr).

Let φ be an automorphism of S which fixes X and let a, b ∈ S. Then by Proposition

2.2.1 and the symmetricity of σ, we have that a ρ b if and only if for some n ≥ 0,

there exist c1, . . . , cn, d1, . . . , dn in S1, and (ui1 , vi1), . . . , (uin , vin) ∈ σ such that

a = c1 · ui1 · d1,

c1 · vi1 · d1 = c2 · ui2 · d2,

c2 · vi2 · d2 = c3 · ui3 · d3,...
cn · vin · dn = b.

Applying φ and φ−1, this occurs if and only if there exist c1φ, . . . , cnφ, d1φ, . . . , dnφ

in S1 (where we interpret 1φ as 1) and (ui1 , vi1), . . . , (uin , vin) ∈ σ such that

aφ = c1φ · ui1 · d1φ,

c1φ · vi1 · d1φ = c2φ · ui2 · d2φ,

c2φ · vi2 · d2φ = c3φ · ui3 · d3φ,...
cnφ · vin · dnφ = bφ.

for some n ≥ 0, since Xφ = X, so that each uik and vik is fixed by φ. Hence a ρ b

if and only if aφ ρ bφ, thus completing the proof of the claim. The result follows by

Proposition 3.3.15.

We now apply our recent results to the case of Rees factor semigroups. If I

is a characteristic ideal of S then it is easily shown that the Rees congruence ρI

is preserved under automorphisms of S, and so the ℵ0-categoricity of S passes to

the Rees factor semigroup S/I by Proposition 3.3.15. On the other hand, if I is

relatively characteristic then, although ρI may no longer be preserved under all

automorphisms of S, we can find a pivot X for ρI such that ρI is an X-r.a.p.

congruence as follows.
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Lemma 3.3.17. Let S be an ℵ0-categorical semigroup and I an X-p.r.c. ideal of

S. Then S/I is ℵ0-categorical.

Proof. We claim that ρI is an X-r.a.p. congruence. Let φ be an automorphism of

S which fixes X, so that Iφ = I since I is an X-p.r.c ideal. Then, for any a, b ∈ S,

we have

a ρI b⇔ [a = b or a, b ∈ I]⇔ [aφ = bφ or aφ, bφ ∈ I]⇔ aφ ρI bφ,

and so φ preserves ρI as required. The result follows by Proposition 3.3.15.

We end this section by studying a final class of equivalence relations on a semi-

group: those with finite equivalence classes. Let M be a structure and τ an equiv-

alence relation on M . Define an equivalence relation ∼M,τ,n on the set (M/τ)n by

(m1τ, . . . ,mnτ) ∼M,τ,n (m′1τ, . . . ,m
′
nτ) if and only if there exists an automorphism

φ of M such that (mkτ)φ = m′kτ for each 1 ≤ k ≤ n. Note that the automorphism

φ does not have to be τ preserving. Moreover, by taking τ to be the identity re-

lation ι we recover the usual definition of automorphic equivalence of the tuples

(m1, . . . ,mn) and (m′1, . . . ,m
′
n).

Proposition 3.3.18. Let M be a structure and τ an equivalence on M with each

τ -class being finite. Then |(M/τ)n/ ∼M,τ,n | is finite for each n ≥ 1 if and only if

M is ℵ0-categorical and A = {|mτ | : m ∈M} is finite.

Proof. Given an n-tuple a = (a1, . . . , an) of M , we let aτ denote the n-tuple of M/τ

given by

aτ := (a1τ, . . . , anτ).

Suppose that |(M/τ)n/ ∼M,τ,n | is finite for each n ≥ 1. Let Z = {ai : i ∈ N} be

an infinite set of n-tuples of M , where ai = (ai1, . . . , ain). Since |(M/τ)n/ ∼M,τ,n |
is finite, there exists an infinite subset {ai : i ∈ I} of Z such that aiτ ∼M,τ,n ajτ

for each i, j ∈ I. In particular, for each i ∈ I there exists an automorphism φi of

M with (aiτ)φi = a1τ . Hence aikφi ∈ aikτφ = a1kτ for each 1 ≤ k ≤ n, and so

aiφi ∈ {(z1, . . . , zn) : zk ∈ a1kτ}.

Notice that set {(z1, . . . , zn) : zk ∈ a1kτ} is finite since each τ -class is finite. Con-

sequently, there exist distinct i, j ∈ I such that aiφi = ajφj , so that aiφiφ
−1
j = aj .

Hence ai and aj are automorphically equivalent. It follows that M contains no in-

finite set of distinct n-automorphism types, and is thus ℵ0-categorical by the RNT.

Furthermore, by our usual argument we have that A is bound by |(M/τ)/ ∼M,τ,1 |.
Conversely, supposeM is ℵ0-categorical andA is finite. Letm = (m1τ, . . . ,mnτ)

and m′ = (m′1τ, . . . ,m
′
nτ) be a pair of n-tuples of (M/τ)n, under the condition that

|mkτ | = |m′kτ | for each k. Since each entry of an n-tuple of (M/τ)n has |A| potential
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cardinalities, it follows that this condition has |A|n choices. For each 1 ≤ k ≤ n, let

mkτ = {ak1, . . . , aksk} and m′kτ = {bk1, . . . , bksk}, and let T (n) = s1 + s2 + · · ·+ sn.

Suppose further that

(a11, . . . , a1s1 , a21, . . . , a2s2 , . . . , ansn) ∼M,T (n) (b11, . . . , b1s1 , b21, . . . , b2s2 , . . . , bnsn),

via φ ∈ Aut(S), say. Then (mkτ)φ = m′kτ for each k, since akrφ = bkr for each

1 ≤ r ≤ sk. Hence m ∼M,τ,n m′, and so |(M/τ)n/ ∼M,τ,n | is finite by Lemma 3.2.5

since |A|n and each |MT (n)/ ∼M,T (n) | are finite for each n ≥ 1, thus completing

the proof.

Corollary 3.3.19. Let S be a regular semigroup with each maximal subgroup being

finite. Then S is ℵ0-categorical if and only if |E(S)n/ ∼S,n | is finite for each n ≥ 1.

Proof. If S is ℵ0-categorical, then

|E(S)n/ ∼S,n | ≤ |Sn/ ∼S,n | < ℵ0

for each n ≥ 1 by the RNT.

Conversely, suppose |E(S)n/ ∼S,n | is finite for each n ≥ 1 and consider a pair

of n-tuples of S/H given by a = (Ha1 , . . . ,Han) and b = (Hb1 , . . . , Hbn). Since S

is regular, there exist idempotents ei, fi, ēi, f̄i of S with eiR ai L fi and ēiR bi L f̄i
for each 1 ≤ i ≤ n, by Proposition 2.4.4. Suppose further that

(e1, f1, e2, f2, . . . , en, fn) ∼S,2n (ē1, f̄1, ē2, f̄2, . . . , ēn, f̄n),

via φ ∈ Aut(S), say. Then as R and L are automorphism preserving we have that

Reiφ = Rēi and Lfiφ = Lf̄i for each i, so that

Haiφ = (Rai ∩ Lai)φ = (Rei ∩ Lfi)φ = Reiφ ∩ Lfiφ = Rēi ∩ Lf̄i = Hbi .

Hence a ∼S,H,n b, and we have thus shown that

|(S/H)n/ ∼S,H,n | ≤ |E(S)2n/ ∼S,2n | < ℵ0.

Since each maximal subgroup of the regular semigroup S is finite, it follows from

Lemma 2.4.1 and Proposition 2.4.4 that every H-class of S is finite. Hence S is

ℵ0-categorical by Proposition 3.3.18.
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3.4 Principal factors of an ℵ0-categorical semigroups

Our interest in this section is in determining how ℵ0-categoricity effects the prin-

cipal factors of a semigroup. We observe first that the principal factors of an

ℵ0-categorical semigroup behave in much the same way as the maximal subgroups:

Theorem 3.4.1. The principal factors of an ℵ0-categorical semigroup S are ℵ0-

categorical, and either completely 0-simple, completely simple or null. Moreover, S

has only finitely many principal factors, up to isomorphism.

Proof. Since S is ℵ0-categorical, the ideals J(a) = S1aS1 are ℵ0-categorical by

Example 3.3.4 and Proposition 3.3.5. Let φ be an automorphism of S such that aφ =

b. Then J(a)φ = J(b) as {(J(a), a) : a ∈ S} is a system of 1-p.p.r.c. subsemigroups

of S. Moreover, as J is preserved under automorphisms we have Jaφ = Jb, and so

I(a)φ = (J(a) \ Ja)φ = J(b) \ Jb = I(b).

Consequently, {(I(a), a) : a ∈ S} is a system of 1-p.p.r.c. subsemigroups of S and,

in particular, I(a) is an a-p.r.c. ideal of J(a) for each a ∈ S. Hence J(a)/I(a) is

ℵ0-categorical by Lemma 3.3.17. If the kernel K(S) of S exists, it is a J -class of

S, and is thus ℵ0-categorical. Hence each principal factor of S is ℵ0-categorical.

Moreover, as φ|J(a) is an isomorphism from J(a) to J(b) with I(a)φ|J(a) = I(b),

it follows that the isomorphism φ|J(a) preserves ρI(a) and ρI(b), and so J(a)/I(a) is

isomorphic to J(b)/I(b) by Proposition 3.3.14. Hence the set

{J(a)/I(a) : a ∈ S}

of non minimal ideal principal factors of S has at most |S/ ∼S,1 | elements, up to

isomorphism. Since K(S) is the unique minimal ideal of S, if it exists, S has only

finitely many principal factors, up to isomorphism.

By Theorem 2.5.1, the principal factors of a semigroup S are either 0-simple,

simple or null. A periodic 0-simple semigroup is completely 0-semigroup by [20,

Corollary 2.56]. If M is a periodic simple semigroup then M0 is completely 0-

simple, so that M = M0 \ {0} contains a minimal idempotent under the natural

order. Hence M is completely simple. Since every ULF semigroup is periodic, each

principal factor is either completely 0-simple, completely simple or null by Corollary

3.2.4.

By Example 3.2.1 we have that every null semigroup is ℵ0-categorical. To

understand the ℵ0-categoricity of an arbitrary semigroup it is therefore essential to

examine the completely simple and completely 0-simple cases.
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3.5 ℵ0-categorical Rees matrix semigroups

When studying the model theoretic properties of a semigroup S with zero it can

be important to distinguish which signature we are working over: the signature of

semigroups LS or the signature of semigroups with zero, L0 = LS ∪ {0}, where 0

is a constant symbol. When applying the RNT to L0, we are studying the action

of automorphisms of a semigroup S which fix 0, on n-tuples of S. However all

LS-automorphisms of S necessarily fix 0, and so in the context of ℵ0-categoricity

it makes no difference which language we use. We have thus proven the following

proposition.

Proposition 3.5.1. Let S be a semigroup with zero. Then S is ℵ0-categorical as

a semigroup if and only if it is ℵ0-categorical as a semigroup with zero.

In keeping with previous sections, we continue to work over the signature LS .

We also remark that much of the early work in this section can easily be transferred

to the signature of monoids LMo for working with the ℵ0-categoricity of monoids.

Given a semigroup S with zero, we denote S∗ = S \ {0}. The following result is

then immediate from Lemma 3.2.12.

Corollary 3.5.2. A semigroup with zero S is ℵ0-categorical if and only if

|(S∗)n/ ∼S,n | < ℵ0,

for each n ≥ 1.

On the other hand, ℵ0-categorical semigroups can be built from a known ℵ0-

categorical semigroup simply by adjoining a zero:

Lemma 3.5.3. A semigroup without zero S is ℵ0-categorical if and only if S0 is

ℵ0-categorical.

Proof. Recall that every automorphism of S extends to an automorphism of S0,

simply by fixing 0. Consequently, if S is ℵ0-categorical then so is S0. Conversely,

if S0 is ℵ0-categorical, then so is its characteristic subsemigroup S.

We remark that the lemma above still holds when we force a zero. That is,

if S = S0 has a zero, then we may adjoin a new zero, say ], to S by defining

]s = s] = ] for all s ∈ S. This way, we can build new ℵ0-categorical semigroups by

repeatedly forcing a zero.

Motivated by the previous section, we now examine the ℵ0-categoricity of a

completely (0-)simple semigroup. Note that if S is a completely simple semigroup,

then S0 is isomorphic to a Rees matrix semigroup with sandwich matrix without

zero entries [55, Section 3.3]. Consequently, by the Rees Theorem and Lemma 3.5.3,
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to examine the ℵ0-categoricity of both completely simple and completely 0-simple

semigroups, it suffices to study Rees matrix semigroups.

Given a Rees matrix semigroup S =M0[G; I,Λ;P ] with P = (pλ,i), we let G(P )

denote the subset of G of all non-zero entries of P , that is,

G(P ) := {pλ,i : pλ,i 6= 0}.

The idempotents of S are easily described [55, Page 71]:

E(S) = {(i, p−1
λ,i , λ) : pλ,i 6= 0}.

Since there exists a relatively simple isomorphism theorem for Rees matrix

semigroups (Theorem 2.5.3), we should be hopeful of achieving a thorough un-

derstanding of ℵ0-categorical Rees matrix semigroups via the RNT. However, from

the isomorphism theorem it is not clear how the ℵ0-categoricity of the semigroup

M0[G; I,Λ;P ] effects the sets I and Λ. We instead follow a technique of Graham

[38] and Houghton [53] of constructing a graph from the sets I and Λ. We first give

a brief outline of the material required for this construction.

A bipartite graph is a (simple) graph whose vertices can be split into two disjoint

non-empty sets L and R such that every edge connects a vertex in L to a vertex in

R. The sets L and R are called the left set and the right set, respectively. Formally,

a bipartite graph is a triple Γ = 〈L,R,E〉 such that L and R are non-empty trivially

intersecting sets and

E ⊆ {{x, y} : x ∈ L, y ∈ R}.

We call L ∪ R the set of vertices of Γ and E the set of edges. An isomorphism

between a pair of bipartite graphs Γ = 〈L,R,E〉 and Γ′ = 〈L′, R′, E′〉 is a bijection

ψ : L ∪ R → L′ ∪ R′ such that Lψ = L′, Rψ = R′ (so, ψ is the union of bijections

from L to L′ and from R to R′) and {l, r} ∈ E if and only if {lψ, rψ} ∈ E′. We are

therefore regarding bipartite graphs in the signature LBG = {QL, QR, E}, where

QL and QR are unary relations, which we interpret as the sets L and R, respectively,

and E is a binary relation interpreted as the edge relation (recalling our convention

of letting E denote the edge relation and the set of edges).

Let Γ = 〈L,R,E〉 be a bipartite graph. Then Γ is called complete if, for all

x ∈ L, y ∈ R, we have {x, y} ∈ E. If E = ∅ then Γ is called empty. If each

vertex of Γ is incident to exactly one edge, then Γ is called a perfect matching. The

complement of Γ is the bipartite graph 〈L,R,E′〉 with

E′ = {{x, y} : x ∈ L, y ∈ R, {x, y} 6∈ E}.

Hence an empty bipartite graph is the complement of a complete bipartite graph,

and vice-versa. We call Γ random if, for each k, ` ∈ N, and for every distinct
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x1, . . . , xk, y1, . . . , y` in L (in R) there exist infinitely many u ∈ R (u ∈ L) such that

{u, xi} ∈ E but {u, yj} 6∈ E for each 1 ≤ i ≤ k and 1 ≤ j ≤ `.
It can be easily shown that, for each pair n,m ∈ N∗, there exists a unique (up

to isomorphism) complete bipartite graph with left set of size n and right set of

size m, which we denote as Kn,m. There also exists a unique, up to isomorphism,

perfect matching with left and right sets of size n, denoted Pn. Similar uniqueness

holds for the empty bipartite graph En,m with left set of size n and right set of size

m, and complements of the perfect matching Pn, which we denote as CPn. Less

obviously, any pair of random bipartite graphs are isomorphic [29].

Figure 3.1: K3,2. Figure 3.2: P3.

Homogeneous bipartite graphs have been classified by Goldstern in [35].

Theorem 3.5.4. A bipartite graph is homogeneous if and only if it is isomorphic

to one of:

(i) the complete bipartite graph Kn,m,

(ii) the empty bipartite graph En,m,

(iii) a perfect matching Pn,

(iv) the complement of a perfect matching CPn,

(v) a random bipartite graph,

for some n,m ∈ N∗.

Since bipartite graphs are relational structures and thus ULF, homogeneous

bipartite graphs are ℵ0-categorical by Theorem 1.2.26. Unfortunately, no complete

classification of ℵ0-categorical bipartite graphs exists.

Let Γ = 〈L,R,E〉 be a bipartite graph. A path p in Γ is a finite sequence of

vertices

p = (v1, v2, . . . , vn)

such that vi and vi+1 are adjacent for each 1 ≤ i ≤ n− 1. For example, if {x, y} is

an edge in E then both (x, y) and (y, x) are paths in Γ. A pair of vertices x and y
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are connected, denoted x on y, if and only if there exists a path (v1, v2, . . . , vn) in Γ

such that v1 = x and vn = y. It is clear that on is an equivalence relation on the set

of vertices of Γ, and we call the equivalence classes the connected components of Γ.

We observe that each connected component is a sub-bipartite graph of Γ under the

induced structure. We let C(Γ) denote the set of connected components of Γ.

Let Γ be a bipartite graph with C(Γ) = {Γi : i ∈ A}. For any automorphism

φ of Γ and x, y ∈ Γ we have that (x, v2, . . . , vn−1, y) is a path in Γ if and only

if (xφ, v2φ, . . . , vn−1φ, yφ) is a path in Γ, since φ preserves edges and non-edges.

Hence x on y if and only if xφ on yφ, and so there exists a bijection π of A such

that Γiφ = Γiπ for each i ∈ I. We have thus proven the backward direction to the

following result, the converse being immediate.

Proposition 3.5.5. Let Γ = 〈L,R,E〉 be a bipartite graph with connected com-

ponents C(Γ) = {Γi : i ∈ A}. Let π be a bijection of A and φi : Γi → Γiπ an

isomorphism for each i ∈ A. Then
⋃
i∈I φi is an automorphism of Γ. Conversely,

every automorphism of Γ can be constructed in this way.

Proposition 3.5.6. Let Γ = 〈L,R,E〉 be a bipartite graph with connected compo-

nents C(Γ) = {Γi : i ∈ A}. Then Γ is ℵ0-categorical if and only if each connected

component is ℵ0-categorical and C(Γ) is finite, up to isomorphism.

Proof. (⇒) By Proposition 3.5.5 we have that, for any choice of xi ∈ Γi (i ∈ A),

the set {(Γi, xi) : i ∈ A} forms a system of 1-p.p.r.c. sub-bipartite graphs of Γ. The

result then follows from Propositions 3.3.5 and 3.3.9.

(⇐) First we show that C(Γ) forms a (Γ; Ā; Ψ)-system in Γ for some Ā and Ψ.

Let A1, . . . , Ar be the finite partition of A corresponding to the isomorphism types

of the connected components of Γ, that is, Γi ∼= Γj if and only if i, j ∈ Ak for some

k. Fix Ā = (A;A1, . . . , Ar). For each i, j ∈ A, let Ψi,j = Iso(Γi; Γj) and fix Ψ =⋃
i,j∈A Ψi,j . Then Ψ clearly satisfy Conditions 3.2.14(A), 3.2.14(B) and 3.2.14(C).

Let π ∈ Aut(Ā) and, for each i ∈ A, let φi ∈ Ψi,iπ. Then by Proposition 3.5.5,

φ =
⋃
i∈A φi is an automorphism of Γ, and so Ψ satisfies Condition 3.2.14(D). Hence

C(Γ) forms an (Γ; Ā; Ψ)-system. Each Γi is ℵ0-categorical (over Ψi,i = Aut(Γi))

and Ā is ℵ0-categorical by Corollary 3.2.10, and so Γ is ℵ0-categorical by Corollary

3.2.16.

Let S =M0[G; I,Λ;P ] be a Rees matrix semigroup with P = (pλ,i). Then we

form a bipartite graph Γ(P ) = 〈I,Λ, E〉 with edge set

E = {{i, λ} : pλ,i 6= 0},

which we call the induced bipartite graph of S.

This construct has long been fundamental to the study of Rees matrix semi-

groups, and has its roots in a paper by Graham in [38]. Here, it is used to describe
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the maximal nilpotent subsemigroups of a Rees matrix semigroup, where a semi-

group is nilpotent if some power is equal to {0}. All maximal subsemigroups of

a finite Rees matrix semigroup were described in the same paper, a result which

was later extended in [39] to arbitrary finite semigroups. In [54], Howie used the

induced bipartite graph to describe the subsemigroup of a Rees matrix semigroup

generated by its idempotents. Finally, in [53], Houghton described the homology of

the induced bipartite graph, and a detailed overview of his work is given in [80].

Example 3.5.7. Let S =M0[G; {1, 2, 3}, {λ, µ};P ] where

P =

[ 1 2 3

λ a b 0

µ 0 c d

]
.

Then the induced bipartite graph of S is given in Figure 3.3.

1 2 3

λ µ

Figure 3.3: Induced bipartite graph.

Example 3.5.8. Let S = M0[G; I,Λ;P ] be such that P has no zero entries, so

that S is isomorphic to a completely simple semigroup with zero adjoined. Then

Γ(P ) is a complete bipartite graph.

Notation 3.5.9. Let S = M0[G; I,Λ;P ] be a Rees matrix semigroup. Given

an n-tuple a = ((i1, g1, λ1), . . . , (in, gn, λn)) of S∗, we denote Γ(a) as the 2n-tuple

(i1, λ1, . . . , in, λn) of Γ(P ).

Following [3], we adapt the isomorphism theorem for Rees matrix semigroups

(Theorem 2.5.3) to explicitly highlight the roll of the induced bipartite graph:

Theorem 3.5.10. Let S1 = M0[G1; I1,Λ1;P1] and S2 = M0[G2; I2,Λ2;P2] be a

pair of Rees matrix semigroups with sandwich matrices P1 = (pλ,i) and P2 = (qµ,j),

respectively. Let ψ : Γ(P1) → Γ(P2) and θ : G1 → G2 be isomorphisms, and

ui, vλ ∈ G2 for each i ∈ I1, λ ∈ Λ1. Then the mapping φ : S1 → S2 given by

(i, g, λ)φ = (iψ, ui(gθ)vλ, λψ)
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is an isomorphism if and only if

pλ,i θ = vλ · qλψ,iψ · ui, whenever pλ,i 6= 0.

Moreover, every isomorphism from S1 to S2 can be described in this way.

The isomorphism φ will be denoted as (θ, ψ, (ui)i∈I , (vλ)λ∈Λ). We also denote the

induced group isomorphism θ as φG, and the induced bipartite graph isomorphism

ψ as ψΓ(P ), so that φ = (φG, ψΓ(P ), (ui)i∈I , (vλ)λ∈Λ).

The composition and inverses of isomorphisms between Rees matrix semigroups

behave in a natural way as follows.

Corollary 3.5.11. Let Sk =M0[Gk; Ik,Λk;Pk] (k = 1, 2, 3) be Rees matrix semi-

groups. Then for any pair of isomorphisms φ = (θ, ψ, (ui)i∈I1 , (vλ)λ∈Λ1) ∈ Iso(S1;S2)

and φ′ = (θ′, ψ′, (u′j)j∈I2 , (v
′
µ)µ∈Λ2) ∈ Iso(S2;S3) we have

(i) φφ′ =
(
θθ′, ψψ′, (u′iψ(uiθ

′))i∈I1 , ((vλθ
′)v′λψ)λ∈Λ1

)
,

(ii) φ−1 = (θ−1, ψ−1, ((uiψ−1)−1θ−1)i∈I2 , ((vλψ−1)−1θ−1)λ∈Λ2).

Proof. If (i, g, λ) ∈ S1 then

(i, g, λ)φφ′ = (iψ, ui(gθ)vλ, λψ)φ′

=
(
iψψ′, u′iψ

[(
ui(gθ)vλ

)
θ′
]
v′λψ, λψψ

′
)

=
(
iψψ′,

(
u′iψ(uiθ

′)
)(
gθθ′

)(
(vλθ

′)v′λψ
)
, λψψ′

)
= (i, g, λ)

(
θθ′, ψψ′,

(
u′iψ(uiθ

′)
)
i∈I1 ,

(
(vλθ

′)v′λψ
)
λ∈Λ1

)
,

and so the first result holds.

Now let ϕ = (θ−1, ψ−1, ((uiψ−1)−1θ−1)i∈I2 , ((vλψ−1)−1θ−1)λ∈Λ2). Then by the

previous part we have

φϕ =
(
θθ−1, ψψ−1,

((
(uiψψ−1)−1θ−1

)(
uiθ
−1
))

i∈I1
,
((
vλθ
−1
)(
vλψψ−1)−1θ−1

))
λ∈Λ1

)
=
(
1G1 , 1Γ(P1), ((u

−1
i ui)θ

−1)i∈I1 , ((vλv
−1
λ )θ−1)λ∈Λ1

)
= (1G1 , 1Γ(P1), (1)i∈I1 , (1)λ∈Λ1)

= 1S1

and similarly

ϕφ =
(
θ−1θ, ψ−1ψ,

(
uiψ−1

(
(uiψ−1)−1θ−1θ

))
i∈I2 ,

((
(vλψ−1)−1θ−1θ

)
vλψ−1

)
λ∈Λ2

= (1G2 , 1Γ(P2), (1)i∈I2 , (1)λ∈Λ2)

= 1S2

and so ϕ = φ−1 as required.
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Let Γ = 〈L,R,E〉 be a bipartite graph. For each n ∈ N, we let σΓ,n be the

equivalence relation on Γn given by

(x1, . . . , xn)σΓ,n (y1, . . . , yn)⇔ [xi ∈ L⇔ yi ∈ L, for each 1 ≤ i ≤ n].

Since each entry of an n-tuple lies in either L or R we have that

|Γn/σΓ,n| = 2n,

for each n. Due to the automorphisms of Γ fixing the sets L and R, it easily follows

that

∼Γ,n⊆ σΓ,n.

Proposition 3.5.12. If S =M0[G; I,Λ;P ] is ℵ0-categorical, then G and Γ(P ) are

ℵ0-categorical.

Proof. Given pλ,i 6= 0, we have that {(i, g, λ) : g ∈ G} is a maximal subgroup

of S isomorphic to G. Hence G is ℵ0-categorical by Corollary 3.3.8. Now let

a = (a1, . . . , an) and b = (b1, . . . , bn) be a pair of σΓ,n-related n-tuples of Γ(P ).

Let i1 < i2 < · · · < is and j1 < j2 < · · · < jt be the indexes of entries of a lying

in L and R, respectively. Since a σΓ,n b we also have that i1 < i2 < · · · < is and

j1 < j2 < · · · < jt are the indexes of entries of b lying in L and R, respectively.

Suppose further that there exist i ∈ I, λ ∈ Λ such that the n-tuples

((ai1 , 1, λ), . . . , (ais , 1, λ), (i, 1, aj1), . . . , (i, 1, ajt)) and

((bi1 , 1, λ), . . . , (bis , 1, λ), (i, 1, bj1), . . . , (i, 1, bjt)),

are automorphically equivalent via φ ∈ Aut(S), say. Then airφΓ(P ) = bir and

ajr′φΓ(P ) = bjr′ , for each 1 ≤ r ≤ s and 1 ≤ r′ ≤ t by Theorem 3.5.10. Hence

a ∼Γ(P ),n b via φΓ(P ), and we have thus shown that

|Γ(P )n/ ∼Γ(P ),n | ≤ 2n · |Sn/ ∼S,n |.

Hence Γ(P ) is ℵ0-categorical by the ℵ0-categoricity of S.

In the next subsection we construct a counterexample to the converse of Proposi-

tion 3.5.12. Our method will be to transfer the concept of the connected components

of bipartite graphs to corresponding subsemigroups of Rees matrix semigroups.

3.5.1 Connected Rees components

Let Sk =M0[G; Ik,Λk;Pk] (k ∈ A) be a collection of Rees matrix semigroups with

Pk = (p
(k)
λ,i ) and Sk ∩ S` = {0} for each k, ` ∈ A. Then we may form a single

Rees matrix semigroup S =M0[G; I,Λ;P ], where I =
⋃
k∈A Ik, Λ =

⋃
k∈A Λk and
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P = (pλ,i) is the Λ by I matrix defined by

pλ,i =

{
p

(k)
λ,i if λ, i ∈ Γ(Pk), for some k

0 else.

That is, P is the block matrix

P =


P1 0 0 · · ·
0 P2 0 · · ·

0 0 P3
. . .

...
...

. . .
. . .

 . (3.3)

We denote S by ~G
k∈ASk. The subsemigroups Sk of S are called the Rees compo-

nents of S. Notice that each Γ(Pk) is a union of connected components of Γ(P ).

The subsemigroup Sk will be called a connected Rees component of S if Γ(Pk) is

connected (and is therefore a connected component of Γ(P )).

Conversely, for any Rees matrix semigroup S =M0[G; I,Λ;P ] there exist par-

titions {Ik : k ∈ A} and {Λk : k ∈ A} of I and Λ, respectively, such that

C(Γ(P )) = {Λk ∪ Ik : k ∈ A}. Consequently, for each k ∈ A, the subsemigroup

Sk =M0[G; Ik,Λk;Pk] of S is a connected Rees component, where Pk is the Λk×Ik
submatrix of P . It then follows by the observation following Theorem 2.5.3 that,

by permuting the rows and columns of P if necessary, we may assume w.l.o.g. that

P is a block matrix of the form (3.3).

Note that if S is a Rees matrix semigroup with connected Rees components

{Sk : k ∈ A} then

E(S) =
⋃
k∈A

E(Sk). (3.4)

To see this, note that 0 ∈ E(Sk) for each k ∈ A, and if (i, p−1
λ,i , λ) is a non-zero

idempotent of S then pλ,i 6= 0. Hence i and λ are adjacent in the induced bipartite

graph of S, and thus lie in the same connected component. It is then immediate

that (i, p−1
λ,i , λ) is contained in some connected Rees component of S.

Since automorphisms of Γ(P ) arise as collections of isomorphisms between its

connected components, we reach the following alternative description of automor-

phisms of a Rees matrix semigroups.

Corollary 3.5.13. Let S = ~G
k∈ASk =M0[G; I,Λ;P ] be a Rees matrix semigroup

such that each Sk = M0[G; Ik,Λk;Pk] is a connected Rees component of S. Let π

be a bijection of A and, for each k ∈ A, let φk = (θ, ψk, (u
(k)
i )i∈Ik , (v

(k)
λ )λ∈Λk) be an

isomorphism from Sk to Skπ. Then φ = (θ, ψ, (ui)i∈I , (vλ)λ∈Λ) is an automorphism

of S, where ψ =
⋃
k∈A ψk, and if i, λ ∈ Γ(Pk) then ui = u

(k)
i and vλ = v

(k)
λ .

Moreover, every automorphism of S can be described in this way.

Proof. Let S and φ be constructed as in the hypothesis of the corollary. Then the
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map ψ is an automorphism of Γ(P ) by Proposition 3.5.5. Let i ∈ I and λ ∈ Λ be

such that pλ,i 6= 0. Then i, λ ∈ Γ(Pk) for some k ∈ A, and so by Theorem 3.5.10

we have

pλ,iθ = v
(k)
λ pλψk,iψku

(k)
i = vλpλψ,iψui,

since φk is an isomorphism and ψ extends ψk. Hence, again by Theorem 3.5.10, φ

is an automorphism of S as required.

Conversely, if (θ′, ψ′, (u′i)i∈I , (v
′
λ)λ∈Λ) is an automorphism of S then by Propo-

sition 3.5.5 there exists a bijection π′ of A and isomorphisms ψ′k : Γ(Pk)→ Γ(Pkπ′),

for each k ∈ A, such that ψ′ =
⋃
k∈A ψ

′
k. Hence (θ′, ψ′k, (u

′
i)i∈Ik , (v

′
λ)λ∈Λk) is an

isomorphism from Sk to Skπ′ for each k ∈ A.

We observe that the induced group automorphisms of the isomorphisms φk are

all equal (to θ).

Proposition 3.5.14. Let S = ~G
k∈ASk be an ℵ0-categorical Rees matrix semi-

group such that each Sk is a connected Rees component of S. Then each Sk is

ℵ0-categorical and S has finitely many connected Rees components, up to isomor-

phism.

Proof. We claim that {(Sk, ak) : k ∈ A} is a system of 1-p.p.r.c. subsemigroups of S

for any ak ∈ S∗k , to which the result follows by Propositions 3.3.5 and 3.3.9. Indeed,

let φ be an automorphism of S such that akφ = al for some k, l. Then, by Corollary

3.5.13, there exists a bijection π of A with Skφ = Skπ = Sl as required.

Our interest is now in attaining a converse to the proposition above, since it

would provide us with a new method for building ℵ0-categorical Rees matrix semi-

groups from ‘old’. With the aid of Lemma 3.2.15, we prove that a converse exists in

the class of Rees matrix semigroups over finite groups. The case where the maximal

subgroups are infinite is an open problem.

Given a pair S = M0[G; I,Λ;P ] and S′ = M0[G; I ′,Λ′;Q] of Rees matrix

semigroups over a group G, we denote Iso(S;S′)(1G) as the set of isomorphisms

between S and S′ with trivial induced group isomorphism. That is,

Iso(S;S′)(1G) := {(θ, ψ, (ui)i∈I , (vλ)λ∈Λ) ∈ Iso(S;S′) : θ = 1G}.

If S = S′ we denote this simply as Aut(S)(1G), and notice that Aut(S)(1G) is a

subgroup of Aut(S) by Corollary 3.5.11.

Lemma 3.5.15. Let S = M0[G; I,Λ;P ] be a Rees matrix semigroup over a fi-

nite group G. Then S is ℵ0-categorical if and only if if S is ℵ0-categorical over

Aut(S)(1G).
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Proof. Let S be ℵ0-categorical with G = {g1, . . . , gr}. Let a and b be a pair of

n-tuples of S. For some fixed pµ,j 6= 0, let g be the r-tuple of S given by

g = ((j, g1, µ), . . . , (j, gr, µ)),

and suppose (a, g) ∼S,n+r (b, g) via φ = (θ, ψ, (ui)i∈I , (vλ)λ∈Λ), say. Then, for each

1 ≤ k ≤ r, we have

(j, gk, µ)φ = (jψ, uj(gkθ)vµ, µψ) = (j, gk, µ),

so that gkθ = u−1
j gkv

−1
µ . For each i ∈ I, λ ∈ Λ, let ūi = uiu

−1
j and v̄λ = v−1

µ vλ.

Then, since gφ = g, we have

(iψ, ūigkv̄λ, λψ) = (iψ, (uiu
−1
j )gk(v

−1
µ vλ), λψ)

= (iψ, ui(gkθ)vλ, λψ)

= (i, gk, λ)φ,

for any (i, gk, λ) ∈ S. It follows that φ = (1G, ψ, (ūi)i∈I , (v̄λ)λ∈Λ) ∈ Aut(S)(1G), so

that

(a, g) ∼S,Aut(S)(1G),n+r (b, g)

and in particular a ∼S,Aut(S)(1G),n b. We have thus shown that

|Sn/ ∼S,Aut(S)(1G),n | ≤ |Sn+r/ ∼S,n+r | < ℵ0,

as S is ℵ0-categorical. Hence S is ℵ0-categorical over Aut(S)(1G).

The converse is immediate.

We now prove the converse to Proposition 3.5.14 in the case where the maximal

subgroups are finite.

Theorem 3.5.16. Let S =M0[G; I,Λ;P ] be a Rees matrix semigroup such that G

is finite. Then S is ℵ0-categorical if and only if each connected Rees component of

S is ℵ0-categorical and S has only finitely many connected Rees components, up to

isomorphism.

Proof. (⇐) Let {Sk : k ∈ A} be the connected Rees components of S, which is

finite up to isomorphism and with each Sk being ℵ0-categorical. Define a relation η

on A by i η j if and only if Iso(Si;Sj)(1G) 6= ∅. Hence by Corollary 3.5.11 we have

that η is an equivalence relation.

We prove that A/η is finite. Suppose, seeking a contradiction, that there exists

an infinite set X of pairwise η-inequivalent elements of A. Since S has finitely many

connected components up to isomorphism, there exists an infinite subset {ir : r ∈ N}
of X such that Sin

∼= Sim for each n,m. Fix an isomorphism φin : Sin → Si1 for each
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n ∈ N. Since Aut(G) is finite, there exist distinct n,m such that φGin = φGim , and so

φinφ
−1
im
∈ Iso(Sin ;Sjm)(1G) by Corollary 3.5.11. Hence in η im, a contradiction, and

so A/η is finite.

Let S′ =
⋃
k∈A Sk, noting that S′ is a subsemigroup of S as SkSl = 0 for each

k 6= l in A. We prove that {Sk : k ∈ A} forms an (S;S′; Ā; Ψ)-system in S for some

Ā and Ψ.

For each i, j ∈ A, let Ψi,j = Iso(Si;Sj)(1G) and fix Ψ =
⋃
i,j∈A Ψi,j . Let A/η =

{A1, . . . , Ar} and set Ā = (A;A1, . . . , Ar). Then, by our construction, if i, j ∈ Am
for some m then Ψi,j 6= ∅, and so Ψ satisfies Condition 3.2.14(A). Furthermore, it

follows immediately from Corollary 3.5.11 that Ψ satisfies Conditions 3.2.14(B) and

3.2.14(C). Finally, take any π ∈ Aut(Ā) and, for each k ∈ A, let φk ∈ Ψk,kπ. Then

as φGk = 1G for each k ∈ A, we may construct an automorphism φ of S from the

set of isomorphisms {φk : k ∈ A} by Corollary 3.5.13. Since φ extends each φk by

construction, we have that {Sk : k ∈ A} forms an (S;S′; Ā; Ψ)-system as required.

Since Sk is ℵ0-categorical, it is ℵ0-categorical over Ψk,k = Aut(Sk)(1G) by Lemma

3.5.15. By Corollary 3.2.10, Ā is ℵ0-categorical, and so

|(S′)n/ ∼S,n | < ℵ0

by Lemma 3.2.15. Given that E(S) ⊆ S′ by (3.4), we therefore have that

|E(S)n/ ∼S,n | ≤ |(S′)n/ ∼S,n | < ℵ0.

Hence S, being regular with finite maximal subgroups, is ℵ0-categorical by Corollary

3.3.19.

(⇒) Immediate from Proposition 3.5.14.

Those familiar with semigroup theory will observe that the subsemigroup S′ of

S in the proof above is an example of a 0-direct union of semigroups, which will be

the topic of the subsequent section.

We now construct a counterexample to the converse of Proposition 3.5.12. By

Proposition 3.5.14, it suffices to find a Rees matrix semigroup over an ℵ0-categorical

group with ℵ0-categorical induced bipartite graph, but with infinitely many non-

isomorphic connected Rees components.

Example 3.5.17. Let G be an ℵ0-categorical infinite abelian group with identity

element 1, and {gi : i ∈ N} be an enumeration of its non-identity elements (such a

group exists by Proposition 3.1.1). Let Ik = {iks : s ∈ N} and Λk = {λkt : t ∈ N}
be infinite sets for each k ∈ N. Let Pk = (p

(k)

λks ,i
k
t
) be the Λk × Ik matrix such that
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p
(k)

λkm,i
k
m

= gm for each 1 ≤ m ≤ k, and all other entries being 1, that is,

Pk =



g1 1 1 · · · 1 1 · · ·
1 g2 1 · · · 1 1 · · ·

1 1
. . .

. . .
...

...
...

...
...

. . .
. . . 1 1 · · ·

1 1 · · · 1 gk 1 · · ·
1 1 · · · 1 1 1 · · ·
...

... · · ·
...

...
...

. . .


.

Then each Γ(Pk) is a complete bipartite graph, isomorphic to Kℵ0,ℵ0 , and is thus

ℵ0-categorical by Theorem 3.5.4. For each k ∈ N, let Sk be the connected Rees

matrix semigroup [G; Ik,Λk;Pk], and set

~G
k∈NSk =M0[G; I,Λ;P ].

Then Γ(P ), being the disjoint union of the pairwise isomorphic ℵ0-categorical bi-

partite graphs Γ(Pk), is ℵ0-categorical by Theorem 3.5.6.

We claim that Sk ∼= S` if and only if k = l. Let (θ, ψ, (ui)i∈Ik , (vλ)λ∈Λk) be an

isomorphism between Sk and S`, and assume w.l.o.g. that k ≥ `. Since there exist

only finitely many rows of Pk and P` which have non-identity entries, there exists

λks ∈ Λk such that both row λks of Pk and row λksψ of P` consist entirely of identity

entries. Then, for each ikt ∈ Ik,

p
(k)

λks ,i
k
t
θ = 1θ = 1 = vλks · p

(`)

λksψ,i
k
t ψ
· uikt = vλksuikt

by Theorem 3.5.10, so that

v−1
λks

= uik1
= uik2

= · · · = u,

say. Dually, by considering the columns of Pk and P`, we have

vλk1
= vλk2

= · · · = u−1,

since v−1
λks

= u. Hence, for each 1 ≤ m ≤ k,

gmθ = p
(k)

λkm,i
k
m
θ = u−1 · p(`)

λkmψ,i
k
mψ
· u = p

(`)

λkmψ,i
k
mψ
∈ {g1, . . . , g`}

asG is abelian. It follows that the automorphism θ maps {g1, . . . , gk} to {g1, . . . , g`}.
Since k ≥ `, this means that k = l, thus proving the claim. We have shown that

M0[G; I,Λ;P ] has infinitely many non-isomorphic connected Rees components, and

is therefore not ℵ0-categorical by Proposition 3.5.14.
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A natural question is to ask whether the converse of Proposition 3.5.12 holds for

the class of Rees matrix semigroups with finitely many connected Rees components.

A negative answer can be obtained by our usual method, by taking G = {1, a} ∼= Z2,

and letting P be the N× N matrix given by

pi,j =

{
1 if i ≥ j,
a if i < j.

That is,

P =



1 a a · · · a a · · ·
1 1 a · · · a a · · ·

1 1
. . .

. . .
...

...
...

...
...

. . .
. . . a a · · ·

1 1 · · · 1 1 a · · ·
1 1 · · · 1 1 1 · · ·
...

... · · ·
...

...
...

. . .


.

Then Γ(P ) is isomorphic to the ℵ0-categorical complete bipartite graph Kℵ0,ℵ0 .

However M0[G; N,N;P ] is not ℵ0-categorical, since {((1, 1, 1), (i, 1, 1)) : i ∈ N} can

be shown to be an infinite set of distinct 2-automorphism types.

3.5.2 Labelled bipartite graphs

The problem arising in Example 3.5.17 is that by shifting from the sandwich matrix

P = (pλ,i) to the induced bipartite graph Γ(P ) we have “forgotten” the value of the

entries pλ,i. In this subsection we extend the construction of the induced bipartite

graph of a Rees matrix semigroup to build classes of ℵ0-categorical Rees matrix

semigroups. This, together with the method devised in the previous subsection for

constructing ℵ0-categorical Rees matrix semigroups from sets of ℵ0-categorical (con-

nected) Rees matrix semigroups with finite maximal subgroups, will allow further

examples of ℵ0-categorical Rees matrix semigroups to be built.

Definition 3.5.18. Let Γ = 〈L,R,E〉 be a bipartite graph, Σ a set, and f : E → Σ

a surjective map. Then the triple (Γ,Σ, f) is called a Σ-labelled (by f) bipartite

graph, which we denote as Γf .

There is a natural signature in which to regard Σ-labelled bipartite graphs. For

each σ ∈ Σ, take a binary relation symbol Eσ and let

LBGΣ = LBG ∪ {Eσ : σ ∈ Σ}.

Then we call LBGΣ the signature of Σ-labelled bipartite graphs, where we interpret

(x, y) ∈ Eσ if and only if {x, y} ∈ E and {x, y}f = σ.
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Let Γf = (Γ,Σ, f) and Γf
′

= (Γ′,Σ, f ′) be a pair of Σ-labelled bipartite graphs.

Then, applying Definition 1.1.7 to the signature LBGΣ, we have that Γf and Γf
′

are isomorphic if there exists an isomorphism ψ : Γ → Γ′ which preserves labels,

that is, such that

{x, y}f = σ ⇔ {xψ, yψ}f ′ = σ.

Let Γf be a Σ-labelled bipartite graph. Then for any set Σ′ and bijection

g : Σ → Σ′, we can form a Σ′-labelling of Γ simply by taking Γfg, which we call a

relabelling of Γf . Notice that if ψ is an automorphism of Γ, then ψ ∈ Aut(Γf ) if

and only if ψ ∈ Aut(Γfg). Indeed, if ψ ∈ Aut(Γf ) then for any edge {x, y} of Γ we

have

{x, y}fg = σ′ ⇔ {x, y}f = σ′g−1 ⇔ {xψ, yψ}f = σ′g−1 ⇔ {xψ, yψ}fg = σ′,

since g is a bijection. The converse is proven similarly, and the following result is

then immediate.

Lemma 3.5.19. Let Γf be a Σ-labelling of a bipartite graph Γ. Then Γf is ℵ0-

categorical if and only if any relabelling of Γf is ℵ0-categorical.

Lemma 3.5.20. If Γf = (Γ,Σ, f) is an ℵ0-categorical labelled bipartite graph then

Σ is finite and Γ is ℵ0-categorical.

Proof. For each σ ∈ Σ, let {xσ, yσ} be an edge in Γ such that {xσ, yσ}f = σ. Then

{(xσ, yσ) : σ ∈ Σ} is a set of distinct 2-automorphism types of Γf , and so Σ is finite

by the RNT. Since Γ is the LBG-reduct of Γf , the final result is immediate from

Corollary 3.2.3.

A consequence of the previous pair of lemmas is that, in the context of ℵ0-

categoricity, it suffices to consider finitely labelled bipartite graphs, with labelling

set m = {1, 2, . . . ,m} for some m ∈ N. We now construct examples of ℵ0-categorical

labelled bipartite graphs.

Lemma 3.5.21. Let Γf = (〈L,R,E〉,m, f) be an m-labelled bipartite graph such

that either L or R are finite. Then Γf is ℵ0-categorical.

Proof. Without loss of generality assume that L = {l1, l2, . . . , lr} is finite. Define a

relation τ on R by y τ y′ if and only if y and y′ are adjacent to the same elements

in L and {li, y}f = {li, y′}f for each such li ∈ L. Note that since both L and m

are finite, R has finitely many τ -classes, say R1, . . . , Rt. Fix A = (R;R1, . . . , Rt).

Since L is finite, to prove that Γf is ℵ0-categorical it suffices to show that

(Γf \ L)n = Rn has finitely many ∼Γf ,n-classes for each n ∈ N by Lemma 3.2.12.

Let a = (r1, . . . , rn) and b = (r′1, . . . , r
′
n) be n-tuples of R such that a ∼A,n b via

ψ ∈ Aut(A), say. We claim that the map ψ̄ : Γf → Γf which fixes L and is such

that ψ̄|R = ψ is an automorphism of Γf . Indeed, as ψ setwise fixes the τ -classes,
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we have (λ, λψ) ∈ τ for each λ ∈ R. Hence λ and λψ are adjacent to the same

elements in L, and so

{li, λ} ∈ E ⇔ {li, λψ} ∈ E ⇔ {liψ̄, λψ̄} ∈ E,

so that ψ̄ is an automorphism of Γ. Similarly {li, λ}f = {li, λψ}f = {liψ̄, λψ̄}f , so

that ψ̄ preserves labels. This proves the claim.

For each 1 ≤ k ≤ n we have rkψ̄ = rkψ = r′k, so that a ∼Γf ,n b. We have thus

shown that

|(Γf \ L)n/ ∼Γf ,n | ≤ |An/ ∼A,n |.

However A is ℵ0-categorical by Corollary 3.2.10, and so |An/ ∼A,n | is finite for

each n ≥ 1. Hence Γf is ℵ0-categorical by Lemma 3.2.12.

Lemma 3.5.22. Let Γf = (〈L,R,E〉,m, f) be such that there exists p ∈ m with

{x, y}f = p for all but finitely many edges in Γ. Then Γf is ℵ0-categorical if and

only if Γ is ℵ0-categorical.

Proof. Let p ∈ m be such that {x, y}f = p for all but finitely many edges in Γ.

Suppose Γ is ℵ0-categorical, and that {l1, r1}, . . . , {lt, rt} are precisely the edges of

Γ such that {lk, rk}f 6= p, where li ∈ L and ri ∈ R. Let a and b be n-tuples of Γf

such that

(a, l1, r1, . . . , lt, rt) ∼Γ,n+2t (b, l1, r1, . . . , lt, rt)

via ψ ∈ Aut(Γ), say. We claim that ψ is an automorphism of Γf . For each 1 ≤ k ≤ t
we have lkψ = lk and rkψ = rk so that

{lk, rk}f = {lkψ, rkψ}f.

It follows that {l, r}f = p if and only if {lψ, rψ}f = p, and so ψ preserves all labels,

thus proving the claim. We have thus shown that a ∼Γf ,n b via ψ, so that

|(Γf )n/ ∼Γf ,n | ≤ |Γn+2t/ ∼Γ,n+2t | < ℵ0

by the ℵ0-categoricity of Γ. Hence Γf is ℵ0-categorical.

The converse is immediate from Lemma 3.5.20.

Given a Rees matrix semigroup S = M0[G; I,Λ;P ], we form a G(P )-labelling

of the induced bipartite graph Γ(P ) = 〈I,Λ, E〉 of S in the natural way by taking

the labelling f : E → G(P ) given by

{i, λ}f = pλ,i.

We denote Γ(P )f by Γ(P )l, which we call the induced labelled bipartite graph of S.
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Note that, unlike the induced bipartite graph Γ(P ), the induced labelled bipar-

tite graph Γ(P )l obtained from S is not uniquely defined up to isomorphism. That

is, there exist isomorphic Rees matrix semigroups with non-isomorphic induced la-

belled bipartite graphs. For example, let G be a non-trivial group and P and Q be

1× 2 matrices over G0 given by

P =
(

1 a
)

Q =
(

1 1
)

where a /∈ {0, 1}. Let S = M0[G; 2,1;P ] and T = M0[G; 2,1;Q], noting that

Γ(P ) = Γ(Q) (and are isomorphic to K2,1). Then (1G, 1Γ(P ), (ui)i∈2, (vλ)λ∈1) is an

isomorphism from S to T , where u1 = 1 = v1, and u2 = a. However, since Γ(P )l

and Γ(Q)l have different labelling sets, they are not isomorphic.

Proposition 3.5.23. Let S = M0[G; I,Λ;P ] be such that G and Γ(P )l are ℵ0-

categorical. Then S is ℵ0-categorical.

Proof. Since Γ(P )l is ℵ0-categorical, the set of group entries of P , G(P ), is finite

by Lemma 3.5.20, say G(P ) = {x1, . . . , xr}. Let a = ((i1, g1, λ1), . . . , (in, gn, λn))

and b = ((j1, h1, µ1), . . . , (jn, hn, µn)) be a pair of n-tuples of S under the pair of

conditions that

(1) (g1, . . . , gn, x1, . . . , xr) ∼G,n+r (h1, . . . , hn, x1, . . . , xr),

(2) Γ(a) ∼Γ(P )l,2n Γ(b),

via θ ∈ Aut(G) and ψ ∈ Aut(Γ(P )l), respectively (noting the use of Notation

3.5.9 here). We claim that φ = (θ, ψ, (1)i∈I , (1)λ∈Λ) is an automorphism of S.

Indeed, if pλ,i 6= 0 for some i ∈ I, λ ∈ Λ, then pλ,i = xk for some k, so that

{i, λ}f = {iψ, λψ}f = xk. Consequently,

pλ,iθ = xkθ = xk = pλψ,iψ,

and claim follows by Proposition 3.5.10. Hence

(it, gt, λt)φ = (itψ, gtθ, λtψ) = (jt, ht, µt)

for each 1 ≤ t ≤ n, and we have thus shown that

|Sn/ ∼S,n | ≤ |Gn+r/ ∼G,n+r | · |(Γ(P )l)2n/ ∼Γ(P )l,2n | < ℵ0,

as G and Γ(P )l are ℵ0-categorical. Hence S is ℵ0-categorical.

The converse however fails to hold in general, and we will construct a coun-

terexample at the end of the section. Despite this, the proposition above enables us

to produce examples of ℵ0-categorical Rees matrix semigroups. For example, the

result below is immediate from Lemma 3.5.21.
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Corollary 3.5.24. Let S be a Rees matrix semigroup over an ℵ0-categorical group

having sandwich matrix P with finitely many rows or columns, and G(P ) being

finite. Then S is ℵ0-categorical.

We are now concerned with how Lemma 3.5.22 may be used in conjunction with

Proposition 3.5.23.

Following [58], we call a completely 0-simple semigroup S pure if it is isomorphic

to a Rees matrix semigroup with sandwich matrix over {0, 1}. In [53], Houghton

considered trivial cohomology classes of Rees matrix semigroups, a property which

is proven in Section 2 of the article to be equivalent to being pure. Hence, by

[53, Theorem 5.1], a completely 0-simple semigroup is pure if and only if, for each

a, b ∈ S,

[a, b ∈ 〈E(S)〉 and aH b]⇒ a = b.

It follows that all orthodox completely 0-simple semigroups are necessarily pure,

but the converse is not true. Indeed, a completely 0-simple semigroup is orthodox

if and only if it is isomorphic to a Rees matrix semigroup with sandwich matrix

over {0, 1} and with induced bipartite graph a disjoint union of complete bipartite

graphs [45, Theorem 6].

We observe that if the sandwich matrix of a Rees matrix semigroup is over

{0, 1} then Γ(P )l is simply labelled by {1}. Therefore all automorphisms of Γ(P )

automatically preserve the labelling, and so Γ(P )l is ℵ0-categorical if and only if

Γ(P ) is ℵ0-categorical. The following result is then immediate from Proposition

3.5.12 and Lemma 3.5.22.

Corollary 3.5.25. A pure Rees matrix semigroup M0[G; I,Λ;P ] is ℵ0-categorical

if and only if G and Γ(P ) are ℵ0-categorical.

Since complete bipartite graphs are ℵ0-categorical by Theorem 3.5.4, a disjoint

union of complete bipartite graphs is ℵ0-categorical if and only if it has finitely many

connected components, up to isomorphism, by Proposition 3.5.6. The corollary

above thus reduces in the orthodox case as follows.

Corollary 3.5.26. Let S =M0[G; I,Λ;P ] be an orthodox Rees matrix semigroup.

Then S is ℵ0-categorical if and only if G is ℵ0-categorical and Γ(P ) has finitely

many connected components, up to isomorphism.

We can further restrict our conditions on our Rees matrix semigroups by study-

ing inverse completely 0-simple semigroups. These are necessarily orthodox, and

are isomorphic to a Rees matrix semigroup of the form M0[G; I, I;P ] where P is

the identity matrix, that is, pii = 1 and pij = 0 for each i 6= j in I (see [55, Page

151], for example). Rees matrix semigroups formed in this way are called Brandt

semigroups, denoted B0[G; I]. Since the induced bipartite graph of a Brandt semi-

group is a perfect matching, it is ℵ0-categorical by Theorem 3.5.4. Corollary 3.5.26

then simplifies.



94 CHAPTER 3. ℵ0-CATEGORICAL SEMIGROUPS

Corollary 3.5.27. A Brandt semigroup B0[G; I] is ℵ0-categorical if and only if G

is ℵ0-categorical.

We are now able to construct a simple counterexample to the converse of Propo-

sition 3.5.23. Let G = {gi : i ∈ N} be an infinite ℵ0-categorical group. Let

S =M0[G; N,N;P ] = B0[G; N] and T =M0[G; N,N;Q],

where Q = (qi,j) is such that qi,i = gi and qi,j = 0 for each i 6= j. Then Γ(P ) = Γ(Q)

(and isomorphic to PN) and (1G, 1Γ(P ), (g
−1
i )i∈N, (1)λ∈N) is an isomorphism from S

to T by Proposition 3.5.10 since

pi,i1G = 1 = gig
−1
i = 1 · qi,i · g−1

i ,

for each i ∈ N. Since S is ℵ0-categorical by Corollary 3.5.27, the same is true of T .

However, Γ(Q)l is a G-labelling, and is thus not ℵ0-categorical by Lemma 3.5.20,

and so T is our desired counterexample. This leads to the following open problem.

Open Problem 1. Does there exist an ℵ0-categorical connected Rees matrix semi-

group over a finite group which is not isomorphic to a Rees matrix semigroup with

ℵ0-categorical induced labelled bipartite graph?

We could have introduced Houghton’s [53] stronger notion of an induced group

labelled bipartite graph, although this does not appear to be a first order structure. A

group labelled bipartite graph is a G-labelled bipartite graph Γf = (〈L,R,E〉, G, f),

for some group G, where an automorphism of Γf is a pair (ψ, θ) ∈ Aut(Γ)×Aut(G)

such that, for each ` ∈ L, r ∈ R,

(`, r)f = g ⇔ (`ψ, rψ)f = gθ.

The induced group labelled bipartite graph of a Rees matrix semigroup S =

M0[G; I,Λ;P ] is simply the G-labelled bipartite graph Γ(P )f , with automorphisms

being pairs (ψ, θ) ∈ Aut(Γ)×Aut(G) such that pλψ,iψ = pλ,iθ for each i ∈ I, λ ∈ Λ.

Clearly every automorphism of the induced group labelled bipartite graph produces

an automorphism of S, although we do not in general obtain all of Aut(S) in

this way. Similar problems therefore arise of when ℵ0-categoricity of S ‘passes’ to

its induced group labelled bipartite graph (by which we mean the induced group

labelled bipartite graph has an oligomorphic automorphism group).

3.6 0-direct unions and primitive semigroups

In this section we study a well known decomposition of an arbitrary semigroup

with zero which was remarked upon in the previous section, and assess how ℵ0-
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categoricity effects such a decomposition. The basic definitions and results are

taken from [8].

A semigroup with zero S is a 0-direct union or orthogonal sum of the semigroups

Si (i ∈ A), if the following hold:

(1) Si 6= {0} for each i ∈ A;

(2) S =
⋃
i∈A Si;

(3) Si ∩ Sj = SiSj = {0} for each i 6= j.

We denote S as
⊔0
i∈A Si. The family S = {Si : i ∈ A} is called a 0-direct decom-

position of S, and the Si are called the summands of S. Note that each summand

of S forms an ideal of S. If S and S ′ are a pair of 0-direct decompositions of S,

then we say that S is greater than S ′ if each member of S is a subsemigroup of

some member of S ′. We say that S is 0-directly indecomposable if {S} is the unique

0-direct decomposition of S.

Example 3.6.1. Let S be a Rees matrix semigroup with connected Rees com-

ponents Si (i ∈ A) and consider the subsemigroup S′ =
⋃
i∈A Si of S. Then

Si ∩ Sj = SiSj = 0 for each i 6= j and so S′ =
⊔0
i∈A Si.

A subset A of a semigroup S is consistent if, for x, y ∈ S, xy ∈ A implies that

x, y ∈ A. A subset A of a semigroup with zero is 0-consistent if A∗ = A \ {0} is

consistent. The integral connection between 0-consistency and 0-direct decompo-

sitions is that a semigroup with zero S is 0-direct indecomposable if and only if S

has no proper 0-consistent ideals [8, Lemma 4]. Consequently, every Rees matrix

semigroup, being 0-simple, is 0-direct indecomposable.

The main result of [8] is in proving that every semigroup with zero has a greatest

0-direct decomposition, and the summands of such a decomposition are precisely

the 0-direct indecomposable ideals. The importance of the existence of a greatest 0-

direct decomposition for ℵ0-categoricity is highlighted in the following proposition.

Proposition 3.6.2. Let S be a semigroup with zero and let S = {Si : i ∈ A} be the

greatest 0-direct decomposition of S. Let π : A→ A be a bijection and φi : Si → Siπ

an isomorphism for each i ∈ A. Then the map φ : S → S given by

siφ = siφi; (si ∈ Si)

is an automorphism of S, denoted φ =
⊔0
i∈A φi. Moreover, every automorphism of

S can be constructed in this way.

Proof. Let φ be constructed as in the hypothesis of the proposition. Since 0φi = 0

for each i ∈ A the map is well-defined, and it is clearly bijective. Let a ∈ Si and

b ∈ Sj . If i = j then

(ab)φ = (ab)φi = (aφi)(bφi) = (aφ)(bφ),
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and if i 6= j then

(ab)φ = 0φ = 0 = (aφi)(bφj) = (aφ)(bφ).

Hence φ is an isomorphism.

Conversely, if φ′ is an automorphism of S, then it easily follows that

Sφ′ = {Siφ′ : i ∈ A}

is a 0-direct decomposition of S. For each summand Si there exists k ∈ A such

that Si ⊆ Skφ
′ since S is the greatest 0-direct decomposition. If Si ⊆ Skφ

′ ∩ Sk′φ′

then Si = {0} as Sφ′ is a 0-direct decomposition of S, a contradiction. Hence the

element k is unique. Suppose Si, Sj ⊆ Skφ
′. Then Siφ

′−1, Sjφ
′−1 ⊆ Sk, and so as

{Siφ′−1 : i ∈ A} is also a 0-direct decomposition of S, we have that i = j since

Sk is 0-direct indecomposable. Hence there exists a bijection π′ of A such that

Siφ
′ = Siπ′ for each i ∈ A as required.

Proposition 3.6.3. Let S be a semigroup with zero and let S = {Si : i ∈ A} be the

greatest 0-direct decomposition of S. Then S is ℵ0-categorical if and only if each Si

is ℵ0-categorical and S is finite, up to isomorphism.

Proof. It follows immediately from Proposition 3.6.2 that {(Si, xi) : i ∈ A} forms a

system of 1-p.p.r.c subsemigroups of S for any xi ∈ S∗i . Hence if S is ℵ0-categorical

then each Si is ℵ0-categorical and S is finite, up to isomorphism, by Propositions

3.3.5 and 3.3.9.

Conversely, we shall prove that S forms an (S; Ā; Ψ)-system in S for some Ā

and Ψ. Let A1, . . . , Ar be a partition of A corresponding to the isomorphism types

of summands of S, so that Si ∼= Sj if and only if i, j ∈ Ak for some k. Let

Ā = (A;A1, . . . , Ar). For each i, j ∈ A, let Ψi,j = Iso(Si;Sj) and fix Ψ =
⋃
i,j∈A Ψi,j .

Then Conditions 3.2.14(A), 3.2.14(B) and 3.2.14(C) are trivially satisfied by Ψ.

Take any π ∈ Aut(Ā) and, for each i ∈ A, let φi ∈ Ψi,iπ. Then, as Si ∼= Siπ by

our partition of S, we have that φ =
⊔0
i∈A φi is an automorphism of S extending

each φi by Proposition 3.6.2, and so Condition 3.2.14(D) is satisfied. Hence S forms

an (S; Ā; Ψ)-system. Moreover, Ā is ℵ0-categorical by Corollary 3.2.10, and each

Si is ℵ0-categorical (over Aut(Si) = Ψi,i). Hence S is ℵ0-categorical by Lemma

3.2.16.

When studying ℵ0-categorical semigroups with zero, it therefore suffices to ex-

amine 0-direct indecomposable semigroups.

We observe that without the condition of S being the greatest 0-direct decom-

position of S, the converse of Proposition 3.6.3 need not be true. For example, for

each n ∈ N, let Nn be a null semigroup on n non-zero elements. Then N =
⊔0
i∈NNi
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is a countably infinite null semigroup, and is thus ℵ0-categorical by Example 3.2.1.

However the set of summands of N is not finite, up to isomorphism.

Since each Rees matrix semigroup is 0-direct indecomposable, we attain the

following immediate consequence to Proposition 3.6.3.

Corollary 3.6.4. Let Si =M0[Gi; Ii,Λi, Pi] (i ∈ A) be a collection of Rees matrix

semigroups. Then
⊔0
i∈A Si is ℵ0-categorical if and only if each Si is ℵ0-categorical

and {Si : i ∈ A} is finite, up to isomorphism.

Note that a Rees matrix semigroup is a 0-direct union of its connected Rees

matrix components if and only if it is a connected Rees matix semigroup. Conse-

quently, the corollary above does not imply Theorem 3.5.16, nor give us a method

for proving its generalization.

A semigroup S with zero is called primitive if each of its non-zero idempotents

is primitive. It follows from the work of Hall in [46] that a regular semigroup

S is primitive if and only if S is isomorphic to a 0-direct union of Rees matrix

semigroups. A classification of primitive regular ℵ0-categorical semigroups via its

Rees matrix ideals then follows.

Corollary 3.6.5. A primitive regular semigroup S is ℵ0-categorical if and only

S ∼=
⊔0
i∈AM0[Gi; Ii,Λi;Pi] with each M0[Gi; Ii,Λi;Pi] being ℵ0-categorical, and

{M0[Gi; Ii,Λi;Pi] : i ∈ A} being finite, up to isomorphism.

In particular, since a primitive inverse semigroup is isomorphic to a 0-direct

union of Brandt semigroups, the corollary above simplifies accordingly:

Corollary 3.6.6. A primitive inverse semigroup S is ℵ0-categorical if and only if

S ∼=
⊔0
i∈A B0[Gi; Ii] with each Gi being ℵ0-categorical and the sets {Gi : i ∈ A} and

{Ii : i ∈ A} being finite up to isomorphism and bijection, respectively.

Proof. By Corollary 3.5.27 the Brandt semigroups Bi = B0[Gi; Ii] are ℵ0-categorical

if and only if the groups Gi are ℵ0-categorical. Since a pair of perfect matchings are

isomorphic if and only if they are of the same cardinality, we have by Proposition

3.5.10 that Bi ∼= Bj if and only if Gi ∼= Gj and |Ii| = |Ij | (a result which is also

stated in [65, Section 3.3]). The result then follows by Corollary 3.6.5.

3.7 ℵ0-categorical strong semilattices of semigroups

We end the new results in this chapter by studying the ℵ0-categoricity of strong

semilattices of semigroups.

Let S = [Y ;Sα;ψα,β] be a strong semilattice of semigroups. We denote the

equivalence relation on Y corresponding to isomorphism types of the semigroups
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Sα by ηS , so that

αηS β ⇔ Sα ∼= Sβ.

Let Y/ηS = {Y1, Y2, . . . }. Denote Y S as the Y/ηS-extended structure (Y ;Y1, Y2, . . . )

of Y (so that Y S is a semilattice with distinguished subsets Yi).

Lemma 3.7.1. Let S = [Y ;Sα;ψα,β] be a strong semilattice of semigroups such

that Y S is ℵ0-categorical. Then Y/ηS is finite.

Proof. Since ηS is an equivalence relation, the equivalence classes are pairwise dis-

joint, and so the result is immediate from Lemma 3.2.8.

Recall that a strong semilattice of semigroups S is automorphism-pure if every

automorphism of S can be constructed as in Theorem 2.7.1.

Proposition 3.7.2. Let S = [Y ;Sα;ψα,β] be automorphism-pure and ℵ0-categorical.

Then each Sα is ℵ0-categorical and Y S is ℵ0-categorical.

Proof. For each α ∈ Y , fix xα ∈ Sα. We claim that {(Sα, xα) : α ∈ Y } forms a

system of 1-p.p.r.c subsemigroups of S. Indeed, let θ be an automorphism of S

such that xαθ = xβ for some α, β ∈ Y . Since S is automorphism-pure, there exists

π ∈ Aut(Y ) and θα ∈ Iso(Sα;Sαπ) such that θ = [θα, π]α∈Y . Hence Sαθ = Sβ,

and the claim follows. Consequently, by the ℵ0-categoricity of S, each Sα is ℵ0-

categorical by Proposition 3.3.5.

Let a = (α1, . . . , αn) and b = (β1, . . . , βn) be a pair of n-tuples of Y S such that

there exist aαk ∈ Sαk and bβk ∈ Sβk with (aα1 , . . . , aαn) ∼S,n (bβ1 , . . . , bβn) via

[θ′α, π
′]α∈Y ∈ Aut(S), say. Since π ∈ Aut(Y ) and Sα ∼= Sαπ′ for each α ∈ Y , it

follows that π′ ∈ Aut(Y S). Moreover, αkπ
′ = βk for each k, so that a ∼Y S ,n b via

π′. We have thus shown that

|(Y S)n/ ∼Y S ,n | ≤ |Sn/ ∼S,n | < ℵ0,

as S is ℵ0-categorical. Hence Y S is ℵ0-categorical.

In this chapter we will only be concerned with the ℵ0-categoricity of strong

semilattices of semigroups in which all connecting morphisms are either constant

maps or all are injective maps. For arbitrary connecting morphisms, the problem of

assessing ℵ0-categoricity is extremely difficult, and this is discussed further at the

end of the chapter. We first consider the constant maps case.

Suppose that Y is a semilattice and, for each α ∈ Y , Sα is a semigroup containing

an idempotent eα. For each α > β in Y , let ψα,β be the constant map with

image {eβ}. It is easy to check that (with ψα,α = 1Sα for all α ∈ Y ) we have

ψα,βψβ,γ = ψα,γ for all α ≥ β ≥ γ in Y . We follow the notation of [99] and let

ψα,β = Cα,eβ for all α > β in Y . We have shown that S = [Y ;Sα;Cα,eβ ] is a strong
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semilattice of semigroups, which we call a constant strong semilattice of semigroups,

denoted S = [Y ;Sα; eα;Cα,eβ ].

Example 3.7.3. Let Y = {0, i : i ∈ A} be a primitive semilattice with zero, that

is, such that ii = i and ij = 0 = ji for all i 6= j in A. Let {Si : i ∈ A} be a family

of pairwise disjoint semigroups with E(Si) 6= ∅ (i ∈ A), and set S0 = {0}. Then we

form a strong semilattice of semigroups by taking S = [Y ;Sα; eα;Cα,eβ ]. We claim

that S is a 0-direct union of the subsemigroups S̄α = Sα ∪ {0}. Indeed, if si ∈ S̄i
and sj ∈ S̄j where i 6= j, then

sisj = (siCi,e0)(sjCj,e0) = 00 = 0

so that S̄i ∩ S̄j = S̄iS̄j = {0}, and the claim follows.

Clearly not every 0-direct union of semigroups can be written as a (constant)

strong semilattice of semigroups over a non-trivial semilattice, thus justifying the

previous section. A simple example is any 0-direct union of a pair of semigroups

without non-zero idempotents.

Notation 3.7.4. If S = [Y ;Sα; eα;Cα,eβ ] is a constant strong semilattice of semi-

groups, then we denote the subset of Iso(Sα;Sβ) consisting of those isomorphisms

which map eα to eβ as Iso(Sα;Sβ)[eα;eβ ]. Notice that the set Iso(Sα;Sα)[eα;eα] is

simply the subgroup Aut(Sα; {eα}) of Aut(Sα).

Definition 3.7.5. Let S = [Y ;Sα; eα;Cα,eβ ] be a constant strong semilattice of

semigroups. Define a relation υS on Y by

αυS β ⇔ Iso(Sα;Sβ)[eα;eβ ] 6= ∅,

so that υS ⊆ ηS .

Then υS is reflexive since 1Sα ∈ Aut(Sα; {eα}) for each α ∈ Y , and it easily

follows that υS forms an equivalence relation on Y .

Proposition 3.7.6. Let S = [Y ;Sα; eα;Cα,eβ ] be such that Y/υS = {Y1, . . . , Yr} is

finite, Y = (Y ;Y1, . . . , Yr) is ℵ0-categorical and each Sα is ℵ0-categorical. Then S

is ℵ0-categorical.

Proof. We prove that {Sα : α ∈ Y } forms an (S;Y; Ψ)-system for some Ψ. For each

α, β ∈ Y , let Ψα,β = Iso(Sα;Sβ)[eα;eβ ] and fix Ψ =
⋃
α,β∈Y Ψα,β. Then Conditions

3.2.14(A), 3.2.14(B) and 3.2.14(C) are satisfied since υS forms an equivalence rela-

tion on Y . Let π ∈ Aut(Y) and, for each α ∈ Y , let θα ∈ Ψα,απ. We claim that

θ = [θα, π]α∈Y is an automorphism of S. Indeed, for any sα ∈ Sα and any β < α

we have

sαCα,eβθβ = eβθβ = eβπ = sαθαCαπ,eβπ
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so that the diagram [α, β;απ, βπ] commutes. The claim then follows by Theorem

2.7.1. Since θ extends each θα, we have that {Sα : α ∈ Y } is an (S;Y; Ψ)-system.

Moreover, as Sα is ℵ0-categorical, it is ℵ0-categorical over Ψα,α = Aut(Sα; {eα}) by

Lemma 3.2.11. Hence S is ℵ0-categorical by Corollary 3.2.16.

Examining our main two classes of automorphism-pure strong semilattices of

semigroups; strong semilattices of groups and of rectangular bands, the results of

this section reduce accordingly. If S = [Y ;Gα; eα;Cα,eβ ] is a constant strong semilat-

tice of groups, then eα is the identity of Gα, and so Iso(Gα;Gβ) = Iso(Gα;Gβ)[eα;eβ ]

for each α, β ∈ Y . On the other hand, if S = [Y ;Bα; eα;Cα,eβ ] is a constant strong

semilattice of rectangular bands, then

Iso(Bα;Bβ) 6= ∅ ⇔ Iso(Bα;Bβ)[eα;eβ ] 6= ∅ for any eα ∈ Bα, eβ ∈ Bβ,

by Proposition 2.10.2. In both cases, we therefore have υS = ηS and so by Lemma

3.7.1 and Proposition 3.7.6 we attain a converse to Proposition 3.7.2 in the case of

constant strong semilattices. Moreover, by Lemma 3.2.9, each rectangular band Bα

is ℵ0-categorical, and we have thus proven the following result.

Corollary 3.7.7. Let S = [Y ;Sα; eα;Cα,eβ ] be a constant strong semilattice of rect-

angular bands (groups). Then S is ℵ0-categorical if and only if Y S is ℵ0-categorical

(and each group Sα is ℵ0-categorical).

Consider now a strong semilattice of semigroups [Y ;Sα;ψα,β] with each connect-

ing morphism being injective. For each α > β in Y , we abuse notation somewhat by

denoting the isomorphism ψ−1
α,β|Imψα,β simply by ψ−1

α,β. We observe that if α > β > γ

and xγ ∈ Im ψα,γ , say xγ = xαψα,γ , then

xγψ
−1
α,γψα,β = xαψα,γψ

−1
α,γψα,β = xαψα,β = xγψ

−1
β,γ . (3.5)

Hence, on the restricted domain Im ψα,γ , we have ψ−1
α,γψα,β = ψ−1

β,γ .

Notice that an element of a semilattice Y is minimum under the natural order

if and only if it is a zero. If Y has a zero 0 we may define an equivalence relation

ξS on Y by α ξS β if and only if Sαψα,0 = Sβψβ,0. If α ξS β then ψα,0ψ
−1
β,0 is an

isomorphism from Sα onto Sβ, and so ξS ⊆ ηS .

Proposition 3.7.8. Let S = [Y ;Sα;ψα,β] be such that each ψα,β is injective. Let

Y be a semilattice with zero and Y/ξS = {Y1, . . . , Yr} be finite, with

{Sαψα,0 : α ∈ Y } = {T1, . . . , Tr}.

Let Y = (Y ;Y1, . . . , Yr) be a set-extension of Y and S0 = (S0;T1, . . . , Tr) a set-

extension of S0. Then S is ℵ0-categorical if Y and S0 are ℵ0-categorical. Moreover,
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if S is automorphism-pure and ℵ0-categorical, then conversely Y and S0 are ℵ0-

categorical.

Proof. Suppose first that Y = (Y ;Y1, . . . , Yr) and S0 = (S0;T1, . . . , Tr) are ℵ0-

categorical. Let a = (aα1 , . . . , aαn) and b = (bβ1 , . . . , bβn) be n-tuples of S with

(α1, . . . , αn) ∼Y,n (β1, . . . , βn) via π ∈ Aut(Y), say. Suppose further that

(aα1ψα1,0, . . . , aαnψαn,0) ∼S0,n (bβ1ψβ1,0, . . . , bβnψβn,0)

via θ0 ∈ Aut(S0), say. Then for each α ∈ Y we have Sαψα,0 = Sαπψαπ,0, and so we

can take θα ∈ Iso(Sα;Sαπ) given by

θα = ψα,0 θ0 ψ
−1
απ,0.

For each α ≥ β in Y , the diagram [α, β;απ, βπ] commutes as

ψα,β θβ = ψα,β (ψβ,0 θ0 ψ
−1
βπ,0)

= ψα,0 θ0 ψ
−1
βπ,0

= ψα,0 θ0 (ψ−1
απ,0 ψαπ,βπ)

= θα ψαπ,βπ,

where the penultimate equality is due to (3.5) as Im ψαπ,0 = Im ψα,0 = (Im ψα,0)θ0.

Hence θ = [θα, π]α∈Y is an automorphism of S by Theorem 2.7.1. Furthermore,

aαkθ = aαkθαk = aαkψαk,0 θ0 ψ
−1
αkπ,0

= bβkψβk,0 ψ
−1
βk,0

= bβk

for each 1 ≤ k ≤ n, so that a ∼S,n b via θ. We thus have that

|Sn/ ∼S,n | ≤ |Yn/ ∼Y,n | · |Sn0 / ∼S0,n | < ℵ0

and so S is ℵ0-categorical.

Conversely, suppose S is automorphism-pure and ℵ0-categorical. For each 1 ≤
k ≤ r, fix some γk ∈ Yk, where we assume w.l.o.g. that Sγkψγk,0 = Tk. For each

α ∈ Y , fix some xα ∈ Sα. Let a = (α1, . . . , αn) and b = (β1, . . . , βn) be n-tuples of

Y such that

(xα1 , . . . , xαn , xγ1 , . . . , xγr) ∼S,n+r (xβ1 , . . . , xβn , xγ1 , . . . , xγr),

via θ ∈ Aut(S), say. Since S is automorphism-pure there exist π ∈ Aut(Y ) and

θα ∈ Iso(Sα;Sαπ) such that θ = [θα, π]α∈Y . The automorphism π fixes each γk, so

that Sγkθ = Sγk . Hence, as the diagram [γk, 0; γk, 0] commutes for each k, we have

Tk = Sγkψγk,0 = (Sγkθγk)ψγk,0 = Sγkψγk,0θ0 = Tkθ0 = Tkθ.
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If α ∈ Yk then by the commutativity of the diagram [α; 0;απ, 0] we therefore have

Sαψα,0 = Tk = Tkθ0 = Sαψα,0θ0 = Sαθαψαπ,0 = Sαπψαπ,0,

and so π ∈ Aut(Y). We have thus shown that

|Yn/ ∼Y,n | ≤ |Sn+r/ ∼S,n+r | < ℵ0

and so Y is ℵ0-categorical. Now suppose c and d are n-tuples of S0 such that

(c, xγ1 , . . . , xγr) ∼S,n+r (d, xγ1 , . . . , xγr),

via θ′ = [θ′α, π
′]α∈Y ∈ Aut(S), say. Then arguing as before we have that Tkθ

′ = Tk

for each k, and it follows that θ′0 ∈ Aut(S0) and is such that cθ′0 = d. Hence

|Sn0 / ∼S0,n | ≤ |Sn+r/ ∼S,n+r | < ℵ0

and so S0 is ℵ0-categorical.

Note that if Y is finite, then it has a zero (as the meet of all the elements of

Y ). Then any set extension of Y is finite, and thus ℵ0-categorical, and so the result

above simplifies accordingly in this case:

Corollary 3.7.9. Let S = [Y ;Sα;ψα,β] be such that each ψα,β is injective and Y

is a semilattice with zero. Let Y/ξS = {Y1, . . . , Yr} with

{Sαψα,0 : α ∈ Y } = {T1, . . . , Tr}.

Let Y = (Y ;Y1, . . . , Yr) be a set-extension of Y and S0 = (S0;T1, . . . , Tr) a set-

extension of S0. If S0 is ℵ0-categorical then S is ℵ0-categorical. Moreover, if S is

automorphism-pure and ℵ0-categorical then conversely S0 is ℵ0-categorical.

Example 3.7.10. An inverse semigroup with semilattice of idempotents E is called

E-unitary if, for all e ∈ E and all s ∈ S,

es ∈ E ⇒ s ∈ E.

A Clifford semigroup S = [Y ;Gα;ψα,β] is E-unitary if and only each ψα,β is injective

by [55, Exercise 5.20]. Since Clifford semigroups are automorphism-pure by Lemma

2.11.7, we have the following simplification of Proposition 3.7.8.

Corollary 3.7.11. Let S = [Y ;Gα;ψα,β] be an E-unitary Clifford semigroup. Let

Y be a semilattice with zero and Y/ξS = {Y1, . . . , Yr} be finite, with

{Sαψα,0 : α ∈ Y } = {T1, . . . , Tr}.
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Let Y = (Y ;Y1, . . . , Yr) be a set-extension of Y and S0 = (S0;T1, . . . , Tr) a set-

extension of S0. Then S is ℵ0-categorical if and only if Y and S0 are ℵ0-categorical.

We can also consider a stronger condition on a strong semilattice of semigroups

S = [Y ;Sα;ψα,β] by taking each connecting morphism to be an isomorphism. In

this case Y/ξS = {Y }, and so the result above simplifies accordingly. However we

can prove a more general result directly (without the condition that Y has a zero).

We first extend our connecting morphism notation by defining, for each α, β ∈ Y ,

the morphism ψα,β by

ψα,β = ψα,αβ(ψβ,αβ)−1.

We observe that if α ≥ β then ψα,β is the same as our original connecting morphism.

Furthermore, if α, γ ∈ Y then

ψα,γ = ψα,αγ(ψγ,αγ)−1 = (ψγ,αγ(ψα,αγ)−1)−1 = (ψγ,α)−1. (3.6)

A key property of our extended set of connecting morphisms is that transitivity

still holds:

Lemma 3.7.12. For each α, β, γ ∈ Y we have ψα,γ = ψα,βψβ,γ.

Proof. Let α, β ∈ Y and suppose δ ≤ α, β. We claim that ψα,β = ψα,δψδ,β. Since

α ≥ αβ ≥ δ we have

ψα,δ = ψα,αβψαβ,δ

and so

ψα,αβ = ψα,δψ
−1
αβ,δ = ψα,δψδ,αβ

by (3.6). Hence

ψα,β = ψα,αβψαβ,β

= ψα,δψδ,αβψαβ,β

= ψα,δψδ,β,

thus completing the proof of the claim. Let γ ∈ Y and fix τ ∈ Y such that

τ ≤ α, β, γ. Then by the claim above,

ψα,βψβ,γ = (ψα,τψτ,β)(ψβ,τψτ,γ)

= ψα,τ (ψτ,βψ
−1
τ,β)ψτ,γ

= ψα,τψτ,γ

= ψα,γ

as required.
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The ℵ0-categoricity of strong semilattices of semigroups with connecting mor-

phisms being isomorphisms follows quickly from the next result. We remark that

only the first half of the result is required here, however the necessary and sufficient

statement will be used in later chapters.

Proposition 3.7.13. Let S = [Y ;Sα;ψα,β] be such that each ψα,β is an isomor-

phism. Then there exists a semigroup S̄ such that S̄ ∼= Sα for each α ∈ Y and

S ∼= S̄ × Y . Conversely, if T is a semigroup and Z is a semilattice then T × Z
is isomorphic to a strong semilattice of semigroups such that each connecting mor-

phism is an isomorphism.

Proof. For any α, β ∈ Y , the map ψα,β is an isomorphism, and so the semigroups

Sα are pairwise isomorphic. Fix δ ∈ Y . Then the map θ : S → Sδ × Y given by

xαθ = (xαψα,δ, α) (xα ∈ S)

is a bijection. If aα, bγ ∈ S then, using Lemma 3.7.12, we have

(aα bγ)ψαγ,δ = (aαψα,αγ bγψγ,αγ)ψαγ,δ

= (aαψα,αγψαγ,δ)(bγψγ,αγψαγ,δ)

= (aαψα,δ)(bγψγ,δ),

since ψαγ,δ is a morphism. It follows that

(aαbγ)θ = ((aαbγ)ψαγ,δ, αγ)

= ((aαψα,δ)(bγψγ,δ), αγ)

= (aαψα,δ, α)(bγψγ,δ, γ)

= aαθ bγθ.

Hence θ is an isomorphism as required.

Conversely, let Tα = {(a, α) : a ∈ T} for each α ∈ Z. Clearly each Tα is a

semigroup isomorphic to T . For each α ≥ β in Z, let ϕα,β : Tα → Tβ be the

isomorphism given by

(a, α)ϕα,β = (a, β).

Then it is easily shown that [Z;Tα;ϕα,β] forms a strong semilattice of semigroups,

and is isomorphic to T × Z by the forward direction to the proof.

Corollary 3.7.14. Let S = [Y ;Sα;ψα,β] be such that each ψα,β is an isomor-

phism. If Sα and Y are ℵ0-categorical, then S is ℵ0-categorical. Moreover, if S is

automorphism-pure then the converse holds.

Proof. By Proposition 3.7.13, S is isomorphic to Sα × Y for any α ∈ Y . The first

half of the result then follows by Proposition 3.1.2.



3.8. FURTHER WORK 105

Suppose S is automorphism-pure. Since the components Sα are pairwise iso-

morphic, we have Y S = (Y ;Y ), so clearly Aut(Y S)=Aut(Y ). Hence Y S is ℵ0-

categorical if and only if Y is ℵ0-categorical, and so the converse holds by Proposi-

tion 3.7.2.

3.8 Further work

The study into the ℵ0-categoricity of semigroups described in this chapter is in no

way complete. In particular, we would like to be able to answer Open problem

1, and further describe the ℵ0-categoricity of Rees matrix semigroups with ‘more

complicated’ sandwich matrices.

We have seen in this chapter that the property of ℵ0-categoricity passes to a

wide range of subsemigroups. Conversely however, building an ℵ0-categorical semi-

group from its ℵ0-categorical ‘parts’ is difficult, even for relatively easily described

semigroups, such as Rees matrix semigroups. One possible direction which we now

take is to apply Theorem 1.2.26 by switching our interest to (ULF) homogeneous

structures. This will allow more interesting examples of ℵ0-categorical semigroups

to be constructed in subsequent chapters.





Chapter 4

Homogeneous structures

Recall that a structure is homogeneous if every local symmetry is a part of a global

symmetry. Homogeneous structures are therefore highly symmetrical, and tend to

have rich automorphism groups. There are two main reasons why we are inter-

ested in the property of homogeneity. The first comes from an algebraic viewpoint,

where the definition of homogeneity not only arises naturally, but is seemingly

strong enough to allow for full classifications. The second is the aforementioned

link between homogeneity and ℵ0-categoricity, given in Theorem 1.2.26.

The rest of this thesis is concerned with homogeneity of structures, the focus

being on semigroups. We proceed as follows. A literature review is given in Sec-

tion 4.1, and in Section 4.2 a well known construction of Fräıssé is described. In

Section 4.3 we discuss how our choice of signature impacts on the homogeneity

of a semigroup, in particular for monoids and completely regular semigroups. In

Section 4.4 we describe substructures of a homogeneous structure and, by applying

these results to the signature LS , show how these translate to the semigroup con-

text. In Section 4.5, the homogeneity of non-periodic semigroups is examined, our

main result being that a completely regular non-periodic homogeneous semigroup

is completely simple. This chapter ends with a brief discussion on the homogeneity

of completely simple semigroups, and finite regular homogeneous semigroups are

shown to be completely simple. The results of this chapter are then used through-

out Chapters 5, 6 and 7, where the homogeneity of bands, inverse semigroups and

orthodox completely regular semigroups are studied, respectively.

It should be noted that the order of the chapters does not reflect the order

of research. I began my study into homogeneity with bands, followed by inverse

semigroups. Much of the material of this chapter and Chapter 7 was produced

when attempting to place our results on homogeneous bands and inverse semi-

groups into a general setting (completely regular semigroups). As such, completely

simple semigroups and arbitrary completely regular semigroups have been the least

107
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investigated from the point of view of homogeneity, although we will highlight a

number of interesting open problems that naturally arise.

4.1 Literature review

The concept of homogeneity was introduced by Fräıssé in 1954 in his seminal paper

[32]. Here he described a method for building homogeneous structures from certain

classes of finite structures. While he restricted his work to relational structures over

a finite signature, his construction was easily generalized to arbitrary structures.

His work is regarded as some of the most fundamental in model theory.

Since the work of Fräıssé, there has been a continuous interest in homogeneous

structures. The following literature review is in no way complete, and centres on

classifications which in some way relate to, or are used in, our research. Much of

the early work was on the homogeneity of relational structures. There are a num-

ber of reasons for this, the first being a natural continuation to Fräıssé’s relational

structure viewpoint. Secondly, the homogeneity of relational structures can be con-

sidered the most ‘natural’, for it is easier to picture a highly symmetric graph than,

say, a symmetrical semigroup. In addition, the f.g. substructures of a relational

structure are normally far easier to understand than for algebraic structures, since

they arise simply as the finite subsets under the induced structure. Due to this,

a complete classification of homogeneous relational structures such as graphs and

posets seems more likely to be obtainable than for algebraic structures. History

certainly backs up this point.

Finite homogeneous graphs were determined by Gardiner in [11], a result which

was later extended to all homogeneous graphs by Lachlan and Woodrow in [61].

Lachlan [62] classified homogeneous tournaments, and homogeneous posets were

determined by Schmerl [92]. The classification of homogeneous bipartite graphs by

Goldstern was given in Theorem 3.5.4. The weaker property of n-homogeneity has

been studied for graphs in [26] and for posets in [24].

There has also been much progress in the classification of homogeneous non-

relational structures. For groups and rings, the interest in homogeneity was kick

started by Macintyre [66] in 1971, where quantifier eliminable fields are described.

For finite structures, quantifier elimination is equivalent to homogeneity by Theo-

rem 1.2.26, but in general is far more restrictive. Macintyre’s work led to a burst

of research on quantifier elimination for classes of groups and rings, for example see

[16] and [91]. These results were later transferred to the homogeneous setting. One

occurrence of this transferal was in 1979, where interest in the quantifier elimina-

tion of solvable groups was started by Cherlin and Felgner, whose work in this area

continued throughout the 1980s. By the late 80s, their viewpoint was switched to

the homogeneity of solvable groups in [17], and the classification of homogeneous
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solvable groups was reduced to the case of nilpotent groups of class 2 and exponent

4. We refer the reader to [17] for a fantastic historical account of the problems

and successes during the 1970s and 80s in the researching of homogeneous groups

and rings. It is worth noting that Cherlin and Felgner were not alone in investi-

gating quantifier eliminable and homogeneous solvable groups. Indeed, the theory

was developed by Saracino [90] in 1982, where Fräıssé’s method was used to prove

the existence of uncountably many homogeneous nilpotent groups of class 2 and

exponent 4. Furthermore, in 1984 Neumann independently classified all finite ho-

mogeneous solvable groups. This feat was soon eclipsed, and a description of all

finite homogeneous groups can be found in [19] and [64], although as Cherlin states

in [17],

“The history of the results in the finite case is fairly complicated.”

However, very little is known about the homogeneity of semigroups, with the excep-

tion of the classification of homogeneous semilattices by Droste, Truss and Kuske

[27], and a brief discussion on normals bands in [10]. The work in this thesis aims

to bridge this gap in knowledge.

4.2 Fräıssé’s Theorem

Our methods for proving homogeneity come in two forms: either we prove it directly

with the help of certain isomorphism theorems, or we use the general method of

Fräıssé. In this section we describe the latter method. All background material is

taken from [51, Chapter 7].

Let L be a signature and M an L-structure. The age of M is the class of all

f.g. L-structures which can be embedded in M .

Let K be a class of f.g. L-structures. Then we say

(1) K is countable if it contains only countably many isomorphism types.

(2) K is closed under isomorphism if whenever A ∈ K and B ∼= A then B ∈ K.

(3) K has the hereditary property (HP) if given A ∈ K and B a f.g. substructure

of A then B ∈ K.

(4) K has the joint embedding property (JEP) if given B1, B2 ∈ K, then there

exist C ∈ K and embeddings fi : Bi → C (i = 1, 2).

(5) K has the amalgamation property1 (AP) if given A,B1, B2 ∈ K, where A is

non-empty, and embeddings fi : A → Bi (i = 1, 2), then there exist D ∈ K
1This is also known as the weak amalgamation property.
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and embeddings gi : Bi → D such that

f1 ◦ g1 = f2 ◦ g2.

For example, the age of any structure can be seen to be closed under isomorphism

and have HP and JEP. We may now state Fräıssé’s Theorem, which can be found

in [51, Theorem 7.1.2].

Theorem 4.2.1 (Fräıssé’s Theorem). Let L be a countable signature and K a non-

empty countable class of f.g. L-structures which is closed under isomorphism and

satisfies HP, JEP and AP. Then there exists a unique, up to isomorphism, countable

homogeneous L-structure M such that K is the age of M . Conversely, the age of

a countable homogeneous L-structure is countable, closed under isomorphism, and

satisfies HP, JEP and AP.

We call M the Fräıssé limit of K.

Example 4.2.2. The class of all finite graphs is a Fräıssé class [51, Lemma 7.4.3],

and its Fräıssé limit is a countably infinite graph called the random graph. This is

arguable the most famous example of a Fräıssé limit, due to its numerous beautiful

properties and descriptions. An in-depth study of the random graph is given by

Cameron [11, Chapter VII].

Example 4.2.3. The class of all finite bipartite graphs is a Fräıssé class [35]. The

Fräıssé limit is the random bipartite graph, discussed in Section 3.5.

Example 4.2.4. In 1959, Hall proved in [44] the existence of a unique, up to

isomorphism, locally finite homogeneous group which embeds every finite group.

This group is the Fräıssé limit of the class of finite groups, and is known as Hall’s

universal group.

Example 4.2.5. The class of all finite (inverse) semigroups does not satisfy the

AP [48]. As such, there does not exist an analogy of Hall’s universal group for semi-

groups or inverse semigroups. In [23], a weaker form of homogeneity is examined,

and an analogy can be constructed in this case.

Example 4.2.6. A famous solved problem in group theory [49] was the existence

of uncountably many 2-generated groups, up to isomorphism. Hence the class of all

f.g. groups, and thus the class of all f.g. semigroups, does not form a Fräıssé class.

4.3 Choosing our signature: LS versus LUS

When studying the homogeneity of a semigroup, it is important to distinguish which

signature we are working over. For example, we could consider the homogeneity of a
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monoid S either in the signature of semigroups LS or the signature of monoids LMo.

In the context of homogeneity, the key difference between these two signatures is

substructure: in LS we consider f.g. subsemigroups, while in LMo we consider f.g.

submonoids. This distinction is particularly important for the idempotents of S. In-

deed, for any e ∈ E(S) we have that 〈e〉 = {e} is isomorphic to 〈1〉 = {1}, although

if e 6= 1 then no automorphism of S can extend the unique isomorphism between

them (since automorphisms of S must fix 1). It follows that if S is homogeneous in

LS then 1 is its unique idempotent. On the other hand, in the signature of monoids

LMo we have that 〈e〉Mo = {e, 1} and 〈1〉Mo = {1} are no longer isomorphic, and

so no such problem arises if S is homogeneous in LMo. This occurrence is similar

for semigroups with zero, considered either in LS or L0. It is worth highlighting

the following result that we have proven here:

Lemma 4.3.1. Let S be either a monoid or a semigroup with zero, which is homo-

geneous in LS. Then S contains a unique idempotent.

Our third example comes from studying I-semigroups, where we restrict our

choice to either LS or the signature of unary semigroups LUS . If S is a semigroup

with a unary operation such that S is a member of a variety of I-semigroups, then

it is more natural to consider it in the signature LUS rather than LS , since here

the f.g. substructures are f.g. I-subsemigroups and thus belong to the variety, and

isomorphisms are of the ‘correct type’. For example, the homogeneity of inverse

semigroups in LS would amount to considering f.g. subsemigroups, which need not

be inverse. On the other hand, a substructure of an inverse semigroup in LUS is

clearly an inverse subsemigroup (since closure under the unary operation x 7→ x−1

gives rise to inverses).

Given that we are considering the homogeneity of both semigroups and I-

semigroups (the latter certainly being semigroups) we need to set up some clear

labelling conventions. First, if S is an I-semigroup, we will always make it clear

whether we are dealing with S in LS or in LUS . If P is an adjective describing

a property of I-semigroups, and S has property P , then we say that S is a ho-

mogeneous P semigroup if S is homogeneous in LUS , and S is a P homogeneous

semigroup if S is a P semigroup that is homogeneous in LS . The fundamental

example of completely regular semigroups is considered in the next subsection.

It is also worth fixing some notation for generating sets of I-semigroups. Let S

be an I-semigroup and A a subset of S. Then we denote 〈A〉I as the I-subsemigroup

of S generated by A. Much like the convention for our notation for 〈·〉, this goes

against the general convention of generating substructures, but no confusion should

arise.
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4.3.1 The homogeneity of completely regular semigroups

While studying the homogeneity of bands and inverse semigroups, we will mostly

be working with completely regular semigroups. The task of choosing a suitable

signature for the homogeneity of completely regular semigroups is therefore pivotal.

Recall that completely regular semigroups form a variety of I-semigroups, with

unary operation a 7→ a−1, where a−1 is the inverse of a ∈ S contained in Ha.

We therefore have the concept of homogeneous completely regular semigroups (in

the signature LUS). Since the class of all completely simple semigroups forms a

subvariety of the variety of completely regular semigroups, as given in Section 2.9,

we can also write homogeneous completely simple semigroups (again in LUS).

The difference between considering completely regular homogeneous semigroups

and homogeneous completely regular semigroup lies solely in the f.g. substructures

(either f.g. subsemigroups or f.g. completely regular subsemigroups, respectively)

and not the isomorphisms. Indeed, if S and T are completely regular semigroups

and φ : S → T a semigroup morphism, then by [72, Lemma II.2.4] φ also preserves

the unary operation, so that a−1φ = (aφ)−1 for all a ∈ S. Hence all semigroup

morphisms are also morphisms in LUS .

Not every f.g. completely regular semigroup is a f.g. semigroup, and an example

is the free completely regular semigroup of rank 2, discussed further in [94]. In the

non-periodic case we will later show that our two concepts of homogeneity for a

completely regular semigroup differ. On the other hand, for periodic completely

regular semigroups we have the following.

Lemma 4.3.2. Let S be a periodic completely regular semigroup. Then S is a

homogeneous semigroup if and only if S is a homogeneous completely regular semi-

group.

Proof. Suppose S =
⋃
α∈Y Sα is a periodic completely regular semigroup. Let

T = 〈a1, . . . , an〉 be a f.g. subsemigroup of S. Then by [72, Lemma II.2.6], T is a

completely regular subsemigroup if and only if a−1 ∈ T for each a ∈ T . However,

as Ha is a periodic group for each a ∈ T , some power of a is equal to a−1, and thus

a−1 ∈ T . Hence T is a completely regular subsemigroup, and we thus have that

〈a1, . . . , an〉 = 〈a1, . . . , an〉I .

Consequently, every semigroup isomorphism between f.g. subsemigroups of S is a

unary semigroup isomorphism between f.g. completely regular subsemigroups of S,

and conversely. The result is immediate.

We now define a stronger notion of homogeneity on a completely regular semi-

group: structure-homogeneity. This will later be used for constructing homogeneous
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completely regular semigroups from a spined product of structure-homogeneous

completely regular semigroups. The definition emerges from the following result,

which is immediate from [72, Lemma II.3.8].

Lemma 4.3.3. Let S =
⋃
α∈Y Sα be a completely regular semigroup and T a com-

pletely regular subsemigroup of S. Then there exists a subsemilattice Y ′ of Y such

that T =
⋃
α∈Y ′ Tα, where Tα is a completely simple subsemigroup of Sα.

It follows that an isomorphism between a pair of completely regular subsemi-

groups of a completely regular semigroup induce an isomorphism between their

structure semilattices, and the following property can therefore be defined.

Definition 4.3.4. Let S =
⋃
α∈Y Sα be a completely regular semigroup. Then S

is called a structure-homogeneous completely regular semigroup if, given any pair of

f.g. completely regular subsemigroups T =
⋃
α∈Z Tα and T ′ =

⋃
α′∈Z′ T

′
α′ and any

isomorphism θ = [θα, π]α∈Z from T to T ′, then for any automorphism π̂ extending

π, there exists an automorphism θ̂ = [θ̂α, π̂]α∈Y of S extending θ.

It is clear from the definition that if S is a structure-homogeneous completely

regular semigroup then it is a homogeneous completely regular semigroup. More-

over, if S is completely simple then, as S is a trivial semilattice of completely

simple semigroups, every homogeneous completely simple semigroup is structure-

homogeneous. On the other hand, a semilattice Y forms a semilattice of trivial

semigroups (which are completely simple) since Y =
⋃
α∈Y {α}, and so structure-

homogeneity and homogeneity in LUS are also equivalent in this case.

Lemma 4.3.5. Let S =
⋃
α∈Y Sα be a structure-homogeneous completely regular

semigroup. Then for every automorphism π of Y , there exists an automorphism of

S with induced semilattice automorphism π.

Proof. Let π be an automorphism of Y and fix α ∈ Y . Then for any eα ∈ E(Sα)

and eαπ ∈ E(Sαπ), the isomorphism φ between the trivial subsemigroups {eα} and

{eαπ} has induced semilattice isomorphism π|{α} : {α} → {απ}. Since π extends

π|{α} and S is structure-homogeneous, there exists an automorphism of S with

induced semilattice automorphism π as required.

We end this section by constructing a class of structure-homogeneous completely

regular semigroups, which will be vital to both the classification of homogeneous

bands and homogeneous inverse semigroups. Let Y be a semilattice and T be a

completely simple semigroup. Then S = Y × T is completely regular, and by

Proposition 3.7.13, is isomorphic to a strong semilattice of completely simple semi-

groups [Y ;Sα;ψα,β] with Sα ∼= T and with each connecting morphism being an

isomorphism. We use the extended notation introduced in Section 3.7 by defining

a connecting morphism ψα,β := ψα,αβψ
−1
β,αβ for every α, β ∈ Y . We aim to prove
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that S is structure-homogeneous if Y and T are homogeneous. We rely upon the

following description of the automorphisms of S.

Lemma 4.3.6. Let S = [Y ;Sα;ψα,β] be a completely regular semigroup such that

each connecting morphism ψα,β is an isomorphism. Let π ∈ Aut (Y ) and, for a

fixed α∗ ∈ Y , let θα∗ ∈ Iso(Sα∗ ;Sα∗π). For each δ ∈ Y , let θδ : Sδ → Sδπ be given

by

θδ = ψδ,α∗θα∗ψα∗π,δπ. (4.1)

Then θ = [θα, π]α∈Y is an automorphism of S. Conversely, every automorphism of

S can be so constructed.

Proof. Let π and θδ (δ ∈ Y ) be defined as in the hypothesis of the lemma. If δ ≥ γ
in Y , then by Lemma 3.7.12 we have

ψδ,γ θγ = ψδ,γ ψγ,α∗ θα∗ ψα∗π,γπ

= ψδ,α∗ θα∗ ψα∗π,δπ ψδπ,γπ

= θδ ψδπ,γπ.

Hence the diagram [δ, γ; δπ, γπ] commutes, and so θ is an automorphism of S by

Theorem 2.7.1.

Conversely, suppose θ = [θα, π]α∈Y is an automorphism of S, and fix any α∗ ∈ Y .

Then for each δ ∈ Y , since the connecting morphisms are isomorphisms and both

the diagrams [α∗, α∗δ;α∗π, (α∗δ)π] and [δ, α∗δ; δπ, (α∗δ)π] commute, we have

ψα∗,α∗δ θα∗δ = θα∗ ψα∗π,(α∗δ)π

and

ψδ,α∗δ θα∗δ = θδ ψδπ,(α∗δ)π.

This gives

ψα∗δ,α∗ θα∗ ψα∗π,(α∗δ)π = θα∗δ = ψα∗δ,δ θδ ψδπ,(α∗δ)π,

by (3.6). Hence, again by Lemma 3.7.12 we have

θδ = ψ−1
α∗δ,δ ψα∗δ,α∗ θα∗ ψα∗π,(α∗δ)π ψ

−1
δπ,(α∗δ)π

= ψδ,α∗δ ψα∗δ,α∗ θα∗ ψα∗π,(α∗δ)π ψ(α∗δ)π,δπ

= ψδ,α∗ θα∗ ψα∗π,δπ

as required.

The following useful lemma is merely a simple extension of the homogeneity of

a structure, but we prove it for completeness.
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Lemma 4.3.7. Let M and M ′ be isomorphic homogeneous L-structures for some

signature L. Then any isomorphism between f.g. substructures A and A′ of M and

M ′, respectively, can be extended to an isomorphism between M and M ′.

Proof. Let A and A′ be f.g. substructures ofM andM ′, respectively. Let θ : A→ A′

be an isomorphism and fix some isomorphism φ : M →M ′. Then

θ(φ−1|A′) : A→ A′φ−1

is an isomorphism between f.g. subgroups of M , which can thus be extended to an

automorphism χ of M . The isomorphism χφ : M → M ′ extends θ, since if g ∈ A
then

gχφ = g(θ(φ−1|A′))φ = gθ.

Proposition 4.3.8. Let S = [Y ;Sα;ψα,β] be a strong semilattice of completely

simple semigroups Sα with each connecting morphism being an isomorphism. Let

Y be a homogeneous semilattice and each Sα be a homogeneous completely simple

semigroup. Then S is a structure-homogeneous completely regular semigroup.

Proof. Let A and A′ be a pair of f.g. completely regular subsemigroups of S given

by

A = [Z;Aα;ψAα,β]

A′ = [Z ′;A′α′ ;ψ
A′
α′,β′ ]

where ψAα,β and ψA
′

α′,β′ , being restrictions of isomorphisms, are embeddings. Let

θ = [θα, π]α∈Z be an isomorphism from A to A′, noting that all isomorphisms are of

this form by Lemma 2.11.7, and let π̂ be an automorphism of Y extending π. Denote

the minimum elements of Z and Z ′ as α∗ and β∗, respectively. Then α∗π = β∗, and

for each δ ∈ Z, the diagram

Aδ

ψA
δ,α∗

��

θδ // A′δπ

ψA
′

δπ,β∗
��

Aα∗
θα∗ // A′β∗

(4.2)

commutes by Theorem 2.7.1. By the homogeneity of each Sα, we may extend θα∗ to

an isomorphism θ̂α∗ : Sα∗ → Sβ∗ by Lemma 4.3.7. For each δ ∈ Y , let θ̂δ : Sδ → Sδπ̂

be the isomorphism given by

θ̂δ = ψδ,α∗ θ̂α∗ ψβ∗,δπ̂.

Then θ̂ = [θ̂δ, π̂]δ∈Y is an automorphism of S by Lemma 4.3.6. Moreover, θ̂δ extends
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θδ for each δ ∈ Z, since by (4.2)

θδ = ψAδ,α∗ θα∗ (ψA
′

δπ,β∗)
−1|

Im ψA
′

δπ,β∗
,

and ψδ,α∗ extends ψAδ,α∗ , θ̂α∗ extends θα∗ , and ψβ∗,δπ̂ extends (ψA
′

δπ,β∗)
−1|

Im ψA
′

δπ,β∗
.

Hence θ̂ extends θ, and S is structure-homogeneous.

Hence if Y is a homogeneous semilattice and T is a homogeneous completely

simple semigroup, then by Proposition 3.7.13 we have that Y × T is isomorphic to

a structure-homogeneous completely regular semigroup. In this case, we will often

write that Y × T is structure-homogeneous, where no confusion can arise.

4.4 Substructure of a homogeneous structure

Mirroring our early study into ℵ0-categorical structures, we will now briefly examine

examples of substructures which inherit the property of homogeneity. For example,

it can be easily shown that the homogeneity of a structure will pass to characteristic

substructures, and the result for groups is given in [17, Lemma 1]. We instead view

a larger class of substructures: quasi-characteristic.

Definition 4.4.1. Let M be a structure with substructure A. Suppose for any

automorphism φ of M such that there exist a, b ∈ A with aφ = b, the map φ|A is

an automorphism of A. Then we call A a quasi-characteristic substructure of M .

Consequently, a substructure A of a structure M is a quasi-characteristic sub-

structure of M if and only if {(A, a) : a ∈ A} forms a system of 1-p.p.r.c substruc-

tures. The following result is then immediate from Lemma 3.3.3.

Lemma 4.4.2. Let M be a structure with substructure A. Then the following are

equivalent:

(i) A is a quasi-characteristic substructure of M ;

(ii) if φ ∈ Aut(M) is such that there exist a, b ∈ A with aφ = b, then xφ ∈ A for

all x ∈ A.

Remark 4.4.3. Every characteristic substructure is clearly quasi-characteristic.

Example 4.4.4. Let τ be an equivalence relation on a structure M which is pre-

served under automorphisms. Suppose A is an equivalence class of τ which is a

substructure of M , and φ ∈ Aut(M) is such that Aφ ∩ A 6= ∅. Then Aφ ⊆ A and

so A is quasi-characteristic.

Lemma 4.4.5. Let M be a homogeneous structure with a quasi-characteristic sub-

structure A. Then A is homogeneous.
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Proof. Let φ be an isomorphism between f.g. substructures N and N ′ of A. Then

N and N ′ are f.g. substructures of M , and so we may extend φ to φ̄ ∈ Aut(M).

Since Nφ̄ = N ′ and A is quasi-characteristic, we have φ̄|A ∈ Aut(A), and so A is

homogeneous.

We proved in Proposition 3.3.9 that if τ is an automorphism preserving equiva-

lence relation on an ℵ0-categorical structure M , then {|xτ | : x ∈M} is finite. The

analogous result for homogeneous structure is as follows.

Corollary 4.4.6. Let τ be an equivalence relation on a homogeneous structure M

which is preserved under automorphisms. Let x, y ∈M be such that there exists an

isomorphism φ : 〈x〉M → 〈y〉M with xφ = y. Then |xτ | = |yτ |, and if xτ forms a

substructure of M then xτ ∼= yτ .

Proof. By the homogeneity of M we can extend the isomorphism φ to an automor-

phism θ of M . Since θ preserves τ we have (xτ)θ = (xθ)τ = yτ , and the result

follows (noting that by θ, we have that xτ forms a substructure if and only yτ

does).

We now apply our results on quasi-characteristic substructures to the case of

semigroups in the signature of semigroups LS and LUS . First, since Green’s rela-

tions are preserved under automorphisms of a (I-)semigroup, we have the following

result by Example 4.4.4 and Lemma 4.4.5.

Corollary 4.4.7. Let S be a homogeneous (I-)semigroup. Then any H/R/L/D/J -

class of S which forms a (I-)subsemigroup of S is a homogeneous (I-)semigroup.

Consequently, the maximal subgroups of S are homogeneous (I-)semigroups.

Note that a homogeneous group might not be a homogeneous semigroup, a

problem which we study in further detail in Chapter 6.

The set of idempotents E(S) of a (I-)semigroup S form a characteristic subset

of S by Example 3.3.1. Hence E(S) generates a characteristic (I-)subsemigroup,

and we arrive at the corollary below.

Corollary 4.4.8. Let S be a homogeneous (I-)semigroup. Then 〈E(S)〉 (〈E(S)〉I)
is a homogeneous (I-)semigroup.

Given a subset N of a structure M , we say that Aut(M) acts transitively on N

if for any a, b ∈ N , there exists an automorphism φ of M such that aφ = b.

Lemma 4.4.9. If S be a homogeneous semigroup. Then Aut(S) acts transitively

on E(S).

Proof. Given e, f ∈ E(S), we have 〈e〉 = {e} ∼= {f} = 〈f〉. By extending the unique

isomorphism from {e} to {f} to an automorphism of S gives the result.
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Let S be a homogeneous semigroup and τ an equivalence relation preserved

by automorphisms of S. Then as any pair of idempotents e and f of S generate

isomorphic subsemigroups of S, it follows by Corollary 4.4.6 that |eτ | = |fτ |, and

if eτ is a subsemigroup of S then eτ ∼= fτ . By applying this to Green’s relations

we obtain the following.

Corollary 4.4.10. Let S be a homogeneous semigroup and K be a Green’s relation

on S. Then |Ke| = |Kf | for all e, f ∈ E(S). Moreover, if for some e ∈ E(S) the

set Ke forms a subsemigroup of S, then Ke
∼= Kf for all f ∈ E(S). Consequently,

the maximal subgroups of S are pairwise isomorphic.

While the corollary above may not hold for all homogeneous I-semigroups, it

clearly will hold in the case where e′ = e for all idempotents e, since in this case

〈e〉I = {e}. Our main example of this occurrence is completely regular semigroups,

where the unary operation sends idempotents to the inverse in their maximal sub-

group, and are thus fixed. Since the D-classes of a completely regular semigroup⋃
α∈Y Sα are the completely simple semigroups Sα, each of which contain an idem-

potent, we therefore have the following consequence of Corollaries 4.4.7 and 4.4.10.

Proposition 4.4.11. Let S =
⋃
α∈Y Sα be a homogeneous completely regular semi-

group. Then each Sα is a homogeneous completely simple semigroup, and Sα ∼= Sβ

for each α, β ∈ Y .

4.5 Non-periodic homogeneous semigroups

We now begin our study into the homogeneity of certain classes of semigroups,

starting in this section with non-periodic semigroups.

Given a semigroup S, we denote the set of elements of infinite order as

Inf(S) := {a ∈ S : |〈a〉| = ℵ0}.

We observe that if S is a homogeneous semigroup then Aut(S) acts transitively on

Inf(S). Indeed, for each a, b ∈ Inf(S), we have

〈a〉 ∼= (N,+) ∼= 〈b〉,

and the result then follows by the homogeneity of S. We claim that either all

elements of Inf(S) lie in subgroups of S, or none of them do. Indeed, if a, b ∈ Inf(S)

are such that a ∈ He for some e ∈ E(S), then by taking an automorphism of S

sending a to b we have that b ∈ Heθ since H is preserved under automorphisms.
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Lemma 4.5.1. Let S be a homogeneous semigroup with a non-periodic element

contained in a maximal subgroup of S. Then (E(S),≤) is an anti-chain, where ≤
is the natural order on E(S).

Proof. The maximal subgroups of S are isomorphic by Corollary 4.4.10, and so each

maximal subgroup of S is non-periodic. Let e, f ∈ E(S) be such that e ≥ f , and

let x ∈ Hf ∩ Inf(S). Then

ex = e(fx) = (ef)x = fx = x = xf = x(fe) = (xf)e = xe

and so the map

φ : 〈e, x〉 → 〈f, x〉

determined by eφ = f and xφ = x is an isomorphism. By the homogeneity of

S, extend φ to an automorphism φ̄ of S. Since H is preserved under φ̄, we have

Heφ̄ = Hf and Hf φ̄ = Hxφ̄ = Hx = Hf . Hence He = Hf and so e = f as

required.

A regular semigroup S in which (E(S),≤) forms an anti-chain is necessarily

completely simple since all idempotents are minimal, and so the following corollary

to Lemma 4.5.1 is immediate.

Corollary 4.5.2. Let S be a regular homogeneous semigroup. If S contains a non-

periodic element in a subgroup of S then S is completely simple. In particular,

non-periodic completely regular homogeneous semigroups are completely simple.

Open Problem 2. Do there exist a regular homogeneous semigroup with an ele-

ment of infinite order not contained in a subgroup of S?

This open problem can be extended by dropping the non-periodic condition.

That is, does there exist a regular homogeneous semigroup which is not completely

regular? Similarly, is a regular homogeneous I-semigroup completely regular? We

conjecture that a regular homogeneous (I-)semigroup is completely regular, and

results of the subsequent chapters back this stance.

4.6 The homogeneity of completely simple semigroups

In this chapter we have shown that understanding the homogeneity of completely

simple semigroups, both in LS and LUS , is vital for the homogeneity of completely

regular semigroups. Indeed, completely simple semigroups appear as D-classes of

completely regular semigroups, and are also key in comparing our two concepts

of homogeneity on a completely regular semigroup. Indeed, by Lemma 4.3.2 the

two properties of homogeneity can only disagree on non-periodic completely regular



120 CHAPTER 4. HOMOGENEOUS STRUCTURES

semigroups, and by Corollary 4.5.2 non-periodic completely regular homogeneous

semigroups are necessarily completely simple. Hence a completely regular homo-

geneous semigroup which is not a homogeneous completely regular semigroup is

completely simple.

Open Problem 3. How does the homogeneity of a completely simple semigroup

in LS or LUS differ?

We end by giving a third motivation for a further study into the homogeneity

of completely simple semigroups:

Proposition 4.6.1. Let S be a regular homogeneous semigroup with finite set of

idempotents E(S). Then S is completely simple.

Proof. Suppose, seeking a contradiction, that there exists an element e ∈ E(S)

which is not minimal in E under the natural order ≤ on E(S). Since E(S) is finite

there exists a minimal element f ∈ E(S) with f < e. By Lemma 4.4.9 there exists

an automorphism of S sending e to f , which clearly contradicts the minimality of

f . Hence every idempotent of S is minimal, and so S is completely simple.

An attempt was made to classify homogeneous completely simple semigroups,

and great progress was made in both the idempotent-generated case, and the finite

case. In Chapter 7, the classification of orthodox homogeneous completely simple

semigroups will be given. However, this is still ongoing work, and time did not

permit a further discussion.



Chapter 5

Homogeneous bands

This chapter investigates the homogeneity of bands. Since bands form a variety

of semigroups and of completely regular semigroups (where the unary operation is

trivial), we could consider homogeneity in LS or in LUS . However, by Lemma 4.3.2

the two concepts of homogeneity intersect, and we may simply write homogeneous

band without ambiguity. This allows us to use the results and concepts introduced

in Subsection 4.3.1, and in particular write structure-homogeneous band to mean a

band which is a structure-homogeneous completely regular semigroup, again with-

out ambiguity. It follows from the work of Lean [63], that bands are ULF, and so

we need only look at isomorphisms between finite subbands.

Our main result is a complete description of all homogeneous bands, showing

them to be regular bands. We also examine how our results fit in with known

classifications, in particular showing that the structure semilattice of a homogeneous

band is itself homogeneous. The classification of homogeneous bands is therefore

an extension of the classification of homogeneous semilattices.

Interest in the homogeneity of bands began in [10], where Byleen states the

existence of a universal normal band which is homogeneous, although no formal

proof is given. The open problem of finding a representation of this band is also

stated. We aim to formalise Byleen’s brief work on homogeneous normal bands,

and obtain a number of properties of the universal normal band.

5.1 Homogeneous semilattices

The homogeneity of semilattices was first studied by Droste in [24] and, together

with Truss and Kuske in [27]. Note that both articles consider the homogeneity of

semilattices in the signature of lower semilattices LLS = {≤,∧}. We first show that

121
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their work effectively considers homogeneity of (algebraic) semilattices, a result that

will be immediate from the following simple consequence of Proposition 2.3.1.

Corollary 5.1.1. Let (Y,≤,∧) and (Y ′,≤,∧) be a pair of lower semilattices and

φ : Y → Y ′ a map. Then φ is a lower semilattice morphism if and only if it is a

semigroup morphism from (Y,∧) to (Y ′,∧).

Proof. Let φ be a semigroup morphism from (Y,∧) to (Y ′,∧). For any e, f ∈ Y ,

we have

e ≤ f ⇒ ef = e⇒ eφfφ = eφ⇒ eφ ≤ fφ,

and so φ is a morphism preserving ≤, and is thus a morphism between lower semi-

lattices (Y,≤,∧) and (Y ′,≤,∧) as required.

The converse is trivial.

Lemma 5.1.2. A semilattice (Y,∧) is a homogeneous band if and only if (Y,∧,≤)

is a homogeneous lower semilattice.

Proof. Let (Y,∧) be a semilattice which is a homogeneous band. Let (A,∧,≤) and

(A′,∧,≤) be a pair of f.g. lower subsemilattices of (Y,∧,≤), and φ : A → A′ a

lower semilattice isomorphism. Then by the corollary above φ is an isomorphism

between the subsemilattices (A,∧) and (A′,∧) of (Y,∧), which can thus extend to

an automorphism of (Y,∧). Applying Corollary 5.1.1 again gives (Y,∧,≤) to be

homogeneous. The converse is proven similarly.

We therefore simply refer to a homogeneous semilattice to mean homogeneous in

LS or LLS , without ambiguity. Note however that a homogeneous semilattice need

not be homogeneous as a poset. Indeed, (Q,≤) is the unique homogeneous semilat-

tice that is also homogeneous as a poset by Schmerl’s classification of homogeneous

posets [92].

A semilattice Y with natural partial order ≤ is called a semilinear order if (Y,≤)

is non-linear and, for all α ∈ Y , the set {β ∈ Y : β ≤ α} is linearly ordered. This

is equivalent to Y not containing a diamond, where a diamond is a collection of

distinct δ, α, γ, β ∈ Y such that δ > {α, γ} > β and α ⊥ γ with αγ = β.

The class of all finite semilattices forms a Fräıssé class, and its Fräıssé limit

is called the universal semilattice. It was shown [27] that every distinct pair of

elements in the universal semilattice has an upper bound, that is, an element strictly

greater than both elements, and that the upper bound is never unique.

Lemma 5.1.3. Let Y be the universal semilattice and Z a finite subsemilattice of

Y . Then for any finite semilattice Z ′ in which Z embeds, there exists X ⊂ Y \ Z
such that Z ∪X ∼= Z ′.

Proof. Let Z ′ be a finite semilattice and θ : Z → Z ′ an embedding. Since Y is

universal, there exists an embedding φ : Z ′ → Y . Hence θφ is an isomorphism
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Figure 5.1: A diamond.

between Z and Zθφ, which we can extend to an automorphism χ of Y , since the

universal semilattice is homogeneous. Then Z is a subsemilattice of (Z ′φ)χ−1 since

Zχ = Zθφ ⊆ Z ′φ.

Moreover, (Z ′φ)χ−1 is isomorphic to Z ′, and the result follows by taking X =

(Z ′φ)χ−1 \ Z.

In [24], every homogeneous semilattice forming a semilinear order was con-

structed, which led to the following classification.

Proposition 5.1.4 (Droste, Kuske, Truss [24, 27]). A non-trivial homogeneous

semilattice is isomorphic to either (Q,≤), a semilinear order, or the universal semi-

lattice.

Note that not every semilinear order is a homogeneous semilattice. Moreover, a

non-trivial homogeneous semilattice is dense, a property of homogeneous semilat-

tices which we use throughout these final chapters without reference.

5.2 The homogeneity of an arbitrary band

In this section we recall some basic properties of bands, which are used to further

understand the homogeneity of an arbitrary band. By Proposition 2.10.3 a band

B is a semilattice of rectangular bands, and these rectangular bands form the D-

classes of B. We let ≤ denote the natural order on B, given by e ≤ f if and only

if ef = fe = e, where e, f ∈ B. We are interested in understanding the D-classes,

the natural order, and the structure semilattice of a homogeneous band.

We first give the ideal structure on a band B, which is taken from [72]. Green’s

left and right quasi-orders simplify as

e ≤l f ⇔ ef = e, e ≤r f ⇔ fe = e,
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for each e, f ∈ B. The Green’s relations on B are then given by:

eL f ⇔ ef = e, fe = f ;

eR f ⇔ ef = f, fe = e;

eH f ⇔ e = f ;

eD f ⇔ eJ f ⇔ efe = e, fef = f,

for each e, f ∈ B.

After semilattices, the second variety of bands required for the construction of an

arbitrary band are rectangular bands. Determining the homogeneity of rectangular

bands will therefore be vital for a general study. Recall that Bn,m denotes the

unique, up to isomorphism, rectangular band with n R-classes and m L-classes.

Proposition 5.2.1. The rectangular band Bn,m is a homogeneous band for any

n,m ∈ N∗ = N ∪ {ℵ0}.

Proof. Let Bn,m = L×R be a rectangular band, and A1 and A2 a pair of subbands

of B. Since the class of rectangular bands forms a variety, each Ai is a rectangular

band and Ai = Li × Ri for some Li ⊆ L, Ri ⊆ R. Let θ : A1 → A2 be an

isomorphism. Then, by Proposition 2.10.2, there exist bijections θL1 : L1 → L2

and θR1 : R1 → R2 such that θ = θL1 × θR1 . Extend θL1 to a bijection θL of

L, and similarly construct the bijection θR of R. Then θ̂ = θL × θR extends θ as

required.

The D-classes of an arbitrary band are therefore homogeneous. However, note

that not every band is homogeneous, for homogeneous bands are restricted to having

isomorphic D-classes by Corollary 4.4.10. Since bands are completely regular, the

isomorphisms between a pair of bands can be obtained from Proposition 2.11.2 as

follows.

Proposition 5.2.2. Let B =
⋃
α∈Y Bα and B′ =

⋃
α′∈Y ′ B

′
α′ be a pair of bands.

Then, for any isomorphism θ : B → B′, there exists an isomorphism π : Y → Y ′

and an isomorphism θα : Bα → B′απ for every α ∈ Y , such that θ =
⋃
α∈Y θα.

We abuse notation somewhat by denoting θ as [θα, π]α∈Y . This notation is

normally reserved for strong semilattices of semigroups, but is used for arbitrary

semilattices of rectangular bands where no confusion may arise.

We fix a number of useful subsets of an arbitrary band B =
⋃
α∈Y Bα. If α > β

in Y and eα ∈ Bα then we let

(i) Bβ(eα) := {eβ ∈ Bβ : eβ < eα};

(ii) Bα,β :=
⋃
fα∈Bα Bβ(fα) = {eβ ∈ Bβ : eβ < fα for some fα ∈ Bα};

(iii) R(Bβ(eα)) := {fβ ∈ Bβ : fβ <r eα};
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and dually for L(Bβ(eα)). Note first that

R(Bβ(eα)) = {fβ ∈ Bβ : ∃eβ ∈ Bβ(eα), fβR eβ}.

Indeed, we claim that if fβ ∈ Bβ and eα ∈ Bα, then fβ <r eα if and only if

fβR eαfβeα, to which the result follows as eαfβeα < eα. If fβ <r eα then fβ = eαfβ,

and so

fβ(eαfβeα) = (fβeα)(fβeα) = fβeα = eαfβeα

so that fβ >r eαfβeα. Hence fβ and eαfβeα, being elements of Bβ, are R-related.

Conversely, if fβR eαfβeα then

fβ = (eαfβeα)fβ = eαfβ

and the claim holds.

We observe that the set Bβ(eα) is non-empty for each eα ∈ Bα, since for any

eβ ∈ Bβ we have eα > eαeβeα ∈ Bβ. Moreover, each of the sets defined above are

subbands of Bβ. Indeed, if eα > eβ and fα > fβ then

eβfβeαfα = eβ(fβfα)eαfα = eβfβ(fαeαfα) = eβfβfα = eβfβ,

and similarly eαfαeβfβ = eβfβ. Hence eαfα > eβfβ ∈ Bα,β, and so Bα,β is a

subband. By taking eα = fα gives Bβ(eα) to be a subband. Finally R(Bβ(eα)),

being a collection of R-classes of Bβ, is a subband.

Corollary 5.2.3. Let B =
⋃
α∈Y Bα be a homogeneous band where Bα = Lα×Rα.

Then, for all α > β and α′ > β′ in Y , eα ∈ Bα and eα′ ∈ Bα′, we have

(i) Aut(B) acts transitively on B;

(ii) Y is dense and without maximal or minimal elements;

(iii) Bα ∼= Bα′ , Lα ∼= Lα′ and Rα ∼= Rα′ ;

(iv) Bβ(eα) ∼= Bβ′(eα′).

Proof. (i) Immediate from Lemma 4.4.9.

(ii) Suppose, seeking a contradiction, that δ is maximal, and let τ < δ in Y . Then

for any eδ ∈ Bδ and eτ ∈ Bτ , there exists by (i) an automorphism θ of B mapping eδ

to eτ . Hence by Proposition 5.2.2, the induced semilattice automorphism of θ maps

δ to τ , contradicting δ being maximal. The result is proven similarly for minimal

elements.

Now suppose α > β in Y . Since β is not minimal, there exists γ ∈ Y such

that γ < β. Let eα ∈ Bα, eβ ∈ Bβ(eα) and eγ ∈ Bγ(eβ), so eγ ∈ Bγ(eα). Then by

extending the isomorphism from {eα, eγ} to {eα, eβ} to an automorphism of B, it
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follows by taking the image of β under the induced automorphism of Y that there

exists γ′ ∈ Y such that α > γ′ > β, and so Y is dense.

(iii) Each Bα is a D-class of B, and so by Proposition 4.4.11 we have Bα ∼= Bα′

for all α, α′ ∈ Y . The results for Lα and Rα are then immediate from Proposition

2.10.2.

(iv) Let eβ ∈ Bβ(eα) and eβ′ ∈ Bβ′(eα′). Since {eα, eβ} and {eα′ , eβ′} are iso-

morphic subbands, the result follows by extending the unique isomorphism between

them to an automorphism of B.

If B is a band with non-trivial structure semilattice, then by the proof of (ii), it

is clear that B, regarded as a poset under its natural order, cannot have maximal

or minimal elements, since the natural order is preserved under automorphisms of

B. On the other hand, if B has trivial structure semilattice then it is a rectangular

band, and the ordering is an anti-chain.

One of our fundamental questions in this chapter is whether or not the homo-

geneity of a band is inherited by its structure semilattice. The answer is yes, but

surprisingly we have not been able to find a direct proof. For now we are only able

to partially answer this question:

Proposition 5.2.4. If B =
⋃
α∈Y Bα is a homogeneous band, then its structure

semilattice Y is 2-homogeneous. Consequently, if Y is linearly or semi-linearly

ordered then Y is homogeneous.

Proof. Since the unique (up to isomorphism) 2 element semilattice is a chain, it

suffices to consider a pair αi > βi (i = 1, 2) in Y . Fix eαi ∈ Bαi for each i = 1, 2 and

let eβi ∈ Bβi(eαi). By extending the isomorphism between {eα1 , eβ1} and {eα2 , eβ2}
to an automorphism of B, it follows by Proposition 5.2.2 that Y is 2-homogeneous.

The final result is then immediate from [27, Proposition 2.1].

To avoid falling into already complete classifications, unless stated otherwise

we assume throughout this chapter that Y is non-trivial (so B is not a rectangular

band) and each D-class is non-trivial (so B is not a semilattice).

5.3 Regular bands

In this section we consider three of the varieties of bands given in Figure 2.3 which we

have so far neglected: left/right regular bands. We later prove that a homogeneous

band is necessarily regular. As such, it will be useful to obtain, in much the same

way as with normal bands, an alternative description of regular bands in which a

relatively simple isomorphism theorem arises.

Kimura showed in [59] that a band B is regular if and only if it is a spined prod-

uct of a left regular and right regular band (known as the left and right component
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of B, respectively). He additionally showed that a band is left (right) regular if and

only if it is a semilattice of left zero (right zero) semigroups.

Let B = L ./ R be a regular band. Then as the classes of left regular, right

regular and regular bands form varieties, every subband A of B is regular. Hence

by Lemma 4.3.3 we have that there exist subbands L′ of L and R′ of R such that

A = L′ ./ R′.

The following isomorphism theorem, which gives a converse to Proposition 2.11.3

in the case of regular bands, was proven by Kimura, but given in the form below

(in the general context of morphisms) in [72, Lemma V.1.10]:

Proposition 5.3.1. Let B = L ./ R and B′ = L′ ./ R′ be regular bands with

structure semilattices Y and Y ′, respectively. Let θl : L → L′ and θr : R → R′ be

isomorphisms which induce the same semilattice isomorphism π : Y → Y ′. Define

a mapping θ by

(l, r)θ = (lθl, rθr) ((l, r) ∈ B).

Then θ is an isomorphism from B onto B′, denoted θ = θl ./ θr, and every isomor-

phism from B to B′ can be so constructed for unique θl and θr.

In general, a pair of regular bands with isomorphic left and right components

need not be isomorphic. Indeed, by the proposition above, there are required to be

isomorphisms between the left components and between the right components with

equal induced semilattice isomorphism. The ensuing lemma gives a condition on

the components of the regular bands which forces them to be isomorphic:

Corollary 5.3.2. Let B = L ./ R and B′ = L′ ./ R′ be a pair of regular bands

with structure semilattices Y and Y ′, respectively, and with L and L′ structure-

homogeneous. Then B ∼= B′ if and only if L ∼= L′ and R ∼= R′ (dually for R and

R′).

Proof. Let θr : R→ R′ and θl : L→ L′ be isomorphisms with induced isomorphisms

πr and πl of Y into Y ′, respectively. Then as L′ is structure-homogeneous there

exists an automorphism φl of L′ with induced automorphism π−1
l πr of Y ′. Hence

θlφl is an isomorphism from L to L′ with induced isomorphism πl(π
−1
l πr) = πr, and

so θlφl ./ θr is an isomorphism from B to B′ by Proposition 5.3.1.

The converse is immediate from the proposition above.

We are now able to give our first justification for studying the stronger property

of structure-homogeneity:

Corollary 5.3.3. Let B be the spined product of a homogeneous left regular band L

and homogeneous right regular band R. If either L or R are structure-homogeneous,

then B is homogeneous. Moreover, if both L and R are structure-homogeneous, then

so is B.
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Proof. Suppose w.l.o.g. that L is structure-homogeneous, with structure semilattice

Y . Let θ = θl ./ θr be an isomorphism between finite subbands A1 = L1 ./ R1

and A2 = L2 ./ R2 of B. Then by Proposition 5.3.1, the isomorphisms θl and θr

both induce an isomorphism π between the structure semilattices Y1 and Y2 of A1

and A2, respectively. Since R is homogeneous, we can extend θr : R1 → R2 to an

automorphism θ̄r of R, with induced automorphism π̄ of Y extending π. Since L

is structure-homogeneous, there exists an automorphism θ̄l of L extending θl and

with induced automorphism π̄ of Y . Hence θ̄l ./ θ̄r is an automorphism of B, which

extends θ as required. The final result is proven in a similar fashion.

5.4 Homogeneous normal bands

In this section we classify homogeneous normal bands. Our aim is helped by not only

a classification theorem for normal bands which gives the local structure, but also

a relatively simple isomorphism theorem, since strong semilattices of rectangular

bands are morphism-pure by Lemma 2.11.7. Theorem 2.7.1 then simplifies:

Theorem 5.4.1. Let B = [Y ;Bα;ψα,β] and B′ = [Y ′;B′α′ ;ψ
′
α′,β′ ] be a pair of

normal bands. Let π : Y → Y ′ be an isomorphism, and for every α ∈ Y , let

θα : Bα → Bαπ be an isomorphism such that for any α ≥ β in Y , the diagram

[α, β;απ, βπ] commutes, that is,

Bα

ψα,β

��

θα // B′απ

ψ′απ,βπ
��

Bβ
θβ // B′βπ

(5.1)

commutes. Then
⋃
α∈Y θα = [θα, π]α∈Y is an isomorphism from B into B′. Con-

versely, every isomorphism of B into B′ can be so constructed for unique π and

θα.

To understand the homogeneity of normal bands, we require a better under-

standing of the finite subbands. Since the class of all normal bands forms a variety,

the following lemma is immediate from Lemma 4.3.3.

Lemma 5.4.2. Let A be a subband of a normal band B = [Y ;Bα;ψα,β]. Then

A = [Z;Aα;ψAα,β], for some subsemilattice Z of Y , subbands Aα of Bα (α ∈ Z) and

ψAα,β = ψα,β|A for each α, β ∈ Z with α ≥ β.

Given a normal band B = [Y ;Bα;ψα,β], we denote Im ψα,β as Iα,β, or IBα,β if we

need to distinguish the band B.
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Lemma 5.4.3. Let B = [Y ;Bα;ψα,β] be a homogeneous normal band. Then Bβ =⋃
α>β Iα,β for each β ∈ Y .

Proof. As a consequence of Corollary 5.2.3, B contains no maximal elements under

its natural order. The result then follows as eα ≥ eβ if and only if α ≥ β and

eαψα,β = eβ.

Lemma 5.4.4. Let B = [Y ;Bα;ψα,β] be a homogeneous normal band. If αi > βi

(i = 1, 2) in Y then there exist isomorphisms θα1 : Bα1 → Bα2 and θβ1 : Bβ1 → Bβ2

such that

θα1ψα2,β2 = ψα1,β1θβ1

In particular Iα1,β1
∼= Iα2,β2 and ψα1,β1 is surjective/injective if and only if ψα2,β2

is also.

Proof. Let eαi ∈ Bαi (i = 1, 2) be fixed. By extending the unique isomorphism

between the 2 element subbands {eα1 , eα1ψα1,β1} and {eα2 , eα2ψα2,β2} to an auto-

morphism of B, the diagram [α1, β1;α2, β2] commutes by Proposition 5.4.1, and the

result easily follows.

Since a normal band is regular, it can be regarded as the spined product of a left

regular and right regular band. The following results and subsequent Proposition

5.4.5 are taken from [55, Proposition 4.6.17]. Let B = [Y ;Bα;ψα,β] be a normal

band, where Bα = Lα×Rα for some left zero semigroup Lα and right zero semigroup

Rα. Then the connecting morphisms determine morphisms ψlα,β : Lα → Lβ and

ψrα,β : Rα → Rβ such that

(lα, rα)ψα,β = (lαψ
l
α,β, rαψ

r
α,β) (5.2)

for every (lα, rα) ∈ Bα. Moreover, L =
⋃
{Lα : α ∈ Y } becomes a strong semilattice

of left zero semigroups [Y ;Lα;ψlα,β] under ◦, where for lα ∈ Lα and lβ ∈ Lβ,

lα ◦ lβ = (lαψ
l
α,αβ)(lβψ

l
β,αβ) = lαψ

l
α,αβ

since Lαβ is left zero (dually for R). Hence by (5.2) we have B = L ./ R, and we

arrive at the subsequent proposition.

Proposition 5.4.5. Every normal band B is isomorphic to a spined product of a

left normal and a right normal band.

Consequently, by Proposition 5.3.1, a pair of normal bands L ./ R and L′ ./ R′

are isomorphic if and only if there exists an isomorphism from L to L′ and R to R′

with the same induced isomorphism between the structure semilattices.

A normal band is called an image-trivial normal band if the images of the non-

identity connecting morphisms all have cardinality 1. A normal band is called
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a surjective normal band if each connecting morphism is surjective. Note that a

normal band is both image-trivial and surjective if and only if it is a semilattice.

Moreover, a normal band L ./ R is an image-trivial/surjective normal band if and

only if both L and R are likewise image-trivial/surjective.

Lemma 5.4.6. Let B = [Y ;Lα;ψlα,β] ./ [Y ;Rα;ψrα,β] = L ./ R be a homogeneous

normal band. Then R is either an image-trivial or surjective right normal band

(dually for L).

Proof. If R is a semilattice then B is isomorphic to L, and so the result is immediate.

Assume instead that |Rα| > 1 for some α ∈ Y . Then |Rα| > 1 for all α ∈ Y by

Corollary 5.2.3 (iii). Suppose there exists α > β in Y such that IRα,β 6= Rβ. Let

rαψ
r
α,β = rβ, sαψ

r
α,β = sβ (with rα 6= sα) and tβ 6∈ IRα,β. Fix lα ∈ Lα and let

lαψ
l
α,β = lβ. Note that for any xβ ∈ Rβ we have

(lα, rα)(lβ, xβ) = (lβ, rβxβ) = (lβ, xβ) and (lβ, xβ)(lα, rα) = (lβ, rβ).

Hence if xβ 6= rβ then 〈(lα, rα), (lβ, xβ)〉 = {(lα, rα), (lβ, xβ), (lβ, rβ)} is a 3 element

subband. In particular, if sβ 6= rβ then the map

φ : 〈(lα, rα), (lβ, sβ)〉 → 〈(lα, rα), (lβ, tβ)〉

fixing (lα, rα) and such that (lβ, sβ)φ = (lβ, tβ) is an isomorphism. Extend φ to an

automorphism θl ./ θr of B. Then as θr = [θrα, π]α∈Y is an automorphism of R we

have, by the commutativity of [α, β;α, β] in R,

(sαθ
r
α)ψrα,β = (sαψ

r
α,β)θrβ = sβθ

r
β = tβ,

contradicting tβ 6∈ IRα,β. Thus sβ = rβ, so that Iα,β has cardinality 1, and so R is

an image-trivial normal band by Lemma 5.4.4. The dual gives the result for left

normal bands.

Hence if B = L ./ R is a homogeneous normal band then B is either an image-

trivial normal band (if L and R are image-trivial), or the images of the connecting

morphisms are a single L/R-class (if L/R is a surjective normal band and R/L is

an image-trivial normal band) or D-class (if L and R are surjective normal bands).

We split our classification of homogeneous normal bands into three parts. In

Section 5.4.1 we classify homogeneous image-trivial normal bands, and in Section

5.4.2 homogeneous surjective normal bands. Using the results attained in these

sections, the final case (and its dual) is easily achieved at the end of Section 5.4.2.
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5.4.1 Image-trivial normal bands

In this section we are concerned with the classification of image-trivial homoge-

neous normal bands. Following the notation of Section 3.7, we shall denote an

image-trivial normal band [Y ;Bα;ψα,β] such that Iα,β = {εα,β} for each α > β, as

[Y ;Bα; εα,β;ψα,β]. Note that if α, γ > β in Y are such that αγ > β then

Bαψα,β = (Bαψα,αγ)ψαγ,β = {εαγ,β} = (Bγψγ,αγ)ψαγ,β = Bγψγ,β

and so

εα,β = εαγ,β = εγ,β. (5.3)

Notice that (5.3) automatically holds if α > γ > β.

Note that if Y = Q (under the natural ordering) then for any β ∈ Q and α, γ > β

we have εα,β = εγ,β by (5.3). Hence any eβ ∈ Bβ \ {εα,β} is a maximal element in

the poset (B,≤). Consequently, an image-trivial homogeneous normal band with a

linear structure semilattice is isomorphic to Q by Corollary 5.2.3.

While the following lemma is stronger than what is required in this section, it

will be vital for later results, and the generalization adds little extra work.

Lemma 5.4.7. Let B = [Y ;Bα;ψα,β] = L ./ R be a homogeneous normal band

such that either L or R is a non-semilattice image-trivial normal band. Then Y is

a homogeneous semilinear order.

Proof. Assume w.l.o.g. that L = [Y ;Lα; εlα,β;ψlα,β] is a non-semilattice image-trivial

normal band, so that |Lα| > 1 for all α ∈ Y by Corollary 5.2.3 (iii). Note that R =

[Y ;Rα;ψrα,β] is image-trivial or surjective by Lemma 5.4.6. Seeking a contradiction,

suppose that Y contains a diamond D = {δ, α, γ, β}, where δ > {α, γ} > β. Fix

eδ = (lδ, rδ) ∈ Bδ and let

eα = eδψδ,α = (εlδ,α, rδψ
r
δ,α),

eγ = eδψδ,γ = (εlδ,γ , rδψ
r
δ,γ),

eβ = eδψδ,β = (εlδ,β, rδψ
r
δ,β),

noting that εlα,β = εlδ,β = εlγ,β by (5.3). By construction {eδ, eα, eγ , eβ} is isomorphic

to D. If there exists lβ ∈ Lβ \ {εlδ,β}, then by Lemma 5.4.3 there exists τ > β such

that lβ = εlτ,β . Note that ατ = β, since if ατ > β then lβ = εlτ,β = εlα,β by (5.3). Let

κ < β and eκ = eβψβ,κ = (εlβ,κ, rδψ
r
δ,κ). Extend the unique isomorphism between

the 3-chains eδ > eα > eβ and eα > eβ > eκ to an automorphism θ = [θα, π]α∈Y of

B. Let ρ ∈ Y be such that eρ = eγθ > eβθ = eκ. Then α > ρ > κ (since δ > γ > β),
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ρβ = κ (since γα = β) and

ρτ = (ρα)τ = ρ(ατ) = ρβ = κ.

We claim that there exists eτ ∈ Bτ such that eτ > eκ. For if R is also image-trivial

and B = [Y ;Bα; εα,β;ψα,β], then the claim holds for any eτ by (5.3), as τ > β > κ,

so that ετ,κ = εβ,κ = eκ. On the other hand, if R is surjective, then there exists

rτ ∈ Rτ such that rτψ
r
τ,κ = rδψ

r
δ,κ. Thus, for any lτ , we have

(lτ , rτ )ψτ,κ = (εlτ,κ, rτψ
r
τ,κ) = (εlβ,κ, rδψ

r
δ,κ) = eκ,

and so the claim is proven. Fix some eτ > eκ. By extending any isomorphism

between the 3 element non-chain semilattices 〈eρ, eτ , eκ〉 and 〈eα, eγ , eβ〉, it follows

that there exists σ > ρ, τ (as δ > α, γ).

κ

ρ

β

τ

σ

α

δ

γ

σα

Figure 5.2: A subsemilattice of Y .

Since σ > τ > β and α > β we have σα ≥ β. If σα = β then β ≥ ρ (as σ, α > ρ),

and so as ρβ = κ we have ρ = κ, a contradiction. Hence σα > β and we thus arrive

at the subsemilattice of Y in Figure 5.2. Moreover,

εlα,β = εlσα,β = εlσ,β = εlτ,β = lβ

by (5.3), contradicting lβ 6= εlδ,β = εlα,β. Hence no such lβ exists, and so Lβ is trivial,

a contradiction of L being a non-semilattice. Hence, by Proposition 5.2.4, Y is a

homogeneous linear or semilinear order. Since B is a non-semilattice, the result

follows by the note above the lemma.

In particular, an image-trivial homogeneous normal band has a semilinear struc-

ture semilattice. It is therefore crucial to better understand the structure of homo-

geneous semilinear orders.

Let Y be a dense semilinear order. We call a set Z ⊆ Y connected if for any

x, y ∈ Z there exist z1, . . . , zn ∈ Z (n ∈ N) with z1 = x, zn = y, and zi ≤ zi+1 or

zi+1 ≤ zi for all 1 ≤ i ≤ n−1. Given α ∈ Y , we call the maximal connected subsets
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of {γ ∈ Y : γ > α} the cones of α, and let C(α) denote the set of all cones of α.

Remark 5.4.8 ([24, Remark 5.11]). Let α ∈ Y , A ∈ C(α) and γ ∈ A. Then for

any δ ∈ Y we have δ ∈ A if and only if α < δγ.

Consequently, the cones of α ∈ Y partition the set {γ ∈ Y : γ > α}. If there

exists r ∈ N∗ such that |C(α)| = r for all α ∈ Y , then r is known as the ramification

order of Y . Each homogeneous semilinear order has a ramification order [24].

Let B = [Y ;Bα; εα,β;ψα,β] be an image-trivial normal band, where Y is a semi-

linear order. Since B is image-trivial, we can define a cone of eα ∈ Bα as a maximal

connected subset of {γ ∈ Y : γ > α,Bγψγ,α = eα}. Let C(eα) denote the set of all

cones of eα. Let γ, γ′ > α and suppose γ is connected to γ′. From Remark 5.4.8

we have that γγ′ > α and so by (5.3) Bγψγ,α = Bγ′ψγ′,α. Consequently, the set

{γ ∈ Y : γ > α,Bγψγ,α = eα} is a union of cones of α, and C(α) =
⋃
eα∈Bα C(eα).

If there exists k ∈ N∗ such that |C(eα)| = k for all eα ∈ B, then k is called

the ramification order of B. If B is homogeneous then (as Y is homogeneous

and B is 1-homogeneous) the ramification orders exist for Y and B, say, r and k

respectively, and they are related according to r = k · |Bα|. Moreover, by Lemma

5.4.3, Bβ =
⋃
α>β εα,β for each β ∈ Y .

As shown in [24, Theorem 6.21], there exists for each r ∈ N∗ a unique (up

to isomorphism) countable homogeneous semilinear order of ramification order r,

denoted Tr. Moreover, a semilinear order is isomorphic to Tr if and only if it is

dense and has ramification order r.

We can reconstruct Tr from any α ∈ Tr inductively by following the proof of

Theorem 6.16 in [24], as we now explain, but omitting the proof. Consider an

enumeration of Tr given by Tr = {ai : i ∈ N}, where a1 = α. Let Y0 = ∅ and

Y1 = Z0 be a maximal chain in Tr which contains a1. Suppose for some i ∈ N, the

semilattices Yj and posets Zj−1 (j ≤ i) have already been defined such that the

following conditions hold for each 1 ≤ j ≤ i:

(i) Yj = Yj−1 t Zj−1 and aj ∈ Yj (where t denotes the disjoint union);

(ii) if z ∈ Zj−1, then there exists a unique maximal chain C in Tr with z ∈ C ⊆ Yj
and {c ∈ C : z ≤ c} ⊆ Zj−1;

(iii) if z ∈ Zj−2 (j ≥ 2) and D is any cone of z disjoint to Yj−1, then D∩Zj−1 6= ∅.

It follows from (ii) that whenever 1 ≤ j ≤ i, z ∈ Yj , y ∈ Tr and y < z, then y ∈ Yj .
Moreover, the conditions above trivially hold for the case i = 1.

If ai+1 6∈ Yi then it is shown that there exists z ∈ Zi−1 such that ai+1 belongs

to some (unique) cone Az of z which is disjoint to Yi. For each β ∈ Zi−1 take a

maximal subchain of each cone A ∈ C(β) such that Yi ∩A = ∅, where if β = z then

we take a maximal subchain of Az which contains ai+1. By condition (ii) the set
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Z1

z

a3

Y1 = Z0 Az

Figure 5.3: The case i = 2 [24, Page 68].

{y ∈ Yi : β < y} is a chain, and thus contained in a single cone of β, and so only

one cone will intersect Yi non-trivially.

Let Cβ be the disjoint union of the r−1 (or r if r is infinite) maximal subchains

constructed. We construct Yi+1 by adjoining at each β ∈ Zi−1 the set Cβ, that is,

let

Zi =
⊔

β∈Zi−1

Cβ and Yi+1 = Yi t Zi.

Then conditions (i), (ii) and (iii) are shown to hold, and
⋃
i∈N Yi = Tr as desired.

We can use this construction to describe automorphisms of Tr. Suppose we

also reconstruct Tr from α′ ∈ Tr via sets Y ′i , Z
′
i, C

′
β (so that

⋃
i∈N Y

′
i = Tr). Let

π1 : Y1 → Y ′1 be an isomorphism such that απ1 = α′ (such an isomorphism exists

as maximal chains are isomorphic to Q, and Q is homogeneous). Suppose the

isomorphism πi : Yi → Y ′i has already been defined for some i ∈ N. Extend πi

to πi+1 : Yi+1 → Y ′i+1 as follows. For each β ∈ Zi−1 the posets Cβ and Cβπi are

both disjoint unions of the same number of copies of Q, and are thus isomorphic

(as posets). Let φβ : Cβ → Cβπi be an isomorphism, and let

πi+1 = πi t
⊔

β∈Zi−1

φβ : Yi+1 → Y ′i+1.

Then πi+1 is an isomorphism, and so π =
⋃
i∈N πi is an automorphism of Tr.

Before classifying image-trivial homogeneous normal bands, it is worth giving a

simplified isomorphism theorem, which follows easily from Proposition 5.4.1.

Corollary 5.4.9. Let B = [Y ;Bα; εα,β;ψα,β] and B′ = [Y ′;B′α′ ; ε
′
α′,β′ ;ψ

′
α′,β′ ] be a

pair of image-trivial normal bands. Let π : Y → Y ′ be an isomorphism, and for each
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α ∈ Y let θα : Bα → B′απ be an isomorphism. Then
⋃
α∈Y θα is an isomorphism

from B into B′ if and only if εα,βθβ = ε′απ,βπ for each α > β in Y .

Given a subset A of a band B, we define the support of A as

supp(A) := {γ ∈ Y : A ∩Bγ 6= ∅}.

If A is a subband of B then clearly supp(A) is simply the structure semilattice of

A.

A subsemigroup A of an image-trivial normal band [Y ;Bα; εα,β;ψα,β] is called

a maximal chain if A is a semilattice and supp(A) is a maximal chain in Y . Note

that if Y is a homogeneous semilinear order and A is a maximal chain in B then

A =
⋃

α>β in supp(A)

εα,β ∼= Q,

as A is a semilattice, so that |Bβ ∩ A| ≤ 1 for all β ∈ Y . We use the construction

of Tr above to prove the following:

Proposition 5.4.10. Let B = [Tr;Bα; εα,β;ψα,β] and B′ = [Tr;B
′
α′ ; ε

′
α′,β′ ;ψ

′
α′,β′ ]

be a pair of image-trivial normal bands with ramification order k such that there

exist n,m ∈ N∗ with Bα ∼= B′α′
∼= Bn,m for all α, α′ ∈ Tr. Let e ∈ B and f ∈ B′,

and consider a pair of sub-rectangular bands M ⊆ B and N ⊆ B′ with M > e

and N > f . Then for any isomorphism Φ : M ∪ {e} → N ∪ {f}, there exists an

isomorphism θ : B → B′ extending Φ. Consequently, B is 1-homogeneous.

Proof. Assume r > 1, else B and B′ are isomorphic to Q. Let eσ, eσ′ be elements

of B, M a rectangular subband of Bα, and N a rectangular subband of Bδ, with

M > eσ and N > eσ′ for some σ, σ′, α, δ ∈ Tr. Let Φ be an isomorphism given by

Φ : M ∪ {eσ} → N ∪ {eσ′},

so that MΦ = N and eσΦ = eσ′ . Since rectangular bands are homogeneous, we

may extend Φ|M to an isomorphism Φ′ : Bα → B′δ by Lemma 4.3.7. Fix some

eα ∈ M and let eαΦ = eδ. Let {ai : i ∈ N} and {bi : i ∈ N} be a pair of

enumerations of Tr such that α = a1 and δ = b1. Let A be a maximal chain

in B such that eσ, eα ∈ A, and let Y1 = Z0 = supp(A) (so Y1
∼= A). Similarly

obtain eσ′ , eδ ∈ Â and Ŷ1 = Ẑ0 = supp(Â) (so Ŷ1
∼= Â). Take an isomorphism

π1 : Y1 → Ŷ1 such that σπ1 = σ′ and απ1 = δ (again this is possible as Y1 and Ŷ1

are isomorphic to Q). For each β ∈ Y1 \ {α}, take any isomorphism θβ : Bβ → B′βπ1

such that (Bβ∩A)θβ = B′βπ1
∩Â (such an isomorphism exists by Proposition 2.10.2,

or simply by the homogeneity of rectangular bands), and let θα = Φ′. Letting

D1 = [Y1;Bα; εα,β;ψα,β] and D̂1 = [Ŷ1;B′α′ ; ε
′
α′,β′ ;ψ

′
α′,β′ ], the map

θ1 = [θβ, π1]β∈Y1 : D1 → D̂1
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is an isomorphism by Corollary 5.4.9, since Bβ ∩A = {εγ,β} for all γ > β in Y1, and

Bβπ1 ∩ Â = {εγπ1,βπ1} for all γπ1 > βπ1 in Ŷ1.

Suppose for some i ∈ N the semilattices Yj , Ŷj , posets Zj−1, Ẑj−1, bands

Dj = [Yj ;Bα; εα,β;ψα,β], D̂j = [Ŷj ;B
′
α′ ; ε

′
α′,β′ ;ψ

′
α′,β′ ]

and isomorphisms πj : Yj → Ŷj , θj = [θα, πj ]α∈Yj : Dj → D̂j have already been

defined for each j ≤ i, and are such that Yj , Zj−1 and Ŷj , Ẑj−1 satisfy conditions

(i), (ii) and (iii). As in the semilattice construction, if ai+1 6∈ Yi then we can fix

z ∈ Zi−1 such that ai+1 belongs to some cone of z which is disjoint to Yi, and let

Bai+1ψai+1,z = ez.

Consider the subset Xi−1 =
⋃
γ∈Zi−1

Bγ of B. For each eβ ∈ Xi (so β ∈ Zi−1),

take a maximal subchain of each cone C ∈ C(eβ) such that Yi ∩C = ∅. If eβ = εy,β

for (any) y in the chain {y ∈ Yi : β < y}, then by condition (ii) precisely one

cone will intersect Yi non-trivially. Otherwise, all cones of eβ intersects Yi trivially.

Moreover, if ai+1 6∈ Yi and β = z, we further require the maximal subchain of a

cone of C(ez) to contain ai+1.

Let Ceβ be the disjoint union of the k (or k− 1 if eβ = εy,β for some y ∈ Yi, and

k is finite) maximal subchains and let

Zi =
⊔

eβ∈Xi−1

Ceβ .

Let Yi+1 = Yi t Zi, and note that γ ≤ γ′ for γ, γ′ ∈ Yi+1 if and only if

either γ, γ′ ∈ Yi and γ ≤ γ′ in Yi;

or γ, γ′ ∈ Ceβ for some eβ ∈ Xi−1 and γ ≤ γ′ in Ceβ ;

or γ ∈ Yi, γ′ ∈ Ceβ for some eβ ∈ Xi−1 and β ≥ γ in Yi.

Similarly obtain Ĉeβ′ , Ẑi and Ŷi+1, noting that as B has ramification order k the

set Ĉeβ′ will likewise be formed from k (or k − 1 if eβ′ = ε′y′,β′ for some y′ ∈ Ŷi,
and k is finite) maximum subchains. Let Di+1 = [Yi+1;Bα; εα,β;ψα,β] and D̂i+1 =

[Ŷi+1;B′α′ ; ε
′
α′,β′ ;ψ

′
α′,β′ ].

Recall that C(β) =
⋃
eβ∈Bβ C(eβ) for all β ∈ Tr. Hence as

⋃
eβ∈Bβ Ceβ is a set

of maximal subchains of the r−1 (or r if r is infinite) cones of C(β) which intersect

Yi trivially, it follows that conditions (i), (ii) and (iii) are satisfied and
⋃
i∈N Yi = Tr

(similarly for Ŷi). Consequently, B =
⋃
i∈NDi and B′ =

⋃
i∈N D̂i.

For each eβ ∈ Xi−1, let σeβ : Ceβ → Ĉeβθi be an isomorphism (as posets), and

let

πi+1 = πi t
⊔

eβ∈Xi−1

σeβ : Yi+1 → Ŷi+1.

By the order on Yi+1 defined above, the map πi+1 is an isomorphism, and so the
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map π =
⋃
i∈N πi is an automorphism of Tr. For each γ ∈ Ceβ (eβ ∈ Xi−1), let

θγ : Bγ → Bγπi+1 be an isomorphism such that εγ′,γθγ = εγ′πi+1,γπi+1
for (any)

γ′ ∈ Ceβ with γ′ > γ. We claim that the map

θi+1 = θi t
⊔

γ∈Ceβ
eβ∈Xi−1

θγ = [θα, πi+1]α∈Yi+1 : Di+1 → D̂i+1

is an isomorphism. Suppose γ, γ′ ∈ Yi+1 are such that γ ≤ γ′. If γ, γ′ ∈ Yi, then as

θi preserves the images of the connecting morphisms from Yi, we have

εγ′,γθi+1 = εγ′,γθi = εγ′πi,γπi = εγ′πi+1,γπi+1
.

Similarly, if γ, γ′ ∈ Ceβ for some eβ ∈ Xi−1 then by construction we have that

εγ′,γθγ = εγ′πi+1,γπi+1
. Finally, if γ ∈ Yi, γ′ ∈ Ceβ for some eβ ∈ Xi−1 and β ≥ γ,

then

εγ′,γθi+1 = εβ,γθi+1 = εβ,γθi = εβπi,γπi = εβπi+1,γπi+1
= εγ′πi+1,γπi+1

by (5.3) since γ′ > β ≥ γ and γ′πi+1 > βπi+1 ≥ γπi+1. The claim then follows from

Corollary 5.4.9. Hence θ =
⋃
i∈N θi is an isomorphism from B to B′ which extends

Φ. Taking B = B′ shows that B is 1-homogeneous.

As a result, for each collection r, k, n,m ∈ N∗ such that r = knm, there exists

a unique, up to isomorphism, image-trivial normal band [Tr;Bα;ψα,β; εα,β] with

ramification order k and Bα ∼= Bn,m for all α ∈ Tr. We denote such a band Tn,m,k,

where r = nmk.

Proposition 5.4.11. An image-trivial homogeneous normal band is isomorphic to

Tn,m,k for some n,m, k ∈ N∗. Conversely, every band Tn,m,k is homogeneous.

Proof. By Lemma 5.4.7 an image-trivial homogeneous normal band has a semilinear

structure semilattice, and has a ramification order by 1-homogeneity. By the preced-

ing results, it therefore suffices to prove that the band Tn,m,k = [Tr;Bα; εα,β;ψα,β] is

homogeneous. Since Tn,m,k is 1-homogeneous by the proposition above, we proceed

by induction, by supposing all isomorphisms between finite subbands of size j − 1

extend to an automorphism of B. Let M = [Z1;Mα;ψMα,β], N = [Z2;Nα;ψNα,β] be

a pair of finite subbands of B of size j, and θ = [θα, π]α∈Z1 an isomorphism from

M to N . By Proposition 5.4.10 we assume that Z1 and Z2 are non-trivial, so that

N,M are not rectangular bands. Let δ be maximal in Z1, and δπ = δ′. Then by

the inductive hypothesis the isomorphism θ|M\Mδ
: M \Mδ → N \Nδ′ extends to

an automorphism θ∗ = [θ∗α, π
∗]α∈Tr of B.

Since Z1 is a finite semilinear order, there exists a unique β ∈ Z1 which is the
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lower cover of δ. As θ is an isomorphism, it follows from Corollary 5.4.9 that

εδ,βθ
∗
β = εδ,βθ = εδ′,βπ = εδ′,βπ∗ .

For each eτ ∈ B, let [eτ ] be the subsemilattice of Tr given by

[eτ ] = {γ ∈ Tr : Bγψγ,τ = eτ} = supp{e ∈ B : e > eτ}.

Note that [eτ ] is the union of the cones of eτ , and so Tr \ [eτ ] forms a subsemilattice

of Tr. Then π̂∗ = π∗|Tr\[εδ,β ] : Tr \ [εδ,β] → Tr \ [εδ′,βπ∗ ] is an isomorphism, and we

now aim to extend the isomorphism

[θ∗γ , π̂
∗]γ∈Tr\[εδ,β ] :

⋃
γ∈Tr\[εδ,β ]

Bγ →
⋃

γ∈Tr\[εδ′,βπ∗ ]

Bγ

to an automorphism of B which extends θ.

Since θ maps Mδ ∪ {εδ,β} to Nδπ ∪ {εδ′,βπ}, we can extend the isomorphism

θ|Mδ∪{εδ,β} to an automorphism θ̄∗ = [θ̄∗γ , π̄
∗]γ∈Tr of B by Proposition 5.4.10. Then

as βπ̂∗ = βπ̄∗, the bijection π̃ = π̂∗|Tr\[εδ,β ] t π̄∗|[εδ,β ] is an automorphism of Tr.

We claim that θ̃ = [θ̃γ , π̃]γ∈Tr , where

θ̃γ =

θ∗γ if γ ∈ Tr \ [εδ,β],

θ̄∗γ if γ ∈ [εδ,β],

is an automorphism of Tn,m,k. By Corollary 5.4.9 it is sufficient to prove that

εγ′,γ θ̃ = εγ′π̃,γπ̃ for any γ′ ≥ γ in Tr. Note if γ ∈ [εδ,β] then γ′ ≥ γ > β and

so γ′ ∈ [εδ,β] by (5.3). Hence, as θ∗ and θ̄∗ are automorphisms of B (and by the

construction of θ̃), we only need consider the case where γ′ ∈ [εδ,β] and γ ∈ Tr\[εδ,β].

If γ 6= β then γ′ > β > γ, so εγ′,γ = εβ,γ by (5.3), and so as β, γ ∈ Tr \ [εδ,β],

εγ′,γ θ̃ = εβ,γ θ̃γ = εβ,γθ
∗
γ = εβπ̂∗,γπ̂∗ = εβπ̃,γπ̃ = εγ′π̃,γπ̃

with the final equality holding since γ′π̃ > βπ̃ > γπ̃. Finally, if γ = β then

εγ′,γ θ̃ = εγ′,β θ̃β = εγ′,βθ
∗
β = εδ,βθ

∗
β = εδ′,βπ̂∗ = εγ′π̄∗,βπ̂∗ = εγ′π̃,βπ̃

since γ′π̄∗ ∈ [εδ′,βπ∗ ] = [εδ′,βπ̂∗ ]. Thus θ̃ is indeed an automorphism of B, and

extends θ by construction.

It is worth noting that the spined product of a left and right image-trivial ho-

mogeneous normal band need not be homogeneous. For example, suppose, seeking

a contradiction, that B = T2,1,1 ./ T1,2,1 is homogeneous, and thus isomorphic to

some Tn,m,k. Then n = 2,m = 2 and as B has structure semilattice T2, so must

T2,2,k, and so 2.2.k = 4k = 2, contradicting k ∈ N∗. Our aim is now to prove that
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the converse holds, that is, if an image-trivial normal band L ./ R is homogeneous,

then so are L and R.

Corollary 5.4.12. Let B = L ./ R be a homogeneous normal band such that L is

image-trivial. Then L is homogeneous (dually for R).

Proof. Let B = [Y ;Lα; εlα,β;ψlα,β] ./ [Y ;Rα;ψrα,β] be homogeneous. Then by Corol-

lary 5.2.3 (iii) there exists n ∈ N∗ such that Lα ∼= Bn,1 for all α ∈ Y , and by Lemma

5.4.7 we assume Y = Tr, where r = nk for some k ∈ N∗. Moreover, L has a ramifi-

cation order, since if lα, kβ ∈ L, then by fixing any rα ∈ Rα, sβ ∈ Rβ, there exists

an automorphism θl ./ θr of B sending (lα, rα) to (kβ, sβ) as B is 1-homogeneous

by Corollary 5.2.3 (i). In particular, lαθ
l = kβ and so |C(lα)| = |C(kβ)| = k. Hence

L ∼= Tn,1,k by Proposition 5.4.10, and is thus homogeneous.

5.4.2 Surjective normal bands

We now study the homogeneity of surjective normal bands.

Lemma 5.4.13. Let B = [Y ;Bα;ψα,β] be a homogeneous surjective normal band.

Then for any finite subsemilattice Z of Y , there exists a subband A = [Z; {eα};ψAα,β]

of B isomorphic to Z.

Proof. Suppose first that Y is a linear or semilinear order. The result trivially

holds for the case where |Z| = 1 by taking A to be a trivial subband. Proceed by

induction by assuming that the result holds for all subsemilattices of size n−1, and

let Z be a subsemilattice of Y of size n ∈ N. Let δ be maximal in Z, so Z ′ = Z \{δ}
is a subsemilattice of Y of size n − 1. By the inductive hypothesis, there exists a

subband A′ = [Z ′; {eα};ψA
′

α,β] and an isomorphism φ : A′ → Z ′. Since Y is linearly

or semilinearly ordered and Z is finite, there is a unique β ∈ Z ′ such that β is a

lower cover of δ. Let {eβ} = A′ ∩ Bβ. Since ψδ,β is surjective, there exists eδ ∈ Bδ
such that eδψδ,β = eβ. Let φ′ be the map from A′ ∪ {eδ} to Z given by A′φ′ = A′φ

and eδφ
′ = δ. Then φ′ is clearly an isomorphism, and the inductive step is complete.

Suppose instead that Y contains a diamond β < {τ, γ} < σ. We claim that any

pair α, δ ∈ Y with α ⊥ δ has an upper cover. Let eαδ ∈ Bαδ be fixed. Since the

connecting morphisms are surjective there exist eα ∈ Bα and eδ ∈ Bδ such that

eαδ = eαψα,αδ = eδψδ,αδ

Similarly for τ and γ, we have eβ = eτψτ,β = eγψγ,β. The claim then follows by

extending the isomorphism from {eβ, eτ , eγ} to {eαδ, eα, eδ} to an automorphism of

B. By a simple inductive argument we have that every finite subsemilattice of Y
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has an upperbound. Let Z be a finite subsemilattice of Y and α ∈ Y be such that

α > Z. Then for any eα ∈ Bα,

{eαψα,β : β ∈ Z} ∼= Z,

as required.

Corollary 5.4.14. Let B = [Y ;Bα;ψα,β] be a homogeneous normal band. Then Y

is homogeneous.

Proof. Suppose first that B is a surjective normal band. Let π : Z → Z ′ be an

isomorphism between finite subsemilattices of Y . By Lemma 5.4.13, there exist

subbands A = [Z; {eα};ψAα,β] and A′ = [Z ′; {eα′};ψA
′

α′,β′ ] isomorphic to Z and Z ′,

respectively. Hence [θα, π]α∈Z is an isomorphism from A to A′, where θα maps eα

to eαπ, and the result follows by the homogeneity of B.

Now let B = L ./ R be an arbitrary homogeneous normal band. By Lemma

5.4.6, L and R are either image-trivial or surjective normal bands. If both L and R

are surjective, then clearly so too is B, and so Y is homogeneous by the first part.

Otherwise, Y is homogeneous by Lemma 5.4.7.

Corollary 5.4.15. Let B = L ./ R be a homogeneous surjective normal band.

Then L and R are homogeneous.

Proof. Since B is a surjective normal band, the normal bands L = [Y ;Lα;ψlα,β] and

R = [Y ;Rα;ψrα,β] are also surjective. Let Li = [Zi;L
i
α;ψLiα,β] (i = 1, 2) be a pair

of finite subbands of L and θl = [θlα, π]α∈Z1 an isomorphism from L1 to L2. By

Lemma 5.4.13, there exist subbands Ai = {(liα, riα) : α ∈ Zi} of B isomorphic to Zi.

Hence Ri = {riα : α ∈ Zi} is a subband of R isomorphic to Zi for each i, and the

map θr : R1 → R2 given by r1
αθ

r = r2
απ is an isomorphism. By Proposition 5.3.1,

θl ./ θr is an isomorphism from L1 ./ R1 to L2 ./ R2, which we may extend to

an automorphism θ̂ = θ̂l ./ θ̂r of B. Then θ̂l extends θl and so L is homogeneous.

Dually for R.

Consider now the case where B = [Y ;Bα;ψα,β] is such that there exists α > β in

Y with ψα,β an isomorphism. Then by Lemma 5.4.4 every connecting morphism is

an isomorphism, and so B is isomorphic to Y ×Bn,m for some n,m ∈ N∗ by Propo-

sition 3.7.13. Since each Bn,m is homogeneous by Proposition 5.2.1, the following

result is then immediate from Proposition 4.3.8 and Corollary 5.4.14.

Proposition 5.4.16. Let Y be a semilattice and n,m ∈ N∗. Then Y × Bn,m is

structure-homogeneous if and only if Y is homogeneous.

Let R be a right normal band with homogeneous structure semilattice Y . Then

as Y ×Bn,1 is structure-homogeneous for any n ∈ N∗, it follows from Corollary 5.3.2
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that we can let (Y ×Bn,1) ./ R denote the unique (up to isomorphism) normal band

with left component isomorphic to (Y × Bn,1) and right component isomorphic to

R. We observe that

Y ×Bn,m ∼= (Y ×Bn,1) ./ (Y ×B1,m).

Furthermore, for any n ∈ N∗ and homogeneous bands R and L, where R is right

normal and L is left normal, the bands (Y × Bn,1) ./ R and L ./ (Y × B1,n) are

homogeneous by Corollary 5.3.3.

Finally, we examine the case where the connecting morphisms are surjective

but not injective (so that the D-classes are infinite). Let B = [Y ;Bα;ψα,β] be a

surjective normal band. For each α > β, let Kα,β denote the congruence Ker ψα,β

on Bα, or KB
α,β if we need to distinguish the band B. Note that if α > β > γ then

Kα,β ⊆ Kα,γ , for if eαψα,β = fαψα,β then

eαψα,γ = eαψα,βψβ,γ = fαψα,βψβ,γ = fαψα,γ .

The dual of Lemma 5.4.7 is then obtained:

Lemma 5.4.17. Let B = L ./ R be a homogeneous normal band such that the

connecting morphisms of either L or R are surjective but not injective. Then Y is

the universal semilattice.

Proof. Suppose w.l.o.g. that R = [Y ;Rα;ψrα,β] has surjective but not injective

connecting morphisms, so |Rα| = ℵ0 for all α ∈ Y . Suppose, seeking a contra-

diction, that Y is a linear or semilinear order. Let eα, fα, gα ∈ Rα be such that

(eα, fα) ∈ KR
α,β but (eα, gα) /∈ KR

α,β, noting that such elements exist as ψrα,β is sur-

jective but not injective. For any lα ∈ Lα, extend the automorphism of the right

zero subband {(lα, eα), (lα, fα), (lα, gα)} which fixes (lα, eα) and swaps (lα, fα) and

(lα, gα) to an automorphism θ = [θα, π]α∈Y of B. Then by Proposition 5.3.1 we

have θ = θl ./ θr for some automorphisms θl = [θlα, π]α∈Y and θr = [θrα, π]α∈Y of L

and R, respectively. It follows by the commutativity of the diagram [α, β;α, βπ]R

(in R) that

(eα, gα) ∈ Kα,βπ and (eα, fα) /∈ Kα,βπ.

However as {γ : γ < α} is a chain, either β < βπ or β > βπ, which both contradict

the note above the lemma. Hence Y contains a diamond and, being homogeneous

by Corollary 5.4.14, is thus the universal semilattice.

To complete the classification of homogeneous surjective normal bands, we

switch our methods to Fräıssé’s Theorem. For the signature of semigroups, Fräıssé’s

Theorem becomes:

Theorem 5.4.18 (Fräıssé’s Theorem for semigroups). Let K be a non-empty count-

able class of f.g. semigroups which is closed under isomorphism and satisfies HP,



142 CHAPTER 5. HOMOGENEOUS BANDS

JEP and AP. Then there exists a unique, up to isomorphism, countable homoge-

neous semigroup S such that K is the age of S. Conversely, the age of a countable

homogeneous semigroup is closed under isomorphism, is countable and satisfies HP,

JEP and AP.

Let K be a Fräıssé class contained in a variety of bands V defined by the identity

a1a2 · · · an = b1b2 · · · bm. Then the Fräıssé limit S of K is a member of V. Indeed,

if x1, x2, . . . , xn, y1, y2, . . . , ym ∈ S then

〈x1, x2, . . . , xn, y1, y2, . . . , ym〉 ∈ K

and so x1x2 · · ·xn = y1y2 · · · ym as required.

Example 5.4.19. The rectangular band Bℵ0,ℵ0 is homogeneous by Proposition

5.2.1, and clearly its age is the class of all finite rectangular bands. It follows that

the class of all finite rectangular bands forms a Fräıssé class (with Fräıssé limit

Bℵ0,ℵ0).

Example 5.4.20. Let K be the class of all finite bands. Since the class of all bands

forms a variety, K is closed under both substructure and (finite) direct product,

and thus has JEP. However, it was shown by Imaoka [57, Page 12] that AP does

not hold.

Consequently, there does not exist a universal homogeneous band, that is, one

which embeds every finite band. However, if we refine our class to certain normal

bands, AP is shown to hold. To this end, let KN ,KRN and KLN be the classes of

finite normal, finite right normal and finite left normal bands, respectively.

Lemma 5.4.21. The classes KN ,KRN and KLN form Fräıssé classes.

Proof. Since the class of (left/right) normal bands forms a variety, it is clear that the

classes are closed under subbands and have JEP. The weak amalgamation property

follows from [57, Section 2] by taking all bands to be finite. Finally, since bands

are ULF there exist only finitely many bands, up to isomorphism, of each finite

cardinality, and so each class is countable.

Let BN ,BRN and BLN be the Fräıssé limits of KN ,KRN and KLN , respectively.

We prove that BRN is the unique homogeneous right normal band with surjective

but not injective connecting morphisms. This will follow quickly from the subse-

quent result.

Lemma 5.4.22. Let R = [Y ;Rα;ψα,β] be a homogeneous right normal band, where

each connecting morphism is surjective but not injective. Let β1, . . . , βr be elements

of Y be such that βi ⊥ βj for all i 6= j, where r ∈ N. Then for any α > β1, . . . , βr,

and any eβi ∈ Bβi such that 〈eβi : 1 ≤ i ≤ r〉 forms a semilattice, we have

|{eα ∈ Rα : eαψα,βi = eβi for all 1 ≤ i ≤ r}| = ℵ0.
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Proof. Let α > β1, . . . , βr. We observe that Y is the universal semilattice by Lemma

5.4.17, and so every pair of elements has an upper cover. We first prove the result for

r = 1 (relabelling β1 simply as β). Since the connecting morphisms are surjective,

there exists eα ∈ Bα such that eαψα,β = eβ. Suppose, seeking a contradiction, that

eαKα,β = {fα : (eα, fα) ∈ Kα,β}

has finite cardinality n. Note that n 6= 1 since the connecting morphisms are not

injective and |eαKα,β| = |eα′Kα′,β′ | for all α′ > β′ and eα′ ∈ Rα′ , by a simple

application of homogeneity. Hence for any γ < β we have that |eαKα,β| = |eαKα,γ |
and Kα,β ⊆ Kα,γ , and so eαKα,β = eαKα,γ as n is finite. Let eβψβ,γ = eγ . Then

choosing any fβ ∈ eβKβ,γ with fβ 6= eβ there exists fα ∈ Rα such that fαψα,β = fβ,

and thus

fαψα,γ = fβψβ,γ = eβψβ,γ = eγ .

Hence fα ∈ eαKα,γ , but fα 6∈ eαKα,β, a contradiction and thus n is infinite.

We now consider the result for arbitrary r ∈ N. Let fα ∈ Rα, and let fαψα,βi =

fβi for some fβi . Note that 〈fβi : 1 ≤ i ≤ r〉 is a semilattice, and is isomorphic to

〈eβi : 1 ≤ i ≤ r〉. We can therefore extend the isomorphism between 〈fβi : 1 ≤ i ≤ r〉
and 〈eβi : 1 ≤ i ≤ r〉 which sends fβi to eβi for each i, to an automorphism of B,

to obtain some δ > βi and eδ ∈ Bδ such that eδψδ,βi = eβi for each i. Since every

pair of elements in the universal semilattice has an upper bound, there exists τ ∈ Y
with τ > α, δ. Let eτ be such that eτψτ,δ = eδ, and suppose eτψτ,α = eα. Then

eαψα,βi = eτψτ,αψα,βi = eτψτ,βi = eτψτ,δψδ,βi = eδψδ,βi = eβi .

By the case where r = 1 the set eτKτ,δ is infinite, and thus so is the set

{eτ ∈ Rτ : eτψτ,βi = eβi for all 1 ≤ i ≤ r}.

The result then follows by extending the isomorphism between the semilattices

〈eτ , eβi : 1 ≤ i ≤ r〉 and 〈eα, eβi : 1 ≤ i ≤ r〉, which sends eτ to eα and fixes all

other elements, to an automorphism of R.

Lemma 5.4.23. Let R = [Y ;Rα;ψα,β] be a homogeneous right normal band, where

each connecting morphism is surjective but not injective. Then R is isomorphic to

BRN (dually for BLN ).

Proof. We prove that all finite right normal bands embed in R. We proceed by

induction, the base case being trivially true, by supposing that all right normal

bands of size n − 1 embed in R, and let A = [Z;Aα;φα,β] be of size n. Let α be

maximal in Z and fix eα ∈ Aα. Suppose α is the upper cover of β1, . . . , βr in Z,

and suppose eαφα,βi = eβi . Then A′ = A \ {eα} = [Z̄;A′α;φ′α,β] is a right normal
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band of size n− 1, and so there exists an embedding θ : A′ → R (which induces an

embedding π : Z̄ → Y ). Since Y is the universal semilattice by Lemma 5.4.17, there

exists δ ∈ Y such that Z̄π ∪ {δ} ∼= Z by Lemma 5.1.3, where we choose δ = απ if

|Aα| > 1, that is, if Z̄ = Z. Then by the previous lemma, we may pick an element

eδ of Rδ such that eδ 6∈ A′θ and eδψδ,βiπ = eβiθ. Then it is easily verifiable that

A′θ ∪ {eδ} is isomorphic to A, and so the result follows by induction. By Fräıssé’s

Theorem R is isomorphic to the Fräıssé limit of KRN .

Corollary 5.4.24. The band BN is isomorphic to BLN ./ BRN .

Proof. Let L ./ R be a finite normal band with structure semilattice Z. Then

there exist embeddings θl : L→ BLN and θr : R→ BRN with induced embeddings

πl and πr from Z to Y , respectively. Hence π = (πl)
−1|Zπlπr is an isomorphism

between Zπl to Zπr. By Lemma 5.4.13 there exist subbands A = {eα : α ∈ Zπl} and

A′ = {fα : α ∈ Zπr} of BLN isomorphic to Zπl and Zπr, respectively. Consequently,

the map φ : A → A′ given by eαφ = fαπ is an isomorphism, which we extend to

an automorphism θ̂l = [θ̂lα, π̂] of BLN . In particular, π̂ extends π and θlθ̂l is an

embedding of L into BLN , with induced embedding πlπ̂ = πl(πl)
−1|Zπlπr = πr of

Z into Y . Hence θlθ̂l ./ θr : L ./ R → BLN × BRN is an embedding, and so

BLN ./ BRN embeds all finite normal bands as required.

We summarise our findings in this subsection.

Proposition 5.4.25. A surjective normal band is homogeneous if and only if it is

isomorphic to either Y × Bn,m, (U × Bn,1) ./ BRN ,BLN ./ (U × B1,n) or BN , for

some homogeneous semilattice Y and some n,m ∈ N∗, where U is the universal

semilattice.

Proof. Suppose first that B = L ./ R is a homogeneous surjective normal band.

Then by Corollary 5.4.14 and Lemma 5.4.15, each of Y, L and R are homogeneous.

If a non-trivial connecting morphism of L is an isomorphism, then L is isomorphic

to Y × Bn,1 by Lemma 5.4.4 and Proposition 3.7.13. Otherwise, the connecting

morphisms of L are non-injective and L is isomorphic to BLN by Lemma 5.4.23.

Dually for R. Since the band Y × Bn,m is structure homogeneous for any homo-

geneous semilattice Y by Proposition 5.4.16, the result follows by Corollary 5.3.2,

Lemma 5.4.17 and Corollary 5.4.24.

Conversely, BN ,BRN ,BLN are homogeneous by Fräıssé’s Theorem. Since each

Y × Bn,m is structure-homogeneous, the final cases are homogeneous by Corollary

5.3.3.

For a complete classification of homogeneous normal bands, it thus suffices to

consider the spined product of an image-trivial normal band with a surjective nor-

mal band.
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To this end, let B = L ./ R be a homogeneous normal band, where L is

image-trivial and R is surjective. We assume that L and R are not semilattices,

since otherwise B would be image-trivial or surjective. Then L is homogeneous

by Corollary 5.4.12, and so L ∼= Tn,1,k for some n, k ∈ N∗. Since the structure

semilattice of B is a semilinear order by Lemma 5.4.7, it follows from Lemma

5.4.17 that the connecting morphisms of R must be isomorphisms. Hence we may

assume that R = Tnk × B1,m for some m ∈ N∗ by Proposition 5.4.16 and that

L = Tn,1,k by Corollary 5.3.2. Conversely, Tn,1,k ./ (Tnk×B1,m) is homogeneous for

any n,m, k ∈ N∗ by Proposition 5.4.16 and Corollary 5.3.3.

This, together with Propositions 5.4.11 and 5.4.25, gives a complete list of ho-

mogeneous normal bands. In the classification theorem below, the three cases (up

to duality) are given by: image-trivial normal bands in (i), surjective normal bands

in (ii), (iii), (iv),(v), and finally the spined product of an image-trivial normal band

with a surjective normal band in (vi) and (vii).

Theorem 5.4.26 (Classification theorem of homogeneous normal bands). A nor-

mal band is homogeneous if and only if it is isomorphic to one of:

(i) Tn,m,k;

(ii) Y ×Bn,m;

(iii) BLN ./ (U ×B1,m);

(iv) (U ×Bn,1) ./ BRN ;

(v) BN ;

(vi) (Tmk ×Bn,1) ./ T1,m,k;

(vii) Tn,1,k ./ (Tnk ×B1,m);

for some homogeneous semilattice Y and some n,m, k ∈ N∗, where U is the uni-

versal semilattice.

We finish this section by giving a complete classification of structure-homogeneous

normal bands.

Proposition 5.4.27. A normal band is structure-homogeneous if and only if iso-

morphic to Y ×Bn,m for some homogeneous semilattice Y and n,m ∈ N∗.

Proof. LetB = [Y ;Bα;ψα,β] be a structure-homogeneous, so that Y is homogeneous

by Corollary 5.4.14. We show that each connecting morphism is an isomorphism,

so that the result will follow by Proposition 3.7.13. Suppose first that there exists

α > β in Y such that ψα,β is not surjective, say, eβ 6∈ Iα,β. Let fα ∈ Bα with

fαψα,β = fβ. Then by extending the isomorphism between {eβ} and {fβ} (with in-

duced isomorphism the trivial map fixing β) to an automorphism of B with induced
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automorphism 1Y , a contradiction is achieved. Hence each connecting morphism is

surjective.

Suppose eαψα,β = eβ = fαψα,β, and fix some δ > α. Then as ψδ,α is surjective

there exist eδ, fδ ∈ Bδ with eδψδ,α = eα and fδψδ,α = fα. Let π be an automor-

phisms of Y such that απ = β and δπ = δ (such a map exists by the homogene-

ity of Y ). Extend the isomorphism swapping {eδ} and {fδ} to an automorphism

θ = [θα, π]α∈Y of B. Then as the diagram [δ, α; δ, β] commutes,

eαθα = eδψδ,αθα = eδθδψδ,β = fδψδ,β = eβ

and similarly fαθα = eβ. Hence eα = fα, and so ψα,β is injective.

The converse follows from Proposition 5.4.16.

5.5 Homogeneous linearly ordered bands

We call a band B =
⋃
α∈Y Bα linearly ordered if Y is a linear order. A homoge-

neous linearly ordered band B has structure semilattice Q by Proposition 5.2.4. We

observe that if B is not normal, then there exist α > β and eα ∈ Bα such that the

subband Bβ(eα) of Bβ contains more than one L-class or R-class. Hence if B is

homogeneous, then by Corollary 5.2.3 (iv) the same is true for Bγ(eδ) for any δ > γ

and eδ ∈ Bδ.

Lemma 5.5.1. Let B be a linearly ordered homogeneous non-normal band. If

Bβ(eα) intersects more than one L-class, then Bβ(eα) = R(Bβ(eα)). Dually, If

Bβ(eα) intersects more than one R-class, then Bβ(eα) = L(Bβ(eα)).

Proof. Suppose, seeking a contradiction, that there exists an element gβ ∈ Bβ such

that gβ <r eα but gβ 6< eα. Then gβ = eαgβ, so that

gβeα = eαgβeαR gβ and gβeα ∈ Bβ(eα).

Since the subband Bβ(eα) contains more than one L-class, there exists fβR gβeα
such that fβ ∈ Bβ(eα) \ {gβeα}. Extend the automorphism of the right zero sub-

semigroup {fβ, gβ, gβeα} which fixes gβeα and swaps fβ and gβ to θ ∈ Aut(B).

Then eα′ = eαθ > gβeα, gβ and

gβeα = (gβeα)θ = gβθeαθ = fβeα′ .

Hence

fβ(eαeα′eα) = fβeα′eα = gβeαeα = gβeα
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and so fβ 6≤ eαeα′eα. If α′ ≥ α then eαeα′eα = eα, contradicting eα > fβ. Hence

α′ < α, so that eα′eαeα′ = eα′ and

gβ = gβeα′ = gβeα′eαeα′ = gβeαeα′ = gβeα,

a contradiction.

Let B be a linearly ordered homogeneous non-normal band. By the lemma

above, if Bβ(eα) contains a square (that is, it intersects more than one L and R-

class) then Bβ(eα) = Bβ. Hence Bβ(eα) is a single K-class, where K = L,R or

D. It follows from Corollary 5.2.3 (iv) that Bβ′(eα′) is also a single K-class for all

α′ > β′ and eα′ ∈ Bα′ . If K = D, then B has the following property, which we

follow Petrich [71] in calling D-covering :

If e, f ∈ B, then either eD f or e > f or e < f.

Proposition 5.5.2. A homogeneous linearly ordered band is regular.

Proof. Let B =
⋃
α∈QBα be a homogeneous non-normal linearly ordered band

(noting that if B was normal, then it would automatically be regular). By Lemma

5.5.1 we may assume first that for all α > β and eα ∈ Bα we have that Bβ(eα) is

a union of R-classes. Hence L(Bβ(eα)) = Bβ, and so fβeα = fβ for all fβ ∈ Bβ.

Given any γ, τ, σ ∈ Y and any elements eγ ∈ Bγ , fτ ∈ Bτ and gσ ∈ Bσ, to show B

is a regular band it suffices to show that

eγfτeγgσeγ = eγfτgσeγ . (5.4)

If τ < γ then fτeγ = fτ , while if γ < τ then eγfτ = eγ , and (5.4) is seen to hold in

both cases. Assume instead that τ = γ and γ > σ (since if γ ≤ σ then both sides

of (5.4) cancel to eγ). Then eγgσ L gσ L fγgσ L eγfγgσ and

(eγgσ)(eγfγgσ) = eγgσfγgσ = eγgσ

so that eγgσR eγfγgσ, and thus eγgσ = eγfγgσ. By post-multiplying by eγ and

noting that eγ = eγfτeγ we attain (5.4), and thus B is regular. The case where

each Bβ(eα) is a union of L-classes is proven dually.

Let B = L ./ R be a homogeneous non-normal linearly ordered band, where

L =
⋃
α∈Q Lα and R =

⋃
α∈QRα. Then for any finite chain α1 > α2 > · · · > αn

in Q, we pick lα1 ∈ Lα1 to construct a chain lα1 > lα2 > · · · > lαn in L. By an

identical argument to the proof of Corollary 5.4.15, we have that R is homogeneous,

and dually so is L. Hence by Lemma 5.5.1, each Lβ(lα) is a single R or L-class of

L. Since Lβ is left zero, the first case is equivalent to L being normal, and so by

the classification theorem for homogeneous normal bands we have L ∼= Q×Bn,1 for
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some n ∈ N∗. Otherwise, each Lβ(lα) is a single L-class, so that Lβ(lα) = Lβ and

L satisfies D-covering.

Consequently, it suffices to consider the homogeneity of linearly ordered bands

satisfying D-covering.

Proposition 5.5.3. Let B =
⋃
α∈QBα and B′ =

⋃
α∈QB

′
α be bands satisfying D-

covering such that Bα ∼= Bβ and B′α
∼= B′β for all α, β ∈ Q. If π ∈ Aut (Q) and

θα : Bα → B′απ an isomorphism for each α, then θ =
⋃
α∈Q θα is an isomorphism

from B to B′. Moreover, every isomorphism can be constructed in this way.

Proof. Clearly θ is an bijection. If α > β then, for any eα ∈ Bα and eβ ∈ Bβ,

(eαeβ)θ = eβθβ = (eαθα)(eβθβ) = (eαθ)(eβθ)

and similarly (eβeα)θ = (eβθ)(eαθ). Since each of the maps θα are morphisms, it

then follows that θ is a morphism as required.

The converse is immediate from Proposition 5.2.2.

We denote Dn,m as the unique, up to isomorphism, linearly ordered band with

structure semilattice Q, satisfying D-covering, and such that Bα ∼= Bn,m for all

α ∈ Q, where n,m ∈ N∗. We observe that, by this uniqueness property, we have

Dn,m
∼= Dn,1 ./ D1,m.

Corollary 5.5.4. The band Dn,m is structure-homogeneous for any n,m ∈ N.

Proof. Let A =
⋃

1≤i≤k Aαi and A′ =
⋃

1≤i≤k A
′
βi

be a finite subband of Dn,m,

where α1 > α2 > · · · > αk and β1 > β2 > · · · > βk. Then Aαi > Aαj if and

only if αi > αj , and similarly for A′. Let θ : A → A′ be an isomorphism, so

that there exist isomorphisms θi : Aαi → A′βi such that θ =
⋃

1≤i≤k θi. Let π ∈
Aut (Q) extend the unique isomorphism between {α1, . . . , αk} and {β1, . . . , βk}. By

Proposition 4.3.7, we can extend each θi to an isomorphism θ̂αi : Bαi → Bβi . For

each α 6∈ {α1, . . . , αk}, fix an isomorphism θ̂α : Bα → Bαπ. Then θ̂ =
⋃
α∈Q θ̂α is an

automorphism of Dn,m by the previous proposition, and extends θ as required.

Now let B = L ./ R be a homogeneous non-normal linearly ordered band not

satisfying D-covering. If L ∼= Q × Bn,1 then, as shown after Proposition 5.5.2, R

satisfies D-covering since B is not normal. Hence R ∼= D1,m for some m ∈ N∗, and

so B ∼= (Q × Bn,1) ./ D1,m by Corollary 5.3.2 as D1,m is structure-homogeneous.

Dually for the case R ∼= Q×B1,n.

Conversely, the bands (Q×Bn,1) ./ D1,m and Dn,1 ./ (Q×B1,m) are structure-

homogeneous, and thus homogeneous, by Corollary 5.3.3. We have therefore achieved

a complete classification of homogeneous linearly ordered bands, which is sum-

marised below.

Theorem 5.5.5. The following are equivalent for a linearly ordered band B:
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(i) B is homogeneous;

(ii) B is structure-homogeneous;

(iii) B is isomorphic to either Dn,m, (Q × Bn,1) ./ D1,m, Dn,1 ./ (Q × B1,m) or

Q×Bn,m, for some n,m ∈ N∗.

5.6 The final case

The final case is to consider homogeneous bands which are non-normal and which

are also not linearly ordered. Our aim to show that these do not exist.

Throughout this section we let B =
⋃
α∈Y Bα be a non-normal band, where Y

is non-linear, and fix a three element non-chain α, γ, β, where αγ = β. For eα ∈ Bα
and eγ ∈ Bγ , let A be the subband of B given by

A = 〈eα, eγ〉 = {eα, eγ , eαeγ , eγeα, eαeγeα, eγeαeγ},

as shown in Figure 5.6. Then A is isomorphic to one of 4 bands, depending on if

A∩Bβ is trivial, a left zero or right zero band of size 2, or a 2 by 2 square. We will

show that none of these possibilities can occur if B is homogeneous.

eα eγ

eαeγeα

eγeα eγeαeγ

eαeγ

Figure 5.4: The subband A.

Lemma 5.6.1. For eα ∈ Bα and eγ ∈ Bγ we have |Bβ(eα) ∩ Bβ(eγ)| = 1 if and

only if Bβ(eα) ∩Bβ(eγ) 6= ∅ if and only if |A ∩Bβ| = 1.

Proof. Suppose that eβ < eα, eγ . Then eαeγ ∈ Bβ and, as ≤ is compatible with

multiplication, eβ ≤ eαeγ , so that eβ = eαeγ . Hence

Bβ(eα) ∩Bβ(eγ) = {eαeγ} = {eγeα}

and the result follows.



150 CHAPTER 5. HOMOGENEOUS BANDS

Lemma 5.6.2. For eα ∈ Bα and eγ ∈ Bγ we have

(i) |〈eα, eγ〉| = 6 if and only if

R(Bβ(eα)) ∩R(Bβ(eγ)) = ∅ = L(Bβ(eα)) ∩ L(Bβ(eγ));

(ii) |〈eα, eγ〉| = 4 with eαeγeα = eγeα if and only if R(Bβ(eα)) ∩ R(Bβ(eγ)) is

non-empty and

L(Bβ(eα)) ∩ L(Bβ(eγ)) = ∅.

Moreover, in this case

R(Bβ(eα)) ∩R(Bβ(eγ)) ⊆ Reαeγ = Reγeα .

Dually for |〈eα, eγ〉| = 4 with eαeγeα = eαeγ.

Proof. We first show that eγeα = eαeγeα if and only if

eγeα ∈ R(Bβ(eα)) ∩R(Bβ(eγ)).

Since eγeγeα = eγeα we automatically have eγeα <r eγ . Hence if eγeα = eαeγeα

then eγeα ∈ Bβ(eα). The converse holds trivially.

Now suppose eβ <r eα, eγ , so that eβ ≤r eγeα, as ≤r is left compatible with

multiplication. Hence eβR eγeα, and so R(Bβ(eα)) ∩ R(Bβ(eγ)) is contained in

Reαeγ . In particular, we have shown that R(Bβ(eα)) ∩ R(Bβ(eγ)) is non-empty if

and only if it contains eγeα. This, together with the first part of the proof gives the

results.

Lemma 5.6.3. Suppose that there exist σ > δ > τ in Y and eσ > eδ in B such

that Bτ (eσ) = Bτ (eδ). Then B is not homogeneous.

Proof. Suppose, seeking a contradiction, that B is homogeneous and Bτ (eσ) =

Bτ (eδ) for some σ > δ > τ and eσ > eδ. Let σ′ > δ′ > τ ′ in Y and eσ′ > eδ′ . Then

by extending the isomorphism from eσ > eδ > eτ to eσ′ > eδ′ > eτ ′ , for some eτ , eτ ′ ,

it follows by the homogeneity of B that Bτ ′(eσ′) = Bτ ′(eδ′). The semilattice Y is

a semilinear order, since if η > {µ, ε} > ζ is a diamond in Y then for any eη ∈ Bη
with eη > eµ, eε we have

Bζ(eµ) = Bζ(eη) = Bζ(eε)

contradicting Lemma 5.6.1, as B is not normal. Hence Y is homogeneous by Propo-

sition 5.2.4. Suppose w.l.o.g. that Bτ (eσ) has more than 1 R-class. We claim that

there exists gτ ∈ L(Bτ (eσ))\Bτ (eσ). Seeking a contradiction, suppose that no such

gτ exists. Then R(Bτ (eσ)) = Bτ , so that for any ν ∈ Y with νσ = τ and eν ∈ Bν
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we would have

R(Bτ (eσ)) ∩R(Bτ (eν)) = R(Bτ (eν)) = Bτ

by the homogeneity of B. Hence Bτ has 1 R-class by the previous pair of lemmas,

a contradiction, and thus the claim holds.

Let gτ ∈ L(Bτ (eσ)) \ Bτ (eσ). Then as gτ <l eσ we have gτeσ = gτ , eσgτ < eσ

and eσgτ L gτ . Letting eσgτ = eτ , then as Bτ (eσ) has more than one R-class, we

may pick fτ ∈ Bτ (eσ) with fτ L eτ and fτ 6= eτ . Let A = {eτ , fτ , gτ}, a left zero

subsemigroup of B. By extending the automorphism θ of A which fixes eτ and

swaps fτ and gτ , to an automorphism θ̄ of B, we have eσ θ̄ = eσ′ > eτ , gτ and

eσ′fτ = eτ .

If |Bτ (eσ)| > 2 then there exists xτ 6∈ {eτ , fτ} with xτ ∈ Bτ (eσ) and xτ being

L- or R-related to eτ . We may assume that θ̄ also extends the automorphism

of A ∪ {xτ} which extends θ and fixes xτ . By the homogeneity of B we have

eσ′ > eτ , xτ , so that σσ′ > τ to avoid contradicting Lemma 5.6.1. Then

eσeσ′eσ · fτ = eσeσ′fτ = eσeτ = eτ

so that fτ ≮ eσeσ′eσ and σ 6= σσ′ (else fτ ≮ eσeσ′eσ = eσ). Hence eσeσ′eσ < eσ

and Bτ (eσ) = Bτ (eσeσ′eσ), contradicting fτ 6∈ Bτ (eσeσ′eσ).

It follows that Bτ (eσ) = {eτ , fτ}, Bτ (eσ′) = {eτ , gτ}, σσ′ = τ and

eσeσ′eσ = eσ′eσeσ′ = eτ

by Lemma 5.6.1. Now extend the automorphism of A which fixes gτ and swaps eτ

and fτ to an automorphism φ of B. Then eσφ = eσ̄ > eτ , fτ , so that σ̄σ > τ and

eσ̄gτ = fτ since eσgτ = eτ . Since σ̄, σ′ > τ we have σ̄σ′ ≥ τ . Suppose, seeking

a contradiction, that σ̄σ′ > τ . Then we claim that σ̄ > {σ̄σ′, σ̄σ} > τ forms a

diamond. Notice that σ̄σ′ 6= σ̄σ, since otherwise σ̄σ = σ̄σσ̄σ′ = τ , a contradiction.

If σ̄ = σ̄σ′ then σσ̄ = σσ̄σ′ = τ since σσ′ = τ , and so σ̄ 6= σ̄σ′, similarly σ̄ 6= σ̄σ.

Thus, as the elements are distinct, the set forms a diamond as claimed, which

contradicts Y being a semilinear order. Hence σ̄σ′ = τ . Now eσ̄, eσ′ > eτ , so that

eσ̄eσ′ = eσ′eσ̄ = eτ and so

eσ̄gτ = eσ̄(eσ′gτ ) = eτgτ = eτ

as eτ L gτ . However this contradicts σ̄gτ = fτ , and B is therefore not homogeneous.

Lemma 5.6.4. Let B be homogeneous and α, γ, β be distinct elements of Y with

αγ = β. Then for any eα, fα ∈ Bα and eγ ∈ Bγ such that eα, fα > eαeγeα, fαeγfα,

we have eαeγeα = fαeγfα.
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Proof. Let σ < β and choose eσ, fσ ∈ Bσ(eαeγeα) such that 〈eσ, fσ〉 is isomorphic

to 〈eαeγeα, fαeγfα〉, noting that elements of this form exist by Corollary 5.2.3 (iv).

Extend the isomorphism from

〈eα, fα, eσ, fσ〉 to 〈eα, fα, eαeγeα, fαeγfα〉

which maps the generators in order, to an automorphism of B. Then there exist

τ ∈ Y and eτ ∈ Bτ (as the image of eαeγeα) such that α > τ > β and

{eα, fα} > eτ > {eαeγeα, fαeγfα}.

Then

eαeγeα = eτ (eαeγeα)eτ = (eτeα)eγ(eαeτ ) = eτeγeτ ,

and similarly fαeγfα = eτeγeτ , and the result follows.

Lemma 5.6.5. If B is homogeneous, eα ∈ Bα and eγ ∈ Bγ then |〈eα, eγ〉| 6= 6.

Proof. Suppose, seeking a contradiction, that |〈eα, eγ〉| = 6 and let eβ ∈ Bβ(eα).

Note that any rectangular band D satisfies the identity xyz = xz since if x, y, z ∈ D
then

xyz = (xy)(zxz) = x(yz)xz = xz.

We therefore have that

eβeγeβ = eβ(eαeγeα)eβ = eβ

eγeβeγ = (eγeα)eβ(eαeγ) = (eγeα)(eαeγ) = eγeαeγ .

By Lemma 5.6.2 (i), the element eβ is not L- or R-related to eγeαeγ , so the subband

〈eγ , eβ〉 = {eγ , eβ, eγeβ, eβeγ , eγeαeγ}

contains no repetitions. Hence for any eβ, fβ < eα we have 〈eγ , eβ〉 ∼= 〈eγ , fβ〉. In

particular, the map fixing eγ and swapping some eβ ∈ Bβ(eα)\{eαeγeα} with eαeγeα

is an isomorphism, which can extended to θ ∈ Aut(B). Then eα > eβ, eαeγeα gives

eαθ = eα′ > eαeγeα, eβ, so that αα′ > β by Lemma 5.6.1. Moreover, (eαeγeα)θ =

eα′eγeα′ = eβ, so

(eαeα′eα)eγ(eαeα′eα) = (eαeα′)(eαeγeα)(eα′eα) = eαeγeα

since ≤ is compatible with multiplication, and similarly

(eα′eαeα′)eγ(eα′eαeα′) = eα′eγeα′ .
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Hence {eαeα′eα, eα′eαeα′} > {eαeγeα, eβ} and

{eαeγeα, eβ} = {(eαeα′eα)eγ(eαeα′eα), (eα′eαeα′)eγ(eα′eαeα′)},

Since (αα′)γ = β with αα′ 6= γ we have eαeγeα = eβ by Lemma 5.6.4, a contradic-

tion.

Lemma 5.6.6. If B is homogeneous, eα ∈ Bα and eγ ∈ Bγ then |〈eα, eγ〉| 6= 4.

Proof. Suppose, seeking a contradiction, that |〈eα, eγ〉| = 4, and assume w.l.o.g.

that eαeγeα = eγeα, so eγeαeγ = eαeγ . By Lemma 5.6.2 (ii) we have

L(Bβ(eα)) ∩ L(Bβ(eγ)) = ∅ and R(Bβ(eα)) ∩R(Bβ(eγ)) ⊆ Reγeα = Reαeγ .

Suppose Bβ(eα) has more than 1 L-class, so there exists eβ ∈ Bβ(eα) such that

eβR eγeα but eβ 6= eγeα, noting that eβ 6= eαeγ as |〈eα, eγ〉| 6= 3 (see Figure 5.6).

eβ eαeγeγeαReαeγ

Bβ(eα)

Bβ(eγ)

Bβ

Figure 5.5: The rectangular band Bβ.

Since eβ, eγeα <r eγ and eβeγ = eβeαeγ = eαeγ we have that the subband

C = 〈eγ , eβ, eγeα〉 = {eγ , eβ, eγeα, eαeγ}

contains no repetitions. Extend the automorphism of C which fixes eγ and eαeγ

and swaps eβ and eγeα, to an automorphism θ of B. Then eα′ = eαθ > eβ, eγeα,

so that αα′ > β, and (eγeα)θ = eγeα′ = eβ. Following the proof of the previous

lemma we have

{eαeα′eα, eα′eαeα′} > {(eαeα′eα)eγ(eαeα′eα), (eα′eαeα′)eγ(eα′eαeα′)}

and so eαeγeα = eγeα = eβ, a contradiction. Hence Bβ(eα) is a left zero band.

Let τ ∈ Y and eτ ∈ Bτ be such that β < τ < α, so τγ = β, and eτ < eα, so



154 CHAPTER 5. HOMOGENEOUS BANDS

that Bβ(eτ ) ⊆ Bβ(eα). If eτ ≯ eγeα, then R(Bβ(eτ )) ∩ R(Bβ(eγ)) = ∅ as Bβ(eτ )

is also left zero by Corollary 5.2.3 (iv). Hence |〈eτ , eγ〉| = 6 by Lemma 5.6.2, a

contradiction, and thus eτ > eγeα. Suppose, seeking a contradiction, that eτ ≯ fβ,

for some fβ ∈ Bβ(eα). Then by extending the automorphism of {eα, fβ, eγeα} which

fixes eα and swaps fβ with eγeα to an automorphism of B, we obtain some eσ, as

the image of eτ , such that α > σ > β and eσ ≯ eγeα, a contradiction. Hence

eτ > fβ, and so Bβ(eα) = Bβ(eτ ). By Lemma 5.6.3, B is not homogeneous.

Lemma 5.6.7. If B is a non-normal homogeneous band then it is linearly ordered.

Proof. Let B =
⋃
αBα be a non-normal homogeneous band. Suppose, seeking a

contradiction, that Y contains a three element non-chain α, γ, β, where αγ = β.

Then by the preceding lemmas we have 〈eα, eγ〉 = {eα, eγ , eαeγ} for any eα ∈ Bα
and eγ ∈ Bγ . Hence Bβ(eα) ∩Bβ(eγ) = {eαeγ} and

eαeγ = eγeα = eαeγeα = eγeαeγ .

For any α > δ > β and eα > eδ we have eδ > eαeγ . Indeed, if eδ ≯ eαeγ then as

Bβ(eδ) ∩Bβ(eγ) ⊆ Bβ(eα) ∩Bβ(eγ) = {eαeγ}

we have Bβ(eδ) ∩ Bβ(eγ) = ∅ and so |〈eδ, eγ〉| > 3, a contradiction. For any

eβ ∈ Bβ(eα)\Bβ(eδ), extend the automorphism of {eα, eαeγ , eβ} which fixes eα and

swaps eαeγ and eβ to an automorphism θ of B. Letting eδθ = eτ , then eτ < eα = eαθ

and eτ 6> eαeγ , a contradiction. Thus Bβ(eα) = Bβ(eδ), contradicting Lemma

5.6.3.

This, together with the classification theorem for homogeneous normal bands

and Theorem 5.5.5 gives:

Theorem 5.6.8 (Classification theorem for homogeneous bands). A band is ho-

mogeneous if and only if isomorphic to either a homogeneous normal band or a

homogeneous linearly ordered band.

An immediate consequence is that the structure semilattice of a homogeneous

band is homogeneous. We would be interested in obtaining a direct proof:

Open Problem 4. Prove directly that the homogeneity of a band is inherited by

its structure semilattice.

By Proposition 5.4.27 and Theorem 5.5.5 we achieve a complete list of structure-

homogeneous bands:

Theorem 5.6.9 (Classification theorem for structure-homogeneous bands). A band

is structure-homogeneous if and only if isomorphic to either Dn,m, (Q × Bn,1) ./

D1,m, Dn,1 ./ (Q × B1,m) or Y × Bn,m, for some homogeneous semilattice Y and

n,m ∈ N∗.



Chapter 6

Homogeneity of inverse semigroups

After classifying homogeneous bands, and working in the setting of completely reg-

ular semigroups, it may seem natural to examine the homogeneity of Clifford semi-

groups. However, in this chapter we work over a larger variety of I-semigroups;

inverse semigroups. Since inverse semigroups form a variety of I-semigroups, we

have the concept of a homogeneous inverse semigroup (HIS) in LUS . We will study

both homogeneous inverse semigroups and inverse homogeneous semigroups, and

show when they are equivalent. Additionally, we describe the homogeneity of certain

classes of inverse semigroups, such as inverse semigroups with finite maximal sub-

groups and periodic commutative inverse semigroups. Our results may be viewed as

extending both the classification of homogeneous semilattices and the classification

of certain classes of homogeneous groups, in particular homogeneous finite groups

and homogeneous abelian groups.

6.1 Properties of Homogeneity

Let S be an inverse semigroup. Given a subset A = {a1, . . . , an} of S, it follows

from Lemma 2.8.2 that

〈A〉I = 〈a1, . . . , an, a
−1
1 , . . . , a−1

n 〉.

Hence all f.g. inverse semigroups are f.g. semigroups, and so we obtain:

Lemma 6.1.1. Every inverse homogeneous semigroup is a HIS.

We later show that the converse to the lemma above does not hold, that is, the

class of HIS is more extensive than the class of inverse homogeneous semigroups.

Throughout this chapter, we define the order of an element a of S, denoted o(a), to

155
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be the cardinality of the monogenic inverse subsemigroup 〈a〉I . While this differs

from our previous notion of order, the two definitions coincide for Clifford semi-

groups. Moreover, it follows by the work of Preston [74] that, for any a ∈ S, we

have 〈a〉I is finite if and only if 〈a〉 is finite. Hence we may call an inverse semigroup

periodic without ambiguity.

We now show that the results on homogeneous semigroups at the end of Section

4.4 also hold for HISs. Let S be an inverse semigroup. Then from Corollaries 4.4.7

and 4.4.8 we have the following lemma.

Lemma 6.1.2. Let S be a HIS. Then the maximal subgroups of S are pairwise

isomorphic HISs and the semilattice of idempotents, E(S), is a HIS.

We now consider the property of homogeneity as an inverse semigroup for the

two key classes of inverse semigroups in Lemma 6.1.2: groups and semilattices. We

observe first that, for a group, the inverse of an element coincides with the group

inverse. Furthermore, since a finitely generated inverse subsemigroup of a group

will contain a unique idempotent, it will be a subgroup [55]. Hence a group is a

HIS if and only if it is a homogeneous group.

Given a semilattice Y , then 〈e1, . . . , en〉I = 〈e1, . . . , en〉 for any e1, . . . , en in Y

since e−1
i = ei. Hence a semilattice is a homogeneous semilattice if and only if it is

a HIS. Consequently, Lemma 6.1.2 may be restated in a more pleasing manor:

Corollary 6.1.3. Let S be a HIS with semilattice of idempotents Y . Then Y is a

homogeneous semilattice and the maximal subgroups of S are pairwise isomorphic

homogeneous groups.

Since a homogeneous finite semilattice is trivial by Proposition 5.1.4, and an

inverse semigroup with a unique idempotent is a group, we have the following.

Corollary 6.1.4. Let S be a finite inverse semigroup. Then S is a HIS if and only

if it is a homogeneous group.

Lemma 6.1.5. If S is a HIS then Aut(S) acts transitively on E(S).

Proof. Given e, f ∈ E(S), we have 〈e〉I = {e} ∼= {f} = 〈f〉I , and so the result

follows by the homogeneity of S.

The inverse semigroup S is completely semisimple if no distinct D-related idem-

potents are related under the natural order on E(S). This is equivalent to S not

containing a copy of the bicyclic monoid, for if e, f ∈ E(S) are such that e > f

and eD f then there exists x ∈ S with xx−1 = e and x−1x = f , and so 〈x〉I is

isomorphic to the bicyclic monoid (for further details, see [34]). The converse is

immediate.

Theorem 6.1.6. Let S be a HIS. If S is completely semisimple then it is Clifford,

otherwise S is bisimple.
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Proof. Let S be completely semisimple HIS. Suppose, seeking a contradiction, that

there exist distinct D-related idempotents e, f , so that e ⊥ f . Since D is preserved

by automorphisms of S, it follows by Lemma 6.1.5 that each D-class contains the

same number of idempotents. Indeed, if Du and Dv are D-classes of S, where

u, v ∈ E(S), then there exists an automorphism θ of S with uθ = v. Hence

Duθ = Dv, so that E(Du)θ = E(Dv) and in particular |E(Du)| = |E(Dv)|.
In particular, there exists g ∈ E(S) with gD ef and g 6= ef . Then e > ef as

e ⊥ f , and so De 6= Dg by the semisimplicity of S. We claim that e > g. If g > e

then g > ef , contradicting S being completely semisimple. If e ⊥ g then there

exists an isomorphism between 〈e, f〉I = {e, f, ef} and 〈e, g〉I = {e, g, eg}, which

fixes e and sends f to g. Extending to an automorphism φ of S, we have

Deφ = De 6= Dg = Dfφ,

contradicting De = Df , and the claim holds. Similarly, f > g, so that

e, f > ef ≥ g,

and so ef = g, a contradiction. Hence e = f and S is Clifford.

Suppose instead that S is not completely semisimple, so that there exist D-

related idempotents e′, f ′ with e′ > f ′. Let h, k ∈ E(S). If h > k or k > h then

{h, k} ∼= {e′, f ′} and so hD k by homogeneity. On the other hand, if h ⊥ k then

{h, hk} ∼= {e′, f ′} ∼= {k, hk} yields hD hkD k. Thus S is bisimple.

Proposition 6.1.7. Let S be a non group bisimple HIS. Then each maximal sub-

group of S is infinite and H is not a congruence.

Proof. Since S is bisimple, there exists an element x of S with 〈x〉I isomorphic to

the bicyclic monoid, with chain of idempotents

xx−1 > x−1x > x−2x2 > x−3x3 > · · · .

For each n > 2, by the homogeneity of S, there exists an automorphism θn of S

extending the unique isomorphism between the chain of idempotents

{xx−1, x−1x, x−2x2} and {xx−1, x−1x, x−nxn}.

For each n > 2, let xθn = yn. Then (xx−1)θn = yny
−1
n = xx−1 and similarly

y−1
n yn = x−1x, so that xH yn for each n. Furthermore,

(x−2x2)θn = y−2
n y2

n = x−nxn, (6.1)

so that if yn = ym then x−nxn = x−mxm, and so n = m. Hence {yn : n > 2} is

an infinite subset of Hx, and thus each H-class (and in particular each maximal
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subgroup) is infinite by Lemma 2.4.1.

Suppose, seeking a contradiction, that H is a congruence on S. Then as xH y3

we have x2H y2
3, and so by (6.1)

x−3x3 = y−2
3 y2

3 = x−2x2,

a contradiction.

Open Problem 5. Is a bisimple HIS a group?

We end this section by describing Fräıssé’s Theorem for the class of inverse

semigroups. This will be of particular use when we examining the homogeneity of

commutative inverse semigroups in Section 6.3.

Theorem 6.1.8 (Fräıssé’s Theorem for inverse semigroups). Let K be a non-empty

countable class of f.g. inverse semigroups which is closed under isomorphism and

satisfies HP, JEP and AP. Then there exists a unique, up to isomorphism, countable

HIS S such that K is the age of S. Conversely, the age of a countable HIS is closed

under isomorphism, is countable and satisfies HP, JEP and AP.

Example 6.1.9. Let K be a Fräıssé class of commutative inverse semigroups. Then

the Fräıssé limit S of K is commutative inverse, for if a, b ∈ S then 〈a, b〉I ∈ K, and

so ab = ba. This easily generalises to arbitrary varieties of inverse semigroups.

Example 6.1.10. Let K be the class of all f.g. Clifford semigroups. Then K
is closed under both substructure and (finite) direct product, and thus has JEP.

However it was shown in [48] that AP does not hold.

6.2 The Clifford case

In this section we consider the homogeneity of Clifford semigroups. Since the class

of Clifford semigroups forms a variety of completely regular semigroups, we could

follow our usual convention of writing homogeneous completely regular semigroup,

or simply homogeneous Clifford semigroup, instead of Clifford HIS. We can therefore

draw upon the results and definitions in Section 4.3.1. However, in keeping with the

previous section we continue writing ‘Clifford HIS’, and we call a Clifford semigroup

a structure-HIS if it is a structure-homogeneous completely regular semigroup.

To understand homogeneity of Clifford semigroups, we require a better under-

standing of their f.g. inverse subsemigroups. The following result is a consequence

of Lemma 4.3.3, but is proven here for completeness.
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Lemma 6.2.1. Let S = [Y ;Gα;ψα,β] be a Clifford semigroup with inverse subsemi-

group T . Then there exist a subsemilattice Y ′ of Y , and subgroups Hα of Gα for

each α ∈ Y ′ such that

T = [Y ′;Hα;ψα,β|Hα ].

Proof. Since T is an inverse subsemigroup, there exists a subsemilattice Y ′ of Y

such that E(T ) = {eα : α ∈ Y ′}. If gα, hα ∈ T then h−1
α ∈ T since T is inverse, so

gαh
−1
α ∈ T . Hence the maximal subgroup of T containing eα is a subgroup Hα of

Gα. Moreover, if α > β in Y ′ then eβ ∈ T and so if gα ∈ T then

gαeβ = (gαψα,β)(eβψβ,β) = (gαψα,β)(eβ) = gαψα,β ∈ T,

and so Hαψα,β ⊆ Hβ. Hence the homomorphism ψα,β|Hα : Hα → Hβ is well-defined,

and the result follows.

Since Clifford semigroups are morphism-pure by Lemma 2.11.7 we have the

following isomorphism theorem.

Theorem 6.2.2. Let S = [Y ;Gα;ψα,β] and T = [Z;Hγ ;ϕγ,δ] be a pair of Clifford

semigroups. Let π : Y → Z be an isomorphism and let θα : Gα → Hαπ be an

isomorphism for each α ∈ Y . Assume further that for any α ≥ β, the diagram

[α, β;απ, βπ] commutes, that is,

Gα

ψα,β
��

θα // Hαπ

ϕαπ,βπ

��
Gβ

θβ // Hβπ

(6.2)

commutes. Then θ =
⋃
α∈Y θα = [θα, π]α∈Y is an isomorphism from S to T . Con-

versely, every isomorphism from S to T can be so constructed for unique π and

θα.

Remark 6.2.3. If S = [Y ;Gα;ψα,β] and Hα
∼= Gα for each α ∈ Y then the isomor-

phism theorem above can be used to construct a Clifford semigroup isomorphic to

S with maximal subgroups Hα. Formally, if θα : Gα → Hα is an isomorphism for

each α ∈ Y then θ = [θα, 1Y ]α∈Y is an isomorphism from S to T = [Y ;Hα;ϕα,β],

where

ϕα,β = θ−1
α ψα,βθβ.

In particular, maximal subgroups which can be written as a direct sum (d.s.) or a

direct product (d.p.) of groups, can be regarded as an internal or external d.s./d.p.

without problems arising.

We adopt a non standard notation by denoting the internal d.s. and internal

d.p. of a pair of groups H and H ′ as H ⊕H ′ and H ⊗H ′, respectively. We denote
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the internal direct sum of n copies of a group H by Hn, where n ∈ N∗ = N ∪ {ℵ0}.
Unless stated otherwise, we assume that all d.s.’s of groups are internal.

If S = [Y ;Gα;ψα,β] is a HIS, then as the groups Gα are the maximal subgroups

of S and Y ∼= E(S) we then obtain by Corollary 6.1.3:

Corollary 6.2.4. If S = [Y ;Gα;ψα,β] is a HIS then Y is homogeneous and the

groups Gα are pairwise isomorphic homogeneous groups.

Hence, if S = [Y ;Gα;ψα,β] is a HIS and Gα ∼= G then, by Remark 6.2.3, each

group Gα can be taken as a labelling of G, and the morphisms ψα,β to be a labelling

of an endomorphism of G.

A subset T of a Clifford semigroup S will be called order-characteristic if when-

ever T contains an element of order n, then every element of order n in S belongs

to T .

Given a group G with subset A, then we set

o(A) = {n : there exists a ∈ A such that o(a) = n}.

Note that if aα ∈ S then, as aα is contained in the group Gα, the inverse subsemi-

group 〈aα〉I is a cyclic group. In particular, our definition of the order of an element

intersects with the group theory definition, that is o(aα) is the minimal n > 1 such

that anα = eα. Hence, as cyclic groups of the same cardinality are isomorphic, the

following generalization of [19, Lemma 1] and its corollary are easily verifiable:

Lemma 6.2.5. Let S a Clifford HIS with characteristic subset T . Then T is order-

characteristic.

Corollary 6.2.6. Let S and S′ be a pair of isomorphic Clifford HISs with charac-

teristic inverse subsemigroups T and T ′, respectively such that o(T ) = o(T ′). Then

T ∼= T ′, and if S = S′ then T = T ′.

Lemma 6.2.7. Let S = [Y ;Gα;ψα,β] be a Clifford semigroup. For each α ∈ Y , let

Hα be an order-characteristic subgroup of Gα such that Hα
∼= Hβ for all α, β ∈ Y .

Then

T = [Y ;Hα;ψα,β|Hα ]

is an order-characteristic inverse subsemigroup of S. In particular, if S is a HIS

then so is T .

Proof. Notice that as each Hα are isomorphic order-characteristic subgroups, and

as o(Hαψα,β) ⊆ o(Hβ), it follows that Hαψα,β ⊆ Hβ for all α ≥ β in Y , and so T is

well defined. The result is then immediate.

In particular, if S in Lemma 6.2.7 is a HIS, then the result holds if Hα is

characteristic by Lemma 6.2.5.
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A pair of subsets A and B of a group G are of coprime order if o(A)∩o(B) ⊆ {1}.
If G is periodic then this is equivalent to being of relatively prime exponent, defined

in [17], but does not require the theory of supernatural numbers. Note that if

G = A⊗B where A and B are periodic of coprime order, then clearly A and B are

order-characteristic subgroups of G, and so the lemma above may be used in this

case.

Corollary 6.2.8. Let G be a homogeneous group with characteristic subsets H and

K such that H ∩K ⊆ {1}. Then H and K are of coprime order.

Proof. If h ∈ H and k ∈ K both have order n ∈ N∗, then by Lemma 6.2.5 H and

K both contain all elements of order n. Since H and K intersect trivially, it follows

that n = 1, and so the subsets are coprime.

The subsequent pair of lemmas arise from basic group theory and proofs will be

omitted:

Lemma 6.2.9. Let G = H ⊗ K be a group with H and K periodic of coprime

order. Then, for each subgroup G′ of G, there exist subgroups H ′ and K ′ of H and

K, respectively, such that G′ = H ′ ⊗K ′.

Lemma 6.2.10. Let G1 = H1⊗K1 and G2 = H2⊗K2 be a pair of groups with the

Hi and Ki periodic of coprime orders for each i = 1, 2, and H1
∼= H2, K1

∼= K2.

Let G′1 = H ′1⊗K ′1 and G′2 = H ′2⊗K ′2 be subgroups of G1 and G2, respectively, and

θH : H ′1 → H ′2 and θK : K ′1 → K ′2 be a pair of morphisms. Then the map θ given

by

(hk)θ = (hθH)(kθK) (h ∈ H ′1, k ∈ K ′2)

is a morphism from G′1 to G′2, and every morphism can be so constructed.

The homomorphism θ in the lemma above will often be denoted as θH ⊗ θK .

We observe that Lemmas 6.2.9 and 6.2.10 fail in general if we drop the periodic

condition.

If G = H ⊗K is a group with H and K periodic of coprime order then clearly

H and K are characteristic subgroups. The following simplification of [17, Lemma

1] then follows from the pair of lemmas above.

Corollary 6.2.11. Let G = H⊗K be a group with the H and K periodic of coprime

order. Then G is homogeneous if and only if H and K are homogeneous.

Given a group G = H ⊗K where H and K are periodic of coprime order, let

S = [Y ;Gα;ψα,β] be the Clifford semigroup with Gα ∼= G for each α ∈ Y . Then

Gα = Hα ⊗ Kα where Hα
∼= H and Kα

∼= K, and by Lemma 6.2.10 we may let

ψα,β = ψHα,β ⊗ψKα,β where ψHα,β : Hα → Hβ and ψKα,β : Kα → Kβ. It follows that the

sets

SH := [Y ;Hα;ψHα,β] and SK := [Y ;Kα;ψKα,β]
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are characteristic inverse subsemigroups of S by Lemma 6.2.7.

Corollary 6.2.12. Let S = [Y ;Hα ⊗ Kα;ψα,β] be a periodic Clifford semigroup,

where each Hα and Kα are of coprime order. Let π be an automorphism of Y ,

and θH = [θHα , π]α∈Y and θK = [θKα , π]α∈Y be automorphisms of SH and SK ,

respectively. Letting θα = θHα ⊗ θKα , then θ = [θα, π]α∈Y is an automorphism of S,

and all automorphisms of S can be constructed in this way.

Proof. We show first that θ is an automorphism of S. By Lemma 6.2.10 each θα is

an isomorphism, so it remains to prove that the diagram [α, β;απ, βπ] commutes

for any α > β. Let gα ∈ Gα, say, gα = hαkα (hα ∈ Hα, kα ∈ Kα). Then

gαθαψαπ,βπ = (hαθ
H
α ψ

H
απ,βπ)(kαθ

K
α ψ

K
απ,βπ)

= (hαψ
H
α,βθ

H
β )(kαψ

K
α,βθ

K
β )

= gαψα,βθβ

since [α, β;απ, βπ]S
H

and [α, β;απ, βπ]S
K

commutes. Hence [α, β;απ, βπ]S com-

mutes and θ is an automorphism of S. The converse follows from Theorem 6.2.2

and the fact that SH and SK are characteristic inverse subsemigroups of S.

Proposition 6.2.13. Let S = [Y ;Hα⊗Kα;ψα,β] be a periodic Clifford semigroup,

where each Hα and Kα are of coprime order. Then S is a structure-HIS if and only

if SH and SK are structure-HISs.

Proof. If S is a structure-HIS then SH and SK , being characteristic inverse sub-

semigroups with structure semilattice Y , are also structure-HISs.

Conversely, suppose SH and SK are structure-HISs. Let A and B be a pair of

f.g. inverse subsemigroups of S. From Lemmas 6.2.4, 6.2.9 and 6.2.10 we have that

A = [Z ′;H ′γ ⊗K ′γ ;ψH
′

γ,δ ⊗ ψK
′

γ,δ]

B = [Z ′′;H ′′τ ⊗K ′′τ ;ψH
′′

τ,σ ⊗ ψK
′′

τ,σ ]

where H ′γ and K ′γ are subgroups of Hγ and Kγ , respectively, ψH
′

γ,δ = ψγ,δ|H′γ and

ψK
′

γ,δ = ψγ,δ|K′γ . Similarly for B.

Let θ = [θγ , π]γ∈Z′ : A → B be an isomorphism, and π̂ an automorphism of

Y which extends π. Then for each γ ∈ Z ′, we have θγ = θH
′

γ ⊗ θK
′

γ for some

isomorphisms θH
′

γ : H ′γ → H ′′γπ and θK
′

γ : K ′γ → K ′′γπ. Hence θH
′

= [θH
′

γ , π]γ∈Z′ is an

isomorphism from [Z ′;H ′γ ;ψH
′

γ,δ] to [Z ′′;H ′′τ ;ψH
′′

τ,σ ], and similarly for the isomorphism

θK
′

= [θK
′

γ , π]γ∈Z′ . Since θH
′

is an isomorphism between f.g. inverse subsemigroups

of the structure-HIS SH , we can extend θH
′

to an automorphism [θHα , π̂]α∈Y of SH ,

and similarly extend θK
′
to an automorphism [θKα , π̂]α∈Y of SK . By Corollary 6.2.12

the map [θHα ⊗ θKα , π̂]α∈Y is an automorphism of S, and extends θ as required.

A simple adaptation of the proof above gives the following result.
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Proposition 6.2.14. Let S = [Y ;Hα⊗Kα;ψα,β] be a periodic Clifford semigroup,

where Hα and Kα are of coprime order, and SH is a structure-HIS. Then S is a

HIS if and only if SK is a HIS.

Given a Clifford semigroup [Y ;Gα;ψα,β] then, for each α > β, we follow the

notation given for normal bands by setting

Iα,β := Im ψα,β = {aβ ∈ Gβ : ∃aα ∈ Gα, aαψα,β = aβ},

Kα,β := Ker ψα,β = {aα ∈ Gα : aαψα,β = eβ},

as the image and kernel of the connecting morphism ψα,β, respectively. Given

α > γ > β in Y and kα ∈ Kα,γ , then

kαψα,β = (kαψα,γ)ψγ,β = eγψγ,β = eβ,

and so kα ∈ Kα,β. Thus Kα,γ ⊆ Kα,β, and similarly Iα,β ⊆ Iγ,β.

We define the absolute image I∗α and the absolute kernel K∗α of α ∈ Y as the

subsets of Gα given by

I∗α := {gα ∈ Iα : o(gα) = o(gαψα,β) for all β < α},

K∗α := {aα ∈ Gα : aαψα,β = eβ for all β < α} =
⋂
β<α

Kα,β.

The set K∗α, being an intersection of subgroups of Gα, forms a subgroup, while

I∗α may not.

Notation 6.2.15. Throughout the remainder of this subsection, S = [Y ;Gα;ψα,β]

denotes a Clifford HIS, so that Y is a homogeneous semilattice and the Gα are

pairwise isomorphic homogeneous groups.

The following lemma will be vital in our understanding of the images and kernels

of the connecting morphisms.

Lemma 6.2.16. Let α, α′, β ∈ Y be such that α, α′ > β, and let gβ, hβ ∈ Gβ be of

the same order. Then the map

φ : 〈eα, gβ〉I → 〈eα′ , hβ〉I

given by eαφ = eα′ and gzβφ = hzβ for z ∈ Z, is an isomorphism.

Proof. Note that 〈gβ〉I and 〈hβ〉I are isomorphic cyclic groups. Moreover, eα is the

identity in 〈eα, gβ〉I since eαgβ = (eαψα,β)(gβψβ,β) = eβgβ = gβ = gβeα and so

〈eα, gβ〉I = {eα} ∪ 〈gβ〉I .

Similarly for 〈eα′ , hβ〉I , and it is routine to check that φ is an isomorphism.
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Lemma 6.2.17. Let α, α′, β ∈ Y be such that α, α′ > β. Then Iα,β = Iα′,β.

Proof. Let gβ ∈ Iα,β, say gβ = gαψα,β. By the lemma above, there is an isomor-

phism φ : 〈eα, gβ〉I → 〈eα′ , gβ〉I determined by eαφ = eα′ and gβφ = gβ. Extend φ

to an automorphism θ = [θα, π]α∈Y of S, so that απ = α′ and βπ = β. Then

gαθαψα′,β = gαψα,βθβ = gβθβ = gβ

since the diagram [α, β;α′, β] commutes. Hence gβ ∈ Iα′,β and Iα,β ⊆ Iα′,β. The

dual gives equality.

For each α ∈ Y , we let Iα denote the subgroup Iδ,α for (any) δ > α. Since Y

has no maximal elements, Iα is non-empty for all α ∈ Y .

Lemma 6.2.18. For each α ∈ Y , the subgroups Iα and K∗α are characteristic

subgroups of Gα, and are thus homogeneous. Moreover, for each α > β, the subgroup

Kα,β is homogeneous.

Proof. Let ϕ ∈ Aut(Gα) and gα = gδψδ,α ∈ Iα for some δ > α. Then, by Lemma

6.2.16, there exists an isomorphism φ : 〈eδ, gα〉I → 〈eδ, gαϕ〉I fixing eδ and with

gαφ = gαϕ. Extending φ to θ = [θα, π]α∈Y ∈ Aut(S), then as [δ, α; δ, α] commutes,

we have

gαϕ = gαφ = gαθα = gδψδ,αθα = gδθδψδ,α ∈ Iα,

and so Iα is characteristic. Now let kα ∈ K∗α, and extend the isomorphism between

〈kαϕ〉I and 〈kα〉I which sends kαϕ to kα, to θ̄ = [θ̄α, π̄]α∈Y ∈ Aut(S). Then as

[α, β;α, βπ̄] commutes for any β < α, and as kα ∈ Kα,βπ̄, we have

(kαϕ)ψα,βθβ = (kαϕ)θαψα,βπ̄ = kαψα,βπ̄ = eβπ̄.

Hence kαϕ ∈ Kα,β for all β < α, that is, kαϕ ∈ K∗α, and so K∗α is characteristic.

Finally, let φ be an isomorphism between f.g. subgroups Aα and A′α of Kα,β.

Then the map φ′ : Aα ∪ {eβ} → A′α ∪ {eβ} such that Aαφ
′ = Aαφ and eβφ

′ = eβ

is an isomorphism between f.g. inverse subsemigroups of S. By extending φ′ to an

automorphism of S, the result follows from Theorem 6.2.2.

We now determine the Clifford semigroup form of Lemma 5.4.4 as follows.

Lemma 6.2.19. If α > β and α′ > β′ in Y then there exists a pair of isomorphisms

θα : Gα → Gα′ and θβ : Gβ → Gβ′ such that ψα,β = θαψα′,β′θ
−1
β . In particular,

if ψα,β is injective/surjective then so is ψα′,β′, and Iβ ∼= Iβ′, Kα,β
∼= Kα′,β′ and

K∗α
∼= K∗α′.

Proof. Clearly the map φ : {eα, eβ} → {eα′ , eβ′} given by eαφ = eα′ and eβφ = eβ′

is an isomorphism. By extending φ to an automorphism θ = [θα, π]α∈Y of S,
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then the first result follows immediately from the commutativity of [α, β;απ, βπ] =

[α, β;α′, β′]. The injective/surjective properties of the connecting morphisms follow.

We observe that

Iβθβ = (Gαψα,β)θβ = Gαθαψα′,β′ = Gα′ψα′,β′ = Iβ′

and so Iβ ∼= Iβ′ . If kα ∈ Kα,β then

kαθαψα′,β′ = kαψα,βθβ = eβθβ = eβ′ ,

so that Kα,βθ ⊆ Kα′,β′ . If xα′ ∈ Kα′,β′ , then there exists yα ∈ Gα with yαθα = xα′ ,

so that

yαψα,βθβ = xα′ψα′,β′ = eβ′ .

Hence yαψα,β = eβ, and so yα ∈ Kα,β. We have thus shown that Kα,βθ = Kα′,β′ ,

and so Kα,β
∼= Kα′,β′ . Finally,

K∗αθα = (
⋂
γ<α

Kα,γ)θα =
⋂
γ<α

(Kα,γθα) =
⋂
γπ<α

Kα′,γπ = Kα∗

since π is an automorphism of Y . Thus K∗α
∼= K∗α′ as required.

We say that a subset A of a group G is closed under prime powers if, whenever

p ∈ o(A) for some prime p, then every power of p in o(G) also lies o(A).

Lemma 6.2.20. The subgroups Iα and K∗α are closed under prime powers and

Iα ∩ K∗α = {eα}. Moreover, every element in Gα of prime order is contained in

either Iα or K∗α.

Proof. Let p ∈ o(K∗α). Proceeding by induction, assume that

p, p2, . . . , pr−1 ∈ o(K∗α)

for some r ∈ N. Then by Lemma 6.2.5, every element of Gα of order pk is in K∗α for

1 ≤ k ≤ r−1. Let gα ∈ Gα be of order pr. Then gpα is of order pr−1, so that gpα ∈ K∗α.

In particular, for any β < α we have (gαψα,β)p = eβ. If o(gαψα,β) = p then for any

α′ ∈ Y with α > α′ > β we have o(gαψα,α′) = p and thus gαψα,α′ ∈ K∗α′ , since

K∗α′
∼= K∗α by Lemma 6.2.19. Hence (gαψα,α′)ψα′,β = gαψα,β = eβ, a contradiction,

and so gα ∈ K∗α. This completes the inductive step, and so K∗α is closed under

prime powers.

Suppose, seeking a contradiction, that p ∈ o(Iα)∩o(K∗α) for some prime p. Then

Iα ∪K∗α contains every element of Gα of order p by Lemma 6.2.5. Let gα ∈ Gα be

of order p, so that if δ > α then there exists gδ ∈ Gδ with gδψδ,α = gα. Suppose

first that o(gδ) = pnm is finite, where hcf(pn,m) = 1. Then gmδ ψδ,α = gmα has order

p and gmδ has order pn. Since K∗δ is closed under prime order we have gmδ ∈ K∗δ ,
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a contradiction. It follows that the pre-images of elements of order p under the

connecting morphisms are all of infinite order. Let δ > τ > α and let hτ ∈ Gτ be of

order p. The map from 〈eδ, gα〉I to 〈eδ, hτ 〉I which fixes eδ and sends gα to hτ is an

isomorphism by Lemma 6.2.16. By extending the isomorphism to an automorphism

θ of S, we have that gδθ = hδ ∈ Gδ is such that hδψδ,τ = hτ , so that o(hδ) = ℵ0

and hδ ∈ Kδ,α. Since gpδ ∈ Kδ,α, both 〈hδ, eα〉I and 〈gpδ , eα〉I are isomorphic to

an infinite cyclic group with zero adjoined. Hence the isomorphism from 〈hδ, eα〉I
and 〈gpδ , eα〉I fixing eα and sending hδ to gpδ is an isomorphism, which we extend

to an automorphism [θα, π]α∈Y of S. Then δ = δπ > τπ > απ = α and, by the

commutativity of [δ, τ ; δ, τπ],

hτθτ = hδψδ,τθτ = hδθδψδ,τπ = gpδψδ,τπ.

Hence gpδψδ,τπ is of order p, however (gδψδ,τπ)ψτπ,α = gα, so that gδψδ,τπ is of infinite

order, and our desired contradiction is achieved.

Now suppose xα ∈ Iα ∩K∗α has order n ∈ N∗. If n is finite, then there exists a

prime p with p|n, and so x
n/p
α ∈ Iα∩K∗α has order p, a contradiction. If n is infinite

then there exist δ > α and xδ ∈ Gδ with xδψδ,α = xα, so that xδ is of infinite order.

Since the absolute kernels are pairwise isomorphic we have ℵ0 ∈ o(K∗σ) for each

σ ∈ Y . Hence K∗δ contains every element of infinite order in Gδ by Lemma 6.2.5,

and so xδψδ,α = eα, a contradiction. We have thus shown that Iα and K∗α have

trivial intersection.

We now prove that Iα is closed under prime powers. Let p ∈ o(Iα) for some

prime p, and let zα ∈ Gα be of order pr. If o(zαψα,β) < pr for all β < α then

zp
r−1

α ∈ Iα ∩K∗α, a contradiction. Hence there exists β with zαψα,β of order pr, so

that pr ∈ o(Iβ). By Lemma 6.2.19 o(Iβ) = o(Iα) and so Iα is closed under prime

powers.

Finally, let aα ∈ Gα be of prime order p. If aα 6∈ K∗α then aαψα,β has order p for

some β < α, and so by the usual argument p ∈ o(Iα), and the final result holds.

Consequently, by corollary 6.2.8, the subgroups Iα and K∗α are of coprime order.

Furthermore, since Iα and K∗α are characteristic subgroups of Gα, and in particular

are invariant under inner automorphisms of Gα, they are normal subgroups. Hence

〈Iα,K∗α〉I = Iα ⊗K∗α.

Lemma 6.2.21. If Gα is periodic then Gα = Iα ⊗K∗α. If Gα is non-periodic then

either Gα = Iα or Gα = K∗α or Iα⊗K∗α is the set of elements of finite order in Gα.

Proof. If gα ∈ Gα has finite order n = pn1
1 . . . pnrr for some primes pi then, by the

Fundamental Theorem of Finite Abelian Groups, gα = gα,1gα,2 . . . gα,r for some

gα,i ∈ Gα of order pnii . By the previous corollary we have gα,i ∈ Iα ∪K∗α, and so

gα ∈ Iα ⊗K∗α. Consequently, the subgroup Iα ⊗K∗α contains every element of Gα

of finite order, and so if Gα is periodic then Gα = Iα ⊗K∗α.
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Now suppose that Gα contains an element xα of infinite order. Suppose first

that xα ∈ Iα ⊗K∗α, say xα = gαkα. Then either gα or kα has infinite order, as Iα

and K∗α are of coprime order. Hence, by Lemma 6.2.5, either Iα or K∗α contains

all elements of infinite order, and so Gα = Iα ⊗K∗α. If gα is of infinite order, then

for any mα ∈ K∗α we have that gαmα has infinite order. Hence g−1
α and gαmα,

being of infinite order, are in Iα, and consequently so is g−1
α (gαmα) = mα. Thus

mα = eα, and it follows that Gα = Iα. The case where kα is of infinite order is

proven similarly.

If no such element xα exists, then Iα ⊗ Kα is precisely the elements of finite

order as required.

We now extend our knowledge of the final case of Lemma 6.2.21, and in partic-

ular show that each maximal subgroup is the union of its kernel subgroups.

Lemma 6.2.22. If Gα is non-periodic and Iα ⊗ K∗α periodic, then the inverse

subsemigroup [Y ; Iα⊗K∗α, ψα,β|Iα⊗K∗α ] of S is a HIS. Moreover, the absolute image

I∗α of Gα is trivial and Gα =
⋃
β<αKα,β.

Proof. The first result is immediate from Lemma 6.2.7 since Iα ⊗ K∗α, being the

subgroup containing all periodic elements of Gα, is order-characteristic.

We claim that each element xα of infinite order in Gα is contained in the kernel

of some connecting morphism. For any β < α we have that xαψα,β has finite order,

say n, since ℵ0 6∈ o(Iα). Hence xnα is an element of infinite order with xnα ∈ Kα,β.

The claim easily follows by homogeneity.

Now suppose that gα ∈ I∗α. Then xαgα has infinite order, since otherwise xαgα

is an element of Iα ⊗K∗α, and thus so is xα = (xαgα)g−1
α . By the previous claim,

xα ∈ Kα,β and xαgα ∈ Kα,γ for some β, γ < α. Hence

(xαgα)ψα,βγ = (xαψα,βψβ,βγ)(gαψα,βγ) = gαψα,βγ = eβγ

and so gα = eα. Hence I∗α is trivial as required.

Finally, if there exists zα /∈
⋃
β<αKα,β then zαψα,β ∈ I∗α for some β < α, a

contradiction, and the final result is obtained.

We call a Clifford semigroup in which each connecting morphism is surjective a

surjective Clifford semigroup.

Corollary 6.2.23. Let T = [Y ;Hα;φα,β] be a surjective Clifford HIS. Then the

absolute kernels of T are trivial.

Proof. Immediate from Lemma 6.2.20.

Lemma 6.2.24. The inverse subsemigroup [Y ; Iα;ψIα,β] of S is a surjective Clifford

semigroup, where ψIα,β = ψα,β|Iα.
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Proof. By definition Iαψα,β ⊆ Iβ. Let xβ ∈ Iβ = Im ψα,β (by Lemma 6.2.17). If

Gα is periodic then by Lemma 6.2.21 there exist gα ∈ Iα and kα ∈ K∗α such that

(gαkα)ψα,β = xβ. Hence gαψα,β = xβ and ψIα,β is surjective. If Gα is non-periodic,

then the result is trivially true when Gα = Iα, or when Gα = K∗α, since in this case

Iα = {eα}. If ℵ0 6∈ o(Iα)∪ o(K∗α), then as [Y ; Iα⊗K∗α;ψα,β|Iα⊗K∗α ] forms a periodic

HIS by the previous lemma, the result follows by the periodic case.

For each α > β in Y , we let τα,β denote the trivial morphism from K∗α to

K∗β, and let τα,α = 1K∗α . We call a Clifford semigroup in which each connecting

morphism is trivial an image-trivial Clifford semigroup. Note that this differs from

the image-trivial normal band case, since here the images of a connecting morphism

ψα,β for α > β has to be {eβ}.
We observe that, for each α ≥ β, gα ∈ Iα and kα ∈ K∗α then

(gαkα)ψα,β = (gαψ
I
α,β)(kατα,β).

Hence S has two crucial inverse subsemigroups,

I(S) := [Y ; Iα;ψIα,β] and K(S) := [Y ;K∗α; τα,β],

which are HIS by Lemma 6.2.7. If in addition S is periodic, then

S = [Y ; Iα ⊗Kα;ψIα,β ⊗ τα,β].

We summarise our current findings in this section as follows.

Theorem 6.2.25. If S is a periodic Clifford HIS, then S = [Y ; Iα⊗K∗α;ψIα,β⊗τα,β],

where:

(i) Y is a homogeneous semilattice;

(ii) I(S) = [Y ; Iα;ψIα,β] is a surjective Clifford HIS;

(iii) K(S) = [Y ;K∗α; τα,β] is an image-trivial Clifford HIS;

(iv) there exists a homogeneous group G = I ⊗K∗ where I and K∗ are of coprime

order, such that G ∼= Gα, Iα ∼= I and K∗α
∼= K∗ for all α ∈ Y .

A non-periodic Clifford semigroup is a HIS if and only if it is isomorphic to either

a surjective Clifford HIS, or an image-trivial Clifford HIS, or a Clifford HIS with

no elements of infinite order lying in the images or absolute kernels.

In the next subsection we shall prove a converse to the first result of Theorem

6.2.25. This relies on proving the stronger property of homogeneity for image-trivial

Clifford semigroups.
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Lemma 6.2.26. Let T = [Y ;Gα; τα,β] be an image-trivial Clifford semigroup. Then

the following are equivalent:

(i) T is a structure-HIS;

(ii) T is a HIS;

(iii) Y is homogeneous and there exists a homogeneous group G such that G ∼= Gα

for all α ∈ Y .

Proof. (i)⇒ (ii) Immediate, as every structure-HIS is a HIS.

(ii)⇒ (iii) Immediate from Corollary 6.2.4.

(iii) ⇒ (i) Let A1 = [Z ′;A′γ ; τ ′γ,δ] and A2 = [Z ′′;A′′η; τ
′′
η,σ] be a pair of f.g.

inverse subsemigroups of T , where the maps τ ′γ,δ and τ ′′η,σ, being restrictions of

trivial morphisms, are trivial. Let θ = [θγ , π]γ∈Z1 be an isomorphism from A1 to

A2 and let π̄ be an automorphism of Y which extends π. By Lemma 4.3.7 we can

extend each θγ : A′γ → A′′γπ to an isomorphism θ̄γ : Gγ → Gγπ. For each α 6∈ Z1,

let θ̄α be any isomorphism from Gα to Gαπ̄. We claim that θ̄ = [θ̄α, π̄]α∈Y is an

automorphism of S. For any gα ∈ Gα and α > β we have

gαθ̄αταπ̄,βπ̄ = eβπ̄ = eβ θ̄β = gατα,β θ̄β

and so the diagram [α, β;απ̄, βπ̄] commutes, thus proving the claim. By construc-

tion, π̄ extends π, and so θ̄ extends θ. Hence T is a structure-HIS.

Let T = [Y ;Gα; τα,β] be an image-trivial Clifford semigroup such that Gα ∼= G

for each α ∈ Y . Let θα : Gα → G be an isomorphism for each α ∈ Y , and define a

bijection θ : T → Y ×G by

gαθ = (α, gαθα),

for each gα ∈ Gα, α ∈ Y . Then we use θ to endow the set Y ×G with a multiplication

(α, g) ∗ (β, h) =



(α, gh) if α = β,

(β, h) if α > β,

(α, g) if α < β,

(αβ, 1) if α⊥β.

We denote the resulting semigroup (Y ×G, ∗) as [Y ;G]. Notice that

[Y ;G] = [Y ; Ḡα; τ̄α,β],

where Ḡα = {(α, g) : g ∈ G} and Ḡατ̄α,β = {(β, 1)}. We have thus shown that:

Lemma 6.2.27. Let T = [Y ;Gα; τα,β] be an image-trivial Clifford semigroup such

that Gα ∼= G for each α ∈ Y . Then T ∼= [Y ;G].
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6.2.1 Spined product

In the previous chapter, it was often useful to decompose a normal band as a spined

product. In this section we use the spined product decomposition together with

Lemma 6.2.27 to give a more succinct form of a periodic Clifford HIS semigroup

[Y ; Iα ⊗K∗α;ψIα,β ⊗ τα,β].

Let Si = [Y ;G
(i)
α ;ψ

(i)
α,β] (i = 1, 2) be a pair of Clifford semigroups. Then we

recall that the spined product of S1 and S2 w.r.t to Y is

S1 ./ S2 = {(aα, bα) : aα ∈ S1, bα ∈ S2, α ∈ Y }.

Lemma 6.2.28. Let S1 and S2 be defined as above. Then S1 ./ S2 is isomorphic

to the Clifford semigroup S = [Y ;G
(1)
α ⊗G(2)

α ;ψ
(1)
α,β ⊗ ψ

(2)
α,β].

Proof. The map φ : S1 ./ S2 → S given by

(gα, hα)φ = gαhα

for each (gα, hα) ∈ G(1)
α ⊗G(2)

α is clearly an isomorphism.

Note 6.2.29. Since Clifford semigroups are completely regular, we may build iso-

morphisms between strong semilattices of Clifford semigroups by using Proposition

2.11.3, which we briefly recap. Let Si = [Y ;G
(i)
α ;ψ

(i)
α,β] and S′i = [Y ′;H

(i)
α′ ;φ

(i)
α′,β′ ] be

Clifford semigroups (i = 1, 2) and consider a pair of isomorphisms

θ(i) = [θ(i)
α , π]α∈Y : Si → S′i (i = 1, 2).

Then the map θ : S1 ./ S2 → S′1 ./ S
′
2 given by (gα, hα)θ = (gαθ

(1)
α , hαθ

(2)
α ) is an

isomorphism, which we denote as θ(1) ./ θ(2).

We now construct the Clifford semigroup analogy of corollary 5.3.2 as follows.

Corollary 6.2.30. Let S = S1 ./ S2 and S′ = S′1 ./ S
′
2 be a pair of spined products

of Clifford semigroups such that S2 and S′2 are structure-HISs. Then S ∼= S′ if

S1
∼= S′1 and S2

∼= S′2.

Proof. Let S have structure semilattice Y . Let θ(1) = [θ
(1)
α , π]α∈Y be an isomor-

phism from S1 to S′1 and θ(2) = [θ
(2)
α , π̂]α∈Y an isomorphism from S2 to S′2. Then

ππ̂−1 is an automorphism of Y , and so as S2 is a structure-HIS there exists an au-

tomorphism φ of S2 with induced automorphism ππ̂−1. Hence φθ(2) : S2 → S′2
is an isomorphism, with induced isomorphism π, and so from the note above

θ(1) ./ (φθ(2)) is an isomorphism from S to S′ as required.
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However, unlike Corollary 5.3.2, the converse of the corollary does not hold

in general. Indeed, since homogeneous groups are trivially structure-HISs, coun-

terexamples easily arise by taking S and S′ to be certain homogeneous groups (for

example, take both S and S′ to be the infinite direct sum of a cyclic group).

If S = [Y ; Iα ⊗ K∗α;ψIα,β ⊗ τα,β] is a periodic HIS then, by Lemma 6.2.28, S

is isomorphic to [Y ; Iα;ψIα,β] ./ [Y ;K∗α; τα,β] and thus, by Corollary 6.2.30 and the

structure-homogeneity of [Y ;K∗], to [Y ; Iα;ψIα,β] ./ [Y ;K∗], where K∗ ∼= K∗α.

We have proven the forward half of the periodic case of the following theorem.

Theorem 6.2.31. A periodic Clifford semigroup S is a HIS if and only if there

exist a homogeneous group G = I ⊗K∗, where I and K∗ are of coprime order, and

a surjective Clifford HIS [Y ; Iα;ψIα,β] with Iα ∼= I such that

S ∼= [Y ; Iα;ψIα,β] ./ [Y ;K∗].

A non-periodic Clifford semigroup S is a HIS if and only if S is isomorphic to

either a surjective Clifford HIS, or [Y ;G] for some homogeneous semilattice Y and

group G, or a Clifford HIS with no elements of infinite order lying in the images or

absolute kernels.

Proof. Let G and Y be as in the hypothesis of the theorem. Then as [Y ;K∗] is

structure-HIS semigroup by Lemma 6.2.26, the semigroup [Y ; Iα;ψIα,β] ./ [Y ;K∗] is

a HIS if and only if [Y ; Iα;ψIα,β] is a HIS by Proposition 6.2.14. The non-periodic

case follows immediately from Theorem 6.2.25 and Lemma 6.2.26.

It thus suffices to consider the homogeneity of both surjective Clifford semi-

groups with trivial absolute kernels, and the case where there exist elements of

infinite order lying outside the images and absolute kernels.

An immediate consequence of Theorem 6.2.31 is the following equivalence to a

Clifford HIS being surjective.

6.2.2 A pair of classifications

We examine the case where S = [Y ;Sα;ψα,β] is a HIS such that there exist α > β

in Y with ψα,β an isomorphism. By Lemma 5.4.4 every connecting morphism is an

isomorphism, and so S is isomorphic to Y × G for some group G by Proposition

3.7.13. The following result is then immediate from Proposition 4.3.8 and Corollary

6.1.3.

Proposition 6.2.32. Let Y be a semilattice and G be a group. Then Y × G is

structure-homogeneous if and only if Y and G are homogeneous.
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This result has a number of useful consequences. First, since all surjective mor-

phisms between finite groups are isomorphisms, the following theorem is immediate

by Proposition 6.1.7 and Theorem 6.2.31.

Theorem 6.2.33. Given a homogeneous semilattice Y and a pair of finite homoge-

neous groups I and K∗ of coprime orders, the Clifford semigroup (Y × I) ./ [Y ;K∗]

is a HIS. Conversely, every HIS with finite maximal subgroups is isomorphic to an

inverse semigroup constructed in this way.

A complete classification of all structure-HIS Clifford semigroups can also be

obtained.

Theorem 6.2.34. A periodic Clifford semigroup S is structure-HIS if and only if

there exists a homogeneous group G = I ⊗ K∗, where I and K∗ are of coprime

order, such that

S ∼= (Y × I) ./ [Y ;K∗].

A non-periodic Clifford semigroup S is a structure-HIS if and only if S is isomorphic

to either Y ×G or [Y ;G] for some homogeneous semilattice Y and group G.

Proof. Let S = [Y ;Gα;ψα,β] be a structure-HIS Clifford semigroup. Suppose that

there exist α > γ > β in Y and aα ∈ Gα such that aα ∈ Kα,β \ Kα,γ . By

the homogeneity of Y there exists π ∈ Aut(Y ) extending the unique isomorphism

between {α, γ} and {α, β}. Since S is structure-HIS and π extends the identity

isomorphism {α} → {α}, we extend the identity isomorphism fixing 〈aα〉I to an

automorphism [θα, π]α∈Y of S. Then as [α, γ;α, γ] commutes we have

aαψα,γθγ = aαθαψα,β = aαψα,β = eβ

and so aα ∈ Kα,γ , a contradiction. Hence Kα,β = Kα,γ . If β, τ < α then we thus

have

Kα,β = Kα,βτ = Kα,τ

and so Kα,β = K∗α for any β < α.

Suppose first that S is periodic. If S is surjective, then each Kα,β is trivial by

Corollary 6.2.23, so that ψα,β is an isomorphism. The periodic case then follows

from Theorem 6.2.31. If S is non-periodic, then the third possibility of the non-

periodic case of Theorem 6.2.31 cannot hold by Lemmas 6.2.21 and 6.2.22.

Conversely, if Y is a homogeneous semilattice and G is a homogeneous group

then Y ×G and [Y ;G] are structure-HISs by Proposition 6.2.32 and Lemma 6.2.26.

Hence if I and K∗ are homogeneous groups of coprime order then (Y ×I) ./ [Y ;K∗]

is a structure-HIS by Proposition 6.2.13.
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6.2.3 Non-injective surjective Clifford semigroups

Throughout this subsection we let S = [Y ;Gα;ψα,β] be a surjective Clifford HIS

such that each ψα,β is non-injective. Recall that the absolute kernels of S are

trivial by Corollary 6.2.23. Following in line with the general case, we attempt to

decompose the maximal subgroups into direct products of characteristic subgroups.

The group Gα contains two key subsets: the absolute image I∗α and

Tα = {gα ∈ Gα : ∃β < α such that gα ∈ Kα,β} =
⋃
β<α

Kα,β.

The set Tα forms a subgroup of Gα, since if kα ∈ Kα,β and mα ∈ Kα,β′ then

kαmα ∈ Kα,ββ′ . While I∗α may not form a subgroup, it is closed under powers, since

if gα ∈ I∗α then for each r ∈ N and β ≤ α,

o(gα) = o(gαψα,β)⇒ o(grα) = o((gαψα,β)r) = o(grαψα,β)

so that grα ∈ I∗α.

By the usual arguments we have:

Lemma 6.2.35. For each α ∈ Y , Tα is a characteristic subgroup of Gα and I∗α

is a characteristic subset of Gα with I∗α ∩ Tα = {eα}. Moreover, Tα ∼= Tβ and

〈I∗α〉I ∼= 〈I∗β〉I for each α, β ∈ Y .

Consequently, o(I∗α) = o(I∗β) for each α, β ∈ Y and 〈I∗α〉I is a characteristic

subgroup of Gα. Moreover, I∗α and Tα are coprime by Corollary 6.2.8. We fix the

following subsets of S.

A(S) := [Y ; 〈I∗α〉I ;ψIα,β] and T (S) := [Y ;Tα;ψTα,β],

where ψIα,β = ψα,β|〈I∗α〉I and ψTα,β = ψα,β|Tα .

Lemma 6.2.36. For each α ∈ Y , the subsets A(S) and T (S) of S are Clifford

HISs. Moreover, if S is periodic then A(S) and T (S) are surjective.

Proof. To prove that A(S) and T (S) are inverse subsemigroups, it suffices to show

that ψTα,β and ψIα,β map to Tβ and 〈I∗β〉I , respectively. If kα ∈ Tα, say, kα ∈ Kα,γ ,

then kαψα,β ∈ Kβ,βγ ⊆ Tβ. If gα ∈ I∗α then as o(gα) = o(gαψα,β) we have that

gαψα,β ∈ I∗β by Lemma 6.2.5, and so 〈I∗α〉IψIα,β ⊆ 〈I∗β〉I as required. Hence A(S)

and T (S) are inverse subsemigroups and, by Lemma 6.2.7, are HISs.

Finally, as Gα has trivial absolute kernel, and do 〈I∗α〉I and Tα. Hence as S is

periodic then it follows from Theorem 6.2.31 that A(S) and T (S) are surjective.

Lemma 6.2.37. If α > β > γ then Kα,β ( Kα,γ.
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Proof. If Kα,β = Kα,γ , then it follows by a simple application of homogeneity

that Kα,β = Kα,β′ for all β, β′ < α. Hence Tα = Kα,β is the absolute kernel

of Gα which, being trivial, implies that each connecting morphism is injective, a

contradiction.

Lemma 6.2.38. For each α ∈ Y we have Gα = TαI
∗
α. Consequently, if I∗α forms

a subgroup then Gα = Tα ⊗ I∗α, and if in addition Gα is non-periodic, then I∗α is

trivial, so that Gα = Tα.

Proof. Let aα ∈ Gα\(Tα∪I∗α) have finite order n. Then there exists β < α such that

aαψα,β = aβ has order m < n, say, n = mk. We choose β so that aβ is of minimal

order, noting that aβ 6= eβ as aα 6∈ Tα. Then aβ ∈ I∗β, since if o(aβψβ,γ) < m

for some γ < β then o(aαψα,γ) < m, contradicting the minimality of m. Since

o(I∗α) = o(I∗β), it follows from Lemma 6.2.5 that akα, being of order m, is in I∗α.

Moreover, amα ψα,β = amβ = eβ, so that amα ∈ Tα. Hence as Tα is characteristic by

Lemma 6.2.35, Tα contains all elements of order k by Lemma 6.2.5. Since I∗α and

Tα are coprime, there exist r, s ∈ Z such that rm+ sk = 1, and so

aα = arm+sk
α = (amα )r(akα)s ∈ TαI∗α.

Now let bα be an element of infinite order. If there exists β such that aαψα,β

has finite order n then anα ∈ Tα and so Tα contains all elements of infinite order.

Otherwise, no such β exists, so that bα ∈ I∗α and I∗α contains all elements of infinite

order. Hence Gα = TαI
∗
α. Now suppose I∗α forms a subgroup. Then as I∗α and

Tα are trivial intersecting characteristic, and thus normal, subgroups of Gα and

Gα = TαI
∗
α, it follows that Gα = Tα ⊗ I∗α. If Gα is non-periodic, then we have

shown that every element of Gα of infinite order lies in Tα ∪ I∗α. By a similar

argument to the proof of Lemma 6.2.21 we have that Gα equals Tα or I∗α. Since the

connecting morphisms are non-injective we thus have Gα = Tα.

Lemma 6.2.39. The subset I∗α is closed under prime powers. Moreover, I∗α forms

a subgroup if and only if 〈I∗α〉I and Tα intersect trivially.

Proof. Suppose p ∈ o(I∗α) for some prime p, and let gα ∈ Gα be of order pr.

Then gp
r−1

α has order p, and thus is an element of I∗α by Lemma 6.2.5. Hence

(gαψα,β)p
r−1

= gp
r−1

α ψα,β is of order p for any β < α, and (gαψα,β)p
r

= eβ, so that

o(gαψα,β) = pr = o(gα). We thus have that gα ∈ I∗α, and so I∗α is closed under prime

powers

Now suppose 〈I∗α〉I ∩ Tα = {eα} and let gα, hα ∈ I∗α. If (gαh
−1
α )ψα,β has finite

order m for some β < α then (gαh
−1
α )m ∈ Kα,β ⊆ Tα. However as (gαh

−1
α )m ∈ 〈I∗α〉I ,

this forces (gαh
−1
α )m = eα. It follows that gαh

−1
α has order m, since its order

is at least the order of its image, and so gαh
−1
α ∈ I∗α. On the other hand, if
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(gαh
−1
α )ψα,β has infinite order for all β < α, then gαh

−1
α is also of infinite order,

and so gαh
−1
α ∈ I∗α. The converse is immediate from Lemma 6.2.35.

This lemma points towards a positive answer to the following question.

Open Problem 6. Are the absolute images of a surjective Clifford HIS with non-

injective connecting morphisms necessarily subgroups?

Lemma 6.2.40. If the absolute images of S form subgroups isomorphic to I∗ then

S ∼= T (S) ./ (Y × I∗),

where if S is non-periodic then I∗ is trivial.

Proof. Suppose first that S is periodic. Since I∗α is a subgroup, the set [Y ; I∗α;ψIα,β] is

the surjective Clifford subsemigroup A(S) of S by Lemma 6.2.36. By Lemma 6.2.38

we have Gα = Tα ⊗ I∗α, where Tα and I∗α are coprime, so that ψα,β = ψTα,β ⊗ ψIα,β
by Lemma 6.2.10. Hence S ∼= T (S) ./ I(S) by Lemma 6.2.28. By Lemma 6.2.35

we have I∗α ∩ Tα = {eα}, and so I∗α ∩Ker ψIα,β = {eα}. Each connecting morphism

ψIα,β is therefore injective, and thus an isomorphism. Hence [Y ; Iα;ψIα,β] ∼= Y × I∗

by Proposition 3.7.13, where I∗ ∼= I∗α for any α ∈ Y . The first result then follows

from Corollary 6.2.30 and the fact that Y × I∗ is a structure-HIS by Proposition

4.3.8.

The final result is immediate from Lemma 6.2.38.

We have proven the first half of the following theorem. The converse holds by

Proposition 6.2.14, since the inverse semigroup Y × I∗ is a structure-HIS if Y and

I∗ are homogeneous.

Theorem 6.2.41. Let S be a surjective Clifford semigroup such that each abso-

lute image forms a subgroup and the connecting morphisms are surjective but not

injective. Then S is a HIS if and only if there exist a homogeneous semilattice Y ,

a homogeneous group G = T ⊗ I∗ where T and I∗ are of coprime order if G is

periodic, or I∗ is trivial otherwise, such that S is isomorphic to

[Y ;Tα;ψTα,β] ./ (Y × I∗)

where Tα ∼= T for each α ∈ Y and [Y ;Tα;ψTα,β] is a surjective Clifford HIS with Tα

being the union of the kernels, none of which are equal.

In the case when the absolute images form subgroups, it consequently suffices

to consider the homogeneity of a surjective Clifford semigroup [Y ;Tα;ψα,β], with Y

and Tα homogeneous, and Tα being a (dense) union of the kernels of the connecting

morphisms, none of which are equal. This leads to the following open problem.
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Open Problem 7. Which homogeneous groups are a dense union of isomorphic

normal subgroups?

A group is co-Hopfian if it is not isomorphic to a proper subgroup1. This is

equivalent to every injective endomorphism being an automorphism [81]. Dually, a

group is Hopfian if it is not isomorphic a proper quotient or, equivalently, if every

surjective endomorphism is an automorphism. An immediate consequence of the

following lemma is that Tα is both non Hopfian and non co-Hopfian:

Lemma 6.2.42. Let [Z;Hα;φα,β] be a HIS with each connecting morphism surjec-

tive but not injective and such that Hα =
⋃
β<α Ker φα,β for each α ∈ Z. Then Hα

is non Hopfian and non co-Hopfian, with Hα
∼= Ker φα,β.

Proof. For each α > β, let Kα,β = Ker φα,β, noting that Kα,β is homogeneous by

Lemma 6.2.18. We claim that age(Kα,β)=age(Hα), so that Kα,β
∼= Hα by Fräıssé’s

Theorem. Because Kα,β is a subgroup of Hα we have that age(Kα,β) is a subclass

of age(Hα). Let A ∈ age(Hα). Then there exists a f.g. inverse subsemigroup

A′ = 〈gα,1, . . . , gα,n〉I of Hα isomorphic to A. For each 1 ≤ i ≤ n, there exists

βi < α such that gα,i ∈ Kα,βi . Letting γ = β1β2 · · ·βn, then gα,i ∈ Kα,γ for all i and

so A′ ⊆ Kα,γ . Hence, as Kα,β
∼= Kα,γ by Lemma 6.2.19 we have A′ ∈ age(Kα,β).

Since the age of a structure is closed under isomorphism, we have A ∈ age(Kα,β),

thus completing the proof of the claim, and so Hα is non co-Hopfian.

By Corollary 4.4.10, there exists an isomorphism θ : Hα → Hβ. The endomor-

phism of Hα given by φα,βθ
−1 is a surjective non-automorphism, and thus Hα is

non Hopfian.

6.3 Homogeneity of commutative inverse semigroups

Given that a full classification of homogeneous abelian groups is known, it is nat-

ural to examine an extension of this to commutative inverse semigroups. As an

immediate consequence of [55, Theorem 4.2.1], commutative inverse semigroups are

Clifford, and as such we may use the results of the previous sections to attempt to

classify commutative HIS. For consistency with earlier work, we continue with the

multiplicative notation, so that the operation is denoted by juxtaposition.

By Theorem 6.2.31 it suffices to consider the homogeneity of either surjective

Clifford semigroups or non-periodic Clifford semigroups with elements of infinite

order not lying in the images or absolute-kernels of the maximal subgroups. We

first give an overview of homogeneous abelian groups, and consider when such

groups are (co-)Hopfian.

1Non co-Hopfian groups are also known as I-groups.
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Given a prime p, the Prüfer group Z[p∞] is an abelian p-group with presentation

〈g1, g2, g3, . . . : gp1 = 1, gp2 = g1, g
p
3 = g2, . . . 〉I .

Alternatively, Z[p∞] can be thought of as a union of a chain of cyclic p-groups of

orders p, p2, p3, . . . , so that o(Z[p∞]) is the set of all powers of p. Each Prüfer group

is divisible, that is, for each g ∈ Z[p∞] and n ∈ N, there exists h ∈ Z[p∞] such that

hn = g. The Prüfer groups, along with Q, form the building blocks for all divisible

abelian groups. We refer the reader to Robinson’s book [82] for an in depth study

of divisible groups.

By [17, Theorem 2], an abelian group is homogeneous if and only if its isomorphic

to some

G =

(
⊕

p∈P1
Znppmp )⊕ (

⊕
p∈P2

Z[p∞]np) if G is periodic,

(
⊕

p∈P Z[p∞]np)⊕ (Qn) otherwise,
(6.3)

where P1 and P2 partition the set P of primes, np, n ∈ N∗ ∪ {0} and mp ∈ N. For

example, if n = ℵ0 = np for each p ∈ P then G is the universal abelian group, that

is the homogeneous abelian group in which every f.g. abelian group embeds.

Note that the groups Zpmp ,Z[p∞] and Q are indecomposable, that is, they are

not isomorphic to a direct sum of two non-trivial groups (again see [82]).

It follows by the work in [6] that the group G is co-Hopfian if and only if n and np

are finite, for all p ∈ P. We call G component-wise non co-Hopfian if n, np ∈ {0,ℵ0}
for each p. That is, G is component-wise non co-Hopfian if and only if each of its

non-trivial p-components are non co-Hopfian and n ∈ {0,ℵ0}.
Let H be an abelian group with subset A = {hi : i ∈ I} for some index set

I. We call A a disjoint subset if 〈A〉I =
⊕

i∈I〈hi〉I , or equivalently, if 〈hi〉I and

〈A\{hi}〉I have trivial intersection for each i ∈ I. Note that if {g, h} form a disjoint

subset of H then o(gh) = lcm (o(g), o(h)), where we define lcm(ℵ0, n) = ℵ0 for all

n ∈ N∗.

For example, if H = Zn, where n ∈ N∗ and Z is either a finite cyclic p-group,

a Prüfer group or Q, then a maximal disjoint subset of H is of size n since Z is

indecomposable.

6.3.1 Surjective commutative inverse semigroups

Throughout this subsection we let S = [Y ;Gα;ψα,β] be a surjective commutative

HIS with each Gα isomorphic to the group G in (6.3) and connecting morphisms

non-injective. Recall that as S is surjective, each absolute kernel is trivial by Corol-

lary 6.2.23.

Lemma 6.3.1. For each α ∈ Y , the absolute image of Gα is a subgroup.
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Proof. By Lemma 6.2.38 the result is immediate if Gα is non-periodic, and so we

assume Gα is periodic. Let aα, bα ∈ I∗α be of orders n and m, respectively. Suppose,

seeking a contradiction, that aαbα /∈ I∗α, so that there exist β < α and k < o(aαbα)

such that (aαbα)k ∈ Kα,β ⊆ Tα. Notice that o((aαbα)k) divides o(aαbα), which in

turn divides nm since Gα is abelian. This means that I∗α and Kα,β are not of coprime

orders, contradicting the work after Lemma 6.2.35, and so I∗α is a subgroup.

By Theorem 6.2.41, it thus suffices to consider the case where the absolute image

of each maximal subgroup is trivial, so that Gα =
⋃
β<αKα,β for each α ∈ Y . By

Lemma 6.2.42, Gα is non Hopfian and non co-Hopfian.

Lemma 6.3.2. The group G is component-wise non co-Hopfian.

Proof. For each α ∈ Y , let Gα(p) denote the p-component of Gα. Then Gα(p) is

an order-characteristic subgroup of Gα, so that the set Sp of elements of S of order

some power of p forms a HIS by Lemma 6.2.7. Since Sp is periodic with trivial

absolute kernel and absolute image, it follows from Theorem 6.2.31 and Theorem

6.2.41 that Sp is a surjective Clifford semigroup with each Gα(p) a union of kernel

subgroups. In particular, Gα(p) is non co-Hopfian, and thus so is the p-component

of G, forcing np = ℵ0 by [6].

Suppose, seeking a contradiction, that 0 < n < ℵ0, so thatG is non-periodic, and

let α > β in Y . Pick a disjoint subset A = {gβ,i : 1 ≤ i ≤ n} of Gβ with o(gβ,i) = ℵ0,

and let gα,iψα,β = gβ,i for each i, so clearly {gα,i : 1 ≤ i ≤ n} forms a disjoint subset

of Gα. Then for any xα ∈ Kα,β of infinite order we have xmα = gm1
α,1 · · · gmnα,n for some

large enough m,mi ∈ N, since otherwise {xα, gα,i : 1 ≤ i ≤ n} forms a disjoint

subset of Gα of size n+ 1. Hence

eβ = gm1
β,1 · · · g

mn
β,n

contradicting A being a disjoint subset. Consequently, n is infinite as required.

In particular, age(G) is precisely the class of all f.g. abelian groups with elements

of order from o(G). We observe that if G is divisible then it is either periodic with

np = 0 for each p ∈ P1 or non-periodic. Hence in both cases G is a characteristic

subgroup of the universal abelian group.

Lemma 6.3.3. The semilattice Y is the universal semilattice.

Proof. Suppose, seeking a contradiction, that Y is a linear or semilinear order and

let α > β in Y . Let gα ∈ Kα,β be of order n ∈ N∗. Since the absolute kernel is trivial,

there exists γ < α such that gα 6∈ Kα,γ . Then β ≯ γ, since otherwise Kα,β ⊆ Kα,γ .

Hence as Y · α forms a chain, we have α > γ > β, so that Kα,γ ( Kα,β by Lemma

6.2.37. Since Kα,β
∼= Kα,γ by Lemma 6.2.19 there exists an element hα ∈ Kα,γ of

order n.
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Suppose first that n = p for some prime p. If there exists 0 < k, ` ≤ p such that

gkα = h`α then

gkαψα,γ = h`αψα,γ = eγ

and so gkα ∈ Kα,γ . However gαψα,γ has order p, and thus gkα = eα, so that k = p.

Hence ` = p as hα is of order p, and it follows that 〈gα, hα〉I ∼= Zp ⊕ Zp. In

particular, we may extend the isomorphism swapping gα and hα to an automorphism

θ = [θα, π]α∈Y of S. Since Y is linear or semilinear either γ ≥ γπ or γπ ≥ γ. By

the commutativity of the diagram [α, γ;α, γπ] we have

hαψα,γπ = gαθαψα,γπ = gαψα,γθγ 6= eγπ

as gα /∈ Kα,γ . Hence hα 6∈ Kα,γπ, and similarly as hαθα = gα we attain gα ∈ Kα,γπ.

If γ ≥ γπ then hα ∈ Kα,γ ⊆ Kα,γπ, while if γπ ≥ γ then gα ∈ Kα,γπ ⊆ Kα,γ , both

giving contradictions. Consequently no element of G can have prime order, and so

G is torsion free with n = ℵ0 by Lemma 6.3.2.

If gkα = h`α for some k, l ∈ N then gkα ∈ Kα,γ , and so (gαψα,γ)k = eγ , contradicting

G being torsion free. Thus 〈gα, hα〉I ∼= Z⊕ Z, and we argue in much the same way

as above to arrive at a contradiction.

Let K(G) denote the age of the group G, which is a Fräıssé class by the homo-

geneity of G. Let K[G] denote the class of all f.g. commutative inverse semigroups

with maximal subgroups from K(G). That is, K[G] is the class of all f.g. commu-

tative inverse semigroups with elements of order from o(G).

Proposition 6.3.4. The class K[G] forms a Fräıssé class.

Proof. Since K(G) is closed under substructure and direct product, so is K[G]. It is

then immediate that K[G] has HP and JEP. To show closure under amalgamation,

we follow the construction of Imaoka in [56, Section 2]. Given T, T ′ ∈ K[G] with

common inverse subsemigroup U , we assume w.l.o.g. that T and T ′ are strong

semilattice of groups, say, T = [Z;Hα;φα,β] and T ′ = [Z ′;H ′α′ ;φ
′
α′,β′ ]. We also

assume w.l.o.g. that T ∩ T ′ = U . Let 1 /∈ T ∪ T ′, and form the semigroups T 1 and

T ′1 by adjoining the identity 1, so that 1t = t1 = t for each t ∈ T ∪ T ′. We remark

that this goes against the common notion of adjoining an identity if necessary, where

here Imaoka forces an identity, even if T or T ′ are already monoids (forcing a zero

was discussed briefly in Section 3.5).

The semigroup T 1 is a commutative Clifford semigroup, and since the maximal

subgroups of T 1 are {1} and Hα (α ∈ Z), which are members of K(G), we have

T 1 ∈ K[G]. Similarly so is T ′1 ∈ K[G]. Hence W = T 1×T ′1 \{(1, 1)}, as an inverse

subsemigroup of T 1 × T ′1 is a member of K[G]. Imaoka then showed that there

exist a congruence ρ on W and embeddings θ : T →W/ρ and θ′ : T ′ →W/ρ given

by xθ = (x, 1)ρ and x′θ′ = (1, x′)ρ (x ∈ T, x′ ∈ T ′) such that Uθ = Uθ′ = Tθ∩T ′θ′.
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Hence W/ρ is generated by the elements xθ and xθ′, which are of orders from

o(T ) ∪ o(T ′) ⊆ o(G). Since G is abelian, o(G) is closed under product and we thus

have o(W/ρ) ⊆ o(G). Consequently, W/ρ is a member of K[G], and AP holds.

Finally, Rédei’s Theorem [77] states that every f.g. commutative semigroup is

finitely presented (see also [21, Theorem 9.28]). It easily follows that the class of

all f.g. commutative semigroups, and thus its subclass K[G], is countable.

We denote the Fräıssé limit of K[G] as C[G], noting that C[G] ∼= C[G′] if and

only if G ∼= G′. We prove that C[G] is isomorphic to S.

Lemma 6.3.5. Let m,n ∈ o(Gα) be such that either m|n or n = ℵ0. Then:

(i) If α > β then for every xβ ∈ Gβ of order m there exists an infinite disjoint

subset of Gα of elements of order n which are the pre-image of xβ under ψα,β;

(ii) If α > {β, γ} > τ forms a diamond in Y , then for any xγ ∈ Kγ,τ of order m,

there exists xα ∈ Kα,β of order n such that xαψα,γ = xγ.

Proof. (i) Let α > β and xβ ∈ Gβ be of order m. We first claim that there exists

xα ∈ Gα of order m with xαψα,β = xβ. If m = ℵ0 then the result is immediate as

ψα,β is surjective. Let m = pr for some prime p and r > 0 (the case r = 0 being

trivial). Suppose, seeking a contradiction, that for all γ < β we have o(xβψβ,γ) < pr.

Then xp
r−1

β ∈ Kβ,γ for all γ < β, contradicting the absolute kernel being trivial.

Hence there exists xγ = xβψβ,γ of order pr. By Lemma 6.2.16 we may extend

the isomorphism φ from {eβ} ∪ 〈xγ〉I to {eα} ∪ 〈xβ〉I , determined by eβφ = eα

and xγφ = xβ, to an automorphism [θα, π]α∈Y of S. Then the diagram [β, γ;α, β]

commutes and so

xβθβψα,β = xβψβ,γθγ = xγθγ = xβ.

Since xβθβ ∈ Gα has order pr, the claim holds for this case. Now suppose m =

pr11 p
r2
2 · · · prss for some primes pi and ri ∈ N. By the Fundamental Theorem of Finite

Abelian Groups, xβ = xβ,1xβ,2 · · ·xβ,s for some xβ,i ∈ Gβ of order prii and so, by

the previous case, there exists xα,i ∈ Gα of order prii with xα,iψα,β = xβ,i for each

i. Then xα = xα,1xα,2 · · ·xα,s has order m and is such that xαψα,β = xβ, and the

claim holds in all cases.

Notice that the set xαKα,β is precisely the elements of Gα mapped to xβ. Since

Kα,β
∼= Gα by Lemma 6.2.42, Kα,β is component-wise non co-Hopfian. By Lemma

6.3.2 there exists an infinite disjoint subset {gα,i : i ∈ N} of Kα,β of elements of

order n. If gkα,i = xlα for some 0 < k < n and 0 < l < m then eβ = ekβ = xlβ, a

contradiction. It follows that each xαgα,i has order n. We claim that {xαgα,i : i ∈ N}
forms an infinite disjoint subset of Gα. If

(xαgα,i)
k = (xαgα,j1)k1 · · · (xαgα,jt)kt
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for some 0 < k, k1, . . . , kt < n, then gkα,ig
−k1
α,j1
· · · g−ktα,jt

= xk1k2···kt−k
α by commutativ-

ity, and so eβ = xk1k2···kt−k
β . Hence m|(k1k2 · · · kt−k), so that xk1k2···kt−k

α = eα, and

we thus have

gkα,i = gk1
α,j1

. . . gktα,jt

contradicting {gα,i : i ∈ N} being disjoint, and the claim holds. The result then

follows as xαgα,i ∈ xαKα,β.

(ii) Let α > {β, γ} > τ form a diamond in Y and xγ ∈ Kγ,τ be of order m. By

part (i) there exists yα ∈ Gα of order n such that yαψα,γ = xγ , so that yα ∈ Kα,τ .

Let yαψα,β = yβ, so that yβ ∈ Kβ,τ . Then there exists β′ ∈ Y with β > β′ > τ and

such that yβ ∈ Kβ,β′ , since otherwise τ is a maximal element in the subsemilattice

{ρ ∈ Y : yβ ∈ Kβ,ρ} of Y , which would clearly contradict homogeneity. Extend the

isomorphism between

〈eα, eβ′ , xγ , eτ 〉I = {eα} ∪ {eβ′} ∪ 〈xγ〉I ∪ {eτ}

and 〈eα, eβ, xγ , eτ 〉I = {eα} ∪ {eβ} ∪ 〈xγ〉I ∪ {eτ}

which sends eβ′ to eβ and fixes all other elements to an automorphism θ′ = [θ′α, π
′]α∈Y

of S. Then yαθ
′ ∈ Gα is of order n with yαθ

′ ∈ Kα,β by the commutativ-

ity of [α, β′;α, β] (as yα ∈ Kα,β′), and yαθ
′ψα,γ = xγ by the commutativity of

[α, γ;α, γ].

Lemma 6.3.6. Let α > {β, γ} > τ be a diamond in Y and let xβ ∈ Gβ and

xγ ∈ Gγ be of orders m1,m2 ∈ N∗, respectively, such that xβψβ,τ = xτ = xγψγ,τ .

Then, for any n ∈ o(Gα) such that either mi|n (i = 1, 2) or n = ℵ0, there exists

xα ∈ Gα of order n such that xαψα,β = xβ and xαψα,γ = xγ.

Proof. We may assume that m1 = m2 = n. Indeed, as Y is the universal semilattice

there exist β′, γ′ ∈ Y with α > β′ > β, α > γ′ > γ and β′γ′ = τ by Lemma 5.1.3.

Hence by the previous lemma there exist xβ′ ∈ Gβ′ and xγ′ ∈ Gγ′ of order n with

xβ′ψβ′,β = xβ and xγ′ψγ′,γ = xγ , and so it would suffice to consider xβ′ and xγ′

instead.

By Lemma 6.3.5 (i) there exists zα ∈ Gα of order n such that zαψα,β = xβ, so

that zαψα,τ = xτ . Let zαψα,γ = zγ . Then there exists γ′ such that γ > γ′ > τ and

o(zγψγ,γ′) = o(xτ ), else τ would be a maximal element in the set

{ρ : o(zγψγ,ρ) = o(xτ )},

and thus contradict the homogeneity of S. Let zγψγ,γ′ = zγ′ , and pick gγ′ ∈ Kγ′,τ

of order n, noting that such an element exists as o(G) = o(Kγ′,τ ). Arguing in much

the same way as in the proof of Lemma 6.3.5 (i), the element zγ′gγ′ has order n.

By Lemma 6.3.5 (ii) there exists gα ∈ Kα,β of order n with gαψα,γ′ = gγ′ . Then as

(zαgα)ψα,β = xβ has order n, it easily follows that zαgα has order n, and is such
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that

(zαgα)ψα,β = zαψα,β = xβ and (zαgα)ψα,γ′ = zγ′gγ′ .

The map between the f.g. inverse subsemigroups {eα}∪〈xβ〉I ∪〈zγ′gγ′〉I ∪〈xτ 〉I and

{eα} ∪ 〈xβ〉I ∪ 〈xγ〉I ∪ 〈xτ 〉I which sends zγ′gγ′ to xγ and fixes all other elements,

is clearly an isomorphism. Extend the isomorphism to an automorphism θ of S.

Then (zαgα)θ ∈ Gα gives the required element.

Corollary 6.3.7. Let β1, β2, . . . , βr ∈ Y be such that βi ⊥ βj for each i 6= j, and let

xβi ∈ Gβi be such that if γ < βi, βj, for some i, j, then xβiψβi,γ = xβjψβj ,γ. Then

for any α ∈ Y with α > βi for all i, and any n ∈ o(Gα) with either o(xβi)|n for

all i or n = ℵ0, there exists an infinite disjoint subset of Gα of elements of order n

which are the pre-image of each xβi under ψα,βi.

Proof. By Lemma 6.3.5 (i) the result holds when r = 1. We proceed by induction

by supposing that the result holds when r = k−1, and letting xβ1 , xβ2 , . . . , xβk and

n ∈ o(Gα) satisfy the conditions of the corollary. Since Y is the universal semilattice

there exists α′ ∈ Y with α > α′ > β2, . . . , βk but α′ � β1 by Lemma 5.1.3. By the

induction hypothesis there exists xα′ of order n such that xα′ψα′,βi = xβi for all

2 ≤ i ≤ k. Since α > {α′, β1} > α′β1 forms a diamond in Y , there exists xα ∈ Gα of

order n such that xαψα,α′ = xα′ and xαψα,β1 = xβ1 by the previous lemma. Hence

xαψα,βi = xβi for all i. Let δ ∈ Y be such that α > δ > βi for each i, again noting

that such an element exists by Lemma 5.1.3, and let xαψα,δ = xδ. By Lemma 6.3.5

(i) there exists an infinite disjoint subset of Gα of elements of order n which are

mapped to xδ, and thus to each xβi . This completes the inductive step.

Proposition 6.3.8. The age of S is K[G].

Proof. Let K denote the age of S, noting that clearly K is a subclass of K[G].

Since a 1-generated Clifford semigroup is a cyclic group, each 1-generated member

of K[G] is a member of K(G), and thus of K. Proceeding by induction, assume

that every n-generated member of K[G] is contained in K, for some n ∈ N. Let

A = [Z;Aα;φα,β] be an n+1-generated member of K[G]. To avoid A trivially being

a member of K(G) we may assume that Z is non-trivial. Let α be maximal in Z

and suppose Aα = 〈aα,1〉I ⊕ 〈aα,2〉I ⊕ · · · ⊕ 〈aα,r〉I is an r-generated abelian group,

where each 〈aα,i〉I is a cyclic subgroup. Let A′ be the inverse subsemigroup of A

given by

A′ =

A \Aα if r = 1,

(A \Aα) ∪ 〈aα,2〉I ⊕ 〈aα,3〉I ⊕ · · · ⊕ 〈aα,r〉I if r > 1.

Then A′ is n-generated and with structure semilattice Z̄, where Z̄ = Z\{α} if r = 1,

and Z̄ = Z else. By the inductive hypothesis there exists an embedding θ : A′ → S,
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with induced embedding π : Z̄ → Y . Since Y is the universal semilattice there

exists δ ∈ Y such that Z̄π ∪ {δ} ∼= Z by Lemma 5.1.3, where we take δ = απ if

r > 1. Let α be an upper cover of β1, . . . , βr in Z, and aα,1φα,βi = aβi for each i.

By Corollary 6.3.7, there exists a infinite disjoint subset {gδ,k : k ∈ N} of Gδ with

o(gδ,k) = o(aα,1) which are the pre-image of each aβiθ under ψδ,βiπ (1 ≤ i ≤ r). Note

that A′α is f.g. since it is either empty or equal to 〈aα,2〉I ⊕ 〈aα,3〉I ⊕ · · · ⊕ 〈aα,r〉I .
On the other hand,

⊕
k∈N〈gδ,k〉I is infinitely generated, and it follows that there

exist only finitely many gδ,k with 〈gδ,k〉I ∩ A′αθ 6= {eα}. Hence, for some k ∈ N,

we have that 〈gδ,k〉I ⊕A′αθ is isomorphic to Aα, and its easily shown that the map

θ′ : A → A′θ ∪ 〈gδ,k〉I given by A′θ′ = A′θ and aα,1θ
′ = gδ,k is an embedding, thus

completing the inductive step.

A full classification of surjective commutative HIS is now achieved. In particular

we may describe all periodic commutative HIS as follows (the non-periodic case will

be considered separately in the next subsection).

Theorem 6.3.9. Let I∗,K∗ and T be periodic homogeneous abelian groups of pair-

wise coprime orders and T component-wise non co-Hopfian. Let Y be a homoge-

neous semilattice, and let U denote the universal semilattice. Then the following

inverse semigroups are HIS:

(i) (Y × I∗) ./ [Y ;K∗];

(ii) (U × I∗) ./ C[T ] ./ [U ;K∗];

Conversely, every periodic commutative HIS is isomorphic to an inverse semigroup

constructed in this way.

Proof. Let S be a periodic commutative HIS. Then by Theorem 6.2.31 S is isomor-

phic to I(S) ./ [Y ;K∗], where I(S) = [Y ; Iα;ψIα,β] is a surjective Clifford HIS and

Iα ∼= I is coprime to the homogeneous group K∗. By Corollary 6.2.23 the absolute

kernels of I(S) are trivial. If each ψIα,β is an isomorphism, then I(S) ∼= Y × I∗

by Lemma 3.7.13, which is structure-HIS by Proposition 6.2.32. We then have

case (i) by Corollary 6.2.30. Otherwise, as the absolute images form subgroups by

Lemma 6.3.1, we have I(S) ∼= [Y ;Tα;ψTα,β] ./ (Y × I∗) by Theorem 6.2.41, where

Tα is of coprime order to I∗α. Each group Tα is isomorphic to some component-wise

non co-Hopfian group T by Lemma 6.3.2. By Propositions 6.3.4 and 6.3.8 we have

[Y ;Tα;ψTα,β] ∼= C[T ], and we obtain case (ii) again by Corollary 6.2.30.

Conversely, the Clifford semigroups Y × I∗ and [Y ;K∗] are structure-HIS by

Proposition 6.2.32 and Lemmas 6.2.27 and 6.2.26. The Clifford semigroup C[T ] is

a HIS by Proposition 6.3.4. The result then follows by Proposition 6.2.14.
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6.3.2 An open case

We now consider the final case, where S = [Y ;Gα;ψα,β] is a commutative HIS such

that each Gα is isomorphic to the group G in (6.3) and elements of infinite order

are not contained in the image Iα or absolute kernel K∗α of Gα. We observe that as

Gα 6= K∗α, the subgroup Iα is non-trivial.

By Lemma 6.2.22 the absolute images of S are trivial, so that Gα =
⋃
β<αKα,β

and Gα ∼= Kα,β by Lemma 6.2.42. By Lemma 6.2.21, the elements of Gα of finite

order form precisely the subgroup Iα⊕K∗α, which is clearly a characteristic subgroup.

It follows by Lemma 6.2.7 that elements of S of finite order forms a HIS

T = [Y ; Iα ⊕K∗α;ψIα,β ./ ψ
K
α,β]

where ψIα,β ./ ψ
K
α,β = ψα,β|Iα⊕K∗α . The inverse subsemigroup [Y ; Iα;ψIα,β] of T is a

periodic surjective commutative HIS with trivial absolute-images and, by Corollary

6.2.23, trivial absolute kernels. Consequently, by Theorem 6.3.9, [Y ; Iα;ψIα,β] is

isomorphic to C[I], where I ∼= Iα is component-wise non co-Hopfian, and that

Y is isomorphic to universal semilattice U by Lemma 6.3.3. Hence [Y ;K∗α;ψKα,β]

is isomorphic to the structure-HIS [U ;K] by Lemmas 6.2.26 and 6.2.27, where

K ∼= K∗α. By Corollary 6.2.30, we have that T ∼= C[I] ./ [U ;K], and it follows that

G = I ⊕K ⊕ Qn (6.4)

where I =
⊕

p∈PI
Z[p∞]ℵ0 and K =

⊕
p∈PK

Z[p∞]np for some n, np ∈ N∗, where PI
and PK are disjoint subsets of P.

We let K∗[I;K;n] denote the class of all f.g. commutative inverse semigroups

A with maximal subgroups in K(G), where G is as in (6.4), and satisfying the

following properties:

1. every element of infinite order is maximal in (A,≤);

2. for each p ∈ PK , every element of order some power of p is maximal in (T,≤);

where ≤ is the natural order on A. In particular, if [Z;Aα;φα,β] ∈ K∗[I;K;n] then

every element of infinite order is mapped to an element of finite order by non-trivial

connecting morphisms by (1) and, for each p ∈ PK , every non-trivial element of

order some power of p is not contained in an image of any connecting morphism by

(2), and so is contained in the absolute kernel of its maximal subgroup. Note that

K[I] is a subclass of K∗[I;K;n].

Open Problem 8. For which conditions on K and n does K∗[I;K;n] form a

Fräıssé class?
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The problem we face when tackling this is open problem that the method in the

proof of Proposition 6.3.4 no longer applies. For example, let α > β and γ > β be

a pair of chains, and let T = 〈xα〉I ∪ {eβ} and T ′ = {eγ} ∪ {eβ} be f.g. Clifford

semigroups, with xα of infinite order. Note that T ∩ T ′ = {eβ}. Let ρ be the

congruence on W = T 1 × T ′1 \ {(1, 1)} as given by Imaoka. Then (xα, 1)ρ and

(xα, eβ))ρ have infinite order and (xα, 1)ρ > (xα, eβ)ρ. Hence W/ρ does not satisfy

(2), and is thus not a member of K∗[I;K;n].

We now prove that age(S) is K∗[I;K;n] by following the methods of the previous

subsection.

Proposition 6.3.10. Let β1, β2, . . . , βr ∈ Y be such that βi ⊥ βj for each i 6= j. Let

xβi ∈ Iβi be such that if γ < βi, βj then xβiψβi,γ = xβjψβj ,γ. Then for any α ∈ Y
with α > βi for all i, and any t ∈ o(Gα) with either o(xβi)|t for all i or t = ℵ0,

there exists a disjoint subset of Gα of size ℵ0 if t is finite, and size n otherwise,

consisting of elements of order t which are the pre-image of each xβi under ψα,βi.

Proof. Recall that S contains the inverse subsemigroup [Y ; Iα;ψIα,β] isomorphic to

C[I], where I ∼= Iα. Hence if t is finite, then the result easily follows by Corollary

6.3.7, where the required disjoint subset of Gα is contained in Iα.

Suppose instead that t = ℵ0. By the previous case there exists xα ∈ Iα of finite

order with xαψα,βi = xβi for all i. Since Y is the universal semilattice, we may fix

α′ ∈ Y with α > α′ > β1, . . . , βr by Lemma 5.1.3. Let {zi : i ∈ N} be a disjoint set

of size n consisting of elements of infinite order and such that zi ∈ Kα,α′ ⊆ Kα,βi .

Note that such a set exists as Kα,α′
∼= Gα. Then xαzi is a disjoint set of size n

consisting of elements of infinite order, and

(xαzi)ψα,βi = xαψα,βi = xβi

for each i ∈ N.

By a simple adaptation of Proposition 6.3.8 we have:

Corollary 6.3.11. The age of S is K∗[I;K;n].

Theorem 6.3.12 (Classification theorem of non-periodic commutative HIS). Let

G be a homogeneous non-periodic abelian group, Y a homogeneous semilattice and

U be the universal semilattice. Then the following inverse semigroups are HIS:

(i) Y ×G;

(ii) [Y ;G];

(iii) C[G], with G component-wise non co-Hopfian;

(iv) the Fräıssé limit of a Fräıssé class K∗[I;K∗;n], where G = I ⊕K ⊕Qn and I

is component-wise non co-Hopfian.
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Conversely, every non-periodic commutative HIS is isomorphic to an inverse semi-

group constructed in this way.

Proof. By Theorem 6.2.31, A non-periodic commutative Clifford semigroup S is a

HIS if and only if isomorphic to either a surjective Clifford HIS, or [Y ;G] for some

homogeneous semilattice Y and group G, or a Clifford HIS with no elements of

infinite order lying in the images or absolute kernels. By the usual argument, a

surjective commutative Clifford is a HIS if and only if is isomorphic to either Y ×G
for some homogeneous Y and G, or a HIS with connecting morphisms non-injective,

and Gα being a dense union of kernels by Theorem 6.2.41 (since the absolute image

forms a subgroup by Lemma 6.3.1). By Propositions 6.3.4 and 6.3.8 the second

possibility holds if and only if S isomorphic to C[G], where G is component-wise

co-Hopfian by Lemma 6.3.2. It thus suffices to consider the case where S has no

elements of infinite order lying in the images or absolute kernels. If S is a HIS

then age(S) is K∗[I;K;n] by Corollary 6.3.11, and thus S is isomorphic to the

Fräıssé limit of the Fräıssé class K∗[I;K;n]. The converse is immediate by Fräıssé’s

Theorem.

6.4 Inverse Homogeneous Semigroups

In this section we study the differences between the two concepts of homogeneity

for inverse semigroups, in particular when a HIS has the stronger property of being

an inverse homogeneous semigroup (HS).

Lemma 6.4.1. Let S be a periodic inverse semigroup. Then S is a HS if and only

if it is a HIS.

Proof. Suppose S is a HIS, so that, being periodic, S is a Clifford semigroup by

Theorem 6.1.6. Hence S is a HS by Lemma 4.3.2. The converse is by Lemma

6.1.1.

Corollary 6.4.2. A non-periodic inverse HS is a group, homogeneous as a semi-

group.

Proof. Let S be a non-periodic inverse HS. Then S is a HIS by Lemma 6.1.1, and

is thus either Clifford or bisimple. If S is bisimple then there exists x ∈ S such

that 〈x〉I is a bicyclic semigroup. Since x and x−1 have infinite order and Aut(S)

acts transitively on Inf(S), there exists an automorphism φ of S mapping x to x−1.

Then x−1φ = x and so

(xx−1)φ = x−1x and (x−1x)φ = xx−1,
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contradicting xx−1 > x−1x. Hence S is Clifford, and is therefore completely simple

by Corollary 4.5.2. However a semilattice in which every element is minimal is

clearly trivial, and so S is a group.

However the converse is not known, that is, is a homogeneous group a HS? We

give a positive answer for the class of abelian groups, thus completing our study

into the homogeneity of commutative inverse semigroups.

Proposition 6.4.3. A homogeneous abelian group is a HS.

Proof. If G is periodic then the result is clear, and so we assume G is a non-periodic

abelian homogeneous group with identity 1. Let φ : A → B be an isomorphism

between f.g. subsemigroups of G, and let AG, BG denote the finitely generated

subgroups of G generated by A and B, respectively. Since G is abelian, each

element of AG is of the form uv−1 for some u, v ∈ A and so we may take the map

φ̂ : AG → BG given by

(uv−1)φ̂ = (uφ)(vφ)−1.

Then φ̂ is well-defined and injective since, for any uv−1, st−1 ∈ AG we have

(uv−1)φ̂ = (st−1)φ̂⇔ (uφ)(vφ)−1 = (sφ)(tφ)−1

⇔ uφtφ = sφvφ

⇔ ut = sv

⇔ uv−1 = st−1.

If ab−1 ∈ BG, then there exist u, v ∈ AG such that uφ = a and vφ = b since φ is

surjective. Hence (uv−1)φ̂ = ab−1 and φ̂ is surjective. Finally,

(uv−1)φ̂(st−1)φ̂ = (uφ)(vφ)−1(sφ)(tφ)−1 = (us)φ((vt)φ)−1

= (us(vt)−1)φ̂ = ((uv−1)(st−1))φ̂

and 1φ̂ = (uu−1)φ̂ = (uφ)(uφ)−1 = 1 for any u ∈ A. It follows that φ̂ is an

isomorphism, and extends φ since for all u ∈ A,

uφ̂ = uφ(1φ)−1 = uφ.

Since any automorphism of G which extends φ̂ additionally extends φ, we have that

G is a HS by the homogeneity of G.

From the proposition above and Theorem 6.3.9 we obtain a complete classifi-

cation of all commutative inverse HS, as either a periodic commutative HIS or a

homogeneous non-periodic abelian group.

Open Problem 9. Is a non-periodic homogeneous group a HS?
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We note that Open Problem 9 is simply a special case of Open Problem 3 on

completely simple semigroups.

Open Problem 10. If G is a homogeneous group and θ : S → T is an isomorphism

between f.g. subsemigroups S and T ofG, then can θ be extended to an isomorphism

θ̂ : 〈S〉I → 〈T 〉I?

The two open problems are clearly closely linked. Indeed, if G is a homogeneous

group then it is a HIS, and so the isomorphism θ̂ : 〈S〉I → 〈T 〉I of Open Problem

10 can be extended to an automorphism of G, thus showing G to be a HS.



Chapter 7

Homogeneous orthogroups

Given that we now have a full description of homogeneous bands, as well as a large

pool of homogeneous Clifford semigroups, the natural next step is to consider the

homogeneity of orthodox completely regular semigroups, being a generalization of

both bands and Clifford semigroups. We follow [72] in calling an orthodox com-

pletely regular semigroup S an orthogroup. If further we have that E(S) is a regular

band, then S is called a regular orthogroup.

Let S be a orthogroup with band of idempotents E(S). Then as E(S) is a com-

pletely regular characteristic subsemigroup of S, the homogeneity of S is inherited

by E(S). Furthermore, as homogeneous bands are regular bands by Proposition

5.5.2 and the classification theorem of homogeneous bands, we have the following

result.

Corollary 7.0.1. A homogeneous orthogroup is a regular orthogroup.

A regular orthogroup in which H forms a congruence is called a regular or-

thocryptogroup. This is equivalent to a semigroup being a spined product of a reg-

ular band and a Clifford semigroup by [72, Lemma V.5.3]. The class of all regular

orthocryptogroups forms a subvariety of the variety completely regular semigroups,

defined by the identities [xx′ = x′x, x(yz)′x = xy′x′z′x].

A natural question then arises: is the spined product of a homogeneous band

with a homogeneous Clifford semigroup necessarily homogeneous?

While we are not able to fully answer this question, we follow the usual methods

from the past two chapters to obtain a generalization of Corollary 5.3.3 and Propo-

sition 6.2.14, which allows examples of homogeneous regular orthocryptogroups to

be formed ad-lib.

An isomorphism theorem for regular orthocryptogroups follows from [72, Propo-

sition V.5.7], and gives a converse to Proposition 2.11.3 in the case of regular or-

thocryptogroups:

189
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Proposition 7.0.2. Let B =
⋃
α∈Y Bα, B′ =

⋃
α′∈Y ′ B

′
α′ be a pair of regular bands

and S = [Y ;Gα;ψα,β], S′ = [Y ′;G′α′ ;ψ
′
α′,β′ ] a pair of Clifford semigroups. Let

θ : B → B′ and φ : S → S′ be a pair of isomorphisms, both with induced semilattice

isomorphism π : Y → Y ′. Then the map χ : B ./ S → B′ ./ S′ given by

(eα, gα)χ = (eαθ, gαφ) (eα ∈ Bα, gα ∈ Gα, α ∈ Y )

is an isomorphism from B ./ S to B′ ./ S′, denoted by χ = θ ./ φ. Conversely,

every isomorphism from B ./ S to B′ ./ S′ can be constructed in this way.

Proposition 7.0.3. Let B be a homogeneous band and S a homogeneous Clif-

ford semigroup, both with structure semilattice Y . If either B or S are structure-

homogeneous, then the regular orthocryptogroup B ./ S is a homogeneous completely

regular semigroup.

Proof. Suppose first that B is structure-homogeneous and let A1 and A2 be f.g.

completely regular subsemigroups of B ./ S. Since the class of regular orthocryp-

togroups forms a subvariety of the variety of completely regular semigroups, it

follows by the usual argument that Ai = Bi ./ Si for some f.g. subbands Bi of B,

and f.g. Clifford subsemigroups Si of S (i = 1, 2). Let Ai have structure semilat-

tice Yi, and χ be an isomorphism from A1 onto A2. Then by Proposition 7.0.2,

χ = θ ./ φ for some isomorphisms θ : B1 → B2 and φ : S1 → S2, both with induced

semilattice isomorphism π : Y1 → Y2, say. By the homogeneity of S we may extend

φ to an automorphism φ̂ of S. Let π̂ be the semilattice automorphism of Y induced

by φ̂. Since B is structure-homogeneous and π̂ extends π, we may extend θ to an

automorphism θ̂ of B with induced semilattice automorphism π̂. Then θ̂ ./ φ̂ is

an automorphism of B ./ S by Proposition 7.0.2, and extends θ ./ φ as required.

Hence B ./ S is homogeneous.

The proof in the case of S being structure-homogeneous is argued in the same

way.

We showed after Lemma 6.1.5 that a group is homogeneous in the signature of

groups LG if and only if it is homogeneous in LUS . It follows that every homogeneous

group is a structure-homogeneous Clifford semigroup, and so for any homogeneous

group G and n,m ∈ N∗, the orthogroup S = Bn,m × G is homogeneous by the

proposition above. Moreover, by [72, Theorem III.5.2] a semigroup is a direct

product of a group and a rectangular band if and only if it is an orthodox completely

simple semigroup. We have thus proven the backward direction of the following

corollary, the forward direction being immediate from Corollary 4.4.7.

Corollary 7.0.4. Let S = M[G; I,Λ;P ] be an orthodox completely simple semi-

group. Then S is a homogeneous completely simple semigroup if and only if G is a

homogeneous group.
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Proposition 7.0.3 does not give rise to all homogeneous regular orthocryp-

togroups, for it does not take into account the non structure-homogeneous bands, for

example. However, its strength lies in our complete descriptions of both structure-

homogeneous bands in Theorem 5.5.5, and structure-homogeneous Clifford semi-

groups in Theorem 6.2.34.

Open Problem 11. Is a homogeneous orthogroup necessarily a regular orthocryp-

togroup?

Open Problem 12. Is the spined product of a homogeneous band and a homoge-

neous Clifford semigroup (with equal structure semilattices) a homogeneous regular

orthocryptogroup?

We note that by Proposition 7.0.3, an example of a negative answer to Open

Problem 12 would necessarily be a spined product of a non structure-homogeneous

band and a non structure-homogeneous Clifford semigroup.

7.1 Further work on homogeneity

We end this thesis by considering future directions for the work on homogeneous

semigroups.

While a full classification of homogeneous bands has been given, we are inter-

ested in further understanding of the ‘universal normal band’ BN . In particular,

since BN is ℵ0-categorical, we would like to be able to give a first order definition

(that is, describe its full theory). A second direction is to follow the research in

[27] by studying the automorphism group of homogeneous bands. This task should

be relatively straight forward for structure-homogeneous bands, but more insightful

results are likely for the image-trivial and universal cases.

The future direction to the homogeneity of inverse semigroups is more obvious,

and several open problems are given in the previous chapter. Our main interest

is in determining whether or not bisimple homogeneous inverse semigroups which

are not groups exist. It was originally conjectured negatively, but my faith in this

conjecture has wavered in time. The final open problem of that chapter is also

worth highlighting, due to its sheer simplicity in its statement. It asks whether or

not the properties of group homogeneity and semigroup homogeneity for a group

are equivalent.

In terms of arbitrary completely regular semigroups, the first task is to deter-

mine the homogeneity of completely simple semigroups. A full classification would

both determine all non-periodic completely regular homogeneous semigroups by

Corollary 4.5.2, and answer Open Problem 3. We suspect that the difference be-

tween the homogeneity of a completely simple semigroup in LS or LUS may depend
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solely on the group case. Finally, for orthodox completely regular semigroups it is

hoped that by further understanding the homogeneity of Clifford semigroups, Open

Problem 12 may be answered.

A research objective at the beginning of my PhD was to examine the property

of homomorphism homogeneity (hom-hom). A structure M is hom-hom if every

morphism between f.g. substructures extends to an endomorphism of M . Much

like with homogeneity, the hom-hom of semigroups has only been studied in the

context of semilattices in [22]. The reason for not studying hom-hom semigroups

during my PhD was a positive one: the homogeneity of semigroups was a far richer

field of study than expected. I hope to begin research into hom-hom semigroups

soon.
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[3] J. Araújo, P.V. Bünau, J.D. Mitchell, and M. Neunhöffer, ‘Computing auto-
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[32] R. Fräıssé, ‘Sur l’extension aux relations de quelques propriétés des ordres’,
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