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Abstract 

 

The conversion of biomass to synthetic natural gas (SNG) draws great interest 

in the world because it is a sustainable energy resource, where it can replace 

the fossil natural gas and reduce environmental problems. Common 

technologies for CH4 production are based on the gasification of biomass at 

high temperature followed by CO and CO2 methanation, but it is energetically 

costly and complex, requiring separate reforming stages due to the heavy tar 

production from the gasification process, and multiple cooling stages of the 

methanation due to the large exothermicity of this equilibrium driven reaction. 

 

Therefore, the main focus of this research was to attempt to address these 

issues by introducing the low temperature steam reforming (LTSR) process of 

bio-oil for CH4 production via fast pyrolysis of biomass using palm empty fruit 

bunch (PEFB) as the biomass feedstock, a significant renewable waste of the 

palm oil industry, currently underexploited. One advantage of proposing the 

pyrolysis route vs. gasification, was the conversion of PEFB into bio-oil without 

generation of heavy tars, and at lower temperature than gasification due to the 

lower endothermicity of the chemical process favouring oil product rather than 

gas. Another advantage was the lower exothermicity of the subsequent 

methanation step by using bio-oil as feed rather than CO and CO2. It was 

intended that bringing closer the enthalpy changes of the gasification by 

pyrolysis and of the methanation by feedstock substitution, would improve the 

efficiencies of heat transfers between the two. 
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Chemical Equilibrium and Applications (CEA) program was used to analyse 

thermodynamic equilibrium for conversion PEFB bio-oil to CH4 using LTSR 

process. It was found that CH4 production was favoured in the 130–330 ºC 

range and at around molar steam to carbon ratio of 3 at atmospheric pressure. 

Using the optimum conditions observed from the thermodynamic equilibrium 

calculations, the experimental feasibility of CH4 production from acetic acid as 

single compound bio-oil surrogate via LTSR was performed at bench scale by 

using nickel-calcium aluminate (Ni/Ca-Al2O3) catalyst in a packed bed reactor. 

The optimum conditions for CH4 production were obtained at 400 ºC and S/C 

of 2 with 15.7 wt.% at atmospheric pressure. As undesirable carbon formation 

on the catalyst was observed during the experiments, it is suggested to 

operate at higher pressure (20–30 bar), which is commonly used in the CO 

and CO2 methanation industrial processes. Based on the Aspen Plus 

simulation results for the full flow biorefinery of CH4 production from PEFB via 

fast pyrolysis followed by LTSR of the bio-oil, the estimated thermal 

efficiencies were 74.3% (net power and heat demand not included in the 

process) and 81.1% (net power and heat demand included in the process) 

were comparable to the current biomass gasification technology to CH4 

production via syngas followed by CO and CO2 methanation. 
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Chapter 1  

Introduction 

 

1.1 Global energy consumption 

 

Energy consumption is increasing faster worldwide than the growth of 

industries, with approximately 80% of the global energy consumption still 

depending on fossil fuel feedstock [1]. According to the International Energy 

Agency, it has been estimated that by the year 2030, there will be a 53% 

increase in global energy consumption with 70% of the growth demand 

coming from developing countries. The energy consumption is mainly fossil 

fuel based (88.1%), which consists of 34.8% crude oil, 29.2% coal and 24.1% 

natural gas [2]. 

 

The increment of global natural gas consumption for different regions in 1965, 

1985 and 2003 is shown in the pie charts of Figure  1.1. The size of the pie 

charts are proportional to the total consumption of natural gas where the 

statistics are in terms of billion cubic meters (Bcm) and percentage of total 

share. The natural gas consumption in developing countries, especially in Asia 

and Pacific regions has increased from 1965 (1%) to 2003 (13%), while North 

America’s share fell more than a half from 73% in 1965 to 30% in 2003. But, it 

still remains as the main consumer throughout the year. 
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As one of the developing countries in Asia and Pacific regions, Malaysia is 

highly dependent on fossil fuels for its energy sector as shown in Table  1.1. 

The amount of energy supply has increased four-fold from 1990 until 2014, 

with more than 95% of the energy supply relying on crude oil, petroleum 

products (such as diesel, kerosene and naphtha), natural gas and coal. Crude 

oil was the main energy supply in 1990, with 40.9%, but it dropped to 28.9% in 

2014 due to its fast depleting supply [3]. Thus, natural gas becomes the main 

energy supply with 43.4%, followed by crude oil with 28.9%, coal with 16.6% 

and petroleum products with 7.2% in 2014. On the other hand, biodiesel, 

solar, biomass and biogas which are specified as ‘Others’, were not identified 

as one of the energy supply in Malaysia in 1990, but shares 0.6% of total 

energy supply in 2014. It is believed that the renewable energy becomes a 

more attractive resource since it gives more advantages compared to the 

fossil fuels (crude oils, petroleum products and natural gas) in terms of 

availability of the resources and environmental impacts. 

 

The composition of natural gas before processing differs with geographic 

areas, some examples of gas fields in Europe are listed in Table  1.2. From 

five different gas fields, the total volume of natural gas is composed mainly 

from methane (CH4) which represents more than 70%, and the rest is mostly 

consisting of alkanes (ethane, propane, butane and pentane) with less than 

10%. Hydrogen sulphide, carbon dioxide (CO2) and nitrogen (N2) gases are 

also found from trace amounts to larger volume percentages in the natural 

gas, depending on source location. 
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Figure ‎1.1 Global natural gas consumption in 1965, 1985 and 2003 [4]. 
Source: BP (2004) 
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Table ‎1.1 Primary energy supply share in Malaysia [5]. (ktoe are kilotons of 
oil equivalent) 

Primary energy supply 

Amount (ktoe)  Share (%) 

1990 2014 1990 2014 

Crude oil 8,783 26,765  40.9 28.9 

Petroleum products 3,651 6,699  17.0 7.2 

Natural gas 6,801 40,113  31.7 43.4 

Coal and coke 1,326 15,357  6.2 16.6 

Hydropower 915 3,038  4.2 3.3 

Others - 556  0.0 0.6 

Total 21,476 92,528  100 100 

 

Table ‎1.2 Natural gas compositions in volume percentage in Europe’s gas 

fields [6]. 

Constituents Lacq Groningen UK North Sea Ekofisk 

 France Netherlands (southern) (northern) Norway 

Methane 69.52 81.30 95.05 78.08 85.2 

Ethane 2.82 2.85 2.86 10.1 8.6 

Propane 0.80 0.37 0.49 5.7 2.9 

Butanes 0.60 0.14 0.17 2.2 0.9 

Pentanes 0.91 0.09 0.05 1.4 0.2 

Hydrogen sulphide 15.59 Trace trace trace trace 

Carbon dioxide 9.76 0.89 - 1.1 1.7 

Nitrogen - 14.35 1.26 0.7 0.5 
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As mentioned earlier, natural gas, which consists primarily of methane, has 

become the main energy supply in Malaysia because of high demand in 

various sectors, this is shown in Figure  1.2 which includes transport, 

residential, self-generation, non-energy uses, industrial and power generation. 

The natural gas consumption has gradually increased from 1990 with 2.4 

million tonnes of oil equivalent (Mtoe) to 2014 with 25.2 Mtoe. Power 

generation is the major sector, consuming half of the total natural gas 

consumption per annum. 

 

 

Figure ‎1.2 Natural gas consumption by sector in Malaysia from 1990–2014 
[7]. Source: PETRONAS, Gas Companies, Power Utilities, IPPs and Self-
Generation Plants 

 

However in Italy, residential and commercial became the main sectors as 

illustrated in Figure  1.3, that consumed more than a half of the total natural 

gas consumption in year 1995 with 22 billion cubic meters (Bcm) or 19.8 Mtoe, 

followed by power generation (10.5 Bcm or 9.45 Mtoe) and industry (7.5 Bcm 



6 
 

or 6.75 Mtoe). Although both of countries, Malaysia and Italy showed different 

values of total gas consumption by sectors, generally, natural gas was 

consumed as a fuel source. 

 

 

Figure ‎1.3 Natural gas consumption by sector in Italy from 1960–1995 [4]. 

Source: IEA (2003) 

 

 

1.2 Environmental impact 

 

The increment of fossil fuels consumption in power generating plants have 

negative impacts on the environment where it has been identified as the main 

contributor to greenhouse gases (GHG) emissions [8]. Table  1.3 shows the 

average daily activity of a 2,000 MW power plant by using fossil fuel which 

include coal, oil and natural gas. Power plants fuelled by natural gas have the 

lowest of GHG and air pollutant emissions, where less carbon dioxide (CO2) is 

produced with the least emission of sulphur dioxide (SO2) and nitrogen oxides 
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(NOx) compared to coal and oil fuel. But, the amount of CO2 released (21 

ktoe) from natural gas power plant still gives a higher level of CO2 in the 

atmosphere which is related to global warming. 

 

Table ‎1.3 The average daily activity of a fossil fuel 2000 MW power plant 
[6]. 

Plant type Coal 

(1% sulphur) 

Fuel oil 

(3.5% sulphur) 

Natural gas 

Fuel consumed (tons) 16,500 10,200 7,800 

Waste solids (tons) 2,000* 5* nil 

Waste heat (GWh) 76 73 70 

SO2 produced (tons) 350 750 negligible 

NOx produced (tons) 50–150 40–70 15–75 

CO2 produced (tons) 39,000 33,000 21,000 

Net efficiency (%) 38 39 40 

*Plus sulphur 

 

Figure  1.4 shows various gases of GHG that contribute to global warming, 

which include carbon dioxide (CO2), methane (CH4), chlorofluorocarbon and 

nitrous oxide (N2O). CO2 gas is the major contributor to the global warming 

affect, which is about half of the total GHG (49%), followed by CH4 (18%), 

chlorofluorocarbon (14%) and N2O (6%). Moreover, several gases such as 

nitrous oxide (N2O), carbon monoxide (CO), carbon dioxide (CO2) and sulfur 

dioxide (SO2) that are produced by combustion of fossil fuel in the industrial 

sector, contributes to climate forcing, acid rain and smog [3, 9]. 
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Figure ‎1.4 Total percentage of Greenhouse Gases (GHG) that contribute to 

global warming [10]. 

 

 

Figure ‎1.5 Worldwide carbon dioxide emissions from 1980–2014 [11]. 
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The National Aeronautics and Space Administration (NASA) has developed a 

model to determine the relationship between CO2 emission with global 

warming, and stated that the temperature increases equivalently with the 

amount of CO2 released into the atmosphere [12]. Figure  1.5 shows the 

worldwide CO2 emissions from 1980 to 2014 where CO2 emission increased 

from 19.4 billion tonnes to 36.1 billion tonnes [11]. It has been estimated up to 

2030, CO2 emission will continuously increase to 40 billion tonnes if no further 

efforts are made to prevent this issue [13]. 

 

 

1.3 Synthetic Natural Gas (SNG) production 

 

The top 15 countries holders of world natural gas reserves and resources are 

listed in Table  1.4, where Iran is the leading country in largest gas reserves 

and resources with 34.0 trillion cubic meters (Tcm). However, the global 

reserve of crude oil and natural gas is expected to last within 40–60 years [3]. 

Thus, the global reserve of fossil fuels such as petroleum is limited and 

caused higher prices, above US$ 53 per barrel as in January 2017 [14]. 

However, shale oil and shale gas production have driven a decrease in the 

natural gas prices from US$ 8.85 per million Btu in 2008 to US$ 2.60 per 

million Btu in 2015 [15] which affected Iran’s economy. Because of limited of 

source as well as negative impact to the environment, government and 

researchers have been driven to search and find a new replacement of fossil 

fuel which has long availability with less production cost. 
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Table ‎1.4 The top holders of world conventional natural gas reserves in 
2015 [15]. 

Country Natural gas reserves (Tcm) World share (%) 

1 Iran 34.0 18.2 

2 Russia 32.3 17.3 

3 Qatar 24.5 13.1 

4 Turkmenistan 17.5 9.4 

5 United States 10.4 5.6 

6 Saudi Arabia 8.3 4.5 

7 United Arab Emirates 6.1 3.3 

8 Venezuela 5.6 3.0 

9 Nigeria 5.1 2.7 

10 Algeria 4.5 2.4 

11 China 3.8 2.1 

12 Iraq 3.7 2.0 

13 Australia 3.5 1.9 

14 Indonesia 2.8 1.5 

15 Canada 2.0 1.1 

 Rest of world 22.8 11.9 

 World Total 186.9 100 

 

The advantage of CH4 gas is its high energy conversion efficiency and the 

already existing gas distribution infrastructure, as well end use technologies 

such as pipelines, power stations, heating and increasing numbers of cars 

running on compressed natural gas (CNG) in the world [16-19]. For example, 

the primary energy supply in Malaysia shows that natural gas consumes 
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53.6% of total natural gas for power generators sector, as shown in Table  1.5. 

However, commercial and residential in the United Kingdom (UK) are the main 

consumer of natural gas followed by power generation sector with 48% and 

27% respectively. Moreover, Malaysia exports approximately 34.2 Bcm of 

LNG which brings Malaysia as the third largest exporter of LNG in the world 

after Qatar (106.4 Bcm) and Australia (39.8 Bcm) in 2015 [15]. Thus, for 

Malaysia, conversion of biomass to CH4 is a practical approach to meet the 

current energy demand in Malaysia as CH4 has similar composition as natural 

gas. 

 

Table ‎1.5 Share percentage (%) of natural gas consumption by sectors in 
2013. 

Sector Malaysia [20] United Kingdom [21] 

Power generators 53.6 26.7 

Non-energy 20.9 0.7 

Industry 17.8 11.1 

Self-generation 6.5 6.5 

Commercial and residential 0.1 48.0 

Others 1.1 7.0 

 

The advantages of SNG production have motivated several countries 

including Germany to set a target of replacing imported natural gas per year 

with SNG in the amount of 6 billion m3 by the year 2020 [22]. Currently, CH4 

production from biomass are split into two main methods, either biological or 

thermochemical (combustion, liquefaction, gasification and pyrolysis) 

processes. In Malaysia, biogas is commonly been produced naturally from 
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biological anaerobic degradation process such as in municipal landfills and 

Palm Oil Mill Effluent (POME) anaerobic ponds. 

 

However, some disadvantages of landfilling include limited land and its rising 

cost for municipal landfills [2], the lack of knowledge and absence of 

infrastructures availability in palm oil mill industries [23]. Thus, biogas 

production potential from the palm oil industry is not realised, and CH4 

escapes into the atmosphere, which contributes to global warming as CH4 is 

21 times more potent a greenhouse gas than CO2 [24]. Moreover, some of oil 

mill factories failed to meet the standardized discharge where unpleasant 

odours from anaerobic ponds offend local population [25]. Therefore, POME 

seems not to fulfill the requirement of Malaysia’s National Green Technology 

Policy (2009) which emphasizes in promoting efficient utilization as well as to 

conserve and minimize the impact on the environment [2]. For that reason, it is 

convenient to convert biomass to CH4 via thermochemical means in dedicated 

plants where CH4 fugitive emissions can be better controlled. 

 

 

1.4 Palm oil biomass as a modern fuel 

 

As the demand for vegetable oils grows worldwide, it causes production of a 

great volume of biomass, which is recognized as the third main energy 

resource globally [26]. Figure  1.6 shows a pie chart with the demand in eight 

different vegetable oils in 2015, including palm, soybean, rapeseed, sunflower, 

cottonseed, peanut, coconut and olive oil. More than half of the total vegetable 
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oil demand is overtaken by both palm oil and soya oil with 38% and 28% 

respectively. 

 

 

Figure ‎1.6 Worldwide vegetable oil demand in 2015 [27]. 

 

Palm oil has the highest demand due to several advantages, including higher 

annual oil yield per hectare [28, 29], and having lower production cost 

compared to other oilseeds crops [30]. The comparison of oil production per 

hectare of palm oil plantation compared to soybean, sunflower and rapeseed 

is shown in Figure  1.7. Palm oil shows a significant difference among the other 

crops, where it is the highest oil production with the lowest total plantation 

area. Despite using a minimum land area, palm oil also has the least 

expensive production cost compared to other major oil crops shown in 

Table  1.6. 
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Figure ‎1.7 Comparison palm oil efficiency with other major oil crops 

(soybean, sunflower and rapeseed)  [29].     
 Source: Oil World 2013. 

 

Table ‎1.6 Comparative cost for palm oil compared to soybean and 
rapeseed in December 2016 [31]. 

Oil Cost (USD/tonne) Country/region 

Palm 708 Malaysia 

Palm 709 Indonesia 

Soybean 861 USA 

Soybean 826 Brazil 

Rapeseed 918 Dutch 

Sunflower 765 Argentina 

 

In 2009, the two largest producers of palm oil were Malaysia and Indonesia, 

where both countries contributed 86% of the world palm oil production as 

illustrated in Figure  1.8. The increase of palm oil production generates 

massive amounts of palm oil derived biomass by-product which includes 
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empty fruit bunch (EFB), mesocarp fibre, shell, palm kernel, frond and trunk, 

which are listed in Table  1.7. Empty fruit bunch is the main contributor to the 

palm oil biomass by-product with 15.5–17.5 million tons per year. Although 

frond is the second largest of palm oil biomass by-products, it is usually used 

as erosion control measure as well as soil fertilizer and helps with 

conservation of the palm oil plantation itself [32]. As for mesocarp fiber and 

shell, they are typically used as combustion fuel to generate heat and 

electricity for the palm oil mill [33] rather than using EFB, which contains 

almost 60% of water [34]. Moreover, most of the palm oil millers do not have 

the technology for the disposal of EFB [35]. Thus, EFB is typically left outside 

without any further utilization and becomes an abundant waste, which when 

left in large piles undergoes anaerobic digestion and generates CH4 

emissions. 

 

Table ‎1.7 Palm oil biomass components and quantity produced in Malaysia 
[36-38]. 

Biomass component Quantity/annum (Million tonnes) 

Empty fruit bunch (EFB) 15.5–17.5 

Frond  12.9 

Mesocarp fiber (MF) 9.6–9.7 

Trunk 8.2 

Shell 4.5–6.0 
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Figure ‎1.8 World palm oil production in 2009 [39]. 

 

 

1.5 Research aims and objectives 

 

This research is concerned in finding a significant incentive to utilize palm 

empty fruit bunch (PEFB) as an abundant feedstock for conversion to clean 

fuels and value added products, via the production of bio-oil from further 

processing by the fast pyrolysis process. Specifically, the novelty of this 

research is to investigate and optimize the conversion pyrolysis oil from PEFB 

to methane via advanced reforming processes. Thus, the aim for this study is 

to produce a methane-rich gas from PEFB bio-oil. 
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The objectives for this research are as follows: 

1. To perform chemical equilibrium calculations for methanation of palm 

empty fruit bunch (PEFB) bio-oil feedstock at different values of operating 

temperatures and steam to carbon ratio (S/C). 

2. To define the optimum range of conditions for methane production in 

steam reforming process, from Objective 1. 

3. To investigate the influence of in situ CO2 sorption towards methane 

production by varying carbon to calcium oxide (CaO) ratios (C:CaO), and 

compare the energy balances of methanation process with the optimum 

results from Objective 1. 

4. To demonstrate feasibility of conversion of acetic acid as surrogate bio-oil 

compound to methane via direct methanation by low temperature steam 

reforming process (LTSR) in a packed bed catalytic reactor. 

5. To optimize the methane production via LTSR by investigating the effect 

of operating parameters towards methane production (temperatures and 

S/C), from Objective 4. 

6. To simulate a full process of nearly pure CH4 production from biomass 

(PEFB) conversion via pyrolysis by using Aspen Plus. 

7. To demonstrate and identify the possibilities of the process integration 

between possible streams in the process, from Objective 6 by using 

Aspen Plus. 

8. To evaluate the worth of the proposed process in comparison with the 

equivalent state of the art technology, which relies on biomass gasification 

followed by CO and CO2 methanation of the produced syngas. 
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Chapter 2 gives a brief description of the current technologies used for 

synthetic natural gas (SNG) production and common upgrading techniques 

used for obtaining high purity of CH4 as the final product. Literature reviews 

which relate to pyrolysis oil production were also included in this chapter since 

PEFB bio-oil was used in this work as the simulated feedstock for LTSR in the 

full process plant. 

 

Chapter 3 describes the methodologies used in this study, where this research 

work was conducted into two parts, experimentation and simulation. The 

experimental work was carried out in the laboratory of the University of Leeds, 

UK while the Chemical Equilibrium and Application (CEA) and Aspen Plus 

programmes were used for simulation work. 

 

In Chapter 4, chemical equilibrium calculations by using CEA were performed, 

where the aim of this study was to identify the optimum range of conditions for 

CH4 production from of PEFB pyrolysis oil with and without in situ CO2 

sorption. 

 

Chapter 5 discussed the experimental results of LTSR using acetic acid as 

model surrogate species for the pyrolysis oil with a nickel catalyst in a packed 

bed reactor, where the closeness of the outputs were compared with the 

predicted ideal values and aspects for further research and optimisation were 

identified. 
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Chapter 6 illustrated a preliminary study of the process design of a full process 

of CH4 production from biomass (PEFB) conversion via pyrolysis by using 

Aspen Plus. The possibilities of process integration in this process were 

proposed in order to identify the energy saving opportunities. Comparisons of 

the modelled plant efficiencies with those of the nearest equivalent state of the 

art technologies concluded this chapter. 

 

Conclusions and future work recommendations of this work were summarized 

in Chapter 7. 
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Chapter 2  

Literature Review 

 

2.1 Introduction 

 

The increase of global energy demand especially in natural gas consumption 

has forced researchers to find other solutions since the petroleum fuel 

production will not last forever. The world is currently discovering and 

beginning to exploit its shale gas reserves which have been seen to 

enormously benefit the economy of the USA, which has embraced the 

technology of shale fracturing for the production of gas and oil. It is expected 

that in many countries with shale gas reserves, petrol-based transport will 

gradually replaced by gas-based transport for economic reasons, bringing 

about a larger infrastructure based on gas energy. Concurrently, the 

conversion of biomass as a modern fuel draws a great attention to the world 

since it is a sustainability energy and helps to reduce environmental problems. 

The production of synthetic natural gas (SNG) from biomass is to be focused 

in this study because it can replace the conventional natural gas where it has 

similar composition, which is mostly methane (CH4). 
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2.2 SNG production from coal and fossil fuel 

 

Currently, synthetic natural gas (SNG) in industry is produced from coal or 

naphtha as the feedstock, by generating synthesis gas (syngas) first. Syngas 

consists of hydrogen (H2) and carbon monoxide (CO) and is produced via a 

gasification process (steam reforming or partial oxidation). Then, the syngas 

product will undergo further reactions through methanation processes, which 

are represented as reactions (R2.1–R2.3) to yield methane (CH4). Reaction 

(R2.1) is taking place if the ratio of syngas (H2/CO) is equal or greater than 

3:1, which will produce methane (CH4) and water (H2O), but reaction (R2.2) 

occurs if the syngas ratio is 1:1, producing carbon dioxide (CO2) instead of 

H2O. Reaction (R2.3) shows that the production of CH4 could occur in a 

reaction between carbon dioxide (CO2) and H2. 

 

OHCH3HCO 242              (R2.1) 

242 COCH2H2CO              (R2.2) 

OH2CH4HCO 2422             (R2.3) 

 

The undesired products which are carbon (C) and higher hydrocarbons such 

as ethane (C2H6) may be produced during methanation reactions. Reaction 

(R2.4) shows a conversion of syngas to ethane, while formation of carbon 

from CO is shown in reaction (R2.5). Thus, optimizing operating conditions is 

required to obtain maximum main product, which is CH4 gas, as well as to 

reduce the undesired products, since carbon deposition increases with 

temperature but decreases with pressure and syngas ratio [40]. 
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OH2HC5H2CO 2622             (R2.4) 

CCO2CO 2               (R2.5) 

 

2.2.1 Coal as feedstock 

 

Methanation processes by using coal as the feedstock were usually operated 

by using fixed bed and fluidized bed reactors, with the temperatures within 

250–400 ºC and pressures from atmospheric (1 atm) to 1200 psi (81.7 atm) 

[40]. The flow diagram for general processes of SNG production from coal is 

shown in Figure  2.1, which involves coal preparation, gasification, shift 

conversion, gas purification, methanation and dehydration of gas. In the 

beginning, coal and steam were introduced into the system to produce syngas 

(H2 and CO), CH4 and CO2 via gasification reactions (i.e. operates within 800–

1900 ºC [41]), shown by reactions (R2.6–R2.10). Coal is not a homogenous 

substance, and does not have a fixed chemical formula, therefore, ‘COAL’ 

defined in R2.6 can contain from 60 to 90 wt.% of carbon, 3 to 6 wt.% of 

hydrogen and 1 to 23 wt.% of oxygen [42], depending on coal type (ex. lignite, 

bituminous, anthracite). 

 

Gasification from coal: 

CCHCOAL 4                  (R2.6) 

22 HCOOHC                 (R2.7) 

42 CHH2C                  (R2.8) 
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CO2COC 2                  (R2.9) 

                  (=rev R2.5) 

222 HCOOHCO                 (R2.10) 

 

 

Figure ‎2.1 Flow diagram of general processes in SNG production from coal 
[43]. 

 

A H2:CO ratio in the syngas mixture of 3 or above, as expressed by reaction 

(R2.1), is required to yield CH4 as the final product through the methanation 

process. But, if the ratio of syngas is less than 3, the gas mixture will undergo 

water-gas shift reaction, following reaction (R2.10), where CO will react with 

steam to generate additional H2 with CO2 as co-product which leads to the 
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methanation process and increases CH4 production. This shift conversion 

reaction takes place under the same conditions as the gasification process 

[41]. 

 

However, devolatilization of coal produces several gases, which are listed in 

Table  2.1, where CO2 and hydrogen sulphide (H2S) productions become 

impurities in the gas mixtures. CO2 and H2S gases are removed from the 

system by purification processes including absorption, adsorption, cryogenic 

condensation and membrane [44], while dehydration is required to eliminate 

the H2O content. 

 

Table ‎2.1 Compositions of gas produced in volume percentage (vol.%) 
from different types of coal. 

Coal 

type 

Subbituminous 

(Rosebud) [45] 

Bituminous 

[46] 

Noncaking 

[47] 

Bituminous 

[48] 

Gas     

   CO2 30.4 6.9 19.5 31.1 

   CO 15.1 57.7 35.0 48.6 

   H2 41.1 30.0 41.0 18.2 

   CH4 11.2 5.4 3.5 1.7 

   N2 1.2 - 1.0 - 

   H2S 0.5 - - 0.4 

   C2H6 0.5 - - - 

Type of 

process 

Lurgi 

(fixed bed) 

Wellman-Galusha 

(fixed bed) 

Winkler 

(fixed bed) 

Westinghouse 

(fluidized bed) 
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The Lurgi process is one of the example for fixed bed coal gasification process 

which is widely used in industry, but synthesis gas (syngas) is the main 

product for mostly operated Lurgi plants, which is listed in Table  2.2. Based on 

Figure  2.2, oxygen (O2) is fed into the gasifier to provide heat for the 

gasification process by combustion of char (C). Tar and light oil formations are 

unwanted by-products of the Lurgi process which can be converted into SNG 

but, it is not yet been commercialized compared to crude oil as the feedstock 

[40]. The operating conditions of the Lurgi process will be further discussed in 

2.3.1 section. 

 

 

Figure ‎2.2 Flow diagram of fixed bed methanation process (Lurgi process) 

in SNG production from coal [40]. 
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Table ‎2.2 Commercial Lurgi plants for coal gasification process [49]. 

No. Plant owner Plant location Product Coal type 

1 South Africa Coal,  

   Oil and Gas 

Sasolburg,  

   South Africa  

   (SASOL-I) 

Syngas for  

   F-T liquids 

Subbituminous 

 

  Secunda,  

   South Africa 

   (SASOL-II,  

   SASOL-III) 

Syngas for  

   F-T liquids 

Subbituminous 

2 Pakistan Industrial  

   Development  

   Cooperation 

Daud Khel,  

   Pakistan 

Syngas 

 

Bituminous 

3 Honam Fertilizer Naju, South  

   Korea 

Syngas Anthracite 

4 Great Plains  

   Gasification  

   Associates 

Beulah, North  

   Dakota  

   U.S.A 

SNG Lignite 

5 China National  

   Technology Import  

   Company 

Beijing, China Syngas for  

   ammonia 

Anthracite 
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2.2.2 Fossil fuel as the feedstock 

 

Fossil fuel such as natural gas, liquefied petroleum gas (LPG) and naphtha 

are extensively used as feedstocks in industrial for synthetic natural gas 

(SNG) production by hydrogasification and steam reforming processes. Based 

on Table  2.3, the steam reforming process has carried out with the lowest 

operating temperature, within 450–550 ºC to produce CH4 gas compared to 

other processes, including partial oxidation and hydrogasification. 

 

Table ‎2.3 The operating temperatures between several type of processes 
in converting to SNG production from crude [40]. 

Process type Temperatures, ºC Main products 

Steam reforming   

   High temperature 800–900 CO, H2 

   Low temperature 450–500 CH4 

Hydrogenation/hydrogasification 700–750 CH4 

Partial oxidation 1250–1300 CO, H2 

 

Several reactions occur during the steam reforming process, such as 

gasification, hydrogenation as expressed by reactions (R2.11–R2.12), water-

gas shift conversion and methanation reactions, by equation (R2.10) and 

(R2.1) respectively. The formula CnHm represents a fossil fuel feedstock, such 

as natural gas, LPG and naphtha. Lower temperature steam reforming 

process is preferable to produce SNG in industry because it less expensive 

compared to others due to lower number of stages in the methanation 

process, as well as having the lowest operating temperatures (450–500 ºC). 
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Gasification from fossil fuel: 

22mn H
2

m
nnCOOnHHC 








           (R2.11) 

Hydrogenation or hydrogasification: 

42mn nCHH
2

m
2nHC 








            (R2.12) 

 

 

2.3 Current technologies for synthetic natural gas (SNG) 

production 

 

Since the methanation (R2.1) is an exothermic reaction, methanation 

technologies were commonly carried out either in adiabatically with an internal 

cycle of syngas or cooled fixed beds to maintain at a lower operating 

temperature, which favours methane production. The most popular industrial 

methods with several adiabatic stages are Lurgi, TREMP (Haldor Topsøe) and 

RMP processes while IRMA is an internally cooled reactor for a non-adiabatic 

process in a methanation plant. 

 

2.3.1 Lurgi process 

 

A pilot plant was operated in a Lurgi process in Sasolburg (South Africa) 

demonstrates the methanation process by using synthesis gas from the 

Fischer-Tropsch plant (coal gasification plant) [50, 51]. Based on Figure  2.3, 

the methanation unit includes two adiabatic fixed bed reactors with internal 

cycle of the product gas. The main objective to recycle the product gas is to 
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prevent temperature rise in the methanators, where the maximum temperature 

is 450 ºC as shown in Table  2.4. 

 

 

Figure ‎2.3 Simplified flow process diagram for the Lurgi process with 

adiabatic fixed bed methanation reactor [52]. 

 

Table ‎2.4 Operating parameters and gas compositions in the pilot plant of 

the Lurgi process at 17.7 bar [51, 53]. 

  First methanator, R1 Second methanator, R2 

 Feed gas Inlet Outlet Inlet Outlet 

Temperature, ºC 270 300 450 260 315 

Gas composition      

H2 (vol.%) 60.1 21.3 7.7 7.7 0.7 

CO (vol.%) 15.5 4.3 0.4 0.4 0.05 

CO2 (vol.%) 13.0 19.3 21.5 21.5 21.3 

CH4 (vol.%) 10.3 53.3 68.4 68.4 75.9 

C2
+ (vol.%) 0.2 0.1 0.05 0.05 0.05 

N2 (vol.%) 0.9 1.7 2.0. 2.0. 2.0 
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2.3.2 TREMP process of Haldor Topsøe 

 

Topsøe’s Recycle Energy efficient Methanation Process (TREMP) is similar to 

the Lurgi process, but it consists of three adiabatic fixed bed methanation 

reactors as shown in Figure  2.4. The main purpose of the TREMP process of 

Haldor Topsøe is to produce high pressure superheated steam in order to 

provide heat recovery of steam reforming (reverse reaction of R2.1, 

methanation) at the beginning stage of the process for synthesis gas 

production. Based on Table  2.5, the operating temperatures in the 

methanators are higher compared to Lurgi process, where it could reach at the 

maximum temperature of 604 ºC. Moreover, Haldor Topsøe has provided 

MCR-2X and MCR-4 catalysts that could withstand high temperature 

methanation of this process [54]. 

 

 

Figure ‎2.4 Simplified flow process diagram for the TREMP process of 

Haldor [55, 56]. 



31 
 

Table ‎2.5 Operating parameters and gas compositions of the TREMP of 
Haldor Topsoe process (ADAM and EVA project) [57]. 

 Feed R1 

Inlet 

R1 

Exit 

R2 

Exit 

R3 

Exit 

SNG 

Temperature, ºC  300 604 451 303 23 

Pressure, bar 27.3 27.2 27.1 27.05 27.0 27.0 

Gas composition       

H2 (vol.%) 65.45 36.88 20.96 8.10 1.77 3.11 

CO (vol.%) 9.84 4.28 1.17 0.00 0.00 0.00 

CO2 (vol.%) 8.96 6.13 4.46 2.07 0.95 1.67 

CH4 (vol.%) 11.30 28.12 37.44 44.36 47.28 82.95 

H2O (vol.%) - 19.19 29.82 38.84 43.06 0.10 

N2 (vol.%) 4.4 5.41 6.15 6.64 6.93 12.16 

 

2.3.3 RMP process 

 

On the other hand, a high temperature methanation without product gas 

recycle was proposed by Ralph M. Parsons Company (United States), which 

known as RMP process. The methanation process consists of 4–6 adiabatic 

fixed bed methanation reactors in series with intermediate gas cooling, where 

the feed syngas could be added in different distribution ratios into the first 

three reactors and steam was fed into the first reactor as shown in Figure  2.5. 

Steam was added into the first reactor in order to prevent temperature rise due 

to the exothermic reaction of methanation, where water gas shift reaction 

(R2.10) is taking place. Therefore, CO was mainly converted to CO2 and 

causing less CH4 production in the first reactor, shown in Table  2.6. 
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Figure ‎2.5 Simplified flow process diagram for the RMP process [58, 59]. 

 

Table ‎2.6 Operating parameters and gas compositions of the RMP process 

[58]. 

 Syngas R1 R2 R3 R4 R5 R6 

Inlet temp., ºC - 482 538 538 538 316 260 

Outlet temp., ºC - 773 779 773 717 604 471 

Pressure, bar 27.3 26.7 25.6 24.6 23.6 22.6 21.5 

Syngas, vol.% - 40 30 30 - - - 

Gas composition        

H2 (vol.%) 49.80 53.53 48.07 43.09 36.90 22.86 9.29 

CO (vol.%) 49.80 13.97 18.46 20.63 15.25 5.64 0.87 

CO2 (vol.%) 0.10 25.80 24.04 23.64 29.21 39.90 46.84 

CH4 (vol.%) 0.30 5.70 9.43 12.64 18.64 31.60 43.00 
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2.3.4 Non-adiabatic process (IRMA cooled reactor) 

 

Several stages of the methanation system in adiabatic process could be 

replaced by a single stage internally cooled reactor-IRMA (Innenbekühter 

Reaktor einer Methanisiezung Anlage), where it contains reaction tubes which 

are filled with catalyst and externally cooled by water [50]. Based on 

Figure  2.6, the reaction heat from the reactor was used to raise high-pressure 

steam, which then to be condensed in the heat exchanger E201. After that, 

the water is sent back to the outside of the reaction tubes in order to cool 

down the methanation reactor. 

 

 

Figure ‎2.6 Simplified flow process diagram for non-adiabatic process by 
using IRMA cooled reactor [60]. 
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Figure ‎2.7 Temperature profiles in the IRMA reactor for three different gas 
flows of syngas [60]. 

 

The operation of IRMA reactor was tested in the pilot plant where the 

maximum gas temperature was observed less than 650 ºC at the inlet of the 

tube reactor, but then, the temperature was reduced and maintain at 310 ºC 

from 300 cm of the tube length of the reactor, which shown in Figure  2.7. It 

was reported that about 83 vol.% of CH4 of the dry gas product was already 

achieved at 5 m of tube length of the IRMA reactor [60]. 
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Table  2.7 shows the main differences between adiabatic and isothermal 

reactors for methanation process in terms of working conditions (temperature 

and pressure) and the benefits for using these types of reactors. The 

temperature range for adiabatic reactor is higher (240–600 ºC) compared to 

isothermal conditions (around 300 ºC) due to the higher exit temperatures for 

adiabatic conditions. However, an isothermal reactor requires good heat 

transfer control in maintaining the operating temperature. 

 

Thus, the isothermal reactor has advantages over an adiabatic reactor since it 

could avoid extremely high exit temperatures from the reactor and prevents 

sintering of the catalyst [61, 62]. The isothermal condition which is usually 

operated in a fluidized bed configuration must also have limited gas velocity 

within the reactor. The gas velocity must not be too low (to assure minimum 

fluidization conditions) and not too high in order to avoid catalyst elutriation 

[63]. 

 

Although adiabatic reactors feature simple equipment construction and require 

little maintenance [64], they necessitate more than 2 reactors with 

intermediate cooling stages in order to achieve high methane production. 

Therefore, the isothermal concept offers the potential for significant capital 

cost reductions. 
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Table ‎2.7 Comparison between adiabatic and isothermal reactors for 
methanation process [61, 63-66]. 

 Adiabatic methanation Isothermal methanation 

Temperature, ºC 240–600 300 

Pressure, bar 20–100 1–20 

Advantages Simple construction Good heat transfer process 

Disadvantages  Complex heat transfer Working material maintenance 

 

Based on the comparison between the adiabatic and isothermal methanation 

concepts, it is preferable to use isothermal reactor for an average plant size 

due to the simplicity of the process setup and the opportunity to use waste 

heat [63]. On the other hand, large scale methanation plants (>100 MW) are 

well suited for the adiabatic methanation concept (consecutive fixed bed 

reactors), where highly valuable steam can be produced [67], even though the 

process setup is relatively complex [68]. 

 

 

2.4 Techniques for CH4 product stream purification 

 

In order to obtain CH4-rich as the final product, several commercial 

technologies are used to remove CO2 from the gas stream such as physical 

and chemical absorption, pressure swing adsorption (PSA), membrane 

separation and cryogenic separation [69], as shown in Figure  2.8. General 

descriptions of different techniques for CH4 product stream purification are 

explained in this section. 
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Figure ‎2.8 Common techniques used for CO2 removal. 

 

2.4.1 Physical and chemical absorption 

 

Physical absorption is an operation of a non-reactive process in which a gas 

mixture is contacted with a liquid where one component of the gas mixture is 

being absorbed into the liquid. The physical absorption of gases in water is 

explained by Henry’s Law (equation 2.1), where gases dissolved in the liquid 

is determined by the equilibrium constant between undissolved gas and the 

gas dissolve in the liquid (solvent). 

 

Henry’s Law: 

x

x
H

C

P
K                (2.1) 
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where, 

KH = Equilibrium constant for the salvation process; 

Px = Partial pressure of component x; 

Cx = Concentration or solubility of component x in liquid solution. 

 

Based on equation (2.1), the amount of gas dissolved is directly proportional 

to the partial pressure in the gas phase. Moreover, the solubility of gas 

decreases with increasing of temperature. This is because the relationship 

between gas solubility with temperature is very similar to the reason that 

vapour pressure increases with temperature. Increasing of temperature leads 

to higher kinetic energy causing more motion in molecules which break 

intermolecular bonds and escape from solution. For that reason, HPWS 

technique is usually operated at lower temperature (20–30 ºC) and higher 

pressure (8–30 bar) in order to have a better separation of CO2 from the gas 

stream. 

 

On the other hand, chemical absorption used a liquid such as amine where 

CO2 is not only absorbed into the liquid, but also is chemically bonded with the 

amine in the liquid. There are two types of amine solutions that commonly 

used, which are mono ethanol amine (MEA) and di-methyl ethanol amine 

(DMEA) [70]. In order to recycle the solution, higher energy is required for 

removing CO2 from the amine solution (3.2–5.5 MJ per kilogram of recovered 

CO2 [71]) since the amine is strongly absorbed and chemically bound with 

CO2. 
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2.4.2 Pressure swing adsorption (PSA) 

 

Pressure swing adsorption (PSA) purifies gas streams by absorbing the 

impurities on an adsorbent which is a porous solid with a high surface area. 

Most of the adsorbents used in the commercial processes are carbon 

molecular sieves (CMS), activated carbons and zeolites [72]. The adsorption 

takes place between 4–10 bar [72] and the adsorbent is regenerated through 

by reducing the pressure to near ambient pressure level (0.13–1 atm) [73]. For 

an upgrading plant which used PSA technique, four, six or nine vessels are 

operate in parallel [70]. This is because, when the adsorbent is saturated with 

CO2, the raw gas flow is switched to another vessel while the previous vessel 

going through a regeneration process. 

 

2.4.3 Membrane separation 

 

For this membrane separation technique, the separation of CH4 from CO2 is 

based on the diffusion of CO2 through a polymer hollow fibre membrane. The 

driving force is the partial pressure differences across the membrane for CO2, 

CH4 and other gas components. CO2 is the ‘fast’ gas, whereas the CH4 

diffuses at a slower rate, which results in a CH4-rich gas at the outlet of the 

membrane. Therefore, two different streams are obtained by using a 

membrane separation method which are permeate gas (mainly CO2) and the 

retentate gas (concentrated CH4) [72] as shown in Figure  2.9. 
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Figure ‎2.9 Schematic diagram of membrane separation for biogas 

upgrading process [74]. 

 

2.4.4 Cryogenic separation 

 

CO2 can be removed by compressing and cooling down in the cryogenic 

process at 18 bar and -24 ºC to liquefied CO2 [75]. After CO2 has been 

removed as a liquid, the remaining CH4 gas can be cooled further to become a 

liquid [76]. However, higher energy is required in order to achieve low 

temperature for cooling down the CO2 gas. 

 

2.4.5 Comparison between the upgrading techniques 

 

A short comparison of the different upgrading techniques, such as high 

pressure water scrubber (HPWS), chemical absorption, pressure swing 

adsorption (PSA), membrane separation and cryogenic separation is listed in 

Table  2.8. Each of the separation process has its own advantages and 
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disadvantages in terms of percentage of CH4 purity, operating and capital 

expenditure and the level of the difficulties in order to do the maintenance for 

each of the separation process. 

 

Table ‎2.8 Comparison between common CO2 separation techniques [69, 
77, 78] 

 
HPWS Chemical 

absorption 

PSA Membrane 

separation 

Cryogenic 

separation 

Gas pre-

cleaning 

treatment 

× 

 

        

CH4 loss (%) 1-2 1-2 1-3 0.5-5 0.5-2 

CH4 purity 

attained (%) 
95-98 >99 95-99 >98 99-99.5 

Operating 

cost 
Low Medium Medium Low High 

Capital cost Low Medium Medium Medium High 

Maintenance Easy Complex Easy Easy Complex 

 

 

Although cryogenic separation gives the highest purity of CH4 as the final 

product with the lowest of CH4 lost, but HPWS was found to be the one of the 

simplest and economical methods compared to chemical absorption, PSA, 

membrane separation and cryogenic separation [79], which makes it is 

suitable for a small scale plant [78]. Moreover, HPWS is one of the common 

technique in biogas plant for removal of CO2 because of the lower capital and 
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operational cost, being a reliable and proven technology, as well as the 

upgrading process is easy to maintain [79-83]. 

 

 

2.5 Thermochemical conversion of biomass to SNG 

production 

 

There are two main methods to convert biomass into renewable energy which 

are split into either biological or thermochemical processes. The biological 

processes are methods that rely on the activity of microorganisms, and many 

challenges reside in controlling the performance of the microorganisms. This 

has maintained the attention of researchers in converting biomass via 

thermochemical processes which are more easily predicted and controlled. 

 

Four different types of thermochemical processes exist for solid biomass 

conversion. These are combustion, liquefaction, gasification and pyrolysis, as 

illustrated in Figure  2.10. However, only gasification and pyrolysis processes 

have the potential to convert biomass to gaseous and vapour fuel, where CH4 

production is the main focus in this research. 
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Figure ‎2.10 Thermochemical processes of biomass conversion to energy 

production [39]. 

 

The concept of gasification process from biomass is the same as gasification 

of fossil fuel which was mentioned in the previous section. The biomass 

feedstock undergoes the gasification reaction, methanation and gas 

purification accordingly. The conversion process of biomass to SNG 

production, as reaction (R2.13) requires higher operating temperature (700–

1000 ºC) to produce syngas, CH4 and CO2 gases [84]. Figure  2.11 shows the 

general gasification process from biomass to SNG production where, syngas 

is produced from the beginning of the process in the gasifier, which needs to 

pass through a gas cleaning process due to the tar formation in the 

gasification process, before the syngas is reacted in the methanation process 

to produce SNG. 

 

charn(tars)hydrocarboCOCHCOHHeatBiomass 242 
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Gasification suffers from poor selectivity to gas products, with typically 

methane and other alkanes being produced at this stage. It is clear from the 

reactions (R2.1–R2.3) which represent the methanation stage that the 

presence of methane in the feed from the gasifier stage would adversely affect 

their equilibria towards methane consumption. An additional separation stage 

of the process illustrated in Figure  2.11 and Figure  2.12, where the gas 

cleaning unit is needed before entering the methanation stage in order to 

prevent the heavy tar from entering the methanation unit, which might become 

a threat to the methanation catalysts. The catalytic tar reformer is usually 

operated at high temperatures in the range of 710–890 ºC [85, 86]. Therefore, 

many researchers have been reviewed on the syngas cleaning process unit 

for the commercialization of biomass technology regarding to this problem 

[87]. 

 

Moreover, several studies have been working on finding a solution in order to 

reduce internal reforming tars by providing potassium inside the gasifier [88] 

which can promote tar cracking reaction [89] and by using suitable bed 

materials with a moderate tar cracking activity [90]. The general gasification 

process of conversion of biomass to methane thus appears energetically 

costly and complex. In addition, the multi stage configuration would represent 

a safety challenge by providing multiple opportunities for potential leakage of 

CO (toxic) and H2 (highly explosive) in addition to the other flammable gases. 
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Figure ‎2.11 General gasification process of wood to SNG production [91]. 

 

 

Figure ‎2.12 Process flow for production of SNG from lignocellulosic biomass gasification technology [92]. 
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In contrast, the pyrolysis process converts biomass to bio-oil, gas and solid 

products, as in equation (R2.14) by thermal decomposition of biomass in the 

absence of oxygen at lower temperature within 350–550 ºC [93, 94]. The 

products are easily separated due to their different phases: solids fall either at 

the bottom of the pyrolyzer or collected by cyclone at the top, bio-oils are then 

condensed by cooling, leaving the gases evolve from the condenser 

separator. Solids can either be upgraded or re-used as fuel for the pyrolysis’s 

energy demand. Gases can join the methanate prior to the final separation 

stage, leaving the bio-oil as sole feedstock for methanation. Bio-oils are 

volatiles and therefore would be well suited to catalytic methanation reaction 

technology, similar to industrial methanation of naphtha. 

 

Furthermore, bio-oils are easier to handle, store and transport [95] than the 

solid biomass they originate from. For example, an assessment has found that 

two truckloads of wood chips are equivalent to a single tanker load of bio-oil 

with the same energy content [96]. Thus, it is convenient to utilize biomass in 

the form of pyrolysis oil for further reaction to produce SNG. 

 

Biomass + Heat → Bio-oil + Hydrocarbon gases + Char       (R2.14) 

 

2.5.1 Bio-oil production from pyrolysis 

 

Bio-oil production via fast pyrolysis is one of the most attractive processes for 

converting solid biomass into renewable chemicals and higher value fuels [97, 

98] due to its feedstock flexibility. This process converts biomass into bio-oil 

(60–75 wt.%), solid char (15–25 wt.%) and gases (10–20 wt.%), depending on 
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its feedstock and process parameters [99] by thermal decomposition of 

biomass in the absence of oxygen in the range of 350–550 ºC [93, 94] and 

reaction time of 0.5–5.0 s [93, 94, 99]. Bio-oil production was also reviewed in 

2004 as substitute for fuel oil or diesel for boilers, furnaces, engines and 

turbines in power plant station [100]. General applications for fast pyrolysis 

products including gas, bio-oil and charcoal are shown in Figure  2.13. 

 

 

Figure ‎2.13 General applications for fast pyrolysis products [93]. 
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Figure ‎2.14 Fast pyrolysis process for fluidized bed [101]. 

 

The reactor types recently used for pyrolysis process are fluidized bed, 

circulating fluid bed and fast fluidized bed [101]. But, most researchers carried 

out pyrolysis process in fluidized bed since it is easy to operate and gives 

good results [102]. The fast pyrolysis process for fluidized bed is shown in 

Figure  2.14, which consists in biomass preparation stage (biomass dryer and 

grinder), reactor, cyclone (to separate char) and product collector (collection of 

bio-oil production). Table  2.9 shows several host organizations in 2012 that 

carried out pyrolysis for bio-oils production from white wood as feedstock and 

mostly for electricity generation and transport fuel production applications. 
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Table ‎2.9 Pyrolysis for bio-oil production in 2012 from white wood [103]. 

Host 

organization 

Country Capacity 

kg 

feed/hr 

Capacity 

kg  

bio-oil/hr 

Application Status 

BTG Netherlands 250 200 Fuel and  

 chemicals 

Operational 

BTG   

 Bioliquids 

 EMPYRO 

Netherlands 6,500 5,000 Fuel In design  

 phase 

Ensyn  

 several 

Canada and 

U.S.A. 

3–3,100 2–2,350 Fuel and  

 chemicals 

Operational 

Mississippi  

 State  

 University 

U.S.A. 200 

 

150 Fuel  Construction 

National  

 Renewable  

 Energy  

 Laboratory 

U.S.A. 12 10 Fuel and  

 chemicals 

Operational 

RTI  

 International 

U.S.A. 40 - Transport- 

 ation fuel 

Construction 

KIT Germany 1,000 - Transport- 

 ation fuel 

Operational 

UOP U.S.A. 40 - Transport- 

 ation fuel 

Operational 

 

2.5.2 Properties of bio-oil 

 

Bio-oil is a derivation from lignocellulosic biomass, the latter contains three 

main components such as cellulose, hemicellulose and lignin. A research was 

carried out to observe the products distribution from pyrolysis of the 

components, as listed in Table  2.10. Pyrolysis of cellulose produced the 

highest yield of bio-oil (81.41 wt.%) with the minimum amount of char 
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production (6.44 wt.%). This is in contrast to lignin pyrolysis which gives the 

lowest bio-oil yield (21.77 wt.%) with the highest char production (40.33 wt.%). 

Bio-oils consist of different compounds for individual biomass feedstock, as 

listed in Table  2.11. 

 

Table ‎2.10 Product of pyrolysis from three main components in biomass 
[104]. 

 in weight percentage (wt.%) 

Components Bio-oil Gas Char 

Cellulose 81.41 12.15 6.44 

Hemicellulose 44.22 36.73 19.05 

Lignin 21.77 37.9 40.33 

 

Table ‎2.11 Production of several compounds in bio-oil production from 

biomass pyrolysis [104, 105]. 

Component Compound 

Cellulose Levoglucosan 

 Anhydro-oligosaccharides 

 Altrose 

 2,5-Diethoxytetrahydrofuran 

Hemicellulose Acetic acid 

 2-Furfural 

Lignin Phenol 

 2,6-Dimethoxyphenol 

 2,6-Dimethoxy-4-(2-propenyl)phenol 
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As a result, the bio-oil product from biomass pyrolysis has a complex and 

variable chemical composition [101, 105]. For example, Table  2.12 shows 

several identified compounds of bio-oil produced from Brassica rapa (BR), 

pine cone (PC) and grape seed (GP) by using gas chromatography-mass 

spectrometry (GC-MS). Compounds from guaiacols group were found in 

higher amounts in three different of bio-oils, followed by phenols and acids. 

However, the exact amounts of each compound were unknown since GC-MS 

provides qualitative results. 

 

Table ‎2.12 The main compounds of bio-oil from three different type of 

biomass [106]. 

Compound  Retention time (min) Area (%) 

  BR PC GS 

Acids  2.56 4.19 2.01 

Acetic acid 2.89 2.20 3.80 1.92 

Propanoic acid 3.673 1.66 0.29 0.09 

Butanoic acid 4.929 0.15 0.10 - 

Crotonic acid 5.614 0.16 - - 

Aldehyde  2.35 2.20 0.50 

Furfural 5.514 2.35 2.20 0.50 

Non-aromatic 

ketones 

 1.61 1.73 - 

Furans  3.45 2.09 3.04 

3-Furaldehyde 5.127 0.19 0.13 - 

2-Furanmethanol 5.891 2.49 0.32 0.53 

1-(2-Furanyl)ethanone 6.871 0.41 0.22 - 

5-Methyl-2- 

   furancarboxaldehyde 

7.798 0.36 0.93 0.17 

2-Pentyl-furan 8.260 - - 1.33 

2-Acetyl-5-methylfuran 9.058 - 0.07 - 

7-Menthylbenzofuran 10.151 - 0.22 - 
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Table 2.11  (Continued) 

Compound Retention time (min) Area (%) 

  BR PC GS 

2- Menthylbenzofuran 10.231 - 0.20 1.01 

Phenols  4.16 5.36 9.85 

Phenol 8.099 0.77 1.56 2.17 

2-Methylphenol 9.328 0.70 0.07 1.78 

3-Methylphenol 9.670 1.25 1.94 2.52 

2,6-Dimethylphenol 10.189 0.36 0.19 - 

2-Ethylphenol 10.677 0.16 0.19 2.24 

3,5-Dimethylphenol 11.127 0.43 0.74 - 

2,3-Dimethylphenol 11.276 0.26 0.49 0.81 

2,3,6-Trimethylphenol 11.684 0.23 0.18 0.33 

Guaiacols  5.00 5.64 4.74 

Guaiacol 9.920 1.43 1.83 3.69 

4-Methylguaiacol 11.525 0.67 1.65 2.07 

4-Ethylguaiacol 12.781 0.88 1.04 1.42 

Syringol 13.797 1.38 - 0.21 

Eugenol 13.871 0.32 0.44 - 

Vanillin 14.480 0.32 0.28 - 

5-(1-Propenyl)guaiacol 14.546 - 0.40 0.35 

Catechols  2.89 3.84 0.25 

Catechol 11.588 1.19 1.63 - 

3-Methylcatechol 12.508 - 0.45 - 

3-Methoxycatechol 12.563 0.90 - - 

Hydroquinone 12.723 - 0.12 - 

4-Methylcatechol 12.923 0.42 1.45 - 

3,5-Dihydroxytoluene 13.688 0.38 0.19 0.25 

Total area (%)  22.02 25.05 20.39 
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2.5.3 Palm empty fruit bunch (PEFB) pyrolysis oil 

 

The higher demand for vegetable oils especially palm oil has caused a 

massive production of biomass waste. Moreover, palm empty fruit bunch 

(PEFB) is currently left out without proper utilization compared to other palm 

oil by-products (frond, mesocarp fiber, trunk and shell). However, the pyrolysis 

process is an interesting process to convert PEFB, as abundant waste into 

bio-oil production. Table  2.13 and Table  2.14 shows the functional group 

composition and main chemical compound which exists in PEFB bio-oil 

respectively, while Table  2.15 listed the characteristics of PEFB bio-oil. 

 

Table ‎2.13 Composition of functional group of PEFB bio-oil [107]. 

Frequency range (cm-1) Group Class of compound 

3000–2800 C-H stretching Alkanes 

1750–1625 C=O stretching Aldehydes, carboxylic acids, 

ketones 

1675–1600 C=C stretching Alkenes 

1500–1450 C-H bending Alkanes 

1300–1000 C-O stretching Alcohols 

900–650 O-H bending Phenolic aromatic compounds 

 

In general, bio-oil consists a significant amount of organic acid, such as acetic 

acid and propanoic acid, that gives low of pH values (pH 2–3) [108]. Thus, it 

explained a huge difference values of area percentages (%) of acids with the 

other compounds in PEFB bio-oil as shown in Table  2.14. But, the amount of 
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phenols which been detected by GC-MS also gives a significant value that 

comparable with acids. 

 

Table ‎2.14 Main chemical compounds in PEFB bio-oil in area percentage 
(%). 

Compounds [109] [110] 

Acids 7.68 32.95 

   Acetic acid - 32.06 

   Propanoic acid - 0.89 

   Oleic acid 7.68 - 

   Furantetracarboxylic acid - - 

Phenols 14.60 21.23 

   Phenol 14.60 21.23 

   3-Methylphenol - - 

   4-Methylphenol - - 

Furans - 0.28 

   2,5-Dimethylfuran - - 

   2(5H)-furanone - 0.28 

Guaiacols 7.70 6.97 

   2-Methoxyphenol (guaiacol) 0.32 1.99 

   2,6-Dimethoxyphenol (syringol) 7.38 4.60 

   2-Methoxy-4-methylphenol (methyl 

guaiacol) 

- 0.38 

Total area (%) 29.98 61.43 
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Table ‎2.15 Characteristics of PEFB bio-oil [107, 108, 111, 112]. 

Reactor temperature (ºC) 500 

Calorific value (MJ/kg) 20.23–21.41 

Density (g/cm3) 0.90–1.21 

pH 2.33–3.00 

Total ash (wt.%) 0.65–1.03 

Moisture (wt.%) 18.74–21.68 

Elemental analysis (wt.%)  

   Carbon (C) 41.86–49.80 

   Hydrogen (H) 7.82–7.98 

   Oxygen (O) 40.29–50.22 

   Nitrogen (N) 0.10–1.93 

 

 

2.6 Methanation catalyst 

 

Nickel (Ni) catalyst is widely used in SNG production since it is cheaper than 

precious metals, but Ni is not the most active catalyst compared to others 

[113]. Therefore, a study was carried out by combining the Ni catalyst with 

other elements such as copper (Cu), cobalt (Co), platinum (Pt), etc., as shown 

in Figure  2.15, in order to observe the possibilities in improving the activity of 

Ni catalyst [114]. It was found that the promotion of Ni with the elements from 

periodic group 5–8 give the minimum methanation temperature. 
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Figure ‎2.15 The minimum methanation temperature as a function of 

elements periodic group number [114]. 

 

On the other hand, Figure  2.16 shows the effect of Ni concentration to the 

surface area of catalyst. The area of catalyst surface is gradually increased 

with Ni concentration up to approximately 50 wt.%, but then starts to decrease 

with Ni loading due to the growth in Ni crystallize size [40]. However, the 

increases in surface area of the catalyst does not always represents a higher 

catalyst activity, where a study has showed that the activity of Ni for natural 

gas reforming is increased up to 20–22% of Ni concentration. 
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Figure ‎2.16 The effect of surface area of catalyst by varying nickel 
concentration [115]. 

 

Several of recent studies have performed methane production from syngas by 

using mostly Ni as methanation catalyst, these are listed in Table  2.16. 

Moreover, silica–alumina was preferred to be a better catalyst supporter, since 

it favours dehydration as the water was produced from methanation process 

[116]. Nickel supported on alumina catalyst (Ni/Al2O3) is widely used in most 

of coal processing plants [117], as well as in the commercial steam reforming 

of natural gas to produce synthetic natural gas (SNG) [40]. 

 

The deactivation the Ni catalyst could lower the catalyst activity due to the 

carbon deposition, where it encapsulate the Ni particles and loss in carbon-

nickel contact [40]. Moreover, sulphur (H2S) [40, 117] poisoning could lead to 

the deactivation of catalyst, as well as thermal sintering [40, 116]. Thus, 

adsorbents are introduced in the methanation process to remove the 

impurities [40] which minimize the effect of poisoning on the catalyst [48]. 

Table  2.17 shows several examples of adsorbents used in gas purification. 
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Table ‎2.16 Current research for using different type of catalyst in 
methanation process. 

Feedstock Reaction 

conditions 

Catalyst Reactor type Reference 

Syngas T=385 ºC 

P=1.5 bar 

50 wt.% Ni/Al2O3 Fluidized bed [118] 

Syngas T=250–650 ºC 

P=1 atm 

Ni/Al2O3 Fixed bed and 

fluidized bed 

[119] 

Syngas T=300–450 ºC 

P=300 lb/in2g 

    (20.7 bar) 

Raney nickel-

aluminium alloy 

Fluidized bed [120] 

Syngas T=260 ºC and 

    350 ºC 

P=20 bar 

20 wt.% Ni/Al2O3 Fixed bed [121] 

 

Table ‎2.17 Several type of adsorbent used in gas purification [40]. 

Adsorbent Impurity removed Removal efficiency, % 

Iron oxide H2S <99.98 [122] 

Molecular sieve H2S and CO2 72–100 [123] 

Zinc oxide H2S 99.93–99.99 [124] 

Dolomite/lime H2S and CO2 <90 [125] 

 

Many studies have focussed on sorption enhanced reaction process (SERP) 

for the past decades in order to enhance steam methane reforming to produce 

hydrogen (R2.15), where the reforming catalyst is mixed with CO2 adsorbent 

together in a single reactor [126-128]. It is also known as calcium looping 

(CaL) process when a solid CaO-based sorbent (i.e. calcium oxide, CaO) is 
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used as the CO2 adsorbent. In this process, the presence of the CaO leads to 

more hydrogen production by removing CO2 from the products of the methane 

steam reforming (R2.15) and water gas shift (R2.16) reactions. By combining 

the steam methane reforming, water gas shift and carbonation (R2.17) 

reactions in a single reaction step in a single unit of reactor, the calcium 

looping and sorption enhanced reforming (CaL-SER) process could reduce 

the number of process steps by eliminating the shift reactors, as shown in 

Figure  2.17. 

 

Although the steam methane reforming is a highly exothermic reaction, 

(∆H298K = 206.2 kJ/mol), the combination of heat released from the exothermic 

water shift and carbonation reactions are thermally balanced and no additional 

fuel is required in the primary reactor. It was reported that about 20% of 

potential energy savings of SER process compared to conventional of steam 

methane reforming [127]. 

 

Steam methane reforming: 

224 3HCOOHCH               kJ/mol 206.2HΔ 98K2   

             (R2.15) 

 

Water gas shift: 

222 HCOOHCO              kJ/mol 41.2 HΔ 98K2   

             (R2.16) 
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Figure ‎2.17 Simplified flow diagram of (a) the conventional and (b) the single 
step of steam methane reforming processes [128]. 

 

 

 

 

 

(a) 

(b) 
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Recently, a study has modelled a gasification process from biomass by using 

calcium oxide (CaO) as sorbents to capture CO2 in gas production, as 

expressed in (R2.16) [129]. In the carbonation reaction, production of CO2 

from methanation process reacted with CaO to produce calcium carbonate 

(CaCO3), which resulted higher purity of methane produced. However, the 

carbonation of Ca(OH)2 (R2.17) should be accounted since the hydration of 

CaO into Ca(OH)2 (R2.18) could readily occur as CaO exposed to humidity in 

the air. 

 

Carbonation of CaO: 

32 CaCOCOCaO              kJ/mol 178.2HΔ 98K2   

   (R2.16) 

 

Carbonation of Ca(OH)2: 

  OHCaCOCOOHCa 2322             kJ/mol 69.0HΔ 98K2   

   (R2.17) 

 

Hydration of CaO: 

 22 OHCaOHCaO              kJ/mol 109.2HΔ 98K2   

   (R2.18) 

 

Moreover, a study [130] shows that Ca(OH)2 pellet has higher sorption 

capacity of CO2 compared to CaO pellet. Based on Table  2.18, Ca(OH)2 pellet 

has larger surface area compared to CaO pellet, due to the decomposition of 

Ca(OH)2 which release H2O and creates much more surface area on the 
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Ca(OH)2 pellet that enhanced the CO2 sorption. Thus, using CaO and 

Ca(OH)2 as sorbents for this research, which is the conversion of bio-oil to 

methane via steam reforming process is potentially to enhance the purity of 

methane produced, where the results are discussed in Chapter 4. 

 

Table ‎2.18 Comparison of surface properties between Ca(OH)2 and CaO 
pellets [130]. 

 Ca(OH)2 pellet CaO pellet 

BET surface area (m2/g) 7.544 2.801 

Total pore volume (cm3/g) 0.058 0.012 

Average pore diameter (Å) 312.29 173.37 
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2.7 Summary 

 

From the review of the literature discussed in this chapter, internally cooled 

reactor type IRMA (isothermal reactor) is preferable for the sake of the 

simplicity of the process compared to other common technologies which 

require more than two adiabatic reactors in the methanation unit for producing 

CH4. The HPWS for upgrading biogas to bio-CH4 is suitable for the small scale 

CH4 production due to its lower operational and capital cost. As the biomass 

gasification to produce CH4 is energetically costly and complex, this research 

attempts to fill the gap by introducing the low temperature steam reforming 

process (LTSR) of bio-oil for CH4 production via fast pyrolysis of biomass, 

where this process operates at lower temperature than gasification to convert 

biomass into bio-oil without generation of heavy tars. Therefore, it is 

convenient to utilise biomass in the form of volatile pyrolysis oil for further 

catalytic reaction to produce CH4. 
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Chapter 3  

Research Materials and Methodology 

 

3.1 Introduction 

 

This chapter describes in detail both the modelling and experimental 

methodologies that are used in this research. In the modelling approach, 

NASA’s Chemical Equilibrium with Applications (CEA) program was used to 

obtain chemical equilibrium compositions for assigned thermodynamic states, 

such as temperature and pressure, or system enthalpy and pressure, while 

the Aspen Plus (V8.8) process modelling program was used to simulate and 

develop a full flow process of bio-methane production from biomass via fast 

pyrolysis and direct methanation of the bio-oil. Experiments of methanation of 

acetic acid, as single compound surrogate of bio-oil in a packed bed reactor 

via LTSR were performed in order to observe the feasibility of the process in a 

real conditions at bench scale. This chapter covers the methods used to run 

and analyse the outputs of these experiments. The characterization of fresh 

and used catalysts was carried out and analysed by several techniques which 

are also discussed in this chapter. 
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3.2 Modelling approach 

 

3.2.1 Chemical Equilibrium and Applications (CEA) program 

 

The code Chemical Equilibrium and Applications (CEA) was used in this work 

to obtain chemical equilibrium compositions for assigned thermodynamic 

states, such as temperature and pressure, or system enthalpy and pressure. 

CEA’s solution method is based on minimization of Gibbs energy from a 

chosen set pool of reactants and equilibrium products of known 

thermodynamic properties, as opposed to from an assumed set of reactions 

with known equilibrium constants. This offers the advantage that provided the 

chosen pool of products is comprehensive, no assumptions are made towards 

which reactions have taken place to reach equilibrium. The simulations of this 

work are at first mainly focused towards the constant temperature and 

pressure conditions. Isothermal and isobaric conditions are close to those of a 

packed bed reactor with negligible pressure drop across the reactive zone 

where, in the case of an exothermic process like methanation, cooling would 

be applied throughout the reactor to maintain a controlled, constant 

temperature. 

 

Additional simulations were performed later with constant enthalpy and 

pressure, simulating a well insulated reactor whose temperature evolves from 

a set initial value to a higher one in the case of an exothermic process, or to a 

lower one for an endothermic process. The equations based on minimization 

of Gibbs energy presented in CEA [131] are nonlinear in the composition 

variables and thus CEA relies on an iteration procedure that utilizes a Newton-
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Raphson method to solve the corrections to initial estimates of compositions 

and moles of gaseous species [132]. In addition, the user can expand the 

thermodynamic data library with new compounds such as bio-oil model 

chemicals (e.g. phenol, levoglucosan, acetic acid, etc.). 

 

3.2.2 Aspen Plus program 

 

Advanced System for Process Engineering (Aspen) Plus is a commercial 

software, which is familiar to many users in chemical engineering, and as a 

common tool used for modelling purposes. This modelling computer software 

package has proven its capability to model whole plant simulations such as 

bio-methane production via biomass gasification process modelling [86, 91, 

133-135] and fast pyrolysis of biomass for bio-oil production process modelling 

[136-139] regardless of the system complexity. Aspen Plus software provides 

a large databank of chemical compounds and a property estimation system for 

calculating stream properties and chemical reactions, but biomass and 

pyrolysis products which involve in this study are not included in the databank. 

Therefore, the corresponding properties must be defined manually by the 

user, an aspect which is discussed in Chapter 6. 
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Figure ‎3.1 Simplified process flowsheet of bio-methane production from 
biomass via fast pyrolysis process. 
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A steady state Aspen Plus V8.8 simulation model has been developed in this 

study where it provides estimated mass and energy balances for an industrial 

process of bio-methane production from biomass via fast pyrolysis. The 

production route consists of four process units, namely biomass pre-treatment, 

fast pyrolysis, methanation reactor and product upgrading as shown in 

Figure  3.1. In the first step, biomass, specifically palm empty fruit bunch 

(PEFB) which is used as the feedstock in this study is chopped and ground 

into smaller particles (less than 3 mm) and then to be dried, where moisture 

content in the PEFB is less than 10 wt.% on a dry basis in order to meet the 

optimal conditions for fast pyrolysis reaction [139, 140]. Next, the dry and 

smaller size of PEFB is going through a pyrolysis process where the main 

product is the organic vapour, which is later to be condensed into bio-oil [138]. 

In the catalytic methanation process, the bio-oil is converted to CH4, CO2, H2, 

CO and water steam products, and continuously flowed into a gas cleaning 

unit. The by-products which are CO2, H2, CO and water steam products are 

removed from the stream to obtain a methane-rich gas, as well as to meet the 

requirements for injecting the bio-methane into the natural gas grid. The 

details of modelling approaches taken in each processing unit and its 

validation for the full process of bio-methane production from PEFB via fast 

pyrolysis are described in Chapter 6. 

 

In order to develop a simulation model for the bio-methane production from 

PEFB via fast pyrolysis process, a physical property data set needed to be 

selected first, which it would later be used to calculate the thermodynamic 

properties based on the data sources provided in the Aspen Plus software. 

The Peng-Robinson (Peng-Rob) property method was used in this simulation, 
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as this model is suitable for nonpolar and mildly polar mixtures, such as those 

of oxygenated hydrocarbons of bio-oil. This method is also suitable for higher 

temperature and pressure regions, in which hydrocarbon-processing, gas-

processing, refinery and petrochemical applications are usually operated 

[141]. Moreover, Peng-Rob was used previously to simulate gas processes for 

the treatment of biomass residues from a paper mill with a thermomechanical 

pulp (TMP) conversion process into bio-synthetic natural gas (bio-SNG) [90]. 

For the process unit which involved physical absorption in this thesis’ plant 

model, we chose the Non-Random-Two-Liquid (NRTL) as the property method 

to describe the behaviour of the dissolved gases in liquid by using Henry’s 

law, which was previously used to simulate a high pressure water scrubber for 

biogas upgrading [142]. 

 

Several unit operation blocks in this thesis’ plant model with their own specific 

process operations (i.e. chopper/grinder, cooler, heater, combustor, cyclone, 

reactor, pump, etc.) were inserted in the Aspen Plus flowsheet. Table  3.1 

shows a general description for different unit operation blocks in the Aspen 

Plus software that were used in this study. After that, the material streams with 

specified feed flowrates were introduced on the flowsheet. Creating a link 

between the selected model blocks and gave a complete process flow 

diagram. Finally, the simulation needed to be run in order to obtain the results 

calculated by the Aspen Plus software. 
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Table ‎3.1 Description of unit operation blocks in Aspen Plus software. 

Block ID Unit operation Role description 

 
Crusher 

Chopper and 

grinder 

To reduce the size of the solid biomass 

where the energy requirement for both 

chopper and grinder are based on literature 

data.  

 
Heater 

Cooler and 

heater 

To cool down or heat up the feed stream to a 

specified temperature. 

 
Sep 

Separator To separate components based on specified 

flows or split fractions in a specified operating 

temperature. 

 
Flash 

Flash drum and 

evaporator 

To separate components based on the phase 

difference in a specified operating 

temperature and pressure. 

 
Cyclone 

Cyclone To separate solid (char) from volatiles and 

gases. 

 
RYield 

Pyrolyzer A nonstoichiometric reactor based on known 

yield distribution, which is taken from 

literature data. RYield block used as 

pyrolyzer converts biomass into a specified 

composition of bio-oil, non-condensable 

gases and char that are produced during the 

pyrolysis process. 
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Table 3.1 (Continued) 

Block ID Unit operation Role description 

 

RGibbs 

Combustor An equilibrium reactor, the combustor which 

burns bio-char in the presence of air into 

combustion products based on the principle 

of minimizing Gibbs energy during the 

oxidation process. 

Methanator An equilibrium reactor, the methanator 

converts bio-oil and non-condensable gases 

into a CH4-rich gas via the LTSR process, 

based on the principle of minimizing Gibbs 

energy. 

 

Pump 

Pump To increase the pressure of the inlet of the 

liquid stream to a specified pressure. 

 

Compr 

Compressor To increase the pressure of the inlet of the 

gas stream to a specified pressure. 

 

Mixer 

Mixer As a stream mixer, where two or more input 

streams can be mixed into a single output 

stream. 

 

FSplit 

Splitter As a stream splitter, where the input stream 

can be divided into two or more streams 

based on the specified flows or split fractions 

in each of the outlet stream. 

 

Radfrac 

Water scrubber A simple distillation column based on Henry’s 

Law, which describes the physical absorption 

of gases with high solubility in water in order 

to obtain higher purity of the CH4 gas 

product. 
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As the mass and energy balances for all of the processing units are carried 

out at the beginning of the simulation work, a proposed of heat integration 

process modelling is then developed by using these energy balances. 

Therefore, several of heat exchanger network between possible streams are 

simulated with the aim to minimize energy consumption and to achieve higher 

performance of bio-methane production from the PEFB conversion process. 

Figure  3.2 shows the unit operation block for heat exchanger which is 

provided in the Aspen Plus software, where two input streams that need to be 

cooled (hot stream) or heated (cold stream) are determined at first before 

running the simulation. Based on the heat content or enthalpy (H) of the 

stream, the hot stream will cool down by transferring some of the heat to the 

cold stream where a minimum temperature difference, ∆Tmin of 20 ºC was 

used to ensure the driving force for the heat exchanger network [143]. More 

detail of discussion regarding to the implementation of heat exchangers in the 

process are further discussed in Chapter 6. This process modelling with heat 

integration is then to be compared with the conventional gasification-

methanation of syngas using similar feedstock to PEFB (e.g. wood) in terms of 

energy efficiency, where the results are fully discussed in Chapter 6. 

 

 

Figure ‎3.2 Unit operation block of a heat exchanger in Aspen Plus software. 

COLD-IN COLD-OUT

HOT-OUT

HOT-IN
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3.3 Experimental approach 

 

3.3.1 Research materials 

 

In this section, the chemical compositions of palm empty fruit bunch (PEFB) 

bio-oil, together with the commercial catalyst (Ni/Ca-Al2O3) used for the 

methanation of bio-oil in a packed bed reactor via LTSR experiments are 

discussed. 

 

3.3.1.1 Chemical compositions of PEFB bio-oil 

 

PEFB contains a great range of carboxylic acids, phenols, ketones, alcohols 

and aldehydes, in which acetic acid was found as the main compounds of 

PEFB bio-oil, in addition to many other oxygenated organics [107, 108, 110]. 

For this study, acetic acid was used as bio-oil surrogate for low-temperature 

steam reforming (LTSR) process in a packed bed catalytic reactor, and 

therefore could form the basis for evaluating optimum conditions before the 

utilization of the complex bio-oils. However, sensitivity analysis was also being 

conducted to demonstrate that the results at chemical equilibrium using CEA 

for different PEFB bio-oil compositions are not sensitive to a precise bio-oil 

composition, provided the elemental composition is preserved, which are 

discussed in Chapter 4. 
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3.3.1.2 Catalyst 

 

The commercial catalyst, nickel supported on calcium aluminate (Ni/Ca-Al2O3) 

supplied by Twigg Scientific and Technical Ltd (TST Ltd) was used in this 

research. The catalyst was provided in the form of raschig ring pellets as 

shown in Figure  3.3(a). However, the catalyst was then crushed and sieved 

within 250–355 μm of particle size shown in Figure  3.3(b) for the packed bed 

experiments. 

 

 

(a) 

 

(b) 

Figure ‎3.3 Ni/Ca-Al2O3 catalyst from TST Ltd in form of (a) as-received 

pellet and (b) after crushing and sieving (250–355 μm of particle size). 
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3.3.2 Experimental set-up 

 

The methodologies used for the methanation of acetic acid in a packed bed 

reactor via low-temperature steam reforming (LTSR) carried out in this 

research are discussed. The experimental rig was designed by a former PhD 

student of Dr. Valerie Dupont and formerly used for hydrogen production from 

acetic acid. 

 

3.3.2.1 Operation description of LTSR in a packed bed reactor 

 

A packed bed reactor as shown in Figure  3.4 and Figure  3.5 was used in this 

study for the investigation of acetic acid conversion into methane, CH4 

production via LTSR. The feedstocks (fuel and water) were pumped into the 

reactor using programmable syringe pumps, but it was vaporised at first by 

setting the water vaporiser at 130 ºC and fuel vaporiser at 150 ºC. Both of the 

vaporisers were insulated with super wool insulation material to prevent the 

heat loss from the preheating coils. Then, the N2, (carrier gas), which was 

controlled by MKS Instruments, UK mass flow controller was mixed with the 

hot vapours from the vaporisers. The heating tape was provided around the 

pipe connecting the vaporisers to the reformer in order to maintain the 

temperature. The mixture of the fuel vapour, steam and N2 passed through a 

reactor were maintained at the desired temperature, where a type K 

thermocouple was placed under the catalyst bed to monitor the reaction 

temperature. 
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The gaseous products from the reactor were carried by N2 into the condenser 

system and underwent separation between volatile and non volatile into the 

liquid condensate and gas product mixtures. A mixture of ethylene glycol and 

water with the volume ratio of 1:1 was used as a coolant that circulated 

between the condenser and a chiller (Fisher Scientific 3016S), which was set 

at 0 ºC to maintain the condenser at a low temperature. The liquid product 

(condensate) was collected after finishing the experiment for further analysis, 

in particular closure of the carbon balance. The product gases, which were 

mainly CH4, CO2, CO, H2 and N2 continuously flowed into a silica gel trap to 

remove any moisture left in the products. Finally, the dry gaseous production 

was analysed by micro-GC (Varian) for composition analysis. 

 

A series of steam reforming experiments were conducted with different of 

reactor temperatures and water flow rates were performed, which are 

discussed in Chapter 4. 
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Figure ‎3.4 Schematic diagram of experimental set-up for bio-oil conversion 

into CH4 production via LTSR. 
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Figure ‎3.5 Photograph of experiment rig for bio-oil conversion into CH4 

production via LTSR. 

 

3.3.2.2 Gas chromatograph (GC) 

 

The micro-GC (CP 4900) supplied by Varian Instruments, UK was used to 

analyse dry gas production as shown in Figure  3.6. There were two thermal 

conductivity detectors (TCD) and two different of columns which provided in 

the GC for the analysis. The first column, a molecular sieve 5A was used for 

the analysis of H2, O2, CH4, CO, and N2 whereas the Pora Plot Q (Column 2) 

was used to analyse CO2, C2H4, C2H6, C3H6 and C3H8. Column 2 could also 

detect CH4. Moreover, both of the columns used argon as a carrier gas. 
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Figure ‎3.6 Photograph of micro-GC (CP 4900). 

 

In Column 1, the presence of CO2 could disrupt the stability of the column 

operation, where it enters the pores of molecular sieve column and affecting 

the column performance. This may poison the column and it needs to be 

regenerated by heating to 180 ºC, which requires a long time because of the 

limitation of the oven temperature. Therefore, column 1 was operated with a 

back flush option, which prevented CO2 from entering the column. However, 

the columns were conditioned after finishing every experiment by selecting the 

column conditioning method, where they heat up to 180 ºC to get rid of the 

moisture, which might enter the columns. The Galaxie Chromatography Data 

System software was provided by the manufacturer to set the column 

conditions as well as other essential parameters for the instrument. 
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3.3.3 Solids and liquids characterization 

 

In this section, the analytical techniques such as powder x-ray diffraction 

(XRD), thermogravimetric analysis (TGA), scanning electron microscopy 

coupled with energy dispersive X-ray analysis (SEM-EDX), elemental (CHNS) 

analysis and total organic carbon (TOC) analysis were used to determine the 

characteristics of the fresh and used catalysts are discussed. 

 

3.3.3.1 X-ray diffraction (XRD) 

 

The catalyst powder was analysed by using X-ray diffraction (XRD) analysis, 

which is based on Bragg’s law principle, as given in equation 3.1. 

 

sinθ 2dnλ                  (3.1) 

where: 

n  = positive integer; 

λ  = the wavelength of the incident rays; 

d  = the interplanar distance; 

θ  = the angle between the incident rays and surface of the plane. 

 

The Brucker D-8 diffractometer was used to record the XRD patterns of the 

catalysts by using a Cu-Kα radiation X-ray source. The scanning range was 

set at 10–90º with the step size of 0.025º and a speed of 2.5 second/step. The 

crystallographic of phase of the fresh and used catalysts in this research were 

obtained by searching and comparing with a standard reference diffraction 
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patterns in International Centre for Diffraction Data (ICDD) database by using 

the X’Pert High Score Plus software. 

 

3.3.3.2 Thermogravimetric analysis (TGA) 

 

Thermogravimetric analysis (TGA) measures weight changes of a sample as a 

function of temperature or time under a specific gas at atmosphere pressure. 

The mass loss of a sample could be observed if the volatile compound is lost 

or a solid-gas chemical reaction, such as combustion occurred. In this study, 

the temperature programmed oxidation (TPO) analysis was carried out by 

using a thermogravimetric analyser (Stanton Redcroft TGA1000) to determine 

the amount and type of carbon present on the catalyst surface. Approximately 

150 mg of used catalyst was placed on the TGA crucible (as shown in 

Figure  3.7) and was heated from ambient temperature to 900 ºC at the rate of 

10 ºC/min in 50 cm3/min of air at atmospheric pressure. A plotted graph of the 

weight of the catalyst against temperature was used to illustrate a weight loss 

within a specific range of temperature, indicating that the combustion of 

carbon present in the catalyst was taking place. 
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Figure ‎3.7 Photograph of TGA (Stanton Redcroft TGA1000) for TPO 
analysis. 

 

3.3.3.3 Scanning electron microscopy and energy dispersive X-ray 

analysis (SEM-EDX) 

 

Scanning electron microscopy (SEM) provides high resolution images of the 

sample by scanning the surface sample using a high-energy beam of 

electrons. These various signals which are produced from the sample surface 

are picked up by the detector, revealing the sample surface images, thus it 

also can be used to study the sample topography. On the other hand, the 

energy-dispersive X-ray (EDX) is used to provide the elemental identification 

of the sample, where this technique relies on an interaction of the X-rays 

emitted by excited atoms and the sample. The fresh and used catalysts in this 

Crucible 
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study were analysed using a scanning electron microscopy (Carl Zeiss EVO 

MA15) coupled with an energy-dispersive X-ray (Oxford Instruments 

AZtecEnergy) system. The SEM-EDX (as shown in Figure  3.8) was performed 

on fresh and used catalysts in order to study the morphology of the catalyst 

surface before and after the experiment. Moreover, this technique was used to 

observe the elemental dispersion (Al, O, Ni and Ca) and carbon formation on 

the catalyst surface. 

 

 

Figure ‎3.8 Photograph of SEM (Carl Zeiss EVO MA15) coupled with EDX 
(Oxford Instruments AZtecEnergy). 

 

In order to prepare the sample for SEM-EDX analysis, the sample particles 

were first placed on a sticky pad of a SEM stem, and then were coated with an 

iridium layer of 10 nm. The chemical characterisation of all the samples was 

analysed by using Aztec software supplied by Oxford Instruments. 
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3.3.3.4 Elemental (CHNS) and Total Organic Carbon (TOC) analysis 

 

CHNS elemental analysis was used to measure the elemental compositions of 

the catalyst samples as well as in the condensates, in terms of the mass 

fractions of carbon, hydrogen, nitrogen and sulphur. Therefore, the amount of 

carbon deposited on the catalyst surface was determined by using an 

elemental analyser, Thermo Flash EA 112 series CE instrument. The sample 

(approximately 10 mg) was placed in the tin capsule, where it was then folded 

properly to remove any air trapped in it. The folded sample was placed in the 

auto-sampler of the analyser, where it was fully combusted with an excess 

oxygen at 1800 ºC. The amount of combustion products, carbon dioxide, CO2 

and water, H2O were measured by a thermal conductivity detector (TCD) of 

this equipment, where it gives the mass percentages of carbon and hydrogen 

of the sample. For each analysis, the sample was duplicate in order to ensure 

the result was precise. 

 

The amount of the organic carbon in the condensate samples collected from 

the packed bed experiments were analysed by using a Hach-Lange IL550 

analyser. The total organic carbon (TOC) of the sample was measured based 

on the non-purgeable organic carbon (NPOC) method, where at first, the 

sample was acidified by using hydrofluoric acid and flushing with a carbon-free 

gas to remove inorganic carbon. Then, the sample was going through for a 

combustion process, where the organic carbon reacts with oxygen to produce 

CO2. Before performing the analysis, the condensate samples were diluted 

with deionised water by 10 times due to the sensitivity to the TOC 

measurement. 
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Chapter 4  

Thermodynamic Equilibrium Analysis using Chemical 

Equilibrium and Applications (CEA) Program 

 

4.1 Introduction 

 

Thermodynamic equilibrium analysis for conversion of palm empty fruit bunch 

(PEFB) bio-oil to methane using low-temperature steam reforming (LTSR) 

process was conducted by assuming either isothermal or adiabatic condition, 

with and without sorption enhancement (SE-LTSR), with CaO(S) or Ca(OH)2(S) 

as CO2 sorbent. The present work relies on chemical equilibrium calculations 

by using Chemical Equilibrium and Application (CEA) programme, where it is 

aimed to identify the optimum range of conditions for methane production from 

bio-oil feedstock in LTSR process. In addition, LTSR with in situ CO2 sorption 

using CaO(S) or Ca(OH)2(S) is investigated for a PEFB bio-oil feedstock model 

in terms of CH4 purity, yield and energy balances, and these processes are 

named ‘sorption-enhanced LTSR’ or SE-LTSR. Comparisons between LTSR 

and SE-LTSR are then performed with respect to their energy demand 

according to reforming temperature, molar steam to carbon ratio (S/C) and 

molar calcium to carbon ratio (Ca:C). 
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4.2 Methane production from bio-oil via steam reforming 

process 

 

Several global reactions occur in producing CH4 gas from bio-oil feedstock, 

where initially steam reforming reactions take place (R4.1–R4.2), followed by 

water-gas shift reaction (R4.3) and methane synthesis (R4.4–R4.5). Reaction 

R4.6 collectively represents all the consecutive global reactions resulting in 

methane synthesis. By using matrices solution (Cramer’s Rule), there are two 

main reactions for methane production from bio-oil which can be derived 

based on reactions (R4.3–R4.6) which are expressed as reactions (R4.7) and 

(R4.8). 

 

Steam reforming: 

    22kmn H k0.5mnCOn OH knOHC           0HΔ 298K   

     (R4.1) 

    222kmn H k0.5m2nCOn OH k2nOHC          0HΔ 298K   

               (R4.2) 

Water-gas shift: 

222 HCOOHCO           CO kJ/mol 41.2HΔ 298K   

     (R4.3) 

Methane synthesis: 

O2HCH4HCO 2422        498K2 CH kJ/mol 165.0HΔ   

     (R4.4) 

242 COCH2H2CO        498K2 CH kJ/mol 247.3HΔ   

     (R4.5) 
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OHCH3HCO 242                498K2 CH kJ/mol 206.2HΔ   

     (R4.6) 

 

Rearranging and combining (R4.1–R4.6), the global reactions of methane 

production from bio-oil become: 
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               (R4.8) 

 

Recently, a study has modelled a gasification process from biomass by using 

calcium oxide, CaO as sorbent to capture carbon dioxide, CO2 in gas 

production [129]. This work has used biomass (straw) as feedstock for CH4 

production where the gasification system is simulated within 600–700 ºC in the 

presence of CO2 sorbent, at atmospheric pressure followed by a separate 

methanation stage (R4.4 & R4.6), for which temperature and pressure are 

kept constant at 300 ºC and 10 bar. This is in contrast with our research, 

where bio-oil is used as direct methanation feedstock due to its higher calorific 

value than the biomass source. In addition, the process of low temperature 

steam reforming does not requires multiple stages to produce CH4. The 

novelty of our work is also in considering a CO2 sorbent present during the 

combined steam reforming/methanation reaction environment, and not just 

steam gasification. Thus the effects of in situ CO2 capture can be gauged on 
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the methane production mechanism rather than just the syngas production 

stage. 

 

In the carbonation reaction (R4.9), CO2 production from methanation 

synthesis (R4.5) reacts with CaO to produce calcium carbonate (CaCO3), 

which results in higher purity of CH4. Thus, CaO sorbent is expected to 

enhance the purity and also potentially the yield of CH4 production from bio-oil 

via LTSR, which is investigated throughout this study. The following reactions 

are involved in the process featuring CO2 sorption with CaO(S) and Ca(OH)2(S) 

sorbents: 

 

Carbonation of CaO(S): 

3(S)2(S) CaCOCOCaO      298K2 CO kJ/mol 178.2HΔ   

     (R4.9) 

Carbonation of Ca(OH)2(S): 

  OHCaCOCOOHCa 23(S)22(S)       298K2 CO kJ/mol 69.0HΔ   

     (R4.10) 

 

By combining the results of R4.7 and R4.9 in the global reaction of LTSR with 

the in situ CO2 sorption via CaO sorbent (R4.11), as well as via the Ca(OH)2(S) 

sorbent (R4.12), both approaches can achieve a reformate consisting of pure 

CH4: 
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      (R4.12) 

 

 

4.3 Thermodynamic equilibrium calculations for CH4 

production from PEFB bio-oil 

 

The CEA programme presents results in terms of mole fractions in the 

equilibrium mixture. In order to easily determine the total molar output at 

equilibrium, argon (Ar) was used in the initial reactant mixture with 0.01 mole 

fraction so that an Ar balance would provide directly the total molar output at 

equilibrium, as expressed by equation (4.1). As the amount of Ar chosen is 

relatively small, it is assumed that the equilibrium mixture is not affected by the 

presence of Ar. 

 

Number of moles produced for species “i”: 

outtotal,outi,i nyn               (4.1) 
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where: 

yi,out  = mole fraction for species i produced, output of CEA; 

ntotal,out  = total number of moles produced, nAr,in/yAr,out. 

 

The overall enthalpy balance (∆HTot), i.e. the heat demand for methane 

production is the sum of the enthalpy change terms for each reactant (PEFB 

bio-oil ∆H and H2O ∆H) and reaction enthalpies. The reactant enthalpy terms 

consist in bringing the feed species bio-oil and water from ambient 

temperature (298 K, 1 atm) in their natural phases to the chosen reformer 

temperature (T), and reaction enthalpies are the enthalpy change between 

equilibrium mixture and feed at T, as well as sorbent related reactions. We 

assume here that if the process operates with excess steam (by way of S/C or 

Ca(OH)2(S)), the unreacted steam is then recycled to the reformer, and only 

the net amount of H2O feed requires heating from ambient temperature, liquid 

phase to vapour phase at T. In addition, when simulating the sorption-

enhanced LTSR with in situ CO2 capture (SE-LTSR), it is assumed that the 

carbonate is subsequently calcined to CaO(S) at T. 

 

In the case of CaO(S) as the CO2 sorbent, it is then returned straight to the 

reformer at T. When using Ca(OH)2(S) as the sorbent, the enthalpy change of 

rehydrating CaO(S) to Ca(OH)2(S) with the net amount of water is taken into 

account in the overall enthalpy balance. Rehydration of CaO(S) at T takes 

place first with excess water vapour also at T, and then, the remainder of 

CaO(S) at T is hydrated with net liquid water at ambient temperature. These 

assumptions reflect ideal conditions of heat integration by ignoring the thermal 

efficiencies of the recycling processes (water, sorbent) and the practicalities of 
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calcination. The latter would require higher temperature (typically 1170 K for 

Ca-sorbents), followed by heat recuperation measures. Nevertheless, these 

ideal conditions allow closer comparisons between LTSR and SE-LTSR 

processes without going into more comprehensive process modelling where 

auxiliary units would have to be depicted together with their heat losses (fluid 

and solids movers, piping and valves, heat exchangers). The data of enthalpy 

in standard conditions (298 K and 1 atm) were obtained from the National 

Institute of Standards and Technology (NIST) and also from the 

thermodynamic properties database file ‘thermo.inp’ in the CEA programme. 

 

Individual enthalpy change calculations were carried out using the enthalpy of 

individual species (i.e. CH4, CO2, CO, H2, C(gr), H2O, phenol and acetic acid). 

Equation (4.2) was used when using NIST data where equation (4.3) was 

used for the data taken from the CEA programme. 
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               (4.3) 

where: 

Hº = standard enthalpy of formation (kJ/mol); 

t = reaction temperature (K)/1000; 

T = reaction temperature (K); 

R = gas constant (8.3144621×10-3 kJ/mol.K). 
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The calculations for reactant enthalpy changes of PEFB bio-oil ∆H, H2O ∆H, 

and the enthalpy of reaction expressed by equations (4.4–4.7) were used to 

determine the energy required or released for the overall reactions in 

producing one mole of CH4 from PEFB bio-oil feedstock. Enthalpy change of 

decarbonation of CaCO3 back to CaO is represented by equation (4.8). 

 

ΔH reactants (kJ/mol CH4 produced): 

 
out,CH

oil,298KToil,inoil,

4
n

HHn
ΔH oil bio PEFB
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where outO,HinO,HnetO,H 222
nnn  . 

 

Summing up all reactant enthalpies: 

ΔH OHΔH oil bio PEFBΔH Reactants 2         (4.6) 

 

ΔH of reaction (kJ/mol CH4 produced): 

 
out4,CHTreactants,Tproducts, n/HHΔH Reaction           (4.7) 

 

ΔH of decarbonation (kJ/mol CH4 produced): 

 
out,CH

T,CaCOT,COTCaO,out,CaCO

4

323

n

HHHn
ΔH Decarb


        (4.8) 

 

When using CaO(S) as the sorbent, Ca(OH)2(S) formed in the reformer and not 

carbonated due to excess Ca compared to CO2 product will require 

dehydration (calcination) before recycling: 
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    T,OHCaTO,HT,CaOout,OHCa 2(S)2(S)2(S)
HHHnΔHDeHy         (4.9) 

 

However, when using Ca(OH)2(S) as the sorbent, this term is zero as excess 

Ca(OH)2(S) is directly recycled to the reformer. 

 

Rehydration with excess water, when ,outCaCOO,outH 3(S)2
nn  : 

 T,CaCOTO,HT,CaOoutO,H 3(S)2(S)2
HHHnΔH ReHy1          (4.10a) 

Rehydration with net water: 

   T,CaCOKO(liq),298HT,CaOoutO,Hout,CaCO 3(S)2(S)23(S)
HHHnnΔH ReHy2   

     (4.10b) 

where: 

inoil,n   = number of moles of PEFB bio-oil feed; 

out,CH4
n  = number of moles of CH4 produced; 

inO,H2
n  = number of moles of water feed; 

out,CaCO3
n  = number of moles of CaCO3 produced; 

H  = enthalpy in kJ/mol; 

T  = reformer temperature (K). 

 

Finally, total enthalpy process: 

ΔH Rehy2ΔH ReHy1               

ΔHDeHy ΔH DecarbΔHReaction ΔH ReactantsΔHTot




      (4.11) 
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4.4 PEFB bio-oil composition and choice of model bio-oil 

 

In this research, bio-oil from the fast pyrolysis of palm empty fruit bunch 

(PEFB) was modelled as the feedstock for CH4 production. PEFB bio-oil 

contains a great range of carboxylic acids, phenols, ketones, alcohols and 

aldehydes, in which acetic acid and phenol were found as the main 

compounds of PEFB bio-oil, in addition to many other oxygenated organics 

[107, 108, 110]. Since the exact composition of PEFB bio-oil is unknown, 

sensitivity analysis was first conducted to demonstrate that the results at 

chemical equilibrium for different PEFB bio-oil/H2O systems are not sensitive 

to a precise bio-oil composition, provided the elemental content of PEFB bio-

oil is well known. Table  4.1 shows the characteristics of PEFB bio-oil 

compositions with and without water content, where C0.3238H0.4957O0.1798N0.0007 

of moisture free (mf) elemental formula was used as the basis for this study 

[107, 111]. 

 

The bio-oil mixture is represented in CnHmOk elemental format since the bio-oil 

composition is too complex to determine the precise amount of different 

compounds in the bio-oil. A sensitivity analysis for bio-oil composition was 

conducted using C0.3238H0.4957O0.1798N0.0007 from reference [111] as the basis 

for elemental content of PEFB bio-oil approximated by different values of mole 

fractions of acetic acid, phenol and levoglucosan. 
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Table ‎4.1 Characteristics of PEFB bio-oil [107, 111]. 

Water content, wt.% 21.68 - 

Elemental analysis, wt.% 

   Carbon 41.86 53.45 

   Hydrogen 7.82 6.88 

   Oxygen 50.22 39.54 

   Nitrogen 0.1 0.13 

Molar formula C0.3821H0.0060O0.6108N0.0011 C0.3238H0.4957O0.1798N0.0007 

 

Therefore, CEA programme was used in order to predict CH4 production using 

the same value of total feed of 3000 moles of carbon for all the conditions 

tested and in the temperature range of 300–800 K at 1 atm. Three different 

PEFB model bio-oil mixtures consisting of acetic acid, phenol and 

levoglucosan were used to simulate the target bio-oil elemental composition 

C0.3238H0.4957O0.1798N0.0007, which are listed in Table  4.2. These were then 

tested for a range of temperatures and S/C in equilibrium LTSR at 

atmospheric pressure to assess the sensitivity of CH4 yield to the model 

mixture make up (Figure  4.1). CEA allows the inclusion of condensed species 

(liquids and solids), therefore solid CO2 sorbents like CaO(S), Ca(OH)2(S) and 

CaCO3(S) are able to be considered in the systems studied, which are 

discussed in the next section. 

 

Based on CH4 production from bio-oil reaction (R4.7), the predicted 

equilibrium CH4 yield was calculated using equation (4.12), whereas the 

percentage error was calculated via equation (4.13). 
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     
















inO,OinH,HinC,C

out,CHCH

4
nMnMnM

nM
100yield CH 44

       (4.12) 

 

Percentage error for bio-oil of composition between the target and the model 

bio-oil is: 

 











oil-bio for target yield CHmax 

oil-bio modelfor  yield CHmax 
1100(%)Error 

4

4
       (4.13) 

where: 

4CHM   = molar mass of CH4; 

MC  = molar mass of carbon element in bio-oil; 

MH  = molar mass of hydrogen element in bio-oil; 

MO  = molar mass of oxygen element in bio-oil; 

and the maximum CH4 yield is that obtained from complete reaction R4.7 

using LTSR or complete reactions R4.11 or R4.12 using SE-LTSR for a given 

bio-oil. 

 

Table  4.2 lists three very distinct mixtures of the model compounds (acetic 

acid, phenol and levoglucosan) that are known to feature significantly in PEFB 

bio-oil composition from experiments [110]. Each mixture (M1, M2 and M3) 

was modelled in order to achieve an elemental formula closest to that of the 

target material C0.3238H0.4957O0.1798N0.0007 as in Table  4.1. It can be seen that 

despite significant differences in the amount of acetic acid, phenol and 

levoglucosan, each mixture results in a theoretical maximum CH4 yield of less 

than 3% error with the target material. Figure  4.1 shows that the equilibrium 
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CH4 yields calculated using equation (4.12) for the temperature range (400–

800 K) and the three model mixtures (M1–M3) defined in Table  4.2 were very 

similar for a given S/C and temperature. Note the intended mixture elemental 

formula had a theoretical maximum CH4 yield of 39.5 wt. % of CnHmOk feed. 

Thus, the LTSR process does not appear to be sensitive to an exact 

composition of bio-oil feedstock as long as its elemental content remains the 

same. However, the differences in boiling point between the model mixtures 

(M1–M3) are too significant, where M2 had the highest boiling point, 340 ºC 

(less volatile) while M3 had the lowest value, 160 ºC (more volatile) among the 

three mixtures. This is because the major component in M2 is levoglucosan, 

with the highest boiling point (385 ºC) compared to acetic acid (118 ºC) and 

phenol (182 ºC). It also explained why the M3 model mixture had lower boiling 

point value (160 ºC) due to the acetic acid being the main component in the 

mixture, M3. As the difference of compounds in the mixture affected the 

boiling point values, Chapter 6 will be using the real components (qualitative 

and quantitative) of the bio-oil for process plant modelling. But, this chapter is 

focusing into maximum of CH4 yield despite of having difference values of the 

mixture’s volatility. 

 

Subsequently, mixture M3, which contains only acetic acid and phenol, was 

chosen in this investigation to represent the LTSR and SE-LTSR of PEFB bio-

oil since it gave the smallest percentage error in the theoretical maximum CH4 

yield (1.13%) compared to the target bio-oil. 
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Table ‎4.2 Estimation for three different PEFB bio-oil compositions based 
on the intended elemental formula C0.3238H0.4957O0.1798N0.0007. 

Mixture M1 M2 M3 

Mole fraction:    

Acetic acid 0.55 - 0.7 

Phenol 0.3 0.41 0.3 

Levoglucosan 0.15 0.59 - 

Molar formula C0.3319H0.4803O0.1878 C0.3386H0.4718O0.1896 C0.3368H0.4842O0.1789 

CH4 yield, wt.% 

(Eq.4.12) 
38.44 38.31 39.97 

Error, % 

(Eq.4.13) 
2.7 3 1.1 

Boiling point, ºC 300 340 160 

 

 

Figure ‎4.1 CH4 yield (wt. %) for three different PEFB bio-oil mixture 
compositions listed in Table  4.2 for S/C from 3 to 7 and 1 atm. 
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4.5 Thermodynamic equilibrium analysis of direct CH4 

production from PEFB bio-oil by LTSR with and without 

in situ CO2 sorption 

 

4.5.1 Expected outputs from stoichiometry of LTSR and SE-LTSR 

reactions and relevance to LTSR process design 

 

The mixture M3 (Table  4.2) with the elemental formula C0.3368H0.4842O0.1789 was 

chosen as the model mixture for PEFB bio-oil, and the generic global reaction 

of CH4 production from bio-oil (in vapour state) with CO2 as a co-product 

(R4.7), can be expressed by reaction (R4.13) using M3 as the feedstock: 

 

4220.17890.48420.3368 CH184.0CO153.0OH126.0OHC     

     498K2 CH kJ/mol 165.0HΔ        (R4.13) 

 

Thus, LTSR of M3 as expressed by (R4.13) is significantly exothermic and 

therefore, there may be a potential for heat recovery to bring the reactants to 

reformer temperature and achieve a near-autothermal process. The 

stoichiometric molar steam to carbon ratio (S/C) was at a low value of 0.375 (= 

0.1263/0.3368), corresponding to a maximum CH4 yield of 40.0 wt.% of M3, 

and associated with an ideal CH4 purity of 54.7 mol% in the CH4-CO2 

reformate mixture. By comparison, the S/C required for H2 and CO2 production 

through high-temperature steam reforming (HTSR) of M3 (S/C = 1.47) was 

significantly higher and would produce a maximum of H2 yield of 20.1 wt.% of 

M3. 
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When using CaO(S) as the CO2 sorbent and combining the results of (R4.13) 

and (R4.9) in (R4.14), the SE-LTSR of M3 model PEFB bio-oil is: 

 

43(S)(S)(G)20.1789(G)0.48420.3368 CH184.0CaCO153.0CaO153.0OH126.0OHC 

          498K2 CH kJ/mol 193.0HΔ   

     (R4.14) 

 

Furthermore, when using Ca(OH)2(S) as the in situ CO2 sorbent and combining 

the results of (R4.13) and (R4.10) in (R4.15), this potentially generates pure 

CH4 reformate: 

 

  43(S)2(S)(G)20.1789(G)0.48420.3368 CH184.0CaCO153.0OHCa153.0OH126.0OHC 

            498K2 CH l102.6kJ/moHΔ   

     (R4.15) 

 

High-temperature steam reforming (HTSR) for H2 and CO2 generation also 

has a stoichiometric Ca:C of 1 when coupled with in situ Ca-based CO2 

sorption. Thus, temperature and S/C variations in a reformer are expected to 

change rapidly from conditions favourable to SE-LTSR to those advantages 

for sorption enhanced-HTSR or ‘SE-HTSR’, where H2 product is preferred 

over CH4. In addition to improving reformate purity in H2, in situ CO2 capture 

has other benefits that have been identified in SE-HTSR: lower S/C for 

threshold of carbon formation, higher H2 yields from equilibrium shifts in steam 

reforming and water gas shift reactions, lower overall energy demand from 

operating at lower S/C and T, a wider range of temperatures of maximum 

yield, collectively known as enhancement effects of sorption-enhanced steam 
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reforming process (SESR) [110, 144]. The present study aims to assess for 

the first time whether similar benefits can be observed for SE-LTSR in 

equilibrium production of pure methane reformate. 

 

Unlike SE-HTSR, which always requires H2O co-reactant whether CaO(S) or 

Ca(OH)2(S) is used as the sorbent, SE-LTSR theoretically does not need H2O 

feed when using Ca(OH)2(S) because its stoichiometric S/C for reaction R4.15 

is negative (i.e. −0.026). The stoichiometric S/C of R4.14 and R4.15 differ 

greatly due to the sorbent in R4.15 being already hydrated, which is 

represented in the considerably exothermic reaction R4.16. 

 

Hydration of CaO(S): 

 2(S)(G)2(S) OHCaOHCaO              (S)98K2 CaO l109.2kJ/moHΔ   

     (R4.16) 

 

When operating at temperatures approximately below 400 ºC, CaO(S) readily 

hydrates to Ca(OH)2(S), whereas above this temperature, Ca(OH)2(S) 

dehydration is favoured. Calcination of Ca-based CO2 sorbents at around 900 

ºC via the reverse of (R4.9) enables the release of captured CO2 from 

CaCO3(S), thereby regenerating the Ca-based sorbent for another carbonation 

cycle. Without such regeneration step, the sorbent would eventually reach full 

capacity for CO2 intake and cease to be active for sorption-enhanced H2 or 

CH4 production. 
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Ca-based sorbents are, however, well known to deactivate significantly, 

principally via sintering through repeated cycles of calcination [145]. Many 

studies of sorption-enhanced reforming have investigated hydration of Ca-

based sorbents as a means to counteract the deactivation caused by 

calcination-induced sintering. It has been found that direct hydration, i.e. direct 

use of hydrated Ca-sorbent for high-temperature CO2 sorption is more 

effective than indirect hydration, whereby calcination in an inert atmosphere is 

employed between hydration and subsequent carbonation [146]. 

 

Such investigations are, however, dedicated to higher temperature processes 

than LTSR, such as syngas production or post-combustion CO2 capture. 

Particular concerns for SE-LTSR will be the sensitivity of CH4 yield to 

fluctuations in the operating S/C and to temperature, exacerbated by the 

exothermicity of R4.14 and R4.15. In adiabatic process conditions, the use of 

CaO(S) with LTSR will see the hydration reaction R4.16 takes place first, which 

will lower H2O partial pressures, followed by R4.15. The heat release of R4.16 

and R4.15 would raise the system temperature in two stages, potentially 

creating inhomogeneity in local S/C, with risks of carbon deposition where S/C 

would dip too low, or hydrogen production to the detriment of methane via SE-

HTSR where S/C would rise too high. 

 

In contrast, the adiabatic SE-LTSR process using Ca(OH)2(S) would provide a 

one-step temperature rise with a steady supply of excess steam as an 

intermediate product, as R4.15 exhibits a negative stoichiometric S/C, in 

addition to the fact that no exothermic CaO(S) hydration will take place in the 

reformer. Thus, Ca(OH)2(S) offers advantages over CaO(S) as the preferred 
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sorbent to enter the adiabatic low-temperature steam reformer: controlled 

reactivation after calcination of the sorbent and a one-step exothermic process 

in the reformer. Nevertheless, whether CaO(S) or Ca(OH)2(S) is used, with both 

R4.14 and R4.15 being significantly exothermic, there is a risk that the 

adiabatic reformer temperature may reach the unwanted sorbent calcination 

mode through exotherms, thus switching off the in situ CO2 capture. In 

comparison, in the isothermal (controlled cooled) LTSR process using 

Ca(OH)2(S), the heat released during SE-LTSR would ensure operating at set 

temperatures is favourable for carbonation, but maintaining a constant 

temperature inside the reformer housing hot solid carbonate would add 

complexity to process control and design. 

 

As mentioned in Chapter 3, under CEA method, CH4 production was predicted 

using two different types of problems in the CEA code, which were the 

‘Assigned Temperature and Pressure’ (tp), i.e. the isothermal reactor, and the 

‘Assigned Enthalpy and Pressure’ (hp), i.e. the adiabatic reactor. The results 

for ‘tp’ are presented first, and the ‘hp’ results are compared and discussed at 

the end of this section, as they are both relevant to practical issues as 

discussed above. 

 

Table  4.3 lists the molar inputs corresponding to the bio-oil mixture model 

used in equilibrium calculations. Other reactants in the system feed (e.g. H2O, 

Ca sorbents, negligible Ar) are then defined by the molar ratios of Ca:C and 

H2O:C used, and the latter is also termed S/C for steam to carbon ratio when 

no sorbent is used, as previously. 
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Table ‎4.3 Molar inputs of reactants in mixture M3 based on 3000 of total 
moles of carbon input. 

Compound Input moles C (moles) H (moles) O (moles) 

Acetic acid 

(CH3COOH) 
656.25 1312.5 2625 1312.5 

Phenol 

(C6H5OH) 
281.25 1687.5 1687.5 281.25 

Total 937.5 3000 4312.5 1593.75 

 

The theoretical maximum CH4 production for the M3 model bio-oil mixture 

molar inputs of Table  4.3 would therefore be 1641 moles, and this would be 

accompanied by 1359 moles of CO2 via R4.13, or 1359 moles of CaCO3(S) via 

R4.14 or R4.15, which would then require calcination of the Ca-sorbent, 

releasing the same moles in the form of CO2. 

 

 

4.5.2 Temperature and S/C effects on the equilibria of isothermal 

LTSR and SE-LTSR of PEFB bio-oil model 

 

In this section, the effects of changing temperature between 400 and 800 K 

and S/C from 0.5 to 7.0 at atmospheric pressure were investigated on the 

equilibrium system in order to determine the optimum conditions for PEFB bio-

oil conversion to CH4 via LTSR. Isothermal process (as opposed to adiabatic 

process) is considered. The conditions of optimum CH4 yield for LTSR were 

then compared to the process outputs, which introduced Ca(OH)2(S) as the 

CO2 sorbent in the feed mixture, simulating isothermal SE-LTSR. 
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Figure  4.2(a) shows that values close to the theoretical maximum of 1641 

moles of CH4 can be produced by LTSR without sorbent for S/C ≥ 2 and 

temperatures ≤ 550 K. This threshold minimum S/C is itself much higher than 

the stoichiometric S/C of 0.375 from the intended reaction R4.13. The reason 

for this discrepancy in S/C for maximum CH4 yield can be found in 

Figure  4.3(a), which shows carbon graphite as the main equilibrium carbon-

containing product at low temperatures and S/C below 2. 

 

For temperatures below 650 K and all S/C, negligible CO was produced, as 

seen in Figure  4.3(b), with the only other carbon-containing co-products of 

methane being carbon graphite and CO2 (Figure  4.3(c)). At temperatures 

above 650 K, H2 becomes the dominant hydrogen-containing product, as seen 

in Figure  4.3(d), and it increased with S/C as per HTSR process, accompanied 

by CO and CO2.  



106 
 

 

 

Figure ‎4.2 CH4 production vs. temperature from M3 mixture (Table  4.3) 

without (a) and with Ca(OH)2(S) (b) at 1 atm. The top horizontal line is the 
theoretical maximum production via (R4.13). 

 

The dominance of solid carbon at low temperatures, low S/C and hydrogen at 

higher temperatures results in a dome-shaped profile of methane yield with 

temperature (Figure  4.2(a)), whose top flattened and shifted towards lower 

temperatures as S/C increased. In order to avoid too high sensitivity of 

methane yield to fluctuations in either temperature or S/C in a practical 

isothermal LTSR process of PEFB bio-oil, given that it will be overall 
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exothermic in the reformer and thus highly dependent on good cooling 

controls, it is thus recommended to operate the isothermal LTSR of PEFB bio-

oil in the S/C range of 2.5 to 3, and between 450 and 550 K, where CH4 yield 

plateaus. 

 

 

 

  

Figure ‎4.3 Production of (a) carbon graphite, (b) CO, (c) CO2 and (d) H2 

between 400 and 800 K at 1 atm for LTSR (solid lines) and SE-LTSR 
(dashed lines) processes. 
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In the presence of Ca(OH)2(S), the maximum CH4 production reached the 

theoretical maximum at Ca:C = 0.5, i.e. close to the stoichiometric Ca:C of 

0.45 as determined from the intended reaction R4.15 (Figure  4.2(b)). This 

condition used comparatively much less steam than the sorbent-free system 

to achieve close to the theoretical maximum yield of CH4. The SE-LTSR 

equilibrium process thus behaves very closely to the intended reaction R4.15. 

As in LTSR, CH4 yield in the isothermal SE-LTSR process decreased at high 

temperatures due to the rise in hydrogen co-product (Figure  4.3(d)). In sharp 

contrast with LTSR, SE-LTSR has no solid carbon predicted at equilibrium. 

This is true except for the conditions of sub-stoichiometric Ca:C (< 0.453), 

which results in a lack of steam generation via R4.10 (see Figure  4.3(a)) and 

thus prevents carbon oxidation. SE-LTSR also features a lack of both CO and 

CO2 as long as the Ca:C is at or above stoichiometry of R4.15 (Figure  4.3 

(b,c)). Thus, prevention of equilibrium solid carbon is a sorption-enhancement 

effect that SE-LTSR shares with SE-HTSR. The only impediment to reach the 

theoretical maximum of CH4 production is that even at low temperatures (400–

500 K), concurrent H2 production occurs, though in a limited way. Surprisingly, 

this results in a medium temperature region where CH4 production via LTSR 

exceeds slightly that of SE-LTSR in isothermal conditions. 

 

In theory, the use of a much lower S/C of SE-LTSR may result in energy cost 

savings by avoiding having to raise excess steam compared to LSTR. This 

issue will be explored in a later section (4.5.4). An immediate benefit of 

operating in SE-LTSR, however, is that the CH4 in the dry reformate increased 

from 45 vol. % with LTSR (S/C = 3) to 88 vol. % with SE-LTSR (Ca:C = 0.5), 

when both at 450 K, i.e. at maximum CH4 yield. This high level of purity in the 
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reformer may or may not remove the need for a CH4 separation step 

downstream of SE-LTSR process, depending on the intended use for the CH4 

produced. However, the absence of a downstream CH4 separation step may 

itself be mitigated by having to introduce a sorbent regeneration measure, also 

downstream of the reformer. Incidentally, the sorption enhancement effect on 

HTSR can be seen in the high temperature range (> 650 K) by the decrease in 

CO and increase in H2 production due to the more favourable equilibrium in 

the water gas shift reaction (R4.3) caused by the removal of CO2 from the 

products via carbonation. The latter was observed experimentally, as well as 

equilibrium modelling in [110]. 

 

As discussed earlier in Section 4.5.1, there are a number of advantages in 

potentially rating Ca(OH)2(S) above CaO(S) as the active sorbent in the 

isothermal SE-LTSR process. These are relevant to the stability of both 

temperature and S/C in the cooled reformer by eliminating CaO(S) hydration 

through reaction R4.16. Inhomogeneity in temperature and S/C caused by the 

heat released by R4.16 and water demand may result in either local carbon 

formation or too high H2 co-product. When replacing Ca(OH)2(S) with CaO(S) in 

the system and adding the required equivalent H2O co-reactant separately, 

the same production profiles of CH4, CO, C and H2 for Ca(OH)2(S) based SE-

LTSR were obtained, and thus the results for CaO(S) based SE-LTSR are not 

shown here. This is because in isothermal conditions below 700 K, i.e. LTSR 

conditions, the hydration reaction R4.16 is complete in excess of steam 

conditions. 
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4.5.3 Pressure effects in the equilibria of isothermal LTSR and SE-

LTSR of PEFB bio-oil model 

 

Methane synthesis exothermic reactions (R4.4–R4.6) involve the production of 

less moles of gas products than the initial moles of reactant. According to Le 

Chatelier’s principle, an increase in pressure will imbalance the reactants 

more than the products and the system equilibrium will counteract this change 

by increasing conversion. This effect can be seen in Figure  4.4, where 

increasing the system pressure from 1 to 30 atm at S/C of 3 brings the profile 

of CH4 product closer to the theoretical maximum. An industrial process of 

LTSR of PEFB would therefore benefit in terms of CH4 yield from operating at 

higher pressures than atmospheric, with pressure of just 5 atm significantly 

expanding the temperature zone of maximum CH4 yield compared to 1 atm by 

approximately 60 K, and compared to 30 atm by 150 K from its starting point 

of optimum temperature. This could be advantageous in the industrial process 

where the kinetics of methanation catalyst may be very sensitive to 

temperature in the range of maximum equilibrium CH4 yield, and activity at 

550 K could be significantly lower than at 610 K (5 atm) or 700 K (30 atm). 

The drawback of operating at higher pressures would be in the increased 

boiling point of the reactants, the resulting surge in energy demand for 

vaporisation of liquid water feed. 
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Figure ‎4.4 CH4 production within 300–800 K at S/C = 3.0 for total pressures 
between 1 and 30 atm. The top horizontal line is the theoretical maximum 
production via (R4.13). 

 

4.5.4 Enthalpy balances for the equilibria of isothermal LTSR and 

SE-LTSR of PEFB bio-oil model 

 

The main global reactions that are related to the LTSR process for CH4 

production from the M3 model bio-oil mixture, such as several CH4 synthesis 

reactions (R4.4–R4.6, R4.13–R4.15), water-gas shift, hydration of CaO, and 

carbonation of both CaO and Ca(OH)2, are listed in Table  4.4 with their 

standard enthalpies of reaction. The overall process for isothermal CH4 

production via LTSR is expected to be exothermic in the reformer since all of 

the reactions involved exhibit negative value of reaction enthalpy. In the 

process start-up, using reactants at ambient temperature and natural phases 

will introduce a significant heat demand to first, vaporise volatile reactants in 

condensed phases (net liquid water, liquid acetic acid and crystalline phenol) 

and secondly, bringing all the reactants in the vapour phase to reformer 

temperature. Beyond start-up conditions, however, the process will operate 
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cyclically, where solids will be regenerated from carbonate state to oxide and 

excess water will be used either to rehydrate CaO or used as a reforming co-

reactant. In order to represent ideal processes where heat recuperation has 

100% efficiency, we will assume that decarbonation occurs at reformer 

temperature (in practice, temperature in excess of 900 °C is typically 

required), and thus solids and water recycling will not incur sensible enthalpy 

changes, but only reaction enthalpy changes. This section looks at the total 

heat demand of LTSR compared to SE-LTSR. 

 

Table ‎4.4 Reaction of enthalpy (∆HR) for main global reactions that are 
related to LTSR for methane production at 298 K (M3 = C0.3368H0.482 

O0.1789(G)). 

R Reaction Stoichiometry (mol) ∆H298 K (kJ) 

4.3 Water gas-shift CO + H2O(G) ↔ CO2 + H2 −41.2/mol CO 

4.4 Methanation of 

CO 

CO + 3H2 ↔ CH4 + H2O(G) −206.2/mol CH4 

4.5 As above 2CO + 2H2 ↔ CH4 + CO2 −247.3/mol CH4 

4.6 Methanation of 

CO2 

CO2 + 4H2 ↔ CH4 + 2H2O(G) −165.0/mol CH4 

4.9 Carbonation of 

CaO 

CaO(S) + CO2 ↔ CaCO3(S) −178.2/mol CO2 

4.12 Carbonation of 

Ca(OH)2 

Ca(OH)2(S) + CO2 ↔ CaCO3(S) + 

H2O 

−69.0/mol CO2 

4.13 LTSR of M3 bio-

oil 

M3 + 0.126 H2O → 0.153CO2 + 

0.184 CH4 

−45.4/mol CH4 

4.14 SE-LTSR, CaO(S) M3 + 0.126H2O + 0.153CaO(S) 

→ 0.153CaCO3(S) + 0.184CH4 

−193.0/mol CH4 

4.15 SE-LTSR, 

Ca(OH)2(S) 

M3 − 0.026H2O + 

0.153Ca(OH)2(S) → as (R4.14) 

−102.6/mol CH4 

4.16 Hydration of CaO CaO(S) + H2O(G) ↔ Ca(OH)2 −109.2/mol H2O 
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Figure  4.5 plots ∆HTot derived from equation (4.11) for the isothermal LTSR 

and SE-LTSR cases at atmospheric pressure. We remind that ∆HTot is the 

sum of enthalpy changes of raising bio-oil and net water reactants from their 

natural phases from 298 K to vapour state at reforming temperature T and the 

reaction enthalpy change at T, as well as calcination enthalpy change at T, if 

carbonate was present in the products, with rehydration of CaO(S) product in 

the case of the calcium hydroxide sorbent used as the reactant, and 

dehydration in the case of Ca(OH)2(S) product and calcium oxide used as the 

reactant. From previous thermodynamic equilibrium calculations, SE-LTSR 

with Ca:C = 0.5:1 and LTSR with S/C = 3.0 were identified as the optimum 

conditions for maximum CH4 production, with their maxima reached within the 

temperature interval of 400–600 K. In this section, the two processes are 

further compared in terms of individual energy terms for reforming temperature 

at 450 K (see Table  4.5) in order to determine the conditions that could 

potentially provide more energy savings for CH4 production. 

 

From Figure  4.5, for LTSR and SE-LTSR, the total ∆H for producing one mole 

of CH4 increased with temperature. This was caused by an increase in the 

reactants ∆H calculated using equation (4.6), as well as an increase in ∆H of 

reaction, which evolved from very exothermic due to carbon graphite co-

product to very endothermic due to H2 co-product. In the maximum methane 

production region for LTSR (S/C = 3, T = 450 K), ∆HTot was 31.3 kJ/mol CH4, 

resulting from 75.2 kJ/mol CH4 produced which attributed to reactants heating 

demand, and −44 kJ/mol CH4 of exothermic reaction in the reformer 

(Table  4.5). By comparison, at the maximum methane production for SE-LTSR 

(Ca(OH)2:C = 0.5:1, 450 K), the total ∆HTot of 37.2 kJ/mol of CH4 produced 
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was the result of a very exothermic reaction ∆H of −104 kJ/mol CH4, 

overwhelmed later by a strongly endothermic decarbonation of the sorbent 

(+157.1 kJ/mol CH4), with the other terms (reactants heating ∆H > 0, 

rehydration of CaO(S) < 0) roughly cancelling each other. 

 

 

Figure ‎4.5 Total enthalpy (∆HTot) for producing 1 mole of CH4 from bio-oil 

steam reforming for LTSR in the range of S/C = 2–7, SE-LTSR using 
Ca(OH)2:C = 0.5:1 (no inlet steam) and CaO:S:C = 0.5:0.5:1 for reformer 
temperatures of 400–600 K at 1 atm. (S = steam) 

 

The results shown in Figure  4.5 and Table  4.5 assume ideal heat recuperation 

conditions when recycling water and regenerated sorbent to the reformer and 

therefore, there are no great differences in ∆HTot for a given reforming 

temperature when S/C varies from 2 to 7. In practice, the ∆HTot of LTSR would 

significantly increase with S/C had more realistic recycling and heat 

recuperation conditions been considered. This is now illustrated in the worst 

case scenario of LTSR without recycling or heat recuperation of water, for 

which the calculated ∆HTot at S/C of 2 was 202 kJ per mol CH4 produced, 
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rising to 268 and 639 kJ/mol CH4 at S/C of 3 and 7, respectively, for similar 

reforming temperature of 450 K (results are not shown in figure or table). 

Similarly, SE-LTSR’s heat demand would also increase significantly as 

decarbonation above 1170 K (calcination by oxy-combustion, for example) 

followed by non-ideal cooling of CaO(S), and subsequently by its rehydration 

and recycling that would introduce heat and material losses. Again, in the 

worst case scenario of SE-LTSR where decarbonation is conducted at 1170 

K, and neither the sorbent nor the water or their heat is recycled, the ∆HTot of 

SE-LTSR with CaO(S) as the sorbent would be 381 kJ per mol CH4 produced. 

 

Table  4.5 lists the ∆HTot of LTSR and SE-LTSR at atmospheric pressure, but 

similar calculations were performed at 30 atm (not shown). It was found that 

the ∆HTot of isothermal LTSR and SE-LTSR in ideal conditions of recycle and 

heat recuperation was approximately 28–29 kJ per mol of CH4 produced, with 

the differences of 1 atm found mainly in the ‘reaction ∆H’ term for LTSR and 

‘decarbonation ∆H’ for SE-LTSR, indicating modest pressure effect on the 

enthalpy balance. More significant benefits of lower energy costs were 

observed when operating at higher temperatures (up to 600 K) when 

comparing 30 atm with 1 atm conditions due to the higher maximum CH4 yield 

at 30 atm (as seen in Figure  4.4). 
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Table ‎4.5 Enthalpy change terms for 1 mole of CH4 produced by 
isothermal LTSR at S/C of 3 and isothermal SE-LTSR with Ca:C of 0.5:1 
(with CaO and Ca(OH)2 as sorbents) at 1 atm. All calculations were done 
at 450 K and ∆H terms were given in kJ/mol of CH4. 

Eq. Enthalpy 

change term 

Initial state → 

 Final state 

LTSR 

S/C = 3 

CaO-LTSR 

0.5:0.5:1 

Ca(OH)2(S)-

LTSR 0.5:1 

4.4 Acetic acid ∆H 298 K (l) → 

 (g) 450 K 

25.3 25.9 25.9 

4.4 Phenol ∆H 298 K (s) → 

 (g) 450 K 

15.2 15.6 15.6 

4.5 H2O ∆H 298 K (l) → 

 (g) 450 K 

34.7 38.0 N/A 

4.7 Reaction ∆H 450 K (g) → 

 (g) 450 K 

−43.9 −205.4 −104.4 

4.8 Decarb ∆H 450 K (s) → 

 (s) 450 K 

0.0 157.1 157.1 

4.9 DeHy ∆H 450 K (s) → 

 (s) 450 K 

N/A 6.0 N/A 

4.10a  ReHy1 ∆H 450 K (l,s) → 

 450 K (s) 

N/A N/A −12.3 

4.10b ReHy2 ∆H (s) 450K &  

(l) 298 K → 

 (s) 450 K 

N/A N/A −44.6 

4.11 ∆HTot 298K (l,s) → 

 (g,s) 450 K 

31.3 37.2 37.2 

 

Given the difficulties in recycling solid sorbent streams that becomes worse at 

high pressure (blockages at valves, risks of compromised seals) and for 

efficiently recuperating their heat, and also due to the fact that the reformate 

product of SE-LTSR may still require further purification post-processing stage 

to remove H2 impurities and uncaptured CO2, there seem to be no clear 

advantages of SE-LTSR over LTSR in isothermal conditions, where both are 

expected to produce maximum CH4 amounts. 
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The recommendation thus remains that for the isothermal process, LTSR at 

S/C of 3 (in order to clearly avoid equilibrium solid carbon product) and 

temperatures between 450 and 500 K, be utilised in combination with each 

other, as they provide more energy efficient and high methane yield 

conditions. Operating at higher pressures than atmospheric would bring about 

higher yields but also higher costs associated with fluid movers and reactor 

vessel specifications. These conditions will then require moderate heating in 

order to maintain the desired temperature. 

 

4.5.5 Comparison between isothermal and adiabatic LTSR 

processes for CH4 production from PEFB bio-oil model 

 

As mentioned earlier, the ‘hp’ problem (i.e. constant enthalpy, constant 

pressure) was also conducted in the CEA programme to simulate the 

adiabatic LTSR and SE-LTSR processes (i.e. without heat losses, 

representing a well-insulated reformer without internal cooling). Figure  4.6 

shows CH4 production at varying S/C and temperatures for the adiabatic 

LTSR process at 1 atm. CH4 production was favoured at lower initial 

temperatures (400–550 K) than the isothermal process, and the optimum 

conditions for CH4 production were obtained at and above S/C = 2. This was 

caused by the significant increase in the equilibrium temperature of the 

adiabatic process (Figure  4.7) at low initial temperatures compared to the 

isothermal process, thus avoiding carbon graphite and CO by-products for S/C 

above 2 (C and CO not shown). 
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Figure ‎4.6 CH4 production for adiabatic LTSR within 300–800 K at 1 atm. 
This figure is to be compared to Figure  4.1(a) of the isothermal case. 

 

If operating LTSR in adiabatic conditions from low initial temperature is 

possible in practice, higher yield of CH4 than in the isothermal case would be 

obtained, as the dome-shaped methane production with temperature shifted to 

the left due to the heat released in the reformer hampering the carbon graphite 

by-product as long as there is sufficient steam co-reactant. In reality, as inlet 

temperatures fall towards ambient conditions (where the theoretical benefits 

on adiabatic equilibrium CH4 yield have been found compared to the 

isothermal case), the bio-oil mixture will risk entering the reformer in liquid 

form, thus most likely deactivating the catalyst. In addition, kinetic rates of the 

catalytic reactions at low input temperatures will fall drastically and the 

exotherms on which the process relies may not occur. Thus, operating the 

adiabatic reactor would still require significant input temperatures in the 

reformer to guarantee adequate vapour phase of bio-oil components and 

significant catalytic activity. 
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Figure ‎4.7 Temperature output of the process for different values of S/C 

ratio (1–3) within 300–800 K of input temperature at 1 atm. 
 

To conclude our comparison between isothermal and adiabatic LTSR 

processes without CO2 sorbent, the reality will most likely reflect a hybrid 

case; not fully adiabatic, hence, close to isothermal. Therefore, the 

recommended operating conditions of LTSR in order to ensure reactants in 

vapour phase are in contact with the active catalyst in the reformer are an 

adiabatic reactor with downstream heat and water recuperation from the 

reformate of S/C of 3 and inlet temperature of ca. 450 K (177 ºC) whether at 1 

atm or higher. This will help to meet the overall moderate energy costs 

dominated by heating up the reactants whilst the reformer temperature may 

rise to 582 K (309 ºC) as a result of exothermic reforming. 
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Figure ‎4.8 CH4 production (a) and CaCO3 production and equilibrium 
temperature (b) in the isothermal (tp) and adiabatic (hp) cases for SE-
LTSR using CaO as CO2 sorbent within 300–800 K at 1 atm. The top line 
in (a) is the theoretical maximum. The format of molar ratio is presented 
in CaO:H2O:C. (S = steam) 

 

Based on Figure  4.8, CH4 production with CaO(S) in the SE-LTSR process in 

adiabatic and isobaric conditions (hp) was far below both the theoretical 

maximum and equilibrium CH4 produced in the isothermal-isobaric (tp) case. 

This is due to the predicted equilibrium temperatures (output temperatures) 

being much higher than the initial temperatures (above 900 K, Figure  4.8(b)), 
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which, despite being favourable for CO2-capture by very exothermic 

carbonation, as evidenced by the significant carbonate product profiles in 

Figure  4.8(b), moved the process in SE-HTSR regime, benefitting H2 to the 

detriment of CH4 production. 

 

Consequently, adiabatic SE-LTSR would not be achievable in practice, as the 

large temperature increase caused by carbonation would only allow for SE-

HTSR, with minimal methane production. Given the large heat released for 

both CaO(S) and Ca(OH)2(S) SE-LTSR per mole of CH4 produced, in practice, 

isothermal SE-LTSR would introduce major reactor design complexities from 

having to internally cool down the reformer, in which solid sorbents are the 

main source of heat due to carbonation. The only advantage of isothermal SE-

LTSR over adiabatic LTSR would be the production of reformate with high 

methane concentration from the reactor, although small amounts of H2 would 

still be present. This benefit is here considered insufficient to countermand the 

challenges posed by process solid flow recycling and heat recuperation. The 

final recommendation is therefore to operate at close to adiabatic LTSR with 

S/C of 3 and inlet temperature of ca. 450 K to achieve CH4 yield of 38.3 wt. %, 

i.e. near the theoretical maximum of 40 wt. %, with a reformate dry 

composition of 44.5 vol. % CH4, 42.7 vol. % CO2 and 12.7 vol. % H2. This 

process would then lend itself to post-process CO2 capture via CH4 

purification, and this may influence the choice of pressure for the reformer. 

The moderate heat demand of the LTSR process in bringing the reactants to 

vapour phase may be partly met if an on-site pyrolysis/LTSR process is 

designed, where the volatiles from the PEFB pyrolysis stage are directed with 
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little heat loss to a nearby LTSR stage, and only the vapour co-reactant would 

require heating/vaporising with excess steam being recycled. 

 

 

4.6 Conclusion 

 

PEFB bio-oil has the potential to be converted into CH4 via the low-

temperature steam reforming (LTSR) process. CH4 production was favoured 

in the 400–600 K range at atmospheric pressure with and without CO2 

sorption. The large exothermicity of SE-LTSR precluded this process to be 

recommended, as the adiabatic reactor produced more H2 than CH4. 

Furthermore, isothermal SE-LTSR would require costly internal cooling 

capability, as well as solids and heat recuperation design features for the 

small benefit of producing a reformate with high CH4 concentration. Therefore, 

the optimum conditions of CH4 production can be achieved by operating LTSR 

at around molar steam to carbon ratio of 3, with inlet temperature of ca. 450 K 

(or lower, if allowed by the catalyst activity and vapour state of the reactants), 

with efficient water recycle and heat recuperation from wet reformate. 

Pressures higher than atmospheric would contribute to reaching close to 

maximum CH4 yields at higher temperatures. These conditions would have a 

moderate overall heat demand, whilst producing near the theoretical maximum 

CH4, albeit with a purity of ca. 45 vol. %. 
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Moreover, the isothermal sorption enhanced-low temperature steam reforming 

(SE-LTSR) would introduce major reactor design complexities from having to 

internally cool down the reformer, in which the solid sorbent becomes the main 

source of the large heat released due to carbonation. Although 

thermodynamically the maximum CH4 production can be achieved at 450 K 

(177 ºC), the catalytic activity with Ni catalysts is be limited at this 

temperature. Therefore, most of the industrial processes operate methanation 

in the range of 250–300 ºC and 27–29 bar. It may therefore be preferable to 

operate an isothermal reactor (internally cooled reactor type IRMA) in the 

methanation process due to the simplicity of the process compared to the 

adiabatic reactor (where a series of fixed bed methanation reactors need to be 

implemented). For that reason, the operating conditions for isothermal 

methanator at 300 ºC and 27 bar was chosen for simulating in the Aspen Plus 

program for the small scale bio-methane production from PEFB for this study. 
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Chapter 5  

Experimental Results on Methanation of Acetic Acid as Bio-oil 

Surrogate in a Packed Bed Reactor 

 

5.1 Introduction 

 

In this chapter, the feasibility of methane (CH4) production from acetic acid as 

bio-oil surrogate via low-temperature steam reforming (LTSR) has been 

investigated. Based on the thermodynamic equilibrium analysis of CH4 

production from model bio-oil discussed in the previous chapter (Chapter 4), 

CH4 production was favoured at 130–330 ºC and 2–3 of molar steam to 

carbon ratio (S/C) at atmospheric pressure. Recall that increases in pressure 

above atmospheric would present more thermodynamically favourable 

conditions for methane yield and purity in the gas product mixture, therefore 

conducting laboratory experiments at atmospheric pressure represent non 

ideal conditions compared to an industrial application conducted at higher 

pressures. By using these conditions as a basis for determining optimal 

conditions of acetic acid steam reforming at atmospheric pressure, the 

performance of the commercial catalyst, nickel-calcium aluminate (Ni/Ca-

Al2O3) towards CH4 production was carried out. The characteristics of the 

carbon deposited on the used catalyst (CS) and carbon present in the 

condensate (CL) were also reported in this chapter. 
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5.2 CH4 production from acetic acid by LTSR 

 

The bio-oil product from biomass pyrolysis has a complex and variable 

composition [23, 147], where acetic acid is prominent in biomass pyrolysis 

oils. Here, acetic acid was used as bio-oil surrogate in this study for LTSR 

process in a packed bed catalytic reactor, and therefore could form the basis 

for evaluating optimum conditions before the utilization of the complex bio-oils. 

As mentioned from the previous chapter (Chapter 4), various reactions such 

as steam reforming (R5.1–R5.2), water-gas shift (R5.3) and methane 

synthesis (R5.4–R5.6) are involved in producing CH4 from bio-oil feedstock 

(R5.7). Some reactions listed here are repeated from previous sections, but 

for clarity’s sake they have been renumbered for this chapter. In the case of 

acetic acid (CH3COOH), the values of n, m and k in the molar feedstock 

formula CnHmOk are 2, 4 and 2 respectively. 

 

Steam reforming: 

    22kmn H k0.5mnCOn OH knOHC            0HΔ 298K   

      (R5.1) 

    222kmn H k0.5m2nCOn OH k2nOHC           0HΔ 298K   

      (R5.2) 

Water-gas shift: 

222 HCOOHCO           CO kJ/mol 41.2HΔ 298K   

      (R5.3) 
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Methane synthesis: 

O2HCH4HCO 2422        498K2 CH kJ/mol 165.0HΔ   

      (R5.4) 

242 COCH2H2CO        498K2 CH kJ/mol 247.3HΔ   

      (R5.5) 

OHCH3HCO 242        498K2 CH kJ/mol 206.2HΔ   

      (R5.6) 

 

Methane production from bio-oil: 
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                (R5.7) 

 

However, the undesirable carbon formation from thermal decomposition of 

oxygenated hydrocarbons (R5.8) and CH4 decomposition (R5.9) may take 

place during methanation. 

 

Bio-oil decomposition: 
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Methane decomposition: 

24 2HCCH        498K2 CH kJ/mol 75HΔ   

      (R5.9) 
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In the above reactions (R5.1–R5.9), CnHmOk is a moisture free molar formula 

where n, m, and k are represented as molar numbers of carbon, hydrogen and 

oxygen atom in the bio-oil. 

 

Several studies on methanation of syngas [119, 148-150] and methanation of 

carbon dioxide (CO2) [151-153] over nickel-based catalyst have found higher 

selectivity to CH4 product in the temperature range of 300–400 ºC because 

the catalytic activity was limited at a lower temperatures. Due to that 

circumstance, methanation reaction R5.6 may compete with the steam 

reforming reaction (via the reverse of R5.6) since the steam reforming reaction 

is dominant at higher temperatures which consumes CH4, thus affecting CH4 

yield. Therefore, the influence of process conditions (reaction temperature and 

S/C) were conducted in this study in order to observe the performance of the 

Ni/Ca-Al2O3 catalyst and to determine the optimum conditions for CH4 

production from direct acetic acid conversion via LTSR. 

 

 

5.3 Experimental procedure 

 

The catalytic tests for acetic acid conversion via LTSR were conducted in a 

continuous flow process using a stainless steel tube in a packed bed reactor 

at atmospheric pressure. For each experiment runs, approximately 4 grams of 

Ni/Ca-Al2O3 catalyst (250–355 μm of particle size) were loaded between two 

quartz wool plugs in a stainless steel tubular reactor. A type K thermocouple 

was placed under the catalyst bed to monitor the reaction temperature. As part 
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of the procedure of catalyst activation by reduction, the fresh catalyst was first 

heated to 600 ºC under nitrogen (N2) flow (200 cm3/min, 20 ºC, 1 atm) and 

started to reduce at this temperature by switching the N2 flow to one of 5 vol.% 

of hydrogen (H2) in N2 flow (200 cm3/min of total flow) for 2 hours. The 

completion of the catalyst reduction was determined when the micro-gas 

chromatograph (GC) showed a return to a steady state of H2 concentration of 

5% of H2. Then, the reactor was purged and cooled using a high N2 flowrate 

and until the temperature matched that chosen for the LTSR experiment (set 

point between 350 and 450 ºC). Both vaporizers of fuel (acetic acid) and water 

were switched on during the cooling of the reactor. Once the vaporizers and 

reactor temperatures reached the set point, the heating tape around the pipe 

connecting the vaporizers to the reformer was then to be turned on. The 

methanation experiment over Ni/Ca-Al2O3 catalyst was conducted at the range 

of 350–450 ºC and S/C of 1–3 under 18 cm3/min of N2 flow. In this experiment, 

fuel and water were pumped into the reactor using programmable syringe 

pumps, where the fuel flowrate was set to 0.978 cm3/hr (20 ºC, 1 atm), which 

gave a carbon input flow rate of 9.5×10-6 mol/s. However, the liquid water 

flowrate varied from 0.616 to 1.849 cm3/hr to obtain desired S/C of 1 and 3 

respectively. The products flowed through the condenser and underwent 

separation between volatile and non volatile into the liquid condensate and 

gas product mixtures, where the condensate was collected for further analysis. 

Then, the moist gas products continuously flowed into the silica bed to trap 

any moisture left in products. Finally, the dry gaseous production was 

analysed by micro-GC (Varian) according to experimental method described in 

Chapter 3. 
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5.4 Calculations of process outputs 

 

The process performance of acetic acid conversion by LTSR was presented in 

terms of fuel conversion to gases  fuelX , CH4 yield  
4CHY , CH4 yield efficiency 

 eff,CH4
Y , selectivity to carbon products  i-CS  and selectivity to hydrogen 

products  i-HS  by using equations (5.1–5.12). In these equations, n  and y  

represent the molar flowrate and dry gas mole fraction of a product species 

respectively. Since the composition of gas products from the GC analysis 

gives results in volume fraction (or %), analog to mole fractions, the chemically 

inert N2 flow was used via a nitrogen balance to determine the total output of 

the molar flowrate for each experimental run. Accordingly, the dry gas molar 

flowrate  dryout,n  is calculated via equation 5.1 where j is the elemental N of the 

fuel. For acetic acid, j is zero, but bio-oils are expected to have a non 

negligible j value. The subscript ‘fuel’ represents the organic feedstock. 

 

       outfuel,out,Ndryout,in,Ninfuel, njn2nn2nj
22

           (5.1) 

 

By rearranging equation 5.1, the total molar flowrate of dry gas, dryout,n  can be 

expressed as, 

out,N

in,N

dryout,

2

2

y

n
n


                 (5.2) 

 

On the other hand, the molar flowrate of the reactants which are fuel (acetic 

acid) and water are calculated using equation 5.3 and 5.4 respectively. 
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where: 

in O,Hin fuel, 2
nor  n   = inlet molar flowrate of fuel or water (mol/s); 

in O,Hin fuel, 2
mor  m   = inlet mass flowrate of fuel or water (kg/s); 

OHfuel 2
Mor  M  = molar mass of fuel or water (kg/mol); 

in O,Hin fuel, 2
ρor  ρ  = density of fuel or water (kg/m3); 

in O,Hin fuel, 2
Vor  V   = inlet volumetric flowrate of fuel or water (m3/s). 

 

Thus, fuelX  which is interpreted as ‘fuel conversion to CH4, CO2, CO, C2H4, 

C2H6, C3H6 and C3H8 gases’ can be determined by using equation 5.5. 
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Recall for acetic acid, ‘n’ used at the denominator is 2 for the ‘fuel CnHmOkNj’ 

acetic acid C2H4O2. The CH4 yield was calculated using equation 5.6. 
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In equation 5.6, 2671.0mol g 60.06mol g 16.04MM -1-1

fuelCH4
 . 
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CH4 yield efficiency is here defined as the percent ratio of CH4 yield obtained 

during the experiment to that predicted by chemical equilibrium using the 

same initial conditions of P, T, and flow composition. Because the experiment 

uses a rather small reactor and rigorous adiabatic conditions are too hard to 

implement, and heat losses would have been significant, the equilibrium 

calculations were made by choosing the isothermal and isobaric option with 

the code in the Chemical Equilibrium and Applications (CEA) programme. 

CEA’s solution method is based on the minimization of Gibbs energy from a 

chosen set pool of reactants and equilibrium products of known 

thermodynamic properties, as opposed to an assumed set of reactions with 

known equilibrium constants. This offers an advantage to this work, provided 

that the chosen pool of products is comprehensive, no assumptions are made 

towards which reactions have taken place to reach equilibrium. 
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Selectivity of carbon containing gases to CH4 )(S
4CH-C , CO2 )(S

2CO-C  and CO 

)(S CO-C  were determined using the following equations (5.8–5.10). 
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Selectivity to CH4 )(S
4CH-H  and H2 )(S

2H-H with respect to hydrogen containing 

gases were calculated using equations 5.11 and 5.12 respectively. 
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On the other hand, the carbon in the condensate and the carbon formed on 

the catalyst surface were measured separately by other techniques which are 

elemental (CHNS) and total organic compounds (TOC) analysis as described 

in Chapter 3. 

 

 

5.5 Influence of process parameters on CH4 production from 

acetic acid by LTSR 

 

As previous research found that higher selectivity of CH4 production occurs in 

the range 300–400 ºC [119], the experiments for acetic acid conversion via 

LTSR over Ni/Ca-Al2O3 catalyst were conducted in the temperature range of 

350–450 ºC. Based on the results from the CEA program (Chapter 4), S/C of 

2–3 were used in this study in order to determine the optimum conditions for 
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CH4 productions. Thus, the effects of reaction temperature and S/C towards 

CH4 productions are discussed in this section. 

 

5.5.1 Temperature effect 

 

The methanation performance outputs of Ni/Ca-Al2O3 catalyst in the 

temperature range of 350–450 ºC are listed in Table  5.1. At 350 ºC, only 

29.4% of the acetic acid feedstock was converted into gaseous products, but 

this increased drastically to 81.9% at 400 ºC. The feedstock conversion at 450 

ºC was comparatively close to that at 400 ºC, which was 78.6%. This finding is 

consistent with CO and CO2 methanation catalytic activity with Ni catalysts 

having been found to be limited at 350 ºC, whilst temperatures above 350 ºC 

is required to obtain higher fuel conversion using Ni based catalyst [150, 151, 

153]. Although both reaction temperatures at 400 ºC and 450 ºC achieved 

higher acetic acid conversion, higher CH4 selectivity was obtained at 400 ºC 

compared to 450 ºC. This is because the steam reforming reaction (via the 

reverse of R5.6) became increasingly favourable at higher temperature, which 

favours H2 production. From Table  5.1, the highest value of CH4 yield was 

obtained at 400 ºC with 15.7 wt.%. 

 

Moreover, it was observed that the yield efficiency in Table  5.1 increases with 

temperature. As the temperature increases the kinetics, it brings closer to 

equilibrium faster. Therefore, for a same residence time in the reactor, the 

highest temperature is expected closer to equilibrium. Thus, the experimental 

results in Table  5.1 showed the yield efficiency at 350 ºC was far from 

equilibrium, close at 400 ºC, but closer at 450 ºC. 
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Table ‎5.1 The effect of reaction temperature towards CH4 production at 
constant S/C of 2 using 4 grams of Ni/Ca-Al2O3 catalyst. 

Temperature, ºC 350 400 450 

Fuel conversion to gases, % 29.4 81.9 78.6 

CH4 yield, wt.% (Experimental) 1.7 15.7 14.6 

CH4 yield, wt.% (Equilibrium) 23.6 21.0 17.2 

CH4 yield efficiency (Exp./Equil.) 7.3 74.8 86.1 

% Selectivity to C-products in the gas    

i.   CH4 11.0 35.8 35.2 

ii.  CO2 74.8 64.2 64.8 

iii. CO 14.2 0.0 0.0 

% Selectivity to H-products in the gas    

i.   CH4 8.5 34.4 31.5 

ii.  H2 91.5 65.6 68.5 

 

Furthermore, Figure  5.1 clearly showed that the increment of reaction 

temperature has reduced the time for all of the gaseous products (CH4, CO2, 

CO and H2) in achieving to their steady state. Approximately 6240 s was 

required for the carbon containing gases (CH4, CO2 and CO) to reach at the 

maximum production and continues to maintain their stability at 350 ºC 

(Figure  5.1a). However, less time was needed for the production of CH4, CO2 

and CO at 400 ºC (Figure  5.1b) and 450 ºC (Figure  5.1c), which are 

approximately at 4800 s and 3840 s. It was suggested that the formation of 

carbon was taking place at the beginning of the reaction. Further investigation 

of carbon deposition on the catalyst is discussed in the next section. 
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(a) 

 

(b) 

 

(c) 

Figure ‎5.1 Production of gases (CH4, CO2, CO and H2) at (a) 350 ºC, (b) 

400 ºC and (c) 450 ºC. The value of steam to carbon ratio of 2 was used 
at atmospheric pressure. 
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5.5.2 Steam to carbon ratio (S/C) effect 

 

Table  5.2 illustrates the catalytic performance of Ni/Ca-Al2O3 catalyst with 

different of S/C (1–3) at 400 ºC. It shows that S/C of 2 is the best condition in 

terms of CH4 yield and CH4 selectivity, with 15.7 wt.% and 35.8% respectively. 

Apparently, lower CH4 yield was obtained at S/C of 1 due to the lack of water 

in the methanation reaction. However, excessive water in the process at S/C 

of 3 was observed to have a higher selectivity towards H2 and CO2 production, 

causing lower of CH4 yield. This is because the water as an excess reactant 

favours the water-gas shift reaction (R5.3). 

 

Table ‎5.2 The effect of steam to carbon ratio towards CH4 production at 
constant 400 ºC using 4 grams of Ni/Ca-Al2O3 catalyst. 

Steam to carbon ratio, S/C 1.0 2.0 3.0 

Fuel conversion to gases, % 61.8 81.9 72.2 

CH4 yield, wt.% (Experimental) 6.5 15.7 5.3 

CH4 yield, wt.% (Equilibrium) 19.0 21.0 19.2 

CH4 yield efficiency (Exp./Equil.) 34.2 74.8 27.4 

Selectivity to carbon (%):    

i.   CH4 19.7 35.8 13.6 

ii.  CO2 76.5 64.2 84.5 

iii. CO 3.9 0.0 1.9 

Selectivity to hydrogen (%):    

i.   CH4 16.5 34.4 9.8 

ii.  H2 83.5 65.6 90.2 
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(a) 

 

(b) 

 

(c) 

Figure ‎5.2 Production of gases (CH4, CO2, CO and H2) at S/C of (a) 1, (b) 2 

and (c) 3. The operating temperature was set at 400 ºC atmospheric 
pressure. 
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Similar times were observed for all of the production gases to achieve their 

steady state with different of S/C values (Figure  5.2), where 4800 s for S/C of 

1 and 2 and 5040 s for S/C of 3. However, excessive water, which is at S/C of 

3 leads to have a slower of CH4 production as shown in Figure  5.2(c). It clearly 

shows that the water-gas shift reaction (R5.3) has taken place at first when an 

excessive of water was introduced in the process, which resulted in higher H2 

production compared to CH4 production. 

 

Based on the results of catalytic activity at different temperatures and S/C 

values, it can be concluded that the optimum conditions for methanation of 

acetic acid over a Ni/Ca-Al2O3 catalyst at atmospheric pressure was achieved 

at 400 ºC and S/C of 2. 

 

 

5.6 Catalyst characterization 

 

In order to have a better understanding of catalyst’s activity, the used catalyst 

was characterized after each experimental run using powder x-ray diffraction 

(XRD), thermogravimetric analysis (TGA), elemental (CHNS) analysis, 

scanning electron microscopy and energy dispersive X-ray analysis (SEM-

EDX). 
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5.6.1 Catalyst phases and crystallite size with X-ray diffraction 

(XRD) 

 

The XRD patterns of fresh and used Ni/Ca-Al2O3 catalysts are shown in 

Figure  5.3. It can be seen that the main peaks on fresh catalyst at 25.6º and 

43.5º correspond to pure phase of α-Al2O3 support, and this remains so after 

catalytic testing (used catalyst). The peaks assigned to cubic NiO were found 

at 37.4º, 43.4º, 62.9º, 75.6º and 79.7º on the fresh catalyst. However, the 

diffraction peaks of NiO species were no longer observed on used catalyst, 

indicating that NiO in fresh catalyst were fully reduced to metallic Ni which 

were observed in the XRD pattern of used catalyst at 44.8º, 52.6º and 77.0º. 

In addition, one of the peaks (43.4º) indicating to cubic NiO was assumed 

overlapped with a diffraction peak of α-Al2O3. Therefore, it was clearly 

observed that the diffraction intensity decreased at 43.4º on used catalyst due 

to the reduction of NiO. Meanwhile, the intensity of graphitic carbon on used 

catalyst at 27.6º was very small and could hardly be distinguished from the 

background noise. This is possibly because of a small amount of carbon 

present on the catalyst bulk, thus less sensitive towards XRD analysis. The 

peaks corresponding to CaO were also found at 32.6º, 37.8º and 68.2º in both 

the fresh and used catalysts, but diffraction peaks for Ca(OH)2 were only 

observed on fresh catalyst at 18.3º, 29.0º and 63.3º. This is due to the 

exposure of the catalyst to humidity in the air when hydration of CaO into 

Ca(OH)2 readily occurred. 
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Figure ‎5.3 XRD patterns of fresh and used Ni/Ca-Al2O3 catalysts. 

 

5.6.2 Carbon in the catalyst by TGA and elemental analysis 

 

In order to estimate the total amount of carbon deposition on the Ni/Ca-Al2O3 

catalyst, TGA-TPO (temperature programmed oxidation) and elemental 

analysis were carried out, as described in Chapter 3. From these analyses, 

the effects of reaction temperature (Figure  5.4 and Table  5.3) and S/C 

(Figure  5.5 and Table  5.4) towards the carbon formation on the catalyst 

surface were also being investigated. 

 

From Figure  5.4, TG analysis in air flow (TPO) clearly showed that the total 

weight loss of the used catalysts decreased with the reaction temperatures. 

The weight loss for 350 ºC, 400 ºC and 450 ºC were 11.7%, 9.4% and 7.7% 

respectively, indicating that the combustion of carbon present in the catalyst 

was less. However, an insignificant difference of total weight loss for S/C was 
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found out, as shown in Figure  5.5. Therefore, the reaction temperature for 

methanation has revealed to have an important role in mitigating carbon 

formation, which can causes deactivation of the catalyst. 

 

 

(a) 

 

(b) 

Figure ‎5.4 TPO results of the used catalysts (Ni/Ca-Al2O3) (a) TGA-TPO 

and (b) DTG-TPO for different reaction temperatures under air flow (50 
ml/min) at a heating rate of 10 ºC/min. The catalysts were used in LTSR 
process at constant S/C of 2. 
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(a) 

 

(b) 

Figure ‎5.5 TPO results of the used catalysts (Ni/Ca-Al2O3) (a) TGA-TPO 
and (b) DTG-TPO for different steam to carbon ratio (S/C) under air flow 
(50 ml/min) at a heating rate of 10 ºC/min. The catalysts were used in 
LTSR process at constant 400 ºC. 

 

Based on the weight loss in Figure  5.4 and Figure  5.5, more than 75% of the 

amount of carbon deposition could be burned below 500 ºC. As reported in 

oxidation of carbons in Ni catalyst, there are two types of carbon species exist 
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on the catalyst which are, easily oxidized carbon (110–400 ºC), and 

deactivating carbon (400–800 ºC) [149, 154], in agreement with our results. 

 

According to the weight percentage of carbon determined by elemental 

analysis shown in Table  5.3, the results from TPO exhibited a similar trend, 

where the amount of carbons on the surface of used catalyst decreases with 

the increasing of reaction temperature. Moreover, similar amount of carbon 

was detected from CHNS analysis with different of S/C, as listed in Table  5.4, 

which also correlates from the previous results in TGA analysis. 

 

Table ‎5.3 Comparison of components (C, H, N and S) of used catalysts 
(Ni/Ca-Al2O3) for different reaction temperature. The catalysts were used 
in LTSR process at constant S/C of 2. 

Temperature, ºC C, wt.% H, wt.% N, S wt.% 

350 6.73 0.82 0.00 

400 5.49 0.56 0.00 

450 4.82 0.75 0.00 

 

Table ‎5.4 Comparison of components (C, H, N and S) of used catalysts 

(Ni/Ca-Al2O3) for different steam to carbon ratio (S/C). The catalysts were 
used in LTSR process at constant 400 ºC. 

S/C C, wt.% H, wt.% N, S wt.% 

1 6.93 0.65 0.00 

2 5.49 0.56 0.00 

3 6.10 0.58 0.00 
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5.6.3 Morphology and elemental composition of catalyst with SEM-

EDX 

 

SEM image of the fresh catalyst is shown in Figure  5.6 with magnification of 

10,000×, and Figure  5.7 corresponds to the EDX mapping for the spatial 

distribution of different elements (Al, O, Ca and Ni) on the fresh catalyst. It was 

found that the fresh Ni/Ca-Al2O3 catalyst had a rough surface morphology with 

uneven structure, but Ca and Ni species were dispersed uniformly on the 

surface of Al2O3 as illustrated in Figure  5.7(c) and (d). 

 

 

Figure ‎5.6 SEM image of fresh Ni/Ca-Al2O3 catalyst at 10.00 K mag. 

 

  

(a) (b) 
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(c) (d) 

Figure ‎5.7 EDX mapping for elemental distribution (a) Al, (b) O, (c) Ca and 
(d) Ni elements of fresh Ni/Ca-Al2O3 catalyst. 

 

 

Figure ‎5.8 SEM image of used Ni/Ca-Al2O3 catalyst at 10.00 K mag. The 

catalyst was used in LTSR process at 400 ºC and S/C of 2. 

 

  

(a) (b) 
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(c) (d) 

 

(e) 

Figure ‎5.9 EDX mapping for elemental distribution (a) Al, (b) O, (c) Ca and 
(d) Ni elements of used Ni/Ca-Al2O3 catalyst. The catalyst was used in 
LTSR process at 400 ºC and S/C of 2. 

 

Figure  5.8 shows the SEM image of the catalyst used at 400 ºC and S/C of 2, 

with the corresponding EDX mapping shown in Figure  5.9. The formation of 

agglomerated of Ni species in Figure  5.9(d) was clearly observed, in 

conjunction with a regional lack of Ca species as in Figure  5.9(c). It is 

suggested that the existence of Ni clusters was due to the sintering process 

during a long run of the experiment, causing the growth of Ni crystallite size 

and accelerate the carbon formation on the catalyst [149]. Thus, carbon 

deposition was observed in Figure  5.9(e), which covering unevenly on the 

surface of used catalyst. 
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5.7 Product distributions of acetic acid conversion via LTSR 

 

The effect of reaction temperatures (350–450 ºC) and of S/C (1–3) on the 

product distributions are presented in Table  5.5 and Table  5.6 respectively. 

Insignificant carbon content was detected in the liquid condensate in all of the 

conditions except for 350 ºC and S/C of 1. This is due to a limitation of the 

catalytic activity at 350 ºC that reveals higher percentage of carbon in the 

condensate. Moreover, acetic acid became an excess reagent at S/C of 1 

which resulted in a significant amount of carbon in the condensate as 

measured in the TOC analysis. 

 

Table ‎5.5 Total carbon balance of LTSR experiments using Ni/Ca-Al2O3 
catalyst with different of reaction temperatures. The value of steam to 
carbon ratio of 2 was used at atmospheric pressure. 

Temp. C in gas, CG C in condensate, CL C on catalyst, CS 

ºC mol % mol % mol % 

350 2.01×10-3 30.9 2.09×10-2 32.1 2.40×10-2 37.2 

400 5.60×10-2 74.3 4.72×10-5 0.1 1.93×10-2 25.7 

450 5.38×10-2 76.1 4.24×10-5 0.1 1.69×10-2 23.9 

 

Table ‎5.6 Total carbon balance of LTSR experiments using Ni/Ca-Al2O3 

catalyst with different of steam to carbon ratio, S/C. The operating 
temperature was set at 400 ºC and atmospheric pressure. 

S/C C in gas, CG C in condensate, CL C on catalyst, CS 

 mol % mol % mol % 

1 4.23×10-2 59.7 3.77×10-3 5.3 2.48×10-2 35.0 

2 5.60×10-2 74.3 4.72×10-5 0.1 1.93×10-2 25.7 

3 4.94×10-2 69.3 1.49×10-4 0.4 2.16×10-2 30.2 
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From carbon element distribution at temperatures 400 and 450 ºC and S/C 2–

3, the results suggest that the conversion of acetic acid consisted in gases 

production and char deposition on catalyst only. However, the carbon content 

on catalyst (CS) was measured for 2 hours of experiment. Meanwhile, carbon 

containing in gases (CG) was taken as an average value of the gas production 

(CH4, CO2 and CO) at their stability state, which was achieved over an 1 hour 

after conducting the experiment, as shown in Figure  5.10. It seems that the 

decomposition of acetic acid (R5.8) may occur in the early stage of the 

process, followed by methanation of acetic acid steam reforming (R5.10), 

which was a relatively slow process. Therefore, the carbon element 

distribution was re-calculated in order to determine the amount of carbon 

formation on catalyst within the region where the methanation reaction was 

predominant (steady state). 

 

Based on R5.7, the methane production from acetic acid as bio-surrogate is 

expressed as, 

42242 CHCOOHC           498K2 CH kJ/mol 30.2HΔ   

               (R5.10) 

 

Based on the gas compositions produced at 400 ºC and S/C of 2 in 

Figure  5.10, it was observed that all of the carbon containing in gases (CH4, 

CO2 and CO), especially CH4 production achieved their stability at 4800 s 

onwards. As we believed that the measurement for gas production are correct, 

therefore, the amount of carbon formation on the catalyst was re-calculated by 

carbon balance after taking an account of the total carbon production in gases 

within stability region, as listed in Table  5.7 and Table  5.8. 
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Figure ‎5.10 Production of carbon containing gases (CH4, CO2 and CO) at 

400 ºC and S/C of 2. The arrow line shows the region where average 
value was taken. 

 

Table ‎5.7  Re-calculated C in gas and on catalyst from carbon balance of 
LTSR experiments using Ni/Ca-Al2O3 catalyst with different of reaction 
temperatures. The value of steam to carbon ratio of 2 was used at 
atmospheric pressure. 

Temperature C in gas, CG C on catalyst, CS 

ºC mol % mol % 

400 1.87×10-2 81.9 4.12×10-3 18.1 

450 2.51×10-2 78.6 6.82×10-3 21.4 

 

Table ‎5.8 Re-calculate the total carbon balance of LTSR experiments 

using Ni/Ca-Al2O3 catalyst with different of steam to carbon ratio, S/C. 
The operating temperature was set at 400 ºC and atmospheric pressure. 

S/C C in gas, CG C on catalyst, CS 

 mol % mol % 

2 1.87×10-2 81.9 4.12×10-3 18.1 

3 1.48×10-2 72.2 5.70×10-3 27.8 
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As mentioned in the previous discussion, we have stated that most of the 

carbon was formed on the catalyst at the beginning of the reaction, where 

decomposition of acetic acid reaction (R5.8) was taking place at first. 

Therefore, the amount of carbon deposited on the catalyst in the early stage of 

2 hours of experiment can be estimated by determining the difference 

between the total amount of carbon from CHNS analysis with the amount of 

carbon within the stability region, which shown in Table  5.9. It clearly shows 

that at the higher temperature of 450 ºC less amount of carbon formation on 

the catalyst occurred in the early stage of the process compared to the lower 

reaction temperature (400 ºC). However, the amount of carbon formation was 

slightly different at S/C of 2 and 3, which proves that reaction temperature is 

the main operating parameter affecting carbon accumulation. 

 

Table ‎5.9 The amount of carbon deposition on the catalyst at the beginning 
of the reaction in 2 hours of experiment. 

Temp., ºC S/C The amount of CS at the beginning of the reaction, mol 

400 2 1.52×10-2 

450 2 1.00×10-2 

400 3 1.59×10-2 

 

From the experimental results, it is suggested to operate methanation of acetic 

acid as bio-oil surrogate via LTSR at high temperature at first, until all of the 

gaseous products become stable to avoid carbon deposition on the catalyst at 

the early stage of the reaction. Then, the reaction temperature can be lowered 

in order to have a higher selectivity of CH4 production without significant 

carbon accumulation. As the methanation process commonly operated at 
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higher pressure (20–30 bar) in industry [16, 60], where higher of CH4 

production is thermodynamically favoured, less carbon formation on the 

catalyst can be obtained. 

 

 

5.8 Conclusion 

 

This study investigates the conversion of acetic acid as surrogate bio-oil 

compound towards CH4 production on the Ni/Ca-Al2O3 catalyst surface via 

direct methanation by LTSR process. In our flow conditions, the optimum CH4 

production was 15.67 wt.% of the acetic acid feed and obtained at 400 ºC and 

S/C of 2 at atmospheric pressure. As undesirable carbon formation on the 

catalyst was observed during the experiments, it is suggested to operate at 

higher pressure (20–30 bar), which is commonly used in the CO and CO2 

methanation industrial processes due to higher of CH4 production being 

thermodynamically favoured and less carbon formation on the catalyst can be 

obtained. 
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Chapter 6  

Plant Modelling for Bio-methane Production from Palm Empty 

Fruit Bunch (PEFB) Bio-oil 

 

6.1 Introduction 

 

A simulation model (Aspen Plus V8.8) has been developed in this study where 

it provides estimated mass and energy balances for an industrial process of 

bio-methane production from biomass, specifically palm empty fruit bunch 

(PEFB) via fast pyrolysis followed by low temperature steam reforming, which 

is direct catalytic methanation of the pyrolysis bio-oil. The objective of this 

work is to perform a preliminary study of the process design in order to find its 

optimal operating parameters. Then, the possibilities of process integration are 

proposed where energy saving opportunities are identified. This work also 

presents process performance indicators of the process in terms of thermal 

conversion efficiency and energy consumption of PEFB conversion into 

methane production and compares them with equivalent data from similar 

biomass to biogas gasification plants taken from the literature. 
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6.2 Process description 

 

The production route consists of four process units, which are: wet biomass 

pre-treatment, fast pyrolysis of the dried biomass particles, methanation of the 

bio-oil pyrolysis product and upgrading of the reformate to high purity methane 

gas. Figure  6.1 shows a summary block diagram with conditions and flows to 

the main units. The modelling of the bio-methane production from PEFB 

process was based on a 3000 kg/hr of PEFB feedstock with an as-received a 

50 wt. % moisture content. In the biomass pre-treatment facility, PEFB was 

assumed to have an initial size of 25 mm [137, 138] that needed to be crushed 

into the smaller particle size of 1 mm and dried around 8–10 wt. % of moisture 

content [137-139], which is optimal for further pyrolysis reactions in fluidized 

bed conditions [139] under fast pyrolysis conditions. 

 

 

Figure ‎6.1 Block diagram of the PEFB conversion to pure CH4 via pyrolysis-
low temperature steam reforming (LTSR) and water scrubbing. 
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and dryer) 

Biomass 
pyrolysis 

(Fluidized bed) 
T = 500 ºC 
P = 1 atm 

Bio-char 
combustor 

 

Wet biomass 
(50 wt.% moisture) 

3000 kg/hr 

Solid phase 
separation 

(Cyclone) 
 

Liquid phase 
separation 
(Condenser 

and liquid-gas 
separator) 

  

Methanation 
(Isothermal 

reactor)  
T = 300 ºC 
P = 27 bar 

 

Flue gas, kg/hr 
CO2 = 725.59 
H2O= 131.31 
NO2 = 0.02 
NO = 2.39 

O2 = 611.73 
N2 = 2294.50 

Product 
upgrading 

(High pressure 
water scrubber)  

  
Heated air 

3363.15 kg/hr 

Final product, kg/hr 
CH4 = 371.16 (99.5%) 

CO2 = 0.00 (0.0%) 
CO = 0.14 (0.0%) 
H2 = 2.00 (0.5%) 

 

Off gas, kg/hr 
CH4 = 15.3 (1.6%) 

CO2 = 936.7 (98.4%) 
CO = 0.0 (0.0%) 
H2 = 0.0 (0.0%) 

  

Water 
1380.75 kg/hr 

+ 
Flue gas 

3765.54 kg/hr 

Water 
removal 

  

Water 
2089.07 kg/hr 
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In the isothermal methanation process (investigated in Chapter 4 and 

published in [155]), the bio-oil is converted to CH4, CO2, H2, CO and water 

products, where water was removed at first and the dry gas continuously 

flowed into a gas cleaning unit. The by-products CO2, H2 and CO were 

removed from the stream by high pressure water scrubbing (HPWS) to obtain 

a methane-rich gas [142]. 

 

 

6.3 Biomass pre-treatment and characterisation in the model 

 

Biomass, which is PEFB, used in this study is not included in the databank of 

chemical compounds in the Aspen Plus program. Therefore, PEFB is specified 

as a non-conventional component in Aspen Plus, where they are specified by 

empirical factors representing their elemental composition. The only properties 

calculated for non-conventional component in Aspen Plus are the enthalpy 

and density by using empirical correlations. Thus, PEFB properties are 

defined in the simulation model by using the ultimate and proximate analysis 

as listed in Table  6.1. Moisture was fed into the process separately as a 

conventional component [138], where typically 50 wt. % of moisture content 

was determined in fresh PEFB [90, 156]. 

 

 

 



155 
 

Table ‎6.1 Proximate and ultimate analyses (mf wt.%) of PEFB [107] which 
is defined in Aspen Plus. 

Proximate analysis (mf wt.%)  

Moisture 7.95 

Fixed carbon 10.78 

Volatile matter 83.86 

Ash 5.36 

Ultimate analysis (mf wt.%)  

Carbon 49.12 

Hydrogen 6.49 

Nitrogen 0.70 

Oxygen 38.33 

Ash 5.36 

 

In the biomass pre-treatment facility, PEFB was assumed to have an initial 

size of 25 mm [137, 138], to be subsequently crushed into 5 mm of length 

fibre. Since there is a limited study of PEFB crushing process, it was assumed 

that the power requirement for crushing 3000 kg/hr of PEFB from 25 mm into 

5 mm of particle size is approximately 90 kW as per reference [157]. After 

crushing, the output fibre was passed through a dryer for removing the water 

content around 8 wt. % in order to minimize the water in the product liquid oil 

during pyrolysis process. Then, the dried PEFB was fine-crushed into the final 

particle size of 1 mm, which is ideal for feeding the fluidized bed fast pyrolysis 

reactor [139]. 
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As we assumed the water content in as received PEFB is 50 wt.%, the input in 

the ‘WET-BIO’ stream (as shown in Figure  6.2) was defined as 1500 kg/hr of 

dry PEFB and 1500 kg/hr of water. However, only 1381 kg/hr of water is 

identified as a conventional component, whereas 119 kg/hr of water, which 

corresponds 7.95 mf wt.% of moisture content [107] is defined as non-

conventional component. It means that 7.95 mf wt.% of moisture content is 

listed in proximate analysis as properties of PEFB in Aspen Plus program. 

Further explanation for categorizing the water into two different components 

(conventional and non-conventional) is discussed in the next paragraph. 

 

 

Figure ‎6.2 Simplified process simulation flowsheet of biomass pre-
treatment. 

 

A directly heated single-pass rotary dryer was selected for drying the PEFB in 

this process because it is the most common type of dryer used for biomass 

[158]. Based on Figure  6.3, the wet biomass and hot flue gas flows co-

currently through the dryer, where the hottest gases are contacted with the 
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wettest material inside a rotating drum. The rotation of the drum promotes 

better heat and mass transfer because it lifts the solids in the dryer and tumble 

through the hot gas. However, most dryers are not designed to completely dry 

the biomass in order to avoid over-drying of biomass, which might ignite and 

causing of fire hazards [158, 159]. Therefore, moisture content in the PEFB 

pyrolyzer feed should be less than 10 wt.% [137, 138]. For that reason, 7.95 

mf wt. % of moisture content [107] was listed earlier as non-conventional 

component, indicating a ‘dry’ PEFB, while the remaining of water (1380.75 

kg/hr) was specified as conventional components. Thus, the energy required 

for drying up the wet PEFB was calculated by using Aspen Plus without 

considering the moisture content in ‘dry’ PEFB which as non-conventional 

component, did not participate in any phase or chemical equilibrium 

calculations in the drying process. 

 

 

Figure ‎6.3 Schematic diagram of single-pass rotary dryer [158]. 
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Flue gases from the combustion of the bio-char pyrolysis by-product was used 

in this study as the medium for drying the wet PEFB. It was reported that the 

outlet temperature from rotary dryers can vary from 71 to 110 ºC [158]. Thus, 

the amount of energy needed for the PEFB drying process by using flue gases 

from the bio-char combustion was determined by maintaining the outlet 

temperature of the dryer at 110 ºC. 

 

This drying process was modelled in Aspen Plus using a RYIELD block while 

a separator block was used to separate the water from the dry PEFB by phase 

solid/vapour separation. Then, the dry PEFB was finely crushed into the 

particle size of 1 mm for fast pyrolysis. Since there is a limited study of PEFB 

crushing process, it was assumed that the power requirement for crushing 

PEFB is the same as that for wood. This is because the power requirements 

for crushing in both of wood and PEFB into the same size (10–30 mm) with 

the same feedstock capacity (3–5 tonne of biomass per hour) are the same, 

i.e. 45 kW according to [160, 161]. Therefore, it was believed that the power 

demand for PEFB finely crushed into 1 mm is the same as wood, resulting in 

140 kWh/t on dry basis, as shown in Figure  6.4. Thus, approximately 227 kW 

was consumed for grinding 1619.25 kg/hr of dry PEFB into 1 mm of particle 

size. 
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Figure ‎6.4 Energy consumption for grinding of wood [138] based on work 
by [162] and [163]. 

 

 

6.4 Bio-oil production modelling 

 

Fast pyrolysis of biomass is defined as a direct thermal decomposition at 

moderate temperatures where biomass is repeatedly heated in the absence of 

oxygen [100] to produce a mixture of liquid bio-oil (60–75 wt. %), solid char 

(15–25 wt. %) and gases (10–20 wt. %), depending on its feedstock and 

process parameters [99]. In this study, the pre-treated biomass (dry PEFB) 

was fed to a fluidized bed pyrolyzer at operating temperature of 500 ºC and 

atmospheric pressure to maximise the bio-oil yield [139]. Due to lack of 

reaction mechanism data or kinetic data for this process, a RYIELD block was 

used to simulate the pyrolyzer according to the specifications of the product 

yields during biomass pyrolysis which based on literature data. For modelling 

this fluidized bed reactor in pyrolysis process, the overall product yield [111], 

non-condensable gases [111], char [164] and composition of bio-oil [165] were 
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taken from literature data as listed in Table  6.2, Table  6.3, and Table  6.4 

respectively. 

 

Table ‎6.2 Product distributions for pyrolysis process. 

Product distributions Yields, mf wt.% 

[111] 

Yields, wt.% [our work] 

Char 11.00 10.19 

Gas 15.03 13.92 

Total liquid 73.97 75.89 

Gas Yields, mf wt.% 

[111] 

Yields, wt.% [our work] 

Methane, CH4 0.58 0.55 

Carbon dioxide, CO2 8.17 7.73 

Carbon monoxide, CO 5.59 5.29 

Hydrogen, H2 0.07 0.07 

Ethylene, C2H4 0.17 0.16 

Ethane, C2H6 0.1 0.09 

Propane, C3H8 0.02 0.02 

Propylene, C3H6 0.01 0.01 
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Table ‎6.3 Ultimate analysis of bio-char from the pyrolysis of PEFB [164]. 

Components wt.% 

Carbon 65.32 

Hydrogen 4.56 

Nitrogen 1.43 

Oxygen 28.69 

 

 

Figure ‎6.5 Schematic diagram of bio-oil production from biomass via fast 

pyrolysis [140]. 

 

Commonly, bio-oil production from biomass via fast pyrolysis used its own 

pyrolysis gas mixture (non-condensable gases Table  6.2) as fluidizing gas, 

where it needs to be sent back to the pyrolyzer [136, 140, 166], as shown in 

Figure  6.5. Therefore, the fluidizing gas, which is taken from the pyrolyzers’ 

own gas output in the initial transient stages and then fully recycled at steady 

state, thus not affecting the net gas output of the pyrolyzer. 
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Table ‎6.4 Model mixture of bio-compounds for PEFB bio-oil based on DTG 
analysis Figure  6.6 with ultimate analysis [167]. 

PEFB bio-oil C H O 

Ultimate analysis , mol frac. [165] 0.286 0.491 0.223 

Model mixture, mol frac.  0.268 0.519 0.213 

Percentage of error, % 6.2 5.8 4.8 

Water, wt.% [165] 24.3 

Model water, wt.% 24.0 

Percentage of error, % 1.2 

Model compounds Mass frac. Family Family wt.% 

Formaldehyde, CH2O 0.08 1 

F1=10% Acetaldehyde, C2H4O 0.01 1 

1-hydroxy-2-butanone, C4H8O2 0.01 1 

Acetic acid, C2H4O2 0.07 2 

F2=30% 

Water, H2O 0.23 2 

Furfural, C5H4O2 0.13 3 

F3=15% Phenol, C6H6O 0.01 3 

Water, H2O 0.01 3 

Creosol, C8H10O2 0.14 4 

F4=15% 

Guaiacol, C7H8O2 0.01 4 

Catechol, C6H6O2 0.24 5 

F5+F6=30% Palmitic acid, C16H32O2 0.01 6 

Levoglocusan, C6H10O5 0.05 6 
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A particular consideration of the study was the desire to represent accurately 

the PEFB bio-oil produced by the pyrolysis reactor and subsequently used for 

methanation, and its thermal decomposition behaviour, with the aim of 

improving the methanator’s model using a RGibbs reactor block (chemical 

equilibrium via minimisation of Gibbs energy) to a more realistic dynamic 

model, such as non-ideal plug flow hybrid homogeneous/catalytic reactor. 

Therefore, a real PEFB bio-oil mixture that this group had studied previously 

for H2 production [165] was simulated in Aspen Plus using 6 macro-families of 

model compounds (as listed in Table  6.4 and Figure  6.6) using curve-fitting 

procedures, where molar mass distribution curves were quantified from DTG 

and compounds identified from GC-MS [168]. 

 

 

Figure ‎6.6 Discretisation of real PEFB oil DTG curve by weighted individual 
conversions from thermal decomposition over 6 macro-families. Mass 
fractions ‘zi’ as in Table  6.4, ‘ai’ is conversion of family ‘i’ [167]. 
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Bio-char from the pyrolyzer was separated by a cyclone from the condensable 

vapours and non-condensable gases and subsequently combusted to provide 

heat to the pyrolyzer, as shown in Figure  6.7. A RYIELD block was used for 

decomposing the biochar into volatile matter such as carbon, hydrogen (H2), 

oxygen (O2) and nitrogen (N2) [134] based on the bio-char’s ultimate analysis 

(as listed in Table  6.3). The bio-char needed to be combusted under excess of 

air to prevent incomplete combustion of the fuel, which would have caused 

lower combustion efficiency and increased air pollution by emitting the 

unburned components to the atmosphere. Thus 20 % of excess air was 

selected in this study for combustion of bio-char, where 1.10–1.30 % is the 

range of excess air of combustion plant for coal powder and gas burner [169]. 

The decomposed bio-char with 20% of excess air entered the RGibbs 

combustor and converted into combustion products such as CO2, H2O, CO 

and NO. Then, the flue gas from the combustion process was used for drying 

the as received, wet PEFB. 

 

Pre-heated combustion air is commonly used in order to improve the efficiency 

and productivity for fuel-fired industrial heating processes [170]. It is a 

common practice for the industry to pre-heat the air by using the flue gas from 

the combustion process [86], a process called ‘recuperative incineration’. 

Although the main purpose of burning the bio-char was to provide heat for the 

pyrolyzer unit, it was found that it was not sufficient for the energy demand of 

the pyrolyzer and the PEFB drying and air pre-heating requirements. Thus, the 

combustion bio-char fuel needed to be supplemented up with all of the non-

condensable gases from the pyrolysis process as well as 3.1% of methane-



165 
 

rich product of the plant. Further details will be discussed in ‘Heat Integration’ 

section. 

 

 

Figure ‎6.7 Simplified process simulation flowsheet of the PEFB fast 
pyrolysis process. 

 

Downstream of the cyclone unit, the hot vapours after char separation were 

cooled down to the temperature around 35 ºC [138], which condensed the bio-

oil into liquid feed for the methanator unit, whereas the non-condensable 

gases were being burned as described above. 
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6.5 Methanation reactor modelling 

 

There are several methanation processes which have been widely applied in 

the industrial scale, such as Lurgi, TREMP, RMP and IRMA [16, 60, 171]. As 

described in the literature review, IRMA is the only methanation process which 

operates isothermally, while the rest (Lurgi, TREMP and RMP) operate in 

adiabatic conditions with intercooling stages. Since the methanation reaction 

process is highly exothermic, at least two adiabatic reactors need to be 

implemented in the methanation process to ensure the feed gas could fully 

convert into methane production. It is because low production of methane is 

obtained in the first methanator, where higher output temperature is obtained 

due to the exothermic reaction of methanation process (i.e. not favourable for 

methane production with increasing temperature). In methanation processes 

which operate in adiabatic conditions, a series of fixed bed methanation 

reactors with intermediate gas cooling is usually being implemented in order to 

ensure a higher amount of methane production. 

 

For the sake of the simplicity of the process, it is preferable to operate an 

isothermal reactor (internally cooled reactor type IRMA) in the methanation 

process for the small scale bio-methane production from PEFB for this study 

as found in [155] and Chapter 4. The operating conditions for isothermal 

methanator at 300 ºC and 27 bar was chosen for simulating in the Aspen Plus 

program, which is in the range of the industrial conditions (250–300 ºC and 

27–29 bar) of syngas conversion to methane. As prior to feeding the fixed bed 

catalytic LTSR, the bio-oil from the pyrolysis process was pumped to 27 bar 

and then vapourised before entering the methanator (modelled as ‘RGibbs’ 
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block as shown in Figure  6.8). Minimisation of the Gibbs free energy was used 

to model the ideal equilibria methane yields for model bio-oil mixture feedstock 

where it considers all the possibilities species without specifying any of the 

reactions. Thus, the optimum condition in achieving higher methane 

production was observed within 2–3 of steam to carbon ratio, S/C, resulting 

2198 kg/hr of water inlet need to be consumed in this methanation step, which 

corresponds to S/C of 3. 

 

 

Figure ‎6.8 Simplified process simulation flowsheet of methanation. 

 

The gas output from the methanator (listed in Table  6.5) is naturally rich in 

CO2 (45.1 mf mol%) as expressed in R6.1. Therefore, purification was 

achieved by removing the water at first by cooling down the stream to 25 ºC. 

Then, the dry gas continuously flowed into a gas cleaning unit, which is a high 

pressure water scrubbing (HPWS) unit at 25 bar. 
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Table ‎6.5 Dry gas products from methanation process. 

Dry gas products Mol flowrate, kmol/hr mf mol % 

Methane, CH4 24.8 52.5 

Carbon dioxide, CO2 21.3 45.1 

Carbon monoxide, CO 0.0 0.0 

Hydrogen, H2 1.1 2.4 

Total 47.2 100.0 

 

Methane production from bio-oil: 
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6.6 CH4 stream purification modelling 

 

A model for simulating high pressure water scrubber (HPWS) for biogas 

production from anaerobic process [142] was used as a reference in this study 

as a gas cleaning unit for upgrading CH4 in the stream. The input for their 

HPWS model [142] was based on data taken from the existing commercial 

plant. By re-modelled the HPWS for biogas production from anaerobic process 

(as shown in Figure  6.9) using the same operating conditions, the results of 

the final products from their work were been compared with our simulation. 

From Table  6.6, the results from the literature was compared with our results 
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obtained through our simulation where it shows less than 5% of error. Then, 

the operating conditions of the HPWS was modified which fit accordingly to 

our process. 

 

 

Figure ‎6.9 Flowsheet of re-modelled of HPWS in Aspen Plus simulation 

based on literature [142]. 

 

For operation of the absorber column in HPWS at 20 ºC and 10 bar (as listed 

in Table  6.6), it was found that the solubility of CO2 in water is 0.45 kg of 

CO2/100 kg of water [172]. Therefore, approximately 84,400 kg/hr of total 

water was needed in order to absorb 380 kg/hr of CO2 in the crude biogas 

from anaerobic process. However, it was assumed 2.4% of the total water flow 

is lost due to the evaporation [142]. Thus, at least 2000 kg/hr of water needs 

to be replaced (water top-up) whereas 82,465 kg/hr of water was assumed to 

be recycled continuously in a closed loop (water pump around). 
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Table ‎6.6 Parameters values for HPWS simulation for biogas production 
from anaerobic process [142] and comparison of the results between 
literature and our simulations results. 

Parameters Units Parameters values based on 

literature data [142] 

CH4/CO2 vol.% 60/38.97 

H2S vol.% 0.03 

N2/O2 vol.% 0.5/0.5 

Pabsorber bar 10 

Pstripper bar 1 

Tabsorber ºC 20 

Tstripper ºC 20 

Biogas flow rate m3/hr 500 

Water top-up m3/hr 2 

Air flow rate m3/hr 1000 

Water-pump around m3/hr 82.5 

Pflash bar 3 

Number of theoretical stages  7 

Upgraded biogas  Results from 

literature 

[142] 

Results from 

our simulation 

CO2 

m3/hr 

(fraction of 

vol. flowrate) 

2.8 (0.009) 2.7 (0.009) 

CH4 299.2 (0.967) 287.6 (0.963) 

H2S 0.3 (0.001) 0.0 (0.00) 

N2 3.4 (0.011) 4.5 (0.015) 

O2 3.1 (0.010) 3.2 (0.011) 

H2O 0.6 (0.002) 0.6 (0.002) 

Treated flow rate m3/hr 309.4 298.6 
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Based on our work, almost 935 kg/hr of CO2 was produced from bio-oil 

conversion in methanation process. By referring the operating conditions of 

the absorber column used in biogas production to those of an anaerobic 

digestion process (i.e. 20 ºC and 10 bar), 187,000 kg of total water was 

required in HPWS unit, which corresponds approximately 0.50 kg of CO2/100 

kg of water of CO2 [172], where at least 4488 kg/hr of water (i.e. 2.4% of the 

total water flow rate) was needed to replace the water lost due to the 

evaporation. 

 

Since the stream from the methanation unit was already at 27 bar, a pressure 

of 25 bar was selected to operate the absorber column of the HPWS unit. 

Moreover, it is an advantage to operate HPWS unit at higher pressure where, 

according to Henry’s law, CO2 dissolves in higher amounts in water at higher 

partial pressures. Some of the CH4 product unfortunately also dissolves in the 

water flow alongside with CO2. Separation of this gas-laden water was then 

carried out in a flash drum at 3 bar, where a desorbed mixture of CH4 and CO2 

gas was recycled with the fresh bio-methane after re-compression to 27 bar. 

The CO2-laden water collected from the flash drum was then sent to the 

stripper for separate CO2 and recycle water. Figure  6.10 shows the flowsheet 

of HPWS which used as a gas cleaning unit in this study. 
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Figure ‎6.10 Simplified process simulation flowsheet of HPWS. 

 

The operating conditions of the HPWS unit which was used in this study and 

the compositions of upgraded gas products is listed in Table  6.7. It was found 

that almost all of the CO2 was being removed from the stream by using the 

HPWS unit, effectively carrying out bio-CCS, and resulted in a gas product of 

99.5 wt.% of CH4 and 0.5 wt.% of H2 (corresponding to vol.% of 95.9 and 4.1 

respectively) and less than 3% of methane loss. 
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Table ‎6.7 Parameters values for HPWS simulation and compositions of the 
upgraded bio-methane production from PEFB bio-oil. 

Parameters Units Parameters values  

CH4 kg/hr 397.9 

CO2 kg/hr 937.9 

CO kg/hr 0.1 

H2 kg/hr 2.3 

Pabsorber bar 25 

Pstripper bar 1.0 

Tabsorber ºC 25 

Tstripper ºC 25 

Flowrate of gas feed  

(from methanator) 

kg/hr 1337.2 

Water top-up kg/hr 4488 

Air flow rate kg/hr 2859 

Water-pump around kg/hr 182512 

Pflash bar 3 

Number of theoretical stages  10 

Upgraded bio-methane   

CH4 kg/hr 

(fraction of 

mass 

flowrate) 

383.0 (0.994) 

CO2 0.0 (0.00) 

CO 0.1 (0.00) 

H2 2.1 (0.006) 

Treated flow rate kg/hr 385.4 
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6.7 Heat integration 

 

It is important to minimize energy consumption in order to achieve higher 

performance of the methane production from the wet PEFB conversion 

process. Therefore, several process integration stages were proposed in this 

study to model the heat exchanger network between possible streams in the 

process. The heat load for each process unit in this methane production from 

biomass via pyrolysis process was calculated in Aspen Plus, which were then 

matched with the heat exchanger network between possible streams in the 

process. A minimum temperature difference, ∆Tmin of 20 ºC was used to 

ensure the driving force for the heat exchanger network [143]. There are four 

possibilities of process integrations which were taken in consideration. 

 

6.7.1 Process 1 (air-preheater integration) 

 

The main process steps of bio-methane production from biomass are the 

pyrolysis and the methanation process. The production of bio-oil from fast 

pyrolysis of PEFB is an endothermic process. As mentioned earlier, the 

purpose of combusting the bio-char and non-condensable gases from 

pyrolysis process combustion was to provide the heat to the pyrolyzer unit, 

while the flue gas from combustor was used to dry up the wet PEFB. The 

incoming air is usually being pre-heated at first by the energy from flue gas of 

the combustor, by placing a heat exchanger between flue gas stream and 

incoming air to the combustor [169]. Unfortunately, it was found that the 

energy from burning the bio-char and non-condensable pyrolyzer gases was 

not sufficient for pre-heating the air as well as drying the wet PEFB. Therefore, 
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it was observed that only 3.1% of methane production needed to be burned 

together with the bio-char and non-condensable gases for this purpose, as 

shown in Figure  6.11. The compositions of the upgraded bio-methane 

production is listed in Table  6.8. 

 

Table ‎6.8 Gas compositions of the upgraded bio-methane production 
before and after splitting 3.1% of upgraded bio-methane production. 

Compounds 

After gas purification Final upgraded bio-methane 

kg/hr (wt.%) kmol/hr (mol%) kg/hr (wt.%) kmol/hr (mol%) 

CH4 383.0 (99.4) 23.9 (96.0) 371.2 (99.5) 23.1 (95.9) 

CO2 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

CO 0.1 (0.0) 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 

H2 2.1 (0.6) 1.0 (4.0) 2.0 (0.5) 1.0 (4.1) 

Total flowrate 385.2 24.9 373.3 24.1 

 

 

Figure ‎6.11 Simplified process simulation flowsheet of heat integration for 

preheating the incoming air by burning bio-char, non-condensable 
pyrolysis gas and 3.1% of upgraded bio-methane production. 
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As a part of the upgraded bio-methane production was determined to be 

necessary as a heat source for the process demand, it is deemed worth to 

study the effect of the process performance (further discussion in the ‘Process 

performance’ section) when burning the bio-char and the upgraded bio-

methane production only, without the non-condensable gases. The non-

condensable gases from pyrolysis stage, together with the bio-oil could then 

be used as combined feedstock for the methanation process. Based on the 

simulation results, it was found that higher amount of upgraded bio-methane 

production (10.6%) would need to be burned together with the bio-char 

compared to the process that burned bio-char, non-condensable gases and 

3.1% of the upgraded bio-methane product. The simulation flowsheet in Aspen 

Plus (as shown in Figure  6.12) for this process integration (i.e. combustion of 

10.6% of upgraded bio-methane production and bio-char) and its compositions 

of the final upgraded bio-methane production is listed in Table  6.9. 

 

Although the bio-oil and pyrolysis gas were used as feedstock for methanation 

unit, which contributes of higher amount of bio-methane production, it was 

found that the amount of the final upgraded bio-methane production was less 

compared to the process which used only bio-oil as feedstock in methanation 

process. This is because 10.6% of bio-methane production had to burn in 

order to provide sufficient heat to the pyrolyzer, air pre-heater and drying 

process of the wet PEFB. 
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Table ‎6.9 Gas compositions of the upgraded bio-methane production 
before and after splitting 10.6% of upgraded bio-methane production. 

Compounds 

After gas purification Final upgraded bio-methane 

kg/hr (wt.%) kmol/hr (mol%) kg/hr (wt.%) kmol/hr (mol%) 

CH4 412.0 (99.4) 25.7 (95.9) 368.3 (99.4) 22.9 (95.8) 

CO2 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

CO 0.2 (0.0) 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 

H2 2.3 (0.6) 1.1 (4.1) 2.1 (0.6) 1.0 (4.2) 

Total flowrate 414.5 26.8 370.5 23.9 

 

 

Figure ‎6.12 Simplified process simulation flowsheet of heat integration for 

preheating the incoming air by burning bio-char and 10.6% of upgraded 
bio-methane production (no burning of non-condensable pyrolyzer 
gases). 

 

 

 

PYROL

CYCLONE

DCOMPSR

COMBSTR

BIO-4

VAPOR-1

BIOCHAR1

BIOCHAR2

FLUE-G1

AIR-201

201

CH4-COMB

HE1

FLUE-G2

QCOMBSTR

VAPOR-2



178 
 

6.7.2 Process 2 (steam integration) 

 

The methanation reactions are highly exothermic, where it is possible to cool 

down the methanator by heat pipes that transport the heat to a pressurized 

boiler. Moreover, the water fed to the boiler can firstly be preheated by the 

gaseous products leaving from the methanator [135]. Based on the minimum 

temperature difference of ∆Tmin of 20 ºC, the exchanger which was placed 

between the water inlet stream to a boiler and raw product gas stream from 

the methanation unit (as shown in Figure  6.13) shows only 454 kW from gas 

products stream (PROD-1) that can be transferred for heating up the water 

inlet stream (W-12). An additional cooler needs to be placed on ‘PROD-1’ 

stream in order to achieve 25 ºC. On the other hand, 743 kW of energy 

transfer was still needed to heat up the water inlet for the methanation unit 

since the heat transfer from the methanator to the pressurized boiler was still 

insufficient. Up to 1055 kW could be saved from these heat integration steps, 

which corresponds to approximately 60% of energy saving for heating up the 

water. 
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Figure ‎6.13 Simplified process simulation flowsheet of heat integration for 

heating up the water inlet for methanation unit. 

 

6.7.3 Process 3 (vaporized bio-oil integration) 

 

From the simulation results, it was found that a significant amount of energy, 

at least 510 kW of energy, were required to vaporize the bio-oil before 

entering the methanation unit. Therefore, the only option as a heat source to 

re-vaporize the bio-oil stream (BIO-OIL2) is by implementing a heat exchanger 

on the stream where pyrolysis products had to cool down to 35 ºC (VAPOR-2), 

as shown in Figure  6.14. However, additional heater and cooler in both 

streams were still needed, where 274 kW of energy were required to vaporize 

the bio-oil and 405 kW to cool down the pyrolysis products. 
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Figure ‎6.14 Simplified process simulation flowsheet of heat integration for re-

vaporizing the bio-oil before entering methanation unit. 

 

6.7.4 Process 4 (air-preheater, steam and re-vaporized bio-oil 

integration) 

 

The fully integrated system is the combination of the three options of the heat 

integrations discussed in the previous sections, which are air-preheat, steam 

and bio-oil vaporization integration. Further details regarding the energy 

demand and the final upgraded product gas compositions for different process 

integration are discussed in the next section. 
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6.8 Process performance 

 

In order to evaluate the process performance, different indicators such as 

energy conversion efficiency and energy consumption for bio-methane 

production are defined. The biomass-to-fuel thermal efficiency (ɳbtf), as 

expressed in equation 6.1 is commonly used to give a general idea of the total 

amount biomass energy that is conserved in the final product. However, 

equation 6.2 is used to describe the overall thermal efficiency (ɳ th) of the 

process taking into account contributions of the electricity and heat net flows 

[173]. The energy or thermal efficiency of the process from fresh PEFB to bio-

methane production are based on lower heating values (LHV). This is because 

the final product of this process, which is methane, is intended mainly for 

engine combustion, power generation and for cooking purposes, and therefore 

does not account for the potential recuperation of heat via condensation of the 

water product. 

 

biomassbiomass

methanemethane
btf

LHVm

LHVm
η ,efficiencyenergy  fuel  toBiomass









        (6.1) 

where: 

methanem  = mass flowrate of methane (kg/s); 

biomassm  = mass flowrate of biomass (kg/s); 

methaneLHV  = higher heating value of methane (kJ/kg); 

biomassLHV  = higher heating value of biomass (kJ/kg). 
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 
 








elelbiomassbiomass

methanemethane
th

PPLHVm

QQLHVm
η  ,efficiency Thermal




         (6.2) 

where: 

methanem  = mass flowrate of methane (kg/hr); 

biomassm  = mass flowrate of biomass (kg/hr); 

methaneLHV  = higher heating value of methane (kW.hr/kg); 

biomassLHV  = higher heating value of biomass (kW.hr/kg); 



elP   = process electricity co-generation (kW); here assumed 0. 



elP   = process electricity demand (kW); 

Q   = process excess heat (kW); 

Q   = process heat demand (kW). 

 

In equation (6.2) giving the thermal efficiency, we taking into account that the 

process excess heat rate exceeds heat demand rate (term 
Q  – 

Q  is 

positive) and that the power consumption exceeds power generated (term 


elP  

– 


elP  is positive), therefore net heat rate appears as an output of the process 

(numerator term) and net power as an input (denominator term), according to 

[173]. This is later confirmed by Aspen calculations of positive net excess heat 

and positive net power consumption. 
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Higher heating value (HHV) of a dry biomass was estimated by using 

Channiwala and Parikh’s correlation equation 6.3 [174] while equation 6.4 

[173] was used to calculate lower heating value (LHV) for a dry biomass. 

Since 50 wt.% of moisture of raw PEFB was used in this study, the LHV on a 

wet basis (LHVbiomass,wet) was used for calculating the thermal efficiency and 

energy consumption for methane production by using equation 6.5 [173]. 

 

HHVbiomass,dry (Channiwala & Parikh) 

= 0.3491CC + 1.1783CH + 0.1005CS – 0.1034CO – 0.0151CN – 0.0211CA  

                 (6.3) 

where: 

CC  = wt.% of carbon in dry biomass; 

CH  = wt.% of hydrogen in dry biomass; 

CS  = wt.% of sulphur in dry biomass; 

CO  = wt.% of oxygen in dry biomass; 

CN  = wt.% of nitrogen in dry biomass; 

CA  = wt.% of ash in dry biomass. 

 

On dry biomass basis, 













M

M

H

water
Hevapdrybiomass,drybiomass,

f1

f

M

M
wHHHV(Lind)LHV      (6.4) 

On wet biomass basis, 

 Mdrybiomass,

wet

dry

drybiomass,wetbiomass, f1LHV
m

m
LHV(Lind)LHV 








     (6.5) 
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where: 

drybiomass,LHV  = lower heating value on dry basis; 

wetbiomass,LHV  = lower heating value on wet basis; 

evapH   = latent heat of vaporization water at 25 ºC (2440 kJ/kg); 

Hw   = mass fraction of hydrogen in the dry biomass; 

waterM  = Molar mass of water (0.018 kg/mol); 

HM   = Molar mass of hydrogen (0.002 kg/mol); 

Mf   = moisture fraction (kgwater / kgwet biomass); 

waterm   = mass of water (kg); 

drym   = mass of dry biomass (kg); 

wetm   = mass of wet biomass (kg). 

 

There are two possible types of feedstock for the methanation process, either 

the bio-oil on its own, or the combined feed of bio-oil and non-condensable 

gases from the pyrolysis of the dried PEFB. These two cases were compared 

in terms of energy demand as shown in Table  6.10 and Table  6.11. Generally, 

the non heat-integrated process which uses both the bio-oil and non-

condensable pyrolysis gas results in a higher total energy demand compared 

to using bio-oil alone as feedstock in the methanation unit. This is due to the 

additional power consumption for compressing the non-condensable gases to 

27 bar before entering the methanation unit, as well as the insufficient energy 

for pre-heating the incoming air to the combustion unit. 
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Table ‎6.10 Comparison of heat and power demand for different levels of process integration (Feedstock for methanation process = 

Bio-oil). 

Energy demand, kW 
Non-integrated 

process 
Process 1 Process 2 Process 3 Process 4 

Crushing 90 
Grinding 227 
Pump – Liquid bio-oil 3 
Pump – Water feed in methanation unit 5 
HPWS power consumption 529 

Power consumption (


elP ) 854 

Power generation (


elP ) 0 

Net power consumption (


elP -


elP ) 854 

Cooling – After re-compression in HPWS unit -317 -317 -317 -317 -317 
Heating – Air for combustion +180 - +180 +180 - 
Cooling – After pyrolyzer -641 -641 -641 -405 -405 
Heating – Vaporized bio-oil +510 +510 +510 +274 +274 
Heating – Vaporized water for methanation  +1798 +1798 +743 +1798 +743 
Methanation -601 -601 - -601 - 
Cooling – After methanator -1914 -1914 -1460 -1914 -1460 

 of all excess heat rates (
Q ) 3473 3473 2418 3237 2182 

 of all heating demand rates (
Q ) 2488 2308 1433 2252 1017 

Net excess heat rate (
 QQ  ) 985 1165 985 985 1165 
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Table ‎6.11 Comparison of heat and power demand for different levels of process integration (Feedstock for methanation process = 

Bio-oil and non-condensable pyrolysis gas). 

Energy demand, kW 
Non-integrated 

process 
Process 1 Process 2 Process 3 Process 4 

Crushing 90 
Grinding 227 
Pump – Liquid bio-oil 3 
Pump – Water feed in methanation unit 6 
Compressor – Non-condensable pyrolysis gas 35 
HPWS power consumption 704 

Power consumption (


elP ) 1065 

Power generation (


elP ) 0 

Net power consumption (


elP -


elP ) 1065 

Cooling – After re-compression in HPWS unit -435 -435 -435 -435 -435 
Heating – Air for combustion +97 - +97 +97 - 
Heating – Drying wet PEFB +489 - +489 +489 - 
Cooling – After pyrolyzer -643 -643 -643 -406 -406 
Heating – Vaporized bio-oil +547 +547 +547 +274 +274 
Heating – Vaporized water for methanation  +2097 +2097 +879 +2097 +879 
Methanation -689 -689 - -689 - 
Cooling – After methanator -2222 -2222 -1693 -2222 -1693 

 of all excess heat rates (
Q ) 3989 3989 2771 3752 2534 

 of all heating demand rates (
Q ) 3230 2644 2012 2957 1153 

Net excess heat rate (
 QQ  ) 759 1345 759 795 1381 
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Figure ‎6.15 Simplified process simulation flowsheet of full heat integration, Process 4 in Table  6.10, methanator feed is bio-oil alone. 

 

 

Figure ‎6.16 Simplified process simulation flowsheet of full heat integration, Process 4 in Table  6.11, methanator feed is combined 
bio-oil and non-condensable pyrolyzer gases. 
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Table ‎6.12 Comparison of the process performance between the two different feedstocks options in the methanation process. 

Parameters Bio-oil as feed in methanation 
unit 

 Bio-oil and non-condensable pyrolysis 
gas as feed in methanation unit 

LHVPEFB(wet), MJ/kg 8.42  8.42 

LHVmethane, MJ/kg 49.9  49.9 

Mass flow rate of raw PEFB, kg/s 0.833  0.833 

Mass flow rate of pure CH4 production, kg/s 0.103  0.102 

ɳbtf, % (MJ of CH4 / MJ of biomass) 73.4  72.8 

 

Table ‎6.13 Comparison of the process performance between the two different feedstocks options which includes heat and power 
demand in the methanation process. 

Parameters Bio-oil as feed in methanation 
unit 

 Bio-oil and non-condensable pyrolysis 
gas as feed in methanation unit 

LHVPEFB(wet), kW.hr/kg 2.34  2.34 

LHVmethane, kW.hr/kg 13.9  13.9 

Mass flow rate of raw PEFB, kg/hr 3000  3000 

Mass flow rate of pure CH4 production, kg/hr 371.3  368.3 

Net power consumption (


elP -


elP ), kW 854  1065 

Net excess heat (
 QQ  ), kW 1165  1381 

ɳth, % (kW of CH4 / kW of biomass) 80.3  80.3 
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Moreover, it was observed that the power consumption in the HPWS unit also 

contributed to this higher amount of energy demand in this process. As higher 

amount of feedstock was used for the methanation, larger CO2 production was 

expected. This increased the amount of water usage in the HPWS unit 

compared to the process which only used bio-oil as feed for the methanation 

process in order to achieve high purity of methane product. This situation led 

to a higher amount of energy consumption to the pump recirculating liquid in 

the HPWS unit. 

 

By comparing the individual contribution terms to the total energy demand of 

the heat integrated processes in both cases (i.e. using bio-oil only or using 

both bio-oil and non-condensable pyrolysis gas as feedstock in the 

methanation unit), most of the reduction in energy consumption was achieved 

by implementing the integration of raising steam. Figure  6.15 and Figure  6.16 

show a fully integrated process, termed Process 4 (listed in both of Table  6.10 

and Table  6.11). The process performance for both cases (i.e. using bio-oil or 

using both of bio-oil and non-condensable pyrolysis gas as feedstock in the 

methanation unit) was then compared in terms of thermal conversion 

efficiency which based on LHV value, as shown in Table  6.12 and Table  6.13. 

Figure  6.17 shows the overall energy balance for fully integrated processes for 

both cases. Based on Table  6.12, the thermal efficiency when using bio-oil 

alone as the feedstock in the methanation unit (73.4%) is slightly higher 

compared to that using both bio-oil and non-condensable gases as feedstock 

(72.8%). This is due to the higher energy demand especially in HPWS unit 

and vaporising the steam for methanation but less amount of the final 

methane production was achieved compared to using bio-oil alone as the 
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feedstock in the methanation unit. For the overall thermal efficiency, which 

includes heat and power demand in the complete plant (Table  6.13), both 

cases resulted in the same value, 80.3%. 

 

 

Figure ‎6.17 Comparison of energy flows in a methanation via pyrolysis-LTSR 
process for two different of feedstocks in methanation unit. 

 

Several works have modelled allothermal biomass gasification systems to 

SNG production where it was found that 73.7% [135] and 70.3% [91] of 

thermal efficiencies (the power and heat demand of the system was not 

included, using equation 6.1) which were based on LHV. However, 62.5% of 

thermal efficiency was achieved for biomass gasification by using fluidized bed 

technology [86] and 73.8% for biomass gasification modelled via circulating 

fluidized bed gasifier [92]. Only 58.0% of thermal efficiency (Eq. 6.1) was 

obtained for using indirectly heated fluidized bed gasifier to methane 
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production [175]. On the other hand, 71.2% and 91.0% of the overall thermal 

efficiency (i.e. power and heat demand are included) were reported by [86] 

and [135] respectively for allothermal biomass gasification system. Thus, the 

methane production from PEFB conversion via fast pyrolysis followed by 

LTSR process from our work is comparable with the biomass gasification 

route, since it gives similar value of the thermal efficiencies of 74.3%, when 

the power and heat flows are not included in the process, and 81.1%, when 

the power and heat flows are included in the process. 

 

A more detailed discussion of the comparison between efficiencies obtained in 

the present study and those found in the literature for similar biomass to 

biogas systems is presented below, and is based on data listed Table  6.14. In 

this table, we introduce another performance indicator, which is the percent 

efficiency of methane yield, defined the ratio of the process-derived methane 

yield to that of the maximum stoichiometric methane yield achievable by 

complete conversion of the source biomass to methane, according to reaction 

(R6.1). This indicator allows comparing different gasification plants 

performance despite their operation on diverse biomass feedstocks. 
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Table ‎6.14 Comparison of the process performance of our work with other biomass gasification systems to CH4 production. 

 Our work (a) before and (b) after 
splitting 3.1% CH4 production 

Fendt 
[86] 

Tremel 
[135] 

Meijden 
[91] 

Gassner 
[92] 

Duret 
[175] 

Biomass 
(a) 

PEFB 
(b) 

PEFB 
Beech 
wood 

Spruce 
wood 

Wood Wood Wood 

Moisture, wt.% 50 50 20 25 15 50 0 

Elemental analysis, mf wt.%        

i.    C 49.07 49.07 47.97 49.80 50.19 50.60 47.42 

ii.   H 6.48 6.48 5.78 6.30 6.04 5.70 6.25 

iii.  O 38.29 38.29 45.39 43.20 42.37 42.50 46.33 

iv.  N 0.70 0.70 0.22 0.13 0.30 0.20 0 

v.   S 0.10 0.10 0.03 0 0.06 0 0 

vi.  Cl 0 0 0 0 0.05 0 0 

vii. Ash 5.36 5.36 0.61 0.57 1.00 1.00 0 

CnHmOk 
CH1.57 

O0.59 
CH1.57 

O0.59 
CH1.43 

O0.71 
CH1.50 

O0.65 
CH1.43 

O0.63 
CH1.34 

O0.63 
CH1.57

O0.73 

LHVbiomass,wet 8.42 8.42 13.23 14.55 15.98 9.30 18.20 

CH4 yield wt.% of dry biomass (Aspen plus model) 25.5 24.7 20.5 28.2 n/a 27.4 21.2 

Maximum theoretical CH4 yield, wt.% of dry biomass 36.1 36.1 32.2 35.0 34.9 34.5 32.5 

% efficiency of CH4 
(produced, Aspen plus model max theor. CH4, wt.%/wt.%) 

70.8 68.7 63.6 80.6 n/a 79.5 65.1 

Biomass to fuel energy efficiency (using Eq. 6.1)        

ɳbtf, % (MJ of max theor. CH4 / MJ of biomass) 106.9 106.9 97.0 89.9 n/a 92.5 89.1 

ɳbtf, % (MJ of CH4/MJ of biomass, Aspen Plus model) 75.7 73.4 61.8 72.5 n/a 73.5 58.0 

ɳbtf, % (MJ of bio-SNG/MJ of biomass, Aspen Plus model) 76.7 74.3 62.5 73.7 70.3 73.8 n/a 

Thermal efficiency (using Eq. 6.2)        

ɳth, % (MW of bio-SNG/MW of biomass) 81.0 81.1 71.2 91.0 n/a n/a n/a 

Carbon conversion efficiency (using Eq. 6.6)        

ɳC, % (kmol.s-1 of CH4 produced/kmol.s-1 of inlet carbon) 39.1 37.8 32.0 42.5 n/a 40.6 33.5 
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Based on Table  6.14, and the stoichiometry of the methanation of biomass 

reaction (R6.1) the maximum theoretical CH4 yield when using PEFB feed was 

slightly higher (36.1 wt.%) compared to that when using wood (32.2–35.0 

wt.%) as the feedstock for CH4 production. This is because of the higher 

amount of hydrogen and lower amount of oxygen contained in the PEFB 

compared to wood, where 1.57 of H/C ratio and 0.59 of O/C ratio were 

obtained in the PEFB. 73.4% was calculated for the thermal efficiency of 

PEFB conversion to CH4 production (using Eq. 6.1), which was found to close 

to the highest thermal efficiency (73.5%) among the wood gasification 

processes. However, the efficiency of CH4 production compared to the 

maximum of theoretical CH4 production for PEFB was 68.7%, which was 

within the range of the wood gasification process (63.6–80.6%). Although the 

sacrifice of 3.1% of the upgraded bio-methane production to the furnace 

resulted in a lower thermal efficiency (using Eq. 6.1) of 74.3% compared to the 

plant without this top-up CH4 (76.7%), it was still preferable to burn 3.1% of 

the bio-methane product due to the resulting slightly higher thermal efficiency 

(using Eq. 6.2) of 81.1% compared with 81.0%. At the same time, the overall 

carbon conversion efficiency, 37.8% (using Eq. 6.6) for the case ‘after splitting 

3.1% of CH4 production’ was slightly lower compared to 39.1% (before 

splitting the CH4 production) due to the sacrifice of 3.1% of the upgraded bio-

methane production. The thermal efficiency of 81.1% (using Eq. 6.2) by using 

PEFB was comparable with those of the wood gasification processes 

reviewed from the literature to date, which were within 71.2–91.0%. 
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Overall carbon conversion efficiency [175], 

inC,

outC,

C
n

n
η




                 (6.6) 

where: 

inC,n  = molar flowrate of inlet carbon of biomass, kmol/hr; 

outC,n  = molar flowrate of the final upgraded CH4 production, kmol/hr. 

 

The biomass to fuel efficiency values and the thermal efficiency values are 

extremely dependent on the choice of LHV for their calculations. Below we 

review the LHV values of the dry wood which were used in [86, 91, 92, 135, 

175] and compared them with the LHV values calculated using equations 6.3–

6.5. LHV values from the literature sources and their equivalent calculated 

LHV based on elemental composition stated in the same sources are listed in 

Table  6.15. It was found that the LHV values for wood on a dry basis, which 

were reported in [86, 91, 92, 135, 175] were close to the LHV values 

calculated using equations 6.3–6.5. The LHV value for PEFB reported in the 

literature is within 17.02–20.34 MJ/kg [164, 176-180], revealing a large 

discrepancy between the minimum and maximum of LHV values. Thus we 

decided to use the calculated value of 16.83 MJ/kg on a dry basis of the LHV 

value for the PEFB used in this work, determined using equations 6.3–6.5 and 

the elemental composition of the PEFB feed used in the plant model. 
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By using bio-oil as feedstock in the methanation process, Table  6.16 shows 

the gas compositions and operating conditions for different unit processes 

while Table  6.17 lists the thermal efficiency of the plant based on the ratio of 

lower heating values of the CH4 product as recovered chemical energy and of 

the wet PEFB biomass as input chemical energy. Based on Table  6.17, the 

methanation and purification stages, idealised by the assumed equilibrium 

conditions, have a high efficiency, compared to that of the fast pyrolysis stage, 

which inevitably results in char product. 
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Table ‎6.15 Comparison of heating values (HHV and LHV) by using 
Channawala and Parikh (Eq. 6.3) and Lind (Eq. 6.4–6.5) for different of 
biomass. 

 
Our 

work 

Fendt 

(2012) 

[86] 

Tremel 

(2013) 

[135] 

Meijden 

(2010) 

[91] 

Gassner 

(2009) 

[92] 

Duret 

(2005) 

[175] 

Biomass PEFB Beech 

wood 

Spruce 

wood 

Wood Wood Wood 

Moisture, wt.% 50 20 25 15 50 0 

Elemental analysis, 

mf wt.% 

      

i.    C 49.07 47.97 49.80 50.19 50.60 47.42 

ii.   H 6.48 5.78 6.30 6.04 5.70 6.25 

iii.  O 38.29 45.39 43.20 42.37 42.50 46.33 

iv.  N 0.70 0.22 0.13 0.30 0.20 0 

v.   S 0.10 0.03 0 0.06 0 0 

vi.  Cl 0 0 0 0.05 0 0 

vii. Ash 5.36 0.61 0.57 1.00 1.00 0 

Heating values, MJ/kg       

HHVbiomass,dry 

(Channawala & Parikh) 
20.69 18.85 20.33 20.24 19.96 19.13 

LHV dry biomass (Lind + 

Channiwala & Parikh) 
16.83 16.97 18.13 18.48 16.27 17.75 

LHV dry biomass 

(journal+Lind) 

17.02-

20.34 
16.53 19.40 18.80 18.60 18.20 

 



197 
 

Table ‎6.16 Gas compositions, pressures, temperatures and flow rates of the 
process streams based on 3000 kg/hr of raw PEFB. 

 Pyrolysis Methanation Gas purification 

CH4, wt.% 0.6 11.6 99.5 

CO2, wt.% 7.7 27.4 0.0 

CO, wt.% 5.3 0.0 0.0 

H2, wt.% 0.1 0.1 0.5 

C2H4, wt.% 0.1 0.0 0.0 

C2H6, wt.% 0.1 0.0 0.0 

H2O, wt.% n/a 60.9 0.0 

Wet bio-oil, wt.% 75.9 0.0 0.0 

Char, wt.% 10.2 0.0 0.0 

P, bar 1 27 25 

T, ºC 500 300 25 

Flow rate, kg/hr 1619 3426 373 

 

Table ‎6.17 Efficiencies at the two main conversion stages, and overall 

efficiency of PEFB to pure CH4 process. 

Efficiency based on chemical energy output/input, PEFB feedstock % 

Pyrolysis, Wet PEFB → Bio-oil 89.5 

Methanation, Bio-oil → Pure Methane 81.9 

Full process, wet PEFB → Pure Methane 73.3 
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6.9 Conclusion 

 

This study has presented a process design for bio-methane production from 

PEFB via fast pyrolysis. From the simulation results, only 3.1% of the 

upgraded bio-methane production needs to be burned in the combustor in 

order to supply extra heat for pre-heating the incoming air to the combustor 

and to dry up the wet PEFB, as the combustion of both bio-char supplemented 

by the non-condensable gases from the pyrolysis process was not sufficient. 

The estimated thermal efficiencies were 74.3% (when net power and heat 

demand are not included in the process) and 81.1% (when net power and heat 

demand are included in the process). These efficiencies are comparable with 

the state of art biomass gasification route to methane production via syngas 

followed by CO and CO2 methanation. 

 

Despite the fact that an economic assessment has not been conducted in the 

present study (future work), it is therefore expected that capital and 

operational expenditures of the gasification-CO methanation plants would be 

significantly larger than those of the pyrolysis-direct methanation of bio-oil 

plant, when operating on a same feedstock. Thus eliminating carbon 

accumulation on the direct methanation of bio-oil catalyst is paramount to 

attain the high efficiency values predicted in this plant modelling study and 

realise the advantages of the pyrolysis-direct methanation of bio-oil route. 
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Chapter 7  

Conclusions and Recommendations for Future Work 

 

7.1 Introduction 

 

The aim of this research work was to investigate the feasibility of producing a 

CH4-rich gas from palm empty fruit bunch (PEFB) via fast pyrolysis followed 

by direct catalytic methanation of the pyrolytic oil using a low temperature 

steam reforming (LTSR) process. As CO2 is a co-product of the LTSR 

process, a thermodynamic equilibrium analysis was conducted initially using 

NASA’s Chemical Equilibrium with Application (CEA) software to observe the 

effect of the introduction of CaO(S) or Ca(OH)2(S) as CO2 sorbent towards the 

potential enhancement of the CH4 production by in-situ CO2 capture. The CH4 

yield and purity predicted for the equilibrium process in the presence of, or 

free of CO2 sorbent were also studied for adiabatic and isothermal conditions, 

where temperatures of 300–800 K, molar steam to carbon (S/C) ratios of 0.3–

7.0, pressures of 1–30 atm and molar calcium to carbon ratios (Ca:C) of 0.3–

1.0 were simulated. Using the optimum conditions observed from the 

thermodynamic equilibrium calculations, the experimental feasibility of CH4 

production from acetic acid as single compound bio-oil surrogate via LTSR 

was performed at bench scale by using a catalyst typical of steam reforming 

commercial formulation, nickel-calcium aluminate (Ni/Ca-Al2O3) in a packed 

bed reactor at 350–450 ºC and S/C in the range of 1–3. The characteristics of 
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the carbon deposited on the used catalyst (CS) and carbon present in the 

condensate (CL) were also reported in this work. Then, a preliminary process 

design for an industrial scale process of CH4 production from PEFB wet 

biomass via fast pyrolysis followed by direct catalytic methanation of the 

pyrolysis bio-oil using LTSR was carried out using Aspen Plus V8.8 software. 

The heat integration between possible streams in the plant was also modelled 

to determine the opportunities for energy savings in the plant, where it gives 

the process performance of the process in terms of thermal conversion 

efficiency and energy consumption of PEFB conversion into CH4 production. 

 

 

7.2 Conclusions 

 

Based on thermodynamic analysis, it can be concluded that PEFB bio-oil has 

the potential to be converted into CH4 via LTSR process, where it was 

favoured in the 400–600 K range and at around molar steam to carbon ratio of 

3 at atmospheric pressure resulting in a reformate consisting of 44.5 vol.% 

CH4, 42.7 vol.% CO2 and 12.7 vol.% H2. This investigations have met both of 

the Objectives 1 and 2 of this study. 

 

The influence of in situ CaO(S) or Ca(OH)2(S) as CO2 sorbents towards CH4 

production, as described in Research Objective 3 found that the CH4 

production in the adiabatic condition was far below both the theoretical 

stoichiometric maximum and the equilibrium CH4 produced in the isothermal 

condition. This was because of the predicted equilibrium temperatures being 
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much higher for the adiabatic condition than the initial temperatures due to the 

exothermic carbonation, where it moved the process in sorption enhanced-

high temperature steam reforming (SE-HTSR) regime, favouring H2 production 

and minimal CH4 production. 

 

As the research work was carried using both experimental and modelling 

approaches, conclusions were divided into two different parts which are 

experimental results and modelling results. 

 

7.2.1 Conclusion of experimental results 

 

As mentioned in Research Objective 4, the conversion of acetic acid as 

surrogate bio-oil compound has proven that it is possible to produce CH4 on 

the Ni/Ca-Al2O3 catalyst surface via LTSR in a packed bed catalytic reactor. 

From the experimental results, Research Objective 5 has been achieved with 

the investigation of the optimum conditions for CH4 production which was 

obtained at 400 ºC and S/C of 2 with a CH4 yield of 15.7 wt.% of the acetic 

acid feed at atmospheric pressure. This compared favourably to 21.0 wt.% as 

the predicted equilibrium value in the same conditions. As undesirable carbon 

formation on the catalyst was observed during the experiments, it is 

recommended to operate at higher pressures (20–30 bar), which are 

commonly used in the CO and CO2 methanation industrial processes because 

higher of CH4 production is thermodynamically favoured and less carbon 

formation on the catalyst can be achieved. 
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7.2.2 Conclusion of plant scale modelling results 

 

According to Research Objective 6, a process design for CH4 production from 

PEFB via fast pyrolysis followed by LTSR was modelled by using Aspen Plus 

software and consisted of four process units, namely, wet biomass pre-

treatment, fast pyrolysis of the dried biomass particles, direct methanation of 

the bio-oil pyrolysis product and upgrading of the reformate to high purity 

methane gas. Based on the simulation results, a final gas product with 

composition of 99.5 wt.% CH4 and 0.5 wt.% H2 (corresponding to vol.% 95.9 

and 4.1 respectively) was obtained with less than 3% of methane loss. 

 

Minimization of energy consumption was required in order to achieve higher 

performance of the CH4 production from the wet PEFB conversion process. 

Therefore, the possibilities of the process integration between possible 

streams in the process consisting of (i) air-preheat for bio-char combustion in 

the biomass pre-treatment unit (including by burning 3.1% of methane 

production together with the bio-char and non-condensable gases for this 

purpose), (ii) vaporizing the water to steam in the methanation unit, (iii) bio-oil 

vaporization in the pyrolysis unit and (iv) biomass drying by the furnace flue 

gases, were simulated using the Aspen Plus software. Research Objective 7 

was achieved where the fully integrated system for this process (the 

combination of those four process integrations), yielded the estimated thermal 

efficiencies of 74.3%, when net power and heat flows were not included in the 

process, compared to 81.1%, when net power and heat flows were included in 

the process. 
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Research Objective 8 was also met in this investigation, where 81.1% of the 

efficiency (that includes the net power and heat flows) of our proposed 

process was found to be comparable with the biomass gasification route to 

methane production quoted in the literature for wood conversion to 

biomethane, which was within 71.2–91.0%. 

 

7.2.3 Final conclusions 

 

Finally, it can be concluded that the main objectives of this research have 

been achieved, where this research work has proven the feasibility of the CH4 

production from acetic acid as bio-oil surrogate via direct catalytic methanation 

using LTSR, giving the optimum results of CH4 yield 15.7 wt.% of the acetic 

acid feed at 400 ºC and S/C of 2 at atmospheric pressure, i.e. close to 21.0 

wt.% the equilibrium optimum in the same conditions. Moreover, the 

simulation work of plant scale of CH4 production from PEFB via fast pyrolysis 

followed by LTSR and purification of the biogas gives comparable thermal 

efficiency (81.1%) with the common technologies based on wood gasification 

followed by CO and CO2 methanation. The final gas product from PEFB 

pyrolysis-LTSR-HPWS had a composition of 99.5 wt.% of CH4 and 0.5 wt.% of 

H2 (corresponding to vol.% of 95.9 and 4.1 respectively), with the advantage 

of avoidance of heavy tar formation normally associated with the direct 

biomass gasification processes into syngas which are then followed by 

methanation of the syngas product. Thus the proposed process could offer 

less maintenance issues related to tar handling and clean up as well as a 

simpler plant layout, and cheaper reactor materials, provided the issue of 

carbon deposition on the catalyst can be addressed. 
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7.3 Recommendations for future work 

 

As the carbon formation on the catalyst affecting the conversion of bio-oil to 

CH4 production, a study of catalyst optimisation to increase conversion to 

gases and avoid solid carbon accumulation on the catalyst is recommended 

for the future work. Although a significant amount of carbon was found 

deposited on the catalyst surface, it could be improved by operating at higher 

pressure because it is more thermodynamically favourable conditions for 

methane yield and purity in the gas product mixture, which is commonly used 

in the CO and CO2 methanation industrial processes. In addition, a kinetic 

study of the methanation process from individual bio-oil compounds and 

realistic surrogate bio-oil mixtures conversion can also be considered in order 

to provide a better understanding of the LTSR mechanism when using real 

bio-oil as feedstock. The kinetic rate expression and simulation study should 

also be carried in order to verify the kinetic behaviour of the CH4 production 

from bio-oil compounds conversion via the LTSR process. Then, it is 

suggested to use the obtain kinetic data to simulate the methanation reactor 

by using a kinetic reactor model which is available in Aspen Plus software, 

where it will give more accurate results in terms of the amount of gaseous 

production and the energy released from the methanation process. Techno-

economic analysis and the life cycle analysis would then further the case for 

support of uptake of the technology to demonstrate social, economic and 

environmental gains. 
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