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Abstract
Using computational and analytical methods, we investigate the viscous and inviscid

forms of the Strato-Rotational Instability (SRI) for the stratified Taylor-Couette system.

We use an eigenfunction solver to find instability modes. We are able to vary the strat-

ification, radius ratio η and rotation-rate ratio µ, and optimise the Reynolds number and

relevant wavenumbers.

We investigate the viscous and inviscid stability limits, extending the range of instability

compared to prior results. Our results are consistent with the findings of Yavneh et al.

[2001], Shalybkov and Rüdiger [2005], Le Bars and Le Gal [2007], Rüdiger and Shaly-

bkov [2009], and Ibanez et al. [2016].

Building upon the results of Park and Billant [2013], we demonstrate that the µ < 1

inviscid system is unconditionally unstable if the buoyancy frequency is more than twice

the inner cylinder rotation rate. For any given weaker stratification, we provide sufficient

conditions for instability upon η and µ.

We explore the structure of the SRI’s critical mode throughout the [η, µ]-parameter space,

for fixed stratification. The considerable variation in structural appearance suggests that

various instability mechanisms exist. We also find closed domain loops, for which the

SRI becomes unstable for only a finite range of Reynolds numbers. This phenomenon is

associated with a discontinuous change in the critical mode within the [η, µ]-parameter

space. We find considerable differences between the viscous and inviscid systems, in-

cluding a region of the parameter space which for weak stratifications is only unstable in

the presence of viscosity.

For the SRI to persist as a critical mode in the narrow-gap limit, we show that a near-

solid-body-rotation limit is also necessary. This leads to the rotating stratified shear flow

system described by Yavneh et al. [2001] for inviscid flows.
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5.4 Rüdiger et al. [2017] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Eigenfunction appearance 73

6.1 Critical mode analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.1 Example figures . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Modal cross-section structure . . . . . . . . . . . . . . . . . . . 77

6.2.2 The Viscous and Inviscid systems . . . . . . . . . . . . . . . . . 86

6.2.3 Closed Domain Loops . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.4 The Point of Continuity . . . . . . . . . . . . . . . . . . . . . . 91

6.2.5 Wide-gap transition . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Radiative Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.1 Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.2 The Radiative Instability in the present work . . . . . . . . . . . 95

6.3.3 Astrophysical context for the RI . . . . . . . . . . . . . . . . . . 96

7 The Narrow Gap Limit of the SRI 97

7.1 Threshold of Non-Axisymmetric Critical modes . . . . . . . . . . . . . . 97

7.1.1 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

viii



CONTENTS

7.1.2 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 The Near-Solid-Body-Rotation Narrow-Gap Limit . . . . . . . . . . . . 101

7.2.1 β as a measure of the Flow Shear . . . . . . . . . . . . . . . . . 104

7.3 Rotating Stratified Shear flow . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3.1 Flow equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Comparing SRI and RSSF modes . . . . . . . . . . . . . . . . . . . . . . 108

7.5 Re* vs. β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8 Conclusions and Future Work 113

Appendix 116

A Combined Inviscid Equation . . . . . . . . . . . . . . . . . . . . . . . . 117

B Spectral Methods with Chebyshev Polynomials . . . . . . . . . . . . . . 121

B.1 Collocation matrix . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.2 Differentiation matrix . . . . . . . . . . . . . . . . . . . . . . . 122

C The Kelvin Waves of Dual-Wave-Mode SRI . . . . . . . . . . . . . . . . 125

C.1 Shallow water limit . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.2 Kelvin mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

D Instability Conditions of Park and Billant [2013] . . . . . . . . . . . . . . 128

D.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

D.2 Establishing Instability Conditions . . . . . . . . . . . . . . . . . 131

E Conditions for instability if µ < 1 andN < 2 . . . . . . . . . . . . . . 135

E.1 First Condition for Instability . . . . . . . . . . . . . . . . . . . 136

ix



CONTENTS

E.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 140

x



List of figures

1.1 The Taylor-Couette experiment. The gap between two concentric cylin-

ders is filled with fluid, and the cylinders are rotated at different rates. The

inner cylinder has radius r̂in and angular velocity Ω̂in; the outer cylinder

has radius r̂out and angular velocity Ω̂out. Stratification ρ̂ could be the re-

sult of an imposed temperature gradient, or from varying concentrations

of a solute. It is primarily vertical in nature, increasing as ẑ decreases,

with a weak radial dependence. . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Example curve for the basic state flow Ω(r). Here we have used η = 0.3

and µ = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 A 3D contour plot of the density perturbation for an SRI mode, demon-

strating the spiral form of the instability. Here η = 0.45, µ = 0.45,m =

1, k = 4.44, Re = 304.1, N = 1.0 and σ = −0.595i. . . . . . . . . . . . 27

3.1 A representation of either Lij or Rij , with A = 3 and B = 2, such that

there are three equations, three eigenfunctions and two boundary condi-

tions. Each range of columns corresponds to a specific eigenfunction, and

each range of rows corresponds to a specific equation. The final two rows,

i = ic and i = ic + 1 correspond to the two boundary conditions. . . . . . 36

xi



LIST OF FIGURES

3.2 The full set of half equations, assembled into a single matrix and a single

eigenvector. Here the eigenvector is a list of each set of Chebyshev coef-

ficients for each eigenfunction. This is the vector v in the matrix equation

(3.2). The matrix, made up of the sub-matrices Saα and J bα, is either L

or R depending on which side of the original equations (3.1) is being

examined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 A reproduction and extension of figure 3 from Shalybkov and Rüdiger
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Chapter 1

Introduction

Astrophysical discs are, broadly speaking, any astrophysical object in a disc shape. These

range from the rings around planets such as Saturn, up to disc-shaped galaxies such as the

Milky Way. Astrophysical discs typically have some sort of central massive object, such

as a planet, a star or a black hole.

In the case of accretion discs, matter is steadily moving radially inwards through the disc

towards the central object. Such discs typically have a similar scale to the size of our solar

system, and are generally made up of a gaseous fluid. Examples of accretion discs include

protoplanetary discs around young stars, or the case of matter being steadily drawn in and

consumed by a black hole. It is also a suggested mechanism behind a type 1a supernova,

known as the single-degenerate model. This involves a large companion star orbited by

a smaller and more dense white-dwarf star. Gas from the outer layers of the companion

star is accreted onto the white-dwarf, with an accretion disc forming around the white-

dwarf. Once the white-dwarf reaches critical mass, the increased gravitational pressure

re-ignites fusion reactions within the white-dwarf star, triggering a supernova [Hillebrandt

and Niemeyer, 2000].

Accretion discs require radially outward angular momentum transport to account for in-

ward mass transport. However, accretion discs have been observed to exhibit stronger

angular momentum transport than their expected viscosity can account for. This discrep-

ancy can be explained if astrophysical discs can be shown to be turbulent, which would

significantly increase their effective viscosity. However, astrophysical discs follow Kep-
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lerian rotation profiles, which are centrifugally stable to axisymmetric perturbations. The

astrophysical fluids community is therefore interested in any mechanisms that can pro-

duce linear instabilities within centrifugally stable flows.

Many of these accretion flows can be made turbulent via the Magneto-Rotational Insta-

bility (MRI) [Balbus and Hawley, 1991] [Velikhov, 1959]. However, the MRI relies upon

the presence of ionised fluid flow, which is not expected in all cases.

One instability of interest is the Strato-Rotational Instability (SRI), first described by

Yavneh et al. [2001] for the Taylor-Couette system. The majority of prior research on

the SRI has looked at the inviscid system, however viscous analyses and direct experi-

ments have also been performed.

1.1 The Taylor-Couette system

Taylor-Couette fluid flow [Taylor, 1923] consists of two tall concentric cylinders with

different radii. The gap between the cylinders is filled with fluid, and the cylinders them-

selves are rotated at distinct angular velocities to stimulate the flow. (See Figure 1.1.)

The unstratified flow is very well understood, and can be tested in laboratory conditions.

This makes Taylor-Couette flow useful for the purposes of investigating rotational insta-

bilities, such as those that an astrophysical disc may be susceptible to.

We work in cylindrical co-ordinates [r̂, θ̂, ẑ] with the ẑ-axis aligned with the central axis

of the cylinders. (The notation â is used to denote that these terms are dimensional.)

The radii of the inner and outer cylinders are denoted by r̂in and r̂out, and the appropriate

angular velocities are denoted by Ω̂in and Ω̂out. For the purposes of this analysis, it is

assumed that the cylinders are infinitely tall.

We define the following dimensionless ratios:

η =
r̂in

r̂out
, µ =

Ω̂out

Ω̂in
. (1.1)

By construction, 0 < η < 1, with small values of η corresponding to an experimental

set-up with a wide-gap width, and η ' 1 corresponding to a narrow-gap width.
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1.1 The Taylor-Couette system

Figure 1.1: The Taylor-Couette experiment. The gap between two concentric cylinders is filled with fluid,

and the cylinders are rotated at different rates. The inner cylinder has radius r̂in and angular velocity Ω̂in;

the outer cylinder has radius r̂out and angular velocity Ω̂out. Stratification ρ̂ could be the result of an imposed

temperature gradient, or from varying concentrations of a solute. It is primarily vertical in nature, increasing

as ẑ decreases, with a weak radial dependence.
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The ratio µ is unconstrained and can take any value, with negative values representing

counter-rotation and positive values representing co-rotation. Throughout this work we

will primarily be considering the case 0 ≤ µ ≤ 1. The case of µ = 0 corresponds to

the case where the outer cylinder is stationary, whereas µ = 1 corresponds to the case

where the two cylinders have the same rate of rotation, which is also known as solid-body

rotation.

We define the Reynolds number:

Re =
r̂inΩ̂in (r̂out − r̂in)

ν̂
. (1.2)

This can be considered to be a non-dimensional ratio between the rotation of the inner

cylinder against the viscosity of the system ν̂. Higher Reynolds numbers correspond to

higher input rotations or lower viscosities, and the inviscid limit of ν̂ → 0 can also be

considered to be the limit of Re → ∞. Therefore, if a system is unstable in the inviscid

limit, it is typically also unstable for sufficiently large Reynolds numbers.

Finally, we have the vertical stratification of the system, measured in terms of the vertical

buoyancy frequency N̂ . The larger the buoyancy frequency, the stronger the stratification.

A related term is the dimensionless Froude number, which is defined as Fr = Ω̂in/N̂ . For

further details on the stratification, buoyancy frequency and Froude Number see section

2.2.6.

The unstratified Taylor-Couette system is well understood (see e.g. Andereck et al.

[1986]). It is known to have an axisymmetric centrifugal instability for flows with µ < η2.

In the case of µ < 0, non-axisymmetric instabilities can also dominate over the axisym-

metric mode. However, the unstratified system is known to be stable for µ ≥ η2, which

includes the domain of Keplerian flows such as accretion discs.

1.2 Inviscid research

Kushner et al. [1998] discussed the existence of a Kelvin wave instability in a rotating

inviscid stratified semi-geostrophic channel flow. Here Kelvin waves are transverse waves

within a rotating flow which travel adjacent to a boundary. They are driven by both a
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vertical restoring force, such as buoyancy, and by the Coriolis force from the rotation of

the system.

Yavneh et al. [2001] extended this result to inviscid stratified Taylor-Couette flow. Their

results suggested that centrifugally stable flows could be destabilised by the presence of

a stable stratification, suggesting a larger domain of instability than had been consid-

ered previously. The instability, which would come to be known as the strato-rotational

instability, was non-axisymmetric in nature. Working with narrow gaps, Yavneh et al

suggested that a sufficient condition for instability was for dΩ2/dr < 0 to occur at any

point in the flow, i.e. any µ < 1, provided that moderate to strong stratification was

present (|Fr| � 1). They also concluded that the instability mechanism was driven by

shear-modified Kelvin waves.

Considering the potential astrophysical applications, Dubrulle et al. [2005] examined the

energy integral for stratified Taylor-Couette flow, and derived a sufficient condition for

stability given periodic, stress-free, or rigid boundary conditions. The energy integral is

a quantity representing the sum of all the kinetic and potential energy in a system. Here

periodic boundary conditions require that flow properties adjacent to one boundary be

equal to those adjacent to the opposite boundary. Stress-free boundary conditions require

that there be zero gradient for velocities at the boundary. Rigid boundary conditions

require for inviscid systems that there be no flow through the boundary, and are used

in this thesis in section 2.2.7. Dubrulle et al. [2005] introduced the idea of using WKBJ

analysis on the SRI, which was subsequently further developed by Le Dizès and Riedinger

[2010] and Park and Billant [2013].

Brandenburg and Dintrans [2006] considered non-axisymmetric perturbations in stratified

shearing sheet disc flow with periodic boundary conditions. The shearing sheet approx-

imation considers a small section of a rotating flow, such that length-scales within this

section are much smaller than the radial distance to the axis of rotation. The shearing

sheet system is also known as the rotating shear flow system, which is discussed in detail

in section 7.3 of this thesis. Using an eigenfunction analysis, they concluded that the SRI

was absent in this context, further concluding that the SRI must be a global instability

not a local instability. This implied that the boundary conditions always play a significant
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role in the SRI.

Also using a large shearing sheet model, Umurhan [2006] investigated the effects of ver-

tically varying the buoyancy frequency of the inviscid system, such that N̂ = N̂(z). It

was shown that the SRI persists in this case, provided that rigid boundary conditions are

used. The instability structure was largely unchanged by the presence of vertically varying

stratification.

Performing energy analysis of the rotating shear flow system, Vanneste and Yavneh [2007]

found that when the inviscid system is rapidly rotating and strongly stratified, then it

is unconditionally unstable with a growth rate exponentially dependent on the Rossby

number.

For the inviscid Taylor-Couette system, Normand [2010] found that as µ increases for

µ < 1, then the band of unstable vertical wavenumbers decreases in width and moves to

larger values. During this analysis, an inviscid dispersion relation for the SRI was derived.

Performing WKBJ analysis, Park and Billant [2013] concluded that the Taylor-Couette

system could always be made inviscidly unstable with a suitable choice of stratification N̂ ,

so long as the system was not in solid body rotation, i.e. µ 6= 1. This result significantly

extended the domain of inviscid instability for the SRI.

1.2.1 Radiative Instability

Le Dizès and Billant [2009] performed WKBJ analysis on the stability of a columnar

vortex in an inviscid stratified fluid, drawing attention to an unstable mode which radiated

energy radially away from the vortex. Le Dizès and Riedinger [2010] further showed that

this Radiative Instability (RI) could also arise in the wide gap limit of potential flow in

the stratified Taylor-Couette system. Potential flow is here defined as any flow for which

µ = η2, i.e. any flow that exists just at the point of centrifugal stability, along the stability

line for axisymmetric instabilities. The SRI continuously morphs to become the RI as the

wide-gap limit is approached. Comparing different gap widths, Le Dizès and Riedinger

[2010] showed that the RI is present for a much larger range of vertical wavenumbers than

the SRI.
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Riedinger et al. [2011] experimentally confirmed the existence of the radiative instability,

using a wide tank of stratified fluid with a spinning cylinder in the centre. Various cylinder

sizes were used, and the experimental results were found to be in good agreement with the

theory. The RI was also found for linear analysis of viscous Taylor-Couette flows with

a finite gap width by Leclercq et al. [2016], although only for flows that were already

unstable to the SRI.

1.3 Viscous research

The viscous SRI was originally investigated by both Yavneh et al. [2001] and Molemaker

et al. [2001], who numerically verified that the SRI persisted in the presence of weak

viscosity for near narrow-gap flows.

Shalybkov and Rüdiger [2005] demonstrated the necessity of a centrifugal approxima-

tion to allow for purely vertical stratification in the context of stratified Taylor-Couette

flow. This centrifugal approximation required that the gravitational force be significantly

stronger than any centrifugal forces that were exerted upon the flow. Shalybkov and

Rüdiger [2005] also performed numerical analyses to find the critical Reynolds number

for a range of rotation ratios for both η = 0.78 and η = 0.3, with a Froude number of

Fr = Ω̂in/N̂ = 0.5. From these numerical simulations, they concluded that µ ' η ap-

peared to be the stability limit, rather than µ < 1 as suggested by Yavneh et al. [2001], as

the critical Reynolds number was seen to sharply increase as µ approached the value of η.

Gellert and Rüdiger [2009] used fully 3-dimensional nonlinear viscous simulations of

Taylor-Couette flows to argue that a heat stratification could be used in physical experi-

ments of the SRI rather than a solute density stratification. They also noted that all experi-

mental investigations would be limited by issues relating to the physical aspect ratio of the

cylinders. This is primarily because theoretical analyses of the SRI typically assume that

the perturbation is periodic and unbounded in the vertical direction. However experiments

have physical end-boundaries, which restrict the choice of vertical wavenumbers.

Rüdiger and Shalybkov [2009] investigated the influence of magnetic fields on the SRI

for ionised Taylor-Couette flows. They concluded that stratification appears to stabilise
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both the classical axisymmetric Taylor instability and the MRI, increasing the critical

Reynolds number in both cases. They noted that magnetic effects amplified the SRI when

the magnetic Prandtl number Pm > 1, and that it suppressed the SRI when Pm < 1.

They also noticed that the previously suggested µ = η stability limit could in fact be

surpassed for sufficiently high Reynolds numbers, regardless of the presence or absence

of magnetic fields.

Rüdiger et al. [2017] performed numerical simulations of Taylor-Couette flows for η =

0.52, and identified that the SRI appeared to only be present for a range of Froude numbers

such that Frmin < Fr < Frmax, with Frmin ' 0.3 and Frmax ' 5.5. They also

discussed the dependence of wavenumbers on the Froude number and Reynolds number.

Leclercq et al. [2016] numerically examined the linear instabilities of the viscous strat-

ified Taylor-Couette system for a range µ < 1 and a large range of Reynolds numbers.

Various values of η and of the stratification N̂ were used. Although the domain of viscous

instability was not extended by their results, they identified the modes of instability with

the strongest growth rates beyond the point of marginal stability.

1.4 Experimental analysis

The SRI was first tested experimentally by Le Bars and Le Gal [2007], using a salt strati-

fication and a radius ratio of η = 0.8 and a Froude number of Fr = 0.5. They found good

agreement with the results of Shalybkov and Rüdiger [2005], validating that the SRI was

capable of crossing the Rayleigh line.

Ibanez et al. [2016] also used a salt stratification experiment, but used sodium poly-

tungstate salt rather than sodium chloride, allowing for a significantly larger density dif-

ferential and therefore a taller experiment, permitting large vertical wavelengths. They

used a radius ratio of η = 0.877, and various fixed values of the buoyancy frequency N .

The experiment was performed by starting the system in solid body rotation and bring-

ing it up to specific Reynolds numbers, then decreasing µ by reducing the outer-rotation

rate. The value of µ where the system became unstable would be noted for each Reynolds

number.
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They showed that, for given values of µ, the SRI can sometimes require a finite range

of Reynolds numbers to be unstable, i.e. flows can stabilise at large values of Re. This

suggests that in some regions of the parameter space the SRI may be viscously unstable

but inviscidly stable. A non-axially-periodic mixing instability was also discovered for

high Reynolds numbers close to the Rayleigh line of µ = η2.

It should be noted that the experimental set up of Ibanez et al. [2016] did in some cases

violate the centrifugal assumption that Shalybkov and Rüdiger [2005] drew attention to,

implying the stratification may not have always been purely vertical in this experiment

(See section 5.3). Interestingly the SRI was still seen in these circumstances, implying

that the centrifugal assumption may not be vital for the existence of the SRI.

Rüdiger et al. [2017] performed an experimental analysis of the SRI in addition to their

numerical exploration of the viscous system. This particular experimental analysis is

of interest since it utilised a heat stratification rather than a direct density stratification,

as originally suggested in Gellert and Rüdiger [2009]. Their experimental analysis was

mostly used to check their numerical results, for which they saw a good correlation.

1.5 This Thesis

As we have described, there have been two primary strands to SRI research: the inviscid

and viscous approaches. Mostly these have been separate lines of research, and one aim

of this thesis is to reconcile these two approaches.

In the course of the research we established that the SRI takes significantly different forms

in different parts of the parameter space, and we have analysed and investigated these

within the thesis.

In chapter 2 of this thesis, we describe the system of perturbation equations which de-

scribe the SRI, and a few common limits of the system. In chapter 3, we describe the

computational algorithms used to find solutions to the SRI perturbation equations. In

chapter 4, we explore the stability limit of the SRI for various strengths of stratification,

and derive that the inviscid system with non-solid-body-rotation is unconditionally un-
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stable for Fr < 0.5. In chapter 5, we provide an in-depth review of prior experimental

results for the SRI. In chapter 6, we explore how the SRI instability mode changes as

the radius ratio and rotation-rate ratio are varied. In chapter 7, we investigate where the

critical mode of instability changes from an axisymmetric mode to a non-axisymmetric

mode, and describe how the near-solid-body narrow-gap limit of the SRI is mathemati-

cally equivalent to a system of stratified rotating shear flow. In chapter 8, we present our

conclusions.
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Chapter 2

The Equations of the Strato-Rotational

Instability

2.1 Non-dimensionalisation of the Taylor-Couette system

The structure of the stratified Taylor-Couette system is described in detail in section 1.1

and shown in figure 1.1.

To express the system in dimensionless units, we use the gap width between the cylinders,

λ̂ = r̂out − r̂in, as our length-scale and the reciprocal of the inner rotation rate, τ̂ = 1/Ω̂in

as our time-scale. We shall use these units throughout this work, although section 2.6

discusses several alternative choices of units.

We will be measuring the density in terms of a constant reference density ρ̂q. This means

that our pressure will be measured in units of P̂q = ρ̂qλ̂
2Ω̂2

in.

We define the following dimensionless terms [r1, r2,Ω1,Ω2] such that r̂in = r1λ̂, r̂out =

r2λ̂, Ω̂in = Ω1/τ̂ , and Ω̂out = Ω̂2/τ̂ . We can make use of the ratios η and µ to express

these as:

r1 =
η

1− η
, r2 =

1

1− η
, Ω1 = 1, Ω2 = µ. (2.1)

The Reynolds number Re (1.2) is also a non-dimensional measure of the system. We
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repeat the definition here for ease of reading:

Re =
r̂inΩ̂in (r̂out − r̂in)

ν̂
.

We also define the dimensionless gravitational term g such that ĝ = gλτ−2, where ĝ is the

acceleration due to gravity (equal to 9.81ms−2 in SI units on Earth). We shall see later that

the non-dimensional gravity g is related to the buoyancy frequency of the stratification of

the system (section 2.2.6).

We now make the transition to dimensionless co-ordinates [r, θ, z], using the following

transformations:

r̂ = rλ̂, θ̂ = θ, ẑ = zλ̂. (2.2)

2.2 System equations

2.2.1 The Navier-Stokes equations

Applying our non-dimensional terms with the three-dimensional Navier-Stokes equation,

we have:
∂u

∂t
+ u.∇u = −1

ρ
∇P − g +

η

(1− η)

1

Re
∇2u, (2.3)

Hereu = [u, v, w] is the flow velocity, ρ is the fluid density, P is the pressure and g = gez

is the acceleration due to gravity. All terms are non-dimensional.

2.2.2 Incompressible flow

For simplicity, we make the assumption that the flow is incompressible:

∇.u = 0. (2.4)

2.2.3 The Mass Conservation equation

Since we are including stratification in the system, the density is not necessarily constant

with regards to location. This means that we must also consider the mass conservation
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equation:
∂ρ

∂t
+∇. (ρu) = 0.

Expanding out the second term and applying (2.4) allows us to write the mass conserva-

tion equation as:
∂ρ

∂t
+ u.∇ρ = 0. (2.5)

It is important to note the difference in meaning between equations (2.4) and (2.5), and to

consider the implications of including both equations.

The incompressible equation (2.4), also known as the divergence free equation, means

fluid elements cannot change their volume; they cannot be compressed or stretched.

Therefore the density of an individual fluid element is unchanging. This is an approx-

imation since in the real world fluid elements can change their own volume, however we

are assuming that we are dealing with a fluid with very small compressibility.

The presence of density gradients means that distinct fluid elements will have distinct

densities, dependent on initial location. This requires that we apply the mass conserva-

tion equation, (2.5), since the mass within a region can be changed by the flow of fluid

elements through that region. Note that we also neglect any diffusion of density in the

fluid. Diffusion will occur in real fluids, but on a significantly longer time-scale than is

relevant to the SRI.

Overall, the combination of equations (2.4) and (2.5) means that, although the density

of a specific fluid element cannot change, there are different fluid elements present with

different densities. Therefore the density at a specific point can be changed, dependent

upon the flow pattern.

Temperature gradient

The stratification can be understood in terms of a temperature gradient rather than a den-

sity gradient. Assuming a weak temperature gradient and taking the Boussinesq approxi-

mation (see section 2.2.5), we can write:

ρ = ρq [1− α (T − Tq)] .
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Chapter 2. The Equations of the Strato-Rotational Instability

∴ T = Tq [1− β (ρ− ρq)] . (2.6)

Here ρq and Tq are known density and temperature values at some reference location.

The coefficient of volume expansion, α, is assumed to be very small, (for water with

T̂q = 293 K and ρ̂q = 998 kg m−3, then α̂ ' 2.1× 10−4 K−1 (appendix 1(c) of Batchelor

[1991]), and we have defined β = 1/αρqTq.

Assuming conservation of temperature within a single fluid element (i.e., we’re working

on time-scales much shorter than that of heat exchange):

∂T

∂t
+∇. (Tu) = 0. (2.7)

Substituting equation (2.6) into (2.7), with some simplification, brings us back to equation

(2.5). Hence (2.5) can be considered to be an expression of the Boussinesq temperature

equation.

2.2.4 Centrifugal approximation

We ultimately wish to consider a system with constant vertical stratification and an az-

imuthal basic state flow which only depends on the radius, i.e. a basic state of the form:

u0 = rΩeθ with Ω = Ω(r). (See section 2.3.)

Consider the three-dimensional Navier-Stokes equation (2.3). Substituting in the above

proposed basic state yields the following set of conditions on the basic state pressure P0

and basic state density ρ0:

∂P0

∂r
= ρ0rΩ

2,
∂P0

∂θ
= 0,

∂P0

∂z
= −ρ0g. (2.8)

Note that the first and last of these equations can be combined by deriving ∂r∂zP0:

∂2P0

∂r∂z
= rΩ2∂ρ0

∂z
= −g∂ρ0

∂r
,

=⇒ rΩ2∂ρ0
∂z

+ g
∂ρ0
∂r

= 0. (2.9)

Consider the case of purely vertical stratification, i.e. ∂rρ0 = 0. In this case, equation

(2.9) would tell us that either there is no flow, Ω(r) = 0, or that there is no stratification,
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2.2 System equations

∂zρ0 = 0. Equation (2.9) therefore tells us that the system cannot be considered to have

purely vertical stratification in combination with a purely azimuthal basic state flow u0 =

rΩeθ. However, we can consider the following limit:

|rΩ2|
g
� 1. (2.10)

In this limit, we have ∂rρ0 � ∂zρ0, and can therefore treat the radial stratification as

negligible. Note that, from (2.8), this assumption is equivalent to ∂rP0 � ∂zP0.

The requirement of this approximation was originally noted by Shalybkov and Rüdiger

[2005]. The same argument holds for the dimensional system, and hence the approxima-

tion can be expressed as:

∣∣∣r̂Ω̂2
∣∣∣

ĝ
� 1.

2.2.5 The Boussinesq approximation

We make the assumption that throughout the flow, the density ρ is approximately equal to

a constant average background density ρ̄. We also make the assumption that the pressure

P is approximately equal to a background pressure P̄ (z) which balances the gravitational

force of the background density. This can be expressed as:

ρ(r, θ, z, t) = ρ̄+ ρ′(r, θ, z, t), |ρ′| � ρ̄,

P (r, θ, z, t) = P̄ (z) + P ′(r, θ, z, t), |P ′| � P̄ ,

dP̄

dz
+ ρ̄g = 0.

(2.11)

Here ρ′ and P ′ are small perturbations to the background state, which account for the

stratification and any pressures of the basic state. Note that in making these assumptions,

we have intrinsically included the centrifugal assumption (section 2.2.4) by setting up a

system in which ∂rP � ∂zP .

Consider the term S = [−(1/ρ)∇P − g] from the Navier-Stokes equation (2.3). Substi-

tuting in ρ and P from (2.11) allows us to express S as follows:

S =
−1

ρ̄+ ρ′

[
∂P̄

∂z
ez +∇P ′ + ρ̄g + ρ′g

]
,
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Chapter 2. The Equations of the Strato-Rotational Instability

=⇒ S ' −1

ρ̄
[∇P ′ + ρ′g] .

To simplify this, we can choose our density-scale ρ̂q such that ρ̄ = 1. This yields the

Boussinesq Navier-Stokes equation as follows:

∂u

∂t
+ u.∇u = −∇P ′ − ρ′g +

η

(1− η)

1

Re
∇2u. (2.12)

Since the mass conservation equation only includes gradient terms of the density, it is

unaffected by the Boussinesq Approximation save for exchanging ρ for ρ′:

∂ρ′

∂t
+ u.∇ρ′ = 0. (2.13)

2.2.6 The Buoyancy Frequency

Consider a vertically stratified fluid with density ρ̂ = ρ̂(ẑ), with gravitational forces bal-

anced by some background pressure. If a fluid parcel is initially at some ẑ = ẑ0 and is

vertically displaced by a small perturbation |ẑ1| � |ẑ0|, then we can deduce the following

equation of motion:

ρ̂(ẑ0)
d2ẑ1

dt̂2
= ĝρ̂ (ẑ0 + ẑ1)− ĝρ̂ (ẑ0) .

The force here is a result of the imbalance of pressure and gravity upon the fluid parcel.

We approximate that ẑ1(dρ̂/dẑ) ' ρ̂ (ẑ0 + ẑ1) − ρ̂ (ẑ0 + ẑ1), which is true in the limit

ẑ0 → 0 and is also true for any linear stratification with constant dρ̂/dẑ. This allows us to

express the equation of motion as the following differential equation:

d2ẑ1

dt̂2
= − ĝ

ρ̂0

dρ̂

dẑ
ẑ1.

We have the following oscillatory solution: ẑ1 = Ẑ exp
[
±iN̂ t̂

]
. Here Ẑ is an arbitrary

amplitude, and we have defined the buoyancy frequency N̂ with the following formula:

N̂ =

√
− ĝ

ρ̂0

dρ̂0
dẑ

. (2.14)

The buoyancy frequency is therefore the frequency of oscillation of a vertically displaced

fluid element for stable stratification. If dρ̂/dẑ > 0, then N̂ is imaginary and the sys-

tem instead permits exponentially growing solutions and is therefore unstable. For stable
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stratifications N̂ is real and can be considered to be a measure of the stratification, since

the stronger the stratification, the faster the rate of oscillation.

Applying our choice of length-scale λ̂, time-scale τ̂ , and density-scale ρ̂q, we have:

N = N̂ τ̂ =
N̂

Ω̂in
=

1

Fr
.

Here we have defined the Froude number Fr, which is a dimensionless ratio of the inner

rotation rate and the buoyancy frequency. It is important to note that, in our choice of

units, the Froude number Fr is the reciprocal of the dimensionless buoyancy frequency.

Prior research papers on the SRI have varied over whether N or Fr is used. Throughout

this thesis we will be using N , except for when comparing to the work of others.

From the Boussinesq approximation earlier (see section 2.2.5), we have restricted our-

selves to density distributions for which the following applies:

ρ = 1 + ρ′, |ρ′| � 1.

(Remember that we chose ρ̂q such that ρ̄ = 1.)

We therefore make the approximation that g/ρ0 ' g, which gives us:

N =

√
−gdρ

′
0

dz
. (2.15)

This now allows us to express the dimensionless gravitational acceleration g as:

g = −N2

(
dρ′0
dz

)−1
. (2.16)

For simplicity, we restrict our analysis to the cases where dρ′0/dz, N and Fr are all

constant.

2.2.7 Summary and Boundary Conditions

We have the following Boussinesq system of equations (2.12), (2.13) and (2.4):

∂u

∂t
+ u.∇u = −∇P ′ − ρ′g +

η

(1− η)

1

Re
∇2u,
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Chapter 2. The Equations of the Strato-Rotational Instability

∂ρ′

∂t
+ u.∇ρ′ = 0,

∇.u = 0.

We require six boundary conditions, as the combination of (2.12) with (2.4) is a sixth

order system [Chandrasekhar, 1961], and this is unchanged by the inclusion of (2.13).

The boundaries of Taylor-Couette flow are at the walls of the two cylinders, r = r1 and

r = r2. The flow cannot pass through these walls.

The flow is also viscous and therefore must obey non-slip boundary conditions; i.e. the

flow directly adjacent to a boundary must have the same velocity as that boundary. These

velocities are known since we have Ω1 = 1 and Ω2 = µ.

We can therefore formulate these boundary conditions as:

u (r1) = r1Ω1eθ =
η

1− η
eθ, u (r2) = r2Ω2eθ =

µ

1− η
eθ. (2.17)

Resolving this in all three dimensions provides six boundary conditions, as required.

2.3 Basic State

We desire a basic state flow that satisfies the system of equations (2.12), (2.13) and (2.4).

Substituting in a flow of the form u0 = [0, rΩ(r), 0] yields the following system:

(We have used the subscript 0 to denote basic state terms:)

∂P ′0
∂r

= rΩ2, (2.18)

1

r

∂P ′0
∂θ

=
η

(1− η)

1

Re

[
1

r

∂

∂r

(
r
∂

∂r
(rΩ)

)
− Ω

r

]
, (2.19)

∂P ′0
∂z

= −ρ′0. (2.20)

If we assume, by symmetry, that ∂θP ′0 = 0, then we can solve (2.19) for Ω(r):

1

r

∂

∂r

(
r
∂

∂r
(rΩ)

)
− Ω

r
= 0,
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2.3 Basic State

=⇒ ∂

∂r

(
rΩ + r2

∂Ω

∂r

)
− Ω = 0,

=⇒ ∂2Ω

∂r2
+

3

r

∂Ω

∂r
= 0. (2.21)

We can solve (2.21) with the following form of Ω(r), with A and B as constants of

integration:

Ω(r) = A+
B

r2
.

We can find A and B by applying the boundary conditions:

Ω1 = A+
B

r21
, Ω2 = A+

B

r22
,

=⇒ A =
r21Ω1 − r22Ω2

r21 − r22
, B = −r21r22

Ω1 − Ω2

r21 − r22
.

Applying the ratios η and µ:

A = Ω1
µ− η2

1− η2
, B = r21Ω1

1− µ
1− η2

.

Finally, applying the known quantities r1 and Ω1:

A =
µ− η2

1− η2
, B =

η2 (1− µ)

(1 + η) (1− η)3
.

An example of Ω(r) is shown in figure 2.1. Notice how, due to our choice of length-scale

and time-scale, the curve ranges from η
1−η ≤ r ≤ 1

1−η and between µ ≤ Ω ≤ 1. Notice

also that, because µ < 1, the curve decreases with radius across the radial range.

Conclusion

We have a basic state flow of the form u0 = [0, rΩ(r), 0], with:

Ω(r) = A+
B

r2
, (2.22)

A =
µ− η2

1− η2
, B =

η2 (1− µ)

(1 + η) (1− η)3
.

and the following set of conditions on P ′0 and ρ′0:

∂P ′0
∂r

= rΩ2,
∂P ′0
∂θ

= 0,
∂P ′0
∂z

= −ρ′0g. (2.23)
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Figure 2.1: Example curve for the basic state flow Ω(r). Here we have used η = 0.3 and µ = 0.2.

2.4 The SRI equations

2.4.1 Perturbation analysis

We introduce perturbations of the form a = a0 + a1, with |a1| � |a0| such that the

basic state variables a0 may be considered to satisfy the system equations (2.4), (2.12)

and (2.13). Perturbations are applied to the three dimensions of the flow velocity, and the

Boussinesq pressure and density: [u, P ′, ρ′]. For the density perturbation we also include

a factor of 1/g, such that:

ρ′ = ρ′0 +
ρ1
g
. (2.24)

Substituting these perturbations into equations (2.4), (2.12) and (2.13) yields:

(We have used the notation u = [u, v, w].)

∂u1

∂t
+ u0.∇u1 + u1.∇u0 = −∇P1 − ρ1ez +

η

(1− η)

1

Re
∇2u1 (2.25)

1

g

∂ρ1
∂t

+
1

g
u0.∇ρ1 + u1.∇ρ′0 = 0, (2.26)
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2.4 The SRI equations

∇.u1 = 0. (2.27)

Note that we have retained terms only to first order in perturbations and that basic state

terms have been cancelled.

We can now drop the subscripts on perturbation terms, expand the system, and apply our

knowledge of the basic state from equation (2.22):

∂u

∂t
+ Ω

∂u

∂θ
− 2Ωv = −∂P

∂r
+

η

(1− η)

1

Re

(
∇2u− u

r2
− 2

r2
∂v

∂θ

)
, (2.28)

∂v

∂t
+ Ω

∂v

∂θ
+ ζu = −1

r

∂P

∂θ
+

η

(1− η)

1

Re

(
∇2v − v

r2
+

2

r2
∂u

∂θ

)
, (2.29)

∂w

∂t
+ Ω

∂w

∂θ
= −∂P

∂z
− ρ+

η

(1− η)

1

Re
∇2w, (2.30)

∂ρ

∂t
+ Ω

∂ρ

∂θ
+ w

∂ρ′0
∂z

g = 0, (2.31)

∂u

∂r
+
u

r
+

1

r

∂v

∂θ
+
∂w

∂z
= 0. (2.32)

Here we have defined the vorticity:

ζ = r
∂Ω

∂r
+ 2Ω =

1

r

∂

∂r

(
r2Ω
)
. (2.33)

The vorticity ζ can be considered as a function of the gradient of the basic state angular

momentum, r2Ω. It relates to the Rayleigh Criterion (Section 2.4.4), in that it is negative

when the criterion for instability is satisfied, and positive when it isn’t. Note that in the

context of Taylor-Couette basic state flow (2.22), ζ = 2A and is constant.

We now assume that the perturbations are periodic in the azimuthal and vertical directions,

with wavenumbers of m and k respectively. We also assume that the perturbations have a

complex exponential growth rate σ. This gives the perturbations a harmonic ansatz of the

form:

a(r, θ, z, t) = ã(r) exp(σt+ i[mθ + kz]). (2.34)

Substituting this ansatz into the system allows us to retain only the radial gradient terms.

We define the quantity Φ = iσ−mΩ as the perturbation’s Lagrangian frequency. We also

substitute in the buoyancy frequency N2 = −g∂ρ′0/∂z from section 2.2.6.

−iΦu− 2Ωv = −dP
dr

+
η

(1− η)

1

Re

[
d2u

dr2
+

1

r

du

dr
−
(
m2 + 1

r2
+ k2

)
u− 2imv

r2

]
,

(2.35)
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−iΦv + ζu = −imP
r

+
η

(1− η)

1

Re

[
d2v

dr2
+

1

r

dv

dr
−
(
m2 + 1

r2
+ k2

)
v +

2imu

r2

]
,

(2.36)

−iΦw = −ikP − ρ+
η

(1− η)

1

Re

[
d2w

dr2
+

1

r

dw

dr
−
(
m2

r2
+ k2

)
w

]
, (2.37)

−iΦρ−N2w = 0, (2.38)

du

dr
+
u

r
+
imv

r
+ ikw = 0. (2.39)

These are now the full viscous equations for the stratified rotational instability.

The Complex Growth Rate σ

The term σ represents the time-dependence of the perturbation mode.

The real part of σ is the mode’s physical growth rate. If this is negative, then the pertur-

bation amplitudes are decreasing with time, and the system is stable with respect to that

perturbation mode. Correspondingly, if the real part of σ is positive, then the amplitude is

increasing with time, and the system is unstable. The system as a whole is only considered

to be stable if all possible perturbation modes are stable.

The imaginary part of σ is the negative of the modal frequency, such that f = −Im(σ).

This convention is used to ensure that a mode travelling in the positive vertical or az-

imuthal directions has a positive frequency.

Therefore we can decompose σ as follows:

σ = σr + iσi = σr − if

where σr is the physical growth rate and f is the modal frequency.

The Lagrangian Frequency, Φ

Φ = iσ −mΩ. (2.40)

The Lagrangian frequency is the complex frequency of the perturbation as seen by a

fluid element moving with the flow. Note that this changes based on the element’s radial

location, since the basic state flow has a radial dependence.
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2.4 The SRI equations

From substituting in the previous decomposition of σ, we see that:

Φ = iσr + f −mΩ.

2.4.2 Perturbation Boundary Conditions

The boundary conditions of Taylor-Couette flow are satisfied by the basic state flow veloc-

ities. Therefore, the boundary conditions on the perturbations require that the perturbed

velocities are equal to the basic state flow at the boundaries - i.e., that the velocity pertur-

bations go to zero at r1 and r2:

r = r1 =
η

1− η
=⇒ u = v = w = 0,

r = r2 =
1

1− η
=⇒ u = v = w = 0. (2.41)

This gives us a total of six boundary conditions, which is equal to the total differential

order of the perturbed system.

2.4.3 Common system limits

Inviscid flow

In the inviscid limit, viscosity is treated as negligible such that ν → 0. In our choice of

units, this is equivalent to (1/Re)→ 0. This approximation does not significantly change

the derivation of the perturbation equations, and without the viscous dissipation terms we

attain the following system of inviscid equations:

−iΦu− 2Ωv = −dP
dr
, (2.42)

−iΦv + ζu = −im
r
P, (2.43)

−iΦw = −ikP − ρ, (2.44)

−iΦρ−N2w = 0, (2.45)

du

dr
+
u

r
+ i

m

r
v + ikw = 0. (2.46)
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The inviscid system of equations can be expressed as a single second order differential

equation (2.48). The system therefore requires only two boundary conditions, rather than

the six non-slip boundary conditions of (2.17). To that end we consider no-normal-flow

boundary conditions such that the flow cannot pass through the walls; i.e. the radial

flow velocity must be zero at r1 and r2. This condition is carried through onto the radial

perturbation velocity:

r = [r1, r2] =⇒ u = 0. (2.47)

Yavneh et al. [2001] were the first to show that the inviscid system can be combined into

a single equation for the radial perturbation. This combined inviscid equation has various

equivalent forms; we present here the form used by Park and Billant [2013]:

d2u

dr2
+

(
1

r
− Q′

Q

)
du

dr
+

[
− k2

N2 − Φ2
∆− m2

r2
+
mrQ

Φ

(
ζ

r2Q

)′
+Q

(
1

rQ

)′]
u = 0,

Q(r) =
m2

r2
− k2Φ2

N2 − Φ2
, ∆(r) = 2ζΩ− Φ2. (2.48)

The derivation of this equation is given in Appendix A.

Note that Φ = 0 and Φ = ±N are all singular points within this equation. Multiplying

through by Φ we can deduce that Φ = 0 removes the d2ru and dru terms, yielding a linear

equation for u. Furthermore, inspection of (2.45) also tells us that Φ = 0 =⇒ w = 0.

For the case Φ = ±N , examination of (2.44) and (2.45) tells us that this implies P = 0.

This latter case, for which Φ2(rc) = N2 for some radial layer with r = rc is relevant to

both the low-stratification inviscid domain (see section 4.3.1) and the viscous radiative

instability (see section 6.3).

The distinct radial layers where Φ(r) = 0, Φ(r) = ±N , and also where ∆(r) = 0, are

all relevant to the instability conditions derived by Park and Billant [2013]; see chapter 4

and Appendix D.
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Unstratified flow

In the absence of stratification, we have N = 0 and we lose the mass conservation equa-

tion, leaving the following system of equations:

−iΦu− 2Ωv = −∂P
∂r

+
η

(1− η)

1

Re

[
d2u

dr2
+

1

r

du

dr
−
(
m2 + 1

r2
+ k2

)
u− 2im

r2
v

]
,

(2.49)

−iΦv + ζu = −im
r
P +

η

(1− η)

1

Re

[
d2v

dr2
+

1

r

dv

dr
−
(
m2 + 1

r2
+ k2

)
v +

2im

r2
u

]
,

(2.50)

−iΦw = −ikP +
η

(1− η)

1

Re

[
d2w

dr2
+

1

r

dw

dr
−
(
m2

r2
+ k2

)
w

]
, (2.51)

du

dr
+
u

r
+
im

r
v + ikw = 0. (2.52)

The viscous boundary conditions (2.41) are retained.

It has been shown (see below) that the inviscid unstratified system is only unstable up to

the Rayleigh line µ = η2. It is therefore assumed that the viscous unstratified system has

the same stability limit for sufficiently high Reynolds numbers.

Unstratified Inviscid flow

The limits of the lack of stratification and viscosity can be taken simultaneously, yielding

the following system of equations:

−iΦu− 2Ωv = −∂P
∂r

, (2.53)

−iΦv + ζu = −im
r
P, (2.54)

−iΦw = −ikP, (2.55)

du

dr
+
u

r
+
im

r
v + ikw = 0. (2.56)

Boundary conditions are unchanged compared to the stratified inviscid system (2.47).

This system is the classical inviscid Taylor-Couette system. It has been shown in Rayleigh

[1917] that the system is only unstable up to the Rayleigh line µ = η2, and that m = 0

modes are always more unstable than m 6= 0 modes.
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2.4.4 Rayleigh Criterion for Centrifugal Instability

In the absence of stratification, Rayleigh’s criterion [Rayleigh, 1917] applies for inviscid

fluid flows with angular velocity Ω(r). It is a statement of how the stability of the flow

depends on the form of Ω(r).

Let H(r) be defined as the gradient of the square of the angular momentum:

H(r) =
d

dr

(
r4Ω2

)
. (2.57)

If H(r) > 0 everywhere in the flow, then the flow is stable against axisymmetric instabil-

ities. If H(r) < 0 anywhere in the flow, then the flow is unstable.

A full derivation of Rayleigh’s criterion is presented in Chandrasekhar [1961]; it is ex-

tended to axisymmetric stratified flows by Ooyama [1966].

In the co-rotating unstratified domain of rotating fluid flows, it is generally assumed that

axisymmetric perturbations are always more unstable than non-axisymmetric perturba-

tions, due to the results of Andereck et al. [1986]. Therefore, one might expect the

Rayleigh Criterion to also apply to non-axisymmetric perturbations, however this has

not been proven to be the case. Indeed, in the presence of stratification, the SRI is a

non-axisymmetric instability for which the Rayleigh Criterion does not apply (e.g. figure

3.3).

Taylor-Couette flow

In the context of the basic state Taylor-Couette flow used throughout this work, we can

calculate H(r) directly using the definition of Ω in (2.22):

H(r) =
d

dr

[
r4
(
A+

B

r2

)2
]

=
d

dr

[
A2r4 + 2ABr2 +B2

]
, (2.58)

=⇒ H(r) = 4A2r3 + 4ABr = 4Ar
(
Ar2 +B

)
= 4Ar3Ω(r). (2.59)

If Ω(r) changes sign within the flow then H(r) will be negative somewhere, since A is a

constant and r > 0. This indicates that counter-rotating Taylor-Couette flows are always

unstable - i.e. that µ < 0 is sufficient for inviscid instability.
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2.4 The SRI equations

Figure 2.2: A 3D contour plot of the density perturbation for an SRI mode, demonstrating the spiral form

of the instability. Here η = 0.45, µ = 0.45,m = 1, k = 4.44, Re = 304.1, N = 1.0 and σ = −0.595i.

However, if µ > 0 then Ω(r) has the same sign everywhere within the flow. In this case,

H(r) can only be negative if A has a different sign to Ω(r), which requires that µ < η2.

Since η2 > 0, we can therefore conclude that µ < η2 is the necessary and sufficient

condition for instability in inviscid unstratified Taylor-Couette flow.

It is important to note that, since a high Reynolds number corresponds to low viscosity, if

the inviscid flow is unstable then we can generally expect the viscous flow to be unstable

for a sufficiently high Reynolds number.

2.4.5 The Wavenumbers of the SRI

Figure 2.2 shows an example of the helical structure of the SRI by picturing a 3D contour

of the density perturbation. Note that all instabilities which fit the ansatz (2.34) with non-

zero m and k, would have a similar helical form. In the case of [m, k] > 0 the contour
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Chapter 2. The Equations of the Strato-Rotational Instability

takes the form of a left-handed helix; the height of the contour increases as one moves

clockwise around it.

Furthermore, Riedinger et al. [2011] identified the following symmetries in the system of

perturbation equations (2.35)-(2.39):

[m, k, σ, u, v, w, ρ, P ]→ [−m, k, σ̄, ū, v̄,−w̄,−ρ̄, P̄ ],

[m, k, σ, u, v, w, ρ, P ]→ [m,−k, σ, u, v,−w,−ρ, P ].

[m, k, σ, u, v, w, ρ, P ]→ [−m,−k, σ̄, ū, v̄, w̄, ρ̄, P̄ ],

Here ā denotes the complex conjugate of a. The first two reflections produce a right-

handed helix, whereas the third double reflection retains the original left-handed helix.

These symmetries mean that, for any unstable mode with wavenumbers [m, k] and Reynolds

number Re at fixed [η, µ,N ], there will be an equally unstable mode with the same

Reynolds number for each variation of [±m,±k]. Each mode will either have the same

perturbation functions [u, v, w, ρ, P ] or the complex conjugates of these functions. Vice

versa, if for fixed [η, µ,N ] then a specific mode with some [m, k,Re] is found to be sta-

ble, it can be concluded that each variation of [±m,±k] will also be stable for the same

Reynolds number.

All four combinations of [±m,±k] result in eigenfunctions of equal growth rates and with

frequencies of equal absolute value. These symmetries therefore allow us to restrict our

analysis to just the positive domain of the wavenumbers [m, k].

2.4.6 Critical Reynolds number

Consider an experimental system with fixed [η, µ,N ], and a steadily increasing Reynolds

number Re. The critical Reynolds number Rec is the Reynolds number at which this

system first becomes unstable. For all possible wavenumbers [m, k] and frequencies f ,

the critical Reynolds number is therefore the smallest unstable Reynolds number available

to the system.
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2.5 Eigenfunction forms

The critical Reynolds number will have an associated critical perturbation mode of insta-

bility, with critical wavenumbers [mc, kc] and a critical frequency fc. The growth rate of

this mode must be σr = 0. This is because if the Reynolds number is slightly reduced

then the system must be stable, with viscous damping providing a negative growth rate.

On the other hand, if the Reynolds number is slightly increased the system will gain a

positive growth rate.

Under some circumstances, we may wish to know the critical Reynolds number for some

fixed value of the wavenumbers - i.e. the Reynolds number at which a specific mode

becomes unstable. We label this as Remk. Similarly, if we want to know the critical

Reynolds number optimising over k but with a fixed value of m, say for example m = 0,

then we can label this as Rem=0.

It is worth pointing out that the system we have described, of holding N fixed with in-

creasing Re, is actually somewhat unrealistic for our choice of dimensional units. In

practise, the dimensional terms N̂ and ν̂ can be held reasonably constant in laboratory

experiments, while Ω̂in can be steadily increased in order to adjust the Reynolds number

Re. However, since N = N̂/Ω̂in, this would not correspond to a fixed value of N .

Our description would therefore correspond to either adjusting N̂ alongside Ω̂in, in order

to keep their ratio constant, or adjusting ν̂ whilst holding N̂ and Ω̂in constant. However,

neither of these is particularly feasible in practise.

2.5 Eigenfunction forms

It is also useful to express the equations in terms of linear differential operators, [La, Ra]

acting on eigenfunctions [u, v, w, ρ, P ], with a single eigenvalue [σ]:

La(u, v, w, ρ, P ) = σRa(u, v, w, ρ, P ), a = [1, 2, 3, 4, 5].

This is done for the sake of computational analysis of the system - see chapter 3.

In each case, this can be achieved by resubstituting −iΦ = (σ + imΩ) into the system

equations and collecting terms with a factor of σ on the right hand side of each equation.

29



Chapter 2. The Equations of the Strato-Rotational Instability

Standard SRI

ν
d2u

dr2
+
ν

r

du

dr
+

(
−ν (m2 + 1)

r2
− νk2 − imΩ

)
u+

(
2Ω− ν 2im

r2

)
v − dP

dr
= σu,(

ν
2im

r2
− ζ
)
u+ ν

d2v

dr2
+ ν

1

r

dv

dr
+

(
−ν (m2 + 1)

r2
− νk2 − imΩ

)
v − im

r
P = σv,

ν
d2w

dr2
+ ν

1

r

dw

dr
+

(
−νm

2

r2
− νk2 − imΩ

)
w − ρ− ikP = σw,

N2w − imΩρ = σρ,

du

dr
+

1

r
u+

im

r
v + ikw = 0,

r = [rin, rout] =⇒ u = v = w = 0.

(Here ν = η/ [Re (1− η)] is the kinematic viscosity ν̂ expressed in dimensionless units.)

Inviscid SRI

−imΩu+ 2Ωv − dP

dr
= σu,

−ζu− imΩv − im

r
P = σv,

−imΩw − ρ− ikP = σw,

N2w − imΩρ = σρ,

du

dr
+

1

r
u+

im

r
v + ikw = 0,

r = [rin, rout] =⇒ u = 0.

Unstratified Taylor-Couette

ν
d2u

dr2
+
ν

r

du

dr
+

(
−ν (m2 + 1)

r2
− νk2 − imΩ

)
u+
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2Ω− ν 2im
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dr
= σu,(

ν
2im
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− ζ
)
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d2v

dr2
+ ν
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r

dv

dr
+

(
−ν (m2 + 1)

r2
− νk2 − imΩ

)
v − im

r
P = σv,

ν
d2w

dr2
+ ν

1

r

dw

dr
+

(
−νm

2

r2
− νk2 − imΩ

)
w − ikP = σw,

du

dr
+

1

r
u+

im

r
v + ikw = 0,

r = [rin, rout] =⇒ u = v = w = 0.
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Inviscid Unstratified Taylor-Couette

−imΩu+ 2Ωv − dP

dr
= σu,

−ζu− imΩv − im

r
P = σv,

−imΩw − ikP = σw,

du

dr
+

1

r
u+

im

r
v + ikw = 0,

r = [rin, rout] =⇒ u = 0.

2.6 Alternative Length-scales and Time-scales

There are several alternative length-scales and time-scales that we could have chosen,

instead of the gap width, λ̂ = r̂out − r̂in, and the reciprocal of the inner rotation rate,

τ = Ω̂−1in .

2.6.1 Viscous Time-scale

In typical lab experiments, the viscosity is unchanging whereas the inner rotation rate is

varied in order to control the Reynolds Number. This makes the viscous time-scale λ̂2/ν̂

a useful choice of units for direct comparison to physical experiments.

However using the viscous time-scale is incompatible with the inviscid limit, where vis-

cosity is discarded. This means that, if we were using the viscous time-scale, we would

need to change units whenever we shifted to the inviscid system, and results from the two

systems would be non-trivial to compare.

2.6.2 Stationary inner cylinder

The reciprocal of the inner rotation rate cannot be used as a time-scale when Ω̂in = 0. This

possibility is particularly relevant for the case where Ω̂in < Ω̂out, i.e. the outer cylinder is

rotating faster than the inner cylinder. (The majority of Park and Billant [2013] focuses
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Chapter 2. The Equations of the Strato-Rotational Instability

on this case.) In this circumstance, it makes sense to choose the reciprocal of the outer

rotation rate as the time-scale of the system. It also becomes more useful to use the ratio

Ω̂out/Ω̂in, rather than µ = Ω̂in/Ω̂out, since µ→∞ as Ω̂in → 0.

However throughout this work we will be primarily interested in the range 0 ≤ µ ≤ 1,

rather than cases where µ > 1.

2.6.3 Wide gap limit

Choosing the gap width as the length-scale is less useful for taking wide-gap limit η →

0. Instead either r̂in or r̂out could be used, each of which would lead to similar set of

dimensionless equations, albeit modified by factors of η. Choosing r̂in as a length-scale

for the wide-gap limit corresponds to a system where the outer cylinder is taken to the limit

r = ∞, whereas choosing r̂out corresponds to a fixed outer cylinder with a vanishingly

thin inner cylinder.

However, the following work within this thesis will primarily focus on both moderate

gaps and the narrow-gap limit η → 1, for which a length-scale of λ̂ = 1 is appropriate.
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Chapter 3

Generalised Eigenfunction Solver

Linear perturbation theory typically produces an eigenfunction problem with the complex

growth rate as an eigenvalue. This chapter will explain how eigenfunction problems with

a single eigenvalue can be written in matrix form, to then be solved using computational

methods.

For further reading on the topic of solving linear differential equations by usage of spectral

methods, see Gottlieb and Orszag [1977], Boyd [2001] and Canuto et al. [2006].

3.1 Generalised Eigenfunction problem

Consider a system of A equations of the form:

La (f1, f2, ..., fA) = σRa(f1, f2, ..., fA), y1 < y < y2, a = [1, 2, ..., A], (3.1)

where La and Ra are linear differential operators, σ is a constant eigenvalue and the

eigenfunctions fα are all functions of y. (The term α ranges from 1 : A.)

The operators La andRa are given, whereas the problem is to be solved for σ and fα.

If the total differential order of the system is B, the system has B boundary conditions of

the form:

Bb (f1, f2, ..., fA) = 0, y = yi, b = [1, 2, ..., B],

where the Bb are linear differential operators, and i can be equal to 1 or 2.
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Chapter 3. Generalised Eigenfunction Solver

Note that the linearised Taylor-Couette equations in chapter 2 are an example of such a

system.

3.1.1 Matrix equation

The system in section 3.1 can be expressed as a matrix equation of the form:

Lv = σRv (3.2)

where L andR are matrices, v is an eigenvector representing the functions fα, and σ is

the same constant eigenvalue as before.

This is a generalised matrix eigenfunction problem to be solved for v and σ when supplied

with the matrices L andR.

In order to achieve the matrix formulation of the problem, we make use of spectral meth-

ods to decompose each eigenfunction into a series of coefficients. By necessity these

series are truncated, since perfect accuracy can only be achieved by taking the series to

infinity. However, spectral methods exhibit exponential convergence, and with sufficient

terms then the truncated series is accurate to within a small approximation. We introduce

the term T as an integer measure of the number of coefficients taken before truncating

each series.

For the analysis of Taylor-Couette instabilities, we chose Chebyshev polynomials for

the spectral decomposition. Chebyshev polynomials exhibit additional variation near the

boundaries of the domain. We expect significant boundary phenomena in the form of the

Taylor-Couette instabilities, making Chebyshev polynomials well suited to the system.

Spectral methods making use of Chebyshev polynomials to solve differential equations

are explained further in appendix B.

3.1.2 Collocation points

To accommodate the natural range for Chebyshev functions, the system must be rescaled

from operating over [y1 < y < y2] to operating over [−1 < x < +1]. This can be
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3.2 Formulating the Matrices

achieved by the formula:

x =
2y − (y1 + y2)

y2 − y1
.

The collocation points are a set of values x = xc for 0 ≤ c ≤ T for which the Chebyshev

functions can be easily evaluated. The matrix equation (3.2) does not evaluate the original

system at every value for x, except for in the limit T → ∞. Instead, the system is

evaluated at each collocation point. It is assumed that, for values of x away from the

collocation points, any solution to the matrix equation will only have a small divergence

away from the ideal solution. This assumption is based on the exponential accuracy of

spectral methods.

3.1.3 The Eigenvector

Each of the functions fα is expressed as a truncated Chebyshev series. Typically each

series is truncated at T terms, but in certain circumstances (see section 3.2.5) it may be

necessary to slightly increase or reduce the size of the Chebyshev expansion for a specific

eigenfunction. For example, f3 might be evaluated to T − 2 terms, and f4 taken to T + 2

terms.

The eigenvector of the matrix equation is then constructed by compiling each set of

Chebyshev coefficients in turn. The first set of terms of the eigenvector consist of the

coefficients for f1(x), the next set are the coefficients for f2(x), etc.

3.2 Formulating the Matrices

Consider the matrix equation in index notation:

Lijvj = σRijvj (3.3)

Evaluating (3.3) at a specific value of i corresponds to approximately evaluating a spe-

cific equation from the original system at some collocation point xc. Specific ranges of i

correspond to specific equations.
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Chapter 3. Generalised Eigenfunction Solver

Figure 3.1: A representation of either Lij or Rij , with A = 3 and B = 2, such that there are three

equations, three eigenfunctions and two boundary conditions. Each range of columns corresponds to a

specific eigenfunction, and each range of rows corresponds to a specific equation. The final two rows,

i = ic and i = ic + 1 correspond to the two boundary conditions.

Each column j of the two matrices corresponds to a single Chebyshev coefficient for a

specific eigenfunction, such that the columns Li2 and Ri2 will both correspond to the

same coefficient. Specific ranges of j correspond to specific eigenfunctions. See figure

3.1 for a diagrammatical representation.

3.2.1 Function representation

Each of the functions fα can be represented in one of three ways:

1. fα(x) - Direct representation. This is the function fα operating on some value of x.

2. fα,k - Chebyshev Coefficients. This is the truncated series of Chebyshev coefficients

for the function fα. Here k labels a specific coefficient and ranges between 1 : K,

where K is the truncation point of the series. (Typically K = T .)

3. fα(xc) - Collocation point function values. This is the value of the function fα at

each collocation point. Here c labels a specific collocation point and ranges between

1 : C, where C is the total number of points. (Typically C = T also.)
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fα,k and fα(xc) are typically represented as vertical vectors, e.g.:fα,k

K

and

fα(xc)


C

3.2.2 Collocation Matrixfα(xc)


C

=

 Co


[C,K]

fα,k

K

(3.4)

In equation (3.4), the matrix Co is the collocation matrix. It acts on a Chebyshev coef-

ficient series fα,k and returns fα(xc) in vector form; the values of that function on the

collocation points.

The number of columns of the matrix corresponds to the number of collocation points,

C, whereas the number of rows corresponds to the number of terms in the Chebyshev

expansion of the function,K. Note that the matrixCo is completely defined by its number

of rows and columns - it does not depend upon the function that it is being applied to.

The derivation of the terms of the collocation matrix is presented in appendix B.

3.2.3 Differentiation Matrixdxfα,k

K

=

 D


[K,K]

fα,k

K

(3.5)

In equation (3.5), the matrix D is the differentiation matrix. It acts on a Chebyshev

coefficient series fα,k and returns dxfα,k in vector form; the gradient of that function in

Chebyshev coefficient form.

D is a square matrix; the number of rows and columns is equal to K, the number of terms

in the Chebyshev expansion. LikeCo,D is completely defined by the number of rows and
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columns, and does not depend upon the function f. As a square matrix, it can be applied

multiple times, to derive the Chebyshev coefficients of higher gradients of the function.

The derivation of the terms of the differentiation matrix is presented in appendix B.

The differentiation matrix can be used in conjunction with the collocation matrix to pro-

duce the collocation values of the nth gradient of a function, as follows:dnxfα(xc)


C

=

 Co


[C,K]

 D


n

[K,K]

fα,k

K

(3.6)

Representing a single function term

Take a single term within an equation, such as Gdnxfα. Here G is the coefficient of the

function, and the function itself has been taken to the nth gradient. (Note that n ≥ 0, to

include the possibility that the function has not been differentiated.)

If G is a constant, a matrix can easily be constructed that will take fα,k and return

[Gdnxfα](xc): M


[C,K]

= G

 Co


[C,K]

 D


n

[K,K]

(3.7)

However, if G = G(x), we must instead make use of the vector G(xc): M


[C,K]

=

G(xc)


C

∗

 Co


[C,K]

 D


n

[K,K]

(3.8)

Here ∗ represents a line-by-line multiplication between a vector v and a matrix B. In

index notation thenA = v ∗B can be represented, without summation, as:

Aij = viBij
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With M defined by equations (3.7) and (3.8), then we have:[Gdnxfα](xc)


C

=

 M


[C,K]

fα,k

K

(3.9)

Furthermore, if an equation has a summation over two or more different terms involving

fα, we can create a combined matrix that will take fα,k and act as a linear differential op-

erator, returning the collocation values of the summed terms. We represent this combined

matrix by S.

For example, take Gdnxfα +Hfα: S


[C,K]

=

G(xc)


C

∗

 Co


[C,K]

 D


n

[K,K]

(3.10)

+

H(xc)


C

∗

 Co


[C,K]

In the case of boundary conditions, rather than evaluating a term at every collocation

point, we instead need to evaluate it at the collocation point corresponding to either the

inner or outer boundary, depending on the specific boundary condition. This can be

achieved by taking either the first or last row of S. This row can be treated as a horizontal

vector J which acts on fα,k to give the appropriate value at the appropriate boundary.

3.2.4 Matrix structure

For illustrative purposes, in this section we are going to assume that A = 3 and B = 2,

i.e. that the original problem (3.1) had three equations and three eigenfunctions, with two

boundary conditions.

Each side of the equations is treated separately, in order to derive each of L andR. To

generate L, take the left hand side of the equations, whereas to generate R first divide

through by σ and then take the right hand side of the equations.
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Figure 3.2: The full set of half equations, assembled into a single matrix and a single eigenvector. Here the

eigenvector is a list of each set of Chebyshev coefficients for each eigenfunction. This is the vector v in the

matrix equation (3.2). The matrix, made up of the sub-matrices Saα and Jbα, is either L orR depending on

which side of the original equations (3.1) is being examined.

In either case, we are left with a set of three ’half-equations’ and two ’half-boundary-

conditions’. From here on, these are just referred to as the equations and boundary con-

ditions respectively.

For each eigenfunction within each equation, group the appropriate terms into a linear

differential operator acting on that eigenfunction. (If an eigenfunction does not appear in

a specific half-equation, then the appropriate linear differential operator is just the zero

operator.) As shown in the previous section, this linear differential operator can be rep-

resented by a matrix S acting on the Chebyshev coefficients of the eigenfunction, fα,k.

The system, including boundary conditions, can then be represented as a single matrix

operating on a single eigenvector, as shown in figure 3.2. Both L andR are constructed

using this method.

Note that, for reasons explained in section 3.2.5, the various eigenfunctions may each

have different numbers of Chebyshev coefficients in v. If this is the case, the width of the

appropriate sub-matrices Saα in L or R must correspond to the number of terms for the

appropriate eigenfunction.
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Zero rows

Depending on the form of (3.1), there may sometimes be occasions where a row in L

or R is entirely zero. This is most often the case with boundary conditions, which in

practical applications rarely involve the eigenvalue of the problem, and therefore the R

row corresponding to the boundary condition is entirely zero.

Such zero rows cause a problem for solving the generalised matrix eigenfunction problem,

since most methods involve taking the inverses of L and R. Therefore these zero rows

must be removed, but without losing the equations that they represent.

To do this, we first rearrange the system such that all zero rows are withinR rather thanL.

Treating each row as an individual equation, this can always be done simply by switching

which side is equal to zero. (Which side is which doesn’t matter when one side is zero,

since the eigenvalue can be divided out.)

Consider some quantity q as a pre-determined eigenvalue that can be ignored in the final

solution, along with its associated eigenfunctions. q can be any quantity so long as it is

recognisable; for our purposes, we used q = −999. This is because most of the work done

with the program was focused on finding positive eigenvalue growth-rates corresponding

to instability, and such a large negative eigenvalue would be automatically discarded.

With q chosen, we now replace the zero-row in R by the finite row in L multiplied by

1/q. Labelling the left-hand-side row as the vector λ, this results in the following equality

within the overall system:

λ.v =
σ

q
λ.v. (3.11)

Within the context of the complete system, (3.11) can be solved in only two ways. Either

σ = q, in which case the resulting solution can be ignored, or λ.v = 0 as was implied by

the equality of λ.v with the original zero row. Hence the zero row has been replaced, but

not discarded.
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3.2.5 Chebyshev expansion adjustments

The matrices L andR must be square matrices for the generalised matrix eigenfunction

problem to be solvable.

The height of the matrices Q is determined by Q = AT + B, where A is the number

of equations, T is the number of collocation points and B is the number of boundary

conditions. Conversely, the width of the matrices is determined by the total number of

Chebyshev coefficients from each eigenfunction expansion; this quantity would typically

be equal to AT if each eigenfunction was expanded to exactly T terms.

Therefore, the width of each matrix must be supplemented by the amount B. This is done

by increasing the number of terms in some of the Chebyshev expansions. Typically, for

an individual eigenfunction problem, each boundary condition is examined in turn and

an extra term is added to the expansion of the eigenfunction most closely related to that

particular boundary condition.

3.3 Computational evaluation

We now have two large matrices, L andR, the core components of equation (3.2). For

reference, (3.2) is repeated below:

Lv = σRv

With L and R supplied, this is a generalised matrix eigenvalue problem, which can be

solved for v and σ.

Suppose that the original eigenfunction problem (3.1) has a solution, and that the eigen-

functions in this solution can be accurately described by sets of truncated Chebyshev

series. (These Chebyshev series are each approximately of length T .)

By the design of matrices L and R constructed from the original problem, the sets of

truncated Chebyshev series are themselves solutions to the matrix equation (3.2), with the

same eigenvalue σ. Therefore if we can find solutions to (3.2) that match the expected
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form of truncated Chebyshev series describing functions fα(x) then these solutions are

also approximate solutions to (3.1).

Solving (3.2) will give a total of Q solutions, with Q equal to the size of the matrices L

andR. These solutions must be sorted through in order to find the results that are most

relevant to the problem (3.1).

3.3.1 Spurious solutions

The truncated Chebyshev series of a function fα(x) will exhibit exponential accuracy -

this means that the error in the series will become exponentially smaller with each term

that is added to the series. Furthermore, this means that each term in the series should

be exponentially smaller than the previous terms, as there are smaller and smaller adjust-

ments required to get closer to the ’ideal’ solution. (This typically won’t be true of the

first few terms in the series, which are instead establishing the general structure of the

eigenfunction.)

If a solution to (3.2), once broken down into individual Chebyshev series, does not ex-

hibit this exponential decay, then it cannot be an accurate solution to (3.1). Since these

solutions are not relevant to (3.1), they are spurious and must be filtered out.

These spurious solutions can originate from a variety of sources. They may be represen-

tations of solutions to the original problem that have insufficient terms in the Chebyshev

expansion to be accurately modelled. There will also be some spurious solutions that are

a result of how we handled zero rows in section 3.2.4. Alternatively, spurious solutions

may arise that satisfy the matrix equation but are completely impossible in the context of

the original problem, due to the subtle differences between the two.

Each individual solution to (3.2) will have A associated Chebyshev series. If even one

Chebyshev series is deemed to be spurious, then the entire solution that the Chebyshev

series belonged to is spurious. This is because we can only accept solutions to (3.1) for

which all the eigenfunctions make sense.

43



Chapter 3. Generalised Eigenfunction Solver

Checking for spurious Chebyshev series

Consider a truncated Chebyshev series of length L. We can take the sum of the absolute

magnitudes of the first L/2 terms of the series (rounding down) and compare it to the sum

of the absolute magnitudes of the second L/2 terms. If the Chebyshev series exhibits the

expected exponential decay in term magnitudes, then the first sum should be substantially

larger.

Typically, we used a cut-off threshold of 10−5; if the second half was not at least 10−5

times smaller than the first half, then the series was treated as spurious.

3.3.2 Relevant results

Having filtered out the spurious results, we are left with a set of approximate solutions to

the original problem (3.1). Typically, we are still only interested in a select few of these

results.

For example, in the case of perturbation instability analysis with a complex growth rate

for an eigenvalue, we are most interested in solutions where the real growth rate is as

large as possible. The set of solutions can be searched for the eigenvalue with the largest

real part. If the largest growth rate is positive, the solution is considered to be a mode of

instability. The associated eigenfunctions can then be converted into functions of x for

analysis.

3.4 Eigenfunction solver program

All coding was done using MATLAB. An outer program GenEig.m was written to build

the matricesL andR of (3.2). GenEig.m was written such that different sets of equations

could be swapped in and out for different eigenfunction problems. These sets of equations

would be supplied in the form of an Eqns.m file, such as SRIEqns.m for the viscous SRI

problem. GenEig.m and each Eqns.m file were written such that the parameters of each

problem could be individually varied for each evaluation.
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The MATLAB routine eig was used to solve the matrix problem (3.2) once L and R

had been constructed. Spurious filters were then applied, as described in section 3.3.1,

yielding a list of valid eigenvalues and eigenfunctions.

3.5 Implementations

For this thesis, the methods described throughout this chapter were exclusively applied to

fluid instability problems with independent variables [r, θ, z, t] or [x, y, z, t]. In our work,

the eigenvalue σ always represents the complex growth rate of a perturbation mode, and

we have instability whenever σr > 0.

This means that it was often useful, for a given set of parameters, to check for instability

by finding the eigenvalue with the largest real component, and checking whether this was

positive. It was also possible to optimise sets of parameters based around the eigenvalue,

for example in order to find the largest possible σr, or where σr = 0.

Each problem typically had five eigenfunctions for any given eigenvalue σ. The coef-

ficients for a given eigenfunction could be retrieved from the eigenvector, and converted

back into an approximate form of the eigenfunction by summation of the truncated Cheby-

shev series. This would yield an exponentially small error in the form of the eigenfunction

compared to the ideal solution. In this way, eigenfunctions of interest could be plotted for

further inspection (see chapter 6).

3.5.1 Viscous SRI

For the viscous strato-rotational instability problem, the parameters are [η, µ,N,Re,m, k].

The parameters η, µ and N are considered to be physical parameters, which can be con-

trolled within physical experiments. Re can also be considered to be a physical parameter,

as a non-dimensional measure of the ratio between inertial and viscous forces. However

the Reynolds number can easily be varied in experiments by steadily increasing the rate

of rotation, and we are often interested in the critical Reynolds number Rec at which a

system becomes unstable.

45



Chapter 3. Generalised Eigenfunction Solver

Unlike the other parameters, the wavenumbers m and k are unrestricted in reality; the

system can ’choose’ any [m, k] pair that is unstable. This leads to two distinct approaches

to computationally evaluating the system.

(i) If we are merely interested in finding out whether or not a given set of physical pa-

rameters [η, µ,N ] can be made unstable, then no optimisation is required. We can set the

Reynolds number Re to a significantly large value in order to activate any potential insta-

bilities, and then scan through a reasonable range of [m, k] pairs until such an instability

is found or our range of [m, k] pairs is exhausted. For our purposes we typically checked

Re = 1 × 106 for the ranges 0 ≤ m ≤ 3 and 0 ≤ k ≤ 20, although we would revise the

upper limits of these ranges if nearby results in the parameter space required larger values

of m or k to become unstable.

Note however that using a large value of Re requires a larger value of T to account for

resolution of the eigenfunctions, which increases the computational run-time. For exam-

ple, with Re = 1 × 106, we tended to use T = 230, and had a computational run-time

of about 40 seconds to evaluate a single set of parameters [η, µ,N,Re,m, k]. This was

considered an upper limit for T , as it made investigating large ranges of parameters take

significant time.

This method relies upon the assumption that, if a mode of instability has some critical

Reynolds number Rec at which it becomes unstable, it will remain unstable for all Re >

Rec. However, as discussed in section 6.2.3, this is not always the case with the SRI. In

the case of a closed domain loop, it is possible for an unstable mode to become stable

with a Reynolds number that is too large. With this having been noted, a more thorough

method could involve scanning through a set of potential Reynolds numbers for instability,

but this would significantly increase the computational runtimes required. This is further

complicated by the fact that the range of possible Reynolds numbers is continuous and

has no upper limit.

For our own work, we found Re = 1 × 106 to be suitable for recovering a great many

unstable modes, but it is likely that this value of Re missed other modes requiring even

larger Reynolds numbers.

(ii) We may instead wish to find the critical mode for a given set of physical parameters
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[η, µ,N ]. This is the mode of instability which becomes unstable at the critical Reynolds

number Rec. (See section 2.4.6.)

We use a root-finding algorithm to find Remk, the critical Reynolds number at which a

mode with some fixed [m, k] reaches marginal stability with σr = 0. The root finding

algorithm we used was a hybrid secant and bisection method.

We then use a minimisation algorithm to find the minimum Remk for a range of [m, k]-

values. This algorithm worked by first scanning through a discrete range of [m, k] pairs to

find the minimum Remk within this range, and then improving this result by using MAT-

LAB’s fminsearch routine to optimise k further. We assume that this locally minimised

Remk corresponds to the global critical Reynolds number Rec if a sufficiently large range

of m and k is scanned. The critical wavenumbers mc and kc correspond to the wavenum-

bers at which Remk = Rec.

This method can alternatively be constrained to find Rem, the critical Reynolds number

for some fixed value of m but minimised over k.

Our viscous code has successfully reproduced results from Shalybkov and Rüdiger [2005]

and Rüdiger and Shalybkov [2009]; see figure 3.3. A comparison to the recent experimen-

tal results of Ibanez et al. [2016] is shown later in this thesis in figure 5.2, and is discussed

in section 5.3.2.

3.5.2 Inviscid SRI

For the inviscid strato-rotational instability problem, we lose the Reynolds number param-

eter, leaving [η, µ,N,m, k]. Primarily for the inviscid system, we are merely interested in

whether or not a given set of physical parameters [η, µ,N ] can be made unstable for some

[m, k]. The inviscid system typically required considerably smaller resolutions in T than

the viscous system, reducing computational runtime.

However, the inviscid system introduces further complications due to computational er-

ror. In theory, due to the lack of viscous damping, many stable inviscid modes have zero

growth rates, whereas only unstable modes have positive growth rates. However, compu-

tational and numerical errors allow stable modes in the inviscid domain to be measured
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Figure 3.3: A reproduction and extension of figure 3 from Shalybkov and Rüdiger [2005], with η = 0.78

and N = 2. The solid vertical line represents the Rayleigh line µ = η2, whereas the dotted vertical line

represents µ = η, which was suggested as a stability limit of the SRI by Shalybkov and Rüdiger [2005].

Our data shows that this line is crossed by the SRI at a Reynolds number of about Re = 1000, which is

consistent with the results of Rüdiger and Shalybkov [2009].
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as having very small positive growth rates. These errors decrease with computational res-

olution, but they cannot be completely eliminated, and one advantage of working in the

inviscid domain is to avoid the high resolutions required for a viscous computation. Thus

for computationally evaluated inviscid modes, small positive growth rates measured by

the program cannot be considered to be a reliable indication of instability. Nonetheless,

large positive growth rates are still indicative of instability.

Therefore, inviscid results were only treated as potentially unstable if they had a real

growth rate above a sufficient threshold, in order to rule out positive growth rates that

were a result of computational error. A threshold of 1.0×10−5 was found to work well, as

computational errors were typically of considerably smaller magnitude, and results above

this threshold often also corresponded to unstable modes in the viscous domain. The

difference between computational error and results where we are confident of inviscid

instability can be seen in figure 3.4.

We typically only used T = 40− 70 for inviscid system. Any potentially unstable results

were then further tested by increasing up to T = 200. If an unstable result was present

at the T = 200 high resolution, we would then check that the mode was well resolved.

This was tested by further increasing to T = 210 and checking that the growth rate and

frequency were not significantly changed compared to the T = 200. A result was only

accepted as unstable if it was well resolved at this higher resolution.

Our inviscid code has successfully reproduced the results of Le Dizès and Riedinger

[2010]’s figure 1; see our figure 4.1. Note that there is a difference of length-scale used,

such that their k/N = 30 is equivalent to our k = 600. This plot was produced by fixing

the quantities [η, µ,m,N ] and varying k throughout the displayed range. For each value

of k, the eigenfunction solver would produce multiple modes, for all of which the growth

rate and frequency were plotted on the relevant graphs.
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Figure 3.4: Growth rate σr plotted on a log scale against vertical wavenumber k. Results for which σr >

10−5 are plotted with a blue ‘+’, while results for smaller growth rates are plotted with a black ‘x’. This

figure uses the same data and parameters as figure 4.1(b). A significant difference in magnitude can be seen

between the results of computation error (the ‘noise’ primarily focused in the range σr ∈ [10−14, 10−8]),

and the results with which we are confident of inviscid instability (the blue ‘+’ results for σr > 10−5).
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Instability Domain

4.1 Introduction

We wish to know the domain of instability for the SRI at any given stratification N .

The line µ = η2 (see section 2.4.4) can be considered to be a stability limit of axisym-

metric perturbations in co-rotating stratified Taylor-Couette flow. However, since the SRI

is a non-axisymmetric instability, this stability limit does not apply, and can only be con-

sidered to be a sufficient condition for inviscid instability in the presence of stratification,

not a necessary one.

Taking an analytic approach to near-narrow-gap co-rotating flows with high-stratification,

Yavneh et al. [2001] concluded that d(Ω2)/dr < 0 was a sufficient condition for inviscid

instability. This corresponds to µ < 1, i.e. a stability limit of solid body rotation.

However, with numerical analyses of viscous flows with moderate gap widths and mod-

erate stratification, Shalybkov and Rüdiger [2005] only found instabilities below the

line µ < η, and suggested this as an approximate stability limit. This work was ex-

tended for Rüdiger and Shalybkov [2009], with wide, modest and narrow gap flows

(η = [0.3, 0.5, 0.78]) and a variety of stratifications. The stability limit appeared to be

somewhere between η < µ < 1 for modest and narrow gaps, whereas it appeared to be

somewhere between η2 < µ < η for wide gaps.

Later, Park and Billant [2013] found a sufficient condition for inviscid instability of strati-
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Figure 4.1: A reproduction of figure 1 from Le Dizès and Riedinger [2010]. Here η = 0.2, µ = 0.04,

N = 5 and m = 1. (Note that the symbol µ represents a different term in Le Dizès and Riedinger [2010].)

The left-hand plot displays frequency f against the vertical wavenumber k, whereas the right-hand plot

displays growth-rate σr against k for the same modes. Black crosses x represent stable modes, whereas

blue plusses + represent unstable modes.

fied Taylor-Couette flows. This condition implied that any flow with µ 6= 1 could be made

unstable with sufficiently large N . Therefore Park and Billant [2013] extend the inviscid

result of Yavneh et al. [2001] such that at sufficiently large N not only narrow gaps are

unstable, but all gap sizes for µ 6= 1.

In this chapter, we will further extend the work of Park and Billant [2013] in order to find a

sufficient condition for inviscid instability on µ for any given η and N for the case µ < 1.

We will then give the results of a numerical search for viscous and inviscid instabilities

for various stratifications, and compare these results to the theoretical predictions. Our

numerical viscous results extend the work of Shalybkov and Rüdiger [2005] and Rüdiger

and Shalybkov [2009] to a larger range of η and µ. We also find that there is a variation

in the types of SRI, explored further in chapter 6.

4.1.1 Dual-Wave-Mode SRI

Yavneh et al. [2001] identified the presence of a non-axisymmetric Kelvin wave instability

in stratified flows; this instability has come to be known as the SRI. However, in chapter 6
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Figure 4.2: An example of the inviscid dual-wave-mode SRI for stratified Taylor-Couette flow, providing

vertical (a) and horizontal (b) cross-sectional contour plots of the mode. The vertical cross-section (a) is

taken at θ = 0 whereas the horizontal cross-section (b) is taken at z = 0. For (a), radial and vertical

velocities are shown as vectors, whereas the angular velocity perturbation is shown in colour contours with

positive/negative represented by red/blue respectively. For (b), radial and angular velocities are shown

as vectors and the vertical velocity is shown in colour contours. Colour contours are scaled against the

maximum radial velocity perturbation. Here η = 0.55, µ = 0.31 and N = 1, with optimised wavenumbers

of m = 1 and k = 5.27. The frequency of the mode is f = 0.546, and the growth rate is σr = 0.110. Note

that this figure correlates with figure D.1 which uses the same parameters.

we will show that there are multiple distinct forms of non-axisymmetric stratified instabil-

ities, each of which could therefore be referred to as a strato-rotational instability. Some

of these SRI forms, such as the radiative instability (discussed previously by Le Dizès and

Riedinger [2010]) and the wide-gap-mode SRI, do not demonstrate the form of a Kelvin

wave instability. Therefore, for the sake of distinction we will refer to the ‘classical’ SRI

of Yavneh et al. [2001] as the dual-wave-mode SRI, since it relies upon the presence of

two Kelvin waves each travelling adjacent to either the inner or outer radial boundary.

(For an analysis of how these waves can be referred to as Kelvin waves, see appendix C.)

It is this restriction, the presence of two interacting Kelvin waves travelling adjacent to

each boundary, which leads to the distinctive growth rate ’bounces’ in figure 4.1(b) as the

vertical wavenumber k is varied. Different values of k permit different inner and outer

wave-modes, each with their own frequencies, and each with neutral growth rates. The

rising curves in figure 4.1(a) correspond to waves travelling around the inner boundary,

whereas the curves with falling frequency f compared to increasing k correspond to waves
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travelling around the outer boundary.

When the inner and outer waves both operate at the same value of k and approximately

the same frequency, the interaction between the waves produces the dual-wave-mode SRI.

This leads to bands of unstable k where the inner and outer frequencies are similar enough

to interact together. When the individual frequencies are at their most similar, the instabil-

ity has its strongest growth rate, hence why the unstable bands display ’bounces’ in their

growth rates, as the relevant frequencies converge and then diverge as k is increased.

Figure 4.2 provides an example of the inviscid structure of the dual-wave-mode SRI.

The Kelvin wave structure is clearly visible in the horizontal cross-section, which shows

alternating regions of strong vertical flow adjacent to each boundary. The vertical flow

does appear to be stronger closer to the inner boundary for this example.

4.2 A Sufficient Condition for Instability [Park and Bil-

lant, 2013]

Park and Billant [2013] demonstrated that the inviscid system could always be made un-

stable to the dual-wave-mode SRI, provided that µ 6= 1 and the conditions (4.1) and (4.2)

are both satisfied:

2

√
µ− η2
1− η2

< N if µ < 1; 2

√
µ (µ− η2)

1− η2
< N if µ > 1, (4.1)

2∣∣1−√µ∣∣
√
µ− η2
1− η2

< m <
2N

|1− µ|
. (4.2)

Note that these conditions indicate that any combination of [η, µ] with µ 6= 1 can poten-

tially be made unstable, provided that the stratification N is large enough. The derivation

of these equations is presented in appendix D.

Also note that these are only sufficient conditions for instability; we will show in section

4.3 that it can be possible to destabilise the flow when (4.1) and (4.2) are not mutually

satisfied.
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Equations (4.1) and (4.2) enable the dual-wave-mode SRI, which depends upon the exis-

tence of two wave-modes in the flow. Each of these wave-modes is adjacent to one of the

cylinder walls, and they have Lagrangian frequencies of opposite sign.

The derivation does rely upon the validity of a WKBJ approximation for large k, and

the approximation that the flow-region between the two wave-modes is not significantly

smaller than the size of the wave-like regions.

The value of m in (4.2) must be a positive integer. It is possible that 2N
|1−µ| could be larger

than 2

|1−√µ|
√

µ−η2
1−η2 , but that no positive integer exists in the gap between them, in which

case (4.2) could not be satisfied. However, if the gap between the two terms is greater than

1, there must be a positive integer that exists within this gap. Therefore, if the following

modified condition (4.3) is satisfied, then we know that there must exist an integerm such

that (4.2) is satisfied:
2∣∣1−√µ∣∣

√
µ− η2
1− η2

+ 1 <
2N

|1− µ|
. (4.3)

4.2.1 Inviscid flow is Unconditionally Unstable if µ < 1 andN ≥ 2

As an extension of the work of Park and Billant [2013], we will now show that forN ≥ 2,

then (4.1) and (4.3) are satisfied for all µ in the range η2 ≤ µ < 1. Since we know

that inviscid axisymmetric modes are unstable for µ < η2, this will demonstrate the

remarkable result that for N ≥ 2 there is inviscid instability throughout the range 0 <

η < 1 and 0 ≤ µ < 1.

Equation (4.1) is clearly satisfied for N ≥ 2, since
√

(µ− η2) / (1− η2) < 1 for η2 ≤

µ < 1.

To show that (4.3) is also satisfied, we start from the following inequality:(
1−√µ

)2
2
(
1 +
√
µ
) > 0. (4.4)

This inequality is always satisfied since a square of a real number must be positive. We

can expand (4.4) as:
4− 2

(
1 +
√
µ
)
− (1− µ)

2
(
1 +
√
µ
) > 0.
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Multiplying through by 2/(1−√µ) allows us to conclude that:

4

(1− µ)
>

2(
1−√µ

) + 1.

However if N ≥ 2, then 2N/(1 − µ) ≥ 4/(1 − µ). We also know from above that√
(µ− η2) / (1− η2) < 1. Therefore, for N ≥ 2, we can conclude the following:

2N

(1− µ)
≥ 4

(1− µ)
>

2(
1−√µ

) + 1 >
2(

1−√µ
)√µ− η2

1− η2
+ 1.

This yields (4.3). We can therefore conclude that (4.3) is always satisfied for N ≥ 2.

Therefore N ≥ 2 is sufficient to establish that both (4.1) and (4.3) hold, and hence that

(4.2) also holds, and therefore there is inviscid instability everywhere for the range 0 <

η < 1 and 0 ≤ µ < 1.

4.2.2 Conditions for Instability if µ < 1 andN < 2

In appendix E we derive a set of conditions for instability upon η and µ for any given

N . This serves as a further extension of the work of Park and Billant [2013]. The re-

sulting conditions on η and µ are summarised in figure 4.3 as a flowchart. The following

quantities are defined:

µ0 = η2 +

(
1− η2

4

)
N2,

√
µ1 = 1−

√
2 (2−N),

√
µ2 =

1

3

(
−1 +

√
2 (2− 3N)

)
,

√
µ3 = −1 +

√
2N,

f1 = −
[
4N2 − 4N (1− µ)− 4 (1 +

√
µ)2 + (1− µ)2

]
,

f2 = 3µ2 + 8µ
√
µ− 2 (2N − 3)µ− (2N − 1)2 .

It should be noted that, since we evaluated (4.3) rather than (4.2), there may be some

rare cases where dual-wave-mode SRI can become active even when the derived set of

conditions would predict otherwise. However, such cases will always be very close to the

predicted domain of instability from these conditions.

56



4.2 A Sufficient Condition for Instability [Park and Billant, 2013]

Figure 4.3: The tree of conditions for an inviscid flow with a given stratification N to be destabilised by

dual-wave-mode SRI. Note that if the result is ‘Stable’ it simply means that the flow is stable with regard to

the dual-wave-mode SRI, and not necessarily stable in general. Furthermore, this chart is only applicable

for 0 < η < 1, η2 < µ < 1 and 0 < N .
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4.3 Numerical search for Instability

To test the previously suggested stability limits with various values of the buoyancy fre-

quency N , we took a brute force approach, performing a direct numerical search for

unstable modes throughout the parameter space of 0 < η < 1 and 0 < µ < 1. This

numerical search was performed upon a grid across the [η, µ]-parameter space with the

grid points being spaced by a difference of 0.05 in either parameter. We used the com-

putational methods described in section 3.5 to find both inviscid and viscous modes of

instability. The viscous domain was typically scanned at Re = 1.0 × 106, although in

some case instabilities were only found for smaller Reynolds numbers.

Each numerical search began from the grid-location η = 0.95, µ = 0.05, which was a

consistently unstable point in the parameter space. The search for unstable modes would

then proceed throughout the grid. At each grid-point, the parameters of adjacent unstable

modes were used as initial guesses to seek an unstable mode at the current point. The

inviscid computations were done first, and these results were used as a guide for the

viscous computations.

4.3.1 Results

As can be seen from Figure 4.4, we have not confirmed the unconditional instability

expected for flows with N ≥ 2. The possible reasons for this discrepancy between the

analytic and computational results are discussed later in this section.

Figure 4.4 does provide counter-examples to the earlier suggested SRI stability limit of

µ < η [Shalybkov and Rüdiger, 2005], in addition to those provided by Rüdiger and

Shalybkov [2009] and Ibanez et al. [2016]. We therefore conclude that, while the µ < η

stability limit is a good first order guess for the stability limit of viscous stratified flows, it

does not stand up to careful analysis. Interestingly, our wide gap results also do not match

up with those of Rüdiger and Shalybkov [2009], who with N = 2.0 and η = 0.3 saw no

instabilities beyond µ = 0.24. However, in figure 4.4(c) we instead see instabilities up to

µ = 0.35. This would appear to be because we are allowing considerably larger Reynolds
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Figure 4.4: (a)N = 0.3, (b)N = 1.0, (c)N = 2.0, (d)N = 5.0; arranged in order of increasing stratification.

These plots display the inviscid and viscous unstable modes found for 0 < η < 1 and 0 < µ < 1 for various

stratifications. Here ′×′ represents locations where we have found inviscid instabilities; ’o’ represents

locations that are viscously unstable for a Reynolds number of Re = 1.0 × 106. The blue line on all four

plots shows the extent of the inviscid instability as predicted by figure 4.3; below this line is predicted to be

unstable to the dual-wave-mode SRI. Note that in plots (c) and (d) the entire domain of µ < 1 is predicted

to be inviscidly unstable.
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numbers than were examined by Rüdiger and Shalybkov [2009], who only looked at

Re < 1500 for η = 0.3.

In most cases (figure 4.4 (b),(c),(d)) we see a strong correlation between the viscous and

inviscid results, although there are locations in the [η, µ]-parameter space where the invis-

cid system is unstable but the viscous system appears stable. Since we are only checking

viscous instabilities up to Re = 1.0× 106, these locations may just correspond to regions

that require an even larger Reynolds number for instability.

Weak Stratification

In figure 4.4 (a) with a weak stratification of N = 0.3, we see regions of the parameter

space where the system is viscously unstable but inviscidly stable. The boundary of the

inviscidly unstable region also exhibits an ‘overhang’ appearance.

This overhang does appear to be genuine, at least to the limit of our computational abil-

ities. To check, we increased the computational resolution up to T = 200 for the entire

brute force inviscid instability search at N = 0.3. (We still confirmed each unstable result

was well resolved, see section 3.5.2 for details.) The higher resolution only slightly in-

creased the range of results compared to the standard T = 70 search, and it is the T = 200

results that are displayed in the figure. The overhang also was not influenced by increas-

ing the range of available [m, k]-wavenumbers, and its existence appears to be related to

the critical radial layer mentioned below.

Closer examination of the inviscid system suggests that the lack of inviscid instability

in the viscously unstable region is due to a critical radial layer entering the radial range.

While investigating the aforementioned overhang in the inviscid results, we examined the

boundary of the inviscidly unstable domain, where the system transitions to purely viscous

instabilities. For inviscid flows at this boundary, a radial layer for which Φ2 − N2 = 0

moves inside the radial range of the fluid.

The reciprocal of this Φ2 −N2 term appears in the combined inviscid equation (2.48). If

equations (2.44) and (2.45) are combined, eliminating ρ, it can be seen that a radial layer

for which Φ2 − N2 = 0 will produce a singularity in w if P 6= 0 (see (A.6)). The flow
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4.3 Numerical search for Instability

is therefore increasingly difficult to computationally resolve as Φ2 approaches N2, and

impossible to resolve when they are equal. It is unclear why the system is unable to select

a mode with P = 0 at this radial layer.

It would appear that the critical layer does not arise in the viscous system. With small dif-

fusion, the singularity is smoothed out, such that the flow can be made viscously unstable.

However for inviscid flows, this singularity prevents a solution from forming.

We have only ever found this radial layer for small stratifications. However, since it results

in significant differences between the viscous and inviscid systems, we may conclude that

inviscid analysis can be unreliable for weak stratification.

This radial layer is discussed by Riedinger et al. [2010] and Le Dizès and Riedinger

[2010], who refer to it as a stabilising singularity seen for sufficiently large Froude num-

bers. It is also seen by Leclercq et al. [2016] for their radiative instability result, also

at a weak stratification, and similarly arises in figure 6.12 of this thesis for the radiative

instability.

Comparison to Predictions

In figures 4.4 (a) and (b) we see a good correlation between the theoretical predictions

of inviscid instability from figure 4.3 and the numerical results; inviscid instability is

always present within the domain that is predicted to be inviscidly unstable. In both cases,

inviscid instabilities do extend beyond the theoretical predictions; this indicates that there

are other strato-rotational instabilities that do not rely on the system of instability explored

by Park and Billant [2013]. In the next chapter we shall see further evidence of different

types of strato-rotational instability.

In figures 4.4 (c) and (d), the entire [0 < η < 1, 0 < µ < 1] domain is predicted to be

inviscidly unstable, according to the inequalities derived earlier in this chapter. However,

our numerical results do not correspond to this. The domain of numerical inviscid insta-

bility does appear to expand slightly as N is increased, but in neither case does it fill the

domain, leaving the top left corner [η ≈ 0;µ ≈ 1] empty.

The discrepancy between predictions and numerical results for figures 4.4 (c) and (d)
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appears to be the result of the limited nature of the numerical analysis. It is noted in

appendix D that dual-wave-mode SRI depends upon the existence of two wave-like re-

gions, each adjacent to one of the boundary walls. This can only be achieved for a finite

range of frequencies, and the conditions (4.1) and (4.2) guarantee the existence of this

range. As one moves into the domain space of wide-gaps and near-solid-body rotation

(i.e. [η ≈ 0;µ ≈ 1]), then at viable frequencies for both regions to exist, the inner wave-

like region becomes increasingly small in the radial domain. An example is shown in

Figure 4.5.

The inner-wavelike region does always exist so long as η > 0 and µ < 1 and the condi-

tions for instability are satisfied, although the range of unstable m wavenumbers grows to

higher and higher values. The reduced radial size of the wave-like region requires increas-

ingly large computational resolutions to resolve as η → 0 and µ → 1. This makes the

computational detection of instability increasingly difficult as one moves into the wide-

gap and near-solid-body region, and would explain why the inviscid results of figures 4.4

(c) and (d) do not match up to our derived inviscid prediction that the entire µ < 1 do-

main is unstable for N ≥ 2. In this region, it would appear that the problem of detecting

instability is ill-suited to a brute force computational approach.
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Figure 4.5: Similar to figure D.1. The lines fN± (dot-dashed) and f± (dashed) are plotted (see Appendix

D), for η = 0.3, µ = 0.7, m = 12, and N = 2.0. Also plotted is the line fc (thin dashed line) at which the

real part of Φ changes sign. Shaded regions denote where the flow has wave-like properties. The constant

line f = fSRI gives an example frequency for which both wave-like regions exist. Note that for these

parameters, then at f = fSRI the inner wave-like region is very small compared to the central evanescent

region and the outer wave-like region.
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Chapter 5

Experimental Review

A handful of experimental investigations into rotating stratified flows have been per-

formed. In this chapter we review their results, and in one case compare our viscous

numerical results to the experimental results of the appropriate paper.

5.1 Le Bars and Le Gal [2007]

Le Bars and Le Gal [2007] performed an experimental follow-up to the numerical SRI

work of Shalybkov and Rüdiger [2005], and in so doing provided the first experimental

confirmation of the SRI’s existence.

Their system had a radius ratio of η = 0.8, with r̂in = 55mm and r̂out = 69mm, yielding a

gap width of λ̂ = 14mm. The vertical height of the system was ĥ = 168mm. Stratification

was achieved by way of a salt solution using the double bucket method described by Oster

[1965]. The cylinders could be individually spun, allowing complete control over the

Reynolds number and allowing rotation ratios throughout the range 0 ≤ µ ≤ 1.

The radius ratio was chosen for the sake of comparison to the radius ratio η = 0.78 results

of figure 3 from Shalybkov and Rüdiger [2005].

The Froude number was fixed at Fr = 0.5, by way of controlling Ω̂in and N̂ . Ten different

values of the Reynolds number Re are used, ranging from Re = 339 up to Re = 1210.

Their results provided excellent correlation with the numerical results of Shalybkov and
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Rüdiger [2005] (see their figure 2 for the comparison). Throughout their experiments they

saw values of m ranging from 1 to 5, mostly at m = 1 (see their figure 4). The largest

value of µ for which instability was seen was µ ' 0.76.

5.2 Riedinger et al. [2011]

Riedinger et al. [2011] performed an experimental follow-up to the numerical Radiative

Instability (RI) work of Le Dizès and Riedinger [2010] (see section 1.2.1), providing

experimental verification of the RI’s existence. We discuss the RI further in section 6.3.

The experiment was performed in a wide rectangular tank with horizontal dimensions

240cm × 74cm and a height of 48cm, with a central rotating cylinder. The tank was

filled up to a depth of 45cm. Three different cylinder sizes were used, with radii of

r̂in = 12.5mm, 15mm, and 20mm. Stratification was again achieved using a salt solution

and the double bucket method. A shadowgraph with a screen of tracing paper was used

to capture detailed images of the flow.

The RI was observed for Reynolds numbers ranging from Re = 295 to 800 and Froude

numbers ranging between Fr = 0.5 to 2.5. Their figure 9 compares the experimental (a)

and numerical (b) modal forms of the instability, showing strong agreement. Furthermore,

their figure 10 compares their numerical line of critical stability to their experimental

results, showing a decent level of agreement.

The experimental system had nonlinear properties each time that the cylinder was accel-

erated up to a given rotational rate. These were present due to the lack of an external

boundary, since the flow could not be kept in stable solid body rotation whilst being ac-

celerated. These non-linear effects were not be accounted for in their numerical theory,

however Riedinger et al. [2011] still saw a strong correlation between their numerical and

experimental results.
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5.3 Ibanez et al. [2016]

Using sodium polytungstate salt, Ibanez et al. [2016] were able to achieve stronger density

concentrations, and therefore large values of N̂ while maintaining a large aspect ratio.

Their system had a radius ratio of η = 0.877, with r̂in = 4.218cm and r̂out = 4.811cm,

yielding a gap width of λ̂ = 0.593cm. The vertical height of the system was ĥ = 25.6cm.

Two syringe pumps were used to stimulate the stratification, one containing fresh water

and the other a sodium polytungstate solution. The rotation rates of the two cylinders

could again be individually controlled.

A range of stratifications N̂ = 1.57s−1, 3.14s−1 and 4.71s−1 were tested. The system

would be taken up to a given Reynolds number whilst maintaining solid body rotation

(µ = 1), at which point the outer cylinder would be slowed so as to reduce µ. The value

of µ for which onset of instability occurred was noted for various values of Re for each

stratification (see their figure 2).

Notably they discovered that comparatively large Reynolds numbers can actually stabilise

the SRI for a given value of µ. We see similar results in chapter 6, and discuss the

phenomenon in section 6.2.3. Ibanez et al. [2016] also discovered a non-periodic mixing

instability at high Reynolds numbers, close to the line µ = η2. Their results are shown in

figure 5.1, which is a direct reproduction of figure 2 from Ibanez et al. [2016].

5.3.1 Violating the Centrifugal approximation

At large Reynolds numbers the experiment of Ibanez et al. [2016] did not satisfy the cen-

trifugal approximation r̂inΩ̂
2
in/ĝ � 1 noted by Shalybkov and Rüdiger [2005]; however

Ibanez et al. [2016] do not comment on this detail. Their results include a domain where

the centrifugal force would have been larger than the gravitational force, such that a purely

vertical stratification would not have been possible. Interestingly they still found the SRI

to be present, suggesting that, while the centrifugal approximation is useful from a mathe-

matical perspective, from an experimental perspective the approximation is not necessary

in order to find the SRI.
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To demonstrate this inequality, consider that Reynolds numbers in the range 100 ≤ Re ≤

14000 were used, with a sodium polytungstate solution in water. This solution had ap-

proximately the kinematic viscosity of distilled water, ν̂ = 1.0 × 10−6m2s−1. In combi-

nation with the dimensions of their experiment, this allows us to calculate the range of

rotation rates used, since Ω̂in = ν̂Re/r̂inλ̂, and ν̂/r̂inλ̂ ' 0.0040s−1. The calculations

proceed as follows:

100 ≤ Re ≤ 14000,

0.40s−1 ≤ Ω̂in ≤ 56.0s−1,

0.0007 ≤ r̂inΩ̂
2
in

ĝ
≤ 13.5.

As can be seen, at larger Reynolds numbers the centrifugal force is considerably larger

than the gravitational force. The centrifugal approximation would require it to be neg-

ligibly small compared to gravity. A rotation rate of Ω̂in = 15.3s−1 would yield a cen-

trifugal acceleration r̂inΩ̂
2
in approximately equal to that of the gravitational acceleration

ĝ = 9.81ms−2; this means that the two forces are approximately equal for Reynolds

numbers of around Re ' 3800, with the centrifugal force stronger for larger Reynolds

numbers.

We note that larger values of r̂in and d̂ would reduce the necessary Ω̂in required to achieve

any given value of Re, which may allow the experiment to be made consistent with the

analytical approach. However, this would likely require reducing the aspect ratio of the

experiment, as there are physical constraints due to the maximum possible solution den-

sity of sodium polytungstate.

5.3.2 Numerical comparison

Using the eigenfunction code described in chapter 3 of this thesis, we performed a numer-

ical reproduction of Ibanez et al. [2016]’s results. This involved a grid-based search for in-

stability throughout the [µ,Re]-parameter space presented in figure 5.1, with a fixed value

of η, the appropriate three values of N , and varying the wavenumbers [m, k] throughout a

reasonable range. A tighter grid was used in regions of the parameter space where the in-

stability would switch on or off, ultimately yielding errors of δµ = 0.001 and δRe = 100.
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It was also necessary to convert from the SI units of the experiment to the dimensionless

terms used throughout this thesis, which required that we recalculate the value of Ω̂in at

each new value of Re.

Notably, the physical experiments had a fixed vertical height whereas our numerical anal-

ysis assumes that the system is unbounded in the vertical direction. Our unbounded re-

sults are shown in figure 5.2 with the symbol ′o′; we get a good correlation to the results of

Ibanez et al. [2016] for Reynolds numbers of Re ≤ 1000. Our unbounded results appear

to permit a slightly larger domain of instability for higher Reynolds numbers.

We repeated the numerical computation while restricting the range of available k. It

was decided that k could not go smaller than the value kmin = 0.2895, which allows

for a maximum vertical wavelength which would fit twice into the vertical height of the

experiment. These results are shown with the symbol ′×′ on figure 5.2. These restricted-k

results provide a stronger correlation to the experimental results of Ibanez et al. [2016],

but are still not perfect at higher values of Re. This discrepancy is likely down to the

experimental violation of the centrifugal assumption, as noted in the previous subsection.

5.4 Rüdiger et al. [2017]

Rüdiger et al. [2017] performed both numerical and experimental analyses of the SRI.

Rather than using a salt stratification, their experiment instead made use of a temperature

gradient to stimulate stratification in the system.

Their system had a radius ratio of η = 0.52, with r̂in = 7.5cm and r̂out = 14.5cm, yielding

a gap width of λ̂ = 5.0cm. The vertical height of the system was ĥ = 70.0cm. Hot and

cold endplates were used to provide the temperature gradient, with the hot endplate at the

top of the experiment. The rotation rates of the two cylinders could again be individually

controlled. Their numerical simulations also worked exclusively with η = 0.52. To

measure the stratification against the viscosity, they introduced a stratification Reynolds

number Rn = N̂ r̂inλ̂/ν̂. Their numerical code avoided circumstances where endplate

shear layers could become unstable.
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Figure 5.1: A direct reproduction of figure 2 from Ibanez et al. [2016], used with permission, and included

here for the sake of comparison to figure 5.2. The experiment is described in detail in the main text. These

are experimental results for the onset of the SRI with η = 0.877, as µ is reduced away from solid body

rotation (µ = 1) and the inner Reynolds number Rei is held fixed. (The inner Reynolds number Rei

of Ibanez et al. [2016] is equivalent to the Reynolds number Re used throughout this thesis.) A wide

range of Reynolds numbers were tested, with three distinct stratifications: green circles, N = 1.57s−1;

red diamonds, N = 3.14s−1; blue triangles, N = 4.71s−1. Unfilled symbols represent a non-periodic

instability found near to the Rayleigh line. The dashed line represents the suggested stability limit µ = η of

Shalybkov and Rüdiger [2005], whereas the dot-dashed line represents the Rayleigh line µ = η2.
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Figure 5.2: A reproduction, using our numerical code, of the experimental data shown in figure 5.1 from

Ibanez et al. [2016], with radius ratio η = 0.877 and viscosity ν ' νwater. Three values of the stratification

are displayed; the green symbols represents N̂ = 1.57s−1, red 3.14s−1 and blue 4.71s−1. The figure dis-

plays where the flow becomes unstable as µ is reduced away from solid body rotation. Results shown with

the symbol ’o’ are unbounded on k, whereas results shown with the symbol ′×′ represent cases where we

restricted the range of available vertical wavenumbers k such that vertical wavelengths would always fit at

least twice into the experimental scale-height. Note that, sinceN = N̂/Ω̂in, the values of the dimensionless

buoyancy frequency in this plot are typically considerably smaller than those used elsewhere in this thesis.
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Similar to Ibanez et al. [2016], they found that higher Reynolds numbers could sometimes

stabilise the flow. These results are compiled in their figures 7 and 8, for which they see

a decent agreement between their numerical and experimental results. In the [Re,Rn]-

parameter space, they numerically demonstrated the existence of a closed domain loop

of instability as µ was increased - this was an instability region which ultimately shrank

and vanished at around µ ' 0.571 for N = 1 (see their figure 6). However, this closed

domain loop does not appear to have been checked experimentally. Closed domain loops

are further discussed in section 6.2.3 of this thesis.

Interestingly, their numerical results indicated that the SRI was restricted to only exist for

the approximate range 0.3 < Fr < 5.5. This numerical result was found for η = 0.52,

µ = 0.27 and m = 1, 2, 3, within the ranges 0 ≤ Re ≤ 1000 and 0 ≤ Rn ≤ 2000.
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Eigenfunction appearance

In this chapter, we explore the eigenfunction appearance of the critical viscous mode

(defined in section 2.4.6) throughout the [η, µ]-parameter space for N = 1.0. Using the

algorithms described in section 3.5.1, we found the critical mode of instability for each

unstable viscous point identified in figure 4.4(b) (for which N = 1.0). We then directly

looked at the eigenmode structure for each critical mode. (The method used to recover

the form of individual eigenfunctions is described in section 3.5.)

We also explored the [m, k,Re]-parameter space near to each viscous critical mode, seek-

ing the line of critical stability where modes transition from stable to unstable. These

viscous [m, k,Re] results were then compared to unstable modes found in the correspond-

ing inviscid [m, k]-parameter space, in order to examine the connections and differences

between the viscous and inviscid systems.

6.1 Critical mode analysis

Figure 6.1 shows the distinct critical mode regions throughout the [η, µ]-parameter space

for N = 1.0. It can be seen that the critical mode changes in appearance as one moves

throughout the [η, µ]-parameter space, for which we have labelled the different critical

mode regions as (α)-(ε). Examples of the critical modes found within these regions are

shown in figures 6.2 to 6.8.
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Figure 6.1: A copy of the viscous modes from Figure 4.4(b), the instability domain plot for N = 1.0.

Here we have shown the different regions of the parameter-space dependent upon the form of the critical

mode at each point. Solid lines denote discontinuous changes in the critical Reynolds number Rec of the

instability mode; dashed lines denote changes where the critical mode of instability does change, but Rec

is continuous. The thick black line denotes the apparent stability limit for modes with a Reynolds number

below Re = 1.0 × 106. Regions (α)-(ε) are labelled and are discussed in the main text, as is the point of

continuity X . The black lines are only accurate to within 0.05 in η or µ, due to the grid-based approach

to critical mode evaluation. The blue dot-dashed line denotes the stability limit for the inviscid dual-wave-

mode SRI, as calculated in chapter 4. Each + sign denotes the location of an example mode from the later

figures within this chapter.
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Region (α) has critical modes that are classical Taylor-Couette modes with m = 0, such

as figure 6.2; region (β) corresponds to critical modes of the dual-wave-mode SRI, such

as figures 6.3, 6.4 and 6.5; region (γ) corresponds to the wall-mode SRI, such as figure

6.6; region (δ) corresponds to the pseudo-radiative-mode SRI, such as figure 6.7; region

(ε) corresponds to the wide-gap-mode SRI, such as figure 6.8.

In particular, a discontinuous change in structural appearance was found; this is the thin

solid black line shown in the figure 6.1. Across this line, as one moved from region (β) to

region (γ), the critical mode would discontinuously shift in terms of appearance, Reynolds

number Re and [m, k]-wavenumbers. The point X denotes where this discontinuous

change becomes continuous. This occurs because the critical modes of dual-wave-mode

SRI and wall-mode SRI begin to overlap within the [m, k,Re]-parameter space, taking

the form of the pseudo-radiative-mode. We refer to X as the point of continuity; it is

discussed further in section 6.2.4.

6.1.1 Example figures

Figures 6.2 to 6.8 show examples of the appearance of critical modes from each region

alongside wavenumber analyses. Later in this chapter, figure 6.12 shows an example for

N = 0.3. Although we have not examined the [η, µ]-parameter space for N = 0.3 in as

much detail, figure 6.12 displays an example of the radiative instability (RI) as the critical

mode. The radiative instability is discussed further in section 6.3.

Each figure examines specific values of η, µ, and N . The critical [m, k]-wavenumbers

and critical Reynolds numbers Rec are quoted in each figure. Each figure also declares

whether the Lagrangian frequency goes to zero, i.e. Φ = 0, anywhere within the flow,

and if so declares the critical radial layer rc where this happens. Also noted are radial

locations where Φ(r) = ±
√

2ζΩ, if they occur. The Lagrangian frequency is relevant to

the dual-wave-mode mechanism described by Park and Billant [2013]; see appendix D.

Each figure features four subplots labelled (a)-(d):

Vertical (a) and horizontal (b) cross-sectional contour plots of the critical mode of instabil-

ity are shown. For the vertical cross-section (a), radial and vertical velocities are shown
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as vectors, whereas the angular velocity perturbation is shown in colour contours with

positive/negative represented by red/blue respectively. For the horizontal cross-section

(b), radial and angular velocities are shown as vectors and the vertical velocity is shown

in colour contours. Colour contours are scaled against the maximum radial velocity per-

turbation, and basic state flow is always in the positive θ-direction. Vertical cross-sections

are taken at θ = 0 whereas horizontal cross-sections are taken at z = 0. Each cross-

section is taken over a sufficient range to demonstrate the full wavelength of each mode.

Lines of critical stability for various values ofm are shown in plot (c), with stable flows to-

wards the low-Reynolds-number region of the figure. The critical viscous mode is marked

on these plots with x. Each line colour corresponds to the same values of m as in the in-

viscid plot (d). It should be noted that, although ranges of Re are explored, this is not

non-linear analysis, and is simply examining whether or not specific combinations of pa-

rameters can be made linearly unstable.

Plot (d) depicts which combinations of [m, k] were found to produce inviscid instabilities.

We generally see a strong correlation between the bands of unstable inviscid wavenumbers

compared to the sets of viscous wavenumbers that can be made unstable, however this is

not always the case.

As noted in section 2.4.5, for any unstable mode with wavenumbers [m, k], there are

equally unstable counterpart modes for all combinations of [±m,±k] for the same values

of [η, µ,N,Re]. We therefore only show the positive [m, k] modes in figures 6.2 to 6.8,

however we can expect the counterpart modes to activate at the same critical Reynolds

number. This will produce a superposition of the relevant modes.

In most cases, only the range m = [0, 1, 2, 3] is displayed. However, for figure 6.3 the

relevant critical mode has m = 7, hence for that case we investigated the range m =

[0, 1, ..., 9].

Critical mode structure

It is worth considering how we would expect the eigenfunction of a perturbation mode

to appear. Based upon the perturbation ansatz of equation (2.34) we expect a repeating
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cell-like structure in the θ- and z-directions. Due to the presence of the divergence free

equation 2.39 in the system, we do not expect to see sinks or sources in the flow.

Figure 6.3(a)(b) displays an example SRI eigenfunction. (Note that figure 6.3 is a good

demonstration of the fact that stratification can destabilise centrifugally stable flows, since

in this case µ > η2.) All of the features we expected to see in the structure of a pertur-

bation mode can be seen, providing a useful confirmation that our eigenfunction-solver

code is well-behaved.

6.2 Discussion

We will first examine the cross-sections (a) and (b) of each example figure in following

section 6.2.1. Plots (c) and (d) are then discussed in section 6.2.2, which compares the

inviscid and viscous systems for all example figures.

6.2.1 Modal cross-section structure

Region (α) contains axisymmetric critical modes corresponding to the classical centrifu-

gal instability of Taylor-Couette flow. An example mode is shown in figure 6.2. The

vertical cross-section (a) exhibits strong azimuthal flow across the gap width, which cor-

relates with a rotating cell-structure in the vertical plane. Centrifugal instabilities are

slightly stabilised by the presence of stratification, increasing the critical Reynolds num-

ber compared to unstratified flow.

As previously described in section 4.1.1, we refer to the critical mode of region (β) as

the dual-wave-mode SRI, since it corresponds to modes that have previously been investi-

gated by Yavneh et al. [2001], Shalybkov and Rüdiger [2005] and Park and Billant [2013].

Examples of the mode are shown in figures 6.3, 6.4 and 6.5. Similar to the inviscid dual-

wave-mode SRI seen in figure 4.2 from section 4.1.1, the viscous dual-wave-mode SRI

has Kelvin waves propagating along each boundary wall. As before this is most visible

in the horizontal cross-sections, which exhibit alternating regions of strong vertical flow
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Figure 6.2: An example of classical axisymmetric Taylor-Couette instability, found as the critical mode

within region (α) of figure 6.1. Here η = 0.90, µ = 0.40, and N = 1.0. The critical mode of instability has

Rec = 165 with m = 0, k = 3.46, and f = −0.421. Φ(rc) = 0 does not occur for this range of r and this

frequency, nor does Φ = ±
√

2ζΩ. A horizontal cross-section is not shown in this context since the mode is

axisymmetric, and hence there is no variation in the θ direction. The viscous and inviscid plots are labelled

as (c) and (d) to preserve the convention of the other figures within this chapter.
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Figure 6.3: An example of dual-wave-mode SRI close to the Narrow Gap limit, found as the critical mode

within region (β) of figure 6.1. Here η = 0.95, µ = 0.95, and N = 1.0. The critical mode of instability

has Rec = 3062 with m = 7, k = 2.80, and f = 6.82. For this frequency, Φ(rc) = 0 occurs at rc = 19.5,

although Φ = ±
√

2ζΩ does not occur within the radial range.
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Figure 6.4: Another example of dual-wave-mode SRI, here for η = 0.65, µ = 0.25 andN = 1.0, occupying

region (β) of figure 6.1. The critical mode of instability has Rec = 120 with m = 1, k = 4.21, and

f = 0.525. For this frequency, Φ(rc) = 0 occurs at rc = 2.33, although Φ = ±
√

2ζΩ does not occur since

for this [η, µ] we have 2ζΩ < 0 throughout the radial range.
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Figure 6.5: Another example of dual-wave-mode SRI, here for η = 0.45, µ = 0.45 andN = 1.0, occupying

region (β) of figure 6.1, close to the dividing line with region (γ). The critical mode of instability has

Rec = 304.1 with m = 1, k = 4.436, and f = 0.595. For this frequency, Φ(rc) = 0 occurs at rc = 1.27,

although Φ = ±
√

2ζΩ does not occur within the radial range. There is a closed domain loop in the bottom

left corner of (c), which is shown in more detail in figure 6.9(c). This closed loop contains the critical mode

of instability, but there is also a separate domain of instability visible for higher Reynolds numbers, which

appears to be unbounded.
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Figure 6.6: An example of wall-mode SRI, found as the critical mode within region (γ) of figure 6.1. Here

η = 0.40, µ = 0.45 and N = 1.0. The critical mode of instability has Rec = 71840 with m = 1, k = 5.00,

and f = 0.598. For this frequency, Φ(rc) = 0 occurs at rc = 1.07, although Φ = ±
√

2ζΩ does not occur

within the radial range.
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Figure 6.7: An example of the pseudo-radiative-mode SRI, found as the critical mode within region (δ)

of figure 6.1. Here η = 0.20, µ = 0.10 and N = 1.0. The critical mode of instability has Rec = 671

with m = 1, k = 9.07, and f = 0.238. For this frequency, Φ(rc) = 0 occurs at rc = 0.577 and

Φ(r−) = −
√

2ζΩ occurs at r− = 0.319. Φ = +
√

2ζΩ does not occur within the radial range.
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Figure 6.8: An example of the wide-gap-mode SRI, found as the critical mode within region (ε) of figure

6.1. Here η = 0.05, µ = 0.05 and N = 1.0. The critical mode of instability has Rec = 20007 with

m = 1, k = 9.477, and f = 0.538. For this frequency, Φ(rc) = 0 occurs at rc = 0.0734, Φ(r−) = −
√

2ζΩ

occurs at r− = 0.0536, and Φ(r+) = +
√

2ζΩ occurs at r+ = 0.102. Note that the range of inviscidly

unstable wavenumbers appears to be entirely distinct from the range of viscously unstable wavenumbers.
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adjacent to each boundary. However, unlike the inviscid dual-wave-mode SRI, the vis-

cous dual-wave-mode SRI displays a strong azimuthal flow across the gap width, similar

to the classical viscous Taylor-Couette instability. For N = 1.0 the dual-wave-mode SRI

typically has a critical Reynolds number in the range 100 < Rec < 400, although this

increases near the narrow-gap limit.

In the case of figure 6.3, we can see that the lines of critical stability corresponding to the

various values of m are all very close together - this is a phenomenon that occurs close to

the narrow gap limit, with the critical horizontal wavenumber mc climbing to higher and

higher values.

Figure 6.5 shows an example of dual-wave-mode SRI close to the line of discontinuity

between regions (β) and (γ); it can be seen that the azimuthal flow has reduced in strength

at the centre of the gap width, and gathered slightly towards the inner radius. It can also

be seen in the horizontal cross-section that the outer boundary Kelvin Wave has become

significantly weaker in amplitude compared to the wave at the inner boundary.

We refer to the critical mode of region (γ) as the wall-mode SRI, since the velocity pertur-

bations are strongest close to the boundary walls, and there is little activity in the middle

of the gap width. A typical wall-mode SRI eigenfunction is shown in figure 6.6. It can

also be seen that the vertical velocity perturbation is significantly stronger at the inner

boundary compared to the outer boundary. For N = 1.0 the wall-mode SRI typically

has a critical Reynolds number of Rec > 10, 000, considerably larger than the Rec for a

typical dual-wave-mode SRI.

We refer to the critical mode of region (δ) as the pseudo-radiative-mode SRI, since it

exhibits a strong similarity to the Radiative Instability first discussed by Le Dizès and

Riedinger [2010]; this is discussed further in section 6.3.2. Interestingly, region (δ) is

continuously connected to regions (β) and (γ), despite the two other regions being dis-

continuously separated from each other. The viscous [m, k,Re]-parameter space of region

(δ) appears to correspond to an overlap of the corresponding [m, k,Re]-parameter spaces

from (β) and (γ); see section 6.2.4. For N = 1.0 the pseudo-radiative-mode SRI typically

has a critical Reynolds number in the range 300 < Rec < 2000, although it climbs to

significantly higher values as regions (γ) and (ε) are approached.
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When approaching region (ε) from region (δ), there is another discontinuous change in

the form and vertical wavenumber of the critical mode, although Rec remains continuous.

This is represented by the dashed line separating the two regions in figure 6.1. Region (ε)

exhibits a high-Reynolds number stratified-rotational instability as the critical mode, and

we refer to this mode as the wide-gap-mode SRI. The wide-gap-mode is shown in figure

6.8; particularly striking are the strong vertical flows occupying most of the gap. ForN =

1.0 the wide-gap-mode SRI typically has a critical Reynolds number of Rec > 10, 000,

which is considerably larger than the Rec of a typical dual-wave-mode SRI.

Although both require high Reynolds numbers, it is not clear if the wide-gap-mode SRI

of region (ε) is related to the wall-mode SRI of region (γ).

6.2.2 The Viscous and Inviscid systems

By examining the wavenumber analyses (c) and (d) of figures 6.2 through to 6.8, we

can compare and contrast which wavenumbers are unstable in the viscous and inviscid

domains.

We expect to see strong correlation between the inviscid and viscous systems, as the invis-

cid system can be considered to be the high-Re limit of the viscous system, albeit without

the presence of non-slip boundary conditions. Working with the assumption that increas-

ing Re promotes instability, any unstable point in the viscous domain can be expected to

remain unstable as Re increases up to the inviscid limit. This expectation holds up for

figure 6.2, with the classical axisymmetric Taylor-Couette instability in region (α). We

can see in (c) that the variousm-modes are very close together in the [m, k,Re]-parameter

space, which will not typically be the case for later SRI modes. In (d) we can see an ex-

ceptionally strong correlation between the unstable [m, k]-wavenumbers of inviscid flow

when compared to the viscous [m, k]-wavenumbers that could be made unstable.

However, this expectation of a strong correlation between the inviscid and viscous systems

is challenged by figure 6.3, for a narrow gap dual-wave-mode of the SRI in region (δ).

While we do see a correlation between the range of unstable k for the viscous (c) and

inviscid (d) systems at all values of m, the viscous system has a consistently wider range
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of k that can be made unstable than the inviscid system. The discrepancy is notable but is

also relatively minor. However, in later examples we will see that there is even stronger

disagreement between the bands of unstable viscous and inviscid instability.

We do see stronger correlations between the viscous and inviscid systems in figure 6.4,

a dual-wave-mode SRI result from region (β); figure 6.6, a wall-mode SRI result from

region (γ); and figure 6.7, a pseudo-radiative-mode SRI result from region (δ).

However, figure 6.5, a dual-wave-mode SRI result of region (β), again shows only a weak

correlation between the viscous and inviscid wavenumbers. Figure 6.5(c) also demon-

strates the existence of a closed domain loop. Closed domain loops are discussed further

in section 6.2.3, although their existence conclusively proves that increasing the Reynolds

number does not always promote instability for the SRI, compared to the expectation we

stated above. Figure 6.5 also has an inviscidly unstable range of k for m = 2, but no

visible line of critical stability for the viscous system. This may indicate that for the vis-

cous system to become unstable at those wavenumbers it requires higher values of Re.

Alternatively it may indicate instabilities that are only possible in the inviscid system and

are not compatible with either viscosity or viscous boundary conditions.

Finally figure 6.8, a wide-gap-mode SRI result from region (ε), demonstrates a complete

lack of correlation between the unstable wavenumbers of the viscous and inviscid sys-

tems. This mode also exhibits distinct bands of viscous instability within the [m, k,Re]-

parameter space.

Dual-Wave-mode SRI

We can see from figure 6.1 that the viscous dual-wave-mode of region (β) extends beyond

the stability line of the inviscid dual-wave-mode SRI derived in chapter 4. This may

be a result of viscosity aiding the mode, allowing it to persist further into the [η, µ]-

parameter space. The influence of viscosity on the dual-wave-mode SRI would match

with the observation that modes in region (β) are found within closed domain loops as

one approaches the discontinuity line separating regions (β) and (γ), as closed domain

loops are examples where some viscosity is necessary for the instability.
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At the very wide gap, η < 0.35, the limit of the viscous dual-wave-mode is seemingly

stricter than the inviscid dual-wave-mode stability limit. It would appear that viscosity

has in this case stabilised the dual-wave-mode SRI.

The Lagrangian Frequency

In all plots demonstrating the non-axisymmetric SRI modes, then Φ(r) changes sign as

one moves across the radial range, transitioning at a point where Φ(rc) = 0. This point has

been noted in the caption of each figure. This transition between positive and negative Φ

is predicted for the dual-wave-mode SRI by Park and Billant [2013]; see appendix D. The

different signs of the Lagrangian frequency represent how the wave-like regions travel in

opposite directions relative to the basic state flow, despite travelling together in the lab

frame.

Park and Billant [2013] also predicted that there would be radial layers where the La-

grangian frequency Φ(r±) = ±
√

2ζΩ. However, these layers are not seen in any of the

viscous dual-wave-modes that we have examined, although r− occurs in figure 6.7, and

both radial layers are seen in figure 6.8.

In the inviscid system, the radial layers r± represent the edges of the wave-like regions of

the dual-wave-mode SRI. Given that the layers are absent for the viscous dual-wave-mode

SRI, but the wave-like regions are still present, it would appear that viscosity has altered

the necessary conditions for these wave-like regions. This may explain why the domain

of dual-wave-mode SRI is extended somewhat in the presence of viscosity for the same

value of N .

6.2.3 Closed Domain Loops

Figure 6.9 shows examples of several closed domain loops. These are closed unstable

regions of the [m, k,Re]-parameter space for fixed values of [η, µ,N ]; here the flow can

be made linearly unstable for only a finite range of Re. In these regions, it appears that

viscosity is somehow necessary for the instability to occur, as reducing the influence of
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Figure 6.9: Examples of closed domain loops. For flow parameters within these loops, the flow is linearly

unstable, whereas it is stable outside. These therefore provide examples where increasing the Reynolds

number can stabilise the flow. (a) η = 0.56, µ = 0.50 and N = 0.3. (b) η = 0.57, µ = 0.50 and N = 0.3.

(c) η = 0.45, µ = 0.45 and N = 1.0. (d) η = 0.70, µ = 0.70 and N = 1.0. In all examples we have

m = 1.
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viscosity (by increasing Re) can entirely remove the linear instability for all wavenum-

bers. This suggestion is supported by the fact that these closed domain loops typically do

not appear to have any correspondence to instabilities in the inviscid domain.

There is a precedent for viscosity being required for shear flow instabilities. For example,

Plane Poiseuille flow can be stable in the inviscid domain, but unstable when the viscosity

is non-zero [Drazin and Reid, 1981]. Recently Ibanez et al. [2016] performed experiments

which showed a similar phenomenon where higher Reynolds numbers could stabilise

the flow compared to an unstable result with a lower Reynolds number with all other

parameters kept the same; see section 5.3.

For N = 1.0, closed domain loops were only ever found close to the discontinuity line

between regions (β) and (γ) on figure 6.1. However it should also be noted that closed

domain loops present something of a challenge for numerical methods, as they are easily

missed without a rigorous and time-consuming scan of the entire [m, k,Re]-parameter

space. In general in this chapter we have only found closed domain loops by utilising

guesses from nearby regions of the [η, µ,N ]-parameter space.

In each case where we have observed closed domain loops, the instability does appear

to ultimately switch on again as Re is further increased. Figure 6.5(c) provides a good

example of this; a separate domain of instability can be seen at higher Reynolds numbers.

The structure of unstable eigenmodes found within the high-Re domain of instability

are very similar to the critical eigenmode shown in figure 6.6. This suggests that the

unbounded domains of figures 6.5(c) and 6.6(c) are connected, and that the closed domain

loop vanishes as η is reduced from 0.45 to 0.40 (with µ = 0.45 and N = 1.0).

We have evidence that closed domain loops can quickly shrink within the [m, k,Re]-

parameter as η and µ are changed. Consider figures 6.9(a) and (b), which show roughly

the same closed domain loop for slightly different values of η, with µ = 0.5 and N = 0.3.

As can be seen, the loop at η = 0.56 is significantly smaller, with a Reynolds number

range of 700 < Re < 875 rather than the range 600 < Re < 1175 of η = 0.57.

Upon further reducing η, the closed domain loop appears to shrink and ultimately vanish

entirely.

Since the critical mode in figure 6.5 is contained within a closed domain loop, which
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vanishes as η is decreased or µ is increased, the critical mode must change sharply once

the closed domain loop ceases to exist. This would explain the discontinuity line between

regions (β) and (γ), with the related change in critical mode appearance and significant

increase in critical Reynolds number. The shift is particularly apparent when considering

the fact that figures 6.5 and 6.6 differ in [η, µ]-parameter space by only η = 0.45 compared

to η = 0.4. It would therefore appear that closed domain loops are the mechanism behind

the discontinuity line on figure 6.1.

A related phenomenon to these closed domain loops is seen in figure 6 of Rüdiger et al.

[2017]. This figure, derived using a computational solver similar to our own, sees a

closed-domain loop in the [Re,Rn]-parameter space for η = 0.52 and m = 1. Here

Rn = N̂ r̂inλ̂/ν̂ is a stratification Reynolds number. This closed domain loop vanishes at

around µ ' 0.571, which is similar to our result of seeing the corresponding [m, k,Re]-

parameter space closed domain loop vanishing at µ ≈ 0.55 for η = 0.52, N = 1.0 and

m = 1.

6.2.4 The Point of Continuity

The thin black line on figure 6.1 denotes the discontinuous jump in Rec between regions

(β) and (γ) as the critical mode changes from the dual-wave-mode SRI to the wall-mode

SRI. In the previous section, we have explained how this jump is related to the vanishing

of closed domain loops.

As region (δ) is approached along this line of discontinuity, the discontinuous jump be-

comes steadily smaller, until the change in Rec becomes continuous at the point X . This

point of continuity appears to be at approximately [η = 0.2, µ = 0.1] for N = 1.0. In

figure 6.10, we can see how the discontinuity between the dual-wave-mode SRI and the

wall-mode SRI becomes continuous.

The point of continuity appears to be a result of an overlap of the relevant domains in the

viscous [m, k,Re]-parameter space between the dual-wave-mode SRI and the wall-mode

SRI. The unbounded domain of instability for higher Reynolds numbers, corresponding

to the wall-mode SRI, moves down to lower Reynolds numbers as one approaches point

91



Chapter 6. Eigenfunction appearance

0.2 0.21 0.22 0.23 0.24
0

200

400

600

800

1000

η

Re

 

 

0.1 0.11 0.12 0.13 0.14
0

200

400

600

800

1000

µ

Re

 

 (a) (b)

Figure 6.10: Tracking the discontinuity in Rec near to the co-dimension 2-point. Each plot shows the

critical Reynolds number Rec for instability for a range of η and µ values. In both plots we have N = 1.0.

We can see that the system transitions from continuous to discontinuous as η and µ are increased. In (a), we

have 0.2 < η < 0.25. Blue crosses give the results for µ = 0.11, red pluses give the results for µ = 0.12,

and green dots give the results for µ = 0.14. In (b), we have 0.1 < µ < 0.15. Blue crosses give the results

for η = 0.21, red pluses give the results for η = 0.22, and green dots give the results for η = 0.23.

X from higher values of η or µ. This ultimately means that the closed domain loop,

corresponding to dual-wave-mode SRI, is engulfed by the unbounded domain before it

can vanish. A snapshot of this process is shown in figure 6.11(a).

6.2.5 Wide-gap transition

The transition between regions (δ) and (ε) does not rely upon closed domain loops, al-

though the transition is also visible in the [m, k,Re]-parameter space. Instead, as the

transition is approached, the pseudo-radiative-mode SRI of region (δ) requires increas-

ingly high critical Reynolds numbers. At the same time, the [m, k,Re]-domain of the

wide-gap-mode SRI becomes more unstable, requiring smaller Reynolds numbers. The

two instabilities operate at different bands of vertical wavenumbers, and as the transi-

tion between the two regions is crossed, the wide-gap-mode SRI becomes more unstable

than the overlap-mode SRI. The transition between regions (δ) and (ε) can therefore be

considered a line of codimension-2.

This transition can be seen in figure 6.11(b), which shows an example where the two
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Figure 6.11: (a) A plot of the [m, k,Re]-parameter space for η = 0.22, µ = 0.1245, and N = 1.0, near

the point of continuity X . It can be seen that the closed domain loop of region (β) has merged with the

unbounded high-Re domain of region (γ). (b) A plot of the [m, k,Re]-parameter space for η = 0.0786, µ =

0.05, and N = 1.0, at the transition between region (δ) and region (ε).

instabilities require approximately equal Reynolds numbers to become unstable. In this

figure, the wide-gap-mode SRI corresponds to the unstable region around k = 9, whereas

the pseudo-radiative-mode SRI corresponds to the unstable region around k = 20.

6.3 Radiative Instability

The Radiative Instability (RI) is a form of stratified non-axisymmetric instability first

identified by Le Dizès and Riedinger [2010] in the inviscid domain for the wide-gap limit

of stratified Taylor-Couette flows. It is characterised by the presence of perturbation wave

travelling around the inner cylinder of the flow, with amplitudes rapidly shrinking as the

radius is increased. In Le Dizès and Riedinger [2010] the RI was only found when the

outer cylinder had been moved to infinity, replacing the outer boundary condition with a

condition of outward radiation.

Experimental confirmation of the RI was provided by Riedinger et al. [2011], see section

5.2 for further details. By physical constraints, this experiment had a wide but non-infinite

gap. However, from the edge of the inner cylinder to the edge of the tank, the smallest gap

width of the experiment would still have been 17.5 times the radius of the largest cylinder
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Figure 6.12: An example of the radiative instability as the critical mode of instability for stratified Taylor-

Couette flow. Here η = 0.40, µ = 0.40 and N = 0.3. The critical mode of instability has Rec = 26603

with m = 1, k = 5.270, and f = 0.850. Since this is a result for N = 0.3, this mode is not marked upon

figure 6.1. For this frequency, Φ(rc) = 0 occurs at rc = 0.750, although Φ = ±
√

2ζΩ does not occur

within the radial range. We do have Φ2(rN ) = N2 within the radial range at rN = 1.10. No inviscid

modes were found for this combination of η, µ and N .
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6.3 Radiative Instability

used. This would correspond to a maximum radius ratio of η = 0.057; note that the tank

was rectangular and the gap width will generally have been even larger.

The RI was detected in numerical viscous simulations by Leclercq et al. [2016] for non-

wide-gap flows with η = 0.417. It was found for linear perturbations in the super-critical

domain, i.e. beyond the onset of instability. This confirmed that the RI could exist away

from the wide-gap limit, although it remained unclear whether the RI could exist as a

critical mode of instability for viscous flows.

6.3.1 Appearance

As stated above, the RI is characterised by a single unstable mode travelling around the

inner boundary, with perturbations decaying in amplitude as the radius is increased. If an

outer boundary is present, the perturbation flow adjacent to the outer boundary should be

negligible.

Leclercq et al. [2016] also identified a critical radial layer in the flow where Φ2(r) = N2,

and suggested that the presence of this layer might be what enabled the RI to exist away

from the wide-gap limit.

6.3.2 The Radiative Instability in the present work

The modes of instability in region (δ), such as figure 6.7, resemble the RI. They have

a strong perturbation wave adjacent to the inner cylinder, and the flow is significantly

weaker at all larger radii. However, there is still some azimuthal flow at larger radii, as

evidenced by the colour contours on figure 6.7(a). The Φ2 = N2 radial layer is also absent

in the flow at the frequency for the pseudo-radiative-mode SRI. Given that region (δ) is

close to the wide gap limit, it is plausible that the pseudo-radiative-mode continuously

shifts to become the RI as η is further reduced. This would match well with inviscid

arguments made by Le Dizès and Riedinger [2010].

In figure 6.12, we show the critical mode of instability for a flow with stratification

N = 0.3, found in the region of figure 4.4(a) which had no inviscid instabilities. This
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Chapter 6. Eigenfunction appearance

critical mode shows all the features of the RI. The perturbation flow is focused on the

inner boundary, with negligible perturbations as the radius is increased. Furthermore, the

Φ(r) = −N radial layer is present in the flow, as marked on the figure. We take this

mode as a demonstration that the radiative instability can sometimes be the critical mode

of instability for stratified viscous Taylor-Couette flows.

This example of the RI was observed within the region of the parameter space where

no inviscid modes of instability have been found, previously seen in figure 4.4(a). It is

interesting to note that the Φ2 = N2 radial layer appears to have prevented the presence

of inviscid instabilities in this region, and yet simultaneously allowed the viscous RI to

exist away from the wide-gap limit. This again suggests that the presence of viscosity

is capable of extending the effective range of stratified instabilities compared to inviscid

flows.

6.3.3 Astrophysical context for the RI

The radiative instability is particularly interesting in the context of astrophysical disc

flows, since it depends on only the inner boundary, with the outer boundary going to

infinity. Astrophysical discs are expected to have an inner boundary condition, related to

either an inner hole, or related to flow onto a central object. The radiative instability may

therefore be a stratified non-axisymmetric instability which is relevant to astrophysical

discs in a way that dual-wave-mode SRI, which depends on two boundary conditions, is

not. We therefore suggest for future work that the RI be examined in more detail.
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The Narrow Gap Limit of the SRI

7.1 Threshold of Non-Axisymmetric Critical modes

We have defined the critical mode of instability in section 2.4.6. Depending on the specific

values of [η, µ,N ], the critical mode can be either axisymmetric with m = 0 or non-

axisymmetric with m 6= 0. In this chapter, we are interested in the threshold between

these two cases.

For the sake of distinction, we label the axisymmetric critical Reynolds number as Rem=0

and the non-axisymmetric critical Reynolds number as Rem6=0. Rem=0 and Rem6=0 can

both be found using the methods discussed in section 3.5.1. We further define the quantity

∆Re = Rem 6=0 − Rem=0. Whether ∆Re is positive or negative will respectively denote

whether axisymmetric or non-axisymmetric modes are dominant at marginal stability.

∆Re can be considered to be a function of [η, µ,N ].

The threshold between axisymmetric and non-axisymmetric critical modes corresponds

to the region where ∆Re = 0.

To this end, we seek the value of µ for which ∆Re = 0 with fixed [η,N ], making use of

the same root-finding algorithm mentioned in section 3.5.1. We do this for a range of η

values and buoyancy frequencies.
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Chapter 7. The Narrow Gap Limit of the SRI

7.1.1 Difficulties

As described in section 2.4.6, to find the critical mode for given [η, µ,N ] we are opti-

mising the basic SRI-mode program over Re, then optimising those results over k, and

then further optimising over m when looking at non-axisymmetric modes. To then find

the threshold between axisymmetric and non-axisymmetric critical modes, we are then

optimising over µ for given [η,N ] values.

This requires four nested routines, and demands considerable computational runtime.

This is further complicated because computational error at any stage can influence the

final result. Computational errors can be reduced by higher resolutions at each stage, but

they cannot be eliminated entirely and higher resolutions at any stage will increase the

computational runtime.

Furthermore, as stated in section 2.4.6, our critical mode searching program is not perfect,

as it only examines finite ranges of wavenumbers and is not well suited to the closed-

domain-loop phenomena (Section 6.2.3).

It was also found that, as η → 1, the critical SRI mode shifts to higher and higher values

of m. This phenomenon only becomes important at around η = 0.95. For example, [η =

0.95, µ = 0.95, N = 1.0] has a critical mode with mc = 7, kz = 2.8 and Rec = 3062;

whereas [η = 0.99, µ = 0.9714, N = 1.0] has a critical mode with mc = 24, kz = 3.26

and Rec = 3208. We are therefore forced to significantly increase the range of m that is

examined as η → 1. For this reason we only examine the threshold up to the value of

η = 0.95.

7.1.2 Prior work

In figure 3 of Shalybkov and Rüdiger [2005], this threshold can be seen to exist at around

µ = 0.25 for η = 0.78 and Fr = 0.5, at which point Rem=0 ' Rem 6=0. The threshold is

absent in figure 4 of the same paper, which has η = 0.4 and Fr = 0.5, implying that the

threshold does not exist between 0 ≤ µ ≤ 1 for those parameters.

Figure 6.1 for N = 1.0 indicates that the threshold is a line in the [η, µ]-parameter space
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Figure 7.1: The µ(η) bifurcation curve between axisymmetry and the SRI for various values of the buoyancy

frequency N : N = 0.5 (blue), N = 1.0 (red), N = 1.5 (green) and N = 2.5 (purple). Also shown is the

Rayleigh line µ = η2 (thick black). Axisymmetric instabilities dominate as η → 1 or µ → 0, whereas the

SRI dominates for smaller values of η and larger values of µ.

with a single value of µ for each value of η. Since Rem=0 goes to infinity as the Rayleigh

line is approached and axisymmetric instabilities do not exist beyond it (see section 2.4.4),

we can also assume that the threshold will always be below the Rayleigh line.

7.1.3 Results

Figure 7.1 depicts the threshold within the [η, µ]-parameter space for a variety of buoy-

ancy frequencies.

At weak stratifications, the threshold tends towards the Rayleigh line µ = η2. This makes

sense, since the Rayleigh line is the axisymmetric stability limit, and in the limit of zero

stratification, all critical modes are axisymmetric.

99



Chapter 7. The Narrow Gap Limit of the SRI

Interestingly, we here disagree with the results of Leclercq et al. [2016]. In figure 2(e)

of that paper, they predict that the non-axisymmetric m = 1 mode is the critical mode

for all µ up to the limit of stability, for η = 0.417 and with a Richardson number of

Ri = 0.25. This Richardson number is equivalent to the square of our dimensionless

buoyancy frequency N , hence Ri = 0.25 =⇒ N = 0.5. However, for N = 0.5

and η = 0.417 on 7.1, we predict that the critical mode is the axisymmetric m = 0

mode for µ < 0.53. This discrepancy is presumably a result of the density diffusion term

∇2ρ/(ReSc) in their density equation, which is absent in our system. (Sc is the Schmidt

number, Sc = ν̂/κ̂ where κ̂ is the diffusivity of mass. Leclercq et al. [2016] typically

used Sc = 700.)

At stronger stratifications, non-axisymmetric SRI modes increasingly dominate more of

the parameter space, and the threshold line appears to move towards the line η = 1. It

appears to be the case that the limit η → 1 is always kept within the axisymmetric domain.

This would suggest that the classical narrow gap limit explored by Chandrasekhar [1961]

(η → 1 for some constant µ < 1) always has an axisymmetric critical mode even in the

presence of stratification.

However for all stratifications the threshold line between axisymmetric and non-axisymmetric

critical mode instabilities appears to pass through [η → 1, µ → 1], with the range

[η → 1, 0 ≤ µ < 1] corresponding to axisymmetric instabilities. This suggests that

the SRI could persist as a critical mode into a near-solid-body-rotation narrow-gap limit

with [η → 1, µ → 1], dependent upon the relationship between η and µ as the limit is

approached.

This near-solid-body-rotation narrow-gap limit was previously explored by Yavneh et al.

[2001] in the inviscid domain. Although working in different terminology, they took η →

1 while holding the relative strain rate S(r) = −B/(Ar2+B) atO(1), which necessitates

that µ → 1 also. They showed that in this limit the combined inviscid equation for the

SRI (2.48) becomes the equivalent equation for an inviscid rotating shear flow.

100



7.2 The Near-Solid-Body-Rotation Narrow-Gap Limit

7.2 The Near-Solid-Body-Rotation Narrow-Gap Limit

The non-dimensionalised viscous SRI equations (see chapter 2) are:

−iΦu−2Ωv = −dP
dr

+
η

(1− η)

1

Re

[
d2u

dr2
+

1

r

du

dr
−
(
m2 + 1

r2
+ k2

)
u− 2im

r2
v

]
, (7.1)

−iΦv+ζu = −im
r
P+

η

(1− η)

1

Re

[
d2v

dr2
+

1

r

dv

dr
−
(
m2 + 1

r2
+ k2

)
v +

2im

r2
u

]
, (7.2)

−iΦw = −ikP − ρ+
η

(1− η)

1

Re

[
d2w

dr2
+

1

r

dw

dr
−
(
m2

r2
+ k2

)
w

]
, (7.3)

−iΦρ−N2w = 0, (7.4)

du

dr
+
u

r
+ i

m

r
v + ikw = 0. (7.5)

with boundary conditions:

r = [r1, r2] =⇒ u = v = w = 0. (7.6)

and the following defined quantities:

Φ = iσr + f −mΩ, Ω(r) = A+
B

r2
, ζ =

1

r

d

dr

(
r2Ω
)

= 2A,

A =
µ− η2

1− η2
, B =

η2 (1− µ)

(1 + η) (1− η)3
. (7.7)

To take the double limit of [η → 1, µ→ 1], we first need to establish a fixed relationship

between η and µ such that, if either variable is taken to the limit, the other variable is

forced to follow. To this end we define a constant ratio β between 1− µ and 1− η:

β =
1− µ
1− η

= O(1). (7.8)

Note that β = 0 corresponds to solid body rotation µ = 1, and that β = 1 corresponds to

the line µ = η. The meaning of β is explored further in section 7.2.1.

We are now free to choose our small parameter. We use ε = 1 − η and take the limit

ε→ 0, allowing us to write:

η = 1− ε, µ = 1− εβ. (7.9)
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Since all radial values within r1 ≤ r ≤ r2 will go to infinity as η → 1, we require a

different independent variable to the radius. We define:

r = r1 + x,
d

dr
=

d

dx
. (7.10)

such that x = 0 at r = r1 and x = 1 at r = r2.

This allows us to calculate r in terms of ε and x:

r =
1− ε
ε

+ x,

=⇒ r =
1

ε
+ (x− 1) . (7.11)

We need the limiting behaviour of Ω. Substituting η and µ for β and ε into A and B we

have:

A =
(1− εβ)− (1− ε)2

1− (1− ε)2
, B =

(1− ε)2 βε
(1 + (1− ε)) ε3

;

Solving for A:

A =
2− β − ε

2− ε
;

A = 1− β

2
− εβ

4
+O(ε2). (7.12)

Solving for B/r2:
B

r2
=

(1− ε)2 βε
(1 + (1− ε)) ε3

(
ε

1 + ε (x− 1)

)2

;

B

r2
=

(1− 2ε+ ε2) β

(2− ε) (1 + ε (x− 1))2
;

B

r2
=
β

2

(
1− 2ε+ ε2

)(
1− ε

(
2x− 5

2

)
+O(ε2)

)
;

B

r2
=
β

2
+
εβ

4
− εβx+O(ε2). (7.13)

Therefore, substituting for Ω = A+B/r2 and working to O(ε):

Ω(x) = 1− εβx; (7.14)

and:

ζ = 2A = 2− β − εβ

2
. (7.15)
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In the narrow gap limit, we make the approximation that (m/r) tends towards a constant

horizontal wavenumber, i.e.:
m

r
→ ky, m→ ky

ε
.

To distinguish between terms, we also relabel the vertical wavenumber k as kz.

With the limiting behaviour of Ω and the horizontal wavenumber, we can derive the near-

solid-body narrow-gap form of Φ:

Φ = iσr + f − ky
ε

(1− εβx) ,

=⇒ Φ = iσr + f − ky
ε

+ kyβx.

We can now define the adapted frequency f ∗ = f − ky/ε. This expression is equivalent

to f ∗ = f −m, and allows us to write:

Φ = iσr + f ∗ + kyβx. (7.16)

(Note that f ∗ does not denote the complex conjugate of f .)

Substituting (7.8)-(7.16) into the SRI equations (7.1)-(7.5) leads to:

−iΦu− 2 (1− εβx) v = −dP
dx

+
1

εRe

[
d2u

dx2
+ ε

du

dx
−
(
k2y + k2z + ε2

)
u− 2iεkyv

]
,

−iΦv + (2− β)u = −ikyP +
1

εRe

[
d2v

dx2
+ ε

dv

dx
−
(
k2y + k2z + ε2

)
v + 2iεkyu

]
,

−iΦw = −ikzP − ρ+
1

εRe

[
d2w

dx2
+ ε

dw

dx
−
(
k2y + k2z

)
w

]
,

−iΦρ−N2w = 0,

du

dx
+ εu+ ikyv + ikzw = 0.

The form of these equations suggests a rescaling of the Reynolds number such that εRe =

Re∗. This leads to, in dimensional units:

Re∗ =
1

ν
=
λ̂2Ω̂in

ν̂
, (7.17)

Substituting in (7.17) and dropping terms that are directly smaller than adjacent terms, we

have:

−iΦu− 2v = −dP
dx

+
1

Re∗

[
d2u

dx2
−
(
k2y + k2z

)
u

]
, (7.18)
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−iΦv + (2− β)u = −ikyP +
1

Re∗

[
d2v

dx2
−
(
k2y + k2z

)
v

]
, (7.19)

−iΦw = −ikzP − ρ+
1

Re∗

[
d2w

dx2
−
(
k2y + k2z

)
w

]
, (7.20)

−iΦρ−N2w = 0, (7.21)

du

dx
+ ikyv + ikzw = 0. (7.22)

The remaining terms can be assumed to all balance with each other. These are the SRI

Near-Solid-Body-Rotation Narrow-Gap equations.

7.2.1 β as a measure of the Flow Shear

From (7.14), we have Ω = 1− εβx. Differentiating by x allows us to conclude that:

β = −1

ε

dΩ

dx
.

β can therefore be considered to be a scaled non-dimensional measure of the flow shear.

Note also that, from our original definition, β > 0 corresponds to µ < 1 and vice versa,

with β = 0 corresponding to solid body rotation.

7.3 Rotating Stratified Shear flow

In the near-solid-body-rotation narrow-gap limit, the inviscid SRI system is equivalent

to the inviscid stratified rotating shear flow system, as shown by Yavneh et al. [2001].

Kushner et al. [1998] demonstrated that a similar rotating shear flow system, with shallow

water instead of stratification, was susceptible to a Kelvin wave instability; hence Yavneh

et al. [2001] concluded that the SRI was itself a Kelvin wave instability.

In this section we will derive the equations of the viscous rotating shear flow system, in

order to demonstrate the connection between that system and the near-solid-body narrow-

gap limit of the viscous stratified Taylor-Couette system. This serves to extend the work

done by Yavneh et al. [2001] to the viscous domain.
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Rotating Stratified Shear Flow (RSSF), as described by Yavneh et al. [2001], is the strati-

fied shear flow between two parallel infinite vertical walls in a rotating [x̂, ŷ, ẑ] frame.

7.3.1 Flow equations

We place our vertical walls at x̂ = 0 and x̂ = L̂. The viscous flow is stimulated by equal

and opposite sliding of the walls in the ŷ-direction. The walls have velocity ±V̂0. The ẑ-

direction is the vertical direction of gravity, stratification and rotation. The rotation vector

of the frame is Ω̂0 = Ω̂0ez.

Non-Dimensionalisation of the RSSF system

We define our Reynolds number for the rotating shear flow system as:

R̃e =
L̂2Ω̂0

ν̂
.

We are examining a new system, so we need a new length-scale and a new time-scale.

Similar to the Taylor-Couette system, we use as our length-scale the gap width between

the walls such that λ̂ = L̂, and as our time-scale we use the reciprocal of the constant

background rotation such that τ̂ = Ω̂−10 . We again measure the density in terms of a

constant reference density ρ̂q, which gives us a pressure-scale P̂q = ρ̂qλ̂
2τ̂−2.

We now make the transition to non-dimensional co-ordinates by rescaling our terms such

that [x̂, ŷ, ẑ] = λ̂[x, y, z] and V̂0 = V0λ̂τ̂
−1. In these units the walls are at x = 0 and

x = 1, and we have:

Ω̂0 = Ω0τ
−1, =⇒ Ω0 = ez.

System equations

We start with the system equations for stratified fluid flow (see section 2.2) in a rotating

frame:
∂u

∂t
+ u.∇u = −∇P ′ − 2Ω× u−∇φc − ρ′g +

1

R̃e
∇2u, (7.23)
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∇.u = 0. (7.24)

∂ρ′

∂t
+ u.∇ρ′ = 0. (7.25)

Here −2Ω × u is the Coriolis force and −∇φc is the centrifugal force, expressed as a

potential gradient. We have already taken the Boussinesq approximation (section 2.2.5),

again setting ρ̂q such that the background density ρ̄ = 1. The buoyancy frequency is the

same as in section 2.2.6, yielding the following formula for the dimensionless gravity g

in terms of the basic state density distribution ρ′0 (2.16):

g = −N2

(
dρ′0
dz

)−1
.

The centrifugal force and the pressure term can be compared and combined, to produce a

new adapted pressure P̃ = P ′ + φc. This allows us to absorb the centrifugal term into the

pressure term. Dropping the ˜ from this adapted pressure term, we now have:

∂u

∂t
+ u.∇u+ 2Ω× u = −∇P − ρ′g +

1

R̃e
∇2u,

∇.u = 0,

∂ρ′

∂t
+ u.∇ρ′ = 0.

We have previously defined that Ω = ez and therefore we know that 2Ω×u = (−2v, 2u, 0).

Expanding out we then have:

∂u

∂t
+ u.∇u− 2uyex + 2uxey = −∇P − ρ′g +

1

R̃e
∇2u,

∇.u = 0,

∂ρ′

∂t
+ u.∇ρ′ = 0.

We have two moving boundary walls at x = 0 and x = 1, both moving with speed V0 in

opposite directions. The flow is unbounded in the y and z directions. We set the non-slip

boundary conditions (with V0 = const.):

u(x = 0) = V0ey, u(x = 1) = −V0ey.
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We now try the following basic state velocity: u0 = V (x)ey = V0 (1− 2x) ey. (Note

that∇.u = 0 is satisfied by design.)

=⇒ −2V0 (1− 2x) ex = −∇P0 − ρ′0g.

Separating this equation into components yields the following set of conditions on P0 and

ρ′0:
∂P0

∂x
= 2V0 (1− 2x) ,

∂P0

∂y
= 0,

∂P0

∂z
= −ρ′0g. (7.26)

We assume that a basic state pressure distribution P0 exists which satisfies these condi-

tions.

Perturbations

We now introduce small perturbations to the system such that a = a0 + a1 with a1 � a0.

We do this for a = [ux, uy, uz, P, ρ], and assume that the a0 terms satisfy the basic state

system. As before, for the density perturbation we include a factor of 1/g such that

ρ′ = ρ′0 + ρ1/g. Applying this to the system, cancelling basic state terms and retaining

only terms to first order in perturbations, we get:

∂u1

∂t
+ u1.∇u0 + u0.∇u1 − 2u1yex + 2u1xey = −∇P1 + ρ1ez +

1

R̃e
∇2u1,

∂ρ1
∂t

+ gu1.∇ρ0 + u0.∇ρ1 = 0,

∇.u1 = 0.

We assume that all perturbation variables have the form a1(x, y, z, t) = ã(x) exp(σt +

i[kyy + kzz]). We then have:

u0.∇a1 = V
∂a1
∂y

= ikyV a1.

Therefore:

σu1 + ikyV u1 + u1.∇u0 − 2u1yex + 2u1xey = −∇P1 + ρ1ez +
1

R̃e
∇2u1,

σρ1 + ikyV ρ1 + gu1.∇ρ0 = 0,
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∇.u1 = 0.

Dropping the 1 subscript and continuing:

σu+ ikyV u+ ux
∂u0

∂x
− 2uyex + 2uxey = −∇P + ρez +

1

R̃e
∇2u,

σρ+ ikyV ρ+ guz
∂ρ0
∂z

= 0,

∂ux
∂x

+ ikyuy + ikzuz = 0.

If we split the system into multiple equations, introduce N2 = −g∂ρ0/∂z and Φ =

iσ − kyV , and expand out∇2, we attain:

−iΦux − 2uy = −∂P
∂x

+
1

R̃e

[
∂2ux
∂x2

−
(
k2y + k2z

)
ux

]
, (7.27)

−iΦuy + (2− 2V0)ux = −ikyP +
1

R̃e

[
∂2uy
∂x2

−
(
k2y + k2z

)
uy

]
, (7.28)

−iΦuz = −ikzP − ρ+
1

R̃e

[
∂2uz
∂x2

−
(
k2y + k2z

)
uz

]
, (7.29)

−iΦρ−N2uz = 0, (7.30)

∂ux
∂x

+ ikyuy + ikzuz = 0. (7.31)

Comparing equations (7.18-7.22) with (7.27-7.31), we can see that the near-solid-body

narrow gap SRI system and the RSSF system are mathematically identical, with β ⇐⇒

2V0 and Re∗ ⇐⇒ R̃e.

7.4 Comparing SRI and RSSF modes

To further test the correlation between the SRI and RSSF systems, we can compare critical

eigenmodes between the two systems. Figure 6.3 is an SRI mode close to the near-solid-

body narrow-gap limit, with η = 0.95, µ = 0.95 and N = 1.0. From this we can calculate

that β = (1− µ)/(1− η) = 1.0 and that ε = 1− η = 0.05. To compare this mode to the

RSSF system, we can calculate the critical RSSF mode for β = 1.0 and N = 1.0, which

is shown in figure 7.2.
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Figure 7.2: An eigenfunction from the rotating shear flow, with β = 1.00, N = 1.0, with Re∗c =

157.4, ky = 0.36, kz = 2.74 and f∗ = −0.180. This figure uses the same conventions as in chapter

6.

SRI η µ N εm k εRe f −m

0.95 0.95 1.0 0.35 2.8 153.1 −0.181

RSSF ε β N ky kz Re∗ f ∗

0.05 1.0 1.0 0.36 2.74 157.4 −0.180

Table 7.1: Comparing RSSF terms to their derived counterparts from the corresponding

SRI mode.

The two eigenmodes are visually very similar. Furthermore, we can compare terms, as

from section 7.2 we expect that ky ≈ εm, kz ≈ k, Re∗c ≈ εRe and f ∗ ≈ f −m. These

terms are compared in table 7.1, and we again see a strong correlation.

7.5 Re* vs. β

Figure 7.3 examines the behaviour of the RSSF system as β is varied. It can be seen that

horizontally stationary modes with ky = 0 reach a stability limit at around β = 2. This

correlates with the Rayleigh line stability limit for m = 0 modes in the stratified Taylor-

Couette system; note that the Rayleigh line in the near-solid-body narrow-gap limit tends

towards β = 2.
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Figure 7.3: A comparison between the critical RSSF Reynolds numbers Re∗ for horizontally stationary

modes with ky = 0 (dashed lines) and propagating modes for which ky (solid lines) has been optimised.
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7.6 Conclusion

However, modes for which ky is unrestricted persist towards β = 0, seemingly reaching

a stability limit close to β = 0.5. This presumably corresponds to the N = 1.0 stability

limit of the SRI taken to the near-solid-body narrow-gap limit. This suggests that the

gradient of the SRI stability limit for N = 1.0 is approximately tangential to µ = 0.5η +

0.5 as the RSSF limit is approached.

7.6 Conclusion

For the SRI to remain relevant, the narrow gap limit of the Taylor-Couette requires that

the system also be taken to the near-solid-body limit. This combined limit was shown by

Yavneh et al. [2001] to be equivalent to the rotating shear flow system for inviscid flows.

We have extended this work to show that this equivalence also holds for viscous flows.

In support of this assertion, we have demonstrated strong similarities between rotating

shear flow modes and SRI modes that are close to the limit, both in appearance and in

parameter values.
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Chapter 8

Conclusions and Future Work

The original motivation for this work was to examine the stability limits of the Strato-

Rotational Instability (SRI) in order to provide insight into methods by which a centrifu-

gally stable astrophysical disc might be destabilised.

It should be noted that the classical SRI, which we have dubbed the dual-wave-mode SRI,

requires solid boundary walls in order to induce the two wave-like regions upon which

the Kelvin wave instability mechanism depends. Such boundary conditions are unlikely

to be satisfied within an astrophysical context. However over the course of this work, we

have shown that the dual-wave-mode SRI is not the only form of the instability. There

is of course the Radiative Instability (RI) of Le Dizès and Riedinger [2010], seen as the

critical mode of instability in our figure 6.12. We have also found a wall-mode SRI, a

wide-gap-mode SRI, and a pseudo-radiative-mode SRI in the viscous domain. Judging

from their eigenmode appearance (figures 6.6 and 6.8), the wide-gap and wall-modes ap-

pear to utilise different instability mechanisms compared to the Kelvin wave instability

mechanism of the dual-wave-mode SRI. The pseudo-radiative-mode (figure 6.7) is con-

tinuously connected to the dual-wave-mode, and presumably uses a combination of the

radiative instability mechanism and the Kelvin wave instability mechanism. We propose

that the pseudo-radiative-mode continuously transforms into the RI as the gap width is

widened, paralleling the inviscid wide-gap limit taken in Le Dizès and Riedinger [2010].

Note that the mode may not necessarily remain as the critical mode as the viscous wide

gap limit is taken.
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At weak stratifications, we have shown that a region of the parameter space can become

viscously unstable when the inviscid system appears to be stable. It is within this re-

gion that we have found the RI as critical mode of instability for moderate gap widths.

Significantly, the presence of the RI here appears to rely upon the existence of a radial

layer for which Φ2 −N2 = 0. This same radial layer would cause a singular term within

the inviscid system, hence preventing unstable inviscid solutions from being found. We

therefore conclude that inviscid analysis may be insufficient for weak stratifications of the

Taylor-Couette system.

Experimental verification of the wall-mode SRI and wide-gap-mode SRI would be useful.

The instability mechanisms of these two modes should also be further investigated, as they

are visibly distinct from the dual-wave-mode SRI that has already been understood as a

Kelvin wave instability [Yavneh et al., 2001].

We have extended the domain of viscously unstable stratified Taylor-Couette flow be-

yond the work of Shalybkov and Rüdiger [2005] and Rüdiger and Shalybkov [2009]. We

have also demonstrated the existence of viscous closed domain loops in the [m, k,Re]-

parameter space. These appear to extend the unstable domain of the viscous dual-wave-

mode SRI compared to the inviscid predictions. However they can be computationally

problematic to detect, since they only exist for a finite region of the parameter-space and

an exhaustive search can be required to find them. The discovery of closed domain loops

could be considered an extension of the work of Ibanez et al. [2016], who showed that in-

creasing the Reynolds number could switch off the SRI. We have been able to reasonably

reproduce the experimental results of Ibanez et al. [2016] with our computational solver,

see figure 5.2.

We have also shown that the inviscid domain of stratified Taylor-Couette flow is uncon-

ditionally unstable for co-rotating flows with µ < 1 and N > 2. Notably in our choice of

units, N = 2 is equivalent to a Froude number of Fr = 0.5, which is comparable to the

estimated Froude number of an astrophysical disc [Shalybkov and Rüdiger, 2005]. We

have therefore extended the work of Park and Billant [2013] in order to derive stability

limits on η and µ for given N and µ < 1. The conditions originally derived by Park and

Billant [2013] are altered slightly for the case µ > 1, however a similar set of conditions
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should be derivable. It should also be noted that Park and Billant [2013]’s work only

applies for the dual-wave-mode SRI; it may be possible to further derive similar inviscid

instability conditions for the wall-mode SRI, the wide-gap-mode SRI and the radiative

instability, once their instability mechanisms have been better understood.

Examining narrow gap flows, we have shown numerically that axisymmetric perturbations

(m = 0) are always the critical viscous mode as the limit η → 1 is taken with constant µ.

However, the joint limit of near-solid-body narrow gap flows, i.e. [η, µ] → [1, 1], can be

taken such that non-axisymmetric perturbations remain as the critical viscous mode. In

this context we have shown that the viscous system becomes mathematically equivalent

to the perturbation equations of a stratified rotating shear flow. This can be considered

an extension of the work of Yavneh et al. [2001], who showed the same equivalence for

the inviscid system. It may be useful to experimentally verify the connection between the

instability modes of a stratified rotating shear flow, and that of narrow-gap near-solid-body

stratified Taylor-Couette flow.

The original inspiration for this work was to investigate methods by which an astrophys-

ical disc could be made unstable. The Magneto-Rotational Instability (MRI) [Balbus

and Hawley, 1991] is a viable candidate, but only in cases where the fluid is expected

to be ionised. The dual-wave-mode SRI is not thought to be relevant, due to the insta-

bility’s reliance upon the presence of inner and outer solid boundary conditions. So far

the wall-mode and wide-gap-mode SRI have also only been found for the same boundary

conditions, although it is not yet known whether they are reliant upon the solid boundary

conditions. It has, however, been demonstrated that the radiative instability (RI) does not

require an outer boundary condition.

The RI only requires an inner boundary condition. Notably, astrophysical discs do always

have an inner boundary conditions. This takes the form of either flow onto the central

object, or the form of a central hole between the disc and the central object. It is therefore

worth investigating whether the RI can be preserved in the presence of an inner bound-

ary condition corresponding more closely to the astrophysical context. In this regard,

the radiative instability can be considered a strong candidate for the destabilisation of

astrophysical discs, and is worthy of further study.
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A Combined Inviscid Equation

We begin with equations (2.42-2.46), restated here for reference:

−iΦu− 2Ωv = −dP
dr
, (A.1)

−iΦv + ζu = −im
r
P, (A.2)

−iΦw = −ikP − ρ, (A.3)

−iΦρ−N2w = 0, (A.4)

du

dr
+
u

r
+ i

m

r
v + ikw = 0. (A.5)

We can rewrite (A.3) as ρ = iΦw − ikP, and therefore substitute for ρ in (A.4):

(
Φ2 −N2

)
w = kΦP,

=⇒ w =
kΦ

Φ2 −N2
P. (A.6)

We can use (A.6) to substitute for w in (A.5):

du

dr
+
u

r
+ i

m

r
v +

ik2Φ

Φ2 −N2
P = 0. (A.7)

This leaves us with a system of three variables, [u, v, P ], with three equations: (A.1),

(A.2) and (A.7).

From (A.2) we can write an equation for v:

v =
m

rΦ
P − i ζ

Φ
u. (A.8)
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Substituting (A.8) into (A.1) to eliminate v yields:

−irΦ2u− 2Ω (mP − iζru) = −rφdP
dr
,

(
2Ωζ − Φ2

)
iru = 2ΩmP − rφdP

dr
,

dP

dr
+
i∆

Φ
u− 2Ωm

rΦ
P = 0. (A.9)

Here we have defined the quantity ∆:

∆(r) = 2Ωζ − Φ2. (A.10)

Substituting (A.8) into (A.7) to eliminate v yields an equation for P in terms of u:

Φ
du

dr
+ Φ

u

r
+ i

m

r

(m
r
P − iζu

)
+

ik2Φ2

Φ2 −N2
P = 0,

Φ
du

dr
+ (Φ +mζ)

u

r
+ i

(
m2

r2
− k2Φ2

N2 − Φ2

)
P = 0,

Φ
du

dr
+ (Φ +mζ)

u

r
= −iQP,

P =
i

Q

(
Φ
du

dr
+

1

r
(Φ +mζ)u

)
. (A.11)

Here we have defined the quantity Q:

Q(r) =
m2

r2
− k2Φ2

N2 − Φ2
. (A.12)

We can use (A.11) to calculate an equation for dP/dr:

dP

dr
= i

[
d

dr

(
Φ

Q

du

dr
+

1

Qr
(Φ +mζ)u

)]
,

dP

dr
=
iΦ

Q

[
d2u

dr2
+
Q

Φ

d

dr

(
Φ

Q

)
du

dr
+
Q

Φ

d

dr

(
1

Qr
(Φ +mζ)u

)]
,

dP

dr
=
iΦ

Q

[
d2u

dr2
+
Q

Φ

d

dr

(
Φ

Q

)
du

dr
+

1

Φ

(
Φ +mζ

r

)
du

dr
+
Q

Φ

d

dr

(
Φ +mζ

Qr

)
u

]
,

dP

dr
=
iΦ

Q

[
d2u

dr2
+

(
1

r
+
Q

Φ

d

dr

(
Φ

Q

)
+
mζ

rΦ

)
du

dr
+
Q

Φ

d

dr

(
Φ +mζ

Qr

)
u

]
. (A.13)

We can now use (A.11) and (A.13) to substitute P and dP/dr into (A.9):

iΦ

Q

[
d2u

dr2
+

(
1

r
+
Q

Φ

d

dr

(
Φ

Q

)
+
mζ

rΦ

)
du

dr
+
Q

Φ

d

dr

(
Φ +mζ

Qr

)
u

]
+
i∆

Φ
u− 2Ωm

rΦ

i

Q

(
Φ
du

dr
+

1

r
(Φ +mζ)u

)
= 0,
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This can be written as:
d2u

dr2
+ a1

du

dr
+ a2u = 0, (A.14)

with:

a1 =
1

r
+
Q

Φ

d

dr

(
Φ

Q

)
+
mζ

rΦ
− 2Ωm

rΦ
,

a2 =
Q∆

Φ2
− 2Ωm (Φ +mζ)

r2Φ2
+
Q

Φ

d

dr

(
Φ +mζ

Qr

)
.

The coefficient a1(r) can be simplified as follows:

a1 =
1

r
+
Q

Φ

d

dr

(
Φ

Q

)
+
mζ

rΦ
− 2mΩ

rΦ
,

a1 =
1

r
+

1

Φ

dΦ

dr
+Q

d

dr

(
1

Q

)
+
mζ

rΦ
− 2mΩ

rΦ
,

a1 =
1

r
−
(

1

Q

dQ

dr

)
+
m

rΦ

(
ζ +

r

m

dΦ

dr
− 2Ω

)
.

We know that dΦ/dr = −mdΩ/dr, therefore:

a1 =
1

r
−
(

1

Q

dQ

dr

)
+
m

rΦ

(
ζ − rdΩ

dr
− 2Ω

)
.

We also, from the definition of the vorticity (2.33), know that ζ = rdΩ/dr + 2Ω.

∴ a1 =
1

r
− Q′

Q
.

Finally, the coefficient a2(r) can be expanded as:

a2 =

[
∆

Φ2

(
m2

r2
− k2Φ2

N2 − Φ2

)
− 2mΩ

r2Φ
− 2m2Ωζ

r2Φ2
+
Q

Φ

d

dr

(
Φ +mζ

Qr

)]
.

Here, note that 2Ωζ = (∆ + Φ2). This ultimately allows us to express a2 as:

a2 =

[
− k2

N2 − Φ2
∆− m2

r2
+

1

Φ

{
1

r

dΦ

dr
+
m

r

dζ

dr
− 2mΩ

r2
+mQζ

(
1

rQ

)′}
+Q

(
1

rQ

)′]

We can substitute in that dΦ/dr = −mdΩ/dr:

a2 =

[
− k2

N2 − Φ2
∆− m2

r2
+
m

Φ

{
1

r

dζ

dr
− 1

r

dΩ

dr
− 2Ω

r2
+Qζ

(
1

rQ

)′}
+Q

(
1

rQ

)′]

We also have the following equivalence from the definition of the vorticity:

−1

r

dΩ

dr
− 2

Ω

r2
= − ζ

r2
.
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=⇒ a2 =

[
− k2

N2 − Φ2
∆− m2

r2
+
mrQ

Φ

{
1

r2Q

dζ

dr
− ζ

r3Q
+
ζ

r

(
1

rQ

)′}
+Q

(
1

rQ

)′]
.

Let us define the quantity in the curly brackets as q1:

q1 =

{
1

r2Q

dζ

dr
− ζ

r3Q
+
ζ

r

(
1

rQ

)′}
.

We can simplify q1 as follows:

q1 =

{
1

r2Q

dζ

dr
+ ζ

(
1

r

(
1

rQ

)′
− 1

r3Q

)}

q1 =

{
1

r2Q

dζ

dr
+ ζ

(
1

r2Q

)′}
q1 =

(
ζ

r2Q

)′
Substituting q1 back into a2 yields:

a2 =

[
− k2

N2 − Φ2
∆− m2

r2
+
mrQ

Φ

(
ζ

r2Q

)′
+Q

(
1

rQ

)′]

Therefore, in (A.14) we have:

d2u

dr2
+

[
1

r
− Q′

Q

]
du

dr
+

[
− k2

N2 − Φ2
∆− m2

r2
+
mrQ

Φ

(
ζ

r2Q

)′
+Q

(
1

rQ

)′]
u = 0,

(A.15)

This is the combined inviscid equation as stated by Park and Billant [2013].
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B Spectral Methods with Chebyshev Polynomials

For the range−1 ≤ x ≤ 1, the Chebyshev polynomials of the first kind Tn can be defined

with the following trigonometric identity:

Tn(x) = cos
(
n cos−1 x

)
. (B.1)

Here we have n as an integer such that n ≥ 0. The series can alternatively be written as:

T0 = 1, T1 = x, T2 = 2x2 − 1, Tn+1 = 2xTn − Tn−1. (B.2)

Differentiation of the Chebyshev polynomials has the following rule:

2Tn =
T ′n+1

n+ 1
−
T ′n−1
n− 1

for n > 1. (B.3)

We also have the Gauss-Lobatto quadrature points, spaced throughout the range [−1, 1]:

xj = cos (πj/M) . (B.4)

Here i and M are both integers, with i ranging from 0 to M , and M + 1 being the total

number of points. For these points the following identity holds: Tn (xj) = cos (njπ/M).

We can use the Chebyshev polynomials to perform spectral expansion on any continu-

ously differentiable function of one real variable, such as y(x), defined over the range

−1 ≤ x ≤ 1. The expansion presents itself as an infinite summation over the Chebyshev

polynomials, each with a distinct expansion coefficient ỹn:

y(x) =
∞∑
n=0

ỹnTn(x). (B.5)

B.1 Collocation matrix

For computational ease, we make two approximations. The first approximation is to trun-

cate the summation after N terms. Note that in the main text of this thesis we label the

number of terms as T , to avoid confusion with the buoyancy frequency. Due to the expo-

nential accuracy exhibited by the series, larger values of N will result in better and better
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approximations of y(x). This exponential accuracy relies upon y(x) being continuously

differentiable, as was declared above. Higher degrees of accuracy for larger N is also

seen for finite difference methods, however the accuracy for finite difference methods is

merely algebraic and not exponential.

The second approximation is to restrict the summation to only being evaluated on a set of

collocation points spaced throughout the range of x. These collocation points are chosen

to be the same as the Gauss-Lobatto quadrature points of (B.4). These approximations

yield a revised form of the Chebyshev summation series:

y(xj) =
N∑
n=0

ỹnTn(xj). (B.6)

The expression Tn(xj) can be interpreted as a matrix φjn, such that y(xj) =
∑N

n=0 φjnỹn.

In this sense, the matrix φjn is a collocation matrix, acting on the expansion coefficients

ỹn to produce the values of y at the collocation points xj . The collocation matrix has

dimensions (M + 1) × (N + 1), and each term obeys the following formula (deduced

from the properties of the Gauss-Lobatto quadrature points):

φjn = Tn(xj) = cos (jnπ/M) . (B.7)

(Note that, unlike standard matrix notation, the indices here range from zero up to their

maximum value, i.e. we have j ∈ [0,M ] and n ∈ [0, N ].)

When applying a collocation matrix to a boundary value problem, it may sometimes be

required to omit the top and bottom rows of the matrix, which correspond to the collo-

cation points at the boundaries, and replace them with rows that represent the boundary

conditions.

B.2 Differentiation matrix

Consider dy/dx ≡ y′(x). As a spectral expansion, this can be written in two equivalent

forms:

y′(x) =
∞∑
n=0

ỹ′nTn(x) =
∞∑
n=0

ỹnT ′n(x). (B.8)

122



B Spectral Methods with Chebyshev Polynomials

We begin with expanding the first form, i.e. y′(x) =
∑∞

n=0 ỹ
′
nTn(x). Making use of (B.3),

we can write:

y′(x) = ỹ′0T0 + ỹ′1T1 +
∞∑
n=2

ỹ′n
2

(
T ′n+1

n+ 1
−
T ′n−1
n− 1

)
,

=⇒ y′(x) = ỹ′0 + ỹ′1x+
∞∑
n=3

ỹ′n−1
2

T ′n
n
−
∞∑
n=1

ỹ′n+1

2

T ′n
n
,

=⇒ y′(x) = ỹ′0 + ũ′1x−
1

2
ỹ′2 − ỹ′3x+

∞∑
n=3

(
ỹ′n−1 − ỹ′n+1

) T ′n
2n
. (B.9)

By comparing (B.9) to the second part of (B.8), we can conclude that, for n ≥ 3:

2nỹn = ỹ′n−1 − ỹ′n+1.

If we assume that this identity holds for n = 2 and check the case for n = 1, we can

further conclude that the following identity holds for all n:

2nỹn = cn−1ỹ
′
n−1 − ỹ′n+1, cn = (1 + δ0k). (B.10)

(Here introducing the Kronecker delta δij which is equal to 1 if both indices are equal,

and 0 otherwise.)

Rearranging (B.10) and applying it recursively allows us to conclude the following infinite

summation series for ỹ′n:

ỹ′n =
2

cn

∞∑
m=n+1,
m+n=odd

mỹm.

Relying upon the exponential accuracy of spectral methods, we can truncate this series

after N terms so that the summation can be applied to a series of truncated Chebyshev

coefficients. Also, as before with the collocation matrix, this formula can be written as a

matrix equation, introducing the differentiation matrix Dmn. This yields:

ỹ′m =
N∑
n=0

Dmnỹn. (B.11)

Here Dmn is a square matrix of size (N + 1)× (N + 1) with the following properties:

Dmn =


0 if (m ≥ n) or (m+ n) is even,

n if (m = 0) and (m < n) and (m+ n) is odd,

2n if (m > 0) and (m < n) and (m+ n) is odd.

(B.12)
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(Note that, as before with the collocation matrix, the indices here range from zero up to

their maximum value, i.e. we have m ∈ [0, N ] and n ∈ [0, N ].)

Since the differentiation matrix is square, it can be applied multiple times to derive the ex-

pansion coefficients of higher derivatives. In this way, Dmn and φjm can be used together

upon ỹn to derive the values of the qth derivative y(q)(xj) at the collocation points:

ỹ(q)(xj) =
N∑
m=0

N∑
n=0

φjmD
(q)
mnỹn. (B.13)

Here D(q)
mn is the differentiation matrix applied to itself q times. D(0)

mn is equivalent to the

identity matrix Imn.
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C The Kelvin Waves of Dual-Wave-Mode SRI

Kelvin waves are travelling neutral wave-modes moving parallel and adjacent to bound-

aries in a rotating system. They exhibit exponential decay of amplitude as one moves

away from the boundary [Thomson, 1880].

Dual-wave-mode SRI has been described as a Kelvin wave instability by Yavneh et al.

[2001], working in the inviscid narrow-gap near-solid-body limit. For a derivation of the

viscous form of this limit, see equations (7.18)-(7.22) from section 7.2. The inviscid form

can then be attained by letting Re∗ → ∞ and dropping the no-slip boundary conditions,

yielding:

−iΦu− 2v = −dP
dx
, (C.1)

−iΦv + (2− β)u = −ikyP, (C.2)

−iΦw = −ikzP − ρ, (C.3)

−iΦρ−N2w = 0, (C.4)
du

dx
+ ikyv + ikzw = 0. (C.5)

We also have (setting σr = 0 for neutral waves):

Φ = f ∗ + kyβx,

and the rigid boundary conditions:

u(x = 0) = u(x = 1) = 0.

C.1 Shallow water limit

To explore how Kelvin waves would develop in this system, we first need to take the

shallow water limit. Rearranging (C.4) for w and substituting into (C.3) yields:

−Φ2ρ

N2
= −ikzP − ρ. (C.6)

For the shallow water limit, we make the approximation that Φ2/N2 � 1, and hence that

−ikzP − ρ = 0. (C.7)

This replaces (C.3) in the above system of equations.
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C.2 Kelvin mode

Kelvin waves move parallel to the boundaries, and hence have no radial velocity; i.e.

u(x) = 0. Substituting this into the shallow water system yields:

−2v = −dP
dx
, (C.8)

−iΦv = −ikyP, (C.9)

−ikzP − ρ = 0, (C.10)

ikyv + ikzw = 0. (C.11)

We can derive the following equation for the pressure perturbation, from substituting (C.9)

for v into (C.8):

2
kyP

Φ
=
dP

dx
, (C.12)

We can also derive a dispersion relation for the Kelvin mode. Using (C.9) and (C.4) to

substitute for v and w in (C.5) yields:

k2yP

Φ
− ikzΦρ

N2
= 0.

Now using (C.10) to eliminate ρ we get:

k2yP

Φ
− Φk2zP

N2
= 0,

=⇒ Φ = ±ky
kz
N. (C.13)

Note that, since Φ is a function of x, (C.13) implies we cannot have u = 0 exactly. How-

ever, close to each boundary the u = 0 assumption approximates the actual behaviour.

Since Φ is a function which grows with x, if there are two wave-like regions then we

expect Φ < 0 adjacent to the inner boundary x = 0 and Φ > 0 adjacent to the outer

boundary x = 1. (See appendix D for why we expect two wave-like regions.)

We expect to see exponential decay of perturbation amplitudes as one moves away from

either boundary; hence for P = P0 exp (−γx) we expect to see γ > 0 near x = 0 and

γ < 0 near x = 1. We can verify this using (C.12):

2
kyP

Φ
=
dP

dx
= −γP,
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=⇒ γ = −2
ky
Φ
. (C.14)

For ky > 0, this means that γ will always have the opposite sign to Φ. Hence, choosing

(as expected) the negative root for Φ on the inner boundary yields exponential decay of

amplitude away from the boundary, as required. The same holds for choosing the positive

root for Φ on the outer boundary.

Thus Kelvin waves can occur in the inviscid narrow-gap near-solid-body stratified Taylor-

Couette system adjacent to either boundary, and have oppositely signed Lagrangian fre-

quencies at each boundary.

The instability mechanism of dual-wave-mode SRI further requires that these Kelvin

waves have approximately the same [ky, kz]-wavenumbers and frequency f ∗. Labelling

the inner and outer frequencies as [f ∗1 , f
∗
2 ] and making use of f ∗ = Φ − kyβx from the

start of this appendix, we have:

f ∗1 = Φ− = −ky
kz
N, f ∗2 = Φ+ − kyβ =

ky
kz
N − kyβ.

We can therefore achieve f ∗1 ≈ f ∗2 through suitable choice of kz, such that:

kz ≈
2N

β
.

This can be seen to approximately hold in table 7.1.
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D Instability Conditions of Park and Billant [2013]

In this appendix we will show the working of Park and Billant [2013] in deriving the

instability conditions for the inviscid dual-wave-mode SRI.

D.1 Derivation

Consider the combined inviscid equation (2.48):

d2u

dr2
+

[
1

r
− Q′

Q

]
du

dr
+

[
− k2

N2 − Φ2
∆− m2

r2
+
mrQ

Φ

(
ζ

r2Q

)′
+Q

(
1

rQ

)′]
u = 0,

Q(r) =
m2

r2
− k2Φ2

N2 − Φ2
, ∆(r) = 2ζΩ− Φ2.

Using a WKBJ method, and making the assumption that k � 1, the solution to this

equation can be approximated by [Bender and Orszag, 1978]:

ur =
Q1/2

r1/2γ1/4

[
A+ exp

(
ik

∫ r

rt

√
γ (t)dt

)
+ A− exp

(
−ik

∫ r

rt

√
γ (t)dt

)]
, (D.1)

γ =
Φ2 − 2ζΩ

N2 − Φ2
.

Here A± are constants and rt is a turning point for which γ(rt) = 0. Positive values of γ

correspond to wave-like regions of the mode, whereas negative values of γ correspond to

regions that are either exponentially growing or decaying with radius.

If |N | >
∣∣√2ζΩ

∣∣ for all r1 < r < r2, and µ < η2, then there will be two distinct regions

in the [f, r]-parameter space where γ > 0 and the solutions are wave-like. We define five

lines in this parameter space: fN± = mΩ±N , f± = mΩ±
√

2ζΩ, and fc = mΩ. These

lines, and the two wave-like regions, are shown in figure D.1. For a given frequency, each

of these lines can be related to the Lagrangian frequency Φ(r).

(i) The lines f = fN± denote where Φ = ±N .

(ii) The lines f = f± denote where Φ = ±
√

2ζΩ. Wave-like regions, which require

γ > 0, exist between the lines fN± and f±.

(iii) The line f = fc denotes where the real component of Φ changes sign, and the sign of

Φ controls the direction that the waves propagate in when compared to the basic state flow.
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Figure D.1: The lines fN± (dot-dashed) and f± (dashed) are plotted for η = 0.55, µ = 0.31, m = 1,

and N = 1.0. Also plotted is the line fc (thin dashed line, unlabelled) at which the real part of Φ changes

sign. Shaded regions represent where γ > 0. The constant line f = fSRI = 0.546 gives an example

frequency for which both regions of positive γ exist. For this frequency, Φ(rc) = 0 occurs at rc = 1.66,

Φ(r−) = −
√

2ζΩ occurs at r− = 1.44, and Φ(r+) = +
√

2ζΩ occurs at r+ = 1.92. Note that this figure

correlates with figure 4.2 which uses the same parameters.

Since the line f = fc is always between the two wave-like regions, then the two wave-like

regions always propagate in opposite directions compared to the basic state flow. (In the

lab frame, the two wave-modes always move together.)

Figure D.1 specifically shows an example where it is possible for a single modal frequency

to pass through both wave-like regions. In this context, the flow exhibits wave-like be-

haviour adjacent to the cylinder walls, and a region of evanescent behaviour away from

the walls where γ < 0. Note that this is only possible with values of [η, µ,N ] which sat-

isfy equations (4.1) and (4.2). Park and Billant [2013] showed that the dispersion relation

when this occurred could always be made unstable.

Dispersion relation

The dispersion relation for a frequency which passes through both wave-like regions is:

[Park and Billant, 2013]

(K (r1, rt1) + iα) (K (rt2, r2) + iα) =
(
1− α2

)
K (r1, rt1)K (rt2, r2) , (D.2)

α =
4 +X (rt1, rt2)

4−X (rt1, rt2)
,
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with

K (ra, rb) = exp

(
2ik

∫ ra

rb

√
γ (t)dt

)
, X (ra, rb) = exp

(
−2k

∫ ra

rb

√
−γ (t)dt

)
.

Here rt1 and rt2 correspond to the radial turning points at which γ = 0, and the frequency

is equal to f+ and f− respectively.

The approximation is then made that X (rt1, rt2) � 1, and hence that α ' 1. X is made

small since the exponent is negative in the evanescent region; however this approximation

could potentially break down if the evanescent region was sufficiently small, or if
√
−γ '

0 throughout the region.

The small parameter ε =
√
X (rt10 , rt20) is defined, with α expanded as α = 1 + ε2/2 +

O (ε4) .Note that rt10 and rt20 represent the radial turning points evaluated at leading order

in ε.

We now make use of the complex frequency ω = iσ = f + iσr. The complex frequency

ω and the wavenumber k are expanded out as:

ω = ω0 + εω1 + ε2ω2 + . . .

k = k0 + εk1 + ε2k2 + . . .
(D.3)

At leading order with this approximation, the dispersion relation reduces to:

(K (r1, rt1) + i) (K (rt2, r2) + i) = 0.

This is satisfied by either K (r1, rt1) = −i or K (rt2, r2) = −i. These two cases cor-

respond to neutral waves propagating around the inner and outer cylinders respectively.

These can be satisfied simultaneously with the appropriate choice of ω0 and k0, which are

both real. With this choice, the dispersion relation is also satisfied at O(ε).At O(ε2) we

have:

[k1h (r1, rt1) + k0ω1hω (r1, rt1)] [k1h (rt2, r2) + k0ω1hω (rt2, r2)] =
1

4
, (D.4)

with:

h(ra, rb) =

∫ rb

ra

√
γ0dt, hω(ra, rb) =

∫ rb

ra

∂
√
γ0

∂ω
dt,
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γ0 =
Φ2

0 − 2ζΩ

N2 − Φ2
0

, Φ0 = ω0 −mΩ.

Equation (D.4) can be solved to give ω1 as:

ω1 = − k1
2k0

(
h (r1, rt1)

hω (r1, rt1)
+

h (rt2, r2)

hω (rt2, r2)

)
± 1

2k0

√(
h (r1, rt1)

hω (r1, rt1)
− h (rt2, r2)

hω (rt2, r2)

)2

k21 +
1

hω (r1, rt1)hω (rt2, r2)
.

(D.5)

It is important to note that:

∂
√
γ0

∂ω
=
−Φ0 (2ζΩ−N2)
√
γ0 (N2 − Φ2

0)
2 .

We stated earlier that Φ0 changes sign between the two regions of positive γ; this means

that ∂
√
γ0/∂ω has the opposite sign in each region. We can therefore conclude that the

quantity hω (r1, rt1)hω (rt2, r2) is always negative.

This means that ω1 can be made imaginary by choosing k1 = 0, which yields a real

growth rate that can be positive and therefore an unstable mode. It is therefore a sufficient

condition for instability that a single modal frequency be able to pass through both wave-

like γ > 0 regions.

D.2 Establishing Instability Conditions

We have established that a sufficient condition for inviscid instability is that, at a single

frequency, two wave-like regions exist at the inner and outer boundaries, with an evanes-

cent region in between.

For this to be possible, the γ > 0 regions must exist within the [f, r]-parameter space, and

be adjacent to each cylinder. This requirement implies that (A) max(fN−) < max (f−)

and (B) min(f+) < min (fN+).

To guarantee that both regions exist for a single value of the frequency f , we require

that (C) max(f−) > min (f+). Finally, to guarantee that this frequency can begin in one

region and end in another without crossing either of the lines fN±, we also require that

(D) min(fN+) > max (fN−).
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Note that the maxima and minima of all of these functions are always at either r = r1 or

r = r2.

First Condition for Instability

For the case µ < 1, we can state (A) as fN−(r1) < f−(r1), i.e.:

m−N < m− 2
√
A,

=⇒ N > 2
√
A,

=⇒ 2

√
µ− η2
1− η2

< N.

Here we have recovered (4.1) for the case µ < 1.

We can also state (B) as f+(r2) < fN+(r2), i.e.:

mµ+N > mµ+ 2
√
µA,

=⇒ N > 2
√
µA.

It can therefore be concluded that (B) is satisfied for µ < 1 if (A) is satisfied.

For the case µ > 1, we can state (A) as fN−(r2) < f−(r2), i.e.:

mµ−N < mµ− 2
√
µA,

=⇒ N > 2
√
µA,

=⇒ 2

√
µ (µ− η2)

1− η2
< N.

Here we have recovered (4.1) for the case µ > 1.

We can also state (B) as f+(r1) < fN+(r1), i.e.:

m+N > m+ 2
√
A,

=⇒ N > 2
√
A.

As before, it can be concluded that (B) is satisfied for µ > 1 if (A) is satisfied.

132



D Instability Conditions of Park and Billant [2013]

Second Condition for Instability

Let us consider (C) for the case µ < 1. In this case, we can state (C) as f−(r1) > f+(r2),

i.e.:

mµ+ 2
√
µA < m− 2

√
A,

=⇒ 2
√
A(1 +

√
µ) < m(1− µ),

=⇒ 2

1−√µ

√
µ− η2
1− η2

< m.

Here we have recovered the lower bound on m from (4.2) for the case µ < 1.

Let us now re-consider (C) for the case µ > 1. Here we can state (C) as f−(r2) > f+(r1),

i.e.:

m+ 2
√
A < mµ− 2

√
µA,

=⇒ 2
√
A+ 2

√
µA < m(µ− 1),

=⇒ 2
√
A(
√
µ+ 1) < m(µ− 1),

=⇒ 2

√
µ− η2
1− η2

(√
µ+ 1

µ− 1

)
< m,

=⇒ 2
√
µ− 1

√
µ− η2
1− η2

< m.

Here we have recovered the lower bound on m from (4.2) for the case µ > 1.

Now let us consider (D) for the case µ < 1, for which we can express (D) as fN+(r2) >

fN−(r1), i.e.:

m−N < mµ+N,

=⇒ m <
2N

1− µ
.

Here we have recovered the upper bound on m from (4.2) for the case µ < 1.

Re-considering (D) for the case µ > 1, we have fN+(r1) > fN−(r2), i.e.:

mµ−N < m+N,

=⇒ m(µ− 1) < 2N,

=⇒ m <
2N

µ− 1
.
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Here we have recovered the upper bound on m from (4.2) for the case µ > 1.

We can therefore state the second condition for instability for any µ 6= 1 as:

2∣∣1−√µ∣∣
√
µ− η2
1− η2

< m <
2N

|1− µ|
.

This is equation (4.2).
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E Conditions for instability if µ < 1 andN < 2

In this appendix we will show that equations (4.1) and (4.3) can be rearranged to give

sufficient conditions for instability on η and µ for any given N in the range 0 < N < 2.

The case N ≥ 2 is shown to always be unstable in section 4.2.1. We restrict ourselves

to the range η2 < µ < 1, since µ < η2 is known to be unstable to inviscid axisymmetric

modes. This work can be considered to be an extension of Park and Billant [2013].

We repeat equations (4.1) and (4.3) here for ease of reading. Both are expressed for the

case µ < 1:

2

√
µ− η2
1− η2

< N,

2

1−√µ

√
µ− η2
1− η2

+ 1 <
2N

1− µ
.

Reversible Operations upon Inequalities

In the following analysis we will be individually manipulating each of the two equations

above, in order to find a set of conditions upon η and µ for which the equations are

mutually satisfied. To this end, all operations performed on the inequalities are intended

to be fully reversible. We will therefore here review the set of reversible operations that

can be performed on an inequality.

Addition or subtraction of any quantity to both sides of an inequality requires no adjust-

ment of the inequality sign, and is therefore a reversible operation. Multiplication through

by a positive quantity also requires no adjustment of the inequality sign and is therefore

reversible. Multiplication by a negative quantity merely requires that the direction of the

inequality sign be switched, and is nonetheless a reversible operation.

Squaring both sides of an inequality, or taking the positive square-root, is more compli-

cated. If both sides of the inequality can be shown to be positive, then neither of these

two operations requires any adjustment of inequality sign, and therefore either operation

is reversible by applying the other operation. If both sides of the inequality can be shown

to be negative, then one can first multiply through by −1, switching the inequality sign
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as mentioned above, to reach the case where both sides of the inequality are positive, and

operations of squaring or rooting are applicable and reversible.

If one of side of the inequality is positive whereas the other side is negative, then squaring

or rooting operations cannot be performed. However, in this context it is clearly possible

to tell whether or not the inequality has been satisfied. If reversible operations have been

used to reach such a point, then this will reveal either a necessary or sufficient condition

for the original inequality to be satisfied.

E.1 First Condition for Instability

We have equation (4.1):

2

√
µ− η2
1− η2

< N.

This can be squared since the both sides are demonstrably positive:

µ− η2

1− η2
<
N2

4
.

Since (1− η2) > 0, we can write :

µ < µ0, with µ0 defined as: µ0 = η2 +
1− η2

4
N2. (E.1)

This is our first condition for instability on µ.

Second Condition for Instability

Rearranging (4.3) is considerably more involved. We have:

2

1−√µ

√
µ− η2
1− η2

+ 1 <
2N

1− µ
.

Subtracting 1 from both sides, and then multiplying through by
(
1−√µ

)
/2 (positive in

our chosen domain) yields:√
µ− η2
1− η2

<
N

1 +
√
µ
−

1−√µ
2

. (E.2)
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Since µ > η2 and η2 < 1, we can guarantee that the LHS of (E.2) is positive. Therefore

we can conclude the following weaker but necessary condition for instability on µ:

0 <
N

1 +
√
µ
−

1−√µ
2

,

=⇒ 0 <
N

1− µ
− 1

2
,

=⇒ µ > 1− 2N. (E.3)

Note that this inequality is automatically satisfied if N ≥ 1/2, since we have already

declared that µ > 0.

If (E.3) is false then the system is stable with respect to the dual-wave-mode SRI. If (E.3)

holds true however, then both sides of (E.2) are positive, and we can square both sides of

the condition:
µ− η2

1− η2
<

(
N

1 +
√
µ
−

1−√µ
2

)2

.

=⇒ 1− 1− µ
1− η2

<
N2(

1 +
√
µ
)2 +

(
1−√µ

)2
4

−
1−√µ
1 +
√
µ
N.

We now multiply through by 4 (1− η2)
(
1 +
√
µ
)2. This is a positive quantity, so the

inequality sign is not affected:

4
(
1− η2

)
(1 +

√
µ)2 − 4 (1− µ) (1 +

√
µ)2 < . . .

. . . 4N2
(
1− η2

)
− 4N (1− µ)

(
1− η2

)
+
(
1− η2

)
(1− µ)2 .

We can now collect the equation in terms of (1− η2), yielding:

4 (1− µ) (1 +
√
µ)2 > . . .

. . .−
(
1− η2

) [
4N2 − 4N (1− µ)− 4 (1 +

√
µ)2 + (1− µ)2

]
.

(E.4)

Let us rewrite (E.4) as 4 (1− µ)
(
1 +
√
µ
)2
> (1− η2) f1, with f1 defined as:

f1 = −
[
4N2 − 4N (1− µ)− 4 (1 +

√
µ)2 + (1− µ)2

]
.

The LHS of (E.4) is guaranteed to be positive for η2 ≤ µ < 1, as is the quantity (1− η2).

Therefore if f1 ≤ 0 then (E.4) is automatically satisfied. However, if f1 > 0, then (E.4)

must be consulted further to ascertain the condition for instability.
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We can factorise f1 as follows:

f1 = −
(√

µ− 1 +
√

2 (2−N)
)(√

µ− 1−
√

2 (2−N)
)

×
(√

µ+ 1 + i
√

2N
)(√

µ+ 1− i
√

2N
)
.

(E.5)

For η2 < µ < 1 with real µ, then η <
√
µ < 1, and

√
µ is also real. Therefore in our

chosen range, f1 only changes sign when
√
µ =
√
µ
1

= 1−
√

2 (2−N).

Note also that for µ → 1, we have f1 = − (4N2 − 16) = 4 (4−N2) . Therefore for

0 < N < 2, then f1(µ→ 1) > 0. This allows us to conclude the following:

f1 > 0 for
√
µ1 <

√
µ < 1,

f1 ≤ 0 for
√
µ ≤ √µ1.

(E.6)

Returning to (E.4), we have the form 4 (1− µ)
(
1 +
√
µ
)2
> (1− η2) f1. If f1 ≤ 0 this

is automatically satisfied. Therefore, our second condition for instability is satisfied if
√
µ ≤ √µ

1
.

If
√
µ1 <

√
µ < 1, then f1 > 0. Dividing both sides of (E.4) by f1 and rearranging yields:

η2 >
1

f1

[
f1 − 4 (1− µ) (1 +

√
µ)2
]
.

Defining f2 = f1 − 4 (1− µ)
(
1 +
√
µ
)2
, this can be written as:

f2
f1
< η2. (E.7)

We know that f1 and η2 are both positive, which means (E.7) is automatically satisfied

if f2 ≤ 0. If f2 > 0 then we can take the square root of both sides to proceed. We can

factorise f2 as follows:

f2 =
1

3

(√
µ+ 1−

√
2N
)(√

µ+ 1 +
√

2N
)

×
(

3
√
µ+ 1 +

√
2 (2− 3N)

)(
3
√
µ+ 1−

√
2 (2− 3N)

)
.

(E.8)

Note that for µ → 1, we have f2(µ → 1) = 17 − 4N − (2N − 1)2 . Therefore for

0 < N < 2, we have f2(µ→ 1) > 0.
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We also now define the following quantities where f2 changes sign:

√
µ2 =

(
−1 +

√
2 (2− 3N)

)
/3,

√
µ3 =

√
2N − 1,

√
µ4 = −

√
2N − 1,

√
µ5 =

(
−1−

√
2 (2− 3N)

)
/3.

(E.9)

Note that
√
µ
4
< 0 and

√
µ
5
< 0 for all N . Both terms are therefore outside the range

η <
√
µ < 1 and can be ignored.

However
√
µ
2
> 0 if N < 1/2, and

√
µ
3
> 0 if N > 1/2. Therefore f2 will change

sign at either
√
µ =

√
µ
2

or
√
µ =

√
µ
3
, depending on whether N < 1/2 or 1/2 < N

respectively. For the case N = 1/2, f2 will only change sign at
√
µ = 0; however, since

we have declared that 0 < η <
√
µ, in that context we have f2 > 0 throughout our chosen

domain.

We can therefore conclude the following set of conditions on the sign of f2:

f2(µ)



If
(
N < 1

2

)
then


√
µ2 <

√
µ < 1 =⇒ f2 > 0,

η <
√
µ ≤ √µ2 =⇒ f2 ≤ 0.

If
(
N = 1

2

)
then f2 > 0 for η <

√
µ < 1,

If
(
N > 1

2

)
then


√
µ3 <

√
µ < 1 =⇒ f2 > 0,

η <
√
µ ≤ √µ3 =⇒ f2 ≤ 0.

(E.10)

From (E.7), if f2 ≤ 0, then our second condition for instability is satisfied, whereas if

f2 > 0 then our second condition for instability is only satisfied if:√
f2
f1
< η. (E.11)

E.2 Summary

We now have a set of conditions on η and µ which determine whether a stratified flow

with buoyancy frequency N is unstable to dual-wave-mode SRI. The following equations

make up the relevant set of conditions: (E.1), (E.3), (E.6), (E.10), (E.11).
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Appendices

For a summary of how these conditions fit together, see figure 4.3. As part of these

conditions we’ve defined the following quantities:

µ0 = η2 +

(
1− η2

4

)
N2,

√
µ1 = 1−

√
2 (2−N),

√
µ2 =

1

3

(
−1 +

√
2 (2− 3N)

)
,

√
µ3 = −1 +

√
2N,

f1 = −
[
4N2 − 4N (1− µ)− 4 (1 +

√
µ)2 + (1− µ)2

]
,

f2 = 3µ2 + 8µ
√
µ− 2 (2N − 3)µ− (2N − 1)2 .
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