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ABSTRACT 

Topographically complex slope to basin floor profiles are increasingly recognised in modern 

seafloor, seismic reflection and outcrop datasets, and range from simple slope profiles, 

through stepped slopes with high gradient ramps linking low gradient steps, to slopes with 3D 

enclosed minibasins linked by tortuous corridors. This study investigates a range of slope to 

basin floor topographic configurations with multi-scale (mm to 100 km) variability, using 

regionally extensive exposures from the Permian slope to basin floor deposits in the 

Laingsburg depocentre, Karoo Basin, South Africa. Over 400 outcrop logs, totalling 14 km in 

thickness, combined with a large database from earlier Stratigraphy Group studies, are used to 

assess the influence of dynamic seabed relief on turbidity current processes and depositional 

patterns across a range of scales, and their transfer into the stratigraphic record.  

Degradation plays a large role in shaping submarine slopes. The formation and evolution of a 

submarine slide complex is investigated, including time transgressive lateral margins of basal 

shear surfaces/zones and varyingly confined of remobilized and turbidite infill.  

The base of slope is a key area of gradient change. Here, the spatial and temporal variations of 

a channel-lobe transition zone (CLTZ) are documented, including how topographic influence on 

turbidity currents varies and evolves, causing CLTZ expansion/contraction and migration. In 

addition, how these topographically complex areas are transferred into the stratigraphic 

record, as single surfaces and volumes of rock, is discussed. 

Areas of dynamic and fixed topography have been recognised as having long-term effects, 

leading to the evolution of a stepped slope profile. In the Laingsburg depocentre stepped slope 

topography initiated before major clastic input and increased temporally, gradually outpacing 

sediment supply. The effects of slope orientation and gradient change on flow processes and 

stratigraphic architecture are presented as a range of intraslope lobe deposits and bypass 

dominated zones. 
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Figure 2.26 Cartoon summarising the three main types of flow behaviour and resultant depositional 

architectures across the Maderia Channel System. In plan-view arrows indicate flow direction 

and size of arrow represents flow velocity, darker shaded areas indicate areas of deposition 

whereas lighter areas represent non-deposition. In cross section arrows indicate zones of 

deposition (from Stevenson et al., 2013). .....................................................................................45 

Figure 2.27 Comparison of shapes and area of failures studies within the COSTA project (from Canals 

et al., 2004). .................................................................................................................................47 

Figure 2.28 Three dimensional map of slope offshore Norway showing the geomorphology of the 

Storegaa slide, from http://www.offshore-technology.com/projects/ormen-lange-field/ormen-

lange-field8.html. ........................................................................................................................48 

file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524882
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524882
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524882
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524883
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524883
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524884
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524885
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524885
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524885
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524885
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524885
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524885
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524885
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524888
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524888
file:///F:/Thesis/Corrections/for%20paul/Hannah%20Brooks%20Thesis%20corrections/Hannah_Brooks_Thesis_Final-all%20corrections.docx%23_Toc498524888


xviii 
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O’Byrne et al., 2004). Predicted slope evolution describes depositional and erosional response of 

turbidity currents to progressive slope build-up and associated accommodation reduction (from 

Hay, 2012). .................................................................................................................................. 54 
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base-of-slope systems affected by gravity-driven tectonics. Terrestrial fluvial-delta systems in 
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Figure 4.1 Example of a submarine landslide confined by a basal shear surface including lateral 

margins from a 3D seismic volume of upper to mid slope deposits, Magdalena Fan, Caribbean 

Sea, offshore Colombia. (A) Variance extraction map of submarine slide. (B) Seismic cross 
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relief at the top of the initial remobilized/ mass transport deposit (MTD) fill, showing the 

widening and shallowing of the basal shear surface down-dip (adapted from Ortiz-Karpf et al., 
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Figure 4.2 (A) Image of southwestern Karoo Basin showing Tanqua and Laingsburg depocentres 

outlined and study area enlarged. (B) Enlargement of outcrop section showing data points and 

outcrop location. Sections east and west of the zones of no exposure/ tectonic deformation show 

in place strata unaffected by large-scale erosion surfaces. (C) (Left) Stratigraphic column of Late 

Carboniferous, Permian and Early Triassic deposits in the Laingsburg depocentre. Blue dashed 

box indicates units involved in this study. (Right) Logged section of strata outside of outcrop, 

showing in place deposit, unaffected by large-scale erosion. Lower logged units correspond to 

the Whitehill, Collingham and Vischkuil formations. Upper units of thick remobilized sandstone 

and bedded turbidites may correspond to the Vischkuil/ Laingsburg Formations or the equivalent 
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Figure 4.3 (A) Logs and correlation of units across outcrop. Colours indicate facies associations, red 

lines show observed and interpreted surfaces. Numbers indicate package divisions. Log of 

Surface 2 infill (Packages 4 and 5) shown in figure 4.9. (B) Photopanel of outcrop with overlay of 

logged sections, facies associations and erosional surfaces. Panel and logs shown in more detail 
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Figure 4.4 Representative photographs depicting facies associations present throughout the outcrop. 

(A) Iron-rich mudstone, Prince Albert Formation. (B) Organic rich mudstone, Whitehill Formation, 

notebook shown 20 cm long. (C) Iron cemented sandstone turbidite beds. (D) Matjiesfontein 

chert, marker bed, lens cap 7 cm in diameter. (E) Interbedded sandstone/ siltstone turbidites and 

ash deposits (marked as A), notebook 20 cm long. (F) Interbedded turbidites and chert layers, 

notebook 20 cm long. (G) Sharp topped sandstone and siltstone beds, upper turbidite marker 

package. (H) Sandstone to siltstone graded turbidite beds. (I) Thin-bedded turbidites. (J) Planar 

and climbing ripple laminated turbidite. (K) Iron-rich ripple laminated turbidite. (L) Thick debrite. 

(M) Section of debrite with mm- cm scale mudstone clast in distinctive blue mud-rich matrix, 

pencil for scale. (N) Folded interbedded sandstone and siltstone turbidites, geologist for scale. 

(O) Folded and slumped sandstone beds, white dashed lines indicates fold of beds, geologist for 

scale. (P) Base of folded sandstone bed. .................................................................................... 111 

Figure 4.5 Sketches illustrating stratigraphic evolution, divided into 7 key stages. (P1) Deposition of 

lower Ecca group, folded and chaotic strata and megaclasts. (S1) Formation of surface 1, (P2) 

overlain by folded, chaotic deposits and clasts. (P3) Deposition of onlapping and infilling 

turbidites and chaotic strata. (S2) Formation of surface 2. (P4) Infill of surface by chaotic 

deposits. (P5) Deposition of onlapping and infilling turbidites and folded strata. Palaeocurrents 

from ripple, groove, flute and scout marks. Note formation and filling of surfaces may have been 

instantaneous. ........................................................................................................................... 116 

Figure 4.6 Photograph of lower stratigraphy, Collingham Fm. with Matjiesfontein chert bed, 

decreasing upwards in ash and chert with a transitional boundary to overlying silt-rich turbidites.  

A sharp, slightly erosive boundary marks the deposition of chaotic and remobilized strata. ..... 117 

Figure 4.7 Key architectural characteristics across outcrop. (A) Lower stratigraphy (Package 1) cut by 

Surface 1, which passes from a sharp, stepped surface to intense zone of sheared mudrock 

laterally (detailed photo shown in figure 4.8A), overlain by onlapping turbidites and chaotic 

deposits (Package 3), cut by Surface 2, overlain by chaotic deposits and megaclast (Package 4) 

and further overlain by onlapping graded turbidites, chaotic packages and upper turbidite 

package datum (Package 5). (B) Collingham clast (Package 2) overlain by onlapping but rotated 

turbidites (Package 3), cut by Surface 2 and overlain by debrites and further onlapping turbidites 
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(Package 4). (C) Debrite and slumps (Package 2) overlain by megaclasts (Package 2) and 

debrites(Package 3), cut by Surface 2 overlain by debrites (Package 4) and onlapping, graded 

turbidites (Package 5). Facies association colour key shown on figure 4.3. ............................... 118 

Figure 4.8 Photos basal shear zone (Surface 1) and slumped sandstone-rich turbidites and surface 2. 

(A) Section of basal shear zone with foiled fabric, contorted strata, sheath folds and white lines 

showing numerous small scale faults. (B) Stepped section of surface 2 cutting folded and 

dewatered sandstone turbidites (Package 3). Overlying turbidites onlap surface (Package 5). (C) 

Erosional surface eroding slumped sandstone (Package 3) overlain by Collingham clast (Package 

4). (D) Stepped surface 2 with onlapping turbidites (Package 5) from opposing sides of 

topography. (E) Scour present on top of erosional surface with coarse lag of medium sandstone 

and mudclasts. (F) Scour on top of erosional surface mantled with mudstone clasts. ................ 119 

Figure 4.9 Logged section through Package 4 and Package 5. Base of log is Surface 2. Location of log 

shown on figure 4.3 and 4.7C. Chaotic deposits of Package 4 are overlain by thick graded 

turbidite beds which transition upwards into thinner sharp topped beds with intervening layers 

of chaotic and folded deposits that are laterally extensive over the outcrop. Top 12 m of log are 

used as upper datum for figure 4.3. Key for facies association on figure 4.3. ............................ 123 

Figure 4.10 Sketches illustrating depositional and erosional evolution over the outcrop and the 

surrounding area, with sequential panels simplified from figure 4.3. (P1i) Deposition of lower 

Ecca Group stratigraphy towards the east. (P1ii) Unconfined remobilized deposition. (S1 and P2) 

Erosion by basal shear surface 1 and remobilized infill towards the north. (P3i) partially confined 

turbidite infill, with overlying chaotic deposits. (P3ii) Partially remobilized intraslope lobe 

complex. (S2 and P4) Erosion by basal shear surface 2 and chaotic infill. (P4i) Fully confined 

turbidite and chaotic infill of surface 2. (P5ii) Overspill of confining topography and unconfined 
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Figure 4.11 Post deposition failure of surfaces. Including tilting of onlapping strata and failure away 

from lateral margins and headwall. Both Surface 1 and 2 basal shear surfaces display a variation 
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Dashed brackets numbered 1-3 refer to slide complex subdivisions (Stage 1, 2 and 3), discussed in 

text and shown in figure 4.12. ................................................................................................... 130 
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Figure 4.12 Three key stages of outcrop evolution. Stage 1- deposition of frontally emergent 

remobilized deposits with onlapping turbidity currents, with basal shear surface located up-dip of 

the outcrop exposure in this study. Stage 2- Formation of basal shear surface 1, with initial 

remobilized deposits either frontally confined with frontal ramp creating down-dip topography 

or frontally emergent and creating a mounded topographic barrier down-dip. Subsequent 

infilling turbidites are partially confined. Stage 3- Formation of basal shear surface 2 with initial 

remobilized deposits either frontally confined with frontal ramp creating down-dip topography 

or frontally emergent and creating a mounded topographic barrier down-dip. Subsequent 

turbidite and remobilized infill transitions stratigraphically from fully confined to unconfined. 134 

Figure 4.13 (A) Simplified dip section of Stage 1, 2 and 3 basal shear surfaces and subsequent deposits, 

showing possible scenario to create strike section documented in this study. (B) Evolution of 

turbidite confinement from Stages 1-3 showing transition from unconfined turbidites, to partially 

confined and fully confined with each subsequent failure. Dip section shows how increasing slope 

gradient and mounding of deposits down-dip could create increased turbidite confinement whilst 

initial remobilized deposits remain frontally emergent with decreasing run-out distance. ........ 135 

Figure 4.14 Sketch of shelf and slope systems indicating how interplay of sediment supply rate and 

rate of slope degradation can vary the infill of submarine slide basal shear surfaces. Slides in 

areas of high sediment supply can cause the capture and rerouting of sediment pathways, and 

become quickly infilled and overspilled. In locations distal to sediment supply, slides can remain 

underfilled with degradation rate outpacing sedimentation rate. In intermediary areas periods of 

high and low sediment supply mean that on average sediment supply is roughly equal to 

degradation rate. ...................................................................................................................... 139 

 

Figure 5.1 (A) Location of the study area within southwestern Africa. Black box indicates location of 

map B. (B) Regional geological map of the Western Cape. The study area is located in the 

Laingsburg depocentre, where Ecca Group stratigraphy is exposed, north of the Swartberg 

branch of the Cape Fold Belt (Modified from Flint et al., 2011). ................................................. 145 
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Figure 5.2 (A) Stratigraphic column showing the Permian Ecca Group deposits in the Laingsburg 

depocentre, southwestern Karoo Basin. This stratigraphy represents margin progradation from 

deepwater basin plain deposits (Vischkuil and Laingsburg formations), through submarine slope 

(Fort Brown Formation) and continues to shallow water (Waterford Formation). Blue box 

indicates detailed section shown in B. (B) Submarine slope system Unit D/E and Unit E of the Fort 

Brown Fm., the focus of this study (modified from van der Merwe et al., 2014). ....................... 146 

Figure 5.3.  (A) Location of the study area relative to Laingsburg town. Dashed lines indicate the 

location of outcrop belts. White shading indicates the exposure of Fort Brown and Laingsburg 

formations. Locations marked Roggekraal, Zoutkloof and Geelbek are the study areas related to 

the corresponding up-dip deposits of Unit E (Spychala et al., 2015). (B) Enlarged area shows the 

four sections of regional panels involved in this study and the key Slagtersfontein location. The 

northern panel 1, contains 64 logs, the central northern panel 2, contains 67 logs, the central 

southern panel 3, contains 39 logs, and the southern panel 4 contains 30 logs. The highest 

concentration of data is in the Slagtersfontein study area on panel 2. Locally the top of Unit E3 

along panel 3 is lost to modern erosion by a tributary of the Gamka River. Aerial photographs are 

from NASA Visible Earth (National Aeronautics and Space Administration, 

http://visibleearth.nasa.gov/; regional scale) and Chief Directorate: National Geo-spatial 

Information, South Africa (http://www.ngi.gov.za/; Laingsburg depocentre). (C) Google Earth 

image of Slagtersfontein study area showing laterally continuous Unit D and abrupt thickening 

of Unit E down-dip. Tops and bases of units are mapped by walking surfaces and tracking with 

GPS............................................................................................................................................ 148 

Figure 5.4 Regional dip correlation panel along the Baviaans South outcrop belt with data from 

previous studies (van der Merwe et al., 2014; Spychala et al., 2015), showing the D-E interunit 

mudstone, Unit D/E, Unit E, and the E-F interunit mudstone Interpretations of architectural 

elements show the down-dip transition in Unit E from slope channels, through intraslope lobes, 

channel-levee systems and channel-lobe transition zone, to basin-floor fans. Datum used is top 

Unit B, an underlying basin-floor fan (shown in Fig. 5.2A). Map highlights the location of outcrop 

belt within Figure 5.3, with the red line denoting the location of this dip section and black dashed 

lines showing other exposed sections. ....................................................................................... 149 
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Figure 5.5 Representative photographs of sedimentary facies. (A) Structureless sandstone; (B)  

Structured sandstone, dashed white lines indicate sheared climbing ripple laminations; (C) 

Mudstone clast conglomerate; (D) Scoured siltstone and sandstone, dashed red lines indicate 

erosional surfaces; (E) Hybrid beds, dashed white line indicates division between lower sandstone 

turbidite and upper debrite; (F) Interbedded sandstone and siltstone; (G) Remobilised deposits; 

(H) Hemipelagic mudstone.  Scales: logging pole with 10 cm divisions, camera lens 7 cm in 

diameter. ................................................................................................................................... 151 

Figure 5.6 Regional correlation panels of Unit D/E and subunits E2 and E3. Panels positioned north 

(top) to south (base). Southern panel (panel 4) shown on Figure 5.7 with facies associations, 

consisting of E3 with two small outcrops of Unit E2, in the up-dip area. Relative spatial positions 

shown in fence diagram (Fig. 5.8). More detailed panel of Slagtersfontein CLTZ shown in detailed 

panels (Figs 5.10 and 5.11). Rose diagrams show palaeocurrent directions from ripples, grooves 

and flutes throughout all units. ................................................................................................. 157 

Figure 5.7 Regional correlation panels showing facies associations of Unit D/E and subunits E2 and E3. 

For Unit divisions of panels A, B and C see Figure 5.6. For logs and more detailed panels, see 

Appendix B.2-5. ......................................................................................................................... 158 

Figure 5.8 Fence diagram showing 3D architecture and facies associations of Units D/E, E2 and E3. For 

geographic positions of outcrop belts see Figure 5.3B. For unit divisions see Figure 5.6. For key 

see Figure 5.7. ............................................................................................................................ 159 

Figure 5.9 Combined thickness isopach maps and gross depositional environment reconstructions for 

(A) Unit D/E, (B) Subunit E2 and (C) Subunit E3. Contours indicate thickness of unit in metres, 

contour spacing at 2 m for D/E, 1 m for E2 and 5 m for E3. Black circles indicate locations of data 

from logged sections shown on panels (Figs 5.6 and 5.7), red circles indicate data from logs 

presented in Appendix A and B2-5. White arrows indicate average palaeocurrent direction. 

Geographic area covered is the same as that shown in Figure 5.3B, presented in palinspastically 

restored positions Mapped thickness distributions were created by fitting a surface to thickness 

values extracted from the logged sections. The surfacing operation was conducted in ArcGIS 

using the simple kriging tool within the Geostatistical Wizard 

(http://resources.arcgis.com/en/home/). Output maps are extended to the extremities of the 
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input data by the surfacing algorithm, which creates rectangular maps that may extend beyond 

the edge of the input data. Additional modifications were made to subunit E3 surfaces to account 

for minimum values of the down-dip logged sections along panel 3. Channel and lobe boundaries 

are not precise locations and are interpreted from thickness trends and palaeocurrent directions.  

Palaeogeographic maps are based on the distribution of sedimentary facies and architectural 

elements. .................................................................................................................................. 160 

Figure 5.10 Slagtersfontein detailed section, location shown on figure 5.6, 5.7 and 5.8. Up-dip area of 

Slagtersfontein panel, divided into sections 1-3 for description purposes. Deposits transition from 

levee (section 1) to sediment bypass dominated zone (sections 2 and 3), figure 5.11 continues 

down-dip showing sections 4 and 5. (A) Simplified panel section across whole Slagtersfontein 

study area, highlighting the focus of this figure. Colours indicate subunits E2 and E3 separated by 

the E2-E3 intra-unit mudstone. (B) Panel showing logged sections of E2 and E3, datumed on Top 

Unit D. For larger regional panel 2, see figures 5.7 and 5.8. Logs and log key are in Appendix B2-

5. (C) Schematic sketch of key features in subunits E2 and E3 across section, showing down-dip 

changes in thickness, facies and sedimentary structures. .......................................................... 165 

Figure 5.11 Down-dip area of Slagtersfontein panel, continuing from Figure 5.10, divided into sections 

4-5 for description purposes. Deposits transition from thin, dewatered, scoured and reworked 

sandstone (section 4) to abruptly thickening lobe deposits (section 5). (A) Simplified panel section 

across whole Slagtersfontein study area, highlighting the focus of this figure. Colours indicate 

sub-units E2 and E3 separated by the E2-E3 intra-unit mudstone. (B) Panel showing logged 

sections of E2 and E3, and localised deposition of Unit D/E. Datum for panel is Top Unit D. (C) 

Schematic sketch of key features in subunits E2 and E3 showing down-dip changes in thickness, 

facies and sedimentary structures.T1- T4 refer to sequence of deposition shown in Figure 5.15. 

For key see Figure 5.10. ............................................................................................................. 166 

Figure 5.12 Representative photographs of Unit E3 over sections 2 to 5 of the Slagtersfontein CLTZ. (A) 

Basal spill-over fringe deposits and aggradational sandstone bed. (B) Composite erosional 

surfaces, aggradational sandstone bed with scoured top and overlying siltstone and lag deposits. 

(C) Rippled thin sandstone beds. (D) Discontinuous lenticular sandstone beds cut by erosional 

surfaces and draped by lags. (E) Highly dewatered sandstone beds with erosional surfaces 
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throughout. (F) Megaflute scour at top of unit, eroding dewatered sandstone. (G) Thin eroded 

sandstone bed, constituting the entire coarse component of E3. (H) Thick amalgamated 

sandstone beds and sand-rich hybrid beds of E3 proximal lobes. (I) Discontinuous lenticular 

sandstone beds, cut by erosional surfaces and draped by lags, at the base of E3 lobe deposits. (J) 

Sand-rich hybrid bed. Scales: logging pole with 10 cm divisions, notebook 15 cm in length. ...... 167 

Figure 5.13 (A) Location of section shown in B and C within the CLTZ. Colours indicate subunits E2 and 

E3 separated by the E2-E3 intra-unit mudstone. (B) Outline of beds over outcrop and coloured 

with facies association scheme. Abbreviations:  Sc. st. and sd.- Scoured siltstone and sandstone, 

Int. st. & sd.- Interbedded siltstone and sandstone, Lag- Bypass lag, St-less sand- Structureless 

sandstone, Int. st. & sd.- Interbedded siltstone and sandstone,  E2-E3 st.- E2- E3 intra-unit 

mudstone , Int. silt.- Interbedded siltstone, SOF- Spill-over fringe, D-E silt- Unit D-E inter-unit 

mudstone. (B) Sections logged at mm scale over 20 m outcrop distance, showing bed scale 

changes in subunits E2 and E3 within the CLTZ. This key area shows features consistent with a 

fluctuation of high and low energy deposits throughout E3, with a layering of medium 

sandstone, low energy thin-beds, composite erosional surface with mudclast lags, thick 

aggradational beds, and further erosional surface and lag deposits which decrease upwards. For 

whole Slagtersfontein section see Figures 5.10 and 5.11. .......................................................... 169 

Figure 5.14 Summary figure of overall stepped-slope profile architecture and related deposits of Unit 

E. Flows were fed through entrenched slope channels to intraslope lobes, and channel levee 

systems, to the CLTZ and basin-floor lobes. Logs show typical section through key areas. Logs 

from outside of the study area modified from van der Merwe et al., 2014. ............................... 175 

Figure 5.15 Sketch of interpreted variations in the CLTZ over the Slagtersfontein section shown in 

Figures 5.10 and 5.11.  T1-T4 show the minimum extent of progressive expansions and 

contractions of the CLTZ. T1 shows the initial location of bypass and deposition dominated areas 

with initial deposition of structured sandstone with a minimum thickness of a few metres. T2 

shows the eastward movement or extension of the bypass dominated channel-lobe transition 

zone, with erosion of initial lobe deposits and focus of deposition shifted down-dip. T3 shows the 

westward movement or contraction of the bypass zone and backfilling of the system, with build-

up of sand-rich proximal lobe deposits over bypass surfaces. T4 shows the final stage of CLTZ 
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extension or easterly movement, indicated by efficient sediment bypass in the up-dip area, a 

large erosional surface cutting into the lobes and a widespread megaflute surface which expands 

down-dip of this area. ............................................................................................................... 177 

Figure 5.16 (A) Plan view of a CLTZ, highlighting the key depositional features and their spatial 

distribution modified from Wynn et al. (2002). Note area of mixed depositional and erosional 

features, area of reworked and scoured lobe and axial- and off-axis proximal lobe deposits. 

Diagram in Wheeler space illustrates movement of a CLTZ over 6 time periods A-F, with (B) 

showing a plan view outline for each time period and (C) illustrating resultant build-up of 

deposits and potential erosion over a dip-section (X-X’) and a distal strike-section. (D) A further 

strike-section through a more proximal area of the CLTZ, illustrating deposition and potential 

erosion. This diagram highlights the composite nature of deposits and erosional surfaces 

throughout CLTZs and the dynamic expansions, contractions and shifting of the zone that they 

represent. Overall preservation potential is variable but low, with shifting of the zone often 

decimating evidence of previous positions. The dark black lines represent periods of migration of 

the CLTZ. Grey draping units represent a hiatus in sand deposition and may include silt-rich 

lateral or frontal lobe fringe. ..................................................................................................... 182 

 

Figure 6.1 Examples of slope and basin floor topography and resultant deposits. (A) Simple slope 

profile with single break-in-slope changing from bypass dominated channel-levee system to 

depositional dominated basin floor lobes, with potential for channel-lobe transition zone (CLTZ) 

development at base-of-slope. (B) Stepped-slope profile with higher gradient ramps linking lower 

gradient steps. Formation of entrenched channel/channel levee systems on ramps and 

intraslope/ basin floor lobes on steps, with potential for CLTZ development at breaks-of-slope. (C) 

Topographically complex slope, encompassing varying magnitudes of topography. Development 

of several ramps within entrenched channel/channel levee systems, including a step on the basin 

floor. Intraslope and basin-floor lobe development on lower gradient steps. Formation of 

tortuous corridor controlled by slope topography, and minibasin where 3D closure occurs. 

Topography on slopes is generally of much greater magnitude than on the basin floor. ........... 190 



xxxi 
 

 
 

Figure 6.2 (A) Map of Africa and geological map of SW Africa with location of Laingsburg depocentre. 

(B) Enlarged section of Laingsburg depocentre showing location of outcrop belts along post 

depositional fold limbs. Black dashed lines highlight the regional scale correlation panels. (C) 

Stratigraphic column of Ecca group stratigraphy, highlighting Laingsburg and Fort Brown 

submarine fan Units A, B, C, D, E and F as well as discontinuous smaller fan units A/B, B/C and 

D/E. ........................................................................................................................................... 191 

Figure 6.3 Representative photographs depicting facies associations present throughout the outcrop. 

(A) Thick structureless amalgamated sandstone. (B) Base of structureless sandstone bed showing 

grooves and tool marks. (C) Elongated mudstone clasts present near the base of a structureless 

sandstone bed, lens cap 7 cm in diameter. (D) Laminated and graded tops of structured 

sandstone beds. (E) Planar/ ripple laminated very fine sandstone- siltstone beds. (F) Climbing 

ripple laminated sandstone bed, with mudclasts draping laminations and forming a layer at the 

base of the bed, lens cap 7 cm in diameter. (G) Dewatered banded sandstone. (H) Ripple 

laminated sandstone, pencil 7 cm in length. (I) 10-30 cm beds with bi-partite bed structure, lower 

division of fine sandstone and thinner upper division of poorly sorted sandstone and siltstone 

with mm-cm mudstone clasts and organic matter. (j) Interbedded 10-15 cm sandstone beds and 

thinner siltstone beds. (K) Interbedded sandstone and siltstone with deformation. (L) Interbedded 

cm thick siltstone beds, overlain by thicker structured sandstone beds. (L) Tightly folded 

sandstone and siltstone thin beds, notebook 15 cm in length. (N) Debrite with mm-cm scale 

mudclasts and organic fragments. (O) 10s of m thick regional mudstone packages separating 

larger and smaller fan units, car for scale marked by dashed box. ............................................. 194 

Figure 6.4 Core examples of Unit B/C demonstrating key features and range of structures recognised, 

including: sharp base and top of units; clastic injectites surrounding unit; mudclast layers 

throughout unit and mudclast conglomerates; ripple laminated sandstone and siltstone; planar 

laminated sandstone and siltstone; dewatering structures and small scale scouring. Blue arrows 

indicate top and base of units. ................................................................................................... 195 

Figure 6.5 Core examples of Unit A/B demonstrating key features and range of structures recognised, 

including: sharp base and top of units; mudclast layers throughout unit; ripple laminated 
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sandstone and siltstone; planar laminated sandstone and siltstone; dewatering structures and 

small scale scouring. Colour and hue modified from original to accentuate structures.............. 196 

Figure 6.6 Range of discontinuous beds within A/B, B/C and D/E. (A) Basal scour with draped infilling 

sandstone and siltstone. (B) Erosional surface cutting 1-2 m within unit truncating strata, with 

onlap of overlying beds. (C) Onlap of basal beds onto topography created by regional mudstone. 

(D) Downlap of basal beds onto regional mudstone. (E) Erosion surface within unit cutting down 

to base. Infilling beds onlap, and then drape over surface. ....................................................... 197 

Figure 6.7 Key architectural elements recognised in Units A/B, B/C and D/E. Sketch of 3D lobe shows 

divisions of sub-environments, with scale demonstrating general thickness of smaller and larger 

fan units. Lobe axis, lobe off-axis, lobe fringe and proximal lobe panels show representative 

section from Units A/B, B/C and D/E. Blue indicates interpretation as clastic injectite (Cobain et 

al., 2015). .................................................................................................................................. 203 

Figure 6.8 Thickness (left) and facies (right) maps of Units A/B, B/C and D/E. Thickness maps show 

isopach thickness in metres. Facies maps represent gross depositional environment for the time 

interval. A/B and B/C deposits are restricted to up-dip of the Faberskraal-Geelbek area. A/B 

deposits are thickest, most sand-rich and axial in the Baviaans and Heuningberg areas, with 

bypass dominated proximal lobe scours/distributary channels present in the Baviaans area. 

Deposits decrease in thickness and sand content to off-axis facies to the east and west. Lobe 

fringe deposits and pinch-outs are a combination of sand- and silt-rich in Geelbek and 

Heuningberg. B/C deposits are thickest, most sand-rich and axial in the Baviaans area. Deposits 

decrease in thickness and sand content to off-axis and fringe facies to gradually to the north and 

more abruptly to the east and west. Pinchouts are sand-rich at the lateral east and west margins 

and silt rich to the north. Unit D/E is present discontinuously in (a) Heuningberg, with thick axial 

deposits abruptly thinning and pinching out west, south and east, (B) in Geelbek, present locally 

as a single debrite bed, and (c) in Floriskraal, present in a southeast-northwest transect 

decreasing in thickness abruptly to the east and west (Slagtersfontein) with sand-rich pinch out, 

to the south with a silt rich pinch out, and more gradually to the north (N1 Dome) with a silt and 
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Figure 6.9 Thickness and facies maps of smaller fan units overlain on 3D box models demonstrating 
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Figure 6.10 Shelf, slope and basin floor profile during deposition of larger and smaller fan units. Lower 

sea-level during deposition of larger units, exposes shelf and activates canyons in upper slope 

connecting sediment pathways down the slope. Comparatively lower sea-level during deposition 

of smaller units reduces/cuts off main sediment input............................................................... 211 

Figure 6.11 Thickness and facies maps of Units C and D. Thickness is shown as isopachs with units in 

metres. Facies maps represent gross depositional environments for the given time intervals. 

Based on studies by, Sixsmith et al., 2004; Di Celma et al., 2011; Hodgson et al., 2011; Brunt et 

al., 2013 a; Morris et al., 2014a, b; van der Merwe et al., 2014;  Morris et al., 2016. ................. 214 

Figure 6.12 Thickness and facies maps of ‘sand-attached’ units C and D overlain on 3D box models 

demonstrating controlling slope to basin floor topography. Based on studies by, Sixsmith et al., 

2004; Di Celma et al., 2011; Hodgson et al., 2011; Brunt et al., 2013 a; Morris et al., 2014a, b; van 
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Figure 6.13 Thickness and facies maps of Units E and F. Thickness is shown as isopachs with units in 

metres. Facies maps represent gross depositional environments for the given time intervals. 

Based on studies by, Figueiredo et al., 2010; 2013;  van der Merwe et al., 2014; Spychala et al., 
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Figure 6.14 Thickness and facies maps of ‘sand-detached’ units E and F overlain on 3D box models 
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Figure 6.15 Schematic section showing sequence stratigraphic division of Laingsburg and Fort Brown 

formations. Sand-rich Sub-unit sequence tract and overlying transgressive-highstand systems 

tract mudstones represent a sequence. Groups of these and the overlying inter-unit 

transgressive-highstand sequence set mudstones represent composite sequences. Groups of 

composite sequences and thicker interunit transgressive-highstand composite sequence 
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Figure 6.16 Dip-section through central line of Laingsburg depocentre showing thickness of Vischkuil, 

Laingsburg and Fort Brown formations. The section demonstrates system scale compensational 

stacking between units as well as the prevalence of two separate areas of increased deposition 

with an intervening area of thinning, exacerbated by differential compaction. ........................ 223 

Figure 6.17 (A) Lobe updip, downdip and lateral pinchouts of smaller and larger units colour coded 

into stratigraphic packages. Grey shaded area indicates the region of sustained topographic 

influence throughout deposition of all units. (B) Thickness maps of the combined Collingham and 

Vischkuil formations, Unit A and Unit B. Overlay shows area of sustained topographic influence.
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Figure 6.18 Graph showing comparison of sedimentation and deformation rates throughout the 
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1 Introduction 

 

 Background and rationale 

Deepwater siliciclastic systems are fed by sediment gravity flows, and form some of the largest 

depositional systems on the planet. Sediment is transported from the continental shelf, down 

through the continental slope to the deep-ocean basin floor. Significant volumes of sediment 

can be deposited on submarine slopes (e.g. Booth et al., 2003; Prather, 2003; Steffens et al., 

2003; Mayall et al., 2010; Talling et al., 2012; Talling, 2014). Sediment gravity flows consist of 

turbidity currents, as well as slides, slumps and debris flows (mass flows), which form 

remobilized deposits or mass transport deposits (MTDs) that stack to form mass transport 

complexes (MTCs). MTC sediment is sourced from failure of the continental shelf and submarine 

landslides. Sediment gravity currents and submarine landslides present significant hazards for 

underwater infrastructure and have the potential to create tsunamigenic waves (Barley, 1999; 

Piper et al., 1999; Masson et al., 2006; Hsu et al., 2008; Romero-Otero, 2009; Talling, 2014). 

Moreover, the deposits of ancient deepwater systems within the subsurface represent 

significant hydrocarbon reservoirs and are targets for oil and gas exploration (Weimer and 

Pettingill, 2007). 

Early submarine fan models showed the continental slope as a simple area, dominated by bypass 

processes feeding sediment to the basin floor, which was dominated by depositional processes 

(Normark, 1970, 1978; Walker, 1978; Stow et al., 1985; Reading and Richards, 1994). Recent 

studies, however, show that topographical complexity within slope environments is the norm 

(Fig. 1.1), even in passive margin settings, where such complexities have a fundamental 

influence on sediment gravity flow behaviour, and influence sediment dispersal patterns and 

consequently geometry, architecture and facies of sedimentary bodies (e.g. van Andel and 

Komar, 1964; Pickering and Hiscott, 1985; Simpson, 1997; Hodgson and Haughton, 2004; Amy 

et al., 2007; Covault and Romans, 2009; Moody et al., 2012).  
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 Aims and research questions  

The effect of varying origins, morphology and scales of slope and basin floor topography on 

stratigraphic architecture of deepwater successions is poorly understood. The principal aim of 

this thesis is to understand the effects that complex but subtle slope and basin floor 

topography have on sediment gravity flow processes and resultant depositional architecture. 

This will enhance our understanding of deepwater system evolution, as well as helping to 

bridge the gap between the small scale experimental studies assessing dynamics of single 

flows and the large scale studies of slope and basin floor architecture using seismic reflection 

and modern seafloor datasets. This study will also add to our knowledge of the Karoo Basin 

succession in the Laingsburg depocentre along with additional SLOPE 4 projects. Previous 

studies undertaken as part of the SLOPE project have investigated the regional and localised 

aspects of stratigraphic architecture of the Laingsburg depocentre, which have been utilized in 

this study to investigate the influence of varying scales of topography.    
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Figure 1.1 A) Models of simple and topographically complex slope profiles. (B) Examples of intraslope 
“perched apron”, Einstein-Fuji slope Eastern Gulf of Mexico, Seismic attribute map (From Sylvester et al., 
2012). (C) Intraslope “ponded apron” from the Brazos-Trinity intraslope basins, Gulf of Mexico (From 
Prather et al., 2017). (D) Examples of slope gradient variations (From Posamentier and Walker, 2006). 

In this context, the thesis is focussed around key research questions that span data chapters 4-

6 (Fig. 1.2). These are outlined in detail as follows, and will be returned to at the end of the 

thesis (Chapter 7):  
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Figure 1.2- Key results from data chapters 4, 5 and 6, colour coded in relation to each research question. 
Beige relates to question 1, green to question 2 and blue to question 3.  
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Question 1:  How does the orientation and gradient of slope to basin floor topography 

influence sediment gravity flow processes and resultant stratigraphic architecture? 

 

Rationale: Gradient variations and topographic obstacles along deep water slope and basin 

floor profiles have been documented to have significant impact on gravity flow behaviour, with 

consequent effect on sedimentary facies (e.g. Baines, 1984; Kneller and McCaffrey, 1991; 

Edwards et al., 1994; Haughton, 1994; Smith, 2004a; Hodgson and Haughton 2004; Stevenson 

et al., 2013; Spychala et al., 2017a) and depositional architecture (e.g. Prather, 2003; Deptuck 

et al., 2012; Mayall et al., 2010; Hay, 2012; Prather et al., 2012a, b; Moody et al., 2012; Wynn 

et al., 2012). The distribution, length scales and orientations of gradient variations can range 

widely, creating topographically complex slope to basin floor systems.  

Many experimental and numerical studies have been undertaken with the aim of 

understanding the effects of gradient and confinement changes and obstacles on turbidity 

current processes, which can result in the reflection, deflection or decoupling of flows (e.g. 

Baines, 1984; Lawrence, 1986; Edwards et al., 1994; Meiburg and Kneller, 2009; Nasr-Azadani 

and Meiburg 2014; Wang et al., 2017). However, relating these process changes to deposits in 

the sedimentary record and scaling these processes to bed, package or system scale can be 

challenging (e.g. Pickering and Hiscott, 1985; Marjanac, 1990; Kneller and McCaffrey, 1991; 

Edwards et al., 1994; Haughton, 1994; Smith, 2004a; Jackson and Johnson, 2009). The effects 

of slope gradient on flow processes is more notable in situations where gradient change is of 

higher magnitude (e.g. Pickering and Hilton, 1998; Sinclair, 2000; Sinclair and Tomasso, 2002; 

Hodgson and Haughton, 2004; Marini et al., 2015) but more difficult to constrain where 

gradient change is subtle (<1°) (e.g.  Smith, 2004b; Stevenson et al., 2013; Spychala et al., 

2017a).  

Key areas of topographic variability within slope to basin floor profiles include: slope failure, 

forming a concave basal shear surface, which can capture sediment routing systems, or pond 

deposits (e.g. Alves and Cartwright, 2010; Ortiz-Karpf et al., 2015; Kneller et al., 2016; 

Fallgatter et al., 2017; Qin et al., 2017);  the resultant remobilized deposits, which can 

deflect/reflect flows and pond deposits within the rugose top surface (Armitage et al., 2009; 

Jackson and Johnson, 2009; Ortiz-Karpf et al., 2015; Kneller et al., 2016; Sobiesiak et al., 2016; 

Fallgatter et al., 2017); intraslope basins or flats (Prather et al., 2003), forming intraslope 

accommodation, with the potential to pond deposits, forming intraslope lobes (e.g. Steffens et 

al., 2003; Deptuck et al., 2012; Prather et al., 2012a,b; Spychala et al., 2015) or weakly 
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confined channel systems (e.g. Beaubouef and Friedman, 2000; Pirmez et al., 2000; Deptuck et 

al., 2012; Moody et al., 2012); intraslope variations in gradient and orientation (e.g. Hay, 

2012), which can lead to increased/ decreased flow velocity, and defection of flows, resulting 

in changes in system architecture, e.g. tortuous corridors  (e.g. Steffens et al., 2003; Smith et 

al., 2004a; Burgreen and Graham, 2014); the base-of-slope, where a reduction in gradient 

and/or flow confinement can cause flows to undergo hydraulic jumps, transitioning from 

super- to sub-critical flow conditions (Mutti and Normark, 1987, 1991; Weirich, 1989; Kostic 

and Parker, 2006; Sumner et al., 2013) with the potential to create a sediment bypass 

dominated channel-lobe transition zone (e.g. Wynn et al., 2002a; Hofstra et al., 2015; 

Pemberton et al., 2016); and, lateral basin margins or lateral intrabasinal slopes, which can 

affect basin-floor depositional systems by deflecting flows (e.g. Kneller et al., 1991; Sinclair, 

1994; Kneller, 1995; Amy et al., 2004; Gamberi et al., 2014; Spychala et al., 2017b) with the 

potential to cause onlap geometries in lobes (e.g. Smith and Joseph, 2004; Bersezio et al., 

2009; Marini et al., 2015). Intraslope and basinal gradient changes can be related to dynamic 

substrate i.e. mud and salt diapirism, active faulting, and folding (Jackson et al., 2008).  

The studies presented in this thesis investigate relatively subtle gradient changes (<1° to a few 

degrees) within a range of depositional settings across a slope to basin floor setting in the 

Laingsburg depocentre, allowing for analysis and discussion of the effects of frontal, lateral and 

oblique orientated gradient increases and decreases on deepwater stratigraphy.  

  

Question 2:  How does topographic influence on turbidity currents vary and evolve 

i) During deposition of a single system, and ii) during multiple successive systems? 

 

Rationale: The effect of topography on turbidite systems will inevitably depend of the scale 

and orientation of the topography as discussed in the rationale to Question 1, but also with 

variability in flow dynamics, both of which will vary temporally. Topographic variation will 

occur due to both active deformation of the slope (e.g.  Barton, 2012; Deptuck et al., 2012; 

Hay, 2012; Prather et al., 2012a, b) and the modifications each flow will make as it erodes and 

deposits (e.g. Normark et al., 1979, 2009; Pickering and Corregidor, 2005; Dakin et al., 2013; 

Ortiz-Karpf et al., 2015; Spychala et al., 2015), therefore each individual flow will be interacting 

with a unique bathymetric configuration. Variability in flow dynamics will result from intrinsic 

and extrinsic controls. Extrinsic controls determine the initial thickness and volume of flows, 
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the sediment concentration and grain size distribution, and intrinsic factors are of influence 

throughout the flow pathway, causing flows to deposit or erode, and increase or decrease 

sediment concentration, flow velocity, stratification etc. (Kneller and McCaffrey, 1999; Kneller 

and Buckee, 2000). Therefore, each incoming flow is unique and the resultant effect of the 

same topography on flow processes will vary. Within the deposition of an individual system 

subsequent flows have the potential to increase (e.g. erode entrenched channel systems) or 

decrease topographical complexity (e.g. healing of intraslope accommodation), in an attempt 

to form a slope to basin floor profile that is at equilibrium (Pirmez, 2000; Prather, 2003). 

Slope topography is likely to change more dramatically over the deposition of multiple 

systems. At this longer time scale, an actively deforming seabed has the potential to 

significantly alter the configuration of the slope and basin floor systems (e.g. Stewart and 

Clark, 1999; Lopez-Mir et al., 2014). Moreover, erosional or depositional relief of the preceding 

system or multiple stacked systems may be apparent on the seabed (e.g. Jackson and Johnson, 

2005; Pickering and Corregidor, 2005; Spychala et al., 2015; Ortiz-Karpf et al., 2015) or result in 

topography generated by differential compaction (Færseth and Lien, 2002; Koša, 2007). 

Therefore, the ability of flows to heal topography and reach an equilibrium profile can be 

outpaced, be equal to, or be surpassed by formation of new topography at the onset of each 

depositional system.  

Basins undergoing frequent episodic sediment input have been demonstrated to form more 

ponded and healed basin successions, which can often be associated with more numerous 

hydrocarbon reservoir and seal pairs (Prather, 2000, 2003). Sixty nine percent of producing 

deepwater hydrocarbon reservoirs occur in slope accommodation (Prather et al., 2009), with 

seventy five percent of global Tertiary deepwater reservoirs deposited across stepped slope 

profiles (O’Byrne et al., 2004). Through understanding how the effects of topography change 

throughout deepwater system evolution, generic models can be established, to predict 

changes in system architecture and to aid the interpretation of lower resolution datasets. 

Therefore, understanding the dynamics of these systems and being able to predict 

stratigraphic architecture is crucial for hydrocarbon exploration.   

 

Question 3:  How are topographically complex components transferred into the stratigraphic 

record i) as surfaces, and ii) as stratigraphic successions? 
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Rationale: The transfer of deepwater systems into the stratigraphic record can be complicated, 

especially in topographically complex areas where flow processes can be highly variable. 

Individual surfaces or beds can represent a large range of time scales. Therefore, it is 

important to consider the location of an outcrop within a system, whether the setting is overall 

aggradational or degradational, and the flow processes that formed the strata, when 

interpreting resultant deposits in order to delineate the preservation potential.  Modern 

seafloor datasets afford a single timeslice of a system showing a geomorphic palimpsest (e.g. 

Wynn et al., 2002a), but if a surface is not actively aggrading or is later eroded it will not be 

preserved in the stratigraphic record. Distinguishing between stratigraphic surfaces that are 

time transgressive and composite, and geomorphic surfaces that are rarely preserved in the 

rock record can be challenging (e.g. Strong and Paola, 2009; Sylvester et al., 2011; Holbrook 

and Bhattacharya, 2012; Blum et al., 2013; Hodgson et al., 2016). This distinction between 

physiographic snapshot and stratigraphic transfer is important in understanding the 

preservation potential of all systems.  

Moreover the stratigraphic record does not simply show surfaces and rock volumes as they 

were at initial deposition. Dewatering, compaction and deformation takes place, possibly 

through multiple cycles. Compaction has a significant impact on volumes of sediment, 

especially in lithologically variable successions, where differential compaction can greatly 

impact the resultant preserved geometry (e.g. Alves, 2010). This can occur after the entire 

succession is deposited, or when systems are still active, resulting in topographic highs and 

lows, and compensational stacking of sand-rich elements.  

Therefore, in order to draw conclusions about original depositional topography from the rock 

record it is important to understand (i) how preserved sediments encapsulate formational 

processes, and (ii) what changes sediments undergo from deposition to exhumation.  

 

 Thesis outline  

This thesis includes three manuscripts that have been accepted or submitted for publication in 

international peer-reviewed journals (Chapters 4-6).  

 

Chapter 2: Topography of slope to basin floor profiles. This chapter summarizes the current 

understanding of topographic influence on stratigraphic architecture from experimental and 

exhumed, modern and seismic studies.  
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Chapter 3: Regional setting and methodology.  This chapter introduces the geological 

background and regional setting of the Laingsburg depocentre, Karoo Basin, South Africa. It 

discusses the methods used in this study and provides an illustrated summary of the 

sedimentary facies. 

 

Chapter 4: Exhumed lateral margins and increasing infill confinement of a submarine slide 

complex. In review for publication in Sedimentology. This chapter documents three exhumed, 

stacked submarine landslides including two superimposed basal shear surfaces and their 

subsequent infills exposed in an outcrop at the distal end of the Laingsburg depocentre.  

 

Chapter 5: Deepwater channel-lobe transition zone dynamics: processes and depositional 

architecture.  Accepted for publication in GSA Bulletin. This chapter documents the erosional 

and depositional elements of a channel-lobe transition zone, along with the spatial and 

temporal evolution and transfer into the stratigraphic record. A dynamic model for CLTZ 

evolution is presented. 

 

Chapter 6: Disconnected submarine lobes, and their role in the evolution of a stepped slope 

over multiple sea-level cycles. This chapter documents the topographic controls and formation 

of thin units A/B, B/C and D/E which form a unique type of intraslope, and basin floor lobe. 

These unit are utilised along with previous studies from the larger units to establish evolution 

of the entire Laingsburg depocentre over the numerous deepwater systems of the Laingsburg 

and Fort Brown formations. To be submitted to Geosphere in summer 2017. 

 

Chapter 7: This chapter provides an extended discussion that addresses the key research 

questions presented in Chapter 1. Findings from research presented in chapters 3-6 are 

collated and synthesised to answer these research questions. This chapter also includes the 

conclusions and wider implications of the research. Finally, possible future research foci are 

proposed. 
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2 Slope to basin floor topography  

Topographic impact on flow processes, products, and stratigraphic architecture  

 Introduction  

The research in this thesis investigates the stratigraphic record of interactions between 

sediment gravity flows and depositional or erosional seabed relief at a range of scales and 

morphological configurations. Therefore, presented here is a review of the literature that have 

investigated and interpreted these interactions, using experimental, outcrop, modern and 

subsurface datasets. Each of these approaches to studying topographical effects on gravity 

currents varies in scale and detail giving different insights into this phenomenon.  

Changes in the gradient and orientation of seabed topography impacts sediment gravity flow 

behaviour, and can cause turbidity currents i) to deflect and reflect off intrabasinal slopes, ii) to 

pond within confined lows, and iii) to decelerate or accelerate flows (Kneller and McCaffrey, 

1999). Reflection and deflection of turbidity currents off topography was first suggested by van 

Andel and Komar (1969), and subsequently these processes have been documented in a 

variety of systems. The flow of turbidity currents into regions of bathymetric complexity leads 

to spatial variations in flow character that can affect the suspended load fall out rate, and 

therefore sedimentary facies (Kneller, 1995, 1999; Amy et al., 2004). The variation of the flow 

at bathymetric perturbations can be characterised by the Froude number (1) (Baines, 1984; 

Armi, 1986). The Froude number (1) is related to flow velocity (U), flow height (h) and the 

reduced gravity (g’), where the gravity constant (g) is influenced by the density difference 

between the flow mixture (ρmix) and the ambient fluid (ρ). 

𝐹𝑟 =  
𝑈

√𝑔′ℎ
;  𝑔′ =  

𝜌𝑚𝑖𝑥−𝜌

𝜌
𝑔 [

𝑚

𝑠2]                                               (1) (From Postma et al., 2009) 

The transition from supercritical conditions (Fr > 1) to subcritical conditions (Fr < 1) result in 

flow expansion and the formation of a standing wave (Baines, 1984; Armi, 1986). Low Fr’ 

numbers result in flow decoupling, which results in a lower high-density flow that travels 

around the topographic barrier and an upper low density flow which moves over and away 

from the barrier (e.g. Kneller and McCaffrey, 1999; Nasr-Azadani and Meiburg, 2014).  

Turbidity currents and other sediment gravity flows in deepwater systems do not flow onto 

completely flat surfaces, but onto areas with topographical complexities (e.g. Normark, 1985; 

Apps et al., 1994). The continental slope is recorded as topographically complex, but even in 
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basin plain settings turbidity currents may encounter isolated topography in the form of 

seamounts or basement highs (Rothwell et al., 1992; Ricci-Lucchi and Camerlenghi, 1993), be 

ponded against basin-bounding slopes (e.g., van Andel and Komar, 1969; Rothwell et al., 

1998), and / or interact with the relief formed by previous deposits. 

Breaks-in-slope can cause differential deposition, such as that related with the base-of-slope 

area. This can be related to a hydraulic jump within sediment gravity flows (e.g. Weirich, 

1988). Preferential deposition of sediment has been shown to occur downstream of slope 

breaks, as well as upstream of humps, caused by the deceleration in flow velocity and 

decreased sediment capacity (Kubo, 2003). Bathymetric perturbation can cause acceleration of 

flow and consequently increased erosion (Gee et al., 2001).  

Lateral slopes can cause confinement and deflection of turbidity currents (Kneller and 

McCaffrey, 1999; Kneller and Buckee, 2000). Overall, confinement can be classified as weak, 

moderate or high (Sinclair, 2000; Haughton, 2000; Sinclair and Tomasso, 2002; Amy et al., 

2004, 2007; Hodgson and Haughton, 2004), which impacts the depositional architecture 

(Pickering and Hilton, 1998; Sinclair, 2000; Haughton, 2000; Sinclair and Tomasso, 2002; Amy 

et al., 2004, 2007; Hodgson and Haughton, 2004; Smith and Joseph, 2004; Aas et al., 2010; 

Etienne, 2012; Etienne et al., 2012; Prélat and Hodgson, 2013; Burgreen and Graham, 2014; 

Yang and Kim, 2014; Marini et al., 2015).  

Slope topography can be related to the difference between slope morphology and an idealised 

equilibrium profile (Pirmez et al., 2000; Kneller, 2003) as: above grade, with well-developed 

ponded accommodation; above grade, with stepped profiles; and graded, without significant 

topography (Prather, 2003). 

Current knowledge of topographical effects on sediment gravity flows and subsequent 

deposits are discussed below separated into experimental (section 2.2), outcrop (section 2.3), 

modern (section 2.4) and seismic reflection (section 2.5) datasets, which each give a unique 

perspective on the subject.  
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 Experimental studies 

Experimental modelling has added greatly to the knowledge of flow processes and flow 

topographic interaction.  Experimental studies using flume tank modelling of flows have shown 

that introducing a gradient change or obstacle into a stratified flow causes upstream 

disturbances, as well as altering the flow properties and the dynamics of the flow as it travels 

downstream.  

2.2.1 Downflow gradient changes- Hydraulic jump 

Hydraulic jumps can occur in both turbidity currents and debris flows (Wierich, 1989) and this 

process has been invoked in many seafloor processes. During a hydraulic jump there is an 

abrupt change in flow velocity and density of a submarine density flow, as the flow increases in 

thickness and rapidly decreases in velocity.  

Hydraulic jumps occur in the transition between supercritical and subcritical flow conditions. 

Supercritical and subcritical flows in subaerial flows are quantified in terms of their Froude 

number (Fr) (1). 

The Froude number is dimensionless and compares (U) the depth averaged velocity to the 

speed the wave would propagate along its surface (g=acceleration due to gravity, h=thickness 

of flow). For a supercritical flow Fr>1 and for a subcritical flow Fr<1, when Fr=1 hydraulic jump 

occurs (Fig. 2.1) (Sumner et al., 2013). When a flow is supercritical inertial forces are greater 

than gravitational forces, the flow is travelling at a greater velocity than a surface wave could 

propagate. This leads to a relatively thin and fast flow, which exerts higher shear stress on the 

bed. When a flow is subcritical, the opposite is true, gravitational forces are greater than 

inertial forces, and the flow is travelling at a lower velocity than a surface wave would 

Figure 2.1 Schematic diagram showing the key features of a hydraulic jump (from Sumner et al., 2013). 
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propagate. When the flow velocity and the velocity of the surface wave are equal, this is where 

hydraulic jump occurs (Kostic and Parker, 2006; Sumner et al., 2013).  

For density currents the densiometric Froude number is used, this modifies the equation to 

account for gravity.  

𝐹𝑟 =  
𝑈

√𝑔′ℎ
                                  (1) (From Postma et al., 2009) 

 

Waltham (2004) showed for the above equation that the hydraulic jump does not always occur 

when Fr = unity. This is due to density currents having a highly non-uniform vertical velocity 

and stratified profile, and therefore suggested that it might be more accurate to use a 

different characteristic of flow velocity.  

 

Figure 2.2 Experiment of 1-phase suspension flow that produced a scour just before the jump and mainly 
plane bed laminations at and down slope of the jump (from Postma et al., 2009). 

To study hydraulic jumps many researchers have used flume tank experimentation to replicate 

the transition from supercritical to subcritical flow (Fig. 2.2). This has allowed detailed study of 

the changes in flow dynamics over this transition. Although they show similar features there 

are different types of hydraulic jump that can be recognised experimentally. The type of jump 

is a factor of both the Froude number of the incoming flow and the energy lost over the 
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hydraulic jump. A theoretical relationship has also been shown between the outgoing Froude 

number (Fr2), the dimensionless energy loss expressed in metres of water column (ΔH/h1), 

and the ratio of conjugated depths (h2/h1) as a function of the incoming Froude number (Fr1) 

(Fig. 2.3) (Cartigny, 2012).  

Previous theoretical and experimental studies have suggested that on average hydraulic jump 

causes flow thickness to double and flow velocity to halve (Komar, 1971), although more 

recent studies show that this would only be true if the average flow has a Froude number >2 

immediately prior to the hydraulic jump (Sumner et al., 2013). This is unlikely as in unconfined 

settings over steep non-cohesive slopes Fr is generally not much higher than critical value 

(Sumner et al, 2013). Komar (1971) also suggested, evidenced from theoretical and 

experimental modelling, that a submerged hydraulic jump can cover a distance of 1 kilometre 

or less. But this distance varies greatly with the magnitude of the break in slope, flow velocity, 

composition and other flow dynamics. Larger magnitude breaks in slope will result in a greater 

reduction in flow velocity, which will in turn increase the likelihood of flow scouring (Lee et al., 

2002). Classical estimates for the occurrence of hydraulic jump (Komar, 1971) only apply to 

layer averaged flows. More recent studies by Macdonald et al. (2011a), Sumner et al. (2013) 

 Figure 2.3 A. Plot of theoretical relations between the Froude number of the incoming flow (Fr1), h2/h1-
ratio and energy loss (ΔH/h1). B. Depending on the balance between upstream forces related to the 
incoming flow velocity and the downstream forces depending on flow depth, hydraulic jumps occur at a 
slope break (normal jump, kinematic energy = potential energy), downstream of a slope break (flushed 
jump, kinematic > potential), or upstream of the slope break (submerged jump, kinematic<potential) 
(from Cartigny, 2012). 
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and Dorrell et al. (2016) indicate the presence of a ‘scattered field of hydraulic jumps’ where 

multiple hydraulic jumps occur in a widespread zone rather than a single large jump.  

The formation of hydraulic jumps and the erosion of deep-water scours have long been linked 

(Mutti and Normark, 1987). Physical and numerical modelling of hydraulic jumps has 

reproduced the scour formation (Kostic and Parker, 2006) as well as cyclic step formation (Taki 

and Parker, 2005; Kostic, 2011). As the Froude number increases supercritical flows on mobile 

beds form a typical sequence of bedforms: antidunes, breaking antidunes, chutes-and-pools 

and cyclic steps (Cartigny, 2012).  

Antidunes are features where the bedform is in phase with the surface wave and can show 

upstream or downstream migration (Middleton, 1965; Hand, 1969, 1974; Winterwerp et al., 

1992; Alexander et al., 2001; Cartigny et al., 2014; Postma and Cartigny, 2014). As new 

antidunes at the downstream end are formed, those at the upstream end are eroded away, 

and as Froude number increases antidune amplitude also increases (Cartigny et al., 2014). 

Subaerial observations suggest this increase occurs until the wave height over wavelength 

exceeds 0.14, at this point breaking surface waves occur, leading to the formation of breaking 

antidunes, causing cyclic destruction and regeneration of antidunes (Kennedy, 1961). Chutes-

and-pools form where abrupt transitions from shallow to deep bed morphology are related to 

transitions from subcritical to supercritical flow (Schminke et al., 1973; Alexander et al., 2001; 

Cartigny, 2012).  

Cyclic steps are trains of upstream-migrating steps bounded upstream and downstream by 

hydraulic jumps, these can form from instability caused by Froude supercritical flows passing 

over an erodible substrate (Cartigny, 2011; Lang and Winsemann, 2013; Covault et al., 2014; 

Postma and Cartigny, 2014; Postma et al., 2014) (Fig. 2.4). The concept of cyclic steps has been 

used to interpret chains of scours (Cartigny et al., 2014; Postma and Cartigny, 2014), in this 

case, hydraulic jumps are in phase with the topography and the flow depths are thought to be 

the same magnitude as the scour depths, in contrast to hydraulic jumps associated with flow 

spreading (Fildani et al., 2006). ‘Non-uniform’ flow behaviour (velocity changes over distance) 

is predicted at slope changes, where a decrease in slope can result in depletive and divergent 

flow (Kneller and Branney, 1995). Fluctuations in flow velocity over time are classified as 

‘unsteady’ (Fig. 2.5), where waxing flows occur when velocity increases over time and waning 

when velocity decreases (Kneller and Branney, 1995). 
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Figure 2.5 Schematic diagram of a train of downslope asymmetrical cyclic steps 
(flow from left to right), beneath a turbidity current (Cartigny, 2012). 

Figure 2.4 (top) Graphs showing time (t) versus flow velocity (u) and distance (x) versus 
flow velocity (u) and the different terminology used to describe unsteady and non-
uniform flow behaviour. (bottom) Diagram illustrating variance in flow behaviour 
depending on the type of gradient change. At the base-of-slope a decrease in slope is 
expected and therefore diverging and depletive flow behaviour. Abrupt decreases in 
gradient, are often associated with flow expansion as divergent flow behaviour will 
result from the gradient and confinement changes in this region (from Kneller, 1995). 
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2.2.2 Lateral slopes and downflow obstacles- Reflection, deflection and flow 

decoupling  

Flow overspilling, reflection and deflection are dependent on flow properties and the height, 

geometry and orientation of topographic highs (Kneller and McCaffrey, 1999). Key flow 

properties include flow thickness, duration and acceleration, grain-size of the transported 

sediment and density stratification. A relationship has been noted between the Froude 

number (Fr) (1) of a flow and the relationship between obstacle height and flow thickness 

(Kneller and McCaffrey, 1999; Kneller and Buckee, 2000). Experimental studies can give insight 

into the effect of obstacles on flow capacity (Alexander and Morris, 1994; Lane-Serff et al., 

1995; Morris et al., 1998; Kneller and McCaffrey, 1999).  

For the same obstacle height, higher energy flows have a greater capacity whilst passing over 

obstacles. For flows with the same capacity, an obstacle height can be determined beyond 

which the entire flow will be blocked, causing reflection and deflection of the flow (Baines and 

Davies, 1980; Lawrence, 1987). Therefore, three main subdivisions of topographic control can 

be recognised: (i) when the obstacle height is significantly less than flow thickness, a change in 

Froude number may occur causing the flow to undergo hydraulic jump from super- to sub-

critical flow conditions; (ii) when obstacle height and flow height are similar (< 2 x obstacle 

height, Alexander and Morris, 1994), the upper portion of the flow may breach the obstacle 

with the lower portion reflected and deflected; and (iii) when obstacle height greatly exceeds 

flow thickness (> 2 x flow thickness, Alexander and Morris, 1994) reflection and deflection of 

the entire flow will occur, and possibly a hydraulic jump will form (Edwards, 1993; Pantin and 

Leeder, 1987; Kneller and Buckee, 2000).  

Even small obstacles will greatly effect flow dynamics. If the obstacle height is not sufficient to 

deflect lower denser portions of flow, the flow will still decelerate and rapidly deposit 

sediments, while upper portions of flow continue down-dip. Kneller and Buckee (2000) 

describe four types of downflow effect on an obstacle (Fig. 2.5) based on the relationship 

between Froude number (Fr) (1), the velocity and stratification of the flow. With obstacle 

height increase relative to flow height, flow stratification increases and Froude number 

increase hydraulic jump are more likely to occur on the lee side of an obstacle (Fig. 2.6).  
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Figure 2.6 The effect of internal Froude number (Fri) on the behaviour of flows downstream of 
topography (from Kneller and Buckee. 2000).   

As discussed above, when moving over an obstacle, stratified layers within a flow act 

independently, but this is subject to the Froude number (Fr) (1). When the Froude number is 

high, the flow tends to act as a unity, with the entire flow overtopping topography or 

reflected/deflected (Fig. 2.7). For low Froude numbers there is a critical plane within the flow 

(dividing streamline, Baines, 1995), above which the flow and sediment particles can move up 

and over the obstacle, whereas in the denser lower regions of the flow, below the dividing 

streamline, the flow has insufficient energy to surmount topography, and is deflected around it 

(Fig. 2.7).  
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Figure 2.7 Schematic illustration of the joint effects of the dividing streamline, the Froude number and 
the degree of confinement (h/z) (from Kneller and McCaffrey 1999). 

When a flow obstacle is much larger than flow height the flow will run up and increase in 

height. For density-stratified flows, the maximum run up height is dependent on velocity and 

density profiles and can be highly variable (Kneller and Buckee, 2000). When a flow is fully 

confined a disturbance is generated upstream of the obstacle, consisting of an internal bore. 

An internal bore is an abrupt downstream increase in flow thickness and an associate decrease 

in flow velocity, which can migrate upstream (Rottman and Simpson, 1989; Edwards, 1993; 

Kneller and Buckee, 2000). 
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Figure 2.8 The three types of internal bores defined by Rottman and Simpson (1989) (From Kneller and 
Buckee, 2000). 

Kneller and Buckee (2000) differentiate types of bore (Fig. 2.8) based on the relationship 

between the height of the bore and the flow height. The weakest bore (Type A, fig. 2.8) is 

characterised by a group of internal solitary waves. The strongest bore (Type C, fig. 2.8) is 

generated by erosion at the head of the turbidity current, producing higher stratification 

through increased entrainment of ambient fluid. With an intermediary type (Type B, fig, 2.8) 

(Kneller and Buckee, 2000). 

Flows will inevitably experience a decrease in competence and capacity associated with 

interaction with obstacles. Therefore, a marked localised increase in sedimentation is likely to 

occur (Alexander and Morris, 1994; Kneller, 1995; Kneller and McCaffrey, 1995), which may 

migrate upstream in steady currents (Kneller and Buckee, 2000). This increased deposition may 

also occur in the lee of the obstacle in association with a downstream hydraulic jump (Kneller 

and Buckee, 2000).  
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Figure 2.9 Depositional model for turbidity currents obstructed by a lateral slope that are (a) slow and 
highly depositional or (b) fast and capable of erosion and/or bypass of sediment, and (c) and (d) their 
resulting cross-stream deposit thickness trends. SLFR= sediment load fallout rate, from Amy et al., 2004.  

Three-dimensional models based on flume and numerical experiments have attempted to 

recreate turbidite thickness patterns where obstructed by lateral slopes (Kneller et al., 1991; 

Kneller, 1995; McCaffrey and Kneller, 2001; Amy et al., 2004). In the experimental currents 

obstructed by a lateral slope, flow velocity non-uniformity patterns consist of streamlines that 

are parallel close to the slope but diverge at positions away from the slope (Amy et al., 2004) 

(Fig. 2.9). In this pattern, flow is more depletive far from the slope than near to the slope and 

therefore higher suspended-load fallout rates and thicker deposits should be expected far 

from the slope beneath the most depletive portion of the flow (Amy et al., 2004). However, 

this is converse to the thinning-away-from-slope pattern of some experimental datasets (Amy 

et al., 2004), where maximum sediment thickness was attributed to sediment deposited on the 

slope transforming into a higher concentration flow and coming to rest at the base-of-slope 

(McCaffrey and Kneller, 2001). Therefore, an interpretation of deposit thickness based on flow 

velocity non-uniformity alone (e.g. Kneller 1995; Kneller and McCaffrey, 1999) cannot explain 

these experimental depositional patterns. To explain this using flow concentration a non-

uniform mechanism is required where a current is weakly depletive close to the slope but is 

highly depletive far from the slope and thus maintains relatively high concentrations and high 

sediment load fallout rate close to the slope in medial and distal settings (Amy et al., 2004). 
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This pattern of flow concentration non-uniformity could arise if there were lower rates of 

deposition and/or entrainment in proximal regions close to the slope (Amy et al., 2004).  

2.2.3 Summary  

Physical experiments can give help create models for the behaviour of particulate gravity 

currents interacting with topography, and give some indication of the range and spatial 

distribution of the depositional facies they create. Despite this they are often challenging to 

directly compare with observed facies at outcrop, with physical experiments unable to 

replicate the scale and stacking of flows in the ‘real world’. Therefore finding from these 

studies can be used to general transport and depositional processes but are problematic to 

apply above the bed/ package scale.  

 Exhumed studies  

Outcrop studies show a wide range of sedimentological and stratigraphic variations in deposits 

on slope to basin floor profiles which can be used to interpret variations in palaeotopography. 

Outcrop studies allow mm scale analysis of sediments as well as 2D and some 3D constraint of 

systems.  

2.3.1 Downslope obstacles and gradient change  

Breaks in slope, either within the slope, at the regional base of slope or within the basin floor 

are commonly associated with changes in flow properties and therefore have been recognised 

at outcrop from facies and architecture variations (Pickering and Hiscott, 1985; Simpson, 1997; 

Hodgson and Haughton, 2004; Amy et al., 2007; Covault and Romans, 2009; Moody et al., 

2012; Spychala et al., 2015; Spychala et al., 2017a). Higher gradient settings are generally 

characterized by channel-levee systems (e.g. Posamentier, 2003; Posamentier and Kolla, 2003; 

Kane et al., 2007; Wynn et al., 2007; Di Celma et al., 2011; Hodgson et al., 2011). Unconfined, 

lower gradient environments are dominated by lobe deposition (e.g. Shanmugam and Moiola, 

1991; Shanmugam et al., 1995; Bouma et al., 2000; Johnson et al., 2001; Hodgson et al., 2006; 

Prélat et al., 2009; Flint et al., 2011; Spychala et al., 2015). In topographically complex systems 

this relationship can become more complicated.  

 Intraslope  

Intraslope lobe deposits are rarely documented in outcrop (Plink-Björklund and Steel, 2002; 

Sinclair and Tomasso, 2002; Beaubouef et al., 2007; Figueiredo et al., 2010; Bernhardt et al., 

2012; van der Merwe et al., 2014; Spychala et al., 2015; Jones et al., 2017). Key criteria for the 



24 
 

 
 

recognition for intraslope lobes at outcrop were established by Spychala et al. (2015) (Fig. 

2.10) and include, aggradational to slightly compensational lobe stacking patterns; onlap onto 

mud dominated slope deposits; highly amalgamated lobe axes; aggradational fringes and later 

incision by low-aspect-ratio channels within the same depositional sequence. Intraslope lobes 

generally have a lower aspect ratio (due to confinement) and higher sand content than basin 

floor lobes (Table 2.1). Intraslope lobes can be characterised as weakly confined, often 

associated with a reduction in slope gradient, or partially to fully confined where a down-dip 

topographic barrier causes the ponding of the lower portion or the complete flow. This can 

lead to grain-size breaks and sorting within a system, with concentration of coarse sediments 

in topographic lows, and fine sediments in topographic highs (Babonneau et al., 2004), as well 

as evidence of erosion or bypass across topographic highs (Burgess et al., 2000).  

 

Figure 2.10 (A) Block diagram showing the key recognition criteria of intraslope lobes. Stacking patterns 
are aggradational to slightly compensational; onlap combined with injection onto mudprone slope; 
highly amalgamated zone in the lobe complex axis; subtle confinement leads to fringes that show 
aggradation stacking; high degree of confinement leads to preservation of beds with evidence of flow 
direction, erosional based beds and abrupt facies changes; climbing ripple lamination is the dominant 
facies of the lobe off-axis; incision by low-aspect-ratio channel that originate in the same unit as the 
intraslope lobes; more lobe deposits ca be found down-dip of basin-floor or on steps basinward of the 
slope. (B) Simplified logs of typical thicknesses and stacking pattern from lobe axis to lobe fringe 
(downdip and laterally) in intraslope lobes that are observed over a few kilometres. Position of schematic 
logs are from fringe (1) to axis (4) (from Spychala et al., 2015).  
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Table 2.1 Comparison chart of the main sedimentological and stratigraphic characteristics of intraslope 
lobes and basin-floor lobes (from Spychala, 2016).  

Confinement and gradient change along the slope profile can change channel-levee system 

dynamics. Leading to variations in channel entrenchment across the slope (Fig. 2.11) as a new 

base-level is established and the slope attempts to grade to equilibrium (Brunt et al., 2013a).  

 

Figure 2.11 Schematic illustration of the distribution of Unit D (Fort Brown Fm., Karoo Basin, South 
Africa) depositional environments at (A) Early (B) Late stages from synthesis of field data. (C) A 
schematic long profile of the D3 channel system (dashed line) in relation to the mean regional 
palaeoslope (solid line) (from Brunt et al., 2013a). 
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Moreover, variations in channel-levee system confinement can lead to changes in the width of 

channel-belts. Weakly confined channel systems are highly distributive channels that form in 

low relief minibasins (Fig. 2.12). Channels diverge in the up-dip part of the minibasin and 

converge down-dip (Moody et al., 2012).  

 

 

Figure 2.12 Block diagram showing how channel architecture and reservoir style is related to 
palaeobathymetry. This study focuses on weakly confined channel systems (from Moody et al., 2012).  

 Base-of-slope  

The intervening area between slope channel-levee complexes and basin-floor lobes is 

characterised by abrupt decreases in gradient and confinement and lateral expansion of flows, 

often associated with hydraulic jumps from supercritical to subcritical flow conditions (section 

2.2.1) (Mutti and Normark, 1987, 1991; Weirich, 1989; Kostic and Parker, 2006; Sumner et al., 

2013). This base-of-slope is associated with the development of channel-lobe transition zones 

(e.g. Gardner et al., 2003; Hodgson et al., 2006; Brunt et al., 2013a; van der Merwe et al., 

2014). This transition can occur at a single point, or form a spatial geographic zone, with a 

variety of bedforms recognized in outcrop datasets (Mutti, 1977; Mutti and Normark, 1987, 

1991; Wynn et al., 2002a; Ito et al., 2014; Hofstra et al., 2015; Pemberton et al., 2016). First 

characterised by Mutti and Normark (1987) (Fig. 2.13) CLTZs were recognised in outcrop 

datasets as areas consisting of both depositional and erosive elements that create a complex 

zone.  



27 
 

 
 

 

Figure 2.13 Main characteristics of submarine channels, channel-lobe transitions and lobe deposits as 
originally described by Mutti and Normark (1987). With: 1a = erosional channel; 1b = depositional 
channel; 1c =’zone of roughness’; 1d = lobate relief; 2a = beds truncating against channel margin; 2b = 
beds converging against channel edge; 2c = bedding irregularity resulting from scours and large-scale 
bedforms; 2d = even-parallel bedding; 3a = clast-supported conglomerates; 3b = mud-supported 
conglomerates; 3c = thin-bedded overbank deposits; 3d+e = coarse-grained, internally stratified 
sandstone facies; 3f = complete and base-missing Bouma sequences; 4a = deep and relative narrow 
scours locally associated with stone clasts; 4b = armoured mudstone clasts; 4c = mud-draped scours; 4d = 
broad scours, locally associated with mudstone clasts; 4e = tabular scours invariably associated with 
mudstone rip-up clasts from underlying substratum; 4f = nests of mudstone clasts commonly showing 
inverse grading and ‘take-off’ attitude of individual clasts; 5a = slump units; 5b = impact features 
(redrawn from Mutti and Normark, 1987).  

Mutti and Normark (1987) made the distinction between CLTZs created by dominantly coarse 

sandy turbidity currents and turbidity currents containing a substantial mud component. 

Because the efficiency of dominantly sand-rich flow is significantly less, it results in rapid 

deposition after leaving the channel mouth. This results in typical wedge-shaped deposits and 

includes a region of intense scouring. When flows contain a mud-component, scouring of the 

seafloor will be generally less intense, deposition will not be very significant and most 

sediment will bypass and will be deposited further basin-inwards, forming detached lobes. 

Two stratigraphic end member CLTZ types have been identified (Fig. 2.14), sand-attached 

systems and sand-detached systems (sensu Mutti and Normark 1987, 1991).  
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Figure 2.14 Conceptual depositional model of deep-marine fan systems, illustrating relationships 
between lobe and channel transitions in a slope-to-basin setting. (A) Detached fan systems. (B) Attached 
fan systems. Modified after Mutti (1985) and Mutti and Normark (1987) (from Fugelli and Olsen, 2005).  

Other outcrop studies have noted the changes in flow characteristics (Ito, 1998), the presence 

of composite erosional surfaces and scour-fills of various dimensions (Mutti and Normark, 

1987; Ito et al., 2014; Hofstra et al., 2015; Pemberton et al., 2016), coarse sediment lags (Ito et 

al., 2014), and sediment waves (Vicente Bravo and Robles, 1995; Ito et al., 2014; Pemberton et 

al., 2016). Although these studies are limited in spatial extent with location within the CLTZ 

unknown and no direct link to up- and down-dip genetically related deposits.  

CLTZs are complex areas with a complicated transfer into the sedimentary record the 

transition can be preserved in a single stratigraphic horizon, showing down-dip transition from 

channel-levee to lobes (e.g. Elliott, 2000; Gardner et al., 2003) or as a vertical succession of 

channel elements that transition upwards into lobes or vice versa (Fig. 2.15) (e.g. Gardner et 

al., 2003; Pemberton et al., 2016), which records the transition of the CLTZ across the 

depositional sign through time. Overall outcrop record of the bypass dominated CLTZs 

recorded in experimental (section 2.2.1) and modern seafloor (section 2.4.1) is extremely 

limited with only individual features record e.g. scours (e.g. Hofstra et al., 2015; Pemberton et 

al., 2016) and no studies showing the complete downslope transition from channel-levee 

through bypass dominated CLTZ to lobes in a single stratigraphic horizon.  
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Figure 2.15 Four temporal and spatial domains, Build, Cut, Fill, Spill, characterize the principle phases of 
submarine channel-lobe deposition recorded by migration of the channel-lobe transition over a channel 
site. These domains relate variable confinement to the probable facies recording deposition from a 
region within a series of related flows and their contribution to channel, wedge and lobe sedimentary 
bodies. This diagram shows the build, cut, fill, and spill phases through the evolution of a single-story 
channel (from Gardner et al., 2003). 

The limitation in outcrop may be due to the preservation potential of CLTZs, which depends on 

the overall system evolution (Hodgson et al., 2016) (Fig. 2.16). As a system progrades channel 

systems may incise the CLTZ and lobes. At maximum progradation the system will be static and 

the CLTZ can develop to its maximum extent. As the system retrogrades CLTZ elements will be 

preserved as channels aggrade (Hofstra, 2016). Therefore outcrop studies showing any 
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elements of CLTZ are rare as they were either never preserved or later eroded, therefore an 

outcrop showing the overall dip profile through a bypass dominated CLTZ would be unique.  

 

Figure 2.16 A) Cartoon diagram in Wheeler space to illustrate the progressive-confinement model along 
the axis of a deep-water system during a cycle of waxing-to-waning sediment supply. The illustration 
emphasizes that the composite erosional surface is time transgressive. Note that during slope 
degradation frontal lobes form ahead of an evolving channel–levee system that lengthens down dip and 
up dip. The basal sandstone will be younger into the basin until a maximum regressive surface is formed. 
B) Three-dimensional Wheeler space cartoon with two strike sections that emphasize the challenge of 
identification of key regressive surfaces away from the axis on the slope and basin floor due to 
diachroneity of lithological contacts (from Hodgson et al., 2016).  
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2.3.2 Lateral slope and obstacles 

Primary data of the effect of lateral slope and obstacles on flow from experiment datasets is 

discussed in section (2.2.2), some similar features have been recorded in outcrop datasets. At 

a bed scale, the sedimentary record of lateral slopes and obstacles can include the vertical 

repetition of sequences (van Andel and Komar, 1969; Kneller and McCaffrey, 1999); variation 

of palaeocurrent directions (Pickering and Hiscott, 1985; Marjanac, 1990; Kneller et al., 1991; 

Edwards, 1993; Spychala et al., 2015); oscillatory ripples (Ricci-Lucchi and Valmori, 1980; 

Marjanac, 1990) and abrupt reversals in grading (Pickering and Hiscott, 1985). These features 

have been interpreted to show reflection of the turbidity current from topography at a lateral 

slope or basin margin (Amy et al., 2005; Kneller and Buckee, 2000).  

At a package or system scale, variation in flow dynamics and gradient of slope can cause 

various reactions by turbidity currents (shown by experimental datasets, discussed in section 

2.2.2.) this is expressed in outcrop by a wide variety of lobe onlap configurations (Fig. 2.17) 

(e.g. Smith and Joseph, 2004; Bersezio et al., 2009; Marini et al., 2015; Spychala et al., 2017a). 

Smith and Joseph (2004) illustrated a continuum of onlap configurations from abrupt to 

aggradational onlap as a function of coeval aggradation on the bounding slope and the basin-

floor. They inferred that abrupt onlap occurred with high slope angles, when little or no coeval 

sediments are deposited on the slope. Aggradational onlaps occur when aggradation rates on 

the slope are high associated with a progressive facies change towards the lateral slope (Smith 

and Joseph, 2004). Smith (2004b) and Spychala et al. (2017a) illustrated low-gradient lateral 

bounding slope scenarios to explain thick intervals of thin-bedded aggradational 'lobe fringe' 

deposits, in belts several kilometres wide, adjacent to basin-floor lobe complexes. These 

observations are generally in line with those observed in experimental datasets, with the 

height on the obstacle and flow dynamics controlling the amount of the flow that is reflected 

(section 2.2.2). Unlike the experimental datasets (section 2.2.2), outcrop studies consider the 

dynamic nature of most topography therefore taking into consideration when the topography 

formed pre- or syn-depositionally.  
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Figure 2.17 Submarine basin-floor lobes interaction with topographic features (i) low amounts of 
aggradation on the slope compared to the basin- abrupt pinch-out against structure; (ii) moderate 
amount of aggradation on the slope compared to the basin- aggradation onlap with draping muds; (iii) 
low-gradient slope and high aggradation rates- facies transition and remobilization; and (iv) unconfined- 
downlap (from Spychala et al., 2017a).  

2.3.3 Categorising confinement  

Unlike experimental datasets that generally examine the effect of a single topographic 

variation, outcrop datasets examine ‘real world’ scenarios which can show a variety of 

topographical influence on many scales.  The angle of confining slopes as well as the amount of 

down-dip and lateral confinement can be used to characterise basins at outcrop (Pickering and 

Hilton, 1998; Sinclair, 2000; Haughton, 2000; Sinclair and Tomasso, 2002, Amy et al., 2004, 

2007; Hodgson and Haughton, 2004; Smith and Joseph, 2004; Aas et al., 2010; Etienne, 2012; 

Etienne et al., 2012; Yang and Kim, 2014; Marini et al., 2015). Highly confined basins are more 

commonly recognised at outcrop as they display more obvious stratigraphic features. 

Outcropping basins with high to moderate confinement include: The Gres d’Annot Format, 

lateral palaeoslope values are reported between 4° and 10° (Amy et al., 2007; Salles et al., 

2014); The Laga Formation; 6 to 8° (Marini et al., 2015); Castagnola Formation; 10 to 12° 

(northern margin) and 4° (southern margin) (Felletti, 2002; Southern et al., 2015; Marini et al., 

2016); and the Cengio Turbidite systems; 5 to 10° (Bersezio et al., 2009; Felletti and Bersezio, 

2010). Syn-depositional remobilization is associated with all of these basins indicating lateral 

slope instability (Spychala et al., 2017a). When basins are highly confined in all directions thick 

mudstone caps can form, suggestive of flow ponding, and sandstones showing evidence of 

flow reversals during deposition (as discussed above), e.g. the Ordovician Cloridorme 

Formation (Hiscott and Picketing, 1984; Picketing and Hiscott, 1985); the Contessa megabed 
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(Ricci-Lucchi and Valmori, 1980); and the Eocene of Middle Dalmatia (Marjanac, 1987, 1988, 

1990).  

Moderately confined basins with slope gradients <5-1° include: the Akitio trench slope basin, 

(Bailleul et al., 2007); the Ross Sandstone (Pyles, 2008; Pyles and Jennette, 2009); and the 

Hikuwai sandstone and Mapiri Formation (Burgreen and Graham, 2014). Weakly confined 

basins include the Welsh Basin Silurian sandstone systems, namely the Mynydd Bach, 

Aberystwyth, Cwmystwyth and Pysgotwr formations (Smith, 1987a,b; Wilson et al., 1992; 

Smith, 2004b) and Unit A of the Laingsburg Formation, Karoo basin, South Africa (Spychala et 

al., 2017a). Lateral slopes within these basins are estimated to be < 1°, likely fluctuating 

between 0.05-0.3° in the Laingsburg Formation (Spychala et al., 2017a). General recognition 

criteria  for intraslope lobes was established by Smith (2004b), and includes palaeoflow parallel 

to the strike of the palaeoslope, and lateral replacement of sand-prone lobe complexes by 

thin-bedded turbidites. 

This degree of confinement will affect the stacking of lobe complexes, both intraslope and 

basin-floor (Fig. 2.18). In unconfined settings, compensational stacking of lobes and lobe 

complexes is observed (Fig. 2.18a) (Straub, 2009), controlled by the avulsion of feeder-

channels to redirect to a new topographic low after the creation of sufficient depositional 

relief in a lobe complex (Prélat and Hodgson, 2013). Aggradational stacking (Fig. 2.18b) occurs 

where flows are confined and therefore avulsion is not possible (Burgreen and Graham, 2014). 

Progradational stacking (Fig. 2.18c) is associated with basin configurations that limit lateral 

migration, when tectonics increases basin-floor gradient and when sedimentation rates rapidly 

increase (Macdonald et al., 2011b; Grundvåg et al., 2014; Picot et al., 2016). Progradational 

stacking is considered more common in proximal and base-of-slope settings where there is less 

accommodation. Retrogradational stacking (Fig. 2.18d) can be the result of decreased 

sediment supply at the end of a depositional cycle (e.g. at the end of a LST) when sediment is 

trapped on the shelf e.g. the Peïra Cava Basin, France (Amy et al., 2007).  
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Figure 2.18 Schematic plan view of lobe stacking patterns. (A) Compensational stacking; (B) 
Aggradational stacking; (C) Progradational stacking; (D) Retrogradational stacking. Dashed blue line 
indicates the locus of deposition of the next lobe (from Spychala, 2016).  

2.3.4 Mass flow deposit relief 

Mass transport deposits include debris flow, slump, and slide deposits (Moscardelli and Wood, 

2008), and can comprise a large proportion (locally, >50%) of slopes and basin floor 

successions (Posamentier and Walker, 2006). The erosion and evacuation of slope regions, as 

well as the deposition of the evacuated material, can create significant and complex 

topography (Kneller et al., 2016). The evacuated basal shear surface of a slide is rarely 

recognised at outcrop (e.g. Lucente and Pini, 2003; Shultz et al., 2005; van der Merwe et al., 

2009; Dakin et al., 2013), but can act as any seafloor depression and cause subsequent 

remobilized and turbidity current deposits to onlap and pond within. Frontal ramps can form 

during failure, creating partial down-dip confinement (Fig. 2.19) (Lucente and Pini, 2003).  
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Figure 2.19 Idealized transect of Casaglia-Monte della Colonna (CMC), (from the middle Miocene 
Marnoso-arenacea Formation of the Northern Apennines) parallel to the SW-NE direction of slide 
movement, showing the external geometry and internal distribution of structures. The sketch outlines 
three segments (a,b,c), which have been identified on the basis of the body geometry and the type and 
distribution of structures (from Lucentre and Pini, 2003).  

The topography on the top surface of mass-transport deposits can be defined as: very localized 

(a few metres wavelength and amplitude); localized (a few tens of metres wavelength, a few 

metres to ~ 10 m amplitude); and sub-regional (kilometres in wavelength, tens of metres in 

amplitude) (Dykstra et al., 2011). This topography can cause “ponding” or partial confinement 

of turbidites immediately above the mass-transport deposits (Dykstra et al., 2011).  

Armitage et al. (2009) divided mass transport topography into Tiers (1-3) based on the amount 

of relief created (Table 2.2; Fig. 2.20).  

 

Table 2.2 Three tiers of mass-transport-deposit surface topography are defined at the Sierra Contreras, 
Tres Pasos Formation (Cretaceous), Southern Chile. The cause of the topography and the effect on 
overlying turbidite architecture are outlined (from Armitage et al., 2009).  
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Figure 2.20 Conceptual diagram of the MTD surface-topography hierarchy developed for the Sierra 
Contreras, Tres Pasos Formation (Cretaceous), Southern Chile. Each of the three tiers is shown, outlining 
the scale and the effect on subsequent turbidite beds. Although the tiers are successively separated by an 
order of magnitude in size, there is range within the hierarchy with respect to the topographic 
dimensions, facilitating a more flexible comparison of MTDs (form Armitage et al., 2009). 

Many outcrop examples demonstrate this ability of large-volume debrites to locally (and 

possibly more regionally) control the topography of submarine slope (Dykstra et al., 2006; 

Posamentier and Walker, 2006; Walker, 2008). Jackson and Johnson (2009) record relatively 

minor outcrop relief (minimum of 5 m, compacted) developed at the top of a debrite that 

influenced the local routing of subsequent gravity flows and the stratal architecture of related 

deposits. Other examples include the Ainsa Basin (Eocene), northern Spain (Pickering and 

Corregidor, 2005) and the Delaware Basin (Permian), USA (Amerman et al., 2011). In these 

examples, mud-rich debrites are associated with relief of up to 35 m along their upper surfaces 
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causing younger turbidites to onlap. Surface relief can result from original depositional 

topography (either from catastrophic emplacement or creep), differential compaction (Alves, 

2010), or a combination of these. Due to this differential compaction and creep in some cases, 

with large amounts of relief, this influence by the underlying feature can persist into the 

overlying stratigraphy for hundreds of metres of section (e.g., Walker, 2008). Turbidites can be 

fully ponded within topographic lows, or just partially confined with no true three dimensional 

closure of confining topography. The amount of control depends on the relationship between 

the scale of topography and magnitude of the turbidity currents. This topography can 

dramatically affect grain-size distribution, types and abundances of sedimentary structures, 

and grading of beds in the turbidite successions (e.g., Walker, 2008; Dykstra et al., 2011). 

Studies of exhumed systems (e.g. Martinson and Bakken, 1990; Lucente and Pini, 2003; 

Pickering and Corregidor, 2005; Spörli and Rowland, 2007; Callot et al., 2008) and rare 

examples in core (e.g. Eggenhuisen et al., 2010) provide crucial information on process 

interaction and temporal/spatial evolution of deposits. However, because of the large scale of 

basal shear surfaces (kms in width, hundreds of metres in depth) recognising these features at 

outcrop is challenging, even with good palaeogeographical constraint (Lucente and Pini, 2003; 

Shultz et al., 2005). In particular, an exhumed lateral margin of a basal shear surface has never 

previously been documented and large-scale (10s m deep) basal erosion has rarely been 

shown (e.g. Lucente and Pini, 2003; Shultz et al., 2005; van der Merwe et al., 2009). Therefore 

previous outcrop studies often show numerous examples of depositional relief and the 

influence on subsequent flows but very little on erosional relief (discussed further in sections 

2.4.2 and 2.5.5).  

2.3.5 Summary  

Exhumed studies can give significant detail on spatial and temporal variation in erosion and 

sedimentation across slope to basin floor profiles and allow interpretation of 

palaeotopography. Unlike experimental datasets they do not allow for direct observations of 

flows, with flow dynamics, instead, interpreted from the geological record. Therefore strata 

only represents flow dynamics during deposition or erosion, and therefore the sedimentary 

record is bias towards these processes, with bypass dominated areas poorly understood. 

Previous outcrop studies on topographically complex areas are often limited in spatial or 

stratal extent, generally examining a single area effect by one type of topography (lateral or 

frontal, gradient increase or decrease) or a narrow range of stratigraphy.  
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 Modern seafloor studies  

The effect of slope and basin-floor topography on flow dynamics has also been noted in 

modern seafloor datasets, including, changes in slope and basin floor gradient as well as the 

formation of submarine slides. Modern seafloor datasets allows analysis of large scale, 

undeformed areas that are still active and therefore are unbiased towards deposited and 

strongly erosional flows that create stratigraphic records.  

2.4.1 Downslope gradient change  

Channel-lobe transition zones (CLTZs) have been interpreted from outcrop studies, but are 

often limited in spatial extent due to outcrop limitations. CLTZs have been recognised in many 

modern seafloor datasets (Fig. 2.21) (e.g. Piper and Sayoye, 1993; Palanques et al., 1995; 

Morris et al., 1998; Wynn et al., 2002a; Habgood et al., 2003; Bonnel et al., 2005), allowing an 

assemblage of erosional and depositional bedforms to be identiifed (e.g. Palanques et al., 

1995; Wynn et al., 2002a; Bonnel et al., 2005). As in outcrop datasets, CLTZs can be 

categorised as attached or detached, with the latter including a spatial geographic zone 

dominated by bypass (Fig. 2.22) (Mutti and Normark, 1987; Wynn et al., 2002a). 

The only generic model of CLTZs is presented by Wynn et al. (2002a) (Fig. 2.22), which is based 

on bathymetric and acoustic backscatter expression in recent systems. The system is divided 

into a more proximal erosion dominated area, including various scour forms, and a more distal 

deposition dominated area, with sediment waves as reworked deposits (Wynn et al., 2002a). 

Despite this segregation, as a whole the zone is interpreted as sediment bypass dominated 

(sensu Stevenson et al., 2015), where the majority of the sediment reaching the CLTZ is 

deposited further into the basin. The deposits that tend to be in the CLTZ area are relatively 

coarse-grained, patchily distributed and extensively reworked (Wynn et al., 2002a). 

The erosional zone is dominated by scour features (Wynn et al., 2002a), these can take many 

forms with several distinct scour morphologies documented. Macdonald et al., (2011a) 

describe 4 scour types that were documented in the modern environment along the northeast 

Atlantic margin (Figure 2.23): 1) Spoon-shaped, these scours have a regular elliptical 

morphology in planform, are elongate downstream and have a low width: length ratio, also 

documented in the Valencia channel-mouth (Palanques et al., 1995); 2) Heel-shaped scours, 

these scours have outward flaring limbs and are wider than they are long; 3) Crescentic scours, 

these scours are similar to heel shaped but with positive relief between the limbs, broadly 

lunate shape, and are generally as wide or wider than they are long — these have also been 
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recognised from the canyon-fan transition off West Portugal (Wynn et al., 2002a) (Fig. 2.24) 

and the Valencia channel mouth (Palanques et al., 1995); and 4) Oval scours, these are 

elliptical and elongated across the slope.   

Individual scours can overlap and interact to form scour fields, where scours coalesce into 

larger more composite features. These areas can be several km’s across (Wynn et al., 2002a). 

In many cases it is possible to identify the individual scours from erosional remnants of the 

scour, irregular topography, hummocks or elongated positive relief (Macdonald et al., 2011a).  
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Figure 2.21 (upper) Shaded swath bathymetry of the Rhone Deep Sea Neo-fan. (lower) Morpho-acoustic 
interpretation of the same dataset showing the independent nature of the Neo-channel mouth and a 
large scour field developed downdip of a slope break (from Bonnel et al., 2005). 
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Figure 2.22(a) Typical cross section through low efficiency submarine fan system with an attached 
lobe, and a high efficiency system with a detached lobe. (b) Summary of spatial distribution of 
erosional features and deposition bedforms within a CLTZ (from Wynn et al., 2002a). 
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Despite significant research into these features, still little is known about the processes that 

form deep-water scours. It is evident from modern and ancient examples that there is a wide 

Figure 2.23 Morphology and dimensions of four isolated and 
amalgamated scour types documented along the north east Atlantic 
margin (from Macdonald et al., 2011a). 

Figure 2.24 Morphology and dimensions of erosional features in 
CLTZs (from Wynn et al., 2002a). 
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variation in shape and size, and scours in comparable environments can look very different, as 

can scours in the same system. The reasons for this are unknown. Studies have speculated that 

a complex interplay of substrate character (e.g. sand/mud ratio, consolidation rate), seafloor 

morphology (e.g. slope angle, degree of channelisation), flow character (e.g. volume, velocity, 

density) and flow frequency are important factors contributing to scour morphology and 

dimensions (Macdonald, 2010). While the development of isolated scours into extensive 

amalgamated surfaces is clear, the initial genesis of the isolated scours is difficult to assess. 

Some scours suggest complex formation processes. For example successive cut-and-fill cycles 

spanning 10’s of thousands of years have been recognised within single scours (Macdonald et 

al., 2011a). The abandonment and infilling of scours can be caused by either allogenic or 

autogenic factors. Allogenic factors include a shutdown of an entire system, for example 

during a sea level highstand, or other factors, which reduce sediment supply to the system. 

Autogenic factors include debrite infills caused by failures of channel/ canyon margins or 

migration of the channel thalweg (Macdonald, 2010). Moreover, individual scour processes are 

independent of one another; a scour can be infilled whilst an adjacent scour actively eroded 

(Macdonald et al., 2011a). There have been several proposed explanations for this including: 

lateral migration of the primary zone of erosion; formation of hydraulic jump; or interactions 

between the flow and topography causing spatial variations in bed shear stress (Macdonald et 

al., 2011a). 

Depositional elements within CLTZs include sediment waves, sediment mounds/lag and 

reworked coarse deposits (Wynn et al., 2002a, b). Sediment waves are depositional bedforms 

located within the central and distal sections of CLTZs (Fig. 2.22) with wavelengths of 1-2 km, 

wave heights of 4 m and crest lengths of maximum 4 km, aligned orthogonal to the main flow 

direction (Normark and Piper, 1991; Wynn and Stow, 2002; Wynn et al., 2002b; Klaucke et al., 

2004; Ercilla et al., 2008). These features consist of a coarse sand-gravel composition (Piper et 

al., 1985; Kidd et al., 1998; Migeon et al., 2001; Wynn et al., 2002b). Sediment mounds and lag 

deposits are features up to 40 m long and 1.5 m high, comprise coarse material, generally 

pebbly sand and gravel, and are located immediately down-dip of scours (Wynn et al., 2002a). 

Reworked coarse deposits are located more distally in a CLTZ, and generally form features 

parallel to current direction (Fig. 2.23) (Wynn et al., 2002a). Modern expression of the CLTZ is 

mostly limited by the resolution of sonar and shallow seismic datasets (Wynn et al., 2002a) 

therefore sub-metre scale features have not been described. 

CLTZs form with decreases in seafloor gradient that coincide with decreased confinement. 

Increases in seafloor gradient have also been studied in detail in modern systems including 
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rechannelization on the basin-floor (Stevenson et al., 2013). Increases in slope or basin floor 

gradient can lead to an increase in flow bypass. The establishment of an optimum slope 

gradient and flow conditions can lead to flow travelling in a state of equilibrium.  

The Moroccan Agadir basin, modern seafloor datasets show a zone of base of slope bypass/ 

CLTZ, near to the mouth of Agadir Canyon, consisting of frequent erosional scours overlain by 

fine-grained sands/mud and thin gravel lags, as well as a basin floor bypass zone where flows 

pass from the Agadir Basin (0.02°) to the high aspect ratio Madeira Channel System (0.06°) 

(Fig. 2.25) (Stevenson et al., 2013). This planform view of modern systems allows anatomical 

links to be made between up-dip and down-dip sands, with cores allowing detailed 

sedimentology to augment basin scale data (Stevenson et al., 2013).  

Figure 2.25 A) Map of the Moroccan Turbidite System showing the pathway of Bed 5 through the Agadir 
Canyon, into the Agadir Basin, through the Madeira Channel System, and ultimately spreading across the 
Madeira Abyssal Plain (adapted from Stevenson et al., 2014a). Shallow sediment cores taken across the 
system are marked as white circles, with those detailed in this study highlighted in yellow. Base-of-slope 
and basin-floor bypass zones are highlighted as red areas. B) Schematic core transect of Bed 5 along its 
pathway from the Agadir Canyon to the Madeira Abyssal Plain (from Stevenson et al., 2015).  
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Bypass-dominated channels described from shallow seismic profiles (Fig. 2.24) (e.g. Agadir 

Basin, Stevenson et al., 2013) show acceleration of turbidity currents with an increase in slope 

gradient from <0.02º to >0.06º, therefore intensifying ambient mixing at the head and 

reducing mixing in the body of the flow. Flows can become autosuspended, whereby they 

there is no deposition or entrainment of sediment. For this to occur, flows must be powerful 

enough to suspend the entire sediment load, but not powerful enough to erode underlying 

substrate (Sequeiros et al., 2009). Stevenson et al. (2013) describes three main flows 

behaviours and depositional architectures across the Maderia Channel System (Fig. 2.26). 

 

Figure 2.26 Cartoon summarising the three main types of flow behaviour and resultant depositional 
architectures across the Maderia Channel System. In plan-view arrows indicate flow direction and size of 
arrow represents flow velocity, darker shaded areas indicate areas of deposition whereas lighter areas 
represent non-deposition. In cross section arrows indicate zones of deposition (from Stevenson et al., 
2013).  

In confined channel bypass (sensu Stevenson et al., 2013) (Fig. 2.26), thinner flows are 

confined in the channel, so a higher proportion of sediment is bypassed downslope, with only 

the uppermost areas of flow overspilling the channel or undergoing flow stripping, forming 

lenses of ripple cross laminated sand. This is displayed as composite erosion surfaces in many 

systems (e.g. Hubbard et al., 2014). Confined channel deposits (sensu Stevenson et al., 2013) 

(Fig. 2.26) occur where there is decrease in gradient or not enough acceleration for flows to 

bypass, forming thicker ripple cross laminated sand in the channel axis and finer grained 

marginal sediment (Stevenson et al., 2013). In unconfined channel bypass (sensu Stevenson et 

al., 2013) (Fig. 2.26), flow spreading is extensive with flows large in volume relative to the 
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channel size; deposits in the Maderia system related to this process are extensive ripple cross-

laminated sands. The decrease in flow confinement impacts the upper more dilute section of 

the turbidity current, with the coarser sediment confined in the channel and bypassed 

downslope (Stevenson et al., 2013). A decrease in gradient will cause unconfined channel 

deposition, with shallowing of gradient decelerating both the confined and unconfined flows 

(Stevenson et al., 2013). 

2.4.2 Submarine slide erosional and depositional relief  

Recent improvements in seabed (e.g. swath bathymetry) and sub-surface mapping techniques 

(high-resolution 3D seismic imaging) have revealed a wealth of slide scars and a diversity of 

related deposits on many of the world's continental margins (e.g. Vanneste et al., 2006; 

Morcardelli and Wood, 2015). Modern studies demonstrate the geometry and scale of basal 

shear surfaces to submarine landslides as well as the run out and character of resultant 

deposits, including the Storegga slide (Haflidason et al., 2004; Solheim et al., 2005), the 

Hinlopen slide (Vanneste et al., 2006), further slides offshore Norway (Baeten et al., 2013; 

Laberg et al., 2014), various slides across the US continental slope (McAdoo et al., 2000), and 

slides on submarine island flanks in the Canary Islands (e.g. Gee et al., 2001; Urgeles et al., 

2001; Masson et al., 2002; Hürlmann et al., 2004; Hunt et al., 2013; León et al., 2017). Many of 

these failures involved thousands of km2 of substrate (Fig. 2.27), and their formation 

represents an important mechanism for transferring sediment down the continental slope 

(Krastel et al., 2016). Modern seafloor datasets are more continuous and shown substantially 

larger areas that outcrop this can allow the recognition of both the slide area of failure (basal 

shear surface) and the resultant deposits (Figs 2.27, 2.28 and 2.29).  
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Figure 2.27 Comparison of shapes and area of failures studies within the COSTA project (from Canals et 
al., 2004). 
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Figure 2.29 Shaded relief image of Ana Slide, Ana Slide covers 6 km2 and is located on the eastern 
Balearic flank of Eivissa Channel (from Lafuerza et al., 2012).  

This large amount of modern seafloor data demonstrates the various locations, orientations, 

sizes and morphologies of submarine slides and their resultant deposits, therefore indicating 

the types and amount of relief created by slide scars (Figs 2.27, 2.28 and 2.29). In order to 

understand the impact that this topography has on resultant remobilized and turbidity flows, 

reflection seismic datasets are required.  

Figure 2.28 Three dimensional map of slope offshore Norway showing the geomorphology of the 
Storegaa slide, from http://www.offshore-technology.com/projects/ormen-lange-field/ormen-lange-
field8.html.  
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2.4.3 Summary  

Modern datasets have the potential to show far larger and more continuous areas of the 

seafloor compared to outcrop datasets. Moreover studies of the modern seafloor are unbiased 

towards deposition/ erosion and allow far greater understanding of bypass processes, which 

are often overlooked in stratigraphic record. Despite this they are limited in resolution 

generally allowing only regional scale study where not cored. Moreover they only display a 

single snapshot in time and do not show the temporal evolution that this is possible in outcrop 

and seismic datasets.  

 Reflection seismic studies  

Reflection seismic datasets allow analysis of spatially large areas covering 10’s to 100’s of 

kilometres from the shelf, through slope and basin floor areas. Moreover they can cover 100’s 

of metres of stratigraphy and therefore allow significant knowledge of temporal variations. 

Despite this the resolution of seismic datasets allows only large scale analysis of depositional 

packages  

2.5.1 Downslope changes in gradient and confinement 

Changes in gradient impact the behaviour of a sediment gravity flows, which directly controls 

the dispersal patterns of sand and the character of the deposits. In subsurface reflection 

seismic datasets, research has demonstrated that slope bathymetry has a key influence on 

reservoir quality, architecture and distribution (Prather, 2000, 2003; Booth et al., 2003; 

Gamberi and Rovere, 2011; Bohn et al., 2012; Prather et al., 2012). Due to the large scale of 

seismic datasets, bathymetrically complex slopes are categorised by variation in the overall 

slope profile (Fig. 2.30), and give a 3D and basin wide perspective on topographic confinement 

(e.g. sections 2.3.1, 2.3.2 and 2.3.3) often unavailable in outcrop studies. Prather (2003) 

characterise slopes as: above grade slopes with well-developed ponded accommodation with 

large amounts of mid- to upper-slope healed-slope accommodation (e.g. Gulf of Mexico); 

above grade slopes with stepped profiles, that lack well-developed ponded accommodation 

(e.g. Niger delta slope, Lower Congo, NW Borneo; and graded slopes without significant 

topography (e.g. eastern Gulf of Mexico). The angle of confining slopes interpreted from 

seismic datasets can be more subtle and complex than those identified from outcrop (e.g. 

Gervais et al., 2006; Heiniö and Davies, 2007; Hanquiez et al., 2010; Prather et al., 2012a). 
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Figure 2.30 Ternary diagram modified from Meckel et al. (2000), and Booth et al. (2002), showing slope 
type end-member and key processes controlling graded to above-grade slope transition (from Prather, 
2003). 

Accommodation on the submarine slope is the gap between the sediment surface (the 

background slope surface) and the equilibrium profile (the slope profile of no net erosion or 

deposition) (Pirmez et al., 2000; Kneller, 2003). The gradient of the equilibrium profile 

responds to changes in the volume and composition of turbidity currents, and the position of 

base level (Pirmez et al., 2000; Prather, 2003).  
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Figure 2.31 Idealised ponded depositional sequence (I-VI) and idealised bypass deposition sequence (VII-
XI) (from Prather, 2000).  

Ponded accommodation occurs with 3D closure of topographic lows (Fig. 2.31) (Prather et al., 

1998; Prather, 2000) that forms within intraslope basins as the result of localized withdrawal 

of mobile substrates (i.e. salt or shale; Prather, 2003). Healed slope accommodation (Fig. 2.31) 

is the space between the top of ponded accommodation and below a 3D convex surface fit to 
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the rugose seafloor topography. Healed slope accommodation is more common and 

volumetrically greater than ponded accommodation in many slopes (Steffens et al., 2003).  

Smith (2004a) classified three broad classes of complex slope topography (Fig. 2.32): (1) Silled 

sub-basins (i.e. closed depressions), most commonly documented from in salt-withdrawal 

minibasins of the Plio-Pleistocene Gulf of Mexico slope (Diegel et al., 1995; Liu and Bryant, 

2000); (2) Partially silled basins with lateral escape paths, e.g. the Chumash Fracture Zone 

(Normark et al., 1984) and the physiography present on the Brunei slope (Demyttenaere et al., 

2000); (3)Tectonically induced bounding slopes that guide, but do not block, flow paths, which 

can vary from highly tortuous to close to linear and commonly exhibit segments of lower 

('steps') and higher (between 'steps') gradients (e.g. Hay, 2012).  

 

Figure 2.32 Schematic diagrams illustrating the importance of the areal extent of sediment gravity flows 
relative to the areas of receiving depressions. (A) Silled sub-basin in which sand-transporting flows are 
small in volume relative to the scale of the receiving space. (B) Silled sub-basin in which sand-
transporting flows are large in volume relative to the scale of the receiving space. The diagram shows 
spill to the next sub-basin downslope with associated incision and bypass in the upper sub-basin. (C) 
Connected tortuous corridor in which sand-transporting flows are small in volume relative to the 
potential flow path. A possible example is shown in figure 8 of Demyttenaere et al. (2000). (D) Connected 
tortuous corridor in which sand-transporting flows are large in volume relative to the potential flow path 
(from Smith, 2004a). 
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Systems can therefore be classified into two end members silled sub-basins and tortuous 

corridors (Fig. 2.32). In the cascade of silled sub-basins model, topographic barriers between 

sub-basins are effective in blocking at least the basal sand-rich portions of flows until fill is 

achieved (Smith, 2004a).  When substantial portions of flows to travel beyond the former 

barrier, flow will accelerate on the steep slope downdip of the barrier, and lead to 

downcutting and successive flows cut back into the fill of the updip sub-basin (Smith, 2004a) 

also known as up-dip migrating knickpoints (Pirmez et al., 2000). 

Slopes with less extreme topographic controls include stepped slope profiles. Stepped slope 

profiles are classified as above grade slopes that exhibit subtle changes in depositional 

gradient that result in low gradient steps that are linked by high gradient ramps. Above-grade 

slopes are low relief systems that lack the 3D closure of ponded mini-basins (Meckel et al., 

2002) and are characterised by complicated, connected flow pathways with varying 

depositional gradients that are marked by alternating sections of erosion and bypass (Fig. 2.33) 

(O’Byrne et al., 2004; Smith, 2004; Hay, 2012). Step flats are areas of net accumulation and 

have a low or negative gradient, and are essentially toe of slope settings. Entry or exit ramps 

are zones of net sediment bypass, which will have a higher gradient (O’Byrne et al., 2004). 

Stepped slope profiles are dominated by healed-accommodation. The shape of this 

accommodation varies but it is generally strike-orientated curvilinear elongated ellipsoids on 

mud-prone stepped-slope profiles (Prather, 2003). 

 

Figure 2.33 Seismic section showing the stepped topography with numerous ramps and flats along the 
middle Angolan continental slope (from Hay, 2012).  

An example form offshore Angola (Fig. 2.33) from Hay (2012) demonstrates the evolution of 

stepped slope profiles through healing from a slope with distinct areas of net deposition and 
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net bypass (Fig. 2.34), lessening gradient changes, creating broader zones of erosion and finally 

creating a through-going bypassing channel system as the slope reaches equilibrium (Fig 2.34).  

 

Figure 2.34 Conceptual model for depositional evolution along a stepped-slope profile (modified from 
O’Byrne et al., 2004). Predicted slope evolution describes depositional and erosional response of turbidity 
currents to progressive slope build-up and associated accommodation reduction (from Hay, 2012).  
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If unobstructed, a slope will grade to equilibrium (Pirmez, 2000; Prather, 2003), but an 

important consideration in all of these settings is the rate/amount of structural growth versus 

the nature and rate of sediment supply and deposition or timing (Jackson et al., 2008; Mayall 

et al., 2010). For example, where structural growth is rapid compared to sediment supply, 

basinward transported sediments may be deflected or completely trapped on the slope 

(Jackson et al., 2008). In contrast, where structural growth is slow in comparison to sediment 

supply, any topographic variations associated with these structures may be smoothed-out, 

resulting in only minor or no re-routing and/or trapping of sediments (Jackson et al., 2008). 

Exceptions to this may be on steep slopes, where erosion at the base of out-of-grade channels 

with a constant supply of sediment may result in these systems incising into and cross-cutting 

even the most rapidly growing structures (e.g. Badalini et al., 2000; Pirmez et al., 2000; Heiniö 

and Davies, 2007).  

 

Figure 2.35 Sketch illustrating the structural controls on depositional systems on shelf, slope, and base-
of-slope systems affected by gravity-driven tectonics. Terrestrial fluvial-delta systems in orange, sand-
rich facies in yellow, deep-water fans in pale yellow, slope muds in grey, salt structures in pink. Note the 
complex and tortuous paths taken by slope channels around salt structures and folds. Sands can also 
pond in intraslope basins until the basin is filled and then channels continue down the topographic slope. 
Typical scale of 150 km (93 mi), modified from Mayall et al., 2010.  

Clark and Cartwright (2009) reported four end-member channel interactions with structures 

(folds/faults) in the deep-water Nile Delta, including: deflection of channels to fold tips; 

diversion of channels by folds; confinement of channels between two parallel folds, and 

blocking of channels by folds (Fig. 2.35). The influence of flow dynamics and height of 

topography at individual flow scale has been discussed above (section 2.2.2). At a system scale 

Mayall et al. (2010) demonstrates that a more complex interplay of characteristics can 
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influence channel response to topography (Fig. 2.34), including: the size, shape, and 

orientation of the structure on the depositional slope; the timing and rate of structural growth 

compared to channel initiation and development (e.g., Morley, 2009); and the erosional power 

of the channel complex systems/ variation in substrate resistance to erosion (e.g., Mitchell, 

2006) (Fig. 2.36). Where structures are large (e.g. diapir, salt wall or large fault) and located 

parallel or oblique to slope strike, channels make major diversions to continue downslope 

(Huyghe et al., 2004) (Fig. 2.35). 

 

Figure 2.36  Summary figure showing the range of channel responses to growth-related seabed 
bathymetry. The vertical axis goes from small structures to large structures orientated at a high angle to 
regional dip. The horizontal axis goes from structural growth, which predates channel development 
and/or low erosion of channels, through offset stacking due to growing structures to channels cutting 
through growing structures. Examples described in the text are plotted on this matrix. The direction of 
flow is shown by blue arrows except in the middle lower seismic line, where flow would be into the page 
(from Mayall et al., 2010).  

Where a channel system traverses a part of an undeformed slope that later exhibits growth of 

topography a range of channel responses can be recognized depending on the rate of 

structural growth and the erosive power of the flows crossing the growing structure (Fig. 2.36) 

(Mayall et al., 2010). Where the rate of growth of the structure is greater than the ability of a 

channel to erode through it, channel complex systems are deflected. When channels form 

prior to or at the onset of deformation the channel can appear to cut through the growing 

structure when the downcutting rate keeps pace with the structural growth. When structural 
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deformation is ongoing the erosive power of flows has been shown to be a major factor in 

determining channel incision across topography, with channel shear stress and flow velocity 

partly determining whether a channel erosion can keep pace with deformation (Jolly et al., 

2017). Detailed study by Jolly et al. (2017) shows that submarine channels in the Niger Delta 

can keep pace with structural uplift rates of up to 70 m in 1.7 m.y., and that channel 

entrenchment upstream of growing structures plays a major role in driving this process. When 

topography creates 3D topographic closure the ‘fill-and-spill’ model for silled sub-basins (Fig. 

2.32) can be applied (Smith, 2004a).  

2.5.2 Submarine slide topography  

The predominance of mass wasting processes in most continental margins around the world 

makes MTCs a potentially important element of any deepwater stratigraphic succession 

(Moscardelli and Wood, 2007). In addition, their influence in the shaping of seafloor 

bathymetry and continental margin architecture is well documented (Frey-Martinez et al., 

2005; Moscardelli et al., 2006; Moscardelli and Wood, 2008; Ortiz-Karpf et al., 2015), as they 

have the capacity to extensively resculpt seafloor topography on the continental slope and 

rise. Therefore, reservoir distribution and geometry on the slope and rise are often significant 

affected (Gamboa et al., 2010; Omosanya and Alves, 2013; Alves et al., 2014). Turbidity 

currents may be captured within slide scars and on the trailing edges, margins, and rugose 

upper surface of MTDs, developed when the MTD comes to rest or from later creep or 

compaction (Fig. 2.37) (Alves et al., 2014).; McGilvery et al., 2004; Moscardelli et al., 2006; 

Armitage et al., 2009; Jackson and Johnson, 2009; Alves, 2010; Olafiranye et al., 2013; Kneller 

et al., 2015, 2016).  
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Figure 2.37 Illustration of styles of accommodation associated with mass-transport deposits (from 
Kneller et al., 2016).  

The assistance of 3D seismic datasets which can map both the surface morphology across 

strike (Fig. 2.38) and down-dip (Fig. 2.39) and allow recognition of large scale basal shear 

surface morphology (Fig. 2.38), as well as stages of infill and evolution. Therefore situations in 

which basal shear surfaces and MTDs pond or redirect flows can be predicted at large scale 

(Fig. 3.38 and 3.39), but bed and package scale complexities within slide scars remain 

unknown. 
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Figure 2.38 Downdip changes in the morphology of a slide in the Magdalena Fan, Offshore Columbia. 
View between the northern downdip anticline and the updip anticline. V-Z seismic cross sections showing 
that the height and slope of the lateral walls of C1 decrease downdip and highlighting changes in the 
slope of the lateral margins which are sometimes related to changes in the substrate units (modified 
from Ortiz-Karpf, 2016).  
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Figure 2.39 Composite mass transport deposit (MTD) (elements lettered A to H) and interpreted 
stratigraphy of updip ponded deposits (I), (A) with seismic data and (B) without seismic data. The 
truncation onlap sequences and sediment tilting suggest that the MTD was moving downslope slowly 
after emplacement. Upper slope, Nile Cone. Seismic data courtesy of BG Scale division is 100 ms two-way 
travel time (TWTT). trunc. = stratigraphic truncation (from Kneller et al., 2016). 
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Variations in flow confinement can occur at m-to 10’s of metre scale above relief on upper 

surfaces of remobilized units (Armitage et al., 2009; Jackson and Johnson, 2009; Kneller et al., 

2016) (as shown in section 2.3.5). Flow confinement can also occur at a larger scale (10’s-100 

m), above basal shear surfaces when a large frontal ramp is formed during the erosion and/or 

as a result of remobilized deposits forming a topographical barrier down-dip (Frey-Martinez et 

al., 2006; Moernaut and De Batist, 2011; Jackson and Johnson, 2009; Kneller et al., 2016) (as 

shown in section 2.4.2). Previous models have classified the remobilized infill above a basal 

shear surface into two end member scenarios: frontally emergent where deposits have outrun 

the slide scar surface on the seabed, or frontally confined where topography downslope results 

in the ponding of remobilized deposits within slide scar accommodation restricting outflow 

onto the seabed (Fig. 2.40) (Frey-Martinez et al., 2006; Moernaut and De Batist, 2011). 

  

Figure 2.40 Schematic depiction of the two main types of submarine landslides according to their frontal 
emplacement: (a) Frontally emergent landslide. Note that the material ramps out the basal shear surface 
onto the seabed and is free to travel considerable distances over the undeformed slope position. (b) 
Frontally confined landslide. The mass is buttressed against the frontal ramp and does not abandon the 
original basal shear surface (from Frey-Martinez et al., 2006).  

Factors determining the confinement style of slides are the shape of the slope profile 

(controlling the headscarp height, depth of incision and location of frontal ramp), the gradient 

of the slope (controlling the length of the slope section and the height drop of the slide scar) 

and the geotechnical properties of the substrate (Fig. 2.41) (e.g. Moernaut and De Batist, 

2011).  
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Figure 2.41 Schematic illustration of the factors (slope angle, depth BSS, and slope length) controlling the 
height of the CoG (centre of gravity) above the frontal ramp and thus the frontal emplacement style of 
subaqueous landslides (yellow: confined; red: emergent). These controlling factors are interchangeable, 
so that steeper slopes, shallower excavation or longer slopes all produce more emphasis on frontal 
thrusting and emergence (from Moernaut and De Batist, 2011).  

Slide-scars may also capture down-slope drainage in the form of submarine channel-levee 

systems. The channel system may be entirely contained within the slide scar or rerouted 

(Winker and Booth, 2000; Loncke et al., 2009; Kertznus, 2009).  

2.5.3 Summary  

Overall reflection seismic datasets are highly useful in furthering understanding of topography 

of slope to basin floor profiles, allowing large scale analysis and temporal evolution to be 

documented. Despite this they significant lack resolution compared to outcrop and therefore 

more broadly classify topographical complexity in slope profiles and often miss more subtle 

markers of topographic variation. Moreover the detailed sedimentology and facies of these 
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studies is completely unknown when lacking well logs, and challenging to extrapolate in 

topographically complex areas where cored.   

 Summary  

Overall experimental datasets allow insight into the flow conditions throughout the flow 

pathway as well as during the depositional and erosional phases, and greatly add to the 

understanding of flow dynamics in general and how they change in response to topography. 

Despite this they do not fully represent ‘real world’ topographical changes and flow conditions, 

and are challenging to scale up. Outcrop datasets provide the most detailed studies of ‘real 

world’ deposits, allowing mm scale observations and correlation of units over areas of 

topographical complexity. Outcrop studies provide 2D and sometimes 3D exposures allowing 

some spatial constraint on systems as well as knowledge of the temporal evolution, although 

outcrops are generally limited in spatial extent and have gaps in data and have undergone 

some degree of deformation, all of which must be considered. Modern datasets are 

undeformed and  allow more spatially continuous data to be collected over large areas of 

slopes and basin floor, but are generally limited to a single snapshot it time and therefore do 

not show system evolution and have limited resolution. Seismic reflection datasets also allow 

more spatially continuous and large scale analysis and unlike modern datasets study of 

temporal evolution of slope to basin floor systems is possible. Despite this, seismic reflection 

studies are also limited in resolution of data, with sediments often having undergone 

significant deformation.   

To link the small scale experimental knowledge with the large scale understanding of spatial 

and temporal evolution of slope to basin floor systems from modern and seismic datasets 

requires knowledge gained using outcrop studies. To bridge this sufficiently, outcrop exposure 

would have to span ‘seismic scale’ areas (10’s- 100’s of kilometres) and expose continuous 

sections of stratigraphic units (100’s of metres of section), showing a range of topographic 

influence (lateral/ frontal gradient increases/decreases) at varying scales, which is uniquely 

possible in the Laingsburg depocentre, Karoo basin, South Africa.  

The key methods for creating topography on the slope to basin floor are outlines in table 2.3.  
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Table 2. 3 Example mechanisms for creating topography on the slope to basin floor. 

Method of 
creating 
topography  

Description  Timescale over 
which 
stratigraphy is 
affected*  

Height of 
topography 
created 

Local/ 
regional  

Static/ 
dynamic 

Example 

Erosional and 
depositional 
relief  

Erosion or deposition by 
single or multiple flows, 
e.g. scours and canyons 
or lobes and MTCs 

Short to mid  cm to 100s of 
m  

Local Static Prélat et al., 2009; Gamberi and 
Rovere, 2011; Kneller et al. 2016 

Mobile 
substrate 

Salt and shale diapirs 
and walls and associated 
withdrawal mini-basins 

Mid to long m to 100s of 
m 

Local/ 
regional 

Dynamic Prather et al., 1998; Mayall et al., 
2006; Clark and Cartwright, 2009; 
Barton, 2012; Deptuck et al., 2012; 
Hay, 2012; Prather et al., 2012a, b; 
Doughty-Jones et al., 2017. 

Tectonic 
structures 

Small scale to regional 
scale faulting and 
folding, including 
gravity-driven structures  

Short to long cm to 100s of 
m 

Local/regional Static/dynamic Hodgson and Haughton, 2004; 
Jackson et al., 2008; Mayall et al., 
2010; Burgeen and Graham, 2014  

Inherited relief Residual topography 
from underlying 
basement or 
stratigraphy  

Short to mid m to 100s of 
m 

Local/ 
regional 

Static Adeogba et al., 2005; Olafiranye et 
al., 2013 

Differential 
compaction 

Accentuation of 
underlying topography 
through variably 
compacting substrate 

Short to long m to 10s of m Local Dynamic Posamentier, 2003; Koša, 2007 

Regional uplift 
and 
subduction 

Uniform or differential 
uplift or subduction over 
sub-basins or basins 

Mid to long 10s of m to 
100s of m 

Regional Static/dynamic  Barton and Wood, 1984; Leeder and 
Gawthorpe, 1987  

* Short= Instantaneous to < my, mid= millions of years to 10s of million years, long= 10s of million years to 100s of million years.  
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3 Regional setting, methodology and dataset  

 Geological background- regional setting 

The Palaeozoic to early Mesozoic tectonostratigraphic development of southern Africa relates 

to western Gondwanan evolution (Fig. 3.1).  From the Early Ordovician to Early Jurassic, two 

sedimentary mega-successions separated by a major unconformity were deposited in two 

laterally offset major sedimentary basins in southern Africa.  These are the Cape and Karoo 

Supergroups (Figs 3.2 and 3.3) (Visser, 1997; Tankard et al., 2009, 2012).  

Figure 3.1 Reconstruction of SW Gondwana and the Karoo basin during the Late 
Palaeozoic. The high-standing Precambrian basement (from Scheffler et. al., 
2003, 2006).  
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Figure 3.2 Geological map of the Western Cape Province, South Africa (modified from Flint et al., 2011).  

The Cape Supergroup (Figs 3.2 and 3.3) comprises 8000 m of shallow marine, deltaic and fluvial 

deposits that thicken towards the south into an east-west trending depo-axis (Rust, 1973; 

Turner, 1999) and spans from the Early Ordovician to Early Carboniferous (Veevers et al., 

1994). Sediments of this mega-succession were derived from a cratonic source to the north 

(Tankard et al., 1982). The Karoo supergroup (Figs 3.2 and 3.3) comprises of 5500 m of deep 

marine to fluvial deposits that span from Late Carboniferous to Triassic (Figs 3.2 and 3.3). The 

Late Carboniferous to early Permian period (300 - 280 Ma) was marked regionally by large 

scale subsidence, producing a series of interconnected basins (Visser and Praekelt, 1996). 
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Figure 3.3 Graphic summary of the generalised Cape-Karoo stratigraphy (from Linol and de Wit, 2016)  
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Figure 3.4 Interpreted structural palaeogeography of the Karoo Basin at Ecca Group time. Modified from 
de Wit and Ransome (1992), Hälbich (1992) and van Lente (2004). 

The Sierra Australis-Colorado basins (Argentina), the Karoo-Falklands basin and the Beacon 

Basin, Antarctica developed as extensional back-arc basins, related to oblique subduction of 

the palaeo-Pacific plate under western Gondwana (Visser and Praekelt, 1996). During this time 

strongly diachronous Dwyka Formation (and equivalent) glacial systems were dominant across 

most of southern Gondwana. Northward subduction of the Panthalassan (palaeo-Pacific 

Ocean) plate beneath the Gondwana plate led to the formation of a magmatic arc and retro-

arc fold-thrust belt (Veevers et al., 1994; Visser and Praekelt, 1996).  

Previous authors have considered that the Karoo Basin formed as a retroarc foreland basin 

with the present-day fold-thrust belt (Cape Fold Belt) lying along the southern margin (Fig. 3.4) 

(De Wit and Ransome, 1992; Cole, 1992; Visser and Prackelt, 1996; Visser, 1997; Catuneanu et 

al. 1998; Catuneanu, 2004). However, provenance analyses (Johnson et al., 1991; Andersson 

et. al., 2004; van Lente, 2004) with more recent radiometric dating (Blewett and Phillips, 2016) 

and tectonostratigraphic analyses (Tankard et al., 2009, 2012) indicate that the Cape Fold Belt 

(CFB) is Triassic in age.  

Tankard et al. (2009) interpreted Karoo Basin subsidence during Ecca time as a result of 

dynamic subsidence by mantle flow, complicated by the vertical detachment of basement 

blocks (Fig. 3.5), with subsidence not driven by asymmetric crustal loading. There are no direct 

microfaunal indicators for palaeobathymetry for the turbidite succession but a simple estimate 

of the uncompacted thickness of the succession (Fig. 3.3) from basin floor fans to first deltaic 

deposits implies an approximate water depth of 1200-1800 m. 
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Figure 3.5 Model for the evolution of the Cape and Karoo basins. Each tectonic episode consisted of 
uplift, local fault-controlled subsidence and large scale regional subsidence with only minor brittle 
deformation. The principal episodes of basin formation were (A–D) Saldanian orogeny and Cape basin, 
(E–F) regional uplift and early Karoo basin (Dwyka–Ecca–lower Beaufort), and (G–H) Cape strike-slip 
orogeny and late Karoo basin (upper Beaufort–Stormberg). Dynamic topography was determined by 
first-order crustal faults and vertical motion of basement blocks due to mantle flow. Major subsidence in 
the Ordovician, Devonian and Permian is attributed to lithospheric deflection which suggests that mantle 
flow was coupled to palaeo-Pacific subduction. Red box indicates Permian phase relevent to this study  
(modified from Tankard et al., 2009).  
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 Study area- Laingsburg depocentre    

 Ecca Group 

 The Ecca Group is divided into seven formations that record a basin-fill succession from anoxic 

mudstones through to deltaic sandstones (Figs 3.3 and 3.6). The lower two formations (Prince 

Albert and Whitehill formations) were deposited in a single continuous basin across the 

southern Karoo (Visser, 1993; Johnson, 1991; King, 2005). The upper five formations 

(Collingham, Vischkuil, Laingsburg, Fort Brown and Waterford formations) are unique to the 

Laingsburg depocentre, but have a stratigraphic equivalent in both the Tanqua and 

Grahamstown depocentres.  

The Vischkuil to Waterford formations form an 1800 m thick progradational succession from 

basin-floor deposits (Vischkuil and Laingsburg formations; Sixsmith et al., 2004; van der Merwe 

et al., 2010), channelized submarine slope (Fort Brown Fm.; Hodgson et al., 2011; Di Celma et 

al., 2011; Flint et al., 2011) to shelf-edge and shelf deltas (Waterford Fm.; Jones et al., 2015; 

Poyatos-Moré et al., 2016). Regional palaeoflow is towards the NE and E throughout the 

succession with the entry point to the SW (van der Merwe et al., 2014). Around the town of 

Prince Albert the distal reaches interact with the Ripon Formation, a deep-water system 

derived from the east (Kingsley, 1981; Visser, 1993). The Ripon deposits are distinctive at 

outcrop due to their coarser (medium sandstone) grain size (Kingsley, 1981; Visser, 1993). 
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Figure 3.6 A lithostratigraphy of Western Cape. B Stratigraphy of Laingsburg depocentre (from Flint et 
al., 2011).  
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3.2.1 Prince Albert Formation 

The Prince Albert Formation is a dark grey - black carbonaceous shale, with some graded silty 

layers, the formation is of Artinskian to Middle Kungurian age (Visser, 1992) and reaches a 

thickness of 165 m in the Laingsburg area, but thins out northwards and eastwards (Visser, 

1991). The sharp contact between the Prince Albert Formation and the Dwyka Group records a 

rapid glacial retreat (Visser, 1996; Isbell et al., 2008). Four phases of deposition have been 

recorded: the lower part is dominated by mudstone containing dropstones and other ice-

rafted detritus; the middle part is dominated by mudstone and isolated mud-rich turbidite 

deposits; and the uppermost unit is dominated by shale, containing phosphatic nodules and is 

only present in the Laingsburg depocentre (Visser and Loock, 1978; Visser, 1991). Marine 

faunas including palaeoniscoid fish, lamellibranchs, radiolaria, foraminifera, sponge spicules, 

and coprolites, have been recorded in the Prince Albert Formation and in the base of the 

Whitehill Fm. (McLanchlan and Anderson, 1973, 1975; Johnson et al., 1997). 

3.2.2  Whitehill Formation 

The Lower Permian Whitehill Formation covered much of southern Gondwana about 280 ± 2.1 

Ma (Faure and Cole, 1999; Smithard et al., 2015) and consists of carbonaceous shale, which 

weathers white, with chert bands and lenses. The environment of deposition remains 

unresolved for the Whitehill Formation, with most researchers proposing a predominantly 

marine environment (e.g. Teichert, 1974; Kensley, 1975; Oelofsen and Araujo, 1987; Christie, 

1990; Visser, 1992, 1994), and others suggesting a non-marine, brackish water body with no 

connection to the ocean (Cole and McLachlan, 1991; Veevers et al., 1994; Pickford, 1995). Its 

distinctive white-weathering means it is often visible on satellite imagery and therefore makes 

an excellent marker horizon across the entire basin. The thickness of the formation remains 

relatively consistent across the basin, at 35-45 m, with the lower contact of the formation 

sharp and well-defined, and biostratigraphy suggesting synchronous deposition over the Karoo 

Basin (Johnson et al., 1997).  

3.2.3 Collingham Formation  

The Collingham Formation sharply overlies the Whitehill Formation and is characterised by 

siltstone and fine sandstone beds intercalated with yellow-brown tuffs. It attains a thickness of 

almost 80 m west of Laingsburg (Viljoen, 1994). Tuff layers within the Collingham Formation 

range in thickness from 1 - 20 cm but are commonly < 5 cm thick, sharp based and are 

infrequently reworked in their upper portions (Viljoen, 1994). They show no tractional 

structures and are interpreted to have been deposited from suspension (Wickens, 1994). Glass 
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shards are infrequently preserved in these tuffs (McLachlan and Jonker, 1990; Viljoen, 1994). 

The ash fall beds in the Collingham Formation have a dacitic chemistry and have been 

interpreted as being derived from the Choyoi igneous complex of Patagonia (Viljoen, 1994). 

This activity is known to have climaxed between 275-250 Ma. They are commonly colour 

banded which suggest some reworking of the yellow-brown ash. Significant trace fossils 

assemblages have been recorded including arthropod and gastropod trackways, and fish trails 

(Anderson, 1974). Three members of the Collingham Formation ae recorded:  the basal 

Zoutekloof Member; the central Buffels River Member; and the uppermost Wilgehout River 

Member, which occurs only in the Laingsburg area (Viljoen, 1994). The Collingham Formation 

thins substantially to the east beyond Prince Albert (Viljoen, 1994). The Zoutekloof and central 

Buffels River members are separated by a regionally persistent marker bed called the 

Matjiesfontein chert, which is uniformly thick (0.46 – 0.48 m) over at least 5000 km2. It shows 

an upward transition from parallel lamination, through rare ripple cross lamination to a 

convolute-laminated top and in places exhibits weak normal grading and amalgamation. It is 

interpreted as a subaqueous reworked/resedimented ash (Viljoen, 1994) that was deposited 

across an essentially flat basin floor. 

3.2.4  Vischkuil Formation 

The Vischkuil Formation comprises predominantly mudstone and siltstone and attains a 

thickness of 270 metres thick in the Laingsburg area (Wickens, 1994; van der Merwe et al., 

2009). The lower Vischkuil Formation shows no syn-sedimentary deformation and exhibits 

palaeocurrent indicators to the NW. Regionally persistent hemipelagic claystone units have 

been interpreted as containing the basinal equivalents of shelfal maximum flooding surfaces 

(van der Merwe et al., 2009). The interpreted lowstand systems tract comprises an increased 

volume of fine-grained sandstone in normally graded silt-prone turbidite beds and is overlain 

by another hemipelagic claystone drape (van der Merwe et al., 2009). The upper Vischkuil 

Formation was derived from the southwest and includes three 20-45 m thick debrites, with 

matrix supported fine-grained sandstone clasts up to 80 cm in diameter, which can be mapped 

over 3000 km2 (van der Merwe et al., 2009). In each case, the emplacement of a debris flow 

resulted in widespread deformation of 3-10 m of silt-prone turbidite substrate. Van der Merwe 

et al. (2010) interpreted the base of each slide/debrite package as a sequence boundary and 

the overlying sandstone prone section as a lowstand systems tract. The six sequences of the 

Vischkuil Formation are grouped into two composite sequences (van der Merwe et al., 2010). 

Sequences V1 and V2 form the lower composite sequence. The composite sequence boundary 
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for the upper composite sequence is interpreted at the base of 

sequence V3 where the major polarity shift in palaeocurrent 

directions is recorded. The high degree of organization in the 

stratigraphy, the simple sequence isopachs and the regional extent of 

correlation markers (Van der Merwe, 2009; Van der Merwe et al., 

2010) all indicate a well-modulated cyclicity of sand supply to the 

basin plain, with a gradual increase in sand volume over time. 

Sequence 6 is overlain sharply by the 300 m thick sandstone 

dominated Unit A of the Laingsburg Formation. The shift from 

northwestward flowing turbidity currents to an eastward prograding 

deepwater to shelf system represents establishment of a long term 

feeder system from the southwest (van der Merwe, 2010). The 

Vischkuil Formation is aerially restricted to the Laingsburg sub-basin 

and is likely equivalent to part of the Tieberg Formation in the 

Tanqua depocentre.  

3.2.5 Laingsburg Formation  

The Laingsburg Formation consists of Units A, A/B and B. Unit A is 

sub-divided  into seven sandstone-dominated packages 15 - 100 m 

thick (A1-A7), separated regionally by hemipelagic claystone and thin-

bedded siltstone packages 1 - 15 m thick (Sixsmith, 2000). Unit A is 

dominated by tabular sandstone beds arranged in 5 - 15 m thick 

thinning- or thickening-upward packages that are interpreted as 

submarine lobe deposits (Sixsmith et al., 2004). Sixsmith (2000) and 

Sixsmith et al. (2004) interpreted each regional sandstone-dominated 

package (A1-A7) to represent the lowstand systems tract to a 

depositional sequence, with the overlying fine-grained hemipelagic 

claystone and heterolithic package as the associated transgressive 

and highstand systems tract (Fig. 3.7). On a regional scale, the fine-

grained units of Unit A tend to maintain the same sedimentary 

characteristics, grain size and overall thicknesses over tens of km 

Figure 3.7 Schematic section showing sequence stratigraphic division of Laingsburg and Fort Brown 
formations. Sand-rich Sub-unit sequence tract and overlying transgressive-highstand systems tract mudstones 
represent a sequence, groups of these and overlying inter-unit transgressive-highstand sequence set 
mudstones represent composite sequences, groups of composite sequences and thicker interunit transgressive-
highstand composite sequence mudstones represent composite sequence sets (Flint et al., 2011).  
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while sandstone-dominated LST packages vary in character over shorter distances (Sixsmith, 

2000). More recent work has concentrated on the relative thicknesses and character of the 

fine-grained packages bounding the sequences, but also the stacking patterns of the sandy 

packages and their map pattern distributions. The fine-grained units between A3 and A4 and 

between A5 and A6 are the finest grained and the thickest (average thickness of 10 m) found 

within Unit A (Sixsmith, 2000). Also, the lower three sequences (A1-A3) show a basinward-

stepping or progradational stacking pattern followed by a backstep (A4), an abrupt basinward 

step followed by aggradation (A5 and A6) with a final backstepping trend in A7 (Sixsmith, 

2000).  

On the basis of stratal stacking patterns, Flint et al. (2011) grouped A1-A3 into a lowstand 

sequence set, and with the A3-A4 claystone forming a lower Unit A composite sequence (Fig. 

3.7). The claystone between A3 and A4 is more widespread and thicker than the claystone 

between A4 and A5. A4 and A5 are therefore grouped into a second lowstand sequence set, 

and form a middle A composite sequence with the A5-A6 claystone (Fig. 3.7). Similarly A6 and 

A7 are interpreted as a lowstand sequence set, with the overlying claystone representing the 

transgressive to highstand sequence set (Fig. 3.7). These together represent the upper Unit A 

composite sequence.  Unit A and the overlying the A/B claystone are therefore interpreted as 

a composite sequence set (Neal and Abreu, 2009; Flint et al., 2011). 

Grecula (2000) documented a NE thinning of Unit B from 225 to 50 m over 20 km and divided 

Unit B into a ‘lower’ and ‘upper’ B unit based on a widespread and abrupt upward transition 

from thick-bedded sandstone packages to ripple laminated thin-bedded deposits.  Additional 

work has permitted further division based on regionally mapped internal mudstones and 

abrupt sedimentary facies changes into Subunits B1, B2 and B3 (Fig. 3.7), where B1 and B2 

represent lower Unit B and B3 is the upper Unit B of Grecula et al. (2003). Depositional 

architectures are broadly divided into four categories: erosional channel-fills; weakly confined 

channel-fills; leveed channels; and lobes (Brunt et al., 2013b). The three regionally mapped 

Unit B sequences (B1, B2 and B3) stack into a composite sequence (Fig. 3.7) (Flint et al., 2011). 

Together with the underlying A/B unit and 10 m of claystone between A/B and B, the A/B-B 

succession is interpreted as two composite sequences with the composite sequence set 

boundary at the base of the A/B unit (Fig. 3.8). Flint et al. (2011) speculated that if 

preserved/exposed up depositional dip (or farther along depositional strike) the A/B unit 

would thicken into a fully developed composite sequence and that only the most distal section 

is exposed. 
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3.2.6 Fort Brown Formation  

The Fort Brown Formation consists of submarine slope to basin floor fan units B/C, C, D, E, and 

F (Fig. 3.7). Regional mapping and correlation of Units C to F have demonstrated an 

architectural change from sand-attached (Units C and D) to sand-detached channel-lobe 

transition zones (Units E and F) (sensu Mutti, 1985) (van der Merwe et al., 2014). The 

recognition of intraslope lobes in Units D/E, E and F (Figueiredo et al., 2010; Spychala et al., 

2015), as well as tracts of coarse sediment bypass (van der Merwe et al., 2014) supports the 

presence of a stepped slope profile at the time of E and F deposition (van der Merwe et al., 

2014). The mapping of successive slope-to-basin-floor systems in the Laingsburg depocentre 

indicates the presence of a lateral, broadly E-W orientated basin margin to the south of the 

Laingsburg area (van der Merwe et al., 2014). In the east of the Laingsburg depocentre, the 

Vischkuil and Laingsburg formations thin and pinch out, along with the sand-rich component of 

the Fort Brown Formation. 

Each sand-rich unit of the Fort Brown Formation is interpreted as a lowstand systems tract 

(LST; e.g. E1, E2, and E3) with a related transgressive/highstand systems tract mudstone which 

is ~1-8 m thick between each LST (Fig. 3.7) (Figueiredo et al., 2010, 2013), which form a 

depositional sequence (Flint et al., 2011). A series of depositional sequences  (e.g. D, E and F) 

and the related overlying hemipelagic mudstone representing the transgressive/highstand 

sequence set, together form a lowstand sequence set (Flint et al., 2011). A series of lowstand 

sequence sets, along with overlying hemipelagic mudstone representing the 

transgressive/highstand composite sequence, create a composite sequence set. The Fort 

Brown Formation has been divided into 2 composite sequence sets, with the first comprising 

of Units B/C, C and D, and the second including Units D/E, E and F (Fig. 3.7) (Flint et al., 2011).  

 Methodology and dataset  

In order to fully address the research questions proposed in Chapter 1, this study examines all 

Units in the Laingsburg and Fort Brown formations, as well as more detailed studies on Unit E 

and on the less extensive, smaller Units A/B, B/C and D/E for the first time in detail (Fig. 3.7). 

3.3.1 SLOPE, SLOPE 2, SLOPE 3 and LOBE project databases  

Detailed mapping and correlation of all units utilizes regional correlation work undertaken in 

previous studies across the Laingsburg depocentre (Appendix D.1-D.7) (Grecula et al., 2003; 

Hodgson, 2009; Prélat et al., 2009; Di Celma et al., 2010; Figueiredo et al., 2010, 2013; Flint et 
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al., 2011; Hodgson et al., 2011; Kane and Hodgson, 2011; Brunt et al., 2013a, b; Morris et al., 

2014a,b; van der Merwe et al., 2014; Spychala et al., 2015, 2017a,b).  

Previous work in the Laingsburg depocentre includes sedimentary facies patterns and 

architectural descriptions recorded in seven regional scale (60–90 km long) depositional dip–

parallel correlation panels. From south to north, these are Floriskraal South, Floriskraal North, 

Baviaans South, N1 Dome South, Baviaans North, Faberskraal South, Faberskraal North) 

(Appendix D.1-D.7). The database includes more than 1000 measured sections that were 

correlated by walking out key surfaces and units (typically the mudstones between each sand-

prone unit). The correlation panels follow the west-east–trending limbs of the main post-

depositional folds, and careful tracing of markers around the closures of these folds provides 

high confidence correlation between fold limbs.  

3.3.2 Fieldwork- This study  

This study included the collection of over 400 measured sections, totalling 14 km in thickness 

(Fig. 3.8; Appendix A) and the revisiting and relogging of over 250 others throughout the 

Laingsburg depocentre (Figs 3.8 and 3.9). These were logged at mm-cm scale to create detailed 

panel sections, over 10s of kilometres in dip and strike section. Logged sections document the 

lithology, grain size, sedimentary structures and stratal boundaries. The correlation framework 

was established by walking stratigraphic surfaces between sections, with the aid of regional 

mudstone units for long distance correlations. Correlation panels are augmented by helicopter, 

unmanned aerial photography and other photopanels. Logged sections are used to create 

isopach and palaeogeographic maps (Section 3.3.3). The Chapter 4 dataset contains 20 logged 

sections (Fig. 3.8; Appendix A). The Chapter 5 dataset contains 311 logged sections (Fig. 3.8; 

Appendix A) new and revisited (partially re-logged). Lastly, the Chapter 6 dataset contains 341 

logged sections (Fig. 3.8; Appendix A) new and revisited. Locations of farms, roads and rivers 

are shown in figure 3.9.  
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Figure 3.8 Location of logged sections new and revisited/ relogged in this study colour coded by chapter in which dataset is used. Grid references in Appendix A.  
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Figure 3.9 Location of roads, tracks, rivers and farms within the Laingsburg depocentre. 
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3.3.3 Isopach and palaeogeographic maps- This study  

Thickness distributions were created by fitting a surface to thickness values from logged 

sections. Input data were collected and prepared in Excel (Table 3.1).  

 

Table 3.1 Representative chart of thickness data preparation for the creation of isopach maps in ArcGIS.  

The surface operation was conducted in ArcGIS using the simple kriging tool within the 

Geostatistical Wizard (http://resources.arcgis.com/en/home/). Maps are extended beyond the 

extremities of the input data by the surfacing algorithm, with unrealistic values removed. An 

example of an output is shown in figure 3.10. 

 

Figure 3.10 Representative chart of thickness data preparation for the creation of isopach maps in 
ArcGIS. 

 Palaeogeographic maps were created by using panels to reconstruct broad depositional 

environment for a given interval and overlaying this with isopach contours modified in 

CorelDraw. Data have been used from previous studies in the Karoo (Grecula et al., 2003; 

Figueiredo et al., 2010, 2013; Di Celma et al., 2011; Flint et al., 2011; van der Merwe et al., 

2014; Spychala et al., 2015, 2017a,b) with some palaeogeographic maps modified from van der 

Merwe et al. (2014). Restored palaeocurrent data presented on maps were collected from 

ripple lamination and tool marks.  

Obect ID Log_code X_Base Y_Base Y_BaseStretch17.2 DE_Total E2_Total E3_Total

1 WFN201410 521025 6331025 6331728.432 0 1.45 4

2 WFN20132 521359 6330383 6330976.008 0 1.5 4.6

3 WFN20144 521730 6330901 6331583.104 0 1.4 3.8

4 WFN20146 522090 6330877 6331554.976 0 1.2 4.9

5 WFN20149 522313 6330984 6331680.38 0 0.8 2.2

6 WFN20149 522571 6330965 6331658.112 0 1.05 3.5

7 WFN20132 522767 6330960 6331652.252 0 1.1 4.45
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3.3.4 Datacube and surface maps – SLOPE 4 collaboration  

The datacube was collated by Dr Rachel Harding at Manchester University and utilises outcrop 

logs collected in all 4 phases of the SLOPE project, which were used to create two 

Schlumberger Petrel 2015 projects in order to visualize complete basin floor-to-slope-to-shelf 

systems of the Laingsburg depocentre interactively in 3D. My contribution to this project was 

supplying field datasets and panels as well as verification of correlations and surfaces. The 

main focus of the Laingsburg datacube is the outcrop sedimentary logs and correlations of the 

submarine slope deposits of the Fort Brown Formation, (Units C-G) from SLOPE Phase 3 (Flint 

et al., 2011) plus the Waterford Formation upper slope to deltaic section (Waterford 

Clinothems WfC1-8; Jones et al., 2013, 2015; Poyatos-Moré et al., 2016). The structural 

framework of the Fort Brown Fm. covers 2265 km2 (Data: Appendix C). Surface maps (tops and 

bases) of the main sand prone units/subunits have been constructed, along with a map for Top 

Vischkuil Fm. Thickness maps between these surfaces represent the thickness of sand prone 

units and inter unit claystones.  

The Datacube was created in Petrel by importing composite logs consisting of the complete 

Whitehill to Waterford stratigraphy as wells, with the top Whitehill used as a basal datum. 

Tops and bases of key units were selected using the well top function, and additional data 

were used to interpret polylines to add datapoints between outcrop logs. Depth structure 

maps were created for each key surface using the ‘make a surface’ function and thickness 

maps were created between key surfaces. Post depositional tectonic shortening was corrected 

for by stretching 13% in the Y direction, according to a mean value for palinspastic restoration 

derived by Spikings et al. (2015).  

 Facies framework 

The sedimentary facies of the Laingsburg and Fort Brown formations are described below 

(Tables 1.1-1.15), these have been recognised in this study and are based on previous studies 

undertaken in the Laingsburg depocentre (e.g. Grecula et al., 2003; Hodgson, 2009; Prélat et 

al., 2009; Di Celma et al., 2010; Figueiredo et al., 2010, 2013; Flint et al., 2011; Hodgson et al., 

2011; Kane and Hodgson, 2011; Brunt et al., 2013a, b; Morris et al., 2014a, b). These facies are 

combined into architectural elements and environments of deposition in the following 

Chapters (4-6).  
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Table 3.2 Facies framework 

Classification Facies Process Environment 

Bedded Mudstone Hemipelagic suspension fallout and 

very dilute turbidity currents 

Condensed 

intervals, basin 

mudstones 

Siltstone Distal run-out of turbidity currents Condensed 

intervals, basin 

mudstones 

Siltstone and 

mudstone 

couplets 

The mudstone drapes are deposits 

from the dilute tail ends of turbidite 

flows or represent periods of 

localised and/or regional shutdowns 

allowing pelagic sedimentation 

Channel 

abandonment 

facies, basin 

mudstones 

Sandstone 

and siltstone 

thin beds 

Spill-over fringe Deposition from numerous very 

dilute turbidity currents that are the 

result of flow-stripping in up-dip 

perched lobe deposits 

Basin floor 

Silt prone The bed thicknesses and the low 

sand volume suggest that deposition 

was by dilute distal turbidites. The 

bioturbated interval suggests either 

a longer time period between events 

or a change in oxygen and nutrient 

delivery 

Distal levee; 

distal lobe 

Sand prone Aggradational facies, with some 

erosion surfaces 

Channel margin; 

proximal levee; 

frontal splay 

Scoured 

siltstone and 

sandstone 

Erosion by numerous bypass 

dominated turbidity currents 

Bypass 

dominated zone 

Sandstones Sigmoidal 

bedforms 

Highly aggradational Proximal external 

levee; frontal 

splay 
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Structured Medium-to-high density flows 

escaping confinement and deposited 

rapidly 

Frontal lobe, 

crevasse splay, 

external levee. 

Banded Late stage rapid deposition in 

channel axis 

Proximal lobe 

Structureless Tractional bedforms suppressed in 

highly depositional settings 

Channel axis; 

lobe axis 

Remobilised Mudclast 

Conglomerate 

The presence of the mud clasts 

indicate erosion higher in the 

channel profile. Mudclasts are 

deposited as a channel lag/drape. 

Locally, clasts show secondary 

injection features 

Channel axis, 

lobe axis 

Debrite Easily identified at outcrop by a high 

interstitial mud content, giving a grey 

colour and crumbly weathering 

texture. Often contains large 

quantities of organic fragments 

Lobe fringe, 

channel axis 

Folded and 

Megaclasts 

Slumps and slides remobilizing 

primary strata 

Submarine slope 

to basin floor 

Other Hybrid Beds Erosive flows entrain mudstone 

clasts and fine-grained sediment into 

the turbulent flow, suppressing 

turbulence, and producing high-

concentration to pseudo-laminar 

flow conditions 

Bypass 

dominated zone  

Injectite Tractional bedforms suppressed in 

highly depositional settings 

Channel axis; 

lobe axis 
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3.4.1 Bedded  

 Bedded mudstone 

 
Figure 3.11 Well exposed individual thin beds are seen to be very laterally continuous (right). More 
normally, the mudstones break up into small pencil shaped shards due to a well-developed fracture 
network (left). 

Table 3.3 Bedded mudstone characteristics. 

  Values and interpretation 

Depositional 
environment 

Submarine slope and basin floor 

Description Structureless siltstone and claystone, smooth to touch in core 
examples, black in colour (no bioturbation observed), concretionary 
nodules and concreted ash deposits are common, rare mm-thick bed 
of fine siltstone and very fine sandstone.  

Sedimentary 
structures 

Typically structureless. Little to no internal stratification seen at 
outcrop or core. 

Process 
interpretation 

Hemipelagic suspension fallout and very dilute turbidity currents. 

Bed thickness 
range 

From 1 cm to ~1 m. 

Net : Gross range 0% 

Basal bounding 
surface 

Normally gradational, occasionally sharp bases. 

Upper bounding 
surface 

Sharp, occasionally erosional. 

Outcrop thickness Very variable. From 10s cm to 10s m. Inter-unit mudstones typically 
show a gradual thinning down dip. 

Outcrop width / 
geometry 

Very extensive. Inter-unit mudstones are mapped laterally and down-
dip through the entire Laingsburg area. The thinner intra-unit 
mudstones show a similar lateral and down-dip continuity. 

Trace fossils and 
other features 

Hemipelagic mode of deposition ensures regional coverage of the 
mudstone deposits. Hence they are invaluable as correlation markers; 
this is particularly true of the mudstone markers used to divide Unit C. 

Example localities 
(Fig. 3.9) 

Interfan mudstones are ubiquitous. The intra-unit mudstones are well 
developed in Unit C, E and F (CD Ridge, N1). 
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 Bedded siltstone  

 

Figure 3.12 Thinly laminated siltstone beds. 

Table 3.4 Bedded siltstone characteristics. 

Feature Values and interpretation 

Depositional 
environment 

Submarine slope and basin floor. 

Description In outcrop typically looks thinly laminated. 
Core shows 5-40 cm thick beds of fine, medium and coarse siltstone. 
40% fine siltstone. Coarser siltstones tend to occur in mm-thick beds 
although beds 2-10 cm thick have been observed in places.  

Sedimentary 
structures 

Typically structureless. Little to no internal stratification seen at 
outcrop. Thin laminations of fine, medium and coarse siltstone 
observed in the cores. 

Process 
interpretation 

Settling of fine grained turbidites and suspension fallout (Bouma 
Td/Te division). 

Bed thickness 
range 

Very variable. From 1 cm to 1 m. 

Net : Gross range 0% 

Basal bounding 
surface 

Normally gradational, occasionally sharp and rare erosional bases. 

Upper bounding 
surface 

Sharp, occasionally erosional. 

Outcrop thickness Very variable. From 10s of cm to 10s of m. Inter-unit mudstones 
typically show a gradual thinning down dip. 

Outcrop width / 
geometry 

Very extensive. 

Trace fossils and 
other features 

None. 

Example localities 
(Fig. 3.9) 

Units C, E and F (CD Ridge, Baviaans Farm and the N1 outcrop 
localities). 
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3.4.2 Sandstone and siltstone thin beds  

 Siltstone dominated  

 

Figure 3.13 Unit E, distal external levee - Allemansdrift farm (Left). Unit E lobe fringe- Slagtersfontein 
Farm (Right). 

Table 3.5 Siltstone dominated thin beds characteristics. 

Feature Values and interpretation 

Depositional 
environment 

Regions distal to sediment feeder system; such as distal overbank, 
distal levee (internal and external examples), channel margin, distal 
lobe, abandonment fill (slope valley) or basin floor  

Description Siltstone dominated (60%) thin beds of sandstone and siltstone 
packages 5-20 cm thick, individual beds are <1-5 cm thick. 
Can occur in 10’s of km wide laterally extensive packages. Consist of 
very thin (<2 cm) beds and minor structureless, planar to ripple 
laminated sandstone beds, that are often graded and very uniform in 
thickness. 

Sedimentary 
structures 

Thinly interbedded very fine sandstone and siltstone beds. Many of 
the very fine sandstone beds are structureless, however, wavy 
laminae, rare current ripple lamination and planar (parallel) laminae 
are all present locally. The siltstone (coarse) is generally planar 
laminated. There are few erosion surfaces, some of which are 
associated with bed dip changes above. Some areas can be intensely 
bioturbated. 

Process 
interpretation 

The bed thicknesses and the low sand volume suggest that deposition 
was by dilute distal turbidites. The bioturbated interval suggests 
either a longer time period between events or a change in oxygen and 
nutrient delivery. 
Laterally extensive packages are interpreted as deposition from 
numerous very dilute turbidity currents that are the result of flow-
stripping in up-dip perched lobe deposits. As flows traverse perched 
accommodation, the confining down-dip topography is partially 
surmounted by the uppermost, lower-density fraction of the turbidity 
currents. 

Bed thickness 
range 

Individual beds are typically <5-20 cm 

Net : Gross range 10 - 30% 

Basal bounding 
surface 

Gradational 
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Upper bounding 
surface 

Gradational 

Outcrop thickness Forms packages that range from 10 m to >100 m 

Outcrop width / 
geometry 

Facies unit can be traced for up to 10s km (e.g., Units C and D). 
Individual thin-beds may be traceable for up to 100 m 

Trace fossils and 
other features 

None 

Example localities 
(Fig. 3.9) 

Commonly forms uppermost channel fill in Unit's C and D, of the CD 
Ridge. Also found as part of external levee deposits in Units B, C and D 
e.g., CD Ridge, Geelbek, N1, Zoutkloof. 
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 Sandstone dominated  

 

Figure 3.14 Unit D external levee, Krantz, GPS for scale (left) and Unit D External levee, C-D Ridge, pencil 
for scale (right). 

Table 3.6 Sandstone dominated thin beds characteristics. 

Feature Values and interpretation 

Depositional 
environment 

This facies is present in frontal splays, proximal internal levee, proximal 
external levee, lobe fringe and off-axis sub-environments. 

Description Thin beds of sandstone and siltstone packages are 5-20 cm thick, 
individual beds are <1-5 cm thick.  

Sedimentary 
structures 

Typically consist of thin alternating very fine/ fine sandstone beds and 
siltstones; occasionally the sandstones are gradational into silts 
suggesting development of Bouma C - D divisions. Sedimentary 
structures within the very fine sandstone beds include wavy laminae, 
current ripple laminae, planar laminae, multiple cosets of ripple 
lamination, climbing ripple lamination, stoss side preserved ripple 
laminae, and some are structureless. The coarse siltstone beds are 
generally planar laminated. Erosion surfaces and amalgamated contacts 
are observed. 

Process 
interpretation 

Evidence of a high rate of deposition. Aggradational facies, with some 
erosion surfaces. The higher the sand content, the closer to the channel.  

Bed thickness 
range 

Individual beds 2 - 15 cm. 

Net : Gross 
range 

40 - 65%. 

Basal bounding 
surface 

Mostly gradational from thick-bedded sandstones, or gradational from 
siltstone prone thin beds. Occasional sharp, non-erosive basal contact. 

Upper bounding 
surface 

Often gradational into silty thin-bedded heteroliths. 

Outcrop 
thickness 

Whole unit up to 150 m in thickness. 

Outcrop width / 
geometry 

Facies unit can be traced for up to 10s km laterally (e.g., Units C and D). 
Individual 5 cm scale thin-beds may be traceable for up to 250 m. 
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Trace fossils and 
other features 

None 

Other remarks Associated with external levees, internal levees and frontal splay 
deposits. 

Example 
localities (Fig. 
3.9) 

Lower part of Unit D at Geelbek, Zoutkloof and the CD Ridge. Upper and 
lateral fill of channel elements within CD Ridge, N1, Geelbek etc. 
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3.4.3 Sandstones 

 Structured sandstone  

 

Figure 3.15 Planar laminated sandstone (left) and rippled external levee at Grootkloof (right). 

Table 3.7 Structured sandstone characteristics. 

Feature Values and interpretation 

Depositional 
environment 

Rapid deposition from expanding flows: Frontal lobe, crevasse splay, 
external levee. Sustained bedload traction, particularly within channels 

Description Very fine sandstone with an abundance of unidirectional current ripple 
laminae. Little silt or clay grade material present. Beds are 5-40 cm thick 

Sedimentary 
structures 

Well-developed ripples and climbing ripples are common. Upper 
surfaces commonly rippled where present. Lots of erosion surfaces, 
some soft-sedimentary deformation, but little bioturbation and few 
mudstone drapes. Erosion surfaces are associated with multidirectional 
current ripple laminae 

Process 
interpretation 

Medium-to-high density flows escaping confinement and deposited 
rapidly. Evidence of a high rate of deposition. Aggradational facies, with 
some erosion surfaces. The higher the sand content, the closer to the 
channel. The core shown is taken from the Unit C2 external levee 

Bed thickness 
range 

Beds are 5-70 cm thick 

Net : Gross range 50-70% 

Basal bounding 
surface 

Sharp contact, this facies generally overlies thinly bedded sandstone 
and siltstone (cm scale beds) 

Upper bounding 
surface 

Normally gradational into rippled thin beds 

Outcrop 
thickness 

Range 5 - 200 cm  
Mostly 5 - 30 cm 

Outcrop width / 
geometry 

Individual beds continuous for >100 m 

Trace fossils and 
other features 

None 

Example 
localities (Fig. 
3.9) 

Unit B: Skeiding, Doornkloof; Sub unit F2: Zoutkloof; Sub-unit C2: CD 
Ridge; Sub-unit C3: Baviaans farm 
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 Scoured sandstone and siltstone  

 

Table 3.8 Scoured sandstone and siltstone characteristics. 

Feature Values and interpretation 

Depositional 
environment 

Channel-lobe transition zone 

Description Thin-bedded siltstone with thin, lenticular and poorly sorted silty 
sandstone beds that overlie and are cut by erosional surfaces. Scours 
can be asymmetric down dip with steeper headwalls < 3- 15 m in length, 
1-3 m in width and < 1 m in depth 

Sedimentary 
structures 

Soft sediment deformation 

Process 
interpretation 

Erosion by numerous bypass dominated turbidity currents  

Bed thickness 
range 

0.02-1.2 m 

Net : Gross range Variable 

Basal bounding 
surface 

Sharp or erosive, uneven 

Upper bounding 
surface 

Sharp and erosive, irregularly overlain by bypass lags or thinly laminated 
siltstone 

Outcrop 
thickness 

Amalgamated packages 3-4 m thick 

Outcrop width / 
geometry 

Occurring in areas up to kilometres in width and length 

Example 
localities (Fig. 
3.9) 

Prevalent across the sediment bypass zone- Slagtersfontein- Unit E, 
Wolvefontein, Unit F 

 

Figure 3.16 Varying scale scour surfaces – Slagtersfontein farm. 
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javascript:void(0)


92 
 

 
 

 Sigmoidal bedforms  

Field Images 

 

Figure 3.17 Sigmoidal bedforms in sandstone beds, Sub-unit E2, external levee, Heuningberg south limb 
(left) and Unit D, lower proximal external levee, CD Ridge - near to the Bav 1A wellsite (right). 

Table 3.9 Sigmoidal bedform characteristics. 

Feature Values and interpretation 

Depositional 
environment 

High density, high velocity flows escaping confinement and depositing 
rapidly, typically found in proximal external levee and frontal splay 
deposits. 

Description Predominantly a depositional facies, rich in very fine sandstone, erosion 
surfaces are rare. 80-90% of the facies is very fine sandstone to very 
coarse siltstone. 

Sedimentary 
structures 

Sigmoidal shaped bedforms dominate, in core they form convex up-
concave up (through parallel) laminae. Other sedimentary structures 
include; current ripple laminae, planar laminae, low angle ripples, 
occasional locally developed cross bedding, stoss-side preserved ripple 
laminae, dm scale ripple laminae and climbing ripple laminae. Small 
scale erosional features cutting 2 - 10 cm and <50 cm in width. 
Component beds coarsen and thicken upward from siltstone to fine 
sandstone. 

Process 
interpretation 

Medium-to-high density flows escaping confinement and deposited 
rapidly. Evidence of a high rate of deposition. Aggradational facies, with 
some erosion surfaces. The higher the sand content, the closer to the 
channel. The core shown is taken from the Unit C2 external levee. 

Bed thickness 
range 

Individual beds are 2-30 cm thick. 

Net : Gross 
range 

50-70% 

Basal bounding 
surface 

Sharp contact, this facies generally overlies thinly bedded sandstone and 
siltstone (cm scale beds). 

Upper bounding 
surface 

The unit becomes finer grained and thinner bedded upwards. 

Outcrop 
thickness 

The unit can be <5-25 m thick. 
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Outcrop width / 
geometry 

Facies unit can be traced for up to 10s km laterally (e.g., Units C and D). 
Individual 5 cm scale thin-beds may be traceable for up to 250 m. 

Trace fossils and 
other features 

None. 

Other remarks Facies is likely to have been deposited beneath long-lived flows. 
Erosional features develop under heads of flows, with tractional 
structures and silt deposition forming at the tail end of unconfined 
flows. 

Example 
localities (Fig. 
3.9) 

Proximal D levee at the western edge of the CD Ridge, frontal splay 
deposit in Sub-unit C3; Baviaans farm and the CD Ridge, Unit B external 
levee on the south limb of the Baviaans syncline, external levee deposits 
in Sub-units E2 and F2.  
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 Banded sandstone  

 

Figure 3.18 Lobe axis banded sandstone from the Wilgehout River locality. 

Table 3.10 Banded sandstone characteristics. 

Feature Values and interpretation 

Depositional 
environment 

Late stage bulk fill within channels (axis and off-axis deposits) and 
proximal areas of frontal lobes 

Description This facies occurs in discrete horizons within an overall massive fine 
grained sandstone unit (often occurs in sandstone beds that grade from 
fine sandstone-very fine sandstone). Many of the mud clast rich 
horizons of muddy sandstone – sandstone unit rich in mm-sized mud 
clasts 

Sedimentary 
structures 

Generally occurs in massive fine-grained sandstone. Some zones of 
minor bioturbation are recognised in this facies 

Process 
interpretation 

Typically occurs in the finer grained zones within the graded fine to very 
fine sandstone beds. These deposits are more cohesive due to the 
presence of small mud clasts buoyed towards the upper Ta division of 
turbidity flows  

Bed thickness 
range 

These horizons are typically 1-5 cm thick and are not common 

Net : Gross range 50 - 75% 

Basal bounding 
surface 

Uneven, erosive base 

Upper bounding 
surface 

Usually overlain by sandstone, slightly scalloped contact observed in 
places 

Outcrop 
thickness 

Usually distinct horizons, only observed in core therefore outcrop 
thickness range is unknown 

Outcrop width / 
geometry 

Usually distinct horizons, only observed in core therefore outcrop 
width/geometry is unknown 

Trace fossils and 
other features 

None 

Example 
localities (Fig. 
3.9) 

Channel axis and off-axis deposits in the CD Ridge  
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 Structureless sandstone  

 

Figure 3.19 Photograph of structureless sandstone in Unit B, at Skeiding. Interpreted to be a channel 
complex (left) and a Close up photograph of structureless sandstone from Unit C2, near Baviaans farm, 
Interpreted to be part of a channel axis deposit (right). 

Table 3.11 Structureless sandstone characteristics. 

Feature Values and interpretation 

Depositional 
environment 

Fall in capacity of high concentration flows and rapid deposition. Late 
stage bulk fill within channels and proximal areas of frontal lobes 

Description Predominantly a depositional facies, rich in very fine sandstone and 
rare erosion surfaces. 80-90% of the facies is very fine sandstone-very 
coarse siltstone 

Sedimentary 
structures 

Normally appears massive. Occasional dewatering pipes and dishes. 
Widespread amalgamation along erosive surfaces 

Process 
interpretation 

Medium-to-high density flows escaping confinement and deposited 
rapidly. Evidence of a high rate of deposition. Aggradational facies, with 
some erosion surfaces. The higher the sand content, the closer to the 
channel. The core shown is taken from the Sub-unit C2 external levee 

Bed thickness 
range 

Variable <10 - 200 cm 

Net : Gross range 95 - 100% 

Basal bounding 
surface 

Sharp based, often shows large degree of erosion 

Upper bounding 
surface 

Normally sharp, overlain by thin-bed heteroliths 

Outcrop 
thickness 

Variable <1 m to amalgamated sections of >30 m 

Outcrop width / 
geometry 

Axial infill of channel elements 100 – 400 m in width. Will have 
considerable down-dip extent 

Trace fossils and 
other features 

Thick amalgamated structureless sandstones may break up laterally 
(off-axis) into thick-bedded sandstones or thin bedded heteroliths 

Example 
localities (Fig. 
3.9) 

Skeiding, Rubbish Dump, N1, Geelbek 
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3.4.4 Mass transport  

 Chaotic  

 

Figure 3.20 Mud rich debrite with sandstone pseudo nodules (left) and Sand rich debrite within the C1 
lobe exposed at Zoutkloof (right). 

Table 3.12 Chaotic deposit characteristics. 

Feature Values and interpretation 

Depositional 
environment 

Lobe fringe, channel axis 

Description Easily identified at outcrop by a high interstitial mud content, giving a 
grey colour and crumbly weathering texture. 
Often contains large quantities of organic fragments (fig. 3.20).  

Sedimentary 
structures 

Normally structureless. 

Process 
interpretation 

High density cohesive flows preserve the integrity of organic 
fragments. Occurrence at lobe fringe is probably due to reduced 
friction effects of debris flows riding over the top of de-watering sands 
deposited by precursor turbidity current (i.e., hybrid bed). 

Bed thickness 
range 

5 mm to several metres 

Net : Gross range Highly variable 

Basal bounding 
surface 

Sharp 

Upper bounding 
surface 

Sharp 

Outcrop thickness From 10s of cm to 10s of m, typically thickening down-dip. 

Outcrop width / 
geometry 

Variable: may be deposited in and limited by shape of containing scour 
/ bed topography, or show lateral extents of many kilometres.  

Trace fossils and 
other features 

Significantly more common in the distal areas of each system. 
Absent from the CD Ridge boreholes. 
Plant fragments often make up a large proportion of the debrites; large 
fragments typically rise to the top of individual debrite beds.  

Example localities 
(Fig. 3.9) 

Unit C at Geelbek 
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 Remobilized  

 

Feature Values and interpretation 

Depositional 
environment 

Submarine slope to basin floor 

Description Clasts and megaclasts: blocks of intact remobilised strata, varying in 
sizes and degrees of disaggregation. Clasts vary in scale from small 10’s 
cm scale. Fractured and disaggregated at edges with no ductile 
deformation features. Internal bedding is well preserved within clasts. 

Sedimentary 
structures 

Dewatering structures and syn-sedimentary faults. 

Process 
interpretation 

Folded strata are interpreted to form as slumps and slides remobilise 
primary bedding, undergoing ductile deformation. Clast and megaclasts 
are interpreted to form as cohesive material is remobilised as slides 
and undergo only brittle deformation. 

Bed thickness 
range 

cm - 10s of metres. 

Net : Gross range Very variable. 

Basal bounding 
surface 

Gradational to sharp. 

Upper bounding 
surface 

Gradational to sharp. 

Outcrop 
thickness 

Up to 10’s of metres. 

Outcrop width / 
geometry 

Up to several kilometres. 

Trace fossils and 
other features 

None. 

Example localities 
(Fig. 3.9) 

Vriesgewaagd farm, Skerwerkraal Farm. 

Figure 3.21 Folded deposits present at Vrisgewaagd farm and Skerwerkraal farm.  

Table 3.13 Remobilized deposit characteristics. 
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3.4.5 Other  

 Mudclast conglomerate  

Figure 3.22 Rip-up conglomerate (left) and base of bed mudclasts (right). 

Table 3.14 Mudclast conglomerate characteristics. 

Feature Values and interpretation 

Depositional 
environment 

Mud clast mantled surfaces (MCMS) and mud clast conglomerate 
deposited and moved in traction beneath confined flows. Sand and 
finer-grained material is inferred to have been bypassed through the 
system. MCMS deposits are mostly associated with flows confined 
within channels 

Description Usually a matrix of massive fine sandstone. This facies is rich in 
mudstone (mudstone and siltstone) clasts averaging <1-4 cm in 
diameter, although some are up to 20 cm. The clast-rich zone is 
generally preserved at/near the base of sand beds as MCMS and/or mud 
clast conglomerate. Locally medium sandstone is present. 

Sedimentary 
structures 

Facies found draping erosionally cut surfaces. Consists of tightly packed 
mudstone clasts 1 - 2 cm in diameter. Clasts are normally well rounded. 
Also occurs in a continuum from high concentration clast supported 
conglomerates to matrix supported conglomerates. Clasts commonly 
well rounded and 1 - 15 cm in size 

Process 
interpretation 

The presence of the mud clasts indicate erosion higher in the channel 
profile. Mudclasts are deposited as a channel lag/drape. Locally, clasts 
show secondary injection features 

Bed thickness 
range 

Typically MCMS is just one or two clasts thick. Local accumulations in 
scoured depressions may be as thick as 5 – 10 cm 

Net : Gross range 0 - 10% 

Basal bounding 
surface 

Lies above a sharp erosionally bounded surface. The erosional surface is 
normally planar with local topography related to the erodability of the 
underlying substrate 

Upper bounding 
surface 

Typically overlain by thin bedded bypass facies. Minimal thickness 
means easily lost to erosion 

Outcrop 
thickness 

Typically MCMS is just one or two clasts thick. Local accumulations in 
scoured depressions may be as thick as 5 - 10 cm 

Outcrop width / 
geometry 

Can be remarkably continuous, may drape the full erosional width of 
channels (50 - 400 m), except where incised by later erosional episodes.  
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Trace fossils and 
other features 

None 

Other remarks Often very continuous layers. MCMS have proved useful for tracing 
channel bounding surfaces through areas of poor exposure 

Example 
localities (Fig. 
3.9) 

Unit B Skeiding, CD Ridge. Baviaans North, and in Unit C2  
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 Hybrid bed  

 

Figure 3.23 Hybrid beds- Slagtersfontein farm (top and bottom left), Allemansdrift farm (top and bottom 
right). 

Table 3.15 Hybrid bed characteristics. 

Feature Values and interpretation 

Depositional 
environment 

Silt-rich hybrid beds: lobe fringe settings. Sand-rich hybrid beds: proximal 
lobe settings downdip of areas of sediment bypass. 

Description A bipartite bed structure. Lower division: weakly normally graded fine-
grained sandstone (0.1 – 1 m thick), with some dewatering structures 
and rare planar lamination, and occasional mudstone clast layers (clasts 
1- 10 cm a-axis). Upper division: poorly sorted very fine-grained sand and 
silt (0.1 - 1m thick), with dispersed sub-angular, elongate, mm-cm scale 
mudstone clasts and plant fragments. These occur as two types:  

1. thick and sand-rich, lower sandstone division (>50 cm thick) with 
occasional mudstone clast layers, and poorly sorted upper 
division, which has a significant coarse (fine sand) component; or 

2. thin and silt-rich, lower sandstone division (<20 cm thick), and 
poorly sorted upper division, with a minor coarse (fine sand) 
component.  
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Sedimentary 
structures 

Dewatering structures 

Process 
interpretation 

Erosive flows entrain mudstone clasts and fine-grained sediment into the 
turbulent flow, suppressing turbulence, and producing high-
concentration to pseudo-laminar flow conditions. The bipartite beds 
form through deposition of the lower division from a sand-rich turbidity 
current with the ‘linked’ poorly sorted upper division interpreted as 
deposition from a cogenetic debris flow. Sand-rich hybrid beds form 
down-dip of bypass dominated areas, highly erosive areas in axial 
settings. 

Bed thickness 
range 

0.2-1.5 m  

Net : Gross 
range 

30-70% 

Basal bounding 
surface 

Sharp, can be erosive 

Upper bounding 
surface 

Sharp 

Outcrop 
thickness 

Creates 10’s of metre thick packages. 

Outcrop width / 
geometry 

Occurring in outcrop continuously for several kilometres.  

Trace fossils and 
other features 

None 

Other remarks Organic rich upper division.  

Example 
localities (Fig. 
3.9) 

Hybrid beds rare across study area, present within Slagtersfontein 
proximal lobes, and Allemansdrift/Grootfontein lateral lobe fringes. 
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 Clastic injectites  

 

Figure 3.24 Clastic injectite complex beneath, and probably sourced from Unit E at Leeugat, northern 
limb of the Floriskraal syncline (left) and Close up of dykes below Unit E at Leeugat (right). 

Table 3.16 Clastic injectite characteristics. 

Feature Values and interpretation 

Depositional 
environment 

Associated with sharp contacts of sandstone above slope mudstones. 
As the basal contacts of the 'units' of the Laingsburg/ Fort Brown 
Formations are typically sharper than upper contacts, clastic intrusion 
complexes are more common injecting down from beneath these Units. 
Regional mapping suggests that the potential for clastic injection is 
increased beneath channel/ lobe axes and beyond the pinch out of 
sand rich units (e.g., Unit C in the Hartbees area) 

Description Very clean pale coloured sandstones, occurring at vertical dykes cutting 
through stratigraphy and laterally extensive sills often exploiting 
bedding surfaces.  

Sedimentary 
structures 

Internally structureless. Bounding surfaces may show preserved 
patterns on fracture surfaces on dyke/sill walls, formed during the 
injection process (see Cobain et al., 2017) 

Process 
interpretation 

Injectites are a post-depositional feature caused by seismicity and / or 
overpressuring by rapid fluid migration into parent sands, rapid burial 
or instability of overlying sediments. Fluidized sand propagates through 
weaknesses (bedding planes and fractures) of surrounding siltstone 

Bed thickness 
range 

Sub-centimetre scale to 10s of metres 

Net : Gross range Normally 100%. May be lowered locally by the inclusion of ripped-up 
mudstone clasts 

Basal bounding 
surface 

Very sharp 

Upper bounding 
surface 

Very sharp 

Outcrop 
thickness 

Sub-centimetre scale to 10s of metres 

Outcrop width / 
geometry 

Highly variable. Dykes are typically 2-25 cm wide, with exceptional 
widths of several metres and penetrate downward by a few metres. 
However, dykes injecting downwards by 10s of metres are not 
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uncommon 
Sills range from a few centimetres up to a few metres in thickness. Sills 
may be remarkably laterally continuous: several sills in the range of 10-
50 cm in thickness can be traced for more than 800 m beneath Unit B 
from the Skeiding axis to the nose of the Baviaans syncline  

Trace fossils and 
other features 

None 

Other remarks None 

Example 
localities (Fig. 
3.9) 

Common where there are channels: e.g., Skeiding, CD Ridge, Baviaans 
Farm area, Hunters Lodge, etc.  
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4 Exhumed lateral margins and increasing infill confinement of a 

submarine slide complex 

 Introduction    

Submarine landslides degrade and reshape continental margins, and can cover areas of 

thousands of square kilometres (e.g. McAdoo et al., 2000; Frey-Martinez et al., 2005; 

Moscardelli et al., 2006; Moscardelli and Wood, 2008, 2015). Their catastrophic nature means 

they can destroy seabed infrastructure (Locat and Lee, 2002; Hoffman et al., 2004; Shipp et al., 

2004; Masson et al., 2006) and have the potential to disrupt the overlying water column to 

form tsunamigenic waves (e.g. Pelinovsky and Poplavsky, 1996; Driscoll et al., 2000; Løvholt et 

al., 2005). The quasi-instantaneous modification of the seascape by these events leads to the 

rerouting, capture and ponding of subsequent flows (e.g. Alves and Cartwright, 2010; Ortiz-

Karpf et al., 2015; Kneller et al., 2016; Fallgatter et al., 2017; Qin et al., 2017). Therefore, 

understanding the formation and infill of major submarine landslides is required to assess their 

geohazard potential, and the stratigraphic evolution of continental margins. However, 

submarine landslides on the modern seabed, and buried examples imaged in reflection seismic 

data, illustrate their wide range of scales, geometries, run out distances, and return periods 

(e.g. Bellaiche et al., 1986; Normark and Gutmacher, 1988; Normark, 1990; Gee et al., 2001; 

Masson et al., 2002; Hürlmann et al., 2004; Haflidason et al., 2004; Solheim et al., 2005; Frey-

Martinez et al., 2006; Jackson, 2011; Baeten et al., 2013; Hunt et al., 2013; Laberg et al., 2014; 

Alfaro and Holz, 2014; León et al., 2017).  

Submarine landslides move down-slope across a basal shear surface (sensu Bull et al., 2009), 

also known as glide/failure/slip/basal shear planes (e.g. Alves, 2010; Masson et al., 2010; 

Baeten et al., 2014) or detachment/décollement surfaces (e.g. Vanneste et al., 2006). The 

basal shear surface develops due to progressive shear failure (Varnes, 1978; Bull et al., 2009), 

and extensive substrate entrainment leads to downslope increases in flow volume (bulking) 

(Prior et al., 1984; Gee et al., 2006; Dykstra et al., 2011; Joanne et al., 2013; Ortiz-Karpf et al., 

2017a). Lateral margins are part of the basal shear surface, and typically form steep planar 

surfaces (e.g. Fig. 4.1) perpendicular or sub-parallel to the direction of net displacement (Frey 

Martinez et al., 2006; Bull et al., 2009; Gamberi et al., 2011; Alves, 2015; Ortiz-Karpf et al., 

2017a).  
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Figure 4.1 Example of a submarine landslide confined by a basal shear surface including lateral margins 
from a 3D seismic volume of upper to mid slope deposits, Magdalena Fan, Caribbean Sea, offshore 
Colombia. (A) Variance extraction map of submarine slide. (B) Seismic cross sections through submarine 
slide highlighting the erosional basal shear surface and depositional relief at the top of the initial 
remobilized/ mass transport deposit (MTD) fill, showing the widening and shallowing of the basal shear 
surface down-dip (adapted from Ortiz-Karpf et al., 2017).   

Basal shear surfaces can have a thickness forming a basal shear zone (sensu Alves and 

Lourenço, 2010), and can be modified by further failure events, creating complex and 

composite features, and differential compaction (Alves, 2010). Failed material found above 

and beyond the basal shear surface (Hampton et al., 1996; Frey-Martinez et al., 2005) is 

referred to as mass transport deposits (MTDs) in reflection seismic datasets, and include slides, 

slumps and debris flows (Varnes, 1958) and their spatial transitions (Martinsen, 1994). Slides 

can form as a single failure or as composite slide complex (e.g. Gee et al., 2006; Antobreh and 

Krastel, 2007; Li et al., 2017) with products of failure often treated as multiple separate events 

(MTDs) in seismic and outcrop datasets (e.g. Moscardelli et al., 2006; Ortiz-Karpf et al., 2017b; 

Sobiesiak et al., 2016). The erosional relief of the basal shear surface, and the depositional 

relief of the MTDs, impact subsequent sediment gravity flow behaviour (e.g. Kneller et al., 

2016).Understanding of the evolution of submarine landslides and their impact of subsequent 
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flow processes is limited by the low vertical resolution and lithological calibration from modern 

and subsurface examples. Detailed information on the substrate lithology, the basal shear 

surface/zone, and the sedimentology and stratigraphic architecture of overlying strata can be 

provided by exhumed examples (e.g. Martinsen, 1989; Martinsen and Bakken, 1990; Lucente 

and Pini, 2003; Pickering and Corregidor, 2005; Spörli and Rowland, 2007; Callot et al., 2008; 

King et al., 2011). These examples permit the character and evolution of the basal shear 

surface (e.g. Alves and Lourenço, 2010; Dakin et al., 2013), and process interactions between 

subsequent flows and submarine landslide relief (e.g. Armitage et al., 2009; Jackson and 

Johnson, 2009; Ortiz-Karpf et al., 2015; Kneller et al., 2016; Sobiesiak et al., 2016; Fallgatter et 

al., 2017), to be investigated. However, exhumed submarine landslide systems of scales 

comparable to modern and subsurface examples are beyond the scale of most outcrops. For 

example, large-scale (10s m deep) basal erosion has rarely been demonstrated (e.g. Lucente 

and Pini, 2003; Shultz et al., 2005; van der Merwe et al., 2009; Dakin et al., 2013), exhumed 

lateral margins of basal shear surfaces have not previously been documented, and the 

evolution of flow confinement over multiple submarine landslides has not been investigated.  

This study aims to document a unique example of three exhumed, stacked submarine 

landslides including the lateral margins of two superimposed basal shear surfaces and their 

subsequent infills, using a seismic-scale outcrop of Permian, lower Ecca Group stratigraphy at 

the distal end of the Laingsburg deep-water system, Karoo Basin, South Africa. Specific 

objectives are: i) to investigate the evolution of three submarine landslides from basal shear 

surface erosion to infill and overspill; ii) to categorise the variations in confinement of 

remobilized and turbidite components that infill the basal shear surface; iii) to investigate 

variations in the basal shear surface across strike; and iv) to consider this example in terms of 

basin-scale sedimentation and degradation.  

 Geological background  

4.2.1 Karoo Basin and stratigraphy 

The Karoo Basin, South Africa (Fig. 4.2A), has been interpreted as a retroarc foreland basin 

(Visser and Prackelt, 1996; Visser, 1997; Catuneanu et al., 1998), and more recently as a 

thermal sag basin that subsequently evolved into a retroarc foreland basin in the Triassic 

(Tankard et al., 2009). The 8 km thick Karoo Supergroup (Fig. 4.2C) is subdivided into the 

Dwyka, Ecca and Beaufort Groups. The Dwyka Group comprises glacial deposits (Late 
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Carboniferous to Early Permian); the Ecca Group clastic marine deposits (Permian); and the 

Beaufort fluvial deposits (Permian to Triassic).  

Basal deposits of the Lower Ecca Group (Fig. 4.2A) comprise mudstones, chert and shallow 

marine carbonates of the Prince Albert Formation, overlain by black carbonaceous mudstones 

of the Whitehill Formation and fine-grained turbidites, cherts and ashes of the Collingham 

Formation. These formations together average 250 m in thickness and are mapped for 800 km 

along the southern margin of the Karoo Basin (Viljoen, 1992, 1994; Visser, 1992; Johnson et al., 

1997). In the Laingsburg depocentre, the Collingham Formation is overlain by the Vischkuil 

Formation, which forms the basal section of the 1800 m thick progradational succession 

through basin-floor deposits (Vischkuil and Laingsburg formations; Sixsmith et al., 2004; van 

der Merwe et al., 2010), channelized submarine slope (Fort Brown Fm.; Hodgson et al., 2011; 

Di Celma et al., 2011; Flint et al., 2011) to shelf-edge and shelf deltas (Waterford Fm.; Jones et 

al., 2015; Poyatos-Moré et al., 2016). Regional palaeoflow is towards the NE and E throughout 

the succession with the entry point to the SW (van der Merwe et al., 2014). The mapping of 

successive slope-to-basin-floor systems in the Laingsburg depocentre indicates the presence of 

a lateral, broadly E-W orientated basin margin to the south of the Laingsburg area (van der 

Merwe et al., 2014). In the east of the Laingsburg depocentre, the Vischkuil and Laingsburg 

formations thin and pinch out, along with the sand-rich component of the Fort Brown 

Formation. Around the town of Prince Albert (Fig. 4.1) the distal reaches of the Vischkuil and 

Laingsburg formations intercalate with the Ripon Formation, a deep-water system derived 

from the east (Kingsley, 1981; Visser, 1993). The Ripon Formation deposits are distinctive at 

outcrop due to their coarser (medium sandstone) grain size. 
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Figure 4.2 (A) Image of southwestern Karoo Basin showing Tanqua and Laingsburg depocentres outlined 
and study area enlarged. (B) Enlargement of outcrop section showing data points and outcrop location. 
Sections east and west of the zones of no exposure/ tectonic deformation show in place strata 
unaffected by large-scale erosion surfaces. (C) (Left) Stratigraphic column of Late Carboniferous, Permian 
and Early Triassic deposits in the Laingsburg depocentre. Blue dashed box indicates units involved in this 
study. (Right) Logged section of strata outside of outcrop, showing in place deposit, unaffected by large-
scale erosion. Lower logged units correspond to the Whitehill, Collingham and Vischkuil formations. 
Upper units of thick remobilized sandstone and bedded turbidites may correspond to the Vischkuil/ 
Laingsburg Formations or the equivalent formations to the East. 

4.2.2 Study location  

This study focuses on a large outcrop at the distal end of the Laingsburg depocentre (Fig. 4.2A), 

located 95 km east of Laingsburg town and 14 km west of Prince Albert (Fig. 4.2A). The NW-SE 

orientated outcrop is 3 km in length and 150 m in height. The base of the outcrop is marked by 

in place strata of the Prince Albert, Collingham and Whitehill formations, which can be traced 

laterally across an area of 1.5-2 kilometres of either no exposure or intensely tectonically 

deformed strata, to more continuous outcrops to the east and west of the section (Fig. 4.2B). 
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Uniquely at this location, both the Collingham and Whitehill formations are cut out over a >1.5 

km long section, with highly contorted overlying deposits (Fig. 4.2B). The overall tectonic 

shortening direction in the southern Karoo Basin is to the north, with west-east trending and 

north verging thrust faults and folds that are closely associated with quartz on slip planes. In 

the study area, the amount of shortening is ~38% (Spikings et al., 2015). The structural dip 

varies from 10° to 40° and the dip direction from NW to NE, and shows minor displacement in 

the form of a thrust fault in the northeast of the section. Syn-sedimentary deformation is 

readily identifiable as being bound by undeformed units, and the faults and folds not following 

the regional tectonic trends outlined above.  

 Methodology 

Twenty long measured sections (up to 150 m), and numerous shorter sections, totalling 1500 

m, were logged at cm-scale to document lithology, grain size, sedimentary structures and key 

stratal boundaries (Figs 4.2B and 4.3). The correlation framework is constrained by walking 

stratigraphic surfaces between sections (Fig. 4.3) augmented with photopanels compiled using 

Unmanned Aerial Vehicle photography (Fig. 4.3B). A laterally continuous sandstone package, a 

distinctive 10 m thick package of sharp topped, thin-bedded sandstone and siltstone 

turbidites, which can be traced laterally across 2.5 km of the outcrop, is used as an upper 

correlation datum (Fig. 4.3). In addition, a distinctive and uniform bed present throughout the 

basin-fill known as the Matjiesfontein chert, a laterally extensive 40-50 cm thick white chert 

bed in the Collingham Formation identified across the SW Karoo Basin (Fig. 4.3) was used as a 

basal datum. Palaeocurrent data were collected from ripple cross laminations, flutes and 

grooves, with fold hinges and bedding plane measurements providing kinematic data within 

contorted units. Regional-scale measured sections were collected several kilometres either 

side of the outcrop to constrain the large-scale architecture with general facies associations 

shown in Figure 4.2B. 

 Facies associations  

Six facies associations have been classified based on sedimentary facies and interpreted 

processes.  
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Figure 4.3 (A) Logs and correlation of units across outcrop. Colours indicate facies associations, red lines show observed and interpreted surfaces. Numbers indicate package divisions. Log of Surface 2 infill (Packages 4 and 5) shown in figure 4.9. 
(B) Photopanel of outcrop with overlay of logged sections, facies associations and erosional surfaces. Panel and logs shown in more detail in Appendix B.1. 
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Figure 4.4 Representative photographs depicting facies associations present throughout the outcrop. (A) 
Iron-rich mudstone, Prince Albert Formation. (B) Organic rich mudstone, Whitehill Formation, notebook 
shown 20 cm long. (C) Iron cemented sandstone turbidite beds. (D) Matjiesfontein chert, marker bed, 
lens cap 7 cm in diameter. (E) Interbedded sandstone/ siltstone turbidites and ash deposits (marked as 
A), notebook 20 cm long. (F) Interbedded turbidites and chert layers, notebook 20 cm long. (G) Sharp 
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topped sandstone and siltstone beds, upper turbidite marker package. (H) Sandstone to siltstone graded 
turbidite beds. (I) Thin-bedded turbidites. (J) Planar and climbing ripple laminated turbidite. (K) Iron-rich 
ripple laminated turbidite. (L) Thick debrite. (M) Section of debrite with mm- cm scale mudstone clast in 
distinctive blue mud-rich matrix, pencil for scale. (N) Folded interbedded sandstone and siltstone 
turbidites, geologist for scale. (O) Folded and slumped sandstone beds, white dashed lines indicates fold 
of beds, geologist for scale. (P) Base of folded sandstone bed.  

FA 1: Iron-rich mudstone 

This facies association comprises dark-grey, carbonaceous, iron-rich mudstone with common 

chert nodules, carbonate concretions and large petrified wood clasts. Remobilized mudstone 

beds are also present within a dark mudstone matrix, usually well cemented and iron rich (Fig. 

4.4A), <50 cm in thickness, folded and/or disaggregated. Packages are >30 m thick with a sharp 

upper contact with organic-rich mudstone.  

Interpretation 

FA 1 is the Prince Albert Formation, which was deposited either in a marine basin as shelf 

deposits (Strydom, 1950; Buhmann et al., 1989; Visser, 1991, 1994), or in a freshwater lake 

environment (Herbert and Compton, 2007). Prince Albert Formation sediments accumulated 

from syn- to post-glacial suspension fall-out and flocculation of fines from large inflows of 

sediment-laden water (Domack, 1983; Smith and Ashley, 1985), with some input by turbidity 

currents and mud flows of semi-consolidated sediments (Tankard et al., 1982; Visser, 1991). 

FA 2: Organic-rich mudstone  

This facies association comprises a uniform, laterally continuous, 30 m thick package of 

organic-rich, black coloured, thinly laminated mudstone (Fig. 4.4B), which weathers white. The 

unit has a sharp upper and lower contact with bounding lithostratigraphic units. 

Interpretation  

FA 2 is the Whitehill Formation, a carbonaceous mudstone (Visser 1979; Tankard, 2009), which 

formed in anoxic conditions across the Karoo Basin (Oelofsen, 1987), indicating little seabed 

topography at the time of deposition. The sedimentation rate for the Whitehill Formation is 

thought to be very low with almost no coarse clastic input in relatively shallow water (Flint et 

al., 2011).  

FA 3: Thinly bedded fine grained turbidites, ash and chert  

This facies association consists of interbedded siltstone (<1-30 cm), organic rich/iron cemented 

beds (Fig. 4.4C), chert (<40 cm), iron-rich splinter weathered mudstone, sandstone beds (<20 

cm) and sandy ash deposits (<1-40 cm) (Fig. 4.4E). Beds are planar and laterally continuous 
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(Fig. 4.4F), including the distinctive 45 cm thick Matjiesfontein chert bed, traceable across the 

outcrop belt (Fig. 4.4D). Sandstone and coarse siltstone beds with normally graded bed tops 

contain planar, ripple and climbing ripple lamination. These deposits gradually transition 

upward into sandstone beds. Packages are up to 30-35 m thick.  

Interpretation 

The Collingham Formation comprises suspension and turbidity current deposits (Johnson et al., 

2006) in a brackish-marine setting (Scheffler et al., 2006; Tankard et al., 2009). Interlayered 

ashfall tuffs may have derived from volcanoes located in what is now northern Patagonia, 

where Permian silicic-andesitic volcanic and plutonic rocks crop out (McKay et al., 2015).  

FA 4: Sandstone and siltstone turbidites  

Interbedded, sharp based and topped siltstone and sandstone beds varying in thickness 

(<0.01-3 m) with grading ranging from, no grading (Figs 4.4G and 4.4I), through weak normal 

grading, to well graded with siltstone caps (Fig. 4.4H). Beds are structureless (Fig. 4.4G) or 

contain a variety of sedimentary structures including planar (Fig. 4.4J), ripple and climbing 

ripple lamination (Figs 4.4J and 4.4K), flutes and grooves on bed bases, and a range of 

dewatering structures including pipes, ball-and-pillow and flame structures. Beds range from 

laterally continuous to discontinuous with thickening and thinning to pinchout over 10s of 

metres. Commonly, the more discontinuous beds onlap underlying packages and have widely 

dispersed palaeocurrent directions. Packages range from 5-50 m thick. Locally, this facies 

association forms tightly folded and contorted units (transitioning to FA 6) with highly variable 

fold axis orientations.  

Interpretation 

Structureless and normally graded sandstones are interpreted as sand-rich high-density 

turbidity current deposits (Bouma, 1962; Lowe, 1982; Mutti, 1992; Kneller and Branney, 1995). 

The absence of sedimentary structures indicates rapid deposition and limited development of 

depositional bedforms. Planar- and ripple-lamination are a product of reworking of the bed 

beneath low-density turbidity currents (Allen, 1984; Southard, 1991; Best and Bridge, 1992). 

Dewatering structures are a result of sediment liquefaction (Mulder and Alexander, 2001; Stow 

and Johansson, 2002). Abrupt thickness changes, onlap and widely dispersed palaeocurrent 

directions indicate interaction of flows with underlying topography (Kneller et al., 1991). 

Normally graded beds with siltstone caps indicate 3D topographical confinement of turbidites 

(e.g. Pickering and Hiscott, 1985; Haughton, 1994; Sinclair and Tomasso, 2002; Sinclair and 
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Cowie, 2003). Sharp bed tops and lack of grading suggest deposition in an unconfined setting. 

Generally, these beds are more laterally consistent in thickness suggesting that depositional 

processes were not strongly affected by seabed topography. Localised folded and contorted 

units indicate remobilization.  

FA 5: Chaotic deposits  

Poorly sorted conglomerate that comprises sub-angular to sub-rounded intrabasinal mudstone 

clasts (mm – 10s of cm in diameter), mm-scale terrestrial organic material and other 

remobilized deposits (FA 6; cm’s – 100s m in diameter) supported by a matrix of claystone, 

siltstone and/or sandstone (Fig. 4.4M). Thicknesses of chaotic packages can vary from 0.5-50 

m, and vary laterally and stratigraphically, along with clast size and lithology, forming 

undulating top surfaces (Fig. 4.4L). 

Interpretation 

The poor sorting and matrix-supported fabric indicate cohesive debris flow deposits. Variations 

in thickness, lithology, and clast size result from changes in lithology of the primary sediment, 

transport distance and seabed topography. Cohesive freezing of material (Middleton and 

Hampton, 1976) creates irregular top surfaces.  

FA 6: Remobilized deposits  

This FA comprises two broad types:  

Folded strata: Small scale (0.4-5 m) (Figs 4.4N and 4.4P) and large scale (up to 80 m amplitude; 

Fig. 4.4O) folded sandstone and siltstone beds, exhibiting a variety of shapes, sizes and 

orientations. Fold attitude varies from upright to recumbent, with interlimb angles from 

isoclinal to open. Beds are sheared and faulted, and vary in their degree of preservation of 

primary sedimentary structures. Commonly, small-scale folds are detached and randomly 

orientated. Large-scale folded strata can show stronger vergence directions.  

and   

Clasts and megaclasts: Blocks of remobilized strata, varying in size, degree of disaggregation, 

and preservation of primary sedimentary structures. Clasts vary in scale from 10 cm diameter 

to 60 m thick and 750 m in length. Clasts are fractured and disaggregated at their edges with 

brittle deformation features. Smaller clasts are present within a matrix. Commonly, clasts 

comprise FA3 (Collingham Fm.) with minor amounts of FA2 (Whitehill Fm.).  

Interpretation 
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Folded strata are interpreted to form through ductile deformation during remobilization of 

primary bedding and transport in slumps and slides. The variety of fold sizes, attitudes, 

interlimb angles and primary bedding preservation is a result of the lithology, amount of 

consolidation prior to remobilization, and transport distance. 

Clasts and megaclasts are interpreted to be entrained at the headwall of the primary flow, or 

entrained from the substrate during transport. Large clasts are transported as slide blocks. 

Disaggregation at edges of clasts is interpreted to form during collision with other debris 

during transport.  

 Stratigraphic subdivision and correlation  

The stratigraphic architecture is constrained using the two marker units described in the 

Methodology section (Fig. 4.3). The physical stratigraphy is also sub-divided by two large-scale 

erosion surfaces 1 and 2 (Fig. 4.3), which were walked out and identified by abrupt facies 

changes where underlying strata are truncated and overlying strata thin, fine and onlap the 

surface. The depositional architecture can be constrained by the dip of the strata below, 

outside, and above the interval of interest. Mean lithology, and in particular the proportion of 

clay, inside and outside the two main basal shear surfaces, Surface 1 and 2, are similar, and 

therefore the surface morphology and architecture of infilling stratal packages is unlikely to 

have been substantially altered by differential compaction. 
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Figure 4.5 Sketches illustrating stratigraphic evolution, divided into 7 key stages. (P1) Deposition of lower 
Ecca group, folded and chaotic strata and megaclasts. (S1) Formation of surface 1, (P2) overlain by 
folded, chaotic deposits and clasts. (P3) Deposition of onlapping and infilling turbidites and chaotic 
strata. (S2) Formation of surface 2. (P4) Infill of surface by chaotic deposits. (P5) Deposition of onlapping 
and infilling turbidites and folded strata. Palaeocurrents from ripple, groove, flute and scout marks. Note 
formation and filling of surfaces may have been instantaneous.  
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4.5.1 Sequence of erosion and deposition  

The stratigraphy of the outcrop has been subdivided into 5 depositional packages (Figs 4.3 and 

4.5).  

 Package 1  

The base of Package 1 (P1, Fig. 4.5) comprises >50 m of Lower Ecca Group stratigraphy, 

including the upper Prince Albert Fm. (FA1; Fig. 4.4A), the Whitehill Fm. (FA2; Fig. 4.4B), and 

the Collingham Fm. (FA 3; Figs 4.4C, 4.4D, 4.4E and 4.4F). Palaeocurrent measurements from 

ripple lamination indicate eastward palaeoflow (Fig. 4.5). This basal section is overlain by a 25-

30 m thick unit of thin siltstone turbidites with subordinate sandstone beds (FA 4), and 

intercalated small-scale (1-2 m) slumps that comprise siltstone beds (FA 6i; Fig. 4.6). The 

overlying 15-30 m thick unit comprises slumps (FA 6i) with a debrite matrix (FA 5) with minor 

basal incision (a few metres deep) that marks an uneven basal contact, although no large-scale 

erosional confinement is observed (Figs 4.6 and 4.7A). A 20 m thick and >100 m exposed 

outcrop length megaclast (FA 6ii) of Collingham Fm. (FA 3) (Fig. 4.5) is present at the top of this 

unit. Package 1 is in place east and west of the outcrop (Fig. 4.2B and 4.2C), but is locally cut-

out by Surface 1 (Figs 4.5 and 4.7A).  

 

Figure 4.6 Photograph of lower stratigraphy, Collingham Fm. with Matjiesfontein chert bed, decreasing 
upwards in ash and chert with a transitional boundary to overlying silt-rich turbidites.  A sharp, slightly 
erosive boundary marks the deposition of chaotic and remobilized strata. 
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Figure 4.7 Key architectural characteristics across outcrop. (A) Lower stratigraphy (Package 1) cut by 
Surface 1, which passes from a sharp, stepped surface to intense zone of sheared mudrock laterally 
(detailed photo shown in figure 4.8A), overlain by onlapping turbidites and chaotic deposits (Package 3), 
cut by Surface 2, overlain by chaotic deposits and megaclast (Package 4) and further overlain by 
onlapping graded turbidites, chaotic packages and upper turbidite package datum (Package 5). (B) 
Collingham clast (Package 2) overlain by onlapping but rotated turbidites (Package 3), cut by Surface 2 
and overlain by debrites and further onlapping turbidites (Package 4). (C) Debrite and slumps (Package 
2) overlain by megaclasts (Package 2) and debrites(Package 3), cut by Surface 2 overlain by debrites 
(Package 4) and onlapping, graded turbidites (Package 5). Facies association colour key shown on figure 
4.3. 
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Figure 4.8 Photos basal shear zone (Surface 1) and slumped sandstone-rich turbidites and surface 2. (A) 
Section of basal shear zone with foiled fabric, contorted strata, sheath folds and white lines showing 
numerous small scale faults. (B) Stepped section of surface 2 cutting folded and dewatered sandstone 
turbidites (Package 3). Overlying turbidites onlap surface (Package 5). (C) Erosional surface eroding 
slumped sandstone (Package 3) overlain by Collingham clast (Package 4). (D) Stepped surface 2 with 
onlapping turbidites (Package 5) from opposing sides of topography. (E) Scour present on top of 
erosional surface with coarse lag of medium sandstone and mudclasts. (F) Scour on top of erosional 
surface mantled with mudstone clasts.    
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 Surface 1  

Surface 1 (S1, Fig. 4.5) cuts down from the SE to the NW of the outcrop (Figs 4.5 and 4.7A) with 

an averaged compacted gradient of 8°. The width of this surface is 2.0-4.5 km with a depth of 

>90 m. In the SE, the surface initially incises the sand-rich folded strata in the upper part of 

Package 1, forming a sharp and smooth erosional contact (Fig. 4.7A). The surface is less distinct 

where it incises the underlying siltstone-rich sediment. Instead, a zone with an intense shear 

fabric up to 10 m thick is present that comprises small-scale (2-3 m thick/2-10 m long) sheath 

folds and low angle faults with varied orientations and displacement of 0.01-1 m (Fig. 4.8A). 

Shear zone sediments consist of lenticular packages of highly deformed and foliated siltstone 

and sandstone with no internal sedimentary structures (Fig. 4.8A). The lower part of this 

surface is inferred by thinning of the overlying deposits and truncation of underlying beds. To 

the NW, this surface passes into the subcrop, such that the deepest point of erosion is not 

exposed (Fig. 4.3).  

 Package 2 

The base of Package 2 (P2, Fig. 4.5) is confined by Surface 1. In the NW of the outcrop, at its 

deepest exposed point, Surface 1 is overlain by a >60 m thick section of folded sandstone (FA 

6i) with a debrite matrix (FA 7) (Figs 4.4O and 4.7C), exposed for >1.5 km, and dipping into the 

subcrop (Fig. 4.3). Metre-scale folds are present throughout the unit with intense shearing and 

thrusts along steep planes. Fold attitude varies from upright to recumbent, with interlimb 

angles from isoclinal to open. Hinge line and bedding plane measurement of smaller folds 

appear to be distributed randomly with most detached and supported by a debritic matrix. The 

fold axis of a 50 m high isoclinal fold is orientated roughly E-W, with the pole to best fit girdle 

of bedding measurements also indicating an E-W orientation of the fold hinge line (Fig. 4.5). 

Sharply overlying this unit is a megaclast of Whitehill and Collingham formations (FA 6ii), 750 

m in outcrop length and up to 60 m thick (Fig. 4.7C). Bedding plane measurements within the 

clast are at higher angles (10-20°) and different orientations to the surrounding in-place strata 

and the clast shows deformed edges. In the SE, Package 2 comprises fine and medium 

sandstone packages 0.5-2 m thick, interbedded with thin bedded siltstone packages <0.5 m 

thick, which onlap Surface 1 (Fig. 4.3A). 

 Package 3  

The lowermost strata of Package 3 (P3, Fig. 4.5) onlaps Surface 1, and comprises thick turbidite 

beds (FA 4) (Fig. 4.7A). Basal beds thicken and thin (0-2 m thick) over 10s of metres, and onlap 
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the underlying megaclast at high angles (Figs 4.7A and 4.7B). Bedding orientations vary across 

the package, with an increase in dip from an average of 0-5°N centrally over the megaclast (Fig. 

4.7B) to 20°-30° NNE towards the SE of the outcrop where the package onlaps Surface 1 (Fig. 

4.7A). Ripple palaeocurrents show a large variation in direction (Fig. 4.5). An overlying 16-18 m 

thick package of thin bedded (1-10 cm thick) planar and rare ripple laminated sandstone 

turbidites (FA 4) (Fig. 4.3), interbedded with thin siltstone beds (<1 cm-2 cm) contains rare 

small-scale slumps (0.2-4 m thick). These lower two packages are cut out by Surface 2 to the 

NW. Overlying these thin bedded sandstones is a discontinuous 18-20 m package of small scale 

slumps (FA 6i; 0.2-4 m thick) interbedded with laminated siltstone (FA 4 ) and a further 10-12 

m package of thin bedded siltstone with rare, thin (< 10 cm) sandstone beds (FA 4). Both 

packages onlap Surface 1 to the SE (Fig. 4.7A) and are eroded by Surface 2 to the NW (Fig. 4.5).  

In the SE, the overlying 2-4 m thick package comprises thickly bedded fine- and medium-

grained sandstone turbidites (FA 4) with NW and NE flute and groove palaeocurrents (Fig. 4.5). 

This is overlain by 3-5 metres of laterally continuous thin bedded (<1-3 cm) coarse siltstones 

and fine sandstones (FA 4). Beds have sigmoidal shapes and are moderately bioturbated. 

Overlying this is a package (up to 40 m thick) of fine and medium sandstone beds, which 

comprises structureless amalgamated beds with dewatering structures and some intercalated 

debrites and folded strata (FA 5 and 6i). The unit becomes more slump and debrite dominated 

as it thickens to the SE of the outcrop (Figs 4.8B, 4.8C and 4.8D), and dissected by numerous 

extensional faults with throws of cm to 10 m and displacement to the N and E (Fig. 4.7A).  

 Surface 2  

Surface 2 (S2, Fig. 4.5) cuts down from the SE to the NW across the outcrop (Fig. 4.7) with an 

estimated compacted gradient of 4°. The surface is 2.0-4.5 km wide and >60 m deep. In the SE 

of the outcrop, where the surface cuts the sandstone-rich strata of upper Package 3, the 

surface is sharp with a stepped character (Figs 4.7A, 4.8B, 4.8C and 4.8D). Here, the surface is 

cut by numerous small scours that are 10s of cm wide and long and up to 15 cm deep (Figs 

4.8E and 4.8F), with palaeocurrents to the E (Fig. 4.5). The scours are draped with mudstone 

clasts and coarser grained sand (medium sandstone) lag deposits (Figs 4.8E and 4.8F). Towards 

the centre of the outcrop where Surface 2 cuts through Package 3 fine grained chaotic facies, 

the surface becomes less distinct and forms a shear zone up to 6 m in thickness (Fig. 4.3). In 

the shear zone, beds are tightly folded and displaced (0.01-10 m) by faults. Further NW, the 

location of Surface 2 is expressed as a sharp, locally erosive contact between underlying and 

overlying debrites (Figs 4.7B and 4.7C).  
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 Package 4  

Package 4 (P4; Fig. 4.5) consists of debrites with highly disaggregated Collingham Fm. clasts (FA 

6ii), from m to 10s of m in length and 1-10 m in thickness (FA 6ii) supported by a fine siltstone 

matrix, onlapping Surface 1 and locally thickening in lows (FA 5; Figs 4.3, 4.5, 4.6 and 4.8D). In 

the central area and NW of the outcrop, the lower package comprises debrites. Individual 

debrites comprise mm to cm diameter angular mudstone clasts and metre-scale folded 

sandstone beds (FA 6i) supported by a poorly sorted siltstone to fine sandstone matrix (FA 5) 

with clasts of bedded sandstone and coarse siltstone up to 20 m thick and 100 m in outcrop 

length (Figs 4.3, 4.7B, 4.7C and 4.9). This package of debrites thins and onlaps onto Surface 2 

to the southwest. Overlying this is a unit of slumped and folded strata (FA 6i) (1-13 m in 

thickness), with some preservation of primary sedimentary structures (originally <1-2 cm thin 

bedded sandstones and siltstones, similar to Package 3 strata) in the central section of the 

outcrop (Fig. 4.7B) and small-scale extensional faulting (mm-20 cm throw) prevalent 

throughout with material down-stepping towards the SE. This passes into poorly sorted 

sandstone (FA 5) in the NW of the outcrop, which founders up to 5 m into the debrite below 

(Figs 4.7C and 4.9) and onlaps onto Surface 2.  
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Figure 4.9 Logged section through Package 4 and Package 5. Base of log is Surface 2. Location of log 
shown on figure 4.3 and 4.7C. Chaotic deposits of Package 4 are overlain by thick graded turbidite beds 
which transition upwards into thinner sharp topped beds with intervening layers of chaotic and folded 
deposits that are laterally extensive over the outcrop. Top 12 m of log are used as upper datum for figure 
4.3. Key for facies association on figure 4.3. 
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 Package 5  

The basal section (22-32 m thick) of Package 5 consists of 0.3-2 m thick normally graded 

turbidite beds with thick siltstone caps (FA 4), interbedded with thinly laminated fine siltstone 

(FA 4) (0.1-4 m thick) (Fig. 4.9). Commonly, sandstone beds are planar laminated, with rare 

ripple laminations. Ripple palaeocurrents throughout this basal section are towards the E or W 

(Fig. 4.5). Package 5 thins to the SE (6-10 m thick) and onlaps Surface 2 (Fig. 4.7A). The basal 

section of Package 5 is overlain by a 2-4 m thick, laterally extensive debrite (FA 5) that 

comprises siltstone and fine sandstone, with extensive mm to cm diameter mudstone clasts 

throughout (Fig. 4.9). The debrite is overlain by another turbidite unit consisting of 

interbedded sandstone and siltstone beds with mudstone caps decreasing stratigraphically (FA 

4) (Fig. 4.9). Beds contain mudstone clasts and organic matter at bed tops. Rare ripple and 

climbing ripple laminations are present, with a laterally traceable 0.5-1 m thick climbing ripple 

laminated bed with palaeocurrents generally towards the N but with a wide dispersal pattern 

(Fig. 4.5). This unit thins from 12 to 4 m from NW to SE, and onlaps Surface 2 to the SE (Figs 4.5 

and 4.7A). Overlying this is a 3-5 m thick unit that comprises folded and dewatered sandstone 

beds (FA 6i) in a siltstone matrix (FA 5; Figs 4.4N, 4.7A, 4.7B and 4.9) that thins over thicker 

Package 3 deposits in the SE (Fig. 4.5). Overlying this is a laterally continuous turbidite unit (15 

m thick) that is uniform across the section and is used as an upper datum, with flute and 

groove palaeocurrents to the NW, and ripple palaeocurrents N-W (Figs 4.3, 4.4i, 4.4G, 4.7A, 

4.7B and 4.9).  

 Discussion 

4.6.1 Evolutionary model  

Palaeocurrent measurements and the wider stratigraphic context of the outcrop, in 

combination with the sedimentary architecture and facies, have enabled the formation of an 

evolutionary model (Figs 4.5 and 4.10).  

 

 

 



125 
 

 
 

 

Figure 4.10 Sketches illustrating depositional and erosional evolution over the outcrop and the 
surrounding area, with sequential panels simplified from figure 4.3. (P1i) Deposition of lower Ecca Group 
stratigraphy towards the east. (P1ii) Unconfined remobilized deposition. (S1 and P2) Erosion by basal 
shear surface 1 and remobilized infill towards the north. (P3i) partially confined turbidite infill, with 
overlying chaotic deposits. (P3ii) Partially remobilized intraslope lobe complex. (S2 and P4) Erosion by 
basal shear surface 2 and chaotic infill. (P4i) Fully confined turbidite and chaotic infill of surface 2. (P5ii) 
Overspill of confining topography and unconfined turbidite deposition. 



126 
 

 
 

 Package 1  

Lower Ecca Group deposits present throughout the Karoo Basin are interpreted as basin floor 

deposits (e.g. Visser 1979; Oelofsen, 1987), with their uniform nature suggesting little to no 

seabed topography (P1i, Fig. 4.10). The large-scale debrite overlying the Lower Ecca Group 

strata with no confining erosion surface (Fig. 4.6) suggest that that they were unconfined in a 

downslope area, having outrun their basal shear surface onto the lower slope/basin-floor (e.g. 

Frey-Martinez et al., 2006; Posamentier and Martinsen, 2011) (P1ii; Fig. 4.10). The megaclast is 

interpreted as a rafted block, and the origin from basin floor strata indicates a period of 

uplift/tilting of the southern basin margin to allow up-dip entrainment (P1ii; Fig. 4.10). 

Megaclasts carried within the debrite may have moved to the top due to kinetic sieving 

(Middleton and Hampton, 1976) or moved as slide blocks (Gee et al., 2006). 

 Surface 1  

Surface 1 (S1, Fig. 4.10) is interpreted as a basal shear surface/zone, overlain by a thick debrite 

that was either involved in the formation of the surface or emplaced later. The depth of 

erosion indicates a location on the submarine slope. The change noted in the nature of the 

surface, from a sharp erosional surface to a zone of intense shearing, coincides with the 

change in material from thickly bedded sandstone to thin-bedded siltstone (Figs 4.3 and 4.7A). 

The shear zone indicates that in the finer deposits strain was accommodated along multiple 

failure planes. The deformation along the basal shear surface/zone may have formed in the 

initial emplacement event, or been a protracted record of deformation (e.g. Alves and 

Lourenço, 2010). The overall thickness of the succession, and therefore the original depth of 

Surface 1 incision and the gradient of the basal shear surface/zone will have been reduced by 

burial and compaction.  

 Package 2  

The axis of folds in slumps is thought to originate parallel to sub-parallel to the strike of the 

slope (Bradley and Hansen, 1998) therefore indicating the gross transport direction 

(Woodcock, 1979; Farrell, 1984; Farrell and Eaton, 1987). Bedding and hinge line 

measurements taken from large-scale fold structures in the lower slumped unit suggest a N or 

S movement direction if this is an attached structure and not a clast (Fig. 4.5). The range of 

sediments, types of deformation and presence of shear surfaces/ thrusts indicate several 

sources and methods of transport of the debrite and slump deposits. The presence of 

megaclasts of the Collingham and Whitehill formations suggest that updip these strata had 



127 
 

 
 

been tilted sufficiently to be entrained in the headwall or from the substrate by overriding 

mass flows (S1 and P2, Fig. 4.10). These infilling strata may represent: i) the failed material that 

was involved in the initial mass flow that formed the basal shear surface, ii) later infilling 

deposits (e.g. Laberg et al., 2014), or iii) a combination of both (Ogiesoba and Hammes, 2012). 

 Package 3  

Deposition of Package 3 marks the change to turbiditic strata (P3i, Fig. 4.10). Beds onlap 

topography created by the megaclast in the NW and Surface 1 in the SE. The widely dispersed 

palaeocurrents in the lower section of Package 3 (Fig. 4.5) indicate turbidity current deflection 

and reflection off erosional and depositional relief (e.g. Baines, 1984; Edwards et al., 1994; 

Haughton, 1994; Kneller and McCaffrey, 1999; Jackson and Johnson, 2009). The thin normal 

grading of lower Package 3 turbidites suggests that the flows were weakly confined downdip. 

The thick, tabular sand-rich strata in the SE are interpreted as a lobe complex (sensu Deptuck 

et al., 2008; Prélat et al., 2009) that onlaps Surface 1 in the SE of the outcrop (P3ii, Fig. 4.10). 

Palaeocurrents at the base of the lobe complex have a more consistent direction to the NE, 

indicating less topographic influence than deposits below (Fig. 4.5). The consistent thick 

bedded sandstone packages suggest axial lobe deposits with a highly aggradational stacking 

pattern. The aggradational stacking and the absence of graded bed tops and lack of fines 

suggest downstream flow-stripping (Sinclair and Tomasso, 2002) within a 3D confining 

topography, similar to intraslope lobe complexes (Spychala et al., 2015). Higher-density and 

coarser portions of flows are confined by a downstream topographical barrier, while low-

density and finer portions of flows are able to breach this barrier and continue down-dip. The 

lobe complex is highly deformed with extensive soft-sediment deformation and shear failure 

surfaces in the SE of the outcrop, likely a result of instability after deposition above the lateral 

margin slope. Post-depositional tilting of this entire package is evident from the increased 

angle of bed dips (on average 20°) towards the basal shear surface/zone (Fig. 4.7A and 4.7B). 

 Surface 2  

Surface 2 is interpreted as a second basal shear surface (S2, Fig. 4.10). Variation in the 

character of the shear surface/zone is coincident with lithological variation in the eroded 

material. The surface is sharp and stepped where eroded into the lobe complex sandstones. 

The presence of numerous scour features as well as overlying mudstone clasts and coarse 

sediment lags indicate that, at least over the lobe deposits, the surface was exposed and 

formed a sediment bypass zone (sensu Stevenson et al., 2015) prior to infill. In the central area, 

a zone of intense shear formed indicating that in the finer deposits strain was accommodated 
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along multiple failure planes. This deformation may have formed in the initial emplacement 

event, or be a protracted record of deformation during infill (e.g. Alves and Lourenço, 2010).  

 Package 4  

The debritic units represent the initial remobilized infill of Surface 2, onlapping and infilling in 

topographic lows. The direction of transport is unknown due to the degree of disaggregation, 

but may represent shedding of material from unstable margins or from an unstable headwall 

area (P4, Fig. 4.10). The recognition of thin bedded strata in the central area similar to that in 

the underlying Package 3 turbidites, and syn-sedimentary faulting, suggests the source of this 

material was from the substrate at the margin.  

 Package 5 

Beds initially onlap topography created by underlying debrites (Package 4) and Surface 2 with 

palaeocurrents indicating reflection and deflection of turbidity currents (e.g. Edwards et al., 

1994) (P5i, Fig. 4.10). The thick, normal graded nature of turbidites suggests down-dip flow 

confinement that formed transient ponded accommodation. Laterally extensive debrites 

indicate continued slope instability and failure sourced from the headwall and/or lateral 

margins (P5i, Fig. 4.10). The transitional package (Fig. 4.9) marks the change from thick, 

normally graded beds to thinner, sharp topped beds with climbing ripple laminated beds, 

suggesting rapid decrease in flow confinement (e.g. Jobe et al., 2012; Morris et al., 2014). The 

thinning of the upper slumped layer over the lobe complex may indicate remnant Surface 2 

topography, or may be a product of differential compaction during early burial (e.g. Alves, 

2010). Deposition of the sharp-topped sandstone and siltstone beds of the uniform datum 

package is interpreted to represent the healing of the basal shear surface (P5ii, Fig. 4.10) when 

the flows were unconfined, with more consistent NE palaeocurrents.  

4.6.2 Evolution of surfaces  

The large scale, concave shape and gradient of basal shear surfaces documented indicates 

locations at the margins of the submarine landslides, with extensional structures signifying 

either the headwall or lateral margin. Indicators of transport direction include: bedding and 

hinge line measurements taken from large-scale fold structures in Package 1 suggesting N or S 

movement; Package 3 flute and groove measurements indicating NE palaeoflow; Surface 2 

scours indicating E palaeoflow; and, Package 5 flute and groove measurements indicating NW 

to NE palaeoflow. In addition, the presence of an uplifting lateral basin margin to the south of 

the outcrop, and regional palaeocurrent and thickness trends (van der Merwe et al., 2014), 
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support failure directions towards the north. Therefore, these basal shear surfaces are 

orientated sub-parallel to the direction of palaeoflow and are interpreted as lateral margins 

(Bull et al., 2009; Alves, 2015) rather than headwalls. 

Basal shear surfaces have been shown to be highly variable in their degree of substrate 

entrained, depth of incision, and changes in flow dynamics (e.g. Frey-Martinez et al., 2006; Bull 

et al., 2009; Alves and Lourenço, 2010; Laberg et al., 2016; Ortiz-Karpf et al., 2017a). The 

primary morphology of a basal shear surface/zone is further complicated by post depositional 

remobilization, occurring directly after deposition on unstable gradients and/or due to 

differential compaction, especially over variably lithified substrate (Alves and Lourenço, 2010). 

Outcrop observations help to constrain where the character of the basal shear surface/zone 

can be attributed to shearing at the time of emplacement or secondary failure and 

compaction.  
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Figure 4.11 Post deposition failure of surfaces. Including tilting of onlapping strata and failure away from lateral margins and headwall. Both Surface 1 and 2 basal shear surfaces display a variation when eroding into coarser sediment (sharp/ 
stepped) or finer material (chaotic zone of shear). Dashed brackets numbered 1-3 refer to slide complex subdivisions (Stage 1, 2 and 3), discussed in text and shown in figure 4.12.
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The thickness of a basal shear zone is in part controlled by the character of the sheared strata, 

the relative density/ thickness of the flow, the mode of transport (Alves and Lourenço, 2010), 

and the longevity of the movement. This study documents a clear association between the 

lithology of eroded material and the nature of the basal shear surface/ zone (Fig. 4.11). Sharp, 

stepped surfaces occur when eroding into thickly bedded sandstone (Figs 4.8 and 4.11) and 

several-metre thick shear zones form where eroding into chaotic deposits/thinly bedded 

siltstone (Figs 4.7A and 4.11). The characteristics of the flow(s) that formed the initial basal 

shear surface are unknown, and may be responsible for some of the spatial variations in basal 

shear zone thickness and morphology.  

Secondary failures are documented in the form of debrite packages overlying basal shear 

surfaces (Package 4), extensional faulting towards the SW in the central area (Package 3) and 

towards the N and E at the lateral margin (Package 4), and remobilization of the lobe complex 

(Package 3) (Fig. 4.7A). Downthrow was away from lateral margins and formed due to later 

deposition on an unstable gradient (Fig. 4.11). The unusual geometries and variation in dip 

across Package 3 (Figs 4.7A, 4.7B and 4.11) may be a factor of post deposition movement: i) 

directly after deposition, ii) later due to loading and/or differential compaction prior to erosion 

by Surface 2, or iii) later after the deposition of the entire succession. Differential compaction 

can be shown to have had an impact over the megaclast, which was lithified prior to 

deposition, therefore forming a topographic high (e.g. Alves, 2010). This causes the increased 

tilting in the overlying strata due to greater compaction than the megaclast. The increased 

angle of bedding dip (on average 20°) towards the lateral margins of the basal shear surface 

(Figs 4.7A, 4.7B and 4.11), and stratigraphic decrease suggests that there was incremental 

post-depositional movement of strata above the basal shear surface (Fig. 4.11). 

Palaeocurrent indicators from deposits directly overlying Surfaces 1 and 2, suggest different 

failure directions (Fig. 4.5). These two surfaces may represent two unrelated events, or 

represent different slip planes within a single slide complex. Infill of Surface 1 prior to erosion 

by Surface 2 indicates several depositional episodes rather than different phases of the same 

event, similar to the Hinlopen slide (Vanneste et al., 2006) or the Sahara Slide Complex (Li et 

al., 2017). If Surface 1 and 2 represent the basal shear surfaces that coalesce updip into the 

headwall of a larger slide this could be characteristic of retrogressive erosional events (Piper et 

al., 2012). If distinctly separate events, the initial failure event that formed Surface 1 may have 

removed deposits at the toe-of-slope, subsequently rendering the slope gradient unstable up-

dip.  
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The sizes and dimensions of the basal shear surfaces are similar to large-scale confining 

surfaces within entrenched slope valley systems (e.g. Posamentier and Kolla, 2003; Beaubouef, 

2004; Hubbard et al., 2009; Hodgson et al., 2011). Channel systems can be partially infilled 

with debrites (e.g. Posamentier and Kolla, 2003), but do not contain the ponded turbidites 

noted in this study. Erosional channel complexes are usually characterised by large scale, 

composite stepped surfaces formed by several stages of erosion (Campion et al., 2000; 

Sprague et al., 2002) and the stacking of component channels, and channel complexes (e.g. 

Macauley and Hubbard, 2013) and internal levee successions (Kane and Hodgson, 2011). These 

components are not present in this example. 

4.6.3 Confinement styles  

In this example, it is evident that >100 m of slope accommodation was formed as a result of 

substrate entrainment and emplacement of three large submarine landslides. Variations in 

flow confinement can occur at m-to 10s of metres scale above relief on upper surfaces of 

remobilized units (Armitage et al., 2009; Jackson and Johnson, 2009; Kneller et al., 2016). Flow 

confinement can also occur at a larger scale (10s-100 m), above basal shear surfaces when a 

large frontal ramp is formed during the erosion and/or as a result of remobilized deposits 

forming a topographical barrier down-dip (Frey-Martinez et al., 2006; Moernaut and De Batist, 

2011; van der Merwe et al., 2011; Alves, 2015). Here, both the confinement of initial 

remobilized deposits (formed during failure or deposited immediately after) within the basal 

shear surface, as well as the confinement of later turbidites/remobilized deposits is considured 

(Figs 4.12 and 4.13).  
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Figure 4.12 Three key stages of outcrop evolution. Stage 1- deposition of frontally emergent remobilized 
deposits with onlapping turbidity currents, with basal shear surface located up-dip of the outcrop 
exposure in this study. Stage 2- Formation of basal shear surface 1, with initial remobilized deposits 
either frontally confined with frontal ramp creating down-dip topography or frontally emergent and 
creating a mounded topographic barrier down-dip. Subsequent infilling turbidites are partially confined. 
Stage 3- Formation of basal shear surface 2 with initial remobilized deposits either frontally confined 
with frontal ramp creating down-dip topography or frontally emergent and creating a mounded 
topographic barrier down-dip. Subsequent turbidite and remobilized infill transitions stratigraphically 
from fully confined to unconfined. 

Three discrete stages of topography-controlled evolution are recognised. Stage 1 (Fig. 4.12) 

involves the deposition of large-scale unconfined slumps, slides and debrites, sourced from an 

uplifting tilted southern basin margin, but not contained by a basal shear surface. Stage 2 (Fig. 

4.12) includes the formation of Surface 1 with steep lateral margins and initial infill of 60 m of 

thick, sand rich remobilized deposits. This package is overlain by onlapping turbidites and a 

lobe complex, with a stacking pattern and sand-rich nature that suggests weak down-dip 

confinement. Stage 3 (Fig. 4.12) includes the formation of a less steep lateral margin to the 

basal shear surface that is overlain by thinner debritic deposits and a turbiditic infill with a 

distinct change from thick well graded and onlapping beds to sharp topped laterally 

continuous beds, which supports a transition from confined (ponded) to unconfined 

deposition. Previous models have classified the remobilized infill above a basal shear surface 

into two end member scenarios: frontally emergent where deposits have outrun the basal 

shear surface onto the seabed, or frontally confined where topography downslope results in 

the ponding of remobilized deposits within basal shear surface accommodation, restricting 

outflow onto the seabed (Frey-Martinez et al., 2006; Moernaut and De Batist, 2011). Factors 

determining the confinement style of slides are the shape of the slope profile (controlling the 

headwall height, depth of incision and location of frontal ramp), the gradient of the slope 

(controlling the length of the slope section and the height drop of the basal shear surface) and 

the geotechnical properties of the substrate (e.g. Moernaut and De Batist, 2011).  
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Figure 4.13 (A) Simplified dip section of Stage 1, 2 and 3 basal shear surfaces and subsequent deposits, 
showing possible scenario to create strike section documented in this study. (B) Evolution of turbidite 
confinement from Stages 1-3 showing transition from unconfined turbidites, to partially confined and 
fully confined with each subsequent failure. Dip section shows how increasing slope gradient and 
mounding of deposits down-dip could create increased turbidite confinement whilst initial remobilized 
deposits remain frontally emergent with decreasing run-out distance.   
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Stage 1 (Fig. 4.12) deposits can be classified as part of a frontally emergent slide (sensu Frey-

Martinez et al., 2006) with its corresponding basal shear surface located up-dip of the outcrop 

(Figs 4.12 and 4.13A). Stage 2 (Fig. 4.12) shows evidence of partially graded turbidites overlying 

thick remobilized deposits, suggesting weak down-dip confinement. This supports deposition 

behind a frontally confined slide (sensu Frey-Martinez et al., 2006) (Figs 4.12 and 4.13A). 

Similarly, in Stage 3 (Fig. 4.12) thick graded turbidites indicate either a section of a frontally 

confined slide with down-dip confinement formed by a frontal ramp on the basal shear 

surface, or a frontally emergent slide with the MTC infill forming a topographical barrier. The 

latter may be more likely as the remobilized infill of Surface 2 is relatively thin at the outcrop 

location and therefore a large proportion may have bypassed down-dip (Figs 4.12 and 4.13A). 

Moreover it is not possible to resolve whether the remobilized deposits infilling the surface 

were those involved in the original slide, although this relationship is commonly invoked from 

stratal relationships in 3D reflection seismic data (e.g. Posamentier and Kolla, 2003; 

Posamentier and Martinsen, 2011; Ortiz-Karpf et al., 2017a).   

The formation of a slide as frontally emergent or frontally confined will greatly affect the 

amount and location of onlapping and ponded infill. Frontally emergent slides will likely leave 

larger evacuated depressions with down-dip confining topography, within which thick 

packages of turbidites and remobilized deposits can aggrade (e.g. Stage 3). In addition, surface 

ponding of flow will occur on top of the rugose surface of the emergent remobilized deposit 

when up-dip accommodation is healed (e.g. Stage 1). Frontally confined slides will have a 

complex rugose top surface, with localised depressions infilled with turbidites and remobilized 

deposits, but likely contain comparatively thinner infilling packages. Therefore, it is more likely 

that Stage 2 and 3 deposits also represent frontally emergent slides and subsequent infill but 

with increasing amounts of seabed topography, resulting in increased flow confinement. 

Moernaut and De Bastist (2011) suggested that an increase in slope gradient, such as that 

documented by uplift/tilting of the basin margin in this study, may result in more frontally 

emergent (unconfined) slides forming due to reduced static and kinetic friction along the basal 

shear surface and therefore more efficient potential energy transfer. Although this may only 

be the case when considering individual slides, due to the multiphase nature of the succession, 

the stacking of multiple remobilized deposits downslope will result in a higher down-dip 

topographic barrier forming through time, which would require more gravitational potential 

energy to overcome. The increase in slope gradient will create a progressively more out-of-

phase slope profile, possibly resulting in increased basal shear surface depths within 

subsequent slides, leading to more frontal confinement (Frey-Martinez et al., 2006; Moernaut 
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and De Batist, 2011). The properties of the material in which the failure occurred is thought to 

influence slope stability, with failures within rheologically stronger material being smaller and 

more deep-seated than those in weaker material, typically resulting in a steeper post-failure 

slope (McAdoo et al., 2000). Therefore, successive failures progressively evacuating deeper 

and more consolidated material may create smaller, more confined slides. Although slides 

likely remained ‘unconfined’ within this study due to the factors discussed above, initial 

remobilized infill may have become relatively more ‘confined’ with shorter run-out distances, 

and therefore creating more 3D topographic closure, resulting in increased confinement of 

later turbidite and remobilized infill (Figs 4.13A and 4.13B).  

Regardless of whether down-dip confining topography was created by a frontal ramp in the 

basal shear surface or mounded mass flow deposits, there is a clear signature of increasing 

confinement within the turbiditic infill from Stage 1 to Stage 3 (Figs 4.12, 4.13A and 4.13B). 

This may be a natural evolution for multiphase failures on steepening/lengthening slopes (Fig. 

4.13B), which occur globally and have been widely documented, including in ancient 

tectonically controlled settings (Alves and Lourenço, 2010), related to salt withdrawal 

(Ogiesoba and Hammes, 2012) and modern volcanic islands (Carracedo et al., 1999; Urgeles et 

al., 2001). Therefore, this model is applicable to both modern and ancient multiphase 

submarine landslides in many geographical locations.  

4.6.4 Source slope 

The large scale and deeply erosional basal shear surfaces with infilling deposits recognised in 

this study are located in the distal, easternmost area of the Laingsburg depocentre (Fig. 4.2A). 

Palaeocurrent and sedimentological evidence suggests that they were not fed through the 

depocentre from the westerly dominant sediment transport direction (Flint et al., 2011; van 

der Merwe et al., 2014; Fig. 4.5). The material present within the slides includes a large range 

of grain sizes, including medium-grained sandstone, which is unusually coarse for deposits in 

the Laingsburg system (Grecula et al., 2003; Sixsmith et al., 2004; Hodgson et al., 2006; Hofstra 

et al., 2015). This larger grain size and more northward trending palaeocurrents in the study 

area (Fig. 4.5) suggests that many of the infilling packages are more genetically related to the 

Ripon Fm. deposits present to the east around the Prince Albert area. Coupled with the 

interpreted north-facing basin margin that controlled later Fort Brown Fm. deposition (van der 

Merwe et al., 2014), this suggests that the failure surfaces and much of the infilling strata 

originated from a lateral basin margin to the south. Although ponded deposits infilled the 

accommodation created by basal shear surfaces (Fig. 4.10), no long-term southerly sediment 
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conduit has been documented. This suggests that the source slope of these failures was not a 

major supply margin to the basin at this point, rather an actively uplifting lateral confining 

slope.  

4.6.5 Sedimentation rates vs. degradation rates  

Many studies have shown how submarine slides can capture/reroute sediment pathways (e.g. 

Loncke et al., 2009; Ortiz-Karpf et al., 2015) and pond deposits (e.g. Alves and Cartwright, 

2010; Kneller et al., 2016). These studies are examples of slope failures in locations with high 

sediment input, such as directly down-dip of delta fronts (Fig. 4.14). The loading caused by 

high sediment input may be a controlling factor in causing failure in these locations. These 

features can be healed quickly where sedimentation rates are greater than degradation rates. 

Conversely slope failure can also occur in areas of little sediment input, with only passive, 

hemipelagic infill or infill by sporadic flows/bottom currents, such as on non-supply margins or 

salt/mud diapir controlled topography (e.g. McAdoo et al., 2000). In these locations, the 

degradation rate of the slope greatly outpaces the sedimentation rate. The stacked slide 

complex outlined in this study clearly has episodic coarse sediment infill but also shows 

evidence of periods with low rates of sedimentation. There is no evidence of large-scale, long-

term sediment bypass in the form of channel complexes. It is also unknown if Surface 1 

became completely filled and overspilled prior to the erosion of Surface 2.  
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Figure 4.14 Sketch of shelf and slope systems indicating how interplay of sediment supply rate and rate 
of slope degradation can vary the infill of submarine slide basal shear surfaces. Slides in areas of high 
sediment supply can cause the capture and rerouting of sediment pathways, and become quickly infilled 
and overspilled. In locations distal to sediment supply, slides can remain underfilled with degradation 
rate outpacing sedimentation rate. In intermediary areas periods of high and low sediment supply mean 
that on average sediment supply is roughly equal to degradation rate. 
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Overall, the sedimentation rate was in balance with the degradation rate throughout most of 

the system evolution. It is possible that these failures occurred in the periphery of an area of 

sediment input to create these changing conditions, for example capturing flows transported 

across the shelf/upper slope feeding the Ripon system to the east but unable to re-route entire 

slope systems (Fig. 4.14). The model presented in Figure 4.14 demonstrates how wider scale 

knowledge of the basin, which is often lacking in outcrop studies, can be gained from general 

characterisation of slide infill.  

 Conclusions  

This study documents an exceptionally well-exposed example of the formation, evolution and 

infill of a multiple seismic-scale, submarine landslides. Two 2.0-4.5 km wide basal shear 

surfaces/zones, Surface 1 and 2, are interpreted as rare examples of lateral margins commonly 

identified in subsurface data. Surface 1 and 2 document minimum evacuation depths of 90 m 

and 60 m, with compacted gradients of 8° and 4°, respectively. The basal shear surfaces/zones 

display variation across strike, coincident with changes in lithology of eroded deposits. Sharp, 

distinct, commonly stepped surfaces formed where thick sand-rich deposits are eroded and 

are sometimes mantled with scours and bypass lags. Where these surfaces cut mud-rich 

deposits, shear zones up to 10 m thick developed, with evidence of protracted development 

likely due to oversteepening and weakening of material during erosion or after loading. The 

evolution of this submarine landslide complex can be divided into three stages: 1) unconfined 

deposition of slumps and slides that outran their basal shear surface; 2) erosion by basal shear 

surface 1, overlain by thick debritic/chaotic strata and infilled by weakly confined turbidites 

and a lobe complex; 3) erosion by basal shear surface 2, overlain by thin debritic deposits and 

infilled by confined turbidites that transition stratigraphically into unconfined turbidites. All 

three stages of failure are likely ‘frontally emergent’ slides, with stacking of failed deposits 

down-dip. The progressive increase in down-dip topography caused a stratigraphic increase in 

confinement of turbidity currents. The failure source slope was likely a non-supply lateral basin 

margin that was actively tilting/uplifting, as evidenced by the entrainment of megaclasts from 

underlying basin-floor successions. Periods of high and low energy deposition are apparent, 

with only minor sediment bypass and no development of channels. Therefore, this slide 

complex likely formed in a location with fluctuating sediment input, which over the timescale 

of the slide complex, was comparable to the degradation rate.  

The increase in initial remobilized deposit and turbidite infill confinement, with stacking of 

slides, may represent a model applicable to other failures on steepening/lengthening slopes. 

Moreover, the recognition of these submarine landslides in an area peripheral to the main 



141 
 

 
 

sediment input highlights the necessity to consider wider basin sedimentation/degradation 

rates when assessing impact of slope failures on sediment routing, hydrocarbon reservoir 

connectivity, and seal potential.  
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5 Deepwater channel-lobe transition zone dynamics  

 Introduction   

Deepwater channel-lobe transition zones (CLTZs) separate well-defined channels from well-

defined lobes, and are areas within turbidite systems where sediment gravity flows undergo 

rapid expansion due to abrupt decrease in confinement and/or gradient change (Mutti and 

Normark, 1987; 1991). The understanding of CLTZ formation and dynamics is therefore 

pertinent in discerning and predicting facies distributions and the depositional architecture of 

submarine fans. Studies of systems on the present-day seabed, hereafter referred to as 

‘modern’, show that CLTZs comprise a distinctive assemblage of erosional bedforms including 

isolated and coalesced scours, and depositional bedforms including sediment waves and lag 

deposits (e.g. Kenyon and Millington, 1995; Kenyon et al., 1995; Palanques et al., 1995; Wynn 

et al., 2002a; Fildani and Normark, 2004). CLTZs are dominated by sediment bypass processes, 

with a relatively thin record of erosion and deposition (Mutti and Normark, 1987; 1991; 

Normark and Piper, 1991; Stevenson et al., 2015). Models of CLTZs developed from modern 

seabed studies convey the distribution of erosional and depositional bedforms at a point in 

time (e.g. Kenyon et al., 1995; Palanques et al., 1995; Wynn et al., 2002a, 2002b; Dorrell et al., 

2016), with potential to look at short periods via repeat surveys (e.g., Hughes Clarke et al., 

2012), but do not allow the capture of long term (hundreds to thousands of years) changes in 

the dimensions and character of CLTZs. To do this requires stratigraphic control. 

Although CLTZs have been shown to be common features in modern settings, they are not 

reported in detail from ancient subsurface systems, this is likely due to the limited vertical 

resolution (typically 10-20 m) of reflection seismic data. However, several exhumed sections of 

CLTZs have been studied (e.g. Mutti and Normark, 1987; Vicente Bravo and Robles, 1995; Ito, 

2008; van der Merwe et al., 2014; Hofstra et al., 2015; Pemberton et al., 2016; Postma et al., 

2016). Within the stratigraphic record CLTZs are recorded either as a single surface separating 

lobes and channel fills (e.g. Elliott, 2000; Gardner et al., 2003) or expressed as a rock volume 

(e.g. Hofstra et al., 2015; Pemberton et al., 2016) displaying similar scour features shown in 

modern seabed datasets. However, limitations in palaeogeographic constraint, and dip and 

strike control on depositional architecture have precluded the development of more advanced 

evolutionary models. As CLTZs are dominated by erosion and sediment bypass processes their 

preservation in the rock record requires them to later aggrade (e.g. Pemberton et al., 2016) or 

for feeder channels to be abandoned or to avulse before they cannibalise the zone (e.g. 
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Hofstra et al., 2015). Furthermore, sediment bypass criteria, which may be used to recognise 

ancient CLTZs, have been synthesised from a wide range of systems and settings (e.g. 

Stevenson et al., 2015), but never constrained from an entire exhumed sediment bypass 

dominated zone.  

Here, four sub-parallel dip-oriented >20 km long correlation panels from continuous outcrops 

are presented, that capture the transition down-dip from slope to basin-floor deposits in Units 

D/E and E of the Permian Fort Brown Formation, Karoo Basin, South Africa. These data are 

used to understand the dynamic evolution of a base of slope environment, including a 

uniquely well-exposed CLTZ, within subunit E3, with excellent palaeogeographic constraint to 

genetically related up- and down-dip deposits. Specific objectives are: i) to identify recognition 

criteria for a CLTZ in the ancient record; ii) to constrain the three-dimensional depositional 

architecture of an exhumed CLTZ; iii) to examine the spatial extent and temporal changes of a 

CLTZ; and iv) to discuss the transfer of CLTZs into the stratigraphic record and to present the 

first dynamic model of their evolution.   

 Terminology 

Here, the definition of Mutti and Normark (1987, 1991) and Wynn et al. (2002a) for CLTZs is 

used, as ‘the region that, within any turbidite system, separates well-defined channels or 

channel-fill from well-defined lobes or lobe facies’, and thus CLTZs form in sand-detached 

geographic areas (sensu Mutti, 1985). CLTZs are examples of sediment bypass-dominated 

zones (sensu Stevenson et al., 2015). 

 Geological background and location of study  

The Karoo Basin has been traditionally interpreted as a retroarc foreland basin (Visser and 

Prackelt, 1996; Visser, 1997; Catuneanu et al., 1998). More recent studies (Tankard et al., 

2009, 2012) suggest that subsidence during the deepwater phase of the basin was controlled 

by mantle flow over a complex arrangement of basement blocks. The late Carboniferous to 

Jurassic Karoo Supergroup comprises approximately 8000 m of sediments divided into the 

Dwyka, Ecca and Beaufort Groups (Fig. 5.1).  
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Figure 5.1 (A) Location of the study area within southwestern Africa. Black box indicates location of map 
B. (B) Regional geological map of the Western Cape. The study area is located in the Laingsburg 
depocentre, where Ecca Group stratigraphy is exposed, north of the Swartberg branch of the Cape Fold 
Belt (Modified from Flint et al., 2011). 

The Permian Ecca Group in the Laingsburg depocentre records the eastward progradation of 

the basin margin with a stratigraphic succession from basin-floor deposits (Vischkuil and 

Laingsburg formations; van der Merwe et al., 2010) through channelized submarine slope (Fort 

Brown Formation; Hodgson et al., 2011; Di Celma et al., 2011) to shelf-edge and shelf deltas 

(Waterford Formation; Jones et al., 2015) (Fig. 5.2). Units C-F of the Fort Brown Formation 

have been mapped in detail over 2500 km2 from slope valleys, down-dip through channel-

levee systems, to basin-floor lobe complexes (van der Merwe et al., 2014), and are separated 

by regional mudstone (claystone and siltstone) units (Fig. 5.2).  
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Figure 5.2 (A) Stratigraphic column showing the Permian Ecca Group deposits 
in the Laingsburg depocentre, southwestern Karoo Basin. This stratigraphy 
represents margin progradation from deepwater basin plain deposits (Vischkuil 
and Laingsburg formations), through submarine slope (Fort Brown Formation) 
and continues to shallow water (Waterford Formation). Blue box indicates 
detailed section shown in B. (B) Submarine slope system Unit D/E and Unit E of 
the Fort Brown Fm., the focus of this study (modified from van der Merwe et 
al., 2014). 
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The Fort Brown Formation comprises Units B/C, C, D, D/E, E, and F respectively (Fig. 5.2) and 

regional studies have led to the interpretation of each unit as a lowstand sequence set (Flint et 

al., 2011). There is also a Unit G, which is not discussed here. This study focuses on Units D/E 

and E (Fig. 5.2B), which are exposed along a series of sub-parallel post-depositional fold limbs 

(Fig. 5.3). Detailed mapping and correlation of Unit E in this study utilises regional correlation 

work undertaken in previous studies in this area (Figueiredo et al., 2010, 2013; Flint et al., 

2011; van der Merwe et al., 2014; Spychala et al., 2015). Unit E comprises three depositional 

sequences, each including a sand-rich lowstand systems tract (LST; subunits E1, E2, and E3) 

and a related transgressive/highstand systems tract mudstone, which is approximately 1-8 m 

thick between each LST (Figueiredo et al., 2010, 2013).  

Regional mapping and correlation of Units C to F have demonstrated an architectural change 

from sand-attached (Units C and D) to sand-detached CLTZs (Units E and F) (sensu Mutti, 1985; 

van der Merwe et al., 2014). The recognition of intraslope lobes in Units D/E and E (Fig. 5.4) 

(Figueiredo et al., 2010; Spychala et al., 2015) supports the presence of a stepped slope profile 

at the time of deposition (van der Merwe et al., 2014; Fig. 5.4). This paper focuses on the 

sedimentology and stratigraphic expression of Unit D/E and subunits E2 and E3, over an area 

with channel-levee systems mapped up-dip and lobe complexes down-dip, supporting 

deposition on the lower slope to basin-floor (van der Merwe et al., 2014). This also 

characterises the sediment bypass-dominated zone recognised in subunit E3 (van der Merwe 

et al., 2014), as a CLTZ.  
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Figure 5.3.  (A) Location of the study area relative to Laingsburg town. Dashed lines indicate the location 
of outcrop belts. White shading indicates the exposure of Fort Brown and Laingsburg formations. 
Locations marked Roggekraal, Zoutkloof and Geelbek are the study areas related to the corresponding 
up-dip deposits of Unit E (Spychala et al., 2015). (B) Enlarged area shows the four sections of regional 
panels involved in this study and the key Slagtersfontein location. The northern panel 1, contains 64 logs, 
the central northern panel 2, contains 67 logs, the central southern panel 3, contains 39 logs, and the 
southern panel 4 contains 30 logs. The highest concentration of data is in the Slagtersfontein study area 
on panel 2. Locally the top of Unit E3 along panel 3 is lost to modern erosion by a tributary of the Gamka 
River. Aerial photographs are from NASA Visible Earth (National Aeronautics and Space Administration, 
http://visibleearth.nasa.gov/; regional scale) and Chief Directorate: National Geo-spatial Information, 
South Africa (http://www.ngi.gov.za/; Laingsburg depocentre). (C) Google Earth image of Slagtersfontein 
study area showing laterally continuous Unit D and abrupt thickening of Unit E down-dip. Tops and bases 
of units are mapped by walking surfaces and tracking with GPS.  
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Figure 5.4 Regional dip correlation panel along the Baviaans South outcrop belt with data from previous 
studies (van der Merwe et al., 2014; Spychala et al., 2015), showing the D-E interunit mudstone, Unit 
D/E, Unit E, and the E-F interunit mudstone Interpretations of architectural elements show the down-dip 
transition in Unit E from slope channels, through intraslope lobes, channel-levee systems and channel-
lobe transition zone, to basin-floor fans. Datum used is top Unit B, an underlying basin-floor fan (shown 
in Fig. 5.2A). Map highlights the location of outcrop belt within Figure 5.3, with the red line denoting the 
location of this dip section and black dashed lines showing other exposed sections. 
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 Methodology  

Collection of over two hundred measured sections permitted construction of four sub-parallel 

>20 km long correlation panels oriented along depositional dip (Fig. 5.3), with this area of 

interest between channel-levee and lobe systems, recognised from previous regional studies 

(van der Merwe et al., 2014; Fig. 5.4). Logged sections document the lithology, grain size, 

sedimentary structures and stratal boundaries at cm scale resolution. The correlation 

framework was established by walking stratigraphic surfaces between sections and using 

regional mudstones (Fig. 5.4; van der Merwe et al. 2014). The top of underlying sand-rich Unit 

D is used as a datum as it is a basin-floor fan over the study area (van der Merwe et al., 2014; 

Hodgson et al., 2016) with minor thickness changes healed partially by the D-E mudstone. 

Structurally restored palaeocurrent data were collected from ripple laminations, flutes and 

grooves. Spatial data are presented in palinspastically restored positions according to 

calculated post-depositional south to north shortening of 17.2% (Spikings et al., 2015). The 

Slagtersfontein detailed panel was constructed by closely spaced logged sections, with 

photopanels and detailed sketches aiding interpretation of erosional and depositional 

bedforms. 

 Facies groups   

Eight distinct groups of lithofacies are described and interpreted in terms of sedimentary 

processes (Table 1; Fig. 5.5). 
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Figure 5.5 Representative photographs of sedimentary facies. (A) Structureless sandstone; (B)  Structured 
sandstone, dashed white lines indicate sheared climbing ripple laminations; (C) Mudstone clast 
conglomerate; (D) Scoured siltstone and sandstone, dashed red lines indicate erosional surfaces; (E) 
Hybrid beds, dashed white line indicates division between lower sandstone turbidite and upper debrite; 
(F) Interbedded sandstone and siltstone; (G) Remobilised deposits; (H) Hemipelagic mudstone.  Scales: 
logging pole with 10 cm divisions, camera lens 7 cm in diameter.
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              Table 5.1 Table of facies groups for Chapter 5. 

Facies  Lithology and sedimentary 

structures  

Bed and package 

thickness and 

geometry  

Interpretation Architectural 

element 

Amalgamated 

structureless 

sandstone 

(Fig. 5.5A) 

Fine-grained sandstone, commonly 
amalgamated. Weak-normal 
grading at bed tops. Erosional bases 
and rare flutes and grooves. 
Dewatering structures (e.g. pipes) 
and deformation structures (e.g. 
ball and pillow structures) at bed 
contacts. Rare, discontinuous 
mudstone clast layers (clasts <3 cm 
a-axis, sub-angular and elongate, 
<5% volume) dispersed within beds 
and present at amalgamation 
surfaces.   

Beds 0.1-1 m thick. 
Packages up to 30 m 
thick. Beds and 
packages tabular.   

Structureless and weak normal 
grading suggests deposition from 
sand-rich high-density turbidity 
currents (Bouma, 1962; Lowe, 1982; 
Mutti, 1992; Kneller and Branney, 
1995). Lack of structures indicates 
rapid deposition. Dispersed rip-up 
clasts and clast-rich amalgamated 
contacts suggest progressive 
aggradation from depletive steady 
high-density flow (Kneller and 
Branney, 1995). Dewatering 
structures form post-deposition, due 
to sediment liquefaction (Mulder and 
Alexander, 2001; Stow and 
Johansson, 2002). 

Lobe axis 

Structured 

sandstone (Fig. 

5.5B) 

 

 

Fine-grained sandstone with planar, 
current ripple and climbing ripple 
lamination; dewatering structures 
(e.g. pipes) and deformation 
structures (e.g. ball and pillow 
structures). Climbing ripple 
lamination can exhibit a high angle 
of climb (15-30°) and stoss-side 
preservation of laminae. Sheared 
and overturned climbing ripple 
laminations present in localised 
areas at bed tops. 

Beds 0.05-1m thick. 
Packages up to 5 m 
thick. Beds and 
packages tabular to 
lenticular   

Planar lamination indicate upper 
stage plane bed conditions (Allen, 
1984; Talling et al., 2012); or traction 
carpet deposition (spaced 
stratification) (Hiscott and Middleton, 
1980; Lowe, 1982; Sumner et al., 
2008; Cartigny et al., 2013). High 
angle climbing ripples form from 
continuous bedload traction under 
high aggradation rates (Allen, 1970; 
Jobe et al., 2012; Morris et al., 2014). 
Sheared and overturned climbing 
ripple laminations, are soft-sediment 
deformation structures (Allen and 
Banks, 1972; Allen, 1985).  

Lobe axis  

Lobe off-axis  

External levee  
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Lenticular 

mudstone clast 

conglomerate 

and sandstones 

(Fig. 5.5C) 

Poorly sorted fine- and medium- 
grained sandstone and siltstone 
with well- to sub-round mudstone 
clasts (mm up to 15 cm, a-axis). 
Beds can be matrix- or clast-
supported comprising 10-80% clasts 
by volume. Commonly, overlies 
erosion surfaces at the bases of 
sandstone packages or 
interstratified with siltstone. 

Beds 0.5-1.5 m 
packages up to 2 m 
thick. Beds and 
packages often 
lenticular with sharp 
undulating base and 
top surfaces. Highly 
discontinuous 

Deposition in high energy 
environment, fluctuating between 
erosion, bypass and deposition. 
Accumulation of a residual lag from 
bypassing energetic sediment gravity 
flows (Mutti and Normark, 1987; 
Gardner et al., 2003; Beaubouef, 
2004; Brunt et al., 2013b; Stevenson 
et al., 2015). Intraformational 
mudstone clasts collect in areas of 
reduced bed shear stress including 
scours or down-dip of gradient 
change induced hydraulic jumps 
(Johnson et al., 2001).  

Sediment bypass-

dominated zone 

Scoured 

siltstone and 

sandstone (Fig. 

5.5D)  

Thin-bedded siltstone with thin, 
lenticular and poorly sorted silty 
sandstone beds; both overlie and 
are cut by erosion surfaces. Several 
erosion surfaces can coalesce to 
form composite surfaces. Scour 
dimensions are typically <3-15 m 
long, 1-3 m wide and <1 m deep, 
locally displaying asymmetry with 
steeper headwalls, in planform 
exposures. 

Beds and packages 
0.02- 1 m thick. 
Lenticular, sharp and 
undulating bases and 
tops. Highly 
discontinuous.  

Multiple isolated and composite 
scour surfaces indicate protracted 
periods of erosion and sediment 
bypass down-dip (Beaubouef et al., 
1999; Chapin et al., 1994; Kane et al., 
2009b; Macdonald et al., 2011a, 
2011b; Macauley and Hubbard, 2013; 
Hofstra et al., 2015; Stevenson et al., 
2015). Megaflutes interpreted from 
planform scour geometries.  

Sediment bypass-

dominated zone 

Hybrid beds (Fig. 

5.5E) 

Bipartite bed. Lower division 
comprising weakly normally graded 
fine-grained sandstone, dewatering 
structures, rare planar lamination, 
and mudstone clast layers (clasts 1- 
10 cm a-axis, sub-angular, 
elongated, <5% volume). Upper 
division comprising poorly sorted 
silt sandstone with dispersed 
mudstone clasts (mm-cm scale, sub-
angular, elongate, >50% volume) 
and plant fragments. Two types: i) 
thick sand-rich lower division with 
rare mudstone clast layers, poorly 
sorted, coarse-grained upper 
division; or ii) thin silty lower 
division, poorly sorted upper 
division, with a minor coarse-
grained component. 

Beds 0.2-2 m thick. 
i) Lower division 0.2-1 
m thick. Upper 
division 0.05-0.5 m 
thick.  
ii) Lower division <0.2 
m thick. Upper 
division 0.05-0.5 m 
thick.    
Beds generally 
tabular.  
Packages up to 20 m 
thick and generally 
tabular.  

Deposition of the lower division from 
a sand-rich turbidity current with the 
‘linked’ poorly sorted upper division. 
Hybrid event beds (Haughton et al., 
2003, 2009) form preferentially 
towards the base and fringes of lobe 
deposits (e.g. Hodgson, 2009; Talling, 
2013), but can form in any 
environment where mud and 
mudstone clasts are entrained into 
the turbulent flow, increasing 
sediment volume, damping 
turbulence, and developing high-
concentration to pseudo-laminar flow 
conditions (e.g. Ito, 2008; Haughton 
et al., 2003, 2009; Baas et al., 2011). 

Lobe axis  

Lobe off-axis  

Lobe fringe 



154 
 

 
 

 

 

Interbedded 

sandstone and 

siltstone (Fig. 

5.5F) 

Three types documented based on 
bed thickness and sandstone 
proportion:  
i) interbedded siltstone and very 
fine-grained sandstone. Current, 
and low angle (<5°) climbing, ripple 
laminated. ‘Pinch and swell’ bed 
geometry common in cross-section 
where ripple sets are draped by 
siltstone; 
ii) thin-bedded siltstone with minor 
sandstone beds and silt rich hybrid 
beds. Ripples are 1-2 cm in height 
and <4 cm wavelength; 
iii) Thin (<2 cm) siltstone beds with 
rare normally graded very fine-
grained sandstone at bed bases. 
Bioturbation fabric (Planolites) is 
common throughout (ii) and (iii). 

i) Beds 2-30 cm thick, 
packages 0.5-6 m 
thick. Beds tabular or 
show thickness 
change with ripple 
geometries.   
ii) Beds mm-20 cm 
thick, packages 0.5-7 
m thick. Beds and 
packages tabular.  
iii) mm-5 cm thick. 
Packages 0.1-3 m 
thick and laterally 
extensive for 10’s 
kms.  

Deposition from dilute turbidity 
currents, with the finer sediment 
residual within the flow after 
deposition of the coarser fraction of 
sediment load. Climbing ripples form 
through late stage tractional 
modification of waning or low-density 
flows, with high sediment fall out 
rates (Lowe, 1988). Thin beds and low 
angle of climb suggests lower rates of 
suspended load fallout. Starved 
ripples indicate deposition from 
sediment-limited weak traction 
currents (Jobe et al., 2012). Very thin-
bedded, laterally extensive, silt-
dominated deposits are interpreted 
as derived from numerous dilute 
turbidity currents. 

Lobe off-axis  

Lobe fringe 

Spill-over fringe 

External levee 

 

Contorted and 

chaotic deposits 

(Fig. 5.5G) 

Sandstone and siltstone, coherently 
folded to highly disaggregated. 
Contorted clasts supported by a 
poorly sorted silt-prone matrix. 
Chaotic deposits have a poorly 
sorted matrix of very fine-grained 
sandstone to coarse-grained 
siltstone beds, lack internal 
structure and contain dispersed 
sub-angular, elongate, mm-cm scale 
mudstone clasts and plant 
fragments. 

Beds cms-2 m thick. 
Packages up to 10 m 
thick, extending 
laterally for 10’s of 
metres.  

These facies are interpreted as mass 
flow deposits derived from 
remobilization processes to form 
slides and slumps. Highly 
disaggregated examples are 
interpreted as debrites.  

Not characteristic 

of any specific 

environment, can 

occur in 

association with 

all architectural 

elements. 

Hemipelagic 

mudstone (Fig. 

5.5H) 

Claystone and fine-grained 
siltstone, with mm scale 
laminations or structureless.  

Beds mm-3 cm. 
Packages up to 70 m 
thick. Packages highly 
regionally extensive 
for 10’s of kms up-
dip, down-dip and 
laterally.  

Background hemipelagic deposition, 
with occasional distal dilute turbidity 
currents.  Regional drapes during 
shutdown of sand and coarse coarse-
grained silt supply. 

Regional 

mudstone  
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 Architectural elements  

The stratigraphic context of Units D/E and E has been well established (Figueiredo et al., 2010; 

Flint et al., 2011; van der Merwe et al., 2014; Spychala et al., 2015). Five broad environments 

of deposition are identified based on the occurrence of constituent facies and facies groups, 

mapped geometries, palaeogeographic context, and utilizing the depositional environment 

interpretations of previous studies in the Fort Brown Formation (Hodgson, 2009; Prélat et al., 

2009; Hodgson et al., 2011; Kane and Hodgson, 2011; Brunt et al., 2013a, 2013b; Morris et al., 

2014; Spychala et al., 2015):  

1) External levees (Piper and Deptuck, 1997; Piper et al., 1999; Deptuck et al., 2007; Kane 

et al., 2007, 2009a, 2010; Kane and Hodgson 2011; Morris et al., 2014): These deposits 

are dominated by thin-bedded siltstone and sandstone, and structured sandstone, 

with high proportions of current ripple and climbing ripple laminated beds with 

consistent palaeocurrent directions (Fig. 5.5F). Locally, chaotic deposits form where 

levees have collapsed. External levees have been mapped for up to 10 km away from 

their genetically-related channels, which are not identified within this study. Down-

dip, packages can be laterally continuous for several kilometres and change in 

thickness and facies. Typically, successions fine- and thin-upwards due to decreasing 

overspill during levee construction (e.g., Hiscott et al., 1997; Peakall et al., 2000; Kane 

and Hodgson, 2011). The tabular geometry, lateral continuity and consistent 

palaeocurrent direction, characterise these successions as external levees (cf. Kane 

and Hodgson, 2011).   

2) Lobe deposits: Lobes are subdivided into transitional sub-environments, lobe axis, lobe 

off-axis and lobe fringe, based on decreasing sand content and decreasing degree of 

bed amalgamation (Prélat et al., 2009; Prélat and Hodgson, 2013). Lobe axis deposits 

primarily comprise thick-bedded, amalgamated structureless sandstone (Fig. 5.5A), 

and represent deposition of high-energy sediment-laden turbidity currents. Lobe off-

axis deposits comprise stratified successions of medium-bedded, structured 

sandstones with more tractional structures (Fig. 5.5B) formed by deposition from 

comparatively lower energy currents. Lobe fringe deposits comprise thin-bedded, 

sandstone and siltstone (Figs 5.5E and 5.5F), deposited from dilute currents and/or silt-

rich hybrid beds, resulting from entrainment of fine-grained sediment and mudstone 

clasts. At kilometre-scale this architectural element is lobate in planform and lens 

shaped in cross-section (e.g. Prélat et al., 2009).  
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3) Sediment bypass-dominated zones (van der Merwe et al., 2014; Stevenson et al., 

2015): These are characterised by thin deposits of discontinuous structureless and 

structured sandstone beds (Fig. 5.5B) commonly highly dewatered due to rapid 

deposition. Composite erosion surfaces and scours are draped by lag deposits of 

coarser grained material (medium-grained sandstone and mudstone clasts (Fig. 5.5C)), 

but without major (more than several metres) incision. The large scale geometry of 

this architectural element is thin and highly discontinuous.  

4) Spill-over fringes: These tabular, thin-bedded siltstone deposits are extensive over the 

study area and represent a subdivision of the interbedded sandstone and siltstone 

facies (type iii). Their distinctive tabular geometry and lateral continuity and 

monotonous facies over 10s of kilometres distinguishes these deposits from lobe 

fringes which can be traced laterally over kilometre scale to genetically related sand-

rich lobe deposits. The stratigraphic and geographic position of this facies, down-dip of 

intraslope lobes, supports an interpretation that it represents flows that partially 

breached up-dip confining topography, causing the flow to be stripped as the fine-

grained, upper, low-density portion of flows continued down-dip (into the study area) 

(Sinclair and Tomasso, 2002). Coarser grained portions of flows are ponded up-dip in 

intraslope accommodation, as demonstrated by Spychala et al. (2015). This facies is 

similar in appearance to lobe fringe deposits, but is spatially disconnected from its 

genetically-related lobe axis deposits.  

5) Regional mudstone (siltstone and claystone) drapes (Fig. 5.5H): These are extensive 

and laterally continuous (10s to 100 km) hemipelagic mudstones, present between all 

units and subunits, aiding correlation.  

 

 Correlation panels  
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Figure 5.6 Regional correlation panels of Unit D/E and subunits E2 and E3. Panels positioned north (top) to south (base). Southern panel (panel 4) shown on Figure 5.7 with facies associations, consisting of E3 with two small outcrops of Unit E2, in 
the up-dip area. Relative spatial positions shown in fence diagram (Fig. 5.8). More detailed panel of Slagtersfontein CLTZ shown in detailed panels (Figs 5.10 and 5.11). Rose diagrams show palaeocurrent directions from ripples, grooves and flutes 
throughout all units. 
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Figure 5.7 Regional correlation panels showing facies associations of Unit D/E and subunits E2 and E3. For Unit divisions of panels A, B and C see Figure 5.6. For logs and more detailed panels, see Appendix B.2-5. 
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Figure 5.8 Fence diagram showing 3D architecture and facies associations of Units D/E, E2 and E3. For geographic positions of outcrop belts see Figure 5.3B. For unit divisions see Figure 5.6. For key see Figure 5.7. 
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Figure 5.9 Combined thickness isopach maps and gross depositional environment reconstructions for (A) 
Unit D/E, (B) Subunit E2 and (C) Subunit E3. Contours indicate thickness of unit in metres, contour 
spacing at 2 m for D/E, 1 m for E2 and 5 m for E3. Black circles indicate locations of data from logged 
sections shown on panels (Figs 5.6 and 5.7), red circles indicate data from logs presented in Appendix A 
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and B2-5. White arrows indicate average palaeocurrent direction. Geographic area covered is the same 
as that shown in Figure 5.3B, presented in palinspastically restored positions Mapped thickness 
distributions were created by fitting a surface to thickness values extracted from the logged sections. The 
surfacing operation was conducted in ArcGIS using the simple kriging tool within the Geostatistical 
Wizard (http://resources.arcgis.com/en/home/). Output maps are extended to the extremities of the 
input data by the surfacing algorithm, which creates rectangular maps that may extend beyond the edge 
of the input data. Additional modifications were made to subunit E3 surfaces to account for minimum 
values of the down-dip logged sections along panel 3. Channel and lobe boundaries are not precise 
locations and are interpreted from thickness trends and palaeocurrent directions.  Palaeogeographic 
maps are based on the distribution of sedimentary facies and architectural elements. 

5.7.1 Unit D/E  

Unit D/E is a discontinuous unit, up to 12 m thick and present within the regional D-E 

mudstone which varies in thickness (10-50 m) (Fig. 5.6). Throughout the study area, Unit D/E 

has a sharp base and top, and palaeocurrents towards the E/ENE (Fig. 5.9A). In the north of the 

study area (panel 1; Figs 5.7A, 5.8 and 5.9A), the unit consists of a single <1 m thick debrite. In 

the central area (panel 2; Figs 5.7B, 5.7C, 5.8 and 5.9A), Unit D/E is discontinuous around 

Slagtersfontein, and then thickens south (panel 3) and east from a few cm to 12 m, 

transitioning from lobe fringe and off-axis to lobe axis. In an intervening area along panel 3 

(Figs 5.7C, 5.8 and 5.9), the Unit abruptly thins and fines to <1 m of siltstone. In this interval, 

and where Unit D/E thins and pinches out eastward it is associated with numerous clastic 

injectites (cf. Cobain et al., 2015) (Figs 5.7B, 5.7C and 5.8). Unit D/E also thins and fines 

abruptly southward (panel 4; Figs 5.7D, 5.8 and 5.9A).  

The sharp base and top, with no evidence of erosion, indicate abrupt initiation and cessation of 

sand supply. The comparatively abrupt southward transition over 3 km from sandstone 

through thin-bedded siltstone to pinchout (Fig. 5.9A) suggests topographic confinement 

(Smith, 2004a; Spychala et al., 2017). The northward transition is more gradual (Fig. 5.9A) and 

is interpreted as unconfined. The facies distribution, elongate geometry and palaeogeographic 

context are consistent with weakly confined lobes that intercalate with subtle (< 1º) 

topography (Smith, 2004a; Spychala et al., 2017). The abrupt changes in thickness suggest 

deposition over irregular seabed topography. The location of the feeder channel is poorly 

constrained due to exposure limitations but is interpreted to be out of the study area towards 

the southwest based on the palaeocurrent and thickness trends (Fig. 5.9A).  
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5.7.2 Subunit E1 

The pinch out of E1 (Fig. 5.2) occurs up-dip to the west of the study area (Figueiredo et al., 

2010), and does not feature as part of this work.  

5.7.3 Subunit E2 

In the north (panel 1; Figs 5.6A and 5.7A), E2 comprises 0.5-1 m of spill-over fringe deposits 

overlain by 2-3 m of external levee deposits for 14 km down-dip. Over the following 2 km 

down-dip, the unit thickens to 5-6 m, with localised contorted strata (Figs 5.6A, 5.7A and 5.8). 

Down-dip, E2 pinches out or is incised by E3. In the up-dip part of panel 2 (Fig. 5.6B and 5.7B), 

E2 similarly comprises spill-over fringe deposits overlain by external levee deposits. Down-dip 

in the Slagtersfontein area, E2 coarsens and consists of structured and structureless 

sandstone, which thicken and thin abruptly (0-3 m) over metre-scale distances due to basal 

scouring and onlap on to underlying topography, and is overlain by thin (<15 cm) silt-rich 

hybrid beds, interpreted as lobe fringe deposits (Figs 5.7B, 5.8 and 5.9). Two kilometres farther 

down-dip, in an area where the underlying D-E mudstone is thinner (Figs 5.6B, 5.7B, 5.8 and 

5.9), E2 abruptly fines to thin-bedded, spill-over fringe deposits. Continuing down-dip, E2 thins 

from 5 to 1 m and maintains this thickness for a further 12 kilometres until it thins or is eroded 

out in the east. For 4 kilometres up-dip in the southerly panels (Fig. 5.6C, 5.7C and 5.7D), E2 

comprises a single 1-2 m bed of structureless sandstone with rip-up clasts, that abruptly 

pinches out down-dip, with numerous associated clastic injectites.  

The external levee deposits in the northwest of the study area (Figs 5.7A, 5.7B and 5.8) are 

likely related to confined channels in the subcrop to the north (Fig. 5.9B). The deposits at 

Slagtersfontein (panel 2), and to the south (panels 3 and 4), are interpreted as lobe fringes. 

The abrupt sand-prone pinch outs of E2 in the south (Figs 5.6C, 5.7C and 5.7D) follow a similar 

pattern to the underlying Unit D/E suggesting topographic confinement (Fig. 5.9B). The sand-

prone pinch out and observed basal scouring and thickness changes in the Slagtersfontein 

study area are discussed further in the detailed section below (Figs 5.10 and 5.11).  

5.7.4 Subunit E3  

A thin package (<0.5 m) of spill-over fringe deposits is present at the base of E3 where there is 

limited overlying erosion. In the north this package is overlain by external levee deposits (2-5 
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m thick) for 14 km down-dip. These transition in to 2-3 m of thin-bedded and silt-rich hybrid 

bed, lobe fringe deposits, and medium-bedded structured and structureless sandstone lobe 

off-axis deposits. E3 then abruptly thickens into 20 m of thickly-bedded sand-rich lobe axis and 

off-axis deposits and maintains a similar thickness and facies down-dip (Figs 5.6A, 5.7A, 5.8 and 

5.9C).  

The up-dip 4 kilometres of E3 of panel 2 (Figs 5.6B and 5.7B) consists of external levee facies 

that thin basinward from 10 to 4 m. Down-dip at Slagtersfontein (Figs 5.3, 5.6B and 5.7B), the 

external levee is truncated by a composite erosion surface overlain by bypass-dominated 

facies. Further down-dip, E3 thickens abruptly (20 cm to >4 m) over 40 m, and for a further 700 

m down-dip comprises 1-5 m of lobe axis sandstone with a scoured base and top and common 

internal soft-sediment deformation. Here, the base of E3 cuts down several metres through 

the E2-E3 intra-unit mudstone, and locally removes E2 over outcrop lengths of metres to 10s 

of metres (Figs 5.6B, 5.7B and 5.9C). The top surface of E3 is cut by a bypass assemblage of 1-3 

m long scours, mantled by mudstone clasts and/or draped with thin siltstone beds. Farther 

down-dip, E3 thickens abruptly to 19 m over 200 m (a rate of 9 cm/m), and is dominated by 

lobe axis deposits and sand-rich hybrid beds. Two hundred metres farther down-dip the unit 

reaches 40 m thick, with truncation of basal beds (Fig. 5.7B). E3 remains 37-39 m thick, and 

then thins to 18 m over 1 kilometre with thick axial lobe deposits and few hybrid beds (Figs 

5.7B and 5.9C). E3 continues to thicken and thin (between 16 and 37 m) farther basinward, 

with an overall transition from lobe axis to lobe off-axis and lobe fringe deposits (Figs 5.6B, 

5.7B, 5.8 and 5.9C).  

Across strike to the south (panels 3 and 4; Figs 5.6C, 5.7C and 5.7D) up-dip E3 comprises 22-35 

m of thick-bedded amalgamated lobe axis sandstones with a sharp base and top to the unit. 

Locally, a scoured top surface is marked by >10 m long and >4 m wide megaflutes with 

superimposed ripple lamination (Figs 5.6C and 5.7C). Down-dip, beyond 7 kilometres of no 

exposure, E3 thins from 15 to 6.5 m over 1 kilometre, comprising lobe off-axis sandstones and 

silt-rich hybrid bed prone lobe fringe deposits. Here, the top surface is scoured, with erosion 

surfaces mantled by mudstone clasts. Down-dip of this area, the upper part of E3 is not 

preserved due to present day fluvial erosion. Thicknesses are therefore minimum values (Figs 

5.6C and 5.7C). For 11.5 kilometres, E3 is at least 7-14 m thick, comprising lobe off-axis and 

fringe deposits, with localised contorted, chaotic and disaggregated bedding (Figs 5.7C and 

5.8). For the remaining 5.5 kilometres of exposure, E3 thickens to 37 m, dominated by lobe 
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axis amalgamated sandstone (Figs 5.7C and 5.8) with minor off-axis and fringe deposits. In the 

far south (panel 4), after initial thick axial deposits, E3 thins to 4 m over 9 kilometres down-dip 

(Figs 5.7D, 5.8 and 5.9) followed by an abrupt change to chaotic deposits and lobe fringe 

siltstone for 18 kilometres. Distally, deposits thicken and coarsen abruptly into 15 m of lobe 

off-axis, lobe axis and minor thin-bedded fringe material (Figs 5.7D, 5.8 and 5.9).  

External levee deposits in the northwest of the study area likely confine channels in the 

subcrop. The sediment bypass-dominated zone is restricted to the Slagtersfontein study area 

(Figs 5.7B, 5.8 and 5.9) with a minor component in up-dip panels 3 and 4. Slagtersfontein is 

discussed in more detail below (Figs 5.10, 5.11 and 5.12). In the south, the thinning and pinch 

out of E3 down-dip suggests a similar pattern of intrabasinal confinement recognised in the 

underlying units D/E and E2 (Figs 5.8 and 5.9) indicating the presence of a broadly north-facing 

intrabasinal slope. Lobe fringe deposits are silt-rich hybrid bed prone lateral to the interpreted 

lobe axis (panel 1, proximal lobe deposits, panel 3, down-dip of an area of no exposure). In 

more distal areas these become more thin-bed dominated (eastern areas of panels 2, 3, and 

4).  

  Slagtersfontein detailed section  

The sedimentology and depositional architecture of subunits E2 and E3 are considered in more 

detail in the Slagtersfontein area as they change abruptly in facies and character down-dip. 

The Slagtersfontein area is split into 5 sections (Section 1 up-dip to Section 5 down-dip) for 

description purposes (Figs 5.10, 5.11 and 5.12), which are supported by closely spaced logged 

sections measured at mm resolution (Fig. 5.13). The near-continuous presence of the 

underlying E2 and the E2-E3 mudstone in this area (Figs 5.10 and 5.11) suggests there are no 

deep scour- or channel-fills of E3 age.
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Figure 5.10 Slagtersfontein detailed section, location shown on figure 5.6, 5.7 and 5.8. Up-dip area of 
Slagtersfontein panel, divided into sections 1-3 for description purposes. Deposits transition from levee 
(section 1) to sediment bypass dominated zone (sections 2 and 3), figure 5.11 continues down-dip 
showing sections 4 and 5. (A) Simplified panel section across whole Slagtersfontein study area, 
highlighting the focus of this figure. Colours indicate subunits E2 and E3 separated by the E2-E3 intra-
unit mudstone. (B) Panel showing logged sections of E2 and E3, datumed on Top Unit D. For larger 
regional panel 2, see figures 5.7 and 5.8. Logs and log key are in Appendix B2-5. (C) Schematic sketch of 
key features in subunits E2 and E3 across section, showing down-dip changes in thickness, facies and 
sedimentary structures.     
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Figure 5.11 Down-dip area of Slagtersfontein panel, continuing from Figure 5.10, divided into sections 4-
5 for description purposes. Deposits transition from thin, dewatered, scoured and reworked sandstone 
(section 4) to abruptly thickening lobe deposits (section 5). (A) Simplified panel section across whole 
Slagtersfontein study area, highlighting the focus of this figure. Colours indicate sub-units E2 and E3 
separated by the E2-E3 intra-unit mudstone. (B) Panel showing logged sections of E2 and E3, and 
localised deposition of Unit D/E. Datum for panel is Top Unit D. (C) Schematic sketch of key features in 
subunits E2 and E3 showing down-dip changes in thickness, facies and sedimentary structures.T1- T4 
refer to sequence of deposition shown in Figure 5.15. For key see Figure 5.10. 
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Figure 5.12 Representative photographs of Unit E3 over sections 2 to 5 of the Slagtersfontein CLTZ. (A) 
Basal spill-over fringe deposits and aggradational sandstone bed. (B) Composite erosional surfaces, 
aggradational sandstone bed with scoured top and overlying siltstone and lag deposits. (C) Rippled thin 
sandstone beds. (D) Discontinuous lenticular sandstone beds cut by erosional surfaces and draped by 
lags. (E) Highly dewatered sandstone beds with erosional surfaces throughout. (F) Megaflute scour at 
top of unit, eroding dewatered sandstone. (G) Thin eroded sandstone bed, constituting the entire coarse 
component of E3. (H) Thick amalgamated sandstone beds and sand-rich hybrid beds of E3 proximal 
lobes. (I) Discontinuous lenticular sandstone beds, cut by erosional surfaces and draped by lags, at the 
base of E3 lobe deposits. (J) Sand-rich hybrid bed. Scales: logging pole with 10 cm divisions, notebook 15 
cm in length.    
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5.8.1 Section 1  

Subunit E2 comprises spill-over fringe (0.5 m) overlain by external levee deposits (<3 m). E3 

comprises similar facies with thicker external levee deposits (<5 m) overlain by a thin-bedded 

siltstone package (up to 0.5 m) containing subtle erosion surfaces and thin (cm-scale) 

mudstone clast conglomerate lags (bypass-dominated facies) (Fig. 5.10). 

5.8.2 Section 2  

E2 comprises spill-over fringe deposits (0.4 m thick) overlain by lobe fringe deposits 2 m thick 

(Figs 5.10 and 5.11). Onlap of basal beds onto underlying mudstones suggests minor (10s of cm 

to a few metres) seabed topography. E3 includes a basal package of thin-bedded spill-over 

fringe, abruptly overlain by lenticular, laminated sandstone cut by numerous erosion surfaces 

that are mantled by cm-scale mudstone clast conglomerates (bypass-dominated facies) (Figs 

5.10, 5.12A and 5.12B). Structured sandstone beds include planar lamination, ripple and 

climbing ripple lamination, and dewatering structures. Locally, E3 erodes into E2 (Fig. 5.10). 

Figure 5.13 presents a 20 m long section, which demonstrates detailed bed-scale variations 

within Section 2. E2 spill-over fringe beds are overlain erosionally by a <0.3 m thick climbing 

ripple laminated sandstone bed. These are subsequently overlain by thin-bedded siltstones 

containing multiple erosion surfaces and climbing ripple laminated sandstone beds. The E2 to 

E3 intra-unit mudstone (0.8 m thick) is removed by irregular erosion surfaces, infilled by 

structureless medium-grained sandstone, cut by a further erosion surface overlain by thin-

bedded siltstones and climbing ripple laminated sandstones. These beds are incised by 

numerous small (1-20 cm) erosion surfaces that coalesce to form a larger composite surface, 

draped by thin sandstone beds and mudstone clast conglomerate. A distinctive overlying 1-2 m 

thick sandstone bed passes from structureless through spaced stratification (following Hiscott, 

1994) to steepening upward stoss-side preserved climbing ripple lamination. Climbing ripples 

are progressively sheared and overturned towards the bed top. Basal structureless and 

stratified sandstone (spaced stratification) (Fig. 5.12) are interpreted to form under traction 

carpet conditions (laminar sheared layers; Vrolijk and Southard, 1997) of a rapidly depositing 

voluminous flow. As flow wanes, sedimentation rates decreases, reducing laminae spacing 

(Cartigny et al., 2013) and transitioning to climbing ripple laminations (Fig. 5.10) (Sumner et al., 

2008). The increasing angle of climb suggests further waning and increasing suspension fall out 

rate (Jobe et al., 2012). Sheared and overturned ripples indicate rapid aggradation. These 
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structured sandstone beds, therefore, represent highly aggradational deposits, which are cut 

by further erosional surfaces, obscuring their depositional morphology and draped by thin lags 

decreasing in occurrence upwards within laminated siltstone.  

 

Figure 5.13 (A) Location of section shown in B and C within the CLTZ. Colours indicate subunits E2 and E3 
separated by the E2-E3 intra-unit mudstone. (B) Outline of beds over outcrop and coloured with facies 
association scheme. Abbreviations:  Sc. st. and sd.- Scoured siltstone and sandstone, Int. st. & sd.- 
Interbedded siltstone and sandstone, Lag- Bypass lag, St-less sand- Structureless sandstone, Int. st. & sd.- 
Interbedded siltstone and sandstone,  E2-E3 st.- E2- E3 intra-unit mudstone , Int. silt.- Interbedded 
siltstone, SOF- Spill-over fringe, D-E silt- Unit D-E inter-unit mudstone. (B) Sections logged at mm scale 
over 20 m outcrop distance, showing bed scale changes in subunits E2 and E3 within the CLTZ. This key 
area shows features consistent with a fluctuation of high and low energy deposits throughout E3, with a 
layering of medium sandstone, low energy thin-beds, composite erosional surface with mudclast lags, 
thick aggradational beds, and further erosional surface and lag deposits which decrease upwards. For 
whole Slagtersfontein section see Figures 5.10 and 5.11. 

5.8.3 Section 3 

E2 has an erosional base that removes spill-over fringe deposits (Fig. 5.10). Localised basal 

scouring is up to 1 m and draped by a fine-grained sandstone, with large (>15 cm long) 

rounded mudstone clasts. Overlying the erosion surface, E2 thickens and coarsens upward 

then thins and fines (Fig. 5.10). Down-dip, beds thin and fine and become mudstone clast-rich, 
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and E2 and E3 amalgamate (Fig. 5.10). E3 is thinner than in the up-dip area (Sections 1 and 2), 

and gradually thins down-dip through Section 3 from 2.0 to 0.1 m (Fig. 5.10). Beds are <15 cm 

thick, planar laminated, interbedded sandstone and siltstone (Fig. 5.12C) or slumped and 

discontinuous with mm-scale mudclasts throughout (Fig. 5.12D). Numerous erosion surfaces 

lead to highly irregular tops and bases to beds that thicken and thin abruptly (10s of cm) over 

metre scale outcrop distances. Discontinuity at the base (Fig. 5.10) is due to the infilling of 

erosional topography and truncation. The absence of significant deposition (>2 m) and more 

evidence of erosion suggests increased sediment bypass compared to Section 2. Overall, there 

is a fining- and thinning-upward trend, with sandstone beds at the base of E3, and the number 

of erosion surfaces increasing upwards, suggesting increased sand bypass through the unit 

(Fig. 5.10). 

5.8.4 Section 4  

The D-E mudstone decreases abruptly in thickness from 30 to 11 m over a 60 m outcrop 

distance (Figs 5.10 and 5.11), and subunits E2 and E3 are offset. Neither the top surface of Unit 

D nor the overlying Unit F is offset. Where the D-E mudstone thickness decreases Unit D/E is 

locally present, thinning out down-dip. E2 is locally thicker, with beds thickening and fanning 

up-dip and deformed in areas. E3 is also locally thicker and deformed. Both E2 and E3 gradually 

thin down-dip of this area, where the D-E mudstone thickness returns to its up-dip thickness. 

This area represents the pinch out of sand-prone E2 lobe deposition, comprising only spill-over 

fringe down-dip (Fig. 5.11). The thickness and dip changes support the presence of a down-dip 

facing dynamic syn-sedimentary growth fault that soles out within the D-E mudstone. That 

there is stratigraphic continuity, but thickness changes in all units, suggests that at any one 

time there was only a minor expression of the fault on the seabed.  

Down-dip of this area, E3 comprises medium- to thick-bedded lobe deposits with a scoured 

base and top surface (Figs 5.12E, 5.12F and 5.12G). The scours on the top surface (1-5 m in 

length and 0.5-2 m in width), are mantled by cm-scale mudstone clasts and laminated siltstone 

(Figs 5.11 and 5.12F), interpreted as a lag, and deposits of fine-grained tails of turbidity 

currents, respectively. The amount of strata removed is unknown, but the bypass assemblage 

is overlain by fine-grained siltstone that is similar to the background sedimentation (Fig. 

5.12G). Sandstone beds are mudstone clast-rich and moderately deformed, with numerous 

erosion surfaces throughout (Fig. 5.12E), suggesting dewatering during deposition and 
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reworking by bypassing flows. Down-dip, the sand-prone part of E3 thickens abruptly (9 cm/m) 

(Fig. 5.11). 

5.8.5 Section 5 

E2 comprises spill-over fringe. E3 continues to thicken basinward at a rate of 7 cm/m, attaining 

a maximum thickness of 40 metres (Figs 5.11 and 5.12H). Up-dip in Section 5, basal beds of E3 

are erosive, overlain by thin mudstone clast lags (Figs 5.11 and 5.12I). Down-dip, basal erosion 

decreases, and a package of tabular climbing ripple laminated sandstone beds is preserved 

(Fig. 5.11). These are removed 700 m basinward, and overlain by discontinuous lenticular mud-

rich (matrix and clast) sandstone beds (Fig. 5.11). Overlying this basal package are stratified 

packages of amalgamated sandstone and sand-rich hybrid beds (Figs 5.11, 5.12H and 5.12J). 

Sand-rich hybrid bed packages make up a significant proportion (>50%) of these proximal lobe 

deposits, but are not present down-dip. The abrupt basinward thickening and high sand 

content is suggestive of rapidly decelerating flows. The erosive features over- and underlying 

the lobe deposits (Figs 5.11 and 5.12I) are suggestive of deposition in an area of high energy 

but with temporally fluctuating flow conditions. 

 Architecture of an exhumed CLTZ 

In the Slagtersfontein area, the palaeogeographic context between levee and lobe systems 

(van der Merwe et al., 2014), and the change from up-dip areas dominated by erosion with 

widespread evidence for sediment bypass (sections 1-4) to down-dip areas dominated by thick 

sand-prone lobe deposits (Section 5), support the interpretation of a CLTZ in this area during 

the evolution of E3. Therefore, this area permits a unique opportunity to document a CLTZ and 

to assess the criteria for their recognition in the rock record. The base of subunit E3 comprises 

spill-over fringe deposits (Figs 5.7, 5.9 and 5.10), where not eroded out, which are considered 

time-equivalent to the sand-rich deposits in the up-dip intraslope lobe complex (Spychala et 

al., 2015). This zone is interpreted as sediment bypass-dominated due to minimal amounts of 

erosion compared to channel systems and limited deposition compared to lobe systems. 

Subsequently, erosional and depositional elements (sensu Mutti and Normark, 1991) in the 

stratigraphic record are limited in thickness and spatial extent reflecting the dominance of 

sediment bypass. The assemblage of erosional and depositional elements in Sections 2-4 in 

subunit E3 are synthesised here.  
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5.9.1 Erosional elements  

Isolated and composite erosional features are numerous in the form of relatively flat surfaces 

and concave scours. Scours throughout the Slagtersfontein CLTZ are generally composite >2 m 

deep features. Larger scale features cut though the E2-E3 intra-unit mudstone and into Unit E2 

and are rarely >3 m deep (Figs 5.10 and 5.11). The irregular shaped scours are draped by a 

combination of lag deposits and thin-bedded siltstone. The amalgamation and 2D view of 

these features means their morphology cannot be constrained accurately. Scours on top of 

sandstone beds are 1-5 m in length and up to several m in width (van der Merwe et al., 2014), 

often display asymmetry with steeper headwalls, and are interpreted as megaflutes. They form 

individual and composite features on large-scale deflation surfaces (Fig. 5.11), interpreted to 

represent prolonged periods of weakly confined sediment bypass, which extend many 

kilometres (Fig. 5.7C). The lack of significant incision (>3 m deep) suggests widespread scouring 

rather than channel development, although the presence of shallow high aspect ratio channels 

is possible, where flows locally became more confined. The lack of deeper scour features (e.g. 

Hofstra et al., 2015) suggests flows were not sufficiently concentrated in a single location and 

temporally fluctuated between deposition, bypass and erosion. The Slagtersfontein CLTZ, 

although evidently in a fairly axial environment (indicated by the high energy nature of 

deposits, erosion and scours), is likely lateral to the main position of channel propagation given 

the presence of external levees and absence of main channel-fills, therefore mega-scours (e.g. 

Hofstra et al., 2015) may be present out of section.  

5.9.2 Depositional elements  

Mudstone clast conglomerates, interpreted as lag deposits, are common throughout the 

Slagtersfontein CLTZ (Figs 5.10, 5.11 and 5.13). The clasts are likely sourced from the 

widespread E2-E3 mudstone, with a large range of clast sizes and roundness suggesting 

different transport distances and/or rheology. Poorly sorted lenses of mudstone and medium-

grained sandstones are also interpreted as ‘coarse-grained’ lag deposits as this grain-size is 

otherwise exceptionally rare in the Fort Brown Fm. Aggradational beds are recognised in the 

proximal areas of the CLTZ, with spaced, climbing ripple and sheared climbing ripple 

lamination. These aggradational beds are present stratigraphically and spatially between 

coalesced scours and bypass lags (Fig. 5.12), for outcrop lengths up to 20 m, with their original 

depositional morphology and extent unknown. These beds therefore may represent rapidly 

depositing sheets from unconfined flows, and/or long wavelength aggradational bedforms 
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with the latter similar to sediment waves (e.g. Wynn and Stow, 2002; Wynn et al., 2002a, 

2002b; Cartigny et al., 2011; Symons et al., 2016). Small-scale slumping and dewatering 

structures, especially in thick amalgamated sandstone beds, are common throughout the CLTZ 

(sections 2-5, Figs 5.10 and 5.11), suggesting rapid deposition due to flow deceleration 

followed by liquefaction whilst flows continued.  

Hybrid beds are not generally associated with proximal lobe settings (Haughton et al., 2003, 

2009; Hodgson, 2009), but are common immediately down-dip of the CLTZ in the proximal 

lobe (Section 5). Sand-rich hybrid bed occurrence solely in this location may be a direct result 

of the CLTZ. As sand-rich, high energy, flows traverse the scoured, mud-rich zone, the down-

dip transformation from non-cohesive to more cohesive flow may be driven by incorporation 

of mud and mudstone clasts via erosion, damping turbulence (Baas and Best, 2002; Amy and 

Talling, 2006), and producing high-concentration to pseudo-laminar flow conditions (Talling et 

al., 2004; Ito, 2008; Baas et al., 2011). The sharp contact between the upper and lower division 

of the hybrid beds suggests the flow had partitioned into cohesive and non-cohesive 

components. Mudstone clasts present in the tops of the lower division, are aligned with flow, 

suggesting transport by turbulent mechanisms, with clasts likely supported in the rear of the 

flow (Hodgson, 2009). The lack of mud suggests finer portions of turbidity currents and less-

cohesive, mud-rich debris flows, may have bypassed this axial area and continued onwards to 

form the silt-rich hybrid beds recognised in lateral lobe fringes. Although not typically 

associated with proximal lobes in other studies, hybrid bed rich strata have been noted as 

occurring in highly aggradational phases of fan development, and phases of channel 

propagation (Haughton et al., 2009). 

 Discussion  

5.10.1 Evolution of slope profile  

Evidence for intraslope lobe complexes (Spychala et al., 2015) and widespread spill-over fringe 

deposits, shows that E2 and E3 deposition in the study area commenced when flows had 

healed up-dip slope accommodation and were able to bypass down-dip. The Slagtersfontein 

CLTZ is therefore interpreted as forming in a base of slope area between a higher gradient 

‘ramp’ (sensu Prather, 2003; Prather et al., 2017) and a lower gradient basin-floor ‘step’ (sensu 

O’Byrne et al., 2004) (Fig. 5.14), with no evidence of further topographic influence to the east, 

with lobe deposits gradually thinning and pinching out over a further 40 kms (van der Merwe 
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et al., 2014). The presence of syn-sedimentary faulting supports deposition above an unstable 

ramp in a base of slope area. Growth faulting due to sediment instability is common in 

submarine slope settings (Galloway, 1986), and possibly nucleated in this location as a result of 

differential compaction over the margin of a Unit D sandstone-filled channel complex 

immediately below. The rate of change in facies and thickness in Slagtersfontein, and presence 

of the fault, suggests that the change from slope to basin-floor was sharp, and may have 

formed an abrupt break-in-slope.  

Key areas of basinward thickening and abrupt change in facies in Unit D/E, and subunits E2 and 

E3 is identified in multiple correlation panels in similar locations (Fig. 5.9), suggesting a long 

lived break-in-slope position. The 10 km distance between panels 2 and 1 marks a key change 

in facies and architecture across-strike in subunit E3. The facies and thickness changes in the 

north are gradual with some interfingering of levee and lobe deposits, followed by a gentle 

thickening of lobes, marking a levee-lobe transition zone. This compares with steeper and/or 

more incised morphology in the Slagtersfontein area, suggesting a highly variable base of slope 

physiography across strike (Fig. 5.14).  
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Figure 5.14 Summary figure of overall stepped-slope profile architecture and related deposits of Unit E. 
Flows were fed through entrenched slope channels to intraslope lobes, and channel levee systems, to the 
CLTZ and basin-floor lobes. Logs show typical section through key areas. Logs from outside of the study 
area modified from van der Merwe et al., 2014. 
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5.10.2 Spatial variability and evolution of the CLTZ  

Across-strike and down-dip variations have been noted throughout the E3 CLTZ. The maximum 

strike width of the CLTZ measured as the distance between panels 1 and 3, is 11 kilometres 

(restored). This extends to a maximum of around 14 km in width where the CLTZ scour 

surfaces extend laterally and are present across the top surface of E3 to the South (panels 3 

and 4, Figs 5.7C, 5.7D, 5.8 and 5.9C).  

More variation in the character and extent of the CLTZ has been recorded in dip section, 

illustrated in four time slices (Fig. 5.15). At T1 the CLTZ was approximately 3 km in dip length 

with a minimum 2 m thick lobe deposit down-dip (Fig. 5.11). Subsequently (T2), the CLTZ 

lengthened to approximately 4 km, with T1 deposits partially eroded and the area of 

deposition moving basinward (Fig. 5.11). During T3, the CLTZ shortened to approximately 2 km, 

with lobe deposition above the composite T2 erosion surface (Fig. 5.11). A final lengthening of 

the CLTZ (T4) to approximately 5.5 km along this 2D section, but expanding to at least 6 km 

across strike to the south, resulted in the formation of the youngest scoured surface that 

accentuates the rate of basinward thickening of the proximal lobe deposits (Fig. 5.11), and 

creates the most widespread scour surface (Fig. 5.7). The absence of levee deposits under- or 

overlain by bypass indicators (Fig. 5.10), suggests this is the most up-dip expression of the 

CLTZ. The CLTZ migration evident at Slagtersfontein reflects the minimum amount of migration 

in the zone, with evidence of additional fluctuations likely lost due to later erosion, and 

observations restricted by outcrop constraints across strike.  
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Figure 5.15 Sketch of interpreted variations in the CLTZ over the Slagtersfontein section shown in Figures 
5.10 and 5.11.  T1-T4 show the minimum extent of progressive expansions and contractions of the CLTZ. 
T1 shows the initial location of bypass and deposition dominated areas with initial deposition of 
structured sandstone with a minimum thickness of a few metres. T2 shows the eastward movement or 
extension of the bypass dominated channel-lobe transition zone, with erosion of initial lobe deposits and 
focus of deposition shifted down-dip. T3 shows the westward movement or contraction of the bypass 
zone and backfilling of the system, with build-up of sand-rich proximal lobe deposits over bypass 
surfaces. T4 shows the final stage of CLTZ extension or easterly movement, indicated by efficient 
sediment bypass in the up-dip area, a large erosional surface cutting into the lobes and a widespread 
megaflute surface which expands down-dip of this area.    

 Allogenic and autogenic control  

This study documents a depositional strike variability in the down-dip transition from channel-

levee systems to lobe complexes. The dominant controls on the lateral variation within the 

system are considered to be physiographic changes along the base of slope and variations in 

flow dynamics through time. The formation of features such as scour fields have been 

associated with the occurrence of hydraulic jumps, commonly occurring within base of slope 

areas where changes in gradient and flow confinement lead to flows changing from 
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supercritical to subcritical (Mutti and Normark, 1987, 1991; Weirich, 1989; Kostic and Parker, 

2006; Sumner et al., 2013). Down-dip reacceleration of flows suggests that flows can 

repeatedly become supercritical across the CLTZ, resulting in multiple hydraulic jumps (Sumner 

et al., 2013; Dorrell et al., 2016). Incoming flows are more likely to be supercritical where they 

have traversed areas of steeper gradient. This suggests a higher gradient slope up-dip of 

Slagtersfontein may have resulted in incoming flows being supercritical, and more likely to 

undergo hydraulic jump when they reached the base of slope.  

Experimental studies have shown that increasing the slope angle up-dip of a break in slope can 

lengthen the geographical zone in which hydraulic jumps occur (Kostic and Parker, 2006). A 

larger magnitude break-in-slope will result in greater changes in the level of turbulence at the 

initial hydraulic jump, creating a greater reduction in flow velocity and increasing scouring (Lee 

et al., 2002). The slope gradient will vary temporally, for example shallowing through erosion, 

thus changing these conditions. Flows are more likely to be supercritical in axial locations (e.g. 

Slagtersfontein) in close proximity to the feeder channel, where they are subject to higher 

concentrations and velocities. Therefore, the criticality of the incoming flow at a single location 

will vary temporally with migrations or avulsions in the feeder system. Changes in flow 

magnitude may also be expected to affect the dip extent of the CLTZ (Fig. 5.15). Flows with 

larger amounts of suspended sediment will be able to reach greater velocities, shifting the 

position of the hydraulic jump zone farther down-dip (Kostic and Parker, 2006). Larger 

amounts of suspended sediment will also increase flow stratification, which has been shown to 

cause flows to undergo hydraulic jumps at depth averaged Froude numbers lower than 1 

(Waltham, 2004; Huang et al., 2009; Sumner et al., 2013; Dorrell et al., 2016). Variations in 

flow and sediment input may therefore control the locations and spread of hydraulic 

fluctuations and ultimately the CLTZ location and dimensions.  

Temporal evolution within the system (e.g. modifications of slope gradient, flow/deposit 

interactions) will also influence the size and location of the CLTZ, affecting the flow pathways 

and sediment routing, leading to different stages of development such as those noted in this 

study. If system input is stable, channel-levee systems will eventually adjust to the equilibrium 

profile (Pirmez et al., 2000; Kneller, 2003; Covault et al., 2016). As the system matures and 

becomes more efficient, a higher proportion of flows with a larger amount of their initial 

sediment load will reach the base of slope (Hodgson et al., 2016). This may result in a 

basinward migration of the CLTZ or increase in CLTZ length with deposition tending to occur 
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further down-dip of the feeder channel-mouth in efficient systems compared to more 

inefficient systems (Mutti and Normark, 1987). Conversely, periods of channel aggradation 

(e.g. Covault et al., 2016), may restrict sediment supply down-dip reducing the size of the CLTZ. 

Therefore, the spatial extent of the CLTZ may relate to phases of higher and lower efficiency in 

the channel system. Accommodation changes across the slope will also affect the size of flows 

and the amount of material reaching the base of slope (e.g. Meckel et al., 2002; Smith, 2004b; 

Hay, 2012; Marini et al., 2015). Up-dip intraslope lobe accommodation (Spychala et al., 2015) 

restricted the supply of sediment down-dip. The initial coarse-grained deposits (T1) represent 

the first flows that were able to bypass their coarser component over healed accommodation, 

down the ramp, and onto the basin-floor. As intraslope accommodation was healed, higher 

energy flows bypassed down-dip to form thicker and coarser deposits (T3).  

 Flow scale variability within the CLTZ  

As well as the large-scale changes in the spatial extent of the CLTZ, variability at the scale of 

individual flows may contribute to the distribution of features. Overall, the exhumed CLTZ 

records the interplay of erosional and depositional processes and bedform / sheet-deposit 

development laterally over metre-scale distances. There are no discrete areas within the 

stratigraphic expression of the CLTZ of dominantly large-scale erosion (e.g. composite 

scouring) or deposition (e.g. sediment waves), as suggested in previous models (e.g. Wynn et 

al., 2002a). Studies of the modern seabed have shown that processes are dynamic, with 

adjacent scours simultaneously eroding and being filled due to density currents undergoing 

hydraulic jumps at different spatial locations (Macdonald et al., 2011a; Sumner et al., 2013). As 

noted previously, submarine density currents can form a region of scattered hydraulic jumps 

as they undergo the transition from supercritical to subcritical at different points (Sumner et 

al., 2013; Dorrell et al., 2016) through spatially variable flow-relief interactions (e.g. 

Groenenberg et al., 2010) and/or through waxing and waning of individual flows (Dorrell et al., 

2016). This region of scattered hydraulic jumps would create strong vertical uplift, keeping 

sediment in suspension (over the CLTZ), delaying abrupt sediment deposition, and creating a 

field of scours (Wynn et al., 2002a; Dorrell et al., 2016). For flows with low Froude numbers the 

flow dynamics of successive hydraulic jumps have been shown to maintain basal shear stress 

and sediment transport across a CLTZ. This enables large-scale deposition to occur 

immediately downstream of the CLTZ, forming sediment waves and thick, dewatered proximal 

lobe deposits (Dorrell et al., 2016). However, localised erosion and deposition at individual 

jumps will lead to small-scale topographic variations on the seabed with subsequent turbidity 
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currents encountering a more marked change or reversal in slope aspect (Lee et al., 2002). This 

will result in spatial variations of bed shear stress related to flow-topography interactions (e.g. 

Agadir basin, Macdonald et al., 2011a). Therefore, over short timescales without the need of 

CLTZ migration, both erosional and depositional processes are likely to occur within the same 

zone (Fig. 5.16A), due to fluctuations in flow conditions and interaction with a dynamic seabed 

topography.  

5.10.3 Comparison to other CLTZs  

Table 5.2 CLTZ lengths from modern sea-floor datasets (modified from Wynn et al., 2002). 

Key variables in determining formation of a CLTZ (e.g. the magnitude of slope break and the 

mud content within the flows) have been considered by other studies (Mutti and Normark, 

1987; Wynn et al., 2002a). As demonstrated in this study, these factors can vary spatially from 

axial to margin flow positions and temporally due to changes in flow dynamics and 

topographical controls within a single system. Systems on continental margins show CLTZ 

Location  CLTZ Length (km) Basin/Fan Area (km2) Reference 

Agadir Channel 

mouth 

30-60 >40,000 Wynn et al. (2002a) 

Umnak Channel 

mouth 

100–120 48,000 Kenyon and Millington 

(1995) 

Lisbon Canyon 

mouth 

40 25,000 Wynn et al. (2002a) 

Rhone Fan  30-40 >60,000 Wynn et al. (2002a) 

Kenyon et al. (1995) 

Valencia Fan >100 >10,000 Morris et al. (1998) 

Palanques et al. (1995) 

Navy Fan 3-4 560 Normark et al. (1979) 

Unit E, Fort 

Brown Fm.  

Karoo basin  

6 680 This study  



181 
 

 
 

lengths of 30-120 kilometres (Kenyon and Millington, 1995; Kenyon et al., 1995; Palanques et 

al., 1995; Morris et al., 1998; Wynn et al., 2002a). Wynn et al. (2002a) documented a 

relationship between the length of the CLTZ and the size and type of the turbidite system.  

Table 2 (modified from Wynn et al. (2002a) to include this study) indicates that the E3 CLTZ has 

a length and basin/fan area comparable to the Navy Fan (Normark et al., 1979; Wynn et al., 

2002a) but are an order of magnitude smaller than all others (Kenyon and Millington, 1995; 

Kenyon et al., 1995; Palanques et al., 1995; Morris et al., 1998; Wynn et al., 2002a). A key 

similarity between E3 and the Navy Fan is their sand-rich nature with all other CLTZs 

interpreted to have formed in comparatively more silt-rich systems (Wynn et al., 2002a). Flows 

in mud-rich systems will be more efficient (Mutti, 1992; Gladstone et al., 1998), promoting 

sediment bypass and the formation of more longitudinally extensive CLTZs (Mutti and 

Normark, 1987). The greater flow thickness and enhanced stratification of mud-rich flows may 

also lead to hydraulic jumps only occurring in the lower part of the flow, with the upper flow 

bypassing the jumps, again enhancing the degree of sediment bypass (Dorrell et al., 2016) and 

aiding the development of more extensive CLTZs. As well as the sand to mud ratio, the scale of 

the feeder system is considered to influence the size of CLTZs (Mutti and Normark, 1987), with 

larger feeder channels associated with larger amounts of suspended sediment and greater 

flow velocities extending the zone of hydraulic jumps (Kostic and Parker, 2006) to form larger 

CLTZs (Mutti and Normark, 1987; Wynn et al., 2002a). Another key variable is the gradient 

change at the base of slope. The magnitude, incoming gradient and length of the slope break 

will influence flow conditions, and therefore the size of the CLTZ. Although an absolute slope 

angle cannot be measured from this study, slope breaks from other systems with CLTZ indicate 

only a small magnitude (<1º) change is needed (e.g. Kenyon et al. (1995) 0.6º- 0.3º). 
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Figure 5.16 (A) Plan view of a CLTZ, highlighting the key depositional features and their spatial 
distribution modified from Wynn et al. (2002). Note area of mixed depositional and erosional features, 
area of reworked and scoured lobe and axial- and off-axis proximal lobe deposits. Diagram in Wheeler 
space illustrates movement of a CLTZ over 6 time periods A-F, with (B) showing a plan view outline for 
each time period and (C) illustrating resultant build-up of deposits and potential erosion over a dip-
section (X-X’) and a distal strike-section. (D) A further strike-section through a more proximal area of the 
CLTZ, illustrating deposition and potential erosion. This diagram highlights the composite nature of 
deposits and erosional surfaces throughout CLTZs and the dynamic expansions, contractions and shifting 
of the zone that they represent. Overall preservation potential is variable but low, with shifting of the 
zone often decimating evidence of previous positions. The dark black lines represent periods of migration 
of the CLTZ. Grey draping units represent a hiatus in sand deposition and may include silt-rich lateral or 
frontal lobe fringe. 
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5.10.4 A generic model for CLTZ stratigraphic architecture 

This outcrop study expands upon the findings of previous studies of exhumed CLTZs (Mutti and 

Normark, 1987; Wynn et al., 2002a; Pemberton et al., 2016). Most significantly, that CLTZs are 

not fixed and can expand or contract, and migrate several kilometres. Datasets from modern 

and active systems are unable to capture this variability through time, and previous outcrop 

datasets have been limited in palaeogeographic constraint. Moreover, this study demonstrates 

a juxtaposition of depositional and erosional elements within the CLTZ, rather than separation 

into discrete zones. This may partially be a factor of the migration of the zone due to allogenic 

and autogenic controls described above as well as preservation potential, but recent 

observations of the modern seabed (Macdonald et al., 2011a; Dorrell et al., 2016) and 

monitoring of active systems (e.g. Hughes Clark et al., 2012) suggest zones of mixed erosional 

and depositional bedforms may be forming instantaneously.  

The areas of most intense reworking (numerous erosional surfaces, scours and bypass lags) 

across Slagtersfontein are in the up-dip area of the CLTZ, in closest proximity to the mouth of 

the feeder channel (Figs 5.10 and 5.11). Figure 5.16 demonstrates how stratigraphic surfaces 

form within a CLTZ, and how minimal deposition and composite erosion surfaces can represent 

several stages of migration, expansion and contraction of a CLTZ. Distally and laterally away 

from the axial areas, deposits show less reworking and preserve primary features. The unique 

preservation of the Slagtersfontein CLTZ, unaffected by later stage progradation and incision of 

the channel system, suggests this section is either: (i) a sufficiently off-axis transect through 

the CLTZ and was not cannibalised as the channel propagated (Hodgson et al., 2016); or (ii) 

underdeveloped and the channel never fully propagated through the zone (Hofstra et al., 

2015). Given the evidence for high-energy erosion and deposition, the spatial control on 

system position, and the absence of overlying external levee deposits, the partially developed 

model is favoured. An abrupt system shutdown may have been caused by channel avulsion or 

an abrupt decrease in regional sediment supply, as the upper surface is draped by a system-

wide hemipelagic mudstone. 

The stratigraphic expression of CLTZs has been poorly constrained to date, with models 

consisting of composite surfaces separating underlying lobes from overlying channels (Gardner 

et al., 2003; Pyles et al., 2014), the identification of individual features (Mutti and Normark, 
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1987), or lenticular bodies infilling scours (Pemberton et al., 2016). This study demonstrates 

how CLTZs can migrate and change their planform geometry in response to spatially and 

temporally variable flow dynamics and topographic controls. This results in highly variable and 

composite stratigraphic surfaces and the juxtaposition of distinctive erosional and depositional 

elements to form complicated stratigraphic successions. The dynamic nature of a CLTZ 

documented here, within a tightly constrained regional stratigraphic framework, enables a 

generic model of CLTZ transfer into the stratigraphic record to be constructed for the first time 

(Fig. 5.16).  

Key characteristics of the model are outlined in Table 5.3. Many of these features have been 

documented previously in outcrop and modern seabed datasets, indicating that the model can 

be widely applied, although the specific characteristics will be expressed differently. For 

example, the Fort Brown Formation has a limited grain-size range (silt to upper fine sand), with 

lag deposits identified by the presence of lower medium sand. In systems with a wider grain-

size, lag deposits would be represented by a wider grain-size range, and be less well sorted. 

The depths of scours in this study are significantly smaller than others documented in modern 

CLTZs, this may reflect an off-axis exposure of the CLTZ, or be related to the size of the feeder 

system. In modern seabed datasets, coarse grained sediment waves orientated perpendicular 

to flow direction have been identified (e.g. Morris et al. 1998; Wynn et al., 2002b), but these 

depositional bedforms remain elusive in outcrop record.  

This range of features forms a characteristic assemblage, enabling recognition of CLTZ zones at 

outcrop and possibly sub-surface. It is important to recognize that end-member models are 

possible, for instance that presented by Pemberton et al. (2016) where sandstones infill a zone 

of complex scours producing lenticular sand bodies. In comparison, the model presented 

herein represents a dynamic CLTZ producing a far more spatially variable and heterogeneous 

sedimentary infill. This model may represent the norm for many CLTZs with lack of spatial 

variability recognized in other studies likely a factor of outcrop constraints. 
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Table 5. 3 Key characteristics of CLTZ model with examples from other outcrop and modern seafloor studies. 

 

 

 

Characteristic Description Further examples 

Thin stratigraphic 

expression  

Entire thickness varies from a surface 

separating lobes from channel-levee 

to a 5 m stratigraphic expression.   

Mutti and Normark, 1987; 

Gardner et al., 2003; van der 

Merwe et al., 2014; Hodgson 

et al., 2016 

Amalgamated 

erosional features 

Intense vertical concentration of 

erosive surfaces, both sub-horizontal, 

and as discrete scour forms.  

Mutti and Normark, 1987; 

Wynn et al., 2002a; 

Macdonald et al., 2011a; Ito 

et al., 2014; Hofstra et al., 

2015; Pemberton et al., 

2016.  

Coarse grained lag 

deposits 

Mudclast horizons and relatively 

coarse-grained sediment (equating to 

medium sand in the Fort Brown Fm.) 

overlying erosive surfaces 

Mutti and Normark, 1987; 

Wynn et al., 2002a; Ito et al., 

2014; Stevenson et al., 

2015? 

Aggradational 

bedforms including 

sediment waves 

Abundance of structureless 

sandstone, spaced stratification, 

climbing ripple and sheared ripple 

laminations suggesting rapid 

deposition in the Karoo. Elsewhere 

cross stratified gravels.  

Mutti and Normark, 1987; 

Vincente Bravo and Robles, 

1995; Morris et al., 1998; 

Wynn et al., 2002; Ito et al., 

2014  

Soft sediment 

deformation 

Small scale localized slumping and 

overturned bedding reflecting rapid 

deposition 

Mutti and Normark, 1987; 

Wynn et al., 2002a.  

Thin bedded 

siltstone packages 

Preservation of thin-bedded siltstones 

representing low-energy flows 

demonstrate that aggradation was 

sufficiently rapid to preserve fine-

grained deposits.  

- 

Interfingering with 

down-dip proximal 

lobes  

Reflecting rapid migration of the CLTZ 

system in response to controls 

external to the CLTZ. 

Gardner et al., 2003.  

Interfingering with 

up-dip and lateral 

levee deposits  

Reflecting growth and decay of CLTZ 

and migration of feeder systems 

- 

Sand-rich hybrid 

beds within 

proximal lobes 

Significant erosion causes evolution of 

flows over CLTZ.  

- 
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 Conclusions   

This study reports the first detailed stratigraphic expression of a long-lived and well-preserved 

CLTZ at outcrop. Exceptional palaeogeographic context of the system uniquely allows dip and 

lateral constraints on dimensions through time. With previous studies primarily focused on 

modern seabed data, the temporal variability in CLTZ evolution documented here allows 

development of the first dynamic CLTZ model. This model encompasses: lateral variability; 

sedimentological recognition criteria; expansion, contraction and migrations of the zone; and 

transfer into the stratigraphic record. Lateral variations across the base of slope include 

transition from, inter-fingering levee to lobe deposits off-axis in the system, to a bypass-

dominated CLTZ in a more proximal area. This variation is considered to be the result of 

physiographic changes and variations in flow dynamics across the base of slope. Key 

recognition criteria for CLTZs have been established including: scours, composite erosional 

surfaces, bypass lags, and remnant rapidly unconfined sheets/ sediment waves. In addition, 

previously undocumented, abundant sand-rich hybrid beds are recognised in proximal lobe 

deposits down-dip of the CLTZ. Overall the CLTZ is a dynamic area, with interactions of 

different parameters including physiography (both in slope gradient and shape), flow 

magnitude and character, and the position and extent of channel confinement. This results in 

changes in the dip and strike extent (maximum 14 km in strike and 6 km in dip), and geometry 

of the CLTZ and creates a distinct area of juxtaposed remnant erosional and depositional 

features. The consequence of this dynamic character is a complicated and composite transfer 

of the CLTZ into the stratigraphic record. 
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6 Disconnected submarine lobes, and their role in the evolution of a 

stepped slope over multiple sea-level cycles       

 Introduction  

Topographically complex submarine slope types range from ponded mini-basins, which form 

when 3D confining topography is present and flows are initially almost completely confined to 

an updip area (e.g. Prather et al., 1998; Badalini et al., 2000; Winkle and Booth, 2000; Sinclair 

and Tomasso, 2000; Shultz and Hubbard, 2005; Prather et al., 2012a,b, 2017; Sylvester et al., 

2015); through tortuous corridors, whereby sediment distribution pathways are rerouted by 

topographical barriers (e.g. Smith, 2004a; Hay, 2012); to stepped slope profiles, which are 

more subtle, comprise a series of higher gradient ramps linking lower gradient steps that lack 

the 3D closure of mini-basins(e.g. O’Byrne et al., 2004; Smith, 2004a; Hay, 2012). Slopes can 

rarely be fully characterised into topographical end members, and vary spatially and 

temporally (Fig. 6.1). Distinctive end members with high amplitude seabed morphology and 

associated major gradient changes have been well documented in seismic datasets (e.g. 

Prather et al., 1998, 2017; Jackson et al., 2008; Deptuck et al., 2012; Hay, 2012) and in outcrop 

studies (e.g. Castagnola Fm. (4-12°; Felletti, 2002; Southern et al., 2015; Marini et al., 2016); 

the Laga Fm. (6-8°; Marini et al., 2015); and the Grès d’Annot Fm. (4-10°; Amy et al., 2007; 

Salles et al., 2014)).  

Whilst the effects of high-gradient stepped slopes on deposition have been examined, it is less 

clear what impact subtle gradient changes (< 1°) have on sediment distribution and flow 

pathways. Subtle gradient changes have been shown by experimental studies (e.g. Baines, 

1984; Edwards et al., 1994; Kneller and Buckee, 2000), exhumed (e.g. Patacci et al., 2014), and 

modern datasets (e.g. Stevenson et al., 2014) to have a profound impact on flow processes and 

therefore the configuration of deep-water systems. Despite this, previous outcrop studies on 

the effects of subtle fixed and dynamic topography on depositional processes are limited in 

their spatial and temporal extent (e.g. Smith, 2004b; Spychala et al., 2017a), and their 

influence over multiple deposition cycles remains unknown. Studies using reflection seismic 

datasets can show evolution over multiple stages of deposition (e.g. Beaubouef and Abreu, 

2006; Mayall et al., 2010; Hay et al., 2012), but generally focus on highly complex topographic 

templates, such as tortuous corridors (Smith, 2004a; Hay et al., 2012), minibasins (Booth et al., 

2003; Beaubouef and Abreu, 2006; Madof et al., 2009), and piggy-back basins/ foredeep 

margin slopes (Covault et al., 2009) and/or do not span multiple large scale sea-level cycles 
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(e.g. Beaubouef and Abreu, 2006; Barton, 2012). Moreover, these studies lack the resolution 

to characterize sedimentary facies and architecture.  

Changes in slope gradient and orientation have been documented to have an important 

impact on gravity flow behavior, with consequent effect on sedimentary facies (e.g. Baines, 

1984; Kneller and McCaffrey, 1991; Edwards et al., 1994; Haughton, 1994; Smith, 2004a; 

Hodgson and Haughton, 2004; Stevenson et al., 2013; Spychala et al., 2017a) and depositional 

architecture (e.g. Prather, 2003; Deptuck et al., 2012; Hay, 2012; Prather et al., 2012a; b; 

Moody et al., 2012; Wynn et al., 2012). Flows can respond to gradient variation in a number of 

ways; acceleration, deceleration, reflection, deflection, which affects erosional and 

depositional patterns (e.g. Baines et al., 1984; Edwards et al., 1994; Haughton, 1994; Kneller 

and Buckee, 2000; Jackson and Johnson, 2009; Nasr-Azadani et al., 2014). Turbulent flows 

often leave a complex stratigraphic record due to substantial modification of the slope/ basin 

floor through erosion during formation (Normark and Piper, 1991). Therefore, it is often 

unclear whether slope topography or spatial changes in flow dynamics were responsible for 

patterns left in the sedimentary record (Kneller, 1995; Baines, 1998; Kneller and McCaffrey, 

1999; Kneller and Buckee, 2000).  

This study aims to characterise three thin sandstone bodies (units A/B, B/C and D/E) from the 

Laingsburg and Fort Brown formations, Karoo Basin, South Africa. These units differ greatly in 

sedimentology and architecture from the larger slope to basin floor units A, B, C, D, E and F, 

did not significantly modify the slope to basin floor profile during formation and are therefore 

utilized as topography indicators. Building on previous studies of the larger units this study 

aims to document the evolution of a stepped slope profile over multiple sea-level cycles. 

Specific objectives are: i) to document the spatial variability in thickness and facies trends 

within units A/B, B/C and D/E to assess influence of fixed and/or dynamic seabed topography; 

ii) to understand the depositional processes and environments of units A/B, B/C and D/E ; iii) 

to investigate when seabed topography formed, how it evolved over time, and whether it 

influenced deposition of larger units C, D, E and F; and iv) to develop a model for stepped slope 

profile evolution over a series of sea-level cycles.  
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Figure 6.1 Examples of slope and basin floor topography and resultant deposits. (A) Simple slope profile 
with single break-in-slope changing from bypass dominated channel-levee system to depositional 
dominated basin floor lobes, with potential for channel-lobe transition zone (CLTZ) development at base-
of-slope. (B) Stepped-slope profile with higher gradient ramps linking lower gradient steps. Formation of 
entrenched channel/channel levee systems on ramps and intraslope/ basin floor lobes on steps, with 
potential for CLTZ development at breaks-of-slope. (C) Topographically complex slope, encompassing 
varying magnitudes of topography. Development of several ramps within entrenched channel/channel 
levee systems, including a step on the basin floor. Intraslope and basin-floor lobe development on lower 
gradient steps. Formation of tortuous corridor controlled by slope topography, and minibasin where 3D 
closure occurs. Topography on slopes is generally of much greater magnitude than on the basin floor. 

 Geology of the Karoo Basin  

The Karoo Basin, South Africa (Fig. 6.2), has been interpreted as a retroarc foreland basin 

(Visser and Prackelt, 1996; Visser, 1997; Catuneanu et al., 1998), and more recently as a 

thermal sag basin that subsequently evolved into a retroarc foreland basin in the Triassic 

(Tankard et al., 2009). The 8 km thick Karoo Supergroup (Fig. 6.2C) is subdivided into the 

Dwyka, Ecca, and Beaufort Groups. The Dwyka Group comprises glacial deposits (Late 

Carboniferous to Early Permian); the Ecca Group clastic marine deposits (Permian); and the 

Beaufort fluvial deposits (Permian to Triassic). Basal deposits of the Lower Ecca Group (Fig. 
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6.2C) comprise mudstones, chert and shallow marine carbonates of the Prince Albert 

Formation, overlain by black carbonaceous mudstones of the Whitehill Formation and fine-

grained turbidites, cherts and ashes of the Collingham Formation. These formations are 

mapped for 800 km along the southern margin of the Karoo Basin (Viljoen, 1992, 1994; Visser, 

1992; Johnson et al., 1997). In the Laingsburg depocentre, the Collingham Formation is 

overlain by the Vischkuil Formation, which forms the basal section of the 1800 m thick 

progradational succession through basin-floor deposits (Vischkuil and Laingsburg formations; 

Sixsmith et al., 2004; van der Merwe et al., 2010), channelized submarine slope (Fort Brown 

Formation; Hodgson et al., 2011; Di Celma et al., 2011; Flint et al., 2011) to shelf-edge and 

shelf deltas (Waterford Formation; Jones et al., 2015; Poyatos-Moré et al., 2016). Regional 

palaeoflow is towards the northeast and east throughout the succession with the entry point 

to the southwest (van der Merwe et al., 2014). The mapping of successive slope-to-basin-floor 

systems in the Laingsburg depocentre indicates the presence of a lateral, east-to-west oriented 

basin margin to the south of the Laingsburg area (van der Merwe et al., 2014).

 

Figure 6.2 (A) Map of Africa and geological map of SW Africa with location of Laingsburg depocentre. (B) 
Enlarged section of Laingsburg depocentre showing location of outcrop belts along post depositional fold 
limbs. Black dashed lines highlight the regional scale correlation panels. (C) Stratigraphic column of Ecca 
group stratigraphy, highlighting Laingsburg and Fort Brown submarine fan Units A, B, C, D, E and F as 
well as discontinuous smaller fan units A/B, B/C and D/E. 
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6.2.1 The Laingsburg and Fort Brown Formations 

The Laingsburg Formation consists of units A, A/B and B, and the Fort Brown Formation 

includes units B/C, C, D, D/E, E, and F respectively (Fig. 6.2C; Flint et al., 2011). This study 

examines all units in the Laingsburg and Fort Brown formations, and represents the first 

detailed study on the less extensive, thinner units A/B, B/C and D/E (Fig. 6.2C), which are 

exposed along a series of sub-parallel post-depositional fold limbs (Fig. 6.2B), and intersected 

in a number of cored research boreholes. Detailed mapping and correlation of all units utilizes 

regional correlation work undertaken in previous studies  (Grecula et al., 2003; Figueiredo et 

al., 2010; Di Celma et al., 2011; Flint et al., 2011; Hodgson et al., 2011; Kane and Hodgson, 

2011; Brunt et al., 2013a; b; Figueiredo et al., 2013; Morris et al., 2014a; b; van der Merwe et 

al., 2014; Spychala et al., 2015; Morris et al., 2016; Spychala et al., 2017a). The Laingsburg and 

Fort Brown formations have been divided into four composite sequence sets, the first 

comprising Unit A, and the second units A/B and B, the third units B/C, C and D; and the fourth 

units D/E, E and F (Flint et al., 2011). Each of units C, D, E and F represents a lowstand 

sequence set, with an overlying 10-30 m thick regional hemipelagic mudstone representing the 

corresponding transgressive/highstand sequence set (Flint et al., 2011), both components 

together forming a composite sequence. Lowstand sequence sets can be subdivided into 

separate depositional sequences, including a sand-rich lowstand systems tract (LST; e.g. E1, E2, 

and E3) and an overlying  transgressive/highstand systems tract mudstone (~1-5 m thick)  

(Figueiredo et al., 2010; 2013; Di Celma et al., 2011; Hodgson et al., 2011).  

Regional mapping and correlation of units C to F have demonstrated an architectural change 

from sand-attached (units C and D) to sand-detached channel-lobe transition zones (units E 

and F) (sensu Mutti, 1985) (van der Merwe et al., 2014). The recognition of intraslope lobes in 

units D/E, E and F (Figueiredo et al., 2010; Spychala et al., 2015), and sand bypass-dominated 

zones, including thin channel-levee deposits and a channel lobe transition zone (van der 

Merwe et al., 2014) supports the presence of a stepped slope profile at the time of E and F 

deposition. This paper focuses on the sedimentology and stratigraphic expression of the 

thinner units and the implications these have for fixed and evolving slope topography 

throughout the Laingsburg and Fort Brown Formations, resulting in the formation of a stepped 

slope profile.  
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 Methodology  

Over 100 measured sections, logged at mm-cm scale, have been used to build thickness and 

facies maps of Units A/B, B/C and D/E over 10s of kilometres in dip and strike directions. 

Logged sections document the lithology, grain size, sedimentary structures and stratal 

boundaries. The correlation framework was established by walking out stratigraphic surfaces 

between sections. Thickness distributions were created by fitting a surface to values obtained 

from logged sections using the kriging tool within ArcGIS’s Geostatistical Wizard. Maps are 

extended beyond the extremities of the input data by the surfacing algorithm, with unrealistic 

values removed and observed trends applied. Facies association maps that represent the gross 

depositional environments for each study interval were constructed using data from previous 

studies in the Karoo (Grecula et al., 2003; Figueiredo et al., 2010, 2013; Di Celma et al., 2011; 

Flint et al., 2011; van der Merwe et al., 2014; Spychala et al., 2015, 2017a;b). Unit C, D, E and F 

palaeogeographic maps are modified from van der Merwe et al. (2014) incorporating data 

from Spychala et al. (2015). Trends within the palaeoenvironmental maps are based on 

restored palaeocurrent data collected from ripple laminations, flutes and grooves. 

A 3D datacube was constructed in Petrel by importing 100 composite logs and 6 well logs 

consisting of the complete Whitehill Fm. to Waterford Fm. stratigraphy, with the Whitehill Fm. 

used as a basal datum. Tops and bases of key lithostratigraphic units were selected using the 

well top function, and additional data were used to interpret polylines to add datapoints 

between outcrop logs. Depth structure maps were constructed for each key surface using the 

‘make a surface’ function and thickness maps were created between key surfaces. Post 

depositional tectonic shortening was correcting by stretching 13% in the Y direction, according 

to a mean value for palinspastic restoration derived by Spikings et al. (2015).  

 Results  

Six distinct groups of lithofacies are described and interpreted in terms of sedimentary 

processes for Units A/B, B/C and D/E (Fig. 6.3). 
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Figure 6.3 Representative photographs depicting facies associations present throughout the outcrop. (A) 
Thick structureless amalgamated sandstone. (B) Base of structureless sandstone bed showing grooves 
and tool marks. (C) Elongated mudstone clasts present near the base of a structureless sandstone bed, 
lens cap 7 cm in diameter. (D) Laminated and graded tops of structured sandstone beds. (E) Planar/ 
ripple laminated very fine sandstone- siltstone beds. (F) Climbing ripple laminated sandstone bed, with 
mudclasts draping laminations and forming a layer at the base of the bed, lens cap 7 cm in diameter. (G) 
Dewatered banded sandstone. (H) Ripple laminated sandstone, pencil 7 cm in length. (I) 10-30 cm beds 
with bi-partite bed structure, lower division of fine sandstone and thinner upper division of poorly sorted 
sandstone and siltstone with mm-cm mudstone clasts and organic matter. (j) Interbedded 10-15 cm 
sandstone beds and thinner siltstone beds. (K) Interbedded sandstone and siltstone with deformation. (L) 
Interbedded cm thick siltstone beds, overlain by thicker structured sandstone beds. (L) Tightly folded 
sandstone and siltstone thin beds, notebook 15 cm in length. (N) Debrite with mm-cm scale mudclasts 
and organic fragments. (O) 10s of m thick regional mudstone packages separating larger and smaller fan 
units, car for scale marked by dashed box. 
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Figure 6.4 Core examples of Unit B/C demonstrating key features and range of structures recognised, 
including: sharp base and top of units; clastic injectites surrounding unit; mudclast layers throughout unit 
and mudclast conglomerates; ripple laminated sandstone and siltstone; planar laminated sandstone and 
siltstone; dewatering structures and small scale scouring. Blue arrows indicate top and base of units. 
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Figure 6.5 Core examples of Unit A/B demonstrating key features and range of structures recognised, 
including: sharp base and top of units; mudclast layers throughout unit; ripple laminated sandstone and 
siltstone; planar laminated sandstone and siltstone; dewatering structures and small scale scouring. 
Colour and hue modified from original to accentuate structures. 
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Figure 6.6 Range of discontinuous beds within A/B, B/C and D/E. (A) Basal scour with draped infilling 
sandstone and siltstone. (B) Erosional surface cutting 1-2 m within unit truncating strata, with onlap of 
overlying beds. (C) Onlap of basal beds onto topography created by regional mudstone. (D) Downlap of 
basal beds onto regional mudstone. (E) Erosion surface within unit cutting down to base. Infilling beds 
onlap, and then drape over surface. 

6.4.1 Structureless sandstone  

Description  

Structureless sandstone beds are fine-grained, thin to thick-bedded (0.1-1 m thick) with 

common dish and pillar structures, and weak normal grading at bed tops (Figs 6.3A and6.4A). 

Typically, beds are tabular with erosional bases with common flutes, grooves and other tool 

marks (Fig. 6.3B). Discontinuous mudstone clast layers are common at bed amalgamation 

surfaces, bed bases, and dispersed within beds, with clasts sub-angular to sub-rounded (< 15% 

clasts by volume, 0.1-10 cm A-axis; Figs 6.3C and 6.4C). Loading and flame structures are also 

common at amalgamated bed contacts. Basal beds commonly thicken and thin over metres to 

100s of metres, pinching out, infilling scoured sections, onlapping or downlapping onto 
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underlying mudstone (Fig. 6.6). Beds occur in packages up to 14 m in thickness (generally < 5 

m). 

Interpretation 

Structureless and weakly normal graded sandstone beds suggest deposition from sand-rich 

high-density turbidity currents (Bouma, 1962; Lowe, 1982; Mutti, 1992; Kneller and Branney, 

1995). Lack of sedimentary structures suggests rapid deposition and no bedform development. 

The presence of dispersed rip-up clasts and clast-rich amalgamated contacts suggest 

progressive aggradation of deposits formed by depletive steady high-density flows (Kneller and 

Branney, 1995). Loading and dewatering structures form syn- and post-depositionally, as a 

result of sediment liquefaction (Mulder and Alexander, 2001; Stow and Johansson, 2002).                                                                                                                                                                                                                                                                                             

6.4.2 Structured sandstone  

Description  

Fine-grained sandstone beds (0.05-1 m thick) primarily consist of ripple and climbing ripple 

lamination (Figs 6.3F, 6.3H, 6.5E and 6.5F) but also include planar lamination (Figs 6.3D, 6.3E 

and 6.5D) and dewatering structures (load cast and flames, and dish and pillar) (Figs 6.3G and 

6.5H). Climbing ripple lamination can exhibit a high angle of climb (15-30°) with stoss-side 

preservation of laminae. Locally, sheared climbing ripple laminations are present. Ripple cross-

laminae can be heterolithic comprised of both sandstone and siltstone laminae, and mm-cm 

scale mud clasts (Figs 6.3F and 6.5E). Beds occur in packages up to several metres thick (Fig. 

6.3E). Bed geometries range from tabular to lenticular, draping surfaces as depositional 

features, or as remnant erosional features. In packages, the basal beds thicken and thin over 

10s to 100s of metres, pinching out and onlapping/ downlapping on to underlying mudstones 

(Fig. 6.6). 

Interpretation 

Climbing ripples form from continuous bedload traction under highly depositional flows. The 

high angle of climb, with stoss-side preservation, indicates high rates of aggradation (e.g. Allen, 

1970; Jobe et al., 2012; Morris et al., 2014a; b). Commonly, this is associated with non-

uniformity in flows and accompanying decrease in velocity and/or flow height, possibly linked 

to an abrupt decrease in gradient or loss of confinement (e.g. Jobe et al., 2012; Morris et al., 

2014a; b), driving deposition through reduced flow capacity (e.g. Kneller and Branney, 1995). 

The presence of heterolithic siltstone and sandstone foresets likely indicates deposition from 

fines-rich flows (Baas et al., 2016). Millimetric to centimetric mud clasts may travel as bedload 
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if overpassing, where larger particles skip over a bed of smaller particles (Raudkivi, 1976; 

García, 2008), however they might be expected to accumulate in ripple troughs. Alternatively, 

they may be deposited by capacity driven deposition from a flow containing both sand, and a 

wide range of suspended mud-chips. Planar lamination forms under upper stage plane bed 

conditions (Allen, 1984; Talling et al., 2012). Abrupt changes in basal bed thickness and onlap 

onto underlying mudstone are interpreted to result from interaction with minor seabed 

topography with downlap representing the pinch out of beds where flows waned sufficiently 

to deposit the coarser grained portion of flow.  

6.4.3 Hybrid beds  

Description 

This facies consist of a bipartite bed structure with a lower division comprising weakly normally 

graded fine-grained sandstone (0.1 – 1 m thick), with some dewatering structures and rare 

planar lamination, and occasional mudstone clast layers (clasts 1- 10 cm a-axis). The upper 

division comprises poorly sorted very fine-grained sandstone and siltstone (0.1 – 1 m thick) 

with dispersed sub-angular, elongate, mm-cm scale mudstone clasts and plant fragments (Fig. 

6.3I).  

Interpretation 

The bipartite beds form through deposition of the lower division from a sand-rich turbidity 

current with the ‘linked’ poorly sorted upper division interpreted as deposition from a co-

genetic debris flow. Hybrid event beds (Haughton et al., 2003, 2009) are most commonly 

identified towards the bases and fringes of lobe deposits (e.g. Hodgson, 2009; Talling, 2013). 

However, hybrid beds can form in any environment where mud and mudstone clasts are 

entrained into the turbulent flow, damping turbulence, and developing high-concentration to 

pseudo-laminar flow conditions (e.g. Ito, 2002; Haughton et al., 2003, 2009; Talling et al., 2004; 

Baas et al., 2011). 

6.4.4 Thin bedded siltstone and sandstone  

Description 

Siltstone and sandstone beds (<1 - 15 cm thick), form packages up to several metres thick (Fig. 

6.3J). Beds can be planar (Fig. 6.5D), ripple (Fig. 6.5F), or climbing-ripple laminated. Packages 

can range from siltstone- to sandstone-dominated (Figs 6.3J and 6.3L), and locally can be 

folded and deformed (Fig. 6.3K). Beds can vary in thickness laterally from metres to cms over 
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10s to 100s of metre distances. Basal beds are sometimes discontinuous, with pinch out/onlap 

onto underlying mudstone (Fig. 6.6). 

Interpretation 

Thin-bedded siltstone-dominated packages indicate deposition from dilute turbidity currents, 

with the finer sediment residual within the flow after deposition of the coarser fraction of 

sediment load. Climbing ripple lamination forms through late stage tractional modification by 

flows, with high sediment fall out rates (Lowe, 1988). Low angle of climb suggests lower rates 

of suspended load fallout than in FA2. Localized deformation and folding indicates slumping of 

material and/or significant dewatering. Thickness variations, discontinuities and onlap of basal 

beds are interpreted to result from deposition on irregular topography.  

6.4.5 Chaotic Facies 

Description 

Units of contorted strata comprising thin- to thick-bedded sandstones and siltstones can be up 

to 4 m thick and extend laterally for 10s of metres. Chaotic units range from coherently folded 

(Fig. 6.3M) to highly disaggregated with contorted clasts supported by a poorly sorted silt-

prone matrix. Disaggregated deposits include poorly sorted matrix-rich very fine-grained 

sandstone to coarse siltstone beds (0.1 – 2 m thick) that lack internal structure and contain 

dispersed sub-angular, elongate, mm-cm scale mudstone clasts and plant fragments (Figs 6.3N 

and 6.4G).  

Interpretation 

These units are interpreted as mass flow deposits derived from remobilization to form slide 

and slump deposits. Highly disaggregated and matrix-supported components are interpreted 

as debrites.  

6.4.6 Regional mudstone  

Description 

Claystone and fine siltstone may be laminated on a mm-scale or structureless (Figs 6.3, 6.4 and 

6.5). This facies forms regionally extensive units that have been mapped for 10s of km and 

drape every sand-prone unit (Flint et al., 2011; van der Merwe et al., 2014). 

Interpretation 
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These deposits are interpreted as background hemipelagic deposition, forming regional drapes 

during shutdown of sand and coarse silt supply. 

 Environments of deposition 

The thin high aspect ratio sandstone units are interpreted as lobe deposits due to the lateral 

continuity of beds, the lack of major erosion surfaces, and their constituent facies. Four broad 

architectural elements have been characterized (Fig. 6.7) based on the occurrence of 

constituent facies, mapped geometries, and their palaeogeographic context, utilizing the 

depositional environment interpretations of previous studies (Prélat et al., 2009; Prélat and 

Hodgson, 2013; Brunt et al., 2013a; b; Morris et al., 2014a; b; Spychala et al., 2015).  

Lobe axis: This association consists primarily of thick amalgamated sandstone beds, with 

mudstone clast horizons with minor structured sandstone (Fig. 6.7), up to 14 m thick. Typically, 

contacts with the underlying mudstone are sharp and sometimes scoured with numerous 

flutes, grooves and other tool marks. The proximal lobe axis comprises structureless and 

structured sandstone as well as thin-bedded sandstone and siltstone. Indicators of sediment 

bypass include multiple composite scours (cm – 1.5 m in depth, 0.5- 3 m in width) mantled 

with mud clasts lag horizons and high aspect ratio erosion surfaces (Figs 6.6E and 6.7),. 

Lenticular infilling packages over 100 m in width and up to 5 m thick onlap, drape and overtop 

surface topography (Fig. 6.6E).  

Lobe off-axis: Consisting of stratified structureless and structured sandstone and sand-

dominated thin beds (Fig. 6.7), packages are up to 5 m thick. Scouring can occur at the bases of 

beds and minor erosion may be present throughout. Packages can thicken and thin abruptly 

with bed thickness changes and onlap of the lower beds onto the regional mudstone.  

Lobe fringe: Frontal and lateral lobe fringe deposits consist of thin structured/ structureless 

sandstone beds with common mud clast horizons, thin bedded sandstone and siltstone beds, 

hybrid beds and debrites (Fig. 6.7). Beds are mm to 50 cm thick with packages of thin beds up 

to 2.5 m and sandstone up to 70 cm. Sand-rich pinchouts are associated with significant clastic 

injectites (Cobain et al., 2015).  

Distal lobe fringe: At distal pinchouts, deposits consist of thinly bedded siltstone with 

occasional starved ripples. These are distinguished from the regional mudstones as they are 

slightly coarser than the background sediments and have been walked out from more proximal 
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areas. It is therefore likely that other packages of distal lobe fringe facies are present but 

undocumented. 

Hemipelagic mudstone: The regional mudstone represents periods of clastic shut off in the 

basin when hemiplegic material can accumulate to significant (2 to 10s of metres) thicknesses.  

Syn-sedimentary deformation can be associated with all environments of deposition and may 

represent localized slumping of packages due to dewatering or remobilization due to 

instabilities caused by minor seafloor topography.  
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Figure 6.7 Key architectural elements recognised in Units A/B, B/C and D/E. Sketch of 3D lobe shows 
divisions of sub-environments, with scale demonstrating general thickness of smaller and larger fan 
units. Lobe axis, lobe off-axis, lobe fringe and proximal lobe panels show representative section from 
Units A/B, B/C and D/E. Blue indicates interpretation as clastic injectite (Cobain et al., 2015). 

 Unit A/B, B/C and D/E thickness and facies distribution  

The thin sandstone units are present discontinuously across the Laingsburg depocentre, but 

concentrated in the western, up-dip Baviaans and Heuningberg locations (Fig. 6.8). Typically, 

units A/B, B/C and D/E are an order of magnitude thinner than units A-to-F (Fig. 6.7), reaching 

a maximum of 14 m thick, and are generally < 5 m thick (Fig. 6.8). Overall, the thicker areas are 
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dominated by the axial lobe association, transitioning to off-axis and fringe deposits as the unit 

thins (Figs 6.7 and 6.8).  

In the Baviaans area, Unit A/B shows palaeocurrents from flute and groove marks consistently 

towards the north-northeast, changing to eastward in the Heuningberg area (Fig. 6.8). 

Palaeocurrents from current ripples are more dispersed and show a spread between north-

northwest and east. The thickest A/B deposits (up to 14 m) follow a north to south trend, 

which coincides with the most axial lobe facies (Fig. 6.7). The unit thins and transitions to off-

axis deposits abruptly towards Faberskraal and Geelbek to the east and more gradually to the 

west, with fringe deposits restricted to the peripheries of the system (Fig. 6.8). A localized area 

of increased thickness (up to 10 m) is present around Heuningberg, thinning abruptly in all 

directions (Fig. 6.8). Lateral pinch outs (Geelbek and Heuningberg) are a combination of highly 

laterally discontinuous sand-rich strata and silt-rich thin beds (Figs 6.7 and 6.8). In the most 

proximal Baviaans area, high aspect ratio erosional features (1- 5 m in depth and 10s of metres 

to 150 m in width) are present over a 10 kilometres strike oriented outcrop section (Figs 6.6, 

6.7 and 6.8). The thick central areas of infill (> 3 m) comprise structureless, planar and climbing 

ripple laminated sandstone, which thin and fine laterally to interbedded siltstone and ripple 

laminated sandstone (> 1 m) (Fig. 6.6). 

Unit B/C is also best developed in the regional up-dip areas of the depocentre (Baviaans, 

Heuningberg and Geelbek; Fig. 6.8) with the thickest and most axial deposits around Baviaans. 

The unit thins gradually towards Heuningberg and transitions into off-axis and fringe deposits 

(Fig. 6.8). Flute, groove and ripple palaeocurrents indicate a northeast direction of transport, 

with a northwest component in the Geelbek area (Fig. 6.8). Unit B/C is thinner overall than A/B 

(< 4 m thick) and less laterally extensive (Fig. 6.8). Towards Heuningberg and Faberskraal, 

deposits transition to off-axis and pinch out abruptly (Fig. 6.8). A discontinuous area of thicker 

(up to 4 m), sand-rich lobe fringe deposits is present around Geelbek, thinning abruptly in all 

directions (Fig. 6.8). Pinch-outs are sand-rich at the lateral (eastern) fringe (Fig. 6.7) and more 

silt-rich and thin-bedded (Fig. 6.7) towards the frontal (northern) fringe (Fig. 6.8). 

Unit D/E is present in three discrete sites. Walking key regional markers including top Unit D, 

base Unit E and the D-E mudstone was necessary to establish that the three areas of 

deposition are at the same stratigraphic position. These depositional sites are the 

Heuningberg, Geelbek, and Floriskraal areas (Fig. 6.8). In Heuningberg, up to 14 m of axis and 

off-axis lobe deposits are present, which thin and transition to fringe deposits abruptly to the 
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west, south and east, and pinch out abruptly to the south/east and more gradually to the west 

(Fig. 6.8). In Geelbek, Unit D/E consists of a single debrite bed < 2 m thick (Fig. 6.8). In 

Floriskraal, a 14 m thick lobe-axis has a southwest to northeast orientation with palaeoflow to 

the east (Fig. 6.8).Unit D/E is highly discontinuous towards Slagtersfontein, transitions to off-

axis and fringe deposits, and pinches out abruptly to the south and more gradually to the north 

(Fig. 6.8). Pinch outs are more sand-rich (Fig. 6.7) in the frontal (eastern) fringe and more silt-

rich and thin-bedded (Fig. 6.7) in the lateral (southern) fringe with remobilized/ debritic 

deposits present in the northern lateral fringe (Fig. 6.8).  

Each unit is bounded by regional mudstone. Locally, below the thin units silt-rich remobilized 

strata are present, cms to several metres in thickness, ranging from chaotic and highly 

disaggregated to laterally extensive (metres to 10s of metres).  

Interpretation   

Facies and thickness distributions indicate that the A/B and B/C systems were fed from the 

southwest (Figs 6.8 and 6.9), with mean palaeoflow towards the northeast. Lenticular erosive 

features in the Baviaans area may represent either shallow scours, or weakly confined 

channels. In the case of channels, these features may represent small weakly confined 

distributive channels eroding into proximal lobes close to the base-of-slope, with distributive 

patterns likely, due to the lack of slope (e.g. van der Werff and Johnson, 2003). In the case of 

scours, this may also indicate a location close to the base-of-slope, with scouring commonly 

documented in channel-lobe transition zones (e.g. Wynn et al., 2002; Macdonald et al., 

2011a,b; Hofstra et al., 2015; Pemberton et al., 2016) formed by hydraulic jumps where flows 

transition from super- to subcritical due to a reduction in slope gradient and/or flow 

confinement (Mutti and Normark, 1987, 1991; Weirich, 1989; Kostic and Parker, 2006; Sumner 

et al., 2013; Dorrell et al., 2016). The distribution of Unit D/E indicates at least two areas of 

sediment input, in the northeast and to the south (Figs 6.8 and 6.9). Similar geographical areas 

(Faberskraal and Geelbek) and directions of facies transition, thinning and pinch out are 

recognised in all three units (Figs 6.8 and 6.9). Thinning and pinch-out of A/B and B/C lobes is 

seen in Heuningberg, where a southeast facing intrabasinal slope has been recognised to have 

impacted flow behaviour in the underlying Unit A (Spychala et al., 2017a). This intrabasinal 

slope is interpreted as present throughout A/B and B/C deposition (Figs 6.8 and 6.9), modifying 

facies, thickness and palaeocurrent trends by reflecting and deflecting flows. The influence of 
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this intrabasinal slope does not persist into Unit D/E deposition indicating that topography was 

healed by intervening units (Fig. 6.9).  

Eastern pinch-outs in units A/B, B/C and of D/E consistently occur across the Faberkraal-

Geelbek area (Figs 6.8 and 6.9), suggesting influence by some form of long-lived topographic 

feature. This change in the Faberskraal-Geelbek area indicates that deposition was at least 

partially controlled by long-lived slope/basin floor topography (Fig. 6.9). Lobe pinch outs 

indicate a decrease (or slight reversal) in slope gradient, confining deposition up-dip. This 

topography was fixed in location, but evidently subtle or dynamic, as the effect of large-scale 

topographic depression is not recognized in the intervening units (van der Merwe et al., 2014). 

Therefore, this topography formed progressively over time, with a subtle expression on the 

seafloor at any one time (e.g. Spychala et al., 2017a).  

The abrupt southward pinch out of Unit D/E in Heuningberg (Fig. 6.8) has been suggested by 

previous studies to be due to a north-facing slope, resulting from differential compaction over 

underlying stratigraphy (Figueiredo et al., 2010). The southwest to northeast oriented 

deposition of Unit D/E axis in Floriskraal (Fig. 6.8) and abrupt pinch out at Slagtersfontein may 

be the result of a southeast facing slope surface which would represent the regional base-of-

slope (Fig. 6.9) (Chapter 5). The abrupt southward thinning and pinch out is likely the result of 

a north-facing lateral basin margin (Fig. 6.9) (van der Merwe et al., 2014; Chapter 5). 

Remobilization within regional mudstones prior to A/B, B/C and D/E deposition is interpreted 

to indicate instability of locally steepened frontal and lateral slopes that subsequently control 

lobe deposits.  
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Figure 6.8 Thickness (left) and facies (right) maps of Units A/B, B/C and D/E. Thickness maps show 
isopach thickness in metres. Facies maps represent gross depositional environment for the time interval. 
A/B and B/C deposits are restricted to up-dip of the Faberskraal-Geelbek area. A/B deposits are thickest, 
most sand-rich and axial in the Baviaans and Heuningberg areas, with bypass dominated proximal lobe 
scours/distributary channels present in the Baviaans area. Deposits decrease in thickness and sand 
content to off-axis facies to the east and west. Lobe fringe deposits and pinch-outs are a combination of 
sand- and silt-rich in Geelbek and Heuningberg. B/C deposits are thickest, most sand-rich and axial in the 
Baviaans area. Deposits decrease in thickness and sand content to off-axis and fringe facies to gradually 
to the north and more abruptly to the east and west. Pinchouts are sand-rich at the lateral east and west 
margins and silt rich to the north. Unit D/E is present discontinuously in (a) Heuningberg, with thick axial 
deposits abruptly thinning and pinching out west, south and east, (B) in Geelbek, present locally as a 
single debrite bed, and (c) in Floriskraal, present in a southeast-northwest transect decreasing in 
thickness abruptly to the east and west (Slagtersfontein) with sand-rich pinch out, to the south with a silt 
rich pinch out, and more gradually to the north (N1 Dome) with a silt and debrite-rich pinch out.   

 Discussion  

6.7.1 Units A/B, B/C and D/E  

The recognition of units A and B as basin-floor deposits (Sixsmith et al., 2004; Prélat and 

Hodgson, 2013; van der Merwe et al., 2014) implies that Unit A/B was also deposited in a 

basin-floor setting (Fig. 6.9). Units C, D and E are interpreted as slope to basin floor systems 

(Figueiredo et al., 2010; van der Merwe et al., 2014; Morris et al., 2014a; b; Spychala et al., 

2015; Chapter 5), with the western, up-dip sections on the slope. The co-location of Unit B/C in 

this area indicates a slope setting. Unit D/E in Heuningburg and Geelbek likely represents 

intraslope lobes (Spychala et al., 2015); with the Floriskraal deposits on the basin floor 

(Chapter 5) (Fig. 6.9).  

As presented above,  Unit A/B, B/C, and D/E lobe deposits are sub-divided into axis, off-axis 

and lateral/frontal fringe (Fig. 6.7) with similar facies transitions to lobes in lobe complexes 

(sensu Prélat et al., 2009) recognised in the larger units. The thin sandstone units rarely record 

juxtaposition of multiple sub-environments (Fig. 6.7), indicating that deposition was not 

sustained long enough for lobes to stack compensationally to form a lobe complex, or for the 

propagation of channel-levee systems above lobes (e.g. Morris et al. 2014; Hodgson et al. 

2016). In addition to the thickness differences, the thin units show key differences in facies and 

architecture to the larger units A-F (cf. Sixsmith et al., 2004; Prélat et al., 2009, 2010; Prélat 

and Hodgson, 2013). These include (a) a higher proportion of sand (Figs 6.4, 6.5 and 6.6) 

particularly in fringes (Fig. 6.7); (b) consistently sharp bases and tops (Figs 6.4, 6.5 and 6.7); (c) 

a higher proportion of mudstone clasts (Figs 6.4 and 6.5); (d) minor (< 1 m) basal scouring 

throughout, including at fringes (Figs 6.6 and 6.7); (e) abrupt thinning and pinch-out causing 

discontinuity (Figs 6.6 and 6.7); and (f) high aspect ratio erosion surfaces in proximal lobes. 
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Units A/B, B/C and D/E also exhibit aspects that are similar to the larger units A-F. In particular, 

they tend to display more silt-rich thin-bedded lateral fringes and more sand-rich and 

discontinuous frontal fringes (Figs 6.7 and 6.8). This variability has been documented by others 

in the Tanqua Karoo (Rozman, 2000; Prélat et al., 2009; Groenenberg et al., 2010).  

Units A/B, B/C and D/E stratigraphically overlie the thickest regional mudstone units in the 

Laingsburg and Fort Brown formations (Grecula et al., 2003; Di Celma et al, 2011; van der 

Merwe et al., 2014), and are interpreted as the initial deposits after the longest hiatuses in 

deepwater deposition. These are relative to the largest scale, and/or longest duration, relative 

sea-level rises (Flint et al., 2011). As these units represent the re-establishment of deepwater 

deposition, Flint et al. (2011) suggested they were distal expressions of larger scale lobe 

complexes similar to units C-F. However, he key differences in sedimentology and architecture 

presented here indicate these thin units are distinctly different, and therefore likely represent 

lobe deposition under different conditions. The absence of sustained supply to drive lobe 

stacking and propagating channel-levee systems suggests the thin units may not have been 

fully connected to upper slope and shelf feeder systems (Fig. 6.10). In this situation sediment 

input from the upper slope (e.g. through canyons) would be limited and additional sediment 

may have been sourced directly from the shelf and via slope failures (Fig. 6.10). With this range 

of source areas, flows may not have been restricted to long-lived conduits but instead were 

likely unconfined or weakly confined (e.g. Saller et al., 2004; Moody et al., 2012; Stevenson et 

al., 2013). Multiple sediment input locations would create widespread areas of lobe deposition 

that would not stack compensationally or aggradationally (Fig. 6.10). A lack of significant 

channelization could cause flows to traverse completely ‘out-of-grade’ areas (sensu Prather, 

2003) that would erode the slope, causing significant entrainment of mud clasts. Unconfined 

flows would spread laterally and therefore be more susceptible to topographic perturbations 

than more channelized flows.  

These disconnected feeder systems may indicate that relative sea-level falls that initiated Units 

A/B, B/C and D/E  were not of sufficient magnitude to expose the shelf. Therefore, a relatively 

small scale rise in relative sea-level would be sufficient to cut off all sediment supply, creating 

an abrupt shut down of the deepwater system. Initiation and delivery of the larger scale Units 

A-F is interpreted as marking times when sea-level fell sufficiently to expose the shelf and 

activate upper slope feeder systems (Fig. 6.10). The lobe deposits of Units A/B, B/C and D/E are 

therefore interpreted as ‘disconnected lobes’, which are characterised by short-lived conduits, 

rather than continuous point-sourced flows through mature channel-levee systems. It may also 

be the case that the thin basal lowstand systems tract within each of the larger units (e.g. Sub-
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units E1 and F1) also formed under similar conditions but the system became fully connected 

by the time of the second LST within each lowstand sequence set. 

 

Figure 6.9 Thickness and facies maps of smaller fan units overlain on 3D box models demonstrating 
controlling basin floor and slope topography. 
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Figure 6.10 Shelf, slope and basin floor profile during deposition of larger and smaller fan units. Lower 
sea-level during deposition of larger units, exposes shelf and activates canyons in upper slope connecting 
sediment pathways down the slope. Comparatively lower sea-level during deposition of smaller units 
reduces/cuts off main sediment input. 
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6.7.2 Thickness and facies distribution of Units C, D, E and F  

The pinch out trends in units A/B, B/C, and D/E indicate subtle seafloor topography, 

maintained over relatively long periods. Here, is assessed whether the presence of seafloor 

topography affected the thicker, more laterally extensive units C, D, E and F, which have been 

mapped in detail in previous studies (Grecula et al., 2003; Figueiredo et al., 2010; Di Celma et 

al., 2011; Hodgson et al., 2011; Brunt et al., 2013a; van der Merwe et al., 2014; Spychala et al., 

2015; Morris et al., 2016; Chapter 5).  

 Early phase slope topography: Units C and D  

Sub-units C1 and C3 are both restricted to the up-dip, Heuningberg and Baviaans areas of the 

depocentre (Fig. 6.10) (Di Celma et al., 2011; Morris et al., 2014a; b), with lobe complex pinch-

out around Faberskraal-Geelbek, a similar position to the underlying B/C Unit (Figs 6.8 and 

6.11). The C3 lobe complex is < 20 m thick (Morris et al., 2014) and of comparable thickness to 

the thin Units A/B and D/E, whereas the C1 lobe complex reaches over 80 m thick. C2 is the 

thickest and most widespread of the C sub-units, consisting of channel-levee systems in the 

up-dip area around Heuningberg and Baviaans (Fig. 6.11) (Hodgson et al., 2011; Kane and 

Hodgson, 2011), dominated by erosion and bypass processes and with no lobe deposition 

(Morris et al., 2016). Down-dip of this location, coincident with the Faberskraal-Geelbek pinch 

outs of A/B, B/C and D/E (Fig. 6.8), channel-levee systems decrease in erosion depth, becoming 

less entrenched and more distributive (Fig. 6.11). Basin-floor lobe deposits are present down-

dip in C3, confined to the N1 Dome area, with southern pinch out at Slagtersfontein.  

The southern (lateral) pinch out of Unit C is likely related to topography formed through 

differential compaction of the underlying Units A and B (Fig. 6.12), which are thicker and more 

sand-rich in the south (Sixsmith et al., 2004; Di Celma et al., 2011; Flint et al., 2011; van der 

Merwe et al., 2014). The presence of lobes up-dip of the Faberskraal-Geelbek area similar to 

Units A/B and B/C (Figs 6.8 and 6.11) indicates the presence of a sustained area of local 

accommodation (Fig. 6.12). Other variations in spatial thickness are likely caused by 

compensational stacking (van der Merwe et al., 2014). The lack of channelized elements in C1 

and C3 may indicate sediment input was insufficient to generate channel-levee systems. This is 

more likely the case in Unit C3, which is of a similar thickness to the thin units. Accommodation 

and topographic confinement likely decreased from C1 to C2, and possibly further from C2 to 

C3.  
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Sub-units D1, D2 and D3 comprise channel-levee systems in the up-dip Baviaans area (Fig. 

6.11) with the development of channel-lobe (D1) and channel systems (D3) around Geelbek 

(Fig. 6.8). Channel-levee systems are highly entrenched in Baviaans (Fig. 11) (Hodgson et al., 

2011; Kane and Hodgson, 2011; Brunt et al., 2013a; Morris et al., 2014a; b), decreasing in 

entrenchment down-dip at Faberskraal (Fig. 6.11) (Flint et al., 2011). Lobe complexes are 

present down-dip in the east (Slagtersfontein and Floriskraal), fed from two directions, the 

west and south-west (Brunt et al., 2013a) (Fig. 6.11). Lobe deposits thin (D1 and D2) or are 

absent (D3) around the N1 Dome, where Unit C lobes are thickest (Figs 6.8 and 6.11).  

The increased up-dip accommodation noted throughout Unit C is not as clearly expressed in 

Unit D. The long-lived feeder system present in the southwest throughout Unit C and D time 

has been well documented (Figs 6.11 and 6.12) (Hodgson et al., 2011; Kane and Hodgson, 

2011; Brunt et al., 2013a; Morris et al., 2014a). Although the area is dominated by sediment 

bypass processes the base of Unit D in Baviaans is sand-rich and interpreted as a frontal lobe 

(Kane and Hodgson, 2011; Morris et al., 2014b) (Fig. 6.12). The change from lobe (D1) to 

channel-levee systems (D2 and D3) down dip in Geelbek (Fig. 6.11) also indicates a 

stratigraphic transition from deposition to bypass dominated (Fig. 6.12). The less obvious 

impact of slope accommodation may be indicated by the absence of intra-unit mudstones in 

Unit D (van der Merwe et al., 2014) suggesting that sedimentation rate outpaced deformation 

rate.  

An overall decrease in down-dip entrenchment of the eastward propagating Unit C2 and D 

channel systems at Faberskraal may be related to intrinsic factors such as flow deceleration. 

However, the coincidence with Faberskraal-Geelbek lobe pinch-outs, suggests that a change in 

slope gradient may have been the key control (Fig. 6.12). Throughout Unit D time, a second 

feeder system is present around Floriskraal (Figs 6.11 and 6.12), coincident with D/E deposition 

(Fig. 6.8) but this feeder channel is not present in underlying deposits (Figs 6.8 and 6.11). The 

formation of these lobes and channel-lobe systems in the same location and orientation 

throughout Unit D may indicate the presence of a southeast facing slope, like the underlying 

Unit D/E situation (Chapter 5) (Fig. 6.12).  
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Figure 6.11 Thickness and facies maps of Units C and D. Thickness is shown as isopachs with units in 
metres. Facies maps represent gross depositional environments for the given time intervals. Based on 
studies by, Sixsmith et al., 2004; Di Celma et al., 2011; Hodgson et al., 2011; Brunt et al., 2013 a; Morris 
et al., 2014a, b; van der Merwe et al., 2014;  Morris et al., 2016. 
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Figure 6.12 Thickness and facies maps of ‘sand-attached’ units C and D overlain on 3D box models 
demonstrating controlling slope to basin floor topography. Based on studies by, Sixsmith et al., 2004; Di 
Celma et al., 2011; Hodgson et al., 2011; Brunt et al., 2013 a; Morris et al., 2014a, b; van der Merwe et 
al., 2014;  Morris et al., 2016. 
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 Later phase slope topography: Units E and F  

Sub-units E1, E2 and E3 consist of up-dip channel-levee and lobe deposits that pinch-out in the 

Faberskraal-Geelbek area (Fig. 6.13) (Figueiredo et al., 2010; van der Merwe et al., 2014; 

Spychala et al., 2015). Down-dip E2 and E3 consist of thin channel-levee deposits, which 

transition to basin-floor lobes at the N1 Dome and Slagtersfontein, with initial deposits 

oriented southwest to northeast. E3 has an intervening sediment bypass dominated channel-

lobe transition zone at Slagtersfontein (Chapter 5), characterized by scouring and sediment 

lags. E2 and E3 basin-floor lobes are underlain by widespread extensive siltstone (Fig. 6.13). E3 

basin-floor lobes thin and pinch out abruptly south of Floriskraal (Fig. 6.13).  

The formation of intraslope lobe deposits during Unit E (Figueiredo et al., 2010; van der Merwe 

et al., 2014; Spychala et al., 2015) indicates sustained accommodation on the slope (Fig. 6.14). 

The deposition of tabular, laterally continuous (kilometres in dip and strike), thin bedded 

siltstone packages (spill-over fringe deposits, sensu Chapter 5) beneath the basin floor lobes 

indicates that trapping of sand in intraslope lobes, and flow stripping of fines (Sinclair and 

Tomasso, 2002), occurred prior to any deposition down-dip (Fig. 6.14). Therefore, a fill and 

overspill model (e.g. Prather et al., 1998; Sinclair and Tomasso, 2002) can be inferred from the 

sediment grain-size distribution. This is supported by the occurrence of later channel incision 

into the intraslope lobes (Figs 6.13 and 6.14) (Spychala et al., 2015) which indicates 

accommodation was filled and the slope was at grade.  

The zone of coarse sediment bypass present in E2 and E3 indicates a sustained area of 

decreased accommodation, close to equilibrium (Prather, 2003) (Figs 6.13 and 6.14). The 

development of a sediment bypass dominated channel-lobe transition zone, with scouring and 

rapid thickening of deposits down-dip may indicate that flows underwent hydraulic jumps, 

from supercritical to subcritical, due to an abrupt break-in-slope and/or decrease in flow 

confinement (Mutti and Normark, 1987; 1991; Weirich, 1989; Kostic and Parker, 2006; Sumner 

et al., 2013; Dorrell et al., 2016; Chapter 5). This represents the regional base-of-slope, likely 

southeast facing, indicated by facies transitions from channel-levee to lobe (Fig. 6.14). The 

abrupt southern pinch out of E3 lobes (Figs 6.13 and 6.14) indicates the influence of a southern 

lateral basin margin (Fig. 6.14) (van der Merwe et al., 2014; Chapter 5). 

Unit F deposits are largely restricted to the north of the depocentre (Fig. 6.13). Sub-unit F1 

consists of thin (< 5 m) lobe deposits, present in the Heuningburg area (Figueiredo et al., 2010) 

(Fig. 6.13). Sub-units F2 and F3 consist of thick, entrenched channel-levee systems in the 
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Heuningberg area passing down-dip into intraslope lobes around Faberskraal (Fig. 6.13) 

(Figueiredo et al., 2010; 2013). Down-dip F3 consists of thin channel-levee deposits that 

terminate in thick basin floor lobes around the N1 Dome, with an intervening sediment bypass 

dominated channel-lobe transition zone (Fig. 6.13), dominated by scours and bypass lags (van 

der Merwe et al., 2014).  

Figueiredo et al. (2010) showed that the focus of Unit F to the north in the up-dip area, was 

likely related to a feeder channel in the northwest (Figs 6.13 and 6.14). The restriction of basin 

floor lobes also to the north may be a product of differential compaction of Unit E, with lesser 

compaction of axial lobe deposits to the south forming a topographic high and a lateral basin 

margin slope present further south (Fig. 6.14). The continued presence of a zone of coarse 

sediment bypass in the central area indicates a slope still close to equilibrium (Prather, 2003).  
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Figure 6.13 Thickness and facies maps of Units E and F. Thickness is shown as isopachs with units in 
metres. Facies maps represent gross depositional environments for the given time intervals. Based on 
studies by, Figueiredo et al., 2010; 2013;  van der Merwe et al., 2014; Spychala et al., 2015; Chapter 5. . 
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Figure 6.14 Thickness and facies maps of ‘sand-detached’ units E and F overlain on 3D box models 
demonstrating controlling slope to basin floor topography. Based on studies by, Figueiredo et al., 2010; 
2013;  van der Merwe et al., 2014; Spychala et al., 2015; Chapter 5.  
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6.7.3 Slope to basin floor evolution: Units C-F  

Throughout the deposition of Units C, D, E and F, several key areas 

have been recognised as having sustained usable deep-water 

accommodation (Figs 6.12 and 6.14). Although fixed in location, 

individual sub-units either completely or partially healed this 

accommodation. Therefore, this seabed topography must have been 

of low amplitude and formed progressively. The development of 

intraslope lobes in successive units in the same areas suggests that 

there were either several distinct episodes, or continuous slow 

generation of intraslope accommodation. At any one time confining 

topography/ gradient change allowing deposition of the thick, up-dip 

deposits would have been subtle, but long-term development in 

fixed locations led to a marked impact on the stratigraphic 

architecture (Fig. 6.15). Through the deposition of Units C and D the 

slope was sediment bypass-dominated (Fig. 6.12). Some up-dip 

accommodation formed during early and late Unit C time, with the 

pinch-out of these lobes coinciding with a change from highly 

entrenched to distributive channels in C2 and a reduction in 

entrenchment in Unit D (Fig. 6.12). The coincident location of these 

changes in successive units likely indicates overriding topographical 

control, such as a change in slope gradient. C1 and C3 lobe pinch 

outs indicate a decrease (or slight reversal) in slope gradient, 

confining deposition up-dip. The decrease in channel entrenchment 

in C2 and D in the Faberskraal-Geelbek area may have been the 

result of intrinsic processes, but the spatial coincidence with facies 

changes in other units, could indicate a topographic control, such as 

a reduction in slope gradient, which could cause flows to decelerate, 

decreasing their ability to erode. Conversely channels could be 

entrenched because the upper slope was ‘above grade’ (sensu 

Prather, 2003) and flows may have overtopped a topographic high 

Figure 6.15 Schematic section showing sequence stratigraphic division of Laingsburg and Fort Brown 
formations. Sand-rich Sub-unit sequence tract and overlying transgressive-highstand systems tract 
mudstones represent a sequence. Groups of these and the overlying inter-unit transgressive-highstand 
sequence set mudstones represent composite sequences. Groups of composite sequences and thicker 
interunit transgressive-highstand composite sequence mudstones represent composite sequence sets. 
A/B, B/C and D/E are deposited at the start of each composite sequence set (Flint et al., 2011). 
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and continued onto a higher gradient slope (past the Faberskraal-Geelbek area) forming a new, 

lower equilibrium level and causing knickpoints to migrate up-dip to develop entrenched 

channels (e.g. Prather et al., 1998; 2017).  

During deposition of Units E and F, accommodation was present up-dip of the Faberskraal-

Geelbek area (Fig. 6.14), in similar locations to C1 and C3 (Fig. 6.12 and 6.15) (van der Merwe 

et al., 2014). Distinct phases of infill and overspill of this up-dip accommodation are 

interpreted throughout Units E and F on the basis of incised intraslope lobes (Figueiredo et al., 

2010; Spychala et al., 2015) and ‘spill-over fringe’ deposits underlying basin-floor lobes 

(Chapter 5) (Fig. 6.14). These data support phases of intraslope topography generation during 

each period of sand shut off. Zones of coarse sediment bypass in Units E and F likely indicate 

an increase in slope gradient in this location in order for flows to bypass efficiently. Absence of 

Units D/E and D3, as well as the thinning of D2 in the central area, may be indicators of this 

gradient increase.  

6.7.4 Early basin floor topography development and evolution  

Seabed topography impacted the distribution of sediment across the slope and on the basin 

floor throughout the deposition of Units A/B, B/C, C, D, D/E, E and F (Figs 6.9, 6.12 and 6.14), 

and areas of more pronounced sedimentation remained fixed through the deposition of all of 

these units (Fig. 6.16). In order to understand when this long-term development of topography 

initiated, a 3D datacube was constructed in Petrel using the laterally persistent Collingham 

Formation as a basal datum and regional mudstones to correlate units throughout the entire 

basin. Figure 6.16 shows a dip section of the Vischkuil, Laingsburg and Fort Brown formations 

through the centre of the basin, demonstrating the two areas of increased thickness separated 

by a zone of thinning in all units. Thickness maps have also been constructed using this 

datacube, from the early stage starved basin plain deposits and mass transport deposits of the 

Collingham and Vischkuil formations through the overlying basin-floor lobes of Units A and B in 

the Laingsburg Formation (Fig. 6.17).  

The Collingham, Vischkuil, and Laingsburg formations (Fig. 6.17) have the same general 

thickness patterns documented in the overlying units. In particular, thicker deposits in the 

west, thinning in the central area and thickening to the east and southeast. The northward 

thinning in Unit A is related to distance from the feeder system (Sixsmith et al., 2004) as well 

as the lateral intrabasinal slope documented by Spychala et al. (2017a). The easterly thinning 

in Unit A occurs in the Faberskraal-Geelbek area, and is consistent with the pinch-out of Units 
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A1, A2, A4, and A7 (Sixsmith et al., 2004), indicating increased accommodation up-dip of 

Faberskraal-Geelbek. The thickening of deposits around Floriskraal may indicate a second 

feeder system to the south, such as that recorded in Units D and D/E. The northward thinning 

of Unit B coincides with an axial to distal transition of facies, but is also related to a 

topographic high interpreted in the Heuningberg area (Grecula et al., 2003). The eastward 

thinning of Unit B (Fig. 6.17) coincides with a transition from channel-levee to lobe systems, 

with the thickening down-dip (Fig. 6.17) associated with renewed channelization (Grecula et 

al., 2003), and may indicate a second feeder system south of Floriskraal. 
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Figure 6.16 Dip-section through central line of Laingsburg depocentre showing thickness of Vischkuil, 
Laingsburg and Fort Brown formations. The section demonstrates system scale compensational stacking 
between units as well as the prevalence of two separate areas of increased deposition with an 
intervening area of thinning, exacerbated by differential compaction. 
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Figure 6.17 (A) Lobe updip, downdip and lateral pinchouts of smaller and larger units colour coded into 
stratigraphic packages. Grey shaded area indicates the region of sustained topographic influence 
throughout deposition of all units. (B) Thickness maps of the combined Collingham and Vischkuil 
formations, Unit A and Unit B. Overlay shows area of sustained topographic influence. 
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6.7.5 Topographic evolution of a stepped slope profile  

The thickness and facies distributions for all deep-water units discussed above show, to varying 

extents, fixed locations of sustained topographic influence. Thickness and facies trends show 

that the systems were not ‘at grade’ (sensu Prather, 2003) at the initiation of deposition. Intra-

slope accommodation was evident and therefore an ‘out of grade’ slope was generated during 

deposition of the thick regional mudstones of the transgressive and highstand sequence sets 

within each composite sequence. The mechanism by which accommodation was being created 

during deposition of each mudstone-dominated highstand sequence set (see Fig. 6.15) 

remained consistent in location, but was outpaced by sedimentation during deposition of 

lowstand clastic units. Therefore, longer hiatuses in clastic input inferred from mudstone 

thicknesses (see Fig. 6.15) would have led to higher amplitude intra-slope accommodation, 

with Units A/B, B/C and D/E deposited during these times. These units therefore likely 

represent deposition at times of maximum seabed topography.  

The thinning of the Vischkuil Fm., Units A and B (Fig. 6.17), the absence of A/B, B/C and D/E 

(Fig. 6.9), the thinning of Units C and D (Fig. 6.11), and the formation of sediment bypass 

dominated zones in Units E and F (Fig. 6.13) all occur in the central area (Figs 6.16 and 6.17). 

This indicates a long-lived area of reduced accommodation, which is interpreted as a long-lived 

higher gradient ‘ramp’ above a stepped slope profile. This stepped profile had a more evident 

effect in the later Units E and F (van der Merwe et al., 2014), but was present to some extent 

from the onset of deep-water sand supply to the depocentre (Figs 6.16 and 6.17). 

The cause of the protracted deformation of the slope is unknown, but it is clear that it was 

active prior to the onset of sand deposition (Unit A) in the basin (Fig. 6.17). Influence of 

inherited bathymetry alone (e.g. Adeogba et al., 2005; Gamberi and Rovere, 2011; Olafiranye 

et al., 2013) therefore cannot be the cause as it would be healed over time. Although 

differential compaction over an inherited structure is a possible contribution, it would have to 

be significant to cause continued stacking of thick, sand-rich elements throughout the basin-

fill. Dynamic mechanisms have the potential to create significant and reoccurring 

accommodation. Salt and shale diapirism have been recognised as mechanisms that create 

slope deformation in many basins (e.g. Barton, 2012; Deptuck et al., 2012; Hay, 2012; Prather 

et al., 2012a, b), especially in the Gulf of Mexico (Prather et al., 1998; Prather, 2000; Meckel et 

al., 2002) but neither salt nor mobile shale have been recognised in the Laingsburg 

depocentre. Active tectonic structures can also create topographically complex slopes (e.g. 
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Hodgson and Haughton, 2004; Burgeen and Graham, 2014). However, no large-scale syn-

sedimentary tectonic structures are documented in the Karoo Basin, although it is possible 

structures could be present at high angles to the post-depositional fold structures associated 

with the deformation front of the Cape Fold Belt. The characterization of the Karoo Basin as a 

thermal sag basin related to subduction dynamic topography (Tankard et al., 2009) suggests 

that differential subsidence or localized uplift could be possible mechanisms for generating this 

deformation. The repeated accommodation created west of the Faberskraal-Geelbek area 

indicates this area was undergoing subsidence at an increased rate compared to east of the 

area. This could indicate increased subsidence relative to the overall subsiding basin, or a 

stationary/uplifting basement block east of Faberskraal-Heuningberg which may have resulted 

in a steeper slope, leading to the formation of the E and F bypass dominated zones. Thermal 

subsidence can vary with upper crustal heterogeneity or thickness of basement, which are 

variable across the Karoo Basin (Binks and Fairhead, 1992; Bumby and Guirard, 2005) or with 

spatial variations in mantle downwelling and crustal heterogeneity (Tankard et al., 2009), with 

magnetic anomalies in the underlying basement (Weckmann et al., 2007; Tankard et al., 2009; 

Lindeque et al., 2011 indicating a highly complex upper crust. 
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Table 6. 1 Example mechanisms for creating topography on the slope to basin floor and applicability to the Laingsburg depocentre stepped slope formation.  

Mechanism for 
creating 
topography  

Description  Timescale over 
which 
stratigraphy is 
affected*  

Height of 
topography 
created 

Local/ 
regional  

Static/ 
dynamic 

Example Applicable to Laingsburg depocentre stepped slope formation?  

Erosional and 
depositional 
relief  

Erosion or deposition by 
single or multiple flows, 
e.g. scours and canyons or 
lobes and MTCs 

Short to mid  cm to 100s of 
m 

Local Static Prélat et al., 2009; 
Gamberi and Rovere, 
2011; Kneller et al. 2016 

No  
-Not forming topography over long enough time period  
-Not continuously active 
-Topography would heal and become less apparent over time.   

Mobile 
substrate 

Salt and shale diapirs and 
walls and associated 
withdrawal mini-basins 

Mid to long m to 100s of m Local/ 
regional 

Dynamic Prather et al., 1998; 
Mayall et al., 2006; Clark 
and Cartwright, 2009; 
Barton, 2012; Deptuck et 
al., 2012; Hay, 2012; 
Prather et al., 2012a, b; 
Doughty-Jones et al., 
2017. 

No 
-No mobile shale or salt has been recognised in the Laingsburg 
depocentre.  

Tectonic 
structures 

Small scale to regional 
scale faulting and folding, 
including gravity-driven 
structures  

Short to long cm to 100s of 
m 

Local/regional Static/dynamic Hodgson and Haughton, 
2004; Jackson et al., 
2008; Mayall et al., 2010; 
Burgeen and Graham, 
2014  

No 
- No large scale faulting or folding is apparent in the depocentre.  
- Local evidence of growth fault 
-If present, faulting/ folding would be very gradual and at high 
angles to the later Cape Fold Belt-related fold structures  

Inherited relief Residual topography from 
underlying basement or 
stratigraphy  

Short to mid m to 100s of m Local/ 
regional 

Static Adeogba et al., 2005; 
Olafiranye et al., 2013 

Partial 
- Basement heterogeneities have been recognised in magnetic 
surveys (Tankard, 2009) suggesting underlying basement was not 
uniform. 
- Thickness changes are not apparent in early deposits (Whitehill 
and Collingham formations) and therefore relief developed during 
Laingsburg and Fort Brown formation deposition.  

Differential 
compaction 

Accentuation of 
underlying topography 
through variably 
compacting substrate 

Short to long m to 10s of m Local Dynamic Posamentier, 2003; Koša, 
2007 

Partial 
- Differential compaction over basement structures may have 
exacerbated formation of topography.  
- Compaction differences between sand-rich intraslope deposits 
(e.g. intraslope lobes) and silt-rich lower slope deposits (e.g. 
sediment bypass-dominated zones) may have exacerbated 
continued formation of stepped slope profile.  

Regional uplift 
and subduction 

Uniform or differential 
uplift or subduction over 
sub-basins or basins 

Mid to long 10s of m to 
100s of m 

Regional Static/dynamic  Barton and Wood, 1984; 
Leeder and Gawthorpe, 
1987  

Partial 
-Increased accommodation in the upper slope indicates basin 
subsidence may have been variable, possibly due to underlying 
basement blocks or variations in mantle down- welling.   
- The formation of a lateral basin margin to the south indicates 
either decreased subsidence or uplift to the south of depocentre.  

* Short= Instantaneous to < my, mid= millions of years to 10s of million years, long= 10s of million years to 100s of million years.  



228 
 

 
 

 

Figure 6.18 Graph showing comparison of sedimentation and deformation rates throughout the 
deposition of the Laingsburg and Fort Brown formations. Phase 1 includes Units A, A/B and B; overall 
sedimentation rate outpaces deformation rate, with units A/B deposited onto a more deformed slope. 
Phase 2 includes Units B/C, C and D; overall sedimentation rate was roughly equal to deformation rate, 
periodically healing and overspilling slope topography in time of increased sedimentation. Phase 3 
includes Units D/E, E and F; overall sedimentation rate was outpaced by deformation rate. 
Sedimentation rate was only sufficiently high during the later stage Sub-units E3 and F3 to equal 
deformation rate. 

Overall, three key stages of stepped slope evolution can be documented in the Laingsburg 

depocentre (Fig. 6.18). In this model, in the absence of a strong chronostratigraphic 

framework, the rate of slope deformation is assumed to be constant, with variations in 

sediment input and the stacking of systems resulting in varying stages of topographic 

influence.  
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- Phase 1 (Fig. 6.18) is represented by the basin-floor units (A, A/B and B). These units 

were deposited at a time of high sediment supply, which outpaced the rate of 

deformation and therefore healed any accommodation created during times of sand 

shut off (Fig. 6.18). During early stages of Unit A sedimentation, healed slope 

accommodation (sensu Prather, 2000, 2003) would dominate. Due to the longer term 

sand shut off between the Unit A and B composite sequence sets, it is likely that Unit 

A/B and initial Unit B flows were deposited in partially confined healed slope 

accommodation. During Unit A and B deposition, once sedimentation rate outpaced 

deformation rate, depositional and erosional patterns (relatively minor during A and B 

deposition) could compensate to modify the basin floor profile and reach equilibrium.  

- Phase 2 (Fig. 6.18) is represented by Units B/C, C and D. These units were deposited at 

a time of moderate sediment supply, in balance with deformation rate, with phases of 

healing and degradation of the slope evident within the Unit C and D lowstand 

sequence sets (Figs 6.12 and 6.13). The B-B/C transgressive and highstand sequence 

set sand shut-off caused B/C to commence deposition on a deformed slope (Fig. 6.18). 

Therefore, Unit B/C and initial Unit C sedimentation likely occurred in partially 

confined slope accommodation with continued C and D deposits filling healed slope 

accommodation (sensu Prather, 2003). The entrenched channel systems show that 

slope profile was above grade and eroding to establish a graded profile (e.g. Pirmez et 

al., 2000; Deptuck et al., 2012; Hay, 2012). 

- Phase 3 (Fig. 6.18) is represented by Units D/E, E and F. These units were deposited at 

a time of lower sediment supply, with deposition commencing on a more deformed 

slope after the D-D/E transgressive and highstand sequence set sand shut-off. Units 

D/E, E1, F1 and F2 were deposited in perched slope accommodation, with E2, E3 and 

F3 deposited in healed slope accommodation (sensu Prather, 2003) where they 

proceeded to ‘fill and overspill’ accommodation to bypass sediment down-dip (e.g. 

Prather et al., 1998; Pirmez et al., 2000; Beaubouef and Friedmann, 2000; Booth et al., 

2003; Barton, 2012; Bohn et al., 2012).  

Overall this evolution demonstrates the transition from a relatively ‘simple’ slope to basin floor 

profile (Fig. 6.1) to a stepped slope profile (Fig. 6.1) with development of significant healed, 

but not ponded accommodation (sensu Prather, 2003), throughout. Previous studies have 

demonstrated that stepped slopes evolve temporally, with formation mechanisms generally 

inferred as either forming through mobile substrates or later stage tectonics (Prather, 2003; 

Hay, 2012) or through healing of minibasins (Satter et al., 1993; Prather et al., 1998; Prather, 
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2003). This study demonstrates that stepped slope profiles can evolve from relatively ‘simple’ 

slope profiles without mobile substrate or significant tectonic deformation, through subtle 

slope deformation, stacking of multiple systems and significant periods of coarse clastic shut 

off, which allow deformation to outpace healing of the profile. This highlights a key 

consideration suggested by previous seismic studies (e.g. Prather, 2003; Jackson et al., 2008) 

that the size and scale of deformation compared to sedimentation rate is critical, and that 

systems with episodic sediment flux form more slope accommodation (Prather, 2000, 2003). 

This study shows that subtle and slow but persistent deformation over a significant area of 

slope (many kilometres) with significant periods of sand shut off can modify sediment delivery 

pathways and consequently sand distribution to an extent comparable to that generated by 

more obvious mobile substrate and tectonics. This has implications for hydrocarbon reservoir 

prediction within slope systems which have become increasingly significant as exploration 

targets in many basins worldwide (e.g. Weimer and Link, 1991; Mayall et al., 2006). 

This example of an evolving slope could therefore aid interpretation in lower resolution 

seismic and modern seafloor datasets, in systems where i) sedimentation rate outpaces 

deformation rate, ii) deformation rate is similar to sedimentation rate and iii) deformation rate 

outpaces sedimentation rate. Moreover, the evolution of the Laingsburg depocentre can be 

used as a tool for predicting the architecture of slope to basin floor deposition in basins with 

more subtle topographic complexities.  

 Conclusions  

The thickness and facies distribution of Units A/B, B/C and D/E indicate that they were strongly 

influenced by the presence of seabed topography on the slope and basin floor. Both dynamic 

and fixed seabed topography influenced unit distribution with influence of central, north to 

south trending, topography apparent throughout. The thin sand-rich nature of the units, with 

evidence of increased erosion, lack of lobe stacking and channel propagation, indicates 

significant differences from lobes in the larger units of the Laingsburg and Fort Brown 

formations. In a sequence stratigraphic context, these thin units represent the first sand 

deposition following major rises in sea-level which disrupted the previous lowstand sand 

supply to the system. The characteristics of the thin units are interpreted as marking only 

partial re-establishment of sand delivery pathways, expressed as a previously unrecognised 

type of intraslope lobe, here termed disconnected lobes that are not sourced from major 

feeder channel-levee systems, but rather accumulate from flows sourced from periodic 
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failures on the shelf and upper slope. Such disconnected lobes, are sedimentologically 

distinctive from other types of intraslope lobe, and restricted both in their stratigraphic 

position and deposit thickness, as a result of their formation within the initial stages of long-

term relative sea-level fall. In contrast, larger units generally formed in periods of lower sea-

level that were likely sufficient to expose the shelf break and develop and reuse mature upper 

slope sediment distribution pathways, with the possible exception of with initial deposition of 

units E and F.   

The intraslope lobes of Units A/B, C, D/E, E and F indicate continued creation of slope 

accommodation in the up-dip area. The absence of units A/B, B/C and D/E, increased channel 

entrenchment in Units C and D, as well as the development of bypass-dominated zones in 

Units E and F all indicate the sustained presence of a ramp farther down dip in the central 

area.  

 Similar areas of increased and decreased thickness in the underlying Collingham, Vischkuil, 

and Laingsburg formations suggests that the stepped slope topography was well-developed 

before the onset of major sand input to the basin. This topography had an increasing influence 

on sediment routing upward through the deep-water stratigraphy, suggesting that the 

mechanisms for creating the topography were active in fixed geographical positions 

throughout sedimentation.  

Overall, three key stages of stepped slope profile evolution in the same spatial position can be 

recognised, with an increasing impact on slope to basin floor systems. Phase 1 sedimentation 

rate outpaced deformation rate, healing slope topography. Phase 2 sedimentation rate was 

roughly equal to deformation rate, with intermittent phases of healing of slope topography. 

Phase 3 sedimentation rate was outpaced by deformation rate, with the stepped slope 

topography showing a dominant control on system architecture. Slope deformation initiated 

prior to clastic deposition in the basin and was likely constant throughout deposition of the 

Laingsburg and Fort Brown formations. The cause of this deformation is unknown but may 

have been differential subsidence across basement heterogeneities. The model presented 

here can be applied to predict accommodation change and deep-water system architecture 

across evolving stepped slope profiles, and shows that subtle but persistent deformation 

paired with significant periods of clastic shut off, can have a comparable impact on sediment 

routing systems to mobile substrate and active tectonics. The key to understanding this slope 

evolution was established from topographical indicators given by the distribution of 
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‘disconnected lobes’. This suggests that thin sandstone units can be a better indicator of 

seabed topography over multiple sea-level cycles than thicker and more extensive systems 

that can overwhelm, but still be influenced by, perturbations in gradient. 
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7 Discussion and Conclusions 

 

Here, the research questions posed in Chapter 1 are addressed, with reference to the results 

presented in Chapters 3-6. This chapter concludes with recommendations for potential future 

research arising from this PhD thesis. 

 Introduction  

Understanding the effects of spatially and temporally variable topography on turbidity current 

processes and stratigraphic architecture is becoming ever more important as slope to basin 

flow profiles are increasingly recognised as topographically complex (e.g. Prather, 2000, 2003; 

Prather et al., 2012; Stevenson et al., 2013; Doughty-Jones et al., 2017). Topography can take 

the form of obstacles and slopes, which are frontal, lateral or oblique, and increase or 

decrease in gradient (Section 7.2), all of which impact flow processes and stratigraphic 

architecture on bed to system scale. The effect of topography on flow processes also varies 

temporally, with changes in flow dynamics, healing of topography and deformation of the 

slope and basin floor (Section 7.3). The variation in flow processes and complex evolution 

means these areas have variable degrees of preservation in the stratigraphic record (Section 

7.4). These issues have significant implications for understanding and predicting hydrocarbon 

reservoir potential and sand connectivity in topographically complex slope to basin floor 

systems (Section 7.5).  

 How does orientation and gradient of slope to basin floor topography 

influence sediment gravity flow processes and resultant stratigraphic 

architecture? 

The gradient changes of orientation of slope with respect to flow, impact erosional and 

depositional processes at a range of scales (e.g. Baines, 1984; Kneller and McCaffrey, 1999; 

Haughton, 1994; Kneller and Buckee, 2000; Smith, 2004a; Hodgson and Haughton, 2004; 

Jackson and Johnson, 2009; Deptuck et al., 2012; Prather et al., 2012a, b; Stevenson et al., 

2013; Spychala et al., 2017a; Doughty-Jones et al., 2017). The field-based research presented 

here, tied to case studies from the literature, has led to three distinct configurations being 

identified based on the resultant stratigraphic architecture: i) frontal decreases in slope 

gradient (intraslope flats and base of slope) and reversals (intraslope); ii) frontal increases in 

slope gradient (intraslope ramps); and iii) lateral and oblique-lateral slopes. The various effects 
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of frontal and lateral slope perturbations on a range of slope to basin floor systems have been 

studied to characterise the resultant changes in facies and architecture (Chapters 4, 5 and 6). 

Together these changes in gradient and orientation can lead to the development of 

topographically complex slope to basin floor profiles (Fig. 7.1).  

 

 

Figure 7.1 Models of a simple slope profile, a stepped slope profile, a degraded slope profile and slope 
profile with mini-basin and tortuous corridors and a combined model showing a topographically 
complex slope. 
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7.2.1 Frontal slope- gradient decrease and reversal 

 Intraslope  

Downslope decreases and possible reversals in slope gradient have been interpreted to be the 

cause of intraslope accommodation and lobe development within Units B/C, C, D/E, E and F of 

the Fort Brown Formation (Chapters 5 and 6) as well as within the submarine slide basal shear 

surfaces at Vrisgewaagd farm (Chapter 4). These intraslope lobes are primarily recognised due 

to palaeogeographic context (van der Merwe et al., 2014) and are interpreted to form on a 

lower gradient step, within a stepped slope profile (Fig. 7.1) (Chapter 6). Key sedimentological 

criteria for recognition of intraslope lobes include: lobe dimensions, which are often an order 

of magnitude smaller than basin floor lobes due to restricted accommodation; lobe stacking 

patterns, which are often more aggradational than basin floor lobes; distinctive facies, 

including highly dispersed or opposing palaeocurrent directions, increased proportion of ripple 

and climbing ripple laminations, increased amount of erosional surfaces, and facies transitions 

over shorter distances; sand percentage, which is higher in intraslope lobes due to flow 

stripping of finer-grained materials; and incision by channels, indicating slope accommodation 

was transient (Spychala et al., 2015).   

The degree of intraslope lobe confinement is a key consideration in characterising intraslope 

lobes. Intraslope steps (Fig. 7.2) are weakly confined to unconfined areas (Prather, 2003), with 

lobe deposition occurring due to a decrease in gradient and flow confinement. Weak down-dip 

confinement can cause flow stripping (Sinclair and Tomasso, 2002), whereby the upper, finer 

portions of flows are bypassed down-dip, leading to the development of sand-rich lobes (e.g. 

Chapter 6). This grain-size segregation has also been noted in Late Pleistocene intraslope 

systems offshore Nigeria (Jobe et al., 2017), and numerical simulations (Wang et al., 2017). 

Slide scars (e.g. Chapter 4) and intraslope minibasins (e.g. Prather et al., 1998; Badalini et al., 

2000; Winkle and Booth, 2000; Sinclair and Tomasso, 2000; Shultz and Hubbard, 2005; Prather 

et al., 2012a, b, 2017; Sylvester et al., 2015; Doughty-Jones et al., 2017) can create 3D 

enclosing topography, within which confined intraslope lobes can form (Figs 7.1 and 7.2). 

Initial flows in confined intraslope lobes are fully ponded within topography, with similar 

characteristic to small confined basins (e.g. the Castagnola Formation, Felletti, 2002; Southern 

et al., 2015; Marini et al., 2016), including the formation of thick siltstone caps (e.g. Marini et 

al., 2016), as upper, finer grained portions of flows are unable to surmount downdip 

topography. As accommodation is healed flows gradually transition to weakly confined 
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(undergoing flow stripping) and unconfined, eventually infilling and overspilling confining 

topography (e.g. fill and over spill model; Sinclair and Tomasso, 2002).  

Another consideration in intraslope lobe development is the magnitude and distribution of 

sediment input. Where concentrated channelized flows reach an area of lower gradient they 

can form intraslope lobes such as those discussed above and shown in Figure 7.2. Conversely, 

where sediment input is not concentrated in a single channel system and is widespread 

‘disconnected’ intraslope lobes can form (Fig. 7.2) (Chapter 6).  

These ‘disconnected’ lobes (Fig. 7.2) are characterised by thin lobe deposits that are 

widespread due to multiple sediment inputs and do not stack aggradationally or 

compensationally as a result. As no focused conduit (channel system) is constantly eroding a 

single area in order to grade the slope, the flows are likely traversing ‘out-of-grade’ areas 

(sensu Prather, 2003), and are therefore constantly eroding the slope. This is evident from the 

scoured bases of beds and high proportions of mudclasts within (Chapter 6). This widespread 

erosion may cause loss of energy in flows as well as forming subtle erosional topography 

throughout the slope, with the weak confinement allowing flows to be widespread as they 

reach a reduced gradient. Therefore, flows may react more to topography, due to: (a) 

increased subtle topography; and (b) lower energy and thinner flows unable to erode as they 

reach the low gradient area. These factors would cause more deflection of flows resulting in 

more numerous, widespread and complex pinch-outs and thinning of deposits.   
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Figure 7.2 Types of intraslope lobe. Partially confined lobes in intraslope steps. Confined to unconfined 
lobes in submarine slides and ‘disconnected’ intraslope lobes with multiple input points.  
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 Base of slope  

The most marked decrease in gradient is generally associated with the transition from slope to 

basin floor, at the base of slope. Unconfined basin-floor environments are dominated by lobe 

deposition (e.g. Shanmugam and Moiola, 1991; Shanmugam et al., 1995; Bouma, 2000; 

Johnson et al., 2001; Hodgson et al., 2006; Prélat et al., 2009) and lower slope settings are 

characterised by channel-levee systems (e.g. Peakall et al., 2000; Babonneau et al., 2002; 

Posamentier, 2003; Posamentier and Kolla, 2003; Kane et al., 2007; Wynn et al., 2007; Di 

Celma et al., 2011; Hodgson et al., 2011). Therefore, the area in between the slope and basin-

floor (the base-of-slope) commonly coincides with the development of channel lobe transition 

zones (e.g. Mutti and Normark, 1987; Gardner et al., 2003; Brunt et al., 2013a; Van der Merwe 

et al., 2014; Hofstra et al., 2015; Pemberton et al., 2016). 

Changes in the character of this slope break (e.g. up-dip gradient, down-dip gradient, ratio and 

length of gradient decrease) can lead to variability in the sedimentological and stratigraphic 

expression of the base-of-slope area, between successive systems (e.g. Unit D to E, Chapters 5 

and 6) or within a single system (e.g. Unit E3, Chapter 5). This variability from connected 

channel-levees and lobes to a spatially distinct sediment bypass dominated CLTZ that can be 

transferred into the rock record (Fig. 7.3) is considered to relate to: i) the relative decrease in 

slope gradient; ii) the distance over which gradient changes; and/or iii) the properties of 

incoming flows, associated with proximity to feeder system (Chapter 5).  

The Sub-unit E3 CLTZ can be characterised spatially into distinct zones (Fig. 7.4): (a) a proximal 

area of mixed erosional and depositional features, including composite scour forms, sediment 

waves and bypass lags; (b) a zone of more efficient sediment bypass, characterised by shallow 

(cm scale) composite erosional surfaces and drapes; and (c) a zone of reworked lobe deposits, 

with thick slumped sandstone beds , numerous erosional surfaces throughout, a significant 

mudclast and silt component, and a scoured top surface. 
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Figure 7.3 Variations across the base of slope in Sub-unit E3 (Chapter 5) from a levee-lobe transition zone 
(top) to a channel-lobe transition zone.  

A CLTZ has also been noted within the younger Sub-Unit F3, which contains a similar array of 

features in a bypass dominated zone (Chapter 6), comprising of an area of minor deposition 

with composite scours mantled by lag deposits (Appendix B.2), with thick basin floor lobes 

down-dip (Chapter 6; Appendix B.2). CLTZs with scours and lags are restricted to these later 

units suggesting that the flows had a greater tendency to produce a hydraulic jumps (Weirich, 

1989; Kostic and Parker, 2006; Sumner et al., 2013) possibly due to the lower slope being of 

higher gradient, producing a more pronounced gradient change at the base-of-slope. This 

increased gradient may be associated with ongoing deformation and formation of the stepped 

slope profile (Chapter 6). Although not bypass dominated throughout, Unit A5 does show 

evidence of significant erosion at the base-of-slope where a comparatively larger scour (10s 

metres deep, hundred metres in length) has been documented (Hofstra et al., 2015).  
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Figure 7.4 (A) cross sections and (B) plan view of CLTZ, modified from Wynn et al. (2002a). 

  

7.2.2 Frontal slope- gradient increase  

Downdip of intraslope lobe deposits in stepped slope profiles, intraslope minibasins and slide 

scars (as discussed above), slope profiles can increase in gradient (i.e. ramps in stepped slope 

profiles, Prather, 2000, 2003; O’Byrne et al., 2004; Smith, 2004a; Hay, 2012). This increase can 
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cause a similarly dramatic change (Section 7.1.1), which is associated with an increase in 

sediment bypass and the initiation of channelized flows (e.g. Hay, 2012; Stevenson et al., 2013, 

2014). Sediment bypass has been shown to initiate with small gradient increases (fraction of a 

degree); for example, in the Agadir Basin Stevenson et al. (2013) show acceleration of turbidity 

currents with an increase in slope gradient from <0.02º to >0.06º, therefore intensifying 

ambient mixing at the head and reducing mixing in the body of the flow. 

Whilst traversing step flats or slide scars, even when mostly healed, it is likely that flows will 

decrease in velocity and capacity due to spatial variations in gradient and topography, with 

some flows still becoming partially confined within these areas. Flows initially overspilling this 

area, may accelerate due to the increase in gradient, but will initially be unconfined to weakly 

confined with no pre-existing conduits, and depending on the number of entry locations onto 

this higher gradient area and the concentrations of flows, may remain relatively unconfined for 

significant periods (e.g. Sub-units E2 and E3, Chapter 5). In some cases, flows may remain 

unchannelized throughout unit deposition (e.g. Units A/B, B/C and D/E, Chapter 6). These 

unconfined to weakly confined flows are bypass dominated, leaving relatively thin depositional 

records (e.g. Sub-units E2 and E3, Chapter 5), and may show similar characteristics to 

unconfined channel bypass, described by Stevenson et al. (2013) in the Madeira channel 

system. Conversely, complete downdip re-channelization of flows may occur (i) when the 

volume and duration of flows bypassing the area is sufficient to create through going conduits, 

or (ii) when the gradient decrease/ reduction in confinement is insufficient for lobe formation 

and instead creates weakly confined channel complexes (e.g. Moody et al., 2012).  

7.2.3 Lateral and oblique-lateral slopes  

The effects of lateral and oblique-lateral slopes on flows vary greatly with flow properties as 

well as the height, gradient and orientation of the slope (Kneller et al., 1991; Kneller, 1995; 

McCaffrey and Kneller, 2001; Amy et al., 2004). Lateral slopes of several magnitudes and scales 

have been interpreted to affect sedimentology and stratigraphic architecture of slope to basin 

floor deposits in the Laingsburg depocentre. High gradient lateral margins have been shown to 

contribute to confinement of flows and can be dynamic and drive instability and failure (Fig. 

7.5A) (Chapter 4). Low gradient lateral/oblique slopes can cause varying onlap styles and pinch 

outs in lobes and lobe complexes (Fig. 7.5B) (Chapter 6). Regional-scale lateral slopes have 

been demonstrated to control depositional architecture of multiple systems (Fig. 7.5C) 

(Chapters 5 and 6). 
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High gradient lateral margins can cause the abrupt pinch out of turbidites; and drive 

instabilities. The infill of a submarine slide basal shear surface documented in the Laingsburg 

depocentre (Chapter 4) has shown that lateral margins of an 8 (compacted) gradient are 

sufficient to cause post-depositional slumping of infilling strata in the form of more cohesively 

faulted sediments and chaotic slumps, away from the lateral margin towards the deepest 

eroded point (Fig. 7.5A) (Chapter 4). Similar abrupt onlap, sometimes associated with 

remobilization, has been documented from small confined basins (Fig. 7.5B) with slope 

gradients of 5 -12 (e.g. Pickering and Hilton, 1998; Sinclair, 2000; Haughton, 2000; Sinclair 

and Tomasso, 2002; Amy et al., 2004; Hodgson and Haughton, 2004; Smith and Joseph, 2004; 

Amy et al., 2007; Aas et al., 2010; Etienne, 2012; Etienne et al., 2012; Yang and Kim, 2014; 

Marini et al., 2015). In areas of lower lateral slope gradient (e.g. <0.3) lobes can show 

aggradational onlap and facies transitions (Fig. 7.5B) (Spychala et al., 2017a) (Chapter 6).  

Lateral slopes can also have an impact at regional scale. The relatively abrupt pinch out of 

several basin floor systems of the Fort Brown Formation (D/E and E3; Chapters 5 and 6) 

indicate the uplift of a lateral basin margin, that affected both the architecture of the units and 

possibly the stacking of multiple systems (Chapter 6). The stacking of several of the slope to 

basin floor systems in the Laingsburg depocentre has been interpreted to be influenced by 

differential compaction over the sand-rich axes compared to the silt-rich margins of systems, 

and related compensational stacking (Grecula et al., 2003; Prélat et al., 2009; van der Merwe 

et al., 2014). When the basin margin began to uplift in the south it caused the systems to stack 

towards the north (Fig. 7.5C) (Chapter 6). 
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Figure 7.5 Outcrop examples of the effect of lateral slopes on sedimentology and stratigraphic 
architecture of slope to basin floor systems at varying scales. (A) High gradient lateral margins of 
submarine slide basal shear surfaces can contribute to complete ponding of later flows as well as cause 
remobilization down-slope into the centre of the basal shear surface. (B) The style of onlap of intraslope 
and basin floor lobes can be controlled by lateral slopes, varying from abrupt onlap against high gradient 
slopes to downlap in unconfined settings (from Spychala et al., 2017a). (C) The stacking of multiple lobe 
complexes through successive depositional systems can be influenced by active uplift of a lateral basin 
margin. 
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 How does topographic influence on turbidity currents vary and evolve? 

The topographic influence on flows can vary significantly over different timescales by varying 

the properties of individual flows or changes in the gradient/size/distribution of topography 

(Kneller and Buckee, 2000).  

7.3.1 Topography evolution over deposition of a single system  

Throughout the deposition of a single system, flows vary according to their physical properties 

as well as changes along the flow pathway. Therefore, each flow reaching a specific point is 

subtly different. Moreover, topography can vary in location and relative magnitude. As flows 

erode and deposit they modify the shape of the seabed with which subsequent flows will 

interact. For example, with topographic height increase relative to flow height, flow 

stratification increases and a hydraulic jump is more likely to occur downstream of topographic 

change (Kneller and Buckee, 2000). If topography is decreased through depositional healing or 

erosion of slope/ obstacles, subsequent flows will interact with lower magnitude topography.   

Examples of the varying response of flows to topography over a single system have been 

recognised throughout the Laingsburg depocentre and include the following.  

 CLTZ migration and evolution  

Detailed documentation of the Sub-unit E3 channel-lobe transition zone has shown that this 

sediment bypass dominated zone did not remain fixed through time and expanded, contracted 

and migrated throughout the formation of down-dip basin floor lobes (Chapter 5). This is 

interpreted to relate to (a) changes in flow dynamics, i.e. affecting the location where flows 

undergo a hydraulic jump (Waltham, 2004; Huang et al., 2009; Sumner et al., 2013; Dorrell et 

al., 2016); (b) the evolution of the feeder system, with flows travelling further into the basin 

through a more efficient channel system that is closer to equilibrium (Pirmez et al., 2000; 

Kneller, 2003; Covault et al., 2016; Hodgson et al. 2016); and (c) spatial variations of bed shear 

stress related to flow-topography interactions (e.g. Agadir basin, Macdonald et al., 2011a).  

 Slope accommodation infill and overspill  

The various types and formation of intraslope lobes has been discussed in section 7.1.1.1. 

When slope accommodation is being infilled flows can be partially or fully confined up-dip. As 

the accommodation is healed by continuous sedimentation, later flows interact with subdued 

topography. This phenomenon has been documented in other systems and termed the ‘fill and 
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spill’ model (e.g. Winker, 1996; Prather et al., 1998; Sinclair and Tomasso, 2002). The 

stratigraphic record of Sub-units E2, E3 and F3 of the Fort Brown Formation documents this 

process fully on an exhumed stepped slope for the first time (Chapters 5 and 6). Initially lobes 

form in an area of reduced gradient (section 7.1.1). Sand-rich deposits are contained within 

this up-dip area, whilst the finer upper portions of flow are able to continue down-dip, through 

flow stripping (Sinclair and Tomasso, 2002). These fines create widespread draping of siltstone 

thin-beds down-dip, as more sand is retained in the up-dip area. These deposits are present for 

10s of kilometres in dip length and several kilometres in strike, and are termed ‘spill-over 

fringe’ (Chapter 5). As the first sand-rich flows breach up-dip confinement they are initially 

unconfined to weakly confined with no pre-existing conduits (section 7.1.2) therefore initial 

base-of-slope lobes are similar to ‘disconnected intraslope lobes’ (section 7.1.1), e.g. Sub-unit 

E2 (Chapters 5 and 6). As up-dip accommodation continues to heal, channel-levee systems can 

propagate over lobes e.g. Sub-unit E2 (Spychala et al., 2015).   

This fill and spill evolution can also be documented in the infill of submarine slide basal shear 

surfaces (Chapter 4). Due to the lateral (Section 7.1.3) and frontal confinement (section 7.1.1) 

initial flows are fully ponded with thick siltstone caps (section 7.1.3) (Fig. 7.5A); these 

transition to unconfined flows stratigraphically as they break topography (Chapter 4). As the 

location of the slide scar is in a peripheral area to the main sediment input (Chapter 4), there is 

no later incision by channels. When accommodation was filled in this area, an up-dip area of 

sediment input likely switched and possibly filled other slope accommodation or continued 

down the main conduit out of section (Chapter 4).  

7.3.2 Topography evolution over deposition of multiple systems 

Over longer timescales the effects of topography on entire systems can vary significantly, by 

varying the slope to basin floor profile through long acting processes such as deformation and 

uplift. Long term changes in the effect of topography can be seen in the evolution of the 

submarine slide scar complex (Chapter 4) as well as the evolution of the entire stepped slope 

profile (Chapters 5 and 6).  

 Stacking of basal shear surfaces and evolving infill confinement 

Chapter 4 documents the evolving confinement of submarine slide infill, forming on an actively 

tilting lateral basin margin. The submarine slide complex forms in three distinct stages: (1) 

deposition of unconfined remobilized deposits that have outrun their basal shear surface onto 

the lower slope or basin floor, with the rugose top surface causing the partial ponding and 
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confinement of flows; (2) erosion of a basal shear surface and infill with thick remobilized 

deposits and partially confined turbidity currents; and (3) erosion of a second basal shear 

surface and infill of thinner remobilized deposits and fully confined flows that stratigraphically 

transition to unconfined as accommodation is healed (Fig. 7.6).  

The increase in turbidity current confinement is likely related to the down-dip stacking of the 

initial remobilized infill of slide scars, therefore forming larger down-dip topographic barriers 

(Fig. 7.6). Moreover, the increase in slope gradient will create a progressively more out-of-

phase slope profile, which may result in increased basal shear surface depths within 

subsequent slides, leading to more frontal confinement (Fig. 7.6) (Frey-Martinez et al., 2006; 

Moernaut and De Batist, 2011). 

Using this outcrop example as a model for actively uplifting slopes it is possible to speculate on 

the changes in flow confinement that may occur in other scenarios. For example, if a slope was 

uplifting more gradually or to a lesser degree it is possible that remobilized deposits would 

have insufficient gravitational potential energy to overcome the down-dip topographic barrier 

and would more quickly become confined (Fig. 7.6). Arguably, an increase in slope gradient 

could also cause more rapid confinement with a more out of phase slope profile resulting in 

increased basal shear surface depths within subsequent slides, also leading to more frontal 

confinement (Frey-Martinez et al., 2006; Moernaut and De Batist, 2011). If the slope was 

longer remobilized deposits would have greater gravitational potential energy and run out 

over longer distances, therefore numerous remobilized deposits would have to stack to create 

the down-dip confinement necessary to partially confine turbidity currents (Fig. 7.6).  

Using this outcrop to speculate on stacking patterns in these situations may allow for improved 

prediction of reservoirs within the infill of submarine slides. Partially confined turbidity current 

deposits have the greatest reservoir potential due to the stripping of finer potions of flows 

leaving them sand-rich. Therefore, predicting where and when these situations can occur will 

aid hydrocarbon exploration.  
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Figure 7.6 Variation in turbidity current confinement overlying varying morphologies of basal shear surface 
and initial remobilized infill, with stacking example from Chapter 4 and two other scenarios of decreased 
slope uplift and a longer slope.   
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 Evolution of slope to basin floor topography  

The formation of stepped slope profile occurs when sedimentation rate exceeds the rate of 

subsidence, with slope accommodation considered to be ‘healed’ when depositional packages 

show evidence of late stage bypass e.g. E3 and F3 (Prather, 2000; Pirmez et al., 2000; Meckel 

et al., 2002; Hay, 2012). Higher subsidence rate in relation to sedimentation rate would be 

required to largely confine sand-rich portions of flows to the slope e.g. E1, E2, F1 and F2. 

Therefore, in a scenario similar to that of the Laingsburg depocentre, if the sedimentation rate 

was to continue decreasing in the pattern discussed in Chapter 6 then it is likely deformation 

rate would further outpace sedimentation rate (Fig. 7.7). In this scenario, the relative 

confinement of slope accommodation would increase, with the possibility that it would not fill 

and overspill, thus acting as a ‘true mini-basin’ with deposit fully ponded on the slope (Prather, 

2000; Prather et al., 2012a) – a sill-and-fill model. The relatively subtle topography and low 

rate of deformation compared to many slopes with mobile substrates (e.g. Prather, 2003; Hay, 

2012) is likely the cause of the relatively long duration and intermediate phases of stepped 

slope formation. It is evident that given sufficient time, slope accommodation and therefore 

slope deposits with sufficient reservoir potential can form in ‘passive’ basins with relatively 

subtle topography.  
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Figure 7.7 Graph showing comparison of sedimentation and deformation rates throughout the 
deposition of the Laingsburg and Fort Brown formation (more detail given in figure 6.18), further 
extended to show a scenario where deformation continues to outpace sedimentation.  
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Figure 7.8 (Top) Variations in sedimentation vs. deformation rate if deformation were to 
increase/decrease in magnitude, and (bottom) if no long-term clastic shut off were too occur.  
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The graphical representation of sedimentation and deformation rate for the formation of the 

stepped slope profile can be modified to predict slope accommodation in other scenarios (Fig. 

7.8). If deformation rate were higher than that in the Laingsburg depocentre (top graph, Fig. 

7.8) then it would significantly outpace sedimentation rate earlier on in system development, 

possibly accelerating the development of the stepped slope profile, and leading to the 

development of fully ponded accommodation in the latter stages of evolution, similar to 

systems deformed by mobile substrate (e.g. Deptuck et al., 2003; Prather, 2003; Adeogba et 

al., 2005; Hay, 2012). Conversely, if deformation rate was less than in the Laingsburg 

depocentre (Fig. 7.8), sedimentation rate would outpace deformation rate throughout 

deposition of the Laingsburg and Fort Brown formations and therefore erosional and 

depositional processes could heal topography created by deformation and keep the profile 

closer to equilibrium (Pirmez et al., 2000).  

Another likely contribution to the formation of the stepped slope profile was the long-term 

periods of clastic shut off between the lowstand sequence sets (Chapter 6).  This also meant 

that the impact of the topography was more pronounced at the initiation of each lowstand 

sequence set (Chapter 6).Without high frequency or long duration clastic shut off there was 

not sufficient time for slope deformation to build and restore topographic flats or lows within 

the slope (e.g. Prather, 2000, 2003). In this scenario sedimentation rate will significantly 

outpace deformation rate (bottom graph, Fig. 7.8) and a stepped slope profiles will not evolve.  

 How are topographically complex components transferred into the 

stratigraphic record?  

Through the examination of modern seafloor datasets it is evident that the stratigraphic record 

does not directly reflect the seafloor processes at the time of formation. This is due to: (a) a 

bias towards depositional processes, which leave a greater stratigraphic signature, with bypass 

processes leaving little or no record; (b) strata only recording flow properties as they were 

during a depositional phase; (c) later erosion of material creating an incomplete record; and 

(d) the later modification of deposits by dewatering, slumping, faulting and failure during early 

compaction, and later structural deformation.  

Preservation potential of features varies in response to system evolution (e.g. Hodgson et al., 

2016). Therefore, when interpreting environments and evolution of deep-water systems from 

the stratigraphic record these issues need to be evaluated. Several examples of the complexity 

of transfer into the stratigraphic record have been noted in the Laingsburg depocentre, with 
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more issues arising where flows undergo significant changes, such as in topographically 

complex areas and where surfaces are time transgressive.  

7.4.1 Bypass dominated zones  

By definition bypassing flows should neither erode nor deposit and therefore leave no 

stratigraphic record. Despite this, fully bypassing flows are likely rare in the ‘real world’ with 

small-scale erosion or deposition occurring as flows traverse ‘bypass dominated’ areas. The 

description ‘bypass dominated’ (sensu Stevenson et al., 2015) is used to imply that flows with 

large sediment loads are traversing an area with minimal (mm- cm scale) erosion or 

deposition, and that for a specific stratigraphic interval, flows are leaving a negligible 

stratigraphic record. Due to this negligible record, sediment bypass dominated zones can be 

challenging to identify at outcrop, and are deciphered through features consistent with subtle 

erosional and depositional signatures from bypassing flows (Chapter 5) and recognition of 

down-dip sediments (Chapter 5 and 6).  

 Channel-lobe transition zones  

 

Figure 7.9 Example of CLTZ preservation as a single surface (from Hodgson et al., 2016) and as a volume 
of rock (Chapter 5).  
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Overall, there is both temporal and spatial control on preservation potential of CLTZs. The CLTZ 

can be preserved as a surface (Fig. 7.9) (e.g. Chapter 6; Elliott, 2000; Gardner et al., 2003) or a 

net-depositional volume of rock (Fig. 7.9) (e.g. Chapter, 5; Hofstra et al., 2015; Pemberton et 

al., 2016). The preservation potential and style is a result of when the CLTZ is evolving within a 

system. In order to preserve the bypass-dominated area, the feeder channel must not later 

propagate through the system and erode the CLTZ; this is characteristic of progradational 

phases in system evolution (Hofstra et al., 2015; Hodgson et al. 2016). In retrogradational 

phases CLTZs are preserved, with development most substantial between these two phases at 

the maximum extent of channel propagation (Hofstra, 2016). Within CLTZs minimal deposition 

and composite erosion surfaces can represent several stages of migration, expansion and 

contraction (Chapter 5). Due to constant erosion and bypass of sediment, parts of the CLTZ can 

be significantly reworked and have low preservation potential. Distally and laterally away from 

the axial areas, deposits show less reworking and preserve primary features. The unique 

preservation of the Slagtersfontein CLTZ, unaffected by later stage progradation and incision of 

the channel system, suggests this section is either: (i) a sufficiently off-axis transect through 

the CLTZ and was not cannibalised as the channel propagated (Hodgson et al., 2016); or (ii) the 

channel never fully propagated through the zone (Hofstra et al., 2015). The unique 

preservation of the E3 CLTZ and the draping of regional mudstone may suggest an abrupt shut-

off of the system, or a significant avulsion of the feeder system out of the study area to the 

north.  

7.4.2 Basal shear surfaces  

Submarine slide basal shear surfaces can have a complex transference into the stratigraphic 

record as they are time transgressive (Chapter 4). After the initial erosion of the basal shear 

surface the primary morphology of a basal shear surface/zone is further complicated by post 

depositional remobilization, occurring directly after deposition on unstable gradients (e.g. 

section 7.1.3) and/or due to differential compaction (section 7.3.3), especially over variably 

lithified substrate (Alves and Lourenço, 2010). Moreover, as the shear can commonly form a 

zone of significant thickness (up to 10 m; Chapter 4), there is potential for reactivation of many 

of the numerous slip planes due to dewatering, or loading by later infilling deposits. These 

surfaces therefore remain unstable long after initial erosion and can cause faulting in overlying 

material and creep.  



255 
 

 
 

7.4.3 Differential compaction  

Compaction is important to consider when comparing ancient systems in the subsurface with 

modern equivalent. Differential compaction can result in significant alterations in primary 

morphology especially over spatially heterogeneous substrate such as within and outside of 

submarine slide basal shear surfaces, and over variably lithified substrate, such as megaclasts 

(e.g. Alves, 2010). Differential compaction can consequently cause the tilting, faulting or 

slumping of material in both early (soon after deposition) and late (during lithification) stages 

of burial.  

Differential compaction can also affect areas where sand-rich units significantly thin, by 

compacting sand-prone units to a lesser degree than the draping mudstone. This is highlighted 

in the stacking of Units A-F in the Laingsburg depocentre. The overall down-dip thinning and 

then thickening recognised in most units to some degree (Chapter 6), creates a more 

significant signature in the stacking off all units. Therefore, differential compaction can 

highlight areas of fixed topography influencing several stacked units by creating a greater 

signature in the stratigraphic record, compared to a single system.  

 Subsurface applications and implication of study  

The use of outcrop analogues is a key tool to augment seismic datasets by documenting and 

quantifying sedimentary architecture, hierarchy, and sedimentary facies relationships that are 

below seismic resolution (e.g. Dreyer et al., 1993; Howell et al., 2014). Over 75% of global 

Cenozoic reservoir discoveries are associated with stepped slope profiles (O’Byrne et al., 

2004), meaning they have had significant focus in recent reflection seismic-based research 

(Prather 2000, 2003; Steffens et al., 2003; Hay, 2012; Prather et al., 2012; Doughty-Jones et al., 

2017), but the Laingsburg depocentre is the only exhumed example documented at seismic 

scale (van der Merwe et al., 2014). Topographic complexity can lead to unusual configurations 

of deep-water systems, with evolving flow-relief interactions, and therefore improved 

understanding of these can lead to reduction in uncertainty and improving prediction of 

reservoirs and seals during hydrocarbon exploration and production (e.g. Prather, 2003; Smith, 

2004a; Jackson et al., 2009; Deptuck et al., 2012).  

7.5.1 Bypass dominated zones and up-dip pinch outs  

Areas of coarse sediment bypass are challenging to recognise in outcrop and are usually below 

seismic resolution (Fig. 7.10). However, they have been identified as key areas in the search for 
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updip stratigraphic trap targets (e.g. the Jubilee Field, offshore Ghana; Dailly et al., 2012).  

Therefore, there is significant uncertainty when predicting connectivity of sands up- and down-

dip of sediment bypass dominated zones, and the likelihood of fluid leakage from lobes to 

channels. Sediment bypass-dominated zones that developed in channel-lobe transition zones 

in ramp to step settings have been investigated in detail (Chapters 5 and 6). Better 

understanding of the sedimentology and stratigraphy of these zones helps improve prediction 

of the degree of connectivity between up-dip channel-fills and down-dip lobes. Several factors 

need to be considered when assessing sand connectivity including: reservoir potential of sand, 

lateral variation across strike and temporal changes to the system.  

Across the CLTZ, the sand component of Sub-unit E3 is thin (< 1 m and below conventional 

reflection seismic detection), has significant mud component, both in matrix and clast form, is 

highly dewatered and partially slumped, and is highly complicated due to numerous scours. 

Along the 2D exposed section at Slagtersfontein it is possible that the thin, ‘dirty’ and highly 

disconnected sandstone would prevent migration of hydrocarbons and therefore create an up-

dip stratigraphic trap for the down-dip thick, sand-rich lobes which thicken abruptly at a rate of 

9 m/100 m, to a maximum of 40 m in thickness. Examination of the same unit across strike 

complicates this assessment (Fig. 7.3 and 7.4), with the section to the north showing a direct 

connection between sand-rich levee and lobe deposits. The recognition of several stages of 

migration further complicates the 3D architecture of the CLTZ, which shortened and 

lengthened during deposition of Unit E from 2 km to 6 km indicating that CLTZs are dynamic 

features that build a complicated and composite stratigraphy. Therefore, any prediction of 

connectivity in 3D is highly challenging and presents significant risks for hydrocarbons. In the 

case of Slagtersfontein as an analogue for an updip stratigraphic trap, this may have worked as 

a combination trap due to the presence of a small extensional growth fault that may have 

effectively disconnected the lobes from the CLTZ. 

Reflection seismic datasets can be used to interpret areas of coarse sediment bypass as 

distinct areas of low amplitude separating areas of high amplitude (e.g. Fig. 7.10). These sand 

bodies may appear to be isolated and potential reservoirs. As discussed above, connectivity of 

sands below seismic resolution is possible. Figure 7.10 shows an example of ‘disconnected’ 

sand-rich channel systems from the Måløy Slope, offshore Norway, with an area of sediment 

bypass created by a localised steepening in slope gradient (Jackson et al., 2008). Examples 

from the Laingsburg depocentre have shown the possible development of weakly confined 

bypass dominated channels in high gradient ‘ramps’, feeding significant down-dip lobes 

(Chapters 5 and 6), which would leave a stratigraphic record several metres in thickness, (i.e. 
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below seismic resolution). Therefore, systems such as that shown in Figure 7.10 may have 

significant risks for up-dip leaking of hydrocarbons.  

 

Figure 7.10 Kyrre Formation, Måløy Slope, Norway- In this seismic section an area of high amplitude 
reflectors has been recognised, which well data has shown to be sand rich, lying down-dip of a fold 
structure with no apparent sand, suggesting that sand was bypassed over the structure (from Jackson et 
al., 2008). 

Seismic reflection datasets are often augmented with well log and core data. These can be 

used to interpret the presence of bypass surfaces. Within core the presence of erosion 

surfaces can be used to interpret channel incision and bypass-dominated intervals. These 

surfaces may be overlain by lag deposits of intraformational or extrabasinal clast-rich 

conglomerate (Beaubouef et al., 1999; Pickering et al., 2001; Pickering and Corregidor, 2005; 

Luthi et al., 2006; Mayall et al., 2006; Hubbard et al., 2009; Grundvåg et al., 2014), or draped 

by fine-grained sandstone and mudstone. Where draped by sandstone or sand-rich lags, these 

surfaces can be recognised on gamma ray logs (Fig. 7.11). In gamma rays logs of CLTZs, these 

surfaces are represented as small negative spikes in sections that are otherwise similar to 

those of distal lobe fringes (Fig. 7.11) (Stevenson et al., 2015), therefore caution is needed 

when these apparently minor sand bodies are recognised up-dip of reservoir sands that have 

been interpreted as isolated. Conversely, if recognised down-dip of lobe complexes and 

considered terminal, they may actually indicate that the system continues down-dip with more 

distal reservoir targets.  
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Figure 7. 11 Bypass related erosional surfaces and deposits can be visible as sharp negative spikes in 
gamma ray logs. Recognition of these spikes can distinguish between bypass surfaces and distal lobe 
fringe fines. In a basinal context these bypass surfaces are key conduits between up-dip and down-dip 
coarse deposits. Logs modified from Stevenson et al. (2015).  

 

7.5.2 Stepped slope evolution  

This study has shown that through the understanding of sedimentation rate and deformation 

rate it is possible to demonstrate the evolution from a ‘simple’ slope to a stepped slope profile, 

and to predict the development of ponded or perched accommodation (Section 7.3.2.2). 

Through the understanding and prediction of stacking patterns and sediment partitioning of 

systems at composite sequence scale, areas of long-term preferential sand volume can be 

predicted, with secondary control from differential compaction influencing compensational 

stacking patterns (Section 7.4.3).  

Thin sand units, interpreted as disconnected lobe complexes (Chapter 6), have been shown to 

be key indicators for showing areas of long-term increased accommodation during slope 

evolution. The thickness of these units (<14 m) means they may not be discernible on most 

seismic datasets but are recognisable in core and well logs (Fig. 7.12). These units are 

represented as anomalous negative sections in gamma ray and neutron porosity logs in 

otherwise thick positive sections representing regional mudstone units (Fig. 7.12).  
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Figure 7.12 Core, Gamma Ray and Neutron Porosity logs of Unit A/B. 

These units may only represent secondary reservoir targets due to their simple geometry and 

sand-rich nature with thin waste zones. However, their thin discontinuous nature, sharp-base 

and tops, and abrupt sand-rich pinchout mean that are prone to clastic injection (Cobain et al. 

2017). Nonetheless, they may aid in the prediction of the geometry and architecture of 

bounding thicker sand-rich systems below and above (Chapter 6).  

7.5.3 Submarine slide complexes  

Mass-transport complexes can act as seals to hydrocarbon reservoirs or, less commonly, as 

reservoirs in their own right (e.g. Gamboa et al., 2010; Omosanya and Alves, 2013; Alves et al., 

2014). Application of the results of this work to subsurface data sets will provide better 

understanding of transport and depositional process within stacked submarine slides (Chapter 

4), which is currently lacking in seismic and modern datasets. The erosive nature of the mass 
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flow and subsequent infill influences sand distribution pathways and connectivity across 

continental slope successions, which can impact the distribution of hydrocarbon reservoirs and 

seals (Prior et al., 1984; Masson et al., 1997; Gee et al., 2006; Heniö and Davies, 2006; Alves 

and Cartwright, 2009; Morley, 2009; Joanne et al., 2013). 

Infill of submarine slide basal shear surfaces can be highly variable (Chapter 4), with infill 

successions further complicated by truncation by subsequent basal shear surfaces (Chapter 4). 

Figure 7.13 shows a simplified stratigraphic panel of the outcrop presented in Chapter 4 

overlying a similar sized slide scar from offshore Colombia (Ortiz-Karpf, 2016; Ortiz-Karpf et al., 

2017). The complexity shown by the simplified panel is not discernible on seismic datasets and 

would likely not be predicted even if several well logs were drilled through this submarine 

slide. The sand-rich turbidity currents and mass flows captured within the slide scar surfaces 

deposited thick sand beds which represent potential for hydrocarbon reservoirs and seals 

respectively (Kneller et al., 2016). However, this study highlights the discontinuous and 

truncated nature of many packages that infill the basal shear surfaces, which may create 

reservoir and seal pairs, but have potential for leaking in 3D and may be highly 

compartmentalized.  

 

 

Figure 7.13 Overlay of simplified panel from Chapter 4 onto example of submarine slide from Magdelana 
fan, offshore Colombia (from Ortiz-Karpf, 2016).  

Where turbidite systems are confined within slides, they show many similarities with deposits 

in partially ponded transient minibasins (e.g. Booth et al., 2003; Beaubouef and Abreu, 2006; 

Madof et al., 2009) with the potential to form sand-rich systems isolated within the slope. 

These may represent significant reservoir potential where failure has occurred in a silt-rich 
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slope systems. However, completely ponded turbidites have thick mudstone caps which may 

create highly compartmentalized reservoirs that are uneconomic. Partially confined turbidite 

systems tend to be overall more sand-rich due to flow-stripping and therefore may represent 

more economic reservoirs. If these systems transition upwards to unconfined, filling and 

overspilling accommodation, there may be potential for leaking of hydrocarbons in 3D. 

Conversely, if these systems are truncated by further basal shear surfaces and overlain by 

mud-rich and debritic remobilized deposits, they may become completely isolated bodies of 

sand in 3D. Therefore submarine slide complexes forming through multiple failures can 

represent significant reservoir and seal potential (e.g. Meckel et al., 2002), and applying 

models to predict confinement of remobilized and turbidite infill in various slope scenarios 

(Section 7.3.2.1) can aid discovery and more accurate interpretations of reservoirs within 

submarine slides 

 Conclusions  

The effect of changes in topographic relief, gradient, orientation, and amplitude, in slope to 

basin floor settings, even where relatively subtle (<1 changes in gradient), have a profound 

impact on flow behaviour, patterns of erosion and deposition, and resultant stratigraphic 

architecture from individual bed to system scale. Slope profiles cannot be simply classified by 

types, such as simple or stepped or ponded profiles, because of the range of obstacles and 

flow types which vary in time and space.  

Downslope decrease and reversals in gradient, resulting from the formation of intraslope steps 

and minibasins by deformation, or evacuation by submarine slides, can result in the formation 

of intraslope lobe deposits. Intraslope lobes can vary from fully to partially or weakly confined, 

and can be fed by a single or multiple sources. Reduction in gradient at the base-of-slope can 

lead to the formation of areas of coarse sediment bypass, with intense scouring and lag 

deposition, known as channel-lobe transition zones (CLTZs). CLTZs vary in length spatially and 

temporally due to changes in flow dynamics and length and gradient change of slope break, 

resulting in a thin but composite and complicated stratigraphic expression. Increases in 

gradient downslope can accelerate flows. Initially, numerous weakly confined conduits can 

form which can evolve into channel-levee complexes with sustained flow input.  

Lateral slopes can have varying effects on sedimentary processes and depositional 

architecture, from bed to system scale, primarily depending on slope gradient and orientation. 

High gradient lateral slopes are unstable, and can cause remobilization downslope as well as 
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onlap and abrupt pinch out of beds. Lower gradient lateral slopes can cause aggradational 

onlap and facies transitions over longer length scales. Large scale lateral slopes, such as lateral 

basin margins, aided by differential compaction can control the stacking of multiple systems.  

Topographic influence can evolve during the life of a single system through variations in flow-

relief (erosional and depositional) interactions, and healing of topography. This evolution is 

shown in the contraction/expansion and migration of a CLTZ and the infill and overspill of 

slope accommodation. Over multiple depositional systems changes in topography are more 

pronounced. The stacking of submarine slides and their basal shear surfaces can drive 

variations in the style of subsequent flow confinement. 

Over the timescale of multiple systems, spanning several sea-level cycles of varying magnitude, 

the balance between sedimentation and deformation rate of the slope is crucial in 

understanding and predicting the formation of stepped slopes, and the distribution of sands 

and shales (Fig. 7.14). When sedimentation rate outpaces deformation rate, the system can 

work towards reaching equilibrium through erosional and depositional processes. However, 

when the deformation rate is just greater than sedimentation rate, stepped slopes can form. 

At higher relative rates of deformation minibasins may form. Even if the deformation rate is 

constant, the sedimentation rate is highly variable over different periodicities related to sea 

level/climate cycles, meaning that the slope physiography will continually change through 

time. For example, slope systems with significant periods of coarse clastic starvation are more 

susceptible to the development of stepped or ponded slope accommodation.  
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Figure 7.14 When deformation rate is constant and sedimentation rate gradually decreases simple slope 
profiles can evolve into stepped slope profiles and then slopes with minibasins and tortuous corridors. 
Slope degradation can occur associated with all slope types but slope failures may increase in frequency 
and magnitude as relative slope deformation increases.  

Topographically complex areas can have complicated transference into the stratigraphic 

record. Areas that are bypass dominated, such as CLTZs, can be represented by a single surface 

that is time transgressive or a relatively thin but composite body of sediment. Preservation 

potential of CLTZs varies according to the time in which the zone formed (during progradation 

or retrogradation), the lateral confinement, and the distance from the feeder system. Basal 

shear zones of submarine slides are also time transgressive, with primary erosional 

morphology further complicated by post depositional remobilization and differential 

compaction.  

Topographic complexity can lead to unusual and dynamic configurations of deep-water 

systems and therefore difficulty in identifying potential hydrocarbon reservoirs and their seals. 

Bypass dominated zones can cause the formation of up-dip stratigraphic pinch out in lobes, 

with outcrop studies showing across strike and sub-seismic scale connectivity, indicating 
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significant risk of fluid loss. Bypass zones can be identified in core and gamma ray logs using 

recognition criteria which can support interpretation in subsurface datasets. The prediction of 

stepped slope evolution, and therefore the stacking patterns, and sediment partitioning of 

slopes can aid identification of areas of consistently increased sand volume. The identification 

of thin ‘disconnected’ lobes can indicate areas of fixed and dynamic topography and therefore 

increased sand volume in under- and over-lying units. Understanding the varying infill and 

truncation of submarine slide complexes can aid recognition of potential reservoirs and seals.  

The transition zone from submarine slope to basin-floor, or from ramp to step, are important 

sites of gradient change, and therefore flow process change. This leads to complicated 

interactions between flow behaviour and evolving seabed relief over different length scales 

and time scales. This research has analysed several sites where these interactions can be 

investigated at multiple scales and in different configurations within a well constrained 

palaeogeographic setting. Although the resulting stratigraphic records in these settings is 

complicated, there are predictable process responses that are recorded in the depositional 

architecture than can be used to reduced uncertainty in subsurface settings with sparse 

datasets.  

 

 Recommendations for further research  

7.7.1 What is the detailed sedimentological expression of the stepped slope 

topography in early basin floor Units A and B? 

The subtle expression of changing topography has been noted in the small Units A/B, B/C, and 

D/E along with thickness and facies changes within the larger Units C, D, E and F (Chapter 6). 

Although thickness and some facies variation have been noted in Units A and B in similar 

locations (Chapter 6), due to regional scale mapping/different foci of previous research, it is 

unclear if more detailed indicators of early expression of the stepped slope profile can be seen 

within the areas of fixed topographic influence. Using the key areas of topographic change 

recognised in this study (Chapters 5 and 6), and the creation of A and B thickness maps using 

the Datacube it is now possible to distinguish specific areas of focus that may show subtle 

topographic indicators in these thick regional basin floor systems.  Understanding the early 

indicators of stepped slope evolution may aid in the prediction of their formation.  
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7.7.2 How does the sedimentological expression of slope to basin floor topography 

differ in passive vs active margins? 

The sedimentological expression of subtle topographic variability within slope and basin floor 

profiles has been examined within this study based on a passive continental margin setting. 

Slopes forming in active continental margin settings are generally subject to significant 

structural influence at higher magnitudes of topographic control. Comparing the outcrop 

examples in this study to similar environments in active settings such as the CLTZ and 

submarine slides exposed in the lower Pleistocene, Kazusa Group exposed on the Boso 

Peninsula, central Japan (Ito, 1992, 1994, 2008; Ito et al., 2014) would help to decipher the key 

differences that passive and active continental margins have on sediment distribution and 

creation of topography. Moreover integrating these outcrop studies with seismic datasets of 

active settings, for example the Magdalena Fan, offshore Colombia located at a junction 

between the Nazca, South American, Cocos and Caribbean plates (Ortiz-Karpf, 2016), would 

further allow basin scale comparison of submarine slide formation in active vs. passive 

settings. Key differences to investigate between active and passive settings include: (a) how 

the magnitude of topography varies; (b) how the rates of slope deformation vary; and (c) the 

relative timing of deformation, when is the onset, does it continue throughout deposition?  

7.7.3 Integration with modern seafloor datasets, numerical and physical experiments  

Commonly, studies on submarine slopes are conducted from outcrop and modern data sets. 

While outcrop data sets can provide detailed insights into sedimentary facies and geometries, 

modern seafloor studies enable the examination of topographic variability at basin scale 

without the bias of preservation.  

Experimental datasets including both numerical process modelling (e.g. Wang et al., 2017) and 

physical process modelling (e.g. flume tank experiments) allow reconstruction and 

investigation of various topographic configurations, to test interpretations made at outcrop, 

and observations of the modern seafloor (e.g. Pohl et al., 2016). Flume tank experiments allow 

only relatively simple topographic changes to be investigated (e.g. changes in slope gradient), 

but allow for direct observations of multiple flows and their resultant deposits. This aids 

knowledge of flow processes and preservation potential at points of gradient change as well as 

small scale evolution of a system over multiple flows. Numerical process modelling allows 

investigation of far more complex bathymetric profiles. Models are run over different 

configurations (gradient and slope) to work towards quantifying and constraining the full range 
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of flow-topography interactions. Various profiles can be tested, which can be idealised or 

modelled directly on modern seafloor datasets (e.g. Wang et al., 2017). Accurately interpreted 

palaeobathymetry from the ancient record is critical, but hard to constrain with confidence; 

through integration with experimental datasets it will be possible to automatically test 

scenarios to better constrain interpretation.  
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Appendix A 

Appendix A.1 

  

Appendix A.2 

Table A.2 Log numbers, names, UTI grid reference and associated data chapter. 

No.  Log name  X Y Function  

1 VS20142 581114 6322969 Chapter 4 

2 VRG20151 581112 6322877   

3 VS20141 581034 6322728   

4 VRG201510 581276 6322519   

5 VRG20159 581375 6322476   

6 VRG20155 581388 6322396   

7 COL20151 581608 6322420   

8 VRG20152 581582 6322386   

9 COL20152 581612 6322385   

10 VRG20157 581573 6322300   

11 COL20153 581636 6322346   

12 COL20154 581676 6322321   

13 VRG20153 581807 6322206   

14 VRG201511 581739 6322108   

15 VRG20154 581883 6322136   

16 VRG20156 582200 6321875   

17 VRG20158 582292 6321901   

18 VRG20158B 582293 6321902   

19 Bloukrans 1 578430 6324802   

20 Damascus 587871 6324552   

21 WFN201410 521025 6331025 Chapter 5 

22 WFN20132 521359 6330383   

23 WFN20144 521730 6330901   

24 WFN20146 522090 6330877   

25 WFN20149 522313 6330984   

26 WFN20149 522571 6330965   

27 WFN20132 522767 6330960   

Table A.1 Total logs and thicknesses. 

 

  Logged thickness (m) Palaeocurrents  no. of logs  

Chapter 4 1550 100 20 

Chapter 5 11450 184 311 

Chapter  6 959 100 341 

Total  13959 384 672 
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28 WFN20141 522858 6330882   

29 WFN20142 523034 6330880   

30 SLN20133  523282 6330996   

31 SLN20132 523590 6330911   

32 SLN201415 524180 6330983   

33 SLN201415B 524713 6330965   

34 SLN201414 525094 6331013   

35 SLN201413 525419 6331015   

36 SLN201412 525631 6330347   

37 SLN201411 526236 6330960   

38 SLN201410 526478 6330985   

39 SLN20149 526644 6331009   

40 SLN20148 526993 6331094   

41 SLN20147 527085 6331125   

42 SLN20146 527276 6331125   

43 SLN20145 527623 6331185   

44 SLN20144 527702 6331163   

45 SLN20143 528031 6331186   

46 SLN20142 528248 6331215   

47 SLN20141 528388 6331223   

48 SLN20131 528649 6331386   

49 SLN201417 528963 6331183   

50 SLN201418 529264 6331211   

51 SLN201419 529536 6331234   

52 SLN201420 530080 6331251   

53 SLN201421 530534 6331417   

54 SLN201422 530795 6331579   

55 SLN201423 530999 6331540   

56 SLN201424A 531941 6331770   

57 SLN201424B 531938 6331687   

58 SLN201424C 531931 6331699   

59 SLN201426 532128 6331716   

60 ALM20141A 534260 6332303   

61 ALM20141B 534266 6332202   

62 ALM20142 534461 6332240   

63 ALM20143 534589 6332253   

64 ALM20144 534975 6332332   

65 ALM20144B 535055 6332591   

66 ALM20145A 535191 6332403   

67 ALM20145B 535226 6332405   

68 ALM20147 535400 6332486   

69 ALM20146B 535459 6332431   

70 ALM20147 535563 6332515   

71 ALM20148 535802 6332537   

72 ALM20149 535922 6332553   

73 ALM201410  536012 6332617   

74 ALM201410B  536053 6332574   

75 ALM201411 536279 6332604   

76 ALM201413 536756 6332750   

77 ALM201414 537250 6332974   

78 ALM201415 537763 6333045   

79 ALM201416 538464 6333165   
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80 ALM201417 538731 6333277   

81 ALM201418 539021 6333363   

82 ALM201419 539409 6333416   

83 ALM201420 539494 6333443   

84 WF20131 521261 6326709   

85 SL201325 524843 6327122   

86 SL201511 524912 6327179   

87 SL20159 525067 6327201   

88 SL201510 525310 6327229   

89 SL201526 525973 6327183   

90 SL201324 525621 6327212   

91 SL20158 525800 6327271   

92 SL20152  525951 6327281   

93 SL201323B 525973 6327179   

94 SL201425 526180 6327248   

95 SL201322 526395 6327295   

96 SL201424 526537 6327347   

97 SL201512 526593 6327353   

98 SL201423 526614 6327307   

99 SL201320 526764 6327340   

100 SL201422 526851 6327321   

101 SL20137 527031 6327238   

102 SL20138 527082 6327346   

103 SL20139 527124 6327339   

104 SL201427 527213 6327404   

105 SL201310 527356 6327370   

106 SL201412 527443 6327376   

107 SL201410 527508 6327329   

108 SL201313 527676 6327352   

109 SL20145 527755 6327383   

110 SL20148 527866 6327400   

111 SL201411 527894 6327394   

112 SL201315 527944 6327449   

113 SL20144 528070 6327390   

114 SL20142 528148 6327421   

115 SL201316 528148 6327368   

116 SL20141 528233 6327427   

117 SL201317 528260 6327476   

118 SL201413 528356 6327423   

119 SL201318 526465 6327433   

120 SL201414 528640 6327442   

121 SL20143 528695 6327451   

122 SL201415 528719 6327402   

123 SL201416 528983 6327461   

124 SL201417 529110 6327469   

125 SL20131 529238 6327432   

126 SL201419 529243 6327495   

127 SL201418 529494 6327473   

128 SL201420 529869 6327497   

129 SL20133 530046 6327220   

130 SL201319 530543 6327377   

131 SL201326 531338 6327520   
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132 SL20134 531822 6327660   

133 SL201327 532262 6327762   

134 SL201328 533116 6327696   

135 SL201428 534174 6328256   

136 SL201429 534581 6328336   

137 SL201430 536069 6328550   

138 SL201431 536653 6328674   

139 SL20132 537093 6328756   

140 SL201434 538043 6328911   

141 SL201433 538785 6329060   

142 SL201435 539575 6329133   

143 SL201436 541338 6329391   

144 SL201437 541735 6329437   

145 SL201438 543227 6329566   

146 SL201440 545405 6329642   

147 GRF20141 543163 6328467   

148 GRF20142 543617 6328539   

149 GRF20143 542869 6328437   

150 GRF20144 542484 6328404   

151 GRF20145 542257 6328347   

152 GRF20176 541806 6328259   

153 GRF20147 541438 6328157   

154 GRF20148 541216 6328098   

155 GRF20149 540911 6328022   

156 GRF201410 540595 6327949   

157 GRF201411 540159 6327872   

158 GRF201412 539581 6327744   

159 GRF201413 539316 6327652   

160 GRF201414 538917 6327533   

161 GRF201415 537721 6327239   

162 GRF201416 537351 6327155   

163 GRF201417 536657 6326936   

164 GRF201418 536202 6326911   

165 GRF201419 535758 6326758   

166 GRF201420 535287 6326577   

167 GRF201421 534885 6326399   

168 LG20141 529030 6324666   

169 LG20142 528778 6324735   

170 LG20143 528522 6324488   

171 SKW20141 533504 6326099   

172 SKW20142 533127 6325950   

173 SKW20143 533927 6326160   

174 SKW20144 534277 6326260   

175 STN20141 544086 6328636   

176 STN20142 545841 6328930   

177 STN20143 545320 6328848   

178 STN20144 545125 6328789   

179 STN20145 544528 6328687   

180 STN20146 546674 6328978   

181 STN20147 547360 6329112   

182 STN20148 548486 6329272   

183 GRF2013_3 536612 6322395 Revised logs  
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184 GRF2013_3 536612 6322395   

185 Leu-Sku2014 533118 6322978   

186 Leu-Sku2014 533118 6322978   

187 S3FS1_ 527008 6322755   

188 S3FS1_ 527008 6322755   

189 S3FS1_02 516979 6326109   

190 S3FS1_03 513059 6325247   

191 S3FS1_04 521439 6326634   

192 S3FS1_05 506291 6324305   

193 S3FS1_06 529094 6327249   

194 S3FS1_07 528989 6327389   

195 S3FS1_08 529182 6327475   

196 S3FS1_15 535172 6321830   

197 S3FS1_17 510365 6324875   

198 S3FS1_21 535106 6327983   

199 S3FS1_22 525798 6324422   

200 S3FS1_27 520446 6322764   

201 S3FS1_29 519729 6321688   

202 S3FS1_35 543548 6320986   

203 S3FS1_35 543548 6320986   

204 S3FS1_37B 521173 6321678   

205 S3FS3 543148 6329568   

206 S3FS3_00 526930 6322810   

207 S3FS3_00 526930 6322810   

208 S3FS3_01 527134 6322813   

209 S3FS3_02 527178 6322822   

210 S3FS3_08 542695 6329219   

211 S3FS3_11 504567 6323836   

212 S3FS3_12 524798 6326888   

213 S3FS3_15 518162 6326046   

214 S3FS3_16 542649 6328807   

215 S3FS3_18 537394 6322135   

216 S3FS3_19 531625 6323124   

217 S3FS3_20 529283 6322805   

218 S3FS3_21 529038 6325056   

219 S3FS3_22 526881 6322807   

220 S3FS3_23 546305 6329132   

221 S3FS3_24 527086 6322812   

222 S3FS3_28 538435 6321685   

223 S3FS3_29 539360 6327953   

224 S3FS3_30 534224 6322558   

225 S3FS3_31 547130 6329311   

226 S3FS3_32 547478 6329169   

227 S3FS3_35 536839 6322239   

228 S3FS3_36 532358 6322649   

229 S3FS3_37 559282 6324537   

230 S3FS3_38 540168 6321717   

231 S3FS3_39 533516 6326389   

232 S3FS3_40 537369 6327499   

233 S3FS3_42 548189 6329374   

234 S3FS3_43 548684 6329308   

235 S3FS3_44 548339 6329635   
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236 S3FS3_47 547089 6322590   

237 S3FS3_48 551755 6323585   

238 S3FS3_49 555103 6324244   

239 S3FS3_52 532721 6327818   

240 S3FS3_53 533049 6328042   

241 S3FS3_54 533410 6327992   

242 S3FS3_56 544953 6329640   

243 S3FS3_57 537000 6328382   

244 S3FS3_58 540935 6329246   

245 S3FS3_59 540555 6328124   

246 S3FS3_63 527322 6322844   

247 S3FS4_02 497819 6333757   

248 S3FS4_03 501398 6334950   

249 S3FS4_08 509142 6335039   

250 S3FS4_24 548884 6323046   

251 S3FS4_25 554367 6324266   

252 S3FS4_26 557392 6324719   

253 S3FS4_33 552361 6323952   

254 S3FS4_34 552680 6324016   

255 S3FS4_67 551878 6323889   

256 S3FS6_01 498279 6333807   

257 S3FS7_01 499705 6334595   

258 S3FS7_02 503498 6335292   

259 S3FS7_26 521387 6326547   

260 S3FS7_35 503712 6323570   

261 S3FS7_36 504384 6323714   

262 S3FS7_37 531830 6327641   

263 S3FS8 536773 6322298   

264 S3FS8_010 496312 6333606   

265 S3FS8_011 499816 6334753   

266 S3FS8_019 500862 6334928   

267 S3FS8_020 503915 6335314   

268 S3FS8_022 502046 6335266   

269 S3FS8_023 503185 6335524   

270 S3FS8_025 507168 6335847   

271 S3FS8_026 508964 6335964   

272 S3FS8_027 505259 6335550   

273 S3FS8_030 509514 6335966   

274 S3FS8_031 510847 6336205   

275 S3FS8_033 497357 6333809   

276 S3FS8_034 513523 6336135   

277 S3FS8_042 530153 6325461   

278 S3FS8_078 518019 6320402   

279 S3FS8_079 518920 6321231   

280 S3FS8_080 526599 6322637   

281 S3FS8_081 526575 6323054   

282 S3FS8_082 524999 6322878   

283 S3FS8_084 533153 6322801   

284 S3FS8_085 533209 6322976   

285 S3FS8_085 533209 6322976   

286 S3FS8_086 530870 6322933   

287 S3FS8_086 530870 6322933   
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288 S3FS8_087 528090 6322970   

289 S3FS8_103 534834 6322820   

290 S3FS8_103 534834 6322820   

291 S3FS8_104 520385 6326615   

292 S3FS8_115 525581 6327162   

293 S3FS8_116 525978 6327185   

294 S3FS8_117 527085 6327308   

295 S3FS8_118 526926 6327293   

296 S3FS8_119 527080 6327390   

297 S3FS8_120 524381 6327050   

298 S3FS8_122 525235 6327144   

299 S3FS8_123 525366 6327152   

300 S3FS8_124 522994 6326979   

301 S3FS8_125 523394 6326938   

302 S3FS8_130 522524 6326775   

303 SKU2013_2 533599 6322946   

304 SKU2013_2 533599 6322946   

305 HBN01 479683 6340233   

306 HBC02 480775 6339016   

307 HBS13 471975 6334129   

308 HBS12 472017 6334126   

309 HBS11 471635 6334090   

310 HBS10 473100 6334031   

311 HBS09 473673 6334347   

312 HBS08 476341 6334777   

313 HBS07 476800 6335089   

314 S3FS7_12 531408 6331602   

315 S3FS4_20 531939 6331685   

316 S3FS7_11 531941 6331687   

317 S3FS4_17 532513 6331869   

318 S3FS4_15 532772 6331918   

319 S3FS4_44 533780 6332473   

320 S3FS1_09 534781 6332380   

321 S3FS4_21 534822 6333065   

322 S3FS4_45 534866 6332610   

323 S3FS7_09 535053 6332447   

324 S3FS7_08 535191 6332401   

325 S3FS7_07 535271 6332404   

326 S3FS4_48 535626 6332520   

327 S3FS4_46 536103 6333160   

328 S3FS4_47 537529 6333023   

329 S3FS4_49 539407 6333417   

330 S3FS4_51 541624 6333903   

331 S3FS4_50 548374 6336400   

332 ALM201420 539494 6333443 Chapter 6 

333 SLN201422 530795 6331579 New and Revisited  

334 STN20146 546674 6328978   

335 Gelbek DE 499132 6323610   

336 Gelbek DE 498617 6323844   

337 Gelbek DE 499027 6323610   

338 SL201411 527894 6327394   

339 S3FS3_06 535173 6326930   
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340 STN20147 547360 6329112   

341 ALM201419 539409 6333416   

342 GRF201414 538917 6327533   

343 HBN04 470892 6339787   

344 SL20148 527866 6327400   

345 S3FS3_31 547130 6329311   

346 S3FS8_080 526599 6322637   

347 S3FS3_39 533516 6326389   

348 Dave_log 2.5B 473988 6326490   

349 CAB_2 474227 6326567   

350 GRF201417 536657 6326936   

351 SL201319 530543 6327377   

352 S3FS4_46 536103 6333160   

353 S3FS4_48 535626 6332520   

354 GRF2013_3 536612 6322395   

355 SL201428 534174 6328256   

356 S3FS3_32 547478 6329169   

357 GRF201411 540159 6327872   

358 S3FS3_23 546305 6329132   

359 HBN05 468367 6339680   

360 LG20142 528778 6324735   

361 GRF201412 539581 6327744   

362 LG20141 529030 6324666   

363 SL201326 531338 6327520   

364 S3FS3_56 544953 6329640   

365 LG20143 528522 6324488   

366 SL201429 534581 6328336   

367 STN20145 544528 6328687   

368 S3FS3_42 548189 6329374   

369 STN20141 544086 6328636   

370 S3FS6_08 468370 6339478   

371 STN20143 545320 6328848   

372 STN20142 545841 6328930   

373 S3FS3_43 548684 6329308   

374 SKW20142 533127 6325950   

375 GRF201413 539316 6327652   

376 S3FS3_40 537369 6327499   

377 GRF201421 534885 6326399   

378 GRF20153 542869 6328437   

379 SKW20141 533504 6326099   

380 SL201414 528640 6327442   

381 SL20132 537093 6328756   

382 GRF201418 536202 6323911   

383 STN20144 545125 6328789   

384 S3FS6_10 463733 6339329   

385 S3FS3_44 548339 6329635   

386 GRF201420 535287 6326577   

387 S3FS3_29 539360 6327953   

388 S3FS3_33 544607 6328899   

389 GRF20141 543163 6328467   

390 SKW20143 533927 6326160   

391 GRF20157 541438 6328157   
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392 GRF201419 535758 6326758   

393 S3FS3_41 544286 6328882   

394 GRF20142 543617 6328539   

395 SKW20144 534277 6326260   

396 S3FS3_27 541331 6328129   

397 GRF20158 541216 6328098   

398 SL201431 536653 6328674   

399 HBC02 480775 6339016   

400 GRF20159 540911 6328022   

401 SL201430 536069 6328550   

402 S3FS3_34 541104 6328066   

403 HBN01 479683 6340233   

404 GRF201410 540595 6327949   

405 GRF20154 542484 6328404   

406 S3FS3_25 541856 6328719   

407 GRF20156 541806 6328259   

408 S3FS3_17 539056 6328293   

409 HBN03 475800 6340522   

410 S3FS3_59 540555 6328124   

411 GRF20155 542257 6328347   

412 HBN02 477565 6340120   

413 S3FS3_16 542649 6328807   

414 S3FS3 543148 6329568   

415 Rog_2 480376 6340093   

416 Rog_3 479799 6340238   

417 Rog_5 476986 6340343   

418 Rog_4 477749 6340350   

419 Rog_6 476136 6340359   

420 Rog_2011_2 480311 6338988   

421 Rietkloof Rd_1 459620 6337805   

422 Zout-N_M 479570 6337248   

423 Zout-N_N 479611 6337291   

424 Zout-N_O 479656 6337311   

425 ALM201417 538731 6333277   

426 ALM201418 539021 6333363   

427 ALM20149 535922 6332553   

428 ALM20144B 535055 6332591   

429 ALM201410  536012 6332617   

430 ALM201413 536756 6332750   

431 ALM201414 537250 6332974   

432 ALM201415 537763 6333045   

433 ALM201413 536756 6332750   

434 ALM201414 537250 6332974   

435 ALM201415 537763 6333045   

436 ALM20147 535400 6332486   

437 ALM20147 535563 6332515   

438 ALM20148 535802 6332537   

439 ALM20149 535922 6332553   

440 ALM201413 536756 6332750   

441 ALM201414 537250 6332974   

442 ALM201415 537763 6333045   

443 STN20148 548486 6329272   
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444 SL201436 541338 6329391   

445 SL201437 541735 6329437   

446 SL201440 545405 6329642   

447 WFN20132 521359 6330383   

448 WFN20146 522090 6330877   

449 WFN20144 521730 6330901   

450 WFN20132 522767 6330960   

451 WFN20149 522571 6330965   

452 SLN201415B 524713 6330965   

453 SLN201415 524180 6330983   

454 WFN20149 522313 6330984   

455 SLN201410 526478 6330985   

456 SLN20133  523282 6330996   

457 SLN20149 526644 6331009   

458 SLN201414 525094 6331013   

459 SLN201413 525419 6331015   

460 WFN201410 521025 6331025   

461 SLN20145 527623 6331185   

462 SLN20143 528031 6331186   

463 SLN201419 529536 6331234   

464 SLN201420 530080 6331251   

465 SLN20131 528649 6331386   

466 SLN201421 530534 6331417   

467 SLN201423 530999 6331540   

468 Doorn_02 462548 6331586   

469 Doorn_01 462602 6331590   

470 Rietkloof Rd_3 454970 6337222   

471 Rietkloof Rd_2 458051 6337400   

472 Rietkloof Rd_1 459620 6337805   

473 Faberskraal 1 493709 6332404   

474 Faberskraal 2 497679 6330640   

475 Faberskraal 3 497893 6334128   

476 S3FS1_34 498709 6330968   

477 Geelbek 498740 6322902   

478 S3FS7_35 503712 6323570   

479 S3FS3_11 504567 6323836   

480 S3FS1_35 543548 6320986   

481 Wilgerhout Rivier 485850 6327686   

482 dan 488642 6328114   

483 Rondekop 490495 6322892   

484 Grootkloof 494383 6322942   

485 N1 west 484345 6327389   

486 Doornkfontein 2 465682 6331115   

487 Skeid_2750 475402 6323740   

488 Buffels Rivier 487600 6331350   

489 Skeid_2350 475025 6323936   

490 Doornkloof 462520 6331550   

491 Amo_C 473586 6336221   

492 Skeid_180 471866 6324968   

493 STEG20152 473052 6335890   

494 Doorn_10 461719 6331531   

495 STEG20156 473515 6336125   
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496 JBR_01 488961 6331579   

497 Skeid_280 471775 6325004   

498 Skeid_200 471848 6324974   

499 Skeid_160 471887 6324963   

500 Skeid_3950 476572 6323451   

501 Skeid_140 471907 6324958   

502 Skeid_60 471985 6324955   

503 ROJ20156 472066 6335668   

504 Skeid_100 471946 6324954   

505 Skeid_120 471926 6324956   

506 Doornkloof 2 464325 6331300   

507 Skeid_80 471966 6324954   

508 Amo_B 472871 6335964   

509 S3FS3_10 488482 6323511   

510 Skeid_5850 478439 6323354   

511 Skeid_-250 472250 6324910   

512 Skeid_-270 472261 6324896   

513 Middleplaas 488480 6323058   

514 ROJ20151 472165 6335751   

515 Krantz 3 483586 6323344   

516 ROJ20155 471936 6335696   

517 STEG20151 472913 6335828   

518 STEG20155 473474 6336140   

519 Doornkfontein 467629 6330828   

520 BavAB201516 470617 6325244   

521 Skeid_2550 475203 6323851   

522 Amo_S 471197 6335602   

523 ROJ20152 472006 6335777   

524 Skeid_1750 474202 6324075   

525 Skeid_3550 476169 6323540   

526 Skeid_920 471171 6325108   

527 Zoot_Dave 471905 6335844   

528 Vischkuil_ Ph 6 484105 6330068   

529 BAVAB201510 470625 6325238   

530 Skeid_840 471251 6325105   

531 Skeid_0800 473035 6324613   

532 Skeid_1020 473243 6324535   

533 Skeid_1400 473696 6324181   

534 Skeid_4350 476958 6323384   

535 Skeid_1650 474177 6324200   

536 ROJ20153 471826 6335723   

537 Skeid_0200 472474 6324818   

538 STEG20158 473708 6336007   

539 STEG20159 474257 6335985   

540 Skeid_6900 479331 6323343   

541 Skeid_0080 472230 6324640   

542 Skeid_0600 472848 6324684   

543 BAVAB20157 470741 6325164   

544 Bav_4 474428 6327012   

545 Steekwekklaagte 472813 6335708   

546 Bavab201518 470595 6325271   

547 BAVAB20159 470653 6325210   



333 
 

 
 

548 BAVAB20158 470706 6325173   

549 Skeid_720 471373 6325125   

550 Amo_T 468898 6335220   

551 Skeid_820 471271 6325106   

552 Laura_2 480798 6327254   

553 Joup_4 480174 6327359   

554 Amo_M 464355 6335075   

555 Klein Zoutkloof 482387 6331768   

556 Skeid_4750 477351 6323351   

557 Skeid_1200 473384 6324252   

558 Skeid_4950 477521 6323325   

559 Skeid_960 471131 6325110   

560 Skeid_nose_1510 470579 6325330   

561 Skeid_nose_Dave 470701 6325663   

562 Skeid_940 471151 6325109   

563 BAVAB20156 470875 6325140   

564 BavAB201515 470582 6325337   

565 Skeid_880 471211 6325104   

566 STEG201510 475603 6336229   

567 Skeid_900 471191 6325105   

568 Skeid_0400 472525 6324559   

569 Vischkuil_ Ph 40 463373 6330777   

570 Skeid_860 471230 6325102   

571 Jakkalsfontein 467787 6335188   

572 Skeid_2950 475563 6323686   

573 Krantz 1B 480202 6323014   

574 Zoutkloof 2 474633 6330765   

575 Skeid_1040 471052 6325110   

576 Skeid_980 471111 6325107   

577 Zoutkloof 478591 6337431   

578 BAVABE20151 476617 6323426   

579 Amo_V 477600 6340027   

580 Skeid_1000 471091 6325109   

581 Skeid_4200 476787 6323440   

582 Doorn_03 462502 6331582   

583 Amo_H 478816 6337783   

584 Amo_F 476781 6336408   

585 Doorn_02 462548 6331586   

586 Skeid_5350 477958 6323347   

587 Poort_2b 473357 6326561   

588 Skeid_1020 471072 6325108   

589 Doorn_01 462602 6331590   

590 Skeid_5650 478224 6323353   

591 Skeid_3350 475955 6323589   

592 Skeid_5750 478323 6323357   

593 Skeid_3150 475767 6323629   

594 Joup_2 479234 6327311   

595 R354 Road 463356 6335062   

596 Skeid_3700 476298 6323485   

597 Poort_1B 475324 6327147   

598 Laura_1 478748 6327281   

599 OUPAB20152 478632 6327184   
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600 S3FS8_110 478278 6326783   

601 Ouplaas_B 478534 6327391   

602 OUPAB20151 478784 6327185   

603 new heuningberg  465620 6339110   

604 new heuningberg 
2 

470851 6339361   

605 S3_FS4_Onion5 489069 6323327   

606 Geel_10 499110 6323367   

607 Geel_18 499252 6323305   

608 Geel_9 499092 6323374   

609 Geel_24 499372 6323311   

610 Bav_0.5 473403 6326229   

611 Rog_2 480376 6340093   

612 CD_KC2 481873 6323533   

613 Geel_8 499074 6323383   

614 Geel_14 499179 6323381   

615 Geel_17 499234 6323299   

616 Geel_22 499333 6323301   

617 Geel_26 499407 6323331   

618 WD-Oup_04 479002 6326942   

619 Geel_25 499381 6323317   

620 Rog_2011_1 480612 6339924   

621 Geel_15 499196 6323322   

622 S3FS3_13 481880 6323485   

623 WD_120 482252 6326944   

624 Geel_13 499162 6323339   

625 WD-Oup_03 479964 6326909   

626 Rog_6 476136 6340359   

627 CD_2380 475059 6324346   

628 Rog_1 479803 6339767   

629 CD_ERK2 483360 6323547   

630 Geel_1 498616 6323413   

631 Geel_21 499316 6323304   

632 WD_80 482210 6326943   

633 Geel_11 499124 6323354   

634 WD_100 482230 6326944   

635 CD_EKR3 482983 6323546   

636 Geel_27 499428 6323337   

637 CD_100 472799 6325321   

638 CAB_2 474227 6326567   

639 Rub_-1 484516 6327151   

640 Bav_4c 473879 6326307   

641 Bav_4b 473956 6326483   

642 CD_KC1 480286 6323568   

643 WD_60 482189 6326941   

644 CD_0 472329 6325413   

645 Rog_4 477749 6340350   

646 CD_3570 476223 6323952   

647 Ouplaas_B 478534 6327391   

648 Bav_3b 473821 6326428   

649 CD_3120 475805 6324100   

650 CD_3220 475898 6324073   
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651 Rog_3 479799 6340238   

652 Bav-Oup_9 476228 6326797   

653 CD_3360 476028 6324029   

654 Bav_0 473351 6326214   

655 CD_460 473235 6325143   

656 B-OP_8 476829 6326825   

657 CD_880 473713 6324920   

658 (Bav_3) 475433 6326755   

659 CD_800 473664 6324955   

660 CD_820 473681 6324944   

661 CD_1080 473896 6324786   

662 CD_1400 474191 6324743   

663 CD_1740 474504 6324634   

664 CD_1900 474648 6324570   

665 CD_2400 475082 6324329   

666 CD_3770 476413 6323885   

667 S3FS3_04 493472 6323759   

668 S3FS3_05 494072 6323835   

669 RJ20143 522955 6321596 General strat  

670 RJ20141 522857 6321602 General strat  

671 S3FS8_083 522832 6321623 General strat  

672 RJ20144 522998 6321629 General strat  
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Appendix B- Additional correlation panels  

 

B.1. Chapter 4- Vriesgwaadg Farm correlation panel with logs.  

Logs 

-VRG20151 

-VS20142 

-VS20141 

-VRG201510 

-VRG20159 

-VRG20155 

-VRG20152 

-VRG20157 

-VRG20153 

-VRG201511 

-VRG20156 

-VRG20158 

-VRG20158B 

-COL20151 

-COL20152 

-COL20153 

-COL20154 

B.2. Chapter 5 and 6- Units D, D/E, E, F and G- N1 Dome South 

B.3. Chapter 5 and 6- Units Baviaans South panel  

B.4. Chapter 5 and 6- Units D and E- Detailed Floriskraal North panel  

B.5. Chapter 5 and 6- Units D and E- Detailed Floriskraal South panel  
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Appendix B.1- Vrisgewaagd  
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Appendix B.2- N1 Dome South  
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Appendix B.3- Baviaans South    
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Appendix B.4- Floriskraal North   
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Appendix B.4- Floriskraal South  
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Appendix C 

Appendix C.1 

Table C.1 Laingsburg Datacube Data imported. Datum is Top Whitehill Formation   

 

 

 

Composite logs X Y
Y 13% 

stretch

Correlation 

Panel

Section 

Covered
Data Attached

Rietkloof Rd Composite 461171 6337715 6339116
Heuninberg 

North

Top Whitehill to 

Unit E
Thickness as JPG

Waterkloof Composite 467545 6338164 6339623
Heuninberg 

North

Top Whitehill to 

Base Unit C
Thickness as JPG

Roggekraal Composite 478101 6339001 6340570
Heuninberg 

North

Top Whitehill to 

Base Unit C
Thickness as JPG

Jakkalskraal W Composite 458288 6335711 6336851
Heuninberg 

South

Top Whitehill to 

Base Unit C
Thickness as JPG

Steekwekklaagte 

Composite
472515 6337683 6339080

Heuninberg 

South

Top Whitehill to 

Base Unit C
Thickness as JPG

Doornfontein Composite 466781 6330061 6330467 Faberskraal
Top Whitehill to 

Base Unit C
Thickness as JPG

Vodacom Composite 474559 6329904 6330290 Faberskraal
Top Whitehill to 

Base Unit C
Thickness as JPG

Buffels North Composite 487880 -- 6330713 Faberskraal
Top Whitehill to 

Base Unit C
Thickness as JPG

Ouplaas Composite 478278 6326783 6326763
Baviaans 

North

Top Whitehill to 

Top Unit F
Thickness as JPG

Laingsburg Composite 487947 6328491 6328693
Baviaans 

North

Top Whitehill to 

Base Unit C
Thickness as JPG

Blockhouse Composite 498422 6329961 6330354
Baviaans 

North

Top Whitehill to 

Top Unit E
Thickness as JPG

N1 Dome Composite 534383 6334826 6335851
Baviaans 

North

Top Whitehill to 

Base Unit C
Thickness as JPG

Skeiding Composite 472099 6323565 6323127
Baviaans 

South

Top Whitehill to 

Base Unit C
Thickness as JPG

Ladismith Rd Composite 487534  6322211 6321596
Baviaans 

South

Top Whitehill to 

Base Unit C
Thickness as JPG

Rondekop Composite 492488 6322197 6321581
Baviaans 

South

Top Whitehill to 

Base Unit C
Thickness as JPG

Geelbek Composite 499650 6321893 6321237
Baviaans 

South

Top Whitehill to 

Deltas
Thickness as JPG

Haartebeest Composite 510330 6324108 6323740
Baviaans 

South

Top Whitehill to 

Deltas
Thickness as JPG

Wolvefontein Composite 521757 6325867 6325728
Baviaans 

South

Top Whitehill to 

Deltas
Thickness as JPG

Hunters Lodge Composite 525914 6320948 6320169
Baviaans 

South

Top Whitehill to 

Base Unit C
Thickness as JPG

Vergenoeg Composite 543548 6320986 6320213
Baviaans 

South

Top Whitehill to 

Top Unit D
Thickness as JPG

Dwyka Composite 559943 6324726 6324439
Baviaans 

South

Top Whitehill to 

Deltas
Thickness as JPG
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Table C.2 Laingsburg Datacube pseudo wells  

 

 

 

 

 

 

 

 

 

 

 

Pseudo Wells X Y
Y 13% 

stretch

Correlation 

Panel

Section 

Covered
Data Attached

NW 450600 - 6362038 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

N_side_1 483565 - 6362151 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

N_side_2 516530 - 6362264 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

N_side_3 549495 - 6362377 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

NE 582460 - 6362490 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

SW 451000 - 6303843 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

S_side_1 483750 - 6303420 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

S_side_2 516500 - 6302996 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

S_side_3 549250 - 6302572 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

SE 582000 - 6302148 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

Estimation_1_Composite 488993 - 6340147 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

Estimation_2_Composite 516467 - 6338084 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

Estimation_3_Composite 554613 - 6338910 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG

Pseudo F 559401 - 6334466 n/a
Top Whitehill to 

Base Unit C
Thickness as JPG
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Appendix D 

Regional correlation panels from SLOPE database and previous work.  

D.1 Faberskraal North   

D.2 Faberskraal South  

D.3 Baviaans North  

D.4. N1 Dome South  

D.5 Baviaans South   

D.6 Floriskraal North  

 D.7 Floriskraal South  
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D.1 Faberskraal North   
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D.2 Faberskraal South  
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D.3. Baviaans North  
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D.4. N1 Dome South  
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D.5 Baviaans South   
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D.6 Floriskraal North   
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D.7 Floriskraal South 

 

 

 

 

 


