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Abstract

Many Mixed Criticality scheduling algorithms have been developed with an

assumption that lower criticality level tasks may be abandoned to guarantee the

schedulability of higher criticality tasks when the criticality level of the system

changes. But it is valuable to explore means by which all of the tasks remain

schedulable throughout criticality level changes.

This thesis introduces a semi-partitioned model which allows all of the tasks

to remain schedulable if only a bounded number of cores increase their criticality

levels. In such a model, some lower criticality tasks are allowed to migrate instead

of being abandoned. Different possible semi-partitioned approaches are proposed

and analysed in this thesis. It is concluded from the experiments results that the

semi-partitioned algorithm provides improved schedulability and performance of

multi-core mixed criticality systems while enables all tasks to keep executing in

the majority of scenarios.

This thesis also includes the consideration of migration overheads, the defini-

tion of fault tolerance models and the effects of the system architecture.
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Chapter 1

Introduction

In real time systems, the correctness of a task not only relies on the logical cor-

rectness, but also relies on the time instance at which the result is generated [35].

Therefore, to guarantee the correctness of a set of tasks, real-time systems need

to schedule the execution orders for tasks. Cyclic Executive Approach, Fixed

Priority Scheduling (FPS), and Earliest Deadine First Scheduling (EDF) are

widely used scheduling mechanisms, and all of these methods are applied under

an assumption that the Worst-Case Execution Time (WCET) of each task is

known. However, due to several uncertainties, such as the hit or miss of the cache

memory, it is hard to calculate the exact WCET of a task. So the WCET value

used in scheduling is generally estimated, and there are two main approaches

to estimate the WCET of a task: theoretical path calculation and water mark

observation. Referring to the theoretical path calculation, this approach enu-

merates all execution paths of a task which guarantees the estimated WCET

value to be larger than the exact one. In addition, since this approach needs

to enumerate all possible paths, the cost of this approach is quite high and the

estimated value is often too pessimistic [87]. Furthermore, for many non-trivial

kinds of code, these strict upper bounds are extremely pessimistic, and represent

scenarios which are highly unlikely, or indeed impossible to occur [33]. Referring

to the water mark observation, this approach executes the task a number of

times and records the longest time (plus some safety margin) to be the estimated
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WCET. This approach is less expensive comparing with the previous approach.

But the estimated WCET value acquired by this approach cannot be guaranteed

to be larger than the exact value, which may cause scheduling failure when using

this approach. In all, the relationship between the estimated values from the

above approaches and the exact value can be viewed in Figure 1.1.

Figure 1.1: Estimated WCET values

According to the features of the two approaches, it can be indicated that if

all of the tasks are scheduled using the theoretical estimated values, then the

deadlines of the tasks will be guaranteed to be met. But since the theoretical

estimated values are very pessimistic, the system capacity requirement will be

high. Otherwise, if all of the tasks are scheduled using the observed estimated

values, the system capacity requirement will be reduced from the previous case.

But in such a scenario, there exists a risk that tasks may miss some of their

deadlines at run-time. Thus, applying one estimation approach to all of the tasks

in the system may not be appropriate for the system which contains a combination

of tasks with different importance. For the tasks that missing their deadlines may

cause the whole system to break down or even threaten the lives of humans, the

theoretical path calculation approach is more appropriate as it guarantees the

tasks will never execute beyond the estimated WCET value. For other tasks

that are not quite essential to the system, water mark observation approach is

sufficient to provide a WCET estimate value that a task will execute within the

estimated value in the majority of cases. Overall, there exists a requirement

on differentiating the importance of the tasks, and assigning different WCET

estimation approaches to the tasks regarding to their importance. This leads to

the definition of criticality levels and mixed-criticality systems.
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1.1 Mixed Criticality System

Criticality may refer to the importance of the tasks, but the actual definition

varies based on the scenarios of usage. A general division used to identify

the importance of a task is to check the consequence of missing its deadline.

If people may die or the whole system may break down due to the miss of a

deadline, then such a task is called safety-critical; if only some functions of the

software will be affected, then such a task is called mission-critical; other tasks are

considered as non-critical. But criticality can also be defined to represent other

concepts, including Safety Integrity Level (SIL), which makes some differences

on the definition of the system model [56]. The ‘criticality’ used in this thesis

will stick to the former one which checks the consequence of missing a deadline.

Generally, a system contained tasks with different criticality levels is called

a Mixed Criticality System (MCS). According to Vestal’s model [86], the higher

the criticality level is, the larger the WCET estimated value is. In addition,

Vestal’s model also suggests that a criticality level is required for each core in a

multi-core system, which indicates the criticality level to be assured at run-time.

Based on that, the scheduling goal for Vestal’s model is that when one core is

required to assure a criticality level, each task on the core needs to be analysed

with its corresponding estimated WCET value of that criticality level.

Based on Vestal’s model (which will be reviewed in detail in the next chapter),

many papers have been published to explore the field of Mixed Criticality Systems

(MCS) both on uni-processor and multi-processors. Different system models have

been identified and a variety of algorithms have been introduced. For example,

Baruah and Burns extended Vestal’s model so that not only the execution time

but also the minimum interval period and deadline might be changed in order to

meet the need of the task to complete before safety-critical time constraints [12].

According to their model, task may have different periods and deadlines at

different criticality levels. Nevertheless, in this thesis, we propose to use the

Vestal’s original model that only WCET estimated value is changed for different

criticality levels of a task.
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1.2 Motivation

Although Vestal started the research of MCS, his original algorithm performs

pessimistically on criticality inversion cases which will be discussed in the next

chapter. According to that, a variety of algorithms, such as AMC [13] and

EDF-VD [16], have been developed to improve the scheduling efficiency of MCS.

However, most of these algorithms are invented under the assumption that the

system only contains two criticality levels. In addition, some algorithms allow

tasks with lower criticality levels to be abandoned for a period of time in certain

scenarios in order to ensure the execution of high criticality tasks. Although

these abandoned tasks will be brought back to execution later, it would be better

if they were not abandoned in the first place. But it is not possible to solve such

a problem on a uni-processor system as the maximum computation capability of

a core is fixed and it is often too expensive to increase the performance of one

core. Thus, many researches ([2],[64],[79]) have addressed MCS execution on a

multi-core platform, since one of the key features of a multi-core platform is that

tasks may migrate from one core to others during their execution, which provides

more flexibility for scheduling.

Multi-core scheduling algorithms can generally be divided into three cate-

gories [44]: partitioned scheduling, global scheduling and semi-partitioned schedul-

ing. Most of the researches conducted in multi-core MCS use partitioned schedul-

ing since it statically maps tasks to processors. This partitioning provides a stable

and predictable implementation that is preferable for safety critical applications.

However, partitioned scheduling also provides isolation between the cores that

denies the flexibility of the multi-core structure. Global scheduling allows tasks to

migrate between different processors during execution which potentially provides

higher overall utilization. But global scheduling is unpredictable and the failure

of any task may result in the failure of the whole system which conflicts with the

original intention of differentiating the importance of tasks. Thus, there exists

a trade-off between the flexibility and predicability of the scheduling algorithms.

Semi-partitioned scheduling is a mixture of the previous two algorithms in which

hard real-time tasks may be statically mapped to processors and other tasks are
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able to migrate for schedulability. In other words, semi-partitioned scheduling

provides predicability to partitioned tasks while provides flexibility to migration

tasks.

Since the tasks with higher criticality levels requires predictability in order

to guarantee their completions, most of the existing multi-core MCS researches

are using the fully partitioned approach. In these existing works, tasks with

lower criticality levels may be abandoned during criticality mode changes of

the cores. In addition, as discussed above, the partitioned approach denies the

flexibility of the multi-core structure. However, although global scheduling may

introduce more flexibility into scheduling, it also introduces unpredictability of

tasks. Considering that, semi-partitioned scheduling is suitable in this case as

it is able to control the trade-off between the predictability and the flexibility

for multi-core MCS. For example, tasks with higher criticality levels may be

statically partitioned on processors in order to guarantee their executions, while

tasks with lower criticality levels may be able to migrate during their executions.

For instance, if core 1 enters into a higher criticality level, then some tasks

originally executing on the core can be migrated to another core (core 2 in this

case) to guarantee the schedulability of other tasks on the core (see Figure 1.2).

According to the figure, there is still blank space in core 1 which indicates that

with more available cores, it is likely that more tasks can be scheduled on the

core.

Figure 1.2: Semi-partitioned MCS Example

Currently, few paper has attempted to explore semi-partitioned algorithms

in MCS. We propose to find a possible semi-partitioned scheduling algorithm on
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multi-core MCS in which all tasks remain schedulable in the majority of scenarios.

1.3 Thesis Proposition

The focus of this thesis lies on the semi-partitioned scheduling of multi-core MCS,

and the thesis proposition can be stated as following:

A semi-partitioned approach to task placement on multiprocessor platforms

can improve the performance of mixed-criticality systems, enabling all tasks to

keep executing in the majority of scenarios.

The performance here refers to the schedulability, scalability and complexity,

where complexity mainly refers to the runtime overheads.

1.4 Structure

The set of contributions stated in this thesis support the thesis proposition and

are summarised in the following.

Chapter 2 provides the definition of various terms, analyse algorithms and

notations used in this thesis. A critical review of relevant research topics in

uni-processor mixed criticality scheduling algorithms, task allocation in multi-

core mixed criticality system, and existing semi-partitioned mixed criticality

scheduling algorithms is given. It illustrates a skeleton of the semi-partitioned

algorithm studied in this thesis.

Chapter 3 starts the exploration of semi-partitioned algorithms on a dual-core

platform with dual-criticality levels. In this platform, only low criticality tasks

can migrate and tasks may only migrate from one defined core to another defined

core. So the research focus in Chapter 3 is on the task allocation approaches and

the algorithms to determine the migratable tasks. In this research, six approaches

are proposed and evaluated.
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Chapter 4 extends the model proposed in Chapter 3 to the n-core platform

with dual-criticality levels. It provides a qualified definition of scenarios that all

tasks need to be saved, and redefines the semi-partitioned model for a n-core

platform. Based on the new model, this chapter explores four possible schedul-

ing approaches for semi-partitioned scheduling for a 4-core platform. These

approaches are evaluated, and the proposed approach is then extended to an

n-core version.

Chapter 5 further extends the model to n-core systems with multi-criticality

levels, and takes into consideration the influence from the system architecture.

This chapter applies the new model to a 16-core platform with 3-criticality levels,

and evaluates how the semi-partitioned algorithm may improve scheduling.

The research work described in this thesis is summarized in Chapter 6. Con-

clusion are drawn from the set of research contributions and prospective future

work is considered.

7



Chapter 2

Literature Review

This chapter will first introduce the notations used in this thesis. Then it

will provide some background information about real-time systems and a re-

view of the works already done in uni-processor platform MCS, mainly upon

Fixed Priority Scheduling and Earliest Deadline First Scheduling. After that,

it will introduce the scheduling approaches mainly used in multi-core platforms.

Then it will introduce several existing findings and knowledge, relating to semi-

partitioned scheduling in multi-core systems. It will also introduce an existing

semi-partitioned model MCS and a discussion of the differences between this

model and the model to be developed in this thesis will be demonstrated. Finally,

a summary will be given at the end of this chapter.

2.1 Notations and Assumptions

Since tasks may have different WCET for their different criticality levels, the

notation for MCS is slightly different from the standardized notation for real-time

systems. Table 2.1 shows the symbols used in this thesis.

In addition, the word “job” is used to represent one invocation/release of a

“task”, and the word “taskset” is used to represent a finite set of tasks. This

thesis considers the sporadic task model, where the deadline of a task is smaller

8



Notation Description

τi Task i

Di The relative deadline of task τi

D′i The reduced deadline of task τi

Ti The period of task τi

Li The criticality level of task τi

Ci(Li) The WCET estimation of task τi

at criticality level Li

Ui(Li) The utilisation of task τi at

criticality level Li

Ji The release jitter of task τi

Ii The interference time of the task τi

Oi The overhead of the task τi

cj Core j

Ri The response time of task τi

Table 2.1: MCS Notation

than or equal to its period/minimum release interval.

2.2 Real-Time System

As stated at the very beginning, the correctness of a real-time task not only relies

on the produced results but also relies on the time it produces the results. Based

on the focuses of correctness, real-time systems are mainly distinguished between

hard and soft real-time systems. Referring to hard real-time systems, all tasks

must finish all their releases within the given deadlines. While for soft real-time

systems, meeting the deadlines is important, but the system will still function
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correctly if deadlines are occasionally missed.

In a hard or soft real-time system, the computer is usually interfaced directly

to some physical equipment and is dedicated to monitoring or controlling the

operation of that equipment. Since the key feature of these applications is the role

of the computer acting as an information processing component within a larger

engineering system, such applications are also known as embedded computer

systems. In order to activate systems to keep up with the environment, tasks

are structured to be either time-triggered or event-triggered. For time-triggered

tasks, all computation activities are periodic and have a defined cycle time, for

example 10 ms, and are released for execution by an internal clock. Based on

that, such tasks are also known as periodic tasks. For event-triggered tasks,

the environment explicitly controls the release for execution of some software

activities. Such tasks are also known as aperiodic tasks. If there exists a bound

on how often the releasing event can occur in a time interval, such tasks are named

sporadic. This thesis focuses on systems with sporadic and periodic tasks.

In a concurrent program, it is not necessary to specify the exact order in

which tasks execute as the usage of synchronization primitives, such as mutual

exclusion, enforces the local ordering constraints. However, the general behaviour

of the program exhibits significant non-determinism. If the program is correct,

then its functional outputs will be the same regardless of internal behaviour or

implementation details. While the program’s outputs are identical with all these

possible interleaving, the timing behaviour may vary considerably. A task with

a tight deadline may request to execute first in order to meet the program’s

temporal requirements.

A real-time system needs to restrict the non-determinism found within concur-

rent systems, which indicates the usage of a scheduler. Regarding to that, a large

number of different scheduling approaches, such as Fixed-Priority Scheduling and

Earliest Deadline First scheduling, have been introduced to address this problem.

Cheng et al. [40] provides a systematic classification of the scheduling approaches

(Figure 2.1). According to the scheduling decision time, the schedulers can

be divided into two types: static and dynamic. A scheduler is called static if
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it makes its scheduling decisions at compile time; while a scheduler is called

dynamic if it makes its scheduling decisions at run time, selecting one out of

the current set of ready tasks. In static scheduling, the schedulers can be

further divided into two types: preemptive and non-preemptive. In preemptive

scheduling, there will be an immediate switch to any released higher-priority task.

In non-preemptive scheduling, the currently executing task will not be interrupted

until it decides on its own to release the allocated resources. In general, the

preemptive scheduling is preferred since it enables high-priority (short deadline)

tasks to be more reactive [35]. A test that determines whether a set of tasks can

Figure 2.1: Taxonomy of Real-time Scheduling Algorithms [40]

be scheduled (each task meet its deadline) is called a schedulability test. The test

is generally distinguished between exact, necessary, and sufficient schedulability

tests [65]. A schedulability test is defined to be sufficient if a positive outcome

guarantees that all deadlines are always met. While a test can be labelled as

necessary if the failure of the test will indeed lead to a deadline miss at some

point during the execution of the system. A sufficient and necessary test is

exact and hence is in some sense optimal; a sufficient but not necessary test is

pessimistic.

There exist a number of different scheduling approaches. We will intro-

duce two common algorithms, fixed-priority scheduling and earliest deadline first

scheduling, as these two algorithms are most widely used.
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Fixed-Priority Scheduling

Fixed-Priority Scheduling (FPS) is the most widely used approach and is the

main focus of this thesis. In FPS, each task has a fixed and static priority which

is computed pre-run-time. The system will always execute the available task with

the currently highest priority first. It is worthwhile to note that this priority value

is derived from the temporal requirements of the task, not the importance of the

task. In addition, priority 1 (or 0) implies the highest priority, as this is the

normal usage in most scheduling analysis.

There exist several priority assignment schemes for FPS. Rate Monotonic

Priority Assignment (RMPA) is a simple optimal priority assignment scheme for

tasks that have T = D. In RMPA, each task is assigned a priority based on its

period. The shorter the period, the higher the priority (e.g. for task τi and task

τj, Ti < Tj ⇒ Pi > Pj). This assignment is optimal in the sense that if any task

set can be scheduled with a fixed-priority assignment scheme, then the given task

set can also be scheduled with RMPA [70].

Leung et al. [68] have defined a priority assignment scheme, named as Deadline

Monotonic Priority Assignment (DMPA), caters for tasks that have D ≤ T .

DMPA behaves similarly to RMPA but assigns priorities inversely proportional to

the length of the relative deadlines of the tasks. Thus, the task with the shortest

deadline is assigned the highest priority while the task with the longest deadline is

assigned the lowest priority. It can be observed that DMPA will provide the same

priority order to RMPA for cases that have D = T . Leung et al. [68] also prove

that DMPA is an optimal static priority scheme for uni-processor scheduling.

However, both RMPA and DMPA are only optimal for simple task models.

They cannot provide optimal priority ordering for tasks with arbitrary deadlines.

Audsley et al. [5] introduces a theorem and algorithm, also known as Audsley’s

Optimal Priority Assignment (AOPA), for assigning priorities in arbitrary situa-

tions.

Theorem: If task p is assigned the lowest priority and is feasible, then, if a
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feasible priority ordering exists for the complete taskset, an ordering exists with

task p assigned the lowest priority.

According to this theorem, if any task is schedulable at the lowest value, then

the task can be assigned that priority, and the scheduling problem is therefore

reduced to be a subproblem to assign the other N − 1 priorities. This progress

can be reapplied to the reduced task set. Hence through successive reapplication,

a complete priority ordering can be obtained if one exists.

It is worthwhile to mention that their theorem is proved by using the response

time analysis equations (will be mentioned later in this section) that if a task has

the lowest priority then it suffers interference from all high-priority tasks and this

interference is not dependent upon the actual ordering of these higher priority

tasks. Thus, according to David and Burns [43], there exists pre-conditions for

applying the AOPA. In detail, for a schedulability test S to be compatible with

the AOPA algorithm, it must comply with three conditions stated below:

• Condition 1: The schedulability of a task τi may, according to test S,

depend on any independent properties of tasks with priorities higher than

i, but not on any properties of those tasks that depend on their relative

priority ordering.

• Condition 2: The schedulability of a task τi may, according to test S,

depend on any independent properties of tasks with priorities lower than

i, but not on any properties of those tasks that depend on their relative

priority ordering.

• Condition 3: When the priorities of any two tasks of adjacent priorities

are swapped, the task being assigned the higher priority cannot become

unschedulable according to test S, if it is previously schedulable at the

lower priority.

The above paragraphs have introduced several priority assignment schemes.

With the priorities assigned to the tasks, scheduling tests can be used to deter-

mine whether a taskset is schedulable or not by fixed priority scheduling. Liu and
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Layland [70] show that by considering only the utilization of the taskset, a test

for schedulability can be obtained (when the rate monotonic priority ordering is

applicable and used):

N∑
i=1

(
Ci
Ti

)
≤ N(21/N − 1) (2.1)

They show that for large N, the bound asymptotically approaches 69.3%.

Hence any taskset with a combined utilization of less than 0.692 will always be

schedulable by a preemptive priority-based scheduling scheme, with priorities

assigned by the rate monotonic algorithm. However, the utilization-based tests

for FPS have two significant drawbacks: the tests are not exact, and the tests are

not really applicable to a more general task model. In considering that, Response

Time Analysis (RTA) is introduced to provide an exact scheduling test for general

task models. According to Burns and Wellings [34], response time analysis has

two stages. In the first stage, an analytical approach is used to predict the

worst-case response time (R) of each task. The next stage is to compare these

response values with the deadlines of the corresponding tasks.

In a pre-emption scheme, since the task with the highest-priority will al-

ways execute once it is released, its worst-case response time equals its own

computation time (that is, R = C). Other tasks will suffer interference from

higher-priority tasks. The interference time refers to the time spent on executing

higher-priority tasks when a low-priority task is runnable. So for a general task

τi, the response time Ri can be represented as equation (2.2), where Ii is the

maximum interference that task i can experience in any time interval [t, t+Ri).

Ri = Ci + Ii (2.2)

The maximum interference occurs when all higher-priority tasks are released

at the same time as the task. Assume that all tasks are released at time 0

and consider one task τj with higher priority than task τi, then the maximum

interference from task τj can be obtained as the number of release of the task τj
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multiple with the WCET of task τj, which is dRi

Tj
e ∗Cj. Substituting these values

for all higher-priority tasks will get the maximum interference suffered by task

τi. Thus, the response time analysis for task τi is shown as equation (2.3)(Joseph

and Pandya [61]), where hp(i) stands for the set of tasks with higher priority

than task τi:

Ri = Ci +
∑

τj∈hp(i)

⌈
Ri

Tj

⌉
Cj (2.3)

Although the formulation of the interference equation is exact, the actual

amount of interference is unknown as Ri is unknown. According to equation (2.3),

due to the ceiling functions, it is difficult to solve and obtain the value Ri. As

the characteristic of fixed-point equation, there will be many values of Ri that

form solutions to the equation, and the smallest positive value represents the

worst-case response time for the task. The simplest way of solving the equation

is to form a recurrent relationship (Audsley et al. [5]):

ωn+1
i = Ci +

∑
τj∈hp(i)

⌈
ωni
Tj

⌉
Cj (2.4)

The set of values ω0
i , ω

1
i , ω

2
i , ..., ω

n
i , ... is monotonically non-decreasing. When

ωni = ωn+1
i , a possible solution to the equation is found. If ω0

i < Ci, then ωni

is the smallest value and hence is the worst-case response time for the task. If

the equation does not have a solution, the ω values keep rising. Once ωi gets

bigger than the period of task τi, it can be assumed that the task will not meet

its deadline. According to that, the starting value, e.g. ω0
i , must be no larger

than the unknown final solution. Since Ri ≥ Ci, Ci is a safe starting point which

is efficient enough for most of the cases. Davis et al. [45] have proposed more

efficient starting values if the efficiency of the response time analysis is an issue.

Since the calculation of response time analysis is quite lengthy, we only show the

last step of the recursive calculations when showing examples in later chapters.

The response time analysis is an exact scheduling test. If a taskset passes the

test, then all of the tasks will meet all their deadlines. Otherwise, if a taskset
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fails the test, then a task will miss its deadline at run-time (if WCET are exact).

In addition, the original response time analysis equation can be extended to deal

with more complicated and practical situations. In this thesis, we will focus on

the extended version relating to the release jitter issue. Release jitter is a key issue

in distributed systems and this problem mainly happens when a sporadic task

τs is released by a periodic task τp. Although the periodic task and the sporadic

task have the same release frequency, the maximum interferences from these two

tasks on lower priority tasks are different. This difference can be observed by

considering two consecutive executions of the sporadic task τs. Assume that

the sporadic task τs is released when the periodic task τp finishes its executing.

The first release of the sporadic task τs occurs at time Rp. Assume there is no

interference for the second release of periodic task τp, then it finishes at time

Tp + Cp. That is, the sporadic task τs is released at time Tp + Cp. According

to that, the two executions of the sporadic task are not separated by Tp but by

Tp +Cp−Rp. The maximum variation in the task’s release is termed the release

jitter of the task. For a task with release jitter J , it is released at times 0, T −J ,

2T −J , and so on. Audsley et al. [5] analyse the possible interferences from tasks

with the release jitter, and extend the original response time analysis equation

as follows:

Ri = Ci +
∑

τj∈hp(i)

⌈
Ri + Jj
Tj

⌉
Cj (2.5)

This equation can also be solved by forming a recurrent relationship.

Earliest Deadline First

Earliest Deadline First (EDF) was introduced by Liu and Layland [70] in 1973.

According to the EDF algorithm, an arrived task with the earliest absolute

deadline will be executed first. The EDF algorithm is proved to be optimal

among all scheduling algorithms on a uni-processor for periodic and sporadic

tasksets. This factor makes the EDF algorithm a common dynamic priority
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scheduling algorithm for real-time systems.

Liu and Layland [70] provide a necessary and sufficient schedulable analysis

for cases when all tasks relative deadlines are equal to their periods (D = T ).

The schedulability condition is that the total utilization of the taskset should be

less than or equal to 1. For periodic tasks which have arbitrary deadlines, Leung

and Merrill [67] propose that a taskset is schedulable if and only if all absolute

deadlines can be met in the busy period ([0,maxsi + 2H], where si is the start

time of task τi and H is the least common multiple of the task periods). Later on,

Baruah et al. [17] extend the algorithm to fit sporadic task systems. They show

that the taskset is schedulable if and only if for all time lengths t, the maximum

execution time requirement (h(t)) of all tasks, which have both their arrival times

and their deadlines within a contiguous interval of length t, shall be smaller than

or equal to the time length t. The mathematical expression can be shown as:

∀t > 0, h(t) =
n∑
i=1

max

{
0, 1 +

⌊
t−Di

Ti

⌋
Ci

}
≤ t (2.6)

Based on this equation, an upper bound of the value t can be calculated to

be used for testing schedulability of the system. The original algorithm (PDA)

needs to test all of the values of t from 0 to the upper bound which requires quite

a large load of calculation. Zhang and Burns [89] introduce a new algorithm

(QPA) which can dramatically reduce the calculation load while keeping the

testing necessary and sufficient.

2.3 Uni-processor Mixed Criticality Systems

A mixed-criticality system can be defined as a finite set of components. Each

component has a level of criticality, L, and contains a finite set of sporadic tasks.

Each task, τi, has its period Ti, deadline Di, worst case execution time Ci and

criticality level Li. There exist a number of different models to explain the

relationships between the attributes of the tasks and the criticality level of the

17



tasks. In Vestal’s model [86], he assumes that the higher the degree of assurance

required, the larger the task execution time needed to guarantee the completion

of the task. That is, if a task τi has a set of assure level (criticality levels),

L = 1, 2, 3, 4 with 4 being the highest, then the WCET estimations for task τi

shall have the relationship as Ci(L1) ≤ Ci(L2) ≤ Ci(L3) ≤ Ci(L4). Baruah and

Burns [12] extend Vestal’s model by thinking that not only the execution time

but also the minimum interval period and deadline may be changed in order to

meet the need for guaranteeing the completion of the task. With more concerns

in practical, such as hardware failures, Ekberg and Yi [49] extends Vestal’s model

by implementing the model with a Directed Acyclic Graph (DAG). But due to

the nature of a DAG, the mode change cannot be reversed.

This thesis uses Vestal’s original model that only WCET estimations of the

tasks may be changed during mode changes. In addition, the main parts of the

thesis considers MCS with two criticality levels, also known as dual-criticality

systems. In such a system, two criticality levels are named as HI and LO, with

HI more critical than LO. Tasks with HI criticality level are named as HI-crit

tasks while tasks with LO criticality level are named as LO-crit tasks.

2.3.1 Fixed Priority Scheduling

Regarding to fixed priority scheduling in MCS, since tasks may have different

WCET, RMPA and DMPA are no longer optimal for such tasksets. However,

Vestal [86] proves that the use of AOPA is still optimal for MCS, and this proof is

formalised by Dorin et al. [47]. Based on that, a variety of scheduling approaches

are developed.

Vestal’s Approach (SMC-no)

Vestal [86] firstly introduces a new way of using Audsley’s algorithm to perform

his approach to MCS in 2007. According to Vestal’s approach, priorities of high

and low criticality tasks are able to be interleaved in order to provide flexibility
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in scheduling. However, interleaved tasks need to be considered as if they are

of the same criticality level. So the response time analysis equation for Vestal’s

approach can be written as:

Ri = Ci(Li) +
∑

τj∈hp(i)

⌈
Ri

Tj

⌉
Cj(Li) (2.7)

Although Vestal’s approach does not require any runtime monitors, it can be

quite expensive to perform as several low criticality level tasks must be calculated

with their parameters at the high criticality level.

Static Mixed Criticality (SMC-run)

Baruah and Burns [12] analyse Vestal’s approach and indicate that the pessimistic

of Vestal’s approach is mainly caused by the criticality inversion. Criticality

inversion happens when a LO-crit task has a higher priority than a HI-crit task.

In this case, Vestal’s original approach will use the HI-crit WCET estimated

values of the LO-crit tasks to calculate the interferences. Baruah and Burns

indicates that such problems can be eliminated with help from a runtime monitor.

According to their extended model, when calculating the interference of task τj

for task τi, three cases need to be considered:

• If Li = Lj, then Cj(Lj) shall be used as the tasks are at the same level of

criticality.

• If Li < Lj, then Cj(Li) shall be used since the lower level of assurance is

needed for task τi.

• If Li > Lj, then criticality inversion is spotted. If Cj(Li) is used, than the

algorithm works as Vestal’s original model. If Cj(Lj) is used, then task τj

needs to be guaranteed that it shall not execute for more than this value,

which can be achieved by using a run-time monitor.
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Task C(LO) C(HI) T D L P

τ1 10 16 24 24 HI 4

τ2 1 - 6 6 LO 1

τ3 1 - 8 8 LO 2

τ4 1 - 12 12 LO 3

Table 2.2: AMC Example Taskset

Thus, with the help of the run-time monitor, the response time analysis for

SMC-run can be written as:

Ri = Ci(Li) +
∑

τj∈hp(i)

⌈
Ri

Tj

⌉
Cj(min(Li, Lj)) (2.8)

Adaptive Mixed Criticality (AMC-rtb)

Adaptive Mixed Criticality is a further extension based on SMC-run by increasing

the usage of the run-time monitor. The main idea in AMC is to abandon LO-crit

tasks in order to save HI-crit tasks. In this way, some cases not schedulable in

SMC will be schedulable in AMC [13]. For example, considering the example

taskset in Table 2.2. It is evident that neither task τ2 nor task τ3 can be assigned

the lowest priority as WCET of task τ1 is larger than their deadlines. If task τ4

is assigned the lowest priority, then the sum of the WCET of other three tasks is

already equal to the deadline, which indicates that task τ4 will miss its deadline.

Therefore, only task τ1 may be assigned the lowest priority. Based on SMC-run,

the RTA for τ1 will be:

R1 = 28 = 16 +

⌈
28

6

⌉
1 +

⌈
28

8

⌉
1 +

⌈
28

12

⌉
1 = 16 + 5 + 4 + 3 (2.9)

Since R1 = 28 > 24 = D1, the example seems not to be schedulable for SMC.

But if task τ2, τ3 and τ4 are abandoned when τ1 finishes its LO-crit execution
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bound, then the response time analysis for task τ1 will change to:

R′1 = 18 = 10 +

⌈
18

6

⌉
1 +

⌈
18

8

⌉
1 +

⌈
18

12

⌉
1 = 10 + 3 + 3 + 2 (2.10)

Therefore task τ1 can execute for C1(HI)− C1(LO) = 16− 10 = 6 time unit

to reach its HI-crit WCET. Thus, the total response time for task τ1 will be

18 + 6 = 24 ≤ D1, which indicates that the example is schedulable.

The original AMC is designed for a dual-criticality system(tasks are either in

LO-crit or in HI-crit), and the rules for AMC can be viewed as [13]:

• There is a criticality level indicator, Γ, initialized to LO.

• While the indicator Γ remains in LO (Γ ≡ LO), all tasks are executed

according to general priority order(start with the highest).

• If a executing task is monitored not finishing after using up its LO-crit

budget, then the criticality level indicator will be set to HI (Γ← HI).

• Once the indicator is HI (Γ ≡ HI), LO criticality level tasks will be stopped

and forbidden from releasing, while HI criticality level tasks will keep on

executing.

• Detect the circumstances to reset the criticality level indicator to LO(Γ←

LO).

According to the above rules, the schedulable test for AMC consists of three

phases of analysis. The first phase is to verify the schedulability of LO-crit mode,

when all of the tasks are executing with their LO-crit budgets. The response time

analysis for this phase is shown in equation (2.11).

Ri(LO) = Ci(LO) +
∑

τj∈hp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO) (2.11)
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The second phase is to verify the schedulability of HI-crit mode, when only

HI-crit tasks are executing and execute with their HI-crit budgets. The response

time analysis for this phase is shown in equation (2.12) where hpH(i) stands for

the set of HI-crit tasks with higher priority than that of task τi.

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) (2.12)

The change in criticality level has a number of similarities to systems that

move between different operational modes (although there exists some significant

differences [28],[56]). The literature on mode change protocols [84],[62] highlights

one important problem that a system can be schedulable in every mode, but

not schedulable during a mode change. Thus, the third phase is to check the

schedulability of the progress of criticality change. Since exact analysis of this

phase is unlikely to be tractable [13], a sufficient analysis can be carried out by

assuming that HI-crit tasks execute in their HI-crit budgets while LO-crit tasks

execute in their LO-crit budgets before the system changes to HI-crit mode. In

this case, for HI-crit task τi, interferences from HI-crit tasks will not be affected

by changing the time when system enters HI-crit mode, but interferences from

LO-crit tasks will increase if that time increases. So Ri(LO), the time that τi

finishes all its LO-crit budget, is the latest time point the criticality change may

occur. In all, the response time analysis for this phase is shown in equation (2.13)

where hpL(i) stands for the set of LO-crit tasks with higher priority than that

of task τi.

Ri(HI)′ =Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri(HI)′

Tj

⌉
Cj(HI)

+
∑

τk∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck(LO)

(2.13)

Note Ri(HI)′ > Ri(HI) so that if the task is deemed schedulable with

Ri(HI)′, it is deemed to be schedulable with Ri(HI).

22



AMC-max

The AMC algorithm is further improved by checking all the possible time points

to initiate the criticality change rather than just using the point when HI crit-

icality task used up its LO mode execution budget. Assume a criticality mode

change is triggered by some task, say τs, executing for more than its Cs(LO)

budget occurs at some arbitrary time s. If this event impacts on task τi then

s < Ri(LO), and the priority of τs must be equal to or greater than that of task

τi; otherwise task τi will have completed before the criticality change happens.

Based on this, the response time analysis of task τi can be seen as equation (2.14),

where Is(LO) represents the interference suffers from LO-crit tasks with higher

priorities, Is(HI) represents the interference suffers from HI-crit tasks with higher

priorities.

Ri,s = Ci(HI) + Is(LO) + Is(HI) (2.14)

For LO-crit tasks, according to AMC rules, they are prevented from executing

after time s. Their interference time can be bounded by their maximum release,

which is d s
T
e. However, in order to include interference from tasks as soon as

they are released, b s
T
c + 1 is a safer choice. Thus, the worst-case interference of

LO-crit tasks is:

Is(LO) =
∑
j∈hpLi

(

⌊
s

T

⌋
+ 1)Cj(LO) (2.15)

The interferences from HI-crit tasks can be differentiated into two cases

according to their priorities. Those with priorities greater than τs must have

completed their latest release before s, while those with priorities equal to or less

than τs may not yet completed. Hence, in this case, their latest release may need

C(HI). In all, only jobs with a deadline before s contribute a C(LO) value.

Consider the interference from task τk (has a higher priority) at time t with

t > s. The maximum number of releases of task τk is d t
Tk
e, and the maximum
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number of releases before s is d s
Tk
e. Thus, the maximum number of releases

that can fit into the HI-crit mode period is d t−s
Tk
e + 1 (when T = D). For

cases with D < T , this maximum number can be improved by reducing an

interval in which tk is not executing (time between its deadline and the next

release):d t−s−(Tk−Dk)
Tk

e+ 1. But if s is small and Dk is close to Tk, this improved

value may include more jobs than actually presented in the interval which makes

the value pessimistic. So the maximum number of releases of task k can be

further improved to be:M(k, s, t) = mind t−s−(Tk−Dk)
Tk

e+ 1, d t
Tk
e.

Therefore, the analysis equation for AMC-max is:

Ri,s =Ci(HI) +
∑
j∈hpLi

(

⌊
s

T

⌋
+ 1)Cj(LO)+

∑
k∈hpHi

M(k, s, Ri,s) + (

⌈
t

Tk

⌉
M(k, s, Ri,s)Ck(LO))

(2.16)

The last step is to define the values of s that need to be considered. The

possible value range for s is [0, Ri(LO)). By examining the equation, if s increases,

the LO-crit task part will increase while the HI-crit task part will decrease, and

Ri,s will only increase at the points when a LO-crit task is released. Thus, only

the time points, when a LO-crit task is released, need be checked. Although s is

restricted to the interval [0, Ri(LO)) and only certain values need be explored, this

can be a large number for a sizeable application. Accoridng to that, AMC-max

may be time consuming to calculate in certain cases.

Take Table 2.2 as an example. As computed before, the response time for

task τ1 in LO-crit mode is 18. During this time period, task τ2 has been released

3 times, task τ3 has been released 3 times, and task τ4 has been released twice.

Based on that, time points t = 6, 8, 12, 16 need to be checked:

• R1,6 = 16 + (1 + 1 + 1) + 0 = 19

• R1,8 = 16 + (2 + 1 + 1) + 0 = 20

• R1,12 = 16 + (2 + 2 + 1) + 0 = 21
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• R1,16 = 16 + (3 + 2 + 1) + 0 = 22

It has a solution of 22 at the worst case, which is smaller than that of 24

based on AMC-rtb.

Evaluation of FPS

Baruah et al. [13] have produced an experiment to compare the scheduling

efficiency of the approaches introduced above. They also compare the algorithms

with a upper bound and a lower bound.

• UB-H&L: A composite upper bound of UB-L and UB-H test. UB-L is an

upper bound on taskset schedulability obtained by considering execution

of all tasks at the LO-crit level and using DMPA. UB-H is an upper bound

based solely on the schedulability of the HI-crit tasks executing with their

HI-crit budgets and using DMPA.

• AMC-max: Approach 4 described in Section 2.3.1

• AMC-rtb: Approach 3 described in Section 2.3.1

• SMC-run: Approach 2 described in Section 2.3.1

• SMC-no: Approach 1 described in Section 2.3.1

• CrMPO: Criticality Monotonic Priority Ordering. Task priorities are or-

dered first according to criticality levels (HI-crit first) and then according

to deadlines (shortest deadline first). Response time analysis is used to

determine if the taskset is schedulable with HI-crit tasks executing with

HI-crit budgets and LO-crit tasks executing with LO-crit budgets.

Their comparing results can be seen in Figure 2.2. According to the figure, it

can be observed that SMC-run outperforms SMC-no by a large margin which in-

dicates that the usage of a run-time monitor significantly improves schedulability.

It is also observed that AMC-rtb has a further improvement on the performance
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of SMC-run and AMC-max has a slightly better performance than AMC-rtb.

Based on that results, AMC-max provides the best performance than all other

algorithms. However, as stated in the previous section, AMC-max may requires

too much calculation in certain cases while the performance improvement from

AMC-rtb is quite small. Considering this payoff, AMC-rtb is recommended as

the most appropriate algorithm in FPS on uni-processor platforms.

Figure 2.2: FPS MCS Comparison [13]

The AMC-rtb approach is extended by Zhao et al. ([90],[91]) in 2013 to incor-

porate preemption thresholds [80] into the model. They demonstrate a reduction

in stack usage and improved performance for some parameter ranges. Burns and

Davis [31] introduce another approach to combine AMC-rtb with the usage of

deferred preemption ([27],[42]), and demonstrate a significant improvement over

fully preemptive AMC-rtb. The improvement they observed is obtained by having

a final non-preemptive region at the end of each criticality and by combining the

assignment of priority with the determination of the size of these regions.

Fleming and Burns [52] extend the models to an arbitrary number of crit-

icality levels. They observed that AMC-rtb remains as good approximation to
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AMC-max, and AMC-max becomes computational expensive for increased levels.

According to their model, LO-crit tasks will be aborted, MID-crit and HI-crit

tasks will execute with MID-crit budgets. A sufficient response time analysis

for this AMC criticality mode change is represented in equation (2.17), where

hpM(i) stands for the taskset that contains all the MID-crit tasks which have

higher priority than tasks τi and Ri(LO) stands for the response time of the task

when the system is in LO-crit mode. This equation is later used in Chapter 3.

Ri =Ci(MID) +
∑

j∈hpH(i)

⌈
Ri

Tj

⌉
Cj(MID)

+
∑

k∈hpM(i)

⌈
Ri

Tk

⌉
Ck(MID)

+
∑

l∈hpL(i)

⌈
Ri(LO)

Tl

⌉
Cl(LO)

(2.17)

2.3.2 Earliest Deadline First

In general uni-processor scheduling, Earliest Deadline First (EDF) has better

performance than Fixed Period Scheduling (FPS) due to its high utilization

bound [70]. Several works have been done on applying EDF to MCS. Baruah

and Vestal [18] first considered MCS with EDF scheduling in 2008. Park and

Kim [77] later introduce a slack-based mixed criticality scheme. They propose a

combination usage of on-line and off-line analysis to run HI-crit jobs as late as

possible while LO-crit jobs executing in generated slack. Ekbery and Yi ([49],[57])

propose a more complete analysis for EDF scheduled MCS.

Demand-bound EDF

In Ekbery and Yi’s model ([49],[57]), the system has two behaviour modes and

each HI-crit task has been assigned two relative deadlines. One deadline is the

original deadline of the task, the other is an artificial earlier deadline that is

used to increase the likelihood of HI-crit tasks executing before LO-crit tasks. In
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the LO-crit mode, all LO-crit tasks execute normally, while HI-crit tasks execute

with a smaller deadline (comparing to their original deadlines). When a HI-crit

task is detected to execute exceeding its LO-crit budget, the system will change

from LO-crit mode to HI-crit mode. In the HI-crit mode, all LO-crit tasks will

be abandoned and HI-crit tasks will execute with their original deadlines.

In their later work ([58],[50]), the original scheme is improved and extended

to include changes to all task parameters and to incorporate more than two

criticality levels. Easwaran [48] provides a tighter analysis, focuses on the dual-

criticality platform, and Yao et al. [39] improves the model by using an improved

schedulability test for EDF (a scheme called QPA [89]) and genetic algorithm

(GA) to find better artificial deadlines.

Virtural Deadline (EDF-VD)

Baruah et al. ([11],[9],[10]) introduce a similar scheme, named EDF-VD. EDF-

VD is designed for dual-criticality systems and tasks with the same period and

deadlines (T = D). Since the execution order of the tasks is controlled by the

absolute deadlines in EDF, EDF-VD uses a factor x to reduce the deadlines of

all tasks. With this factor, D′i is calculated prior to runtime for each HI-crit task.

HI-crit tasks will execute with a smaller deadline by general EDF scheduling with

LO-crit tasks unless some task executes beyond its budget. In detail, if a task τi

arrives at time-instant t:

• If Li = LO, then τi will be assigned a deadline equal to t+Di

• If Li = HI, then τi will be assigned a virtual deadline equal to t+D′i

When a certain task is detected executing over the budget, then all of the

LO-criticality tasks need to be discarded immediately while HI-criticality tasks

will execute with their normal deadlines. Based on that, a taskset S will only be

schedulable for EDF-VD if two requirements are met:
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• All tasks will be schedulable in its LO-criticality behaviour when the pa-

rameters of HI-crit tasks are scaled.

• All HI-crit tasks are schedulable with their original parameters when a

budget overrun is detected.

They demonstrate both theoretically and via evaluations that EDF-VD is an

effective scheme. In later work, Baruah [8] has generalised the MCS model to

include criticality-specific values for period and deadline as well as WCET.

2.3.3 Other Approaches

Aiming to develop an efficient scheme that can be used at run-time, Masrur et

al. [73] propose an intermediate approach based on EDF-VD and Demand-bound

EDF. In their approach, two scaling factors are used to adjust the deadlines of

tasks.

Lipari and Buttazzo [69] propose a reservation-based approach to address

EDF scheduling of MCS with two criticality levels. In their model, deadlines

for the HI-crit tasks are chosen to guarantee the execution of HI-crit tasks and

to maximise the amount of capacity which can be reclaimed when HI-crit tasks

execute with their LO-crit budgets. In effect, LO-crit tasks run in capacity

reclaimed from HI-crit tasks. Their approach reserves sufficient budget for HI-crit

tasks, but if these HI-crit tasks only execute with their LO-crit budgets, a set of

LO-crit tasks can be guaranteed.

Su at al. ([82],[83]) introduce a different approach to use spare capacity. They

take advantage of the elastic task model [36] in which the period of a task can

change. They propose a minimum level of service for each LO-crit task τi that

is defined by a maximum period, Tmaxi . The system is only schedulable when

all HI-crit tasks use their HI-crit budgets and all LO-crit tasks use their LO-crit

budgets and Tmax values. At run-time, if HI-crit tasks use their LO-crit budgets,

then the LO-crit tasks can run more frequently. They demonstrate that their

approach performs better than EDF-VD under certain scenarios.
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EDF Evaluation

Since EDF will not be used in this thesis, we will not consider further details

of the EDF algorithms. The reason we do not use EDF is based on two con-

siderations. The first consideration is that EDF belongs to the class of dynamic

scheduling, which provides less execution predictability than static scheduling.

If the HI-crit tasks are safety-critical, EDF can not be a preferable choice. The

second consideration is that EDF algorithms use deadlines of tasks to manipulate

the execution order, and both of the algorithms introduced above modify the

deadlines of HI-crit tasks to increase their execution priorities. However, we have

observed that migrating a task will cause reduced deadline issues (which will be

stated in the next chapter), and these migratable tasks are LO-crit tasks. In that

case, these migrated LO-crit tasks may affect the execution order of the accepting

core, which may cause the HI-crit tasks on that core become non-schedulable. In

all, although EDF is a good scheduling apporach, this thesis is focused on FPS.

2.3.4 Comparing FPS and EDF

Although EDF dominates FPS in general uni-processor scheduling, Vestal has

proved that it is not applicable for Mixed Criticality System (MCS), as there

exists MCS examples which can be scheduled by FPS but not by EDF [18]. An

example is provided in Table 2.3.

Task C(LO) C(HI) T D L

τ1 1 2 4 4 HI

τ2 5 - 7 7 LO

Table 2.3: FPS VS EDF

According to the table, τ1 is a HI-crit task while τ2 is a LO-crit task. For

FPS, since the execution time for τ2 is larger than the deadline of τ1, τ2 will be

assigned the lowest priority. As the HI-crit task has the highest priority, it will

always meet its deadline. While the response time for τ2, when all tasks are using
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their LO-crit values, is 7, which equals to its deadline, so τ2 will also meet its

deadline. Therefore, this taskset is schedulable for FPS. For EDF, if τ1 exceeds

its LO-crit budget at the first release, then τ2 will execute for the next five time

units. For the second release of τ1, which starts at the time unit 8, it will miss its

deadline. In addition, static scheduling (such as FPS) provides better execution

prediction than dynamic scheduling (such as EDF). Thus, FPS is preferred to

EDF in MCS, and it is the scheme used in this thesis.

2.4 Multi-core Platforms

As embedded applications become more and more complicated, embedded system

designers rely more on multi-core platforms to obtain high computing perfor-

mance [38], [88]. In addition, Pollack’s Rule [23] indicates that the performance

increase benefits are only the square root of the increase in core complexity in a

uni-core platform. For example, only 40% more performance is delivered when the

logic gates in a processor core are doubled. Due to this constraint, the industry

is changing its gear toward multi-core architectures rather than continuing to

pursue high performance under the single processor architecture.

There are extensive researches published on real-time scheduling for homo-

geneous multi-core systems ([4], [3], [63], [66]). These scheduling algorithms can

be largely categorized into three classes: global scheduling (e.g. [3]), partitioned

scheduling (e.g. [66]) and semi-partitioned scheduling (e.g. [63]). In partitioned

scheduling, each task is assigned to a dedicated processor and executes solely

on that particular processor. According to that, the problem of multi-processor

scheduling is reduced to a set of uni-processor ones after tasks are partitioned.

In addition, partitioned scheduling does not lead to job migration costs which

can influence the schedulability of the system. However, it has been shown that

in worst cases, all partitioned scheduling approaches may cause deadlines to be

missed if the system utilization exceeds 50% ([72], [63]).

In global scheduling, all tasks first enter a global queue, and then execute
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on any available processors in order. Thus, in global scheduling, each task

can potentially execute on any processor. This scheduling approach contains

optimal algorithms, such as Pfair [15], [14] and LLREF [41]. Any periodic

taskset is schedulable by those algorithms if the utilization of the taskset does

not exceed 100%. However, Carpenter et al. [37] have compared the partitioned

scheduling and the global scheduling, and have indicated that both scheduling

approaches have their own pros and cons and none of them dominates the other

in terms of schedulability. In addition, since fixed-priority algorithms are often

adopted by commodity real-time operating system for practical usage, global

scheduling provides few advantage over partitioned scheduling from the viewpoint

of fixed-priority algorithms. To the best of our knowledge, existing fixed-priority

algorithms based on global scheduling ([4], [3], [7]) also have a taskset utilization

bound no greater than 50%.

Semi-partitioned scheduling can be seen as an intermediate solution between

the partitioned and global scheduling approaches. The basic idea with semi-

partitioned scheduling is to execute tasks according to a static job migration

pattern with the goal to reduce run-time overheads by controlling the number of

job migrations. In classical semi-partitioned scheduling, tasks are firstly assigned,

as much as possible, to single processors according to the partitioned scheduling

approach. The jobs of the tasks that cannot be assigned to a single processor are

then allowed to migrate between a fixed set of particular processors. According

to George et al. [54], there exist two main approaches to assign the migrating

jobs: job portion migration and job migration.

Kato et al. [63] first propose the idea to split tasks in the semi-partitioned

approach. Their approach splits a task into several portions and each portion of

the task is assigned to a dedicated processor. They propose a portioning heuristic

that minimizes the number of processors required to execute a task by assigning

the maximum possible duration to the WCET of a portion while preserving the

schedulability of the task. By splitting tasks, the overall system utilization can

be significantly improved. As stated before, the best known utilization bound for

either global or partitioned fixed-priority scheduling algorithms is no more than
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50%. For the semi-partitioned scheduling, Lakshmanan et al. [66] have shown

an utilization bound of 65%, and Guan et al. [59] have improved this bound to

the traditional Liu and Laylands bound, i.e. 69.3%. However, above approaches

are built with the assumption that no constraint is imposed when splitting tasks.

In practice, the programming code and the resources used by a task are highly

likely to influence the number of portions the task can be split into.

The other approach, referred to as the restricted migration case by Funk and

Baruah [53], only allows a job to execute on one processor for each release while

different jobs of the same task can be executed on different processors. Although

this approach does not provide high utilization bound as the previous one, this

approach avoids the problems caused by splitting jobs. In addition, according

to George et al. [54], this migration pattern introduces fewer overheads than the

job portion migration approach as migrations are only done at job boundaries

(at most one migration per job). In theoretical analysis, it is common to assume

that job migrations take zero time. But in practice, several activities (acquiring

locks, making a scheduling decision, performing a context switch, etc.) need to

be performed before the migration of a job and such activities have a cost [20].

Thus, in terms of practice, the restricted migration approach is preferred.

2.5 Multi-core MCS

Multi-processor systems can be divided into three types: heterogeneous, ho-

mogeneous and uniform [44]. In order to simplify the system model, most of

the algorithms in MCS are using homogeneous multi-core platforms, where the

processors are identical and the execution time for tasks remains the same on all

processors. So if not specified, the multi-core systems mentioned in this thesis

are homogeneous.
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2.5.1 Task Allocation

Although there exist three types of multi-core scheduling algorithms, most papers

published are using partitioned scheduling. The reason is that partitioning

provides a stable and predictable implementation that is preferable for safety

critical applications. Regarding partitioned scheduling, the most essential issue

is to allocate tasks to cores.

According to Michael and Johnson [74], unless P = NP , only heuristic

solutions can be gained for scheduling a set of n real-time tasks on m processors

even when the tasks have identical criticality levels and share the same release

time and deadline (D = T ). By importing extra criticality levels, the problem

gets more complicated which implies that the partitioning problem mentioned

above will also be NP-Hard. Bin-packing algorithms, include First-Fit (FF),

Best-Fit (BF) and Worst-Fit (WF), have been applied to the multi-processor

scheduling of general real-time system [71], and can be extended to be applied in

the mixed-criticality context.

First-Fit (FF)

First-Fit allocates the task to the first processor on which it “fits”. The word

“fit” here means that the task can be successfully scheduled along with the other

tasks that are already allocated to that processor. For example, consider the

taskset contained in Table 2.4 which needs to be allocated to a 3-core platform

(cores c1, c2 and c3). The allocation manipulated by the First-Fit algorithm will

be as following:

1. Schedule task τ1 to core c1. Success. Allocate task τ1 to core c1.

2. Schedule task τ2 to core c1. Fail.

3. Schedule task τ2 to core c2. Success. Allocate task τ2 to core c2.

4. Schedule task τ3 to core c1. Success. Allocate task τ3 to core c1
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Task C T D

τ1 5 10 10

τ2 6 10 10

τ3 4 10 10

τ4 5 10 10

Table 2.4: Bin Packing Example

5. Schedule task τ4 to core c1. Fail.

6. Schedule task τ4 to core c2. Fail.

7. Schedule task τ4 to core c3. Success. Allocate task τ4 to core c3.

According to the allocation results, task τ1 and τ3 are assigned to core c1,

task τ2 is assigned to core c2, and τ4 is assigned to core c3. Thus, it can be

observed that First-Fit algorithm tends to make better usage of the first few

cores rather than giving an average allocation. In addition, First-Fit algorithm

is quite straightforward if the scheduling process is quite simple.

Best-Fit (BF)

Best-Fit algorithm allocates the task to the processor with the smallest unused

capacity among all of the processors on which it fits. So the performance of BF is

quite different from FF as it needs to check the schedulability state of each core.

Still consider the taskset contained in Table 2.4, if this taskset is allocated to a

3-core platform (cores c1, c2 and c3), then BF will allocate the tasks as following:

1. Schedule task τ1

to core c1. Success. The core has utilization of 0.5.

to core c2. Success. The core has utilization of 0.5.

to core c3. Success. The core has utilization of 0.5.
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2. Since allocating task τ1 to any core provides the same core utilization,

allocating task τ1 to any core is fine. In this case, allocate task τ1 to core

c1.

3. Schedule task τ2

to core c1. Fail.

to core c2. Success. The core has utilization of 0.6.

to core c3. Success. The core has utilization of 0.6.

4. Since allocating task τ2 to core c2 and core c3 provide a same core utilization,

allocating task τ2 to any available core is fine. In this case, allocate task τ2

to core c2.

5. Schedule task τ3

to core c1. Success. The core has utilization of 0.9.

to core c2. Success. The core has utilization of 1.0.

to core c3. Success. The core has utilization of 0.6.

6. Since allocating task τ3 to core c2 provides the highest utilization, task τ3

is allocated to core c2.

7. Schedule task τ4

to core c1. Success. The core has utilization of 1.0.

to core c2. Fail.

to core c3. Success. The core has utilization of 0.5.

8. Since allocating task τ4 to core c1 provides the highest utilization, task τ4

is allocated to core c1.

As it is revealed from the allocation results, task τ1 and τ4 are assigned to core c1,

task τ2 and τ3 are assigned to core c2, and no task is assigned to core c3. Based

on the allocation results, Best-Fit provides better usage of the computing ability

of each core, and tends to provide a constrictive distributed allocation.
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Worst-Fit (WF)

Worst-Fit allocates the task to the processor with the largest unused capacity.

This algorithm also needs to check the schedulability state on each core, which

performs similarly to BF but towards a totally opposite target. Still consider the

taskset contained in Table 2.4, if this taskset is allocated to a 3-core platform

(cores c1, c2 and c3), then WF will allocate the tasks as following:

1. Check the utilization of all of the cores:

core c1 has utilization of 0.

core c2 has utilization of 0.

core c3 has utilization of 0.

2. The unused capacity for each core is the same. Schedule task τ1 to core c1.

Success. Allocate task τ1 to core c1.

3. Check the utilization of all of the cores:

core c1 has utilization of 0.5.

core c2 has utilization of 0.

core c3 has utilization of 0.

4. Core c2 and c3 have the largest unused capacity. Schedule task τ2 to core

c2. Success. Allocate task τ2 to core c2.

5. Check the utilization of all of the cores:

core c1 has utilization of 0.5.

core c2 has utilization of 0.6.

core c3 has utilization of 0.

6. Core c3 has the largest unused capacity. Schedule task τ3 to core c3. Success.

Allocate task τ3 to core c3.

7. Check the utilization of all of the cores:
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core c1 has utilization of 0.5.

core c2 has utilization of 0.6.

core c3 has utilization of 0.4.

8. Core c3 has the largest unused capacity. Schedule task τ4 to core c3. Success.

Allocate task τ4 to core c3.

According to the allocation results, task τ1 is assigned to core c1, task τ2 is

assigned to core c2, and task τ3 and τ4 are assigned to core c3. It can be observed

that Worst-Fit algorithm tends to provide an average distributed allocation.

Task Sorting

It is known that the order of a taskset will affect the performance of bin-packing

algorithms and it has been shown that decreasing utilization order improves the

performance of bin-packing algorithms in general real-time systems [71]. It is

reasonable to assume that the decreasing utilization order would also be helpful

in the MCS context. In addition, as criticality level is included, the order of

criticality may also have influence on the performance of the algorithms. Kelly

et al. [64] compare the efficiency of bin-packing algorithms among different taskset

orders based on utilization and criticality. In their experiment, they name two

taskset orders as Decreasing Utilization (DU) and Decreasing Criticality (DC).

Regarding to DU, tasks with high utilization values are allocated first. However,

because each MCS task is associated with multiple utilization values, such an

ordering requires a single utilization value to be identified for each task. In

their experiment, they use a nominal utilization (ui(Li) to represent the value

of the task‘s utilization at the specific criticality level of the task) for each task.

Regarding to DC, tasks are ordered according to criticality and tasks at the same

criticality level are further ordered by decreasing nominal utilization. After tasks

are allocated, they use RM Priority Assignment and Audsleys Optimal Priority

Assignment to assign the task priority on each processor for different taskset

orders: RM for DU, Audsleys for DC.
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Task C(LO) C(HI) u(LO) u(HI) T D L

τ1 4 16 0.2 0.8 20 20 LO

τ2 12.5 17.5 0.25 0.35 50 50 HI

τ3 12 18 03 0.45 40 40 HI

τ4 4 5 0.4 0.5 10 10 LO

Table 2.5: DC-Audsley VS DU-RM 1

According to their analysis, they find tasksets that are successfully scheduled

by either DU-RM or DC-Audsley but not both. Take Table 2.5 as an example

taskset. Regarding to the first example, if FF is used as the task allocation

heuristic, consider DU-RM scheme, where tasks are ordered according to their

nominal utilizations (u1(1) = 0.2, u2(2) = 0.35, u3(2) = 0.45, u4(1) = 0.4) and

RM priorities are used, the tasks are allocated in the order of τ3, τ4, τ2 and

τ1. Based on the RM scheme, τ3 and τ4 can be successfully assigned to core c1.

Neither τ1 nor τ2 fit on core c1, which means they both need to be placed on core

c2. However, according to RM, τ1 will be assigned higher priority, which makes τ2

miss its deadline even at its first release (in HI-criticality mode). Therefore, this

taskset is not schedulable with DU-RM. Consider DC-Audsley scheme, the tasks

are allocated in the order of τ3, τ2, τ4 and τ1. Based on Audsleys scheme, τ3 and

τ2 can be successfully assigned to core c1, while τ1 and τ4 can also be successfully

assigned to core c2. Hence, this taskset is schedulable with DC-Audsley.

However, it is also observed that there exist cases that are schedulable by DU-

RM but not DC-Audsley. Take the following taskset as an example (Table 2.6),

if FF is used as the bin-packing heuristic, considering DC-Audsley, the tasks are

allocated in the order of τ1, τ2 , τ3 and τ4. According to Liu and Layland [70], the

utilization of FPS on uni-processor must be smaller than 1. Thus, if τ1 and τ2

are assigned to c1, τ3 and τ4 can only be allocated to core c2. As the sum of the

utilization of τ3 and τ4 is 1, they are schedulable in EDF but not FPS. Therefore,

such taskset is not schedulable with DC-Audsley. Considering DU-RM, the tasks

are allocated in the order of τ1, τ3, τ4 and τ2. According to RM scheme, τ1 and
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Task C(LO) C(HI) u(LO) u(HI) T D L

τ1 14 26 0.35 0.6 40 40 HI

τ2 24 32 0.3 0.4 80 80 HI

τ3 66 72 0.55 0.6 120 120 LO

τ4 180 200 0.45 0.5 400 400 LO

Table 2.6: DC-Audsley VS DU-RM 2

τ3 can be successfully allocated to core c1 while τ1 is assigned higher priority. τ4

and τ2 can also be successfully allocated to core c2 while τ2 is assigned higher

priority. Thus, such taskset is schedulable with DU-RM.

Kelly et al. have also explored the performance of the allocation schemes

DU-RM, DU-Audsley, DC-RM and DC-Audsley. They generate different tasksets

with increasing sum of the utilization and check the scheduling successful ratio

of the allocation schemes. In their experiment, they fix the task number of each

taskset to 40, and the number of processors to 4. According to their results

(Figure 2.3), DC-Audsley outperformes other scheduling schemes throughout

the experiments, which draws their conclusion that general First-Fit decreasing

criticality is the best task allocation scheme for mixed criticality fixed priority

scheduling. This result is used in the allocation scheme developed in this thesis.

2.5.2 Idle Tick on Multi-core

As described in the uni-processor section, several algorithms, like AMC and EDF-

VD, require the system to detect an idle tick to get back to the default settings.

It may not be a problem in uni-processor or partitioned architectures, but in a

migrating system, it may take quite a long time to find an idle tick or even such

a time instance may not exist. For example, considering the taskset in Table 2.7

under a dual-criticality level MCS. Assume that the taskset is scheduled by FPS

that τ1 has the highest priority while τ3 has the lowest. If τ1 and τ3 are released at
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Figure 2.3: Task Sorting Algorithm Comparison [64]

Task C(LO) C(HI) T D L

τ1 6 9 10 10 HI

τ2 6 9 10 10 HI

τ3 3 - 10 10 LO

Table 2.7: No Idle Tick Taskset

time t = 0, τ2 is released at time t = 5 and τ1 exceeds its LO-criticality execution

budget at time t = 6, then both τ1 and τ2 execute in their LO-crit budgets from

their next release and the system will never become idle (Figure 2.4).

Santy et al. [81] propose a protocol to address this problem. According to

their protocol, suppose an overrun occurs at time tover and no job exceeds its

WCET budget at criticality level L after tover. For every task τi in the decreasing

order of priority, the protocol identifies a time instant fi satisfying:

• fi ≤ fi−1 (with f0 = tover)

• τi has no active job at time fi
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Figure 2.4: No Idle Tick [81]

Then, as soon as such an instant has been found for the lowest priority

task τn, the criticality of the system can be decreased safely to Level L and

all the suspended tasks with a criticality greater than or equal to Level L can be

reactivated. In detail, (assuming tasks are numbered in priority order), at time

tover, the protocol checks whether task τ1 (the highest priority task belonging to

τ) has an active job J1,k. If it is the case, then the protocol waits for that job

to complete its execution, and the time when it completes will be assigned as

f1. Otherwise, f1 = fover. The protocol then looks for the earliest instant after

f1 where τ2 has no active job. Again, if at time f1, τ2 has no active job, then

f2 = f1. Otherwise, the protocol waits for the job to complete. These steps are

iteratively performed for each task based on the priority order.

The protocol has an assumption that an overrun is unusual. That is, if the

protocol identifies a time instant fi for task τi, then the task will not overrun

its WCET until the protocol is able to decrease the criticality level to Level Li.

Nevertheless, if the task τi is detected to exceed its execution budget before fi,

the protocol needs to be aborted and restart all over again from the beginning.

For example, considering a dual-criticality system, let the taskset S = τ1, τ2, τ3, τ4

consists of four implicit-deadline sporadic tasks with the parameters in Table 2.8:

Consider an identical multi-core platform (c1 and c2), if tasks τ2, τ3, τ4 release

a job at time t = 0, and task τ1 releases a job at time t = 2. At time t = 4,

task τ3 does not signal its completion, which increases the criticality level of the

system from LO-crit to HI-crit. Therefore, task τ4 is suspended. At time t = 4,

the protocol is launched and checks whether task τ1 has an active job. Since
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Task C(LO) C(HI) T D L P

τ1 2 3 5 5 HI 1

τ2 2 4 9 9 HI 2

τ3 4 9 11 11 HI 3

τ4 1 - 5 5 LO 4

Table 2.8: Idle Tick Example Taskset

the first job of task τ1 is still executing, the protocol must wait for that job to

finish at time t = 5. Since task τ2 has finished its first release at time t = 2, the

protocol skips τ2 and considers τ3 instead. At time t = 5, τ3 has an active job, the

protocol must wait for that job to finish, which is at time t = 9. By then, as τ3 is

the lowest priority task among HI-crit tasks, no other tasks in the taskset S will

have an active job (τ4 is abandoned). Thus, at time t = 9, the criticality of the

system can be decreased to LO-crit, thereby reactivating task τ4. The scenario

is illustrated in Figure 2.5.

Figure 2.5: Idle Tick Example [81]

Bate et al. [22], [21] propose a more aggressive scheme for returning a sys-

tem back to its LO-criticality mode. In their approach, a bailout protocol

is introduced for dual-criticality systems. The protocol is mainly focused on

single processor systems (but is applicable for individual cores in a partitioned
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multi-processor) and the fixed priority preemptive scheduling of sporadic tasks

with constrained deadlines.

At run-time, dual-criticality systems are typically defined to be in one of

two modes: LO-crit mode and HI-crit mode. But the bailout protocol defines

three modes: normal mode, bailout mode and recovery mode. Normal mode

corresponds to the traditional LO-crit mode while bailout and recovery modes

correspond to the traditional HI-criticality mode. The normal mode behaves

similarly to the traditional LO-crit mode. In the bailout mode, HI-crit tasks

take out a loan if they execute for more than their LO-crit budgets. Other tasks

repay the loan by either not executing at all or executing for less than expected.

When the loan is repaid, the system enters the recovery mode. In the recovery

mode, LO-crit tasks are still prevented from executing while HI-crit tasks are

executing with their LO-crit budgets. If any HI-crit task executes for its LO-crit

budget without signalling completion, the system will re-enter bailout mode.

When the first release of the HI-crit task with the lowest priority in the recovery

mode completes its execution with its LO-crit budget, the system transits to the

normal mode. They demonstrate, using a scenario-based assessment, the bailout

protocol returns the system to the normal mode much quicker than the ‘wait for

idle tick’ scheme.

2.5.3 Communication among Cores

With a more complete platform such as a multi-processor or System on Chip or

Network on Chip, more resources have to be shared between criticality levels. A

main design issue is raised for multi-core MCS is how to ensure the behaviour

of low criticality components does not adversely impact on the behaviour of

higher criticality components. Thus, for a bus-based architecture, it is necessary

to control access to the bus so that applications on one core do not impact

unreasonably on applications on other cores. Pellizzoni et al. [78] show that a

task can suffer a 300% increase in its WCET due to memory access interference

even when it only spends 10% of its time on fetching from external memory on
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an 8-core system.

Tobuschat et al. [85] have developed a NoC explicitly to support MCS. Their

IDAMC protocol uses a back suction technique [46] to maximise the band-

width given to low (or non) critical messages while ensuring that high criticality

messages arrive by their deadlines. Burns, Harbin and Indrusiak ([32],[60])

expand the wormhole routing scheme [75] for a NoC to provide support for mixed

criticality traffic. An alternative to having a NoC be used for all traffic is proposed

by Audsley ([6],[55]). They advocate the use of a separate memory hierarchy to

link each core to off chip memory. A criticality aware protocol is used to pass

request and data through a number of efficient multiplexers. If the volume of

requests and data is criticality dependent then analysis similar to that used for

processor scheduling can be used on this memory traffic.

As NoC is widely supported in MCS, this thesis considers NoC in the analysis

developed in Chapter 5.

2.6 Semi-partitioned Scheduling

Al-Bayati et al. [1] recently introduce a dual-partitioned scheduling approach,

which allows HI-crit tasks to be statically mapped to processors at all times while

LO-crit tasks executing with limited migration, under the assumption that both

processors will go into HI-crit mode at the same time. Their model consists of two

steady modes and a migrating process. In the steady modes (LO-crit mode and

HI-crit mode), tasks are fully-partitioned to each core unless a criticality change

of the system is detected. During the criticality change, LO-crit tasks can be

migrated to other cores to provide flexibility. Thus, a LO-crit task τi may have

two different designated processors ci(LO) and ci(HI). In addition, Al-Bayati et

al.’s model also assume that LO-crit tasks will get a decreased release frequency

(Ti(LO) < Ti(HI)), but the WCET will remain the same (Ci(HI) = Ci(LO)).

In all, the response time analysis for two steady modes of each core is shown in

equation (2.18).
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Ri(LO) =Ci(LO) +
∑

τj∈hp(i)

⌈
Ri(LO)

Tj(LO)

⌉
Cj(LO)

Ri(HI) =Ci(HI) +
∑

τj∈hp(i)

⌈
Ri(HI)

Tj(HI)
)

⌉
Cj(HI)

(2.18)

However, their model only checks the schedualbilities of two states but omits

checkings on the mode change itself, which makes their results incomplete. In

addition, they make an assumption that LO-crit tasks would have increased

periods in the HI-criticality mode which decreases the execution rate of these

tasks. The scheme proposed in this thesis has different requirements and analysis.

2.7 Summary

This chapter firstly provides some background knowledge of real-time systems

and reviews existing works upon uni-processor MCS. It concludes that AMC-rtb

is the most appropriate algorithm to be extended to semi-partitioned scheduling.

Then it discusses why the semi-partitioned approach is an appropriate approach

for multi-core MCS. After that, it introduces three bin-packing algorithms, the

DC-Audsley task sorting algorithm, and a protocol to address the idle tick issue

in multi-core MCS. At the end of this chapter, it discusses the problem observed

in the semi-partitioned model introduced by Al-Bayati et al. [1].
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Chapter 3

Semi-partitioned Model on

Dual-core platform with Two

Criticality Levels

The previous chapter gives an overview of topics that are related to the scheduling

algorithms in MCS. The review shows that most existing efficient algorithms

are built with the assumption that tasks with lower criticality levels may be

abandoned to guarantee the execution of tasks with higher criticality levels. From

this chapter, we will propose an appropriate semi-partitioned approach for multi-

core MCS.

This chapter, as a start of the exploration, will focus on the simplest case

of MCS that there are only two criticality levels (HI-crit and LO-crit) and only

two cores in the system. Due to such settings, only LO-crit tasks may migrate

and there is one possible core for tasks to migrate to. Thus, the research in this

chapter mainly focuses on the definition of the semi-partitioned algorithm model

and the approaches to determine which tasks shall be migratable in a taskset.
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3.1 Semi-partitioned Model

As stated in the motivation in Chapter 1, one of the purposes is to save the LO-crit

tasks that are abandoned during mode changes on cores in other algorithms.

Thus, the migration progress shall only happen when the system observes a mode

change on one core. If both cores enter HI-crit mode, then none of the cores can

accept migratable tasks, and these migratable tasks have to be abandoned. In

consideration of the need of safety-critical applications, all HI-crit tasks need to

be statically allocated to each core. Regarding LO-crit tasks, some may also be

statically allocated to cores while others are allowed to migrate to other cores in

order to provide flexibility for mode changes. Assume that the criticality level

change of one core has no effects on the other, the basic properties of the model

are as follows:

• If all tasks execute within their LO-crit budgets then all deadlines are met

and no tasks migrate.

• No LO-crit task is allowed to exceed its LO-crit budget.

• If HI-crit tasks on one core exceed their LO-crit budgets, then some LO-

crit tasks will migrate, but ALL LO-crit tasks and HI-crit tasks remain

schedulable.

• If HI-crit tasks on more than one core exceed their LO-crit budgets, then

some LO-crit tasks will be abandoned, but all HI-crit tasks remain schedu-

lable (without migration).

For example, for a dual-core platform, the dispatching of jobs for execution

occurs according to the following rules:

• Each core consists of a criticality level indicator Γ, which is initialized to

LO.

• For each core, while (Γ ≡ LO), task with highest priority is selected for

execution.
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• If a LO-crit task executes for its LO-crit budget without signalling comple-

tion, its current release shall be terminated. If a HI-crit task executes for

its LO-crit budget without signalling completion, then the criticality level

indicator Γi for this core ci will be changed to HI.

• Once Γ ≡ HI, if the criticality level indicator of the other core remains

in LO, then all HI-crit tasks may execute with their HI-criticality budgets

while some LO-crit tasks will keep executing with their LO-crit budgets and

other LO-crit tasks will immediately migrate their current release onto the

other core. If the criticality level indicator of the other core is HI, then all

of the LO-crit tasks currently executing on the core need to be abandoned

while HI-crit tasks execute within their HI-crit budgets.

By allowing LO-crit tasks to migrate, the semi-partitioned scheduling model

can schedule tasksets that are not schedulable by a non-migration scheduling

model. For instance, consider the taskset in Table 3.1 to be scheduled on a

dual-core platform. Task τ1 and τ2 are HI-crit tasks and task τ3 is a LO-crit task.

Considering the HI-crit WCET and the period, task τ1 and τ2 cannot be both

allocated to the same core. Assume that task τ1 is allocated to core c1 and task τ2

is allocated to core c2. Since task τ1 and τ2 have the same attributes, allocating

task τ3 to either core c1 or core c2 has the same effect. Assume that task τ3 is

allocated to core c1, due to the period of task τ3 is equal to the LO-crit WCET

of task τ1, task τ3 needs to be assigned a higher priority. In this case, task τ1

will first execute 1 time unit, then task τ3 will execute 1 time unit. Task τ3 then

preempt task τ1 and execute another 1 time unit, and τ1 will finish its LO-crit

execution at time 4. Thus, task τ1 and τ3 are schedulable on core c1 in LO-crit

mode. However, when a criticality mode change occurs (task τ1 not finishing after

executing its LO-crit WCET), task τ1 needs to execute one more time unit but

it is preempted by τ3. After τ3 executing one more time unit, τ1 can only finish

its HI-crit budget at time 6 which means it misses its deadline. Due to that,

the taskset is not schedulable by a non-migration scheduling model. But with

the support of migration, task τ3 can be migrated to core c2 when a criticality

mode change occurs on core c1. In this scenario, task τ1 is able to execute one
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more time unit at time 4 and finish its HI-crit budget at time 5, while task τ2

and τ3 are schedulable on core c2. In summary, this simple example shows that

the semi-partitioned scheduling model dominates any non-migration scheduling

approach.

Task C(LO) C(HI) T D L

τ1 2 3 5 5 HI

τ2 2 3 5 5 HI

τ2 1 - 2 2 LO

Table 3.1: Example Taskset

This example shows the basic idea of the semi-partitioned algorithm, the de-

tailed mechanism of the model can be illustrated with the help of state variables.

Assume that a taskset S contains several tasks in two criticality levels (HI-crit

and LO-crit). If this taskset is to be scheduled on a two cores platform (c1 and c2)

by the semi-partitioned algorithm, then on each core there shall exist three types

of tasks: HI-crit tasks, statically allocated LO-crit tasks and migratable LO-crit

tasks. Let HIi represent the set of HI-crit tasks on core ci, LOi represent the

set of statically allocated LO-crit tasks and MIGi represent the set of migrating

LO-crit tasks, then the following relationship can be obtained:

• S = (LO1 ∪ LO2) ∪ (HI1 ∪HI2) ∪ (MIG1 ∪MIG2)

In steady mode, all these tasks are statically partitioned on each core and

executing with their LO-crit budgets. Define state X to represent this phase,

then the relationship between tasks and cores may be viewed as:

• X1 = LO1 ∪HI1 ∪MIG1

• X2 = LO2 ∪HI2 ∪MIG2

• S = X1 ∪X2
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If a criticality change occurs on one core (ci), then HI-crit tasks (HIi) will

execute with their HI-crit budgets. For LO-crit tasks, some of them (LOi) still

execute on the core with their LO-crit budgets while the others (MIGi) need to

migrate to other cores as there is not enough space for them on the core. Define

state Y (1) to represent the case that core c1 enters its HI-crit mode, then tasks

in MIG1 will be migrated from core c1 to core c2 and the relationship between

tasks and cores may be viewed as:

• Y (1)1 = LO1 ∪HI1

• Y (1)2 = LO2 ∪HI2 ∪MIG1 ∪MIG2

• S = Y (1)1 ∪ Y (1)2

Define state Y (2) to represent the case that core c2 enters its HI-crit mode,

then tasks in MIG2 will be migrated from core c2 to core c1 and the relationship

between tasks and cores may be viewed as:

• Y (2)1 = LO1 ∪HI1 ∪MIG1 ∪MIG2

• Y (2)2 = LO2 ∪HI2

• S = Y (2)1 ∪ Y (2)2

In state Y (1), taskset MIG1 is migrated from core c1 to core c2, and in state

Y (2), taskset MIG2 is migrated from core c2 to core c1. For tasks in Y (1)1 and

Y (2)2, the migration progress does not affect their priorities. For tasks in Y (1)2

and Y (2)1, since extra tasks have been migrated to these two cores, it is likely

that the original priority orders will be affected. So the priority orders in Y (1)2

and Y (2)1 may need to be recalculated offline. For these migrated tasks, it is not

defined whether they have finished or partly-completed or even not yet started

before migration occurs. Assume the migrations have no cost, all of the migrating

tasks may need to execute all their LO-crit budgets on newly allocated cores in

order to guarantee their completion. In addition, these tasks are likely to be
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released certain time before migrating, which means they have reduced deadlines

(D∗) after migration. To compare the exact value of such deadline reduction is

unlikely to be tractable as all of the release patterns need to be considered, so a

sufficient analysis can be obtained by applying the smallest reduced deadline to

each migrating task.

Theorem(1): For task τi, the worst case after migration is that it needs to

execute all its LO-crit budget in a reduced deadline of D∗i = Di − (Ri − Ci),

where Ri is the worst-case response time for task ti in state X.

Proof. Assume the latest release of task τi is t0. The task migrates at time t0 + t

and has completed a units of its current release job. Then in order to meet the

deadline, task τi needs to finish the rest of job, which is Ci − a, within time

Di− ((t0 + t)− t0) = Di− t after migration if no migration costs are considered.

In addition, for two tasks with same period, if task τ1 needs to finish C units in

D and task τ2 needs to finish C + x in D + x, then τ2 is harder to be scheduled

in FPS than τ1. In other words, if τ2 is deemed to be schedulable, then τ1 is also

schedulable. Thus, for τi, it has worst case when it has to schedule Ci−a+a = Ci

within time Di− t+ a = Di− (t− a). The value of (t− a) may be understood as

the time that task τi is pre-emptied before migration, and the maximum of this

value is Ri−Ci when task τi has been pre-emptied for a maximum time without

executing any of its job. In all, the worst case for τi is that it has to execute all

its LO-crit budget (Ci) in a reduced deadline of D∗i = Di − (Ri − Ci).

The above paragraphs have considered how the semi-partitioned algorithm

may improve the scheduling efficiency when only one core has increased to the

HI-crit mode. But in reality, both of the cores may be in HI-crit mode at the

same time. There are two possible situations in which both of the cores are in

HI-crit mode: both cores increase into HI-crit mode at the same time or two

cores increase into HI-crit mode one after another. Regarding to the first case,

as both cores enter their HI-crit mode, migrating tasks have no place to execute.

Therefore, these tasks need to be abandoned while HI-crit tasks and statically

allocated LO-crit tasks are still able to guarantee their completion. Define state
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BX to represent this case based on state X, the relationship among tasksets can

be obtained as:

• BX1 = LO1 ∪HI1

• BX2 = LO2 ∪HI2

• S = BX1 ∪BX2 ∪MIG1 ∪MIG2

Regarding to the latter case which is based on the situation that one core

has already entered HI-crit mode, the schedulability tests of tasks on that core

have been covered in the previous section. Referring to the core that enters

HI-crit mode later, since extra LO-crit tasks have been executing on the core,

only abandoning the migrating tasks may not guarantee the execution of HI-crit

tasks. Considering that, all LO-crit tasks on that core need to be abandoned.

Define state BY (1) to represent this situation based on state Y (1) and state

BY (2) to represent this situation based on state Y (2), the relationship among

tasksets can be obtained as:

• BY (1)1 = LO1 ∪HI1

• BY (1)2 = HI2

• S = BY (1)1 ∪BY (1)2 ∪MIG1 ∪MIG2 ∪ LO2

• BY (2)1 = HI1

• BY (2)2 = LO2 ∪HI2

• S = BY (2)1 ∪BY (2)2 ∪MIG1 ∪MIG2 ∪ LO1

3.1.1 Response Time Analysis

The analysis of the semi-partitioned model is quite similar to that of AMC. The

schedulable test consists of a three-phase analysis. The first phase is to verify

the schedulability of states X1 and X2 when all the tasks are partitioned on two
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cores and executing within their LO-crit budgets. The response time analysis for

this phase is shown in equation (3.1) where chp(i) stands for the set of all tasks

with higher priority than that of task τi on the same core:

∀τi ∈ X : Ri(LO) = Ci(LO) +
∑

j∈chp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO) (3.1)

The second phase is to verify the schedulability of states Y (1)1 and Y (1)2

and states Y (2)1 and Y (2)2 in the semi-partitioned model when some tasks have

been migrated from one core to another. For states Y (1)1 and Y (2)2, the cores

enter HI-crit mode where HI-crit tasks are executing with their HI-crit budgets

while LO-crit tasks are executing with their LO-crit budgets (this is represented

as Ci(Li) for task τi). The response time analysis for these tasks is shown in

equation (3.2).

∀τi ∈(Y (1)1 ∪ Y (2)2) :

Ri(HI) = Ci(Li) +
∑

j∈chp(i)

⌈
Ri(HI)

Tj

⌉
Cj(Lj)

(3.2)

Meanwhile, tasks in Y (1)2 and Y (2)1 are executing in LO-crit mode that all

tasks are executing with their LO-crit budgets. Additionally, since migrating

tasks are released before moving to the cores, the release jitters of these tasks

need to be considered when calculating their interference upon other tasks. In

order to guarantee the schedulability, the maximum pre-emptive time of the

migrating tasks are used as the release jitters when performing response time

analysis. According to this, if task τi migrates to another core, the release jitter

will be Ji = Ri − Ci(LO) ; otherwise, Ji = 0. The response time analysis for

these tasks is shown in equation (3.3).

∀τi ∈(Y (1)2 ∪ Y (2)1) :

Ri(LO)∗ = Ci(LO) +
∑

j∈chp(i)

⌈
Ri(LO)∗ + Jj

Tj

⌉
Cj(LO)

(3.3)
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The last phase is to check the schedulability of the criticality change progress

which consists of two parts. The first part is to check the schedulability of cores

entering HI-crit mode. This progress is quite similar to the mode change progress

from LO-crit level to MID-crit level in three criticality levels (LO-crit, MID-crit

and HI-crit) AMC [52]. But in the semi-partitioned model, migration tasks will

be “aborted” on the core when migration happens while other LO-crit tasks

remain executing in their LO-crit budgets, and HI-crit tasks start to execute with

their HI-crit budgets. Comparing with the three criticality levels AMC, migrating

tasks in semi-partitioned model perform similarly to LO-crit tasks in AMC, other

LO-crit tasks in semi-partitioned model perform similarly to MID-crit tasks in

AMC but execute with their LO-crit budgets rather than MID-crit budgets, and

HI-crit tasks perform similarly to HI-crit tasks but execute with their HI-crit

budgets rather than MID-crit budgets. Thus, by modifying equation (2.17), a

sufficient response time analysis for the semi-partitioned model can be obtained

as equation (3.4) where chpH(i) stands for the taskset that contains all the

HI-crit tasks which have higher priority than task τi on the same core, chpL(i)

stands for the taskset that contains all the non-migrating LO-crit tasks which

have higher priority than tasks τi on the same core, chpMIG(i) stands for the

taskset that contains all the migrating LO-crit tasks which have higher priority

than tasks τi on the same core.

∀τi ∈(Y (1)1 ∪ Y (2)2) :

Ri(HI)∗ = Ci(Li)

+
∑

j∈chpH(i)

⌈
Ri(HI)∗

Tj

⌉
Cj(HI)

+
∑

k∈chpL(i)

⌈
Ri(HI)∗

Tk

⌉
Ck(LO)

+
∑

l∈chpMIG(i)

⌈
Ri(LO)

Tl

⌉
Cl(LO)

(3.4)

The other part of the last phase is to check the schedulability of migrating

tasks. As stated in the semi-partitioned model, these tasks have a reduced

deadline for their current release during migrating. As equation (3.3) repre-
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sents the response time analysis for these migrating tasks after migration, their

results need to be compared with reduced deadlines to decide their schedulability.

Equation (3.5) shows the calculation of the reduced deadlines for migrating tasks.

∀τi ∈ (MIG1 ∪MIG2) : D∗i = Di − (Ri(LO)− Ci) (3.5)

In addition, according to equation (3.4), it seems that setting LO-crit tasks

with high priority will bring more contributions to scheduling other tasks. Fur-

thermore, according to equation (3.5), tasks with higher priority are likely to

have relatively smaller pre-emptive time which leads them to have relatively

larger reduced deadlines. It makes such tasks easier to be scheduled. However,

such tasks may also have quite high priorities after migration which will bring in

more impacts on statically allocated tasks, including HI-crit tasks. So there is a

payoff when determining the choice of migrating tasks.

Referring to the case that both cores increase to their HI-crit mode, the

schedulability test for the first situation that both cores enter HI-crit mode at

the same time has already been covered in equation (3.2). For the latter case, it

is similar to AMC algorithm that all LO-crit tasks need to be abandoned during

the mode change. The response time analysis of HI-crit tasks can be represented

as equation (3.6) :

Ri(HI)∗∗ =Ci(HI) +
∑

j∈chpH(i)

⌈
Ri(HI)∗∗

Tj

⌉
Cj(HI)

+
∑

k∈chpL(i)

⌈
Ri(LO)∗

Tk

⌉
Ck(LO)

(3.6)

This completes all the analyses required to test the schedulability of a dual-

criticality system on a dual-core platform.
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3.1.2 Analysis Example

This section will show an example to illustrate the response time analysis dis-

cussed above. Regarding the taskset in Table 3.2, τ1, τ2, τ3 and τ4 are assigned

to c1 and τ4 may migrate to c2 when c1 enters high mode, while τ5, τ6, τ7 and τ8

are assigned to c2 and τ8 may migrate to c1 when c2 enters high mode. According

to the priorities, for core c1, P3 > P2 > P4 > P1; for core c2, P7 > P5 > P8 > P6.

Task C(LO) C(HI) T D L P c MIG

τ1 8 16 36 36 HI 7 1 NO

τ2 3 4 12 12 HI 3 1 NO

τ3 1 - 6 6 LO 1 1 NO

τ4 1 - 12 12 LO 5 1 YES

τ5 4 5 12 12 HI 4 2 NO

τ6 10 20 56 56 HI 8 2 NO

τ7 1 - 9 9 LO 2 2 NO

τ8 1 - 12 12 LO 6 2 YES

Table 3.2: Example Taskset

For the semi-partitioned algorithm, the schedulability test will be done in five

phases: state X, state Y (1) with the migration progress X ⇒ Y (1), state BY (1),

state Y (2) with the migration progresses X ⇒ Y (2), and state BY (2). For state

X, all of the tasks are executing on their LO-crit budgets.

• X1 = {τ1, τ2, τ3, τ4} and P3 > P2 > P4 > P1

– R3(LO) = 1 < 6 = D3

– R2(LO) = 3 + d4
6
e × 1 = 4 < 12 = D2

– R4(LO) = 1 + d5
6
e × 1 + d 5

12
e × 3 = 5 < 12 = D4

– R1(LO) = 8 + d20
6
e × 1 + d20

12
e × 3 + d20

12
e × 1 = 20 < 36 = D1

• X2 = {τ5, τ6, τ7, τ8} and P7 > P5 > P8 > P6

– R7(LO) = 1 < 9 = D7
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– R5(LO) = 4 + d5
9
e × 1 = 5 < 12 = D5

– R8(LO) = 1 + d6
9
e × 1 + d 6

12
e × 4 = 6 < 12 = D8

– R6(LO) = 10 + d23
9
e × 1 + d23

12
e × 4 + d23

12
e × 1 = 23 < 56 = D6

For state Y (1), task τ4 has migrated from core c1 to core c2, and HI-crit tasks

on c1 will execute on their HI-crit budgets while all other tasks remain executing

with their LO-crit budgets. In addition, task τ4, as a migrating task, needs to

use its reduced deadline for checking its schedulability.

• Y (1)1 = {τ1, τ2, τ3} and P3 > P2 > P1

– R3(HI)∗ = 1 < 6 = D3

– R2(HI)∗ = 4 + d5
6
e × 1 = 5 < 12 = D2

– R1(HI)∗ = 16 + d36
12
e × 4 + d36

6
e × 1 + d20

24
e × 2 = 36 ≤ 36 = D1 as the

worst case happens when t = R1(LO) = 20

• Y (1)2 = τ4, τ5, τ6, τ7, τ8 and P7 > P5 > P4 > P8 > P6

– D∗4 = 12− (5− 1) = 8

– J4 = 5− 1 = 4

– R7(LO)∗ = 1 < 9 = D7

– R5(LO)∗ = 4 + d5
9
e × 1 = 5 < 12 = D5

– R4(LO)∗ = 1 + d6
9
e × 1 + d 6

12
e × 4 = 6 < 8 = D4(r)

– R8(LO)∗ = 1 + d7
9
e × 1 + d 7

12
e × 4 + d7+4

12
e × 1 = 7 < 12 = D8

– R6(LO)∗ = 10+d32
9
e×1+d32

12
e×4+d32+4

12
e×1+d32

12
e×1 = 32 < 56 = D6

For state BY (1), as core c2 also increases to HI-crit mode, LO-crit tasks τ4,

τ7 and τ8 on this core need to be abandoned while HI-crit tasks τ5 and τ6 will

execute in their HI-crit budgets. Core c1 stays unchanged from state Y (1), so no

extra checks are required.

• BY (1)2 = τ5, τ6 and P7 > P5 > P4 > P8 > P6
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– R5(HI)∗∗ = 5 + d5
9
e × 1 = 6 < 12 = D5 as the worst case happens

when t = R5(LO)∗ = 5

– R6(HI)∗∗ = 20+d55
12
e×5+d32

9
e×1+d32

12
e×1+d32

12
e×1 = 55 < 56 = D6

as the worst case happens when t = R6(LO)∗ = 32

For state Y (2), task τ8 has migrated from core c2 to core c1, and HI-crit tasks

on c2 will execute on their HI-crit budgets while all other tasks remain executing

with their LO-crit budgets. In addition, task τ8, as a migrating task, needs to

use its reduced deadline for checking its schedulability.

• Y (2)1 = {τ1, τ2, τ3 τ4, τ8} and P3 > P2 > P4 > P8 > P1

– D∗8 = 12− (6− 1) = 7

– J8 = 6− 1 = 5

– R3(LO)∗ = 1 < 6 = D3

– R2(LO)∗ = 3 + d4
6
e × 1 = 4 < 12 = D2

– R4(LO)∗ = 1 + d5
6
e × 1 + d 5

12
e × 3 = 5 < 12 = d4

– R8(LO)∗ = 1 + d6
6
e × 1 + d 6

12
e × 3 + d 6

12
e × 1 = 6 < 7 = D8(r)

– R1(LO)∗ = 8+d23
6
e×1+d23

12
e×3+d23

12
e×1+d23+5

12
e×1 = 23 < 36 = D1

• Y (2)2 = {τ5, τ6, τ7} and P7 > P5 > P6

– R7(H)∗ = 1 < 9 = D7

– R5(H)∗ = 5 + d6
9
e × 1 = 6 < 12 = D5

– R6(H)∗ = 20 + d48
9
e × 1 + d48

12
e × 5 + d23

12
e × 1 = 48 ≤ 56 = D6 as the

worst case happens when t = R6(LO) = 23

For state BY (2), as core c1 also increases to HI-crit mode, LO-crit tasks τ4,

τ7 and τ8 on this core need to be abandoned while HI-crit tasks τ5 and τ6 will

execute in their HI-crit budgets. Core c2 stays unchanged from state Y (2), so no

extra checks are required.
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• BY (2)1 = τ1, τ2 and P3 > P2 > P4 > P8 > P1

– R2(HI)∗∗ = 4 + d4
6
e × 1 = 5 < 12 = D5 as the worst case happens

when t = R2(LO)∗ = 4

– R1(HI)∗∗ = 16+d36
12
e×4+d23

6
e×1+d23

12
e×1+d23

12
e×1 = 36 ≤ 36 = D1

as the worst case happens when t = R1(LO)∗ = 23

As all of the sufficient response time analyses above are less than or equal

to their deadlines, this taskset is schedulable by using the semi-partitioned algo-

rithm.

If the non-migration algorithm is applied to schedule this taskset, neither core

c1 nor c2 is schedulable since R1 = 16+d44
12
e×4+d44

6
c×1+d44

12
c×1 = 44 > 36 = D1

and R6 = 20 + d57
12
e × 5 + d57

9
e × 1 + d57

12
e × 1 = 57 > 56 = D6. As migration

only occurs if necessary and the above example shows that multi-core platform

delivers improved schedulability, it can be concluded that the semi-partitioned

algorithm dominates any non-migration algorithm.

3.1.3 Returning to LO-crit Mode

This section will address the issue of returning to LO-crit mode. There are three

possible cases based on the number of cores in HI-crit mode and which core is

returning to LO-crit mode.

The first case occurs when only one core is in its HI-crit mode. In this case,

once the core (core c1 in state Y (1) or core c2 in state Y (2)) in HI-crit mode

experiences an idle tick, it can return to LO-crit mode and the next release of

migrated tasks will be on their original processor.

The second case may happen when both cores are in HI-crit mode and the

core which enters HI-crit mode later is returning to LO-crit mode. In this case,

once the core (core c2 in state BY (1) or core c1 in state BY (2)) in HI-crit

mode experiences an idle tick, it can return to LO-crit mode and all of the
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tasks previously abandoned, including the allocated LO-crit tasks and migrating

tasks belong to both cores, will start to execute on this processor.

The last case happens when both of the cores are in HI-crit mode and the

core which enters HI-crit mode earlier (including the case that both cores enter

HI-crit mode at the same time) is returning to LO-crit mode. In this case, once

the core (core c1 in state BY (1), core c2 in state BY (2), and either core c1 or c2

in state BX) in HI-crit mode experiences an idle tick, all of the migrating tasks

belong to both cores will start executing on this processor.

3.1.4 Migration Overhead Consideration

In the above algorithms, it is assumed that the overheads caused by the migration

progress is small and can be omitted. In this section, we will consider the influence

from the overheads and explore how it may affect the semi-partitioned algorithm.

As the overheads occur when LO-crit tasks migrate, the main effect of over-

heads upon semi-partitioned algorithm lies on the response time analysis of

migrating tasks. Thus, the migrating tasks require to spend extra units of time

before their execution on the migrate destination cores. Considering that, the

effect from overheads is quite similar to that from pre-emption, which causes

release jitter and a reduced deadline. Let Oi represent time it takes for task τi to

migrate, then equation (3.3) can be modified as below to consider the influence

from these overheads:

∀τi ∈(Y (1)2 ∪ Y (2)1) :

Ri(LO)∗∗ = Ci(LO) +
∑

j∈chps(i)

⌈
Ri(LO)∗∗

Tj

⌉
Cj(LO)

+
∑

k∈chpMIG(k)

⌈
Ri(LO)∗∗ + Jk +Ok

Tk

⌉
Ck(LO)

∀τi ∈(MIG1 ∪MIG2) :

D∗∗i = Di − Ji −Oi

(3.7)
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3.2 Semi-partitioned Configuration

The previous section has described how to determine whether a given set of tasks

with fixed priorities and allocated cores is schedulable by the semi-partitioned

algorithm. This section will consider how to apply the semi-partitioned algo-

rithm to allocate a set of tasks to a dual-core platform. Given that bin-backing

algorithms will be used for task allocation, the first step is to sort the set of

tasks into a specified order. Since the primary target of MCS is to guarantee

the execution of HI-crit tasks, it will be efficient to check if all the HI-crit tasks

are schedulable first, which means it is helpful to put all of the HI-crit tasks

in front of LO-crit tasks. As stated in Chapter 2, criticality-aware utilization

descending order provides better performance than others in First-Fit partitioned

MCS. It can be assumed that criticality-aware utilization descending order may

also provide good performance in semi-partitioned MCS as the majority of the

tasks are still partitioned. However, different task orders perform differently

under different bin-packing algorithms. So other possible task sorting orders,

such as criticality-aware period descending order and criticality-aware deadline

descending order, are required to be evaluated.

According to the migration mechanism stated in the semi-partitioned model,

setting a task as migratable will add extra computation load to the system. So it

will be better to minimise the chance of setting a task as migratable. Considering

that, the next step is to check whether the taskset is schedulable with the non-

migration algorithm. The semi-partitioned algorithm will only be applied when

the non-migration algorithm cannot schedule the taskset. The non-migration

algorithm simply assigns tasks using First-Fit bin packing algorithm and checks

the response times when HI-crit tasks execute with HI-crit budgets and LO-crit

tasks execute with LO-crit budgets. Note that only LO-crit tasks are migratable

in the semi-partitioned algorithm, so if the non-migration algorithm is not able

to schedule all of the HI-crit tasks then the taskset will not be schedulable by

the semi-partitioned algorithm.

Regarding the semi-partitioned algorithm, there are several possible approaches
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based on the choice of bin packing algorithms and selection of migration tasks.

As stated in Section 2.5.1, First-Fit, Best-Fit and Worst-Fit are the three mostly

commonly used bin-packing algorithms in MCS, but it is uncertain which method

performs best for the semi-partitioned algorithm. For the choice of migration

tasks, there are two main approaches. The first approach simply set the current

fetched task migratable. In the second approach, the set of LO-crit already

allocated tasks are considered candidates of migration (highest priority first).

For priority assignment, Audesly’s optimal priority scheme will be used to

assign priorities for all the task. An important issue is that migration tasks will

be assigned two priorities: one for its original core, the other for its destination

core. These values will be determined during task assignment. A detailed semi-

partitioned approach is shown as follows:

1. A task is fetched from the sorted taskset.

2. Assign the task to one of the cores according to the chosen bin packing

algorithm (FF or BF or WF).

3. Use Audsley’s algorithm to assign priorities for all tasks and check whether

all of the tasks are schedulable.

4. If an un-schedulable task is found, try to assign the task to the other core

and assign the priority order and do the checking again.

5. If both cores have been checked and neither of them can schedule the

fetched task, setting the fetched task or allocated tasks migratable will

be considered.

6. Assign the fetched task to one of the cores according to the chosen bin

packing algorithm (FF or BF or WF) and set the task migratable based on

one of the approaches.

7. Use Audsley’s algorithm to assign priorities for all tasks on both cores

considering migration effects and check whether all of the tasks on both

cores are schedulable.
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8. If an un-schedulable task is found, try to assign the task to the other core

and do the checking again.

9. If both cores have been checked and still neither of them can schedule

the fetched task, then the task is not schedulable by the semi-partitioned

algorithm.

10. Fetch another task to start a new loop until the taskset is empty or a task

is detected un-schedulable.

3.2.1 Software Configuration

According to the model, the semi-partitioned algorithm should have better perfor-

mance than the non-migration algorithm based on the original Vestal’s algorithm.

But it is uncertain how much the semi-partitioned algorithm has improved the

scheduling efficiency. This section will introduce an experiment designed to

compare the performance among six semi-partitioned approaches and also to

compare the semi-partitioned approaches against the non-partitioned approach.

In order to reveal the performance of the semi-partitioned algorithm, software

is produced to check the performance of different semi-partitioned approaches

and the non-migration algorithm. The software consists of three parts. The

first part of the software will generate tasksets. Tasks are randomly set to be

HI-crit tasks or LO-crit tasks but the percentage of HI-crit tasks is controlled

to be a fixed number. For all HI-crit tasks, their HI-crit WCETs have a fixed

relationship with their LO-crit WCETs. These two fixed values will be changed

in the experiments to explore the performance of different algorithms among

different taskset settings. In order to gain uniform distributed parameters, the

UUnifast-discard algorithm [30] is used to generate “nominal” utilization (a

“nominal” utilization represents the LO-crit utilization for a LO-crit task or the

HI-crit utilization for a HI-crit task), and the Log-uniform algorithm [51] is used

to generate periods. Other parameters of each task can be calculated based on

these two values (D = T,C(Li) = Ui(Li) ∗ T ).
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The generated tasksets are stored as XML (eXtensible Markup Language)

files. The reason to use XML is that XML is designed to be both human-

readable and machine-readable, so that we can manually check the reliability

of the scheduling results [26]. One XML file is designed to contain 10000 tasksets

and each taskset in this file has the same utilization u. Regarding to that

requirement, the XML file is configured to have a super parent node, named

as taskSets. The super parent node taskSets contains a util attribute, which

represents the same utilisation u, a factor value to store the fixed relationship

between HI-crit and LO-crit WCET, a percentage value to store the ratio between

HI-crit and LO-crit tasks, and 10000 parent nodes, named as taskSet. Each

parent node taskSet contains a unique ID, named as taskSetName, and a number

of nodes, named as task. The node task contains the essential attributes to form a

task: id stands for a unique name in the taskset to differentiate each task; period

literally stands for the interval time between each release of the task; deadline

literally refer to the relative deadline of the task; critlevel is a integer value to

indicate the criticality level of the tasks and 0 represents the lowest criticality

level; nomutil stands for the nominal utilization of the task. An example of the

XML file can be viewed in Figure 3.1.

The second part of the software is to pre-sort each taskset before scheduling.

As stated in the task allocation section, all tasks will be sorted in criticality-aware

utilization descending order. In such order, HI-crit tasks will be placed in front

of all LO-crit tasks, and both HI-crit tasks and LO-crit tasks are in utilization

descending order independently. The last part of the software is to test the

success rate of scheduling the tasksets by different scheduling algorithms. The

response time analysis in Section 3.1.1 is implemented in the software tool. Once

the success rate is obtained, the results are stored in an XLS (Microsoft Excel)

file for diagramming and further analysis.

In addition, in order to verify the reliability of the software, there exists

a special method in the software to output the scheduling result of a specific

approach upon a specific taskset. Combining with the corresponding XML file,

a manually check is possible to be done to examine the reliability.
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Figure 3.1: A Simple Example of XML file

3.3 Evaluation

We investigate the performance of six semi-partitioned approaches (Table 3.3)

and compare them with the non-migration algorithm. The non-migration al-

gorithm is chosen as the lowest bound of performance. Figure 3.2 (it would

be better to look at the colour version) shows the percentage of tasksets that

are schedulable for a system of 12 tasks, with half of those tasks having HI-crit

(tp=0.5) and the HI-crit execution budget is double of the LO-crit execution

budget (f=2). The Y-axis shows the percentage of the successful tasksets while

the X-axis shows the sum of nominal utilizations of the tested taskset. The sum of

utilization ranges only from 1.6 to 2.2 to amplify the results shown in the figure.

Note that the utilization is larger than 2 due to the use of nominal utilization.

We observe that all of the semi-partitioned schedulability tests outperform the

non-migration algorithm by a considerable margin. For example, as shown by the

black lines, Semi2WF can schedule 61% of tasksets with utilization of 1.9 while

non-migration algorithm can only schedule 42%. There exists an improvement
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Notation Description

Non-migration The non-migration approach

Semi-partitioned approach that migrates

Semi1FF the fetched task and uses First Fit

bin packing algorithm

Semi-partitioned approach that migrates

Semi1BF the fetched task and uses Best Fit

bin packing algorithm

Semi-partitioned approach that migrates

Semi1WF the fetched task and uses Worst Fit

bin packing algorithm

Semi-partitioned approach that migrates

Semi2FF the “highest” priority tasks and uses

First Fit bin packing algorithm

Semi-partitioned approach that migrates

Semi2BF the “highest” priority tasks and uses

Best Fit bin packing algorithm

Semi-partitioned approach that migrates

Semi2WF the “highest” priority tasks and uses

Worst Fit bin packing algorithm

Table 3.3: Real-time System Notation

around 61−42
42
∗100% = 45.23% from Semi2WF over the non-migration algorithm.

This is expected as the semi-partitioned algorithms allow more LO-crit tasks to be

scheduled. Comparing all of the semi-partitioned algorithms, the algorithms that

migrate allocated tasks (Semi2) perform slightly better than those algorithms

which only migrate fetched tasks (Semi1). This is also to be expected as the

former type of algorithm checks more possibilities and is more likely to migrate

LO-crit tasks with higher priorities, which, as discussed earlier, may improve

scheduling. Among Semi2 algorithms, Semi2WF has the best performance when

the sum of utilization is smaller than 1.9 while Semi2FF outperforms others in

the other cases.

67



Figure 3.2: Percentage of Schedulable Tasksets (better in color version)

In order to explore the performance of the algorithms relating to the crit-

icality factor (C(HI)/C(LO)) and the percentage of HI-crit tasks. Weighted

schedulability measure Wy(p) [19] is used for schedulability test y as a function

of parameter p to reduce a 3-dimensional plot to 2 dimensions:

Wy(p) = (
∑
∀Γ

u(Γ) ∗ Sy(Γ, p))/
∑
∀Γ

u(Γ) (3.8)

Regarding equation (3.8), for each value of p, it combines results for all of the

tasksets Γ generated for all of a set of equally spaced utilization levels (same as

that in previous figure, 1.6 to 2.2 in steps of 0.012). Sy(Γ, p) is the binary result

(1 or 0) of schedulability test y for a taskset Γ with parameter value p while u(Γ)

represents the utilization of taskset Γ.

We show how the results are changed by varying one key parameter at a

time. Figure 3.3 varies the criticality factor, Figure 3.4 varies the percentage of

HI-crit tasks and Figure 3.5 varies the size of a taskset. The X-axis stands for

the parameter examined and Y-axis represents the weighted value.
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Figure 3.3: Varying the Criticality Factor

Figure 3.4: Varying the Criticality Proportion

According to Figure 3.3, Semi2WF has the best performance when criticality

factor is smaller than 2 while Semi2FF outperforms others in the rest of the

cases. In addition, all semi-partitioned algorithms have increased performance as

the criticality factor increases. This is to be expected as the increase of WCET

differences between different criticality levels allows more scheduling potential

for migration tasks. According to Figure 3.4, the performance of the semi-

partitioned algorithms has formed an inverted U-shape curve since each end of the

interval represents a one-criticality taskset, and hence the priorities are optimal.

Regarding to individual performance, Semi2WF has the best performance in

most of the cases (0 < p < 0.8) while Semi1WF has the best performance when
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Figure 3.5: Varying the Taskset Size

the percentage of criticality tasks is quite high (0.8 < u < 1). According to

Figure 3.5, the performance of the semi-partitioned algorithms have formed an

inverted U-shape curve. This is expected as tasks are relatively large in small

sized tasksets, which adds difficulty in finding acceptable migrating tasks. While

in large sized tasksets, the interference from high priority tasks gets increased

which adds difficulty to the schedulability of migrating tasks due to the reduced

deadline and release jitter issues. Regarding to individual performance, Semi2WF

has the best performance when the size of the taskset is small (n 6 12) while

Semi2FF has the best performance in the rest of the cases (n > 12).

Overall, Semi2WF and Semi2FF have the best performance in the majority of

the cases. Thus, a combined usage of Semi2WF and Semi2FF may be the most

appropriate method of scheduling a two criticality level MCS on a dual-core

platform.

3.3.1 Overhead Influence

In this section, we explore the influence of the size of the overhead on the schedu-

lability of the semi-partitioned algorithm. A key problem in considering overhead

is that the overhead value is difficult to estimate. Brandenburg and Anderson [24]

propose that the migration overhead can only be observed indirectly. In addition,
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Brandenburg et al. [25] indicates that the migration overhead is heavily dependent

on the working set size of each task. Thus, it is valuable to find reasonable values

to assume for the overhead. Bastoni et al. [19] conclude from their experiments

that the migration delays do not depend significantly on the task set size but

strongly relating to the pre-emption length. Based on their findings, we assume

the migration overhead be a proportion of its response time in the steady mode.

In addition, since we are evaluating the Semi2 algorithms that tries to migrate

tasks with highest priorities, the response time of these tasks is close to their

WCET. As we are using estimation values to find a rough scheduling efficiency

effect from the overhead, we simply use the proportion of the WCET to represent

the overhead values. For instance, for migratable task τi, overhead Oi equals to

a proportion µ of its WCET Ci, that is Oi = Ci ∗ µ. This value µ is used to

indicate the size of the overhead in the system and the same value is used for all

of the migratable tasks.

In the experiment, we have checked the schedulability of the semi-partitioned

algorithm with three different overhead proportion µ:0.05, 0.10 and 0.15. The

non-migration algorithm is chosen as the lowest bound of performance while

the semi-partitioned algorithm without the consideration of overhead is chosen

as the upper bound. Figure 3.6 shows the scheduling efficiency of the semi-

partitioned approach (a combination usage of Semi2WF and Semi2FF) with

different overhead proportions in the scenario that t = 12, p = 0.5, f = 2. The

X-axis represents the utilization of the taskset and the Y-axis represents the

schedulability rate. It can be observed from the results that when the proportion

is smaller than or equal to 0.10, the semi-partitioned approach still outperforms

the non-migration approach. Thus, it can be indicated that in this scenario,

the semi-partitioned approach is a better choice when the overhead proportion is

smaller than or equal to 0.10 of the task’s WCET.

Based on the result observed in figure 3.6, 0.10 behaves as a boundary number

for the overhead influence of the specific scenario. We define the boundary

number to be the largest two digit value for which the semi-partitioned approach

still outperforms (at least a 5% improvement in schedulability) the non-migration
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Figure 3.6: Overhead Exploration

approach with such an overhead. We propose that by exploring the boundary

number of different scenarios, we may be able to make a summary of the overhead

influence on the semi-partitioned approach. Figure 3.7 shows the relationship

between the boundary number and the criticality factor f , Figure 3.8 shows the

relationship between the boundary number and the number of tasks in a taskset,

and Figure 3.9 shows the relationship between the boundary number and the

percentage of HI-crit tasks in the taskset.

Figure 3.7: Varying the Criticality Factor

It can be observed that increasing the factor will ease the influence from

the overhead, while both percentage and number of tasks form an inverted U-

shape curve. According to that, it is hard to generate a solid summary. Thus,
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Figure 3.8: Varying the Number of Tasks

Figure 3.9: Varying the Percentage of HI-crit Tasks

it is suggested that the tolerance of overhead shall be analysed case by case.

Nevertheless, in almost all scenarios if the cost of migration is less than 5% of

a task WCET (which is a valid assumption), the semi-partitioned approach is

beneficial.

3.4 Summary

In this chapter, we have introduced a semi-partitioned model for a dual-core MCS

with two criticality levels. The model allows some LO-crit tasks on the mode

changing core to migrate to the other core if only one core enters HI-crit mode. If

both cores are in HI-crit mode, all HI-crit tasks are guaranteed to be schedulable
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while some LO-crit tasks shall be abandoned. Then we have provided a detailed

response time analysis of the semi-partitioned model and illustrated the equations

with an example. During the analysis, we observe that there exists a release jitter

issue and a reduced deadline issue caused by the migration progress. For the

migrating tasks, it is not defined whether they have finished or partly-completed

or even not yet started before the migration occurs, and all of the migrating

tasks still need to execute their remaining LO-crit budgets on newly allocated

cores. Considering that, the migration tasks have reduced deadlines (D∗) after

migration. It is difficult to compare the exact value of such deadline reduction

since all of the release patterns need to be considered. Therefore, a sufficient

analysis is proposed, which can be obtained by applying the smallest reduced

deadline to each migrating task. This chapter has proved that for task τi, the

worst case after migration is that it needs to execute all its LO-crit budget in a

reduced deadline of D∗i = Di−(Ri−Ci), where Ri is the worst-case response time

for task ti when the core is in LO-crit mode and the release jitter is Ji = Ri−Ci.

Based on that, migrating tasks with relatively high priority are likely to have

small release jitter and small effect from the reduced deadline issue.

After that, we introduce six scheduling approaches based on two possible task

migration schemes and three bin-packing algorithms during the discussion of the

configuration of the semi-partitioned model. Then we set up an experiment to

compare the performances of the approaches proposed. According to the results,

we observe that all of the proposed approaches have better performance than the

non-migration algorithm. It is also observed that the semi-partitioned approach

which migrates the “highest” priority migratable LO-crit tasks with Worst-Fit

bin-packing algorithm and the semi-partitioned approach which migrates the

“highest” priority migratable LO-crit tasks with First-Fit bin-packing algorithm

have better performance than others in all of the scenarios. Based on the findings,

we suggest that a combining usage of Semi2WF and Semi2FF shall be the most

appropriate method for scheduling a dual-criticality level MCS on a dual-core

platform. We also explore the effect of the overhead caused by migration. It is

observed that the boundary case changes during different scenarios and therefore

it is suggested to analyse the tolerance of overhead case by case.

74



In the next chapter, we will explore the semi-partitioned model on a multi-core

platform.
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Chapter 4

Semi-partitioned Model for a

Multi-core Platform with Two

Criticality Levels

The previous chapter has explored the semi-partitioned model for a dual-core

platform, and proposed an appropriate approach to schedule a set of tasks in

such a system. Although it is studying the simplest case of MCS, the findings

are extendable to other cases when the taskset and the migration destination

are fixed. This chapter will be based on the previous findings to extend the

semi-partitioned model to a multi-core platform but still with two criticality

levels.

This chapter will first identify the issues rising from extending the semi-

partitioned model from a dual-core platform to a multi-core platform; and will

then redefine the system model based on this extension. Then this chapter will

explore scheduling upon a four-core platform, and introduce several possible

migration models. An experiment will be set up to compare the efficiency of

the proposed migration models, and an evaluation will be given based on the

results. After that this chapter will extend the findings from a four-core platform

to a multi-core platform. A summary will be given at the end of this chapter.
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4.1 Redefine the Model

In the semi-partitioned model for dual-core platform, LO-crit migratable tasks

shall migrate if only one core enters HI-crit mode while these tasks need to be

abandoned if both of the cores enter HI-crit mode. According to that, there

exists a boundary number nb for the semi-partitioned approach: if less than or

equal to nb cores enter the HI-crit mode, LO-crit tasks may migrate and all tasks

keep executing within their corresponding criticality level budgets; otherwise, if

more than nb cores enter the HI-crit mode, only HI-crit tasks guarantee their

executions. Literally, n − 1 can be the boundary number for a n-core platform.

However, criticality change is a rare event and n−1 cores all in HI-crit mode is an

extremely rare event. Thus, the determination of this boundary number nb is an

essential issue in the multi-core semi-partitioned approach. If nb is quite small,

then LO-crit tasks may need to be abandoned in many cases which is against the

initial purpose of the design. If nb is quite large, then the schedulability of the

model will be quite low as the scheduling requirement becomes quite strict.

We propose that the problem can be addressed by using a probability cal-

culation. Assume that the probability of one core entering HI-crit mode in a

sufficient long period of time is fixed, and the criticality mode change on each

core is independent. Based on probability knowledge, the probability of exactly

m cores, being in HI-crit mode at the same time, can be calculated. Assume the

probability of a core in HI-crit mode is p, then the probability of m cores, in a

n cores system, are all in HI-crit mode in the same period of time is given by,

where Cm
n represents the binomial coefficient function of choosing m out of n :

f(m,n) = Cm
n p

m(1− p)n−m =

{
n!

m!(n−m)!

}
pm(1− p)n−m (4.1)

Based on that, the probability of more than X cores entering HI-crit mode

at the same time can be expressed as equation (4.2).
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F (X,n) =
n∑

i=X+1

f(i, n) (4.2)

According to equation (4.2), F (X,n) will represent the probability of the case

that the system needs to abandon LO-crit tasks. So if there exists a tolerance

standard, ptol, then the smallest number X which meets the tolerance standard

(F (X,n) ≤ ptol) can be calculated. Assuming nb = 2 is a reasonable requirement

in a four-core system, ptol can be set as F (2, 4). Assume that p = 10−4, an

exploration is made to find out appropriate boundary number nb for certain

cases (Table 4.1).

n nb F (nb, n) ptol

4 2 4.00E-12 4.00E-12

8 3 7.00E-15 4.00E-12

16 3 1.82E-13 4.00E-12

32 3 3.59E-12 4.00E-12

64 4 7.59E-14 4.00E-12

128 4 2.62E-13 4.00E-12

256 5 3.61E-13 4.00E-12

512 6 1.68E-13 4.00E-12

1024 7 2.67E-13 4.00E-12

Table 4.1: Probability Table

According to the table, there exists a trend that the increment of the boundary

number nb is much slower than the increment of the number of cores. It indicates

that the fault model introduced is likely to be extendable to many core platforms.

However, it is also observed from the table that the exact boundary numbers

nb are irregular and hard to be calculated generally. We have tried to fit the

curve and find that there is a small difference between log2n and nb (Table 4.2).

Regarding to that, we propose to use log2n instead of the exact values.

For system with other number of cores, it can be proved that dlog2(n)e is an

appropriate boundary number to fulfill the tolerance percentage requirement.
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n nb log2n

4 2 2

8 3 3

16 3 4

32 3 5

64 4 6

128 4 7

256 5 8

512 6 9

1024 7 10

Table 4.2: log2n VS nb

Lemma 4.1.1. For systems with {w|2n + 1 ≤ w ≤ 2n+1} cores, n + 1 is an

appropriate boundary number.

Proof. It can be prove by induction.

• The possibility of more than K enter HI-crit mode in an n-core platform and

an (n+1)-core platform can be represented as F (K,n) =
∑n

i=K+1 f(i, n)

and F (K,n+ 1) =
∑n+1

i=K+1 f(i, n+ 1).

• The difference between the two functions can be viewed as :F (K,n+ 1)−

F (K,n) = (f(K+1, n+1)−f(K+1, n)+(f(K+2, n+1)−f(K+2), n)+

...+ (f(n, n+ 1)− f(n, n)) + f(n+ 1, n+ 1)).

• For each pair f(S, n + 1) and f(S, n), they can be compared by using

division. f(S, n+ 1)/f(S, n) ={
(n+1)!

S!(n+1−S)!

}
pS(1− p)n+1−S ∗

{
S!(n−S)!

n!

}
1
pS

1
(1−p)n−S = n+1

n+1−S ∗ (1− p).

• Since p = 0.0001, (1 − p) ≈ 1 and n + 1 > n + 1 − s, f(S, n + 1)/f(S, n)

shall be larger than 1.

• In that case, f(S, n+ 1) is larger than f(S, n).
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• According to that, F (K,n+ 1) is larger than F (K,n), which indicates that

F (n+ 1, 2n+1) has the largest value in all these situations.

• Since it is shown that ptol is larger than F (n+ 1, 2n+1), all these situations

shall fulfill the requirement.

• Thus, n + 1 would be an appropriate boundary number for systems with

{w|2n + 1 ≤ w ≤ 2n+1} cores.

• Since dlog2(2n + 1)e = n+ 1 and dlog2(2n+1)e = n+ 1, n+1 can be replaced

by dlog2(NumberOfTheCores)e.

• In other words, dlog2(n)e is an appropriate boundary number for systems

with n cores.

Summing up all of the findings above, we propose a semi-partitioned model

for a n-core system as following:

• If all tasks execute within their LO-crit budgets, then all deadlines are met

and no tasks migrate.

• No LO-crit task is allowed to exceed its LO-crit budget.

• If HI-crit tasks on no more than dlog2(n)e cores exceed their LO-crit bud-

gets, then some LO-crit tasks will migrate, but ALL LO-crit tasks and

HI-crit tasks remain schedulable. These migrating tasks will be divided

and migrate to paired cores that are currently in LO-crit mode.

• If HI-crit tasks on more than dlog2(n)e cores exceed their LO-crit budgets,

then some LO-crit tasks will be abandoned, but all HI-crit tasks remain

schedulable (without migration).

However, this value dlog2(n)e is a calculated reasonable value so that the

semi-partitioned scheduling model can be evaluated. In practical, other issues
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may affect the actual determination of the boundary number. In addition, we

assume a fully connected platform where a task can migrate from any core to

any other core at a fixed overhead cost in this chapter. This assumption will be

removed in the next chapter.

4.2 Semi-partitioned Model on Four-core Plat-

form

As the boundary number issue has been addressed and the model has been

redefined for the multi-core platform, the next step is to solve the migration

destination problem. In a dual-core platform, migratable tasks have only one core

to migrate towards. But in a multi-core platform, tasks may literally migrate to

any possible cores, which may cause the whole system to become unpredictable

and hard to analyse. This section will explore this migration destination issue on

a four-core platform. It will first introduce four allocation models and provide a

brief exploration upon the working mechanisms of these models. A response time

analysis upon these models will be given afterwards, as well as a comparison of

the models based on the analysis. An evaluation of the models will be given at

the end of this section.

4.2.1 Migration Models

For a four-core platform, if only one core enters HI-crit mode, the migration tasks

have three possible cores to migrate towards. We propose three models based on

the distribution of these migration tasks.

• Model 1 represents the model that all migration tasks migrate to one core.

• Model 2 represents the model that all migration tasks migrate to two cores.

• Model 2a represents a varient on Model 2 (see description below).
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• Model 3 represents the model that all migrate tasks migrate to three cores.

The following subsection will introduce the details of these models, including

the relationship among cores and how the migration tasks are divided to migrate

to different cores. Note for this 4-core system, mode changes on less than or

equal to two cores must be tolerated without the loss of scheduling.

Model 1

Model 1 is a naive model that migration tasks on each core may only migrate to

one core. The model can be viewed as Figure 4.1, where the rectangles stand for

cores and arrows stand for migration routes.

Figure 4.1: Model 1

According to the figure above, the migration routes form a circle which

indicates that it is always possible to find an available core (a core that still

in LO-crit mode) following the routes. Figure 4.2 and Figure 4.3 indicate two

example scenarios of Model 1. The core in grey indicates that this core is currently

in HI-crit mode; the thin arrow indicates a load of tasks migrate from one core to

another; the thick arrow indicates different steps of the scenarios (the left hand

side of the arrow is step 1 while the right hand side is step 2).

Based on these scenarios, the migrating load seems to be the main issue of

Model 1. In Step 2 of Scenario 1 and Scenario 2, an extremely heavy task load is

migrated to Core c4 while no task migrates to Core c3, which will undoubtedly

affect the schedulability of the model. Based on this observation, the issue of this

model lays on the heavy migration load during the second migration progress.

Model: Scenario 1 (Figure 4.2)
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Figure 4.2: Model 1 Scenario 1

1. Core c1 enters HI-crit mode, all of the migratable tasks on Core c1 will

migrate to Core c2.

2. Core c2 enters HI-crit mode, all of the migratable tasks on Core c2, including

tasks migrated from Core c1, will migrate to Core c4.

Figure 4.3: Model 1 Scenario 2

Model: Scenario 2 (Figure 4.3)

1. Core c2 enters HI-crit mode, all of the migratable tasks on Core c2 will

migrate to Core c4.

2. Core c1 enters HI-crit mode, all of the migratable tasks on Core c1 will

migrate to Core c2. But since Core c2 is already in HI-crit mode, these

migrating tasks will migrate to Core 4 directly.

Model 2

This model allows migration tasks to migrate to two cores rather than one. This

increment of the migrating destinations leads to two issues: how to decide which

two cores to migrate to and how the migration tasks shall be divided. Regarding
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to the first issue, Model 2 pairs cores into four groups: (Core c1, Core c2), (Core

c1, Core c3), (Core c2, Core c4) and (Core c3, Core c4). Each core has two

group-mate cores and migration tasks originally on the core will only migrate to

the group-mate cores if they are available. For example, Core c1 is paired with

Core c2 and Core c3. If Core c1 enters HI-crit mode, all of the migratable tasks

on Core c1 will migrate to Core c2 and Core c3. The model can be viewed as

Figure 4.4.

Figure 4.4: Model 2

Figure 4.5: Model 2 Scenario 1

Model: Scenario 1 (Figure 4.5)

1. Core c1 enters HI-crit mode, migratable tasks on Core c1 will split into two

parts and migrate to Core c2 due to the pairing relationship (Core c1, Core

c2) and Core c3 due to the pairing relationship (Core c1, Core c3).

2. Core c2 enters HI-crit mode, all of the migratable tasks originally on Core

c2 will migrate to Core c4 due to the pairing relationship (Core c2, Core

c4), and all of the migratable tasks from Core c1 will migrate back to Core

c1. But since Core c1 is already in HI-crit mode, these tasks will migrate

to Core c3. (In practice, these tasks will directly migrate to core c3.)

Model: Scenario 2 (Figure 4.6)
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Figure 4.6: Model 2 Scenario 2

1. Core c1 enters HI-crit mode, all of the migratable tasks on Core c1 will split

into two parts and migrate to Core c2 due to the pairing relationship (Core

c1, Core c2) and Core c3 due to the pairing relationship (Core c1, Core c3).

2. Core c4 enters HI-crit mode, all of the migratable tasks on Core c4 will split

into two parts and migrate to Core c2 due to the pairing relationship (Core

c2, Core c4) and Core c3 due to the pairing relationship (Core c3, Core c4).

The split here (and following ones used in other models) is actually using WF

bin-packing algorithm to assign the migratable tasks to other available cores.

The reason to use WF algorithm is that WF provides a more balancing task

distribution than other bin-packing algorithms.

Model 2a

This model is a possible variant on Model 2, but later on we will show that

this model is dominated by Model 2. In Model 2a, cores are also paired into

several groups and only tasks between groups may migrate to each other. The

difference between this model and Model 2 is that this model migrates the whole

migratable tasks to one paired core rather than splits the task load and migrates

to two paired cores. For example, assume that Core c1 is paired with Core c2 and

Core c3. If Core c1 enters HI-crit mode, all of the migratable tasks on Core c1

will migrate to Core c2 due to the pairing relationship (Core c1, Core c2). Then

if Core c2 also enters HI-crit mode, all of the migratable tasks from Core c1 shall

migrate to Core c3 due to the pairing relationship (Core c1, Core c3), while the

migratable tasks originally on Core c2 may migrate to other cores regarding to
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the pairing relationship for Core c2. The model can be viewed as Figure 4.4.

Figure 4.7: Model 2a

From the figure, the cores are paired into four groups: (Core c1, Core c2),

(Core c1, Core c3), (Core c2, Core c4) and (Core c3, Core c4). Based on that,

there are two possible scenarios:

Figure 4.8: Model 2a Scenario 1

Model: Scenario 1 (Figure 4.8)

1. Core c1 enters HI-crit mode, all of the migratable tasks on Core c1 will

migrate to Core c2 due to the pairing relationship (Core c1, Core c2).

2. Core c2 enters HI-crit mode, all of the migratable tasks originally on Core

c2 will migrate to Core c4, while all of the migratable tasks from Core c1

will migrate to Core c3.

Figure 4.9: Model 2a Scenario 2

Model: Scenario 2 (Figure 4.9)
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1. Core c1 enters HI-crit mode, all of the migratable tasks on Core c1 will

migrate to Core c2 due to the pairing relationship (Core c1, Core c2).

2. Core c4 enters HI-crit mode, all of the migratable tasks on Core c4 will

migrate to Core c3 due to the pairing relationship (Core c3, Core c4).

Although this model looks quite similar to Model 2, there exists a problem

that the migration task load may be quite heavy in certain scenarios, for instance,

step 2 in Scenario 1. A detailed explanation on why Model 2a is dominated by

Model 2 will be given in the Section 4.2.2.

Model 3

Model 3 is a quite different model from all of the previous ones. In this model,

tasks are allowed to migrate to all of the cores currently in the LO-crit mode.

Figure 4.10 shows how Model 3 may be viewed as.

Figure 4.10: Model 3

As shown in the figure, migratable tasks can migrate to all of the cores which

makes a maximum usage of the computation ability of the system. Here is a

possible scenario of Model 3:

Figure 4.11: Model 3 Scenario 1

Model: Scenario 1 (Figure 4.11)
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1. Core c1 enters HI-crit mode, all of the migratable tasks on Core c1 will split

and migrate to all other cores in LO-crit mode (Core c2, Core c3 and Core

c4).

2. Core c2 enters HI-crit mode, all of the migratable tasks on Core c2 will split

and migrate to all other cores in LO-crit mode (Core c3 and Core c4)

4.2.2 Model Analysis

The previous section has introduced four possible allocation models. This section

will give a detail exploration of the models proposed, especially based upon

response time analysis. It will describe Model 1, Model 2 and Model 3 and

their corresponding response time analysis. It will also illustrate why Model 2a

is dominated by Model 2.

Model 1

In this model, cores are chained in a circle. Assume a platform contains four

cores (c1, c2, c3 and c4), then cores shall be chained as c1 → c2 → c3 → c4 → c1.

If core c1 enters its HI-crit mode, then LO-crit tasks on core c1 may migrate to

core c2. If core c2 also enters HI-crit mode, then these migrated tasks from core

c1 shall migrate to core c3.

To be detailed, assume that a taskset S contains several tasks with two

criticality levels (HI-crit and LO-crit). If this taskset is to be scheduled on a

four-core platform by Model 1, then on each core there shall exist three types

of tasks: HI-crit tasks, statically allocated LO-crit tasks and migrating LO-crit

tasks. Let HIi represent the set of HI-crit tasks on core ci, LOi represent the set

of statically allocated LO-crit tasks and MIGi,j,k represent the chain relationship

of i→ j → k. Then the following relationship can be obtained:

• S = (LO1 ∪ LO2 ∪ LO3 ∪ LO4) ∪ (HI1 ∪HI2 ∪HI3 ∪HI4)

∪ (MIG1,2,3 ∪MIG2,3,4) ∪ (MIG3,4,1 ∪MIG4,1,2)
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In the steady state mode, all these tasks are statically partitioned on each

core and executing with their LO-crit budgets. Define state X to represent this

phase, then the relationship between tasks and cores can be viewed as:

• X1 = LO1 ∪HI1 ∪MIG1,2,3

• X2 = LO2 ∪HI2 ∪MIG2,1,4

• X3 = LO3 ∪HI3 ∪MIG3,1,4

• X4 = LO4 ∪HI4 ∪MIG4,2,3

• S = X1 ∪X2 ∪X3 ∪X4

Regarding state X, all tasks are executing with their LO-crit budgets. In this

case, the response time analysis of all tasks is given by equation (4.3):

∀τi ∈ X : Ri = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri

Tj

⌉
Cj(LO) (4.3)

If a criticality change occurs on one core (ci), then HI-crit tasks (HIi) will

execute with their HI-crit budgets. For LO-crit tasks, some of them (LOi) still

execute on the core with their LO-crit budgets while the others (MIGi,j,k) need

to migrate to other cores as there is not enough space for them on the core.

Define state Y (1) to represent the case that core c1 enters its HI-crit mode, then

tasks in MIG1,2,3 will be migrated from core c1 to core c2 and the relationship

between tasks and cores can be viewed as:

• Y (1)1 = LO1 ∪HI1

• Y (1)2 = X2 ∪MIG1,2,3

• Y (1)3 = X3

• Y (1)4 = X4

• S = Y (1)1 ∪ Y (1)2 ∪ Y (1)3 ∪ Y (1)4
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Regarding to this state, the behaviour of the cores is quite similar to the

semi-partitioned model analysed in the dual-core platform. According to that,

the reduced deadlines and release jitters need to be applied to migrating tasks,

and the worst case is given by equation (4.4):

∀τi ∈MIG1,2,3 :

D′i = Di − (Ri − Ci(LO))

Ji = Ri − Ci(LO)

(4.4)

Thus, the response time analysis of core c1 and core c2 in this state is given

by equation (4.5):

∀τi ∈ Y (1)1 :

Ri(MIX) = Ci(Li) +
∑

τj∈chp(i)

⌈
Ri(MIX)

Tj

⌉
Cj(Li)

+
∑

τk∈chpMIG(i)

⌈
Ri

Tk

⌉
Ck(LO)

∀τi ∈ Y (1)2 :

Ri(LO)′ = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO)′ + Jj

Tj

⌉
Cj(LO)

(4.5)

If one more core enters HI-crit mode, there exists two different scenarios.

The first scenario is that the core, which does not accept any migrated tasks,

enters HI-crit mode. For example, if core c3 enters HI-crit mode, then all of

the migratable tasks on core c3 shall migrate to core c4 due to the chained

relationship. The relationship between tasks and cores can be viewed as below,

where Y (1, 3) represents the state that core c1 enters HI-crit mode first and core

c3 enters HI-crit mode later:

• Y (1, 3)1 = Y (1)1

• Y (1, 3)2 = Y (1)2
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• Y (1, 3)3 = LO3 ∪HI3

• Y (1, 3)4 = X4 ∪MIG3,4,1

• S = Y (1, 3)1 ∪ Y (1, 3)2 ∪ Y (1, 3)3 ∪ Y (1, 3)4

The response time analysis equation of core c3 and core c4 in this state is

same as that of core c1 and core c2 in the previous state Y1.

The second scenario is that the core, which accepts migrated tasks, enters

HI-crit mode. In this scenario, not only the migratable tasks on the core, but

also the accepted migrated tasks need to migrate to another core. If core c2 enters

HI-crit mode, then all of the migratable tasks on core c2 shall migrate to core c3,

and the relationship between tasks and cores can be viewed as:

• Y (1, 2)1 = Y (1)1

• Y (1, 2)2 = LO2 ∪HI2

• Y (1, 2)3 = X3 ∪MIG1,2,3 ∪MIG2,3,4

• Y (1, 2)4 = X4

• S = Y (1, 2)1 ∪ Y (1, 2)2 ∪ Y (1, 2)3 ∪ Y (1, 2)4

Regarding to this scenario, taskset MIG1,2,3 migrates a second time. Since

the migrate progress will cause the reduced deadline and the release jitter issues

to the task, a task migrating a second time may suffer from a further effect

caused by the above issues. In other words, the release jitter and the reduced

deadline effects are stackable. It is observed that the worst case happens when

a task migrates to one core and further migrates to another core in one release.

For instance, τi waits a maximum time (Ri,m − Ci) before it starts to execute

on core cm and then migrates to core cn. Then it waits another maximum time

(Ri,n − Ci) before it starts to execute on core cn and migrates to core co. Thus,

for these tasks, the worst case of release jitters and reduced deadlines is given by

equation (4.6):
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∀τi ∈MIG1,2,3 :

D′′i = Di − (Ri,m − Ci)− (Ri,n − Ci)

J ′i = (Ri,m − Ci) + (Ri,n − Ci)

(4.6)

However, despite the changes to reduced deadlines and release jitters of the

tasks migrating a second time, the response time analysis for other tasks remains

the same as that in the other scenario.

If further cores enter HI-crit mode, then all of LO-crit tasks on that core need

to be abandoned as the number of cores in HI-crit mode exceeds the boundary

number. For example, if core c3 enters HI-crit mode, then the relationship

between tasks and cores can be viewed as:

• Y (1, 2, 3)1 = Y (1)1

• Y (1, 2, 3)2 = Y (1, 2)2

• Y (1, 2, 3)3 = HI3

• Y (1, 2, 3)4 = X4

• S = Y (1)1 ∪ Y (1)2 ∪ Y (1)3 ∪ Y (1)4 ∪MIG1,2,3 ∪MIG2,3,4

Based on the state view above, only HI-crit tasks are executing in core c3

while all of the LO-crit tasks are abandoned. The response time analysis of core

c3 in this state is given by equation (4.7):

∀τi ∈ Y (1, 2, 3)3 :

R′i(HI) = Ci(HI) +
∑

τj∈chph(i)

⌈
Ri(HI)′

Tj

⌉
Cj(HI)

+
∑

τk∈chpl(i)

⌈
Ri(LO)′ + J ′k

Tk

⌉
Ck(LO)

(4.7)

If all of the response time analysis for all possible states have passed, then

the taskset is deemed to be schedulable by Model 1.
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Model 2

This model pairs the cores so that tasks may only migrate between paired cores.

Assume the platform contains four cores (c1, c2, c3 and c4), then four pairs will be

generated: (c1, c2), (c3, c4), (c1, c3) and (c2, c4). If core c1 enters its HI-crit mode,

then LO-crit tasks on core c1 may only migrate to either core c2 or c3 but not

core c4. Assume that all of the migratable tasks on core c1 have migrated to core

c2, if core c2 also enters HI-crit mode then tasks, which previously migrated to

core c2, will have to migrate to core c3, while all of the migrating tasks originally

on core c2 will migrate to core c4. Based on that, the schedulability test of this

model can be simplified into several dual-core semi-partitioned models, which is

simpler than the previous model.

Assume that a taskset S contains several tasks in two criticality levels (HI-crit

and LO-crit). If this taskset is to be scheduled on a four-core platform by semi-

partitioned algorithm, then there shall exist three types of tasks on each core:

HI-crit tasks, statically allocated LO-crit tasks and migrating LO-crit tasks. Let

HIi represent the set of HI-crit tasks on core ci, LOi represent the set of statically

allocated LO-crit tasks, and MIGi,j,k represent the set of LO-crit tasks which will

migrate from core ci to core cj if core ci enters HI-crit mode and migrate to core

ck if core cj also enters HI-crit mode. Then the following relationship can be

obtained:

• S = (LO1 ∪ LO2 ∪ LO3 ∪ LO4) ∪ (HI1 ∪HI2 ∪HI3 ∪HI4)

∪ (MIG1,2,3 ∪MIG1,3,2) ∪ (MIG2,1,4 ∪MIG2,4,1)

∪ (MIG3,1,4 ∪MIG3,4,1) ∪ (MIG4,2,3 ∪MIG4,3,2)

In the steady state mode, all these tasks are statically partitioned on each

core and executing with their LO-crit budgets. Define state X to represent this

phase, then the relationship between tasks and cores can be viewed as:

• X1 = LO1 ∪HI1 ∪MIG1,2,3 ∪MIG1,3,2

• X2 = LO2 ∪HI2 ∪MIG2,1,4 ∪MIG2,4,1
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• X3 = LO3 ∪HI3 ∪MIG3,1,4 ∪MIG3,4,1

• X4 = LO4 ∪HI4 ∪MIG4,2,3 ∪MIG4,3,2

• S = X1 ∪X2 ∪X3 ∪X4

Regarding state X, all tasks are executing with their LO-crit budgets. In this

case, the response time analysis of all tasks is given by equation (4.8):

∀τi ∈ X : Ri = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri

Tj

⌉
Cj(LO) (4.8)

If a criticality change occurs on one core (ci), then HI-crit tasks (HIi) will

execute with their HI-crit budgets. For LO-crit tasks, some of them (LOi) still

execute on the core with their LO-crit budgets, while the others (MIGi) need to

migrate to other cores as there is not enough space for them on the core. Define

state Y (1) to represent the case that core c1 enters its HI-crit mode, then tasks

in MIG1 will migrate from core c1 to core c2 and the relationship between tasks

and cores can be viewed as:

• Y (1)1 = LO1 ∪HI1

• Y (1)2 = X2 ∪MIG1,2,3

• Y (1)3 = X3 ∪MIG1,3,2

• Y (1)4 = X4

• S = Y (1)1 ∪ Y (1)2 ∪ Y (1)3 ∪ Y (1)4

Regarding state Y (1) where only core c1 enters HI-crit mode, HI-crit tasks

on this core will execute with their HI-crit budgets while LO-crit staying tasks

will execute with their LO-crit budgets. All of the tasks on other cores will still

execute with their LO-crit budgets. Reduced deadlines and release jitters will be

applied to migrating tasks, and the worst case is given by equation (4.9):
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∀τi ∈MIG1,2,3 ∪MIG1,3,2 :

D′i = Di − (Ri − Ci(LO))

Ji = Ri − Ci(LO)

(4.9)

Thus, the response time analysis of this state is given by equation (4.10):

∀τi ∈ Y (1)1 :

Ri(MIX) = Ci(Li) +
∑

τj∈chp(i)

⌈
Ri(MIX)

Tj

⌉
Cj(Li)

+
∑

τk∈chpMIG(i)

⌈
Ri

Tk

⌉
Ck(LO)

∀τi ∈ Y (1)2 ∪ Y (1)3 :

Ri(LO) = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO) + Jj

Tj

⌉
Cj(LO)

(4.10)

If another core enters HI-crit mode, there are two possible scenarios: the core

which receives migrated tasks enters its HI-crit mode, and the core which does

not have any migrated tasks enters its HI-crit mode. Regarding to the first case,

assume core c4 enters HI-crit mode in state Y (1), then HI-crit tasks on core c4

will execute with their HI-crit budgets and migratable LO-crit tasks will migrate

to core c2 and core c3. The relationship between tasks and cores can be viewed

as:

• Y (1, 4)1 = Y (1)1

• Y (1, 4)2 = Y (1)2 ∪MIG4,2,3

• Y (1, 4)3 = Y (1)3 ∪MIG4,3,2

• Y (1, 4)4 = LO4 ∪HI4

• S = Y (1, 4)1 ∪ Y (1, 4)2 ∪ Y (1, 4)3 ∪ Y (1, 4)4
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In this scenario, the response time analysis is similar to the previous state

Y (1), which will not be repeated.

Regarding the latter scenario, assume core c2 enters HI-crit mode in state

Y (1), then HI-crit tasks on core c2 will execute with their HI-crit budgets,

migratable LO-crit tasks that originally allocated on core c2 will all migrate to

core c4 as core c1 is already in HI-crit mode, and the migratable LO-crit tasks

previously migrated from core c1 will migrate to core c3. The relationship between

tasks and cores can be viewed as:

• Y (1, 2)1 = Y (1)1

• Y (1, 2)2 = LO2 ∪HI2

• Y (1, 2)3 = X3 ∪MIG1,3,2 ∪MIG1,2,3

• Y (1, 2)4 = X4 ∪MIG(2, 1, 4) ∪MIG2,4,1

• S = Y (1, 2)1 ∪ Y (1, 2)2 ∪ Y (1, 2)3 ∪ Y (1, 2)4

Regarding state Y (i, j), core cj, which has not accepted any migrated tasks,

enters HI-crit mode after core ci has entered HI-crit mode. After that, HI-crit

tasks on this core will execute with their HI-crit budgets while LO-crit staying

tasks will execute with their LO-crit budgets. All of the tasks on other cores

will still be executing with their LO-crit budgets. Reduced deadlines and release

jitters will be applied to migrating tasks, and in this case only migrating tasks

originally from core ci will suffer from further reduced deadlines and release jitters

issues. Equation (4.11) shows the worst case:

∀τi ∈MIG1,2,3 :

Di” = D′i − (Ri(LO)− Ci(LO))

J ′i = Ji + (Ri(LO)− Ci(LO))

(4.11)

Thus, the response time analysis of core c2, core c3 and core c4 in state Y (i, j)

is given by equation (4.12):
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∀τi ∈ Y (1, 2)2 :

Ri(MIX)′ = Ci(Li) +
∑

τj∈chp(i)

⌈
Ri(LO)

Tj

⌉
Cj(Li)

+
∑

τk∈chpMIG(i)

⌈
Ri(LO) + Jk

Tk

⌉
Ck(LO)

∀τi ∈ Y (1, 2)3 ∪ Y (1, 2)4 :

Ri(LO)′ = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO)′ + J ′i

Tj

⌉
Cj(LO)

(4.12)

If further cores enter HI-crit mode, then both migration and non-migration

LO-crit tasks on the mode changing core need to be abandoned to guarantee the

execution of HI-crit tasks as the number of cores in HI-crit mode exceeds the

boundary number. Assume core c3 enters HI-crit mode in state Y (1, 2), then the

relationship between tasks and cores can be viewed as:

• Y (1, 2, 3)1 = Y (1)1

• Y (1, 2, 3)2 = LO2 ∪HI2

• Y (1, 2, 3)3 = HI3

• Y (1, 2, 3)4 = X4 ∪MIG(2, 1, 4) ∪MIG2,4,1

• S = Y (1, 2, 3)1 ∪ Y (1, 2, 3)2 ∪ Y (1, 2, 3)3 ∪ Y (1, 2, 3)4

∪ LO3 ∪ (MIG3,1,4 ∪MIG3,4,1) ∪ (MIG1,3,2 ∪MIG1,2,3)

Regarding this state, only HI-crit tasks on core c3 are executing with their

HI-crit budgets while all migrating LO-crit tasks on the core are abandoned. The

response time analysis of core c3 in this state is given by equation (4.13):

∀τi ∈ Y (1, 2, 3)3 :

Ri(HI)′ = Ci(HI) +
∑

τj∈chpH(i)

⌈
Ri(HI)′

Tj

⌉
Cj(HI)

+
∑

τk∈chpL(i)

⌈
Ri(LO)′ + J ′k

Tk

⌉
Ck(LO)

(4.13)
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If all of the response time analysis for all possible states have passed, then

the taskset is deemed to be schedulable by Model 2.

Model 2a

As stated before, Model 2a is quite similar to Model 2. It also pairs the cores into

several groups and migrating tasks may only migrate within the groups. However,

instead of splitting the tasks, Model 2a fully migrates all of the migratable tasks

from one core to another. Thus, the response time analysis for Model 2a is

similar to that for Model 2. But due to the different migration mechanism, we

observe that Model 2a requires a heavier migration load than Model 2 in certain

scenarios, which causes some tasksets to be schedulable by Model 2 but not Model

2a. For example, assume a taskset S contains 16 tasks, and has been assigned to

a four-core platform as shown in Table 4.3.

According to the example, as the tasks on each core have the same parameters,

a schedulability check on core c1 is representative for all of the cores in the steady

mode. If a non-migration algorithm is tried to schedule the taskset, we can get

the response time as in Table 4.4. From the table, we can get R4(HI) ≥ 87 which

is larger than its deadline. According to that, this taskset is un-schedulable by

the non-migration algorithm.

If Model 2 is used to schedule the taskset, we may assume that cores are

paired as (c1, c2), (c3, c4), (c1, c3) and (c2, c4). In this case, the response time

analysis of tasks on core c1 can be viewed in Table 4.5.

If core c1 enters HI-crit mode, task τ2 will migrate to core c3 and task τ3

will migrate to core c2. Since task τ3 has a larger release jitter and a smaller

reduced deadline, the schedulability test on core c2 will be harder than that on

core c3. Thus, examining the schedulability on core c2 will be sufficient in this

special example. The response time analysis of tasks on core c2 can be viewed in

Table 4.6.

If core c2 also enters HI-crit mode, task τ3 will migrate to core c3 while task τ6
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Task C(LO) C(HI) T D J L c

τ1 1 2 10 10 - HI c1

τ2 4 - 35 35 - LO c1

τ3 4 - 35 35 - LO c1

τ4 5 45 85 85 - HI c1

τ5 1 2 10 10 - HI c2

τ6 4 - 35 35 - LO c2

τ7 4 - 35 35 - LO c2

τ8 5 45 85 85 - HI c2

τ9 1 2 10 10 - HI c3

τ10 4 - 35 35 - LO c3

τ11 4 - 35 35 - LO c3

τ12 5 45 85 85 - HI c3

τ13 1 2 10 10 - HI c4

τ14 4 - 35 35 - LO c4

τ15 4 - 35 35 - LO c4

τ16 5 45 85 85 - HI c4

Table 4.3: Example Taskset

and task τ7 will migrate to core c4. Since task τ6 and task τ7 have larger release

jitters and smaller reduced deadlines, the schedulability test on core c4 will be

harder than that on core c3. Thus, examine the schedulability on core c4 will be

sufficient in this special example. The response time analysis of tasks on core c4

can be viewed in Table 4.7.

According to the results, all of the response time are smaller than the corre-

sponding deadlines, which indicates that the taskset is deemed to be schedulable

by Model 2.

If Model 2a is used to schedule the taskset, same as previously, we may assume

that cores are paired as (c1, c2), (c3, c4), (c1, c3) and (c2, c4). In this steady state

mode, the response time analysis of tasks on core c1 shall be the same as that in

Model 1. If core c1 enters HI-crit mode, task τ2 and task τ3 will migrate to core
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Task C(LO) C(HI) T D J L c p R(LO) R(HI)

τ1 1 2 10 10 - HI c1 1 1 2

τ2 4 - 35 35 - LO c1 2 5 6

τ3 4 - 35 35 - LO c1 3 9 10

τ4 5 45 85 85 - HI c1 4 15 ≥ 87

Table 4.4: Example Core Analysis

Task C(LO) C(HI) T D J L c p R(LO) R(HI)

τ1 1 2 10 10 - HI c1 1 1 2

τ2 4 - 35 35 - LO c1 2 5 -

τ3 4 - 35 35 - LO c1 3 9 -

τ4 5 45 85 85 - HI c1 4 15 67

Table 4.5: Example Core Analysis

c2. The response time analysis of tasks on core c2 can be viewed in Table 4.8.

If core c2 also enters HI-crit mode, task τ2 and task τ3 will migrate to core

c3 while task τ6 and task τ7 shall migrate to core c4. Since task τ6 and task τ7

have larger release jitters and smaller reduced deadlines, the schedulability test

on core c4 will be harder than that on core c3. Thus, examine the schedulability

on core c4 will again be sufficient in this special example. The response time

analysis of tasks on core c4 can be viewed in Table 4.9.

It can be observed that due to the release jitter, R4(LO) is much larger than

that in Model 2 which leads to a failure on scheduling τ4 in the HI-crit mode.

According to that, this taskset is unschedulable by Model 2a.

The above example is quite straightforward due to the tasks on each core

are the same in static mode. In actual cases, all of possible migrations need

to be checked. However, the example is sufficient to illustrate that Model 2a is

dominated by Model 2.
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Task C(LO) C(HI) T D J L c p R(LO) R(HI)

τ5 1 2 10 10 - HI c2 1 1 2

τ3 4 - 35 30 5 LO c2 2 5 -

τ6 4 - 35 35 - LO c2 3 9 -

τ7 4 - 35 35 - LO c2 4 14 -

τ8 5 45 85 85 - HI c2 5 19 73

Table 4.6: Example Core Analysis

Task C(LO) C(HI) T D J L c p R(LO) R(HI)

τ13 1 2 10 10 - HI c4 1 1 2

τ7 4 - 35 25 10 LO c4 2 5 -

τ6 4 - 35 30 5 LO c4 3 9 -

τ14 4 - 35 35 - LO c4 4 14 -

τ15 4 - 35 35 - LO c4 5 18 -

τ16 5 45 85 85 - HI c4 6 24 77

Table 4.7: Example Core Analysis

Model 3

In this model, tasks are allowed to migrate to any possible core to maximize

the scheduling flexibility. When only one core enters HI-crit mode, then some

LO-crit tasks may stay on the core executing with their LO-crit executing budgets

while some other LO-crit tasks will migrate to other cores. In this model, these

migrating LO-crit tasks will be separated “equally” to all cores. This “equally”

here not only represents the number of tasks but also needs to consider the sum

of the utilization of the migration tasks on each core. If another core also enters

HI-crit mode, then some LO-crit tasks, which are originally executing on the core,

may stay on the core executing with their LO-crit executing budgets, while some

other LO-crit tasks and the LO-crit tasks migrated to the core will migrate to

other cores which are in LO-crit mode. These migrating tasks will also migrate

“equally”. If a further core enters HI-crit mode, then all of the LO-crit tasks

on the core will be abandoned in order to guarantee the execution of the HI-crit
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Task C(LO) C(HI) T D J L c p R(LO) R(HI)

τ5 1 2 10 10 - HI c2 1 1 2

τ3 4 - 35 30 5 LO c2 2 5 -

τ2 4 - 35 35 1 LO c2 3 9 -

τ6 4 - 35 35 - LO c2 4 14 -

τ7 4 - 35 35 - LO c2 5 18 -

τ8 5 45 85 85 - HI c2 6 24 77

Table 4.8: Example Core Analysis

Task C(LO) C(HI) T D J L c p R(LO) R(HI)

τ9 1 2 10 10 - HI c4 1 1 2

τ7 4 - 35 21 14 LO c4 2 5 -

τ6 4 - 35 25 10 LO c4 3 9 -

τ10 4 - 35 35 - LO c4 4 14 -

τ11 4 - 35 35 - LO c4 5 18 -

τ12 5 45 85 85 - HI c4 6 33 ≥ 87

Table 4.9: Example Core Analysis

tasks.

Assume that a taskset S contains several tasks in two criticality levels (HI-crit

and LO-crit). If this taskset is to be scheduled on a four-core platform (c1, c2,

c3 and c4) by semi-partitioned algorithm, then there shall exist three types of

tasks on each core: HI-crit tasks, statically allocated LO-crit tasks and migrating

LO-crit tasks. Let HIi represent the set of HI-crit tasks on core ci, LOi represent

the set of statically allocated LO-crit tasks and MIGi,j,k represent the set of

LO-crit tasks that will migrate from core ci to core cj if core ci enters HI-crit

mode and migrate to core ck if core cj also enters HI-crit mode. Then the following

relationship can be obtained:

• S = (LO1 ∪ LO2 ∪ LO3 ∪ LO4) ∪ (HI1 ∪HI2 ∪H3 ∪H4)

∪ ((MIG1,2,3 ∪MIG1,2,4)∪ (MIG1,3,2 ∪MIG1,3,4)∪ (MIG1,4,2 ∪MIG1,4,3))

∪ ((MIG2,1,3 ∪MIG2,1,4)∪ (MIG2,3,1 ∪MIG2,3,4)∪ (MIG2,4,1 ∪MIG2,4,3))
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∪ ((MIG3,1,2 ∪MIG3,1,4)∪ (MIG3,2,1 ∪MIG3,2,4)∪ (MIG3,4,1 ∪MIG3,4,2))

∪ ((MIG4,1,2 ∪MIG4,1,3)∪ (MIG4,2,1 ∪MIG4,2,3)∪ (MIG4,3,1 ∪MIG4,3,2))

In the steady state mode, all these tasks are statically partitioned on each

core and executing with their LO-crit budgets. Define state X to represent this

phase, then the relationship between tasks and cores can be viewed as:

• X1 = LO1∪HI1∪(MIG1,2,3∪MIG1,2,4)∪(MIG1,3,2∪MIG1,3,4)∪(MIG1,4,2∪

MIG1,4,3)

• X2 = LO2∪HI2∪(MIG2,1,3∪MIG2,1,4)∪(MIG2,3,1∪MIG2,3,4)∪(MIG2,4,1∪

MIG2,4,3)

• X3 = LO3∪HI3∪(MIG3,1,2∪MIG3,1,4)∪(MIG3,2,1∪MIG3,2,4)∪(MIG3,4,1∪

MIG3,4,2)

• X4 = LO4∪HI4∪(MIG4,1,2∪MIG4,1,3)∪(MIG4,2,1∪MIG4,2,3)∪(MIG4,3,1∪

MIG4,3,2)

• S = X1 ∪X2 ∪X3 ∪X4

Regarding state X, all tasks are executing with their LO-crit budgets. In this

case, the response time analysis of all tasks can be viewed as equation (4.14):

Ri = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri

Tj

⌉
Cj(LO) (4.14)

If a criticality change occurs on one core (ci), then HI-crit tasks (HIi) will

execute with their HI-crit budgets. For LO-crit tasks, some of them (LOi) still

execute on the core with their LO-crit budgets while the others (MIGi) need

to migrate to other cores as there is not enough space for them on the core.

Unlike the Dual-core model, these migrating tasks may migrate to all possible

cores rather than only one core. Define state Y (1) to represent the case that core

c1 enters its HI-crit mode, then tasks in MIG1 will be migrated from core c1 to

core c2 and the relationship between tasks and cores can be viewed as:
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• Y (1)1 = LO1 ∪HI1

• Y (1)2 = X2 ∪ (MIG1,2,3 ∪MIG1,2,4)

• Y (1)3 = X3 ∪ (MIG1,3,2 ∪MIG1,3,4)

• Y (1)4 = X4 ∪ (MIG1,4,2 ∪MIG1,4,3)

• S = Y (1)1 ∪ Y (1)2 ∪ Y (1)3 ∪ Y (1)4

Regarding state Y (i) where only core ci enters HI-crit mode, HI-crit tasks will

execute with their HI-crit budgets while some LO-crit tasks will execute with their

LO-crit budgets on the core ci. All of other tasks will execute with their LO-crit

budgets. Reduced deadlines and release jitters will be applied to migrating tasks,

and the worst case of these migrating tasks is given by equation (4.15):

∀τi ∈MIG1,2,3 ∪MIG1,2,4 ∪MIG1,3,2 ∪MIG1,3,4 ∪MIG1,4,2 ∪MIG1,4,3 :

D′i = Di − (Ri − Ci(LO))

Ji = Ri − Ci(LO)

(4.15)

Thus, the response time analysis for state Y (i) is given by equation (4.16):

∀τi ∈ Y (1)1 :

Ri(MIX) = Ci(Li) +
∑

τj∈chpS(i)

⌈
Ri(MIX)

Tj

⌉
Cj(Li)

+
∑

τk∈chpMIG(i)

⌈
Ri

Tk

⌉
Ck(LO)

∀τi ∈ Y (1)2 ∪ Y (1)3 ∪ Y (1)4 :

Ri(LO) = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO) + Jj

Tj

⌉
Cj(LO)

(4.16)

If a further criticality change occurs on core cj, then all of the migratable

LO-crit tasks on this core needs to migrate to other cores while all of the HI-crit
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tasks execute with their HI-crit budgets. Define state Y (1, 2) to represent the

case that core c2 also enters HI-crit mode after core c1 enters HI-crit mode, the

relationship between tasks and cores can be viewed as:

• Y (1, 2)1 = LO1 ∪HI1

• Y (1, 2)2 = LO2 ∪HI2

• Y (1, 2)3 = Y (1)3 ∪ (MIG2,3,1 ∪MIG2,3,4) ∪MIG2,1,3 ∪MIG1,2,3

• Y (1, 2)4 = Y (1)4 ∪ (MIG2,4,1 ∪MIG2,4,3) ∪MIG2,1,4 ∪MIG1,2,4

• S = Y (1, 2)1 ∪ Y (1, 2)2 ∪ Y (1, 2)3 ∪ Y (1, 2)4

Regarding this state, HI-crit tasks will still execute with HI-crit budgets while

some LO-crit tasks will execute with LO-crit budgets on the core ci. All of

the other tasks will execute with their LO-crit budgets. Taskset MIG1,2,3 and

MIG1,2,4 will migrate a second time. As discussed in Model 1, further reduced

deadlines and release jitters will be applied to these migrating tasks and the worst

case of them is given by equation (4.17):

∀τi ∈MIG1,2,3 ∪MIG1,2,4 :

Di” = D′i − (Ri(LO)− Ci(LO))

J ′i = Ji + (Ri(LO)− Ci(LO))

(4.17)

Thus, the response time analysis for core c2, c3 and c4 in this state is given

by equation (4.18):
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∀τi ∈ Y (1, 2)2 :

Ri(MIX)′ = Ci(Li) +
∑

τj∈chpS(i)

⌈
Ri(MIX)′

Tj

⌉
Cj(Li)

+
∑

τk∈chpMIG(i)

⌈
Ri(LO) + Jk

Tk

⌉
Ck(LO)

∀τi ∈ Y (1, 2)3 ∪ Y (1, 2)4 :

Ri(LO)′ = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO)′ + J ′j

Tj

⌉
Cj(LO)

(4.18)

If more cores enter HI-crit mode, then only HI-crit tasks on these cores will

remain executing while all LO-crit tasks on these cores need to be abandoned.

Assume core c3 enters HI-crit mode, then the relationship between tasks and

cores can be viewed as:

• Y (1, 2, 3)1 = LO1 ∪HI1

• Y (1, 2, 3)2 = LO2 ∪HI2

• Y (1, 2, 3)3 = HI3

• Y (1, 2, 3)4 = Y (1)4 ∪ (MIG2,4,1 ∪MIG2,4,3) ∪MIG2,1,4 ∪MIG1,2,4

• S = Y (1, 2)1∪Y (1, 2)2∪Y (1, 2)3∪Y (1, 2)4∪LO3∪ (MIG3,1,2∪MIG3,1,4)∪

(MIG3,2,1 ∪MIG3,2,4) ∪ (MIG3,4,1 ∪MIG3,4,2) ∪ (MIG1,3,2 ∪MIG1,3,4) ∪

(MIG2,3,1 ∪MIG2,3,4) ∪MIG2,1,3 ∪MIG1,2,3

Based on the state, all migrating LO-crit tasks on core c3 are abandoned while

HI-crit tasks are executing with their HI-crit budgets. The response time analysis

for the core in such state is given by equation (4.19):

∀τi ∈ Y (1, 2, 3)3 :

Ri(HI) = Ci(HI) +
∑

τj∈chpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI)

+
∑

τk∈chpL(i)

⌈
Ri(LO)′ + J ′k

Tk

⌉
Ck(LO)

(4.19)
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If all of the response time analysis for all possible states have passed, then

the taskset is deemed to be schedulable by Semi-partitioned Model 3.

4.2.3 Evaluation of the Models

The previous section has derived sufficient response time analysis for all of the

allocation models introduced. In this section, we will introduce an experiment

to compare the scheduling efficiency of the allocation models. At the end of this

section, the comparison results will be studied and a recommended approach is

proposed.

Experiment Configuration

Software is developed to explore the efficiency of the three models. The con-

figuration of the software is fairly similar to that mentioned in Section 3.2.1.

The software consists of three parts. The first part generates tasksets and

stores these tasksets in XML files. Each tasksets node contains 10000 tasksets.

In order to gain uniform distributed parameters, UUnifast-discard algorithm is

used to generate nominal utilizations and Log-uniform algorithm [51] is used to

generate periods. Other parameters of each task are calculated based on these two

values. The second part of the software pre-sorts each taskset in criticality-aware

utilization descending order. The last part of the software contains the response

time analysis mentioned in Section 4.2.2 and explores the scheduling success rate

of the three models.

Results and Comparison

We investigate the performance of Model 1, Model 2 and Model 3 and compare

them with the non-migration algorithm. The non-migration algorithm is chosen

as the lowest bound of performance. Figure 4.12 shows the percentage of the

tasksets that are schedulable for a system of 24 tasks (in the setting that half
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of the tasks are HI-crit tasks and the criticality factor is 2, P = 0.5, f = 2).

The Y-axis shows the percentage of the successfully scheduled tasksets while the

X-axis shows the sum of nominal utilizations of the tested taskset. The sum of

utilizations ranges from 3.2 to 4.6 in steps of 0.028 to amplify the view of the

results.

Figure 4.12: Percentage of Schedulable Tasksets

From the above figure, it can be observed that all of the models outperform

the non-migration one by a considerable margin. For example, as shown by the

black lines, Model 3 can schedule around 75% of the tasksets when the taskset

utilization is around 3.7, while non-migration model can only schedule around

57% of the tasksets. The improvement of schedulability from Model 3 towards

non-migration is about 75−57
57
∗ 100% = 31.58%, which is significant. Comparing

all of the semi-partitioned methods, Model 3 has the best performance, but the

difference between Model 3 and Model 2 is not large.

In order to explore the performance of the algorithms relating to criticality

factor (C(HI)/C(LO)) and the percentage of HI-crit tasks, weighted schedu-

lability measurement is also used. We show how the results are changed by

varying one key parameter at a time. Figure 4.13 varies the criticality factor,

Figure 4.14 varies the percentage of HI-crit tasks and Figure 4.15 varies the
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size of the taskset. The X-axis stands for the parameter examined and Y-axis

represents the weighted value. According to Figure 4.13, Model 3 has the best

performance, while Model 2 provides slightly less schedulability. In addition,

both models have increased performance as the criticality factor increases. This

is to be expected as the increase of WCET difference between different criticality

levels allows more scheduling potential for migrating tasks.

Figure 4.13: Varying the Criticality Factor

Figure 4.14: Varying the Criticality Percentage

According to Figure 4.14, the performance of the semi-partitioned algorithms

has formed an inverted U-shape curve since each end of the interval represents

a one-criticality taskset, and hence the priorities are optimal. Regarding to the
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Figure 4.15: Varying the Taskset Size

individual performance, Model 3 has the best performance while Model 2 provides

slightly less schedulability. In addition, it is observed that the difference between

Model 3 and Model 2 decreases when the percentage of the criticality tasks is

approaching 0.6.

According to Figure 4.15, the performance of the semi-partitioned algorithms

also forms an inverted U-shape curve. This is expected as tasks are relatively large

in small sized tasksets which adds difficulty in finding acceptable migrating tasks,

while in large sized tasksets, the interference from high priority tasks increases, as

well as the effects from release jitters, which adds difficulty to the schedulability of

migrated tasks with reduced deadlines. Regarding to the individual performance,

Model 3 still has the best performance while the performance of Model 2 is slightly

poorer.

4.2.4 Recommended Approach

Overall, it is observed that Model 3 provides the best schedulability in all cases.

However, the schedulability difference between Model 3 and Model 2 is not

that significant. As it has been argued that Model 3 has much more complex

scheduling analysis, Model 2 is suggested to be the most appropriate model for

4-core MCS with two criticality levels.
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4.3 Extending to n-core Platform

The previous section has indicated that migration Model 2, which pairs the cores

into groups, is the most suitable and scalable migration model for multi-core

platforms. This section will discuss how to extend Model 2 to an n-core platform.

It will first show two detailed examples of extending the migration model to an

8-core platform and a 7-core platform. Then it will show a general extending

mechanism.

4.3.1 8-core Platform Example

In a 4-core platform, the boundary number is 2 and each core has two paired cores.

In addition, migratable tasks are split into two parts when migrating. Based on

this information, it is reasonable to assume that for a 8-core platform, since the

boundary number is 3, each core shall have three paired cores and migratable

tasks shall be split into three parts when migrating. Thus, the problem becomes

how the cores can be paired to fulfill the above requirements. We propose a clone

algorithm to solve the problem.

• Assume that there exists a 4-core platform (c1, c2, c3, c4) and cores are paired

into four pairs (c1, c2), (c1, c3), (c2, c4), (c3, c4) as previous in Model 2.

• Create a clone 4-core platform (c′1, c
′
2, c
′
3, c
′
4) and pair the cores in the same

way (c′1, c
′
2), (c′1, c

′
3), (c′2, c

′
4), (c′3, c

′
4).

• Pair the original cores with the clone cores: (c1, c
′
1), (c2, c

′
2), (c3, c

′
3), (c4, c

′
4).

• Replace c′1 by c5, c′2 by c6, c′3 by c7 and c′4 by c8 in all of the pairs generated.

According to the algorithm, we can obtain the pairing relationship for a 8-core

platform as following: (c1, c2), (c1, c3), (c2, c4), (c3, c4), (c5, c6), (c5, c7), (c6, c8),

(c7, c8), (c1, c5), (c2, c6), (c3, c7), (c4, c8), which fulfills the requirement that each

core is paired with three different cores. In addition, by using the same algorithm
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iteratively, we can extend the pairing relationship to 16-core platforms, 32-core

platforms, ..., 2n-core platforms.

4.3.2 7-core Platform Example

A 7-core platform is a quite special case. According to the semi-partitioned model

definition, the boundary number for this platform is still 3 but it is not possible

to pair the cores so that each core has three different paired cores. This can be

proved by contradiction as following:

1. Assume there exists a pairing method to pair 7 cores so that each core is

paired to three different cores.

2. There exist 3× 7 = 21 relationships between the cores.

3. Pair one core to another always results in 2 relationships.

4. There does not exist a possibility to create an odd number of pairing

relationships. Contradiction found.

5. Therefore, 7 cores cannot be paired into groups so that each core has three

different paired cores.

As the boundary number calculated by dlog2(n)e is slightly larger than the

exact boundary number, it is acceptable to make one core have a smaller bound-

ary number (2 in this scenario) and only pair with two cores. Thus, a modified

clone algorithm can be used to solve the pairing problem for a 7-core platform.

• Assume that there exists a 4-core platform (c1, c2, c3, c4) and cores are paired

into four pairs (c1, c2), (c1, c3), (c2, c4), (c3, c4) as previous in Model 2.

• Create a clone 4-core platform (c′1, c
′
2, c
′
3, c
′
4) and pair the cores in the same

way (c′1, c
′
2), (c′1, c

′
3), (c′2, c

′
4), (c′3, c

′
4).

• Pair the original cores with the clone cores: (c1, c
′
1), (c2, c

′
2), (c3, c

′
3), (c4, c

′
4).
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• Replace c′1 by c5, c′2 by c6, c′3 by c7 and c′4 by c8 in all of the pairs generated.

• Delete all of the pairing relationship with core c8: (c6, c8), (c7, c8), (c4, c8).

• For each two deleted pairing relationship, create a new pairing relationship

between two different cores excluding core c8: (c6, c7)

According to the algorithm, we can get the pairing relationship for a 7-core

platform as following: (c1, c2), (c1, c3), (c2, c4), (c3, c4),(c5, c6), (c5, c7), (c1, c5),

(c2, c6), (c3, c7), (c6, c7). Regarding this pairing relationship, for core c1, c2, c3,

c5, c6, c7, each has three paired mates, while core c4 has two paired mates.

4.3.3 General Algorithm

Regarding to a n-core platform, the boundary number is dlog2(n)e. There exist

two different situations: n is an even number or n is an odd number. If n is an

even number, then there exists an integer k such that n = 2 × k. In order to

apply Model 2, the cores in the system require to be paired so that each core has

dlog2(n)e paired mates. By applying the clone algorithm, the pairing relationship

of the n-core platform can be generated by finding the pairing relationship of a

k-core platform where the boundary number is dlog2(n)e−1 = dlog2(2×k)e−1 =

log2(2) + dlog2(k)e − 1 = dlog2(k)e. Thus, finding the pairing relationship of a

k-core platform will solve the pairing problem for this n-core platform.

If n is an odd number, then there exists an integer k′ such that n = 2×k′−1.

Similar to the previous scenario, in order to apply Model 2, the cores in the system

require to be paired so that most cores have dlog2(n)e paired mates. By applying

the modified clone algorithm, the pairing relationship of the n-core platform can

be generated by finding the pairing relationship of a k’-core platform where the

boundary number is dlog2(n)e−1 = dlog2(2×k′−1)e−1 = log2(2)+dlog2(k′)e−

1 = dlog2(k′)e. Thus, finding the pairing relationship of a k′-core platform will

solve the pairing problem for this n-core platform. In all, the pairing relationship

of a n-core platform can be generated by a recursion usage of the clone algorithm
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and the modified clone algorithm. When the pairing relationship between cores

is settled, migratable tasks may be split into the boundary number of groups and

migrate to the paired cores when required by the system.

4.4 Summary

This chapter has explored the semi-partitioned model on a multi-core platform.

It first addresses the boundary number determination problem by the use of

a probability calculation. In consideration of easier usage, it is proposed that

dlog2(n)e shall be used as the boundary number for an n-core system. That is,

for a n-core system, all tasks shall remain schedulable if no more than dlog2(n)e

cores enter HI-crit mode. This chapter then explores the task allocation problem

on a four-core platform. Four task allocation models are proposed and analysed

by response time analysis and experiments. According to the results observed and

the consideration of calculation complexity, it is suggested that Model 2, which

splits the migration task load within paired cores, will be the most appropriate

task allocation model for a four-core system. In addition, this chapter has

provided an iterative algorithm to manipulate a possible pairing relationship for

an n-core platform to apply Model 2. In the previous chapter, we illustrate that

the combination usage of Semi2WF and Semi2FF provides the best scheduling

performance for a dual-core platform. In other words, when the migration

source core and the migration destination core are fixed, Semi2 algorithm is

an appropriate approach to determine which task to be migratable. Based on

that, we propose an appropriate semi-partitioned model for a n-core system as:

• Each core is paired with dlog2(n)e cores.

• Semi2 approach is used to determine which LO-crit tasks shall be migrat-

able.

• If Core ci enters HI-crit mode and the total number of the cores in HI-

crit mode is no more than dlog2(n)e, migratable tasks on Core ci migrate
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“equally” (by the use of WF bin-packing algorithm) to the paired cores

which are still in LO-crit mode. All tasks guarantee their executions.

• If Core ci enters HI-crit mode and the total number of the cores in HI-crit

mode is more than dlog2(n)e, all LO-crit tasks on Core ci will be abandoned.

Only HI-crit tasks guarantee their executions.
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Chapter 5

Extended NoC Version with

More Criticality Levels

The previous chapters have introduced appropriate approaches to schedule tasks

in a multi-core platform with two criticality levels. However, the result has

assumed that the migration costs between different cores are the same. In this

chapter, we will extend the model to multi-criticality levels. In addition, we will

explore the system architecture influence on the semi-partitioned model.

This chapter will first discuss the influence from increasing the number of

criticality levels, and propose how the model can be extended. Then it will discuss

the effects of considering the migration difference between cores and provide a

detailed analysis of the issues when extending the semi-partitioned model to

Network-on-Chip-based multi-core platforms (NoC for short). Then, this chapter

will introduce a new model for scheduling tasks on a multi-core NoC system with

three criticality levels. An experiment is set up to show how the semi-partitioned

model outperforms the non-migration model. An evaluation will be made at the

end.
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5.1 Extend Criticality Levels

This section will focus on extending the semi-partitioned model to more than two

criticality levels. The direct influence from increasing the number of criticality

levels is that each task has more WCET estimations for different criticality levels.

In a system with n criticality levels, each task shall have n WCET estimations

for different levels by definition. Thus, scheduling such a system will be quite

complicated. In order to ease the calculation capacity and the complexity of

the model, we adopt a model that only uses two WCET estimations for each

task ([29],[76]). One is the WCET estimation at the lowest criticality level, while

the other is the WCET for the task at its own criticality level. Take a three

criticality system (LO < MID < HI) as an example, we may get the following

performances based on this model:

• All of the tasks execute with their LO-crit budgets by default.

• If a MID-crit task exceeds its LO-crit budget, then the system will enter

MID-crit mode, in which all of the MID-crit tasks will execute with their

MID-crit budgets, while LO-crit tasks and HI-crit tasks will still execute

with their LO-crit budgets.

• If a HI-crit task exceeds its LO-crit budget, then the system will enter

HI-crit mode, in which all of the HI-crit tasks will execute with their HI-

crit budgets, MID-crit tasks will execute with their MID-crit budgets, and

LO-crit tasks will still execute with their LO-crit budgets.

According to this behaviour, it can be observed that tasks with the lowest

criticality level will only have one WCET estimation. For other tasks, if the task

exceeds its WCET budget for the lowest criticality level, it will execute with the

other WCET estimation and the system will increase to the criticality level of

that task. Due to that, the change of the criticality level of a core may skip the

middle levels. For example, the core may increase directly from LO to HI when

a HI-crit task exceeds its LO-crit budget. In addition, tasks will still be executing
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with their own criticality budgets if the system is executing in a higher criticality

level. In all, a general model for a core with n criticality levels (0 represents the

lowest level and n represents the highest level) can be generated as following:

• All tasks execute with their WCETs for criticality level 0 (C(0)) by default.

• No task may exceed its own criticality budget.

• If task τi with Li > 0 exceeds its 0-crit budget (Ci(0)), the system will

enter Li-crit mode and task τi will execute with its own criticality budget

Ci(Li). If task τk has a smaller or equal criticality level (Lk ≤ Li), it will

execute with its highest criticality level budget (Ck(Lk)); otherwise, it will

still execute with the lowest criticality budget (Ck(0)).

• No task is abandoned.

5.1.1 Model and Analysis

Although the aim of the semi-partitioned model is to allow all tasks to remain

schedulable, it is unwise to fail the schedulability test due to guaranteeing the

execution of the lowest criticality level tasks when the system is in a high critical-

ity level. So it is essential to redefine the criticality level to be assured of in the

semi-partitioned model for a multi-core platform. A reasonable suggestion is to

try to save all of the tasks that have one criticality level lower than the criticality

level of the system. Consider a dual-core three-criticality system, based on the

dual-core two-criticality system explored in Chapter 3, we may get the following

scenarios:

• Both cores are in LO-crit mode, all of the tasks remain schedulable.

• Core c1 enters MID-crit mode while core c2 remains in LO-crit mode,

migratable LO-crit tasks on core c1 migrate to core c2. All of the tasks

remain schedulable.
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• Core c2 enters MID-crit mode while core c1 remains in MID-crit mode, all

LO-crit tasks on core c2 are abandoned. All of the MID-crit and HI-crit

tasks remain schedulable.

• Core c1 enters HI-crit mode while core c2 remains in MID-crit mode, mi-

gratable MID-crit tasks on core c1 migrate to core c2 while LO-crit tasks

on core c1 are abandoned. All of the MID-crit and HI-crit tasks remain

schedulable.

• Core c2 enters HI-crit mode while core c1 remains in HI-crit mode, all

MID-crit tasks on core c2 are abandoned. All of the HI-crit tasks remain

schedulable.

Based on the above scenarios, the criticality level to be assured of mainly

depends on the highest criticality of the system, while the boundary number still

plays an important role upon determining the criticality level to be guaranteed

execution in the system. In detail, if the number of the cores in the current

highest criticality level L is smaller than or equal to the boundary number, then

all of the tasks with criticality levels larger than or equal to L− 1 can be saved.

Otherwise, only tasks with criticality levels larger than or equal to L can be

guaranteed to be schedulable.

However, the above scenarios only consider the situation that the criticality

level of the system increases gradually, while the model allows the criticality

level to increase directly. Again take the dual-core three-criticality system as

an example, core c1 may mode change directly from LO-crit to HI-crit. In such

a situation, core c1 needs to guarantee the execution of HI-crit tasks, so that

migratable MID-crit tasks need to migrate to core c2 and all LO-crit tasks need

to be abandoned. In addition, since core c1 is in HI-crit mode, all of the MID-crit

tasks, including the tasks migrating away, are executing with their MID-crit

budgets. As only one core is in HI-crit mode, the system is required to guarantee

the execution of all MID-crit tasks. Thus, in order to guarantee the execution

of the MID-crit tasks on core c2, c2 is therefore forced to enter MID-crit mode

and abandon all LO-crit tasks. In order to differentiate such forced mode change
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state from the original mode change state, we name such a mode as MID’-crit.

According to that, in semi-partitioned multi-level MCS, criticality level increase

on one core may lead to system mode changes on other cores.

In all, the general model for multi-level semi-partitioned model may be viewed

as following:

• All cores execute in criticality level 0, and the global state is set to be 0.

• If one core enters level i and the global state is lower than i, then the global

state is set to i. The tasks with criticality levels lower than i − 1 on the

core will be abandoned, a proportion of the tasks with criticality level of

i−1 will stay on the core while others will migrate to other cores, the tasks

with criticality levels higher than i− 1 will stay on the core.

• If one core enters level i, the global state is i, and the number of the cores

in level i is smaller than the boundary number, then the global state is

unchanged, the tasks with criticality levels lower than i − 1 on the core

will be abandoned, the migratable tasks with criticality level of i − 1 will

migrate to available cores while the other tasks with criticality level of i−1

will stay executing on the core, and the tasks with criticality levels higher

than i− 1 will also stay executing on the core.

• If one core enters level i, the global state is i, and the number of the cores

in level i is equal to or larger than the boundary number, then the global

state is unchanged, the tasks with criticality levels lower than i− 1 on the

core will be abandoned, the migratable tasks with criticality level of i − 1

will be abandoned while the other tasks with criticality level of i − 1 will

stay executing on the core, and the tasks with criticality levels higher than

i− 1 will also stay executing on the core.

• If one core enters level i and the global state is higher than i, then the

global state is unchanged, and the tasks with criticality levels lower than i

on the core will be abandoned, while the tasks with criticality levels equal

to or higher than i will also stay executing on the core.
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5.2 Considering System Architecture

The previous section has concluded the multi-criticality level effects on the semi-

partitioned model. This section will focus on the effects from considering the

architecture of the cores in the system. The models in previous chapters are built

with two assumptions: the criticality mode of all of the cores can be acquired

instantly at run time, and the migration cost is sufficient small that it can be

ignored. However, with the increment of the number of the cores in the system,

these two assumptions become unsustainable. Regarding the first assumption,

there are two possible structures of the criticality mode information delivery

system: a global one and a local one. For the global one, it is assumed that

there exists a special controlling core cc which has direct access to criticality

mode status of each core while each core also has direct access to this core for the

information. In this structure, the criticality modes of all of the cores are possible

to be acquired instantly at run time. It is a typical distributed consensus problem

that since all of the cores need access to the same controlling core, problems

occur due to synchronised periods. For example, for a n core two criticality level

system and the boundary number is nb, based on the previous models, it can be

indicated that if no more than nb cores enter HI-crit mode then all of the tasks

are schedulable. Assume that there are nb − 1 cores currently in HI-crit mode in

the system, and two cores cj and ck enter HI-crit mode at the same time, then one

of the two cores, say cj, will access the controlling core cc first. The controlling

core cc will only notice that there are currently nb cores in HI-crit mode without

knowing that ck is also in HI-crit mode due to the synchronise problem. Thus, it

will suggest the migratable LO-crit tasks on core nj to migrate rather than being

abandoned. According to that, core nk may receive some migrating tasks which

may cause the scheduling problem on HI-crit tasks on the core. In all, the global

structure may cause critical failures. For the local one, it is assumed that each

core contains a counting procedure and when a core enters HI-crit mode, it will

broadcast this information to all of the cores. For this structure, the increasing

number of the cores in the system may cause a significant increase of the latency

of the broadcasting information. This latency may cause a core to make a wrong
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estimation of the number of HI-crit cores currently in the system, which leads

to a wrong decision on whether to allow migrating or abandoning. In summary,

the first assumption seems no longer suitable for a system with a large number

of cores.

Regarding to the second assumption, considering the system architecture and

transferring bus issues, the migration costs from one core to other cores can

be significantly different. For example, consider a 16 − core NoC-based system

(Figure 5.1), the migration distance from core c1,1 to core c4,4 is much larger than

that from core c1,1 to core c1,2. Since the transfer speed is typically the same in

a NoC, the migration cost from core c1,1 to core c4,4 is much larger than that

from core c1,1 to core c1,2. Based on this problem, it is proposed to extend the

previous model with a consideration of the architecture of the system.

Figure 5.1: 16-core NOC

There exists many system architectures and many of them have quite different

characteristics. This section will focus on the MCS on a regular X=Y NoC

platform because the environment of most of the cores are similar in such a NoC,

which will ease the scheduling problem. In addition, this section only considers

MCS with two criticality levels, HI-crit and LO-crit. As it is mentioned before,

the migration costs between cores mainly rely on the distances between cores in

the NoC. It can be deduced that the minimum migration cost is the migration
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cost between neighbours and this cost between neighbours shall be all the same.

Considering that, it is proposed to limit the migration options from all possible

cores to all possible neighbour cores. In addition, based on the location of the

core in the NoC, the boundary number of migration decision is variable. To be

detailed, cores in a NoC are divided into three types, which are corner, edge and

normal, according to their locations. As these names suggest, the corner type

represents all of the cores in the four corners; the edge type stands for all of the

cores in the four edges except the ones in corners; the normal type represents the

rest of the cores. Take the above 16− core NoC system (Figure 5.1) as example,

the cores can be divided as:

• Corner: c1,1, c1,4, c4,1, c4,4

• Edge: c1,2, c1,3, c2,1, c2,4, c3,1, c3,4, c4,2, c4,3

• Normal: c2,2, c2,3, c3,2, c3,3

Regarding the corner type, according to the shape of the NoC, there are

always four cores in this type no matter how many cores in the system. Although

it seems that this type is a kind of minority case in the system, it is a critical type

in the system since the core of this type only has two neighbours and both of the

neighbours are in the edge type. According to that, cores in corner type have the

least migration flexibility than all other cores in the system. Thus, it is proposed

to give a low priority on allocating migratable tasks to these cores. In addition,

the boundary number for this type of cores is 0. That is, if none of the neighbour

cores are in HI-crit mode, then when a criticality mode change occurs to the core,

the migratable tasks belong to the core may split and migrate to neighbour cores.

Otherwise, all migratable tasks on the core need to be abandoned to guarantee

the execution of the HI-crit tasks.

Regarding the edge type, cores have three neighbours. Two of the neigh-

bours belong to the edge or corner type while the other is of the normal type.

Comparing with the corner type, the cores in the edge type have slightly more

migration options. Considering that, the boundary number for this type of cores
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is suggested to be 1. That is, if less than or equal to one of the neighbour cores

is in HI-crit mode, then when a criticality mode change occurs to the core, the

migratable tasks belong to the core may split and migrate to other neighbour

cores still in the LO-crit mode. Otherwise, all migratable tasks on the core need

to be abandoned to guarantee the execution of the HI-crit tasks.

Regarding the normal type, cores in this type have four neighbours. Consider

the shape of the NoC, two of the neighbours are guaranteed to belong to the nor-

mal type, while the rest of the neighbours may have three different combinations:

two normal types, one normal type and one edge type, two edge types. For the

first two combinations, the increment of the number of neighbours improves the

migration options. Based on that, the boundary number of these two cases is

suggested to be 2. That is, if less than or equal to two of the neighbour cores

are in HI-crit mode, then when a criticality mode change occurs to the core, the

migratable tasks belonging to the core may split and migrate to other neighbour

cores still in the LO-crit mode. Otherwise, all migratable tasks on the core need

to be abandoned to guarantee the execution of the HI-crit tasks.

In all, the relationship between the boundary number and the type of the core

can be seen in Table 5.1.

Type of the core Number of the neighbours Boundary number

Corner 2 0

Edge 3 1

Normal 4 2

Table 5.1: Relationship between Type and Boundary
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5.3 Semi-partitioned Model on 16-core NoC Plat-

form with 3-criticality Levels

The previous two sections have separately discussed the possible effects from

increasing the number of the criticality levels in the system and the consideration

of the system architecture, and provided the extended model correspondingly.

This section will combine the findings above to construct an extended semi-

partitioned model for a 16-core NoC-based mixed criticality system with 3-

criticality levels.

5.3.1 Response Time Analysis

Since only local information can be acquired by each core, a general system

model is not applicable for this semi-partitioned model. In addition, the location

of the cores affects the boundary number so that cores contain different boundary

numbers. Thus, unlike the analysis parts in previous chapters, the analysis of

the cores are separated into three parts. Each part represents a type of core.

Cores of the Corner Type

Corner cores are paired with both of their neighbours. Thus, when a corner core

needs to migrate tasks, the task load may split and migrate to two neighbour

cores. In addition, according to the analysis in Section 5.2, the boundary number

for the corner core is 0. Assume that a set of tasks S containing three criticality

levels is scheduled on the corner core cc and its two neighbour cores are core c1

and c2, then on each core there exist five types of tasks: HI-crit tasks, statically

allocated MID-crit tasks, migratable MID-crit tasks, statically allocated LO-crit

tasks and migratable LO-crit tasks.

Let HIi represent the set of HI-crit tasks on core ci; MIDi represent the set of

statically allocated MID-crit tasks; LOi represent the set of statically allocated
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LO-crit tasks; MIGMi,j represent the set of migratable MID-crit tasks which

will migrate to core cj if core cj is not in HI-crit mode; MIGLi,j represent the

set of migratable LO-crit tasks which will migrate to core cj if core cj is in

LO-crit mode; MIGMi,j,k represent the set of migratable MID-crit tasks which

will migrate to core cj if core cj is not in HI-crit mode, and migrate to core ck if

core cj is in HI-crit mode but core ck is not in HI-crit mode; MIGLi,j,k represent

the set of migratable LO-crit tasks which will migrate to core cj if core cj is in

LO-crit mode, and migrate to core ck if core cj is not in LO-crit mode but core

ck is in LO-crit mode.

Since the scheduling test in this part focuses on the corner core cc, the

migrating tasks from the neighbour cores to other cores are not considered. In

addition, the corner core cc cannot differentiate whether the neighbour cores c1

and c2 have accepted any migrating LO-crit tasks from other cores or not. But

having these tasks in neighbour cores does not affect the schedulability test on

the corner core. Thus, in order to simplify the analysis, it is safe to assume

that there is no migrating LO-crit tasks from other cores on two neighbour cores.

Then the following relationship can be obtained, where symbol ∗ represents all

other cores except the corner core cc and neighbour core c1 and c2:

• S = LOc ∪MIDc ∪ HIc ∪MIGLc,1 ∪MIGLc,2 ∪MIGMc,1 ∪MIGMc,2

∪LO1 ∪MID1 ∪HI1 ∪MIGL1,c,∗ ∪MIGL1,∗,c ∪MIGL1,∗,∗ ∪MIGM1,c,∗

∪MIGM1,∗,c ∪MIGM1,∗,∗ ∪LO2 ∪MID2 ∪HI2 ∪MIGL2,c,∗ ∪MIGL2,∗,c

∪MIGL2,∗,∗ ∪MIGM2,c,∗ ∪MIGM2,∗,c ∪MIGM2,∗,∗

In the steady state mode, all these tasks are statically partitioned on each

core and executing with their LO-crit budgets. Define state X to represent this

phase, then the relationship between tasks and cores can be viewed as:

• Xc = LOc ∪MIDc ∪HIc ∪MIGLc,1 ∪MIGLc,2 ∪MIGMc,1 ∪MIGMc,2

• X1 = LO1∪MID1∪HI1∪MIGL1,c,∗∪MIGL1,∗,c∪MIGL1,∗,∗∪MIGM1,c,∗∪

MIGM1,∗,c ∪MIGM1,∗,∗
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• X2 = LO2∪MID2∪HI2∪MIGL2,c,∗∪MIGL2,∗,c∪MIGL2,∗,∗∪MIGM2,c,∗∪

MIGM2,∗,c ∪MIGM2,∗,∗

• S = Xc ∪X1 ∪X2

Regarding state X, all tasks are executing with their LO-crit budgets. In this

case, the response time analysis of all the tasks is given by equation (5.1):

∀τi ∈ X : Ri = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri

Tj

⌉
Cj(LO) (5.1)

If core cc enters MID-crit mode while core c1 and c2 remain in LO-crit mode,

then the migratable LO-crit tasks on core cc will split and migrate to cores c1

and c2. All tasks remain schedulable in this scenario. The relationship between

tasks and cores can be viewed as below, where Y(c,1,2H,1H) represents the state

formed by the progress that core c enters MID-crit mode, then core c1 enters

MID-crit mode, then core c2 enters HI-crit mode and core c1 enters HI-crit mode

as the final mode change:

• Y (c)c = LOc ∪MIDc ∪HIc ∪MIGMc,1 ∪MIGMc,2

• Y (c)1 = X1 ∪MIGLc,1

• Y (c)2 = X2 ∪MIGLc,2

• S = Y (c)c ∪ Y (c)1 ∪ Y (c)2

In this state, all of the MID-crit tasks remaining on core cc are executing with

MID-crit budgets while all of the other tasks are executing with their LO-crit

budgets. The migratable LO-crit tasks are executing with their LO-crit budgets

on the new core and suffering from reduced deadline and release jitter issues

influence. Thus, the response time analysis of cores in this state is given by

equation (5.2), where (δLi,MID) is a function that if Li > MID it returns LO;

if Li = MID it returns MID; if Li < MID it returns Li: (on the next page)
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∀τi ∈MIGLc,1 ∪MIGLc,2 :

D′i = Di − (Ri − Ci(LO))

Ji = Ri − Ci(LO)

∀τi ∈Y (c)c :

Ri(MID) = Ci(δLi,MID) +
∑

τj∈chpL(i)

⌈
Ri(MID)

Tj

⌉
Cj(LO)

+
∑

τk∈chpM(i)

⌈
Ri(MID)

Tk

⌉
Ck(MID) +

∑
τl∈chpH(i)

⌈
Ri(MID)

Tl

⌉
Cl(LO)

+
∑

τj∈chpM(i)

⌈
Ri(MID)

Tj

⌉
Cj(MID) +

∑
τm∈chpMIGL(i)

⌈
Ri

Tm

⌉
Cm(LO)

∀τi ∈Y (c)1 ∪ Y (c)2 :

Ri(LO)′ = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO)′ + Jj

Tj

⌉
Cj(LO)

(5.2)

If core cc enters MID-crit mode while one or two neighbour cores are in

MID’-crit mode, then all of the migratable LO-crit tasks on core cc need to

be abandoned. Considering the worst case that both core c1 and core c2 are in

MID-crit mode (the actual order of which core enters MID-crit does not matter,

say core c1 first), and assume that all of the LO-crit migratable tasks on these

cores that can be migrate to core cc have been migrated, define state Y (1, 2) to

represent this phase and relationship between tasks and cores can be represented

by:

• Y (1, 2)c = Xc ∪MIGL1,c,∗ ∪MIGL1,∗,c ∪MIGL2,c,∗ ∪MIGL2,∗,c

• Y (1, 2)1 = LO1 ∪MID1 ∪HI1 ∪MIGM1,c,∗ ∪MIGM1,∗,c ∪MIGM1,∗,∗

• Y (1, 2)2 = LO2 ∪MID2 ∪HI2 ∪MIGM2,c,∗ ∪MIGM2,∗,c ∪MIGM2,∗,∗

• S = Y (c)c ∪ Y (c)1 ∪ Y (c)2 ∪MIGL1,∗,∗ ∪MIG2,∗,∗

Accordingly, we can get the new response time for the tasks on the core cc as

equation (5.3):
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∀τi ∈Y (1, 2)c :

Ri(LO)′ = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO)′ + Jj

Tj

⌉
Cj(LO)

(5.3)

In this case, if core cc enters MID-crit tasks, then all of the LO-crit tasks on

the core need to be abandoned. In addition, it is the worst case for cc entering

MID-crit mode.

• Y (1, 2, c)c = MIDc ∪HIc ∪MIGMc,1 ∪MIGMc,2

• LOc∪MIGLc,1∪MIGLc,2∪MIGL1,c,∗∪MIGL1,∗,c∪MIGL2,c,∗∪MIGL2,∗,c

are abandoned

Regarding state Y (1, 2, c)c, MID-crit tasks will execute with their MID-crit

budgets and HI-crit tasks will execute with their LO-crit budgets. Thus, the

response time analysis of core cc can be seen as equation (5.4):

∀τi ∈Y (1, 2, c)c :

Ri(MID)′ = Ci(δLi,MID) +
∑

τj∈chpM(i)

⌈
Ri(MIG)′

Tj

⌉
Cj(MID)

+
∑

τk∈chpH(i)

⌈
Ri(MIG)′

Tk

⌉
Ck(LO) +

∑
τl∈chpL(i)

⌈
Ri(LO)′

Tl

⌉
Cl(LO)

(5.4)

If core cc enters HI-crit mode from state Y (1, 2, c), then the migratable MID-

crit tasks will split and migrate to core c1 and c2 and all of the MID-crit tasks are

guaranteed to be schedulable. The relationship between cores can be represented

by:

• Y (1, 2, c, cH)c = MIDc ∪HIc

• Y (1, 2, c, cH)1 = Y (1, 2, c)1 ∪MIGMc,1

• Y (1, 2, c, cH)2 = Y (1, 2, c)2 ∪MIGMc,2
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In this state, all of the MID-crit tasks remaining on core cc are executing with

MID-crit budgets while all of the HI-crit tasks are executing with their HI-crit

budgets. The migratable MID-crit tasks are executing with MID-crit budgets

at the new core and suffering from reduced deadline and release jitter issues

influence. Thus, the response time analysis of cores in this state is given by

equation (5.5):

−

∀τi ∈MIGMc,1 ∪MIGMc,2 :

D′i = Di − (Ri(MID)′ − Ci(MID))

Ji = Ri(MID)′ − Ci(MID)

∀τi ∈Y (1, 2, c, cH)c :

Ri(HI) = Ci(δLi, HI) +
∑

τj∈chpM(i)

⌈
Ri(HI)

Tj

⌉
Cj(MID)

+
∑

τk∈chpH(i)

⌈
Ri(HI)

Tk

⌉
Ck(HI) +

∑
τl∈chpMIGM(i)

⌈
Ri(MID)′

Tl

⌉
Cl(MID)

∀τi ∈Y (1, 2, c, cH)1 ∪ Y (1, 2, c, cH)2 :

Ri(MID)′′ = Ci(δLi,MID) +
∑

τj∈chp(i)

⌈
Ri(MID′′ + Jj

Tj

⌉
Cj(δLi,MID)

(5.5)

Considering another scenario that core c1 and c2 enter HI-crit first, and all

of the MID-crit migratable tasks on these cores that can migrate to core cc have

been migrated, then the core is forced to mode change to MID-crit’ mode and

abandon all of the LO-crit tasks on core. The tasks on core cc can be represented

by:

• Y (1H, 2H)c = MIDc∪HIc∪MIGMc,1∪MIGMc,2∪MIGM1,c,∗∪MIGM1,∗,c∪

MIGM2,c,∗ ∪MIGM2,∗,c

Accordingly, we can get the new response time for the tasks on the core cc as

equation (5.6):
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∀τi ∈Y (1H, 2H)c :

Ri(MID)′′ = Ci(δLi,MID) +
∑

τj∈chp(i)

⌈
Ri(MID′′ + Jj

Tj

⌉
Cj(δLi,MID)

(5.6)

In this case, if core cc enters HI-crit tasks, then all of the MID-crit tasks on

the core need to be abandoned. In addition, it is the worst case for cc entering

HI-crit mode.

• Y (1H, 2H, cH)c = HIc

• MIDc ∪MIGMc,1 ∪MIGMc,2 ∪MIGM1,c,∗ ∪MIGM1,∗,c ∪MIGM2,c,∗ ∪

MIGM2,∗,c are abandoned

Regarding state Y (1H, 2H, cH)c, only HI-crit tasks execute with their LO-crit

budgets. Thus, the response time analysis of core cc can be seen as equation (5.7):

∀τi ∈Y (1H, 2H, cH)c :

Ri(HI)′ = Ci(δLi, HI) +
∑

τj∈chpH(i)

⌈
Ri(HI)′

Tj

⌉
Cj(HI)

+
∑

τk∈chpM(i)

⌈
Ri(MID)′′

Tk

⌉
Cl(MID)

(5.7)

For completion, the scenario that core cc increases directly from LO-crit mode

to HI-crit mode needs to be considered. This scenario only happens when core c1

and c2 are in LO-crit or LO’-crit or MID-crit or MID’-crit mode (if c1 is already

in HI-crit mode then core cc is forced to mode change to MID’-crit mode). In

any of the above situations, the migratable MID-crit tasks will migrate to core

c1 and c2. Considering that, the worst case happens when core c1 and core c2

are both in MID-crit mode and all of the LO-crit migratable tasks on these cores

that can migrate to core cc have been migrated, then the tasks on core cc can be

represented as:
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• Y (1, 2, cH)c = MIDc ∪HIc

• Y (1, 2, cH)1 = Y (1, 2)1 ∪MIGMc,1

• Y (1, 2, cH)2 = Y (1, 2)2 ∪MIGMc,2

• LOc∪MIGLc,1∪MIGLc,2∪MIGL1,c,∗∪MIGL1,∗,c∪MIGL2,c,∗∪MIGL2,∗,c

are abandoned

Regarding this state, the migratable MID-crit tasks perform unusually as

they are executing with MID-crit budgets. The reduced deadline and release

jitter issues are calculated using the LO-crit response time and LO-crit budgets.

In addition, the interference from these migrating tasks is also calculated using

their LO-crit budgets. Thus, the response time analysis of the cores can be viewed

as equation (5.8):

∀τi ∈MIGMc,1 ∪MIGMc,2 :

D′′i = Di − (Ri(LO)′ − Ci(LO))

J ′i = Ri(LO)′ − Ci(LO)

∀τi ∈Y (1, 2, cH)c :

Ri(HI)′′ = Ci(δLi, HI) +
∑

τj∈chpM(i)

⌈
Ri(HI)′′

Tj

⌉
Cj(MID)

+
∑

τk∈chpH(i)

⌈
Ri(HI)′′

Tk

⌉
Ck(HI) +

∑
τl∈chpMIGM(i)

⌈
Ri(LO)′

Tl

⌉
Cl(LO)

+
∑

τm∈chpL(i)

⌈
Ri(LO)′

Tm

⌉
Cm(LO)

∀τi ∈Y (1, 2, cH)1 ∪ Y (1, 2, cH)2 :

Ri(MID)′′ = Ci(δLi,MID) +
∑

τj∈chp(i)

⌈
Ri(MID′′ + Jj

Tj

⌉
Cj(δLi,MID)

(5.8)

If all of the above schedulability tests have been passed, then the tasks on the

corner core are deemed to be scheduled.
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Cores of the Edge Type

For the cores in the edges, they have three neighbours and hence are paired with

three cores. Thus, when the edge core needs to migrate tasks, the task load may

split and migrate to the neighbour cores. In addition, according to the analysis

in the previous section, the boundary number for the edge core is 1. Assume

that a set of tasks S containing three criticality levels is scheduled on the corner

core cc and its three neighbour cores c1, c2 and c3, then on each core there exist

five types of tasks: HI-crit tasks, statically allocated MID-crit tasks, migratable

MID-crit tasks, statically allocated LO-crit tasks and migratable LO-crit tasks.

Since the scheduling in this part focuses on the edge core, the migrating tasks

from the neighbour cores to other cores are not considered. In addition, the

edge core ce cannot differentiate whether the neighbour core c1, c2 and c3 have

accepted any migrating LO-crit tasks or not. But having these tasks in neighbour

cores does not affect the schedulability test on the focused core. Thus, in order

to simplify the analysis, it is safe to assume that there is no migrating LO-crit

task from other cores on two neighbour cores. Then the following relationship

can be obtained:

• S = LOe ∪MIDe ∪ HIe ∪MIGLe,∗,∗ ∪MIGMc,∗,∗ ∪LO1 ∪MID1 ∪HI1

∪MIGL1,c,∗ ∪MIGL1,∗,c ∪MIGL1,∗,∗ ∪MIGH1,c,∗ ∪MIGH1,∗,c ∪MIGH1,∗,∗

∪LO2 ∪MID2 ∪HI2 ∪MIGL2,c,∗ ∪MIGL2,∗,c ∪MIGL2,∗,∗ ∪MIGH2,c,∗

∪MIGH2,∗,c ∪MIGH2,∗,∗ ∪LO3 ∪MID3 ∪HI3 ∪MIGL3,c,∗ ∪MIGL3,∗,c

∪MIGL3,∗,∗ ∪MIGH3,c,∗ ∪MIGH3,∗,c ∪MIGH3,∗,∗

In the steady state mode, all these tasks are statically partitioned on each

core and executing with their LO-crit budgets. Define state X to represent this

phase, then the relationship between tasks and cores can be represented by:

• Xe = LOe ∪MIDe ∪HIe ∪MIGLe,∗,∗ ∪MIGMe,∗,∗

• X1 = LO1∪MID1∪HI1∪MIGL1,e,∗∪MIGL1,∗,e∪MIGL1,∗,∗∪MIGH1,e,∗∪

MIGH1,∗,e ∪MIGH1,∗,∗
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• X2 = LO2∪MID2∪HI2∪MIGL2,e,∗∪MIGL2,∗,e∪MIGL2,∗,∗∪MIGH2,e,∗∪

MIGH2,∗,e ∪MIGH2,∗,∗

• X2 = LO3∪MID3∪HI3∪MIGL3,e,∗∪MIGL3,∗,e∪MIGL3,∗,∗∪MIGH3,e,∗∪

MIGH3,∗,e ∪MIGH3,∗,∗

• S = Xc ∪X1 ∪X2 ∪X3

Regarding state X, all tasks are executing with their LO-crit budgets. In this

case, the response time analysis of all the tasks is given by equation (5.9):

∀τi ∈ X : Ri = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri

Tj

⌉
Cj(LO) (5.9)

Since the boundary number is 1 for the edge cores, if core ce enters MID-crit

mode while another core is already in MID-crit mode, the LO-crit tasks on core ce

are still migratable. Thus, if core c3 enters MID-crit mode and all of the LO-crit

migratable tasks on these cores that can migrate to core ce have been migrated,

then the tasks on core ce can be represented by:

• Y (3)e = X(e) ∪MIGL3,e,∗ ∪MIGL3,∗,e

Accordingly, we can get the new response time for the tasks on the core ce as

equation (5.10):

∀τi ∈Y (3)e :

Ri(LO)′ = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO)′ + Jj

Tj

⌉
Cj(LO)

(5.10)

If core cc then enters MID-crit mode while core c2 and c3 remaining in LO-crit

mode, then the migratable LO-crit tasks on core cc will split and migrate to core

c1 and c2. In addition, the migrated tasks accepted by core ce from core c3 are

abandoned. The relationship between tasks and cores can be represented by:

• Y (3, e)c = LOc ∪MIDc ∪HIc ∪MIGMe,∗,∗
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• Y (3, e)1 = Y (3)1 ∪MIGLe,1,∗ ∪MIGLe,3,1

• Y (3, e)2 = Y (3)2 ∪MIGLe,2,∗ ∪MIGLe,3,2

• Y (3, e)3 = Y (3)3

• MIGL3,e,∗ ∪MIGL3,∗,e are abandoned

In this state, all of the MID-crit tasks remain on core ce are executing with

MID-crit budgets while all of the other tasks are executing with their LO-crit

budgets. The migratable LO-crit tasks are executing with LO-crit budgets at the

new core and suffering from reduced deadline and release jitter issues influence.

Thus, the response time analysis of cores in this state is given by equation (5.11).

∀τi ∈ ∪MIGLe,1,∗ ∪MIGLe,3,1 ∪MIGLe,2,∗ ∪MIGLe,3,2 :

D′i = Di − (Ri(LO)′ − Ci(LO))

Ji = Ri(LO)′ − Ci(LO)

∀τi ∈Y (3, e)e :

Ri(MID) = Ci(δLi,MID) +
∑

τj∈chpL(i)

⌈
Ri(MID)

Tj

⌉
Cj(LO)

+
∑

τk∈chpM(i)

⌈
Ri(MID)

Tk

⌉
Ck(MID) +

∑
τl∈chpH(i)

⌈
Ri(MID)

Tl

⌉
Cl(LO)

+
∑

τj∈chpM(i)

⌈
Ri(MID)

Tj

⌉
Cj(MID) +

∑
τm∈chpMIGL(i)

⌈
Ri(LO)′

Tm

⌉
Cm(LO)

∀τi ∈Y (3, e)1 ∪ Y (3, e)2 :

Ri(LO)′ = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO)′ + Jj

Tj

⌉
Cj(LO)

(5.11)

If core ce enters MID-crit mode while one or two or three neighbour cores are

in MID’-crit mode, then all of the migratable LO-crit tasks on core ce need to be

abandoned. The schedulability test for core ce in this scenario is covered by the

above scenario.
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If all of the neighbour cores are in MID-crit mode, and assume that all of the

LO-crit migratable tasks on these cores that can migrate to core ce have been

migrated, then the tasks on core ce can be represented by:

• Y (1, 2, 3)e = X(e) ∪ MIGL1,e,∗ ∪ MIGL1,∗,e ∪ MIGL2,e,∗ ∪ MIGL2,∗,e ∪

MIGL3,e,∗ ∪MIGL3,∗,e

According to that, we can get the new response time for the tasks on the core

cc as equation (5.12):

∀τi ∈Y (1, 2, 3)e :

Ri(LO)′′ = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO)′ + Jj

Tj

⌉
Cj(LO)

(5.12)

In this case, if core ce enters MID-crit tasks, then all of the LO-crit tasks on

the core need to be abandoned. In addition, it is the worst case for ce entering

MID-crit mode.

• Y (1, 2, 3, e)e = MIDe ∪HIe ∪MIGMe,∗,∗

• LOc ∪ MIGLe,∗,∗ ∪ MIGL1,e,∗ ∪ MIGL1,∗,e ∪ MIGL2,e,∗ ∪ MIGL2,∗,e ∪

MIGL3,e,∗ ∪MIGL3,∗,e are abandoned

Regarding state Y (1, 2, 3, e)e, MID-crit tasks will execute with their MID-crit

budgets and HI-crit tasks will execute with their LO-crit budgets. Thus, the

response time analysis of core ce can be seen as equation (5.13):

∀τi ∈Y (1, 2, 3, e)e :

Ri(MID)′ = Ci(δLi,MID) +
∑

τj∈chpM(i)

⌈
Ri(MIG)′

Tj

⌉
Cj(MID)

+
∑

τk∈chpH(i)

⌈
Ri(MIG)′

Tk

⌉
Ck(LO) +

∑
τl∈chpL(i)

⌈
Ri(LO)′′

Tl

⌉
Cl(LO)

(5.13)
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Still since the boundary number is 1, if core ce enters HI-crit mode while

another core is already in HI-crit mode, the MID-crit tasks on core ce are still

migratable. Thus, if core c3 enters HI-crit core from state Y (1, 2, 3, e) and all of

the MID-crit migratable tasks on these cores that can migrate to core ce have

been migrated, then the tasks on core ce can be represented by:

• Y (1, 2, 3, e, 3H)e = MIDe ∪HIe ∪MIGMe,∗,∗ ∪MIGM3,e,∗ ∪MIGM3,∗,e

Accordingly, we can get the new response time for the tasks on the core cc as

equation (5.14):

∀τi ∈Y (1, 2, 3, e, 3H)e :

Ri(MID)′′ = Ci(δLi,MID) +
∑

τj∈chp(i)

⌈
Ri(MID′′ + Jj

Tj

⌉
Cj(δLi,MID)

(5.14)

If core ce enters HI-crit mode from state Y (1, 2, 3, e, 3H), then the migratable

MID-crit tasks will split and migrate to core c1 and c2. In addition, the accepted

MID-crit migrated tasks on core ce need to be abandoned. The relationship

between cores can be represented by:

• Y (1, 2, e, 3H, eH)c = MIDe ∪HIe

• Y (1, 2, e, 3H, eH)1 = Y (1, 2, e, 3H)1 ∪MIGMe,1,∗ ∪MIGMe,3,1

• Y (1, 2, e, 3H, eH)2 = Y (1, 2, e, 3H)2 ∪MIGMe,2,∗ ∪MIGMe,3,2

• Y (1, 2, e, 3H, eH)3 = Y (1, 2, e, 3H)3

• MIGM3,e,∗ ∪MIGM3,∗,e are abandoned

In this state, all of the MID-crit tasks remaining on core ce are executing with

MID-crit budgets while all of the HI-crit tasks are executing with their HI-crit

budgets. The migratable MID-crit tasks are executing with MID-crit budgets
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at the new core and suffering from reduced deadline and release jitter issues

influence. Thus, the response time analysis of cores in this state is given by

equation (5.15).

∀τi ∈MIGMe,1,∗ ∪MIGMe,3,1 ∪MIGMe,2,∗ ∪MIGMe,3,2 :

D′i = Di − (Ri(MID)′ − Ci(MID))

Ji = Ri(MID)′ − Ci(MID)

∀τi ∈Y (1, 2, 3, e, 3H, eH)e :

Ri(HI) = Ci(δLi, HI) +
∑

τj∈chpM(i)

⌈
Ri(HI)

Tj

⌉
Cj(MID)

+
∑

τk∈chpH(i)

⌈
Ri(HI)

Tk

⌉
Ck(HI) +

∑
τl∈chpMIGM(i)

⌈
Ri(MID)′′

Tl

⌉
Cl(MID)

∀τi ∈Y (1, 2, c, cH)1 ∪ Y (1, 2, c, cH)2 :

Ri(MID)′′ = Ci(δLi,MID) +
∑

τj∈chp(i)

⌈
Ri(MID′′ + Jj

Tj

⌉
Cj(δLi,MID)

(5.15)

Considering another scenario that core c1 , c2 and c3 enter HI-crit first, and

all of the MID-crit migratable tasks on these cores that can migrate to core ce

have been migrated, then the core is forced to mode change to MID’-crit and

abandon all of the LO-crit tasks on core. The tasks on core ce can be represented

as:

• Y (1H, 2H, 3H)e = MIDe ∪HIe ∪MIGMe,∗,∗ ∪MIGM1,e,∗ ∪MIGM1,∗,e ∪

MIGM2,e,∗ ∪MIGM2,∗,e ∪MIGM3,e,∗ ∪MIGM3,∗,e

Accordingly, we can get the new response time for the tasks on the core cc as

equation (5.16):
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∀τi ∈Y (1H, 2H, 3H)e :

Ri(MID)′′′ = Ci(δLi,MID) +
∑

τj∈chp(i)

⌈
Ri(MID′′′ + Jj

Tj

⌉
Cj(δLi,MID)

(5.16)

In this case, if core ce enters HI-crit tasks, then all of the MID-crit tasks on

the core need to be abandoned. In addition, it is the worst case for ce entering

HI-crit mode.

• Y (1H, 2H, 3H, eH)c = HIe

• MIDe∪MIGMe,∗,∗∪MIGM1,e,∗∪MIGM1,∗,e∪MIGM2,e,∗∪MIGM2,∗,e∪

MIGM3,e,∗ ∪MIGM3,∗,e are abandoned

Regarding state Y (1H, 2H, 3H, eH)e, only HI-crit tasks execute with their

LO-crit budgets. Thus, the response time analysis of core ce is given by equa-

tion (5.17):

∀τi ∈Y (1H, 2H, 3H, eH)e :

Ri(HI)′ = Ci(δLi, HI) +
∑

τj∈chpH(i)

⌈
Ri(HI)′

Tj

⌉
Cj(HI)

+
∑

τk∈chpM(i)

⌈
Ri(MID)′′′

Tk

⌉
Cl(MID)

(5.17)

For completion, the scenario that core ce increases directly from LO-crit mode

to HI-crit mode needs to be considered. This scenario only happens when core

c1, c2 and c3 are in LO-crit or LO’-crit or MID-crit or MID’-crit mode (if c1 is

already in HI-crit mode then core ce is forced to mode change to MID’-crit mode).

In any of the above situations, the migratable MID-crit tasks will migrate to core

c1, c2 and c3. Considering that, the worst case happens when core c1, c2 and c3

are all in MID-crit mode and all of the LO-crit migratable tasks on these cores

that can be migrate to core ce have been migrated, then the tasks on core ce can

be represented as:
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• Y (1, 2, 3, eH)c = MIDe ∪HIe

• Y (1, 2, 3, eH)1 = Y (1, 2, 3)1 ∪MIGMe,1,∗

• Y (1, 2, 3, eH)2 = Y (1, 2, 3)2 ∪MIGMe,2,∗

• Y (1, 2, 3, eH)3 = Y (1, 2, 3)3 ∪MIGMe,3,∗

• LOe ∪ MIGLe,∗,∗ ∪ MIGL1,e,∗ ∪ MIGL1,∗,e ∪ MIGL2,e,∗ ∪ MIGL2,∗,e ∪

MIGL3,e,∗ ∪MIGL3,∗,e are abandoned

Regarding this state, the migratable MID-crit tasks perform quite unusually

as they are executing with MID-crit budgets, the reduced deadline and release

jitter issues are calculated using the LO-crit response time and LO-crit budgets.

In addition, the interference from these migrating tasks is also calculated using

their LO-crit budgets. Thus, the response time analysis of the cores can be viewed

as equation (5.18):

∀τi ∈MIGMe,∗,∗ :

D′′i = Di − (Ri(LO)′ − Ci(LO))

J ′i = Ri(LO)′ − Ci(LO)

∀τi ∈Y (1, 2, 3, eH)e :

Ri(HI)′′ = Ci(δLi, HI) +
∑

τj∈chpM(i)

⌈
Ri(HI)′′

Tj

⌉
Cj(MID)

+
∑

τk∈chpH(i)

⌈
Ri(HI)′′

Tk

⌉
Ck(HI) +

∑
τl∈chpMIGM(i)

⌈
Ri(LO)′

Tl

⌉
Cl(LO)

+
∑

τm∈chpL(i)

⌈
Ri(LO)′

Tm

⌉
Cm(LO)

∀τi ∈Y (1, 2, 3, eH)1 ∪ Y (1, 2, 3, eH)2 ∪ Y (1, 2, 3, eH)3 :

Ri(MID)′′ = Ci(δLi,MID) +
∑

τj∈chp(i)

⌈
Ri(MID′′ + Jj

Tj

⌉
Cj(δLi,MID)

(5.18)

If all of the above schedulability tests have been passed, then the tasks on the

edge core are deemed to be scheduled.
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Cores in the Normal Type

The Schedulability test of the cores in normal type is mostly similar to that of

the cores in edge type. The only difference is that the boundary number is 2 for

the cores in normal type. According to that, the response time analysis will not

be repeated here. The detailed analysis can be seen in the Appendix.

5.3.2 Task Allocation

Unlike the previous models, although cores in a NoC have the same computing

capability, they perform differently due to their locations in the semi-partitioned

algorithm. According to that, when allocating tasks, the difference among cores

needs to be considered. Based on the number of neighbours and the boundary

number settings, cores of the corner type have the least flexibility while cores

of the normal type have the most. As tasks are sorted by decreasing utilization

criticality aware order, the task allocation progress will be divided into three

steps.

The first step is to allocate the HI-crit tasks. For HI-crit tasks, since these

tasks will not migrate, they are most suitable to be allocated to cores in the

corner type. Thus, when allocating the HI-crit tasks, corner type cores have the

highest priority, edge the next, while normal type cores have the lowest priority.

The next step is to allocate the MID-crit tasks. Although MID-crit tasks can

be set migratable, the migrating progress will add reduced deadline and release

jitter issues which adds extra scheduling burden. Thus, the MID-crit tasks are

initially allocated as non-migratable tasks to the cores, unless the non-migration

algorithm cannot schedule the tasks. In addition, due to the algorithm used to

determine the migratable tasks, the initially non-migratable tasks may change

to be migratable. Based on the consideration above, when allocating the MID-

crit tasks, normal type cores have the highest priority as they provide the best

migrating flexibility, edge the next, and corner type cores have the lowest priority.
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The last step is to allocate the LO-crit tasks. Since the LO-crit tasks can also

be set migratable, with the same reason as that for MID-crit tasks, normal type

cores have the highest priority while corner type cores have the lowest priority.

5.3.3 Evaluation

The previous sections have derived the sufficient response time analysis and

introduced an appropriate task allocation approach. In this section, we will intro-

duce an experiment to compare the scheduling efficiency of the semi-partitioned

algorithm against the non-migration algorithm.

Experiment Configuration

Software is developed to explore the efficiency of the three models. It is produced

to compare the performance of the semi-partitioned algorithm and non-migration

algorithm. The configuration of the software is fairly similar to that mentioned

in Section 3.2.1. The software consists of three parts. The first part generates

tasksets and stores them in XML files. Each tasksets node contains 10000

tasksets. In order to gain uniform distributed parameters, UUnifast-discard

algorithm is used to generate nominal utilizations and Log-uniform algorithm

[51] is used to generate periods. Other parameters of each task are calculated

based on these two values. The second part of the software pre-sorts each taskset

in criticality-aware utilization descending order. In such order, HI-crit tasks

will be placed in front of all MID-crit tasks while MID-crit tasks will be placed

in front of all LO-crit tasks, and each criticality level tasks are in utilization

descending order independently. Then the software allocates the tasks based on

the method introduced above, and compares the scheduling efficiency between

the semi-partitioned approach and the non-migration approach.
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Figure 5.2: Semi-partitioned and Non-migration Comparison

Evaluation

We investigate the performance of the semi-partitioned algorithm compared with

the non-migration algorithm. Figure 5.2 shows the percentage of tasksets that

are schedulable for a 16-core system of 96 tasks, with on average equal number of

LO-crit, MID-crit and HI-crit tasks, and the WCET estimation factor is 2 (f =

2). The Y-axis shows the percentage of the successful tasksets while the X-axis

shows the sum of nominal utilizations of each taskset. The nominal utilization

stands for C(LO) for LO-crit tasks, C(MID) for MID-crit tasks, and C(HI) for

HI-crit tasks. The sum of utilization ranges from 12.8 to 17.6 to amplify the

results. According to the results, semi-partitioned algorithm has a significant

improvement margin compared with non-migration algorithm. For example, as

shown with black lines in the figure, the semi-partitioned algorithm schedules

77% of the tasksets with utilization of 14.86 while the non-migration one only

schedules 49%. There is a 77−49
49
∗ 100% = 57.14% schedulability improvement

from the semi-partitioned algorithm over the non-migration algorithm in this

scenario.
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Figure 5.3: Varying the Criticality Factor

Figure 5.4: Varying the Taskset Size

In order to further explore the performance of the algorithms relating to the

criticality factor and the size of the taskset, weighted schedulability measure

algorithm is used to reduce the 3-dimensional plot to 2 dimensions. Figure 5.3

varies the criticality factor and Figure 5.4 varies the size of each taskset. In

these weighted figures, the X-axis stands for the parameter examined and Y-axis

represents the weighted value. Both figures indicate that semi-partitioned algo-

rithm provides a significant better performance than non-migration algorithm.

Regarding to Figure 5.3, the schedulability increases rapidly with the increase

of the factor value. It is expected as there exist three criticality levels, the

HI-crit WCET estimation increases much faster than two criticality scenarios,

which provides more scheduling space for cores in the LO-crit mode. Regarding
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Figure 5.4, the semi-partitioned approach no longer forms an inverted U-shape

curve as it did in the experiments in previous chapters. The reason is possibly

that migration is only permitted between neighbour cores in NoC and migratable

tasks never migrate twice (not referring to migrating back) which lowers the

influence of increasing the number of tasks. However, when the number of tasks

in the taskset is sufficiently large, the schedulability of semi-partitioned approach

is expected to decrease.

5.4 Summary

This chapter first proposes a model that each task only uses two WCET estimated

values, and extends the semi-partitioned model based on the new model. Then

it introduces the influence from considering the system architecture of the cores,

and proposes a semi-partitioned model of a NoC-based multi-core platform. This

chapter then provides a detailed response analysis for the semi-partitioned model

on a 16-core NoC 3-criticality system, as well as a task allocation approach. An

experiment is then introduced to assess the performance of the semi-partitioned

model and it is shown that semi-partitioned algorithm has a significant improve-

ment over the non-migration algorithm.

Although the intuition behind the analysis of a three criticality level NoC

is straightforward, the actual response time analysis is complex and detailed.

Three different types of cores are identified and each of them has a number of

different scenarios to model. Overall, the improvement in performance comes

with a considerable burden in terms of understanding of the analysis.
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Chapter 6

Conclusion

The main focus of the research undertaken is to find an appropriate semi-partitioned

algorithm for the multi-core mixed-criticality system. In the following sections,

the contributions of the thesis are summarized and an outlook is given on future

works that can extend the semi-partitioned algorithm further.

6.1 Summary of Contributions

The central proposition of the thesis (see Section 1.3) claims thatA semi-partitioned

approach to task placement on multiprocessor platforms can improve the perfor-

mance of mixed-criticality systems, enabling all tasks to keep executing in the

majority of scenarios. The performance here refers to the schedulability, scala-

bility and complexity, where complexity mainly refers to the runtime overheads.

Chapter 1 and Chapter 2 provide an introduction and an examination of

works related to the mixed-criticality systems and task allocation algorithms.

By comparing the existing algorithms, considering scheduling efficiency and pre-

dictability, Adaptive Mixed Criticality (AMC-rtb) is chosen to be the template

algorithm to extend to the semi-partitioned model. Several issues are identified

when extending the algorithm, and these issues are addressed by Chapter 3,

Chapter 4 and Chapter 5.
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Chapter 3 addresses the issue about determining which tasks to migrate. This

chapter first shows why the semi-partitioned scheduling model dominates any

non-migration scheduling model. It then explores the semi-partitioned algorithm

on a dual-core platform with dual-criticality levels, where only LO-crit tasks

may migrate and the migration destination is fixed. Six possible approaches are

proposed based on the task allocation algorithms and the migration algorithms.

It is concluded that a combination usage of Semi2FF and Semi2WF provides

the most appropriate method to schedule tasks in a dual-core platform with

dual-criticality levels in the situation when only LO-crit tasks may migrate and

the migration destination is fixed. This chapter also considers the influence of

the overhead caused by migration. According to the experiment results, the

overhead value that the semi-partitioned approach may tolerant varies in different

scenarios, for realistic values the proposed approach is nearly always beneficial.

Chapter 4 firstly addresses the definition of “majority scenarios” that all tasks

need to be saved by a probability calculation and the idea of a boundary number.

This chapter redefines the semi-partitioned model for an n-core platform: the

semi-partitioned algorithm will save all of the tasks if no more than dlog2(n)e

cores are in HI-crit mode. Then this chapter addresses the migration destination

choice problem by exploring the semi-partitioned algorithm on a 4-core platform

with dual-criticality levels. Four semi-partitioned models are proposed, and it is

concluded that the migration Model 2, which pairs the cores with a calculated

amount of cores and splits the migration task loads within the paired cores, is

the most appropriate approach with a combined consideration over schedulability,

scalability and complexity. This chapter then explains how the Model 2 can be

applied to an n-core platform.

Chapter 5 firstly extends the model to multi-criticality levels. In order to ease

the scheduling complexity, it proposes to use a model where only two WCET

estimated values are used by each task. It is observed that the new model allows

the criticality level of a core to increase directly rather than level by level, and the

migration progress may cause the accepting core to mode change. In addition,

it identifies the tasks to save based on the boundary number and the current
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criticality level. The next part of this chapter discusses the possible effects from

considering the system architecture of the cores. It proposes a mixed-criticality

system on a NoC to use local information to determine the criticality level to

be assured to and provides a relationship between the location of the tasks in

a NoC and the boundary number. In the last part of this chapter, the semi-

partitioned model on a 16-core NoC-based 3-criticality system is analysed, and

an experiment is set up to identify how much the semi-partitioned algorithm

improves the schedulability from the non-migration algorithm.

Considering the thesis proposition made in the beginning, different semi-

partitioned scheduling models have been proposed for corresponding multi-core

MCS settings in these three chapters. In these semi-partitioned scheduling mod-

els, all of the tasks keep schedulable in most of the scenarios which meets the

requirement from the hypothesis. In addition, they use the same scaling method

to calculate the boundary scenario when tasks with lower criticality levels need to

be abandoned if more cores enter higher criticality mode and the recommended al-

gorithms are proved to have better performance than other proposed algorithms.

According to the experiments results, it is observed that the semi-partitioned

scheduling algorithm has a significant improvement on the schedulability over

the non-migration partitioned algorithm for all of the multi-core MCS settings.

Overall, the material illustrated in these three chapters is sufficient to satisfy the

demands made in the thesis proposition.

6.2 Future Work

Due to time constraints, all of the comparisons done in the thesis use schedu-

lability tests. Although all of the test results have been checked, it would be

invaluable to run a simulation of the semi-partitioned model to make the results

more convincing. In addition, the overhead is assumed to only relate to the

WCET estimations of the tasks, while cache miss and other elements may also

affect the overhead caused by the migration progress. Regarding to that, the

work could be followed up by a full implementation of a multi-core system from
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which the overhead can be measured.

In the extended NoC model, it is assumed that each task only has two WCET

estimations, which eventually causes a potential problem of criticality skipping.

It is possible that using the original criticality model may bring some benefits in

certain scenarios, which is valuable to explore.
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Appendix

This Appendix completes the analysis provided in Chapter 5. It contains the

analysis of cores that are neither corner nor edge.

For the cores of the normal type, they have four neighbours. According to the

analysis in Section 5.2, the boundary number for the normal core is 2. Assume

that the set of tasks S containing three criticality levels are scheduled on the

normal core cn and its four neighbour cores c1, c2, c3 and c4, then on each core,

there exist five types of tasks: HI-crit tasks, statically allocated MID-crit tasks,

migratable MID-crit tasks, statically allocated LO-crit tasks and migratable LO-

crit tasks. Since the scheduling in this part focuses on the normal core, the

migrating tasks from the neighbour cores to other cores are not interested here.

In addition, the normal core cn cannot differentiate whether the neighbour core c1,

c2, c3 and c4 have accepted any migrating LO-crit tasks or not. But having these

tasks in neighbour cores does not affect the schedulability test on the focused

core. Thus, in order to simplify the analysis, it is safe to assume that there is

no migrating LO-crit tasks from other cores on two neighbour cores. Then the

following relationship can be obtained:

• S = LOe ∪MIDe ∪ HIe ∪MIGLe,∗,∗ ∪MIGMc,∗,∗ ∪LO1 ∪MID1 ∪HI1

∪MIGL1,n,∗ ∪MIGL1,∗,n ∪MIGL1,∗,∗ ∪MIGM1,n,∗ ∪MIGM1,∗,n

∪MIGM1,∗,∗ ∪LO2 ∪MID2 ∪HI2 ∪MIGL2,n,∗ ∪MIGL2,∗,n ∪MIGL2,∗,∗

∪MIGM2,n,∗ ∪MIGM2,∗,n ∪MIGM2,∗,∗ ∪LO3 ∪MID3 ∪HI3

∪MIGL3,n,∗ ∪MIGL3,∗,n ∪MIGL3,∗,∗ ∪MIGM3,n,∗ ∪MIGM3,∗,n

∪MIGM3,∗,∗ ∪LO4 ∪MID4 ∪HI4 ∪MIGL4,n,∗ ∪MIGL4,∗,n

∪MIGL4,∗,∗ ∪MIGM4,n,∗ ∪MIGM4,∗,n ∪MIGM4,∗,∗
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In the steady state mode, all these tasks are statically partitioned on each

core and executing with their LO-crit budgets. Define state X to represent this

phase, then the relationship between tasks and cores can be represented as:

• X = Xn ∪X1 ∪X2 ∪X3 ∪X4

• Xn = LOn ∪MIDn ∪HIn ∪MIGLn,∗,∗ ∪MIGMn,∗,∗

• X1 = LO1∪MID1∪HI1∪MIGL1,n,∗∪MIGL1,∗,n∪MIGL1,∗,∗∪MIGM1,n,∗∪

MIGM1,∗,n ∪MIGM1,∗,∗

• X2 = LO2∪MID2∪HI2∪MIGL2,n,∗∪MIGL2,∗,n∪MIGL2,∗,∗∪MIGM2,n,∗∪

MIGM2,∗,n ∪MIGM2,∗,∗

• X3 = LO3∪MID3∪HI3∪MIGL3,n,∗∪MIGL3,∗,n∪MIGL3,∗,∗∪MIGM3,n,∗∪

MIGM3,∗,n ∪MIGM3,∗,∗

• X4 = LO4∪MID4∪HI4∪MIGL4,n,∗∪MIGL4,∗,n∪MIGL4,∗,∗∪MIGM4,n,∗∪

MIGM4,∗,n ∪MIGM4,∗,∗

Regarding state X, all tasks are executing with their LO-crit budgets. In this

case, the response time analysis of all tasks is given by equation (6.1):

∀τi ∈ X : Ri = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri

Tj

⌉
Cj(LO) (6.1)

Since the boundary number is 2 for the edge cores, if core cn enters MID-crit

mode while two neighbour cores are already in MID-crit mode, the LO-crit tasks

on core cn are still migratable. Thus, considering the worst case, if core c3 and c4

enter MID-crit mode first and all of the LO-crit migratable tasks on these cores

that can migrate to core cn have been migrated, then the tasks on core cn can be

represented as:

• Y (3, 4)n = X(n) ∪MIGL3,n,∗ ∪MIGL3,∗,n ∪MIGL4,n,∗ ∪MIGL4,∗,n
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Accordingly, we can get the new response time for the tasks on the core cn as

equation (6.2):

∀τi ∈Y (4)n :

Ri(LO)′ = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO)′ + Jj

Tj

⌉
Cj(LO)

(6.2)

If core cn then enters MID-crit mode while core c1 and c2 remain in LO-crit

mode, then the migratable LO-crit tasks on core cn will split and migrate to core

c1 and c2. Due to the defined mechanism, the migrated LO-crit tasks accepted

by core cn are abandoned. The relationship between tasks and cores can be

represented as:

• Y 3, 4, n = Y (3, 4, n)n ∪ Y (3, 4, n)1 ∪ Y (3, 4, n)2 ∪ Y (3, 4, n)3 ∪ Y (3, 4, n)4

• Y (3, 4, n)n = LOn ∪MIDn ∪HIn ∪MIGMn,∗,∗

• Y (3, 4, n)1 = Y (3)1 ∪MIGLn,1,∗ ∪MIGLn,3,1 ∪MIGLn,4,1

• Y (3, 4, n)2 = Y (3)2 ∪MIGLn,2,∗ ∪MIGLn,3,2 ∪MIGLn,4,2

• Y (3, 4, n)3 = Y (3, 4)3

• Y (3, 4, n)4 = Y (3, 4)4

• MIGL3,n,∗ ∪MIGL3,∗,n ∪MIGL4,n,∗ ∪MIGL4,∗,n are abandoned

In this state, all of the MID-crit tasks remaining on core cn are executing with

MID-crit budgets while all of the other tasks are executing with their LO-crit

budgets. The migratable LO-crit tasks are executing with LO-crit budgets at

the new core and suffering reduced deadline and release jitter issues influence.

Thus, the response time analysis of cores in this state is given by equation (6.3).

152



∀τi ∈ ∪MIGLn,1,∗ ∪MIGLn,3,1 ∪MIGLn,4,1 ∪MIGLn,2,∗ ∪MIGLn,3,2

∪MIGLn,4,2 :

D′i = Di − (Ri(LO)′ − Ci(LO))

Ji = Ri(LO)′ − Ci(LO)

∀τi ∈Y (3, 4, n)n :

Ri(MID) = Ci(δLi,MID) +
∑

τj∈chpL(i)

⌈
Ri(MID)

Tj

⌉
Cj(LO)

+
∑

τk∈chpM(i)

⌈
Ri(MID)

Tk

⌉
Ck(MID) +

∑
τl∈chpH(i)

⌈
Ri(MID)

Tl

⌉
Cl(LO)

+
∑

τj∈chpM(i)

⌈
Ri(MID)

Tj

⌉
Cj(MID) +

∑
τm∈chpMIGL(i)

⌈
Ri(LO)′

Tm

⌉
Cm(LO)

∀τi ∈Y (3, 4, n)1 ∪ Y (3, 4, n)2 :

Ri(LO)′ = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO)′ + Jj

Tj

⌉
Cj(LO)

(6.3)

If core cn enters MID-crit mode while three or more neighbour cores are in

MID’-crit mode, then all of the migratable LO-crit tasks on core cn need to be

abandoned. The schedulability test for core cn for this scenario is covered by the

following scenario. Consider the scenario that all of the neighbour cores are in

MID-crit mode, and assume all of the LO-crit migratable tasks on these cores

that can migrate to core cn have been migrated, then the tasks on core cn can be

represented as:

• Y (1, 2, 3, 4)n = X(n) ∪MIGL1,n,∗ ∪MIGL1,∗,n ∪MIGL2,n,∗ ∪MIGL2,∗,n

∪MIGL3,n,∗ ∪MIGL3,∗,n ∪MIGL4,n,∗∪4,∗,n

Accordingly, we can get the new response time for the tasks on the core cn as

equation (6.4):
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∀τi ∈Y (1, 2, 3, 4)n :

Ri(LO)′′ = Ci(LO) +
∑

τj∈chp(i)

⌈
Ri(LO)′ + Jj

Tj

⌉
Cj(LO)

(6.4)

In this case, if core cn enters MID-crit tasks, then all of the LO-crit tasks on

the core need to be abandoned. In addition, it is the worst case for cn entering

MID-crit mode.

• Y (1, 2, 3, 4, n)n = MIDn ∪HIn ∪MIGMn,∗,∗

• LOc ∪ MIGLn,∗,∗ ∪ MIGL1,n,∗ ∪ MIGL1,∗,n ∪ MIGL2,n,∗ ∪ MIGL2,∗,n ∪

MIGL3,n,∗ ∪MIGL3,∗,n ∪MIGL4,n,∗ ∪MIGL4,∗,n are abandoned

Regarding state Y (1, 2, 3, 4, n)n, MID-crit tasks will execute with their MID-

crit budgets and HI-crit tasks will execute with their LO-crit budgets. Thus, the

response time analysis of core cn can be seen as equation (6.5):

∀τi ∈Y (1, 2, 3, 4, n)n :

Ri(MID)′ = Ci(δLi,MID) +
∑

τj∈chpM(i)

⌈
Ri(MIG)′

Tj

⌉
Cj(MID)

+
∑

τk∈chpH(i)

⌈
Ri(MIG)′

Tk

⌉
Ck(LO) +

∑
τl∈chpL(i)

⌈
Ri(LO)′′

Tl

⌉
Cl(LO)

(6.5)

Still since the boundary number is 2, if core cn enters HI-crit mode while

two neighbour cores are already in HI-crit mode, the MID-crit tasks on core cn

are still migratable. Thus, if core c3 and core c4 enter HI-crit mode from state

Y (1, 2, 3, 4, n) and all of the MID-crit migratable tasks on these cores that can

migrate to core cn have been migrated, then the tasks on core cn can be viewed

as:

• Y (1, 2, 3, 4, n, 3H, 4H)n = MIDn ∪HIn ∪MIGMn,∗,∗ ∪MIGM3,n,∗

∪MIGM3,∗,n ∪MIGM4,n,∗ ∪MIGM4,∗,n
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According to that, we can get the new response time for the tasks on the core

cn as equation (6.6):

∀τi ∈Y (1, 2, 3, 4, n, 3H, 4H)n :

Ri(MID)′′ = Ci(δLi,MID) +
∑

τj∈chp(i)

⌈
Ri(MID′′ + Jj

Tj

⌉
Cj(δLi,MID)

(6.6)

If core cn enters HI-crit mode from state Y (1, 2, 3, 4, n, 3H, 4H), then the

migratable MID-crit tasks will split and migrate to core c1 and c2. In addition,

the accepted MID-crit migrated tasks on core cn need to be abandoned. The

relationship among cores can be viewed as:

• Y (1, 2, 3, 4, n, 3H, 4H,nH)n = MIDn ∪HIn

• Y (1, 2, 3, 4, n, 3H, 4H,nH)1 = Y (1, 2, 3, 4, n, 3H, 4H)1 ∪MIGMn,1,∗

∪MIGMn,3,1 ∪MIGMn,4,1

• Y (1, 2, 3, 4, n, 3H, 4H,nH)2 = Y (1, 2, 3, 4, n, 3H, 4H)2 ∪MIGMn,2,∗

∪MIGMn,3,2 ∪MIGMn,4,2

• Y (1, 2, 3, 4, n, 3H, 4H,nH)3 = Y (1, 2, 3, 4, n, 3H, 4H)3

• Y (1, 2, 3, 4, n, 3H, 4H,nH)4 = Y (1, 2, 3, 4, n, 3H, 4H)4

• MIGM3,n,∗ ∪MIGM3,∗,n ∪MIGM4,n,∗ ∪MIGM4,∗,n are abandoned

In this state, all of the MID-crit tasks remaining on core cn are executing

with MID-crit budgets while all of the HI-crit tasks are executing with their

HI-crit budgets. The migratable MID-crit tasks are executing with MID-crit

budgets at the new core and suffering from reduced deadline and release jitter

issues influence. Thus, the response time analysis of cores in this state is given

by equation (6.7).
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∀τi ∈MIGMn,1,∗ ∪MIGMn,3,1 ∪MIGMn,4,1 ∪MIGMn,2,∗ ∪MIGMn,3,2

∪MIGMn,4,2 :

D′i = Di − (Ri(MID)′ − Ci(MID))

Ji = Ri(MID)′ − Ci(MID)

∀τi ∈Y (1, 2, 3, n, 3H, 4H,nH)n :

Ri(HI) = Ci(δLi, HI) +
∑

τj∈chpM(i)

⌈
Ri(HI)

Tj

⌉
Cj(MID)

+
∑

τk∈chpH(i)

⌈
Ri(HI)

Tk

⌉
Ck(HI) +

∑
τl∈chpMIGM(i)

⌈
Ri(MID)′′

Tl

⌉
Cl(MID)

∀τi ∈Y (1, 2, 3, 4, n, 3H, 4H,nH)1 ∪ Y (1, 2, 3, 4, n, 3H, 4H,nH)2 :

Ri(MID)′′ = Ci(δLi,MID) +
∑

τj∈chp(i)

⌈
Ri(MID′′ + Jj

Tj

⌉
Cj(δLi,MID)

(6.7)

Considering another scenario that core c1 , c2, c3 and c4 enter HI-crit mode

first, and all of the MID-crit migratable tasks on these cores that can migrate to

core cn have been migrated, then the core is forced to mode change to MID-crit’

mode and abandon all of the LO-crit tasks on the core. The tasks on core cn can

be viewed as:

• Y (1H, 2H, 3H, 4H)n = MIDn∪HIn∪MIGMn,∗,∗∪MIGM1,n,∗∪MIGM1,∗,n∪

MIGM2,n,∗∪MIGM2,∗,n∪MIGM3,n,∗∪MIGM3,∗,n∪MIGM4,∗,n∪MIGM4,n,∗

According to that, we can get the new response time for the tasks on the core

cc as Equation (6.8):

∀τi ∈Y (1H, 2H, 3H, 4H)n :

Ri(MID)′′′ = Ci(δLi,MID) +
∑

τj∈chp(i)

⌈
Ri(MID′′′ + Jj

Tj

⌉
Cj(δLi,MID)

(6.8)
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In this case, if core cn enters HI-crit tasks, then all of the MID-crit tasks on

the core need to be abandoned. In addition, it is the worst case for cn entering

HI-crit mode.

• Y (1H, 2H, 3H, 4H,nH)n = HIn

• MIDn∪MIGMn,∗,∗∪MIGM1,n,∗∪MIGM1,∗,n∪MIGM2,n,∗∪MIGM2,∗,n∪

MIGM3,n,∗ ∪MIGM3,∗,n ∪MIGM4,n,∗ ∪MIGM4,∗,n are abandoned

Regarding state Y (1H, 2H, 3H, 4H,nH)n, only HI-crit tasks executes with

their LO-crit budgets. Thus, the response time analysis of core cn can be seen as

Equation (6.9):

∀τi ∈Y (1H, 2H, 3H, eH)n :

Ri(HI)′ = Ci(δLi, HI) +
∑

τj∈chpH(i)

⌈
Ri(HI)′

Tj

⌉
Cj(HI)

+
∑

τk∈chpM(i)

⌈
Ri(MID)′′′

Tk

⌉
Cl(MID)

(6.9)

For completion, the scenario that core cn increases directly from LO-crit mode

to HI-crit mode needs to be considered. This scenario only happens when core

c1, c2, c3 and c4 are in LO-crit or LO’-crit or MID-crit or MID’-crit mode (if c1

is already in HI-crit mode then core cn is forced to mode change to MID’-crit

mode). In any of the above situations, the migratable MID-crit tasks will migrate

to core c1, c2, c3 and c4. Considering that, the worst case happens when core c1,

c2, c3 and c4 are all in MID-crit mode and all of the LO-crit migratable tasks on

these cores that can migrate to core cn have been migrated, then the tasks on

core cn can be viewed as:

• Y (1, 2, 3, 4, nH)n = MIDn ∪HIn

• Y (1, 2, 3, 4, nH)1 = Y (1, 2, 3, 4)1 ∪MIGMn,1,∗

• Y (1, 2, 3, 4, nH)2 = Y (1, 2, 3, 4)2 ∪MIGMn,2,∗
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• Y (1, 2, 3, 4, nH)3 = Y (1, 2, 3, 4)3 ∪MIGMn,3,∗

• Y (1, 2, 3, 4, nH)4 = Y (1, 2, 3, 4)4 ∪MIGMn,4,∗

• LOn ∪MIGLn,∗,∗ ∪MIGL1,n,∗ ∪MIGL1,∗,n ∪MIGL2,n,∗ ∪MIGL2,∗,n ∪

MIGL3,n,∗ ∪MIGL3,∗,n ∪MIGL4,∗,n ∪MIGL4,n,∗ are abandoned.

Regarding this state, the migratable MID-crit tasks perform quite special that

although they are executing with MID-crit budgets, the reduced deadline and

release jitter issues are calculated using the LO-crit response time and LO-crit

budgets. In addition, the interference from these migrating tasks is also calculated

using their LO-crit budgets. Thus, the response time analysis of the cores can

be viewed as equation (6.10):

∀τi ∈MIGMn,∗,∗ :

D′′i = Di − (Ri(LO)′ − Ci(LO))

J ′i = Ri(LO)′ − Ci(LO)

∀τi ∈Y (1, 2, 3, 4, nH)n :

Ri(HI)′′ = Ci(δLi, HI) +
∑

τj∈chpM(i)

⌈
Ri(HI)′′

Tj

⌉
Cj(MID)

+
∑

τk∈chpH(i)

⌈
Ri(HI)′′

Tk

⌉
Ck(HI) +

∑
τl∈chpMIGM(i)

⌈
Ri(LO)′

Tl

⌉
Cl(LO)

+
∑

τm∈chpL(i)

⌈
Ri(LO)′

Tm

⌉
Cm(LO)

∀τi ∈Y (1, 2, 3, 4, nH)1 ∪ Y (1, 2, 3, 4, nH)2 ∪ Y (1, 2, 3, 4, nH)3 ∪ Y (1, 2, 3, 4, nH)4 :

Ri(MID)′′ = Ci(δLi,MID) +
∑

τj∈chp(i)

⌈
Ri(MID′′ + Jj

Tj

⌉
Cj(δLi,MID)

(6.10)

If all of the above schedulability tests have been passed, then the tasks on the

normal core are deemed to be scheduled.
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1996.

[85] S. Tobuschat, R. Ernst P. Axer, and J. Diemer. IDAMC: A NoC for mixed

criticality systems. In RTCSA, pages 149–156, 2013.

[86] S. Vestal. Preemptive scheduling of multi-criticality systems with varying

degrees of execution time assurance. In Real-Time Systems Symposium 2007,

28th IEEE International, pages 239–243. IEEE, 2007.

[87] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,

G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, et al. The worst-case

execution-time problem — overview of methods and survey of tools. ACM

Transactions on Embedded Computing Systems (TECS), 7(3):36, 2008.

[88] W. Wolf. Multiprocessor system-on-chip technology. IEEE Signal Processing

Magazine, 26(6), 2009.

[89] F. Zhang and A. Burns. Schedulability analysis for real-time systems with

EDF scheduling. IEEE Transactions on Computers, 58(9):1250–1258, 2009.

[90] Q. Zhao, Z. Gu, and H. Zeng. Integration of resource synchronization

and preemption-thresholds into EDF-based mixed-criticality scheduling

algorithm. In Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2013 IEEE 19th International Conference on, pages 227–236.

IEEE, 2013.

[91] Q. Zhao, Z. Gu, and H. Zeng. PT-AMC: Integrating preemption thresholds

into mixed-criticality scheduling. In Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2013, pages 141–146. IEEE, 2013.

168


