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Abstract 

Reliability is an important aspect of any transportation system, and there has been a 

substantial amount of research to bring it to the point where it can be accurately 

incorporated into established forecasting and appraisal frameworks. At the same time, 

emerging data sources, such as public transport smartcards, provide opportunities to 

understand more about the reliability of a particular transport system.  

This thesis conducts research on reliability using smartcard data. In the first instance 

the thesis provides a critique of the Mean-Variance framework for the treatment of 

transport reliability and finds room for adaptation. The thesis also provides a review of 

empirical research that estimates Mean-Variance variables and parameters, and finds 

evidence of methodological issues. 

In response to these issues, the thesis utilises smartcard data to investigate Mean-

Variance in three ways. The key element is the development of an alternative method of 

estimating a value of reliability, treating smartcard data as a Revealed Preference data 

source and combining it with established discrete choice methods. The second element 

uses the smartcard data to identify the factors affecting reliability levels through 

estimation of a linear regression model. The third strand of investigation employs the 

data to understand more about possible alternative measures of reliability and compares 

the underlying utility function of Mean-Variance with a second reliability framework.  

The thesis therefore demonstrates that the application of public transport smartcard 

data has the potential to yield insights in the field of transport reliability. In particular, it 

establishes how this data source might be used to estimate the value of reliability. With 

development, it may have the potential to forecast future reliability levels. Application 

of the data also supports the status quo of utilising the standard deviation as an indicator 

of reliability.  
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Chapter 1 - Introduction 

1.0 Introduction 

The first chapter in this thesis will introduce the two topics that will form the focus 

of subsequent work: the reliability of transport and the use of smartcard data in research 

contexts.  

The chapter begins by providing some initial background to these topics. 

Subsequently the motivation for the study and the policy context of reliability is 

examined in more detail; with a focus upon the UK and specifically Transport for 

London (TfL) who are supporting this project.  

The aims and objectives of this study will then be identified based upon the 

background to the topics.  The next section will outline the contribution that this thesis 

makes to the field of transportation reliability, and finally an outline of the work 

contained within the remainder of the thesis will be provided.    

1.0.1 Reliability Definition 

The term reliability can be broadly used in transportation and is open to a variety of 

interpretations. It could be applied in relation to the cleanliness or crowding level of a 

public transport vehicle over time. However in context of this thesis, the term is used 

exclusively in relation to travel time. 

To give an example of what is meant by travel time reliability, a commuter may 

complain about arriving late for work as a result of unusually heavy traffic. To reach a 

precise definition of reliability, it is important to understand what such a complaint 

might refer to. The complaint implies that a longer travel time was incurred due to a 

random element of travel time which made the traveller arrive later than their work start 

time. It is well established that in a majority of transportation contexts extra travel time 

is viewed negatively by travellers. However in this case it is not the extra travel time per 

se that is of interest, but rather the negative consequences of unexpected travel time in 

relation to some subsequent activity.  
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What this example alludes to is a travel time expectation that is not met. In public 

transport contexts, a traveller’s expectations are often clearly set by a published 

timetable. Newer technologies such as route planning software and satellite navigation 

systems also help to calibrate a traveller’s expectations when using other modes such as 

the private car. When time-related expectations are not met, the traveller is likely to 

incur some impact: in the example above, the traveller is late for work and may possibly 

lose income as a result; he/she might also experience stress related to the uncertainty of 

their travel time.  

What is conveyed with this introduction is that when the performance of a transport 

system is at odds with a traveller’s expectations, some impact will be felt. Furthermore, 

such an impact may affect future transport decisions such as choice of departure time, 

route or mode, or even whether to travel; responses which give good reason for wanting 

to understand the value of reliability (VOR). The VOR is the weight that a traveller 

places on a marginal unit of reliability. It is commonly expressed in units of money, or 

willingness to pay to realise an improvement in reliability (or to avoid a deterioration). 

This concept will be expanded upon in Chapter 2. 

1.0.2 Reliability and Risk 

The term travel time risk is sometimes used in transport economics in place of 

reliability; although they are essentially referring to the same phenomenon. The term 

risk comes with its own definition from the field of economics; referring to a situation 

where a number of outcomes could arise from an economic decision, and each has a 

known probability associated to it (Knight, 1921). This would be, for example, the case 

of a gamble where the participants have to guess the outcome of a fair coin toss. A 

related term to risk is uncertainty, where the probability of some or all of the outcomes 

occurring are unknown e.g. the return on a financial investment. In transport 

applications, it is risk which is most commonly used, in combination with expected 

utility theory (EUT) as the underlying microeconomic framework. It is under EUT that 

the methods for quantifying the VOR have been developed.  A fuller exploration of risk 

and EUT will also take place in Chapter 2.  
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What the term travel time risk therefore implies is that a travel option will have a 

number of probabilistic travel time outcomes associated with it. It is with this idea in 

mind that the travel time distribution can be introduced; a concept that is statistical in 

nature. When referring to reliability in statistical terms, it is more appropriate to refer to 

travel time variation. In the work that follows, the terms reliability, travel time risk, and 

travel time variation are used as appropriate to the discussion taking place. 

1.0.3 The Standard Approaches to Reliability 

The characterisation of the reliability of a transport trip as related to a statistical 

distribution is an attractive concept. It is this idea, first developed in relation to risk on 

financial investments (Markowitz, 1952), which has prompted a measure of the width of 

a distribution to be used as an indicator of risk. Jackson and Jucker (1982) are attributed 

with the introduction of this concept into transport contexts. The standard deviation, as 

the most common measure of dispersion, has become the predominant measure of travel 

time variation. The standard deviation is often used to characterise reliability on a 

transport trip or link, as well as to estimate a VOR. In the latter context, it is typical to 

describe a traveller’s expected utility of a trip as a function of both travel time and the 

standard deviation of travel time. This framework is commonly known as the Mean-

Variance (MV) approach and has been applied extensively in estimating the VOR. The 

MV approach will form the basis of what is to follow in this thesis and will be explored 

in depth in the literature review chapter. Subsequently, MV parameters and variables are 

estimated using established modelling techniques, and an investigation into alternative 

risk measures will be conducted.  

The key alternative method for approaching reliability is commonly referred to as 

the Scheduling approach (Small, 1982; Noland and Small, 1995). It recognises that the 

key consequence of travel time risk is a probability of the traveller arriving early or late 

at their destination, both of which will negatively affect the utility of the traveller. As 

such, the traveller will often build extra time into their trip, known as the headstart, in 

order to minimise this impact (Gaver, 1968). The Scheduling approach should not be 

confused with public transport schedules and timetables. Therefore the approach is 

capitalised throughout this thesis to indicate this distinction. 
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The final key framework for the treatment of reliability is Mean-Lateness, which is 

related to the Scheduling approach insofar as it takes account of average lateness at the 

destination of a trip. It is primarily applied within the UK rail industry, and therefore the 

lateness is measured in relation to the set timetable. 

1.0.4 Quantification of the ‘Value of Reliability’ 

The accurate quantification of the VOR has been a primary objective of research 

utilising the above frameworks. There have been efforts to agree a standard valuation of 

reliability among experts (e.g. de Jong et al, 2009), but nevertheless ambiguity remains. 

Meta-analyses in the field (such as that of Carrion and Levinson, 2012; Wardman and 

Batley, 2014) demonstrate that a broad range of estimates exist within the academic 

literature. The value of reliability will vary depending on various features of the journey 

and traveller, including demographics, mode, and the design of the survey itself (Li et 

al, 2010). The cost of conducting a Stated Preference (SP) survey for the estimation of a 

VOR means that it is commonplace for a previously estimated VOR to be transferred to 

a new context. It is reasonable to question the appropriateness of this practice when the 

potential exists for the VOR to vary widely for the reasons given above. Such practical 

issues can make applications of the VOR difficult. New and emerging data sources 

based upon automated systems offer the potential to: 

• overcome the practical problem of cost in surveying travellers;  

• provide a value of reliability suitable to the temporal and geographic context 

of the application 

• reveal real-world behaviour. 

1.0.5 New Data Sources 

One of the key innovations in transportation in the recent past has been the 

introduction of information technology. Transport authorities, operators and consumers 

have increasingly adopted such systems into their routine operations or behaviour. 

Examples of these systems include:  

• Automatic number plate recognition, as used by operators of cordon 

congestion charging zones to monitor those drivers entering and making trips 



 
 
 

5 
 

within an area where a charge is levied. These systems are able to detect 

number plates via roadside cameras and check vehicles against payment 

records; 

• Smart Motorways, utilising traffic cameras and sensors to manage traffic 

flows on the UK’s strategic road network; 

• Fleet tracking systems for use by hauliers to more efficiently manage their 

operations. Such systems rely upon a global positioning system (GPS) in 

each vehicle of the fleet. The position of the vehicle is communicated back 

to a central system, allowing the fleet to be monitored, co-ordinated and 

directed centrally.   

Whilst such systems have an immediate benefit to the individuals or organisations 

that use them, they will also generate large amounts of data. Many developers of such 

systems have recognised the value of such data and have made use of it themselves to 

improve their products or provided it to partners. For example, in the case of Smart 

Motorways, the UK’s Highways Agency processes this data to provide travel 

information to media outlets. In another example, the logistics operator DHL utilises 

traffic condition data provided by satellite navigation systems on board other road 

vehicles in order to calculate optimal routing for its own fleet (POST, 2014).  

Similar systems have also emerged within public transportation contexts. Automatic 

payment collection (APC) systems are increasingly common on urban public transport 

networks (Pelletier, 2011). Such systems usually require a passenger to possess a card 

capable of holding account data. The card is scanned into the transport system at the 

beginning of the trip and, where a distance based fare is levied, at the end of the trip 

also. Contactless or swipe technology is commonly utilised, such that the card is 

capable of communicating with the fare collection system with minimal delay to the 

passenger (Blythe, 2004). Cards used in this way are known as smartcards, which is a 

concept and term that will be employed throughout this thesis. These cards are widely 

used where offered, due to the benefit to passengers of reduced cognitive burden (being 

released from the calculation of their fare for the trip), lessening the need to carry 

money and reducing the time taken to pay for their trip. The technology also reduces the 

burden on the public transport operator or authority by simplifying their cash handling 
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procedures. A subsidiary benefit of smartcards is that they generate large volumes of 

data related to passenger behaviour, choices and experience: TfL figures would suggest 

21.6M passenger trips are tracked on an average day. Research efforts have previously 

been made to assist practitioners in making use of this resource, and the present study 

will contribute to this field by utilising public transport smartcard data in the 

investigation of reliability. 

1.0.6 Smartcard Analysis in Public Transportation 

Smartcard data has formed the basis of a small body of research. After obtaining 

the datasets, a key task for researchers is to understand how to practically analyse them. 

It is also necessary to appreciate that the data outputs are a by-product of some other 

process; the data may not always contain the level of accuracy required for the research 

application at hand. A detailed data description is vital to understanding the possibilities 

and limitations of such datasets.  

Previous applications of smartcard data will be covered in Chapter 3 of this thesis. 

There are useful examples of methods with which to enrich the data such as linking trips 

into chains. Most of the analyses of smartcards have been with a view to obtain 

information on system performance or demand levels separately, but there is little 

interaction between the two. In the work that follows, use of the smartcard data will be 

demonstrated that progresses beyond basic analysis. This will be done by exploring the 

dataset’s suitability as an input for the estimation of linear regression and discrete 

choice models, in combination with aforementioned MV reliability framework.  

1.1 Motivation 

This study is motivated by an acknowledgment that reliability remains a relatively 

peripheral aspect of the appraisal process in comparison to travel time savings, despite 

some pre-existing studies suggesting that the VOR (the ratio of the marginal utility of 

standard deviation of travel time to the marginal utility of cost) is in excess of the value 

of travel time (VOT) (Senna, 1994; Liu et al, 2004). The reasons for the less 

comprehensive treatment of reliability in transport planning are unclear, and therefore 

this study begins by outlining and critiquing the current state of the art in the field. The 

literature review will demonstrate an appreciation of the theoretical foundations of 
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reliability. This discussion will be developed to the key empirical studies related to the 

VOR and consideration given to whether improvements to the predominant methods 

used to estimate this value will improve the acceptability of reliability in appraisal.  

This introduction has already described how new technologies have improved travel 

for a range of stakeholders, and identified smartcard technology as a useful and under-

researched area. It is the intention that this thesis, when taken as a whole, will provide 

an improved understanding of MV whilst also demonstrating how new data sources can 

be applied innovatively to provide evidence on the subject. 

1.1.1 Policy Context 

In this section it will be shown that this research is timely from a policy 

perspective. The idea that reliability may have value at least as great as VOT is one that 

is capturing the attention of practitioners and policy makers, and research activity in this 

area has increased as a result. The policy focus of this thesis will be the UK, where the 

research is based and funded, but it is also noted that the UK (along with the likes of the 

Netherlands) has been at the forefront of relevant policy developments.  

The Eddington Transport Study (2006) was instrumental in introducing reliability 

to the mainstream transport policy debate in the UK by identifying reliability as a key 

challenge and opportunity for the UK’s transport system. It highlighted a requirement to 

improve the performance of the current transport network by making the 

recommendation that “Government action needs to focus on tackling congestion, 

capacity constraints, and unreliability on existing networks” (Eddington, 2006, p.58).  

The summary report makes several points with regards to transportation reliability, that: 

• Reliability is valued by users as a key characteristic of the transport system;  

• Overall predicted benefits of a project could increase by up to 50 percent in 

some cases if new evidence concerning the importance of reliability were to be 

included in the appraisal of transport schemes; 

• The importance of reliability is growing, particularly owing to opportunities 

presented by new technology. 



 
 
 

8 
 

Of particular interest to the present thesis is this final point. Although the Eddington 

Study is not specific on the nature of the opportunities provided by new technology, the 

innovative use of smartcard data to improve our understanding of reliability would be 

consistent with this idea. 

 

Since Eddington in 2006, the UK’s Department for Transport has also published 

‘Supporting economic growth in a low carbon world’ (2007), which reinforced the 

conclusions of the former regarding reliability: that a reduction in congestion would 

bring benefits to both business and the environment. Consequently, an emphasis on 

reliability has become a feature of policy for local and passenger transport authorities 

and is recognised in many of the UK’s local transport plans. 

 

In the Netherlands, the idea of the ‘door-to door’ trip has become a key part of 

transport policy (Ministry of Transport, Public Works and Water Management, 2004)1. 

One aim of this policy was to increase the reliability of the entire chain. Accordingly, by 

2020, 95% of road based trips will be required to end on-time, and the reliability of the 

rail network will be similarly enhanced. There was also specific direction provided to 

local authorities that any change to planning policy that will affect reliability was 

required be consulted upon with national road and rail authorities.    

   

TfL, a co-sponsor of this thesis, is the authority responsible for the majority of the 

transport system in the UK's capital city and is accountable to (among others) the 

elected Mayor of London. In the previous Mayor’s Transport Strategy2, one of six goals 

was to “support economic development and population growth”, under which is the 

outcome of “improving public transport reliability” (Greater London Authority, 2010). 

It is within this policy context that TfL are seeking to improve their knowledge of 

reliability on their own transport systems by working with institutions such as the 

University of Leeds. 

1.2 Aims and Objectives 

                                                      
1 The 2004 document is referenced. An English translation of the later “Mobiliteitsaanpak (2008) 

‘Safely and smoothly from door to door” could not be accessed 
2 The Transport Strategy of the present Mayor has not been published at the time of writing. 
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This introductory chapter has suggested that there is some improvement needed to 

the research on reliability for it to be fully integrated into appraisal in the same way that 

travel time is at present. The literature review will identify gaps in past research which 

this thesis will address. Also discussed were the opportunities afforded to this field by 

the advent of IT-based technology in transportation and the new datasets that these 

systems generate. The partner organisation to this project, TfL, have agreed to provide 

smartcard datasets to assist in this study. The aims of the thesis are therefore:        

A1. To develop understanding of public transport smartcard data and identify key 

strengths and limitations through application of the data; 

A2. To apply smartcard datasets to the Mean-Variance framework to improve 

understanding of reliability and passenger responses to it;  

A3. To conduct a comprehensive review of the Mean-Variance framework and 

investigate possible improvements. 

  

These aims will be achieved through the objectives  set out in Table 1.1.
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Table 1.1 - Full list of objectives to be met in this thesis 

Objective Meeting 

Aim: 

Description Addressed in: 

O1 A1 To apply smartcard 

datasets to a number of real 

world situations, drawing and 

developing upon existing 

studies. 

      Chapter 3 – 

Datasets 

Chapter 4 – The 

factors affecting 

reliability 

Chapter 5 – 

Development of an 

RP methodology for 

estimating a VOR 

Chapter 6 – 

Utility functions 

O2 A1 To provide a critique of the 

smartcard data available (and 

smartcard data more broadly) 

Chapter 3 - 

Datasets 

Chapter 4 – The 

factors affecting 

reliability 

Chapter 5 – 

Development of an 

RP methodology for 

estimating a VOR 

Chapter 7 - 

Conclusion 
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O3 A2 To develop the means for 

improving understanding of 

the factors affecting transport 

reliability using smartcard data 

Chapter 3 - 

Datasets 

Chapter 4 – The 

factors affecting 

reliability 

O4 A2 To develop a methodology 

for estimating a VOR using 

smartcard data 

Chapter 2 - 

Literature Review 

Chapter 3 - 

Datasets 

Chapter 5 – 

Development of an 

RP methodology for 

estimating a VOR 

O5 A3 To review the origins of 

the Mean-Variance framework 

from its origins in finance to its 

transition and use in transport 

contexts. 

Chapter 2 – 

Literature review 

 

O6 A3 To explore improvements 

to the standard Mean-Variance 

framework, including other 

statistical indicators of risk, the 

shape of the utility function 

and potential alternative 

frameworks. 

Chapter 2 -  

Literature review 

Chapter 3 – 

Datasets 

Chapter 6 – 

Utility functions 
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It is these aims and objectives that will motivate the work that is to follow in the 

remaining chapters of this thesis. The relevant objectives will be highlighted at the end 

of each chapter. 

1.3 Novelty and Original Contribution 

The primary contribution of this thesis will be toward the literature on reliability; 

specifically Mean-Variance. This thesis will also make use of smartcard data in new 

contexts and demonstrate additional capabilities of such data. 

The literature review on reliability in Chapter 2 will extend beyond transportation to 

include research that has dealt with risk in alternative circumstances; namely portfolio 

theory in finance. Although this link has been established and made reference to in the 

transportation literature (e.g. Carrion and Levinson, 2012), there has been little work in 

which the transition has been fully explored. This thesis will critique the early work of 

portfolio theory with respect to its eventual application in transportation. Chapter 2 will 

also consider the critiques and developments of portfolio theory in finance with a view 

to cross-fertilising developments to Mean-Variance in transportation. This full 

consideration of the link between risk in finance and transportation is an original 

contribution to the literature on the subject.  

There will be a significant amount of analysis conducted using the public transport 

smartcard dataset in this thesis, which represents the study’s most substantive 

contribution to the literature. A key element of this will be to develop a revealed 

preference (RP) method for estimating the VOR using smartcard data. The majority of 

estimates of the VOR are from SP sources; asking respondents to indicate a choice 

between two or more scenarios with varying levels of reliability and monetary cost and 

estimating a discrete choice model based upon the responses. Building on previous 

reviews of presentational issues related to SP and reliability, an alternative RP approach 

will be developed in this thesis. Drawing upon a full data description of the smartcard 

data available that takes place in Chapter 3, the process of applying such datasets for 

estimating a VOR will be outlined in Chapter 5. This not only represents a contribution 

to the limited literature on RP estimates of the VOR, but also demonstrates a 

methodology for similar applications of smartcard data. It represents a unique 
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application of smartcard data in the context of established choice modelling techniques. 

Chapter 4 will develop some initial work by other authors that has attempted to estimate 

regression models to identify the factors driving reliability levels. The corresponding 

analysis presented in this thesis will incorporate additional data (and explanatory 

variables) over what has come before. The thesis will also use smartcard data to conduct 

analysis on alternative risk measures. This is a novel application of smartcard data, and 

will be further developed in Chapter 6 by using the RP method developed in Chapter 5.   

1.4 Thesis Outline 

Moreover, the thesis is organised as follows: 

Chapter 2 consists of a literature review. This section provides justification for the 

aims and objectives outlined in Section 1.2 of the present chapter. The review includes 

sections on expected utility theory, empirical value of reliability studies and provides a 

critique of the research both in terms of methods and outcomes. A key element of the 

chapter is to compare SP and RP methods and thereby develop the argument for 

undertaking further RP analysis in Chapter 5.  

The first section of Chapter 3 is primarily descriptive in nature and gives a fuller 

account of the datasets available to the study. This is focussed on public transport 

smartcard datasets. The second section is based upon initial analysis and identifies 

potential issues with using these data. The third section builds upon the initial analysis 

by using the smartcard data to compare candidate MV reliability indicators and identify 

those suitable for further analysis in Chapter 6.  

Chapter 4 makes use of the key smartcard datasets to calculate a range of 

explanatory variables that may be related to reliability levels. These are used to estimate 

a linear regression model explaining changes in reliability levels. Another use of these 

models would be to predict the standard deviation of travel time. The extent to which 

the models developed are capable of this is reflected upon.    

Chapter 5 exploits the smartcard datasets as an RP data source. It is shown how 

MV parameters can be estimated based on these data. Two choice model specifications 
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are introduced and estimated using the data. The model results are presented and 

discussed both in relation to the VORs obtained and the data used.  

Chapter 6 builds upon the analysis conducted in Chapter 3 to identify alternative 

indicators of travel time risk. It does so by applying the methodology developed in 

Chapter 5 to each of the indicators in turn. A discussion also takes place regarding the 

shape of the utility function implied by alternative indicators to the standard deviation. 

This leads to the final element of the study: a comparison of the shape of the MV and 

Scheduling utility functions and whether they imply the same behaviour on the part of 

the traveller. 

In Chapter 7 an overview of the work undertaken is given and the potential impacts 

of the thesis upon the fields of smartcard research and transportation reliability are 

evaluated. The thesis is further evaluated against its limitations, as well as the stated 

aims and objectives of the research, and possibilities for future research are discussed.
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Chapter 2 - Literature Review 

2.0 Introduction  

This literature review chapter builds upon the introduction provided in Chapter 1. In 

Chapter 1, reliability was introduced as an active research area, one where unresolved 

questions remain. Chapter 1 outlined the aims and objectives for this thesis in the light 

of a general discussion of the field. In the present chapter, these aims and objectives will 

be justified through a detailed review of the research that has already been conducted. 

This chapter will also provide an initiation to the main underpinnings and active areas 

of research which will be referred to in the subsequent five chapters of the thesis. 

Although the smartcard data that was introduced in Chapter 1 will form the basis of the 

analysis that is to come, the literature review is focussed on estimating the value of 

reliability. Particular emphasis is placed upon research that focuses on public transport 

where available.  

The first substantive section of this chapter is introductory and will concentrate on 

the microeconomic framework underpinning much of the reliability research; expected 

utility theory (EUT). The origins of this area will be outlined, and the description will 

then move onto its application in transportation. The background related to risk attitudes 

of travellers will be of particular interest for the work that is to follow. Some research 

has recognised issues with EUT, and these will be identified and commented upon. 

However, it is EUT that will be the framework that underpins the substantive analysis in 

later chapters. 

Against this background, the Mean-Variance (MV) approach will be introduced in 

detail. MV is the focus of the work that follows and therefore this section will form a 

key part of the present chapter. This section will be chronological in nature by tracing 

MV back to its origins in the field of finance and portfolio theory (Markowitz, 1952; 

1959). Some additional research by those in the field of finance will also be introduced, 

before MV’s transition into transportation contexts (by Jackson and Jucker, 1982) is 

outlined and critiqued. This section will conclude with an investigation into further 

developments to the theory of MV made by researchers in the field of transportation 
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studies. This will particularly focus upon alternative statistical indicators to represent 

reliability which is a theme developed in later chapters.  

Prior to a review of empirical evidence on the valuation of reliability, alternative 

approaches to MV are outlined. These include the aforementioned Mean-Lateness and 

Scheduling approaches. The Mean-Lateness approach is of interest as it is well 

developed and utilised within the UK rail industry. The Scheduling approach too has 

been developed within transportation research. The development of these frameworks 

will be briefly narrated and critiqued. The final part of the frameworks section will 

explore the theoretical work which has established equivalence between MV and the 

Scheduling approaches 

With the microeconomic underpinning of transportation reliability outlined, and the 

three primary frameworks for its valuation introduced, the chapter will then provide an 

overview of the empirical evidence on the value of reliability (VOR) that has been 

generated through application of these frameworks. The initial focus of this discussion 

will be Stated Preference (SP) survey methodologies. This will be progressed through 

review of SP evidence and discussion of the issues related to this approach. The 

alternative method of data collection to value reliability is Revealed Preference (RP). 

Again, review of methodological issues will form the first part of the RP section 

followed by valuation evidence. The valuations obtained from both SP and RP will be 

summarised and compared, reporting these as Reliability Ratios where possible.  

The final substantive element of the literature review will return to the subject of 

equivalence between MV and Scheduling frameworks and examine the research that has 

attempted to establish this link in real-world situations. 

Based upon the above, the remainder of this chapter therefore takes the following 

form: Expected Utility Theory is outlined in Section 2.1; the introduction, 

contextualisation and critiques of MV are provided in Section 2.2. In Section 2.3 the 

alternative Mean-Lateness and Scheduling frameworks for the valuation of reliability 

are formally introduced as well as the idea that MV is theoretically equivalent to the 

Scheduling framework. Section 2.4 focusses on the empirical issues and outcomes 

relating to these frameworks; initially focussing on SP and progressing on to RP, with a 
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comparison of the evidence obtained using each method. The section ends with a review 

of empirical evidence related to equivalence between MV and Scheduling. Arising from 

the literature review, the original aims and objectives will be contextualised in the 

concluding section of the chapter. 

2.1 Expected Utility Theory  

Expected utility theory (EUT) is the microeconomic framework upon which most of 

the transport reliability literature is based and will be the underpinning of the research 

conducted in this thesis. Broadly speaking, it is the theory that a traveller will maximise 

their expected utility when faced with travel time risk. It will be useful to unpack this 

statement in greater detail.  

The term ‘risk’ can be defined as a situation where the full range of possible travel 

times is known to the traveller, and furthermore the probability of each of these travel 

times occurring is also known. This is in contrast to the term ‘uncertainty’ where the 

probability is unknown to the agent (Knight, 1921). In the case of a discrete distribution 

of travel times, the traveller will under EUT attempt to maximise the function: 

𝐸𝑈 = ∑ 𝑃(𝑡𝑘) ∙  𝑈(𝑡𝑘)

𝐾

𝑘=1

 

(2.1) 

   Where EU is the expected utility, t is the travel time and k is an indexation of each of 

the (discrete) possible travel times so that 𝑃 (𝑡𝑘) is the probability of travel time k 

occurring. 𝑈(𝑡𝑘) is the utility resulting from 𝑡𝑘. The summation over all k in Equation 

2.1 therefore results in the expected utility. It could be argued that 𝑡𝑘, representing time, 

would be a continuous variable, therefore requiring an integration of its associated 

probability distribution; however its treatment as discrete is sufficient for the work that 

follows. 

It is important to understand the intuition behind the concept of expected utility, EU. 

This can be explained with reference to the St Petersburg paradox and the work of 

Bernoulli (19543). The paradox is based upon a game where a fair coin toss takes place 

and a prize of two pounds is received by the player if ‘heads’ results. If ‘tails’ results, 

                                                      
3 A reprint of the work which was originally published in 1738 



 
 
 

18 

 

the coin is flipped again and the prize is doubled to four pounds if ‘heads’ is the result. 

The prize is doubled every time ‘tails’ is flipped but ends when ‘heads’ results. If the 

number of coin tosses is denoted by n, the expected value of the game is: 

𝐸(£) =
1

2
∙ 2 +

1

4
∙ 4 +

1

8
∙ 8 + ⋯ +

1

2𝑛 ∙ 2𝑛
 

 

(2.2) 

As n can in theory be infinitely large, the expected outcome is infinite and 

individuals should be willing to pay a large sum of money to take part in this game, yet 

this is not the case in reality. Bernoulli suggested that individuals do not maximise the 

expected value of the risky choice, but rather its expected utility. It was further proposed 

that the relationship between expected payoff and utility would be non-linear, reflecting 

a diminishing marginal utility of wealth and risk aversion. Arrow (1974) succinctly 

defines a risk averse individual as: 

“one who, starting from a position of certainty, is unwilling to take a bet which is 

actuarially fair” (Arrow, 1974, p.90). 

Von Neumann and Morgenstern (vNM) (1947) formalised EUT in the development 

of game theory, the key result of which was four axioms of preference that are 

necessary for EU maximising behaviour. The first of these axioms is that of 

completeness where an individual has well defined preferences and is able to choose 

between outcomes. This condition therefore implies ‘risk’ as opposed to ‘uncertainty’ – 

risk being the circumstance where the probability of each of the outcomes is known in 

advance as opposed to uncertainty where these are not known. If these outcomes are 

defined as 𝑡1 and 𝑡2, representing two travel times for example, then: 

𝑡1 ≳ 𝑡2   or   𝑡2 ≳ 𝑡1 (2.3) 

Where ≳ means ‘is at least preferred as’. The two conditions in Equation 2.3 do not 

preclude the two travel times being equally preferred. The second vNM condition is 

transitivity, which is essentially consistency of preference ordering over prospects: 

If 𝑡1 ≳ 𝑡2   and   𝑡2 ≳ 𝑡3 then it is implied that 𝑡1 ≳ 𝑡3 (2.4) 
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The third axiom of EUT as proposed by vNM is continuity, which is probabilistic in 

nature. If 𝑡1 ≳ 𝑡2 ≳ 𝑡3, then there exists some probabilistic combination of 𝑡1 and 𝑡3 

such that an agent would be indifferent between that combination and 𝑡2 alone. 

The fourth axiom is that of independence; where the preference ordering between two 

alternatives is maintained when each is separately combined with a third independent 

alternative with the same probability value, p. That is:  

 If 𝑡1 ≳ 𝑡2, then 𝑝(𝑡1) + (1 − 𝑝)(𝑡3) ≳ 𝑝(𝑡2) + (1 − 𝑝)(𝑡3) (2.5) 

Further detail on these axioms beyond vNM (1947) can be found in Savage (1954) 

and Fishburn (1970). 

EUT also yields insights concerning an agent’s attitude towards risk. Bernoulli 

(1954) recognised that the marginal utility of wealth decreases as wealth increases: that 

an extra unit of wealth is less valuable to a person with high wealth as compared with 

low wealth. Therefore Bernoulli suggested that the relationship between wealth and 

utility of wealth was concave. A concave utility function was shown separately by 

Arrow (1970) and Pratt (1964) to be indicative of aversion to risk. This is demonstrated 

in Figure 2.1 for a risky prospect of two wealth levels, w1 and w2. This situation shown 

is analogous to a fair coin toss with ‘heads’ resulting in 𝑤1 and a ‘tails’ 𝑤2, so that 

𝑝(𝑤1) = 𝑝(𝑤2). 
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Figure 2.1 - Illustration of a concave (risk averse) utility function and featuring a single 

risky prospect with two outcomes of equal probability 

Figure 2.1 shows a concave relationship between wealth and the utility of wealth. A 

prospect is defined as a gamble where each outcome of wealth is associated with a 

probability (w1, p1; … ; wk, pk) and ∑ 𝑝𝑘=1. Therefore in the example above, only two 

values of wealth are shown, given that there are only two outcomes. If the player loses 

the coin toss their resulting wealth is 𝑤1; a win takes their wealth to the point 𝑤2. As the 

coin is fair, the expected wealth 𝐸(𝑤) resulting from the bet is the halfway point 𝑤1 and 

𝑤2. The curvature of the utility function results in the expected utility of W being lower 

than the utility of the expectation of W. Of interest to this thesis (particularly Chapter 6) 

is the value 𝑤𝑐, the so-called ‘certainty equivalent’, which is at a lower level of wealth 

than 𝐸(𝑤). The difference given by 𝐸(𝑤) − 𝑤𝑐 is referred to as the ‘risk premium’ and 

represents the amount the player might be willing to pay to avoid the situation involving 

risk. The concave utility function has been translated into transportation contexts so that 

wealth is replaced by travel time (Polak, 1987a). This is shown in Figure 2.2. 
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Figure 2.2 - Illustration of a concave (risk averse) utility function and two risky travel 

time outcomes with equal probability 

Figure 2.2 is in the negative domain of utility as travel time is most often seen as a 

‘bad’ by travellers. Only two travel time outcomes are shown, 𝑡1 and 𝑡2, where 𝑡1  is a 

short travel time and 𝑡2 is longer. In this example the probability of each occurring is 

assumed to be 0.5 (analogous to the coin toss), and furthermore the departure time is 

assumed to be fixed. It should be noted that in travel time contexts there will often be 

more than two outcomes.  

In Figure 2.2 the utility of the expectation of t remains greater than the expected 

utility of t. Unlike in the example of wealth, the value of the certainty equivalent 𝑡𝑐 is in 

excess of 𝐸(𝑡) on the x axis. This difference between 𝑡𝑐 and 𝐸(𝑡) is the willingness of a 

traveller to pay in units of travel time, t, to avoid risk in travel time (Batley, 2007). In 

both examples, if the utility function were linear this would imply a neutral attitude 

towards risk, and convex curvature would imply risk seeking behaviour where the agent 

would be willing to pay something (in money or time) in order to participate in the 

gamble. 

Despite the apparent flexibility of this approach, it will be worthwhile to note some 

negative aspects of EUT that have been raised in the literature. Deaton and Muellbauer 

(1980) questioned whether an approach based upon expected values and expected utility 

is reasonable given that in many cases the risky situation will be only encountered once 

by the agent, and therefore expected values are not of utmost importance to them – 
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rather it is the actual outcome on a given occasion. A second concern raised by these 

authors is more fundamental: whether probabilities can be attached to many events in 

reality? To illustrate this point the authors contrasted a game of chance, where 

probabilities can be defined, to a question such as whether there will be a man on the 

planet Mars by a given year, where the probability associated with this question is 

unknowable. A further question is to what extent individuals are able to correctly assign 

probabilities to events? The example given by Haber and Runyon (1973) is of 30 

individuals in a room who are asked to bet on the event that two or more have the same 

birthday. The actual probability of this event is 70%, although it is unlikely that this 

result would be readily accepted by the participants.  

There are also concerns raised in the literature about the nature of the utility function, 

particularly the common assumption of a form similar to that shown in Figure 2.1. 

Friedmann and Savage (1948) suggested that the utility function would not be 

completely convex or concave, with agents exhibiting different attitudes to risk at 

different levels of wealth. This is an idea that will be returned to in Chapter 6 of this 

thesis. That agents might have multiple attitudes toward risk is a key part of ‘Prospect 

Theory’ (Kahneman and Tversky, 1979). This prominent work was based upon finding 

that the axioms of EUT are often violated in reality (Allais, 1953).  

One criticism of this example in Figure 2.2 might be that two arrival time outcomes 

are unlikely in the context of travel time as time is a continuous variable. Batley (2007) 

justifies the use of a two outcome prospect in the context of travel times:  

• von Neumann and Morgenstern’s axioms of expected utility refer entirely to 

the properties of two outcomes 

• Two choice options are commonly utilised in SP choice studies within the 

transportation field 

Many have concluded that EUT is a sufficient framework upon which to base further 

research, particularly in the field of transportation reliability (Bates et al, 2001). It is 

EUT that underpins MV, the primary framework for the valuation of reliability in 

transport contexts and the focus of the next section. 
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2.2 Mean-Variance: Background and Development 

Mean-Variance (MV) represents the primary approach in transportation for the 

valuation of reliability. However MV traces its foundation to the field of finance under 

the heading of portfolio theory. Portfolio theory has proved to be attractive to the field 

of transport in that it deals with choices made under risk. Originally formulated by 

Markowitz, with supporting contributions from eminent economists such as Marschak, 

Keynes and Tobin, the MV approach is well established in finance. Broadly speaking, 

its treatment of risk is analogous to reliability in transportation applications. 

Researchers in the field of transport have tended to attribute this link to Jackson and 

Jucker’s (1982) empirical exposition of MV in a transportation context. 

This section provides an initiation into MV for researchers in the field of transport. 

It will begin by providing an outline of the early development of Portfolio Theory. This 

will then be contrasted with the motivations and applications of the MV approach to 

reliability in the field of transportation – notably the work of Jackson and Jucker (1982) 

and Senna (1994). The reader will be made aware of inconsistencies between the two 

fields, which opens the way for an examination of possible alternative measures of risk 

in Chapters 3 and 6. The section is drawn to a close with a concluding discussion of the 

applicability of MV to transportation reliability in advance of the empirical work to 

come. 

2.2.1 Portfolio Theory: Early Development 

To understand the early development of portfolio theory it is useful to discuss the 

key questions behind the work of Markowitz and others in the field of finance. In 

understanding this motivation, it is hoped that the applicability of MV to transport 

reliability will become more apparent.  

The reader versed in the transport literature would be forgiven for thinking that risk 

was central to the development of MV in finance: with MV providing an answer to the 

question “how do investors respond to risk?”. In fact, Markowitz (1952, 1959) and 

others were more interested in explaining how investors allocated wealth within 

financial markets, in particular choosing between the holding of wealth as cash 

(assumed to be a riskless asset with no return), as an investment portfolio comprising a 
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number of securities, or a combination of the two. The problem can be formalised in an 

example of a single investor with initial wealth 𝐴0 and a set of L (discrete) investment 

opportunities denoted by {𝑙1, 𝑙2 … 𝑙𝑁} . 𝐴0 is apportioned to the members of L such that 

𝑎1 is the proportion of wealth invested in investment opportunity 𝑙1 and ∑ 𝑎𝑖 = 1𝑁
𝑖 . The 

expected payoff of each member of L is denoted by the set W = {𝑤1, 𝑤2, … , 𝑤𝑁}. 

Assuming an ordering of such payoffs  𝑤1 >  𝑤2 > ⋯ > 𝑤𝑁 and an investor focussed 

on only maximising the expected payoff, then 𝑎1 = 1 i.e. the initial wealth is invested 

entirely in the single fund or bond that has the highest payoff. However it was known 

from observation that investors did not invest their entire wealth in a single, high payoff 

fund; and consequently some other phenomena needed to be taken into account. 

Markowitz recognised that investors would maximise the expected outcome whilst 

minimising the risk involved in the portfolio. This is the key contribution that was later 

recognised in transport: there is a trade-off between the expected outcome and the risk 

associated with that outcome.  

Prior to the breakthrough of Markowitz (1952), research in this area was focussed 

on what is termed “liquidity preference”, notable examples include the work of Keynes 

(1936) exploring the phenomenon of agents holding their wealth as cash as opposed to 

investments; despite the inability of cash to generate returns on this capital. A feature of 

cash assets in this context was that it was assumed to be “riskless”, whereas investments 

in securities carried with them an element of risk. The early developments of the 

“liquidity preference” therefore sought to explain the allocation of wealth between risky 

and non-risky assets.  

Early work by Hicks (1935) recommended that a measure of dispersion was 

necessary for characterising the risk associated with investment, although this was not 

formalised until later. In his work it was suggested that agents would trade off between 

a preference for an increased expected payoff and decreased standard deviation of that 

payoff.  

Marschak (1938), in advance of the framework provided by von Neumann and 

Morgenstern (1947), developed the concept that agents have a probabilistic approach to 

risk – that future events had a range of outcomes and attached to each of these was a 
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known probability. To characterise this formulation of risk, a number of variables were 

introduced in the work, including the expected yield of an investment along with its 

standard deviation. Marschak also mentioned correlations between alternative 

investments as important, which is a key component of Markowitz’s Portfolio Theory, 

although did not develop further upon this idea. 

The correlation coefficient was crucial to the first major work of Markowitz (1952), 

who provided an exposition of MV as a means to explain observed behaviours in the 

selection of portfolios. The work initially addressed two issues; the first being the idea 

that investors seek to maximise returns only, and the logical outcome of this being their 

placing of all wealth in a single fund with the highest payoff. The second issue was 

crucial to the contribution of the 1952 work – that is, why investors will not simply 

spread their capital among many securities and rely on the law of large numbers to 

effectively hedge against risk. Ignoring transactional costs (as Markowitz did at this 

point), the answer to this question is covariance between securities – as is intuitively put 

in the 1952 work:  

“A portfolio with sixty different railway securities … would not be as well 

diversified as the same size portfolio with some railroad, some public utility, mining, 

…” (Markowitz, 1952, p.89).  

Markowitz found that investors could maximise the expected utility of their 

portfolio by taking into account the expected outcome and risk only. The expected 

outcome of the portfolio, defined as E, was given as: 

𝐸 = ∑ 𝑎𝑖𝜇𝑖

𝑛

𝑖=1

 
(2.6) 

Where 𝜇𝑖 is the mean return of security i. The variance of the return of such a portfolio 

was given by: 

𝑉 = ∑ ∑ 𝜎𝑖𝑗𝑎𝑖𝑎𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

(2.7) 
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Where 𝜎𝑖𝑗 is the covariance between securities i and j. In both cases, the maximisation 

would be subject to the allocation vector, a. 

This solution does not however imply the same portfolio would always be chosen 

given the same range of securities – this is determined by the preference parameters of η 

and ρ. Assuming a fixed trade-off, the investor would therefore maximise the following 

expected utility function:  

𝐸𝑈 = 𝜂𝐸 + 𝜌𝑉 (2.8) 

Where E is the mean return and V the variance of return. As agents would wish to 

maximise EU, Equation 2.8 illustrates that this will be a process of trading between the 

main return and risk associated with that return. Of relevance to the later discussion of 

MV and transportation, the variance is commonly replaced by the standard deviation 

(i.e. the square root of the variance). Markowitz was unconcerned by this change: 

“Of course, any relationship expressed in terms of variances can be translated into terms 

of standard deviation by substituting (standard deviation)2 for variance.” (Markowitz, 

1959, p.82) 

In a later chapter of the same work, he outlines justification for use of the standard 

deviation as a measure of risk: 

“… if an investor  

a) Maximises the expected value of some utility function, and 

b) His choice among portfolios depends only on their expected returns and standard 

deviations 

Then his utility function must be quadratic.” (Markowitz, 1959, p.288). 

Markowitz developed this argument to say that if the quadratic was sufficiently 

close to the investor’s true utility function, then a mean-standard deviation efficient 

portfolio would maximise their expected utility. This support for use of the standard 

deviation goes some way to justifying its common use in investment and transportation 

contexts. 
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Returning to Equation 2.8, Markowitz quite reasonably assumed that investment firms 

saw return as a positive and risk as a negative – i.e. >0, <0. Markowitz’s earlier 

paper on portfolio selection also introduced the concept of an efficient frontier of 

portfolios. As previously described, the investor was able to allocate starting capital 𝐴0 

across available securities. As 𝑎𝑁 was defined as a continuous variable, it should be 

clear that a large number of combinations of securities were possible, not all of which 

would be efficient – i.e. maximising expected payoff for a fixed level of risk or 

minimising risk for a fixed payoff. However, it was possible that a number of portfolios 

of securities may be equally efficient, in which case an “efficient frontier” was defined 

where portfolios were at least as good as one another. Portfolios on this frontier could 

be chosen according to the agent’s preferences related to payoff and risk. This frontier 

was presented graphically by Markowitz (1959) and is reproduced below (Figure 2.3). 

Each point represents a single portfolio. For any portfolio on the efficient frontier an 

increase in expected payoff results in an increase in the risk of the portfolio (here 

denoted by the standard deviation). Similarly if an agent wishes to decrease the risk 

associated with their portfolio then they must accept a reduced expected payoff.  

 

Figure 2.3 - Expected payoff and standard deviation combinations with an efficient 

frontier line (reproduced from Markowitz, 1959) 
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In this section the motivating question behind the establishment of portfolio theory 

has been outlined and the basic application in a finance context has been shown.  

2.2.2 Mean-Variance and Transportation Reliability 

In this section the link between MV in finance and transportation will be examined. 

The section will not seek to explicitly accept or reject the use of MV in transportation, 

but rather will provide commentary on the link between the two fields. The purpose of 

the work is to clarify the roots of MV in transportation – whether transportation 

researchers and practitioners can look back to 1952 and Markowitz, or should instead 

focus on more recent work in the field of transportation itself. Such a motivating 

question may appear trivial and one of historic interest, however the lack of theoretical 

work on the foundation of MV in the transportation field might imply a reliance on the 

eminent work of Markowitz, Tobin and Marschak to justify its existence. 

Firstly, it will be useful to answer “why has the use of MV come to be so readily 

accepted in transportation?” The first possible reason is an intuitive acceptance of the 

standard deviation as a proxy for risk. Markowitz (1959) deliberated on a number of 

measures of dispersion to fulfil this role, but in transportation it is commonly the 

standard deviation which is used. Secondly, it could be speculated that the theoretical 

foundations laid down by portfolio theory, drawing upon the celebrated work of von 

Neumann and Morgenstern, Markowitz, Tobin and others, have paved the way for ready 

acceptance of MV. 

Leaving such contentions aside, it makes sense to return to the motivation of the 

finance literature in developing portfolio theory. To recap, the motivation is not to 

explain risk-return on individual investments, but rather to explain diversification of 

investments and how to conduct this process efficiently given the existence of 

covariance between individual investments. As currently applied, there is no analogous 

motivation for MV in transportation (perhaps with the exception of work by Levinson 

and Zhu (2013)). It is clear that it is not straightforward for travellers to spread risk 

among a number of alternatives. If the case of a traveller making a multi-modal trip is 

considered, then it is difficult to imagine that this is done for reasons of spreading risk 

between modes – indeed travellers would often seek to minimise interchanges as they 
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seek to minimise risk on their trip (Noland and Polak, 2002). Another analogy of 

diversification in transport might be a car user employing a number of proximate 

arterial roads on their commute in order to ‘diversify’ their route and spread risk – their 

route in this context is the portfolio, with the constituent links analogous to securities. 

Such a comparison has not been investigated in the transport context however. In other 

words, it might be argued that the ‘portfolio’ part of portfolio theory is lacking from 

mainstream analysis in the transportation context. 

In the transport reliability literature, an explicit link has been made between 

portfolio theory in finance and MV in transport. Examples of this can be found in Senna 

(1994), Batley and Ibáñez (2012) and Carrion and Levinson (2012). However, many of 

the other prominent works in this field make no reference to the origins of MV in 

finance. Although it would seem that there is no consensus in the literature on this point, 

most authors in the field appear to cite the work of Jackson and Jucker (1982) as 

responsible for the initiation of MV into a transportation context. Jackson and Jucker 

themselves cited two resources in the course of introducing MV to transport: a working 

paper of Brastow and Jucker (1977), and a report by Abkowitz et al (1978). The former 

has attracted little attention due to lack of publication and consequent difficulty of 

access. The latter work of Abkowitz et al provided the first formal consideration of 

variance; focussing on public transport operations from both the point of view of 

operator and passenger. It should be noted that this report did not introduce MV per se, 

but rather considered all possible options for quantifying TTV. The recommendation of 

the report was that mean and standard deviation (through the coefficient of variation) 

should form the basis for measuring reliability. The standard deviation has been the 

most common measure of reliability in transportation, but this is unsurprising given 

Markowitz’s (1959) recommendation that it is:  

“easier to use, more familiar to many and perhaps easier to interpret” (Markowitz, 

1959, pp77).  

Markowitz also suggested that other measures may produce superior portfolios, and 

merely described the standard deviation as “satisfactory”. Nevertheless the decision to 

use the standard deviation as a measure of reliability in transport is not final and 
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alternatives have been investigated (e.g. van Lint et al, 2008). This area will be further 

expanded upon in Chapters three and six. 

Abkowitz et al (1978) also recognised the skewed nature of the travel time 

distribution and therefore recommended a third measure (to add to the mean and 

standard deviation) to identify the proportion of observations above 2.32 standard 

deviations from the mean. This acknowledged the impact of extreme lateness upon 

travellers. In accounting for three moments of the travel time distribution, this early 

proposal could be said to be an advance upon the two moment approach which has 

come to be the norm. However, it should be noted that the work of Abkowitz et al 

(1978) was an applied report written for practitioners involved in the provision of public 

transport. The work did not make reference to an underlying microeconomic framework 

but rather proposed a statistical method for monitoring reliability. It also remains 

unpublished in an academic context. It is for these reasons that credit for the 

introduction of MV in transportation has generally not been assigned to Abkowitz et al 

(1978), but rather to Jackson and Jucker.  

Examining the work by Jackson and Jucker (1982) in more detail, the model 

proposed for each traveller, i, is defined as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝐸(𝑇𝑃) + 𝜆𝑖𝑉(𝑇𝑃) (2.9) 

With 

𝐸(𝑇𝑃) as the expected travel time on path (route) p 

𝑉(𝑇𝑃) as the variance of the travel time on p 

𝜆𝑖 as a risk aversion coefficient (𝜆𝑖 > 0) 

For 𝑝 ∈ 𝑃 

Implied in Equation 2.9 is the assumption that expected travel time and variance of 

travel time are fixed for each route p, and the common assumption is made that it is 

known by all travellers (i.e. a risky situation as opposed to an uncertain one). Of most 

interest is the variance parameter λ which is free to vary between travellers. The model 
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therefore recognises the trade-off passengers would contemplate between mean and 

variance of travel time. The research used data from an SP questionnaire to calculate a 

sample distribution of λ, and found evidence of risk aversion. The authors concluded 

that their method of model calibration was reasonably reliable for predicting the trade-

off between time and reliability. They noted the difficulty of presenting the concept of 

reliability to travellers who in general do not think in purely statistical terms; this 

remains a live topic within the transport literature to the present day (and will be 

considered further in Section 2.4). 

Many studies have since referred to work of Jackson and Jucker (1982) in order to 

develop their own methodological or empirical approaches to reliability in the transport 

context. Key developments of MV from this initial work were made by Polak (1987a, 

1987b) and Senna (1994).  

Polak (1987a, 1987b) was the first to explore the theoretical side of MV in a 

transportation context; recognising the translation of the utility function from return on 

investment to travel time. Polak (1987a) therefore provided the foundation for much of 

the subsequent work in transportation. A further contribution of Polak was an attempt to 

bring the theoretical underpinning of MV in transportation up to date vis-à-vis the 

finance literature. This was primarily achieved through the consideration of polynomial 

and exponential forms of the utility function as an alternative to the quadratic (Polak, 

1987b; similar to the work of Tobin, 1958, among others). Nevertheless it is fair to say 

that these alternative specifications to the quadratic have largely remained unused. 

Senna (1994) recognised the restrictions of the MV approach already identified by the 

finance literature (Richter, 1960); specifically, for a utility maximising traveller one of 

the following must be true: 

1. The utility function must be quadratic 

2. The distribution of travel time must be Normal 

The proof that the variance and a quadratic shaped utility function are related was 

given in Markowitz (1959) and is reproduced here: 

The variance of a distribution can be expressed as a function of 𝑡 and 𝐸(𝑡): 
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𝜎2(𝑡) = 𝐸[(𝑡 − 𝐸(𝑡)]2 (2.10) 

Which expanded gives: 

𝜎2(𝑡) = 𝐸(𝑡2) −  2 · 𝐸[𝑡 · 𝐸(𝑡)] + 𝐸[𝐸(𝑡)]2 

 

(2.11) 

And simplifies to: 

𝜎2(𝑡) = 𝐸(𝑡2) − [𝐸(𝑡)]2 (2.12) 

It is now possible to substitute this equation for variance into the general quadratic 

form (𝑎𝑥2 + 𝑏𝑥 + 𝑐) to give: 

𝐸𝑈 = 𝑎 [𝜎2(𝑡) + [𝐸(𝑡)]2] + 𝑏𝐸(𝑡) + 𝑐 (2.13) 

The second restriction, of MV to a Normal distribution of returns on investment, was 

recognised as problematic in the finance literature because returns on investments were 

rarely Normally distributed (Samuelson, 1970; Tsiang, 1972). Nevertheless MV was 

largely accepted as a ‘sufficiently useful’ framework for the efficient diversification of 

investments. In transportation it is unusual to observe a Normal distribution of travel 

times; more common is a positive skew (Casello et al, 2010; Fosgerau and Karlström, 

2010; Rietveld et al, 2001).  

Senna (1994) raised the possibility of a risk prone traveller by suggesting that λ 

could take non-positive values – something explicitly rejected by Jackson and Jucker 

(1982). Senna’s key contribution was a more formal treatment of MV, where mean and 

standard deviation of travel time were treated within a microeconomic framework. This 

theoretical discussion of risk was demonstrated with standard two-outcome prospects to 

establish the existence of a certainty equivalent for risk-averse, risk-neutral and risk-

seeking travellers. Senna also drew upon earlier research in both transport and finance 

to briefly discuss the functional form of a traveller’s underlying utility function. Some 

discussion of the superficially attractive quadratic utility function was provided, 

primarily based upon the finance literature of the 1950s and 1960s. Had Senna’s 

literature review of this subject extended further, his work might have noted the 
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rejection of quadratic utility by some researchers within the finance literature (e.g. 

Tsiang, 1972). Senna also introduced the possibility of additional moments of the travel 

time distribution being more suited to a polynomial utility function. This insight 

supported the intuition behind the three parameter model of Abkowitz et al (1978).  

Beyond Senna (1994), development of the MV model in transportation has been 

limited. Much of the work since has instead focussed on empirical application of MV or 

its interaction with the Scheduling approach. One key development in relation to the 

applied literature has been the emergence of the Reliability Ratio (RR) (Black and 

Towriss, 1993). This was defined as the ratio of the marginal utility of travel time risk 

(in this case represented by the standard deviation of travel time) to the marginal utility 

of travel time. It can be defined as follows: 

𝑅𝑅 = 𝜌
𝜂⁄  (2.14) 

Where ρ is the marginal utility of standard deviation, assumed to be negative, and η 

is the marginal utility of travel time, also negative. 

Example values of the RR will be provided in Section 2.4 of the present chapter, and 

further estimation of the RR will be the focus of the empirical work that takes place in 

Chapter 5. 

2.3 Mean-Variance Indicators 

Markowitz (1959) expressed concern that the mean and variance were not the most 

appropriate measures to use in his framework. In this section the idea of alternative 

indicators, particularly for risk, will be introduced. Alternative statistics for travel time 

risk will be investigated using smartcard data in Chapter 3. 

 Markowitz initially addressed this point by considering the common alternative 

measures of central tendency to the mean; being the mode and median, in relation to 

both Normal and Lognormal distributions. Markowitz concluded that the mode was too 

sensitive a measure, whilst the opposite was true of the median, and although mean was 

carried through in the analysis, other measures might be more appropriate in some 

instances.  
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Markowitz also devoted significant attention to alternatives to the common measure 

of risk used; for example Chapter 9 of Markowitz (1959) was devoted to semi-variance 

(SV). Semi-variance in that context was described as the variance of values that fall 

below a certain target of investment return. In the context of travel time reliability it can 

be defined as: 

𝑆𝑉 =
1

𝑛
∑(𝜇 − 𝑡𝑖)

2
𝑛

𝑡𝑖>𝜇

 
(2.15) 

Where 𝑡𝑖  is the travel time for traveller I; 

𝜇 is the mean travel time; and, 

𝑡𝑖 > 𝜇 limits the calculation to cases where travel times are greater than the mean.  

Chapter 13 of Markowitz (1959) extended this work with four other possible 

measures of risk such as “expected value of loss” and the “maximum loss”, thereby 

continuing the theme of focussing on losses rather than gains as the main motivation of 

agents. In doing this, Markowitz was looking for the most appropriate measure of 

dispersion under the assumption of a concave utility function. Most measures of spread 

were demonstrated to result in a linear utility function in investment losses – suggesting 

a neutral risk attitude in losses which is intuitively unreasonable and contrary to 

Markowitz’s original assumptions. Markowitz also briefly considered the quadratic that 

reaches a maximum within the range of expected returns, thereby suggesting some 

unfeasibly large aversion to high payoffs beyond the maximum point.  

Markowitz showed that the semi-variance possessed appealing characteristics as a 

measure of risk. In that discussion, it was demonstrated that the implied utility function 

was linear in gains, and concave in losses (i.e. which would deviate from the properties 

of Figures 2.1 and 2.2 above). It was asserted by Markowitz that agents may be less risk 

averse in gains than losses and therefore linearity (or perhaps even convexity) in gains 

was not prohibitive. This proposition seemingly allows for a utility function that 

exhibits multiple risk attitudes, such as those proposed by Friedman and Savage (1948). 

Despite this insight, it is notable that the semi-variance is rarely used in MV in any 

context, whether finance or transportation.  
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What remains unclear from Markowitz (1959) is how measures of centrality and 

dispersion should be selected. The work of Jackson and Jucker (1982) considered a 

standard range of measures similar to Markowitz. They followed Markowitz in 

assuming the agent’s utility function was approximately quadratic and therefore their 

expected utility was a function of mean and variance of travel time. They also suggested 

that the use of variance would assist in the transport context due to its ability to be 

summed over road or public transport links to create a single value to represent risk on 

an entire route. What was clear from both the founding work in finance and 

transportation is that the measures of centrality and dispersion are not necessarily fixed.  

This debate on alternative indicators of dispersion is one that remains unresolved in 

the transportation context. Lam and Small (2001) and Small et al (2005) favour a 

percentile based indicator of reliability, as this has the ability to account for a skewed 

distribution, whilst also omitting extreme travel time observations that might be 

attributed to atypical travel behaviour. On the other hand, Hollander (2006) found that 

such a percentile indicator offered a poorer account of choice behaviour in his study. A 

literature has emerged which attempts to identify the most appropriate indicator of 

travel reliability (Bogers et al, 2007; Bogers et al, 2008; van Lint et al, 2008). Although 

such research has recognised the importance of skew in explaining traveller behaviour, 

no clear replacement to the standard deviation has emerged.  

2.2.4 Conclusion 

Section 2.2 has provided an outline of the key developments in the theory of MV 

from its origins in finance as a core aspect of portfolio theory, to present usage in the 

field of transportation. The crucial point of this development was Jackson and Jucker 

(1982), which was one of the first applications of MV in a transportation context. 

Section 2.2.1 was exclusively focussed upon MV in finance contexts, where a 

description of its original purpose identified the key element of MV relevant to the 

transportation context – namely the trade-off between expected return and risk. Section 

2.2.2 was focussed upon the work of Jackson and Jucker (1982) and how well the 

transition from finance to MV is explained by this work. It was shown that the re-

establishment of the link between MV in transportation and EUT can be attributed to 

Polak (1987a, 1987b) and Senna (1994). Section 2.2.3 contrasted MV in portfolio 
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theory and transportation, and raised questions on aspects of portfolio that have not 

been translated to transportation context, such as choice of statistical indicators.  

Unlike MV, the Scheduling and Mean-Lateness approaches to reliability originated 

in a transportation context. A commentary on the development of these approaches is 

provided in the next section. 

2.3 Alternative Reliability Frameworks 

2.3.1 The Scheduling Approach 

The Scheduling approach is the primary alternative to MV in the literature. A key 

feature of the approach is the assumption of a preferred arrival time (PAT) on the part 

of the traveller, such that arrival at the destination before or after this ideal arrival time 

incurs some disutility. The necessity of a PAT may reduce the generality of the 

approach in relation to MV, as there may be types of travel where a PAT is less well 

defined; for example, leisure trips. There have been attempts to account for flexibility in 

travellers’ schedules (e.g. Janelius, 2011), nevertheless the literature has tended to focus 

upon commuting trips with a fixed PAT. Such a case represents the situation where the 

commuter expected to begin work at a specific time. The Scheduling approach also 

differs from MV insofar as it explicitly treats departure time as the key method for 

travellers to deal with uncertainty in their travel times: a traveller chooses a departure 

time which maximises their EU subject to their dislike of arriving early or late. 

The first major contribution to the founding of the Scheduling approach was Gaver 

(1968). Gaver assumed a specific point in time at which the traveller would like to 

arrive at their destination, i.e. the PAT. Crucially, the work also recognised a different 

cost was associated with early and late arrival at a destination. This formally introduced 

a degree of asymmetry into the framework around a reference point (the PAT). Initially 

the assumption was made that the travel time distribution was known. Furthermore the 

marginal cost of early and late arrival were also known to the traveller. Based upon 

these conditions, Gaver showed it would be possible to predict the travellers’ optimal 

departure time; the value of departure time that minimised the total expected cost of 

earliness and lateness combined (or alternatively, maximised the EU). An assumption of 
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Gaver’s was that travellers’ primary behavioural response to travel time risk is to 

modify their departure time. However this has proven to be a foundation of much 

subsequent work in the field (e.g. Polak 1987a, Bates et al, 2001). It should be noted 

that Gaver also discussed route choice as an alternative behavioural response, but did 

not apply this in his modelling framework. Gaver formally derived the extra amount of 

travel time allowed in response to travel time risk, which was named the safety margin 

or headstart. A relationship between the safety margin, risk aversion and travel time 

variation was established. This contribution of Polak’s will be particularly useful when 

the subject of reliability equivalence is introduced in the last part of this section. 

Other early work in this area includes Vickrey (1969) which was seemingly 

developed independently of Gaver. Vickrey’s focus was upon areas of the highway 

network where demand exceeded supply; so-called bottlenecks. It was recognised that 

these bottlenecks would create queuing conditions which would therefore cause 

individuals to arrive after a desired time. The existence of a desired arrival time in 

Vickrey’s model essentially supported Gaver’s PAT. Vickrey’s model explicitly placed 

a value on remaining at home prior to embarking upon a trip, as well as different costs 

incurred by the traveller for early arrival and late arrival at their destination, with 

lateness incurring higher costs (this idea has more recently been re-examined by 

Fosgerau and Engelson, 2011). Vickrey’s model forms only a small section of the 

overall paper, the majority being an argument for tolls as a method for addressing 

congestion. Therefore it is left to later work to formalise this approach into the 

Scheduling framework, as it is known today.   

Knight (1974) perhaps owes more to Gaver than Vickrey. Knight’s work was an 

attempt to explain how improvements in reliability would be of benefit by reducing a 

traveller’s safety margin. It was effectively an attempt to formalise Gaver’s approach. A 

contribution that is rarely attributed to Knight is an acknowledgement of the shape of 

the utility function (with trip duration on the x-axis); this was the first acknowledgement 

in transportation that the curvature of the function that would indicate a traveller’s 

perception of risk. Knight is useful to the context of this thesis in that it takes into 

account public transport (PT) operations specifically: that the existence of a timetable 

and staffing issues on PT will result in the impact of unreliability being felt more 
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acutely than on private modes. Despite the initial focus on PT, Knight restricted use of 

this version of the Scheduling model to situations where departure times could be varied 

continuously. Furthermore, it was assumed that the commuter does not adjust this 

departure time, but rather accrues a greater safety margin as a result of improvement to 

reliability. This should be considered a regressive development from Gaver. In the latter 

sections of Knight (1974) it was concluded that the safety-margin based benefits of 

reliability could in some circumstances be greater for public transport uses than for the 

private car, but this fails to take into account Gaver (1968) (and much that has come 

since), who found that an optimal departure time would be unlikely to be achieved by 

public transport users.  

This apparent confusion and overlap between three of the key early works in the 

development of the Scheduling approach therefore required some clarification. The 

development of the Scheduling approach as it is used today is usually attributed to 

Small (1982). This work was primarily empirical in nature, but nevertheless focussed 

upon the Scheduling utility function. It was an attempt to explain the changing 

characteristics of peak demand which would be determined by departure time. Small’s 

work can be linked to earlier work by a reliance on the concept of the PAT and the 

optimisation of departure times. If the effect of demographic and other traveller 

characteristics were ignored, and travel time was fixed, the Scheduling model proposed 

and estimated by Small is: 

𝑈(𝑎𝑡) = 𝛽 ∙ 𝑆𝐷𝐸 + 𝛾 ∙ 𝑆𝐷𝐿 (2.16) 

Where 𝑈(𝑎𝑡) is the utility at arrival time at. SDE represented the duration of time prior 

to the PAT, and 𝑆𝐷𝐿 is the temporal duration after the PAT. The parameters 𝛽 and 𝛾 are 

the marginal utilities of SDE and SDL respectively. Equation 2.16 is represented in 

Figure 2.4. 
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Figure 2.4 - A Scheduling utility function based upon Small (1982) for a fixed travel 

time 

Moving from left to right on the x-axis, Figure 2.4 shows the amount of negative 

Scheduling utility (disutility) decreasing as the function approaches the PAT. At an 

arrival time equal to the PAT, no Scheduling disutility is incurred. The utility then 

decreases at a rate of γ for arrival times after the PAT. Evidence was provided by Small 

(1982) that travellers dislike lateness more than earliness: β > γ. Small also suggested a 

fixed penalty would exist for lateness, so that as soon as the traveller was late at their 

work destination, a further fixed amount of disutility was incurred. This is analogous to 

losing pay or reputation for late arrival at work. This lateness penalty, combined with 

the value of time, resulted in the common Scheduling approach as commonly found in 

the literature (Bates et al, 2001). 

𝑈(𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒) = 𝛼 ∙ 𝑡 + 𝛽 ∙ 𝑆𝐷𝐸 + 𝛾 ∙ 𝑆𝐷𝐿 + 𝜃𝐷𝐿 (2.17) 

Where α is the marginal utility of travel time, t the travel time, 𝐷𝐿 is a dummy 

variable for lateness, taking a value of ‘1’ if late and ‘0’ otherwise, and 𝜃 is the value of 

(dis)utility associated with the lateness dummy variable. All parameters are expected to 

be negative. 

If the assumption is made that β  > α > γ, then the utility function can be re-plotted to 

incorporate travel time and the lateness penalty in combination. This is done in Figure 

2.5, under the assumption of a fixed departure time. The slope of the utility function 
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(with respect to t) in earliness is given by (𝛼 − 𝛽) and the slope in lateness is given by 

(𝛼 + 𝛾) (Batley 2007).  

 

Figure 2.5 - A Scheduling utility function based upon Small (1982) and Batley (2007) 

The issue with the framework shown in Equation 2.17 is that it does not take into 

account reliability concerns i.e. it is a utility function rather than an expected utility 

function. Pells (1987) utilised the Scheduling approach to demonstrate that uncertainty 

in travel time would cause the traveller to allocate a greater amount of time to travel. 

Therefore reliability could be valued in terms of opportunity cost of that extra time. The 

aforementioned work of Polak (1987a) also dealt with reliability and earliness and 

lateness, but did not develop Equation 2.17 into an expected utility (EU) context where 

the overall travel times were less certain. This development was made by Noland and 

Small (1995). Noland and Small recognised that total travel time could be divided into 

three categories: free flow time, recurrent congestion and random travel time. This was 

a key insight: reliability could now be defined as the random element of travel time that 

was unpredictable. Noland and Small showed that for all distributions of this random 

element, EU would be maximised as follows:  

𝐸𝑈(𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒) = 𝛼 ∙ 𝐸(𝑡) + 𝛽 ∙ 𝐸(𝑆𝐷𝐸) + 𝛾 ∙ 𝐸(𝑆𝐷𝐿) + 𝜃𝑃𝐿 (2.18) 
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In Equation 2.18, expectations are taken of t, SDE and SDL. The dummy variable of 

lateness from Equation 2.17 becomes 𝑃𝐿, which is now the probability of lateness. 

Noland and Small used the same parameters in both 2.17 and 2.18.  

Batley (2007) showed how the EU function of Equation 2.18 could be used to 

represent risk attitudes through the risk premium as was previously shown for the case 

of MV in Section 2.1.  

 

Figure 2.6 - A Scheduling utility function based upon Noland and Small (1995) and 

Batley (2007) 

Figure 2.6, originally proposed in this form by Batley (2007), demonstrated the 

existence of risk aversion through the Scheduling utility function for a fixed departure 

time. Similar to Figure 2.2, E(t) represents the expected value of t, tc is the certainty 

equivalent, and the difference between these values is the ‘reliability premium’. t1 and t2 

represent risky outcomes.  The angle formed between linear sections of the function was 

shown to create concavity and thus imply risk aversion. This suggested further 

similarity with the MV utility function shown in Section 2.1 and is a useful result in 

advance of the theory of reliability equivalence that will be outlined in Section 2.5. The 

latter part of Chapter 6 will investigate whether these reliability premia for MV and 

Scheduling utility functions are in fact similar.  
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2.3.2 The Mean-Lateness Approach 

The Mean-Lateness approach is a framework for approaching transport reliability 

that is extensively used in the UK rail industry. The approach is defined in the 

Passenger Demand Forecasting Handbook, although as PDFH is not in the public 

domain this introduction is based upon the interpretation provided by Wardman and 

Batley (2014) and Batley and Ibáñez (2012). The approach is specific to public 

transport operations insofar as the PAT of the Scheduling approach is replaced by the 

timetabled arrival time at the destination. If the travel time is greater than the scheduled 

travel time, then lateness is incurred 

Unlike the aforementioned MV and Scheduling frameworks, the approach is used 

primarily to predict passenger demand responses to changes in Mean-Lateness: i.e. an 

elasticity of demand with respect to reliability. The basic utility function for service i 

takes the form: 

𝑈𝑖 = 𝛼 ∙ 𝐴𝑀𝐿𝑖 + 𝛽 ∙ 𝑆𝑇𝑖 + ⋯ (2.19) 

where AML is the average minutes lateness (compared to the scheduled arrival at the 

destination) and ST is the scheduled travel time. Therefore the ratio of alpha/beta is the 

value of Mean-Lateness in units of scheduled time. This ratio is referred to as the 

lateness multiplier in the PDFH (ATOC, 2013). 

Mean-Lateness has found use within the UK’s rail industry as it can be integrated 

with existing guidance within the PDFH. In their review, Wardman and Batley (2014) 

outlined how the PDFH generalised cost function (traditionally comprising of travel 

time, headway and interchanges) could be supplemented by the Mean-Lateness 

multiplier to predict a change in demand 

 
𝑉𝑛𝑒𝑤

𝑉𝑏𝑎𝑠𝑒
= [1 +

𝜔𝐴𝑀𝐿(𝐿𝑛𝑒𝑤 − 𝐿𝑏𝑎𝑠𝑒)

𝐺𝐽𝑇𝑏𝑎𝑠𝑒

]

𝐺𝐽𝑇

 
(2.20) 

Where 𝑉𝑛𝑒𝑤 is the volume of demand in the new situation; 𝑉𝑏𝑎𝑠𝑒 is the volume of 

demand in the base situation. 𝐿𝑛𝑒𝑤 and 𝐿𝑏𝑎𝑠𝑒 are Mean-Lateness in the new and base 

situations respectively, and 𝜔𝐴𝑀𝐿 is the valuation of this lateness in units of scheduled 

travel time. 
𝐺𝐽𝑇

 is the elasticity of demand with respect to GJT. Wardman and Batley 
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(2014) showed that an implied lateness elasticity (
𝐴𝑀𝐿

) can be calculated from the 

above using: 

𝐴𝑀𝐿 = 𝐺𝐽𝑇

𝜔𝐴𝑀𝐿𝐴𝑀𝐿

𝐺𝐽𝑇
 

(2.21) 

Estimates of 𝜔𝐴𝑀𝐿 have often been made using SP data. Another strand of research 

has attempted to estimate the impact of reliability on demand using the Punctuality 

Performance Measure (PPM). The PPM is the proportion of short distance trains 

arriving at their destination within 5 minutes of the scheduled time (or long distance 

arriving within 10 minutes). Wardman and Batley (2014) showed how the elasticity of 

demand with respect to PPM could be used to calculate 𝐴𝑀𝐿: 

𝐴𝑀𝐿 = 𝑃𝑃𝑀

𝛿𝑃𝑃𝑀

𝛿𝐴𝑀𝐿
 
𝐴𝑀𝐿

𝑃𝑃𝑀
 

(2.22) 

 Using Equations 2.21 and 2.22 it is possible to obtain and compare estimates of 


𝐴𝑀𝐿

 from both SP and RP experiments. Wardman and Batley (2014) did this, and such 

analysis will be useful to this thesis (and will form part of the discussion in 2.4.1 and 

2.4.2 of the present chapter). 

The Mean-Lateness approach overcomes a key issue of the Scheduling approach that 

it is often difficult to obtain a passenger’s PAT without asking them directly. It is also 

of practical use insofar as it can be applied to station to station flows (Wardman and 

Batley, 2014).  It does however imply no negative value for early arrival, and the form 

in 2.19 does not take into account departure time at the origin station. The standard ML 

model was extended by Batley (2007) to account for the latter. 

2.3.3 Reliability Equivalence 

The three frameworks outlined in the previous section are all effectively attempts at 

representing the effect of reliability on travellers. It logically follows that some 

correspondence exists between them. The literature has been particularly interested in 

the correspondence between the MV and Scheduling frameworks, and theoretical 

equivalence has been established between them. This equivalence is referred to as the 

theory of equivalence or reliability equivalence for the remainder of this thesis. 
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In Section 2.3.1 it was shown that Noland and Small (1995) formally translated the 

Scheduling approach from a context of travel time certainty to one involving travel time 

risk. This development therefore introduced a second EU function for reliability, 

alongside MV. An open question in the literature is: which of the two should be chosen 

for use in the valuation of reliability – MV or Scheduling under risk?  

If it could be proved that MV and Scheduling EU functions were equivalent, it 

would have the impact of removing the choice between the two frameworks: each could 

be considered equally relevant and could be chosen according to surveying or other 

practical constraints. The first key step toward this end was made by Gaver (1968) who 

derived the optimal probability of lateness from Scheduling parameters only.  

Bates et al (2001) recognised that all travellers who accord with expected utility 

theory would accept some value of probability of lateness greater than zero. Previous 

work had established that there was a positive relationship between the level of 

unreliability and the headstart (Pells, 1987). ‘Headstart’ (as defined by Gaver, 1968), 

was shown by Bates et al (2001) to be approximately linear in standard deviation, such 

that the optimal Scheduling EU is a linear function of mean and variance. This is the 

key result of Bates et al (2001): βE(SDE) +  γE(SDL), derived by Noland and Small, 

could be shown to be approximately equal to ρσ when departure time was optimal. This 

was demonstrated in Bates et al (2001) where the Reliability Ratio was reformulated to 

consist of Scheduling parameters only. 

Bates et al (2001) went on to consider discrete departures, such as those that might 

be experienced on public transport services, and showed that this equivalence no longer 

held in most cases. However this is less clear when the traveller is ignorant of 

timetabled departure times and arrives at the departure point randomly.  

Fosgerau and Karlström (2010) built upon Noland and Small (1995) and Bates et al 

(2001) to provide mathematical proof of the equivalence between MV and Scheduling. 

They specified the EU function as: 

 𝐸𝑈 = max𝐷 𝐸𝑈(𝐷, 𝑇) = 𝑚𝑎𝑥𝐷 [𝛽𝐷 + (𝛼 − 𝛽)𝜇 + (𝛽 + 𝛾) ∫ (𝜇 + 𝜎𝑡 − 𝐷)𝜙(𝑡)𝑑𝑡
∞

𝐷−𝜇

𝜎

]      (2.23) 
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Where 

D is the departure time 

α, β, γ are the Scheduling parameters defined by Small (1982) 

t is a standardised random variable, and 𝜇 and 𝜎 represent the mean and standard 

deviation of the travel time distribution respectively 

Given that t is a random variable which could be drawn from any distribution, it is 

possible to derive an expected utility function in the form of MV but using Scheduling 

parameters (from Bates et al, 2001) for any distribution: 

𝐸𝑈 = 𝛼𝜇 + (𝛽 + 𝛾)𝐻(𝛷,
𝛽

𝛽+𝛾
)𝜎                                              (2.24) 

Where H is calculated from a standardised travel distribution (𝛷) and the Scheduling 

parameters, as follows. 

𝐻 (
𝛽

𝛽+𝛾
) = ∫ (𝑠)𝑑𝑠.

1

1−
𝛽

𝛽+𝛾

                                              (2.25) 

 The marginal expected utility of standard deviation from the MV approach is 

therefore estimated by 𝐻 and the Scheduling parameters, which implies equivalence 

between Scheduling and MV subject to the constraints outlined. Theoretically, this is a 

powerful result which provides clarity in the field as to which is the preferred 

framework to use. There are some limitations to this however. The departure time needs 

to be a continuous variable, which excludes the equivalence result from public transport 

applications. It should be noted however that subsequent work has overcome this issue; 

Fosgerau and Engelson (2011) defined time varying utility rates at the origin and 

destination and showed that the influence of travel time variable would be the same 

irrespective of whether the transport mode was scheduled or not. Another practical issue 

relating to the equivalence result is that to convert MV parameters to Scheduling 

parameters, the optimal probability of lateness is also required (which would not always 

be available). This is due to the relationship (from Equation 2.24) of: 

𝜌 = (𝛽 + 𝛾)𝐻                                                           (2.26) 
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Where it is not possible to separate the elements of (𝛽 + 𝛾) unless the term 
𝛽

𝛽+𝛾
 is 

also known. 

 Despite such practical issues, studies have attempted to find empirical evidence for 

this equivalence, which will be covered in Section 2.4.3. 

2.4 Empirical Application of Reliability Frameworks 

A substantive amount of research in this field has been focussed towards eliciting a 

value of reliability for use in investment appraisal. Research has made use of MV, 

Scheduling and Mean-Lateness approaches in this endeavour, but no standard has 

emerged. Methodologically, there has been a general trend to favour Stated Preference 

(SP), where respondents indicate their favoured choice from two (or more) hypothetical 

options. This section will begin by outlining some of the key SP studies and their 

contribution towards improving the methodologies for estimating a value of reliability 

(VOR). The next part will look at SP valuations of reliability in light of these 

methodological issues. The final part of the section on the SP methodology will bring 

together these results and methodological issues and highlight some general notes of 

caution of using SP in this context. 

The primary alternative to SP is Revealed Preference (RP), where consumer 

behaviour in the marketplace is observed directly. There is a small literature related to 

the estimation of a VOR using RP studies which will be outlined. These include a 

literature on the estimation of late time multipliers using Mean-Lateness (ML) models. 

Based on this review of RP evidence some concerns with that approach will also be 

highlighted. The section will conclude with a discussion which will compare the merits 

of the two approaches and make the case for the use of RP. 

2.4.1 Stated Preference  

This section will outline the studies that have taken place using SP; the first part will 

focus on those that have made a methodological contribution towards estimating an SP 

VOR. In the second part of Section 2.4.1 the results arising from SP studies will be 

outlined. The final part of this SP section will critique the widespread use of SP in VOR 

studies. 
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Methodological Development of SP Reliability Studies 

The previously mentioned work of Jackson and Jucker (1982) deserves credit for 

being the first to apply MV in a transportation context. After presenting the model (of 

Equation 2.9), the authors estimated the distribution of λ based upon an SP experiment. 

In the course of this exercise, the authors identified two practical issues related to SP 

experiments in the field of reliability. The first being the correct method of presenting 

travel time risk to respondents, and the second being the form of the MV expected 

utility function – in particular the indicators used.  

The complexity of presenting reliability to survey respondents is recognised in much 

of the SP research. Senna (1994) provides an overview of early attempts to present 

TTV. Senna made two adjustments to his own survey in light of his review: that one of 

the options presented should contain zero variability, and that choice situations should 

be related to travellers’ actual experiences. This latter point was of particular foresight 

in light of the work that has come since (e.g. Hensher, 2010).  

Jackson and Jucker (1982) have not been the only authors to utilise the standard MV 

EU function of Equation 2.8. Some authors have been concerned that presenting a 

Normal distribution of travel times to respondents might be misleading and have 

therefore utilised the median and other percentile based measures of spread (Small et al, 

2005). One example of such a measure is the reliability buffer time, which is the 

difference between a higher percentile of travel time (most commonly the 80th or 90th 

percentile) and the median – thereby measuring the width of the right side of the 

distribution. Those that have adopted this measure (Small et al, 1999; Small et al, 2005; 

de Jong et al, 2009) have suggested that these percentile based measures should be 

preferred to the standard deviation/variance. However, other authors have found that the 

mean and variance provide better model fit using their SP data (Hollander, 2006). This 

question of the correct form of the MV equation remains a live issue and is covered in 

greater detail in subsequent chapters. 

The Scheduling approach (of Equation 2.18) has also often been modified in 

empirical research. Small et al (1995) identified correlation between SDL and PL within 

their model. It was found that the fit of their model was improved if SDL was omitted 
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from estimation; effectively that PL was capable of accounting for the entire impact of 

lateness. Small et al (1999) estimated a quadratic Scheduling model, where parameters 

for SDE2 and SDL2 were estimated alongside the standard ones. The parameter for SDL2 

was found to be insignificant, but the parameter associated with SDE2 was significant 

and could potentially have an impact on the shape of the Scheduling utility function. 

However Hollander (2006) did not find this parameter to be significant in his own 

model.  

Another research strand has been to include demographic variables in SP choice 

models. Pells (1987) was one of the first to do so, and found that seniority in the 

workplace had an impact; more senior employees had lower values of reliability; 

presumably as they exercised greater control over their working day. Small et al (1995) 

conducted an SP where respondents were asked to give information related to their sex, 

age, income, and whether they had children. The most detailed part of this work was 

focussed on employment status, where individuals were asked about their conditions of 

employment, whether they were self-employed, and finally their income. Contrary to 

Pells, income did not appear to affect the valuation of Scheduling parameters. It was 

found that, in general, salaried workers were less averse to lateness than wage earners, 

although this was not an unexpected result. Small et al (1995) also found that 

commuters who had parenting responsibilities tended to have higher values of time and 

reliability. This finding may go some way to explaining different attitudes toward time 

and reliability between males and females that have been found in the literature 

(Brownstone and Small, 2005), assuming that there is a systematic difference between 

sexes in terms of responsibility for childcare. Asensio and Matas (2008) similarly 

accounted for income in their SP experiment but also found no effect of this variable on 

the valuation of time or reliability. The explanation given was that only a small range of 

incomes were captured in the sample.  

One concern running throughout the SP literature is the best method of conveying 

travel time variability to respondents who are not necessarily familiar with statistical 

indicators such as the standard deviation. Senna (1994) is an example of the most 

commonly used method, where two options were presented to the respondent, each with 

five equiprobable travel times and a mean. From these five values it was presumed that 
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a proxy for the standard deviation could be estimated by the respondent. Small et al 

(1999) took a similar approach, although they also considered presenting ten travel 

times for each choice option so that a travel time distribution could be more accurately 

represented. It was concluded that this approach may overload the survey participant 

with information and lead to fatigue with the questionnaire.  

Benwell and Black (1984) did however present ten travel times for each option. As 

part of this presentation, the delays were ordered so that the highest delays were on the 

right hand side. This approach has been questioned in the literature, since some 

respondents might interpret this as implying a deteriorating quality of service (Bates et 

al, 2001). A further concern of Bates et al was that for some options, a substantial 

proportion of the travel time delays were zero – resulting in infrequent travellers 

perhaps assuming that delay would not affect them. In response to these concerns, Bates 

et al (2001) used a clock face presentation (shown in Figure 2.7), where varying levels 

of delay were presented in a circular fashion to reinforce that each event was of equal 

probability. A test was given to participants to check their understanding of the method. 

Those that poorly understood the concept were excluded from analysis. Whilst this 

process appeared sensible in the context of an SP, it is possible that there is a proportion 

of the population in real situations who would struggle to understand reliability as a 

concept. Perhaps the exclusion of some groups from SP might bias parameter estimates 

away from their true population values.  

The work of Tseng et al (2009) acknowledged this concern by testing how well 

participants understood a variety of the SP presentational formats mentioned above (as 

well as a vertical bar format of Hollander, 2006 and Batley and Ibáñez, 2009; shown in 

Figure 2.8). The starting point of that paper was a concern that participants were not 

fully comprehending surveys on reliability. To test this hypothesis, Tseng et al split 

their sample of survey respondents into ‘lower’ and ‘higher’ educated groups. They 

found that questions about reliability were better answered by the higher educated 

group, but this was not true in all cases. A key finding of Tseng et al was that 

participants indicated a preference for the format of five travel times making up each 

choice alternative, and furthermore the questionnaire would be administered in person 

by survey staff. They also indicated preference for the vertical bar presentation of 
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Hollander (2006). Tseng el al noted from their experience that it was hard to recruit 

participants for their survey, which meant that they offered a small amount of money to 

participants upon completion of the survey. Tseng et al were aware that offering a 

financial incentive might mean that their sample would be biased towards respondents 

with a lower value of time or reliability, therefore resulting in lower estimates of these 

values.  

They concluded by saying that potential existed for survey respondents to 

misapprehend both the survey and the reliability issues presented to them in an SP 

context, and great care would be required to overcome such issues. Furthermore, 

although they concluded that researchers should simplify their surveys to present five 

travel times of equal probability, this had the potential to misrepresent the nature of 

reliability – for example by not adequately representing long travel times with low 

probabilities which are of great concern to many travellers.  

 

Figure 2.7 - The 'clock face' presentation of an SP survey as used by Bates et al (2001) 
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Figure 2.8 - The vertical bars presentation of an SP survey as used by Hollander (2006) 

and Batley and Ibañez (2009) 

The final method of presentation, proposed by Copley et al (2002), was to present a 

travel time distribution to survey participants (shown in Figure 2.9). This was contrary 

to the majority of the reliability SP literature where it has been assumed that such detail 

would overburden the participants. Tseng et al showed that this method of presentation 

is one of the least favoured in their study. Nevertheless, Copley et al (2002) detail how 

participants could be encouraged to understand a travel time histogram or distribution 

with support from those conducting the survey. Not only did this allow greater detail to 

be conveyed, but allowed innovative surveying techniques such as allowing participants 

to optimise their departure time dynamically based upon the travel time distribution.  
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Figure 2.9 – The travel time distribution based presentation of SP as used by Copley et 

al (2002) 

The above review provides a range of methods for conducting SP surveys in a 

reliability context. Presentation of reliability is clearly a subject of concern and the 

subject of academic debate in itself; the reviews of Bates et al, 2001; Tseng et al, 2009, 

Li et al, 2010 and Wardman and Batley, 2014 are testament to this. The issue that these 

reviews have attempted to address is the difficulty in conveying what is a complex 

subject to members of the general public. It is clear that misapprehension of the survey 

method itself is a problem, and one which has not been fully addressed in an SP context. 

Tseng et al found that great care was required in choosing the format and administering 

SP questionnaires, and there was potential to obtain responses based upon 

misapprehension on the part of the respondent given the complexity of reliability issues.   

Stated Preference VOR Estimates 

The preceding discussion was focussed upon the methodological issues of estimating 

an SP VOR. In this section, the VORs estimated using SP will be the focus. Studies will 

be introduced in chronological order and where possible the Reliability Ratio will be 

presented. As this section focuses upon Reliability Ratios, it will consist primarily of 
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studies that utilised the MV and Scheduling frameworks; Bates et al’s (2001) formula 

for calculating a Reliability Ratio from scheduling parameters will be utilised: 

𝑅𝑅 =
𝛽

𝛼
ln (1 +

𝛾

𝛽
) 

(2.27) 

Where RR is the Reliability Ratio, and 𝛼, 𝛽, 𝛾 were defined in Equation 2.18 of this 

chapter. 

Black and Towriss (1993) were the first researchers to present the ‘Reliability 

Ratio’. It is defined as the ratio of the marginal utility of reliability (usually measured in 

units of standard deviation) to the marginal utility of travel time. The Reliability Ratio 

they presented for car based commuters, 0.55, would appear low in relation to much of 

what has come since, although more recent evidence from the UK actually puts the 

average value at 0.4 (ITS and Accent, 2015). Black and Towriss’ results also suggest 

that the RR would be lower for bus users than for rail users. 

The respondents to the study by Tseng et al (2009) indicated that the most preferred 

questionnaire format was that of Small et al (1999). This would imply that the central 

Reliability Ratio estimate of 2.51 of Small et al (1999) is worthy of consideration 

although it is high in relation to many other studies. This questionnaire format is only 

slightly different to that used by Black and Towriss. Where Small et al’s contribution 

differed substantively was in their use of demographic data interacted with travel time 

and reliability. Small et al (1999) was actually building upon the work of Koskenoja 

(1996), who was the first to recognise the value of demographic data in this area. 

Koskenoja found that income and whether the traveller had young children would affect 

the result. The Reliability Ratios estimated were closer to one, with a mean average of 

0.77. 

Hensher (2001) divided travel time into a number of components: free-flow, slowed 

down, stop/start and uncertainty and assigned different values to each of these 

categories to represent alternatives. It could be reasonably argued that travellers would 

not explicitly distinguish these components of reliability. Therefore a low Reliability 

Ratio might be expected, associated with respondent misunderstanding of the questions. 

The RR estimated of Hensher’s favoured model was 0.67.  
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Hollander (2006) is an interesting and often quoted case due to its low reported RR 

of 0.1. Although the methodology presented by Hollander was not contentious in 

relation to the rest of the literature, there were sampling issues that may have affected 

the results. For example, Hollander drew his sample entirely from bus users, and 

conducted the SP online. This could have led to a biased sample (for example by over-

representing young, low income workers). Kouwenhoven et al (2014), for example, 

found that an internet only survey resulted in lower VOT estimates than expected. 

Moreover, Hollander’s sample only covered a single geographic area, and it is difficult 

to know how reliability levels in that area might have affected respondent attitudes. 

Asensio and Matas (2008) estimated a RR of 0.98 using a presentation format 

similar to Small et al (1999). Further support for use of the presentational format of 

Small et al was found by Li et al (2010) who also estimated an overall Reliability Ratio 

of 0.7. Li et al also suggested that commuters should value travel time and reliability 

more highly than non-commuters due to the existence of the PAT, but it is non-

commuters who had the larger RR in their experiment. 

The SP conducted by de Jong et al (2009) focused on road freight transport and 

estimated a RR of 1.2, although this was later acknowledged as a provisional result in 

de Jong et al (2014), where water-freight based Reliability Ratios of between 0.1 and 

0.4 were estimated. 

Tilahun and Levinson (2010) supported the SP presentation of Copley et al (2002), 

who favoured presenting histograms to travel time to respondents. They calculated a RR 

of 0.89, which is similar to many of the studies already outlined. Nevertheless, the use 

of histograms to represent a travel time distribution in SP experiments remains 

unpopular. 

Kouwenhoven et al (2014) summarise the most recent major Dutch VOT and VOR 

study, taking into account a range of modes and demographic characteristics. They 

presented five equiprobable travel times to respondents. They noted that those willing to 

undertake their SP study as part of an internet panel had a lower VOT than had been 

expected, and so additional data collection was required. Although the study quotes a 

range of RRs, their main estimate is 0.7 (for both business and other purposes). 
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Similarly, Ehreke et al (2015) summarise the reliability element of the most recent 

major German VOT study. They found that among car drivers, WTP was higher for 

time savings than reliability savings, and estimated a RR of 0.7 for this group.  

The final strand of SP evidence to present are estimates of 𝜔𝐴𝑀𝐿 used in PDFH 

(based upon the summary provided by Wardman and and Batley, 2014). The SP 

conducted by Benwell and Black (1984) estimated a 𝜔𝐴𝑀𝐿 of 2.5, which was used in the 

first edition of PDFH. This value remained constant in the second edition of PDFH, 

with the exception of commuting trips being reduced to 1.25 based upon evidence 

provided by MVA (1989). PDFH 3 reverted back to a 𝜔𝐴𝑀𝐿 of 2.5 for all purposes, 

whilst PDFH 4, taking into account Bates et al (2001), increased the 𝜔𝐴𝑀𝐿 to 3. In 

addition to the values in PDFH, Batley et al (2006) estimated a central 𝜔𝐴𝑀𝐿 of 2.7, 

although this varied from 1.8 to 5.3 depending on the trip type. Faber Maunsell and 

Mott Macdonald (2007) estimated a 𝜔𝐴𝑀𝐿 of 5.3, which is not dissimilar from the value 

calculated by MVA and ITS (2012) for business travellers. Lu et al (2008) estimated a 

value of 3.27 for this same group of travellers. Wardman and Batley (2014) also 

reported a number of unpublished studies including TPA (1992) (a 𝜔𝐴𝑀𝐿 of 1.7) and 

MVA (2000) (a 𝜔𝐴𝑀𝐿 of 5.7).  

Wardman and Batley calculated an implied 
𝐴𝑀𝐿

 (using Equation 2.20) taking into 

account the highest and lowest recommended values of 
𝐺𝐽𝑇

 within PDFH 5.1. The 

travel with the highest 
𝐺𝐽𝑇

 was London long distance flows (L-LD) where a value of -

1.35 was recommended. Taken together with a Mean-Lateness of 5.2 and an assumed 

GJT of 120 minutes, Wardman and Batley estimate an implied 
𝐴𝑀𝐿

 of -0.18. The 

lowest 
𝐺𝐽𝑇

 recommended by PDFH 5.1 was for non-commuting travel within London 

(L-NC) (a value of -0.9). Under the assumptions of a Mean-Lateness value of 1.3 and a 

typical journey time of 30 minutes, the implied 
𝐴𝑀𝐿

 was calculated as -0.11. Based 

upon the above evidence and the methodology of Wardman and Batley, it is possible to 

calculate an implied 
𝐴𝑀𝐿

 for the range of SP studies where a 𝜔𝐴𝑀𝐿 was estimated. 
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Table 2.1 - Implied ML elasticities derived from SP estimates of the value of Mean-

Lateness 

  𝜔𝐴𝑀𝐿 
𝐴𝑀𝐿

 L-LD 
𝐴𝑀𝐿

 L-NC 

Benwell and Black (1984) 2.50 -0.15 -0.10 

MVA (1989) 1.25 -0.07 -0.05 

TPA (1992) 1.70 -0.10 -0.07 

MVA (2000) 5.70 -0.33 -0.22 

Bates et al (2001) 3.00 -0.18 -0.12 

Batley et al (2006) 2.70 -0.16 -0.11 

Faber Maunsell/Mott Macdonald (2007) 5.30 -0.31 -0.21 

Lu et al (2008) 3.27 -0.19 -0.13 

Mean Average 3.18 -0.19 -0.12 

Standard Deviation 1.58 0.09 0.06 

Coefficient of variation 0.50 -0.50 -0.50 

 

In Table 2.1, L-LD (London-Long Distance) refers to the situation where 
𝐺𝐽𝑇

 is equal 

to -1.35, with a GJT of 120 minutes (where GJT is made up of scheduled time, headway 

and number of interchanges), and a mean-lateness of 5.2 minutes. L-NC (London- Non 

Commuting) refers to the situation where these values are -0.9, 30 minutes and 1.2 

respectively.  

The summary statistics calculated in Table 2.1 (mean, standard deviation, coefficient of 

variation) will be used later in this chapter as a comparator to RP based studies.  

Discussion of SP methodology and VOR estimates 

Whilst issues around respondent understanding of reliability can be at least partially 

ameliorated by careful presentation and design of surveys, there has been other work 

that has suggested that there are further underlying problems with SP in reliability (and 

travel time) contexts that must be taken into account. 

A critique of SP that can be made generally is that the hypothetical answers given 

by survey participants would not reflect the choice they would make in reality. In a 

general transport context, Wardman (1988) provided possible reasons for this 

discrepancy on the part of the respondents: 



 
 
 

57 

 

• Misapprehension of the survey and its contents. 

• Not giving the survey adequate attention; including fatigue and boredom 

(Bradley and Daly 1994, although the importance of this effect was later 

questioned by Hess et al, 2012). 

• Inertia: favouring the same type of option and not trading between attributes.  

• Protest response where individuals consciously seek to influence the outcome of 

the survey. 

Wardman also acknowledged that apparent non-trading or protest responses may 

actually be a reflection of a high/low value of time outside the scope of the survey. A 

study specific to rail and reliability issues suggested that the key reason for the 

divergence between hypothetical and actual behaviour was the protest response 

(Wardman and Batley, 2014). The evidence for this was that divergence between RP 

and SP valuations would decrease when the purpose of the SP was obscured from the 

participants. The study also highlighted the need for good RP evidence as a comparator 

for SP results. Brownstone and Small (2005) compared results of an SP and RP study 

based upon car users with a choice between freeway and tolled alternatives. In addition 

to the issues above, they highlighted a number of differences between the two 

methodologies in this context: 

• Their RP estimates of VOR and VOT were substantively lower than the 

corresponding SP valuations. 

• That travellers may intend on using a slower/more unreliable route, but on a 

given day circumstances may force them to use the faster/reliable tolled route. 

• Travellers were likely to overestimate the impact of experienced congestion, 

which translates to a misinterpretation of the SP.  

Hensher (2010) focused upon the existence of ‘cheap talk’ in his analysis of the 

divergence between RP and SP. Cheap talk in this context being the respondent not 

talking the survey seriously (as suggested by Wardman, 1988) as well as not having the 

same rewards and disincentives as one would find in a real-world situation (Lu et al, 

2008). Hensher made some suggestions which will improve the results from SP: 
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• Recruit participants that are knowledgeable about the transport context in which 

the survey is set; they will take it more seriously. 

• Include an option for the participants to ‘opt-out’ where they are indifferent or 

unsure about their preferences. 

• Include additional questions to ascertain the choice strategy employed by each 

participants. 

• In the context of toll experiments, offer participants a voucher/incentive to use 

an actual toll road so that they have real experience of both options. 

The development of these suggestions appears to offer a defence of SP as a method 

for the valuation of reliability. Other studies have however suggested that RP would be 

preferred if the data were available (e.g. Bates et al, 2001).  

2.4.2 Revealed Preference 

This section will begin with an exploration of the methodological development of 

Revealed Preference (RP) studies before developing onto the VOR estimates made 

using the technique. This section will bring together a summary of SP and RP VOR 

studies in Table 2.3 and conclude with a comparison of the two techniques.  

Methodological Development 

Revealed Preference (RP) methods are less utilised than SP VOR contexts. Hensher 

(2010) provides explanation for this by suggesting that there remain significant issues 

with RP: 

• Un-chosen alternatives are often imposed upon individuals’ choice sets which 

they may not have been aware of. One could add that it would often be 

problematic to obtain a full choice set for each individual.  

• Individuals are often habitual in their behaviour and averse to new experience, 

which is a limitation on the trading required for the estimation of valuations of 

reliability and travel time.  
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Other issues with RP in this context have included: strong correlation between travel 

time and travel time reliability (de Jong et al, 2009), difficulty in modelling the full 

choice set and a lack of good quality RP data. 

Nevertheless there have been a number of studies that have made use of RP data, the 

methodological aspects of which are outlined here. 

Researchers in the USA have recognised the existence of high occupancy toll (HOT) 

lanes as an opportunity to collect and analyse RP data. The HOT lanes provide what is 

usually a quicker and more reliable journey time than an uncontrolled (but uncharged) 

alternative. This provides the basic choice situation, which is further aided by 

dynamically varying toll levels. Lam and Small (2001) provided an early example of 

such a study, where travellers were contacted after their travel had taken place to 

ascertain their choice of toll or non-tolled route, and the time of travel. This information 

was combined with supply side data to produce the choice set, which was then modelled 

using a variant of MV model via a mixed multinomial logit model. Although Lam and 

Small and similar studies (such as Liu et al, 2004) reported VORs that appeared 

reasonable (see Table 2.3), there were some methodological issues which remain 

unaddressed. There was a reliance on the assumption of choice under risk, rather than 

uncertainty i.e. that travellers would be fully aware of the travel time distribution 

associated with each of the travel options available to them. This assumption is common 

in the RP research but nevertheless is unrealistic and requires acknowledgement where 

used (as was the case in the HOT lane study of Brownstone and Small, 2005). For 

example, if a traveller overestimated the standard deviation of travel time on an unused 

route, a choice model would correspondingly underestimate their aversion to travel time 

risk.  

There was another issue, common to Lam and Small and other HOT lane studies, 

that the paucity of the highway supply data was not fully acknowledged. This issue was 

that actual travel times were not observed, but rather flow data from loop detectors were 

used with standard formulae from the engineering field to convert these flows into 

travel times. Alternatively, research staff drove the routes and recorded travel times, but 

the sample sizes of this process were acknowledged as low. These HOT lane RP studies 

have also tended to assume that only two choice options exist, when other highway 
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routes or public transport options may also exist for persons making the trip. Some RP 

studies have however attempted to include mode choices in addition to the choice of 

using a toll road (e.g. Bhat and Sardesai, 2006).  

 Some RP reliability studies have been conducted in alternative contexts to these 

tolled/un-tolled examples. One such example (Prato et al, 2014) made use of GPS data 

from vehicles as a possible alternative to estimating mean travel times on the highway 

network. However practical issues remain with this approach: in many cases the sample 

size of observed travel times on highway links was insufficient. The method also relied 

upon a transport model to generate alternative routes and travel times, which risks 

introducing highway modelling errors into estimation of the choice model. Using travel 

time outputs from a transport model as inputs for an RP model has been conducted 

previously (Börjesson, 2008), but these were validated with travel times obtained using 

automatic number plate recognition (ANPR) cameras. Börjesson found her own RP 

estimates of the RR to be lower than combined RP/SP estimates, in agreement with the 

finding of Brownstone and Small (2005). Börjesson justified a preference for RP in that 

it represented a longer term adaptation to road conditions.  

Nassir et al (2015) used farecard data from six bus OD pairs in Brisbane, Australia 

to estimate a choice model which included the standard deviation of travel time. 

Utilising an extended temporal duration of six months, they were able to identify the 

choice set available to each OD. They then were able to calculate performance statistics 

of each option available using the boarding and alighting times of the farecards.  They 

utilised a binary logistic regression model to estimate a number of parameters, although 

a reliability parameter could only be estimated for the dataset that did not include 

transfer trips. A VOR or RR could not be reported as neither a cost nor a 

straightforward travel time parameter was estimated; travel time was a categorical 

variable related to the difference between the actual travel time and the fastest possible 

travel time on that route. Nevertheless, this study is instructive in the use of 

automatically collected payment data from public transport to estimate choice 

parameters – the subject of Chapter 5 of this thesis. 

Wardman and Batley (2014), focussing on the aforementioned Mean-Lateness 

framework, highlighted a number of RP studies that have taken place within the rail 
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industry in the UK. A number of these remain unpublished (MVA, 2008; MVA, 2009; 

ARUP/Oxera, 2010). However the study by Batley et al (2011) was published and 

therefore provides an example of an RP study that focusses on estimating elasticities of 

demand with respect to reliability. This study utilised both AML and the Public 

Performance Measure (PPM) as indicators of reliability; the latter being the proportion 

of arrivals at the destination station within 5 (for short distance) or 10 (for long 

distance) minutes. These metrics, combined with passenger flow data, could be used to 

calculate the demand response to reliability levels. The study found that the demand 

response to reliability was lower than might have been expected in the literature. Batley 

et al concluded that whilst passengers dislike reliability (and might report a high 

willingness to pay to avoid it in an SP survey), in many situations the choice of 

responses available to the passenger are limited. This is a finding in favour of RP; that 

passenger demand would not be as affected by reliability as would be implied by 

willingness to pay studies based upon SP questionnaires. 

The above RP studies, taken as a whole, demonstrate that the estimation of an RP 

VOR or ML elasticity is possible. They suggest that the limitations of RP can be 

overcome through innovative use of data; examples being toll road choice data and GPS 

data. Wardman and Batley (2014), drawing upon Batley et al (2011), suggest that RP 

based studies will result in a lower VOR or demand response to reliability.  

Revealed Preference VOR Estimates 

One of the first studies to utilise HOT lane data was Ghosh (2001). Ghosh questioned 

road users on previous choices between a toll and non-tolled alternatives, and combined 

these answers with loop detector data to calculate the distribution of travel times. The 

central RR estimate of 1.17 was therefore made using a panel dataset. It also relied on a 

percentile based measure to represent reliability. 

The study conducted by Lam and Small (2001) was similar to that of Ghosh insofar as it 

was based upon a percentile based measure of reliability in the context of HOT lanes. 

Lam and Small identified issues with making use of loop detector data to represent the 

supply side of the transport system – that data availability was often poor and only a 

general proxy for actual reliability conditions. They identified a central RR estimate of 
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0.66 for males and 1.39 for females. Small et al (2005), in another California-based 

HOT lane study, combined RP and SP data to estimate a RR of 0.65.  

One RP study that was conducted away from the Californian HOT lanes was Bhat 

and Sardesi (2006), who conducted a joint SP/RP study in Austin, Texas. Their reported 

RR of 0.26 is low in relation to many others made in the field. One specific difference 

of this study to many others was that travel times were self-reported by respondents, 

which may have impacted upon the resulting estimate. Liu et al (2007) conducted a 

similar RP study on interstate routes in Minnesota and found a central RR estimate of 

1.3 (although this varied by time of day). The range of Reliability Ratios could imply 

the importance of geographic location and the demographic characteristics of travellers 

in the area, although it is noted that methodological differences between these studies 

will have also played a part. 

Börjesson’s (2008) study was conducted in the Stockholm area, using traditional SP 

questionnaires along with RP data obtained from traffic cameras (and supplemented by 

transport model outputs). A RR of 0.74 was estimated. Of further relevance to the 

present thesis, Börjesson concluded that SP was less trustworthy than RP, based upon 

time horizon of each methodology. In summary, SP requires the respondent to make an 

instant choice of their preferred route, whereas an RP choice is made over a longer 

period of time based upon accumulated experience; it could therefore be considered 

more realistic.  

A separate strand of RP research has been the use of GPS tracking of vehicles to 

observe travel times and choices. Carrion and Levinson (2010) developed this 

methodology on the Minnesota interstate HOT lanes (i.e. in a similar geographic 

context to Liu et al (2007).  Their central RR estimate was 0.91. The same authors 

tested a range of statistical measures in a later paper (Carrion and Levinson, 2013) and 

found the same RR of 0.91. 

Prato et al (2014) was a notable GPS RP study insofar as it was based in Copenhagen 

and did not utilise HOT lanes but rather competing highways – the methodology could 

therefore be considered more widely applicable. The study estimated a RR of 1.5. 
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The final set of RP studies that will be covered are those focussed on the rail industry 

in the UK that have sought to estimate an elasticity of demand with respect to mean 

lateness. Recalling that corresponding SP values were presented in Table 2.1, a 

comparison of the two methods will be possible in the next section. The values shown 

in Table 2.2 are a subset of those calculated by Wardman and Batley (2014) using 

Equation 2.22 (although the estimates of 
𝐴𝑀𝐿

 by Batley et al (2011) were made 

directly). The values shown are split between short distance and long distance trips 

(both with London as an origin and destination). These values were chosen as they are 

the most similar to those presented in Table 2.1 and can therefore form the basis of a 

comparison. Both short-run (SR) and long-run (LR) elasticities are presented, 

representing both short term and long term adaptation to reliability in the form of Mean-

Lateness.  

Table 2.2 - Summary of revealed AML Elasticities (from Wardman and Batley, 2014)

  London (Short Distance) London (Long Distance) 

  

Ticket 

Type SR LR Ticket Type SR LR 

SDG (2003) Non Season -0.03 -0.03 

Non Season (to 

LDN) -0.04 -0.04 

  Season -0.01 -0.01 

Non Season (fr 

LDN) -0.03 -0.03 

Oxera (2005) All -0.06 -0.06 All -0.28 -0.63 

MVA (2008) Non Season -0.03 -0.05       

Arup/Oxera (2010) Non Season -0.05 -0.13 Reduced -0.02 -0.14 

Batley et al (2011)   - - Season -0.02 -0.04 

    - - Full -0.01 -0.04 

    - - Reduced -0.01 -0.05 

Mean Average* -0.04 -0.07   -0.09 -0.21 

*Each study had equal weighting 

Wardman and Batley identified the -0.63 elasticity associated with Oxera (2005) as 

an outlier and calculated average elasticities both with and without this value. This will 

be reflected in the comparison with SP values from Table 2.1 in the next section. 

2.4.3 Summary of Studies 

Prior to a discussion and comparison of SP and RP results, the remainder of the 

studies outlined to this point will be summarised within Table 2.3 below. Of particular 
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interest are the Reliability Ratios, which in conjunction with the elasticities presented in 

Tables 2.1 and 2.2 will form the basis of the comparison of SP and RP results.
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Table 2.3 - Summary table of key reliability studies that estimate a RR 

Study RP/SP Mode Contribution Reliability 

Ratio (central 

estimate) 

Small et al 

(1995) 

SP Car Estimated both 

Scheduling and MV 

models, and included 

varying departure time 

and socio-demographic 

elements in survey. 

2.3 

Koskenoja 

(1996) 

SP Car Thesis investigating 

the impact of 

occupation on attitude 

to travel time risk  

     0.75 

Small et al 

(1999) 

SP Car Estimated both 

Scheduling and MV 

models. Experimented 

with alternative forms 

of the Scheduling utility 

function. 

     2.51 

Ghosh (2001) RP Car Conducted a RP 

study of HOT lanes 

using panel data. 

1.17 

Hensher (2001) SP Car Compared 

multinomial logit 

models to mixed 

multinomial logit 

models. Also treated 

reliability in separate 

parts. 

0.67 
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Lam and Small 

(2001) 

RP Car An early attempt to 

value reliability using 

RP only method. 

RR of 0.66 

for male, 1.39 

for female. 

Copley et al 

(2002) 

SP Car Exploration of 

many SP presentational 

techniques including 

travel time histogram 

and varied departure 

times. 

1.3 

Bhat and 

Sardesai (2006) 

RP/SP Car/PT This study was 

unique as it included 

mode choice in addition 

to route choice.  

0.26 

Small et al 

(2005) 

RP/SP Car Demonstrated 

benefit of combining 

RP and SP in reliability 

context. Also observed 

significant taste 

variation across sample. 

0.91 (RP), 

0.45 (SP) 

Hollander 

(2006) 

SP Bus One of few SP 

based upon bus mode. 

Estimated parameters 

for both MV and 

Scheduling. Apparent 

mismatch between 

these approaches.  

0.1 

Asensio and 

Matas (2008) 

SP Car An attempt to 

incorporate varying 

departure times into SP 

Scheduling/MV study.  

0.98   
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Börjesson 

(2008) 

RP/SP Car Direct comparison 

of RP and SP. Validated 

RP supply data with 

external data sources. 

1.66 (RP 

only), 0.74 

(combined 

RP/SP) 

De Jong et al 

(2009) 

SP Freight 

(road) 

Highlighted issues 

specific to freight and 

estimates a RR specific 

to this context. 

1.24 

(freight) 

Li et al (2010) SP Car Developed method 

for displaying SP. 

Models commuters and 

non-commuters. Found 

that MV and 

Scheduling VORs were 

approximately 

equivalent.  

1.43 

Tilahun and 

Levinson (2010) 

SP Car Used histograms to 

present travel time 

variation to 

respondents. Used 

mode as measure of 

centrality.  

0.89 

Carrion and 

Levinson (2013) 

RP Car GPS based RP 

similar to Carrion and 

Levinson (2010). 

Tested a range of 

reliability measures.  

0.91 

De Jong et al 

(2014) 

SP Freight 

(shipping) 

Divided reliability 

into two components to 

represent freight 

industry.  

0.1 to 0.4 
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Kouwenhoven 

et al (2014) 

SP Multi-

Modal 

Represented a range 

of modes, demographic 

characteristics in Dutch 

VOT/VOR study 

0.7 

Prato et al 

(2014) 

RP Car Used GPS and 

model data to estimate 

VOR. Found similar 

RRs in peak and off-

peak. 

1.5 

Ehreke et al 

(2015) 

SP  Multi-

Modal 

Estimated RR for a 

range of modes and trip 

purposes. Only car RR 

quoted. 

0.7 
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Discussion of RP and SP results 

The studies outlined in Table 2.3 give a RR range from 0.1 to 2.51. The average of 

these (unweighted) is 1.01, which would accord approximately with the values in TAG 

unit A1.3 (Nov 2014). It should be noted that a recent update to the value for car has 

reduced the RR to 0.4 (Department for Transport, 2017). 

 Carrion and Levinson (2012) undertook an investigation into the factors influencing 

the RR, conducting a meta-analysis of previous studies. They included the following 

explanatory variables: 

• Data type (RP, SP, RP-SP) 

• Scheduling / Reliability 

• Region 

• Reliability Measures 

• Travel Time Unit (AM / PM) 

• Representation of Heterogeneity in the model (observed / unobserved) 

• Choice Dimension (mode, route, joint) 

• Year of the Study 

Carrion and Levinson specified a linear regression model, using the above explanatory 

variables and the RR as the dependent variable. Only one variable was statistically 

significant; a dummy related to whether the study took place in California. The study 

was not able to estimate models which explain the relationship between the RR and the 

methods, data and assumptions employed to estimate them.  

The data presented in Table 2.3 may allow a similar linear model to be estimated. There 

are 21 studies in the table with a reported Reliability Ratio. The natural explanatory 

variables from the table are: 

• year of publication. 

• method of data collection – SP, RP or both. 

• Mode covered by the study. 
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In addition, the framework used to estimate the RR can also form a categorical variable: 

MV, Scheduling, or both. The count of studies under each category, and average RR is 

reported in Table 2.4. 

Table 2.4 - Summary statistics of RR studies in Table 2.3 

 

Table 2.4 shows that the RP based studies in Table 2.3, on average, estimate slightly 

higher RRs than SP based studies. Both methods of data collection estimate much 

higher RRs than SP and RP combined, although the SP/RP RR is only based upon two 

data points. All modes appear to estimate similar RRs with the exception of bus, 

although this RR is only based upon a single observation. The resulting RR when both 

Scheduling and MV parameters are estimated appears higher than when either MV or 

Scheduling is employed separately, although this average is skewed by the work of 

Small prior to the year 2000 (Small et al 1995; Small et al, 1999). 

Prior to estimating a linear regression model, Carrion and Levinson plotted the RRs 

against time. This is reproduced using the data from Table 2.3 in Figure 2.10. 

Count of Studies Average RR

RP 5 1.10

SP 14 1.02

RP/SP 2 0.73

Car 15 1.20

Bus 1 0.10

Freight 2 1.49

Multi-Modal 3 1.66

MV 13 0.76

Scheduling 3 0.95

Both 5 1.70

Data 

Collection

Mode

Framework
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Figure 2.10 – Plot of studies producing a Reliability Ratio from Table 2.3 

The points plotted in Figure 2.10 can be understood with reference to the lookup 

tables below. The shape of the data point denotes the mode being modelled, the colour 

is the method of data collection, and the border denotes whether the MV or Scheduling 

framework (or an average of both) was used to calculate the RR quoted. 

 

Figure 2.10 does not indicate any clear trends. Two of the three pre-year 2000 

estimates are particularly high (Small et al 1995; Small et al, 1999), which could lead to 

the conclusion that estimates have reduced over time. If these studies are removed 

however, there is no clear temporal trend. Carrion and Levinson used Ordinary Least 

Squares (OLS) regression in an attempt to identify the factors within a study that would 

influence the RR. Using the updated set of studies presented in Table 2.3 and Figure 

2.10, a similar meta-analysis is conducted over the following pages. Similar to Carrion 

and Levinson’s study, OLS will be employed as the method for estimating the 

parameters of the linear model. OLS is the most common method for estimating a linear 

regression model and is based upon minimisation of the sum of the squared residuals. 

Triangle MultiModal Blue SP Black Border MV

Square Bus Red RP Pink Border Sched

Diamond Freight Purple RP/SP No Border Both

Circle Car

Shape = Mode Colour = Data Collection Border = Framework
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As well as containing newer RR studies, the model estimation that follows in this 

chapter differs from Carrion and Levinson’s insofar as the measure of TTV, the 

presence of heterogeneity, and the choice dimension are all excluded as explanatory 

variables. Instead what remains are the four key elements: 

• Year of study – a variable indicating the year of publication of a study 

• Mode – a categorical variable for each mode indicating the mode of interest 

in the study. The “multimodal” mode variable was omitted from model 

estimation to avoid perfect multicollinearity. 

• Data Collection – A categorical variable for each mode of data collection: 

RP or joint RP/SP. An SP dummy variable is not explicitly included in the 

estimation for the same reason as above. 

• Framework – A categorical variable to represent the reliability framework 

used (MV, Scheduling, both), with the omission of MV. 

The model estimated is therefore: 

𝑅𝑅 = 𝛽0 + 𝛽1 ∙ 𝑌𝑒𝑎𝑟 + 𝛽2 ∙ 𝑅𝑃 + 𝛽3 ∙ 𝑅𝑃𝑆𝑃 + 𝛽4 ∙ 𝐶𝑎𝑟 + 𝛽5 ∙ 𝐹𝑟𝑒𝑖𝑔ℎ𝑡 + 𝛽6

∙ 𝑆𝑐ℎ𝑒𝑑 + 𝛽7 ∙ 𝑆𝑐ℎ𝑒𝑑𝑀𝑉 

(2.28) 

Where 𝛽0 is the parameter estimate of the intercept, and 𝛽1 to 𝛽7 are parameter 

estimates related to each of the explanatory variables. The parameter estimates of the 

model are presented in Table 2.5 below.  

Table 2.5 - Results of meta-analysis using OLS regression 

 

Coeffeficient 

Estimate t-stat

Constant 38.452 0.917

Year -0.019 -0.903

RP 0.616 1.554

RPSP -0.063 -0.156

Car -0.178 -0.367

Freight 0.168 0.377

Sched 0.439 0.983

SchedMV 1.140 2.938

Adjusted R square 0.356
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Table 2.5 shows a similar result to that found by Carrion and Levinson (2012) 

insofar as most parameter estimates are not statistically significant at 5% (two tail test). 

The exception is the Sched/MV dummy variable (where separate RRs are produced 

using both MV and Scheduling frameworks, and mean average of the two values is 

calculated); this was not found by Carrion and Levinson. The positive sign on this 

variable suggests that studied attempting to estimate RRs using both types of reliability 

framework will, on average, produce higher RRs. There is not an obvious reason for this 

finding. If the MV and scheduling frameworks were essentially equivalent (as outlined 

in Section 2.3.3), it follows that no statistically significant difference between 

frameworks would be observed. The ‘year’ of study was negative but statistically 

insignificant. If the two earlier Small studies are removed and the model re-estimated, 

this parameter becomes positive, whilst remaining statistically insignificant. The RP 

indicator is positive, suggesting that RP studies will estimate higher RRs. Although its 

estimate has the highest t-statistic other than Sched/MV, it is not significant at 5%. The 

mode covered in a study does not appear to materially affect the RR produced. 

Despite the largely inconclusive findings of the meta-analysis, Table 2.4 did show 

that there was a difference in RR estimates between those made using RP and SP. The 

studies utilising RP have an average RR of 1.10, compared to 1.02 when using SP data 

collection. This discrepancy is evidence against the hypothesis that SP studies will 

overestimate the VOR. It is also at odds with the conclusion of Rose and Hensher 

(2014) that travellers would estimate a lower VOT when they actually had experience of 

using the transport system in question. It should be noted however that removal of 

Hollander’s low RR estimate increases the average SP RR to 1.09 – close to the RP 

average of 1.10.  

There is evidence in Tables 2.1 and 2.2 from the UK’s rail industry that RP would 

produce lower Reliability Ratio estimates than SP. Although the situations are not 

directly comparable, the RP estimates of 
𝐴𝑀𝐿

 tend to be lower. For example, the mean 

London – Long Distance SP estimate was -0.19. The corresponding short run RP value 

is -0.09, although this rises to -0.21 for long run. It should be said that the RP long run 

value is highly skewed by the outlying estimate of -0.63 made by Oxera (2005). When 

the outlier is removed, the values of short run and land run elasticities are approximately 
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equal. For shorter distance London travel, the mean SP elasticity is -0.12 (for non-

commuters). A similar RP based value is -0.04, although again this rises to -0.07 in the 

long run. 

Accounting for differences between RP and SP in the literature 

The review of SP presentation methods in Section 2.4.1 showed that a range of 

layouts have been used to present choice scenarios to respondents. Despite making a 

recommendation on the format that researchers should use, Tseng et al (2009) 

concluded that great care must be taken in administering SP surveys in order to prevent 

illogical and inconsistent responses from respondents. This suggests that SP-based 

Reliability Ratios have the potential to be misleading if the survey is poorly designed. 

This is an issue that is less relevant to RP based studies, particularly if traveler behavior 

is observed directly. 

Börjesson (2008) reasoned that RP represented something altogether different than 

SP: a long term adaptation to traffic conditions which SP often did not attempt to 

replicate. This is supported by the RP evidence presented in Table 2.2; although the rail 

travellers in the studies experienced varying levels of reliability, they tended not to 

respond immediately. It should also be noted that if the Oxera (2005) outlier is 

excluded, SP-based methods will still overestimate the value of reliability even in the 

long run. 

There are notes of caution to these findings however: as Wardman and Batley 

(2014) point out, travellers in the rail context may wish to modify their behaviour due to 

reliability concerns but not have any alternative means of travel. Therefore RP 

experiments where the alternatives available are poor in comparison will estimate low 

elasticities.  

There have also been experiments that have found RP estimates to be higher than 

SP: examples include Ghosh (2001) and Small et al (2005). Carrion and Levinson 

(2012) did not find statistical significance in the difference between RP and SP RRs, but 

felt that the difference between RP and SP remained an open question. This is also the 

conclusion of the meta-analysis conducted within this chapter. A segment of the 
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literature has highlighted drawbacks with using SP data only, identifying a number of 

sources of bias. These include: 

• Whether the alternatives chosen would still be chosen in reality (Börjesson, 

2008)  

• The range of ways the survey can be presented to the respondent (Tseng et al 

(2009); 

•  Misapprehension of the survey, particularly in the case of reliability which 

is a complex subject; 

• Fatigue (Bradley and Daly, 1994); 

• Non-trading between options (Wardman, 1988); 

• Protest response (Wardman and Batley, 2014). 

The present chapter also identified issues with estimating models based upon RP 

data: namely, the imposition of a choice set upon the traveller, and the existence of 

habitual behaviour (Hensher, 2010). Nevertheless, RP does overcome many of the 

issues associated with SP, and efforts to estimate a RP-based RR have already begun 

(e.g. Prato et al, 2014).  In Chapter 5 of this thesis, RRs will be estimated based upon 

another emerging RP dataset: public transport smartcards. These datasets are introduced 

in the next chapter. 
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2.4.4 Empirical Support for Equivalence 

There have been a number of studies which have made attempts to understand the 

empirical relationship between the MV and Scheduling EU parameters by utilising SP 

and RP-based methodologies. Some have been conducted prior to the completion of the 

theoretical work on equivalence covered in Section 2.3.3 and therefore represent a 

parallel attempt to establish equivalence (Lam and Small, 2001; Hollander, 2006). 

Others were responses to the theoretical work of Fosgerau and Karlström (2010), where 

their theory was tested with novel datasets (Batley and Ibáñez, 2012; Börjesson et al, 

2012).  

The aforementioned RP study of Lam and Small (2001) collected data on the choice 

between toll and un-tolled routes from travel diaries kept by commuters who 

participated in their study. Combined with loop-detector data, they were able to estimate 

an RP-based VOT and VOR using MV. Lam and Small also reported estimates of 

Scheduling parameters, and made some brief comparison with their estimated MV 

parameters. The implied VOT and VOR of the Scheduling models were lower than 

those of the MV model, but the authors noted difficulty in representing travel conditions 

for individuals beyond the section of freeway for which there was data. This 

unmodelled section of the highway network could have had a substantive effect upon 

passenger arrival times in relation to their PAT (Rose and Hensher, 2014); also this 

limitation would have had a greater impact on the Scheduling model than the MV 

specification. Furthermore, (as previously highlighted) the practice of generating a 

travel time distribution from flow data could be challenged. Although this was the first 

known comparison of empirical MV and Scheduling parameters, its issues are such that 

it cannot provide evidence one way or another for the theory of reliability equivalence. 

The work of Hollander (2006) represented the first attempt to empirically model 

reliability equivalence after Bates et al (2001). The paper reported a discrepancy 

between the parameters of MV and Scheduling as evidence against equivalence. More 

generally, Hollander (2006) concluded that the MV approach will underestimate the 

value of travel time variation and should be rejected in favour of the Scheduling 

approach only. This was a strong conclusion against reliability equivalence and MV 

itself, however an interpretation in light of the theoretical discussion of equivalence is 
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relevant. The theory of Noland and Small (1995), Bates et al (2001) and Fosgerau and 

Karlström (2010) was dependent upon the assumption of departure time, D, being 

treated as a continuous variable. As the study of Hollander (2006) focused upon the bus 

mode, and entailed discrete values for D (and with D fixed in the SP), it is unclear that 

rescheduling on the part of the survey respondent was possible. Therefore the theory of 

reliability equivalence could not be meaningfully critiqued on the basis of Hollander 

(2006).  

The same point can be made for the later contribution of Batley and Ibáñez (2012), 

which took into account the contribution of Fosgerau and Karlström (2010). Batley and 

Ibáñez based their analysis upon an SP survey of rail travellers, in which the 

hypothetical choices made were related to rail travel. It was shown that a standard 

deviation parameter could be estimated in the same choice model in addition to SDE 

and SDL parameters which would imply that equivalence did not hold. Although this 

was not given as a refutation of the theory of equivalence in itself, the authors suggested 

that equivalence would be dependent upon the form of the relevant utility functions 

(which will be discussed in Chapter 6). However, in addition to this conclusion, the 

same comments as for Hollander (2006) might be made: the public transport context 

(with discrete departure times) and SP surveys (when the value of D is imposed) are 

outside the scope of the theory of equivalence. In the case where D could be taken as 

continuous, the estimates of Scheduling and MV parameters appear to imply a similar 

VOR (e.g. in Li et al, 2010). The empirical study of Small et al (1999) also found that 

the standard deviation parameter was small in magnitude, statistically insignificant and 

not of the expected sign when Scheduling parameters were also present, therefore 

implying that the Scheduling parameters accounted for the entire cost of travel time 

variation. Recent evidence produced by Li et al (2016) proposed and found empirical 

support for the inclusion of a measure of variability within the Scheduling framework. 

Börjesson et al (2012) based their SP study upon public transport based commuters. 

The motivation of the study was to overcome the known difficulty of transferring MV 

parameter estimates from one context to another because of the shape of the travel time 

distribution (Bates, 2009). Börjesson et al suggested that an improvement was to 

estimate Scheduling parameters and then use the theory of equivalence to transform 
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them into context-specific MV parameters. Again, a discrepancy was found when both 

sets of parameters were estimated empirically based upon the dataset (although in 

contrast to Hollander (2006), MV overestimated the cost of reliability compared to 

Scheduling). Börjesson et al (2012) went some way towards accounting for this result: 

arguing that when information about travel is known in advance, travellers are likely to 

reschedule activities to fit their actual arrival time. This acknowledgement of flexibility 

on the part of the travellers is crucial to understanding the result of Börjesson et al and 

others – the theory of equivalence relies on flexibility of the traveller in their departure 

time. Without an acknowledgement of flexibility in SP surveys, reliability equivalence 

will not be observed in practice. One such method to overcome this issue is to redesign 

SP surveys so that respondents indicate an ideal departure time for a given PAT and 

travel time distribution (using a method similar to that developed by Copley et al, 

2002). Another is to utilise RP based estimates of reliability, where the departure time 

indicated by the data can be assumed to be optimal. In the present thesis the latter 

approach will be taken, based upon public transport smartcard datasets. The literature on 

public transport smartcards will be provided in Chapter 3.  

2.5 Summary and Conclusions 

To conclude this chapter, an overview of its contribution with respect to the original 

objectives of the thesis is provided in Table 2.6. 
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Table 2.6 - Objectives met by Chapter 2 

Objective Description Addressed in: 

O4 To develop a methodology for 

estimating a VOR using smartcard 

data. 

In addition to introducing the 

key reliability framework in 

detail, Section 2.4 provided a 

review of previous empirical 

studies in the field. This included 

an introduction to SP and RP in 

turn, highlighting issues with 

each data collection 

methodology. A comparison of 

the results from the frameworks 

made the case for further 

investigation into RP. 

O5 To review the origins of the 

Mean-Variance framework from 

its origins in finance to its 

transition and use in transport 

contexts. 

EUT was introduced in 

Section 2.1. A thorough 

introduction to MV, and its link 

to EUT and finance was 

provided in 2.2.  

O6 To explore improvements to 

the standard Mean-Variance 

framework, including other 

statistical indicators of risk, the 

shape of the utility function and 

potential alternative frameworks. 

Research which has 

examined alternative indicators 

of travel time risk was discussed 

in Section 2.3.3. This will be 

further developed in the next 

chapter. Alternative frameworks 

were introduced in 2.3, and the 

theory of equivalence between 

Scheduling and MV was 

explored in 2.3.3. The empirical 
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research that has attempted to 

find supporting evidence for 

equivalence was explored in 

2.4.4. 
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 In addition to meeting these stated objectives, the key literature areas that have been 

investigated provide a background for much of what follows in this thesis. This 

background is summarised here. 

The in-depth discussion of MV not only provides a unique background to the 

framework, tracing it back to its roots in finance, but will inform discussion of 

alternative reliability indicators. Jackson and Jucker (1982) are often credited for 

introducing MV into a transport context, but this literature review has shown that this 

introduction was primarily empirical and lacked theoretical rigour. Polak (1987a) and 

Senna (1994) provided the microeconomic basis for MV in transport, but it remains 

unclear whether the mean and variance are essential components of the approach. 

Markowitz (1959) suggested that alternative variables to the mean and variance may be 

more suited to real-world applications, but this insight has not been widely accepted in 

transportation contexts. Nevertheless, transport authors have begun to specify 

alternative measures of risk (Van Lint et al, 2008; Lam and Small, 2001).   

The review of empirical evidence on the VOR highlighted some specific issues. It 

has been shown that drawbacks exist with the dominant SP methodology. These are 

both generic (e.g. cheap talk) and specific to reliability studies (e.g. high levels of 

protest responses). It has been shown that the alternative RP methodology is less 

utilised due to lack of data and pitfalls of its own, including imposed choices, difficulty 

specifying the choice set and habitual behaviour. Nevertheless, the literature has 

suggested that RP should be favoured where possible (Bates et al, 2001), and that it 

would be likely to yield lower RR values due to the incorporation of travellers’ 

adaptation to actual travel conditions (Brownstone and Small, 2005). This was not 

borne out based on the values of RR presented in Table 2.3, although it was supported 

by a comparison of Mean-Lateness elasticities estimated within the rail context. 

The theory of reliability equivalence was introduced in Section 2.3.3. The next step 

of applying reliability equivalence in empirical study was investigated in Section 2.4.3, 

where it was found that this has proven problematic. Whilst findings of studies such as 

that of Li et al (2010) appear to support the theory, Batley and Ibáñez (2012) and 

Hollander (2006) report findings that apparently contradict it. Lam and Small (2001) 
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and Börjesson et al (2012) note methodological issues in comparing the two 

frameworks.   
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Chapter 3 - Datasets 

3.0 Introduction 

As described in the two previous chapters, this thesis will make extensive use of 

smartcard data provided from London’s public transport network. The primary purpose 

of this chapter is to provide the reader with an understanding of the data that has been 

analysed in the course of the research undertaken here. The first part of this process will 

be to introduce the field and provide a literature review of key smartcard research 

(including research making use of Oyster card data). The second part of the chapter will 

introduce the datasets that will be used in the thesis. The key dataset discussed is the so-

called ‘5% sample dataset’ – this will form the basis of the majority of the empirical 

work in subsequent chapters. The reader will be made aware of aspects of the dataset 

which presented challenges for the research. 

Also provided in this chapter is a description of other datasets relevant to the thesis. 

This includes a dataset containing 100% of Oyster records on a small section of 

London’s public transport network. The size of this dataset potentially allows for a 

greater level of detail in analysis, but a downside is that it contains only one mode and a 

limited number of OD pairs.  

In the final part of the chapter, use of the key datasets will be demonstrated; initially 

through some preliminary analysis. Subsequently, analysis related to different indicators 

of travel time reliability will be presented. The calculation of reliability is a key element 

of using the smartcard data in this thesis, and the empirical comparison of indicators is a 

theme that will be further explored in Chapter 6.  

3.1 Background to Smartcard Ticketing 

3.1.1 Introduction 

London’s Oyster card electronic ticketing system uses technology that is more 

broadly referred to as a public transport smartcard system, of which there are numerous 

examples worldwide. Each system will reflect the fare policies unique to the issuing 

transport authority; for example Seoul’s T-Money card requires bus passengers to 
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register both access and egress to the vehicle (Park et al, 2008), whereas London’s bus 

passengers only register their access to a vehicle as a flat fare is levied. Such differences 

in fare policy have implications for the data available from the systems, which in turn 

will shape the research questions that might be answered from interrogation of the data. 

Despite these differences, the systems retain sufficient similarities such that London’s 

Oyster card can be referred to using the generic terms public transport smartcard or 

more simply smartcard. 

Smartcard technology has existed since the late 1960s, and has been developed and 

applied in many contexts completely separate from transportation: health care, banking 

and human resources to name but a few (Pelletier et al, 2011). The card itself is usually 

a similar size to a credit card; the ‘smart’ aspect is a microchip embedded in the card 

which is capable of storing data, providing read/write access, and in some circumstances 

processing data. Crucially, all of these tasks can be conducted securely by interfacing 

with the hardware of the authority responsible for the smartcard (Blythe, 1998). In the 

public transport context, speed of use has been a key characteristic of smartcard 

technology; consequently, contactless systems have become the norm (Blythe, 2004) 

where the cards are not required to be physically inserted into a reader.  

Applications of smartcards in the public transport context began in earnest in the 

1990s with successful roll-outs in Asia (Blythe, 2004). In the UK, the white paper ‘A 

New Deal For Transport’ (DETR, 1998) explicitly recognised the contribution 

smartcards could play in a modern public transport system. This was followed by 

creation of the ‘Integrated Transport Smartcard Organisation’ (ITSO) as a response to 

the concern that the de-regulated nature of local public transport services would lead to 

a lack of interoperability between different smartcard schemes. Whilst many smartcard 

schemes have been rolled out throughout the UK, it is London’s Oyster card which is 

often cited as an example of success. 

The Oyster card was launched in 2003, although this initial phase covered monthly 

and annual passes only. In the period since, take-up has increased due to the card 

covering a wide range of fares, modes (notably national rail), and geographies. It is also 

the fare policy of Transport for London (TfL) that Oyster card fares are lower than cash 

payment equivalents to encourage use of the former.  This is in line with the key finding 
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of the thesis of Xu (2007), who forecast that smartcards would be taken up by the 

majority of PT users if there was a reduction in financial costs and improved 

convenience to the user. Other benefits include a fare capping system, which will be 

discussed in a later section of this chapter. Accordingly, TfL estimated that by the 

middle of 2012, 43 million Oyster cards had been issued, which accounted for 80% of 

all trips on the public transport network in London. Early research in the area has 

suggested that high usage levels would enable public transport authorities to utilise 

smartcard data to understand more about their customers (Blythe, 1998; Bagchi and 

White, 2005).  

3.1.2 Literature Review 

This section of the introduction to the data will aim to give the reader an overview of 

the key work that has attempted to make use of smartcard data. Initially the studies will 

be drawn from systems worldwide, however the review will go on to focus on work 

related to the Oyster card in London. The limited amount of smartcard research which 

investigates reliability will also be discussed. 

One of the first prominent examples of a successful smartcard system was the 

Octopus Card from Hong Kong, introduced in 1997; another was Seoul’s T-Money in 

2004. As such, the research making use of smartcard data tends to be recent, despite 

some authors identifying possible uses for public transport smartcards during or soon 

after their implementation (Bagchi and White, 2003; Utsonomiya et al, 2006). What is 

consequently found is an evolving research area where much of the work is initially 

focussed towards reporting supply and demand statistics of the transport systems in 

question – although more complex work is now emerging. A key determinant of 

research in this field is what data is available to the researcher, and this will be evident 

in the papers discussed here.  

Some of the earlier studies utilised datasets which were less than ideally suited to in-

depth analysis of a complex urban transport system. Nevertheless, this did not mean that 

valid insights into system performance and passenger behaviour could not be 

ascertained through research. Utilising two full days of data from the public transport 

system in Seoul, Park et al (2008) were able to produce aggregate statistics on numbers 
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of transfers, travel times, as well as demand for modes and routes. The work was 

validated against official figures, with the authors reporting encouraging results for the 

future of smartcard data in the analysis of public transport systems.  

Bagchi and White (2005) utilised data from a concessionary pass scheme and a 

separate commercial smartcard scheme in the UK. Despite a limited dataset, an 

interesting insight from this work was a discussion around establishing a rate of 

turnover of passengers using the smartcards. Such a finding would not only be of value 

to public transport authorities, but could provide a useful underpinning to further 

research in this field. A similar concept was investigated by Morency et al (2006) using 

a fuller sample of smartcard data which included 277 concurrent days. In this work they 

reported a metric ‘new stop’ which was an aggregate measure of passenger boarding at 

a public transport stop for the first time – representing ‘take-up’ of a route or the system 

as a whole. They did not however consider a ‘drop-off’ rate which would be required to 

have a fuller understanding of turnover of passengers.  

More recently there have been attempts to track patterns of travel within large 

smartcard datasets. Ma et al (2013) used a range of data mining techniques to identify 

trip chains. They were able to identify regular travellers and ultimately construct a door-

to-door OD matrix for different user types. Tavassoli et al (2016) go one step further 

and compare OD matrices calculated from smartcard data with those produced by a four 

stage model. They found substantive discrepancies between the two data sources but do 

not go so far as to conclude which should be favoured. Other authors have noted that 

smartcard data provide little behavioural context to the trips being observed (e.g. trip 

purpose) and have therefore sought to understand more about travellers. Kusakabe and 

Asakura (2014) combined smartcard data with external datasets covering the likes of 

trip purpose. Lee and Hickman (2014) drew upon transaction data (often available 

alongside smartcard data) in combination with heuristic rules in an attempt to 

understand more about travellers and their trip purpose. 

Whilst attempts to use the smartcard datasets have been numerous and to a large 

extent successful in demonstrating potential applications (see Pelletier et al, 2011 for a 

useful overview), authors have also been circumspect in their recommendations; often 

identifying flaws or drawbacks with the data. It has been suggested that situational 
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factors may affect the quality of data available: for example data collected from open 

stations or systems (where there are no access and egress gates) may be of poorer 

quality as passengers are less likely to use the system correctly (White et al, 2010). 

Another issue relates to how fares are calculated: in Singapore, bus passengers are 

required to use their smartcards as they access and egress from the vehicle due to all 

fares being calculated by distance (Chakirov and Erath, 2011). In many other contexts, 

such as London, flat fares are charged for bus usage and therefore egress movements are 

not recorded. Whilst the latter approach brings simplicity and facilitates quick vehicle 

egress, it does not allow easy analysis of bus passenger destinations (White et al, 2010). 

The Oyster Card in Research 

These issues notwithstanding, there is a significant and rapidly growing body of 

work concentrating on London using Oyster card data as a basis for analysis, primarily 

carried out at the Massachusetts Institute of Technology (MIT) in the USA. Many 

practical considerations for using this data were described in work by Chan (2007), who 

compared the existing TfL methodology for OD estimation with a methodology for 

estimating an OD matrix using Oyster card data. The same work also identified a 

methodology for monitoring reliability on the underground system and discussed the 

excess journey time (EJT) metric in some detail; EJT being the time taken to complete a 

trip over the scheduled time. EJT was also the focus of the report by Frumin (2008), 

where this measure was derived from Oyster card data for users of the London 

Overground system and compared to the ‘Public Performance Measure’ (PPM) used on 

the British railways. The work went on to look at passenger awareness of public 

transport schedules and its impact on actual passenger behaviour. At the University of 

Leeds, Christos (2011) utilised a sample Oyster card dataset to report London 

Underground supply and demand statistics, with a particular emphasis on reliability, but 

did not test the influence of reliability on demand.  

Similar to Chan (2007), Seaborn et al (2009) took an existing TfL manual survey 

methodology and contrasted it with a method of utilising smartcard data to perform the 

same function: in this case focussing on transfers between modes. Seaborn et al 

identified possible problems with linking trips within the Oyster dataset, but were 

nevertheless able to define transfer time thresholds for linking trips, which is 
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particularly relevant when data from the bus network is entry point only. Despite this 

research, the nature of transfers between Underground lines once a user has entered into 

the system using their card, but before they exit remains a region of uncertainty and a 

possible area for future research. Kurauchi et al (2014) found that although Oyster usage 

was only recorded by passengers upon entering a bus, this gave an indication of which 

bus route they used. After identifying travellers with repeating travel patterns (i.e. 

commuters), they tested whether there was variability in route choice. They found that 

traveller behaviour was more complex than expected; many passengers with stable 

origin times and locations utilised different bus services (often with differing routes) in 

order to reach their destination. If bus route reliability were to improve, then one should 

perhaps expect the variability in route choice to reduce.  

The Oyster Card and Reliability 

Recent research at MIT has begun to utilise Oyster card data to investigate aspects of 

public transport reliability. Such work has developed upon the approaches to monitoring 

reliability proposed by Chan (2007), for example by differentiating between types of 

public transport disruption such as recurrent and incident-related (Uniman, 2009). The 

same research has also analysed Oyster card data using a linear regression methodology 

to explain the causes of reliability, suggesting that travel time, interchange and incident 

occurrence were key explanatory variables. Whilst such a model represented a clear 

development in the effective use of Oyster card data, it is likely that this particular 

approach omitted key variables: service headway and passenger demand for example. 

This will be examined in the next chapter of this thesis. 

Other research has begun to incorporate other data sources into Oyster card analysis 

(such as automatic vehicle location (AVL) data) in order to better understand public 

transport reliability. The most recent work in this field (Schil, 2012) endeavoured to 

create a unified way of reporting reliability between modes for both operational and 

passenger use. 

Using Oyster Card Data  

In utilising the Oyster card data and overcoming the associated pitfalls, the 

aforementioned research projects present a basis for future work using similar datasets. 
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Each of the London-specific studies was able to demonstrate a unique and useful 

methodology for using the data. However, it should be noted that a common conclusion 

was that even the rich and abundant dataset would still require some enrichment from 

more traditional surveys (Chan, 2007; Christos, 2011). In a similar vein, it is also clear 

that a possible improvement to the data could be the utilisation of other service quality 

data e.g. signalling or Automatic Vehicle Location (AVL) to complement the Oyster 

card records and give an understanding of exact boarding locations (Seaborn et al, 2009; 

Schil, 2012) or the proportion of a trip spent in vehicle (Frumin, 2008). The issues 

surrounding use of the Oyster data will be further investigated in Section 3.3 of this 

chapter. 

3.2 Datasets 

This section will provide a brief overview of the datasets provided to the present 

study by TfL. The 2008 datasets were made available at beginning of the study but not 

all were utilised. The 2011 and Edgware to Camden datasets were provided 

subsequently in 2012. 

3.2.1 TfL Datasets   

The sample datasets outlined in this section represent all trips made by 5% of the 

active users on London’s public transport network in a given month; the data was 

collected during a single non-school holiday month in 2008. Subsequently an additional 

5% sample dataset was provided to this study based upon data collected during a non-

school holiday month in 2011. Therefore early analysis conducted as part of this study 

was based upon the 2008 dataset. The analysis conducted in the second half of the study 

was mainly based upon the 2011 data. The 2011 data were preferred as analysis 

suggested it contained a lower number of errors and a more reliable indication of mode 

choice which would prove invaluable for later work. The processes of error checking 

and dealing with such errors are described in subsequent sections of this chapter.  

An additional dataset consisting of all Oyster trips (i.e. 100% of users) collected in a 

month on a small part of the London Underground (LU) network (the Northern Line, 

between Edgware and Camden Town in both directions) was also provided by TfL. This 

is described and some indicative analysis is conducted with the dataset. It will form the 
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basis of the work at the end of this chapter, where differences between statistical 

indicators of reliability are investigated. 

Dataset 1 (2008) and Dataset 2 (2011): SEQUENCED_JRNYS 

These are the key datasets to be used in the remainder of the study. It contains all 

trips made by 5% of the total Oyster card users within a single month in 2008 (Dataset 

1) or 2011 (Dataset 2). Despite the different time periods, Datasets 1 and 2 collect the 

same variables (although the 5% of users in each sample will not be the same).  

As part of the data collection, each Oyster card is assigned an ID number, thereby 

providing the potential of identifying trip chains and changing behaviour over time. 

Crucially for the analysis that follows, these datasets also identify the time, date and 

location of access and egress to the public transport system (access only on the bus 

mode) as well as the mode(s) used by a passenger to complete their trip. It has been 

shown earlier in this chapter how these aspects of the dataset have been exploited by 

previous researchers to provide insight into passenger behaviour on the network. Table 

3.1 provides further detail on these key datasets including a brief description of each of 

the data fields it contains. 
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Table 3.1 - Description of fields within the ‘SEQUENCES_JRNYS’ datasets 

Field Name Description 

DAYKEY Presented in numeric format as number of days elapsed since Jan 1st 1980 

PID_ENCRYPT Anonymised Oyster card ID number 

SEQUENCENO Numerical record of the journey leg order (can be used to link journey legs into full trips) 

SUBSYSTEMID This number refers to the mode used. Some values refer to two or more modes used on one trip 

STARTLOC Records the point at which the transport system was accessed, or the fare stage in the case of bus services 

ENDLOC Records the point at which a passenger exited the transport system. This is not recorded for bus trips 

ROUTE_INNERZONE For the purposes of fare calculation, records the innermost zone of a trip 

ROUTE_OUTERZONE Records the outermost zone of a trip 

ROUTE_DISTANCE Distance between origin and destination 

TB_CTEN Start time of the trip (when the Oyster card was used to access the system) in minutes past midnight 

TB_CTEX End time of the trip (when the Oyster card was used to egress from the system) in minutes past midnight 

JNYTYP Ticket type used for the trip - either prepay, pay as you go (PAYG) or a mixture 

DAILYCAPPINGFLAG Y/N as to whether the fare for this trip was capped (i.e. maximum charge for the day had been reached) 

CAPPINGSCHEME The scheme under which the journey was capped 

FULLFARE The full fare cost of the trip 

DISCOUNTEDFARE The discounted fare (if charged) 

PPTPRODUCTCODEKEY Code relating to type of concessionary pass (if used)   

PPTTIMEVALIDITYKEY Code referring to the duration of a travel card e.g. weekly, monthly etc. 
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A key element of the fields named in Table 3.1 is SUBSYSTEMID, which indicates 

the mode or combination of modes utilised for a given trip. This represents a key choice 

dimension and will be useful for estimating discrete choice models in Chapter 5. The 

mode indicated by this field can often be determined straightforwardly where only one 

mode is available at a station. However, when two modes are available (thus yielding a 

choice), it is determined by the gate utilised at the station, as well as intermediate points 

on the trip where the Oyster Card is scanned to indicate the route used.  

Dataset 3: TP_GATESTATS 

This file contains entry and exit counts at each station by hour, day and ticket type. 

As such it provides a useful insight into total demand at each station. Unlike all other 

datasets 1 and 2, it contains counts of Oyster card and non-Oyster trips. It does not 

however present any information on where the entrants are going to, or where they have 

come from. As the dataset is focussed on stations, it consequently does not include 

records relating to bus based trips.     

Dataset 4: UNDERGROUND_SCHEDULES 

This dataset contains stops to stop distances and scheduled journey times for the 

entire London Underground network. These scheduled times are split by AM peak, Inter 

Peak and PM peak periods. This dataset is specific to 2008 operating conditions. This 

means that it is not an exact representation of conditions for when the later smartcard 

data were collected (2011 onwards). Nevertheless, comparison with the TfL journey 

planner in 2012 showed that it remained a close approximation of services levels, which 

in general do not substantively change over short periods of time.   

Dataset 5: EDGWARE_CAMDEN 

This dataset was provided by TfL as part of a separate data request made for the 

purposes of this research. It contains a record of all Oyster card trips made within a non-

school holiday month in 2012 where both origin and destination of the trip lies between 

Edgware and Camden Town (inclusive). Unlike the ‘SEQUENCED_JRNYS’ dataset, 

there is no unique identifier for the ticket and no information related to the ticket type, 

capping scheme, etc. The dataset has a simple time and location stamp for each relevant 
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journey made. It would therefore allow analysis of the population of Oyster card users 

making trips on this section of the LU network only, but does not include information 

related to trips that begin or end outside this geographic area. 

Dataset 6: EDGWARE_CAMDEN_GATECOUNTS 

This dataset was supplied as a supplement to Dataset 5. It comprises of all the entry 

and exit movements at the stations contained within the same section (Edgware to 

Camden Town inclusive) for the same month. Gate counts are aggregated by day and 15 

minute time period. The benefit of this dataset over the previous one is that trips made 

with paper tickets (as opposed to Oyster card) are also recorded, allowing calculation of 

total access and egress numbers at a station by ticket type (Oyster/non-Oyster) and over 

time.  

Dataset 7: EDGWARE_CAMDEN_INCIDENTS 

This dataset is supplementary to Datasets 5 and 6. It contains date, time and duration 

of any incidents occurring between Edgware and Camden for the same period of time. 

There are also notes next to each incident describing the incident, its severity and 

nature. 

3.3 Dataset Issues 

This introduction of the available datasets raises some issues that may present 

themselves when conducting analysis. There are also issues that are related to smartcard 

analysis in general, and some that are specific to the fare policies of the authority 

concerned (in this case, TfL). Further data issues will also become apparent as the data 

is handled and analysed. Within this section both types of issues are highlighted. 

Section 3.3.1 is a description of issues based upon background information related to 

the datasets and the transport network; Section 3.3.2 is an outline of issues that have 

been uncovered in the process of data analysis.  
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3.3.1 Pre-analysis Issues 

1. Activities covered within ‘Travel Time’ 

This is a key aspect of the data available at present which differentiates it from most 

of the VOR studies referenced in Chapter 2. When those VOR studies refer to travel 

time variation, their definition is the variation of time spent within the vehicle and 

travelling toward the destination. This definition is appropriate in many cases when the 

mode used is the private car. However in this thesis the definition must be expanded to 

cover other elements of a trip. This is because TfL’s smartcard system requires rail 

travellers to use the card as they enter and exit the station. The travel time (and hence 

travel time variation) remains a sensible term to use, but it must be redefined to cover 

activities other than travel in vehicle. 

Travel time, recorded as the difference between access to the origin station and 

egress from the destination station, will therefore include the time taken to access the 

platform from the station entry point, waiting time on the platform, time to access the 

vehicle, in-vehicle time, time to egress from the vehicle, and time taken to travel 

between the egress platform and the station exit (where the Oyster card is registered as 

leaving the system). The travel time may optionally include transfer time between 

platforms, transfer waiting time, and miscellaneous activities (for example visiting a 

retail unit within a station). This range of activities may partly account for the long tail 

of the travel time distribution observed later in this chapter.  

This definition of travel time creates two key issues. Firstly, most RRs in covered in 

the literature review section are calculated based upon in-vehicle time. Any RRs 

calculated with TfL’s smartcard data will be based upon the whole range of activities 

outlined above. Therefore, the RRs estimated in Chapter 5 of this thesis are not directly 

comparable to those in the majority of the literature. The second issue is that the 

randomness of total travel times will come from a number of activities, and it will be 

unclear the contribution of each element. The regression models in Chapter 4 are an 

attempt to separate out the reliability impact of different elements of total travel time. 
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The reader is advised to be aware of this definition of travel time in the work that 

follows – that VORs and Reliability Ratios calculated are based upon station-to-station 

conditions rather than in-vehicle time only. 

2. Incomplete trips 

This issue is caused by travellers failing to register their smartcard at a point of 

access or egress at the station. The system creates an incomplete trip when it records 

two station access transactions by a single card when no intermediate egress transaction 

is made in between. The same is true when two egress movements are observed on a 

single card without an intermediate access movement. The existence of a (unused) 

dataset to record these incomplete trips would suggest that they have been removed 

from the primary datasets. The 2008 version of Dataset 1 was queried to test whether 

this was the case. It was found that of the 3,816,196 London Underground only trips 

(LU), 133,634 (3.5%) had a start location and time, but no end location, suggesting that 

the removal of incomplete trips would have to be carried out manually. Further 

investigation into this issue revealed that 72% of these unfinished trips were made using 

a pre-paid travel card, demonstrating that this type of user is most likely to bypass 

validation on exit from a station due to no financial penalty existing for this behaviour 

given the card type. More generally, this is likely to present a particular problem at 

stations where there are no exit barriers.    

3. Truncation of Time Stamps 

Table 3.1 contains the fields TB_CTEN and TB_CTEX which are timestamp fields 

related to time of access and time of egress from the transport system respectively. 

Upon entry to the system, the time of entry in hours, minutes and seconds is recorded, 

for example 16:53:38. However the system truncates the time so that only the hour and 

minute are stored, thereby losing the number of seconds. This effectively converts the 

data from a near-continuous variable to a discrete one. For the example given above, the 

system would record 16:53, or 1013 (minutes since midnight). This has been discussed 

in previous research (e.g. Chan, 2007) where it was concluded that all travel time 

records may be inaccurate by ± 59 seconds. This is particularly a problem for short trips 
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where the discrepancy created by such a rounding procedure will account for a greater 

proportion of the total travel time. 

4. Bus destination points 

The existence of the bus mode within Dataset 1 and other datasets allows analysis of 

a road-based public transport mode alongside underground and rail. The factors 

affecting reliability of the bus mode is likely to be distinct from rail-based modes due to 

interactions with other traffic. The bus mode also has a different pricing structure to the 

rail based modes; on buses a flat fare is charged for any distance of travel on that 

vehicle whereas rail trips are charged by zone. This alternative pricing structure may be 

useful where a cost variable is required. However, since a flat fare is charged on buses, 

and the primary purpose of the Oyster card is fare collection, there is no immediately 

available information on the location of passenger destination points, and the time of 

alighting. Histograms of travel times are therefore not simple to plot. Research has 

made some progress in addressing this issue. The thesis of Wei (2010) showed how 

supplementary data points could be used to infer where the user of an Oyster card 

alights a bus vehicle. Furthermore, use of an automatic vehicle location (AVL) dataset 

which contains information related to the temporal and geographic location of a bus 

vehicle allows calculation of an alighting time (and hence travel time). 

 

5. Fare calculation 

There are elements of fare calculation that are specific to the public transport 

network in London. These are of note as they might represent a limitation in 

generalising the analysis in this thesis to other locations.  

Fare capping is the fare policy that affects non-travelcard (i.e. pay-as-you-go) users, 

where the cardholder’s account is debited for each individual trip made. The fare 

capping policy of TfL is that the total cost of travel cannot exceed a given value in the 

24 hour period 04:30 to 04:29. This is represented in Dataset 1 (Table 3.1) by a binary 

variable on each trip record, where ‘1’ indicates that some amount of cost less than the 

full fare has been charged for the trip due to fare capping.  
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A zonal method of calculating fares is not unusual on public transport networks 

(similar geography-based zonal systems are used in Paris and Berlin for example), but 

nevertheless it is not the only method possible. For example, one of the first public 

transport smartcard systems to be implemented, Seoul’s T-money, relies upon distance-

based calculation of fares. Other transport authorities levy flat fares based upon some 

time limit (e.g. Brussels). The system in Seoul is capable of accurately charging for the 

trip made, but is more complex than the others mentioned. TfL’s zonal fare charging 

system omits some accuracy but allows simple calculation of fares by the passenger. 

6. Non-smartcard based trips  

The main alternative to Oyster card/smartcard usage is referred to as ‘paper’ or 

‘magnetic’ ticketing by TfL, which are trips based upon one-off cash payments and 

performed using a paper ticket with a magnetic strip as proof of purchase. The use of 

paper/magnetic ticketing is discouraged through being no longer accepted on certain 

modes (e.g. on buses from 2006 onwards), or charging Oyster users a lower fare 

compared to those using paper tickets (this measure was introduced in 2005). Such 

measures have resulted in Oyster card being the dominant payment method on the TfL 

public transport network, particularly in the time period for which this study draws its 

data: 2008 to 2012 inclusive. More recent developments such as contactless debit cards 

introduce a partial alternative to the Oyster card, but these will not be dealt with in this 

study. The most recent figures available suggest Oyster use accounts for approximately 

80% of all trips made on the TfL public transport network. This does however mean 

that the Oyster card trips may not be fully representative of all trips taking place. Even 

Dataset 5, a population of all Oyster card trips on a section of London Underground for 

a given month, represents a sample of all trips made. This point is investigated using 

Datasets 5 and 6 (Edgware to Camden Oyster usage and gate counts respectively) and 

shown in Table 3.2. 
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Table 3.2 - Ranked use of stations in Edgware to Camden Town study area by total number of entries and exits, split by Oyster and magnetic trips 

    Oyster Magnetic   

Rank Stations Entries Exits Total Entries Exits Total Station Total 

1 Camden Town 562052 623700 1185752 172546 182516 355062 1540814 

2 Golders Green 278264 214343 492607 16566 12584 29150 521757 

3 Hendon Central 192690 183038 375728 13439 13470 26909 402637 

4 Chalk Farm 186199 149516 335715 26005 20278 46283 381998 

5 Belsize Park 184920 139095 324015 15133 11868 27001 351016 

6 Hampstead 150165 157004 307169 10862 11803 22665 329834 

7 Colindale 151327 120357 271684 12537 10946 23483 295167 

8 Edgware 131313 136019 267332 10902 10335 21237 288569 

9 Burnt Oak 136176 111807 247983 6297 5211 11508 259491 

10 Brent Cross 66301 61755 128056 5889 5947 11836 139892 

  Total 2039407 1896634 3936041 290176 284958 575134 4511175 

  Percentage 45.2% 42.0% 87.3% 6.4% 6.3% 12.7% 100.0% 
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Table 3.2 shows that 87.3% of all entry or exit transactions on the Northern Line 

study area are Oyster based, which is higher than the generally quoted figure of 80% 

over the entire TfL public transport network. Of the number that are non-Oyster (i.e. 

magnetic) it is observed that a large and disproportionate amount (62%) come from 

Camden Town, suggesting it is different to the other stations in the study area and 

perhaps more attractive to non-regular users of London’s public transport. Figures 3.1 

and 3.2 show the Oyster and non-Oyster payments by weekday and time of day. 

 

Figure 3.1 - Average number of entries and exits by ticket type and day (Edgware to 

Camden Town inclusive) 

Figure 3.1 shows the dominance of Oyster usage for the area of study against other 

payment methods. It is interesting to note that the highest non-Oyster usage occurs on 

Saturday, and that proportionately non-Oyster usage is higher on both weekend days 

(19%) than weekdays (11%), primarily due to a significant drop in Oyster usage during 

weekend days. This is likely to be a reflection of a lower number of commuters 

travelling on the weekends – these frequent travellers are likely to use Oyster cards as 

their method of payment due to lower financial cost and improved convenience. It is 

also likely that more leisure trips occur on weekend days, with infrequent leisure 

travellers more likely to purchase non-Oyster tickets. The assumption that commuters 

utilise Oyster to a greater extent than leisure travellers is supported by the within day 

demand profile for Oyster and magnetic ticket types, shown in Figure 3.2.    
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Figure 3.2 - Profile of weekday use by 15 minutes, normalised between Oyster and 

magnetic tickets 

Figure 3.2 shows the difference in usage pattern between Oyster and magnetic ticket 

types during weekdays. It is apparent that Oyster card usage follows a recognisable 

peaked pattern, whereas magnetic ticket usage gradually increases through the day 

before declining roughly in line with Oyster card usage after the PM peak. The 

conclusion that would be drawn from this is that commuter and work travellers are 

highly likely to use an Oyster card when making their trips. The demand pattern of 

magnetic tickets shown in Figure 3.2, combined with their relatively high weekend use 

and geographic concentration of use around Camden Town station, suggest that users of 

non-Oyster cards are likely to be leisure travellers. This distinction between travelling 

groups is worthy of note in the context of this study – insights based upon the travel 

behaviour and travel times of Oyster users only cannot be deemed representative of the 

population of travellers.   

3.3.2 Post-analysis Issues 

Low journey times 

The 2008 sample dataset contains 3,816,196 Underground-only journeys. A number 

of these trips, totalling 7331, had journey times which were around a minute or less. 

This suggests either an issue with the data collection system, or unexpected passenger 
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behaviour. On closer inspection it is apparent that over 96% of these trips are made 

from and to the same location. This could represent a passenger changing their mind 

about making a trip once behind the barrier, or possible instances of fraud where the 

passenger enters the station and then scans out without leaving in order to travel further 

afield for a lower fare. A small number of these low journey time trips do have a 

differing origin and destination station code, although these appear to take place where 

there are two station codes at one station – an example of which is Canary Wharf where 

there are DLR and Underground access points with differing station codes. 

Sample Size 

The 2008 5% sample dataset contains 12,883,448 records – each relating to a single 

trip made by an individual Oyster card. Research by TfL (2011) has shown that 

passengers understand reliability on the routes they use but not on other parts of the 

network. This suggests that modelling reliability should be conducted at a level where 

the reliability statistics calculated are relevant to a traveller’s experiences in terms of 

time and location i.e. at the very least on their route and at the time of day when they 

travel. To reflect a traveller’s experience, the dataset was restricted to weekday AM 

peak (07:00-10:00), so as to more closely reflect homogenous conditions of travel time, 

reliability, crowding etc. The data was also disaggregated to the OD level, so that travel 

time and other supply statistics could be related to an individual traveller’s trip. For 

simplicity, only LU trips are investigated. Incomplete trips, trips with very low journey 

times and duplicate trips records were identified and removed (this last point is 

expanded upon below). As a result of these data cleaning processes, the 2008 AM Peak 

LU only sample dataset consists of 667,406 records (this is a reduction from the entire 

5% dataset which contained 12,883,448). This shows that limiting analysis to specific 

modes and temporal periods will significantly reduce the data available for analysis. 

Despite this dataset containing a substantial number of records, approximately 

53,000 different OD pairs were represented which meant on average there were only 

12.6 records per OD pair. As has already been identified, it is often the sample standard 

deviation that will provide an indicator of travel time variation. To accurately calculate 

this value for a given OD pair, the sample size for that OD pair will need to be adequate. 

To illustrate this issue, the thesis of Chan (2007) suggested 20 smartcard records should 
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be considered a minimum to estimate a measure of the width of a travel time 

distribution. To model conditions that vary between days, this would require 20 records 

for each OD pair on each day. Only 178 OD pairs met these criteria in the 2008 sample 

dataset. This raises a further issue of bias when only the OD pairs with higher counts of 

trips are selected: these OD pairs are those that are most frequently used on the entire 

network. Any model which is estimated based upon these records would not be 

representative of the full dataset – particularly if crowding were an element of the 

model.   

Duplicate Records 

Initial inspection of the data for a single OD revealed a number of records made by 

the same smartcard (identified by ID), with the same date and time of access and egress 

from the origin and destination stations. This suggested an issue with duplicate records 

within the wider database. A query was run in database software to identify instances 

with identical smartcard IDs, origin and destination points, as well as dates and times. 

On the full 2008 dataset of close to 13 million records, it was found that 26.9% 

(3,465,647) were duplicates of other records. Failure to remove such records would 

clearly have a substantive effect on subsequent analysis. The procedure to identify and 

remove duplicate records was performed on all datasets that are used subsequently (and 

formed part of the process detailed under the ‘Sample Size’ heading on the previous 

page).    

3.4 Initial reliability analysis 

This section will introduce some initial analysis based upon the Edgware to Camden 

100% dataset (Dataset 5). The focus will be on establishing a travel time distribution 

and comparing common indicators of reliability used in the ‘Mean-Variance’ (MV) 

framework.  In Chapters 4 and 5, methodologies will be developed to estimate variables 

and parameters of the MV model based upon smartcard data.  

3.4.1 Travel Time Distribution 

Reliability, as defined by Noland and Small (1995), is a random amount of travel 

time incurred by the traveller in excess to that which could be predicted in advance. 

This definition would therefore lead towards treating travel time as a distribution, as is 



 
 
 

103 

 

common in the literature and is formalised by the MV approach described in Chapter 2. 

Figure 3.3, based upon Dataset 5, gives an indication of the distribution of travel times 

at different times of day. 

 

Figure 3.3 - Percentiles of travel time from Edgware to Camden Town by 15 minute 

time segment 

The red line in Figure 3.3 is the median travel time for each of the 15 minute time 

periods between 05:00 and 00:00. The travel times are longest in the very early morning 

and late evening time periods, and shortest in the peak periods. Of particular note are 

high travel times observed immediately after both the peak periods. In terms of 

reliability, it is the percentiles in relation to the median line that give an indication of the 

travel time distribution. If the distance between the 5th percentile and the median and the 

95th percentile and the median were equal, this would be indicative of a symmetrical 

distribution. However for many time periods, it is observed that the difference between 

the higher percentiles and the median is greater than the distance between the lower 

percentiles and the median. This is indicative of a skewed distribution, with an 

elongated right tail. When an empirical distribution is plotted for all the weekday data, 

this skew is more clearly observable. 
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Figure 3.4 - Empirical probability density function for all weekday travel time data 

Edgware to Camden Town 

Figure 3.4 is indicative of a typical empirical travel time distribution that also has 

been found in the literature in many contexts (e.g. van Lint et al, 2008). The defining 

feature of such a distribution is non-symmetry and an elongated right tail – indicating 

that a small number of journeys will take substantially longer than the average travel 

time. This feature is of particular interest when dealing with travel time risk; some 

authors have interpreted the long tail of the distribution as the key driver of the cost of 

TTV (e.g. Fosgerau and Fukuda, 2010). In Figure 3.3 it is shown that the travel times in 

the peak periods are lower in general than those in the inter peak period. This should be 

reflected by the empirical PDFs plotted for each of the following periods: AM peak 

(07:00-09:59), inter peak (10:00-15:59) and PM peak (16:00-18:59). 
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Figure 3.5 - Empirical probability density functions for AM Peak (AMP), PM Peak 

(PMP) and Inter peak (INT) periods, Edgware to Camden Town 

Figure 3.5 confirms the result shown in Figure 3.3; the mass of the inter peak 

distribution is to the right of the two peak distributions, thereby indicating a longer 

travel time during this time period on average. The inter peak distribution has a greater 

proportion of mass in its right tail than the peak distributions, which may imply a 

greater level of travel time risk (and cost) to travellers during this time period. 

Distribution fitting techniques available in standard statistical software packages do 

not find a statistically significant match with a pre-existing statistical distribution. Using 

the Anderson-Darling (AD) statistic, the closest match indicated is the log-logistic 

distribution. This statistic also confirms that the Normal distribution is a poor fit to the 

data. In the next part of this chapter a number of statistical indicators of reliability are 

investigated using the smartcard data to ascertain which might provide the best 

representation of reliability. This analysis will be further developed in Chapter 6, where 

these indicators will be tested using the modelling framework developed in Chapter 5. 

3.4.2 Analysis of Reliability Indicators 

In the literature review of this thesis it was shown that the primary microeconomic 

framework for the treatment of reliability is the MV approach. MV was developed in 

the field of finance (Markowitz, 1952), but has been the subject of much of the 
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transportation research on reliability since its first application in the field by Jackson 

and Jucker (1982). MV focuses on the variance (or standard deviation) of travel time as 

the indicator of travel time risk. In the transport literature, alternative indicators of 

reliability have been proposed which could replace the standard deviation or variance as 

the indicator of travel time risk.  In this part of this chapter, a number of candidate 

indicators will be compared using Dataset 5. If the indicators all indicate similar levels 

of reliability based on the same dataset, this will provide evidence that the choice of 

reliability indicator is immaterial. However, divergences between what each indicator 

shows would imply that the choice of reliability indicator is important. 

The reliability indicators used in this work will be based upon those used in the 

study conducted by Van Lint et al (2008), as well as those highlighted in the literature 

review; namely the buffer time index (of Lam and Small, 2001) and the variance of 

lateness, recommended for use in UK government guidance for public transport modes 

(TAG unit A1.3). This variance of lateness is similar to the semi-variance (SV) as 

defined by Markowitz (1959). All of the candidate indicators to be used are described in 

Table 3.3. 
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Table 3.3 - Candidate indicators of reliability 

Indicator Formula Description 

Standard 

Deviation √
1

𝑛 − 1
∑ (𝑡𝑖 − 𝑡̅)2

𝑛
 

Standard deviation for a given 

time period. This is calculated for 

n travellers, each denoted by i. 

Buffer Time 𝑡95 − 𝑡50 Currently in use by TfL. 

Indicates the extra travel time a 

passenger should leave to arrive 

on time in 95% of cases (this 

level can be adjusted). It can be 

scaled by dividing it by the 

median, but loses its simple 

interpretation. 

Late trip 𝑡̅|𝑡𝑖>𝑇𝑇80 Calculates an average travel 

time of the 20% longest travel 

times for a given time period 

and/or time of day. The outcome 

should be compared with the 

mean travel time for scale. 

Probabilistic 𝑃(𝑡𝑖 ≥ 𝜆 ∙ 𝑡50) This measure is calculating 

the probability that travel time is 

above a certain threshold related 

to the average travel time. If 

λ=1.2 then this translates to “the 

probability that TT is greater than 

t50 + 20%”. 



 
 
 

108 

 

Skew (𝜆𝑠𝑘𝑒𝑤) 𝑡90 − 𝑡50

𝑡50 − 𝑡10
 

 

This measure of skew is the 

ratio between the distance 

between 90th and 50th percentiles 

and the distance between the 50th 

and 10th percentiles. 

Unreliability 

index (UI) 

 

This measure is modified 

from that proposed by Van Lint 

et al (2008) insofar as it does not 

include a measure of the length of 

section of highway. The first of 

the formulae is used if  𝜆𝑠𝑘𝑒𝑤>1, 

otherwise the second formula is 

used. Both are scaled by the 

median travel time. 

Semi-

Variance 

1

𝑛
∑ (𝑡𝑖 − 𝑡̅)2

𝑡𝑚𝑎𝑥

�̅�<𝑡𝑖

 

This is the variance calculated 

for all travellers whose travel 

time was in excess of the mean 

travel time. Taking the square 

root of the semi-variance results 

in the semi-deviation. 

 

In Table 3.3 t refers to the travel time, so that 𝑡𝑖 is the travel time experienced by 

passenger i, 𝑡50 refers to the 50th percentile of travel time, and 𝑡̅ is the mean travel time. 

Measures of skew and UI proposed by van Lint et al are included in the table. The semi-

variance, first introduced in Chapter 2, is also added. 
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Data and Analysis 

These seven indicators will be calculated using a month’s weekday data on the OD 

pair Edgware to Camden Town on the Northern Underground line in London, UK 

(Dataset 5). Summary statistics related to this OD pair are presented in Table 3.4. 

Table 3.4 - Weekday summary statistics for Edgware to Camden Town OD based on 

Oyster data only 

Number of Oyster records available 5962 

Proportion Oyster Usage at Edgware 92% 

Intermediate stops 8 

Scheduled daytime in-vehicle time 23.7 

Mean journey time 29.28 

Median journey time 29 

Peak train frequency (/hour) 20 

Inter peak train frequency (/hour) 15 

  The indicators of Table 3.3 were calculated for each of four time periods: All day, 

AM peak, inter peak and PM peak. The resulting reliability statistics are reported in 

Table 3.5.  
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Table 3.5 - Indicators of reliability for time periods across days 

Time 

Period 
Mean Median 

St 

Dev 

Buffer 

Time 

Late 

Trip 

Prob 

(λ=1.2) 
Skew 

UI 

(*100) 

Semi-

Deviation 

ALL 29.04 28.00 3.32 6.00 4.43 6.46% 2.00 1.12 4.06 

AMP 28.30 28.00 2.48 5.00 3.29 3.36% 4.00 1.92 2.51 

INT 29.98 29.00 3.76 6.00 5.03 10.88% 2.50 1.69 4.45 

PMP 28.77 28.00 3.20 6.00 3.41 5.19% 2.00 1.12 3.46 

 

In Table 3.5, evidence of a skewed distribution exists; the ‘skew’ indicator is in 

excess of one in all four cases. The common existence of a skewed travel time 

distribution has been established both in this chapter and in the literature. The elongated 

right tail of such distributions has a high cost to travellers (Bogers et al, 2007). Using 

the sample standard deviation as the reference indicator, the AM peak period appears to 

have the lowest levels of travel time variation (TTV) of the three time periods. The inter 

peak period is the least reliable, as indicated by the standard deviation, with the PM 

peak intermediate to these two values.  

The buffer time indicator has support in practice, being currently used by TfL as 

their preferred indicator of reliability. This indicator shows the AM peak to be the most 

reliable time period, with the buffer time indicator on inter peak and PM peak periods 

equal. In the light of other results, the buffer time indicator appears to be less sensitive 

to the shape of the travel time distribution than the other indicators.  

The late trip and probabilistic indicators follow the same ranking of reliability across 

time periods as the standard deviation. The value of 𝜆 = 1.2 was used for the late trip 

indicator as suggested by van Lint et al (2008) which implies that a trip is late if it is 

greater than 1.2 times the median travel time. The value of λ is not fixed, and it will be 

useful to test its sensitivity later in this chapter. The skew and UI indicators proposed by 

van Lint et al provide results that imply different levels of reliability to the indicators 
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already mentioned. The skew and UI values are highest for the AM peak, and lowest in 

the PM peak. This would also appear to disagree with the data plotted in Figure 3.5 

where the AM peak appears to be the most reliable. On the basis of this analysis, it is 

difficult to support use of the UI and skew as indicators of reliability.  

The final indicator, semi-deviation, approximately follows the same pattern as the 

standard deviation over the time periods. It is of note that the semi-deviation values are 

larger than the standard deviation, which is a result of representing the longer right tail 

of the travel time distribution. These results are displayed in Figure 3.6.  

 

Figure 3.6 - Chart of reliability indicator levels (ALL = all data, AMP = AM peak data, 

INT = inter peak data, PMP = PM peak data) 

To conclude this part of the analysis, the indicators can be placed in three groups. 

The standard deviation, late trip, probabilistic and semi-deviation indicators all indicate 

the same ranking of reliability over these time periods. The buffer time indicator is not 

altogether dissimilar, but it is concluded that it lacks accuracy and does not differentiate 

between time periods. The skew and UI are the final group of indicators and present a 

different ranking of reliability levels that do not appear to reflect the data.  

The reliability statistics are now calculated by each 15 minute time segment through 

the day. The level of agreement between the indicators is summarised in the form of a 

plot of correlation statistics of the seven standardised variables at the 15 minute time 
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segment level. The correlation coefficient is rank dependent and therefore adjusts for 

the difference in magnitude between indicators. 
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Table 3.6 - Spearman correlation coefficient between all candidate indicators of 

reliability 

  St_Dev Buffer_Time Late_trip Probabilistic Skew UI Semi_Deviation 

St_Dev - .763 .929 .765 .419 .264 .909 

Buffer_Time .763 - .799 .857 .680 .355 .657 

Late_trip .929 .799 - .798 .414 .281 .837 

Probabilistic .765 .857 .798 - .702 .485 .724 

Skew .419 .680 .414 .702 - .372 .385 

UI .264 .355 .281 .485 .372 - .193 

Semi_Deviation .909 .657 .837 .724 .385 .193 - 

All correlation coefficients are statistically significant at 5% 

Table 3.6 shows a strong correlation between the late trip and standard deviation 

indicators. The semi-deviation also correlates highly with the standard deviation. In 

general there is low correlation between skew, UI and the other indicators. Of interest is 

that the skew and UI do not strongly correlate with one another, which is unexpected as 

the UI makes use of the skew indicator. The buffer time value most strongly correlates 

with the skew indicator, which supports the position that the buffer time indicator is 

useful insofar as it takes account of skew. The probabilistic indicator is the most 

representative of the other reliability indicators, having the highest average correlation 

coefficient value. However this is primarily because it correlates more highly with the 

UI than other indicators. This discussion is developed further by plotting the cumulative 

distribution of the seven indicators in Figure 3.7. This is plotted using the minimum and 

maximum values of each indicator over 72 15 minute time segments. It provides a 

greater detail on the points of agreement and disagreement between the seven candidate 

reliability indicators, although values on the x axis are not shown as the indicators are 

on different scales of travel time.  

The cumulative distribution of the indicators in Figure 3.7 shows that the 

probabilistic and skew indicators in general do not closely match the distributions of the 

other indicators. Standard deviation, buffer time, late trip and SV appear to be more 
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closely related, but nevertheless exhibit differences which are apparent and may impact 

on the valuation of reliability.  

 

Figure 3.7 - Cumulative distribution of indicators used for within day analysis 

Figure 3.7 shows that the SV indicator would have a probability density function 

with a greater proportion of its mass to the left of the other indicators. This is due to 22 

of 72 SV values having low values: i.e. this indicator is more likely to imply a reliable 

trip than the others shown. There is evidence that the probabilistic indicator will imply a 

poorer level of reliability for the same data. However it has been acknowledged 

previously that the value of λ, which forms the basis of defining unreliability for this 

indicator, has been defined arbitrarily (a value of 1.2 from the literature has been used). 

The sensitivity of λ as part of the probabilistic indicators is now tested in greater detail. 

This is followed by a discussion on the buffer time indicator, the standard deviation and 

finally the semi-deviation as a viable alternative. 

Discussion of Reliability Indicator Analysis 

In this section, aspects of the preceding analysis will be discussed in greater detail 

including; 
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• the role and value of λ in the probabilistic indicator 

• the practical benefits and dis-benefits of the candidate reliability indicators 

The probabilistic indicator operates by using a parameter to define the threshold at 

which a trip is deemed to be unreliable; λ = 1.2 has been used which was interpreted as 

any trip taking 20% longer than the median could be categorised as unreliable. 

Returning to the time periods (as displayed in Table 3.5), the value of λ was varied for 

each of these to between 1.05 and 1.4 inclusive to show the sensitivity of the indicator. 

These values are plotted for the four time periods and for varying levels of λ in Figure 

3.8.  

 

Figure 3.8 - Probabilistic reliability indicator for each time period, varying by λ 

parameter 

Figure 3.8 shows that the relationship between the probabilistic indicator and the 

parameter value is non-linear. Based on all of the weekday Oyster data used in the 

previous section, the relationship between the probabilistic indicator and λ value is 

exponentially decreasing. That is to say, the result of probabilistic indicator is highly 

dependent upon the choice of λ, such that that differing levels of reliability will be 

implied based on its specification.  

Another issue arising from Figure 3.8 is the difference in ordering of the indicators 

when λ is varied. The other six candidate reliability indicators examined would suggest 
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that the most reliable time period is the AM peak, followed by the PM peak, all day, and 

finally inter peak. However this does not hold for all values of λ; in fact this ordering 

holds only for λ=1.15 and λ=1.20, further suggesting that this indicator is liable to 

producing inconsistent results. 

Buffer time indicators are a key alternative to standard deviation as a measure of 

reliability (Van Lint et al, 2008). It is used in practice as it can be communicated 

effectively to the general public; for example, (t95-t50) calculates how much extra time 

above the median that a traveller should allow in order to arrive on time with 95% 

confidence. However Figure 3.6, based on the four time periods, suggested that this 

indicator was inconsistent with the others used, as it showed the same levels of 

reliability for three of these time periods. Figure 3.7 went on to show that this was not 

the case when calculated by 15 minute time segments; the range of the buffer time 

indicator was actually the highest of all the indicators.  

Whilst being a useful indicator for passengers, the analysis above questions whether 

the buffer time is a useful tool in the planning and appraisal of public transport systems 

due to the suggested inaccuracy of the measure. In choosing just the median and one 

other percentile of the travel time distribution, there is the possibility that key 

information is missed; this indicator only takes into account lateness, but according to 

the ‘Scheduling’ framework (Small, 1982; Noland and Small, 1995) there is also a cost 

associated with early arrival. This criticism is also valid for the late trip and 

probabilistic indicators which also do not reflect earliness.  

Moving on to the standard deviation measure, it is important to recognise its 

appealing statistical properties that have resulted in its common use in transport 

reliability contexts. Firstly, it is a widely understood indicator of spread and appears to 

be a natural choice for describing the width of a distribution. Secondly, Figure 3.7 

shows that is closely aligned to some of the other indicators, which gives confidence 

that the estimates of reliability it produces are representative of the actual situation. 

Finally, as was shown in Chapter 2, it is the primary indicator of risk used in MV 

analysis.  
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Drawbacks of the standard deviation indicator do exist. Firstly, the data analysis in 

this chapter has shown that the distribution of travel times is skewed, and therefore the 

conclusions one can draw from the standard deviation measure could be misleading. 

Second, the measure has also been treated with caution due to difficulty in conveying it 

to the general public (Uniman, 2009). 

The final reliability indicator of note is the semi-deviation. The semi-deviation has 

been introduced as a viable alternative to the standard deviation. The measure has 

implied similar levels of reliability to the standard deviation measure as demonstrated 

by a high level of correlation between the two statistics. Similar to the buffer time 

indicator however, the measure as applied here was focussed upon the right tail of the 

travel time distribution and therefore does not account for risk in earliness.  

Implications of Empirical Work 

The main body of the work conducted in this chapter to this point has been focussed 

on a single OD pair on the Northern Line of the London Underground network. It 

concentrated on reliability measures calculated for peak periods and 15 minute time 

segments across all weekdays during a single month. The analysis of the seven 

candidate indicators of reliability can be distilled into the following three general points: 

1. Different indicators have given different answers to the level of reliability 

during a specific time period – be that whole time periods (e.g. AM Peak) or 

15 minute time segments. Although there was some correlation between 

indicators, the level of agreement between two indicators was never strong 

enough to consider one to be a close representation of another. These levels of 

disagreement between indicators mean that results of prediction or appraisal 

work on reliability will be dependent to some extent upon the choice of 

indicator.  

2. It was difficult to objectively identify a preferred indicator that best 

encapsulates the reliability performance in the case of the London 

Underground. This is a finding similar to that of van Lint et al (2008). In 

particular, skewness did not appear to capture reliability levels in the same way 

that other indicators did and should be discounted from further analysis. The 
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probabilistic indicator tended towards extreme values (both high and low) and 

sensitivity testing of the parameter suggested that the indicator is unreliable in 

itself. Buffer time, late trip, standard deviation and semi-deviation were found 

to be more similar to one another, but it was difficult to suggest that one should 

be preferred over another.  

3. The indicators have tended to be focussed towards representing the spread of 

the travel time distribution, which is effectively in-keeping with MV (trading 

off between travel time and travel time risk). There was some emphasis on 

representing the lateness of trips, but little or no recognition of earliness and 

how it might be valued differently to lateness (i.e. in line with the Scheduling 

framework of reliability). 

As a result of this analysis, the Buffer time, late trip, standard deviation and semi-

deviation indicators will be taken forward for further analysis in Chapter 6. 

3.5 Conclusion  

The purpose of this chapter was to introduce smartcards and the data available to this 

thesis which will be further utilised in the coming chapters. This has been achieved 

through a combination of a literature review, description of the data and analysis of 

reliability indicators using the data. The chapter also contributes toward a number of 

objectives, shown in Table 3.7. 
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Table 3.7 - Objectives met by Chapter 3 

Objective Description Addressed in: 

O1 To apply smartcard datasets to 

a number of real world situations 

– drawing and developing upon 

existing studies. 

The background and 

literature review of the use of 

smartcard data was provided in 

Section 3.1. The datasets were 

introduced in greater detail in 

3.2. Analysis using the data was 

conducted in Section 3.4. 

O2 To provide a critique of the 

smartcard data available (and 

smartcard data more broadly). 

Based on the literature 

review, general issues related to 

the data were discussed in 

Section 3.3.1. Further issues 

coming to light after analysis 

were outlined in Section 3.3.2. 

O3 To develop the means for 

improving understanding of the 

factors affecting Transport 

Reliability using smartcard data. 

This chapter demonstrated 

how the data could be handled 

and analysed in order to calculate 

key reliability indicators. This 

forms the basis of the analysis 

taking place in Chapter 4. 

O4 To develop a methodology for 

estimating a VOR using smartcard 

data. 

This chapter demonstrated 

how the data could be handled 

and analysed in order to calculate 

key reliability indicators. This 

also forms the basis of the 

analysis taking place in Chapter 

5. 
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O6 To explore improvements to 

the standard MV framework, 

including other statistical 

indicators of risk, the shape of the 

utility function and potential 

alternative frameworks. 

3.4.2 formed a substantive 

section of the chapter – initially 

identifying a number of 

statistical indicators from the 

literature. These indicators were 

compared using the smartcard 

data and a subset of these will be 

taken forward for further 

analysis in Chapter 6.  
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The chapter began with an introduction to smartcard technology, which developed 

into a literature review on the subject. The datasets available to the thesis were then 

introduced. TfL provided three key datasets to this project: 5% sample (2008), 5% 

sample (2011) and Edgware to Camden 100%. Each of the individual datasets was 

introduced sequentially, noting that Datasets 1 and 2 (SEQUENCED_JOURNEYS in 

2008 and 2011 respectively) will provide the basis of much of the analysis in following 

chapters. The form of the datasets raised some issues for research which were outlined 

in Section 3.3.1. Subsequently the datasets were interrogated and further issues were 

highlighted in Section 3.3.2. 

Analysis of the smartcard data began in Section 3.4 with a single OD pair from the 

100% Oyster dataset. This dataset allowed a temporal disaggregation to 15 minute time 

segments and it was therefore possible to calculate a range of percentiles to represent 

the changing travel time distribution across an average weekday. This analysis was 

further developed by an attempt to fit a distribution to the data for each of the three 

primary time periods (AM peak, inter peak and PM peak). A substantive part of this 

chapter was to introduce a number of candidate reliability indicators from the literature 

which could potentially be used to replace standard deviation as an indicator of risk in 

MV. The data showed that these indicators demonstrated different levels of reliability 

for the same dataset, and it was not clear which should be favoured. Buffer time, late 

trip, standard deviation and semi-deviation all appeared to be potential reliability 

indicators. These will be tested in Chapter 6 with the modelling approach developed in 

Chapter 5. 

This chapter has described the range of data available, identified some of the pitfalls 

that come with the use of such data, and conducted some analysis of reliability 

indicators which will feed into the modelling work that follows. Chapter 4 will focus on 

the estimation of models which identify the factors affecting reliability and the 

prediction of reliability levels. Chapter 5 will estimate discrete choice models based on 

the smartcard data, and in Chapter 6 indicators of reliability will be re-introduced and 

tested against actual passenger behaviour. 
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Chapter 4 - The Factors Affecting Reliability on the London 

Underground 

4.1 Introduction 

Chapter 2 of this thesis introduced the Mean-Variance framework for transport 

reliability in some detail. Chapter 3 introduced the data available to this thesis – namely 

smartcard data provided by Transport for London. The present chapter draws upon this 

preparatory work by attempting to estimate the level of travel time reliability on the 

London Underground based on the smartcard data alone. This process will identify 

which factors are driving these values and to what extent they predict future levels of 

reliability. This work comes in advance of Chapter 5, where the Mean-Variance 

preference parameters are estimated based upon smartcard data alone. The present 

chapter should therefore be viewed as the first of two parts; focussing on the supply of 

public transport in advance of Chapter 5 which is focussed on the demand for public 

transport. 

4.2 Previous Work 

There has been a substantial amount of work conducted in this area, which can be 

broadly split into two parts. The first is primarily focussed upon the private car and 

seeks to utilise readily available variables, such as mean travel time, in order to forecast 

reliability. Such studies will be outlined in Section 4.2.1. The second body of work in 

this area is related to public transport modes; primarily bus. The public transport studies 

have tended to undertake bespoke data collection in order to forecast levels of 

reliability. These studies will be explored in Section 4.2.2. Whilst covering both private 

and public transport, the focus of this thesis is mainly on the latter in order to inform 

model estimation in Section 4.5. 

4.2.1 Forecasting Reliability for Highway Modes  

In a recent review in this area, de Jong and Bliemer (2015) focussed on national 

guidance for establishing the relationship between reliability and other variables, which 

will be outlined here.  
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In the UK, Arup (2003) established a relationship between congestion, distance of a 

trip and reliability. The coefficient of variation (CV), the ratio of the standard deviation 

of travel time to mean travel time, was estimated by the formula:  

𝐶𝑉 = 0.148 𝐶𝐼0.781 𝐷−0.285 (4.1) 

Where CI is the ratio of mean travel time to free flow travel time, and D is the 

distance of the trip. This approach, used in the UK’s official guidance, therefore 

assumes that reliability levels are explained by distance and congestion only. It is 

somewhat similar to that used in Australia and New Zealand, where standard deviation 

can be calculated using the standard deviation under congested and uncongested 

conditions, as well as the volume to capacity ratio.  

De Jong and Bliemer’s review indicated that a substantial amount of evidence has 

been generated from research undertaken in the Netherlands. In a straightforward 

example, the literature review of Besseling et al (2004) suggested factoring travel time 

benefits by 1.25 in order to take account of reliability. A more detailed approach was 

taken by Peer et al (2012), who utilised speed and demand data from Dutch highway 

management systems. Their study specified weather, day of the week and traffic 

conditions on the rest of the network as explanatory variables for reliability. A simple 

linear regression was utilised, which is similar to many of the public transport studies 

outlined in the next section. Results from these models were found to be mixed and 

often counterintuitive, leading the study to further investigate the relationship between 

standard deviation and travel time/delay. The result of this latter part of the research was 

instructive: the relationship between the standard deviation of travel time and travel 

time was positive but non-linear, with the authors concluding that fluctuations in 

demand may result in different relationships between speed and reliability.  

In contrast, Hellinga (2011) was able to estimate a strong linear relationship 

between travel time and standard deviation, also using data from the Dutch highway 

system. It should be noted that to achieve this result non-recurrent conditions were 

removed from the data, which may have themselves been explanatory variables for 

reliability. This study is however supported by research elsewhere: Mahmassani (2011), 

using highway data from the USA, estimated a relatively strong relationship between 
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speed and the standard deviation of travel time, although also noted that some 

representation of non-recurrent congestion would be required.  

Other work in the highway context has tended to support the non-linear relationship 

suggested by Peer: for example, Kouwenhoven et al (2014) estimated a reliability model 

using similar motorway data but specified a logarithmic term for delay. This latter study 

was in agreement with Arup (2003) insofar as delay and distance were the key 

explanatory variables for reliability, and the relationship was non-linear. Non-linearity 

was further supported by research that has recommended a power-law function to 

represent the relationship between reliability and the mean-delay (Geisterfeldt et al, 

2014). Kouwenhoven et al (2005) attempted to incorporate additional explanatory 

variables into their modelling related to the occurrence of incidents or maintenance 

work. They found that these variables had no discernible impact on the fit of the 

reliability model. Instead they found that the relationship between travel time and 

reliability held even when an incident occurred.  

4.2.2 Forecasting Reliability for Public Transport 

The first researchers to investigate the factors driving reliability levels of a public 

transport system from observed data were Sterman and Shoefer (1976), who collected 

data on bus service performance in the Chicago area. They specified the dependent 

variable as the inverse of the standard deviation of travel time. Using a linear regression 

model, they were able to show that increases in length of bus route, extent of traffic 

signal control, traffic volumes and passenger boarding numbers all degraded reliability 

levels. 

Abkowitz and Engelstein (1982) were focussed upon mean travel time in addition to 

the standard deviation of travel time. Like Sterman and Shoefer, they collected bus data, 

and were notable as they were the first to conduct work in this area using automatic data 

collection methods. Their model specification included two types of explanatory 

variable: static and dynamic. Static variables were unchanging and largely based on an 

inventory of the route; these were link length, count of traffic signals, length of parking 

restrictions and count of unsignalised junctions. Dynamic variables were those that 

varied between bus vehicles and included number of boardings and alightings on a 

section, number of stops made, time of travel and direction of travel. Predictors of travel 
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time were found to be the length of a section, counts of boardings and alightings 

(separately), the length of on-street parking and the count of signalised intersections. An 

adjusted R2 of 0.92 implied that this model would be a good estimator of mean travel 

time levels. The number of stops was omitted from the model as it had the incorrect sign 

and was suspected of correlating with other variables. It is likely that substantial 

correlation between distance, number of stops and number of boarding movements will 

impact upon any similar model being estimated. The model with standard deviation as 

its dependent variable provided a less definitive demonstration of the method; only 

standard deviation on the previous length of route was a statistically significant 

predictor of reliability on a route (route length was estimated but not significant at 5%). 

Again, a high adjusted R2 (of 0.89) implied a high level of predictive power of the 

model. The main finding was that reliability levels are correlated along a route; but this 

is not necessarily useful in determining the root cause. 

Strathman and Hopper (1993) deviated from previous studies in that they used a 

discrete choice model as opposed to linear regression to model bus operations. The 

dependent variable was probability of on-time arrival, predicted by number of boardings 

and alightings, route length, location of a timing point in relation to the rest of the route, 

number of stops, time period, weekday/non-weekday, experience of driver and 

scheduled headway. The modelling found that the count of alighting movements, 

location of the timing point and headway were the key determinants of whether a bus 

would be punctual or not. 

The thesis of Cham (2006) is interesting insofar as it was among the first to make 

use of large automatic payment collection (APC) systems to examine the factors driving 

reliability levels. The thesis detailed how bus location data and automatic payment 

collection data were collected and combined on a Bus Rapid Transit service in Boston, 

USA. The thesis did not develop a regression model, but rather examined the 

relationship between reliability and explanatory variables in turn. In addition to the 

number of passenger boarding movements, it was found that average deviation from 

schedule was a key explanatory variable.  

Mazloumi et al (2008) deviated from much of the literature in this area by 

employing a percentile indicator of reliability similar to that proposed by Lam and 
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Small (2001). This study was among the first to utilise automatically collected bus 

location data, using GPS to estimate a linear regression model capable of predicting 

reliability. This study found that the length of a section would have a substantive impact 

on reliability. In addition, ‘land use’ (a categorical variable for residential/industrial) 

was found to be statistically significant. The same authors conducted a similar study 

(Mazloumi et al, 2010), where they found that the number of stops, count of signals and 

deviation from schedule were also factors driving the level of reliability. They also 

found that a model that utilised the standard deviation of travel time as a dependent 

variable had greater explanatory power than one that used a percentile based indicator. 

A drawback of the 2010 study was that it was unable to match bus location data to 

automatic passenger count data for greater insight on boarding and alighting 

movements. 

Sorratini et al (2008) departed from previous studies in the methodology utilised to 

understand the factors impacting upon reliability. A micro-simulation software package 

was employed to assess reliability on a section of bus route in the city of York, UK. 

Through using this methodology, some new insights were achieved which would have 

been difficult to represent using a linear regression model only. For example, modifying 

the layout of busy stops had the potential to improve bus reliability. Furthermore, it was 

found that bus only lanes benefited reliability levels. As would seem intuitive, they also 

found that speeding up passenger boarding time would improve the ability of a bus 

service to maintain uniform headways.   

Chen et al (2009) collected data over a three day period using 396 surveyors on 30 

of Beijing’s bus routes. They obtained over 70,000 observations at a bus stop level and 

utilised these data in a range of ways. They identified that route length was a key 

determining factor for reliability, and furthermore that reliability levels would be 

particularly poor when a route was over 30km in length. In common with the finding of 

Sorratini (2008), it was found that bus priority lanes improved reliability levels. The 

study concluded that although based on a large dataset, automatically collected data 

(vehicle location and payment data) would allow further development of the 

methodology.  
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The study of El Geneidy et al (2010) combined such datasets and used a linear 

regression model to estimate the level of reliability and the factors driving it. The key 

innovation was to link 150,000 stop level observations of buses to automatic payment 

collection counts. In terms of the variables used, the study defined a longlist based on 

those already covered in this literature review. An additional variable used in this 

particular study was whether a lift was used to access a boarding point. It was found that 

the variables impacting on travel time deviation were the length of a section, the number 

of stops, count of boardings/alightings as well as driver experience.  

This literature review has shown that there is a substantive amount of evidence on 

the factors affecting reliability of bus-based public transport. The key explanatory 

variables affecting reliability levels are: 

• The length of the section 

• The number of passengers boarding and alighting 

• Experience of the driver 

• The existence of a bus lane (or more broadly priority) 

• The difference between actual and scheduled operation 

• The number of stops 

The literature review also shows a developing field. Although a number of 

techniques are used to establish the relationship between variables, it is linear regression 

which is most often utilised. The literature review has also demonstrated a growing use 

of automatically collected data to derive these relationships. Although the studies cited 

to this point are based around bus operation, the results will be generalised to inform 

development of a linear model for the London Underground. An attempt to estimate 

such a model was attempted in the thesis of Uniman (2009), discussed in the next 

section. 

The study of Uniman (2009) 

The work of Uniman (2009) may assist in providing an improved understanding of 

the factors affecting reliability in the context of the London Underground. The data 

available to this study was a 5% sample of Oyster card users in two different months 

(February and November). The study looked at reliability performance across a large 
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number of OD pairs and the data used were similar to the datasets available to the 

present thesis. 

Uniman’s study hypothesised that the factors impacting on reliability (defined as the 

Buffer Time; the difference between the 95th percentile and median travel time, in 

minutes) would be:  

• Journey length (measured as median travel time)  

• The existence of a transfer (a dummy variable, taking a value of “1” if a transfer 

was required) 

• The existence of an incident (e.g. vehicle breakdown) (a dummy variable, where 

“1” indicated that an incident occurred) 

• A dummy variable to account for a seasonality impact 

The regression equation was therefore proposed as follows 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖,𝑗,𝑚

= 𝛽0 + 𝛽1𝐽𝑜𝑢𝑟𝑛𝑒𝑦 𝐿𝑒𝑛𝑔𝑡ℎ𝑖,𝑗,𝑚 + 𝛽2𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑖,𝑗

+ 𝛽3𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑖,𝑗,𝑚 + 𝛽4𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑚 

(4.2) 

Where i and j were defined as the origin and destination respectively and m is the 

day and time period. 

The parameters were estimated based on Ordinary Least Squares (OLS) regression, 

with the coefficient estimates in units of minutes. This process found that all 

explanatory variables influence reliability levels with the exception of seasonality. A 

summary of the model estimates is reproduced in Table 4.1. 

Table 4.1 - Model estimation results from Uniman (2009) 

Variable Coefficient Estimate T-statistic 

Intercept 3.068 44.65 

Journey Length 0.120 43.08 

Incident (Dummy) 9.912 157.02 

Transfer (Dummy) 0.978 15.39 

Seasonality (Dummy) 0.082 1.69 



 
 
 

129 

 

Adjusted R2=0.466 

This model therefore shows that it is median travel time, incidents and transfers that 

will have an impact upon levels of reliability. The study established that there is a 

strong relationship between journey time and reliability levels on the London 

Underground, with a longer journey time leading to poorer reliability levels. The 

existence of a transfer would also decrease travel time reliability: a single transfer 

increasing the difference between the 95th percentile of travel time and the median travel 

time by approximately 56 seconds on average, all else equal. 

The incident coefficient was highly significant, which the study interpreted as 

showing that the occurrence of an incident would reduce reliability. This result is 

supported by intuition, but the methodology for determining when an incident took 

place was based upon the Oyster data only. When long travel times were observed 

during a time period, these would be marked as incident related. Another explanation 

might be that the service was simply experiencing a prolonged period of poor 

performance or unreliability. Without external verification that an incident was taking 

place it is difficult to conclude that the model result shown above provides evidence that 

an incident leads to poorer reliability. 

Finally, the seasonality dummy variable was not significant at 5%, but this is 

unsurprising given that the two months of data used were November and February – 

likely to be similar in terms of weather and other general conditions in the UK. If the 

seasonality variable were instead comparing November and June for instance, perhaps 

some significant difference would have been detected. 

The methodology and model developed by Uniman (2009) therefore provides a 

useful framework for discovering the factors impacting upon reliability on the London 

Underground. Using a percentile based indicator for reliability, the study showed that 

increasing journey time length and the existence of a transfer would negatively impact 

upon reliability. 

The literature review of the previous section shows that the factors affecting the 

reliability of buses are more varied than the two key factors identified by Uniman. This 
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would suggest that there is value in collecting and analysing additional variables, with 

the objective of overcoming omitted variable bias in the regression model whilst also 

allowing the identification of further factors affecting reliability. 

4.3 Model Variables 

The studies outlined in this chapter so far primarily utilised a simple linear 

regression form such as that shown in Equation 4.2. Such model specifications have the 

benefit of allowing the parameters for a number of explanatory variables to be estimated 

simultaneously. The parameter estimates in a standard linear regression model are 

interpreted as the impact that a change in an explanatory variable has on the dependent 

variable, holding all else equal. Ordinary Least Squares model estimation will be 

utilised in line with the models estimated in the literature review. 

The purpose of this section is to give a fuller account of the factors impacting on 

reliability levels than has been presented to date and develop a model capable of 

forecasting reliability levels. This will involve testing additional explanatory variables 

with the general model specification in Equation 4.2. Building upon initial investigation 

of the data from the previous chapter, the following variables are calculated: 

Reliability – Chapter 3 showed that this can be defined and calculated in a number 

of ways. The primary indicator for reliability used here will be the standard deviation 

for a given OD pair. This is, the standard deviation of all travellers between a single 

origin and destination, across weekdays and for a single time period. It should be noted 

that all journey time records are from the origin gateline to the destination gateline i.e. 

incorporating a range of activities outside in-vehicle time as described in Chapter 3. 

Mean Journey Time – Uniman (2009) showed that the median journey time was a 

key explanatory variable for reliability. As this thesis is primarily focussed on the 

Mean-Variance model, the mean travel time will be used. This will be calculated in a 

similar fashion to the standard deviation; the mean travel time of all trips observed 

through the data on a single OD pair across weekdays and for a given time period.    

Distance – The distance travelled will likely be a strong predictor of reliability. 

Stop-to-stop data (measured in km) has been provided by TfL for the purposes of this 
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project (described in Chapter 3). This allows track distance to be calculated for any OD 

pair. An issue arising is the likelihood that mean journey time and distance will be 

strongly correlated, which will present issues for estimating parameters on these 

variables. A possible solution may be to specify only one of these variables in model 

estimation. 

Headway – For the purposes of this process, headway will be defined as the average 

scheduled temporal spacing (in minutes) between vehicles on a line during a given time 

period. It can be calculated using the TfL journey planner and published timetables. 

Where a transfer occurs on a trip, the headway of the relevant service at the two 

departure stations will be added together. 

Demand at Origin Station – This variable is a proxy for the number of people 

using a station. It is based upon the gate count dataset described in Chapter 3 and is 

calculated by taking an average daily gate count (in both directions) at a station for a 

given time period. This value is then matched based upon the origin station of a trip. 

The purpose of this variable is to represent the possible crowding effects for a passenger 

as they attempt to move from the gateline to their departure platform and then onto their 

train.   

Demand at Destination Station – This variable is calculated in the same way as 

‘Demand at Origin Station’, but is assigned to destination stations. It is used to reflect 

potential increased variability in travel times between the platform and the exit gateline 

due to high volumes of other travellers. 

Count of Intermediate Stops – This variable is a count of the stops between the 

origin and destination. In the bus context it has been found to be a good predictor of 

reliability levels (El Geneidy et al, 2010) and therefore the modelling that follows will 

test whether this is the case in the context of the London Underground. There is likely to 

be strong correlation between this measure and the distance variable 

Intermediate Demand – This variable is based upon identifying the intermediate 

stops on a given trip. For each of these stops an average demand is retrieved from 

demand calculated previously using the gate counts. The average demand at each of 
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these stations is then summed to give an average intermediate demand for the whole 

trip. It is hypothesised that greater demand between the origin and destination stations 

will negatively affect dwell times and contribute to decreasing reliability.   

Transfer – This is a dummy variable similar to that specified by Uniman (2009). It 

takes a value of “1” if a transfer is necessary to complete a trip. If a trip can be made 

without a transfer, it is assumed that all travellers would not take another route where a 

transfer would be required and therefore a “0” is recorded. 

Deep line – This is a dummy indicator that differentiates between two types of 

London Underground line: shallow and deep. Deep lines (e.g. Victoria) require more 

vertical travel between the surface and platform levels on the part of the passenger 

which may impact on reliability. These trips are marked with a “1”. Trips using a 

shallow line (e.g. Metropolitan) only are marked with a “0”. Where transfer trips use 

both a shallow and deep line, these are considered to be a deep line trip. 

Lift No Escalator – This is a dummy variable used to denote whether a trip origin 

or destination is at a station where there are no escalators to transfer passengers between 

the surface and platform levels and a lift is provided instead (denoted “1”). It is 

hypothesised that using a lift with result in more variable travel times.  

Actual Journey Time – Scheduled In-Vehicle Time – This is the actual average 

journey time observed in the Oyster data minus the scheduled in-vehicle time specified 

by Transport for London. This value is expected to be positive as all passengers have to 

access and egress to and from the platforms in addition to in-vehicle time. It is therefore 

a measure of these extra activities as well as average in-vehicle delay for a given OD. 

This measure will be referred to as the ‘congestion’ variable for the remainder of the 

chapter. 

Average Stop Spacing – This is the first of the scaled variables, calculated by 

dividing the total distance between and origin and destination with the count of 

intermediate stops (both are defined above). This overcomes the issue of number of 

stops being highly correlated with both distance and travel time. 
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Average Demand at Intermediate Stop – This is the second of the explanatory 

variables. As the number of stops is likely to be correlated with distance and travel time, 

so too is the total demand for an OD. To overcome this issue, the total intermediate 

demand between an origin and destination (i.e. the summation of demand at each 

intermediate stop) is divided by the total number of intermediate stops in order to 

calculate this variable. 

Congestion (scaled) – The final scaled variable is the above congestion variable, 

divided by the average travel time. This is proposed as a candidate explanatory variable 

due to the scale of congestion likely being larger over longer duration trips. It therefore 

reduces correlation with the other distance and time based explanatory variables. 

4.4 Data 

This section will outline the process of preparing the 5% 2008 dataset in order to 

estimate a linear regression model with the aim of identifying predictors of reliability 

and forecasting reliability levels. 

The starting point for the analysis was a SPSS dataset containing all 12,883,448 

records of the 5% 2008 dataset (Dataset 1 from Chapter 3). The analysis was limited to 

the weekday AM peak and the London Underground mode only, although this 

methodology can be reproduced straightforwardly for other time periods, geographies 

and (to some extent) modes. Trips with very short travel times, the same origin and 

destination point, those that were incomplete and duplicate records were removed, 

resulting in 667,406 remaining records of individual trips. This dataset was imported 

into Microsoft Excel for the remainder of the data preparation step.  

For each of the records, the origin and destination stations were identified. A count 

of the number of trips by origin and destination was then made, thereby allowing OD 

pairs with a sufficient sample size to be identified. For OD pairs without a transfer, this 

threshold was set at 100 records and resulted in 253 OD pairs, representing all London 

underground Lines (except Waterloo and City). Twenty further OD pairs including 

transfers were manually added to the dataset afterwards, although the sample size 

threshold for these ODs was 30 records.  
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Summary statistics for continuous variables that will be used for model estimation is 

produced in Table 4.2. 
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Table 4.2 - Summary statistics calculated across ODs 

  Average Min Max St Dev 

Travel Time 23.29 4.39 48.40 8.89 

Standard Deviation Travel Time 3.74 1.13 12.28 1.78 

Observations 173.95 32 860 111.56 

Distance (km) 9.00 0.86 34.95 5.89 

Intermediate Stops 7.13 0 27 4.71 

Headway 3.14 1.85 13.50 1.83 

Origin Demand (1 hour) 227.85 22.15 833.66 224.13 

Destination Demand (1 Hour) 152.81 3.85 1012.89 199.95 

 

Table 4.2 shows that the method used to select OD pairs has provided a broad range 

of OD pair characteristics. This is demonstrated by the range of mean average travel 

times, which is 44 minutes. The minimum number of observations for an OD is 32, 

which is low in light of the size of the original dataset, but necessary to include enough 

transfer OD pairs. The demand at origin and destinations can vary substantively, 

although the averages presented in Table 4.2 are likely to be higher than the average for 

the whole London Underground network due to oversampling of busy OD pairs.  

An issue briefly identified above is the possibility of strong correlation between 

distance, mean journey time and number of stops. This correlation among explanatory 

variables can lead to multicollinearity in regression models, potentially affecting the 

accuracy of parameter estimates and standard errors. Perfect collinearity is a violation of 

one of the assumptions upon which the Classical OLS regression model is based. To 

identify occurrences of high correlation between explanatory variables, the regression 

dataset was imported into SPSS and a correlation matrix of all variables was produced 

using the Pearson measure of correlation. This process also informed identification of 

the explanatory variables that were likely to be significant predictors of reliability 

levels. The correlation matrix is provided in Table 4.3 
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Table 4.3 - Correlation matrix of initial variables 

 

Mean_JT STDev_JT Headway

Origin_De

mand

Destination

_Demand Transfer Distance Deepline

Lift_No_E

scalator

Intermedia

te_Stops

Intermedia

te_Deman

d

MeanJT - 

SchedJT

Correlation 0.489 0.479 -0.356 -0.174 0.257 0.776 .089 0.185 0.795 0.68 0.67

Sig. .000 .000 .000 .004 .000 .000 .143 .002 .000 .000 .000

Correlation 0.489 0.376 -.116 .051 0.278 0.435 -.004 .115 0.345 0.359 0.525

Sig. .000 .000 .057 .401 .000 .000 .953 .057 .000 .000 .000

Correlation 0.479 0.376 -0.209 -.021 0.491 0.498 -.026 0.283 0.531 0.225 0.49

Sig. .000 .000 .001 .729 .000 .000 .668 .000 .000 .000 .000

Correlation -0.356 -.116 -0.209 0.564 -.101 -0.384 -.028 -0.209 -0.367 -0.215 -.052

Sig. .000 .057 .001 .000 .100 .000 .650 .001 .000 .000 .423

Correlation -0.174 .051 -.021 0.564 0.328 -0.255 -.054 .101 -0.247 -.095 .125

Sig. .004 .401 .729 .000 .000 .000 .380 .098 .000 .120 .051

Correlation 0.257 0.278 0.491 -.101 0.328 .104 .093 0.633 .085 .096 0.433

Sig. .000 .000 .000 .100 .000 .086 .125 .000 .162 .113 .000

Correlation 0.776 0.435 0.498 -0.384 -0.255 .104 .069 .041 0.864 0.553 0.51

Sig. .000 .000 .000 .000 .000 .086 .254 .500 .000 .000 .000

Correlation .089 -.004 -.026 -.028 -.054 .093 .069 .048 .035 0.192 0.195

Sig. .143 .953 .668 .650 .380 .125 .254 .430 .560 .001 .002

Correlation 0.185 .115 0.283 -0.209 .101 0.633 .041 .048 .046 .049 0.244

Sig. .002 .057 .000 .001 .098 .000 .500 .430 .445 .422 .000

Correlation 0.795 0.345 0.531 -0.367 -0.247 .085 0.864 .035 .046 0.696 0.402

Sig. .000 .000 .000 .000 .000 .162 .000 .560 .445 .000 .000

Correlation 0.68 0.359 0.225 -0.215 -.095 .096 0.553 0.192 .049 0.696 0.394

Sig. .000 .000 .000 .000 .120 .113 .000 .001 .422 .000 .000

Correlation 0.67 0.525 0.49 -.052 .125 0.433 0.51 0.195 0.244 0.402 0.394

Sig. .000 .000 .000 .423 .051 .000 .000 .002 .000 .000 .000

Deepline

Lift_No_Escalator

Intermediate_Stops

Intermediate_Demand

MeanJT - SchedJT

Mean_JT

STDev_JT

Headway

Origin_Demand

Destination_Demand

Transfer

Distance
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In Table 4.3 any correlations outside the range -0.5 to 0.5 are highlighted in red. 

These high positive or negative correlations between explanatory variables are likely to 

be sources of collinearity. Also highlighted in bold is the row for the dependent variable 

‘STDev_JT’ (the standard deviation of journey time for an OD). Variables that correlate 

highly with the standard deviation of journey time are likely to be good predictors in the 

course of model estimation. 

Table 4.3 shows that mean journey time, distance, intermediate stops and 

intermediate demand are highly correlated with each other. The key relationship is 

between time and distance, which would be expected to have a strong positive 

correlation. Distance between and origin and destination is also positively correlated 

with the number of stops. As intermediate demand is additive along a route, a positive 

correlation between intermediate demand and number of stops would also seem 

intuitive.  

Of further interest is the correlation between mean journey time and mean journey 

time minus scheduled journey time, where the latter is a measure of congestion. This is 

because the scale of congestion has the potential to be larger over longer journey times. 

This result suggests there will be significant collinearity between the number of stops, 

intermediate demand and the congestion measure. One possible solution to this issue is 

to make use of the three scaled variables outlined at the end of Section 4.3. 

Standard deviation of journey time will be the indicator of reliability used in the 

regression models that follow. Table 4.3 shows strong and statistically significant 

correlation between this variable and mean journey time, headway, transfer, distance, 

intermediate stops, intermediate demand and congestion. These variables are therefore 

likely to be predictors of reliability levels, although all variables will be included in 

initial model estimation in the next section. 

4.5 Model Estimation 

The models estimated in this section are run using the OLS linear regression 

procedure in SPSS. The dependent variable in all cases is the standard deviation of 

journey time. The forward stepwise procedure is used, where each iteration adds a 
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significant variable from those specified until an optimal model is found. The adjusted 

R2 will be reported and is interpreted as indicative of the performance of the model. 

Model 1: Full Model 

This model initially included all variables presented in Table 4.3. It therefore takes 

the following form: 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖,𝑗 = 𝛽0 + 𝛽1𝑀𝑒𝑎𝑛_𝐽𝑇𝑖,𝑗 + 𝛽2𝐻𝑒𝑎𝑑𝑤𝑎𝑦𝑖,𝑗 + 𝛽3𝐷𝑒𝑚𝑎𝑛𝑑𝑖

+ 𝛽4𝐷𝑒𝑚𝑎𝑛𝑑𝑗 + 𝛽5𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑖,𝑗 + 𝛽6𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗

+ 𝛽7𝐷𝑒𝑒𝑝𝑙𝑖𝑛𝑒𝑖,𝑗 + 𝛽8𝐿𝑖𝑓𝑡_𝑛𝑜_𝑒𝑠𝑐𝑎𝑙𝑎𝑡𝑜𝑟𝑖,𝑗

+ 𝛽9𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑆𝑡𝑜𝑝𝑠𝑖,𝑗

+ 𝛽10𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝐷𝑒𝑚𝑎𝑛𝑑𝑖,𝑗

+ 𝛽11(𝑀𝑒𝑎𝑛 𝐽𝑇 − 𝑆𝑐ℎ𝑒𝑑 𝐽𝑇)𝑖,𝑗 

(4.3) 

The stepwise procedure excludes the majority of the explanatory variables: mean 

journey time, origin demand, destination demand, distance, deepline, lift no escalator 

and intermediate stops. This leaves the congestion variable, transfer and headway as 

forming explanatory variables, with a model adjusted R2 of 0.366. The parameter 

estimates are presented in Table 4.4. 

Table 4.4 - Parameter estimates of Model 1 

 

The signs of the parameter estimates in Model 1 are in line with expectations: higher 

levels of congestion, the existence of a transfer, and higher headways would all result in 

an increased standard deviation of travel time. The model is less convincing insofar as 

there is no distance or time variable represented. This may be a result of the correlation 

between congestion and journey time/distance. This will be addressed in Model 2. 

 

Beta t

(Constant) .904 2.873

MeanJT_SchedJT .182 3.834

Transfer 1.239 2.778

Headway .242 3.178
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Model 2: Full Model (Scaled Variables) 

The same model is run again, but replacing the number of stops with average stop 

spacing, intermediate demand with average demand at intermediate stop, and congestion 

is scaled with average travel time. This should reduce the amount of collinearity within 

the model and therefore produce a statistically significant estimate of mean journey time 

in line with much of the previous work. 

Table 4.5 - Parameter estimates of Model 2 

 

Model 2 estimates parameters for two of the three scaled variables described above. 

Congestion remains a positive predictor of reliability levels. Stop spacing, measured in 

km, has a negative relationship with reliability, which is an intuitive result implying that 

underground lines with greater stop spacing will be more reliable. Mean journey time is 

now a significant variable, which is a finding of the aforementioned study of Uniman 

(2009). The demand / stop parameter is positive, implying that greater average demand 

at intermediate stops between an origin and destination will decrease reliability. The 

deepline parameter estimate would be expected to be positive as it would require greater 

movement within the origin and destination station; a negative result implies that trips 

on deepline underground lines are more reliable than those close to the surface. The 

adjusted R2 of Model 2 is 0.183, which implies a poorer overall predictive capacity than 

Model 1. This low R2 is caused by a wide variance of observations from the mean, as 

illustrated by the scatter plots in Appendix 1.   A further exploratory model run shows 

that this R2 would be further reduced when mean journey time was replaced by distance. 

4.6 Discussion 

Beta t

(Constant) 1.687 2.764

Mean_JT .073 6.019

Demand_Stop .001 2.721

Congestion_Scaled 2.349 2.413

Stop_spacing -.646 -2.446

Deepline -.580 -2.213
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The models presented in Section 4.5 demonstrate a broad range of factors impacting 

on reliability of the London Underground. In both Model 1 and Model 2 it is congestion 

which is a key explanatory variable (both scaled and unscaled by journey time). Other 

factors found to be significant are transfer, headway, mean journey time, demand per 

intermediate stop and stop spacing. A key issue identified was the correlation between 

distance based variables. The impact of this can be observed in Model 1, where the 

congestion variable accounted for the entire distance based impact. When this was 

accounted for in Model 2 (by scaling the congestion variable), mean journey time 

became a key driver of reliability levels. Table 4.3 showed that mean journey time and 

distance were highly correlated (ρ >0.75) which accounts for why parameters for these 

variables were not estimated alongside one another in a single model.  

The key finding of the chapter is that a broad range of factors impact upon reliability 

levels of the London Underground, and there appears to be some broad agreement of the 

causal factors which include demand and travel time. The categorical variable lift no 

escalator was not found to be a substantive driver of reliability. The Deepline 

categorical variable was found to be statistically significant and negative. There is no 

obvious interpretation to this and it does not strongly correlate with any other 

explanatory variable. 

Given the relatively low explanatory power of the two models presented in this 

chapter, the conclusion is made that whilst they are useful for identifying the factors 

affecting reliability, they could not be used with confidence to predict future levels of 

reliability.   

4.7 Conclusion 

The model estimation above contributes to Objective 2 of this thesis by 

demonstrating that the Oyster card (and similar systems) can provide data capable of 

revealing the factors affecting reliability on public transport. It also meets Objective 3 

by developing the means to better understand the factors affecting reliability.  

The work builds upon that conducted previously by other researchers, which was 

primarily in the context on bus operation. It also builds upon the analysis of Uniman 

(2009) (who also used Oyster card data) by utilising a fuller range of explanatory 
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variables. The explanatory power of the model proposed by Uniman was greater than 

any estimated in this chapter, but this can likely be attributed to the use of an ‘incident’ 

variable which was calculated based upon reliability levels observed. The next step 

would be to estimate similar models based upon other public transport modes, including 

bus. 



 
 
 

142 
 

Chapter 5 - Discrete Choice Modelling with Smartcard 

Datasets 

5.0 Introduction 

The previous chapter was an investigation into the factors driving the reliability of 

public transport. This chapter will combine Mean-Variance (MV) with the smartcard 

datasets to obtain parameter estimates related to passenger demand for public transport. 

These parameter estimates will allow a Reliability Ratio (RR) to be calculated. The 

method developed and applied in this chapter will be related to London’s public 

transport network. It will however be sufficiently broad to be applicable to similar 

public transport networks where smartcard data are available. 

It was clear from Chapter 2 that travel time variation (TTV) is an important factor 

for explaining agents’ travel behaviour (Eddington, 2006), but that its valuation remains 

an active research strand. There has been a general reliance on Stated Preference (SP) 

studies in order to value TTV (Ettema and Timmermans, 2006; Batley and Ibáñez, 

2012; Börjesson et al, 2012). Meta-analysis of these SP studies (e.g. Li et al, 2010; 

Carrion and Levinson, 2012), as well as expert workshops (e.g. de Jong et al, 2009), 

have been only partially successful in clarifying the value of TTV. It has been noted that 

a Revealed Preference (RP) methodology may be instructive in the valuation of TTV, 

but the situations where it can be effectively applied are rare (Bates et al, 2001), and 

consequently this area remains underdeveloped. This chapter is an attempt to treat the 

Oyster Card data as an RP dataset. This will enable estimation of a Reliability Ratio 

(RR) when combined with a standard discrete choice model.  

The specific contributions of the present chapter are: 

1. To develop an RP methodology for the valuation of TTV using Oyster data 

2. To utilise automatically generated datasets to provide valuation evidence for 

TTV 

3. To demonstrate the use of such a dataset with existing discrete choice modelling 

techniques 

4. To evaluate the effectiveness of the methodology developed. 



 
 
 

143 
 

 

The chapter is arranged as follows. In Section 5.1 SP and RP are re-introduced from 

Chapter 2. The differences between RP and SP-based methods are outlined and the 

potential for RP to offer an improvement over SP is discussed. In Section 5.2, the 

approach to modelling reliability is outlined and the relevant discrete choice model 

specifications are introduced. In Section 5.3 the method of selecting and applying the 

2011 5% sample dataset (designated Dataset 2 in Chapter 3) is outlined. Issues with the 

dataset are addressed, included omitted modes and limiting assumptions. The data are 

then applied with choice modelling methods and basic MV model specification in 

Section 5.4. The models are estimated based upon choice between alternatives 

containing one or more rail based modes.  These models and the resulting RRs are 

discussed and the success of the method is reflected upon in the discussion. In the 

concluding section, the use of public transport smartcard data as an RP data source is 

reflected upon in light of the method developed and the results obtained through 

discrete choice modelling of the data.  

5.1 Background 

5.1.1 Travel Time Variation (TTV) 

The approach for modelling reliability in this chapter is MV. This approach allows 

for the estimation of a RR, which can be benchmarked against values found in the 

literature. It does however come with an assumption that every available travel option 

can be accurately estimated and utilised in travellers’ decision making processes. To re-

cap from Chapter 2, the RR is given by the ratio of the marginal utility of the standard 

deviation of travel time to the marginal utility of mean travel time: 

RR =  

𝛿𝑈
𝛿𝜎

𝛿𝑈
𝛿𝜇

⁄  

 

(5.1) 

Where 
𝛿𝑈

𝛿𝜇
  is the marginal utility of the mean travel time 𝜇 with respect to utility U, 

expected to be negative as travel time is usually treated by travellers as bad. 
𝜕𝑈

𝜕𝜎
 is the 

marginal utility of the standard deviation of travel time 𝜎 with respect to U, also 
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expected to be negative as travellers are generally risk averse as shown in Chapter 2. 

The value of RR is therefore expected to be a positive value.   

The literature review of RR studies in Chapter 2 showed that a broad range of RR 

estimates have been made. Further evidence of this phenomenon is available in the 

meta-analyses of Li et al (2010), Carrion and Levinson (2012) and Wardman and Batley 

(2014). The meta-analysis conducted in Chapter 2 could not find strong evidence that 

the mode, method of data collection or reliability framework employed would 

systematically affect the RR estimate obtained. 

In addition to this issue, the literature review outlined the well documented 

drawbacks of hypothetical choice questionnaires, summarised in a recent review of 

travel time reliability (Wardman and Batley, 2014). This paper suggested that a strategic 

bias may be observed given the contentiousness of TTV or lateness to travellers, 

particularly when the purpose of the study is clear to the respondent. Furthermore, it 

might be added that the general difficulties related to SP of misapprehension, fatigue 

and boredom experienced by respondents might be exacerbated when dealing with the 

complexity of TTV issues.  

The wide range of RR estimates found in the aforementioned meta-analyses suggest 

that it would be appropriate to calculate a unique RR for each context for which it was 

required. This approach has practical implications if SP-based studies were used to 

estimate a RR; these being the cost, resource and analytical knowledge required in every 

case. A possible alternative approach for practitioners is to ‘transfer’ a pre-existing RR 

which was calculated under similar circumstances using SP (i.e. mode, geographic 

location etc.) to the new context. It is clear however that an appropriate RR will not be 

available for all situations. This does not take into account issues around context and 

fungibility (Orr et al, 2012). Nevertheless, the utilisation of a RR from another context 

is often the current position of practice: see WebTAG Unit A1.3 for evidence of this 

from the UK. The reason for this situation is a tacit acknowledgement of the difficulty 

and resources required for conducting a unique choice experiment for each occasion that 

a RR is required. 



 
 
 

145 
 

It is clear then that accurate estimates of RRs are necessary, but that current methods 

to estimate it raise questions over their suitability. An alternative or complementary 

solution to the estimation of RRs might be appropriate; one which overcomes:  

• how to make the appropriate choice of RR from the broad range of values 

available in the literature 

• issues of SP respondent understanding of TTV 

• presentational issues specifically related to TTV SP surveys 

• general problems related to SP (strategic/protest responses) 

• cost/resource required to estimate a local RR 

To address these issues, attention is now turned to the less well researched area of RP 

based estimates of the RR. 

5.1.2 The Revealed Preference approach  

The review of RP studies in Chapter 2 was based upon what actual traveller choices 

can tell the analyst about traveller preferences. In the context of transport reliability, this 

is how they might in practice trade-off travel time, TTV and other attributes of the 

journey. An RP based methodology would overcome the issues highlighted in the 

previous section by incorporating participants’ actual decision making choices, 

including imperfections such as habitual behaviour and imperfect information 

availability (Wardman and Batley, 2014). An RP only approach could utilise readily 

available datasets and has the potential to be largely automated. This approach could 

therefore provide a cost-effective, rapid, temporal/location specific method of 

estimating a RR.   

The general concerns with an RP-only approach are that insufficient situations 

might exist in a dataset for effective estimation of parameters, as well as difficulty for 

the analyst in knowing the completeness of travellers’ information. This latter concern 

includes imposing choices upon individuals by the analyst, and difficulty in specifying a 

realistic choice set. These issues are not relevant in SP contexts where knowledge can 

be considered perfect. The literature also notes a difficulty specific to MV applications 

where travel time and standard deviation of travel time have been found to be correlated 

(Batley et al, 2008; de Jong et al, 2009). An additional criticism of RP based methods 
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might be the restriction to situations where appropriate data are available (Bates et al, 

2001). This chapter will demonstrate that this concern will become less of a problem as 

automatic data collection systems become more prevalent.  

5.2 Modelling Framework 

5.2.1 Choice and Risk 

The phrase ‘choice under uncertainty’ is often used in the literature on travel time 

variation, however in this chapter ‘choice under risk’ is used. This distinction is vital: 

‘choice under risk’ denotes a situation where the distribution of outcomes is known by 

the traveller – a key assumption for the methodology. Although unrealistic, this is a 

simplifying assumption which will allow a RR to be estimated based upon RP data. 

Further work (in particular a longer temporal duration of data) could take into account 

learning or knowledge effects. The axioms of Expected Utility (EU) theory are applied 

as an account of the observed traveller behaviour and an introduction to this can be 

found in Chapter 2. The literature has shown that the EUT approach can provide results 

at odds with actual human behaviour (Kahneman and Tversky, 1979), but nevertheless 

it is accepted in the transportation literature as a useful tool for understanding risk. In 

accepting von Neumann and Morgenstern’s EU framework and implementing this 

through a discrete choice model, each of the travellers observed is assumed to have well 

defined, complete and transitive preferences.  

5.2.2 Expected Utility 

The EU function for the estimation of a RR using the MV framework is outlined in 

Chapter 2 of this thesis.  

In what follows, the MV framework for travel time variation will form the basis of 

modelling passengers’ behavioural choices. The MV-based expected utility function 

takes the following general form: 

𝐸𝑈𝑀𝑉 =  𝛽1𝜇 +  𝛽2𝜎 (5.2) 
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Where 𝜇 is the mean travel time and 𝜎 is the standard deviation of travel time, and  𝛽1 

and 𝛽2 are preference parameters for these variables. 

5.2.3 Data Requirements  

The RP estimation of a RR will be based upon travellers’ choice responses to 

observable supply side metrics of a public transport system. A requirement of this 

method is a dataset which can provide estimates of mean and standard deviation of 

travel time and records of travellers' mode choices. The smartcard datasets described in 

Chapter 3 meet these criteria. It may be possible to apply this method in contexts 

outside public transport; in the context of private car travel routing and travel time, 

datasets may be obtainable from the providers of satellite navigation systems or 

operators of automatic number plate recognition (ANPR) systems. 

There are a number of dimensions that could be used to form the choice situation. 

Examples include departure time, route choice, and mode choice. In the work that 

follows, the choice for individuals will be between alternatives that are based upon 

modes. In the case of departure time and route choice, insufficient information is 

available in the dataset to identify alternatives. However, Chapter 3 identified that the 

mode (or combination of modes) used to complete a journey would be identified via the 

SUBSYSTEMID field. OD pairs where a number of SUBSYSTEMID identifiers have 

been used across all travellers will form the basis of the choice.      

For this method, it is important initially to identify situations where all possible 

mode based alternatives between an origin-destination pair can be observed, and 

suitable sample sizes are available for each choice. There must also be some means of 

knowing which mode is used – through intermediate observation or some indication at 

the origin or destination point. Section 5.3.1 will describe the process of developing the 

choice dataset from Dataset 2 described in Chapter 3.  

5.2.4 Choice Model Specification 

This methodology will make use of common discrete choice model specifications 

to represent the mode choice of the traveller. These will include the multinomial logit 

(MNL) and cross-nested logit (CNL) models. Both model specifications assume that the 
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decision maker has a number of alternatives from which to make their choice, called the 

choice set. Train (2009) sets out the three key properties of the choice set; that it is: 

• Exhaustive – it contains all possible alternatives that could be chosen 

• Mutually exclusive – that only one alternative can be chosen 

• Finite 

 

In line with EU theory, the decision maker will assign an expected utility to each of 

the available alternatives, and then choose the alternative with the highest expected 

utility. The expected utility for each alternative is determined by attributes of the 

alternative as well as attributes of the decision maker (Ortúzar and Willumsen, 2011). 

That these attributes usually cannot be known accurately has led to the development of 

Random Utility Models (RUMs), of which MNL and CNL are members. These models 

contain a random error term for each individual and choice, which is reflection of: 

• The subjectivity of decision makers (including limits to rationality) 

• Omission in model specification of relevant variables 

• Misspecification of the model 

• Error in data collection 

 

The EU function within the context of RUMs therefore consists of two main 

elements: that which is observed for a given individual n for alternative j, usually 

denoted by Vnj, and a corresponding unobserved element, often referred to as the error 

term, is denoted by εnj. This latter element is usually unknown to the researcher, and is 

therefore randomly drawn from a distribution. It is the shape of this distribution, defined 

by the researcher, which defines the type of model that is being estimated. For example, 

a Normally distributed error term results in the probit model. McFadden (1974) 

specified the unobserved utility as type 1 extreme value, and derived the commonly 

used logit model. 

The multinomial logit (MNL) model is among the simplest and most well-known 

choice model, where the probability of individual n choosing a given alternative i (𝑃𝑛𝑖) 

from choice set J (𝑖 ∈ 𝐽, where 𝑗 = 1, … , 𝐽) is given by: 
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𝑃𝑛𝑖 =
𝑒𝑉𝑛𝑖

∑ 𝑒𝑉𝑛𝑗
𝑗

 

 

(5.3) 

Where the observed portion of utility for individual n and alternative j (𝑉𝑛𝑗) is 

linear in parameters and is therefore given by the term 𝛽′𝑥𝑛𝑗 (where 𝑥𝑛𝑗 is a vector of 

observed variables for individual n and alternative j).  

A key assumption is the condition of independence from irrelevant alternatives 

(IIA) between the error terms of alternatives which is often not satisfied in real-world 

applications; there is usually correlation between the error terms. This issue can be 

overcome by either a mixture or nested logit model specification.  

The nested logit (NL) model can be specified in most choice modelling software 

packages; similar alternatives are explicitly defined to be contained within a single nest. 

A common example of this is a public transport nest containing bus and rail and a 

separate nest containing only private car. This model specification could therefore 

acknowledge that the public transport modes are closer substitutes for one another than 

a single public transport mode and the private car. 

An issue with this simple nested structure is that modes may have membership of 

more than one nest. In the case of London’s transport system, travellers may choose to 

make their trip through a combination of modes. For example, a choice set for travel 

between two points may be between using a combination of the London Underground 

and the Docklands Light Railway (DLR), or the Underground and Heavy Rail services. 

In this case both modes belong to the Underground nest, but the first such mode would 

also belong to a DLR nest, and the second to a Heavy Rail nest. The natural choice 

model specification for this situation is the cross-nested logit (CNL) model.  

It was Bierlaire (2006) who provided formal proof that the CNL model was 

consistent with RUM. Wen and Koppelman (2001) presented the generalised nested 

logit (GNL) model and showed how other common discrete choice models were special 

cases of it. The CNL model takes the following form: 
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𝑃𝑛𝑖 =

∑ (𝛼𝑖𝑘𝑒𝑉𝑛𝑖)

1
𝜆𝑘[∑ (𝛼𝑗𝑘𝑒

𝑉𝑛𝑗)

1
𝜆𝑘𝑗∈𝐵𝑘

]

𝜆𝑘−1

𝐾
𝑘=1

∑ [∑ (𝛼𝑗𝑘𝑒
𝑉𝑛𝑗)

1
𝜆𝑘𝑗∈𝐵𝑘

]𝐾
𝑘=1

𝜆𝑘
. 

 

(5.4) 

The subscript k represents an indexation of the nests in the model, with 𝐵𝑘 denoting 

a nest of alternatives. αik is the allocation parameter which signifies the proportion of 

membership of alternative i to nest k. This model is general, so that each alternative can 

belong by varying degrees to any number of available nests. The restriction is imposed 

that: 

∑ 𝛼𝑖𝑘 = 1 
(5.5) 

If the allocation parameter for an alternative i in nest k is equal to one, then the 

alternative belongs wholly to nest k. Equally, an allocation parameter of zero suggests 

that the alternative i is not associated with nest k. If all allocation parameters are either 

one or zero, this would imply that the model structures is that of nested logit. This is 

why the model presented in Equation 5.4 has also been named the Generalised Nested 

Logit (Wen and Koppelman, 2001).  

Both MNL and CNL models will be utilised in the modelling section of this chapter. 

5.3 Empirical Application of the Model 

5.3.1 Smartcard Data 

Chapter 3 introduced smartcards as a subject of research and demonstrated that 

public transport smartcards provide a unique research opportunity in their own right. 

Researchers have recognised the value of smartcards in observing travel behaviour 

(Choi et al, 2012) and monitoring system performance (Jang, 2010), but there is less 

research available which models both supply and demand sides of a transport system.  

The data available for estimating the choice model were the trips made by a 5% 

sample of Oyster Card users on the Transport for London (TfL) public transport 

network during a single, non-school holiday month in 2011 (Dataset 2 in Chapter 3). 

The 2011 5% was preferred to the 2008 data due to the larger number of records in the 
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former.  For the purposes of estimating the discrete choice models, the analysis was 

restricted to the AM peak period. Analysis in Chapter 3 showed that a large proportion 

of demand would occur during this period, which therefore increases the number of 

origin-destination (OD) pairs with adequate sample sizes. Restricting analysis to the 

AM peak also results in relatively homogenous scheduled travel times for a given OD 

pair, thereby reducing the impact of varying schedules throughout the day on travellers’ 

journey times. Finally, analysis in Chapter 3 suggested that the AM peak would consist 

of the largest number of commuters; and it is likely this group of travellers would have 

a higher level of knowledge of reliability levels between their origin and destination 

than leisure travellers. For these reasons, non-AM peak journeys (beginning outside 

07:00 – 10:00) and weekend journeys were removed. Bus trips were also removed due 

to difficulty in accurately identifying the time that the passenger alighted from the bus. 

Including this mode would require an additional dataset detailing individual bus 

performance, which was not available to this study.  

To estimate the parameters of the discrete choice models it was necessary to 

identify the OD pairs where a choice between modes was observable. This was done by 

creating an OD trip matrix specific to each of the modes available. A database 

relationship was created between each of these matrices to identify ODs where two or 

more modes were used with a count of at least 15 observations per mode. This process 

resulted in 74 candidate OD pairs for the AM peak model estimation, giving a total of 

9,408 usable records (an average of 145 trips per OD). However, an issue was identified 

of dominated OD pairs; defined as ODs where both the mean travel time and standard 

deviation of travel time were lower on one of the two mode choices available. On such 

OD pairs there would be no clear trade-off between travel time and travel time risk 

which would affect estimation of the model parameters. Consequently, these OD pairs 

were removed from the dataset. This process reduced the number of OD pairs from 74 

to 37, and the number of records in the choice dataset from 9,408 to 4,918. As a result 

of these processes, two modes (Light Rail and Light Rail/Heavy Rail) had only three 

choice situations (i.e. ODs) each. This meant that these modes could not be accurately 

modelled and therefore they were removed from the dataset. The final dataset used for 

model estimation therefore had 31 ODs, made up from 4,140 Oyster records. The 
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number of records available at each step is shown in Table 5.1, alongside the proportion 

of the total dataset. 

Table 5.1 - Number of records available at each stage of analysis 

 Count of records % of total 

Full 5% Dataset 22,804,496 100.00% 

Remove Bus 7,676,570 33.66% 

Remove Unfinished/started trips 6,851,665 30.05% 

Remove Short Trips 6,834,036 29.97% 

Remove Duplicates 4,605,511 20.20% 

Remove Weekend 3,454,133 15.15% 

Remove non AM Peak 1,001,134 4.39% 

Two modes for OD 9,408 0.04% 

Remove Dominated OD 4,918 0.02% 

Insufficient Alternatives 4,104 0.02% 

 

Table 5.1 shows that the final choice dataset contained only 0.02% of the original 

22,804,496 records in the 2011 5% dataset. Losses of data occur at every step, but key 

elements include the removal of the bus mode (a loss of approximately two thirds of the 

records), the removal of duplicates, and finally the requirement of two modes with at 

least 15 records for a given OD. This demonstrates the requirement to begin analysis 

with large and/or targeted data in order to ensure that the choice dataset is sufficiently 

large. 

It was also necessary to identify if bus travel was occurring on any of these 31 ODs, 

creating bias within the choice models by making the PT choice set non-exhaustive. To 

address this concern, a list of all origin and destination stations in the choice dataset was 

created. Returning to the full dataset of 11 million records, it was possible to identify all 

travellers that interacted with these origins and destinations, including trips made using 

bus for all or part of the trip. Drawing on the work of Seaborn et al (2009) it was then 

possible to link transfers between bus and other modes, and thereby identify instances 

of travellers using bus for all or part of their trip between any of the OD pairs in the 

choice dataset. Some evidence was found of a small number of travellers using bus 

between five of the ODs, however the numbers were small (one or two travellers for 

each of these OD pairs). On reflection, it was decided to proceed to the analysis stage 
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with all 31 AM peak OD pairs. An alternative procedure would have been to exclude 

the OD pairs where there was evidence of bus use, but much data would have been lost. 

A related issue is that no highway based modes were modelled – including private 

car. The assumption was made that the car mode would notionally exist in an 

independent ‘non-public transport’ nest, and that the estimates within the public 

transport (PT) nest were therefore unbiased.   

5.3.2 Data Analysis 

. Within this dataset, the use of three public transport modes was identified:  

• Light Rail – also referred to as the Docklands Light Railway, or DLR 

• Metro – also referred to as London Underground, or LU 

• Heavy Rail – standard heavy rail services, including London Overground and 

referred to as ‘Rail’ in the model specification 

Many journeys consist of two of these modes and therefore a maximum of six 

modes could have been modelled: Metro, Light Rail, Heavy Rail, Metro/Light Rail, 

Metro/Heavy Rail, Light Rail/Heavy Rail. However, recognising the problem of a low 

number of OD pairs for two modes, the analysis made use of only four of these modes. 

Figure 5.1 shows how each of the four alternatives was configured. The method of 

grouping recognised that there would be correlation between the four alternatives when 

they contained a common mode of transport. Therefore, the aforementioned CNL 

structure was an appropriate form for the choice model specification, which will be 

estimated in Section 5.4.   

 

Figure 5.1 - A mapping of rail based modes to alternatives used in subsequent 

modelling 
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For any one OD pair, there were only ever two of the four alternatives available. If 

a traveller entered a Metro gate at the origin station and existed at a Metro gate at the 

destination station, and the trip were possible using Metro only, then this would be 

designated as a Metro trip by TfL. If, however another trip began at a Metro gate at the 

origin and ended at a Heavy Rail gate at the destination, this trip would be designated 

Metro/Heavy Rail.  

Following from the calculation of mean and standard deviation in Chapter 3, it was 

a simple process to now calculate a sample mean travel time and sample standard 

deviation by using both OD and alternative – i.e. each OD had two sets of MV values; 

one for each of the public transport travel choices available to the traveller, calculated 

across all travellers using that mode/OD combination. 

Each individual record, representing a single trip by a traveller, was assigned the 

mean and standard deviation for the two options available.  

The previously estimated regression models showed that a range of explanatory 

variables would impact upon the levels of reliability. Nassir et al (2015) suggested that a 

range of variables, in addition to mean travel time and standard deviation of travel time, 

would impact upon traveller choices. Therefore, additional variables were calculated, 

parameters for which will be estimated in Model 1c below. These were: 

• Transfer – a categorical variable indicating whether a transfer was required on a 

given alternative 

• Headway – A calculation of average time between vehicles during the AM Peak. 

Where two lines or modes were used, the headways were added together. 

 

A variable to represent station size was also intended to be used, but due to sample 

size issues all stations were large, and preliminary analysis showed that this variable 

would not be significant. Therefore the variable was not included in further analysis.  

 

The summary statistics related to the four explanatory variables are presented here, 

with a further breakdown to the OD level in Appendix 2.  
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Table 5.2 - Summary statistics of dataset used to estimate choice models 

Mode Count 
Average 

JT 

Average St 

Dev 

Transfer 

Trips 

Average 

Headway 

LU 27 31.77 5.18 24 5.24 

LU/DLR 18 40.67 4.36 18 7.73 

Rail 6 28.84 5.36 5 17.46 

LU/Rail 11 30.10 5.37 11 12.77 

Overall 62 32.68 5.10 58 6.86 

 

Table 5.2 summarises all 62 travel options available in the choice dataset (31 ODs, 

with two mode options each). The averages quoted are weighted by number of 

passengers on each mode. The LU mode is well represented, being available for 27 of 

the 31 ODs. Journeys on rail are, on average, the shortest duration, with LU/DLR the 

longest. This is unsurprising given that stop spacing and vehicles speeds tend to be 

higher on heavy rail in comparison to light rail. In contrast, the average standard 

deviation is lowest on the LU/DLR mode. The average headway is lowest on the LU 

mode; this is intuitive as many lines on the London Underground operate with only two 

minutes between vehicles during the AM peak. 

 

Using the values in Appendix 2 it is possible to plot the differences on a given OD 

against the number of passengers choosing an option. In the first example below, the 

difference between the average journey time for Mode 1 and 2 on an OD is plotted 

against the proportion of travellers using Mode 1. If passengers dislike travel time as 

expected, a relationship with a negative gradient would be observed: where travel times 

are higher on Mode 2, a greater proportion of travellers would be observed using Mode 

1. This relationship can be observed in Figure 5.2. 
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Figure 5.2 - Mean journey time difference plotted against mode choice 

Figure 5.2 shows, on average, fewer passengers using Mode 1 when its travel time 

is higher than that on Mode 2, and more passengers using Mode 1 when the travel time 

is lower. The line of best fits illustrates this trend, although a relatively low R2 of 0.35 

would suggest that there may be other factors that influence mode choice. 

Figure 5.3 is a similar plot to 5.2, with the mean average travel time replaced by the 

standard deviation of travel time. 

 

Figure 5.3 - Standard deviation of journey time difference plotted against mode choice 

The relationship between relative standard deviation and mode usage is not clear 

from Figure 5.3. Seven of the nine negative points below zero involve the Heavy Rail 
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mode, meaning that some mode specific affects may be affecting this result. It will 

therefore be crucial to represent mode specific effects in subsequent model estimation. 

 

Figure 5.4 - Headway differences plotted against mode share 

Figure 5.4 does not clearly demonstrate a relationship between headways and mode 

choice. A negative relationship would be expected under the hypothesis that passengers 

prefer a public transport mode that has a lower headway. Many OD pairs are observed 

with little difference between headways (i.e. close to zero on the x axis), and so it is 

unclear whether the choice models estimated subsequently will identify a statistically 

significant parameter associated with headway.  

 

A concern remains regarding the issue raised in the literature of correlation between 

mean and standard deviation of travel time (Batley et al, 2008; de Jong et al, 2009), 

however the analysis based upon the information in Appendix 2 suggested that this was 

not an issue for these data. This relationship for all 62 OD/mode combinations is plotted 

in Figure 5.5. 
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Figure 5.5 - Scatterplot of mean travel time against standard deviation of travel time for 

62 OD/mode combinations 

Figure 5.5 entails no statistically significant correlation between the two variables, 

and therefore the conclusion was made that this would not unduly affect the estimation 

of the choice models. 

Chapter 3 noted that the journey time data included all activities that occurred 

behind the gate. Therefore there is likely to be correlation between journey time and the 

additional variables of headway and transfer. To investigate this possibility, a 

correlation matrix of all four variables was calculated based upon all 62 mode/OD 

combinations in the dataset. 
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Table 5.3 - Correlation matrix of explanatory variables 

 

The correlation matrix in Table 5.3 shows positive and statistically significant 

correlation between mean journey time and transfers, which may affect model 

estimation. The relationship between headway and mean journey time would be 

expected to be positive as increased time between vehicles would increase travel time, 

all else equal. However the correlation above is negative, although this was not 

statistically significant. The standard deviation of journey time does not appear to 

correlate strongly with the transfer or headway variable, and therefore should not affect 

its parameter estimate substantively. Table 5.3 is further expanded in Appendix 3 with 

scatterplots showing the relationships between variables in greater detail (excluding the 

categorical transfer variable). The plots do not visually indicate any clear relationships 

between any combinations of variables. 

Another issue prior to model estimation was the extent to which individuals were 

observed on multiple occasions. One reason that the dataset was restricted to AM peak 

was to capture commuters capable of estimating the travel time and standard deviation 

of travel time on different alternatives. This would therefore imply repeated journeys 

made by the same individuals. The table below shows the number of journeys made by 

the same Oyster card within the choice dataset. The assumption is made that each 

Oyster card was used by one individual only. 

  

MEAN_JT ST_DEV_JT TRANSFER HEADWAY

Correlation 1 0.137 .282
* -0.222

Sig. (2-tailed) 0.288 0.026 0.082

Correlation 0.137 1 0.031 0.027

Sig. (2-tailed) 0.288 0.811 0.834

Correlation .282
* 0.031 1 0.019

Sig. (2-tailed) 0.026 0.811 0.883

Correlation -0.222 0.027 0.019 1

Sig. (2-tailed) 0.082 0.834 0.883

*. Correlation is significant at the 0.05 level (2-tailed).

MEAN_JT

ST_DEV_JT

TRANSFER

HEADWAY
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Table 5.4 - Number of uses by Oyster card ID  

Uses 

Count of Oyster 

Cards 

1 410 

2 71 

3 44 

4 35 

5 22 

6 21 

7 19 

8 16 

9 10 

10 10 

11 20 

12 17 

13 10 

14 20 

15 23 

16 15 

17 16 

18 23 

19 16 

20 11 

 

Table 5.4 shows that there are 829 separate Oyster cards used within the choice 

dataset with an average of 5 transactions by each card. 410 of these cards register a trip 

only once over the study period, whereas just over 20% of cards are used more than 10 

times. Although this does imply that many of the trips recorded in the dataset are made 

by those unfamiliar with their route; Oyster cards making more than 10 trips account for 

63.5% of all trips in the sample.  

This finding implies that the dataset could be modelled as panel data. This is where 

the data is multi-dimensional; there are multiple observations made for the same 

individual. This will be tested in the next section. Further investigation reveals that there 

are no instances of an individual travelling on more than one OD pair. However 75 

Oyster cards are recorded using both modes at least once on their OD pair – indicating 

that the data is recording behaviour change, which it is hoped will be captured in the 

next section where choice models are estimated. 
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5.4 Choice Modelling 

The models in this section were estimated using Biogeme (Bierlaire, 2003). Two 

choice model specifications introduced earlier in this chapter were utilised: multinomial 

logit and cross-nested logit. Each model specification in treated separately in turn, with 

the introduction, results and discussion completed on the MNL model in advance of the 

CNL model. 

Model 1a: Mean-Variance Multinomial Logit 

The first logit model was estimated based upon the following EU function: 

𝐸𝑈𝑛,𝑂𝐷,𝑚 =  𝛽1𝜇𝑂𝐷,𝑚 +  𝛽2𝜎𝑂𝐷,𝑚 + 𝜀𝑛 (5.6) 

 

Where 𝐸𝑈𝑛,𝑂𝐷,𝑚 is the expected utility for individual n based on their OD pair 

(OD) and mode choice (m).  𝜇𝑂𝐷,𝑚 and 𝜎𝑂𝐷,𝑚 represent the mean and standard deviation 

of the chosen OD pair and mode combination. 𝛽1 represents the marginal utility of mean 

travel time. Similarly, 𝛽2 represents the marginal utility of travel time variation. The 

error term, 𝜀, varies between individuals, denoted by subscript n. 

The alternative hypothesis was that average values of 𝛽1 and 𝛽2 would be less than 

zero. Such a restriction was not placed on the ASCs and therefore a 2-tailed t-test was 

utilised for these parameter estimates. Only the MV variables were included in this first 

model. 

The MNL models were run using the 4,140 records of the non-dominated choice 

dataset described in Section 5.3.2. The ASCs were estimated in all cases except for 

Metro (London Underground) which was fixed to zero as the reference case (all mode 

ASCs would therefore be additive to LU). For each choice situation, two modes were 

available; the remaining modes would be marked as not available in Biogeme. The 

results are shown in Table 5.5 below.  
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Table 5.5 - Parameter estimates from MNL 

Name Value t-test 

ASC_Metro 0   

ASC_Metro/Light Rail -0.879 -14.99 

ASC_Metro/Heavy Rail -1.440 -17.34 

ASC_Heavy Rail -2.310 -21.48 

B_Standard Deviation -0.157 -6.92 

B_Mean Travel Time -0.179 -14.63 

Adj R2 = 0.281, Final LL = -2057.95 

The first model estimate based upon the Oyster data provides encouraging results. 

All parameters are significant, and furthermore the parameters associated with the 

standard deviation and mean travel time are both negative and significant. The null 

hypotheses on these parameters can therefore be rejected. This model estimates a 

Reliability Ratio of 0.88. This is within the reasonable range of RR values quoted in the 

literature, and not too far from the average RP estimate of 1.10 calculated in the 

literature review of this thesis. 

Model 1b: Mean-Variance Multinomial Logit with Interaction Terms 

The result of the estimation of Model 1a showed strongly significant ASCs (i.e. 

differences between modes). The MNL was therefore estimated again with the addition 

of interaction terms between mode and standard deviation, as well as between mode and 

mean travel time. This would capture some of the difference between modes implied by 

the highly significant ASCs and also allow a RR to be calculated for each of the four 

modes. As previously noted, the Metro mode was treated as the reference case, and the 

marginal utility of travel time and standard deviation of travel to would be expected to 

be less than zero in all cases. 
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Table 5.6 - Parameter estimates from MNL with interaction terms 

Name Value t-test 

ASC_Metro 0   

ASC_Metro/Light Rail 0.846 2.85 

ASC_Metro/Heavy Rail -5.05 -9.08 

ASC_Heavy Rail -5.13 -9.11 

B_St Dev -0.093 -3.26 

B_St Dev_Metro/Light Rail -0.304 -7.14 

B_St Dev_Metro/Heavy Rail 0.441 5.78 

B_St Dev_Heavy Rail 0.0425 0.45 

B_Travel Time -0.173 -9.13 

B_Travel Time_Metro/Light Rail -0.00676 -1.14 

B_Travel Time_Metro/Heavy Rail 0.061 3.5 

B_Travel Time_Heavy Rail 0.119 7.78 

Adj R2 = 0.312, Final LL = -1964.70 

The parameter estimates shown in Table 5.6 present some issues. Although most 

parameter estimates are statistically significant, there are notable exceptions in the risk 

parameter for the Heavy Rail mode and the travel time parameter for the Metro/Light 

Rail mode. Table 5.6 shows the marginal utilities of standard deviation and travel time 

for each mode excluding such insignificant parameter estimates. As a result of the 

estimates in Table 5.7 a mode specific RR is also calculated. 

Table 5.7 - Mean-Variance marginal utilities and RR by mode 

  

B_Standard 

Deviation 

B_Travel 

Time RR 

Metro -0.093 -0.173 0.54 

Metro/Light Rail -0.397 -0.173 2.29 

Metro/Heavy Rail 0.348 -0.112 -3.11 

Heavy Rail -0.093 -0.054 1.72 

 

Table 5.7 shows that seven of eight parameter estimates are negative as expected. 

This allows RRs to be calculated for three of the four modes modelled. These range 

between 0.54 and 2.29, where the latter is substantial but not outside other evidence 

presented in the literature. The positive risk parameter on the Metro/Heavy Rail mode is 

against expectations. When this was investigated in greater detail, the data showed that 

travellers were more likely to use this mode when the standard deviation was higher 

than for other modes. This is shown in Figure 5.6.  
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Figure 5.6 - OD plot of the standard deviation of the Metro/Heavy Rail alternative as 

proportion of the standard deviation on the alternative mode, against the proportion 

using the Metro/Heavy Rail mode 

This finding may be a fair representation of traveller preferences (i.e. those using 

Metro/Heavy Rail are risk prone), however a more likely explanation is that at this level 

of aggregation is that there are too few OD pairs for each mode to accurately represent 

choice behaviour. This suggests that further estimates of the RR should be made across 

modes similar to the results shown in Table 5.5 rather than disaggregating MV variables 

by mode.  

Model 1c: Mean-Variance Multinomial Logit with Additional Variables 

The final MNL model to be estimated includes variables for transfer and headway, 

but without interaction between mode and MV parameters. The results of this model 

estimation are shown in Table 5.8. 
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Table 5.8 - Parameter estimates from MNL with additional variables 

Name Value t-test 

ASC_Metro 0.000   

ASC_Metro/Light Rail -0.760 -11.86 

ASC_Metro/Heavy Rail -1.350 -11.58 

ASC_Heavy Rail -2.170 -10.81 

B_St Dev -0.235 -8.82 

B_Travel Time -0.226 -13.90 

B_Transfer -1.300 -5.91 

B_Headway -0.025 -1.80 

Adj R2 = 0.288, Final LL = -2035.42 

The addition of the transfer and headway parameters provides a slightly better fit to 

the data than Model la, but this is not unexpected. Using a single tail test, the transfer 

and headway parameter estimates are both statistically significant at 5%. This is 

interpreted as evidence that all variables affect traveller choices on London’s transport 

network. The RR estimated by this model is 1.04 which is reasonable in the context of 

the literature. Given the improved model fit over Model 1a, as well as an acceptable RR 

based on parameter estimates that are all negative as expected, this model is the 

preferred of the three estimated so far in this chapter. A further version of 1c 

acknowledging the panel nature of the data was run. This was done by allocating a 

random variable, drawn from a Normal distribution in order to induce correlation for the 

choice observations of the same Oyster card. The results from this model run are 

presented in Table 5.9. 

Table 5.9 - Parameter estimates from MNL with additional variables and Panel effects 

Name Value t-test 

ASC_Metro 0.000   

ASC_Metro/Light Rail -0.760 -12.22 

ASC_Metro/Heavy Rail -1.350 -13.41 

ASC_Heavy Rail -2.170 -10.88 

B_St Dev -0.235 -13.33 

B_Travel Time -0.226 -14.41 

B_Transfer -1.300 -6.67 

B_Headway -0.025 -1.80 

Adj R2 = 0.288, Final LL = -2035.42 
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Table 5.9 shows that the inclusion of fixed panel effects across survey subjects does 

in general increase t-statistics of parameters, but does not have an effect on the model 

estimation otherwise insofar as the parameter estimates and R2 / Final LL remain the 

same as those estimated in the previous model run. 

A drawback of the models estimated to this point is their inability to accurately 

represent correlation between the error terms of similar alternatives. This is addressed 

by Model 2, using the CNL model specification.  

Model 2: Mean-Variance Cross-nested Logit 

Model 2 utilized a CNL structure as indicated in Figure 5.1. The α term defined in 

Eq. 5 (the allocation parameter) was allowed to vary freely, and each hybrid mode could 

belong to two nests; that is, Metro/Light Rail could belong to both “Metro” and “Light 

Rail” nests. Based on experience with the MNL model, interaction terms between mode 

and travel time/standard deviation were omitted. However ASCs and βs were specified 

in the same manner. The result of this model estimation is shown in Table 5.10. 

 

Table 5.10 - Model parameters from CNL 

Name Value t-test 

ASC_Metro 0.000   

ASC_Metro/Light Rail -0.845 -2.52 

ASC_Metro/Heavy Rail -1.530 -2.90 

ASC_Heavy Rail -3.340 -14.31 

B_Standard Deviation -0.100 -1.95 

B_Mean Travel Time -0.248 -2.87 

Adj R2 = 0.289, Final LL = -2028.26 

The CNL specification in Model 2 results in negative MV parameter estimates, 

which suggests a rejection of the null hypothesis; the t-statistic of 1.95 on the risk 

parameter is significant at 5% (1-tailed). The RR estimate of this model is 0.43. This 

value is at the lower end of estimates in the literature, but not unreasonable. The ASCs 

are all significant, indicating differences between the modes. The R2 and final log-

likelihood measures of model fit are lower than the equivalent multinomial logit model, 

indicating a poorer fit to the data. The allocation and nesting parameters for the CNL 
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model (i.e. reflecting the degree of membership of a given alternative to each of its 

member nests) are presented in Table 5.11. 

 

Table 5.11 -  Nesting and Allocation parameters from CNL model estimation 

Name Value t-test 0 t-test 1 

Light Rail nest 1.000     

Metro nest 0.733 2.36 -0.86 

Heavy Rail nest 0.220 2.97 -10.52 

Metro/Light Rail allocation to Light rail nest 0.755 1.44 -0.47 

Metro allocation to Metro nest 1.000     

Metro/Light Rail allocation to Metro nest 0.245 0.47 -1.44 

Metro/Heavy Rail allocation to Metro nest 0.855 1.63 -0.28 

Metro/Heavy Rail allocation to Heavy Rail nest 0.145 0.28 -1.63 

Heavy Rail allocation to Heavy Rail Nest 1.000     

 

For the nesting structure of the model to be supported, the nesting parameters (the 

first three rows of Table 5.11) should take a value between one and ten. The light rail 

nesting parameter is one, as this only has one alternative associated with it. The other 

nesting parameters are less than one, which suggests that the nesting structure of the 

model in inappropriate, and therefore conclusions to be drawn from the parameter 

estimates may be misleading. Furthermore, the allocation parameters are not 

significantly different from zero and one, which is further evidence against use of the 

CNL model. 

The conclusion must be made that whilst use of the CNL model specification is 

intuitively reasonable given that there is likely to be correlation between the error terms 

of the choice alternatives, its use cannot be justified based on the data and results 

provided in Table 5.11. 

5.5 Discussion  

The objective of this chapter was to develop a methodology for the estimation of 

the Reliability Ratio (RR) using public transport smartcard data only. The simple 

multinomial logit model (1a) achieved this aim, estimating a RR of 0.88. Model 1c 

(incorporating additional choice variables) was deemed to be an improvement and 
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estimated an RR of 1.04. Referring to the meta-analysis in Chapter 2 where a mean RP-

based RR of 1.10 was calculated, as well as the meta-analysis of Carrion and Levinson 

(2012) who calculated a mean RR of 1.09, these results appear plausible. The 

methodology used in relation to the data is fully replicable and it is anticipated that this 

result will provide the basis for further work in this field. A key issue with the estimates 

of 0.88 and 1.04 is that the model specification used did not allow for violations of IID.  

The CNL model was an attempt to overcome this issue, but had issues itself. Whilst 

a reasonable RR was estimated, the nesting parameters were not within the expected 

range, suggesting that the specification of the model could not be justified empirically. 

It is suspected that there were too few OD pairs within the dataset used and therefore the 

conclusion is not that this model specification should be rejected out of hand, but rather 

to recommend that it is estimated using larger datasets containing more OD pairs in the 

future.  

A similar recommendation is made regarding the RR estimates by mode, which was 

the second of the multinomial logit models. This model estimate was successful insofar 

as it estimated mode specific RRs for three of the four modes in the model. An 

unexpected positive parameter value could be observed in the data, but it was not clear 

whether this was again due to a low sample size of OD pairs for a single mode. 

Nevertheless, the three positive RRs estimated ranged from 0.54 to 2.29 which are not 

outside the acceptable range exhibited by the literature. 

These results are encouraging; however there are possible developments that could 

be made based upon the dataset obtained. One criticism of the above method is that it 

assumes uniform conditions across the entire (3 hour) AM peak dataset. Other studies 

have favoured percentile based values to populate a standard MV model – which has not 

been done here.  

Finally, the RRs estimated within this chapter should themselves be treated with a 

degree of caution given data issues identified in Chapter 3. For example, the smartcard 

records contained times between entry and exit points of a station, and so the parameter 

estimates are based upon all activities conducted ‘behind the gate’ including platform 

access time, waiting time etc. in addition to in-vehicle time. The literature tends to focus 

on in-vehicle time only and therefore the RRs estimated in this chapter are not entirely 
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comparable. Nevertheless, by taking into account a wider range of elements of the trip, 

the method arguably provides a closer representation of actual decisions made by 

travellers. 

5.6 Conclusion 

This chapter has demonstrated a method of estimating a Reliability Ratio (RR) 

using RP data. The benefits of undertaking this research are clear; both in terms of the 

limitations of the alternative SP method (general suitability, high survey cost) and the 

positive aspects of RP (realism, low survey cost). Combining standard economic and 

choice modelling approaches formed the basis for estimating the RR from automatically 

collected data only. Using public transport smartcard data it was possible to estimate a 

realistic RR during the AM peak period. A number of estimates were made, the 

majority of which were within an acceptable range when compared to the literature. 

However use of the more complex but intuitively reasonable model specification, CNL, 

could not be supported based upon model estimation in this chapter and is rejected, 

subject to further work.  

 A range of RR estimates in the literature highlight the importance of estimating a 

RR which is relevant to its application, an issue which the methodology outlined in this 

chapter could provide a solution. The objectives related to this chapter are shown in 

Table 5.12. 
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Table 5.12 - Objectives met in Chapter 5 

Objective Description Addressed in: 

O1 To apply smartcard datasets to a 

number of real world situations, 

drawing and developing upon 

existing studies. 

This chapter is a substantive 

contribution to objective 1 by 

developing a novel use of 

smartcard data. The method is 

applied empirically.  

O2 To provide a critique of the 

smartcard data available (and 

smartcard data more broadly). 

Although the chapter had some 

success in estimating RRs, some 

issues with the data were 

identified. For example, the large 

dataset became limited in size 

after choice situations were 

identified. 

O4 To develop a methodology for 

estimating a VOR using smartcard 

data. 

Despite some not-insubstantial 

limitations, the methodology 

developed and applied produced a 

RR and could form the basis for 

further work in this area.  
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Despite efforts to include additional variables in Model 1c, there remains the 

possibility that there are omitted variables from our model which bias the results. For 

example, station size or accessibility to platforms may impact upon travellers’ mode 

choice, but this was not explicitly represented in the model due to data availability. The 

relatively small sample sizes at the OD level of aggregation meant that it was mainly 

large stations that featured within the dataset, and a station size variable could not be 

easily modelled. Finally, although it remains likely that the CNL model specification is 

the most appropriate for representing the choice situation, evidence supporting this 

claim could not be found in this analysis. This should also be a subject for further 

investigation. 

The assumption of perfect knowledge on the part of every passenger is also 

unrealistic. A development of the RP method would take into account variability in 

experience of passengers on a route – this could be performed more accurately where 

the dataset covered a longer temporal duration than one month. In the discussion, the 

reader is also advised to be aware of the data description in the previous chapter, and the 

issues identified with the data. Future research might consider datasets that contain a 

cost variable so that monetary values of reliability can be estimated directly, thus 

overcoming the issue of fungibility when utilising a RR alongside separately estimated 

values of time (Orr et al, 2012).
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Chapter 6 – Alternatives to Mean-Variance 

6.1 Introduction 

This chapter will investigate the underlying utility functions driving traveller 

behaviour, using the smartcard data. This will involve two elements of investigation.  

The first of these elements will return to the alternative indicators of risk identified 

in Chapter 3, which considered lateness but not earliness. If one of these indicators were 

to replace the variance or standard deviation in MV, then a different utility function 

would result. The chapter will initially identify the form that these utility functions 

would take, and then go on to utilise the methodology developed in Chapter 5 to test 

whether these indicators provide an improved account of traveller behaviour over the 

standard deviation. 

The second element of this chapter will reintroduce the Scheduling approach to 

reliability identified and discussed in Chapter 2. The Scheduling utility function, 

simplified to consist of two straight lines, has been shown in the literature to be capable 

of representing travel time risk. The functional form does however imply different 

behaviour to the curved function underpinning MV. This comparison is made in light of 

the separate literature identified in Chapter 2 which treats MV and Scheduling as 

equivalent. This will be investigated by firstly matching MV and Scheduling utility 

functions based upon their properties; and secondly by using the smartcard data to 

calculate and compare the reliability premia of the functions. This will allow differences 

between these functional forms to be identified.  

6.2 Alternatives to Variance in MV 

In Chapter 8 of ‘Portfolio Selection’ (Markowitz, 1959), a range of candidate risk 

measures were considered as possible replacements for the variance or standard 

deviation in the MV expected utility function. This was motivated by the observation 

made by Markowitz that: 
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“Analysis based on S [the semi-variance] tend to produce better portfolios than 

those based on V [the variance]” 

The reason for this being that 

“Variance considers extremely high and extremely low returns as equally 

undesirable” 

Markowitz, 1959, pp.194 

That said, Markowitz did not reject the variance as an indicator of risk. In the same 

chapter, Markowitz developed this thinking by considering some alternatives to 

variance, focussed around the idea of financial losses. The justification for this was that 

risk in losses weigh more heavily on investors than risk in gains. A corresponding 

narrative in transport could be that travellers are more greatly motivated in their travel 

decisions by fear of lateness rather than earliness, to the extent that risk in earliness 

could be omitted from MV analysis. 

This links with the outcome of the investigation into alternative reliability indicators 

conducted in Chapter 3 of this thesis. To re-cap, that analysis identified three indicators, 

in addition to the standard deviation, worthy of further investigation. These were:  

• Buffer Time – The difference between 95th percentile and median travel times. 

This would indicate the extra travel time above the median travel time which a 

passenger should leave to arrive on time in 95% of cases. It could be scaled by 

dividing it by the median, but it would then lose its simple interpretation. 

• Late trip – Calculates an average travel time of the 20% longest travel times for 

a given time period and/or time of day. This indicator could also be scaled by a 

central measure of travel time. 

• Semi-Variance – This is the variance calculated for all travellers whose travel 

time was in excess of the mean travel time. Taking the square root of the semi-

variance results in the semi-deviation. 
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The common element of the above three indicators is their focus on lateness. Like 

Markowitz, it will be useful to initially consider how these indicators would affect the 

travellers’ utility function.  

Chapter 2 established that the utility function for the risk averse traveller would 

resemble that in Figure 6.1: concave and (usually) monotonically decreasing. This 

would suggest that risk aversion is evident for all values of t, as illustrated by curvature 

on all parts of the function. This risk associated with lateness (higher values of t) is 

greater than that for lower values of t.  

 

Figure 6.1 - An example MV utility function for a fixed departure time 

The three alternative indicators suggest that only risk in lateness (after the PAT) is 

of relevance. This would therefore imply risk neutrality (no curvature of the utility 

function) before the PAT. In what follows, the assumption is made that the PAT exists 

at some point between the minimum and maximum values for t. The resulting utility 

function would therefore resemble that represented in Figure 6.2. It is also possible that 

the section of the utility function after the PAT could be a straight line, but this will be 

dealt with in the second section of the present chapter. 
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Figure 6.2 – MV utility function (travel time risk after PAT only), for a fixed departure 

time 

Figure 6.2 shows that travel time risk only occurs when there is a possibility of 

lateness. That is, if earliness could be guaranteed, no risk is considered. 

The question naturally arises as to which of Figures 6.1 and 6.2 is the closest 

account of actual traveller behaviour. To answer this question, the methodology and 

dataset developed in Chapter 5 will be revisited. Model 1c from that chapter, a MV 

multinomial logit model containing additional variables for headway and transfers, will 

be run with each of the four candidate risk indicators in turn. As the dataset is a record 

of revealed traveller behaviour, the model with the best fit (highest adjusted R2, highest 

final LL) should offer the closest representation of reality. In other words, the risk 

indicator within the model with the best fit should give the best representation of 

traveller attitude toward risk in the dataset. Markowitz (1959) showed that standard 

deviation was associated with the utility function in Figure 6.1, whilst the other 

indicators more closely represented the utility function in Figure 6.2 as they are 

measures of risk in lateness only. Lateness is defined as a time after the mean travel 

time; the PAT therefore is assumed to be equal to the mean travel time. Although this is 

unrealistic, this simplification allows the model to be estimated without directly asking 

travellers themselves. The parameter estimates and model fit statistics are shown in 

Table 6.1.
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Table 6.1 - Model results for each risk indicator using RP dataset 

 
Standard Deviation Buffer Time Late Trip Semi-Deviation 

Name Value t-test Value t-test Value t-test Value t-test 

ASC_LU 0.00  0.00  0.00  0.00  

ASC_LUDLR -0.76 -11.86 -0.45 -5.38 -0.89 -13.26 -0.82 -12.18 

ASC_LURAIL -1.35 -11.58 -0.71 -4.27 -1.48 -12.48 -1.47 -12.34 

ASC_RAIL -2.17 -10.81 -2.30 -11.67 -2.53 -12.49 -2.54 -13.10 

B_HEADWAY -0.03 -1.80 0.01 0.72 0.02 1.53 0.01 0.90 

B_RISK -0.24 -8.82 0.05 5.74 -0.13 -8.03 -0.07 -3.55 

B_TIME -0.23 -13.90 -0.13 -9.95 -0.05 -2.97 -0.17 -11.68 

B_TRANSFER -1.30 -5.91 -0.88 -3.75 -0.73 -3.24 -0.65 -2.75 

                 

Reliability 

Ratio 
1.04 -0.36 2.43 0.44 

 
                

Final LL -2035.42 -2057.79 -2040.91 -2067.99 

                 

Adjusted R2 0.288 0.280 0.286 0.277 
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Table 6.1 shows that the Mean-Variance model provides the best fit to the data. This 

is modelled using the standard deviation in place of the variance as the indicator of risk, 

in line with convention. All indicators of risk and travel time were expected to be 

negative.  

Table 6.1 suggests that the standard deviation is the best indicator of reliability of 

those modelled for representing actual traveller choices. It should be noted that the Late 

Trip model gives fit only slightly worse than the mean-standard deviation. The fit and 

explanatory power of the semi-deviation model is the poorest, which is unexpected 

given its similarity to the mean-standard deviation, however the simplifying assumption 

that the PAT was equal to the mean travel time may have influenced this result. 

Although the Reliability Ratios calculated are not directly comparable, given the 

difference in scale of the indicators, the negative Reliability Ratio associated with the 

Buffer Time is unexpected. This is a result of a positive parameter estimate for the 

Buffer Time indicator, which would be expected to be negative. As a result, this 

indicator is rejected.    

The finding of Table 6.1 is broadly in favour of the status quo for modelling 

reliability: using the standard deviation as the indicator for risk. This result supports the 

type of utility function shown in Figure 6.1, and suggests that utility functions of the 

type shown in Figure 6.2 are less appropriate. This implies either or both of the 

following are true: 

1. Risk in earliness is of value to travellers 

2. Linear sections of the utility function are unrealistic 

These findings also relate to the Scheduling framework. The Scheduling framework 

explicitly takes account of travellers’ attitude towards earliness, however it also 

comprises of two (or more) linear sections. Although the Scheduling model cannot be 

estimated with the RP dataset (as no information regarding traveller PATs is revealed in 

the RP dataset), it will be useful to understand the characteristics of its utility function 

that underpins its expected utility. Furthermore, in the light of the work that has 

established equivalence between Scheduling and MV expected utility functions 

(Fosgerau and Karlström, 2010), it has been suggested that their respective utility 
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functions (i.e. underpinning the EU function) should also be approximately equivalent 

(Batley, 2007). This will be investigated in the next section. 

6.3 Mean-Variance and Scheduling Utility Functions 

To begin a comparison between Scheduling and MV utility functions, it will be 

useful to visualise an example of the Scheduling utility function to complement the 

example MV utility function plotted in Figure 6.1. To do this, it is possible to reinterpret 

Scheduling cost functions (of Small, 1982) into the utility domain, where travel time is 

combined with SDE and SDL (see Batley, 2007), and furthermore 𝜃 takes a value of 

zero (to introduce a degree of simplification). For typical parameters of a Scheduling 

EU function where 𝛽 > 𝛼 >  𝛾, the function would approximately resemble that shown 

in Figure 6.3. This is expanded with the example of two risky outcomes (similar to that 

already shown in Figure 2.6) to illustrate the concept of reliability. These two risky 

outcomes (shown in red) result in an Expected Utility, plotted on the Y axis. Fosgerau 

and Karlström (2010) establish the equivalence between the optimum Scheduling EU 

(with respect to departure time) and MV.  

 

Figure 6.3 - Plot of Scheduling utility function based upon typical parameters where β 

> α > γ (estimated by Li et al, 2010) and omitting a fixed penalty for lateness (θ = 0) 
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Research has recognised similarity between the underlying Scheduling and MV 

utility functions, with the angle formed between the earliness and lateness sections of 

the Scheduling function representing an approximation to the risk attitude of the 

traveller (Batley, 2007). However, the present focus on the shape of the utility function 

has not hitherto been addressed. Moreover, if Scheduling and MV were formally 

equivalent, then intuition suggests that this would require three conditions to hold: 

• Condition I: Equivalence in the expectations of the utility functions (i.e. as 

developed by Fosgerau and Karlström, 2010). 

• Condition II: Equivalence in the average slopes of the utility functions 

(recognising that slope varies at different points on the functions), where 

slope is determined by the marginal utility of t (
𝛿𝑈

𝛿𝑡
). 

• Condition III: Equivalence in the curvature of the functions (i.e. reflecting 

risk attitude), or the changing marginal utility over t (
𝛿2𝑈

𝛿𝑡2 ). 

These conditions will be discussed in greater detail, before being used to combine 

the Scheduling and MV utility functions. 

 

Condition I: Equivalence in expected utility 

The theory of reliability equivalence discussed in Chapter 2 was focussed upon 

equivalence in expected utility only. This imposes no substantive restrictions upon the 

underpinning utility functions; it is feasible that two completely different utility 

functions could give rise to the same expected utility. This suggests that, for formal 

equivalence between Scheduling and MV, further restrictions are required so that their 

respective functions entail similar behaviours on the part of travellers, as follows.  

Condition II: Equivalence in the marginal utility of t 

The second restriction on equivalence is that the utility functions should imply that 

travellers have the same overall marginal utility of travel time. The additional restriction 

to reliability equivalence proposed in this section is that the slopes of ‘equivalent’ 

functions will be the same, on average. What this restriction effectively implies is that, 
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if the effect of travel time risk were removed, then the utility functions would be 

identical. However, travel time risk is central to the present discussion, and it is 

therefore useful to understand how well reliability equivalence performs using 

conditions I and II.  

These conditions are applied to fit a quadratic representing MV to the Scheduling 

function of Figure 6.3; the marginal utility of t on the Scheduling function was 

calculated as a weighted average of each of the two slopes. That is to say that, using 

Pythagoras, the marginal utility of t for a quadratic (𝑈′(𝑡)) is given by: 

𝑈′(𝑡) = ((𝛼 − 𝛽)
(𝐿(𝐸𝑎𝑟𝑙𝑦)

𝐿(𝐸𝑎𝑟𝑙𝑦) + 𝐿(𝐿𝑎𝑡𝑒)
) + ((𝛼 + 𝛾)

(𝐿(𝐿𝑎𝑡𝑒)

𝐿(𝐸𝑎𝑟𝑙𝑦) + 𝐿(𝐿𝑎𝑡𝑒)
) 

 

(6.1) 

Where 𝐿(𝐸𝑎𝑟𝑙𝑦) is the length of the Scheduling utility function prior to the PAT, 

and 𝐿(𝐿𝑎𝑡𝑒) is the length of the Scheduling utility function after the PAT. 

 The result of this process is that the two functions now somewhat resemble one 

another, but substantive differences still remain. An example of such differences is 

given by Figure 6.4. 
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Figure 6.4 - Plot of equivalent utility functions, where a quadratic function is fitted to a 

Scheduling function based upon overall EU and average slope of the Scheduling 

function 

The quadratic in Figure 6.4 is approximately a straight line. It crosses the scheduling 

function at two points. If two equi-probable values of t were defined at these crossing 

points, then it would be possible to suggest that – according to conditions I and II – the 

functions were approximately equivalent, as shown in Figure 6.5. 
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Figure 6.5 - A two outcome example demonstrating the possibility of equivalence 

between Scheduling and MV utility functions based upon two conditions of equivalence 

Despite this apparent equivalence based upon two conditions, the utility functions 

remain quite different and would therefore imply differing behaviour on the part of the 

traveller. This discrepancy is particularly obvious around the Scheduling PAT and at the 

extremes of the utility functions. This suggests that equivalence in EU and the marginal 

utility of t only will not result in comparable utility functions. It is for this reason that 

the third condition for utility equivalence is now introduced.    

Condition III: Equivalence in the changing marginal utility over t 

The microeconomic literature has demonstrated that it is the curvature of the utility 

function that represents risk (Arrow, 1970). Polak (1987) interpreted the curvature of 

the utility function in a travel time context as related to travel time risk. Accordingly, 

the final condition for equivalence between Scheduling and MV utility functions is 

commonality in the change in marginal utility over travel times – or the curvature of the 

function. The Scheduling function of Figure 6.3 is comprised of two linear sections. 

However, the angle made between these two linear sections, Θ, implies a risk attitude. 

This is shown in Figure 6.6. 
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Figure 6.6 - A Scheduling utility function, with the risk angle, Θ 

With reference to Figure 6.6, if Θ takes a value between 0̊ and 180̊, then the function 

would imply risk aversion. If the value of Θ were greater than 180̊ but less than 360̊ 

then risk proneness would be implied. Θ taking a value of exactly 180̊ would imply risk 

neutrality. In the case of the quadratic, the curvature of the function indicates the risk 

attitude of the traveller. It is therefore postulated that some relationship exists between 

the risk angle of the Scheduling utility function and the second derivative of the MV 

utility function. This is the basis of the third condition for equivalence between the 

functions: that the risk attitude implied by the two functions is the same, measured in 

the terms set out in this paragraph.  

This relationship can be illustrated by using a number of hypothetical Scheduling 

functions along with conditions I and II. The difference between each Scheduling 

function and the fitted MV function is minimised subject to the second derivative of the 

quadratic, which in the case of the standard quadratic 𝑎𝑡2 + 𝑏𝑡 + 𝑐 would be 2𝑎. The 

relationship between 2𝑎 and Θ can therefore be estimated. The hypothetical Scheduling 

utility functions were formed by allowing each of α, β, and γ, to take one of three 

values, resulting in 27 possible functions. A linear relationship between 2a and 𝛩 was 

observed, which was formally estimated as: 
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2𝑎 = −0.208 + 0.001 𝛩 (6.2) 

Drawing upon all three conditions, it is now possible to plot the ‘equivalent’ MV 

(quadratic) utility function to the Scheduling function of Figure 6.3. 

 

Figure 6.7 - A quadratic utility function fitted to a simple Scheduling utility function, 

based upon the three conditions 

Based upon the three conditions defined above, the two utility functions now closely 

resemble one another, implying not only equivalence in EU, but also approximate 

equivalence in the marginal utility of t and risk attitude.  

6.3.1 Issues With Matching MV and Scheduling Utility Functions  

To further illustrate the method outlined above, conditions I, II and III were 

employed to fit a quadratic to a range of different Scheduling utility functions. Some 

exemplars are shown in the matrix below: 
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Case 1: 𝛽 > 𝛼 > 𝛾 Case 2: 𝛼 = 𝛽 =  𝛾 

  

Case 3: 𝛼 ≥  𝛾 > 𝛽 Case 4:  𝛽 > 𝛾 > 𝛼 

  

Figure 6.8 - A quadratic utility function fitted to four Scheduling utility functions, 

based upon the three conditions of equivalence 

From the fitted utility functions in Figure 6.8, a number of common issues are 

observed: 

1. The four crossing points between the functions result in three parts of the 

quadratic function where a lower utility is estimated than the corresponding 

Scheduling function. There are also two sections where the quadratic estimates 

higher utility for given values of t. 

2. The continuous quadratic function will often display both positive and negative 

gradients of the utility function, even when both sections of the Scheduling 

utility function have a negative slope. This has the potential to introduce 

different risk attitudes between the functions. Focussing on the quadratic of 
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Figure 6.7, the quadratic has a positive slope for smaller values of t. This may 

however have an intuitive interpretation, since where there are very ‘early’ travel 

time outcomes (in relation to the PAT), travellers may be more likely to favour a 

risky travel time prospect.   

3. The quadratic form struggles to adequately represent the change in gradient of 

the Scheduling utility function at the PAT. In all examples, a discrepancy 

between the utility functions was observed in this region. This is of particular 

concern, since it is this region of the utility function where the impact of 

reliability issues will be most felt.  

It is arguably issue 3 that presents the biggest issue for equivalence between utility 

functions, particularly in the case of shorter distance urban public transport. This is 

because these small deviations in arrival time from the PAT are likely to be the most 

frequently experienced. This may affect VOR estimates. Quantitative analysis of this 

issue is provided in the next section.  

6.3.2 The Reliability Premium 

To further illustrate the issue of discrepancies between the utility functions around 

the PAT, the ‘reliability premium’ was calculated for the utility functions shown in 

Figure 6.8. The reliability premium was developed by Batley (2007) and is analogous to 

the risk premium developed by Pratt (1964). It has subsequently been adopted by other 

researchers (Beaud et al, 2016). This value is the amount that a traveller would pay, in 

minutes, to avoid a risky situation. 
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Figure 6.9 - A concave utility function with two risky travel time outcomes, the 

expected value of t, E(t), and the certainty equivalent, tc 

To calculate the reliability premium for a concave function, the expected value of the 

risky prospect is given by E(t). The utility of E(t) can be calculated using the utilities 

and probabilities of 𝑡1 and 𝑡2.  

𝑈𝐸(𝑡) = 𝑈(𝑡1) + 𝑝(𝑡2)(𝑈(𝑡2) − 𝑈(𝑡1)) (6.3) 

E(t) is then subtracted from the certainty equivalent tc. Figure 6.9 shows that the 

utility for E(t) is the same of that for tc. Using the utility function f(t), it is 

straightforward to calculate tc. 

Batley (2007) showed how to calculate an equivalent value for a Scheduling 

function. The utility of E(t) can be calculated as shown in Equation 6.3. The value of tc 

can now be calculated with reference to f(t), which in this case was defined by Small 

(1982). With reference to Figure 6.3 it is possible that the certainty equivalent may fall 

before or after the PAT. (Batley (2007) also considers the situation where tc is equal to 

the PAT). If tc falls before the PAT, then it is given by: 

𝑡𝑐 =
𝑈(𝑡𝑐) − 𝛽𝑃𝐴𝑇

(𝛼 − 𝛽)
 

(6.4) 

Similarly, tc after the PAT can be calculated using equation 6.5: 
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𝑡𝑐 =
𝑈(𝑡𝑐) − 𝛾𝑃𝐴𝑇 − 𝜃𝐷𝐿

(𝛼 + 𝛾)
 

(6.5) 

The reliability premium is now calculated based upon the four MV and Scheduling 

utility function comparisons in Figure 6.8. For purposes of illustration, two equi-

probable outcomes are defined, which can be either ±1, 3 or 5 minutes from the PAT. 

Reliability premia for the ‘equivalent’ functions of Figure 6.8 are presented below in 

Table 6.2. 

Table 6.2 - Reliability premia calculated for four cases of matching a MV utility 

function to a Scheduling utility function. All values presented in units of travel time, t. 

 
Case 1 Case 2 Case 3 Case 4 

t (relative 

to PAT) 
Sched Quad Sched Quad Sched Quad Sched Quad 

±1 min 0.36 0.03 0.50 0.06 -0.67 -0.07 0.23 0.01 

±3 mins 1.09 0.23 1.50 0.50 -2.00 -0.63 0.68 0.13 

±5 mins 1.82 0.62 2.50 1.33 -3.33 -1.64 1.14 0.37 

 

Table 6.2 shows that for a risky prospect closest to the PAT, the differences between 

the premia calculated for Scheduling and quadratic functions are greatest. The change in 

gradient of the Scheduling utility function creates a relatively large space between the 

expected outcome and the utility function. Moreover, the Scheduling utility function has 

a larger reliability premium than the quadratic at all three levels tested. In proportionate 

terms, this difference is largest for a prospect where the outcomes are closest to the 

PAT, and smallest for a prospect where the outcomes are furthest from the PAT. 

This difference will have practical implications for the valuation of reliability. If a 

survey participant responds to reliability situations in line with a quadratic utility 

function, but the analyst assumes that they are utilising a Scheduling function, then the 

participant will appear less sensitive to risk than is the case in reality. This shows that 

despite measures to ensure similarity between Scheduling and MV utility functions (i.e. 

through conditions I, II and III), there are intrinsic differences between them. This 
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suggests that MV and Scheduling are not equivalent utility functions, and that they 

necessarily imply different behavioural traits of travellers.  

This finding therefore provides and additional explanation to the findings of work 

such as Börjesson et al (2012) who could not find empirical evidence of the theoretical 

equivalence between MV and Scheduling proposed by Fosgerau and Karlström (2010). 

The work above suggests that the underlying utility functions, which ultimately drive 

the expected utility, are only approximately equivalent. Moreover, the correspondence 

between the utility functions is low around the PAT. This suggests that the shape of the 

Scheduling Utility function is problematic due to the kink at the PAT. The expected 

utility calculated based upon the assumption of a quadratic utility function will be 

different to that calculated based upon the Scheduling utility function, even when the 

three conditions for equivalence are satisfied. This provides one reason, among others in 

the literature, for the approximate nature of the equivalence established by Fosgerau and 

Karlström.    

6.4 Conclusion 

This chapter has focussed on the utility function of travellers, particularly with 

respect to travel time risk. It has investigated alternatives to the standard curved utility 

function often assumed to underlie departure time decisions. 

In the first instance, alternative indicators of risk, identified by analysis in Chapter 3, 

were tested using the RP modelling framework and data proposed in Chapter 5. This 

analysis found that in the context of the London public transport network, the mean-

standard deviation expected utility function provided a better account of choice 

behaviour than indicators based upon some measure of lateness only. This result 

supports the standard quadratic-type utility function. 

The next section of the chapter investigated another alternative utility function – the 

Scheduling utility function. An attempt was made to fit the standard curved utility 

function to the Scheduling function based upon the marginal utility of travel time and 

risk implied by the scheduling function. Despite this fitting process, substantive 

differences remained between the functions, suggesting that they should not be treated 

as interchangeable. This was particularly the case for short distance urban travel, as the 
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differences observed using the reliability premium were especially evident. This would 

support use of a smooth continuous utility function that underpins the MV framework. 

The result provides a further explanation for empirical discrepancies between MV and 

Scheduling expected utilities; that the utility functions underlying each framework are 

fundamentally different, even when matched based upon the three conditions proposed. 

Table 6.3 shows how the present chapter contributes to the thesis objectives. 
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Table 6.3 - Objectives met by Chapter 6 

Objective Description Addressed in: 

O1 To apply smartcard datasets to 

a number of real world situations, 

drawing and developing upon 

existing studies. 

In Section 6.2, the smartcard 

data was applied along with the 

methodology developed in 

Chapter 5 and indicators 

calculated in Chapter 3 in order 

to evaluate which indicator was 

most appropriate. 

O6 To explore improvements to 

the standard Mean-Variance 

framework, including other 

statistical indicators of risk, the 

shape of the utility function and 

potential alternative frameworks. 

Both Sections 6.2 and 6.3 

contribute to this objective: in 6.2 

a number of indicators were 

investigated in relation to the 

shape of their utility function. 

Their appropriateness to describe 

choice behaviour was tested 

using the RP dataset from 

Chapter 5. In Section 6.3 a 

typical curved MV utility 

function was compared to a 

scheduling function and 

differences were identified. 
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Ultimately, this chapter supports the use of the mean-standard deviation model for 

the treatment of reliability. The curved, risk averse and monotonic utility function 

appears to best represent traveller choices on one hand, whilst the linear sections of the 

utility function implied by alternative indicators and the Scheduling utility functions 

imply behaviour that is not consistent with this.
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Chapter 7– Conclusion 

7.1 Introduction 

This chapter will attempt to draw the previous six chapters together. The first part of 

the conclusion provides a summary of what has been done in each of the chapters. The 

second part of this concluding chapter returns to the aims and objectives identified in 

Chapter 1. The three aims of this study were: 

A1. To develop understanding of public transport smartcard data and identify key 

strengths and limitations through application of the data; 

A2. To apply smartcard datasets to the Mean-Variance framework to improve 

understanding of reliability and passenger responses to it;  

A3. To conduct a comprehensive review of the Mean-Variance framework and 

investigate possible improvements. 

 

This chapter will assess to what extent these aims have been met. This will be done 

through identifying whether objectives associated with each of the aims were achieved. 

The chapter will continue by identifying some of the limitations of the study, which will 

in turn lead to the identification of further work, and finally some concluding remarks. 

7.2 Summary of the Thesis 

Chapter 1 introduced the topics of this thesis which were travel time reliability and 

smartcard data.  In the case of the former, definitions of reliability in transportation were 

provided, and the primary frameworks were introduced. Smartcard technology was also 

introduced, with a focus upon public transport applications. This provided sufficient 

background to lead into a section on the motivation, aims and objectives of the thesis. 

This was supported by transport policy, both at the international level (UK and the 

Netherlands) as well as at the level of the city – namely London, from which the data 

used in this thesis was sourced. 

Chapter 2 was the literature review, which expanded upon the themes introduced in 

Chapter 1 and provided justification for the aims and objectives of the thesis.  The 
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literature review introduced expected utility theory which would form the theoretical 

basis for much of the research that followed. A key aspect of Chapter 2 was an 

introduction to the Mean-Variance framework for the treatment of reliability. The 

primary use of this framework is the estimation of the value of reliability (VOR). 

Examples of VOR studies were outlined, specifically in relation to the data collection 

methodology they employed (namely Stated Preference (SP) and Revealed Preference 

(RP)). The benefits and drawbacks of each methodology were discussed, and the results 

compared. An attempt was made to identify the factors influencing the Reliability Ratio 

(RR), although no clear conclusion could be made. This chapter also outlined 

theoretical and empirical contributions to what was termed ‘Reliability Equivalence’, in 

advance of work that followed in Chapter 6.   

Chapter 3 was focussed upon the smartcard data. The initial part was a literature 

review of studies that have made use of similar datasets. The datasets used by this study 

were then described, and potential issues arising from their use were identified. 

Following some exploratory analysis, candidate statistical indicators of reliability were 

introduced and compared using the data. Four of these indicators were identified as 

suitable for further analysis, which also followed in Chapter 6. 

Chapter 4 was the second substantive application of the smartcard data. Building 

upon similar studies on private and public transport modes, this chapter identified a 

range of variables that may have had an impact upon reliability levels on the London 

Underground. Linear regression models were estimated in order to identify the impact 

of these variables on the standard deviation of travel time. The work was partially 

successful in identifying the factors affecting reliability, but the models were of poor 

explanatory power, which may have been due to omitted variables and the definition of 

reliability used (which was related to the data available). 

Chapter 5 provided a substantive development in relation to the literature. The 

primary contribution of the chapter was to treat smartcard data as an RP data source and 

estimate a Reliability Ratio using the MV framework. The chapter described how the 

dataset was identified, and how it was applied alongside standard choice models. The 

models estimated Reliability Ratios that were broadly in line with those found in the 
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literature. The use of a cross-nested logit (CNL) model structure was not supported by 

the data – this was likely due to the limited size of the dataset. 

Chapter 6 focussed upon the shape of a traveller’s utility function. The first 

substantive element of the chapter was to identify the shape of the utility function 

implied by the candidate reliability indicators identified in Chapter 3. These indicators 

were then each tested using the modelling framework developed in Chapter 5, which 

found that the standard deviation was the best fit to the data. The second substantive 

element of the chapter was a comparison of the shapes of MV and Scheduling utility 

functions. The MV utility function was matched to the Scheduling utility function based 

upon three conditions. Despite this process, substantive differences between the 

functions remained, which suggests that the functions imply separate behaviours on the 

part of the traveller. This provides one account of the approximate nature of reliability 

equivalence and a potential explanation for discrepancies between frameworks found by 

empirical research in the field.   

7.3 Aims and Objectives 

The above contributions can be referenced against the aims and objectives set out in 

Table 1.1 at the outset of this thesis. In the table below (Table 7.1), the relevant 

objectives are listed under each of the aims. Under each of these is how the objective 

was met in the thesis. 

Table 7.1 - How the thesis has met the aims and objectives defined at the outset 

Aim 1: To develop understanding of public transport smartcard data and identify key 

strengths and limitations through application of the data; 

Objective 1: To apply smartcard datasets 

to a number of real world situations, 

drawing and developing upon existing 

studies. 

Objective 2: To provide a critique of the 

smartcard data available (and smartcard 

data more broadly) 

Chapter 3 outlined existing smartcard 

studies and demonstrated how the data 

The smartcard literature review in 

Chapter 3 allowed general issues with the 



 
 
 

196 
 

could be handled and analysed in order to 

calculate key reliability indicators.  

Chapter 4 applied the data with linear 

regression models to understand the 

factors influencing reliability levels on 

the London Underground. It showed that 

a relationship between the dependent and 

some explanatory variables existed, but 

the model was not of adequate 

explanatory power to forecast reliability 

levels.  

Chapter 5 applied multi-modal smartcard 

data alongside existing choice modelling 

methods to demonstrate that smartcards 

could be used an RP data source. 

Chapter 6 combined candidate reliability 

indicators from Chapter 3 with the 

method developed in Chapter 5 to 

identify the most suitable indicator. 

data to be identified. Further issues were 

identified after initial analysis. 

Chapters 4 and 5 identified specific 

issues related to the data through 

application. These chapters were able to 

demonstrate useful and novel 

applications of the data. 

Aim 2: To apply smartcard datasets to the Mean-Variance framework to improve 

understanding of reliability and passenger responses to it  

Objective 3: To develop the means for 

improving understanding of the factors 

affecting Transport Reliability using 

smartcard data 

Objective 4: To develop a 

methodology for estimating a VOR 

using smartcard data 

Chapter 3 demonstrated how these large 

datasets could be effectively handled and 

Chapter 2 provided an introduction to 

SP and RP in turn, highlighting issues 

with each data collection methodology. 
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analysed in order to calculate key variables 

related to reliability. 

Chapter 4 drew upon previous studies and 

experience of Chapter 3 to estimate linear 

regression models which established those 

variables having an impact upon reliability 

levels. 

A comparison of the results from the 

frameworks made the case for further 

investigation into RP. 

Chapter 3 demonstrated how the data 

could be analysed in relation to 

reliability indicators. It also highlighted 

the issues related to the data. 

Despite limitations in the analysis, 

Chapter 5 demonstrated that a 

Reliability Ratio could be calculated 

using the smartcard data. 

Aim 3: To conduct a comprehensive of the Mean-Variance framework and investigate 

possible improvements. 

Objective 5: To review the origins of the 

Mean-Variance framework from its origins 

in finance to its transition and use in 

transport contexts. 

Objective 6: To explore improvements 

to the standard Mean-Variance 

framework, including other statistical 

indicators of risk, the shape of the 

utility function and potential alternative 

frameworks. 

EUT was introduced in Section 2.1. A 

thorough introduction to MV, its link to 

EUT and finance was provided in Section 

2.2. The transition of MV to transportation 

contexts was investigated in detail in 

Section 2.2.2 

Research which has examined 

alternative indicators of travel time risk 

was discussed in Section 2.2.3 of 

Chapter 2. The alternative frameworks 

were introduced in Section 2.3, which 

included potential equivalence between 

MV and Scheduling. 

Section 3.4.2 identified alternative 

statistical indicators of travel time risk 
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for MV. These indicators were then 

compared using the smartcard data. 

Both Sections 6.2 and 6.3 contributed to 

this objective:  

-in Section 6.2 the candidate statistical 

indicators were investigated in relation 

to the shape of their utility function.  

-in Section 6.3 a typical curved MV 

utility function was compared to a 

Scheduling function and differences 

were identified. The discrepancy around 

the PAT was the greatest, and use of a 

continuous utility function was 

identified as preferable. 

 

To summarise the table above, it will be useful to describe the key conclusions of the 

thesis in relation to its stated aims. 

Aim 1: To develop understanding of public transport smartcard data and identify key 

strengths and limitations through application of the data. 

This aim has been met primarily through Chapters 3 to 5. These Chapters have 

demonstrated strengths of the data insofar as it has been successfully applied to achieve 

the following: 

• Chapter 3 – The calculation and comparison of reliability indicators  

• Chapter 4- The identification of the factors affecting reliability levels 

• Chapter 5 – The estimation of Reliability Ratios using smartcard data only 

Aim 2: To apply smartcard datasets to the Mean-Variance framework to improve 

understanding of reliability and passenger responses to it. 
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Chapters 4 and 5 made the most substantive contribution to this aim in the thesis: 

Chapter 4 – The identification of factors influencing the standard deviation of travel 

time. 

Chapter 5 – The estimation of parameters related to the marginal utility of travel time 

and standard deviation of travel time. 

Aim 3: To conduct a comprehensive of the Mean-Variance framework and investigate 

possible improvements. 

Chapters 2, 3 and 6 were the key chapters contributing to the fulfilment of this aim. 

Chapter 2 – A detailed introduction to MV, including the early work in the field of 

portfolio theory. It highlighted potential improvements to MV through using alternative 

indicators of risk, as well as introducing the Scheduling and Mean-Lateness 

frameworks.  

Chapter 3 – Analysis conducted on a long list of candidate reliability indicators. 

Chapter 6 – Suggested that the standard deviation of travel time was the best indicator 

of travel time risk. This chapter also investigated the shape of the underlying MV and 

Scheduling utility functions, and found discrepancies between them. 

7.4 Limitations of the study 

Some of the limitations of this thesis have been highlighted at relevant stages. 

Although the thesis encourages use of RP as an alternative to SP, both general and 

specific issues remain, which are outlined here. 

There are some limitations of this thesis related specifically to the smartcard datasets. 

This is not to say that these smartcard datasets were unsuitable for the application, but is 

a reflection of a decision to make use of generic smartcard datasets rather than those 

collated for a specific purpose. For example, in Chapter 5 once Dataset 2 had been 

cleaned and limited to OD pairs where a non-dominated choice was available to 

travellers, some modes had very few observations. This meant that a single highly 

trafficked OD pair could impact upon the estimation of travel time and risk parameters. 
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In one instance this implied that travellers were risk prone on a mode. Furthermore, the 

relatively small choice set did not allow more complex model structures such as the 

CNL to be estimated. Therefore, the preferred model estimates, based upon an MNL 

structure, were unable to take correlation between error terms of alternatives into 

account. This would mean that the model would inadequately take patterns of 

substitution into account.  As a result of this shortcoming of the model and data, the 

recommendation is made that further efforts to estimate choice models using these data 

are made based upon a larger initial choice set, or a dataset collected for the purposes of 

estimating an RP model. 

Chapter 2 also identified a caveat to the data which impacts upon the Reliability 

Ratios obtained: all travel times and therefore travel time variation is from station gate 

to station gate. This means that the travel times recorded cover a number of activities of 

passengers behind the gate, including waiting time and accessing the platform among 

others. Reliability Ratios in the literature are usually calculated based upon in vehicle 

travel time only. Therefore, although the values obtained in Chapter 5 were apparently 

sensible in relation to the literature, they could not be directly compared to other values. 

One method of overcoming this issue would be to calculate monetary values of 

marginal travel time and reliability rather than marginal utilities and apply them only to 

that context. However the zone-based fare structure does not allow this to be done 

straightforwardly – the modelling would require additional modes with separate costs 

for the same trip. This also raises the question of the completeness of the choices in the 

model when only rail based public transport modes were included – omitting bus, car 

and active mode-based trips could have biased model results. Although Chapter 5 only 

found limited evidence of travellers using a bus alternative where rail was available, 

strictly speaking the bus mode should have been included. 

An issue also relevant to the choice modelling is the stated assumption that travellers 

have perfect information about the travel time distribution of the trip that they are about 

to undertake, as well as the travel time distribution of the alternatives. Although the 

assumption has been made clear in this thesis and similar work, it is nevertheless 

unrealistically strong. 
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Chapter 4 was only partially successful in achieving its objective; it was able to 

identify factors affecting reliability, but the explanatory power of the models was poor 

and it was concluded that they could not be usefully employed to predict future 

reliability levels. A key reason for this was that the smartcard data was not sufficient for 

the latter task; actual passenger travel times would vary behind the barrier due to many 

different circumstances, and little was known about the actual operation of the transport 

system. A case could be made for estimating these models based upon more traditional 

data collection methods e.g. observing passengers travelling on the network rather than 

the one proposed here.  

The final substantive chapter of the thesis, Chapter 6 made a useful contribution to 

the thesis insofar as it questioned the most appropriate form of the utility function to 

represent travel time risk. The chapter concluded that the shape of the Scheduling utility 

function was an approximation to the curved MV function, but it did not go so far as to 

provide firm evidence as to the preferred framework. The interpretation of an observed 

discrepancy between the functions was that it was one source of error between the 

Scheduling and MV frameworks. It is concluded that further empirical evidence, backed 

up by theory, is needed. 

7.5 Further work arising from this study 

The main aspect of this thesis has been the development of an RP methodology in 

light of a literature which suggests that such data sources should be preferred to those 

based on hypothetical questions. Although the literature has to some extent compared 

RP and SP through meta-analyses, a useful extension to this thesis would be to conduct 

an SP on London’s public transport network and compare the results to the RP method. 

A similar result should be observed if the experiment were designed correctly, although 

the literature would seem to suggest that there are intrinsic differences between the two 

methods of data collection. 

Another strand of further work is also related to the limitations of the RP method. 

An obvious recommendation would be to collect data specifically for the purpose of 

estimating choice models, so that parameters for travel time and travel time risk could 

be more accurately estimated as the sample sizes could be greater. Another 
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recommendation is to extend the scope of such modelling to include the bus mode. 

Including this mode would introduce a cost variable and result in the choice set being 

more fully specified. This proposal was given fuller consideration as part of this thesis 

but was not implemented due to time and data constraints. The method of modelling bus 

choices would be to link the smartcard data to bus AVL data as suggested by Wei 

(2010) to obtain a bus OD matrix, similar to the rail OD matrices used in this thesis.  

The Oyster sample sizes in Chapter 4 appears sufficient for the task of estimating 

regression models, yet those estimated had poor explanatory power. This method could 

therefore be improved with supporting data. These could include actual train 

performance data to capture in vehicle time. There could also be focus on the non-train-

based elements of travel; acknowledging that TTV could be incurred, for example, 

walking to the platform from the station gate. Such a study would benefit from 

validation against real observation or pedestrian microsimulation in order to uncover the 

factors driving reliability levels with greater confidence. 

7.6 Summary and Contribution 

The origin of this thesis was to better understand potential applications and 

drawbacks of smartcard data in the context of public transport reliability for the project 

sponsor, TfL. The literature review undertaken indicated that using actual choice data to 

estimate valuations of reliability was a worthwhile strand of research.  

The RP methodology was developed with the MV framework in mind, and 

represented a contribution to knowledge through developing a novel method for the 

estimation of the VOR. Chapter 4 also demonstrated that the data could be applied in 

order to understand the factors affecting reliability on the London Underground. 

The final substantive chapter, Chapter 6, developed upon the analysis of reliability 

indicators in Chapter 3 and found evidence that the standard deviation should be the 

preferred indicator of risk in modelling choice behaviour. A comparison of the MV and 

Scheduling utility functions found that there were differences between them, which 

could have implications for the VOR.   
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This thesis has found that smartcard data can make a useful contribution to the 

analysis of public transport reliability. The thesis has delivered a detailed account of 

MV and its origins, and has exploited smartcard data to investigate reliability indicators 

and the factors affecting reliability on the London Underground, and to calculate a 

Reliability Ratio for rail based modes in London. The latter two tasks were however 

only partially successful, and the results thus come with some caveats. Nevertheless, the 

thesis has made material progress in developing understanding of an emerging form of 

public transport data; an understanding it is hoped can be built upon by subsequent 

researchers. 
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Appendix 1 - Scatter plots of statistically significant explanatory variables against standard deviation of journey time from Table 4.5 

  

 

0

2

4

6

8

10

12

0 50 100 150 200 250

St
an

d
ar

d
 D

vi
at

io
n

 J
T

Congestion (Scaled by Mean JT)

0

2

4

6

8

10

12

0 10 20 30 40 50

St
an

d
ar

d
 D

ev
ia

ti
o

n
 J

T

Mean JT

0

2

4

6

8

10

12

0 1 2 3 4 5

St
an

d
ar

d
 D

ev
ia

ti
o

n
 J

T

Stop Spacing

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200 1400

St
an

d
ar

d
 D

ev
ia

ti
o

n
 J

T

Average Demand per Stop



 
 
 

 
 

Appendix 2 – Variables used to estimate discrete choice models in Chapter 5 

 



 
 
 

 
 

Appendix 3 – XY plots of relationships between explanatory variables 

 

 


