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Abstract 

This project aims to systematically study the micro-structure and optical properties 

of semi-polar (11-22) GaN with a step-change in crystal quality achieved by means of 

overgrowth on regularly arrayed micro-rods. The optical properties of (11-22) InGaN-

based quantum wells grown on such high quality GaN templates have been investigated in 

comparison with their c-plane counterparts. 

The overgrowth of semi-polar (11-22) GaN grown is performed using a metal 

organic chemical vapour deposition (MOCVD) technique on specially designed micro-rod 

arrays on standard m-plane sapphire. Owing to the specially designed patterns of the 

micro-rod template, our overgrowth technique effectively mitigates the intrinsic issue of 

the anisotropic lateral growth rate. Thanks to the massive overgrowth work of semi-polar 

(11-22) GaN on sapphire which were mainly carried out by Dr. Yipin Gong, I have the 

chance to investigate the defect reduction mechanism in details by using transmission 

electron microscopy (TEM) measurements. It has been found that most of the dislocations 

and the basal stacking faults (BSFs) have been effectively blocked by the SiO2 masks on 

each micro-rod and then the coalescence processes during the overgrowth. By favouring 

the growth along the c-direction (the c-direction growth leads to free-defect, while the 

defects can be penetrated through the growth along the a-direction), the defects as a result 

of the growth along the a-direction could be blocked. As a type of two-dimensional defect, 

BSFs can expand within the basal plane, propagating with a component parallel the m-

direction. This leads to a distribution of BSF-free regions periodically separated by the 

BSF regions along the [-1-123] direction. Furthermore, each BSF region typically consists 

of low density BSF clusters and high density BSF clusters with a periodic distribution 

along the m-direction. Finally, a defect reduction model has been established in order to 

study the influence of the micro-patterning on defect reduction. 

Further investigation was also carried out on the influence of micro-rod diameter on 

the crystal quality of overgrown semi-polar (11-22) GaN in order to optimize our micro-

rod design. It has been found that the BSF density decreases monotonically with increasing 

micro-rod diameter from 2 to 5 μm, and then starts to be saturated when the micro-rod 



 

2 

 

diameter further increases. However, the dislocation density reduces significantly when the 

micro-rod diameter increases from 2 to 4 μm, and then increases slightly with further 

increasing the diameter to 5 μm. In addition, it has been found that it is effective to employ 

shorter micro-rods to further reduce BSFs, allowing for further improvement in crystal 

quality. The best crystal quality of the overgrown (11-22) GaN has been achieved by 

overgrowth on micro-rods with a 4 μm diameter and a 0.4 μm height, corresponding to a 

dislocation density of 2.0 × 108 cm-2 which is better or at least equivalent to standard c-

plane GaN with a similar thickness grown on c-plane sapphire. The best sample achieved 

so far exhibits a BSF density of 2.8 × 104 cm-1. 

In this project, a number of advance optical characterization methods have been 

performed on a large number of semi-polar (11-22) InGaN/GaN MQWs with a wide 

spectral range of up to yellow spectra region grown on high quality semi-polar GaN, 

aiming to systemically investigate the mechanisms which form the large Stokes shift that 

generally occurs to InGaN/GaN MQWs. This is a long-standing issue. The semi-polar (11-

22) samples exhibit a lower Stokes shift than their c-plane counterparts, although they 

show larger exciton localization than their c-plane counterparts. The Stokes shift in the 

semi-polar samples shows a linear relationship with the emission energy in long 

wavelength region, but with a smaller gradient compared with that in the c-plane 

counterparts. The time-resolved photoluminescence (PL) measurements reveal a 

significant reduction in the piezoelectric fields of the semi-polar sample. It is suggested 

that the piezoelectric field induced polarization is the major mechanism for causing the 

large Stokes shift in conventional c-plane InGaN/GaN MQWs. 

At the same time, room temperature confocal PL measurements with a high spatial 

resolution have been performed on the high quality semi-polar (11-22) InGaN/GaN SQW 

samples overgrown on regularly arrayed micro-rods, aiming to investigate the influence of 

BSFs on the optical properties of the semi-polar InGaN/GaN SQW. The results clearly 

show that unlike dislocations, BSFs don’t affect the optical properties significantly.  
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Chapter 1 

Introduction 

1.1 Introduction  

Electricity plays an essential role in many aspects of human’s daily lives, such as lighting, 

heating, industry, transport, communication, etc. The last few decades have seen an 

exponential increase in electricity consumption as a result of industrial development and 

population growth. To meet the significantly increasing demand on electricity, more fossil 

fuels including coal, natural gas and petroleum have had to be used in order to produce more 

electricity, leading to an acceleration in worsening environment and thus threatening human's 

viability. This has posed a number of global challenges, such as global warming, extreme 

weather occurring globally and regularly, acid rain, water and air pollution, etc. Therefore, it is 

becoming increasingly urgent to develop new technologies for efficient consumption of energy 

and sustainable energy sources. 

One of the major sources for electricity consumption across the world is due to lighting. 

An incandescent light bulb, which was invented in the late 19th century, exhibits 16 lm/W, 

which is equivalent to a luminous efficiency of around 2%.1,2 This means that most of the 

electricity used is actually converted into heat rather than visible light. Consequently, the 

lifetime of incandescent light bulbs also becomes another challenge in addition to the luminous 

efficiency issue. In the early 20th century, fluorescent tubes appeared and then have been 

widely used. Compared with incandescent light bulbs, the luminous efficiency of fluorescent 

tubes has been significantly improved, typically reaching 70 lm/W. In the meantime, the 

lifetime issue has also been improved, although it is still far from satisfactory in terms of 

optical efficiency. The fabrication of fluorescent lamps typically involves toxic elements which 

are not environmentally friendly. As a result, EU have implemented a strict regulation, aiming 

to stop the manufacture of fluorescent tubes, in particular the least efficient and lowest 

performance fluorescent tubes.  
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Developments in solid-state lighting (SSL) are occurring at pace. SSL is mainly based on 

III-nitride semiconductor light-emitting diodes (LEDs). This is expected to result in a 

fundamental change in the concept of illumination. In theory, the luminous efficiency of 

semiconductor-based LEDs can be up to 300 lm/W, which is almost 20 times higher than 

traditional incandescent bulbs.3 In addition to the significant energy saving, LEDs also 

demonstrate a number of other major advantages, such as longevity, intrinsic compactness, 

smart lighting, flexibility for special applications, significant reduction in maintenance cost, etc. 

 

Figure 1.1: Bandgaps of semiconductors as a function of their lattice constants.5  

III-nitride semiconductors, consisting of aluminum nitride (AlN), gallium nitride (GaN), 

indium nitride (InN) and their ternary or quaternary alloys, all exhibit direct bandgap structures. 

Figure 1.1 presents the bandgaps and emission wavelengths of all major semiconductor 

materials as a function of their lattice constants. The bandgap of III-nitride group varies from 

6.0 eV (AlN), through 3.4 eV (GaN), to 0.7 eV (InN), covering a wide spectral region from the 

deep ultraviolet, through the whole visible range, to the infrared.6 III-nitride materials with 

these unique properties are well suitable for visible and ultraviolet optoelectronics and high 

temperature & high frequency electronic devices working in harsh environments.  

In the last two decades, great achievements have been made in III-nitride based LED and 

laser diode (LD) devices. Commercialization of GaN related white LEDs and blue LDs have 

been realized in the areas of general illumination, display and data storage. In 2014, the Nobel 
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Prize in Physics was jointly awarded to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura 

for their great contributions to the invention of efficient blue LEDs which has enabled bright 

and energy-saving white light sources.7  

1.2 Challenges in III-nitrides 

The last two decades have seen unprecedented developments in the field of III-nitride 

optoelectronics. However, most of the achievements are limited to c-plane (0001) GaN. This 

polar orientation poses a number of fundamental limitations, hampering the further 

development and commercial application of GaN-based optoelectronics, in particular longer 

wavelength emitters in the green and yellow spectral region. 

1.2.1 Quantum Confined Stark Effect 

Generally speaking, an InGaN/GaN quantum well structure grown along the c-direction 

suffers from a compressive strain due to the large lattice mismatch between the InGaN 

quantum well and the GaN barrier. As a result, polarization fields which are parallel to the 

growth direction are introduced to the strained InGaN quantum well layers. The resultant built-

in electric phenomenon generate the so-called “Quantum Confined Stark Effect” (QCSE).8  

One of the direct consequences of the QCSE is due to the reduced overlap between 

electron-hole wave-functions, as shown in Figure 1.2. It is well-known that a radiative 

recombination rate is proportional to the square of the overlap between electron and hole wave-

functions. Consequently, the QCSE is expected to lead to a reduction in optical efficiency. 

Furthermore, the QCSE also brings down the energy levels of electrons and holes, lowering the 

transitional energy between electrons and holes.8 
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Figure 1.2: Band diagram of a c-plane InGaN/GaN quantum well suffering 

polarization induced electric fields. 

1.2.2 Green/Yellow Gap 

An emission wavelength from a ternary InGaN-based structure can be tuned via altering 

its alloy composition. Higher indium composition is required in order to achieve longer 

emission wavelengths such as green and yellow emission. However, the quantum efficiency of 

InGaN-based LEDs drops rapidly with increasing emission wavelength as described in Figure 

1.3, where InGaN-based LEDs exhibit a reduction in optical efficiency with increasing 

emission wavelength, in particular in the green and yellow spectral region. On the other hand, 

the optical efficiency of AlGaInP which can also be used for the fabrication of visible LEDs 

decreases with decreasing emission wavelength, and drops down significantly when they 

approach the green and yellow spectral region. Consequently, a gap in the green and yellow 

spectral region in terms of optical efficiency has been generated, which is the so-called 

"green/yellow gap". 
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Figure 1.3: External quantum efficiency of commercial LEDs reported in the recent 

years.10 The lines are guides to the eye.  

Currently, white LEDs which are commercially available are achieved by combining a 

blue LED and a down-conversion yellow phosphor.9 Such a white LED exhibits a number of 

drawbacks, such as a low colour rendering index and down-conversion energy loss. An 

important, but often neglected, issue for the fabrication of phosphor-conversion white LEDs is 

due to the self-absorption of the phosphor involved in producing the white light. This puts 

additional limits on the overall efficiency and also further affects the colour rendering. To meet 

the demand of a high colour rendering index for general illumination, a mixture of blue, green 

and red lights from high efficiency LEDs is the best option, which can replicate the white light 

from the Sun. However, the missing component is due to highly efficient green LEDs 

1.2.3 Efficiency Droop 

The ratio of the total number of photons emitted from a LED device to the number of 

injected electrons under a certain current density is defined as external quantum efficiency 

(EQE). As an example, Figure 1.4 presents a typical EQE of a standard c-plane green 

InGaN/GaN LED with a standard size of 300 × 300 µm2 as a function of injection current.11 

The EQE initially increases with increasing injection current and then reaches a maximum 

value at around 3 mA, and then starts to decrease with further increasing injection current. The 

EQE at 100 mA is almost 59% of the peak value at 3 mA. This phenomenon has been widely 
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observed on almost all InGaN based LEDs grown on c-plane GaN, and has been referred to as 

"Efficiency Droop".  

 

Figure 1.4: Normalized EQE of a c-plane green InGaN/GaN LED as a function of 

injection current.11 

A number of mechanisms have been proposed to explain the efficiency droop, although 

they are still under debate, such as Auger recombination, carrier delocalization, electron 

overflowing, current crowding and defect-assisted tunnelling.12 From recent studies, it has been 

suggested that Auger recombination might be the dominant mechanism for the efficiency 

droop.13 Auger recombination is defined as a non-radiative recombination process involving 

three particles, where the released energy from the recombination of an electron-hole pair is re-

absorbed by an additional particle (either electron or hole), leading to the third particle being 

excited into a higher energy level. It is crucial to overcome the efficiency droop in order to 

achieve high output power. 

1.2.4 Defect issues 

Homoepitaxial growth of GaN is ideal, but is not sustainable as a result of the lack of 

affordable GaN substrates, in particular for the growth and fabrication of high brightness LEDs 

for general illumination, where the major concerns are due to high costs. Currently, GaN films 

are typically obtained via heteroepitaxial growth mainly on sapphire, and also on silicon as the 

second alternative option. Due to the large lattice-mismatch, GaN grown on sapphire GaN 

usually contains a high density of dislocations, typically on an order of 109-1010 cm-2. The 



 

7 

 

situation for GaN grown on silicon is even worse, as there is an extra issue as a result of the 

large difference of the thermal expansion coefficients between GaN and silicon. Nevertheless, 

high brightness LEDs on either sapphire or silicon have been achieved, but are limited to the 

blue/violet spectral region. Therefore, more efforts need to be devoted to the development of 

longer wavelength such as green and yellow LEDs. The growth of GaN along a semipolar or 

nonpolar direction has been proposed. However, the major challenge is due to the crystal 

quality of either semipolar or nonpolar GaN, which is far from satisfactory. It is well-known 

that dislocations has been generally regarded as nonradiative recombination centres, leading to 

a reduction in optical performance. Furthermore, it has also been found that charged 

dislocation lines could scatter electrons or holes limiting their transport properties.14 Therefore, 

it is still vitally important to reduce the defect density in GaN films in order to further improve 

the optical performance of InGaN based emitters, which is particularly important for 

developing highly efficient InGaN-related emitters in the longer wavelength such as green and 

yellow spectral region. 

1.3 Motivation 

To address the QCSE caused as a result of the piezoelectric fields occurring to c-plane 

InGaN/GaN based emitters, a promising approach is to grow the InGaN quantum wells along a 

semi-polar or non-polar orientation as mentioned above. Furthermore, it has also been 

predicted that efficiency droop can be potentially improved by the growth of InGaN/GaN 

LEDs along a semi-polar direction.15 Compared with polar and non-polar GaN, semi-polar (11-

22) GaN surface has been predicted to exhibit a significantly lower indium chemical 

potential,16 potentially enhancing the incorporation of more indium into GaN, which is crucial 

for the realization of InGaN-based emitters in the longer wavelength spectral region. Our group 

have developed a number of novel but cost-effective overgrowth approaches to the growth of 

high quality semipolar (11-22) GaN on sapphire. The aim of the research presented in this PhD 

thesis is to perform structural and optical investigation of the semipolar (11-22) GaN 

overgrown on patterned templates, aiming to understand the mechanisms of defect reduction 

and then further develop high-efficiency InGaN based emitters in the longer wavelength such 

as green and yellow spectral region.  
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1.4 Thesis outline 

This thesis is divided into 8 chapters: 

Chapter 1 presents a brief introduction on the development of III-nitride semiconductors 

for solid-state lighting and the current challenges in developing longer wavelength emitters 

with high efficiency, followed by the motivation of the research for the thesis.  

Chapter 2 presents the details of semi-polar and non-polar III-nitrides in terms of the 

crystal structure, current development, heteroepitaxial growth, defects involved and optical 

properties.   

Chapter 3 describes a number of structural and optical characterization methods used for 

this thesis. 

Chapter 4 presents the microstructural investigation of the semi-polar (11-22) GaN 

overgrown on regularly arrayed micro-rods by means of transmission electron microscopy, 

where the mechanism for the defect reduction has been investigated and a model has been 

established. 

Chapter 5 provides a systematic study on the microstructure of the semi-polar (11-22) 

GaN overgrown on microrod templates as a function of microrod diameter, demonstrating that 

the reduction in dislocations exhibit a different behaviour from that for basal stacking faults 

(BSFs). 

Chapter 6 provides a systematic investigation on the Stokes shift and exciton localization 

of semi-polar (11-22) InGaN/GaN multiple quantum well (MQW) structures with a wide range 

of indium composition, which has also been compared to their counterparts grown on c-plane 

GaN. 

Chapter 7 presents a comparative study on the emission properties from the quantum 

well regions with and without BSFs in semi-polar (11-22) InGaN/GaN single quantum well 

(SQW) structures overgrown on micro-rod templates. 

Chapter 8 gives a summary of presented work and an outlook for further research. 
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Chapter 2 

Background 

III-nitrides are known as the third generation semiconductor materials with a great 

prospect as a result of their unique properties, such as wide direct bandgap and excellent 

stability under extreme environmental conditions. However, due to a number of fundamental 

problems mentioned in the 1st Chapter, it is difficult to achieve high efficiency InGaN based 

emitters in the longer wavelength such as green and yellow spectral region. GaN grown along 

semi-polar and non-polar orientations has emerged as a promising way to overcome the 

green/yellow gap issue. This chapter will introduce the advantages, current development, 

epitaxial techniques and defect reduction in III-nitrides grown along semi-polar and non-polar 

orientations  

2.1 Introduction of III-nitrides 

2.1.1 Crystal structure 

III nitride materials have three different types of crystal structures: Wurtzite (𝛼-phase), 

zinc-blende (𝛽-phase), and rocksalt structures.1 III-nitrides with a rocksalt structure could only 

appear due to a phase transition from the wurtzite structure under an extremely high pressure 

(>37 GPa), but it is unstable under ambient pressure.2 Most of the III-nitrides achieved in 

practice exhibit a wurtzite structure or a zinc-blende structure. Figure 2.1 (a) and (b) illustrate 

the atomic arrangements of III-nitrides with a wurtzite structure and a zinc-blende structure, 

respectively. In both structures, each Ga (In, Al) atom is surrounded by four N atoms, while 

each N atom is also surrounded by four Ga (In, Al) atoms. This configuration forms a 

tetrahedrally coordinated structure. The difference between a wurtzite structure and a zinc-

blende structure is due to their layer stacking sequence. Along the c-direction which is vertical 

to the hexagonal basal plane, a wurtzite structure shows a stacking sequence of 

AaBbAaBbAaBb…, where the capital and lowercase letters represent the group III element 

(i.e., Ga (In, Al) atom) and the group V element (i.e., N atom), respectively, and the letters A 

and B indicate different atomic positions. On the other hand, the stacking order in a zinc-
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blende structure is AaBbCcAaBbCc..., where the third layer is located at a different position 

labeled as position C, as illustrated in Figure 2.1c. In a wurtzite structure, the distance between 

two nearest Ga atoms (or N atoms) along the c-direction is defined as the lattice constant c, 

while the distance between two nearest Ga atoms (N atoms) within the hexagonal basal plane is 

defined as the lattice constant a. In a zinc-blende structure, the lattice constant a in a cubic unit 

cell is defined using the distance between two nearest Ga atoms (N atoms) along the [001] 

direction. The [001] direction has an inclination angle of around 55° to the hexagonal basal 

plane.  

 

Figure 2.1: III-nitrides of a wurtzite structure (a) and a zinc-blende structure (b) 

with their corresponding stacking sequences illustrated in (c). 

Table 2.1 summarizes the lattice constants of III-nitrides with a wurtzite structure or a 

zinc-blende structure at room temperature. It has been reported that a phase transition in GaN 

films from a wurtzite structure to a zinc-blende structure could be observed by means of a 

radio-frequency planar magnetron sputtering growth technique when decreasing the pressure of 

the used nitrogen gas from 30 to 10 mTorr.3 Compared with the zinc-blende structure, the 

wurtzite structure is more thermodynamically stable,4 demonstrating a great advantage in 
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practical applications. As a result, the study is focused on III-nitrides with a wurtzite structure 

in this thesis.  

Table 2.1: Lattice parameters of III-nitride materials at room temperature.5–7 

  GaN InN AlN 

Wurtzite 

a(Å) 3.1893 3.5380 3.1130 

c(Å) 5.1851 5.7020 4.9816 

c/a 1.6258 1.6116 1.6003 

Zincblende a(Å) 4.52 4.98 4.38 

 

2.1.2 Spontaneous and piezoelectric polarization 

In an ideal wurtzite structure, the ratio of the lattice constants c to a is 𝑐 𝑎⁄ = √8 3⁄ =

1.633. However, the ratio values of III-nitride materials are all smaller than the standard value, 

which makes the centres of Ga (In, Al) atoms (negative charge) and N atoms (positive charge) 

locate in different positions in a unit cell. This lack of the inversion symmetry in wurtzite III-

nitrides leads to the presence of spontaneous polarization 𝑷s , along the -c direction. The 

spontaneous polarizations are -0.029, -0.032 and -0.081 C/m2 for unstrained GaN, InN and 

AlN, respectively.8 A negative sign indicates the direction of spontaneous polarization field is 

from Ga-face to N-face, opposite to the (0001) direction. Among III-nitrides, AlN exhibits the 

largest spontaneous polarization as a result of the smallest ratio of lattice parameters. 

In addition to the spontaneous polarization, there also exists a strain-induced polarization 

field, which can be described by piezoelectric polarization 𝑷𝑝. Piezoelectric polarization could 

be observed in InGaN (AlGaN) layer grown on GaN substrate as a result of their lattice 

mismatch. For an InGaN/GaN heterostructure, the direction of piezoelectric polarization is 

opposite to the direction of spontaneous polarization, as an InGaN layer suffers from a 

compressive strain on a GaN surface. For an AlGaN/GaN heterostructure, the AlGaN layer 

experiences a tensile strain, making the piezoelectric polarization and spontaneous polarization 

along the same direction. The total polarization 𝑷 in III-nitride materials includes spontaneous 

polarization and piezoelectric polarization, described below. 

 𝑷 = 𝑷𝑠 + 𝑷𝑝 (2.1) 
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Piezoelectric polarization 𝑷𝑝 is related to the piezoelectric coefficient 𝑒 of materials and 

the strain tensor 𝜀 , 𝑷𝑝 = 𝑒𝑖𝑗𝜀𝑚𝑛    (𝑖𝑗, 𝑚𝑛 = 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑦𝑧, 𝑧𝑥, 𝑥𝑦) .9 For a (0001)-orientated 

III-nitrides, the strain-induced piezoelectric field can be described by Equation 2.2 

 𝑷𝑝 = 𝑒𝑧𝑧𝜀𝑧𝑧 + 𝑒𝑧𝑥(𝜀𝑥𝑥 + 𝜀𝑦𝑦) (2.2) 

where the relationship between a strain tensor and lattice mismatch follows the equations 

 𝜀𝑥𝑥 = 𝜀𝑦𝑦 =
𝑎−𝑎0

𝑎0
 and 𝜀𝑧𝑧 =

𝑐−𝑐0

𝑐0
. For an alloy grown on an unstrained GaN layer along the c-

direction, it can be assumed that there is a symmetric biaxial stress in the growth plane 10 In 

that case, a relationship between the strain tensors parallel and perpendicular to the growth 

direction can be obtained: 𝜀𝑧𝑧 = −2
𝐶13

𝐶33
𝜀𝑥𝑥 , where 𝐶13 and 𝐶33 are components of an elastic 

tensor. Then, Equation 2.2 can be simplified into: 

 𝑷𝑝 = 2 (𝑒𝑧𝑥 −
𝐶13

𝐶33
 𝑒𝑧𝑧)

𝑎 − 𝑎0

𝑎0
   (2.3) 

Fixed sheet charges can be generated in a (0001)-orientated GaN-based heterostructure as a 

result of the polarization discontinuity, which can affect the optical performance of hetero-

structure devices, such as InGaN/GaN based LEDs. 

2.1.3 Band Structure  

Direct bandgap  

For a single crystal, the energy difference between the minima of a conduction band and 

the maxima of a valence band is defined as a bandgap, which determines the electrical 

conductivity of the crystal. Based on a bandgap, materials can be divided into three categories: 

an insulator with a large bandgap (there is no a specific value) such as SiO2; a conductor with a 

small or zero bandgap such as a metal. Between them is a semiconductor. 
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Figure 2.2: Radiative recombination processes in a semiconductor with a direct 

band (left) and an indirect band (right). The carrier recombination process for a 

semiconductor with an indirect band structure involves an additional phonon, 

leading to much slower recombination process than that for a semiconductor with a 

direct band structure. 

According to the band structure of semiconductors, semiconductors can be divided into 

two types, one with a direct bandgap such as III-nitride materials, and the other one with an 

indirect bandgap such as silicon (Si) and germanium (Ge). In a direct bandgap semiconductor, 

the maxima of its valence band and the minima of its conduction band exhibit a same 

momentum, while for an indirect bandgap semiconductor, their momenta are different. For an 

indirect bandgap semiconductor, an electron-hole recombination process from the conduction 

band to the valence band involves an additional phonon in order to meet the momentum 

conservation, while it does not for a direct bandgap material, as shown in Figure 2.2. The 

involved phonon finally converts into heat. Since the recombination process for an indirect 

bandgap semiconductor requires an extra process as a result of involving the phonon, it would 

take a long time to finish the recombination process, leading to much less efficiency in 

comparison with an direct bandgap semiconductor. Therefore, a direct bandgap semiconductor 

is generally used for fabrication of LEDs or laser diodes. 

Wide and tunable bandgap 

When a photon is generated through a radiative recombination process, the transitional 

energy is inversely proportional to the wavelength 𝜆 of the emitted photon: 
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 𝜆 =
ℎ𝑐

𝐸
   (2.4) 

where ℎ is the Planck constant and 𝑐 is the speed of light in vacuum. The group of III-nitride 

materials all exhibit a direct bandgap structure with a band gap ranging from 6.0 eV (206 nm) 

to 0.7 eV (1770 nm), the only material system not only covering the whole visible spectrum 

range (380-700 nm), but also stretching into the deep ultraviolet and the infrared spectra region.  

The Ga atoms in a GaN binary alloy could be replaced by In (Al) atoms, and vice versa, 

forming an InGaN (AlGaN) ternary alloy structure. This replacement changes the average 

lattice constants of the ternary alloy, leading the bandgap of InGaN (AlGaN) structure to be 

different from the binary alloy. For a (0001)-orientated III-nitrides with a ternary alloy 

structure, the bandgap of such a ternary alloy could be estimated from an empirical equation: 

 𝐸𝑔(𝐴𝑥𝐵1−𝑥𝑁) = 𝐸𝑔(𝐴)𝑥 + 𝐸𝑔(𝐵)(1 − 𝑥) − 𝑏𝑥(1 − 𝑥)   (2.5) 

where A and B denote different binary alloys of GaN, InN, and AlN; x is the alloy composition; 

and b is a bowing parameter which is positive for III-nitride materials. Although the lattice 

parameters of ternary alloy is linear to the alloy composition, the band structure exhibits a 

nonlinear dependence to the strain. Thus, the bowing parameter b is introduced to quantify this 

nonlinearity.135 

2.2 Prospects of semi-polar and non-polar III-nitrides 

2.2.1 Semi-polar and non-polar orientations 

As mentioned in section 2.1.2, sheet charges can be formed in a GaN-based 

heterostructure due to the discontinuities in spontaneous polarization and strain-induced 

piezoelectric polarization. These internal electric fields formed as a result of both polarizations 

will lead to the quantum confined Stark effect (QCSE) in InGaN-based LEDs and consequently 

deteriorates the device performance.11 A number of ideas have been proposed to resolve this 

issue. When a large external bias is applied across an InGaN/GaN quantum well, the internal 

electric fields can be compensated, depending on the direction of the external bias.12 A heavy 

Si doping in GaN barrier has been used, which leads to a clear reduction in the QCSE due to 

the screening effect.13,14 It can also reduce the QCSE if the strain across an InGaN quantum 

well region can be relaxed. There are a number of examples which have been used for the 

growth of InGaN/GaN based visible LEDs, such as increasing n-GaN thickness,15 inserting an 
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extra InGaN layer after an InGaN/GaN quantum well region but before an AlGaN electron 

blocking layer,16 using a p-InGaN layer instead of a p-GaN layer,17 and polarization doping 

around the active region.18 However, these approaches cannot fundamentally resolve the 

polarization induced QCSE. For example, heavy doping will affect the material quality 

seriously and introduce more nonradiative recombination centres; strain relaxation will lead to 

the generation of defects such as dislocations as non-radiative recombination centres.  

To circumvent the polarization issues in a GaN-based hetero-structure, one of the most 

promising approaches is to grow a GaN crystal along a semi-polar or a non-polar orientation. 

For the GaN grown along a non-polar orientation, there will be no polarization, while for the 

GaN grown along a semi-polar orientation the polarizations are significantly reduced. Figure 

2.3 illustrates a number of typical crystallographic planes in wurtzite GaN. Non-polar planes, 

such as a-plane {11-20} and m-plane {1-100}, are perpendicular to the basal c-plane (0001), 

while semi-polar planes are inclined to the c-plane as shown in Figure 2.3b. For example, 

semi-polar {11-22} plane exhibits an inclination angle of 58.4° to the c-plane, and {10-11} 

plane shows an angle of 62.0°.  

  

 

Figure 2.3: Schematic of the crystallographic planes in wurtzite GaN including (a) 

polar, non-polar and (b) semi-polar planes. 
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2.2.2 Reduced or eliminated piezoelectric field 

Theoretical work has been carried out to study piezoelectric polarizations in a strained 

III-nitride layer grown along a semi-polar or a non-polar orientation.19,20 This is particularly 

important for InGaN/GaN quantum well structures. Their calculation work adopted the 

relationship between piezoelectric fields and piezoelectric coefficients ( 𝑷𝑝 =

𝑒𝑖𝑗𝜀𝑚𝑛    (𝑖𝑗, 𝑚𝑛 = 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑦𝑧, 𝑧𝑥, 𝑥𝑦)  as mentioned in section 2.1.2) Using a rotation 

matrix, piezoelectric coefficients and elastic tensors can be converted from a conventional 

coordinate system (z-axis parallel to the (0001) direction) into a new coordinate system (z-axis 

parallel the growth direction). With the new piezoelectric coefficients and elastic tensors of III-

nitrides, Northrup has calculated the polarization in an InxGa1-xN/GaN heterostructure as a 

function of the angle between the growth direction and the c-direction, which is shown in 

Figure 2.4.21  

 

Figure 2.4: Polarization in InxGa1-xN/GaN heterostructure as a function of the angle 

between the surface normal and bulk c-axis. Indium compositions x=0.05, 0.1, 0.15, 

0.2, 0.25 and 0.3 are denoted at each curve.21 

When increasing inclination angle from 0°, the polarization starts to decrease and then 

reaches a zero value at around 55°, followed by moving towards a negative value before going 

back to zero at 90°. The negative value means that the piezoelectric field has an opposite 

direction. The zero-polarization points from these curves correspond to two non-polar planes. 

Semi-polar planes each with a large inclination angle, such as (11-22), (10-11) and (20-21), 
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show a significant reduction in piezoelectric polarization. The polarization in semi-polar (11-22) 

plane is almost 10% of that in conventional c-plane. 

2.2.3 Indium incorporation 

Due to a large difference in lattice parameter, the solubility of In in GaN is found to be 

very low at a typical growth temperature (e.g. 800 °C).136 This difficulty in indium 

incorporation has become a critical barrier to overcoming the “green/yellow” gap. Atomic 

arrangements are different between the c-plane, semi-polar plane and non-polar plane GaN, 

leading to the difference in the rate of indium incorporation into the GaN grown along different 

orientations. First-principles calculations show that indium can be more easily incorporated 

into semi-polar (11-22) GaN than those on its c-plane or non-polar counterparts.21- 23  

Apart from the theoretical calculation, experimental investigation has also been carried 

out by Wernicke to evaluate the indium incorporation in various orientations, such as (0001), 

(10-12), (11-22), (10-11), (20-21) and (10-10) orientations.24 In a large range of growth 

temperature, it has been found that semi-polar (11-22) and (10-11) orientations exhibit a 

notably higher indium mole fraction than both the polar and non-polar orientations, while 

semi-polar (20-21) show a similar indium content to the polar and non-polar orientations. The 

indium composition in his investigation has been estimated from XRD measurements. Zhao, et 

al. have reported a systematic study of the emission properties of (11-22), (20-21), (30-31) and 

(10-10) plane InGaN quantum well.25 All the samples are grown under the same growth 

condition. It has been found that (11-22)-orientated InGaN quantum well exhibits a longer 

emission wavelength than other samples, indicating higher indium composition. Overall, 

among all the semi-polar and non-polar orientations, (11-22) orientation shows a great 

potential in obtaining InGaN quantum well with longer wavelength. 

2.2.4 Doping  

Nominally undoped III-nitride materials exhibit n-type as a result of nitrogen vacancies 

which induce extra electrons. For GaN MOCVD growth, silane (SiH4) is widely used as the 

source of silicon to obtain n-type GaN layer, while cyclopentadienyl magnesium [(Cp)2Mg] is 

chosen as the source of magnesium for p-type GaN. According to the relative density of Ga 

and N atoms, GaN facets with different orientations are classified as Ga-polar and N- polar 

GaN.26 For example, (000-1), (10-11) and (11-22) plane GaN are N-polar GaN with N atoms 
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being the major atoms on surface. On the other hand, (0001), (20-2-1) and (30-3-1) plane GaN 

are Ga-polar GaN.25 It has been reported that there is few difference in the Si incorporation 

between Ga-polar and N-polar GaN layers under a range of growth conditions.27 A similar 

result was also reported for the Mg incorporation in Ga-polar and N-polar layers.28 

Furthermore, N-polar GaN exhibits an abrupt doping profile in a 150 nm p-GaN/150 nm n-

GaN multilayer stack, which is attributed to the suppression of Mg memory effect in N-polar 

GaN.27,29  

Despite the conclusion of these reports, a number of studies have demonstrated the 

advantages of p-type doping in GaN along a semi-polar or a non-polar orientations.30–33 A high 

hole concentration of up to 7×1018 cm-3 has been obtained in (1-100) GaN film, demonstrating 

a significant improvement in p-type doping compared with its c-plane counterpart.30 Similar 

results were also reported for the p-type doping in semi-polar (10-1-1) and non-polar (11-20) 

GaN.31,32 Theoretical study shows that subband energy spacing in InGaN/GaN QW structure 

decreases with increasing the angle between surface normal and bulk c-axis, leading to an 

increase in carrier population in the higher subands. As a result, the hole effective mass of the 

higher subbands decreases monotonically with increasing the crystal angle.33 This means that 

semi-polar GaN is expected to have a higher hole mobility than its c-plane counterpart, 

resulting in an improvement in the conductivity of a p-type layer along a semi-polar orientation. 

2.2.5 Development of semi-polar and non-polar III-nitrides 

Before 2000 there were only a very limited number of reports on the growth of non-polar 

and semi-polar GaN, as the major efforts were devoted to the c-plane GaN. In the early period, 

GaN with (11-20) facet grown on (10-12) sapphire substrates was unintentionally observed as a 

result of attempting to look for a sapphire substrate with a suitable orientation for c-plane GaN 

growth,.34–37 Soon after that, non-polar and semi-polar GaN were also reported on sapphire and 

silicon substrates.38–40 At the beginning of 2000, Takeuchi carried out a theoretical study on the 

orientation dependence of the internal electrical field in wurtzite III-nitrides, revealing the 

advantage of reduced or eliminated internal electrical fields in InGaN/GaN heterostructure 

grown along different semi-polar or non-polar orientations.19 At the same time, Waltereit 

reported the first non-polar m-plane GaN grown on 𝛾-LiAlO2 substrates by molecular beam 

epitaxy (MBE). No piezoelectric field has been found in the GaN/AlGaN quantum wells grown 

on the m-plane GaN.41 Since then, non-polar and semi-polar orientations started to receive 
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more and more attention and the study has experienced a rapid development in the past years. 

Table 2.2 lists a number of reports on the study of non-polar and semi-polar III-nitrides 

regarding substrate choice, growth method, and demonstration of related devices. During the 

development of semi-polar and non-polar III-nitrides, major efforts are devoted to improving 

the material quality, which are essential for the achievement of high-performance devices. 

Furthermore, a great challenge in non-polar orientation is due to the low indium incorporation 

efficiency, making it difficult in growth longer wavelength such as green/yellow LEDs, where 

high indium content is required. Therefore, it is clear that semi-polar orientation such as (11-22) 

has emerged to be a promising candidate for the fabrication of longer wavelength emitters. 

Table 2.2: A summary of reports on the growth of semi-/non- polar GaN in terms 

of substrate choices, growth methods and devices. 

Year Events Indicative results 
Growth 

methods 
Authors 

2000 m-plane GaN/AlGaN MQW on 𝛾-

LiAlO2 substrate  

N/A MBE a Waltereit et al41 

2002 a-plane GaN/AlGaN MQW on (10-

12) r-plane sapphire  

QW emission peak at 352 nm at RT MBE Ng42 

 a-plane GaN on r-plane sapphire  Dislocation density: 2.6×1010 cm-2 

BSF density: 3.8×105 cm-1 

MOCVD b Craven et al43 

 m-plane GaN on bulk GaN  Stimulated emission observed at RT MOCVD Chen et al44 

2003 a-plane GaN on a-plane SiC with HT 

AlN buffer layer  

Dislocation density: ~3×1010 cm-2 

QW emission peak at 360 nm at RT 

MOCVD Craven et al45 

 a-plane GaN on r-plane sapphire with 

ELOG c  

Wing region: 

Dislocation density: ~5×106 cm-2 

BSF density: 3×103 cm-1 

HVPE d Haskell et al46 

2004 Micro-facet of (11-22) InGaN MQW  QW emission peak at 404 nm at RT MOCVD Nishizuka et 

al47 

 (10-12) GaN on (001) Si with 2°-6° 

miscut angle 

N/A MOCVD Schulze et al48 

 a-plane InGaN/GaN LED on bulk 

GaN  

QW emission peak at 413.5 nm at RT MOCVD Chakraborty et 

al49 

2005 m-plane InGaN/GaN LED on bulk 

GaN 

QW emission peak at 450 nm with 

high injection current at RT 

MOCVD Chakraborty et 

al50 

 a-plane GaN on (11-20) 4H-SiC  Dislocation density: 4.4×1010 cm-2 

BSF density: 1.6×106 cm-1 

MOCVD Dmitri et al51 

 (10-1-1) GaN on (100) MgAl2O4 and 

(10-1-3) GaN on (110) MgAl2O4  

N/A HVPE Baker et al52 
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 (10-1-1) and (10-1-3) InGaN LED on 

MgAl2O4
 

QW emission peak at ~439 nm for 

both LEDs at RT 

MOCVD Chakraborty et 

al53 

2006 (10-1-3) and (11-22) GaN on m-plane 

sapphire 

(10-1-3) GaN film: 

Dislocation density: 9×108 cm-2 

BSF density: 2×105 cm-1 

(11-22) GaN film: 

Dislocation density: 2×1010 cm-2 

BSF density: 2×105 cm-1 

HVPE Baker et al54 

 (11-22) InGaN/GaN LED on bulk 

GaN  

QW emission peak at ~580 nm at RT MOCVD Funato et al55 

 Micro-facet of (10-11) InGaN/GaN 

LED  

QW emission peak at 425 nm at RT MOCVD Wunderer et 

al56 

2007 m-plane GaN on ZnO substrate N/A PLD e Kobayashi et 

al57 

 (10-1-1) GaN/InGaN LED on bulk 

GaN 

QW emission peak at 411 nm at RT MOCVD Tyagi et al58 

 m-plane InGaN/GaN LD on bulk GaN Stimulated emission peak at 405.5 nm 

at RT 

MOCVD Schmidt et al59 

 (11-22) GaN and AlN on m-plane 

sapphire 

N/A MBE Lahourcade et 

al60 

 m-plane InGaN/GaN LED on 𝛾-

LiAlO2 substrate 

QW emission peak at ~515 nm at RT MOCVD Liu et al61 

2008 m- plane GaN on m- plane sapphire N/A MOCVD Armitage et al62 

 a- plane GaN and (11-26) GaN on r- 

plane sapphire 

a-plane GaN film: 

Dislocation density: 5×1010 cm-2 

BSF density: 7×105 cm-1 

(11-26) GaN film: 

Dislocation density: 8×109 cm-2 

MBE Zhou et al63 

 (11-22) InGaN/GaN LD on bulk GaN Stimulated emission peak at 426.9 nm 

at RT 

MOCVD Asamizu et al64 

 a-plane GaN on patterned (110) Si Window region: 

Dislocation density: 3×107 cm-2 

MOCVD Tanikawa et 

al65 

2009 (10-12) AlN on (1-102) ZnO substrate N/A PLD Ueno et al66 

 m-plane GaN on m-plane sapphire FWHMs of XRC along c-direction 

and m-direction are 0.87° and 0.25°, 

respectively. 

HVPE Zhu et al67 

 (10-11) GaN on patterned (001) Si and 

(11-22) GaN on patterned (113) Si  

N/A MOCVD Sawaki et al68 

 (11-22) GaN on GaN on patterned 

(113) Si  

N/A HVPE Suzuki et al69 

 (20-21) InGaN/GaN LD on bulk GaN Lasing wavelength of 520 nm at RT MOCVD Enya et al70 

 m-plane GaN on patterned (112) Si N/A MOCVD Ni et al71 

2010 (30-31) InGaN/GaN LD on bulk GaN Lasing peak at 444.7 nm at RT MOCVD Hsu et al72 
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 (10-11) GaN on (11-23) patterned 

sapphire substrate 

FWHM of XRC ~400 arcsec MOCVD Schwaiger et 

al73 

 (30-3-1) InGaN/GaN LED on bulk 

GaN 

Emission peak wavelength at 452 nm MOCVD Koslow et al74 

 (11-2l) InN on yttria stabilized 

zirconia (YSZ) substrate 

N/A PLD Fujii et al75 

 (10-13) InN on (110) GaAs N/A MOCVD Murakami et 

al76 

2011 (20-2-1) InGaN/GaN LED on bulk 

GaN 

Emission peak wavelength at ~423 nm MOCVD Zhao et al77 

 (20-2-1) LD on bulk GaN Lasing peak wavelength at 505 nm. MOCVD Huang et al78 

2012 (10-14) GaN on a-plane patterned 

sapphire substrate 

FWHM values of (0002) and (01-14) 

XRCs are 910 and 868 arcsec, 

respectively, 

MOCVD Hsieh et al79 

2013 (10-11) GaN on graphene  N/A MOCVD Gupta et al80 

 Micro-facet of (10-15) AlN on (111) 

Si 

Emission peaks from 380 to 550 nm MBE Yang et al81 

2015 (20-21) GaN on patterned (114) Si 

with 1° miscut angle 

FWHM values of scanning parallel 

and perpendicular to the c-direction 

are 610 and 1490 arcsec, respectively, 

MOCVD Khoury et al82 

 (20-23) GaN on 3C-SiC/(001)Si LED emission peak wavelength at 

~493 nm at RT. 

MOCVD Dinh et al83 

 Green to amber (11-22) LEDs on m-

plane sapphire 

Emission peak wavelength at ~492 nm 

at RT 

MOCVD Bai et al84 

a) MBE: Molecular beam epitaxy 

b) MOCVD: Metalorganic chemical vapour deposition 

c) ELOG: Epitaxial lateral overgrowth 

d) HVPE: Hydride vapour phase epitaxy 

e) PLD: Pulsed laser deposition 

2.3 Heteroepitaxy of semi-polar and non-polar III-nitrides  

2.3.1 Substrates for heteroepitaxy 

III-nitride materials are typically grown using heteroepitaxy techniques as a result of the 

lack of affordable substrates. As mentioned in Table 2.2, a wide range of substrates, such as 𝛾-

LiAlO2, MgAl2O4, (1-102) ZnO, yttria stabilized zirconia (YSZ), silicon carbide (SiC), 

sapphire and silicon have been applied for the hetero-epitaxial growth of non-polar and semi-

polar III-nitrides. The oxide substrates have small mismatches in both lattice parameters and 

thermal expansion coefficients with GaN. However, there exists a serious issue, namely, the 

diffusion of the metallic atoms from the substrate to the overlying GaN under a temperature 
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required by the growth of GaN using MOCVD.85,86 SiC substrates also exhibit less lattice 

mismatch compared with other subsubtrates such as sapphire or silicon, but the cost is very 

high.87 Among these foreign substrates, sapphire and silicon have been widely used as 

substrates for the growth of GaN. 

Sapphire 

Sapphire has a wurtzite structure with lattice parameters of a=4.758 Å and c=12.991 Å.88 

(0001) c-plane sapphire is typically used as a substrate for conventional c-plane GaN growth. 

Besides the c-plane GaN, GaN layers with others orientations could also be achieved by using 

sapphire substrate. For example, non-polar (11-20) a-plane GaN could be obtained on (10-12) 

r-plane sapphire with lattice mismatches of 16.1% and 1.1% for [1-100]GaN ∥ [11-20]sapphire and 

[0001]GaN ∥ [-1101]sapphire directions, respectively. Semi-polar (11-22) GaN could be grown on 

(1-100) m-plane sapphire, where the lattice mismatches are 16.1% and 6.3% for [1-100]GaN ∥ 

[11-20]sapphire and [-1-123]GaN ∥  [0001]sapphire
 directions, respectively. Sapphire has a high 

melting point of around 2050 °C, demonstrating an excellent stability during GaN growth 

temperature at a high temperature in MOCVD. Furthermore, sapphire is transparent for visible 

light, and there is no absorption issue if the visible LEDs are grown on it. 

Due to the mismatch in both lattice parameters and thermal expansion coefficients 

between GaN and sapphire, GaN epitaxial film on sapphire usually contains a lot of 

dislocations. In order to address this issue, a number of growth techniques have been 

developed to improve the crystal quality of GaN, which will be introduced in next section 

(section 2.3.2). Furthermore, as sapphire is an insulator, the fabrication of LEDs grown on 

sapphire have to use a lateral contact configuration.  

Silicon 

Silicon is a cubic structure material with a lattice parameter of a=5.431 Å. (0001) c-plane 

GaN can be grown on (111) plane Si with a lattice mismatch of 16.9%. Semi-polar (10-13) and 

(11-22) plane GaN can be obtained on patterned Si substrates using a selective area growth 

(SAG) technique.68 In the past decades, Si has experienced a rapid development due to its 

excellent physical property and wide availability. The mature fabrication processes for Si have 

been developed in the semiconductor industry. Compared with other substrates, high quality Si 

substrate are available in a large size of up to 450 mm diameter, which allows for volume 
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production at a low cost.89 As a result, Si has emerged as an attractive alternative for the GaN 

heteroepitaxial growth.  

However, there are several problems for the GaN grown on Si substrate. Firstly, Ga 

atoms can react with the Si substrate during the growth, forming the so-called Ga melt-back 

issue which leads to severe etching.90 This melt-back etching issue will eventually stop the 

growth of GaN, and thus must be avoided. Secondly, there is a large mismatch in thermal 

expansion coefficient between GaN and Si. During the cooling process, tensile stress will be 

introduced in the GaN film grown on Si substrates, leading to severe cracking. Thirdly, Si 

substrate can absorb visible light due to its small bandgap of 1.12 eV, lowering the EQE of 

LEDs on it. Finally, being similar to sapphire, Si also has a large lattice mismatch with GaN, 

which will leads to a high-density of dislocations in GaN. 

2.3.2 Growth techniques for improving crystal quality 

Due to the large mismatches in lattice parameters and thermal expansion coefficients 

between GaN and sapphire (or silicon), semi-polar and non-polar GaN directly grown on 

planar sapphire (or silicon) substrate will contain a large amount of defects. Furthermore, the 

growth technique of semipolar GaN is far from satisfactory compared with its c-plane 

counterpart. Therefore, so far the crystal quality of semipolar GaN is far from the requirement 

for growing high-efficiency devices. To address this problem, a number of growth techniques 

have been proposed. 

Selective area growth on patterned substrates 

GaN grown on sapphire along the c-plane orientation has a systematic and mature growth 

technology to control the defects in epitaxial films. Compared with the semi-polar and non-

polar orientations, GaN growth along the (0001) polar direction usually exhibits a lower defect 

density. Selective area growth (SAG) on patterned substrates allows the growth to start at 

certain areas along the c-direction, and then coalesce to reach a flat surface. For example, the 

angle between r- and c-direction in sapphire crystal is 57.6°, which is very close to the 58.4° 

angle of (11-22) and c-direction in GaN crystal. This  enables us to grow (11-22) GaN on the r-

plane sapphire with a pattern structure, as shown in Figure 2.5.91 By standard photolithography 

and dry etching processes, the sapphire with a grooved pattern can be fabricated, where the 

inclined facet (i.e., the c-plane-like sidewall) is close to the c-plane and thus GaN can be grown 
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on this facet. Growth conditions needs to be carefully optimized in order to favour the growth 

on the c-plane-like sidewall, and simultaneously suppress the growth from r-plane sapphire and 

the opposite sidewall.91 Tendille, et al. reported a similar method for the growth of (11-22) GaN 

on patterned r-plane sapphire, but with SiO2 layer deposited on the top of ridges in order to 

avoid the growth on r-plane sapphire.92 Moreover, it is also found that m-plane, a-plane, (11-22) 

plane and (10-11) plane GaN could be grown on patterned a-plane, m-plane (and c-plane), r-

plane and (11-23) n-plane sapphire, respectively.93 

 

Figure 2.5: Schematic of semi-polar (11-22) GaN on patterned r-plane sapphire.91 
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Figure 2.6: (a) Schematic of semi-polar (11-22) GaN on patterned (113) Si 

substrate. (b) SEM image of (113) Si substrate with another pattern for the growth 

of semi-polar (11-22) GaN.68,94 

Si substrate is not suitable for the semi-polar GaN. However, by using a 

photolithography technique and anisotropic wet-etching processes, patterned (113) Si substrate 

can be used for the growth of semi-polar (11-22) GaN.68 As shown in Figure 2.6a, the sidewall 

with a (111) Si facet can be fabricated using an anisotropic wet-etching process, where facet B, 

C and D can be deposited with SiO2 layers and thus leave facet A (i.e., (111) facet) to be 

exposed for GaN growth.94 Different wet-etching approaches have been proposed for 

patterning Si substrates for semipolar GaN growth.65,69,71   

Overgrowth on patterned templates 

Epitaxial lateral overgrowth (ELOG) technique was firstly employed in the growth of c-

plane GaN, which demonstrated a significant improvement in the crystal quality of epitaxial 

films.95 In 2003, Haskell applied the ELOG technique in the growth of a-plane GaN by HVPE, 

leading to a notable decrease of morphological and structural defects in the overgrown layer.46 

Then, ELOG technique was also used in the growth of m-plane and (11-22) plane GaN on 

sapphire, exhibiting as an effective way to obtain high-quality GaN films.96–98 All these reports 

adopted a pattern that typically consists of SiO2 stripes separated by window regions along the 

c-direction (c-projection), with stripes orientated along the m-direction. However, due to the 

anisotropic growth rate within the growth plane, this kind of pattern will lead to a non-

uniformity in both surface morphology and crystal quality across the wafer surface.  

A nano-rod template fabricated from a self-organized nickel mask approach was 

established by the Sheffield group for the overgrowth of non-polar and semi-polar GaN on 

sapphire.99–101 Figure 2.7 shows the preparation procedure of a nano-rod template. First, a GaN 

template is directly grown on 2-inch sapphire with a high temperature AlN buffer layer, 

followed by a deposition of SiO2 layer on its top. The self-organized nickel islands are 

fabricated by depositing a thin nickel layer on the SiO2 layer, followed by a thermal annealing 

process under a N2 atmosphere. The sizes and distances of the randomly distributed nickel 

islands are in the order of hundred nanometers, which could be tuned by the thickness of nickel 

layer and the annealing process. By a reactive ion etching (RIE) process, the pattern of the self-

organized nickel islands is transferred onto the SiO2 layer. Then the SiO2 layer is served as a 
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second mask subsequently for an inductively coupled plasma (ICP) process, which forms GaN 

nano-rod arrays with SiO2 on their top. During the overgrowth, GaN layer initiates from the 

sidewalls and then coalesce to obtain a flat surface. As a result of the small diameters and 

separations of the nano-rods, a flat surface could be quickly obtained on the nano-rod template 

with the thickness of the overgrown layer around 4 µm, which is faster than the conventional 

ELOG technique that cannot reach a good surface until the layer thickness is larger than 10 µm. 

Furthermore, the random distribution of nano-rods could compensate the anisotropic growth 

rate within the growth plane, improving the uniformity in crystal quality.100 Furthermore, a 

significant improvement has been achieved in both the crystal quality and electrical properties 

of the semi-polar (11-22) GaN overgrown on the nano-rod template. The experiment indicates 

that a large diameter will be helpful for further improving the crystal quality.102 However, due 

to the limit of the fabrication process, it is difficult to obtain nano-rods with a large diameter ( > 

1 µm ).  

 

Figure 2.7: A schematic diagram of the fabrication process of nano-rod template. 

Instead of using the self-organized nickel islands as the masks, the Sheffield group has 

developed a regular mask to transfer the designed patterns to the top SiO2 layer by a standard 

photolithography process. After following dry etching processes, micro-rods in regular arrays 

could be obtained. The details of this micro-rod template overgrowth approach will be 

introduced in section 3.3. The size of the micro-rods and array orientation could be accurately 

controlled during the fabrication procedure. With this approach, semi-polar (11-22) GaN 

exhibits a significant improvement in the crystal quality.103 
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2.4 Defects in semi-polar and non-polar III-nitrides  

Unlike c-plane GaN grown on sapphire, where dislocations are the major defects, semi-

polar and non-polar GaN on sapphire (or Si) exhibit additional defects. A number of 

characterization techniques have been employed to study the defects. 

2.4.1 Defect type 

According to dimensionality, defects in a crystal are usually classified as: 

(a) Zero dimensional defects: Point defects occur at or around a single atomic site, such 

as vacancy, interstitial, and substitutional atom.   

(b) One dimensional defects: A line of atoms are misaligned in a crystal which is also 

referred as "line defect", such as perfect and partial dislocations. 

(c) Two dimensional defects: A plane of atoms are misaligned such as stacking faults and 

grain boundaries. 

(d) Three dimensional defects: A volume of atoms are absent or appear at some atomic 

sites such as voids and precipitates. 

Among these four types of defects, line and planar defects are the major defects in semi-

polar and non-polar III-nitrides with a typical density on the order of 1010 cm-2 for dislocations 

and 105 cm-1 for stacking faults, respectively if they are directly grown on a standard sapphire 

substrates without involving any extra process. Compared with other types of defects, both 

dislocations and stacking faults play an important role in determining the optical and electrical 

properties of semi-polar and non-polar III-nitrides. In this work, it is focused on the dislocation 

and planar stacking fault. 

Dislocations 

To evaluate the lattice distortion caused by the appearance of line defects, a Burgers 

vector labeled as 𝒃 is used to describe the difference between a distorted lattice and a perfect 

lattice. A Burgers vector describes the direction and magnitude of the displacement that is 

required to restore from the distortion. Owing to the principle of minimum energy, dislocations 

with a Burgers vector which is larger than a unit slip distance (|𝒃|>|𝒂|) will split into two 

separate dislocations. As a result, the magnitude of a Burgers vector cannot be larger than the 

unit slip distance in each orientation. According to the magnitude of a Burger vector, 

dislocations could be classified as "perfect dislocation" (|𝒃|=|𝒂|) and "partial dislocation" 
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(|𝒃|<|𝒂|), respectively.104 There are three types of perfect dislocations in III-nitrides: edge, 

screw and mixed dislocations with their Burgers vectors 𝒃  of 1/3<11-20>, <0001>, and 

1/3<11-23>, respectively. As shown in Figure 2.8, the Burgers vector of an edge dislocation is 

perpendicular to its dislocation line, while that of a screw dislocation is parallel to its 

dislocation line. A mixed dislocation is a combination of an edge and a screw dislocation with 

an inclination angle between the Burgers vector and the dislocation line. In heteroepitaxial 

GaN films, most of the dislocations exhibit the edge type as a result of small formation energy 

for the edge dislocation.  

Stacking faults are generally associated with partial dislocations in semi-polar and non-

polar III-nitrides. Partial dislocations typically with a Burgers vectors 𝒃  of 1/3<1-100>, 

1/2<0001> and 1/6<2-203> are classified as Shockley and Frank partial dislocations, 

depending on  whether the Burgers vectors are parallel or perpendicular to the stacking fault 

plane. A perfect dislocation could dissociate into two partial dislocations in order to have a 

lower total energy, such as 1/3<11-20> = 1/3<10-10> + 1/3<01-10>. Consequently, a stacking 

fault could be formed between the two partial dislocations at the same time.  

For III-nitride heterostructures such as an InGaN layer on GaN, misfit dislocations are 

typically generated at their interface to compensate the misfit between the two layers as a result 

of the strain induced due to the lattice-mismatch. Misfit dislocations help to release the strain, 

and are typically generated when the thickness of the strained layer exceeds the so-called 

critical thickness ℎ𝑐, defined below: 105 

 ℎ𝑐 =
𝒃

2𝜋𝑓

(1 − 𝜈 cos2 𝛼)

( 1 + 𝜈)𝑐𝑜𝑠𝜆
(ln 

ℎ𝑐

𝒃
+ 1) (2.6) 

where 𝒃, 𝜈 and 𝑓 are the Burgers vector of misfit dislocation, Poisson’s ratio, and the misfit 

parameter, respectively. The misfit parameter is determined by the lattice constants of the 

epitaxial layer and substrate layer ( 𝑓 = (𝑎𝑙 − 𝑎𝑠𝑢𝑏)/𝑎𝑠𝑢𝑏) . 𝛼  is the angle between the 

dislocation line and the burgers vector, and 𝜆 is the angle between the slip direction and a line 

perpendicular to the dislocation line. Misfit dislocations are usually bound by two threading 

dislocations, forming a half loop. It has been discovered that misfit dislocations in a (11-22) 

orientated film have a dislocation line along the m-direction with a burgers vector of 1/3<11-

20>.106 
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Figure 2.8: Schematic diagrams of edge dislocation and screw dislocation. 

Stacking faults 

In a wurtzite structure, the basal planes are stacked in a sequence of ABABAB… In 

some cases, one layer might be located in a wrong position forming a stacking sequence of 

ABCBCB… The layer with a position offset is named as "stacking fault". There are two types 

of stacking faults in an III-nitride wurtzite structure: basal stacking faults (BSF) lying in the 

(0001) plane and prismatic stacking faults (PSF) lying in either (11-20) plane or (1-100) plane. 

According to the number of fault layers, BSF could be classified as I1-type (ABCBCB), I2-type 

(ABCACA) and E-type BSFs (ABCABA), as illustrated in Figure 2.9. There are one, two and 

three cubic bilayers in I1-type, I2-type and E-type BSF, respectively. The formation energy of 

these three types of BSFs has an approximation relationship: 𝛾I1=1/2 𝛾I2=1/3 𝛾E. with the BSF 

with I1-type having the lowest formation energy. Most of the stacking faults observed in semi-

polar and non-polar III-nitrides are I1-type. BSFs with I1-type can be generated by removing or 

inserting a bilayer with an offset of 1/3<1-100>. This means that the I1-type BSF cannot be 

generated during a strain relaxation process, but only during a growth process. On the other 

hand, I2-type BSF can be generated during a strain relaxation process through a basal shear of 

1/3<1-100>. E-type BSF is produced by the insertion of an extra layer, which can happen 

during a growth process. The displacement vectors R for I1-type, I2-type and E-type BSFs are 

1/6<2-203>, 1/3<1-100> and 1/2<0001>, respectively. It has been reported that there is another 

type of BSF in wurtzite GaN, which is known as I3-type BSF. I3-type BSF, having a stacking 

sequence of ABCBAB…, can be formed by replacing a bilayer (A or B) with a wrong bilayer 
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C. The formation energy of I3-type BSF is reported to be slightly larger than that of I1-type 

BSF.51  

In addition to the BSF in c-plane, PSF can be observed in the (11-20) or (1-100) plane in 

III-nitrides with a displacement vector R of 1/2<10-11>. PSF acts as an termination of I1-type 

BSF. Stair-rod dislocations with a Burgers vector of 𝒃  = 1/6<1-100> are observed at the 

intersection between BSF and PSF to compensate the difference in displacement vectors. It is 

calculated that the formation energy of PSF lying in (11-20) plane is 1153 erg/cm2 (72 meV/Å2) 

in GaN,107 which is significantly larger than the formation energy of BSF (40∓4 erg/cm2).57 

 

Figure 2.9:  Schematic diagrams of a normal stacking sequence of basal plane, I1-

type, I2-type, and E-type BSFs in wurtzite III-nitrides. 

2.4.2 Defect observation techniques 

A number of techniques have been developed to investigate the defects in III-nitride 

films. For example, wet-chemical etching is a useful technique to estimate the dislocation 

density, as the etching process only occurs at dislocation area and produces visible etch pits on 

the surface.108 Infrared microscopy could be applied on transparent GaN films to roughly 

determine the position of defects.109 Traditionally, X-ray diffraction technique can be 

employed to evaluate the lattice misorientation that is caused by the defects in a crystal.110 

However, it is difficult to use any of the above-mentioned characterization techniques to 

quantitatively distinguish the types of defects and determine their accurate locations, as they 

normally depend on the variation of strain fields around the defect areas. Being different from 

above techniques, transmission electron microscopy (TEM) technique characterize the atomic 
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arrangements in a crystal, providing more and detailed information of defects through a 

contrast analysis. The TEM technique which has been accepted as the most powerful 

characterization method for defect observation can demonstrate the generation, propagation 

and termination of various defects in semi-polar and non-polar III-nitride. A detailed 

introduction of TEM measurement will be presented in section 3.2.  

 

Table 2.3: Summary of the defects in semi-polar and non-polar III nitrides with 

their Burgers vectors b (or displacement vectors R), and the contrast analysis in 

TEM measurement. 

Defect type 
Burgers 

(displacement) 

vector b(R) 

 Diffraction vector g 

0002 11-20 1-100 2-200 3-300 1-101 1-212 

a-type dislocation 1/3<11-20> - Visible - - - - Visible 

c-type dislocation <0001> Visible - - - - Visible Visible 

a+c mixed 

dislocation 
1/3<11-23> Visible Visible - - - Visible Visible 

Shockley PD * 1/3<1-100> - - Visible Visible Visible Visible Visible 

Frank PD 1/2<0001> Visible - - - - Visible Visible 

Frank-Shockley PD 1/6<2-203> Visible - Visible Visible Visible Visible Visible 

Stair-rod 

dislocation 
1/6<1-100> - - Visible Visible Visible Visible Visible 

I1-type BSF 1/6<2-203> - - Visible Visible - Visible - 

I2-type BSF 1/3<1-100> - - Visible Visible - Visible - 

E-type BSF 1/2<0001> - - - - - Visible - 

PSF 1/2<10-11> - -  Visible - Visible - - 

* PD: Partial dislocation 

 

An invisibility criterion is usually employed to analyze defect types in TEM 

measurements.111–113 Following a rule of thumb, a dislocation will be invisible when the scalar 

product of its Burgers vector b and the diffraction vector g is zero, g·b=0, while it will be 

visible when the product is not zero. For example, an edge dislocation with a Burgers vector of 

1/3<11-20> is invisible under the diffraction condition g=0002, but in strong contrast under the 

diffraction condition g=11-20. On the other hand, a stacking fault will be out of contrast when 
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the scalar product of displacement vector R and the diffraction vector g is an integer, g·b=n. As 

a result, I1-type BSFs are out of contrast under the diffraction condition g=0002, but they will 

be observable under g=1-100. It is worth noting that for the observation of a stacking fault, it 

not only needs to meet the rule of thumb, but also requires an edge-on configuration. In the 

edge-on configuration, the observation plane is perpendicular to the plane of the stacking fault. 

Table 2.3 summarizes the defects with different types in semi-polar and non-polar III-nitrides 

and the visibility information under various diffraction vectors. 

2.4.3 Initiation, propagation and termination of defects 

As mentioned above, defects, such as dislocations and BSFs, can significantly affect the 

performance of semi-polar or non-polar devices. It is essential to understand the origin, the 

propagation processes and the termination mechanisms of dislocations and BSFs in order to 

further improve the crystal quality of semi-polar and non-polar GaN. 

For GaN grown on sapphire, the threading dislocations are mainly generated during the 

coalescence process of GaN islands that form as a result of an initial GaN nucleation layer 

using a standard two-step growth method on sapphire. As a result of the difference in rotation 

angle and tilting angle between the GaN islands, edge dislocations and screw dislocations 

could be formed around grain boundaries.114 On the other hand, when the shear stress in the 

strained GaN exceeds a critical value, misfit dislocations can be generated along with two 

threading dislocations at its ends.115 During the further growth process, dislocations will 

propagate along a certain direction to reach a minimum energy per unit growth length.116 The 

propagation direction is related to the growth direction and the dislocation Burgers vector. 

Generally speaking, most of the dislocations will perpendicularly propagate to the film surface.  

However, if a lateral overgrowth technique is used, the growth direction of the 

overgrown GaN layer changes during the overgrowth process, leading to the bending of 

dislocations occurring around the growth boundary.117 Dislocations will either propagate to the 

sidewall of the overgrown layer or be blocked by the growth from other directions. An 

interaction between dislocations can happen when two dislocations meet each other. 

Consequently, a new dislocation will be generated with a new Burgers vector: 𝒃3 = 𝒃1 + 𝒃2. 

If the two dislocations have opposite Burgers vectors, an annihilation process will occur, thus 

terminating the two dislocations.118 
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Figure 2.10: Schematic diagram of BSF and PSF in semi-polar (11-22) GaN on m-

plane sapphire. 

Stacking faults are formed at the interface between GaN and sapphire as a result of their 

lattice mismatch, where the BSFs mainly formed exhibit I1-type due to the lowest formation 

energy and are lying in the basal plane. In the case of GaN grown along the c-direction, the 

stacking fault cannot propagate to any overlying layer, and thus will not be a problem for c-

plane GaN. However, for semi-polar and non-polar GaN, the basal plane exhibits an inclination 

angle to the growth direction, allowing the BSF to penetrate to the sample surface. As shown in 

Figure 2.10, BSFs can be terminated either by partial dislocations (PDs) or PSF. An 

overgrowth technique which can be used to reduce dislocations is also an effective way to 

reduce BSFs. However, it is worth highlighting that the inclination angle between the stripe 

orientation and basal plane will reduce the possibility for BSFs being blocked.119  

2.5 Optical properties of semi-polar and non-polar III-nitrides  

2.5.1 Radiative recombination and non-radiative recombination 

Recombination of electron-hole pairs in a semiconductor can take place in either a 

radiative recombination process leading to emitting photons or a non-radiative recombination 

process leading to the release of the energy in a form of lattice vibrations. In order to obtain 

highly efficient LEDs, the radiative recombination process is preferred while the non-radiative 

recombination processes need to be suppressed.  
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Figure 2.11: Possible recombination processes in III-nitrides. (a) Band-to-band 

radiative recombination. (b) Nonradiative recombination via extra deep energy 

level. (c) Auger recombination.  

Radiative or non-radiative recombination processes can take place through a number of 

mechanisms as shown in Figure 2.11. The first one is a radiative recombination with transition 

between a conduction band and a valence band. A radiative recombination rate per unit time 

per unit volume can be described by the following equation:120 

  𝑅 = 𝐵𝑛𝑝   (2.7) 

where n and p are the  electron and hole density in a semiconductor, and B is called the 

bimolecular recombination coefficient with a typical value of 10-11-10-9 cm3/s for III-nitrides. 

Figure 2.11b shows a non-radiative recombination process via a deep energy level, which 

is formed by defects such as vacancies, impurities and dislocations. The deep energy level 

located within the forbidden gap, in particular the one which is close to the middle of a 

bandgap, can easily trap carriers. A non-radiative recombination process can occur through so-

called Auger recombination mechanism as shown in Figure 2.11c. For the Auger 

recombination, the recombination energy of the electron-hole pair is transferred to a third 

particle which can be either electron or hole. This particle can be excited into a higher energy 

level. Furthermore, a non-radiative recombination can take place through a surface 

recombination mechanism (not shown in figure).120  



 

37 

 

2.5.2 Stokes shift in III-nitrides 

The Stokes shift is defined as an energy difference between absorption energy and 

emission energy. An introduction of absorption and emission processes will be given prior to 

the discussion of Stokes shift in III-nitrides.  

Absorption  

When a semiconductor is excited by a beam of light whose energy is higher than the 

bandgap of the semiconductor, electrons may be excited from its valence band to its 

conduction band.  The absorption probability of the light depends on the photon energy. 

  𝛼(𝐸) ∝ (𝐸 − 𝐸𝑔)
1/2

   (2.8) 

The absorption coefficient exhibits a sharp absorption edge at the bandgap energy, while the 

absorption is supposed to be zero if the photon energy is lower than that of the bandgap. 

However, in a real situation, the absorption exhibits an exponential absorption curve (Figure 

2.12) below the bandgap edge, which is usually referred as Urbach tail. The Urbach tail follows 

the equation: 

  𝛼(𝐸) = 𝛼0𝑒(𝐸−𝐸𝑔)/𝐸𝑈𝑟𝑏𝑎𝑐ℎ    (2.9) 

where 𝛼0 is a constant and 𝐸𝑈𝑟𝑏𝑎𝑐ℎ is the Urbach energy. The Urbach tail absorption is caused 

by the formation of extended energy levels below the bandgap, which is usually related to the 

potential fluctuations in a semiconductor. 

 

Figure 2.12: Absorption coefficient from a direct bandgap material. 
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Emission  

The electrons which are generated after being excited to the conduction band of a 

semiconductor will recombine with the holes formed as a result of the excitation process 

spontaneously, emitting photons if the electron-hole transition follows a radiative 

recombination process. This is called spontaneous emission. The transition rate via the 

spontaneous emission process depends on the transition matrix element which is determined by 

the overlap between electron and hole wave-functions. In a c-plane InGaN/GaN quantum well 

structure which suffers from piezoelectric fields, the band diagram will be tilted, leading the 

transition energy to be lower than that in a case without involving any internal field. 

Furthermore, the piezoelectric fields push the electrons and holes in opposite directions within 

the quantum well, reducing the overlap between electron and hole wave-functions and 

consequently lowering the radiative recombination rate. 

Stokes shift 

After an absorption process, electrons are excited into higher energy states in the 

conduction band, as shown in Figure 2.13. Subsequently, the electrons quickly relax into the 

minima of the conduction band prior to any recombination process, thus leading to emission 

whose energy is smaller than the absorption energy in the case of a radiative recombination 

process. The energy difference between the absorption and emission is defined as Stokes shift 

as stated above. The Stokes shift in an InGaN/GaN quantum well structure depends on internal 

electrical fields and alloy fluctuations. The earliest study of the Stokes shift in InGaN/GaN 

quantum well structures can be dated back to 1996, reporting a large value of 100 meV in a c-

plane blue LED.121 For an InGaN/GaN MQW structure with Si doped GaN barriers, the Stokes 

shift exhibits a decrease with increasing doping concentration.122 The Stokes shift in 

InGaN/GaN MQWs increases significantly with increasing quantum well thickness, as a result 

of increasing piezoelectric fields.123 When increasing the indium composition in InGaN/GaN 

MQWs, both the piezoelectric fields and indium fluctuations are enhanced, leading to an 

increase in Stokes shift. 
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.  

Figure 2.13: Schematic of the absorption and emission processes. 

2.5.3 Carrier dynamics in InGaN/GaN MQWs along a semi-polar or non-polar 

orientation 

Owing to the great development of GaN growth techniques along semi-polar and non-

polar orientations, InGaN/GaN MQWs with impressive performance have been achieved on 

high quality GaN films, demonstrating some interesting properties such as short lifetime, 

polarized emission and enhanced carrier localization. 

Reduced QCSE/lifetime 

The most significant advantage of semi-polar or non-polar GaN is due to significant 

reduction or elimination in piezoelectric fields in InGaN/GaN MQWs. The reduction in 

internal electrical fields leads to an improvement in the overlap between electron and hole 

wave-functions and thus a reduction in carrier recombination lifetime. Figure 2.14 shows the 

comparative decay traces from a semi-polar (11-22) and a c-plane InGaN/GaN MQW structure 

measured at 10 K. A bi-exponential model was used to fit the decay traces. As denoted besides 

each curve, the fast component of the carrier recombination lifetime for the semi-polar sample 

is 46 ps, almost two orders of magnitude shorter than the 4.43 ns recombination lifetime for the 

c-plane counterpart, demonstrating a huge reduction in the internal piezoelectric fields in the 

semi-polar (11-22) sample compared with its c-plane counterpart. Furthermore, a fast 

recombination lifetime is crucial for the application of visible light wireless communications, 

where a modulation speed is inversely proportional to the recombination lifetime of the 

emitters used .124 
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Figure 2.14: PL decay traces of InGaN/GaN MQWs grown on (11-22) plane and 

(0001) GaN measured at 10 K. Insert: PL spectrum of the semi-polar sample.125 

Emission wavelengths can also be affected by the internal electrical fields in InGaN/GaN 

MQWs, leading to an increase in wavelength as a result of the QCSE induced by the 

piezoelectric fields. An increase in optical pumping can generate more electrons excited from 

the valence band of the MQWs to the conduction band. In this case, the internal electric fields 

can be partly screened as a result of the increasing excited carriers, leading to a blueshift in 

emission wavelength. This optical pumping induced blueshift in emission wavelength has been 

widely observed in c-plane InGaN/GaN MQWs, which is considered as a fingerprint of the 

existence of the QCSE. Figure 2.15 shows the normalized PL spectra as a function of 

excitation power density for a-plane and c-plane InGaN/GaN MQWs.126 With increasing 

excitation power from 0.1 to 15 mW, the emission peak of the c-plane InGaN/GaN MQWs 

exhibits a clear blueshift, while the a-plane sample exhibits unchanged emission wavelength, 

demonstrating the absence of QCSE in the quantum well grown along a non-polar orientation. 

Furthermore, for a same emission wavelength, the indium composition in the a-plane sample 

will be higher than the c-plane sample due to the absence of QCSE. Thus, the a-plane sample 

shows broader peaks in the PL spectra than the c-plane sample. 



 

41 

 

 

Figure 2.15: Normalized PL spectra of (a) a-plane and (b) c-plane InGaN/GaN 

MQWs as a function of excitation power measured at a low temperature.126 

Optical polarization 

In wurtzite GaN, there exist three sub-bands in its valence bands at the Brillouin zone 

centre, labeled as Γ9v, Γ7v
upper

 and Γ7v
lower, which are referred to as heavy hole (HH), light hole 

(LH) and split-off hole (CH) sub-bands, respectively.127 The carrier wave functions in the HH 

and the LH sub-bands exhibit |𝑋 ∓ 𝑖𝑌⟩-like state, while the carriers in the CH sub-band has 

|𝑍⟩-like state. The selection rule in quantum mechanics allows an interband transition between 

the conduction band and HH sub-band (or LH sub-band) when the electric field of incident 

light is perpendicular to the c-axis (𝐸 ⊥ 𝑐). When the electric of the incident light is parallel to 

the c-axis (𝐸 ∥ 𝑐), an interband transition between the conduction band and CH sub-band is 

allowed.128 In a c-plane InGaN/GaN quantum well structure, the biaxial compressive strain has 

equal components along two orthogonal directions in a growth plane. As a result, the emission 

light exhibit isotropic characteristics viewed along the c-direction. When the InGaN/GaN 

quantum well structure is grown along a semi-polar or non-polar orientation, the strain field in 

the growth plane becomes anisotropic. This will lead to a change in the HH and LH sub-bands, 

from |𝑋 ∓ 𝑖𝑌⟩-like bands into |𝑋⟩- and |𝑌⟩-like bands, as shown in Figure 2.16.129 The |𝑋⟩-like 

band moves up while the |𝑌⟩-band moves down to below the |𝑍⟩-like band. In this case, the 

interband transition between the conduction band and |𝑋⟩-like band (i.e., 𝐸 ⊥ 𝑐) exhibits a 

lower emission energy than the transition between the conduction band and |𝑌⟩-like band (i.e., 

𝐸 ∥ 𝑐). When the probability for the transition between the |𝑋⟩-like band and the conduction 
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(i.e., 𝐸 ⊥ 𝑐) is higher than that for the transition between the  |𝑌⟩-like band and the conduction 

band (i.e., 𝐸 ∥ 𝑐), the emission light will exhibit anisotropic characteristics  along the growth 

direction, namely, a lower emission intensity along the c-direction. 

 

Figure 2.16: Schematic diagrams of conduction band and valence bands in 

compressively strained c-plane and semi-polar (11-22) GaN. 

The polarization degree 𝜌 could be evaluated by the following equation: 

 𝜌 = |
𝐼90° − 𝐼0° 

𝐼90° + 𝐼0°
| (2.10) 

Here, 𝐼90°  and 𝐼0°  are the integrated PL intensities collected along a direction which is 

perpendicular and parallel to the c-axis, respectively. The value of the polarization degree 𝜌 is 

in the range of 0 to 1. It is reported that the polarization degree increases with increasing 

indium composition in semi-polar and non-polar InGaN/GaN MQWs, as a result of the 

increasing anisotropy in strain field in a growth plane.130,131 Blue LEDs with polarized 

emission play an important role in the fabrication of backlighting sources for computers, large 

displays, etc. The polarization degree in semi-polar (11-22) InGaN/GaN MQWs can be further 

enhanced by employing a photonic crystal structure.132  

Carrier localization 

It has been widely accepted that carrier localization can significantly affect the optical 

properties of InGaN/GaN MQWs. In a semiconductor, carrier could occupy either a localized 

stated or an extended state. The separation between the localized state and the extended state is 

defined as a mobility edge.133 There are two kinds of major reasons for the origin of 

localization in InGaN/GaN MQWs. One is due to alloy compositional fluctuations as a result 
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of the immiscibility between InN and GaN, leading to indium segregation when the indium 

content exceeds 6%. The indium segregation is enhanced with increasing indium content. 

Another reason is due to thickness fluctuation in InGaN quantum wells. Theoretical 

calculations reveal that a monolayer thickness fluctuation in InGaN-based MQWs could lead to 

localization with a potential energy of about 60 meV.134 It has been generally accepted that 

indium segregation induced localization plays a critical role in obtaining InGaN/GaN MQW 

based blue LEDs with high efficiency despite a high density existing in GaN grown on high 

lattice-mismatched sapphire. 

 

Figure 2.17: (a) Normalized PL spectra of c-plane InGaN/GaN MQWs under 

various temperatures. The spectra have been offset for clarity. (b) Emission peak 

energy as a function of temperature. 

In order to confirm or observe exciton localization in an InGaN/GaN MQWs sample, 

temperature dependent PL measurements provide a simple but effective approach. Typically, 

the emission peak usually exhibits an ‘S-shape’ behaviour with increasing temperature, which 

is a finger-print for exciton localization. For example, Figure 2.17a shows PL emission spectra 

at different temperatures from a c-plane InGaN/GaN MQWs sample with emission peak 

around 540 nm. All the PL spectra have been normalized and offset for clarity. With increasing 

temperature from a low temperature (10K) to room temperature, the emission peak starts to 

red-shift, followed by a blueshift, and then red-shift again. The first redshift is related to the 

migration of localized carriers from higher energy levels to lower energy levels at low 

temperature. When the temperature increases to a mediate temperature region, nonradiative 
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recombination becomes pronounced. Many carriers are able to recombine nonradiatively 

before reaching a lower energy level, leading to a blueshift in the emission peak. The final 

stage of the second redshift is a result of the thermal dilation of the crystal lattice at elevated 

temperature region. 
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97 X. Ni, U. Özgür, Y. Fu, N. Biyikli, J. Xie, A. A. Baski, H. Morkoç, and Z. Liliental-
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Chapter 3 

Experimental techniques 

Multiple characterization techniques were employed in this research project to 

investigate the semi-polar (11-22) III-nitrides, in terms of optical and structural properties. In 

this chapter, optical characterization methods including photoluminescence (PL), 

photoluminescence excitation (PLE), time-resolved PL and micro-PL will be explained, 

followed by an introduction to the transmission electron microscopy (TEM) characterization 

technique, and specimen preparation methods as well. Furthermore, an overgrowth technique 

on regularly arrayed micro-rod templates used in obtaining high-quality semi-polar (11-22) 

GaN films is also briefly presented.   

3.1 Optical characterization 

3.1.1  Photoluminescence 

Photoluminescence (PL) is one of the most powerful characterization techniques for 

investigating the optical properties of semiconductors. It is a non-destructive characterization 

method. When a beam of light is incident on a semiconductor sample, the light is absorbed by 

the semiconductor if the photon energy of the light is larger than the bandgap energy of the 

semiconductor. After the absorption process, electrons are excited to the conduction band from 

the valence band, leaving holes in the valence band. The electrons will then recombine with the 

holes. In the case of a radiative recombination process, photons are emitted. The emission from 

the semiconductor can be collected and analyzed to study the optical properties of the 

semiconductor. 

Figure 3.1 schematically illustrates a setup of our PL system which is equipped with two 

lasers, where a 325 nm He-Cd laser is used to study the optical properties of GaN and a 375 

nm diode laser with its energy smaller than the GaN bandgap is typically used to characterize 

InGaN/GaN quantum well structures. Using a reflection mirror and a focus lens, the laser can 

be focused on a sample with a spot diameter of around 200 µm. A helium closed-cycle cryostat 

is used for performing temperature dependent PL measurements with a temperature range from 
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10 K to 300 K. Through a pair of focusing lenses, emission can be focused and then collected 

by a 500 mm monochromator. Finally, the emission is detected by a thermoelectric (TE) 

cooled charge-coupled device (CCD) detector with a working temperature at -70 °C. Both 

temperature dependent PL and power dependent PL measurements can be performed on III-

nitride samples. 

 

Figure 3.1: Schematic diagram of a PL system equipped with two laser sources. 

3.1.2  Photoluminescence excitation 

Photoluminescence excitation (PLE) spectroscopy is a characterization method allowing 

us to record the emission intensity at a certain wavelength under a range of excitation energy 

by fixing a detection wavelength and continuously changing excitation wavelength. Although 

PLE spectroscopy can be treated as an absorption spectrum to some degree, it is actually 

different from an absorption spectrum. The relaxation of the photogenerated carriers to lower 

energy states is notably fast and this process can be finished before any luminescence process. 

Compared with absorption measurements, a PLE measurement has an advantage of measuring 

any non-transparent materials. Furthermore, the recorded light intensity at a fixed wavelength 

comes from a certain luminescent layer, depending on its bandgap. This makes it suitable for 

measuring the absorption edge of a quantum well. For example, Figure 3.2 shows the PL and 

PLE spectra from a semi-polar (11-22) InGaN/GaN dual-wavelength multiple quantum wells 

(MQWs) structure. With a detection wavelength fixed at the yellow emission peak, three 

absorption edges related to the GaN barrier, blue quantum well and yellow quantum well have 

been observed in the PLE spectra, as marked by black arrows. 
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Figure 3.2: PL and PLE spectra from a semi-polar (11-22) InGaN/GaN dual-

wavelength multiple quantum well structure. 

Figure 3.3 shows a schematic diagram of a PLE system used throughout the research 

project. A LDLS™ Laser-Driven Light Source is used as an excitation light source. In the light 

source, a continuous-wavelength (cw) laser is focused onto a Xenon plasma, which radiates 

high brightness light in a spectral range from 170 nm to 2100 nm, namely, from the ultraviolet 

through the visible to the infrared.1 A 320 mm monochromator is used to disperse the bright 

excitation light into a monochromatic light. Instead of using a lens, a pair of parabolic mirrors 

are employed to focus the monochromatic light onto a sample, where the influence of 

chromatic aberration in optical lens can be easily excluded. A certain angle between the 

incident light and the sample normal is required to minimize Fabry-Perot interference 

oscillations. The sample is loaded in a helium closed-cycle cryostat with a working temperature 

from 12 K to 300 K. The emission light is dispersed by another 550 mm monochromator 

before being detected by a GaAs photocathode photomultiplier tube (PMT) with a cooling 

system. For each measurement, a silicon photodiode is used to record the excitation light 

intensity as a function of wavelength to calibrate experimental results. 
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Figure 3.3: A schematic diagram of our PLE system. 

3.1.3  Time-resolved photoluminescence 

Time-resolved photoluminescence (TRPL) is a powerful characterization method for 

investigating excitonic recombination dynamics in a semiconductor. Considering a time-

dependent recombination process, photons with a number of 𝐴1 will be emitted in a certain 

time interval 𝑡1, followed by a number of 𝐴2 photons emitted in another time interval 𝑡2, as a 

histogram illustrates in Figure 3.4. If the time interval is small enough, the number of the 

emitted photons as a function of time can be obtained after being excited by a short pulsed 

laser. The decay profile contains useful information on the emitted photons due to the radiative 

recombination as a function of time. It is very difficult to record a decay profile from a single 

pulse excitation as a result of weak signals. Consequently, a TRPL decay profile is typically 

obtained by using periodic excitations which can be simply obtained using a short-pulse laser 

as an excitation source  (a pulsed diode laser in our case), which allows to record signals over 

multiple cycles and thus minimize errors as a result of weak signals. 
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Figure 3.4: Schematic diagram of the decay profile from a luminescence material 

after a laser pulse. 

 

 

Figure 3.5: A schematic diagram of TRPL system. 

Figure 3.5 is a schematic diagram of our TRPL system used in characterizing III-nitride 

materials and devices. A 375 nm pulsed diode laser with a pulse width of 83 picoseconds, and 

its power is 0.1 mW for a pulse period of 100 ns. A sample is placed in a helium closed-cycle 
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cryostat with a temperature range from 7 K to 300 K. Emission light is dispersed by a 550 mm 

monochromator before being detected by a hybrid photomultiplier detector with a timing 

resolution of 120 picoseconds. The hybrid photomultiplier detector is a combination of a 

silicon avalanche photodiode (APD) and a photomultiplier tube (PMT) with a major 

advantages of using a large active area and good timing resolution. A signal together with a 

laser synchronization signals is transferred to a time correlated single photon counting (TCSPC) 

system via a standard 50 Ohms coax cable. The TCSPC system records photon signals as a 

function of time based on multiple pulsed excitation cycles, providing average results and then 

a decay profile. Final measurement results are delivered to a computer. 

An instrument response function (IRF), the characteristics of the timing precision of a 

TRPL system, is determined by the timing resolution of each individual component, which 

could generally be described by the following formula:2 

 𝒆𝐼𝑅𝐹 𝑠𝑦𝑠𝑡𝑒𝑚 = √∑ 𝒆𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
2  (3.1) 

Our TRPL system has an IRF of around 150 picoseconds (ps) with a timing resolution of 

around 15 ps, which is much smaller than the typical recombination lifetime in III-nitride 

semiconductors.  

3.1.4  Confocal microscopy 

Figure 3.6 illustrates the principle of confocal microscopy. In a confocal microscope, an 

excitation source is focused into an extremely small spot by an objective lens. The emission 

from the focal plane of the objective lens is collected by the objective lens and then is focused 

onto a pinhole to reach a detector. However, for any emission which is not from the focal plane 

(for example, orange dash line labeled), it will be eliminated by the pinhole and cannot reach 

the detector. As a result, the confocal microscope can obtain a high resolution image with a low 

background signal. The resolution of a microscope image can be affected by a number of 

components, such as light source, objective lens and pinhole. Apart from a two dimensional 

image, a three dimensional image could also be generated as measuring a sample at different 

depths.   
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Figure 3.6: Principle of confocal microscopy.3 

Our confocal microscope system uses a 375 nm continuous wave diode laser as an 

excitation source. The laser was focused on a sample by an objective lens with a magnification 

of 100 times and a numerical aperture (NA) of 0.95. Emission from a sample is collected by 

the same objective lens and is then focused through a pinhole. A 300 nm Princeton Instruments 

monochromator is employed to disperse the emission, which is finally collected by a TE cooled 

Andor CCD with a working temperature at -60 °C.  A sample is placed in a XYZ piezoelectric 

stage with a minimum step of around 2 nm. According to the Rayleigh criterion, the lateral 

resolution 𝐹𝑊𝐻𝑀𝑙𝑎𝑡𝑒𝑟𝑎𝑙 of our confocal microscope system could be estimated by following 

equations: 

 
𝐹𝑊𝐻𝑀𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 0.37 ∗

𝜆∗

𝑁𝐴
  (3.2) 
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1
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)

2

=
1

2
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𝜆𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛
)

2

+ (
1

𝜆𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
)

2

]  (3.3) 

where 𝜆∗ is the mean wavelength of the microscope system, which is related to the excitation 

wavelength 𝜆𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 and the emission wavelength 𝜆𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛. For example, in our case of a 

375 nm excitation wavelength and a 460 nm emission wavelength, the lateral resolution is 

estimated to be around 160 nm. 
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3.2 Transmission electron microscopy characterization 

3.2.1  Transmission electron microscopy 

Transmission electron microscopy (TEM) is a powerful technique that is widely used for 

investigating the defects in semiconductors. For any optical microscope, the resolution is 

limited by the wavelength of the light used, which is on the order of hundred nanometres.4 The 

TEM technique utilizes electrons as a “light” source, where the wavelength of electrons is 

much smaller than that of any visible light. Consequently, it enables us to observe a specimen 

with an extremely high spatial resolution on the order of 0.1 nm.5 In the gun part of a TEM 

system, electrons generated from a filament are accelerated by an external electric field with a 

typical accelerating voltage from 100 to 300 kV. The beam of the electrons is then focused by 

electromagnetic lenses before reaching the specimen. 

 

Figure 3.7: Schematic diagrams of two basic operations of diffraction mode (left) 

and image mode (right) in a TEM system. 

When a beam of electrons pass through a thin specimen, the electrons can pass through 

the specimen and also suffer from scattering as a result of the interaction between the electrons 

and the specimen. It is worth noting that the transmitted electrons also experience an 

interaction process with the specimen atoms. As a result of these interactions, a diffraction 
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pattern will be formed. Therefore, information such as crystal structure and lattice parameters 

of the specimen can be extracted from the diffraction pattern.  

Figure 3.7 shows a schematic diagram for a diffraction mode (left) and an image mode 

(right). After electrons pass through the specimen, the transmitted electrons (black lines) and 

the scattered electrons (grey lines) are focused by an objective lens. The diffraction pattern of 

the electrons is formed on the back focal plane of the objective lens, and the first intermediate 

image is formed on the image plane of the lens. In the diffraction mode, a selective area 

electron diffraction (SAED) aperture is inserted in the image plane to select a special region on 

the specimen which is investigated. After that, an intermediate lens treats the diffraction pattern 

as its object and regenerates it on its image plane, followed by a projective lens system to 

magnify the diffraction pattern on the viewing screen. In the image mode, an objective 

aperature is inserted on the back focal plane of the objective lens to determine which electrons 

will contribute to the image. The SAED aperture is removed at the same time. By adjusting the 

strength of the intermediate lens, its focus length will move from the back focal plane to the 

image plane of the objective lens. As a result of that, the first intermediate image will be used 

as the object of the intermediate lens, and the image will be presented on the viewing screen by 

the projective lens system. 

 

Figure 3.8: Schematic of scattered electrons by a point defect in a crystal. 

In a bright field image, only a beam of transmitted electrons is selected to pass through 

the objective aperture to contribute to the image. In a dark field image, one or more scattered 

electrons beams are allowed to pass through the objective aperture, while the transmitted 

electrons beam is blocked. When a beam of electrons pass through a very thin crystalline 

specimen, most of the electrons will be transmitted electrons. If there is a point defect (for 
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example, open circles labeled in Figure 3.8) in a crystal, the electrons expected to be 

transmitted will be possibly scattered. In that case, the area will be slightly weaker than other 

areas when being viewed in a bright field image. In the case of a dislocation (i.e., line defects) 

in a crystal, electrons scattering would be significantly enhanced, leading to a dark line (or a 

dark point in some cases) shown in a bright field image. In summary, any defects and any 

strain induced distortion in a crystal will lead to the formation of brightness contrast in a TEM 

image. 

3.2.2  Specimen preparation 

A number of different types of TEM specimens have been prepared throughout the study 

for different purpose, such as the specimens for observing cross-sectional TEM images, the 

specimens for observing plane-view images, and the specimen for nanorod structures. A 

specimen with a large thin area (with a length >10 μm) is suitable for investigating the semi-

polar GaN films overgrown on micro-rod templates. Methods that are used for TEM specimen 

preparation will be introduced in this section. 

Cross sectional specimen 

 

Figure 3.9: Schematic diagram of cross sectional TEM specimen preparation. 

Cross-sectional TEM images are used to study the microstructure of GaN sample in 

terms of generation, propagation and termination of defects. Figure 3.9 shows a schematic 

diagram of specimen preparation for cross-sectional TEM measurements. A sample, for 

example, an overgrown semi-polar (11-22) GaN sample, is cut into narrow slices along the 
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direction which is our interest by using a low speed diamond saw. Two sample slices are glued 

together with face to face to make the epitaxial layer located in the middle. It is worth noting 

that the gap between the two sample slices should be as small as possible. An epoxy is 

typically used to glue the sample slices, which are subsequently subject to ion-milling by an 

ion beam. A silicon spacer is also glued on the back of each sample slice for protection 

purposes. This sandwich structure is then mounted onto a flat glass substrate by wax, followed 

by a mechanical polishing process, where silicon carbide sandpapers with various grit sizes 

from 60 to 8 μm are used to thin and then polish the specimen. Finally, a fine polishing process 

is carried out on a MetaservTM 250 polisher using a diamond paste with a grit size of down to 

0.25 μm. When the thickness of the specimen is less than 90 μm, it becomes difficult to thin the 

specimen further. To circumvent this problem, a nickel grid is glued onto the specimen. With 

the insertion of the nickel grid, the height of the specimen can be increased by ~60 μm, 

facilitating a lapping process. When the thickness of the specimen is down to around 30 μm, 

the specimen is put into a Gatan 600A dual ion mill system for an ion milling process in order 

to achieve electron transparency.The specimen is usually placed at a tilt angle with a low 

rotation speed (~5 rpm) during the ion mill process. 

Plane-view specimen 

In order to observe a plane-view TEM image which is useful for investigating a defect, a 

nickel grid is glued directly on the back side of sample (Figure 3.10a), followed by the lapping, 

polishing and ion milling processes mentioned above. However, as the thickness of the 

specimen decreasing, two kinds of problems are likely to appear. One is due to a cracking issue, 

which is might related to the strain in a heteroepitaxial film grown on a large lattice-

mismatched substrate, such as GaN on sapphire. The cracks can destroy the thin areas which 

will be observed by TEM later on as shown in Figure 3.10c. Another is due to a sample 

bending issue around the thin area as a result of ion milling performed only on the back side, 

which will make it difficult for subsequent TEM measurements. To avoid these, a square mesh 

grid (Figure 3.10e) is applied instead of a slot grid (Figure 3.10b). As shown in Figure 3.10f, 

even though there are some cracks, there is still a good thin area which can be obtained as a 

result of the specimen being glued onto the mesh. 
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Figure 3.10: (a) Schematic diagram of plane-view TEM specimen preparation. (b) 

A photo of one sample glued with a slot grid. (c)(d) Photos of specimens on slot 

grid after ion milling. (e) A photo of one sample glued on a square mesh grid. (f) A 

photo of specimen on square mesh grid after ion milling. 

Nanowire specimen 

Nanowire specimens are usually prepared for investigating nano-structures, such as 

nanorods fabricated using post-growth etching process from a planar sample and nanorods 

directly grown on silicon.6 It is straightforward to prepare such a specimen for TEM 

measurements, namely, simply cutting nanorods down from a wafer using a blade and then 

immersing the blade into a liquid, such as isopropyl alcohol. After spinning for several minutes, 

a square mesh grid is then dropped in the liquid and the specimen will be ready once being dry 

(Figure 3.10e). Figure 3.11a shows a TEM image of an InGaN/GaN MQW nanorod that is 

attached to the copper mesh, where a SiO2 layer should be firstly deposited to protect the 

nanorods. Figure 3.11b presents a TEM image of GaN nanorods grown on silicon, where a 

SiO2 layer covering the nanorods can be observed. 
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Figure 3.11 (a) TEM image of a nanorod attached to copper mesh. (b) Cross 

sectional TEM image of GaN nanorods grown on silicon. 

3.3 Metal organic chemical vapour deposition 

Metal organic chemical vapour deposition (MOCVD), also known as metal-organic 

vapour phase epitaxy (MOVPE) has been widely used in the growth of III-nitride materials. 

MOCVD method utilizes a chemical reaction for the deposition of a thin crystalline film onto a 

semiconductor substrate. For example, for GaN epitaxial growth in MOCVD, it undergoes a 

following chemical reaction process. 

 (𝐶𝐻3)3𝐺𝑎 + 𝑁𝐻3 = 𝐺𝑎𝑁 + 3(𝐶𝐻4) ↑  (3.4) 

Trimethylgallium (TMG) and ammonia (NH3) are used as the Ga and N sources, 

respectively. Furthermore, Trimethylaluminium (TMA) and Trimethylindium (TMI) are 

employed as the metal sources for the others in group III .These chemical sources are 

vaporized and then transported into the reactor chamber by a carrier gas. Hydrogen (H2) is 

generally used as the carrier gas for MOCVD growth, as it can be purified very well. However, 

nitrogen (N2), instead of H2, is chosen as the carrier gas for InGaN growth due to an extremely 

low rate of indium incorporating into GaN under H2 ambient. When the chemical sources enter 

the reactor chamber and reach the heated substrate, they can be decomposed at a high 

temperature (~1000-1200 °C for GaN growth). Under a suitable chamber pressure (~10-760 

Torr), a layer deposition could be achieved. The growth rate and alloy composition can be 

accurately controlled by the gas flow rate, chamber pressure and substrate temperature.  
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3.4 Micro-rod template overgrowth approach 

As mentioned above, the crystal quality of (11-22) semipolar GaN directly grown on 

sapphire is far away compared with current c-plane GaN grown on sapphire. In order address 

this great challenge, our group has developed a cost-effective approach by using overgrowth on 

regularly arrayed micro-rod templates. With this approach, it has achieved a step-change in the 

crystal quality of semi-polar (11-22) GaN on sapphire, leading to the first observation of a 

stimulated emission optically pumped at room temperature.7 Based on such overgrown semi-

polar GaN samples, we have also demonstrated high-performance semi-polar (11-22) InGaN 

LEDs with an emission wavelength of up to the amber spectral region.8 

Figure 3.12 illustrates our preparation process of a micro-rod template. Firstly, a single 

(11-22) GaN layer with a thickness of 1.3 μm (reduced to 400 nm later on) is grown on 2-inch 

m-plane sapphire using our high temperature AlN buffer technique by metal organic chemical 

vapour deposition (MOCVD).9 For the subsequent overgrowth, mask-patterned micro-rod 

arrays need to be fabricated on the semi-polar GaN layer. A SiO2 layer is deposited by plasma 

enhanced chemical vapour deposition (PECVD), followed by a standard photolithography 

using a mask with our specially designed pattern. After that, a nickel layer is deposited by 

thermal evaporation before subsequent lift-off processes to remove the photoresist used. The 

exposed SiO2 areas will be then removed by reactive ion etching (RIE) to achieve regularly 

arrayed SiO2 micro-rods. Finally, by using inductively coupled plasma (ICP) etching technique, 

the SiO2 micro-rods are used as a second mask to etch the GaN underneath in order to form 

regularly arrayed GaN micro-rods with the SiO2 remaining on their top. Both the diameter and 

spacing of the micro-rods can be accurately controlled, which in turn depend on the micro-rod 

mask used. 
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Figure 3.12: Schematic diagram of the micro-rod template fabrication process. 

Chemical treatments are also carried out to heal the possible damage on micro-rod 

sidewalls during the dry etching processes prior to any further overgrowth process by MOCVD. 

The subsequent overgrowth process is carried out with a typical growth temperature, V/III ratio 

and pressure at 1120 °C, 1600 and 75 Torr, respectively. A flat surface could be obtained with 

the thickness of overgrown layer around 4 μm, which is faster than any conventional epitaxial 

lateral overgrowth (ELOG) techniques.10,11  
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Chapter 4 

Defect reduction in overgrown semi-polar (11-

22) GaN on a regularly arrayed micro-rod array 

template 

In this chapter, we demonstrate a great improvement in the crystal quality of our semi-

polar (11-22) GaN overgrown on regularly arrayed micro-rod templates fabricated using a 

combination of industry-matched photolithography and dry-etching techniques. As a result of 

our specially designed micro-rod configuration, an intrinsic issue on the anisotropic growth 

rate which is a great challenge in conventional overgrowth technique for semi-polar GaN has 

been resolved. Transmission electron microscopy measurements show a different mechanism 

of defect reduction from conventional overgrowth techniques and also demonstrate major 

advantages of our approach. The dislocations existing in the GaN micro-rods are effectively 

blocked by both a SiO2 mask on the top of each GaN micro-rod and lateral growth along the c-

direction, where the growth rate along the c-direction is faster than that along any other 

direction. Basal stacking faults (BSFs) are also effectively impeded, leading to a distribution of 

BSF-free regions periodically spaced by BSF regions along the [-1-123] direction, in which 

high and low BSF density areas further show a periodic distribution along the [1-100] direction. 

Furthermore, a defect reduction model is proposed for further improvement in the crystalline 

quality of overgrown (11-22) GaN on sapphire. 

4.1 Introduction  

Currently, the major challenge is due to the crystalline quality of semi-polar GaN, which 

is far from satisfactory. So far, semi-polar GaN with device performance is exclusively grown 

on free-standing semi-polar GaN substrates, which are obtained by slicing very thick c-plane 

GaN along semi-polar orientations. This limits the substrate size to a square of 10x10 mm2, and 

thus is extremely expensive.1-3 Therefore, it would be impractical for industry. 



 

70 

 

There is a limited number of reports on overgrowth of semi-polar GaN mainly based on 

conventional epitaxial lateral overgrowth (ELOG),4-9 which generally leads to a non-uniformity 

issue and requires a thick overgrown layer (typically > 10 μm) in order to achieve an 

atomically flat surface. In order to address these issues, previously we reported an overgrowth 

approach based on self-organised nickel nano-masks, leading to a significant improvement in 

the crystal quality of either semi- or non- polar GaN on sapphire and achieving an atomically 

flat surface with an overgrown layer of only a few micrometres.10,11 Very recently, we have 

developed another cost-effective approach to the overgrowth of semi-polar GaN on mask-

patterned micro-rod arrays on 2-inch sapphire, where the diameter of micro-rods with a regular 

patterning can be accurately controlled. On such high quality semi-polar GaN templates, we 

have achieved high performance semi-polar light emitting diodes (LEDs) with a wide spectral 

range of up to amber.12,13  

In this chapter, we investigate in detail a mechanism of defect reduction in the overgrown 

semi-polar (11-22) GaN on the regular micro-rod array templates by transmission electron 

microscopy (TEM) measurements, and a detailed model has been established, essentially 

allowing us to further improve the crystalline quality of overgrowth semi-polar GaN on 

sapphire.  

4.2 Overgrowth process  

A single (11-22) GaN layer with a thickness of 1.3 μm is grown on m-plane sapphire 

using our high temperature AlN buffer by metal organic chemical vapour deposition 

(MOCVD).14 For subsequent overgrowth, mask-patterned micro-rod arrays have been 

fabricated on the semi-polar GaN layer. Firstly, a 500 nm SiO2 layer is deposited by plasma 

enhanced chemical vapour deposition (PECVD), followed by a standard photolithography 

patterning process and subsequent dry etching processes using Inductively Reactive Plasma 

(ICP) and Reactive Ion Etching (RIE) techniques. Regularly arrayed SiO2 micro-rods can be 

achieved. Finally, the SiO2 micro-rods served as a second mask are used to etch the GaN 

underneath in order to form regularly arrayed GaN micro-rods with the SiO2 remaining on their 

top. The micro-rod masks with different diameters from 1.5 to 3 μm have been employed for 

the fabrication of micro-rod array templates. As an example, Figure 4.1a shows a top-view 

scanning electron microscope (SEM) image of a micro-rod array template with a diameter of 

3.5 µm and a spacing (edge to edge along [1-100] direction or [-1-123] direction) of 2 µm. The 
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subsequent overgrowth process is carried out by MOCVD with a growth temperature, V/III 

ratio and pressure at 1120 °C, 1600 and 75 Torr, respectively. Please note that the approach is 

fundamentally different from our previous method based on self-organised nickel nanomasks,11 

where the rod diameter, the shape, the spacing between rods and the orientation of the rod 

arrays are all randomly distributed. Due to the anisotropic growth rate of semi-polar GaN, it 

would be necessary to maximize the spacing along one particular direction (for example, the 

projection of c-direction to the surface), and minimize the spacing along another direction (for 

example, m-direction). These can be achieved only by the present approach. Furthermore, due 

to an accurate control in the orientation of micro-rod arrays using the present approach, it is 

expected that the defect reduction mechanism is different from that for the previous self-

organized nickel nano-mask approach. 

 

Figure 4.1: (a) Top-view SEM image of micro-rod arrays with a diameter of 3.5 

µm and spacing (edge to edge) of 2 µm; (b)-(d) SEM images of the surface 

morphology of our (11-22) GaN with overgrowth time of 1000, 2000 and 3000 

seconds, respectively. 

Figure 4.1 (b)-(d) show an evolution of the surface morphology of the overgrown layer 

on an initial growth stage, demonstrating a change in surface morphology when the growth 

time is 1000, 2000 and 3000 seconds, respectively. The overgrowth initiates from the exposed 
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sidewalls of micro-rods as shown in Figure 4.1b, and the lateral growth is dominated by the 

growth along the [0001] direction labeled as c-direction and the [11-20] direction labeled as a-

direction. Comparing the lengths of the two growing wings, the c-direction growth is faster 

than the a-direction growth. Moreover, the growth along the [-1100] direction labeled as m-

direction is negligible. After the coalescence of the c-direction growth and the a-direction 

growth facets, the GaN growth tends to move upward. When the thickness of the overgrown 

layer exceeds the height of the micro-rods, the growth begins to extend to cover the SiO2 

masks. Although the m-direction growth is slower than the growth along other directions, the 

specially designed pattern of the micro-rods as shown in Figure 4.1a compensates the 

anisotropic growth rate, also facilitating another second coalescence occurring over the SiO2 

masks. Eventually a full coalescence is achieved. A smooth surface can be achieved with the 

overgrowth of about 4 µm, which is faster than any other conventional ELOG techniques.15,16 

Initial X-ray diffaction (XRD) measurements have been performed as a function of azimuth 

angle, exhibiting that the full width at half maximum (FWHM) of on-axis XRD rocking curves 

measured along the [1-100] and [-1-123] directions is 320 and 260 arcsec, respectively. These 

represent the best results on semi-polar GaN with a similar thickness grown on sapphire. 

4.3 Defect reduction mechanism  

4.3.1  Dislocation reduction during the overgrowth 

The specimens for both cross-sectional and plane-view transmission electron microscopy 

(TEM) measurements are prepared by initial mechanical lapping/polishing and then ion milling 

down to electron transparency. TEM measurements have been performed using a Philips 

EM430 TEM operating at 200 kV. Based on an invisibility criterion,16-20 dislocations are out of 

contrast when the product of a diffraction vector g and a dislocation displacement vector R 

equals zero, namely, g · R=0 (It would still be possible to observe a weak contrast of 

dislocations for a very thin specimen in the case of the dislocation unparalleled to its burger 

vector. This does not apply in our case.); and stacking faults are invisible when the product is 

an integer, including zero. 

Figure 4.2a shows a typical bright-field cross-sectional TEM image taken along [1-100] 

zone-axis with g=0002, indicating c-type threading dislocations (TDs), a+c TDs and Shockley 

partial dislocations; while Figure 4.2b shows a typical bright-field cross-sectional TEM image 

taken along [1-100] zone-axis but with g=11-20, demonstrating a-type TDs, a+c TDs and 
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Frank partial dislocations. Figure 4.2a and 4.2b show all kinds of the dislocations, 

demonstrating that the dislocations (with an inclination angle of 58.4° to surface) from the GaN 

micro-rods under the SiO2 masks have been greatly reduced as a result of the overgrowth on 

our micro-rod arrays. 

 

Figure 4.2: Bright field cross-sectional TEM images of our overgrown GaN layer 

taken along the [1-100] zone-axis under a diffraction vector of (a) g = 0002 and (b) 

g = 11-20. 

The voids in a triangular shape observed in the trenches between the micro-rods are 

formed as a result of the first coalescence of the c-direction growth facets and the a-direction 

growth facets from two neighbouring micro-rods. The voids extend from the sapphire substrate, 

confirming that the growth initiates from the exposed sidewalls rather than the bottom of the 

trenches between micro-rods. It is important because the GaN growth from the bottom needs to 

be suppressed in order to prevent the defects penetrating from the micro-rods to the overlying 

structures.  
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Figure 4.3: Bright field cross-sectional TEM images of two semi-polar (11-22) 

GaN films overgrown on templates (a) with and (b) without etching through the 

AlN buffer layer under a diffraction vector of g = 0002. 

Figure 4.3 presents two bright field cross-sectional TEM images of two semi-polar (11-

22) GaN films overgrown on templates with and without etching through the AlN buffer layer. 

In Figure 4.3b, the absence of the void between two micro-rods indicates that GaN initiates 

from the AlN buffer layer. In this overgrown GaN, a number of dislocations have been formed 

around the AlN/GaN interface and most of them propagate to the sample surface. In contrast, 

the other sample in Figure 4.3a exhibits few dislocations in the overgrown GaN layer, owing to 

the suppression of GaN growth from the buffer layer.  

Similar to the other overgrowth techniques, in Figure 4.2, the GaN grown laterally along 

the c-direction exhibits approximately free of dislocations, whereas the GaN grown along the 

a-direction contains a number of defects.8,18 Due to the fact that the c-direction growth rate is 

faster than the a-direction growth rate, the a-direction growth is eventually stopped by the c-

direction growth, terminating the propagation of defects from the a-direction growth. Therefore, 

the growth conditions favouring the c-facet growth are preferred on the early overgrowth stage, 

leading to an efficient reduction in dislocations and extended defects. As a result, the majority 

of the pre-existing dislocations in the GaN micro-rods are effectively prevented from 
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penetrating by both the SiO2 masks and the c-direction growth. Only a small part of the 

dislocations along the a-direction propagate to the surface. Furthermore, another kind of void 

has also been observed over the SiO2 mask on the top of each micro-rod as a consequence of 

the second coalescence along the [-12-10] and [2-1-10] directions as well. It is worth noting 

that a very small number of extra dislocations are generated due to the 2nd coalescence, as 

presented in Figure 4.2.  

 

Figure 4.4: Bright field plane-view TEM image of our overgrown (11-22) GaN 

layer with a diffraction vector g=1-212. 

Dislocations distribution across the (11-22) GaN layer surface is revealed by a bright 

field plane-view TEM image with a diffraction vector g=1-212, as shown in Figure 4.4. Our 

plane-view TEM image indicates that the overall dislocation density in our overgrown semi-

polar (11-22) GaN is about 4.2×108 cm-2, demonstrating a significant reduction in dislocation 

density from the order of 1010 cm-2 in the as-grown GaN which is used to fabricate into the 

micro-rod array template. 

4.3.2  BSF reduction during the overgrowth 

Basal stacking faults (BSFs), as extended defects, can be observed along either the [-12-

10] or the [2-1-10] zone-axis by tilting 30° from the [1-100] zone-axis.19 Figure 4.5a shows a 

typical bright-field cross-sectional TEM image taken along the [2-1-10] direction with g=1-100, 

where BSFs appear as straight dark lines with an inclination angle of 58.4° to the surface. 

Since the BSFs exist in basal planes, they are impeded by the c-direction growth. As denoted 
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by the red arrows in Figure 4.5a, part of the BSFs along the a-direction are blocked by the 

adjacent c-direction growth (leading to defect-free regions), which are terminated very likely in 

the form of PDs and prismatic stacking faults (PSFs), while the rest of the BSFs along the a-

direction are found to survive from the first coalescence process and propagate to the surface. 

This forms the free-BSF regions and the BSF regions distributing in a periodic form along the 

[-1-123] direction. What also interests us is the appearance of the BSF clusters over the SiO2 

masks, as marked by the blue arrows in Figure 4.5a.  

 

Figure 4.5: (a) and (b) Bright-field cross-sectional TEM images of our (11-22) 

overgrown GaN layer viewed along the [11-20] zone-axis with diffraction vector 

g=1-100, but with preparing specimens cleaved differently; (c) Schematic diagrams 

of the BSF distribution on the sample surface and our micro-rod patterning. The 

dash lines labeled as a-a’ and bb’ depict the different cleavage directions for 

preparing the specimens from a same sample used for TEM observation as shown 

(a) and (b), respectively; (d) Plane-view TEM image of our (11-22) overgrown 

GaN with a diffraction vector g=1-100. 

To study the origin of these unexpected BSFs, a TEM specimen was particularly 

prepared by cleaving along a direction schematically illustrated by a dash line labeled as b-b’ 

as shown in Figure 4.5c. Figure 4.5c also schematically shows a distribution of BSFs indicated 
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by the vertical dark lines, which will be explained later. In this case, all the micro-rods 

belonging to the two neighbouring rows can be observed in a cross-sectional TEM image as 

shown in Figure 4.5b, while the upper and lower voids cannot be observed. By comparing 

Figure 4.5a and 4.5b, it can be concluded that the BSF clusters observed on the left side of the 

SiO2 masks on each micro-rod in Figure 4.5a are from a different micro-rod on a neighbouring 

row. One solid evidence is that the spacing between these BSF clusters is around 1.5 µm, 

similar to the distance in Figure 4.5a with the cleavage along micro-rod centre to centre, 

namely, along a dash line marked as a-a’ in Figure 4.5c. This is also confirmed by the plane-

view TEM image in Figure 4.5d. 

Figure 4.5d clearly demonstrates that BSF clusters with orientation along the m-direction, 

i.e., [-1100], are separated by defect-free regions along the [-1-123] direction. The width of the 

defect-free areas is around 1.5 µm, consistent with the cross-sectional TEM images as shown 

in Figure 4.5a. In addition, the distribution of these BSF clusters shows a repeat of high BSF 

density areas (labeled with H) and low BSF density areas (labeled with L). It means the BSFs 

can expand within the basal plane, propagating with a component parallel to the m-direction 

during the overgrowth above the SiO2 masks. During the second coalescence process, some 

BSFs are terminated by a formation of either PDs or PSFs, leading to a further reduction in 

BSF density.20 Consequently, this forms one area with a low BSF density (i.e., L region) and 

another area with a high BSF density (i.e., H region), appearing in a periodic form along the m-

direction. 

It is worth noting that the locations of the defect-free regions and defect regions depend 

on layer thickness as schematically shown in Figure 4.5c, as the defects penetrate along the a-

direction which is 58° with respect to the surface. Our plane-view TEM image shows that the 

average BSF density of our overgrown GaN on a 3.5 µm micro-rod template has been reduced 

to 4.7×104 cm-1. 
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4.4 Defect reduction model  

 

 

Figure 4.6: Schematic diagrams of (a) dislocation reduction and (b) BSF reduction 

in semi-polar (11-22) GaN overgrown on regularly arrayed micro-rods. 

Based on the above TEM study, two schematic diagrams could be used to illustrate the 

dislocation reduction and BSF reduction in semi-polar (11-22) GaN layer overgrown on 

regularly arrayed micro-rod templates, as shown in Figure 4.6. Most of the dislocations 

existing in the micro-rods are either blocked by the SiO2 layer on top or covered by the c-

growth during the first coalescence. After that, only a small part of dislocations can penetrate 

to the sample surface. This leads to a significant reduction in dislocation density in the 

overgrown (11-22) GaN films. Furthermore, additional dislocations could be generated during 

the second coalescence above the micro-rods. BSFs show a property of expanding within the 

basal plane, with a component of propagation direction along the m-direction. As a 

consequence, BSF stripes could be formed with an orientation along the m-direction. The BSF 

stripes are separated by defect free areas and each stripe contains a periodic distribution of high 

and low BSF density regions. 



 

79 

 

  

 

Figure 4.7: (a) Cross-sectional and (b) top-view diagrams of a dislocation reduction 

model for semi-polar (11-22) GaN overgrown on regularly arrayed micro-rods. The 

cross-sectional diagram is viewed along the [1-100] direction. 

In order to further optimize the design of our micro-rod mask patterning, a model has 

been built up to understand the influence of the micro-patterning on defect reduction. Figure 

4.7a schematically illustrates a cross-sectional diagram of micro-rods along the m-direction. 

Segment AE represents one period of micro-rod and the spacing between two adjacent micro-

rods. Point F is top of first coalesce boundary, which is related to the top (point H) of the 

sidewall (line segment AH) where c-direction growth allowed, and the growth ratio between 

the c- and the a- directions.  Point C and D are the projections of point F and point G on x-axis, 

respectively. On the basis of the aforementioned defect reduction mechanism, only the 

dislocation located in the line segment CD (marked by red line) have a chance to propagate to 

the surface, while other dislocations are blocked either during the first coalescence (line 
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segment BC) or by the SiO2 masks (line segment DE). The length of segment CD is 

determined by the following equation: 

 𝐿𝐶𝐷 =
1 −

𝑣𝑐

𝑣𝑎
∗

1

𝑡𝑎𝑛𝜃 

1 +
𝑣𝑐

𝑣𝑎
∗ 𝑡𝑎𝑛𝜃

∗ 𝑆 (4.1) 

where 𝑣𝑐 and 𝑣𝑎 are GaN growth rates along the c- and the a- directions, respectively; 𝜃 is the 

angle between the growth surface and basal plane (𝜃 = 58.4° in (11-22) orientation); and 𝑆 is 

the spacing between two adjacent micro-rods. According to equation 4.1, a high ratio of growth 

rate 𝑣𝑐/𝑣𝑎  is useful for reducing the length of segment CD, which could be achieved by either 

favouring the c-direction growth or suppressing the a-direction growth. Meanwhile, it is found 

that the length of segment CD increases with increasing the spacing between micro-rods. When 

the spacing 𝑆 is very large, >
1+

𝑣𝑐
𝑣𝑎

∗𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜃−
𝑣𝑐
𝑣𝑎

∗ ℎ , the length of segment CD will be determined by 

𝐿𝐶𝐷 =
ℎ

𝑡𝑎𝑛𝜃
 . Here, ℎ is the height of micro-rods. In that case, the first coalescence process 

during the overgrowth shows few effects on blocking dislocations. All the dislocations 

initiating from the sidewall BG have a chance to propagate to the sample surface. Furthermore, 

as the length of segment CD decreases with decreasing the spacing 𝑆, it is suggested that 

micro-rods with a small gap could be used for reducing the dislocation density. However, a 

pattern with a small gap will make it very difficult for the dry etching processes in practice. 

Thus, micro-rods with a gap slightly smaller than the diameter have been chosen as 

compromised by the micro-rod fabrication process. One may notice that the spacing between 

micro-rods increases when the intersection plane moves from micro-rod centre to edge due to 

the circle shape. This leads to a slight increase in the length of line segment C’D’, as shown in 

Figure 4.7b. Fortunately, the large spacing between two micro-rod edges is interrupted with the 

appearance of another micro-rod from the neighbouring row as a result of the small gap 

between micro-rods.  

By integrating the line segment CD along the m-direction, an area where dislocations 

have a chance to propagate to the surface is obtained, as illustrated by Figure 4.7b. In a unit 

cell, the ratio of this area to the area of integrated line segment AE along the m-direction can 

be treated as a dislocation remaining ratio 𝜂.  
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 𝜂 =
∫ 𝐿𝐶𝐷

∫ 𝐿𝐴𝐸

 (4.2) 

For simplicity, any decrease in dislocation density due to the lateral overgrowth along the 

a-direction and a very small number of extra dislocations generated during the coalescence 

processes11,25 are not taken into account.  

 

Figure 4.8: Contour plots of the dislocation remaining ratio as a function of micro-

rod diameter and micro-rod spacing with a micro-rod height of (a) 1.3 and (b) 0.4 

µm, respectively. 

Figure 4.8 shows our simulation result, describing the relationship between the 

dislocation remaining ratio and micro-rod diameter & spacing between micro-rods, where the 

height of micro-rods is set as 0.4 and 1.3 µm as two examples, respectively. The simulation in 

both cases is limited to a diameter of micro-rods of below 7 µm, taking into account the 

difficulty in achieving an atomically flat surface if overgrown on micro-rods with a larger 

diameter. In Figure 4.8, the blue area represents a low dislocation remaining ratio while the red 

area represents a high ratio. There are two low ratio areas: one is the upper-left corner with a 

very small micro-rod diameter of below 0.5 µm, and the other one is in the lower-right with a 

micro-rod diameter of a few micrometres and a micro-rod spacing from 1.5 to 2.5 µm. From 

the former one, it seems that micro-rods with a small diameter and a large spacing would be 

useful for reducing the dislocations. However, one can imagine a 2-inch template with only one 

micro-rod located in its centre. According to the model, the dislocation density in the 

overgrown layer would be extremely low. Unfortunately, overgrown on such a template is 
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impossible even if we have fabricated the template. Furthermore, a conventional 

photolithography typically uses an ultraviolet lighting source with a wavelength of ∼300 nm, 

and thus it would be difficult to fabricate rod arrays with a sub-micron diameter. Consequently, 

it is worth paying attention to the lower-right blue area, where both micro-rod diameter and 

micro-rod spacing are on a few micrometer scale. 

By carefully examining Figure 4.8, the range for the blue area increases when the micro-

rod height reduces from 1.3 to 0.4 µm, enhancing the chance for tuning either micro-rod 

diameter or micro-rod spacing for effectively blocking defect penetration. On the other hand, 

this also demonstrates that a decrease in the height of micro-rods potentially leads to a further 

reduction in dislocation density. It has been confirmed by our very recent experiments which 

show better crystal quality in the semi-polar GaN overgrown on the micro-rods with a height of 

0.4 µm compared to the micro-rods with a height of 1.3 µm. A reduction in micro-rod height 

leads to a decrease in the exposed areas of the sidewalls of the micro-rods for the growth along 

the a-direction which is beneficial for the defect reduction. 

4.5 Summary 

In conclusion, the defect reduction in the overgrown semi-polar (11-22) GaN on 

regularly arrayed micro-rod arrays has been studied by TEM measurements. It has been found 

that the majority of the dislocations and BSFs are blocked by the SiO2 masks and the 

coalescence processes during the overgrowth. Owing to the faster growth rate along the c-

direction than along the a-direction, the defects from the growth along the a-direction are 

effectively blocked by the growth along the c-direction (the c-direction growth leads to free-

defect). In addition, the BSFs have been found to expand within the basal planes, propagating 

with a component parallel to the m-direction. After the second coalescence over the SiO2 

masks, the BSFs distribute in a periodic form consisting of defect-free regions and defect 

regions along the [-1-123] direction, where the defect regions compose of low density BSF 

clusters and high density BSF clusters in a periodic form along the m-direction. 
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Chapter 5 

Microstructure investigation of semi-polar (11-

22) GaN overgrown on differently designed 

micro-rod array templates 

In order to realize semi-polar (11-22) GaN based laser diodes grown on sapphire, it is 

necessary to further improve the crystal quality of the (11-22) GaN obtained by using our 

overgrowth approach developed on regularly arrayed micro-rod templates. This can be 

achieved by carefully designing micro-rod templates. Based on transmission electron 

microscopy and photoluminescence measurements, it has been found that the micro-rod 

diameter plays a vital role in effectively reducing both the dislocation density and the basal 

staking fault (BSF) density of the overgrown (11-22) GaN, but in different ways. The BSF 

density reduces monotonically with increasing the micro-rod diameter from 2 to 5 μm, and 

then starts to be saturated when the micro-rod diameter further increases. In contrast, the 

dislocation density reduces significantly when the micro-rod diameter increases from 2 to 4 μm, 

and then starts to increase when the diameter further increases to 5 μm. Furthermore, 

employing shorter microrods is useful for removing additional BSFs, leading to further 

improvement in crystal quality. The results presented provide a very promising approach to 

eventually achieving (11-22) semi-polar III-nitride laser diodes. 

5.1 Introduction  

Although we have developed a cost-effective approach of overgrowth on regularly 

arrayed micro-rod templates and thus have achieved semi-polar (11-22) GaN on sapphire with 

significantly improved crystal quality. Based on such overgrown semi-polar (11-22) GaN, we 

also demonstrated high performance semi-polar InGaN LEDs with an emission wavelength of 

up to the amber spectral region.1 
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However, it is still a great challenge to achieve lasing on (11-22) GaN on sapphire. So far, 

all the semi-polar III-nitride laser structures have been grown exclusively on extremely 

expensive free-standing semi-polar GaN substrates.2,3 Therefore, it implies that it is necessary 

to further improve the crystal quality of any overgrown (11-22) GaN on sapphire in order to 

achieving lasing. In this chapter, by carefully designing micro-rod templates used for our 

overgrowth, in particular, the diameter and height of the micro-rods used (two major 

parameters), we have achieved semi-polar (11-22) GaN with best crystal quality on sapphire, 

which has been systematically studied as a function of the micro-rod parameters by means of 

multiple characterization methods including photoluminescence (PL), transmission electron 

microscopy (TEM) and X-ray diffraction (XRD). Furthermore, it has been found that the 

reduction of both the dislocation density and the BSF density of the overgrown (11-22) GaN is 

significantly affected by the micro-rod parameters, in particular, the micro-rod diameter, but in 

different ways. These studies have directly led to stimulated emission very recently achieved 

on our semi-polar (11-22) GaN on sapphire which has never been reported previously.4 

Two kinds of single layers of (11-22) GaN (one with a thickness of 1.3 μm and another 

with 0.4 μm), which will be subsequently fabricated into micro-rod array templates, are grown 

on m-plane sapphire using our high temperature AlN buffer approach by metal organic 

chemical vapour deposition (MOCVD).5 For the fabrication of the micro-rod templates, a 500 

nm SiO2 layer is initially deposited by plasma enhanced chemical vapour deposition (PECVD), 

followed by a standard photolithography patterning process. Regularly arrayed SiO2 micro-

rods can be achieved by dry etching processes, and the SiO2 micro-rods then serve as a second 

mask to etch the GaN underneath in order to form regularly arrayed GaN micro-rods with the 

SiO2 remaining on their top. Both the diameter and the spacing of the microrods can be 

accurately controlled, which simply depend on the micro-rod mask used. A set of micro-rod 

masks, whose diameters are 2, 2.5, 3, 4, 5, and 7 μm, respectively, have been employed for the 

fabrication of the micro-rod array templates which will be used for subsequent overgrowth. A 

study based on a wide range of micro-rod diameters used helps to draw a clear conclusion on 

the influence of the micro-rod diameter on the reduction of both dislocation density and BSF 

density. This cannot be achieved using the micro-rod templates with a micro-rod diameter of ≤ 

3.5 μm, as reported previously.6 For details of our overgrowth and micro-rod template 

fabrication, please refer to section 3.4. 
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5.2 BSF reduction with different micro-rod sizes  

5.2.1  BSF reduction with different micro-rod diameters 

Figure 5.1a shows the low temperature (10 K) photoluminescence (PL) spectra of the 

semi-polar (11-22) GaN overgrown on the regularly arrayed micro-rods with different 

diameters ranging from 2 to 7 μm. The samples were held in a helium closed-cycle refrigerator. 

A 325 nm continuous wave (CW) He-Cd laser was used as an excitation source, and 

luminescence was dispersed using a 0.5 m monochromator and detected using a 

thermoelectrically (TE) cooled charge-coupled detector (CCD) which can be cooled down to -

70 °C. The spectra have been normalized and offset for clarity. The original PL spectra are 

plotted in 5.1c. As usual, two emission peaks have been observed in each spectrum, one at 356 

nm which is attributed to the near band-edge (NBE) emission, and another at 363 nm which is 

related to the BSFs.7,8 NBE emission peak in 7 µm micro-rod diameter sample is much 

stronger than that in 2 µm sample, while the BSF-related emission peak exhibits a huge 

reduction. The PL intensity ratio of the NBE emission to the BSF-related emission has been 

plotted as a function of the micro-rod diameter as shown in Figure 5.1b, indicating that with 

increasing the micro-rod diameter, the ratio exhibits a huge increase from 0.4 to 7.8. Overall, 

the rising trend of the intensity ratio indicates a significant reduction in the BSF density of our 

samples with increasing the micro-rod diameter.9 
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Figure 5.1: (a) Low temperature PL spectra of the (11-22) GaN overgrown on 

micro-rods with different diameters and heights. The spectra have been normalized 

and offset for clarity, while the original PL spectra are plotted in (c); (b) PL 

intensity ratio of the NBE emission to the BSF-related emission is plotted as a 

function of the micro-rod diameter. The dashed line is a guide to the eye.  

TEM measurements have been performed on these samples using a Philips EM430 TEM 

operating at 200 kV. TEM specimens were prepared by mechanical polishing, followed by an 

ion beam milling process for electron transparency. Figure 5.2 presents bright field cross-

sectional TEM images of semi-polar (11-22) GaN films overgrown on micro-rod templates. All 

the templates for overgrowth have a same micro-rod height of 1.3 µm, but with different 

micro-rod diameters of 2, 2.5, 3 and 4 µm, as denoted in the images. Specimens are tilted by 30° 

to the [-12-10] zone-axis from the [-1100] zone-axis. From the invisibility criterion, BSFs can 

be observed when the diffraction vector g is 1-100. Here, BSFs appear as straight dark lines 

with an inclination angle of 58.4° to the growth plane. By comparing these samples with 

different micro-rod diameters, one can find that increasing the micro-rod diameter will 

decrease the amount of BSFs, hence the BSF-related radiative recombination. This is 

consistent with the aforementioned low-temperature PL results. 
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Figure 5.2: Bright field cross-sectional TEM images of overgrown semi-polar (11-

22) GaN films viewed along the [-12-10] zone-axis with g = 1-100. All these 

micro-rod templates for overgrowth have a same height of 1.3 µm, but with 

different diameters (D: diameter) of 2, 2.5, 3 and 4 µm for (a)-(d), respectively. 

Figure 5.3 presents the bright field plane-view TEM images of the overgrown (11-22) 

GaN on the micro-rod templates fabricated using different micro-rod diameters of 2, 3, 4, and 5 

μm, respectively. It should be mentioned that the height of the micro-rods with a micro-rod 

diameter of 2 or 3 μm (D = 2 μm and D = 3 μm) is 1.3 μm, while those in the other two (D = 4 

μm and D = 5 μm) have a height of 0.4 μm. The specimens are tilted around 32° to the [-1-120] 

zone-axis from the surface normal. From the invisibility criterion, BSFs can be observed when 

the diffraction vector g is 10-10.10 Figure 5.3 clearly exhibits a periodic distribution of the BSF 

clusters and BSF-free areas along the c-projection direction across the surface. The width of 

the BSF-free area clearly increases with increasing the micro-rod diameter, leading to a 

reduction in BSF density from 1.4 ×  105 cm-1 in the sample of using a 2 μm micro-rod 

diameter to 2.8 × 104 cm-1 in the sample of using a 5 μm micro-rod diameter. It has been 

understood that the BSFs can penetrate from the micro-rod GaN underneath to the surface only 

when the overgrowth (starting from the sidewalls of micro-rods) is along the a-direction, while 

the growth along the c-direction leads to free-BSFs.6 Furthermore, the growth rate along the c-

direction is usually higher than that along the a-direction. Consequently, the utilization of 

larger micro-rods along with an increased spacing between micro-rods allows the growth along 

the c-direction to more effectively block the penetration of the BSFs caused due to the growth 
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along the a-direction. In addition, the width of the BSF clusters does not change significantly 

with changing the micro-rod diameter as predicted by our defect reduction model. Therefore, 

the utilization of larger micro-rods for overgrowth can significantly reduce the BSF density, 

although the overgrowth conditions need to be further optimized in order to maintain quick 

coalescence. 

 

Figure 5.3: Bright field plane-view TEM images of the (11–22) GaN overgrown on 

micro-rods with different diameters and heights (D: diameter, H: height), as labeled 

in each figure, where the specimens are viewed along the [-1-120] zone-axis with 

the diffraction vector g = 10-10 to show the BSF distribution across the surface; 

5.2.2  BSF reduction with different micro-rod heights 

The relation between the density of BSFs and the micro-rod height has also been 

investigated. Figure 5.4 shows bright field cross-sectional TEM images of two semi-polar (11-

22) GaN films overgrown on the templates with a same micro-rod diameter of 4 µm, but with 

different micro-rod heights of 1.3 and 0.4 µm. Two kinds of BSF clusters can be observed in 

one period of micro-rod array. The left one (labeled with A) is located around the gap/micro-

rod interface, initiating from the left sidewall of the micro-rod. The other one (labeled with B) 
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is above the SiO2 layer, originating from the micro-rod in a neighbouring row. As shown in 

Figure 5.4a, the width of BSF cluster B is thinner than that of cluster A, while in Figure 5.4b, 

the two BSF clusters appear with a similar width. Comparing the BSF cluster A in two imgaes, 

one can find that the width of BSF cluster A is clearly reduced by decreasing the height of 

micro-rod from 1.3 to 0.4 μm, corresponding to a reduction in BSF density from 4.7 × 104 to 

3.5 × 104 cm-1. 

 

Figure 5.4: Bright field cross-sectional TEM images of semi-polar (11-22) GaN 

films viewed along the [-12-10] zone-axis with diffraction vector g = 1-100. Both 

the micro-rod templates for overgrowth have a same diameter of 4 µm, but with 

different heights of 1.3 and 0.4 µm as denoted. 
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Figure 5.5: Bright field plane-view TEM images of the (11-22) GaN overgrown on 

the micro-rods with a same micro-rod diameter, but different heights of 1.3 and 0.4 

μm, respectively. Specimens are viewed along the [-1-120] zone-axis with 

diffraction vector g = 10-10. 

In order to gain a deeper insight into the mechanism of the influence of the height of the 

micro-rods, we implemented TEM top-view observation of the two samples. Figure 5.5 shows 

the plane-view TEM images of two semi-polar (11-22) GaN films overgrown on the micro-rod 

templates fabricated using a same micro-rod diameter (4 μm), but with different micro-rod 

heights (1.3 and 0.4 μm, respectively). In the case of using micro-rods with the 1.3 μm height, 

beside the long BSF clusters, additional BSF clusters with a periodic distribution have been 

observed as marked by red dashed lines. From the surface striation direction (parallel to the 

[11-2-3]-direction), it can be determined that these additional BSF clusters are distributed 

along the c-projection side. However, in the case of using the 0.4 μm height, the TEM image 

exhibits a sharp interface between the BSF regions and the defect-free areas, namely, there are 

no such additional BSF clusters. Generally speaking, employing shorter micro-rods for 
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overgrowth leads to less variation of the diameter of each micro-rod from its bottom to top 

along the vertical direction. As a result, both the SiO2 on the top of each micro-rod and the 

growth along the c-direction can effectively stop the penetration of the extra BSFs generated 

due to the variation of the micro-rod diameter. This is consistent with the low temperature PL 

results shown above. 

Figure 5.6 shows the BSF density of the overgrown (11-22) GaN samples as a function 

of the micro-rod diameter. Filled and open symbols represent the micro-rods with a height of 

1.3 and 0.4 μm, respectively. The BSF density exhibits a clear reduction on the samples grown 

on larger and shorter micro-rods, agreeing well with our previous prediction based on a model 

for defect reduction shown by blue dashed lines in the figure. The simulation was made 

assuming a BSF density of 4 × 105 cm-1 in the as-grown GaN template used for the fabrication 

of micro-rod arrays.  

 

Figure 5.6: BSF density of the overgrown (11-22) GaN as a function of the micro-

rod diameter. Filled and open symbols represent the micro-rods with different 

heights of 1.3 and 0.4 μm, respectively. The dashed lines are the simulation results 

based on a defect reduction model. 

5.3 Dislocation reduction with different micro-rod sizes  

Figure 5.7 shows cross-sectional TEM images of semi-polar (11-22) GaN films viewed 

along the [1-100] zone-axis with diffraction vector g = 0002, in which case, dislocations with a 

c component can be observed. Micro-rods in Figure 5.7 (a)-(d) have a same micro-rod height 
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of 1.3 µm, but with different diameters from 2 to 4 µm. It is discovered that the number of 

dislocations in the overgrown GaN layer presents a clear reduction with increasing the micro-

rod diameter. Figure 5.7 (e) and (f) show micro-rods with a same height of 0.4 µm, but with 

different diameters of 4 and 5 µm. By comparing the samples in Figure 5.7 (d) and (e) with a 

same micro-rod diameter of 4 µm, the dislocation density shows a slight decrease by reducing 

the micro-rod height from 1.3 µm to 0.4 µm. In Figure 5.7 (e) and (f), the voids between the 

micro-rods are located close to the sidewall where the a-direction GaN growth is allowed, 

indicating an enhancement in the ratio of GaN growth rate between the c-direction and the a-

direction. Furthermore, a large void above the SiO2 layer is found in the samples overgrown on 

short micro-rods with large diameter (Figure 5.7 (e) and (f)), which reflects a longer time that 

is required to reach a second coalescence. 

 

Figure 5.7: Bright field cross-sectional TEM images of semi-polar (11-22) GaN 

films viewed along the [1-100] zone-axis with diffraction vector g = 0002. Micro-

rods in (a)-(d) have a same height of 1.3 µm, but with different diameters of 2, 2.5, 

3 and 4 µm, while the micro-rods in (e) and (f) have a same height of 0.4 µm and 

different diameters of 4 and 5 µm. 
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Figure 5.8: (a)-(e) Bright field plane-view TEM images of semi-polar (11-22) GaN 

films overgrown on the micro-rods with different diameters and heights (D: 

diameter, H: height), presenting the dislocation distributions across the surface, 

where the specimens are viewed along the [22-43] zone-axis with the diffraction 

vector g = 1-212 ; (f) Dislocation density of the overgrown (11-22) GaN plotted 

against the micro-rod diameter. Filled and open symbols represent the micro-rods 

with different heights of 1.3 and 0.4 μm, respectively. 

In order to gain a quantitative analysis, dislocation distribution on film surface is also 

revealed in the TEM observation by tilting the sample at an angle around 7.5° from the surface 

normal to view along the [22-43] zone-axis. In Figure 5.8 (a)-(e) taken with the diffraction 

vector g = 1-212, dislocations including a-type, c-type, mixed type, and Frank-Shockley partial 

dislocation (b = 1/6 <20-23>) are visible, while BSFs are out of contrast. Dislocation density is 

evaluated by counting dislocations in a large random area which contains both the BSF region 

and BSF-free region, as the blue square marked in Figure 5.8d. Different areas from the TEM 

specimen have been investigated to reduce the statistical error. The dislocation densities 
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measured from the TEM observation are plotted against the micro-rod diameter in Figure 5.8f. 

The dislocation density shows a reduction from 6.5 ± 0.4 × 108 cm-2 in the case of using a 2 

μm micro-rod diameter down to 2.2 ± 0.2 × 108 cm-2 in the case of using a 4 μm micro-rod 

diameter. Unexpectedly, the dislocation density increases slightly when the micro-rod diameter 

is further increased to 5 μm with other conditions remaining unchanged. This is different from 

the BSF behaviours. In addition, threading dislocations with a long dislocation line (marked by 

red arrows) have been observed in the case of using a 5 μm micro-rod diameter. They are likely 

generated due to the second coalescence process as a result of using the micro-rods with a 

larger diameter. Actually, neither BSFs nor dislocations can be observed in the areas between 

BSF stripes (Figure 5.3 and Figure 5.8), with diffraction vector set either g=10-10 or g=0002.  

 

Figure 5.9: A summary of the FWHMs of the on-axis XRD rocking curves of the 

overgrown (11-22) GaN as a function of the micro-rod diameter. Filled and open 

symbols represent the micro-rods with different heights of 1.3 and 0.4 μm, 

respectively. 

Furthermore, the crystalline quality of the samples has been characterized by performing 

X-ray diffraction measurements in order to make a comparison with the above TEM data. 

Generally speaking, the crystal quality of (11-22) GaN can be evaluated by measuring the full 

width at half maximum (FWHM) of on-axis X-ray rocking curves as a function of an azimuth 

angle (labeled as Ψ). Typically, the FWHM at the 0° azimuth angle shows the largest value and 

the FWHM at the 90° azimuth angle the lowest value,11–13 and these two FWHMs can be used 

to represent the crystal quality of (11-22) GaN. The azimuth angle is defined as zero when the 
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projection of the incident X-ray beam is parallel to the c-direction of (11-22) GaN. Figure 5.9 

provides a summary of the two FWHMs from a large number of the overgrown samples as a 

function of the micro-rod diameter from 2 to 7 μm. For the as-grown semi-polar GaN templates 

used for the fabrication of micro-rod templates, the FWHMs are 1345 arc sec (0.374°) and 625 

arc sec (0.174°) at the 0° and 90° azimuth angles, respectively. All the overgrown semi-polar 

GaN films show a significant reduction in FWHM compared with the as grown templates. 

With increasing the micro-rod diameter, the FWHMs at both the 0° and the 90° azimuth angles 

decrease and reach the lowest values in the case of using a 4 μm microrod diameter, 

demonstrating the FWHMs of 325 and 235 arc sec at the 0° and the 90° azimuth angles, 

respectively. However, with further increasing the micro-rod diameter to 5 and 7 μm, the 

FWHMs at both the 0° and the 90° azimuth angles increase slightly, meaning an increase in 

dislocation density. The slight degradation of the crystal quality in the case of using the larger 

micro-rod diameters agrees well with the dislocation densities measured by TEM as shown in 

Figure 5.8f. Compared with a previous report of an average FWHM of 410 arc sec of the 

rocking curve, our XRD data represent a record crystal quality of (11-22) GaN obtained on 

sapphire substrates.15 Overall, these low FWHM values are comparable to those for 

commercial c-plane GaN LEDs, implying a great potential to achieve outstanding optical 

devices on these semi-polar (11-22) GaN films. Furthermore, our previous report based on the 

micro-rod templates with a small microrod diameter showed a 346 arc sec FWHM of XRD 

rocking curve,14 while the present study provides XRD data as a function of micro-rod 

diameter including a record narrow FWHM of XRD rocking curve which is 235 arc sec 

(achieved using a 4 μm micro-rod diameter). This further confirms a step change in crystal 

quality.  
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Figure 5.10: Emission spectra of a (11-22) overgrown GaN film with various 

pumping power densities.4 

Figure 5.10 shows the emission spectra of a (11-22) overgrown GaN film with different 

excitation power densities from 130 to 1100 kW/cm2.4 A stimulated emission process is 

observed as the appearance of an emission peak around 374 nm at a higher pumping power 

density. It is worth highlighting that this stimulated emission was achieved on semi-polar (11-

22) GaN overgrown on the micro-rods with a 4 μm diameter and a 0.4 μm height, despite the 

fact that the BSF density in the 4 μm sample is not the lowest (while the 4 μm sample shows 

the lowest dislocation density. This suggests that dislocations instead of BSFs may play a 

critical role in determining the optical performance of (11-22) semi-polar GaN based emitters. 

5.4 Summary  

In conclusion, semi-polar (11-22) GaN films overgrown on micro-rod arrays with 

different diameters have been investigated. The PL intensity ratio of the NBE emission to the 

BSF related emission exhibits a monotonic increase with increasing the micro-rod diameter. 

TEM measurements further demonstrate that the lower BSF density can be obtained in the (11-

22) GaN overgrown on larger and shorter microrods. On the other hand, the dislocation density 

in the GaN films decreases to the lowest value with increasing the micro-rod diameter of up to 

4 μm. The XRD measurements confirms that the best crystal quality of the overgrown (11-22) 

GaN is achieved by overgrowth on micro-rods with a 4 μm diameter and a 0.4 μm height, 

leading to achieving stimulated emission. 
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Chapter 6 

Stokes Shift in Semi-polar (11-22) InGaN/GaN 

Multiple Quantum Wells 

The mechanism for the large Stokes shifts of InGaN/GaN structures is under debate. In 

this chapter, a systematic study was carried out on the Stokes shift of semi-polar (11-22) 

InGaN/GaN multiple quantum wells (MQWs) with a wide spectral range from green to yellow 

by means of both photoluminescence excitation (PLE) and time resolved PL measurements in 

comparison with their c-plane counterparts. The semi-polar samples exhibit a lower Stokes 

shift than their c-plane counterparts, although they show stronger localization effects than their 

c-plane counterparts. In the long wavelength region, the Stokes shift of the semi-polar MQWs 

shows a linear relationship with emission energy, but with a smaller gradient compared with 

their c-plane counterparts. The time-resolved PL measurements confirm a significant reduction 

in piezoelectric field of the semi-polar samples compared with the c-plane counterparts. It is 

suggested that the piezoelectric field induced polarization is the major mechanism for causing 

the large Stokes shift. The results presented contribute to better understanding of the long 

standing issue on the mechanism for the large Stokes shift. 

6.1 Introduction  

Tremendous progress has been made in the field of III-nitride optoelectronics grown on 

(0001) sapphire within last two decades, represented by high brightness InGaN/GaN based 

blue emitters, leading to three Nobel Prize Winners in 2014. However, there are still great 

challenges to be overcome to improve the optical performance of InGaN/GaN based structures 

when moving towards the longer wavelength, such as the green and yellow spectral region.1 

Due to the large lattice mismatch between InN and GaN, strain-induced piezoelectric fields 

along the c-direction are generated across the InGaN/GaN based active layer, causing the well-

known quantum-confined Stark effect (QCSE). This separates the electron and hole wave-

functions in opposite directions, leading to a great decrease in radiative transition rate and thus 

optical quantum efficiency. On the other hand, the solid immiscibility between InN and GaN 
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makes it difficult to grow InGaN with high indium content, which is necessary for the emitters 

with long emission wavelengths.2 To circumvent the problems caused by the internal electric 

fields, a promising solution is to grow InGaN/GaN structures along either non-polar or semi-

polar orientation in order to eliminate or reduce the polarization fields.3 Furthermore, in 

comparison with either polar or non-polar planes, semi-polar (11-22) GaN exhibits a higher 

indium incorporation ability as a result of a much lower indium chemical potential on its 

surface than either the non-polar or polar surface.4 In this case, InGaN grown along the (11-22) 

direction can accommodate more indium atoms under same growth conditions, potentially 

allowing us to obtain InGaN layers with high indium content, which is essential for green and 

yellow emitters.  

The difference between emission energy and absorption energy in semiconductor 

materials, known as Stokes shift, can be measured by photoluminescence excitation (PLE) 

measurements. Up until now, the issue on the large Stokes shift in c-plane InGaN/GaN 

structures (polar) has been studied extensively,5–10 but the mechanisms for the large Stokes 

shifts are controversial, as two major issues, both QCSE and indium segregation induced 

localization effects existing in c-plane InGaN/GaN structures simultaneously, cannot be clearly 

separated. Furthermore, it is very difficult to achieve emission with long wavelengths using c-

plane InGaN/GaN structures. Therefore, it is a great challenge to draw a clear and universal 

conclusion for the cause of the large Stokes shifts of InGaN/GaN structures. In order to address 

the challenging issue, it is necessary to investigate the Stokes shift of semi-polar InGaN/GaN 

structures with high crystal quality, and also compare with c-plane InGaN/GaN structures. (A 

non-polar InGaN/GaN structure would be ideal, but as mentioned above it would be almost 

impossible to achieve emission with long wavelengths using non-polar InGaN/GaN structures. 

Therefore, it would be difficult to draw a universal conclusion if we would use non-polar 

InGaN/GaN structures).  

However, owing to great technological challenges in growing high quality semi-polar 

(11-22) GaN, there is almost an absence of reports on the study of the Stokes shift of semi-

polar (11-22) InGaN/GaN multiple quantum well (MQW) structures. Recently, we have 

developed a number of cost-effective approaches to the overgrowth of semi-polar GaN.11–13 On 

such high crystal quality semi-polar GaN, our group has grown a number of semi-polar (11-22) 

InGaN/GaN MQW samples with high optical performance by metalorganic chemical vapour 

deposition (MOCVD), allowing us to systematically investigate the optical properties of semi-
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polar InGaN/GaN MQWs. This chapter presents a systematic study of the Stokes shifts of a 

series of high-quality semi-polar (11-22) InGaN/GaN MQWs with a wide spectral range by 

both PLE and time resolved PL measurements, and then compare with c-plane InGaN/GaN 

MQWs. Although the semi-poplar InGaN/GaN MQWs demonstrate deeper localized states 

than the c-plane counterparts over a wide spectral range, the Stokes-shifts of the semi-polar 

InGaN/GaN MQWs are generally much smaller than those of the c-plane counterparts. This 

clearly demonstrates the piezoelectric field induced polarization would be the major 

mechanism for causing the large Stokes shifts of InGaN/GaN MQWs, even with high indium 

content, where the localization effect is also very strong.    

6.2 Stokes shift in semi-polar (11-22) MQWs 

6.2.1 Semi-polar (11-22) InGaN/GaN MQWs  

High quality semi-polar (11-22) GaN films have been achieved by a micro-rod template 

overgrowth approach that was introduced in section 3.4. Based on these GaN wafers, a number 

of InGaN/GaN MQWs samples with a wide spectral range have been obtained. The growth 

temperatures for barrier layer are all 900 °C, while those for well layer vary from 815 °C to 

788 °C to tune the emission wavelength. The emission wavelengths of these semi-polar 

samples span from 497 to 591 nm, covering the whole green and yellow spectral ranges. Figure 

6.1 shows PL spectra of several semi-polar (11-22) InGaN/GaN MQWs excited by a 375 nm 

pulsed laser at low temperature (7 K). The linewidth of the PL spectra increases with emission 

peak moving towards longer wavelength, which is attributed to the increasing fluctuation in 

indium composition. The indium compositions in these semi-polar samples range from 27% to 

47%, demonstrating a great enhancement in indium incorporation over either c-plane or non-

polar orientation. For comparison, a number of standard c-plane InGaN/GaN MQWs samples 

with indium composition varying from 13% to 32% have also been used for PLE 

measurements. 
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Figure 6.1: PL spectra of several semi-polar (11-22) InGaN/GaN MQWs at low 

temperature (7K).  

6.2.2 Stokes shift  

PLE measurements have been carried out on all the samples loaded in a closed cycle 

helium cryostat at 12 K. A laser pumped plasma broadband light source with a high density 

(Energetiq LDLS EQ-99) dispersed by a 320 mm Horiba monochromator is employed as a 

tunable optical excitation source. The luminescence is dispersed by a 550 mm monochromator 

and detected by a cooled GaAs photocathode photomultiplier tube (PMT).  

As an example, Figure 6.2 shows PL and PLE spectra from a pair of c-plane (polar) and 

semi-polar (11-22) InGaN/GaN MQWs samples, both measured at 12 K The PL measurements 

were carried out with an excitation wavelength of 350 nm, and the PLE measurements have 

been conducted using their emission peak energies. The two samples show similar peak 

emission energies located at 2.304 eV (538 nm) and 2.322 eV (534 nm), respectively. The full 

width at half maximum (FWHM) of the PL spectrum from the semi-polar sample is 187 meV, 

which is slightly larger than the 166 meV for the c-plane sample. The contribution to the PL 

linewidth broadening as a result of a fluctuation in quantum well thickness can be safely 

excluded by performing detailed transmission electron microscopy (TEM) measurements, in 

which flat quantum wells with a uniform thickness have been demonstrated. Therefore, it is 

suggested that the broadening of the emission peak in the semi-polar MQWs results from a 

potential fluctuation caused by an indium segregation within the InGaN quantum wells.14 Due 

to the reduced piezoelectric polarization along the semi-polar orientation compared to the c-
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direction, semi-polar InGaN/GaN MQWs require higher indium content than their c-plane 

counterparts in order to achieve a similar emission wavelength. This is expected to lead to 

stronger localized states in semi-polar MQWs than their c-plane counterparts.  

 

Figure 6.2: Low temperature (12 K) PL/PLE spectra of one polar (solid line) and 

one semi-polar (11-22) (dashed line) InGaN/GaN MQW samples with emission 

energy of 2.304 eV (538 nm) and 2.322 eV (534 nm), respectively. 

PLE measurements were carried out at 12 K with a detection wavelength fixed at each 

PL peak wavelength. Two absorption edges, associated with the GaN barriers at around 3.43 

eV and InGaN quantum wells at the low energy side respectively, can be seen in both PLE 

spectra. Comparing the InGaN-related absorption edge in two samples, it is found that the 

InGaN-related absorption process in the c-plane sample covers a wider range of energy (from 

3.2 to 2.5 eV) than that in the semi-polar sample (from 2.87 to 2.5 eV) despite the fact that the 

PL spectrum of the c-plane sample is narrower than that of the semi-polar sample. The 

broadening of the quantum well absorption edge in the c-plane sample can be attributed to the 

quantum confined Franz-Keldysh (QCFK) effects.15 Due to the internal electric fields, some 

optical transitions that are normally forbidden may have an chance to become allowed in an 

absorption process, broadening the quantum well absorption edge.16 The steep absorption edge 

in the semi-polar sample is an evidence for the reduced QCFK effects, resulting from the 

reduced piezoelectric fields in the quantum wells. In order to quantitatively analyze the Stokes 

shift, the InGaN-related absorption edges can be extracted by fitting with a sigmoidal formula:9  
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 𝑎 = 𝑎0/[1 + exp (
𝐸𝐵 − 𝐸

∆𝐸
)] (6.1) 

where 𝐸𝐵 is the effective absorption edge; ∆𝐸 is a broadening parameter related to the Urbach 

tailing energy; and 𝑎0 is a constant. The fitted absorption edges are 2.813 eV and 2.634 eV for 

the c-plane and semi-polar samples, respectively. Therefore, the Stokes shift in the c-plane 

sample is 509 meV, which is larger than the 312 meV for the semi-polar sample.  

By comparing the barrier GaN-related absorption edge in two samples, it is found the 

absorption edge in semi-polar (11-22) InGaN/GaN MQWs is slightly smaller than that in the c-

plane sample. This shows the bandgap of the semi-polar GaN is smaller than that of 

conventional c-plane GaN on sapphire, indicating a strain relaxation in the overgrown semi-

polar GaN layer, which is ascribed to the formation of regularly distributed air voids during the 

overgrowth.17  

 

Figure 6.3: Stokes Shift as a function of emission energy in polar (0001) and semi-

polar (11-22) InGaN/GaN MQWs measured at 12 K. 

PL and PLE measurements have been carried on a wide range of polar and semi-polar 

(11-22) MQWs samples under the same conditions in order to find a universal rule. The 

obtained Stokes shift values of the c-plane and semi-polar samples as a function of the 

emission energy are shown in Figure 6.3. Among these c-plane samples, the Stokes shift values 

linearly decrease with increasing emission energy, and tend to zero at 3.50 eV (i.e., around the 

GaN bandgap), which is consistent with the previous work reported by other groups.10 In 
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contrast, all the semi-polar MQW samples show a lower Stokes shift than their c-plane 

counterparts with same emission wavelengths in a wide spectral range of up to yellow. Figure 

6.3 shows a linear relationship between the Stokes shift and the emission energy for both the 

semi-polar samples and the c-plane samples. However, the gradient of the fitting line for the 

semi-polar samples is smaller than that for the c-plane MQWs samples, as denoted beside the 

fitting lines in Figure 6.3. Moreover, the fitting line intercepts with the x-axis at 3.30eV, a 

slight deviation from the GaN bandgap, for which the mechanism is still on investigation.  

6.2.3 QCSE in InGaN/GaN MQWs 

Since the Stokes shift of InGaN/GaN quantum well structures can be affected by either 

the piezoelectric field or exciton localization effects or both, low temperature Time-resolved 

PL (TRPL) measurements have been performed on these polar and semi-polar samples in order 

to further investigate the issue. TRPL measurements were performed utilizing a time-correlated 

single photon counting (TCSPC) technique with a 375nm pulsed diode laser with a pulse width 

of 83 picoseconds as an excitation source and a hybrid Hamamatsu PMT as a single photon 

detector. Due to the QCSE caused by the electric fields across the quantum wells, the 

probability of optical transitions is reduced. With a widely accepted assumption that non-

radiative recombination can be effectively suppressed at a low temperature, such as ~10 K, it is 

expected that the QCSE leads to an increase in PL decay lifetime. Furthermore, the stronger the 

QCSE, the longer the recombination lifetime of carriers at a low temperature.  

As an example, Figure 6.4 shows the PL decay traces of two pairs of polar and semi-

polar InGaN/GaN MQWs samples with similar emission wavelengths in the green spectral 

region.  The PL decay traces were monitored at their respective emission peak wavelength and 

can be fitted typically using a bi-exponential equation below:18 

 𝐼 = 𝐴1𝑒
−

𝑡

𝜏1 + 𝐴2𝑒
−

𝑡

𝜏2 (6.2) 

where 𝜏1 and 𝜏2 are the decay lifetimes of fast and slow components, respectively; 𝐴1 and 𝐴2 

are constants. The fitting curves are plotted in dashed lines, and the fast decay lifetimes from 

the fitting are also denoted beside the curves in Figure 6.4. 
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Figure 6.4: Decay traces of two polar (0001) and two semi-polar (11-22) 

InGaN/GaN MQW samples with different emission wavelengths measured at 7 K 

(data are offset for clarity). The dashed lines are the fitting curves with two 

exponential components model. 

As usual a very long lifetime is generally found in the c-plane samples, indicating the 

existence of extremely strong QCSE caused by the internal electric field across the quantum 

wells. However, the recombination lifetimes of the semi-polar InGaN/GaN MQW samples is 

approximately one order of magnitude shorter than those observed for the c-plane samples, 

proving a significant decrease in QCSE. A calculation based on a theoretical modelling and 

analysis made by Brown et al. shows that the piezoelectric fields in semi-polar InGaN samples 

are approximately four times smaller than those in their c-plane counterparts with similar 

emission wavelengths.19,20 As the QCSE increases with increasing indium composition in both 

polar and semi-polar samples, the sample with a longer emission wavelength exhibits a longer 

PL lifetime, which is true for the c-plane samples. For an example, the recombination lifetime 

of the c-plane sample (λ = 490 nm) is 26.7 ns, three times shorter than the 78.4 ns of the c-

plane sample (λ = 538 nm). In contrast, for the semi-polar samples, the lifetime changes from 

2.7 ns at 497 nm to 3.5 ns at 534 nm, being less sensitive to a change in indium composition 
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compared with the c-plane samples. This means that the change of the QCSE with increasing 

emission wavelength becomes smaller for the semi-polar sample compared with their c-plane 

counterparts, which can lead to a reduced slope of the fitting line in Figure 6.3 if the 

piezoelectric filed induced polarization dominates the mechanism for the Stokes shift. 

6.2.4 Localization in InGaN/GaN MQWs 

Carrier localization is another major factor that affects the Stokes shift in InGaN/GaN 

MQWs. Wavelength-dependent TRPL measurement has been widely used in evaluating carrier 

localization energy. As schematized in Figure 6.5, carriers can move among the potential 

minima caused by potential fluctuations.21 As a result of the presence of these migration 

processes, radiative recombination from a low energy level would take a longer time than that 

from a high energy level. Thus, carrier lifetime will change as a function of the emission 

energy. 

 

Figure 6.5: Schematic diagram of recombination processes for carriers at different 

energy levels. 
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Figure 6.6: PL decay time as a function of emission energy for two polar (0001) 

and two semi-polar (11-22) InGaN/GaN MQW samples with different emission 

wavelengths measured at 7 K. The red lines are the fitting results. 

Wavelength-dependent TRPL measurements have been conducted at a low temperature 

(7 K) to study the localization effects in these samples. Figure 6.6 presents the fast decay 

lifetime as a function of the monitored photon energy of the four samples as examples 

mentioned above. The recombination lifetime decreases with increasing detection energy, 

indicating the existence of localized excitons in exponential-tail density of states.22 This can be 

described by: 

 𝜏 = 𝜏𝑟𝑎𝑑/[1 + exp (
𝐸 − 𝐸𝑚

𝐸0
)] (6.3) 

where 𝜏𝑟𝑎𝑑 and 𝐸𝑚 are the radiative lifetime and the energy of the mobility edge, respectively; 

𝐸0 represents the exciton localization depth. For the c-plane samples, the obtained localization 

depths are 30 meV and 23 meV for the emission wavelengths at 538 nm and 490 nm, 

respectively, while the semi-polar samples exhibit localization depths of 45 meV at 534 nm, 

and 42 meV at 497 nm. Although the Stokes shift values in the semi-polar samples are much 

smaller than those in the c-plane samples, the localization depths in the semi-polar samples are 

larger than those in the polar samples. This demonstrates that carrier localization effects only 
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contribute a small part to the Stokes shift, compared with the presence of piezoelectric fields.23 

The small Stokes shift for the semi-polar samples results from the significant reduction of the 

piezoelectric fields. The smaller gradient of fitting line in semi-polar samples results from the 

fact that the change of the piezoelectric field at different emission wavelengths in semi-polar 

samples is smaller than that of the c-plane samples.  

6.3 Summary 

In summary, both PLE and TRPL measurements have been performed on a large number 

of semi-polar (11-22) InGaN/GaN MQWs with a wide spectral range of up to yellow grown on 

our high crystal quality semi-polar GaN, allowing us to systemically investigate the mechanism 

for the large Stokes shift. Although the semi-polar InGaN/GaN MQWs exhibit larger exciton 

localization than their c-plane counterparts, they display a lower Stokes shift compared with 

the corresponding c-plane counterparts. Furthermore, the Stokes shift values for both the semi-

polar samples and their counterparts exhibit a linear relationship with their emission energy, 

but the semi-polar samples with a reduced gradient. All these demonstrate that the piezoelectric 

field induced polarization is the major mechanism for causing the large Stokes shift.   
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Chapter 7 

Confocal photoluminescence investigation 

on semi-polar (11-22) InGaN/GaN single 

quantum well overgrown on regularly 

arrayed micro-rods 

Room temperature confocal photoluminescence (PL) measurements were performed on 

semi-polar (11-22) InGaN/GaN single quantum well (SQW) samples overgrown on regularly 

arrayed micro-rods to spatially investigate the optical properties of quantum well regions with 

and without basal stacking faults (BSFs). A periodic distribution of the BSF clusters in the 

active region leads to a periodic behaviour of the PL spectra across a large scanning area (80 × 

80 µm2). The PL spectrum from the quantum well region with high BSF density shows a 

strong low energy shoulder and consequently a long centre of mass (COM) wavelength, which 

is attributed to a higher indium composition around the BSF regions. The spatially periodic 

behaviour of the PL spectra becomes weaker in semi-polar samples with higher indium 

compositions, as a result of the suppression from the increasing indium fluctuation. Meanwhile, 

the emission intensity from the BSF regions is found to be slightly lower than that from the 

BSF-free regions, which is assigned to the non-radiative recombination centres within the BSF 

regions.  

7.1 Introduction  

Semi-polar and non-polar GaN-based light emitting diodes (LED) have been developed 

rapidly in the past decades owing to the advantages of reduced or eliminated piezoelectric 

fields in InGaN/GaN heterostructure.1,2 The quantum confined Stark effect (QCSE) caused by 

the internal electrical fields can be effectively suppressed in the quantum wells grown along 

these directions.3 Moreover, the semi-polar (11-22) surface is revealed to have a lower indium 
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chemical potential than other orientations, demonstrating an ability to incorporate more indium 

atoms into GaN crystal.4 This allows for the growth of InGaN layers with higher indium 

content along semi-polar (11-22) orientation, and finally achieving high-performance InGaN-

based emitters in the long wavelength region. However, despite a range of growth techniques 

applied, basal stacking faults (BSF), and associated partial dislocations are widely observed in 

semi-polar (11-22) orientated GaN heteroepitaxial films.5–8 BSF can be considered as a 

quantum well structure in which one or more zinc-blende layers are embedded in the wurtzite 

matrix.9 In semi-polar (11-22) bulk GaN film, the emission peak (3.29 ~ 3.42 eV) with an 

energy lower than the GaN bandgap is attributed to the BSF-related recombination.10,11 

Although BSFs act as radiative recombination centres, it is reported that the luminescence 

efficiency of the GaN films decreases with increasing the density of BSFs.12 Recently, 

simulated emission was observed at room temperature on semi-polar (11-22) overgrowth GaN 

with a significant reduction in dislocation density, revealing the crucial role of dislocations in 

affecting the material optical performance. Here, we reported a spatially-resolved PL study on 

semi-polar (11-22) InGaN/GaN SQW samples overgrown on regularly arrayed micro-rods, to 

investigate the optical properties from the regions of quantum well intersected with BSFs and 

the regions free of BSFs. 

A series of high-quality semi-polar (11-22) GaN on r-plane sapphire were overgrown on 

regularly arrayed micro-rod templates by metal organic chemical vapour deposition (MOCVD). 

The templates used for overgrowth have a micro-rod diameter of 4 µm and a micro-rod spacing 

of 4 µm. The overgrown (11-22) GaN layer exhibits a periodic distribution of BSF regions and 

BSF-free regions from previous TEM measurements.13 An InGaN/GaN single quantum well 

was then grown on the (11-22) GaN layer followed by the growth of a 150 nm Mg-doped GaN 

layer. The quantum well growth temperature ranges from 780 to 756 °C to tune the emission 

wavelength of these (11-22) samples from 489 to 570 nm at room temperature. Confocal 

micro-PL measurements were carried out at room temperature using a 375 nm continuous 

wave laser diode as the excitation source. The laser was focused on the sample by a 100× 

magnification objective with a 0.95 numerical aperture (NA). Sample emission is focused 

through a 10 µm pinhole. The lateral spatial resolution of the confocal microscopy system is 

around 160 nm, which is significantly smaller than the width of BSF regions and the width of 

BSF-free regions (~2 µm). This is sufficient to map the difference in optical properties from 
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the regions with and without BSFs. Confocal PL maps were created by scanning 80 × 80 µm2 

areas of the samples. 

7.2 Results and discussion 

 

Figure 7.1: (a) Optical image of one semi-polar (11-22) InGaN/GaN SQW sample 

surface where the underlying micro-rods could be clearly observed. (b) Bright field 

TEM image showing the BSFs penetrating through the quantum wells in a semi-

polar (11-22) InGaN/GaN MQWs sample. (c) A schematic diagram illustrating the 

periodic distribution of BSFs in the active region of our semi-polar (11-22) 

InGaN/GaN SQW samples. 

Figure 7.1a shows an optical image of one semi-polar (11-22) InGaN/GaN SQW sample, 

where the underlying micro-rod arrays could be clearly observed. The fabricated micro-rods 

are regularly distributed along both the m direction and the [-1-123] direction with a period of 8 

µm. Striation-like features can also be found on the sample surface with an orientation opposite 

to the [-1-123] direction, which is due to the coalescence boundary between two growth fronts. 

Transmission electron microscopy (TEM) has discovered that there is a periodic distribution of 

BSF clusters in the surface of semi-polar (11-22) GaN using the micro-rod template 
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overgrowth approach.13 Figure 7.1b presents a bright field TEM image of a semi-polar (11-22) 

InGaN/GaN sample with three quantum well layers. The image was taken along the [11-20] 

zone axis with a diffraction vector of 1-100, to observe the BSF distribution around the 

quantum well regions. The location of the InGaN/GaN quantum wells is marked by the red 

dash line, as the contrast of the quantum wells is very weak in this configuration. It is 

discovered that BSFs could penetrate through the quantum well regions and to the sample 

surface. As a result, the periodic distribution of the BSF clusters in the GaN film could be 

transferred to the InGaN/GaN quantum well region, forming areas of planar quantum well free 

from BSFs and areas of quantum well intersected with BSFs. Figure 7.1c illustrates a 

schematic diagram of the BSF distribution in the quantum well region viewed from top, where 

BSF stripes orientated along the m-direction are separated by BSF-free areas. For each BSF 

stripe, it consists of high and low BSF density regions. This allows us to investigate the optical 

properties of semi-polar (11-22) InGaN/GaN quantum well between the areas with and without 

BSF, and under identical growth conditions. 

Figure 7.2a shows an integrated PL intensity map of the semi-polar (11-22) InGaN/GaN 

SQW sample with an emission wavelength of 489 nm. The scanning area is an 80 × 80 µm2 

square, which is much larger than the size of the micro-rods (~4 µm diameter). The light area 

represents the region with a strong emission intensity while the dark area corresponds to a 

weak emission. The integrated PL intensity map presents a regular distribution of light and 

dark stripes with orientation along the m-direction. The mean integrated intensity of the 

scanning area is 3.8 × 105 CCD counts, but with a standard deviation of 1.0 × 105 CCD counts. 

This large deviation is attributed to the uniformity in such a large scanning area, as the average 

PL intensity of the top left area is considerably larger than other areas. 
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Figure 7.2: Maps of (a) integrated PL intensity, (b) COM wavelength and (c) 

FWHM of a semi-polar (11-22) InGaN/GaN SQW sample excited by a 375 nm 

laser at room temperature. (d) PL spectra from three typical regions as denoted by 

the coloured circles in insert. 

Figure 7.2b shows a COM wavelength map of the same scanning area. In this map of 

weighted wavelength, one can find a periodic distribution of the light areas (long COM 

wavelength), which is similar to the distribution of high (or low) BSF density regions as 

showed in Figure 7.1c. The light areas, together with the medium light areas (medium COM 

wavelength) between them, form m-orientated stripes that are separated by the dark areas (short 

COM wavelength). The mean COM wavelength of this scanning area is 505.1 nm with a 

standard deviation of 4.4 nm. This periodic distribution of the COM wavelength matches the 

BSF distribution observed in our previous TEM study.13 A long COM wavelength emission is 

supposed from the regions with a high BSF density, while a short COM wavelength emission 

is from the regions free of BSF. Figure 7.2d shows the PL spectra from three typical regions 

corresponding to long, medium and short COM wavelengths, as marked by the coloured circles 

in insert. The PL spectrum of the semi-polar sample exhibits an asymmetric shape with a 
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broadening low energy shoulder, which is also reported in the quantum wells along semi-polar 

and non-polar orientations.14,15 Therefore, the COM wavelength (weighted wavelength) is 

slightly longer than the quantum well emission peak in the semi-polar (11-22) sample. The 

COM wavelength are 512.0, 508.5 and 500.8 nm for the red, green and black circle regions, 

respectively.  

 

Figure 7.3: Two-peak fitting of a PL spectrum from the high BSF density area. 

Two peaks could be observed by fitting the PL spectra with multiple peaks fitting, as 

shown in Figure 7.3. The intensity ratios between the long wavelength peak and short 

wavelength peak are 17% for the high BSF density region, and 11% for the low BSF density 

region. On the other hand, the PL spectrum from the BSF-free region cannot be fitted by the 

multiple peaks fitting, due to a low intensity of the low energy shoulder peak. The increase in 

the low energy shoulder is attributed to the appearance of BSFs in the quantum well regions.16 

Indium content around BSF region was reported to be larger than the surrounding region in 

InGaN/GaN quantum well structure, leading to a redshift in the emission spectrum.17 As a 

consequence, emission spectrum from the region with a higher BSF density would exhibit a 

stronger low energy shoulder, and hence a longer COM wavelength. Furthermore, the emission 

spectrum is dominated by the peak from the quantum well, whose intensity is almost an order 

of magnitude higher than that of low energy shoulder. This means the full width at half 

maximum (FWHM) shows no strong correlation with the intensity of low energy shoulder in 

this (11-22) sample. Figure 7.2c shows the FWHM of the emission spectra from the same 

scanning area, where no periodic distribution is observed. The mean FWHM of the map is 32.8 

nm with a standard deviation of 2.0 nm. Furthermore, the relatively low intensity of low energy 

shoulder reflects a low overall BSF density in the sample. 
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Figure 7.4: Maps of COM wavelength from semi-polar (11-22) InGaN/GaN SQW 

samples with different emission wavelengths. 

The low energy shoulder in the PL spectra due to the indium fluctuations was further 

confirmed by confocal measurements on other semi-polar (11-22) InGaN/GaN SQW samples. 

Figure 7.4 (b)-(d) present the maps of COM wavelength from (11-22) SQW samples with 

emission peak wavelengths from 489 to 570 nm using the same scanning range. It can be found 

from the images that the periodic behaviour of the COM wavelength becomes weaker as the 

emission wavelength moves to longer wavelength. A large indium composition fluctuation is 

expected in high indium content quantum well, making the potential fluctuations within the 

BSF regions less pronounced. As a result of that, the difference in the PL lower energy 

shoulder between the BSF regions and BSF-free regions will be suppressed, resulting in a weak 

contrast in the COM wavelength.  
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Figure 7.5: (a) PL spectra scanned along the m-direction (blue line) and the [-1-123] 

direction (green line). Profiles of COM wavelength and integrated PL intensity as a 

function of distance are plotted in (b) and (c) for single line scanning along the m-

direction and the [-1-123] direction, respectively. The mean COM wavelength and 

mean integrated PL intensity of multiple scanning lines along the m-direction and 

the [-1-123] direction are plotted in (d) and (e), respectively. 

Line scanning was also carried out on the 489 nm sample along the m-direction (blue line) 

and the [-1-123] direction (green line), as denoted in Figure 7.5a. For example, Figure 7.5b 

presents a COM wavelength (red line) a function of distance for a typical single line scanned 

along the m-direction and on BSF regions. The COM wavelength exhibits a periodic behaviour 

when it scans through the high and low BSF density regions. The period of COM wavelength 
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is 8 µm, which is consistent with the period of high (or low) BSF density regions observed in 

TEM measurement. However, the integrated PL intensity (blue line in Figure 7.5b) changes 

faster than the COM wavelength, with an irregular distribution along the m-direction on the 

BSF regions. This weak correlation between the emission intensity and the BSF density 

reflects that BSFs in the quantum wells might not play an important role in lowering the 

emission intensity. The fluctuation in the emission intensity may be related to some non-

radiative recombination centres within the BSF regions. The non-radiative recombination 

centres could be related the dislocations that originate from three different mechanisms. Firstly, 

during the GaN overgrowth, threading dislocations could form around the coalescence 

boundary above the micro-rods and then propagate to the quantum well region.13 Secondly, it 

is found that dislocations could be generated around the regions of quantum well intersected by 

BSFs.18 Furthermore, partial dislocations bounding BSFs are discovered to have a random 

distribution within the BSF regions due to the random length of the BSFs.19 All these make the 

location of non-radiative recombination centres less regular than that of BSFs, leading to a 

significant fluctuation in the integrated PL intensity with distance along the stripe. In contrast, 

for the scanning line along the [-1-123] direction (Figure 7.5c), both the COM wavelength and 

the integrated PL intensity show a clear periodic fluctuation against the distance, when 

scanning on the BSF regions and BSF-free regions. It can be found that each maximum of 

COM wavelength corresponds to a minimum in integrated PL intensity.  

More lines were measured on the semi-polar sample along the m-direction with a 

separation of 2 µm, with these multiple scanning lines located on BSF regions and BSF-free 

regions consecutively. As shown in Figure 7.5d, the mean COM wavelengths and mean 

integrated PL intensities show a clear difference between the quantum well with and without 

BSFs. Emission from BSF-free regions shows a low COM wavelength and slightly higher 

integrated PL intensity. However, for the scanning lines along the [-1-123] direction through 

BSF regions and BSF-free regions, both the mean COM wavelengths and mean integrated PL 

intensities exhibit a small fluctuation.  

7.3 Summary 

In conclusion, a correlation between the optical properties and BSF-regions in semi-polar 

(11-22) InGaN/GaN SQW has been investigated by confocal PL measurement at room 

temperature. Laterally periodic distributions of the COM wavelength and the integrated 
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intensity have been observed in the semi-polar (11-22) InGaN/GaN SQW that is overgrown on 

regularly arrayed micro-rod arrays. The regions of quantum well intersected by the BSFs 

exhibit an emission spectrum with a strong low energy shoulder, but with a slight decrease in 

integrated intensity. The low energy shoulder emission is attributed to the higher indium 

content around the BSFs, while the reduction in emission intensity is related to the non-

radiative recombination centres within the BSF-regions. 
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Chapter 8 

Summary and future work 

8.1 Summary 

This thesis has presented an investigation on defect reduction in semi-polar (11-22) GaN 

overgrown on regularly arrayed micro-rods by MOCVD, and the influence of the micro-rod 

sizes on crystal quality. Owing to the optimization of growth conditions and template 

fabrication, it has achieved a series of high quality semi-polar (11-22) GaN films with the 

lowest dislocation density of 2.0 × 108 cm-2. It also presents a study on the optical property of 

semi-polar (11-22) InGaN/GaN quantum well overgrown on micro-rod templates, 

demonstrating the advantages of semi-polar (11-22) orientation for long wavelength emitters. 

The micro-rod template used for overgrowth is fabricated using a combination of 

industry-matched photolithography and dry-etching techniques. It is found that the micro-rod 

arrays with a specially designed pattern effectively resolve the challenge of anisotropic growth 

rate in conventional overgrowth technique for semi-polar GaN. TEM characterization 

technique was employed to investigate the defect reduction in the overgrown semi-polar (11-22) 

GaN. It is discovered that most of the dislocations are blocked either by the SiO2 masks, or the 

coalescence processes due to a faster growth rate along the c-direction than that along the a-

direction. In addition, BSFs tend to expand within the basal plane, propagating with a 

component parallel to the m-direction. After the second coalescence over the SiO2 masks, BSF 

stripes are regularly separated by defect-free regions along the [-1-123] direction, with each 

stripe consisting of high and low BSF density clusters in a periodic distribution along the m-

direction. Based on this study, a defect reduction model has been used to evaluate the defect 

density in overgrown films with different designs of the micro-patterning. 

For our micro-rod template overgrowth technique, micro-rod diameter plays a vital role 

in effectively reducing both the dislocation density and the BSF density of the overgrown (11-

22) GaN, but in different ways. The PL intensity ratio of NBE emission to BSF related 

emission exhibits a monotonic increase with increasing the micro-rod diameter. TEM 
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measurements further confirm this reduction in BSF density in the samples overgrown large 

micro-rods. In contrast, the dislocation density reduces significantly when the micro-rod 

diameter increases from 2 to 4 μm, and then starts to increase when the diameter further 

increases to 5 μm. The XRD measurements demonstrate that the best crystal quality of the 

overgrown (11-22) GaN is achieved by an overgrowth on micro-rods with a 4 μm diameter and 

a 0.4 μm height, leading to the achievement of stimulated emission in semi-polar (11-22) GaN 

at room temperature. 

A systematic study was carried out on the Stokes shift of semi-polar (11-22) InGaN/GaN 

MQWs with a wide spectral range from green to yellow by means of both PLE and TRPL 

measurements in comparison with their c-plane counterparts. Semi-polar InGaN/GaN MQWs 

samples show a lower Stokes shift than their c-plane counterparts. The Stokes shift values for 

both the semi-polar samples and their counterparts exhibit a linear relationship with their 

emission energy, and semi-polar samples show a reduced gradient in the fitted curve. TRPL 

measurements reveal that the semi-polar samples display a significant reduction in 

piezoelectric fields in comparison with their c-plane counterparts. Meanwhile, there exists a 

large exciton localization in semi-polar samples, which is attributed to the increasing indium 

fluctuation in high indium content. All these demonstrate that the piezoelectric fields induced 

polarization is the major mechanism for causing the large Stokes shift in conventional c-plane 

InGaN/GaN MQWs samples. The presented results contribute to a better understanding of the 

long standing issue on the mechanism for the large Stokes shift. 

Confocal PL measurements have been performed on semi-polar (11-22) InGaN/GaN 

SQW samples overgrown on micro-rod templates to spatially investigate the optical properties 

of quantum well regions with and without BSFs. The PL spectrum from the BSF regions 

exhibits a strong low energy shoulder, which is related to a higher indium composition around 

the BSF regions. A slight decrease in emission intensity is attributed to the non-radiative 

recombination centres within the BSF regions. It is suggested that compared with dislocations, 

BSFs might not play a crucial role in lowering the emission intensity of semi-polar (11-22) 

InGaN/GaN SQW. 
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8.2 Future work 

8.2.1 Defect reduction in non-polar a-plane GaN overgrown on regularly arrayed 

micro-rod template 

Much attention have been paid to non-polar orientation, due to its advantage of 

eliminated piezoelectric fields in InGaN/GaN heterostructures. Using photolithography and 

dry-etching techniques, regularly arrayed micro-rod template can be fabricated from a-plane 

GaN that directly grows on r-plane sapphire. The template is then put back into MOCVD 

chamber to carry out the overgrow process. It is essential to understand the defect reduction in 

overgrown a-plane GaN to further improve the crystal quality. 

 

Figure 8.1: Schematic diagram of the non-polar a-plane GaN overgrown on micro-

rod template. 

For non-polar [11-20] orientation, basal plane of GaN crystal is perpendicular to the 

growth plane. Overgrowth starts from the micro-rod sidewalls along +c and –c directions. As 

the +c direction growth leads to defect free region, it is necessary to favouring the growth 

along the +c direction, which is easy to be achieved in practice. In that case, most of the 

dislocations existing in the GaN micro-rods are supposed to be blocked by the SiO2 layer 

deposited on top, and few dislocations from the -c direction growth could probably propagate 

to sample surface. Meanwhile, further work is required in optimizing the template design and 

the second coalescence above the SiO2 layer to reduce the BSF density, since BSFs tend to 

propagate with a component parallel to the m-direction.  
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8.2.2 Optical characterization of semi-polar (11-22) InGaN/GaN single quantum well by 

using a novel nano-patterning approach 

 

Figure 8.2: (a) Schematic of semi-polar (11-22) InGaN SQW with nano-windows 

on surface; (b) Top-view SEM image of one sample showing the randomly 

distributed nano-windows. 

It has developed a novel nano-patterning approach, which allows us to fabricate a 

number of individual areas which are smaller than the areas of either any BSF free regions or 

any BSF-containing region. Based on this approach, we have carried out a systematic study of 

the optical properties of the semi-polar (11-22) InGaN single quantum well (SQW) structures 

on the overgrown GaN in order to study the influence of BSF on optical properties of the semi-

polar InGaN SQW. A series of semi-polar (11-22) InGaN/GaN SQW LED structures with an 

emission wavelength from blue to yellow have been grown on our GaN. As shown in Figure 

8.2a, a number of nano-windows are fabricated by randomly spin-coating nanosphere silica 

particles with a diameter of 500 nm on the surface of each sample, followed by depositing a 

nickel layer. After that, the nanosphere particles are removed, leaving a number of sparely 

distributed nano-windows with a diameter of 500 nm. As presented in Figure 8.2b, both the 

nano-windows and the spacing of the nano-windows are randomly distributed. The separations 

of these nano-windows are large enough, allowing us to perform optical measurements on the 

SQW within such a nano-window area by using our micro-photoluminescence system 

equipment. An optical study is based on a large number of measurements on these individual 

nano-windows, where some nano-windows are on the BSF free regions, and some on BSF-

containing regions. The results measured at room temperature have not shown significant 

difference, meaning that unlike dislocation which generally acts as non-radiative 
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recombination centre BSF might not play an important role in the optical performance of semi-

polar InGaN SQW. Further investigation to understand the influence of BSF on exciton 

dynamics at a low temperature is on-going, demonstrating a completely different role to 

dislocations.     
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Abbreviations 

AlGaN Aluminium gallium nitride  RIE Reactive ion etching  

AlN Aluminium nitride  RT Room temperature 

APD Avalanche photodiode   SEM Scanning electron microscopy 

BSF Basal stacking fault  SAED Selective area electron diffraction  

COM Centre of mass  Si Silicon 

CCD Charge-coupled device   SiC  Silicon carbide  

ELOG Epitaxial lateral overgrowth   SiO2 Silicon dioxide 

EQE External quantum efficiency  SQW Single quantum well 

FWHM Full width at half maximum  TD Threading dislocations  

GaN Gallium nitride  TCSPC Time-correlated single photon counting  

HVPE  Hydride vapour phase epitaxy  TRPL Time-resolved photoluminescence 

InGaN Indium gallium nitride  TEM Transmission electron microscope 

InN Indium nitride   XRD X-ray diffraction 

ICP Inductively coupled plasma    

IRF Instrument response function     

IQE Internal quantum efficiency    

LD  Laser diode    

LED Light-emitting diode    

LT Low temperature    

MOCVD Metal organic chemical vapour deposition    

MBE Molecular beam epitaxy     

MQW Multiple quantum well    

NBE Near band edge    

NA Numerical aperture     

PD Partial dislocation    

PMT Photocathode photomultiplier tube     

PL Photoluminescence    

PLE Photoluminescence excitation    

PECVD Plasma enhanced chemical vapour deposition    

PSF Prismatic stacking fault    

PLD  Pulsed laser deposition    

QCSE Quantum confined stark effect    
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