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Abstract 
 

Protic ionic liquids (PILs) are a class of solvents prepared from the mixing of 

equimolar quantities of a Brønsted acid and base resulting in both neutral and ionic species 

in equilibrium with one another. Their evolving application as solvents for innovative 

processes requires further understanding of their properties and how they originate at the 

molecular level. Three topics remain widely debated concerning PILs: 1) the effects of low 

concentrations of water as an impurity, 2) the structure–property relations in PILs and 3) 

the connection between PILs and their precursor components in terms of both molecular 

interactions and bulk properties. 

In this work, these three topics are studied using a variety of experimental 

techniques and fundamental theory for selected representative PIL systems. To clarify the 

effect of water at low concentrations, the statistical thermodynamic theory of solutions has 

been applied to quantify the interactions between species solely from thermodynamic data. 

Results showed both a strong composition dependence of the effect of water on the liquid 

structure in aprotic and protic ILs, but also that water did not significantly weaken ion–ion 

interactions at low concentrations. After clarifying the effects of water at low concentration 

on PIL behaviour, it has been shown that incorporating hydrogen bond donor functionality 

to the cation can increase the ionic nature of acetate PILs. This increase in ionic nature 

provides an excellent rationalization for the effect of cation structure on the thermodynamic 

and solvatochromic properties of three PILs. By studying the effect of varying composition 

of precursor acid and base, a deeper insight into the molecular origin of trends in bulk 

properties and solvation behaviour can be found. Furthermore, it has been shown that the 

solvation environment is highly composition dependent, offering insight into a new 

strategy in the application of PILs and their precursor materials as tuneable solvation media.  
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Chapter 1: Introduction 
 

1.1 On Solvents and their Importance in The World 
 

Solvents are a class of liquid chemicals defined by their capability to combine with 

a different chemical, called a solute, to produce either an emulsion, a suspension or a 

homogeneous solution.1–5 By using solvents, it has been possible to observe, appreciate and 

study numerous biological, chemical and physical processes. Conditions such as 

temperature, pressure, and the choice of solvent can significantly influence these processes. 

By modifying these conditions, it has been possible to unlock the fundamental science that 

underpins many of these processes occurring in solution. Put simply, understanding the 

solvation effect can allow for significant control over a particular process by modifying the 

solvent environment. 1–5 With control of a process that occurs in solution comes the 

capability to harness it for a desired outcome. This has contributed significantly to the 

manufacture of chemical products on industrial scales.3 

Solvents are also vital for a variety of applications in our day–to–day life, such as 

in cleaning products,6 cosmetics and toiletries,7,8 medication and health products,9 paints 

and adhesives 10 and for the fluids used extensively in machinery and automobiles.11,12 Even 

making a cup of coffee is a result of using water as a solvent to extract caffeine and other 

natural products from the roasted seeds of the Coffea aribica plant species.13 In particular, 

water is the most abundant and important solvent on Earth – life as we know it depends on 

the role water plays as a solvent for biological processes and our planet has been moulded 

into the shape we see today by water and its ability to dissolve and transport matter.14,15 

Both the material and natural world we live in has been influenced significantly by solvents. 
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1.2 The Future of Solvents 
 

 It is estimated that the volume of solvents used in industrial chemical applications 

will reach approximately 21.5 million tons (~19.5 million tonnes) by 2018.16 But what 

happens after these solvents are used? Typically, solvents (including water) are written off 

as waste, and account for the majority of waste generated in the chemical industry.17 This 

is a result of the large excess volumes of solvent required to perform many of the reactions 

carried out at industrial scale product synthesis. While there are many ways by which the 

amount of solvent lost can be reduced, either by alternative reactor designs such as using 

flow chemistry or by effective recovery of the solvent through distillation, significant 

solvent waste is still generated. As many of the solvents used at industrial scale are still 

derived from the finite resource crude oil, there is great concern over the sustainable use of 

solvents in this manner.18  

The concerns are intensified when one considers the potential impact that improper 

disposal of solvents can cause on the environment. Characterizing the potential 

environmental impact of chemicals in terms of the hazard they pose, their likely exposure 

to the environment and the resulting risk of solvents is a challenging exercise.19,20 However, 

the amount of evidence suggesting that many solvents that have been used for decades at 

industrial scale are either acutely toxic, carcinogenic, non–biodegradable, highly 

combustible or some combination of them all.18,21,22 Many traditionally used solvents are 

also highly volatile, and can have lasting impacts on our atmosphere as a result of 

unintended release of solvents. As a result of the growing evidence showing that some 

current chemical processes are highly hazardous, there has been growing pressure to 

develop new processes and products that use materials that are more benign. This pressure 

has culminated in legislative measures such as the Registration, Evaluation, Authorisation 

and Restriction of Chemicals (REACH) regulation, which seeks to limit the extensive use 
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of hazardous chemicals in the pursuit of better protection of the environment in the 

European Union.23  

The development of chemical processes which rely on replacement solvents that 

are less hazardous, waste minimizing and, potentially, more efficient, forms a cornerstone 

of sustainable chemistry.22,24,25 The successfulness of these replacement solvents is not 

defined alone by their favourable sustainability credentials, but also how effective they are 

at performing the chemistry required of them. There are a number of resources made 

available now to aid researchers in the selection of solvents that could be an appropriate 

replacement for a hazardous, unsustainable solvent.26–30 Additionally, a number of lesser 

known types of solvents have emerged in recent years which present themselves as 

alternative solvents with more sustainable credentials. Two popular groups of these 

solvents include supercritical–phase solvents, most notably carbon dioxide,31,32 and ionic 

liquids.33,34  

1.3 Ionic Liquids 
 

 

Figure 1.1 Scheme showing a qualitative continuum of chemical ionicity incorporating 

molecular solvents, ionic liquids and inorganic salts. 

 

Ionic liquids (ILs) broadly encompass a class of liquid materials composed of ions. 

Depending on the conditions of the material, this could include compounds such as sodium 

chloride, which melts at around 800 °C to form a molten salt. However, it is the ILs that 

are composed of at least one organic (i.e. contains carbon) ion with melting temperatures 

below 100 °C that have typically been employed as solvents.33,34 They initially drew much 

attention as solvents due to the high thermal stability and low volatility of many ILs, the 
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latter making them attractive in reducing volatile organic compound (VOC) emissions 

commonly attributed to solvents.35 With the wide variety of structures of both anion and 

cation that can be used to make an ionic liquid, the concept of tuning the properties of ILs 

through modification of the structure of either ion helped to drive IL research.34,36  

While many ILs have been showcased as solvents for applications,33,34,36,37 there 

are many challenges faced with their application at commercial scale. The typical cost of 

an IL is several times greater than that of the solvents they are trying to replace, making 

many of them economically unfavourable as bulk solvents. ILs in general are also highly 

sensitive to impurities,38 particularly atmospheric water, due to the hygroscopic nature of 

many ILs.39 While distillation of ILs is possible, the high temperatures and low pressures 

required pose high energy barriers to distillation of many ILs.40,41 This makes ILs a poor 

replacement for solvents where volatility is required for a process. Perhaps the most 

alarming shortcoming of ILs is that many IL structures have been found to be either acutely 

toxic or non–biodegradable.42–45  

Does this mean that ILs are impractical solvents at industrial scales? The above 

statements are true for many ILs, typically those with a quaternary ammonium or 

phosphonium cation commonly referred to as aprotic ionic liquids (AILs). 42–45 Two other 

classes of solvents under the umbrella definition of ionic liquid are emerging as potentially 

more practical solvents with ionic characteristics. One being deep eutectic solvents (DES), 

an organic salt mixed with a hydrogen bonding compound to produce a liquid with lower 

melting point than either precursor.46–48 The second being protic ionic liquids (PILs), 

defined as the product of the proton transfer from a Brønsted acid (HA) to a suitable base 

(B) to produce ionic species of the form ([HB][A]).36,49–52 Both DES and PILs are prepared 

from straightforward mixing of precursors, generating no waste and requiring no additional 

work up. 36,46–52 This makes them both potentially more cost effective than AILs, while still 

having the potential to tune properties thanks to the wide variety of possible structures.49 
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1.4 Protic ionic liquids 
 

 

Figure 1.2 Scheme showing the proton transfer interaction between a Brønsted acid and 

base to produce a protic ionic liquid. 

 

 It has been widely acknowledged that the first paper that reported the preparation 

of an ionic liquid was from Paul Walden in 1914 for the PIL ethylammonium nitrate,53 

although salts formed from acid–base mixtures had been researched prior to his paper,54 

ethylammonium nitrate has a melting point of 12 °C, making it a room temperature ionic 

liquid (RTIL).  It comes as some surprise that only in the 21st century has there been 

continued research interest in PILs. Nonetheless, there has been a healthy growth of 

original research on PILs, as evident from the multitude of review articles focusing on 

fundamentals and application of PILs.36,50–52 It has even been shown that a PIL can occur 

in nature as well, with many more suggested to exist elsewhere.55  

 In addition to extensive research into their potential use in electrochemical 

applications as anhydrous fuel cells 56–60 and as pharmaceutically active compounds,61–64 

there has been extensive research showcasing the use of PILs as solvents for a range of 

important applications.49 Perhaps the most notable is the the BASIL process, already used 

at industrial scale with great success.37,65 In addition, topics such as natural product 

extraction,66–68 biomass processing,68–76 biocatalysis,77–79 hydrometallurgy,80–84 

lubrication,85–87 CO2 capture88,89 and fuel processing90,91 have all seen PILs used with 

varying success.  

 In spite of these applications, the transition from laboratory to commercial scale 

raises questions about the use of PILs as solvents. As discussed in section 1.2, there is 
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increasing pressure to implement the use of less hazardous and more sustainable chemicals 

at industrial scales at all stages of its use. While PILs have ideal preparation procedures, 

this alone is insufficient to consider PILs as sustainable solvents. A critical assessment of 

many potential “green” credentials of a PIL as a solvent is required in order to make a 

rational judgement of their appropriateness as solvents at industrial scale.  

1.5 Are protic ionic liquids green solvents? 
 

 When considering whether a chemical is considered to be low–hazardous or 

sustainable a.k.a. green, the 12 principles of green chemistry, outlined by Anastas and 

Warner, has been an excellent guideline to follow, if only as an introductory measure.92 

Indeed, principle no. 5 on their list promotes the use of innocuous auxiliary chemicals, 

including solvents, if they cannot be avoided completely. 92 Herein, how well PILs adhere 

to some of the more relevant principles is discussed.  

Regarding atom economy (No. 2), the direct synthesis of PILs from the precursor 

components can readily be performed solvent–free and yields no by–products, and could 

therefore be considered 100% atom economic and also a low hazardous synthetic procedure 

(No. 3).92 However, the precursor materials themselves must be prepared first, and the 

stages required to prepare the Brønsted acid and base are almost always less than 100% 

atom economic. This is true for most solvents, including AILs, but that there is no 

additional loss in atom economy when preparing a PIL from its precursor components is 

the point to remember. 

Whether PILs can be considered to have low toxicity (No. 4) 92 remains an open 

topic for discussion due to the limited results available. To date, a select number of 

ammonium (primary, secondary and tertiary) carboxylate PILs has been screened for their 

microbial and ecological toxicity with varying results.93–98 In a direct comparison with 

some common AILs, PILs have been shown to have much lower toxicity towards terrestrial 
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plant species.99  Yet there had been no clear results to explore how systematic variation of 

the ionic nature of the IL influences its toxicity. In work carried out in parallel to this thesis, 

the author has explored how variation of anion, cation and ionic nature of a series of 

ammonium carboxylate ILs affects their bacterial and fungal toxicity.100 In this work, it was 

found that the ionic nature of an IL appears to have minor contribution to the toxicity of an 

IL, whereas the lipophilicity of the cation proved to be the dominant influence of toxicity 

in the studied ILs. 100  

It is also worth noting that the mutagenicity of PILs had not been considered until 

very recently.101 This is despite the suggested mutagenic activity of some common 

precursor amines used to make PILs. While mutagenic activity is not inherently a measure 

of toxicity, it is a further measure of the potential hazards a chemical can have upon 

exposure to the environment and humanity.102–105 The author published the first results of 

the mini Ames test on a variety of PILs with varying anion and cation structure, providing 

the initial results to suggest PILs have low mutagenic activity.101 However, it was stressed 

that the results do not definitively prove that PILs are non–mutagenic, and that further 

assessment is required before PILs could definitely be classified as non–mutagenic. 101,105 

 The capability to prepare PILs from renewable feedstocks is imperative to their 

long–term feasibility as solvents (No. 7).92 While fossil fuel–derived chemicals are the 

economically more viable option at the time of writing,106 this will not always be the case 

as these reserves begin to diminish. The topic of chemical transformation of biomass to 

platform molecules has grown sensationally in recent times,107–110 particularly molecules 

that could potentially be used as liquid fuel.111–114  

Both amines and carboxylic acids, arguably the most commonly used PIL 

precursor materials, have been shown to be derivable from biomass sources.109,115 A vast 

majority of the amines available commercially are derived from ammonia produced using 
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the Haber–Bosch process.116 The functionalization of ammonia can be done with organic 

molecules from biomass feedstocks such as carbohydrates and soybean oil.117,118  

Perhaps the most recognized bioderived carboxylic acid is acetic acid,119,120 as the 

component of vinegar which gives it its sharp taste. Utilising submerged oxidative 

fermentation with bacteria from the genus Acetobacter, aqueous solutions of up to 12 % 

w/w acetic acid could be achieved within 24 hours.121 There are also a number of other 

carboxylic acids that have been shown to be derivable from biomass resources using 

fermentation techniques, opening up a variety of potential biomass–derived PIL 

anions.119,122   Finally, amino acids offer a convenient source of both amine–functionalized 

and carboxylic acid–functionalized building blocks; there are a number of ILs, both protic 

and aprotic, prepared with amino acid derived ions present in the literature.123–130 

The low biodegradability of many AILs highlighted the need for caution when 

considering their possibility as green solvents (No. 10).43,45,92 For PILs, the screening of 

biodegradability has often been carried out in parallel with toxicity screening.95,97–99,131 This 

is because of the growing evidence showing a connection between toxicity and 

biodegradability of ILs, particularly microbial toxicity.45,130,132–134 Many of the PILs 

screened have shown to be readily biodegradable based on standard procedures, such as 

CO2 evolved or O2 consumed. However, there are some PILs that have shown to not be 

readily biodegradable, yet the reasons why they do not fully decompose is not well 

understood.97,98 Further study of the biodegradation products a.k.a. metabolites is necessary 

to understand the likely biodegradation mechanism and how structure of ILs influence this 

mechanism. 45,130,132–134 Ultimately, greater understanding of how ILs undergo 

biodegradation will allow for better design of ILs which are readily biodegradable and are 

of low toxicity.100  

 With these results, it is fair to say that PILs have the potential to be considered 

appropriate as sustainable materials. However, they also have the potential to be 
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unsustainable, particularly if they are completely inappropriate for their given role. A 

candidate green solvent must primarily be a good solvent for the task it has been chosen 

for, which requires a fundamental understanding of these materials. There has been 

significant research on the physical chemistry of PILs which has developed the 

understanding of these systems,51,52 however there are some obvious gaps in the literature 

which are discussed below.    

1.6 Residual Water in Ionic Liquids 
 

 A major challenge in the application of ILs in general has been the effect of water, 

and the same holds true for PILs also.38,135 While many methods have been employed over 

the years to minimize impurity content during the synthesis of ILs, significant levels of 

atmospheric water can be absorbed into hygroscopic ILs during their application.39,136 Even 

though a majority of the absorbed water can be removed through appropriate drying 

protocols, an increasingly substantial body of evidence strongly suggests that even trace 

concentrations of water can have a significant effect on the properties of ILs, posing 

challenges in their industrial application.38,137–140 The ubiquitous nature of water in ILs leads 

to a realisation that studies on “pure” ILs may often actually be studies of IL–water 

mixtures in themselves.  

It should be emphasized that the study of water–IL mixtures is of practical 

importance. This is because of the following reasons: (1) finer tuning of IL physical and 

solvation properties could be possible through mixing with other solvents, especially with 

water; 141–143 (2) residual water is often present in IL samples from their synthesis and the 

hygroscopic nature of many ILs will inevitably introduce small amounts of water when 

they are utilized unless they are prepared, stored and handled under anhydrous 

conditions,38,136,144 so that permitting residual water in ILs seems to be more sustainable 

due to the energy required for the removal of water; (3) The costs associated with using an 
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IL–water mixture for a given process in place of the pure IL would be significantly reduced, 

due to the typical high costs of ILs with respect to water; (4) the addition of molecular 

solvents, such as water, to ILs can have anti–solvating effects, leading to the precipitation 

of a dissolved species;66,145,146  (5) in the context of reason (4), water is regarded as the 

“greenest” solvent. 21,22,26,147 

 Based on the available literature on the study of water–in–ionic liquid systems, 

there remain a number of unresolved questions on the interactions present in these 

systems.148,149  

1.6.1 Question 1 Does water exist as discrete molecules or clusters at low 

concentration in ILs? 

 

 

Figure 1.3 Schemes showing the two hypothesized states of water at low concentrations in 

Ionic Liquids. 

The structure of water at low concentrations in ionic liquids has been debated 

extensively.148,149 One popular hypothesis is that water molecules prefer association with 

the ionic liquid rather than each other at low water concentrations. This was first proposed 

by Cammarata et al., who measured attenuated total reflectance (ATR)–infrared spectra of 

a range of ionic liquids with various anions and cations in the presence of low 

concentrations of water. This has led to the proposed hydrogen–bonding structure between 

two anions (anion…H–O–H…anion).150 This same structure was later supported by the 

vibrational spectra of ionic liquids [BMIm][BF4] and [BMIm][PF6] with residual water, 
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that were best explained by anion–water–anion structures as calculated from density 

fluctuation theory calculations.151,152 A combination of 1H NMR and the local composition 

model also supported this hypothesis.153,154  

Another hypothesis was that water molecules preferentially self–associate when at 

low concentrations in ionic liquids.148,149 From the FT–IR spectra of [EMIm][BF4], 

[BMIm][BF4] and [BMIm][PF6] with low concentrations of water, Lopez–Pastor showed 

that a small fraction of water exists as a dimer at low concentrations in the tetrafluoroborate 

anion ionic liquids and as a monomeric species in the hexafluorophosphate ionic liquid.155 

This conclusion was confirmed by the far–infrared spectrum of the same series of ionic 

liquids with residual water for hydrophilic ILs, whereas the water dimer was not observed 

in more hydrophobic ILs.156 The idea that water molecules self–associate was developed 

further and made more explicit in the modelling of water uptake by ILs, in which the 

tetrameric form of water has been assumed to exist at low water concentration in ILs based 

on dialkylimidazolium cations.157 Diffusion and conductivity measurements have also 

supported the view of nano–structuring of water within the solvent.158 

 

1.6.2 Question 2 Does the presence of water weaken ion–ion interactions in ILs? 

 

 

Figure 1.4 Schemes showing the proposed effects of water on the strength of average ion–

ion interactions in Ionic Liquids.  

 

It has also been suggested that cation–cation interactions (within 

dialkylimidazolium–type aprotic ionic liquids) become weaker due to the presence of 

water–cation hydrogen bonds.148,149 Early evidence for this was based on nuclear 
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Overhauser enhancements (NOEs) of mixtures of [BMIm][BF4] and water.159 Brehm et al. 

used extensive ab initio calculations to propose that water can disrupt ring stacking 

interactions between dialkylimidazolium cations.160  Further ab initio experiments from 

Shei et al. showed the disruption of anion–cation interactions in the presence of water at 

low concentrations, in addition to facilitating (anion…H–O–H…anion) interactions.161 

Considering PIL–water mixtures, contact ion pairs (CIPs) as opposed to solvent–

separated ion pairs (SIPs) were demonstrated to be most prominent in triethylammonium 

methanesulfonate ([TEA][MS]) water binary mixtures even at very high water 

concentrations. 162 This is supported by the work of Greaves et al., demonstrating that 

certain PILs retain their mesostructure features in the presence of water, whereas the 

precursor materials do not when mixed with water. 163 However a study of the effect of 

water on the shear thinning of the PIL diethanolammonium acetate ([DEtAH][OAc]) 

suggested that less than molar equivalent quantities of water disrupt interactions between 

ions.164 Indeed, many studies of the viscosity of PIL–water systems hypothesized that the 

presence of water disrupts ion–ion interactions through hydrogen bonding 

interactions.165,166 Taking all of the above into consideration, there is no consensus as to 

whether water strengthens or weakens the IL–IL interaction.  
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1.6.3 Question 3 Does water interact more strongly with protic ILs than with 

aprotic ILs? 

 

 

Figure 1.5 Diagram of analogous aprotic and protic ionic liquids. 

 

That protic cations interact more strongly with water than their aprotic counterparts 

has been demonstrated by a comparison of the transport properties of analogous 

imidazolium aprotic and protic ILs, the cause of which was attributed to the tertiary N–H 

site of protic cations being able to hydrogen bond strongly with water, whereas the 

quaternary nitrogen on the aprotic cations could not. 167 This was complemented by a study 

of the effects of water on the vibrational spectra of two PILs; 1–ethylimidazolium 

trifluoromethanesulfonate ([EIm][OTf]) and 1–ethylimidazolium 

bis(trifluoromethanesulfonyl)imide ([EIm][NTf2]), where similar water–cation vibration 

modes were observed in both systems.168 The study also showed water–anion vibrational 

modes in the [EIm][OTf] system but not in the [EIm][NTf2] system. These results suggest 

that water interacts differently between the two PILs and more favorably with [EIm][OTf] 

than with [EIm][NTf2], contradicting the assumption that interactions between anion and 

water are related to the pK
a
of the conjugate acid.167,168 This view was best rationalized by 

the different polarization between the two PILs, not simply the acidity of the precursor 
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acid; water in methylammonium nitrate ([MA][NO3]) becomes depolarized to a greater 

extent than in dialkylimidazolium ILs due to strong, directional hydrogen bonds. 169    

While the above investigations of analogous AIL and PIL mixtures with water 

appear to suggest stronger interactions between water and PILs, this does not represent a 

complete picture of IL–water interactions. The interactions between water and ILs have 

been inferred from the excess molar volume (𝑉𝑚
𝐸) and partial molar volume of species (𝑉𝑖) 

of these binary systems from extensive density data.170–175 The resultant deviations of molar 

volume from additivity suggest that both protic and aprotic ILs demonstrate weakening 176–

179 and strengthening of interactions between ions and water.165,180,181 The fact that both 

classes of ILs can demonstrate both strengthening and weakening of interactions with water 

implies that ionicity alone cannot explain the strength of interaction.  

1.6.4 Question 4 Does the structure of PIL–water systems reflect homogeneous 

mixing or the formation of heterogeneous structures? 

 

 

Figure 1.6 Scheme showing hypothetical mixing behaviour of ionic liquid and water 

systems. 

 

Homogeneous distributions of water within mixtures have been reported by 

molecular dynamics simulations of the PIL ethylammonium nitrate ([EA][NO3]).182 This 

view is contradictory to a combined neutron diffraction and computational study of 
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[EA][NO3] and water mixtures, which suggest that the local structure of each component 

resembles that of the pure materials in the polar domains.183 The study did suggest that a 

modification of the PIL nanostructure is observed due to swelling of polar regions, 

increasing the interfacial curvature around the non–polar regions (the cation alkyl chain). 

The formation of heterogeneous structures in polar solvents is also supported by the Far–

IR study of PILs in polar solvents.184 This difference in the observed mixing behavior of 

water and protic ILs has been emphasized further by ethylammonium formate ([EA][Fr]) 

mixtures with water.  The static dielectric constant, ε0, of the [EA][Fr]–water system 

showed consistent ε0 values up to 60% mole fraction of water.185 However, measurements 

of polarity of [EA][Fr]–water systems with the probe molecule 12’–apo–b–carotenoic–

12’–acid showed additivity of the observed polarity.186 The fact that these different 

spectroscopic techniques seem to offer contradictory conclusions for identical PIL–water 

systems shows that there is still a poor understanding of the mixing behavior of these 

systems. Indeed, a lack of the theoretical basis behind some of the experimental techniques 

often leads to a misinterpretation of the results that feeds controversy. 

1.6.5 IL–water systems: addressing the controversy 

 

 The questions posed here remain unanswered despite the extensive research taken 

place. Understanding the mixing behaviour of water at low concentration in PILs is 

essential for their application as solvents. This requires a strategy for answering all of these 

questions for a given water–PIL system with a robust theoretical basis. While spectroscopic 

and computational techniques are indispensable for understanding short–range interactions, 

they cannot fully appreciate long range interactions that may take place. Unfortunately, the 

interpretation of thermodynamic data, which can account for long range interactions, has 

not been found to relate to molecular interactions beyond mere speculation.  

1.7 Characterization of Protic Ionic Liquids 
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 For there to be progress on the application of PILs, there must also be progress on 

the fundamental understanding of the structure and interactions of PILs. By connecting 

how variation of a PILs structure influences the interactions between species, how said 

variations in structure influence the bulk properties of PILs relevant to their industrial 

application can be rationalized. In addition, clarifying how structural variation of PILs 

influences the interactions in PILs will prove to be indispensable in rationalising the 

solvation capabilities of PILs.  

Establishing such a theoretical basis for PILs requires accurate characterization of 

these materials. In this context, three areas on the physical chemistry of PILs that underpin 

their use as solvents; (1) thermodynamics and bulk properties, (2) intermolecular 

interactions such as hydrogen bonding and (3) ionicity and proton transfer.  

1.7.1 Thermodynamics and Bulk Properties of Protic Ionic Liquids 

 

 There is a lack in appreciation as to how the molecular interactions in PILs that 

emerge from the mixing of precursor acids and bases correlate with their bulk properties. 

Properties such as density and viscosity are valuable for the chemical engineering 

challenges involved with scaling up processes.187,188 While prediction of some of these 

properties is feasible,189,190 a rational understanding of their origin is not clear beyond fitting 

to an equation of state.179,191,192 A more beneficial strategy is the characterization of the 

phase change behaviour of PILs. For example, it has been proposed that the glass transition 

temperature (Tg) can give insight into the non–additive mixing behaviour of PILs in 

general. 36,51,193–196 The effect of molecular structure on Tg and Tm (often not appearing due 

to the glassy nature of some PILs197) can give rise to structure–property trends that connect 

the molecular structure, liquid structure and bulk thermodynamic properties.196,198–200  

Another important phase transition is from liquid to gas, highly relevant for PILs 

in general due to their capability of being distilled in an analogous fashion to conventional 
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organic solvents.69–71 Yet there is limited insight given from analysis of the boiling point 

temperature (Tb), which imparts neither quantitative or mechanistic insight into this phase 

transition. The vaporization mechanism of PILs under the reduced pressure distillation 

conditions used in practice is still debated, a key open question being whether they vaporize 

as contact ion pairs, as discrete precursor molecules, or as mixtures with varying 

proportions of both types of species.41,201–208 Standard molar enthalpies of vaporization, 

∆vap𝐻𝑚
° , provide important information to address this question, as previously illustrated 

by a study on 1–methylimidazolium acetate, [MImH][OAc].204 In this case, a good 

agreement was found between the ∆vap𝐻𝑚
°   value directly measured by vaporization 

calorimetry and the enthalpy of the reaction calculated from the enthalpies of formation, 

∆f𝐻𝑚
° , of [PIL](l), Am(g), and Ac(g), determined from calorimetric experiments, ab–initio 

calculations, and literature data.204 This gave a good indication that the vaporization of 

[MImH][OAc] predominantly yields its neutral precursors, namely 1–methylimidazole and 

acetic acid, as had been previously demonstrated by Fourier transform ion cyclotron 

resonance mass spectrometry (FTICR–MS)41 and Raman spectroscopy.201 A similar 

approach was also used to show that for the highly ionic PIL 1,1,3,3–

tetramethylguanidinium nitrate, a vaporization channel yielding its gaseous constituent 
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Figure 1.7 Thermodynamic cycle showing the processes involved in the direct 

vaporization of a PIL under reduced pressure to its precursor acid ([OAc]) and base ([Am]). 

 

ions was implausible when compared to the pathway in which the neutral precursors were 

produced, eqn (1). This is consistent with the fact that ionic species were never found in 

PIL vapors produced by reduced pressure distillation.41,201–203 It should nevertheless be 

stressed that the prime vaporization pathway of PILs may depend on the pressure–

temperature conditions chosen for distillation. Indeed, there seems to be evidence that 

below 419 K the ethylammonium nitrate vapor essentially consists of ion pairs and above 

this temperature neutral precursors (ethylamine and nitric acid) progressively dominate.208 

Besides their importance to understand the purification of protic ionic liquids by 

distillation, reliable ∆vap𝐻𝑚
°   and ∆f𝐻𝑚

°   data are also central in the investigation of 

molecular structure–energetics relationships in PILs. These relationships constitute, in turn, 

a very useful tool for the design of PILs with properties tailored for specific applications. 

For example, the enthalpy of vaporization of a PIL reflects its cohesive energy, which bears 

an obvious relation to structure and it is intimately connected to industrially relevant 

properties such as vapor pressure and solvation ability. 

To date, only a small selection of PILs have been characterized energetically. The 

findings have nonetheless been significant, as demonstrated by the following two 

examples: (1) The PIL 1,5–diazabicyclo[4.3.0]non–5–enium acetate was comprehensively 

characterized from a thermochemical point of view, including the determination of ∆f𝐻𝑚
°   

in the gas and condensed phases, and ∆vap𝐻𝑚
° . The obtained data subsequently provided 

fundamental information, , for cellulose processing such as energy requirements associated 

with PIL recovery.209 (2) Differences in ∆vap𝐻𝑚
°   between protic and aprotic ionic liquids 

were found to correlate exceptionally well with the strength of intermolecular interactions 

as determined by far–infrared spectroscopy; furthermore, contributions to ∆vap𝐻𝑚
°   from 
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hydrogen bond and dispersion intermolecular interactions could both be inferred with the 

help of density functional theory.210 

1.7.2 Intermolecular Interactions and Hydrogen Bonding 

 

 Perhaps the most commonly discussed aspect of PILs is their hydrogen bonding 

capabilities.211 It is believed that the capability of PILs to form extensive hydrogen bonding 

networks gives them the solvation properties desirable for applications including protein 

stabilisation212–215 and biomass processing.216,217 As the ionic nature of PILs is also 

dependent on the proton transfer equilibrium in PILs, ionicity, hydrogen bonding and 

solvation capability are all related to one another. Characterizing the hydrogen bonding 

interactions in PILs therefore becomes an imperative task for understanding the molecular 

origin of the solvation capabilities of PILs. 

  One of the most versatile techniques to study hydrogen bonding in PILs is 

vibrational spectroscopy. The vibrational frequencies associated with the anion–cation 

interactions in a number of PILs has been shown to exist in the far infrared (FIR) 

region.184,218–222 The FIR region can allow for the distinction in the types of short–range 

interactions in analogous protic and aprotic ILs due to the absence of peaks corresponding 

to the cation–anion hydrogen bond unique to PILs.222,223 These findings were confirmed to 

be the anion–cation hydrogen bonding interactions by density functional theory (DFT) 

calculations. The calculated strength of these hydrogen bond interactions for various PILs 

correlated well with the observed shift in the vibration frequencies.220 There has even been 

correlation of the frequencies of these hydrogen bonding interactions and the standard 

molar enthalpy of vaporization of PILs.210  

The stretching vibrations of the N–H bond in some PILs have been observed in the 

FT–IR region between 3000 – 3500 cm–1
, however the overlap of C–H stretching vibrations 

make this difficult for all PILs.224,225 Femtosecond FT–IR had been employed to observe 
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the Rotational motions of ethylammonium nitrate, showing large, angular jumps. These 

rotational motions further reinforcing the highly direction–dependent nature of the 

hydrogen bonding interactions in PILs.226 Terahertz Spectroscopy of ethylammonium 

nitrate has also been undertaken to characterize the dynamics of the hydrogen bonding 

between ions as a damped harmonic oscillator.227,228 Further studies of the hydrogen 

bonding in ethylammonium nitrate and propylammonium nitrate suggested further 

evidence of heterogeneous liquid structure forming as a result of hydrogen bonding 

interactions between anion and cation.229,230 

These techniques, particularly FIR spectroscopy, have given valuable insight into 

the intermolecular hydrogen bonding interactions present in PILs. Yet to date, there have 

been only a small number of PILs studied using these techniques. The effect of additional 

functional groups (i.e hydroxyl, amino) on the types of intermolecular interactions have not 

been studied experimentally. Additionally, there have been no studies on carboxylate 

anions, which have been utilized for a number of potential applications (see section 1.4).  

1.7.3 Ionicity and Proton Transfer  

 

 The extent of proton transfer in PILs has sparked significant controversy as to 

whether they should be considered as ILs at all.231 Yet the understanding as to what governs 

the extent of proton transfer has not developed significantly.51 The correlation between the 

conductivity and the fluidity (inverse of viscosity) have been widely used to understand the 

ion mobility or ionicity of PILs through the Walden relation.51,58,194 Walden relations 

characterize the system in qualitative terms of ion mobility, where “good” ionicity ILs have 

trends comparable to a reference electrolyte solution and “poor” ionicity ILs have much 

lower ionicity than as expected from fluidity (figure 1.8). This relation is convenient when 

discussing the transport properties of the bulk system, but does not aid in understanding the 

proton transfer equilibrium. For example, a PIL which can have high extent of proton 



 J. E. S. J. Reid 

41 

 

transfer may result in being a “poor” ionic liquid due to the strong hydrogen bond 

interactions between anion and cation reducing ion mobility.51 

 

Figure 1.8 A qualitative representation of the Walden plot used to profile the ionicity of 

materials (here specified in the context of ionic liquids). 

 

 Another common way that the extent of proton transfer has been estimated is from 

the difference in aqueous proton dissociation constants of the precursor acid and conjugate 

acid (∆pK
a
).193,194 For PILs, many have debated what an appropriate ∆pK

a
 would be to 

ensure proton transfer is effectively (i.e. > 99%) complete. However, it has already been 

shown that interpreting ∆pK
a
 as a cross–comparative measure of proton transfer for PILs 

can lead to erroneous results.232  From earlier studies of proton transfer in diluted systems 

(i.e. a proton donor and acceptor at low concentration within a diluent solvent or gas.), it 

was widely appreciated that ∆pK
a
 values indicating a certain extent of proton transfer had 

taken place changes significantly from system to system.233–236 In these studies, the extent 

of proton transfer is typically inferred from the presence of spectroscopic signal 

characteriztic of the ionic species. 233–243  Perhaps a more constructive approach to 
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determining the proton transfer interaction in PILs can be done through spectroscopy as 

oppose to empirical relations. 

 Broadly speaking, the two most commonly used spectroscopic techniques to study 

the proton transfer reaction in acid–base systems are NMR and infrared spectroscopy. 233–

243 Yet there are only a small number using these techniques in the context of PILs. 

Correlations between the gas phase proton affinity of the precursor acid and the 1H 

chemical shift of the labile proton of a series of PILs with the triethylammonium cation 

showed to be a better indicator of the extent of proton transfer than the difference in 

aqueous pKa of precursors (ΔpKa).244 Studies of the 15N chemical shift changing from pure 

amine to PIL indicated a gradual downfield shift of the single peak, suggested to indicate 

systematic proton transfer occurring.245 

 For carboxylate PILs, the FT–IR region can give insight into the ionic nature of a 

PIL through the relative intensities of vibrational bands unique to the acetate species and 

the carboxylic acid species. The asymmetric stretching frequency of the carboxylate 

functional groups occurs between 1550–1600 cm–1, whereas the carbonyl stretching 

frequency of a carboxylic acid group has a distinctly sharp peak for liquid samples around 

1710 cm–1.233,246 Recent work has shown that this spectral feature correlates with other 

properties of PILs such as conductivity where ΔpKa does not correlate well,247,248 and 

clarified that some systems do not undergo proton transfer, despite being composed of a 

proton donor and acceptor, such as acetic acid and pyridine.249 

Other techniques to study the nature of the protons in PILs include the hydrogen 

redox potential of H2–saturated PILs, where the potential gap between the redox reactions 

correlated well with the proton affinities of both anion and cation.56,57,250,251 Recent work 

using quantum chemical approaches such as density functional theory and valence band 

theory have been used to explore the proton transfer reaction for single ion pairs.252–254 
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While useful from a theory standpoint, the translation of such small scale simulations to 

the interactions in bulk liquids remains challenging. 

By applying the variety of experimental techniques described above, connections 

between the bulk physical properties and the interactions at the molecular level can be 

evaluated. Similarly, connecting how the variance of molecular structure influences these 

interactions at both a bulk property scale and on the basis of short range interactions will 

yield a more in–depth understanding of structure–property interactions. To date however, 

there is limited data available which attempts to combine structure–property relationships 

at both bulk property scale and at a molecular level for tertiary ammonium carboxylate 

PILs.  

1.8 Solvation Environment in Protic Ionic Liquids  
 

Understanding how a variation in either anion or cation structure can influence the 

solvent properties of a PIL is crucial for the design a PIL for a given task. Yet the 

fundamental understanding of the solvation properties of PILs in general is still limited. 

While understanding the interactions of neat PILs will support our understanding of their 

solvation behaviour, only by studying (PIL + solute) systems can the solvation behaviour 

of PILs be developed.255 The true benefit of characterizing the interactions in PILs, as 

described in section 1.7, is when this physicochemical insight can be used to rationalize the 

apparent solvent properties of PILs. 

Perhaps the most widely used technique to characterize the solvent properties of 

PILs have been to use solvatochromic probes to calculate solvent–solute interaction 

parameters.50 While a range of probe molecules have been used to characterize the non–

specific polarity of PILs,186,256 perhaps most popular are the pyridinium N–phenolate 

betaine dyes popularized by Reichardt.257–259 Yet a single parameter is an insufficient 

description of solvent–solute interactions, particularly when hydrogen bonding interactions 
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play a crucial role, as is the case with PILs. Multiple contributions to solvation can be 

characterized independently from one another as outlined by Kamlet and Taft.260 Specific 

solvent–solute interactions i.e. hydrogen bond donor acidity () and hydrogen bond 

acceptor basicity (), as well as non–specific solvent–solute interactions such as 

dipolarity/polarizability (*), can be parameterized using multiple solvatochromic probes. 

These parameters have been characterized for a small number of PILs,256,259,261 as well as a 

number of PIL–solvent binary mixtures.262–265 However, there has been no previous work 

attempting to rationalize the calculated solvent–solute interaction parameters with the 

short–range interactions. A molecular understanding of what governs the solvent–solute 

interactions in PILs will greatly support the design of new protic ionic liquids with 

particular solvation properties. 

While solvent–solute interactions are important, solvation is also dependant on 

solvent–solvent interactions.4,260,266 In the correlations outlined by Kamlet and Taft to 

determine linear solvation energy relations (LSER), they accounted for solvent–solvent 

interaction strength through the Hildebrand solubility parameter.260,266 These values can be 

determined from the cohesive energy density of a solvent, calculated from the standard 

molar enthalpy of vaporization and molar volume.267 While quantifying the standard molar 

enthalpy of vaporization for PILs has been undertaken (see section 1.7.1), the cohesive 

energy density has not been determined for a PIL, and as such solvent–solvent interactions 

have not been considered previously for PILs.  

Parameterising the solvent–solute or solvent–solvent interactions in PILs is 

insufficient to understand their properties as solvents. Rationalising these interactions at a 

molecular level will give the necessary insight required to understand how variation of PIL 

structure can influence its solvation environment. This connection between molecular 

structure and solvation property will improve understanding of how the solvation capability 

changes between precursor and PIL. 
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1.9 Protic Ionic Liquids; Just Equimolar Acid and Base Mixtures? 
 

While PILs may yet find their place as new sustainable solvents (section 1.4), the 

study of acid–amine binary mixtures has been carried out for many decades.268,269 The 

phenomena of a stable equimolar compound of ionic nature (albeit, usually a solid) was 

considered to be but one part of the continuum of these binary liquid systems. 268,269 This is 

exactly how a PIL has been defined, with the additional criteria of being a liquid. Systems 

typically focused around the combination of carboxylic acids with ammonia or primary, 

secondary or tertiary amines using relationships typical of binary liquid systems. They 

generated significant interest due to the combination of complementary hydrogen bonding 

components i.e. a hydrogen bond donor (acid) and acceptor (base).  

Some of the earliest studies of acid–amine binary mixtures focused on the effect of 

composition on particular phase changes. By inspecting the change in melting point of 

acid–amine binary mixtures, the formation of stable, non–equivalent association 

complexes, both amine–rich and acid–rich, had been found to be stable.268,270 Similar results 

could be deduced from the study of the boiling point–vapor composition with respect to 

composition.269 The same study also showed that some acid–amine binary mixtures, such 

as the equimolar combination of acetic acid and triethylamine, are immiscible. This insight 

has been discussed by some more recent authors in the context of synthesising PILs, leading 

to speculation as to proper procedures to preparing these compounds.271–273  

Studying excess molar properties, i.e. deviations from additive mixing behaviour 

(analogous to Raoult’s law of mixing for ideal gases), can give qualitative insight into how 

interactions between species change upon mixing. Properties such as excess Gibbs free 

energy and excess molar volume have been explored for a number of acid–amine binary 

mixtures, often showing negative deviations from additive mixing.274–278 This is also 
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supported by the limited data showing quantitatively the highly exothermic enthalpy 

change upon mixing of some carboxylic acids and amines.274,278 While not an excess 

property, bulk viscosity of acid–amine binary mixtures has shown extensively how the net 

molecular cohesion changes significantly with respect to composition.279 Extreme positive 

deviations indicated significant increase in the molecular cohesion in these types of 

systems, with maxima often occurring at acid rich compositions.277,278,280,281 

Spectroscopic studies of non–equivalent acid–amine binary mixtures have also 

shown how molecular interactions and electrostatic effects change with composition. 

Infrared spectroscopy has shown that the proton transfer equilibrium changes with 

composition in some systems.282,283 It has also been used in parallel with quantum chemical 

calculations to identify the formation of non–equimolar stable association 

compounds.284,285 Similarly, NMR spectroscopy has been used mostly to investigate how 

the electron distribution and subsequent nature of the amine species change with 

composition.245,275,286 Dielectric permittivity has been used to characterize both the bulk 

polarity and molecular re–orientation dynamics of multiple acid–amine binary 

mixtures.277,278,281 To summarize broadly, spectroscopic techniques often support what has 

been suggested with thermodynamic techniques; in many acid–amine binary mixtures, 

there is evidence of non–equivalent acid–amine association compounds forming, typically 

featuring an excess of acid.  

From the literature on non–equivalent mixtures, there is extensive evidence that 

1:1 acid–amine or anion–cation compounds are not the only stable species that are likely 

to exist in a carboxylic acid–amine binary mixture. To date, there have been some papers 

that have attempted to make connections between the properties of the equimolar mixture 

(PIL) in the context of the complete acid–amine binary mixtures.57,194,245,250 However none 

of these studies focus on the various interactions between species and how this relates to 

the solvation properties of these types of systems.  
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1.10 The Scope of the Thesis 
 

 The oft–mooted application of Protic Ionic Liquids as “designed solvents” requires 

a detailed understanding of both their solvation and physicochemical properties and how 

these properties may rationally be varied through changes in functionality and composition. 

Based upon the above survey of the current gaps in understanding of PIL systems, the 

following systems will be studied; 

1. Binary systems of water and ILs (both aprotic and protic) at low water 

concentrations. 

2. The equimolar binary mixture of a Brønsted acid and base, a “pure” protic ionic 

liquid. 

3. Non–equivalent mixtures of a Brønsted acid and base. 

For each of these systems, how the molecular interactions change as a result of mixing 

compared to the starting materials will be clarified. As each system requires different 

approaches to the characterization of interactions therein, various experimental and 

theoretical techniques to study these systems have been utilized.  

 To characterize the interactions in ionic liquid water mixtures, specifically at low 

water concentrations, the statistical mechanical theory of solutions initially outlined by 

Kirkwood and Buff,287 which has been extended to be applicable to molecular and 

macromolecular solution mixtures,288–291 has been applied. The Kirkwood–Buff (KB) 

theory of solutions has a proven track record for characterizing the mechanism of solvation 

in many systems, ranging from biochemical processes to pharmaceutical formulations.287–

299 Using KB theory, the intermolecular interactions are summarized as Kirkwood Buff 

parameters, Gab which are directly related to the pairwise correlation function between the 

two species, gab(r), using the following relation; 

𝐺𝑖𝑗 = ∫[𝑔𝑖𝑗(𝑟) − 1]4𝜋𝑟2 𝑑𝑟        1.1 
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The KB theory has already been used to describe the solvation capabilities of some aprotic 

ILs based on molecular dynamics results,300–302 while the small angle neutron scattering 

profile of the binary mixture of 1–butyl–3–methylimidazolium tetrafluoroborate at low 

concentrations in water was interpreted using KB interaction parameters.303 For the first 

time, the interactions in IL–water binary mixtures at low water concentrations have been 

clarified using statistical thermodynamic theory, addressing the controversies outlined in 

section 1.6. These interactions are initially determined for well–studied IL–water binary 

mixtures and relate our results with previous experimental evidence (Chapter 2).148 Using 

the same derivation of KB theory, the KB parameters  for three IL–water systems to explore 

the difference between aprotic and protic IL–water binary mixtures (Chapter 3).149 

 In considering the neat PIL system in the context of equimolar mixing of a 

Brønsted acid and base, the effect of varying the functional groups on the precursor base 

to influence the properties of the PIL has been studied. Attention was focused on three key 

tertiary ammonium acetate PILs, based on their suggested favourable green credentials (see 

section 1.5). Four characteristics are explored; (1) the position of the proton transfer 

equilibrium as inferred from infrared spectroscopy, (2) the standard molar enthalpy of 

vaporization (∆vap𝐻𝑚
° ) and the mechanism of vaporization under reduced pressure, (3) 

solvent–solute and solvent–solvent interactions based on the Kamlet–Taft parameters and 

(4) bulk viscosity (Chapter 4). The cross–comparison of the effect of functional group 

modification for each of these characteristics will give a coherent starting point in 

understanding how molecular structure influences the molecular interactions in PILs, and 

how this in turn influences their thermodynamic and solvation properties. 

 To further expand on the relation between PILs and their precursor, the mixing 

behavior of the three acid–amine mixtures has been characterized to clarify the effect of 

varying amine structure on the mixing behavior towards a better understanding of the 

structure–property relationships in PILs. Combining spectroscopy, bulk property 
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characterization and solvation profiling, four aspects of the acid–amine mixtures are 

clarified; (1) the intramolecular bonding in both acid and base species and the state of the 

proton transfer equilibrium, (2) the intermolecular hydrogen bonding interactions between 

species, (3) density and excess molar volume, and (4) the solvation properties of the acid–

amine binary mixtures. A connection of the short–range interactions with bulk physical 

properties will give a rational basis for the mixing behavior of the acid–amine binary 

mixtures (chapter 5). The final aspect attempts to rationalize extensive empirical data on 

the solvation properties of the acid–amine mixtures. By relating back to the physical 

chemistry of these systems, an explanation as to how variation of both amine functionality 

and composition can influence the solvation properties of these mixtures can be proposed 

(chapter 6). 
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Chapter 2: Statistical Thermodynamics of Ionic Liquid–Water 

Binary Mixtures at Low Water Concentrations 
 

2.1 Introduction 
 

How do residual water molecules in ionic liquids (ILs) interact with themselves, as 

well as with the ions? This question is crucial in understanding why the physical properties 

of ILs – and chemical reactions performed in them – are strongly affected by the residual 

water content.148 As discussed in Chapter 1, there are two poorly answered questions 

regarding the structure and behaviour of the residual water: (i) Does water exist as discrete 

molecules or clusters at low concentration in ILs? (ii) Does the presence of water weaken 

ion–ion interactions in ILs?  

Answering these questions has been hindered by the complexity and long range of 

the interactions in the water–IL mixture, as well as by the often profound differences in 

physical structure between various different ILs.148,149 Herein, a strategy is presented to 

resolve these questions through a combination of a rigorous statistical thermodynamic 

theory (Kirkwood–Buff theory) with density and osmotic data from the literature.148,149 The 

unique advantage of this approach is that the KB theory is rigorous, i.e, the theory does not 

involve any approximations.287,304 

The goal of this chapter is to answer the questions stated above, thereby clarifying 

the role of residual water in ILs. By utilising the Kirkwood–Buff (KB) statistical 

thermodynamic theory of solutions, information on water–water, water–ion and ion–ion 

interaction in the mixture can be quantified in terms of KB parameters.148,149 Based on the 

KB parameters, answers to the two questions stated above are given for three IL–water 

binary mixtures, featuring the ILs 1–butyl–3–methylimidazolium tetrafluoroborate, 1–

ethyl–3–methylimidazolium tetrafluoroborate and 1–ethyl–3–methylimidazolium triflate. 
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2.2 Statistical thermodynamic theory of water–IL mixture 
 

2.2.1 KB theory of binary mixture derived from inhomogeneous solution theory  

 

 Towards the resolution of conflicting hypotheses reviewed in sections 1.6 and 2.1, 

thermodynamic data can be used to reveal the structure of IL–water mixtures, based upon 

the well–established KB theory for binary mixtures.288,289,291,303,305 A full derivation of this 

theory will be presented here, because (i) a strong non–ideality of water–IL mixture 

necessitates a careful analysis of experimental data and (ii) a novel, alternative derivation, 

which is simpler than the conventional route, is made possible through the use of 

inhomogeneous solution theory.304  

 Consider a mixture of water (𝑖 = 1) and IL (𝑖 = 2). Following the standard 

approach well–established for dissociative species, the IL is considered as the (averaged) 

ions for species 2 (because the composition is always equivalent, it is not possible to study 

the effects of changing either the cation, or anion, composition alone). 288,291,305 The grand 

potential 𝐽 can be expressed in terms of grand partition function Ξ in the following manner:  

𝐽 = −𝑘𝑇 ln Ξ(𝑉, 𝜇1, 𝜇2)             (2.1) 

where 𝜇𝑖 is the chemical potential of the species 𝑖, 𝑉 is the volume of the system; the 

temperature 𝑇, which is kept constant throughout the discussion, is omitted.304 Here, two 

systems are considered: with and without the water molecule fixed at the origin. 304 When 

the fixed water molecule is present, it acts as the source for an external field for the water 

molecules and ions. Such a solution is inhomogeneous. When the fixed water molecule is 

absent, the system consists only of water and ions, and is homogeneous. The chemical 

potential of the fixed water molecule 𝜇1
∗ can be expressed in terms of the grand partition 

functions of the homogeneous Ξ0 and inhomogeneous systems Ξ1in the following manner:  

𝜇1
∗ = 𝐽1 − 𝐽0 = −𝑘𝑇 ln

Ξ1(𝑉1,𝜇1,𝜇2)

Ξ0(𝑉0,𝜇1,𝜇2)
     (2.2) 
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where 𝑉1 is the volume of the inhomogeneous system, 𝑉0 is of the homogeneous system. 

304  From Eq. (2.2), the following fundamental relationship is applied:  

−𝑑𝜇1
∗ = 𝑘𝑇 ∑ [

1

Ξ1
 
𝜕Ξ1

𝜕𝜇𝑖
−

1

Ξ0

𝜕Ξ0

𝜕𝜇𝑖
] 𝑑𝜇𝑖𝑖 = ∑ [〈𝑁𝑖〉1 − 〈𝑁𝑖〉0]𝑑𝜇𝑖𝑖    (2.3)  

where 〈𝑁𝑖〉1 is the number of molecules of the species 𝑖 in the inhomogeneous system, 

whereas 〈𝑁𝑖〉0 is that of the homogeneous system. Note that effect of the fixed water 

molecule is localized; this is satisfied when 𝑉1 − 𝑉0 = 𝑜(1). Consequently, in the 

following, 𝑉1 = 𝑉0 ≡ 𝑉. 304 

 The next goal is to simplify Eq. (2.3) using another relationship between 𝜇1 and 

𝜇2. This can be executed by considering the hydrostatic pressure 𝑃 of the system, which 

can be obtained from the grand partition function as304  

𝑃 =
𝑘𝑇

𝑉
ln Ξ(𝑉, 𝜇1, 𝜇2) + 𝑜(1)     (2.4) 

which is valid both for inhomogeneous and homogeneous systems (hence has been 

presented without the subscript 0 or 1). From Eq. (2.4), it easily follows that304  

𝑑𝑃 = ∑
𝑘𝑇

𝑉

1

Ξ

𝜕Ξ

𝜕𝜇𝑖
 𝑑𝜇𝑖𝑖 + 𝑜(1) = ∑

〈𝑁𝑖〉

𝑉𝑖 𝑑𝜇𝑖 + 𝑜(1)     (2.5)  

which is the Gibbs–Duhem equation. Combining Eqs. (2.3) and (2.5) under constant 

pressure (𝑑𝑃 = 0), the following is obtained: 

−𝑑𝜇1
∗ = {[〈𝑁1〉1 − 〈𝑁1〉0] −

〈𝑁1〉0
𝑉

〈𝑁2〉0
𝑉

[〈𝑁2〉1 − 〈𝑁2〉0]} 𝑑𝜇1    (2.6)  

Now the chemical potential of the fixed water 𝜇1
∗ can be related to 𝜇1 through the following 

well–known formula: 289,304 

𝑑𝜇1
∗ = 𝑑𝜇1 − 𝑘𝑇𝑑 ln

〈𝑁1〉0

𝑉
     (2.7)  

Combining Eqs. (2.6) and (2.7) obtains the following:  

(
𝜕𝜇1

𝜕 ln 𝑛1 
)

𝑇,𝑃
=

𝑘𝑇

1+[〈𝑁1〉1−〈𝑁1〉0]−

〈𝑁1〉0
𝑉

〈𝑁2〉0
𝑉

[〈𝑁2〉1−〈𝑁2〉0]

      (2.8)  
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Rewriting Eq. (2.8) using the conventional notation: the number density 𝑛𝑖 =
〈𝑁𝑖〉0

𝑉
 and the 

KB integrals defined as296,304  

𝐺𝑖𝑗 = 𝑉
〈𝑁𝑗〉𝑖−〈𝑁𝑗〉0

〈𝑁𝑗〉0
     (2.9) 

Eq. (2.8) can then be simplified as:    

(
𝜕𝜇1

𝜕 ln 𝑛1 
)

𝑇,𝑃
=

𝑘𝑇

1+𝑛1(𝐺11−𝐺12)
                (2.10)  

 Eq. (2.10) connects the thermodynamic data (l.h.s.) to the difference of KB 

integrals (𝐺11 − 𝐺12). The significance of the KB integral is that it is the measure of 

solution structure. This can be seen most clearly by rewriting Eq. (2.9) in terms of the radial 

distribution function between the species 𝑖 and 𝑗, 𝑔𝑖𝑗(𝑟) (where 𝑟 is the distance between 

the centres of mass of 𝑖 and 𝑗 molecules), as148,149,287–289,291–296,304–306 

𝐺𝑖𝑗 = ∫ 𝑑𝑟4𝜋𝑟2[𝑔𝑖𝑗(𝑟) − 1]     (2.11) 

𝐺𝑖𝑗 usually takes negative values, reflecting the contributions from small 𝑟 where 𝑔𝑖𝑗(𝑟) =

0 due to steric repulsion, which contributes negatively to 𝐺𝑖𝑗; however, if an attractive 

interaction exists between 𝑖 and 𝑗, 𝑔𝑖𝑗(𝑟) exhibits peak values much greater than 1, which 

contributes positively to  𝐺𝑖𝑗. Thus 𝐺𝑖𝑗 reflects the excluded volume, as well as attraction 

between 𝑖 and 𝑗.  

 Eq. (2.10) is well known in the KB theory of two–component solutions, which has 

been derived mainly via the inversion of two–component KB theory,289,291 or via a pair of 

Gibbs–Duhem equations for a three–component system in the vicinity of the solute and in 

the bulk.288,292–296,304,306 The present derivation is much simpler and more transparent, due 

to the explicit introduction of inhomogeneous solution theory.  

  In the following, a full theoretical background and procedure on how to determine 

𝐺11, 𝐺12 and 𝐺22 individually from experimental data is presented, even though the 

equations derived from the inversion of KB theory are well–known and have been widely 

used.288,289,291–296,303–306 This is indispensable due to the strong non–ideality of our systems, 
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as well as the sizeable disparity in interactions, which necessitates a special care towards 

an accurate determination of the KB integrals, especially towards the low water 

concentration limit. The calculation procedure is therefore explained below in more detail 

than would be necessary for simpler mixtures.  

2.2.2 Determination of ion–water and water–water KB integrals  

 

 Our first goal is to determine 𝐺11 and 𝐺12 from published data. To do so, let us first 

start from Eq. (2.6), and relate 𝐺11 − 𝐺12 to the experimental data. Note that an equilibrium 

condition exists, 𝜇1 = 𝜇1
𝑣𝑎𝑝

, where 𝜇1
𝑣𝑎𝑝

 is the chemical potential of the water vapor and 

consists of the following intramolecular and translational contributions: 288,289,291–296,303–306  

𝜇1
𝑔𝑎𝑠

= 𝜇1
𝑖𝑛𝑡𝑟𝑎 + 𝑘𝑇 ln 𝑛1

𝑣𝑎𝑝
Λ1

3       (2.12)  

where Λ1
3 is the momentum partition function and 𝑛1

𝑣𝑎𝑝
 is the density of water vapor. Note 

that neither 𝜇1
𝑖𝑛𝑡𝑟𝑎 nor Λ1

3 depend on 𝑛1, hence Eq. (2.10) can be simplified into the 

following form:  

𝑛1(𝐺11 − 𝐺12) = (
𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

− 1     (2.13) 

where 𝑛1
𝑣𝑎𝑝

 can be obtained directly from the vapor pressure 𝑃𝑣𝑎𝑝 and the ideal gas 

equation of states.  

 In order to determine 𝐺11 and 𝐺12 from experimental data, an additional, 

independent equation is needed which involves these two parameters.292–296,304,306 Such an 

equation can be obtained from the pressure derivative of Eq, (2.3), which yields: 

(𝑛1𝐺11 + 1)𝑉1 + 𝑛2𝐺12𝑉2 − 𝑅𝑇𝜅𝑇 = 0      (2.14)  

where 𝑉𝑖 is the partial molar volume of the species 𝑖, and 𝜅𝑇 is the isothermal 

compressibility of the solution mixture, which, again, is negligibly small. Using Eq. (2.13), 

Eq. (2.14) can be rewritten into the following parallel form: 

𝐺12 ≡  𝐺21 = −𝑉1 (
𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

+ 𝑘𝑇𝜅𝑇     (2.15) 
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where 𝑛1𝑉1 + 𝑛2𝑉2 = 1, whch can easily be derived from Eq. (2.5), was used in 

conjunction. Note that 𝐺12 → −𝑉1 + 𝑘𝑇𝜅𝑇 at 𝑛1 → 0, which can be derived easily by the 

help of Eq. (2.10). This clarifies the limiting behaviour (
𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

→ 1 as 𝑛1 → 0. 

Combining Eqs. (2.13) and (2.14), the following expression for 𝐺11 is obtained:  

𝐺11 =
1

𝑛1
[𝑛2𝑉2 (

𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

− 1]     (2.16) 

The KB integrals 𝐺11 and 𝐺12 can thus be determined from experimental data through Eqs. 

(2.15) and (2.16).  

The form of Eq. (2.16) shows that special care  is required in obtaining 𝐺11 at low water 

concentrations; as 𝑛1 becomes smaller, 𝑛2𝑉2 tends to 1, as well as (
𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

– hence the 

calculation of 𝐺11 requires a careful evaluation of 𝑛2𝑉2 (
𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

at low 𝑛1.  

2.2.3 Determination of ion–ion KB integral 

 

 The presence of water in ILs has been postulated to weaken ion–ion interactions 

(Section 1.6.2). To answer this question,159–166 let us determine the ion–ion KB integral, 

𝐺22 in the presence of residual water. Exchanging the indices 1 and 2 in Eq. (2.10), and 

combining it with the Gibbs–Duhem equation (Eq. (2.5) with 𝑑𝑃 = 0), the following 

equation is obtained:    

(
𝜕𝜇1

𝜕𝑛2
)

𝑇,𝑃
= −

𝑘𝑇

𝑛1[1+𝑛2(𝐺22−𝐺21) ]
     (2.17) 

which is consistent with the result from KB inversion.292 Combining Eq. (2.17) with Eq. 

(2.13),  the following simple expression analogous to Eq. (2.13) is obtained:  

𝑛1(𝐺21 − 𝐺22)  = (
𝜕 ln 𝑛2

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

+
𝑛1

𝑛2
     (2.18) 

Note here that 

 (
𝜕 ln 𝑛2

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

= (
𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

(
𝜕 ln 𝑛2

𝜕 ln 𝑛1
)

𝑇,𝑃
=

𝑛1

𝑛2
  (

𝜕𝑛2

𝜕𝑛1
)

𝑇,𝑃
(

𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

 (2.19) 
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Combining Eqs. (18) and (19) with Eq. (12), the following expression for 𝐺22 emerges:  

𝐺22 = −𝑉1 (1 −
1

𝑛2𝑉2
) (

𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

−
1

𝑛2
+ 𝑘𝑇𝜅𝑇     (2.20)  

where a thermodynamic relationship (
𝜕𝑛2

𝜕𝑛1
)

𝑇,𝑃
= −

𝑉1

𝑉2
 has been used in conjunction.289 At 

the limit of 𝑛1 → 0, 1 −
1

𝑛2𝑉2
→ 0 and (

𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

→ 1, which leads to 𝐺22 → −
1

𝑛2
+

𝑘𝑇𝜅𝑇 ≃ −𝑉2, as one expects from one–component systems.  

To summarize, all the KB integrals necessary to describe molecular interactions in the IL–

water mixture can be obtained by the combination of vapor pressure and density data.  

2.3 Results and Discussion  
 

2.3.1 Source of experimental data  

 

The objective is to clarify the how residual water molecules interact in ILs. This 

was achieved through the evaluation of three hypotheses proposed thus far on the role of 

residual water. The evaluation will be carried out in the framework of the KB theory 

(Section 2.2), through the calculation of the water–water (𝐺11), water–ion (𝐺12) and ion–

ion (𝐺22) KB integrals.288,289,291–296,304–306 The calculation of KB integrals requires 

experimental data as input: vapor pressure307,308  and density309,310 of IL–water mixtures. 

There are three systems in the literature for which density and vapor pressure have been 

measured in the IL–rich region as a function of water concentration, which are 1–butyl–3–

methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1–ethyl–3–methylimidazolium 

tetrafluoroborate ([EMIm][BF4]) and 1–ethyl–3–methylimidazolium 

trifluoromethanesulfonate ([EMIm][OTf]) (Figure 2.1). Due to the very low volatility of 

pure ionic liquids, the assumption that the vapor pressure of an IL/water mixture is the 

partial vapor pressure of water is made.  



 J. E. S. J. Reid 

57 

 

The key to calculating water–water and water–ion KB integrals, 𝐺11 and 𝐺12, is 

(
𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

= (
𝜕 ln 𝑛1

𝑣𝑎𝑝

𝜕 ln 𝑛1
)

𝑇,𝑃

−1

, as seen in Eqs. (2.14) and (2.15). Here the quantity is 

calculated by combining vapor pressure and density data, as shown in Figure 2.1. The 

regression equations necessary to calculate the derivative have been summarized in Tables 

2.1 and 2.2.  

  

 

Figure 2.1 Dependence of the density of water vapor, ln 𝑛1
𝑣𝑎𝑝

, on the molarity of water 

dissolved in IL, ln 𝑛1. ln 𝑛1
𝑣𝑎𝑝

 was calculated using vapor pressure data from ref. 307 & 

308, and  ln 𝑛1 was calculated from density data from Refs. 309 and 310. The KB 

parameters were subsequently calculated using the gradient of the graph. 
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Table 2.1: Fitting parameters for the calculation of (
𝜕 ln 𝑛1

𝑣𝑎𝑝

𝜕 ln 𝑛1
)

𝑇,𝑃
necessary for Eqs (2.12), 

(2.15), (2.16) and (2.20). To this end, the experimental data (taken from Refs 307 and 308) in 

Figure 1 is fitted against the equation ln 𝑛1
𝑣𝑎𝑝

= 𝑎 + 𝑏 ln 𝑛1 + 𝑐(ln 𝑛1)2 .   

 

 

IL/water system a b c R2 

[BMIm][BF4] 1.9220 0.1287 –0.0503 0.9999 

[EMIm][BF4] 3.0209 0.4526 –0.0288 0.9995 

[EMIm][OTf] 2.6929 0.3415 –0.0442 0.9999 

 

Table 2.2: Parameters for the fitting function 𝜌 =
𝑎𝑥2+𝑏

𝑥2+𝑐
  where 𝜌 is the density of mixture 

and 𝑥2  is the mole fraction of IL, necessary for the calculation of partial molar volumes 

following a well–established procedure.291,292,294,306 Density data taken from Refs 309 and 310. 

 

 

IL/water system a b c R2 

[BMIm][BF4] 1.223 0.1243 0.1244 0.9997 

[EMIm][BF4] 1.338 0.2097 0.2103 0.9999 

[EMIm][OTf] 1.423 01058 0.1060 1.0000 
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2.3.2 Water–water and water–ion interaction  

 

From (
𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

 one can readily calculate the preferential water–water 

interaction relative to the water–ion interaction, namely 𝑛1(𝐺11 − 𝐺12), based upon Eq. 

(13). The 𝑛1(𝐺11 − 𝐺12), as can be seen from Figure 2.2, shows a preferential water–ion 

interaction (relative to water–water) at very low water concentrations. From here onwards, 

conventional mole fraction of water, 𝑥1 =
𝑛1

𝑛1+
𝑛2
2

, which is commonly used in the literature, 

has been used in the Figures; note that 
𝑛2

2
 is the concentration of the IL, expressed via the 

concentration of ions, 𝑛2.288,291,305 As the water concentration increases, all the systems 

exhibit preferential water–water interactions in comparison to water–ion.   

In order to address the cause of the strong concentration–dependence of the 

preferential water–ion interaction as observed in Figure 2.2, especially the strong 

preferential water–ion interaction at low 𝑥1, it was necessary to calculate 𝐺11 and 𝐺12 

individually, through Eqs. (15) and (16). 𝐺12, calculated using Eq. (15) and shown in Figure 

2.3, is negative in value (as one expects from Eq. (15)) and depends weakly on 𝑛1; hence 

the strong 𝑥1 dependence of the preferential water–ion interaction should come from the 

𝑥1 dependence of 𝐺11.  
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Figure 2.2 Dependence of the preferential solvation of water n1(G11 – G12) (cm3 mol–1) on 

the mole fraction of water (x1) as calculated by equation (2.13).  

  

 

 

 

 

 

 

 



 J. E. S. J. Reid 

61 

 

 

 

Figure 2.3 The water–ion Kirkwood Buff Integral G12 (cm3 mol–1) at low water mole 

fraction (x1) for the three systems studied as calculated by equation (2.15).  
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That 𝐺11 is indeed strongly dependent upon 𝑥1 is shown by Figure 2.4, which has 

been calculated through Eq. (2.16). This addresses the question posed in section 1.6.1; 

whether the water is dispersed throughout the ILs (hypothesis 1),150–154  or is clustered 

around some specific sites (hypothesis 2).155–158 𝐺11 is large and negative at low 𝑛1 (Figure 

2.4), reflecting the 
1

𝑛1
 factor in Eq. (2.15), suggesting that the water molecules tend to be 

excluded from one another. This is in contrast to hypothesis 2, according to which residual 

water molecules tend to self–associate or to form clusters;155–158 the effect of self–

association is negligible overall compared to self–dissociation.  

The KB integral 𝐺11is the overall measure of the water–water interaction; as is 

clear from Eq. (2.11), it is the spatial integral of 𝑔11(𝑟) − 1 – hence the conclusion from 

KB theory of strong net dissociation of water molecules is not necessarily inconsistent with 

the observation based upon the FT–IR and far–infrared spectra that water molecules 

dissociate weakly at low concentrations in hydrophilic ILs.155,156 That the fraction of water 

that form dimers is a minority is indeed consistent with the results in this chapter, because 

such a contribution to 𝐺11, namely the contribution from 𝑔11(𝑟) peak at water–water 

contact distance, is overwhelmed by the majority of water molecules that do not form 

dimers, thereby making 𝑔11(𝑟) smaller than 1 at distances larger than water–water contact.  

The results shown support hypothesis 1, according to which water molecules are 

dispersed throughout the medium through favourable interactions. The calculation cannot 

exclude the existence of a small fraction of dimeric water, yet is consistent with the 

observation that only a small fraction of water molecules dimerize in ILs. Note that, due to 

the lack of experimental data, the limiting value of 𝐺11 could not be determined from this 

method; nevertheless, the analysis here has clarified that, in the three IL–water systems 

evaluated, water molecules tend to be far apart from each other, rather than clustered 

together. 
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Figure 2.4 The water–water Kirkwood Buff Integral G11 (cm3 mol–1) at low water mole 

fraction (x1) for the three systems studied as calculated by equation (2.16).  
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2.3.3. Ion–ion interaction  

 

In order to address question 2 outlined in section 1.6.2, it was necessary to assess 

the extent to which residual water molecules weaken the ion–ion interaction (hypothesis 

3). 159–161 If residual water does indeed exert such an effect, the KB integral between ion 

and ion would be affected by the presence of the residual water. To examine whether this 

occurs, 𝐺22 was calculated using Eq. (18), as shown in Figure 2.5. The negative sign of 𝐺22 

at low water concentration is rationalized by its pure IL limit, 𝐺22 → −𝑉2, as discussed in 

the previous section. Indeed 𝑉2 at this limit can be calculated from the density data309,310 to 

be –94.3, –77.4 and –93.1 cm3 mol–1 for [BMIm][BF4], [EMIm][BF4] and [EMIm][OTf], 

respectively, which is consistent with Figure 2.5. Note that the positive sign of 𝑉2 comes 

from the excluded volume of the ions, which rationalizes the negative 𝐺22.  

If residual water molecules were to weaken the ion–ion interaction, a decrease (i.e., 

change towards less positive) in the ion–ion radial distribution function should be observed, 

making  𝐺22 more negative as the water concentration increases. As seen in Figure 2.5, the 

results do indeed support this expectation: a slight weakening of ion–ion interaction does 

take place in the presence of water. This effect seems to be very weak however, barely 

seeming to affect the thermodynamics of mixture (Eq. (2.17)), in which the chemical 

potential of water is hardly affected by 𝐺22. This is also illustrated by the dependence of 

the preferential solvation of the ions, 𝐺21 − 𝐺22, as seen in Figure 2.6. It should be 

emphasized that G22 represents the overall measure of ion–ion interactions; while on the 

whole the interactions do not change, there may be competing effects as a result of residual 

water molecules.   
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Figure 2.5 The ion–ion Kirkwood Buff Integral G22 (cm3 mol–1) at low water mole 

fraction (x1) for the three systems studied as calculated by equation (2.20).  
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Figure 2.6 Dependence of the preferential solvation of the ions, (G21 – G22) (cm3 mol–1) on 

the molarity of water, x1 as calculated by equation (2.18).  
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2.4. Comparison between different ILs  

 

Finally, the extent of preferential water–ion interaction over water–water 

interaction  (𝑛1(𝐺11 − 𝐺21)) and preferential water–ion interaction over ion–ion 

interaction (𝐺21 − 𝐺22) was evaluated between the three different ILs.  At low water 

concentrations, 𝑛1(𝐺11 − 𝐺21) and 𝐺21 − 𝐺22 show the following order, as seen in Figures 

2.2 and 2.6, respectively: [EMIm][OTf] > [BMIm][BF4] > [EMIm][BF4]. This is the same 

as the order of the lattice free energies of the pure ILs, as seen in Table 3,311  suggesting 

that the preferential ion–water interaction at low water concentrations is determined chiefly 

by the ease of breaking ion–ion interactions.   

As the water concentration increases, the magnitude of 𝐺11 − 𝐺21changes its order 

to the following: [EMIm][OTf] > [EMIm][BF4] > [BMIm][BF4]. This now reflects the 

order of the static dielectric constant of each pure IL,312 suggesting  that with increasing 

water concentration, the IL’s ability to solvate water bears greater resemblance to the 

“polarity” of the pure IL  as described by the static dielectric constant.313,314 Rationalising 

this observation at a molecular scale requires further studies involving computer 

simulation.315,316 The magnitude of 𝐺21 − 𝐺22 changes very little, showing that increasing 

the water content of these ILs doesn’t change the preference of the ion–water interactions 

over the ion–ion interactions. 

Table 2.3: Literature values of the lattice free energy (ΔlattG°) and the static dielectric 

constant at 298.15K (ε) of each IL used in this study. Lattice free energies are from ref. 48 

and static dielectric constants are from ref. 49. 

 

IL/water system 
ΔlattG° / 

kJ mol–1 ε 

[BMIm][BF4] 373 11.7 ± 0.6 

[EMIm][BF4] 395 12.8 ± 0.6 

[EMIm][OTf] 363 15.2 ± 0.3 
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To summarize, the relative strengths of water–ion interactions at low water 

concentrations correlate well with the difficulty of breaking ion–ion interactions. At higher 

water concentrations, the solvation properties of the three ILs correlate with the static 

dielectric constants of the pure ILs. What is observed in all three systems is a preference of 

water–ion interactions over ion–ion interactions, which describes well the hydrophilic 

nature of these solvents. At this time, there is no complete hygroscopic data to draw 

quantitative comparison with our results.  

 

2.5 Conclusions 

 

Residual water in ILs profoundly affects their structure, properties and behaviour 

as solvents, hence a better understanding of the role of residual water at the molecular level 

is indispensable when assessing the potential of ILs to be applied in anything other than 

fully anhydrous environments. Conflicting hypotheses have been proposed on molecular 

interactions in ILs in the presence of residual water. The Kirkwood–Buff (KB) theory of 

solutions287–289,291–296,303–306 has facilitated the clarification of water–water, water–IL and 

IL–IL interactions in three ILs of varying hydrophilicity mixed with a small quantity of 

water. These interactions have been calculated based only on published density and activity 

data of the mixtures.  

The KB calculations show that at low water concentration, the structure of water 

is highly concentration dependant, as evident by the change in G11 (Figure 2.4). At the 

lowest calculated concentrations of water for all three systems, water molecules are 

preferentially solvated by the IL (i.e. do not form aggregates or nanoclusters).157,158 if they 

form dimers, only a fraction of the water molecules participate,155,156 hence the effect of 

dimerization is negligible (hypothesis 2). As water concentration increases, a change in the 

preferential solvation of water is observed; Water molecules tend to be far apart from each 

other, rather than aggregated, which supports previous suggestions (hypothesis 1).150–154 In 
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contrast to hypothesis 3,159–161 the effect on thermodynamics of the water–induced 

weakening of ion–ion interactions seems to be very weak, at least in the three ILs studied.  

The primary conclusion to result from our KB analysis was therefore that the water 

molecules bind strongly to ions individually, instead of as an aggregate or cluster. Residual 

water molecules are overall kept well apart from each other. The KB theory does not permit 

the more detailed breakdown of water–anion vis–à–vis water–cation interactions; computer 

simulation is indispensable, albeit in a force field dependent manner, to disseminate the 

two interactions. 315,316 

The observed trends in the magnitude of preferential water–water relative to water–

ion interactions, n1(G11 – G21), can be rationalized by the lattice free energies and the static 

dielectric constants of the pure ILs, which suggests the importance of both ion–ion binding 

and solvent polarity in understanding the behaviour of residual water in ILs. The 

preferential solvation of ions, 𝐺21 − 𝐺22, indicates that all three ILs studied are hydrophilic, 

however there is insufficient hygroscopic data to draw conclusions at this time.  
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Chapter 3: Comparing the Interactions in Ionic Liquid–Water 

Mixtures in Protic and Aprotic Systems. 
 

3.1 Introduction 
 

The sensitivity of ionic liquids (ILs) to water affects their physical and chemical 

properties, even at relatively low concentrations, yet the structural thermodynamics of 

protic IL (PIL)–water systems at low water concentrations remains unclear. In the context 

of PIL–water mixtures, the following important questions have been posed in the literature 

(as discussed in section 1.6), and have not been answered clearly;  

1) Does water interact more strongly with protic ILs than with aprotic ILs?165,167–181 

2) Does the presence of water weaken ion–ion interactions in PILs?162–164,166,317 

3) Does the structure of PIL–water systems reflect homogeneous mixture or the 

formation of heterogeneous structures?182–186 

In continuation from Chapter 2, three additional systems have been selected to study 

how the ionic nature of an IL influences its interactions with water. Using the rigorous 

Kirkwood–Buff (KB) theory of solutions, the interactions between species in IL–water 

systems summarized as KB parameters are determined solely from thermodynamic data. 

The three additional systems in question feature both PILs (N,N–

dimethylethanolammonium bis(trifluoromethanesulfonyl)imide ([HDMEtA][NTf2]) and 

N,N–dimethylethanolammonium propionate ([HDMEtA][Pr])) and an aprotic IL (AIL) 

(cholinium bis(trifluoromethanesulfonyl)imide ([Ch][NTf2]). For comparison, the same 

three systems discussed in Chapter 2 are retained for discussion in this chapter. While not 

representative of the wide variety of PIL and AIL structures, the variation in both anion 

and cation structure allow for study on how the ionic nature (protic vs. aprotic, high ionicity 

PIL vs. low ionicity PIL) influences the interactions in IL–water binary mixtures at low 

water compositions.  



 J. E. S. J. Reid 

71 

 

3.2 The Kirkwood–Buff theory of binary mixtures  
 

3.2.1 General Strategy for Understanding Interactions in Ionic Liquid–Water 

Binary Mixtures 

 

 Based upon the rigorous statistical thermodynamic KB theory for binary mixtures, 

thermodynamic data can be used to reveal the structure of IL–water mixtures. 

148,287,289,291,304,305 A more detailed discussion on the derivation of the KB parameters as used 

in this work has been shown in Chapter 2. 148,149,287–289,291–299,304–306,318  

The KB integrals in a two component system can be determined through the well–

known formulae: 148,149,287–289,291–299,304–306,318 

𝐺21 = −
𝑛𝑉1𝑉2

𝐷
+ 𝑘𝑇𝜅𝑇        (3.1) 

𝐺11 =
𝑛2𝑉2

2𝑛

𝑛1𝐷
−

1

𝑛1
+ 𝑘𝑇𝜅𝑇        (3.2)  

𝐺22 = −
1

𝑛2
+

𝑛1𝑉1
2𝑛

𝑛2𝐷
        (3.3) 

where 𝑛𝑖 and 𝑉𝑖 respectively express the concentration and the partial molar volume of 

species 𝑖, and 𝜅𝑇 is the isothermal compressibility (typically of negligible contribution to 

KBI values); 𝑛 = 𝑛1 + 𝑛2 has also been used. Here, 𝐷 is the key quantity for KB integral 

determination: 148,149,287–289,291–299,304–306,318 

𝐷 =
𝑥1

𝑘𝑇
(

𝜕𝜇1

𝜕𝑥1
)

𝑇,𝑃
= (

𝜕 ln 𝑎1

𝜕 ln 𝑥1 
)

𝑇,𝑃
     (3.4)  

where 𝜇𝑖 , 𝑥𝑖  and 𝑎𝑖 respectively express the chemical potential, the mole fraction 

and the activity of the species 𝑖.  

 The above formulae to calculate the KB integrals are equivalent yet slightly 

different to the formulae used in Chapter 2 to calculate the same quantities. This was 

necessary, as the quantity D is required for the discussion of overall mixing behavior in IL–

water systems (section 3.2.2). That these two sets of formulae are equivalent can be shown 

in a straightforward manner: by using the following relation: 
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 (
𝜕𝑛1

𝜕𝑥1
) = 𝑛2𝑉2         (3.5) 

And in combination with Eqn. (3.4), the following expression for D is obtained: 

𝐷 =
𝑉2𝑛𝑛1

𝑘𝑇
(

𝜕𝜇1

𝜕𝑛1
)

𝑇,𝑃
        (3.6)  

Equation 3.6 is equivalent to the following: 

 
𝑘𝑇

𝑛1
(

𝜕𝑛1

𝜕𝜇1
)

𝑇,𝑃
= (

𝜕 ln 𝑎1

𝜕 ln 𝑛1
)

𝑇,𝑃

−1
= (

𝜕 ln 𝑛1
𝑣𝑎𝑝

𝜕 ln 𝑛1
)

𝑇,𝑃

−1

     (3.7) 

where 𝜇1 and  𝑎1 is the chemical potential and the activity of water, and is used to determine 

the KB integrals using the formulae described in Chapter 2: 148 

𝐺12 = −𝑉1 (
𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

+ 𝑘𝑇𝜅𝑇     (2.15) 

𝐺11 =
1

𝑛1
[𝑛2𝑉2 (

𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

− 1]     (2.16) 

𝐺22 = −𝑉1 (1 −
1

𝑛2𝑉2
) (

𝜕 ln 𝑛1

𝜕 ln 𝑛1
𝑣𝑎𝑝)

𝑇,𝑃

−
1

𝑛2
+ 𝑘𝑇𝜅𝑇     (2.20)  

 

3.2.2 Quantifying the closeness to phase separation  

 

In order to compare quantitatively how close IL–water mixtures are to phase 

separation (section 1.6.4), the thermodynamic criterion for phase stability, 

namely 𝑥2 (
𝜕 ln 𝛾2

𝜕𝑥2
) > −1 where 𝛾𝑖 is the activity coefficient of the species 𝑖 has been 

employed.300,301,319 Using Eqn. (3.4), this translates to the following condition  

𝐷 = 𝑥2 (
𝜕𝜇2

𝜕𝑥2
)

𝑇,𝑃
> 0        (3.8)  

The D parameter summarizes the change in chemical potential of a given species with 

respect to its composition within a defined mixture. Using the Gibbs–Duhem equation, the 

single parameter accounts for the thermodynamic behaviour of the species within a 

multicomponent system (in our case, the IL and water). This 𝐷 can also be measured by 

scattering experiments; by straightforward algebra, this 𝐷 can be linked directly to the 
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variance of mole fraction related to the zero wave vector value of the concentration–

concentration structure factor, 𝑆𝑐𝑐(0) as 303,320–325  

𝐷 =
𝑥1𝑥2

𝑆𝑐𝑐(0)
− 1          (3.9)  

 

3.2.3 Water activity and density data  

 

The calculation of KB integrals requires experimental data as input: vapor pressure 

and density of IL–water mixtures. Water activity data on three IL–rich mixture systems 

have been taken from the literature, 66,326 which include [Ch][NTf2], [HDMEtA][NTf2] and 

[HDMEtA][Pr].49 The structures of the ILs vary both the anion and cation structure, as well 

as featuring both protic and aprotic ILs. Density data of the binary mixtures featuring the 

above ILs was taken from the PhD thesis of Dr. Richard Gammons, University of York 

(2015).149,327 

Table 3.1: Parameters for the fitting function 𝜌 =
𝑎𝑥2+𝑏

𝑥2+𝑐
  where 𝜌 is the density of mixture 

and 𝑥2  is the mole fraction of IL, necessary for the calculation of partial molar volumes 

following a well–established procedure.138,169–171 Density data taken from Refs 309 and 310 

for [BMIm][BF4], [EMIm][BF4] and [EMIm][OTf] 

IL/water system 𝑎 𝑏 𝑐 𝑅2 

[BMIm][BF4] 1.223 0.1243 0.1244 0.9997 

[EMIm][BF4] 1.338 0.2097 0.2103 0.9999 

[EMIm][OTf] 1.423 01058 0.1060 1.0000 

[DMEtA][Pr]* –0.02876 0.09512 0.998197 1.0000 

[DMEtA][NTf2] 1.655 0.08242 0.08251 1.0000 

[Ch][NTf2] 1.596 0.1206 0.1038 1.0000 

 

*The density of the system [DMEtA][Pr] and water was better fitted using a polynomial 

expression of the form 𝜌 = 𝑎𝑥2
2 + 𝑏𝑥2 + 𝑐 

 



  University of York 

74 

 

Table 3.2: Fitting parameters for the calculation of (
𝜕 ln 𝑎1

𝜕 ln 𝑥1
)

𝑇,𝑃
necessary for Eqn. (3.4) and 

all subsequent Kirkwood Buff Integral calculations. To this end, the experimental data 

(taken from Refs. 66 and 326 for [DMEtA][Pr], [DMEtA][NTf2] and [Ch][NTf2] and Refs 307 

and 308 for [BMIm][BF4], [EMIm][BF4] and [EMIm][OTf]) in Figure 3.1 is fitted against 

the equation ln 𝑎1
𝑣𝑎𝑝

= 𝑎 + 𝑏 ln 𝑥1 + 𝑐(ln 𝑥1)2 .   

IL/water system 𝑎 𝑏 𝑐 𝑅2 

[BMIm][BF4] 0.3214 0.6993 –0.0381 0.9999 

[EMIm][BF4] 0.4207 0.7453 –0.0264 0.9993 

[EMIm][OTf] 0.3235 0.8834 –0.0300 0.9998 

[DMEtA][Pr] –0.2591 1.0715 0.0327 0.9997 

[DMEtA][NTf2] 0.3969 0.5624 –0.0245 0.9997 

[Ch][NTf2] –0.4646 –0.7199 –0.3445 0.9983 

 

In addition, data sets of water activity307,308  and density 309,310 of the three IL–water 

mixtures featuring the ILs 1–butyl–3–methylimidazolium tetrafluoroborate 

([BMIm][BF4]), 1–ethyl–3–methylimidazolium tetrafluoroborate ([EMIm][BF4]) and 1–

ethyl–3–methylimidazolium trifluoromethanesulfonate ([EMIm][OTf]) studied in Chapter 

2 are utilized. The experimental water activity and density data have been utilized in Figure 

3.1, with subsequent differentiation producing the D value (Eqn (3.4)) as will be shown in 

section 3.3.3, which is used to calculate all KB integrals (Eqn (3.1)–(3.3)). 
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Figure 3.1 Dependence of the activity of water (ln 𝑎1) on the mole fraction of water 

dissolved in IL (ln 𝑥1). Fitting functions of the plots are used to calculate the KB 

parameters. Coefficients of the fitting functions are summarized in Table 3.2. 
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3.3 Results and Discussion 
 

3.3.1 Does water interact more strongly with protic or aprotic ILs? (Question 1) 

 

To answer this question, the values of the ion–water interaction parameter, G21, for 

all six systems are utilized. Two pairs of ILs have been selected to compare the ion–water 

interactions in protic and aprotic ILs; one representing hydrophobic ILs, the other 

representing the hydrophilic ILs from this study.  

3.3.1.1 Hydrophobic ILs 

 

Both the [Ch][NTf2] and [HDMEtA][NTf2] feature the 

bis(trifluoromethanesulfonyl)imide anion, near–universally regarded as extremely 

hydrophobic, ammonium cation (quaternary for the aprotic, tertiary for the protic) and 

hydroxyl functional group on the cation. (The similarity in ion structure results in 

comparable average ion size, which can be inferred roughly by the partial molar volume of 

the ILs at 𝑛1 → 0, i.e., 169.45 cm3 mol–1 for [HDMEtA][NTf2] and 176.47 cm3 mol–1 for 

[Ch][NTf2]). Despite the similarity in structure, the two ILs exhibit distinctly different 

degrees of interaction with water. At the lowest comparable measured concentration of 

water (x1 = 0.073), The AIL [Ch][NTf2] shows more favorable ion–water interactions than 

the PIL [HDMEtA][NTf2] (Figure 3.2). Both ILs feature hydroxyl functional groups on the 

cation, which are expected to act as hydrogen bond donors towards water, as well as with 

the anion.328,329 Protic ionic liquids have often been described as having strong, directional 

hydrogen–bonding networks present as a result of the charge transfer formation of ions, in 

some cases also being compared to water.218 This can create strong differences in the local 

structure of analogous protic and aprotic ILs.330 As a result, it is likely that the availability 

of the hydroxyl groups on the cation to form hydrogen bonds with, at low water 

concentrations, is restricted. As the ion–ion interactions in AILs are typically dependent on 
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diffuse electrostatic interactions, there is less restriction to the ion–water mode of 

interaction through hydrogen bonding.  

 

With increasing water concentration, ion–water interactions become less 

preferential in both systems; however, for the [Ch][NTf2] system G21 decreases more 

drastically, eventually becoming more negative than for [HDMEtA][NTf2] at around x1 ≈ 

0.20. This implies more preferential ion–water interactions in the PIL than in the analogous 

AIL at x1 > 0.20. At these higher water concentrations, it is likely that a reorganization of 

water in the AIL takes place, resulting in an increase in the strength of water–water 

interactions. This is supported by an increase in G11 (Figure 3.3) from large and negative 

values at low water concentration (as discussed in the previous chapter148) to large and 

positive values, larger than in [HDMEtA][NTf2] at around x1 ≈ 0.20. (Note that, due to the 

inherent difficulties in measuring low water activity, the values of 𝐺11 should be considered 

only indicative of qualitative trend at this end.)   
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Figure 3.2 The dependence of water–ion Kirkwood Buff Integral G21 (cm3 mol–1) on water 

mole fraction (x1) for the two hydrophobic ionic liquid systems studied as calculated by 

Eqn. (3.1).  
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Figure 3.3 The dependence of water–water Kirkwood Buff Integral G11 (cm3 mol–1) on 

water mole fraction (x1) for the six systems studied as calculated by Eqn (3.2).  
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3.3.1.2 Hydrophilic ILs 

 

While not analogous in structure, the PIL [HDMEtA][Pr] and the AIL [EMIm][OTf], 

represent the most hydrophilic of the ILs from this study. Here, note that [EMIm][OTf] is 

larger in size than [HDMEtA][Pr] (which can be inferred roughly by their respective pure–

phase partial molar volumes, namely 94.13 cm3 mol–1 for [EMIm][OTf] and 76.69 cm3 mol–

1 for [HDMEtA][Pr]).  Over the entire comparable compositions, [EMIm][OTf] exhibits 

greater G21 values than [HDMEtA][Pr] (Figure 3.4). This result conveys that water–ion 

interactions are more favorable in [EMIm][OTf] than in [HDMEtA][Pr] at the 

concentration range studied.  While the structures of these two ILs are distinctly different, 

they both feature anions and cations that could form hydrogen bond interactions with water 

(The hydrogen at the C2 position of the imidazolium ring of the cation and the oxygen 

atoms on the triflate anion for [EMIm][OTf]; the hydroxyl and tertiary ammonium groups 

on the cation and the oxygen atoms on the propionate anion for [HDMEtA][Pr]). The 

triflate anion has been shown from classical MD simulations to able to form strong 

hydrogen bonds with water at low concentrations through the oxygen atoms.331,332 Even at 

greater water concentrations, the anions of aprotic ILs such as [BMIm][BF4] and 

[EMIm][OTf] have shown to significantly interact with water, resulting in a picture of 

water–anion networks.315,333 Note that the stronger water–ion interaction of the PIL is 

observed over the entire concentration range studied here, unlike the case of the 

hydrophobic ILs, for which the relative strength of ion–water interaction was shown to 

depend strongly on water concentration. 
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Figure 3.4 The dependence of water–ion Kirkwood Buff Integral G21 (cm3 mol–1) on water 

mole fraction (x1) for the two hydrophilic ionic liquid systems studied as calculated by Eqn 

(3.1). 

 

 

 

 

 

 

 

 

 

 

 



  University of York 

82 

 

3.3.2 Does water weaken ion–ion interactions in PILs? (Question 2) 

 

To answer this question, the dependence of water mole fraction on the ion–ion KB 

parameter, G22 (Figure 3.5) can be used.  For all but one of the IL–water systems (that of 

[Ch][NTf2]), there is a slight decrease of G22 with increasing water content. The degree of 

weakening of ion–ion interactions is seemingly comparable for these systems, despite the 

wide variety of IL structures present. This relatively small decrease in G22 suggests that 

ion–ion interactions are relatively unchanged by the presence of water. This is in agreement 

with previous studies into the liquid structure and interactions in PIL systems upon addition 

of water. 162,163 In Chapter 2, the conclusion was that G22 has little impact on the chemical 

potential of water, which in turn is reinforced by the relatively small change observed for 

the preferential solvation of ions (G21 – G22) (Figure 3.6).148  As well as establishing that 

ion–ion interactions are relatively unaffected by the presence of water, Figure 3.6 

demonstrates that ion–water interactions are preferable to ion–ion interactions over the 

studied concentration range.  
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Figure 3.5 The dependence of ion–ion Kirkwood Buff Integral G22 (cm3 mol–1) on water 

mole fraction (x1) for the six systems studied as calculated by Eqn (3.3).  
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Figure 3.6 Dependence of preferential solvation of ions, (G21 – G22) on the mole fraction 

of water (𝑥1) for each system.148 
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3.3.3 Does the structure of PIL–water systems reflect homogeneous mixing or the 

formation of heterogeneous structures? (Question 3) 

 

From G22 it is shown that there is little change in the ion–ion interaction strength 

(Figure 3.5) in PILs in the presence of water, implying that the structure of the PIL remains 

relatively unchanged. If the water–water interactions for these systems are considered, it is 

found that for both PILs, G11 is large and positive at the concentration range of this study 

(Figure 3.4). This behaviour of water–water interactions is distinctly different than 

observed in any of the AILs in this study. Despite this, strong aggregation of water at low 

concentrations has been observed in other systems using KB theory, such as sucrose–

water334 and dimethyl sulfoxide (DMSO)–water mixtures.335 (Note that large positive and 

negative KB integrals have been reported in the past to contribute to discussion on binary 

systems.336,337) 

To clarify the effect of such strong self–association on the mixing behavior of PIL–

water systems, the well–established thermodynamic criterion for phase separation based on 

Eqn. (3.8) has been employed (Figure 3.7). This parameter has been used to clarify the 

phase behavior of numerous binary systems which are close to phase separation. 303,320,322–

325,338 For the PIL [HDMEtA][Pr], the values of D increase with increasing water 

concentration, implying an increased stability in the system. As a result, the lowest values 

of D occur at the lowest water concentrations, which is rationalized by the presence of 

strong water association at low water concentrations (Figure 3.3). The PIL 

[HDMEtA][NTf2] shows a weak dependence of D on water concentration. The values of D 

for this system are markedly lower than for [HDMEtA][Pr], suggesting a more 

heterogeneous structure of the system. This could be rationalized by the greater degree of 

water–water interactions in [HDMEtA][NTf2], as shown by G11. This is to be expected, as 

the [NTf2] anion is widely regarded as being more hydrophobic than the [Pr] anion. For 
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both PILs the values of D are away from phase separation (D = 0), suggesting that the PIL–

water system is stable despite the presence of water–rich clusters (Figure 3.3).  

The three dialkylimidazolium ILs show similar trends, with variation of anion 

having a greater effect on D than variation of cation. Within the concentration range 

studied, all systems are away from phase separation; [EMIm][OTf] is close to ideal mixing. 

The only system showing a tendency towards phase separation (D = 0) is [Ch][NTf2]. This 

is consistent with the phase separation behavior of the [Ch][NTf2]–water system at certain 

temperature and compositions,339,340 however our values of D suggest that the system is 

stable within the composition range studied.  

Nonetheless, the KB interaction parameters in the [Ch][NTf2] IL–water system are 

distinctly different to that of any other in this study. One hypothesis is that this is due to a 

combination of two different aspects of IL–water mixtures. The first is a difference in the 

ability to form heterogeneous liquid structures within the pure IL to form polar and non–

polar domains. The resultant liquid structure can then accommodate water within the polar, 

hydrophilic domains, while being excluded from the non–polar, hydrophobic 

domains.341,342  

The second is the ability to form hydrogen–bonding interactions with water. While 

there has been no study on the liquid structure of this pure IL to the best of our knowledge, 

the absence of a long, lipophilic functional group on either the anion or cation of the IL 

suggests a more homogeneous structure of pure [Ch][NTf2]. Additionally, the [NTf2] anion 

has been shown before now to interact weakly with water through hydrogen bonds,167,168 

while only the hydroxyl group of the cholinium cation is likely to form hydrogen bonds 

with water. The result is an IL with apparent low compatibility with water at high 

concentrations, as has been shown in this chapter. However further experimental evidence 

of the specific molecular interactions and the mesoscopic structure of [Ch][NTf2] and its 

mixtures with water are required to confirm this hypothesis. 
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Figure 3.7 The D factor for each system as calculated from Eqn (3.4).  
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3.3.4 Partial Molar Volume Considerations 

 

Partial molar volumes and excess molar volumes are widely used to probe 

intermolecular interactions in IL–water mixture. 𝑉1 and 𝑉2, as well as the excess volumes, 

have been employed in the literature to characterize the interactions between the species. 

The connection between intermolecular interactions and partial molar volumes has not been 

well rationalized, leading to misinterpretation of the origin of the thermodynamics of these 

systems. 𝑉1 and 𝑉2 actually contain several KB integrals, demonstrating that it is hard to 

separate one type of intermolecular interaction from the other simply by using the 

volumetric data alone. It is shown here that these quantities are a combination of 

intermolecular interactions defined via the KB theory. This can be demonstrated easily by 

solving the simultaneous equations consisting of the following (that can be derived from 

the Gibbs–Duhem equations or directly from the grand partition function):  

(𝑛1𝐺11 + 1)𝑉1 + 𝑛2𝐺12𝑉2 = 𝑘𝑇𝜅𝑇      (3.10)  

and the isobaric isothermal Gibbs–Duhem equation:  

𝑛1𝑉1 + 𝑛2𝑉2 = 1        (3.11) 

Thus obtaining  

𝑉1 =
𝑅𝑇𝜅𝑇−𝐺12

[1+𝑛1(𝐺11−𝐺12)]
        (3.12)  

𝑉2 = −
𝑛1(𝑅𝑇𝜅𝑇−𝐺11)

𝑛2[1+𝑛1(𝐺11−𝐺12)]
       (3.13) 

Swapping the indices 1 and 2 also yields a pair of equations which describes 𝑉1 and 𝑉2 in 

terms of 𝐺12 and 𝐺22. Thus 𝑉1 and 𝑉2 do not correspond to any one single KB integral, 

especially away from dilute concentration range of 1 or 2, showing that they contain 

different interactions (water–water and water–IL) at the same time.  
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3.4 Conclusions 
 

Based upon the rigorous statistical thermodynamic theory, the interactions in IL–

water binary mixtures at low water concentrations in both AIL and PIL systems have been 

determined. By using the Kirkwood–Buff (KB) theory of solutions, 148,287–289,291,293,303,304 

interactions between solvent species within six IL–water mixtures have been calculated 

using only density and water activity data of the mixtures.  

For analogous ILs, the AIL [Ch][NTf2] has greater preference of ion–water 

interactions at low concentrations, with the PIL [HDMEtA][NTf2] exhibiting greater 

preference of ion–water interactions at higher water concentrations (question 1) (Figure 

3.2). This is rationalized by a strong increase in the water–water interaction strength with 

increasing water concentration in [Ch][NTf2] (Figure 3.3). In contrast, the AIL 

[EMIm][OTf] exhibits stronger ion–water interactions than the PIL [HDMEtA][Pr] over 

the studied concentration range (question 1) (Figure 3.4). This potentially is due to the 

relative difference of the ionic nature betwee [EMIm][OTf] and [HDMEtA][Pr]. 

The ion–ion interaction strength is not greatly affected by the presence of water for 

either PIL (question 2). The significance of this result is that while water–ion interactions 

in the example PILs are preferential to the ion–ion interactions at the concentrations studied 

(Figure 3.6), the structure of the IL portion of the mixture strongly resembles that of the 

pure system for both PILs in this study (Figure 3.5).  

The mixing behavior of the two PIL–water systems is described using the 

“closeness to phase separation” parameter (question 3). For both [HDMEtA][NTf2] and 

[HDMEtA][Pr], it is found that the systems are closer to stable phase behavior than phase 

separation (Figure 3.7), despite the strong water–water interactions observed in both PILs 

(Figure 3.3) and the relatively unchanged ion–ion interactions in the presence of water. The 

stark contrast between the analogous PIL and AIL is further shown, with [Ch][NTf2] 

showing a decrease of phase stability with increasing water concentration.  
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Chapter 4: On the Structure–Property Relations in Protic Ionic 

Liquids 
 

4.1 Introduction 
 

Utilising Statistical Thermodynamic theory, it has been suggested that long range 

solution structure in ionic liquid–water binary mixtures may contribute to the bulk solution 

properties through the factor of 4πr2.148,149 Regardless of the specific components, this is a 

universal phenomenon across liquid solutions in general. However, from the chemistry 

perspective, it would be ideal if the bulk properties can be rationalized solely from the 

short–range interactions. With the understanding gained from the previous chapter on how 

water interacts with PILs at low concentrations, attention is turned towards studying neat 

PILs.  

Understanding how variation in function corresponds to the change in the 

properties of PILs, particularly pertaining to their use as solvents, is crucial for their 

continued application. As discussed in section 1.7, there are many ways of experimentally 

characterizing the physicochemical properties of neat PILs.50,52 However, the knowledge 

of how structure influences the properties of PILs, pertaining to their use as solvents, 

remains limited. Additionally, the connection between macroscale characteristics and 

molecular interactions in pure PILs remains unclear. To address this, the questions of how 

and why the inclusion of additional hydrogen bonding functionality mediates the molecular 

energetics and solvation properties in model PIL systems will be investigated in this 

chapter. As discussed in section 1.7.1, by quantifying the energetics of a PIL, aspects such 

as the vaporization mechanism and the strength of the solvent–solvent interactions can be 

determined. These intrinsic characteristics of solvents are as important as rationalizing 

specific solvent–solute interactions as described in section 1.8, yet are often overlooked.  
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Three tertiary ammonium acetate PILs with varying precursor amine functionality 

have been chosen; N,N–dimethylbutylammonium acetate ([HDMBuA][OAc]), 2–

(dimethylamino)–N,N–dimethylethylammonium acetate ([HTMEDA][OAc]) and N,N– 

dimethylethanolammonium acetate ([HDMEtA][OAc]) as model PIL systems. In this 

Chapter, the following questions will be addressed; (1) How does PIL functionality 

influence the vaporization mechanism of PILs under reduced pressure? (2) Can changes in 

the energetics of PILs be rationalized by the molecular interactions in PILs? (3) Can the 

same molecular interactions explain how variation of PIL cation structure influences the 

solvent properties of PILs?  

By using a combination of Calvet–drop microcalorimetry, solution calorimetry and 

ab–initio calculations, ∆vap𝐻𝑚
°  of each PIL was determined using two independent 

techniques. The agreement of these two values of  ∆vap𝐻𝑚
°  will confirm the vaporization 

mechanism (question 1).343  

In assessing the molecular basis for variations in the quantified energetics of PILs, 

comparisons to the properties and structures of the precursors are shown.343 Based on these 

connections, a molecular level rationalization for the variation in energetics is obtained 

using attenuated total reflectance infrared (ATR–IR) spectroscopy (question 2).344  

Based on the insight gained from thermochemistry and spectroscopy, a molecular 

basis of key solvent properties of these three PILs is connected to experimental quantities 

of viscosity and Kamlet–Taft solubility parameters. Using these quantities, connection of 

specific and non–specific solvent–solute and net solvent–solvent interactions to the ionic 

nature of a tertiary ammonium acetate PIL can be established (question 3).344 
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4.2 Experimental 
 

4.2.1 NMR Characterization 

 

1H and 13C NMR analysis of the pure PILs were performed using a Bruker 700 

MHz NMR instrument at 700 MHz and 176 MHz, respectively.245 A Wilmad coaxial inset 

contained a solution of D2O with 1.0 % w/w tert–butyl alcohol was used to generate a 

reference signal for both the 1H and 13C NMR.345 

4.2.2 Materials and Synthesis of PILs.  

 

The acetic acid (HAc, ≥99.5%) and amines (DMBuA, 99.0%; TMEDA, ≥99.5%; 

DMEtA, ≥99.5%,) used in the preparation of the protic ionic liquids were supplied by 

Sigma Aldrich UK, and were not further purified.  

The three PILs in this study were prepared following the procedure outlined by 

Walker.49 All sample preparation was performed within a fume cupboard. Into a two–

necked round bottom flask equipped with a dropping funnel attached vertically and a 

magnetic stirrer bar, the predetermined quantity of precursor amine is weighed. The vessel 

is then purged with nitrogen, cooled in an ice bath above a magnetic stirrer, set at a steady 

mixing speed. The predetermined quantity of acetic acid is weighed into the dropping 

funnel. Once the amine has been sufficiently chilled, add the acid dropwise taking 

consideration to not allow the temperature of the system to rise above 30°C. After complete 

addition, remain stirring the mixture for at least one hour to ensure the mixture has reached 

equilibrium. Remove the vessel from the ice bath and allow the mixture to gradually reach 

room temperature. Transfer the mixture to a pre–weighed, labelled brown glass bottle. 
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Figure 4.1. Molecular structures and abbreviations of the three PILs and their 

corresponding precursor materials studied in this chapter.  

 
4.2.2.1 Synthesis of [HDMBuA][OAc]  

 

Mass of DMBuA: 5.1158 g (50.6 mmol), mass acetic acid: 3.0961 g, (51.6 mmol). 

Molar percentages of components as determined from the above masses: 50.5% (acid), 

49.5% (amine).  1H NMR (700 MHz, D2O) δ/ppm 2.98–2.96 (t, J = 7.8 Hz, 2H), 2.81 (s, 

6H), 2.29 (s, 3H), 1.97–1.92 (q (tt)(a), J = 7.8,7.6 Hz, 2H), 1.78–1.72 (hx (qt)(b), J = 7.6, 7.4) 

1.34 (t, J = 7.4). 13C NMR (176 MHz, D2O) δ 174.63, 58.24, 43.62, 28.34, 22.22, 20.56, 

13.88.  

4.2.2.2 Synthesis of [HTMEDA][OAc]  

 

Mass TMEDA: 4.6541 g (40.1 mmol), mass acetic acid: 2.4377 g (40.6 mmol). 

Molar percentages of components as determined from the above masses: 50.3% (acid), 

49.7% (amine). 1H NMR (700 MHz, DMSO–d6) δ/ppm 2.98 (s, 4H), 2.71 (t, 12H), 2.29 

(s, 3H). 13C NMR (176 MHz, D2O) δ 174.47, 56.14, 44.90, 22.36.  

4.2.2.3 Synthesis of [HDMEtA][OAc] 

 

Mass DMEtA: 4.4747 g (50.2 mmol), mass acetic acid: 3.0404 g (50.6 mmol). 

Molar percentages of components as determined from the above masses: 50.2% (acid), 

49.8% (amine). 1H NMR (700 MHz, D2O) δ/ppm 4.00–3.98 (t, J = 5.0 Hz, 2H), 3.19–3.17 

   
HOAc DMBuA [HDMBuA][OAc] 

   

 

  
 TMEDA [HTMEDA][OAc] 

   

 
  

 DMEtA [HDMEtA][OAc] 
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(t, J = 5.0 Hz, 2H), 2.88 (s, 6H), 2.11 (s, 3H). 13C NMR (176 MHz, DMSO) δ 176.63, 

59.89, 57.10, 43.50, 23.42.  

(a) non-equivalent hydrogen environments have very similar coupling constants, 

producing a multiplicity pattern indicative of a single 4H environment (pentet) as 

opposed to two 2H environments (triplet of triplets). 

(b)  non-equivalent hydrogen environments have very similar coupling constants, 

producing a multiplicity pattern indicative of a single 5H environment (hextet) as 

opposed to a 3H and a 2H environments (quartet of triplets). 

4.2.3 Karl Fischer Titration 

 

Measurements were performed with a Metrohm 890 Titrando with 803 Ti Stand 

apparatus. Hydranal–Composite 5 was used as the titrating agent and methanol as the 

baseline solvent. The instrument was calibrated with Hydranal Water Standards 10.0, 1.0 

and 0.1, which correspond to weight percentage water contents of 10.0%, 1.0% and 0.1%. 

Approximately 1 cm3 of sample was used in the determinations. The water contents in the 

amines were: 230 ppm (xw: 0.001295203) for DMBuA, 895 ppm (xw: 0.005737812) for 

TMEDA, and 270 ppm (xw: 0.001334204) for DMEtA. The water contents in the PILs 

studied were: 645 ppm (xw: 0.002876844) for [HDMBuA][OAc], 1057 ppm (xw: 

0.005140561) for [HTMEDA][OAc] and 900 ppm (xw: 0.003712974) for 

[HDMEtA][OAc].   
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4.2.4 Calvet Microcalorimetry 

 

Direct measurements of the standard molar enthalpies of vaporization of the 

studied PILs and their constituent amines were carried out by Calvet–drop 

microcalorimetry, following a procedure previously described by Vitorino et al.204  A 

sample with a mass between 6–12 mg was inserted into a capillary under an N2 atmosphere. 

The capillary was sealed using Parafilm ‘‘M’’ tape and weighed in a Mettler UMT2 ultra–

micro balance, with a precision of 0.1 g. The Parafilm seal was removed and the capillary 

with the sample was immediately dropped into the calorimetric cell, held at 297.9±0.1 K 

under a N2 atmosphere. After the drop, the system was evacuated to 0.13 Pa. The specific 

enthalpy of the calorimetric process, ∆vapℎ (Jg–1), was obtained from: 

 

∆vapℎ =  
1

𝑚
[

𝐴 − 𝐴𝑏 

𝜀
−  

𝑀H2O

𝑚H2O
∆vap𝐻𝑚

° (H2O)]      (4.1) 

 

where m is the mass of the sample, 
2H Om  is the mass of water given by Karl Fischer 

titration, 𝑀H2O = 18.015 gmol–1 is the molar mass of water, ∆vap𝐻𝑚
° (H2O) = 44.004±0.002 

kJmol–1 is the standard molar enthalpy of vaporization of water,346 A is the area of the 

measured curve corresponding to the overall experiment, Ab is the area of the background 

contribution for the observed process due to dropping and to the evacuation of the cell, and 

ε is the energy equivalent of the calorimeter obtained by electrical calibration.347 

Background values were determined by replicating the above described experiment using 

an empty capillary. Results are summarized in Table 4.1. 
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Table 4.1 Standard specific enthalpy of vaporisation, vaph0/J·g–1, of amines and PILs obtained by Calvet–drop microcalorimetry at 297.93 K. 

Amines/PILs DMBuA  TMEDA  DMEtA  [HDMBuA][OAc]  [HTMEDA][OAc]  [HDMEtA][OAc] 

M / g·mol–1 101.190  116.209  89.138  161.245  176.260  149.190 

vaph0 / J∙g–1 

349.586  370.895  526.250  663.648  663.648  796.545 

354.331  366.870  534.395  667.617  663.599  795.269 

342.641  376.427  529.967  673.758  665.108  804.606 

343.631  368.116  528.869  688.508  660.580  796.614 

<vaph0> / J∙g–1 347.55 ± 2.73a  370.58 ± 2.12 a  529.87± 1.70 a  673.38 ± 5.45 a  663.23 ± 0.95 a  798.26 ± 2.14 a 

<> / mV∙W–1 64.112  ± 0.034           

(over–all) / J∙g–1 2.74  2.13  1.72  5.46  1.01  2.18 

vapH0
m  / kJ∙mol–1 35.2 ± 0.6  43.1 ± 0.5  47.2 ± 0.3  108.6 ± 1.8  116.9 ± 0.4  119.1 ± 0.7 

a The assigned uncertainties are twice the combined standard uncertainty, uc,348 of four determinations, which includes contributions from the main experiment 

and calibration. 
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4.2.5 Solution Calorimetry 

 

Solution calorimetry measurements were performed with an electrically calibrated 

isoperibol Thermometric Precision Solution Calorimeter (model 2225) adapted to a Thermal 

Activity Monitor thermostatic jacket (TAM 2227) with a temperature stability better than 0.1 

mK. The procedure has been previously detailed.204,205 In a typical experiment a thin walled 

glass ampule was loaded with sample, under N2 atmosphere, and weighed with a precision of 

10 µg in a Mettler Toledo XS205 balance. The dissolution process was started by breaking the 

ampule inside the calorimetric vessel containing 100 cm3 of the appropriate solution, under 

stirring. The standard molar enthalpy of the solution process, ∆sol𝐻𝑚
° , was calculated from: 

 

∆sol𝐻𝑚
° =  

𝑀𝜀∆𝑇𝑎𝑑

𝑚
         (4.2) 

𝜀 =  
𝑉𝐼𝑡

∆𝑇𝑎𝑑
         (4.3) 

 

where m and M are the mass and the molar mass of the sample, respectively;   is the calibration 

constant determined by dissipating an known amount of heat Q = VIt inside the calorimetric 

solution, where V is the potential difference applied to the calibration resistance, I the resulting 

current and t the duration of the heat input; and adT  is the adiabatic temperature change in the 

calibration or main experiment calculated from the experimental temperature vs. time curves 

by using the Regnault–Pfaundler method349 as implemented in the SolCal 1.2 program from 

Thermometric under the designation dynamics of break.  The heat associated with ampoule 

breaking was not taken into account, since it was previously shown that when empty ampoules 

were broken in 100 cm3 of water, it corresponded to a temperature change of less than 0.1 mK. 

The solution calorimetry measurements are summarized in Table 4.2. 
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Table 4.2 Standard molar enthalpies of solution, ∆𝐬𝐨𝐥𝑯𝒎
𝟎  / kJ·mol–1, of amines and PILs at 298.15 K. 

Amines/PILs DMBuA  TMEDA  DMEtA [HDMBuA][OAc]  [HTMEDA][OAc]  [HDMEtA][OAc] 

           

 Eq. (4.9) Eq. (4.7) 

– solH0
m  / kJ∙mol–1 

–60.427  –79.659  –55.303 –46.102  –59.810  –31.849 

–62.267  –71.636  –57.848 –47.607  –55.999  –32.757 

–60.798  –78.774  –60.894 –46.733  –56.870  –36.698 

–57.873  –79.585  –57.966 –47.839  –61.472  –35.078 

–66.439  –80.105  –55.623 –45.862  –60.000  –35.613 

–64.712  –73.882       –32.400 

           

< – solH0
m  / kJ∙mol–1> 62.09  2.53a  77.27  a  57.53 a 46.83  a  58.83  a  34.07  a 

            

                        
a The assigned uncertainties are twice the combined standard uncertainty, uc,348 of four determinations, which includes contributions from the main 

experiment and calibration. 
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4.2.6 Density  

 

Density measurements by the oscillating U–tube method were performed at 298.15 

K, in an Anton–Parr DSA5000 apparatus. Calibration of the density meter was carried out 

by using freshly boiled de–ionized water with a known density of 0.997048±0.000001 g 

cm–3 at 298.15 K.350 Care was taken to avoid the formation of air bubbles within the 

measurement chamber. The estimated accuracy of the results was 0.000001 g cm–3. Density 

values were used to calculate the molar volumes of each PIL based on the corresponding 

molar masses (Table 4.3). 

Table 4.3 Experimental densities and molar volumes at 298.15 K of the three PILs under 

study.  

PIL 
Density 

/ gcm–3 

Molar Mass 

/ gmol–1 

Molar Volume 

/ cm3mol–1 

[HDMBuA][OAc] 0.879215 161.24 183.39 

[HTMEDA][OAc] 0.915760 176.26 192.47 

[HDMEtA][OAc] 1.044627 149.19 142.82 
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4.2.7 Viscosity 

 

Viscosity measurements by the tuning–fork vibration method were performed 

using an A&D SV–10 Vibro Viscometer. The estimated accuracy of the determinations 

was 0.01 mPas. Temperature control to 298.15± 0.01 K was achieved using a water 

circulator located on the floor so as not to disturb the measurements. The absolute 

viscosities of each of the three PILs were recorded once the instrument was brought to 

equilibrium and a stable value was obtained.  

4.2.8 Attenuated Total Reflectance Infrared Spectroscopy (ATR–IR) 

 

The ATR–IR spectra of all precursor materials and mixtures were recorded at room 

temperature using an A2 Technologies (Agilent) ExoScan Fourier–Transform Infrared 

Spectrometer fitted with a germanium crystal attenuated total reflectance interface. All 

measurements were performed within the infrared region between 3500 and 800 cm–1. A 

background signal was recorded 32 times to produce a single averaged background 

spectrum. The sample was then placed directly on to the interface for immediate 

measurement of 32 scans and then averaged to produce a single sample spectrum. The 

interface was cleaned using a dry paper towel and propan–2–ol. Once the interface was 

cleaned sufficiently to return the beam to the background baseline, the instrument was 

ready for subsequent measurements. Each sample was recorded three times for a total of 

96 scans, averaged to produce the final ATR–IR spectrum. 
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4.2.9 Solvatochromic Parameters from UV–Visible Spectroscopy  

 

The solvatochromic parameters α,  and π* 2,260,261,351,352 were calculated based on 

the observed wavelength of maximum absorption, λmax, of three solvatochromic dyes: 4–

nitroaniline (NA), N,N–diethyl–4–nitroaniline (DE), and 2,6–dichloro–4–(2,4,6–

triphenylpyridinium–1–yl)phenolate (BD). The 2,6–dichloro derivative of the betaine dye 

was chosen because of its stability in strong hydrogen bond donating media, such as water 

and protic ionic liquids.261,351,352  

 

Figure 4.2. Structures and abbreviations of the three solvatochromic dyes used. 

The UV–Visible spectra in the region of 300 – 800 nm, with a 0.1 nm resolution, 

were recorded using a Thermo Scientific Evolution 60S UV–Visible Spectrophotometer, 

at 298.15 K, using quartz silica 1 cm path length cuvettes. A small quantity of a specific 

dye (c.a. 2–5 mg) was dissolved in 1 cm3 of PIL, and was subsequently diluted to achieve 

a relative absorption value between 1 – 1.5. The wavelength was converted from nm to 

kKayser (103 cm–1) for all necessary calculations. To calculate the solvatochromic 

parameters, the following equations were used: 2,260,261,351,352 

 

𝛼 = 𝜆max(BD) −   0.72𝜋∗ − 1.54      (4.4) 

𝛽 =  0.370(𝜆𝑚𝑎𝑥(DE)) −  0.357(𝜆𝑚𝑎𝑥(NA)) +  0.943    (4.5) 

𝜋∗ = − 0.314(𝜆𝑚𝑎𝑥(DE)) + 8.64      (4.6) 
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4.3 Results and Discussion 
 

4.3.1 The Vaporization Mechanism of Protic Ionic Liquids 

 

As discussed in section 4.1, the vaporization mechanism of some PILs under 

reduced pressure has been shown to proceed via reverse proton transfer followed by 

vaporization of the discrete precursor materials.204 Insights into the most likely mechanism 

of [HDMBuA][OAc], [HTMEDA][OAc], and [HDMEtA][OAc] vaporization were 

provided by a comparison of the enthalpy of reaction scheme (4.1) (dissociation of the PIL 

into its gaseous acid and base precursors) obtained from solution calorimetry experiments, 

with the ∆vap𝐻𝑚
°  values directly measured by Calvet microcalorimetry. 343 

 

[BH][A](l)  B(g) + HA(g)        (4.1)  

 

The enthalpy of vaporization of the PILs according to reaction scheme 4.1, 

∆vap𝐻𝑚
° (indirect), was determined using an adaptation of the procedure previously 

described by Vitorino et al.,204,205 and involved the following steps:  

(i) The enthalpies, ∆solHm
0 (4.7), ∆solHm

0 (4.8), ∆solHm
0 (4.9), corresponding to the solution 

processes (B represents the amine precursors of the PILs): 

 

[HB][OAc](l) + nH2O(l)  {[HB][OAc]:nH2O}(aq)    (4.7) 

HOAc(l) + nH2O(l)  (HOAc:nH2O)(aq)      (4.8) 

B(l) + (HOAc:nH2O)(aq)  {[HB][OAc]:nH2O}(aq)    (4.9) 

 

were firstly measured by solution calorimetry or, in the case of ∆solHm
0 (4.8), obtained from 

data in the NBS Tables.353 Then (ii) the enthalpy of the mixing process: 
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B(l) + HOAc(l)  [HB][OAc](l)      (4.10) 

was calculated as: 

 

∆mixHm
0  = ∆solHm

0 (4.8) + ∆solHm
0 (4.9)  ∆solHm

0 (4.7)    (4.11) 

 

and (iii) subsequently used to derive the enthalpy of formation of the PIL according to: 

 

∆fHm
0  ([HB][OAc], l) = ∆mixHm

0  + ∆fHm
0  (B, l) + ∆fHm

0  (HOAc, l)   (4.12) 

 

Finally (iv), ∆vapHm
0 (indirect)  could be obtained as: 

 

∆vapHm
0 (indirect) = ∆fHm

0  (B, g) + ∆fHm
0  (HOAc, g)  ∆fHm

0  ([HB][OAc], l) (4.13) 

 

The multiple measurements of ∆solHm
0 (4.7) and ∆solHm

0 (4.9) and the mean average used in 

all subsequent calculations are summarized in Table 4.2. The The values of ∆fHm
0  (HOAc, 

l) (483.66 ± 0.18 kJ.mol–1) used in Eq. (4.12) and ∆fHm
0  (HOAc, g) (432.84 ± 0.62 kJ.mol–

1) in Eq. (4.13) were taken from the literature.354 The results are summarized in Table 4.4. 

It should be mentioned that the calculations of ∆f𝐻𝑚
°  ([HB][OAc], l) and 

∆vap𝐻𝑚
° (indirect) relied on the enthalpies of formation of the amines, which were 

calculated using ab initio calculations. The computational details of how these calculations 

were performed are summarized in the appendix of this Chapter. 
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Table 4.4 Enthalpies of solution and vaporization obtained in this work (see text). All data 

in kJmol–1.a 

 [HDMBuA][OAc] [HTMEDA][OAc] [HDMEtA][OAc] 

∆solHm
0 (4.7) 46.83±0.79 (5) 58.83±2.06 (5) 34.07±1.62 (6) 

∆solHm
0 (4.8) 1.27±0.08 b 1.27±0.08 b 1.26±0.08 b 

∆solHm
0 (4.9) 62.09±2.53 (6) 77.27±2.93 (6) 57.53±2.01 (5) 

−∆vap𝐻𝑚
°   16.53±2.65 19.71±3.58 24.72±2.58 

−∆f𝐻𝑚
° (PIL, l)  626.6±3.9 555.7±4.5 763.4±3.2 

∆vap𝐻𝑚
° (indirect)  102.6±4.8 113.7±5.3 122.8±3.7 

∆vap𝐻𝑚
° (direct)  108.6±1.8 (4) 116.9±0.4 (4) 119.1±0.7 (4) 

a The reported uncertainties correspond to twice the standard error of the mean. Where 

appropriate, the number of independent determinations is given in parenthesis. b Reference 

353.` 

 

 Table 4.4 also includes the enthalpies of vaporization of the PILs directly measured 

by Calvet microcalorimetry, ∆vap𝐻𝑚
° (direct) , which are in excellent agreement with the 

corresponding ∆vap𝐻𝑚
° (indirect) values. As has been previously demonstrated for 1–

methylimidazolium acetate,204 the good agreement between these two independently 

determined values gives a good indication that [HDMBuA][OAc], [HTMEDA][OAc], and 

[HDMEtA][OAc] preferentially vaporize under reduced pressure as their neutral acid and 

base precursors.343  
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4.3.2 Structure–Property Relations on the Thermochemistry of PILs 

 

4.3.2.1 Connection between Precursor and PIL Cohesive Energy 

 

From Table 4.4, it is found that the substitution of the alkyl functional group with 

either a hydrogen bond acceptor (HBA) or donor (HBD) functional group on the cation of 

these PILs studied increases its ∆vap𝐻𝑚
° . However, the introduction of a HBA or HBD 

functional group in the PIL backbone is also expected to affect the proton transfer 

equilibrium involving the ionic (HB+, OAc) and neutral species (B, HOAc) present in the 

condensed state and the number of strong directional intermolecular interactions between 

them.193,194,218,355  

For example, when [HTMEDA][OAc] is compared to [HDMBuA][OAc], the 

presence of the additional hydrogen bond acceptor dimethylamino group in the TMEDAH+ 

cation, is likely to lead to further hydrogen bonding interactions within the system. NMR 

analysis of the neat PIL (see Experimental Section) showed only a single peak for the –

CH3
 environment and a single peak for the –CH2– environment. This suggests that at the 

temperatures studied, the two nitrogen centers in TMEDAH+ are equivalent due to a low 

barrier for proton transfer between them.356 As such, both nitrogen atoms could be engaged 

in intermolecular hydrogen bonding to the acetate anion.  

Furthermore, the presence of an hydroxyl group may also have a significant 

influence on the cohesive energy of [HDMEtA][OAc] when compared to 

[HDMBuA][OAc], since additional intramolecular hydrogen bonds with the acetate anion 

or intermolecular interactions within the system may be formed.357 An intramolecular 

hydrogen bond with oxygen atoms of the acetate anion has, for example, been suggested to 

exist in the aprotic analogue of [HDMEtA][OAc], choline acetate.329  

It is therefore interesting to evaluate whether or not this causes the cohesive 

energies of the studied PILs (measured by their ∆vap𝐻𝑚
°  values) to significantly deviate 
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from the typical bond or group additivity behavior often observed for many families of 

organic molecules357,358 including aprotic ionic liquids.359 To do this, the ∆vap𝐻𝑚
o  of the 

precursor amines to the corresponding PILs is reported.343 The standard molar enthalpies 

of vaporization of the three precursor amines, at 298.15 K, obtained by Calvet–drop 

microcalorimetry, are summarized in Table 4.5. The assigned uncertainties are twice the 

combined standard uncertainty, uc,348 of four determinations, which includes contributions 

from the main experiment and calibration. The calorimetric results for TMEDA and 

DMEtA in Table 1 are not significantly different from the previously reported 

∆vap𝐻𝑚
° (TMEDA) = 42.2±0.2360 and ∆vap𝐻𝑚

° (DMEtA) = 46.5±0.4361, at 298.15 K, 

obtained from temperature-dependent vapor pressure data.  

 

Table 4.5 Standard Molar Enthalpies of Formation and Vaporization of DMBuA, TMEDA, 

and DMEtA, at 298.15 K, obtained in this work.  

Compound ∆vap𝐻𝑚
° /kJmol–1 a −∆f𝐻𝑚

° /kJmol–1 

  (g) b (l) c 

DMBuA 35.2±0.6 91.2±2.7 126.4±2.8 

TMEDA 43.1±0.5 9.2±2.8 52.3±2.8 

DMEtA 47.2±0.3 207.8±1.8 255.0±1.8 

a Calvet microcalorimetry. b Obtained through quantum chemistry calculations (W1–F12 

procedure, see appendix). c Derived from the corresponding ∆vap𝐻𝑚
°  and −∆f𝐻𝑚

° (g) 

values. 

 

Also listed in Table 4.5 are the standard molar enthalpies of formation of the 

amines in the gas phase calculated by the W1–F12 procedure. The details of the 

computations and equations used to calculate ∆f𝐻𝑚
° (g) of each amine are summarized 

in the Appendix. Finally, the standard molar enthalpies of formation of the amines in the 

liquid state (Table 4.5), needed for the solution calorimetry studies, can then be derived 

from the corresponding ∆vap𝐻𝑚
° (g) and ∆f𝐻𝑚

° (g) data presented in Table 4.5. 
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 Despite these possible differences in hydrogen–bonding ability, the enthalpies of 

vaporization of the studied PILs follow, to a good approximation, a group additivity rule. 

Indeed, as shown in Figure 4.3, a linear least squares fit to a plot of the enthalpies of 

vaporization of the PILs, ∆vap𝐻𝑚
° (PIL), against the enthalpies of vaporization of the 

corresponding precursor amines, ∆vap𝐻𝑚
° (amine) led to: 

 

∆vap𝐻𝑚
° (PIL) = (0.968±0.145) ∆vap𝐻𝑚

° (amine)  + 74.1±6.1   (4.14)  

 

Figure 4.3.  Correlation between the enthalpies of vaporization of the studied PILs and of 

their precursor amines. 

 

with a correlation coefficient R2 = 0.978, and where the uncertainties of the slope and the 

intercept represent standard deviations of the mean for 95% probability. Eq. (4.14) is able 

to reproduce the ∆vap𝐻𝑚
° (PIL) values with deviations in the range 0.4–1.0 kJmol–1.  
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4.3.2.2 Rationalizing the Ionicity of Protic Ionic Liquids  

 

The additive contribution of functional groups to ∆vap𝐻𝑚
o  of a PIL as inferred from 

Figure 4.3 suggests that functional groups do not influence the proton transfer equilibrium, 

and subsequently the ionic nature of a PIL. As the vaporization mechanism proceeds via 

the reverse proton transfer between cation and anion, the cohesive energy of PILs must also 

be influenced by a PILs ionicity.  Although it has been recognized that aqueous data may 

not be appropriate for the nonaqueous PIL environment,36,52,194,232,362 different physical 

properties of PILs have shown regular trends with ∆pK
a
.50,52 

As shown in Figure 4.4, this does not seem to be the case for the enthalpies of 

vaporization of the PILs studied in this work for which ∆pK
a
([DMBuAH][OAc]) = 5.26, 

∆pK
a
([TMEDAH][OAc]) = 4.38, and ∆pK

a
([DMEtAH][OAc]) = 4.87.363–366 This reinforces 

the importance of understanding the effect of functionality on the properties of PILs; a 

combination of both the proton transfer mediated interactions and the contributions from 

the cation functional groups clearly govern the cohesive energy in PILs. 

 

Figure 4.4.  Enthalpies of vaporization of the studied PILs as a function of ∆pK
a
 (see text).  
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Since ∆pK
a
 does not account for the possible effects of additional functional groups 

to the ionicity of the PILs in this study, an approach that is more appropriate for these 

systems is required. One way this can be achieved for the three PILs selected is the use of 

infrared spectroscopy to characterize the relative absorptions of neutral and ionic species. 

This is because peaks can be seen corresponding to neutral acetic acid (HOAc) at 

approximately 1710 cm–1, and to acetate anion (OAc) at approximately 1570 cm–1.247,367 

The ATR–IR spectra of [HDMBuA][OAc], [HTMEDA][OAc], and [HDMEtA][OAc] in 

the range 1500–1800cm–1 are shown in Figure 4.5. For reference, the spectra of neat acetic 

acid and of the PILs precursor amines are also included.344  

It is apparent from Figure 4.5 that the absorbance at 1570 cm–1 is greater for 

[HDMEtA][OAc] than for either [HDMBuA][OAc] or [HTMEDA][OAc]. 

Simultaneously, the peak corresponding to neutral acetic acid is less intense in 

[HDMEtA][OAc] than in the other two PILs. This implies that the molar ratio of acetate to 

acetic acid and, consequently, the ionic nature, is greater for [HDMEtA][OAc] than for 

[HDMBuA][OAc] or [HTMEDA][OAc]. In contrast, the ionicity order given by the ∆pK
a
 

values is [HDMBuA][OAc] > [HDMEtA][OAc] > [HTMEDA][OAc].344 The larger 

ionicity of [HDMEtA][OAc] suggested by the ATR results may reflect a stabilization of 

the acetate ion through hydrogen bonding involving the hydroxyl group of the DMEtAH+ 

cation, which is not possible in the cationic moieties of the other two PILs. Similar 

interactions have been suggested in the aprotic analogue of [HDMEtA][OAc], choline 

acetate.329 Such function–specific factors influencing the ionic nature of PILs cannot, 

therefore, be rationalized through ∆pK
a
 alone. 
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Figure 4.5. ATR–IR spectra of the three PILs and of their corresponding precursors in the 

region of 1500–1800 cm–1. The spectrum of [HDMEtA][OAc] shows a significantly greater 

absorbance for the acetate species (1570 cm–1) than for the neutral species (1710 cm–1) 

when compared with the spectra of either [HDMBuA][OAc] or [HTMEDA][OAc]. 
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4.3.2.3 Correlating the Ionicity and Cohesive Energy 

 

How does this expression of ionicity relate with the cohesive energy of the PILs? 

Based on the calculated values of ∆vap𝐻𝑚
o  for each PIL, there is still no clear correlation 

between ionicity as inferred from spectroscopy and PIL energetics. However, if the 

cohesive energy density, CED, of each PIL is considered, the observation is different. The 

CED of a solvent takes into consideration not just the enthalpy of vaporization but also the 

molar volume, Vm, of the solvent (as calculated from its density and molecular weight), and 

is defined by the equation; 

 

 CED =  √
∆vap𝑈m

°

𝑉m
= √

∆vap𝐻m
° −𝑅𝑇

𝑉𝑚
      (4.15) 

 

where ∆vap𝑈m
°  is the standard molar internal energy of vaporization, T is the absolute 

temperature (298.15 K) and R is the gas constant (8.3144598 J mol–1K–1).368  

The observed trends of CED for the three PILs suggest significantly stronger 

solvent–solvent interactions in [HDMEtA][OAc] than in [HDMBuA][OAc] and 

[HTMEDA][OAc], as shown in Table 4.6.344  

Table 4.6 Cohesive energy densities (CED) of each PIL studied as determined from the 

directly measured standard molar enthalpy of vaporization and their molar volume, at 298 

K. 

 [HDMBuA][OAc] [HTMEDA][OAc] [HDMEtA][OAc] 

Vm (cm3mol–1) 183.39 192.47 142.82 

∆vap𝐻m
°  (kJmol–1) a 107.9±1.7 116.9±0.4 119.2±0.7 

CED (J cm–3 ) 574.8 594.5 817.3 

a Reference 343 
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The latter two show fairly comparable CED values, which is consistent with the 

observed low ionic character in their IR spectra, while [HDMEtA][OAc] exhibits both a 

higher CED and greater ionicity based on its IR spectra. In contrast, the values of ∆pK
a
 

show no correlation with CED, further highlighting the incapability of ∆pK
a
 to describe the 

ionicity in functionalized PILs. This excellent correlation between ionicity inferred from 

spectroscopy and molecular cohesion shows that hydrogen bond donor groups can 

significantly influence the ionicity of a PIL, and as a result influence its bulk properties.  

4.3.3 Structure–Property Relations on the Solvent Properties of PILs 

 

With this newfound appreciation of how cation functionality can alter the ionic 

nature and molecular cohesion of the three PILs studied in this chapter, the question of how 

PIL properties may also be rationally tuned by variation in functionality will be addressed. 

Here it is shown that the degree of ionicity, as influenced by cation functionality, plays an 

important role in describing the solvation environment in PILs.   

Solvation behaviour depends on both solvent–solute and solvent–solvent 

interactions. These multiple contributions to solvation can be characterized independently 

from one another utilising experimentally determined solvation parameters as outlined by 

Kamlet and Taft.260 Specific solvent–solute interactions i.e. hydrogen bond donor acidity 

() and hydrogen bond acceptor basicity (), as well as non–specific solvent–solute 

interactions such as dipolarity/polarizability (*), can be parameterized using selected 

solvatochromic probes. While best practice for accurately characterising , , and * is by 

using multiple solvatochromic probes per parameter, there are limited datasets in the 

literature for cross comparison, and none for PILs. Three solvatochromic probes were 

selected to determine , , and *: 4–nitroaniline (NA), N,N–diethyl–4–nitroaniline (DE) 

and 2,6–dichloro–4–(2,4,6–triphenylpyridinium–1–yl)phenolate (BD).258,260,326,351,352,369 

The net contribution of solvent–solvent interactions to solvation behaviour, also considered 
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by Kamlet and Taft,260  is weighted by the Hildebrand solubility parameter (δ), which is 

accessed through cohesive energy density values (CED).267 Using these parameters, it is 

possible to quantify how specific and non–specific solvent–solute and net solvent–solvent 

interactions correlate to the ionic nature of a tertiary ammonium acetate PIL.260,266,267,370   

Table 4.7 Solvatochromic parameters for the three PILs in this study. 

Parameter [HDMBuA][OAc] [HTMEDA][OAc] [HDMEtA][OAc] 

 0.95 0.98 0.95 

 0.95 1.01 0.69 

* 0.69 0.69 0.94 

 

The three solvent–solute parameters are summarized in Table 4.7.344 The α values 

for the three PILs are all relatively similar, regardless of the cation functionality. 

[HDMEtA][OAc] may have been expected to exhibit a higher α value due to the presence 

of an additional hydrogen bond donor functional group, but this was not observed. The 

obtained values are comparable to those previously reported for acetate PILs,261 which are 

greater than those typical of similarly–sized short chain alcohols.260  These high α values 

are indicative of the extensive hydrogen bonding network and amphiproticity that are 

common features of PILs.211  

 The  value for [HDMEtA][OAc] is noticeably lower in comparison to the other 

two PILs (Table 4.7). It is possible this may be a result of hydrogen bonding between the 

hydroxyl group on the cation and the acetate anion, reducing the hydrogen bond acceptor 

capacity of the anion. [HTMEDA][OAc] exhibits the highest  value, which was expected 

due to the presence of an additional tertiary amino function on the cation. This may be 

anticipated to significantly alter the hydrogen bonding environment due to the formal 

equivalence of both amino functions in terms of their ability to interact with acetic acid. 
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Interestingly, the increase of  by only 0.06 on going from [HDMBuA][OAc] to 

[HTMEDA][OAc] further suggests a small influence of the second amino function on the 

hydrogen bond acceptor ability of the PIL. It is likely that a low barrier hydrogen bond 

exists between the two nitrogen atoms, resulting in rapid proton exchange between the two 

nitrogen centres on the (formally singly–charged) [TMEDA]+ cation.356 The presence of 

this low barrier hydrogen bond will result in a lower proton affinity of the monoprotonated 

[HTMEDA]+ cation compared to the unprotonated amine.  

 In contrast, the value of * is highest in [HDMEtA][OAc], with [HTMEDA][OAc] 

and [HDMBuA][OAc] showing similar values (Table 4.7). This implies that the hydroxyl 

functionalized PIL has a greater dipolarity/polarizability effect on the DE dye than the alkyl 

or the tertiary amino functionalized PILs. With an increased ionic nature, it is to be expected 

that the permanent dipole moment will also increase. This is consistent with the ionicity 

trend observed in the ATR–IR spectra (Figure 4.5). 

The δ parameter is equivalent to the square root of the CED of each PIL based,267 

and the values of  δ calculated in this work are listed in Table 4.8. Due to this relation, the 

observations of how δ changed with functionality are consistent with observed changes in 

CED amongst the studied PILs: [HDMEtA][OAc] displays the highest values for both 

properties, with [HTMEDA][OAc] having a comparable δ to [HDMBuA][OAc]. While 

equivalent observations for ∆vap𝐻m
°  have been rationalized for variations within alkane, 

amine and alcohol series, through the formation of intermolecular hydrogen bonds, 357 the 

observed trends of δ (and corresponding CED) for the three PILs suggest significantly 

stronger solvent–solvent interactions in [HDMEtA][OAc] than in [HDMBuA][OAc] and 

[HTMEDA][OAc].  

The observed differences in δ correlate well with the ionic nature of the PILs as 

implied by their ATR–IR spectra (Figure 4.3) but not from their ∆pK
a
 values. Furthermore, 
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the relative viscosities of these three PILs here determined were also found to correlate well 

with δ (Table 4.8) and the ionicity order inferred from ATR–IR spectroscopy: the viscosity 

of [HDMEtA][OAc] is far higher than those of the other two PILs, despite the fact that the 

corresponding ∆pK
a
 is lower than that of [HDMBuA][OAc]. 

Table 4.8 Molar volumes (Vm), enthalpies of vaporization, ∆vap𝐻m
° , cohesive energy 

densities (CED), viscosities () and Hildebrand parameter (δ) for the three PILs in this 

study. 

 [HDMBuA][OAc] [HTMEDA][OAc] [HDMEtA][OAc] 

CED (J cm–3 ) 574.8 594.5 817.3 

H (J0.5 cm–1.5) 24.0 24.4 28.6 

 (mPa·s) 1.89 2.59 42.10 

∆p𝐾a b 5.26 4.38 4.86 

a Reference 344. b References 344,363–366. 

 

The variation of cation functionality can influence the solvation environment in 

PILs as inferred from solvent–solute and solvent–solvent Kamlet–Taft solubility 

parameters, as well as the bulk viscosity. While there are likely many interactions occurring 

in these PILs, it is the extent of proton transfer as shown from ATR–IR spectroscopy that 

correlates well with the change in solvent properties observed. This connection, between 

the variation of cation functionality, the ionic nature of the PIL and the properties pertaining 

to their use as solvents, rationalizes the molecular origin of how solvation properties change 

with molecular structure of PILs.  

4.4 Conclusions 
 

The analysis of the ∆vap𝐻𝑚
° (PIL) data suggested that the predominant vaporization 

mechanism of the three PILs under reduced pressure involves a reverse proton transfer from 

the cationic to the anionic moiety in the liquid state to give the neutral amine and acetic 
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acid precursors in the gas phase. Variation of the cation functional group does not influence 

the vaporization mechanism, thus further reinforcing the previously proposed vaporization 

mechanism (question 1). 

A good linear correlation between ∆vap𝐻𝑚
° (PIL) and ∆vap𝐻𝑚

° (amine) is found, 

which initially implied group additive contributions of functional groups to the cohesive 

energy of PILs. As the vaporization mechanism proceeds via proton transfer, it would 

imply that the ionicity of a PIL would also correlate to its cohesive energy. While there is 

a lack of trend between ∆vap𝐻𝑚
°  and the ∆p𝐾a of the PILs, an excellent correlation between 

the CED and the apparent ratio of acetate and acetic acid species for each of the PILs as 

described from the IR spectra of the PILs is observed. The PIL N,N–

dimethylethanolammonium acetate exhibited far greater CED and ionicity (inferred from 

infrared spectroscopy) than the other two PILs, rationalized by the hydroxyl functional 

group stabilizing the acetate anion (question 2). This result not only shows that functional 

groups can influence the ionicity of PILs, but also that the ∆p𝐾a is not an appropriate 

relation to describe the ionicity of functionalized PILs. 

The ionicity of the PILs inferred from infrared spectroscopy also correlates very 

well with specific solvent–solute (), non–specific solvent–solute (*) and solvent–solvent 

(δ) computed interaction parameters, as well as with the experimental viscosity (η) 

(question 3). The variation in bulk thermodynamic properties and Kamlet–Taft solubility 

parameters with cation structure can be rationalized through the ionicity of PILs inferred 

from ATR–IR spectroscopy. In this chapter, the ionicity of a PIL is shown to significantly 

impact properties relevant to its application as a solvent, and it can be used for tuning 

solvent–solute and solvent–solvent interactions which mediate both cybotactic and bulk 

properties of foremost importance to numerous PILs applications. 
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Chapter 5: Relating Precursors to Protic Ionic Liquids: Mixing 

behaviour of Acid–Amine Binary Mixtures. 
 

5.1 Introduction 
 

The correlation between short–range interactions and macroscopic properties 

shown in chapter four is valuable in rationalizing structure–property relationships. Yet in 

the context of a PIL being an equimolar mixture of a Brønsted acid and base, the systems 

studied in chapter 4 represent one composition within an acid–amine binary mixing 

scheme. An appreciation of the non–equimolar compositions of acid and base will bridge 

the understanding of how precursor structure influences PIL properties. In 

thermodynamics, by studying the composition derivative of properties one can yield the 

interactions at a molecular level.287,299,371 Therefore, to understand the interactions in the 

equimolar composition (i.e. the PIL), it is necessary to study the non–equivalent mixtures 

of acid and amine precursors.  

Furthermore, maintaining a strictly equimolar composition of acid and amine adds 

a further constraint to the application of PILs in industrial applications. A more practical 

approach would be to comprehend how slight deviations from the equimolar composition 

truly influences bulk properties and molecular interactions in acid─amine binary systems. 

Expanding from this further, understanding the applicability of non─equivalent acid─amine 

binary mixtures as solvents over the entire composition range may lead to additional 

tunability and control of processes taking place in these binary systems. Is the 50:50 

anything more than just a point on the continuum? 

 To study the mixing behaviour of non–equivalent acid–amine binary mixtures, an 

experimentally practical methodology is required. While the insight may be less robust than 

what can be obtained from statistical thermodynamic theory, the advantage of an 

experimentally practical study is that it can be readily applied to other systems for future 
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work. In light of the success from chapter four, where energetic and solvation parameters 

were rationalized by short–range interactions, a similar methodology was applied to non–

equivalent acid–amine binary mixtures. The same three acid–amine binary mixtures 

studied in chapter four will likewise be considered here, to explore how variation of the 

amine functionality influences the relation between bulk properties and molecular 

interactions.  

 By characterizing the density and subsequently the average molar volume of 

species, the trend of these bulk properties with composition can be established. By 

comparing these trends to additive mixtures (i.e. the weighted sum of contributions from 

the precursors assuming no change in the intermolecular interactions) hypotheses 

concerning the mixing behaviour of these systems can be made (see sections 1.7.1). It is 

emphasized that volumetric data alone cannot account for the specific interactions (see 

section 3.3.4). To rationalize the mixing behaviour at the molecular level, two aspects of 

the short–range interactions will be discussed: (1) the intermolecular hydrogen bonding 

interactions and (2) the effect of the intermolecular interaction on both the acid and the 

amine species. To describe the intermolecular interactions, far infrared (FIR) spectroscopy 

has been used successfully for a number of PILs and hydrogen bonding mixtures (see 

section 1.7.2). Rationalizing the nature of intermolecular hydrogen bond interactions i.e. 

between neutral or ionic species, will surely better explain at a molecular level the observed 

trends in bulk properties. This can be addressed by characterizing the ionic nature of both 

the acid/anion species and the amine/cation species using a combination of 13C NMR, 15N 

NMR and ATR–IR spectroscopy (see section 1.7.3).  
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5.2 Experimental 
 

5.2.1 Materials and Sample Preparation 

 

The precursor materials acetic acid (HOAc), N,N–dimethylbutylamine (DMBuA), 

N,N,N’N’–tetramethylethan–1,2–diamine (TMEDA) and N,N–dimethylethanolamine 

(DMEtA) were all purchased from Sigma Aldrich and used without further purification 

(Figure 5.1). The same procedure as outlined in section 4.2.2 was used to prepare all acid–

amine binary mixtures. The mass of each precursor used to prepare each mixture is 

summarized in Tables 5.1–5.3. 

 

Figure 5.1. Structures of the precursor amines and acid used to prepare the non-equivalent 

mixtures in this chapter 

5.2.2 Karl–Fischer Titration 

 

To determine the water content of all materials studied, one component Karl–

Fischer titrations were performed utilising a Metrohm 890 Titrando titration unit with a 

Metrohm 803 Ti Stand unit using Hydranal–Composite 5 as the titrating agent and 

methanol as the baseline solvent. The instrument was calibrated utilising Hydranal Water 

Standards 10.0, 1.0 and 0.1, which correspond to the calibrated weight percentage of water 

in the samples of 10.0%, 1.0% and 0.1%. Approximately 1 cm3 of each sample was used 

to determine total water content. All determined water quantities of the samples studied are 

summarized in the tables below. 
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Table 5.1 Mass of precursors used for preparation of binary mixtures of acetic acid and 

N,N–dimethylbutylamine. Water content was determined from Karl Fischer titration. 

xAc xAm Mass 

Acid / g 

Mass 

Amine / g 

Moles 

Acid 

Moles 

Amine 

Water Content   

ppm xw 

0.00 1.00 – – – – 231 0.001295 

0.05 0.95 0.1330 4.2560 0.0022 0.0421 291 0.001598 

0.10 0.90 0.2659 3.8648 0.0044 0.0382 295 0.001584 

0.15 0.85 0.4143 3.7892 0.0069 0.0375 341 0.001795 

0.20 0.80 0.5627 3.7135 0.0094 0.0367 331 0.001702 

0.25 0.75 0.7352 3.6445 0.0122 0.0360 315 0.001586 

0.30 0.70 0.9077 3.5754 0.0151 0.0354 340 0.001674 

0.35 0.65 1.1631 3.4579 0.0194 0.0342 362 0.00174 

0.42 0.58 1.4185 3.3404 0.0236 0.0330 396 0.001843 

0.45 0.55 1.6305 3.2198 0.0272 0.0318 414 0.001896 

0.50 0.50 1.8425 3.0991 0.0307 0.0306 404 0.002877 

0.55 0.45 2.1552 2.9268 0.0359 0.0289 467 0.002032 

0.60 0.40 2.4680 2.7544 0.0411 0.0272 515 0.00218 

0.65 0.35 2.8214 2.5200 0.0470 0.0249 556 0.002292 

0.70 0.30 3.1748 2.2856 0.0529 0.0226 508 0.002036 

0.75 0.25 3.5747 1.9805 0.0595 0.0196 418 0.001629 

0.80 0.20 3.9746 1.6754 0.0662 0.0166 316 0.001196 

0.85 0.15 4.4134 1.2959 0.0735 0.0128 399 0.001464 

0.90 0.10 4.8521 0.9163 0.0808 0.0091 420 0.001494 

0.95 0.05 5.1691 0.4582 0.0861 0.0045 135 0.000465 

1.00 0.00 – – – – 105 0.000350 
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Table 5.2 Mass of precursors used for preparation of binary mixtures of acetic acid and 

N,N,N’,N’–tetramethylethan–1,2–diamine. Water content was determined by Karl Fischer 

titration. 

xAc xAm Mass 

Acid / g 

Mass 

Amine / g 

Moles 

Acid 

Moles 

Amine 

Water Content   

ppm xw 

0.00 1.00 – – – – 895 0.005738 

0.05 0.95 0.1675 6.1560 0.0028 0.0530 900 0.005631 

0.10 0.90 0.3349 4.8739 0.0056 0.0420 931 0.005631 

0.15 0.85 0.5456 4.3087 0.0091 0.0371 832 0.004951 

0.20 0.80 0.7562 3.7434 0.0126 0.0322 850 0.004715 

0.25 0.75 0.7740 3.6592 0.0129 0.0315 759 0.004285 

0.30 0.70 0.7918 3.5749 0.0132 0.0308 721 0.003960 

0.35 0.65 0.9789 3.4780 0.0163 0.0299 704 0.003758 

0.40 0.60 1.1659 3.3811 0.0194 0.0291 772 0.004000 

0.45 0.55 1.4384 3.3406 0.0240 0.0288 731 0.003675 

0.50 0.50 1.7109 3.3000 0.0285 0.0284 689 0.003358 

0.55 0.45 1.9134 2.9937 0.0319 0.0258 627 0.002960 

0.60 0.40 2.1158 2.6874 0.0352 0.0231 501 0.002289 

0.65 0.35 2.4868 2.5317 0.0414 0.0218 667 0.002942 

0.70 0.30 2.8577 2.3760 0.0476 0.0205 718 0.003056 

0.75 0.25 3.2579 2.0785 0.0543 0.0179 748 0.003066 

0.80 0.20 3.6581 1.7810 0.0609 0.0153 780 0.003079 

0.85 0.15 4.1341 1.3901 0.0688 0.0120 521 0.001976 

0.90 0.10 4.6100 0.9992 0.0768 0.0086 616 0.002242 

0.95 0.05 4.9073 0.4996 0.0817 0.0043 413 0.001439 

1.00 0.00 – – – – 105 0.000350 
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Table 5.3 Mass of precursors used for preparation of binary mixtures of acetic acid and 

N,N–dimethylethanolamine. Water content was determined by Karl Fischer titration. 

xAc xAm Mass 

Acid / g 

Mass 

Amine / g 

Moles 

Acid 

Moles 

Amine 

Water Content   

ppm xw 

0.00 1.00 – – – – 270 0.001334 

0.05 0.95 0.1330 3.7510 0.0022 0.0421 281 0.001366 

0.10 0.90 0.2659 3.8711 0.0044 0.0434 330 0.001577 

0.15 0.85 0.4952 3.7722 0.0082 0.0423 342 0.001607 

0.20 0.80 0.7245 3.6732 0.0121 0.0412 418 0.001930 

0.25 0.75 0.8639 3.5663 0.0144 0.0400 389 0.001765 

0.30 0.70 1.0033 3.4593 0.0167 0.0388 516 0.002297 

0.35 0.65 1.2154 3.3172 0.0202 0.0372 441 0.001929 

0.40 0.60 1.4275 3.1751 0.0238 0.0356 499 0.002142 

0.45 0.55 1.6682 3.0047 0.0278 0.0337 452 0.001904 

0.50 0.50 1.9088 2.8343 0.0318 0.0318 387 0.001600 

0.55 0.45 2.1808 2.6288 0.0363 0.0295 309 0.001253 

0.60 0.40 2.4527 2.4232 0.0408 0.0272 421 0.001672 

0.65 0.35 2.7251 2.1715 0.0454 0.0244 417 0.001623 

0.70 0.30 2.9975 1.9198 0.0499 0.0215 399 0.001522 

0.75 0.25 3.2930 1.6301 0.0548 0.0183 432 0.001602 

0.80 0.20 3.5885 1.3404 0.0598 0.0150 412 0.001505 

0.85 0.15 3.9196 1.0173 0.0653 0.0114 378 0.001350 

0.90 0.10 4.2507 0.6941 0.0708 0.0078 451 0.001573 

0.95 0.05 4.4429 0.3471 0.0740 0.0039 225 0.000768 

1.00 0.00 – – – – 105 0.000350 
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5.2.3 Density 

 

As all samples were liquid at the studied temperature of 293.15 K, all density 

measurements were recorded using an Anton–Parr DSA5000 density meter. Density 

measurements are made based on the oscillating U–tube technology. Calibration of the 

density meter was performed using freshly boiled, de–ionized water with a known density 

of 0.998199 ± 0.000001 g cm–3.350 Care was taken to avoid the formation of air bubbles 

within the measurement chamber. Density results were measured to an accuracy of 

0.000001 g cm–3.   
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Table 5.4 Density (ρ) and molar volume (Vm) of the acetic acid–N,N–dimethylbutylamine 

binary system over the complete composition range. Additive quantities are denoted by 

(Id). All values were recorded at 293 K. 

xAcid xAmine 
ρ  

/ g cm–3 

 xAcid.mAcid + 

xAmine.mamine  

/ g mol–1 

Vm  

/ cm3 mol–1 

Vm (Id) 

/ cm3 mol–1 

1.00 0.00 1.049631 60.05 57.21 57.21 

0.95 0.05 1.046978 62.11 59.32 61.37 

0.90 0.10 1.037763 64.16 61.83 65.53 

0.85 0.15 1.025568 66.22 64.57 69.69 

0.80 0.20 1.012445 68.28 67.44 73.85 

0.75 0.25 0.997277 70.34 70.53 78.01 

0.70 0.30 0.980262 72.39 73.85 82.17 

0.65 0.35 0.959256 74.45 77.61 86.33 

0.60 0.40 0.937941 76.51 81.57 90.49 

0.55 0.45 0.90865 78.56 86.46 94.65 

0.50 0.50 0.885413 80.62 91.05 98.81 

0.45 0.55 0.855005 82.68 96.70 102.97 

0.40 0.60 0.836901 84.73 101.25 107.13 

0.35 0.65 0.815526 86.79 106.42 111.29 

0.30 0.70 0.799727 88.85 111.10 115.45 

0.25 0.75 0.778861 90.91 116.72 119.61 

0.20 0.80 0.766929 92.96 121.21 123.77 

0.15 0.85 0.754049 95.02 126.01 127.93 

0.10 0.90 0.742178 97.08 130.80 132.09 

0.05 0.95 0.732618 99.13 135.31 136.25 

0.00 1.00 0.720672 101.19 140.41 140.41 
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Table 5.5 Density (ρ) and molar volume (Vm) of the acetic acid–N,N,N,N–

tetramethylethan–1,2–diamine binary system over the complete composition range. 

Additive quantities are denoted by (Id). All values were recorded at 293 K. 

xAcid xAmine 
ρ 

/ g cm–3 

xAcid.mAcid + 

xAmine.mamine 

/ g mol–1 

Vm 

/ cm3 mol–1 

Vm (Id) 

/ cm3 mol–1 

1.00 0.00 1.049631 60.05 57.21 57.21 

0.95 0.05 1.07534 62.86 58.45 61.84 

0.90 0.10 1.083696 65.67 60.59 66.48 

0.85 0.15 1.076351 68.47 63.62 71.11 

0.80 0.20 1.049496 71.28 67.92 75.75 

0.75 0.25 1.033168 74.09 71.71 80.38 

0.70 0.30 1.011782 76.90 76.00 85.01 

0.65 0.35 0.992304 79.71 80.32 89.65 

0.60 0.40 0.968241 82.51 85.22 94.28 

0.55 0.45 0.945794 85.32 90.21 98.92 

0.50 0.50 0.921284 88.13 95.66 103.55 

0.45 0.55 0.899202 90.94 101.13 108.18 

0.40 0.60 0.879277 93.75 106.62 112.82 

0.35 0.65 0.863279 96.55 111.85 117.45 

0.30 0.70 0.845119 99.36 117.57 122.09 

0.25 0.75 0.830166 102.17 123.07 126.72 

0.20 0.80 0.818019 104.98 128.33 131.35 

0.15 0.85 0.805401 107.79 133.83 135.99 

0.10 0.90 0.793327 110.59 139.41 140.62 

0.05 0.95 0.784195 113.40 144.61 145.26 

0.00 1.00 0.775299 116.21 149.89 149.89 
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Table 5.6 Density (ρ) and molar volume (Vm) of the acetic acid–N,N–

dimethylethanolamine binary system over the complete composition range. Additive 

quantities are denoted by (Id). All values were recorded at 293 K. 

xAcid xAmine 
ρ 

/ g cm–3 

xAcid.mAcid + 

xAmine.mamine 

/ g mol–1 

Vm 

/ cm3 mol–1 

Vm (Id) 

/ cm3 mol–1 

1.00 0.00 1.049631 60.05 57.21 57.21 

0.95 0.05 1.079095 61.50 57.00 59.37 

0.90 0.10 1.088896 62.96 57.82 61.52 

0.85 0.15 1.091576 64.41 59.01 63.68 

0.80 0.20 1.090058 65.87 60.43 65.83 

0.75 0.25 1.088145 67.32 61.87 67.98 

0.70 0.30 1.086639 68.78 63.29 70.14 

0.65 0.35 1.083411 70.23 64.82 72.29 

0.60 0.40 1.075198 71.69 66.67 74.45 

0.55 0.45 1.064694 73.14 68.70 76.60 

0.50 0.50 1.049876 74.60 71.05 78.76 

0.45 0.55 1.037091 76.05 73.33 80.91 

0.40 0.60 1.019884 77.50 75.99 83.07 

0.35 0.65 1.004901 78.96 78.57 85.22 

0.30 0.70 0.987666 80.41 81.42 87.38 

0.25 0.75 0.969143 81.87 84.47 89.53 

0.20 0.80 0.950941 83.32 87.62 91.69 

0.15 0.85 0.932582 84.78 90.91 93.84 

0.10 0.90 0.921021 86.23 93.63 96.00 

0.05 0.95 0.905436 87.69 96.84 98.15 

0.00 1.00 0.888661 89.14 100.31 100.31 
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5.2.4 Absorbance Far Infrared Spectroscopy (FIR) 

 

The Far Infrared (FIR) spectra were recorded using a Bruker 66 V Michelson 

interferometer equipped with a 3 μm thick Mylar beam splitter and a Pyroelectric 

detector.372 The spectral resolution was 2 cm–1 and data points were collected between 50–

500 cm−1 . The liquid mixture was contained in an optical cell closed by silica windows 

with a 25 μm polyethylene terephthalate spacer. The cell was maintained at a temperature 

of 293.15 K for the duration of the measurements using a recirculating water heater. The 

absorption coefficient was calculated using the equation  

𝐴 =  − (ln (
𝐼𝑣

𝐼𝑣
0) − ln (

𝐼𝑣
𝑤1+𝐼𝑣

𝑤2

𝐼𝑣
0 ))       (5.1) 

where 𝐼𝑣 is the transmitted light intensity at wavelength 𝑣 of the sample, 𝐼𝑣
𝑤1 and 𝐼𝑣

𝑤2 are 

the corresponding transmitted light intensities of each silica window used and 𝐼𝑣
0 is the 

corresponding transmitted light intensity of the background signal.  
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5.2.5 Attenuated Total Reflectance Mid Infrared Spectroscopy (ATR–IR) 

 

The ATR–IR spectra of all precursor materials and mixtures were recorded at room 

temperature using an A2 Technologies (Agilent) ExoScan Fourier–Transform Infrared 

Spectrometer fitted with a germanium crystal attenuated total reflectance interface. All 

measurements were performed between 3500–800 cm–1. A background signal was recorded 

32 times to produce a single averaged background spectrum. The sample was then placed 

directly on to the interface for immediate measurement of 32 scans and then averaged to 

produce a single sample spectrum. The interface was then cleaned using a dry paper towel 

and propan–2–ol. Once the interface was cleaned sufficiently to return the beam to the 

background baseline, the instrument was then ready for following measurements. Each 

sample was recorded three times for a total of 96 scans, averaged to produce the final 

infrared spectra of the given sample.  

5.2.6 Nuclear Magnetic Resonance Spectroscopy (NMR)  

 

NMR characterisations (1H, 13C and 15N) of all neat samples were recorded using 

a Bruker 700 MHz instrument. In order to record NMR spectra of the pure liquids, a 

Wilmad coaxial insert with a reference lock solution 1% (w/w) t–butanol in D2O was used 

to generate a standard lock signal in the spectra. The 1H and 13C NMR results were 

internally referenced to t–butanol, and the 15N NMR results were externally referenced.   
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5.3 Results and Discussion 
 

5.3.1 Profiling the Bulk Properties. 

 

 By measuring bulk properties, a macroscopic profile of a given binary liquid 

mixture is obtained, that is dependent on the interactions at the molecular level. By 

systematically varying the composition, both the macroscopic property and the microscopic 

interactions change. By comparing how the macroscopic properties change from 

experiment with an additive mixing scheme, which assumes zero change in the molecular 

interactions upon mixing, it is possible to understand what effects of molecular interactions 

have on the bulk properties. This will allow for potential hypotheses to be suggested on 

how amine functionality and composition variation change the interactions at the molecular 

level. 

 The experimental density,  𝜌, and the corresponding average molar volume, 𝑉𝑚, 

have been determined for the three acid–amine binary mixtures over the entire composition 

range at 0.05 mole fraction intervals. While these quantities are inversely related to one 

another, deviations from additive mixing of these two quantities can highlight slightly 

different attributes of the binary mixture: density fluctuations correspond to the change in 

molecular packing of the whole system, while changes in molar volume correspond to the 

variation in average size of all species in a given binary mixture. 276,373–375   

5.3.1.1 Molar Volume  

 

The average molar volume of a binary mixture is the volume occupied per mole of 

said binary mixture, and is scalable with the average molecular volume of all species in the 

binary mixture. Using density, 𝜌, the average molar volume of species in a binary mixture, 

𝑉𝑚, can be calculated utilising the mole fraction (𝑥1 for acetic acid and 𝑥2 for the given 

amine) and molar mass of the pure precursors (𝑚𝑎𝑐 for acetic acid, 𝑚𝑎𝑚 for the given 

amine): 
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𝑉m =
(𝑥acid.macid)+(𝑥amine.mamine)

𝜌
       (5.1) 

This can then be compared to an additive approximation of the selected system, 𝑉𝑚
𝐼 , using 

the pure precursor molar volumes (𝑉𝑎𝑐
0  for acetic acid and 𝑉𝑎𝑚

0  for the given amine) giving 

the excess molar volume for that composition, 𝑉𝑚
𝐸. 

𝑉m
E  =  𝑉m  −  (𝑉acid𝑥acid  +  𝑉amine𝑥amine)       (5.2) 

This difference between the experimental and additive molar volumes provides a 

qualitative insight into how the net strength of interactions between species changes with 

composition in binary mixtures.276,373–375 Note that the values of 𝑉m
E are also relative to the 

precursor 𝑉m i.e. the larger the 𝑉m of the pure amine, the expected greater value of 𝑉m
E. 

Therefore, the deviation from additivity of molar volume relative to the additive quantity, 

𝑉m
E(𝑟𝑒𝑙. ) was determined for each of the acid–amine binary systems: 

𝑉m
E(𝑟𝑒𝑙. ) =  (

𝑉m
E

𝑉m
) ×  100       (5.3) 

 This can allow for a fairer comparison on the effect of amine functionality on the mixing 

behaviour of the three systems studied.  

 For all three systems, each composition exhibited negative values varying in 

magnitude with composition (Figure 5.2). This is similar to previously published 

observations for similar binary mixtures of carboxylic acids and amines.274–276,281 Negative 

values of 𝑉m
E imply an increase in the net strength of interactions between species. 

Coincidentally, the 𝑉m
E at the equimolar composition for all three systems are almost 

equivalent to one another. This would imply that a similar increase in interaction strength 

has occurred as a result of forming the equimolar mixture in each of the three systems. 

However, each system shows a different relation between composition and 𝑉m
E, suggesting 

that the trends of how the interactions change with composition are different for all three 

systems.  
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Figure 5.2 Dependence of the excess molar volume (𝑉m
𝐸) (top) and the relative excess molar 

volume (𝑉m
𝐸(𝑟𝑒𝑙. )) (bottom) on the mole fraction of amine for each of the three acid–amine 

binary mixtures. 
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In general, the most negative values of 𝑉m
E are observed in the acid–rich 

compositions, as has been seen before for ammonium carboxylate binary systems.274–276,281 

All three systems show a similar most negative 𝑉m
E(𝑟𝑒𝑙. ) value of around –10%, with the 

compositions varying between system. The compositions of most negative 𝑉m
E, have been 

suggested to correlate with the compositions of the most stable association products of a 

binary mixture (e.g. for DMBuA, this would imply an aggregate of Am2HAc3 being the 

most stable). 274–276,281,376 However, there is no further evidence to support the formation of 

such aggregates, and as such remains simply as a hypothesis. In the amine–rich 

compositions, the DMEtA system shows the greatest values of 𝑉m
𝐸(𝑟𝑒𝑙. ), with the DMBuA 

and TMEDA systems having similar values in this region. This result for the DMEtA 

system indicates that the hydroxyl functional group significantly influences the mixing 

behaviour with acetic acid. 

5.3.1.2 Hypotheses on the mixing behaviour of the acid–amine binary mixtures 

 

In chapter 4, it was suggested that the increased ionicity of the PIL N,N–

dimethylethanolammonium acetate may be due to hydrogen bonding between the acetate 

anion and the hydroxyl group of the cation. This stabilising hydrogen bond interaction 

could also be a more robust description as to why acid–rich compositions show greater 

deviations from additivity. Therefore, there should be a correlation between 𝑉m
E(rel) and 

the extent of hydrogen bonding interactions taking place.  

The large deviations indicating increased interaction strength, particularly in the 

acid–rich compositions, are much greater than those typically observed in binary liquid 

mixtures of hydrogen bonding solvents.373,374 This may be the direct result of the proton 

transfer reaction taking place, thus increasing the strength of the hydrogen bond 

interactions between species.377 Therefore there should also be a correlation between the 

concentration of ionic species and 𝑉m
E(rel).  



 J. E. S. J. Reid 

 133 

5.3.2 Characterising the short–range intermolecular interactions: hydrogen bonding 

and proton transfer between species. 

 

The effect of composition and amine functionality on the intermolecular hydrogen 

bonding interactions between species in the three studied systems will now be considered. 

The FIR spectra of each system was recorded in the region of 50 – 300 cm–1. While this 

region of the infrared spectrum has been well documented for showing intermolecular 

hydrogen bonding interactions,156,162,184,210,218,220,223,236,355,378–385 there are numerous 

hydrogen bond interactions that could be described – for example, there will likely be some 

contribution from acetic acid hydrogen bonding with itself,380,381 particularly in acid–rich 

compositions. Additionally, due to the different strength of molecular and ionic hydrogen 

bonds,377 it is likely that there will be contributions of both acid–amine and anion–cation 

hydrogen bonding interactions to the observed band shape. Finally, the hydroxyl functional 

group on N,N–dimethylethanolamine is expected to undergo hydrogen bonding with 

itself,386 which will also contribute to the FIR spectra of the DMEtA series. With these 

interactions in mind, the discussion focuses on how the FIR peak shape changes with both 

composition and amine functionality. For the sake of showing the results clearly, the FIR 

spectra was recorded at 10% mole percentage intervals.  
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5.3.2.1 Acid–Rich mixtures 

   

The FIR of acetic acid at 293 K showed a broad peak with a maximum around 187 

cm–1, which is in good agreement with previously reported values of 184 cm–1 (Figure 

5.3.380  For the acid–rich compositions, significant changes in the peak shape in comparison 

to acetic acid are seen. For all systems, an increase in intensity of the peak at 187 cm–1 with 

increasing amine mole fraction is observed, as well as the emergence of a second peak at 

higher frequency. This suggests that an additional intermolecular interaction with an 

absorption around 187 cm–1 exists which overlays the absorption seen for pure acetic acid. 

All binary systems also show the emergence of a broad peak at around 235 cm–1, implying 

that there is a second intermolecular interaction occurring as a result of mixing acid and 

amine. A third, broad peak of much lower intensity is observed in the range of 100–150 

cm–1, which appears to have greater absorbance in the DMEtA binary system.  

The change in intensity of the FIR peak with respect to composition is different for 

each system. In fact, the compositions with maximum absorption for each system (70% 

HOAc for DMBuA, 80% HOAc for TMEDA and 60% HOAc for DMEtA) appear to 

correlate well with the compositions with the most negative 𝑉m
E(rel) values. In addition, 

the equimolar composition (50% HOAc) for the DMEtA system shows a much larger 

absorbance than for either the DMBuA or TMEDA system. The same trend can be observed 

for 𝑉m
E(rel) in Figure 5.2, further showing the connection between the relative excess molar 

quantity and the change in intermolecular interactions from FIR. 
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Figure 5.3 Far infrared (FIR) spectra of the acid–rich mixtures of each acid–amine binary 

mixture in the region of 50 – 300 cm–1 as a function of acetic acid mole fraction. 
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5.3.2.2 Amine–Rich mixtures 

 

 The pure amines all showed no evidence of a prominent absorbance peak in the 

FIR region studied (Figure 5.4). The DMBuA and TMEDA systems both exhibited peaks 

in a similar position to the acid rich compositions, however the peak in the region 100 – 

150 cm–1 was not very well resolved in these compositions. The DMEtA system showed 

more clearly the emergence of this broad peak in the region 100 – 150 cm–1 with increasing 

acetic acid mole fraction, however the peak at around 230 cm–1 was not as well resolved as 

the peak at around 187 cm–1. 

For both the DMBuA and TMEDA binary systems, there was a comparatively 

similar increase in the overall absorbance of the FIR spectra as a function of increasing 

mole fraction of acetic acid (Figure 5.4). The DMEtA system however showed a much 

greater increase in the overall absorbance in the FIR region with increasing mole fraction 

of acetic acid. Both these trends indicate an increase in the intermolecular interactions that 

take place upon mixing acetic acid and amine. It also highlights that the hydroxyl–

functionalized amine has a greater increase in the number of intermolecular interactions 

upon mixing with acetic acid than the corresponding alkyl–functionalized and 

dimethylamino–functionalized amines.  

 In comparison, all three binary systems showed negative values of 𝑉m
E(rel) in all 

amine–rich compositions (Figure 5.2), which correlates with the increased intensity in the 

FIR region (Figure 5.4). Furthermore, the DMEtA system showed a much greater negative 

value of 𝑉m
E(rel) for all amine–rich compositions, again consistent with the observations 

found here. These correlations, both in the acid–rich and amine–rich compositions, 

between 𝑉m
E(rel) and the total absorbance in the FIR region, give evidence for the 

correlation between the large negative deviations from additivity of molar volume and an 

increase in the intermolecular interactions between species. 
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Figure 5.4 Far infrared (FIR) spectra of the amine–rich mixtures of each acid–amine binary 

mixture in the region of 50 – 300 cm–1 as a function of acetic acid mole fraction. 
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 A disadvantage of using experimental FIR results in isolation is the lack of 

understanding regarding individual underlying contributions to the spectra, and therefore 

the level of specific molecular and ionic hydrogen bond interactions between species. To 

address this issue, the ionic nature of the acid/anion and amine/cation species can be 

inferred indirectly using multiple spectroscopic techniques. By characterizing the ionic 

nature of these species, the trends both in bulk properties and in intermolecular interactions 

may be better understood.  

5.3.3 Intramolecular bonding to clarify the ionic nature of individual species. 

 

To better comprehend how the change in amine functionality and composition 

mediate the change in bulk property and intermolecular interaction, the ionic nature of the 

acid/anion and amine/cation species was investigated. Using multiple experimental 

techniques to characterize both the acid/anion and amine/cation species provided a better 

understanding of how the ionic nature of species changed as a function of both composition 

and amine functionality. This ultimately helped to rationalize the trends in both molar 

volume and FIR absorption for these same systems, and supported the connection between 

bulk property and molecular interactions. 

As already shown in chapter four, the ATR–IR spectra of the three acetate PILs 

can describe the ratio of anion:acid species. 247,283,367,387,388 This same approach was used 

here. Additionally, 13C NMR was employed to describe the change in electron localization 

on both the carboxylate carbon (C1) and the methyl carbon (C2) of the acid/anion species. 

To study the mixing behaviour of the amine species in each system, 15N NMR was used to 

understand how the electron density of the nitrogen centres varies with respect to change 

in composition. Cross comparisons were made with the changes in the 13C NMR signal of 

the adjacent methyl (C3) and methylene (C4) groups of each amine.  
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5.3.3.1 Acetic acid (HOAc) species 

 

In the acid–rich composition region, all systems showed the presence of both 

neutral (peak at ~1710 cm–1) and ionic species (peak at ~ 1570 cm–1) of HOAc as indicated 

by ATR–IR (Figure 5.5). This correlated well with the C1 carbon signal shifting upfield in 

a comparable manner up to an amine mole fraction of 0.2 (Figure 5.6), and the C2 carbon 

signal shifting downfield in a complementary manner to the observed trend for C1 (Figure 

5.7). A similar trend of the 13C NMR had been observed in binary mixtures of HOAc and 

water, which was rationalized by the shift of electron density from the methyl group 

towards the C1 carbon upon mixing as inferred from wide angle X–ray scattering.389 For 

our systems, this corresponds to the formation of a hydrogen bond between acid and amine 

upon mixing.  

At higher amine mole fractions, a decrease is observed in the absorbance of the 

peak for the acetate anion relative to the peak for the neutral acetic acid in the ATR–IR 

spectra for either of the DMBuA or TMEDA systems (Fig 5.8). In parallel, an upfield shift 

for the C2 signal was observed for the DMBuA and TMEDA systems, indicating an increase 

in electron density on the C2 carbon with increasing amine mole fraction (Figure 5.7). This 

observed upfield shift for these two systems suggests a weakening of the hydrogen bonding 

between HOAc and amine, resulting in a shift of electron density from C1 back to C2 with 

increasing amine mole fraction. The DMBuA and TMEDA systems both exhibited a 

continual shift upfield of the C1 signal, suggesting that there are still interactions between 

acid and base in these amine–rich compositions, but more characteristic of a hydrogen bond 

interaction between neutral molecules than between ion pairs (Figure 5.6).  
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Figure 5.5 ATR–IR spectra of the acid–rich compositions of the three acid–amine mixtures 

in the region of 1500–1800 cm–1. The peak for the acetate species occurs at ~1570 cm–1 and 

the peak corresponding to HOAc species is at ~1710 cm–1. 
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Figure 5.6 Dependence of the 13C chemical shift of the C1 carbon on the mole fraction of 

the amine of acetic acid for the three binary mixtures. 

 

Figure 5.7 Dependence of the 13C chemical shift of the C2 carbon on the mole fraction of 

the amine of acetic acid for the three binary mixtures. 
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For the DMEtA system, the C2 carbon signal continued to shift downfield with 

increasing amine concentration, showing that the electron density was decreasing (Figure 

5.7). This suggests a continued increase in the shift of electron density from C2 to C1, 

consistent with an increase in the extent of hydrogen bond interactions between HOAc and 

DMEtA at increasing amine concentrations. However, the DMEtA system showed a 

downfield shift of the C1 signal with increasing amine mole fraction (Figure 5.6). This was 

in contrast to the trend observed for the DMBuA and TMEDA systems, which indicated 

the formation of hydrogen bond interactions between the neutral acid–amine species. One 

explanation for this could be that proton transfer occurs at a greater extent in the DMEtA 

system than in the other two studied systems. Deprotonation of acetic acid would be 

expected to induce a net deshielding effect as a result of delocalisation of the negative 

charge around the COO– group. This is supported by what is seen from ATR–IR of DMEtA; 

only in the DMEtA system can signals for the acetate anion be observed in amine–rich 

compositions (Figure 5.7).  

Mixing HOAc with a molar excess of an amine with a conjugate acid with a 

substantially greater 𝑝Ka(aq) value might reasonably be expected to result in deprotonation 

of HOAc to produce the acetate anion; however, only the DMEtA system exhibited 

deprotonation of HOAc in a molar excess of amine. This may be the result of the capability 

of the excess amine to solvate the ionic species upon proton transfer. The fact that the 

amine–rich region of the DMEtA system was so drastically different implies that hydrogen 

bond donor (HBD) capability is very important in increasing the ionic nature of a mixture. 

This observation further supports the idea that HBD interactions can stabilize the acetate 

anion, and thus provide a driving force for the formation of ionic species. The interactions 

between acid and base in the DMEtA system are characteristic of an increase in hydrogen 

bonding between ionic species. 
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Figure 5.8 ATR–IR spectra of the acid–rich compositions of the three acid–amine mixtures 

in the region of 1500–1800 cm–1. The peak for the acetate species occurs at ~1570 cm–1 and 

the peak corresponding to acetic acid species is at ~1710 cm–1. 
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5.3.3.2 Amine (Am) species  

 

In all 15N NMR spectra, only a single peak could be resolved, due to the rate of 

proton transfer being greater than the timescale of the NMR experiment (Figure 5.9). As a 

result, the distinction between a neutral and the protonated form of the amine could not be 

made from the 15N NMR. From the pure amine to the equimolar composition, a gradual 

shift of the 15N signal downfield was observed, indicating a net deshielding of the nitrogen 

centre of the amine (Figure 5.9). This trend has been previously reported for the 15N NMR 

of different acid–amine binary mixtures.245,286 This deshielding shift corresponds to a 

reduced electron density on the nitrogen centre of the amine, as could occur when the 

nitrogen lone pair interacts with the labile proton of HOAc, either as a hydrogen bond or 

as a result of formal   proton transfer (or indeed any intermediate state). This correlated 

well with an upfield shift of both the C3 and C4 carbon signals with decreasing amine mole 

fraction, indicating an increase in the electron density on these two carbon environments 

(Figure 5.10).  

The downfield change of chemical shift was noticeably less for the TMEDA 

systems, as a result of two degenerate nitrogen centres exhibiting identical proton affinities 

in the pure amine (Figure 5.9). For monoprotonated diamines, a low barrier hydrogen bond 

(LBHB) between the two nitrogen atoms will occur, resulting in a single degenerate 

peak.356 Surprisingly, this trend was not reciprocated with the 13C signals for either the 

methyl or methylene groups, which seemed to move in a similar trend to the same signals 

for both the DMBuA and DMEtA systems (Figure 5.10).  

The DMBuA and DMEtA system appeared to have similar downfield chemical 

shift changes, however considering the chemical shift change relative to that of the pure 

amine, the DMEtA system had a slightly greater relative downfield shift in amine rich 

compositions (Figure 5.9). This was nonetheless surprising, as the ATR–IR spectra for the 

DMBuA and DMEtA systems showed distinctly different ionic nature of the acetate/anion 
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species, suggesting practically no charge transfer taking place in the amine–rich 

compositions of DMBuA. This lack of correlation raises a significant question as to the 

true interpretation of the change in 15N chemical shift with composition. 245,286 As such, it 

becomes much more important to cross–compare the trends from the cation/amine species 

with that of the anion/acid species. 

In the acid–rich compositions, all three systems exhibited distinctly different trends 

of 15N chemical shift dependence on composition (Figure 5.9). The DMBuA system still 

showed a downfield shift in signal, however at a lesser rate of change between than in the 

acid rich compositions giving a sigmoidal shape of the trend overall. For both the C3 and 

C4 signals in the 13C NMR, the signals appeared to shift upfield at amine mole fractions of 

0.3 and lower (Figure 5.10). This change in trend was not consistent with a continued 

increase in the deshielding of the nitrogen centre at the lowest amine mole fractions as 

inferred from 15N NMR (Figure 5.9). A recent study into the NMR spectra of binary 

mixtures of 1,3–dimethyl–2–imidazolidinone with sulfuric acid and methanesulfonic acid 

found that changes in the trend in the 15N NMR in acid–rich composition correlated with 

the Lewis basicity of the anion interacting with a protonated cation.286 As such, the 13C 

signals of the adjacent carbons on 1,3–dimethyl–2–imidazolidinone shifted upfield and the 

nitrogen signals shifted downfield, which is consistent with the observation in the DMBuA 

system. 

The TMEDA system exhibited a greater rate of change of the 15N signal in the same 

region, although exhibited a lesser change in both relative and absolute 15N chemical shift 

than the DMBuA system (Figure 5.9). This is consistent with the continual upfield shift of 

both the C3 and C4 13C NMR signals, indicating an increase in electron density on the carbon 

nuclei adjacent to the nitrogen centres, until the lowest measured amine mole fraction 

(Figure 5.10). These effects were presumably mostly due to the interaction of both tertiary 

amine functionalities with HOAc becoming more favourable in acid–rich compositions. 
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This is consistent with the ATR–IR results indicating the greatest relative intensity of ionic 

species in the TMEDA system occur around the 0.8–0.9 acid mole fractions.  

 The DMEtA system appeared to reach a maximum downfield chemical shift of 

the 15N signal at an amine mole fraction of 0.3 (Figure 5.9). At lower amine mole fractions, 

the 15N signal appeared to shift upfield indicating a net increase in the shielding of the 

nitrogen centre. Over the same composition range, the 13C chemical shifts for the methyl 

groups of the DMEtA system started to shift downfield (Figure 5.10). The net shift of the 

15N signal upfield in the DMEtA system at the lowest amine mole fractions suggests a 

stronger effect of the anion basicity on the anion–cation interactions, stronger than what is 

observed in the DMBuA system.286 However, the lack of complementary trends in both the 

C3 and C4 signals in 13C NMR did not support this (Figure 5.10). An alternative explanation 

could be that the DMEtA system at the lowest amine mole fractions studied has less ionic 

character than the DMBuA system. This is consistent with the nature of acetic acid at these 

compositions as shown from the ATR–IR spectra (Figure 5.5), showing relatively little 

ionic character at the lowest amine mole fractions. 
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Figure 5.9 Dependence of the absolute (top) and relative (bottom) change in 15N chemical 

shift of the nitrogen centre signal for the three binary mixtures on the amine mole fraction. 

 

Figure 5.10 Dependence of the 13C chemical shift of the C3 and C4 carbon environments 

of each amine on the mole fraction of the amine for the three binary mixtures. 
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5.3.4 Correlation between bulk properties and short─range interactions. 

 

The ATR–IR spectra indicated that significant contributions from acetate species 

existed in all acid–rich compositions for all three systems (Figure 5.4). The compositions 

that had the largest intensity of the acetate species (0.7 HOAc for DMBuA, 0.8 for TMEDA 

and 0.6 for DMEtA) suggested that these compositions also exhibited the greatest degree 

of ionic character. These same compositions showed the greatest absorption in the FIR 

region, as well as the most negative values of 𝑉m
E(rel). The correlation of these three 

characteristics further supports the connection between short range interactions at the 

molecular level and bulk properties. Compositions which exhibit highly ionic 

characteristics appear to also exhibit greater intermolecular interactions (from FIR) and 

therefore greater deviations from additive mixing of the two precursors.   This observation 

is of profound importance when considering the possibilities of “designing” PILs with 

specific desired properties. 

Rationalizing why these compositions show the largest deviations from additivity 

and the greatest extent of both intermolecular interactions and ionic nature requires an 

appreciation of the entire composition range. In the amine–rich compositions, there were 

no significant intensities in the ATR–IR spectra for the acetate species in the DMBuA and 

TMEDA system, while the DMEtA system showed predominant intensity of the acetate 

species (Figure 5.7). This was despite the similar downfield shift of the nitrogen centre 15N 

NMR signal (Figure 5.8) and the upfield shift of the C3 and C4 13C NMR signals (Figure 

5.9) for all three binary systems. This was further supported by the distinctly different 

trends of the C1 (Figure 5.5) and C2 (Figure 5.6) signals of the DMEtA system and the other 

two binary systems. This implies that while acid–amine hydrogen bond interactions take 

place in the amine–rich compositions in all three systems (Figure 5.3), only in the DMEtA 

system does extensive proton transfer take place in amine–rich compositions.  
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This supports the hypothesis that additional hydrogen bond interactions with the 

acetate anion can stabilize the ionic species in an acid–base binary mixture. This hypothesis 

was proposed in chapter 4 to rationalize how hydroxyl–functionalized PILs can have such 

a distinct impact on the cohesive energy density and solvent–solute interactions. In amine–

rich mixtures, this stabilization comes from the hydroxyl group of the amine species 

donating a proton to the acetate anion. In the acid–rich compositions, this stabilization is 

due to acetic acid–acetate hydrogen bond interactions. This interaction between acid and 

anion to form a stabilized dimer anion has been suggested before, 274,275,280,376 however it 

was defined as an explicit stoichiometric adduct as opposed to a less specific stabilization 

mechanism. The concept of explicit stoichiometric adduct formation in these systems does 

not appreciate the complex proton transfer equilibria and re–orientation dynamics that can 

take place in liquids in contrast to crystalline solids of acid–amine binary mixtures with 

well–defined stoichiometry.390–392  

5.4 Conclusions 
 

 The comparison between experimental and additive molar volume of the three 

acid–amine binary mixtures as shown by the  𝑉m
E(rel) shows that strong, negative 

deviations occur. These negative deviations were much larger than typically found for 

hydrogen bond donor/acceptor binary mixtures, suggesting the formation of ionic species 

with strong intermolecular hydrogen bond interactions. The largest deviations for all three 

systems occur in acid–rich compositions, however the DMEtA system exhibited noticeably 

greater deviations from additivity than either the DMBuA or TMEDA system.  

 Intermolecular interactions as inferred from the FIR spectra of the binary mixtures 

appeared to have similar dependence on composition than 𝑉m
E(rel). In general, all binary 

mixtures exhibited an increase in the extent of intermolecular interactions in comparison to 

the pure precursor materials. Compositions with the largest absorbance in the FIR region 
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correlated well to compositions with the greatest deviations from additive mixing. The 

DMEtA system exhibited a much greater FIR absorbance than the corresponding DMBuA 

and TMEDA systems in the amine–rich compositions.  

 The nature of the short–range intermolecular interactions was rationalized by 

spectroscopy by describing the change in the acid/anion and amine/cation species 

separately as a result of mixing. By considering both types of species, distinctly different 

mixing behaviour in each of the three binary systems can be appreciated.  In the TMEDA 

system, both the acid/anion and amine/cation species only showed evidence of significant 

proton transfer taking place in acid–rich compositions. The DMBuA system showed a 

similar continued downfield shift of the 15N NMR signal as the DMEtA system with 

increasing acid mole fraction, which had previously been suggested to represent systematic 

increase in extent of proton transfer. However, compared to the ATR–IR and 13C NMR 

spectra of the acid/anion species, distinctly different behaviour was shown between these 

two systems; the DMBuA system also only showed significant proton transfer taking place 

in acid–rich compositions, whereas the DMEtA system showed evidence implying proton 

transfer takes place in amine–rich compositions as well.  

For all three systems, the ATR–IR peak of the acetate species showed maxima at 

the same compositions as observed in both the FIR absorbance and the 𝑉m
E(rel). This 

correlation between bulk property deviations and the change in short–range interactions 

was surprising, given the long–ranged interactions that can occur in binary liquid systems. 

However, it is widely reported in literature that hydrogen bond interactions are dominant 

in such binary systems, which is perhaps why the correlation between bulk property and 

spectroscopy was so strong. Further application of such correlations to a wider variety of 

acid–amine binary systems may yield a much deeper understanding of the molecular basis 

of bulk properties, which would be invaluable in establishing rational structure–property 

relationships in PILs. 
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Chapter 6: Towards the Application of Acid–Amine Binary 

Mixtures as Solvents 
 

6.1 Introduction 
 

To understand the solvation capacity (i.e. will a solute dissolve in a given solvent?) 

requires some rudimentary empirical data directly relevant to an industrial application. At 

this stage, it is not essential to have rigorous theory to rationalize the results quantitatively; 

qualitative trends can yield valuable insights. The capability to relate these trends to the 

interactions in the solvent as inferred indirectly using spectroscopic techniques is notably 

useful.4,5 With specific regard to the acid–amine binary mixtures studied in chapter five, 

the relationship of solvation capacity to (1) the formation of ionic species and (2) the 

increase in the extent of intermolecular hydrogen bonding interactions will prove valuable 

in rationalizing how composition and amine functionality can tune the solvation properties 

of acid–amine binary mixtures. Indeed, such a connection between short range interactions 

and solvation capability has already been shown for the equimolar acid–amine binary 

mixtures in chapter four. 

 In this chapter, there are two primary objectives: (1) to characterize the solvation 

capacity of acid–amine binary mixtures and (2) to rationalize the variance of solvation 

behaviour with both amine functionality and composition.  

 The change in solvation environment will be reflected in the change in solubility 

of a solute with respect to composition. Based on characteristics of the solute, such as 

induced dipolarity, permanent dipole moment and hydrogen bonding capability, one could 

probe how the solvation environment changes. A deeper understanding can be achieved 

when multiple solutes with varying characteristics are screened, providing a more detailed 

insight into how the solvation environment changes with composition and amine 

functionality. This follows similar principles to using multiple solvation parameters to 
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describe the solvation environment as established by Kamlet, Taft and Abraham,255,258,260 

albeit in a more qualitative manner. 

These changes can then be compared to the trends in short–range interactions as 

discussed in chapters four and five. By doing so, a qualitative yet rational interpretation of 

how the ionic nature and the extent of intermolecular hydrogen bonding interactions 

influence the solvation capacity of acid–amine binary mixtures may be obtained. The 

failure to connect these short–range interactions to the solvation capability of these binary 

mixtures will provide support to the hypothesis of significant contributions of long–range 

interactions to the solvation properties of these systems. 

  

 

 

 

 

 

 

 

 

 

 

 

 



 J. E. S. J. Reid 

 153 

6.2 Experimental 
 

6.2.1 Materials and Samples 

 

The same precursor materials as used in chapters four and five (acetic acid, N,N–

dimethylbutylamine, N,N–dimethylethanolamine and N,N,N’,N’–tetramethylethan–1,2–

diamine) were used in this chapter. Binary mixtures of acid and amine were prepared 

following the same procedure outlined in chapter five.49 The experimental details (mass of 

precursors, water content from volumetric Karl–Fischer titration) are summarized in Tables 

6.1–6.3. All probe solutes were obtained from Sigma Aldrich and used without further 

purification. 

 

 

 

Table 6.1 Mass of precursors used for the preparation of the binary mixtures of acetic acid 

and N,N–dimethylbutylamine. Water content was determined from Karl Fischer titration 

(see section 4.2.3). 

xAc xAm 
Mass 

Acid / g 

Mass 

Amine / g 

Moles 

Acid 

Moles 

Amine 

Water Content / 

ppm 

0 1 – – – – 230 

0.10 0.90 1.4731 18.8481 0.0245 0.1864 320 

0.20 0.80 2.8698 17.9620 0.0478 0.1776 366 

0.30 0.70 4.4575 17.2969 0.0742 0.1710 460 

0.40 0.60 6.4583 16.2799 0.1075 0.1610 451 

0.50 0.50 8.9371 15.0914 0.1488 0.1492 687 

0.60 0.40 12.016 13.5883 0.2001 0.1344 603 

0.70 0.30 15.5162 11.0702 0.2584 0.1095 932 

0.80 0.20 19.3485 8.2890 0.3222 0.0820 804 

0.90 0.10 23.8295 4.4628 0.3968 0.0441 1265 

1 0 – – – – 105 
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Table 6.2 Mass of precursors used for the preparation of the binary mixtures of acetic acid 

and N,N,N’,N’–tetramethylethan–1,2–diamine. Water content was determined from Karl 

Fischer titration (see section 4.2.3). 

xAc xAm 
Mass 

Acid / g 

Mass 

Amine / g 

Moles 

Acid 

Moles 

Amine 

Water Content / 

ppm 

0 1 – – – – 895 

0.10 0.90 1.2920 22.5081 0.0215 0.1938 993 

0.20 0.80 2.8079 21.7332 0.0468 0.1871 942 

0.30 0.70 4.5978 20.7569 0.0766 0.1787 966 

0.40 0.60 6.7591 19.6208 0.1126 0.1689 921 

0.50 0.50 9.8962 19.1512 0.1648 0.1649 1003 

0.60 0.40 12.0699 15.5701 0.2010 0.1340 1120 

0.70 0.30 16.5934 13.7606 0.2763 0.1185 1022 

0.80 0.20 21.2204 10.2659 0.3534 0.0884 1098 

0.90 0.10 26.7582 5.7530 0.4456 0.0495 1277 

1 0 – – – – 105 

 

 

 

Table 6.3 mass of precursors used for the preparation of the binary mixtures of acetic acid 

and N,N–dimethylethanolamine. Water content was determined from Karl Fischer titration 

(see section 4.2.3). 

xAc xAm 
Mass 

Acid / g 

Mass 

Amine / g 

Moles 

Acid 

Moles 

Amine 

Water Content / 

ppm 

0 1 – – – – 895 

0.10 0.90 1.8140 23.3608 0.0302 0.2621 588 

0.20 0.80 3.7542 22.1466 0.0625 0.2484 624 

0.30 0.70 6.5904 20.9451 0.1097 0.2350 738 

0.40 0.60 8.6109 19.1505 0.1434 0.2148 1008 

0.50 0.50 11.4918 17.0162 0.1914 0.1909 965 

0.60 0.40 14.7380 14.5684 0.2454 0.1634 934 

0.70 0.30 18.0844 11.4483 0.3011 0.1284 1105 

0.80 0.20 21.6882 8.0633 0.3612 0.0905 1273 

0.90 0.10 25.4401 4.1454 0.4236 0.0465 1355 

1 0 – – – – 105 
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6.2.2 Solvent Miscibility Screening 

 

In total, 15 probe solutes were selected to characterize the solvation profile of each 

acid–amine binary mixture as well as the pure precursor materials. The solutes were 

rationally chosen on the basis of various characteristics, which describe their dissolution 

behaviour. Non–specific solute–solvent interactions are discussed on the basis of 

instantaneously–induced dipolar interactions referred to as the London dispersive forces, 

permanent dipolar–induced dipolar interactions known as the Keesom forces and the 

permanent dipolar interactions also known as the Debye forces, which are often grouped 

together as the van der Waals forces. Specific hydrogen bonding donor and acceptor 

capability will also significantly influence the solubility of the solute. Finally, the strength 

of solute–solute interactions will additionally contribute to the likelihood of a solute being 

solubilized. 

The induced dipolar interactions will be discussed on the basis of the dispersive 

Hansen solubility parameter, δD of the solute.393,394 The permanent dipolar interactions will 

be considered on the basis of the polar Hansen solubility parameter, δP,393,394 as well as the 

dipole moment of the solute.395 Finally, the Kamlet–Taft dipolarity/polarizability parameter 

(π*) will be used as a descriptor of the net non–specific van der Waals forces of the 

solute.260,396,397 To consider these two separately, the Kamlet–Taft hydrogen bond acidity 

(α) and basicity (β) are used when available for each solute.2,4,260,397–399 Finally, cohesive 

energy of the solute is appreciated on the basis of the Hildebrand solubility parameter, δ.267 

The quantities of the above stated parameters are summarized in table 6.4 
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Table 6.4 Properties of the solutes used in the miscibility profiling of acid–amine binary 

mixtures. 2,4,260,267,393–399 

Probe Solvent δ δD δP 
Dipole 

Moment 
π* α β 

Hexane 14.9 14.9 0.0 0.00 – 0.11 0.00 0.00 

Cyclohexane 16.8 16.8 0.0 0.00 0.00 0.00 0.00 

Toluene 18.2 18.0 1.4 0.43 0.49 0.00 0.11 

Dichloromethane 20.2 18.2 6.3 1.90 0.82 0.13 0.10 

Diiodomethane 19.0 17.8 3.9 1.10 1.00 0.00 0.00 

Bromotrichloromethane 20.9 18.3 8.1 0.21 0.43 0.00 – 

Diethyl ether 15.6 14.5 2.9 1.17 0.24 0.00 0.47 

Ethyl acetate 18.2 15.8 5.3 1.88 0.45 0.00 0.45 

Acetone 19.9 15.5 10.4 3.11 0.71 0.08 0.48 

Acetonitrile 24.4 15.3 18.0 3.39 0.66 0.19 0.40 

Dimethyl sulfoxide 26.7 18.4 16.4 3.90 1.00 0.00 0.76 

1,3–Bis(trifluoromethyl)benzene 18.3 17.0 6.8 2.43 – 0.00 – 

Ethanol 21.0 17.0 3.3 1.65 0.40 0.77 0.81 

1–Octanol 26.5 15.8 8.8 1.73 0.54 0.86 0.75 

Water 47.8 15.5 16.0 1.82 1.09 1.17 0.47 
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Due to the qualitative nature of this approach, actual masses were not recorded. 

Approximately 1 g of each acid–amine binary mixture was measured into a clear glass 

sample vial. Approximately 100 mg of a probe compound was added to each sample. The 

sample vial was sealed and shaken for 60 seconds, letting the vial rest for up to 300 seconds 

to reach a state of equilibrium. After this time, the system in the vial was given a qualitative 

score based on the phase behaviour of the system: 

• A score of 1 was awarded when the system appeared as a single, clear, 

homogeneous liquid phase. 

• A score of 0.5 was awarded when the system became turbid, which cannot be 

describe as being a single phase or two discrete phases. 

• A score of 0 is awarded when there was no visible dissolution of probe molecule 

in the solvent, resulting in observation of two discrete, immiscible phases. 

 For each sample studied, a score was assigned based on the mixing behaviour observed 

with each probe molecule, creating the miscibility profile for that sample. Repeating this 

for all samples generates a visual guide to the change in miscibility profile with 

composition for each acid–amine system.  
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Table 6.5 Miscibility profiles of the N,N–dimethylbutylamine (DMBuA) – acetic acid (HOAc) binary system at 0.1 mole fraction intervals. 

Probe Solute 
Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Hexane 1 0.5 0.5 0 0 0 0 0 0 0 1 

Cyclohexane 1 1 1 0.5 0.5 0 0 0 0 0 1 

Toluene 1 1 1 1 1 1 1 0.5 0 0 1 

Dichloromethane 1 1 1 1 1 1 1 1 1 1 1 

Diiodomethane 0.5 0.5 1 1 1 1 0.5 0 0 0 0 

Bromotrichloromethane 1 1 1 1 1 1 1 0.5 0 1 1 

Diethyl ether 1 1 1 1 1 1 1 1 0 1 1 

Ethyl Acetate 1 1 1 1 1 1 1 1 1 1 1 

Acetone 1 1 1 1 1 1 1 1 1 1 1 

Acetonitrile 1 1 1 1 1 1 1 1 1 1 1 

Dimethyl sulfoxide 0 0 0 0 0.5 1 1 1 1 1 1 

1,3–Bis(trifluoromethyl)benzene 1 1 1 1 1 1 1 1 0 1 1 

Ethanol 1 1 1 1 1 1 1 1 1 1 1 

1–Octanol 1 1 1 1 1 1 1 1 1 1 1 

Water 0 0 0 0 0.5 1 1 1 1 1 1 
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Table 6.6 Miscibility profiles of the N,N,N’,N’–tetramethylethan–1,2–diamine (TMEDA) – acetic acid (HOAc) binary system at 0.1 mole fraction 

intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Hexane 1 1 0.5 0.5 0.5 0 0 0 0 0 1 

Cyclohexane 1 1 1 1 0.5 0 0 0 0 0 1 

Toluene 1 1 1 1 1 1 1 1 1 1 1 

Dichloromethane 1 1 1 1 1 1 1 1 1 1 1 

`Diiodomethane 0.5 0.5 0.5 1 1 1 1 0 0 0 0 

Bromotrichloromethane 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 

Diethyl ether 1 1 1 1 1 1 1 1 1 1 1 

Ethyl Acetate 1 1 1 1 1 1 1 1 1 1 1 

Acetone 1 1 1 1 1 1 1 1 1 1 1 

Acetonitrile 1 1 1 1 1 1 1 1 1 1 1 

Dimethyl sulfoxide 1 1 1 1 1 1 1 1 1 1 1 

1,3–Bis(trifluoromethyl)benzene 1 1 1 1 1 1 0.5 0.5 0.5 1 1 

Ethanol 1 1 1 1 1 1 1 1 1 1 1 

1–Octanol 1 1 1 1 1 1 1 1 1 1 1 

Water 1 1 1 1 1 1 1 1 1 1 1 
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Table 6.7 Miscibility profiles of the N,N–dimethylethanolamine (DMEtA) – acetic acid (HOAc) binary system at 0.1 mole fraction intervals. 

 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Hexane 1 0 0 0 0 0 0 0 0 0 1 

Cyclohexane 1 1 0.5 0 0 0 0 0 0 0 1 

Toluene 1 1 1 1 1 0 0 0 1 1 1 

Dichloromethane 1 1 1 1 1 1 1 1 1 1 1 

Diiodomethane 1 1 1 1 1 0 0 0 0 0 0 

Bromotrichloromethane 0.5 0.5 0.5 1 1 1 0 0 1 1 1 

Diethyl ether 1 1 1 1 1 0.5 0.5 0 0.5 1 1 

Ethyl Acetate 1 1 1 1 1 1 1 1 1 1 1 

Acetone 1 1 1 1 1 1 1 1 1 1 1 

Acetonitrile 1 1 1 1 1 1 1 1 1 1 1 

Dimethyl sulfoxide 1 1 1 1 1 1 1 1 1 1 1 

1,3–Bis(trifluoromethyl)benzene 1 1 1 1 1 0.5 0.5 0 0 1 1 

Ethanol 1 1 1 1 1 1 1 1 1 1 1 

1–Octanol 1 1 1 1 1 1 1 1 1 1 1 

Water 1 1 1 1 1 1 1 1 1 1 1 



 J. E. S. J. Reid 

 161 

6.3 Results and Discussion 
 

6.3.1 Solvent Miscibility 

 

As a whole, each binary system shows a different miscibility profile to the 15 probe 

solutes, with the change of composition having varying effects on the miscibility with each 

solute. By comparing probe solutes on the basis of the characteristics outlined above it is 

possible to explain the change in miscibility score for each probe with composition and 

functionality on the basis of changing solvent–solute interactions. For the sake of clarity, 

the solutes are grouped into four categories: hydrocarbons, haloalkanes, dipolar aprotic and 

amphiprotic.  

 6.3.1.1 Hydrocarbons: hexane, cyclohexane and toluene 

 

The three hydrocarbon solutes, hexane, cyclohexane and toluene, exhibit little to 

no hydrogen bonding capability, with only toluene exhibiting a dipole moment (Table 6.4). 

The predominant interaction between solvent and solute are the London dispersion 

forces.400  

For all precursor materials, each of the three hydrocarbon solutes are fully miscible. 

Upon mixing, there is reduced solubility of the hydrocarbon solutes, particularly in acid–

rich compositions. That cyclohexane is comparatively more soluble than hexane in all acid–

amine binary mixtures is likely the result of stronger dispersive interactions between the 

solute and solvent owing to the greater polarizability of the constrained ring electrons. It is 

easier to induce a dipole in cyclohexane than in hexane, hence the larger value of δD (Table 

6.4), and therefore is easier to solubilize in solvents which are highly polarizing. In 

comparison, toluene, which has both greater inducible polarity and a permanent dipole 

moment (Table 6.4), is much more soluble than both hexane and cyclohexane.  
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Despite the increased solubility of toluene in comparison to hexane and 

cyclohexane, toluene is still immiscible in multiple acid–rich mixture of the DMBuA and 

DMEtA systems. The low solubility of all hydrocarbon solutes in the acid–amine binary 

mixtures (apart from toluene in the TMEDA system) can be rationalized by competing 

interactions between species. In general, solute–solvent interactions are competing with 

solvent–solvent interactions, which would explain the reduced solubility in acid–rich 

compositions, which showed the greatest extent of intermolecular hydrogen bonding 

interactions in the binary mixtures as shown in section 5.3.2.1. This would also explain the 

reduced solubility of hydrocarbon solutes in the DMEtA system over the whole 

composition range, as this system showed the greatest extent of intermolecular interactions 

in amine rich compositions as shown in section 5.3.2.2.  

The effect of introducing an N,N–dimethylamino functional group to the amine to 

increase hydrogen bond acceptor capability of the solvent structure appears to have a 

counterintuitive effect: over the whole composition range, solubility of hydrocarbon solutes 

is greater in TMEDA than in DMBuA or DMEtA. Considering the hydrogen bonding 

contributions, the N,N–dimethylamino functional group is not a very strong base,364,401 so 

may not undergo extensive intermolecular interactions compared to the hydroxyl functional 

group on DMEtA. Additionally, the N,N–dimethylamino functional group on TMEDA is 

more sterically bulky than the linear alkyl group on DMBuA, which has been suggested to 

positively influence the London forces  in molecules.400
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Table 6.8 Miscibility of Hexane, Cyclohexane and Toluene in the DMBuA–HOAc binary system at 0.1 mole fraction intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Hexane 1 0.5 0.5 0 0 0 0 0 0 0 1 

Cyclohexane 1 1 1 0.5 0.5 0 0 0 0 0 1 

Toluene 1 1 1 1 1 1 1 0.5 0 0 1 

 

Table 6.9 Miscibility of Hexane, Cyclohexane and Toluene in the TMEDA–HOAc binary system at 0.1 mole fraction intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Hexane 1 1 0.5 0.5 0.5 0 0 0 0 0 1 

Cyclohexane 1 1 1 1 0.5 0 0 0 0 0 1 

Toluene 1 1 1 1 1 1 1 1 1 1 1 

 

Table 6.10 Miscibility of Hexane, Cyclohexane and Toluene in the DMEtA–HOAc binary system at 0.1 mole fraction intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Hexane 1 0 0 0 0 0 0 0 0 0 1 

Cyclohexane 1 1 0.5 0 0 0 0 0 0 0 1 

Toluene 1 1 1 1 1 0 0 0 1 1 1 



  University of York 

164 

 

6.3.1.2 Haloalkanes: dichloromethane, diiodomethane and bromotrichloromethane 

 

The incorporation of halogen atoms significantly increased the dispersive forces of 

the solute as evident by the relatively large values of δD for the three haloalkane solutes, 

dichloromethane, diiodomethane and bromotrichloromethane (Table 6.4). All three 

haloalkane solutes exhibit little in the way of hydrogen bond donor or acceptor capability 

as described by their Kamlet–Taft α and β parameters. 

In terms of permanent dipole moment, dichloromethane has the largest of the three 

(1.90) followed by diiodomethane (1.10) and bromotrichloromethane (0.21). What is 

interesting is that the δP does not follow a similar trend as the dipole moment; in fact 

bromotrichloromethane has the largest δP value of the three haloalkanes, while also having 

the lowest dipole moment. For the sake of discussing the dipolarity of the solute, the dipole 

moment will be used, as these values are experimentally determined,395 while the values of 

δP are determined indirectly.393  

For all three systems, dichloromethane was freely soluble in all binary mixtures. 

This trend does not yield significant information as to how the solvation environment 

changes with composition in each binary system. However, that dichloromethane is soluble 

in all of the precursors and binary mixtures shows that solutes which are both highly 

dispersive and feature a large dipole moment are likely to be well solvated.  
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In comparison, diiodomethane is immiscible in acetic acid and many acid–rich 

compositions, and has sparing solubility in the amine–rich compositions of the DMBuA 

and TMEDA systems. The immiscibility in pure acetic acid and the acid–rich compositions 

is possibly due to the preference of solvent–solvent interactions over solvent–solute 

interactions. The combination of hydrogen bonding and permanent dipole–dipole 

interactions between acid–acid, acid–amine and amine–amine are hypothetically stronger 

than the permanent dipole–induced dipole interactions between solvent and diiodomethane, 

despite its large δD and significant dipole moment (Table 6.4). This is supported by the 

extensive hydrogen bonding interactions observed in the acid–rich compositions as well as 

pure acetic acid from their FIR spectra as discussed in section 5.3.2.1.  

The sparing solubility of diiodomethane in the amine–rich compositions is likely 

due to the reduced polarization capability of these acid–amine binary mixtures. It is worth 

noting that the solute–solute in pure diiodomethane is primarily the result of London forces, 

but the polarizability of the outer electron shells of the iodine atoms make diiodomethane 

highly susceptible to Keesom forces for solvent–solute interactions (Table 6.4). 

Considering the pure amines, DMEtA is likely to have the largest permanent dipole, due to 

the highly electronegative oxygen atom in its molecular structure. As such, it and its amine–

rich binary mixtures with acetic acid are expected to have stronger permanent dipolar 

interactions with a solute. Furthermore, the highly ionic nature of these amine–rich 

compositions in the DMEtA system, as discussed in section 5.3.2, are likely to have greater 

polarizability potential in comparison to the other two binary systems. 
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The solvation behaviour of bromotrichloromethane is different for each acid–

amine binary system. In amine–rich compositions, sparing solubility is observed for the 

TMEDA and DMEtA systems, while fully miscible in the DMBuA system. The full 

miscibility in the DMBuA system could be due to the formation of nanoscale ordered 

domains in a similar manner to some alcohols.402,403 While not as ordered as micelles, these 

domains could prove to be sufficiently stabilizing for such a highly dispersive solute. This 

is not likely to occur in either the TMEDA or bond donating DMEtA systems, hence their 

sparing solubility with bromotrichloromethane.  

As the acid mole fraction increases, so does the polarization capability of the binary 

mixtures, as shown for the equimolar acid–amine binary mixtures in section 4.3.3, resulting 

in stronger solvent–solute interactions. However, there is reduced immiscibility in some 

acid–rich compositions in the DMBuA and DMEtA binary systems. This suggests that at 

these compositions, which also corresponded to compositions showing the greatest ionic 

character and extent of intermolecular interactions, that solvent–solvent interactions 

become more favourable than solvent–solute interactions. The fact that this same result was 

not observed in the TMEDA system suggests again that the solvent–solvent interactions in 

this binary system are generally weaker than in the other two systems, likely a result of the 

steric bulk of the dimethylamino functional group. 
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Table 6.11 Miscibility of Dichloromethane, Diiodomethane and Bromotrichloromethane in the N,N–dimethylbutylamine (DMBuA) – acetic acid (HOAc) 

binary system at 0.1 mole fraction intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Dichloromethane 1 1 1 1 1 1 1 1 1 1 1 

Diiodomethane 0.5 0.5 1 1 1 1 0.5 0 0 0 0 

Bromotrichloromethane 1 1 1 1 1 1 1 0.5 0 1 1 
 

Table 6.12 Miscibility of Dichloromethane, Diiodomethane and Bromotrichloromethane in the N,N,N’,N’–tetramethylethan–1,2–diamine (TMEDA) – 

acetic acid (HOAc) binary system at 0.1 mole fraction intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Dichloromethane 1 1 1 1 1 1 1 1 1 1 1 

Diiodomethane 0.5 0.5 0.5 1 1 1 1 0 0 0 0 

Bromotrichloromethane 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 
 

Table 6.13 Miscibility of Dichloromethane, Diiodomethane and Bromotrichloromethane in the N,N–dimethylethanolamine (DMEtA) – acetic acid 

(HOAc) binary system at 0.1 mole fraction intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Dichloromethane 1 1 1 1 1 1 1 1 1 1 1 

Diiodomethane 1 1 1 1 1 0 0 0 0 0 0 

Bromotrichloromethane 0.5 0.5 0.5 1 1 1 0 0 1 1 1 
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6.3.1.3 Dipolar aprotic: diethyl ether, ethyl acetate, acetone, acetonitrile, dimethyl 

sulfoxide and 1,3–Bis(trifluoromethyl)benzene  

 

 The dipolar aprotic solutes chosen exhibit moderate to high dipole moments, with 

varying London dispersive forces and hydrogen bond acceptor capability and practically 

no hydrogen bond donor capability. Much as was seen with the haloalkanes, solutes which 

are highly dipolar are more readily dissolved in the acid–amine binary mixtures. Similarly, 

the solutes ethyl acetate, acetone and acetonitrile were fully miscible in all acid–amine 

binary mixtures for all three systems. However, there were a number of solutes which were 

immiscible in some of the systems. 

 Diethyl ether has limited solubility in acid–rich compositions in the DMBuA and 

DMEtA systems. This is surprising, as it is a relatively strong hydrogen bond acceptor (β 

= 0.47) and should therefore interact favourably with acetic acid. However, in comparison 

to the other dipolar aprotic solutes, diethyl ether has the lowest dipole moment of 1.17, 

which is comparable to diiodomethane, which also had low solubility in these acid–rich 

compositions. This emphasizes the importance of permanent dipole–dipole interactions 

between solvent and solute in these acid–amine binary mixtures. This is particularly the 

case in these acid–rich compositions, which were shown to have extensive ionic nature and 

would be therefore expected to more favourably solvate dipolar solutes.  

Dimethyl sulfoxide is completely miscible in the entire TMEDA and DMEtA 

binary systems, but is immiscible in the pure DMBuA, the 0.1, 0.2 and 0.3 HOAc 

compositions and is sparingly soluble in the 0.4 HOAc composition. This lack of 

miscibility in these compositions can be explained by the lack of either a large dipole 

moment, hydrogen bond donor capability or polarizable electron density in these 

compositions. Without these characteristics, solvent–solute interactions in these particular 

binary mixtures are unfavourable in comparison to solute–solute interactions. For 

comparison acetonitrile, which has lower dipole moment, hydrogen bond acceptor 
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capability, London dispersive forces and net solvent–solvent interaction strength than 

dimethyl sulfoxide, it is fully miscible in these same amine–rich compositions. At higher 

acid mole fractions, dimethyl sulfoxide is fully miscible, suggesting an increase in both the 

hydrogen bond donor capability and the dipolarity of the solvent systems. 

1,3–Bis(trifluoromethyl)benzene is immiscible in a number of acid–rich 

compositions of all three systems, despite having a very large dipole moment and large 

London dispersive forces contributions. It would have been expected that a solute with such 

a large induced and permanent dipolarity would have been well solvated in the highly ionic 

media found in the acid–rich compositions as shown in chapter four. This may be because 

of the great extent of intermolecular hydrogen bonding interactions that take place in these 

acid–rich compositions, as shown in section 5.3.2.1, while 1,3–bis(trifluoromethyl)benzene 

does not have any hydrogen bond donor capability at all. That it is soluble in some of the 

acid–rich compositions suggests that the solute is capable of accepting a hydrogen bond, 

however there is no literature data to confirm or deny this. 
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Table 6.14 Miscibility of Diethyl ether, Ethyl acetate, Acetone, Acetonitrile, Dimethyl sulfoxide and 1,3–Bis(trfluoromethyl)benzene in the N,N–

dimethylbutylamine (DMBuA) – acetic acid (HOAc) binary system at 0.1 mole fraction intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Diethyl ether 1 1 1 1 1 1 1 1 0 1 1 

Ethyl acetate 1 1 1 1 1 1 1 1 1 1 1 

Acetone 1 1 1 1 1 1 1 1 1 1 1 

Acetonitrile 1 1 1 1 1 1 1 1 1 1 1 

Dimethyl sulfoxide 0 0 0 0 0.5 1 1 1 1 1 1 

1,3–Bis(trifluoromethyl)benzene 1 1 1 1 1 1 1 1 0 1 1 

 

Table 6.15 Miscibility of Diethyl ether, Ethyl acetate, Acetone, Acetonitrile, Dimethyl sulfoxide and 1,3–Bis(trfluoromethyl)benzene in the N,N,N’,N’–

tetramethylethan–1,2–diamine (TMEDA) – acetic acid (HOAc) binary system at 0.1 mole fraction intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Diethyl ether 1 1 1 1 1 1 1 1 1 1 1 

Ethyl acetate 1 1 1 1 1 1 1 1 1 1 1 

Acetone 1 1 1 1 1 1 1 1 1 1 1 

Acetonitrile 1 1 1 1 1 1 1 1 1 1 1 

Dimethyl sulfoxide 1 1 1 1 1 1 1 1 1 1 1 

1,3–Bis(trifluoromethyl)benzene 1 1 1 1 1 1 0.5 0.5 0.5 1 1 
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Table 6.16 Miscibility of Diethyl ether, Ethyl acetate, Acetone, Acetonitrile, Dimethyl sulfoxide and 1,3–Bis(trfluoromethyl)benzene in the N,N–

dimethylethanolamine (DMEtA) – acetic acid (HOAc) binary system at 0.1 mole fraction intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Diethyl ether 1 1 1 1 1 0.5 0.5 0 0.5 1 1 

Ethyl acetate 1 1 1 1 1 1 1 1 1 1 1 

Acetone 1 1 1 1 1 1 1 1 1 1 1 

Acetonitrile 1 1 1 1 1 1 1 1 1 1 1 

Dimethyl sulfoxide 1 1 1 1 1 1 1 1 1 1 1 

1,3–Bis(trifluoromethyl)benzene 1 1 1 1 1 0.5 0.5 0 0 1 1 
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6.3.1.4 Amphiprotic: ethanol, 1–octanol and water 

  

Due to the combination of a hydrogen bond donor and a hydrogen bond acceptor, 

acid–amine binary mixtures could be considered to be amphiprotic by nature. As such, it 

would be expected that these binary mixtures would readily dissolve amphiprotic solutes. 

This is certainly the case when considering ethanol and 1–octanol: both feature the 

hydroxyl functional group, which give each solute favourable hydrogen bond donor and 

acceptor properties (Table 6.4). Both of these amphoteric solutes are fully miscible in all 

acid–amine binary mixtures, and precursors materials, of all three systems. That ethanol 

and 1–octanol share the same solubility profile, despite the lipophilic nature of 1–octanol, 

shows how important the hydrogen bonding interactions are between solvent and solute in 

acid–amine binary mixtures.  

 Water is also an amphiprotic solute – being highly capable of donating and 

accepting hydrogen bonds. However, water is immiscible in pure DMBuA and a number 

of its amine–rich compositions, sharing the same miscibility profile as dimethyl sulfoxide. 

Despite having similar hydrogen bonding capabilities as both ethanol and 1–octanol, the 

solubility of water is not solely dependent on its hydrogen bonding behaviour. Much like 

dimethyl sulfoxide, water is both highly polarizing (as inferred from π*) and has a 

substantial dipolar interaction (most noticeably in terms of the δP and dipole moment 

values). As already discussed, the lack of either a large dipole moment or polarizable 

electron density from the acid–amine binary mixtures result in unfavourable solvent–solute 

interactions with water. This again highlights the importance of the non–specific 

intermolecular interactions in these acid–amine binary mixtures.
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Table 6.17 Miscibility of Ethanol, 1–Octanol and Water in the DMBuA–HOAc binary system at 0.1 mole fraction intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Ethanol 1 1 1 1 1 1 1 1 1 1 1 

1–Octanol 1 1 1 1 1 1 1 1 1 1 1 

Water 0 0 0 0 0.5 1 1 1 1 1 1 

 

Table 6.18 Miscibility of Ethanol, 1–Octanol and Water in the TMEDA–HOAc binary system at 0.1 mole fraction intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Ethanol 1 1 1 1 1 1 1 1 1 1 1 

1–Octanol 1 1 1 1 1 1 1 1 1 1 1 

Water 1 1 1 1 1 1 1 1 1 1 1 

 

Table 6.19 Miscibility of Ethanol, 1–Octanol and Water in the DMEtA–HOAc binary system at 0.1 mole fraction intervals. 

Probe Solute Pure 

Amine 

0.1 

HOAc 

0.2 

HOAc 

0.3 

HOAc 

0.4 

HOAc 

0.5 

HOAc 

0.6 

HOAc 

0.7 

HOAc 

0.8 

HOAc 

0.9 

HOAc 

Pure 

Acid 

Ethanol 1 1 1 1 1 1 1 1 1 1 1 

1–Octanol 1 1 1 1 1 1 1 1 1 1 1 

Water 1 1 1 1 1 1 1 1 1 1 1 
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6.4 Conclusions 
 

 By using a qualitative interpretation of the miscibility between a given acid–amine 

binary system and a series of rationally selected probe solutes, the solvation capability of the 

three acid–amine binary mixtures has been characterized as a function of composition. Across 

all solutes, it is clear that the solvation environment changes substantially with both 

composition and amine functionality. This is easily noticed for solutes which are soluble in the 

precursor materials, but are insoluble in the binary mixtures. When a solute is immiscible, it 

can be considered that there were unfavourable solvent–solute interactions in comparison to 

the solvent–solvent and solute–solute interactions.  

 With respect to the composition derivative, numerous solutes are immiscible in acid–

amine binary mixtures which are soluble in the corresponding precursors. This reduction in 

solubility appears to correlate well with both the extent of intermolecular hydrogen bonding 

interactions (as inferred from FIR spectroscopy in section 5.3.2) and the ionic nature of the 

binary mixture (as discussed in section 5.3.3). This is likely due to the strength of solvent–

solvent interactions increasing as a result of mixing, and thus become more preferential to the 

solvent–solute interactions that take place. A solute can also be immiscible in a precursor 

component and some acid–amine binary mixtures but becomes soluble as composition 

changes. Such a composition dependence can be rationalized by an increase in the solvent–

solute interactions relative to the solute–solute and solvent–solvent interactions. 

 The variance in amine functionality, although limited to just three different precursor 

amine structures, can significantly alter the solvation capabilities of an acid–amine binary 

system. For example, the DMBuA system, with an alkyl chain functional group, is immiscible 

with highly polarizable, large dipolar hydrogen bonding solutes (dimethyl sulfoxide and water) 
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in amine rich compositions, largely due to the lack of strong solvent–solute interactions to 

solvate these two solutes in amine–rich compositions. The TMEDA system, with a 

dimethylamino functional group, is capable of dissolving solutes that are immiscible in the 

DMBuA and DMEtA acid–rich systems. This suggests weaker solvent–solvent interactions in 

these compositions, due to the increased steric hindrance of the functional group and its low 

hydrogen bonding capability in comparison to the hydroxyl functional group on DMEtA. 

Having exhibited the most intermolecular hydrogen bonding interactions and extent of proton 

transfer at all compositions (as discussed in chapter 5), the DMEtA system is the least capable 

of solubilizing solutes which do not have strong hydrogen bonding capacity and large dipole 

moments.  

 To summarize, the solvation environment of the three acid–amine binary mixtures 

studied varied significantly, and changed with composition each in their own way. The insight 

gained into their short–range interactions (as discussed in chapter five) offers an initial 

explanation as to the observed trends in solvation behaviour. However, this study represents 

the first stage of screening solvation behaviour of these systems; a more in–depth, quantitative 

study of solvation capability is required for a more complete appreciation of the solvation 

behaviour in these systems. What can be shown from this chapter is that there is scope to tuning 

the solvation in these acid–amine binary mixtures by simply varying the composition.  
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Concluding Remarks 
 

This thesis presents extensive novel research into the molecular thermodynamics and 

solvation behaviour in various PIL systems. A wide range of experimental techniques and 

theory have been employed to key systems which addressed challenges towards the application 

of PIL systems as potentially sustainable solvents.  

Residual water significantly changes the properties in ILs, yet the molecular basis for 

this phenomenon has been unclear and subject to controversy. This was fuelled by a lack of 

connection between intermolecular interactions in the IL–water binary mixture and its physical 

properties. The connection was provided directly from the fundamental theory of statistical 

thermodynamics which successfully characterized the water–water, water–ion and ion–ion 

interactions directly from mixing thermodynamics. From this, it is shown that the advent of 

water clustering in ionic liquids is composition─dependant and that the average ion–ion 

interactions are not distinctly weakened by the presence of water.148  

The connection between molecular interactions and physical properties, which was 

established for AILs which have well–defined anion and cation species, was expanded to 

elucidate the effect of residual water in PILs, which are more complex due to the proton transfer 

reaction between species. It was found that the effect of ionic nature (aprotic versus protic) of 

the ionic liquid–water strength of interaction is strongly composition dependent (for an 

analogous pair of ILs). Similar to what was shown in chapter two, water does not significantly 

weaken the average ion–ion interactions PILs. The hydrophilic PIL was found to exhibit more 

homogeneous solution structure, whereas the hydrophobic PIL exhibits heterogeneous solution 

structure.149 
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Having clarified the effect of residual water in PILs, attention was focused on 

understanding how properties of PILs emerge from the molecular structure, which had 

remained purely speculative by the lack of a molecular basis. The previous assumed empirical 

relationship of the precursor acid–base chemistry to PIL properties was disproved.343 By using 

spectroscopy, the molecular origin of the structure–property relations was revealed, which 

correlated well with experimental solvation parameters and bulk viscosity of three 

functionalized PILs.344 Introducing a hydrogen bond donor functional group increased the 

ionicity of a PIL, which corresponded to greater cohesive energy density, solvent dipolarity 

and bulk viscosity.343,344 

  Having established structure–property relationships strictly in PILs, which represent 

equimolar acid–amine mixtures, it was necessary to study mixtures beyond equimolar 

composition. This is because mixing behaviour can give deeper insight to molecular 

interactions, as well as the difficulty in maintaining a precise equimolar composition in 

practical applications. A connection between mixing thermodynamics and both a) 

intermolecular hydrogen bonding interaction and b) extent of proton transfer from acid to 

amine show the dominance of short–range interactions such as hydrogen bonds in these 

systems. The composition dependence revealed therein paved the way towards a new 

dimension of tunability for these binary mixtures. 

To test this tunability in the context of their role as solvents requires practical solubility 

assessment. By screening the miscibility of a selection of probe solutes in acid–amine binary 

mixtures allowed for practical determination of their solvation capability as a function of 

composition and precursor amine functionality. In many instances, the observed change in 

solvation capability could be rationalized by the short–range interactions as discussed in 
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chapter five. That solvation was highly dependent on composition highlighted a potential new 

strategy to tuning the solvation in PIL systems beyond the equimolar composition. 

In summary, three key aspects were identified and investigated from the context of 

binary liquid mixtures: 1) the effects of residual water as an impurity 2) a molecular basis for 

structure–property relations in certain PILs and 3) the strong composition dependence on the 

properties of acid–amine binary mixtures. The results found provided valuable insight towards 

the solvent design of protic ionic liquids for industrial applications. 

Future Work  
 

The described work and its implications open up a wide range of potential future 

research topics concerning IL systems. 

The statistical thermodynamic connection between molecular interactions and physical 

properties in IL–water binary systems can be generalized to any binary system involving 

ILs.148,149 Therefore, this theory can be applied straightaway to clarify many industrially 

important questions regarding IL–based binary mixtures. For example, IL–gas binary mixtures 

are particularly interesting in the context of fuel processing, carbon capture and 

catalysis.34,88,91,404 Furthermore, the use of IL–cosolvent binary mixtures have been suggested 

to be more effective solvating media in some applications.175,405 It is also possible to study more 

complex systems, such as ternary mixtures involving ILs, using statistical thermodynamics. 

For example, this could allow for a deeper understanding as to the effect of adding ILs to 

aqueous processes, such as natural product extraction.175,406–409 

The connection between short–range interactions and bulk properties of PILs revealed 

an in–depth understanding of the structure–property relations for these materials. Due to the 

extensive experimental data required to draw these relations, the work in this thesis was limited 
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to just three tertiary ammonium acetate PILs.343,344 By applying this methodology to a wider 

selection of PILs, featuring various anion and cation structures, structure–property relations on 

a molecular basis can be established for a wider range of PILs.52,410 Such a high-precision 

determination of structure-property relations should be complemented with a high-throughput 

methodology approach.410 This would be similar to how the detailed thermochemical results of 

chapter four are complemented by the straightforward volumetric results of chapter five, both 

of which were rationalized on a molecular basis from spectroscopy. 

The dependence of short–range interactions, bulk properties and solvation capability 

on the composition in the acid–amine binary mixtures studied highlights an additional 

dimension of tuneability beyond equimolar mixtures i.e. PILs.275,280 This could be exploited in 

the application of acid–amine binary mixtures as solvents, expanding the use of acid-amine 

binary systems as solvents for various novel applications.49,52 Furthermore, by performing a 

quantitative miscibility analysis of acid–amine binary mixtures, a more in–depth assessment 

of the solvation capability, and its dependence on composition and PIL structure, can be 

developed. In particular, the determination of phase diagrams for these systems would enable 

the estimation of mixing quantities such as activity coefficients by using various well-

established models.411,412 

One technique which was not explored in this thesis, yet is likely to provide valuable 

insight into the molecular thermodynamics and solvation behaviour in protic ionic liquid 

systems, is small angle neutron scattering. The technique employs the diffraction of neutrons 

through liquid samples to give structural information of the studied system.413,414 In 

combination with computational techniques such as Molecular Dynamics or Reverse Monte-

Carlo simulations, deeper insight into the liquid structure through partial radial distribution 

functions can be obtained.415–417 Furthermore, the solvation environment within IL systems can 
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be explored using this strategy, providing valuable insight into the short-range interactions that 

drive solubilisation in ILs.418–420 In work carried out in parallel 

In conclusion, the work presented herein represents a significant advance over the state 

of the art regarding knowledge of the molecular level phenomena underpinning many 

important features of PILs.100,101,148,149,343,344 A number of future research directions have been 

identified, through which a more rational design-based approach towards PILs with specific 

combinations of desirable properties may be realised.  
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Appendix 
 

A1 Standard Enthalpy of Formation of the Precursor Amines 
 

In order to indirectly calculate the  ∆vap𝐻𝑚
°  of each PIL, it is necessary to know the 

standard molar enthalpy of formation of the precursor amine for each amine in the gas phase 

∆f𝐻𝑚
°  (B, g). These values can be measured experimentally, however for accurate, repeatable 

experiments the purity of material required is far greater than what was available for us. In 

place of this, ab initio calculations can be performed to estimate the values of ∆f𝐻𝑚
°  (B) for 

each of the precursor amines. The values of (∆f𝐻𝑚
°  (B) used in all calculations in Chapter four 

were performed by Dr. Filipe Agapito of the Faculty of Sciences of the University of Lisbon. 

His contribution of original computational results towards the discussions in chapter four is 

gratefully acknowledged. Details of the computational results are re–printed below for context. 

A1.1 Computational Details 

 

The structures of DMBuA, TMEDA and DMEtA were optimized using the B3LYP–

D3 dispersion corrected421 hybrid density functional422,423 together with the cc–pVTZ basis 

set.424,425 Density fitting (DF)426 was performed using the cc–pVTZ/JKFIT basis set.427 

Vibrational frequencies were obtained at the same level of theory, and scaled with 0.9889.428 

The enthalpy of each molecule at 298.15 K was determined with the W1–F12429 composite 

procedure. The DF–B3LYP–D3/cc–pVTZ optimized geometries and vibrational frequencies 

were used in these calculations. The diagonal Born–Oppenheimer corrections430–432 for each 

molecule, required by the W1–F12 procedure, were determined using CFOUR.433 All other 

calculations were performed using Molpro 2012.1.434 The individual components of the W1–

F12 enthalpies are summarized in Table S4. The gas–phase standard enthalpy of formation for 
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each of the amines under study was calculated from the respective atomization reaction reaction 

using the W1–F12 enthalpies, as described in the main text (Table S5). 

The calculations rely on the following equations: 

o

at mH
 = a

o
mH

(C, g) + b
o
mH

(H, g) + c
o
mH

(O, g) + d
o
mH

(N, g) – 
o
mH

(CaHbOcNd, g) 

          (9.1) 

o

f mH
(CaHbOcNd, g) = 

o

at mH
 + a

o
mf H

(C, g) + 

b
o
mf H

(H, g) + c
o
mf H

(O, g) + d
o
mf H

(N, g)      (9.2) 

where 

o

at mH
 refers to the atomization reaction: 

CaHbOcNd(g) = aC(g) + bH(g) + cO(g) + dN(g)     (9.3) 

and 
o
mH

 are the W1–F12 enthalpies of the compounds and their constituent atoms in the gas 

phase (see Supporting Information). These ab–initio calculations allowed the determination of 

the enthalpies of atomization of DMBuA (8133.9 kJmol–1), TMEDA (8742.6 kJmol–1) and 

DMEtA (6194.4 kJmol–1), which together with the experimental gas–phase enthalpies of 

formation of hydrogen (217.998±0.006 kJmol–1), carbon (716.680±0.450 kJmol–1), oxygen 

(249.18±0.10·kJmol–1) and nitrogen (472.68±0.40 kJmol–1),346 led to the standard molar 

enthalpies of formation of the amines, shown in Table 4.5.  Previously reported  data was only 

found for TMEDA, namely 19.7 kJmol–1, estimated by Benson’s group contribution 

method,435 and 22.6 kJmol–1 obtained at the G3(MP2) level of theory. These values show a 

considerable discrepancy relative to the result in Table 1 (9.2±2.8 kJmol–1), which was 

obtained by the more accurate W1–F12 procedure.
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Table A.1 Components of the W1–F12 enthalpies. All data in hartree. 

 
SCF val. CCSD val. T core–valence relativistic spin–orbit DBOCa H(thermal)b Ho(298.15 K)c 

C –37.688596 –0.097659 –0.002630 –0.051452 –0.014935 –0.000135 0.001660 0.002360 –37.851387 

H –0.499967 0.000000 0.000000 0.000000 –0.000006 0.000000 0.000272 0.002360 –0.497341 

O –74.812001 –0.187544 –0.004126 –0.057770 –0.052097 –0.000355 0.002366 0.002360 –75.109167 

N –54.400727 –0.125442 –0.003085 –0.054926 –0.029194 0.000000 0.002005 0.002360 –54.609009 

DMBuA –290.499080 –1.451255 –0.061411 –0.375568 –0.116625 0.000000 0.015431 0.213019 –292.275488 

TMEDA –345.527481 –1.685549 –0.072961 –0.431273 –0.145390 0.000000 0.017663 0.231307 –347.613684 

DMEtA –287.290688 –1.315858 –0.055392 –0.327077 –0.139012 0.000000 0.013462 0.160782 –288.953783 

 

a Diagonal Born–Oppenheimer correction.  b Thermal enthalpy correction at 298.15 K. Includes the zero–point vibrational energy.  c Enthalpy at T = 

298.15 K and p0 = 1 bar. 
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Table A.2 Contribution of each component of the W1–F12 procedure to the gas–phase standard enthalpies of formation. All 

data in kJ mol–1. 

 

SCF val. CCSD val. T core–valence relativistic spin–orbit DBOCa H(thermal)b ∆at𝐻m
° c ∆f𝐻m

°  d 

DMBuA 6477.8 1942.5 111.7 31.3 –6.0 –2.1 1.6 –423.0 8133.9 –91.2 ± 2.7 

TMEDA 6813.1 2228.3 133.9 33.4 –7.1 –2.1 1.7 –458.6 8742.6 –9.2 ± 2.8 

DMEtA 4788.8 1607.4 98.9 22.5 –5.5 –2.3 1.4 –316.8 6194.4 –207.8 ± 1.8 

 

a Diagonal Born–Oppenheimer correction.  b Thermal enthalpy correction at 298.15 K. Includes the zero–point vibrational energy.  c Enthalpy of 

atomization at T = 298.15 K and pº = 1 bar.  d Enthalpy of formation at T = 298.15 K and pº = 1 bar
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