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Abstract 
This research focuses on the design of an Interactive Sonification (ISon) feedback 

system to inform piano players of high muscle tension. The system includes an 

Arduino board and EMG sensors as hardware, and Max and the Processing language 

as software. Experimental results demonstrate the feasibility of a system to self-

monitor muscle tension in piano performance and in other real-time situations.  
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Chapter 1 Introduction & Hypothesis 
 

 

1.1 Foreword 
 

A world of sensors? 

Wearable devices are being increasingly used in daily life. People are realising that 

life can be smart, and thus repetitive and necessary activities should be done more 

easily. This is where wearable equipment can really shine: Google Glass created a 

storm by proposing a smart new style of living; the Apple Watch blurs the boundaries 

between things sold in a boutique or in a high-tech shop. Myo, Oculus, and 

Leapmotion1 are currently strange-sounding words that will very likely develop into 

indispensable elements in our world. 

EEG and EMG2 are no longer only recognized by medical experts. Using wearable 

and portable devices, some of which include such sensors, people can message each 

other, speak to each other, monitor their health status, access the world’s information 

instantly, in fact almost anything with the little help of these small, smart and 

affordable gadgets. The number of sensors inside these devices is growing rapidly, 

leading to the conclusion that this is a new era; a world of sensors. 

 

Interactive Sonification (ISon)  

Interactive Sonification involves the use of sound to display data interactively. It is a 

timely discipline because displaying data with sound frees up the eyes, letting people 

deal with sudden small tasks without being disturbed by the need to look at any 

screens. It fits well with the abovementioned sensors. Sound is also very good at 

giving long-time as well as real-time information. You cannot look at your computer 

screen for 24 hours but you can definitely listen to music on a long bus journey while 

carrying out other mental activities, such as texting a friend. So, the combination of 

sensors and ISon technology is able to create a new world of possibilities, building 
                                                
1 http://www.apple.com/uk/watch/; https://www.myo.com/; https://www.oculus.com/en-us/; https://www.leapmotion.com/ 
   
2 Electroencephalography (EEG) http://www.nhs.uk/Conditions/EEG/Pages/Introduction.aspx 
  Electromyography (EMG) http://www.mayoclinic.org/tests-procedures/electroconvulsive-therapy/basics/definition/prc-
20014183 
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applications never imagined before. 

 

A new discipline 

ISon itself is a relatively new area with great potential. Today’s ultra-portable and 

increasingly affordable computing technology allows Interactive Sonification to be 

utilised by anyone. The pioneering concept of portraying data as sound is turning into 

a sophisticated discipline which links well to real-world applications and practices. 

Despite this, there are still many remaining issues that need research and 

development.   

 

 

1.2 Motivation 
 

In today’s high-speed life, people tend not to do enough outdoor activity because of 

work pressure or lack of time, etc. With the rapid development of computers and the 

Internet, much work is based around sitting at a desk and operating computers. In 

spite of this, for their leisure time, people are also tending to spend yet more time 

playing on computers. This is causing major problems: during sustained working 

hours many people do not even get off their seats to take some exercise to refresh 

their body. Some people even do worse - they sit and work with a very awkward 

posture. By doing this over a long period of time, injury can often result. The most 

common serious injury is RSI (Repetitive Strain Injury)3, which involves pain from 

muscles, nerves and tendons caused by repetitive actions or overuse. Also, when 

people are working they usually have stress that can cause RSI as well.  

The harm of RSI is serious because: 

• It can’t be recovered from quickly; 

• Sometimes RSI does not have obvious symptoms apart from pain; hence it is 

not easy to detect in the early stages. 

The Health and Safety Executive (HSE) said that “213,000 people in work had a 

musculoskeletal upper limb or neck disorder that was caused or made worse by work 

in 2007-08”. Also, The Chartered Society of Physiotherapy (CSP) said “RSI, which is 

                                                
3 http://www.medicalnewstoday.com/articles/176443.php 
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usually preventable, costs employers around £300m per year in lost working time, 

sick pay and administration”. Nowadays RSI is considered a serious and common 

problem in companies.  

Meanwhile, RSI does not only happen to office workers. There is another category of 

people who have a particularly high likelihood of this problem - pianists. Piano 

players practice for a long time each and every day, sitting on a chair often in a non-

relaxed posture. Their body can be stressed; their fingers may also suffer from high 

tension when playing a technically difficult piece of music; also their mental 

condition can involve excessive concentration and tension when expressing their 

intensive emotions. A few professional pianists have been noted as having a problem 

with RSI and some of them even abandoned their career because of it, including many 

dedicated pianists such as Leon Fleisher, who once stopped playing for an entire 15 

years because of having RSI problems (Lim, 2014). 

Therefore, the prevention of RSI among office workers and pianists is considerably 

important. A good potential solution would be to monitor their actions, detect the 

wrong motions or positions, and then give them an auditory alarm in order to remind 

them. Due to the method of their work, visual feedback for them is not realistic; 

people find it difficult to concentrate on their visual-based work whilst constantly 

remembering to check other visual indicators at the same time. Hence, auditory 

feedback can be very useful here: people are not required to “actively” monitor the 

visual feedback, but to listen out for an audio alarm “passively”.  

With this above concept, we may design an auditory feedback system that keeps 

reminding people about wrong posture when carrying out difficult tasks.  

The research in this PhD focuses on using Interactive Sonification to build a system 

that has the potential of reducing long-term injury for seated keyboard users. 
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1.3 Hypothesis 
 

This research has two hypotheses: one general and one more specific.  

 

The initial hypothesis (Hypothesis 1) of this research is:  

 

“By using Sonification feedback it is possible to inform 

keyboard users, (e.g. piano players or office typists) of 

activity which could otherwise cause long-term injury.” 

 

This PhD research aims to provide audio feedback based on human actions/movement 

when difficult tasks are being carried out. Particularly, there are four areas of focus, 

which this research is interested in: 

� pianists 

� office typists 

� Phone users / gamers (who use thumb intensively) 

� Badminton players (easy to get injuries on multiple muscles) 

In the early stages, this research investigated how sound could be used to monitor 

tension, and thus via feedback to release it. It is easy to imagine that the advantages of 

using sound as feedback are attractive: an auditory signal indicates problems or 

tension immediately and directly; people concentrate on jobs they are doing without 

being constantly disturbed by looking at some visual feedback, for instance. 

RSI injuries can come from a sustained high muscle tension over a long period of 

time4. Therefore EMG biofeedback (Chapter 3) was used to monitor the muscle 

tension and allow the data to be stored on a computer. A good way to transfer the data 

into sound is to map the data corresponding to inappropriate muscle tension into an 

alerting (or alarm) sound which people will notice and correct their posture. Hence 

this data will be transformed into sound by DSP (Digital Signal Processing) carried 

out in the Max programming language.  

 

However, after some initial study, it became clear that a full test of this hypothesis 

would be almost impossible to carry out because the experiments on piano players 
                                                
4 http://www.medic8.com/healthguide/sports-medicine/repetitive-strain-injuries.html 
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would need to have prolonged sessions (a few hours) as well as long period tracking 

(a few months to years). Also during multiple initial tests on QWERTY keyboard 

users, only very little bad effect (discomfort) could be seen from purely typing 

activity, no matter how fast they typed or for how long. Most of badminton players 

who were asked for doing experiment with device wired on their body express 

discomfort and refuse to carry on the experiment. These observations gave the insight 

that the initial hypothesis was too wide to be investigated within a PhD time frame. 

The new focus was purely on piano players, and this led to the development of 

Hypothesis 2, which is the main hypothesis for this work: 

 

“By using Sonification feedback it is possible to inform 

piano players of muscle tension in real-time, which will 

allow them to reduce tension”  

 

 

The relationship between Hypothesis 1 & 2 can be explained as: 
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1.4 Thesis Structure 
 

This thesis includes the following chapters: 

 

Chapter 2 & 3 Interactive Sonification, Piano Related Injuries & Biofeedback give a 

review of related key topics to this thesis, including auditory display, sonification, 

RSI, piano technique related injuries (PRMD) and so on. 

Chapter 4 Research Methodology summarises the thoughts after considering the 

literature. From what had been found, a plan for making a new contribution is 

presented. 

Chapter 5 Practical Development describes the technical design and construction 

required for the experiments. It contains documentation of the hardware and software 

developed during the procedure. 

Chapter 6 Experiments & Analysis is the core part of this thesis. Many subjects were 

involved in a range of tests, and these have yielded useful results and insight. In the 

“analysis” section, the results are discussed, and the hypothesis is evaluated. 

Chapter 7 Conclusion & Future work summarises and explains the key findings of 

this research, and highlights the potential developments of the developed technology 

and procedures. 
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Chapter 2 Auditory Display and 

Interactive Sonification 
 

 

2.1 Introduction 
 

This chapter describes the term “Auditory Display” and a subclass of this topic - 

“Interactive Sonification” in detail. By looking at the field covered by these two 

terms, the advantages and disadvantages of displaying data as sound are listed and 

explained and the methods of sonification classified. Finally, several real-world 

evaluations of Interactive Sonification are analysed to illustrate the strong need for 

auditory displays in real-time interactive systems. 

 

2.2 Auditory Display 
 

In a conventional human-computer interaction (HCI) system, the information is 

converted to a form which humans readily accept by means of a visual display. 

However, the field of Auditory Display introduces sound as feedback in HCI systems, 

and can – in certain situations – become the main method of transmitting information 

to allow the user even better understanding. This section looks at the different ways of 

translating data (variables in terms of quality and quantity) into an alternative 

perceptually-friendly medium for human users.  

Since the establishment of the International Conference on Auditory Display (ICAD) 

in 1992, the field of Auditory Display has been evolving rapidly. In recent years it  

has been classed alongside visualisation, and is becoming a more widely accepted 

method of data display. Implementations of auditory displays are used in many fields 

including chaos theory, biomedicine, data mining, seismology, interfaces for disabled 

people and so on. It is also one of the most complex areas to study because in order to 

carry out a successful implementation, several disciplines must be comprehended and 
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mastered, such as Physics, Acoustics, Psychoacoustics, computer science, etc. 

(Hermann et al., 2011). 

Kramer listed the advantages and disadvantages in his pioneering article “Auditory 

Display: Sonification, Audification, and Auditory Interfaces” (Kramer, 1993). The 

most important and relevant advantages are listed below: 

 

1) No visual contact is needed. Firstly it is clear that for people with impaired sight, 

this is a good solution for interactions between them and the system. Secondly, in 

unsatisfactory environments such as low light, visual data can be difficult to read or 

perceive, which makes the system no longer purposeful. Lastly, since human activities 

often involve the use of eyes, an interactive system that demands visual attention may 

distract the concentration, which can damage the effectiveness of the feedback system 

and even be dangerous. 

 

2) Humans perceive sound more quickly than visual content. If the sound changes 

due to the data changing, especially if changing rapidly, this can be perceived 

immediately. For visual feedback, it usually takes more time for a response; “lag” is a 

good description to express the difference of response time between visual and sound 

perception. 

 

3) Audio is suitable for conveying alarms, because sound itself can be very 

alerting. When an auditory alarm system is built carefully, the sound rises quickly 

when the appropriate factors are all satisfied. A good alarm has suitable frequencies, 

which are usually loud enough in order to be heard in noisy environments. The term 

“alarm” can also be used to help the user to perceive irregularities in the data. For 

example, imagine an audio stream representing the average temperature of every day 

in a year. When the temperature swiftly becomes 20 degrees lower in a single day, the 

listener can be made aware of that change even if they are not paying full attention to 

the sound all the time. This is one of the biggest advantages compared to visual 

feedback systems. 

 

4) Human ears can accurately perceive tempo. If there are two different rhythms 

(not too similar), humans can distinguish them without difficulty. This means that 

sound can be used for analysing data in time sequence. If there are more than one 
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piece of information, it is possible to combine them with different rhythms allowing 

all information to be rendered into a single stream of sound but with the various 

pieces of information individually recognisable. 

There are also disadvantages or difficulties which must be kept in mind when 

producing a system using auditory display. These are: 

 

1) Musical displays can interfere with musical performance. The most crucial issue 

(and the most related to this research) is that in the situation of tracking the 

movements of music performance, if the auditory display uses musical relationships 

itself (for example the use of chords or harmonic lines), it may influence or disturb 

the performer. When this happens, the Auditory Display system is not stable because 

the actions as well as the mind of the music performer are influenced by the feedback, 

resulting in an unusual and unwanted interaction between the system and user. 

 

2) If the sound is annoying it can cause fatigue. Equally, if the sound is too pleasing it 

may draw too much attention, thus distracting users from their original actions. 

 

3) Sound cannot be printed like a graph. This means that if the result requires sound 

with a long duration to represent the data, a process of sustained listening to the entire 

audio must be undertaken in order to get the whole picture of the result and finish the 

analysis.   

 

4) The direct relationship of the system input and output cannot be shown in a single 

audio stream, unlike a visual graph, which is able to do so with a simple X-Y plot. 

 

5) If the audio goes outside the range of human hearing (20Hz-20KHz; also with age 

and hearing loss the hearing range can be reduced) important data might be inaudible. 

 

Although disadvantages of Auditory Displays exist, they can be avoided by using 

certain methods. For instance, a very well designed system considers how to deal with 

the data where the corresponding sound is outside the hearing range. Sometimes, 

Auditory Display and visual feedback are often used together to merge the advantages 

of both, usually resulting in a better quality of analysis. Furthermore, along with the 

recent rapid development of portable HCI devices/applications, Auditory Displays 
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free up the eye-display communication (which has been essential in the past), 

unlocking unlimited possibilities as a strong non-visual support tool. 

 

 

2.3 Interactive Sonification 
 

“Sonification” is a subclass of Auditory Display. Research into sonification began to 

take shape in the 1990s, when Kramer et al made the early definition of sonification 

as: “the transformation of data relations into perceived relations in an acoustic signal 

for the purposes of facilitating communication or interpretation” (Kramer et al., 

1999). This states that sound is used for transferring imperceptible relations of data 

into perceptible acoustic signals. It is a “bridge” between data sets and the mind of the 

listening human. In general, sonification is the use of sound to render data. Hermann’s 

more recent definition states: “Sonification is the data-dependent generation of 

sound, if the transformation is systematic, objective and reproducible, so that it can 

be used as scientific method”(Hermann, 2008). Sonification must satisfy the demands 

below: 

• It must be clear that the changes in the sound are caused by the data.  

• The relations or the objective contents are mirrored by the sound.  

• Normally sonification uses synthesized sounds in response to data, and thus 

does not typically involve real-world acoustics. However on some occasions 

real-world sounds and interactions can be seen as sonification. A very good 

example was given by Hermann: using a spoon to hit a bottle filled with water 

once per minute can be considered as sonification because the amount of 

rainfall measured by the fill level is represented by pitch of the sound.  

• The process of the data/sound change must be repeatable; if the same data and 

interactions are given, the output sound must be recognisably the same.  

 

Interactive Sonification (often abbreviated to ISon) is the use of sonification in a real-

time interactive feedback loop with human users. For the use to be classed as 

“interactive”, the study of Human Computer Interaction (HCI) is needed. HCI is “a 

discipline concerned with the design, evaluation and implementation of interactive 
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computing systems for human use and with the study of major phenomena 

surrounding them” (Hewett et al., 1992). The role of HCI studies is to enhance the 

interactions between humans and computers so that computer users can use them 

more easily. At the practical level, it is mainly concerned with designing new 

interfaces, where interaction occurs between a human and a computer. Usability takes 

the highest priority during the design procedure. 

Interactive Sonification can be defined as “the discipline of data exploration by 

interactively manipulating the data’s transformation into sound” (Hunt, 2011). It 

allows (and actively encourages) users to make actions while hearing the sound 

feedback. This can create new data (or new ‘views’ of the data), which in turn 

encourage the user to manipulate the computer to give new feedback. When this 

procedure loops, Interactive Sonification is delivered. Figure 2.1 shows the 

relationship between the data and its transformation controlled by the user in ISon 

systems: 

 
Figure 2.1: Basic Principle of ISon (Based on Hunt, 2011) 

 

In 2004, Hermann and Hunt emphasised the importance of using Human Computer 

Interaction (HCI) technology in sonification methods to explore datasets while they 

are being transformed into sound (Hermann and Hunt, 2004). Human senses are used 

continuously for interacting with the physical environment, and clearly visual 

perception has always been an important task for the human brain. However, when a 

dataset is mirrored by exploratory interaction (continuously controlling its 

transformation into sound), new insights are gained into the macro and micro-

structure of the data. This is a huge advantage over regular visual presentation 

because those structures are not necessarily obvious in visual rendering (Hermann and 
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Hunt, 2004). They also reviewed the history of interfaces regarding their quality, then 

suggested that for abstract data, high-quality and directly controlled interfaces should 

be used for examination.  

Since sonification is still a very young research field, many terms like “sonification”, 

“Auditory Display”, and “audification” have only relatively recently been given 

precise and widely agreed definitions. Therefore Hermann introduced a new 

definition for sonification, such that “a technique that uses data as input, and 

generates sound signals (eventually in response to optional additional excitation or 

triggering) may be called sonification” (Hermann, 2008). There are four strict 

conditions for this: 

• Properties in the input data must be objective,  

• Systematic transformation must occur, which means the way that the data is 

changed into sound has a precise definition,  

• Same data and interactions cause identical results,  

• The system can be used with different data and also with the same data 

repetitively.  

Figure 2.2 below exhibits the structure and conditions: 

 
Figure 2.2: Sonification structure (taken from Hermann, 2008) 

 

A sonification system with interaction using HCI provides an extra important benefit 

as the user can manipulate the data based on their perception of the sonification 

process. Therefore, a repetitive / loop system is built since the sonification is done 
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interactively. 

 

2.4 Sonification Techniques 
 

In the early years of research into this subject, Auditory Displays were divided into 5 

categories, (Walker and Kramer, 2004):  

1) Alerts, notifications, warnings  

2) Auditory icons  

3) Earcons  

4) Audification  

5) Sonification.  

Similarly, as a subset of Auditory Display, Sonification itself can be further classified 

into 5 types based on the recent book “The Sonification Handbook” (Hermann et al., 

2011), as follows: 

 

I. Audification 

The simplest technique: play the data directly as a sound waveform (Kramer, 1993). 

Note that the data has to be waveform-like, and needs to be time-compressed and 

scaled to make an audible waveform. If the original data form is almost ready to be 

played - this is the most direct technique. However, audification is usually not an ideal 

method due to several reasons: the data stream may be too short to be played / it 

might be very noisy / the data source might not be similar to a waveform.  

 

II. Auditory Icons 

An Auditory Icon was defined  as “a sound that provides information about an event 

that represents desired data”. This means using non-speech sounds to perform as 

corresponding events to significant changes in the data (Gaver, 1986). To understand 

this, a very common example is the use of short sound effects when events are 

triggered in a computer operating system (e.g. in Microsoft Windows). For example, 

when a page is being turned in an electronic book, a sound can be played as if two 

pieces of paper are rubbing against each other in real-life. By hearing this sound, 

users subconsciously realise what is happening, or the illusion of ‘turning a page’ is 
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made to feel more real by the superimposition of sonic feedback on top of the visual 

animation. 

Auditory Icons traditionally assist graphical interfaces as well as many pioneering 

interfaces (e.g. wearable devices). With the rapid development of ubiquitous (or 

pervasive) computing, this method will perform a widely used role to support those 

new interfaces by giving multisensory feedback. 

 

III. Earcons 

An Earcon is also a portrayal of an event. But unlike an Auditory Icon, it does not 

have a direct acoustic correlate with the event. This is a good thing where it is 

difficult to find a sound having a close correspondence to the event. For example, in 

Microsoft Windows the sound effect of telling the user that there is an error during 

operation is the sound of “musical bang”; and the famous system start-up music is 

widely recognised by people, yet is not sonically representing a machine starting up. 

Earcons are easy to make, with many guidelines (Brewster et al., 1995) for creating 

them. One possible method is making natural sounds from the surrounding 

environment (Blattner, 1989). They are also easy to learn, and there are many ways to 

give users training (Hermann et al., 2011). It is a popular technique when composing 

an adequate auditory display. 

 

IV. Parameter Mapping Sonification 

Parameter Mapping Sonification (also written as PMSon) “involves the association of 

information with auditory parameters for the purpose of data display” (Hermann et 

al., 2011), which is excellent for displaying multivariate data. When mapping a data 

parameter to a sound parameter, in many cases a data trend is represented, which is 

especially good for statistics, such as using sound to show the trend of stock-market 

share prices or weather-based parameters such as temperature.  

There are three categories of PMSon mapping method: 

 

‘1 to 1’ mapping  

This is the simplest and most direct method. If one sound parameter is linked to only 

one data stream, it is a “1 to 1 mapping” (Fig. 2.3).  The sound is used as an analogue 

of the data. For instance, if mapping temperature to the frequency of sound, the trend 

of temperature will be given by the audible pitch trajectory. 
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Figure 2.3: 1 to 1 mapping 

 

‘1 to many’ mapping (also known as divergent mapping) 

This means that several synthesis parameters are driven by a single data parameter 

(Fig. 2.4). It is often used when there are some key values across the entire range 

which can indicate qualitative change. For example, suppose we have a continuous 

number order from 1-10, however when the value is between 3.4 and 7.9 this 

indicates a special case. If mapping this order into sound, two different sound 

notifications need to be designed apart from the normal scale corresponding to the 

value of the order.  

 
Figure 2.4: 1 to many mapping 

 

‘Many to 1’ mapping (also known as convergent mapping) 

If there are several sources of input data but only one output is needed, the mapping 

can be considered as ‘many to 1’ (Fig. 2.5). Many-to-one mappings are commonly 

found when researching into musical interfaces since sound parameters are usually 

controlled by multiple human inputs (for instance the pitch of a violin depends on 

finger position, bow pressure and vibrato modulation).  

 
Figure 2.5: many to 1 mapping 
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Parameter Mapping Sonification is effective in a wide range of applications. Users are 

able to perceive multivariate data with only one sound, as the sound is comprised of 

multiple elements: pitch, timbre, etc.; or a valuable piece of information (with many 

attributes) can be identified by the user due to the same reason.  

 

 

V. Model-Based Sonification (MBS) 

As the name of this method implies, Model-Based Sonification generates a physical 

model – based on the data. This model works as a medium for the user to interact with 

and gives sonic responses depending on the user input. MBS was introduced by 

Hermann and Ritter in “Listen to your Data: Model-Based Sonification for Data 

Analysis” (Hermann and Ritter, 1999). In MBS, sounds are derived from the data, 

which follow the physical laws applied to the model, rather than converting raw data 

streams into sound as can be seen in parameter mapping. It can be helpful to think of 

the following analogy: In PMSon the data is like  ‘score’ which plays an instrument 

(the sonification algorithm), whereas in MBS the data itself forms the instrument, to 

be played interactively by the user. MBS is used in variety of applications: musical 

gesture analysis, data exploration, augmenting human computer interaction, process 

monitoring and so on. It is particularly useful where there is no obvious time-ordering 

to the data. In such cases parameter mapping struggles to form the data into a fixed 

sequence to be played in time, but MBS uses the data complexity to aid the formation 

of a complex model.  

 

 

Out of the five techniques of Sonification described above, there is no single optimum 

method; all methods can work well in their special application areas. Audification and 

Parameter Mapping are best for time-indexed data; Auditory Icons and Earcons work 

well for simple/short notifications and alarms; Model-Based Sonification shines 

through when the data sets are complex. These methods, as a group, show the 

versatility of Interactive Sonification being one of the most powerful new tools 

available for researchers wishing to analyse data.  
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2.5 Applications of Interactive Sonification to 

Movement Capture 
 

In this section some real-world examples of ISon are reviewed, demonstrating the 

capability of applying it to achieve effective analysis work for multiple purposes. 

 

(1) Quantifying the effectiveness of interaction 

Hunt and Pauletto created and evaluated a system for interacting with an algorithm for 

the sonification of several data streams. They concluded “the addition of a relatively 

high level of interaction to a sonification display improves the efficiency of the 

analysis of the sonified data” (Pauletto and Hunt, 2007). The overall auditory analysis 

experience can be improved by the addition of human interaction. This opens up a 

whole new field of analysis where movement itself can be monitored and portrayed as 

sound, allowing eyes-free feedback for real-time human activity. 

 

(2) EMG Sonification  

EMG can also be used as a source for the auditory display of data to allow the 

monitoring of a variety of muscle conditions. Hunt & Pauletto indicated the two 

advantages of a real-time auditory display for EMG: “it frees the eyes of the analyst, 

or the physiotherapist, and it can be heard by the patient too who can then try to 

match with his/her movement the target sound of a healthy person.” (Pauletto and 

Hunt, 2006). The second point is really important: patients usually do not understand 

what the medical examination or physiotherapy procedure is exactly doing on their 

body; it is as if the doctor is operating ‘unidirectionally’. However if patients could 

hear the sound and map this to the changes of their activity, and the feelings in their 

body, they might be more interested and willing to cooperate with the therapist, hence 

enhancing the effect of the medical intervention. Some significant examples are 

introduced below. 

In 2004, John Dixon performed an experiment to compare two muscle groups and the 

way in which they were synchronized during certain types of physical activity. The 

aim was to investigate if the onset of EMG activity in a muscle on the upper leg was 

delayed relative to that of another muscle close to the knee in osteoarthritis patients. 
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However Dixon’s investigation found no evidence of delay. Two years later Hunt & 

Pauletto took Dixon’s data for a new piece of research regarding EMG data and ISon 

to see if it was possible to map EMG data into sound and then analyse it effectively. 

They connected EMG sensors with the existing medical ADC (analogue digital 

converter) and used a computer to run their mapping application written in PureData 

(Pd). The data was converted to sound via a pre-designed sonification algorithm. As a 

result, “The sonification was found to be effective in displaying known characteristics 

of the data. The “roughness” of the sound’s timbre was found to be correlated to the 

age of the patients” (Pauletto and Hunt, 2006). Figure 2.6 shows the clinical set-up for 

gathering data. These experiments also showed that Dixon’s original hypothesis was 

correct – that there was in fact some phase delay between the firing of the different 

muscle groups. 

 
Figure 2.6: Data gathering for EMG Sonification 

 
(3) MotionLab  

ISon systems can be used effectively for the portrayal of human body movement data. 

Alfred Effenberg has worked with elite athletes for many years, and has discovered 

the benefits of using sonification as an effective feedback system. He developed a 

program called ‘MotionLab Sonify’, which is ‘a framework for the sonification of 

human motion data’ (Effenberg et al., 2005). It is used for analysing kinematic 
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movements, and mapping them into sound. The movement is captured by the Vicon 

motion-tracking system which generates a real-time motion capture data stream from 

a series of precisely aligned high-definition cameras. Markers were put on the 

athlete’s body to enable the rendering of a virtual kinematic skeleton which is shown 

on a visual display (see Fig 2.7). With this framework “a large number of different 

problems in sport science, sports and rehabilitation can be explored and treated in an 

advanced mode” (Effenberg et al., 2005). This shows us that we can pay special 

attention to the human perceptual system, and to the use of multi-modal displays, in 

portraying complex real-time movement. 

 
Figure 2.7: MotionLab showing the ‘skeleton’ calculated from cameras 

 

(4) Aerobic Exercises  

Hermann and Zehe introduced a method for measuring body movements (Hermann 

and Zehe, 2011). Wearable goniometers collect data and send it to a computer via 

Bluetooth. A computer program was developed for rendering data sonifications in 

which pre-recorded data and real-time data are both accepted. This system can sonify 

“coordinated body movements for a single performer, as they occur in physical 

exercises and particularly in aerobics”. Figure 2.8 shows the user interface of the 

system which synchronises the data playback and the recorded video, allowing 

playback control and real-time adjustment of the mapping functions. Users found that 
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when using the system they were able to do the movements more effectively. 

 
Figure 2.8: User interface of Hermann’s system 

 

(5) Elite Swimmers  

Alfred Effenberg was convinced that there may be additional information from the 

Vicon camera system which could not be detected visually. Indeed in some of his 

work with Schmitz studying elite swimmers, he discovered (using sound only) some 

very subtle differences in the dynamic motion of the best swimmer, which enabled 

him to quantifiably improve the performance of the whole team. 

Figure 2.9 from Schmitz-Effenberg experiment shows that “in the congruent 

condition frequency and amplitude modulations of electronic sounds represented 

changes in the relative distance between the wrist joints or the ankle joints to the 

center of the pelvis” (Schmitz et al., 2013).  
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Figure 2.9: Kinematic-acoustic mapping (Schmitz et al, 2013) 

 

(6) Rowing sonification  

The system “Sofirow” (Schaffert et al., 2010) can also be used for the sonification of 

on-water training sessions, particularly for determining the quality of a rowing stroke 

(see Figure 2.10).  

  
Figure 2.10: Sofirow system (Schaffert et al., 2010) 

The experiment showed that certain errors in rowing-stroke action, which could not 

usually be measured or perceived, can be found through sonification. This allows 
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athletes to correct their actions in real time using the detailed information fed back 

from their actions.  

 
(7) Feedback system for instrumental practice  

As an audio-based technology, ISon would seem a likely candidate for the analysis of 

musical-related data. However, in practice, visualisation methods tend to be chosen 

for learning musical skills, and interactive sonification methods are barely considered. 

A reasonable explanation is that people cannot concentrate on two sounds at the same 

time. But if we can fit the feedback sound into the musician’s sound, the ISon 

approach might be more likely to be adopted. With this concept shown in Figure 2.11, 

Sam Ferguson described an ISon system for giving feedback to a musician for their 

instrumental practice. “The system acts to provide the musician knowledge of their 

results, in turn associating their actions directly with their musical results and thereby 

developing muscle memory and technical musical skills.” (Ferguson, 2006). 

 

 
Figure 2.11: Concept of Ferguson’s system 

 



 31 

 

2.6 Discussion 
 

The applications given above show great usability of applying Interactive Sonification 

on movement capture, despite most of the applications are not targeting general 

public. This research indeed is interested in human actions / movements, hence it is 

very natural to think of using ISon as the tool for analysing the status of muscles 

during actions. Even better is, with the backing of development of small sensor and 

wearable technologies, it becomes more and more convenient to make portable / 

wearable devices for sound feedback, and these kind of devices will be more and 

more affordable. The mobile app market (e.g. Apple iOS app store) is quickly 

growing, catalysing easy-use programming language such as Apple Swift for app 

development, as well as making mobile device to be a terminal of various functions in 

daily life pervasively. 

Yet, in this particular research, especially when the focus is finally on piano players, 

ISon can have a few limitations. First thing to consider is whether piano players can 

accept playing piano with ISon device attached on them, not only because it definitely 

reduces comfort, but also it does not sound ideal to disturb piano players using 

feedback sound when concentration is generally needed. Meanwhile, any sound has 

one or multiple “pitch”, which can affect the piano sound perception more or less 

depends on people; it is unknown that whether this factor can actually influence 

muscle tension if it does indeed. 

Although there are limitations, the advantages of using sound feedback over visual 

feedback is obvious: it frees eyes which are needed for looking at music scores; piano 

players can concentrate more on playing music without being distracted from the 

necessity of looking at the visual thing regularly; using sound can achieve real “real-

time” feedback of muscle tension as aimed by this research, as well as mentioned in 

the hypothesis. 

 

2.7 Conclusion 
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This chapter has summarised the fields of Auditory Display and Interactive 

Sonification (ISon). The advantages of ISon have been explored, and it seems that in 

recent years there has been a blossoming of research applications which utilise this 

technique to yield new insights into complex and real-time data. Also, possible 

limitations are mentioned in this chapter. An area of special focus is the use of sound 

to feed back information on human movement as the actions are performed. This has 

multiple applications in sports and exercise monitoring, and music performance 

supervision, both of which have been features of the research described in this thesis.  

In the next chapter, we see the introduction of piano-related injuries and a possible 

way for prevention – using surface EMG for biofeedback. 
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Chapter 3 Piano Related Injuries & 

Biofeedback 
 

 

3.1 Introduction 
 

Nowadays uncountable children start learning piano when they are very young, in 

addition to the many adults who begin to learn piano at various ages. The piano is one 

of the most popular instruments across all levels of music tuition. Elite pianists have 

to undertake intense levels of practice, and these high physical loads can lead pianists 

to a range of Playing-related musculoskeletal disorders (PRMD). PRMD to the pianist 

is like RSI (work-related musculoskeletal disorders) to office workers. 

This chapter describes what PRMD is, followed by the biofeedback section which 

explains the Electromyography (EMG) used for obtaining biofeedback in this 

research.  

 

 

3.2 Problem of Musicians: Playing-Related 

Musculoskeletal Disorders (PRMD) 
 

Instrument-related arm and hand injuries have been annoying musicians for more than 

a century (Harman, 1982). However, there are not many etiologies available because 

the relationship between injuries and bad technique / improper training has not been 

confirmed by much scientific evidence (Ziporyn, 1984). 

The definition of PRMD was given through qualitative research by Zaza, Charles and 

Muszynski where PRMD is considered to be serious problems by musicians: “…pain, 

weakness, lack of control, numbness, tingling, or other symptoms that interfere with 

your ability to play your instrument at the level you are accustomed to” (Zaza et al., 

1998). This definition reflected the musician’s perspective. As a result, the 
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characteristics and meaning of PRMDs to musicians were figured out as below: 

 

a) PRMDs affect playing 

As people can imagine, PRMD has a bad effect on playing, mainly by distracting 

musicians from the concentration needed to play an instrument. Musicians will not 

notice or admit the problem until they really feel the pain is affecting their playing. In 

particular, if aches or pains do not affect playing, it is not a PRMD. 

 

b) PRMD symptoms are chronic 

This is the most commonly described characteristic of a PRMD. Musicians feel if 

symptoms do not go away, they would consider them to be a problem. However, 

before the problems are considered chronic, the duration of the problem varies – it can 

be over weeks or months that symptoms occur. 

 

c) PRMD symptoms are severe 

PRMD symptoms are often described by strong words such as “burning”, 

“excruciating”, “shooting pains”, “spasms”, and “incapacitating” by musicians. By 

contrast, “just”, “mild”, “little”, “slight” are usually used to describe pains and aches 

that are not PRMDs. 

 

d) PRMD symptoms are unusual 

Musicians describe PRMD symptoms and their effects on playing as abnormal and 

unusual, unlike typical pains and aches.  

 

e) PRMDs are determined by the individual 

PRMDs are identified subjectively by the individual musician rather than by objective 

means. Some musicians describe that PRMD is a personal thing that they notice 

changes in their performance ability such as not being able to play as fast as before. 

 

f) PRMDs are beyond the musician’s control 

Musicians do not have the ability to control the symptoms as shown in the experiment 

by Zaza et al.. Many musicians define this as a characteristic of PRMDs; many claim 

that they will be aware of a PRMD if they cannot control the symptoms. 
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The debate among health professionals regarding work-related musculoskeletal 

disorders still remains, but the consistency in the experience of PRMDs and work-

related musculoskeletal disorders is clearly shown in Zaza et al.’s research. Therefore 

the PRMD warrants great attention to reduce its debilitating effects. 

 

3.3 PRMD for piano players 
Injuries are reasonably widespread among pianists since playing piano is a repetitive 

task where the hands and the arms are used, involving various kinds of movements. It 

is common to increase muscle tension by focusing on playing the right notes and 

getting the correct sound. Even some of the greatest pianists cannot avoid this: Leon 

Fleisher; Ignaz Friedman; Alexander Scriabin; Wanda Landowska; Gary Graffman; 

Artur Schnabel… (Lim, 2014). In fact, research by Bragge et.al suggests that PRMD 

is a substantial problem amongst pianists, where PRMD is associated with muscle 

tension and increased levels of stress (Bragge et al., 2006). In 1988 Revak distributed 

a questionnaire to 71 piano students in 7 Philadelphia area music schools in 

Pennsylvania, “42% of the respondents reported experiencing discomfort that lasted 

more than one week and 87% of students suspended practice for a period of time or 

made adjustments at the piano. Pain/aching was the predominant discomfort reported 

among students” (Revak, 1989). Similarly, Furuya et al. surveyed 203 senior pianists 

and discovered that “77% of these pianists suffered from PRMDs in at least one of 

their body portions, and 44% of these were serious enough to warrant medical 

treatment” (Furuya et al., 2006). 

These examples show that PRMD is widespread among piano players. 

One main source of stress comes from sustained intense practice of advanced piano 

techniques. Allsop and Ackland’s undertook a set of comprehensive experiments for 

finding out the prevalence of PRMD in relation to playing techniques and practicing 

strategies. In their report, 214 (42.4%) of the total 505 respondents experienced 

PRMD; also a higher proportion of professional musicians (71.9%) reported PRMDs 

in comparison with 38.1% of non-professionals. For the statistics of piano techniques, 

“96 respondents reported that PRMDs were associated with specific piano techniques 

and exercises; 59 respondents reported the occurrence of PRMDs when playing 

octaves, 27 when playing fast passages, 20 when playing chords, 20 when playing 
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fortissimo, 13 when playing arpeggios, 11 when playing trills, 11 when playing scales, 

two when playing polyphonic music and one when playing pianissimo.” (Allsop and 

Ackland, 2010).  

There is more than one “correct” hand posture, however, there is a lack of scientific 

information regarding how PRMD is related to the use of different hand postures.  As 

a consequence piano teachers cannot point to any specific evidence for recommending 

to their students which posture should be used to prevent PRMD. Worse still there are 

different schools (Russian, French, etc.) using different theories to promote different 

hand positions (see Figure 3.1).  

 
Figure 3.1: Three different techniques (Allsop & Ackland, 2010) 

 

Also when looking at hand postures of some greatest pianists (Figures 3.2 - 3.5) 

(Labrande and Sturrock, 1999), the differences of their playing style are quite 

noticable. However this does not seem to be a handicap for achieving virtuosity – 

clearly they have all mastered piano techniques.  
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Figure 3.2: Wanda Landowska 

 

Figure 3.3: Vladimir Horowitz 
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Figure 3.4: Claudio Arrau 

 

 
Figure 3.5: Gyorgy Cziffra 

 

In 2000, B. Wristen proposed a theoretical procedure for biomechanical analysis of 

piano technique for developing an injury-preventive technique. In that research 7 

piano techniques were assessed: scales, arpeggios, trills, double-third scales, octave 

scales, broken chords and broken octaves. Subjects were asked to play pieces 

containing these techniques whilst their playing was observed and compared to the 

motion patterns formatted into checklists (see the example of double-third scales in 

Fig. 3.6). Eventually, based on the analysis a few recommendations for preventing 

injuries were suggested, including “never practice through pain”, and “avoid suddenly 
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increasing the time and/or intensity of practice”.  However, for long-term monitoring, 

it is nearly impossible to find an exclusive analyst who can observe the playing every 

single time for all individual piano players; therefore a system that can be operated by 

the players themselves will be a better medium for observation. 

 

 
Figure 3.6: Checklist for double-third scales (Wristen, 2000) 

 

 

3.4 Some examples of piano techniques that may 

cause PRMD 
 

Claudio Arrau, one of the greatest pianists in history said: “If you keep your body 

relaxed, the body is in contact with the depth of your soul. So if you are stiff in any 

joint, you impede the current, the emotional physical current, the music itself dictates 

to you. If you have stiff joints, you don’t let it come through into the keyboard.” (“The 

Art of Piano - Great Pianists of 20th Century” [DVD], Sturrock, 1999). 

However most people cannot keep relaxed all the time, as Arrau suggests, especially 

when playing pieces of virtuosity or working hard to keep playing the correct notes. 

Below are some examples of techniques whereby muscles will easily become tensed 

when practicing, and the subsequent tension has a negative effect on the practice 
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quality. This also corresponds to the research of Wristen and Allsop et al., which was 

mentioned in the previous section. All examples are captured from the IMSLP 

Petrucci Music Library (Guo, 2006). 

(Sound examples are provided with the accompanying disk). 

 

1. Octaves: Etude op.8-12 (Scriabin) 

 
 

2. Double-thirds trills: Chasse Neige (Liszt) 
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3. Scales: Mazeppa (Liszt) 

 
 

4. Broken Chords: 3rd Piano Concerto (Rachmaninoff)
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5. Leaps: 2nd movement of Fantasy op.17 (Schumann) 

 
 

6. Doubles: Feux Follets (Liszt) 
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7. Arpeggios: Piano Sonata op.57 (Beethoven) 

  

 

 

3.5 Biofeedback – EMG 
 

3.5.1 The purpose of using biofeedback 
 

“Biofeedback” was described as “techniques using instrumentation to give people 

information about a specific physiologic process which is under the control of the 

autonomic nervous system, but not clearly or accurately perceived” (Gartha, 1976). 

However, this definition had been developing over years, until year 2008 an official 

definition was developed by AAPB5. This latest definition emphasises the point of 

giving a user additional "control". The 2008 official definition of biofeedback is: 

“Biofeedback is a process that enables an individual to learn how to change 

physiological activity for the purposes of improving health and performance. Precise 

instruments measure physiological activity such as brainwaves, heart function, 

                                                
5 The Association for Applied Psychophysiology and Biofeedback (AAPB) was founded in 1969 as the Biofeedback Research 
Society. https://www.aapb.org/ 
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breathing, muscle activity, and skin temperature. These instruments rapidly and 

accurately "feed back" information to the user. The presentation of this information — 

often in conjunction with changes in thinking, emotions, and behaviour — supports 

desired physiological changes. Over time, these changes can endure without 

continued use of an instrument."(Schwartz and Andrasik, 2017) 

A common purpose of using biofeedback is for actively improving health. The 

instruments of biofeedback can monitor heart rate, muscle tension, blood pressure and 

so on, so that people can choose what to do based on the information.  

Piano players may not be aware of injury until it becomes a big problem, especially 

when during daily practice they may not notice the tension of muscles when 

concentrating on playing the right notes. Seeking treatment after suffering from 

PRMD is a passive reaction to a chronic injury, whereas using a possible tool to 

observe tension in real-time to prevent or minimise PRMD would be a more proactive 

approach, which could potentially save much suffering. Normally it is not possible to 

monitor muscle activities by the human players themselves, so a system of 

biofeedback would be the proper tool to achieve this. 

 

3.5.2 Surface EMG 
 

EMG (Electromyography) is “a technique for evaluating and recording the electrical 

activity produced by skeletal muscles” (Kamen and Graham, 2004). Electrical 

potential is generated whenever a muscle is activated. Sensors are placed on the 

surface of the skin and connected to a machine called an electromyograph, which is 

used to produce a visual representation of electric potential generated by muscle cells 

when they are activated - a suitable instrument for biofeedback. EMG is typically 

used for medical purposes, using sensors (for collecting data from muscles) that are 

sensitive enough to allow any abnormal activities to be easily detected. 
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Figure 3.7: EMG signal data6 

 

Figure 3.7 shows an example EMG signal. The ‘thick horizontal line’ across the 

centre is called the baseline, and represents the electrical value when the muscle is 

relaxed. It is important to check the baseline before any EMG measurement. The 

quality of results can be improved by using a high quality EMG amplifier that reduces 

the noise.  

There are two main methods of measuring EMG: surface EMG (abbr.: sEMG, where 

only muscles close to the surface of skin can be detected) and intramuscular EMG 

(where deeper muscles which are covered by surface muscles or bones still can be 

detected). The latter method uses a fine wire electrode inserted into the muscle (see 

Figure 3.8), which can cause pain and impede movement; whereas the former method 

is more patient friendly and easier to administer as it uses only silver/silver chloride 

pre-gelled electrodes to stick on the skin (see Figure 3.9) close to the active muscle.  

  
        Figure 3.8: Needle electrodes7                   Figure 3.9: Surface electrodes8 

 

Surface EMG is more widely used than intramuscular EMG because it is a safe, non-

                                                
6 http://www.intechopen.com/source/html/19664/media/image2.png 
7 http://www.ambu.com/Files/Billeder/Product%20Images/Media/PMD/ConcentricMedia2.jpg 
8http://3.bp.blogspot.com/_SIl46YOSYD4/TICooDF0FyI/AAAAAAAAAuY/hGIRPPVQDBM/s400/EMG.jpg 
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invasive, easy way to allow objective quantification of muscle energy without causing 

pain or discomfort. It also enables EMG to be used by general users and researchers. 

The servant of the biofeedback field has been surface EMG for long time. In the mid-

1600s Francesco Redi discovered that the energy of the electric ray fish comes from a 

specialised muscle (Criswell, 2010), which shows that the study of muscle voltages 

can be traced back very early. Practitioners use EMG feedback for treating disorders 

and symptoms such as tension headaches and tension myalgias, etc. (Schwartz and 

Andrasik, 2017) 

 

While surface EMG has great advantages, there are several external factors that can 

influence the EMG shape and characteristics. These are summarised below (Konrad, 

2005): 

a) Tissue characteristics 

The electrical conductivity varies with human body tissue properties including 

thickness, type, physiological changes and temperature. For example if the fat layer is 

very thick, the connection between EMG electrodes and skin will be poor. 

b) Physiological cross talk  

Neighbouring muscles can produce signals that are detected by the electrode on the 

muscle under study. Also the thick fat layer increases cross talk from other muscles 

(Kuiken et al., 2003). Usually though the cross talk does not exceed 15%. 

c) Changes in the geometry between muscle belly and electrode site 

The EMG reading can be changed by the shift of distance between signal origin and 

detection site. 

d) External noise 

In noisy electrical environments, there is direct interference of power hum, which is 

usually created by wrong grounding of other devices. 

e) Electrode and amplifiers 

The internal amplifier noise and the quality of electrodes may add unwanted signals. 

 

Over the last few years, EMG method using multiple surface electrodes becomes 

more and more popular. In 2004, Nakajima et al did the first study of using a multi-

surface electrode on forearm to estimate EMG-CT, providing a new view in EMG 

studies. Its experimental procedure is shown in Figure 3.10: 
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Figure 3.10: Multiple surface electrodes 

The forearm is placed on a flat table, with elbow joint flexed at 90 degrees, a weight 

was hung on the middle finger. 20 custom-built electrode plates are attached on 

forearm for recording the sEMG signals. As a result, the position of active muscle 

during the contraction are shown clearly, which can be seen that the muscle activities 

are unevenly distributed, with the positions of activated muscle consistent with the 

position of the muscle area from MRI, hence muscle activities were computed from 

the sEMG signals. The results were also verified by physical experiments. The 

novelty of this method is that “the active muscle area can be located non-invasively 

during contraction”. (Nakajima et al, 2014) 

Another example is recently developed “Myo Gesture Control Armband” by Thalmic 

Labs9. It is a wearable gesture / motion control device allowing people to take control 

of phones, computers and so on. 8 EMG sensors are equipped with the MYO 

armband, take responsibility of recognising and performing gestures. The MYO also 

uses Bluetooth for the connection. (Fig 3.11) 

 

                                                
9 https://www.myo.com/ 
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Figure 3.11: MYO armband10 

 

3.5.3 Signal processing 
To optimise the EMG raw signal so that more useful information can be gathered 

from it, the following signal processing methods can be applied as examples (Konrad, 

2005): 

 

a) Rectification (Fig 3.12) 

All negative amplitudes are converted to positive amplitudes as the first step, so the 

negative waves are moved up to plus by the baseline. Now that not only the signal can 

be read easily, but the curve of the signal can also be applied with standard amplitude 

parameters such as mean, peak value, while the mean value of raw EMG signal is 

always “0”. 

 
Figure 3.12: Full wave rectification11 

 

b) Smoothing 

There are two algorithms established for smoothing the signal, “Moving average” and 

“Root mean square”. Both algorithms can build a linear envelope of the signal. 

 

c) Digital filtering 

Additional digital filters may be applied in certain situations. As an alternation of the 

two smoothing algorithms mentioned before, a low pass filter at 6Hz can also be used 

to create a linear envelope. The benefit from this is mainly reduce possible phase 

shift. For fine wire studies, instable contact between probe and skin can happen, in 

                                                
10 http://i.huffpost.com/gen/1910669/images/o-MYO-facebook.jpg 
11 https://astarmathsandphysics.com/o-level-physics/full-wave-rectification-html-cb6b316.gif 
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this case a high pass filter (20-25Hz) can be applied to stabilise the baseline shifts. 

 

3.6 Conclusions 
 

This chapter has given an outline of Playing-Related Musculoskeletal Disorders 

(PRMD) for piano players, and listed some piano techniques which might cause 

PRMDs. There is certain urgency of preventing PRMD among piano players. Using 

surface EMG (a safe, easy way to monitor muscle signals) as well as making proper 

response might be a good solution to what can be a severe problem. 
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Chapter 4 Research Methodology 
 

4.1 Introduction 
 

This chapter describes the research methodology used in this research. The hypothesis 

is restated, then the research objectives are described, and the experimental design 

and data analysis are explained.  

 

4.2 Main focus of PhD 
 

This research aims to seek possibilities of building a system to give some aid to 

people in order to reduce the chance of suffering from RSI.  

Therefore, there were 4 categories of people this research was particularly interested, 

they are piano players, office typists, mobile phone users and badminton players. In 

the early stages, this research investigated how sound could be used to monitor 

tension which is extensively involved in activities of all 4 categories of people, and 

thus via feedback to release it.  

So, the initial hypothesis is: 

 

“By using Sonification feedback it is possible to inform keyboard users, (e.g. piano 

players or office typists) of activity which could otherwise cause long-term injury.” 

 

Please note the badminton players are not even mentioned in the initial hypothesis 

because at the stage of thinking the initial hypothesis, some ideas and small test were 

carried on and showed that doing badminton route may not be a good idea because 

most of the test results were negative, this will be explained in the next chapter, pilot 

study. And then after the pilot study, it became clear that a full test of this hypothesis 

would be almost impossible to carry out because the experiments on piano players 

would need to have prolonged sessions (a few hours) as well as long period tracking 

(a few months to years). Also during multiple initial tests on QWERTY keyboard 
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users, only very little bad effect (discomfort) could be seen from purely typing 

activity, no matter how fast they typed or for how long. 

So, as stated in chapter 1, the main hypothesis of this research is finally shrunk into:  

 

“By using Sonification feedback it is possible to inform piano players of muscle 

tension in real-time, which will allow them to reduce tension”. 

 

The principal aim is to find out if Sonification feedback can provide useful 

information for piano players to let them reduce tension actively. On the basis of the 

hypothesis, a real-time sonification system was developed to monitor the muscle 

tension during piano playing. 

 

4.3 Points summarised from the literature 

review 
 

Chapter 3 discussed the situation that injuries are widespread among pianists since 

playing piano is a repetitive task where the hands and the arms are used, involving 

various kinds of movements, therefore it is going to be useful to build a system if can 

offer some help to deal with those muscle problems. In this particular research, 

especially when the focus is finally on piano players, ISon can have good advantages 

despite there are limitations. It does free subject’s eyes and mind, can give real-time 

feedback from muscle status through feeding alert sound into human ears.  

There are a few things need to be considered when design the feedback sound, such as 

how to minimise the bad influence on piano playing activity; does the pitch of the 

sound produce discomfort of human ears especially to people have absolute pitch 

perception, etc. 

4.4 Research Objectives 
 

The objectives of this research are listed below: 

 

• Finally aim to piano players, for both amateur and elite players. 
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• The development of a real-time sonification system. The system should be 

able to reflect muscle tension as well as produce appropriate sound to give 

piano players feedback to encourage them try to actively relax.  

• Design experiments to achieve sonification and put the hypothesis into a trial. 

 

4.5 The Experiments – an overview 
 

The first experiment was an initial study focusing on the final route chosen (piano 

players), it also examined the effectiveness of the whole system. Useful suggestions 

and information were gained and used for making improvements. 

 

Next was the main experiment. An updated system was made based on the feedback 

from the pilot study. At least 16 people were chosen as subjects (as it is widely 

believed that by choosing 16 people, the effectiveness can achieve 90%12).   

As mentioned in the previous chapters, amateur piano players often find it hard to 

improve their technique because it is too troublesome to concentrate on both reading 

the score and paying attention to their body and hand postures simultaneously; for 

elite piano players, PRMD is always a potential serious problem, therefore the 

proposed system could be used for monitoring muscle tension to make an alarm sound 

to remind players when too much tension is occurring. Considering the above, two 

different groups are set: professional/elite pianists and amateur piano students (as well 

as piano hobbyists). Each group had the same setup so that we could evaluate how the 

system performed on different user groups.  

 

 

4.6 Data Analysis 
 

The concept of this research is to see whether an interactive sonification system 

allows piano players to monitor and thus reduce muscle tension. Therefore, the 
                                                
12  Jacob Nielsen in https://www.nngroup.com/articles/how-many-test-users/ argues that most qualitative tests yield most 
significant user comments by as little as 5 users. As test subject numbers increase there is a decreasing return of problems and 
insights discovered. For newer or more complex situations 15 subjects is seen as a number beyond which few truly new insights 
are discovered. 
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following attributes were recorded: 

• Time of a single experiment session 

• Music repertoire used in the experiment 

• The piece(s) of muscle to be monitored 

• Average muscle tension of the session 

• Peak muscle tension of the session. 

Then, a statistical analysis is going to be carried, such as paired t-tests to examine 

whether the system can make difference after applying them on subjects of different 

groups. 

 

4.7 Conclusion 
 

This chapter briefly summarises the research methodology adopted in this research, 

including how the hypothesis has been developed, what important information has 

been summarised from the literature, and the objectives of this research as well as an 

overview of main experiments. 
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Chapter 5 Practical Development 
 

 

5.1 Introduction 
 

This chapter describes in detail the sonification system developed especially for this 

PhD in terms of both hardware components and software design. 

 

5.2 System Overview 
 

The concept of the whole system is shown in Figure 5.1, and the details are explained 

in the subsequent sections. 

 

  

Figure 5.1: System structure 

 

Figure 5.1 shows the circulatory way that the system works. When human use their 
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muscles for doing activities, myoelectrical signals are produced and are captured by 

the EMG sensors connected to the skin above the muscle. Meanwhile the software 

“MAX” processes the signals into quantised data as the input to generate sound 

feedback to inform the human, subsequently letting them change their activities. 

These changes in turn influence the signal and the whole cycle begins again. 

 

The system hardware is shown in Figure 5.2, which has been designed especially for 

this work, and is assembled with several components (listed in Figure 5.3) which are 

explained in the next section. This system is used for measuring the myoelectrical 

signal produced from the muscle activations. This figure also shows the visual 

appearance of the kit for experiments. From this figure a transparent acrylic box with 

two batches of wires extending out can be seen. The enclosure is easy to disassemble 

for convenience of operating inside the box, such as changing batteries or debugging 

the Arduino board. 

 

 
Figure 5.2: The system hardware 
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Figure 5.3 System structure 

As shown in the figure above, a prototype shield with a bread board attached is 

stacked directly onto the Arduino board with all slots are inserted by corresponding 

from the Arduino board. The Arduino board can be powered optionally by a 9v 

battery if using Bluetooth (the Bluetooth module is connected on the shield), however 

another two 9v batteries are required to power the EMG sensor. The electrodes which 

are used for gathering myoelectrical signals are connected to the sensor by specially 

made cables; there is a standard 3.5mm jack for unplugging electrodes from the 

sensor more easily. 

 

5.3 The Hardware Components 
 

This section gives background details of the hardware used in the system. 

 

5.3.1 Arduino 
 

Arduino 13  is an open-source electronics prototyping platform which includes 

extensive choices of hardware board coupled with its exclusive programming 

language. On the hardware board a microcontroller is programmed by the Arduino 
                                                
13 https://www.arduino.cc/ 
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programming language, which is based on “Wiring”, an open-source electronics 

prototyping platform14 (see Fig. 5.4). The Integrated development environment (IDE) 

of Arduino is based on the Processing15 language (explained in chapter 5.4.1 later): it 

is based on a code editor and features colour syntax highlighting and one-click 

compilation/uploading.  The design of the Arduino is based on controllers and 

microprocessors, supplied with sets of analog and digital I/O sockets for connecting 

with other circuits. Serial communications are possible for interacting with computers 

(using USB) or Tx/Rx pins for communicating with other devices (using TTL logic 

levels). A large variety of external devices can be used with Arduino boards, for 

example various sensors can be used as inputs to allow the Arduino to sense and 

process data from the environment. Arduino projects can be standalone or can run 

interactively with other software such as Processing and Max for maximum 

flexibility. 

 

 
Figure 5.4: Arduino Programming Interface 

 

                                                
14 http://wiring.org.co/ 
15 https://www.processing.org/ 
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For data communication, an Arduino Mega 2560 (Rev.3) board was used (see Figures 

5.5-1 & 5.5-2). This board has a 10-bit ADC, 16 analogue inputs and 54 digital 

input/output pins which are more than adequate for this research. One important 

reason this board was chosen is that the Mega 2560 board is fully compatible with 

most shields designed for the “Uno board” (a simpler alternative in the Arduino 

family) which was used initially in this research, but was eventually abandoned since 

it failed to perform consistently: it drops signal occasionally, or the signal sometimes 

keep being at peak value constantly. Figure 5.6 shows the appearance of the Uno 

board. 

 
Figure 5.5-1: Arduino Mega 2560 Front 

 

 
Figure 5.5-2: Arduino Mega 2560 Back 
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Figure 5.6: Arduino Uno Board 

 

5.3.2 EMG Sensor 
 

The EMG sensor “Advancer Technologies Muscle Sensor v3” was used for this 

research (see Fig. 5.7). This sensor measures filtered and rectified electrical activity of 

muscles. It outputs voltage from zero to a fixed value (implied by the voltage of the 

power source) depending on the activities in the connected muscle. The sensor is 

powered by two 9v batteries and it must be connected to ground. An on-board 3.5mm 

jack is used for connecting/disconnecting cables attached to sensor electrodes. 

            
Figure 5.7: EMG Sensor 

This sensor was chosen because it has some specific features that meet the needs of 

this research. They are: 

• Small form factor (1inch * 1inch (25.4mm squared)) 
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• Adjustable gain - the quality of the captured signal is improved 

• On-board 3.5mm cable port - easy to replace cables and electrodes 

• Designed for microcontrollers: the sensor does not output a RAW EMG signal 

but an amplified, smoothed and rectified signal, which works well with the ADC of 

Arduino boards. Figure 5.8 shows the official graphic demonstrating the concept: 

 
5.8: Optimized signal output (ref from the EMG sensor manual) 

 

The figure above indicates that a RAW sine wave is fully rectified and then smoothed. 

 

 

The cable is connected by three “Kendall/Tyco ARBO* Ag/AgCL” EMG Electrodes 

(Fig. 5.9) which are applied on the skin’s surface as close as possible to the active 

muscle’s middle/end part and reference point (GND). 

 
Figure 5.9: Electrodes 

 

5.3.3 Bluetooth Module 
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For this research, a portable/wireless device was preferred as people usually do not 

like to work while tethered by wires to a computer. This is particularly true of piano 

players who require a full degree of arm movement. Therefore, Bluetooth was chosen 

as the connection method between the Arduino board and the computer (see Fig. 

5.10). A “JY-MCU ‘linvor’” v1.05 module was used here. It supports AT commands 

as well, which means that it is configurable in terms of pairing password, baud rate 

and name of the device. 

Another reason to use the Bluetooth is that Apple Macbooks are known for having a 

mains leakage problem16, which means that if the system were to be applied on any 

Macbooks there would be the potential of incorrect results, and in fact delicate 

hardware could be damaged. Hence for the universality and the manoeuvrability, the 

Bluetooth module is essential in providing electrical isolation between the sensor 

system and the computer. 

 
Figure 5.10: Bluetooth Module 

Four pins are connected to the corresponding slots on the Arduino board. The 

VCC/GND are used for power supply while TXD/RXD work for data transmission.  

5.4 The Software 
 

This section gives a detailed explanation of the software / programming code used in 

this system, and written especially for this research. 

 

5.4.1 The ‘Processing’ language 
 

Processing is an integrated development environment (IDE, see Fig. 5.11) and 

programming language used by many designers, artists and people who work with 

graphics and interaction. It is very like the Arduino language – and in fact they are 

sister projects
                                                
16 For example see https://discussions.apple.com/thread/3969131?tstart=0 
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Figure 5.11: Screenshot of Processing interface and code 

 

It has some useful features which make it one of the most popular programming 

languages among people working with visual elements17: 

• Free to download and open source 

• Interactive programs with 2D, 3D or PDF output 

• OpenGL integration for accelerated 3D 

• For GNU/Linux, Mac OS X, and Windows 

• Over 100 libraries extend the core software 

• Well documented with many books available. 

 

As as example of its application, Aaron Koblin has mapped the flight paths (air 

traffic) of Florida into a beautiful pattern18. The data was parsed and plotted using 

Processing (see Fig 5.12). 

In this research processing is used in system test and pilot study because its capability 

of producing high quality image results. 

                                                
17 Features from processing.org 
18 http://www.aaronkoblin.com/work/flightpatterns/ 
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Figure 5.12 Flight patterns19 

 

5.4.2 Cycling '74 Max20 
 

Max (see Figure 5.13:1-7) is a visual programming language for music and 

multimedia. It is very popular among composers, performers and artists. Max has a 

modular code base of objects for building blocks for its patches (programs).  

The main characteristic of Max is its data-flow system. A Max program (also named a 

“patch”) includes many “objects” which are actually self-contained programs. Objects 

are connected and arranged on a “visual canvas” (named a “patcher”), where 

messages are passed through from outputs of objects to inputs of other objects. 

In addition, Max includes other two packages: MSP and Jitter. MSP provides the 

possibility of real-time manipulation of digital audio, allowing customised 

synthesizers and effects to be created by users. Jitter provides the opportunity of using 

real-time video, matrix processing and 3D. Gen was added later for compiling codes 

within patches; in the latest version of Max (version 7) Beap and Vizzie were newly 

added, providing high-level analog synth and visual processing modules. 

                                                
19 http://www.aaronkoblin.com/work/flightpatterns/wallpaper/florida.png 
20 https://cycling74.com/products/max/#.WOG8F461vLg 
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Figure 5.13-1: Max Running Window showing a patch (left) and object library (right) 

 

 
Figure 5.13-2: Max is connected with MIDI and external controllers 
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Figure 5.13-3: MSP can create customised synths and effects 

 

 

 
Figure 5.13-4: Jitter’s ability of controlling graphics 
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Figure 5.13-5: Gen: code compilation 

 

 
Figure 5.13-6: BEAP: sound modules 

 



 67 

 
Figure 5.13-7: VIZZIE: visual manipulation modules 

 

Figure 5.13 (7 pictures) shows all main components of Max. 

 

5.5 System Design 
 

This section introduces the main system design ideas, the details of hardware 

connections and programming. 

 

5.5.1 The Concept 
 

The system needed to satisfy these functions: 

• Portable (wireless) 

• Gather EMG data in real-time 

• The EMG data to be displayed on a graph so that the users have a visual 

indicator of their muscle tension 
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• Data can be stored into a file, or read from a file. 

Therefore, the flowchart of the system is shown below in Fig. 5.14: 

 

 
Figure 5.14: System Flowchart 
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5.5.2 Hardware Setup 
 

Following the chart above, the solution to the hardware setup became clear (see Fig. 

5.15).  One end of the EMG sensor with the electrodes is placed on the skin over the 

muscle to be monitored; the other end (with the signal processing board) is connected 

to the Arduino board for transferring data. Between the Arduino board and the 

computer, Bluetooth is used as the serial communication (as the Macbook has a built-

in Bluetooth adaptor). 9v batteries are required - two for each of the EMG sensors and 

one for the Arduino board. 

 
Figure 5.15: Hardware Setup 

 

5.5.3 Programming 
 

As stated above there are three components to the software:  

1) Arduino component: to operate the Arduino board to receive signals from the EMG 

sensor;  

2) Max component: to process the signals from the Arduino;  

3) Processing component: the use of the Processing language as a prototyping tool, 

for processing data and producing visual and audio feedback.  
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Each of these components are now described and illustrated as sections below. 

 

a) Arduino Component: 

 

The Arduino board is only used for data transfer via serial communication. The code 

is given in Fig. 5.16: 

 

 
Figure 5.16 Arduino Code 
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Six pins (a0-a5) pins are identified as the analogue input sockets, initially set as value 

“0” The baud rate is set as 9600 (symbols per second) by the line 

“Serial.begin(9600)”. A loop is then followed for gathering data continuously from 

the pins. Visual outputs are printed as “analog*+.+value of analog pins+line break” 

respectively. 

When all codes are uploaded to the Arduino board, the board acts as a standalone 

chip, even without being connected to a computer it can still function as it is has been 

programmed. 

 

 

b) Max Component 

 

Figure 5.17 shows the Max interface which has been designed for this project. 

 

 
Figure 5.17 MAX Interface 

 

The functions of the buttons are expressed by button names, including EMG gathering 

on/off, sound play on/off, data save/load/reset/check, reset scale and real-time data 

value/graph display. Users have full control of all the functions that this Max patch 
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provides.  

The graph is used as a visual muscle tension indicator. Once the Max patch is started, 

the EMG data gathered by the sensor will be shown in both the number box (on the 

right side of “Real-Time Data”) and the “multislider” object (the orange graph 

window). All the data is stored temporarily as a hash table in the “coll” object, which 

users can choose to look at in real-time or save into a text file (buttons at the upper-

left corner). The patch also supports the reading of EMG data files saved by the patch 

itself. On the right side, the volume can be adjusted to satisfy the needs of different 

people.  

 

 
Figure 5.18 EMG module 
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Figure 5.18 shows the MAX code for carrying out serial communication in order to 

receive data from the Arduino. The [Serial] object gathers all information coming 

from the Arduino via the Bluetooth port (port d). When ASCII code “10” (println, 

linebreak) is detected, the whole message is sent to [zl group] for re-grouping them 

together as an ASCII stream. During this step all unwanted keywords such as ASCII 

code “13” (return) or ASCII code “46” (symbol ‘.’) are replaced with “space” (ASCII 

code 32). Then the signal goes through the [fromsymbol] object which converts 

original ASCII code into numbers. Finally the signal is sent out every 10ms (set by 

the [qmetro] component, an internal clock of Max), and then is received by sub-patch 

[arduinoAD] which divides the signal stream into 6 groups by recognising the 

keyword “analog+number” in Fig. 5.19-1. 

 

 
Figure 5.19-1 Signal Routing in MAX 

 

Considering that muscle tension from different subjects varies, the signals of all 

subjects are re-scaled to prevent clipping or too weak a signal. When the “re-scaling” 

(reset scale) option is ticked on, the objects [peak] and [trough] find the maximum 

and minimum values respectively of the incoming signals and rescale them into the 

range 0-1000. To obtain the maximum signal, subjects will be required to tense their 

muscle as much as possible before the experiment starts (see Fig 5.19-2). 
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Figure 5.19-2 Incoming signal scaling 

 

The [coll] object, along with [counter], (see Fig. 5.20) stores all data into an index 

table at the speed of incoming signal (also every 10ms) to preserve as much 

information as possible. The index file is simply combined with an index number and 

the data, and can be easily saved as a text file (.txt). 

 
Figure 5.20 The coll object 
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For the sound feedback, the sound module (Figure 5.21) generates a simple real-time 

parameter-mapped sonification, based on the value of EMG signal. The function 

2*value was used as the frequency to modulate a sine wave; as the signal value is 

from 0 to 1000 therefore the frequency range of the sound feedback is 0-2000, which 

is convenient to listen to21). The volume adjusts its value accordingly, from mute to 

0db within the MAX patch. 

 
Figure 5.21 Sound module 

 

The reason for using a simple sine wave as the feedback sound is explained in the 

next chapter (Pilot Study); the sine wave being the choice after many different sounds 

were tried. 

Figure 5.22 shows the full view inside the MAX patch (excluding some sub-patches 
                                                
21 Although the few very lowest values will be inaudible as the human hearing range begins at 20Hz. This does not appear to 
have been a problem since it is the higher end of the signal range which really needs bringing to the listener’s attention). 
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explained before). 

 
Figure 5.22 Max patch full view 

 

 

c) Processing Component 

 

Although the MAX can draw a graph, the Processing language is superior in terms of 

image quality and display smoothness. Therefore for testing devices, Processing is 

used to provide a better real-time graphical experience.  
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Figure 5.22 Processing code 

 

In the Processing program (shown in Fig. 5.22) the serial is chosen manually 

according to the serial port list (use “println [Serial.list]” to show all ports, in this case 

it is port 2). An 800*600 pixel “canvas” is defined and initially cleared by the line 

“size (800, 600)” and “background (0). All EMG data streaming from the Arduino 

board are scaled within a range of 1024 (0-1023) and then are continuously fed into 

the variable “height”, which is used for drawing a line in purple colour (specified with 

RGB code 127, 34, 255). Every time the graphical window is filled, the line “if 

(xPos >= width), xPos=0” clears the window and draws the line again from the 

original position (far left). 
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5.6 System Initial Test 
 

The first task was to make sure that all the devices were connected correctly; then 

apply the electrodes to the skin surface above the target muscle (as in Fig. 5.23). Then 

the programs of Max and Processing were run and the results could be seen. Below 

are some pictures demonstrating the process. Some testing videos are available on the 

accompanying DVD disk, showing different parts of the system in operation. 

 
Figure 5.23: Device Setup 

 

1) Results from the Processing program 

After everything was set properly, a clear graph was obtained, as shown in Fig. 5.24. 

The graph sensitively indicates the muscle tension in real-time, and the shape also 

looks smooth and useful for visual analysis. Informal testing showed that users 

appreciated the real-time visual response, and commented on its clarity. 
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Figure 5.24: Processing Sketch 

 

2. Results from the Max program 

With the same hardware setup, the use of Max also brought good results. It has good 

graphic quality (see Fig. 5.25); and in addition a real-time audio signal which 

increases/decreases with the rise/drop of muscle tension can be heard clearly. 

 
Figure 5.25: MAX result (Graph and value number) 
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The data operation function was tested as well. Signal data could be stored or read as 

a text file; users or the researcher could check the data at any time. Figure 5.26 shows 

the temporary data after clicking the “see temporary data” button. 

 
Figure 5.26: Temporary data stored in coll object 

From the testing sessions some points were discovered: 

• A higher sample rate (>100Hz) does not provide better results, but just wastes 

computer resources. This conclusion is taken from many tests: we tried many 

sample rates (many of them are >100Hz), the program gave the same results 

as using the sample rate 100Hz.  

• The position of the electrodes applied above the muscle can make significant 

changes to the results. This was found accidently during one experiment 

session. Sometimes imperfect signals were caused because the electrodes were 

not applied on the proper position of skin. 

• The system needs good power support; when the power of batteries was below 

50%, the results were no longer reliable. The sensor is really sensitive to the 

battery level. When the level is close to 10%, a short out even may happen. 

• Taking the above issues into account, the system worked very well and met 

the needs of this research.  
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5.6 Discussion 
The whole system is described in this chapter, including both hardware and software 

sections. The functions this system has achieved satisfy the needs for testing the main 

hypothesis of this research “By using Sonification feedback it is possible to inform 

piano players of muscle tension in real-time, which will allow them to reduce tension” 

because this system is able to produce sound feedback based on the muscle tension 

status; and the muscles chosen represent the main part where piano players 

consistently report feeling tension. In the next two chapters (experiments), we can 

demonstrate that people can be successfully informed when they have high muscle 

tension.  

To sum up, this system is fairly well-built and effective, with all components / 

programming languages reasonably chosen. All essential functions have been 

implemented, with good stability and reliability. The software user interface is easy to 

understand and operate, with clear presentation with output results. 

 

There are some limitations as expected, such as the batteries much reduced the 

portability of the system because of the weight (3x9v batteries); the Bluetooth 

connection is sometimes fair-poor because of long distance or some obstacle between 

the computer and the system. Sometimes obviously wrong random results are shown 

hence a system restart is needed; For single muscle, 3 electrodes need to be adhered to 

skin with cables connected, which largely reduces the user comfort, etc. Therefore, 

there are a few improvements which can be considered: 

• Using small scale Arduino board, such as an Arduino Mini Pro, Arduino 

Macro, or Arduino Nano. These chips have a very small size but still provide 

enough connections, which should help to greatly reduce the size / weight of 

the whole system. Hence a more portable or even wearable device can be 

made. 

• Using a Wi-Fi module or Wi-Fi-integrated Arduino boards. Wi-Fi can provide 

much better connections than Bluetooth, and is becoming a standard for 

mobile devices. By using Wi-Fi, we could expand the possibilities of making 

an app for mobile devices such as iPhone / iPad. 
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• At the time of writing, a new sensor “MyoWare 22 ” from the company 

Advancer Technologies is available. It has all functions of the custom sensor 

designed for and used in this research but offers more flexibility. This could be 

used in future work to give the system an update: 1) “Single power supply”, so 

now it could be plugged directly into 3.3V through 5V development boards. 

This is useful because two of three batteries could be eliminated. 2) 

“Embedded Electrode Connector”; electrodes now snap directly to MyoWare 

and can be attached to the skin, no cables are needed. 3) “RAW EMG Output”; 

this expands the possibilities if a raw EMG signal is required in further 

research. 4) “LED Indicators” give a little visual indication of muscle status 

because the LED brightens when the muscle flexes. 

• A new wearable device “MYO band” made by Thalmic Labs is newly 

available and can be used for many kinds of EMG-related applications. It is a 

wireless arm band, has a few EMG sensors built-in. SDKs are available by 

free download, allowing users to develop their own applications. The band has 

very good connections and precision, which makes it an ideal device for future 

research in this area. 

• The enclosure could possibly be made by a 3d-printer. With a small size 

Arduino board and a new sensor installed inside, a portable system with small 

dimensions can be achieved.  

• Although not implemented in this research, a MIDI controller could be used to 

access all the functions of the software interface in Cycling '74 Max. With 

hundreds of different MIDI controllers available on the market nowadays, it 

would be fairly straightforward to select a small and handy controller for this 

system for a better user experience in the prototyping stage. 

With all the above improvements implemented in the system, this opens a new world 

for audio muscle-monitoring applications. A wearable, light and wireless device with 

more precision becomes possible for developing mobile apps for various purposes.  

Also, this will have good impact on further work (mentioned in later chapters), for 

instance, expanding user operating range, such as the user having the system on a 

mobile phone, particulary useful for intensive users monitoring ongoing medical 

problems.  

                                                
22 http://www.advancertechnologies.com/p/myoware.html  
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5.7 Conclusion 
 

This chapter has explained the implementation of the custom-designed sensor and 

sonification system used in this research. This system is used to create real-time 

sound and visual feedback generated from information gathered from muscles. 

Towards the end of the chapter some alternative system and possible improvements 

are described. In the next chapter, we will see the pilot study for this research. 
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Chapter 6 Experiments & Analysis 

6.1 Study 1 (Initial Experiment) 
This section explains the initial experiment (study 1). 

 

6.1.1 Introduction 
 

After the sonification system had been developed, the initial study was conducted. In 

this chapter the experimental process and results are described. 

 

6.1.2 Implementation 
 

In the initial study there were 11 people participating in the experiment. 1 of them is a 

concert pianist, the rest 10 are amateur piano players. The whole process of the 

experiment is explained below: 

 

1) When subjects arrived at the place where experiment took place, they were 

given a piece of music (Czerny op.740 No.1 Etude was used in the initial 

study) and asked to practice until they had learnt it. 

2) Next their arm was swiped by alcohol pads, and then the EMG electrodes 

were put on their arms. 

3) The electrodes were put on their brachioradialis. One electrode was placed 

approx. 4cm away from the elbow bone and the other 2cm further. For the 

extensor digitorum one electrode was placed about ¾ distance between the 

elbow and the wrist, and another 2cm further. The final electrode was placed 

over the bony area of the elbow, as shown in Figs. 6.1.1 & 6.1.2 (Criswell, 

2010). These two particular muscle sections were chosen based on the 

experience of 21 piano players who have ever felt high tension. They were 

interviewed before the initial study. 8 of the people who attended the initial 

study were selected from the 21 interviewees. 
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4) Then they were asked to relax their muscles as much as possible, then to tense 

their arms particularly with those two muscles, while the minimum and 

maximum values were captured in the software. 

5) A short training session was carried out to let them get familiar with the 

system. Questions raised in these sessions included: “what does the feedback 

sound mean?”, “how should I respond when I hear the sound” etc. This also 

enabled the system to be tested as well (to confirm that everything was 

working satisfactorily). 

6) A pair of Grado SR225 open headphones or a Genelec 8010a speaker was 

provided for listening to the sound feedback. The subjects were requested to 

play as fast as possible; then they started to play. Without letting them know, a 

period of 90-second time was counted; and after that they were asked to stop. 

7) They were asked to fill in the feedback form (see Appendix3). 

 

 
Figure 6.1.1 Placement of Electrodes (1) 
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Figure 6.1.2 Placement of Electrodes (2) 

 

6.1.3 The Results 
 

The results look promising. Summarised in Figures 6.1.3 & 6.1.4, 9 out of 11 (81.8%) 

people had the average tension of brachioradialis decreased, whilst 8 of 11 (72.7%) 

people had the average tension of extensor digitorum decreased.  
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Figure 6.1.3 Tension differences of brachioradialis 
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Figure 6.1.4 Tension differences of extensor digitorum 

 

The statistics shows that the sonification system can potentially help piano players for 

reduce the tension on muscles. 

 

 

6.1.4 The Feedback and Findings 
 

The feedback from the subjects are summarised in Table 6.1.1 below: 
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Assessm

ent 
Type Comment 

No. Of 

Subject 

Positive 

Function 

1. Helpful 

2. Interesting to use 

3. Gives confidence for long-time practice 

3 people 

4 people 

1 person 

Sound 

1. Very Clear 

2. Pleasing, can listen to the sound feedback 

regularly 

3. The volume is adjusted itself with the change of 

muscle tension which is nice 

2 people 

3 people 

 

3 people 

Negative 

Function 

Not helpful, toy-like 

I just don’t need it 

Uncomfortable to play while my arm is wired 

1 person 

1 person 

1 person 

Sound 

It makes bad influence on my sense of pitch 

Sounds a little stupid 

Annoying 

1 person 

1 person 

1 person 
Table 6.1.1 Feedback of the initial study 

 

According to the table above, most of people were satisfied with the system and 

thought it was helpful. 

 

There were also some useful findings: 

• The quality of contact between the skin and the electrodes is crucial to get an 

effective signal. In one session a subject refused to use the alcohol swipe 

initially and the signal seemed really unstable. Then he agreed to use the 

alcohol swipe hence eventually clear signals were obtained. 

• A thick fat layer can make the signal much weaker than average. 

• The quality of electrodes is important too. During two sessions electrodes of a 

different brand were used, and the signal obtained were quite erratic; then the 

original brand of electrodes were resubstituted and the signals resumed to be 

fine. 

• 10 subjects found that the extensor digitorum is the muscle they can really 

feel. For the brachioradialis they can barely feel anything. 8 subjects suggested 
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that they want to remove the monitoring of the brachioradialis so that they can 

have fewer wires, to make them feel more comfortable. 

• 8 Subjects found that the Czerney Op.740 No.1 was a little too difficult for 

them to learn/play. 

 

 

6.1.5 Conclusion 
 

From this initial study we have been able to tell that this sonification system can be 

potentially helpful when it is used as a support for reducing muscle tension for piano 

players. In the next chapter some system adjustments are listed and the main 

experiments are explained. 

 

6.2 Study 2 (Main Experiment) 
This section explains the main experiment (study 2). 

 

6.2.1 Introduction 
This chapter describes the main experiment of this research. The research aims to 

show that the sonification system is an effective tool to help piano players to reduce 

their muscle tension, which corresponds to the main hypothesis. 

The experiment setup was slightly changed based on the findings and results of the 

initial study. Also at this stage subjects were grouped into two categories – a) 

elite/professional pianists and b) amateur piano players/hobbyists - to see how the 

system performs with different kinds of subject. The main experimental process as 

well as data analysis is included in this chapter. 

 

6.2.2 System Adjustments 
After finishing the initial study, some adjustments were made: 

1) Removed the brachioradialis monitoring while keeping the extensor digitorum. 
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This complies with the feedback from the initial study. 

2) Modified the main interface of MAX patch. 

3) Change the music piece to Hanon: The Virtuoso Pianist No.1 to reduce the 

difficulty but retain the effect that when playing fast the muscles can feel tensed. 

4) Set the data sampling rate of MAX to be fixed at 100Hz, because this speed gathers 

the maximum amount of information but remains at low CPU usage. 

 

6.2.3 Implementation 
 

In the main experiment the subjects were divided into two groups: elite/professional 

pianists (n = 9) and amateur piano players/hobbyists (n = 22), 31 people in total. 

 

The process was the same as in the initial study, with the adjustments listed above. A 

consent sheet explaining the purpose of this experiment as well as data privacy was 

prepared for them to sign (see Appendix 1). All participants agreed to sign the consent 

sheet. A separate sheet was given for detailed instructions. After the experimental 

session subjects were given a questionnaire for feedback. The questionnaire was the 

same as used in the initial study, only removing the question “Which piece of muscle 

do you think are the most exhausted” because there was only one main muscle being 

monitored. 

 

6.2.4 Results 
 

The results of the main experiments are listed in Figures 6.2.1 & 6.2.2 below: 
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Figure 6.2.1 Results for elite pianists 
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Figure 6.2.2 Results of amateur piano players 

 

Firstly, for the elite pianist group, Fig. 6.2.1 shows that only 3 people (33.3%) had 

reduced average muscle tension with the addition of sound feedback. The rest actually 

had their average muscle tension increased. However whether increasing or 

decreasing, the amounts were very small (<50), therefore it is difficult to tell if the 

sonification system really made some impact on their playing. Also, from the 

feedback, all (9) of them concluded that their muscle was not tensed, despite them 

already playing the piece really fast.  

 

For the amateur group, one subject quit the experiment halfway through without 

reporting the reason; therefore the actual total amount of amateur piano players was 

21. The result is that 17 (81%) people saw reduced average muscle tension with the 

addition of sound feedback. Seven (23.5%) of the 17 people had reduced average 

tension by quite a decent amount (>90). 

 

The feedback from both groups are listed below: 
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For the elite pianists: 

Assessm

ent 

Type Comment No. Of 

Subject 

Positive Function 1. Interesting system 

 

5 people 

Sound None  

Negative Function 1. I don’t need this, it doesn’t make sense 

2. Almost unable to play piano while my arm is 

wired, it feels bad 

3. The whole system is strange 

7 people 

1 people 

 

1 people 

Sound Sounds extremely out of tone 

Annoying 

2 people 

3 people 
Table 6.2.1 Feedback from elite pianists 

 

For the amateurs: 

Assessm

ent 

Type Comment No. Of Subject 

Positive Function 1. Helpful 

2. Interesting to use 

3. I’ll be using this system if possible 

11 people 

8 people 

1 people 

Sound 1. Very Clear 

2. Pleasing 

3. The volume is adjusted itself with the 

change of muscle tension which is nice 

7 people 

6 people 

 

2 people 

Negative Function It’s useless 1 people 

Sound Strange, I don’t like it 

Annoying 

4 people 

2 people 

 
Table 6.2.2 Feedback from amateur piano players 
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6.2.5 Paired t-test 
A paired t-test has been done for the study 2 (main experiment), see the results below: 

 

Mode ELITE PIANISTS AMATEUR PIANO PLAYERS 

Mean SD Mean SD 

With sound 381.111 93.5554 547 96.0979 

Without sound 377.667 85.8909 482.048 108.346 
Table 6.2.3 Paired t-tests 

Elite pianists paired t test: 

 Statistic P-Value 

Paired T 0.186238 0.856894 
Table 6.2.4 result of elite pianists 

To test the null hypothesis that the true mean difference is zero. We can see that we 

have no strong evidence to reject the null hypothesis in this group, which means that 

the results from without sound setting have not significant different with that of with 

sound setting, which means, from this study, the system does not work well on elite 

pianists. 

 

Amateur piano players paired t test: 

 Statistic P-Value 

Paired T 2.93754 0.00814116 
Table 6.2.5 Result of amateur piano players 

This time the p value is significantly small (0.008), which means after using sound 

feedback, the system does some help to amateur piano players. 

 

Figure 6.2.3 & 6.2.4 are the bar chart of the t-tests: 
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Fig 6.2.3 Bar chart of amateur piano players 

 
Fig 6.2.4 Bar chart of amateur piano players 

 

 

6.2.6 Discussion 
 

The differences in results between the two groups are really interesting.  

 

The results from the elite group simply shows that this system does not work for them 

because:  

1) they did not like it  

2) it made their playing worse, at least they felt so, 

3) the statistics show that they did not gain any real benefit from the system. 
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However, for the amateurs, from the results we can clearly see that the system had 

some positive impact in reducing their tension. Also from their feedback, 20 out of 21 

(95.2%) people gave very positive feedback and only 1 (4.8%) subject disliked the 

functionality, and 6 (28.6%) people thought the sound was not good. Also from the 

result of paired t-tests it shows that the system works well on them. 

 

The possible reasons for being more successful among amateurs could be: 

� Amateurs are more likely to have bad practices (posture, tension etc.) which 

can be picked up by the system. 

� Amateurs are in the process of learning, and so do not mind getting feedback. 

� The elite pianists might be a self-selecting group which have only made it to 

that position due to extensive training and person-to-person feedback, of 

which tension reduction could be a part. 

 

6.2.7 Conclusion 
 

The main experiment shows that the system worked successfully with amateur piano 

players. To summarise, this system is potentially useful for amateur piano players 

whilst useless at the moment for elite pianists. In the next chapter the hypothesis is 

reviewed and future work is discussed.  
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Chapter 7 Conclusion & Future Work 
 

 

7.1 Introduction 
 

This chapter reviews the hypothesis and summarises findings from this research. The 

limitations of the research are discussed, with the further work is presented. 

 

 

7.2 Review of Hypothesis 
 

The hypothesis of this research is: 

 

“By using Sonification feedback it is possible to inform piano players of muscle 

tension in real-time, which will allow them to reduce tension”. 

 

This research has presented a method to help piano players to reduce their muscle 

tension by using a sonification system. The system was developed with an EMG 

sensor and Arduino board as the core part of the hardware. For the software, a MAX 

patch was programmed for gathering and processing the data from the Arduino board. 

The feedback sound was designed to give piano players information about their 

muscle tension, but kept simple in order to prevent giving the players too many audio 

distractions.  

The results of the experiment show that the hypothesis is well supported for the large 

subject group of amateur pianists. Many piano players were informed of their muscle 

tension in real-time, so that they profitably reduced their average muscle tension. 

It was not at all well received by elite pianists, who are a small number of highly 

trained experts.  
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7.3 Findings from this research 
 

1) Using sonification can effectively provide useful information regarding the 

status of muscle tension to users in real-time. 

While it is difficult to concentrate on playing the right notes/tones and internally 

monitoring muscle tension at the same time, the sonification feedback can deal with 

this very well. 

 

2) The sonification system is not for every piano player, especially elite pianists. 

From the results it can be seen that this is true. Further research needs to be carried 

out to find out the possibility of fine-tuning the system for use with elite pianists. 

 

3) Many people found that using the system is interesting, exciting and pleasing – 

it is enjoyable. 

This supports the assertion that sonification method is an alternative and maybe better 

way of providing biofeedback. 

 

7.4 Limitations 
 

1) The most obvious limitation is that this system did not work well on elite pianists. 

Ultimately they do not seem to get very tense muscles as they have developed a good 

degree of self-awareness.  Also due to the years of training, the sonification sound 

used in this research made them feel very uncomfortable and interfered with the 

musicality of what they were playing, ironically causing an increase in tension. 

 

2) The hardware uses 3 x 9v batteries but cannot provide a very long battery life, 

which can cause the use of the system to be expensive; also those 3 batteries increase 

the total weight of hardware significantly. 

 

3) The learning curve of this system is relatively long. It is not a system can currently 

be used immediately by new users. 
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4) Although most amateur players showed that their muscle tension reduced after 

using the system, it is still uncertain to tell that the system really worked for those 

people who only reduced the tension by a small amount. 

 

7.5 Further work 
 

During the time that this research has been carried out, various commercial products 

(especially medical products) have been developed that offer an increase in quality for 

future experiments. One possibility is to replace the AdvancerTechnologies EMG 

sensor with the relatively new MYO band (see Fig. 7.1) 

 
Figure 7.1 The MYO sensor band 

 

 MYO offers superior quality and precision of gathering EMG data; also the 

development kit is open-sourced which mean anyone can program on it and use it as 

an advanced EMG sensor. There are already many applications of the MYO band23.  

 

For the experiment, subjects only attended a single session; however in order to 

discover the longer-term potential of the research it would be good if several people 

could try out the system over weeks or – if possible – months of practice.  

 

Several different sonification methods or sounds could be developed, so that pianists 

could select the sound which interfered the least with their concentration. There is 

also the possibility of providing tactile alarm-based feedback, for example by utilising 

                                                
23 https://market.myo.com/ 
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the buzzer alert in a modern smartphone. 

In fact if an app was developed for iOS or Android phones, the software could be 

written to receive data from the sensor device, process it accordingly, produce audio, 

tactile and/or visual feedback, all in one common device. The app could store and 

analyse the data over a long period of time.  

Maybe a smartphone, combined with an EMG sensor, offers an off-the-shelf 

integrated package for monitoring muscle tension in real-time. If developed further 

this has the potential of revolutionising not only the tension monitoring in pianists, 

but in typists, gamers and office workers, but warning of tension that could otherwise 

lead to RSI. 

For the piano players, they also have a high rate of shoulder injuries. Forward 

slouching is a problem with some pianists, but the opposite leaning backwards or 

more commonly over-arching the back, can be just as serious. Hence, the same 

system developed in this research can be applied on shoulder related muscles to see if 

the system can help as well as forearm. 

 

 

7.6 Summary of Thesis 
 

In conclusion, this research has examined the possibility of monitoring muscle tension 

using a sonification system. The approach was novel; there are rarely examples of 

using this method for supporting piano players for reducing their muscle tension. To 

achieve this a system was built containing both hardware and software design, and 

finally working together to providing useful data/sound feedback to users. 

 

Ultimately, this research shows the benefit of using Interactive Sonification, which is 

being developed rapidly in relatively recent times. Due to the increased ubiquity of 

wearable devices, the future of Interactive Sonification is very bright because we can 

combine the effective ISon technology with the modern tendency towards small, 

wearable monitoring kits. 
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Appendix 1 Consent for Experimental 

Participants 
 

 

Experiment:          EMG Sonification  

Experimenter:      Lichi Sun 

Affiliation:            Audio Lab, Electronics Department, University of York 

 

Description: You are invited to participate in the research investigating whether EMG 

sonification can reduce muscle tension for piano players. You will need to follow the 

instructions (a separate sheet will be given) of your category to do the experiment. 

You will have been informed of your category beforehand. 

Time involvement: Your participation will usually take approximately an hour. 

Your rights: All data taken will be stored anonymously. If you feel uncomfortable at 

any point you can ask for an adjustment to the hardware or software setup, as well as 

stopping the experiment if necessary. 

 

If you agree with all of above, please sign below. By signing the form, you confirm 

that you meet the following conditions: 

• You are at least 18 years old. 

• You have read this consent, understood and agree to it. 

• You want to participate in this experiment. 

 

Name (print): 

Date: 

Signature: 

 

Thanks for attending! 

If you have any further questions please send me an email: ls807@york.ac.uk.  
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Appendix 2 Instructions 
 

 

1) A few sensor pads will be placed on the skin of your arms (nothing to worry 

about, it does no harm at all) to collect data of your muscle tension. Before 

placing these on your skin, I may use alcohol pads to clean your skin’s surface to 

get a better signal (feel free to refuse this for any reason). 

 

2) You’ll be asked to a) relax and b) tense your arm muscles for tension range 

calibration. 

 

3) A pair of headphones will be given; you need these to hear the sound feedback; 

if you feel you are not comfortable with headphones you can ask for a pair of 

speakers of hear the sound feedback directly from the laptop as your preference. 

Please set the volume at a sensible and comfortable level. You’ll have a test 

session to get familiar with the sound feedback system. 

 

4) You’ll be given a easy short piece of music, get familiar with it and until you’ve 

learnt it you can have as much practice time as you want! 

The main experiment starts. Play the piece as fast as you can, repeat from the 

beginning when you’ve finished the piece. 

 

5) During playing, you’ll hear some sound feedback via the headphones. The 

sound becomes harsher when your arm tension increases. Please try to relax your 

arm/finger/wrist/body as much as possible (but please keep playing). 

When hearing me saying “stop”, stop playing and that’s it. Please fill in the 

feedback form before leaving, thank you for attending! 
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Appendix 3 Questionnaire for 

Experimental Participants 
 

 

 

Do you like the system? How do you think about it? 

 

 

 

 

Do you think you can relax your muscle actively when there is sound 

feedback? 

 

 

 

 

Did you feel tired during the session? Which piece of muscle do you 

think are the most exhausted (you don’t need to know the name of it 

simply point it out)? 
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How do you find the feedback sound? 

 

 

 

 

 

Do you think the sound gives you sufficient feedback? 

 

 

 

 

 

Any comments / suggestions? 

 

 

 

 

 

 

 

Name: 

 

Date: 

 

Signature:                                                Thanks for attending! 
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