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Abstract. The Riemann zeta function is well known due to its link to

prime numbers. The Riemann Xi function is related to the zeta func-

tion, and is commonly used due to its nicer analytic properties (such as

its lack of a pole and its Fourier transform).

The work within this thesis was inspired by Haseo Ki’s result, which

showed that, under repeated differentiation and suitable scaling, the

Riemann Xi function tends to the cosine function.

We prove a similar result for the Selberg Class of L-functions, albeit

with different scalings.
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Introduction

Primes are the building block of integers, and from that all numbers.

Therefore, it naturally makes sense to consider how many primes there are

in an interval. The function

π(x) =
∑
p≤x

1

where p are the prime numbers, counts the number of primes up to height

x. Riemann [38] used what is now known as ‘his’ zeta function

ζ(s) =

∞∑
n=1

1

ns
,

and linked the density of primes to the zeros of the zeta function.

Since then, work has been done on many aspects of the zeta function, as

well as the more general L-functions. Some of the results about the Rie-

mann zeta function and its zeros are explained in chapter 1, as well as the

analogous results about L-functions.

At the end of chapter 1 we give Ki’s [27] proof of the result that

lim
n→∞

AnΞ(2n)(Cnz) = cos(z).

This result inspired my own research, which is extending this result to the

Selberg Class of L-functions. This is explained and worked through in chap-

ter 2, as is a discussion of the sequences and error terms.

Chapter 3 is focused on the computer work required to get plots of the

derivatives of the Riemann Xi function. Since there are two error terms,

there isn’t a one-size-fits-all method of generating suitable plots, and in

total three methods are used.
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Notation and Key Results

s = σ + it σ, t ∈ R

ζ(s) =
∑
n

1

ns
=

∏
p prime

1

1− p−s
, σ > 1

= 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)

= χ(s)ζ(1− s)

χ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)

= πs−1/2 Γ
(

1−s
2

)
Γ
(
s
2

)
ϑ(t) =

√
χ

(
1

2
− it

)
= − t

2
log(π) + Im(log Γ

(
1

4
+
it

2

)
)

Z(t) = eiϑ(t)ζ

(
1

2
+ it

)
∈ R

ζ(k)(s) = (−1)k
∞∑
n=2

logk(n)

ns
σ > 1

ζ(k)(1− s) = (−1)k
k∑

m=0

(
k

m

)(
eszzk−m + esz(z)k−m

)
(Γ(s)ζ(s))(m) z = − log(2π)− iπ

2

N(T ) =
T

2π
log

(
T

2πe

)
+ S(T ) +

7

8
+O

(
1

T

)
S(T ) =

1

π
arg

(
ζ

(
1

2
+ iT

))
S1(T ) =

∫ T

0
S(u)du

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s)

= ξ(1− s)

Ξ(t) = ξ

(
1

2
+ it

)
= Ξ(−t)
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As well as the Riemann zeta function, the Selberg Class of L-functions is

also used. These formulas are introduced in chapter 2.

F (s) =
∞∑
n=1

an
ns

a1 = 1, an = O(1)

=
∏

p prime

P (p, s)

Φ(s) = εQs
k∏
j=1

Γ(λjs+ µj)F (s)

= Φ(1− s)

ξF (s) = sm(1− s)mλ1 · · ·λmΦ(s)

= εQs
m∏
l=1

λls(1− s)Γ(λls)
k∏

j=m+1

Γ(λjs+ µj)F (s)

ΞF (z) = ξF

(
1

2
+ iz

)
Li(x) =

∫ x

2

1

log(t)
dt
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Chapter 1

1. Prime Numbers

1.1. Riemann’s Paper. In 1859, Riemann wrote a paper [38] about the

distribution and density of prime numbers. His aim was to create a formula

for

π(x) =
∑
p≤x

1

i.e. the number of primes less than x, using the relationship Euler discovered

90 years earlier [13]

ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
, Re(s) > 1,

where s = σ + it, and worked with it to get

log(ζ(s)) = −
∑

p prime

log(1− p−s) Re(s) > 1

=
∑

p prime

∞∑
n=1

1

n
p−ns.

Since

p−ns = s

∫ ∞
pn

x−s−1dx

we have that
log(ζ(s))

s
=

∑
p prime

∞∑
n=1

1

n

∫ ∞
pn

x−s−1dx.
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This is absolutely convergent for any s with Re(s) > 1, so we can change

the order to summation to give

log(ζ(s))

s
=

∞∑
n=1

1

n

∑
p prime

∫ ∞
pn

x−s−1dx

=
∞∑
n=1

1

n

∫ ∞
1

( ∑
p

pn<x

1
)
x−s−1dx

=

∫ ∞
1

( ∑
pn<x

1

n

)
x−s−1dx

=

∫ ∞
1

J(x)x−s−1dx

=

∫ ∞
0

J(eu)e−sudu,

where

J(x) = π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) +

1

4
π(x1/4) + · · ·

counts primes and prime powers.

The integral is a Laplace transform in t (that is, the imaginary part of s)

so the inverse formula gives

J(eu) =
1

2πi

∫ σ+i∞

σ−i∞

log(ζ(s))

s
eusds σ > 1

J(x) =
1

2πi

∫ σ+i∞

σ−i∞

log(ζ(s))

s
xsds.

Rather than trying to use the product or sum representation of the zeta

function, which can be problematic as it only converges for σ > 1, it is more

useful to use

ξ(s) =
s

2
(s− 1)Γ

(s
2

)
π−s/2ζ(s)

= (s− 1)Γ
(s

2
+ 1
)
π−s/2ζ(s)

and the Hadamard product [45]

ξ(s) =
1

2
eBs

∏
ρ

(
1− s

ρ

)
es/ρ,

as together these define the zeta function in terms of its zeros, poles and

other behaviour. The variable in the product over rho are the zeros of the
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zeta function. In this instance, we have that [11]

B = −
∑
ρ

1

ρ

so that we can simplify the product formula to

ξ(s) =
1

2

∏
ρ

(
1− s

ρ

)
.

Therefore, we have that

log(ζ(s)) =
s

2
log(π)− log(s− 1)− log

(
Γ
(s

2
+ 1
))

+
∑

Im(ρ)>0

(
log

(
1− s

ρ

)
+ log

(
1− s

1− ρ

))

+ log

(
1

2

)
.

Directly making this substitution leads to divergent integrals, and so first

the integral must be integrated by parts to give

J(x) = − 1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

[
log(ζ(s))

s

]
xsds.

This then becomes

J(x) = − 1

4πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds
(log(π))xsds

+
1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

(
log(s− 1)

s

)
xsds

+
1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

(
log(Γ(s/2 + 1))

s

)
xsds

−
∑

Im(ρ)>0

1

2πi

1

log(x)

∫ σ+i∞

σ−i∞

d

ds

(
log(1− s/ρ) + log(1− s/(1− ρ))

s

)
xsds

+
1

2πi

log(2)

log(x)

∫ σ+i∞

σ−i∞

d

ds

(
1

s

)
xsds.

Each of these integrals can be calculated, and together they give

J(x) = Li(x)−
∑

Im(ρ)>0

[
Li(xρ) + Li(x1−ρ)

]
+

∫ ∞
x

1

(t2 − 1)t log(t)
dt+log

(
1

2

)
.

In order to return this to what Riemann was looking for, a formula for

the prime counting function, Möbius inversion formula must be used, which
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leads to

π(x) =
∑
n

µ(n)
1

n
J(x1/n).

Therefore, if we use the approximation

J(x) ≈ Li(x)

a better approximation for π(x) is

π(x) ≈ Li(x)− 1

2
Li(x1/2).

1.2. The Prime Number Theorem. The statement that

π(x) ∼ Li(x)

is known as the Prime Number Theorem. Currently the best known estimate

for this number is [16]

π(x) = Li(x) +O

(
xe
− A log(x)3/5

log log(x)1/5

)
.

Under the assumption of the Riemann Hypothesis, this error term can be

reduced and simplified to [12]

π(x) = Li(x) +O
(√
x log(x)

)
,

which is the best possible error term.

For small values of x, we have that π(x) < Li(x), as we can see from fig

1 of both π(x) and Li(x).

However, Littlewood [31] showed that the function π(x)− Li(x) changes

sign infinitely often, although he did not give or propose an upper bound

for the first change.

Riemann’s formula, that

π(x) ≈ Li(x)− 1

2
Li(x1/2),

shows that the approximation Li(x) is usually much larger than the prime

counting function. The error term of the above sum is dependent on the

location of the zeros of the Riemann zeta function, and it is this sum which

causes the change of sign. It has been shown that [39]

π(x) > Li(x)
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Figure 1. A plot of π(x) and Li(x)

happens approximately 0.0000026% of the time.

Skewes [41] was able to find an upper bound of

x < 1010101000

,

for the first sign change of π(x) − Li(x) by showing that this is an upper

bound assuming a particular result about the real part of the first set num-

ber of zeros, and also assuming the negation of the same result. However,

he only had a rough estimate for the location of the first few zeros, and

therefore his work can easily be improved upon.

Using Riemann’s result

J(x) = Li(x)−
∑

Im(ρ)>0

[
Li(xρ) + Li(x1−ρ)

]
+

∫ ∞
x

1

(t2 − 1)t log(t)
dt+log

(
1

2

)
,

and the location of the first two million zeros to a much higher precision than

was available to Skewes, the best known upper bound for the first change in

sign of π(x)− Li(x)so far [42] is

x < 1.397166161527× 10316.

This result is numerically calculated using the location of the first two mil-

lion non-trivial zeros to a high precision.
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Although the formula for J(x) is too inefficient to be used to calculate

J(x) to a suitable accuracy, a variation has been used [7] to calculate π(1025),

using the the zeros with imaginary part less than 1011. This result required

a runtime of 40,000 CPU hours.

Certainly, there are better methods of calculating prime numbers than

calculating π(x) accurately enough to spot a jump where prime numbers

occur.

Prime numbers are used in many areas of maths, sciences and computing,

and so understanding their behaviour is very useful. Understanding the zeta

function and the behaviour of its zeros is one way to do this.

2. The Riemann Zeta Function

2.1. Properties of the Zeta Function. Euler proved his result by sieving

the primes and prime factors from the summation formula. Beginning with

(assuming R(s) > 1)

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · ·

so
1

2s
ζ(s) =

1

2s
+

1

4s
+

1

6s
+

1

8s
+ · · ·

which leads to (
1− 1

2s

)
ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+ · · ·

where we can see that all the even numbers on the right have been removed.

Repeating this for 3 gives

1

3s

(
1− 1

2s

)
ζ(s) =

1

3s
+

1

9s
+

1

15s
+

1

21s
+ · · ·

so that (
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1 +

1

5s
+

1

7s
+

1

11s
+ · · · .

Repeating this process for every prime number leads to∏
p prime

(
1− 1

ps

)
ζ(s) = 1
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which can be rearranged to give

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

so we have that

ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
, Re(s) > 1.

However, the series diverges σ ≤ 1 and the product for σ < 1 and at s = 1

[45], because of the pole of the function at s = 1. Therefore, an analytic

continuation must be found in order to continue studying the function. The

functional equation

Γ
(s

2

)
ζ(s)π−s/2 = Γ

(
1− s

2

)
ζ(1− s)π(s−1)/2,

or, more elegantly,

ζ(s) = Γ(1− s)2sπs−1 sin
(πs

2

)
ζ(1− s),

can be proved in a number of ways. One way is by showing that the left

hand side of the first equation,

Γ
(s

2

)
ζ(s)π−s/2,

remains unchanged if s is replaced with 1−s. Beginning with (for Re(s) > 0),

Γ
(s

2

)
=

∫ ∞
0

xs/2−1e−xdx,

so

Γ
(
s
2

)
nsπs/2

=

∫ ∞
0

( x

πn2

)s/2−1
e−x

dx

πn2

=

∫ ∞
0

us/2−1e−n
2πudu,

using the substitution
x

πn2
= u.
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Summing over the natural numbers to introduce the whole zeta function,

(now under the assumption that Re(s) > 1), the function becomes

Γ
(s

2

)
ζ(s)π−s/2 =

∞∑
n=1

∫ ∞
0

xs/2−1e−n
2πxdx

=

∫ ∞
0

xs/2−1
∞∑
n=1

e−n
2πxdx

=

[∫ 1

0
+

∫ ∞
1

]
xs/2−1

∞∑
n=1

e−n
2πxdx.

Using the Poisson summation result that

∞∑
n=−∞

e−n
2πx =

1√
x

∞∑
n=−∞

e−n
2π/x,

which, when rearranged gives

∞∑
n=1

e−n
2πx =

1√
x

∞∑
n=1

e−n
2π/x +

1

2
√
x
− 1

2
,

so that, on inserting this result in the first integral but not the second, the

function becomes

Γ
(s

2

)
ζ(s)π−s/2 =

∫ 1

0
xs/2−1

(
1√
x

∞∑
n=1

e−n
2π/x +

1

2
√
x
− 1

2

)
dx

+

∫ ∞
1

xs/2−1
∞∑
n=1

e−n
2πxdx.

Working on the first integral, we have that∫ 1

0
xs/2−1

(
1√
x

∞∑
n=1

e−n
2π/x +

1

2
√
x
− 1

2

)
dx

=

∫ ∞
1

u−1−s/2

(
√
u
∞∑
n=1

e−n
2πu +

√
u

2
− 1

2

)
du

=

∫ ∞
1

u−1/2−s/2
∞∑
n=1

e−n
2πudu+

1

s(s− 1)
,

so that

Γ
(s

2

)
ζ(s)π−s/2 =

1

s(s− 1)
+

∫ ∞
1

(
u−1/2−s/2 + us/2−1

) ∞∑
n=1

e−n
2πudu.
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The integral on the right hand side of this is convergent and remains the

same if we replace s with 1 − s for any value s, and therefore, so too must

the left hand side. Therefore, we have that

Γ
(s

2

)
ζ(s)π−s/2 = Γ

(
1− s

2

)
ζ(1− s)πs/2−1/2,

which, after rearranging and using the result that

Γ
(
s
2

)
Γ
(

1−s
2

) = 21−sπ−1/2 cos
(πs

2

)
Γ(s),

gives

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s),

or

ζ(s) = χ(s)ζ(1− s)

the functional equation for the Riemann zeta function.

We can see that the pole of the zeta function at s = 1 is canceled by a zero

of the cosine function, so it is not repeated at s = 0. The cosine function

has zeros at the odd natural numbers, leading to zeros of the zeta function

at the negative even integers. These are called the trivial zeros because they

are so easily found and are unimportant to results about the density of ze-

ros. The only other interesting behaviour is the critical strip, in the region

0 < σ < 1. Riemann mentioned in passing that he expects all the zeros in

the critical strip to be on the critical line σ = 1/2, and this statement has

become the famous Riemann Hypothesis, and is still unproven (although

generally believed to be true).

The result

ζ(s) = ζ(s)

shows that the zeros obey reflective properties, so that, given a zero at point

ρn, the point ρn is also a zero. If ρn is not on the critical line, then the func-

tional equation shows that the distinct points 1 − ρn and 1 − ρn are both

zero as well.

As previously mentioned, Riemann used the function

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s),
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because it is an entire function containing just the non-trivial zeros. It also

satisfies an elegant functional equation, that of

ξ(s) = ξ(1− s).

The location of the non-trivial zeros remains the same in the xi function,

so under the assumption of RH, all the zeros of the xi function are on the

critical line. So far, the best result towards this claim is that more than

41% [6] of the zeros lie on it. All recent improvements to this result have

been fairly small, and folklore suggests that new maths will be required to

improve this result significantly.

2.2. Density of Zeros. It is easier to use

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s)

to calculate the density of zeros in the critical strip because of the functional

equation

ξ

(
1

2
+ x+ it

)
= ξ

(
1

2
− x+ it

)
, x, t ∈ R

and because the pole and trivial zeros have been removed.The formula

1

2πi

∮
R

ξ′(s)

ξ(s)
ds

counts the number of zeros inside the region R,( since the xi function doesn’t

have any poles). This is the same as 1/2π times the change in argument of

the xi function around the contour R. Therefore, by constructing R to be

the box with corners at 2, 2+ iT,−1+ iT,−1, (see fig 2) we can define N(T )

to be the number of zeros of the zeta function inside the critical strip from

the origin to height T (assuming that there are no zeros with imaginary part

equal to T ).

Since the xi function is real and positive along the real axis, the argument

can be assumed to be 0 along it. The functional equation shows that the

change in argument along the line from 2 to 1/2 + iT is the same as the

change in argument from 1/2 + iT to −1, and therefore

N(T ) =
1

π
∗ {change in argument of ξ(s) along the lines from 2 to 2 + iT

to 1/2 + iT}.
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Figure 2. The box used to calculate N(20)

Calculating the change in argument of each of the terms can be done sepa-

rately, and then added together. For s, (s− 1) and π−s/2, the change in the

argument is π
2 + O( 1

T ), π2 + O( 1
T ) and −T

2 log(π) respectively. In order to

calculate the change in argument of the Gamma function, Stirling’s formula,

Γ
(s

2

)
≈
√

4π

s

( s
2e

)s/2(
1 +O

(
1

s

))
,

is used. The change in argument can then be approximated as

−π
8

+O
(

1

T

)
+
T

2
log

(
T

2e

)
+O

(
1

T

)
=
T

2
log

(
T

2e

)
− π

8
+O

(
1

T

)
For now, the change in argument of the zeta function will be called πS(T ).

It is O(log(T )), and will be discussed in more detail later on. Combining
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everything, we have that

N(T ) =
1

π

(
T

2
log

(
T

2e

)
− T

2
log(π) + πS(T ) +

7π

8
+O

(
1

T

))
=

T

2π
log

(
T

2πe

)
+ S(T ) +

7

8
+O

(
1

T

)
.

i.e. there are more zeros in an interval of any given size the further away

from the origin you go. This means that trivially, the lim inf of the gap

between successive zeros is 0. In order to make this calculation more mean-

ingful, the zeros can be scaled such that γ′n = γn log(γn)/2π, so the rescaled

average spacing is 1. After rescaling, assuming RH, the lim inf and lim sup

can be improved [37] to 0.5154 and 2.7327 respectively, and it is conjectured

[34] that these are 0 and infinity. Under the assumption of the Generalised

Riemann Hypothesis(that all the non-trivial zeros of all Dirichlet L-functions

lie on the critical line), it has been shown [15] that the lim sup is great than

3.072.

2.3. Pair Correlation. As well as studying the lim sup and lim inf of the

gap between consecutive zeros, it is also possible to study the general dis-

tribution of γ − γ′, where γ, γ′ are the imaginary parts of (not necessarily

consecutive) zeros of the zeta function.

Montgomery originally conjectured [34] that for α < β fixed,∑
0<γ,γ′<T

2πα
log(T )

≤γ−γ′≤ 2πβ
log(T )

1 ∼

(∫ β

α

(
1−

(
sin(πu)

πu

)2
)

du+ δ(α, β)

)
T log(T )

2π

where

δ(α, β) =

1 0 ∈ [α, β]

0 otherwise.

This is equivalent to the statement that the pair correlation function for the

Riemann zeta function is

1−
(

sin(πu)

πu

)2

+ δ(u).

A quick way of thinking about this is: given a zero at the point 1/2 + iT , go

a distance 2πu/ log(T ) away, and study a small interval of size 2πL/ log(T ).

The probability of finding a zero in that interval is then L times the pair
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correlation function evaluated at u. The function 2π/ log(T ) is used here to

scale the zeros so that the density is constant.

It was noted that this suggested pair correlation function is the same as

that used for random complex Hermitian and unitary matrices as the size

of the matrix tends to infinity. Therefore, this suggests that there exists

an as-yet undiscovered linear operator[3] with eigenvalues which match the

non-trivial zeros of the zeta function.

In 1987 Odlyzko [36] used the first 105 zeros as well as the 1012th and

the following 105 zeros to numerically study Montgomery’s pair correlation.

The reason these two groups of zeros was chosen was so any differences in

behaviour could be seen and studied to see if it is reasonable that the pair

correlation conjecture is true.

As well as plotting pictures which give a rather qualitative view of the ze-

ros compared to the expected distribution based on the GUE, they were also

quantitatively studied. The general view from Odlyzko’s paper is that the

gaps between consecutive zeros is fairly consistent with the gaps predicted

by the GUE (although it must be remembered that the GUE statistics are

from limn → ∞ matrices, whereas we can only see the gaps between ze-

ros relatively close to the origin). Additionally, it was noted that the tails

of the distribution of the gaps between consecutive and next-but-one zeros

may indicate that long range behaviour may not satisfy the pair correlation

conjecture. However, it is important to note that the range of zeros used

here is too small to draw any meaningful conclusions, and computational

work can only be used as an indicator rather than final answer.

2.4. Derivatives of the Riemann Zeta Function. As well as the prop-

erties of the zeta function, the properties of derivatives of the zeta function

are of interest. Using the functional equation, we have that [1]

(−1)kζ(k)(1− s) =

k∑
m=0

(
k

m

)(
eszzk−m + esz(z)k−m

)
(Γ(s)ζ(s))(m) ,

where

z = − log(2π)− iπ

2
.
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Zeros of the derivatives of the zeta function are not bound to the critical line

in the same way as for the zeta function, and so the density of zeros for the

first derivative of the zeta function depends upon a horizontal component.

It has been shown unconditionally that [28] asymptotically as T → ∞ and

for σ bounded by

log log(T )2

log(T )1/3
≤ 2σ − 1 ≤ 1

20 log log(T )
,

we have that

N1(T, σ) =
∑
β′>σ

0≤γ′<T

1

∼ T

2π(σ − 1/2)

where β′ + iγ′ are the zeros of the derivative of the zeta function. This

function is bounded to the right of the critical line σ = 1/2.

To the left of the critical line, things get more interesting. Speiser [43]

showed that RH is equivalent to there being no zeros of the first derivatives

of the zeta function to the left of the critical line. This work was extended

by Levinson and Montgomery, who proved [29] that there exists an infinite

sequence of points Tj such that

N−(Tj) = N−1 (Tj)

where N−(T ) is the number of zeros of the zeta function to the left of the

critical line up to height T , and N−1 (T ) is the number of zeros of the first

derivative of the zeta function to the left of the critical line. The proof of

this result assumes that

N−(T ) ≤ T

2
.

If this inequality does not hold, the best result which has so far been found

is

N−1 (T ) = N−(T ) +O(log(T )).

Also of interest is the number of zeros of higher derivatives of the zeta

function. It has been shown that [2]

Nk(T ) =
T

2π
log(T )−

(
1 + log(4π)

2π

)
T +O(log T )

=
T

2π
log

(
T

2πe

)
− T log(2)

2π
+O(log T )
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where Nk(T ) is the number of zeros of the kth derivative of the zeta function

with positive imaginary part less than T for large k. This is found by

calculating a contour integral around all the non-trivial zeros of the kth

derivative of the zeta function. The zero free region is calculated [44] using

a different formula for the derivatives, namely

ζ(k)(s) = (−1)k
∞∑
n=2

logk(n)

ns
.

Using this formula, we get that

|ζ(k)(s)| ≥ logk(2)

2σ
−
∞∑
n=3

logk(n)

nσ
.

Setting

f(x) =
logk(x)

xσ

we have that

f ′(x) = (k − σ log(x))
logk−1(x)

xσ+1
,

which will be negative for x > 2, provided σ > k/ log(2). Therefore

∞∑
n=3

logk(n)

nσ
<

∫ ∞
2

logk(x)

xσ
dx.

We can use integration by parts to calculate the integral, giving the recursive

formula

Ik =

∫ ∞
2

logk(x)

xσ
dx

=
logk(x)x1−σ

1− σ

∣∣∣∣∣
∞

2

+
k

σ − 1

∫ ∞
2

logk−1(x)

xσ
dx

=
logk(2)21−σ

σ − 1
+

k

σ − 1
Ik−1.

This, combined with the result that

I0 =
21−σ

σ − 1

means that we can write

Ik =
21−σk!

(σ − 1)k+1

k∑
j=0

logj(2)(σ − 1)j

j!
,
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and therefore

|ζ(k)(s)| ≥ logk(2)

2σ
− 21−σk!

(σ − 1)k+1

k∑
j=0

logj(2)(σ − 1)j

j!
.

We can then bound the RHS away from zero

logk(2)

2σ
− 21−σk!

(σ − 1)k+1

k∑
j=0

logj(2)(σ − 1)j

j!
> 0

which can be rearranged to give

logk(2)

2σ
>

21−σk!

(σ − 1)k+1

k∑
j=0

logj(2)(σ − 1)j

j!
.

Finding the values of σ0 for which this inequality holds bounds the zeros of

the derivatives of the zeta function for σ > σ0, where σ0 depends on the k,

the number of derivatives taken.

Setting

z = log(2)(σ − 1)

the previous inequality can be written as

zk+1

2 log(2)k!
>

k∑
j=0

zj

j!
.

Approximating the sum on the right as

k∑
j=0

zj

j!
≤ zk

k!
+

kzk−1

(k − 1)!
,

so the inequality will definitely hold if it can be shown that

zk+1

2 log(2)k!
>
zk

k!
+

kzk−1

(k − 1)!

or, equivalently
z2

2 log(2)
> z + k2,

which holds for

z > log(2)

(
1 +

√
1 + 2k2

log(2)

)
.
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This can be simplified, for k ≥ 3, to

z ≥ log(2)

(
1 +

7k

8

)
,

so, remembering that

z = log(2)(σ − 1),

we have that

σ ≥ 2 +
7k

8
.

Therefore, we have that there aren’t any zeros of the kth derivative (where

k ≥ 3) to the right of the line σ > 7k/4 + 2. Using the same method and

the functional equation for the zeta function, we also have that there is a

sequence rk, such that all the zeros such that |s| > rk and σ < −ε satisfies

|t| < ε.

It is conjectured [44] that

N(T ) = Nk(T ) +

[
T log(2)

2π

]
± 1,

which, given that

S(T ) = O(log(T ))

appears not implausible. However, more work into understand S(T ) is prob-

ably needed before such a result is conclusively proven.

2.5. S(T). As mentioned previously,

S(T ) =
1

π
arg

(
ζ

(
1

2
+ iT

))
or, if there is a zero of zeta at 1/2 + iT ,

S(T ) =
1

2π
lim
ε→0

arg

(
ζ

(
1

2
+ i(T + ε)

))
+ arg

(
ζ

(
1

2
+ i(T − ε)

))
where the argument is found by considering the increment of the arguement

of the zeta function along the straight lines from 2 to 2 + iT to 1/2 + iT .

We can also consider S(T ) to be the error term

N(T )− 1

π
ϑ(T )− 1,

where

ϑ(T ) = Im(log

(
Γ

(
1

4
+
iT

2

))
)− T

2
log(π)
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Figure 3. S(t)
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Figure 4. S(t) for larger t

which shows that S(T ) is a decreasing function for T > 8, except where a

zero occurs, where the function is discontinuous and increases by the multi-

plicity of the zero. The function ϑ(t) is examined in more detail later on.

In fig 3, S(t) is bounded by |S(t)| < 1. However, this doesn’t always hold,

and fig 4 shows that at t ≈ 282 this inequality fails to hold. Although S(t)

is unbounded, it grows very slowly, and currently the largest value which

has been found is S(T ) ≈ 3.3455 at T ≈ 7× 1027 [4].

It has been shown that [45]∫ T

0
S(u)du� log(T ),
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so that ∫ T+log2(T )

T
S(u)du� log(T )

from which it follows that S(t) changes sign infinitely often. This can most

easily be seen by considering the opposite— assume that for all t > t0,

S(t) > ε. However, then the integral would be∫ T+log2(T )

T
S(u)du = O(log2(T )).

This argument is the same for the case that S(t) < −ε for all t > t0.

Since

N(T ) =
T

2π
log

(
T

2π

)
− T

2π
+

7

8
+ S(T ) +O

(
1

T

)
we have that

N(T +H)−N(T ) =
H

2π
log

(
T

2π

)
+ S(T +H)− S(T ) +O

(
1 +H2

T 2

)(1)

=
H

2π
log

(
T

2π

)
+ S(T +H)− S(T ) +O

(
1

T

)
for 0 < H <

√
T .

It has been shown, under the assumption of RH that [18]

|N(T +H)−N(T )− H

2π
log

(
T

2π

)
| ≤

(
1

2
+ o(1)

)
log(T )

log log(T )
,

which, together with 1 means that

|S(T +H)− S(T )| ≤
(

1

2
+ o(1)

)
log(T )

log log(T )
.

A different technique was used to show that [8]

|S(T )| ≤
(

1

4
+ o(1)

)
log(T )

log log(T )
.

This result shows that the number of zeros can vary from the expected value

more the larger T gets.

2.6. S1(T). In the previous section, we mentioned the integral of S(T ).

Calling this

S1(T ) =

∫ T

0
S(u)du,



30

which we looked at briefly in the previous section. In order to calculate this,

the function

log(ζ(s))

is integrated around the contour connecting the point 1/2, A, A + iT and

1/2 + iT , where A is a suitably large real number, which will tend to ∞
later. The contour integral,∫ A

1/2
log(ζ(σ))dσ + i

∫ T

0
log(ζ(A+ iu))du−

∫ A

1/2
log(ζ(σ + iT ))dσ

− i
∫ T

0
log(ζ(1/2 + iu))du,

is imaginary, since the sum of integrals will be 2πi*the residue of the inte-

grand, which will be the sum of zeros of the zeta function to the right of

the critical line, which must be imaginary. Therefore, the real part of the

sum of integrals is zero, and explicitly calculating this can lead to a result

for S1(T ). Calculating some of these integrals directly leads to divergent

results, and so the integrand must be rewritten, using the result that

log(ζ(s)) =
∞∑
n=2

Λ(n)

log(n)
n−s

for σ > 1.

Starting with the first and third integrals, we have that

Re

[∫ A

1/2
log(ζ(σ))dσ

]
=

∫ A

1/2
log |ζ(σ)|dσ

and

−Re

[∫ A

1/2
log(ζ(σ + iT ))dσ

]
= −

∫ A

1/2
log |ζ(σ + iT )|dσ

For the second integral,

i

∫ T

0
log(ζ(A+ iu))du

the inequality

| log(ζ(s))| = |
∞∑
n=2

Λ(n)

log(n)
n−s| <

∞∑
n=2

1

nσ
< 21−σ
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holds for σ suitably large, so therefore the integral can be written as

Re

[∫ T

0
i log(ζ(A+ iu))du

]
≤
∣∣∣∣∫ T

0
log(ζ(A+ iu))du

∣∣∣∣
<

∫ T

0
| log(ζ(A+ iu))|du

<

∫ T

0
21−Adu

= T21−A

The final integral is

Re

[
−
∫ T

0
i log

(
ζ

(
1

2
+ iu

))
du

]
= Im

[∫ T

0
log

(
ζ

(
1

2
+ iu

))
du

]
=

∫ T

0
arg

(
ζ

(
1

2
+ iu

))
du

=

∫ T

0
πS(u)du

= πS1(T ).

Therefore, we have that

πS1(T ) =

∫ A

1/2
log |ζ(σ + iT )|dσ −

∫ A

1/2
log |ζ(σ)|dσ +O

(
T21−A) ,

and by taking the limit as A→∞, this becomes

S1(T ) +
1

π

∫ ∞
1/2

log |ζ(σ)|dσ =
1

π

∫ ∞
1/2

log |ζ(σ + iT )|dσ.

The integral on the left is a constant (and is integrable despite the pole at

σ = 1), and so doesn’t need any more work doing to it. The integral on the

right can be split up to give

S1(T ) =
1

π

∫ 2

1/2
log |ζ(σ + iT )|dσ +

1

π

∫ ∞
2

log |ζ(σ + iT )|dσ + C,

which is split up in this way as [45]

log |ζ(s)| =
∑
|t−γ|<1

log |s− ρ|+O(log(t))
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uniformly for −1 ≤ σ ≤ 2, and ρ = β + iγ are the non-trivial zeros. There-

fore,

S1(T ) =
1

π

∑
|T−γ|<1

∫ 2

1/2
log |σ + iT − ρ|dσ +O(log(T )).

as the second integral can be approximated using

| log(ζ(s))| < 21−σ

as above. The integral can be bounded from below as∫ 2

1/2
log((σ − β)2 + (T − γ)2)dσ >

∫ 2

1/2
log |σ − β|dσ

> C

and from above as∫ 2

1/2
log((σ − β)2 + (T − γ)2)dσ <

3

2
log

((
3

2

)2

+ 1

)
without assuming RH. Therefore, we have that

S1(T ) = O(log(T )).

Using much more work, and under the assumption of RH, it is possible to

solidify this result [8] to give

−
( π

24
+ o(1)

) log(T )

(log log T )2
≤ S1(T ) ≤

( π
48

+ o(1)
) log(T )

(log log T )2

This is another way to show that S(T ) has an infinite number of sign

changes, since if S(T ) had no sign changes beyond some point, because of

the behaviour of this function, it would be expected that S1(T ) would grow

linearly, which it doesn’t.

3. Variant Functions

Dealing with the zeta function directly, with its poles and trivial zeros, is

difficult. Instead, Riemann created the xi function, and many others have

been used to either showcase or hide different aspects of the zeta function.

3.1. Z(t). The most basic change to the zeta function is to make the critical

line the real axis, and make the function map the reals to the reals. Let

Z(t) = eiϑ(t)ζ

(
1

2
+ it

)
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where ϑ(t) is the negative of the argument of the zeta function along the

critical line. By considering the functional equation,

ζ(s) = χ(s)ζ(1− s)

which can be rearranged to give√
χ(1− s)ζ(s) =

√
χ(s)ζ(1− s)

which is real along the critical line, and∣∣∣∣χ(1

2
− it

)∣∣∣∣ = 1

we therefore have that

ϑ(t) =

√
χ

(
1

2
− it

)
.

It is important to note that the trivial zeros, which are at t = i(2n + 1/2)

and the pole at t = −i/2 remain in this function. Rearranging χ, we have

that

χ

(
1

2
− it

)
= π−it

Γ
(

1
4 + it

2

)
Γ
(

1
4 −

it
2

) .
Since

Γ(s) = Γ(s),

this means that √
χ

(
1

2
− it

)
= π−it/2ei Im log(Γ(1/4+it/2))

so

Z(t) = π−it/2ei Im log(Γ(1/4+it/2))ζ

(
1

2
+ it

)
= eiϑ(t)ζ

(
1

2
+ it

)
,

where

ϑ(t) = − t
2

log(π) + Im(log Γ

(
1

4
+
it

2

)
)

Using Stirling’s formula for the Gamma function,

Γ(z) =

√
2π

z

(z
e

)z (
1 +O

(
1

z

))
,

we have that

ϑ(t) =
t

2
log

(
t

2π

)
− t

2
− π

8
+O

(
1

t

)
.
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Figure 5. The lines where the real(blue, dotted) and imag-
inary (orange, dashed) parts of the Riemann zeta function
are zero

It is possible to calculate this error term more precisely (see e.g. [25]), which

allows us to estimate the derivative of this function without worrying about

the problems normally raised from attempting the differentiating an error

term of this form. An estimation of the derivative of this function yields

ϑ′(t) ∼ 1

2
log

(
t

2π

)
,

which is positive for t > 10, meaning that zeros of cos(ϑ(t)) and sin(ϑ(t))

will alternate for t > 10. Since the real part of the zeta function is positive

more often than it is negative, on average the function Z(t) changes sign an

odd number of times between successive points where sin(ϑ(t)) = 0, mean-

ing that there must be an odd number of zeros of Z(t), and consequently the

same number of the zeta function too. Although it is not known exactly the

proportion of times this happens, for the first one and half billion intervals

[48], 72.8% contain an odd number of zeros of the zeta function.
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In order for

sin(ϑ(t)) = 0

we must have that

ϑ(t) = nπ,

and these points are called Gram Points, after the mathematician Gram

who first studied this behaviour. [19] The idea that there is one zero of the

zeta function between two successive Gram Points is called Gram’s Law,

although it fails infinitely often. The first failure occurs between the 125th

and 126th Gram Point, and the missing zero is found in the next interval,

not far from the Gram Point. This is the point where S(t) < −1 for the

first time.

In the first one and a half billion Gram Intervals [48], 13.8% have no zeros,

72.6% have one zero, 13.4% have two zeros, 0.2% have three zeros, and just

33 intervals have four zeros. This work also suggests that the number of

intervals with just one zero is decreasing, while the number of other inter-

vals is increasing, i.e. the number of zeros in a given interval becomes more

irregular.

It is conjectured that the limiting behaviour of Gram Intervals with 0, 1,

and 2 zeros in [47] are 17%, 66.1% and 16.7% respectively. This is because

of the similarities between the location of the zeros and the spacings of the

eigenvalues of Random Matrices.

Differentiating evens out the zeros, and so it makes sense to consider the

behaviour of the zeros and the function in general under repeated differen-

tiation. However, the trivial zeros and the pole are still in the function, and

they introduce some unwanted behaviour near the origin. Therefore, a dif-

ferent function is introduced later on which does not contain these problem

points, and that is then differentiated instead. My thesis generalises this

result to the entirety of the Selberg Class of L-functions.

However, further away from the origin, the expected behaviour does occur,

and it has been shown that [33] under the assumption of RH, for t > tk,

there is exactly one zero of Z(k+1)(t) between any two successive zeros of

Z(k)(t).
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Figure 6. Z(t)

3.2. The Riemann Xi-function. Using the zeta function to calculate the

location of the prime numbers is awkward due to the trivial zeros at the

negative even integers and the pole at s = 1. By removing these, and

rescaling, we create the function

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s)

which now only has the non-trivial zeros, and satisfies the functional equa-

tion

ξ(s) = ξ(1− s),

and

ξ(s) = ξ(s)

so that it is real along the critical line. Defining ak to be the proportion

of zeros of the kth derivative of the xi function on the critical line, it has

been shown that [9] a0 ≥ 0.3658, a1 ≥ 0.8137, a2 ≥ 0.9584, a3 ≥ 0.9873,

a4 ≥ 0.9948, a5 ≥ 0.997, and, as k → ∞, ak = 1 + O(k−2). These results

are not optimal, and it is interesting to note that different methods don’t

always immediately give the same result. These results are calculated by

showing that

ξ(k)(s) = Qk(s) + (−1)kQk(1− s)

where Qk(s) is defined as a complex sum over k terms, and can be seen in

[9]. Along the critical line, this becomes

ξ(k)

(
1

2
+ it

)
= Qk

(
1

2
+ it

)
+ (−1)kQk

(
1

2
+ it

)
.
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This shows that after an even(odd) number of derivatives, the real part of

the function is even(odd), and the imaginary part os odd(even). Therefore,

in order for the to be a zero along the critical line, we must have that

arg

(
Qk

(
1

2
+ it

))
≡ (k + 1)π

2
mod (π).

It is interesting to see from these results that there is potential for zeros

with higher multiplicity off the critical line.

Since the xi function is real along the critical line, it makes sense to turn

it so the critical line becomes the real axis, i.e.

Ξ(z) = ξ

(
1

2
+ iz

)
,

where for all the zeros of the Xi function, the absolute value of the imaginary

part must be less than 1/2, and the Riemann Hypothesis is equivalent to

the statement that all the zeros of the Xi function are real. This is now the

(rotated) critical strip. Since it is explicitly a function of a complex variable,

z is used rather than t.

The growth of the Xi function along the real axis can be used for some

interesting results. Using

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s)

and the Stirling formula

Γ(z) ≈
√

2π

z

(z
e

)z
we have that the Xi function is

Ξ(t) ≈ 1

2

(
t2 − 1

4

)
π−1/4−it/2

√
π

1/2 + it

(
1/2 + it

2e

)1/4+it/2

ζ

(
1

2
+ it

)
,

which, assuming that t ∈ R, can be written as

Ξ(t) = O
(
t2−1/2+1/4e−πt/4tε

)
= O

(
e−πt/4t7/4+ε

)
since the Lindelöf Hypothesis [45] states that for any ε > 0,

|ζ
(

1

2
+ it

)
| = O(tε)
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as t→∞. Therefore, we have that the Xi function decays exponentially fast

along the real axis, which means it can be written as a Fourier transform.

This is discussed later on.

3.3. Approximate Functional Equations. The functional equation

ζ(s) = χ(s)ζ(1− s)

means that the zeta function can be calculated by Dirichlet series for σ < 0

and σ > 1, but can’t be used to calculate the zeta function in the critical

strip 0 ≤ σ ≤ 1 since the original formula for the zeta function

ζ(s) =
∞∑
n=1

1

ns

only holds for σ > 1.

Instead, approximate functional equations (so-called since they include

finite sums of n−s, and because they mostly include the χ(s) term used in

the functional equation) are used to calculate the zeta function to a high

degree of accuracy. The most basic approximate functional equation is [24]

ζ(s) =
∑
n≤x

1

ns
+
x1−s

s− 1
+O(x−σ)

where x ≥ |t|/π, although this is not used often due to the large number of

terms needed in the sum.

The approximate functional equation more commonly used is [22]

(2) ζ(s) =
∑
n≤x

1

ns
+ χ(s)

∑
n≤y

ns−1 +O(x−σ) +O(t1/2−σyσ−1)

where t = 2πxy and

χ(s) = 2sπs−1Γ(1− s) sin
(πs

2

)
.

This result is proved by first showing that

ζ(s) +
x1−s

1− s
−
∑
n≤x

n−s = 2sπs−1
∞∑
n=1

∫ ∞
2πnx

u−s cos(u)du

and then splitting the sum on the RHS into 5 separate sums and bounding

the integral in each case separately.
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A similar method can be used to calculate the approximate functional

equation

ζ2(s) =
∑
n≤x

d(n)

ns
+ χ(s)

∑
n≤y

d(n)

n1−s +O

(
x1/2−σ

(
x+ y

t

)1/4

log(t)

)
where now we have that

xy =

(
t

2π

)2

.

3.4. AFE for Z(t). The function Z(t) is more commonly used to compu-

tationally find zeros of the zeta function along the critical line, since the

(simple) zeros correspond to changes of sign of Z(t).

Beginning with the result [24]

ζ(s) = χ(s)ζ(1− s)

which means that

χ(s)χ(1− s) = 1.

Therefore, we can write

ζ(s)χ1/2(1− s) = ζ(1− s)χ1/2(s)

which shows that along the critical line, this function is real. Therefore

Z(t) = ζ

(
1

2
+ it

)
χ−1/2

(
1

2
+ it

)
= ζ

(
1

2
+ it

)
χ1/2

(
1

2
− it

)
Using the approximate functional equation 2 along the critical line, we have

that the error terms will be minimised by setting x = y, and so setting

x = y =

√
t

2π

gives us

ζ

(
1

2
+ it

)
=

∑
n≤
√

t
2π

1

n1/2+it
+ χ

(
1

2
+ it

) ∑
n≤
√

t
2π

1

n1/2−it +O(t−1/4).
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We can then use this to generate a formula for Z(t), namely

Z(t) = χ1/2

(
1

2
− it

)
ζ

(
1

2
+ it

)
= χ1/2

(
1

2
− it

) ∑
n≤
√

t
2π

1

n1/2+it
+ χ1/2

(
1

2
− it

)
χ

(
1

2
+ it

) ∑
n≤
√

t
2π

1

n1/2−it

+O(t−1/4).

Since we have that

χ(s)χ(1− s) = 1

we must also have that

χ1/2

(
1

2
− it

)
χ

(
1

2
+ it

)
= χ1/2

(
1

2
+ it

)
so our equation becomes

Z(t) = χ1/2

(
1

2
− it

) ∑
n≤
√

t
2π

1

n1/2+it
+ χ1/2

(
1

2
+ it

) ∑
n≤
√

t
2π

1

n1/2−it

+O(t−1/4).

Remembering also that

Z(t) = eiϑ(t)ζ

(
1

2
+ it

)
so that

χ1/2

(
1

2
− it

)
= eiϑ(t)

and

χ1/2

(
1

2
+ it

)
= e−iϑ(t)

the function then becomes

Z(t) =
∑

n≤
√

t
2π

eiϑ(t)

n1/2+it
+

∑
n≤
√

t
2π

e−iϑ(t)

n1/2−it +O(t−1/4)

=
∑

n≤
√

t
2π

ei(ϑ(t)−t log(n))

√
n

+
∑

n≤
√

t
2π

e−i(ϑ(t)−t log(n))

√
n

+O(t−1/4)

= 2
∑

n≤
√

t
2π

cos(ϑ(t)− t log(n))√
n

+O(t−1/4).
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In order to use Z(t) to check RH, it suffices to show that the number of sign

changes of Z match the expected number of zeros by calculating N(T ). So

far, all the zeros of zeta are simple and lie on the critical line. However,

this method will fall down for repeated roots or zeros off the critical line-

this method cannot positively identify a repeated root rather than a pair of

zeros off the line, and since it is possible to miss pairs of zeros, you cannot

be sure that there aren’t zeros you haven’t found rather than zeros off the

critical line. Turing’s method [5] uses the located zeros and the formula

S(T ) = N(T )− ϑ(T )

π
− 1

to find where S(T ) remains away from 0 for long periods of time, which

suggests that zeros have been missed.

4. L-functions

The Riemann zeta function is just one example of a group of functions

called L-functions. Beginning with a Dirichlet series

F (s) =

∞∑
n=1

an
ns

an = O(1)

Without any loss of generality, it can be assumed that a1 = 1, and the ab-

scissa of convergence the line σ = 1. There are potentially a finite number of

poles along this line, modified so they all lie on the point s = 1. The analytic

continuation to the whole complex plane is then called an L-function. [40]

There are several different commonly used methods of constructing the

sequence an, and these produce different families of L-functions. Dirich-

let characters, Maass forms and elliptic curves are three different ways of

constructing L-series and then L-functions.

4.1. Prime Number Theorem extension. The natural extension of the

PNT is Dirichlet’s Theorem [26], which concerns itself with primes in arith-

metic progressions. Given an arithmetic progression a(mod q), where a and

q are co-prime, how large is the first prime, commonly denoted P (a, q)?

It has been conjectured that [20]

max
a

P (a, q)� φ(q) log2(q),
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where φ is Euler’s totient function, i.e. for any given q, there is an arithmetic

progression with a surprisingly large number of composite numbers before

the first prime. In the other direction, it has been proven that [30]

P (a, q)� qL

for some absolute constant L, called Linnik’s constant. Much work has been

done to reduce this constant, currently the best bound for it is [46]

L ≤ 5.

Assuming GRH, this result can be improved to give [23]

P (a, q)� φ(q)2 log2(q).

4.2. Riemann Hypothesis variations. Just as the zeta function has the

Riemann Hypothesis, so too are there variations for different L-functions.

The Grand or Generalised Riemann Hypothesis(GRH) [26] either refers to

L-functions created with Dirichet characters— Dirichlet L-functions- or all

L—functions which have an Euler product and functional equation. The

Euler product of L-functions is of the form∏
p prime

(1− α1(p)p−s)−1 · · · (1− αd(p)p−s)−1

where d is the degree of the L-function. The functional equation is

Λ(f, s) = qs/2γF (s)F (s)(3)

= Λ(f, 1− s)

where f defines the construction of the sequence an. For all currently known

L-functions

γF (s) = πds/2
d∏
j=1

Γ

(
s+ µj

2

)
,

where q ∈ R and µj ∈ C. The requirement for an Euler product and gamma

factor removes L-functions which are constructed by adding or subtract-

ing L-functions from each other, which can generate L-functions with zeros

clearly off the critical line.

4.3. Density of zeros of L-functions. Results about the density of zeros

can also be applied to L-functions with an Euler product and a functional

equation. Because the functional equation involves the conjugate L-function,
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counting the zeros in the same method as the zeta function case calculates

N(T, f) := N ′(T, f) +N ′(T, f)

where N ′ is the number of zeros of the L-function in the critical strip with

0 < γ ≤ T , and the conjugate L-function is the L-function where every

complex number has been replaced with its complex conjugate. The final

result is that [26]

N(T, f) =
T

π
log

(
qT d

(2πe)d

)
+O(log(q(f, s)))

where q is the constant from the previously defined functional equation 3

and d is the degree of the L-function. The q(f, s) in the error term is unim-

portant for this work.

Because this is calculating the zeros of the L-function as well as the ze-

ros of the conjugate of the L-function, this result is in agreement with the

calculated number of zeros of the zeta function (q = d = 1)

N(T ) =
T

2π
log

(
T

2πe

)
+O(log(T )).

5. Differentiation

5.1. Smoothing out Zero Gaps. Differentiation smooths out functions,

including the gaps between zeros, and Farmer and Rhoades [14] showed that

Theorem 1. Let f be a real, entire function of order 1 containing just real

zeros. If the density of zeros is constant, then

AeBxf (n)(Cx+D)→ cos(x)

as n→∞, where A,B,C and D may depend on n but not x.

This is shown by showing that differentiating a function with all real zeros

causes the infimum to increase, and the supremum to decrease. This result

requires the zeros to be roughly regularly spaced out, with constant density,

otherwise the infimum or supremum is vacuously 0 or infinity respectively,

and this result won’t hold.

In the case that the zeros are not all real, the result that the infimum will

always increase doesn’t hold either. Instead, it has been shown [10] that if a

real, entire function of order less than 2 has a finite number of nonreal zeros,
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after a finite number of derivatives, all zeros will be real, and then stay real

when more derivatives are taken.

5.2. Differentiating the Riemann Xi function. Farmer and Rhoade’s

work cannot be used to study the derivatives of the Xi function, because the

count of zeros
z

2π
log
( z

2πe

)
+O(log(z)),

is not of the required form. Instead, using a different technique, Ki [27]

showed that

lim
n→∞

AnΞ(2n)(Cnz) = cos(z).

This result is obtained by showing that the Xi-function can be written as a

quasi-Fourier transform, namely

Ξ(z) =

∫ ∞
−∞

ϕ(t)eitz/2dt.

This can be easily differentiated with respect to z. Then, the integral can be

split up into the main term and some error terms, all of which are suitably

small.

Rather than calculate ϕ using the inverse Fourier transform result, it is

easier to create the required integral by using the integral representation of

the Gamma function

Γ(x) =

∫ ∞
0

e−ttx−1dt

=

∫ ∞
−∞

e−e
t
etxdt,

so that

s

2
(s− 1)Γ

(s
2

)
= 2Γ

(s
2

+ 2
)
− 3Γ

(s
2

+ 1
)

=

∫ ∞
−∞

e−e
u
eus/2

(
2e2u − 3eu

)
du.

Remembering that

ξ(s) =
s

2
(s− 1)Γ

(s
2

)
π−s/2ζ(s),
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so that

ξ(s) = π−s/2ζ(s)

∫ ∞
−∞

e−e
u
eus/2

(
2e2u − 3eu

)
du

=
∞∑
n=1

∫ ∞
−∞

e−e
u

(
eu

n2π

)s/2 (
2e2u − 3eu

)
du

=
∞∑
n=1

∫ ∞
−∞

e−πn
2exexs/2

(
2π2n4e2x − 3πn2ex

)
dx

and therefore

Ξ(z) =

∫ ∞
−∞

∞∑
n=1

e−πn
2ex
(

2π2n4e9x/4 − 3πn2e5x/4
)
eixz/2dx

=

∫ ∞
−∞

ϕ(x)eixz/2dx,

where

ϕ(x) =

∞∑
n=1

e−πn
2ex
(

2π2n4e9x/4 − 3πn2e5x/4
)

= Ae−ae
x
ebx(1 +O(e−x))

for a = π and b = 9/4.

Since the Xi-function is even

Ξ(z) = Ξ(−z),

we must have that

ϕ(x) = ϕ(−x)

and therefore

Ξ(z) =

∫ ∞
0

ϕ(x)
(
eixz/2 + e−ixz/2

)
dx.

Ki then showed that there exist constants An and Cn such that

lim
n→∞

Anf
(2n)(Cnz) =

1

2
eiz,

where

f(z) =

∫ ∞
0

ϕ(x)eixz/2dx,

so

Ξ(z) = f(z) + f(−z)

by differentiating and then rescaling so that the maximum occurs around 1.

The integral is then split into the main part around 1 and three error terms.
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Differentiating and then rescaling gives

f (2n)(z) =

∫ ∞
0

ϕ(x)(−1)n
(x

2

)2n
eixz/2dx.

Rescaling with a positive constant Cn gives

f (2n)(Cnz) = (−1)n2−2n

∫ ∞
0

ϕ(x)x2neiCnxz/2dx

= (−1)nw2n+1
n 2−2n

∫ ∞
0

ϕ(wnx)x2neixzdx

= A(−1)nw2n+1
n 2−2n

∫ ∞
0

exp [−aewnx + bwnx+ 2n log(x)](
1 +O(e−wnx)

)
eixzdx

where

wn =
2

Cn
.

We can set the main part of the integral to occur around 1 by ensuring

d

dx
[−aewnx + bwnx+ 2n log(x)]

∣∣∣∣
x=1

= 0

by choosing wn such that

awne
wn = bwn + 2n.

For larger n, this can be approximated by

wn ≈ log

(
2n

a

)
− log log

(
2n

a

)
.

This means that the integrand has its maximum at 1, and so we can write

f (2n)(Cnz) = A(−1)nw2n+1
n 2−2n [Im + Iε]

where

Im =

∫ 1+un

1−un
exp [−aewnx + bwnx+ 2n log(x)]

(
1 +O(e−wnx)

)
eixzdx

and

Iε =

[∫ 1−un

0
+

∫ 2

1+un

+

∫ ∞
2

]
exp [−aewnx + bwnx+ 2n log(x)](

1 +O(e−wnx)
)
eixzdx

where un will be defined later, after approximating the integrand and seeing

for what values of x the approximation is allowed. We can change the range
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of integration by using

Im =

∫ 1+un

1−un
exp [−aewnx + bwnx+ 2n log(x)]

(
1 +O(e−wnx)

)
eixzdx

= eiz
∫ un

−un
exp

[
−aewn(1+x) + bwn(1 + x) + 2n log(1 + x)

] (
1 +O(e−wnx)

)
eixzdx

and so the part of the integrand we are interested in is

exp
[
−aewn(1+x) + bwn(1 + x) + 2n log(1 + x)

]
= exp

[
−aewn(1 + wnx+

w2
nx

2

2
+O(w3

nx
3)) + bwn(x+ 1) + 2n(x− x2

2
+O(x3))

]
= exp

[
−aewn + bwn − x2(aewn

w2
n

2
+ n) +O(x3n+ x3w3

ne
wn)

]
= exp

[
−aewn + bwn − x2(nwn + b

w2
n

2
+ n) +O(x3n+ x3w3

ne
wn)

]
.

The largest (in n) of the x2 terms is

x2nwn,

as wn ∼ log(n). Comparing this to the largest of the error terms,

x3w3
ne
wn ,

we therefore require

xw2
n → 0.

Ki sets

un =
1

nθ
, θ <

1

2
,

which is a smaller value than necessary, but for the purpose of showing a

bound, rather than minimising the error term doesn’t matter. Therefore,

we have that

Im = e−ae
wn
ebwneiz

∫ un

−un
e−x

2(nwn+b
w2
n
2

+n)(1 +O(w2
nx

2))dx

= e−ae
wn
ebwneizun

∫ 1

−1
e−x

2u2
n(nwn+b

w2
n
2

+n)(1 +O(w2
nu

2
nx

2))dx

= e−ae
wn
ebwneiz

√
π

(nwn + bw2
n/2 + n)

(
1 +O

(
w2
n

nwn + bw2
n/2 + n

))
The first two error terms[∫ 1−un

0
+

∫ 2

1+un

]
exp [−aewnx + bwnx+ 2n log(x)]

(
1 +O(e−wnx)

)
eixzdx
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can be bounded using the same method as the main integral. The error term

can be ignored since we are only interested in the leading behaviour, so we

are only interested in the complex part (which will be dealt with later) and

the exponential part

exp [−aewnx + bwnx+ 2n log(x)] .

The maximum of this part is at 1 (by construction), and so we have that

exp [−aewnx + bwnx+ 2n log(x)] ≤ e−aewnebwne−wnnu2
n .

The complex part can be bound by

|eixz| < e|2z|

and so the two error terms are bounded by

2e−ae
wn
ebwne−nwnu

2
ne2|z|.

This is suitably small when compared to the main itnegral term.

The final error term∫ ∞
2

exp [−aewnx + bwnx+ 2n log(x)] eixzdx,

requires rearranging in a different way. Recalling that

awne
wn = bwn + 2n

so that

aewnx = a
wn
wn

ewnewn(x−1)

=
1

wn
ewn(x−1)

(
b+

2n

wn

)
.

Therefore, the exponential term of the integrand can be rearranged to give

− aewnx + bwnx+ 2n log(x)

= −bewn(x−1) − 2n

wn
ewn(x−1) + bwnx+ 2n log(x).

The largest term of this integrand is

− 2n

wn
ewn(x−1),
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and so ∫ ∞
2

exp [−aewnx+ bwnx+ 2n log(x)] eixzdx

≈
∫ ∞

2
exp

[
− 2n

wn
ewn(x−1)

]
dx

=
1

wn

∫ ∞
ewn

exp

[
− 2n

wn
u

]
du

u

<
1

wn

∫ ∞
ewn

exp

[
− 2n

wn
u

]
du

=
1

2n
e−

2n
wn

ewn .

Therefore, we have that

Im+Iε =
√
πe−ae

wn
ebwneiz

(
nwn +

bw2
n

2
+ n

)−1/2(
1 +O

(
w2
n

nwn + bw2
n/2 + n

))
+O(e−ae

wn
ebwne−nwnu

2
n) +O(

1

n
e
−2n
wn

ewn )

=
√
πe−ae

wn
ebwneiz

(
nwn +

bw2
n

2
+ n

)−1/2 [
1

+O(
w2
n

nwn + bw2
n/2 + n

) +O(e−nwnu
2
n
(
nwn + bw2

n/2 + n
)1/2

)

+O(
1

n
e
−2n
wn

ewneae
wn
e−bwn

(
2nwn +

bw2
n

2
+ n

)1/2

)

]
.

The largest of these error terms comes is the

w2
n

nwn + bw2
n/2 + n

∼ wn
n

and so we have that

I +m+ Iε =
√
πe−ae

wn
ebwneiz

(
nwn +

bw2
n

2
+ n

)−1/2 (
1 +O

(wn
n

))
.

Remembering that

f (2n)(Cnz) = A(−1)nw2n+1
n 2−2n[Im + Iε]
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so that

f (2n)(Cnz) = A(−1)nw2n+1
n 2−2n√πe−aewnebwneiz(

nwn +
bw2

n

2
+ n

)−1/2 (
1 +O

(wn
n

))
Therefore, in order that

lim
n→∞

Anf
(2n)(Cnz) = eiz

we have that

An =
2

A
√
π

(−1)n22n−1w−2n−1
n eae

wn
e−bwn

(
nwn +

bw2
n

2
+ n

)1/2

,

so

AnΞ(2n)(Cnz) =
1

2
An(f (2n)(Cnz) + f (2n)(−Cnz))

=
1

2
(eiz + e−iz)(1 +O

(wn
n

)
)

= cos(z)(1 +O
(wn
n

)
)

as required.

Ki’s method works because a single Gamma function can be written as a

single integral. This work can be used for the Hecke L-function case, since

although it has two Gamma functions, the duplication formula reduces it

to just one integral. Since more Gamma functions means more integrals,

extending Ki’s work in this way is unfeasible, given how the area of integra-

tion must be split up. Instead, in the second half of this thesis I focus on

extending Ki’s work by using the Fourier convolution theorem to create a

single integral from an arbitrary number of Gamma functions.
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Chapter 2

6. Introduction

In this chapter Ki’s result on differentiating Riemann’s Xi-function is

extended to the Selberg Class of L-functions, showing that, given an L-

function from the Selberg class, there exists sequences An, Cn and a constant

Θ such that, uniformly on compact subsets of C,

lim
n→∞

An
d2n

dz2n
ΞF (Cn(z −Θ)) = cos(z + θ),

where ΞF (z) is related to the Selberg Class of L-functions in the same way

that the the Riemann Xi-function is related to the Riemann zeta-function.

The constants Λ,M and θ and the sequences Cn and An will be discussed

in section 10. This is analogous to Ki’s [27] work, which we discussed previ-

ously. Ki’s method of using the integral representation of the Gamma func-

tion also holds for Hecke L-functions, since the ΞF -function related to these

L-functions can also be written with a single Gamma function. However,

the Selberg Class of L-functions generally includes a product of disparate

Gamma functions, which cannot be simplified down to one by the multipli-

cation or duplication formulas of the Gamma function.

In section 7 the Selberg Class of L-functions is discussed, and an expla-

nation given for the particular choice of function used for this work.

Section 8 is dedicated to showing that the equation

ΞF (z) = εQ1/2+iz
m∏
l=1

λl(−
1

4
− z2)Γ(iλlz +

λl
2

)

k∏
j=m+1

Γ

(
iλjz + µj +

λj
2

)
F (

1

2
+ iz)

can be written as a quasi-Fourier transform

ΞF (z) = Bε

∫ ∞
−∞

ϕ(x)ei(Λz+Θ)xdx

This is done by showing that the product of Gamma functions can be re-

duced asymptotically to one using Fourier convolution. Then the other parts

of the function are introduced.
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Section 9 uses the result from section 8

ΞF (z) = Bε

∫ ∞
−∞

ϕ(x)ei(Λz+M)xdx,

to show that

lim
n→∞

AnΞ
(2n)
F (Cn(z −M)) = cos(z + θ)

where θ = arg(B), using similar methods to those used by Ki in his paper.

In section 10, the sequences An and Cn, the constants Λ,M and θ, as well

as the error term are studied to see how quickly the zeros even out. This is

extended in chapter 3, where derivatives of the Ξ-function are plotted using

a variety of techniques so that they can be practically studied, rather than

just discussing them in a theoretical context.

7. The Selberg Class of L-functions

In 1989, Selberg [40] gave a talk at the Amalfi Conference on Number

Theory, about L-functions which satisfy a number of axioms. Beginning

with a Dirichlet series, which is of the form

F (s) =
∞∑
n=1

an
ns
, s = σ + it,

where an is a complex series. The first term a1 must be 1, and for any ε > 0,

an = O(nε). This causes F (s) to converge absolutely for Re(s) = σ > 1.

The second axiom states that (s− 1)mF (s) is an entire function, i.e. the

only pole of the L-series occurs at s = 1 and is of order m, where m ∈ N0.

Axiom three states that there exists a functional equation

Φ(s) = γF (s)F (s) = Φ(1− s)

where

γF (s) = εQs
k∏
j=1

Γ(λjs+ µj).

where |ε| = 1, Q, λj ,Re(µj) ≥ 0. The degree of the L-function is

d = 2
k∑
j=1

λj ,
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and so far, using the Duplication formula for the Gamma functions, we can

always take

λj =
1

2
,

so the degree is equal to k. This functional equation still contains the pole of

the L-function at s = 1, and so to cancel it, there must be a corresponding

pole at s = 0 of order m of the γF (s), so we can write it as

γF (s) = εQs
m∏
l=1

Γ(λls)

k∏
j=m+1

Γ(λjs+ µj).

The functional equation shows that Φ(1/2+ it) is real, and contains just the

non-trivial zeros and the poles.

The last axiom states that

log(F (s)) =
∞∑
n=1

bn
ns

where bn = 0 unless n is a prime or prime power. This is equivalent to F (s)

having an Euler equation of the form

F (s) =
∏

p prime

P (p, s),

although this is unimportant for this work. It is suggested that the degree

of the polynomial P (p, s) is the degree of the L-function, although this has

not yet been proven.

The functional equation created for these axioms still contains the pole

at s = 1, and so we will work with a variant function

ξF (s) = εQs
m∏
l=1

λls(s− 1)Γ(λls)

k∏
j=m+1

Γ(λjs+ µj)F (s).

This function is analogous to the Riemann xi-function, including the factors

of λl which correspond to the factor of 1/2 in the Riemann xi-function, kept

there for historical reasons. This satisfies the functional equation

ξF (s) = ξF (1− s)

= ξF (1− s),
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from which it follows that along the Critical Line,

ξF

(
1

2
+ iz

)
= ξF

(
1

2
+ iz

)
,

which shows that the function is real when z ∈ R.

The similarities to the Riemann Ξ-function can continue by setting

ΞF (z) = ξF

(
1

2
+ iz

)
.

To replicate Ki’s work, it is necessary to find a functional equation which

shows how the function changes if z is replaced with −z. In order to find

this, the function needs to be studied more carefully. Beginning with

F (s) =
∞∑
n=1

an
ns

=

∞∑
n=1

an
ns

and

Γ(λjs+ µj) = Γ(λjs+ µj),

since λj ∈ R. Therefore, the functional equation can be written as

ξF (s) = εQs
m∏
l=1

λls(s− 1)Γ(λls)
k∏

j=m+1

Γ(λjs+ µj)F (s)

where

F (s) =

∞∑
n=1

an
ns
.

This means that we then have

ξF

(
1

2
− iz

)
= ξF

(
1

2
+ iz

)
and therefore

ΞF (−z) = ΞF (z)

where F represents the complex conjugate of the function, i.e. where all the

complex constants (µj , an, ε) have been replaced by their complex conju-

gates. This means that calculating the derivative of this function in section

9 will be much quicker, as only half the work needs doing.
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The individual µj terms in the functional equation are complex. It was

once thought [26] that these terms were either real or came in complex

conjugate pairs, however most degree 3 L-functions on the LMFDB website

[32] do not satisfy this. It is more likely that

k∑
j=1

µj

is real. This is constant under operations such as the multiplication formula,

and currently all known L-functions satisfy this condition.

In this section, it has been shown that the ΞF -function is an entire func-

tion which is real when z ∈ R and decays exponentially fast (due to the

Gamma functions). Therefore, this function can be expressed as a Fourier

transform, which makes differentiating it much more tractable. The next

section is devoted to showing the Fourier transform.

8. Proving the integral representation of the Xi function

In this section, the focus will be on showing that:

Theorem 2. The ΞF -function corresponding to F , an element of the Selberg

Class of L-functions, can be written as an integral in a similar way to that

of the Riemann Xi-function

ΞF (z) = B

∫ ∞
−∞

ϕ(t)eitΛzdt,

where

ϕ(t) = e−ae
t
eb
′t(1 +O(e−t))

where

a = ΛQ−1/Λ
k∏
j=1

λ
−λj/Λ
j

Λ =

k∑
j=1

λj

b′ = M + 2m+
Λ

2
− k − 1

2

M =
k∑

j=m+1

µj
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Remark 2.1. It is possible for Im(M) 6= 0, which means that Ki’s work

cannot be immediately applied to this result. However, that will be resolved

in the next section.

8.1. Fourier transform results. Standard Fourier transform results state

that the Fourier transform of a function f(t) (assuming it exists), can be

written as

F(w) = F [f(t)](w) =

∫ ∞
−∞

f(t)e−iwtdt

and the inverse of this gives

f(t) =
1

2π

∫ ∞
−∞
F(w)eiwtdw,

where f is continuous. The other important general result is the Convolution

theorem, which states that

F [f(x)g(x)](w) = F [f(x)](t) ∗ F [g(x)](w − t)

=
1

2π

∫ ∞
−∞
F [f(x)](t)F [g(x)](w − t)dt.

8.2. Finding the Fourier transform of the Xi function. Since the

Selberg Class xi function is defined as

ξF (z) = εQs
m∏
l=1

λls(s− 1)Γ(λls)
k∏

j=m+1

Γ(λjs+ µj)F (s)

= εQs
m∏
l=1

1

λl
(Γ(λls+ 2)− (λl + 1)Γ(λls+ 1))

k∏
j=m+1

Γ(λjs+ µj)F (s)

with the variation

ΞF (z) = ξF

(
1

2
+ iz

)
the product of Gamma functions ensures that the function decays suitably

fast for its Fourier transform to exist. Rather than starting from

ΞF (z) =

∫ ∞
−∞

ϕ(t)eΛitzdt

we will instead begin with the Fourier transform mentioned above,

ΞF (z) =

∫ ∞
−∞

φ(t)eitzdt,

where φ(t) is defined as a function with an error term as t → ∞, and then

later modify the integral to create a suitable ϕ(t). It is important to note
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that these two functions— φ and ϕ are slightly, albeit importantly, different

from each other.

This error term is acceptable due to how the integral is calculated. There-

fore, it is possible to write

φ(t) =
1

2π

∫ ∞
−∞

ΞF (z)e−itzdz.

This becomes

φ(t) =
ε

2π

∫ ∞
−∞

Q1/2+iz
m∏
l=1

1

λl

(
Γ(iλlz + 2 +

λl
2

)

− (λl + 1)Γ(iλlz + 1 +
λl
2

)

)
k∏

j=m+1

Γ(iλjz + µj +
λj
2

)
∑
n

a(n)

n1/2+iz
e−itzdz.

Shifting the integration contour to a region where the sum is convergent, we

can then change the order of integration and summation and shift back to

give

φ(t) =
∑
n

εQ1/2a(n)

2πn1/2

∫ ∞
−∞

m∏
l=1

1

λl

(
Γ(iλlz + 2 +

λl
2

)

− (λl + 1)Γ(iλlz + 1 +
λl
2

)

)
k∏

j=m+1

Γ(iλjz + µj +
λj
2

)

(
etn

Q

)−iz
dz.

Therefore, defining T = t+ log(n/Q), we are interested in

φ(T ) =
∑
n

εQ1/2a(n)

2πn1/2

∫ ∞
−∞

m∏
l=1

1

λl

(
Γ(iλlz + 2 +

λl
2

)

− (λl + 1)Γ(iλlz + 1 +
λl
2

)

)
k∏

j=m+1

Γ(iλjz + µj +
λj
2

)e−iT zdz

for large T .
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In the rest of this section, we will use the integral representation of the

Gamma functions to calculate the quasi-Fourier convolution of them. This

reduces the number of integrals, eventually to one integral which is how we

get the following result.

Theorem 3. Let

φ(t) =
1

2π

∫ ∞
−∞

ΞF (z)e−itzdz

as previously defined. By calculating the Fourier convolution of the Gamma

functions, it is possible to show that

φ(t) =

εBe
t(M+2m+Λ/2−(k−1)/2)

Λ exp

−ΛQ−1/Λ
k∏
j=1

λ
−λj/Λ
j et/Λ


(

1 +O
(
e−t/Λ

))
,

where

Λ =
k∑
j=1

λj

and

M =
k∑

j=m+1

µj

and the other variables are as previously defined. We also have that B ∈ R.

This result is first proven in the instance where k = 2. Then after this, a

third Gamma function is introduced, and it is proven that the convolution

of a third Gamma function with the original two Gamma functions looks the

same (up to suitable constants) as the convolution of two Gamma functions,

thereby generalising it to any number of Gamma functions.

8.3. The Fourier transform of one Gamma function. In order to use

the convolution theorem, we first need to prove that

Lemma 4.

F [Γ(iλ1z +A)](T ) =
2π

λ1
e−e

T/λ1
e
AT
λ1 .

Proof. Recall that

Γ(z) =

∫ ∞
0

e−xxz−1dx
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so that

Γ(iλjz +A) =

∫ ∞
0

e−xxiλjz+A−1dx

=

∫ ∞
−∞

e−e
u
eu(iλjz+A)du

=
1

λj

∫ ∞
−∞

e−e
T/λj

eAT/λjeiT zdT.

Since this is the inverse Fourier transform (positive complex exponential

term), we need to have a fraction of 1/2π out the front of the integral, to

give

Γ(iλjz +A) =
2π

λj

1

2π

∫ ∞
−∞

e−e
T/λj

eAT/λjeiT zdT

as required. �

8.4. The Fourier transform of two Gamma functions.

Theorem 5. The Fourier convolution of two Gamma functions can be writ-

ten as

F [Γ(iλ1z +A)Γ(iλ2z +B)](T )

= C2 exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2

]
e
T
Λ

(A+B−1/2)
(

1 +O
(
e
−T
Λ

))
where

Λ = λ1 + λ2

and

C2 = (2π)3/2λ
λ2(A−1/2)−Bλ1

Λ
1 λ

λ1(B−1/2)−Aλ2
Λ

2 Λ−1/2.

Proof. Recalling that

F [f(x)g(x)](T ) =
(
F [f(x)] ∗ F [g(x)]

)
(T )

=
1

2π

∫ ∞
−∞
F [f(x)](w)F [g(x)](T − w)dw
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so that

(*) F [Γ(iλ1z +A)Γ(iλ2z +B)](T ) =

=
2π

λ1λ2

∫ ∞
−∞

e−(ev/λ1+e(T−v)/λ2 )eAv/λ1eB(T−v)/λ2dv

= 2πe
BT
λ2

∫ ∞
−∞

e−(eλ2w+eT/λ2−λ1w)ew(Aλ2−Bλ1)dw.

For large values of T , the maximum of the integrand occurs very near the

point at which
d

dw

(
eλ2w + eT/λ2−λ1w

)
= 0.

This occurs at

ew(λ1+λ2) =
λ1

λ2
eT/λ2

ew =

(
λ1

λ2
eT/λ2

) 1
λ1+λ2

Therefore, the substitution

ew = (1 + v)

(
λ1

λ2
eT/λ2

) 1
λ1+λ2

will put the maximum of the integrand at the origin of the integral, to give

(*) = 2πe
BT
λ2

∫ ∞
−1

exp

[
− e

T
λ1+λ2

((
λ1

λ2

) λ2
λ1+λ2

(1 + v)λ2

+

(
λ2

λ1

) λ1
λ1+λ2

(1 + v)−λ1

)]
(
λ1

λ2
e
T
λ2

) Aλ2
λ1+λ2

(1 + v)Aλ2

(
λ1

λ2
e
T
λ2

) −Bλ1
λ1+λ2

(1 + v)−Bλ1
dv

1 + v

= 2πe
T
(
B
λ2

+ A
λ1+λ2

− Bλ1
λ2(λ1+λ2)

)(
λ1

λ2

)Aλ2−Bλ1
λ1+λ2

∫ ∞
−1

exp

[
− e

T
λ1+λ2

((
λ1

λ2

) λ2
λ1+λ2

(1 + v)λ2 +

(
λ2

λ1

) λ1
λ1+λ2

(1 + v)−λ1

)]
(1 + v)Aλ2−Bλ1−1dv
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= 2πe
T
(

A
λ1+λ2

+ B
λ1+λ2

)(
λ1

λ2

)Aλ2−Bλ1
λ1+λ2

∫ ∞
−1

exp

[
− e

T
λ1+λ2

((
λ1

λ2

) λ2
λ1+λ2

(1 + v)λ2 +

(
λ2

λ1

) λ1
λ1+λ2

(1 + v)−λ1

)]
(1 + v)Aλ2−Bλ1−1dv

Setting λ1 + λ2 = Λ, we want the main integral (around the origin) to have

integration limits of ± exp[−T/3Λ], in order to allow some approximations

of the integrand. Therefore, we have

(M) IM =

∫ e−T/3Λ

−e−T/3Λ

exp

[
− e

T
Λ

((
λ1

λ2

)λ2
Λ

(1 + v)λ2

+

(
λ2

λ1

)λ1
Λ

(1 + v)−λ1

)]
(1 + v)Aλ2−Bλ1−1dv.

and

(E) IE =

∫ −e−T/3Λ

−1
+

∫ ∞
e−T/3Λ

exp

[
− e

T
Λ

((
λ1

λ2

)λ2
Λ

(1 + v)λ2

+

(
λ2

λ1

)λ1
Λ

(1 + v)−λ1

)]
(1 + v)Aλ2−Bλ1−1dv.

Dealing with the main integral (M) first, we have that

Lemma 6.

IM = exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2

]√
2πΛ−1/2λ

−λ2
2Λ

1 λ
−λ1
2Λ

2 e
−T
2Λ (1 +O(e

−T
Λ )).

Proof. Beginning with Taylor series, we have that

(1 + v)λ2 = 1 + λ2v + λ2(λ2 − 1)
v2

2
+ λ2(λ2 − 1)(λ2 − 2)

v3

6
O(v4)

and

(1 + v)−λ1 = 1− λ1v + λ1(λ1 + 1)
v2

2
− λ1(λ1 + 1)(λ1 + 2)

v3

6
+O(v4)
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so that the exponential part of the integrand in (M)(
λ1

λ2

)λ2
Λ

(1 + v)λ2 +

(
λ2

λ1

)λ1
Λ

(1 + v)−λ1

can be written as(λ1

λ2

)λ2
Λ

+

(
λ2

λ1

)λ1
Λ

+
v2

2
λ
λ2
Λ

1 λ
λ1
Λ

2 Λ

+
v3

6
λ
λ2
Λ

1 λ
λ1
Λ

2 [(λ2 − 1)(λ2 − 2)− (λ1 + 1)(λ1 + 2)] +O(v4)

]
=

[
Λλ

−λ1
Λ

1 λ
−λ2

Λ
2 +

v2

2
λ
λ2
Λ

1 λ
λ1
Λ

2 Λ + αv3 +O(v4)

]
.

The rest of this integrand can be easily expanded to give

(1 + v)Aλ2−Bλ1−1 = 1 + (Aλ2 −Bλ1 − 1)v +O(v2).

Therefore, the integral (M) can be written as

IM = exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2

]
∫ e−T/3Λ

−e−T/3Λ

exp

[
−e

T
Λ

(
v2

2
λ
λ2
Λ

1 λ
λ1
Λ

2 Λ + αv3 +O(v4)

)]
(
1 +Av +O(v2)

)
dv

= exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2

]
∫ e−T/3Λ

−e−T/3Λ

exp

[
−1

2
λ
λ2
Λ

1 λ
λ1
Λ

2 Λe
T
Λ v2

]
(1 + e

T
Λαv3 +O(e

T
Λ v4) +O(e

2T
Λ v6))(1 +Av +O(v2))dv,

where the approximation

e−e
T/Λ(αv3+O(v4)) = 1 + e

T
Λαv3 +O(e

T
Λ v4) +O(e

2T
Λ v6)
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is valid within this range of integration. We can now increase the range of

integration to whole real axis which introduces an error term, to give

= exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2

]
∫ ∞
−∞

exp

[
−1

2
λ
λ2
Λ

1 λ
λ1
Λ

2 Λe
T
Λ v2

]
(1 + e

T
Λαv3 +O(e

T
Λ v4))(1 +Av +O(v2))dv

+O(e−
1
2
λ
λ2
Λ

1 λ
λ1
Λ

2 ΛeT/3Λ
).

Due to the range of integration for this function, any integral which includes

odd powers of v will vanish. Therefore, the main error terms from this

integral will be those from the v2 and eT/Λv4 terms. The main integral is∫ ∞
−∞

exp

[
−1

2
λ
λ2
Λ

1 λ
λ1
Λ

2 Λe
T
Λ v2

]
dv =

√
2πΛ−1/2λ

−λ2
2Λ

1 λ
−λ1
2Λ

2 e
−T
2Λ ,

and the three main error terms have the same order of magnitude since∫ ∞
−∞

exp

[
−1

2
λ
λ2
Λ

1 λ
λ1
Λ

2 Λe
T
Λ v2

]
v2dv = O(e

−3T
2Λ )

is the same as∫ ∞
−∞

exp

[
−1

2
λ
λ2
Λ

1 λ
λ1
Λ

2 Λe
T
Λ v2

]
e
T
Λ v4dv = O(e

−3T
2Λ )

and also ∫ ∞
−∞

exp

[
−1

2
λ
λ2
Λ

1 λ
λ1
Λ

2 Λe
T
Λ v2

]
e

2T
Λ v6dv = O(e

−3T
2Λ ).

Therefore, for large T ,

IM = exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2

]√
2πΛ−1/2λ

−λ2
2Λ

1 λ
−λ1
2Λ

2 e
−T
2Λ (1 +O(e

−T
Λ ))

as required. �

We now need to calculate the error integrals (E), which are both smaller

than the error term from the main integral.

Lemma 7. We have that the two integrals in this error term are both or

roughly the same size, that is

IE = O
(
e
−T
Λ e−e

T/Λ
(

(1 + e
−T
3Λ )1−λ2 + (1− e

−T
3Λ )λ1−1

))
Proof. The first of these two error integrals needs to be rearranged to be in

the same form as the second. Then they can be evaluated using the same
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techniques. Beginning with∫ −e−T/3Λ

−1
exp

[
− e

T
Λ

((
λ1

λ2

)λ2
Λ

(1 + v)λ2 +

(
λ2

λ1

)λ1
Λ

(1 + v)−λ1

)]
(1 + v)Aλ2−Bλ1−1dv

=

∫ 1−e−T/3Λ

0
exp

[
− e

T
Λ

((
λ1

λ2

)λ2
Λ

vλ2 +

(
λ2

λ1

)λ1
Λ

v−λ1

)]
vAλ2−Bλ1−1dv

=

∫ ∞
(1−e−T/3Λ)−1

exp

[
− e

T
Λ

((
λ1

λ2

)λ2
Λ

v−λ2 +

(
λ2

λ1

)λ1
Λ

vλ1

)]
vBλ1−Aλ2−1dv.

We can now approximate this integrand by

≈
∫ ∞

(1−e−T/3Λ)−1

exp

[
− e

T
Λ

(
λ2

λ1

)λ1
Λ

vλ1

]
dv

since we must always have that λ1, λ2 > 0. This integral can then be

approximated to give

O
(
e
−T
Λ (1− e

−T
3Λ )λ1−1e−e

T/Λ
)
.

The second error integral, that of∫ ∞
e−T/3Λ

exp

[
− e

T
Λ

((
λ1

λ2

)λ2
Λ

(1 + v)λ2

+

(
λ2

λ1

)λ1
Λ

(1 + v)−λ1

)]
(1 + v)Aλ2−Bλ1−1dv

can be approximated in the same way to give

=

∫ ∞
1+e−T/3Λ

exp

[
− e

T
Λ

((
λ1

λ2

)λ2
Λ

vλ2 +

(
λ2

λ1

)λ1
Λ

v−λ1

)]
vAλ2−Bλ1−1dv
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≈
∫ ∞

1+e−T/3Λ

exp

[
− e

T
Λ

(
λ1

λ2

)λ2
Λ

vλ2

]
dv

= O
(
e
−T
Λ (1 + e

−T
3Λ )1−λ2e−e

T/Λ
)

�

The error integrals (E) are smaller than the error term from (M), and

therefore

IM + IE = exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2

]√
2πΛ−1/2λ

−λ2
2Λ

1 λ
−λ1
2Λ

2 e
−T
2Λ (1 +O(e

−T
Λ )).

Recalling that

F [Γ(iλ1z +A)Γ(iλ2z +B)](T ) =

= 2πe
T (A+B)

Λ

(
λ1

λ2

)Aλ2−Bλ1
Λ

(IM + IE)

= (2π)3/2Λ−1/2λ
(A−1/2)λ2−Bλ1

Λ
1 λ2

(B − 1/2)λ1 −Aλ2

Λ

e
T (A+B−1/2)

Λ exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2

]
(1 +O(e

−T
Λ ))

= C2 exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2

]
e
T
Λ

(A+B−1/2)
(

1 +O
(
e
−T
Λ

))
as required.

�

8.5. Three Gamma functions. The situation with three Gamma func-

tions is what extends this result to any number of Gamma functions. By

showing that the Fourier transform of three Gamma functions has the same

important properties as the Fourier transform of two Gamma functions, we

can extrapolate that the Fourier transform of any number of Gamma func-

tions looks the same.

Theorem 8. The Fourier transform of three Gamma functions can be writ-

ten as

F [Γ(iλ1z +A)Γ(iλ2z +B)Γ(iλ3z + C)](T )

= C3e
T (A+B+C−1)

Λ

exp

[
−Λλ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3 e
T
Λ

]
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where

Λ = λ1 + λ2 + λ3.

Proof. This can be treated as the Fourier transform of a product, and so

F [Γ(iλ1z +A)Γ(iλ2z +B)Γ(iλ3z + C)](T ) =

=
(
F [Γ(iλ1z +A)Γ(iλ2z +B)] ∗ F [Γ(iλ3z + C)]

)
(T )

We have already shown that

F [Γ(iλ1z +A)Γ(iλ2z +B)](T )

= C2 exp

[
−e

T
λ1+λ2 (λ1 + λ2)λ

−λ1
λ1+λ2
1 λ

−λ2
λ1+λ2
2

]
e

T
λ1+λ2

(A+B−1/2)
(

1 +O
(
e
−T

λ1+λ2

))
so we need to calculate the integral

C22π

λ3

∫ ∞
−∞

exp

[
−e

w
λ3 − e

T−w
λ1+λ2 (λ1 + λ2)λ

−λ1
λ1+λ2
1 λ

−λ2
λ1+λ2
2

]
e
Cw
λ3

+ T−w
λ1+λ2

(A+B−1/2)
(

1 +O(e
− T−w
λ1+λ2 )

)
dw.

Making the change of variable

w → λ3(λ1 + λ2)w

gives

= C22π(λ1 + λ2)e
T

λ1+λ2
(A+B−1/2)∫ ∞

−∞
exp

[
−e(λ1+λ2)w − e

T
λ1+λ2 e−λ3w(λ1 + λ2)λ

−λ1
λ1+λ2
1 λ

−λ2
λ1+λ2
2

]
ew(C(λ1+λ2)−λ3(A+B−1/2))

(
1 +O

(
e
−T

(λ1+λ2
)+λ3w

))
dw.

This is calculated in the same way as the previous Fourier convolution, by

finding the change of variable which puts the maximum at the origin, and

then splitting the integral up into the main and error integrals.

Setting

D = (λ1 + λ2)λ
−λ1
λ1+λ2
1 λ

−λ2
λ1+λ2
2



67

in order to make the calculation easier to follow, we can calculate the max-

imum of the integrand. This occurs at

d

dw
e(λ1+λ2)w +De

T
λ1+λ2 e−λ3w = 0

e(Λ)w = e
T

λ1+λ2
λ3D

λ1 + λ2
.

Reinserting the formula for D, we can rewrite this as

e(Λ)w =

(
λ3

λ1

) λ1
λ1+λ2

(
λ3

λ2

) λ2
λ1+λ2

e
T

λ1+λ2

so the maximum of the integrand occurs at

ew =

(λ3

λ1

) λ1
λ1+λ2

(
λ3

λ2

) λ2
λ1+λ2

e
T

λ1+λ2

 1
Λ

and the most suitable change of variable is therefore

ew = (1 + v)

(λ3

λ1

) λ1
λ1+λ2

(
λ3

λ2

) λ2
λ1+λ2

e
T

λ1+λ2

 1
Λ

.

The integrand then becomes

e(λ1+λ2)w = (1 + v)λ1+λ2λ3λ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3 e

T
Λ

and

e
T

λ1+λ2 e−λ3w(λ2 + λ2)λ
−λ1
λ1+λ2
1 λ

−λ2
λ1+λ2
2

= (1 + v)−λ3e
T
Λ (λ1 + λ2)λ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3 .

Summing these together, we have that the top line of the integral is

e(λ1+λ2)z + e
T

λ1+λ2De−λ3z

= e
T
Λλ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3(

λ3(1 + v)λ1+λ2 + (λ1 + λ2)(1 + v)−λ3

)
.

The other part of the integrand is

ew(C(λ1+λ2)−λ3(A+B−1/2))
(

1 +O
(
e
−T

(λ1+λ2
)+λ3w

))
dw,
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and the same change of variables makes this

C ′e
T (C(λ1+λ2)−λ3(A+B−1/2))

(λ1+λ2)(Λ) (1 + v)(C(λ1+λ2)−λ3(A+B−1/2))(
1 +O

(
(1 + v)λ3e

−T
Λ

)) dv

1 + v
.

Therefore, the integral can be written as

C22π(λ1 + λ2)C ′e
T (C(λ1+λ2)−λ3(A+B−1/2))

(λ1+λ2)(Λ) e
A+B−1/2
λ1+λ2∫ ∞

−1
exp

[
− e

T
Λλ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3(

λ3(1 + v)λ1+λ2 + (λ1 + λ2)(1 + v)−λ3

)]
(1 + v)β

(
1 +O

(
e
−T
Λ (1 + v)λ3

))
dv

= C22π(λ1 + λ2)C ′e
T
Λ

(A+B+C−1/2)∫ ∞
−1

exp

[
− e

T
Λλ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3(

λ3(1 + v)λ1+λ2 + (λ1 + λ2)(1 + v)−λ3

)]
(1 + v)β

(
1 +O

(
e
−T
Λ (1 + v)λ3

))
dv

where β = C(λ1 + λ2)− λ3(A+B − 1/2)− 1 and

C ′ = λ
C(λ1+λ2)−λ3(A+B−1/2)

Λ
3 λ

−λ1C
Λ

+
λ1λ3(A+B−1/2)

(λ1+λ2)(Λ)

1

λ
−λ2C

Λ
+
λ2λ3(A+B−1/2)

(λ1+λ2)(Λ)

2 .

This integral is then split up in the same way as the previous one, to give

(M3) IM =

∫ e−T/3Λ

−e−T/3Λ

exp

[
− e

T
Λλ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3

(
λ3(1 + v)λ1+λ2

+(λ1 + λ2)(1 + v)−λ1

)]
(1 + v)βdv.
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and

(E3) IE =

∫ −e−T/3Λ

−1
+

∫ ∞
e−T/3Λ

exp

[
− e

T
Λλ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3

(
λ3(1 + v)λ1+λ2

+(λ1 + λ2)(1 + v)−λ3

)]
(1 + v)βdv.

Dealing with the main integral (M3) first, we have that

Lemma 9.

IM = exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3

]√
π

a
λ
λ1
2Λ
1 λ

λ2
2Λ
2 λ

λ3
2Λ
3 e

−T
2Λ (1 +O(e

−T
Λ ))

where

a =
1

2
[(λ1 + λ2)(λ1 + λ2 − 1) + λ3(λ3 + 1)] ,

is the coefficient of the quadratic terms of the exponential part of the inte-

grand.

Proof. Beginning with Taylor series, we have that

(1 + v)λ1+λ2 = 1 + (λ1 + λ2)v + (λ1 + λ2)(λ1 + λ2 − 1)
v2

2

+ (λ1 + λ2)(λ1 + λ2 − 1)(λ1 + λ2 − 2)
v3

6
O(v4)

and

(1 + v)−λ3 = 1− λ3v + λ3(λ3 + 1)
v2

2

− λ3(λ3 + 1)(λ3 + 2)
v3

6
+O(v4)

so that the exponential part of the integrand in (M3)

λ3(1 + v)λ1+λ2 + (λ1 + λ2)(1 + v)λ3

can be written as

Λ +
v2

2
[(λ1 + λ2)(λ1 + λ2 − 1) + λ3(λ3 + 1)]

+
v3

6
[(λ1 + λ2)(λ1 + λ2 − 1)(λ1 + λ2 − 2) = λ3(λ3 + 1)(λ3 + 2)]

+O(v4)

= Λ + av2 + bv3 +O(v4).
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The rest of this integrand can be easily expanded to give

(1 + v)β = 1 + βv +O(v2).

Therefore, the integral (M3) can be written as

IM = exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3

]
∫ e−T/3Λ

−e−T/3Λ

exp

[
−λ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3 e
T
Λ
(
av2 + bv3 +O(v4)

)]
(
1 + βv +O(v2)

)
dv

= exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3

]
∫ e−T/3Λ

−e−T/3Λ

exp

[
−λ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3 e
T
Λ av2

]
(1 + e

T
Λ bv3 +O(e

T
Λ v4) +O(e

2T
Λ v6))(1 + βv +O(v2))dv,

where the approximation

e−e
T/Λ(bv3+O(v4)) = 1 + e

T
Λ bv3 +O(e

T
Λ v4) +O(e

2T
Λ v6)

is again valid within this range of integration. We can now increase the

range of integration to whole real axis which introduces an error term, to

give

= exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3

]
∫ ∞
−∞

exp

[
−λ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3 e
T
Λ av2

]
(1 + e

T
Λ bv3 +O(e

T
Λ v4))(1 + βv +O(v2))dv

+O(e−ae
T/3Λ

).

Due to the range of integration for this function, any integral which includes

odd powers of v will vanish. Therefore, the main error terms from this

integral will be those from the v2 and eT/Λv4 terms. The main integral is∫ ∞
−∞

exp

[
−λ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3 ae
T
Λ v2

]
dv =

√
π

λ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3 a

e
−T
2Λ
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= exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3

]√
π

a
λ
λ1
2Λ
1 λ

λ2
2Λ
2 λ

λ3
2Λ
3 e

−T
2Λ .

The three main error terms have the same order of magnitude since∫ ∞
−∞

exp

[
−λ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3 ae
T
Λ v2

]
v2dv = O(e

−3T
2Λ )

is the same as∫ ∞
−∞

exp

[
−λ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3 ae
T
Λ v2

]
e
T
Λ v4dv = O(e

−3T
2Λ )

and ∫ ∞
−∞

exp

[
−λ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3 ae
T
Λ v2

]
e

2T
Λ v6dv = O(e

−3T
2Λ ).

Therefore we have that, for large T ,

IM = exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3

]√
π

a
λ
λ1
2Λ
1 λ

λ2
2Λ
2 λ

λ3
2Λ
3 e

−T
2Λ (1 +O(e

−T
Λ ))

where

a =
1

2
[(λ1 + λ2)(λ1 + λ2 − 1) + λ3(λ3 + 1)]

as required. �

We now need to calculate the error integrals (E3), which are both smaller

than the error term from the main integral.

Lemma 10. We have that the two integrals in this error term are both or

roughly the same size, that is

IE = O
(
e
−T
Λ e−e

T/Λ
((1− e

−T
3Λ )λ3−1 + (1 + e

−T
3Λ )1−λ1−λ2)

)

Proof. As with the previous calculation of these error integrals, the first

needs to be rearranged to be in the same form as the second. Beginning

with∫ −e−T/3Λ

−1
exp

[
− e

T
Λλ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3

(
λ3(1 + v)λ1+λ2

+(λ1 + λ2)(1 + v)−λ3

)]
(1 + v)βdv
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=

∫ 1−e−T/3Λ

0
exp

[
− e

T
Λλ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3

(
λ3v

λ1+λ2

+(λ1 + λ2)v−λ3

)]
vβdv

=

∫ ∞
(1−e−T/3Λ)−1

exp

[
− e

T
Λλ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3

(
λ3v
−λ1−λ2

+(λ1 + λ2)vλ3

)]
vβ−1dv.

We can now approximate this integrand by

≈
∫ ∞

(1−e−T/3Λ)−1

exp

[
− e

T
Λλ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3 (λ1 + λ2)vλ3

]
dv

since we must always have that λ1, λ2 > 0. This integral can then be

approximated to give

O
(
e
−T
Λ (1− e

−T
3Λ )λ3−1e−e

T/Λ
)
.

The second error integral, that of∫ ∞
e−T/3Λ

exp

[
− e

T
Λλ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3

(
λ3(1 + v)λ1+λ2

+(λ1 + λ2)(1 + v)−λ3

)]
(1 + v)βdv

can be approximated in the same way to give

=

∫ ∞
1+e−T/3Λ

exp

[
− e

T
Λλ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3

(
λ3v

λ1+λ2

+(λ1 + λ2)v−λ3

)]
vβdv

≈
∫ ∞

1+e−T/3Λ

exp

[
− e

T
Λλ
−λ1

Λ
1 λ

−λ2
Λ

2 λ
−λ3

Λ
3 λ3v

λ1+λ2

]
dv

= O
(
e
−T
Λ (1 + e

−T
3Λ )1−λ1−λ2e−e

T/Λ
)
.

�
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These errors are the same, and are both smaller than the main error term

introduced from the main integral. Therefore, we have that

IM + IE = C ′′ exp

[
−e

T
Λ Λλ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3

]
e
−T
2Λ (1 +O(e

−T
Λ ))

where

Λ = λ1 + λ2 + λ3.

Recalling that the Fourier transform of three Gamma functions can be writ-

ten as

C22π(λ1 + λ2)C ′e
T
Λ

(A+B+C−1/2) [IM + Iε + IE ] ,

we therefore have that

F [Γ(iλ1z +A)Γ(iλ2z +B)Γ(iλ3z + C)](T )

= C22π(λ1 + λ2)C ′C ′′e
T (A+B+C−1)

Λ

exp

[
−Λλ

−λ1
Λ

1 λ
−λ2

Λ
2 λ

−λ3
Λ

3 e
T
Λ

]
as required.

Combining the constants out the front, we get that

C22π(λ1 + λ2)C ′C ′′ =
√

2π
5

√
λ1

√
λ2
λ
λ2(A1/2)−Bλ1

λ1+λ2
1 λ

λ1(B−1/2)−Aλ2
λ1λ2

2 λ
C(λ1+λ2)−λ3(A+B−1/2)

Λ
3

λ
−λ1C

Λ
+
λ1λ3(A+B−1/2)

(λ1+λ2)Λ

1 λ
−λ2C

Λ
+
λ2λ3(A+B−1/2)

(λ1+λ2)Λ

2
√

2π√
Λ
√
λ3

λ
λ1
2Λ
1 λ

λ2
2Λ
2 λ

λ3
2Λ
3 .

After rearranging, this becomes

(2π)3

√
λ1λ2λ3

√
Λ

λ
−λ1(B+C−1)

Λ
+
A(λ2+λ3)

Λ
1 λ

−λ2(A+C−1)
Λ

+
B(λ1+λ3)

Λ
2 λ

−λ3(A+B−1)
Λ

+
C(λ1+λ2)

Λ
3 .

�
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It can also be clearly seen how this generalises to more Gamma functions.

Setting

Λ =
∑
j

λj

and

M =
∑
j

µj

we therefore have that

F

 k∏
j=1

Γ

(
iλjz + µj +

λj
2

) (T ) = Cke
T (M+Λ/2−(k−1)/2))

Λ

exp

−Λ
k∏
j=1

λ
−λj/Λ
j eT/Λ

(1 +O
(
e−T/Λ

))
.

where

Ck =
(2π)3(k−1)/2

√
Λ

k∏
j=1

λ
− 1

2
−
λj(M−µj−(k−1)/2)

Λ
+
µj(Λ−λj)

Λ
j

Recalling that

F (T ) =
∑
n

εQ1/2a(n)

2πn1/2

F

[
m∏
l=1

1

λl

(
Γ

(
iλlz + 2 +

λl
2

)
− (λl + 1)Γ

(
iλlz + 1 +

λl
2

))
k∏

j=m+1

Γ

(
iλjz + µj +

λj
2

)]
(T )

= C ′′
∑
n

εa(n)

n1/2

m∑
q=0

C ′qe
T (M+m+q+Λ/2−(k−1)/2)

Λ exp

−Λ
k∏
j=1

λ
−λj/Λ
j eT/Λ


(

1 +O
(
e−T/Λ

))
where

M =

k∑
j=m+1

µj

and

Λ =

k∑
j=1

λj .
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At the beginning of this work, we set

T = t+ log

(
n

Q

)
,

which becomes

eT =
Q

n
et

and so returning to this again, our equation becomes

φ(t)

= C ′′
∑
n

εa(n)

n1/2

m∑
q=0

C ′q

(
n

Q

)M+m+q+Λ/2−(k−1)/2
Λ

e
t(M+m+q+Λ/2−(k−1)/2)

Λ

exp

−Λ

(
n

Q

)1/Λ k∏
j=1

λ
−λj/Λ
j et/Λ

(1 +O
(
e−t/Λ

))
.

The leading order behaviour of this function is n = 1 and q = m, giving

φ(t) =

εC ′′′e
t(M+2m+Λ/2−(k−1)/2)

Λ exp

−ΛQ−1/Λ
k∏
j=1

λ
−λj/Λ
j et/Λ

(1 +O
(
e−t/Λ

))
as required.

Recall that

ΞF (z) =

∫ ∞
−∞

φ(t)eiztdz.

We can rescale the variable of integration to make the integrand the same

format as the integrand for the Riemann Xi function, i.e.

ΞF (z) =
1

Λ

∫ ∞
−∞

φ (Λt) eΛitzdt

where
1

Λ
ϕ(Λt) = Be−ae

t
eb
′t(1 +O(e−t))

with

a = ΛQ−1/Λ
k∏
j=1

λ
−λj/Λ
j

and

(4) b′ = M + 2m+
Λ

2
− k − 1

2
.
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This is now in the same format as the Riemann Xi format, and so a similar

result can be obtained.

9. Differentiating the function

In the previous section, it was shown that

ΞF (z) =
1

Λ

∫ ∞
−∞

φ(Λx)eiΛxzdx

where

(5)
1

Λ
φ(Λx) = Ae−ae

x
eb
′x(1 +O(e−x)).

In this section, it will be shown that this function behaves like the Riemann

Ξ-function under repeated differentiation, so that

lim
n→∞

AnΞ
(2n)
F (Cnz −

Θ

Λ
) = cos(z + θ)

where

An, Cn,Θ, θ ∈ R.

Note that Θ and θ have yet to be defined.

However, in 5, it is possible that b′ ∈ C \ R, and so it needs to be split it

up into the real and imaginary parts, b′ = b+ iΘ, so the Selberg ΞF -function

can be written as

ΞF (z) = A

∫ ∞
−∞

1

Λ
e−ae

x
eb
′x(1 +O(e−x))eiΛxzdx

=
A

Λ

∫ ∞
−∞

e−aexe(b+iΘ)x(1 +O(e−x))eiΛxzdx

=
A

Λ

∫ ∞
−∞

e−ae
x
ebx(1 +O(e−x))eix(Λz+Θ)dx

=
A

Λ

∫ ∞
−∞

ϕ(x)eix(Λz+Θ)dx

where

ϕ(x) = e−ae
x
ebx(1 +O(e−x))

with a, b ∈ R, as required for Ki’s work. Remembering that 4

b′ = M + 2m+
Λ

2
− k − 1

2

the only way it can have a non-zero imaginary part is if M is complex. Given

that M =
∑
µj , so far for all known L-functions, this is real. However, this
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has not yet been proven for all L-functions, and so the possibility remains

that is may be complex.

Rescaling z, the function becomes

ΞF

(
z − Θ

Λ

)
=
A

Λ

∫ ∞
−∞

ϕ(x)eiΛxzdx.

The functional equation

ΞF

(
z − Θ

Λ

)
= ΞF

(
−z +

Θ

Λ

)
means that we can replace z with −z in the integral, provided that we take

the complex conjugate of all the other terms. Therefore, we have that

ΞF

(
z − Θ

Λ

)
= B

∫ ∞
−∞

ϕ(x)eiΛxzdx

= B

∫ ∞
−∞

ϕ(−x)e−iΛxzdx.

= B

∫
−∞

ϕ(−x)eiΛxzdx,

which means that we have

Bϕ(x) = Bϕ(−x)

and we can write the integral as

ΞF

(
z − Θ

Λ

)
=

∫ ∞
−∞

Bϕ(x)eiΛxzdx

=

∫ 0

−∞
Bϕ(x)eiΛxzdx+

∫ ∞
0

Bϕ(x)eiΛxzdx

=

∫ ∞
0

Bϕ(−x)e−iΛxzdx+

∫ ∞
0

Bϕ(x)eiΛxzdx

=

∫ ∞
0

Bϕ(x)e−iΛxzdx+

∫ ∞
0

Bϕ(x)eiΛxzdx

=

∫ ∞
0

ϕ(x)
(
BeiΛxz +Be−iΛxz

)
dx.

Now it is possible to show that under repeated differentiation(which in this

case due to the Fourier transform, is the same as multiplying by iΛx), the

integral smooths out.
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Theorem 11. There exist sequences An and Cn such that

lim
n→∞

An

∫ ∞
0

ϕ(x)(Cnix)2neiCnxzdx = eiz+θ.

where

An =

√
n(−1)neae

wn
e−bwnΛ2n

| B | w2n
n

√
π2

,

wn =
1

Λcn
≈ log

(
2n

a

)
− log log

(
2n

a

)
and

θ = arg(B).

Proof. Beginning by defining

ΞF

(
z − Θ

Λ

)
= |B|

(
eiθf(z) + e−iθf(−z)

)
where

f(z) =

∫ ∞
0

ϕ(x)eiΛxzdx,

so that

f (2n)(z) = (−1)n
∫ ∞

0
ϕ(x)Λ2nx2neiΛxzdx

and rescaling so that

f (2n)(Cnz) = (−1)nΛ2n

∫ ∞
0

ϕ(x)x2neiCnΛxzdx

= (−1)nwnΛ2n

∫ ∞
0

ϕ(wnx)(wnx)2neixzdx,

where

wn =
1

ΛCn
.

The main part of the integrand can be written as

ϕ(wnx)x2n = exp
[
− aewnx + bwnx+ 2n log(x)

] (
1 +O(e−wnx)

)
.

Excluding the error term, the maximum of this will occur when

d

dx

(
− aewnx + bwnx+ 2n log(x)

)
= 0.

Setting the maximum of this to occur at 1 means that

awne
wn = bwn + 2n,
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and it is this equation which sets wn and Cn. For large n, we have that

wn ≈ log

(
2n

a

)
− log log

(
2n

a

)
.

The main part of the integral now occurs around 1, so the integral can be

split up into the main term and error terms

f (2n)(Cnz) = (−1)nw2n+1
n Λ2n

∫ ∞
0

ϕ(wnx)x2neixzdx

= (−1)nw2n+1
n Λ2n

[ ∫ 1−un

0
+

∫ 1+un

1−un
+

∫ ∞
1+un

]
ϕ(wnx)x2neixzdx,

where un will be defined later. Each of these integrals now needs to be

considered separately.

9.1. Main term.

Lemma 12. The main integral can be calculated to give∫ 1+un

1−un
ϕ(wnx)x2neixzdx =

√
πeizebwn−ae

wn

√
nwn

(
1 +O(w−3

n )
)

where the error term is suitably small since wn →∞.

Proof. Beginning by rescaling the integrand the integral becomes

Im = eiz
∫ un

−un
ϕ(wn(1 + x))(1 + x)2neixzdx

The main part of this integrand can be written as

ϕ(wn(1 + x))(1 + x)2n =

exp
[
− aewn(1+x) + bwn(1 + x) + 2n log(1 + x)

]
(

1 +O(e−wn(1+x))
)
.

The main part of this can be rearranged using

awne
wn = bwn + 2n
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and various Taylor series to give

−aewn(1+x) + bwn(1 + x) + 2n log(1 + x)

= −aewnewnx + bwn + bwnx+ 2n(x+O(x2))

= −aewn(1 + wnx+
w2
nx

2

2
+O(w3

nx
3)) + bwn + bwnx

+ 2nx+O(nx2)

= −aewn + bwn − awnxewn + bwnx+ 2nx− aw2
nx

2

2
ewn

+O(nx2) +O(w3
nx

3ewn)

= −aewn + bwn − x2(nwn +
bw2

n

2
) +O(nx2) +O(w3

nx
3ewn)

= −aewn + bwn − nwnx2 +O(w2
nx

2) +O(nx2) +O(w3
nx

3ewn).

Recalling that

wn ≈ log(n)

the largest of these error terms is (for suitable small x)

O(nx2)

and so for the error term to tend to 0, we need

x = o(n−1/2).

Therefore, it makes sense to maximise the range of integration by setting

un =
1

n1/2
,

and so the integral becomes

IM = eizebwn−ae
wn

∫ 1/n1/2

−1/n1/2

e−nw
2
nx

2+O(nx2)eixz(1 +O(e−wn(x+1)))dx.

We can rewrite

eixz = 1 +O(x2)

which is smaller than the

eO(nx2) = 1 +O(nx2)
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and so our equation becomes

IM = eizebwn−ae
wn

∫ 1/n1/2

−1/n1/2

e−nw
2
nx

2 (
1 +O(nx2)

)
dx

= eizebwn−ae
wn
n−1/2

∫ 1

−1
e−w

2
nx

2
(1 +O(x2))dx

= eizebwn−ae
wn
n−1/2

(√
π

wn
+O(w−11

n ) +O(w−3
n )

)
= eizebwn−ae

wn
n−1/2

√
π

wn

(
1 +O(w−3

n )
)

as required. �

9.2. Error terms. The error terms[∫ 1−1/n1/2

0
+

∫ ∞
1+1/n1/2

]
ϕ(wnx)x2neixzdx

still need to be calculated. The integrals[∫ 1−1/n1/2

0
+

∫ 2

1+1/n1/2

]
ϕ(wnx)x2neixzdx

are calculated in the same manner, and so are treated together, and then

finally the integral ∫ ∞
2

ϕ(wnx)x2neixzdx

is calculated separately.

Lemma 13. The first two error integrals can be calculated to give[∫ 1−1/n1/2

0
+

∫ 2

1+1/n1/2

]
ϕ(wnx)x2neixzdx = O

(
ebwn−ae

wn−wn
)

=
ebwn−ae

wn

√
nwn

O(
√
nwne

−wn).

Since only the leading order behaviour is of interest here, the error terms

associated with ϕ(x) can be ignored.

Proof. Since the function ϕ(wnx)x2n has only the one maximum at x = 1,

this part of the integrand will be largest the closest to x = 1 it can get. The

approximation

ϕ(wn(1 + x))(1 + x)2n ≈ exp[−aewn + bwn − nwnx2]
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which was previously found can be used here. The rest of the integrand can

be approximated by |eixz| ≤ e|2z| in this range. Therefore∣∣∣∣∣
∫ 2

1+1/n1/2

ϕ(wnx)x2neixzdx

∣∣∣∣∣
≤
∫ 2

1+1/n1/2

ϕ(wn(1 + 1/n1/2))(1 + 1/n1/2)2ne|2z|dx

= e|2z| exp[−aewn + bwn − wn +O(1)]

=
ebwn−ae

wn

√
nwn

O(
√
nwne

−wn)

as required. The other integral mentioned is calculated in exactly the same

way, and so is not shown here. Since ewn ∼ n, this error term is suitably

small. �

Lemma 14. The final error term is∫ ∞
2

ϕ(wnx)x2neixzdx = O

(
e−ae

2wn

wn

)

=
ebwn−ae

wn

√
nwn

O(exp[−ae2wn + aewn − bwn]
√
n).

Proof. The expansion

ϕ(1 + x)(1 + x)2n = exp[−aewn + bwn − nwnx2 +O(nx2)]

cannot be used here as the error term tends to infinity. Instead, the integral

is ∫ ∞
2

ϕ(wnx)x2neixzdx

=

∫ ∞
2

e−ae
wnx+bwnx+2n log(x)+ixzdx.

The behaviour of this integral is most influenced by the −aewnx term, and

so, since the result is only needed as an error term, the integral can be
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written as

= O
[∫ ∞

2
e−ae

wnx
dx

]
= O

[
1

wn

∫ ∞
e2wn

e−ax

x
dx

]
≤ O

[
1

wn

∫ ∞
e2wn

e−axdx

]
= O

[
e−ae

2wn

wn

]
.

Comparing this to the main term, this is

=
ebwn−ae

wn

√
nwn

O(e−ae
2wn+aewn−bwn√n)

as required. �

9.3. The complete integral. We can now combine all the terms, to give[∫ 1−un

0
+

∫ 1+un

1−un
+

∫ ∞
1+un

]
ϕ(wnx)x2neixzdx

=

√
πeizebwn−ae

wn

√
nwn

(
1 +O(w−3

n ) +O(
√
nwne

−wn)

+O
(
e−ae

2wn+aewn−bwn√n
))

=

√
πeizebwn−ae

wn

√
nwn

(
1 +O(w−3

n )
)
,

and, remembering that

f (2n)(Cnz) = (−1)nw2n+1
n Λ2n

∫ ∞
0

ϕ(wnx)x2neixzdx

the function can now be written as

f (2n)(Cnz) =
(−1)nw2n

n

√
πeizebwn−ae

wn
Λ2n

√
n

(
1 +O(w−3

n )
)
.

Remembering also that

ΞF

(
z − Θ

Λ

)
=| B | (eiθf(z) + e−iθf(−z))
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shows that

Ξ
(2n)
F

(
Cn(z − Θ

Λ
)

)
=
| B | (−1)nw2n

n

√
πebwn−ae

wn
Λ2n

√
n

(ei(z+θ) + e−i(z+θ))(1 +O(w−3
n ).

and so setting the sequence

An =

√
neae

wn−bwn(−1)n

2 | B | w2n
n

√
πΛ2n

means that

AnΞ
(2n)
F

(
Cn(z − Θ

Λ
)

)
= cos(z + θ)(1 +O(w−3

n ))

and so

lim
n→∞

AnΞ
(2n)
F

(
Cn(z − Θ

Λ
)

)
= cos(z + θ)

where

Θ = Im(
∑
j

µj) = Im(M)

and

θ = arg(B)

as required. �

10. Analysis of error terms and series

In this section, the sequences An and Cn are studied, as well as the error

term w−3
n .

The following chapter is dedicated to discussing how the plots are gen-

erated, but it is important to mention them here. All the plots are of 4n

derivatives, so that they look similar to each other (f(0) > 0). Additionally,

all the plots are of derivatives of the Riemann Xi-function. This is because

trying to calculate the Xi-functions for L-functions proved impossible with

the computing power I had. Up to 100 derivatives, the plots are generated

by approximating derivatives using the function evaluated at points. This

means that the plots are of Ξ(4n)(z). The differences are mostly in the y-

axis, but it is also important to note that the zeros are still moving towards

the origin for these plots.



85

For more than 100 derivatives, a different method of approximating deriva-

tives is used, one which uses the integral representation. This means that

the plots here do include the Cn, and are plotting

Ξ(4n)(Cnz)2
4n

w4n+1
n

,

which does scale the zeros, but doesn’t scale the y-axis completely. However,

these plots can be used to see how the error term shrinks.

The sequence Cn determines the behaviour of the zeros, other than them

becoming more evenly spaced out. Because the density of zeros of L-

functions is an increasing function, repeatedly differentiating the function

causes the zeros to move towards the origin (while still being evenly spaced

out). The sequence

Cn =
1

Λwn
≈ 1

Λ log(n)

shows that the zeros move very slowly towards the origin. In the interval

(0, 20), there is one zero of the Riemann Xi-function, compared with 8 zeros

of the 100th derivative.The time taken to calculate plots of higher numbers

of derivatives using this method became too time-consuming, and so I had

to find an alternative method, which does not show this behaviour.

5 10 15 20

0.1

0.2

0.3

0.4

0.5

5 10 15 20

-0.0004

-0.0002

0.0002

0.0004

Figure 7. A comparison of the Riemann Xi function at 0
and 100 derivatives (no scaling)

Looking at these plots, it is also possible to see that the error term (w−3
n )

is also slowly decaying, although at a faster rater than the movement of

zeros towards the origin.

A plot of the Xi-function after 1,000 derivatives looks very similar to one

of 100 derivatives
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5 10 15 20

-2.×10-21

-1.×10-21

1.×10-21

2.×10-21

5 10 15 20

-1.×10-115

-5.×10-116

5.×10-116

1.×10-115

Figure 8. A comparison of 100 and 1,000 derivatives of the
Riemann Xi function (with scaling)

and the main difference here is that the decay of the function is much less

noticeable. Comparing the 1,000 derivatives with the cosine function

5 10 15 20

-1.×10-115

-5.×10-116

5.×10-116

1.×10-115

5 10 15 20

-1.0

-0.5

0.5

1.0

Figure 9. A comparison of 1,000 derivatives of the scaled
Riemann Xi function and the cosine function

we can see that the differences are very minimal.

The An term dictates how large the derivatives of Ξ and ΞF can get.

Recalling that

An =

√
neae

wn−bwn(−1)n

2|B|w2n
n

√
πΛ2n

≈ (−1)n

2
√
π|B|

exp

[
aewn − bwn − 2n log(wn) +

1

2
log(n)− 2n log(Λ)

]
.

This eventually tends to 0 since the largest term here is the −2n log(wn).

Therefore, the size of the derivatives of Ξ(Cnz) and ΞF (Cn(z−Θ/Λ)) grows

as the number of derivatives taken increases. This is difficult to see in prac-

tice, since the first 100 derivatives are of Ξ(z), without the Cn term.

Higher derivatives are calculated in a different way, and so plots of more

than 100 derivatives are of
Ξ(4n)(Cnz)

w4n
n Λ4n

.
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This will (excepting scaling of the y axis) tend to the cosine function due to

the Cn term in the Xi function. However, the scaling of this function is not

An, and so the scaling is not of the right form to really examine the scaling

An in any practical way.

The methods used to calulate these plots are discussed in more detail in

the following chapter; a brief overview is provided here to understand the

limitations of the plots shown.
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Chapter 3

11. Introduction

Pictures are a useful way to visualise maths. However, differentiating the

Ξ-function and the ΞF -functions directly is difficult, due to the exponential

decay. Using Mathematica directly to plot derivatives only works for the

first few derivatives, before inaccuracies start appearing. Explicitly telling

Mathematica to work to a higher accuracy by using finite differences works

for more derivatives, until the errors caused by subtracting very similar num-

bers starts to play too large a part.

An alternative is to realise that rather than differentiating, it is possi-

ble to calculate the derivatives using the same method used to calculate

the result analytically; by differentiating the Fourier Transform and then

calculating the integral. This can be done using the trapezium rule, or

alternatively, DENIM(Double Exponential Numerical Integration Method).

This is a more accurate method of approximating integrals by rescaling the

integrand to reduce the error term significantly. This method will only work

for larger numbers of derivatives, as the error term associated with the ϕ(u)

plays a roll here and must be suitably small.

All the pictures used in this section are of 4n derivatives. This is so that

all the pictures look similar with f(0) > 0, so that they can be reasonably

compared to each other. All plots generated are of derivatives of the Rie-

mann Xi function, as the accuracy needed to plot derivatives of ΞF functions

required more computer memory than was available to me.

It is also important to note what is being plotted here. In the previous

chapter, it was shown that

lim
n→∞

AnΞ(2n)

(
Cn(z − Θ

Λ
)

)
= cos(z + θ)

and so, on one level it would make sense to plot

A2nΞ(4n)(Cn(z − Θ

Λ
)).

However, it is more natural to use Mathematica to plot

Ξ(4n)(z)



89

up to 100 derivatives. This is because the approximations of the deriva-

tives use the function to be differentiated— in this case Ξ(z). Beyond 100

derivatives, the method changes to approximate the integral∫ ∞
0

ϕ(w2nt)t
4n(eitz + e−itz)dt

and this is an approximation to
√
neae

wn−bwn

2|B|
Ξ(4n)(Cnz).

Because of the error term in

ϕ(wnt) = e−ae
wnt

ebwnt(1 +O(w−3
n ))

the DENIM method can only be used for large numbers of derivatives. The

main difference of including the Cn term means that comparing plots of

less than and more than 100 derivatives can be misleading. However, being

aware of this mitigates the effect. The other difference, that the scaling of

the plots is much less obvious as that only scales the vertical axis and can

be ignored.

12. Differentiating using Mathematica

Using Mathematica’s inbuilt differentiate command is problematic due to

the Ξ-function being defined as a product. This means that the derivatives

of it are a sum of similar terms. This has two main issues— firstly that

Mathematica thinks that the derivatives aren’t real(see fig 10). This prob-

lem can be solved by plotting the real part of the derivatives.

The second problem is that beyond the eighth derivative, the real part

of sums of similar terms becomes inaccurate due to rounding errors. It can

easily be seen that fig 12 which is of the plot of the twelfth derivative of the

Ξ-function has errors near the origin, and these errors become more intru-

sive the more derivatives are taken.

These problems mean that an alternative method of plotting the deriva-

tives must be found for higher derivatives, one where the accuracy can be

explicitly controlled to deal with rounding errors.
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5 10 15 20

-1.×10-16

-5.×10-17

5.×10-17

1.×10-16

1.5×10-16

Figure 10. A plot of what Mathematica thinks the imagi-
nary part of the fourth dervative of Xi is

5 10 15 20

-0.00010

-0.00005

0.00005

0.00010

0.00015

Figure 11. A plot of the real part of the eighth derivative
of Xi as calculated by Mathematica

13. Numerical Approximation

If a function cannot be differentiated analytically, one alternative is to

numerically approximate it [17]. The commonly mentioned

f ′(x) ≈ f(x+ h)− f(x)

h

can easily be extended to

dmf(x)

dxm

∣∣∣∣
x=x0

≈
n∑
v=0

δmn,vf(αv)
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-0.00002

-0.00001

0.00001
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Figure 12. A plot of the real part of the 12th derivative of
Xi as calculated by Mathematica

where αv are distinct and n > m. Calculating the recursive formula for δn,v

starts with defining

wn(x) =

n∏
k=0

(x− αk)

and

Fn,v(x) =
wn(x)

w′n(αv)(x− αv)
.

Since

Fn,v(αv) = 1

and

Fn,v(αk) = 0, k 6= v

this can be used as a Lagrange multiplier, so

p(x) =
n∑
v=0

Fn,v(x)f(αv).

where f is any function and p is the polynomial approximation to f . Dif-

ferentiating both sides then gives

dmp(x)

dxm

∣∣∣∣
x=x0

=

n∑
v=0

dmFn,v(x)

dxm

∣∣∣∣
x=x0

f(αv)

and therefore

δmn,v =
dmFn,v(x)

dxm

∣∣∣∣
x=x0

,
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and the dependence of the RHS for x0 will be entirely dependent on the

f(αv) term. Using Taylor series gives

Fn,v(x) =

n∑
m=0

δmn,v
m!

xm

and so a recursive formula for δmn,v can be found from using the original

definition for Fn,v(x) to find a recursive formula for that. Remembering

that

wn(x) =

n∏
k=0

(x− αk)

= (x− αn)wn−1(x)

so therefore

w′n(x) = wn−1(x) + (x− αn)w′n−1(x),

and, for v 6= n

w′n(αv) = (αv − αn)w′n−1(αv).

Therefore,

Fn,v(x) =
wn(x)

w′n(αv)(x− αv)

=
(x− αn)wn−1(x)

(αv − αn)w′n−1(αv)(x− αv)
, n 6= v.

For v = n, using

w′n(αn) = wn−1(αn)

and

wn−1(x) = (x− αn−1)wn−2(x),

we get that

Fn,n(x) =
wn(x)

w′n(αn)(x− αn)

=
wn−1(x)

wn−1(αn)

=
(x− αn−1)wn−2(x)wn−2(αn−1)

wn−1(αn)wn−2(αn−1)

=
(x− αn−1)wn−2(αn−1)

wn−1(αn)

wn−2(x)

wn−2(αn−1)

=
(x− αn−1)wn−2(αn−1)

wn−1(αn)
Fn−1,n−1(x).
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Using these two results for F , along with the Taylor series means that it is

possible to find a recursive formula for δmn,v. Firstly for v 6= n, the functions

are

Fn,v(x) =
x− αn
αv − αn

Fn−1,v(x)

=
n∑

m=0

δmn,v
m!

xm.

Therefore

n∑
m=0

δmn,v
m!

xm =
1

αv − αn

n∑
m=1

δm−1
n−1,v

(m− 1)!
xm − αn

αv − αn

n−1∑
m=0

δmn−1,v

m!
xm,

which is the same as

δmn,v =
1

αn − αv
(αnδ

m
n−1,v −mδm−1

n−1,v).

In the case v = n, we have

Fn,n(x) =
(x− αn−1)wn−2(αn−1)

wn−1(αn)
Fn−1,n−1(x)

=

n∑
m=0

δmn,n
m!

xm,

which, upon rearranging becomes

n∑
m=0

δmn,n
m!

xm =
wn−2(αn−1)

wn−1(αn)

[
n∑

m=1

δmn−1,n−1

(m− 1)!
xm − αn−1

n−1∑
m=0

δmn−1,n−1

m!
xm

]
so

δmn,n =
wn−2(αn−1)

wn−1(αn)

[
mδm−1

n−1,n−1 − αn−1δ
m
n−1,n−1

]
.

Therefore, it is easy to see that these recursive formulas depend upon M,N,

and αv, where M is the maximum number of derivatives to be calculated,

and N the maximum value of n used in the sum. We must have that N > M .
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Figure 13. A plot of the 100th derivative of Xi without zero
scaling

The maximum number of derivatives to be calculated must be agreed

upon ahead of time, or save the calculated δn,v to insert into the formula

later on. However, the size of N must be decided at the start, and this

necessarily limits the choice for M .

These values of δmn,v are the best possible, and naturally, the more terms

which are used will make this more accurate. However, this must be balanced

against the error terms which arise from subtracting very similar numbers

from each other. I used this method to approximate the first 100 derivatives

for the Riemann Xi-function.

By choosing which points to plot ahead of time, the term (x−αn) can be

simplified in the calculations, thereby making the terms easier to calculate

and save, as they are constants rather than variables which depend on x.

In the particular case I was using them for, this also meant that the zeta

function only needed to be calculated to a high degree at points, rather than

being treated as a function.

By setting the αv to depend upon x0, the δn,v are all constants, which

makes using this as a method of plotting derivatives much easier. In order

to do this, it makes sense to have the x0 = δn,0, and then alternate so that

δn,2v = x0 − vε
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Figure 14. A plot of the 101st derivative of Xi without zero
scaling

and

δn,2v+1 = x0 + (v + 1)ε

where ε is the desired gap between points.

This method starts to take an unreasonable amount of time to calculate

the δmn,v terms for m > 100, and so I sought an alternative. Rather than

differentiating the function, as I had been doing for m < 100, I used the

integral calculated in chapter 2 to generate the plots.

All the plots used in chapter 2 are of 4n derivatives of the Xi function,

so they all look similar enough to compare to each other. Therefore, in

order to check that the plots are of 4n derivatives, rather than some other

approximation to the cosine function, we include here the approximation to

the 101st derivative.

14. DENIM

14.1. General Method. DENIM(Double Exponential Numerical Integra-

tion Method) [35] [21] is a method which allows integrals to be approximated

more accurately than the trapezium method. This is done by converting the

integrand so it is O(e−e
x
), and therefore decays very rapidly.
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In order to use this method, the integral to be evaluated must be of the

form ∫ s

−1
f(x)dx

where −1 < s < 1 and f(x) must be analytic in the open interval (−1, 1) and

must decay exponentially as |x| → ∞. Many different changes of variable

can be used, which can affect the final error term. The transform [35]

x = φ(t) = tanh
(π

2
sinh t

)
is commonly used as the derivative

φ′(t) =
π cosh t

2 cosh2(π sinh t/2)
= O

(
exp

(
−π(1− ε)

2
m exp |t|

))
.

Plotting φ(t) and φ′(t) (fig 15) illustrates that the derivative decays double

exponentially fast, which is the key requirement of this method.

-4 -2 2 4

-1.0

-0.5

0.5

1.0

(a) φ(t)

-4 -2 2 4

0.2

0.4

0.6

0.8

(b) φ′(t)

Figure 15. φ(t) and φ′(t)

The integral then becomes∫ s

−1
f(x)dx =

∫ τ

−∞
f(φ(t))φ′(t)dt =

∫ τ

−∞
u(t)dt,

where

τ = φ−1(s).

It is possible to create an infinite series expansion for u(z) [21] under the

following conditions:

(1) u(z) is analytic in some interval |y| < d

(2) The integral
∫∞
−∞ |u(x± i(d− ε)|dx is bounded in ε

(3) The integral
∫ d−ε
−d+ε |u(x+ iy)|dy is bounded in x
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These conditions are needed as the series comes from calculating the contour

integral
1

2πi

∫
Cn,ε

u(z)dz

(z − t) sin(πz/h)

where the contour Cn,ε is a rectangle with corners at x = ±(n+ 1/2)h, y =

±(d− ε), so that u(z) is analytic within the whole rectangle (condition 1).

This integrand and contour are chosen so that the conditions listed above

mean that the integral is bounded. The denominator is chosen so that the

residue theorem produces an infinite sum linking u(t), which is the desired

result with u(kh), which means that when the function u(t) is integrated,

the right hand side does not include the integral of u.

Beginning with the residue theorem, the singularities occur at z = t, and

at z = kh, where −n ≤ k ≤ n is an integer. The residues for these singu-

larities are u(t)/ sin(πt/h) and (−1)ku(kh)h/π(kh − t) respectively. Using

these, we have that

1

2πi

∫
Cn,ε

u(z)dz

(z − t) sin(πz/h)
=

u(t)

sin(πt/h)
+

n∑
k=−n

(−1)ku(kh)h

π(kh− t)

which can be rearranged to give

u(t) =
n∑

k=−n

(−1)ku(kh)h sin(πt/h)

π(t− kh)
+

sin(πt/h)

2πi

∫
Cn,ε

u(z)dz

(z − t) sin(πz/h)

=
n∑

k=−n
u(kh)

(−1)k sin(πt/h)

πt/h− πk
+

sin(πt/h)

2πi

∫
Cn,ε

u(z)dz

(z − t) sin(πz/h)

=

n∑
k=−n

u(kh)
sin(πt/h− πk)

πt/h− πk
+

sin(πt/h)

2πi

∫
Cn,ε

u(z)dz

(z − t) sin(πz/h)

=

n∑
k=−n

u(kh) sinc

(
πt

h
− πk

)
+

sin(πt/h)

2πi

∫
Cn,ε

u(z)dz

(z − t) sin(πz/h)

where

sinc(x) =
sin(x)

x
and

(−1)k sin(πt/h) = sin(πt/h− kπ)

is an extension of

− sin(x) = sin(x− π).
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The third condition specified earlier states that∫ d−ε

−d+ε
|u(x+ iy)|dy

is bounded. Therefore, the two vertical integrals must tend to 0 as n (and

consequently x) →∞. The two horizontal integrals can be written as

I± =

∫ ∞
−∞

u(x± i(d− ε))dx
(x− t± i(d− ε)) sin(π(x± i(d− ε))/h)

and therefore we have that

u(t) =
n∑

k=−n
u(kh) sinc

(
πt

h
− πk

)
+

sin(πt/h)

2πi
(I− − I+) .

The error terms here are the two integrals I− and I+. These are suitably

small, from the conditions imposed upon u, but it becomes easier to deal

with them after integrating over the interval (−∞, τ) to give∫ τ

−∞
u(t)dt =

n∑
k=−n

u(kh)

∫ τ

−∞
sinc

(
πt

h
− πk

)
dt

+
1

2πi

∫ τ

−∞
sin

(
πt

h

)
(I− − I+)dt.

For the first integral, we have that∫ τ

−∞
sinc

(
πt

h
− πk

)
dt =

∫ τ

−∞

sin(πt/h− πk)

πt/h− πk
dt

=
h

π

∫ 0

−∞

sin(x)

x
dx+

h

π

∫ πτ/h−πk

0

sin(x)

x
dx

=
h

2
+
h

π
Si
(πτ
h
− πk

)
.

The error integrals I± are bounded, and so the order of integration can be

swapped around, to give

1

2πi

∫ ∞
−∞

u(x± i(d− ε))
sin(π(x± i(d− ε))/h)

∫ τ

−∞

sin(πt/h)

x− t± i(d− ε)
dtdx.

The inner integral can be approximated by∫ τ

−∞

sin(πt/h)

x− t± i(d− ε)
dt =

h

π

∫ πτ/h

−∞

sin(y)

x− hy/π ± i(d− ε)
dy

= O(h),
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and the outer, which is now independent of the inner, can be approxuimated

by ∣∣∣∣ 1

2πi

∫ ∞
−∞

u(x± i(d− ε))dx
sin(π(x± i(d− ε))/h)

∣∣∣∣ .
The denominator of this integrand can be approximated by

| sin
(π
h

(x± i(d− ε))
)
| > sinh

(
π(d− ε)

h

)
≥ 1

2
eπ(d−ε)/h

so we have that this integral can be approximated by

e−π(d−ε)/h

πi

∫ ∞
−∞

u(x± i(d− ε))dx.

Remembering that this integral must be bounded (condition 2), we therefore

have that the error term is

O(he−πd/h)

and the equation is∫ τ

−∞
u(t)dt = h

∞∑
k=−∞

u(kh)

(
1

2
+

1

π
Si
(πτ
h
− πk

))
+O(he−πd/h).

Since it is impossible to calculate an infinite sum, it must be truncated at

some point N . The error associated with truncating at this point is

O(he−αNh)

where α is a constant such that

f(x) = O(e−α|x|) as |x| → ∞.

Balancing the error terms gives the optimal place to truncate the sum is at

N =
πd

αh2

so that∫ τ

−∞
u(t)dt = h

N∑
k=−N

u(kh)

(
1

2
+

1

π
Si
(πτ
h
− πk

))
+O(he−αNh).

Remembering then that ∫ s

−1
f(x)dx =

∫ τ

−∞
u(t)dt

where

u(t) = f(φ(t))φ′(t)



100

so we therefore have that∫ s

−1
f(x)dx = h

N∑
k=−N

f(φ(kh))φ′(kh)

(
1

2
+

1

π
Si

(
πφ(s)

h
− πk

))
+O(he−αNh)

with

φ(t) = tanh
(π

2
sinh t

)
,

φ′(t) =
π

2
(1− tanh2(

π

2
sinh t)) cosh(t),

and

N =
πd

αh2

14.2. Modifying this method. This method as standard cannot be used

for the integral ∫ ∞
0

ϕ(wnt)t
2neixtdt

due to the limits, and the fact that the integrand already has double ex-

ponential decay. However, modifying the previous work does still allow the

integral of the function to be written as a sum of terms. Defining

u(t) = ϕ(wnt)t
2neixt,

where

ϕ(wnt) = e−ae
wnt

ebwnt

means that the integral

1

2πi

∫
Cn,ε

u(z)dz

(z − t) sin(πz/h)

can be calculated in the same manner. In order for the conditions on the

integrals of u to hold, it is required that d = π/2. Therefore, as before

u(t) =

∞∑
k=−∞

u(kh) sinc

(
t

h
− k
)

+
sin(πt/h)

2πi
(I− − I+),

which, upon integrating, becomes∫ ∞
0

u(t)dt =
∞∑

k=−∞
u(kh)

∫ ∞
0

sinc

(
t

h
− k
)

dt

+
1

2πi

∫ ∞
0

sin

(
πt

h

)
(I− − I+)dt.
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The second integral is bound in the same way as for the general DENIM

method, and so won’t be recreated here. The first integral is dealt with in

a similar way, but the result is significantly different.∫ ∞
0

sinc

(
t

h
− k
)

dt =

∫ ∞
0

sin(πt/h− πk)

πt/h− πk
dt

=
h

π

∫ ∞
−πk

sin(x)

x
dx

=
h

π

∫ 0

−πk

sin(x)

x
dx+

h

π

∫ ∞
0

sin(x)

x
dx

=
h

π
Si(πk) +

h

2

Combining this all into the integral gives∫ ∞
0

u(t)dt = h

∞∑
k=−∞

u(kh)

(
1

2
+

1

π
Si(πk)

)
+O(he−π

2/2h).

This needs to be truncated in the same was as before, and the optimum

value of N remains the same, so the function can be approximated by∫ ∞
0

u(t)dt = h
N∑

k=−N
u(kh)

(
1

2
+

1

π
Si(πk)

)
+O(he−π

2/2h)

where

N =
π2

2bwnh2

since, in this example,

d =
π

2

α = bwn

u(t) = ϕ(wnt)t
2neizt + ϕ(−wnt)t2ne−izt.

We can use the result that

u(t) = u(−t)
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so that∫ ∞
0

u(t)dt

≈ h
N∑

k=−N
u(kh)

(
1

2
+

1

π
Si(πk)

)

= h
N∑
k=1

u(kh)

(
1

2
+

1

π
Si(πk)

)
+ h

N∑
k=1

u(kh)

(
1

2
− Si(πk)

)
+
h

2
u(0)

=
h

2
u(0) + h

N∑
k=1

u(kh).

This is the trapezium formula, which is unsurprising since the integrand

already has double exponential decay. However, it is important to note that

this is only the case because of the reflection property u(t) = u(−t), and in

general, even for functions which decay double exponentially, the sin integral

term would still be involved.
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