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Abstract  

Oleaginous yeasts are very efficient in the accumulation of triacylglycerol, and are 

expected to be one of the most important feedstocks for the biofuel industry in the 

future. Lipid content can be enhanced through physiological stress or genetic 

manipulation. Debaryomyces hansenii NCYC102 was selected from three different yeast 

species (also including Yarrowia lipolytica NCYC476 and Cryptococcus curvatus 

NCYC2904) due to the highest neutral lipid content. The growth rate, osmolytes and 

neutral lipids were measured in cells grown under different concentrations (0, 0.8, 1.6 M) 

of NaCl. The maximum content of total osmolytes was found in 0.8 M NaCl YM medium. 

However, the highest level of glycerol was measured in 1.6 M NaCl grown cells. The main 

osmolytes identified by 1H NMR spectroscopy were glycerol, arabitol, glucose and 

trehalose. Debaryomyces. hansenii cells were grown in minimal medium with different 

carbon/nitrogen ratios using either glucose or glycerol as the sole carbon source along 

with ammonium sulphate as nitrogen source. Maximal neutral lipid production was 

observed in 48:0.5 glucose/ammonium sulphate ratio which achieved 1.4-fold increase 

compared with glycerol-based medium (8 glycerol: 0.25 ammonium sulphate).  GC-MS 

analysis of the transesterified fatty acids showed that palmitic, oleic and stearic acids 

were the main fatty acids present, under normal and stress conditions (high salt and 

limited nitrogen source). Deletion of the GUT2 encoding for G3P dehydrogenase 

increased neutral lipid production up to a 1.4-fold compared to wild type strains. The 

mutant strains displayed slightly higher cell densities in medium with glucose when 

compared with wild type strains, while they failed to grow on glycerol as a sole carbon 

source.  

Collectively, these results indicate that D. hansenii is a good organism to produce biofuels 

as it has an intrinsic ability to accumulate neutral lipids and this can be further enhanced 

by genetic and metabolic engineering.  
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1. Literature Review 

1.1. Introduction: 

With the expected deterioration of oil supplies around the world and rapid growth in the 

price of crude oil, due to population growth and industrialization, there is greater 

understanding of the environmental effects of fossil fuels.  In recent years, this 

recognition has attracted researchers’ interested in transportation biofuels, e.g. (Soriano 

et al., 2006, Tsigie et al., 2013). Moreover, emissions of fossil fuel are thought to be a 

major contributor to global warming (IEA, 2008). To resolve these serious problems, such 

as the deteriorating situation of the energy supply around the world, considerable 

attention has been directed towards alternative renewable biofuels (Hill et al., 2006).  

 

In the last 20 years, metabolic engineering has developed as a major approach to enhance 

cell factories by genetic engineering. Traditionally, the improvement of product yield, 

product range, and substrate utilization with the aim to modify the metabolic pathways 

in the host microorganism, was the purpose of metabolic engineering (Christensen et al., 

2000). For production of transportation fuels, 55% of crude oil was used in 2008, (OPEC: 

World Oil Outlook, 2011). Other exhaustible sources that can be converted into 

transportation fuels, such as shale oil, shale gas, tar sands, natural gas (gas-to liquid) and 

coal (coal-to-liquid), cannot substitute traditional oil due to their limited reserves ((Buijs 

et al., 2013) and OPEC: World Oil Outlook, 2011) or problems with large green-house gas 

emissions associated with the process of conversion (Caspeta et al., 2013). With the need 

for developing a more sustainable society there is willingness to change from fossil fuels 

to biofuels, by using the concept of biorefineries (de Jong et al., 2012).  

 

The current energy crisis is expected to be relieved by the development of different 

biofuels as alternative, sustainable fuels (Schubert, 2006). Currently, bioethanol and 

biodiesel have been considered as the most widely biofuels used in industries. However, 

bioethanol is not considered as the perfect biofuel in the future because of its 
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incompatibility with the existing fuel infrastructure and low energy density 

(Stephanopoulos, 2007, Atsumi et al., 2008). Thus, there is great interest to replace this 

biofuel with alternatives, for example fatty acid esters i.e. biodiesel, that are compatible 

with the existing infrastructure and have been extensively tested as an alternative fuel on 

the market. In combustion properties, biodiesel is similar to petro-diesel, allowing it to 

work well in traditional diesel engines and making it fit into the existing fuel infrastructure 

(Demirbaş, 2002). In addition, in several ways biodiesel is better than petro-diesel, such 

as environmental friendliness, renewability, reduced emissions, improved lubricity, 

higher combustion efficiency, better safety, etc.  (Demirbas, 2007). In light of these 

demands, the production of biodiesel has been increasing continuously, with a 16 fold 

rise over the last 10 years, and was estimated to reach to around 4 billion gallons in 2009, 

mainly produced in the European Union and the USA (Brown, 2009). In 2006, it was 

reported that the overall biodiesel production in EU rose from 3.2 million tons in 2005 to 

about 4.9 million tons. This represents a 54% yearly increase for biodiesel production in 

EU, which follows a 65% record high growth in the previous year 2005. For biofuel 

production and consumption in EU Member States, it was reported that "between 2010 

and 2011 the consumption increased by 3%, which translates into 13.6 million tonnes of 

oil equivalent (toe) used in 2011 compared to 13.2 million tonnes in 2010 (European 

Technology and Innovation Platform (ETIP Bioenergy) 2016). Biodiesel production in the 

United States has also increased significantly in the last few years (Carriquiry, 2007). In 

order to replace the 2007 consumption of all transport fuels in the US, it was estimated 

that it would require the production of 0.53 billion m3 of biodiesel annually (Chisti, 2007). 

Consequently several large chemical and fuel companies have exhibited a high level of 

commercial interest in the production of advanced biofuels using cell factories, which is 

an indicator of the great commercial trust in successful and fast advanced biofuel 

production in the near future (de Jong et al., 2012). Studies by international organisations, 

biofuels associations, and independent consultants which made for global economic 

growth of biofuels production to 2020, indicated that US is currently considered the world 



4 
 

leader in biofuel investments with around $1.5bn in 2012 (European Technology and 

Innovation Platform (ETIP Bioenergy), 2017).  

Biodiesel, a non-petroleum based diesel fuel, is defined as alkyl esters of long chain fatty 

acids. In the presence of a suitable catalyst and alcohols, lipids (mainly 

triglycerides/triacylglycerols, TAGs) are converted into fatty acid methyl/ethyl esters 

(FAME/FAEE) which is the principal process of biodiesel production and is also known as 

transesterification. These catalysts may be either enzymatic or chemical (Bajpai and Tyagi, 

2006, Demirbas, 2008). For biodiesel production, major feedstocks used are based on 

either plant or animal materials. Both types face the problem of continuous availability in 

sufficient quantity for long periods. To solve this problem, we need to find a feedstock 

with higher lipid content and sufficient quantity. One possible solution, is to use 

microorganisms; in particular oleaginous species, due to their similar composition of fatty 

acids with plant and animal feedstock along with higher lipid content (Gohel et al., 2013). 

 

1.2. Oleaginous yeast as biodiesel producer 

As mentioned before, higher cost and lesser availability are the major obstacles with plant 

and animal based sources of biofuel. Comparatively cheaper feedstocks could solve the 

cost problem like waste oils and greases but again availability in sufficient amounts is the 

main problem (Vasudevan and Briggs, 2008). Due to their significant roles and specific 

characteristics, microbial oils, also called single cell oils (SCO), are lipids produced by 

oleaginous microorganisms that have been of potential interest to many researchers 

during the last decades (Ratledge, 1991). In fact, the typical and intensive source of TAGs 

is the biomass of oleaginous microorganisms which show similar composition of FAs and 

energy value of plant oils.  Lipid produced by oleaginous microorganisms have many 

characteristic features (short life cycle, less influence by venue, season and climate, and 

easy to scale-up) that can resolve many difficulties with plant oils, but can very 

importantly be produced from low cost feedstocks with high amount and productivity 

(Azócar et al., 2010, Liu and Zhao, 2007, Rossi et al., 2011). Compared to petroleum diesel, 
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this kind of biodiesel also exhibited less sulphur as well as CO in its content and it also 

lacks poly aromatic hydrocarbons (Bajpai and Tyagi, 2006).  

Oleaginous species are defined as; microorganisms that can accumulate lipid to higher 

than 20% of their biomass (Li et al., 2008). Several species of yeasts are considered as 

oleaginous, since they are able to synthesize and accumulate large amounts (up to 70%) 

of intracellular TAG, of their biomass weight. The study of oleaginous yeasts has a long 

history: their ability to accumulate lipids has been known from the 1970s, but research 

into the exploitation of SCO for biodiesel production has been focused on only in the last 

few years. They are widely distributed in all-natural ecosystems and represent a part of 

the microbiota, such as soils, freshwater and marine waters, as well as extreme 

environments, such as low temperatures, low oxygen availabilities, and oligotrophic 

oceanic waters (Butinar et al., 2007). The oleaginous yeast Cryptococcus curvatus 

(previously known as Apiotrichum curvatum ATCC 20509 and Candida curvata) was 

discovered at Iowa State University in 1978 (Moon and Hammond, 1978).  This yeast was 

mentioned as an effective oil producer and easy to grow with minimum nutritional 

requirements (Zhang et al., 2011). An important characteristic of C. curvatus, is the ability 

to utilize a large group of substrates such as glycerol and convert them into lipids that are 

stored as intracellular TAGs (accumulating up to 60% of its cellular dry weight) (Lee et al., 

1992, Meesters et al., 1996). 

Basidiomycetous yeasts strongly dominate among oleaginous yeasts, including most of 

the strains identified as lipid producers, although some important oleaginous species 

have been identified within Ascomycota as well (Ageitos et al., 2011). Certain 

Ascomycetous yeast, like species of the genus Lipomyces accumulate significant amounts 

of lipids (above 50% of CDM) (Ratledge and Wynn, 2002). The high ability of 

Debaryomyces hansenii (anamorph: Candida famata) to synthesize, accumulate and store 

lipids (up to 75% (w/w)) could be beneficial for both natural and artificial products 

through biotechnological production (Petersen and Jespersen, 2004).  All D. hansenii 

species are perfect, haploid yeasts, asexual reproduction by multilateral budding, 

whereas they reproduce sexually by heterogamous conjugation. A pseudomycelium is 
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absent, primitive or sometimes well developed (Nakase et al., 1998). It is widespread in 

nature and common in cheeses (Borelli et al., 2006, Cosentino et al., 2001, Vasdinyei and 

Deak, 2003) and high salt food products (Del Bove (Del Bove et al., 2009, Prista et al., 

2005). This yeast also shows a broad spectrum in assimilation of carbon sources (Yadav 

and Loper, 1999). Yarrowia lipolytica is related to the family Dipodascaceae (Kurtzman 

and Piškur, 2006), and has great potential for biofuel production (Beopoulos et al., 2009a, 

Beopoulos et al., 2009b). This organism has been well studied and is an obligate aerobe 

having the ability to produce key metabolites, which can often be secreted from the cells.  

These characteristics justify its use in industry, in molecular biology and in genetics 

studies. It is non-pathogenic and the Food and Drug Administration (FDA, USA) classified 

this organism as generally regarded as safe (GRAS). Besides, Y. lipolytica has been used in 

yeast dimorphism studies, due to the presence of an efficient transformation system for 

genetic engineering, and easy differentiation between its morphotypes (Coelho et al., 

2010). 

1.3. Biochemistry of lipid accumulation 

Lipid biosynthesis pathways do not differ significantly among oleaginous and non-

oleaginous fungi, compared to other eukaryotic organisms. The ability to synthesise and 

accumulate lipid mostly depends on the regulation of the biochemical pathways as well 

as the availability of essential precursors such as acetyl-CoA and malonyl-CoA, and 

reducing power in the form of NADPH. Most information on the biochemistry of lipid 

synthesis is from the yeast Saccharomyces cerevisiae (Kohlwein, 2010), that is not a lipid 

accumulator, and Y. lipolytica, which is a model species for biodiesel production, and is 

amenable to genetic manipulation (Beopoulos et al., 2009b).  Y. lipolytica can normally 

accumulate up to 40% lipids in the form of intracellular lipid bodies, which are mostly 

composed of TAGs. The accumulation of TAG may take place either from exogenous oil 

uptake or de novo biosynthesis from sugar substrates. Lipid accumulation is induced by 

nutrient limitation in the presence of excess carbon source (Tai, 2012). The oleaginous 

yeast C. curvatus can accumulate >60% storage lipid in terms of dry weight, with 44% 

saturated fatty acid, when it is grown under nitrogen-limiting conditions (Ratledge, 1982). 
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During the growth phase, nitrogen is crucial for protein and nucleic acid synthesis, while 

the carbon flux is divided between energetic and anabolic processes resulting in the 

synthesis of carbohydrates, lipids, nucleic acids and proteins. When nitrogen is exhausted, 

the growth rate slows down and the synthesis of proteins and nucleic acids is inhibited. 

The excess of carbon remains unutilized or converted into storage polysaccharides in non-

oleaginous species. In oleaginous species, it is preferentially channelled toward lipid 

synthesis, leading to the accumulation of TAG inside lipid bodies (Ratledge and Wynn, 

2002). Both organic and inorganic nitrogen sources can be used for yeast cultivation with 

varied impact on oil accumulation (Liu et al., 1999, Shi et al., 1997). 

 

Fatty acid biosynthesis pathway initially requires a constant supply of acetyl-CoA unit 

while at each elongation step it requires two carbons molecules supplied by malonyl-CoA 

unit. In oleaginous fungi, lipid accumulation does not take place under balanced nutrient 

conditions (Ratledge, 2002). Nitrogen exhaustion stimulates AMP-deaminase (Ratledge 

and Wynn, 2002), responsible to provide ammonium to the nitrogen-stressed cell. As a 

result, low concentrations of AMP in the mitochondria inhibit isocitrate dehydrogenase, 

which depends on the content of AMP (Figure 1.1) (Evans et al., 1983). The suppression 

of the isocitrate dehydrogenase slows down or blocks the conversion of isocitrate to α- 

ketoglutarate. In the mitochondrion, the isocitrate is rapidly converted into citrate by 

aconitase, and low concentrations of isocitrate are found (Evans et al., 1983). As a 

consequence of increasing citrate content inside mitochondria, citrate enters the cytosol 

interchangeably with malate by citrate/malate translocase. In the cytosol, citrate is split 

via ATP-citrate lyase (ACL) to acetyl-CoA and oxaloacetate (OAA) (Ratledge, 2004). ACL 

represents one of the key enzymes found specifically in oleaginous yeasts. This enzyme is 

formed from two subunits, encoded by ACL1 and ACL2, and is negatively regulated by 

exogenous FA. Acetyl-CoA carboxylase (ACC) then catalyses the first committed step of 

lipid biosynthesis, it produces malonyl-CoA by a condensation reaction of an acetyl-CoA 

with bicarbonate: 
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Acetyl-CoA + HCO-3 + ATP                    malonyl-CoA + ADP + Pi      Equation no. 1 

 

ACC is also a key enzyme in de novo FA synthesis, since mutant strains with ACC1 gene 

maintain low levels of ACC  activity or became FA auxotrophs strain (Tehlivets et al., 2007). 

Control of ACC1 is by allosteric activation with citrate (Figure 1.1). The figure 

demonstrated that two molecules of NADPH are required for each elongation step of the 

acyl chain. The main sources are the pentose phosphate pathway and the 

transhydrogenase cycle, which converts NADH into NADPH through multiple reactions 

catalyse by pyruvate carboxylase (PC), malate dehydrogenase (MDH), and malic enzyme 

(ME) as follows.  

 

 

                               Pyruvate + CO2 + ATP                     oxaloacetate + ADP + Pi (PC) 

 

Oxaloacetate + NADH                     Malate + NAD+ (MDH) 

 

Malate + NADP+                     pyruvate + CO2 + NADPH (ME) 

__________________________________________________ 

NADH + NADP+                      NADPH + NAD+ 

 

Malic enzyme was also considered as key enzyme in lipid accumulation. This enzymes has 

been discovered in several oleaginous fungi (Ratledge, 2002). In Mortierella circinelloides, 

overexpression of ME improved lipid accumulation (Zhang et al., 2011), whereas 

overexpression of the homologous ME in Y.  lipolytica had no effect.   
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Figure 1.1. The biosynthesis of lipid as a consequence of nitrogen limitation and excess of  

carbon source. Adapted from (Ratledge, 2004). 

 

 

The main fatty acids found in yeast oils are myristic acid, palmitic acid, stearic acid, oleic 

acid, linoleic acid, and linolenic acid, which are the final products of fatty acids (FAs). With 

the catalysis by lipase or chemical catalyst with glycerol or sterols, such yeast oils can be 

used as oil feedstocks to produce triacylglycerol (TAG) and steryl-esters (SE), respectively 

(Li et al., 2007a, Liu and Zhao, 2007). The neutral lipids SE and TAG, formed in oleaginous 

fungi, are stored inside the lipid bodies (LB). TAGs are predominantly formed by 

successive acylation of glycerol-3-phosphate (G3P), carried out through acyl transferases 

(Figure 1.2). Glycerol-3-phosphate (G3P) is synthesized from glycerol via glycerol kinase 

or from dihydroxyacetone phosphate (DHAP) via G3P dehydrogenase, in a reversible 

reaction. Both G3P and DHAP can be utilized as acyl-group acceptors by S. cerevisiae. In 
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most oleaginous yeasts, neutral lipid of lipid bodies (LBs) mostly consist of TAG, while a 

small fraction is made up of steryl esters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Neutral lipids are in the core of LB, surrounded by a phospholipid monolayer in which 

several proteins are embedded (see Figure 1.3). These proteins exert a main role in lipid 

biosynthesis and trafficking of substrate. When required, storage lipids are mobilized via 

triacylglycerol lipases and steryl ester hydrolases, from this compartment. The 

  Figure 1.2.  Triacylglycerol  synthesis Pathway, adapted from (Czabany et al., 2007):  Glycerol-3- phosphate (G3P) is 

either synthesis from glycerol via glycerol kinase or from dihydroxyacetone phosphate (DHAP) via G3P 

dehydrogenase. Lysophosphatidic acid (LPA), also named 1-acyl G3P is formed by the addition of first acyl group or 

by reduction of acyl-DHAP via the activity of a NADPH dependent reductase. Following step, 1, 2-diacyl G3P 

(phosphatidic acid, PA) compound formed after addition of another acyl group catalysed by a second 

acyltransferase.  The next compound in TAG synthesis is diacylglycerol (DAG) formed after removing phosphate 

from PA by the activity of phosphatidate phosphatase. In the last step DAG can be either precursor of TAG or 

directed toward the formation of phospholipids 
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degradation products serve as energy sources and/or building units for membrane 

formation. FA hydrolyzed from TAG or SE is either channelled to the peroxisome, where 

β-oxidation takes place, or to the synthesis of phospholipid (Rossi et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4. Adaptation to salt stress in salt- tolerant strains of yeast 

Natural ecosystems that are identified by human standards as extreme environments 

(e.g., high or low acidic, alkaline, temperature, and salinity), are predominant with simple 

forms of life such as microorganisms, which have the capability to survive  in these 

ecological regions (Galinski and Trüper, 1994). In industries, yeast fermenters can be 

effected by a number of a biotic and non-biotic stress conditions that may interfere with 

 
Figure 1.3.  Schematic diagram of lipid bodies biogenesis from the membrane of the endoplasmic reticulum  

(ER) adapted from (Czabany et al., 2007). TAG and SE accumulate between the two leaflets of the 

phospholipid bilayer (i to iii). The micro-droplet generated (iii, iv) evolve to lipid bodies (v). 
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their functions and thus the progress of fermentation (Albertyn et al., 1994). Salinity is a 

major environmental parameter that attracted more researchers, due to the protective 

strategies that are used by the cells for salt tolerance, which may have important 

commercial applications (Galinski and Trüper, 1994). Kushner (1978) classified organisms 

into three groups depending on the range of the salinity:  Slight halophiles (with optimal 

growth at about 3% w/v NaCl, such as marine organisms), moderate halophiles (between 

3-15% w/v salt), extreme halophiles (grow in condition higher than 12% w/v salt) 

(Kushner, 1978). According to this classification, the yeast D. hansenii is described as 

moderately halophilic, because the optimal growth of this species was at 3-5% w/v salt 

(Breuer and Harms, 2006).  

 

Under osmotic stress a number of physiological changes take place within yeast cells, 

including: efflux of intracellular H2O and cell volume reduction, (Albertyn et al., 1994), 

temporary increases in glycolytic intermediates (Allison et al., 1999), accumulation of 

cytosolic glycerol, and stimulation of the hyper osmotic glycerol (HOG) signalling pathway 

(Bellinger and Larher, 1988). Concerning osmotic stress such as salt stress, a 

microorganism like the yeast S. cerevisiae develops systems to face this effect 

(Andreishcheva et al., 1999), Salt stress results in two different phenomena which are ion 

toxicity and osmotic stress (Mager and Siderius, 2002). Defence responses to salt stress 

are based on osmotic regulation through the synthesis of osmolytes and cation transport 

systems for sodium exclusion (Yancey, 2005). The exposing of yeast cells to hyper osmotic 

environment results in rapid dehydration and inhibition of cell growth (Yale and Bohnert, 

2001).  Under these conditions, cellular reprogramming or adaptation, that includes the 

accumulation of intracellular osmolytes to balance the internal osmotic pressure with the 

external environment, represents the major defence against these factors (Gacto et al., 

2003). In yeast cells certain osmolytes act as compatible solutes e.g. polyols (particularly 

glycerol), amino acids (e.g. proline), trehalose and glycogen are accumulated 

intracellularly (Butinar et al., 2005). They might make up 25% of the dry cell mass 

depending on environmental conditions (Herdeiro et al., 2006). Due to these osmolytes, 



13 
 

the osmolarity is increased in the cells, which enables them to retrieve water from the 

medium in an efficient way. Most microorganisms tend to use one major compatible 

solute, but may also accumulate other compatible solutes to a lesser degree. For instance, 

the yeast S. cerevisiae produces mainly glycerol but under different levels of stress may 

also produce glycogen and trehalose (Tamás and Hohmann, 2003). Sodium chloride (NaCl) 

is the most common compound used in experiments to create hyperosmotic stress. It has 

been found that the glycerol concentration inside the cell increases in parallel with the 

external concentration of NaCl. In general, the increase in intracellular concentration of 

glycerol is due to increasing glycerol production, increasing the retention by cytoplasmic 

membranes, decreasing the dissimilation of glycerol or taking up glycerol from the 

environment (Parrou et al., 1997, Posas et al., 2000) 

 

During glycolysis, glycerol is formed by the reduction of dihydroxyacetone phosphate to 

G3P via glycerol 3-phosphate dehydrogenase (GPD) (Reed et al., 1987, Parrou et al., 1997, 

Posas et al., 2000). Under osmotic stress, increasing the level of glycerol takes place due 

to the rise in the GPD activity. Higher osmotic stress also induces the H+-ATPase in plasma 

membrane (Nishi and yagi, 1993, Watanabe et al., 1993), and the Na+/H+ antiporter that 

uses the proton electrochemical gradient on the plasma membrane as the driving force 

to remove the excessive intracellular Na+ ions (Jia et al., 1992, Nishi and Yagi, 1995). 

 

 Y. lipolytica is a yeast species known for its ability to grow in the presence of high 

concentration of NaCl, it responds to salt stress by using the same principles of 

osmoregulation, which have been outlined above. In this species, the higher salinity of 

the growth medium (9% NaCl = 1.5 M NaCl) enhanced the accumulation of intracellular 

glycerol and a small but reproducible increase in the intracellular Na+ concentration. 

Furthermore, rapid accumulation of free amino acids also accompanied the salt stress 

(Andreishcheva et al., 1999). On the other hand, the yeast species C. curvatus which is 

frequently found in marine water (Atlas and Bartha, 1981), accumulated trehalose in 
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response to osmotic stress when the yeast cells were grown in the presence of 1.5 M NaCl 

(Tekolo, 2007). 

1.5. The role of glycerol in osmotic regulation 

Glycerol is an industrial alcoholic, slightly sweet compound that is used in different 

applications in the food, beverage, chemical and pharmaceutical industries. This nontoxic 

trihydroxy alcohol is soluble in polar solvents such as water, whereas it is insoluble in non-

polar organic solutions. In S. cerevisiae studies demonstrated that glycerol has effective 

roles in some physiological processes such as resistance towards osmotic stress, 

regulating the level of cytosolic phosphate and maintaining the NAD+/NADH intracellular 

redox balance (Blomberg and Adler, 1992, Scanes et al., 1998a, Hohmann, 1997). The 

manipulation of S. cerevisiae to increase or decrease the glycerol production can be 

achieved by either optimizing the growth conditions (nutrients and other environmental 

conditions) which can regulate the yield of glycerol for example the nitrogen source, 

temperature, as well as the osmotic stress. Alternatively, this can be achieved by genetic 

modification approaches. Osmotic stress is the most common environmental factor that 

can affect yeast cells, therefore it is essential for the cell to develop mechanisms to 

withstand osmotic stress conditions (Scanes et al., 1998a). The osmotolerant yeast D. 

hansenii is commonly found in natural saline habitats ranging from sea-water (Norkrans, 

1966) to concentrated brines (ŌNishi, 1963).  Research noted that yeast cells displayed 

the ability to regulate their internal solute concentrations, as the water potential of the 

extracellular environment fluctuated greatly, allowing the maintenance of turgor 

pressure and metabolic functions. Under osmotic stress conditions, surplus sodium ions 

are excluded whereas potassium ions are accumulated inside the cell (Norkrans and Kylin, 

1969, Hobot and Jennings, 1981). In high salinity, the Na+/K+ content is not enough to 

maintain osmotic equilibrium inside the growing cell visa à vies the environment. Several 

research papers connect the survival of the cells under such stress conditions with the 

accumulation of an organic solute, particularly glycerol (Gustafsson and Norkrans, 1976, 

Gustafsson, 1979, Adler and Gustafsson, 1980, Adler et al., 1985, Nobre and Costa, 1985). 

Glycerol works as a compatible solute (Brown, 1978, Yancey et al., 1982) to raise the 
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internal osmotic pressure without interfering with the structure and function of 

intracellular macromolecules. (Lowry and Zitomer, 1984) reported that in medium with 

glucose as a carbon source, the aerobic production of glycerol take place resulting in 

respirofermentative growth. This means the cell requires glycerol production to maintain 

the redox balance when respiration is inhibited by glucose and oxygen limitation. 

Interestingly some research reported that the production of glycerol was higher in 

minimal medium than in enriched medium, as intracellular formation of amino acids from 

ammonia and glucose leads to an increased the accumulation of NADH which is then re-

oxidised to NAD+ through the formation of glycerol (Albers et al., 1996)  (Figure 1.4). This 

observation is correlated with the maintenance of the redox balance and has been 

supported by the inability of mutant cells to synthesise glycerol when grown in an 

anaerobic environment as well as by the intracellular accumulation of NADH (Ansell et al., 

1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.4. Simplified scheme for the formation of reducing equivalents in the biosynthesis of amino 

acids Adapted from (Jones and Fink, 1982, Gancedo and Serrano, 1989) 
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Radler and Schütz (1982) noted that in media with some single amino acids such as 

asparagine, alanine, valine, and serine the level of glycerol decreased compared with 

mixture of amino acids (Radler and Schütz, 1982).  

The regulation of the assimilation of glycerol involves both its transport and catabolism.  

The first step of glycerol assimilation is transport from the fermentation medium into the 

cells. This transportation is achieved by some unique transport mechanisms that include 

passive diffusion (Romano, 1986), and facilitated diffusion (mediated by specific carriers 

located in cell membranes, and called facilitator proteins). Glycerol facilitator proteins are 

regulated via membrane lipid composition, thus the alteration in the lipid composition 

can interfere with the transport rate of glycerol (Truniger and Boos, 1993, Sutherland et 

al., 1997). Under hyperosmotic stress condition, the glycerol facilitator Fps1 closed rapidly 

to prevent the glycerol outflow. In the absence of hyperosmotic stress, the surplus of 

glycerol leaks out freely via glycerol facilitator Fps1 (Luyten et al., 1995, Tamás et al., 1999). 

It was reported that the S. cerevisiae yeast exploits glycerol as compatible solute for 

osmoregulation (Figure 1.5).  
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The High Osmolarity Glycerol (HOG) pathway is induced under hyper osmotic shock, and 

subsequently leading to the phosphorylation of stress-activated protein (SAP) kinase 

Hog1. This phosphoregulation of Hog1 induces the expression of genes encoding enzymes 

that are essential for the production and uptake of glycerol (Ansell et al., 1997, Yancey, 

2005). Glycerol synthesis pathway starts with the reduction of the glycolytic intermediate 

DHAP into G3P which is catalyzed via the NAD+-dependent G3P dehydrogenase. This 

enzyme is encoded by two isogenes, while osmostress induction is required for expression 

of GPD1 which then enhanced the production of glycerol, the cellular redox potential is 
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Figure 1.5. Glycerol synthesis in S. cerevisiae. Reduction of dihydroxyacetone phosphate to 

glycerol-3- phosphate and NADH oxidation to NAD+ leads to the formation of glycerol, adapted 
from (Scanes et al., 1998b). 
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controlled by the expression of GPD2 (Albertyn et al., 1994, Ansell et al., 1997, Påhlman 

et al., 2001, Valadi et al., 2004). Subsequently, G3P is converted to glycerol via G3P 

phosphatases Gpp1/Rhr2 as well as Gpp2/Hor2 (Albertyn et al., 1994, Ansell et al., 1997, 

Påhlman et al., 2001, Norbeck et al., 1996). In budding yeast, this pathway is essential for 

cell growth in a number of contexts. The first committed step of glycerol assimilation in 

most fungi is the phosphorylation by glycerol kinase, which is expressed by GUT1 gene 

(Pavlik et al., 1993). This gene was investigated by (Sprague and Cronan, 1977) who 

selected GUT1 mutants that were defective in glycerol assimilation.  (Pavlik et al., 1993) 

showed that the disruption of the open reading frame of GUT1 produced mutants that 

are not able to synthesize glycerol kinase and hence lost the ability to grow on glycerol. 

The regulation of GUT1 expression is mediated by activation and repression mechanisms 

and depends on the carbon source.  Expression of GUT1 is repressed when the cells grow 

on glucose whereas it is derepressed in media with non-fermentable carbon sources, for 

instance glycerol and ethanol (Grauslund et al., 1999) The second step of the 

phosphorylation pathway includes the mitochondrial glycerol-3-phosphate 

dehydrogenase (the product of GUT2 gene) (Ronnow and Kielland-Brandt, 1993). GUT2 

was also originally investigated by (Sprague and Cronan, 1977). The regulatory properties 

of GUT2 are very much similar to those of GUT1. GUT2 is inhibited through growing on 

glucose and activated under non-fermentable carbon sources, such as glycerol, ethanol, 

and lactate (Grauslund and Rønnow, 2000).  
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1.6. Regulation of Lipid Biosynthesis 

In order to balance cell growth with energy storage, the pathway of lipid synthesis is 

highly regulated in organisms. In an oleaginous yeast, cell metabolism is geared towards 

the activation and up regulation of lipogenic machinery. In eukaryotic cells, a number of 

key regulators in lipid synthesis have been found, including energy regulation and 

signalling pathways, as well as transcriptional and allosteric regulation of rate limiting 

steps (Hardie and Pan, 2002). The controlling steps are described in detail below: 

1. Lipid accumulation is triggered by cells exhausting nitrogen from the medium, but 

an excess of carbon is still assimilated by the cells and converted into TAGs. As a 

consequence activity of isocitrate dehydrogenase within the mitochondria slows 

or even ceases due to the shortage of AMP within the cells (Ratledge, 2002). 

2. Two critically regulated enzymes, ATP/citrate lyase (ACL) and malic enzyme (ME), 

have key effects on lipid accumulation. In yeasts, fungi and other oleaginous 

microorganisms, there is a strong relation between the presence of ACL activity 

and the ability to accumulate lipid. However, it is not the only important factor 

(Adams et al., 2002). The range of lipid accumulation is thought to be regulated 

through the activity of malic enzyme (ME), which is the sole source of NADPH for 

fatty acid synthase (FAS). Lipid accumulation is slowed down, if the activity of ME 

is inhibited, or genetically disabled. Therefore, the stability of ME is crucial, and it 

is suggested that FAS is physically attached to ME as part of the lipogenic pathway. 

In two filamentous fungi, Mucor circinelloides and Mortierella alpine, ME has a 

close relationship with lipid accumulation. When ME activity is inhibited, lipid 

accumulation also stops. No other enzyme has the same correlation (Ratledge, 

2002). The situation is less clear for Y. lipolytica, because the evidence suggests 

that the source of NADPH is the pentose phosphate pathway rather than through 

malic enzyme (Blank et al., 2005). 

3. The energy state of the cells is monitored by the enzyme AMP kinase (AMPK) 

which responds with the phosphorylation of a broad array of enzymes to control 

the anabolic and catabolic pathways for the consumption and storage of energy. 
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Since lipid synthesis is highly correlated with storage and utilization of energy, it 

is strongly regulated by this enzyme. In a low energy state (low ATP/ high AMP 

content) or cell stress, pathways toward regeneration of ATP such as fatty acid β-

oxidation and glycolysis are upregulated whereas pathways that are ATP 

consuming are inhibited (e.g. synthesis of triglyceride and cholesterol). The 

opposite occurs in a state of higher energy, with AMPK inducing lipogenesis for 

the storage of excess energy (Hardie and Pan, 2002). This enzyme is expressed 

through the SNF gene family in yeast cells. The deletion of snf2 in S. cerevisiae 

resulted in an oleaginous phenotype, accumulating more than 20% lipid 

concentration (Kamisaka et al., 2007).  

4. Several lines of evidence indicate that the acetyl-CoA carboxylase (ACC) 

represents an entrance for carbon leading towards cellular lipids. It catalyzes the 

conversion of acetyl-CoA to malonyl-CoA.  ACC is directly regulated via AMPK; the 

phosphorylation of ACC suppresses enzymatic activity (Figure 1.6). Furthermore, 

ACC is allosterically regulated by a number of metabolites: citrate induces the 

enzyme whereas acyl-CoA (typically palmityl-CoA) inhibits it (Ohlrogge and 

Jaworski, 1997). 
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5. In Y. lipolytica, TAG synthesis from glycerol-3-phosphate (G3P) has been 

investigated (Beopoulos et al., 2008b). G3P is either synthesized from glycerol 

through the activity of glycerol kinase, result of the transcription of GUT1 gene, or 

it is formed from DHAP through G3P dehydrogenase, encoded by GPD1. The 

counter reaction, that produces DHAP from G3P, is performed by G3P 

dehydrogenase, the second isoform, encoded by GUT2. In order to direct the 

conversion of DHAP into G3P, the gene GUT2 was deleted while the gene GPD1 

was over-expressed (Rossi et al., 2011).   

6. In order to accumulate lipid, a diverse strategy was based on the inhibition of the 

β-oxidative metabolism. The POX genes encode acetyl-coenzyme oxidases, which 

are localised in the peroxisome. Deletion of the all 6 POX genes (POX1 to POX6) 

Figure 1.6. Feedback regulation of acetyl Co-A carboxylase by two metabolites; citrate activates ACC 

while palmitoyl Co-A repress it. ACC is also induced and inhibited by phosphorylation by the global 

energy regulator, AMPK (Tai, 2012). 
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led to an increase in lipid as a percentage of dry biomass (Mlı ́et al., 2004, Mlíčková 

et al., 2004, Beopoulos et al., 2008b). It was also found useful to couple an 

engineered increase in the level of G3P with inhibition of the β-oxidation pathway 

(Dulermo and Nicaud, 2011). 

7. Metabolic engineering, using heterologous gene expression, has been utilized to 

increase the range of substrates consumed by oleaginous fungi. It has been found 

that inulin (β-2,1-linked D-fructofuranose with a terminal glucose residue) 

(Sheng et al., 2007) is a good substrate for bio-manufacturing (Chi et al., 2009). In 

order to induce Y. lipolytica to accumulate lipids on inulin containing substrates, 

the gene for exo-inulinase from Kluyveromyces marxianus (INU1) was 

heterologously expressed on a high copy plasmid. The inulinase was effectively 

produced in Y. lipolytica, and inulin was successfully transformed into TAG (Zhao 

et al., 2010). 

 

 

1.7. Optimization of lipid enriched biomass from oleaginous yeast in response to 

culture conditions 

Cultivation conditions such as C/N ratio, carbon and nitrogen sources, temperature, pH, 

incubation period, inoculum volume, and concentration of inorganic salts have been 

shown to influence oil accumulation (Johnson et al., 1992, Johnson et al., 1995). To a 

variable extent, the trace metal ions also affect oil accumulation (Hassan et al., 1996, 

Wang et al., 2005, Yong-Hong et al., 2006). (Yong-Hong et al., 2006)  found that, by the 

optimization of Mg2+, Zn2+, Mn2+, Cu2+, and Ca2+ concentrations, the biomass and oil 

content could be enhanced significantly. Other cultivation parameters such as the 

concentration of dissolved oxygen in the culture medium has a positive correlation with 

oil accumulation (Yan and Cnen, 2003, Liang et al., 2006, Yi and Zheng, 2006). 

 Hence, optimization of medium ingredients coupled with statistical design approach is 

inevitable to understand the effects of various factors and their interactions with oil 

accumulation (Khuri and Cornell, 1996). Oleaginous microorganisms are expected to be a 
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good substitute as a feedstock for biodiesel production. Thus, more research become 

essential  to investigate the effect of cultivation conditions, in particular medium 

ingredients on lipid accumulation of oleaginous yeasts prior to their large-scale 

production (Jadhav et al., 2012). Optimization of media is usually performed by keeping 

one parameter constant while changing the quantity of others (Khuri and Cornell, 1996). 

 

1.7.1. Nitrogen source  

The quantity and concentration of nitrogen source have an effective role on the microbial 

oil synthesis. Numerous studies have been reported the impact of nitrogen starvation on 

the activity of yeast cells such as the capacity of substrate uptake, slowdown of cell 

poliferation (Jørgensen et al., 2002, Sainz et al., 2003), and fermentation activity (Varela 

et al., 2004). Under nitrogen limitation the assimilation of carbon sources continues in 

both oleaginous and non-oleaginous strains, whereas the ATP/AMP ratio increases only 

in oleaginous organisms and lipid accumulation occurs. The size of these cells increases 

along with the volume of lipid particles that become larger (Fidler et al., 1999, Wynn and 

Ratledge, 2005). In such conditions, protein and nucleic acid synthesis ceases, at the same 

time the excess of carbon source continues to be metabolized into lipid or chitin 

accumulation (structural polysaccharide of fungal cell walls [(C8H13O5N)n] as reported in 

the batch cultures of Rhodotorula glutinis (Berthe et al., 1981). Thus when undergoing 

nitrogen limitation, carbon fluxes could be distributed between lipid and carbohydrate 

storage (Pan et al., 1986). Botham and Ratledge (1979) proposed a hypothesis that 

explains lipid accumulation in yeasts. This states that intra-mitochondrial citrate primarily 

accumulates as a result of the decrease in intracellular AMP concentration, which then 

leads to a decline in activity of the AMP-dependent NAD+ isocitrate dehydrogenase in 

mitochondria (Botham and Ratledge, 1979) (Figure 1.7).                                                                                                               

Previous studies showed that some nitrogen sources may be more preferable in oil 

production than others, for example the red yeast Rhodosporidium toruloides preferred 

organic glutamate in lipid production more than inorganic ammonium (NH4
+), thus oil 
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content was about 50% compared with 18% per dry biomass respectively (Evans and 

Ratledge, 1984a). (Huang et al., 1997) reported that inorganic nitrogen sources were not 

suitable for oil production but are useful for cell growth, whereas organic nitrogen 

sources like peptone were good for oil production but not beneficial for cell growth 

(Huang et al., 1997). The increase in lipid accumulation was hypothesized by the authors 

to be a result of the intracellular presence of NH4
+ synthesized from the deamination of 

complex nitrogen sources. Another  study by (Evans and Ratledge, 1984b) concluded that 

a certain threshold of intracellular NH4
+ pools seems to be required to initiate the 

regulatory mechanism that induces citrate accumulation and the formation of fatty acids. 

NH4
+ pool inside the cell resulted from nitrogen sources which might be needs more 

deamination reaction: for example, glutamate dehydrogenase for glutamate and urease 

for urea. Thus, enzymes catalysing the initial deamination step to release NH4
+ may play 

an essential role in regulating lipid accumulation. In Rhodotorulla 110, among different 

nitrogen sources, yeast extract plus ammonium sulphate showed lipid content of 40%, 

36%, and 30% along with glucose, xylose, and bran as carbon source respectively 

(Enshaeieh et al., 2012). One of the most important factors in TAG accumulation is the 

carbon/nitrogen (C: N, mol/mol) ratio. This ratio is an essential factor in optimizing SCO 

production (Beopoulos et al., 2009a).   
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Study of Kodamaea ohmeri and Trichosporonoides spathulata showed that addition of 

yeast extract and peptone (1:1) C/N gave the highest biomass and maximum lipid 

production. In respect to the economic cost, a less expensive inorganic nitrogen source 

(ammonium sulphate) was selected and gave similar, but slightly lower, levels of biomass 

and lipid accumulation for K. ohmeri.  However, for T. spathulata, both biomass and  the 

maximum lipid production were significantly lower when ammonium sulphate was used 

as the nitrogen source (Kitcha and Cheirsilp, 2011).                                                                                                                                                                    

                                                                                                                                    

1.7.2. Carbon source  

Many species of fungi can accumulate high level of lipids (up to 70% of their biomass) 

(Rattray et al., 1975) when grown with excess of carbon and a limiting amount of nitrogen. 

When the nitrogen runs out, the carbon flow is directed towards citric acid which acts as 

Figure 1.7.  Schematic pathway of de novo lipid biosynthesis and formation of TAG under 

exhaustion of nitrogen source (adapted from Ratledge, 2004 and Xu et al., 2013). IMP: 

Inosine monophosphate; DAG: Diacylglycerol; TAG: Triacylglycerol 
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an acetyl-CoA donor in the cytoplasm. Citrate moves out of the mitochondria into the 

cytoplasm, where it is split by the enzyme ATP: citrate lyase to give oxaloacetate and 

acetyl-CoA, the precursor of fatty acid biosynthesis. Non oleaginous organisms (e.g. 

Candida utilis) do not accumulate more than 7 to 8% of its biomass as lipid under nitrogen 

limited conditions (Babij et al., 1969, Thorpe and Ratledge, 1972). Many oleaginous micro-

organisms are able to utilize a wide range of carbon substrates for biofuel synthesis, 

including glucose, xylose and glycerol (Papanikolaou et al., 2010, Fei et al., 2011). These 

carbons are dissimilated/assimilated by a range of pathways before finally entering the 

TAG synthesis pathway (Flores et al., 2000, Ratledge and Wynn, 2002). Waste materials 

rich in carbohydrates or hydrocarbons can be utilized by oleaginous yeast and converted 

into neutral lipids (Liu et al., 2009, Makri et al., 2010, Michely et al., 2013). Therefore, 

attempts have been made to investigate the effects of a wide range of carbon sources on 

cell growth as well as lipid synthesis. For instance, lipids may be produced in lower 

amounts when cells are grown on polymers like starch compared with yields obtained 

using glucose as the sole source of carbon (Papanikolaou et al., 2007). (Evans and 

Ratledge, 1983) studied Candida curvata growing on glucose (C6) and xylose (C5) in a 

continuous culture (average cell density of 14 g l-1) and obtained lipid production rates of 

0.16 g l-1 h-1 for glucose and 0.27 g l−1 h−1 for xylose. (Hassan et al., 1993) optimized the 

growth of Apiotrichum curvatum in a continuous fermentation set up using glucose as the 

only carbon source and reached a lipid production rate of 0.42 g l−1 h−1 and a high lipid 

content of 31.9% (w/w). Not only the carbon source has a significant impact on microbial 

oil accumulation, carbon concentration also has a great influence in the same culture 

conditions. Increasing the glucose concentration from 0.6 % to 20 % in cultures of Candida 

parapsilosis was reported to increase the concentrations of several enzymes; in particular 

the contents of glyceraldehyde phosphate dehydrogenase, phosphoglycerate kinase and 

pyruvate decarboxylase increased four- to tenfold (Hommes, 1966). (Babij et al., 1969) 

showed that increasing the glucose concentration in cultures of Candida utilis from 0.1 % 

to 4.5 % also increased the total fatty-acid content of this yeast from 2 % to 10 % dry 

weight.                                                                                                                                        
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1.8. Fatty acids 

Fatty acids are basic elements of lipid compounds. Their role can be either incorporated 

into phospholipids and sphingolipids or considered as an energy reservoir in specific 

metabolites such as TAG and SE that are stored in lipid bodies. Their functions as 

transcriptional regulators and signaling molecules, and involvement in post-translational 

modification of proteins were also reported (Klug and Daum, 2014). Free FAs can be 

defined as carboxylic acid molecules with hydrocarbon chains varying in length and in 

degree of (un)saturation, which lead to the large variety of fatty acid  molecules, and then 

to the formation of different compounds of lipid (Tehlivets et al., 2007). Yeast cells can 

obtain their FA by  de novo synthesis, hydrolysis of complex lipids and delipidation of 

proteins, and by uptake from the external environment (Tehlivets et al., 2007). 

Intracellular synthesis of fatty acids takes place in the cytosol and in mitochondria while 

the elongation and desaturation steps occur in the endoplasmic reticulum. The first step 

of fatty acids synthesis is catalyzed by acetyl-CoA-carboxylase (Hasslacher et al., 1993). 

Through this reaction, acetyl-CoA, that is derived either from the degradation of citrate 

or acetate, is carboxylated to form the two carbon molecule malonyl-CoA which serves as 

a backbone in the following FA formation (Hoja et al., 2004). These high energy molecules, 

saturated fatty acids, which have been considered as reduced form of carbon, are able to 

be stored for long periods without significant degradation (Burr and Burr, 1929, Burr et 

al., 1932, Innis, 1991). By undergoing β -oxidation, fatty acids are converted into two-

carbon acyl-coenzyme A (acetyl-CoA) molecules, which are then used for energy 

production via citric acid cycle (Eaton et al., 1996).  The most common structure of fatty 

acid species in yeast consist of saturated 18:0 (stearic acid) and 16:0 (palmitic acid), the 

monounsaturated 18:1 (oleic acid) and 16:1 (palmitoleic acid), the diunsaturated 18:2 

(linoleic acid) and the polyunsaturated 18:3 (linolenic acid) (see Figure 1.8). In S. cerevisiae 

the major fatty acyl groups are restricted into saturated 16:0 and 18:0 and 

monounsaturated 16:1 and 18:1 (de Kroon et al., 2013). Interestingly, along with fatty 

acids, the intracellular and extracellular metabolites are usually evaluated in order to 

visualise the cellular biochemical changes in microorganism such as genetic modification, 
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metabolic response towards environmental stress conditions, and growth state of cells 

(Chen and Chen, 2014). Different techniques of fatty acids analyses have been reported 

by (Christie, 2003). These techniques include the major analytical methods such as thin 

layer chromatography (TLC), gas chromatography (GC), high performance liquid 

chromatography (HPLC) and analysis by GC coupled with mass spectrometry (GC–MS). 

The latter technique displayed high sensitivity, excellent separation of fatty acyl chains in 

different samples and accurate mass measurements that allowing for precise 

identification of fatty acids composition in yeast and different organisms. Fatty acids 

composition was reported to be variable between organisms when growing in different 

environments, for example Candida. lipolytica produced around 98-99% of new-chain 

fatty acids after growing on n-pentadecane or n-heptadecane at 30°C. Whereas, very low 

amount of these fatty acids were detected in yeast cells after growth on glucose as a sole 

carbon source (Mishina et al., 1973, Tanaka et al., 1978). Furthermore the influence of 

other factors such as salt stress on lipid structure and membrane fluidity has been 

evaluated in bacterial cells (Russell et al., 1995), as well as in yeasts, in particular salt-

sensitive S. cerevisiae (Tunblad-Johansson and Adler, 1987, Sharma et al., 1996). In 

halotolerant yeasts and halophilic/halotolerant melanized yeast-like fungi the lipid 

composition and properties have also been studied. Under salt stress these organisms 

displayed different responses, for example Zygosaccharomyces rouxii cells exhibited 

increased content of free (non-esterified) ergosterol, decreased amount of unsaturated 

fatty acids, as well as  decreased membrane fluidity  when grown in medium with 15% 

NaCl (w/v) compared with their response in medium without NaCl (Hosono, 1992, 

Yoshikawa et al., 1995). However, Candida. membranefaciens produced increased fatty 

acid unsaturation and phosphatidylinositol (PI) and phosphatidylethanolamine (PE), and 

higher membrane fluidity when grown at higher concentration of NaCl (Khaware et al., 

1995).     
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1.9. Genetic modification for biodiesel yield improvement  

To enhance lipid accumulation, numerous studies have been performed by using 

metabolic engineering strategies in different species. These strategies included different 

approaches such as: overexpressing of enzymes that improve TAG biosynthesis pathway, 

regulation of related TAG biosynthesis approaches, multi-gene transgenic procedure, and 

repressing of the competing pathways of other metabolites (Liang and Jiang, 2013). In the 

oleaginous yeast Y. lipolytica, (Beopoulos et al., 2008a), reported that deletion of GUT2 

gene resulted in a threefold rise in overall neutral lipid yield compared with wild type 

strain. The GUT2 gene encodes for the mitochondrial glycerol-3-phosphate 

dehydrogenase that oxidizes glycerol-3- phosphate (G3P) into dihydroxyacetone 

phosphate (DHAP), which is the competing pathway of triacylglycerol production.  Studies  

showed that in S. cerevisiae the GUT2 gene was found in chromosome IX (predicted 

molecular mass of the polypeptide expressed from GUT2 gene is about 68.8 kDa and 

consists of  615 amino acids in length) (Rønnow and Kielland‐Brandt, 1993). This gene 

displays identity of about 57% with the D. hansenni GUT2 gene (DEHA2E08624g), located 

on the chromosome E. (NCBI BLAST). Extensive research has shown that D. hansenii is a 

lipid accumulating, osmotolerant, haploid yeast that reproduces by multilateral budding 

(Forrest et al., 1987), and contains two varieties: D. hansenii var. famata and D. hansenii 

var. fabryi (John and Spangenberg, 2005).  The knowledge about this yeast is fairly limited 

even though the genomic sequence was fully analysed by the Genolevures consortium in 

2004 (Dujon et al., 2004). Thus, research groups have considered this species as 

‘Cinderella’ in the microorganism world since studies into its several remarkable aspects 

has not been sufficiently investigated. Besides that, this yeast was not reported as 

clinically important, therefore the investment on D. hansenii research was slowed down. 

(Desnos-Ollivier et al., 2008).                                                                                                                     
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1.9.1. Gene deletion by homologous recombination  

DNA double strand repair mechanism was considered as the basic concept of genetic 

manipulation in fungi. Thus, the exogenous DNA is integrated into the genomic DNA by 

one of two mechanisms such as homologous recombination (HR) or by nonhomologous 

end joining (NHEJ). Homologous recombination takes place between flanking regions of 

the targeted gene. These flanks are cloned in the disruption DNA cassette that contained 

the selectable marker (Richard et al., 2005). Thus, the compatible sequences in the 

genome will allow the replacement of the targeted gene of one of the wild-type alleles in 

the chromosomal DNA with the selectable marker. Targeted gene inactivation is an 

essential way to investigate gene function. Gene disruptions (knockouts) are often carried 

out in auxotrophic strains which display defects in particular biosynthetic pathways of 

yeast cells (for example histidine, arginine, and uracil). Gene repairing carried out through 

the complementation with the corresponding intact genes (e.g. HIS1, ARG4, or URA3) as 

selectable markers (Noble and Johnson, 2007).  In D. hansenii the low-efficiency 

transformation system used in earlier studies basically depended on the URA3 mutant 

and an autonomous replication sequence ARS, which were isolated in S. cerevisiae via 

functional screening procedure (Ricaurte and Govind, 1999).  In recent research the 

transformation system in Candida famata: an anamorph of D. hansenii, has been 

developed (Voronovsky et al., 2002), nevertheless, the functional studies of the D. 

hansenii genes are continually based on complementation of S. cerevisiae mutants. To fill 

this gap in D. hansenii species, an efficient transformation system has been developed by 

Minhas (2009), depending on a histidine auxotrophic recipient strain and the DhHIS4 gene 

as the selectable marker (Minhas et al., 2009). The most commonly used protocols for the 

C. albicans transformation are based either on electroporation or lithium acetate 

procedure and were also applied in Saccharomyces cerevisiae. For successful 

transformation, Schaub (2006) developed an arsenal of pFA-modules, that contain the 

heterologous marker genes LEU2 from C. maltose as well as HIS1 from C. dubliniensis  

(Noble and Johnson, 2005, Schaub et al., 2006) and  caSAT1  as the dominant selectable 

marker(Reuß et al., 2004). The construct pFA-SAT1 consists of 1.956bp including the 
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newly selectable marker, caSAT1, that offered resistance to nourseothricin antibiotic 

(Reuß et al., 2004). Nourseothricin is related to streptothricin group, and produced by 

Streptomyces noursei (Krügel et al., 1988). The sat-1 gene from the bacterial transposon 

Tn 1825 encodes for the streptothricin acetyltransferase polypeptide, that introduces 

resistance to nourseothricin via inhibition of the activity of antibiotic (Heim et al., 1989, 

Joshi et al., 1995). This gene was modified by changing the single CTG codon in the SAT1 

ORF, which would be mistranslated as serine instead of leucine due to the noncanonical 

codon usage of C. albicans (Santos and Tuite, 1995), to the leucine-specific codon CTC. 

This modification led to functional expression in C. albicans, resulting in Candida- adapted 

caSAT1 gene that allowed the selection of resistant transformant strain after genomic 

integration (Reuß et al., 2004).                                                                                                     

                                                                                                 

1.10. Aims of the project  

This study aimed to investigate the optimum species, cultivation conditions, and 

molecular techniques to improve the TAG production by using single cell oil from yeast as 

a feedstock for biodiesel production. Primary experiments were aimed to screen three 

different yeast strains (Debaryomyces hansenii NCYC 102, Cryptococcus curvatus NCYC 

476, Yarrowia lipolytica NCYC 2904) based on their ability to grow and produce neutral 

lipid under different concentrations of NaCl augmented in YM medium. In the second part 

of project D. hansenii was selected for further experiments and the main goals are: 

1. Study the effect of high concentration of NaCl, augmented in cultivation media, on 

the accumulation of osmolytes, particularly glycerol, and their correlation with 

neutral lipid production compared with biomass production.  

2.  Improve the cultivation conditions to optimize the production of neutral lipids by 

using different concentrations of carbon/nitrogen (C/N) ratios in the minimal medium 

composition. 

3. Study the effect of high salinity and different C/N ratios on the composition of the 

transesterified fatty acids. 
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4. Investigate the possibility of using homologous recombination technique in D. 

hansenii to knockout the GUT2 gene, in order to disrupt the conversion of glycerol 3- 

phosphate into dihyroxyacetone phosphate via G3P dehydrogenase to increase TAG 

production.  
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Chapter Two: Materials and Methods 
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2. Materials and Methods 

This chapter describes the procedures used to carry out my experiments. 

2.1. Growth and sterile techniques 
 

2.1.1. Microorganisms 

Debaryomyces hansenii NCYC 102, Cryptococcus curvatus NCYC 476, Yarrowia lipolytica 

NCYC 2904 were obtained from National Collection of Yeast Cultures.  

 

2.1.2. Preparation of inoculum 

Using a sterile Pasteur pipette, 0.5 ml of YM medium (0.3% g yeast extract, 0.3% g malt 

extract, 0.5% g peptone, and 1% g glucose) (see section 2.1.5.1) was added to the dried 

material of each strain, gently re-suspended and transferred to 10 ml YM medium. After 

one day of incubation at 25°C on a rotary shaker at 120 rpm, 200 µl of inoculum was 

transferred to 250 ml conical flasks containing 50 ml of YM medium, and incubated under 

the same conditions. Other inocula were cultivated at 25°C in YM Agar medium with 

pouring and streaking methods.  

 

2.1.3 Culture maintenance and storage 

Strains were routinely maintained on YM liquid and solid medium and incubated at 25°C 

for 24 hours. After which they were maintained at 4°C. 

 

2.1.4. Growth curve determination 

Cell growth was monitored turbidimetrically by measuring the optical density regularly 

(every two hours) at 600 nm by using a spectrophotometer (Helios α). The blank was set 

using the growth medium with the same components and concentrations. The growth 

curve was plotted using the absorbance readings and time of incubation. 
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2.1.5. Effect of adaptation to different salinity concentrations on yeast growth  

Debaryomyces hansenii NCYC 102, C. curvatus NCYC 476, Y. lipolytica NCYC 2904 were 

adapted to different concentrations of NaCl (0, 0.4, 0.8, 1.6, 2, 2.4, 2.8, and 3.2 M) 

augmented in YM broth. Flasks with 50 ml of the different salinity media were inoculated 

with each strain and incubated under shaking (120 rpm) at 25°C. Cell growth was 

monitored turbidimetrically by measuring the optical density at 600 nm using a 

spectrophotometer (Helios α). 

 

2.1.5.1. YM Medium 

YM medium was prepared by dissolving 3 g yeast extract, 3 g malt extract, 5 g peptone 

(Oxide), and 10 g glucose (Fisher Scientific) in 1 litre of distilled water. For solid medium 

15 g of bacteriological agar No.1 (Oxoid) were added per litre. To examine the effect of 

salinity on yeast growth, NaCl (Fisher Scientific) was added to this medium at different 

concentrations (0.4, 0.8, 1.2, 1.6, 2, 2.4, 2.8, and 3.2 M) before autoclaving. 

 

2.1.5.2. Minimal medium 

Minimal medium was prepared by dissolving 5 g ammonium sulphate (Fisher Scientific), 

and 20 g glucose in 900 ml of distilled water. Sodium chloride was added to this medium 

at different concentrations (0, 0.8, and 1.6 M) before autoclaving at 121°C to examine the 

stock solution of YNB (Yeast Nitrogen Base) was prepared by  alinity. A 10xeffect of s

suspending 1.7 g of yeast nitrogen base without amino acids and ammonium sulfate in 

100 ml of cold distilled water. Warmed slightly to solubilize and sterilized by filtration. 

Then the solution was diluted 1:10 with autoclaved medium under aseptic conditions.          

 

2.1.6. Cleaning and sterile technique 

All culture equipment was autoclaved at 121°C and dried in oven at 70 ⁰C before using in 

experiments to avoid contamination. Inoculation and sub-culturing were performed with 
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a flame after surface sterilization of the bench by 70% ethanol or 1% Virkon disinfectant 

solution. Moreover, the glassware was soaked for 2 hours in 1% Virkon disinfectant 

solution to ensure that all contaminants were removed. 

 

2.1.7. Biomass preparation of D. hansenii cells 

Thirty ml from a D. hansenii culture growing in minimal or YM medium under different 

cultivation conditions was taken at the end of incubation period and centrifuged for 10 

min at 3000 g in a bench centrifuge. The supernatant was discarded, and the pellets re-

suspended in 1 ml distilled water. Fresh Eppendorf tubes were prepared by cutting off 

the lids from other Eppendorf tubes, and making a hole in these lids with a needle. The 

lids with a hole were attached to a complete Eppendorf tube with its own lid, which had 

been weighed. Subsequently, the concentrated culture was transferred to these 

Eppendorf tubes with two lids and put in -80°C freezer overnight. The final step was to 

freeze dry (lyophilise) the samples, after removing them from the -80°C freezer (without 

allowing them to thaw) and putting in the freeze-dryer. The samples were left for about 

72 hours in the freeze dryer, after that the lids with the holes were removed and the other 

lids used to seal the Eppendorf tubes, and then all samples were re-weighed.   

 

2.1.8. Glycerol stock for culture storage  

Yeast and bacterial strains were stored long term in 15% glycerol as the cryoprotectant. 

500 μl of liquid culture was added to 500 μl 30% (v/v) glycerol in a Nunc cryovial tube. 

After vortexing, tubes were stored at -80°C. To rescue a frozen stock, cells were collected 

using a sterile inoculating loop and streaked onto a 2TY (1.6% Bacto Tryptone, 1% yeast 

extract, and 0.5% sodium chloride) (see section 2.8.1.2.4.1.) or YM agar plate. Individual 

colonies were then inoculated into overnight liquid cultures. 
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2.2. Identification and quantification of the total osmolytes and glycerol  

2.2.1. Effect of adaptation to different salinity concentrations on compatible solutes 

accumulated in three yeast strains  

Due to previous studies that referred to the accumulation of osmolytes in yeast cells in 

response to the high external salinity, experiments were carried out to determine the 

total osmolytes synthesised based on the procedure adopted by (Ben-Amotz and Avron, 

1978). Yeast strains were grown in 50 ml of YM and minimal media augmented with 

different concentrations of NaCl (0, 0.8, and 1.6 M). After adaptation, cultures were 

incubated under shaking at 120 rpm and 25°C for 24 hours, and the total osmolytes 

quantified as described below. 

  

2.2.1.1. Glycerol standard curve 

1- Different concentrations of glycerol were prepared (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9, and 1 µɡ glycerol µl-1) from the stock solution 1.25 µg glycerol µl1 (Fisher 

Scientific). ten tubes were set up as follows: 

 

 

2- 1 ml of the periodate reagent was added to all tubes.  Mixed well and waited for 

5 min. 

Concentration 
(µɡ/100 µl) 

Blank 
 

10  20  30  40  50  60  70   80  90  100  

            
Distilled water 

(µl) 
 

100  _ _ _ _ _ _ _ _ _ _ 

glycerol 
solutions (µl) 

(different 
concentrations 

_ 100  100  100  100  100  100  100  100  100  100  

            
30% TCA 

(Trichloroacetic 
acid) (µl) 

 

10  10  10  10  10  10  10  10  10  10  10  
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3- Added 2.5 ml of acetylacetone reagent to all ten tubes. Mixed well and placed 

them in water bath at 45°C for 15 min. 

4- Tubes were removed from water bath and allowed to cool for a few minutes at 

room temperature. The optical density (OD) was read at 410 nm in 

spectrophotometer. Following measurement, the standard curve was plotted 

between the concentration and absorbance (see Figure 2.1) and a standard 

deviation was performed for each sample. 

 

 
 

 

 

 

 

 

 

 

 

 

 

2.2.1.1.1. Periodate reagent  

To prepare this reagent 130 mg sodium periodate (Fisher Scientific) was dissolved in 180 

ml 2% acetic acid (Fisher Scientific) containing 15.4 g ammonium acetate (Sigma), and 

when fully dissolved 20 ml glacial acetic acid was added. 

 

Figure 2.1. Standard curve for glycerol, OD. at 410. Experiment was done with 

three replicates, Bars represent standard deviation. 
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2.2.1.1.2. Acetylacetone reagent  

Acetylacetone (2.5 ml) (Fisher Scientific) was added to approximately 200 ml of 

isopropanol and made up to a final volume of 250 ml with isopropanol. The solution was 

stored in dark bottle away from light.  

 

2.2.1.2. Osmolytes determination in all three yeast species 

After a suitable glycerol concentration curve was obtained, the amount of total osmolytes 

of each yeast was determined by taking 1 ml aliquots from each sample growing in YM 

medium and put in Eppendorf tubes. Centrifuged for 10 minutes at 3000 g, then 

suspended again in 1 ml distilled water. One hundred µl of 30% trichloroacetic acid (TCA) 

were added to each 1 ml aliquot, whirlimixed and centrifuged in microfuge for 5 minutes 

at full speed. One hundred and ten µl of clear supernatants were taken into separate glass 

test tubes. The blank was set up containing 100 µl distilled water and 10 µl 30% TCA, then 

periodate and acetylacetone reagents were added as described above (2.2.1.1) and OD 

was read at 410 nm against the blank. 

 

2.2.1.3. Osmolytes determination in D. hansenii cells growing in different media 

The same procedure was performed (as described in section 2.2.1.2) for measurement 

the total osmolytes except the results were compared with the biomass (µg glycerol / mg 

biomass) which was measured in the same way for all samples (see section 2.1.7.). 

All readings were multiplied by 10 to be consistent with glycerol values that were measured using 

free glycerol reagent in D. hansenii.  

 

2.2.2. Glycerol determination using free glycerol reagent (Sigma F6428)  

In this test, free endogenous glycerol was tested by using Free Glycerol Reagent via two 

enzyme reactions without the initial lipase hydrolysis. Glycerol is phosphorylated into 

glycerol-1-phosphate (G-1-P) and adenosine- 5’-diphosphate (ADP) by adenosine-5’-
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triphosphate (ATP) in the reaction catalyzed by glycerol kinase (GK). Subsequently, 

Glycerol-1-phosphate oxidized via glycerol phosphate oxidase (GPO) to dihydroxyacetone 

phosphate (DAP) and hydrogen peroxide (H2O2). Peroxidase (POD) then catalyzes the 

coupling of H2O2 with 4-aminoantipyrine (4-AAP) and sodium N-ethyl-N-(3-sulfopropyl) 

m-anisidine (ESPA) to produce a quinoneimine dye that shows an absorbance maximum 

at 540 nm. Free glycerol concentration of the sample is directly proportional to the 

increase in absorbance at 540 nm.  

 

 

 

 

 

 

 

2.2.2.1. Glycerol concentration curve 

1. The free glycerol reagent was taken from the fridge and allowed to reach room 

temperature. The spectrophotometer was set to wavelength 540 nm. 

2. To six cuvettes 0.8 ml free glycerol reagent was added to all cuvettes containing 

different volumes of standard glycerol and distilled water as follow: 

A. 25 µl distilled water plus 0 µl glycerol standard (Blank) 

B. 20 µl distilled water plus 5 µl glycerol standard (1.3 µg glycerol) 

C. 15 µl distilled water plus 10 µl glycerol standard (2.6 µg glycerol) 

D. 10 µl distilled water plus 15 µl glycerol standard (3.9 µg glycerol) 

E. 5 µl distilled water plus 20 µl glycerol standard (5.2 µg glycerol) 

F. 0 µl distilled water plus 25 µl glycerol standard (6.5 µg glycerol). 

 

GK Glycerol + ATP Glycerol- 1- phosphate + ADP 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟏 

POD 2 H2O2 + 4- AAP+ESPA Quinoneimine Dye + H2O 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟑 

GPO 
Glycerol- 1- phosphate + O2 DAP +2 H2O2 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟐 
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All cuvettes were incubated on the bench for 15 minutes and the optical density read at 

540 nm using the blank to zero the spectrophotometer.  The standard curve was plotted 

from which glycerol concentration for each sample can be determined (see Figure 2.2)  

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2.1.1. Free glycerol reagent   

Follow the instruction of Sigma Chemical Company, the free glycerol reagent was 

prepared by adding 40 ml of deionised water to the glycerol reagent powder, covered 

with aluminium foil to protect from light, and mixed by inverting a few times without 

shaking. The reconstituted Free Glycerol Reagent is stable for two months when stored 

at 2–8°C. 

 

Figure 2.2. Standard curve for glycerol, OD at 540 nm versus µg glycerol, 

Experiment was done with three replicates, Bars represent standard deviation. 
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2.2.2.2. Glycerol determination in D. hansenii cells using free glycerol reagent (Sigma 

F6428) 

After preparing the sample in the same way that was done for osmolytes determination 

in D. hansenii in both minimal and YM cultures (section 2.2.1.2 until centrifugation). After 

centrifugation, 25µl of the clear supernatants were taken into separate glass test tubes 

to be consistent with the same volume of blank, which containing only 25µl distilled 

water, then 0.8 ml free glycerol reagent was added to all cuvettes, and readings were 

taken at 540 nm using the blank to zero the spectrophotometer. All the results were 

compared with the biomass (µg glycerol / mg biomass) which was measured in the same 

conditions for all samples. All the readings were multiplied with 40 to be consistent with 

the values of total osmolytes measurement in D. hansenii. 

 

2.3 Nuclear Magnetic Resonance (NMR) analysis of compatible solutes 

2.3.1. NMR analysis of compatible osmolytes in all three yeast strains growing in 

different concentrations of NaCl 

Twenty ml from each yeast culture growing in a different concentration of NaCl (0, 0.8, 

and 1.6 M) was taken after 24 hours of incubation at 25°C and centrifuged for 10 min at 

3000 g in a bench centrifuge. The supernatant was discarded, and the pellets resuspended 

in 1 ml distilled water. Then the samples were sonicated in 50 ml Falcon tube on ice 3 x 

20 second with 15 second cooling periods between sonication steps. The sonicated 

samples were transferred to Eppendorf tubes and centrifuged at 13000 g in microfuge for 

5 min. Fresh Eppendorf tubes were prepared by cutting off the lids from other Eppendorf 

tubes, and making a hole in these lids with scissors or a needle. The lids with a hole were 

attached to a complete Eppendorf with its own lid, which had been weighed. Then the 

supernatant transferred to these Eppendorf tubes with two lids and put in -80°C freezer 

overnight. The final step was to freeze dry (lyophilise) the samples, after removing them 

from the -80°C freezer (without allowed them to thaw) and putting in freeze-dryer. The 

samples were left for about 72 hours in the freeze dryer, and then the lids with the holes 
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were removed and the other lids used to seal the Eppendorf tubes, then all samples were 

re-weighed (Derome, 2013). Freeze-dried samples were sent to Prof M P Williamson in 

the MBB department for NMR analysis. Samples were dissolved in 530 l of D2O plus 5 l 

of 100 mM trimethylsilyl propionate (TSP) to act as a chemical shift reference (0 ppm) and 

standard. Spectra were acquired using pre-saturation of the residual solvent signal for 1.5 

s.    

                                                                                                                                               

2.3.2. NMR analysis of compatible solutes in D. hansenii cells growing in different 

concentrations of NaCl 

To identify the osmolytes in D. hansenii cells, the same procedure was followed as 

described above, except for the step of cell wall disruption. In order to be sure that the 

sonication technique didn’t affect the intracellular osmolytes, a bead beating technique 

was used in addition and the results compared between the two techniques. The samples 

of all cultures were divided into two groups. For the first group, the cells were disrupted 

by bead beating for about 4 x 60 second at 4000 rpm with 60 second cooling intervals. 

For the second group cells were broken by sonication with 3 x 20 second with 15 second 

cooling periods between sonication steps. After centrifugation, the samples were freeze-

dried as described above (section 2.3.1) before NMR analysis.                                                      

 

2.4. Triacylglycerol (neutral lipid) quantification and microscopic imaging 

of the lipid bodies. 

2.4.1. Optimization of Nile Red technique conditions to determine neutral lipid in 

yeast cells 

2.4.1.1. Cell concentration 

To determine the content of neutral lipid in yeast cells, at least 10 ml of fresh culture (in 

the late log phase) was collected and centrifuged for 5 min at 3000 g. After centrifugation, 

the pellet was re-suspended with an equivalent volume of distilled water, and the OD was 

adjusted to 5.5 at 600 nm by using the appropriate amount of distilled water which was 
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also used as blank. From this concentration, serial dilutions of yeast cells were prepared 

with the final volume of 2ml in Eppendorf tubes as follows (Table 2.1): 

 

 

Table 2-1. Serial dilutions of yeast cells 

Percentage 100 87.5 75 62.5 50 37.5 25 12.5 Total (ml) 

Culture (µl) 2000 1750 1500 1250 1000 750 500 250 9 

D. W. (µl) 0 250 500 750 1000 1250 1500 1750 7 

 

 

2.4.1.1.1. Cell Count Calibration 

To perform cell counting calibration curve, numbers of cells counting were plotted against 

the optical density at OD600 nm based on the method from Guillard and Sieracki (Guillard 

and Sieracki, 2005). 50ml of D. hansenii YM and minimal culture were centrifuged and 

adjusted aseptically with sterilized distilled water to an OD of 5.5 at 600 nm using a 1 ml 

plastic cuvette and spectrophotometer. We used the dilutions in Table 2.1 for cell 

counting by combining the adjusted culture with sterilized distilled water in 2 ml 

Eppendorf tubes. The samples were whirlmixed, the 20 μl aliquots were transferred into 

0.2 mm depth haemocytometer with Thoma ruling (Z30000 Helber Counting Chamber, 

Hawkley).  The heavy slide cover was carefully placed on top. Cells were allowed to settle 

for approximately 2 minutes on the slide before counting in a phase contrast illumination 

microscope with an achromatic lens of 40 x (Labophot, Nikon). The count was repeated 

three times for each sample, and the number of cells in the original culture was calculated 

using the mean number of cells per small square based on the following equations:  

  

1- 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑔𝑟𝑖𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 

 𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑐ℎ𝑎𝑚𝑏𝑒𝑟 = 0.02 𝑚𝑚 

 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑠𝑚𝑎𝑙𝑙 𝑠𝑞𝑢𝑎𝑟𝑒 =   
1

400
 𝑚𝑚2 =  2.5 𝑥 10−3 𝑚𝑚2  𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟒 
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 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑚𝑎𝑙𝑙 𝑠𝑞𝑢𝑎𝑟𝑒 =  2.5 𝑥 10-3 𝑚𝑚2 𝑥 0.02 𝑚𝑚 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟓 

 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑝𝑒𝑟 𝑠𝑚𝑎𝑙𝑙 𝑠𝑞𝑢𝑎𝑟𝑒 = 5.0 𝑥 10-5 𝑚𝑚3  

=  5.0 𝑥10-8 𝑐𝑚3 (≡  𝑚𝑙)       𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟔 

2- 𝐶𝑒𝑙𝑙𝑠 𝑖𝑛 1 𝑚𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑖𝑓 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 400 𝑠𝑞𝑢𝑎𝑟𝑒𝑠): 

 𝐶𝑒𝑙𝑙 𝑛𝑜. 𝑝𝑒𝑟 𝑠𝑚𝑎𝑙𝑙 𝑠𝑞𝑢𝑎𝑟𝑒 =  𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡/ 400  𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟕 

 𝐶𝑒𝑙𝑙 𝑛𝑜. 𝑝𝑒𝑟 𝑠𝑚𝑎𝑙𝑙 𝑠𝑞𝑢𝑎𝑟𝑒 𝑥 (
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 1 𝑚𝑙

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑝𝑒𝑟 𝑠𝑚𝑎𝑙𝑙 𝑠𝑞𝑢𝑎𝑟𝑒
)  =

 
1 𝑚𝑙−1

5 𝑥 10−8  𝑚𝑙−1   =  𝑐𝑒𝑙𝑙 𝑚𝑙 -1 𝑠𝑎𝑚𝑝𝑙𝑒  𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟖 

 𝐶𝑒𝑙𝑙 𝑚𝑙 -1 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 =  𝑐𝑒𝑙𝑙 𝑚𝑙 -1 𝑠𝑎𝑚𝑝𝑙𝑒 𝑥 𝐷𝐹 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟗 

DF is the dilution factor 

 

2.4.1.2. Stain concentration 

In order to test the effect of different concentrations of Nile red dye on the lipid 

measurement, the procedure was repeated with different concentrations (0.025, 0.05, 

0.1, 0.2, 0.4, and 0.6 µmole/ml) of stain using the optimal concentration of yeast cells. 

 

2.4.1.2.1. Primary stock of Nile red dye 

Ten mg of Nile red (Sigma) was added to 10 ml of dimethyl sulfoxide (DMSO), making the 

concentration 3.14 mmole/L (or 3.14 µmole/ml). From this concentration, secondary 

stocks of Nile red dye were prepared with a final volume of 1000 µl as shown in Table 2.2. 
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Table 2-2. Secondary concentrations of Nile red dye 

 

 

 

 

 

 

 

 

2.4.1.3. Plate reader settings  

Before carrying out the procedure, the plate reader was checked to ensure that the 

correct filters for excitation and emission wavelengths, 485 nm and 580 nm respectively, 

were installed (Almutairi, 2015). 

 

2.4.1.4. Procedure 

After preparing the samples of yeast cells at the optimum cell concentration, all 

Eppendorf tubes were whirlimixed, and 1 ml from each sample was transferred to a row 

of the reagent reservoir. Then 4 x 200 µl from each row were collected, and added to 

the 96 well plate as the unstained cells at the relevant concentration using a 

multichannel pipette. Next, 20 µl of Nile red solution was added to all Eppendorf tubes 

and the timer was started. All samples were whirlimixed, and transferred to a row of the 

reagent reservoir. Four x 200 µl of stained samples were transferred to appropriate 

wells. After removing the cover, the plate was placed in plate reader machine to start 

the NR KB- Peak finder, and the readings were taken at a regular time intervals (7, 15, 

30, 45,  and 60 min) (Chen et al., 2009). 

 

NR µMol/ml From primary (µl) DMSO (µl) 

0.025 8 992 

0.05 16 984 

0.1 32 968 

0.2 64 936 

0.4 128 872 

0.6 192 808 
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2.4.2. Spectroflurometric quantification of neutral lipid in three yeast strains growing 

in YM medium with different concentrations of NaCl 

Neutral lipid accumulation was determined in all three yeast strains growing under 

different osmotic stress condition. The experiment was carried out by growing all strains 

in 3x250 ml flasks containing 50 ml YM medium augmented with different concentrations 

(0, 0.8, 1.6 M) of NaCl under shaking at 25°C.  Readings were taken after different times 

of incubation (at the logarithmic and stationary phase) for each yeast strain. 

 

 

2.4.3. Spectroflurometric quantification of neutral lipid in D. hansenii cells under 

different stress conditions using Nile red dye 

2.4.3.1. NaCl stress  

To determine the neutral lipid production in D. hansenii strain, the same procedure was 

followed as described in section 2.4.2. First, the Nile red technique was optimized for D. 

hansenii growing in minimal medium.  Then the lipid content was compared with biomass 

(mg lipid/ mg biomass) in both minimal and YM media with different concentrations (0, 

0.8, 1.6 M) of NaCl. 

 

2.4.3.2. Effect of different carbon/nitrogen ratios on neutral lipid production 

To visualize the effect of carbon/nitrogen ratios in relation to the type of carbon source 

used (glucose and glycerol) on neutral lipid production in D. hansenii, experiments were 

performed using 3x250 ml shaking flasks containing 50 ml minimal medium with different 

carbon/nitrogen (ammonium sulfate) ratios.  The experiments were carried out by using 

glucose or glycerol as the only carbon source in minimal medium. First, the nitrogen 

source content was fixed at the original concentration in minimal medium and the 

concentration of carbon source was changed (8:1, 16:1, 32:1, and 48:1 C/N). Then the 

selected concentration of carbon source was used with lower concentrations of 

ammonium sulphate (48:1, 48:0.5, 48:0.25, and 48:0 C/N).   Each culture was adapted to 

the same concentration of carbon/nitrogen before measuring the neutral lipid inside the 
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cells after 40 hours of incubation, and the OD was set initially at 0.2 in all cultures. After 

centrifugation at 3000 g for 5 minutes, yeast cells were re- suspended in distilled water, 

the OD was set at 4.72 ±, and the lipid content was compared with biomass (mg lipid/ mg 

biomass).                                                                                                                                                  

Following optimization, the C/N ratio, an experiment was performed to compare between 

48:0.5 glucose/ ammonium sulphate with 8:0.25 glycerol/ ammonium sulphate ratios on 

neutral lipid production. The readings were taken for 3x50 ml liquid media after 40 hours 

of incubation, then compared with the biomass of each culture.                                                      

 

 2.4.3.3. Changing the cells environment from high salt to the 48:0.5 glucose/ 

ammonium sulphate medium  

In all previous experiments the cultures were inoculated with cells pre-adapted three 

times in the same culture conditions before measuring the neutral lipids. This experiment 

was carried out by using inoculum from pre-adapted cells to high salt environment. After 

40 hours of incubation in 1.6 M NaCl minimal medium, 3X 50ml cultures were centrifuged 

at 3000 g for 5 minutes then re-suspended under aseptic conditions in 3X 50ml 48:0.5 

glucose/ammonium sulphate medium at different times (2, 4, 8, 24, and 40 hours) of 

incubation. Initially three replicates of 1.6 M minimal medium were performed for each 

time of incubation in 48:0.5 glucose/ammonium sulphate medium (3X 50ml).  The OD was 

started at 0.2 for all cultures and the readings of neutral lipid and total osmlytes were 

taken and compared with the biomass (mg).                                                                                 

                                                               

2.4.4. Triolein Calibration Curve 

Standard curve of triolein was created to allow quantification of the total neutral lipid 

inside the cell. Based on the work of (Bangert, 2014) and modified in this thesis, neutral 

lipid calibration curve was carried out in a 96 well plate format. A series of eight lipid 

concentrations were created using the ratio 1:20 polar (PC-phosphatidylcholine (L-
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lecithin Type XVI-E, from fresh egg yolk ~99%)) to neutral (TO- Triolein) lipids, isopropanol 

and distilled water. A primary solution was prepared by adding 500 µl (2500 µg) of TO to 

12.5 µl (125 µg) of PC (with chloroform) in O-ring sealed 1.5 ml Eppendorf to make 512.5 

µl of stabilized triolein. Then eight lipid secondary standards were made by combining 

isopropanol with different volumes of primary standard and distilled water (Table 2.3) in 

2 ml Eppendorf tubes.                                                                                                                                

                                                                    

Table 2-3. Eight triolein secondary standards 

   

The standards then sealed, kept on ice and in the dark to avoid degradation. One ml from 

each tube was transferred to reservoir and 4 x 200 µl collected, and added to the 96 well 

plate as the unstained cells. Another 4 x 200 µl was added to plate as stained cells after 

staining with Nile red for about 7 minutes. All wells were read using the same conditions 

(an excitation wavelength of 485 nm and emission of 580 nm with gain 35), and the 

standard curve made between the fluorescent intensity and lipid concentration (see 

Figure 2.3).         

 

 

 

 

Triolein 

(mg/ml) 

0.1 0.08 0.06 0.04 0.02 0.01 0 

Distilled 

water 

1959.5 1959.5 1959.5 1959.5 1959.5 1959.5 1959.5 

1:20 

Triolein (µl) 

40.5 32.8 24.6 16.4 

 

8.2 4.05 0 

Isopropanol 

(µl) 

0 7.7 15.9 24.1 32.3 36.4 40.5 
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2. 5. Imaging of neutral lipid bodies within the cells by using Fluorescence 

Microscopy 

2.5.1. Preparing of the cells 

Neutral lipid body accumulation within D. hansenii cells was observed by using 

Fluorescence Microscopy. Cultures from both minimal and YM media were grown until 

the late logarithmic phase. After centrifugation, the pellet was re-suspended in distilled 

water and the optical density was set at 4.72 ±. Then 1 ml from each culture was added 

to 1.5 ml Eppendorf tube along with 20 µl of Nile red dye at 0.4 and 0.2 µmol/ml for 

minimal and YM cultures respectively, and mixed well with monitoring the time of 

staining. Ten µl of the sample was transferred into a clean microscope slide and the 

coverslip was added carefully. The edges of the coverslip were sealed with nail varnish to 

 Figure 2.3. Standard curve of Triolein concentration versus Nile red 

fluorescence intensity. Experiment was done with four replicates, Bars 

represent standard deviation.  
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stop evaporation, and the slide was ready to view once the varnish had dried and after at 

least 7 minutes of staining.                                                                                                            

2.5.2. Fluorescence microscopy 

Images were captured on a Axiovert 200M (Zeiss) fluorescence microscope equipped with 

-pass filters (Zeiss and Chroma), an alpha plan-bandcite 120 excitation light source, -Exfo X

plan 40x/0.65 NA -/1.40 oil immersion lens, or A63x  pochromat-plan-AFluar 100x/1.45, 

Ph2 objective lens (Zeiss) and Hamamatsu Orca ER digital camera. Filters (525 and 700 

nm) were used for green Channel and Red Channel respectively. Image acquisition was 

performed on Volocity software (Perkin Elmer). Live cells were imaged in non-fluorescent 

media at room temperature. Fluorescence images were collected as 0.5 μm z-stack, 

merged into one plane after contrast enhancing in Openlab (Improvision) software and 

the figures were prepared using Photoshop. Brightfield images were collected in one 

plane and added into the blue channel in Photoshop (Adobe). The level of the brightfield 

images was modified, and the image was blurred and sharpened before further level 

adjustment (Al Saryi, 2016).                                                                                                                  

 

2.6. Fatty acid analysis of the neutral lipid 

2.6.1. Fatty acids transesterification and analysis by GC-MS technique in D. hansenii 

Fatty acid structure in D. hansenii cells was identified under different stress conditions 

(NaCl stress and low amount of nitrogen source). Fifty ml of pre-adapted YM and minimal 

cultures (with different concentrations of NaCl: 0, 0.8, and 1.6 M; as well as different C/N 

ratios: 48:0.5 and 8:0.25 glucose/ ammonium sulphate and glycerol/ ammonium sulphate 

respectively) were collected after incubation for the same time as used for neutral lipid 

measurement for each medium (Section 2.4).  Cultures were centrifuged and then re- 

suspended in distilled water, the OD was set at 4.72 ± for all cultures, and 30 ml from each 

culture were freeze dried and then weighed.  In 1.5 ml GC vials (9301-1388, Agilent) 5-10 

mg aliquots of freeze dried biomass was weighed and the hot plate was preheated to 85 

˚C before adding the transesterification solutions. To each vial 300 μl of 0.6 M HCl: 
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methanol was added, then 200 μl of chloroform: methanol (2:1 v/v) and 20μl of 

tridecanoic acid methyl ester (C13: ME, 10 mg ml-1 as internal recovery standard that does 

not naturally occur in yeast and was used to correct the variability of FAME extraction and 

solvent evaporation in the samples (Smith, 2016). Gas-tight syringes (250, 100 μl and 20 

μl, Hamilton) were used and all vials were quickly sealed with PTFE/silicone/PFTE septa 

crimp caps (5181-1211, Agilent). Once the working solutions addition was completed, all 

the sealed vials were placed in the pre-heated hot plate at 85°C for one hour to allow the 

transesterification reaction to occur. In this procedure the whole lipids in freeze dried 

biomass including phospholipids and galactoglycerolipids were transesterified by acid 

catalyzed reaction to fatty acid methyl esters (FAMEs) according to method described by 

(Van Wychen and Laurens, 2013b).  After incubation, the samples were cooled down at 

room temperature for at least 15 minutes, but no more than one hour. When samples 

became cold, 1 ml of HPLC grade hexane was added to each vial by using a plastic syringe 

with hollow core needles (25 mm, BD Microlance) without removing the cap. This was 

achieved by putting another needle (to equalise internal pressure) in the direction away 

from the first needle of plastic syringe. In this step, the FAME were extracted from the 

polar methanol phase, and leaving the polar compounds such as glycerol, or phosphatidic 

acid behind. The vial was vortexed for 10 seconds, then left to stand without disturbance 

for at least 60 minutes, but no more than 4 hours, to allow the separation of phases. At 

this point the samples can stored overnight at - 20 ˚C, but should be left for no more than 

24 hours to avoid co-extraction of unwanted compounds, (longer storage up to one week 

can be done after transferring the hexane layer to new 1.5 ml GC vial (after allowing for 

complete extraction of at least 1 hour), and store in a freezer at -20°C) (Van Wychen and 

Laurens, 2013b).  One hundred µl from the upper phase of the samples were diluted with 

400 µl HPLC grade hexane and transferred to a 1.5 ml GC vial for precise quantification of 

the expected high lipid values. In 300 µl GC vials (9301-1388, Agilent) 200 µl from the 

diluted sample was added plus 5 μl of pentadecane (1 mg ml-1 which was used as an 

internal standard to correct the error between instruments and solvent evaporation 

during FAME analysis). Then the new vials were capped immediately. According to the 
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revised version of (Van Wychen and Laurens, 2013b) in 2015, the standards  (section 

2.6.1.1) and working solutions can be stored for up to 6 months at -20˚C before analyzing 

by gas chromatography mass spectrometry (GC-MS) technique. Fatty acid methyl esters 

(FAMEs) were analyzed by GC/MS using an Autosystem XL Gas Chromatograph (CHM-

100-790, Perkin Elmer), which combined with a TurboMass Mass Spectrometer software 

(13657, Perkin Elmer). The GC was fitted with a Zebron™ ZB-5ms, 30m x 0.25 mm ID x 

0.25 μm FT (7HG-G010-11, Phenomenex) GC capillary column. Samples were injected (5 

μl volume) via an auto-sampler onto the column and eluted at an injection temperature 

of 250°C with a 100:1 split ratio and a He constant carrier flow (1 ml min-1).Sample peaks 

was identified by using Turbomass software (Ver 5.2.4, Perkin Elmer) and the National 

Institute of Standard Technology (NIST) spectral database. A response was calculated for 

each dilution point of each FAME component of interest by using the FAME standard 

dilution series, depending on the following formula of Turbomass software:               

  

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐴𝑟𝑒𝑎𝐹𝐴𝑀𝐸 × 
𝑐𝑜𝑛 𝐼𝑠

𝐴𝑟𝑒𝑎𝐼𝑠
                                                𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟏𝟎 

 

AreaFAME is the peak area (height and width) of each FAME component, 𝐴𝑟𝑒𝑎 𝐼𝑠 is the peak 

area of the internal standard (pentadecane), and 𝐶𝑜𝑛𝑐𝐼𝑠 is the known concentration of 

internal standard.              

 A linear regression was then carried out with the response and relative FAME component 

concentration. Due to the number of components within the samples, the standard 

concentrations were set to relative concentrations of 500, 250, 100, 30 and 10, which 

represent the fractions of the original 10 mg ml-1 FAME standard multiplied by 1000 to 

increase resolution (software rounds to 2 decimal places). Subsequently the software 

calculated the relative concentration of each FAME component within the sample by 

using the following equation:    
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𝐶𝑜𝑛𝑟𝑒𝑙 =  𝐴𝑟𝑒𝑎𝐹𝐴𝑀𝐸  ×  𝑅𝐹                                                           𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟏𝟏 

 

𝐶𝑜𝑛𝑟𝑒𝑙 is relative concentration, and 𝑅𝐹 is the response factor calculated by linear 

regression of FAME standard response.  

(Van Wychen and Laurens, 2013b, Smith, 2016).    

2.6.1.1. FAME standard preparation 

Separately, FAME standards were prepared by creating a dilution series from 10 mg ml-1 

C4:0 – C24:0 FAME mix (18919-AMP, 37 Component Mix, Supelco) and HPLC grade hexane 

(500:500, 250:750, 100:900, 30:970, 10:990 μl, respectively). In addition, a calibration 

verification standard was created with 90 μl FAME mix and 910 μl hexane. The standards 

were prepared and mixed with the internal standard using the same method as the 

samples (described in Section 2.6.1). Vials were stored upright at -20°C until required. 

 

 

 

2.7. Phylogenetic identification of D. hansenii strain 

2.7.1. Genomic DNA Extraction and Purification 

Aliquots (1.5 ml) of D. hansenii cultures (growing in 30 ml YM or minimal media at 25˚C, 

120 rpm shaking) were harvested and spun down at 1000 g for less than 2 minutes. After 

centrifugation, the supernatant was removed completely and gDNA from the cells was 

extracted following the YeaStarTM Genomic DNA KIT (40 preps, Zymo Research). The 

extracted gDNA was then re- suspended in 1xTE buffer (10 x TE; 10mM Tris, 0.1 mM EDTA, 

pH8, see section 2.8.6.1) and stored at -20˚C. Before storage, 10 µl samples + 2µl loading 

dye for each sample were run on a 1% Agarose gel (80 V, 45 minutes) along with 6 µl 10 

Kb ladder (1µl ladder + 1 µl loading dye + 5µl deionized water) to confirm the presence of 

gDNA. 
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2.7.2. Agarose Gel Electrophoresis 

Agarose gels were made in the following steps; 1.2 ml of 50x TAE buffer, [50x TAE buffer 

(2 M Trizma® base, 50 mM EDTA-Na2, 1 M glacial acetic acid, pH 8.5) (242 g Tris 

Methylamine, 18.61 g EDTA and 57.1ml Acetic Acid at pH 8.5, per litre)] were added to a 

standard 250 ml conical flask and filled up to 60 ml with distilled water. 0.6 g of agarose 

were then added to make a 1% gel. The solution was then microwaved (Matsui M185T 

850W) for 90 seconds at full power, stirred, then microwaved again for 30 seconds. Five 

μl of Gel RedTM (Nucleic Acid Gel Stain 10,000X in Water) after dilution to 3x with water, 

were then added and the mixture stirred again. The molten gel was then poured into the 

gel tank (Bio-Rad Laboratories Inc), and allowed to cool. A 1x TAE solution (1.5 litres) was 

then prepared and added to the tank. The samples stained by mixing 2 μl of 6x DNA 

loading dye (Fermentas life sciences, #R0611) with 5 μl of PCR product on Parafilm M 

(Bemis Flexible Packaging). Seven μl of Hyper Ladder I (Bioline H1K5- 1006) were loaded 

in between. The tank was then connected to the power supply (Bio-Rad Laboratories Inc, 

Power PAC 300) and run at 80 volts for 45 minutes. The bands of DNA were visualised 

using an ultraviolet transilluminator imaging system and a picture recorded digitally using 

Gene snap software (SynGene).  

 

2.7.3. Polymerase Chain Reaction (PCR) (Amplification of PAD1 gene encoding 

Phenylacrylic acid decarboxylase 

After gDNA extraction PCR amplifications were performed by using the forward primer 

DhPadF (5′ GCGACTATGAACAGGTTTCC AACGA 3′) and reverse primer DhPadR 

(5′CCTTCAATGTAACATCAGCGGCCC 3′) that selects for the sequence 101 to 125 and 479 

to 502 respectively based on the S. cerevisiae PAD1/YDR538W gene sequence 

(http://www.yeastgenome.orgin  (Wrent et al., 2015). PCR was set by using Taq DNA 

polymerase Master Mix (5 PRIME) under the following conditions: (denaturation for 5 min 

at 98C, annealing at 55C for 30 seconds, and extension at 72C for 1.5 minutes, 30 

cycles), along with initial 5 minutes denaturation at 95°C and a final 7 minutes extension 

at 72°C.   

http://www.yeastgenome.orgin/
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2.7.4. Purification of PCR Products 

PCR products were purified by using PCR clean up procedure for Nucleic Acid Extraction 

Kit, Key Prep, to remove any compounds that might affect the purity of gDNA. After 

purification gDNA samples were eluted in 30 µl 1xTE buffer (see section 2.8.1.6.1), and 

the concentration measured by using a Nanodrop device.  Blank was set by using 1 μl of 

1xTE buffer. Following quantification, the samples then run on 1% Agarose gel 

electrophoresis and the band sizes were analysed compared with 10 Kb ladder. 

2.7.5. Sequencing of PCR Products 

For DNA sequencing the PCR products for both YM and minimal media cultures were 

diluted to the required volume and concentrations (15 μl, 10 ng μl-1) by 1xTE buffer. At 

the same time, the primer pair used to amplify the PAD1 gene were prepared to 30 μl at 

10 pmol μl-1. The solutions were then sent to Eurofins Genomics for sequencing. The DNA 

samples were sequenced in forward and reverse directions using cycle sequencing 

technology (modified Sanger sequencing) on an ABI 3730XL sequencing machine (Smith, 

2016). 

 

2.7.6. Phylogenetic analysis 

The obtained sequence was searched by using the Basic Local Alignment Search Tool 

(BLAST) online at the National Centre for Biotechnology Information (NCBI) 

(www.ncbi.nlm.nih.gov) website. (Johnson et al., 2008). 

 

2.8. Genetic modification of D. hansenii strain 

2.8.1. Gene deletion and construct design for D. hansenii transformation 

2.8.1.1. Yeast knockout construction by homologous recombination 

Figure 2.4 demonstrates the proposed plan to delete the GUT2 gene (encode for the 

mitochondrial glycerol 3-phosphate dehydrogenase), which catalysizes the conversion of 

G3P into DHAP) via homologous recombination. To do this a plasmid construct was 

designed containing the SAT1 marker (gene encoding for streptothricin acyltransferase), 

http://www.ncbi.nlm.nih.gov/
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flanked by 500 bp upstream and 500 bp downstream of the GUT2 ORF.  At the same time, 

another construct was designed with the same marker flanked by 500 bp upstream and 

500 bp downstream of the URA3 ORF (see Figure 2.4). This was used as a standard to 

evaluate the frequency of gene deletion by homologous recombination in transformed 

cells of D. hansenii.  Yeast cells containing the integrated cassette were identified using 

selective medium (YM containing 1.5 or 5 µg/ml of nourseothricin antibiotic). The 

selected colonies (transformed with URA3 flanks construct) were subsequently 

transferred to Minimal medium lacking uracil by replica plating. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNA plasmid construct  

500 bp 

Selectable marker (SAT1 gene) 

500 bp 

Selectable marker (SAT1 gene) 

Target gene (GUT2) 
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Gene replacement 

(Knockout) 

Nucleus  
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gDNA 

Figure 2.4. Construction of gene knockouts by homologous recombination. Schematic of gene 

knockout 
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2.8.1.2. Cloning the DNA plasmid construct using chemically competent E. coli DH5α 

cells  

2.8.1.2.1. Growth and maintenance of E. coli DH5α cells 

E. coli DH5α cells from frozen stock (stored in 15% glycerol at -80°C) were streaked onto 

a 2TY agar plate (see section 2.8.1.2.4.1) without antibiotic and then incubated overnight 

at 37°C. The plate was wrapped in Parafilm and stored in refrigerator at 4°C for use within 

one week.                                                                                                                                                

   

2.8.1.2.2. Making chemically competent cells 

Five ml of 2TY broth without antibiotic was inoculated with cells from DH5α E. coli 2TY 

agar culture, and incubated overnight at 37°C with shaking. Next day, the OD was 

measured at 600 nm after zeroing the spectrophotometer with 2TY broth. Fifty µl from 

the culture were diluted with 950 µl 2TY medium in a 1 ml cuvette, and the absorbance 

reading given was then multiplied by 20 to give the density of the culture.  A sufficient 

amount from this culture was added to 200 ml 2TY broth to make the starting culture with 

initial OD 0.05, then the bacterial cells were incubated with shaking at 37°C and the OD 

was checked regularly. Once the OD reached 0.5-0.6, the culture was immediately 

removed and placed on ice to chill cells. The sample was divided into 4x50 ml Falcon tubes 

and all tubes centrifuged for 10 minutes at 3000 rpm and 4°C. The supernatant was 

poured off and the pellet was re-suspended into two tubes with 35 ml ice cold RF1 

solution (100 mM rubidium chloride, 50 mM manganese chloride, 30 mM potassium 

acetate, 10 mM calcium chloride, 15% w/v glycerol, pH 5.8) in each tube (re-suspended 

in small volume and mixed each two together without vortexing), and left on ice for 20 

minutes. The suspended cells were centrifuged again for 10 minutes at 3000 rpm and 4°C. 

The bacterial cells were collected after resuspension in one tube containing 16 ml of ice 

cold RF2 solution (10 mM MOPS, 10 mM rubidium chloride, 75 mM calcium chloride, 15% 

w/v glycerol, pH 6.8). Aliquots (200 µl) were added into 25 pre-cooled Eppendorf tubes, 
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as well as 400 µl samples were added to another 25 pre-cooled Eppendorf tubes. All tubes 

were frozen in liquid nitrogen and stored at -80°C.                                                                            

2.8.1.2.3. Transformation of chemically competent E. coli DH5α cells. 

In order to test the DH5α E. coli competent cells, 400 µl of the cells were taken from -80°C 

and thawed immediately on ice. After thawing the cells were divided into 4 Eppendorf 

and , )Stratagene( +SK Bluescriptp, SAT1tubes each one has 100 µl of cells. One µl of pFA 

1ng/µl DNA of plasmids was added separately to each chilled Eppendorf tube, except the 

fourth tube was left with only cells as the negative control. All tubes were mixed gently 

by pipette tip, and then left on ice for 20 minutes. Before the end of the 20 minutes an 

ice water bath was prepared. For 90 seconds, all tubes were put at 42°C then immediately 

transferred to the ice water for about 5 minutes. 2TY broth without antibiotic (750 µl) 

were added to all tubes, and then incubated at 37°C for 45 minutes.  All tubes were 

centrifuged for 1 minute at 13000 rpm, and the supernatant poured away leaving just 50 

µl to re-suspend the cells. Then the bacterial cells were spread on 2TY-ampicillin agar 

plates until the medium had dried.  All plates were incubated overnight (approximately 

16 hours) at 37°C. After incubation, the results were read by counting the number of cells 

growing in 2TY-ampicillin medium.                                                                                                       

                                                

2.8.1.2.4. Growth and preparation of E. coli DH5α cells for isolation of high copy 

plasmid DNA   

Before starting the isolation of high-copy plasmids (pFA SAT1 and pBluescript SK+), 50 ml 

of 2TY plus ampicillin broth medium was inoculated with E. coli cells (cells with different 

plasmid were inoculated separately) and incubated overnight for about 16 hours at 37°C 

under shaking. After incubation, each culture was centrifuged for about one minute at 

13000 rpm at room temperature.  The supernatant was discarded and the whole dried 

pellet collected in 1.5 ml Eppendorf tube. Plasmid DNA isolation from E. coli overnight 

cultures was carried out using the Sigma Aldrich mini prep kit following manufacturer’s 

instructions.                                                                                        
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 2.8.1.2.4.1. 2TY medium  

 This medium was prepared by dissolving 1.6% Bacto Tryptone, 1% yeast extract, and 0.5% 

sodium chloride in a suitable amount of distilled water.  Following autoclaving at 121°C, 

antibiotics were added to E. coli medium (75 μg/ml ampicillin final concentration) when 

required. Solid media was supplemented with 2% (w/v) agar.                                                                                       

 

2.8.1.3. DNA construct designed to knockout the GUT2 and standard URA3 gene  

marker  SAT1vector and  +The pBluescript SK 2.8.1.3.1 

The SAT1 marker was used to disrupt the target gene, according to the study of Reuß et 

al. (Reuß et al., 2004) that relied on the use of nourseothricin resistance marker (caSAT1) 

for the selection of integrative transformants in C. albicans wild-type strains. DNA plasmid 

construct with selectable marker was produced using pBluescript SK+ plasmid, which has 

an ampicillin gene as a selectable marker, to transform E. coli DH5α cells.  The SAT1 gene 

(1871 bp), which provides resistance to nourseothricin (ClonNAT), was used for the 

selection of recombinant transformants of D. hansenii. SAT1 was amplified from pFASAT1 

plasmid in a PCR reaction with the primers vip3286 and vip3287 using Accuzyme DNA 

polymerase (30 cycles, and 2 minutes for extension time). The primers were designed to 

have the restriction sites PstI in the forward primer, and BamHI site in the reverse primer. 

Since the reverse primer annealed on part of the plasmid that contains a PstI site, this 

sequence was mutated to avoid the action of the PstI restriction enzyme at that end of 

the PCR product.                                                                                                                                    

 

2.8.1.3.2. First attempt at designing DNA plasmid construct 

The SAT1 PCR product was digested with the restriction enzymes PstI and BamHI, then 

 +ligated using T4 DNA ligase (see ligation reaction in section 2.8.9) into the pBluescript SK

plasmid vector which was linearized by the same enzymes.  This construct (pZA1) was 

modified to contain two flanks around the SAT1 gene (Figure 2.5). The flanks consisted of 

500 bp amplified from the sequence upstream and downstream of the gene coding for 
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uracil prototrophy i.e. ortidine-5´-phosphate decarboxylase (URA3 gene). PCR was 

performed using primer pairs vip3319-vip3320 (extended with the restriction sites SacI 

and XbaI) for the upstream flank, and vip3321- vip3322, having Pst1 and Xho1 sites for 

e downstream flank. The products were cloned into the multi cloning site of the th

-IPst1 and Xba-1Saccassette and inserted in  SAT1vector containing the  +pBluescript SK

XhoI sites to form the pZA5 DNA construct (Figure 2.5.B).                                                             

To design pZA3 plasmid construct (Figure 2.5.A), fragments with 500 bp (sequence 

upstream and downstream of GUT2 open reading frame) was amplified by using primer 

pair vip3317-vip3318. This PCR product was digested by EcoRI and XhoI before insertion 

into the EcoRI- SalI site of pZA1 plasmid DNA. The second fragment was amplified with 

primers vip3315-vip3316 and inserted into the SacI-XbaI site. The PCR product for each 

flank was produced using Velocity DNA polymerase (35 cycles and 30 seconds extension 

time).                                                                                                                                                      

                                                                        

2.8.1.3.3. Second attempt at designing DNA plasmid construct   

Based on the results of DNA sequencing for the pZA3 and pZA5 construct, the orientation 

of the open reading frame of the SAT1 gene was in opposite direction with respect to 

flanks in both constructs. This might affect the transcription of the SAT1 gene by RNA 

polymerase II, so it was decided to flip the orientation of SAT1. Firstly, the SAT1 gene 

region was amplified by using primer pair (SAT1 For. and SAT1 Rev.), introducing the 

restriction site XbaI at the 5´ end, and a PstI site in 3´end of the SAT1 ORF. At the same 

time, the BamHI site was removed from the 3´end of SAT1 gene. Then the PCR product 

along with pZA3, and pZA5 vectors were digested by XbaI-PstI for ligation. After ligation 

and transformation of the new construct into E. coli DH5α cells, the plasmid DNA was 

isolated and named as pZA6 and pZA7 designed to replace the URA3 and GUT2 gene with 

the SAT1 gene, respectively (Figure 2.5.C and D). Then the orientation of the cloning 

fragment was examined. To do that, two digestion reactions (XhoI-BamHI and PstI-XbaI) 

were set up to differentiate between the orientation of the SAT1 gene in pZA5 and pZA6. 
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To distinguish between pZA3 and pZA7 constructs, two digestion reactions were set up 

by using SacI-SalI and SalI-KpnI. These last two tests depend on the size of the fragments 

resulting from the digestion by using each reaction                                                                                   
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Figure 2.5. Schematic diagram of pZA3, pZA5, pZA6, and pZA7 construct 
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2.8.1.4. Isolation of high copy plasmid DNA by using Sigma Aldrich mini prep kit  

Resuspension buffer (P1, 250 µl) was added to each Eppendorf tube and mixed with 

stirring by pipette tip or by vortexing.  Lysis buffer (250 µl) was added and mixed by 

inverting 6-8 times, and the samples incubated for about 5 minutes at room temperature. 

After incubation, 300 µl neutralization buffer (P3) was added, and mixed thoroughly by 

inverting tube 6-8 times. The tubes were centrifuged for about 5 minutes at 12,470 x g in 

room temperature, then 750 µl of the supernatant was transferred to the Plasmid Mini 

Spin Column and centrifuged at 11,000 g for one minute at room temperature. The flow 

through was discarded and 500 µl of preheated (at 50°C) Wash buffer (PW1) was added. 

It was then centrifuged for 1 minute at 12,470 x g twice to remove all of the ethanol. Then 

the Isolate II Plasmid Mini Spin Column was placed in a 1.5 ml microcentrifuge tube and 

50 µl of Elution buffer (P) was added directly onto the centre of the silica membrane, and 

centrifuged at 12,470 x g for one minute. After that the column was removed and the 

sample kept in the microcentrifuge tube. The plasmid DNA concentration was measured 

by using the Nanodrop device.                                                                                                                            

                                                                 

2.8.1.5. Polymerase chain reaction (PCR) 

To amplify certain region of DNA, PCR was performed using either Accuzyme, Velocity 

polymerase, or My Taq DNA polymerase. Velocity and Accuzyme possesses 5’-3’ and 3’-

5’ proofreading enzyme activities and provides high fidelity for all cloning work. The 

following tables (Table 2.4 and 2.5) show the PCR reaction components and conditions 

for the polymerase enzymes used.                                        
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Table 2-4. PCR reaction components 

 

 

 

Table 2-5. PCR conditions for different polymerase enzymes 

 

Velocity polymerase Accuzyme polymerase  My Taq polymerase  Component 

10µl of 5µM 5µl of 5µM 5µl of 5µM Forward primer (5 µM) 

10µl of 5µM 5µl of 5µM 5µl of 5µM Reverse primer (5 µM) 

10 µl of 5x Hi Fi 

buffer 

5µl 10x Accuzyme 

buffer 

10µl 5x My Taq buffer   Reaction buffer 

5 µl of 2.5 mM 6 µl of 2.5 mM - dNTPS  

As required As required As required    DNA template (10 ng) 

1µl of 2 U/µl 1µl of 2.5 U/µl 0.25 µl of 5 U/µl DNA polymerase 

Up to 50 µl Up to 50 µl Up to 50 µl dH2O 

50 µl  50 µl 50 µl Total volume 

Velocity polymerase Accuzyme polymerase My Taq polymerase Step 

2 mins. at 98 °C 1 mins. at 95 °C 2 mins. at 95 °C 1. initial denaturation of DNA 

30 sec. at 98 °C 15 sec. at 95 °C 30 sec. at 95 °C 2. Denaturation of DNA 

30 sec. at 57 °C 15 sec. at 55 °C 30 sec. at 55 °C 3. Annealing of the primers 

30 sec. at 72 °C/ 1 Kb 1.5 - 2 min/kb at 72 C° 10 sec. at 72 °C/ 1 Kb 4. Extension 

10 mins. at 72 °C 10 mins. at 72 °C 10 mins. at 72 °C 5. Final extension 

repeated for 30 cycles repeated for 30 cycles repeated for 35 cycles 2-4 steps repeating 
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2.8.1.6. Oligonucleotide primers design 

All primers were ordered from Sigma and are shown in Table 2.6.  These primers were 

optimized to include a unique sequence, and their composition designed to contain 

around 20-25 base pairs in length and to anneal at both ends of the chosen DNA 

sequence. Moreover, all primers contained either a C or G base at the 5' and 3' end to 

control miss-priming. Forward and reverse primers used for cloning each contained a 

restriction site to allow directional cloning. However, primers with a GC content of 45-

55% were desired. Additionally, sets of primers were designed to have similar melting 

temperatures (Tm), close to 60°C, to allow proper annealing of primers. The following 

formula was used to calculate Tm.                                                                                               

𝑇𝑚 =  2°𝐶 (𝐴 +  𝑇)  +  4°𝐶 (𝐺 +  𝐶)               𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟏𝟔 

On delivery from the supplier all primers were dissolving in required volume of TE buffer 

following the company instructions. The working stock for each primer was prepared at 5 

µM concentration. 
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Table 2-6. Primers used in this study 

 

Source Sequence (5’-3’) Description  Name  

Dr. Hettema lab. Molecular Biology 
and Biotechnology department 
(university of Sheffield  

GTTTTCCCAGTCACGACG To amplify the 
construct 

VIP049 

Dr. Hettema lab.  Molecular Biology 
and Biotechnology department 
(university of Sheffield 

GGAAACAGCTATGACCATG To amplify the 
construct 

VIP050 

This study TGAAGCTTCGTACGCTGCAG To amplify SAT1  VIP3286 

This study GCTGGATCCATGCAGGACCACCTTTGATTG To amplify SAT1 VIP3287 

This study GACGAGCTCTACCTATCCGATATATCCTTGC To amplify the 500bp 
upstream of GUT2   

VIP3315 

This study GACTCTAGACTTTCTAGGGTGTTCTTACTGTC To amplify the 500bp 
upstream of GUT2 

VIP3316 

This study GACGAATTCGATGTTGAAGATTTCATCGTCC To amplify the 500bp 
downstream of GUT2 

VIP3317 

This study GACGTCGACTGTCGGTGCTACTGGAATCAAC To amplify the 500bp 
downstream of GUT2 

VIP3318 

This study GACGAGCTCTAGCAAGACTGAATTATGGAAAAC To amplify the 500bp 
upstream of URA3 

VIP3319 

  

This study GACTCTAGACGCTAATATGGGATTTGTTAATTG To amplify the 500bp 
upstream of URA3 

VIP3320 

This study GACCTGCAGAGATGCAGGTTGGAATGC To amplify the 500bp 
downstream of URA3 

VIP3321 

This study GACCTCGAGAACAATCTGATGAACAAGTCCTC To amplify the 500bp 
downstream of URA3 

VIP3322 

This study CTGTCTAGAGCAGGTCGAGCGTCAAAAC To amplify the flipping 
orientation of SAT1 

SAT1 For 

This study GCTCTGCAGATGCAGGACCACCTTTGATTG To amplify the flipping 
orientation of SAT1 

SAT1 Rev 

This study GTCCCAGTTTGATCTGGAAG To check knockout by 
pZA6 construct 

VIP3374 

This study CGCCTAACATATGTGAAGTG To check knockout by 
pZA7 construct 

VIP3375 

This study CAGACTACTGGCAGAGAAATTG To check knockout by 
pZA7 construct 

VIP3396 

This study GCATTGTCTCGCTGATGAAC To check knockout by 
pZA7 construct  

VIP3396 

This study TAGCACACACCCACAACAAC To check knockout by 
pZA7 construct 

VIP3397 

This study GAATTGATGGTCACGGAGAAGG To check knockout by 
pZA7 construct 

VIP3408 

This study CGTACCAATCGTTTGACGAG To check the GUT2 
gene 

VIP3410 
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2.8.1.6.1. TE buffer  

10X of TE buffer (10mM Tris, 0.1 mM EDTA) was prepared by dissolving 0.788 g Tris Cl 

plus 0.0186 g of EDTA in 40 ml dH2O water, after dissolving the pH was adjusted with 0.1 

M HCl to 8).  Ten ml from this concentrated buffer was diluted with 90 ml dH2O water to 

make the working stock that was used to dilute the PCR product and the primers).  

 

2.8.1.7. Agarose gel electrophoresis 

For each step of molecular experiments, DNA samples were analysed by electrophoresis 

with 0.7% agarose gel [prepared by dissolving 0.35 g agarose in 50 ml of 1x TBE buffer (90 

mM Tris-Borate, 1 mM EDTA, pH 8.5) and adding ethidium bromide to a final 

concentration of 0.5 µg/ml], except for small size DNA fragments when 1% agarose was 

used. The samples were loaded after mixing with DNA loading buffer at 1x final 

concentration (6x loading buffer: 0.25% bromophenol blue w/v), then run at 90 V for 45 

min in 0.5 x TBE running buffer. Gel images were visualized on a UV transilluminator and 

DNA size was determined by comparison to a DNA 10kb ladder.                  

                                                                

2.8.1.8. Digestion reaction  

The digestion reactions were set as follow:  

 

 
 

 
 
 
 
 
 
 
 
 
 

Amount (µl) PCR product digest tube 

5 µl PCR product 

4µl 10x CUT SMART buffer 

1µl First restriction enzyme (20 units / µl) 

1µl Second restriction enzyme (20 units/ µl) 

9 µl dH2O 

20 µl Total volume 
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The digestion reaction was used to examine the ligation in some colonies after colony 

PCR, or to cut the insert before ligation, the same enzymes were used with the same 

concentrations. The total volume of each reaction was 20 µl. Also, we set up a positive 

control containing DNA without restriction enzymes. Different enzymes were used for the 

digestion of the PCR product which depended on the specific sequence of the restriction 

site put in the PCR primers. For all these enzymes, the same concentration was used as in 

the previous reactions and the total volume was 20 µl for each reaction. The digests were 

incubated overnight at 37°C for most enzymes. 

 

2.8.1.9. Ligation  

To ligate the PCR product with linearized plasmid DNA, the reaction was set to contain 1 

µl 10x ligase buffer, 0.5 µl T4 DNA ligase (Promega), the purified insert volume was based 

on the molar ratio 3:1 (insert DNA/vector), 2 µl linearised plasmid (20ng/µl) in a final 

volume of 10µl. The ligation mixture was incubated for 2 hours at 18°C. For the negative 

control, double cut plasmid without insert was used in the ligation reaction.                          

 

2.8.1.10. DNA gel extraction   

All DNA samples were extracted from gels using a Qiagen gel extraction kit and   the 

manufacturer’s instructions were followed as outlined below. 

The DNA fragment from the agarose gel was excised with a clean, sharp scalpel, and then 

the gel slice was weighed in a colourless tube. Three volumes of QG buffer were added to 

1 volume of gel and incubated at 50°C for 10 minutes or until the gel slice has completely 

dissolved.  The tube was vortexed every 2-3 minutes to help dissolve the gel. If the colour 

is orange or violet then 10µl sodium acetate, pH 5.0 will be added and mixed, after that 

the mixture should turn yellow. Next, 1 volume of isopropanol was added to the sample, 

mixed and placed in a QIAquick spin column with a 2ml collection tube. Centrifuged for 1 

minute at 17,900 x g, then the flow through was discarded and the QIAquick column was 

placed back in the same tube. Buffer PE (750 µl) was added to QIAquick column for 

washing and the column was left to stand for 2-5 minutes. Centrifuged for 1 minute at 
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17,900 xg, then the flow through was discarded and the QIAquick column was placed back 

in the same tube. Centrifuge again for 1 minute at 17,900 xg to remove residual wash 

buffer. Finally, the QIAquick column was placed into a clean 1.5 ml microcentrifuge tube 

and the DNA was eluted by adding 50 µl Buffer EB to the center of the QIAquick 

membrane and the column was centrifuged for 1 minute at the same previous speed (if 

necessary to increase DNA concentration only 30 µl Buffer EB was added to the center of 

the QIAquick membrane). 

 

2.8.1.11. Sequencing 

All cloned plasmids were sequenced by Beckman Coulter Genomics. pDNA was prepared 

to the required volume and concentration (5 µl, 10ng/µl) and (5µl, 3.5 pmol/µl) for 

primers. 

 

2.8.1.12. Nourseothricin antibiotic assay 

The growth sensitivity of the wild type D. hansenii was evaluated towards a wide range of 

nourseothricin antibiotic concentration (300 to 0.1 µg/ml) augmented to YM agar 

medium (antibiotic was added to the medium after cooling and mixed well). The number 

of colonies was counted after 5 days of incubation at 25˚C. 

 

 

2.8.1.13. Transformation of D. hansenii cells by electroporation  

Two days before: Fifty ml of YM medium were inoculated with D. hansenii cells and 

incubated overnight at 25°C with shaking at 120 rpm.  

0.025 and 0.0125 and 600 = inoculated 50 ml of YM medium at A-ReOne day before: 

2.8.-reaches 2.6600 grow overnight until the A 

The following day: When the OD of the   D. hansenii cultures reached 2.6-2.8, the cells 

were transferred into a sterile 50 mL Falcon tube and centrifuged for 5 min at 3,300 
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g. The supernatant was discarded, and the pellet was re-suspended in 6 ml of 50 mM 

sodium phosphate buffer, pH 7.5, containing 25 mM DTT. Cells were then incubated 

at 30°C for 15 minutes and centrifuged for 5 min at 3,300 g. In 40 ml sterile cold (4°C) 

double-distilled water, cells were re-suspended again, and centrifuged as previously. 

The supernatant was discarded, the cell pellets were re-suspended with 1 mL sterile 

ice cold 1 M sorbitol, and centrifuged as before. The supernatant was discarded again, 

and the cells were re-suspended in the remaining liquid to obtain a dense suspension 

(ca. 200 μl). Forty μl of the cell suspension was mixed with 1 μl of 2.0 and 3.4 μg 

purified amplified product of pZA6 and pZA7 constructs respectively, (see Figure 2.6) 

respectively and placed in a precooled electroporation 0.2 cm cuvette. A mock 

electroporation without DNA was also included. Subsequently the cuvettes were 

incubated with the cells for 5 min on ice, then the electroporation cuvettes were put 

io electroporator (a BioRad Gene Pulser) and electroporated at 11.5 into the Equib

and placed back on ice. Following electroporation 1 mL YM medium containing  1-kVcm

0.1M sorbitol was added to the cells, mixed, and the cell suspension transferred to a 

2 mL Eppendorf tube. Then all the samples were incubated for 4 hours at 30°C with 

shaking at 120 rpm. After incubation, the cells were centrifuged as before, the 

supernatant was discarded, and the cells were re-suspended in the remaining liquid 

to obtain a dense suspension (ca. 100 μl), An aliquot of the cell suspension (50 µl) was 

spread on YM plates containing 1.5 and 5 μg/mL nourseothricin, and incubated at 

25°C for 3-4 days. When colonies appeared after 3 days of incubation, single colonies 

without background (small new colonies) were selected, and grown on YM plates 

containing 5 μg/mL nourseothricin.                                                                                                                    
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Figure 2.6. Schematic diagram representing different PCR reactions designed to amplify 

fragment for A- GUT2 gene deletion and B- URA3 deletion. Dark green rectangle refers to 

either SAT1 or URA3 ORF, while the light boxes represent the flanking chromosomal region. 

Arrows indicate the positions of the primers used for PCR. 

 

                                                                                                                   

Following the selection of colonies grown in YM agar medium with 5 μg/mL 

nourseothricin, replica plate technique (using minimal medium without amino acids) was 

used to check the knockout of URA3 gene. The growth of these colonies was compared 

with their growth in minimal medium containing uracil (0.1 g/L).  A control was set by 

growing wild type colonies in the same conditions. The replica plating technique was also 

used to distinguish ∆ura3 colonies in 5-FOA plate (0.17% yeast nitrogen base, 0.1% 5-FOA, 

0.005% uracil, 0.5% ammonium sulphate, 2% glucose, 2% bacto-agar with amino acids 

added as required after autoclaving). Cells were grown in 5-FOA plate in order to be sure 

about the result of the transformed colonies with pZA6 construct.  

 

Vip3395 primer 

450 bp GUT2 500 bp GUT2 1871 bp SAT1 ORF 

SacI KpnI 

Vip050 primer 

Upstream Downstream 

A 

Vip049 primer 

500 bp URA3 500 bp URA3 1871 bp SAT1 ORF 

SacI KpnI 

Vip050 primer 

Upstream Downstream 

B 
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2.8.1.13.1. 50mM sodium phosphate buffer (pH 7.5), containing 25 mM DTT 

This buffer was prepared freshly by mixing 500 µl of 1 M sodium phosphate buffer (pH 

7.5) with 250 µl of 1 M DTT, and 9.25 ml distilled water. 

 

2.8.1.13.2. 1 M sodium phosphate buffer (pH 7.5) 

The buffer was prepared by mixing 2 ml of NaH2PO4 (1 M) with 8 ml from Na2HPO4 (1 M). 

The total volume was 10 ml. 

 

2.8.1.14. Genomic DNA isolation 

To extract the gDNA from the D. hansenii cells, the transformed cells were streaked in YM 

agar augmented with 5 µg/ml nourseothricin antibiotic as a selective marker for the 

transformed yeast cells. After 24 hours of incubation, cells were scraped from the 

selective plate and 200 µl of TENTS solution (20 mM Tris/HCl pH 8.0, 1 mM EDTA, 100 mM 

NaCl, 2% (v/v) Triton X-100, 1% (w/v) SDS) plus 200 µl of glass beads and 200 µl of phenol: 

chloroform: isoamyl Alcohol (25:24:1) were added to the samples which they underwent 

bead beating at high speed for about 45 seconds. After cell disruption, all samples were 

centrifuged at 13,201 x g for 30 seconds before adding another 200 µl of TENTS solution. 

The mixture was then vortexed and centrifuged at 13,201 x g for further 5 minutes, and 

350 µl from the resulting supernatant was transferred to fresh Eppendorf tubes. 

Subsequently 200 µl of phenol: chloroform: isoamyl Alcohol (25:24:1) was added, 

vortexed and then centrifuged as before. From each sample 300 µl of the supernatant 

was removed and 30 µl (1/10 volume) of 3 M sodium acetate pH 5.2 and 750 µl (2.5x 

volume) of 100% ethanol were added to precipitate the gDNA. Precipitation reactions 

were left on ice or at -20°C for about 1 hour, followed by centrifugation at 13,201 x g for 

15 minutes (Sigma 1-14K, rotor 12094). The resultant pellets were washed in 70% ethanol, 

centrifuged as previously described, then re- suspended in 200 µl of 1xTE pH 8.0 

containing 5 µg/ml RNAse and left at room temperature for 10 minutes. After that DNA 

was precipitated by incubating samples at -20°C for 1 hour and DNA was pelleted by 
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centrifugation as before. Pellets were washed in 70% ethanol, dried at 50˚C, followed by 

resuspension in 50 µl 1xTE pH 8.0.  

 

2.8.2. Evaluation of neutral lipid production after GUT2 deletion 

2.8.2.1. Comparing between GUT2 mutant and wild type strains of D. hansenii 

NCYC102 for neutral lipid production  

Experiments were carried out to evaluate the effect of the GUT2 deletion of mutant cells 

on neutral lipid production. Three ∆gut2 and three wild type strains of D. hansenii were 

grown in 3x500 ml flasks containing 100 ml of 48: 0.5 Glucose/ ammonium sulphate 

minimal medium. Cells were grown in this medium due to the highest amount of TAG 

yield in previous experiments with wild type cells. Another set of mutant and wild type 

strains were grown in glycerol based minimal medium (8 glycerol: 0.25 ammonium 

sulphate). The same procedure was used as described in section (2.4.3.2) and the readings 

were taken after 40 hours of incubation, then compared with the biomass of each culture.  

 

2.8.2.2. Neutral lipid production in ∆gut2 and wild type strains of D. hansenii NCYC102 

grown under different C/N ratios 

in order to optimise neutral lipid production in ∆gut2 mutant strain compared with wild 

type strain, one single colony from both preadapted wild type and mutant stains were 

grown in 3x250 ml flasks containing 60 ml minimal medium with different carbon source 

and C/N ratios: 48:0.5 and 8:0.5 glucose: ammonium sulphate as well as 4:4:0.5 and 

8:8:0.5 glucose: glycerol: ammonium sulphate. Readings were taken after 40 hours of 

incubation, then compared with the biomass of each culture as in section 2.4.3.2.  

 

2.8.3. Spot growth assay 

Experiments were carried out to evaluate the growth of the wild type and gut2∆ mutant 

strains of D. hansenii in different growth conditions [minimal medium containing glucose 

or glycerol as a sole carbon source. Glucose based medium was prepared containing 

different concentrations (0, 0.8, 1.6 M) of NaCl]. Ten ml of overnight cultures of wild type 
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and mutant strains of D. hansenii grown in minimal medium were centrifuged at 3000 g 

for 5 minutes, then the cells were washed and adjusted to OD 4.6- 4.65 using distilled 

water. 200 µl of each culture was put into the second row of a 96 well plate (the first row 

and column was left empty) and three serial dilutions were made in the three rows below 

by transferring 20 µl of culture from the previous row into 180 µl distilled water in each 

well. A Pinning device was immersed for one minute in the microtiter plate and then 

spotted onto different types of media. After 2 days of incubation plates containing 

glucose without NaCl were photographed. Other plates were photographed after 6 days 

of incubation at 25 ⁰C. 

 

 2.9. Statistical analysis  

The statistical analysis of most experiments was carried out using one-way analysis of 

variances (ANOVA) and t-test. Experiments were carried out in triplicate and error bars 

represent standard deviation (±) of the means. Analysis was performed using GraphPad 

Prism7 and Excel software.   
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3. Screening between three yeast strains for best accumulation 
of neutral lipid   

3.1. Introduction 

The production of second generation biodiesel from microbial cells is currently receiving 

significant attention with the aim to replace the existing technologies that are based on 

oil crops and plants. As their production capacity and rate of production are limited, these 

agricultural materials are inadequate for large scale biodiesel production. Alternative 

fuels can be obtained from oleaginous microorganisms that under certain cultivation 

conditions produce and accumulate lipids up to the 60% of the total cell dry weight (Li et 

al., 2008). Unicellular yeasts have high growth rate and can accumulate lipid in separate 

lipid bodies (Drucken, 2008, Li et al., 2008, Mullner and Daum, 2004, Mlíčková et al., 

2004). They can also grow on low cost fermentation substrates for example waste 

material of agricultural and industrial products (Amaretti et al., 2010).  

In yeast cells lipids are stored in the form of triacylglycerol (TAG) so different types of fatty 

acids are the major target for improving the biotechnological products. Studies have 

described about 1500 species of yeast arranged into over 100 genera (Satyanarayana and 

Kunze, 2010). The derivatives of long-chain fatty acid methyl esters and alkanes in TAGs 

have been explored as raw materials for biofuels(Li et al., 2010, Madsen et al., 2011). As 

the oleaginous yeasts are found in different genera, thus microbial oils are different in 

fatty acid compositions (Easterling et al., 2009). TAG is mostly formed by consecutive 

acylation of glycerol-3-phosphate (G3P), catalysis by diverse acyl transferases. G3P is 

synthesize from glycerol by glycerol kinase or can be synthesized from dihydroxyacetone 

phosphate (DHAP) in reversible reaction catalysis by G3P dehydrogenase (GPD). Under 

osmotic stress, increasing the level of glycerol takes place due to the rise in the GPD 

activity (Rossi et al., 2011). 

 The main objective of this chapter is to monitor the neutral lipid production between 

three yeast strains, in order to select the best producer for further experiments to 

enhance lipid production. As the main component of TAG, glycerol and other osmolytes 
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were also evaluated under salt stress condition (0, 0.8, and 1.6 M NaCl) as it was thought 

that salt will increase the intracellular accumulation of glycerol, which will then exploit 

into TAG synthesis inside the cells. After quantification, these polyols were identified by 

NMR analysis. Neutral lipid production was measured in cell suspension using 96-well 

plate format by Spectroflurometric quantification with fluorescent Nile red dye instead of 

the time and solvent consuming gas chromatographically analysis. 

 

3.2. Results and discussion 

3.2.1. Effect of adaptation to different salinity concentrations on yeast growth 

All yeast strains were adapted to different concentrations of NaCl augmented to YM 

medium (Table 3.1). Firstly, all strains were cultured in medium with 0.4 M NaCl, and the 

readings of spectrophotometer were set at wavelength 600 nm. For the next higher 

concentration of NaCl, the inoculum was taken from the previous concentration, after 

adaptation during the incubation period. The results showed that all strains grew well in 

the first set of NaCl concentrations (0.4, 0.8, 1.2, and 1.6 M) comparing with control 

cultures which were incubated in YM medium without salt. The highest growth rates were 

clearly observed in Cryptococcus curvatus followed by Debaryomyces hansenii. In the 

second set of salinities (2, 2.4, 2.8, and 3.2) the growth rates started to decrease in all 

strains, especially for Yarrowia lipolytica which was inhibited at 2 M NaCl, followed by D. 

hansenii which showed great reduction in growth rates on 2.4 M NaCl when compared 

with no salt culture.  However, the growth rate of C. curvatus only showed a gradual 

decrease with increasing salt concentrations and was only significantly inhibited at 3.2 M 

NaCl.  Previous study by (Almalki, 2012) mention  that when the NaCl concentration was 

increased to 3 M,  D. hansenii was struggling to grow at all pH values while little or no 

growth was observed in 3.5 M NaCl. Another study by   (Andreishcheva et al., 1999) 

showed that Y. lipolytica can grow over a wide range of pH in the presence of 12%  (2 M) 

NaCl. When yeast cells subjected to high levels of inorganic electrolytes particularly 

sodium chloride, several parameters of yeast activity have been reported to be effected 
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such as cell growth and multiplication, the number of viable yeast cells per unit volume 

of liquid growth medium, culture biomass and the length of the lag phase, ,as well as 

changes in the concentration of metabolic products such as a decrease in the production 

of ethanol and increasing the concentration of other fermented products (e.g. glycerol, 

acetaldehyde, etc.) (Wei et al., 1982). 
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Table 3.1. The effect of adaptation of three strains of yeast: D. hansenii (102), C. curvatus (476), and Y. lipolytica (2904) to different 

concentrations of NaCl, incubated under shaking at 120 rpm and 25°C. Each number represent the average of three replicates with ± standard 

deviation. Blank cells of the table were not determined (n.d.) 

Salt 
con. 
(Molar) 

Strain OD. after 24 hr. OD. after 48 hr. OD. after 72 hr. OD. after 96 hr. OD. after 120 hr. 

control salt control salt control salt control salt control salt 

0.4 M 102 8.6 ±0.001 4.4 ±0.003 12.5±0.002 11 ±0.005 n.d. n.d. n.d. n.d. 15.3 ±0.001 15.3 ±0.002 

476 8.4 ±0.012 6.4 ±0.005 10.8 ±0.008 11.4 ±0.004 n.d. n.d. n.d. n.d. 16.3±0.002 15.3 ±0.0015 

2904 5.4 ±0.015 4.4 ±0.002 13.42±0.012 8.5 ±0.003 n.d. n.d. n.d. n.d. 13.4 ±0.005 12.9 ±0.002 

0.8 M 102 8.2 ±0.002 3.1 ±0.003 12.46±0.001 11 ±0.002 n.d. n.d.  n.d. n.d. n.d. n.d. 

476 6.9 ±0.004 5.8 ±0.018 10.84±0.005 11.4 ±0.008 n.d. n.d. n.d. n.d. n.d. n.d. 

2904 6 ±0.001 3 ±0.004 13.42±0.001 8.5 ±0.005 n.d. n.d. n.d. n.d. n.d. n.d. 

1.2 M 102 n.d. n.d. n.d. n.d. 15.1 ±0.005 9.8 ±0.014 14.8 ±0.0035 11.3 ±0.002 13.4 ±0.002 12.5 ±0.003 

476 n.d. n.d. n.d. n.d. 16.5 ±0.007 12.7 ±0.021 15.5±0.004 12.8 ±0.024 14.9 ±0.003 13.7 ±0.23 

2904 n.d. n.d. n.d. n.d. 13.4 ±0.024 11.9 ±0.02 13.4±0.015 10.4 ±0.008 14.7 ±0.007 9.6 ±0.009 

1.6 M 102 4.9 ±0.008 0.8 ±0.012 10 ±0.007 6.8 ±0.007 n.d. n.d. n.d. n.d. 11.8 ±0.008 11.6 ±0.004 

476 5.3 ±0.002 1.8 ±0.005 11.1 ±0.001 9 ±0.003 n.d. n.d. n.d. n.d. 13.4 ±0.002 14.4±0.003 

2904 5.6 ±0.015 0.3 ±0.002 12.3 ±0.01 3.2 ±0.001 n.d. n.d. n.d. n.d. 12.9 ±0.006 9.1±0.001 

2 M 102 4.9 ±0.002 0.5 ±0.012 10.1 ±0.002 3.2 ±0.009 n.d. n.d. n.d. n.d. 11.8 ±0.003 10.1 ±0.008 

476 5.3 ±0.001 0.8 ±0.008 11.9 ±0.002 5.7 ±0.009 n.d. n.d. n.d. n.d. 13.4 ±0.001 11.2±0.009 

2904 5.6 ±0.01 0.2 ±0.004 12.3 ±0.03 0.2 ±0.04 n.d. n.d. n.d. n.d. 12.9 ±0.025 1.2 ±0.003 

2.4 102 7 ±0.024 0.2 ±0.01 18.5 ±0.006 0.6 ±0.004 13.4 ±0.003 0.5 ±0.002 12.5 ±0.0025 1.4 ±0.001 n.d. n.d. 

476 6 ±0.015 0.4 ±0.008 14.9 ±0.002 2.2 ±0.005 12.1 ±0.001 4.6 ±0.001 14.4 ±0.001 8.6 ±0.001 n.d. n.d. 

2.8 102 n.d. n.d. n.d. n.d.  n.d.  n.d. 14.5 ±0.008 0.16 ±0.013 13.9 ±0.007 0.4 ±0.009 

476 n.d. n.d. n.d. n.d. n.d. n.d. 14.5 ±0.002 6.1 ±0.008 13.8 ±0.003 7.2 ±0.005 

3.2 476 7.5 ±0.028 0.2 ±0.005 n.d. n.d. n.d. n.d. 15.4±0.02 1.5 ±0.003 n.d. n.d. 
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3.2.2. The effect of adaptation to different concentrations (0, 0.8, and 1.6 M) of NaCl on 

the total osmolytes accumulation in yeast cells 
 

From the results obtained (Table 3.2) it is obvious that NaCl had a positive effect on the 

total osmolytes accumulation in all yeasts strains after 24 hours of incubation in saline 

media at 25°C comparing with cultures without salt. Among the different yeast strains C. 

curvatus was found to be most efficient for solutes accumulation in different 

concentrations (0, 0.8, and 1.6 M) of NaCl, and the highest amount was found in 0.8 M 

NaCl. Similarly, the 0.8 M NaCl induced the highest effect on osmolytes accumulation in 

all yeast strains. As the concentration of NaCl increased more than 0.8 M the production 

of osmolytes decreased in all yeast strains especially in Y. lipolytica, which showed the 

lowest amount in all concentrations of salt. Under osmotic stress, cells are be able to 

restore their volume and turgor pressure by accumulating intracellular low molecular 

weight solutes  that increase the internal osmolarity (Le Rudulier et al., 1984, Higgins et 

al., 1987).  In general, the high concentration of intracellular glycerol can take place as a 

result of increasing the level of glycerol production, and retention by cytoplasmic 

membranes, or decreasing of the dissimilation or uptake of glycerol from the medium. 

During glycolysis glycerol is synthesize by reduction of dihydroxyacetone phosphate to 

glycerol 3-phosphate via glycerol 3-phosphate dehydrogenase (GPD) (Reed et al., 1987, 

Parrou et al., 1997, Posas et al., 2000). Under osmotic stress, increased levels of glycerol 

take place due to the increase of the activity of GPD. The acetylacetone test is not specific 

for glycerol and will also measure other polyols such as sorbitol or arabitol.  For this 

reason, NMR studies were depended to find out whether glycerol was the major 

compatible solute accumulated in all three yeast strains (see next section).  
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Table 3-2. The effect of adaptation to different salinity concentration (0, 0.8, and 1.6 M) NaCl 

on total osmolytes accumulation (µg glycerol/ml culture) ± standard deviation, in three yeast 

species measured at OD. 410 nm. 

 

 

3.2.3. NMR analysis of compatible solutes in yeast cells growing under high salt stress 

condition 

From the results obtained (Figure 3.1) the NMR profiles of yeasts grown under NaCl stress 

were generally found to have notable peaks when compared with cells grown without 

stress. Identification of the main peaks as detected by 1H NMR spectroscopy (Figure 3.1) 

revealed that these osmolytes was accumulated by yeast in response to high salt stress. 

In D. hansenii the result showed an increasing in the amount of osmolytes in cultures with 

0.8 and 1.6 M of NaCl.  Glycerol was the main osmolyte accumulated in response to high 

salt, however there was no obvious products in culture without NaCl. When exposed to 

osmotic stress yeast accumulated polyols such as glycerol, D-arabitol, D-mannitol and 

meso-erythritol (Spencer and Spencer, 1978) , which are compatible with metabolic 

activity (known as compatible solutes ; (Brown, 1978)). In high salt, the intracellular 

accumulation of osmolytes in yeast cells  is related to the species, growth phase (Nobre 

and Costa, 1985) as well as the carbon source used in medium (Van Eck et al., 1989). For 

example, xylitol, is produced when xylose is used as a carbon source while Pichia farinosa 

produces glycerol and arabitol when grown on glucose, and mannose as carbon sources 

(Spencer and Spencer, 1978). However, a large number of yeast species produce glycerol 

intracellularly as the main osmolyte in response to hyperosmotic stress (Ansell et al., 

1997). C. curvatus strain was found to accumulate less glycerol in 1.6 M than in 0.8 M of 

Species Without salt  0.8 M NaCl 1.6 M NaCl 

D. hansenii 527.5 ±17.8 776.1 ±5.9 614.5 ±20.1 

C. curvatus 430.7 ±4.9 860.6 ±13.7 778.6 ±5.5 

Y. lipolytica 344.6 ±4.9 610.4 ±15.5 430.7 ±19.7 



84 
 

NaCl, and that might be happened because the cells were struggling to grow at high 

osmolarity. In contrast, the accumulated osmolyte in Y. lipolytica grown at 0.8 M NaCl was 

identified as arabitol, but in 1.6 M it was entirely switched to glycerol (Figure 3.1C). In 

spite of the great diversity in the degrees of salt-tolerance among different yeast including 

Saccharomyces cerevisiae  (André et al., 1988, Andre et al., 1991), Zygosaccharomyces 

rouxii  (Hosono, 1992, Ohshiro and yagi, 1996),  D. hansenii  (Lucas et al., 1990, Larsson 

and Gustafsson, 1993), Pichia sorbitophilla (Lages and Lucas, 1995, Oliveira et al., 1996), 

and Y. lipolytica, these yeasts display higher intracellular accumulation of osmolytes, in 

particular glycerol (André et al., 1988, Nishi and yagi, 1993, Lages and Lucas, 1995) and 

compatible ions when subjected to high concentration of NaCl. Yagi (1991) revealed that 

in Zygosaccharomyces rouxii the intracellular contents of glycerol increased for up to 6 

hours in media supplemented with 1 M and 2 M NaCl but did not increase when 

concentration become 3 M. In such a high concentration of salt, the synthesis and 

intracellular accumulation of glycerol are repressed, and Na+ and Cl- ions are taken into 

the cells for osmotic balance. (Yagi, 1991, Yagi and Nishi, 1993) 
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 (Y. lipolytica) 

 (D. hansenii)  (C. curvatus) 

Figure 3.1.  The compounds identified by 1H NMR spectroscopy from D. hansenii, C. curvatus, and Y. 

lipolytica when exposed to different concentrations of NaCl. blue line peak represents no salt, red 

represents 0.8 M NaCl and green line 1.6 M NaCl. The spectra for glycerol and arabitol standard are shown 

where indicated 
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3.2.4. Growth curve determination  

3.2.4.1 Growth curve determination of pre-adapted cells for different concentrations 

of NaCl 

For growth curve determination, each yeast strain was grown in 250 ml shake flask 

containing 50 ml YM medium with different concentrations (0, 0.8, and 1.6 M) of NaCl at 

25°C. Pre-adapted fresh cells at different concentrations of salt were used as inoculum 

for culturing in the same concentration of NaCl. The optical density was measured with 

the spectrophotometer at given intervals (usually 2 hours) at wavelength 600 nm, and the 

absorbance of each flask was set initially at 0.05. According to the results (Figure 3.2) it is 

obvious that all yeast strains grew quickly in media without salt with short lag phase, and 

the cells reached the stationary phase after 14 hours of incubation. For 0.8 M NaCl the 

logarithmic phase extended between the period 6 to 18 hours for all strains cultured in 

this medium, whereas in media with 1.6 M NaCl the logarithmic growth phase was 

extended over an even longer period (up to 24 hours). From the logarithmic part of the 

growth curves appropriate log2 OD readings were used to calculate the generation time 

of each yeast strain culturing in different concentrations of NaCl. From these curves, we 

found that the generation time was around 2 and 3 hours for cultures without salt and 

0.8 M NaCl respectively. However, in 1.6 M NaCl the generation time was about 4, 4, and 

5 hours for C. curvatus, D. hansenii, and Y. lipolytica respectively (see Table 3.3). 

 

Table 3.3. Presented the doubling time of D. hansenii, C. curvatus, and Y. lipolytica cells 
growing in YM media with different concentrations of NaCl 

 

 

 

Strain 0 M NaCl  0.8 M NaCl 1.6 M NaCl 

D. hansenii 2 hrs. and 21 mins. ± 0.06    3 hrs. and 6 min. ± 0.06 4 hrs. and 39 inm ± 0.2 

C. curvatus 2 hrs. and 32 mins. ± 0.02   2 hrs. and 54 min ± 0.07 4 hrs. and 57 min ± 0.2 

Y. lipolytica 2 hrs. and 32 mins. ± 0.07   2 hrs. and 50 mins. ± 0.3 4 hrs. and 57 min ± 0.7 
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Figure 3.2. Logarithmic growth curve for pre-adapted strains of D. hansenii, C. curvatus, and Y. 

lipolytica which growing in media with different concentrations (0, 0.8, and 1.6 M) NaCl. Bars 

represent standard deviation. 
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3.2.5. Spectrofluorometric quantification measurement of neutral lipid in yeast using 

Nile red dye 

Triacylglycerol (neutral lipid) production was measured in all yeast strains, growing in YM 

media with different concentrations of NaCl (0, 0.8, and 1.6 M) by using Nile red 

technique. In traditional methods the evaluation of lipid involves solvent extraction and 

gravimetric determination (Bligh and Dyer, 1959), and in case of further quantification, 

separation of the crude extractions and quantification by thin-layer chromatography 

(TLC), HPLC or gas chromatography (GC) are also required (Eltgroth et al., 2005). The 

major disadvantages of these traditional methods are time- and labour- intensive, thus, 

increasing attention has focused on the direct method of the lipid quantification 

depending on Nile red technique (Cooksey et al., 1987, Izard and Limberger, 2003). Nile 

red (9-diethylamino-5H-benzo[α]phenoxazine-5-one), a lipid-soluble fluorescent dye, 

mainly used to quantify the amount of lipid in some animal organisms such as mammalian 

cells (Genicot et al., 2005), as well as microorganisms: bacteria (Izard and Limberger, 

2003), yeasts (Evans et al., 1985, Kimura et al., 2004), zooplankton (Kamisaka et al., 1999), 

and microalgae (McGinnis et al., 1997, Eltgroth et al., 2005, Elsey et al., 2007). After 

experimentally choosing DMSO as the best solvent for Nile red dye (it enhances staining 

efficiency compared to acetone), we tested the best conditions for neutral lipid 

measurement including cell concentration, time of staining, and the dye concentration. 

The optimum concentration of yeast suspension in all three strains was at OD. 2.6 (refers 

to 50 dilution in the graphs of Figure 3.3). Kimura (2004) demonstrated that the 

fluorescence intensity of neutral lipid increased with an increase in culture broth amount 

up to 100 µl, whereas higher than this amount, the intensity of suspension did not linearly 

go up with the lipid content (Kimura et al., 2004).  
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Figure 3.3. The fluorescence of neutral lipid with different cell concentrations in D. hansenii, C. 

curvatus, and Y. lipolytica: The graphs show the normalised value which depended on the 

stained and unstained average with their standard deviation represented by bars. 

 

 

The best fluorescence of different cells concentration was chosen based on higher 

normalised value and the smallest standard error value of stain average in order to avoid 

the overlapping between the stained and unstained average value, as shown in the figure 

3.3. The best time of staining was after 7 minutes for D. hansenii and C. curvatus. This 
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time was also adopted for Y. lipolytica as well, since at higher salt concentrations 7 

minutes was the optimum time of staining (Figure 3.4). According to the data related to 

different Nile red concentrations (Figure 3.5), 0.2 µmol/ml concentration was selected to 

stain both D. hansenii and Y. lipolytica on the basis of the value being very close to the 

optimum at 0.4 µmol/ml and there was less chance of self-shading at the lower 

concentration than 0.4 µmol/ml. For C. curvatus the optimum concentration was 0.1 

µmol/ml in media with and without salt. To some extent, the conditions of neutral lipid 

measurement in our study agreed with (Kimura et al., 2004) who demonstrated that the 

fluorescence fading was observed at  concentration above 2.3 µg/ml of Nile red dye after 

five minutes of staining.  High concentration of Nile red can amplify the fluorescence 

intensity, but this amplification will not linearly increase with the concentration of the 

Nile red. 
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Figure 3.4. The fluorescence intensity of neutral lipid after staining with 0.2 µmol/ ml Nile red 

dye in D. hansenii, C. curvatus, and Y. lipolytica with increasing the time of staining. Cells were 

grown in YM medium without salt. Similar experiments were carried out at 0.8 and 1.6 M NaCl 

(data not shown). Bars represent standard deviation. 
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Figure 3.5. The fluorescence intensity of neutral lipid in: D. hansenii, C. curvatus, and Y. 

lipolytica measured by using different concentrations of Nile red dye. The staining time was 7 

minutes Cells were grown in YM medium without salt. Similar experiments were carried out at 

0.8 and 1.6 M NaCl (data not shown). Bars represent standard deviation. 
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After optimization, the fluorescence of neutral lipid was measured in the logarithmic and 

stationary phase for all yeast strains. As shown in Figure 3.6, the fluorescence intensity of 

the Nile red in the logarithmic phase was higher than in stationary phase.  Neutral lipid 

evaluation in the late exponential phase has been adopted by (Castelli et al., 1969) for S. 

ccerveciae and by (Dawson and Craig, 1966) for Candida utilis which they showed an  

increasing  amount of lipid through the late logarithmic phase , while these amount were 

noticeably decreased in the stationary phase. In C. curvatus and Y. lipolytica, we found 

that the highest accumulation of neutral lipids was in the absence of salt, whereas in D. 

hansenii, the highest accumulation was at 0.8 M NaCl, (Figure 3.6).  These results do not 

agree with the findings of Castanha (2014) who reported that increasing amounts of 

inorganic salts and yeast extract in the growth medium led to a higher yield of neutral 

lipids  in Cryptococcus laurentii (Castanha et al., 2014). 
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Figure 3.6 The fluorescence intensity of neutral lipid in both log and stationary phase of:  D. 

hansenii, C. curvatus, and Y. lipolytica in media with different concentrations (0, 0.8, 1.6 M) of 

NaCl. Bars represent standard deviation. 
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3.3. Conclusion 

Without doubt, screening for a high-level lipid producer among oleaginous yeast strains 

could be the way to find a breakthrough in the biodiesel research area. For that reason, 

three yeast strains (D. hansenii, C. curvatus, and Y. lipolytica) have been screened for their 

ability to grow at high salinity and to produce TAG under this condition. Our findings 

clearly showed that all three strains grew well in the media containing salt between 0.4 

to 1.6 M, with highest growth rates in the genus D. hansenii and C. curvatus respectively. 

Their growth at high concentrations of NaCl were accompanied with increasing the 

intracellular concentration of osmolytes in all yeast strains, particularly at 0.8 M NaCl. 

From NMR analysis, the main osmolyte accumulated in response to high salinity was 

glycerol in D. hansenii and C. curvatus, whereas in Y. lipolytica arabitol was the main 

osmolytes, but it was entirely switched to glycerol at 1.6 M concentration of NaCl. Neutral 

lipid production was evaluated by using Nile red technique at 485 nm and 580 nm for 

excitation and emission wavelengths respectively. The fluorescence intensity of neutral 

lipid in the logarithmic phase was higher than in stationary phase for all these 

microorganisms. Compared with the other two strains the highest fluorescence of neutral 

lipid was found in D. hansenii cells grown at 0.8 M NaCl. Depending on the results of 

neutral lipid and the ability to grow at high concentration of NaCl, by accumulating 

glycerol as the main compatible solute, D. hansenii was selected for further investigation 

to increase lipid under stress condition. Additionally, from the molecular point, there was 

limited progress in the molecular tools for D. hansenii strain and most research metabolic 

engineering was focused on Y. lipolytica strain. For that reason, it will be worth to 

investigate the mechanisms that facilitate genetic modification in D. hansenii strain, and 

exploit it for the improvement of biodiesel production.  
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4. Phylogenetic identification of D. hansenii strain                 

4.1 Introduction  

According to the last revision of (Nakase et al., 1998) the genus Debaryomyces comprises 

15 species. Many of them can be isolated from different natural environments such as air, 

soil, pollen, fruits, tree exudates, plants, insects, and gut and faeces of vertebrates 

(Barnett et al., 1983). Nine of these species (D. hansenii, D. carsonii, D. etchellsii, D. 

melissophilus, D. maramus, D. robertsiae, D. pseudopolymorphus, D. polymorphus, and D. 

vanrijiae), have been identified in a variety of processed foods, such as soft drinks and 

fruit juices, bakery products, wine, beer, sugary products, dairy products and meat or 

processed meats (Deak and Beuchat, 1996, Kurtzman et al., 2003).  In recent year’s 

microorganism's identification by traditional methods are more and more frequently 

substituted by molecular techniques which mainly depend on Polymerase Chain Reaction 

(PCR) to amplify specific fragments of genomic or mitochondrial DNA (Esteve-Zarzoso et 

al., 1999, Van den Tempel and Jakobsen, 2000, Hall et al., 2004). This technique is much 

more accurate, affordable, and quick compared with morphological and physiological 

criteria which are little used nowadays (Kurtzman et al., 2011). Depending on nucleotide 

sequence of the large subunit (26S) rRNA, PCR primers have been designed for the 

identification of D. hansenii (and its anamorph Candida famata) in a clinical setting 

(Nishikawa et al., 1997, Nishikawa et al., 1999). However, the usefulness of using only the 

26S rRNA sequence is limited because it did not differentiate D. hansenii from other 

similar species that are commonly present in foods. This is due to the difficulty in finding 

species-specific signature nucleotides and sequence analysis of the 26S rRNA gene has 

confirmed that Debaryomyces species are closely related to each other, making their 

differentiation difficult (Kurtzman and Robnett, 1991, Yamada et al., 1991). Analysis of 

the small-subunit (18S) rRNA gene came to the same conclusions (Yamada et al., 1991, 

Cai et al., 1996). For these reasons, a specific PCR assay for D. hansenii strains was carried 

out by the amplification of a putative homologous PAD1 region (encodes for phenylacrylic 

acid decarboxylase) (729 bp) present in this yeast species as a target sequence. The 

amplification was performed with primer pair (DhPADF/DhPADR) and it is a specific, rapid, 
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and an affordable method enabling identification of D. hansenii from other yeast strains 

(Wrent et al., 2015). 

4.2. Results 

4.2.1. Extraction of genomic DNA  

Following extraction of the genomic DNA from overnight growth of D. hansenii cells in YM 

and minimal liquid media without NaCl, the obtained gDNA was re-suspended in 50 l 

1xTE buffer, before being run on a 1% Agarose gel, to check for the presence of gDNA 

(Figure 4.1). DNA extraction involves cell wall digestion, centrifugation to remove cell 

debris and then nucleic acid precipitation and purification, (Almalki, 2012). The 

electrophoresis photo showed clear bands for gDNA isolated from each sample, and 

demonstrates the efficiency of the YeaStar Genomic DNA kit.  
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Figure 4.1. Gel electrophoresis photo of D. hansenii genomic DNA extracted from YM and minimal 

cultures after running on 1% Agarose gel for 45 minutes and 90 V. 
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4.2.2. Genomic DNA amplification by PCR 

DNA amplification was carried out to the putative PAD1 homologous region (729 bp) 

present in D. hansenii according to (Wrent et al., 2015). The sequences were obtained 

from NCBI. The forward DhPadF, 5′ GCGACTATGAACAGGTTTCCAACGA 3′, and reverse 

DhPadR, 5′CCTTCAATGTAACATCAGCGGCCC 3′ primers designed for D. hansenii were 

based on the S. cerevisiae PAD1/YDR538W gene sequence 

(http://www.yeastgenome.org), Clustal Omega (McWilliam et al., 2013). The PAD1 gene 

encodes for phenylacrylic acid decarboxylase in S. cerevisiae, which provides the 

resistance to cinnamic acid (Clausen et al., 1994). Other putative PAD1 homologues have 

been distinguished in some yeast species such as Candida albicans, C. dubliniensis, D. 

hansenii and Wickerhamomyces anomalus (Stratford et al., 2007). A recent study has 

been distinguished a putative homologous region of the PAD1 gene in D. hansenii with 

significant differences to the homologous regions with S. cerevisiae, so that this sequence 

could be a good target for the D. hansenii specific identification (Wrent et al., 2015). 

Figure (4.2) shows the success of the amplification process of putative PAD1 homologous 

region (729 bp) from genomic DNA for both samples with band size of approximately 400 

base pairs which is similar to the band size obtained by (Wrent et al., 2015) (the target 

sites of the primers are sequences flanking a putative homologous region of the PAD1 

gene).  
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PCR product was purified by using PCR clean up procedure for Nucleic Acid Extraction Kit, 

Key Prep, to remove any possibility of the presence of compounds that might affected the 

purity of gDNA which was used for sequencing.   

For sequencing, the PCR purified product was send to Eurofins MWG, and the results were 

as follows: 

PAD1 gene sequence of D. hansenii cells growing in minimal medium 

Forward sequence (377 letters) 

AATGTATCTTACAAGACCTAAGAGGATAGTCGTGGCAATAACTGGGGCTACAGGTATTGC 

AATCGGTGTAAGGGTATTGGAATTATTAAAGCAATGTAAAGTTGAGACACATTTAATTAT 

GTCCAAATGGGGTATGGCAACAATGAAATATGAAACAGATTATCATATGGACGACATAAT 

GGCACTTGCGTCAAAGGTGTACACTGCCAGAGACGTGAGTGCGCCGATTTCGTCAGGATC 

TTTCCAACACGATGGTATGATTGTCGTGCCATGTTCGATGAAGACATTGGCTGGGATTAG 

GATGGGATTCACAGAGGATCTTATCGTAAGGGCCGCTGATGTTACATTGAAGGAAGG.  

1000bp 

250bp 

500bp 

10 Kb 

Ladder 
minimal 

sample 

YM 

sample 

Figure 4.2. Gel electrophoresis of PAD1 gene PCR product of YM and minimal cultures With DhPadF 

and DhPadR primers. Samples run in 1% Agarose gel for 45 minutes and 90 V. The size of the bands 

was around 400bp 
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Reverse sequence (376 letters) 

TGATCCCATCCTAATCCCAGCCAATGTCTTCATCGAACATGGCACGACAATCATACCATC 

GTGTTGGAAAGATCCTGACGAAATCGGCGCACTCACGTCTCTGGCAGTGTACACCTTTGA 

CGCAAGTGCCATTATGTCGTCCATATGATAATCTGTTTCATATTTCATTGTTGCCATACC 

CCATTTGGACATAATTAAATGTGTCTCAACTTTACATTGCTTTAATAATTCCAATACCCT 

TACACCGATTGCAATACCTGTAGCCCCAGTTATTGCCACGACTATCCTCTTAGGTCTTGT 

AAGATACAATCCTGTTGACTGATTCTGGTATATATCGTTGGAAACCTGTTCATAGTCGCA 

A  

PAD1 gene sequence of D. hansenii cells growing in YM medium 

Forward sequence (382 letters) 

GATTGTATCTTACAAGACCTAAGAGGATAGTCGTGGCAATAACTGGGGCTACAGGTATTG 

CAATCGGTGTAAGGGTATTGGAATTATTAAAGCAATGTAAAGTTGAGACACATTTAATTA 

TGTCCAAATGGGGTATGGCAACAATGAAATATGAAACAGATTATCATATGGACGACATAA 

TGGCACTTGCGTCAAAGGTGTACACTGCCAGAGACGTGAGTGCGCCGATTTCGTCAGGAT 

CTTTCCAACACGATGGTATGATTGTCGTGCCATGTTCGATGAAGACATTGGCTGGGATTA 

GGATGGGATTCACAGAGGATCTTATCGTAAGGGCCGCTGATGTTACATTGAAGGAAGATC 

TTA. 

Reverse sequence (379 letters) 

TCTCTGTGATCCCATCCTAATCCCAGCCAATGTCTTCATCGAACATGGCACGACAATCAT 

ACCATCGTGTTGGAAAGATCCTGACGAAATCGGCGCACTCACGTCTCTGGCAGTGTACAC 

CTTTGACGCAAGTGCCATTATGTCGTCCATATGATAATCTGTTTCATATTTCATTGTTGC 

CATACCCCATTTGGACATAATTAAATGTGTCTCAACTTTACATTGCTTTAATAATTCCAA 

TACCCTTACACCGATTGCAATACCTGTAGCCCCAGTTATTGCCACGACTATCCTCTTAGG 

TCTTGTAAGATACAATCCTGTTGACTGATTCTGGTATATATCGTTGGAAACCTGTTCATA 

ATCGCAAGATCTC. 
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The obtained sequences were analysed using BLAST algorithm  (Altschul et al., 1990) and 

the NCBI server (National Centre for Biotechnology Information) website, and was found 

to be 99% identical to D. hansenii (Figure 4.3) 
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Figure 4.3. Blast of PCR product for A- forward and B-reverse primers of PAD1 gene of D. hansenii 

cells growing in minimal medium with the existing information sequence of National Centre for 

Biotechnology Information (NCBI) website 
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4.3. Conclusion 

In conclusion, our data shows that the primers DhPADF/ DhPADR used in this assay 

produced a clear single fragment of 400 bp of putative PAD1 homologous region in both 

YM and minimal cultures samples for D. hansenii strains. No false negatives were detected 

in this assay, and provided high confidence matches when combined with the existing 

sequence information in the National Centre for Biotechnology Information (NCBI) 

website, indicating the organism was D. hansenii.  The primers developed in this work can 

be used directly on colonies with 100% success rate, and this could save users 

considerable time. The assay here proposed is a rapid and affordable method that enables 

the identification of D. hansenii.  Moreover, individual or institutional culture collections 

might depend on this assay to achieve a rapid confirmation or re-identification of D. 

hansenii strains.  
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5. Biotechnological methods to optimize neutral lipid production 

in Debaryomyces hansenii cells 

5.1. Introduction 

Our selected hemiascomycetous yeast D. hansenii (also identified as Candida famata, 

(Dmytruk and Sibirny, 2012), is reported to possess many characteristics, which allow it 

to be an important yeast for biotechnological work. It is a heterogeneous species, has the 

ability to grow in extreme environments, such as, high concentration of NaCl (Norkrans, 

1966, Gunde-Cimerman et al., 2009), which correlates with its importance for 

manufacturing salty foods like different types of cheeses and meat products (Eliskases-

Lechner and Ginzinger, 1995, Jessen, 1995, Gunde-Cimerman et al., 2009). When exposed 

to high salinity this osmotolerant species D. hansenii, produces and accumulates glycerol 

as the main compatible solute (Gustafsson and Norkrans, 1976, Adler and Gustafsson, 

1980). At high salinity, the intracellular content of Na+/K+ in the growing cells is not 

sufficient to equilibrate the osmotic level visa vise the external environment. Several 

studies demonstrated that glycerol and an organic solute accumulation, is due to growth 

at increased salt stress (Gustafsson and Norkrans, 1976, Gustafsson, 1979, Adler and 

Gustafsson, 1980, Adler et al., 1985, Nobre and Costa, 1985). Glycerol works as a 

compatible solute (Brown, 1978, Yancey et al., 1982) which raises the internal osmotic 

pressure of the cells without interfering with the macromolecular function and structure. 

In addition these low molecular weight compounds such as glycerol and arabitol work to 

protect the intracellular enzymes and structural proteins from the inhibition, inactivation 

and denaturation problems caused by low water activity (Brown, 1978). Environmental 

factors such as aeration, temperature, inorganic salts, pH, incubation period, inoculum 

size and the microorganism itself affect the lipid content and the fatty acid composition 

(Moreton, 1988, Subramaniam et al., 2010). The basic physiology of lipid accumulation 

has been well investigated in microorganisms. Lipid production requires medium with an 

excess of carbon source (e.g., sugar, glycerol, polysaccharides, etc.) and limiting amount 

of another nutrient such as nitrogen. So that, the lipid potential of oleaginous yeast is 
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critically affected by the carbon to nitrogen (C/N) ratio of the culture and other factors 

such as the inorganic salt, aeration, etc. (Moreton, 1988). In this chapter, we investigated 

the possible correlation between the NaCl stress conditions that induce glycerol 

accumulation with the level of intracellular neutral lipid production, due to lack of studies 

discussing the relationship between these two metabolites under high salt.  On the other 

hand, the composition of fatty acids and neutral lipid production were also evaluated in 

D. hansenii yeast cells when growing in media with different stress conditions (high salt, 

low nitrogen and high level of carbon source).  

 

5.2. Results 

5.2.1. Growth curve determination of pre-adapted cells of D. hansenii in YM and 

minimal medium with different concentrations of NaCl 

Growth curves of D. hansenii was monitored and compared in both minimal and YM 

media with different concentrations of NaCl (0, 0.8, and 1.6 M) incubated at 25°C under 

shaking at 120 rpm. The optical density was measured with the spectrophotometer at 

given intervals (usually 2 hours) at wavelength 600 nm against a medium blank with the 

same concentration of NaCl. The results in Figure 5.1.A and B show that D. hansenii cells 

grow well in both media under given concentrations of NaCl. In 0 M cultures, the 

logarithmic phase started earlier than other concentrations of NaCl in both minimal and 

YM cultures, and slowed down after 22 and 20 hours of incubation respectively. However 

in response to hyperosmotic stress in 0.8 and 1.6 M cultures the  yeast cells enter 

stationary phase after 26 hours of incubation particularly 1.6 M in both Minimal and YM 

media. (Almalki, 2012) reported that D. hansenii showed higher growth rates and adapted 

to grow and thrive in higher salinity concentrations and low pH when grown in rich YPD 

medium compared with M9 minimal medium. During the exponential phase, the 

generation time was calculated in both minimal and YM cultures with different 

concentrations of NaCl (Almalki, 2012). Depending on the results displayed in the Table 

5.1 it, was obvious that the doubling times in minimal medium were longer than in YM 
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medium. Along with the type of medium the doubling times were also affected with 

increasing the concentration of NaCl, especially in 1.6 M Minimal medium cultures where 

it was reached up to 5 hours and 48 minutes of incubation (see Table 5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Doubling time 

0 M Minimal cultures 3 hours and 14 minutes ± 0.04 

0.8 M Minimal cultures 4 hours and 13 minutes ± 0.4 

1.6 M Minimal cultures 5 hours and 48 minutes ± 0.3 

0 M YM cultures 2 hours and 40 minutes ± 0.04 

0.8 M YM cultures 3 hours ± 0.1 

1.6 M YM cultures 4 hours and 36 minutes ± 0.5 
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Table 5.1. The doubling times of D. hansenii cells ± standard deviation. Cells growing in 

minimal and YM media with different concentrations of NaCl 

 

Figure 5.1. Logarithmic growth curves for pre-adapted strains of D. hansenii growing at 25 °C under 

shaking at 150 rpm in: A- YM medium and B- Minimal medium with different concentrations (0, 0.8, and 

1.6 M) of NaCl. Bars represent standard deviations. 

Figure 5.1 
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5.2.2. The effect of adaptation to different salinity concentrations on the total 

osmolytes and glycerol accumulation in D. hansenii growing in both minimal and YM 

media 

The evaluation of total osmolytes and glycerol was carried out using different methods 

(acetyl acetone and free glycerol reagent procedure respectively).  Cells were grown in 

3x50 ml shaking flasks at 25°C with different concentrations of NaCl (0, 0.8, 1.6 M) 

augmented in both minimal and YM media (Figure 5.2). The production of each type (total 

osmolytes and glycerol) was compared with biomass (mg) yield at the same growing 

conditions. The results showed low level of glycerol compared with high content of total 

osmolytes in both media. The accumulation amounts of both types in YM cultures were 

higher than those in minimal medium, and it was significant in 0.8 M NaCl cultures (for 

total osmolytes and glycerol the P value was ≤ 0.003 and 0.0004 respectively).  In 1.6 M 

NaCl there was less significant differences (P value ≤ 0.0482) between glycerol values in 

YM and minimal cultures. Interestingly the current results were different from the 

hypothesis presented by (Albers et al., 1996).  The author mention that the production of 

glycerol was higher in the minimal medium than in enriched medium, as intracellular 

formation of amino acids from ammonia and glucose leads to an increased the 

through the formation of  +oxidised to NAD-hen reaccumulation of NADH which is t

glycerol (Albers et al, 1996).  The maximum content of total osmolytes was in 0.8 M NaCl, 

especially in YM cultures which reached up to 1430.4 µg osmolytes/ mg biomass (figure 

5.2). However, the highest level of glycerol achieved in 1.6 M NaCl, which was about 69.5 

µg glycerol/ mg biomass in YM cultures. Our results agreed with previous studies about 

the positive correlation between the level of intracellular glycerol in D. hansenii cells and 

the salinity of the surrounding medium (Adler and Gustafsson, 1980, Adler et al., 1985, 

André et al., 1988, Larsson et al., 1990) findings who demonstrated that the internal 

concentration of solutes which were essentially independent of growth rate, were 

directly proportional to the salinity of the medium.                                                                        
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5.2.3. NMR analysis of compatible solutes in D. hansenii 

 1H NMR spectrograph was used as an indication of the change in concentrations or 

absence/presence of most metabolites inside the cell. For the best cell disruption, 

different methods were used to yield the intracellular polyols. The samples of all cultures 

were divided into two groups. In the first group, the cells were disrupted by bead beating 

for about 4 x 60 second at 4000 rpm with 60 second cooling intervals. In the second group 

cells were broken by sonication for 3 x 20 second with 15 second cooling periods between 

sonication steps. The profiles of D. hansenii yeasts grown under NaCl stress were 

generally found to have fewer notable peaks when compared to yeast cells grown without 

stress (Figure 5.3 and 5.4). In parallel the accumulation patterns of total osmolytes and 

glycerol were also changed in response to the salinity. Identification of the main peaks 

revealed that the main osmolytes identified by NMR spectroscopy were glycerol, arabitol, 
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Figure 5.2. The amount of total osmolytes and glycerol µg/ mg biomass in D. hansenii minimal and YM cultures 

with different concentrations (0, 0.8, and 1.6 M) NaCl. Left scale plotted for total osmolytes, while the right 

scale used for glycerol. Bars represent standard deviations. 
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glucose and trehalose.  From the data shown it was obvious that in both groups of cell 

disruption technique the osmolytes have similar peaks in each sample (Figures 5.3 and 

5.4), therefore both groups were combined when measuring the percentage of each 

metabolites. The peak height was measured rather than peak area, to avoid overlapping 

between peaks. Variations in the percentages of glucose, trehalose, arabitol, and glycerol 

between different concentrations were observed. In the minimal medium the 

percentages of each osmolyte revealed: glucose is roughly the same at 0 and 0.8 M and 

then increases at 1.6 M; trehalose is reasonably at high concentration in 0 M but then 

decreases to zero by 1.6 M; arabitol is fairly similar at 0 and 0.8 M but gets quite a bit less 

at 1.6 M; and glycerol is present at 0 M but gets steadily more as the salt concentration 

goes up (Figure 5.5. B). In the YM cultures the results showed that glucose and trehalose 

were present in much lower concentration than they were in minimal medium. However, 

there was more glycerol produced in media with high salt which reached up to 80 and 

79% in 0.8 and 1.6 M YM cultures respectively whereas these percentages decreased up 

to 26% in 0.8 M and 35% in 1.6 M minimal cultures (Figure 5.5.A and B). Our results were 

agreed with (Almalki, 2012) who reported that glycerol was detected as the main 

osmolytes in all NMR spectra of D. hansenii cells growing in  high salinity for both M9 

minimal and YPD media followed by arabitol as the next important solute.                                            
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Figure 5.3. Represents the 1H NMR analysis of the osmolyte of D. hansenii strain growing in YM broth with different 

concentrations (0, 0.8, and 1.6 M) of NaCl. Yeast cells disrupted by: A- beads beating and B- sonication before 

lyophilisation. 
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Figure 5.4. Represents the 1H NMR analysis of the osmolyte of D. hansenii strain growing in minimal medium broth with 

different concentrations (0, 0.8, and 1.6 M) of NaCl. Yeast cells disrupted by: A- bead beating and B- sonication before 

lyophilisation 
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5.2.4. Spectrofluorometric quantification measurement of neutral lipid in D. hansenii 

using Nile red dye 

In order to investigate the effect of hyperosmotic and limited nutrient stress on neutral 

lipid content (mg neutral lipid / mg biomass) in D. hansenii cells, experiments were carried 

out using minimal and YM medium with different stress conditions. Initially, serial 

experiments were performed to optimize the measurement conditions (cell 

concentration, time of staining, and stain concentrations) using Nile red dye for minimal 

medium.  For YM medium we depend on the optimum measurement conditions that are 

shown in section 3.2.5 for the following experiments. As shown in Figure 5.6 the best cell 

concentration was chosen based on a high normalised value and smaller standard error 

value of stain average in order to avoid overlapping between stained and unstained 

average values. The best cell concentration for D. hansenii cells was at the relative cell 

concentration of 87.5% which equates to an OD. of about 4.72. In addition, 7 minutes was 
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Figure 5.5. The Percentage of osmolytes in A- YM, and B- Minimal cultures with different concentrations 

(0, 0.8, and 1.6 M) of NaCl when measuring the peak height of 1H NMR of these samples. Bars represent 

standard deviations. 
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chosen as the best time of staining and 0.4 µmol/ml was chosen as the optimal 

concentration of Nile red dye (see Figure 5.7.A and B).  
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 Figure 5.6. The fluorescence of neutral lipid with different cell concentrations in D. hansenii after 

24 hours of incubation in minimal medium without salt. Bars represent standard deviations. 
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5.2.4.1. Cell count calibration  

D. hansenii cells were counted in different cultures dilutions (shown in Table 2.1). Data in 

Figure 5.8 showed increasing cell countings in parallel with increasing the cells 

concentrations for all dilutions made for YM and minimal cultures. Cell number for yeast 

growing in minimal medium was higher than YM medium. We thought this might be due 

to the cell size in YM was higher than in minimal medium which was clearly seen in a 

standard optical microscope with an x 40 objective magnification. Cell number in minimal 

medium at OD 4.7 (best OD of cell concentration in neutral lipid evaluation in minimal 

medium) was about 33 x 10 7, while at OD 2.59 of YM cultures (best OD of cell 

concentration for neutral lipid evaluation in YM medium) was 5.75 x 10 7.  
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Figure 5.7. The fluorescence of neutral lipid with: A- Increasing time of staining with 0.2 

(µmol/ml) Nile red and B- different concentrations of Nile red for D. hansenii after 24 hours of 

cultivation in minimal medium without salt. Bars represent standard deviations. 
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5.2.4.2. Effect of growth phase and hyperosmotic stress on neutral lipid production 

 Neutral lipids were monitored during the growth phases, the readings were taken 

through the early logarithmic phase as well as in early and the late stationary phase.  The 

results showed that the highest accumulation was after 24, 16, and 24 hours for 0, 0.8, 

and 1.6 M minimal medium cultures respectively, which are all in the early stationary 

phase for D. hansenii (Figure 5.9.B). In the same pattern, the highest levels of neutral lipid 

were detected after 16 hours of incubation for the cultures without salt and after 20 hours 

for both 0.8 and 1.6 M YM cultures (Figure 5.9.A). Lipid accumulation is a dynamic process 

that depends on different factors such as the growth conditions, microorganism, and the 

growth phase. It is started when the nutrients supply is depleted, particularly nitrogen 

source, but when an excessive amount of carbon is still available to the cells. Due to 

nitrogen limitation the cell proliferation slower, and the synthesized lipid has to be stored 
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Figure 5.8. Cell number versus OD at 600 nm of serial dilutions of D. hansenii cells growing in: YM and 

minimal medium. Cell number was counted under x40 objective magnification. Readings in Y axis were 

multiplied with x 10 -7. Bars represent standard deviations. 
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within the existing cells in the form of lipid droplets (LDs), which can no longer assimilated 

(Ratledge and Wynn, 2002, Markgraf et al., 2014) reported that through the early 

stationary phase in S. cerevisiae the diacylglycerol acyl-transferase Dga1p moves from the 

endoplasmic reticulum to LDs which is essential in TAG synthesis from diacylglycerol. The 

number and size of LDs increase when yeast cells reach the early stationary phase. Other 

work   by (Uzuka et al., 1985) also demonstrated that the accumulation rate in Lipomyces 

starkeyi yeast reached the highest level in the second stage of the retardation phase (early 

stationary phase), and slowed down after that (Figure 5.10). Based on previous studies 

and our results that agreed with their findings, cells were harvested in the late logarithmic 

phase in the following experiments to compare lipid production at different 

concentrations of NaCl in both minimal and YM media. 
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Figure 5.9. Neutral lipid concentration in both log and stationary phase (early and late) for D. hansenii 

growing in:  YM medium, minimal medium with different concentrations of NaCl (0, 0.8 and 1.6 M). Bars 

represent standard deviations. 
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Figure 5.10. The typical pattern of lipid accumulation and biomass production in oleaginous 

microorganisms.  Adopted from (Akpinar-Bayizit, 2014) 

 

 

Interestingly neutral lipid production is found to be significantly higher in minimal 

medium than in enriched YM medium with different concentrations of NaCl especially for 

0 M concentration which displayed highly significant (P value ≤ 0.001) differences when 

compared with other salt concentrations of both media. However, there was 

nonsignificant variation in neutral lipid values between cultures grown in YM and minimal 

media at 1.6 M NaCl. The highest lipid accumulation was for 0 M minimal medium in 

which cells accumulated about 0.152 mg neutral lipid / mg biomass, while the lowest 

content was for 0.8 M YM culture (Figure 5.11). Several studies also examined the effect 

of NaCl stress on neutral lipid production in yeast which to some extent agreed with our 

study. For example In Saccharomyces rouxii the content of TAG was decreased when the 

NaCl concentration rose from 0 to 2 M in the medium, whereas further addition of NaCl 

up to 3M stimulated an increasing amount of TAG (Andreishcheva et al., 1999). Watanabe 

and Takakuwa (1984) reported that the pool of free fatty acids increased in Yarowia 

lypolytica cells due to less active utilization for TAG synthesis in the presence of 9% NaCl, 
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thus the amounts of TAG and sterol esters decreased in response to this salt stress (Watanabe 

and Takakuwa, 1984). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cell density was also studied in minimal and YM cultures with different salt 

concentrations, at the same time with neutral lipid measurements (Figure 5.12). The 

average of OD was 2.8 ± 0.01, 3.2 ± 0.02, and 0.8 ± 0.088 in 0, 0.8, and 1.6 M YM cultures 

respectively at late logarithmic phase. However, in minimal cultures the OD average of 

the samples in different concentrations of NaCl were 2.7 ± 0.025, 2 ± 0.056, and 0.8 ± 0.02 

in 0, 0.8, and 1.6 M respectively at the late logarithmic phase.  
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Figure 5.11. Neutral lipid concentration (mg) / (mg) biomass for D. hansenii growing in: YM 

medium, minimal medium with different concentrations of NaCl (0, 0.8 and 1.6 M) at late 

logarithmic phase. Bars represent standard deviations 
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5.2.4.3. Effect of different carbon/ nitrogen ratios on neutral lipid production 

To determine the effect of carbon/ nitrogen ratios alongside the type of carbon source 

(glucose and glycerol) used on neutral lipid production in D. hansenii, experiments were 

performed using 3 x 250 ml shaking flasks containing 50 ml minimal medium with 

different carbon/nitrogen (ammonium sulphate) ratios.                                                                                                                                                   

5.2.4.3.1. Glucose/ Ammonium sulphate ratios 

The data in Figure 5.13.A shown that after adaptation, the neutral lipid accumulation was 

raised significantly (P value ≤ 0.0003) inside the cell with increasing carbon concentration 

up to 48:1 C/N, along with one limited concentration of nitrogen source (ammonium 

sulphate). There was a slight decrease in the lipid accumulation at the 16:1 concentration, 

comparing with 8:1 C/N ratio. This decline might be because the yeast cells were adapted 

longer to the first concentration than the other ones. The increase in neutral lipid 

production was less significant (P value ≤ 0.0102) between the last two higher 

concentrations of glucose, and the maximum lipid accumulation was observed in 48:1 

ratio which accumulated about 0.389 mg neutral lipid/ mg biomass (Figure 5.13.A).  
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To monitor the effect of nitrogen concentration, cultures were prepared by using the 

optimum concentration of glucose with low amounts (48:1, 48:0.5, 48:0.25, and 48:0 C/N) 

of ammonium sulphate, due to previous research which referred to the positive effect of 

lower nitrogen concentration on neutral lipid production in yeast cells (Hall and Ratledge, 

1977, Wynn et al., 2001). In Figure 5.13.B the data show that the 48:0.5 C/N ratio 

presented the highest amount of neutral lipid comparing with biomass, and it was slightly 

decreased at the 48:0.25 C/N ratio (non-significant variation). However, in the absence of 

nitrogen source, the amount of lipid was highly decreased in these cultures. 
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Figure 5.12. The effect of different concentrations of A - glucose and B - ammonium sulphate on 

neutral lipid production (mg)/ (mg) biomass of D. hansenii growing on minimal medium after 40 

hours of incubation at 25°C under shaking. Bars represent standard deviation. 
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5.2.4.3.1.1. Changing the cells environment from high salt to the 48:0.5 glucose/ 

ammonium sulphate medium  

Based on the results obtained, another method was attempted to optimize neutral lipid 

production by inoculating the 48:0.5 glucose/ ammonium sulphate medium with pre-

adapted cells of D. hansenii grown in 1.6 M minimal medium. The hypothesis of this 

procedure is to exploit the storage glycerol produced in high salinity stressed cells into 

neutral lipids production after changing the growth environment directly from high salt 

into 48:0.5 glucose/ ammonium sulphate medium. After growing in new environment, 

the cells were harvested at different time of incubation in individual 3 x 50 ml 48:0.5 

glucose/ ammonium sulphate medium.  The results showed (Figure 5.14) that the neutral 

lipids production was significantly (P value ≤ 0.0001) increased through the time of 

incubation up to 0.4 mg lipid/ mg biomass after 24 hours of incubation in 48:0.5 glucose/ 

ammonium sulphate medium. On the other hand, the values of total osmolytes was 0 µg/ 

mg biomass directly after transferring the cells to the new environment, whereas it was 

about 518.4 µg osmolytes/ mg biomass when measured in 1.6 M NaCl culture. For that 

reason, and along with the non-highly significant amount of neutral lipids achieved in this 

long procedure, it was decided not to use the pre- stressed cells in high concentration of 

NaCl in the inoculation.  

 

 

 

 

 

 

 

 

 

 

 



123 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. Neutral lipid production in D. hansenii cells after transferring the cells from 1.6 M 

NaCl minimal culture to the 48:0.5 glucose/ ammonium sulphate medium. The readings were 

taking after different time of incubation. Bars represent standard deviation. 

 

 

.                                                                                                    

5.2.4.3.2. Glycerol/ Ammonium sulphate ratios 

From the data shown in Figure 5.15.A, the production of neutral lipid displayed significant 

(P value ≤ 0.0045) decreases with increasing amounts of glycerol as the only carbon 

source in the minimal medium. Lipid production patterens are shown to be different 

when compared with the cultures using glucose as the only carbon source (figure 5.13.A) 

with limited amount of ammonium sulphate. The maximum lipid production was 

observed at the lowest concentration examined for glycerol, giving the efficiency of D. 

hansenii cultures to accumulate neutral lipid at about 0.468 mg lipid/mg biomass.  
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However, there was non-significant increase of neutral lipid compared with biomass, as 

the concentration of ammonium sulphate decreased in minimal cultures. The highest lipid 

accumulation was at 8:0.25 C/N ratio (Figure 5.15.B). In the medium with no nitrogen 

present, along with optimum concentration of glycerol, the yeast cells didn’t grow, so we 

couldn’t evaluate the lipid content, and the biomass in these cultures.                                                   
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Figure 5.14. The effect of different concentrations of A- glycerol and B- ammonium sulphate on neutral 

lipid production (mg)/ (mg) biomass of D. hansenii growing on minimal medium after 40 hours of 

incubation at 25°C under shaking. Bars represent standard deviation 
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5.2.4.3.3. Comparing between the effect of 48:0.5 Glucose/ ammonium sulphate with 

8:0.25 Glycerol/ ammonium sulphate ratio on neutral lipid production of D. hansenii 

cells. 

The comparative experiment of neutral lipid accumulation under different cultivation 

conditions was conducted when the cells were cultured in minimal medium with 48:0.5 

and 8:0.25 glucose/ ammonium sulphate and glycerol/ ammonium sulphate ratios 

respectively. After 40 hours incubation, lipid production was significantly (p value <0.0001) 

higher in the 48:0.5 glucose/ ammonium sulphate cultures which accumulated 0.33 ± 0.01 

mg neutral lipid/ mg biomass (Figure 5.16). This value comprises 1.4-fold increase 

compared with 0.23 ± 0.006 mg lipid/ mg biomass produced in 8:0.25 glycerol/ 

ammonium sulphate ratio.  In respect with the cell density it was found that there were 

similar values of culture absorbance at OD600 after 40 hours of incubation in both media. 

Consequently, there were no differences in biomass produced from both 48: 0.5 and 

8:0.25 glucose/ ammonium sulphate and glycerol/ ammonium sulphate ratios after 40 

hours of incubation respectively (Figure 5.17).   

 

                                                                                                                                      

 

 

 

 

 

 

Figure 5.15. Neutral lipid production (mg) in D. hansenii cells comparing with biomass (mg) 

when the cells were grown in: A- 48:0.5 glucose/ ammonium sulphate ratio and B- 8:0.25 

glycerol/ ammonium sulphate ratio of Minimal medium. Bars represent standard deviation. 
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Among numerous previous works on lipid production (Boulton and Ratledge, 1984, 

Hansson and Dostálek, 1986, Pan et al., 1986, Heredia and Ratledge, 1988, Jacob, 1991, 

Jacob, 1992, Johnson et al., 1992, Hassan et al., 1993, Saxena et al., 1998, Ratledge, 2004, 

Rau et al., 2005, Li et al., 2007b, Zhao et al., 2008) glucose is considered as the most 

commonly used carbon source for growth and lipid production in oleaginous fungi. High 

glucose concentrations improve the carbon flow that is directed toward the production 

of TAG, thus increasing lipid production in several yeasts (Li et al., 2007b).  

 

 

 

 

 

 

 

 

 

Figure 5.16. Biomass (mg) of D. hansenii cells growing in:  A- 48:0.5 glucose/ ammonium 

sulphate ratio and B- 8:0.25 glycerol/ ammonium sulphate ratio of minimal medium. The cells 

harvested after 40 hours of incubation in each medium at 25 °C under 120 rpm shaking. Bars 

represent standard deviation. 

 

5.2.5. Imaging of neutral lipid bodies within the cells by using fluorescence microscopy 

Neutral lipid bodies have been studied using light and fluorescence microscopy to locate 

their position and intensity in some selected high lipid content D. hansenii cells growing 

in 1.6 M NaCl YM medium, 0 M NaCl minimal medium, 48:0.5 glucose/ammonium 
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stationary phase, therefore lipid was visualised after 24 and 20 hours of incubation for 0 

M minimal and 1.6 M YM cultures respectively. However, the rest of the images were 

taken after 40 hours of incubation. The cells were stained using the same conditions 

employed in the quantification method of neutral lipid production. The presented cells 

were selected from the photos captured by using an Axiovert 200M (Zeiss) fluorescence 

microscope.                    

                                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. Fluorescence microscopy images of D. hansenii cells stained with Nile Red dye, 

the figures show cytoplasmic lipid droplets (yellow) from cells growing in 1.6 M YM medium 

after 20 hours of incubation at 25°C under shaking. Some cells contained two neutral lipid 

bodies. 

 

The images showed that the highly lipophilic benzophenoxazone dye Nile red intercalated 

in lipid droplets and stained neutral lipids within the yeast cells. Among several dyes, Nile 

red seems preferable for determination of the intracellular lipid and its fluorescence 
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characteristics vary depending on the type of lipids present (Greenspan and Fowler, 

1985). When examined following staining, neutral lipid bodies emit gold-yellow and green 

light after excitation at 450- 490 and 525 nm and 700 nm respectively. In some cells, the 

neutral lipids appeared to have a central location in the cytoplasm while in others they 

integrated within the cell membrane especially in the budding cells (Figures 5.18. and 

5.19). This pattern of fluorescence was similar across the population of yeast cells 

indicated and observed for the presence of intracellular lipid bodies. In S. cerevisiae and 

S. pombe, (Rostron et al., 2015) reported that cells exhibited discrete fluorescent bodies, 

of varying sizes, within the cytoplasm when stained by Nile red dye and viewed under 

green fluorescence (EGFP filter Ex. 488/Em. 509 nm) at the stationary phase.   In 0 M 

Minimal culture cells, neutral lipid bodies were visually larger than lipid bodies for cells 

growing in different conditions (Figure 5.19). In general, each conical to round shaped cell 

of D. hansenii has a single cytoplasmic yellow/ green neutral lipid body detected inside 

each cell. However, for the high salt concentration (1.6 M) YM cultures there were two 

lipid bodies inside a few cells growing in this medium (Figure 5.18). In oleaginous yeasts, 

the total lipid concentration and fluorescence intensity increased with an increase in the 

dry cell weight, following the glucose consumption from the culture broth, and appeared 

with different shapes and development, which depended on the species and culture 

condition (Kimura et al., 2004). 
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B 

Figure 5.18. Fluorescence microscopy images of D. hansenii cells stained with Nile Red dye, growing in A-0 M 

NaCl, B- 8:0.25 glycerol/ ammonium sulphate, and C- 48:0.5 glucose/ammonium sulphate ratios Minimal 

media after 24, 40, and 40 hours of incubation respectively at 25°C under shaking. the figures show 

cytoplasmic lipid droplets (yellow). In 0 M NaCl Minimal medium cells appear with big neutral lipid bodies 

comparing with cells growing in another condition. In all three conditions cells introduce single and mostly 

centric lipid bodies. 
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5.2.6. Determination of total lipids as fatty acid methyl ester (FAME) in D. hansenii 

yeast under different stress conditions  

To identify the fatty acid structure and content in D. hansenii cells under different stress 

conditions (NaCl stress and low amount of nitrogen source). 5 to 10 mg of freeze dried 

samples were transesterified by acid catalyzed reaction to fatty acid methyl ester (FAME) 

according to method described by (Van Wychen and Laurens, 2013a). Our study is the 

first report on the effect of stress conditions on fatty acids profile of D. hansenii strain 

depending on biochemical data. Fatty acid methyl esters (FAMEs) were analyzed by 

GC/MS using an Autosystem XL Gas Chromatograph (CHM-100-790, Perkin Elmer), which 

combined with a TurboMass Mass Spectrometer software (13657, Perkin Elmer). During 

the procedure, a mixture of chloroform and methanol was used to extract hydrophobic 

small molecules such as fatty acids, which are readily soluble in the organic phase.  The 

addition of a methyl group work to decrease the boiling point and polarity of the 

molecules, so facilitating the analysis by GC-MS. FAMEs were identified by comparson 

with different concentrations of FAMEs standard (37 Component FAME Mix) and 

quantified by the internal standard methyl tridecanoate (C13:0 ME).  Different fatty acids 

were positively identified, along with standards from this analysis, matching retention 

times of known standards and fragmentation patterns in the NIST database. GC peaks 

were labeled as follows: tetradecanoic acid (C13:0) at 8.4 min, tridecanoic acid (C13:0) at 

12.5 min, palmitolic acid (C16:1) at 25.5 min, oleic acid (C18:1) at 36 min, and stearic acid 

(C18:0) at 37.6 min retention time (Figures 5.20, 5.21, and 5.22). The oil accumulated in 

yeast cells predominantly consists of oleic, linoleic (C18:2), stearic, palmitic or palmitoleic 

acids (C16:1) (Meng et al., 2009). These fatty acids were observed in all cultures with or 

without salinity/nutrient stress, based on their nearly similar retention time (Figures 5.20, 

5.21, and 5.22).  
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Figure 5.19. GC- MS analysis of fatty acids methyl ester (FAME) from D. hansenii freeze dried samples 

yielded from YM cultures with different concentration (0, 0.8, and 1.6 M) of NaCl. The samples collected 

from their cultures at different times depending on incubation periods for neutral lipid measurement. 

Each sample identified with three replicates. 

 



132 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 . GC- MS analysis of fatty acids methyl ester (FAME) from D. hansenii freeze dried 

samples yielded from minimal cultures with different concentration (0, 0.8, and 1.6 M) of 

NaCl. The samples collected from their cultures at different times depending on incubation 

periods for neutral lipid measurement. Each sample identified with three replicates. 
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appeared noticeably to vary between different samples. These variations could reflect the 

differences in the amount of fatty acids in each sample, especially for 0.8 and 1.6 M 

cultures which appeared smaller than other samples. Our results agreed with Ratledge 

and Hall (1979) who reported that the composition of fatty acids of total lipids didn’t 
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change in response to nitrogen limited conditions, while slight changes were identified in 

carbon limited conditions (Ratledge and Hall, 1979). In contrast another study (Yoon and 

Rhee, 1983) mention that the fatty acid composition changed as the growth rate altered 

in response to nitrogen limited conditions. High salinity does not induce significant 

changes in the unsaturation of fatty acids in Yarrowia lipolytica (Andreishcheva et al., 

1999), whereas decrease the content of sterol  and phospholipid.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21. GC- MS analysis of fatty acids methyl ester (FAME) from D. hansenii freeze dried 

samples yielded from minimal cultures with different C/N ratios. 8:0.25 glycerol/ ammonium 

sulphate and 48:0.5 glucose/ ammonium sulphate. The samples collected from their cultures 

at different times depending on incubation periods for neutral lipid measurement. Each 

sample identified with three replicates. 

 

 

Fatty acids are usually present as esters of glycerol (as in phospholipids and 

triacylglycerols) or sterol esters and the concentration and composition varies depending 

on yeast strain and alterations in the cultivation conditions. However, it is not surprising 

if there is low variation when different strains are grown under the same conditions in 

the same laboratory (Ratledge, 1989). Higher lipid yield and cellular lipid content were 

observed when inorganic nitrogen sources were used instead of organic sources. 
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Moreover the oleaginous yeast Cryptococcus albidus var. albidus CBS 4517 was able to 

accumulate lipid under limited and excess-nitrogen conditions, and the highest capacity 

was observed in nitrogen-limited medium (Hansson and Dostálek, 1986). The literature 

also refers to the increase in the unsaturation level of fatty acids in Candida 

membranefaciens (Khaware et al., 1995) as well as in the halophilic Hortaea werneckii and 

halotolerant A. pullulans when grown at high concentration of NaCl, whereas a slight 

decrease was observed in halophilic Phaeotheca triangularis (Turk et al., 2004) under salt 

stress condition. 

 

5.3. Conclusion 

In conclusion, after monitoring the growth curves of the selected strain D. hansenii in both 

minimal and YM media with different concentrations (0, 0.8, and 1.6 M) of NaCl, our 

results revealed that the total intracellular osmolytes increased due to osmotic stress 

condition. Their accumulation in YM cultures were higher than in minimal cultures.  Under 

these conditions the main identified osmolytes in 1H NMR analysis were glycerol, arabitol, 

glucose and trehalose. From the peak height for each polyol, the percentage of glycerol 

was notably increased in media with high concentration of NaCl, and it was higher in YM 

cultures than minimal cultures.  From the obtained results, we concluded that the effect 

of high salinity on osmolytes accumulation in YM medium was much higher than in 

minimal medium. Along with intracellular osmolytes, neutral lipid production was also 

evaluated. The cells were harvested at the late logarithmic phase, which was found to be 

the optimal phase of TAG production. Neutral lipid production was found to be 

significantly higher in minimal medium than in enriched YM medium in different 

concentrations of NaCl. Whereas the highest intracellular polyols were in media with 

higher amount of salt, the maximum amount of neutral lipid appeared in minimal cultures 

without salt (0.152 mg neutral lipid / mg biomass). That means higher concentration of 

salt didn’t enhanced TAG production even though it induced maximium amount of 

glycerol inside the cells.   The production of TAG was optimized in minimal medium when 

D. hansenii cells grown in different carbon/ nitrogen ratios. The optimization was based 
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on the type and the economic value of the medium composition. Glucose and glycerol 

were selected as a fermentable and a non-fermentable carbon sources along with 

ammonium sulphate as nitrogen source. We achieved the best yield of neutral lipids when 

cells were cultured in medium consisting of 48:0.5 and 8:0.25 glucose/ ammonium 

sulphate and glycerol/ ammonium sulphate ratios respectively. However, neutral lipid 

production (mg / mg biomass) in medium with 48:0.5 glucose/ ammonium sulphate was 

significantly (p value <0.0001) higher than medium with 8:0.25 glycerol/ ammonium 

sulphate ratio. In all these stress conditions (high NaCl and limited nitrogen sources) we 

identified the fatty acids in freeze dried D. hansenii cells after transestrification with acid 

catalysis and methanol. The FAME GC- MS identification revealed that palmitic (C16:1), 

oleic (C18:1), and stearic acid (C18:0) were the main fatty acids found in FAME analysis, 

under normal and different stress conditions (high salt and limited nitrogen source).  
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6. Genetic modification of D. hansenii cells by deletion of the 

GUT2 gene via homologous recombination  

6.1. Introduction 

Recently metabolic and genetic engineering has established itself as applied technologies 

for biofuel development. Both tools have the ability to modify microorganisms with the 

aim to enhance their natural features, productivity, and even introduce new 

characteristics (Liang and Jiang, 2013). Most metabolic engineering basically depends on 

the introduction of a physiological stress such as nutrient-limitation, in particular 

nitrogen- or phosphorous-limitation, to channel metabolic fluxes to lipid accumulation in 

a microorganism (Beopoulos et al., 2009a). In contrast, genetic engineering approaches 

in oleaginous yeast have been largely confined to the well characterized oleaginous yeast 

Yarrowia lipolytica (Barth and Gaillardin, 1997) for which good genetic tools are available 

(Chen et al., 1997, Fickers et al., 2003, Yamane et al., 2008, Blazeck et al., 2011, Wang et 

al., 2011, Blazeck et al., 2013, Liu et al., 2014). Improvements in lipid production by Y. 

lipolytica have been achieved through genetic engineering. Dulermo and Nicaud  (2011) 

increased lipid production two-fold by over-expressing the GPD1 gene (encoding for 

glycerol-3-P dehydrogenase) and deleting the gene (GUT2) for the second isoform of this 

enzyme in a strain deficient in β-oxidation (Δpox1-6) (Beopoulos et al., 2008a, Dulermo 

and Nicaud, 2011). Tai and Stephanopoulos (2013) employed a “push-pull” strategy by 

over-expressing the first  (acetyl-CoA carboxylase, ACC1) and last (diacylglycerol 

acyltransferase, DGA1) enzymes in the neutral lipid biosynthesis pathway, which 

increased lipid production five fold (Tai and Stephanopoulos, 2013). Only a few studies 

report genetic modification in D. hansenii. These studies made use of auxotrophic 

markers (Minhas et al., 2009). The work described in this chapter parallels similar efforts 

by extending the genetic toolbox in D. hansenii yeast. We are using the wild type NCYC102 

strain, which lack any auxotrophic markers. Instead of using auxotrophic markers, we 

decided to use a dominant selectable marker that gives rise to resistance to an antibiotic. 

More specifically, a modified version of the bacterial transposon Tn1825 SAT1 gene which 
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encodes streptothricin acetyltransferase was used. This enzyme inactivates the antibiotic 

nourseothricin. We replaced the GUT2 gene via homologous recombination using the 

SAT1 marker flanked by regions upstream and downstream of the GUT2 gene. With this 

approach, we tried to increase the accumulation of triacyl glycerol by repressing the 

conversion of glycerol-3-phosphate into dihyroxyacetone phosphate via glycerol-3-

phosphate dehydrogenase. 

 

6.2. Results 

6.2.1. Debaryomyces hansenii NCYC102 transformation 

6.2.1.1. Nourseothricin antibiotic assay 

The SAT1 gene is a suitable marker for selection of recombinant transformants in a variety 

of yeast species (Reuß et al., 2004, Ding and Butler, 2007, Ueno et al., 2007, Millerioux et 

al., 2011, Kunigo et al., 2013). Since D. hansenii mistranslates CUG codons into serine, we 

need a version of the SAT1 gene where the CUG codon was replaced by CUC. For this we 

used a SAT1 cassette designed for genetic modification of Candida albicans. This cassette 

consists of the SAT1 ORF and is controlled by the CaACT1 promoter and first 15 codons 

including intron. The SAT1 ORF is followed by the CaURA3 terminator (Reuß et al., 2004)). 

This cassette has previously been shown to function in C. glabrata as well (Ueno et al., 

2007). 

In order to design a gene replacement cassette using CaSAT1 as a dominant selectable 

marker, we first needed to test whether D. hansenii is sensitive to nourseothricin. 100 µl 

of exponentially growing WT cultures (OD 4.66) were plated onto agar plates containing 

a wide range of nourseothricin concentrations (0.1 to 300 µg/ml) and incubated at 25 °C 

for 5 days. There was no growth on the YM agar plates containing 1.5 µg/ml or higher. 

Based on these results (Figure 6.1) we initially selected 1.5 and 5 µg/ml as the selective 

condition for the growth of transformed yeast in YM medium. In previous studies that 

used the SAT1 gene as a selectable marker, the concentration of nourseothicin used to 

select transformed colonies ranged from 10 -200 µg/ml depending on the organism (Reuß 
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et al., 2004, Ding and Butler, 2007, Ueno et al., 2007, Millerioux et al., 2011, Kunigo et al., 

2013).             

 

                                                                                      

 

 

 

 

 

 

 

 

 

 

 

6.2.1.2. Development of gene replacement constructs for DhURA3 and DhGUT2             

After establishing that nourseothricin is a suitable antibiotic in D. hansenii, constructs 

were designed to disrupt the URA3 and GUT2 gene as described in materials and methods 

section 2.8.3.1 and 2.8.3.2). The DNA sequence of the insert of the pZA3 (for URA3) and 

pZA5 (for GUT2) construct were analyzed to confirm their design and were found to be 

correct. However, we decided that, since the orientation of the transcription of the SAT1 

gene was in the opposite direction to that of the target genes, we would also construct 

plasmids where the orientation of the SAT1 gene was in the same direction to that of the 

target genes. For the design of these plasmids (see materials and methods section 

2.8.3.2). This resulted in the plasmids pZA6 (for URA3) and pZA7 (for GUT2) (see Figure 

0.5 µg/ml 1.5 µg/ml 1 µg/ml 0.3 µg/ml 

0.25 µg/ml 0.125 µg/ml 0.1 µg/ml 0 µg/ml 

 

 

Figure 6.1 Effect of different concentrations of nourseothricin on the growth of D. 

hansenii after 5 days of incubation in YM medium plus antibiotic at 25 ˚C. Photos of 

higher than 1.5 µg/ml are not included due to no growth in these plates. 
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2.5). To confirm the orientation of the SAT1 cassette, two digestion reactions (XhoI-BamHI 

and PstI-XbaI) were performed to differentiate between pZA5 and pZA6 (Figure 6.2). 

Agarose gel photo showed there was one band in the first two samples representing 

pZA6, while there were two bands (around 2500 and 3000bp) produced from the pZA5 

sample, when it was digested with Xho1-BamH1 enzymes. This is exactly as we predicted 

for these constructs. For Pst1-Xba1 enzymes, both plasmids showed two bands as 

expected (Figure 6.2).                                                                                                                                                                    
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Figure 6.2 Analysis of URA3 gene replacement cassette containing plasmids. A) Schematic representation of plasmids 

pZA5 and pZA6. B) 0.7% Agarose gel electrophoretic separation of plasmid fragments generated by digestion with the 

restriction enzymes XhoI- BamHI and PstI- XbaI 
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To distinguish between pZA3 and pZA7 constructs, two double digestion reactions were 

set up by using the restriction enzymes SacI-SalI and SalI-KpnI. For the pZA7 construct, we 

expected to get insert bands of around 1200 bp when digested with SacI-SalI, and 1700 

bp band with SalI-KpnI reaction. When pZA3 is digested with SacI-SalI and SalI-KpnI, the 

insert bands will be 1700 bp and 1200 bp, respectively as the orientation of the SAT1 

cassette is reversed in pZA3 compared to pZA7 (Figure 6.3).                                                                                                                                              
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Figure 6.3 . Analysis of GUT2 gene replacement cassette containing plasmids. Top- schematic diagrams of plasmids 

pZA3 and pZA7 with the sites of restriction enzymes used in the digestion reactions. Bottom- Gel electrophoresis was 

used to represent distinguish between pZA3 and pZA7 constructs depending on two digestion reactions comparing 

with uncut samples. The size of the bands in the 0.7% Agarose exchanged between those two constructs when used 

SacI-Sal1 and SalI-KpnI enzymes.  
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6.2.1.3. Debaryomyces hansenii transformation by electroporation 

In order to transform cells with the gene replacement cassettes, the cassettes were first 

amplified by PCR (see materials and methods Figure 2.6). Yeast cells were transformed 

with 2.0 and 3.4 μg PCR product for URA3 and GUT2, respectively. Following 

electroporation, cells were recovered in YM medium augmented with 1 M sorbitol as 

osmotic stabiliser instead of sucrose, according to previously published protocols (Minhas 

et al., 2009). Electroporation of the URA3 and GUT2 gene replacement cassettes resulted 

in high numbers of transformants (>1000), on agar plates with 1.5 and 5 µg/ml 

nourseothricin whereas no colonies could be seen in control electroporated without DNA. 

To check whether URA3 was deficient in any of selected colonies, cells were plated onto 

minimal medium without uracil by using replica plating. The result showed that all 

colonies grew well in this medium after 48 hours of incubation at 25˚C, which indicates 

that the URA3 gene is still available in these cells. To confirm this result, cells were plated 

on medium containing 5-Fluoro-orotic acid (5-FOA), and none of the selected colonies 

grew. This indicates the URA3 gene product (orotine-5-monophosphate decarboxylase) is 

still active in these transformants as they still produce the potent inhibitor of thymidylate 

synthase, fluorodeoxyuridine, and therefore fail to grow. The failure of obtaining URA3 

deficient cells may be because there is more than one copy of URA3 gene, or the gene 

replacement cassette inserted randomly inside the genomic DNA. For cells with a GUT2 

gene deletion as a consequence of transformation with GUT2 gene replacement cassette, 

we expect no clear phenotype. One reliable way to test for the replacement of the GUT2 

gene by SAT1 is via PCR on genomic DNA (Figure 6.4) of selected cells. First, we tested for 

disruption of GUT2 by using a PCR with a primer inside the SAT1 ORF and a primer that 

anneals 200 bp outside the cloned regions flanking the GUT2 gene (Figure 6.4.1.A). An 

amplified product of 816 bp for the 5’ side and 853 bp for the 3’ side will be seen only in 

the case of the GUT2 gene is disrupted by SAT1 marker. Subsequently, another PCR 

reaction was set up that uses primers that anneal inside the transformed construct (Figure 

6.5.1.B). This latter PCR confirms the presence of the SAT1 gene.  Eight single selected 

colonies along with wild type D. hansenii cells were tested as described above. In three 
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out of the eight selected colonies, the GUT2 gene has been replaced by the SAT1 cassette. 

Agarose gel photos revealed that, there were clear bands of the expected size in three 

transformants with PCR A and B (Figure 6.4.2).                
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Figure 6.4 Diagnosis of the replacement of GUT2 gene with SAT1 construct via homologous recombination. 1: 

Schematic diagram of A and B PCR reactions inside and outside the upstream and downstream SAT1 cassette 
respectively.  2: Gel electrophoresis images of A and B PCR reactions.  Three clear bands with 816 bp and 853 bp 

produced from the PCR reaction A and B respectively.  No band present from the PCR of wild type strain (negative 

control), and the positive control was performed inside the construct (reaction C of PCR). 
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To confirm the replacement of the GUT2 gene, another PCR was performed to test for the 

absence of GUT2 ORF in those selected cells (see Figure 6. 5. A). This PCR was also carried 

out in the genomic DNA of the wild type cells as a control. Gel electrophoresis image 

(Figure 6. 5. B) shows no bands at the expected length (987 bp) in transformants. These 

results convincingly indicate that the GUT2 gene has been replaced by homologous 

recombination with the SAT1 cassette.   
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Figure 6.5 .  Diagnosis of the availability of GUT2 gene in three selected single colonies transformed with 

SAT1 construct. A: schematic diagram of PCR inside and outside the 700 bp downstream the GUT2 gene. B: 

Gel electrophoresis image of PCR reactions confirmed GUT2 knockout in the gDNA of three transformed 

cells of D. hansenii. The images revealed no bands for PCR in transformed cells at 987 bp when using 

primers inside and outside the GUT2 compared with wild type cells which have clear band at that size. 
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6.2.2. Lipid accumulation is affected in a GUT2 gene deletion mutant  

Subsequently, we investigated the effect of a DhGUT2 deletion on the level of neutral 

lipid production. Both wild type (clone 1, 2, and 3) and gut2∆ cells (gut2∆.1-3) were grown 

in minimal medium with 48 glucose: 0.5 ammonium sulphate ratio (C/N). Another set of 

mutant and wild type cells were grown in minimal medium with 8 glycerol: 0.25 

ammonium sulphate (C/ N) ratio. The values of neutral lipid of the mutant cells were 

compared with the values of the wild type D. hansenii cells. The mutant strains failed to 

grow in minimal medium with glycerol as the only carbon source, as gluconeogenesis is 

disrupted due to a block in the conversion of glycerol 3-phosphate into dihydroxyacetone 

phosphate (see Figure 6.6) although growth was unaffected on minimal medium with 

glucose as sole carbon source in the presence of high salt (0.8M, 1.6M NaCl).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Images of the spot growth of different dilutions of wild types and mutant strains after 6 days 

of incubation on normal minimal medium that containing glucose as a sole carbon source along with 

different concentrations (0, 0.8, 1.6 M) of NaCl and glycerol based minimal medium. For the 0 M glucose 

based medium the photo was taken after 2 days of cultivation at 25 ⁰C.   
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For the neutral lipid production, the results (Figure 6.7) showed that it was significantly 

(P value ≤ 0.0001) higher in all three transformed cells compared with wild type strains. 

The maximum quantity of neutral lipid was observed in the gut2∆ (1) strain which 

produced 0.46 mg neutral lipid/ mg biomass after 40 hours of incubation at 25 ⁰C under 

shaking. The average of neutral lipid production of all three mutant strains was 44.3% ± 

0.01271 of the cellular dry weight (DW) compared to 32.2% ± 0.008 of the three wild type 

clones of D. hansenii NCYC102, which correspond to a 1.4-fold increase in the mutant cells 

(Figure 6.8). With respect to cell growth, the ∆gut2 strains grew to a slightly higher density 

in stationary phase. The OD600 of mutant cells reached up to 3 ± 0.14 in comparison to 2.7 

± 0.11 of the wild type strains after 40 hours of incubation in the same medium at 25 ⁰C 

under shaking. This difference is non-significant (P<0.2). Our results were slightly higher 

than the values of previous work by Beopoulos (2008). This work achieved 8.7% lipid 

accumulation in gut2∆ cells of Y. lipolytica (JMY1202) compare to 7.0% for the wild type 

strain (JMY330) of the cell DW after 11 hours of incubation in glucose based medium 

(YNBD). This corresponds to 1.2-fold increase (Beopoulos et al., 2008a). As in D. hansenii, 

the Y. lipolytica gut2∆ strain showed a slightly higher density of cells after 11 h (late 

logarithmic phase) of growth compared to the control strain.  
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Figure 6.7 Neutral lipid production (mg) / biomass (mg) in three single mutant strains: gut2∆ (1), gut2∆ (2), 

and gut2∆ (3) of D. hansenii growing in minimal medium at 48 glucose: 0.5 ammonium sulphate ratio. The 

value of each mutant strain was compared with the value of each three single wild type strains of D. 

hansenii growing in the same conditions after 40 hours of incubation at 25 ⁰C under shaking. The figure 

shows highly significant differences of neutral lipid production between the mutant and wild type strains. 

There are less significant differences between gut2∆ (3) mutant strain and number 3 wild type strain.  



148 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For more clarification of the cell growth after genetic modification, we measured the 

OD600 of the wild type and mutant cell cultures at different time of incubation in minimal 

medium at 25 ⁰C under shaking. From the figure below (Figure 6.9) the mutant cells 

started with a slightly longer lag phase while it appears to grow slightly faster after 10 

hours of incubation compared with the wild type strain. 
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Figure 6.8 The average of neutral lipid production (mg) / biomass (mg) of three wild types and three 

mutant strains for D. hansenii growing in minimal medium at 48 glucose: 0.5 ammonium sulphate 

ratio, after 40 hours of incubation at 25 C under shaking. 
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6.2.2.1. Neutral lipid production in ∆gut2 and wild type strains of D. hansenii NCYC102 

grown under different C/N ratios  

According to the previous results (Section 6.2.2) that confirmed the inability of gut2∆ 

strains to grow in glycerol as a sole carbon source, while their densities were slightly 

increased in glucose base medium, an experiment was performed to investigate the effect 

of using medium containing both glucose and glycerol on neutral lipid production. Using 

glucose in media containing specific amount of glycerol was to support cell growth of 

∆gut2 strain due to the disruption of gluconeogenesis in these cells.  Lipid accumulation 

was investigated in medium containing different C/ N ratios of glucose: glycerol: 

ammonium sulphate (4:4:0.5 and 8:8:0.5) and compared with 48: 0.5 as well as 8: 0.5 

ratios of glucose/ ammonium sulphate media. The results showed (Figure 6.10) that 

neutral lipid production in GUT2 mutant strain was significantly higher than wild type 

strain in media containing glucose as the sole carbon source. However, there was only 

slightly increase in minimal medium mutant cultures containing glucose and glycerol 
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Figure 6.9 Growth of wild type and mutant stains of D. hansenii cells growing in minimal medium at 

25 °C under shaking at 150 rpm.  
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compared with wild type strain. According to these results, it’s obvious that glucose 

presented higher amount of lipids when used as a sole carbon source for gut2∆ cells, 

although there was no significant variation between 8:0.5 and 4:4:0.5 glucose: 

ammonium sulphate and glucose: glycerol: ammonium sulphate ratios respectively 

related to this strain. On the other hands, in the wild type strain neutral lipid production 

in glucose and glycerol based media were higher than media consisting of glucose as a 

sole carbon source. The increase in lipid accumulation was significant in 4:4:0.5 glucose: 

glycerol: ammonium sulphate medium compared with 48:0.5 (P value= 0.002) and 8:0.5 

(P value= 0.0043) glucose: ammonium sulphate ratios. In terms of cell density, the gut2∆ 

strain grew slightly higher than wild type strain in all types of media and there were no 

significant differences in the cell densities for the individual strain among different types 

of media investigated in this experiment. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Neutral lipid production (mg) / biomass (mg) in ∆gut2 and wild type strains of D. 

hansenii NCYC102 growing in C/ N ratios of glucose: glycerol: ammonium sulphate (4:4:0.5 and 

8:8:0.5) and compared with 48: 0.5 as well as 8: 0.5 ratios of glucose/ ammonium medium. the 

results were taking after 40 hours of incubation at 25 C under shaking.   
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6.3. Conclusions 

In this chapter, we aimed to increase lipid accumulation by deletion of the GUT2 gene 

that encodes the FAD-dependent G3P dehydrogenase that catalyzes the conversion of 

G3P to DHAP. We hypothesized that a block in G3P oxidation, would increase the 

availability of G3P for TAG biosynthesis. We attempted to replace the GUT2 gene with the 

SAT1 selectable marker through homologous recombination. Our results indicate that D. 

hansenii strain (NCYC 102) is highly sensitive to the nourseothricin antibiotic when 

compared with the sensitivity of other yeast strains (Candida guilliermondii (Millerioux et 

al., 2011) and C. albicans (Reuß et al., 2004) grown on the same antibiotic. Based on our 

results 1.5 and 5 µg /ml concentrations of nourseothricin were chosen as a selectable 

marker to test the growth of transformed yeast cells in YM agar plate. The D. hansenii 

NCYC 102 strain was successfully mutated by the mechanism of homologous 

recombination using the SAT1 marker flanked by fragments comprising 450 bp upstream 

and 500 bp downstream of GUT2 ORF. The GUT2 gene deletion construct was 

transformed by electroporation by adapting a previous protocol (Minhas et al., 2009). 

Since the gut2∆ mutant strains were unable to grow on glycerol as the sole carbon source, 

we assume that the reduced conversion of G3P into DHAP under these physiological 

conditions results in a block in gluconeogenesis ((Beopoulos et al., 2008a) and this work). 

Compared to the wild type strains, the gut2∆ mutant strains demonstrated a 1.4-fold 

increase in the accumulation of neutral lipids after 40 hours of incubation in minimal 

medium with a 48:0.5 glucose/ ammonium sulphate ratio. This increase was highly 

significant. In addition, growth of the gut2∆ mutant strain in the same medium reached 

a higher cell density compared to the wild type strain. Therefore, we conclude that the 

gut2∆ mutant has an elevated production of neutral lipids both per biomass and per 

volume culture. The results also suggest that glucose as a sole carbon source induced 

more neutral lipid production in the mutant strain compared with media including both 

glucose and glycerol in their components.  
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Chapter Seven: General conclusions and future 

work 
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7. General conclusions and future work  

7.1. General conclusions 

In conclusion experiments presented in this thesis demonstrated that the yeast 

Debaromyces hansenii NCYC102 was able to grow in medium with high concentration of 

NaCl reaching up to 2.4 M, and with limited growth at 2.8 M. From the 1H NMR 

spectrograph, the osmolyte profiles of D. hansenii cells grown under NaCl stress were 

generally found to have fewer notable peaks when compared to yeasts grown without 

stress. Identification of the main peaks revealed that the main osmolytes identified by 

NMR spectroscopy were glycerol, arabitol, glucose and trehalose. These osmolytes 

worked to adjust the intracellular osmotic balance in the cells growing in high salt with 

the external environment (Gacto et al., 2003). The percentage of glycerol produced in 

media with high salt reached up to 80% and 79% in 0.8 and 1.6 M YM cultures 

respectively. Although, the glycerol quantity was increased inside the cell in high salinity, 

neutral lipid amount (mg/ mg biomass) in 0 M minimal medium was significantly higher 

than in medium with high salt (0.8 M and 1.6 M NaCl) when the readings were taken in 

the late logarithmic phase.  In such conditions, the cell might be kept these solutes in 

particular glycerol to maintain the osmotic balance inside the cells rather than exploit it 

in neutral lipid synthesis.  

Further experiments to enhance neutral lipid accumulation were achieved through 

optimizing the carbon/ nitrogen ratios in minimal medium with glucose or glycerol 

(commercially cheap carbon source) as the sole carbon source along with ammonium 

sulphate as nitrogen source. Medium with 48 glucose: 0.5 ammonium sulphate produced 

the maximum amount of neutral lipid that constitutes a 1.4 fold increase compared with 

the neutral lipid yield in medium with cheaper compound of carbon source (8 glycerol: 

0.25 ammonium sulphate). So, with regard to economic cost we can consider glycerol as 

a potentially suitable carbon source to increase TAG accumulation in D. hansenii cells.  In 

the present study, the effect of growth conditions (high salt and limited nitrogen source) 

on the fatty acid composition of TAG, were also investigated. GC-MS analysis revealed 
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that the profile of all these fatty acids were similar in all samples even they grown under 

different stress conditions. From all the results obtained it was found that D. hansenii 

could be one of the most preferable and viable sources for biodiesel production. In 

agreement with previous studies C16 and C18 long chain fatty acids, were shown to be 

the major lipid component in yeast cells, and would produce similar composition of 

biodiesel to that produced from either plant or animal based feedstock (Gill et al., 1977, 

Hall and Ratledge, 1977, Blagovic et al., 2001). In medium with limited nitrogen source, 

the quantity of these two fatty acids increased under normal cultivation conditions 

(Brown and Rose, 1969). 

 In respect of molecular modification to improve neutral lipid production in D. hansenii 

NCYC102, research in this yeast has not been sufficiently boosted, due to the limited 

molecular tools available to manipulate this yeast (Desnos-Ollivier et al., 2008).  A 

previous study of D. hansenii by Minhas (2009) in gene disruption by homologous 

recombination was based on a histidine auxotrophic recipient strain (Minhas et al., 2009),  

along with protocols of gene deletion of the closely related wild type strain Candida 

albicans using SAT1 flipping strategy (Sasse and Morschhäuser, 2012), this approach have 

been successfully utilised in this study to knockout the GUT2 gene via homologous 

recombination. In order to increase TAG production, the conversion of G3P into DHAP 

was disrupted by deletion of GUT2 gene encoding to mitochondrial glycerol-3-phosphate 

dehydrogenase responsible to catalyse this reaction, which is a competing step of TAG 

production. Gene deletion was achieved in 3 from 8 selected single colonies via 

replacement of GUT2 gene with SAT1 marker flanked with 450 bp upstream and 500 bp 

downstream sequences of GUT2 ORF. As a result, the mutant strains were failed to grow 

in minimal medium with glycerol as the sole carbon source. However, the growth of 

mutant strain in minimal medium with 48 glucose: 0.5 ammonium sulphate was slightly 

higher than the growth of wild type strains. Additionally, the average of neutral lipid 

production increased 1.4-fold in gut2∆ strain compared with wild type strain after 40 

hours of incubation in this medium at 25 ⁰C under shaking. To some extent this results 

were compatible with the findings of the previous study of GUT2 deletion in Yarrowia 
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lipolytica by Beopulos (2008) that achieved a 1.2 fold increase in neutral lipid production 

after 11 hours of incubation in glucose based medium (YNBD) (Beopoulos et al., 2008a).  

 

7.2. Future work 

Although this work has presented biotechnological and molecular tools for engineering 

the halotolerant D. hansenii NCYC102 cells that significantly improved lipid 

overproduction, there are still a number of interesting opportunities for further 

investigation. One of the most important strategies is to extend the utilization of low cost 

alternative substrates such as bioproduct waste material as yeast substrate, to be 

compared with the percentages of neutral lipid production achieved in this study. 

Additionally, further identification of fatty acid profile and quantification are strongly 

recommended for gut2∆ strains compared with wild type strains in the cultivation 

conditions that induced the improvement of TAG accumulation.  Fluorescence 

microscopy and Environmental Scanning Electron Microscope (ESEM) are also 

recommended to examine the intracellular lipid bodies after genetic modification in D. 

hansenii cells along with an investigation of any significant changes happening to 

microbial cells growing under different stress conditions.  As we followed one of the most 

important strategies of neutral lipid improvement achieved for Yarrowia lipolytica (1029) 

strain in particular GUT2 deletion, additional deletion of β- oxidation POX1 to POX6 genes 

(that was adopted in Y. lipolytica strain and led to a fourfold increase in lipid content) 

could be useful for D. hansenii NCYC102 strain to further enhance lipid production. We 

can perform these approaches in Y. lipolytica NCYC476 strain already used in the third 

chapter of this study along with gut2∆ D. hansenii strain to compare how efficiently 

molecular tools can be used to increase neutral lipid yield in the yeast strains under the 

most favorable cultivation conditions that we can achieve in future optimization 

experiments.  To block β- oxidation, we could delete any of the core machinery. However, 

the genome of D. hansenii appears to encode three different acyl-CoA oxidases (Pox1), 
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three 3-keto-acyl-CoA thiolases (Pot1 or Fox3). However, a single gene encodes the 3 

hydroxy acyl-CoA dehydrogenase/hydratase (fox2). 
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