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Abstract
Service-Orientation has long provided an effective mechanism to integrate heterogeneous

systems in a loosely coupled fashion as services. However, with the emergence of Internet

of Things (IoT) there is a growing need to facilitate the integration of real-time services

executing in non-controlled, non-real-time, environments such as the Cloud. As such

there has been a drive in recent years to develop mechanisms for deriving reliable Quality

of Service (QoS) definitions based on the observed performance of services, specifical-

ly in order to facilitate a Real-Time Quality of Service (RT-QoS) definition. Due to the

overriding challenge in achieving this is the lack of control over the hosting Cloud system

many approaches either look at alternative methods that ignore the underlying infrastruc-

ture or assume some level of control over interference such as the provision of a Real-

Time Operating System (RTOS). There is therefore a major research challenge to find

methods that facilitate RT-QoS in environments that do not provide the level of control

over interference that is traditionally required for real-time systems.

This thesis presents a comprehensive review and analysis of existing QoS and RT-QoS

techniques. The techniques are classified into seven categories and the most significant

approaches are tested for their ability to provide QoS definitions that are not susceptible

to dynamic changing levels of interference. This work then proposes a new n-dimensional

framework that models the relationship between resource utilisation, resource availability

on host servers, and the response-times of services. The framework is combined with real-

time schedulability tests to dynamically provide guarantees on response-times for ranges

of resource availabilities and identifies when those conditions are no longer suitable. The

proposed framework is compared against the existing techniques using simulation and

then evaluated in the domain of Cloud computing where the approach demonstrates an

average overallocation of 12%, and provides alerts across 94% of QoS violations within

the first 14% of execution progress.
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Chapter 1

Introduction

1.1 Research Motivation

Modern computer systems are comprised of many integrated components which are com-

posed together to provide some global function. Many of these systems adopt the Service-

Oriented Architectural (SOA) style in order to improve system dependability [1; 2]. By

utilising service-orientation components are represented as services, whereby if a single

service fails alternatives can be provided to either individually or collectively provide the

equivalent or degraded capability.

These system’s components are typically represented as Web Services which rely on

XML and Web-related standards (Including SOAP, JSON, and REST) [3; 4]. Each web

service is hosted by a provider with some level of Quality of Service (QoS). The QoS

properties capture the non-functional aspects of a service, such as performance, reliabil-

ity, scalability, and availability [5]. Users can then “consume” the services to achieve a

particular requirement or purpose. The user is able to evaluate the QoS of a service to

1
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select which will meet their quality and performance requirements [6].

Services may be comprised of single atomic components or a composition of other

services where QoS limitations of any individual service will have a negative impact on

the others. In an ideal scenario where the components execute without faults, and also in a

fault-free environment with no resource contention, the individual and composite services

will perform according to the specified QoS. However, in the real world the behaviour

of services is adversely affected by internal component errors as well as by faults in the

hosting environment, often in the form of resource contention.

By increasingly supporting the publication of components as services with reliable

QoS information the complexity of managing large-scale systems is reduced. However,

in order to do so the challenges of guaranteeing QoS must be addressed, particularly in the

context of integrating real-time components without the guaranteed support of Real-Time

Operating Systems (RTOSs). Research in the automated integration of components as

services needs to address the complexity of the relationships between heterogeneous com-

ponents, systems, and infrastructure and the corresponding impact of execution behaviour

in the context of faults. In turn the methods developed in this thesis will facilitate further

research in real world scheduling techniques, resource management, energy-efficiency,

security, and dependability.

This thesis reviews the state-of-the-art in service QoS and finds in the context of real-

time operational requirements it to be lacking. Therefore a new approach which aims to

capture the nuances of the performance vs. execution environment relationship is present-

ed. Further the importance of understanding QoS is highlighted not just through literature

and discussion but by considering a range of computing applications which require robust

QoS methods.

1.2 Research Context and Scope

Research in service-oriented systems has focussed primarily on facilitating loose-coupling,

modularity, location transparency, and fault tolerance. With regards to QoS modelling,

previous research has concentrated on techniques for performing service composition un-
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der time constraints or creating compositions that will meet specified deadlines. There

has been limited work on modelling the relationships between services and the under-

lying infrastructure. Regarding service composition most techniques focus on service

performance heuristics as well as the algorithms for calculating compositions in time-

constrained environments. Alternatively the QoS modelling techniques have focussed

on modelling the relationships between users and services whilst ignoring much of the

relationship between the underlying infrastructure and the service’s execution behaviour.

This research focusses on the gaps in current research in service-oriented systems

with a particular focus on QoS modelling. The general concepts proposed in this re-

search should be applicable to the domains of Internet of Things (IoT), stream process-

ing, and smart cities. This work will concentrate on atomic services, known as Micro-

Services (µSs), and not consider in depth workflows, as many complex workflows require

extensive further study in their own right. However, it is anticipated that the techniques

proposed in this thesis can built upon to explore various workflow patterns. Instead the

focus of the research will be the modelling of execution performance of individual atomic

services (µS) with respect to their host environments. Specifically the work will focus

on modelling the behaviour of micro-services, which can also be referred to as tasks or

individual processes.

1.2.1 Research Sponsor

One particularly interesting area, that derives from needs from the manufacturing indus-

tries as well as the evolving areas of research on automation for both smart cities and

autonomous vehicles, is that of simulations as services. This work has formed part of the

Programme for Simulation Innovation ( ), sponsored by Jaguar Land Rover and the

UK’s Engineering and Physical Sciences Research Council (EPSRC), and has formed the

basis for understanding the QoS needs for simulation integration in the development of a

Virtual Integration Environment ( ) that brings together heterogeneous simulations

from across the automotive sector. Applying this research to the domain of simulations,

and simulation integration, is the proposal of a new paradigm for simulation integration:

an Internet of Simulation (IoS) which is introduced at the end of this thesis.
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1.3 Aims and Objectives

The aim of this research is to improve the accuracy of QoS timing definitions and facilitate

the reliability of response-time and execution behaviour predictions for individual ser-

vices. This is to address the urgent need to provide Service-Oriented Architecture (SOA)

with the capability of integrating services which have strict timing requirements. This re-

search will identify the existing techniques for QoS prediction in both online and offline

contexts as well as evaluating their effectiveness in real-world imperfect environments.

The findings will be used to provide a feature classification of techniques representing

their robustness to specific faults. Subsequently this research will extend the state-of-

the-art in Real-Time Quality of Service (RT-QoS) prediction with traditional real-time

systems techniques and provide a generic theoretical framework for modelling the perfor-

mance of services with respect to any and all environmental resources, such as CPU or

memory, that affect their execution performance.

Specifically, the main objectives of this research are:

i. To provide an in-depth analysis and classification of existing techniques for service

QoS prediction. This work will empirically analyse the effectiveness of existing ap-

proaches to the online prediction of response-times of executing services in the con-

text of environmental faults. Further it will provide a method for classifying the

existing approaches as well as future techniques against real-world environmental

faults. This will facilitate the evaluation of both the methodologies developed in this

work as well as identifying future related work.

ii. To provide a theoretical mechanism for efficient and accurate prediction of Real-

Time Quality of Service (RT-QoS). This work will focus on developing a method for

characterising service’s execution behaviour with respect to their environment. The

framework will be defined mathematically and analysed against real-time systems

Schedulability tests. It will be designed to be applicable to various domains, beyond

service-orientation, and cope with multiple environmental factors.



Chapter 1 5 Introduction

iii. To provide efficient scalable algorithms for the prediction and management of Real-

Time Quality of Service (RT-QoS). The mathematical framework will be converted

to an algorithmic representation which is both fast enough to operate in a real-time

environment and scales with respect to storage space, number of services, and service

execution instances.

iv. To provide an empirical evaluation of the proposed techniques. The research will also

be evaluated using both simulation as well as experimentation in deployed

within a Cloud environment.

1.4 Research Methodology

There are three primary methods for the development and evaluation of computational

research: mathematical modelling, simulation, and prototypes. The use of mathematical

modelling allows for formal reasoning using mathematical symbols, operators, and tech-

niques to demonstrate the effectiveness of the research. A prototype allows the research

to be developed into an α-product for the concepts to be tested without the controlled

assumptions of mathematical modelling or simulation. Alternatively simulation allows

the imitation and emulation of system behaviour in a controlled manner allowing for the

evaluation of hypotheses or specific scenarios which may not be feasible to evaluate using

mathematical methods or a prototype.

The research methodology of this work builds on each of the three methods and con-

sists of the following core elements:

1. A thorough literature review on techniques for QoS prediction. This review covers

the foundational concepts behind service-orientation and real-time systems.

2. A classification of QoS techniques providing both an approach for feature-based

classification and an analysis of the existing approaches. The analysis itself uses

both mathematical modelling to demonstrate the theoretical limitations of the ap-

proaches whilst simulation is used to evaluate their accuracy and performance at

runtime.
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3. A framework for QoS prediction is designed and developed using purely mathemati-

cal modelling bringing together the concepts from the domains of Service-Oriented

Architecture (SOA) QoS and real-time systems schedulability. The framework is

then theoretically evaluated against the alternative approaches.

4. Simulation of QoS prediction is then used to demonstrate the effectiveness of the

developed framework under specific scenarios. The results of which are bench-

marked against the simulation evaluation of existing techniques for both increased

prediction accuracy as well as increases in performance and efficiency.

5. The design and development of a prototype with is used to evaluate the ac-

tual effectiveness of the solution against the outcome expected by both simulation

and the mathematical methods. This technique is applied to specific case studies

whereby simulations are provided as services in the automotive domain.

1.5 Major Contributions

The major contributions within this thesis are:

• An analysis and classification of existing QoS techniques. This looks at eighty

existing approaches, groups them, and then analyses the effectiveness of each group

theoretically.

• Simulation of existing QoS techniques. From the seven identified categories the

most relevant are experimentally evaluated using simulation for their capability in

predicting QoS with non-static interfering workloads.

• A mathematical n-dimensional framework capturing the relationship between Micro-

Service (µS) execution performance and the execution environment. This frame-

work explicitly models the relationship between Micro-Services (µSs) and their

host server’s resources in terms of utilisation and availability. The framework is

then proven using real-time schedulability techniques.
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• Extensive simulation analysing the effectiveness of the QoS framework under vari-

ous interfering Cloud workloads. The mathematical framework is evaluated against

existing approaches against periodic and random interfering workloads. The results

are analysed using metrics for accuracy, wasted time, and QoS violation.

1.6 Thesis Organisation

The thesis is comprised of seven chapters, with the remaining structured as follows:

Chapter 2. Presents an introduction to the topics related to service-orientation and specif-

ically Quality of Service (QoS). It describes the foundational concepts of

Service-Oriented Architecture (SOA), dependability, and real-time system-

s. The advantages and limitations of the state-of-the-art are explored with

regards to Real-Time Service-Oriented Architectures (RT-SOAs).

Chapter 3. Presents a classification of the current state-of-the-art in Real-Time Service-

Oriented Architecture (RT-SOA) QoS techniques. The classifications are

analysed using both mathematical modelling and simulation techniques to

identify their strengths and limitations. Finally, the research challenges in

Real-Time Quality of Service (RT-QoS) are presented providing the scope

for this thesis.

Chapter 4. Presents a mathematical framework for the online construction of a QoS

model capturing the relationship between the execution environment and

the service performance. The framework is progressively developed using

core principles from real-time systems in the context of service-orientation.

All aspects of the approach are defined explicitly in mathematical symbolic

notation which can be used to show its theoretical capabilities and limita-

tions. Finally, the framework is converted into an algorithmic representation

and analysed for it’s performance, efficiency, and scalability in contrast to

alternative techniques.
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Chapter 5. Presents the architecture of the QoS prediction system along with the its sim-

ulation. A detailed set of use cases are outlined comprising of environmental

configurations as well as individual services to be evaluated. The simulation

results are then evaluated using a defined set of measures and metrics against

the simulation results from Chapter 3.

Chapter 6. Describes a series of case studies from three domains: Cloud computing,

simulation, and human tasks. Within the former two areas the generic archi-

tectures that support the proposed QoS framework are presented. Then ex-

perimental results from the Cloud and human task domains are discussed to

provide an overall assessment fo the proposed Real-Time Service-Oriented

Architecture (RT-SOA) QoS technique.

Chapter 7. Presents a summary of the findings and contributions as well as exploring

potential future research directions, either not covered in or, building upon

this thesis.



Chapter 2

Service-Orientation

This chapter describes the topics relevant to the context of this research, providing the

building blocks used in this thesis. The concepts of Service-Orientation are discussed and

Service-Oriented Architectures (SOAs) are explored in detail. Dependability and the re-

lated topics are defined and then in the context of Service-Oriented Architectures (SOAs).

Subsequently an overview of Real-Time Systems theory is presented relating particularly

to measuring execution time and predicting process schedulability. Finally this chapter

presents the state-of-the-art in Real-Time Service-Oriented Architecture (RT-SOA) re-

search and techniques for predictive Quality of Service (QoS) modelling before outlining

the challenges which these research areas have yet to address.

2.1 Service Orientation

Service Orientation is an architectural paradigm [1; 7] designed to increase the reliability,

availability, and maintainability (see Section Section 2.2.2) of large-scale systems through

features such as loose-coupling and modularity (see Section Section 2.1.1). Specifically

9
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it provides either the programming model, approach or even the business process where-

by processes operate independently as services, and can be collectively organised into a

workflow to provide some higher function. “[Service-Orientation] promotes the idea of as-

sembling application components into a network of services that can be loosely coupled to create

flexible, dynamic business processes and agile applications that span organisations and computing

platforms” [8].

Service-Oriented Architectures (SOAs) provide the architectural style, or template, for build-

ing service oriented systems in which individual software solutions can be provided as services

and combined into business processes, known as workflows (see Section Section 2.1.3). SOA

dictates that the underlying architecture of a system should consists of three core participants: a

service provider, a service registry, and a service consumer. This separation of concerns allows

for SOAs to support: technology neutrality, loose coupling, and location transparency [1] without

sacrificing solution simplicity or capability [9]. Conceptually SOA is designed to support an open

marketplace where a consumer can source a service providing the functionality, desired at the cur-

rent moment in time, agnostic of it’s provider or location, and invoke it as many or as few times

as required [10]. Additionally a service’s functionality can be a composition of the functionality

provided by subcontracted services [11], discussed further in Section 2.1.2.

Due to its flexibility, SOA lends itself to designing, developing, managing, and organising

services within complex computing and business environments [12]. The remainder of this section

outlines the detail of Service-Oriented Architectures (SOAs) as well as the state-of-the-art research

relevant to this thesis, covering the fundamental principles of SOAs (Section Section 2.1.1), the

architectural structure and use of abstraction (Section Section 2.1.2), as well as the concepts of

workflows (Section Section 2.1.3).

2.1.1 The Principles of Service-Orientation

The central theme of SOAs is the Software-as-a-Service (SaaS) paradigm which separates “the

possession and ownership of software from its use” [13]. Therefore services can be outsourced,

under a Service Level Agreement (SLA), allowing developers to focus on and respond to changing

and evolving needs [14]. SOAs can increase the maintainability of software by increasing the

modularity, re-usability, loose coupling, and simplicity of systems [9]. The remainder of this

section outlines these key features of SOAs, in addition to introducing Quality of Service (QoS)
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in the context of SLAs.

SOA W3C Triangle

In order to facilitate the access and utilisation of software beyond it’s traditional siloed single

system deployment, SOA adopts a tri-party and multi-layered approach (discussed in Section

Section 2.1.2). As shown in Figure 2.1 an SOA must consist of at least one service provider,

registry, and consumer where [1; 15]:

Providers must publish their service to the registry. They are responsible for generating a

service definition that is compatible with the registry and can be understood by

consumers and contains all the necessary information required for the service

to be integrated into a process or workflow. The service definition may be in the

form of a Web Service definition using the Web Service Definitions Language

(WSDL) [16].

Registry stores the reference to the service in the form of its service definition. The

registry may also actively seek out new services using a discovery mechanism

to retrieve definitions for publicly available services [6]. In the case of web

services the registry may follow the Universal Description Discovery and In-

tegration (UDDI) specification [17]. The registry may also act as a broker or

autonomous manager providing further assistance to the consumer for the selec-

tion of services and supporting other wider system function such as scheduling

and workload balancing [18; 10].

Consumers are then able to request particular functionality from the system. The service

registry returns the service definitions of those services which meet the specified

criteria to the consumer. The consumer and provider then interact directly in a

binding process whereby a Service Level Agreement (SLA) is agreed (discussed

further on page 18).

Modularity

The SOA triangle (Figure 2.1) by its very nature supports a modular and decoupled system struc-

ture. By facilitating increased modularity, SOAs enable increased application abstraction, in-
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Figure 2.1: W3C SOA Architecture Triangle

frastructure virtualisation and management, service composition, reusability, and granularity [9].

Individual applications can focus on completing specific tasks reliably rather than attempting to

deliver a larger feature set. Additionally this increase in the granularity of the software allows for

better alignment with the logic in business processes and allows for increased individualisation by

composing services together in different fashions.

Application abstraction forms one of the central tenets of SOAs allowing the description of the

functionality of a service to be abstracted away from the implementation and the physical location

of the service provider. This facilitation of location transparency [1] enables consumers to utilise

services without any understanding of the location of providers and therefore utilise services po-

tentially located on opposite sides of the globe as long as the supply network allows the delivery of

the advertised service. The location transparency also enables the concealment of the complexity

of the potentially physically distributed system components [19] and as such is also technology

neutral allowing for them to be implemented using the most appropriate technologies and tools

[1]. It is generally accepted that SOA must be invokable on the “lowest common denominator

technologies that are available to almost all IT environments” such as through web browsers with

web services [20]. (Further discussion on the layers of abstraction in SOA is found in Section

Section 2.1.2.)

In order to facilitate application abstraction and reap the resulting benefits from SOAs the in-

frastructure itself must be managed. Specifically the service-oriented systems must manage the

infrastructure so as to maintain the supply network’s availability [10]. Depending on the sce-

nario this may range from ensuring up-to-date registry information through to managing software
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Figure 2.2: Visual representation of loose coupling

defined networks and scheduling server workloads so as to guarantee service delivery.

Additionally as mentioned above the modular nature of SOA implies a granular software de-

sign where individual services focus on performing specific functions rather than suites of op-

erations. By using standard interfaces, through the likes of WSDL, and allowing services to be

reused by various consumers, services can be composed to provide more complex functionali-

ty (see workflows Section Section 2.1.3). Furthermore, individual services may also subcontract

specific functionality to other more specialised services. This structure allows SOAs to adapt to

the changing requirements and the environment in which they operate as well as reducing the

dependency of a consumer or a service on a specific service vendor.

Loose Coupling

The modular nature of SOA relies on there being only a loose coupling between services and sys-

tem components. Utilising this modular nature, SOA aims to minimise the dependencies between

systems and their constituent components [21], allowing a single Service Implementation to ser-

vice, or provide functionality to, multiple consumers or other services. Loose Coupling is regarded

as “a feature of software systems that allows those systems to be linked without having knowledge

of the technologies used by one another” [22; 23]. It allows the abstraction of Service Descrip-

tions from their implementations and the sharing of schemas and contracts between services rather

than the sharing of classes as would be the case in an Object-Oriented system [24; 25]. In turn

consumers are able to source functionality from various providers through a service registry or a

marketplace (see Figure 2.1). Although reducing the coupling between components can result in
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an increase in upfront design and implementation work, it can enable organisations to change and

adapt IT systems with minimal impact reducing the long-term system maintenance costs [7].

There are however multiple dimensions to be considered in the context of loose coupling

within SOA, specifically: functional, temporal, and transactional coupling [7]:

Functionally SOA extends interface-based design [26] by enforcing the interfaces to be spec-

ified using enterprise-wide semantics, such as XML-based WSDL, as well as

a common data model which allows services to exchange data and interoper-

ate. As such individual services are assumed to be responsible for handling

the transformation between the specified data model and their internal models.

This is similar to the Data-Distribution Service (DDS) approach [5] in which

processes publish or subscribe to data according to a particular globally tagged

type (DDS is discussed further in Section Section 2.3.3).

Transactional coupling refers to the handling of data and state where multiple services ac-

cess and update the data. The SOA implementation must therefore trade-off

the properties of atomicity, consistency, isolation, and durability (ACID) [27]

against tighter coupling between services, data, and resources. Where atomicity

ensures that all changes or made or no changes are made in an all or nothing

manner. Consistency refers to guaranteeing any constraints on the system and

isolation ensures that concurrent execution has the same result as sequential

execution. And durability ensures that the committed results are stored per-

manently in a fault tolerant fashion. Therefore a basically available, soft state,

eventual consistency approach is often adopted whereby greater importance is

given to the availability and performance of services rather than the total ac-

curacy and consistency of the data between individual processes [28]. This of

course would restrict the domains which SOAs could be utilised. As outlined

in Section Section 2.1.2 and Section Section 2.1.3 SOA as an archtectural style

leaves this issue to be addressed by particular modules of the system by sepa-

rating the concerns of data processing and data management, such that services

operate on data which is supplied to them by the workflow engine.

Temporal coupling relates to understanding, defining, and managing the complexity of

the temporal properties of services. Typically service-orientation assumes an
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event-based perspective where a workflow engine is responsible for managing

all concepts of time synchronisation and state [29]. Section Section 2.1.3 dis-

cusses the detail and the challenges surrounding temporal coupling.

In order for services to be loosely-coupled they, and the service-oriented system as whole,

must support the late binding of services, also known as dynamic binding [30]. As depicted

in Figure 2.1 in order for services to be utilised by a consumer the two must be bound together.

Service binding is therefore the method, or protocol, by which an individual instance of a service is

identified, or created, and using the service definition the consumer is able to connect and interact

with the specified instance [31]. This may occur at either design or at runtime. In the former case

the specific service interface details are statically encoded into a client’s implementation [32].

However, binding may also be performed at runtime, as would be the case where the provider’s

service is unavailable at the required point in time therefore requiring an alternative service to

complete the required function. SOA therefore supports the concept of dynamic binding whereby

in the event of a service being unavailable an alternative functionally equivalent service can be

used [33] resulting in an increase in the dependability of the system. This can be taken further with

“ultra-late binding” where service binding is not specified or performed until the latest possible

moment before the functionality is required by the consumer [34]. By using ultra-late binding a

service-oriented system can maintain a high level of flexibility and greatly reduce a consumer’s

reliance on any individual service provider, as long as alternative services exist. In order for

a system to be fully loosely-coupled it must support ultra-late binding and therefore be able to

guarantee the availability of a service at a potentially arbitrary binding time. To some degree this

can be controlled in the context of workflows by the workflow engine which is discussed in some

detail in Section Section 2.1.3.

Standardisation and Interoperability

In order for SOAs to function in the modular and loosely-coupled fashion as described above,

the service interfaces must conform to a standard in order that consumers can dynamically switch

between functionally equivalent services provided by different providers [35]. As long as the

interfaces are standardised, and functionally equivalent services subscribe to the same service def-

initions, the heterogeneity of the services themselves as well as their providers is transparent [9].

Most approaches to SOA use Web Services [8] as the de-facto set of industry standards. Interfaces
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Figure 2.3: Web Service Definitions Language (WSDL)

are specified using Web Service Definitions Language (WSDL), communication protocols such as

Simple Object Access Protocol (SOAP) or REpresentational State Transfer (REST) are also used

and other aspects such as security, resource management, and Quality of Service (QoS) can be

specified using WS standards, or alternatives, such as WS-QoS [36] which is described in the next

section [37].

The Web Service Definitions Language (WSDL) provides one of the most commonly adopted

standardised methods for specifying service interfaces. A WSDL definition is specified in XML

with various components as outlined in Figure 2.3 [38; 31]. Particularly it must detail the data

types, messages, and operations which a service requires and provides. A definition may be split

into the abstract and concrete parts separating the detail of the network configuration from the

functional description of the service [24; 38].

Even with strict adherence to standards, one of the interesting challenges with regards to ser-

vice interoperability is the management of service evolution over time. If managed correctly it can

be regarded as the “continuous process of development of a service through a series of consistent

and unambiguous changes” [39]. These changes may be [40]:

Structural affecting the data types, messages, operations, syntax and semantics of the ser-

vices and their definitions.
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(a) T-Changes, adapted from [40], showing the
horizontal and vertical dimensions of service
evolution.

(b) Refactoring of services adapted from [41].

Figure 2.4: Maintaining service interoperability under evolution

Behavioural which could include any changes in system protocols.

Policy-induced which may introduce operational constraints on service operation and require

stricter, or looser, enforcement of QoS.

These types of changes refer to those which are externally observable and therefore have a di-

rect impact on their interfaces and therefore the consumers, services, and other system components

which interact with them. The changes can also be categorised as either shallow or deep where

the former refers to those which affect an individual service and those system components which

interact with it directly. The latter refers to those large-scale changes which affect multiple system

components. In terms of shallow changes, and beyond using satisfactory versioning of services, in

order to manage the interoperability of services the compatibility between service versions must

be controlled. One such method is defining the changes in terms of T-Changes with either hori-

zontal or vertical change [40]. A horizontal change is one that impacts the interfaces of a service

whilst a vertical chance is an internal non-functional change to a particular service as depicted in

Figure 2.4a. For example the removal of operations or the changing of data types are horizontal

changes and in this case are not backwards compatible, whereas altering implementations without

changing the interfaces or adding optional new data types are vertical changes that are backwards

compatible alterations. As services are iteratively evolved with new interfaces, definition changes,
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new data types, and new performance information the substitutability and replaceability in the

vertical dimension can be formally analysed using Liskov substitution principle [40].

Where the evolution of a service does not maintain compatibility in both dimensions, and

therefore does not sustain strict compatibility, it may be necessary to refactor the service in order

to maintain the service’s interoperability with consumers, other services, and system components.

Refactoring is the “controlled technique for improving the the design [by] applying a series of

small behaviour-preserving transformations” [42]. One approach, shown in Figure 2.4b is to

wrap a system or software component in order to reuse it in an incompatible system [24]. This

particular refactoring process is often adopted as it can provide a cost-effective way of integrating

services with significantly complex business logic into the system. As can be seen in Figure 2.4b

the wrapper transforms the requests between versions, which may include data transformations

or reordering of communications due to protocol changes [41]. Moreover as a service evolves

the understanding of its operational behaviour must also evolve and the QoS models must adapt

appropriately. A detailed discussion on QoS and on the impact of evolving operational behaviour

can be found below and in Section Section 2.3.

Quality of Service

Quality of Service (QoS) is a concept that underpins the modular and loosely-coupled nature of

SOAs and provides confidence that services will interoperate in a timely and correct fashion. QoS

is typically defined using a Service Level Agreement (SLA) and must be managed by the service-

oriented system as a whole. Specifically QoS exists in order to improve a consumer’s trust in both

the system as a whole as well as in individual providers. Therefore a service must demonstrate

that it can consistently behave as expected and that it will continue to do so [43; 44].

A SLA provides the formally defined contract of the relationship between the service provider

and the consumer. It explicitly states the expectations and obligations, often defined as Service

Level Objectives, existing in the relationship [45; 46]. The SLA is associated with the relevan-

t service definition and encapsulates: “What to measure, How to measure it, Who does what,

[and any] Guarantees” [47]. The specification of the SLA must also allow for automatic service

provisioning and monitoring. Typically SLAs are administered independently of the provider or

consumer, often by a brokering system, but are associated with the specific services. In the do-

main of Web Services, SLAs are often defined using the Web Service Level Agreement (WSLA)

standard or the Web Services Agreement Specification (WS-Agreement) [48]. WS-Agreement
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(a) WS-Agreement general format

(b) WS-Agreement property format

Figure 2.5: WS-Agreement Example

Figure 2.6: WSLA structure for response-time in seconds

is a protocol that uses XML notation to establish agreements between entities and also allows

the formation of agreement templates using the form shown in Figure 2.5. For the purposes of

this research, these would specifically consist of service properties corresponding to response and

execution times which is shown in Figure 2.6 using WSLA formatting.

The need for QoS derives partially from the evolution of autonomic computing which aims

to allow computing systems to become self-manageable in the same way as a biological human

system [49]. The drive for autonomic systems stems, as with many technological advances, from

the defence industry with the Situational Awareness System (SAS) by the Defence Advanced

Research Projects Agency (DARPA) in 1997 which aimed to provide a communication system

enhanced with location information for battlefield situations [50]. Autonomic computing contin-

ued to be developed with: NASA working on Autonomous Agent systems for long range space

missions [51]; DARPA working on the architectural Dynamic Assembly for Systems Adaptabil-

ity, Dependability, and Assurance approach which started to deal with the complexity of large

distributed systems with the notion of using monitoring agents and adaptation engines to optimise

system performance [50]. The autonomic computing journey then moved into full swing with
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IBM’s autonomic computing initiative in 2001 [52]. In their autonomic blueprint IBM introduced

the four core concepts of autonomic computing: self-optimisation, self-healing, self-protection,

and self-configuration [53]. The concepts of autonomic computing continued to evolve in the do-

main of cloud computing with additional QoS parameters aimed at improving the reliability and

scalability of services [54]. A more detailed discussion on specific QoS parameters can be found

in Section Section 2.3.3.

Work by Al-Kalbani et al. [55] and also Singh and Chana [49] looked at how QoS techniques

can be classified. Specifically [49] provides a taxonomy using the QoS parameters of: scalability,

availability, reliability, security, cost, time, energy, resource utilisation, and SLA violation where

methods are qualitatively marked as either true or false for each of those elements. (A detailed

analysis of the features of individual QoS techniques is presented in Chapter 3.) Alternatively Al-

Kalbani et al. [55] identify different perspectives on how to classify QoS methodologies: Nature,

Form, Process, or Objective based:

Form View Describes how the approach is represented in terms of notation and mathemati-

cal formalisms.

Process View Considers the tools and techniques used by the approach and also how it was

evaluated.

Objective View Outlines what the methodology was trying to achieve, considering the stake-

holders and how decisions are made to distinguish between “good” and “bad”

services.

Nature View Describes the QoS model in terms of the properties which the methodology

considers and the architectural level which it focusses on.

The “Nature View” in [55] and the taxonomy in [49] provide a strong basis upon which QoS

techniques can be evaluated for their potential effectiveness in providing QoS models. Al-Kalbani

et al. [55] identify two levels of classification within this view: service level and system level. The

service level considers the aspects of: response-time, throughput, availability, accessibility, and

reliability, whilst the system level considers interoperability, security, and maintainability.

One example of a QoS approach by Liu et al. [56] who define the QoS of an individual service

as the probability of successful execution given some response-time deadline and accounting for

execution failures within the service. The authors then propose a mechanism for improving the
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QoS by using the concepts of N-versioning [57] and N-copy [58]:

s∏
︸︷︷︸

N-versions

(1− prss )︸ ︷︷ ︸
N-copy

= x︸︷︷︸
target

reliability

(2.1)

Where p is the probability of service s failing, r the level of redundancy for s, and x the target

level of reliability for which to solve the equation [56].

The fundamentals discussed in this section so far provide the foundation for service orientation

and Service-Oriented Architectures (SOAs). The modular nature and principles of loose-coupling

have been presented on page 12 with respect to both functional and temporal aspects of individual

services. The importance of standardisation and the challenges of evolution at both a small and

large scale have been discussed. Then finally the concept of Quality of Service (QoS) was intro-

duced along with Service Level Agreements (SLAs) as the mechanism for guaranteeing a level of

performance. The concepts of QoS will be explored further later in this chapter (see Section 2.3.3).

First the architectural and workflow aspects of SOAs will be considered.

2.1.2 Layers of Abstraction

As discussed in the previous section the modular nature of SOA allows services to be loosely-

coupled together with the consumers being agnostic of the physical location of the provider. One

of the key elements of the SOA paradigm are the clearly defined layers of abstraction that separate

the service implementations from their definitions.

The layers of SOA can be defined either from a business perspective or with respect to the

technical structure of the software architecture, as shown in Figure 2.7 which is adapted from

[59; 56; 60; 61; 1; 34; 62]. In the former, the operational nature of the individual services becomes

a business capability which can be supplied in a marketplace. In the technical domain the abstract

definitions of the services are mapped through to the infrastructure on which specific software, or

hardware, instances are invoked. Vertically, there are therefore three layers [1]:

Operational layer encapsulates the basic SOA functionality with the base components of

services, their definitions, execution instances, as well as the methods for per-

forming publication, discovery and runtime binding.

Integration layer hides the “how” of the operational layer. It exposes the service inter-
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faces, as well as methods for managing runtime performance, QoS, and the

infrastructure. The concepts of binding are also encapsulated as part of coordi-

nating workflows with choreography, orchestration, and composition which are

explained in Section Section 2.1.3 on Page 26.

Management layer further abstracts the technical detail exposing the function of the services

as business capabilities. At this level the service registry is represented as a

marketplace and SLAs can be negotiated and monitored.

As shown in Figure 2.7 crossing these layers of business logic are the fundamental technical

layers of abstraction in SOAs: the abstract, service, concrete, and the platform layers [59]. The

remainder of this sub-section explains the upper three layers in more detail. The platform layer

provides the base resources and computational infrastructure to host the running services. The

platform layer itself can therefore be decomposed into the types of infrastructure such as High

Performance Computing (HPC) or data-centres and then decomposed into the individual virtual

and physical compute platforms servers and hardware configurations that are deployed to run the

services.

Concrete Layer: Services vs. Micro-Services

The lowest two layers of SOA encapsulate the physical computational infrastructure on which

the services execute, the software instances, as well as relevant communication protocols. At the

platform level in the context of cloud computing this would encapsulate the entire infrastructure

and would itself be comprised of multiple layers of abstraction. Alternatively it may also be

integrated with the concrete layer above where the services themselves are hardware devices such

as sensors, motors [63], robots [64], or other cyberphysical systems [65; 66].

The concrete layer can be viewed either in the operational or integration context (see Figure 2.7).

From an integration perspective it focusses on the technologies for managing the connected ser-

vices as workflows, which will be explored further in Section Section 2.1.3. Operationally this

system layer must mange the deployment and runtime execution of services. This can control the

communication protocols and is responsible for performing the binding between services, regard-

less of the type of binding that is being utilised.

At the concrete level only the instances of the services which are executing are represented,

rather than all existing service implementations. However, in order to correctly manage the execu-
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Figure 2.8: SOA technical layers of abstraction

tion of a given service its structure must be at least partially understood. Specifically, as mentioned

on Page 10 services may subcontract functionality to other services [11] which implicitly forms an

execution graph [67], or workflow, within the service (see Figure 2.8). The resulting constituent

parts of a service may be further services, which can also be decomposed further (E.g. service

F ∈ A′ in Figure 2.8), known as Micro-Services (µSs). µSs are defined as “minimal independent

processes interacting via messages” [68] or more simply a µS is [69]: “a functional element for

which it is not practical to decompose into smaller components.” Estévez-Ayres et al. [70] in a sim-

ilar fashion distinguish services from their implementations, and from the individual tasks which

must be executed to provide the functionality of the service. In the example shown in Figure 2.8,

c, d, e and g are all µSs which can be directly instantiated as processes on the platform.

In the context of cyberphysical systems hardware devices are likely to be considered as µSs.

For software, distinguishing between services and µSs is left to the engineer to adopt best practice

for modular software design without going too far and creating nano-services which are regarded

as “an anti-pattern where a service is too fine grained...whose overhead (communications, main-

tenance etc.) outweighs its utility” [71].

A µS, as with any software process, will have: parameters, utilise computational resources,

and a QoS. In the context of cloud computing µSs are described as tasks being the basic processing
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elements and have been analysed extensively with respect to [72; 73]:

Duration - the time between the submission event and successful completion.

Length - a function of the duration and CPU utlisation, being measured in Millions of

Instructions.

Disk usage - the distribution pattern of disk utilisation over the execution duration.

Priority - characterising tasks into different task types for: low, medium, and high.

Service Layer

The central service layer spans across each of the business roles. At the operational level this

provides the set of all implementations of a given service definition (Figure 2.7 and Figure 2.8)

alongside their respective behavioural models [59]. It is from here that the system must select

which services to utilise, and therefore bind, at runtime. Each of the services in the set must be

fully interoperable (see Standardisation and Interoperability on page 17 and Figure 2.4a), imple-

menting all of the functionality specified in the service definition. Different implementations will

likely have different QoS and may therefore be appropriate for different situations.

At the integration layer the behavioural information can be integrated with infrastructure man-

agement in order to expose the management layer to a set of managed services. As will be dis-

cussed in Section Section 2.1.3 the different combinations of services can be considered during

orchestration (which is defined in the next section) to provide a workflow with an overall accept-

able QoS.

The service layer also introduces the management roles in SOA where the service implemen-

tations can be described in terms of their capability to perform a function [34]. At this point the

required QoS is agreed upon using a SLA. This layer can introduce functions for managing service

lifecycle and for performing analytics on system performance.

Abstract Layer

The topmost layer of SOA moves away from any reference to individual service implementations

and instead deals entirely with the set of service definitions which reflects only the functional

nature of the services [59]. The methods and appropriate data structures may be exposed using the

likes of WSDL. At the integration level the service registry is exposed storing references to all the
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service definitions. QoS is also introduced at this level not as non-functional feature of the services,

but as a non-functional requirement to be used in selecting an appropriate implementation. Often

the QoS may be specified at the workflow level rather than for an individual service.

From the management perspective the service definitions can be exposed in a marketplace

in terms of their functional capability. Additionally any domain specific information, such as

data architectures which will be used across a set of services would be defined here. This layer

can also be used to provide additional business functionality to the system by encapsulating the

management functions from the service layer into business intelligence and support functions.

2.1.3 Workflows

Throughout the previous section reference was made to the concept of workflows. This section

briefly explores what they are; how they fit into the SOA paradigm; and the types of workflows.

A workflow can be defined as the “executable business process that can interact with both in-

ternal and external services” [74]. A workflow specification, using the likes of Business Process

Execution Language (BPEL) or Business Process Modelling Notation, should capture the relation-

ships between services, defining how they collaborate to provide an overall capability [75]. It can

be considered as the arrangement of services’ execution to form a complete process in the same

way that an arrangement of musical scores can form an orchestral performance. Regardless of the

technology that is used to define a workflow they are normally represented and studied using Petri

nets [76] which can represent the majority of workflows [77; 78].

Layers of Abstractions

There are three categories of workflow formation: choreography, orchestration, and composition

which correlate to the SOA abstract, service, and concrete layers respectively, all within the inte-

gration business role:

Choreography occurs at the abstract layer to “define the constraints and requirements” of the

workflow using just the service definitions [79]. This creates an application

graph which consists of the set of service definitions S, the directed relationships

between them R, and the set of QoS constraints Q [59]: AG = {S,R,Q}.

Orchestration introduces the protocols for communication and message exchange. The SOA
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service layer is aware of all the possible implementations of the service defi-

nitions and therefore an expanded graph is formed from the set of all service

implementations SI , directed relations R′ between the service implementations

as informed by the application graph, and the QoS constraints from the applica-

tion graph [59]: XG = {SI,R′, Q}

Composition which is the process responsible for selecting and binding services together and

to consumers. If there are multiple service implementations, and therefore mul-

tiple possible workflows, this process must choose the most appropriate solution

to reduce the expanded graph to the execution graph consisting of only the re-

quired service implementations and respective relations such that the QoS will

meet the required level [59].

The execution graph EG is a tuple {SI ′, R′′, Q′} such that SI ′ is a subset of set

of service implementations from the expanded graph XG. Therefore R′′ is also

a subset of the relations from XG such that the final QoS Q′ is at least as good

as the user specified QoS. In this context, and the context of this research, the

QoS is assessed purely in terms of timing properties, for example response-time.

The majority of solutions to workflow formation focus on the problem of composition which

is computationally complex due to potential size of the search space and the need to compute com-

positions at runtime in the context of ultra-late binding. Compositions are also often recomputed

at runtime by management systems in order to try to avoid SLA violations when the observed QoS

is degrading [59; 80; 81].

Much of the challenges of choreography and orchestration relate to the semantics of expressing

the workflows [82]. Aalst et al. [83–89] discuss in comprehensive detail the advantages and

disadvantages of the various technologies that can be adopted to represent workflows.

Workflow Patterns

Workflows can be viewed from different perspectives that capture different aspect of how paral-

lelism, synchronisation, information handling, etc. are handled. Each perspective has its own set

of patterns, as outlined by Aalst et al. [83–89]. The five perspectives are:

Control-flow patterns are comprised of several categories: basic control flow; branching and
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Figure 2.9: Sample workflow patterns

synchronisation; multiple instance; state-based; cancellation and forced com-

pletion; iteration; termination; and trigger patterns [84]. In total these categories

are comprised of forty-three patterns each of which requires a different strategy

to manage its execution as well as different semantics to represent it. As such

different technologies, including BPEL and YAWL [90], handle different sub-

sets of the patterns, but none facilitate all of them. Eight example patterns are

depicted in Figure 2.9 including sequential operation of services A, B, and then

C; parallel operation of services D and E involving splitting and merging before

and after; as well as decision making.

Two particular patterns that pose difficult challenges in terms of QoS, and are

not supported by workflow management systems, are “Arbitrary Cycles” and

the “Transient Triggers” [65]. Arbitrary cycles are a form of the halting prob-

lem [91], which is known to be NP-hard to solve, whereby there is either no

clear definition of a halting condition or no clear indication of when that condi-

tion would be met. Arbitrary cycles become further challenging by facilitating

multiple entry and exit points from the cycle. In the context of SOAs solv-

ing these pattern and therefore providing an exact solution to the QoS of the

workflow would require an understanding of the exact behaviour of each of the
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services with respect to their QoS as well as complete understanding of the data

value flow through the workflow.

Data-flow [86] patterns are used to capture how data is represented and utilised in workflows.

Aalst et al. identify forty key patterns which are categorised into: visibility;

interaction (internal and external); transfer; and routing patterns. Relating back

to the transient trigger control flow pattern are the routing data and event based

task triggers. The event-based task trigger extends the transient trigger pattern

discussed previously be defining the external data event and condition which is

required in order to begin or resume execution. The data-based pattern facilitates

the arbitrary cycle control-flow pattern and refers specifically to initialising or

resuming execution of specified services dependent on the value of a given data

object within the workflow context. In this case the value of the data object

would be changed by operations of other services within the workflow.

In the context of QoS these patterns, and the technologies which support them,

do not facilitate the prediction of QoS without requiring a formal analysis of how

the workflow will perform under specific conditions [92]. Alternative methods to

solving the data-based pattern have been proposed using probabilistic techniques

and evaluations of the rate of change of data values [65].

Resource-flow [85] patterns are used to complement the control and data-flow patterns from the

resource perspective in terms of how individual services and processes require

and interact with resources. As before they are divided into several categories

for: creation; allocation (in either a push or pull fashion); detours for handling

interrupted execution; auto-starting; visibility; and multiple resource patterns for

concurrent utilisation. These patterns extend the basic understanding of resource

management consisting of three key phases: acquisition, lifecycle, and release

[93].

Figure 2.10 depicts the resource phases from creation through to their utilisation

and release by processes. Beginning with creation, in the context of SOAs re-

sources are defined as either a human or non-human and can be related under

an organisational structure with privileges affecting their accessibility and visi-

bility. From the perspective of computational processes a service’s resource can
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Figure 2.10: Resource Lifecycle, adapted from Russell et al. [85] and Kircher & Jain [93]

refer to memory, processor time, persistent storage, or other network or physi-

cal resources. Alternatively their may refer to specific items such as files. As

each resource is created it may be assigned properties relating to how it can be

distributed and made available to processes for utilisation. The creation of a

resource may also Trigger a process to begin.

Once created a resource must be allocated to one or more processes. Firstly

resources are made available to a set of processes which then pull them ready for

use at runtime. Resources can be acquired by a given process in several fashions:

lazy, eager, or partially. Using eager acquisition resources are fully acquired

at start-up and suspension of their access blocks the process’ execution. Lazy

acquisition the process acquires required resources at runtime, either at start-up,

upon user-request, or at a given point during execution. Alternatively a process

may stage the acquisition of resources over the execution duration rather than

requesting all resources at start-up [93].

At runtime suspension or failure of the resource can result in blocking or fail-

ure of the process. Where multiple processes require the same resources, they

may be repeatedly suspended and reallocated to alternative processes. Finally

processes may release resources upon termination or throughout their execution.

From a workflow perspective in order to reliably schedule the execution of the

services, and therefore predict QoS the system must understand: levels of re-

source contention (Figure 2.18 on Page 51), when resources will be allocated

and released, and the impact of resource suspension or failure on other QoS.

Exception-flow [88] refers to how exceptions are handled by a workflow and specifically extends the

resource flow patterns whereby: resource are unable to be offered; services are



Chapter 2 31 Service-Orientation

unable to acquire resources; detours occur requiring reallocation of resources; or

how resources are released from failed states. In the first case the workflow sys-

tem must manage how resources are re-offered to services and how to withdraw

any multiple-offering once a service has acquired the resource. A failed alloca-

tion may be the result of a withdrawal or may occur due to multiple processes

requiring the resource concurrently. The workflow must manage the release of

resources if a service has failed, or may be required to forcibly release resources

to allow for their reallocation. Each of these exceptions may cause another ex-

ception type to occur and methods for how these can be handled are discussed

further in Section Section 2.2.2.

Interaction-flow [87] refers to the basic elements for communication and interaction between services

allowing workflows to be constructed. These describe aspects relating to sending

and receiving messages in sequential and concurrent fashions. Mechanisms for

describing selective communication to decide which messages to send or receive

as well as handling multiple instances of services.

Different technologies adopt differing paradigms for communication, for exam-

ple DDS adopts a publish/subscribe [94] approach where services are persistent

and run concurrently pushing and/or pulling data based on specific tags. Al-

ternatively the majority of approaches are event-based where the messages are

sent at the beginning or end of service instance execution. This becomes more

complex when specific functionality is sub-contracted to other service or µSs

creating a flow of interaction within the service [95].

2.2 Dependable Real-Time Systems

Service-Oriented Architectures (SOAs) are a distributed system paradigm specifically designed

to increase dependability. This section explores the central concepts around system structure,

dependability, and specifically dependability in SOAs.
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2.2.1 System Model Definition

This research is focussed on exploring a specific part of the SOA paradigm, however in order to

understand the central concepts particularly of dependability a brief introduction to the definition

of systems is required. This section outlines the differences between systems, components, and

architectures.

Systems, Components, and Architectures

A system is “a group of related hardware units or programs or both, especially when dedicated

to a single application.” [96]. In principle it is an entity that consists of one or more components

which are designed to cooperate and interact in order to perform a specific task or tasks [97]. An

individual system may itself be a component in a larger system of systems.

The system and all its elements are defined by its architecture which describes how the compo-

nents are composed together and captures the relationships between them. Specifically a software

architecture can be defined as “the structure or structures of the system, which comprise software

elements, the externally visible properties of those elements, and the relationships among them”

[11]. A system architecture can therefore be described structurally, functionally, and in terms of

non-functional requirements such as QoS.

SOA is however not a system architecture, but rather is an architectural style which guides

the design and development of SOA system architectures. An architectural style is the “family of

architectures related by common principles and attributes” [7] which in the case of SOA have been

described in Section Section 2.1.1. As a result depending on from which business role (see Section

Section 2.1.2) a SOA is described a different perspective is presented. At the management level

a SOA provides the “set of services that constitute IT capabilities and can be used for building

solutions”. Conversely at the operational level it provides the “programming model complete with

standards, tools, and technologies” [7].

Environment

When defining any system architecture it is necessary to distinguish between the system itself, the

environment in which it operates, and the system’s operational context. The environment is the

collection of all the elements that form the surroundings in which the system is utilised, developed,
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Figure 2.11: Attributes of dependability [98; 2].

produced, or retired. Conversely the context is the subset of elements of the environment which

are required to defining the specific states under which the system must operate.

Considering SOAs and for this thesis, the environment of a running service is the workflow

in which it is executing as well as its host machine. These are elements that will directly impact

the service’s execution and therefore must be taken into consideration at design time. A workflow

however must consider as its environment the wider system elements including workflow engines,

service registries, and the service consumers.

2.2.2 Dependability

Underpinning any research relating to Quality of Service (QoS) is the concept of dependability

which is the “ability to avoid service failures that are more frequent and more severe than is

acceptable” [2]. This concept provides metrics for measuring how “dependable” a system is with

respect to specific attributes and defines the basic constructs for understanding system faults and

methods for handling them.

The concept of dependability was initially explored by J. Laprie [99] and was formalised into

a taxonomy by Avizienis et al. [2; 98] and is shown in Figure 2.11. The concepts of availability

and reliability are central to defining and evaluating QoS:

Availability refers to the ability of the system to provide the correct service when required.

It is considered as a measure of the frequency and consistency of the delivery of

the correct capability [100]. In terms of service delivery it captures the ratio of
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alternation between correct, incorrect, and no service.

Reliability provides the measure of the continuous duration for which the system is able

to maintain correct service delivery [100]. A service’s reliability is therefore a

measure or a distribution of the mean time between failures.

Faults, Errors, and Failure

The need to specify the attributes of dependability arises from the need to tolerate threats, where

a threat may be either a fault, error, or failure. There are four means by which threats may be

tolerated [2; 100]:

Fault Prevention also known as dependability procurement, which attempts to

prevent faults occurring through robust system design and de-

velopment.

Fault Removal or mitigation occurs once faults have been identified, this would

ideally be during development but is often after execution.

Fault Forecasting refers to the process of evaluating the system behaviour with

regards to fault existence and their activation (discussed below).

These methods attempt to predict the number of faults present

in the system and their likelihood of becoming activated and

causing the system to enter into error states.

Fault Tolerance specifically refers to techniques designed to increase the system

dependability in the presence of faults during execution. Such

mechanisms are designed to inhibit the development of faults

into failures, as discussed below. In the context of SOA, and

generally in distributed systems, techniques such as recovery

blocks [101], N-versioning [57], and N-copy [58] are common

place. The former two refer to embracing design diversity with

multiple implementations of the same service which can operate

either sequentially or concurrently to handle failures. The latter

refers to utilising multiple instances of the same service to mit-

igate failures caused by either data or the operational context of
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a given service. These approaches directly inspire the modular

and loosely-coupled nature of SOA and are therefore inherently

part of it.

The above method categories are designed to mitigate faults, errors, and failures which must

be understood as a chain of activations, as shown in Figure 2.12a:

Faults can either be dormant or active:

Dormant where it merely exists but has yet to be activated. Dormant

faults may never be activated and can continue unnoticed.

Active faults are those where an input to a component transitions it to

an erroneous state. Fault activation transforms a fault into an

error.

Errors can be either internal or external:

Internal errors are handled internally and do not reach the component

interface and so do not propagate to other components.

External errors result from a propagation of the error to the componen-

t’s interface and may therefore propagate into another compo-

nent. In the context of SOA this may be an incorrect result

from one service being passed on to the next service in the

workflow.

Failures occur due to the propagation of errors to the system boundary resulting in the

system deviating from correct service operation. Depending on the system and

failure type they may be permanent or transient failures. In a system of systems a

failure of a system can be regarded an activated fault within the wider operational

context. Figure 2.12b depicts an example of a C2 system, with a mission and

goals, where an internal error occurs, activating a fault which propagates up the

tree to cause an external error and consequently mission failure. That failure

propagates as an external fault to the wider system. In Figure 2.12b there is one

dormant fault in a task and one fault that has been activated in another task which

is regarded as an error. That error can propagate up the hierarchy of the system
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(a) Fault-Error-Failure chain, adapted from [2]

(b) Fault chain propagation through a workflow or C2 system

Figure 2.12: Fault propagation
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Figure 2.13: Failure modes adapted from Avizienis et al. [98] highlighting the modes of
interest to this research.

to cause another error and failure at the system level. When this propagates

outwards to another system it becomes a fault within that system.

Faults and Failure Types

Faults, errors, and failures can be of various types and can be permanent or transient in nature

where transient faults are caused by either external interactions or by the operational context of

the system [2]. For example software flaws or production defects are permanent whilst input

mistakes are transient. Figure 2.13 depicts a set of failure modes caused by activated faults and

their propagation across system boundaries.

This research will be focussing specifically on physical SOA operational faults that are non-

malicious and not caused by human interactions. These are highlighted in Figure 2.13 and relate

specifically to fault activations caused by physical deterioration and interference. Specifically this

thesis considers the failures relating to timing and can result in the highlighted symptoms.

2.2.3 Dependability in SOA

As mentioned previously Service-Oriented Architectures (SOAs) are designed to enhance a dis-

tributed system’s level of dependability through features like loose-coupling, modularity, and s-

tandardisation. However all systems remain prone to failures and this section explores in further

detail some of the methods that have been adopted in SOAs to increase system dependability. First
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a study of the types of faults that can occur in SOAs is discussed which will provide the foundation

for much of this thesis.

Faults in Services

For any given system type there are a specific set of faults that specifically pertain to it. Bruning

et al. [102] present a taxonomy of SOA faults under five categories: publishing, discovery, com-

position, binding, and execution. Figure 2.14 depicts each of these categories and their respective

faults, except discovery as it is outside the scope of this thesis. Under each category are specif-

ic faults or fault groups that can be decomposed further down to specific faults such as service

description formatting or input errors such as values out of range.

Highlighted in the figure are specific faults and fault categories of particular relevance to this

research in QoS. With regards to service publishing faults the service descriptions should present

the expected level of QoS which can be used to define a SLA. Many technologies do not facilitate

this in the service description semantics. Further unless there are mechanisms to guarantee that

the described QoS is accurate there may be a mismatch between the service implementation and

the advertised description. A fault of this type may result in a faulty workflow composition that is

unable to meet the specified SLA. During binding if the service description is incorrect the system

may bind to the wrong service. Each of these may result in the workflow producing an incorrect

result.

Additionally most prevalent to individual service QoS are the challenges relating to execution

timing due to server crashes and communication failures. The Bruning et al. [102] taxonomy

shown in Figure 2.14 depicts potential propagation of service description publishing faults through

to composition, binding, and execution faults, as well as a range of other fault types under each of

those categories. However this taxonomy does not provide the categories required to understand

and satisfactorily explore timing challenges. Specifically the Service/Description Mismatch does

not have a category for response-time, and correspondingly the execution timing category assumes

complete failure rather than degradation of service. It therefore provides a strong basis to be

extended with the relevant categories to explore and analyse QoS timing faults.

The next section focusses on the domain of Real-Time Systems and scheduling theory which

aim to mitigate these fault types.
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Figure 2.14: SOA taxonomy of faults adapted from Bruning et al. [102] highlighting the
faults of most interest to this research.
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2.3 Real-Time Service-Orientation

The research in this thesis is focussed on advancing the state-of-the-art in Real-Time Service-

Oriented Architectures (RT-SOAs). The previous sections of this chapter have introduced core

concepts of SOAs (Section Section 2.1) along with the fundamental principles of dependability

(Section Section 2.2). This section now focusses on the Real-Time aspects of SOAs, firstly intro-

ducing the central concepts of Real-Time Systems which provides the foundations for RT-SOAs

(Section Section 2.3.2). Then a detailed discussion around QoS in the context of RT-SOA is pre-

sented (Section Section 2.3.3) before the challenges which this research addresses are considered

(Section Section 2.4). A detailed analysis of existing approaches for RT-SOA is presented in

Chapter 3.

2.3.1 Real-Time Systems Schedulability

Although SOA embraces the concepts of dependability in order to build robust real-time systems

using service-oriented principles there are additional requirements with regards specifically to

ensuring the schedulability of the system with respect to service and workflow deadlines. Real-

time systems are distinguished as those where the “correctness of the system behaviour depends

not only on the logical results of the computations, but also on the physical time when these results

are produced” [103]. This section outlines the standard notation and terminology that is used to

specify a Real-Time System followed by distinguishing between hard, firm, and soft systems.

Further core concepts relating to resource management and schedulability are then discussed.

Standard Notation

In order to explore real-time systems in SOAs the underlying concepts must be introduced. In this

thesis the formal notation for modelling real-time processes used by Burns and Wellings [104] is

adopted:

B Worst-case blocking time for the task: This defines the maximum time that a

task may be blocked from starting by other tasks, typically of higher priorities.

C Worst-Case Execution Time (WCET) of the task: This defines the maximum

computation time required to complete the task. It does not take into account
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blocking, jitter, or interference times. In traditional real-time systems this is

assumed to be fixed and known for any given task.

D The deadline of the task, relative to the release time: Depending on the type of

real-time system the significance of the deadline may vary. In many real-time

systems the deadline is assumed to be less than or equal to the task period with

implicit assumption that only a single instance of a task can execute on a given

processor at a time.

I The interference time of the task: Defines the amount of time the task spends in

a waiting state due to other tasks executing.

J The release jitter of the task: Provides a measure for delays between releasing a

task and it starting execution, without any blocking.

N Number of tasks in the system

P Priority assigned to the task: typically in ascending order.

R Worst-Case Response Time (WCRT) of the task: Provides a measure of the re-

sponse time of the task from request to completion, taking into account blocking,

WCET, interference, and jitter.

T Minimum time between task release, i.e. the task period: In a system where

tasks execute periodically this provides the minimum time between releases and

as such can be used to understand the maximum load of the system comprised

of periodic tasks. If the request times of tasks are not known, they are regarded

as sporadic tasks and to be analysed need to have minimum frequency or period.

If there are no constraints on their frequency they are known as aperiodic tasks.

U The utilisation of each task:

This is the CPU utilisation of each task and is calculated as a function of the

WCET and period: C/T

Hard→ Firm→ Soft

A real-time system can be classified as having: hard, firm, or soft deadlines (see Figure 2.15a).

Soft real-time systems are those where correct functionality is still accepted even if deadlines are
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(a) Hard, Firm, & Soft deadlines in a Real-Time System

(b) Technical, tolerated, and critical deadlines as introduced by R. Kirner [105]

Figure 2.15: Depiction of Real-Time deadline

occasionally missed. Conversely firm real-time dictates that there is no benefit from late service

delivery. Finally hard real-time dictates that there will be consequences resulting in system failure

if deadlines are not met.

Soft and firm deadlines can provide a sliding scale of degraded capability with intermediate

deadlines [106] and this is explored by Kirner [105] who introduces the concept of using interme-

diate deadlines to tolerate performance degradation with technical, tolerated, and critical deadlines

(see Figure 2.15b). The former provides a definition of expected normal timely operation of the

process. The tolerated deadline provides an additional safety margin which sits between the ex-

pected and the critical deadlines.

Real-time systems are primarily comprised of two types: reactive and time-triggered systems.

The first of these must respond within a specified time from an input and is particularly con-
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cerned with managing input and output jitter caused by communication latencies over networks in

a distributed system. Time-triggered systems perform activities in accordance with pre-specified

timing information, typically executing on a periodic basis. In reality most real-world systems are

mixtures of both categories with tasks being required to adhere to different deadline types.

Resource Adequacy

Real-time systems typically focus on managing processor utilisation and ignore other constraints

on resources [104]. However in order to guarantee dependable execution systems must be designed

in a resource adequate manner. Resource Adequacy refers to ensuring that “there are enough

computing resources available to handle the specified peak load and fault scenario” [103]. In that

context resources can be defined as either: computational or system resource. The former refers

specifically to the utilisation of resources, such as computational time or memory space and is

typically quantified using Big O notation [107; 108]. In contrast system resources are the physical

and virtual components that can be consumed by processes, such as: CPU, memory (physical and

virtual), hard disk drives, network throughput, power, and files.

There are various approaches for expressing resource models and utilisation models many us-

ing either probabilistic [109; 110] or fuzzy-logic methods [111], both of which are explored later

in the context of RT-SOAs. Some detailed work has been explored in modelling the power utilisa-

tion by servers, virtual machines, and processes in the context of dynamic voltage and frequency

scaling [112] which look at managing the execution speeds through voltage control. In the con-

text of energy management some techniques look at managing the efficiency and cost of virtual

machine placement whilst adhering to SLAs [113–115]. In a similar vein, more closely related

to real-time systems , some research has considered cost and energy modelling of CPU utilisation

taking into account the cost of context switching [116].

Much of the remaining work in the field of RT-SOA relates to optimising the bin packing

problem to take into account the different resource types, specifically CPU and memory [117].

Some approaches consider dynamically recomputing the bin packing problem in online situations

for virtual machine or process scheduling in cloud environments [118; 119]. However these ap-

proaches are limited in that they consider resource utilisation to be a static known value about

each process and also do not take into account the formalisms used in real-time systems to capture

behaviour due to interference and blocking.
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Schedulability

In the context of real-time systems the primary objective is to ensure that all tasks complete before

their respective deadlines. Schedulability tests are used to calculate whether a static set of periodic

or sporadic tasks will be schedulable [103]. Schedulability tests are typically either based on

utilisation or response-time analysis and can be: necessary, sufficient, or exact. If a necessary

schedulability test is negative then the set of tasks is definitely not schedulable. Whilst a positive

sufficient test indicates that the tasks are schedulable. It is important to bear in mind that the

necessary test cannot indicate schedulability and similarly the sufficient test cannot indicate non-

schedulability. Exact schedulability tests are both necessary and sufficient.

The approach of utilisation-based analysis, which provides a necessary condition rather than

a sufficient or exact condition for schedulability, comprises of a processor utilisation factor, which

defines the percentage of processor time spent executing the task set.

U =
n∑
i=1

Ci
Ti

(2.2)

and also a utilisation bound which is dependent on the chosen scheduling algorithm. For example

Rate-Monotonic Scheduling [120], which assigns priorities based on their periods, has a utilisation

bound of: n( n
√

2− 1) which tends to 69.3% as the number of tasks tends to infinity. Alternatively

Earliest Deadline First scheduling specifies a utilisation bound of 100% [121].

Response-time analysis provides an exact schedulability test, in the specified execution con-

text, and calculates whether all the response-times of the tasks will be less than their respective

deadlines. This can take into account task priorities, interference, blocking, and jitter. For some

task i:

Ri = Ci + Ii +Bi + Ji (2.3)

Calculating WCRT therefore comprises of the WCET of the task of interest, interference from

higher priority tasks, and blocking time (Eqn. 2.4).

Ii =
∑

j∈hp(i)

(⌈
Ri
Tj

⌉
Cj

)
Bi =

∑K
k=1 usage(k, i)Ci(k)

(2.4)

where usage is a 0/1 function; usage(k, i) = 1 is resource k is used by at least one process with a

priority less than Pi, and at least one process with a priority greater or equal to Pi. However each
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Figure 2.16: Depiction of sigmoid and convex task shape

interfering or blocking task may itself also suffer from interference or blocking, thus requiring a

recurrence relation:

Rn+1
i = Ci +Bi +

∑
j∈hp(i)

(⌈
Rni + Ji
Tj

⌉
Cj

)
(2.5)

These schedulability conditions provide the basis for several streams of work in RT-SOAs. For

example the work by Lee et al. [106] use the utilisation bound from Eqn. 2.2 replacing the period

with the deadline to guarantee schedulability of tasks on a given machine. Similarly the work by

Estévez-Ayres et al. [70] evaluate their proposed RT-SOA solution using response-time schedula-

bility analysis from Eqn. 2.5 where they assume the services are non-preemptable. Importantly in

order for the system to provide any level of guarantee of its ability to adhere to deadlines it must

provide a method for performing schedulability analysis.

Scheduling Theory

Moving towards general scheduling theory for distributed systems there are several further con-

cepts to be introduced of relevance to this work [122]. The terminology and notation used in this

context differs from that presented previously from the real-time systems domain. Firstly compu-

tation or processing time is defined as p(i) where i is the number of processors servicing the task.

Notably this definition, unlike the definition for WCET, allows for capturing the impact of multi-

ple processor systems on execution. In this case p(1) represents total computation to be performed

and therefore the WCET running on a single processor. p(i) is typically greater than p(1) due to
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there being some cost c(i) for using parallel processing. Therefore work W performed by a task

on i processors is ip(i).

Although there is cost attributed to parallelising a process there is normally a speedup ς that

provides the measure of how much an application can be accelerated by using more processors:

ς(i) = p(1)
p(i) . It is normally assumed that there will be a non-decreasing speedup by using more

processors: ς(i) ≤ ς(i+ 1)⇒ p(i) ≥ p(i+ 1). The concept of slowdown or stretch s provides a

mechanism to represent the perceived speed of a host machine by a particular task: 1
s where s = f

p

where f is the response-time of the process. The slowdown factor can be used in conjunction with

resource adequacy to indicate whether a given task will complete by the required deadline. The

nature of this slowdown factor is often assumed to be sigmoidal [123] of the form 1−α
1+ex−β

+ α,

where α is the minimum required resources and β the best possible execution time, and by others

to be merely convex [124] as depicted in Figure 2.16. However dependent on the resource patterns,

discussed in Section 2.1.3, different functions may apply to different phases of the executing tasks.

Cloud Scheduling

Moving briefly away from real-time scheduling, approaches to scheduling in Cloud computing

must be considered for completeness. Nuaimi et al. [125] provide a review of Cloud scheduling

techniques where the primary focus is on the load balancing. Techniques are categorised as either

static or dynamic, in the former case tasks are assigned to servers, or virtual machines, based on

their ability to process new requests. These approaches typically monitor resource utilisation and

number of tasks loaded on any given server. One such algorithm is the MapReduce approach to

partitioning a job into tasks, executing them across a set of virtual machines, and then combining

the results [126]. Alternatively dynamic methods may take into account prior knowledge of task

and server performance to optimise the scheduling. One such approach by Zhong et al. [127]

uses Genetic Algorithms (GAs) to optimise the allocation of virtual machines as part of an online

adaptive scheduler.

Traditional Cloud scheduling approaches are however not suited for real-time systems as the

concept of deadlines does not exist. They can however be adapted by providing a cost function

that penalises a potential deadline miss. An example by Liu et al. [128] takes this technique and

then sorts the tasks based on the expected gain and does not accept those whose cost is too great.

The next section will explore this area of real-time services in further detail to understand some of

the major challenges in facilitating real-time service-orientation.
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2.3.2 Real-Time Services

Real-Time Service-Oriented Architectures (RT-SOAs) were popularly defined by Tsai et al. [129]

as an extension of SOAs that supports real-time processing which would adhere to timing con-

straints and function in a necessarily predictable manner with regards to composition, orchestra-

tion, deployment, and runtime management. The core ability of SOA to rapidly integrate het-

erogeneous systems is a fundamentally attractive proposition for many industries but is currently

limited in its level of support for real-time systems. Although there are numerous application

domains for RT-SOAs, the majority of research focusses on using Web Services in domains with

real-time constraints and are typically either related to: decision support, modelling & simulation,

or cyberphysical systems:

Decision Support Systems form a particular subset of service-oriented systems where QoS is es-

sential to managing the time frames in which decisions are made and

which actions are carried out. One such example is the use of service-

orientation for coordinating fire-fighting in a forest fire scenario to fa-

cilitate the decisions made by fire-fighters with regards to their deploy-

ment and movement [130]. In a similar vein the Network Enabled Ca-

pability Through Innovative Systems Engineering (NECTISE) project

[131; 34; 56; 24; 132] considered the use of SOA for decision support

in a military context for C2 systems. The NECTISE project proposed

managing service dependability based on using service redundancy for

those services with lower QoS values.

Modelling & Simulation considers simulations as services where different simulations can inter-

act as part of a co-simulation. The system must manage the integration

of the simulations with respect to their interfaces, data structures, and

timing requirements [65; 133]. In the case of automotive simulation con-

sisting of a driving simulator and simulations of various vehicle systems

the different elements will operate at different speeds, for example driv-

ing simulators typically run at 60Hz whilst complex models of fluid dy-

namics can take hours to run a single simulation step. Further, the data

structures within the models typically differ due to tool differences and
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the infrastructure required to run any given simulation may vary with

some simulators requiring specific hardware or HPC.

Cyberphysical Systems forms a specific category of SOAs in which there are both software as

well as human or hardware services. Both decision support and mod-

elling & simulation systems can themselves also be cyberphysical sys-

tems. With regards to human-in-the-loop services QoS is often referred

to as Quality of Experience (QoE) [130] as it normally refers to the per-

ceived system performance and is often less time-critical in nature. QoE

feedback is often scored using the Mean Opinion Score [134] notation:

bad, poor, fair, good, and excellent.

Hardware-in-the-Loop (HIL) systems involve hardware devices such sen-

sors, actuators, or embedded systems where there may often be strict

real-time timing constraints that will effect the system outcome. In the

context of embedded systems the iLand project by Estevez-Ayres et al.

[59; 67; 70; 135–144] focussed on developing a soft real-time middle-

ware to enable the connection of embedded systems and services. The

specific domain of interest considered the processing of video streams as

part of a surveillance system and their solution focussed on monitoring

QoS to inform online re-composition using Genetic Algorithms (GAs).

In another domain Zhou et al. [64] apply service-orientation for control-

ling swarm robotics [145] where there is both a software and hardware

services layer. The software layer dictates the function that the swarm

must perform and the hardware layer, comprising of multiple individual

robots, must coordinate to achieve that goal. In this context the QoS for

inter-robot communication as well as between the swarm and the users

are vital.

The majority of research focusses on prediction of Web Service QoS with various authors con-

sidering techniques for updating the QoS of Web Service definitions and using those predictions to

inform online re-composition. The most prominent analysis with regards to Web Service QoS was

performed Zheng et al. [6; 33; 123; 146–148] which analysed over 16 thousand web services with

respect to their definitions and response-times. Their work demonstrated specifically the variable
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nature of response-times due to the changeable nature of the Internet [6]. Further they introduce

the use of Pearson’s Correlation Coefficient (PCC) and matrix factorisation to predict QoS for

different services and and users [147] which has since been adopted by several other approaches.

Beyond Web Services, many approaches including the work by Tsai et al [129], Schnei-

der [149], the iLand project [140], and Perez & Gutierrez [150] make use of the OMG Data-

Distribution Service (DDS) middleware [5]. DDS is designed to support publishing and subscrib-

ing of data by services. Unlike traditional SOA it does not natively support workflows but instead

workflows can be inferred by controlling which services subscribe to which data types and the

relevant update frequencies . Further although DDS has an extensive QoS definition, comprising

of twenty-one parameters, it does not enforce compliance and subscription to data is based on

periodically receiving the most recently published value.

2.3.3 Real-Time Service QoS

In order for a SOA to guarantee Real-Time behaviour the QoS definition must accurately represent

the executing service’s performance with respect to the execution environment over the duration

of execution. There are numerous approaches to estimating, monitoring, and adapting Real-Time

Quality of Service (RT-QoS) in various environments for various purposes. Appendix A provides

a comprehensive list of approaches with a short summary on each of them. Further QoS methods

relating specifically to the domain of Cloud computing and not applicable to RT-SOAs are re-

viewed by Abdelmaboud et al. [151]. These approaches each have limitations and are constrained

in their capability to reliably guarantee response-times for real-time services, particularly in a

context where there is not absolute control over every part of the system.

QoS Parameters

The various approaches to QoS take different factors into account as parameters in their models.

The most extensive set of parameters by a single model is the DDS QoS model which consists of

21 parameters incorporating [150; 5]:

Data Availability: history, durability, lifespan, and lifecycle

Maximum Resources: resource and time limits

Data Delivery: reliability, ownership, presentation, ordering, and partitioning
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Figure 2.17: Taxonomy of QoS parameters, adapted from Truong et al. [152]

User Configuration: user, topic, and group data tags

Data Timeliness: deadline, latency budget, and transport priority

System run-time configuration: entity factory and liveliness

Alternatively the work by Estévez-Ayres et al. [70] could be considered with the parameters

of: WCET, period or request frequency, deadline, an offset, and service priority. They also include

the physical resource requirements and data requirements [142]. The work by Wang et al. [153]

specifies QoS attributes with respect to response-time as well as price (or computational cost), rep-

utation, availability and appropriate weight factors for each of them. Truong et al. [152] provide

a taxonomy of QoS metrics which is shown in Figure 2.17. Other than the attributes of depend-

ability that are discussed on Page 33 the taxonomy comprises of three categories: performance,

configuration, and cost. The former considers execution times and latencies. The configuration

category defines aspects of the SLA such as where service will be geographically distributed and

what level of guarantees are made about the service provision. The variance and limitations of

parametrisation techniques across the methodologies will be discussed in detail in Chapter 3.

Impacting Factors

Many of the QoS approaches for RT-SOAs assume fully controlled systems where the overall

schedule of processes across the infrastructure can be controlled. However in practice the infras-

tructure may be shared with other non-real-time services and the underlying operating systems
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(a) Interference graph (b) Resource Contention graph

Figure 2.18: Sample Interference and Resource Contention graphs adapted from [154].

may not be real-time operating systems. As a result resource contention and interference by other

co-located processes becomes a significant issue that can reduce a service’s ability to adhere to

deadlines.

One approach to understanding resource contention and interference is provided by Huang

and Peng [154] where an interference graph identifies the processes which can interfere with each

other and a resource contention graph uses the cliques from that graph to identify the contention

regions. The example shown in Figure 2.18 shows the forming of two cliques in the interference

graph ({A,B,C} and {AB,C,D}) where all the nodes of the graph (representing processes) can

interfere with each other. The cliques can then be identified as competing over either resource r1

or r2 in the contention graph. A resource in this case would typically be an area of memory, CPU

registers, or a specific device. In order to guarantee timely completion of processes, each process

associated with a contention region must be considered as part of a set of competing processes.

In practice, in a distributed system it is likely that the majority, if not all, of the processes

executing on a given server will interfere with each other. This graph based approach only captures

references to specific resources and not aspects such as CPU time or amount of physical memory

allocated. In this way resource interference and contention in general computing must refer to

the adequacy of the resources provided to individual processes. Under-provisioning of resources

leads to performance degradation and slower response-times. Conversely over-provisioning leads

to wastage of time and resources that could be used by other processes [155; 156]. One example of

the impact of under-provisioning of resources is the “long-tail” problem where specific processes

may exhibit abnormally long response-times [157].
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Resource Patterns

Outside of traditional Real-Time Systems and the many RT-SOA systems which can be fully con-

trolled with respect to the running processes, the system workload is inherently non-deterministic.

Analysis in the context of Cloud computing workloads provides an insight into modelling and pre-

dicting what and how many processes may interfere with any given process. Fehling et al. [158]

document a wide range of Cloud computing patterns to facilitate the design of Cloud systemsa and

specifically identify five workload patterns:

Static workloads where the resource utilisation over time is constant.

This can be extended to consider the workload as static within a

variance and can therefore be guaranteed to not exceed a given

threshold.

Periodic where the resource utilisation peaks at reoccurring time inter-

vals.

Once-in-a-lifetime workload refers to general workload that is predictable disturbed

by a peak utilisation which only occurs once. This is a particu-

lar case of the periodic workload pattern where the timeframe is

particularly long.

Unpredictable refers to a random utilisation and can be considered as a gener-

alisation of periodic workloads.

Random (Continuously Changing) workload is where the utilisation is

either continuously growing or else continuously shrinking.

In that context the work by Moreno et al. [73] provides a detailed analysis of the behaviour of

individual processes executing in the Cloud with respect to their: execution times, CPU and memo-

ry utilisation, and their computation length. It is however necessary to note that workloads patterns

for Cloud computing may not be pervasive in other domains such as High Performance Comput-

ing, private Clouds, or other time critical systems [155]. Further any workload pattern should also

be considered in the context of the resource lifecycles within each process (see Figure 2.10).

ahttp://www.cloudpatterns.org
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QoS Learning Techniques

The final aspect with respect to RT-SOA and specifically QoS are the methods for learning and

adapting the QoS values over time. A detailed analysis of specific methodologies will be presented

in the next chapter however there are popular techniques that form the basis for the majority of the

existing metholodiges:

Static techniques which do not learn and do not change over time and

are therefore insensitive to variations in the execution environ-

ment.

Periodic Updating such as the work by Bosman et al. [159] where a probe is used

to periodically check the response-time of the services.

Continuous Historical updates where all, or a sample of, previous response-times for

service execution instance are stored and aggregated to provide

an anticipated response-time. For example the work by Zou

et al. [81] adopt the observed worst-case as the new QoS value

for each new execution instance.

Genetic Algorithms such as the work by Canfora et al. [160] where a GA is used to

generate a genome representing the QoS of services and com-

posed workflows. For example these approaches will look at

different service implementations of the same service definition

and seek to optimise the selection of services based on a range

of criteria specified as a fitness function.

2.4 Challenges in Real-Time Service-Orientation

This chapter has introduced the Service-Oriented Architectures (SOAs) and many of its key fea-

tures (Section 2.1). The concept of dependability (Section 2.2) has been discussed in detail fol-

lowed by an overview of Real-Time Systems theory. This chapter has discussed many of the

concepts that Real-Time Service-Oriented Architectures (RT-SOAs) must address, specifically

through the use of appropriate Quality of Service (QoS) mechanisms. However in order to guar-

antee the correct behaviour of a RT-SOA three areas must be considered:
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1. Execution management to ensure that service adhere to their advertised QoS. This can be

achieved either through the use of a Real-Time Operating System or else my managing the

services at the workflow level.

2. RT-QoS monitoring and prediction to alert the system when a service is likely to violate

timing constraints.

3. Workflow management to ensure that overall QoS of the workflow is guaranteed and that

the system remains capable of delivering it’s functionality.

Workflow Management

Workflow management in a RT-SOA specifically refers to the challenge of monitoring execution

progress, predicting potential failures, and consequently performing a re-composition of the work-

flow. Several approaches endeavour to do this and address the timeliness of the re-composition

process itself. The limitation with most of these RT-SOA approaches is the assumption that they

are isolated and not sharing resources with other systems and can therefore be fully controlled.

A further and more interesting challenge is the management and prediction of workflow be-

haviour where the workflows are comprised of complex patterns as discussed in Section 2.1.3 on

Page 27. These challenges start to move away from the fully controlled environments that are

typically assumed by introducing levels of non-determinism into the system. However in order

to address these issues significant work must be done on the modelling of QoS in uncontrolled

environments which is this focus of this research.

QoS Monitoring and Prediction

As outlined in this chapter Quality of Service (QoS) can be described at both the workflow, service,

and the Micro-Service (µS) level. This research is concerned specifically with exploring RT-QoS

at the µS level as this forms a foundation upon which to build further RT-QoS models.

As with workflow management a key limitation of the majority of the research on QoS in

RT-SOAs has assumed full knowledge of the system and full control of its environment. However,

in practice this is not the case, particularly with Cloud computing and Internet of Things (IoT). In

these instances services may have temporal constraints, either self-imposed or imposed by other

services within a workflow, and running with interference and resource contention are common-

place.
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A further limitation on the majority of existing techniques is the lack of application of schedu-

lability theory. Where very few exceptions the approaches do not consider the schedulability

conditions of their work and further their approaches do not consider the resource implications to

service performance.

The following chapter will consider in detail the existing methodologies for managing and

predicting QoS as part of a RT-SOA. It will present an analysis of the limitations in existing work

from both a theoretical and experimental perspective and provide the benchmark against which

this research can be compared.



Chapter 2 56 Service-Orientation



Chapter 3

Classification of Real-Time SOA QoS

Techniques

This chapter reviews in detail the existing methods for Quality of Service (QoS) in Real-Time

Service-Oriented Architectures (RT-SOAs). First seven categories of QoS approaches are identi-

fied and eighty existing techniques are then reviewed. Subsequently a theoretical analysis of se-

lected approaches is discussed in Section 3.2 before the approaches are analysed using simulation

to provide the benchmark against which this research can be compared (Section 3.3). In Section

Section 3.4 a discussion of the limitations identified by the theoretical and simulation analyses is

presented before the case for this research is outlined.

3.1 Review of RT-QoS Methods

Each of the 80 reviewed QoS approaches is summarised in this section. Each approach is consid-

ered with respect to:

Resource Awareness where the majority of approaches do not consider aspects such

as CPU, memory, or network implications on QoS. And many

57
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of those that do, presume to have full control over resource al-

location and system scheduling.

Real-Time focus as claimed by the authors and whether the approach actu-

ally considers real-time services and considers techniques such

as schedulability testing.

Service or Workflow level QoS where the majority of approaches focus

on the selection of services for composing workflows in order

to guarantee an overall workflow QoS.

3.1.1 Approach Categories

The majority (84%) of the reviewed approaches fall into the following seven categories shown in

Figure 3.1: correlation, optimisation, containment, middleware, fuzzy-logic, cost, and tolerance.

Correlation

Approaches within the first category are based on identifying the similarity between services and

users. In this context correlation is utilised to build a model representation of the expected perfor-

mance of the specified service, typically using Pearson’s Correlation Coefficient (PCC) to achieve

this with a user-service matrix. QoS predictions are made by identifying the most similar users.

These approaches are some of the most generically applicable supporting any infrastructure and

treating services as black boxes. Table A.1 outlines eight approaches based on correlation, which

are mostly variants of the approach by Zibin Zheng et al. [146] which will be considered in depth

in Section 3.2.1.

As can be seen in Table A.1 most of these approaches are not resource-aware or provide any

method for calculating real-time guarantees. Some of them, such as Sandhu and Sood [161]

provide a probabilistic model to provide a likelihood of response-time and likely level of resources

required. As a result these approaches are not suited to RT-SOAs.

Optimisation

The second group of approaches use optimisation to parametrise a QoS definition to maximise the

likelihood of the service meeting certain conditions. Many of these use Genetic Algorithms (GAs)
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but also techniques such as linear programming. They mostly focus on optimising service selection

for guaranteeing overall workflow QoS but are sometimes used for the calculation of individual

service QoS parameter values [160], however they are not used for real-time systems due to the

computation time required to run the algorithms. Table A.2 summarises optimisation based QoS

approaches.

Similar to the correlation based approaches the majority of these techniques are not resource-

aware and except those applied to robotics [64] do not provide real-time support. Further these

techniques are almost exclusively applied at the workflow level to the problem of service selection.

Although there may be a use for these approaches at the workflow level in RT-SOAs they are not

suited to providing RT-QoS definitions that are adaptive. Theoretically if there was sufficient data

collected around a service’s execution performance with respective to resources and other factors

optimisation and machine learning approaches may provide effective RT-QoS definitions. That

however introduces an elongated data collection phase which may not be feasible in the majority

of situations and deployments.

Containment and Virtualisation

Container based methods are not all strictly part of SOA approaches but assume that all services

or processes execute within a containerised environment such as a virtual machine. These ap-

proaches then use the resource control the containers provide to control and predict the execution

performance. These approaches are limited to those domains, such as Cloud computing, where

containerisation can be adopted. For prediction alone, within a Cloud environment, these ap-

proaches require minimal interference or understanding of the hosting system [162; 163]. The

approaches listed in Table A.3 all utilise containers or virtualisation in some form.

These techniques differ from those already considered in that they can be used to calculate

real-time guarantees using the resource utilisation information. However they generally require

full system control, including process and virtual machine scheduling and many require an under-

lying Real-Time Operating System (RTOS). Given those constraints the approaches use traditional

real-time scheduling techniques to provide appropriate guarantees. Without those constraints the

approaches provide best-effort or soft guarantees.
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Middleware

Many approaches to managing QoS look below the services themselves to the underlying com-

munication middleware. In many ways these aim to achieve the same as the previously discussed

container-based approaches however require a greater level of control of the underlying compu-

tational infrastructure. DDS is one technology that is adopted by numerous approaches as the

underlying network infrastructure upon which to build a RT-SOA. This claims to be a real-time

infrastructure using a Publish/Subscribe approach with several parameters but does not actually

provide any real-time guarantees relating to the timeliness of data publication by any given ser-

vice [144]. Table A.4 provides a list of middleware-based approaches which are largely based on

the work by Tsai et al. [129] and most comprehensively developed by Estévez-Ayres et al. [144].

Similar to the containment and virtualisation approaches these techniques are based on tradi-

tional real-time scheduling and require full system control. These approaches however go further

and manage the entire infrastructure including computation and communication.

Fuzzy-Logic

The fifth category is the use of qualitative terms, such as good or bad rather than distinct quantities,

to describe QoS. Two of the methods in this group are shown in Table A.5 with the first being

explored in further detail in Section 3.2.6. The primary challenge with these is the ability to map

back to real-time systems scheduling which would have use some probabilistic method. Also they

are primarily used at the workflow level rather than for individual defining at a fine-grained level

the QoS of individual services.

Cost

The pricing of service execution is one of the most common parameters of QoS in addition to

response-time. Considering cost facilitates a trade-off against performance and can consider as-

pects such as: power or energy; usage of resources such as memory, CPU and storage; as well as

the infrastructure provider’s pricing. Most of the approaches listed in Table A.6 build on the work

by Kaur et al. [164].

Although cost is a significant consideration it does not provide any measure of whether a

service will be able to meet a given deadline. It could potentially be used to provide cost categories

such that services are charged based on deadline guarantees.
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Tolerance and Probability

Within many of the previous approaches the likelihood of a given response-time is often consid-

ered. However there are several approaches that only measure the probability of a given response-

time. Table A.7 provides a summary of many of these approaches. The primary comment on these

is the lack of real-time support and the lack of methods for mapping probabilistic response-time

models to real-time guarantees. Additionally it is noted, with one exception, that none of these

approaches consider the underlying resources such as CPU or memory.

Probabilistic measures can also be used to tolerate or avoid QoS violations. One such approach

by Russell et al. [131] (listed in Table A.8) uses redundancy to improve overall reliability. The

formalism from their approach is shown in Eqn. 2.1. The recorded QoS is compared against the

required QoS and is used to determine how many copies or versions of the service are required in

order to increase the likelihood of providing that level of service. This is not however satisfactory

for RT-SOA.

Within this category are also those approaches that actively monitor the response-times of

services. Table A.9 outlines those approaches that periodically monitor service performance.

A further 13 approaches are listed in Table A.10 including hardware solutions [165] and sev-

eral approaches targeted specifically at workflow configuration.

3.1.2 Significant Contributions

From the range of methods and approaches outlined in the previous section there are specific

key contributions within each category. These specific approaches, listed below and shown in

Figure 3.1, form the most comprehensive approaches within each category when considering the

scale and detail of their work as well as their adoption by other similar techniques. Each of the

listed approaches will then be considered in more detail in Section 3.2.

Zibin Zheng et al. [146] provides the most comprehensive analysis of Web Service QoS

analysing several thousand unique services with over thirty mil-

lion cumulative invocations. They introduce the use of Pear-

son’s Correlation Coefficient (PCC) to correlate users with ser-

vices and utilise collaborative filtering to predict missing values

for new User/Service combinations.
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Figure 3.1: Core approaches to RT-SOA and the most significant works

Estévez-Ayres et al. [144] uses the Data-Distribution Service (DDS) as the infrastructure

for a RT-SOA implementing the concepts of Tsai et al. [129].

Their approach does consider resource adequacy and uses tradi-

tional real-time schedulability to verify that services will meet

deadlines.

Russell et al. [131] presents the NECTISE project as one of the first real-world uses

of SOA adopting the use of service redundancy to improve the

likelihood of adhering to the deadlines.

Lin et al. [162] provides a comprehensive approach with RT-Llama to use virtu-

al machines to contain and manage service execution. Their ap-

proach also introduces the use of intermediate deadlines during

service execution to provide monitoring points. This approach
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is similar to that adopted by Cucinotta et al. [63] which uses tra-

ditional schedulability analysis to verify the service execution

performance.

Canfora et al. [160] presents an approach that uses constrained Genetic Algorithms

(GAs) to perform workflow composition where the fitness func-

tion considers the dependability attributes of availability and re-

liability as well as response-time and cost.

Benbernou et al. [111] presents a real-time approach for service-orientation using fuzzy-

logic to describe the response-times and memory utilisation for

the purposes of workflow composition.

The next section considers each of the above QoS techniques in detail presenting a summary

of the algorithm adopted providing the basis for the remainder of this chapter.

3.2 Key QoS Techniques

This section explores each of the previously identified key approaches in more detail. Firstly

exploring the overall approach followed by any mathematical formalisms and algorithmic consid-

erations.

3.2.1 Technique: User-Service Correlation (Zibin Zheng et al. [146])

An overview of the approach presented by Zibin Zheng et al. [146] is depicted in Figure 3.2 and

is comprised of three major components:

1. Identifying similar users and services using Pearson’s Correlation Coefficient (PCC) which

can be computed in linear time with respect to the number of users or services respectively.

The similarity is then updated to apply a significance weighting representing the density of

invocations. The significance weighting acts to reduce the influence of small numbers of

invocations and outliers by applying greater weight to those with more instances.

2. The QoS values can then be predicted by selecting the Top-K similar neighbours, either

users or services. By using collaborative filtering missing or null values from the model can

be predicted.
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Figure 3.2: Overview of approach proposed by Zibin Zheng et al. [146] for predicting
QoS using similar neighbours.

3. Finally the predictions can used to recommend the top k services to users and vice versa

recommend the top k users to service providers as potential customers.

The proposed approach as outlined in Table A.10 does not consider the impact of resources

on execution performance and it is therefore not possible to perform traditional real-time schedu-

lability analysis. It is noted however that the approach does facilitate adaptive QoS performing

re-computation in O(m2n+ n2m) where m is the number of services and n the number of users.

In Section 3.3 the practical implications and limitations of this approach will be considered.

3.2.2 Technique: iLand with DDS (Estévez-Ayres et al. [144])

The work by Estévez-Ayres et al. [144] on the iLand project is the most extensive in the domain

of RT-SOAs and makes use of the Data-Distribution Service (DDS) middleware to facilitate the

real-time network that is required to provide real-time guarantees in a distributed infrastructure

[140]. Critically, as discussed on page 18 DDS does not provide guarantees regarding individual

service performance. Therefore any DDS-based approach must consider the service executions

themselves.

In that context the authors do consider the schedulability of individual services, taking into
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Figure 3.3: Overview of approach proposed by Estévez-Ayres et al. [144] focussed pri-
marily on real-time service composition.

account CPU utilisation, application periods, and observed worst-case execution time [70]:

U = Userv + C
Tapp

< 1

U =Userv + Uworst
(3.1)

It can also be noted that in the context of the iLand project where the entire system workload

is controlled and known it is possible to perform traditional schedulability analysis using both the

response-time equation (Eqn. 2.5) and utilisation analysis (Eqn. 2.2). The proposed approach can

update the utilisation and WCET properties in constant time and is then subject to the schedula-

bility test that is used, which may be linear O(m) in the case of utilisation analysis. As shown

in Figure 3.3 the WCET is calculated based on the previous response-time Cprev and previously

observed WCET Cwc. This is then used to calculate the schedulability by looking at the current

server utilisation Userv, before the µS is deployed, as shown in Equation Eqn. 3.1. The overall

QoS is then a function of the WCET and a slowdown factor of Uwc
1−Userv . In this case if the serv-

er utilisation is 90%, the maximum historical utilisation of the service is 20%, and the historical

WCET is 5s the slowdown factor will double resulting in an estimated WCET of 10s.

The remainder of their work focusses on workflow composition to provide overall guarantees

of schedulability. A detailed analysis of the feasibility of their approach for more general RT-SOA

QoS modelling is presented later in this chapter.
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3.2.3 Technique: NECTISE with Probabilistic Redundancy (Russell

et al. [131])

The probabilistic techniques vary primarily with respect to how the historical data is collected.

In many instances probes are used to periodically test the response-time of the services. In these

cases the QoS model is defined using a sliding window of data, taking account of the most recent x

observations. Alternatively approaches record each and every response-time to build a population,

rather than sample, based model.

The Network Enabled Capability Through Innovative Systems Engineering (NECTISE) ap-

proach takes a population-based probabilistic model of response-times. Each response-time is

measured against the QoS that was expected of it producing a likelihood of the service not adher-

ing to it’s advertised QoS. The approach then uses this to improve the percieved reliability of the

service through the use of redundancy. As shown in Section Eqn. 2.1 on Page 21 the likelihood of

QoS violation is used to inform the number of required replicas and can rearranged for solving for

single service implementation (i.e. ignoring workflows) as follows:

1− pr = x

r = log(1−x)
log(p)

(3.2)

3.2.4 Technique: RT-Llama (Lin et al. [162])

This approach is similar to the iLand project described earlier and does present a real-time system

and uses traditional analysis to demonstrate the schedulability of services. The authors consider

a service which is comprised of smaller functional elements, which can be considered as Micro-

Services (µSs) where the Worst-Case Execution Time (WCET) is known a priori.

A service request can be either: immediate, reserved, or best-effort where the latter results in

best-effort execution on an unmanaged infrastructure. Immediate and reserved requests are exe-

cuted on a real-time CPU as shown in Figure 3.4. The reserved requests are executed on a reserved

portion of the RT-CPU in virtual containers. For immediate processes the system endeavours to

find a Feasible Sub-Process (FSP) set which will meet the required deadline and if found sched-

ules it using Earliest Deadline First (EDF) scheduling. The basis for immediate tasks however is

the remaining CPU space that is not reserved on the server for the execution window defined by
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Figure 3.4: Overview of the RT-Llama approach by Lin et al. [162] which treats services
as either best-effort, immediate, or reserved.

the request-time and relative deadline:

1− U[r,d] (3.3)

This approach requires known WCETs and resource utilisation patterns for each of the µSs and

requires a RT-OS as the underlying infrastructure of a RT-SOA. In terms of time complexity, if a

service is schedulable it will be found within O(ms).

3.2.5 Technique: Optimisation (Canfora et al. [160])

Many approaches focus on optimising the selection of services for workflows so as to improve the

overall response-times. The approach by Canfora et al. [160] however seeks to also optimise the

specification of QoS parameters to more accurately reflect the services themselves.

As depicted in Figure 3.5, the proposed approach uses a Genetic Algorithm (GA) to for opti-

misation. A population of 100 individuals is chosen where the genome represents either the QoS

parameters of an individual service or the selection of services for a workflow. Each individual is

evaluated according to a fitness function that considers the the QoS parameters of: cost, response-

time, availability, and reliability. The approach iterates, up to a maximum generation (100 in the

authors experiments), until the constraints are met at which point the algorithm may iterate a max-
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Figure 3.5: Overview of approach by Canfora et al. [160] using GAs to optimise QoS
parameters.

imum of x further times before producing the best found solution. Each new generation keeps

the best two individuals and mutates or combines/crosses-over the remaining population using

roulette-wheel selection.

Although this approach potentially calculates the QoS or composition in O(gp), where each

generation requires space O(p), it is not generally appropriate for real-time systems as there is no

guarantee that a solution will be found.

3.2.6 Technique: Fuzzy-Logic (Benbernou et al. [111])

The final technique for describing and adapting QoS considered in this thesis is the use of fuzzy

logic and probabilistic modelling. In this fashion fuzzy terms such good or bad are applied to

ranges of values based on pre-specified thresholds.

One such approach is presented by Benbernou et al. [111], shown in Figure 3.6, where they

model response-time as: Good, Medium, or Bad and memory consumption as either Good or Bad.

The authors monitor the executing service and encode the behaviour using the fuzzy logic rules.

The previous execution behaviour is then used to calculate the probability of a particular behaviour
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Figure 3.6: Overview of fuzzy-logic approach by Benbernou et al. [111].

reoccurring:

P (SymbQoS|Si) =
P (SymbQoS ∩ Si)

P (Si)
=
|SymbQoS ∩ Si|

|Si|
(3.4)

Where the probability of observing a given performance, denoted by a QoS symbol, is the number

of occurrences of that symbol for a given service as a proportion of the total number of execution

instances of that service. This can then be used for future iterations in selecting services with

acceptable QoS.

The following section details the practical evaluation of the presented techniques using simu-

lation of various workloads and service types.

3.3 Simulation of Approaches

This chapter has so far presented an overview of several of key approaches to modelling QoS and

managing real-time services. This section presents the simulation and analysis of those approach-

es. Specifically the simulation considers the aspects, presented in Chapter 2, of workloads and ser-

vice execution types with respect to their resource utilisation behaviour. In Section Section 3.3.1

the simulation design will be presented followed by the results in Section Section 3.3.2.

3.3.1 Simulation Design

There are numerous simulation tools available specifically for the purposes of modelling com-

puting behaviour. This research adopted the SEED simulatora which has been used to accurately

aProvided by Slingshot Simulations Ltd., www.slingshotsimulations.co.uk

www.slingshotsimulations.co.uk
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(a) High level architecture of the API provided by the SEED simulator.

(b) Core components for simulating interference experience by Micro-Services and Virtual Ma-
chines.

Figure 3.7: The SEED simulator

and efficiently model task and job behaviour in large data-centres [166–170]. Specifically Gar-

raghan et al. [166] modelled a Google data-center with 2000 servers and verified the results against

Moreno et al. [156]. Subsequently Ouyang et al. [168] used the simulation tool and developed

models of servers and virtual machines to explore longtail behaviour in data-centers. For this re-

search the verified models from those works were used for the core components of the simulation

as detailed below. Unlike other simulation technologies, such as CloudSIM [171], SEED separates

the simulation execution management from the domain modelling. The simulator provides an API

for implementing: experiments and domain components where the components can be integrated

in the form of a graph. In practice this means that simulation components such as servers are mod-

elled as nodes, network connections are represented as edges, and then iteratively nested graphs
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provide layers of virtualisation.

As shown in Figure 3.7a individual components are specified as either: graph nodes; edges; ac-

tions which operate within a node; or child nodes which facilitate the nesting of sub-graphs. Each

component is assigned a set of methods and properties such as those outlined in Figure 3.7b and

described below. The objective of the simulations in this research are to explore the relationships

between Micro-Services (µSs) and their hosts in the context of evaluating the QoS approaches

described in the previous section.

Simulation Core Components

The core elements of the simulation include: servers, virtual machines, and Micro-Services (µSs)

which are listed detailed below and depicted in Figure 3.7b. As this research is not considering

workflows it not necessary to model them or services. Instead a workload model can be used to

represent the potential interference to any given µS of interest.

Servers are modelled as Nodes whose primary function is the schedul-

ing of processes which is performed in a Round Robin fashion.

Each server hosts one or more processes, which may either be

µSs or virtual machines, and is comprised of resources includ-

ing CPU and memory. The Cloud server models from [166–

168] which were verified against those in CloudSIM by Cal-

heiros et al. [171] and Moreno et al. [156] are adopted for this re-

search. The simulation code listing can be found in Listing D.1

in C.

Virtual Machines operate in a similar fashion to servers with the exception that

they are hosted by a server and utilise the Child Node API. The

virtual machine model used for this research are those from Al-

batli et al. [169] which are representative of industrial virtuali-

sation infrastructure. The simulation code listing can be found

in Listing C.2 in C.

Micro-Services are represented as Actions which are hosted by either servers

or virtual machines. Their primary function is the modelling
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of CPU and memory utilisation over time based on a specified

resource pattern (Section 2.1.3). The simulation code listing can

be found in Listing C.4 in C.

Interference Workload is also an Action hosted directly by a server that represents the

interference experienced by the virtual machine or µS on the

specified server. The simulation code listing can be found in

Listing C.3 in C. The workload is specified as following a par-

ticular Cloud workload pattern as detailed in the previous chap-

ter along with a mean utilisation.

The algorithms of the QoS approaches described earlier in this chapter are then encoded within

the experiment scripts which are used to monitor the simulation. The next section outlines the

design of experiments.

Design of Experiments

In Chapter 2, processes were described based on their: duration, length, disk, memory, and CPU

usage and typical Cloud tasks were categorised into three types: short (0.7 million instructions

(MI)), medium (16.6MI), and long (124MI) [156]. As with the server and virtual machine models

the choice of these Cloud task models is due to their separate verification by Moreland et al. [72]

and [166]. The third longer task type is not used in this research as it is not representative of

µSs. Further each task is defined with an internal resource lifecycle relating to the acquisition and

release of resources, specifically memory [93]. The combination of these patterns provides eight

task configurations shown in Table 3.1 and Figure 3.8.

In order to model interference, the Cloud workload patterns discussed on Page 52 are used, and

specifically three are adopted for the purposes of this research: static, periodic, and unpredictable.

Combined this provides seventy-two configurations for each QoS approach. Figure 3.8 shows a

summary of the experiment configurations where each of the interfering workloads is run at either

a high, medium, or low level set at 95%, 90%, and 80% respectively.

The simulation results, shown in the next section, are compared by measuring the:

Prediction Accuracy using Mean Absolute Error (MAE) and Mean Percentage Er-

ror (MPE) as used by Zhu et al. [123] and Mean Percentage

Waste (MPW). The MAE and MPE compare the measured Ri
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Table 3.1: Micro-Service (µS) process types based on observed Cloud tasks and resource
lifecycle models.

against the predicted QoS value R̂i whilst the MPW takes the

average amount of time by which the prediction was greater than

the measured Ri. In the following equations the calculation is

constrained using the square Iverson Brackets for summation

conditions [172]:

MAE=
∑N
i |R̂i−Ri|

N

MPE= MAE∑N
i R̂i/N

MPW=
∑N
i (R̂i−Ri)[R̂i>Ri]∑N

i R̂i[R̂i>Ri]

(3.5)

QoS Violation measuring the Absolute Violation Count (AVC) as well as the

Mean Absolute Violation (MAV) and Mean Percentage Viola-

tion (MPV), constrained using Iverson Brackets:

AV C=
∑

i[R̂i < Ri]

MAV=
∑
i(R̂i−Ri)[R̂i<Ri]

AV C

MPV= MAV∑
i R̂i/N

(3.6)
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Figure 3.8: Overview of QoS experiment showing 6 core existing approaches, 12 µS
types, and workload interference patterns.

3.3.2 Preliminary Simulation Analysis and Results

This section depicts the preliminary results of simulating each of the approaches detailed in the

previous section in the context of the specified Micro-Services and interference workloads.

Figure 3.9 depicts 2 samples of server CPU and memory utilisation which are subject to a

periodic interference workload. In this case the average interfering workload utilisation is 80% on

top of which the individual Micro-Services are executed. The µS depicted in Figure 3.9c, hosted

on the server from Figure 3.9a, was allocated on average 31% of the requested CPU time and

51% of the requested memory resulting in an average execution time 59% longer than its specified

length of 16ms. Similarly the µS in Figure 3.9d on server Figure 3.9b took on average 42% longer

than specified with 52% of requested resources being allocated on average.

In terms of the µS resource utilisation there is an important observation to be made around
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(a) A server instance hosting LA2 (b) A server instance hosting EN1

(c) Micro-Service LA2 requested and allocated
resources

(d) Micro-Service EN1 requested and allocated
resources

Figure 3.9: Server and Micro-Service utilisation with low periodic interference (80%)
workloads

the shape of the graphs. In the Figure 3.9c µS example the lazy nature of the process acquiring

resources and its active release causes a relatively unstable shape with numerous points at which

it can blocked. This also means that it much harder to identify correlation between the pattern of

requested resources and those allocated. In the case of Figure 3.9d the eager nature of the process

results in a much more predictable pattern that can be seen in both the requested and allocated

resources.

The remainder of this section considers each of the measures discussed in Section 3.3.1 relat-

ing to prediction accuracy and QoS violation.

Prediction Accuracy

Eqn. 3.5 defines the measures for Mean Absolute Error (MAE) and Mean Percentage Waste

(MPW) by comparing the predicted QoS and actual observed response-time values. Figure 3.10
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(a) Mean Absolute Error (MAE) (b) Mean Percentage Waste (MPW)

Figure 3.10: Average accuracy of QoS across all µS types

depicts the average MAE and MPW of each of the approaches under low, medium, and high in-

terference. Most notably the real-time iLand approach (described in Section Section 3.2.2) results

in the largest error by a significant margin (a). It can also be seen that this is the only approach

in which the wasted allocated time (b) is in excess of 100% of the actual execution time. The

approaches by Zibin et al. (Section Section 3.2.1) and Benbernou et al. (Section Section 3.2.6)

have average errors within 2% of each other, 25.4 and 25.7 respectively.

Further, with the exception of the iLand approach, the observed error increases along with

the interference load. The 10% increase in interference from low to medium results in a 44% for

Benbernou, and 47% for Zibin. The further 5% increase to a high interference workload results in

a further 18%, 328% and 329% error increase. Additionally comparing between the µS lengths of

the medium length Cloud Types (T2, see Table 3.1) reveals an exponentially increased error rate

of 186% compare to T1 whilst T3 has a further increased error rate of 1897%.

Beyond the MAE the Figure 3.11 depicts the cumulative wasted time by each of the QoS

approaches. Each of the approaches tends towards some plateau defined by the worst observed

response-time. For the µSs which acquire resources eagerly the QoS predicted by Zibin et al.

consistently wastes less time, 14% rather than 24%, than the approach by Benbernou. In the case

of the remaining µSs both approaches waste between 26% and 28% of allocated computation

time. However unlike the absolute error observed, the waste percentage decreases proportional to

the µS’s length for both the approach by Zibin et al. and Benbernou et al.. In the case of iLand the

wasted time increases exponentially with the length of the µS.

So far the non-Real-Time approaches using correlation by Zibin et al. and fuzzy-logic by

Benbernou et al. have demonstrated very similar results, whilst the real-time iLand method wastes
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Figure 3.11: Cumulative wasted time due to over allocated QoS with 80% interference.

significant execution time.

QoS Violation

Eqn. 3.6 provides the calculation for the Absolute Violation Count (AVC) and the resulting Mean

Absolute Violation (MAV). As shown in Figure 3.12, the iLand approach sees the fewest viola-

tions (13%), due to extreme cases, with response-times being only 0.7% longer than the specified

QoS in those instances. The remaining approaches are again very similar on average with 1.7%

(a) Mean Absolute Violation (MAV) (b) Mean Percentage Violation (MPV)

Figure 3.12: QoS violations across all µS types
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and 2% MPV for Zibin et al. and Benbernou et al. respectively.

3.4 Conclusions: Limitations of Current Techniques

This chapter has explored the existing approaches to RT-QoS. Simulation was then used to analyse

in terms of QoS violations and QoS accuracy the effectiveness of a representative subset of those

approaches:

Estévez-Ayres et al. [144] presents a real-time perspective on RT-QoS and over-estimates

execution time to mitigate possible interference. As a result al-

though this approach results in the lowest number of QoS viola-

tions (less than 20%) it also results in the most wasted compu-

tation time by three orders of magnitude.

Benbernou et al. [111] uses fuzzy-logic QoS predictions directly proportional to the

observed Worst-Case Response Time. It demonstrated wasting

less than 1% of allocated computation time whilst reducing QoS

violations to less than 50% of µS invocations.

Zibin Zheng et al. [146] demonstrated very similar results to Benbernou et al. [111] with

a very slight improvement with respect to both wasted compu-

tation time and QoS violations.

The simulation results firstly show that there is a trade-off between the accuracy, measured using

MAE and MPW, and the number of QoS violations, measured using MAV. Those approaches with

very few violations introduce large margins of error. Conversely those approaches with low error

margins suffer from many more violations. Further the results shown in Figure 3.9 demonstrated

the complexity of the problem of predicting QoS.

The results have also shown that the length of the µS can also impact the accuracy of the

predictions in addition to the resource acquisition pattern which any given µS adopts.

3.4.1 The Research Challenge

The results presented in this chapter demonstrate that current approaches to predicting RT-QoS

trade-off prediction accuracy against the number of observed QoS violations. As a result those
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Figure 3.13: Example resource availability vs. required resources leading to a deadline
miss

approaches with very few violations have QoS predictions that are orders of magnitude greater than

the actual observed response-times. Additionally the simulation results have shown the complexity

of understanding response-times of µSs running on servers with interfering workloads. The QoS

approaches do not take into account issues of resource utilisation and do not explore any of the

resource utilisation patterns, as shown in Figure 3.9. It is therefore anticipated that understanding

the resource patterns will assist in forming more accurate predictions.

Hypothesis

It is anticipated that a better understanding of the relationship between resource utilisation

and execution progress, based on actual observations, would facilitate the forming of more

accurate RT-QoS predictions without compromising the number of QoS violations.

Such an approach must consider the level of interference experienced by a µS and aim to

minimise both the Absolute Violation Count (AVC) and the Mean Percentage Waste (MPW). It

would also be advantageous for such a method to provide online monitoring of µS execution

progress so as to identify potential RT-QoS violations before they occur, which is not provided by

the existing methodologies. In Figure 3.13 a visual representation of the problem is shown where

the required resources are not available resulting in the deadline being missed.

The remainder of this thesis presents an approach that considers the relationship between
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the compute resources and µS execution performance. In the next chapter the mathematical for-

malisms for the approach are outlined. The theoretical potential of the proposed method is demon-

strated using real-time schedulability theory in the context of an interfering workload. Then in

Chapter 5 the simulations results are explored before in Chapter 6 the experimental results are

discussed.



Chapter 4

n-D Framework for RT-SOA QoS

The previous chapters have introduced and reviewed the concepts of QoS prediction and

looked at some of the limitations of existing techniques. Chapter 3 specifically details the lim-

itations with regards to the MPV and the MPW. In the context of real-time systems the violation

count must be minimised for both firm and soft deadlines and must be 0 where there are hard

deadlines. The existing attempt to handle these by pessimistically over-allocating resources and

time to a given µS results in significant wasted computation time.

This chapter presents the mathematical formalisms for predicting RT-QoS in the context of

non-static resource-level interference.The framework can be used to estimate the response-time

and remaining execution time of the specific µS given the current and historical n-dimensional

state of the resources, such as CPU and memory. First the real-time premise for the framework is

formalised to provide the foundation for the rest of the chapter. Then Subsequently the framework

is developed and then evaluated against that premise.

81
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Figure 4.1: Extended SOA fault taxonomy from Bruning et al. [102]

4.1 Framework Premise

As discussed on Page 44 the central tenet of real-time systems is the ability to perform schedulabil-

ity tests to indicate whether a given process will meet the required deadlines. Chapter 3 presented

a hypothesis linking the QoS prediction to understanding resource utilisations. Therefore the SOA

fault taxonomy presented in Chapter 2 Figure 2.14 can be extended with additional fault classes

for the specific description fault whereby the specified response-time can not be delivered due to

resource limitations within either the host server or across the network. As shown in Figure 4.1

this can therefore result in the QoS deadline not being adhered to [170].

In order to test this hypothesis and develop a framework to model this relationship a schedu-

lability test must defined to indicate whether the scheduled processes are schedulable or not. A

sufficient schedulability test indicates that the processes are definitely schedulable; whilst a neces-

sary test can indicate whether they are definitely not schedulable.

Since this research is not concerned with workflow-level QoS whether the µSs are periodic

or not can be disregarded by assuming that the deadline is equal to its period. Therefore the

traditional utilisation schedulability test (Eqn. 2.2) can be rearranged as follows:

U =
Ci + Ii
Di

(4.1)
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Where Ii represents the total utilisation by other processes interfering with µS i. However, unlike

in traditional real-time systems these are not static values. The interference experienced by the µS

will vary over its execution duration. Therefore the total availability of resources from when the

µS is requested to its deadline must be greater than or equal to the resources required by that µS:

∀r,
D∑

(1− Ii,r,t) ≥ Ui,r (4.2)

Where the interference Ii,r experienced by i is a percentage of resources at a given time t.

Then over the computation time of i for all the resource types the total interference must leave

sufficient resources for computation to complete. For example in the below figure the interference

is not sufficient to cause the deadline to be missed:

The remainder of this section outlines the notation that will be used in building the framework.

4.1.1 Notation

The notation used in this chapter follows the following format:

Θt[φ](sn)x{r}

Where:

Θ is the function or component of interest.

t is the time stamp.

φ are constraints being applied using Iverson brackets.
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s is the µS being modelled. Although required for a full statement, some state-

ments omit this in order to improve readability resulting in the form: Θx
t,{r,i}[φ]

n is the execution instance of the µS. If it is not present indicates that Θ is targeting

the overall model covering all execution instances.

x is the specified named component of the model.

{r, i} is the set of dimensions and coordinates within the model. For example if there

are 2 resource dimensions the r values provide the 2D coordinates.

Additionally:

· represents a placeholder.

‖ · ‖f represents some form of normalisation using function f .

[·] represents constraints or conditions being applied.

And finally below is a list of the symbols used in this chapter along with the page number of

their formal definition:

S Set of all Micro-Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

S A Service in the registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

s Micro-Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

p Execution Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

f Observation and monitoring frequency. . . . . . . . . . . . . . . . . . . . . . . 86

k The number of observation points. . . . . . . . . . . . . . . . . . . . . . . . . 86

RTT Response-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

h Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

H Set of all Hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

R Set of all Resource Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

r A resource type with a capacity and measure of performance . . . . . . . . . . 87

dr Discrete set of resource values . . . . . . . . . . . . . . . . . . . . . . . . . . 87

α The observed resource availability on the host . . . . . . . . . . . . . . . . . . 88

j The model coordinate values for each resource dimension. . . . . . . . . . . . . 88

U The utilisation model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

ω An observation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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Ω Set of all observations for a given Micro-Service instance. . . . . . . . . . . . . 89

F Forecast of the resources required until execution completes. . . . . . . . . . . 90

M The model itself. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

T Set of historical response-times . . . . . . . . . . . . . . . . . . . . . . . . . . 91

I Indicator function defining the density of the model at any given point. . . . . . 91

T T F Time-to-Finish for Micro-Service execution. . . . . . . . . . . . . . . . . . . . 91

D−1 Inverse distance measure between any two points in the model. . . . . . . . . . 93

D The Micro-Service or Service Deadline . . . . . . . . . . . . . . . . . . . . . . 94

The next section presents the development of the framework.

4.2 Initial Framework

The framework can be broken down into three distinct units defining the: relationship between

µSs and their execution environment; the resource utilisation models; and response-time predic-

tion. This section details each of these providing mathematical definitions for each element of the

model.

4.2.1 Service and Environment Model

The first element of the framework is the definition of services and Micro-Services (µSs) as de-

scribed in Section 2.1.2 on Page 23. Subsequently each µS executes in a host environment which

must be modelled with respect to its resources.

Services and Micro-Service (µS)

As discussed in Section 2.1.2 services can be decomposed into Micro-Services (µSs) as their

smallest practical functional elements. In that context each service in the registry, or set of all

services, is comprised of a subset of µSs, from the set S of all µSs, and the interactions between

them as shown in Figure 4.2. In this example service S1 can be decomposed into a mixture of

other services S2 and S3 as well as µSs s1, s2, and s3 in addition to the interactions between

them e1 to e7. As shown in the case of S2 a service may iteratively be comprised of µSs or other

services.
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Figure 4.2: Decomposition of services into µSs

A µS s is defined as a functional element for which it is not practical to decompose into

smaller components. It may execute one or more times, and any given execution instance is

defined as: sn. The execution progress p of the µS can be monitored at a frequency f such that

there will be an average of kn observations given a response-time RTT :

∀s ∈ S,∀n,∃f ∈ Z+ :

k(sn) = RTT
f

k(s) =
∑n
i k(si)
n :

0 ≤ p(sn) ≤ k(s)

(4.3)

Which provides a measure of execution progress p as visually shown in Figure 4.3. k(sn)

provides for a particular execution instance the number of observation points that were collected

over the response RTT with the specified frequency f . Averaging this over all n execution

instances provides k(s). The execution progress is then a value between 0 and k(s). Figure 4.3b

shows with k(s) = 9 given a frequency of f = 1s. The actual progress of the s instance in

question is slower than anticipated resulting in 12 observations: k(sn) = 12.

Host Environment and Resource Availability

Each execution instance sn of a µS will execute on a host sever h , from the set of all host servers

H , which will have set of resourcesR which could include CPU and memory:

∀h ∈ H,∀r ∈ R :

h(sn)r = ‖h(sn)rcap · h(sn)rperf ‖%
(4.4)
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(a) Visual representation of progress

(b) Observed utilisation below expected result-
ing in execution slowdown with progress updat-
ing every second

Figure 4.3: Example execution progress

Such that the resource provision by any given host is normalised to a percentage against the

smallest provision of that particular resource r . The definition of hr takes into account both the

capacity of the provided resource rcap, such as memory or CPU capacity, as well as its performance

rperf , for example comparing a 2GHz processor to 3GHz processor. The normalisation adopted

by ‖ · ‖% is:

‖x‖% =
x

minx ∈ X

Normalising based on the smallest value of x from the set of all X . The result is a ratio of the

particular x of interest divided by that smallest value. For example if the smallest value in X is

2 and the particular x of interest is 3 then the normalised value will be 1.5 which corresponds to

150%.

Further to constrain the possible values for r to a discrete set of isolated points it is discretised

to dr. Were dr is a set of discrete possible values between 0 and 1:

∀r ∈ R, ∃dr ⊂ R+ :

∀x ∈ dr, 0 ≤ x ≤ 1∀y ∈ {dr \ x},∃δ > 0 :

dist(x, y) > δ

(4.5)
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Figure 4.4: Framework multi-dimensional coordinate system indexed by j

Such that for every pair of elements (x, y) between 0 and 1 from the discrete space dr there is

positive distance between them unless they are the same point. For example if there are 5 values

in the set dr they could be {0, 0.25, 0.5, 0.75, 1}.

Therefore at any given time t the resource on h may be in partial or complete use by other

interfering processes. As such a measure of resource availability α can be defined:

∀r ∈ R, ∀t, α(h, sn) = 1−
Host utilisation︷ ︸︸ ︷

(U(h(sn))r,t−
µS utilisation︷ ︸︸ ︷
U(sn)r,t) (4.6)

Where U(h(sn))r provides the sum of resource utilisation by all processes (including sn) hosted

by h and U(sn)r the resources utilised by only µS at time t. This defines the available resources

to sn as being those either already being consumed by it or those not being consumed at all on

h . The availability observations can then be combined to provide a total and average observed

availability over the duration of a µS execution instance:

AΣ
r (h, sn) =

∑k
p=0 α(h, sn)r,p

A(h, sn)r = AΣ
r (h,sn)
k

(4.7)

Finally these availability values can be converted into coordinate values j in the discrete space

of dr as shown in Figure 4.4:

j = {r ∈ R : bA(h, sn)r × |dr|c} (4.8)
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4.2.2 Resource Utilisation Model

In order to predict the response-time of a given µS it is necessary to model the relationship between

performance and resource utilisation. Therefore depending on the resources made available to the

µS there may be a slowdown or speed-up of performance. This section builds on the definitions for

resource availability on a µS’s host from the previous section and introduces the multi-dimensional

framework for modelling the resource utilisation.

Utilisation Model

The model itself is a multi-dimensional space of discrete points which are indexed by j . j is

defined by Eqn. 4.8 and provides the context or constraints under which the µS is executing:

RTT[A(h(sn)](sn) :

{∀r : A(h(sn)r)} → j :

∀r, ∃U(s)jr

(4.9)

Which specifies that the availability of resource, across all the resource types, generates a co-

ordinate set j . For every possible j there exists a utilisation model U for each resource

type.

Subsequently in order to populate U data must be collected from a running µS instance sn.

These observations ω will occur at the specified frequency f , resulting in a set of observations

Ω for that µS instance. The observations themselves must be either downsampled or interpolated

[[·]]ip to provide k values to be used by the model. Each observation is also normalised [[·]]0..1 as

a percentage of the resources available on the largest host:

{∀r, ∀ω ∈ Ω(sn) : [[ωr]]0..1}
[[·]]ip−−→ {ur ∈ U(s)j} (4.10)

The interpolated observations ur are then used to populate the utilisation model U . Each

point in the model as indexed by j and the execution progress p is a 5-tuple comprising of the

mean, minimum, maximum, variance, and sum of squared differences for that configuration point

over the history of execution instances:

∀j, ∀x ∈ {µ,∧,∨, σ2, SQD},∀p ≤ k : ∃Uxj,p (4.11)
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Each component within the 5-tuple is updated iteratively with each new execution instance n. The

mean can therefore be calculated as the previous mean U(s)
µn−1

j,r,p in addition to the difference be-

tween interpolated observation u(sn)r,p and the previous mean divided by the number of instances

in that particular configuration |U(s)j,p| which will always be less than n:

U(s)µnj,r,p = U(s)
µn−1

j,r,p +
u(sn)r,p − U(s)

µn−1

j,r,p

|U(s)j,p|
(4.12)

Then in order to calculate the variance the sum of squared differences SQD is derived from the

mean:
U(s)SQDnj,r,p = U(s)

SQDn−1

j,r,p +
(
u(sn)r,p − U(s)µnj,r,p

)2

U(s)
σ2
n
j,r,p =

U(s)SQDnj,r,p

n

(4.13)

In addition the observed minimum and maximum resource utilisations are calculated by compar-

ing the new observation against historical runs:

U(s)∧nj,r,p= min
(
U(s)

∧n−1

j,r,p , u(sn)r,p

)
U(s)∨nj,r,p= max

(
U(s)

∨n−1

j,r,p , u(sn)r,p

) (4.14)

These can then be summarised to provide a forecast F of the remaining resources required for

execution to complete from a given point p and the variance of utilisation over the execution

duration:
∀r, ∀j,∀p ≤ k,∃F (s) :

F (s)
x∈{µ,∧,∨}
j,r,p =

∑k
i=p U(s)xj,r,k−i

F (s)σ
2

j,r,p =
∑k
i=p U(s)σ

2

j,r,k−i
k−p

(4.15)

The forecast calculations shown in the above equations specifically calculate the summations

in reverse order with suffix k − i as this algorithmically reduces the computation needed from

O(k2) to a linear calculation of O(k). This forecasting method assumes that a given µS will have

a relatively consistent resource utilisation pattern for a given resource availability configuration.

The next section uses these utilisation models and forecasts to estimate response-times for µSs.

4.2.3 Predictive Model

The utilisation and availability observations allow for a model to be constructed that represents

the µS’s performance with respect to the resources with which it is provided. This model can be
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defined in two stages with respect to structure and response-time prediction.

Model Structure

The model M exists as an |R|+ 1 dimensional model which accounts for each of the resource

types in addition to the dimension of time. M is therefore a k
∏
∀r∈R dr matrix. If k = 10,

dr1 = 3, and dr2 = 4 the model would be a 10× 3× 4 matrix. Each point in the matrix is itself a

6-tuple capturing all the elements of the utilisation, forecast, and predictive models:

∀m ∈M,Mj = m,m = 〈t∨, tµ, Tj , Uj , F j , Ij〉 (4.16)

Where T stores all the recorded response-times observed by the µS: Tj(s) = {Tj(s),RTT} and

Uj is the utilisation model discussed in the previous section. I acts as the indicator function,

as used by Zibin Zheng et al. [146] as a significance weighting, and is defined as a measure of the

density or number of execution instances that ran under a given availability constraint:

∀j, Ij = |MT
j | (4.17)

Response-Time Prediction

This model structure can then be used to predict the response-times of µSs as they are deployed

based on the current availability of resources. The resource availability is mapped onto the coor-

dinates j which is used to index the model. For the prediction the first two parts of the 6-tuple

can be used to give either a nominal tµ or pessimistic prediction t∨:

RTT[A(h(sn)](sn) =
〈
mtµ ,mt∨

〉
(4.18)

The nominal prediction mtµ can be calculated as an iterative mean of response-times using the

same form as Eqn. 4.12. The pessimistic prediction provides the observed WCET and is therefore

more appropriate for hard real-time systems.

Once execution has started the time-to-finish T T F for the µS instance can be estimated

using the execution progress p :

T T F [A(h(sn)](sn) =
(

1− p

k

)
mx (4.19)
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Where x is either of the response-time predictions t∨ or tµ. p is then estimated by comparing the

observed and expected resource utilisation at time t:

p(sn)t = max

{
p(sn)t−1,min

{
∀r ∈ R :

1

k

⌊
k ·
∑t

x=0[[Ω(sn)j,r,x]]0..1
F (s)j,r

⌋}}
(4.20)

Where the observed utilised resources Ω are totalled and compared against the forecast resources

F . This comparison is against each resource type and the worst case provide the estimate of

the execution progress. Therefore the estimation pessimistically chooses the worst-case scenario

by choosing the resource dimension with minimum observed utilisation compared to the forecast

utilisation. Within the min function k rounds those values to the nearest multiple of k . This

assumes that the work done by the µS is non-decreasing as time progresses .

Initial and Sparse Model Prediction

The model so far facilitates the estimation of response-times and remaining computation time of

µSs using previous µS execution data under the currently observed resource availabilities. There

are however two situations where the current model is not sufficient:

1. Initial-case where the model is empty with no execution information about the µS.

2. Sparse-case where there is information about execution performance under a subset of

resource availability configurations.

In the first instance the prediction must be based on WCETs provided by the µS developer. This

however may be provided in three forms:

1. Response-time purely as a nominal value.

2. WCET with a utilisation model or resource requirement.

3. Response-time with or without resource utilisation information but alongside a host speci-

fication.

Where resource utilisation information is provided this can be used in conjunction with traditional

real-time systems techniques to estimate the WCET:

RTT[A(h(sn))] =

〈
Uµprovided
A(h(sn))

,
U∨provided
A(h(sn))

〉
(4.21)



Chapter 4 93 n-D Framework for RT-SOA QoS

However if resource utilisation data is not available it must be assumed for the worst-case instance

that the µS utilised 100% of the host’s resources for its execution duration. Additionally unless a

host specification is provided it must be assumed that the response-time, and if provided utilisation

information, is relative to the most powerful available host of the available hosts H . If, however, a

host specification is provided this can be used as a normalising factor for the provided information.

In the instance where the model is sparsely populated, where µS execution has occurred under

other resource configurations than those currently observed, an estimate can be inferred from the

existing data. Specifically by considering the distance from the current configuration j and

existing data points within the model an inverse distance measure can be calculated D−1 :

D−1 =
1

dist(i, j)
(4.22)

Where dist(a, b) can use any distance measure such as Euclidean or Manhattan distances between

points a and b within the model space specified by the dimensions of r and size dr. This can

be used in combination with the indicator function I to assign greater significance to those

configurations i that are closest to j and have more historical data.

RTT[A(h(sn))](sn) =

〈∑
i 6=j(I(s)j ·M(s)µj ·D

−1(i,j))∑
i 6=j(I(s)j ·D−1(i,j))

,
∑
i 6=j(I(s)j ·M(s)∨j ·D−1(i,j))∑

i 6=j(I(s)j ·D−1(i,j))

〉
(4.23)

Complete Model

The resulting complete model can therefore be expressed as a conditional statement:

RTT[A(h(sn))] =


(Eqn. 4.21) MT ≡ ∅

β1 · (Eqn. 4.23) + β2 · (Eqn. 4.21) MT
j ≡ ∅,∃i :MT

i 6= ∅

γ1 · (Eqn. 4.18) + γ2 · (Eqn. 4.23) + γ3 · (Eqn. 4.21) MT
j 6= ∅

(4.24)

Where the cases represent the initial and empty, sparsely-populated, and probabilistic models

respectively. This statement allows for the three methods to be combined utilising the weight

factors β and γ where β1 + β2 = 1 and γ1 + γ2 + γ3 = 1. Overall this method provides the

functionality shown in Figure 4.5 whereby the response-time is periodically estimated and can be
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Figure 4.5: Example from Figure 3.13 where the deadline miss is identified by the frame-
work prior to the event.

used to identify during execution whether a deadline D is likely to be missed given the current

resource availability.

The next section demonstrates how this framework for predicting the response-time of a µS

can be used and evaluates its effectiveness with respect to schedulability, scalability, and efficiency.

4.3 Theoretical Evaluation and Application

This section presents a detailed analysis of the multi-dimensional mathematical framework pre-

sented in the earlier parts of this chapter. First though the application of the framework, its work-

ings in practice, and algorithmic efficiency will be shown before the effectiveness of the approach

is considered. The presented framework will be analysed firstly with respect to real-time systems
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schedulability and its ability to provide deadline guarantees (Section Section 4.3.2).

4.3.1 Framework Application and Algorithmic Analysis

In order to use the framework presented in this chapter it must be first expressed algorithmically. In

Algorithm 1 the core of the algorithm is presented and then is expanded in subsequent algorithms

later in this section.

The core algorithm consists of two phases:

1. Online monitoring shown as line 1 to line 17 which summarises the online observation of

resource utilisation and availability whilst updating the predicted time-to-finish and progress

during µS execution.

2. Model updating on line 18 to line 22 which focusses on constructing and updating the

predictive model with the recorded data.

Each of these phases are expanded into their constituent parts in the remainder of this section.

Online Monitoring

In the first phase, as the resource utilisation of the µS and on the server is observed, the forecast

model can be used to predict the remaining T T F .

As discussed on Page 86 the availability of resources to an executing µS may vary over its

execution duration, as depicted in Figure 4.5. The proposed framework requires observation of

the resource availability at a constant frequency f . These observations are used to calculate

the model coordinates j , as described in Eqn. 4.8, for the current configuration as shown in

Figure 4.4 and in Algorithm 3 on Page 215 in the appendices.

Then as described on Page 91 the execution progress p can be estimated as shown in

Algorithm 4. As described on Page 92 the algorithm accounts for (see line 4 to line 7) the pro-

vision of either a utilisation value or expected response-time as part of the initial case. Given

the estimation of p , the time-to-finish T T F can be predicted as shown in Algorithm 5 and

described on Page 91.

Algorithm 3, Algorithm 4, and Algorithm 5 can then integrated into the online monitoring

and prediction process shown in Algorithm 2. In terms of performance the first two algorithms

operate linearly with respect to the number of resource dimensions: O(r) which can be assumed
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Algorithm 1: Core Algorithm
1 begin Online Monitoring
2 Invoke s on h
3 Start Timer
4 p = 0
5 Ω = EmptySet
6 while s running do
7 if Timer.Elapsed ≥ f then
8 begin in parallel
9 ω = OBSERVE UTILISATION( s ,h)

10 a = OBSERVE AVAILABILITY(h)
11 end
12 Ω .Add(ω)

/* See Algorithm 2 */

13 ( p , T T F ) = UPDATE PREDICTION( s , Ω ,a)
14 end
15 RTT = Stop Timer
16 end
17 end

18 begin Model Updating
19 n+ +

/* See Algorithm 7 */

20 T = UPDATE DATA SETS(RTT, A)
/* See Algorithm 6 */

21 U,A = BUILD MODELS(u, a)
22 end

to be relatively small and would remain fixed for a given system. The calculation of T T F in

Algorithm 5 operates in terms of size of each resource dimension: O(2 · |dr|r). The overall online

monitoring algorithm is thereforeO(2·r+2·|dr|r) which given a constant dr and set of resources

results in a constant execution time for a given system implementation.

Model Updating

The second phase of the core algorithm focusses on updating the models after execution has fin-

ished. This phase, as can be seen in Algorithm 1, consists of two steps:

1. Updating the data sets

2. Rebuilding the utilisation and availability models
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Algorithm 2: Online monitoring and prediction
Input: α as calculated in Eqn. 4.6
Input: Ω the set of resource utilisation observation
Input: k specified as a constant
Result: T T F the estimated time-to-finish
Result: p the estimated execution progress

Startup: p defined initially as 0

/* At least 1 of RTT or Uprovided must be supplied */

Optional: Uprovided the statically provided, otherwise Uprovided =∞
Optional: RTT statically provided, otherwise RTT =∞
Optional: h provided as the benchmark, otherwise h =∞

/* See Algorithm 3 */

1 j = CALCULATE J( α )
/* See Algorithm 4 */

2 p = ESTIMATE PROGRESS(j, p,Ω, k, [U,RTT, h])
/* See Algorithm 5 */

3 T T F = ESTIMATE TTF(j, p,Ω, [U,RTT, h])

The first stage can be seen in Algorithm 6 where from line 1 to line 5. Then from line 6 to

line 9 the indicator function I is increased appropriately.

Subsequently the observed utilisation data from the execution instance is used to rebuild the

models that are used to estimate execution progress. In Algorithm 7 first the average availability is

calculated as per Eqn. 4.7 then the resource models are updated. The utilisation model is updated

first as described in Section Section 4.2.2 on Page 89 and then the forecast models calculated.

In terms of performance Algorithm 7 (line 1 to line 6) runs in O(2 · r), taking into account the

complexity of Algorithm 3. The remainder then loops on p and resources with a time complexity

of O(k · r). This gives an overall complexity of O(2 · r + k · r). This can be simplified to

O((2 + k)r) ≈ O(k · r).

These two constituent algorithms can be combined together to form the second phase of

Algorithm 1. This allows the core algorithm in total to operate with O(|dr|r + k · r) efficien-

cy. Therefore for a fixed system configuration, where both k and r are predefined, the process

time complexity is a constant value and does not increase with respect to the number of µSs or

number of execution instances. However in terms of space complexity as the number of µSs and

execution instances increases the storage required will increase linearly O(s · n).
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Deadline Alerts

As depicted in Figure 4.5 as the resource availability varies over the execution duration the point

of interest (defined by j ) within the model changes and provides an updated prediction on

response-time and time-to-finish T T F . Therefore at the estimated progress point it is possible

to show whether the predicted response-time will meet the deadline D or not. Additionally it will

show whether, based on previous runs, it is possible for the µS instance to meet the deadline given

an increase in resource availability. This is shown in Algorithm 8 which checks each alternative

configuration i that is larger than j to see if the T T F is less than or equal to the deadline. This

warning which would form part of the first phase can be run in O(|dr|r · 2 · |dr|r) ≈ O(|dr|2·r).

As each part of this is constant the algorithm continues to operate in constant time for a given

resource configuration and fidelity.

Given this algorithmic overview of how the framework can be applied, the next section explore

in detail how it can be used with real-time systems schedulability tests.

4.3.2 Proof: The Bounds of Schedulability

At the beginning of this chapter the utilisation-based schedulability test was redefined in terms

of interference on each resource dimension (Eqn. 4.2) which directly correlates with the resource

availability metric used in this framework (Eqn. 4.6). Utilisation-based analysis, as described on

Page 44, provides a sufficient schedulability test such that if the conditions are met the µS will meet

the deadline. Although it does not guarantee that the µS will miss the deadline if the conditions

are not met it can be reasonably assumed that as the interference grows and the schedulability

condition is violated to a greater degree the likelihood that the deadline may still be met will

decrease.

In order to evaluate the framework the following scenarios must be considered with respect to

the workload patterns described in Section 2.3.3:

Scenario 1 Static workload resulting in a continuous level of interference.

Scenario 2 Dynamic workload either random, once-in-a-lifetime, or periodic in nature.

Scenario 3 Continuously increasing resulting in greater levels of interference and therefore

reduced resource availability.
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Figure 4.6: Visual proof without words of the proposed mathematical framework. For
simplicity using single average (µ) values from 5-tuple representing U and RTT.

Scenario 4 Continuously decreasing resulting in less interference and more resources avail-

able to the µS.

Using these scenarios the remainder of this section explores the presented framework in the context

of the utilisation-based schedulability test in the form of visual and inductive proofs.

Visual Proof

A visual proof, otherwise known as a “proof without words”, must demonstrate using a diagram

the mathematical statement that the proposed framework satisfies the schedulability condition de-

scribed earlier. Figure 4.6 depicts the framework in the context of Scenario 2 above with a dynamic

workload resulting in the assigned deadline potentially being missed. The nature of the sufficient

schedulability condition dictates that it cannot guarantee the failure of the µS to meet the deadline

as defined by the implication relation =⇒ .
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(a) Mutli-dimensional space of the model with respect to r ∈ R and time with
the µS’s deadline D.

(b) Instantaneous resource availability α of h and total availability A.

(c) Required resources by the µS, u and U .

Figure 4.7: Construction of the visual proof.



Chapter 4 101 n-D Framework for RT-SOA QoS

The construction of the proof is shown in Figure 4.7 comprising of three stages:

Figure 4.7a Multi-dimensional space of the model with a deadline assigned to the µS.

Figure 4.7b The observed resource availability varying randomly over time and mapped onto

the coordinate system value j .

Figure 4.7c The required resources by the µS which are greater than those available to it

resulting in a response-time RTT greater than the specified deadline.

The following section details an inductive proof for each of the scenarios listed above.

Inductive Proof

In order to demonstrate that the proposed framework is theoretically effective in estimating the

response-times of µSs and importantly predicting when and if a RT-QoS violation of a deadline

being missed might occur this section details an inductive proof. The general proof is outlined

before being applied to the individual scenarios detailed on Page 99.

Before outlining the proof itself there are four assumptions that must be considered:

Assumption 1 Section Section 4.2.2 in Eqn. 4.15 assumes that a given µS will have a consis-

tent resource utilisation pattern for a given resource availability configuration.

Therefore for a given configuration j the forecast utilisation F will be consis-

tent with minimal variation.

Assumption 2 Section Section 4.2.3 on Page 90 in Eqn. 4.20 assumes that the work done by the

µS is non-decreasing over time. This means that as the progress is recalculated

the new progress value must be larger or equal to the last calculated progress

pt−1. This assumption holds true long as the µS cannot fail, restart, or resume

execution from an earlier point. The framework is therefore ignoring faults and

failures that are not related to the performance degradation due to interference

but focussing only on those discussed in Section Section 4.1 Figure 4.1.

Assumption 3 Section Section 4.3.2 on Page 98 outlines the basic assumption that resource

interference results in a slowdown of execution of the µS.
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Assumption 4 According to traditional real-time systems execution time calculations the response-

time of the µS will be approximately equal to:

max

{
∀r ∈ R :

U(s)r
j

}
(4.25)

Where in a single threaded and single core environment U ≡ C which would

be the number of CPU units required to complete (WCET). The framework

therefore assumes that these real-time assumptions can be mapped onto a multi-

threaded environment by representing the interference as a percentage.

Given the these assumptions using an inductive proof it can be shown that at a given point in

time the set of identified points in the model stating that the µS will meet the deadline is sound.

Additionally that set is the complete set of resource configurations for which it can be guaranteed

that the µS will meet the deadline according to the sufficient utilisation-based schedulability test.

It may not be the complete set based on an exact schedulability analysis.

The generic proof is therefore as follows:

Base Case The current resource availability α 7→ j at time t is such that RTTt[j] = D.

Inductive Case If i = j + x where 0 ≤ x ≤ |dr|, incremented in any resource dimension such

that
∑R

r ir >
∑R

r jr. Which means that according to Assumption 4:

U
i = U

j+x =⇒RTTt[i] = U
i

=⇒RTTt[i] = U
j+x

=⇒RTTt[i] = U
jidx −

U ·x
i

=⇒RTTt[i] = RTTt[j]− U ·x
i

=⇒RTTt[i] ≤ RTTt[j]

Therefore ∀i ∈ Γ : i ≥ j =⇒ RTTt[i] ≤ RTTt[j]

And ∀i ∈ Γ : i ≥ j =⇒ RTTt[i] ≤ D

Which shows that in the positive case where the µS has access to more resources, indicated by

i > j, the response-time will reduce. This can then be applied to each of the scenarios detailed on

Page 99 with static, dynamic, increasing, or decreasing interference over the execution duration of

the µS:
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Static takes the form of the generic proof where αt+1 = αt =⇒ jt+1 ≡ jt:

Base Case The response-time will be less than or equal to the deadline:

U

j
≡ F p=0

j
=⇒ RTTt[j] ≤ D

Inductive Case Throughout execution the forecast time-to-finish T T F will

be less than or equal to the deadline.

F p=1

jt+1
≡ F p=1

jt
=⇒ T T F t+1[jt] ≡ RTTt[j]− 1

Therefore throughout µS execution at all time points x the time-to-finish

will correspond with the original estimated response-time:

∀x ∈ Z+ :
F p=x
jt+x

= T T F t+x[jt+x] = RTTt[j]− x

=⇒T T F t+x[jt+x] ≤ D − x

Dynamic involves three unique cases whereby the µS either: (A) meets the deadline as

expected; (B) fails to meet the deadline; (C) or is expected to fail to meet the

deadline but performance improves allowing the deadline to be met. In each

case αt+1 may or may not be equivalent to αt but the average resource avail-

ability from t = 0, the point when the µS is started, to t = D is defined by A

according to (Eqn. 4.7). The actual observed response-time will be U
A as defined

by (item 4.25). The three cases are therefore outlined below:

A Is the case where although the interference experienced by the

µS is dynamic, at every point during execution the resources

required by the µS F in order to complete by the deadline D
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are sufficiently provided:

F p=0

jt=0
= T T F t[j] ≤ D :∀x, 0 ≤ x ≤ D :∑x

t=0 ωt ≥
x
D · F p=0

=⇒
∑x

t=0 ωt ≥ F p=0 − F p= x
D

=⇒ x+
F p= x

D
jt=x

≤ D

=⇒ F p=0

AΣ ≤ 1

=⇒ RTT[AΣ] ≤ D

B Is the instance where unlike in (A) the total resource availabil-

ity for 0 ≤ t ≤ D is less than that required for the µS to meet

the deadline. At the beginning though the RTTt[j] ≤ D but

later interference will cause the failure:

∃x, 0 < x < D :ωt=x < up= x
D∧∑D

t=x+f jt ≤ F p=x+f
D

[jt=x]

=⇒ T T F t=x[jt=x] > D∧
RTT[AΣ] ≥ D

Where even one instance of adequate resources not being

available may result in the deadline being missed. Which is

identified at time x with T T F t=x > D. In the above equa-

tion the ∧ denotes the logical ”And”.

Additionally in some cases the framework may be able to show

that it is not possible for the deadline to be met, even if ade-

quate resources were to become available at a later point, such

that 6 ∃i : T T F [i] ≤ D.

C Removes the constraint from (B) such that availability of re-

sources after x is greater than those originally required and

is sufficient for a new forecast under the new constraints of

jt=x. As in (B) there will be a point x such that the forecast
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time-to-finish indicates that the deadline will be missed:

∃x, 0 < x < D :ωt=x < up= x
D

=⇒ T T F t=x[jt=x] > D

However, in this case there will be a point y such that the

available resources are more than anticipated and sufficient for

the deadline to be met:

∃y, x < y < D :ωty > up= x
D∧ F p= y

D
[jt=y ]

jt=y
≤ D∧∑D

t=y+f jt ≥ F p= y+f
D

[jt=y]

=⇒ T T F t=y[jt=y] ≤ D

=⇒ RTT[AΣ] ≤ D

Increasing is a specific case of the dynamic case (B) where interference is increasing such

that ∀x, jt+x < jt. This itself has two cases where (A) the deadline may still be

met because the increase is not sufficient to delay the µS or (B) the deadline is

missed.

A If the resource availability is continuously increasing such that

the deadline can still be met, the following must apply:

RTT[jt=0] < D
∧

RTT[AΣ] ≤ D

B Where the increase results in the deadline being missed the

framework will identify at time x, in the same manner as pre-

viously, that the predicted time-to-finish is greater than the

deadline.

Furthermore there will be a point x ≤ y < D such that there

is no configuration i for which the deadline could be met.

Decreasing is a basic case such that ∀x, jt+x > jt. This implies that the ∀x, T T F t+x <

T T F t+x−f and that the final observed response-time will be less than deadline:

RTT[AΣ] < D.
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Note however, that in all scenarios, but this one in particular, there is never a

situation where meeting the deadline can be guaranteed without knowledge of

the interference to come: ∃i : T T F t[i] > D.

The framework has so far been been theoretically applied to various scenarios of resource in-

terference resulting in the periodic updating of the predicted time-to-finish and where appropriate

identifying the potential missing of a deadline as well as critically identifying where the deadline

can no longer be met regardless of any future resource availability.

4.4 Summary

This chapter has presented and analysed the mathematical framework for modelling µS response-

times based on resource utilisation and subsequent availability on specific hosts. The methods for

estimating the execution progress and time-to-finish have also been presented both mathematically

and algorithmically. The algorithms presented have been shown to be computable in constant time

as a function of the number of resource types r , the fidelity of modelling those resources dr ,

and the fidelity by which execution progress is measured k : O(|dr|r · k). In terms of storage

space the framework scales linearly with respect to the number of µSs and the number of execution

instances: O(s · n).

The next chapter will apply the algorithms presented here in the simulations configured in

Chapter 3.
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Simulation Evaluation of RT-SOA QoS

This chapter builds on the simulation used in Chapter 3 to evaluate the existing QoS approach-

es, and the mathematics and algorithms from the Chapter 4 with further more extensive simulation-

s analysing the performance of the proposed framework for n−dimensional prediction of RT-QoS.

First an overview of the simulation design is presented, building on Chapter 3. Then the

simulation results are presented in four stages:

1. In Section 5.2 an overview of the actual observed response-times compared with the allo-

cated QoS is presented.

2. Section 5.3 focusses on the RT-QoS violations, both their frequency using the AVC and the

amount by which the deadlines are violated with the MPV.

3. Section 5.4 considers the wasted computational and resource time due to overallocation of

time for service execution measured using the MPW.

4. And Section 5.5 combines the measure of overallocation and RT-QoS violation to consider

the trade-off between them.

Finally a summary of the results of the framework is presented in Section 5.6. Each stage of the
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analysis considers the effectiveness of the proposed framework against the measures described in

Chapter 3.

5.1 Overview & Simulation Design

In Chapter 3 Section 3.3 a detailed description of the simulation of QoS approaches was presented.

In this chapter the same simulation methods, using the same configuration for servers, virtual

machines, workload interference, and µSs is used to evaluate the proposed algorithmic framework

from Chapter 4. This includes using the same simulations models that are detailed in Appendix C.

In this section a summary of the simulation configuration is presented with respect specifically to

the workload patterns, µS types, and measures and metrics being used to evaluate the methods as

described in Figure 3.8.

5.1.1 Workload Patterns and Micro-Service Types

In order to simulate the interference experienced by a given µS a set of Cloud workload patterns

are used (see Page 52). Specifically in this chapter the focus is on periodic and continuously

changing or random workloads which may result in inadequate resource availability (whereas in

Chapter 3 only a periodic workload was evaluated). The simulated interference models assume

that the interfering workload has a mean resource utilisation which is classified as either high,

medium, or low (80%, 90%, and 95% as described on Page 72). Although physical servers could

often have workloads significantly lower than those being used in these simulations, the workload

must be high enough to interfere in an observable fashion.

The evaluations in the following sections focus on the performance of the approaches under

the influence of each of each these workload types.

The µS models are the same as those adopted in Chapter 3 imitating Cloud task with respect

to their expected CPU and memory utilisation as well as their duration. The Cloud task types are

extended with resource patterns to provide a set of eight µSs.

5.1.2 Measures and Metrics

In order to evaluate the effectiveness of the QoS approaches the metrics from Chapter 3 will again

be adopted here:
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• QoS violation as defined by Eqn. 3.6 with respect to frequency and degree:

– Absolute Violation Count (AVC) measuring the cumulative total number of QoS vio-

lations for a given µS.

– Mean Absolute Violation (MAV) measuring the level of violation in terms of seconds

between the predicted QoS and the observed response-time.

– Mean Percentage Violation (MPV) measuring the violation as a percentage of the

response-time.

• Prediction accuracy as defined in Eqn. 3.5 in terms of error and overallocation:

– Mean Absolute Error (MAE) measuring the error in terms of seconds between the

predicted QoS and the observed response-time. For each QoS violation the MAE is

equivalent to the MAV.

– Mean Percentage Error (MPE) showing the error as a percentage of the response-time.

– Mean Percentage Waste (MPW) measuring the overallocation as a percentage of the

response-time.

The next section will explore the prediction accuracy in terms of absolute error and the following

sections will in turn evaluate the effectiveness of the approach according to QoS violations and

overallocation.

5.2 Observed Response-Time vs. Predicted RT-QoS

As described previously, the accuracy of the predictions with respect to the actual observed response-

time can be measured using the Mean Absolute Error (MAE) shown in Eqn. 3.5. In this section

therefore the accuracy of the µS execution instances are analysed under periodic, unpredictable,

and continuously increasing workloads.

5.2.1 Interference: Periodic

Considering first the periodic workload the observed response-times and the corresponding pre-

dicted RT-QoS is shown in Figure 5.1. The shorter µSs have an average response-time of 14.6s

with a standard deviation of 1.9s whilst the longer µSs average response-time is 33.4s with a
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Figure 5.1: Response-Time vs. worst-case QoS with periodic interference

Table 5.1: Average response-times and QoS MPE by µS type and QoS approach with
periodic interference



Chapter 5 111 Simulation Evaluation of RT-SOA QoS

Table 5.2: Average response-times and QoS prediction MPE by µS type and QoS ap-
proach with continuously changing interference

standard deviation of 8.4s. As should be anticipated the longer processes have a greater expo-

sure to interference which increases non-linearly. Shown in the graph are the worst-case RT-QoS

predictions for the historical, correlation based by Zheng et al. [147], fuzzy-logic by Benbernou

et al. [111], as well as the proposed approach. The predictions using the real-time iLand method

by Garcı́a-valls et al. [142] are not shown on the graph as they overcompensate on average by

8456%. Most notably the fuzzy-logic approach predicts a lower response-time than either of the

other approaches.

The summarising results are shown in Table 5.1 where the prediction accuracy for short µSs

is 36% better than for the longer µSs across all the approaches (83% if the iLand predictions are

included). The fuzzy-logic approach demonstrates a more accurate prediction with a 20% MPE.

The proposed approach comes in 2nd place with a 42% error which is an improvement on both the

historical and correlation based methods.

5.2.2 Interference: Continuously Changing

In the context of a randomly/continuously changing workload the response-times may vary from

periodic interference. Table 5.2 shows the average response-times for the µSs under the random

workload as well as the MPE for each approach. As with the periodic workload the MPE of the

fuzzy-logic approach by Benbernou et al. [111] is the least at 16% and the proposed approach

comes in 2nd place at 38% outperforming each of the other techniques.
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5.2.3 Summary

In summary this section has looked at the QoS accuracy of the proposed approach in terms of

the Mean Percentage Error (MPE) under both a periodic and continuously changing workload. In

both cases the most accurate method was the fuzzy-logic approach with an average of 18% MPE

across all µS execution instances. The proposed technique produced an MPE of 40%, which is

more an accurate than the historical, correlation, or real-time techniques with MPEs of 44%, 55%,

and 7490% respectively.

The fuzzy-logic technique demonstrates greater prediction accuracy as it uses the average

response-time observed for any given fuzzy symbol, whereas the proposed approach utilises the

observed Worst-Case Execution Time (WCET). As will be shown in the subsequent sections the

use of WCET facilitates the proposed method to reduce the number of RT-QoS violations by a

significant degree compared to the fuzzy-logic technique.

5.3 RT-QoS Violations

In this section the level of RT-QoS violation by each of the approaches is discussed. This will focus

firstly on the AVC followed by the MPV from Eqn. 3.6. As in the previous section the interference

workload patterns will be first considered individually before the approaches are analysed with

respect to their overall RT-QoS violations.

5.3.1 Interference: Periodic

Under the influence of a periodic interfering workload the AVC is shown in Figure 5.2. Clearly the

fuzzy-logic (Benbernou) and iLand approaches perform significantly worse than the others with

an average of 30 and 12 violations per µS type across all execution instances. This is compared to

an average of 3.2 violations across the other approaches.

Figure 5.3 depicts the average AVC for short and medium length µSs for each approach as

well as the overall average violation count. The correlation and historical based methods depict

the least number of violations with 18 and 21 total violations respectively. The proposed method-

ology demonstrated a total of 38 violations such that 4.75% of µS instances resulted in a RT-QoS

violation.
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Figure 5.2: AVC across all execution instances with periodic workload

Figure 5.3: Average AVC for µS clusters by short and medium length



Chapter 5 114 Simulation Evaluation of RT-SOA QoS

Figure 5.4: MPV across all approaches with periodic interference

Although the proposed method results in more violations than both the correlation and his-

torical techniques the percentage by which the RT-QoS is violated is less. Figure 5.4 shows the

MPV for each approach by µS and averaged across all µS types. One of the worst performing

approaches is the correlation based method with an average violation of 35% compared to the

proposed method with an average MPV of only 10%. The other approaches return greater MPVs

with fuzzy-logic at 15%, iLand at 39%, and the historical method 14%.

5.3.2 Interference: Continuously Changing

RT-QoS violations for the various approaches under a random or continuously changing interfer-

ing workload are shown in Table 5.3a in terms of the MPV and Table 5.3b depicts the AVC. In the

first instance the proposed and historical approaches both have the smallest MPV of 11% whilst

the other approaches are between 12% and 46%. In terms of the violation count the fuzzy-logic
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(a) Mean Percentage Violation (MPV)

(b) Absolute Violation Count (AVC)

Table 5.3: QoS prediction by µS type and QoS approach with random interference

approach clearly under-performs with 40% of µS instances violating the QoS (there were 100 ex-

ecution instances per µS). The proposed approach comes in 3rd with 6% of instances violating the

RT-QoS whilst the historical and correlation based methods come in with 5% and 3% respectively.

5.3.3 Summary

This section has discussed RT-QoS violations of each of the predictions by the various approach-

es, using the Absolute Violation Count (AVC) and Mean Percentage Violation (MPV). The cor-

relation based method resulted in the least violations with only 2% of µS instances violating the

RT-QoS. This is closely followed by the historical method and the proposed approach with 3% and

5% respectively. However the violations in the proposed approach are only 11% (MPV) compared

to 13% and 35% respectively.

Further the fuzzy-logic technique, which in the previous section was the most accurate in terms

of MPE, observes 35% (30% more than the proposed method) of execution instances violated the

RT-QoS by an average of 14%. Also the traditional real-time approach by Garcia-Valls et al. [137]

observed 20% of execution instances violating the QoS as it is not designed to handle the dynamic

workload which the µSs experienced.
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Figure 5.5: Cumulative wasted execution time due to overallocation

5.4 QoS Accuracy

In this section the wasted execution time due inaccurate predictions is evaluated. Particularly of

interest are those situations where the predicted RT-QoS is not violated and prediction is overtly

pessimistic. This results in allowing µSs significantly more execution time than actually required.

In turn this means that a µS might not be selected for a given workflow or task as the QoS estimates

that it will take too long to run. In this section the term “Overallocation” will be used to discuss

prediction inaccuracy when the prediction is larger than the observed response-time.

This section will focus firstly on the cumulative wasted time over the execution instances

followed by the Mean Percentage Waste (MPW) from Eqn. 3.5. The evaluation will first consider

the results under a periodic workload before looking at continuously changing workloads.



Chapter 5 117 Simulation Evaluation of RT-SOA QoS

Figure 5.6: Average cumulative total wasted execution time for each µS cluster

Table 5.4: Mean Percentage Waste (MPW) across all µS execution instances with periodic
interference
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Table 5.5: QoS prediction MPW by µS type and QoS approach with random interference

5.4.1 Interference: Periodic

Considering first the performance under a periodic interfering workload. Figure 5.5 depicts the

cumulative overallocation over the execution instances of each of the µSs. The overallocation by

the iLand approach is not shown as it is over 100× greater than the others, 248208 time units in

comparison to 873 on average by the other approaches. This can also be seen in Figure 5.6 (except

the real-time approach due to the scale) where the fuzzy-logic approach by Benbernou et al. [111]

wastes the least time, followed by the proposed approach and then by the remaining approaches.

Table 5.4 details the wastage relative to the execution duration. The iLand method overallo-

cates by nearly 8500% whilst each of the other approaches on average overallocate by less than

50%. The proposed method performs noticeably better than the correlation-based approach by

Zibin Zheng et al. [146]. However it only marginally improves on the historical based method and

wastes more time than the fuzzy-logic approach. For each of the approaches the level of over-

allocation increases with the length of the µS. The proposed method demonstrates the smallest

increase with an increase factor of 2 compares with a factor 3 for the fuzzy-logic approach.

5.4.2 Interference: Continuously Changing

Under a random interfering workload the wasted execution time for each each QoS technique is

presented in Table 5.5 in terms of MPW. The traditional real-time technique wastes on average

6449% of execution time relative to the observed response-time of the µSs. The fuzzy-logic

technique by Benbernou et al. [111] wastes the least at only 18% whilst the proposed method

wastes 36% an improvement over the historical, correlation based, and real-time methods.
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Figure 5.7: Percentage waste difference between existing QoS approaches and proposed
method with respect to response-time. The real-time approach is shown on the secondary
(right) axis with a different scale.

5.4.3 Summary

This section has explored the wasted execution time by each of the QoS approaches due to overal-

location in terms of the MPW. The iLand technique by Garcia-Valls et al. [137] overallocates by

an average of 7461% with respect to the actual execution times. The proposed technique wastes

an average of 38% compared with 38% and 48% for the historical and correlation based meth-

ods respectively. The fuzzy-logic technique having a higher level of accuracy, as discussed in

Section 5.2, wastes the least time with an average MPW of 20%.

5.5 Trade-off: RT-QoS Violation vs. Overallocation

The previous two sections have considered independently the RT-QoS violations and overallo-

cation due to predictions by the various approaches. In this section the trade-off between QoS

violation and overallocation is considered. As before the periodic workload will be considered

first before the other workload patterns.
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Figure 5.8: Percentage violation difference between existing QoS approaches and pro-
posed method with respect to response-time

5.5.1 Interference: Periodic

Figure 5.7 and Figure 5.8 depict the overallocation of execution time and RT-QoS violation with

respect to the observed response-time of the µSs. The figures show the difference between be-

tween the existing approaches and the proposed method. With respect to overallocation clearly

the proposed technique performs better than all the approaches, other than the fuzzy-logic tech-

nique. This is due to the similarity between the approaches, with the proposed method using

aspects of both the historical and correlation-based methods and introducing more accuracy with

real-time utilisation information. Although the fuzzy-logic technique wastes less execution time,

as shown in Figure 5.8 is results in significantly more violations and violations by a greater degree.

The Waste-Violation bar chart in Figure 5.9 and Table 5.6 detail the average percentage wastage

and violation for each of the methods. The fuzzy-logic approach demonstrates an overallocation

of 30% less than the proposed method, with respect to the observed response-times. The historical

technique wastes 4% more, correlation 14% more, and the real-time iLand method 9667% more

than the proposed approach. The real-time method performs the worst across both aspects with a

MPV of 28% more than the proposed technique.

The trade-off between violation and wastage can be considered by combining the mean per-
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Table 5.6: Difference in QoS violation and wasted execution time between existing ap-
proaches and proposed method: Approach− Proposed

Figure 5.9: Aggregate difference between QoS approaches and proposed method for
MPW and MPV with periodic interference. Real-time approach not shown due to axis
scale.
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Table 5.7: Difference in QoS violation and wasted execution time between existing ap-
proaches and proposed method: Approach − Proposed with continuously changing in-
terference

centages weighted according to the focus of the system. In the case of a hard real-time system the

only consideration is RT-QoS violation and as shown in Table 5.6 the proposed approach outper-

forms each of the techniques by between 13 and 28%, other than the historical technique which is

within 1% of the proposed technique. The firm and soft approaches assign 2
3 and 1

3 respectively to

RT-QoS violation and the remaining to wastage. In both of these instances the proposed technique

outperforms each of the existing approaches, other than fuzzy-logic.

The final section of the table depicts the trade-off with respect to the number of µS execution

instances. In terms of hard real-time QoS compliance the proposed method outperforms the iLand

and fuzzy-logic techniques with 97 and 232 less violations respectively. Overall the correlation-

based technique by Zheng et al. has 1 less violation than the proposed approach and the historical

method 16 less, which is equivalent to 2% of all µS execution instances.

5.5.2 Interference: Continuously Changing

As with the periodic interfering workloads the observed performance of the QoS techniques is a

trade-off between violation and overallocation. Table 5.7 details this trade-off with respect to how

each of the methods performs in comparison to the proposed method. As detailed in the previous
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Table 5.8: Combined difference in QoS violation and waste between existing and pro-
posed approaches

sections the proposed method wastes less execution time than the historical, correlation based, and

real-time iLand techniques, but more than the fuzzy-logic method. In terms of RT-QoS violation

the fuzzy-logic approach resulted in 297 more violations than the proposed method.

The trade-off as described in the previous section considers both the mean percentage viola-

tion and overallocation as well as the number of execution instances that are effected. From a hard

real-time perspective the proposed technique outperforms each of the existing methods, excluding

historical, by an average of 24% MPV. The historical technique demonstrates a 3% MPV better

than the proposed method. Moving towards less strict real-time conditions, from firm through soft

towards non-real-time systems, the benefit of the proposed approach against the historical, corre-

lation based, and real-time techniques increases whilst the fuzzy-logic approach also improves.

5.5.3 Summary

This section has presented a trade-off of RT-QoS violations against overallocation of execution

time by RT-QoS prediction methods in terms of the difference between them and the proposed

method. Table 5.6 and Table 5.7 detailed the trade-off in terms of mean percentage and the num-

ber of µS execution instances affected. Under the influence of both periodic and continuously

changing workloads the proposed method wasted less execution time than the historical, correla-

tion based, and real-time methods, but more than the fuzzy-logic approach. The proposed method
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also resulted in more QoS violations compared to the historical and correlation based techniques.

The proposed method performs the best in comparison to the existing techniques under firm

real-time conditions, wasting less execution time and violating RT-QoS by a reduced percentage

across an average of 193 µS instances which is equivalent to 12% of all µS execution instances

(see Table 5.8).

5.6 Summary

This chapter has presented simulation analysis of the proposed RT-QoS prediction approach, from

the previous chapter. The simulation has evaluated the accuracy of the predictions under non-

static interfering workloads, in terms of periodic and continuously changing cloud workloads.

The performance of the proposed technique has been evaluated against the existing techniques,

discussed in Chapter 3.

The Mean Percentage Error (MPE) was used to evaluate the accuracy of the predictions in

Section 5.2. The proposed approach demonstrates an accuracy over the historical, correlation

based [146], and the real-time [59] approaches with an MPE of 42% compared with 46%, 55%,

and 8456% respectively. This accuracy was considered specifically in terms of overallocation or

Mean Percentage Waste (MPW) in Section 5.4.

Although the fuzzy-logic approach by Benbernou et al. [111] was more accurate than the

proposed technique as it used average response-times rather than the Worst-Case Execution Times

(WCETs) (20% MPE) it terms of RT-QoS violation it was significantly worse with 30% more

µS execution instances violating the RT-QoS. The RT-QoS violations observed by the proposed

method were the least severe with Mean Percentage Violations (MPVs) of only 11% across 5% of

execution instances (Section 5.3).

Finally in Section 5.5 the trade-off between overallocation and RT-QoS violation was consid-

ered under for systems with hard, firm, soft, and no real-time constraints. The proposed approach

demonstrated the largest improvement against the existing techniques under firm real-time con-

ditions, with an improvement against each of the techniques. The next chapter will explore the

configurations of the proposed approach and validate it in a series of use cases.
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Experimental Validation of RT-SOA

QoS

6.1 Overview

In this chapter the proposed framework from Chapter 4 which was evaluated using simulation

in the last chapter is explored in the context of several real scenarios. The first case study ex-

plores its application within the Cloud domain, specifically considering data processing and work-

load scheduling challenges (Section 6.2.1). Then a generic Cloud is considered and the RT-QoS

framework is proposed to sit within the generic architecture as part of the resource abstraction

layer. Using the Function-as-a-Service (FaaS) paradigm real experiments are then conducted in

Section 6.2.3.
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Figure 6.1: Generic MapReduce deployment architecture with straggler and QoS man-
agement

6.2 Case Study: Cloud

The domain of Cloud computing is one of the primary locations for which general QoS approaches

have been designed. SLAs are used to define the expected performance of cloud hosted services.

This section briefly looks at a series of applications for predictive QoS approaches in the cloud

domain before presenting in Section 6.2.2 a generic Cloud-based system architecture for the pro-

posed RT-QoS framework.

6.2.1 Cloud Applications

Three of the major uses for Cloud computing are data processing of large, or big, data; scheduling

of workloads across Cloud server infrastructure; and managing computation on systems that are

connected to the cloud but located on the Edge or are Internet of Things (IoT) elements.

Data Processing

In terms of data processing in the cloud this primarily refers to the use of techniques such as

MapReduce originally developed by Google and part of Hadoop [126]. This technology was

designed to split a job into a set of smaller tasks, or µSs, each of which operated in parallel

on different segments of the data input. In relation to QoS one of the major challenges with
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MapReduce is the Longtail problem [157] caused by one or more tasks running slower than the

rest and therefore causing the entire job to be delayed. This problem is currently addressed using

speculation techniques to predict a straggler task and identify host servers which have a degrading

performance [173; 168].

Execution progress of a task, or µS, in MapReduce is modelled as one of three states: idle,

in-progress, or complete. However, the framework proposed in this research could provide an

estimation of the progress as a percentage accurate to 100
k .

Figure 6.1 depicts the general deployment architecture of MapReduce systems, such as Hadoop.

The proposed RT-QoS framework requires agents operating on each node monitoring the task ex-

ecution performance and the resource utilisation by the task and on the node itself. Each agent

receives a static QoS model M with the summary of the data, in terms of response-time and

resource utilisation at each progress point p . The agents alert the RT-QoS manager when the

predicted response-time RTT is greater than the deadline.

Workload Scheduling

Also in the context of Cloud computing, as well as more generally, scheduling theory as discussed

on Page 45 does not traditionally allow for unknown workloads and utilisation patterns. Schedul-

ing of tasks traditionally assumes block-shaped tasks that can be scheduled based on their height

and length referring to their resource utilisation and execution time respectively. There is a need

to bridge the gap between scheduling theory and system practice in a non-deterministic world.

The work by Primas et al. [174] introduces the concept of resource-boxing as an offline analysis

technique to convert resource utilisations by tasks into boxes that can then be scheduled using

traditional theoretical methods.

The proposed RT-QoS framework in this research lends itself to this boxing technique as an

online boxing mechanism by breaking tasks into k individual boxes. Additionally the proposed

framework captures the concepts of slowdown and stretch due to resource contention making the

boxing technique useful for using traditional scheduling algorithms in real-world domains with

imperfect knowledge of the execution environment. Additionally in combination with the previous

section the QoS agents would be used to alert the resource manager and scheduler directly at either

a predefined frequency or at scheduling events.
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Figure 6.2: Generic Cloud architecture with QoS agents

6.2.2 Generic System Architecture for Cloud

At a slightly more abstract level, away from any individual application, the proposed RT-QoS

framework can be introduced in general Cloud environments. This section summarises the tradi-

tional architecture of a Cloud system as defined by NIST [175] in the context of the deployment

of the framework within that architecture, as shown in Figure 6.2.

Service layers

The uppermost layers within a Cloud computing architecture are the service layers compris-

ing of Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure as a Ser-

vice (IaaS). The software layer may comprise of both applications, functions, and data as services

(FaaS, DaaS). Functions specifically refer to µSs but applications themselves may also be decom-

posed into µSs as discussed on Page 85. The proposed framework monitors the service layers and

the individual model elements of the framework map to individual services within these layers.
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Figure 6.3: Outline of general µS QoS experiments with 20 µS types. (14 Euler Problems
and 6 general functions shown with rounded dashed boxes)

Resource Abstraction

The resource abstraction layer provides the containers and virtual machines typically used to host

the service layers within the Cloud. Here, as shown in Figure 6.2, QoS agents can be deployed

along with utilisation monitors within each container or VM.

Physical Computation

Below the various levels of abstraction lies the underlying operating systems which must also pro-

vide utilisation monitors for the RT-QoS framework. Beyond the Cloud environment any software

may also be monitored using the framework with local QoS agents. Further afield towards the

domain of IoT with devices the QoS can either be monitored with a local agent on the device,

or remotely over the network. Although the latter may result in the model having less resource

dimensions or less fidelity due to remote access permissions but would account for network laten-

cies.
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6.2.3 Experimental Results

The remainder of this section focusses on evaluating the RT-QoS framework with functions as

µSs. Specifically the following set of µSs (shown in Figure 6.3), most of which are solution to

problems from from Project Eulera, are used and the corresponding code listings can be found in

Appendix D:

1. Smallest Multiple “What is the smallest positive number that is evenly divisible by all of

the numbers from 1 to 20?”

2. Sum of Even Fibonacci “By considering the terms in the Fibonacci sequence whose values

do not exceed four million, find the sum of the even-valued terms.”

3. Sum of Primes “Find the sum of all the primes below two million.”

4. Tri-Pent-Hex “Find the next triangle number that is also pentagonal and hexagonal.”

5. Sum of Squared Differences “Find the difference between the sum of the squares of the

first one hundred natural numbers and the square of the sum.”

6. Sum of Both Multiples “Find the sum of all the multiples of 3 and 5 below 1000.”

7. Sum of Multiples “Find the sum of all the multiples of 3 or 5 below 1000.”

8. Fibonacci Sequence “Calculate all the Fibonacci below 4 million.”

9. Multiples of Both “Find all the multiples of both 3 and 5 below 1000.”

10. Multiples of Either “Find all the multiples of either 3 or 5 below 1000.”

11. Primes “Find all the prime numbers below 10 thousand.”

12. Matrix Sum “Find the maximum sum of matrix elements with each element being the only

one in his row and column.”

13. Palindrome Product “Find the largest palindrome made from the product of two numbers.”

14. Matrix Multiple “Calculate the multiple of two matrices.”

In addition to the following µSs:

ahttps://projecteuler.net/

https://projecteuler.net/
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Figure 6.4: Average response-times of µS instances. Palindrome µS not shown as it’s an
order of magnitude slower.

1. Sum Calculates the sum of the provided set of numbers.

2. Median Finds the median value of the provided set of numbers.

3. Mean Calculates the mean value of the provided set of numbers.

4. Variance Calculates the variance across the provided set of numbers.

5. QuickSort Sorts the provided set of values using the Quick Sort algorithm.

6. Integer Factorisation Finds the integer factors of the supplied digit using the trial division

method.

Across 100 instances of each µS the average response-time, under an average interfering work-

load of 90%, was 0.8s as shown in Figure 6.4. If the palindrome µS is ignored as it is significantly

slower, the average response-time is 65ms with an average standard deviation across execution in-

stances of 26ms. This represents a standard deviation of 40% compared with the 20% observed in

the previous chapter’s simulations. Looking specifically at Palindromes, Prime Sum, and Primes

µSs the standard deviation percentages are 1%, 20%, and 10% respectively providing no indica-

tive pattern or obvious relationship between µS length and the variance observed in response-time

due to interference.
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Figure 6.5: QoS calculation time of the new QoS! (QoS!) framework for the Smallest
Multiple µS instances and average across all µS types.

Figure 6.6: Increasing QoS calculation time of the new framework as resource fidelity is
increased and average number of observations per execution instance.
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Performance

As outlined on Page 86 the QoS is monitored with a given frequency f to get a minimum number

of k observations. In order to do so the execution time of the QoS calculation must be sufficiently

small and scale appropriately with execution instances. As shown in Figure 6.5 the calculation

time remains relatively constant across all the µS types at 13ms. The graph shows the nature

of the calculation time over 100 execution instances of the Smallest Multiple µS with a model

initialisation phase with the calculations taking significantly longer during the first 10 instances.

The calculation time is exponentially dependent on the size of the resource dimensions dr

and number of resource dimensions |R|, Figure 6.6 therefore shows the increase in fidelity, i.e.

the increase in |dr|, and the corresponding increase in calculation time from 13ms up to 23ms as

|dr| is increased from 4 to 20. As can be seen in Figure 6.6 the QoS calculation time begins to rise

rapidly beyond |dr| = 9 and as is outlined in Table 6.1 this configuration not only identifies the

most violations but also identifies them earlier than most other configurations. In this particular

case |R| = 2 capturing CPU and memory but other dimensions could include required network

bandwidth, storage and other I/O.

As |dr| was increased, the number of QoS observations decreased from an average of 5 per

µS instance to 3 (ignoring the Palindrome µS). This is in line with the algorithmic complexity

discussed in Chapter 4 on Page 94. As long as the approach provides at least 3 observations per

µS execution it is an improvement on the methods used in monitoring Map Reduce tasks. Wider

afield finding an ideal target number of observations (i.e. target k ) would be domain dependent

and could factor in the process resource life-cycle discussed on Page 30.

These performance results correspond with the algorithmic complexity of O(|dr|2r) detailed

on Page 97. In comparison to the techniques outlined in Chapter 3 the performance of the pro-

posed framework is runs in relative constant time compared to those previous approaches which

slowdown linearly or quadratically with the number of services and service execution instances.

Accuracy

The accuracy of the predictions as measured in the previous chapters using the Mean Percentage

Error (MPE), Mean Percentage Violation (MPV), and Mean Percentage Waste (MPW) metrics.

Figure 6.7 depicts these across all the µS types and their execution instances. The total error can

be split into the two categories for overallocation and QoS violation which are loosely logarithmic
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Figure 6.7: MPE, MPV, and MPW across µS instances

tending towards an average overallocation of below 35% and a near zero violation percentage of

2% which represents missing the deadline by just over 1ms. The AVC reduces logarithmically

from an average across all µS types of 0.4 violations during the first 10 instances to 0.2 for the

next 10 instances and down to an average of 0.1 violations by instance 100.

The MPE across all the µS types was 30% with a standard deviation of 12%. The corre-

sponding MPV was 17% (compared to the 11% demonstrated by the simulations in the previous

chapter) and the MPW was 30%. If outlying µS response-times are ignored, as indicated using ei-

ther Grubbs or the Generalized ESD Test [176], the average wasted allocated time is 56ms (single

outlier) or 55ms (2 or 3 outliers) equating to between 43% and 47% of allocated time.

As the size of dr is increased there is marginal increase observed in the MPW as can be seen in

Figure 6.8. The affect of the increasing the fidelity of the model will however be further explored

in the rest of this section.
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Figure 6.8: Prediction accuracy against framework matrix size defined by |dr| = 4→ 20

Alerts

The increased fidelity, achieved through increasing the size of dr , allows the framework to

provide more alerts as directed by Algorithm 8. Table 6.1 details for each matrix size correlating

to dr the average alert time as a percentage of execution progress across all µS instances and the

coverage as a percentage of violations covered by those alerts increasing from 71% up to between

87% and 94%. The best performance was observed where |dr| = 9 such that each bin accounts for

approximately 11% of resource availability. This configuration demonstrated the best coverage, at

94%, and some of the earliest alert times, on average within the first 8ms of execution (or 2s for

the palindrome µS). The choice of |dr| will depend on the level of granularity that is possible to be

monitored, and should trade-off the speed of the prediction against the required accuracy. From an

accuracy perspective the selection of |dr| will be an optimisation for which there could be several

local optima.

WCET vs. Average RTT

The approach so far has used the pessimistic or worst-case analysis provided by the framework.

As directed by Eqn. 4.18 the framework also provides estimation based on the average response-

times. The corresponding MPE is up 6% to 36% and the MPV is up 4.7% to 22%. That increase

in violations is seen alongside an increase in the AVC to 89% of instances. Across those instances
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Table 6.1: Alert warning time and coverage of violations which represents the percentage
of violations that were identified before they occurred.

which didn’t violate QoS the MPW was 58%.

The measures for violation and overallocation do not capture the overall ratio of QoS violation

to overallocation. Table 6.2 therefore shows weighted combinations across all the µS types and

execution instances. The WCET approach demonstrates an average overallocation of 12% whilst

the average approach demonstrates an average violation of 8%.

Depending on the nature of the application it may be appropriate to use either of the approaches

provided by the framework or a combination of both. For non-real-time or soft real-time system

the average method is likely to be sufficient. This would result in a small percentage of deadlines

being missed by 23%, equivalent to 15ms, but making better use of the available computational

resources. In the context of hard deadlines the WCET approach must be used and depending on the

criticality of the application an additional margin or error could be included such as an additional

50% of the estimated length of the process.

6.2.4 Cloud Summary

This section has looked specifically at the application of the proposed framework from this re-

search to predicting the QoS of µSs in the Cloud. A set of 20 µSs were used that each provided

a different mathematical function. Given these and an average interfering workload of 90% the

experiments in this section looked at the execution performance of the framework itself followed

by its accuracy.

As outlined on page Page 133 the QoS calculation time must be sufficiently small relative to

the response-time of the µS. In the examples shown the calculation time averages between 13ms

and 23ms when modelling the resource utilisation in blocks of between 25% and 5%. Therefore

to have 2 or more observation points during the µS execution the response-times would have to

be above 26ms in the first instance or 46ms in the more detailed case in order to provide an alert
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Table 6.2: Comparison of accuracy (as a weighted average between MPV and MPW)
between using WCET and average response-times

during execution. The framework provided alerts across 94% of instances, when configured with

|dr| = 9, which resulted in violations with an alert being fired on average within the first 14% of

the execution time.

The framework has been evaluated in terms of the Mean Percentage Violation (MPV) and

overallocation (MPW). In the first instance QoS was violated across 14% of instances with an

average violation of 17%. The remaining execution instances were overallocated by an average

of 30%. Finally the analysis looked at the use of the average and Worst-Case Execution Times

(WCETs) for QoS allocation. In the average case the framework underallocated by 8% whilst

the worst-case approach overallocated by 12% on average across all instances. The results are

representative of the simulation results in Chapter 5 where the MPW was 38%, compared with

30% in the experiments, and the MPV was 11%, compared against the 17% observed in this

section.
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6.3 Summary

This chapter has presented a series of case studies applying the framework developed earlier in

Chapter 4. Case studies are considered in the domain of Cloud computing. In the first two cases

the software and systems architectures required to facilitate the RT-QoS framework in a non-

intrusive manner, i.e. not requiring change to the underlying infrastructure, are presented. Also

experimental results from the domain of Cloud computing are shown, demonstrating that the pro-

posed RT-QoS framework can be practically applied in this domain.

The following and final chapter of this thesis provides a summary of the work that has been

presented and outlines key areas that require further research.



Chapter 7

Conclusions and Future Work

In this chapter the work presented throughout this thesis is summarised. The major contri-

butions of the research are outlined and an evaluation of the research in terms of the objectives

from Chapter 1 is presented in Section 7.3. Then a discussion is presented of some of the future

directions that can be explored as part of this work.

7.1 Summary

The work in this thesis is focussed on exploring Quality of Service (QoS) for Real-Time Service-

Oriented Architectures (RT-SOAs). The research is centered on providing a mechanism to cap-

ture the relationship between computational resources and the execution performance of Micro-

Services (µSs). The developed framework is used to predict the response-times of µSs executing in

environments with interfering workloads. A comparison is also made against existing approaches

to RT-QoS and the tradeoffs between the techniques are explored.

Chapter 2 presents the background concepts underpinning this research. The core concepts

of service orientation are presented such as loose coupling and modularity which form the basis

of Service-Oriented Architectures (SOAs). Then the core concepts of systems their execution
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environment and the respective components are introduced. These ideas are then mapped onto

SOAs and the taxonomy of SOA faults is extended with a focus on timing faults.

These concepts provide the basis for the remainder of the chapter which explores in detail

the concepts related to RT-SOAs. First the theoretical concepts of schedulability from traditional

real-time systems is explained with an introduction to notation and a definition of deadlines. Then

the concept of resource adequacy is explored to help understand the challenges caused by resource

interference. Given an understanding of real-time systems schedulability with concepts such as

Worst-Case Execution Time (WCET) and execution slowdown the chapter focusses on real-time

service QoS. The various QoS parameters that are used by different approaches are explored

and mapped back to the concepts of resource adequacy with Cloud resource interference patterns.

Finally some of the high level challenges in RT-QoS research are discussed under the categories

of workflow management and QoS monitoring and prediction.

Given the background concepts of RT-SOAs and RT-QoSs Chapter 3 presents a detailed study

of existing techniques. First a review of 80 QoS approaches is presented where the approaches

are categorised into seven groups. Then from each category the most significant contributions

are identified to be explored in more detail. Those approaches are studied in terms of their ef-

fectiveness of providing QoS for real-time systems. The remainder of the chapter then focusses

on experimentally evaluating, using simulation, four of those approaches in the context of inter-

fering workloads. The metrics of accuracy MAE, MPE, and MPW that are used for evaluation

of approaches throughout this thesis are presented. Also those metrics relating to QoS violations

including AVC, MAV, and MPV are outlined. The chapter concludes presenting the results of

the simulation identifying the limitations of the existing work in handling service execution in

dynamic environments.

In Chapter 4 the identified limitations in the existing work are used to form the basis of a new

framework for modelling the QoS of µSs. From a systems modelling perspective the framework

clearly distinguishes between µSs, services, the host machines, and the interfering workloads. A

model is then presented capturing the resource requirements over the execution duration of a µS

instance and this is used to formulate a predictive framework. The framework is used to estimate

execution progress and the remaining execution time, or time-to-finish, of an instance.

Then in Section 4.3 the mathematics are outlined algorithmically and shown to scale linearly

in terms of storage space and number of µSs. The entire method presented in the chapter is based

on the schedulability concepts presented in Chapter 2. This allows the remainder of the chapter to
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focus on proving the ability of the framework to identify the bounds and solution space of schedu-

lability. This is first shown visually before being evaluated inductively against schedulability tests

with static, dynamic, continuously increasing, and continuously decreasing interfering workloads.

Chapter 5 takes the framework from the previous chapter and evaluates it using simulation.

The framework is tested against two dynamic workload patterns and at each stage evaluated against

the existing techniques described in Chapter 3. First the raw accuracy of the predictions were

considered demonstrating an improvement against three of the four existing approaches, being

beaten only by the fuzzy-logic approach. The focus then turns to understanding the trade-off

between overallocation and QoS violation exploring each aspect individually before combining

them in Section 5.5. The proposed framework is shown to waste at least 4% less execution time

than the historical, probabilistic, correlation, and real-time middleware based approaches; whilst

the fuzzy-logic technique remains more accurate wasting less than the proposed method. However

when combined with QoS violations the fuzzy-logic technique results in 33% more violations than

the proposed method. Finally the trade-off between QoS violation and overallocation is considered

in terms of hard, firm, and soft deadlines with the proposed framework outperforming each of the

existing approaches in the context of firm deadlines.

Finally Chapter 6 presents an overall assessment of the proposed framework for use in various

domains. First an experimental evaluation using a set of twenty numerical functions as µSs is

presented for the domain of Cloud computing. The framework demonstrated an average overallo-

cation of 12% when predicting QoS based on WCETs and an underallocation of 8% when using

the average response-times. The framework’s application in that domain is also presented in terms

of data processing applications and workload scheduling.

7.2 Research Contributions

The main contributions within this thesis can be summarised as:

• An analysis and classification of existing QoS techniques. This looked at eighty existing

approaches, classified and then analysed the most significant contributions from each cat-

egory. The seven identified categories were: correlation, optimisation, containment, mid-

dleware, fuzzy-logic, cost, and tolerance. The most relevant four categories (correlation,

middleware, fuzzy-logic, and tolerance) were chosen and experimentally evaluated using

simulation for their capability in handling non-static interfering workloads.
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• A mathematical n-dimensional framework capturing the relationship between µS execution

performance and the execution environment. This research presented a detailed framework

explicitly modelling the difference between µSs and services and their interconnectivity.

Then the relationship between µSs and their host server’s resources was explored in terms

of resource utilisation and availability. The framework was then proved to facilitate the use

of real-time schedulability techniques.

• Extensive simulation analysing the effectiveness of the QoS framework under various in-

terfering Cloud workloads. The mathematical framework was implemented and evaluated

against periodic and random interfering workloads of various degrees. In order to assess

the proposed mechanism measures of accuracy, overallocation, and QoS violation were

used and the trade-off between overallocation and violation was studied.

• A series of case studies and a prototype system. These case studies were used to explore the

application of the proposed QoS framework specifically in the domain of Cloud computing.

The prototype system was used to evaluate proposed approach in a real system.

The contributions in this thesis bring together the worlds of traditional real-time systems,

Cloud computing, and service-orientation with the fundamental requirement of understanding the

relationship between the environment and the services’ execution performance. The classification

of QoS techniques has shown that there are various approaches that can be followed that are ap-

propriate for different domains. Further it has been shown that there is a trade-off to be considered

between accuracy of QoS and the level of violation that is deemed acceptable.

7.3 Overall Research Evaluation

In Chapter 1 Section 1.3 the research objectives of this thesis were discussed. The success of this

thesis in achieving these objectives is listed below:

i. To provide an in-depth analysis and classification of existing techniques for service QoS pre-

diction. This thesis has reviewed, in Chapter 3, in detail eighty existing QoS approaches.

These have been classified into seven categories with some sub-groups within a couple of the

individual categories. Each class has then be evaluated both theoretically and experimentally

to identify the benefits and limitations to using each approach for RT-QoS prediction.
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ii. To provide a theoretical mechanism for efficient and accurate prediction of QoS. In Chapter 4

this thesis has presented a new framework that mathematically defines the relationship be-

tween µS execution performance and the host environment’s resources. This model has been

applied to prediction response-times for QoS definitions that are conditional based on resource

availability.

iii. To provide efficient scalable algorithms for the prediction and management of QoS. The

mathematical framework from Chapter 3 was implemented algorithmically and demonstrated

to be linearly scalable with respect to both the number of services and the number of execution

instances. The approach is less efficient in terms of the number of resource dimensions, which

is however anticipated to be remain considerably small and will remain constant for any given

system configuration.

iv. To provide an empirical evaluation of the proposed techniques. Chapter 5 and Chapter 6 of

this thesis evaluated the effectiveness of the presented framework using both simulation and

experimentation. The simulation in Chapter 5 considered the effectiveness of the approach

under various interfering Cloud workloads and compared this against existing techniques.

Chapter 6 presented an experimental evaluation in the context of Cloud computing and also

at a high level in terms of human task performance.

In summary it can be seen that all four major research objectives have been successfully completed.

Finally the hypothesis outlined at the end of Chapter 3:

Hypothesis

It is anticipated that a better understanding of the relationship between resource utilisation

and execution progress, based on actual observations, would facilitate the forming of more

accurate RT-QoS predictions without compromising the number of QoS violations.

Has been shown to be valid with the proposed framework using a mapping between resource

utilisation and performance to provide a more accurate QoS prediction than previous techniques.
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7.4 Future Work

There are several future directions with which the work in this thesis could be enhanced. There

are also future research areas which build upon the foundations of this research. Some of these

opportunities are highlighted below.

7.4.1 Real-Time Quality of Service

Using the classification of QoS methods as the basis for future work there are clear opportunities

within individual categories to improve the accuracy and safety of QoS definitions. Three major

areas are:

1. The use of machine learning for providing QoS methods. This research has not taken a

machine learning or optimisation approach which with sufficient scale could provide some

novel techniques. Specifically the use of neural networks by the likes of Luo et al. [177]

when combined with a sufficiently large data set of service executions could result in the

production of a manifold function combining each of the resource dimensions with the

complexities of utilisation patterns.

2. The combination of various techniques as a mixed method. Across the wide range of s-

cenarios and system types different approaches will be more suited than others. There is

therefore remains the question to identify which approaches are most suited to which sce-

narios. These factors may include the real-time nature of the system, varying from hard

to soft. Alternatively in the Cloud domain this could be understanding be level at which

the system of interest sits, for example a SaaS system will likely have less information re-

garding resource availability than a PaaS or IaaS system. A further perspective could be

the transition over time between techniques, for example transitioning from the framework

proposed in this thesis towards a machine learning approach as the number of services and

execution instances becomes sufficiently large.

3. The exploration of workflow-level QoS. Workflows have been briefly mentioned in this the-

sis in Chapter 2 and introduce several challenges with regards to QoS. As alluded to in 2.1.3

two of the most challenging patterns are transient triggers and arbitrary cycles, the latter be-

ing a specific case of the well known halting problem. These patterns, and others, require
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Figure 7.1: Multi-dimensionality of Internet of Simulation (IoS)

the combination QoS predictions for individual services into a system level prediction. It is

likely that research in this area will need to consider specific domains and understand the

constraints that may be applied before looking at the general case. For example this thesis’s

n-dimensional framework could be extended to capture the input, parameter, and resulting

changes in output values as posed in [65].

7.4.2 Internet of Simulation

The Internet of Simulation (IoS) provides a completely new domain of research with a wide range

of challenges to be addressed [178; 179]. Most interestingly will be the integration of research

from the domains of IoT, Cloud computing, Edge computing, as well as from the non-computing

domains looking at manufacturing, business, and social situations. Two key areas building directly

on this thesis are:

• Expanding the n-dimensional QoS framework. The multi-dimensional nature of the QoS

framework presented in this thesis provides the basis for exploring the multi-dimensional

nature of the reality of IoS. As simulations are integrated the QoS challenges become
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Figure 7.2: IoS an extension of IoT, domains applications, elements, and technologies

more complex as they must facilitate temporal integration and synchronisation in order to

maintain simulation accuracy. This area of QoS for Simulation-as-a-Service (SIMaaS) and

also Workflow-as-a-Service (WFaaS) is specific domain of the workflow QoS challenge

described previously.

Moving then away from QoS the multi-dimensional nature of the model of reality, as de-

scribed by Clement et al. [180] and shown in Figure 7.1, also opens an interesting area of

research.

• Real-time bridge with IoT. As shown in Figure 7.2 in order to connect the virtual world of

IoS to the real world of IoT there must be some real-time bridge. Developing this capability

requires understanding of the networking and infrastructure requirements in addition to the

QoS issues mentioned previously. This area also opens up an interesting dialogue on the

semantics and standards for interoperability, such as High Level Architecture (HLA), that

will be required to facilitate data and control exchange in the smart cities of the future.

IoS derives from the evolving need of global industry, in particular automate, aerospace, and

defence for virtualisation of the engineering and manufacturing processes [133]. Specifically IoS
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Figure 7.3: Generic architecture for Internet of Simulation

is focussed on enabling: knowledge sharing, evolving fidelity and agile engineering, complex

integration, supply chain integration, massive-scalability, simulation as a utility, and integration

with IoT.

The core concepts of IoS revolve around Simulation-as-a-Service (SIMaaS) and Workflow-as-

a-Service (WFaaS). The former builds on the SaaS paradigm but introduces the time and clock

management as well as having to handle causality. The latter facilitates the construction of SOA

workflows consisting of simulations rather than processes. Furthermore the WFaaS must allow

a recursive relationship allowing individual workflows to be nested within others as if they were

individual simulation services. IoS can be explicitly defined as:

• A specialism of the Internet of Things comprised of interconnected virtual system com-

ponents, agents, or virtual environments defined by cross-domain collections of network-

enabled, variable fidelity and heterogeneous models and simulations.

• Through composing multiple virtual entities by defining their interactivity a system simula-
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tion can be constructed and distributed.

• The simulated things contained in the IoS can be connected to the IoT via a Real-Time

Bridge.

From an architectural perspective the core challenge in IoS is the extension of generic Cloud

architectures to support the SIMaaS and WFaaS paradigms for simulation integration in a usable

and efficient manner. This could build on the basic form shown in Figure 7.3 which extends

the generic Cloud architecture that was depicted in Chapter 6 in Figure 6.2. Most notably any

implementation of IoS will have to take account of both heterogeneous infrastructure including

HPC systems, IoT devices and other in-the-loop simulators. To do so standards compliance with

the likes of Functional Mock-up Interface (FMI) for in-memory communication [181] and IEEE

HLA will be essential [182]. In order to guarantee simulation performance and accuracy the

RT-QoS framework of this research will have to be adapted to predict the execution time between

individual simulation time steps rather than end-to-end execution times.
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Jin Song Dong. Optimizing selection of competing services with probabilistic hierarchi-

cal refinement. In Proceedings of the 38th International Conference on Software Engi-

neering - ICSE ’16, pages 85–95, New York, New York, USA, 2016. ACM Press. IS-

BN 9781450339001. doi: 10.1145/2884781.2884861. URL http://dl.acm.org/

citation.cfm?doid=2884781.2884861.

[224] Yutu Liu, Anne H Ngu, and Liang Z Zeng. QoS computation and policing in dy-

namic web service selection. In Proceedings of the 13th international World Wide We-

b conference on Alternate track papers & posters - WWW Alt. ’04, page 66, New Y-

ork, New York, USA, 2004. ACM Press. ISBN 1581139128. doi: 10.1145/1013367.

1013379. URL http://doi.acm.org/10.1145/1013367.1013379http://

portal.acm.org/citation.cfm?doid=1013367.1013379.

[225] Nguyen Cao Hong Ngoc, Donghui Lin, Takao Nakaguchi, and Toru Ishida. QoS-Aware

Service Composition in Mobile Environments. In 2014 IEEE 7th International Confer-

ence on Service-Oriented Computing and Applications, pages 97–104. IEEE, nov 2014.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519582 http://ieeexplore.ieee.org/document/4519582/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519582 http://ieeexplore.ieee.org/document/4519582/
http://dl.acm.org/citation.cfm?doid=2896387.2896442
http://dl.acm.org/citation.cfm?doid=2896387.2896442
http://www.atlantis-press.com/php/paper-details.php?id=25838570
http://www.atlantis-press.com/php/paper-details.php?id=25838570
http://dl.acm.org/citation.cfm?doid=2884781.2884861
http://dl.acm.org/citation.cfm?doid=2884781.2884861
http://doi.acm.org/10.1145/1013367.1013379 http://portal.acm.org/citation.cfm?doid=1013367.1013379
http://doi.acm.org/10.1145/1013367.1013379 http://portal.acm.org/citation.cfm?doid=1013367.1013379


182 BIBLIOGRAPHY

ISBN 978-1-4799-6833-6. doi: 10.1109/SOCA.2014.51. URL http://ieeexplore.

ieee.org/document/6978596/.

[226] Divya Sachan, Saurabh Kumar Dixit, and Sandeep Kumar. QOS Aware Formalized Model

for Semantic Web Service Selection. International journal of Web & Semantic Technology,

5(4):83–100, oct 2014. ISSN 09762280. doi: 10.5121/ijwest.2014.5406. URL http:

//airccse.org/journal/ijwest/papers/5414ijwest06.pdf.

[227] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Mirandola, and Giordano

Tamburrelli. Dynamic QoS Management and Optimization in Service-Based Systems.

IEEE Transactions on Software Engineering, 37(3):387–409, may 2011. ISSN 0098-

5589. doi: 10.1109/TSE.2010.92. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=5611553.

[228] Tong Gao, Hachem Moussa, I-Ling Yen, Farokh Bastani, and Jun-Jang Jeng. Service Com-

position for Real-Time Assurance. 2008 32nd Annual IEEE International Computer Soft-

ware and Applications Conference, pages 1174–1179, 2008. doi: 10.1109/COMPSAC.

2008.183. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4591744.

[229] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. Response time service level a-

greements for cloud-hosted web applications. In Proceedings of the Sixth ACM Sym-

posium on Cloud Computing - SoCC ’15, pages 315–328, New York, New York, US-

A, 2015. ACM Press. ISBN 9781450336512. doi: 10.1145/2806777.2806842. URL

http://dl.acm.org/citation.cfm?doid=2806777.2806842.

[230] Mingkun Yang, Qimin Peng, and Xiaohui Hu. Estimating the dynamic performance of

composed services: a probability theory based approach. In Proceedings of the 1st In-

ternational Workshop on Crowd-based Software Development Methods and Technologies

- CrowdSoft 2014, pages 61–66, New York, New York, USA, 2014. ACM Press. IS-

BN 9781450332248. doi: 10.1145/2666539.2666576. URL http://dl.acm.org/

citation.cfm?doid=2666539.2666576.

[231] Zhu Yong, Li Wei, Luo Junzhou, and Zheng Xiao. A novel two-phase approach for

QoS-aware service composition based on history records. In 2012 Fifth IEEE Inter-

http://ieeexplore.ieee.org/document/6978596/
http://ieeexplore.ieee.org/document/6978596/
http://airccse.org/journal/ijwest/papers/5414ijwest06.pdf
http://airccse.org/journal/ijwest/papers/5414ijwest06.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5611553
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5611553
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4591744
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4591744
http://dl.acm.org/citation.cfm?doid=2806777.2806842
http://dl.acm.org/citation.cfm?doid=2666539.2666576
http://dl.acm.org/citation.cfm?doid=2666539.2666576


183 BIBLIOGRAPHY

national Conference on Service-Oriented Computing and Applications (SOCA), pages

1–8. IEEE, dec 2012. ISBN 978-1-4673-4775-4. doi: 10.1109/SOCA.2012.6449451.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6449451http://ieeexplore.ieee.org/document/6449451/.

[232] Saeed Zareian, Rodrigo Veleda, Marin Litoiu, Mark Shtern, Hamoun Ghanbari, and Man-

ish Garg. K-Feed - A Data-Oriented Approach to Application Performance Manage-

ment in Cloud. In 2015 IEEE 8th International Conference on Cloud Computing, pages

1045–1048. IEEE, jun 2015. ISBN 978-1-4673-7287-9. doi: 10.1109/CLOUD.2015.

148. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=7214159http://ieeexplore.ieee.org/document/7214159/.

[233] Pengcheng Zhang, Yuan Zhuang, Hareton Leung, Wei Song, and Yu Zhou. A Novel QoS

Monitoring Approach Sensitive to Environmental Factors. In 2015 IEEE International

Conference on Web Services, pages 145–152. IEEE, jun 2015. ISBN 978-1-4673-7272-

5. doi: 10.1109/ICWS.2015.29. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=7195563.

[234] Huiyuan Zheng, Jian Yang, and Weiliang Zhao. QoS probability distribution es-

timation for web services and service compositions. In 2010 IEEE International

Conference on Service-Oriented Computing and Applications (SOCA), pages 1–8.

IEEE, dec 2010. ISBN 978-1-4244-9802-4. doi: 10.1109/SOCA.2010.5707144.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5707144http://ieeexplore.ieee.org/document/5707144/.

[235] Feng Gao, Muhammad Intizar Ali, Edward Curry, and Alessandra Mileo. QoS-aware

adaptation for complex event service. In Proceedings of the 31st Annual ACM Sympo-

sium on Applied Computing - SAC ’16, pages 1597–1604, New York, New York, US-

A, 2016. ACM Press. ISBN 9781450337397. doi: 10.1145/2851613.2851806. URL

http://dl.acm.org/citation.cfm?doid=2851613.2851806.

[236] Anthony Sargeant, Paul Townend, Jie Xu, and Karim Djemame. Evaluating the Depend-

ability of Dynamic Binding in Web Services. In 2012 IEEE 14th International Symposium

on High-Assurance Systems Engineering, pages 139–146. IEEE, oct 2012. ISBN 978-1-

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6449451 http://ieeexplore.ieee.org/document/6449451/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6449451 http://ieeexplore.ieee.org/document/6449451/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7214159 http://ieeexplore.ieee.org/document/7214159/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7214159 http://ieeexplore.ieee.org/document/7214159/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7195563
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7195563
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5707144 http://ieeexplore.ieee.org/document/5707144/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5707144 http://ieeexplore.ieee.org/document/5707144/
http://dl.acm.org/citation.cfm?doid=2851613.2851806


184 BIBLIOGRAPHY

4673-4742-6. doi: 10.1109/HASE.2012.28. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=6375608.

[237] Nik Looker. Dependability analysis of web services. PhD thesis, Durham University, 2006.

URL http://etheses.dur.ac.uk/2888/.

[238] Khalid Alhamazani, Rajiv Ranjan, Prem Prakash Jayaraman, Karan Mitra, Fethi Rabhi,

Dimitrios Georgakopoulos, and Lizhe Wang. Cross-Layer Multi-Cloud Real-Time Appli-

cation QoS Monitoring and Benchmarking As-a-Service Framework. IEEE Transactions on

Cloud Computing, pages 1–1, 2015. ISSN 2168-7161. doi: 10.1109/TCC.2015.2441715.

URL http://ieeexplore.ieee.org/document/7126933/.

[239] Paul Buck and Qi Shi. Service Oriented Testing of Web Services. Journal of Computer

Sciences and Applications, 3(3):21–26, 2015. doi: 10.12691/jcsa-3-3A-3.

[240] Giuseppe Cicotti, Salvatore D’Antonio, Rosario Cristaldi, and Antonio Sergio. How to

Monitor QoS in Cloud Infrastructures: The QoSMONaaS Approach. In Studies in Com-

putational Intelligence, volume 446, pages 253–262. 2013. ISBN 9783642325236. doi:

10.1007/978-3-642-32524-3 32. URL http://link.springer.com/10.1007/

978-3-642-32524-3{_}32.

[241] Giuseppe Cicotti, Luigi Coppolino, Salvatore D Antonio, and Luigi Romano. Runtime

Model Checking for SLA Compliance Monitoring and QoS Prediction. Journal of Wireless

Mobile Networks, Ubiquitous Computing, and Dependable Applications, 6(2):4–20, 2015.

[242] Carolyn McGregor and J. Mikael Eklund. Real-Time Service-Oriented Architec-

tures to Support Remote Critical Care: Trends and Challenges. In 2008 32nd

Annual IEEE International Computer Software and Applications Conference, pages

1199–1204. IEEE, 2008. ISBN 978-0-7695-3262-2. doi: 10.1109/COMPSAC.2008.

175. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=4591748http://ieeexplore.ieee.org/document/4591748/.

[243] Marcelo Silva, Fernando Lins, and Erica Sousa. Towards a Methodology for Performance

Measurement of Service-Based Systems. International Journal of Scientific & Engineering

Research, 6(4):131–137, 2015.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6375608
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6375608
http://etheses.dur.ac.uk/2888/
http://ieeexplore.ieee.org/document/7126933/
http://link.springer.com/10.1007/978-3-642-32524-3{_}32
http://link.springer.com/10.1007/978-3-642-32524-3{_}32
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4591748 http://ieeexplore.ieee.org/document/4591748/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4591748 http://ieeexplore.ieee.org/document/4591748/


185 BIBLIOGRAPHY

[244] Viktoriya Degeler, Ilce Georgievski, Alexander Lazovik, and Marco Aiello. Concept map-

ping for faster QoS-aware web service composition. 2010 IEEE International Confer-

ence on Service-Oriented Computing and Applications (SOCA), (2):1–4, dec 2010. doi:

10.1109/SOCA.2010.5707193. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=5707193.

[245] Jianxun Deng, Lihong Jiang, and Hongming Ca. Complement Service Composition through

Domain Template and Requirement Context. In 2014 IEEE 11th International Conference

on e-Business Engineering, pages 320–325. IEEE, nov 2014. ISBN 978-1-4799-6563-2.

doi: 10.1109/ICEBE.2014.62. URL http://ieeexplore.ieee.org/document/

6982100/.

[246] Azlan Ismail, Jun Yan, and Jun Shen. Towards dynamic formation of temporal con-

straints for the service level agreements negotiation. In 2009 IEEE International

Conference on Service-Oriented Computing and Applications (SOCA), volume 00, pages

1–8. IEEE, dec 2009. ISBN 978-1-4244-5300-9. doi: 10.1109/SOCA.2009.5410465.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5410465http://ieeexplore.ieee.org/document/5410465/.

[247] Wei Li and William Guo. QoS prediction for dynamic reconfiguration of com-

ponent based software systems. Journal of Systems and Software, 102:12–34,

apr 2015. ISSN 01641212. doi: 10.1016/j.jss.2014.12.001. URL http:

//dx.doi.org/10.1016/j.jss.2014.12.001http://linkinghub.

elsevier.com/retrieve/pii/S0164121214002787.

[248] Junio C. Lima, Ricardo C. A. Rocha, and Fabio M. Costa. An Approach for

QoS-aware Selection of Shared Services for Multiple Service Choreographies. In

2016 IEEE Symposium on Service-Oriented System Engineering (SOSE), pages 221–

230. IEEE, mar 2016. ISBN 978-1-5090-2253-3. doi: 10.1109/SOSE.2016.

62. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=7473029http://ieeexplore.ieee.org/document/7473029/.

[249] F. J. Monaco, M. Nery, and M. M. L. Peixoto. An orthogonal real-time scheduling archi-

tecture for responsiveness QoS requirements in SOA environments. In Proceedings of the

2009 ACM symposium on Applied Computing - SAC ’09, page 1990, New York, New York,

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5707193
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5707193
http://ieeexplore.ieee.org/document/6982100/
http://ieeexplore.ieee.org/document/6982100/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5410465 http://ieeexplore.ieee.org/document/5410465/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5410465 http://ieeexplore.ieee.org/document/5410465/
http://dx.doi.org/10.1016/j.jss.2014.12.001 http://linkinghub.elsevier.com/retrieve/pii/S0164121214002787
http://dx.doi.org/10.1016/j.jss.2014.12.001 http://linkinghub.elsevier.com/retrieve/pii/S0164121214002787
http://dx.doi.org/10.1016/j.jss.2014.12.001 http://linkinghub.elsevier.com/retrieve/pii/S0164121214002787
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7473029 http://ieeexplore.ieee.org/document/7473029/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7473029 http://ieeexplore.ieee.org/document/7473029/


186 BIBLIOGRAPHY

USA, 2009. ACM Press. ISBN 9781605581668. doi: 10.1145/1529282.1529724. URL

http://portal.acm.org/citation.cfm?doid=1529282.1529724.

[250] Yu Sun, Jules White, Sean Eade, and Douglas C. Schmidt. ROAR: A QoS-oriented

modeling framework for automated cloud resource allocation and optimization. Jour-

nal of Systems and Software, 116:146–161, jun 2016. ISSN 01641212. doi: 10.1016/

j.jss.2015.08.006. URL http://linkinghub.elsevier.com/retrieve/pii/

S0164121215001715.

[251] Le-hung Vu, Manfred Hauswirth, and Karl Aberer. QoS-Based Service Selection and

Ranking with Trust and Reputation Management. Number 507483, pages 466–483.

2005. doi: 10.1007/11575771 30. URL http://link.springer.com/10.1007/

11575771{_}30.

[252] Bin Xu and Yixin Yan. An efficient QoS-driven service compositon approach for

large-scale service oriented systems. In 2009 IEEE International Conference on

Service-Oriented Computing and Applications (SOCA), volume 00, pages 1–8.

IEEE, dec 2009. ISBN 978-1-4244-5300-9. doi: 10.1109/SOCA.2009.5410471.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5410471http://ieeexplore.ieee.org/document/5410471/.

[253] Panfeng Xue, I-ling Yen, and Kendra M Cooper. QoS-driven dynamic adap-

tation in media intensive systems. In 2011 IEEE International Conference on

Service-Oriented Computing and Applications (SOCA), pages 1–8. IEEE, dec

2011. ISBN 978-1-4673-0319-4. doi: 10.1109/SOCA.2011.6166242. URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6166242http://ieeexplore.ieee.org/document/6166242/.

http://portal.acm.org/citation.cfm?doid=1529282.1529724
http://linkinghub.elsevier.com/retrieve/pii/S0164121215001715
http://linkinghub.elsevier.com/retrieve/pii/S0164121215001715
http://link.springer.com/10.1007/11575771{_}30
http://link.springer.com/10.1007/11575771{_}30
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5410471 http://ieeexplore.ieee.org/document/5410471/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5410471 http://ieeexplore.ieee.org/document/5410471/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6166242 http://ieeexplore.ieee.org/document/6166242/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6166242 http://ieeexplore.ieee.org/document/6166242/


Appendices

187



Appendix A

List of Existing Real-Time

Service-Oriented

Architecture (RT-SOA) QoS

Approaches

188



A
ppendix

A
189

L
istofE

xisting
R

T-SO
A

Q
oS

Table A.1: Summary of correlation-based approaches

Authors Summary Features

Hu, Peng, Hu, and Yang (2015) [183] A matrix based approach identifying the re-

lationship between services and users over

time.

- Similar to Zibin Zheng et al. [146]

- Users vs service over time

- Service selection

- Not Real-Time

- Not Resource Aware

J. Chelliah and Vivekanandan (2015)

[184]

A matrix based approach that aggregates QoE

and predicts new QoS using the PCC.

- Similar to Zibin Zheng et al. [146]

- Service Availability

- Not Real-Time

- Not Resource Aware

Karim, Ding, Miri, and Rahman

(2015) [185]

Presents an approach that integrates QoS

across different layers of the Cloud infrastruc-

ture to estimate the end-to-end response-time

of a service.

- Similar to Zibin Zheng et al. [146]

- Layers for IaaS & SaaS

- Not Resource Aware

- Not Real-Time

continued . . .
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. . . Table A.1 continued

Authors Summary Features

Narkhede and Keskar (2015) [186] Presents a recommendation scheme for web

services based on QoS and QoE data.

- Similar to Zibin Zheng et al. [146]

- Service selection

- Not Real-Time

- Not Resource Aware

Sandhu and Sood (2015) [161] A QoS aware scheduling approach for big da-

ta in the cloud.

- Probabilistic

- Resource-Aware

- Uses PCC, similar to [146]

- Cost aware

- Not Real-Time

Tan, Li, and Sun (2014) [187] Analyses the correlation between service lev-

el and workflow QoS.

- Cost aware

- Uses Neural Networks

- Particle Swarm optimisation

- Uses PCC similar to [146]

- Not Real-Time

- Not Resource Aware

continued . . .
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. . . Table A.1 continued

Authors Summary Features

Wang, Zhu, Zheng, Song, Shen, and

Lyu (2016) [148]

Provides an analysis of the problem of static

QoS definitions and proposes a method based

on past user experience to predict future QoS.

Their research presents an example of ser-

vices who response-times vary over a period

of time.

- Service selection for workflows

- User-based QoE

- Least squares regression

- Similar to [146]

- Not Real-Time

- Not Resource-Aware

Zibin Zheng, Hao Ma, Lyu, and King

(2011) [146; 188; 147; 123; 6; 148;

189; 177; 190]

Presents an approach using Pearson’s Corre-

lation Coefficient (PCC) to compare the QoE

of different users using PCC and Top-K fac-

torisation. This method forms the foundation

of many of the other approaches mentioned

here.

- Uses PCC

- Not Real-Time

- Not Resource Aware
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Table A.2: Summary of optimisation-based approaches

Authors Summary Features

Arulanand and Ananth (2015) [191] Cyberphysical Systems in the context of

SWARM particle optimisation where QoS

captures the dependability attributes.

- Service selection for workflows

- Uses optimisation

- Not Resource-Aware

Cardellini, Casalicchio, Grassi,

Iannucci, Presti, and Mirandola (2012)

[192]

Presents the MOSES system which aims to

optimise service selection for workflows giv-

en predefined QoS.

- Workflow re-composition

- Cost [164] & reliablity

- Not real-Time

- Not Resource Aware

Canale, Delli Priscoli, Monaco, Palagi,

and Suraci (2015) [193]

Aims to balance the fairness of the system

by contrasting Quality of Service (QoS) and

Quality of Experience (QoE).

- Reinforcement learning

- Infrastructure agnostic

- Service centric

- Not Real-Time

- Not Resource-Aware

continued . . .
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. . . Table A.2 continued

Authors Summary Features

Canfora, Di Penta, Esposito, and

Villani (2005) [160]

An approach using GAs to perform con-

strained service composition.

- Workflow composition

- Based on GAs

- Based on cost [164], availability & reliability

- Not Real-Time

- Not Resource-Aware

Kumar, Saha, Sundaresan, and

Goswami (2015) [109]

Utilises a bidding competition to allocate re-

sources to services within a workflow.

- Uses Multi-Linear regression

- Resource-Aware

- Assumes full system control

- Not Real-Time

Lee, Shin, and Easwaran (2012)

[106; 194]

An optimisation framework to assign inter-

mediate deadlines to tasks to maximise sys-

tem utility under timing constraints.

- Traditional Schedulability

- Real-Time

- Resource Aware

- Assumes full system control

Luo, Xu, and Yan (2010) [195] A search mechanism for service selection ac-

counting for QoS.

- Service selection

- Not Real-Time

- Not Resource Aware

continued . . .
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Authors Summary Features

Purevsuren, Rehman, Cui, Win, and

Jian-Min (2014) [124]

A service selection approach using multi-

objective optimisation

- Service selection for workflows

- Optimisation approach

- Considers cost and availability

- Not Real-time

- Not resource aware

Seghir and Khababa (2016) [196] Adopts genetic algorithms for workflow com-

position and presents QoS calculations for

various workflow patterns.

- Uses GA optimisation

- Service selection

- Cost aware

- Not resource aware

- Not real-time

Syu, Fanjiang, Kuo, and Ma (2015)

[197; 198]

A genetic programming (GP) approach to

predicting QoS.

- GP & Neural Networks

- Not Real-Time

- Not Resource-Aware

continued . . .
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Authors Summary Features

Yu and Lin (2005) [199; 200] Broker-based method for QoS aware service

composition.

- Optimisation approach

- Parameter agnostic

- Potentially resource-aware, cost is suggested

- Service selection

- Not Real-Time

Yu, Weise, Tang, and Bleul (2010)

[201]

Throughput maximisation approach for work-

flow composition

- Domain aware using ontologies

- Not Real-Time

- Not Resource-Aware

Zhou, Zhang, Bastani, and Yen (2012)

[64]

Application of SOA to robotic swarms whose

functionality is decided using workflow com-

position

- Service selection for workflows

- Real-Time

- Not Resource-Aware
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Table A.3: Summary of container-based approaches

Authors Summary Features

Abeni and Cucinotta (2011) [202] Provide an approach defining a “supply

bound function” to define a limit on the min-

imum amount of execution time a virtual ma-

chine will be allocated when hosting periodic

real-time services.

- Resource-Aware

- Real-Time

- Service is black box

- Use containers to control resource allocation

- Assumes full OS control

Ardagna, Mirandola, Trubian, and

Zhang (2009) [203]

Uses virtualisation to manage resource allo-

cation to services.

- Resource-Aware

- Control resources using containers

- Assume linear function between resources and

response-time

Cucinotta, Mancina, Anastasi, Lipari,

Mangeruca, Checcozzo, and Rusina

(2009) [63; 163; 204–206]

Presents a series of work extending network

middleware to handle soft real-time services

in a cyberphysical system before considering

formal modelling of CPU intensive service

computation for scheduling services within

workflows on virtual machines.

- Energy Resource Aware

- IaaS

- Constraint checking

- Container based

- Not Real-Time

- Assumes RTOS

continued . . .
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Authors Summary Features

Feng, Zhijian, and Qian (2016) [207] Using the attributes of dependability to form

QoS to manage the assignment of virtual ma-

chines in cloud computing environments.

- Resource-aware

- Control resources using containers

- Full control of cloud infrastructure

- Not Real-Time

Lin, Panahi, Zhang, Zhang, and Chang

(2009) [162; 208–213]

Presents the RT-Llama approach for monitor-

ing and guaranteeing service performance us-

ing virtual CPU reservations & intermediate

deadlines.

- CPU Aware

- Real-Time

- Container based

- Assumes full system control

- Scheduling Micro-Services (µSs) of a service

- Assumes sequential execution order

Liu, Ren, Deng, and Song (2016)

[214]

A method for allocation of resources to ser-

vices by managing the virtual machines.

- Real-Time, assuming ideal conditions

- Resource-Aware

- Container based

- Assumes full system control

continued . . .
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Authors Summary Features

Quiroz, Kim, Parashar,

Gnanasambandam, and Sharma (2009)

[215]

Allows over-provisioning of resources based

on the assumption that many services do not

utilise all their requested resources.

- Uses VM provisioning

- Resource-Aware

- Not Real-time

- Assumes full system control

Stavrinides and Karatza (2015) [216] Looks at minimising workflow execution

times across users whilst adhering to dead-

lines with a system wide QoS as well as ser-

vice level QoS.

- Real-Time

- Uses virtual machine selection, i.e. containers

- Not resource aware

Table A.4: Summary of middleware-based approaches

Authors Summary Features

Boniface, Nasser, Papay, Phillips,

Servin, Yang, Zlatev, Gogouvitis,

Katsaros, Konstanteli, Kousiouris,

Menychtas, and Kyriazis (2010) [217]

A PaaS approach to RT-SOA for image pro-

cessing.

- Uses neural-networks

- No implementation detail

- Requires platform control

continued . . .
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Authors Summary Features

Estévez-Ayres, Almeida, Garcı́a-Valls,

and Basanta-Val (2007)

[144; 70; 138; 136; 135; 67; 141; 143;

137; 142; 59; 139; 140; 138]

Defines an extensive, and formally defined,

model that utilises schedulability tests to in-

form workflow compositions as part of the i-

Land project.

- “Soft” Real-Time centric

- Traditional schedulability

- Workflow composition

- Resource-Aware

- Assume full system control

- Semi-adaptive

- Uses DDS for communication backbone

Fu, Wu, Jeng, and Lei (2008) [218] Proposes PACTS as a service-oriented ap-

proach to managing video streaming whilst

guaranteeing frame rates by mapping user

QoE to frame rates and server bandwidths.

- Real-Time

- Full system control

- Resource-aware (Network bandwidth)

- Uses DDS

Garces-Erice (2009) [219] A middleware approach extending DDS with

a scheduling layer to manage service dead-

lines.

- Real-Time

- Full system control

- Utilise DDS

- Not resource-aware

continued . . .
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Authors Summary Features

Moreland, Sarkani, and Mazzuchi

(2013) [72]

A DDS approach to RT-SOA in military C2

systems.

- Real-Time

- Resource Aware

- Similar to Tsai et al. [129]

- Assumes full system control

- Not full SOA, e.g. no loose-coupling

Pérez and Gutiérrez (2015) [150] Use DDS to support a Real-Time Service-

Oriented Architecture (RT-SOA) within a

controlled automotive environment with a se-

quential workflow.

- Based on DDS, similar to Tsai et al. [129]

- Real-Time

- Not Resource-Aware

Pr, Moritz, Zeeb, Salomon,

Golatowski, and Timmermann (2008)

[220]

An approach adapting SOAP to manage real-

time network communication for SOA ap-

plied to robot control systems.

- Real-Time

- Resource-Aware, network and CPU

- Requires control of network protocols

Schneider (2010) [149] Utilisation of DDS for a real-time enterprise

service bus for RT-SOA.

- DDS approach

- Resource Aware

- Real-Time

- Assumes full network control

continued . . .



A
ppendix

A
201

L
istofE

xisting
R

T-SO
A

Q
oS

. . . Table A.4 continued

Authors Summary Features

Tsai, Lee, Cao, Chen, and Xiao (2006)

[129]

Describes an RT-SOA based on DDS and i-

dentifies many of the core requirements for

RT-SOAs over and above SOAs.

- Uses DDS

- Real-Time

- Not Resource-Aware

Table A.5: Summary of fuzzy-logic based approaches

Authors Summary Features

Benbernou, Hadjali, Karam, and

Ouziri (2015) [111]

Adopts a fuzzy logic approach to categorise

response-times as either good, bad, or medi-

um subject in the context of memory utilisa-

tion.

- Probabilistic

- Fuzzy Logic

- Not Resource-Aware

- Service selection for workflows

- Not Real-Time

continued . . .
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Authors Summary Features

de Gyves Avila and Djemame (2013)

[80]

Fuzzy Logic based mechanism for adapting

workflows based on historical performance

data.

- Fuzzy-logic

- Service selection for workflow composition

- Self adaptation

- Energy & cost aware [164]

- Not Real-Time

- Not resource-aware

Table A.6: Summary of cost-based approaches

Authors Summary Features

Abbassi, Graiet, Boubaker, Kmimech,

and Hadj-Alouane (2015) [95]

Provides a formal notation using Event-B to

describe the constraints on web services and

therefore compute the response-time.

- Extensible mathematics

- Considers availability and cost [164]

- Not Real-Time

- Not Resource Aware

- Are not aware of existing literature

- No demonstrable results

- Service is white box

continued . . .
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Authors Summary Features

Al-Ghuwairi, Khalaf, Al-Yasen, Salah,

Alsarhan, and Baarah (2016) [221]

Provides an online update to a SLA which

measures the average monthly up-time per-

centage.

- Measures service availability

- User - provider based

- Cost aware [164]

- Not Resource-Aware

- Not Real-Time

Guo, Jiang, and Li (2015) [222] A method for selecting services based on a

“credit score” partially aimed at managing

CPU utilisation.

- Workflow QoS

- Availability & cost [164]

- Partially CPU aware

- Not Real-Time

Tan, Chen, Sun, Liu, André, Xue, and

Dong (2016) [223]

Presents a methodology for selecting ser-

vices, based on a probabilistic ranking for a

workflow and calculating the overall work-

flow QoS.

- Cost & Availability aware

- Service selection for workflows

- Not Resource-Aware

- Not Real-Time

Kaur, Kaur, and Aggarwal (2014)

[164]

Detailed cost modelling of Software-as-a-

Service.

- Cost modelling

- Not Real-time

- Not resource-aware

continued . . .
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Authors Summary Features

Liu, Ngu, and Zeng (2004) [224] A QoS registry approach using cost and repu-

tation to select services.

- Service ranking for selection

- Execution cost [164]

- Not Real-Time

- Not Resource-Aware

Ngoc, Lin, Nakaguchi, and Ishida

(2014) [225]

A method for handling dynamic mobile en-

vironments where execution duration varies

by observing the availability of the individual

Micro-Service.

- Micro-Service selection for services and work-

flows

- Models cost [164]

- Not Real-Time

- Not Resource Aware

Sachan, Kumar Dixit, and Kumar

(2014) [226]

Utilise several parameters in their QoS defini-

tion and rank the web services based on them

allowing the selection of the most appropriate

service for the user.

- Service selection for workflows

- Static cost aware

- Static resource aware

- Not real-time

continued . . .
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Authors Summary Features

Singh and Chana (2016) [155] Looks at resource allocation in the Cloud to

manage processor utilisation as well as energy

consumption.

- Resource Aware, CPU, memory, storage, and net-

works

- Energy & cost

- Assumes full system control

- Not Real-Time

Wang, Chiu, and Wu (2015) [153] Classifies users into stakeholder groups based

on QoS preference and model the workflow

level QoS.

- Service selection for workflows

- Cost aware

- Not Real-Time

- Not Resource-Aware
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Table A.7: Summary of probabilistic approaches

Authors Summary Features

Calinescu, Grunske, Kwiatkowska,

Mirandola, and Tamburrelli (2011)

[227]

Workflow composition using QoS on perfor-

mance and reliability using probabilistic cal-

culus.

- Probabilistic

- Adaptive

- Workflow management

- Service selection for workflows

- Agnostic about the infrastructure

- Not Real-Time

- Not Resource Aware

Gao, Moussa, Yen, Bastani, and Jeng

(2008) [228]

Extend WSDL with timing information per-

taining to response-time requirements and the

guaranteed response-time of a web service.

- Real-Time

- History based prediction

- Uses geodesic distance & network latency

- Not resource-aware

Jayathilaka, Krintz, and Wolski (2015)

[229]

Presents a predictive method for web services

using a binomial distribution where the mod-

el gets updated based on repeated SLA viola-

tions.

- Static code analysis

- Periodically monitor response-times

- History based

- Not Real-Time

- Not Resource-Aware

continued . . .
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Authors Summary Features

Yang, Peng, and Hu (2014) [230] Assuming sequential workflows this work

presents methods for calculating the likely

response-time of a workflow.

- Probabilistic

- Reputation/trust based

- Assumes sequential workflow execution

- Not Real-Time

- Not Resource-Aware

Zhu Yong, Li Wei, Luo Junzhou, and

Zheng Xiao (2012) [231]

Historical data analysis method for service s-

election for workflow composition

- Historical data based

- Not Real-Time

- Not Resource-Aware

Zareian, Veleda, Litoiu, Shtern,

Ghanbari, and Garg (2015) [232]

A data mining approach to managing service

performance in the cloud.

- CPU resource aware

- Data mining approach

- Not Real-Time

Zhang, Zhuang, Leung, Song, and

Zhou (2015) [233]

A probabilistic method that takes into accoun-

t the geographical location of users, servers,

and the network performance between them.

- Historical data

- Not Real-time

- Not Resource-Aware

continued . . .
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Authors Summary Features

Zheng, Yang, and Zhao (2010) [234] Probability estimation method for service se-

lection.

- Service composition

- Not Real-Time

- Not Resource-Aware

Zou, Lu, Chen, Huang, Xu, and Xiang

(2014) [81]

A workflow planning approach to ensure

workflow QoS fromt he service QoS.

- Service selection for workflows

- Probabilistic

- Not Real-Time

- Not Resource-Aware

Table A.8: Example probabilistic-driven redundancy

Authors Summary Features

Gao, Ali, Curry, and Mileo (2016)

[235]

An approach for managing processing

streams by adapting redundancy levels based

on QoS

- Service selection for workflows

- Not resource-aware

- Not Real-time

continued . . .
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Authors Summary Features

Russell, Liu, Luo, Venters, Webster,

and Xu (2010)

[131; 24; 35; 132; 34; 236; 56; 41; 237]

In the NECTISE project utilises service re-

dundancy to increase the level of provided

QoS

- Probabilistic

- Service selection for workflows

- Not Real-Time

- Not Resource-Aware

Table A.9: Summary of monitoring approaches

Authors Summary Features

Alhamazani, Ranjan, Jayaraman,

Mitra, Rabhi, Georgakopoulos, and

Wang (2015) [238]

Introduces a benchmarking and monitoring a-

gent to analyse QoS taking into account net-

work bandwidth, CPU load, and response-

times.

- Models communication overhead

- Network bandwidth

- Infrastructure agnostic

- Workload aware

- Not Real-Time

- Not Resource-Aware

continued . . .
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Authors Summary Features

Bosman, van den Berg, and van der

Mei (2015) [159]

Periodically probe services to monitor their

response-times.

- Periodic probing

- Service selection for workflows

- System agnostic

- Not Resource-Aware

- Not Real-Time

Buck and Shi (2015) [239] Presents a method for testing the response-

times of web services, in the context of flight

monitoring.

- Probabilistic using historical data

- Offline approach

Cicotti, D’Antonio, Cristaldi, and

Sergio (2013) [240; 241]

Provides a monitoring system, QoSMONaaS,

to check service compliance with advertised

QoS and is demonstrated in the context of en-

ergy monitoring.

- Resource-Aware, power consumption

- Periodic modelling checking

- Not Real-Time

McGregor and Eklund (2008) [242] RT-SOA for remote healthcare monitoring. - Not Real-Time

- Not Resource Aware

Silva, Lins, and Sousa (2015) [243] A methodology for evaluating web service

performance using experimentation.

- Not Real-Time

- Not Resource-Aware
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Table A.10: Summary list of QoS approaches

Authors Summary Features

Assayad (2008) [165] Presents P-Ware an embedded systems ap-

proach to modelling the QoS of media pro-

cessing software running directly on hard-

ware.

- Real-Time

- Not Resource-Aware

- HW solution

Degeler, Georgievski, Lazovik, and

Aiello (2010) [244]

A search-based solution for finding the best

set of services for a workflow’s response-

time.

- Service selection for workflows

- Not Resource-aware

- Not Adaptative

Deng, Jiang, and Ca (2014) [245] An approach overlaying workflow composi-

tion with domain understanding.

- Workflow composition

- Not Resource-aware

- Not real-time

- Requires knowledge of service’s function

Efstathiou, McBurney, Zschaler, and

Bourcier (2013) [130]

A SOA decision support system with QoS

constraints on response-time and battery pow-

er.

- Workflow composition

- Real-time constraints

- Energy modelling

- Not resource-aware

continued . . .
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Authors Summary Features

Ismail, Yan, and Shen (2009) [246] Observes the resource utilisation per timeslot - Resource utilisation based

- Service selection

- Not Real-Time

- Assume full system control

Li and Guo (2015) [247] An approach controlling CPU utilisation to

dynamically reconfigure workflows.

- Real-Time

- Resource-Aware, CPU core level

- Workflow reconfiguration

- Assumes full system control

Lima, Rocha, and Costa (2016) [248] Presents an approach to share service in-

stances across workflows to reduce system

workload.

- Workflow choreography

- Not Real-Time

- Not Resource Aware

Ben Mabrouk, Beauche, Kuznetsova,

Georgantas, and Issarny (2009) [32]

An approach to adhere to workflow QoS

rather than individual service QoS.

- Service selection for workflows

- Not Real-Time

- Not Resource Aware

continued . . .
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Authors Summary Features

Monaco, Nery, and Peixoto (2009)

[249]

A load balancing scheduling algorithm for

Real-Time Service-Oriented Architectures

- Real-Time

- Resource Aware

- Assumes full system control

Sun, White, Eade, and Schmidt (2016)

[250]

Present ROAR a framework for managing re-

source allocation to services in Clouds.

- Resource-Aware, CPU, memory, network, & disk

- Not Real-Time

- Assumes full system control

Vu, Hauswirth, and Aberer (2005)

[251]

A trust-based method for ranking services for

selection.

- Service selection for workflows

- Trust modelling

- Not Real-Time

- Not Resource-Aware

Xu and Yan (2009) [252] QoS driven workflow composition. - Full service implementation aware

- Service selection

- Not Real-Time

- Not Resource-Aware

continued . . .
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Xue, Yen, and Cooper (2011) [253] QoS adaptation for managing media stream

frame rates by reducing frame resolutions.

- Real-Time

- Network bandwidth aware

- Data-context aware



Appendix B

Algorithms

B.1 Online Monitoring Algorithms

As described on Page 95

Algorithm 3: Calculating the Availability Coordinates
Input: α as calculated in Eqn. 4.6

Result: j the model coordinates

Result: Asum the total resource availability, see Eqn. 4.7

1 foreach r ∈ R do

2 begin Update Availability and calculate j

3 Asum[r] = Asum[r] + a[r]

4 j[r] = CEIL(a[r]d[r])

5 end

6 end

215
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As used on Page 95

Algorithm 4: Estimating Execution Progress
Input: j as calcualted in Algorithm 3

Input: pt−1 the previously estimated progress

Input: Ω the set of resource utilisation observation

Input: k specified as a constant

Input: I the density model

Input: F model

Result: p the estimated execution progress

/* At least 1 of RTT or Uprovided must be supplied */

Optional: Uprovided the statically provided, otherwise Uprovided =∞

Optional: RTT statically provided, otherwise RTT =∞

Optional: h provided as the benchmark, otherwise h =∞

1 begin Estimate progress

2 ptemp =∞

3 foreach resource r in R do

4 if I.Sum == 0 then Initial Case

5 h = MIN(h,H.Max)

6 F [j, r] = MIN(Uprovided, h×RTT)

7 end

8 temp = FLOOR((k × Ω[r].Sum)÷ F [j, r])÷ k

9 ptemp = MIN(ptemp, temp)

10 end

11 p = MAX(p, ptemp)

12 end
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As used on Page 95

Algorithm 5: Estimating the time-to-finish
Input: j as calcualted in Algorithm 3

Input: p the estimated progress

Input: Ω the set of all resource utilisation observation

/* At least 1 of RTT or Uprovided must be supplied */

Optional: Uprovided the statically provided, otherwise Uprovided =∞

Optional: RTT statically provided, otherwise RTT =∞

Optional: h provided as the benchmark, otherwise h =∞

1 if Ij > 0 then Standard Model

2 RTT = M [j]

3 end

4 else if I.Sum == 0 then Initial Case

5 h = MIN(h,H.Max)

6 U = MIN(Uprovided, h×RTT )

7 RTT = U ÷ j

8 end

9 else Sparse Model

10 begin Calculate D−1 from j of all points in the matrix

11 foreach i do

12 D[i] = 1÷ABS(i− j)

13 end

14 end

15 begin Calculate RTT

16 num = 0

17 denom = 0

18 foreach i 6= j do

19 num+ = I[j]×M [i]×D[i]

20 denom+ = I[i]×D[i]

21 end

22 RTT = num÷ denom

23 end

24 end

25 T T F = (p÷ k)×RTT
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B.2 Model Updating Algorithms

As described on Page 97

Algorithm 6: Update response-time data sets
Input: j as calcualted in Algorithm 3

Input: The recorded response-time RTT

Input: M the response-time model

Result: I updated density matrix

Result: T data set of response-times

Result: M updated response-time model

1 begin Historical record

2 T [j] = T [j].ADD(RTT )

3 maxT [j] = MAX(maxT [j], RTT )

4 totalT [j] = T [j].Sum

5 end

6 begin Indicator function

7 I[j] + +

8 sumI = I.Sum

9 end

10 begin Response-Time model

11 M [j] = {totaltT [j]÷ I[j],maxT [j]}

12 end
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As used on Page 97

Algorithm 7: Building the utilisation and availability models
Input: some input

1 begin Average j

2 foreach r ∈ R do

3 A[n, r] = Asum[r]÷ (k + 1)

4 end

/* See Algorithm 3 */

5 j temp+ = CALCULATE J(A[n])

6 end

7 for (p = k, p ≥ 0, p−−) do

8 foreach r ∈ R do

9 begin Updating Utilisation Model

10 sumu[p, r, j]+ = u[p, r]

11 minu[p, r, j] = min(u[p, r],minu[p, r, j])

12 maxu[p, r, j] = min(u[p, r],maxu[p, r, j])

13 delta = u[p, r]−muu[p, r, j]

14 muu[p, r, j] = sumu[p, r, j]÷ (n+ 1)

15 M2u[p, r, j] = M2u[p, r, j] + pow(u[p, r]−muu[p, r], 2)

16 if n ≥ 2 then

17 varu[p, r, j] = M2u[p, r, j]÷ n

18 end

19 end

20 begin Update Forecast Model

21 Fmean[p, r, j] = Fmean[p+ 1, r, j] + muu[p, r, j]

22 Fmin[p, r, j] = Fmin[p+ 1, r, j] + minu[p, r, j]

23 Fmax[p, r, j] = Fmax[p+ 1, r, j] + maxu[p, r, j]

24 FvarSum[p, r, j] = FvarSum[p, r, j] + varu[p, r, j]

25 Fvar[p, r, j] = FvarSum[p+ 1, r, j]÷ (kp+ 1, j)

26 end

27 end

28 end
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B.3 Deadline Miss Alert

As described on Page 98

Algorithm 8: Deadline miss alert
Input: T T F as predicted by Algorithm 2

Input: j availability configuration

Input: p estimated progress

Output: ALERT( ) warning of the potential deadline miss

1 begin Initial deadline check

2 if T T F > D then

3 begin Re-configuration Check

4 jtarget = NULL

5 foreach i >= j do

/* See Algorithm 5 */

6 T T F temp = ESTIMATE TTF(i, p,Ω, [U,RTT, h])

7 if T T F temp <= D then

8 jtarget = i

9 BREAK LOOP

10 end

11 end

12 end

13 if jtarget = NULL then

14 ALERT(NULL)

15 end

16 else Report the required configuration

17 ALERT(jtarget)

18 end

19 end

20 end



Appendix C

Code Listings for QoS Approach

Simulation

This appendix contains the code listings for the simulations from Chapters 3 and 5.

C.1 Server Code Listing

Listing C.1: Code listing for the Server model from the simulations

1 p u b l i c c l a s s S e r v e r : Node

2 {

3 # r e g i o n P r o p e r t i e s

4

5 do ub l e CPU Capac i ty = 1 ;

6

7 [ I s A c c e s s ]

8 p u b l i c d ou b l e CPU Capaci ty

9 {

221
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10 g e t { r e t u r n CPU Capac i ty ; }

11 s e t { CPU Capac i ty = v a l u e ; }

12 }

13

14 do ub l e Memory Capaci ty = 1 ;

15

16 [ I s A c c e s s ]

17 p u b l i c d ou b l e Memory Capaci ty

18 {

19 g e t { r e t u r n Memory Capaci ty ; }

20 s e t { Memory Capaci ty = v a l u e ; }

21 }

22

23 do ub l e C P U U t i l i s a t i o n ;

24

25 [ I s A c c e s s ]

26 p u b l i c d ou b l e C P U U t i l i s a t i o n

27 {

28 g e t { r e t u r n C P U U t i l i s a t i o n ; }

29 s e t { C P U U t i l i s a t i o n = v a l u e ; }

30 }

31

32 do ub l e M e m o r y U t i l i s a t i o n ;

33

34 [ I s A c c e s s ]

35 p u b l i c d ou b l e M e m o r y U t i l i s a t i o n

36 {

37 g e t { r e t u r n M e m o r y U t i l i s a t i o n ; }

38 s e t { M e m o r y U t i l i s a t i o n = v a l u e ; }

39 }

40

41 p u b l i c I n t e r f e r e n c e T a s k I n t e r f e r e n c e

42 {

43 g e t

44 {

45 i f ( t h i s . F u n c t i o n s . Any ( f => f . GetType ( ) == t y p e o f (
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I n t e r f e r e n c e T a s k ) ) )

46 r e t u r n t h i s . F u n c t i o n s . F i r s t ( f => f . GetType ( ) == t y p e o f (

I n t e r f e r e n c e T a s k ) ) a s I n t e r f e r e n c e T a s k ;

47 r e t u r n n u l l ;

48 }

49 }

50

51 p u b l i c I F u n c t i o n Task

52 {

53 g e t

54 {

55 i f ( t h i s . F u n c t i o n s . Any ( f => f . GetType ( ) == t y p e o f ( M i c r o S e r v i c e ) ) )

56 r e t u r n t h i s . F u n c t i o n s . L a s t ( f => f . GetType ( ) == t y p e o f (

M i c r o S e r v i c e ) ) a s M i c r o S e r v i c e ;

57 r e t u r n n u l l ;

58 }

59 }

60

61 # e n d r e g i o n

62

63 p u b l i c S e r v e r ( ) : ba se ( ) { }

64

65 p u b l i c o v e r r i d e vo id Main ( )

66 {

67 w h i l e ( ALIVE )

68 {

69 i f ( Task != n u l l )

70 {

71 boo l t a s k F i n i s h e d = f a l s e ;

72

73 w h i l e ( ! t a s k F i n i s h e d && ALIVE && Task != n u l l )

74 {

75 # r e g i o n r u n n i n g

76

77 i f ( I n t e r f e r e n c e != n u l l && Task != n u l l )

78 {
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79 s w i t c h ( I n t e r f e r e n c e . S t a t u s )

80 {

81 c a s e A c t i o n S t a t u s . F i n i s h e d :

82 c a s e A c t i o n S t a t u s . F a i l e d :

83 c a s e A c t i o n S t a t u s . K i l l e d :

84 I n t e r f e r e n c e . S t a r t ( ) ; / / R e s t a r t

85 b r e a k ;

86 c a s e A c t i o n S t a t u s . N o t S t a r t e d :

87 c a s e A c t i o n S t a t u s . Paused :

88 I n t e r f e r e n c e . S t a r t ( ) ;

89 b r e a k ;

90 d e f a u l t :

91 b r e a k ;

92 }

93

94 s w i t c h ( Task . S t a t u s )

95 {

96 c a s e A c t i o n S t a t u s . F i n i s h e d :

97 c a s e A c t i o n S t a t u s . F a i l e d :

98 c a s e A c t i o n S t a t u s . K i l l e d :

99 t a s k F i n i s h e d = t r u e ;

100 b r e a k ;

101 c a s e A c t i o n S t a t u s . N o t S t a r t e d :

102 c a s e A c t i o n S t a t u s . Paused :

103 Task . S t a r t ( ) ;

104 b r e a k ;

105 d e f a u l t :

106 b r e a k ;

107 }

108

109 / / S c h e d u l e : a l l o c a t e CPU & Memory

110 I n t e r f e r e n c e . AllocCPU = Math . Min ( I n t e r f e r e n c e . CPU,

CPU Capaci ty ) ;

111 C P U U t i l i s a t i o n = I n t e r f e r e n c e . AllocCPU ;

112 I n t e r f e r e n c e . AllocMemory = Math . Min ( I n t e r f e r e n c e . Memory ,

Memory Capaci ty ) ;
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113 M e m o r y U t i l i s a t i o n = I n t e r f e r e n c e . AllocMemory ;

114

115 do ub l e A cpu = CPU Capaci ty − C P U U t i l i s a t i o n ;

116 do ub l e A mem = Memory Capaci ty − M e m o r y U t i l i s a t i o n ;

117

118 i f ( t h i s . Task . GetType ( ) == t y p e o f ( V i r t u a l M a c h i n e ) )

119 {

120 ( ( V i r t u a l M a c h i n e ) t h i s . Task ) . AllocCPU = Math . Min ( A cpu , ( (

V i r t u a l M a c h i n e ) t h i s . Task ) . CPU) ;

121 ( ( V i r t u a l M a c h i n e ) t h i s . Task ) . AllocMemory = Math . Min (A mem ,

( ( V i r t u a l M a c h i n e ) t h i s . Task ) . Memory ) ;

122

123 C P U U t i l i s a t i o n += ( ( V i r t u a l M a c h i n e ) t h i s . Task ) . AllocCPU ;

124 M e m o r y U t i l i s a t i o n += ( ( V i r t u a l M a c h i n e ) t h i s . Task ) .

AllocMemory ;

125 }

126 e l s e

127 {

128 ( ( Task ) t h i s . Task ) . AllocCPU = Math . Min ( A cpu , ( ( Task ) t h i s .

Task ) . CPU) ;

129 ( ( Task ) t h i s . Task ) . AllocMemory = Math . Min (A mem , ( ( Task )

t h i s . Task ) . Memory ) ;

130

131 C P U U t i l i s a t i o n += ( ( Task ) t h i s . Task ) . AllocCPU ;

132 M e m o r y U t i l i s a t i o n += ( ( Task ) t h i s . Task ) . AllocMemory ;

133 }

134 }

135 # e n d r e g i o n

136 }

137

138 t h i s . Wait ( ) ;

139 t h i s . Wait ( ) ;

140

141 i f ( Task != n u l l )

142 {

143 i f ( Task . S t a t u s != A c t i o n S t a t u s . F i n i s h e d )
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144 Task . K i l l ( ) ;

145 e l s e

146 F u n c t i o n s . Remove ( Task ) ;

147 }

148

149 t h i s . Wait ( ) ;

150 t h i s . Wait ( ) ;

151 }

152 }

153 }

154 }

C.2 Virtual Machine Listing

Listing C.2: Code listing for the Virtual Machine model from the simulations

1 p u b l i c c l a s s V i r t u a l M a c h i n e : Chi ldNode

2 {

3 # r e g i o n P r o p e r t i e s

4

5 do ub l e CPU ;

6

7 [ I s A c c e s s ]

8 p u b l i c d ou b l e CPU

9 {

10 g e t { r e t u r n CPU ; }

11 s e t { CPU = v a l u e ; }

12 }

13

14 do ub l e Memory ;

15

16 [ I s A c c e s s ]

17 p u b l i c d ou b l e Memory

18 {

19 g e t { r e t u r n Memory ; }

20 s e t { Memory = v a l u e ; }
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21 }

22

23 do ub l e AllocCPU = 0 ;

24

25 [ I s A c c e s s ]

26 p u b l i c d ou b l e AllocCPU

27 {

28 g e t { r e t u r n AllocCPU ; }

29 s e t { AllocCPU = v a l u e ; }

30 }

31

32 do ub l e AllocMemory = 0 ;

33

34 [ I s A c c e s s ]

35 p u b l i c d ou b l e AllocMemory

36 {

37 g e t { r e t u r n AllocMemory ; }

38 s e t { AllocMemory = v a l u e ; }

39 }

40

41 do ub l e CPU Capac i ty ;

42

43 [ I s A c c e s s ]

44 p u b l i c d ou b l e CPU Capaci ty

45 {

46 g e t { r e t u r n CPU Capac i ty ; }

47 s e t { CPU Capac i ty = v a l u e ; }

48 }

49

50 do ub l e Memory Capaci ty ;

51

52 [ I s A c c e s s ]

53 p u b l i c d ou b l e Memory Capaci ty

54 {

55 g e t { r e t u r n Memory Capaci ty ; }

56 s e t { Memory Capaci ty = v a l u e ; }
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57 }

58

59 do ub l e C P U U t i l i s a t i o n ;

60

61 [ I s A c c e s s ]

62 p u b l i c d ou b l e C P U U t i l i s a t i o n

63 {

64 g e t { r e t u r n C P U U t i l i s a t i o n ; }

65 s e t { C P U U t i l i s a t i o n = v a l u e ; }

66 }

67

68 do ub l e M e m o r y U t i l i s a t i o n ;

69

70 [ I s A c c e s s ]

71 p u b l i c d ou b l e M e m o r y U t i l i s a t i o n

72 {

73 g e t { r e t u r n M e m o r y U t i l i s a t i o n ; }

74 s e t { M e m o r y U t i l i s a t i o n = v a l u e ; }

75 }

76

77 p u b l i c M i c r o S e r v i c e Task

78 {

79 g e t

80 {

81 r e t u r n t h i s . F u n c t i o n s [ 0 ] a s M i c r o S e r v i c e ;

82 }

83 s e t

84 {

85 t h i s . F u n c t i o n s = new L i s t<I F u n c t i o n >() { v a l u e } ;

86 }

87 }

88

89 p r i v a t e MathNet . Numerics . D i s t r i b u t i o n s . Normal o v e r h e a d ;

90

91 # e n d r e g i o n

92
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93 p u b l i c V i r t u a l M a c h i n e ( )

94 : ba se ( )

95 {

96 o v e r h e a d = new MathNet . Numerics . D i s t r i b u t i o n s . Normal ( . 0 5 , . 0 1 ) ;

97 }

98

99 p u b l i c o v e r r i d e vo id Main ( )

100 {

101 boo l t a s k F i n i s h e d = f a l s e ;

102

103 w h i l e ( ALIVE && ! t a s k F i n i s h e d )

104 {

105 i f ( Task != n u l l )

106 s w i t c h ( Task . S t a t u s )

107 {

108 c a s e A c t i o n S t a t u s . F i n i s h e d :

109 c a s e A c t i o n S t a t u s . F a i l e d :

110 c a s e A c t i o n S t a t u s . K i l l e d :

111 t a s k F i n i s h e d = t r u e ;

112 b r e a k ;

113 c a s e A c t i o n S t a t u s . N o t S t a r t e d :

114 c a s e A c t i o n S t a t u s . Paused :

115 Task . S t a r t ( ) ;

116 b r e a k ;

117 d e f a u l t :

118 b r e a k ;

119 }

120

121 do ub l e A cpu = CPU Capaci ty * ( AllocCPU / CPU) − o v e r h e a d . Sample

( ) ;

122 do ub l e A mem = Memory Capaci ty * ( AllocMemory / Memory ) −

o v e r h e a d . Sample ( ) ;

123

124 Task . AllocCPU = Math . Min ( A cpu , Task . CPU) ;

125 Task . AllocMemory = Math . Min (A mem , Task . Memory ) ;

126
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127 C P U U t i l i s a t i o n += Task . AllocCPU ;

128 M e m o r y U t i l i s a t i o n += Task . AllocMemory ;

129 }

130 }

131 }

C.3 Interference Workload Listing

Listing C.3: Code listing for the Interference Workload model from the simulations

1 p u b l i c a b s t r a c t c l a s s Task : F u n c t i o n

2 {

3 do ub l e CPU ;

4

5 [ I s A c c e s s ]

6 p u b l i c d ou b l e CPU

7 {

8 g e t { r e t u r n CPU ; }

9 s e t { CPU = v a l u e ; }

10 }

11

12 do ub l e Memory ;

13

14 [ I s A c c e s s ]

15 p u b l i c d ou b l e Memory

16 {

17 g e t { r e t u r n Memory ; }

18 s e t { Memory = v a l u e ; }

19 }

20

21 do ub l e AllocCPU = 0 ;

22

23 [ I s A c c e s s ]

24 p u b l i c d ou b l e AllocCPU

25 {

26 g e t { r e t u r n AllocCPU ; }
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27 s e t { AllocCPU = v a l u e ; }

28 }

29

30 do ub l e AllocMemory = 0 ;

31

32 [ I s A c c e s s ]

33 p u b l i c d ou b l e AllocMemory

34 {

35 g e t { r e t u r n AllocMemory ; }

36 s e t { AllocMemory = v a l u e ; }

37 }

38

39 do ub l e CPU Mean ;

40

41 [ I s A c c e s s ]

42 p u b l i c d ou b l e CPU Mean

43 {

44 g e t { r e t u r n CPU Mean ; }

45 s e t { CPU Mean = v a l u e ; }

46 }

47

48 do ub l e Memory Mean ;

49

50 [ I s A c c e s s ]

51 p u b l i c d ou b l e Memory Mean

52 {

53 g e t { r e t u r n Memory Mean ; }

54 s e t { Memory Mean = v a l u e ; }

55 }

56

57

58 p r o t e c t e d MathNet . Numerics . D i s t r i b u t i o n s . Normal cpuVar iance ,

memoryVariance ;

59 }

60

61 p u b l i c c l a s s I n t e r f e r e n c e T a s k : Task
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62 {

63 # r e g i o n P r o p e r t i e s

64

65 W o r k l o a d P a t t e r n WorkloadType ;

66

67 p u b l i c W o r k l o a d P a t t e r n WorkloadType

68 {

69 g e t { r e t u r n WorkloadType ; }

70 s e t { WorkloadType = v a l u e ; }

71 }

72

73 MathNet . Numerics . Random . Mer senn eTwis t e r r and ;

74

75 # e n d r e g i o n

76

77 p u b l i c I n t e r f e r e n c e T a s k ( )

78 : ba se ( )

79 {

80 c p u V a r i a n c e = new MathNet . Numerics . D i s t r i b u t i o n s . Normal ( 0 , . 0 5 ) ;

81 memoryVariance = new MathNet . Numerics . D i s t r i b u t i o n s . Normal ( 0 , . 0 5 ) ;

82 r and = new MathNet . Numerics . Random . Mer sen neTwis t e r ( t r u e ) ;

83 }

84

85 p u b l i c o v e r r i d e vo id Main ( )

86 {

87 CPU = CPU Mean ;

88 Memory = Memory Mean ;

89

90 boo l ? once = n u l l ;

91 do ub l e r a d = 0 ;

92

93 w h i l e ( ALIVE )

94 {

95 s w i t c h ( WorkloadType )

96 {

97 c a s e W o r k l o a d P a t t e r n . S t a t i c :
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98 CPU = CPU Mean + c p u V a r i a n c e . Sample ( ) ;

99 Memory = Memory Mean + memoryVariance . Sample ( ) ;

100 b r e a k ;

101 c a s e W o r k l o a d P a t t e r n . U n p r e d i c t a b l e :

102 CPU = rand . NextDouble ( ) ;

103 Memory = rand . NextDouble ( ) ;

104 b r e a k ;

105 c a s e W o r k l o a d P a t t e r n . OnceInALi fe t ime :

106 i f ( once == t r u e )

107 {

108 i f ( r and . NextDouble ( ) > . 8 )

109 {

110 once = f a l s e ;

111 CPU = CPU Mean + c p u V a r i a n c e . Sample ( ) ;

112 Memory = Memory Mean + memoryVariance . Sample ( ) ;

113 WorkloadType = W o r k l o a d P a t t e r n . S t a t i c ;

114 }

115 }

116 e l s e i f ( once == n u l l )

117 {

118 i f ( r and . NextDouble ( ) > . 8 )

119 {

120 once = t r u e ;

121 CPU = Math . Min ( 1 , 0 . 9 8 + c p u V a r i a n c e . Sample ( ) ) ;

122 Memory = Math . Min ( 1 , 0 . 9 8 + memoryVariance . Sample ( ) ) ;

123 }

124 }

125 b r e a k ;

126 c a s e W o r k l o a d P a t t e r n . P e r i o d i c :

127 CPU = Math . Min ( 1 , ( MathNet . Numerics . T r i g . S in ( r a d ) / 2 ) +

c p u V a r i a n c e . Sample ( ) + CPU Mean ) ;

128 Memory = Math . Min ( 1 , ( MathNet . Numerics . T r i g . S in ( r a d ) / 2 ) +

memoryVariance . Sample ( ) + Memory Mean ) ;

129 r a d = r a d + rand . NextDouble ( ) ;

130 b r e a k ;

131 c a s e W o r k l o a d P a t t e r n . C o n t I n c r e a s i n g :
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132 CPU = CPU + Math . Abs ( c p u V a r i a n c e . Sample ( ) ) ;

133 Memory = Memory + Math . Abs ( memoryVariance . Sample ( ) ) ;

134 b r e a k ;

135 c a s e W o r k l o a d P a t t e r n . C o n t D e c r e a s i n g :

136 CPU = CPU − Math . Abs ( c p u V a r i a n c e . Sample ( ) ) ;

137 Memory = Memory − Math . Abs ( memoryVariance . Sample ( ) ) ;

138 b r e a k ;

139 }

140 }

141 }

142 }

143

144 p u b l i c enum W o r k l o a d P a t t e r n

145 {

146 S t a t i c =0 ,

147 P e r i o d i c =1 ,

148 OnceInALi fe t ime =2 ,

149 U n p r e d i c t a b l e =3 ,

150 C o n t I n c r e a s i n g =4 ,

151 C o n t D e c r e a s i n g =5

152 }

C.4 Micro-Service Listing

Listing C.4: Code listing for the Micro-Service model from the simulations

1 p u b l i c c l a s s M i c r o S e r v i c e : Task

2 {

3 # r e g i o n P r o p e r t i e s

4

5 s t r i n g Name ;

6

7 [ I s A c c e s s ]

8 p u b l i c s t r i n g Name

9 {

10 g e t { r e t u r n Name ; }
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11 s e t { Name = v a l u e ; }

12 }

13

14 p r i v a t e L i s t<double> C P U U t i l i s a t i o n , M e m o r y U t i l i s a t i o n ;

15

16 p u b l i c L i s t<double> C P U U t i l i s a t i o n

17 {

18 g e t { r e t u r n C P U U t i l i s a t i o n ; }

19 s e t { C P U U t i l i s a t i o n = v a l u e ; }

20 }

21

22 p u b l i c L i s t<double> M e m o r y U t i l i s a t i o n

23 {

24 g e t { r e t u r n M e m o r y U t i l i s a t i o n ; }

25 s e t { M e m o r y U t i l i s a t i o n = v a l u e ; }

26 }

27

28 do ub l e C P U U t i l i s a t i o n T o t a l = 0 , M e m o r y U t i l i s a t i o n T o t a l = 0 ;

29

30 [ I s A c c e s s ]

31 p u b l i c d ou b l e C P U U t i l i s a t i o n T o t a l

32 {

33 g e t { r e t u r n C P U U t i l i s a t i o n T o t a l ; }

34 s e t { C P U U t i l i s a t i o n T o t a l = v a l u e ; }

35 }

36

37 [ I s A c c e s s ]

38 p u b l i c d ou b l e M e m o r y U t i l i s a t i o n T o t a l

39 {

40 g e t { r e t u r n M e m o r y U t i l i s a t i o n T o t a l ; }

41 s e t { M e m o r y U t i l i s a t i o n T o t a l = v a l u e ; }

42 }

43

44 do ub l e P r o g r e s s ;

45

46 [ I s A c c e s s ]
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47 p u b l i c d ou b l e P r o g r e s s

48 {

49 g e t { r e t u r n P r o g r e s s ; }

50 s e t { P r o g r e s s = v a l u e ; }

51 }

52

53 i n t L e n g t h ;

54

55 [ I s A c c e s s ]

56 p u b l i c i n t Length

57 {

58 g e t { r e t u r n L e n g t h ; }

59 s e t { L e n g th = v a l u e ; }

60 }

61

62 R e s o u r c e A c q u i s t i o n A c q u i s i t i o n T y p e ;

63

64 p u b l i c R e s o u r c e A c q u i s t i o n A c q u i s i t i o n T y p e

65 {

66 g e t { r e t u r n A c q u i s i t i o n T y p e ; }

67 s e t { A c q u i s i t i o n T y p e = v a l u e ; }

68 }

69 R e s o u r c e R e l e a s e R e l e a s e T y p e ;

70

71 p u b l i c R e s o u r c e R e l e a s e Re leaseType

72 {

73 g e t { r e t u r n R e l e a s e T y p e ; }

74 s e t { R e l e a s e T y p e = v a l u e ; }

75 }

76

77 TaskType TaskType ;

78

79 p u b l i c TaskType TaskType

80 {

81 g e t { r e t u r n TaskType ; }

82 s e t { TaskType = v a l u e ; }



Appendix C 237 Simulation Source Code

83 }

84

85 do ub l e S t a r t T i m e ;

86

87 [ I s A c c e s s ]

88 p u b l i c d ou b l e S t a r t T i m e

89 {

90 g e t { r e t u r n S t a r t T i m e ; }

91 s e t { S t a r t T i m e = v a l u e ; }

92 }

93

94 do ub l e ResponseTime ;

95

96 [ I s A c c e s s ]

97 p u b l i c d ou b l e ResponseTime

98 {

99 g e t { r e t u r n ResponseTime ; }

100 s e t { ResponseTime = v a l u e ; }

101 }

102

103 # e n d r e g i o n

104

105 p u b l i c M i c r o S e r v i c e ( )

106 : ba se ( )

107 {

108 c p u V a r i a n c e = new MathNet . Numerics . D i s t r i b u t i o n s . Normal ( 0 , . 0 2 ) ;

109 memoryVariance = new MathNet . Numerics . D i s t r i b u t i o n s . Normal ( 0 , . 0 2 ) ;

110

111 C P U U t i l i s a t i o n = new L i s t<double >() ;

112 M e m o r y U t i l i s a t i o n = new L i s t<double >() ;

113 }

114

115 p u b l i c o v e r r i d e vo id Main ( s t r i n g [ ] a r g s )

116 {

117 S t a r t T i m e = t h i s . Time ;

118



Appendix C 238 Simulation Source Code

119 i n t midx = a r g s . T o L i s t ( ) . IndexOf ( ”MEM” ) + 1 ;

120 C P U U t i l i s a t i o n = a r g s . T o L i s t ( ) . GetRange ( 1 , Length ) . S e l e c t ( s =>

do ub l e . P a r s e ( s ) ) . ToLis t<double >() ;

121 M e m o r y U t i l i s a t i o n = a r g s . T o L i s t ( ) . GetRange ( midx , Length ) . S e l e c t ( s

=> do ub l e . P a r s e ( s ) ) . ToLis t<double >() ;

122

123 s w i t c h ( A c q u i s i t i o n T y p e )

124 {

125 c a s e R e s o u r c e A c q u i s t i o n . Eager :

126 CPU = C P U U t i l i s a t i o n . Max ( ) ;

127 Memory = M e m o r y U t i l i s a t i o n . Max ( ) ;

128 b r e a k ;

129 c a s e R e s o u r c e A c q u i s t i o n . Lazy :

130 CPU = C P U U t i l i s a t i o n [ 0 ] ;

131 Memory = M e m o r y U t i l i s a t i o n [ 0 ] ;

132 b r e a k ;

133 }

134

135 i n t c o u n t = 0 ;

136 i n t s t e p C o u n t = 0 ;

137

138 w h i l e ( c o u n t < Length )

139 {

140 t h i s . Wait ( ) ;

141 t r y

142 {

143 i f ( A c q u i s i t i o n T y p e == R e s o u r c e A c q u i s t i o n . Lazy )

144 {

145 i f ( C P U U t i l i s a t i o n [ c o u n t ] > CPU | | ReleaseType ==

R e s o u r c e R e l e a s e . A c t i v e )

146 CPU = C P U U t i l i s a t i o n [ c o u n t ] ;

147 i f ( M e m o r y U t i l i s a t i o n [ c o u n t ] > Memory | | ReleaseType ==

R e s o u r c e R e l e a s e . A c t i v e )

148 Memory = M e m o r y U t i l i s a t i o n [ c o u n t ] ;

149 }

150 e l s e
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151 {

152 i f ( Re leaseType == R e s o u r c e R e l e a s e . A c t i v e )

153 CPU = C P U U t i l i s a t i o n [ c o u n t ] ;

154 i f ( Re leaseType == R e s o u r c e R e l e a s e . A c t i v e )

155 Memory = M e m o r y U t i l i s a t i o n [ c o u n t ] ;

156 }

157

158 C P U U t i l i s a t i o n T o t a l += AllocCPU ;

159 M e m o r y U t i l i s a t i o n T o t a l += AllocMemory ;

160

161 s t e p C o u n t ++;

162 i f ( s t e p C o u n t >= Math . Abs ( MathNet . Numerics . S p e c i a l F u n c t i o n s .

L o g i t (

163 Math . Min ( 1 , Math . Max ( 0 , (1 − ( ( AllocCPU / CPU) / 2 ) ) ) )

164 ) ) )

165 {

166 c o u n t ++;

167 s t e p C o u n t = 0 ;

168 }

169 }

170 c a t c h ( E x c e p t i o n e r r )

171 {

172 Conso le . W r i t e L i n e ( e r r . Message ) ;

173 }

174 P r o g r e s s = ( do ub l e ) c o u n t / ( do ub l e ) Length ;

175 i f ( P r o g r e s s >= 1)

176 {

177 t h i s . S t a t u s = A c t i o n S t a t u s . F i n i s h e d ;

178 ResponseTime = t h i s . Time − S t a r t T i m e ;

179 }

180 }

181

182 ResponseTime = t h i s . Time − S t a r t T i m e ;

183 P r o g r e s s = 1 ;

184

185 t h i s . Wait ( ) ;
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186 t h i s . Wait ( ) ;

187 }

188 }

189

190 p u b l i c enum R e s o u r c e A c q u i s t i o n

191 {

192 Lazy =0 ,

193 Eager =1

194 }

195 p u b l i c enum R e s o u r c e R e l e a s e

196 {

197 A c t i v e =0 ,

198 NonReleas ing =1

199 }

200 p u b l i c enum TaskType

201 {

202 Smal l =0 ,

203 Medium =1 ,

204 Large =2

205 }
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Code Listings for QoS Approach

Experiments

This appendix contains the code listings for the Micro-Services from Chapter 6.

Listing D.1: Code listing Micro-Services

1 # r e g i o n m u l t i p l e s

2

3 s t a t i c L i s t<ulong> M u l t i p l e s ( u long a , u long max )

4 {

5 L i s t<ulong> m u l t s = new L i s t<ulong >() ;

6 f o r ( u long i = 1 ; i < max ; i ++)

7 {

8 i f ( a % i == 0)

9 m u l t s . Add ( i ) ;

10 }

11

12 r e t u r n m u l t s ;

13 }

241
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14

15 s t a t i c L i s t<ulong> Mult ip lesOR ( u long a , u long b , u long max )

16 {

17 L i s t<ulong> m u l t s = M u l t i p l e s ( a , max ) ;

18 L i s t<ulong> mu l t s2 = M u l t i p l e s ( b , max ) ;

19 f o r e a c h ( u long i i n m u l t s 2 )

20 i f ( ! m u l t s . C o n t a i n s ( i ) )

21 m u l t s . Add ( i ) ;

22

23 r e t u r n m u l t s ;

24 }

25

26 s t a t i c L i s t<ulong> Mult ip lesOR ( L i s t<ulong> a , u long max )

27 {

28 L i s t<L i s t<ulong>>m u l t s s = new L i s t<L i s t<ulong >>() ;

29 f o r e a c h ( u long b i n a )

30 {

31 L i s t<ulong> mul t = M u l t i p l e s ( b , max ) ;

32 m u l t s s . Add ( mul t ) ;

33 }

34

35 L i s t<ulong> m u l t s = new L i s t<ulong >() ;

36 f o r e a c h ( L i s t<ulong> l s i n m u l t s s )

37 f o r e a c h ( u long l i n l s )

38 i f ( ! m u l t s . C o n t a i n s ( l ) )

39 m u l t s . Add ( l ) ;

40

41 r e t u r n m u l t s ;

42 }

43

44 s t a t i c L i s t<ulong> MultiplesAND ( u long a , u long b , u long max )

45 {

46 L i s t<ulong> m u l t s = new L i s t<ulong >() ;

47 L i s t<ulong> mu l t s1 = M u l t i p l e s ( a , max ) ;

48 L i s t<ulong> mu l t s2 = M u l t i p l e s ( b , max ) ;

49 f o r e a c h ( u long i i n m u l t s 2 )
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50 i f ( mu l t s1 . C o n t a i n s ( i ) )

51 m u l t s . Add ( i ) ;

52

53 r e t u r n m u l t s ;

54 }

55

56 s t a t i c L i s t<ulong> MultiplesAND ( L i s t<ulong> a , u long max )

57 {

58 L i s t<L i s t<ulong>> m u l t s s = new L i s t<L i s t<ulong >>() ;

59 f o r e a c h ( u long b i n a )

60 {

61 L i s t<ulong> mul t = M u l t i p l e s ( b , max ) ;

62 m u l t s s . Add ( mul t ) ;

63 }

64

65 L i s t<ulong> m u l t s = new L i s t<ulong >() ;

66 i n t i = 0 ;

67 f o r e a c h ( L i s t<ulong> l s i n m u l t s s )

68 {

69 L i s t<L i s t<ulong>> temp = m u l t s s . T o L i s t ( ) ;

70 temp . RemoveAt ( i ) ;

71

72 f o r e a c h ( u long l i n l s )

73 {

74 boo l found = t r u e ;

75

76 f o r e a c h ( L i s t<ulong> tmp i n temp )

77 {

78 i f ( ! tmp . C o n t a i n s ( l ) )

79 found = f a l s e ;

80

81 i f ( ! found )

82 b r e a k ;

83 }

84 i f ( found )

85 m u l t s . Add ( l ) ;
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86 }

87 i ++;

88 }

89

90 r e t u r n m u l t s ;

91 }

92

93 s t a t i c u long SumMultiplesAND ( u long a , u long b , u long max )

94 {

95 u long sum = 0 ;

96

97 L i s t<ulong> m u l t s = MultiplesAND ( a , b , max ) ;

98 f o r e a c h ( u long i i n m u l t s )

99 sum += i ;

100

101 r e t u r n sum ;

102 }

103

104 s t a t i c u long SumMultiplesOR ( u long a , u long b , u long max )

105 {

106 u long sum = 0 ;

107

108 L i s t<ulong> m u l t s = Mul t ip lesOR ( a , b , max ) ;

109 f o r e a c h ( u long i i n m u l t s )

110 sum += i ;

111

112 r e t u r n sum ;

113 }

114

115 s t a t i c i n t S m a l l e s t M u l t i p l e ( L i s t<i n t> ns )

116 {

117 i n t r e s = 0 ;

118

119 boo l found = f a l s e ;

120

121 w h i l e ( ! found )
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122 {

123 r e s ++;

124 found = t r u e ;

125 f o r e a c h ( i n t n i n ns )

126 {

127 i f ( r e s % n != 0)

128 found = f a l s e ;

129 i f ( ! found )

130 b r e a k ;

131 }

132 }

133

134 r e t u r n r e s ;

135 }

136

137 # e n d r e g i o n

138

139 # r e g i o n f i b o n a c c i

140

141 s t a t i c L i s t<ulong> F i b o n a c c i ( u long max )

142 {

143 L i s t<ulong> f i b s = new L i s t<ulong >() ;

144 f i b s . Add ( 1 ) ;

145 u long i = 1 ;

146 u long p rev = 1 ;

147 w h i l e ( i < max )

148 {

149 i = i + p rev ;

150 p rev = i ;

151 f i b s . Add ( i ) ;

152 }

153

154 r e t u r n f i b s ;

155 }

156

157 s t a t i c u long SumFibonacci ( u long max )
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158 {

159 L i s t<ulong> f i b s = F i b o n a c c i ( max ) ;

160 u long sum = 0 ;

161 f o r e a c h ( u long i i n f i b s )

162 sum += i ;

163

164 r e t u r n sum ;

165 }

166

167 s t a t i c u long SumEvenFibonacci ( u long max )

168 {

169 L i s t<ulong> f i b s = F i b o n a c c i ( max ) ;

170 u long sum = 0 ;

171 f o r e a c h ( u long i i n f i b s )

172 i f ( i % 2 == 0)

173 sum += i ;

174

175 r e t u r n sum ;

176 }

177

178 # e n d r e g i o n

179

180 # r e g i o n p r i me s

181

182 s t a t i c L i s t<ulong> Pr imes ( u long max )

183 {

184 L i s t<ulong> p r im es = new L i s t<ulong >() ;

185 f o r ( u long i = 2 ; i <= max ; i ++)

186 {

187 boo l i s p r i m e = t r u e ;

188 f o r ( u long j = 2 ; j < i ; j ++)

189 {

190 i f ( i % j == 0)

191 i s p r i m e = f a l s e ;

192 i f ( ! i s p r i m e )

193 b r e a k ;
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194 }

195 i f ( i s p r i m e )

196 {

197 p r im es . Add ( i ) ;

198 }

199 }

200

201 r e t u r n p r i me s ;

202 }

203

204 s t a t i c u long SumPrimes ( u long max )

205 {

206 u long sum = 0 ;

207

208 L i s t<ulong> p r im es = Pr imes ( max ) ;

209 f o r e a c h ( u long i i n p r i me s )

210 sum += i ;

211

212 r e t u r n sum ;

213 }

214

215 # e n d r e g i o n

216

217 # r e g i o n f a c t o r i a l

218

219 s t a t i c u long F a c t o r i a l ( u long a )

220 {

221 L i s t<ulong> f a c t s = new L i s t<ulong >() ;

222 f o r ( u long i = 1 ; i < a ; i ++)

223 f a c t s . Add ( i ) ;

224 u long sum = a ;

225 f o r e a c h ( u long i i n f a c t s )

226 sum *= i ;

227

228 r e t u r n sum ;

229 }
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230

231 s t a t i c u long F a c t o r i a l S u m ( u long a )

232 {

233 L i s t<ulong> f a c t s = new L i s t<ulong >() ;

234 f o r ( u long i = 1 ; i < a ; i ++)

235 f a c t s . Add ( i ) ;

236 u long sum = a ;

237

238 f o r e a c h ( u long i i n f a c t s )

239 sum += i ;

240

241 r e t u r n sum ;

242 }

243 # e n d r e g i o n

244

245 # r e g i o n s e r i e s

246

247 s t a t i c L i s t<i n t> S e r i e s P r o d u c t ( L i s t<i n t> s e r i e s , i n t a d j S i z e )

248 {

249 / / S o r t e d L i s t<i n t , i n t> p r o d u c t s = new S o r t e d L i s t<i n t , i n t >( s e r i e s .

Count ) ;

250 i n t b i g g e s t = 0 ;

251 i n t i n d e x = 0 ;

252 f o r ( i n t i = 0 ; i < ( s e r i e s . Count − a d j S i z e ) ; i ++)

253 {

254 L i s t<i n t> s u b S e r i e s = s e r i e s . GetRange ( i , a d j S i z e ) ;

255 i n t sum = 1 ;

256 f o r e a c h ( i n t j i n s u b S e r i e s )

257 sum *= j ;

258

259 i f ( sum > b i g g e s t )

260 {

261 b i g g e s t = sum ;

262 i n d e x = i ;

263 }

264 }
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265

266 L i s t<i n t> d i g i t s = s e r i e s . GetRange ( index , a d j S i z e ) ;

267

268 r e t u r n d i g i t s ;

269 }

270 # e n d r e g i o n

271

272 # r e g i o n t r i a n g e l / p e n t a g o n a l / h e x a g o n a l

273

274 s t a t i c L i s t<ulong> Tr iPen tHex ( u long max )

275 {

276 L i s t<ulong> t r i s = new L i s t<ulong >() ;

277 L i s t<ulong> p e n t s = new L i s t<ulong >() ;

278 L i s t<ulong> hexs = new L i s t<ulong >() ;

279

280 f o r ( u long i = 1 ; i <= max ; i ++)

281 {

282 u long t r i = ( i * ( i + 1 ) ) / 2 ;

283 i f ( t r i % 1 == 0)

284 t r i s . Add ( t r i ) ;

285

286 u long p e n t = ( i * (3 * i − 1) ) / 2 ;

287 i f ( p e n t % 1 == 0)

288 p e n t s . Add ( p e n t ) ;

289

290 u long hex = ( i * (2 * i − 1) ) ;

291 i f ( hex % 1 == 0)

292 hexs . Add ( hex ) ;

293 }

294

295 L i s t<ulong> a l l = new L i s t<ulong >() ;

296 f o r e a c h ( u long j i n t r i s )

297 {

298 i f ( p e n t s . C o n t a i n s ( j ) && hexs . C o n t a i n s ( j ) )

299 a l l . Add ( j ) ;

300 }
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301

302 r e t u r n a l l ;

303 }

304

305 # e n d r e g i o n

306

307 # r e g i o n s e l f P o w e r s

308

309 s t a t i c u long Se l fPower ( i n t n )

310 {

311 u long pow = 0 ;

312 f o r ( i n t i = 1 ; i <= n ; i ++)

313 {

314 pow += ( u long ) Math . Pow ( i , i ) ;

315 }

316 r e t u r n pow ;

317 }

318

319 # e n d r e g i o n

320

321 # r e g i o n sum

322

323 s t a t i c u long Sum( L i s t<i n t> ns )

324 {

325 u long sum = 0 ;

326 f o r e a c h ( i n t n i n ns )

327 sum += ( u long ) n ;

328 r e t u r n sum ;

329 }

330

331 # e n d r e g i o n

332

333 # r e g i o n sum s q u a r e d i f f e r e n c e

334

335 s t a t i c u long SumSquareDif f ( i n t n )

336 {
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337 u long sumsq = 0 ;

338 f o r ( i n t i = 1 ; i <= n ; i ++)

339 sumsq += ( u long ) Math . Pow ( i , 2 ) ;

340

341 u long sqsum = 0 ;

342 f o r ( i n t i = 1 ; i <= n ; i ++)

343 sqsum += ( u long ) i ;

344 sqsum = sqsum * sqsum ;

345

346 u long d i f f = sqsum − sumsq ;

347

348 r e t u r n d i f f ;

349 }

350

351 # e n d r e g i o n

352

353 # r e g i o n p a l i n d r o m e s

354

355 s t a t i c i n t P a l i n d r o m e P r o d u c t ( i n t d i g i t s )

356 {

357 i n t r e s = 0 ;

358

359 i n t max = ( i n t ) Math . Pow ( 1 0 , d i g i t s ) − 1 ;

360 i n t min = ( i n t ) Math . Pow ( 1 0 , d i g i t s − 1) ;

361 f o r ( i n t a = max ; a >= min ; a−−)

362 {

363 f o r ( i n t b = max ; b >= min ; b−−)

364 {

365 Conso le . W r i t e L i n e ( ” {0} x {1} ” , a . T o S t r i n g ( ) , b . T o S t r i n g ( ) ) ;

366 i n t tmp = a * b ;

367 s t r i n g t p = tmp . T o S t r i n g ( ) ;

368 i n t n = t p . Length ;

369 boo l p a l i n = t r u e ;

370 f o r ( i n t i = 0 ; i < n / 2 ; i ++)

371 {

372 i f ( t p [ i ] != t p [ n − 1 − i ] )
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373 p a l i n = f a l s e ;

374 i f ( ! p a l i n )

375 b r e a k ;

376 }

377 i f ( p a l i n && tmp > r e s )

378 r e s = tmp ;

379 }

380 }

381

382 r e t u r n r e s ;

383 }

384

385 # e n d r e g i o n
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