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Summary

The aim of this project was to develop a mathematical model of the be-

haviour of molten glass during a pressing (hot forming) operation.

An outline of glass manufacturing is given in chapter 1, together with a

discussion of the factors influencing the behaviour of the molten glass and

the advantages of a mathematical model over direct experimentation.

Chapter 2 introduces the mathematical description of the glass behaviour.

The molten glass was modelled by an imcompressible Newtonian liquid an-

dergoing slow flow, it was also assumed that the finished article would be

axisymmetric. The governing equations and boundary conditions were cast

into the appropriate non-dimensional form.

Ways of solving the equations are considered in chapter 3. Initially the

analytical solutions to simplified forms of the equations were considered,

but these proved inadequate. Therefore numerical methods were used. An

outline of the finite element method is given before details of its application

to this problem.

The results of using the finite element method to solve the isothermal

flow equations are presented in chapter 4. The model was able to cope with

a range of parameters, though numerical instablities manifested themselves



at low Reynolds numbers.

Viscosity is strongly temperature dependent, hence the flow of heat in

and around the glass is important. Temperature variations were introduced

into the model in chapter 5. In molten glass a thin cooled 'skin' is formed,

this physical phenomenon was exploited and an alternative boundary con-

dition which encapsulated this effect was developed.

Results from the combined model are given in chapter 6. The predicted

behaviour of the liquid is qualitatively correct.

Physical parameters for 'real life' glass forming operations are collated

in chapter 7. Consideration is also given to the actual computing power

needed to fully model a pressing operation.

Chapter 8 gives an overview of the work and includes suggestions for

further study.
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Chapter 1

Statement of Problem

1.1 Introduction

The aim of this project has been to use mathematical techniques to model a

simple glass pressing operation. In this chapter, the advantages of a mathe-

matical model are considered with a basic outline of the glass manufacturing

process. Subsequent chapters deal with the governing equations and their

approximate solution.

The manufacture of glass is a well established industry, with a long

history, Douglas and Frank outline its development in their book[15]. In

common with most industries, competitiveness is all important especially as

new materials enter the marketplace. The modern large scale commercial
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production of glass is an almost completely automated procedure, from the

raw materials through to the finished artide. Obviously, it is desirable to

keep the wastage to a minimum as any glass failing the quality control test

has to be recyded increasing production costs. Some systematic consider-

ation as to the best range of forming parameters is useful to produce an

a.rtide with the desired properties in the most efficient manner.

1.2 Glass Manufacture

1.2.1 Introduction

In many of the most modern factories there is a virtually continuous flow

of glass from furnace to formation. The molten glass is formed by heating

together the raw materials, it is then processed into the finished product.

1.2.2 Glass Formation

Most commerical glass is approximately 70% silica (Si0 2), the remainder is

usually made up of a mixture of soda (Na 20), lime (CaO), alumina (Al203),

potash (K20), magnesia (MgO), lead oxide (PbO) boric oxide (B 203) and

small quantities of other oxides. Small changes in the chemical composition

of the glass are reflected, sometimes disproportionately, by changes in the
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physical properties. Therefore varying the ingredients gives some measure

of control over the behaviour of the glass.

The raw materials are mixed with recyded glass known as cullet, which

can make up as much as 75% of the batch, and introduced into the melting

end of the furnace. They melt and react together. The molten glass is then

heated to temperatures of approximately 1550°C, to ensure good mixing

and aid the release of trapped gas bubbles. The molten glass flows to the

working end of the furnace, where it begins to cool, it is then distributed to

the various forming machines.

1.2.3 Article Manufacture

The molten glass can be formed into a multitude of products, these can be

divided as to their method of manufacture, this is shown in figure (1.2.1).

Continuous Formation

Continuous formation is where there is a continuous stream of glass which

is manipulated to form an uninterrupted flow of finished product.

FLAT GLASS The production of flat glass is one of the largest sections of

the glass industry. Originally flat glass was cast. Casting, first introduced

in the 1680's, is now virtually obsolete, having been replaced by the float

8
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Figure 1.2.1

process. Another method used to produce flat glass is sheet drawing, intro-

duced in the 1920's. This has been superseded by the float process in all

but the most specialised of areas1.

SHEET DRAWING A sheet of glass is pulled up from a bath of molten mate-

rial. The sheet being pulled is unstable with a tendency to 'neck' and form

a circular cross-section. This problem is controlled by cooling the sheet

rapidly.

FLOAT PROCESS This process, developed in the 1950's, produces a con-

tinuous stream of high quality flat glass. A broad sheet of molten glass is

1 e.g producing wire reinforced glass
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floated on molten tin. It is cooled until almost rigid and then lifted off.

ROD AND TUBE DRAWING To make tubes and rods glass is drawn from a

circular mandrel. For tubing the mandrel has a central hole through which

air is blown.

FIBRE DRAWING Fibres have many uses 2 and their method of production

differs depending on the length, thickness and quality desired. All the pro-

duction methods consist of a thin jet of molten glass being ejected from a

nozzle, how that jet is treated determines the properties of the fibre pro-

duced.

Discrete Formation

Discrete methods are where the molten glass is formed into separate 'lumps',

called gobs, which are then processed. Glass flows from the furnace to the

machines through shallow channels called forehearths. Whilst travelling

it is conditioned so as to arrive at the desired viscosity; Carling[9] and

Whiteman[44] have both considered mathematically modelling parts of this

process. At the end of the forehearth there is a feeder mechanism, which

forms the gobs. These gobs then fall under gravity into moulds in which

2From optical communications to low density insulation

-
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the artides are formed. It is forced to take the shape of the mould by

pressure supplied either by compressed air or by a metal plunger. Often, to

achieve the desired shape more than one operation is used. For example,

the production of bottles is a two stage process. First a parison is formed

by pressing or blowing the gob. The pa.rison is then transferred to another

mould where it is blown into its final shape.

Once the artide is formed there is the added complication that it must be

'set enough' so then when it is removed from the mould it does not deform or

even collapse under gravity. A more detailed review of glass manufacturing

proceedures can be found in a book such as [32] by Maloney.

The modelling of a blowing operation was considered by Graham, a

previous student in the department [24]. Therefore, this project concentrates

on pressed artides.

1.3 Glass Pressing

The glass pressing (or hot forming) process is restrictive as to the shapes

it can produce but it also has some advantages. The most obvious is that

it allows the shape of both surfaces to be controlled, unlike blowing into a

mould which controls the outside shape but not the thickness or the inside

11



surface.

The pressing situation under consideration is shown schematically in

figure (1.3.1). The gob of molten glass falls under gravity into a metal

mould, it deforms on hitting the mould and is allowed to settle. It is then

forced into its final shape by the application of a metal plunger.

1.4 Influences on the Glass Flow

In a pressing operation the processes involved are fluid and heat flow. The

molten glass is a Newtonian viscous fluid, its flow being driven by gravity

and the action of the plunger. The mould and plunger are not normally

at the same temperature as the gob so there will be heat flow between the

glass and its immediate surrounding as well as redistribution of heat within

the glass. The temperature variations within the molten glass will affect its

flow because the viscosity is strongly temperature dependent.

As noted previously, viscosity is dependent on composition, it is also

strongly dependent on the temperature. Figure (1.4.1) taken from the book

by Doremus[14] shows the viscosity temperature relationship for several corn-

merical silicate glasses. An empirical formula can been fitted to the data.
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The Fuicher equation

B
logiop=A+ç	 (1.1)

The Fulcher equation (1.1), named after one of its proposers[20], contains

three constants which allow it to be fitted to each particular curve. These

constants can be found by careful experimentation or by using formulae that

relate the constants to the concentrations of each particular oxide present

in the glass.

Each glass operation has its ideal range of viscosities, some typical values

are given below.

Operation	 logio p Nsm2

Melting	 1.5 to 2.5

Forming gobs for containers 	 3.6 to 4.2

Pressing	 4.0 to 4.4

Deform under gravity	 11.3

Annealing	 I 12.0 to 14.0

Hence, the temperature of the glass has to be accurately controlled to obtain

the desired viscosity. This means that the heat flow in and around the glass

is very important.

Within the glass, heat is transfered by conduction and radiation. Inter-

15
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nal radiation is difficult to quantify as each small portion of glass absorbs

and re-admits energy. The amount of internal radiation depends on many

factors, such as the shape of the artide, it8 opaqueness 3 or temperature.

The overall effect of the internal radiation can be incorporated by using an

effective conductivity which allows for the 'extra' transport of heat due to

the internal radiation. Figure (1.4.2) shows typical effective thermal con-

ductivities of colourless flint and green container glasses compared with the

true conductivity over a range of temperatures, after Genzel[23].

Further discussion of the effect of internal radiation can be found in the

two papers by Gardon[21] [22].

Heat can also be lost to (or gained from) the surroundings. Heat transfer

from the glass surfaces is by conduction and/or radiation. It depends on the

situation of each particular surface. For example metal is completely opaque,

so no heat is lost from the glass to a metal mould by radiation.

In a pressing operation the temperature of the glass metal interface is

important. The metal mould is initially cooler than the the glass so the glass

is cooled. II there were perfect contact between the glass and iron mould

3slightly altering the colour of the glass can alter is adsorption spectrum
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the the non-dimensional interfacial temperature, T, would be given by

T* = /(AaPaCa

y VAopoco

where A, p and c are the thermal conductivity, density and specific heat Ca-

pacity respectively of the glass(a) and iron(b). For a typical glass at 1100°C

and mould at 550°C, this interfacial temperature is 590°C. However, the

contact between the glass and mould is not perfect. When the glass first

touches the mould a good contact is formed and the glass is rapidly cooled.

The cooling causes the glass to shrink away from the mould decreasing the

contact, hence the glass/mould heat transfer coefficient is strongly time de-

pendent. This process is vital, because it is this shrinkage which stops the

glass sticking to the metal.

The complexities of the heat transfer make accurately controlling the

glass viscosity difficult. If the glass is too hot the mould is heated too much

and the glass sticks to it, if the glass is too cold it means that large stresses

are needed to force it into the desired shape, these large stresses can lead to

cracking.
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1.5 Why a Mathematical Model?

Interrupting the continuous forming cycle to conduct a series of experiments

would be disruptive, also factory floor experimentation is not always a vi-

able option due to the very hostile environment. Large rates of change of

temperature are envisaged so any instrumentation would need to be both

sensitive and robust, also there is the added complication of the glass being

inaccessible through much of the forming cyde. Rawson [38] considers some

of these problems.

One option would be to conduct a series of small scale experiments in

a laboratory. This method is likely to be hampered by the same sort of

problems with measurements, as well as being relatively labour intensive.

The advantages of a mathematical model are that, once it has been

verified by comparison to real life situations, it can deal with a large variety

of situations and parameters with the minimum of further effort and there

is no problem recovering variables for any section of the glass at any time

during the pressing operation.

It must always be borne in mind that whichever of these methods is used

there stifi needs to be some data input from the factory floor.

The appropriate mathematical description of this situation is developed

19



in the next chapter.

it is envisaged that an efficient computer model could be integrated into

a modern industrial setting. Three of the possible uses are

• to assess the efficiency of a well established pressing operation with a

view to saving time or energy, both commercially important resources.

• to help with the diagnosis of a problem with a pressing operation

where a high proportion of the finished artides are flawed, and suggest

possible cures.

• to help with the planning of new pressing operations.

It is not proposed that a computer model could ever replace a skified pro-

duction engineer, but would be a useful interactive tool.

20



Chapter 2

Mathematical Description of

the Problem

2.1 Introduction

In this chapter, the partial differential equations that describe the temper-

ature field and flow of a liquid are presented. These equations have been

widely used, hence, no details of their derivation are included. Standard

derivations are available in various texts, for example Batchelor[3] or Bird

et al.[5].

A non-dimensionalization scheme and change of co-ordinates are intro-
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duced to arrive at the form of the governing equations most suitable to this

particular situation.

2.2 Flow Equations

In the derivation of the Navier-Stokes equations (2.1) the continuum by-

pothesis is assumed. This is the assumption that the physical properties

associated with the fluid are distributed uniformly. This is not true on the

microscopic level, but on the macroscopic scale it is valid for a well heated

and mixed glass.

The assumption that the molten glass is incompressible is made, al-

though this is not strictly true it introduces only slight errors over the prac-

tical range. This constraint is imposed via the continuity equation (2.2),

which is a special case of mass conservation.

Navier-Stokes equations'

(Oui + u.Vus) =	 + f	 (2.1)

Continuity equation

ozi -
	 (2.2)

1 the standard summing over a repeated suffix is used

22



These equations are expressed in cartesian co-ordinates x = (x i , x2 , x3) with

u = (ui , u2 , u3) the corresponding velocities, p the density which is taken to

be constant, r the stress tenser and F = (Ii, /2, 13) the external body force.

The form of the stress tenser depends on assumptions made about the

fluid. Here it is assumed that the fluid is Newtonian, albeit with a highly

temperature dependent viscosity, i.e. that at any given temperature there is

a linear relationship between stress and velocity gradient. There are many

non-Newtonian liquids2 , but there is no evidence that slow moving molten

glass is among them, further discussion of this point can be found in the

chapter on viscosity in the book by Doremus[14].

The appropriate form of the stress tenser for an incompressible Newto-

than fluid is

= P8ij + L (

	

+	 (2.3)

where p is the pressure, p is the viscosity and öj the kronecker delta3.

Solving the fully three dimensional equations is fiendishly complex, it is

therefore convenient to assumed that the pressed article is axi-symmetric,

this enables the use of ring elements, (see chapter 3) and gives a three-

dimensional model whilst retaining the simplicity of a two-dimensional one.

2e.g. many suspensiona, emulsions and liquids with long molecular chains
36i1=i ifi=jelse	 =0
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Practically, this is not an unreasonable assumption as many pressed articles

are roughly axi-symmetric.

To exploit the simplifications made by the axi-symmetric assumption the

Navier-Stokes and continuity equations have to be transformed into cylin-

drical polar co-ordinates, (r, 0, z), the axi-symmetric nature is expressed by

taking the azimuthal velocity as zero and the changes in that direction as

zero i.e. = 0. The transformed equations are

(OIL	 On	 On\ - 1 Or - r99 Or,
p	 (2.4)

	

r	 Ozj - rOr	 r	 Oz

	

(Ow Ow	 Ow\ - 1Or, Or

	

- -----+--r-+fz	 (2.5)

	

r	 Ozj	 r

where u, w are the velocities in the r, z directions. (1 0, f) is the body

force. The case of gravity acting downwards, i.e. the minus z direction, is

expressed by

fz = —pg,ft = 0

where g is the acceleration due to gravity taken as 9.8ms 2. The stresses

are also expressed in cylindrical polars, the non-zero stress components are

On
TI.,. = —P+2P

IOu Ow
Trz =

roe = —p+2p.
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IOu Ow\
=

Ow
= —p + 2—	 (2.6)

The transformed continuity equation is

(2.7)
Or r Oz

2.2.1 Non-Dimensionalization

Here the variables are scaled to group the physical parameters into non-

dimensional groups. This is a technique with several advantages, it mini-

mizes the parameters involved, enables the relative importance of each of

the terms to be assessed and allows for the direct comparison of different

situations via the characteristic non-dimensional numbers4.

The new variables introduced are u* , x* , j*,p* given by

	

*	 t4 *	 * tU0	P

	

U	 =,i 
= -r' --y	

(2.8)

where (Jo, L are a reference velocity and length respectively. These can be

substituted into (2.4) and (2.5), noting that (Jo, L, p are constants so as can

be removed from the differentials, for example

Ou - O(Uou*) - (JOu*

Ot - O(t*) - L Ot*

4sometimes called dimensionless numbers
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The physical parameters can then be grouped together giving

a	 !Or*Tr_rk+	 (2.9)=

	

.9z	 r* 0r	 T*	 t9z"

Ow*	 Ows	 • 0w	 1 Ori	 Ora	 1
	+__.!.+_	 (2.10)+ u a + W Oz* = r Or	 0z Fr

Where the non-dimensional stress components are given by

1 Ou*a -	 *
Trr - P +2

1 /8u* Dw*

=
1 IL

= _p*+2

1 fOu* Ow*\
r,. 

=

1 Owa
= _p*+2____	 (2.11)

The non-dimensional groups introduced are the Reynolds and Froude num-

hers, Re & Fr, given by

Re = pUoL

Fr =
	

(2.12)

The Reynolds number represents the ratio of the inertia forces to the viscous

forces. When the Reynolds number is small viscous forces dominate. The

inertia forces are most important when the Reynolds number is large, these

flows tend to be turbulent. In the mid-range, 1 < Re < 100, neither type

26



of forces dominates. The flows considered here are characterized by a small

Reynolds number, this is mostly due to the high viscosities of molten glass.

This type of flow regime, where the viscous forces dominate, is commonly

called slow or creeping, and the non-linear inertia forces,

* 814*	 * 814*	 *	 *8w*
u +w—andu +w-

8z	 Oz*

can be neglected.

The non-dimensionalized continuity equation is

8u* 14* 8w*
(2.13)

2.3 Temperature Equations

The temperature varies according to the energy equation (2.14) this is de-

rived from application of conservation of energy to the fluid.

DT 8	 OT'= i- (Aiuc —) + + q,	 (2.14)

Here T is temperature, c specific heat,	 the true thermal conductivity,

q internal heat generation and heat generated by viscous dissipation.

is given by

= ± (ei1eii - A2)	 (2.15)
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where

and

1 '8u	 L'\	 (2.16)= - I - +
2 \8z	 Oxj)

=
	

(2.17)

q,, is associated with the internal radiation in the glass. For large bulks

internal radiation has the effect of increasing the effective conductivity, but

the proximity of solid boundaries lessens this effect. The temperature and

hence the viscosities near the surfaces have a much greater effect on the

behaviour of the glass during the shaping process and the internal radia-

tion has only a minor role in determining the temperature distribution and

heat flux close to a glass/metal interface, this is discussed by R.awson[37].

McGraw[331 asserts that the thinner the glass becomes the less the effects of

radiation within, for a thickness of 1cm the heat distribution is nearly 100%

conduction.

Radiation effects are important during the reheating stage when the

article is removed from the mould, but during the actual forming operation

it is reasonable to assume that the effect of internal radiation is adequately

described by replacing the true thermal conductivity,	 by the effective

28



thermal conductivity 5 , A.

Viscous dissipation contributes little to the temperature calculation,

hence 1' can be neglected.

2.3.1 Non-Dimensionalization

The energy equation can be cast in the appropriate axi-symmetric non-

dimensional form. The non-dimensionalizing scheme is as in section (2.2.1),

with the extra variables being

T*_ T—T0
- Tmoz - Tmin

A0
(2.18)

where A0 is the thermal conductivity measured at the reference temperature

T0. Tma and Tmjn are the maximum and minimum temperatures associated

with the flow.

When viscous dissipation is neglected and there is no internal heat gen-

eration (2.14) takes the form

OT	 0T*	 0T*
-+ U ---+W

1 1 ô r o'r , A0T	 0 FA*OT*l\	 (2.19)
+	 +[ oz*J)

5hereafter just refered to as the thermal conductivity
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The extra non-dimensional number introduced is the Peclet number, Fe,

given by

Fe = LUopc	
(2.20)

#\0

This number represents the ratio of the heat transfer by convection to heat

transfer by conduction within the fluid.

If the thermal conductivity, A, is assumed constant, i.e. Ao = A making

= 1, the energy equation (2.18) further simplifies to

or • or	 or 1 102T* 1 or 02T*\
+ U	 +	 = T Or*2 +	 + Oz2)	

(2.21)

2.3.2 The Temperature Viscosity Relationship

The viscosity, ,., is not a constant, it depends strongly on temperature, as

well as being affected by the particular glass composition. Therefore the

temperature field has a direct effect on the flow field.

A number of empirical formulae have been suggested to fit the available

data. One such is the Fulcher equation (2.22).

The Fuicher Equation

log1op = 
A + T —T0	

(2.22)
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The constants, A, B, T0 , vary according to the actual composition of the

glass.

Combining equations (2.12) and (2.22) gives the relationship between

the Reynolds number and the temperature.

Re=	
pU0L

ezp (A + T1(Tm,x_Tmsn))	
(2.23)

2.4 Boundary Conditions

2.4.1 Fluid

There are two distinct types of interface that have to be considered, the

glass-mould (or plunger) interface and the glass-air interface.

The Glass-Mould Interface It is assumed that the glass sticks to the

mould so the velocity of the glass immediately next to the solid surface is

the same as that of the surface.

There is much debate6 as to the actual mechanism of the moving contact

point in a spreading liquid. Here the contact point is assumed to advance

purely as a result of a 'rolling motion' rather than any 'slip' occurring along

the suxface.

see the work of Dussan[16] [17] or Huh and Scriven[29] for further discussion
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11	 1\
= —Po+a(--+ (2.25)
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.-_________

1•	 it
new contact

point

figure 2.4.1 The Contact Point

The Glass-Air Interface The free-surface boundary conditions can be

expressed in terms of the stresses, Hirt et a.l.[27] give such a formulation.

The tangential stress is continuous across the surface, and any disconti-

nuity in the normal stress is a result of the surface tension and the ambient

pressure. These conditions can be expressed symbolically as

Where n.s are the normal and tangent to the surface, a is the coefficient of

surface tension, R1 and R2 are the principal radii of curvature. When using

non-dimensional variables a is replaced by ?J this is sometimes called the

Weber number abbreviated to Wb.
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For a general 3-D surface F(x, y, z) = 0

1	 1	 OI1OF' O/1OF\ O(1OF'
(2.26)

with

= (OF'\2 + (2 + (2	
(2.27)

LOx)	 Oy)	 '.OzJ

In an axi-symmetric system with a surface independent of 0, so that it has

the form F = F(r, z) equations (2.25) and (2.26) become

1	 1	 10 (rOF' 0 I1OF'
r + r = --r	 - r (-)	

(2.28)

with

D2= (2 'OF'2
Or)	

(2.29)

If it is taken that F = z - 1(r) then this equation yields
3

I	 /

1-

I

(1+ ()2)
R2 =—r' (2.31)

Or

Note that R1 is the 2-D radius of curvature.

2.4.2 Temperature

The heat is lost from the surface of the glass by conduction and radiation.
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Conduction The rate of conduction is proportional to the temperature

drop across the surface.

= H(T - Tam)	 (2.32)
On

where H is the heat transfer co-efficient and Tam is the temperature of the

adjacent media. H will differ depending on the surface, for example heat

transfer to the metal mould is usually faster than into the surrounding air.

Radiation Radiation from the surface of the hot glass is governed by

EO([T + 273] - [Tam + 273J)	 (2.33)

where E is the emissivity (less than 1) and o is the Stefan constant. The ra-

diation depends on the absolute temperature hence the conversion to Kelvin.

At a glass metal interface conduction is the major method of heat traits-

port from the glass to the mould because metal is opaque to radiation,

whereas radiation plays an important role at a free surface.

Both these boundarY conditions can be expressed in non-dimensional

forms.

OT* - u*IT* - T:m)	 (2.34)- £
On*

T0 + 273 ]4)	 (2.35)To + 273	 ___________

= E([T +	
- [T m 

+ Tmaz - Tmin

Dna
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Introducing two more non-dimensional groups. The non-dimensional Heat

transfer co-efficient.

=!.	 (2.36)

and the non-dimensional emmissivity

= 0,E(Tmejx 'T' •

Lm$n,	
(2.37)

2.5 Summary

2.5.1 Flow Equations

Navier-Stokes' Equations

1 Or r., -	
+	 (2.38)=	 Or	 r	 Oz

Ow5	 1 Or5r, +
	 + --	 (2.39)

Ot	 rOr	 Oz	 Fr

Where the stress components are given by

1 8u*	 *
= —i

*	 1 IOu5 0w5\
1-tx =

1 U5
= —P5+2r-

1 (0u5
7;,. 

=

1 Ow5
=	 5 + 2--	 (2.40)
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Continuity Equation

014* 14* 0w*
(2.41)

2.5.2 Flow Boundary Conditions

Glass-Mould Interface

No-slip

Glass-Air Interface

T$*Jaini = 0	 (2.42)

= —po + 
Wb (- 

+	 (2.43)

2.5.3 Temperature Equation

0T	 1 102T* 1 OT* 02r\
+ti*+tV*	

0r*2 +r*8,.*+ Oz*2)	 (2.44)

2.5.4 Temperature-Viscosity Relationship

B
log10 p = A +

	

	 (2.45)
T—T0

2.5.5 Temperature Boundary Conditions

Glass-Mould Interface

OT*
= H(T* - T:m)	 (2.46)
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Glass-Air Interface

DT*_

T0 + 273 
]4 - [T:m + T

0 + 273 ]4) (2.47)+ E ([T*+
Tmaz - Tmin	 Tmax - Tmin

2.5.6 Non-Dimensional Groups

Reynolds Number

Re = pU0L

Froude Number
rr2

Fr=
gL

Weber Number

Wb= pURL

Pedet Number

LUopc
e	

A

n.d.Heat Transfer Co-efficient

A

n.d.Emmissivity
('1'*	 aa.&max .Lm$n)

A
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Chapter 3

Mathematical

Approximations

3.1 Introduction

This chapter looks at the mathematics involved in calculating the isothermal

flow field.

Before any numerical methods are used, existing solutions for a simplified

situation or portions of the field are considered. These solutions can then

be used in conjunction with or to validate a more numerical approach.

The equations developed in chapter 2, are then written in a numerical
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form and solved using the finite element (f.e) method.

3.2 Analytical Solutions

The main difficulty is the complicated free surface boundary condition (2.25).

In a steady state,	 = 0, two dimensional cartesian, (x, y, 0), case the

Navier-Stokes equations simplify to

Ox
	 (3.1)

+gp=0	 (3.2)

with the free surface boundary condition (2.25) becoming

I,
c

(1.4c'2)	
(3.3)

where Lp is the change of pressure across the free surface which is given by

x = c(y). This set of equations can be solved to give solutions of the form

cosh 
2d	 -1 2d + C	 (3.4)-=	 --cosh
c

where C is a constant determined by the situation, and

d2=l
pg

h2 = 2!.(1 - sin 0)
pg
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I..

L
sal

Figure 3.2.1 A Liquid Surface Meeting a Vertical Wall

0 is the contact angle. This method is used by Batchelor[3] to calculate the

shape of a meniscus1 and the capillary rise of liquid in a small tube.

This result is of little use for the present problem because it only ap-

plies to the stationary situation and the contact angle is not necessarily a

known constant; studies by workers such as Bartell[2] and Eliiot[2] show the

difficulty of accurately measuring the contact angle and cast doubt on its

independence of other conditions.

2 figure (3.2.1) shows the geometry for this case
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The condition for equilibrium at any point at th ittrcav.e or ttie ttt&

dimensional situation is

pgz - °• ( +	 = const.	 (3.5)

This is difficult to solve for the surface shape but is useful in showing that

is the only relevant parameter with the dimensions of length.

The solution which describes the surface shape of a 2-d stationary fluid

is the limit of the analytical method. However, some appoximate methods

are useful, in particular lubrication theory.

If the glass is being pressed in a (relatively) thin film between two parallel

plates, as in figure (3.2.2), then lubrication theory can be applied and a

squeeze ifim approximation used for the portion of fluid weli away 2 from the

free surface. This approach gives the approximate velocity field of

u =	 xy(y - h) } 
for 2-d case	 (3.6)

v= .)

-3u =	 -rz(z — h) } 
for 3-d axisymmetric case 	 (3.7)

v,	 z2(1_h)=

2of the order of the exit length, given by O.2h2Unp where h is the distance between thep
plates.
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'If	 plunger	 '1/

liquid flow

—>

mould

Figure 3.2.2 A Squeeze Film

Further information on the assumptions used in lubrication theory can be

found in various texts such as those by Cameron[8] or Taylor[42].

If a mathematical model is to be used to predict the behaviour of molten

glass during the pressing of a disc, then the possibility arises of using an

approximation of the form given in equation (3.7) for the central portion of

the flow3.

However, neither of these solutions provides any information about the

movement of the free surface, hence the need to resort to a finite element

method.

3 this idea is picked up in section (4.5)

42



3.3 The Finite Element Method (f.e.m)

3.3.1 Introduction

The use of finite elements is a well established versatile method that allows

the calculation of approximate numerical solutions to systems governed by

partial differential equations.

The finite element method has its roots in engineering, originally used

as a way of solving stress related problems in networks, it was developed

independently by various mathematicians and physicists. The term finite

element appeared first in work by Clough[13] in 1960. Numerical solutions

of this nature became more practical with the development of powerful corn-

puters. This technique was first applied to the solution of fluid mechanics

problems in the 70s, by workers such as Meissner[34] and Ikegawa[30]. The

method has progressed and is currently used for very complicated situations,

for example, calculating the flow of air round an aircraft which involves

working with millions of variables on very powerful computers.

There are many commercial finite element and finite difference software

packages available, but in this project all the computer programs were writ-

ten from scratch. Working in this way ensures full understanding of the

methods involved, as well as being able to tailor the package to fit the prob-
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lem.

There are many books solely devoted to the f.e.method, for example,

the text by Zienkiewiez[47], so only a basic outline is given before a more

detailed description of the application to this particular problem.

3.3.2 Common Steps

There are various steps that all implementations of the f.e method share.

First the domain of interest is discretized into elements, these can take

various forms. The most used 2-d shapes are the triangle, either 3 or 6 node

and the quadrilateral 4 or 9 node. In 3-d tetrahedron or cuboid elements

can be used. Also there are special elements that can exploit any known

symmetry, for example the ring element which is used for axi-symmetric

cases, makes use of the fact that there are no changes in the direction of the

azimuthal angle.

The unknowns are then assumed to have a prescribed form, eg linear or

quadratic polynomial, within each element. The behaviour of an unknown

in any given element can then be described by a finite number of values,

stored at nodes at the corners and/or within each element, and the chosen

interpolation function. The choice of suitable interpolation functions for

the elements is not arbitrary, there are certain requirements that have to
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6-node triangle

8-node quadrilateral

t

	
4-node quadrilateral

Figure 3.3.1 Common Element Types
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be met to ensure inter element continuity. These conditions are imposed so

that approximate values obtained for these field variables converge towards

the exact solutions as the elements become smaller. In general the two

conditions to be satisfied are

. At element interfaces the field variables and any of its partial deriva-

tives up to one order less than the highest derivative appearing in the

final form of the integral governing equations, must be continuous.

. All states of the unknowns and its partial derivatives up to the highest

order appearing should have a representation in the approximate form

which becomes exact when in the limit the element size shrinks to

zero.

The first is known as the compatibility requirement and is necessary for

the successful application of the assembly procedure. The second is the

completeness requirement. This process reduces the number of unknowns

from an infinite number to a finite one.

The partial differential equations governing the problem have to be cast

into an integral formulation. Various methods to achieve this are available

the most popular amongst them are the variational and weighted residuals

methods. The variational method relies on the differential equations having
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an equivalent variational formulation. There are however only a limited

number of problems for which a variational statement has been found. In

the absence of a variational statement a more general method for deriving

the element equations must be applied, and the method of weighted residuals

is often used.

This method proceeds directly from the differential equations governing

the problem. Taking the governing equations to be of the form

D(u) - G = 0	 (3.8)

where D is a differential operator, u is a field variable and G a given function

applied in a solution domain V bounded by a surface S. If an approximate

solution u is assumed to have the form

u*=E1u	 (3.9)

where u7 are the unknown values at the i' node in the eta' element and 4

are chosen to satisfy the boundary conditions applied on S. As u is only an

approximate solution it will not satisfy the equation exactly, there will be a

residual error r.

D(u) - G = r	 (3.10)

Although it will not be possible to force the error to vanish, a weighted
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integral incorporating the residual performed over the entire solution domain

can be made to vanish. Hence if tfrc are suitable weighting functions

L
pe(D(u*) - G)dVC =	 bdVC = 0	 (3.11)

for a solution domain containing m elements. The choice of the b depend

on the residual method being employed. The most popular method is the

Galerkin method, where t' =

Once a form of the governing equations has been found it can be ma-

nipulated into the most useful form, often the order of derivatives can be

reduced via an application of Stokes' or Green's Theorem. This reduction

is advantageous as it allows for a simpler interpolation function to be used.

Each element is required to satisfy these integral equations producing a

set of algebraic equations, the integrations having been performed exactly

or numerically. These algebraic equations are then assembled into a matrix

or several matrix equations. Boundary conditions are usually incorporated

at this stage. These matrix equations can then be solved by any convenient

algorithm. Any further calculations can be performed to recover the desired

variables. If the problem is a steady state one only one such calculation

need be undertaken, however if the problem is time dependent many such

calculations have to be performed to obtain the progression of solutions
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with time. The calculations to obtain this progression of solutions can be

explicit or implicit. An explicit scheme is where the motion at the present

timestep is assumed to depend only on the past history whereas an implicit

scheme assumes that the present motion depends on the present and past

history. An implicit scheme normally involves iterative solutions and is

more difficult to program than the corresponding explicit method. However,

explicit methods tend to be numerically less stable. The grid formed by the

node points can either be fixed or moving. A moving grid is useful when a

free surface needs to be tracked accurately, this device was introduced by

Hurt et al.[28]. The node points are moved a small distance indicated by ötu

before the next calculation is performed.

3.3.3 Present Usage

Now follows a more detailed description of the f.e method as applied in this

case.

The Elements

The model is axi-symmetric hence ring elements were used. Originally three

node triangular cross sectional ones were experimented with but these were

found to be very restrictive. The final model utilized ring elements with a
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(-1,1) •	 I	 • ( 1,1)

I	 ' (1,-i)

element Q in (,n) plene

element w in (rz) plane
Ti

Figure 3.3.2 4-Node Isoparametric Elements

four node isoparametric cross section.

The interpolation for velocity and acceleration was bi-linear across these

elements with pressure constant within.

Each of the irregular quadrilaterals in the (r, z) field can be transformed

to a square in the	 i) field, this process which makes subsequent calcula-

tions much easier to perform, is shown schematically in figure(3.3.2). The

original element has interpolations functions of

F23(r, z)F(r, z)
= F23(ri,zi)Fa.i(ri,zi) 	

(3.12)
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where

F,(r, z) = z(r1 - r) + r(z - z1) + (rz1 - r1z)	 (3.13)

42, 4, qS can be obtained by cyclic permutations of suffixes. The new

co-ordinates introduced are given by

= -41 -42+43+44

'7 = -41+42+43-44

The transformed element has interpolation functions of

•I'l =(1—e)(1—)

2

•I'3 =

4=

(3.14)

(3.15)

All the field variables can now be expressed in terms of and 17, and the

integrations can be transformed using the Jacobian, J, its modulus IJI, or

inverse, J1.

9,. 9z

J=	 (3.16)
8r 8x
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that is

8	 4	 8,
E..1r1-'	

(3.17)J=
E 1 rj L E.1zjL

II = 311322 - 312321

= 1	 322 —312	
(3.18)

L121 ii

iii

these equations provide the necessary relations to transform integral expres-

sions on any element w in the (r, z) plane to the associated element fl in the

(, ,) plane. For example, the integral

k= I (a !! -!i +bWi)dzdy	 (3.19)
JwV Ox Dy

where a and b are functions of x and y, becomes

1.. OW,
k=j (A(ii+i24!)	 +BW,) IJIdd

(3.20)

where A and B are functions expressed in terms of and i, fare the ele-

ments of the inverse Jacobian.
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Integral Equations

The axi-symmetric form of the Navier Stokes equations given in chapter 2

can be written in the alternative form4.

Ou 10	 10- = --fri,.) + --(rr) - -Ot rOr	 rOz	 r
Ow 10	 10	 1
-- = —-.(rr,,.) +	 +	 (3.21)

where

2 On
=

1 IOu Ow
TTsrJ+7r

2u
Too =

1 (Du Ow\
Tzr=TT+T)

20w
rzz=_P+TT	 (3.22)

This form does not assume that the Reynolds number is constant so is

applicable to the non-isothermal case. The straight forward application of

Galerkin's method gives

' 

Ou J(10	

10	 Too
rOzJw0t =	 _r(rT)+ --(rT) — -	 (3.23)

4a11 field variables are dimensionless but the starred notation used in chapter 2 has
been dropped for darity
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This can be rewritten as

a• Ou

Jwq-i = JV.(4rrr,O4ffrz)dw

	

— I	 + Tirz- +	 dw	 (3.24)

	

Jw	 Or	 Oz	 rJ

Application of the Gauss theorem to the second order derivatives present

gives

= j1(Trr,O,TTz)4S

— j(Trr + rIzr- +	 (3.25)

where a refers to the boundary of the solution domain containing the free

surface5 . This surface integral can be written in a more useful form. If the

surface has equation F(r, z) = 0 then

1	 'OF OF'

	

Ii OF) 2 + (8F)2 (-'°'--)	
(3.26)

and

dS = nrdsd9	 (3.27)

so the surface integral can be written as

# Trr+ 
OF'	 r

______________drdO	 (3.28)A ( Or rrz_)y
8F2

5the contributions from internal element boundaries cancel out, also it is zero along
the solid boundaries so effectively the only contribution is from the free surface
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Now since

:!_ /(8F)2

dz -	
(3.29)

Or

and recalling the natural boundary condition

OF	 OF	 OF
[-P0 + ( +	 = TTTT + Trzy	 (3.30)

this can be substituted in to equation (3.28) giving

J # Po+°•1'	
1\

[	 (T+T)}tdzd0	 (3.31)

As there is no dependence on 0 this variable can be integrated out, giving

2T which immediately cancels.

The final integral formulation of the equation is

j4 rdrdz = j(-P0 -i-° ( +	
rdz

-	
2 Ou\ Oçb 1 IOu Ow\ O

+ (_+

	

	 rdrdz	 (3.32)
Rer)

A similar process can be used to obtain the z component equation.

	

L	 11	 1
—rdrdz=	 —po+gI—+— rdzA (	 \Ri R2))

	

-	
2 Ow\ Oçb 1 1 Ow Ou\ Oçb

	

+ (t) rdrdz	 (3.33)
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Figure 3.3.3 Calculating R2

The continuity condition (2.41) is replaced by a volume constraint, i.e. the

volume of each element in the grid remains constant; more details are given

in the section describing the grid.

Radii of Curvature

As the radii of curvature have been introduced into the equation there has

to be a recipe for calculating them.

An approximation for R1 can be obtained by fitting a cirde through
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three adjacent surface nodes and finding its radius.

R2 is easily calculated once it has been noted that for a surface z = 1(r)

or8ina = (3.34)

i+ (

where a is the angle between the tangent and the horizontal. Then

1 - —sina
(3.35)

obviously this has a singularity on the axis r = 0 but this is the axis of

symmetry so here R1 = R2.

The Implementation

Now approximations for the field variables can be substituted into equations

(3.32) and (3.33). Due to the quite complicated nature of the integrals,

numerical integration was used.

The integrals written in terms of the transformed co-ordinates (, i7) can

be evaluated by the use of four Gauss points, given in figure (3.3.4).
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Ti

II
' I_____Jweight

	

-0.577 -0.577	 1.0

	

-0.577 0.577	 1.0

	

0.577 -0.577	 1.0

	

0.577 0.577	 1.0

-0.577 0.577

I	 I

I	 I

I	 I

0.577-- --f-- . --4. -
I	 I

•	 I

-0.577--- • - 4-- . -4--
I	 I
I	 I

J
h(,)d,7d = h(0.577,o.577) +

+h( -0.517,0.577) + h( -0.577, -0.577)	 (3.36)

Figure 3.3.4 4-Gauss Points

An n-point Gaussian quadrature integrates polynomials of order 2n-1, or

less, exactly. Therefore the 2-point quadrature used here integrates polyno-

mials upto and including order 3 exactly.

This form of numerical integration has the useful by-product of avoiding

evaluating anything on the r = 0 axis, hence the presence of the term in

equation (3.32) does not prove a difficulty.
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The Grid

A moving grid is used so that the boundary can be followed. After each

calculation the node points are moved in accordance with the newly calcu-

lated velocities and accelerations. The continuity condition is replaced by

a volume constraint, that is, the volume of each ring remains constant over

each grid movement. The volume of a ring element is given by

V(r,z) 
= J 

2rrdrdz = [(r -	 - z4) + (r -	 - zi)

- r4)fr3z3 - r1 z1 ) + fri - r3)(r2z2 - r4z4) 1 (3.37)

Therefore the conservation of volume is expressed as

V(r", ZN) =	 , zN+1)	 (3.38)

where rN1 and z2 '+ depend on the accelerations, velocities and the step

length öt. This condition involves powers of öt up to 4, otis small therefore

the terms in Ot and 5t4 are neglected.

Assembly

Within an element the field variable are approximated using the nodal values

of the variable and the interpolation function. For example

	

e - e je	 e e	 e e	 e j.e

	

U - U 1 !p1	 tL3y,3 U44
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ee ee e.y.e .yee
1'1 12 1'r3 "14

ec ee ee ee'W2''1 ''2'2	 '2''3	 '2''4

1y ee ee ee ee
3'1 32 '33 34

aee ee ee ee
4'1 42 43 4'4

4 /4

IJIG
G=1 i=1	 G

ea1

ea2

ea3

C1h4

These approximations are substituted into equations (3.32), (3.33) and (3.37).

The integrals are then expressed in terms of and i. They can then be eval-

uated numerically by summing over the Gauss points6.

For example

J
ib±rdrdz

is approximated in each element by

.1

where a =	 evaluated at the 12h node, i = 1..4. It is then transformed

into the (E ) plane to give

/

and evaluated

to give

[IC]e(a)
	

(3.39)

the volume constraint is evaluated slightly differently
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Where G are the four Gauss points. The other terms of the integral equa-

tions are treated similarly.

11
	 ' 2 Du Oçb	 1 / Du Ow \ Oçb

(R1 Ri)	 Jv Re Or Or( —po + a —+-

2u\
+ - I —p ^ -- ) rdrdz gives [Ur]e(u,w)T	 (3.40)

Rer

and

jpdrdz gives [PrJe(p)	 (3.41)

The matrix equation which expresses the volume conservation is a rearrange-

ment of equations (3.36) and (3.37). In this way three equations for each

element are obtained, one each for the r and z direction nodal accelerations

in terms of the pressures and velocities, and one which expresses the volume

conservation, i.e.

[J(] (a) = [Pr]e ( i,) + [Ur]e (u, w)T

[KJC (b) = [pzIe Q,) + Euzr (u, w)T

[VM]C (a, b)T = [fv]e(u w)T	(3.42)

These element equations are assembled so that three large matrix equations,

representing the movement of the whole volume, are formed.

i, [KJ(a) = [PrJ(p)+ [UrJ(u,w)T
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ii, [K] (b) = [Pz] (p) + [Uz] (u, w)T

iii, [VM] (a, b)T = [fv](u, w)T	 (3.43)

Solution

It is possible to solve these equations using various methods. A direct ex-

plicit method was chosen. That is the velocities,(u, w), are assumed known

so that the pressures, (p), and accelerations, (a,b), are the only unknown

variables i.e. 2n+m unknowns 2n+m equations. Equations i and ii can

be used to eliminate the accelerations from equation iii which can then be

solved for pressure. These are then substituted back to give the nodal ac-

celerations.

Direct solution was chosen because of the existence of fast efficient solv-

ing packages. The one used here was Nag FO4ATS based on the Crout

factorisation method7.

Now new velocities can be calculated using

= N + öta"

N+1 =	 + ölbN+I	 (3.44)

T for further details see the handbook by Wilkinson and Reinsch[45]
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and the grid moved according to

= + Otu144

= ZN + OtvN 14	 (3.45)

where the superscripts denote the time and otis the length of the N+lth

step. More complicated expressions could be used instead of (3.44) and

(3.45), but in practice the step length Otis short, i.e. Ot < 0.01, making

terms of O(Ot2 ) and above small.

Node Crossing

Before moving the nodes, it has to be checked that none of the new positions

are outside the fixed boundaries, If moving a node according to (3.45) takes

that node across a solid boundary then the time step has to be shortened

so that the node just touches the boundary.

Grid Distortion

Moving the grid nodes means that the elements are constantly changing

shape. This distortion of the grid can create problems as the interpola-

tion functions are only valid for convex elements. Non-convex elements also

introduce the possibility of non-positive Jacobians leading to various numer-
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ical difficulties. The deformation of the grid can be successfully combatted

by the introduction of a suitable remeshing scheme that redraws the grid

periodically; further discussion of the point can be found in section (4.4)

and appendix B.
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Chapter 4

Isothermal Results

4.1 Introduction

This chapter contains results obtained when the computer model was used

to predict the flow of a viscous liquid in various simple isothermal situations.

They are used to illustrate the effects of the various parameters involved and

some of the problems encountered.
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4.1.1 The Parameters

The non-dimensionaiization scheme, introduced in chapter 2, allows the flow

to be characterized by three non-dimensional numbers, recalled here.

pU0L
Reynolds number = Re =

p

Froude number = Fr -
— gL

a
Weber number = Wb =	 (4.1)

LpU

It is also useful to recall the relationship between time, pressure and their

non-dimensional equivalents.

P

--	 -U	 (4.2)

4.2 Effect of Changing Viscosity

Here the computer model was used to predict the behaviour of liquids of

different viscosities, when they were pressed under identical circumstances.

It was assumed that the portion of liquid was dropped onto a flat plate,

hence the liquid was assumed to have a uniform downward velocity of mag-

nitude O.9U0 at t = 0. It was then pressed by a flat plunger moving at a

uniform downward speed, U0. The difference in viscosities was expressed via

the Reynolds number. All other parameters are constant, hence the non-
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dimensional time (n.d.t) and non-dimensional pressures (n.d.p) are directly

comparable between the three cases presented. A grid made up of twenty

ring elements was used to represent the fluid. The step size, öt, was limited

by the need for numerical stability. Figures (4.2.1)-(4.2.3) show snapshots

of the grid positions and pressure contours at particular times. All calcu-

lations assume that the situation is axi-symmetric so the grid represents a

cross-section through the axis of symmetry.

figure Re0 	 öi	 number of steps

4.2.1	 1.0	 0.05	 25

4.2.2	 0.1	 0.005	 250

4.2.3 0.01 0.0005	 2500

An increase in viscosity corresponds to a decrease in Reynolds number

The most obvious difference between the three flows considered is that as

the viscosity increases larger pressures and pressure gradients are produced.

This is not unexpected, because the downward velocity of the plunger, which

drives the flow, was chosen to be a fixed constant, hence larger forces, i.e.

pressure gradients, are needed to force the more viscous liquid to move. The

increase in internal pressure would be important if it became large enough

to influence the movement of the plunger, how large depends on the power
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available in the particular machine. In practice a glass of very high viscosity

and too high an internal pressure can fracture as if it were an elastic solid.

There are other more subtle differences, these are most noticable at the

free surface. Along the free surface the downward velocity is different in

each of the three cases. At n.d.time=0.25 the average downward velocities

are 1.32, 2.45 and 2.59 for Re=1.0, 0.1 and 0.01 respectively. The actual

velocity profiles are shown in figure (4.2.4). In the more viscous flows more

of the plunger's downward velocity is directly transfered to the fluid, rather

than being converted to a mixture of outward and downward motion. There

is a smaller difference between the Re=0.1 and Re=O.01 flows than between

the Re=1.0 and Re=0.1 flows suggesting that there is a limit as the Reynolds

number decreases. The larger downward velocity means that the first free

surface node touches the bottom plate sooner, i.e. the gob spreads quicker.

As time progresses this effect is masked because nodes are lost from the free

surface making it more angular. The problem of losing nodes from the free

surface is addressed in section (4.4). However, these examples do ifiustrate

that the viscosity doesn't only influence the internal pressures, an expected

effect, but also has more subtle effects on the motion of the liquid.

Computationally, the most striking feature is the decrease in numerical
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stability. This is consistent with the condition quoted by Hirt et aL[28]

öt(cxRe	 (4.3)

where c is dependent on the grid. This is important because as the step

size is decreased the CPU time is consequently increased. The situation

illustrated in (4.2.1) where twenty-five steps were used took only a couple of

minutes on an IBM 3018 Mainframe, whereas the situation in (4.2.3) with

two thousand five hundred steps to cover the same amount of n.d.time took

over three hours. This has obvious ramifications for the usability of the

model in very low Reynolds number situations.

The numerical instabilities first manifest themselves in pressure oscilla-

tions. Figure (4.2.5) shows a comparison of the pressure history in one of

the internal elements 1 , the black line clearly shows the oscillations in the un-

stable case; these values were taken from a run with Re = 0.1 öt = 0.01 the

red line shows the pressures from the same internal element from a run with

a decreased time step 51 = 0.005. If unchecked these oscillations grow until

they cause the program to crash, an example of this growth is shown in figure

(4.2.6) which is the internal pressure from a run with Re = 0.01 51 = 0.001.

More discussion of numerical instabilities can be found in appendix A.

'A similar prsure behaviour is observed in all the elements, an internal element was
chosen as a representative example.
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Figure 4.2.6 Pressure in 13th Element
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Grid used in section 4.3

4.3 Effect of Surface Tension and Weight

In this section the model is used to predict the steady-state shape of a blob

of molten glass placed on a flat plate. The equilibrium heights reflect the

altered surface tension to weight balance. To model such a situation requires

a slightly different grid configuration from that used in the previous case,

also, care has to be taken when applying the free surface boundary conditions

at the axis of symmetry.

The roughly spherical gob of glass is assumed to have been placed on a

plate and to have no initial velocity.
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Wb x Fr equilibrium height_IJ

	

0.5 0.3	 1.67	 2.67

	

1.0 0.3	 3.33	 3.13

	

2.5 0.4	 6.25	 3.50

	

2.0 0.2	 10.00	 3.96

	

3.0 0.2	 15.00	 4.11

	

1.0 0.0	 oo	 5.26

The final height of the droplet will depend on the balance between the

surface tension which is 'holding the llquid up' and the weight which is

'pulling the liquid down'. It is assumed that there is no interaction between

the liquid and the plate it is resting upon.

The relevant parameter2is ; -, oo represents a very light material, a

low gravity situation or large surface tension and in this case the shape will

be approximately spherical; 	 .-. 0 represents a situation with low surface

tension or a very heavy fluid and the droplet should spread to form a thin

film.

Figure (4.3.1) shows in outline the final static positions of the grid in

chapter 2 section 2
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the first five cases from the table above, figure (4.3.2) shows the relationship

between the equilibrium heights and Weberx Froude for the same cases.

The parameter WbxFr is chosen because

g
;:;oc LpUgL_WbX'T

The graph suggests that the height is an increasing function of WbxFr. The

calculated height 5.26 for WbxFr=oo gives an upper bound for the function.

WbxFr=oo represents the gravity free situation, i.e. where 	 = 0 here the

liquid should take up a position as near to a sphere as is possible3 . In the

gravity free situation the equilibrium height can be calculated analytically,

this height of 5.48 compares reasonably with that of 5.26 from the grid

calculation. Theoretically, when WbxFr=0 the liquid should spread to form

a infinitely thin film, however calculations for small values of WbxFr are

difficult because the grid becomes very distorted.

These results have been useful in confirming the effects of altering the

Weber and Froude numbers. Experimentally the equilibrium of a droplet of

liquid on a plate is important because it provides a method of calculating the

surface tension. Details of this procedure called the 'sessile drop method',

can be found in a book edited by Bockris et al.[6].

3Given a fixed finite contact area with the plate.
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4.4 Remeshing

As each surface node touches a solid boundary it sticks to that boundary,

hence as time progresses nodes are lost from the free surface. The smaller

the number of nodes on the free surface the worse the piecewise linear ap-

proximation is to the actual curve. If this process is allowed to continue

as in figure (4.4.1) the boundary becomes increasingly angular and a less

acceptable approximation to the liquid being modelled. The free surface

was initially described by five straight line segments, when the n.d.time=1.8

the surface is approximated by three segments, by n.d.time=2.5 only two

segments are used. Eventually a singular matrix for the volume conserva-

tion becomes inevitable. This situation can be prevented by introducing a

remeshing procedure. Remeshing is also used to combat grid distortion, the

interpolation functions used are only appropriate for convex elements, non-

convex elements such as those in figure (4.4.2) have non-positive Jacobians

and must be avoided. The remeshing process redraws the grid and inter-

polates to find the new nodal velocities. Figure (4.4.3) shows the effect of

using a model incorporating a simple remeshing scheme, which is triggered

by a surface node touching the boundary, to model the same situation. It

can be seen that thoughout the calculation five line segments are used to
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V
Figure 4.4.2 Non-Convex elements

describe the free surface giving a far more realistic approximation.

Many remeshing schemes are available, the one used here places the

nodes equidistant along the surfaces and then calculates the new positions

of the internal nodes. More details of the remeshing procedure can by found

in appendix B.
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FIGURE 4.4.3 CALCULATION 1ITH REMESHING

N. 0. TIME = 0.45

N. 0. TIME = 1.35

•1.	 4.



4.5 Central Approximations

Once a suitable remeshing procedure has been introduced there is no theoret-

ical reason why the model representing a gob of glass being pressed between

two flat plates, such as the situation described in section (4.2), cannot be

continued until a large very thin plate is produced. The disadvantage is that

a large number of elements would be needed; increasing the computer time

used. However, there exists a model for the flow of glass at the centre of a

disc, it is provided by the 'squeeze film' approximation, described in chap-

ter 3. This approximation can be used as the boundary condition on the

interior of a hollow cylinder of elements, reducing the CPU time needed and

allowing the computational effort to be concentrated on the area of interest.

For example, figure (4.5.1) shows the result of using a forty-five element

grid to model a simple pressing operation4 . The model was run for a short

time until a reasonably stable velocity field was set up within the glass.

This velocity field is very regular in the central portion of the grid. Figure

(4.5.2) shows the results obtained when a twenty element hollow grid with a

central 'squeeze film' approximation was used to model the same situation.

Figures (4.5.3) and (4.5.4) show comparisons of the r and z velocities from

4The plunger moving at. a constant. downward velocity Uo, Re = 1.0, Fr = 10.0,
Wb=1.0.
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along the free surfaces in the case where a central approximation is used,

shown in red, and the case where the predictions are obtained on a full grid,

shown in green. The maximum variation 5 between the two calculated cases

is 13% with an average value of 3%. Figure (4.5.5) shows the non-linear

relationship6between the number of elements used and the CPU time for

a single step'. The CPU time for the twenty elements used in (4.5.2) was

10% of that needed by the forty-five elements used in (4.5.1). This is a

substantial saving making the 'patching together' of any suitable analytical

solutions with the numerical model computationally economical, though not

as accurate.

5variation between ti and 1L2 is taken as

absolvtc(u, —'42)

mazimum(ua,u X 100%

time constant (number of elements)3
TThe times depend to some extent on the proportion of the nodes on the free surface,

the times show are the average taken over ten SUCcessive Steps using roughly 'square' grids.
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Figure 4.5.3 Outward velocities

epprox.

0.5	 1.0	 1.5	 2.0	 2.5	 3.0
He I ghc

2. 5

2. 0

0. 5

0. 0

0. 0

approx.

2. 5

2. 0

1.500-J
>

0. 5

0. 0

0. 0 0.5	 1.0	 1.5	 2.0	 2.5	 3.0

Height

Figure 4. 5. 4 Downward velocities



Figure 4.5.5 CPU time v Number of Elements
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4.6 Different Mould Shapes

In reality glass is rarely pressed between two parallel flat plates, it is more

likely that both the mould and plunger will be shaped. Figure (4.6.1)

shows the result of the model being used to represent a gob of glass set-

tling into a bowl shaped mould. The glass is given an initial downward

velocity of 0.9U0 to represent the fact that the gob would have fallen into

the mould rather than been placed on it, the other parameters are Re =

1.0, Fr=10.0, Wb=1.0. Figure (4.6.2) shows its deformation when pressed

by a shaped plunger moving at a constant downward velocity, U0. Different

shapings can easily be accommodated. However, the grid can only form a

piecewise linear approximation to the desired shape. Hence, the accuracy

of the fit depends on the size of the elements and the rates of change in

gradient of the solid surfaces. Sharp angular corners of a mould will always

prove a difficulty for a moving grid model as there is no guarantee that a

node will coincide exactly with the corner. These considerations need to

be borne in mind when the number and size of the elements is chosen. In

practice the mould and plunger shapes are restricted by the need to remove

the finished article and tend to be smoothly curved.
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Chapter 5

Temperature Dependence

5.1 Introduction

Up to this point the model has only dealt with isothermal cases, that is ones

in which the temperature is constant throughout the fluid. The existence

of a non-uniform temperature field cannot be ignored because the temper-

ature and flow fields are coupled via the temperature-viscosity relationship.

In this chapter consideration is given to the appropriate form of the temper-

ature field and how its effect can be built into the finite element flow model

developed previously.

The temperature field satisfies the energy equation, the axi-symmetric

non-dimensional form of this equation was given in chapter two and is re-
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called here.

The Energy Equation

OT OT	 OT 1 1 02T 101' 02T\
+u+w=	 (5.1)

with

LUopc
Pe = Peclet number =	 (5.2)

A

where all the symbols have their usual meaning1 . As with the Navier-Stokes

equation, there are analytical solutions to the energy equation under certain

conditions, for example Carslaw[1O] gives solutions when the fluid is station-

ary, but none of the available analytic solutions accurately fit this dynamic

situation. Therefore, numerical methods have to be used.

5.2 Form of the Temperature Field

There are no analytical solutions to the energy equation suitable for calcu-

lating a dynamic axi-symmetric temperature field, but information about

the role of the Peclet number and the form of the temperature field can

be gleaned from consideration of a one dimensional situation, which has an

'the starred notation has been dropped
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analytic solution. The system governed by

OT_ 
182T for x > 0	 (5.3)

with boundary conditions of'

T = 1 at i = 0

T=Oatx=Ofort>0	 (5.4)

has solution

T = 
erf (h')	

(5.5)

Figure (5.2.1) shows this function plotted for various values of K =

it can be seen that for large values of this parameter, temperature field

consists of a small region near z = 0 with rapid temperature changes and a

larger region with T 1. The Pedet number for molten glass is very large

and the times involved in a pressing operation are small, this implies that

the majority of the coollng will be confined to a thin boundary skin, with

very little temperature variation in the interior.

2 the condition T = 0 at z = 0 is the most extreme case of Newton cooling H -e oo
3generated using the NAG routine SI5AEF
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5.3 Finite Element Implementation

When the finite element flow model was constructed the Reynolds number

was not assumed to be a constant. Therefore, the existing flow model can

accommodate a variable viscosity. Once the temperature field has been

calculated no further alterations are needed.

It is relatively straightforward, following the procedure outlined in Chap-

ter 3, to calculate the temperature field using a finite element method. It

can be based on the same grid as that used in the flow calculation with the

temperature varying bilinearly across each element. However, this is corn-

putationally very time consuming. In view of the form of the temperature

field it is also inefficient and inaccurate. A full finite element calculation will

be inefficient since the temperature changes in the internal elements wifi be

negligible. Unless the size of the boundary elements is comparable with

that of the cooled skin, i.e. very small, then the linear approximation for

the temperature will greatly over estimate the cooling. This over estimation

as well as being inaccurate would exacerbate the instability problems noted

in Chapter 4.

If the computing time was unimportant a f.e model for the temperature

based on a smaller grid with a quadratic or even cubic interpolation function
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for temperature could be used. However, it was decided to capitalize on

the information as to the nature of the temperature field and look for an

alternative approach.

5.4 Boundary Approximation

5.4.1 Introduction

The physical situation is such that the changes in temperature at the centre

of the gob of glass are negligible compared with the temperature changes

near the glass/metal or glass/air interface. The aim, in this section, is to use

this information to simplify the system allowing all the effects of the tern-

perature variations at the boundaries to be encapsulated in an augmented

boundary condition.

Firstly, a simple one dimensional system is considered.

5.4.2 1-d System

If a very simple 1-d system is considered where there is a semi-infinite liquid

(liquid A), coated with a thin film of another liquid (liquid B) that has a

different viscosity. If there are no body forces present, and the viscosities

of each liquid are constant but different, then the Navier-Stokes equations
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simplify to give

for liquid B, -t < x < 0

OrB - DUB

-;_--i_	
(5.6)

for liquid A, 0 < z

OTA - OUA
- -	 (5.7)

the stress boundary conditions are

ILB(0,i) = UA(0,t) , T(0,t) = TA(0,t)	 (5.8)

rB( —1, t ) = F	 (5.9)

where F is a known function of z and the surface tension, r is the stress. If

the pressure is taken to be constant, the stresses are then dependent only

on velocity and viscosity, and the system becomes

2 D2UB DUB
ReB Ox2 

=--for -t<z<0	 (5.10)

2 O2 UA - DUA
for0<x	 (5.11)

i	 Ox -

with

lOuA(0,i) - lDuB(0,t)	
(5.12)UA(0,i) =

ReA Ox - ReB Dx

20u8(—t,t) = F
	 (5.13)

Re8 Ox
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Laplace Transform method If the extra boundary condition of

OUA(Z,i)
—'Oaax--"oo	 (5.14)

Ox

is introduced the system can be solved by using Laplace transforms to elim-

mate the time dependence 4 . The solution obtained by this method is

2F exp(—kAx)

= a (exp(kBt) + exp(—kBt)) + 4-(exp( — kBt) - exp(kBt)) (
5.15)

where, kB =	 k =

If there is no surface film, i.e. £ = 0, then equation (5.15) would be the

solution of equation (5.11) with the boundary condition

2 OUA(0,t) - 
F

ReA Ox

The expression given in (5.15) can be expanded in powers of £. If the sur-

face film was thin, i.e. £ 0 but £2 <, then (5.15) would give (neglecting

terms 0(t2))

— Fexp(—kAz)
UA =	 -	 (5.16)

RCA RCB

this is a solution of (5.11) with the boundary condition

2OUA(O,t) _tOhL4(o,O = F	 (5.17)
ReA Ox	 at

4 i(p, z) is the transform of 14 g , z)
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since

OtLA - 2 D2UA (5.18)
- i Ox

equation (5.17) becomes

2 0u2(O,i) 
= F+ 

2t 02u2(O,i)
Ox	 ReA Ox2

rA(O,t) = F	 'exira'term	 (5.19)

This is the type of alternative boundary condition that is being sought, the

'extra' term represents the approximate effect a thin cooled layer would have

on the bulk flow.

The Laplace transform method can only be applied in very simple cases,

however, a more physical argument can be developed which gives results

consistent with those obtained above but is readily extended to a more

general case.

Physical Argument Considering the one dimensional situation described

in the previous section by equations (5.6)-(5.9). The stress is a continuous

function and if it is assumed that it is sufficiently differential then it can be

expanded. For example

00 (_t)i O'r(O,t)
(5.20)r(O,t) = r(—t,t) - 	

i!	 Ox'i=1
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The free surface stress r(—t, t) is known, giving a boundary condition of

00 (—t) Or(O, t) (5.21)r(O,1)=F—	
i!	 Ox'1=1

This is a more general form of the boundary condition (5.19) obtained us-

ing the Laplace transform method; (5.19) can be obtained from (5.21) by

curtailing the series and substituting in the assumed forms of the stresses.

This physical argument is more readily extended to the 3-d case where

the viscosity varies near the surface.

5.4.3 3-d Case

The 3-d system used is axi-symmetric and expressed in terms of cylindrical

polar co-ordinates, so only the components in the r and z direction need be

considered.

The situation under consideration, illustrated in figure (5.1), is where

there is a thin cooled layer, thickness 1, surrounding a larger area of isother-

mal liquid. In the bulk of the liquid, n < a, the Reynolds number is Re2.

At n = b the Reynolds number is Re2 but at the free surface, n = c, it is

Rei . The stress conditions are now in terms of the normal stress, r. At

the internal boundary between the isothermal area and the non isothermal
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area the normal stress is continuous, i.e.

r(a) = r(b)
	

(5.22)

At the free surface the normal stress depends on the surface configuration

and surface tension, i.e..

r(c) = F
	

(5.23)

The stress now needs to be expanded, there are two obvious expansions

'r(c) = r(a + 1) = 'r(a) + £r(a) +

and

r(a) = r(c—t) =

These two expansions can be rearranged to give

°° (—t)'O'r(c)

1=1

°° (1)'8'r,(a)

i=1

The normal stress is given by

28u	 1 '8u 8w

T	
,

Tn=n	 11

I (8vi8u\	 • 28w

(5.24)

(5.25)
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Figure 5.1 Fluid near the Free Surface

If the boundary layer is thin and it is known that the viscosity varies rapidly

across it, then it is not unreasonable to assume

8Re	 Du Ow Op
>>	 (5.26)

This together with the simplifying assumption that the variation in the

Reynolds number across the boundary layer is linear, impiles

Or	 (-1i! (!) ' H(uwr)	 (5.27)
On

where
r8u	 8u awl

H(u,w,r,z)=nTI 2

18w 8u
	 8w
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This together with an approximation for the derivative gives

8r(a) - (—l)! (Ret_—_Re2\1
On - Re	 —t I

Or(c) - (—l)i! (Re2_—_Rei\1
On	 Re1	 £	 I

R(u, w, r, z)

H(u, w, r, z)	 (5.28)

Substituting these back into (5.24) and (5.25) gives two possible forms of

alternative boundary condition

1 00
rn(a) = F— t_E	 Re2) H(u,w,r,z)

1 001	 Re2't'
H(u,w,r,z)

1=1

(5.29)

(5.30)

These sums converge for Re1 < Re2 and Re1 > Re2 respectively. It can be

shown that both these sums have the limit

IRe1 - Re2\
r(a) = F+ ( Re

1 Re2
 ) H(u,w,r,z)	 (5.31)

This is essentially the geometric mean. Hence the alternative boundary

condition (5.31) can be adopted, it will be valid for both coollng and heating

of the surface.

5.4.4 Surface Temperature Approximation

For the alternative boundary condition outlined previously to be of use some

method for finding the approximate temperature and hence Reynolds num-

5using E°°	 =	 for ki < II-I
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liquid
	

dir

Figure 5.2

ber difference across the free surface is needed.

The simplest approximation would be to assume that the glass which

was in contact with the mould is at the same temperature as the metal

whereas there is no cooling across the free surface. This is only reasonable

if the metal/glass heat transfer coefficient is large and the glass/air one is

negligible which is not the case. Hence a simple approximation was used that

calculated the surface temperature from the previous surface temperature,

the position and step length. Consider the situation shown in figure (5.2).
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The heat flow is governed by the equation

81'	 1 '82T 82T lOT'
(5.32)

with the boundary condition at the surface of

OT-	 E* [(T + T
0 + 273	 _________

On	 -	 Tmax_Tmi) (Tam+ 
To+273 )41

Tmax - Tmin J

+ H*(Tani - T)	 (5.33)

The derivatives can be approximated to give

T—T'_ 1 fT-1	 2T,+T +
61	 2T	 11+12

co$T-1 + 8znT_Tf(534)
r	 T	 r 1]+12)

and

- - -	
+ 

T + 273 )4 - (Tam + 
T0 + 273 )4]

T -	 Tm - Tmin	 Tmax - Tmin J

+ H(TamT')	 (5.35)

Here subscripts refer to position superscripts to time and 4' is the angle

between the outward normal and the r direction, Tarn is the temperature of

the adjacent medium. These two equations contain two unknowns, T the

thickness of the cooled film and T the new surface temperature, simple

manipulation eliminates T to leave an approximation for the new surface
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temperature.

H*6L	
[Tam - TI:]T 1= 7Z—	 +

Pe(2	 r)
T0 + 273 )4 - 

(Tam + T
0 + 273 )41E*öt 

(1+coslf\ I(T+
Fe 2	 r I I.	 max - Tmin	 Tmax - Tmin I

+ ot

11 + 12	 r l + 12 )	
(5.36)

The terms represent the heat lost from the glass via conduction, radiation

and the internal transport of heat respectively.

This approximation was used as it can incorporate heat loss by radiation

and variable heat transfer coefficients.
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Chapter 6

Results Including

Temperature Variations

6.1 Introduction

In this chapter, temperature variations across the boundary were introduced

via the augmented boundary condition described in the preceding chapter.

The model was used to ascertain whether or not the cooling of a thin surface

layer of liquid has a significant effect on the flow of molten glass during a

pressing operation.

Note that unless otherwise stated, all times and temperatures quoted in
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this chapter are dimensionless.

6.2 A Partially Cooled Free Surface

tJnder normal conditions molten glass in contact with the metal plunger or

mould cools faster than the portion of the glass open to the air. Therefore, it

might be expected that the glass around the contact point' would be cooler

than that of the rest of the free surface. The model was used to predict the

behaviour of the flow in such a situation. A twenty element grid was used to

simulate a simple pressing operation, with the plunger moving at a constant

downward velocity and with Re = 1.0, Fr = 5.0, Wb = 0.1. was asszmeà

that the glass had an even temperature, T = 1.0, except in the area imme-

diately adjacent to the mould where it was cooler. The situation is shown

schematically in figure (6.2), together with the node numbering referred to

later in this section. The temperature of the glass is fixed thoughout the

pressing, i.e. there is no heat flow within or from the glass.

1 where the free surface of the glue touches the metal
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node2

coo1ed.area... .Anode 1

mou1d

8X1S of
symmetry	 figure 6.2

figure	 surface temperature	
H

6.2.1 I	 T=1.O over all surface

6.2.2 I T=O.8 at bottom plate, T=1.O elsewhere

6.2.3 I T=O.6 at bottom plate, T=1.O elsewhere

6.2.4 I T=O.4 at bottom plate, T=1.O elsewhere

The figures (6.2.1)-(6.2.4) show snapshots of the flow, the area of interest

around the contact point has been enlarged for clarity. In figure (6.2.1), as

in all previous isothermal cases, the glass advances in a 'rolling' manner with
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the nodes of the grid touching the plate in order. However, when the liquid

adjacent to the mould is cooled it slows the flow in the immediate vicinity

of the contact point.

Figure (6.2.5) shows the velocity of node 1 at time=O.35 plotted against

the temperature of the corner node. As the temperature of the corner node

is decreased the first node is slowed.

Figure (6.2.6) shows the average velocity of nodes 2,3 and 4 at time=O.35

plotted against the temperature of the corner node. The average velocity of

the rest of the free surface increases as the temperature of the corner node

is decreased. The plunger is moving at the same constant rate in all four

cases hence the rest of the free surface, (nodes 2,3 and 4), has to move more

to compensate for the bottom node moving less.

The differences in velocity along the free surface become more pro-

nounced the larger the temperature difference, until the flow near the plate

is slowed to such an extent that the hotter glass 'flows over' to touch the

plate first leaving an air gap. This gives rise to a rippled effect of the free

surface. This can be seen in figure (6.2.4) and to a lesser extent in figure

(6.2.3).

This phenomenon is observed in real life when molten glass in poured

on to a cold plate, or glass in pressed in too cool a mould. Rippling often
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occurs when a production line has just been started and the moulds, though

preheated, are not yet up to the correct temperature. Therefore, any stop-

pages of the continuous manufactoring process, for example to replace a

worn mould, are costly in terms of lost production.

To predict the size and study the nature of these 'ripples' the elements

would need to be very small. However, if the model was being used to assess

the likely outcome of pressing under a particular set of circumstances, the

appearance of this 'overlap effect' could be used as a warning that the mould

or plunger are too cold to produce a high quality surface finish.
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Figure (6.2.3)
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Figure (6.2.4)
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6.3 Overall Surface Cooling

In this section the model was used to predict what would happen if the

gob being pressed was still hot on the inside, but all of the free surface was

cooler, again there is no transport of heat during the pressing.

The set up is the same as that in (6.2), a twenty element grid was

pressed by a plunger moving at a constant downward speed, with Re = 1.0,

Fr = 5.0, Wb = 0.1.

figure 
I 

surface temperature

6.3.1 I	 T=1.0

6.3.2 I	 T=0.6

Figure (6.3.1) is the isothermal situation, it was calculated as a control.

The even surface coollng has no effect on the order of node crossing

so the rippling effect, seen in the previous section, is more dependent on

there being a temperature gradient along a surface rather than just across

it. However, even after a short time it can be seen that the cooled layer

affects the pressure field within the glass. The pressures inside the cooled

glass, seen in figure (6.3.2), are larger, but perhaps more significantly, the
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configuration of the pressure contours has been altered from those in the

isothermal situation shown in figure (6.3.1), again showing that cooling,

even when confined to a thin surface film, has a noticeable effect.

The drop of temperature at the surface also affects the numerical stabil-

ity, for example in (6.3.1) when the surface temperature is 1.0 a timestep

of 0.001 can be used, but when the temperature has dropped to 0.6 at the

surface as in (6.3.2) the timestep has to be reduced to 0.0001 to eliminate

the characteristic pressure oscillations first observed in section (4.2).
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6.4 The Surface Temperature

The surface temperature was calculated using the simple algorithm described

in section (5.4.4), and recalled here.

	

ff*öt /1	 f± rm _T']T	 = T—	 JILam

	

Fe \2	 ? /L
E*6L (1 cosçb\	 __________

-	

+ -;:--) [(7 + 
T0 + 273 )4 - (Tam 

^ T0 + 273

Tmaz - Tmin	 T,nax - Tmsn 
)4]

öt (T-2T,+T sincbT—T\
+

where the new temperature at a node, 71, depends on its old temperature,

7, the temperature at the neighbouring nodes, T and 7, distances Li and

£2 away and the temperature of the adjacent medium Tam. is the angle

between the outward normal of the surface and the r direction, all other

symbols have their usual meanings.

There are two separate sorts of interface to be considered.

Glass touching a solid boundary The majority of the heat flow be-

tween glass and the metal is by conduction because the metal is opaque to

radiation. The rate of cooling depends on the n.d.heat transfer coefficient,

ff* and the temperature difference between the glass and the adjacent metal.

Figure (6.4.1) shows the temperature of a point2 on the curved surface of

2 = 2.0, z = 2.0
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a stationary cylinder3 which is cooled by conduction only, plotted against

time for various constant heat transfer co-efficients. The initial temperature

of the cylinder is 1.0. The curved surface of the cylinder is in contact with a

mould. The mould is assumed to be maintained at a constant temperature

of 0.0.

Free Surface Here the heat flow is by conduction and radiation, the

amount of radiation depends on the emissivity, . Figure (6.4.2) shows

the temperature of a point on a cylinder initially at 1.0, where heat is lost

by radiation into a medium of temperature 0.0, conduction is taken to be

negligible. The different curves are for different values of emissivity.

The cooling by radiation is proportional to T4 , hence the curves in (6.4.2)

are steeper than those when the cooling is by conduction only (6.4.1) which

depends on T.

These results are consistent with the variations in surface temperature of

a solid which can be calculated analytically, Carsiaw and Jaeger [10] provide

an overview of the available analytical solutions.

3T 2, 0 z 4
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Figure (6.4. I) Surface Temperature
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Figure (6.4.2) Surface Temperature
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6.5 Combined Model

The surface temperatures calculated in the previous section were for a sta-

tionary fluid. In actuality, the free surface is moving and new areas of glass

are coming into contact with the solid boundaries. The changing situation

of the surface will be reflected in the calculated surface temperatures. This

is best illustrated by an example.

The model was used to predict the flow of glass immediately after a

roughly spherical gob was dropped onto a shaped plate. The parameters

were Re = 1.0, Fr = 10.0, Wb = 0.01. The surface temperature was

calculated using H,, = 4.0, H = 0.0, c = 0.0, i.e. no heat lost directly

from the free surface. The initial temperature of the glass was 1.0 with the

plate at temperature of 0.6. A grid identical to the one in section (4.3) was

used.

Figure (6.5.1) shows snapshots of the flow with the associated pressure

field at various times. The deformed outline of the grid is given in green, the

internal element boundaries having been omitted. The gob hits the plate

with a uniform downward velocity of 5U0 , then flows down over the mould,

the small gap left between the mould and the fluid is due to the fact that the

mould is curved but the grid is polyhedral, a problem first noted in Chapter
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4. The 'fit' can be improved by using smaller elements.

Figure (6.5.3) shows the temperature history of four of the nodes used

in the calculation. The initial position of these nodes can be seen in figure

(6.5.2). The cooling at node 1 is smooth because it is in contact with the

plate for the whole of the time. A marked change in the cooling of nodes

2 and 3 can be seen when they touch the bottom plate. Node 4 does not

touch the plate at any time but there is a slight amount of cooling; this is

due to the flow of heat from the hotter glass to the cooled area 4 , when the

Pedet number is large this is only a minor effect.

4 thie is due to the V2T term in the energy equation
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6.6 Surface Smoothing

The model incorporating the alternative boundary condition, though devel-

oped with the pressing operation in mind, could be used to assess the effects

of a thin cooled layer in other situations.

In this section, the model is used to predict the movement of a free

surface as it is smoothed by the action of surface tension and gravity, after

being slightly perturbed from its horizontal equilibrium position.

The situation under consideration is that of a viscous liquid in an open

topped cylindrical container. The no-slip boundary condition is applied

where the fluid touched the base and side of the container. Figure (6.6.1)

shows the grid and the node numbers which are referred to in later diagrams,

node 1, which is initially the top of the 'blip', is on the axis of symmetry.

The initial perturbation of the free surface, shown in figure (6.6.2), is small

0.026 units, compared to the equilibrium height of 3 units. Initially, the

fluid is at rest, it then is allowed to flow, the flow parameters were Re = 1.0,

Wb = 0.5 and Fr = 100.0.

Results To compare the effects of differing surface temperatures on the

rate at which the surface perturbation was smoothed out, some sort of bench

6note the different scales in the horizontal and vertical directions
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mark is needed. Here it was taken to be the 'half life' i.e. the amount of

time it takes for the maximum surface height variation to fail to 50% of its

initial value.

First, the isothermal case was considered, where the bulk temperature

was the same as the free boundary temperature (b.t), both having a value of

1.0. Figure (6.6.3) shows the heights variations of four surface nodes plotted

against time. Figure (6.6.4) gives the maximum height variation across the

free surface at any given time as a percentage of the original perturbation. It

can be seen that as time progresses the variations are smoothed out. It takes

13 units of time for the variation to fall to 50% of its original value. The

first couple of steps in the calculation produce a slightly anomalous result

this is due to the grid being released from rest, hence the small deviations

from a smooth curve at very small times in the figures.

Figures (6.6.5) and (6.6.6) show the corresponding results, from a calcu-

lation where the bulk temperature was 1.0 but the surface was cooled to a

temperature of 0.9, this represents an approximate doubling of the viscosity.

In this case it takes 25 units of time for the variations across the surface

to halve.

Figures (6.6.7) and (6.6.8) are the results when the boundary tempera-

ture (b.t), was 0.8. Here the smoothing effect is further slowed, in fact the
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perturbation grows slightly before it begins to fail. The time taken for the

surface variation to halve is 36 units.

The augmented boundary condition is valid for surface temperatures

higher as well as lower than the bulk temperature6 . Figures (6.6.9) and

(6.6.10) show the results of smoothing when the surface has been heated

to a temperature of 1.1. The smoothing is more rapid than the isothermal

case with it only taking 2 time units for the perturbation to fall to 50%

of its initial value.

Comments The calculations in this section have been on a very simple

grid but they illustrate the possibillties of using this model to study the

formation and behaviour of surface waves.

The formation and decay of surface irregularities is particularly impor-

tant in the float glass process. The decay of surface waves are considered

by Woo[46] and Cassidy & Gjostein [11].There have been some attempts to

produce analytical solutions, for example, Woo presents an analytical solu-

tion describing the decay of an isolated axi-symmetric perturbation, using

various simplifictions 7 . However, none of these solutions allow for variations

6	 section (5.4.3)
Tprescribed perturbation profile, infinite deep liquid and simplified free surface stress

boundary condition
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of viscosity in the glass.

The augmented boundary condition is valid for a 'surface viscosity' either

higher than the bulk viscosity or lower which occurs when the surface is

heated, therefore, operations such as fire polishing could be investigated.

The model could also be used to predict flows in other situations where

there is a different 'surface viscosity', such as a thin film of liquid floating

on another, or where a liquid absorbs or reacts with another at its surface.

6.7 Remarks

From a computational point of view, the assumption that the glass is isother-

mal makes things easier, but, it can be seen from these results that the effects

of cooling, even if confined to a thin film, cannot be ignored.

The conclusion, that even small areas of cooling can be influential, is not

altogether unexpected. The importance of heat transfer in glass fabrication

is mentioned by many of the referenced workers including itawson [38] and

Bonacina et al.[7].
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Figure 6.6.1 Grid and Node numbers
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Figure 6.6.3 Vertical movement of nodea (bt=1.0)
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Figure 6.6.5 Vert ical movement of nodes (bt=0. 9)
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Figure 6.6.7 Vertical movement of nodes (bt=0. 8)
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Figure 6.6.9 Vertical movement of nodes (bt=1. 1)

3. 025

3. 020

3.015

3.010

3. 005

3. 000

2. 995

0	 5	 10 15 20 25 30 35 40 45 50

n. d. t I me

Figure 6.6. 10 Maximum Height Variation (bt=1. 1)
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Chapter 7

Modelling Real Life

Situations

7.1 Introduction

Up to now the results presented have been of a simple nature, used to

illustrate various aspects of the computer model, and no attempt has been

made to equate non-dimensional values to real ones. In this chapter, realistic

value for the various physical parameters are considered and some attempt

is made at modelling a real situation.
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7.2 Physical Parameters

Description	
J_Symbol j	

value	 source

surface tension	 a	 0.3Nm'	 [1]

density	 p	 2500kgm'	 [35]

Fuicher equation	 A	 -3.0	 [14]

constants5 	 B	 4500

T0	 242°C

Heat Transfer Co-efficient

air/glass	 H5	 20 - 40Wm 2 OCI	 [22]

mould/glass b 	 Hm	 ll000e_O.9t Wm_2 OC —1	 [19]

Stefan Constant	 o	 5.57 x 108Wm2 oj-4	 [41

Heat capacity	 c	 1339JKg1 °C 1 	 [40]

thermal conductivityc	 k	 2.50 Wm 2 OC_l	 [33]

°The form of the equation is given in 2.3.2.
bthis varies with the time of contact because the glass shrinks from the metal
G average value, it varies with temp. e.g. k = 2.03 at 670°C, k = 2.70 at 1100°C

These are the values which determine the physical properties of the glass.

They are normally dependent on the composition of the particular glass

being considered, the values used in the section are for that of a typical

soda-lime-silica glass.
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7.3 Situation Specific Parameters

As well as the composition of the glass which determines its properties the

treatment of the glass can be varied, these variables are, to some extent,

controllable. Here is a list of these factors with some indication as to their

order.

• The geometry of the mould and plunger can be altered, though these

are restricted by the need to remove the finished article.

• The size and intial shape of the gob of glass can be varied by the feeder

mechanism.

. The height from which it is dropped into the mould can be varied and

hence, the velocity of the glass when it hits the mould, normally it is

between 1 and 5 ms.

• The initial viscosity of the gob, around lO3Nsm', is controlled by

controlling its temperature, i.e. 	 1000°C.

• The dwell time is variable, i.e. the length of time the gob is allowed to

settle in the mould before it is hit by the plunger, is about a second.

• The initial temperatures of the mould and plunger can be altered,

usually they are at 400°C. Sometimes the mould and plunger are
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cooled externally, often the plunger is hollow allowing water to be

circulated.

The initial velocity of the plunger is usually 0.1ms 1 . The motion

of the plunger during the pressing process depends on the driving

mechanism of the machine and the power available.

These values were obtained from R,awson[38J, McGraw[33J or from obser-

vations of a pressing machine at Waterstone Glassware Ltd. a small glass

maker at Wath-upon-Dearne.

For the non-dimensional scheme values for Tmax,Tmjn, L and Uo are

needed. Tma is the maximum temperature encountered and as chosen as

JJ .d, '' the minimum value for the temperature used in the ca.lcula-

tion, was set at 50°C to allow for any possible air temperature. L is the

length scaling factor. Setting L to 0.01 means that a unit length is 1cm. U0

is probably the most difficult to set because of the wide range of velocities

in a pressing operation, a value of 1 was taken for convenience so the units

of velocity are metres per second. These value with those in the table give

Re = 
25.0

Fr = 10.2

Wb = 0.01
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H: = 0.12

H,, =

= 30.Oc

Fe = 15000	 (7.1)

where j is the non-dimensional time; T* the non-dimensional temperature

and

4500a(T*) = 10 3 11o0T_192	 (7.2)

For a glass temperature of less than 1100°C

Re < 0.01

so the assumption that viscous forces dominate made in chapter 2 is rea-

sonable. The Peclet number is large which confirms the assertion, made in

chapter 5, that heat flows only slowly within the fluid.

7.4 Stability Problems

For the parameterization quoted in the previous section, the maximum

Reynolds number is 0.01, this means that the maximum stepsize is of the

order1 t = 0.0005. If the operation to be studied took 1 second in real

section (4.2), there is also a dependence on the element sizes
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time, this would correspond to 100 units n.d.time 2 . Hence the number of

timesteps needed would be

100.0	 5
0.0005 

= 2.0 x 10

For a twenty element grid, such as the one used in (5.3), each time step

takes 5 seconds CPU time on the IBM Mainframe, so the CPU time need

to complete the above calculation would be

1 x lO6sec lldays

Clearly, this problem is mainly due to lack of computing power. Predicting

the flow in a detailed real life situation is therefore impractical on the IBM,

but on a Cray or other powerful machine the speed the calculations would

take a more manageable amount of time, also with the introduction of in-

creasingly powerful work stations and the advent of parallel processors this

size of calculation is becoming more amenable.

If, as in this case, the computing power is unavailable there are two basic

approaches that can be adopted to try to overcome these timing problems;

Numerical Approach This would be to look at the nature of the numer-

ical instability and to try to combat it without affecting the accuracy.

2using the relation (n.d.lime) !(real time)
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One possibility would be to solve the equations of flow implicitly. Implicit

schemes are far more stable but not necessarily 3 more accurate, accuracy

can be increased by using a mixed implicit/explicit scheme. Both these

options require substantial program alterations which would lengthen of

the calculation because the matrix equations (3.40) in section (3.3.3) for

the r and z direction acceleration would no longer be separate; Golafshini

considers an implicit method for calculating flows[26].

Another option would to introduce a smoothing scheme to try to con-

trol the pressure oscillations, but care would need to be taken so that the

smoothing does not mask any important features, the problems with some

smoothing schemes are considered by Gresho and Lee[25].

Physical Approach In the pressing situation considered where the plunger

is moving at a prescribed known velocity, it seems that it is the differences

in viscosity that has most effect on the flow, rather that the actual viscos-

ity that only seems to effects the internal pressure. Therefore, it could be

assumed that the Reynolds number is one, except at the surface where it is

allowed to alter. It is important to calculate the surface temperature even if

its effect on the flow is not included, because it will be critical in determining

3see appendix A
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the behaviour of the article once it is removed from the mould, i.e. if it is

not cool enough it will collapse under gravity. The surface temperature also

influences whether the glass sticks in the mould, a potentially disastrous

fault on a continuous production line.

The physical approach is adopted here. It is envisaged that in a practi-

cal situation calculations would be performed with the maximum Reynolds

number of one using larger steps for an over view, enabling the user to iden-

tify conditions or areas of flow that needed more detailed investigation which

could then be undertaken using the actual parameters.

Though no actual 'true-to-life' situations are calculated here, a couple

more examples are included.

7.5 Example 1 - Pressing a Beaker

This example was included because it deals with a more realistic geome-

try and shows that with repeated remeshing a relatively small number of

elements, in this case twenty, can be used.

The model predicted the flow for the isothermal case with Re = 1.0,

this was chosen to maximize the step size. The other parameters were

Fr = 10.0 and Wb = 0.01. Initially, the gob of glass was assumed to have a
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uniform downward velocity of 1 ms 1 . It hits the mould at n.d.time= 0.0,

at n.d.time= 2.5 the glass was touched by a plunger travelling downwards at

a constant speed of 1 ms. Figure (7.5.1) shows the resulting deformations

of the glass and how the grid alters to follow the deformed shape.

A single step in the calculation takes 4.7 seconds CPU time; compared

to this, the time for remeshing, 0.2 seconds, is small. The total calculation

of over 3000 steps took 4 hours of CPU time.
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7.6 Example 2 - Stretching

The model was originally developed for pressing but can be used for any

aid-symmetric operation. In this example the model is used to predict the

behaviour of a cylinder of moulten glass when it is stretched.

The parameters used where Re = 1.0, Fr = 10.0 and Wb = 0.01, the

glass was pulled upwards at a constant rate of 2 ms1

Figure (7.6.1) shows the result of stretching the cylinder at various times;

as expected the cylinder 'necks'. Each element in the grid has its volume

conserved from one step to the next, unless remeshing occurs. Since there is

no remeshing in this calculation, the shapes of the elements in the deformed

grid give a good indication of the amount of deformation undergone by

that area of glass. For example, in figure (7.6.1) at n.d.time= 5.0 the grid

is still regular reflecting the relatively even distortion of the glass. This

even distortion can be contrasted with the situation illustrated in figure

(7.6.2). Figure (7.6.2) shows the stretching of a cylinder of glass under

similar conditions the only difference being the the lower half of the free

surface has been cooled to a n.d.temperature of 0.8. This distorts the flow

making it more uneven with more 'necking', this fact is reflected in the

distortion of the grid.
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7.7 Example 3 - Elongation under Gravity

A thin cooled layer of glass surrounding an article, as well as affecting the

finished shape can also affect the time it takes to reach that shape. This

was shown to some extent in section (6.5) where the effect of a different

surface viscosity on the smoothing of a surface was considered, it is further

illustrated by this example.

A gob of glass in hung4 from a plate and its rate of elongation is studied.

The final shape will depend on the balance between gravity 'pulling it down'

and surface tension 'holding it up' but the cooled layer acts as a retarding

force, slowing the motion of the free surface.

The parameters used are Re = 1.0, Fr = 10.0 and Wb = 0.01. The

resistance to motion comes via the alternative boundary condition, discussed

in chapter 5.

Figure (7.7.1) shows how an isothermal lump of glass elongates under

gravity. Similar calculations were performed with different surface temper-

atures, the overall shape was very similar but the rate at which they were

achieved differed. Figure (7.7.2) shows the lengthening of an isothermal

gob (boundary temperature 5 = 1.0) compared to one with a cooled surface

4 how is not considered
5non-dimensional temperature and non-dimensional time are used

118



(boundary temperature = 0.9). Figure (7.7.3) shows how the time for a 5%

elongation varies over a range of surface temperatures.

The rate of elongation is important if an article is not to deform too

much under gravity when removed from a machine, or transferred between

machines6 . This is the sort of calculation, with more realistic parameters and

geometry, which could be undertaken if only a small amount of stretching

could be tolerated in the transfer of a parison.

6for example in the press and blow bottle manufacture
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FIgure 7.7.1

Elongation under Gravity
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Chapter 8

Concluding Remarks

In this final chapter an overview of the project is given along with suggestions

for further work.

8.1 Overview

The aim of this project was to produce a mathematical model that would

predict the heat transfer and flow of molten glass during a pressing opera-

tion.

A summary of the glass production methods are given in Chapter 1, and

the advantages of using a computer based mathematical model over more

interventionist methods are discussed.
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In order to be able to use mathematical techniques, the situation has

to be described in a mathematical manner. The partial differential equa-

tions governing the flow of fluid and heat were introduced, simplified and

non-dimensionálized in Chapter 2. The final forms of the equations, summa-

rized in section (2.5), are those describing an axi-symmetric, incompressible,

Newtonian, creeping flow partially surrounded by a free surface.

Before a solely numerical solution was implemented, the analytical and

approximate solutions to the governing equations were surveyed, in section

(3.1), but these were unable to describe satisfactorily the flow in anything

other than the simplest situations. Hence the finite element method, a nu-

merical technique that gives approximate solutions to systems governed by

differential equations, was used. The finite element method is a well es-

tablished technique, an outline of its basic principles together with more

specific details to its application to this particular problem are given in sec-

tion (3.3). The f.e.m works by overlaying the fluid with a grid, dividing it

up into elements over which approximations can be made, allowing approx-

imate solutions to the whole flow to be constructed. In this problem the

grid was allowed to move with the flow, so that the free surface could be

accurately tracked.

Chapter 4 shows results generated by using the finite element method to
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model an isothermal flow field. It shows that it is feasible to predict the flow

of glass in a simple pressing operation. There is no difficulty incorporating

different mould and plunger shapes. However moving the grid to track the

free surface does mean that the elements shear and distort. This can be

successfully combatted by introducing an automatic remeshing scheme that

periodically redraws the grid. There are various schemes available which

do this process, the simple one chosen, based on Caswdll's fourth order

operator is outlined in appendix A. The other problem is that the calculation

times can become prohibitively large, for anything but the most powerful

machines. Large calculation times arise from two sources-

. Large numbers of elements. It is far more economic to use a smaller

number of elements and remesh more often than to have a larger num-

ber of elements. If, as in the centre of a pressed disc, there is an

approximate analytical solution available it can be 'patched together'

with a finite element flow model. The example given in section (4.4)

shows a large saving of CPU time ( 90%), with only a small loss

in accuracy (at worst 13%). Hence for large grids it is always worth

investigating whether an approximate analytic solution exists for any

areas of the flow.
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. Numerical Instabilities. These limit the size of öt, the time step length

used to advance the position of the grid. Its size is approximately

governed by the formula

öt < c x Re

where c depends on the grid and Re is the Reynolds Number which

is greatly influenced by the viscosity of the liquid, hence the time for

the calculations is strongly dependent on the physical properties of the

liquid in question.

Any variations in the temperature within the molten glass affect the

flow field and the numerical stability of the finite element model for the

flow field because the viscosity is strongly temperature dependent. These

were introduced in Chapter 5. Due to the physical properties of molten

glass the temperature field consisted of a thin cooled area near the glass

surface. It was computationally unsatisfactory to model these temperature

variations accurately using the finite element method, because to model this

type of temperature field realistically the element sizes would need to be

very small and thus very time consuming. The approach used was to try

to capitalize on the known form of the temperature field and to introduce

an augmented boundary condition, recalled here, which incorporated extra
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terms encapsulating the effects of the cooled layer near the interfaces.

The Augmented Boundary Condition, derived in chapter 5, is

IRe1 - Re2\
= F+ Re1 Re2

 ) H(u,w,r,z)

where r, is the normal component of the stress at the surface, F depends on

the surface tension and surface configuration, H(u, tv,r, z) depends on the

local velocity gradients, and Re1 - Re2 is the change in Reynolds number

near the surface. The 'alternative' boundary condition with the approxima-

tion for the surface temperature introduced in Chapter 5 are easily combined

with the finite element model for the flow field. The combined model was

shown to generate qualitatively correct results in Chapter 6. A difference in

viscosity along the free surface leads to differing rates of movement, so alter-

ing the shape of that surface. Complete cooling of a free surface, though not

having a dramatic effect on the final shape, alters the internal pressure in

the glass, potentially influencing the movement of a gravity driven plunger.

The augmented boundary condition is equally applicable to decreases in sur-

face viscosity as well as increases, i.e. heating as well as cooling, opening

possibilities of studying other processes, such as fire polishing.

The actual physical properties of a typical soda-lime glass were surveyed

in Chapter 7. Unfortunately the size of the Reynolds number means that a
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very small step size has to be used, hence a large amount of computer time

is needed. This would be less of a problem with a more powerful computer.

However, the results in Chapter 6 suggest that the differences in viscosity

rather then its actual value are the most important factors influencing the

flow patterns. Therefore, if the computing time was unavailable some sort

of estimations of the likely behaviour could still be undertaken.

This project although hampered by the lack of computing power avail-

able, has demonstrated that it is feasible to simulate both the heat transfer

and fluid flow occurring in a glass pressing operation by numerical tech-

niques. The model was developed specifically with the pressing operation in

mind but could be used to model other axi-symmetric operations, such as

stretching or elongation under gravity.

8.2 Further Work

To develop the present model into a fully realistic model further work in

several areas would be beneficial.

. Linking the fluid and heat flow model to outside conditions. For exam-

pie, no account is taken of the temperature variations in the mould or

plunger. A finite element model, such as the one proposed by Bonocina
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et aL[7], of the temperature flow in the mould could be coupled with

the flow model.

. Extension from axi-symmetric to fully three dimensional. This would

involve a large expansion in the number of variables, increasing the

computer time as well as the storage space needed; enough to tax the

fastest of machines. Remeshing and visualization of the results would

also be more complicated.

• Even with the advent of more powerful computers any techniques for

reducing the numbers of calculations would be welcome. Investigations

into the effects of using implicit or semi-implicit methods to combat

the numerical instabilities would be worth while.

As well as improving the mathematical model, it would be useful if a parallel

path of experimental work was followed, to provide an accurate indication

as to the values and variations of the physical parameters involved. For

example, there is little data on the values of the heat transfer coefficient

between the glass and the mould. The work that has been done1 only serves

to illustrate that its complex dependence on contact time, pressure and

temperature. Such variations, provided they can be accurately described,

'e.g. by Fellows and Shaw[19]
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can easily be handled in a numerical model.
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Appendix A

Remeshing

A.1 Introduction

Many remeshing schemes have been developed often tailored to various sit-

uations, the most common are those which generate two dimensional trian-

gular grids, see for example the paper by Jin[31]. In this work quadrilateral

elements have been used, again there are a variety of schemes to choose from,

for example the automatic scheme proposed by Talbert[41], the relatively

simple scheme opted for is described in a paper by Wang[43] hence only a

brief outline is given.
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1. Grid distortion triggers automatic remeshing

2. New boundary nodes are placed
either

	

equidistant	 or	 weighted

I--!	 --

	

I I

	 T --

3. New internal nodes positioned to give a new grid

I IIJTIflI I

r_rn_____riir	 I-'
!

4. Interpolation to find velocities at the new node points

Figure A.1: Remeshing
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£2 Scheme

Remeshing is introduced to combat the grid distortion caused by the node

movement and to stop the 'loss' of the free surface nodes'. The scheme cho-

sen, shown schematically in figure (A.1), is relatively simple, when triggered

by, for example, a node touching a boundary, it fits an n x m grid2 over

the area of the fluid. The new exterior mesh points are placed around the

boundary. Normally, these nodes are placed equidistant along each bound-

ary, but they can be weighted to increase the concentration in a certain

area. The x and y co-ordinate3 of the (i,j) th node4 is calculated from the

positions of the eight surrounding nodes using

fi+lj+1 + f1-i.,+i + fj-i,,-i + fi+i—i

+ fi-lj + fij+1 +	 + 4ff,, = 0	 (A.1)

where / is the position of the x or y co-ordinate of this node. This equation,

based on Caswell's fourth order operator approach, is the central difference

solution of

Of =0	 (A.2)
8i20j2

1 see section (4.4)
x m nodes, (n - 1) x (m - 1) elements

3or the r and z co-ordinates if an axi-symmetric grid is being generated
4 i nodes from the left, j nodes from the bottom of the grid
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(i-1,j+1)	 : (i,J+1)	 :(i+1,j1)

(i-1,j)

(i-1,j-1)	 ! ( ',i-' )	 ](i1,j-1)

Figure A.2: Local Node Numbering

The positions of the surrounding nodes will not all be known, some will also

be interior nodes. Hence, the remeshing scheme solves the (n - 2)(m - 2)

simultaneous linear equations for the (ii - 2)(m —2) unknowns.

To continue the computation the values of the velocity at the new node

points need to be calculated. This is done by finding which old element each

of the new node points lies in, then interpolating to find the velocity at this

point. To check if a point lies in an element the number of intersections of

a line drawn horizontally from that point with the sides of the element is

counted; an odd number means the point is contained within the element;
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odd

even

Figure A.3: Searching Scheme

an even number means that it is outside.
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Appendix B

Instabilities

These arise due to the use of an explicit method. The nature of the instabili-

ties can best be illustrated by considering a simple one dimensional problem

which has an analytical solution. Consider the system given by

Ox

with x = A at t = 0

and k > 0	 (B.1)

this has analytical solution

x = Ae	 (B.2)
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if this were solved using the numerical scheme

xn+i = Zn + St(A () + (1— A) 
/ OX'

at	 %Ot)fl^I	
(B.3)

with St as the time step and A is a constant between' 0 and 1, A = 0

corresponds to an implicit scheme and A = 1 corresponds to an explicit

scheme. This gives a numerical approximation to the analytic solution of

=
 A (

1—kStA \

i + kSt(l - A))	
(B.4)

where x is the z value at I = nSt. For this to tend to zero smoothly as n

gets large and to agree with the limit of the analytical solution then it is

reqired that

1 - kStA
0< 

1+kSt(1—A) 
<1	 (B.5)

This limits the size of the step length. For an explicit scheme, A = 1, the

limit is

St <
	

(B.6)

Hence if k is large then St has to be small otherwise the scheme does not

converge. A larger region of convergence can be obtained by the introduction

'it can be outside these limits if under or over relaxation is used
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of an implicit or partially explicit scheme, i.e. one in which A 1. Now the

region of convergence can be increased to

ot <	 (B.7)

The situation considered in this appendix is far simpler than that in the

project but is analogous2 , so it is reasonable to assume that a partially or

fully implicit scheme would allow a larger step size to be used in the f.e.

glass pressing model.

2compare equation (B.6) with the stability condition given in section (4.2)
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