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Summary

The aim of the present work is to develop a sophisticated analytical model for

columns within three-dimensional assemblies in fire conditions.

A preliminary investigation into this problem resulted in the development of a sim-

plified approach for the analysis of isolated columns in fire. This model is based

on the Perry-Robertson approach to defining critical loads of imperfect columns

at ambient temperature. It takes into account uniform and gradient temperature

distributions across the section of an isolated pin-ended column. It also accounts

for initial out-of-straightness, load eccentricity and equal end-moments.

A three-dimensional finite element model has subsequently been developed for

the analysis of frames in fire conditions. This model is based on a beam finite

element with a single node at each end of the element. At each node eight de-

grees of freedom are introduced. The finite element solution of the problem is

obtained using an incremental iterative procedure based on the Newton-Raphson

method, adapted to account for elevated temperature effects. The developed pro-

cedure offers a unique treatment of the thermal effects which allows solutions to

be arrived at regardless of the problem's boundary conditions. The finite element

formulation takes into consideration geometrical and material nonlinearities, initial

out-of-straightness and residual stresses. It allows for virtually any temperature

distribution across and along the structural members, and the analysis can handle

any three-dimensional skeletal steel structure. The developed model allows the

material mechanical properties to be expressed either as trilinear or continuous

functions which vary with temperature.

A computer program, 3DFIRE, has been developed based on the above-mentioned

formulation and validated extensively against a wide range of previous analytical

and experimental work. This program has then been used to perform paramet-

ric studies to establish the most prominent features of column behaviour in fire

whether as isolated members or as part of structural assemblies. These studies

have yielded a large amount of data from which generalised conclusions have been

made.

The analysis has been extended recently to include composite beams within the

structural assembly. This development was undertaken to enable analytical studies

on the test building at Cardington, in which fire tests are planned to take place in

the near future.
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Notations

Special Symbols

Denotes a column vector.

Denotes a row vector.

Denotes a matrix.

Denotes a matrix transpose.

Denotes a matrix inverse.

Denotes a summation.

Prefixed to other term denotes an increment.

Prefixed to other term denotes a virtual variation.

Denotes partial differentiation.

Denotes ordinary differentiation.

Denotes differentiation with respect to single argument.

Denotes second derivative with respect to single argument.

Roman Symbols

AT, BT, nT
ai , a2 , ..., ar

ei;, e2i, •-, er.i

ei

eo

E20, Et?

Et

G

4, I:, ...etc

J

Parameters of Ramberg-Osgood Equation at temperature T°C.

Values defined in Eq. 3.27.

Values defined in Eq. 3.59.

Values defined in Eq. 3.36.

Initial load eccentricity.

Thermally-induced load eccentricity.

Young's modulus at temperatures 20°C and 0°C respectively.

Tangent modulus.

Shear modulus.

Cross-sectional properties defined in Eq. 3.62.

Torsional index.

[ K1 I, [ K2 ]to[ K7]

Submatrices of the tangent stiffness matrix.

[ KT ]	 Tangent stiffness matrix.

1, A, V	 Length, cross-sectional area and volume of the finite element respectively.
2n, ms , m!, my , my , m,„ ms , T„

Internal stress resultants defined in Eq. 3.25.



13

P,M	 Applied load and moment respectively.

Q	 Applied load in local system of coordinates.

Q R	 Resisting forces.

q	 Displacement in local system of coordinates.

R	 Applied load in local system of coordinates.

r	 Displacement in global system of coordinates.

[T}	 Transformation matrix.

u, v, w	 Displacements of an arbitrary point in the direction of z,y,x respectively.

uo ,v„,wo	Displacements of the origin point in the direction of z,y,x respectively.

W	 Virtual work.

X, Y, Z	 Global coordinates.

x, y, z	 Local coordinates.

y	 Rise in lateral defection of Perry column.

yi	 Initial out-of-straightness.

Ye	 Out-of straightness due to thermal gradient.

Greek Symbols

a, /3,-y	 Angles of an element in space defined in Fig. 3.6.

ai	Weighting factor in Gaussian integration.

ai	Weighting factor in Gaussian integration.

em , er , co Mechanical, residual and thermal strains respectively.

fz	 Axial strain in the local z-direction.

0 y20, CO Yield stress at temperature 20°C and 0 respectively.

Crz 	 Axial strain in the local z-direction.

Ox	 Rotation angle in y-axis direction.

Oy	 Rotation angle in x-axis direction.

Oz	Twist angle about z-axis.

co	 Sectorial coordinate defined in Fig. 3.2.

0	 Cubic shape function defined in Fig. 3.5.

?Pi	 Unbalanced forces of Eq. 3.28.
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CHAPTER 1

Introduction
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1.1 General

The safe use of any structure is a primary criterion for designers, analysts and

legislators. Fire is one of the main threats to this safe use in terms of its immediate

danger to the inhabitants, and the feasibility of re-using the structure. Statutory

regulations are enforced in many countries to ensure this aspect of safety along

with other aspects. For example, the Department of the Environment and the

Welsh office (1985a; 1985b) issue Building Regulations which specify appropriate

periods of fire resistance for different buildings. These periods vary depending on

the following main factors:

• Height of the building.

• Floor area of each storey.

• Cubic capacity of the building or the compartment.

• The building's use.

Based on the above considerations it is clear that fire resistance periods are not

only concerned with the structural fire resistance of the building. These periods

are concerned with allowing enough time for both property protection and life

safety. Malhotra (1986) studied fire resistance periods in an attempt to separate

the provisions for life safety and property protection in the current regulations.

The role of structural analysis in fire safety is to provide numerical tools to aid

understanding of the structural behaviour in fire conditions. Such tools can then

be used to give insights into the structural fire resistance, allowing the appropriate

design decisions to be made.
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1.2 Steel in Fire

Structural steelwork is a popular construction material due to its advantages as a

relatively cheap material, its fast erection and light weight.

However, the greatest disadvantage of steel as a structural material is its vul-

nerability to elevated temperatures. Under fire conditions steel loses a consider-

able amount of its strength and stiffness, forcing designers to protect the main

load-carrying members at a high cost. Latter (1985) reported in a British Steel

Corporation survey on multi-storey steel frame buildings that fire protection can

contribute as much as 30% to the construction cost of the structural frame.

Amongst the main load-carrying members are the columns which are most vulner-

able to the fire effects. In the following section a brief review of previous analytical

work on columns in fire is presented.

1.3 Previous Analytical Work on Columns in

Fire

Fire research dates back to the late nineteenth century, when the great loss re-

sulting from the structural failure of buildings during accidental fires was first

realised. Uddin and Culver (1975) compiled a comprehensive literature review

about fire research, containing 219 references, up to 1971-1972. This extensive

amount of research has been carried out mainly to study the effects of fire on

structural endurance, material properties and protective materials, along with the

nature and development of fires. Most of the research up to that point was based
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on studying the effects of actual fires and collecting experimental observations.

Apparently the complexity of the fire problem from the analytical point of view

deterred any sophisticated analytical work from being undertaken.

One of the earlier analytical studies on steel columns subject to fire was carried

out by Culver (1972). The problem considered was that of an isolated column

with uniform temperature across its section and a variation of temperature along

its height. An eigenvalue solution was obtained by using finite differences over 16

nodal points along the height of the column. Bilinear stress-strain characteristics

proposed by Brockenbrough (1970) were used to establish the flexural rigidity at

each point along the column. The same stress-strain characteristics were used by

Ossenbruggen et al (1973) to obtain solutions for isolated columns under thermal

gradients along the height and across the section. An iterative procedure was used,

making an initial guess of the thermal bowing and updating it until equilibrium

was attained.

Cheng and Mak (1975) developed a finite element program for the analysis of pla-

nar steel frames in fire. Thermal gradients and creep effects were included in their

formulation. Cheng (1983) used this formulation to investigate the effects of creep

in fire.

Witteveen and Twilt (1975) and Witteveen et al (1976; 1977) presented com-

parisons between test and analytical results for reduced-scale columns and plane

frames using a computer program. The theoretical background and solution pro-

cedure were not presented in their publications.

Furumura and Shinohara (1978) developed a finite element inelastic analysis of

plane steel frames in fire. The creep effect and material unloading were considered

in the analysis. A thermal analysis was used to predict the protected steel tern-
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peratures under standard fire conditions.

Kruppa (1979) suggested a simplified analysis for beams and beam-columns under

uniform temperature profile. The analysis was based on the assumption that stress-

strain characteristics remain elastic-perfectly plastic at elevated temperatures. The

method is based on comparing the ultimate stress at ambient temperature with

the stress at an assumed temperature under a given load. The failure condition is

reached when both stresses become equal.

Jain and Rao (1983) developed a numerical technique for the analysis for plane

frames in fire. Incremental and iterative procedures were used to obtain solutions.

Creep and large deformations were also accounted for.

Baba and Nagura (1985) used a one-dimensional finite element method to study

the effect of time-dependent material properties on the behaviour of single-storey

single-bay frames. In this study strain hardening and creep were considered and a

comparison was made between small and finite deformations using a bilinear model

for material properties.

Giiejowski (1986) developed a finite element model for the analysis of in-plane

behaviour of frame-type structures using a bilinear stress-strain model. Geomet-

rical imperfections, residual stresses and thermal gradients were included in the

analysis.

Aribert and Abdel Aziz (1987) developed a numerical model for the buckling anal-

ysis of members in bending and compression. This model takes into account im-

perfections of the columns (out-of-straightness, residual stresses), non-uniformity

of temperature (in both longitudinal and transverse directions of the member),

variability of temperature over a time span, and creep.
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Cooke (1987) performed an experimental programme including model columns

heated along one flange. A simplified calculation method was used to compare ex-

perimental and theoretical deformations based on separation of the thermal bowing

deformations from the P-A effect.

Franssen (1987) developed a finite element model for plane composite frames and

used the finite difference method to predict temperatures within the material. The

developed program CEFICOSS has been described and used for a large number of

studies (Schleich et al 1985; Dotreppe 1986; Schleich 1988; Franssen 1989).

Olawale (1988) developed a finite strip formulation for the analysis of perfect iso-

lated columns in fire. The small-deflection formulation took account of residual

stresses, load eccentricity and local buckling. Burgess et al (1992) used the devel-

oped program to obtain solutions for a wide range of perfect columns in fire.

El-Rimawi (1989) used a secant stiffness approach for the analysis of flexural mem-

bers in fire. This analysis was later extended (El-Rimawi et al 1993) for the analysis

of plane frames in fire. The developed computer program has been used to study

the behaviour of steel frames and subframes with semi-rigid connections in fire.

Saab (1990), and Saab and Nethercot (1991) developed a non-linear finite element

analysis of plane frames in fire. The developed analysis was used to study the be-

haviour of non-sway and sway frames in fire conditions assuming various heating

and protection schemes.

Kouhia et al (1988) developed a geometrically non-linear finite element analysis

for steel frames in fire. An elastic-plastic material model was used in the analysis.

Only plane multi-storey frames were reported, though the developed model is ap-

plicable to three-dimensional beams and frames.
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Up to this point, the last-mentioned analysis is the only three-dimensional model

which has been reported on for the analysis of steel frames in fire. The need for

more sophisticated analytical tools that can model column behaviour in fire has

been realised by various research groups. A column's position in relation to the

superstructure is an important factor in deciding its bearing capacity. Simplified

rules have been drawn up to find this capacity at ambient temperature by using

subassemblies or specifying a value for the effective length. It is also noticeable that

at ambient temperature plane frame analysis can provide good correlation of the

actual behaviour of a three-dimensional assembly provided that intuition suggests

the axis about which the column is expected to fail. Such simplified approaches

may be acceptable for ambient temperature analysis but are not necessarily valid

at elevated temperatures. In the presence of the many non-uniformities caused

by fire, such as thermal gradients along the height and across the section of the

column, concepts such as the weak axis can become irrelevant. The influence of the

superstructure on the column's bearing capacity in fire is a complex phenomenon.

Unlike ambient temperature situations, the fire is likely to influence the stiffnesses

of the column and adjacent structural members to different extents. In order to

study the fire effect on columns in three-dimensional assemblies it is worth while

using a three-dimensional analysis. Another aspect of the problem is the mechan-

ical behaviour of steel at elevated temperatures. While it is quite acceptable to

assume an elastic-perfectly-plastic characteristic at ambient temperature this is

much less justifiable at elevated temperatures. Most of the previous research has

used bilinear models in the fire context without considering the effect of the highly

non-linear characteristics at elevated temperatures. Hence it is both important and

desirable to develop numerical tools that are capable of tackling the above prob-

lems along with the traditionally important features of column behaviour such
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as the geometric and imperfection-sensitivity effects. Recently three-dimensional

models have been developed in Europe.

At City University, London, Jeyarupalingam and Virdi (1991) developed a three-

dimensional frame analysis for fire conditions. The developed analysis was an

extended and generalised version of the numerical method developed by Virdi and

Dowling (1973; 1976) and Virdi (1981) for inelastic analysis of columns at ambi-

ent temperature. The method is based on finding an equilibrium deflected shape

which satisfies static equilibrium conditions for each increment of load, time or

temperature. These equilibrium conditions are checked at a number of stations at

regular intervals.

At the Building Research Establishment, Watford, Wang and Moore (1991) have

developed a finite element program for the analysis of framed structures in fire. The

program was developed in the first instance for two-dimensional steel/composite

frames, and its capability was then extended to three-dimensional frames. The

model is based on a beam element with two nodes, each of which has six degrees

of freedom. The principle of virtual work is used to generate stiffness matrices and

solutions are obtained by a Newton-Raphson procedure.

At the Universite de Liege, Franssen has recently extended his analysis to three-

dimensions. At the time of writing no published material has referred to this

extension.

At the University of Sheffield, the present project started in 1990 to develop a

three-dimensional analysis of steel frames in fire conditions. This development was

intended to take account of geometrical and material non-linearities and to enable

the modelling of any thermal non-uniformity within the structure. It also allows

the analysis of the full skeletal structure without any need to restrict the analysis
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to a reduced model. However, the major initial objective was to use the analysis

to study three-dimensional column subframes in fire conditions.

1.4 Steel's Mechanical Properties in Fire

When steel is heated it expands in a more or less linear fashion with temperature.

It also progressively loses strength and stiffness with temperature rise. Elevated

temperature tests (Kirby and Preston 1988) on structural steels show that the

stress-strain characteristics very rapidly lose their ambient-temperature bilinear

nature (the normal engineer's assumption) and become distinctly curvilinear at

higher temperatures.

In order to investigate the structural behaviour of steel in fire it is necessary to

obtain a reliable description of its mechanical properties at elevated temperatures.

The required properties include thermal expansion and stress-strain characteris-

tics. The obvious route to obtain such properties is by performing tensile tests

on steel subject to elevated temperature. The results from such tests can then be

incorporated into mathematical models that can be used in the analysis of steel

structures in fire.

1.4.1 Material Properties Tests

Stress-strain characteristics of steel at elevated temperatures are obtained from

tensile tests. Different types of test are inherently expected to show some vari-

ation in stress-strain characteristics due to variable rates of loading and heating.

There are two main testing procedures for steel at elevated temperature.
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The first type of test consists of loading the steel specimen under uniform tem-

perature conditions. In these tests the steel specimen is first heated to a specified

temperature, a procedure that allows the rise of strain due to free thermal ex-

pansion to be measured separately. Loads can then be applied and the additional

strain can be measured along with the applied stress. By repeating the test for

different levels of temperature a family of stress-strain curves can be obtained.

The second type of test loads the steel specimen under transient heating conditions.

In this method of testing the specimen is heated at a specified rate of temperature

increase for different, constant loads. This method obviously implies that total

strains, including mechanical and thermal expansion strains, must be measured as

one quantity. Consequently, another set of similar specimens must be tested at the

same rate of heating but without loading, in order to determine the thermal ex-

pansion separately. Stress-strain data acquired from tests can then be rearranged

to produce a family of stress-strain curves at constant temperature.

It is clearly much easier to obtain the mechanical properties of steel at elevated

temperature by using the first method. Nevertheless, Kirby and Preston (1988)

have concluded that predictions of the structural behaviour at small strains from

data derived under steady-state heating conditions are optimistic, and information

should preferably be used from transient tests.

1.4.2 Stress-Strain Models

In the context of structural analysis, the stress-strain characteristics constitute

important parameters which are bound to influence analytical predictions. The

natural approach to incorporating the stress-strain characteristics in any analysis
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is by representing them by a mathematical model. Hence it is of great importance

to adopt a satisfactory mathematical model that describes accurately the stress-

strain-temperature relationship of steel in fire. Various elevated-temperature mod-

els are available, some of which have attempted to maintain the bilinear ambient-

temperature nature of steel characteristics, while the others have attempted to

model the real curvilinear nature of these characteristics in mathematical form.

Some of the more well-known models are presented in the following sections.

1.4.2.1 ECCS Model

The European Convention for Constructional Steelwork (1983) suggested a mathe-

matical model for stress-strain characteristics of steel in fire based on data obtained

in the Netherlands and elsewhere. In the ECCS document it is pointed out that

using different stress-strain relationships will have an effect on the critical temper-

atures of beams, and in particular of columns. The ECCS model defines the elastic

modulus and the yield stress at different temperatures. This effectively implies a

bilinear representation of the steel stress-strain characteristics.

The elastic modulus E9 is given as:

For	 0 < 600°C

E9 = E20 [1.0 - 17.2 x 10' 04 11.8 x 10 03 — 34.5 x 10 -70 2 + 15.9 x 100]

and for 0 > 600 °C

E9 is undefined.

The yield stress o-yo is given as:

For	 0 < 600°C



ay° = 0 y20 [ 1.0 + 767 In( t=' )]1750

e
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and for 600 < 0 < 1000 °C

108 (1 - —1:00 )
Cry0 = 0y20 0 - 440

The absence of a definition for the elastic modulus beyond the temperature of

600°C was justified by the ECCS (1983) as a result of the lack of knowledge about

steel properties beyond this temperature and the usual attainment of critical con-

ditions below this temperature level.

1.4.2.2 Modified ECCS Model

In order to overcome the limitation of the ECCS model, Franssen (1987) suggested

a modification to account for temperatures greater than 600°C. The modified

model is given in the following equations.

The elastic modulus E9 and the yield stress 0-0 are given as:

For 0 < 100 °C	 and X = it in the following equations.

E9 = E20,

aye = Cy20

for 100 < 0 < 500°C

Eo:---_ E20[-0.018 X2 + 0.036 X + 0.982]

0y0 :=-7 0-y20 [0.00295 X3 — 0.0488 X 2 + 0.0887 X + 0.957]

for 500 <0 < 600°C

Ee .----- £20 [-0.018 X2 + 0.036 X + 0.982]
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°y 0 = 0ry20 [-0.000421 X3 + 0.02344 X 2 — 0.3806 X + 1.919]

for 0> 600°C

E9 = E20 [0.0000925926 X3 + 0.125 X2 — 0.34 X + 2.12]

0ry0 = 0 y20 [-0.000421 X3 + 0.02344 X 2 — 0.3806 X -I- 1.919]

This modified model is worth considering for analytical purposes. Although the

ECCS argument about critical temperatures not exceeding 600°C may be valid

for structural members subject to their full service load, in reality most of those

members bear a fraction of that load. This is the case, for example, in multi-storey

columns.

1.4.2.3 CTICM Model

Centre Technique Industriel de la Construction Metallique (1982) suggested an-

other bilinear model for steel stress-strain characteristics in fire.

The elastic modulus E9 is given as:

For	 0

Ee = En

and for	 600

<

[ 1

0

.0

<

<

+

0

600 °C

(
e	 1

2000 in A)
< 1000 °C

EO = E20 [ 
690 - 0.69 01

0 - 53.5

The yield stress o-yo is given as:

For 20 < 0 < 600°C

0ry0 = 0 y20 [ 1.0
0+

900 ln(-6)11 750



Chapter 1: Introduction	 29

and for 600 < 0 < 1000 °C

Cry20
[

=	
340 - 0.34 0]

0y0 0 - 240

Fig. 1.1 shows the variation of yield stress at elevated temperatures normalised

with respect to the ambient temperature yield stress for the three previous bi-

linear models. The elastic modulus variation for the same models is shown on

Fig. 1.2.

1.4.2.4 Ramberg-Osgood Model

The high temperature stress-strain tests carried out by Kirby and Preston (1988)

produced data that has been adopted by BS5950 Pt. 8 (1990) and subsequently by

EC3 Pt. 10 (1990). This data has been reported to provide better correlation with

large scale beam and column tests (Lawson and Newman 1990) than the earlier

models.

El-Rimawi (1989) suggested a mathematical model to fit the test data, based on

Ramberg-Osgood equations (Ramberg and Osgood 1942), which describes stress-

strain curves by three parameters. The relationship between the strain and stress

at any temperature T is given in this model as:

CT = -71—A +001 ( 5rT--)nT
aT	 • A T 	 bT • BT

in which:

AT = 180 x 103

BT = 0.00134T2 — 0.26T + 254.67103

nT = 237 — 1.58T
	

For 20 < T < 100
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AT = (194 — 0.14T) x 103

BT = 242

nT = 15.3 x 10 -7 (400 — T)3.1 + 6 For 100 < T < 400

AT = (295.333 — 0.39333T) x 103

BT = 492.667 — 0.6266T

nT = 6 For 400 < T < 700

AT = (30.5 — 0.015T) x 103

BT = 306 — 0.36T

nT = 0.04T — 22

and

_ E20
—aT 	 180X103

k	 _	 ay20

For 700 < T < 800

VT —	 250

1.4.2.5 EC3 Model

EC3 Pt. 10 (1990) suggests a mathematical model based on the same test data

(Kirby and Preston 1988), which describes the stress-strain relationships with a

linear-elliptical shape, as is shown on Fig. 1.3 and compared with the Ramberg-

Osgood model.

The stress-strain relationship at any temperature is defined in the three ranges of

Fig. 1.3 as:

Range I (linear):



Ramberg-Osgood Model

- - ---------------------------------------------- •

0.5
	

1
	

1.5
	

2.0
	

2.5
	

3.0

Strain [%]

Fig. 1.3 Elevated Temperature Stress-Strain Characteristics for Steel

Continuous Models
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0-(6,0„)	 Ea,f.f

E(€,Oa ) = Ea,f

Range II (elliptical):

0*( 6 , Oa) =	 V(a2 kid c) 2 ) fb,f

E(€, 0a) _ 	
a.Va2 —(c—cp,f)2

with:

a2	 Ec,,p(ey,f —cp,f ) 2 -1-c(ey,f —(p,f

E.,1

= _ci,f	 fp,f).0	 C2

fy,f— fp,f)
2.( (fp , f fy,f)+Ea,p(Cy,f --Cp,f))

Range III (linear):

alf,0a )	 fy,f

E(€09a) = 0

in which:

ALL
fP,f	 Ea,f

ey,f = 2%

20%

The parameters of the stress-strain curves ( Ea,f, fp,f and fy,f ) are given in

Table 1.1.
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Parameters related to ambient temperature values

Temperature

°C

Effective yield Stress

flu

fd

Slope elastic range

E., f

Proportional limit

E. f

20 1.00 1.00 1.00

100 1.00 1.00 1.00

200 1.00 0.90 0.80

300 1.00 0.80 0.60

400 1.00 0.70 0.42

500 0.78 0.60 0.36

600 0.47 0.31 0.18

700 0.23 0.13 0.075

800 0.11 0.09 0.05

900 0.06 0.0675 0.0375

1000 0.04 0.045 0.025

1100 0.02 0.0225 0.0125

1200 0.00 0.000 0.000

Table 1.1: EC3 stress-strain parameters at elevated temperatures.

All the material models illustrated in this section will be considered later in this

study to assess their reliability in representing the mechanical properties of steel

in fire analysis.
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1.4.3 Creep

The phenomenon of creep can be defined as the strain which occurs with the pas-

sage of time under a constant stress state. At ambient temperature creep has an

effect on steel when high loads are applied for a very long time. At elevated tem-

peratures the phenomenon of creep is associated with the temperature and rate

of heating. Although heating rates can vary infinitely, in real fire situations the

range is reasonably well controlled.

Previous research has shown that at elevated temperatures any significant effect of

creep, for structures subjected to normal fire growth and periods, starts beyond the

temperature range 450°C-500°C. Furumura and Shinohara (1978) concluded that

any change in structural temperature/deflection characteristics can only be noticed

at temperatures higher than 450°C. Aribert and Abdel Aziz (1987) reported that

the creep effect becomes significant at temperatures in excess of 545°C. Cheng

(1983) noticed a rapid increase of a heated beam deflection at temperatures be-

yond 550°C. Knight (1975), using a creep analysis, arrived at the conclusion that

temperature history has little bearing on the deformation and critical tempera-

tures for beams.

Witteveen et al (1977) used experimental results from earlier work (Witteveen and

Twilt 1975; Witteveen et al 1976) to conclude that a time-independent approach

to the fire is possible within certain limits of heating rate. These limits were de-

signed to range between 5°C — 50°Cperrninute in order to simulate the range of

rates at which unprotected members and heavily protected members are heated.

Within such a range and at temperatures not exceeding 600°C no significant effect

of creep has been reported. This work has shown clearly that effect of creep is
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insignificant within the practical limits of actual fires.

Furthermore, experimentally-based models of steel mechanical properties often in-

clude the effect of creep implicitly, especially when experimental results are ob-

tained under transient heating conditions. The BS5950 Pt. 8 and EC3 Pt. 10

stress-strain data was obtained using a wide range of heating rates (Kirby and

Preston 1988).

1.5 Scope and Layout of the Research

The main objective of this research project is to develop a three-dimensional anal-

ysis of steel columns in fire conditions.

In this chapter various stress-strain models for steel at elevated temperatures have

been presented. The availability of different stress-strain models, some of which

adopt a bilinear representation while others adopt a curvilinear representation, il-

lustrates the complexity of the problem of modelling structural behaviour under

such conditions.

In Chapter 2 an investigation is presented which was carried out to assess the fea-

sibility of establishing a simplified model for pin-ended isolated columns in fire and

to develop the reduced modulus concepts used later. This investigation resulted

in a promising simplified model for the problem under consideration.

In Chapter 3 a three-dimensional finite element formulation is developed for a beam

element. This formulation is highly non-linear in terms of the high order terms

included. It accounts for moderately large deformations, material non-linearities

and instability. A coordinate transformation in space has been developed to allow



Chapter 1: Introduction 	 35

the analysis of full three-dimensional frames.

In Chapter 4 the treatment of fire within the developed software based on the pro-

posed formulation is illustrated. The developed program 3DFIRE is extensively

validated against available analytical and experimental data.

In Chapter 5 the program is used to carry out a parametric study. Results from

this study have shown interesting trends in the structural behaviour of columns in

fire conditions. Columns are considered first as isolated structural elements, then

as a part of structural assemblies.

In Chapter 6 generalised conclusions drawn from the parametric studies are set

out. Recommendations for further work are proposed at the end of this chapter.

A recent development to extend the capability of the present analysis to com-

posite frames is briefly presented in Appendix A. Results from various analyses

concerning the proposed fire tests at Cardington are also presented.
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CHAPTER 2

Perry Elastic Analysis for Isolated Columns in
Fire
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2.1 Introduction

The structural behaviour of columns is a very complex phenomenon whether at

ambient or elevated temperatures. This behaviour is far removed from the clas-

sical 'Euler-load-and-squash' idealisation for pin-ended struts. The presence of

many initial imperfections such as initial out-of-straightness, eccentricity of the

axial thrust line and residual stress patterns produced by hot rolling results in a

considerable reduction in the buckling loads as predicted for perfect columns. Fur-

thermore, the connections between columns and beams in real structures, which

are frequently regarded as simple, normally exhibit a considerable rotational stiff-

ness depending on the connection details. Given these behavioural complexities

it is hardly surprising that failure prediction procedures for design have always

been based on lower-bound rationalisations of results from large numbers of tests

on columns in isolation and in subassemblages. In some cases the formulas used

have been simple curve-fitting exercises, with no pretence of a basis in structural

mechanics, while others have been based on simplified treatment of the behaviour

of imperfect columns. One of the simplest and most successful approaches taken

from the latter group has been that known in Britain as Perry-Robertson analysis.

Ayrton and Perry (1886) suggested a process for elastic analysis of practical iso-

lated columns with initial imperfections. This process is based on regarding all

imperfections in a column as a single initial out-of-straightness of a half sine-wave

form. Failure for the purposes of this method is defined by the first occurrence

of material yield. Robertson (1925) was able, on the basis of test results on

as-rolled sections, to postulate a workable relationship between the required out-

of-straightness for a given strut and its slenderness ratio. 	 With minor amend-

ment, based on subsequent testing, this original relationship survived the era of
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permissible-stress design codes in UK. With the advent of limit-state codes such

as BS5950 (1985) much fresh testing and analytical work was carried out, with

the result that Perry rationalisation again survived but imperfection-slenderness

relationships were redefined in terms of four different section classes and buckling

axes. An almost identical approach has now been used in the European code EC3

(1988).

As an initial step in the present work, an investigation has been carried out to

assess the feasibility of developing Perry analysis to include the effects of fire.

2.2 Assumptions

To retain Perry's definition of 'failure' by the material reaching a 'first yield', a

bilinear stress-strain idealisation must be used for steel at elevated temperatures.

A transformed section concept has been introduced to Perry's formula to represent

the non-uniform deterioration of material stiffness with temperature. The elastic

transformed section concept which is commonly used in composite section analy-

sis has been found adequately capable of dealing with this non-uniformity. The

centroid of a cross-section under thermal gradient is relocated within the trans-

formed section, which introduces a load eccentricity to the column. The following

assumptions were made throughout this study:

1. The column is isolated and simply supported.

2. 'Failure' is defined by the first occurrence of yield at any part of the column.

3. Any curvature due to non-uniform distribution of temperature was assumed

to be an initial out-of-straightness of half sine-wave form.
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4. Initial load eccentricity and equal end moments can be applied to the column.

5. A constant thermal expansion coefficient was assumed.

6. Temperature distribution over the column length is uniform.

7. Thermal gradients are assumed to vary linearly across the cross-section.

To support the last assumption, a thermal analysis was performed for a shelf-

angle beam using the program FIRES-T2 developed by Bresler et al (1977). In

the thermal context this case is similar to that of a column embedded in a wall.

Fig. 2.1 shows temperature profiles across the steel section which illustrate clearly

that assuming a linear distribution of temperatures is an acceptable assumption.

Results from experiments carried out by British Steel Corporation (1987) show

similar temperature distribution to that predicted by FIRES-T2 and support the

linear-distribution assumption.

2.3 Problem Model

The problem of an isolated column under thermal gradient was idealised as il-

lustrated in Fig. 2.2. The main concept of this model is to find an ambient-

temperature elastic section which is equivalent to the heated one. This equivalent

section can be obtained by reducing the thicknesses of all plates of the steel cross-

section using the modular ratio ET /E20 • In performing this transformation, it is

important to keep the original mid-surface contour intact, or in other words to

reduce the thickness of each plate but not its length. The purpose of this provision

is to allow for a correct calculation of the other plane sectional properties. The

need to calculate the second moment of area about both principal axes may arise,
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for example, if the column is heated non-uniformly about its major axis while it is

not restrained from buckling about its minor axis.

This model implies the introduction of four possible imperfections to the column:

1. The initial imperfection (out-of-straightness) that exists before any rise in

temperature.

2. The initial load eccentricity.

3. The thermal bowing imperfection due to the non-uniform temperature dis-

tribution across the section.

4. The load eccentricity due to the shift of the section's centroid towards the

cooler fibre.

Once this 'equivalent section' at ambient temperature is arrived at, elastic anal-

ysis can be performed as described by elementary structural mechanics. Basic

mechanics principles allow the computation of deformations and stresses for the

same problem at ambient temperature.

The non-uniform decline in material stiffness due to elevated temperatures in parts

of the cross-section is accounted for by dividing the steel section into a number of

segments, each of which has different stiffness. By calculating the stiffness of each

segment according to the average temperature of that segment an even simpler

model is established.

It was found that as little as five segments are enough to represent adequately any

thermal gradient across the section. To test this a colurnn with a thermal gradient

about its major axis with one flange at 500° C and the other flange at 20° C was
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loaded to failure. Different numbers of segments were used, to assess their effect

on the failure load.

Table 2.1: Effect of segment number.

Results from this analysis show a 1 % difference in 'failure' load between five seg-

ments and forty segments, while no effect is evident from increasing the number

of segments beyond the latter number.

According to Timoshenko and Gere (1978) the moment at any point along a col-

umn with initial out-of-straightness and initial load eccentricity (Fig. 2.2) can be

expressed as:.

M = P (y yi y 0 — ee — ei)	 (2.1)

where:

y is the rise in deflection,

No. of Segments	 cr, / ay

5	 0.2263

10	 0.2249

20	 0.2246

40	 0.2243

80	 0.2243

160	 0.2243

yi initial out-of-straightness, 	 STIEFFT

ye deflection due to thermal gradient,	 LbARY



(2.2)

(2.3)

Chapter 2: Perry Analysis	 42

ei initial load eccentricity from the original centroid of the section,

e9 load eccentricity from the new centroid of the transformed section.

d2y
M = —EI

dx2

Apply Eq. 2.2 in Eq. 2.1 to get:

d2y
EI—

dx2 
+ P (y + yo — e0) = 0

where:

Yo = Yi + yo

and	 eo = ei + Cg added algebraically.

Eq. 2.2 is the basic equation of a column with initial out-of-straightness and sub-

ject to a load with eccentricity. This equation applies to ambient temperature

and elevated temperatures provided that all thermally induced imperfections are

included in yo and eo and the decline in material stiffness is included in the term

El.

let k2 = LIEl then Eq. 2.3 can be rewritten as:

d2y
+ k2y = —k 2 y0 + k2e0

dx2
(2.4)

At the mid-height of the column:
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Yoc = a + 80	 (2.5)

in which:

a is the initial out-of-straightness at the column mid-height,

and SO is the amplitude of the sine wave due to thermal bowing.

and by assuming the initial shape of the column to have a half sine-wave form; the

initial curvature at any point of the column is:

Yo = (a + 80) sin(7)	 (2.6)

Then Eq. 2.3 becomes:

d2y	
k

2
y = —k2(a 80).sin(rxIL)	 k2 e0	(2.7)

solving for y:

I
y = A cos(kx)	 B sin(kx)	 k2 (a + 80)

sin(irx L)
 7r2 	 eo

— k2

Apply end conditions:

where:

y = 0 at x = 0 and x = L,	 then:

1). 	 sin ks	 k 2 (a + 80 ) . si7_227r
stn kL	 co

y = —eo .cos kx	 eo.(cos kL —

dx2

(2.8)
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at x = 1L2

y = —eo.sec	 — 1) + (1,+60) 
Per —1

Once the rise in deflection is known, the moments and stresses can be evaluated

at any point along the column using the relationship:

M.y
a =

	

	 (2.9)It

Resulting in:

	

(ID 	 P.c (a+6° )	 P.eo.c

	

= —	 	 (sec
1
 kL	 )  Ee2,:pi 	 (2.10)

	

At	 p	 	

1) ET
 2

( 	-1) P(d 0 12-1
0-2 =	 	 + P.e0(d c)

T

)
(2.11)

	

At	 19—p,	 1	 E

E

e

2

p2- Cr

in which the subscript t refers to sectional properties calculated for the transformed

section.

A column in fire experiences four separate imperfections yi , ye, ei and ee. The first

two yi and ye act in their own natural directions, but are most critical when they act

in the same direction. The thermally-induced load eccentricity acts always in the

opposite direction to the thermal bowing. While the thermal bowing is expected to

introduce higher bending at the column mid-height, and the load eccentricity due

to the centroid shift is expected to produce a counter-moment, it is not obvious

which of the two effects is going to be dominant. This point will be investigated

later in this chapter.

2.4 Computer Program

Although hand calculation of the governing equations as stated in the previous

section is feasible, the fact that the section is divided into segments makes it more
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sensible to obtain solutions by computer. To this effect, a computer program was

written in QBASIC to perform Perry analysis on columns under uniform temper-

atures or thermal gradient. The program defines the transformed cross-section by

dividing it into the required number of segments and allocating a thickness to each

segment in proportion to its modular ratio E T/E20 . Once the transformed section

is defined, the new position of the centroid is calculated and load/temperature in-

crements are applied until first yield is reached at any point on the column length.

2.5 Comparison with Other Work

To validate the solution procedure suggested in this study, comparisons with other

work were carried out. Fig. 2.3 represents a case previously studied by Corradi et

al (1990) using non-linear elasto-plastic finite element analysis. A beam-column

subject to a linear thermal gradient of 300 0 — 500°C and a combination of axial

load and end moments was analysed. The 'collapse' loads predicted by elastic

Perry analysis are plotted in broken lines on the figure. The results obtained by

this analysis may be regarded as lower bounds to the limiting loads of the case un-

der consideration, while the curves of the more complex study constitute a nearly

exact representation of the failure loads. It can be noticed from these curves that

failure loads are remarkably similar for both analyses when the element is a col-

umn (i.e. when no end-moments exist). On the other hand the difference between

failure loads when the axial applied load is minimal reflects the difference between

the elastic and plastic moment capacities of the element under consideration. The

major axis form factor of most II-sections tends to lie in the range 1.10 to 1.20,

and for the HE200M section used in the analysis it is actually 1.17. It is obvious

that Perry analysis will under-predict failure loads in this region, although the
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non-uniform material stiffness across the section dictates that the amount of this

shortfall is not exactly in line with the form factor.

Cooke (1987) performed at City University a series of very carefully controlled

tests on model-scale II-section columns under thermal gradient, monitoring tem-

peratures and deflections as the tests progressed. Fig. 2.4 ows the experimental

deflection about the major axis against time for one of Cooke's tests, compared

with the deflection predicted by the Perry analysis. It is notable that the deflec-

tion behaviour compares very well, including a demonstration of the tendency in

later stages of the heating process for centroid movement to become a more domi-

nant effect, as is shown by the reversal of deflection. In this comparison measured

temperature gradients have been used in the analysis.

2.6 Study Cases

Several cases of columns with temperature gradient were studied. A typical case

is illustrated in Fig. 2.5. The temperature of one flange of an isolated column

was kept cool, at ambient temperature, while the temperature of the flange was

increased progressively to 600°C. For each temperature distribution, the failure

load was found for several slenderness ratios. When one flange of the column is

kept cool and the other flange is heated, first yield usually occurs at the cooler

fibre in compression. This situation is valid until the strength of the hot fibre has

considerably declined at about 500°C, after which first yield starts to take place

at the hot fibre in tension. This is true for all slenderness ratios studied except for

the lowest one (50) for which failure occurs at the hot fibre in compression. This

is due to the fact that the effect of load eccentricity is dominant in this case, while
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the effect of thermal curvature is the dominant one in all other cases. It seems that

the effect of the thermally-induced load eccentricity is dominant at low slenderness

ratios. This conclusion is also supported by later studies using the finite element

method. The bilinear stress-strain model suggested by ECCS was used in this case.

2.7 Conclusions

It should be emphasised that the Perry analysis presented here is not being recom-

mended as a substitute for non-linear finite element analysis but as a complement

to it. The Perry model uses only simple concepts of elastic structural mechan-

ics and, at minimal computational effort, provides a lower-bound benchmark for

failure temperatures which is unlikely to be highly out of line with finite element

results. This fact allows this model to be used as a means to provide engineers

with a simplified understanding of the many interacting effects influencing steel

columns in fire. Such an understanding can be based on simple structural mechan-

ics calculations rather than having to rely on empirical formulas.

It is also very useful as a model for demonstrating the major structural effects and

their qualitative relevance in particular cases. The values of the various imperfec-

tion components can be traced as heating progresses and can be linked directly with

the deflection behaviour. Given that the analysis is essentially computational, with

a section divided into segments, it is easy to include the effect of self-equilibrating

residual stress patterns, so a very complete elastic model of the buckling can be

produced. Such elastic models are known to provide very good approximations to

buckling limits at ambient temperature.

It may also be the case that design guidelines are eventually more conveniently
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framed in the general context of this approach than simply based on curve-fitting

to a combination of test and finite element results.
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CHAPTER 3

3-D Finite Element Formulation for Space
Frames in Fire
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3.1 Introduction

The problem of analysing structural behaviour under fire conditions is a consider-

ably complex one. Whether in a real fire or in a furnace, the structural element

is expected to undergo a non-uniform distribution of temperature across its sec-

tion and along its length. This complexity means that failure might occur by any

combination of factors. In the past various researchers have suggested different

approaches to address structural behaviour in fire. Most, if not all of the previ-

ous work adopted an in-plane analysis approach. Under non-uniform temperature

profiles both the centre of gravity and the shear centre lose their significance.

Furthermore, in columns, the usual pattern of failure about the weak axis of un-

restrained columns is not necessarily valid. With the differential deterioration of

the stiffness and strength of different parts of the cross section, failure may oc-

cur about the strong axis by torsional buckling or by lateral-torsional buckling.

All these considerations mean that a three-dimensional approach is necessary and

desirable. Using the finite element method would solve the problem of variation

in temperature along the structural member, apart from its advantage in solving

the governing equations for complex systems in a very effective way (Zienkiewicz,

1971).

3.2 Formulation

The following formulation which is highly non-linear, was chosen to obtain more

accurate solutions. This formulation is based on a beam element with one node

at each end. It is based on displacement fields rather than stress fields due to the
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advantage in ease of programming for digital computers (Chen and Atsuta, 1977).

3.2.1 Assumptions

The following assumptions were made in order to formulate the governing equations

for the beam element:

• The element is straight, prismatic and symmetric about both principal axes

• The reference axis of the element coincides with the centroidal axis of the

cross-section.

• Apart from warping deformations plane sections remain plane after defor-

mation. This assumption effectively reduces the usual assumption of "plane

sections remain plane" after deformation into "plane plates remain plane"

after deformation.

• Sections consist of thin plates, so that shearing deformations are neglected.

• Strain reversal is not accounted for.

• Certain assumptions about displacements will be stated in the next section

when the need for such assumptions arises.

3.2.2 Displacement Derivation

Based on the above assumptions the displacements u, v and w of an arbitrary point

A (Fig. 3.1) on the midsurface contour of a beam element with an I cross-section

can be derived from geometry and expressed in terms of the displacements of the

reference axis of the beam-column as:
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u = u o — ( y. sinOy + x. sine	 ) (3.1)

v = vo — y + ( y. cosOy cosOz + x. cosOz sinez ) (3.2)

w = wo — x + ( x. cos0z cosOz — y. cosBy sin°, ) (3.3)

in which x and y are the coordinates of point A, and all other displacements are

shown in Fig. 3.1.

By choosing the undeformed axis of the element as a reference for displacements,

the following formulation becomes a Lagrangian formulation rather than an Eu-

lerian formulation in which the reference deformations are those of the deflected

element.

If the following assumptions are made :

1. The slope of the deflected element in the y-direction is:

vio = sinOy	 (3.4)

and the slope in the x-direction:

w'o = sinOz	 (3.5)

2. The twist angle 6), is "reasonably small" so that:

sinOz = O.	 and,	 (3.6)

cosOz = 1	 (3.7)
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then Eqs. 3.1-3.3 can be rewritten as:
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u = u, — ( y v'c, + x ?Di° ) (3.8)

V = vo — y + ( y cosey + x 0, cosOr ) (3.9)

w = wo — x + ( x cosOx — y Oz cosOy ) (3.10)

Eq. 3.8 is a Bernoulli-Navier equation, which neglects the effect of warping due to

the assumption that plane sections remain plane after deformation. However, the

effect of warping which was introduced by Vlasov (1961) is significant in the case

of thin-walled open cross sections, which is the case for most of the standard I and

H structural sections. Adding the term for warping, Eq. 3.8 becomes:

u = uo — y vo' — x u/o + co rn	 (3.11)

where co is the sectorial coordinate of the point A defined in Fig. 3.2.

3.2.3 Strain-Displacement Relationship

The axial strain at the arbitrary point A may be obtained from the large displace-

ment equation given by Saada (1974) as:

1ez = ul + [ (u')2 + ( v 1 )2 + (02 ] (3.12)

In small displacement formulations the first quadratic term is normally discarded.

This is due to the assumption that displacements are small and consequently the

second order term is very small compared to the first order one. The last two
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quadratic terms must be kept in any formulation that accounts for bending, as

they represent the only contribution of bending displacements to the axial strain

of any point on the cross-section. A nonlinear formulation may be obtained by

differentiating Eqs 3.9-3.11 with respect to z to produce:

.	 , 9
ul = ulo — y vo — x wo - I - w Oz"

,v, = vo — y sinOy 
dO

Y — X Oz sinOs —
dOs 

-I- x 0: coses
dz	 dz

dOx	„ ay
W I = vlo — x sinOs — + y Oz simply

dz	 dz
— y 0: cosOy

From Fig. 3.3 the physical interpretation of cosOy and cosOs allows them to be

approximated as:

cosOy = V1 — (v)2

cosOs = Nil — (w) 2	(3.16)

To find the values of th- and Sr-, v lo and w'o of Eqs. 3.4 and 3.5 are differentiateddz

to produce:

vo = cosOy 
dO

Y
21

dz

resulting in:

dOy	 vo"
. 	

dz	 cosOy

dOs	w:.
dz	 cosOs

(3.18)
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Apply Eq. 3.16 to Eq. 3.18 to get:

dOy 	 vo 

dz	 J1_ (v)2

Substituting Eqs. 3.19 and 3.16 into Eqs. 3.14 and 3.15, discarding "small terms"

containing Oz sine and Oz sines , and using Eqs. 3.4 and 3.5 produces:

"vo vo
v = vo y 	 	  x OzI	— (4) 2	(3.20)

— (v10)2

"
I	 /	 wo1 W0

	W I = wo	 	  y EVz	— (v io ) 2	(3.21)
— (w02

The nonlinearity in the above equations is ensured by retaining terms containing

cosOz and cosOy.

Apply Eqs. 3.13, 3.20 and 3.21 to Eq. 3.12 to get:

1
= teo — y von —x wo" +co Oz" + —

2 
(u'o ) 2 — y uIovo"

— x uIowo" + co u,0 	 ( vo ) + -2- x (wo)

+ (w1)2 x  (W/0)2W"
	 °

— (71))2 	
y 0 1z 11/0\/1 — (W0)2

2 

1	 2	 (214/ W:) 2 1	 2 	 2

(3.22)

+ —
2

x	
1 — ()2w

1
(Z0 2

+ —
2
 y (0z ) (1 — (IV) 

(2)2V"
d-x0z/ v0V1— (w)2y

1	 2	 (V0/ Vo" ) 2

— (v10)2

1
— x2 (9/)2 (1 — (2D01 )2)
2	 zz Y	 1 — (v 10 ) 2

Ez
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In arriving at Eq. 3.22 high order terms related to warping have been neglected.

Eq. 3.22 is the strain-displacement equation that expresses the axial strain at any

point on the cross section in terms of the displacements of the reference axis. This

can be done simply by substituting values for x, y and co into the equation.

3.2.4 Total Equilibrium

Once the strain-displacement relationship is established, the principle of virtual

work can be used to arrive at the equilibrium equation for the beam-column ele-

ment. The principle of virtual work may be written over the length of the beam-

column, as:

SW = I o-z Scz dV — < Q > 14 } = 0
v

(3 .23)

In this virtual work equation it is clear that the strain is assumed to be essentially

uniaxial and the effect of any other strain is ignored.

The variation in strain Sc, can be obtained from Eq. 3.22 noting that u'o , 1/0 , vo,

•	 1/	 .

w, wo , Otz and 0: may vary independently. Eq. 3.23 becomes:

	

SW .,--- ( 1L uz [{(1 + u) — y v 	 x w 	 co0; } Su'o

( V0V0	 (710)3vo"	 )
+ 12/0 + y	 ,	  2

	

V1 — (vio ) 2	Vi — (v02	 (1— (v)2)3/2)

y+
2 (  v(t): ) 2	(1)3(1;T_i_ 	 0	 0 	 (0/)2v/)

	

1 — (v 10 ) 2 	(1 — (v 10 ) 2 ) 2	z	 °

+	 x (611z ,V1 — (w 10 ) 2)} Sy:,



	

wo, .	 ,	
(  O'zv'ow ic,	 W o W 0	 (WO)3W+I _	 :  )

, n

V 1 — (w) 2 + 2 V1 — (tvic,) 2 + (1— (w)2)3/2

+ X

	

1 — k w0) 2	 (1 _ ( 00)2)2( 0 +	 Ofz)2WO)
2 I  WO( ID 'X	 (WO 3 ( 11):)2 

— y (oz V1 — (vio ) 2 )} (5w/0

eilo ) 2v:  )— 1	 II
	ly (1 + u'o + 	 (v)2  ) y2 (v" + 	 	 sv

V1 — (v0 2 	 °	 1 — (V/0)2	 0

— {X (1 + 24 + viLU ():

)2

) x2 (TD: +
1 — My)
( WO) 2W:  ) 1 sw:

+ Ix v'oN/I. — (w/o ) 2 _ y 0°sJ1 _ (v)2

i	 +	 y2 tn(1 — ( .1)2 ) +x2 O'z (1 — (w) 2 )} 60'z

+ {co (1 + u10 )} 801 dA dz) — <Q > {8q } = 0

The stress resultants are defined as:

n = I crz.dA

mx = i crz.y.dA
A

A

(3.24)
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mz = 0.(x2 + y2)	 .dA
A

T„ = G J 01z	 (3.25)

where:

is the internal normal force

mx, my	 internal moments about the respective axes

2	 2

	

My	 second moments of the normal stress about respective axes

bimoment

mz	 torsional moment due to warping deformations

Tzv	 twisting moment due to St. Venant shear stress

J =	 t3, in which b is the plate length, and t is the thickness

the elastic shear modulus.

Using the definitions in Eq. 3.25, Eq. 3.24 can be rewritten as:

f(ai 514	 a2 6'110 a3	a4 (Swo + as Swo

+ as 80", a7 SO: ) dz— < Q > {q} = 0	 (3.26)

where:

al

a2 =

n (1 + u'o )

netio )	 mx

mx (vo") — my (wo")+ m„ (0z")

1/°	 (0'z wio	 2v"	 (v' )2v"0	 0

— (v) 2	 °	 1 — (v)2)

my (0/1 — (w)2) + m2 [I/ (  (1/0)2(Vo")2	 (vo")2

° (1— (v)2 ) 2	1 — (v

a3	[(I	 u'o) 	 (v°)2  	 + n12 [v " (1	 (V1°)2
— (v)2	 °	 1 — (17/0)2
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= n(w) — my
w/ 2w"

	 (0'zv'o + 2w:	
() 

)
[V1 —w(w 10 )2	 1 — (w)2

(tot w" )2	 (w" )2

rax (01d1 — (vo') 2 ) -I- m 2 [wi ( 	 	 °	  (0/ )21
y	 o (1	 (w)2)2	 1	 (w/0)2	 k zi

a5 =	 [(1 /4) + 	 (w)2 
— (w02] + m/2, [w:(1	

(w)2 
1 — (00)2)

as	 —mx(14,	 — (v) 2) my (vo'	 — (w) 2 ) m!O'z (1 — (vio32)

my2 0 1z (1 — (w) 2 ) +	 0.5MzO'z2

a7 = rn,,, (1 + u'o )	 (3.27)

The integration of terms between addition signs in Eq. 3.26 represents the virtual

work due to internal forces in the direction of the virtual displacement attached

to each term. The final term in Eq. 3.26 is the virtual work due to an arbitrary

displacement {q} in the direction of the applied forces < Q >.

3.2.5 Incremental Equilibrium

If displacements 71 0 , vo, zoo , Oz are functions of a discrete set of displacement

coordinates, qi , Eq. 3.26 may be written as:

tki = 0	 (3.2g)

in which:

	

, au,c,	 av'a	 av"	 ow'	 Ow"
a5

atv:
fvz i — a2 — a3 . " a4—

	

aqi	aqi	 aqi	 aqi	 aqi

ae'	 atr
a .7 )dz — Qi

aqi	 aqi
(3.29)



(3.31)
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In other words the difference between the internal forces and the external loads

must equal zero, which is the target for attaining total equilibrium.

It should be noticed that the internal forces of Eq. 3.29 were arrived at by differen-

tiating the virtual work terms of Eq. 3.26 with respect to the virtual displacement

qi.

The non-linearity of Eq. 3.29 discounts the possibility of direct solution. Conse-

quently recourse to an iterative approach to the solution is necessary.

The Newton-Raphson method offers a first order approximation to Eq. 3.28 which

can be rewritten according to Zienkiewicz and Taylor (1991) as:

01'+' =	 + ( 79—  1q7 = 0
	

(3.30)

in which n is the iteration counter and q; is also a set of displacement coordinates.

Fig. 3.4 shows a schematic illustration of Newton-Raphson solution between suc-

cessive increments j and i.

If Eq. 3.29 is not satisfied ( i 0), corrections to qi may be obtained by rearrang-

ing Eq. 3.30 to pro(luce:

Total equilibrium can be attained by substituting Eq. 3.29 into Eq. 3.30 for

repeated indices j and i, to result in:

(

au, au , 0a2 Ovi 8a3 Ov" &Li ow' aa5 aw:,__ 0 + .__ . + ___ o + .__ 0 +
.1k aq; aqi	 '9q; aqi 	aq; aqi	 aq; aqi	 aq; aqi

au'	 ow°acis aoiz aa7 00: \ A _ Q. _ f(a1	a2) dz	 qi	 aqi	 aqi
qi	 aqi Uqi



Q

a 
1

	

q 1

Fig. 3.4 Newton-Raphson Procedure
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ay "	 Ow'	 Ow	 atrz	ao: 
)dz

	

0	 0	 _	 0 _1_ a, __ _F a7 a-4-a3 — -I- L.6 4 •-•	 -1- 
a 

aqi ' ° aqi

	

aqi	 qi

(3.32)

Once the expressions for u o , vo , ?Do , 0, are defined in terms of q's, all terms

of Eq. 3.32 may be evaluated by numerical integration. Eq. 3.32 is the ba-

sic Newton-Raphson equation that represents incremental equilibrium and can be

written symbolically as:

[KT] {.6.q} = {64}	 (3.33)

in which [KT] is the Jacobian in mathematical terms, or the element tangent

stiffness matrix in structural terms, and is a function of geometric and material

nonlinearities, {AQ} is the load vector of incremental (unbalanced) forces and

{AO is the vector of incremental displacements.

The great advantage of the virtual work method compared with other energy theo-

rems such as minimisation principles is the fact that it is applicable to both elastic

and inelastic material response. The use of minimum principles such as minimum

potential energy requires special treatment to account for inelasticity.

The influence coefficient (KT ) i; in Eq. 3.33 is evaluated as:

(KT)ii	 [( Oa' Ou'„	 aa2 avio aa3 av:	 8a40,00
.11\ aq;	 aq; aqi 	aq; aqi 	aq; aqi

aa5 aw:	 aa6 awz aa, ae:
+	 aqi	 w(Ti + Tq.7q7i-)d.z	 (3.34)

ôqj

Eq. 3.34 can be rewritten as:

, aaio	avio	avo"	 w". _ aw'	 Oo _i_(KT)1j = I keii — -I- 62; =, + e3i - -r- EA
1	 aqi	 aqi	 aqi	 -.2 aqi -I- c• 53 a qi

aeiz	ao z" „
+ e	 (3.35)6j -

aqi 
+ e73—

aqi
)az
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in which the values of eli , ezi ...etc. can be obtained by differentiating the values

of a l to a7 with respect to qj to get

au'o am ., n‘
el;	

ao„ amy
. an 

( 1+ u'o ) + n— — -71— kV0) rnz aqj 	aqj (w°
)

aqj

50:

— mu---2-aw" +	 ( Os") rnw Oqj

	

avo'	 „	 (vD2v: 

=	
,Oz/w,0 — 2vo	 1 _ (vio)2aq;

On
( VO) n a -I a .	 _ (v02	 k

qi

[

1 

	

1/1 — ( v10)2	 1 — ( v10)2	 1 — (v 10 ) 2	 (1 — (v02 ) 2 aq;
"	 00 2 tdotrz 	 0)2v:	 3(v)4v 	 av'

(o,zwio 2vo +	
501	 	 	 0

	

V	 (v' ) 2	 av"	 v'	 aw'	 v'w, 	 ao'i
,	 ° (2+ °,),°+ 	 	

V1 — ( v 10 ) 2 	 1— lvior
„ 

oqj	 — (v io ) 2 uq.;	 _ (v)2 aq;

O'z00 	 atoiOm	 /	

+ Y Or V1 — (00 ) 2 ) + my V1 — (w02
aeiz

aqi z	 aqi	 Vi — (200 2 aqii

am! , ( v/ 

”

0 )2( v )2 	 (v2[
+ v ( '

aq;	 0 (1— (2) 2  + 1—
‘

)2  	 (V)2	
(OY)]2)

2 [ (  (1;0)2	 4(/)4	 5(v1°).2.  )	 ( n l \) av‘o
+ In

' R1 — (V02 
(1 + 

(1 — (V0 2 ) 2 + 1 — (20 2 I kvzi2) aq;

(  2vv0 0  (1	 (+ 	 0vi ) 2 	 )	
z

av" „ al
+ . —2voo —

1 — (v 10 ) 2	 1 — (v 10 ) 2
) 

aq; 	aq;

m	 au'	 ants 	 (v)2	=	 a .
(1 + u'o) znz ° — ( 	 )

aqj	 aqi	 aqi V1 — (V10)2

v'o
	 (2 +  (v° )2 ) avi° + -211-18	 iv"(1 +  (v° )2 )1- m	

_ 0,02	 1 — (v io ) 2 aq;	aq;	 °	 1— (v'0 ) 2 j

+ Mx

e3i

e4; =

m2 (  2//o Vo" ( +  (Vol ) 2	 av , 	 (1/0)2 	 av"))	 (1	 	 )	 0
1 — (v 10 ) 2	 1 — (v'o ) 2 " dqj	 1 — (v) 2 aq;

an	 awl arn,
(IDI	n	 °	 	 (0' 	— (v'o)2)

aq; °	 aqj	 aq,
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	 2 awz 	 (Yz i/0	8t/01
— ms ki. — (u,0)

— (2/0 2 aqi

Om Wo (0 Iz t/0 + 2w + (w°' )211); )

— (2002	 °	 1 — (1.0)2

1 
(011/ + 2w" +_ (w,)2	 (td°)2vi/z 5 (w02w:	 3(wiorw:  )aw'o

0	 z 0	 0	 fw ‘2	 ,,
1 k	 — (w)2	 (1 _ (w )2)2 aqi

(id ) 2	 Ow"	 vtv'o io 	 ao:	 (2 + 	 °	 )	 °	
avi

	 	 °
1/1 — (U)) 2 	1 (U/o)2	 \11 — ( W10 ) 2 aqi	 — (U)02

arn2y [	 (.00)2(w"0)2
(w"o)2 

wo(uqj 	k 1 — (00 )92 1 _ (w )2 (C2)]

▪ 771,4(  (w) 	 4(wio) i 	50E02 
,	 k—	 , 2

 (1 +
-	 w,0)	 (1— (w)2)2	 _ (11.)2	

(nu
vz)2)

( w"	 )2	 ) Au,"
0 0  (1 +  k u'o/ 	 )	 wo — 2w' Oz----=

1 — ( tV10) 2	 1	 (wio)2	 aqi	
0 aqi

ain	 Ou'o	 Omy 	 (W10)2 _)
--1 (1 + U 10 ) — My — —•( 	aq;	 aqi	 aqi	 — (W02

(w, )2	 Ow' w0 (2 + 	 )	 °	 [w" ( 1	 (wi0)2  )1
— (w) 2	1 — (00 ) 2 aq;	 aq; - 0 \	 1— (w)2

l•

2w' w	 (iv )2	 au/	 (w/ )2	 aw"i
m[( 	 ° ° (1 + 	 ))	 0 4. (1 +	 °1	 °

1 _ (w02	 1 _ (w02	 (00)2) aq;

	

I	 az/anis , 	 	 [  VoW0
e6j = --w0 V1 — (v)2) rn. 	 	 	 —	 — (vio)2

orq;	 —	 a qi

au/0
aq;

e5j

Tn

+
am

Y (v ' v
/
1 — (00) 2 ) + my	 — (w' )

2av
°aqj 0	 0 hi

vo' wo'	 aw'o
— 	 	

— (w)2 aq;

am2	ao,	 , au,'
+ 	 e' (1 — (u0' ) 2 ) + 7T1 2, (1 — (v01 	 2v00'

z	 aqi	 z aqj



am„	 au',
e7j	 + uo ) +rn,„ (3.36)
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am2	
aelz	 0wl	 aw

+	 te,(1 — (4) 2 ) +717, [(1 —	
aq;

(20 10 ) 2 ) — — 2wX-- GJ
z

aq;	 aq;	 oqi

and the unbalanced load vector .6.Q 1 is evaluated as:

f azilo

A Qi = Qi - ji(ai
avo	 Dv:

a2----+ a3
aqi	aqi

Ow'o+
Oqi

awz	ao:
(3.37)+ a6 — a7--)u.Z

aqi	 aqi

To evaluate the vector of incremental forces {AQ} in Eq. 3.37 it is necessary to

evaluate the stress resultants defined in Eq. 3.25 at any section.

3.3 Finite Element Model

In any stiffness approach, the solution is reached by solving the set of equilibrium

equations for the unknown displacements. In standard stiffness analysis the num-

ber of unknowns is finite and confined to the nodal displacements. By deleting

unknowns corresponding to the boundary conditions the equilibrium equation is

readily solved. On the other hand, the finite element method requires the solution

of integrals over the volume of each finite element. This implies the introduction

of an infinite number of unknown displacements over that volume rendering the

problem insoluble. The standard solution for this problem is to reduce the infinite

number of unknown displacements to a finite number of unknown nodal displace-

ments by using "shape functions". The role of these shape functions is to define the

displacement state at any point over the volume of the finite element in terms of its

nodal displacements. By assuming that displacements at any point are known if

the nodal displacements are known, integrals over the volume of each element can



1

-O.

x =1

1
,

L
P.

1

< 0 > = <1/4(X+2)(X-1)2, L/8(X+1)(X-1)2,

1/4(2-X)(X+1)2, L/8(X-1)(X+1)2>

Fig. 3.5 Cubic Shape Function
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be solved in terms of the unknown nodal displacements. As a result the number

of unknowns becomes equal to the number of equations and the problem becomes

soluble. The finite element model used was based on an approximation of all the

displacements by cubic shape functions. This allows the displacement vector to be

calculated in the first instance, and then updated until equilibrium is satisfactorily

reached.

In the following sections incremental displacements and forces will be calculated

along with the tangent stiffness matrix. Incremental stress resultants arising in

the stiffness matrix will also be calculated along with section properties.

3.3.1 Evaluation of Incremental Displacements

The displacements u o , vo , wo , 0, may be approximated in terms of the displacement

coordinates < q > of the incremental equilibrium equation (Eq. 3.33) as:

= < .95 > {0.}	 (3.38)

in which Ft,	 are the vectors of nodal displacements and 4. is a standard

cubic shape function (Fig.3.5). Vectors of nodal displacements are:

<	 >	 < ui,u
au,	 , au ,

i,	 >az	 az

< tr > = < vi ,	 (0y ) i , vi , (6jai >

< TV— > = < wi,	 w3, ( t9x):7 >



(3.40)

qi results in:
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< T)z > --,.-	 < (6C) i , (0)i , (9z );, (Oai >	 (3.39)

where i, j refer to node numbers at each element.

Differentiating Eq. 3.38:

1
uo	 =-.	 < 911 >	 fu}

t
Vo	 =	 < c6' >	 {u}

V0
= <
	 >
	

{ 	 }

/
wo . < 0' > {T}

W: = < Cb " > { I- J}

Olz = < Oi > { –0-z }

o: = <	 > { Bz }

Differentiating Eq. 3.40 with respect to

au ,0  _ ,,, .
aqi	

Wqs

aVio
= Of .

aqi 	 qt

0v 	 ,4 „
— 1Pqj

aqi

awio
= Olqi

aqi

aW:

= q0" .
N.,	

s

aolz
. cbigi

aqi

ao: =
IlqiV

Oqi
(3.41)
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QR I can be evaluated by Gaussian integration as:

ai {e}

	

a2 {01	 a3 {0"}
QR} E ai	 (3.46)

	

i-i	 a4 {e}	 + as { q }

	

{ 441 }	a7 {Cr}

where n is the total number of sampling points along the element, a i is the weight-

ing factor for the i th sampling point and al to a7 are calculated at the i th sampling

point.

3.3.3 Evaluation of Element Stiffness Matrix [ KT

The element stiffness matrix [ KT ] is a (16 x 16) matrix.

Substitute Eq. 3.41 into Eq. 3.36 to get:

(a) for i	 1 to 4

	

(KT)i.i	 (el; . O'qi ) dz

(b) for i =---	 5 to 8

(KT)i; = j (e2; • irk'q i e3; 0) dz

(c) for i = 9 to 12

(KT)ii =	 ( e4; (4 -I- es; C)

(d) for i = 13 to 16

(KT )ij =---	 (€61 ckiqi	 e7j q5;i ) dz	 (3.47)



[KT].

or:

[KT] =
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where eij to e7j are defined in Eq. 3.36. Thus the i th column of the stiffness

matrix can be written as:

{KT};

e4

ei	{CY}

{0'}	 e3

+ e5 {0"}

{ 01 }	e7 {01

(3.48)

and the full element stiffness matrix [ K ] as:

{cy} < el >

{O i} < e2 > + {0'} < e3 >

101 < e4 > + {0" 1 < e5 >

{01 < es > + {01 < e 7 >

dz	 (3.49)

[Kr]

[K2] + [1(31

[1(4] -I- [K5]

_ [K6] + [1(71

in which [ K ] to [ 1(7 ] are (4 x 16) matrices and their values are:

(3.50)

[Kr] =	 (e i ; 01qi ) dz

	

an	 „ am.„	 rna,
= i oi[o +14) < - > –v. < —

aq 
> — Wo < = > +0” < arnw > aq	 z	 aq

-I- n < ggi > —nix < 0; > — My < 0; > -1-771„, < 0'41 >I dz

[1 2] = 1 (ezi (Yqi ) dz

	

= I 01 v io < -$272- > +	 /	 (Ow1 2vL
aq

v I — (Vi°)2	

If

0	 0	

(VI ) 2 V"	 &MS0 102 ) < __._ >

1 - (vo) I	 aq
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arn2
<	 >

aq

	 2 4_ 	 ( vlo) 2 	 < ;

v/1	 (-	 1	 (1/o)21
>+ 

v' 0'	

< (Y3>

5(e0)2
,0) ) — (01 ) 2 ) < 0/2

1 -_ 'v .s 2 	 z >

>)] dz
1,1

P2
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+ (v, ( (*:)2	
(v")2

° (1 — (202 ) 2	1 — (2)0 2	zi
(0,)2))

amy
+ (tYzNil — (1.0)2)< aq > +n < 0'2>

1	 „	 (v) 2 w01 ozi	 5(vt \ 2v"	 3(vo' )4v0"▪ ms	 	 (0'ztdo 2vo 	 ,	 o) o
	< 0/2

	

__ (v02	 1	 (v0 ) , 	 1— (v )2	 ( 1 __ (v02)2	 )	 >

— (v0 2 < °I4

f	 I
Volp,

(V" ) 2	 4(v')4
▪ rn2z (( 	 °	 (1	 °

1 — (v02	 (1_ (v')

 (v10)2

	

1 — (v)2 
(1 + 

1 — (v02 
< 0; > —2v 100 1z <	 >)

+ my	 — (00) 2 < 0 14 >	 zd'	

	

o°2	 ) < >)] az
vl — (/0 )2	3

[K3] =	 (e3i O'qi ) dz

= f, 0"[—	 +u)+  (v)2 	 < ainx

_ (v io ) 2	 aq

(1):(1	
(v)2	 87n2< am!

1— (w0)2	 '79(7- >

nr6 (<(	
_F

vo

N/1 
(v\2(21- 7—(22)2—

)	
1 — (vio)2

(  27/ov:

— (v0 2 + 1 —(v ( )v202 < (112 > 4- ( 1	 (14)2
1 — (v)2)<

[K4] =	 (e4; (4) dz



w' (9

(1A-17F—D10 )2 + 1 ilD( w)21 ) 2)) < 4 >)

(wO)2
_ (w )2 < 15 13 > +(1 +  (wi2t)) 	 <

1 — (')2)

(  2w' w"0 0  (

1 - (w) 2
1

'
+

 1 03" >)] dz
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<0n > 	
(

w°
I )\ 2 "0

aq

	

111------(7-v02 2	 ID0

	

( O f	 2 ''+

1 —(w)2

\	
(WOWD2 

(1 — (w)2)2
(u" \2

(w)2	 (Ozl )2))
am2

<	 >
aq

— (0:0 — (v) 2 ) <	 >

▪ n < 013 > —rnx 	<	 ,
4 > (

Y1 — (v) 2 < >)

( 	1 
+ 2w" + (00 ) 2v0; 5(w)2 w:	 3(w' )w"

—(w1)20 ° 1 — (w 10 ) 2 + 1 — (w02 + 
	 0 0 
(1 _ (w02)2

(11)2 w'e'
— (W10)2 (2 Tj (-2u7ji) < 0; >

wovo 
< CV4

▪ rrqi 	 -( w(2):0	 2 ( 1 ( 1 4jw( to'c%)0 4)2)2 + 1 5—(w( 11)/02)2	 YYz) 2 ) < 0/3 >

	

200 w:	 (0 )2
1—

	

(1	
1— °	 < > —2w'00: < 0'4 >)1 dz	(00 ) 2 	 (t002

(e5j 0 10 ) dz

tnY

— 0.00 2 < (k'2 >

= f on [_	 + u'o ) +A 0.7=6-0)2

(tv:(1 	 (11/0)2  N)	 57712
1 — (w/0)2 c — >-79(TY >



>, < 014 >,	 <ç> are

: < 0>>

:	 < 0 »

:	 < 0>>

:	 < 0>>

:	 < 0 > >

>, < >, <

0 > : < 0 >

<0'> : < 0 >

< cb" > : < 0 >

< 0 > : < 0 1

< 0 > : < >
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[K6] = 	
(e q1) dz

	 am	 am2
cb'qi [—ulo V1 — (v) 2 <	 > -1-61 "z (1 — (v) 2 ) <	 >

	  am	 artz
— (00 ) 2 <	 > -1-0'z (1 — (w 1o ) 2 ) <	 — >

	

aq	 0g

VloWio

• mz 	 _ (v,)2<
	 >	 — ( 7)10)2 <	 >)

+ my	 — ( w10) 2 < > v1 :_w::002 < 0'3 >)

+ 777, 2, ((1 — 002 ) < 014 > —2v0'z < 96/2 >)

• 772.2y ((1 — (2110 ) 2 ) <	 > —2tv0"z < 0'3 >) O lz aq + GJ < 013

[K7] = .1(e7a O'qi ) dz

= 11 0" [(1 u'o) < arnqw > +m,, < >I dz

dz

(3.51)

The terms < 0,1 >,	 < 0'2 >,	 <

1 x 16 row vectors defined as:

<0'1 > = «0'> : <

<0'2 > = « 0 > :

<	 > = < < 0 > :

<	 > = < < 0 > :

< 03" > = < < 0 > :
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• < cY4 > = « 0 > : < 0 > : < 0 >: < cki »

< > = « 0 > : < 0 > : < 0 >: < cb" »	 (3.52)

in which < qY > and < ck" > are the derivatives of the cubic shape function

vector. In the above equation the cubic shape function vectors are enlarged from

1 x 4 to 1 x 16 by adding extra zeros to facilitate matrix multiplication.

3.3.4 Evaluation of Stress Resultants

Using the relationship az = Et Ey , Eq. 3.26 can be rewritten in matrix form as:

A	 Iy	Iy2	 Ix	 1..2	 IL,

Iy2	 /y3	 Ixy /y2y /Lay

/y2 /y3	 /y4 /yy2 /y2y2 /wy2

Ix ixy ixy2	 X3	 I(dX

1x2 I X2y /x2y2 Ix3	 Ix4

w	 y 1wy2 lwx L2 La2

EDi

—ED2

DR2	 s-

-ED4

1D5

ED6

(3.53)

in which the values D 1 , D 2 ,.., D7 can be found by rearranging Eq. 3.26 to get:

E. = {14 + —21 (04) 2 + ( 1 ) 2 (wi.)2)]

- y v: u'ov: (YztvW1 — (v) 2 +

1

▪

Y2 No" )2 + (0: )2 (1	 (vol )2 )	 (vv' ) 2

2	 1 — (v)2

- X W: uw: O iz t)1 (w)2 (WO)2 W 0"

— wo

()

tv:, 2	 (w/owo" )2

	

 (wo2	 (01)2(1 — (tdo)2)]

111 — (v10)2

I(v)2v: 



o n

a nix

a 2'Mx

a my

a M2

a rn,,

Chapter 3: 3-D Formulation	 74

+	 [0:(1	 u'o )]	 (3.54)

The values of D1, D2,... D7 are the terms in brackets in Eq. 3.54 in the order in

which they appear in the equation, and section properties of Eq. 3.53 are defined

in the next section.

Once the axial mechanical strain (e m ) is calculated from Eq. 3.60, residual and

thermal strains (e r and co respectively) are added algebraically to constitute the

total strain e:

6 = em + Cr + CO
	

(3.55)

The incremental stress resultants in the terms e l; to e7; of Eq. 3.36 are evaluated

by taking the variations of the stress resultants as follows:

Et Of dA

J
A Et y dA

LE
t SE y2 dA

I
A Et 8€ x dA

I
A Et Se x2 dA

I
A Et Sc w dA	 (3.56)

using the relation Et .A = E.A t , "the transformed-section concept", Eq. 3.56 can

be rewritten:

O n
E —

aE 
dAt.

Oqi 	ihAt	 Ogi

0m3
E —

ae 
y dAt.

aqi	iAt	 aq;

a ml
E —

aE 
y2 dAt.

aq;	 Jilt	 aq;



of
E — x 2 dAt

J 	 aq;

f
E—

ae
 dAt

it	 aq;

a m

aq;

a 77.12y

aqj

a m„

aq;
(3.57)

E —
OE 

x dAt
aq;IAt

= E Iy2 b1; — E 1y3 b2i
2

= E Jr b1; — E ixy b2 j	 ixy2 b3j —
2

E
= E 1x2 bl	 E Ix2y u2; ---is2y2v3;

2
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The incremental stress resultants can be evaluated using Eq. 3 . 53 as:

= E A b 1 ; — E 1y b2	 — I 2 b3j E Ixbstj	 x2b5j EIwbe;
2 Y	 2

= E Jy b1 - E /y2 b2; —/v3b3; — EIsy b4; -I- —
2 

1,2y b5 j Eiwybei
2

E	 j_
E /xy2 v4 j	 x2y2,-,5j rv6:7

2

EIx2 b4; —Ix3b5; EIwzbei
2

— EIx3 b4; —/x4b5i ELx2b6i
2

Ei
L ,E r	 i orujx% —1ws2U5j "1"	 w2 u6j

2

(3.58)

in which b1; to NJ are the derivatives of the terms D1 to D7 of Eq. 3.53 with

respect to q;, and all section properties are taken for the transformed section.

The values of the terms b 1; to b6; are evaluated as:

v, av ic,	 awio
au 'oaqi	 On_. +71.)0 

Oqj(1(13

V
	 (2

o'	 (71°)2v"	
' '	

av i„
b2;	

au
v	 +	 	  v" +	 °	 ow)	 °

	

° aqi 	 — (v0 2 0 1 — (v02	° aqj

+ [(1 + .14) +  (v)2	 + [010 — (v) 2] °at:F.
1 — (vj 2j NI;

— (Wo ) 2] aa:z

an
aqj

arn. 
aqj

a..., 2

aqj

__Kam

341

.9,712
-X
aqj

arnw 
aqj

= E IL, — E Iwy
2



+ [ (1 + u'o) +  ( w )
2  I atv:

— [ClizN/1 — (tvio ) 2] 49431°1 — (W 10 )2 aqj

aqi

Om'

aqj

amY

aqj

am2

N.;

0z" are evaluated from

qi
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b3 j = [2v /0 	 (1):)2  (1 + (1/0)2	 i,„2)] Ov

	

1 — (v) 2 	1 — (vior	 kuzi	 aq;

+ [2v:(1	 1 ((v10)2,  )1av: + [20,	 80'
0)2	 aqi	 ,(1	 (v)2)1 	 z

• aq,

	

aulo 	 w	 (w/ \2,„"

	

= w —	 	 ol	 0)	 + 01 dat010
°	 [V1 — 

l0 	 (2w'
(00)2	 1 — (v 10 ) 2	 z	 aqi

76

— [V/1— (w, )
\2 1 ain

0	 aq,

(w") 2 	(,„,/ \ 2

b53 = [221) 10 	 "	 (1 +	 (a/12)149w'
1 — (74) 2 	1 — (W)2\s'zi	 A

q .7

(w°)2	 -F [20 1 (1	 (&) 2 )][2w:(1 + 1 (w02. ]ôqj
z	 0	 qj

au,	ao:
b6;	 6): 79 0.77 +[ (1 + /4)

dqi

For each Gauss point on the element u'o , v, v" , w/ , w",

Eq. 3.38.

Substitute Eq. 3.59 into Eq. 3.58:

For j = 1 to 4

an
[EA(i +ul„) — Eryv:— EIxtv:+ EIL,0z"] cliqj

aqi

amx
= [Ely (1+ u10) — EIy2vou — Eisy w:+ EI0z1 cliqj

[E42 (1 u'o )— Ely3von — Eixy2w: El"20:1

=	 Eix2to:-F EL. 61 1 4i4j

[EIx2 (1+ u'o ) — EIx2yv: — Ers3wo" Kiwx20z" ] O'qj

(3.59)
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= [EL,(1	 — E Iv: — E Iwx w: E L2 0 ] OicLi

For j = 5 to 8

an 2,/ )2,"
[EA v'0 — E ly { 	 vi° 	 (2v:	

(
+ 	 -`)	 0w10)1

ag;	 — (vio)2	 1 — (vio)2

E Iy2 tvio ( 1 (11:)(v)2,0)2 (1 + 1 (vi
(
)v2i0)2	 (01,)2)	 EIx (011 — (w)21 O'qj

1	 „ 	 0[E/ 2 (2vo (1 + 
(v1)2

1 (v02 )) E/y ((1	 o(v°)2(1,)2))1

LE ly vo' — E/y2 
vo'	 (v10)2v: 
	 (2v	 z 0)1

aqi	\ — (74)2	
0 

+ 1— (v)2	
w

• Ely3 tvio ( 1 _(1):(v)2)2 (1+ 1 _(1) (v)2 )2	 (0)2)	 E	 (611	 (w)21 01 •93

[-
2
E/y3 (,,vo k	 1	 (v02	 y2	 o	 (1))2+ 1	 " (1 -L	 (vic))2 ))	 E I (1	 u') 	 (111°)2 	 ))I C6:j

0_2
	 (2V: + 1	 (vio)2

UTnx
aq,	

Ery2 I/0 - Ely3[vi _v° (v02	
(v° )2v:	 wztio]

-1-	 _"
	 , 2

_y4 {V	
(v)2	 (t) 

OI (1 	 (1	 °	 )	 (19' ) 2)}	 EIxy2 (0 	 — (w)2]O'qj
—	 1 — (v10)2

▪ R
E/y4 (2v:(1 + 1 (vi(v)202)) E Iy3	 + 14)	 Lv)(2v02))]

[EI V 	 E xy [v	 (v)2	 (2v: + 1 (v° )(2v)2 0:tv)]

• E xy2 tzlo ( 1( 	 (1 -I- (Tv2 02)	 (0)2)} E 2 (6/1 — (w 10 ) 21 O'qj

+
	[

1. E 2 (2v" (1 +  (14)2 , )) 	 E y ((1 u'o)	 (v)2	 ))I2	 °	 1 — (1)02	 — (vio)2

ank,,

aqi



ulf`Y
aqi

((1	 u'o)
+ 	 (v) 2  	 ) 0„

— (/0)2)

	

q

3

a 2Mx
aq;

Chapter 3: 3-D Formulation	
78

[	
[	 I

..------	 Eix2 V — Eir2y 

Vo
	 (2v" +  Wor v:	 0 / , N

V1 — (7)0 2 ° 1 — (v02	 zwo)

▪ Ei2;2y2 {Vol
("V" ) 2	 (v/ )2

°	 (1 +
1 — (2) 10 )2 1 — (y)2	 002)	 EI2;3(6ez0 _(w)2] qi

aq;

1
",)2• [-

2
EIx2

Y
2 (21):(1 + 1 (vi°(o)2 )2 ))	 EI2;2y ((1 u'o)	

(v 	 ))]

— (v0 2 	"

▪ EL v io — E Iwy	 v° 	(2 " 	 Biz& )— (V)2 v0
+ 1 — (v) 2 	 °

(v" ) 2	 (v' )2ivo2 (1 +	 (v02 — (00 2)1 + EI x (61 1 — (00 ) 2] 0'
• EI,y2Ivi

° (1	 qi

•

	

[-1-.2E1,,y	
°

(2v" (1 + (v)2 )) — E I2	 1 — (v /0 ) 2	Loy

For j

an
aq;

an,
aqi

= 9 to 12

o ▪ [EAw'o — EIy (0:V1 — (v) 2 ) — E 	 to 	
(2w: + Ov + 

1 w
(w
—( 270)2)— W0)2

▪ EI2;2 (u ( __('W,t)1)2,0)2 (1 +	 (=W°,t)t)2)2	 (0)2))1 Olyj

• [EIx2 (w:(1	 (.1:02)) — EIx ((1 u'o) 	 (w1°)2  )1 cb:j
— (w10)2

( tot )2w"▪ ElYw'o — EIy2(611z 0 — (v )
2 ) — E4y 	 wo (2w: + O'x v'o	°	 )

— (w'o ) 2	1 — (w02

2;2y (
tot (  ( U):) 2	 +	 ( wO) 2	 \ \)]▪ Ei

°

	

1— (w'o p	 — v/z)2)

+ [Ei2;2y (tv:(1+  jw(°w)2,0)2)) — E Ixy	 + u'o)+ vi(w:'()w2)2)] Oq"i

	

4E42 tplo E ( O lz I 1	 (v) 2 ) — Ei2;y2  Id°	  (2w: + O'xv'	 (w° )21-1): )
V 1 — (W/0)2	 1 — (2/1)2
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▪ EIz2y2 (71/0( 1 __(tv(n7tv)2	 )2( 1 + 1 ___(w('c3w2)2)	 (0)2))] C6'qi

▪ [Elx22 (w:(1 	 (w°)2 )) EIxo	 u'o) 	 (w°2  )iyh"qi
1 — (w0 2	v 1 — (w/o)2

Orny

aq;
[Elzwio — EIsy (OW1 — (v) 2 ) — E 1.3

wo	 (11 0 2 WO (2w	 -I-

111 (t
(w,)2o Ozvo	

1 — (w10) 2)—

Eix3 (tv' (w:)2	

(tvi )2

° 1 — (w0 2 (1 + 1 (7tv i)2 )	(9)2))1

▪ [Els3 (w:(1 + 1 _(tvi(z)D202 )) EIz2	+ u10)	
(w)2 \]

w 2 wOrny2	w'
Elx2wto — EI.2y(0"d1 — (v) 2 ) — (2w: + 0"zeo	°	 )

aq;	 — (w) 2	1 — (w)2

(w:)2
12

▪ E I	
(

x	
to)2—

4	 (	 (1	
1

-I- 
()2 )
	 (0)2))10"0° 1 	 — w'0

▪ [Eix4 (w;(1+ 1 -(w(°W)202))	 ((1 + 14) + 0(7°()w2)2)]

(tv, )2w"
EIw'o — EI„y (O'z Vl — (v0 2) — 	 w°	 (2w: + 0 'z vio	°	 ° )

ôm
Oqi	— (4)2	 1 —

w )2	 (tvi )2

▪ Eiws2 (.11/ ( 	 "(1 + 	 "	 ) (Olz)2))]° 1 — (w) 2	1 — (00)2

▪ [E1 2 (w: (1 + 1 (Vv2,0)2 )) EL, ((1 tZ0) v1 (w°()w2 02 )] Ong j

For j = 13 to 16

On
— = [—Elyw'd1 — (v) 2 E42 O'z (1 — (v I0 ) 2) EIx v:) .V1 — (w)2
Oq;

▪ EIx2 01,(1 — (w10 ) 2 )] O'qj	[EI„(1	 u'o )] 96;j
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am.	 [—EIy2uV1 — (v) 2 E Iy3 O'z ( 1 — (v10) 2 ) + Eisyt/o Vi — (u102
Oqj

▪ EIx2y 0 1z (1 — (tv io ) 2 )] (Yqj	 [El„,y (1 + /4)] 66';

am! _ [—EIy3w10 V1 — (v0 2 + E/y4 O'z (1 — (I) 2) EIxy2 110 ,11 — (w10)2
Oqi

▪ Eix2y2 0(1 — (10 10 ) 2 )] 016	 [Eiwy2(1	 11.10)]

am2
▪ [—E.I.2y41 — (1) 1 ) 2 + E/x2y2 O'z (1 — (v'0 ) 2 ) + EIX31/0 V1 — (w)2

aqj

▪ EIx4 611 (1 — (w10) 2 )] eqj 	 [E I2(1	 1110)] j

alny
• [-ElxyWidl (2)02 Elxy2 61 (1 — (v) 2 ) + E/x2 //0 0 — (w02

Oqi

+ Eix3 it(1— (w 'o)
2

 )1 qvq; +	 u'o)]

ank,
• [—EL4,V1 — (v) 2 + EI 2 O ix (1 — (v01 ) 2 ) + ELxvoY1 — (w)2

(3.60)

aqi

+ EL.2 elz( 1 —( w10) 2 )] 0'6 + [EI.2(1+u'o)]4;

3.3.5 Evaluation of Section Properties

If a section undergoes biaxial loading, the equivalent section can be determined ac-

cording to the strain distribution over each plate of that section. Section properties

are defined as:

	

A =	 dA

	

Iv

▪ 	

y .dA

• L-

	

y2 .dA

/y3

• 

ft y3 .dA

▪ JA y4 .dA



Ak
n

E
k=i
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Ix = IA x .dA

1.2 = jA x2 .dA

1x3 --= IA x3 .dA

I x.1 --=

IA 
x4 .dA

Ixy = IA x . y .dA

I.2y = IA x2 . y .dA

isy2 = jit x . y2 .dA

/x2y2 = IA 
x2 . y2 .dA

L X3 . y .d AI s3y =

iry3 = 'A x . y3 .dA

Iu, = IA w .dA

LS = IA b., . x .dA

I„v = L b., . y .dA

= L (.4., . x2 .dA

Iwy2 = IA w . y2 .dA

402 = IA co 2 .dA (3.61)

If the thickness of each segment of the plate is transformed according to the relation

Et A = E20 At , the section becomes an equivalent elastic section at ambient

temperature.

A = I dA =

Iv	i Y . dA = f(y -I- Dv ) . dA

= E Ak . Dy
k=1
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= I Y2 . dA = f(y -I- Dy ) 2 . dA

n

= t Ixx+ E Ak . Dy2
k=1	 k=1

= f Y3 . dA = i (y + Dy ) 3 . dA

= f y3 .dA + 3Dy f y2 .dA + 3/4 I y.dA+ I Dy3.dA

n n
= E 3 Isx . Dy -I- E Ak . .14

k=1	 k=1

1: - 1 Y4 . dA = f + Dy ) 4 . dA

= i y el .dA + 4D y 1 y3 .dA + 6Dy2 I y2 •dA + 4Dy3 1 y.dA+ I D'yl.dA

n
= E /,,x + E 6 /xx . Dy + E Ak . .14

k=1	 k=1	 k=1

where I4s. = b4 for each segment.

In the same way:

n
Ix = E Ak • D.

k=1

n n

= E iyy + E Ak . D!
k=1	 k=1

n n
= E 3 iyy . ./31 A- E Ak . 13!

k=1	 k=1

n n	 n
./;1 = E 4" + E 6 Iyy . I)! + E A, . D:

k=1	 k=1	 k=1

lxy = i X.Y.dA = i (x + Dz )(y + Dy ) . dA

= I x.y.dAd - Dx .Dy i dAd - Dx j y.dA d - Dy I x.dA

n
. E Dx . Dy . Ak

k=1

1:

n n



I x2y

I xy2

-42y2

x--N x-5 bt ,n

7---- 	—2 lwir + wir)
k=1 r=1

Iwy = I w.Y.dA
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= I X2 .Y.dA = f (x + Dx )2 (y + Dy ) . dA

= I x2 .y.dA+2Dx I x.y.dA+ D! i y.dA +2DxDy f x.dA

+DJ x2 + D!Dy I dA

n	 n

= E iyy • Dy + E D! . D y . Ak
k=1	 k=1

= I X.Y 2 .dA = j(x+ Ds)(Y + Dy) 2 . dA

= I x.y2 .dA+ 2Dy I x.y.dA + Dy2 I x.dA+2DxDy I y.dA

+Dx i Y 2 + Ds Dy2 i dA

n	 n

E /xx . Dx + E Ds . D y2 . Ak
k=1	 k=1

= I X2 .Y2 .dA = I (x+ Ds ) 2 (y + Dy ) 2 . dA

= I x2 .y2 .dA + 2Ds I x.y2 .dA+2Dy I x2 .y.dA+ I)! i y2.dA

d-Dy2 I x 2 .dA+4Ds Dy f x.y.dA+2Dx .Dy2 f x.dA

+D 2sDy2 1 dA + D!D 2y I dA

n	 n	 v,	
n 9/3= E isx . D!+ E I

	 + E D! - DY2 .
 

Ai + E 144k=1	 k=1	 k=1	 k=1

I, = I co.dA



Lx2

1w2
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n bt	 ,
= E 	 —6 

Pi,- Y.ir 2Yir) coir(Yir 2Yir)1

Ly2 =	 w .Y2.dA

bt r

LIZ

= E E _
12k=1 r=1

w.X.dA

[wt,(4e	 — 12 ) + wir(4Y. r 2yt — 12)]

n 5 bt= E E -[wir(xJ, +2xi,)+(,),(xir +2xJ,)]
k=1 r=1 6

= w.X2.dA

n 5 btE E _	 (44r + 2X 	 1 2 ) + wir (44 -I- 24r — 12)]12k=1 r=1

w2.dA

bt 1 2
22 2_, -- 	 wjrWir C4r]
k=1 r=1

(3.62)

where all calculations are based on the transformed section.

3.4 Transformation and Assembly

Once the equilibrium equation [ KT ]{q} {Q} is derived for a finite element

in its local coordinate system, it is a matter of using the concept of transformation

from local to global coordinates to allow solution for three-dimensional framed

structures. The local displacements { q } can be related to the displacements in

the global coordinate system { r } by the transformation:

k=1 r=1
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1qh = [T]lr}G
	

(3.63)

in which [ T I is the transformation matrix. Eq. 3.63 can be rearranged as:

< q >L = < r >G [TIT
	

(3.64)

If { R } G is the vector of nodal forces in the global system associated with 1 r }a,

then it can be shown that:

< (I >I, { Q}L =< r >G { R la

Substituting Eq. 3.64 into Eq. 3.65 results in:

< r >G [T ]T { Q } L = < r >G { R }G

Or:

< r >GI [ T IT { Q }L — { R }G} = 0

which implies:

{R}G =P T {Q}L

(3.65)

(3.66)

(3.67)

(3.68)

Multiply the equilibrium equation [ KT li, { q} L = { Q } L by [ T 1 T to get:

[TIT [ IfTiL f q h = [ T r {Q}L
	

(3.69)

Subtitute Eqs. 3.63 and 3.68 into Eq. 3.69 to get:

[T]T [ KT]L [ 71 { r }G = { R} 	 (3.70)
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Or:

[KT] G { r }G = {R}G
	 (3.71)

in which:

[ KT]G = [T]T [K][T]
	

(3.72)

in which [ KT ] G is the stiffness matrix in the global system, and r } G and { R}a

are respectively displacements and forces also in the global system.

Once Eq. 3.71 is reached, which is the equilibrium equation for a finite element in

the global system of coordinates, the structure's equilibrium equation:

[ KT ]„ { r }st = {R}st
	 (3.73)

can be assembled directly and solved for the structure's unknown displacements.

3.4.0.1 Large Deformation Transformation

An element located in space needs to be catered for in order to make the program

capable of space frame analysis. Each element positioned in space is defined by

seven parameters. These parameters are the x, y, and z coordinates for both nodes

of the finite element, along with the local rotation angle -y of the principal axes of

the section about the local reference axis. This arrangement allows derivation for

a section with a fixed orientation yet allowing the user to input any initial rotation

of the section's principal axes.

Referring to Fig. 3.6, the relationship between the reference axes in local and



Y,V

Fig. 3.6 Coordinate Transformation of an Element in Space
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global coordinate systems can be expressed as:

Z = z.cosg.cosa+ y(cos-y.sinf3.cosa - sin-y.since)

- x(cos-y.sina+ sin-y.sint3.cosa)

Y = z.sin0 - y.cos-y.cos /3 + x.sin-y.cos[3)

X = -z.cosP.sina - y(cos-y.sini3.sina+ sin-y.cosa)

- x(cos-y.cosa - sin-y.sinf3.sina)

(3.74)

While the relationship between the local displacements u, v, w and the global

displacements U, V, W are:

u = U.cosa.cosP -FV.sin0 -W.sina.cos#

v = U(cosa.sinP.cos-y - sina.sin-y)-V.cosfi.cos-y

-W(sina.sini3.cos-y + cosa.sin-y)

w = -U(sina.cos-y -I- cosa.sinP.sin-y)+V.cos13.sin7

-W(cosa.cos-y - sina.sinO.sin-y)

(3.75)

in which u, v, and w are functions of z, y and x.

If Eq. 3.75 is differentiated with respect to z then:

au	 aaU
z

a
a
z
zcosa.cosP + L

v az 
a - 

aw az,az	 az az .sinij	 az az*
sina.cos

'
3

au ay 	av ay sin aw ay
-I- ay	

aY a

	

az cosa.cos i3 +	
•

o _ 
ay Ti . cxszn.cosi3

z 

au ax _ay ___ax sio _ aw ax .
ax az cosa.coso	 ax -Fz .szna.cos0-E	 +

ax az •
av	 au az av az	 aw az— =
az	 OZ az 

A - az-E.cosil.cos-y - —
az --a.*-B

au aY 
A 

av ay
-I-	 n

ay	 -a z 	 yf, --a-7 . cosp . cos 7 - --
aw ay
aY -87.B



.D
ow ax
ax Oz

(3.76)

au ay av ay
- ay az c +	 .7;.cosP.sin-y

au ax av ax
- ax az C —ax —az .cosPin-y

az
Oz
ay
az
ax
Oz

= cosa.cos#

= sin /3

—sina.cos0 (3.77)
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ow ax .B
ax az

au ax A av ax
ax az	

ax az .cos13.cos-y —

au oz av azaz79.cosfi.sin-yaz az

Differentiate Eq. 3.74 to get:

Substitute Eq. 3.77 into Eq. 3.76 to get:

au
az

au	 av2	 s2 3 -I- —,	 cosp c	 •	 OW
az

a.co	
az	

osa.sznp — _sicos	 n
az	

a.cosa.cos 2 [3

auav s .n2 - _ ow.+ ay acos.cosp.sino + —ay z /I	 w.szna.cosi3.sinfl

	

au	 av .	 aw
— cosa.sina.cos 2 0 — — s zn 0. s ina. cos 13 -I- —.sin2 a.cos2 13

	

ax	 ax	 ax

	

au_ au	 av	 aw
w.; _	 cosa.cosP.A — --cos 2 /3.cosa.cos-y — —cosa.cosO.B

	

az	 az	 az

au	 av .— —sznO.cosO.cos-y —
ay	 ay	 ay

au
+- ax si.cosO.A —av s'zza cos2 a.cos-y —ow sina	 na p

ax Z •	 P	 ax	 . COS B.

Ow	 au av
--a cosa.cosP.0 —az cosa.cos 2 P.sin7 — —OW cosa cas[3 D

az	 •

au	 av	 aw
— ay sizz )3.0 wsinP.cosg.sin7 —

au	 av	 aw

	

+ —sina.cosP.0 — —sina.cos2 P.sinry	 sina.cosP.D (3.78)
ax	 ax
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Defining:

av _ 0 ow . e
az — Y '	 az	 - (3.79)

and as there is no change in the angle between axes after deformation, this can be

approximated by the conditions:

au _ ay au _ ow av aw
ay — — OZ' ax — — az ' ax	 ay

Substitute Eqs. 3.79 and 3.80 into Eq. 3.78 to get:

(3.80)

or:

Du	 au 2	 av	 aw
— =	 cos a.cos2 13 +	 .sin2 # + —.sin 2a.cos20
az	 az	 ay	 ax

avau_ =	 (cos 2 ce.cos0.sin i3.cos7 — sina.cosa.cosfl.sin-y)
az	 az

av.
— (cosa.cos-y — sna.sinf3.sin-y)— —cosg.sin7

az	 az

av. .	 ow.
— sinf3.cos,(3.cosry — —(szna.cos-y + coscr.sini3.sinry)

aY	 ay

ow . 2+ (szn a.sznii.cosi3.cos7 + sina.cosa.cosfl.sinry)ax

Ow	 au= --(cosa.sina.cos O .cosry -I- cos2cx.sinP.cos[3.sin7)
az	 az

ayaw
— (cosa.sinry -I- sina.sina.cos-y)— —cosfi.cosryaz	 az

av .aw
+ szni3.cosi3.sin-y — aY

—(cosa.sinO.cos-y — sina.sinry)
ay 

aw .
+ (szna.cosa.cosO.cos7 — sin 2 cx.sinfl.cosf3.sin7)	 (3.81)ax

u' = U' cos 2 a.cos 20 +V' sin2p + W' sin2 a.cos2 [3

v' = U' (cos 2 a.cos#.sinf3.cos7 — sina.cosa.cosi3.sin-y)

.- Oy (cosa.cos-y — sina.sinfi.sin7)— Os cosP.sin-y
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— V' sini3.cos i3.cos-y —W'y (sina.cos-y + cosa.sini3.sin-y)

+ W' (sin2 a.sinfl.cosi3.cos-y + sina.cosa.cosi3.sin-y)

—U' (cosa.sina.cos,3.cos-y + cos2a.sin13.cosi3.sin-y)

- Oy (cosa.sin-y + sina.sin i3.cos-y)— () cosfi.cos-y

+ V' sinfl.cos,3.sin-y — Ty (cosa.sini3.cos-y — sina.sin-y)

+ W' (sina.cosa.cos i3.cos-y — sin2a.sin,3.cos,3.sin-y) (3.82)

The explicit form of the transformation matrix is shown in Fig. 3.7, in which:

A = cosa.sinfi.cos-y — sina.sin-y

B = sina.sinfl.cos-y + cosa.sin-y

C = sina.cos-y + cosa.sin)3.sin-y

D = cosa.cos-y — sina.sinfi.sin-y

E ---= cos 2 a.cosfl.sini3.cos7 — sincx.cosa.cos[3.sin-y

F = cosa.cos-y — sina.sini3.sin7

G = sina.cos-y + cosa.sini3.sin-y

H = sin2 a.sin 13.cos i3.cos-y + sina.cosa.cosi3.sin7

I = cosa.sina.cos i3.cos-y + cos2a.sini3.cosi3.sin-y

J = cosa.sin-y + sina.sinfl.cos-y

K = cosa.sini3.cos-y — sina.sin-y

L = sina.cosa.cos i3.cos-y — sin2a.sinfl.cosfi.sin-y

and i and j are node numbers.
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3.5 Conclusions

A finite element formulation has been developed for a beam element with eight

degrees of freedom at each end-node. This formulation takes account of geometric

and material non-linearities and can handle large deformations. Transformation

of local coordinate displacements to the global system allows the proposed for-

mulation to represent three-dimensional frames. Newton-Raphson solution for the

incremental equilibrium equations implies that the solution is based on a tangent-

stiffness concept. The fact that residual and thermal strains are added to the total

strain vector allows this formulation to handle situations where residual and ther-

mal effects exist. The transformed section concept used in the formulation, along

with the ability to divide the section's plates into subsegments, makes this formu-

lation capable of solution for elevated-temperature situations. The last statements

may not be an obvious conclusion from the above formulation; nevertheless, de-

tails of the solution for fire cases, along with two schemes for using the transformed

section concept, will be illustrated clearly in the next chapter with programming

details.
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CHAPTER 4

3DFIRE

Computer Program Validation



Chapter 4: Validation
	 93

4.1 Introduction

An existing program INSTAF, developed originally at the University of Alberta by

El-Zanaty and Murray (1983) for inelastic analysis of plane frames, was used as a

basis for the current analysis. INSTAF accounts for material and geometric non-

linearities and traces penetration of plasticity through the cross-section. INSTAF

uses the tangent stiffness approach and implements a Newton-Raphson procedure

to solve the non-linear equilibrium equations for the structure.

The frame solution procedure used in INSTAF can be summarised as follows:

• Read input data.

• Initialise arrays for total displacements, applied forces and incremental dis-

placements.

• From the given nodal connectivity data, calculate the size of the structure's

stiffness matrix and prepare a scheme for storing stiffness coefficients under a

skyline. This scheme uses one-dimensional arrays to describe the structure of

the stiffness matrix, which is stored in turn in another one-dimensional array.

The former of these two arrays is used to store the height of each column

of the stiffness matrix which contains possible non-zero values above and

including the diagonal element. In other words a pointer is stored for each

column of the stiffness matrix to identify the number of the diagonal element

in the latter array which contains all stiffness coefficients above and including

the diagonal of the stiffness matrix. This scheme allows the stiffness matrix

to be stored in a single column array and to be retrieved at any time for

further calculations. Its other advantage is the apparent contrast to band-
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width solution schemes, in which nodal numbering is critical to the memory

requirement.

• Each finite element is divided into three sub-elements and their stiffness

matrices are formed and condensed into one element stiffness matrix using

a static condensation scheme. This procedure was devised to include the

effect of plasticity, starting near to the given nodes, in the element stiffness

characteristics.

• The difference between the applied and internal forces is calculated and

stored in the unbalanced force vector.

• The equilibrium equations are solved for the incremental displacements cor-

responding to the unbalanced forces.

• Incremental displacements are added to the total displacement vector.

• Internal forces are calculated from internal stresses found from strains derived

from the last total displacement update.

• The process of finding unbalanced forces and incremental displacements is

repeated, updating total displacements in each iteration, until both incremen-

tal displacements and forces are small enough to satisfy a specified accuracy

criterion.

The capability of INSTAF to account for geometric and material non-linearities

along with its ability to handle large deformations, made it suitable to use as a

basis for the program developed in this work. The developed program 3DFIRE

also makes use of the valuable routines of INSTAF which handle equation solution

and storage schemes.
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4.2 Problem Idealisation

Thirteen sampling points are taken on an I-section, dividing each plate into four

equal segments. At each sampling point mechanical strains due to the applied

loads are calculated from the approximate deformations at the reference axis using

cubic shape functions. At each sampling point residual strains and temperatures

are introduced. Thermal strains can be calculated at each sampling point using

either a constant thermal coefficient or any equation (Fig. 4.1) such as that sug-

gested by the European code EC3-Part 10 (1990). The sampling points divide

the cross-section into twelve segments, each of which is considered to have uni-

form material stiffness corresponding to the average temperature and strain of the

segment. Stresses at the edges of each segment are calculated according to the tem-

peratures of the edges' sampling points using the appropriate stress-strain curve.

Thermal strains are expected to expand the section if the structural element is not

restrained. This expansion will introduce all kinds of deformations on the member

according to the temperature distribution across the section. On the other hand,

if the structural element is restrained fully or partially, deformations correspond-

ing to the restrained degrees of freedom transform into mechanical compressive

stresses. However, this section subdividision into twelve segments is only the basic

one; an option to divide each of the twelve segments into any desired number of

subsegments is catered for. In this case strains and temperatures at the edges of

each subsegment are calculated by linear interpolation.
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4.3 Solution for Fire

Structural analysis at elevated temperatures has to deal with two main aspects.

The first is the influence of thermal expansion, and the second is the decline of

material stiffness and strength at high temperatures. Another aspect which has

been considered by other researchers is the creep effect at high temperatures. This

aspect is not considered in this work.

4.3.1 Thermal Expansion

Unlike residual stresses, thermal stresses are not self-equilibrating. Thermal strains

are calculated using either a constant or variable thermal expansion coefficient. By

adding thermal expansion strains as compressive mechanical strains, thermally in-

duced deformations/internal forces are added to the displacement/load vectors.

The procedure for incorporating the effects of thermal expansion is illustrated on

Figs. 4.2 and 4.3 for both unrestrained and restrained cases. The selected example

is very simple for the sake of clarity. Assuming that the strain profile due to the

applied load is known (Fig. 4.2), thermal strains are calculated from the given

temperature profile and are added as compressive mechanical strains. The total

strain includes superimposed bending and axial strains. In this particular example

it can be observed that the resultant bending strain is less than that caused by the

applied load acting alone. Solving the equilibrium equations for the incremental

displacements yields values for the unknown thermally induced displacements. The

sign of the axial displacement, for example, changes to the correct one (expansion)

due to the negative sign of the unbalanced thermal forces. These incremental dis-



1st Iteration:

1+ C-F = =

T= +{AD} =

={D} - {DthenTiall =

Temp.

Distribution

IL

{AF} = {P	 - P
applied	 Internal

- P thermal
} = [1(1 {AD}

Final iteration:

{AF} = {P	 - P	 } = [K] {AD}
applied	 internal

{AD} = { 0 }

Fig. 4.2 Thermal Expansion (Unrestrained Case)



=I+

Prevented

displacement

Final Iteration:

{D} - {D
thermal'

{AF} = {P	 p	 - P
=
 [K] {AD}

applied	 Internal	 thermal - 

{AD} =

Temp.

Distribution

1st Iteration:

{AF}	 {Papplied Pinternal P	 =thermal 	 {-13 axial thermal

{AD} = { 0 }

Fig. 4.3 Thermal Expansion (Restrained Case)



Chapter 4: Validation	 97

placements are added to the total displacement vector which will be used in later

iterations to calculate the state of strain across all sections. This implies that all

thermal strains that were added in the first iteration must be subtracted in suc-

cessive iterations in order to ensure that equilibrium conditions are maintained.

In the second case (Fig. 4.3) axial displacement is prevented. The procedure of so-

lution for thermal strains remains exactly the same while the boundary conditions

take care of the difference. When incremental displacements are calculated, both

the axial displacement and the unbalanced forces at the boundary are set to zero.

In this case only the bending displacement is added to the total displacements. In

later iterations the total thermal strains are subtracted from total strains, causing

a permanent axial compressive strain.

4.3.2 Stiffness and Strength

The availability of many constitutive models for stress-strain characteristics at el-

evated temperatures means that it is desirable that the present analysis should be

capable of accommodating all of them. Two schemes were developed to calculate

stresses and material properties, so that any trilinear or continuous (functional)

representation of material stress-strain characteristics can be implemented in the

analysis.

In the first scheme a trilinear idealisation of the stress-strain relationships under

various temperatures was assumed. The temperature of each segment or subseg-

ment is assumed to be uniform for the purpose of calculating its stiffness. Using

the relevant stress-strain curve the segment is divided into a maximum of five dif-

ferent zones with different thicknesses, depending on the local strain distributions.
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This transformation is conducted according to the modular ratio (E 1 ETav)elastic.

A second transformation according to the ratio of elastic modulus at the average

temperature of the segment to the elastic modulus at 20°C, ET / Ea) is carried out.

The stress distribution at each segment is directly obtained from the appropriate

curve as illustrated in Fig. 4.4.

The second scheme assumes continuous stress-strain curves. Each segment is di-

vided into the required number of subsegments and the section is transformed

using the average strain of each subsegment. Using the average temperature of

each subsegment, the appropriate curve can be used to transform the section us-

ing the modular ratio of the tangent modulus to the elastic modulus at 20°C,

Etanl E20elastic• The stress distribution is determined form the appropriate curves

as illustrated in Fig. 4.5 using the actual temperatures and strains at both ends

of the segment. Although it is easier to use the average strains and temperatures,

this arrangement produced considerably the faster convergence to the solution.

In both schemes sectional transformation allows solution of all the governing equa-

tions using Young's modulus at ambient temperature, provided that section prop-

erties are calculated for the transformed section. This procedure allows solution of

all integrations for the whole cross-section rather than performing the integration

for each individual segment.
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4.4 Program Flow

4.4.1 The Solution Process

After initialising the required arrays, the flexural part of the tangent stiffness

matrix is used to estimate an approximate value of the displacement vector using:

[-KF] { q } = {Q}
	

(4.1)

in which [KF] is the flexural stiffness matrix, {Q} is the vector of applied forces

and {q} is the vector of unknown displacements. The flexural stiffness matrix [KF]

is exactly the same as the tangent stiffness matrix [KT] derived in Chapter 3 apart

from the fact that it does not include any geometrical effects as all deformations

are assumed to equal zero initially.

From the first estimate of deformations stress resultants are calculated. The struc-

ture is compressed using the thermal strains and the 'displacements' due to the

thermal expansion are evaluated and added to the displacement vector {D}. Once

the boundary conditions of the structure are imposed these thermally induced dis-

placements either remain if the corresponding degree of freedom is unrestrained or

are transformed into internal stresses if not. Gaussian integration is used to formu-

late the governing equations with four Gauss points over the length of each finite

element. In subsequent iterations the tangent stiffness matrix [K T] = [KF] -I- [KG]

is calculated and updated in following way:

• At each Gauss point total strains are evaluated using the total displacements

from the previous iteration and approximated using cubic shape functions.

• Thermal strains are subtracted from the total strains.
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• Stress resultants are calculated and the geometric part of the tangent stiffness

matrix [KG] is evaluated.

• The tangent stiffness matrix ['(TI is updated.

• The unbalanced load vector needed to balance the internal forces with the

external loads is calculated.

• The incremental displacements corresponding to the unbalanced load vector

are found.

• This process is repeated until the incremental displacements are small enough

for the required accuracy.

4.4.2 The Major Subroutines Used

Program 3DFIRE consists of several subroutines, each of which performs a specific

task. In the following the titles of these subroutines are listed and their function

explained.

• Subroutine MAIN

Opens input, output and temporary files.

Calls subroutine MANAGER to solve for each load/temperature increment.

Calculates CPU time needed for running the program.

Closes files at the end of each problem.

• Subroutine MANAGER
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Calls various subroutines which read input data and solve the structure's

equilibrium equations for each iteration, until convergence/failure is reached.

• Subroutines INPUT1, INPUT2 and BOUND1

These subroutines read input data (problem definition, geometry, material

properties, connectivity, loading and boundary conditions data).

• Subroutines COLHT and ADDRESS

The first subroutine calculates the height of each column in the structure's

stiffness matrix that contains possible non-zero values, while the second cal-

culates the index of the beginning of each of these columns once the stiffness

matrix is stored in a one-dimensional array.

• Subroutine TEMPREAD

Reads temperatures from the input file. In cases where reduced input tem-

perature profiles are defined, it calculates the full profile by means of linear

interpolation.

• Subroutine SHAPE

Evaluates the shape function derivatives for each Gauss point on a finite

element.

• Subroutine STIFF

Calculates the tangent stiffness matrix for each finite element. Each finite

element defined by the user is discretely divided into three sub-elements

and their stiffness matrices are condensed back to a single element stiff-

ness matrix. The element stiffness matrix in the local coordinate system is
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then transformed to the global system and the structure's stiffness matrix is

formed.

• Subroutine TR1

Transforms the force vector from the global to the local system of coordinates.

• Subroutine TR2

Transforms the displacement vector from the local to the global system of

coordinates.

• Subroutine ASSEMB

Assembles the element stiffness matrix into the structure's stiffness matrix

in the global system of coordinates.

• Subroutines BKSB1, BKSB2, EQFT and EQKBB

These routines perform the task of stiffness matrix condensation.

• Subroutine EQSBST

This subroutine along with BKSB1 performs the equilibrium equation solu-

tion by back-substitution and produces the vector of incremental displace-

meas.

• Subroutine BOUND2

Performs the process of adding the boundary conditions to the stiffness ma-

trix.

• Subroutine STRAIN
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Divides each plate of the cross-section according to the strain distribution

for trilinear stress-strain models.

▪ Subroutine STEP

Calculates the transformed section properties and stress resultants at each

Gauss point for trilinear stress-strain models.

• Subroutine STEPC

Calculates the transformed section properties and stress resultants at each

Gauss point for continuous stress-strain models.

• Subroutines ECCS, ECCSM, CTICM, ECCODET, RAMOSB, FURA

These routines define the stress state on any point of the cross-section for a

given strain and temperature using ambient-temperature material properties

for bilinear or trilinear models.

• Subroutines ECCEQ and RAMOS

These routines define the stress state at any point of the cross-section for a

given strain and temperature using ambient temperature material properties

for continuous models.

• Subroutines CONVER and DINCR

These routines check convergence in displacements and loads.
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4.5 Program Validation

The lack of any comparable three-dimensional previous work has meant that most

of the validation of 3DFIRE was performed using ambient temperature analyti-

cal and experimental comparisons to check the three-dimensional integrity of the

program. Nevertheless, it was possible to carry out fire validations by using some

in-plane examples, restraining all out-of-plane degrees of freedom.

4.5.1 Program Sensitivity

To check the reliability of Program 3D FIRE two analytical tests were carried out.

In the first test the influence of the number of the finite elements on the accuracy of

solutions was considered. This convergence test is a standard one, since the finite

element method produces approximate results due to the assumption that a struc-

ture is divided into a finite number of discrete elements which are interconnected

at a finite number of nodes. In theory if the number of elements is increased to

infinity the finite element method should produce "exact" answers. However, ex-

perience shows that dividing the structure into a reasonably small number of finite

elements can often produce remarkably accurate solutions. In practical terms any

attempt to increase this number is wasteful due to the fact that the extra accuracy

becomes practically negligible.

A perfect column with high slenderness ratio, loaded axially, was analysed up to

failure. Several division schemes were attempted, starting from assuming the col-

umn to be one finite element and then successively subdividing it into twice the
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previous number of elements. Although this is inherently an eigenvalue problem

not suited to incremental analysis, nevertheless the program produced a remark-

ably accurate estimate of the Euler load. This was achieved by successive refine-

ment of the load increment after each failure, so that the program retreats after

failure to the previous increment and adds to it a fraction of the increment that

caused failure. By repeating this process several times the difference between the

load level at which a solution was attained and the next load where failure occurred

becomes very small. Results from these analyses are shown in Fig. 4.6a, which il-

lustrates the speed of convergence thanks to the high degree of non-linearity of the

formulation.

A second case was considered to the same effect, whereby a biaxially loaded col-

umn was analysed up to failure using the same procedure. The load was applied

with eccentricities about both principal axes, causing applied moments about both

principal axes along with an axial force. The column was divided into increasing

numbers of finite elements and failure loads were obtained by refining the load

increment, following the same procedure performed in the previous case. On the

same figure results of this set of analyses are illustrated and the previous con-

clusions concerning the perfect column are clearly still valid. Although no exact

solution is known to this problem, it is clear that failure loads are converging to

some solution, as denoted by the broken line on Fig. 4.6b. It is clear from Fig. 4.6

that the difference between failure loads for four finite elements and that for eight

elements is very small, leading to the conclusion that no realistic benefit can be

obtained from increasing the number of finite elements any more. It can also be

noticed that the speed of convergence is still remarkably fast.

In the second test the influence of number of segments in a cross-section at el-
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evated temperatures was studied. A Universal Beam section was analysed with

different numbers of segments across its section. The design load to BS5950 as-

suming full lateral, restraint was applied and a uniform temperature distribution

was increased up to failure. This test ensures that the section is subject to differ-

ent stains across its depth, yet the same stress-strain curve applies to the whole

section because of the uniform temperature profile. Results obtained from this set

of analyses (Fig. 4.7) show that the temperature-deflection characteristics of the

beam are visually almost indistinguishable regardless of the number of segments.

Nevertheless, failure temperatures as obtained to an accuracy of 0.2° C show a ten-

dency to approach the failure temperature of the maximum number of segments

from alternate sides.

Another case was considered for a column loaded to 60% of its ultimate load with

thermal gradient across its major axis (Fig. 4.8). This column was heated up to

failure under a constant load. This case provides a contrast to the previous case,

in that now the strain distribution across the section is almost constant while the

temperature profile means that a different stress-strain curve applies to each seg-

ment. Apart from the fact that solutions are converging from one side, the same

high accuracy with a low number of segments is observed.

It is apparent that the basic division of the cross-section into twelve segments

is usually quite reasonable. It might however be sensible to exercise caution by

increasing the number of segments in abnormal cases where temperature profiles

assume very irregular non-uniformity.
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4.5.2 Ambient Temperature Validation

As a part of the validation of the program it is necessary to compare it with other

analyses in terms of formulation non-linearity and capability for handling large

deformations:

4.5.2.1 Effect of Formulation

Almost all high-order terms have been kept in this formulation. This results in a

more accurate prediction of deformations, comparing more favourably with third-

order analysis than normal second-order analysis, in which most of the high-order

terms are discarded. Fig. 4.9 shows a comparison between a second-order analysis

with most high order terms discarded (Vinnakota 1976), a third-order analysis

(Soltis and Christiano 1972) and the current analysis. The case analysed is of an

elastic biaxially-loaded column at ambient temperature. In this example the data

used in the program was identical to that of the previous work and the yield stress

was assumed to be infinite. It can be seen that all analyses agree almost exactly on

deformation values for most of the load-deflection history. Only at a high load level

before failure does the influence of high-order terms become significant, resulting

in considerably different prediction of deflections.

4.5.2.2 Deflection Check

A preliminary check of the program was carried out using a cantilever beam

(UB406 x 178 x 54). The cantilever was tested by applying several individual

force components at the free end (Figs. 4.10 and 4.11). Results obtained from

the program were compared with classical small-deflection analytical solutions for
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deflections and reactions. To minimise the effect of non-linear terms, applied loads

were kept to a reasonable minimum.

The well known formulae (Timoshenko and Gere 1978) for flexural deflections due

to an applied vertical load P and end moment M,

ML2 
V= 

	

3E1	 2E1

PL2 ML
and 0 — =

2E1 2E1

were used in this instance for end deflections.

With respect to torsion and warping comparison, Zbirohowski-Kokia (1967) has

derived the following equations which were used for comparison.

For a cantilever with an end torque T:

The internal warping torsion:

T	
h

w(z)= T
cos k(L — z)

cash kL

and the internal St. Venant torsion:

Tsv(z)= T — T(z)	 (4.5)

while the internal bimoment

T {sinh k(L — z)1
B(z) = lc,	 cosh kL

For a cantilever with end external bimoment B:

(4.4)

(4.6)

The internal warping torsion
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(4.7)
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sinh kz 
T(z)= Bk 

cosh kL

and the internal St. Venant torsion:

Tsv(z)=71(z)	 (4.8)

while the internal bimoment:

B(z)=B c
co°ss hh kk Lz

Where k = 	 and E1 =v E i l,„	 - /22

Tabulated results on Figs. 4.10 and 4.11 show very good agreement between the

classical solutions for deflections and the present analysis.

4.5.2.3 Large Deformation Check

To ensure that any analysis can handle large deformations, no assumptions can be

made regarding deflections in the formulation. In this analysis, although certain

assumptions have been made regarding deflections (Eqs. 3.4 and 3.5), they are not

assumed to be small. It is necessary to validate this approach with other work.

A comparison was carried out with analytical results of a classical example reported

by Timoshenko and Gere (1978). This problem, of an elastic cantilever beam

loaded with a vertical end load, was solved by Rojahn (1968). Rojahn solved the

(4.9)

10E1deflection equations up to a load P = L2 The current program was used to

solve the same problem using an I cross-section. The cantilever beam was divided

into eight finite elements and all out-of-plane degrees of freedom were restrained

91,vat all nodes. The program continued the analysis up to a load of P =	 after
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which convergence could not be attained. Results from both solutions are plotted

on Fig. 4.12. Vertical and horizontal deflections of the free end compare very well

with Rojahn's solution up to the end of his tabulated results. The rotation of the

free end compares very well with Rojahn's solution up to the level of 0.3L vertical

displacement, and compares with reasonable error up to 0.5L. After the latter level

a considerable difference can be noticed. It is clear that the cause of this difference

is the assumption related to the rotations in Eq. 3.4. In any circumstances, it

is difficult to imagine a realistic situation where stable deformations might reach

anywhere near to the deflection-level considered in this example if inelasticity is

to be included in the analysis. Hence, the current analysis can be claimed to be a

large-deformation analysis.

4.5.2.4 Biaxially Loaded Column Case

Another comparison was carried out with an almost exact solution for a biaxially

loaded column. Harstead et al (1968) analysed an isolated column using a numer-

ical procedure that was restricted to single columns with elastic-perfectly plastic

material. The numerical procedure consisted of dividing the cross-section into a

large number of small areas. By using a computer to solve the governing equations

for each of the small areas at a number of stations over the length of half the

column, deflections were calculated. They presented two analyses for a biaxially

loaded column, with the ends restrained and unrestrained against warping. The

results of both analyses are presented on Figs. 4.13 and 4.14. The current analysis

compares very well with the reported deflections at the column's mid-span. The

small but observable reduction in the ultimate load for both cases, as predicted by

the current analysis, can be explained by the respective degrees of non-linearity in
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both analyses. It is useful to recall the results of comparing the current analysis

with both second-order and third-order analyses for this purpose (Fig. 4.9). It is

likely that the mentioned reduction in the predicted ultimate load is due to the

inclusion of high order terms in this formulation.

4.5.2.5 Experimental Validation

Several experiments on biaxially loaded columns were carried out by Birnstiel

(1968) at New York University. Results for the ultimate loads of twelve experiments

were reported in his paper, along with the full observations for two columns out

of the twelve. All columns were reported to have extended end-plate connections,

hence restraining warping at both ends. Axial load was applied in each case with

eccentricities in the directions of both principal axes. Eccentricities as reported

in these experiments were not necessarily the same at both ends. Initial out-of-

straightness data was measured for all columns and implemented in the analysis.

The current program was used to analyse the twelve columns. The ultimate loads

obtained from experiments and analyses are given in Table 4.1.
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Specimen

No.

Nominal

Size

YielStress

Kip/in2

Top Bottom Load(Exp.)

Kip

Load(Anal.)

Kip

Error

%ex ey ex ey

1 6 x 6 H 29.1 1.62 2.78 1.61 2.78 92.8 94.4 +1.7

2 5WF18.5 35.7 1.61 3.28 1.58 3.15 54.1 54.1 +0.0

3 5WF18.5 35.7 0.75 2.62 0.86 2.63 62.7 60.4 -3.7

4 6WF25 36.0 1.67 2.95 1.66 2.95 86.3 85.2 -1.3

5 5 x 5 H 37.5 2.36 3.24 2.36 3.10 49.6 53.8 +8.4

6 5 x 5 H 37.5 2.39 2.51 2.38 2.50 47.9 51.4 +7.3

7 5 x 6 H 38.0 -0.92 2.78 -0.85 2.87 76.6 84.8 +10.7

8 5 x 6 H 38.0 0.35 1.85 0.34 1.89 109.4 118.0 +7.9

10 4 x 8 I 33.3 0.20 2.60 0.18 2.61 85.0 78.8 -7.3

12 5WF18.5 34.2 -0.81 2.82 -0.74 2.75 51.0 57.2 +12.1

13 4WF13 62.1 0.50 2.67 0.34 2.77 46.1 44.75 -2.9

14 4WF13 63.0 0.82 2.36 0.84 2.34 38.7 41.1 +6.2

Table 4.1: Comparison between experimental and theoritical failure

loads

The analytical failure loads compare very well with the experimental results for

most of the columns, taking into account that residual stresses for columns, al-

though measured, were not reported. Consequently, no residual stresses were con-

sidered in the analysis. The full load-deflection history from analysis for specimens

7 and 13 is shown on Figs. 4.15 and 4.16 along with the reported experimental

observations. Analytical load-deflection curves compare well with experimental

data for both specimens. Strains were measured at several locations of the tested

columns. Mid-height experimental and analytical strains at the four corners of
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the H cross-section are shown on Figs. 4.17 and 4.18. Again the analytical results

correlate very well with the experimental measurements.

4.5.2.6 Framed Structures Validation

After assessing the current program's ability to analyse single structural members,

it is necessary to do the same for framed structures. Morino and Lu (1971) have car-

ried out several analyses on rigid space frames using a second-order elastic-plastic

analysis. Two three-dimensional frames, one with a single storey and the other of

two storeys, were selected to compare the current analysis with the previous one.

Figs. 4.19 and 4.20 show both frames' geometry and the load-deflection curves for

one location on each frame. Numbers on Morino's curves show the sequence of

plastic hinge formation along with their locations on the frame as reported in the

elastic-plastic analysis.

Results of both analyses compare very well up to the point where plasticity starts

to penetrate the cross-section of the first predicted plastic hinge. Differences be-

yond this point are natural, due to the different approaches adopted by the anal-

yses. The current analysis takes into account the spread of plasticity across the

cross-sections of structural elements up to the point at which certain parts of the

structure lose their stiffness producing singularity in the stiffness matrix. On the

other hand, the previous analysis assumes elastic behaviour up to the point of

instantaneous formation of a full plastic hinge, after which the analysis imposes a

real mechanical hinge on the structure and continues assuming elastic response of

the modified structure.
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4.5.3 Elevated Temperature Validation

The current program has been validated against previous analytical work and

experiments for structures at elevated temperatures.

4.5.3.1 Analytical Validation:

Furumura (1978) developed a F. E. elastic-plastic-creep analysis for in-plane steel

frames in fire. The temperature distribution assumed in this reference is illustrated

in Fig. 4.21. Temperature distributions across the beam and column sections

were obtained assuming structural elements to be fully protected. Three beam-

columns were analysed with different end conditions, to compare the Furumura

analysis with the present analysis. Figs. 4.22, 4.23 and 4.24 show the three cases

and compare results obtained from both analyses. Very good agreement with the

previous F.E. analysis is apparent. In this comparison out-of-plane behaviour of

the beam-columns was ignored by restraining all degrees of freedom corresponding

to out-of-plane deflections at all nodes. Four finite elements were used to model

each of the three beams.

In the same reference, the author analysed one portal frame and two subframes.

Geometry and loadings of these frames are given in Fig. 4.25. On Figs. 4.26, 4.27

and 4.28 deflections and internal forces as predicted by both analyses are shown. In

all comparisons with Furumura's analysis, his assumed stress-strain characteristics

for steel at elevated temperatures were used. Furumura also developed a formula

for thermal expansion within which he added terms for thermal creep. The three

beam examples were solved using both analyses, ignoring the effect of creep, hence

the pin-point agreement between both of them. The three frames were solved by
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Furumura including the effect of thermal creep. Since the current analysis does not

account for creep, the results are subject to some discrepancy, especially towards

the end of the heating scheme. In particular the difference between internal axial

forces using both analyses is an apparent result of the creep effect. In the full

portal frame case differences between the analyses are insignificant up to a time of

100 minutes, after which the predicted internal force in the beam becomes higher

in the present analysis. In both subframes and the full frame it is reasonable that

this analysis should overestimate the thermally-induced internal force in the beam,

as the absence of creep makes the structure stiffer and capable of sustaining higher

levels of internal forces. Consequently, the apparent agreement of both analyses

in deflection terms is partly coincidental. The present analysis is expected to

yield deformations less than the creep case, but higher internal compressive forces,

meaning that the P — A effect contributes to higher deflections. As a result, the

opposing effects of both factors have cancelled one another and produced almost

the same deflections using non-creep analysis as those produced by creep analysis.

The degree of agreement between the analyses is still remarkable and indicates the

limited effect of thermal creep on the structural response.

4.5.3.2 Experimental Validation

Many experiments on heated columns have been carried out in continental Europe.

A collection of 58 experiments was summarised by Janss and Minne (1982). In Bel-

gium two series of experiments were reported by Vandamme and Janss (1981). The

first series consisted of eleven short columns with a slenderness ratio of 25, with

different cross-sections and applied loads. The second series of eighteen columns

had slenderness ratios between 25 and 102. The actual yield stress was measured
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for each column only in the second series. All columns were tested under constant

load, and temperature was increased up to failure. In Denmark twelve columns

were tested by Olesen (1980) horizontally in a furnace where temperatures were

maintained at a constant level and loads increased up to failure. In Germany

seventeen columns were tested vertically by Hoffend (1980) with an eccentrically

applied load. Temperatures were kept constant while loads were increased up to

failure. In France Aribert and Aribert and Randriantsara (1980) carried out two

series of tests on fifteen columns. All these columns had a slenderness ratio of 72

with different load ratios. The first series consisted of eight columns maintained

at a constant temperature while loads were increased up to failure. In the sec-

ond series constant loads were applied while temperatures increased up to failure.

Analyses were carried out using program 3DFIRE for all these tests. All columns

were assumed to have an initial out-of-straightness about both principal axes ac-

cording to BS449. Loads or temperatures were increased as appropriate in the

analysis up to failure. Data and results of the tests, along with analytical results,

are shown in tables 4.2, 4.3 and 4.4.
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Nominal

Size

Slenderness

Ratio

Yield Stress

N/mm2

Applied Stress

N/mm2

Ult. Stress

N/mm2

Load Factor

BS449

F ailure Temp

Exp.

Failure Temp

Ana.

-

11EA 300 25.23 235 * 137.3 230.3 0.6 610 504

HEA 300 25.23 235 * 137.3 230.3 0.6 553 504

BEA 300 25.23 235 * 137.3 230.3 0.6 541 504

HEA 300 25.23 235 * 137.3 230.3 0.6 559 504

IIEB 300 24.93 235 * 157.0 230.4 0.68 492 466

HEB 300 24.93 235 * 167.6 230.4 0.76 444 410

HEB 300 24.93 235 * 157.0 230.4 0.68 510 466

HEB 400 25.54 235 * 157.0 230.1 0.68 578 466

NEB 300 24.93 235 * 157.0 230.4 0.68 498 466

NEB 300 24.93 235 * 157.0 230.4 0.68 582 466

HEB 300 24.93 235 * 150.5 230.4 0.65 560 480

HEB 300 24.93 274 134.1 268.5 0.50 588 548

IPE 160 102.72 272.5 56.5 133.5 0.42 564 527

IPE 160 102.72 272.5 75.3 133.5 0.56 486 444

IPE 200 84.83 272 69.9 173.8 0.40 559 532

IPE 200 84.83 272 93.3 173.8 0.54 394 445

HEB 120 61.76 266.5 104.7 222.6 0.47 519 516

HEB 120 61.76 266.5 78.5 222.6 0.35 561 566

HEB 180 41.36 279 92.3 261.8 0.35 616 590

HEB 180 41.36 279 136.8 261.8 0.52 560 524

HEA 200 37.95 261 125.8 248.0 0.51 565 518

HEA 300 25.23 267.5 133.9 262.0 0.51 561 539

HEA 220 34.75 252 162.2 241.8 0.67 502 467

NEB 200 37.77 218 89.9 207.6 0.43 549 548

IPE 200 85.49 272 117.0 172.2 0.68 250 324

HEB 140 53.49 247 132.6 219.7 0.60 516 422

HEB 140 53.49 247 90.9 219.7 0.41 576 548

IPE 220 72.22 273 91.9, 205.0 0.45 522 499

IPE 220 72.22 273 118.5 205.0 0.58 508 418

a Nominal Value

Table 4.2: Belgian experiments.
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Nominal

Size

Slenderness

Ratio

Y ield Stress

NImma

Applied Stress

N/mm2

Ult. Stress

N/mm2

Load Factor

B5449

Failure Temp

Exp.

Faihire T emp

Ana.

HEM 144 275 " 86 74.87 1.15 200 20

HEA100 143 275 * 67 75.83 0.88 400 239

HEA100 143 275 * 36 75.83 0.48 550 508

HEA100 143 275 * 62 75.83 0.82 440 272

HEA100 167 275 * 29 56.76 0.51 550 493

HEA100 166 275 * 58 57.41 1.01 400 20

HEA100 167 275 * 50 57.76 0.88 460 236

BEANO 167 275 * 60 57.76 1.06 200 20

*Nominal Value

Table 4.3: Danish experiments.

Nominal

Size

Slenderness

Ratio

Yield Stress

NImm2

Applied Stress

N/MM2

Ult. Stress

N/mm2

Load Factor

BS449

Failure Temp

Exp.

Failure T emp

Ana.

HEA100 72 300 188.0 223.7 0.84 200 228

HEA100 72 300 158.4 223.7 0.71 365 283

HEA100 72 300 149.4 223.7 0.67 400 328

HEA100 72 300 117.5 223.7 0.53 510 449

HEA100 72 300 67.2 223.7 0.30 550 592

HEA100 72 300 51.69 223.7 0.23 600 635

HEA100 72 300 28.67 223.7 0.13 680 722

HEA100 72 300 26.79 223.7 0.12 750 729

HEA100 72 300 169.2 223.7 0.76 235 266

HEA100 72 300 150.4 223.7 0.67 440 328

HEA100 72 300 117.5 223.7 0.53 450 450

HEA100 72 300 94.0 223.7 0.42 480 519

HEA100 72 300 70.5 223.7 0.32 552 582

HEA100 72 300 47.0 223.7 0.21 618 648

HEA100 72 300 22.6 223.7 0.10 701 748

Table 4.4: French experiments.
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Although all these experiments involved single columns, both experiments and

analyses were conducted in a three-dimensional sense, as no restraints were im-

posed about either principal axis in any of the experiments. Consequently, the

analysis assumes a full 3-D behaviour and initial out-of-straightness was imposed

in both principal axis directions according to BS449. Predicted analytical failure

temperatures are plotted against the experimental ones on Fig. 4.29. This figure

shows that for a considerable number of columns experimental and analytical re-

sults lie around the 45° line which represents exact agreement between experiment

and analysis. It can also be noticed that where a nominal value of the yield stress

is the only one quoted experimental critical temperatures are much higher than

analytical predictions.

It is not surprising that there should be a large variation in test results. Even

at ambient temperature considerable scatter is observed in series of column tests.

The encouraging aspect of the present comparison is that the test results straddle

the analytical line very well over most of the range. If imperfection values had

been quantified in the tests, and if effective lengths could be properly estimated,

then the comparison might be considerably better.

The noticeable outcome from this comparison is the conservative predictions of

the present analysis for many columns compared with the experimental results.

Although the finite element method is supposed to provide upper bound solutions

to physical problems, in this particular case two main factors contributed to the

opposite. Actual imperfections were not reported for all columns considered, which

has resulted in the assumption of the Code value of imperfection which represents a

lower bound value. The other factor is the stress-strain characteristics used which

are also based on lower bound rationalisation of experimental data.
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The program was also validated against two experiments carried out by British

Steel. Both columns were constructed within block/brick walls, with one flange

only exposed to fire. To overcome the problem of the end conditions which were

reported to have some degree of fixity, the program was used twice for each exper-

iment. The column under consideration was assumed first to be simply supported,

and then it was assumed to have one of its ends fixed. It can be seen clearly from

the comparison with analysis that the experimental results lie somewhere between

these two extremes. No imperfections were considered in the analysis, as no such

measurements were reported from these experiments. Figs. 4.30 and 4.31 show the

analytical and experimental results for both columns. Although the survival time

is clearly rather at variance with the experimental observation, the general form

of the behaviour is certainly shown correctly, and the test behaviour is not seen to

be really consistent in some respects towards the end of the test.

Cooke and Latham (1987) reported on a full size three-member frame that was

tested by the Fire Research Station at the Cardington laboratory. The portal

frame consisted of 203 x 203 x 52 columns and a 406 x 178 x 54 beam. The

frame was mainly unprotected apart from columns' webs, which were protected by

blocking-in. The top flange of the beam was also partially protected by precast

concrete slabs. Provision was made to prevent any composite action between the

beam and slabs. This frame was analysed using the measured temperature profiles

at various parts of the frame. The initial yield stress was assumed to be 275N/mm2

as a nominal value for the steel used in test (grade 43A), since no measured value

was reported. Experimental results as reported by Cooke and Latham (1987) are

compared with analytical results on Fig. 4.32. The results agree remarkably up to

the start of failure where the analysis overestimates deflections. This could be a

result of an underestimated yield stress of the steel.
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In a retrospective analysis Franssen et al (1993) attempted to analyse this frame

using different values for the yield stress. The value of 408ATimm 2 gave the nearest

correlation with experimentally observed deflections (Fig. 4.33).

4.6 Conclusions

All the aforementioned validations give a high degree of confidence about both

the formulation used herein for a three-dimensional element and the correct imple-

mentation of this formulation in program 3DFIRE. The proven capability of the

analysis to account for moderately large deformations is another desirable advan-

tage in analysing structures in fire conditions. Having established confidence in the

software, it will be used in the following chapter to carry out an extensive study

on columns as isolated structural members and within framed structures under fire

conditions.
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5.1 Introduction

The strategy that was adopted for this parametric study was to try to find gener-

alised conclusions concerning columns in fire. The particular position of a column

in the structure has a profound effect on its behaviour whether at ambient tem-

perature or at elevated temperatures. Consequently, in this study an attempt will

be made to consider all possible factors that effect columns' capacity in fire as iso-

lated structural elements. Once this task is accomplished, columns can be looked

at again as a part of the framed structure. Another aspect that needs consideration

is the state of temperature within the structural element and its effect on struc-

tural performance. Columns that undergo a uniform thermal distribution across

their sections are expected to respond differently from columns with non-uniform

distribution.

5.2 Assumptions

In order to keep the following studies as consistent as possible certain assumptions

had to be made. The intention of this study was to address practical columns in

fire conditions. Hence there is a need to use specified design guidelines in deciding

the loading and imperfections under which the analysis can be performed. In an

attempt to achieve this, the following assumptions were made in the following

studies:

• The value and the form of imperfection are imposed on all columns in accor-

dance with BS449. This means that all imperfections that exist in a column

can be replaced by an initial out-of straightness. The value of this imperfec-
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tion can be obtained from any code of practice. The reason for adopting the

value from BS449 was that BS449, although outdated, offered a universal

value of imperfection for any column, unlike BS5950 or EC3 where different

values are quoted for different sections and axes of buckling. Furthermore,

the European standard EC3, which is very likely to replace the current British

standard BS5950, states that Curve c should be used for fire design purposes

for all columns. Curve c provides a value of imperfection almost exactly the

same as BS449. In any case, comparisons between various curves of BS5950

and BS449 are made later in this chapter.

• Initial out-of-straightness is imposed about both principal axes of the column.

• Applied load on any column is expressed as a percentage of the ultimate

load according to BS449. Although the concept of ultimate load is not used

in BS449, it is defined in this study as the load at which the first yield is

reached when the BS449 value of imperfection is imposed on the column.

This point was made to avoid using permissible stresses, a procedure that is

not suitable for analytical studies.

• The value of the yield stress of steel was assumed to be 250 N/mm2.

• The analyses were performed assuming full three-dimensional behaviour. In

other words columns are allowed to translate, rotate, twist and warp at

any intermediate point over the column length. At supports translational

displacements, twist and warping were restrained.

• Continuous stress-strain characteristics for steel at elevated temperatures,

as expressed using a Ramberg-Osgood equation, are used. The reason for

adopting this model will be discussed in the next section.
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• 'Failure' is reached once the determinant of the stiffness matrix assumes a

non-positive value. In this case the value of the increment in temperature is

reduced and the analysis is resumed until the increment value is 'sufficiently'

small. 'Failure temperature' is quoted as the last temperature before sin-

gularity in the stiffness matrix is achieved, provided that the temperature

increment assumes the value of 0.2°C. If the temperature increment is larger

than this value, the increment is refined until the condition is achieved.

These assumptions are used in all the following studies unless otherwise stated.

5.3 Effect of Stress-Strain Models on Columns'

Failure in Fire

A wide range of simplified models of stress-strain characteristics for steel at elevated

temperatures are available (Chapter 1). The first issue to be settled before per-

forming this parametric study was as to which of the available stress-strain models

could be used to produce reliable results. To test the validity of the stress-strain

models with respect to column failure in fire, almost all of them were implemented

in combination with a range of columns with different slenderness ratios. For each

stress-strain model, 21 columns were analysed starting with slenderness ratios of 5,

10 and then increasing in increments of 10 up to 200. Although very low and very

high slenderness ratios are hardly practical, it was considered proper to include

them in order to keep the study as comprehensive as possible.

A UC 203 x 203 x 52 was chosen for all slenderness ratios, and the length was

varied to produce the required slenderness in each case. Each column was loaded
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to 60% of its ultimate load according to BS449. All columns were assumed to have

imperfection (initial out-of-straightness) about both axes according to BS449.

Failure temperatures were plotted against slenderness ratio in every case (Figs. 5.1

and 5.2). The failure temperature curves for the bilinear stress-strain models

(Fig. 5.1) look almost the same in shape. The failure temperatures have the char-

acteristic of ascending from low slenderness ratios up to the point of intersection

between Euler and Squash curves, after which the curves generally go flat. This

reflects the fact that most bilinear models tend to decrease the value of yield stress

at a higher rate than elastic modulus with increase of temperature. By fixing the

yield strain for all temperatures, as is the case in the Ramberg-Osgood bilinear

model, the failure temperature curve becomes almost flat. Fixing the yield strain

means that both strength and stiffness are decreased at the same rate with tem-

perature. The failure curve produced using Furumura's model differs from the rest

due to its "plastic" portion having non-zero slope. This explains the higher failure

temperatures at very low slenderness ratios in these cases, where the material was

allowed to have some stiffness after yielding. The same can be said about the

results of using a trilinear approximation of the EC3 model (Fig. 5.2), for which

failure temperatures were considerably lower because the assumption of a lower

level of first yield resulted in reduction of both strength and stiffness for the whole

range of slenderness ratios.

Regarding the shape of the failure temperature curves, none of the bilinear models

used were capable of predicting the failure shape produced by the experimentally-

based model (Ramberg-Osgood). Using another experimentally-based stress-strain

model such as that of EC3, has produced more acceptable comparisons. Fig. 5.2

shows these results.
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A selected number of temperature-deflection curves are plotted on Figs. 5.3, 5.4,

5.5, 5.6, 5.7 and 5.8 as an example of the actual behaviour in each case. Columns

of slenderness ratios 40, 90, and 150 were chosen for this purpose. It is clear from

the temperature-deflection curves for all the cases that the columns have failed

by buckling about their minor axes, as would be expected for the case of uniform

heating. It can also be observed that deflections for all cases are similar at low

temperatures, or in the region of what can be thought of as "elastic" behaviour,

regardless of the stress-strain model. At higher temperatures bilinear or trilinear

models exhibit small deflections compared with the continuous models. This is a

reasonable consequence of the material losing its stiffness instantaneously in the

multi-linear models, compared with the gradual loss of stiffness in continuous mod-

els.

The most obvious conclusion from Figs. 5.1 and 5.2 is the fact that bilinear mod-

els failed to produce a similar variation of failure temperatures compared with

the experimentally-based models. Consequently a decision was made to use the

continuous Ramberg-

5.4 Isolated Columns

In this section various aspects of isolated column behaviour will be studied. The

effect of imperfection always has a dominant role in column studies at ambient

temperatures. This effect is second only to that of slenderness ratio. As a result it

was decided to look at important imperfections along with other aspects such as

end conditions. In all cases every factor is studied over a wide range of slenderness

ratios. In the following sections a uniform temperature distribution over the length

Osgood model for the rest of this study.
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and across the section of the column will be assumed. Once various aspects of uni-

formly heated columns' behaviour have been studied, columns subject to thermal

gradients will be considered.

5.4.1 Effect of Initial Out-of-Straightness

Another set of analyses has been carried out for the same columns without in-

troducing any imperfection to them. Loads were assumed to be the same for

both perfect and imperfect columns (60% of ultimate load to BS449), and the

Ramberg-Osgood model was used to represent the change of stress-strain charac-

teristics. Failure temperatures were the same for perfect columns as for imperfect

columns at low slenderness ratios, while higher failure temperatures were evident

for perfect columns at intermediate and high slenderness ratios. It is clear that,

both at ambient and elevated temperatures, the intermediate and high ranges of

slenderness ratios are more affected by imperfections than the low range. Whether

for perfect columns or imperfect ones, the relative reduction of failure tempera-

tures is evident in the intermediate range of slenderness ratios. This phenomenon

resembles that for imperfect columns at ambient temperature where the reduction

of the axial load-capacity is larger in the same range. Failure took place by buck-

ling about the minor axis for all columns considered in this case.

To assess the effect of reducing the value of the initial imperfection on failure tem-

peratures half the BS449 value was assumed and analyses were conducted for the

same range of slenderness ratios. Applied loads in all columns were assumed to

be the same for each slenderness ratio regardless of the amount of imperfection.

This implies that perfect columns, for example, effectively carry a lower load ratio

than imperfect columns though they carry the same load. In any case, design
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loads are calculated based on the imperfection value specified by the Code rather

than the actual value. Results of these analyses are shown on Fig. 5.9. along with

the perfect case and the fully imperfect case to BS449. These results illustrate

clearly the effect of imperfection on failure temperatures. Halving the imperfec-

tion produced critical temperatures almost half-way between the perfect and fully

imperfect cases.

5.4.2 Effect of Axis of Imperfection

If initial out-of-straightness is imposed about one axis only while the other axis

is left perfectly straight, keeping in mind that all columns buckled about their

minor axis, it is to be expected that columns with minor axis imperfection will

fail as those with imperfections about both axes, while columns with major axis

imperfection will fail as perfect ones. To test this assumption two sets of columns

were analysed and compared with columns from the pervious section.

Results of these analyses, which are shown on Fig. 5.10, support this assumption

and illustrate the sensitivity of column failure to initial imperfection. Again all

columns failed in this case by buckling about the minor axis.

5.4.3 Effect of Load Ratio

By varying the load ratio as a percentage of the ultimate load to BS449, the effect

of load ratio on failure can be observed. The same 21 columns were analysed for

load ratios of 20, 40, 50, 60, 70 and 80% of the ultimate load to BS449. Failure

temperatures for columns loaded with different ratios are shown on Fig. 5.11. It is

fair to conclude that the relationship between failure temperature and load ratio
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for a given slenderness ratio is linear up to a load ratio of 60%. Beyond this load

ratio the linearity is generally lost.

The case of a load ratio of 65% was considered, to establish where the non-linear

relationship between load ratio and failure temperatures starts. The failure tem-

perature curve corresponding to the load ratio of 65% shows that this linearity is

still maintained for most of the range except for slenderness ratios between 40 and

110.

It seems clear that 60% load ratio is the upper bound beyond which the effect

of load ratio starts to magnify the reduction in failure temperatures for columns

within the intermediate range of slenderness, as can be seen from the 65% load

ratio case. This magnification of the effect of load ratio spreads to a wider range

at both ends of the intermediate range of slenderness at higher load ratios as can

be seen from the 70% load ratio case. In any case, loads beyond the ratio of 60%

are not expected to be found in real constructions and going beyond this level can

be regarded as a purely academic exercise. As a result the failure temperature

for any practically-loaded column can be linearly interpolated between any known

failure temperatures at given load ratios for a known slenderness.

All columns analysed for this load ratio effect have failed by buckling about their

minor axes. All columns were assumed to have both their principal axes initially

imperfect to the BS449 value.

5.4.4 Effect of End Conditions

To establish the effect of end conditions, a well established case of clamped-ended

columns was considered. The applied loads were the same as for the pinned-ended



Chapter 5: Parametric Studies 	 131

columns (60% of the ultimate load to BS449). The length of the fixed-ended

columns was considered to be twice the length of the simple ones, assuming an

effective length of half the actual length. Initial out-of-straightness was imposed

on the pinned-ended columns in the form of a half sine wave. To arrive at an

equivalent imperfection for the fixed-ended columns the same half sine wave was

imposed on the middle half of the column length while a quarter of that wave was

imposed on both end quarters of the column length. This arrangement gives the

fixed-ended column an initial shape as shown on Fig. 5.12.

Results shown on Fig. 5.12 illustrate clearly that the difference in failure temper-

atures between the cases is trivial. This comparison shows clearly that, once the

effective length is defined from the end conditions, the slenderness ratio becomes

the prominent factor in deciding the failure temperature regardless of the end con-

ditions. This observation is similar to that for columns at ambient temperature,

where the end conditions are used just to define the effective length. Unfortunately

the effective length is more difficult to establish for practical cases such as those

in multi-storey frames, contrary to the analytically-clear case of clamped-ended

columns.

5.4.5 Effect of Residual Stresses

The existence of initial residual stresses in hot-rolled and welded structural mem-

bers is a well-known phenomenon. These stresses result from the cooling process

during manufacture or fabrication, where different parts of the cross-section lose

heat at different rates. Although in self-equilibrium, residual stresses are added to

the internal stresses due to loads, and contribute to failure at lower loads as a re-

sult of the material at certain parts of the cross-section reaching yield earlier. The
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current practice in Europe is to include their effect implicitly in the design codes

as a part of the initial out-of-straightness. This is not necessarily the case in other

countries; in the United States for example some design codes place a great em-

phasis on the residual stresses rather than initial out-of-straightness. This means

that there is a need to investigate their influence on columns under fire conditions.

Initial residual stress patterns were added to the perfect columns of the previous

section, A linear distribution of residual stresses was assumed and three values of

peak residual stresses (1/6, 1/3 and 1/2 of the yield stress at ambient tempera-

ture) were considered. The effect of the initial residual stress patterns on failure

temperatures is shown on Fig. 5.13. All columns considered in Fig. 5.13 have no

initial out-of-straightness and residual stresses are the only imperfections imposed

on them. These results show the effect of residual stresses as an isolated factor

on columns failure at elevated temperatures. They contribute to the reduction of

failure temperature, especially in the intermediate and high ranges of slenderness.

Their effect on the low range of slenderness can hardly be visualised on the graph.

This effect has produced failure curves of comparable shape as that produced by

initial out-of-straightness, for all levels of residual stress. The only exception is the

extremely high level of residual stress (0.5 o-y ), at which disproportionate reduction

in the failure temperature is evident between slenderness ratios 60 and 120.

So far the effects of two different types of imperfection have been studied sepa-

rately. Hence, it is necessary to investigate the effect of combining both types

of imperfection on column failure in fire. If the initial out-of-straightness accord-

ing to BS449 is added to the residual stresses the effect of this combination is as

shown on Fig. 5.14. Adding more imperfection to the columns reduced the failure

temperature further, with the greatest effect of this combination of imperfections
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exhibited in the intermediate slenderness range. It can also be noticed that this

disproportionate reduction in failure temperatures spreads at both ends of the in-

termediate range if the amount of imperfection is increased.

It was thought that some combination of these two prominent imperfections which

is equivalent to the initial out-of-straightness might exist, confirming the old Perry-

Robertson assumption of regarding all imperfections as a single initial out-of-

straightness. An attempted combination consisting of half the initial out-of-straightness

and a residual stress pattern of the value 1/6' of the yield stress was analysed.

Results of this case along with all other residual stress cases are plotted on Fig. 5.15

for comparison purposes. This attempted combination shows reasonably good cor-

relation with the full BS449 initial out-of-straightness for all slenderness ratios and

gives almost exactly the same results up to a slenderness ratio of 80, after which

differences are still small. This shows that the Perry assumption of regarding all

imperfections as an initial out-of- straightness can be justified for columns under

elevated temperatures.

Sample temperature-deflection curves for a column of slenderness ratio 90 are

shown in Fig. 5.16. Deflections for various residual stress levels exhibit the same

behaviour as in ambient temperature cases where the applied load is increased

instead of the temperature. Deflections in what can be thought of as the 'elastic'

range assume almost the same value regardless of the residual stress level. The

only effect of residual stresses on the temperature-deflection history is to reduce

the level at which excessive deformations take place, leading to earlier failure.
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5.4.6 Columns Under Thermal Gradients

All the previous studies were concentrated on uniformly-heated columns. This is

not necessarily the case for all columns that undergo a rise in temperature in a

real fire. Even in an experimental environment it is almost impossible to produce

an exactly uniform pattern of temperature for columns or any other structural

members.

The temperature distribution across the cross-section of a steel column may as-

sume a variable profile due to the presence of fire-resistant partitions. In construc-

tion practice, such partitions are frequently placed between the flanges of columns

causing a thermal gradient in fire situations. Hence, it is necessary to investigate

whether the effect of thermal gradients has the same impact on the fire resistance

of such columns or a different one. Although columns under thermal gradients are

expected to exhibit different structural behaviour from uniformly-heated columns,

the main interest in the following study is to assess whether this effect is beneficial

or adverse.

5.4.6.1 Major Axis Thermal Gradients

Experiments on columns with walls built between their flanges have shown that

the ratio between temperatures of the protected and the exposed flanges is in the

range of 1:10. Fire tests were carried out by British Steel Corporation (1987) in

which columns were constructed within block/brick walls with one side of the col-

umn exposed to fire. Temperature distributions across the tested sections show

that this ratio is acceptable. Thermal analysis results illustrated in Chapter 2

(Fig. 2.1) show also that this ratio compares well with numerical predictions. To
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assume a lower ratio was regarded as improper, due to the consequent assumption

of a constant temperature (20°C) for almost the whole process of heating up to

failure; an assumption which would be highly impractical.

The same range of columns was analysed assuming a linear thermal gradient across

the cross-section with the cool flange having 10% of the hot flange temperature but

not less than 20°C. All columns were loaded to 60% of their ultimate load accord-

ing to BS449 and imperfections were applied about both principal axes according

to the same Code. Initial out-of-straightness was applied in the same direction as

the thermal bowing in order to ensure that the cases considered are 'worst' cases.

Results of these analyses compared with the uniform-temperature case are shown

on Fig. 5.17. If the thermal gradient is reduced towards the uniform case the gradi-

ent curves should converge to the uniform one. Another four sets of analyses were

performed for that purpose, results of which are illustrated on the same figure. It

is clear from this figure that at a cool:hot flange ratio of 8:10 the gradient curves

start to converge to the uniform-temperature curve.

To establish the reason for the unusual shape of the temperature gradient curves,

especially those with high gradients, compared with the uniform-temperature curve,

three columns of different slenderness ratios were selected to illustrate their temperature-

deflection history (Figs. 5.18, 5.19 and 5.20). It seems that columns of different

slenderness ratios have different characteristics in terms of a tendency to reverse

their direction of deflection before failure. One can conclude that columns within

the descending part of the curve (slenderness ratio between 5-30) exhibit full de-

flection reversal with respect to axial expansion and thermal bowing deformation.

Fig. 5.18 shows clearly that thermal bowing reversed direction completely on the

threshold of failure. Columns within the ascending part of the failure curve (slen-
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derness ratio between 40-60) reverse these deflections to some extent but without

going beyond the initial configuration at ambient temperature. All columns within

the second descending part of the curve (slenderness ratio above 60) do not exhibit

any deflection reversal. This phenomenon of thermal bowing reversal has been ob-

served in column tests under thermal gradient. Although it is being predicted in

this study by a finite element analysis, it is still possible to understand it using

the Perry approach developed in Chapter 2. The thermal gradient causes thermal

bowing which contributes to the rise of deflections in the direction towards the fire

source. At the same time the centroid of the section shifts in the opposite direction

due to the non-uniform loss of stiffness across the section. Keeping in mind that

the axial load is still applied at the original centroid (mid-web), this shift intro-

duces a load eccentricity that causes deflections in the opposite direction to the

thermal bowing. It seems that deflections due to this load eccentricity, although

contributing to the reduction of the rate of thermal bowing in all cases, become

the dominant part of the deflections before failure, especially for stocky columns.

It is notable that all columns with major axis gradients failed in a mixed mode,

with all the three prominent mid-length deformations increasing excessively on the

threshold of failure. Apart from columns with slenderness ratio higher than 150

and with 1:10 flange temperature ratio, all other columns failed at higher temper-

atures compared with uniformly heated columns. The failure temperature of the

small number of columns with slenderness ratio above 150 is clearly not very far

from the failure temperature of the uniform case.
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5.4.6.2 Minor Axis Thermal Gradients

Though it is practically difficult to envisage situations where columns undergo

thermal gradients across the minor axis, it was decided to undertake a similar

study considering minor-axis gradients for the sake of completeness.

The same set of columns was used for this purpose with thermal gradient across

the minor axis of the column. Initial out-of-straightness is applied about both

principal axes and in the same direction as the thermal bowing. Six different tem-

perature ratios (1:10, 2:10, 5:10, 7:10, 9:10 and 9.5:10) have been considered. The

temperature ratio in this case represents the ratio between the extreme fibres of the

flanges and the temperature of the web assumes the average value of temperatures

at the extreme fibres.

Results of this study are shown on Fig. 5.21 along with the uniformly heated case.

It is still clear that stocky columns with minor-axis thermal gradient have much

higher fire resistance than the uniformly heated columns. This is true for columns

of slenderness ratio less than 50. The significantly low failure temperatures for

columns with high thermal gradients and high slenderness ratios is not surprising.

The fact that the cool flange in the major-axis case retains a considerable fraction

of the column's stiffness is in sharp contrast to the minor-axis case, where a neg-

ligible part of each flange remains stiff.

Figs. 5.22, 5.23 and 5.24 show the temperature-deflection history for three columns

selected across the slenderness range for 1:10 temperature ratio. The behaviour of

the column of slenderness ratio 20 shows reversal of thermal bowing and axial ex-

pansion unlike the other two columns of slenderness 50 and 80. It is clear that the

reversal of thermal bowing allowed the stockiest columns with minor-axis thermal
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gradients to sustain much higher temperatures.

5.4.6.3 Columns with Biaxial Thermal Gradients

Two sets of analyses for the same range of slenderness ratios were carried out to

consider more general situations for columns experiencing thermal gradients. As-

sumed temperature profiles for each set are shown on Fig. 5.25. These profiles

assume that a column with a flange exposed to fire will have a thermal gradient

across its major axis. The temperature ratio of the protected flange is expected

to be of the order of 10% of that of the exposed flange. While it is reasonable to

assume that no significant gradient will take place across the minor axis, it was

decided to investigate the effect of having a small gradient across the minor axis; a

situation that might be more general than assuming no gradient at all. The ratio

of the temperatures of the extreme fibres of the flanges was taken to be 95% and

90% in two separate sets of analyses. The reason for performing these anaiyses

was to attempt a more realistic simulation of practical columns embedded within

walls in fire conditions. A high thermal gradient across the major axis is expected

in this case while a small variation in temperature across the minor axis is also

expected.

The results of these analyses are shown on Fig. 5.25 along with the previous results

for uniform temperature and major-axis gradient for the purpose of comparison.

It is clear from the illustrated results that columns with biaxial gradient will fail

at temperatures somewhere between the failure temperatures for single-axis gradi-

ent when each temperature gradient axis is considered separately. Fig. 5.25 shows

clearly that adding a small minor-axis thermal gradient contributed to higher fail-

ure temperatures compared to uniformly heated columns and even to columns with
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major-axis thermal gradient. This is evident for columns with slenderness ratio

between 5 and 60. For the rest of the range of slenderness adding the same minor-

axis thermal gradient contributed to lower failure temperatures compared to the

major-axis case.

Figs. 5.26, 5.27 and 5.28 show the temperature-deflection history for three columns

of different slenderness ratios. Temperature-deflection characteristics are very sim-

ilar to those of the major-axis case (Figs. 5.18, 5.19 and 5.20). Columns with slen-

derness ratio between 5-30 show full deflection reversal with respect to thermal

bowing while columns between 40-60 slenderness show deflection reversal that did

not going beyond the initial position of the column. The rest of the columns with

slenderness higher than 60 show no deflection reversal.

It should be pointed out that all columns considered in all thermal gradient studies

have unrestrained out-of-plane behaviour. In practice, columns subject to thermal

gradient are very likely to be embedded within walls. These walls constitute an

effective restraint against out of plane buckling which implies an even better fire

resistance for such columns.

5.4.7 Effect of Cross-Section

All the studies in the previous sections were carried out using a single Universal

Column cross-section from the British Steel tables. Different slenderness ratios

were obtained by changing the columns' lengths. It is necessary, for the sake of

completeness in this study, to consider whether the use of different cross-sections

from the tables causes different behaviour. To avoid extensive repetition of work,

three slenderness ratios were selected for re-analysis, using various cross-sections
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selected across the table. All the sections selected were analysed for cases of both

uniform and non-uniform temperature profile.

Fig. 5.29 shows the failure temperatures for 10 columns heated uniformly and

loaded to 60% of their capacity to BS449. Slenderness ratios of 30, 80 and 130

have been considered as a good sample of the practical range of slenderness ratios.

The failure temperatures of the UC203 x 203 x 52, which has been used for all the

previous studies, are represented as a reference temperature by the broken line on

Fig. 5.29. The scatter of failure temperatures when other sections are used can be

seen to be extremely small.

The same exercise has been carried out using the same assumptions with the

exception that a thermal gradient has been applied across the major axis of all

the columns (Fig. 5.30). Failure temperature variations in this case, although

higher than the uniform case especially for intermediate and high slenderness ratios,

are still clearly acceptable. The variations in failure temperature for the stocky

column (slenderness ratio 30) are clearly very small and compare better with results

obtained by using the reference column.

5.5 Columns Within 3-D Subframes

In steel construction it is a common practice to use one column section over sev-

eral storeys despite the fact that successive smaller columns could carry the applied

loads at different levels. This practice is quite sensible in order to facilitate the

construction procedures, to reduce the piece-count and to offset excessive connec-

tion cost if different sections were used. This fact makes it worthwhile studying

the effect of continuity into cool storeys on the fire resistance of such frames, an-
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ticipating better fire resistance especially for columns in higher storeys which are

bound to carry reduced load ratios.

5.5.1 Uniformly Heated Columns Within Subframes

In the following study, three-storey subframes are used with the same column sec-

tion and height for all storeys. The storey height was varied between subframes

in order to obtain different slenderness ratios, while the section UC203 x 203 x 52

was again used in all the subframes. The same section (UB406 x 178 x 74) and

length (6m) were used for beams meeting the column at each floor level in all

subframes. This arrangement resulted in a lower storey column loaded to 60%,

the middle column loaded to 40% and the upper-storey column loaded to 20%, of

capacity. The reason for keeping the beams the same for all cases is to ensure that

the column parameters are the only variables in this study. For the same reason

all beams were kept at ambient temperature in all the following analyses. Equal

loads have been applied at the mid-span of the beams at all floor levels so that the

lowest column carries 60% of its ultimate load to BS449. Assuming full symme-

try with adjacent bays, the analysis has been carried out using half the spans of

the beams with restrained rotations and unrestrained vertical displacements. To

study rigidly-connected frames beams were introduced as described above. In the

simply-connected frames the beams were removed, and columns were restrained in

position and unrestrained in direction at each floor level. This arrangement was

used as a result of the present analysis being capable of handling only rigid frames.

First the lower column, which carries a constant load of 60% of its ultimate load
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was heated uniformly. Failure temperatures for both cases of simple and rigid

connections are shown on Fig. 5.31 along with results of the isolated case consid-

ered previously. The difference between failure temperatures of simple and rigid

subframes is very small; about 30 degrees for the most slender column and almost

zero for the stockiest one. Nevertheless, there is a remarkable improvement of the

fire resistance of the columns in the subframe compared with the isolated ones,

which ranges between 30°C and 70°C.

The same subframes were also analysed heating the middle-storey column which

carries 40% of its ultimate load. Failure temperatures for this case are shown on

Fig. 5.32, which shows an even better improvement; an increase in the failure tem-

perature of 40°C — 120°C compared with isolated columns that carry the same

loads.

The third set of analyses has the upper column heated and carrying 20% of its

ultimate load. The difference in failure temperatures can hardly be seen when

comparing the simply and rigidly connected cases shown in Fig. 5.33. Neverthe-

less, the same improvement can be seen when comparing isolated columns and

subframes carrying the same loads.

Results from all the three cases are plotted together on Fig. 5.34, fiom which a

rise in failure temperature of the order of 120°C is evident between the higher and

lower-storey fires.

Temperature-deflection curves for three columns with slenderness ratios of 20, 70

and 150 are shown on Figs. 5.35, 5.36 and 5.37 for the simply connected subframe

case. Similar curves for the rigidly connected case are shown on Figs. 5.38, 5.39

and 5.40. All columns on Figs 5.35-5.40 are loaded at the 60% level. It is diffi-
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cult to see any real difference in the deflection histories of columns with the same

slenderness but different connections, a fact that was reflected in the similarity of

failure temperatures. It is clear from the deflection curves that all columns failed

by buckling about their minor axes, though the reversal of the axial expansion is

prominent at low slenderness ratios and less visible at higher ratios.

The obvious observation is that columns with reduced load ratios, an inherent fea-

ture in multi-storey buildings, exhibit better fire resistance.

The most important observation is the enhanced fire resistance of framed columns

compared with identical isolated columns. This phenomenon can be explained in

the context of the additional end restraints provided by the cool column or columns

at unheated levels. This additional end-stiffness acts almost as a rigid boundary

to the heated column. This effect can be seen if the deflected shape of the column

is plotted. Fig. 5.41 shows the deflected shapes of three columns of 20, 90 and

150 slenderness ratio at various stages in the heating scheme. While the deflec-

tion of an isolated column assumes a sinusoidal shape, the framed columns show

a completely different shape towards the threshold of failure. The clear points of

contraflexure within the heated column indicate the amount of stiffness provided

by the cool columns, to the extent that the heated column can be thought of as

fixed-ended. This clearly means that the slenderness ratio of the heated column is

considerably reduced, providing it with extra stiffness. The extent of this reduc-

tion will be considered later in this study.

The apparent conclusion is that this improvement in the fire resistance of framed

columns is mainly the result of the cool columns rather than the beams. When the

beams are removed altogether, as in the simple-connection case, the resulted re-

duction in the column fire resistance can be seen to be minimal and confined to the
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high slenderness range. This very small contribution of the beams to the overall

stiffness of the assembly can be misleading. The reason for this is the existence of a

theoretical upper limit in terms of the reduction of the heated column slenderness

ratio. Once the cool columns have provided the heated column with an extra end-

stiffness to give it a slenderness ratio of nearly half that of an isolated column with

the same length, the connecting beams can add very little to the heated column

stiffness. The beams' contribution can increase the column's fire resistance only

within the high range of slenderness ratio. Nevertheless, to assess the influence

of the connecting beams on the column capacity, a larger beam-section and two

smaller beam-sections were used with some columns of high slenderness ratio and

the same cases were re-analysed. Different beam sections (UB533 x 210 x 92),

(UB356 x 171 x 51) and (UB305 x 165 x 46) have been used to replace the orig-

inal beam section (UB406 x 178 x 74) . These beams have moment capacities of

approximately twice, half and one quarter of the original beam respectively. In

all cases the increase or reduction in failure temperature due to using stronger

or weaker beam sections can hardly be seen, as illustrated in Fig. 5.42. Results

obtained by using various beam sections confirm clearly that the beams are not

capable of providing significant extra stiffness to the heated column.

To assess the effect of the connecting beams separately the same columns were con-

sidered to be connected to beams only, as shown in Fig. 5.43. Failure temperatures

of this new assembly compare well with results obtained from the full assembly.

This shows clearly that rotational restraint can be provided to the heated columns

either by the continuity of the column or by rigidly connected beams. However it

is obvious that whatever the stiffness of the assembly might be, it can only restrain

the heated column up to the point of decreasing its effective length to nearly half

its actual length. The exact amount of the reduction in slenderness of continuous
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columns will be considered later in this chapter.

It is noticeable in the case of beams connected to an isolated column that the

failure temperature at high slenderness ratios (120 and 150) is slightly higher than

that of an identical assembly with the upper and lower columns included. The

immediate conclusion about the result of adding extra columns to the assembly is

that it is bound to increase the overall stiffness of the heated column. This could

be true if the additional columns function as an additional stiffness provider to the

heated column. Actually the additional columns also influence the heated column

in another way. In the case of an isolated column, the connecting beams can induce

no rotations to the heated column end due to the symmetry in the beams and the

applied loads. The upper and lower columns behave differently, by introducing

some rotation to the heated column as a result of their initial out-of-straightness.

The extent of the adjacent column rotation can be seen on Fig. 5.41 which shows

the deflected shape of the three spans of the column. In the slender range this be-

havioural pattern contributed to a slight increase in the failure temperature when

connecting columns were excluded. This not the case with stocky columns. Again

referring to Fig. 5.41 the deflected shape of the stocky column (A = 20) shows the

very limited rotations produced by unheated columns.

All the assemblies previously considered herein have one level heated while other

levels remain at ambient temperature. It is also worthwhile considering the effect

of having fire at all levels of the assembly, a situation that can take place in actual

spreading fires. The same set of columns with simple connections has been anal-

ysed with columns heated at all levels. The failure temperatures corresponding

to this case compared with the temperatures of the case of heated lower-column

and isolated columns are shown on Fig. 5.44. It is apparent that, when columns
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are heated at all levels, they exhibit lower fire resistance compared with that of

a heated lower column in isolation. Nevertheless, heating columns at all levels

showed much higher fire resistance compared with isolated columns. It is clear in

this case that the lower column which carries the highest load level is the critical

one, yet the middle-storey column is still capable of providing rotational restraint

to the lower column. Although the middle column is heated at the same tem-

perature as the lower column, its rotational stiffness is considerably higher than

the lower column due to its lower level of load. This effect produced a significant

increase in the fire resistance of the assembly compared with the case of isolated

columns.

5.5.2 Columns Within Subframes -Thermal Gradient

Isolated columns subject to major-axis thermal gradient have generally exhibited

better fire resistance compared with uniformly heated columns. Although it is ex-

pected that thermal gradients are bound to produce the same effect in multi-storey

assemblies, it is still desirable to investigate their influence on subframes. Columns

within subframes with the same specifications used in the previous section have

been analysed with thermal gradient about the major axis. Temperature distribu-

tion across the section is assumed to be linear with the cool flange temperature at

10% of the hot flange and with no temperature below 20°C. Only columns which

carry 60% of their ultimate loads have been re-analysed for this purpose.

Fig. 5.45 shows the failure temperatures for cases of both simple and rigid con-

nections compared with those for the uniformly heated subframes and for isolated

columns. This figure again shows a considerably higher fire resistance for most

columns within subframes compared with isolated columns under thermal gradi-
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ent.

Figs. 5.46, 5.47 and 5.48 show temperature-deflection histories for columns of three

slenderness ratios (20, 70 and 120) for the simply-connected case. The pattern of

behaviour is similar to that of the isolated columns. The stocky column of A = 20

sustains a rise in temperature up to the point where the axial and major axis dis-

placements reverse considerably. On the other hand the column of A = 70 showed

some reversal while the slender column of A = 120 showed no reversal at all.

A similar pattern of behaviour is evident for the same columns with rigid connec-

tions. Figs. 5.49, 5.50 and 5.51 illustrate the temperature-deflection history for

these columns.

5.5.3 Effective Length of Columns Within Subframes

So far loads have been calculated for all subframes assuming that the effective

length is equal to the actual length of the column within the subframe. This as-

sumption is hardly realistic, due to the fact that designers invariably allow for

some degree of restraint in multi-storey buildings by reducing the design effective

length.

To assess the effect of such assumptions in fire, the loads applied to columns need

to be adjusted to take into account the assumed effective length in design. For this

purpose, the same set of subframes has been re-analysed with the middle column

uniformly heated, and the applied loads have been adjusted for different assumed

effective lengths. For the simply-connected case, effective length ratios of 0.85,
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0.75 and 0.6 of the actual column length were considered. The failure tempera-

tures corresponding to these cases are shown on Fig. 5.52. The results from these

analyses show that any reasonable effective length such as 0.85 L produced higher

failure temperatures than isolated columns for all slenderness ratios. Even the

unlikely ratios of 0.75 L and 0.6 L produced higher failure temperatures for most

of the practical range of slenderness ratios. This is due to the increase in the axial

load-capacity of columns within the stocky range with reduction in slenderness

ratio being small compared with the same increase in slender columns.

The procedure has been repeated for the rigidly connected subframes for an effec-

tive length factor of 0.7 of the actual column length. Results from this are plotted

on the same figure, producing failure temperatures comparable to the simply-

connected case where an effective length ratio of 0.85 was used. Results from all

the above cases show that for low and intermediate slenderness ratios failure tem-

peratures are well above those of the isolated column case, even if an extremely

high degree of restraint was assumed in the load calculations.

The European code, EC3 Part 10 (1990), accounts for the assembly effect on the

fire resistance of columns by reducing the effective length of the column under

consideration. This reduction is conditional on considering each storey as a fire

compartment. As a result EC3 states that the effective length of column situated

in an intermediate storey can be taken as 0.5 of the 'system length' and for a

column on the top floor as 0.7 of the 'system length'. It should be pointed out

that this reduction in the effective length can only be used for the fire resistance

calculations. On the other hand BS5950 Part 8 (1990) does not account for the

assembly effect explicitly.

In order to compare this EC3 recommendation with results obtained from the
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present analysis, the following study has been undertaken. Isolated columns con-

sidered previously have been re-analysed with their actual length reduced to differ-

ent ratios of their original length. At the same time the applied loads corresponding

to the original effective length were retained. This reduction can simulate the re-

duction of the effective length of a column due to the assembly effect. Failure

temperatures obtained from these analyses are plotted in Fig. 5.53 for adjusted

lengths of 0.5, 0.6, 0.7 and 0.85 of the original length. Results obtained from the

subframe analysis for columns carrying the same loads are compared with above

results on the same figure. Loads applied at isolated columns correspond to 40%

of their ultimate load based on the full length of the isolated column. The sub-

frame loads correspond also to 40% of ultimate load as the middle storey column is

heated in this comparison. It can be seen that the subframe failure temperatures

coincide with those of columns with effective length factor of 0.5 in the slenderness

range below 40. Beyond this slenderness the subframe failure temperature curve

diverges progressively from the effective length factor of 0.5 to reach somewhere

between the 0.6 and 0.7 effective length factor curves. It is clear that it is very

difficult for slender columns to acquire enough end-stiffness to reach the upper

limit of an effective length factor of 0.5. The interactive nature of the relationship

between the heated and unheated columns within an assembly, as pointed out in

the previous section, simply does not allow this. While the heated column induces

extra rotations to the adjacent cool columns, the heated column undermines its

own beneficial stiffness from such columns towards the threshold of failure. Just

before failure it can be seen (Fig 5.41) that the slender cool columns are subjected

to considerable deformations.

The same exercise has been carried out for the lower storey column which, unlike

the middle storey column, has column continuity at one end only and carries 60%
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of its ultimate load. The isolated columns have reduced length as in the previous

case but carry 60% of their ultimate load. Results obtained from these analyses

are shown on Fig. 5.54. In this case the effective length of the lower storey col-

umn should assume the value of 0.7 of the actual length if it is assumed to be

fixed at one end and pinned at the other. Again it is clear that the ability of the

unheated upper column to provide full restraint at the upper end of the heated

column is limited to the stocky range. At the slender end of the curve the cool

column provided enough stiffness to the heated column for it to reach an effective

length factor of about 0.8 rather than 0.7.

5.6 Generalised Results

In this section an attempt has been made to produce easily understood results con-

cerning the fire resistance of columns. Engineers are used to thinking of column

failure in the context of Perry reduction to Squash-Euler curves. To produce simi-

lar curves for isolated columns in fire, a constant temperature has to be imposed on

columns while their applied loads are increased up to failure. Temperature profile

increments were set at intervals of 100° C, covering the range between 100°C and

700°C, resulting in seven curves that define the critical stress for any temperature

of the above range. The results of these analyses are shown on Figs. 5.55, 5.56,

5.57 and 5.58 using two styles of presentation and two values of yield stress.

The reason for using two values of the yield stress (250 and 350 N/mm 2 ) is to as-

sess the effect of changing this parameter, which was kept constant at 250 N/mm2

in all the previous studies. For this purpose the aforementioned results were re-

produced on a single graph by normalising the slenderness ratio. Fig. 5.59 shows
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no significant difference in the normalised critical stresses using either value of the

yield stress.

5.7 BS449, BS5950, EC3 and the Present

Analysis

BS5950 Part 8 is the first UK Code or Standard to deal specifically with the fire

resistance of steel structures. As a result it is worth while comparing predictions of

the present analysis with the Standard recommendations applied to steel columns

in fire. On the other hand, the BS449 criteria for column imperfections and first

yield loads at ambient temperatures have been used for simplicity in the previous

studies. This fact makes it appropriate to compare assumptions from both Stan-

dards with the present analysis. On the other hand it is widely accepted that the

current British Standard is very likely to be the last of its type due to plans to re-

place it by the European Standards in the future. It is thus reasonable to compare

the present analysis with the recommendations of EC3 in the fire context.

At ambient temperature, failure loads as specified by BS449 and BS5950 curves a,

b, c and d are shown on Fig. 5.60. These curves are produced using a Perry formula

with different imperfection parameters. Applied loads of 60% of the ultimate load

and initial out-of-straightness as recommended by both Standards were applied to

the same set of isolated columns used in the previous studies. All columns were

then heated uniformly up to failure and the failure temperatures compared with

the limiting temperatures as specified by BS5950 Part 8 in Fig. 5.61. The resulting

curves suggest two main conclusions. Firstly the Standard specifies unsafe failure

(limiting) temperatures for most of the range of slenderness ratios. Secondly, any
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increase in load-bearing capacity of columns at ambient temperature, and hence

in the applied loads suggested by BS5950 using different curves, resulted in lower

failure temperature for the columns concerned. This implies that any beneficial

increase in the load-bearing capacity of a column due to using a higher curve, for

example curve a, is offset in fire conditions by a lower failure temperature.

The apparently unsafe limiting temperatures can easily be explained. While columns

analysed in this study are isolated, the Standard is concerned with columns within

multi-storey buildings, which have shown higher fire resistance in previous studies

once they were placed within subframes. As a matter of fact the BS5950 limiting

temperature curve is derived solely from experiments. In these experiments only

isolated columns were considered, the boundary conditions of which were set de-

liberately to simulate columns within multi-storey buildings.

With respect to the second observation, although the analytical curves use the

accurate assumptions of BS5950, they were produced by using standard universal

columns. This is contrary to the assumption of BS5950 that other curves as well

as curve c apply to different sections and different failure axes.

Accordingly it may be appropriate to compare BS5950 limiting temperatures with

cases which correlate more accurately with the experimental conditions. In these

experiments as reported in the Compendium of UK standard fire test data by

British Steel Corporation (1987) the applied loads were calculated based on an

assumed effective length less than the actual length and end conditions were de-

signed to provide a considerable rotational stiffness to column ends. Fig 5.62

shows the failure temperatures of the subframes considered previously, compared

with BS5950 limiting temperatures. In this case the subframe columns are loaded

to 40% of their capacity based on an effective length factor of 0.85. As a result
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it can be seen that the limiting temperatures of BS5950 become more comparable

with the analytical results. The failure temperatures of the isolated columns which

carry the same level of load (40%) can still be seen on the same figure to be much

lower than the Standard limiting temperatures.

To compare the current analysis with EC3, the same set of columns considered pre-

viously is compared with 'critical' temperatures obtained from EC3 on Fig. 5.63.

Results obtained previously from subframe analysis are also compared on the same

figure, with EC3 critical temperatures modified to account for the assembly effect.

Again in both cases it is clear that EC3 results are on the unconservative side

compared with the analytical results.

5.8 Conclusions

The parametric studies undertaken in this chapter have shown the capability of

the developed software to produce meaningful results. Studies regarding isolated

columns are thought to be comprehensive in identifying the most important factors

which influence their fire resistance. As far as multi-storey columns are concerned,

the present studies provide a reasonable insight into their behaviour in fire though

not a conclusive one. The brief comparison with the recommendations of the

present UK standard can constitute a starting point for further consideration of

the methods of the considered Standards in concluding and presenting such rec-

ommendations.

Generalised conclusions and recommendations as suggested by this study will be

laid out in the next chapter.
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6.1 Introduction

The work presented in this thesis has been concerned with the development of a

numerical tool for the three-dimensional analysis of steel frames in fire conditions.

The analytical approach is based on the finite element method in which structural

members are modelled as beam elements. A computer program, 3DFIRE, based

on the developed model has been extensively validated against available analytical

and experimental results. The program has then been used to carry out various

studies on columns. The results of these have indicated the existence of consistent

patterns in the structural behaviour of columns in fire conditions. Such patterns

are valid both for isolated columns and for columns within frames.

6.2 Isolated Columns

Based on the large number of analytical results concerning the behaviour of iso-

lated columns in fire, valuable conclusions can be made. These conclusions can be

summarised as follows:

• Simplified bilinear stress-strain models for steel at elevated temperatures may

provide an adequate tool for design purposes, but they have proven not to

provide good accuracy in analysis. Hence, recourse to continuous models such

as Ramberg-Osgood or EC3 is necessary to perform more accurate analysis.

• The well-known column sensitivity to imperfections at ambient temperature

is still applicable to columns at elevated temperatures. Imperfect columns

lose part of their bearing capacity compared with perfect columns that con-

form to the 'Euler-and-Squash' curve. This loss is not constant; while columns
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with very low and very high slenderness ratio tend to lose the least, columns

in the intermediate range tend to lose most. This well-established fact at

ambient temperature still holds good at elevated temperatures. Failure-

temperature curves for columns, perfect or otherwise, have shown that columns

within the intermediate range of slenderness have exhibited less fire resis-

tance compared with stocky or slender columns. To different extents, this

phenomenon is evident whether initial imperfections are imposed prior to the

heating regime or not. This observation may allow the 'fire' to be thought

of as another imperfection.

• Initial out-of-straightness and residual stresses have a similar effect on the

failure temperatures of columns in fire. This effect can be arrived at by

applying both imperfections simultaneously or by applying them individually.

This shows clearly that Perry's assumption that all imperfections can be

replaced by an equivalent initial out-of-straightness, which has produced a

successful design analysis model for isolated columns at ambient temperature,

is still valid at elevated temperatures.

• Slenderness ratio and imperfection have been shown to be the most promi-

nent factors that influence the fire resistance of columns. End conditions,

although influencing the slenderness ratio, cannot be regarded as an inde-

pendent factor in the fire context, as is the case at ambient temperature. The

same conclusion can be drawn with respect to the nature of the cross-section.

It has been shown clearly that once the slenderness ratio of a column is de-

fined, it exhibits the same fire resistance under a given load almost regardless

of its cross-section.
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• The relationship between load ratio and failure temperature assumes a linear

pattern for columns loaded within the practical limits of design guidelines.

Fig. 6.1, which is a reproduction of Fig. 5.11, shows the linearity of this

relationship up to load ratio 60% for columns of different slenderness ratios.

Applied load ratios beyond 60% have no practical interest as it is incon-

ceivable that any column designed according to Standard will bear loads

exceeding this ratio, especially at the fire limit state.

• The fire resistance of uniformly-heated columns can usually be regarded as

a lower bound to that of columns heated otherwise. The fire resistance

columns with major-axis gradients have been seen to be higher than that

of uniformly-heated columns. The only exception to this statement is the

case of columns with minor-axis gradients and high slenderness ratios. Even

columns with minor-axis gradients and low slenderness ratio have exhibited

better fire resistance than uniformly-heated columns with the same slender-

ness ratio.

In any case, it difficult to think of practical cases where columns might un-

dergo large minor-axis gradients. On the other hand, the kind of major-axis

gradients which have proved to influence columns' fire resistance beneficially

compared with the uniformly-heated case are very likely to occur in fire sit-

uations where the column is embedded within fire-resistant walls.

Generally, the failure temperature curves produced in the previous studies for

uniformly-heated isolated columns subject to different load levels (Fig. 5.11) can

be regarded as an absolute lower bound. Almost all other column cases consid-

ered, such as those with thermal gradients, invariably exhibit better fire resistance

compared to the uniformly-heated case. Fig 5.17 illustrates this conclusion very
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clearly.

6.3 Columns within Frames

In modern steel structures, columns are as widely used within multi-storey con-

structions as in single-storey buildings. The existence of columns in multi-storey

structures presents certain difficulties in defining some essential parameters such

as the effective length and therefore the slenderness ratio. On the other hand, the

same fact presents certain opportunities, especially in terms of the fire-resistance

of such columns.

Although the number of analyses performed for columns within subframes was less

in extent than that of isolated columns, important and meaningful conclusions can

still be drawn from the analytical results. A column which is situated within a

braced framed structure is well-known to have higher axial load-bearing capacity

compared to an identical isolated column at ambient temperature. This assembly

effect, a term used in this work to describe the effect of the assembly on the fire

resistance of framed columns, has proven to have more influence in fire conditions.

Conclusions concerning this effect may be summarised in the following points:

• the assembly effect on the fire resistance of columns in fire has been shown to

enhance this resistance in all cases. This benefit can be provided to columns

either by the continuity of the column over several storeys or by connected

beams. The basic reason for this increase in the column's fire resistance

is the end-stiffness provided by other connected structural members of the

assembly, which reduces the column's effective length.
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• The extent of this effect depends on the column's slenderness ratio and on

the arrangement of structural elements within the assembly. It has been

shown that columns within the high slenderness range benefit less from this

effect. A column situated in an intermediate storey that can be regarded as a

fire compartment performs in a nearly similar way to a fixed-ended column.

However a column situated in the top floor or the ground floor with its lower

end pinned to the foundation performs similarly to an isolated column with

one of its ends fixed and the other pinned.

• Even if the storey in which the column is situated cannot prevent the fire

spreading to other storeys, and cannot consequently be regarded as a fire

compartment, the assembly effect can still enhance the fire resistance of

columns in such situations. The reason for this is the inherently different

load levels of columns in multi-storey buildings. It has been shown that

the upper column can provide significant end-stiffness to the critical lower

column due to its lower load level, even despite being subject to the same

temperature.

• The assembly effect has been shown to enhance the fire resistance of framed

columns subject to thermal gradients. Such columns exhibit a better fire

resistance compared to uniformly-heated columns. Thermal gradients have

the same influence on framed columns as on isolated columns. Consequently

failure temperatures obtained from the uniform-temperature case can be re-

garded as lower bounds to all failure temperatures.

• Whether framed columns are designed to carry loads based on an effective

length factor of 1.0 or otherwise, they exhibit significantly enhanced fire re-

sistance compared to isolated columns. In fact it is unlikely that designers
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would normally assume an effective length factor of 1.0 in multi-storey build-

ings. It is more likely that effective length factors of 0.85 or 0.7 would be

used. It has been shown that framed columns designed to carry loads based

on any reasonable effective length factor still have significantly higher fire

resistance than do isolated columns.

6.4 Codes of Practice

A limited number of studies has been undertaken to compare the present analytical

results with the recommendations of both BS5950 Pt. 8 and EC3 Pt. 10. As a

result, interesting preliminary conclusions can be drawn concerning the expected

conservatism of both Standards. The following conclusions can be regarded as

indicative rather than conclusive.

• BS5950 Pt. 8 'limiting' temperatures seem to considerably overestimate the

fire resistance of isolated columns in the normal slenderness range. This is

still the case, but to a lesser extent, with framed columns, for which the

Standard still overestimates their fire resistance over an important part of

the practical range of slenderness.

• The same conclusion seems to apply to the 'critical' temperatures of the

European Standard EC3 Pt. 10. Comparisons between the present analysis

and the Code have shown unconservative fire resistance estimates for both

framed and isolated columns.
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6.5 Perry Analysis and the F.E.M

The simplified approach developed in Chapter 2 can be regarded as a complement

rather than a substitute for the finite element analysis. Fig. 6.2 shows a compar-

ison between failure temperatures produced by a first-yield analysis (Perry) and

the finite element analysis using stress-strain characteristics of the ECCS bilinear

model and the Ramberg-Osgood continuous model. Perry results were also based

on using the ECCS model. It is natural for failure temperatures produced by the

first yield analysis to fall below those produced by inelastic analysis. On the other

hand first yield analysis produces results more comparable with those produced

using experimentally based stress-strain characteristics. Another study carried out

by Burgess and Najjar (1993) using Perry analysis has shown good correlation with

the large number of experimental results reported in Chapter 4 pp. 115-118. In

this study an attempt has been made to find a bilinear rationalisation of the EC3

continuous stress-strain characteristics. As can be seen on Fig. 6.3 the best corre-

lation with experimental data has been obtained by using the average of the upper

and lower yield stresses of EC3 in the first yield analysis.

The importance of Perry analysis is that it can be used as a means of understand-

ing the structural behaviour in fire based on elementary mechanics principles. This

is important for non-academics who need not have blind faith in results produced

by complicated numerical methods. On the other hand it may well be used, after

sufficient development, as a practical tool for design purposes.
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6.6 Recommendations

The developed analysis has been shown to provide robust and reliable finite element

solutions for columns in fire. Further developments based on the present analysis

can be summarised in the following:

• The capability of the developed software can be extended to study semi-

rigid connections as well as rigid ones. This can be done by one of three

methods. Spring elements which have a moment-rotation capacity based

on experimental data can be introduced to represent the connection semi-

rigidity. Another possible route is to develop the present beam element

to account for semi-rigidity at its end. This implies that a modification is

required to the present cubic shape functions to account for semi-rigidity.

A third route which could be explored is to introduce a physical element

to represent the actual connection. The connection after all is a physical

entity which consists mainly of bolts, plates and welds. Hence there is no

reason why such connections should not be modelled as they exist in reality.

Although the first method looks the easiest to implement, the third presents

a great opportunity to abandon the need for experimental input into the

analysis and restricts such input to validation and modelling purposes.

• The developed space transformation of coordinates (Chapter 3) allows the

extension of the present software to a full three-dimensional flooring system.

This can be achieved by the introduction of two-dimensional elements to

represent slabs in addition to the present one-dimensional elements. This

line of development requires considerable reformulation due to the current

formulation being based on open thin-walled section assumptions. These
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assumptions imply that normal strains are the prominent strain component

in defining the stress state of the structural element and hence the structural

behaviour of such sections. That may not be true in slab elements. In

structural elements where shearing strains contribute significantly to overall

deformations the inherent thin-walled assumptions, which neglect the effect

of shearing deformations, cease to provide a good representation of the actual

behaviour. Consequently shearing deformation may need to be included in

such developments.

• The present formulation, as can seen in Chapter 3, is highly non-linear.

Although this feature is beneficial in terms of the accuracy acquired by the

analysis, it may be a handicap in terms of the time required to analyse

extremely large problems. Hence is may be desirable to reduce the present

non-linearity, for example in developing the present software to accommodate

flooring systems.

One other possible development is to extend the present analysis to account for

composite beams. This development has already been accomplished in the context

of some analyses performed for a related research study (Najjar et al 1993; Najjar

et al 1994). Due to the fact that this development was not planned as a part of

this project, it will be illustrated briefly in Appendix A.
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A.1 Introduction

A full-scale testing facility has been made available for building research by the

construction of an eight-storey steel-framed structure at Cardington. This facility

will provide the opportunity to perform static, dynamic, explosive and fire tests on

a real structure (BRE 1993). Testing full-scale structures under fire conditions is an

expensive undertaking financially and a complicated one technically. Consequently,

in the run-up period before fire testing is undertaken in 1994-95 on the full-scale

eight-storey composite test frame at Cardington, it was thought prudent to carry

out a series of pre-test analyses in order to help in making the final decisions

concerning test arrangements. Provisional decisions had already been made about

the areas within the structure in which the compartments for the natural fires

should be located, but it is important that the structural behaviour in the fires

should cover a sufficient range of distortion to provide a fair test for numerical

modellers while not causing severe collapse to occur. One key parameter to which

a value needs to be set at this stage is the loading level at the floor above the fire

compartment, but it is also necessary to have predictions of behaviour in order to

design and position instrumentation. Research workers at BRE, City University,

Sheffield University and the Universite de Liege have been involved in the numerical

modelling work.

A.2 Problem Modelling and Program Validation

Prior to this work the program 3DFIRE had been developed for three-dimensional

analysis of rigidly-connected steel skeletons under temperature profiles caused by

fire conditions, and had been validated against a wide range of analytical and
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experimental work. The Cardington frame is a steel structure with composite

steel-concrete flooring. For this reason the analysis has been extended to include

composite beams, particularly to include concrete as a material. The develop-

ment of the composite beam element is described, followed by simple validation

examples.

A.2.1 Problem Model

As is illustrated in Fig. A.1 the steel I-section is divided into a minimum of twelve

segments to allow for a fairly detailed temperature profile to be introduced. A

concrete slab is connected to the top flange of the steel section, and this is divided

into a variable number of layer segments. To account for mesh or bar reinforcement

a single layer consisting of two segments is included within the concrete slab at any

required position. This arrangement allows the full three-dimensional effect of any

variation in temperature across the depth and the width of the slab. The elastic

centroid of the composite cross-section is calculated based on the transformed

section at ambient temperature using the modular ratios for the materials at zero

strain. At this centroid the single node at each end of the beam element is fixed.

A.2.2 Simple Validation Examples

To assess the proposed composite beam model a few simple examples have been

analysed to compare results from both the finite element analysis and basic struc-

tural mechanics principles. Fig. A.2 shows a cantilever composite beam subject

to an end moment causing tension on the concrete fibre of the beam. In order

to simplify the example no reinforcement has been used. The centroid of the un-
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cracked composite section lies just above the flange of the I-section, so that the

concrete would actually be almost wholly in tension over the whole length of the

beam, if tension could be sustained. The EC4 model for a concrete stress-strain

relationship has been used in this analysis, with zero strength and stiffness being

assumed in tension, while the steel is kept in the elastic range. In structural terms

this last assumption makes the analysis identical to that for a steel beam. If ver-

tical end displacement is calculated using the normal elastic formula v =

a result of 30.24mm is obtained, compared with 30.27mm produced by the pro-

gram. It is interesting to note that the program produced also an apparent axial

expansion of the beam, even though a tiny horizontal translation is expected in

the opposite direction. This phenomenon is consistent with the positioning of the

nodes at both ends of the elements at the uncracked composite beam's centroid,

just above the upper flange of the I-section. The program therefore calculates the

axial displacement of the upper flange rather than the centroid of the steel section.

The expansion indicated is therefore the strain at the node position multiplied by

the length of the beam. Strains and stresses predicted by the program are similar

to what would be expected from the steel beam alone.

In Fig. A.3 an axial tensile force has been applied to the free end of the same

composite beam in place of the moment. The same stress-strain relationship for

concrete as used previously has been used, resulting in an effective reduction of

the problem to that of a steel beam with an axial end force, applied eccentrically

from the centroid of its section. The normal representation of this case assumes an

applied end moment due to the eccentrically applied load, resulting in a reaction

moment at the support consisting of this moment plus that produced by the P—

effect. This solution is correct if all calculations are based on the assumption that

the reference axis coincides with the centroid of the steel section. On the other

2E1'21
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hand the program produces a reaction moment given by the P — A effect only. This

a reasonable outcome, since the program calculations are based on the composite

section's centroid as the reference axis, and converts to the usual solution if the

reference point is displaced by half the depth of the steel section. Again deflec-

tions, strains and internal stresses at the support, as indicated by the program,

are similar to those produced by hand calculations.

A.3 Stress-Strain Model for Concrete

The composite construction Eurocode EC4 (1992) suggests a convenient stress-

strain model for lightweight concrete, consisting of a hyperbolic curve for concrete

in compression. EC4 allows the use of up to 10% of the compressive strength of

concrete as a tensile strength. It also allows the use of a linear descending path

for the stress-strain curve after maximum stress has been attained. Four versions

(Fig. A.4) of the EC4 model have been incorporated in the analysis to assess their

effects in combination with the EC3 models for structural steel and reinforcement.

The concrete models are identical in their rising compression curves at any tem-

perature level, but vary in their treatment of post-ultimate compression and of

tension. The fixed-ended composite beam illustrated in Fig. A.4, with a point load

applied at mid-span, has been used to study these combinations. Axial movement

of one of the fixed ends is allowed, so that the case under consideration is kept

reasonably simple. Fig. A.5 shows the vertical (mid-span) and axial (end) displace-

ments of this beam as it is heated up to failure, using the four models for concrete

stress-strain characteristics. Deflections produced by all the models are clearly

very close and failure temperatures are impossible to separate. Fig. A.6 shows the

bending moment diagrams for models 1, 3 and 4 at selected temperatures. Model 2
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produced the same results as model 3 due to the fact that concrete in compression

never reached the descending path of the stress-strain curve. It is clear that the

hogging moment at supports is lowest for model 1 while a little improvement is

evident for model 3 as a result of the additional strength of some of the concrete in

tension. The initial value of hogging moment in case 4 was much higher due to the

additional strength of all the concrete in tension. These differences at ambient and

low temperatures disappear quickly at higher temperatures, producing effectively

identical distributions of moment at failure.

Model 3 has been selected as the concrete model to be used in the analyses, as

it offers a more realistic representation of concrete in tension than does model 1.

Model 4 has been ruled out because of numerical difficulties which are experienced

once concrete reaches its descending path in tension, forcing the use of very small

temperature increments and long run-times.

A.4 Analyses of the Cardington Frame

In order to obtain results which can be compared directly with those from other

workers, it has been agreed that common assumptions should be made about the

frame details and material stress-strain characteristics in fire. EC3 stress-strain

models for both structural and reinforcing steel in fire are used in the following

analyses. The EC4 model for light-weight concrete is also incorporated in the

analysis as described in Section A.3. The geometry and loading regime of the 2-D

section through the frame are shown in Fig. A.7. Fig. A.8 shows cross-section

details and a proposed heating scheme to be implemented in the analyses.

Two tests are planned to take place in compartments directly below Levels 4 and
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7, which stretch completely across the depth of the structure. In the following

analyses the pre-existing general load level (Fig. A.7) will be used with the excep-

tion of the heated levels (4 and 7) on which loads will be multiplied by factors of

1.0, 1.33, 1.78 and 2.22. This exercise has been proposed to order to bracket the

range of practical loadings at the heated level, in order to decide the actual load

level under which the fire tests will carried out.

Figs. A.9 and A.10 show the absolute vertical displacements of an outer column,

an inner column, and the mid-span points of the outer and inner beams for Level

4. The same information is shown on Figs. A.11 and A.12 for Level 7. In order

to attempt to separate beam and column behaviour it was decided also to plot

beam deflections relative to the average deflection of the columns at the beam

ends. These net deflections are shown in Figs. A.13 and A.14 for both Levels 4

and 7 for all the load cases. Figs. A.15 and A.16 show column head rotations

for all cases. It is noticeable that the column head rotation at Level 4 initially

exhibits a clockwise direction, and reverses direction as heating proceeds due to

the expansion of the beams, before resuming its original direction as the beams

become softer and deflect rapidly. At Level 7 the same phenomenon takes place,

but without the rotations reversing their direction. This is likely to be a result of

the different column sections and superstructure loadings at the different levels.

Figs. A.17 and A.18 show the internal axial forces in the outer and inner beams

at Levels 4 and 7 for all load cases. It is clear that the inner beam sustains more

axial force that the outer beam. This is logical; the inner beam is subject to axial

restraint from more columns, as well as reacting to the force generated in the outer

beam.

Figs. A.19 and A.20 show the internal axial force in both the outer and inner
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columns for all cases. The variation in the axial load of the columns is a result

of moment redistribution within the beams. It can be observed that the outer

column starts to sustain a higher level of axial force towards the end of the heating

scheme, thus relieving the middle column to some extent from its share of the

beam reactions. This is true for all cases at both levels, although to a lesser extent

as the load factor is increased.

Moments at the outer beam-column junction, within the outer beam, at the inner

junction and within the inner beam at Level 4 are shown on Figs. A.21 to A.24.

The same information is given in Figs. A.25 to A.28 for Level 7. At the outer

connection it can be seen that the heated column develops a large moment due to

its non-uniform heating, which is balanced in turn by that on the upper unheated

column. Unlike the outer column, the inner column is uniformly heated, and as

a result most of the moment developed in it can be regarded as a transfer of the

unbalanced moments of the beams.

A.5 Comparison with Other Analyses

More such analyses will take place before the key decisions are made on the test

parameters. In the meantime, it is encouraging that the results produced from

the 3DFIRE software and reported here are generally in accordance with those

produced by the other modelling tools used. Due to the fact that results produced

by other researchers are not published yet it is probably inappropriate to quote

them in this work. The analyses reported here are all for plane frames, and one

interesting study still to be undertaken is an investigation of the amount of support
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in the fire test which is likely to be provided by the secondary beams. This will be

looked at by means of 3-D subframe models in the next section.

A.6 3-D Subframe Analyses

All the previous analyses have been performed assuming in-plane behaviour only.

In order to investigate some of the out-of-plane behavioural aspects of the locations

where fire tests are proposed, a series of three-dimensional analyses has been carried

out. In the following a description to these analyses is presented.

• All 8 cases have been re-analysed as 2-D subframes with the columns un-

restrained against out-of-plane action except at floor levels where columns

assumed to be restrained in position but not in direction. No initial imper-

fections have been introduced to the columns in this set of analyses. The

failure temperatures and deflection histories were identical to those produced

by in-plane analyses.

• The same cases have been re-analysed again with the same boundary con-

ditions (out-of-plane behaviour permitted except translation at floor levels),

but with initial out-of-straightness introduced in the minor-axis direction.

The value of this initial imperfection was assumed to be 1 in 1000 of the

actual column height. Small reduction in the failure temperatures was ob-

served in this case. The following table shows the failure temperatures of the

imperfect cases compared to those of the perfect cases.
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Level/Load Ratio Perfect Case Imperfect Case

4 / 1.00 717.0 705.0

4 / 1.33 708.0 700.0

4 / 1.78 653.0 649.0

4 / 2.22 614.0 614.0

7 / 1.00 760.0 748.0

7 / 1.33 712.0 705.0

7 / 1.78 664.0 660.0	 r

7 / 2.22 574.6 572.4

Table A.1: Effect of initial imperfections.

This shows clearly that there is no danger of out-of-plane buckling on the

frames under consideration. The slight reduction in failure temperatures was

a result of the out-of-plane imperfection which introduced twist to the heated

columns producing a combined major/minor-axis failure.

• Various three-dimensional subframes have been analysed to establish the

effect of the secondary beams on the stiffness of the main-frame beams.

Fig. A.29 shows the applied loads on the assembly. These loads do not

correspond exactly to the applied loads on the two-dimensional subframe

considered in Fig. A.7 but represent a load ratio of about 2.3. This study

was carried out independently of the 2-D cases. The extent of these sub-

frames and their boundary conditions are shown in Table A.2 together with

the predicted failure temperatures.
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No. Temp, Description Subframe

1 601.0 Lcolumn = full length At*

Columns and beams with fixed-ends.

Loads applied at secondary beams.

6215 Lcoliunn = full length
Columns with fixed-ends.

215Ti
Beams with pinned-ends.

Loads applied at main beams.

630.0 ',column = full length
Columns with fixed-ends.
Beams with fixed-ends.

1241°E)234:26Loads applied at main beams.

567.4 ',column = half length
Columns with pinned-ends.
Beams with fixed-ends. 1)j5rST/1

Loads applied at secondary beams.

5631 Lcoluirm = half length
Columns with pinned-ends. -
Beams with pinned-ends.

Loads applied at main beams.

562.0 ',column = half length -	 _
Columns with pinned-ends.

IIPP-4	 -
Beams with fixed-ends. .	

- -	 OP 110.-.
Loads applied at main beams. _

667.4 Lcolumn = full length
Columns with fixed-ends.

Loads applied at main beams.

661 -3 Lcoluirm = half length
Columns with pinned-ends.

Loads applied at main beams.

Table A.2 Subframe arrangement and failure temperatures.
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The reason for applying loads at the main beams instead of the secondary

ones apart from case 1 is due to the failure of the secondary beams at ambient

temperature if the remote ends of the secondary beams were assumed to be

pinned. This assumption produced greater hogging moments at the near ends

of the secondary beams which rendered a large area of the concrete flange

fully cracked. Hence case 1 could not be repeated for pin-ended secondary

beams. Case 2 shows a comparable failure temperature to case 3. On the

other hand cases 4, 5 and 6 show almost the same failure temperatures,

which are considerably reduced compared to cases 2 and 3. It seems that

the extent of the subassembly plays an important role in the determination

of the fire resistance of the frame. An important parameter is the heating

regime of the columns; the lower part of each heated column was assumed to

be subject to lower temperatures than the rest of the column (Fig. A.8). The

loss of this stiffer part of the column when half of its length was considered

(cases 4, 5 and 6) produced a considerable reduction in the fire resistance

of the assembly. This stiffer part is likely to reduce the effective length of

the column, as was demonstrated in Chapter 6. In any circumstances this

interpretation of the results does require further investigation. Cases 7 and 8

for two-dimensional subframes show higher failure temperatures than those

of 3-D subframes. This shows that the out-of-plane behaviour is more critical

in subframe models compared to the full-frame model considered in Table

A.1. This is another point which deserves further investigation in the context

of reducing the structure into subframes.

The effect of the secondary beams on the overall behaviour of the main

frame proved to be insignificant. Fig. A.30 shows a comparison of the net

deflections of the inner and outer beams for cases 1, 2 and 7. This result is
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by no means surprising due to the relatively small stiffness of the secondary

beam compared to the main-frame beam in terms of its smaller cross-section

and longer span. Yet one should keep in mind that modelling the floor's

restraining effect into secondary beams with concrete flanges is rather an

underestimate. Consequently the membrane effect of the floor is likely to

prove more significant during the actual testing.

Apart from the failure temperatures the deflection history of all the three-

dimensional subframes is qualitatively very similar to the results presented for

the two-dimensional analyses. In order to avoid extensive repetition typical

temperature-deflection characteristics of case 2 are presented in Fig. A.31.

A.6 3-D Conclusions

It is early at this stage to draw generalised occlusions from the analyses presented

in this appendix. Nevertheless, these analyses indicate certain points worth further

consideration:

• The 2-D frame analyses show that failure is bound to be column-led under

the assumed heating and loading schemes.

• The 3-D frame analyses indicate that the secondary beams are the critical

elements in the design of the Cardington frame. Main-frame beams are

evidently over designed to the extent that they can bear the ultimate design

load up to temperatures of the order of 600°C. This an important point to

consider in the final loading arrangement of the proposed test. Although it

is desirable to apply reasonably high loads on the main beams this may not
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be achieved through loading slabs supported by the secondary beams.

• At ambient temperature it is invariably acceptable to take a subframe to rep-

resent the entire frame using certain rules. This notion may still be acceptable

at elevated temperatures if theoretical cases, such as uniformly heated mem-

bers, are considered. On the other hand if more realistic heating schemes are

to be considered, such as that of this study, the use of subframes needs more

fundamental re-thinking. While it is difficult to conclude any generalised

rules from the limited number of subframes performed in this study, it at

least indicates the need for more rigorous studies in this area.
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