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Abstract 

This research focuses on the Nuclear Magnetic Resonance (NMR) applications of Signal 

Amplification by Reversible Exchange (SABRE); a hyperpolarisation technique discovered 

within the Duckett Group. The hyperpolarisation technique, SABRE, is used to enhance 

the magnetic resonance signals produced in NMR and improve the resolution seen in an 

NMR spectrum. Parahydrogen is used as the source of hyperpolarisation. This research 

aims to focus on developing SABRE techniques by determining the most efficient SABRE-

active catalyst which can be further applied to biomedical applications.  

SABRE catalysts are made up of an N-heterocyclic carbene ligand and a substrate in a 

solvent of choice. In 2009, A SABRE-active catalyst with the general formula 

[Ir(H)2(NHC)(sub)3]Cl, where NHC = N-heterocyclic carbenes, and substrates, were 

synthesised and used to enhance NMR signals through the hyperpolarisation technique, 

SABRE. This research aims to investigate different N-heterocyclic ligands and determine 

the efficiencies of their corresponding SABRE catalysts by determining the largest total 

signal enhancements produced by these catalysts. The catalysts were characterised by 

Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS). These 

catalysts were further examined to determine their optimum environment as signal 

enhancement is dependent on various properties such as; substrate concentration, 

temperature and solvent. The rates of substrate exchange at the catalyst were also 

determined to establish the optimum conditions.  

As SABRE can be applied to biomedical applications, two biological molecules were used  

as the substrates throughout this research and these were pyridine and a pyridine 

derivative, 3-5-Lutidine. The 1H NMR signals of pyridine and 3,5-lutidine were shown to be 

enhanced using SABRE, a non-hydrogenative parahydrogen induced polarisation (PHIP) 

application.  

Work has previously looked at different NHC and substrate combinations that produce 

the largest total signal enhancements and by optimisation of the conditions and NHC, a 

5500-fold total pyridine signal enhancements was discovered when the NHC was IMes, 

1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene.1 
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1 Introduction 

In medical and chemical applications, it is very important to be able to analyse and 

characterise the multitude of compounds that are associated with a new drug.  A 

spectroscopic technique called Nuclear Magnetic Resonance (NMR) is used for the 

elucidation of structures of newly synthesized compounds, natural products and semi-

synthesized compounds.2  Additionally, by using NMR active species, Magnetic Resonance 

Imaging (MRI) is able to map the distribution of these species by gaining images from 

within the human body.3 The particular strength in NMR lies in its ability to distinguish 

between different chemical species and provide us with simultaneous information on the 

structures, concentration distribution and flow processes occurring in a particular process 

unit.4  However, the field of magnetic resonance is currently limited by a sensitivity issue, 

which will be explained later on in this thesis. To overcome this we use a 

hyperpolarisation technique called Signal Amplification By Reversible Exchange (SABRE).5 

 Nuclear Magnetic Resonance 

Nuclear Magnetic Resonance (NMR) is a widespread analytical tool, which was first 

observed by Rabi et al6 in the late 1930s, when a beam of hydrogen molecules were sent 

through a homogenous magnetic field.7 It is now used to identify and analyse compounds 

by distinguishing the chemical environment of the different nuclei present in them.  The 

quality of an NMR spectra is determined firstly by its sensitivity and secondly, by its 

resolution. 

The most commonly used spin 
1

2
 nuclei used in NMR is the proton, which is nearly 100% 

abundant and has the most sensitivity out of all commonly studied NMR nuclei. This 

means that it produces the largest NMR signal and hence rapid probing is possible. By 

changing key acquisition parameters, such as the delay between measurements, you can 

improve the accuracy of the measurement. Other common spin 
1

2
 nuclei used to 

characterise materials are 13C, 15N, 19F and 31P which have a lower sensitivity than that of 

1H NMR. For example in 13C NMR, the abundance is a lot lower at 1.1%.  

The main limitation of NMR is its low sensitivity, meaning that it is extremely hard to 

identify and characterise materials in low concentrations. In recent years, significant 

advances in the field of sensitivity enhancement have been achieved through different 

avenues such as increasing the magnetic field.8 The minimum sample amount that can be 

detected for analysis by traditional NMR is within the range of 10-9 and 10-11 mol of 
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sample9 but hyperpolarisation techniques have been developed and this project seeks to 

address how we overcome this sensitivity issue. 

 NMR Sensitivity Issue 

NMR probes the energy levels that correspond to the nuclear spin states when they are 

exposed to a magnetic field. Some atomic nuclei possess spin, where I, is conventionally 

given to nuclear spin quantum number. Depending on the spin quantum number (I), there 

are different numbers of orientations that can be taken by a nucleus with respect to the 

applied field.10  A nuclear spin state with spin 2I + 1 gives rise to an equal number of 

nuclear energy levels ( I being the spin quantum number).11 As 1H has a spin quantum 

number of 
1

2
, as seen in Figure 1, 2 possible spin alignments result with the nuclear spin 

being either parallel, α, or anti parallel to the field, β. This also applies to both 13C and 15N 

which also have a nuclear spin quantum number of 
1

2
. 

 

Figure 1:  The splitting between two nuclear spin levels (nuclear Zeeman splitting) of a 1H nucleus as a 

function of the applied magnetic field.  1H nuclei are spin −
𝟏

𝟐
  so the nuclear ground states split into spin 

states α and β in an applied magnetic field.  𝒉 is Planck’s constant (6.626x10-34 m2Kgs-1), γ is the 

gyromagnetic ratio, 𝑩𝟎 is the applied magnetic field, 𝒗 is the radio wave frequency and ∆𝑬 is the 

population energy difference.  

The sensitivity problems arise due to the small energy difference between the two 

nuclear spin states of a hydrogen nucleus which is shown in Figure 1. The difference 

between the two energy levels is related to the energy difference by the Boltzmann 

distribution:  

𝑁𝛼

𝑁𝛽
= 𝑒

−∆𝐸
𝑘𝑇  

Equation 1: Boltzmann distribution where n is the population of an energy level, ∆E is the difference 

between the energy levels, k is the Boltzmann constant (1.381 x 10-23 m2 kg s-2 K-1) and T is the temperature 

in Kelvin.12  
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Figure 2:  Schematic diagram of Boltzmann distribution of spins in a magnetic field.  The energy difference 

between α (aligned with the magnetic field) and β (aligned against the field) is very small in the Boltzmann 

distribution, adapted by Frydman et al.13 

NMR spectroscopy probes the population difference between these energy levels and by 

using the Boltzmann equation, for a magnetic field of 9.4 T in a 400 MHz spectrometer 

with T equal to 298 K we see:  

𝑁𝛼

𝑁𝛽
= 0.99993 

This means that the population difference is just 1 in 32,00014. Also as mentioned 

previously, the abundance of magnetic nuclei in 1H is less than 100% (99.7%) whereas in 

13C it is 1.1%. This small population difference leads to longer scan times. 

There are a number of ways to improve the inherent insensitivity of NMR: 

o Using stronger magnets to increase the energy difference between the states, 

however this is extremely expensive. The world’s largest magnet has a proton 

frequency of 1.2 GHz. This means that, for example, 1H nuclei at 298 K, would give a 

population difference of 1 in 15,000. This magnet is currently in operation in Japan.15 

o Run more scans and average the signal.  
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o You could also decrease the temperature, which in turn increases the population 

difference; however this is limited by the solvents available.  

o Use a high concentration which can be more costly as more sample is required. 

Alternatively, hyperpolarisation techniques can be used to increase the sensitivity of 

NMR. Such approaches increase the population difference, by polarisation, of the spin 

states.  

 Hyperpolarisation 

An increasingly popular method of addressing sensitivity is through hyperpolarisation. 

Hyperpolarisation is a technique that allows NMR signals to be enhanced by generating 

non-Boltzmann spin state populations between the energy levels.16 

 

Figure 3: Schematic diagram of the spins in a magnetic field for a non-Boltzmann distribution where fewer 

spins align against the field, increasing the signal intensity for the observable transitions. As seen previously 

in Figure 2, the Boltzmann distribution diagram shows what is achieved on a thermal NMR spectrum 

without hyperpolarisation so the population difference between the energy levels is very small, whereas 

hyperpolarisation increases this difference, adapted by Frydman et al.13 

This effect was first demonstrated by Carver and Slichter in 1953, when the nuclear spin 

polarisation was increased for 7Li nuclei through polarisation transfer from free electrons. 

This meant that the nuclear spin polarisation, that is relatively low, can be increased well 

above the thermal equilibrium level.17 The significant increase in nuclear spin polarisation 

was later called hyperpolarisation. Hyperpolarisation techniques such as optical pumping 
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and dynamic nuclear polarisation (DNP) have been developed over the last 60 years and 

applied to chemical compounds with potential biomedical relevance.18 A relatively new 

Parahydrogen induced polarisation (PHIP)-based hyperpolarisation technique discovered 

by Duckett et al5, 16 called SABRE (explained further in section 1.5) is the technique used in 

conjunction with NMR throughout this thesis. 

 ParaHydrogen Induced Polarisation (PHIP) 

Parahydrogen induced polarisation, known as PHIP, is a hyperpolarisation technique 

based on a hydrogenation reaction that uses the nuclear singlet state of parahydrogen as 

a source of hyperpolarisation.19  

This effect has been known since 1987 when Weitekamp predicted that the 

parahydrogen state can be converted, by a chemical reaction, into the polarised nuclear 

spins of the products of molecular hydrogen additions.20, 21 This was then successfully 

proven experimentally a year later by Weitekamp and Bowers when they characterised 

antiphase signal enhancements by hydrogenating acrylonitrile with parahydrogen.21 

 

Figure 4:  NMR spectrum, taken from Weitekamp et al21, where the hydrogenation of acrylonitrile, to 

propionitrile, catalysed by tris(phenylphospine)rhodium(I) chloride was observed. Part (a) shows the 1H 

NMR spectrum before the reaction took place. Part (b) shows the hydrogenation to propionitrile with 

enhanced signals transitioning between the δ 3-1. Part (c) is the spectrum of the sample at equilibrium and 

part (d) demonstrates the traditional PHIP-type signals observed from hydrogenation reactions. 

PHIP allows for both non-hydrogenative PHIP (where the hyperpolarized substrate and 

parahydrogen exchange on the metal centre via SABRE) and hydrogenative PHIP (which 
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occurs via Parahydrogen and Synthesis Allow Dramatically Enhanced Nuclear Alignment - 

PASADENA and Adiabatic Longitudinal Transport After Dissociation Engenders Net 

Alignment - ALTADENA). This concept is explained further in 1.4.3. 

 Parahydrogen (p-H2) and hydrogen spin isomers 

When metal complexes react with molecular hydrogen, they form metal-hydride ligands 

which can be monitored and characterised via NMR. Due to the inherently insensitive 

nature of the NMR technique, if the concentration of the metal-hydride species is low 

then using NMR would be less efficient and effective for characterisation, so to be able to 

detect these species a method which requires the use of parahydrogen is used.22 Figure 5 

demonstrates the use of parahydrogen in NMR experiments compared to the NMR 

experiments without the use of parahydrogen. The antiphase signals seen in Figure 5 in 

the red box are characteristic of PASADENA (Parahydrogen And Synthesis Allow 

Dramatically Enhanced Nuclear Alignment) where both the αβ and βα spin states are 

populated and due to population difference being much greater than the Boltzmann 

distribution, as seen in Figure 5, the NMR produces larger enhancements. This will be 

explained in more detail later on. 

 

Figure 5: The section coloured in blue is an NMR experiment without parahydrogen addition and the 

section coloured red shows the NMR experiment with parahydrogen addition. The NMR signal seen 

without hyperpolarisation shows two doublets. The lowest energy state, αβ-βα, which is the only 

parahydrogen spin state transition, is populated in the H2 selectively. Hyperpolarisation is seen on the NMR 

spectrum with resulting antiphase signals adapted by Duckett et al.23  

Molecular hydrogen (H2) comes in two isomeric forms, one where the two protons align 

parallel to each other (orthohydrogen) or where they lie next to each other but anti-
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parallel, termed parahydrogen.24 As stated previously, a single hydrogen nucleus is either 

quantified as +½ and -½ nuclear spin with the spin aligning with or against the magnetic 

field. Henceforth, the spins of dihydrogen may be classified as either; α which aligns 

parallel to the field or β which aligns anti-parallel to the field25. It is the different 

interaction of these spins that gives four different energy transitions: αα, ββ, αβ+βα and 

αβ-βα for the dihydrogen molecule. The first three possible forms (seen in Figure 6) are 

symmetric and reflect a triplet state which refers to ortho-H2. The other form (also seen in 

Figure 6) is antisymmetric , a singlet,  and is referred to as para-H2.
22

  

 

Figure 6: A diagram to show the four different dihydrogen spin transitions, with three transitions being 

orthohydrogen and the singlet transition being parahydrogen. 

The triplet states of orthohydrogen (also known as T+1, T-1 and T0 ) can be affected by the 

application of a magnetic field due to the Zeeman splitting. However, parahydrogen is 

unaffected as the two opposing spins mean that it is NMR silent26. The energy difference 

of the two spin isomers is based on the total wavefunction of the molecule which 

constitutes of translation, vibration, electronic, rotation and the nuclear spin 

components.27 

 

𝜑𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝜑𝑡𝑟𝑎𝑛𝑠 × 𝜑𝑣𝑖𝑏 × 𝜑𝑒𝑙𝑒𝑐𝑡 ×  𝜑𝑟𝑜𝑡 ×  𝜑𝑠𝑝𝑖𝑛 

 

Equation 2: The total wavefunction (ψ) of a fermion that consists of five components. 
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The overall molecular wavefunction of H2 must be anti-symmetric.28 However, the 

vibration, electronic and translation are all symmetric. The symmetric ortho spin isomers 

are therefore restricted to antisymmetric rotational states (J= 1, 3, 5 etc.) and the anti-

symmetric para state is restricted to symmetric rotational states (J= 0, 2, 4 etc.). This 

results in para-H2 being at a lower energy than ortho-H2.
29 This energy difference can be 

harnessed through the Boltzmann distribution hence parahydrogen is favoured at a low 

temperature.22 The interconversion of parahydrogen and orthohydrogen isomers is spin 

forbidden but is possible in the presence of a paramagnetic species.22 By using a 

paramagnetic species as a catalyst, the symmetry is broken and the conversion between 

both species takes place due to the increase in this process and driving the equilibration 

to change the isomers.30  

 Parahydrogen generation 
Normally, hydrogen consists of an equilibrium mixture of ortho and parahydrogen and 

because of this parahydrogen enhancements cannot be achieved using hydrogen from a 

cylinder because of the low percentage of parahydrogen at room temperature and the 

Boltzmann distribution where there is barely any population different between ortho and 

para states.25  Hydrogen must be cooled to acquire parahydrogen and the temperature 

can cause the equilibrium in hydrogen to shift varying the proportion of ortho and 

parahydrogen present (this is seen in Figure 7).  

 

Figure 7: Graph to show the effect temperature has on the percentage abundance of parahydrogen and 

orthohydrogen. The percentage of parahydrogen decreases when the temperature increases, this then 

causes the percentage of orthohydrogen to increase with the rising temperature. Adapted by Duckett et 

al29. 
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Molecular hydrogen contains ¾ orthohydrogen and ¼ parahydrogen at room 

temperature. When the temperature is at absolute zero, the more stable state of 

hydrogen, parahydrogen, is favoured therefore parahydrogen is at approximately 100% 

abundance. At easily reached temperatures of about 30 K, orthohydrogen is able to 

convert to parahydrogen at a ratio of 96.9: 3.1 and it is stable in this form.31 

 

Once the hydrogen gas is removed from the catalyst, interconversion can no longer take 

place meaning that parahydrogen can be made and stored.32 

 

The spin functions of α and β, the nuclear wavefunction of parahydrogen, can be 

described as: 

Ψ =  
1

√2
(𝛼𝛽 − 𝛽𝛼) 

 

As this wavefunction has a total nuclear spin of 0, parahydrogen has a total nuclear spin 

of 0. This means it is NMR silent, showing no signal.33  Hydrogen; however shows a proton 

signal at δ 4.5 which arises from orthohydrogen.  

 

For hydrogenative PHIP (PASADENA or ALTADENA), the magnetic symmetry must be 

broken and the parahydrogen is transported into a new environment. SABRE requires a 

catalyst to transfer polarisation to the substrate after binding the hydrogen without 

hydrogen actually altering the substrate’s structure. This hyperpolarisation process is non-

hydrogenative and the substrate dissociates.  

 

 PASADENA and ALTADENA 
As parahydrogen (p-H2) cannot be detected, a reaction needs to occur to break its 

symmetry. These reactions can take place at a high or low magnetic field and two 

different effects are observed. These are PASADENA (Parahydrogen And Synthesis Allow 

Dramatically Enhanced Nuclear Alignment) which occurs when a reaction takes place in a 

high magnetic field or ALTADENA (Adiabatic Longitudinal Transport After Dissociation 

Engenders Net Alignment) for reactions occurring at low magnetic field.34  

 

For an NMR signal with PASADENA, two pairs of antiphase doublets occur, where one 

absorption line points in a positive direction and one emission line points in a negative 

direction. This is because the αβ and βα states become overpopulated (as seen in Figure 
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8). In ALTADENA, there are only two spectral lines (one absorptive and one emissive) as 

only one αβ or βα state is populated33. 

 

 

Figure 8: Population model based on an AX type of spin system with the four levels αα, αβ, βα and ββ. In 

the Boltzmann distribution, the four possible spin alignment transitions of hydrogen spin isomers (far left) 

are seen to give two doublets within a high magnetic field. The four spin NMR transitions that are allowed 

yields the 1H NMR spectra (seen above far left). As PASADENA and ALTADENA are under parahydrogen 

conditions, they assume non-Boltzmann distribution type conditions. For PASADENA (middle) the 

population difference in the AX spin system align on the order of unity. However, the selective population 

of the energy states leads to two antiphase doublets seen in the 1H NMR spectra (above middle). The 

ALTADENA 1H NMR spectra (below far right) shows that only one of two levels, αβ or βα, are populated so 

only two transitions are possible. Adapted by Natterer et al33. 

In 1988, Pravica et al reported experiments where parahydrogen is added to a solution 

outside of the NMR spectrometer producing magnetic states at a low field called 

ALTADENA.35 With ALTADENA which uses pH2 (parahydrogen) at low magnetic fields and 

populates singlet character spin state products, the adiabatic increase of the magnetic 

field transports this population to the preferred energy level, βα; this allows one spin 

(positive signal) to emit and the negative signal to absorb.9 

 

When a PASADENA experiment is taking place, a hydrogenation with parahydrogen 

occurs inside the magnet of the NMR spectrometer.33 When the parahydrogen nuclei are 

placed into an AX type of spin system, then both αβ and βα become populated and four 

transitions are possible. Due to the population difference and the selective population of 

the energy levels, all four possible transitions produce enhanced NMR signals compared 

to standard NMR signals with two antiphase doublets also produced.33, 36 In practice, 

PASADENA has proven more popular due to the quicker hyperpolarisation to scan time.  
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PHIP has also been shown to enhance a number of other nuclei, including 13C nuclei37. 

This shows that PHIP is a powerful tool for understanding reactions and characterising 

many different molecules especially in biological applications.38, 39 However, a problem 

with normal PHIP is that a precursor needs to exist which can be hydrogenated, such as 

1,5 –cyclooctadiene (COD).This problem is overcome when a  technique known as Signal 

Amplification by Reversible Exchange (SABRE) is used. 

 SABRE 

As mentioned previously in section 1.3, a new approach to the generation of PHIP was 

discovered in 2009 by Duckett et al that is non-hydrogenative. This relies on 

parahydrogen and a substrate capable of reversibly binding to a suitable metal host.16 

There are therefore, three key components to SABRE; the metal complex, the substrate 

and parahydrogen. 

 Introduction to SABRE 
In the SABRE process, Parahydrogen undergoes an oxidative addition reaction with the 

metal centre, seen in Figure 9. The metal catalyst operates by facilitating the transfer of 

spin magnetisation without any chemical change, creating a template where 

parahydrogen and the substrate temporarily bind.40  The non-equilibrium spin order of 

the former parahydrogen molecule is initially located only in the complex’s hydride 

ligands, therefore when the metal complex forms in a weak magnetic field, the 

magnetisation is transferred from the parahydrogen derived hydride ligands to the nuclei 

of the substrate molecule through the scalar coupling network.25    
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Figure 9: A schematic representation of SABRE, where the polarisation is transferred from the 

parahydrogen derived hydrides to the substrate molecules, which in this example is pyridine. The red 

colour is used to identify the difference between the polarised parahydrogen derived hydrides and the non-

polarised hydrogens. The iridium metal catalyst used in this schematic diagram is the 1,3 -bis(2,6-

dimethylbenzene)imidazol-2-ylidene (IXy) complex which will be examined later on. Adapted from Adams 

et al5. 

In 2009, Adams et al discussed a simplified theory behind polarisation transfer where in 

the first SABRE experiments, polarisation was transferred from parahydrogen to the 

nuclei species of substrates such as pyridine, where in this model these substrates 

contained a single pair of protons. However, pyridine is known to contain five hydrogen 

nuclei, which respectively make up a large  scalar coupling network.41 This would have 

been too consuming for the model. As seen in Figure 9, the metal complexes that form 

the NHC, substrate and parahydrogen derived hydrides contain two substrate molecules 

in the equatorial planes, both of which are polarised from the scalar coupling network 

from the parahydrogen. This real life situation is different to the theory model, which 

Adams et al modelled on only one equatorial site.41  The scalar coupling is also referred to 

as J-coupling or spin-spin couplings within the model Adams et al theorised. As seen in 

figure 8, where the population model was based on an AX spin system with four levels, 

this model complex, is therefore a four-spin system, where two spins originate from the 

parahydrogen and two spins originate from the substrate bound to the complex.  

This model and theory resulted in the conclusion that the polarisation transfer is 

dependent on the magnetic field, the balance between the scalar coupling and the 

chemical shift being often optimal at around 65 G.5, 41 One can view this process as 
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following a periodic function, in which polarisation flows in a cyclic fashion between the 

hydrides and ligand. When the lifetime of the complex matches the time period which 

places maximum polarisation on the ligand, dissociation leads to the creation of optimal 

free substrate hyperpolarisation, as described by Adams. Interestingly, the destruction of 

the singlet character of the dihydride through SABRE results in a visibly hyperpolarised 

hydride signal which is of opposite phase to those of the ligands.  The relative phases of 

these signals are actually controlled by the sign of JHH which is negative and hydride 

hyperpolarisation is not always visible because these signals relax rapidly. Furthermore, 

while typical hydride ligand couplings lie in the region of 1 Hz, they lie within the 

linewidth of the hydride resonance and lead to no visible effect, although their presence 

can be confirmed by COSY methods. Hence SABRE reflects a spin polarisation process that 

proceeds under coupling rather than an nOe type pathway as exhibited by DNP.  

 

The metal complex plays a key part in SABRE. It was predicted that the efficiency of the 

hyperpolarisation of SABRE depends on the lifetime of the metal complex; this further led 

to the prediction of greater efficiencies being expected with a strongly electron-donating 

N-Heterocyclic carbene ligand than phosphine ligands.42, 43 This will be explained in more 

detail later on. Once both the substrate and parahydrogen are bound to the catalyst, the 

transfer of the polarisation can take place. The role of the substrate is to receive 

polarisation from the polarised parahydrogen derived hydrides (as seen in Figure 9). Once 

polarisation has been transferred, the magnetically labelled substrate dissociates from 

the catalyst enabling the build-up of polarisation in the unmodified chemical material. 

This is then examined by NMR methods which produces signals several orders of 

magnitude larger than would normally be obtained.16 The build-up of polarisation is 

important when choosing the substrate, as the substrate is required to weakly bind to the 

metal centre so it can dissociate easily allowing the polarisation to build up in the 

surrounding solution. For the SABRE process to take place, parahydrogen is required as a 

polarisation source. Theoretically, at 295 K with a 400 MHz 1H NMR frequency, we could 

achieve signals up to 31,208 times more intense than the corresponding thermal signals.44 

 

In the literature, SABRE can be used for a multitude of applications including trace 

analysis of a substrate.45 Within the Duckett group, research has focused on areas such 

as; determining different biologically-active substrates that can be enhanced using 

SABRE,46 synthesising NHCs with an Ir-O bond to determine the SABRE efficiency of 

catalysts in different solvents to improve on the polarisation transfer catalysis (PTC) 
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precursors47 and also insight into how different NHC ligands can help provide further 

insight into the catalytic process that highlights SABRE.1 

 

For SABRE to be more efficient it is important to consider factors that will affect the 

polarisation transfer such as; temperature, the concentration of the substrate, the 

pressure of pH2 and the steric and structure of the metal complex. The two types of PTCs 

used and examined within the Duckett group for SABRE are iridium complexes stabilised 

by phosphine ligands such as PPh3 and PCy3 and carbene ligands such as N-heterocyclic 

carbenes; Bis-1,3-(2,4,6-trimethylphenyl) imidazolium chloride (IMes) and Bis-1,3-methyl 

imidazolium chloride (IMe) where they would form a [IrCl(COD)(L)] type complex where L 

is either the phosphine or the carbene ligand. In 2013, van Weerdenburg et al, reported 

on using a myriad of N-heterocyclic carbene ligands and how their steric and electronic 

properties increased the signal enhancement levels.48 This thesis seeks to examine this. 

 

 N-Heterocyclic Carbenes 
The stability, structure and reactivity of carbenes is very important for the SABRE process, 

as it is dependent on their steric and electronics effect to increase enhancement levels 

and stabilises the SABRE-active catalyst.49 There are two main divisions that classify 

carbenes and whether they have two paired or unpaired electrons which can determine 

whether it is a singlet carbene or a triplet carbene (Figure 10).  
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Figure 10: Schematic representation of the electronic configurations of NHC carbenes with the four 

different forms shown, three being in the singlet state and one being in the triplet state. For the singlet 

carbenes, the second carbene (middle) shows red sp2 orbital with a lone pair. It also shows one electron in 

the blue p orbital. However, they are spin paired but this singlet carbene would be unstable. The third 

singlet carbene (below) also has a sp2 orbital with two spin paired electrons. It also has a vacant p orbital. 

In the triplet carbene, there is one unpaired electron in the sp2 orbital and one unpaired electron in the p 

orbital. 

There can either be two non-bonding electrons with parallel spins but in two different 

orbitals known as the triplet state (σ1pπ1 configuration) or there are two nonbonding 

electrons that are paired in either the same or different orbitals (pπ2, σ1pπ2 and σ2 

configurations)50. NHCs are known to have a singlet 1A1 ground state (σ2) abandoning the 

high energy singlet 1A1 state (pπ
2 configuration) and the only competing electronic states 

are the triplet 3B1 and the singlet 1B1 electronic states that present single occupied σ  and 

p orbitals.51 

In the 1960s, Fischer discovered metal alkylidene and alkylidyne complexes, which are 

referred to as Fischer carbenes, and successfully isolated the first transition metal 

carbene complex (seen in Figure 11).52 This was the first successful example of a carbene 

binding to a central metal. Fischer carbenes are found with metals that have a low 

oxidation state and are found on the periodic table in the middle to late section of the 

transition metals which includes metals such as Fe, Cr and W.53 They bind chemically with 

the metal centre via the lone pair of electrons within the sp2 orbitals (σ donation) which 

donate electrons to the empty d orbital.54 The π-back bonding occurs from the metal 
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centre p orbital to the empty p orbital of the carbene carbon (seen in Figure 11). These 

chemical bonds contribute to the stability of the Fischer carbene complexes.55 

 

Figure 11: The first Fischer transition-metal carbene complex that was successfully isolated. The section in 

grey is a representation of Fischer carbenes and highlights the binding that occurs from the sp2 orbital 

electrons on the carbon to the empty sp2 orbital on central metal (W) and the back bonding from the p 

orbital of metal centre (W) to the empty p orbital of on the carbene carbon. 

Another stabilised carbene was discovered by Schrock in the 1970s, where he successfully 

isolated the first metal methylene complex in the alkylidene family.56 In contrast to 

Fischer carbenes, Schrock carbenes are nucleophilic in nature and behave similarly to 

strong bases, whereas Fischer carbenes are electrophilic due to their vacant π orbital.57 

Unlike Fischer carbenes, Schrock carbenes, seen in Figure 12, are found with high 

oxidation states and are seen with metals seen in the periodic table in the early transition 

metal sections like Ti and Ta. Schrock carbenes are formed when the metal centre forms 

two covalent bonds with carbon by coordinating with strong donor ligands which are non 

π-acceptors therefore there is no π backbonding.  
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Figure 12: First Schrock Carbene represented in the blue by Schrock type carbene bonding, which differs 

from Fischer carbenes as they are electron poor and these are electron rich. 

Another type of stabilised carbene which forms the basis of this thesis is persistent 

carbenes, formally known as N-Heterocyclic Carbenes (an example seen in Figure 13). 

NHCs are neutral compounds with most based on a five-membered ring. The central 

metal stabilised by these NHCs can vary along with the ring size and shape.  

 

 

Figure 13: Example of an generic NHC - Imiazol-2-ylidenes 

N-Heterocyclic Carbenes (NHC) became the forefront of metal carbene research when 

they were first discovered back in the 1960’s.They are defined by their divalent carbon 

atom with a six-electron valence shell, and attempts were made to synthesise them as 

early as 1835.58, 59 However it was not until the late 1980s that the isolation and 

characterisation of a free, uncoordinated carbene became known.57  In a seminal paper 

published in 1988, Bertrand reported the preparation of the first isolable carbene 
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stabilized by interactions with phosphorus and silicon substituents.57, 60 This was then 

followed a few years later by Arduengo et al, who were the first to report on a stable 

isolable crystalline carbene with a nitrogen heterocycle incorporated.59  Both Ofele and 

Wanzlick stated that heterocyclic carbenes can be synthesised from imidazolium salts 

forming stable, electron-rich complexes with specific transition metals in the early 1960s. 

It was this hypothesis which caused a monumental explosion in experimental work on 

NHCs which led to the remarkably stable and relatively simple synthesis of the first free 

stable NHC 1,3-di(adamantly)imidazole-2-ylidene (IAd), seen in Figure 14, by Arduengo et 

al.59 

 

Figure 14: General structural features of the first NHC (IAd) which details some of the key features of an 

NHCs such as the ring size, shape, nitrogen substituents which affects stability; picture adapted by 

Hopkinson et al.57 

There are now many different types of carbene compounds, which differ structurally 

according to their ring size and the aromatic substituents they bear which can be either 

symmetric or asymmetric in nature.61 These differences can affect the electronics and 

sterics of the NHC but the general representation includes a carbene carbon and two 

nitrogen atoms in the imidazolium ring (as seen in Figure 14). NHCs are bent carbenes, 

with frontier orbitals that are sp2 hybridised and a p-orbital orthogonal to the sp2 plane 

called σ and pπ; with the 5-membered ring of the basic skeleton of an NHC adapting a 
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planar shape. They generally have a bulky side chain adjacent to the imidazolium ring that 

helps to improve the kinetic stability of the complex. 

Other carbenes, such as those of Bertrand, who in 2005, reported the synthesis of stable 

cyclic (alkyl)-(amino) carbenes (CAACs) which instead of the two nitrogen atoms seen in 

the NHCs, contains a more electronegative amino substituent.62 The CAAC ligands are 

more electron-rich than phosphine and the other NHC ligands.62 However, NHCs provide 

more robust and stable active catalysts when used as ligands with transition metals 

rendering them more suitable to the work that will be discussed in this thesis.62, 63  

The nitrogen atoms also provide kinetic stability due to their π-electron donating and σ-

electron withdrawing nature. This provides stability by lowering the energy of the σ-

orbital and donating the electron density to the empty p-orbital.57 NHC ligands form 

stronger bonds with metal centres than other ligands (such as phosphine) and this is due 

to their strong σ-electron donating properties.64 This also prevents decomposition of NHC 

catalysts. All these features are beneficial and contribute to NHCs renowned recognition 

in organometallic chemistry, especially as NHCs can be used to support ligands in late 

transition metal catalysis with d block elements such as iridium.65  

Some of the most commonly used classes of NHCs include imidazolylidene, 

imidazolinylidene, and benzimidazolylidene.  

To characterise these NHCs for medical and chemical applications, NMR (Nuclear 

Magnetic Resonance) is applied.  

 Steric and Electronic effects of NHCs 
N-Heterocyclic carbenes have been used as powerful two-electron donor ligands forming 

stable complexes with many metals.66 By looking at the electronic and steric effects, we 

are able to determine the catalytic efficiency of the metal complexes.  

Electronic effects 

As previously stated, singlet carbenes have a filled and a vacant orbital so they possess 

amphiphilic characteristics, whereas triplet carbenes can be regarded as di-radicals as 

they have two unpaired electrons.67 The influence of substituents on the carbene will 

have a large effect on the electronic and sterics of the molecule. There are two types of 

electronic effects known as inductive and mesomeric. With the inductive effect, the σ-

electron donating groups reduce the energy gap between the s and pπ orbital facilitating 

the triplet state, while the σ-withdrawing group stabilise the σ orbital, leaving the pπ 

orbital unchanged, causing the energy gap to increase between the two orbitals favouring 

the singlet state carbene.50, 68  The other type of electronic effect is mesomeric effects, 
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seen in Figure 15, where substituents interact with the carbene centre and are classified 

as either π-electron-donating or X (-Cl, -PR2, -F) or as π-electron-withdrawing or Z (-BR2, -

CN, -PR3
+).  

 

Figure 15: Schematic diagram showing mesomeric effect that occurs in imidazole-2-ylidenes, π-electron-

donating substituent, which is the imidazolium ring seen in many carbenes, especially IMes, IXy and ITol 

and provides stability for the complexes.  

Steric Effects 

Steric effects can dictate the ground state spin multiplicity if the electronic effects are 

insignificant. Having bulky substituents on a carbene provides kinetic stabilisation and by 

increasing the steric bulk of the carbene substituents, this broadens the carbene bond 

angle favouring the triplet state.69 The best way to stabilize carbenes kinetically is to 

protect the reactive carbene centre by increasing the bulky substituents; for the 

imidazole-2-ylidene type carbenes that are used throughout this thesis we see a two π-

donor σ-withdrawer substituents where the carbene electron deficiency is reduced by the 

donation of the two nitrogen lone pairs while the carbene lone pair is stabilized by the 

inductive effect of the two electronegative nitrogen atoms.50  NHCs provide the ability to 

be able to diversify the electronic and steric properties by varying the N-bonded 

substituents allowing access to tune these properties as you wish.51 

 SABRE catalysts 
As previously stated, the SABRE process is very reliant on the design of the SABRE catalyst 

as it catalyses the transfer of polarisation from the parahydrogen hydrides to the 

substrate.40 Therefore the carbene ligand needs to have stable optimal electron-donating 

characteristics to improve the SABRE efficiencies. The ligand surrounding the metal centre 

must be able to allow the metal centre to easily bind to parahydrogen hydride ligands and 

other components without interfering. Initially, Duckett et al used a cationic iridium 

complex with the general formula [Ir(COD)(PR3)2]BF4 with R representing Ph, p-tolyl and p-

C6H4-OMe, seen in Figure 16. The complex with R=Ph reacted with p-H2 and a 2-fold 
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excess of pyridine forming [Ir(PPh3)2(py)2(H)2]+ which was then characterised by NMR 

showing the dominant hydride signal at δ -21.64 in a 1H NMR spectrum, with the two 

hydrides trans to pyridine.5  

 

Figure 16: The reaction of [Ir(COD)(PR3)2]+ with excess pyridine and H2 forming the SABRE-active complex 

[Ir(H)2(PR3)2(py)2]+ and [Ir(H)2(PR3)3]+ with COD hydrogenating to form COA which is no longer bound to the 

iridium complex. 

 

There was also evidence of a small amount of a second complex [Ir(PR3)(py)3(H)2]+ cis by a 

second hydride signal was seen at δ −21.81. When p-H2 replaced H2 the hydride signals of 

both complexes became PHIP enhanced. Further work was examined to identify that 

[Ir(H)2(PPh3 3)(py)3]+ had significantly more rapid H2 exchange when compared with 

[Ir(H)2(Ph)2(py)2]+ .70 The complex that gave the greatest enhancement was however 

formed with PCy2Ph, which was better than PCy3, this is due the more electron rich 

phosphine having better H2 exchange but poorer ligand exchange because of the sterics 

pushing the ligands off.16 This in turn draws a link between the exchange rate, electronic 

and steric properties of the ligand and the SABRE hyperpolarisation level of the complex. 

Furthermore, the effect of the phosphine on the rate of exchange of the equatorial bound 

pyridine was determined. At 335 K, [Ir(H)2(PR3)2(py)2]+ with R = p-C6H4-OMe exhibited the 

faster rate constant at 0.82s-1 compared to the other R = Ph complexes showing that this 

complex, with the greatest electron-rich phosphine has a faster rate of exchange.70 This 

exchange occurred between the pyridine (py) ligand trans to the hydride and the free 

pyridine in solution. Also this study showed that the exchange in [Ir(H)2(PR3)(py)3]+ was 

faster than in [Ir(H)2(PR3)2(py)2]+  specifically with R = p-tolyl, however the exchange was 

not seen in 335 K as the complex started to decompose over temperatures higher than 

308 K.70  

Once the link between electron donation of the ligand and the SABRE enhancement of 

the substrate were found, the first NHC containing complex used for SABRE , 

IrCl(COD)(IMes) [IMes= (1,3-bis( 2,4,6-trimethyl-phenyl)imidazole-2-ylidine)], was 

explored. This catalyst, derived from Crabtree’s catalyst, is used for an array of 

hydrogenation reactions. 
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Figure 17: Representative examples of IMes (left) and SIMes (right) catalysts used for SABRE. 

 

It was reported that IrCl(COD)(IMes) is a much better SABRE catalyst precursor than the 

catalyst [Ir(H)2(PCy3)(py)3[BF4] due to the fact that the NHC is a more powerful electron 

donor. When IrCl(COD)(IMes) is reacted with excess py and H2, [Ir(H)2(IMes)(py)3]Cl is 

formed which was proven through NMR spectroscopy. However once 3 atm of pH2 and 

0.06 mmol of py were added to IrCl(COD)(IMes) in the earth’s magnetic field, a signal 

enhancement of 266-fold relative to a thermal polarized sample at 295 K and 9.4 T was 

seen which can be compared to the 18-fold increase of [Ir(H)2(PCy3)(py)3](BF4) . By 

optimising the reaction conditions, for example, the concentration of the substrate (py), 

enhancements of 503-fold were reached.1 Another example of a NHC ligand widely used 

in SABRE is SIMes (1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene). When 

SIMes is compared to IMes, the change in the backbone to a double bond backbone 

causes the carbene ligand to take up less space when surrounding the metal centre in 

addition; the electron donating power of this ligand is increased. The IMes SABRE active 

complex [Ir(H)2(IMes)(py)3]Cl therefore has a greater signal enhancement than SIMes with 

4 equivalents of pyridine at  5498-fold to SIMes SABRE active complex 

[Ir(H)2(SIMes)(py)3]Cl at 1317-fold.1 The steric effect is proven by calculating the buried 

volume of the ligands which for IMes is 33.0% and 34.5% for SIMes.5  

 SABRE solvents 
As previously stated, one of the most effective magnetisation transfer catalysts is 

IrCl(COD)(IMes)43 which forms the complex [Ir(H)2(IMes)(sub)3][Cl] once it has undergone 

activation with a substrate and H2. This complex has chemically equivalent hydrides that 

transfer polarisation efficiently in polar protic solvents such as methanol, however 

because of the charged nature of the species, it has been proven that the magnetisation 
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transfer can be less efficient, while the complexes formed tend to be soluble their ligand 

exchange rates are slower in a range of low polarity solvent used in NMR analysis.71 

Therefore, choosing the right SABRE solvent is very important to the development of 

SABRE efficient catalysts, therefore one of the solvents used throughout this thesis was 

the more polar, non-protio solvent, CD3OD, and the other was the less polar, non-protio 

solvent, CD2Cl2. 

 Aims 

 

Figure 18: Representative example of asymmetric SABRE active complex [Ir(H)2(MesCarBenzyl)(3,5-lut)3]Cl. 

The red square represents a large ligand while the blue square represents a smaller ligand. Due to the 

rotation of the complex, this can either allow for a larger or smaller substrate to bind which is determined 

by the position of the larger or smaller nitrogen substituents.  

The aims of this project were to research different homogenous catalysts that could alter 

the extent of the polarisation transfer for the application of SABRE, with a focus on 

whether symmetrical or asymmetrical NHCs could improve the polarisation transfer 

which in turn would produce larger signal enhancements and debate which catalyst was 

the most efficient for SABRE. This was achieved by: 

✓ (Chapter 2) - Synthesising symmetric and asymmetric NHC ligands and forming 

SABRE-active catalysts, with pyridine and 3,5-lutidine as substrates of choice. 

These substrates are widely used in biomedical applications and therefore were 

investigated with different symmetric and asymmetric complexes to determine 

how these different NHCs alter the polarisation transfer. A particular focus into 

their rates of dissociation were also investigated. 

✓ (Chapter 3) - Determining and characterising the intermediates that form when 

the symmetric NHC ligands undergo SABRE and identifying the final SABRE-active 
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catalyst that form. There was also a focus on how solvents can affect the 

intermediates and products that form. 

✓ (Chapter 4) – Investigating and characterising the intermediates and final SABRE-

active catalysts that form when varying the asymmetric NHC ligands. Instead of 

pyridine, 3,5-lutidine was the substrate used in this investigation.  

 

Other variables such as concentration of substrate and temperature of polarisation 

transfer were investigated throughout this thesis in order to optimise the SABRE process. 

This research set out to probe whether an asymmetric or symmetric SABRE active catalyst 

was the most efficient for SABRE by comparing the signal enhancements and ligand loss 

rates of the given SABRE active complex with pyridine or 3,5-lutidine as the substrate 

ligand. Each symmetric and asymmetric complex differ in their electron donating power 

and their steric bulk and previous research has stated that the ligand design can optimize 

the catalytic concept of SABRE.1 From this theory, It can be hypothesised that the 

symmetric SABRE-active catalyst, [Ir(H)2(IXy)(py)3]Cl where IXy = 1,3 -bis(2,6-

Dimethylbenzene)imidazol-2-ylidene, due to its size and electron donating power will 

produce the greater SABRE enhancement and the SABRE catalyst  [Ir(H)2(PhCarCH3)(3,5-

lutidine)3]Cl which likely has be weakest σ donor will produce the lowest signal 

enhancements. 

In the literature, also seen in Figure 18, it is also stated that the steric effects and size of 

the NHC and the substrate can also impact the polarisation transfer, which in turn can 

reduce the total signal enhancements and slow the rate of ligand loss.1 Therefore, it can 

also be hypothesised that the larger asymmetric SABRE-active complex, 

[Ir(H)2(MesCarHomoBenzyl)(3,5-lutidine)3]Cl, which we would expect to potentially have 

the largest total signal enhancement, may however produce a much lower total signal 

enhancement and a slower rate of ligand loss due to the size of the NHC and the 

substrate, 3,5-lutidine, being a steric hindrance.  
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2 SABRE Catalyst Design with Pyridine and 3,5-Lutidine as 

substrates 

As stated in section 1.5, SABRE is a hyperpolarisation method where polarisation is 

transferred from the parahydrogen derived hydrides to the substrate molecules that bind 

to the central iridium atom improving the NMR signals. This could be applied to MRI to 

improve imaging through the use of pyridine-based polarised biological substances as 

contrast agents which are less toxic to the body than the contrasting agent, gadolinium. 

The signal enhancement depends on the magnetic field and the binding kinetics of the 

substrate through the scalar coupling network, meaning the selection of said substrate is 

critical to the polarisation transfer and efficiency of SABRE.72  

 Introduction 

Greater SABRE efficiencies were found when the catalyst contains NHC ligands compared 

to phosphine ligands. As the efficiency depends on the lifetime of the metal complex and 

the strength of the magnetic field where the polarisation occurs, earlier studies 

determined that phosphine ligands showed the highest level of polarisation transfer.57 As 

previously stated, phosphine ligands were based  on the reaction of Crabtree’s catalysts, 

[Ir(COD)(PCy3)(py)][BF4] by using pyridine as the substrate and PCy3, seen in Figure 19, as 

the phosphine forming [Ir(H)2(PCy3)(py)3][BF4].5, 43 Later studies then showed that NHCs 

ligands had more strongly electron-donating properties.73 

 

Figure 19: Crabtree’s Catalyst, PCy3= tricyclohexylphosphine. 

 

The most efficient NHC catalyst, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes), 

seen in Figure 20, currently yields the greatest enhancements making it the most effective 

used SABRE catalyst within the Duckett group. When an excess of py is added to 

[IrCl(COD)(IMes)] in the presence of methanol the complex [Ir(COD)(IMes)(py)]Cl is 

produced. Once hydrogen is added 1,5-cyclooctadiene (COD) hydrogenates at the iridium 



44 | P a g e  
 

centre to cyclooctane (COA). With the addition of p-H2, which replaces hydrogen, 

polarisation is transferred from the p-H2 derived hydrides to the substrate; which in this 

case is pyridine forming [Ir(H)2(IMes)(py)3]Cl.  

 

Figure 20: Schematic steps of the formation and activation of [Ir(H)2(IMes)(py)3]Cl. [IrCl(COD)(IMes)] is 

treated with an excess of py in MeOD forming [Ir(COD)(IMes)(py)]Cl. This then undergoes activation with 

hydrogen forming the SABRE active catalyst [Ir(H)2(IMes)(py)3]Cl. 

The purpose of this study was to analyse new SABRE symmetric and asymmetric active 

catalysts which differ by their NHC ligands, for example, NHC ligand, 1,3 -bis(2,6-

dimethylphenyl)imidazol-2-ylidene (IXy) and 1,3-bis(4-methylphenyl)imidazole-2-ylidiene 

(ITol). These catalysts were compared to the IMes catalyst. Also in this study, asymmetric 

complexes were investigated along with pyridine derivatives and compared to symmetric 

SABRE active catalysts to identify their efficiencies as SABRE active catalysts.   

 History of preparing NHCs 

As stated previously in section 1.5.2, Arduengo et al74 isolated the first free stable NHC, 

IAd, and since then many different pathways have been discovered to synthesis the 

imidazolium salts which become precursors for the NHC ligands used in SABRE. The 

synthetic pathway used by Arduengo et al in 1999, is the basis for the synthesis of the two 
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symmetric NHC salts which are precursors to the SABRE active complexes. The synthetic 

route used by Arduengo is illustrated in Figure 21. 

 

Figure 21: General synthetic pathway use by Arduengo et al74 to synthesis the unsaturated imidazol-2-

ylidenes which further lead to the synthesis of saturated imidazol-2-ylidenes which is further used and 

adapted to synthesis the new symmetric NHCs, IXy and ITol. 
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 Synthesis of IrCl(COD)(IXy) (1) and IrCl(COD)(ITol) (3) 

 

 

Figure 22: Schematic pathway to show the synthesis of IrCl(COD)(IXy) and IrCl(COD)(ITol). Pathway 1: 

Addition of formic acid in EtOH at rt for 16h. 2. Addition of HCl in paraformaldehyde at rt for 16h. 3. 

Imidazolium salt and KOtBu stirred in THF at rt under N2 for 30 mins. 4. Iridium Dimer [Ir(COD)Cl]2 added to 

carbene solution under stirring at rt for 2h.  

The novel NHC complex, IrCl(COD)(IXy) (1) and IrCl(COD)(ITol) (3) was synthesised in the 

laboratories within the Duckett group by following the pathway seen in Figure 22.  

2 drops of formic acid and 1.0 equivalent of glyoxal were added and stirred in a solution 

of aniline (2.0eq.) in MeOH or EtOH. The solution was stirred for 16h at rt forming a 

yellow precipitate. This precipitate was then filtered and washed with MeOH or EtOH and 

dried forming the ethylenediimine. 

A paraformaldehyde solution (1.1eq.) in 4M HCl (1.5eq.) was added dropwise to the 

solution of ethylenediimine (1.0eq.) in ethyl acetate at rt under nitrogen with stirring. The 

solution was then stirred for 16h. The precipitate was filtered and washed with ethyl 

acetate and dried under a vacuum forming the imidazolium chloride. 

The imidazolium salt in Figure 22, after pathway 2 was then added to KOtBu (2.4eq.) in 

THF under nitrogen gas at rt. The solution was then stirred for 30 minutes at rt. The 
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iridium dimer, [Ir(COD)Cl]2 (1.0eq.) was added to the solute and stirred at rt for 2h. The 

solvent was removed and the crude product was purified.  

This was then fully characterised by 1H, 13C, 15N NMR spectra and ESI-Mass Spectrometry.   

 Characterisation of IXy and ITol  
SABRE requires a carbene ligand which fundamentally has electron donating properties 

and is chemically and electronically stable enabling the optimal reactivity and efficiency 

for the hyperpolarisation process. As stated previously, this thesis is based on two new 

symmetric SABRE catalysts, IrCl(COD)(IXy)]where IXy = 1,3-bis(2,6-

dimethylphenyl)imidazol-2-ylidene and IrCl(COD)(ITol) where ITol =  1,3-bis(4-

methylphenyl) imidazol-2-ylidene. The full spectroscopic data of both IrCl(COD)(IXy) and 

IrCl(COD)(ITol) can be found in section 6.4, however the spectroscopic features of an NHC 

ligand can be exemplified by the key components of this complex which are shown in 

Table 1, where you can see the key features of the IXy aromatic. Table 2 also provides 

characterisation data for the ITol aromatic, where the key features of the carbene can be 

seen.  In Table 1, there are two chemical shifts identified for component 1, this is due to 

the CH3 groups being in different environments, however NMR does not provide enough 

information to be able to distinguish between the two CH3 groups.  

 1H NMR 
δ 

13C NMR 
Δ 

15N 
NMR 

δ 

 

1 2.26 ,2.40 19.42, 18.05  

2  137.68, 

135.02 

 

3 7.24 

 

128.06 

 

 

4 7.36 

 

128.85  

5  138.64  

6   192.2 

7 7.07 127.70  

8  180.15  

Table 1: 1H, 13C and 15N NMR chemical shifts for the key components of IrCl(COD)(IXy) in CD2Cl2 
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 1H NMR 
δ 

13C NMR 
δ 

15N 
NMR 

δ 

 

1 2.48 20.90  

2  129.02  

3 7.99  

 

125.34 

 

 

4 7.36 

 

128.60  

5  137.95  

6 7.34 121.40  

7   195.8 

8  180.8  

Table 2: 1H, 13C and 15N NMR chemical shifts for the key components of IrCl(COD)(ITol))in CD2Cl2 
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 Synthesis of IrCl(COD)(MesCarBenzyl)]Cl (12) and 

IrCl(COD)(MesCarHomoBenzyl) (14) 

 

Figure 23: Schematic pathway to show the synthesis of IrCl(COD)(MesCarBenzyl) and 

IrCl(COD)(HomoBenzyl). Pathway I: dissolved in acetone and K2CO3 and stirred. II. Addition of [Ir(COD)Cl2] 

dimer and refluxed for 4 hours. III. Filtered and dissolved in dichloromethane. 4. Filtered and dissolved in 

hexane and heated to 40 °C for 15 minutes. The complex was then further purified by repeating steps 4 and 

filtering and evaporating the solvent until 10 mL of solution is left.  

The new NHC complexes, IrCl(COD)(MesCarBenzyl) and IrCl(COD)(MesCarHomoBenzyl)    

were synthesised in the laboratories within the Duckett group by following the pathway 

seen in Figure 23.  

 

[MesCarBenzyl](BPh4) (101 mg, 0.170 mmol) or [MesCarHomoBenzyl](BPh4) (107 mg, 

0.176 mmol)  were dissolved partially in acetone (20 mL). For [MesCarBenzyl](BPh4), 

K2CO3 (127 mg, 0.920 mmol) and for [MesCarHomoBenzyl](BPh4), K2CO3 (127 mg, 0.0917 

mmol)   was added and stirred for 15 minutes at room temperature prior to the addition 

of [Ir(COD)Cl]2 (57.2 mg, 0.0852 mmol) for [MesCarBenzyl](BPh4) and[Ir(COD)Cl]2 (59.0 

mg, 0.0878 mmol).  The mixture was heated at reflux for 4 hours, forming an orange-

yellow colour. After cooling to room temperature, the mixture was filtered and 

evaporated to give an orange-yellow residue. The residue was re-dissolved in 
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dichloromethane (20 mL), whereby white solid precipitates out. The mixture was filtered 

through celite and the solvent was evaporated to give an orange-yellow solid. The solid 

was then re-dissolved in hexane (30 mL) and heated while stirring in a water bath at 40 °C 

for about 15 minutes. The yellow solution was filtered and the resulting suspension 

collected. These two steps were then repeated twice more until only a small amount of 

brown solid  remains. The collected yellow solution was then combined and reduced in 

volume to ca. 10 mL. The solution was cooled in the freezer overnight to give yellow 

needle-like crystals. This was then fully characterised by 1H, 13C, 15N NMR spectra and ESI-

MS and the details for this are found in section 6.4.   

 Substrate 

The first substrate used to observe SABRE was pyridine,16 which binds to the iridium metal 

centre via the lone pair on the nitrogen atom. Earlier studies exemplified that greater 

hyperpolarisation levels were achieved with bulky N-Heterocyclic carbenes. At present, 

the NHC ligand with the greatest transfer of hyperpolarisation thus providing the greatest 

SABRE enhancement is IrCl(COD)(IMes) which is reported to give a total polarisation 

enhancement of 8100-fold on the NMR resonances of the free pyridine.  

[Ir(H)2(IMes)(py)3]Cl is the SABRE-active catalyst, once activation with para-H2 has 

occured.
43

  

 

Figure 24: Pyridine and pyridine derivative compounds, picoline, 3,5 – lutidine and niacin (adapted from 

Altaf et al.75) 

Pyridine and its derivatives (seen in Figure 24) are reported in many different biological 

activities and compounds that play a vital role clinically and in medicinal applications.75 

As pyridine was first used to observe SABRE, it will become a substrate of interest. We will 

also observe SABRE for 3,5-lutidine due to its uses in the manufacture of new generation 

anti-ulcer drugs such as Omeprazole and Esomeprazole.76  As pyridine binds readily to the 

iridium catalyst and has a big impact on SABRE due to its efficiency and exchangeable 
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protons, I will seek to use pyridine and another pyridine derivative as the substrate and 

expand on the effect changing the NHC ligand has on polarisation transfer. 

 Forming symmetric SABRE-active catalysts 

The new symmetric SABRE complexes, which I will be examining in more detail in section 

3 and 4, both form SABRE active complexes determined as [Ir(H)2(IXy)(py)3]Cl and 

[Ir(H)2(ITol)(py)3]Cl. 

 IrCl(COD)(IXy) and IrCl(COD)(ITol) 
When IrCl(COD)(NHC) is dissolved in CD3OD a yellow solution is produced. When pyridine 

is added, the chloride ligand is displaced by pyridine to form [Ir(COD)(IXy)(py)]Cl or 

Ir(COD)(ITol)(py)]Cl, Figure 25. Both of these products are colourless and hence it is 

possible to monitor the activation reaction by visually inspecting the sample and 

observing a colour change from yellow to colourless. 

 

Figure 25: The IXy and ITol complexes formed once added with excess pyridine in deuterated methanol. 

This is the precursor complex to the SABRE active complexes that are formed once activation with 

parahydrogen has occurred. 

 Exchange Rates of Symmetric and Asymmetric SABRE-active 

complexes 

As previously stated, once the SABRE-active  complex [Ir(H)2(NHC)(sub)3]Cl forms it 

undergoes SABRE. Hyperpolarisation is transferred from the parahydrogen derived 

hydrides to the substrate which, for the symmetric complexes, is pyridine and for the 

asymmetric complexes is 3,5-lutidine.This indicates that both complexes undergo 

dissociative ligand exchange whereby the bound and free substrates continuously 

exchange. Cowley et al showed that by changing the temperature the polarisation levels 

for the free substrate changed suggesting, there was an optimal ligand exchange rate for 

polarisation.43   
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The rates of pyridine and 3,5-lutidine dissociation were investigated by monitoring the 

exchange of the corresponding proton ligand signals in the bound substrate trans to 

hydride.  We are unable to observe the exchange of the bound pyridine and 3,5-lutidine 

ligands positioned trans to the NHC. This would suggest that there is stronger metal 

bonding interaction to the nitrogen centre when trans to the carbene rather than the 

hydride. This effect has been rationalised previously.77  

A 1H EXSY (exchange spectroscopy) method was used to observe the exchange process. 

These measurements started at 263 K where slow exchange was evident. The 

temperature was then increased up to 313 K. Practically, this involved recording multiple 

selective 1-D NOESY spectra at different temperatures as a function of the reaction time, 

as specified by d8 (mixing time) in the pulse programme.  Integrals of the bound and free 

pyridine substrate signals were determined for each d8 value. Rate constants for ligand 

exchange were then determined by plotting the mixing time (d8) against the peak 

integrals which were expressed as percentage amount. These data were simulated using a 

differential kinetic mode and the solver analysis in Microsoft Excel.78  

 

Table 3 shows the temperature where ligand exchange rates of 2 was monitored and the 

rate constants determined for each temperature.  

 

[Ir(H)2(IXy)(py)3]Cl  (2) 

Temperature (K) Kd (s-1) 

263 0.085 

273 0.464 

283 2.11 

293 8.29 

298 12.10 

Table 3: Kinetic and thermodynamic data showing the ligand loss of pyridine for [Ir(H)2(IXy)(py)3]Cl (4). 

When a similar study was completed for the SABRE active ITol complex, 

[Ir(H)2(ITol)(py)3]Cl, no ligand loss was observed. This must indicate that the process is 

slow and not visible out to 1 second, which is the maximum d8 value used. This is 

expected with [Ir(H)2(ITol)(py)3]Cl as the absence of methyl at the NHC rings 2 and 6 

position destabilizes the complex. Where as, [Ir(H)2(IXy)(py)3]Cl addition of methyl at the 

NHCs rings 2 and 6 positions, now provide stability to the complex against ligand loss. 

Hence these changes have merit. 
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For the asymmetric complexes with the ligands now being 3,5-Lutidine, the exchange rate 

constants were determine and shown in Table 4.  

 

Kd (s-1) 

[Ir(H)2(NHC)(sub)3]Cl 298 K 303 K 313 K 

[Ir(H)2(PhCarCH3)(3,5-
lut)3]Cl  

0.337 0.530   

[Ir(H)2(MesCarCH3)(3,5-
lut)3]Cl  

1.01 1.89   

[Ir(H)2(HomoBenzyl)(3,5-
lut)3]Cl  

1.19 3.70 10.80 

[Ir(H)2(IMes)(3,5-lut)3]Cl  19.6 26.5   

Table 4: Kinetic and thermodynamic data showing the ligand loss of 3,5-Lutidine for [Ir(H)2(PhCarCH3)( 3,5-

Lut)3]Cl, [Ir(H)2(MesCarCH3)( 3,5-Lut)3]Cl, [Ir(H)2(MesCarHomoBenzyl)( 3,5-Lut)3]Cl and [Ir(H)2(IMes)(3,5-

Lut)3]Cl 

From these exchange rates shown in Table 4, we can determine that at 298 K, the rate 

constant for IrCl(COD)(PhCarCH3) is the slowest at 0.337 s-1, whereas the catalyst, 

IrCl(COD)(IMes), has the fastest exchange rate at 2.100 s-1.  At 303 K, this also follows the 

same trend with [Ir(H)2(PhCarCH3)(3,5-lut)3]Cl still having the slowest exchange at 0.530 s-

1 and [Ir(H)2(IMes)(3,5-lut)3]Cl with the highest exchange rate at 26.51 s-1. However we are 

unable to observe [Ir(H)2(IMes)(3,5-lut)3]Cl at 313K as the exchange is occurring too 

quickly and the only catalysts where exchange is observed at 313 K and 

[Ir(H)2(HomoBenzyl)(3,5-lut)3]Cl with a rate constant at 10.800 s-1.  

 If we were to compare the symmetric and asymmetric complexes, which although use 

different substrate ligands but are in the same 5 equivalent of substrate, at 298 K, 

[Ir(H)2(IMes)(3,5-lut)3]Cl has the fastest ligand exchange at 26.5100 s-1. From the literature 

with 4 equivalents of py, we can even determine that [Ir(H)2(IMes)(py)3]Cl has the fastest 

ligand exchange rate at 23 s-1 .It is assumed that this is due to the NHC having more 

electron donating properties therefore observing this faster exchange. 

 Thermodynamic data for pyridine and 3,5 lutidine  
Once the rate constants are determined for each catalyst, we are able to calculate the 

Gibbs free energy, ΔG≠, by using the Eyring-Polanyi Equation, which in turn calculates the 

enthalpy, ΔH≠, and the entropy, ΔS≠, which is explained in more detail in section 7.2. Given 

the number of points however, only ΔG≠
298 will have any meaning. 
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[Ir(H)2(NHC)(sub)3]Cl ΔG≠
298

 

(kJ/Mol) 

[Ir(H)2(PhCarCH3)(3,5-lut)3]Cl  76 

[Ir(H)2(MesCarCH3)(3,5-lut)3]Cl 73 

[Ir(H)2(HomoBenzyl)(3,5-lut)3]Cl  73 

[Ir(H)2(IMes)(3,5-lut)3]Cl  65 
Table 5: Thermodynamic data showing the ligand loss of 3,5-lutidine for [Ir(H)2(PhCarCH3)(3,5-lut)3]Cl, 

[Ir(H)2(MesCarCH3)(3,5-lut)3]Cl, [Ir(H)2(MesCarHomoBenzyl)(3,5-lut)3]Cl and [Ir(H)2(IMes)(3,5-lut)3]Cl and 

with pyridine for [Ir(H)2(IXy)(py)3]. 

The loss of 3,5-lutidine, from [IrCl(COD)(PhCarCH3)] therefore has the highest barrier with 

that for IMes being the smallest. The difference in ΔG≠
298 across the series is 11 kJ/Mol 

which is substantial and demonstrates that the potential to gain control of SABRE in this 

way is important.  

 Summary 

This chapter describes  new symmetric and asymmetric complexes and how they have 

been synthesised as a SABRE pre-catalyst. We have examined the rates of ligand loss from 

[Ir(COD)(NHC)(sub)]Cl by using 1D selective NMR methods and seen how steric 

interactions with the NHCs promote ligand exchange. Based on these exchange rates, it is 

hypothesised that [IrCl(COD)(HomoBen)] based systems will give the greatest SABRE 

enhancements and hence be the most efficient for the SABRE with sterically encumbered 

3,5-lutidene.  
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3 SABRE with symmetric N-Heterocyclic carbene complexes 

 IrCl(COD)(IXy) (1) 

The following section describes the reaction steps that took place during the formation of 

[Ir(H)2(IXy)(py)3]Cl to examine whether the SABRE efficiencies improve when varying the 

NHC ligand. Two new NHC ligands, known as IXy and ITol, are reacted with pyridine and 

hydrogen in two different solvents and monitored to determine the effects the solvents 

and the NHC ligands have on magnetisation transfer efficiency. 

 Reaction and Reactivity of 1 with py in CD2Cl2 
Complex 1 was dissolved in CD2Cl2 at 294 K with a 5-fold excess of pyridine relative to 1 

which produced a yellow coloured solution. There is no evidence, in the associated 1H 

NMR spectra of this solution, that pyridine (py) binds to the metal centre because the 

signals for 1 remain at the original positions. Hence, Cl is not displaced by py to form the 

ionic complex [Ir(COD)(IXy)(py)]Cl. This is illustrated in Figure 26, where peaks for the 

meta and para -CH proton signals of the IXy aromatic component appear at δ 7.24 as well 

as those of the ortho methyl groups at δ 2.26 and δ 2.40. The 1H NMR spectrum also 

shows COD with the corresponding CH proton peaks at δ 3.01 and δ 4.07.  Resolved -CH2 

proton peaks appear at δ 1.34 and δ 1.71. The other labelled peaks on Figure 26, 

correspond to the solvent at δ 5.35, δ 2.05 for acetone, δ 7.10 for the CDCl3 contaminant 

in the solvent and free pyridine peaks at δ 8.71, 7.82 and 7.42 on the spectra. 

It was hypothesised that an increase in concentration would change the equilibrium of 

the reaction and therefore pyridine may bind more easily under these conditions. When 

various concentrations of pyridine were tested with IrCl(COD)(IXy), 0.66µL (1 equivalent) 

and 1.97µL (3 equivalents, 0-fold excess), no binding of pyridine was observed in CD2Cl2.  

NMR spectra for complex 1 were also acquired at 233 K to see if the coordinated pyridine 

peaks were visible at lower temperatures due to better peak resolution. Therefore 1 was 

dissolved in CD2Cl2 with 5 equivalents of pyridine. However, the NMR spectrum showed 

that even at lower temperature, the coordinated pyridine that should be seen near the 

region of the free pyridine peaks at around δ 7.50 are not visible.  The lack of reaction of 1 

in CD2Cl2, is uncommon as we expect pyridine to bind to the metal centre, however we 

suggest this occurs due to the low polarity of the solvent, which has been proven to 

reduce efficiency of SABRE complexes.71  
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Figure 26: A 32 scan 1H spectra of IrCl(COD)(IXY) (5mg, 8.17µmol) with 5 equivalents of py (3.29µL, 

40.8µmol) in 600µL of CD2Cl2  at 400 MHz at a temperature of 294 K. The geometry of this Ir(I) 16 electron 

complex, IrCl(COD)(IXy) is the square planar conformation seen in chapter 6.4.1.   

 

 Reaction of 1 with py in CD3OD 
As CD2Cl2 proved to be unsuccessful we changed to the more polar and solvating CD3OD 

with 5 equivalents of pyridine at 243 K; in the aromatic region of the corresponding 1H 

NMR spectrum, the following changes were observed:  

The 1H NMR signals of the coordinated pyridine are now observed at δ 7.30 for the meta 

proton and δ 7.88 and 7.82 for the ortho and para protons as shown in Figure 27. It also 

showed that the ortho methyl groups on the IXy aromatic ring are further apart in the 

proton spectra containing CD3OD. The C-H proton peaks of COD are also different in 

CD3OD as they appear much closer together in the 1H spectrum. The meta and para 

protons on the IXy aromatic appear to stay approximately in the same position on the 

proton spectrum, in both CD2Cl2 and CD3OD.  

The other unaccounted for peaks refer to the residual solvent at δ 5.49 and 3.34 and also 

the free pyridine peak seen in the aromatic region. The evidence suggests that the labile 

Cl is replaced by pyridine and [Ir(COD)(IXy)(py)]Cl (1a) forms.  
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We expected to see this reaction due to pyridine having a lone pair of electrons on the 

nitrogen atom that it can donate to the complex, [IrCl(COD)(IXy)], therefore binding one 

pyridine molecule to the metal centre.1 This ultimately leads to Cl loss. 

 

Figure 27: A 32 scan 1H spectrum of IrCl(COD)(IXy) (5mg, 8.17µmol) with 5 equivalents of py (3.29µL, 

40.8µmol) in 600µL in CD3OD  at 400 MHz and at a temperature of 243 K forming [Ir(COD)(IXy)(py)]Cl; 

showing activated peaks for the IXy catalyst and the bound pyridine protons.  

 

 Reaction of 1 with py and H2 in CD2Cl2 at 233 K  

3.1.3.1 Initial H2 addition to IrCl(COD)(IXy)  

When hydrogen was added to 1 with an excess of py (5 equivalents) in cold CD2Cl2 

(approximately 233 K), the colour changed from yellow to colourless over a 24 hour 

period, indicating that a reaction was occurring. The hydride region of the resulting 1H 

NMR spectrum is shown in Figure 28. It contains two pairs of hydride resonances which 

are all chemically inequivalent to each other indicating the formation of two products. 

These resonances appear at δ −12.05 and −17.55 for one pair of hydride resonances and 

the other pair of hydride resonances appear at δ −13.42 and −18.08 with the lower field 

signals having a chemical shift that is indicative of being trans to a soft ligand while the 

higher field shifts are commensurate of ligands that lie trans to pyridine. Appleby et al 

stated the chemical shifts for a similar complex where the intermediates of 

IrCl(COD)(IMes) and pyridazine and phthalazine  as substrates were monitored and the 

diagnostic hydride resonances were assigned at around δ −14 and −18.46 
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There are 4 diagnostic alkene resonances at δ 3.99 and 2.99. The other two resonance 

alkene peaks are at δ 3.58 and 3.21 in the complex IrCl(H)2(COD)(IXy)(py). When pyridine 

has resonances at δ 7.88, 7.82 and 7.30 and two hydride resonances are considered, 5 

groups within the octahedron have been accounted for. The sixth group, the NHC, yields a 

diagnostic imidazole resonance at δ 7.07. This complex is further characterised in chapter 

6.4. 

These products were identified as 1b and 1c respectively by multinuclear NMR methods. 

The first product formed was [Ir(H)2(COD)(IXy)(py)]Cl (1c) with the corresponding hydride 

signals are at -12.05 and -17.55, however, there is also another set of hydride singlet 

peaks at δ -13.42 and -18.08, these correspond with the complex [IrCl(H)2(COD)(IXy)] (1c). 

From the relative peaks intensities in Figure 28, we can see that [Ir(H)2(COD)(IXy)]Cl has a 

higher concentration in this solution, however this could not be seen in 1 scan 1H NMR 

and so a 32 scan spectrum was recorded.  

 

Figure 28: 1H NMR spectrum of hydride resonance peaks corresponding to the formation of 

[Ir(H)2(IXy)(COD)(py)] and IrCl(H)2(IXy)(COD) that form once hydrogen gas at 3 bar pressure is added to the 

sample before NMR analysis. 

[Ir(H)2(IXy)(py)3]Cl does not form at 233 K, we do however observe free pyridine peaks at 

δ 8.71, 7.82 and 7.42 that show polarisation with a 386-fold signal enhancement. This 

indicates that [Ir(H)2(IXy)(COD)(py)] is SABRE active. 
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 Reaction of 1 with py and H2 in CD2Cl2 at 298 K 

3.1.4.1 Initial H2 addition and hydride migration in [Ir(H)2(COD)(IXy)(py)](Cl) 

Upon warming to 298 K, the formation of the desired SABRE active catalyst is observed. 

Furthermore,  a colour change from yellow to clear as the reaction proceeds was 

observed. COD  hydrogenates to COA as the SABRE active complex [Ir(H)2(IXy)(py)3]Cl  

forms .  

When hydrogen was initially added to a solution of 1 with 5 equivalents of pyridine in 

CD2Cl2. Complexes 1b and 1c observed at 233 K were also observed in the solution at 298 

K with corresponding hydride signals for 1b appearing at δ −13.50 and −18.10 and for 1c 

seen at δ −12.06 and −17.60. 

3.1.4.2 Formation of [Ir(H)2(IXy)(py)3]Cl 

 

Figure 29: IXy complexes formed by the addition of p-H2 and substrate (pyridine) to (1) in CD2Cl2 at 298K. 

IrCl(COD)(IXy) (5mg, 8.17µmol) was dissolved in CD2Cl2 with 5 equivalents of pyridine (3.29µL, 40.8µmol). 

Para-H2 (3 bar) was added to a solution containing [Ir(COD)(IXy)(py)]Cl in CD2Cl2 with a 2-

fold excess of pyridine. A 1 scan thermal 1H NMR spectrum was recorded after shaking for 

10 seconds at about approximately a 65 G magnetic field. From this, initially multiple 

products were identified (seen in Figure 29). 

 

The complexes can be identified by 1H NMR spectroscopy and yield two coupled hydride 

resonances. In the case of 1b, these lie at δ −13.63 (H lies trans to COD) and −17.93 

(where H lies trans to Cl). Complex 1c gives hydride signals at δ −12.27 (H lies trans to 

COD) and −17.59 (where H lies trans to py). In this reaction, we also observe the 

resonance for COA, which occurs when COD hydrogenates to COA and dissociates from 

the complex and this occurs in both complexes 1d and 2. Complex 2 has equivalent 

hydrides and the corresponding 1H NMR signal is a singlet at δ −22.76. Complex 1d has 

inequivalent hydrides giving resulting signals at δ −23.73 and −24.37 (H trans to Cl).  
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 Initially, when para-H2 is added all four complexes, seen in Figure 29, were observed in a 

1 scan 1H spectrum, however after about 20 minutes, only complexes 1d and 2 can be 

seen. The SABRE active catalyst 2 comprises 97% of the mixture, with 3 % chloride 

complex, 1d. After 10 seconds of shaking the NMR tube at an approximate 65 G magnetic 

field and dropping into the NMR spectrometer, the major SABRE active catalyst showed 

425-fold total proton enhancement in free pyridine molecules.  The enhanced 1H NMR 

spectrum is seen in Figure 30, with the corresponding free and bound pyridine signals 

showing typical SABRE type enhancements previously described. This reaction is typical 

for SABRE–active complexes such as IMes.46 

 

Figure 30: 1H NMR spectrum of the SABRE active IXy complex, seen in 2, [Ir(H)2(IXy)(py)3]Cl. This complex 

forms after activation with parahydrogen, shaken for 10s at approximately 65 G. During this reaction, COD 

falls off hydrogenates to COA and pyridine binds to the iridium metal centre forming the tris-IXy complex. 

Polarisation is transferred from the parahydrogen derived hydrides to the substrate, pyridine. 

 Reaction of 1 with py and H2 in CD3OD at 233 K 

3.1.5.1 Initial H2 addition and hydride migration in IrCl(H)2(COD)(IXy)(py) 

The SABRE precursor, [Ir(H)2(IXy)(COD)(py)]Cl in CD3OD,  was formed when hydrogen was 

added to a solution containing 1 with 5 equivalents (2-fold excess) of pyridine at 233 K.  

The sample is shaken for about 10 seconds outside the spectrometer and a 1H NMR 

spectrum was immediately acquired. The resulting peaks for the two chemically 

inequivalent singlet hydrides at δ -12.16 and -17.42 which couple to each other in the 1H 

NMR spectrum seen in Figure 31. These hydride signals correspond with the complex 1c. 

It is also possible to observe a small hydride peak at δ −22.42 which corresponds to the 
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SABRE active complex, [Ir(H)2(IXy)(py)3]Cl (2) also seen in Figure 31, however to a much 

lesser extent. Signals for 1b are not seen due to the rapid formation of 

[Ir(COD)(IXy)(py)]Cl.  

 

Figure 31: 1H HMR spectrum of the hydride region corresponding to [Ir(H)2(COD)(IXy)(py)]Cl at 233K in 

CD3OD. 
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3.1.5.2 Formation of [IrCl(H)2(IXy)(py)3]Cl 

 

 

Figure 32: 1H COSY NMR spectrum showing the bound and free pyridine of the SABRE active complex 

[Ir(H)2(IXy)(py)3]Cl (4). The blue square shows the three free pyridine peaks for the ortho, para and meta 

proton peaks within this solution. The red square shows the three bound pyridine peaks for both equatorial 

pyridines, with the ortho, para and meta protons being observed at the same chemical shift for each 

equatorial pyridine bound to the complex. The green square shows the three bound axial pyridine proton 

peaks that are correlated to each other, being the ortho, para and meta proton peaks.   

3 bar of para-H2 is added to the NMR tube and placed in a cold dry-ice acetone solution at 

233 K for 3 minutes. The NMR tube is then shaken for 10 seconds in a 65 G magnetic field 

and a 1 scan 1H NMR spectrum is acquired. In the 1H NMR spectrum the equivalent 

hydride signal at δ −22.76 corresponds to the SABRE active complex 2 with 3 pyridines 

bound to the complex. The 1H COSY NMR spectrum, seen in Figure 32, shows the region 

of the substrate, pyridine, where we can identify the pyridine resonances that correspond 

to the SABRE active complex. The blue square corresponds to signals at δ 8.58, 7.93 and 

7.53, and these peaks are all identified as the free pyridine in solution where δ 8.58 is the 

ortho, δ 7.93 is the para and δ 7.53 is the meta peaks for the free pyridine. The 1H COSY 

NMR spectrum helps us to identify which protons are correlated to each other, helping us 

to distinguish the structure of the complexes in the solution. We can also see that the red 
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and green squares are proton peaks in the same complex as they show correlation to the 

equivalent hydride peak seen at δ −22.76. The red square shows the correlation between 

the bound equatorial pyridine protons which are seen at δ 8.34 for the ortho pyridine 

protons, δ 7.75 for the para pyridine protons and δ 7.13 for the meta pyridine protons. 

The green square indicates that this is the bound axial pyridine peak and the 

corresponding chemical shifts for the ortho pyridine protons are seen at δ 8.09, for the 

para protons are seen at δ 7.69 and for the meta proton peaks at δ 6.98. The SABRE 

active catalyst, 2, was fully characterised by NMR and this can be found in section 6.4.5.   

 Reaction of 1 with py and H2 in CD3OD at 298 K 

3.1.6.1 Initial H2 addition to IrCl(COD)(IXy)(1) and hydride migration in IrCl(H)2(COD)(IXy)(2) 

Usually, when a SABRE complex undergoes hydrogen addition, hydride complexes are 

detectable with a single 1H NMR spectrum; this is because signals are not broadened 

through exchange processes so we are able to identify them clearly. IrCl(COD)(IXy) is 

dissolved in CD3OD with 5 equivalents of pyridine, we observe the formation of 1b, then 

hydrogen is added at 3 bar pressure and we would expect to see the formation of 1c. 

Initially, from a 1 scan 1H NMR spectrum there was no evidence for the formation of 

complex 3 but there was evidence that hydrogen was in solution by identifying a single 

peak at δ 4.5. A 32 scan 1H NMR was also performed; however we were unable to observe 

the precursor, 1c.  
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3.1.6.2 Reaction of IrCl(COD)(IXy) (1) with py and p-H2 and formation of [Ir(H)2(IXy)(py)3](Cl) 

(4) 

 

Figure 33: 1H NMR spectrum of the SABRE active complex, [Ir(H)2(IXy)(py)3]Cl, that forms with a 5 

equivalents (2-fold excess) of pyridine in CD3OD. In this spectrum, one clear hydride signal is observed at 

around δ −22.8 which indicates that once the reaction has fully activated in CD3OD only one clear tris 

complex forms. 

Upon the addition of hydrogen to CD3OD solutions containing [Ir(COD)(IXy)(py)]Cl, it was 

not possible to see complex 1c forming at 298 K, this could be due to the rotation of the 

complex occurring too slowly resulting in signal broadening and the fast pyridine 

exchange.  

Once p-H2 was added to the solution and the sample shaken at an approximate 65G 

magnetic field, we observe antiphase hyperpolarised hydride signals for 1c at δ -12.40 

and -17.50. It was also possible to observe the formation of 2 with a corresponding 

equivalent hydride signal at δ-22.76. After repeating the shake and drop method for 

about 15 minutes, complex 1c can be observed slowly reducing in concentration until it is 

no longer present in solution and the only remaining complex left is 2. In Figure 33, we 

can also observe peaks for the pyridine trans to the hydride peaks at δ 8.34 for the ortho 

bound pyridine protons, δ 7.74 for the para bound pyridine protons and δ 7.12 for the 

meta bound pyridine protons. For the bound pyridine trans to the NHC, we observe 

chemical shifts at δ 8.06, 7.67 and 6.91. The peaks remaining are for the NHC, IXy, where 

the corresponding proton peaks are observed for the meta and para protons at δ 7.15 

and for the ortho CH3 peak at δ 2.15, and the peaks not annotated are for the solvent 
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peak at δ 5.0, the hydrogen peak at δ 4.5 and the product when COD hydrogenates to 

COA which is observed at δ 1.5.   

The maximum signal enhancement, seen in Figure 34, on the ortho protons of the 

pyridine was 102-fold (shaken at 65G with a 3-fold excess of pyridine). Previous 

publications have reported the para, meta and ortho proton peaks of pyridine are 

enhanced in the negative part of the spectrum.  

 

 

Figure 34: A 1 scan hyperpolarised 1H NMR spectrum, showing both the free and bound pyridine peaks as 

antiphase signals, indicating that complex 4 does undergo SABRE hyperpolarisation. 

 IrCl(COD)(ITol) (3) 

Previously in section 2.3, the synthesis and characterisation of the NHC, IrCl(COD)(ITol) 

was explained. In this section, we will discuss how the IrCl(COD)(ITol) complex reacted 

with pyridine and H2 and hypothesise that a SABRE active complex forms but due to the 

less bulky substituents on the NHC, that the SABRE efficiency may not be as strong as the 

IXy catalyst.  

 Reaction of 3 with py in CD2Cl2 

Complex 3 (5mg, 8.56 µmol) was dissolved with 5 equivalents of pyridine (3.45 µL, 42.8 

µmol), in 600 µL of CD2Cl2. The solution changed from a light yellow to a dark yellow once 

pyridine was added.  There was however, no evidence that pyridine binds to the iridium 
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centre in the associated 1H NMR spectrum provided in Figure 35, as the resonances 

remain in the original positions. We are able to identify, in Figure 35, the free pyridine 

resonances of the ortho, para and meta protons at δ 8.60, 7.73 and 7.34.  The NMR 

spectrum also shows the meta –CH of the ITol aromatic NHC at δ 7.99 and the ortho-CH 

resonance overlapping with the imidazolium backbone at δ 7.31. The COD signals are 

illustrated in Figure 35, at δ 4.35 for the CH of COD and the CH2 of COD are seen at δ 1.82, 

1.45 and 1.22. The para CH3 of the ITol aromatic component is identified at δ 2.48, leaving 

the last unlabelled peak corresponding to the solvent at δ 5.35. 

Complex 3 was also tested with pyridine in various concentrations at 1 equivalent (0.69 

µL) and 3 equivalents (2.07 µL) and at various temperatures of 243 K and 266 K, however 

we were still unable to observe pyridine binding to the metal centre in CD2Cl2. This low 

reactivity is unusual as we expect to see pyridine bind to the metal centre. As previously 

stated, this could be due to the low polarity of the solvent which is known to affect the 

formation of SABRE-active complexes.71 

 

Figure 35: A 32 scan 1H spectrum of [IrCl(COD)(ITol) (5mg, 8.17µmol) with 2-fold excess of py (3.29µL, 

40.8µmol) in 600µL of CD2Cl2  at 400 MHz and at a temperature of 243K; showing the peaks of the ITol 

catalyst before undergoing activation. The geometry of this structure IrCl(COD)(IXy) adopts the square 

planar conformation seen in chapter 6.4.7.   

We are also able to observe a very small amount of a CH activated complex, seen in 

Figure 36, which corresponds to the very small signals, which is originally seen in the 



67 | P a g e  
 

starting material for complex 3 and yields a corresponding hydride signal at δ -17.17. We 

are able to identify this as a C-H activated product due to similar CH activated products in 

the literature.79 

 

Figure 36: A 1H NMR spectrum of the hydride region corresponding to the CH activated product of ITol, 

IrCl(H)(COD)(ITol)]. 

 Reaction of 3 with py in CD3OD 

Once CD2Cl2 was found to be an unsuitable solvent for the formation of 

[Ir(COD)(ITol)(py)]Cl, CD3OD was used instead due to its greater polarity as the solvent. A 

solution containing 3 was dissolved in CD3OD with 5 equivalents of pyridine to see if the 

complex [Ir(COD)(ITol)(py)]Cl was able to be observed. However, once again we were 

unable to observe pyridine binding to the metal centre, even when temperatures of 243 K 

and 263 K were used. Different concentrations of pyridine were also added but the 

binding of pyridine was not observed.  Due to the starting material having a small amount 

of the CH activated product shown previously in Figure 36, the solution containing 3 with 

5 equivalents of pyridine in CD3OD also containing the CH activated product seen with 

CD2Cl2, with corresponding hydride signals at δ −17.09. 

 

 Reaction of 3 with py in H2 in CD2Cl2 at 298 K 

3.2.3.1 Initial H2 addition of 5 and hydride migration in IrCl(H)2(COD)(ITol) 

We previously stated that there was no evidence that the precursor complex 

[Ir(COD)(ITol)(py)]Cl  forms once pyridine is added to complex 3 in CD2Cl2 at 298 K. 

Hydrogen was then added to the solution and shaken outside of the magnetic field so 

that it dissolves within the solution, we are not able to observe the formation of 
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IrCl(H)2(COD)(ITol). However, what we can observe, seen in Figure 37, is the SABRE active 

complex, [Ir(H)2(ITol)(py)3]Cl (4), in a higher concentration to the CH activated product 

already in solution. The corresponding hydride signal for the SABRE-active tris complex is 

observed at δ -24.11, while the CH activated product remains at a low concentration with 

the corresponding hydride signals found at δ -17.17. Due to the CH activated complex 3a 

increasing in solution once hydrogen gas was added, the complex is fully characterised by 

for 1H NMR in section 6.4. 

 

Figure 37: 1H HMR spectrum of the hydride region corresponding to the SABRE active complex, 

[Ir(H)2(COD)(ITol)(py)3]Cl and the CH activated complex IrCl(H)(COD)(IXy) at 298 K in CD2Cl2.  

 

3.2.3.2 Reaction of IrCl(COD)(ITol) (3) with py and p-H2 and the formation of 

[Ir(H)2(ITol)(py)3]Cl (4) 

When parahydrogen is added to a solution containing IrCl(COD)(NHC) with 5 equivalents 

of substrate in CD2Cl2, once the NMR tube has been shaken in an approximate 65 G 

magnetic field, we would usually expect to see hyperpolarised signals for both the free 

and the bound substrate as polarisation is transferred from the parahydrogen derived 

hydrides to the substrate. The bound substrate then continuously exchanges with the free 

substrate in solution until parahydrogen is used up. When IrCl(COD)(ITol) with 5 

equivalents of pyridine in CD2Cl2 is activated with parahydrogen, we would expect to 

observe the formation of the traditional tris SABRE active complex, [Ir(H)2(L)(sub)3]Cl, with 
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a corresponding equivalent hydride signal at around δ -22. We do observe the formation 

of this complex in the solution, with a corresponding hydride resonance at -24.11 as seen 

in Figure 38. 

 

Figure 38: 1H NMR spectrum of the hydride region, once para-H2 has been added to a solution containing, 

IrCl(ITol)(COD) with 5 equivalents of pyridine in CD2Cl2 and shaken in an approximate 65 G magnetic field 

for 10 seconds. 

However, once a 1 scan 1H hyperpolarised NMR spectrum is taken, we only observe a very 

small amount of polarisation in the ortho, para and meta protons of the free pyridine in 

solution, this is illustrated in Figure 39, with a total 11-fold signal enhancement. This is 

considered to be very low, for a SABRE-active complex. 
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Figure 39: A 1 scan hyperpolarised 1H NMR spectrum, showing the free pyridine resonances in solution are 

polarised as we observe antiphase signals. However, we are unable to detect the polarisation of the bound 

peaks for the SABRE active complex. 

 Reaction of 3 with py in H2 in CD3OD at 233 K 

3.2.4.1 Initial H2 addition of 3 and hydride migration in IrCl(H)2(ITol)(COD) 

As previously explained, When a solution containing IrCl(COD)(IXy) and pyridine in CD3OD 

is activated with hydrogen, we  typically see this is the formation of intermediates where 

pyridine binds to the metal centre forming 1b or 1c. However in this instance,  when 

hydrogen is added to a solution containing 3 with 5 equivalents of pyridine in CD3OD, we 

are unable to observe the formation of IrCl(H)2(ITol)(COD) or [Ir(H)2(ITol)(COD)(py)]Cl as 

pyridine does not bind and COD does not hydrogenate and fall off. Therefore, the 18-

electron SABRE-active complex [Ir(H)2(ITol)(py)3]Cl does not form. This is due to the slow 

rotation that may be preventing the observation of the spectral lines in the NMR 

spectrum. 

3.2.4.2 Reaction of IrCl(COD)(ITol) (3) with py and p-H2 and the formation of 

[Ir(H)2(ITol)(py)3]Cl  

A sample containing 3 with 5 equivalents of py in CD3OD was shaken at an approximate 

65 G magnetic field with 3 bar pressure of para-H2. As discussed previously in section 

3.1.5.1, where a similar compound known as IrCl(COD)(IXy) was analysed, we were also 

unable to observe the SABRE-tris complex 4 forming. However, as the reaction takes place 

at 233 K, we do not see the tris complex forming as the temperature is too cold for the 
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COD to hydrogenate. We continue to observe the free ortho, meta and para pyridine 

resonances at δ 8.58, 7.94 and 7.42, but SABRE is not able to take place as 233 K in 

CD3OD.  

 Reaction of 3 with py and H2 in CD3OD at 298 K 

3.2.5.1 Initial H2 addition to IrCl(COD)(ITol)(3) and hydride migration in IrCl(H)2(COD)(ITol) 

When a solution containing IrCl(COD)(ITol) and pyridine in CD3OD is activated by 

hydrogen, we expect to see the formation of complex IrCl(H)2(COD)(ITol)(py) where 

pyridine displaces Cl and binds to the central metal. However,  when hydrogen is added to 

a solution containing 3 with 5 equivalents of pyridine in CD3OD at 298 K, as observed with 

this solution at 233 K, we are unable to observe the formation of the SABRE-active 

complex [Ir(H)2(ITol)(py)3]Cl. We are also unable to observe the formation of the 

intermediates, IrCl(H)2(ITol)(COD) or [Ir(H)2(ITol)(COD)(py)]Cl as pyridine does not bind 

and COD remains bound to the metal centre. This reaction was attempted at both 233 K 

and 298 K both result in the same problem, which as previously stated is due to COD not 

hydrogenating. We do observe the free ortho, meta and para pyridine resonances, which 

remain relatively the same as the solution at 233 K, at δ 8.56, 7.88 and 7.45. once para-H2 

is added what we expect to observe is the hyperpolarisation in both the bound and free 

pyridine of the SABRE active complex, [Ir(H)2(COD)(ITol)(py)3]Cl. 

 

3.2.5.2 Reaction of IrCl(COD)(ITol) (3) with py and p-H2 and the formation of 

[Ir(H)2(ITol)(py)3]Cl 

When 5 equivalents of pyridine is dissolved in a solution of CD3OD with 3, there is no 

evidence at 298 K, that pyridine binds by replacing Cl and forms the complex 

[Ir(COD)(ITol)(py)]Cl. However, a CH activated complex (seen previously in Figure 36) 

where the carbon on the tolyl has bound to the central metal iridium atom is observed. 
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Figure 40: 1H NMR spectrum where 32 scans were taken to identify the formation of [Ir(H)2(ITol)(py)3]Cl, 

once parahydrogen was added at 3 bar pressure and the shake and drop method was applied for 10 

seconds causing a reaction to occur. 

The free pyridine peaks are identified at δ 8.41, 7.73 and 7.32, indicating that pyridine is 

free in solution. Upon the addition of hydrogen to the solution in CD3OD, it was not 

possible to see the usual complex [Ir(H)2(NHC)(COD)(py)]Cl or any other intermediates in 

the solution at 298 K. 

Once p-H2 was added to the solution, the sample was shaken at 65 G for 10 seconds.  We 

were able to observe the formation of the SABRE-active tris complex [Ir(H)2(ITol)(py)3]Cl 

with the corresponding 1H NMR spectrum seen in Figure 40, which contains a 

corresponding hydride signal at δ −22.24. In Figure 40, we can also observe resonances 

for the equatorial (bound trans to the hydride) pyridine peaks at δ 8.30 for the ortho 

bound pyridine protons at δ 7.47 for the para bound pyridine protons at δ 6.48 and for 

the meta bound pyridine protons. For the axial (bound trans to the NHC) bound pyridine 

peaks, we observe chemical shifts at δ 7.80, 7.00 and 6.69. The peaks remaining are for 

the ITol NHC, where the corresponding proton peaks are observed for the ortho protons 

at δ 7.35 which also overlaps with the Imidazolium backbone. The meta protons are 

observed at δ 5.57 and for the para CH3 peak at δ 2.34. The peaks not annotated are for 

the solvent peak at δ 5.0, the hydrogen peak at δ 4.5 and COE (cyclooctene) which yield 

corresponding resonances at observed at δ 1.50, 2.10 and 5.60.   
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The maximum signal enhancement in CD3OD on the ortho protons of the pyridine was 

0.5-fold (shaken at 65G with a 5 equivalents of pyridine) which after 15 minutes no longer 

polarises. This could be due to the aromatic substituents not being bulky enough so the 

complex loses its stability.  

 IrCl(COD)(tBuBIM) (5) 
In this section, we will discuss how another symmetric complex was synthesised and used 

to examine whether the SABRE-active form of this complex would undergo SABRE. We 

were also interested in understanding if this complex, which has less bulkier nitrogen 

substituents could work better than the most efficient SABRE catalysts, IMes. We 

examined this complex with pyridine and hypothesise that a SABRE active complex forms 

but due to the less bulky substituents on the NHC, that the SABRE efficiency may not be 

as great as IXy or IMes catalyst due to both NHCs being more strongly electron-donating 

species.  

 Synthesis of IrCl(COD)(tBuBIM) (5) 
 

 

Figure 41: Schematic steps to show the synthesis of IrCl(COD)(tBuBIM) with tBuBIM = 1,3-Di-tert-

butylimidazolium chloride (adapted from Gϋlcemal et al 2013.80) . Step 1: Stirring with Ag2O under N2 gas 

shielded from light in dry DCM for at rt for 24h. 2. Stirred with [Ir(COD)Cl]2 at rt in dry DCM for 24h. 
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Complex 5 was synthesised under a nitrogen atmosphere and a mixture of 1,3-Di-tert-

butylbenzimidazolium chloride (52.5 mg, 0.20 mmol) and Ag2O (38.0 mg, 0.16 mmol) was 

suspended in dry CH2Cl2 (10 mL) and stirred at room temperature for 24h shielded from 

light, seen in Figure 41. [Ir(COD)Cl]2 (110.1 mg, 0.16 mmol) was added to the suspension 

with another 10 mL of dry CH2Cl2 and the reaction mixture was stirred at room 

temperature for 24h. The resulting suspension was filtered over Hyflo® Super Cel®. CH2Cl2 

was evaporated leaving a dark red solid. Under a nitrogen atmosphere the solid was 

washed with Et2O (3mL) and removed firstly by pasture pipette then the rest evaporated. 

The remaining solid appeared a dark red colour.   

 SABRE of IrCl(COD)(tBuBIM) (5) 
Once complex 5 was successfully synthesised, it was dissolved in CD3OD with a 5-fold 

excess of pyridine. The complex [Ir(COD))(tBuBIM)(py)]Cl was not seen on the 1H NMR 

spectrum so there is no evidence that Cl is rapidly replaced by a pyridine molecule in the 

solution, as had been seen before in  the case of IrCl(COD)(IMes) complex. 3 bars of p-H2 

were added to the solution and it was shaken at an approximately 65 G magnetic field. 

The COD molecule had not fallen off after hydrogenating into COE and no enhancement 

could be seen. To speed up the initial reaction, the complex was warmed up to about 

40˚C but unfortunately, the catalyst started to decompose with the solution changing 

colour to a dark red so it was determined that it would not be suitable for SABRE. 

To truly assess this issue, It is recommended that the complex be tested with a different 

substrate or a different solvent and also adding a co-ligand, which has also been proven 

to provide greater polarisation enhancements with certain SABRE-active complexes.81 

Once complex 5 was successfully synthesised, the complex was dissolved in CD3OD with a 

5-fold excess of pyridine. The complex [Ir(py)(tBuBIM)(COD)]Cl was not seen on the 1H 

NMR spectrum so there was no evidence that Cl is rapidly replaced by a pyridine molecule 

in the solution, as it was seen before in  the case of IrCl(IMes)(COD) complex. 3 bars of p-

H2 were added to the complex and it was shaken at an approximately 65 G magnetic field. 

The COD molecule had not fallen off after hydrogenising into COE and no enhancement 

could be seen. To speed up the initial reaction, the complex was warmed up to about 

40˚C but unfortunately, the catalyst started to decompose so it was determined that it 

would not be suitable for SABRE.  
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 IrCl(IMes)(COD) (6)  
At the beginning of section 3.1, we examine symmetric NHC complexes with pyridine in 

both CD2Cl2 and CD3OD and successfully identify their SABRE efficiencies and 

intermediates that form during the different reactions. In this section we investigated a 

related complex that form with 3,5-lutidine. This complex acts as a control to identify if 

either symmetric or asymmetric SABRE-active complexes have better efficiencies.  

IrCl(COD)(IMes) is currently the complex which holds the highest enhancements with 

pyridine making it the most efficient and effective SABRE complex known for SABRE.1 In 

this section, we will discuss how IrCl(COD)(IMes) went through a series of reactions and 

hypothesise that it will form a SABRE active catalyst and have the highest signal 

enhancement, therefore remaining the most efficient SABRE catalysts. 

 Reaction of 6 with 3,5-Lutidine in CD3OD 

IrCl(COD)(IMes) was dissolved in a solution containing CD3OD with 5 equivalents of 3,5-

lutidine. When IrCl(COD)(IMes) with 4 equivalents of pyridine in CD3OD, the formation of 

the complex [Ir(COD)(IMes)(py)]Cl which is proven by the bound pyridine region of the 

corresponding 1H NMR spectrum.1 However when 5 equivalents of 3,5-lutidine is added to 

a solution containing IrCl(COD)(IMes) in CD3OD, we are unable to observe the formation 

of [Ir(COD)(IMes)(3,5-lutidine)]Cl at 298 K. This temperature causes the NMR lines to 

broaden, distorting the NMR spectrum.  

 Initial H2 addition to IrCl(COD)(IMes) and hydride migration in 

[Ir(H)2(COD)(IMes)]Cl at 298 K 

 

Figure 42: A 1H NMR spectrum of the hydride region corresponding to the CH activated product of ITol, 

[Ir(H)2(IMes)(3,5-lutidine)3]Cl. 

When hydrogen is added to a solution containing IrCl(COD)(IMes) with 5 equivalents of 

substrate in CD2Cl2, once the NMR tube has been shaken outside of the spectrometer, we 

would usually expect to see the formation of the complex, [Ir(H)2(COD)(IMes)]Cl, where 

the hydrogen hydrides would bind to the metal centre. However, we do not observe this 

formation but instead see the SABRE-active tris complex, [Ir(H)2(IMes)(3,5-lutidine)3]Cl, 

forming with a corresponding hydride signal at δ −22.80, seen in Figure 42. 
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 Reaction of IrCl(COD)(IMes) with py and p-H2 at 298 K and the 

formation of [Ir(H)2(IMes)(3,5-Lutidine)3]Cl (7) 

In CD3OD, Complex 6 was dissolved with 5 equivalents of 3,5-lutidine and the formation of 

[Ir(COD)(ITol)(py)]Cl was not observed due to the fast rotation of the nitrogen 

substituents on the NHC causing the NMR lines to broaden. Upon the addition of 

hydrogen to the solution in CD3OD, it was not possible to see usual complex 

[Ir(H)2(IMes)(COD)(3,5-lutidine)]Cl or [Ir(H)2(COD)(IMes)]Cl in the solution at 298 K. 

P-H2 was added to the solution and the sample was shaken at 65 G for 10 seconds.  We 

were able to observe the formation of the SABRE-active tris complex [Ir(H)2(IMes)(3,5-

lutidine)3]Cl with the corresponding 1H NMR spectrum seen in Figure 43. The hydrides 

yield a corresponding signal at δ −22.80. We can observe resonance for the equatorial 

(bound trans to the hydride) pyridine peaks at δ 7.99 for the ortho bound 3,5-lutidine 

protons, at δ 7.44 for the para bound 3,5-lutidine protons and at δ 2.01 for the meta 

bound 3,5-lutidine protons. For the axial (bound trans to the NHC) bound 3,5-lutidine 

peaks, we observe chemical shifts at δ 7.67, 7.33 and 2.19. The corresponding proton 

resonances are observed for the imidazolium backbone protons at δ 7.30 and the meta 

protons are observed at δ 6.73. The para CH3 peak at δ 2.23 and the ortho CH3 proton 

resonance observed at δ 2.10. The peaks not annotated are for the free ortho, para and 

meta 3,5-lutidine observed at δ 8.20, 7.55 and 2.35. The solvent peak is observed at δ 5.0, 

the hydrogen peak at δ 4.5 and COA (cyclooctane) which yield corresponding resonances 

at observed at δ 1.5.   
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Figure 43: A 32 scan 1H NMR spectrum identify the formation of [Ir(H)2(IMes)(3,5-lutidine)3]Cl, once 

parahydrogen was added at 3 bar pressure and shaken at 65 G magnetic field for 10 seconds causing a 

reaction to occur. 

Figure 44 illustrates a 1 scan 1H NMR spectrum when complex 6 is shaken at 65 G with a 5 

equivalents of 3,5-lutidine. We are able to observe the free and bound 3,5-lutidine 

resonances polarisation to antiphase NMR resonances. The free 3,5-lutidine are for the 

free ortho, para and meta 3,5-lutidine are observed at δ 8.20, 7.55 and 2.35. The 

maximum total signal enhancement in this solution in the free 3,5-lutidine resonances 

was 346-fold. 
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Figure 44: A 1 scan hyperpolarised 1H NMR spectrum, showing the free and bound equatorial 3,5-lutidine 

resonances in solution are polarised and observe antiphase signals. This indicated that the SABRE-active 

complex [Ir(H)2(IMes)(3,5-Lutidine)3]Cl forms with the corresponding resonances for the bound equatorial 

3,5-lutidine seen at δ 7.99, 7.44 and 2.23. 

 Summary and Discussion 

In this chapter, SABRE-active complexes were formed for both IrCl(COD)(IXy) and 

IrCl(COD)(ITol) and polarisation was achieved for both with pyridine as the substrate. 

To form the SABRE-active catalyst [Ir(H)2(IXy)(py)3]Cl, IrCl(COD)(IXy) went through a series 

of reactions and displacements. In CD3OD, the chloride was displaced by the substrate, 

pyridine, and formed [Ir(COD)(IXy)(py)]Cl, as seen in Figure 27. Under hydrogen, further 

reaction leads to an intermediate by oxidative addition where the hydrogen binds trans to 

the COD and trans to pyridine. The result is [Ir(H)2(COD)(IXy)(py)]Cl, as seen in Figure 31. 

When this reaction was performed in CD2Cl2, these intermediates were seen at 233 K and 

298 K, as shown in Figure 28 and Figure 29. The final reaction occurs when COD 

undergoes hydrogenation and forms SABRE active catalyst, [Ir(H)2(IXy)(py)3]Cl, of Figure 

33. The formation of the SABRE-active catalyst, [Ir(H)2(IXy)(py)3]Cl, is more rapid in 

methanol where its charge is better solvated and this results in the fact that the 

[Ir(H)2(COD)(IXy)(py)]Cl is only seen at 233 K. 

IrCl(COD)(ITol) forms the SABRE-active catalysts, [Ir(H)2(ITol)(py)3]Cl very inefficiently as 

seen in Figure 40. This is because of CH-activation of the ITol ring leads to decomposition, 

hence we might predict the ITol system is less suitable for SABRE. This is reflected in 

practice as [Ir(H)2(IXy)(py)3]Cl produces a higher polarisation enhancement at 102-fold 
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when compared [Ir(H)2(ITol)(py)3]Cl at 0.5-fold. This is difference in behaviour is due to 

the bulkier nitrogen substituents on the [Ir(H)2(IXy)(py)3]Cl where the extra CH3 group 

provides more steric stability which allows the pyridine to dissociate more readily.1 It has 

been reported previously  by Lloyd et al1  that providing the NHC ligand is sufficiently 

electron-rich, good catalyst stability ensues. As ligand loss is dissociative, it was 

hypothesised that we might use the steric bulk of the NHC to develop a more efficient 

SABRE catalyst and that it controls both the electronic and steric parameters of the NHC, 

thereby the bulkiness of the NHC has an effect on the polarisation transfer process.1  The 

results described in this chapter support this hypothesis. 

We also determined that reacting 1 and 3 in different solvents produces different 

intermediates so choosing the right SABRE solvent is important and can affect the 

efficiencies of the SABRE-active catalysts. 

The SABRE-active complex of IMes, [Ir(H)2(IMes)(py)3]Cl, currently is the most efficient 

SABRE-active catalyst providing the greatest polarisation enhancements with a total signal 

enhancement with 4 equivalents of pyridine at 5500-fold. Therefore, IMes was used as a 

control with 3,5-lutidine as the substrate. We observe that when IrCl(COD)(IMes) reacts 

with 5 equivalents of 3,5-lutidine in CD3OD and para-H2, and the SABRE-active catalyst 

[Ir(H)2(IMes)(3,5-lutidine)3]Cl forms providing large polarisation enhancements of over 

300-fold. This tells us that the substrate 3,5-lutidine acts as a good substrate for this 

catalyst even though the substrate is bulky. It is however less well polarised that pyridine 

in accordance with the faster dissociation rate.  
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4 SABRE with asymmetric N-Heterocyclic carbene complexes 

 IrCl(COD)(PhCarCH3) (8) 

Previously in section 3, we observed the reaction of iridium bound symmetric NHC 

complexes with pyridine and examined these using NMR to determine their intermediates 

but to also investigate whether they were appropriate and efficient SABRE catalysts. In 

this section we will investigate reactivity with 3,5-Lutidine. Complexes 

IrCl(COD)(MesCarBenzyl) and IrCl(COD)(MesCarHomoBenzyl) were synthesised in the 

Duckett group whereas the IrCl(COD)(PhCarCH3) and IrCl(COD)(MesCarCH3) complexes 

were purchased.  The synthesis and characterisation of the NHC, IrCl(COD)(MesCarBenzyl) 

and IrCl(COD)(MesCarHomoBenzyl) were previously explained in section 2.4. In this 

section, we will discuss how the 4 asymmetric complexes went through a series of 

reactions and hypothesise that for each a SABRE active complex will form but however, 

due to the rate constants and thermodynamic parameters stated in section 2.7.1 where 

the SABRE active complex, [Ir(H)2(MesCarHomoBenzyl)(3,5-lutidine)3]Cl, has the highest 

ΔG≠ at 133 kJ and the fastest exchange rates at 1.190 s-1 at 298 K, 3.700 s-1 at 303 K and 

10.80 s-1 at 313 K which we hypothesise will also have the greatest SABRE enhancements. 

 Reaction of 8 with 3,5-lutidine in CD3OD 

1.3 mg of IrCl(COD)(PhCarCH3) was dissolved in a solution with 5 equivalents of 3,5-

lutidine in CD3OD. We expect to see the formation of the complex [Ir(COD)( 

PhCarCH3)(3,5-Lut)]Cl where lutidine displaces the chloride and binds to the iridium metal 

centre.1 However, this reaction is not observed so we are able to identify the free 3,5-

lutidine in solution with the corresponding ortho, para and meta-CH3 resonances at δ 

8.06, 7.40 and 2.21. We are also able to assign all the corresponding peaks for the 

IrCl(COD)(PhCarCH3) which is fully characterised in section 6.4. 

 

 Initial H2 addition to IrCl(COD)(PhCarCH3) and hydride migration in 

IrCl(H)2(COD)(PhCarCH3) at 298 K 
Hydrogen was added to IrCl(COD)(PhCarCH3)  with 5 equivalents of 3,5-Lutidine in CD3OD 

and shaken outside of the NMR spectrometer. The colour instantly changes from yellow 

to colourless indicating that a reaction has occurred. When a 1H NMR spectrum is taken, 

we can see that the SABRE active complex [Ir(H)2(PhCarCH3)(3,5-lutidine)3]Cl has formed. 

The corresponding 1H NMR spectrum shows a hydride signal at δ −22.37. We expect this 

reaction to occur quickly due to the temperature being 298 K, so the 3,5-lutidine is able to 
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displace the chloride and cause the COD to hydrogenate. The hydride region of the 

resulting 1H NMR spectrum is shown in Figure 45. It contains one pair of hydride 

resonances which are both chemically equivalent to each other and indicates the 

formation of one product which is the SABRE active complex, [Ir(H)2(PhCarCH3)(3,5-

lutidine)3]Cl .  

 

 

Figure 45: 1H NMR spectrum showing the hydride region of the complex with one single diagnostic hydride 

resonance at δ −22.37 indicating the formation of the SABRE active tris complex. 

 Reaction of IrCl(COD)(PhCarCH3) with py and p-H2 at 298K and the 

formation of [Ir(H)2(PhCarCH3)(3,5-Lutidine)3]Cl (9) 

Once p-H2 was added to the solution, the sample was shaken for 10 seconds at an 

approximate 65 G magnetic field. We observe antiphase, hyperpolarised bound substrate 

signals of the SABRE active tris complex, Ir(H)2(PhCarCH3)(3,5-Lutidine)3]Cl as seen in 

Figure 46.  The corresponding proton signal in the substrate region for the bound 

equatorial ortho, para and meta-CH3 protons are at δ 8.03, 7.54 and 2.29 with the free 

3,5-lutidine resonances for the ortho, para and meta-CH3  protons are found at δ 8.10, 

7.30 and 2.20. 
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Figure 46: Hyperpolarised 1 scan 1H NMR spectrum showing the free 3,5-lutidine peaks polarising the ortho, 

meta and para protons but also the bound equatorial 3,5-lutidine protons in the ortho, meta and para 

positions indicating the formation of the SABRE active tris complex [Ir(H)2(PhCarCH3)(3,5-Lutidine)3]Cl. 

We are also able to identify the bound axial 3,5-lutidine resonances  at δ 7.64 for the 

ortho protons, δ 7.16 for the para protons and δ 2.20 for the meta CH3 protons. In Figure 

46, the remaining peaks are for the imidazolium backbone protons at δ 7.11, the ortho 

and meta protons of the phenyl ring identified at δ 6.83, the para proton on the phenyl 

ring found at δ 7.10 and the CH3 bound to the nitrogen on the carbene at δ 2.22. 

The maximum signal enhancement on the ortho protons of the lutidine was 8-fold when 

the sample was shaken at 65 G with 5 equivalents of 3,5-lutidine. The para protons had a 

maximum signal enhancement of 3-fold and the meta CH3 protons had a maximum signal 

enhancement of just 1-fold, seen in Figure 46.  

 

 [IrCl(COD)(MesCarCH3)] (10) 

In section 4, we discussed that four asymmetric NHC complexes were examined with 3,5-

lutidine as the substrate. In this section, we will be investigating another asymmetric NHC 

complex with 3,5-lutidine which has a similar structure to [IrCl(COD)(PhCarCH3)] but on 

the phenyl ring has CH3 groups on the ortho and para positions.  The complex will be 

examined with SABRE through a series of reactions to determine its intermediates but to 

also investigate whether it is an efficient SABRE catalyst. I hypothesise that this SABRE 

active catalyst, [Ir(H)2(MesCarCH3)(3,5-Lutidine)3]Cl, will form and be more efficient in 
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SABRE than [Ir(H)2(PhCarCH3)(3,5-Lutidine)3]Cl due to the extra CH3 groups providing 

more electron-donation and therefore, more stability to the structure. 

 Reaction of 10 with 3,5-Lutidine in CD3OD 

CD3OD was the solvent chosen due to its polar characteristics and [IrCl(COD)(MesCarCH3)] 

with 5 equivalents of 3,5-lutidine was dissolved in 600 µL of CD3OD. When a similar 

solution of[IrCl(COD)(IMes)] and pyridine were dissolved the CD3OD, we observe the 

formation of [Ir(COD)(IMes)(py)] where one pyridine molecule binds to the iridium metal 

centre displacing chloride.  For this reaction, we observe one 3,5-lutidine molecule 

binding to the metal centre and displacing chloride forming [Ir(COD)(MesCarCH3)(3,5-

lut)]Cl (10a). The corresponding 1H NMR spectrum is shown in Figure 47, where we are 

able to observe the following: 

The corresponding resonances for the coordinated 3,5-Lutidine are observed at δ 7.99, 

7.50 and 2.20 for the ortho, meta and para-CH3 proton. The remaining unlabelled peaks 

correspond to the COD CH and CH2 protons which yield corresponding resonances at δ 

4.41, 3.82 and 1.40-1.30. The imidazolium backbone of the MesCarCH3 NHC appears at δ 

7.20 and 6.88 with meta protons on the MesCarCH3 aromatic appear at δ 6.79. Finally, the 

CH3 protons on the NHC appear at δ 3.15 for the para protons of the mesityl ring, δ 2.50 

and 2.43 for the ortho protons on the mesityl ring, and at δ 1.68 for the CH3 protons 

bound to the nitrogen on the imidazolium NHC centre.  

The other unaccounted for peaks refer to the solvent residual at δ 4.9 and also the free 

pyridine peak for the ortho, para and meta protons of the 3,5-lutidine seen in the 

aromatic region at δ 8.20, 7.50 and 2.40.  
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Figure 47: A 32 scan 1H spectrum of IrCl(COD)(MesCarCH3) with 5 equivalents of 3,5-lutidine in 600µL of 

CD3OD  at 400 MHz at a temperature of 298 K forming [Ir(COD)(MesCarCH3)(3,5-lutidine)]Cl. This spectrum 

shows the bound ortho, meta and para protons of the 3,5-lutdidine at  δ 7.99, 7.50 and 2.20. 

 Initial H2 addition to IrCl(COD)(MesCarCH3) and hydride migration 

in IrCl(H)2(COD)(MesCarCH3) 
 

Hydrogen was added to [Ir(COD)(MesCarCH3)(3,5-lut)]Cl to  form the SABRE precursor, 

[Ir(H)2(COD)(MesCarCH3)( 3,5-lut)]Cl in CD3OD, where now that once 3,5-lutidine has 

bound to NHC complex, there is a 4-fold excess of 3,5-Lutidine. The sample is then shaken 

for about 10 seconds outside the spectrometer and a 1H NMR spectrum was immediately 

taken to monitor the reaction expected to take place. However, we see the immediate 

formation of the SABRE active tris complex, [Ir(H)2(COD)(MesCarCH3)3]Cl, with resulting 

equivalent hydride resonances at δ – 22.35 which is illustrated in Figure 48. 
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Figure 48: 1H NMR spectrum of the hydride region of [IrCl(COD)(MesCarCH3) with 5 equiv of 3,5-Lutidine 

with hydrogen gas activation forming the SABRE active tris complex, [Ir(H)2(MesCarCH3)(3,5-Lut)3](Cl). 

 Reaction of IrCl(COD)(MesCarCH3) with py and p-H2 at 298K and 

the formation of [Ir(H)2(MesCarCH3)(3,5-Lutidine)3]Cl (11) 
 

 

Figure 49: 1H NMR spectrum of the SABRE active complex, [Ir(H)2(MesCarCH3)(3,5-lutidine)3]Cl, that forms 

with 5 equivalents of 3,5- lutidine in CD3OD. In this spectrum, one clear hydride signal is observed at about 

δ −22.40, this is the fully activated SABRE tris complex that forms, with three bound 3,5-Lutidine substrate 

molecules which illustrated in this spectrum. 

3 atm of para-H2 was added to the NMR tube and shaken for 10 seconds in a 65 G 

magnetic field and a 1 scan 1H NMR spectrum was acquired. In the 1H NMR spectrum, 

seen in Figure 49, the equivalent hydride signal at δ −22.35 corresponds to the SABRE 

active complex. The corresponding signals for the region of the substrate, 3,5-lutidine, are 

seen for the equatorial bound 3,5-lutidine at δ 7.99 for the ortho bound protons, δ 7.56 
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for the para bound protons and the meta CH3 protons at δ 2.20.  We are also able to 

characterise the corresponding signals for the axial bound 3,5-lutidine at δ 7.88, 7.49 and 

2.01 for the ortho, para and meta-CH3 protons. Along with the free 3,5-lutidine at δ 8.20, 

7.55 and 2.30, this is all the substrate signals identified for the is the ortho, δ 7.93 is the 

para and δ 7.53 is the meta peaks for the complex [Ir(H)2(MesCarCH3)(3,5-Lutidine)3]Cl. 

The 1H NMR spectrum allows us to also identify the signals for the MesCarCH3 NHC, with 

corresponding resonances at δ 7.30 and 6.88 for the imidazolium backbone protons, at δ 

6.69 for meta protons of the mesital ring, the CH3 para protons at δ 3.18 and the CH3 

ortho protons at δ 2.23. The final CH3 corresponds to the CH3 substituent bound to the 

nitrogen of the imidazolium with a resonance at δ 2.11. The SABRE active catalyst, , was 

fully characterised by NMR and this can be found in section 6.4.17.   

 

 

Figure 50: 1H hyperpolarised NMR spectrum of the SABRE active complex, [Ir(H)2(MesCarCH3)(3,5-Lut)3][Cl] 

We also observe the hyperpolarised spectrum in Figure 50, where once parahydrogen is 

added to a CD3OD solution containing IrCl(COD)(MesCarCH3) with 5 equivalents of 3,5-

lutidine we observe the formation of  [Ir(H)2(MesCarCH3)(3,5-Lutidine)3]Cl, and also the 

hyperpolarisation from the parahydrogen derived hydrides that transfer polarisation to 

the bound 3,5-lutidine which exchanges with the free 3,5-lutidine causing antiphase 

signals for both the bound and free 3,5-lutidine signals. Figure 50, successfully shows us 

that the complex, [Ir(H)2(MesCarCH3)(3,5-Lutidine)3]Cl, forms but also that it is an efficient 

SABRE complex with a total signal enhancement of 719. 
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 [IrCl(COD)(MesCarBenzyl)] (12) 

The next asymmetric NHC complex that will be examined with SABRE through a series of 

reactions to determine its intermediates and to also investigate whether it is an efficient 

SABRE catalyst is IrCl(COD)(MesCarBenzyl).  I also hypothesise that this SABRE active 

catalyst, [Ir(H)2(MesCarBenzyl)(3,5-Lutidine)3]Cl, will form and be more efficient in SABRE 

than both [Ir(H)2(PhCarCH3)(3,5-Lutidine)3]Cl and [Ir(H)2(MesCarCH3)(3,5-Lutidine)3]Cl due 

the bulky nitrogen substituents on the NHC providing more electron-donation which in 

turn  provides a more steric and electronically stability catalyst.  

 Reaction of 12 with 3,5-Lutidine in CD3OD 

To a solution containing [IrCl(COD)(MesCarBenzyl)] in CD3OD, 5 equivalent of 3,5-lutidine 

was added  and as stated, previously we expect to see the formation of 

[Ir(COD)(NHC)(sub)]Cl, however in this instance we are unable to observe the formation 

of [Ir(COD)(MesCarBenzyl)(3,5-lutidine)]Cl where 3,5-lutidine binds to the iridium centre. 

This is potentially due to the temperature being at 298 K causing the lines to broaden. 

 Initial H2 addition to IrCl(COD)(MesCarBenzyl) and hydride 

migration in [Ir(H)2(COD)(MesCarBn)(3,5-Lutidine)]Cl 

Once the formation of [Ir(COD)(MesCarBenzyl)(3,5-lut)]Cl was unable to be observed, 

hydrogen was then added to witness the formation of the SABRE precursor, 

[Ir(H)2(COD)(MesCarBenzyl)(3,5-Lutidine)]Cl (12a) in CD3OD, to a solution containing  with 

5 equivalents of 3,5-lutidine as the substrate. The sample is shaken for about 10 seconds 

outside the NMR spectrometer and a 1H NMR spectrum was immediately acquired. 

However, we were unable to observe the formation of [Ir(H)2(COD)(MesCarBenzyl)(3,5-

Lutidine)]Cl and in turn observed the SABRE-active complex, [Ir(H)2(MesCarBenzyl)(3,5-

Lutidine)3]Cl forming. The hydrides resonance corresponds with this complex were 

observed at δ −22.30 seen in Figure 51. 

 

 Reaction of IrCl(COD)(MesCarBn) with py and p-H2 at 298K and the 

formation of [Ir(H)2(MesCarBn)(3,5-Lutidine)3]Cl (13) 

3 atm of para-H2 is added to the NMR tube and is then shaken for 10 seconds in a 65 G 

magnetic field and a 1 scan 1H NMR spectrum is acquired. In the 1H NMR spectrum the 

equivalent hydride signal at δ −22.76 corresponds to the SABRE active complex 13 with 3 

3,5-lutidine bound to the complex. SABRE-active catalyst, 13, was fully characterised by 

NMR and this can be found in section 6.4.5.   
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Figure 51: 1H NMR spectrum of the SABRE active complex, [Ir(H)2(MesCarBenzyl)(3,5-lutidine)3]Cl, which 

forms when IrCl(COD)(MesCarBenzyl) and  5 equivalents of 3,5- lutidine are dissolved CD3OD. In this 

spectrum, we observe a hydride signal is observed at about δ −22.40 and this is the activated SABRE tris 

complex that forms, with three bound 3,5-Lutidine substrate molecules. 

The 1H NMR spectrum seen in Figure 51, shows the SABRE active complex 

[Ir(H)2(MesCarBenzyl)(3,5-lutidine)3]Cl which forms when para-H2 is dissolved in a 

complex at 3 bar pressure containing IrCl(COD)(MesCarBenzyl) with 5 equivalents of 3,5-

lutidine in CD3OD. The corresponding resonances that determine this complex are: 

• The bound equatorial 3,5-lutidine resonance for the ortho, para and meta 

protons are observed at δ 7.99, 7.48 and 2.17 

• The bound axial 3,5-lutidine resonances for the ortho, para and meta protons are 

observed at δ 7.82, 7.47 and 2.08 

• The ortho and meta protons on the benzyl ring are observed at δ 7.30 

• The imidazolium backbone protons of the carbene are observed at δ 7.17 and 

6.94 

• The para proton on the benzyl ring are observed at δ 7.04 

• The meta protons on the phenyl ring are observed at δ 6.74 
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• The only CH2 protons between the carbene centre and the benzyl ring are 

observed at δ 5.00 

• The ortho CH3 protons on the phenyl ring are observed at δ 2.07 the para CH3 

protons on the mesial ring are observed at δ 2.26 

 

 

Figure 52: Hyperpolarised 1 scan 1H NMR spectrum that illustrates the formation of the SABRE-active 

catalyst  free 3,5-Lutidine [Ir(H)2(MesCarBenzyl)(3,5-lutidine)3]Cl which also undergoes polarisation and the 

free 3,5-lutidine resonances that also polarised which occurs due to the exchange between the free and 

bound 3,5-lutidine molecules. 

We observe the hyperpolarised spectrum in Figure 52, when parahydrogen is added to a 

CD3OD solution containing IrCl(COD)(MesCarBenzyl) with 5 equivalents of 3,5-lutidine 

where this formation of [Ir(H)2(MesCarBenzyl)(3,5-Lutidine)3]Cl is observed. The 

hyperpolarisation spectrum successfully shows us that the complex, 

[Ir(H)2(MesCarCH3)(3,5-Lutidine)3]Cl, forms with a total signal enhancement of 911-fold. 

This is the highest signal enhancement produced out of the array of asymmetric 

complexes. Based on this enhancement, this complex becomes the most efficient SABRE-

active catalyst amongst the other asymmetric SABRE-active catalysts so far, 

[Ir(H)2(PhCarCH3)(3,5-Lutidine)3]Cl and [Ir(H)2(MesCarCH3)(3,5-Lutidine)3]Cl, which have 

lower total signal enhancements of 1-fold and 719-fold. 

 [IrCl(COD)(MesCarHomoBenzyl)] (14) 
The last asymmetric NHC complex that will be examined with SABRE and investigated to 

witness whether it is an efficient SABRE catalyst is IrCl(COD)(MesCarHomoBenzyl).  It is 
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hypothesised that this SABRE active catalyst, [Ir(H)2(MesCarHomoBenzyl)(3,5-

Lutidine)3]Cl, will form and due to the bulky nitrogen substituents that it could be a better 

SABRE-active catalyst with high efficiencies than [Ir(H)2(PhCarCH3)(3,5-Lutidine)3]Cl, 

[Ir(H)2(MesCarCH3)(3,5-Lutidine)3]Cl and [Ir(H)2(MesCarBenzyl)(3,5-Lutidine)3]Cl.  

 

 Reaction of 14 with 3,5-Lutidine in CD3OD 

[IrCl(COD)(MesCarHomoBenzyl)] and 5 equivalent of 3,5-lutidine was added to a solution 

containing 600 µL of CD3OD and as stated previously we expect to see the formation of 

[Ir(COD)(NHC)(sub)]Cl. Unfortunately, in this instance we are unable to observe the 

formation of [Ir(COD)(MesCarHomoBenzyl)(3,5-lutidine)]Cl where 3,5-lutidine binds to 

the metal centre.  

 Initial H2 addition to IrCl(COD)(MesCarHomobenzyl) and hydride 

migration in [Ir(H)2(COD)( MesCarHomobenzyl)(3,5-lut)]Cl 
When a solution containing IrCl(COD)(MesCarHomoBenzyl) and 3,5-lutidine at 5 

equivalents in CD3OD is activated by hydrogen,  the sample is shaken outside the 

spectrometer so the hydrogen dissolves into the solution. We have previously seen in 

both section 3 and 0, that a complex with two hydrides and one 3,5-lutidine substrate 

bind to the iridium metal centre. This forms the complex 

[Ir(H)2(COD)(MesCarHomobBnzyl)(py)]Cl and we would be able to observe bound pyridine 

substrates in the aromatic region of the NMR spectrum with corresponding hydrides in 

the hydride region. However, when hydrogen is added to a solution containing 

IrCl(COD)(MesCarHomoBenzyl) with 5 equivalents of 3,5-lutidine in CD3OD, we are unable 

to observe the formation [Ir(H)2(COD)(MesCarHomoBenzyl)(3,5-lut)]Cl or any 

intermediate. However, we are able to observe the formation of the SABRE-active tris 

complex, [Ir(H)2(MesCarHomoBenzyl)(py)3]Cl where three 3,5-lutidine substrates bind to 

the iridium metal centre along with the parahydrogen derived hydrides with a 

corresponding hydride signal at δ −22.40 which will be further explain in section 4.4.3. 

 

 Reaction of IrCl(COD)( MesCarHomoBenzyl) with py and p-H2 at 

298 K and the formation of [Ir(H)2(MesCarHomoBenzyl)(3,5-

Lutidine)3]Cl (14) 
Complex IrCl(COD)(MesCarHomoBenzyl) was dissolved in CD3OD with 5 equivalents of 

3,5-lutidine, however we are unable to observe lutidine binding to the metal centre and 

forming [Ir(COD)(MesCarHomoBenzyl)(3,5-lutidine)]Cl.   
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Upon adding hydrogen to the solution in CD3OD, we do not observe the formation of 

[Ir(H)2(COD)( MesCarHomoBenzyl)(py)]Cl  but instead observe the reaction forming the 

SABRE tris complex [Ir(H)2(PhCarCH3)(3,5-Lutidine)3]Cl immediately with corresponding 

hydride signals at δ −22.40.  

Once p-H2 was added to the solution and the sample was shaken for 10 seconds at an 

approximate 65 G magnetic field. We observe antiphase, hyperpolarised bound substrate 

signals of the SABRE active tris complex, Ir(H)2(MesCarHomoBenzyl)(3,5-Lutidine)3]Cl as 

seen in Figure 53. The corresponding proton signal in the substrate region for the free 3,5-

lutidine peaks for ortho, para and meta protons are at δ 8.20, 7.55 and 2.34.  

 

Figure 53: Hyperpolarised 1 scan 1H NMR spectrum which shows the SABRE-active tris complex 

[Ir(H)2(MesCarHomobenzyl)(3,5-Lutidine)3]Cl, polarising in both the free and bound substrate region. 

In the 1H NMR spectrum seen in Figure 54, we observe the SABRE active complex 

[Ir(H)2(MesCarHomoBenzyl)(3,5-lutidine)3]Cl forming, once para-H2 is dissolved in a 

complex at 3 bar pressure in a solution containing IrCl(COD)(MesCarHomoBenzyl) with 5 

equivalents of 3,5-lutidine in CD3OD. This yield corresponding 1H NMR spectrum with 

resonances that determine that this SABRE-active complex has formed: 

• The bound equatorial 3,5-lutidine resonances for the ortho is observed at δ 8.00, 

for the para protons at δ 7.51 and the meta protons observed at δ 2.17. 

• The bound axial 3,5-lutidine resonances for the ortho is observed at δ 7.88, for 

the para protons at δ 7.47 and the meta protons observed at δ 2.11. 

• The two imidazolium backbone protons of the carbene are observed at δ 7.31 and 

6.88. 



92 | P a g e  
 

• The meta protons on the benzyl ring are observed at δ 7.24, the para proton on 

the benzyl ring are observed at δ 7.19 and the ortho protons on the benzyl ring 

are observed at δ7.03. 

• The meta protons on the phenyl ring are observed at δ 6.69. 

• The only two sets of CH2 protons between the carbene centre and the benzyl ring 

are observed at δ 3.74 and 2.96. 

• The ortho CH3 protons on the phenyl ring are observed at δ 2.02 and the para CH3 

protons on the mesityl ring are observed at δ 2.23. 

 

 

Figure 54: A 32 scan 1H NMR spectrum which observes the resonance peaks which correspond to the 

formation of the SABRE-active catalyst [Ir(H)2(MesCarHomoBenzyl)(3,5-lutidine)3]Cl, which forms once 

parahydrogen is added to a solution containing IrCl(COD)(MesCarHomoBenzyl). 

As illustrated in Figure 53, the hyperpolarised NMR spectrum shows the polarisation of 

both the free and the bound equatorial 3,5-lutidine. The hyperpolarised spectrum 

successfully shows us that [Ir(H)2(MesCarHomoBenzyl)(3,5-Lutidine)3]Cl forms with a total 

signal enhancement of 371-fold. This is the second highest signal enhancement produced 

out of the entire asymmetric complex which based on the hypothesis stated in section 4.4 

is incorrect where it was hypothesised that the asymmetric SABRE-active catalyst with the 
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largest N-substituent would produce the largest total signal enhancements. This 

hypothesis will be discussed in more detail later. 

 Summary and Discussion 

In this chapter, asymmetric SABRE-active catalysts were examined with 3,5-lutidine as the 

substrate of choice. 3,5-lutidine is a pyridine-derivative and found in a number of drug 

molecules which can go on to potentially be used as MRI contrast agents. The asymmetric 

complexes, IrCl(COD)(NHC) where NHC=PhCarCH3, MesCarCH3, MesCarBenzyl or 

MesCarHomoBenzyl, underwent a series of reactions and displacements where they all 

formed SABRE-active catalysts [Ir(H)2(NHC)(3,5-lutidine)3]Cl where NHC = PhCarCH3, 

MesCarCH3, MesCarBenzyl or MesCarHomoBenzyl. All of these asymmetric complexes 

were observed to form SABRE-active catalysts and the hyperpolarised signal intensities 

that result were found to vary depending on the NHC. 

The NHC with the least bulkiest nitrogen substituents is IrCl(COD)(PhCarCH3) and 

produces the lowest polarisation levels at 11-fold when compared to the other 

asymmetric catalysts. The NHC with the most bulkiest nitrogen substituents is 

IrCl(COD)(MesCarHomoBenzyl) and is better than the former complex in accordance with 

faster ligand dissociation. The highest polarisation level results from SABRE-active catalyst 

[Ir(H)2(MesCarBenzyl)(3,5-lutidine)3]Cl at 911-fold. This indicates that a fine balance is 

needed between being too sterically bulky, and the ligand loss rate being too rapid for 

polarisation transfer, as well as being too small and the bonding being too strong. 

[Ir(H)2(MesCarHomoBenzyl)(3,5-lutidine)3]Cl seems to reflect a happy medium having one 

large nitrogen substituent, and one smaller substituent. These two side chains now acts 

to improve polarisation transfer from the hydrides to the substrate (illustrated in Figure 

18). Hence the original premise of this work is proven. 

It is believed that an asymmetric complexes have the potential to exceed the 

performance of the commonly used SABRE-active catalyst associated with the current 

literature. It should be emphasised that the conditions used for polarisation transfer with 

these asymmetric complexes were not fully optimised, although a standard set of 

conditions were used, so hence they are comparable. It is recommended in the future 

these studies are repeated at different temperature and with a wider range of substrates 

to further develop this theme.  

It took around 4 years of optimisation for the original SABRE catalysts to produce the 

published results of Rayner et al.82 It is therefore believed these results reflect a 
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significant addition to the body of work already reported for SABRE. It has been learnt 

that CH bond activation needs to be avoided as this affects the SABRE catalysts longevity.   

 

5 Conclusions and Future Work 

 Conclusions - Symmetric vs Asymmetric  

This thesis has demonstrated that changing the NHC on the SABRE-active catalyst can 

either increase or decrease SABRE efficiencies. The work in this thesis was started by  

investigating two new symmetric complexes, 1 and 3, and optimising them for SABRE. The 

synthetic route was explained and the SABRE-active forms of these complexes were 

analysed by looking at their exchange rates and analysing the thermodynamic 

parameters.  

The results of these data allowed it to be concluded that changing the NHC can 

beneficially affect the steric effects of SABRE and affect the ligand exchange. By analysing 

the rate constants and thermodynamic properties for the ligand loss of pyridine, it was 

determined that there is a direct correlation to electronic and steric bulk, whereby 

increasing the steric bulk, which in turn increases the electron donating power of the 

NHC, decreases the Gibbs free energy making it more negative.1 This draws a link 

between polarisation efficiencies, ligand exchange and the NHC complexes examined. 

Figure 55 shows a graph with the calculated Gibbs free enthalpy (explained in section 7.2) 

and actually indicates that the SABRE-active complex of [IrCl(COD)(IXy) has the lowest 

Gibbs free enthalpy out of all the complexes examined, which from the theory stated 

previously is not correct. We would expect IMes to have the lowest Gibbs free energy 

from the steric bulk of the catalyst. This data concludes that the efficiency of SABRE 

catalysts cannot be predicted and that not steric alone cannot determine the 

hyperpolarisation efficiency of a SABRE catalyst.  
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Figure 55: A graph of the Gibbs free entropy (∆H≠) plotted as a function of the NHC utilised in the complex 

IrCl(COD)(NHC). 

For the two symmetric complexes, IXy and ITol, key components were optimised such as 

solvent, substrate concentration and temperature. Both [Ir(H)2(IXy)(py)3]Cl and 

[Ir(H)2(ITol)(py)3]Cl were able to polarise, however [Ir(H)2(ITol)(py)3]Cl had very low 

polarisation levels of 0.5-fold and we were unable to observe the exchange rate. This 

makes [Ir(H)2(IXy)(py)3]Cl a better choice as its polarisation levels were much higher at a 

total polarisation enhancement of 102-fold. The solvents role had a significant effect as 

well on the polarisation transfer and the intermediates that were visible through the 

experiments. Both methanol and dichloromethane were the solvents investigated, for 

[Ir(H)2(IXy)(py)3]Cl with pyridine as the substrate, maximum signal enhancements and the 

intermediates were more clearly identifiable in methanol. Whereas, for 

[Ir(H)2(ITol)(py)3]Cl with pyridine as the substrate, intermediates were not observed for 

either solvents but had a higher signal enhancement of 11-fold in dichloromethane. 

Ruddlesden et al proved that the low polarity solvents can affect the efficiency of charged 

nature species so to fully optimise these complexes a range of solvents and substrates 

would need to be tested to understand how these would affect their SABRE efficiencies.71  

We also investigated asymmetric NHC complexes, along with IMes as the control, with 

3,5-lutidine as the substrate. As CD3OD is the solvent used with IrCl(COD)(IMes) and 

pyridine which is currently the SABRE-active catalyst with the greatest SABRE efficiencies, 

were also used as the solvent in the asymmetric studies. We were able to polarise with all 
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the SABRE-active asymmetric complexes, however [Ir(H)2(MesCarBenzyl)(3,5-lutidine)3]Cl 

produced the greatest signal enhancements even higher than [Ir(H)2(IMes)(3,5-

lutidine)3]Cl making it the most efficient SABRE catalyst in. [Ir(H)2(PhCarCH3)(3,5-

lutidine)3]Cl had the lowest polarisation enhancements; we expect this due to the 

nitrogen substituents not being bulky enough. 

As [Ir(H)2(MesCarBenzyl)(3,5-lutidine)3]Cl produced the highest polarisation 

enhancements at 911-fold out of both the symmetric and the asymmetric complexes, this 

complex is the most efficient SABRE catalyst in this research. However, to be truly able to 

compare the symmetric and asymmetric complexes, both pyridine and 3,5-lutidine would 

need to be examined with all complexes and various controls such as temperature, 

substrate concentration and solvent used would need to be examined with both the 

symmetric and asymmetric complexes. 

From all the data collected in this thesis, it can be determined that the asymmetric 

SABRE-active catalysts have the potential to exceed the commonly used symmetric 

SABRE-active catalyst associated with SABRE. 

While this thesis has aimed to demonstrate the effects on polarisation transfer when 

varying the NHC ligand and how this can affect the hyperpolarisation enhancement, it has 

also brought to the attention that there are many limitations. The polarisation transfer 

can be affected by many variables which means that optimisation can be difficult and a 

prolonged process.  

 Future work - Symmetric complexes 

For the symmetric complexes studied throughout this thesis, 1 and 5, two different 

temperatures of 233 K and 298 K were used when pyridine was added to complex; this 

was then analysed and characterised to determine the structures formed when the 

substrate was added, but more importantly when parahydrogen was added at 3 bar 

pressure to activate the complex. A hyperpolarisation method known as the shake and 

drop method was then used to achieve polarisation transfer through a chemical exchange 

in an approximate 65 G magnetic field.  To examine the complex more intently, 

temperature between 233 K and 298 K should also be analysed to determine which 

temperature achieves the greatest SABRE enhancements thereby identifying when the 

catalyst is at its most efficient.  

The other key areas which need further investigation would be to examine the 

reproducibility of the polarisation transfer achieved in an NMR tube. The shake and drop 

method is currently used throughout this thesis to achieve polarisation, however the lack 
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of reproducibility has been questioned so a hyperpolarisation method using a flow system 

is a way to overcome the reproducibility problem. This would then allow us to develop 

more understanding of the SABRE symmetric catalysts 4 and 7 by studying the effects 

certain characteristics have on changing the efficiency of the SABRE active complexes. The 

effects that could be studied to broaden our understanding are: the amount of time 

parahydrogen is bubbled through the sample solution in the mixing chamber which 

within the flow system is used instead of an NMR tube. Also, the pressure of 

parahydrogen gas placed in the solution along with the how the magnetic field strength 

can affect the polarisation transfer stage.83 

 Future work - Asymmetric complexes 

Throughout this thesis, 3,5-Lutidine was the substrate of choice and worked well along 

with the NHC stabilised iridium complexes to form SABRE-active complexes. However, to 

be able to optimise the catalyst efficiencies for SABRE and to prove whether asymmetric 

or symmetric complexes give larger polarisation enhancements therefore making them 

more efficient SABRE active catalysts, then pyridine and 3,5-lutidine need to be examined 

for both symmetric and asymmetric complexes to derive which SABRE active-catalysts 

works the best for SABRE before optimising the conditions of the catalyst by substrate 

concentration and temperature.  Ideally, as the human body’s optimum temperature is 

around 310 K, the catalysts must work most efficiently as this temperature if they were 

used as MRI contrast agents. Therefore, it is important to study and determine which 

SABRE active catalysts exhibits the most efficiency at these temperatures by performing 

temperature studies.1, 84 It would also be interesting to determine the rate of ligand 

exchange for IrCl(COD)(MesCarBenzyl) and determine whether it competes with SABRE 

efficiencies of both IrCl(COD)(IXy) and IrCl(COD)(MesCarHomoBenzyl).  

 Other Areas of interest 

An area of interest is the development of a SABRE catalyst which is biologically safe to use 

within the human body so not only does the catalyst itself need to be biochemically safe 

but also the solvent system that contains the SABRE catalyst must be safe to use in clinical 

settings.85 Throughout this project, CD3OD and CD2Cl2 were used which unfortunately can 

be toxic to the human body so other solvents such as ethanol and water are preferred to 

be used instead. There has been great difficulty with using water where polarisation has 

not been as efficient producing short lived hyperpolarisation in proton NMR.48 However, 

since completing this thesis; hyperpolarisation has been achieved by Colell et al, where a 

SABRE catalyst has directly hyperpolarised in 15N nuclei in pure H2O or D2O.49, 86 
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During this thesis work was also began to investigate acetone as a co-ligands. This can 

improve the polarisation enhancements which in turn improves the efficiency of the 

SABRE-active catalyst. This work has previously been examined by the Duckett group 

where acetonitrile has been used as the co-ligand increasing the 1H signal enhancement 

from 20-fold to 60-fold.81 

Currently all the NMR spectroscopic work achieved throughout this thesis is done on a 

high field (9.4T) NMR spectrometer, and recently within the Duckett group a low cost low-

field permanent magnet system (1T) has been used to detect signal enhancement 

intensities from SABRE active catalysts. This low-cost NMR is much more desirable as less 

money is required to run these experiments.87 
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6 Experimental 

 Instrumentation 

 NMR Spectrometry 
All characterisation of complexes by NMR spectroscopy was carried out using Avance III 

400 MHz and Avance III 500 MHz spectrometers, where the 1H frequency is measured at 

400.1 MHz and 500.1 MHz. The 13C NMR frequency is measured at 100.6 MHz for the 400 

MHz and 202.5 MHz for the 500 MHz. Data processing and acquisitions were examined 

using Bruker Topspin software versions 3.5. The 15N NMR frequency is measured at 40.6 

MHz for the 400 MHz and 50.7 MHz for the 500 MHz. 

NMR deuterated solvents used throughout the course of this research were d2-

dichloromethane and d4-methanol. For d2-dichloromethane (DCM), the residual reference 

signal is d1-dichloromethane proton (CDHCl2) and for d4-methanol, the residue reference 

signal is the proton in d3-methanol (CHD2OD).  

Multiplicities are stated as s for singlet, d for doublet, t for triplet, q for quartet and m for 

multiplet.  J couplings are quoted in Hertz (Hz).  

 Mass Spectrometry 

ESI is a relatively soft ionisation analytical technique used to detect different ionic 

substances in a compound. The molecular ion signals were observed on a Bruker 

micrOTOF time of flight mass spectrometer using electrospray ionisation (ESI) techniques. 

An ESI source was used to collect the data (ESI-MS).   

 Parahydrogen preparation 

Parahydrogen is produced by cooling hydrogen gas to around 30K over a paramagnetic 

material, Fe2O3, which acts as the catalyst. This process occurs in a closed cycle helium 

refrigeration unit producing p-H2 where the concentration is over 99%. The pressure of 

parahydrogen used was at 3 bar.  

 Standard methods 

 Hyperpolarisation method – Shake and Drop 

Hyperpolarisation methods were examined using 5mm NMR tube equiped with a Young’s 

valve. The sample, 5 mg of chosen complexes (symmetric complexes) with 5 equivalents 

of substrate and 0.6mL of solvent, was used unless stated otherwise. A sample was then 
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degassed using a high vacuum line to evacuate air out of the NMR tube and activated by 

adding hydrogen gas at a pressure of 3 bar. 

For each shake and drop experiment, the evacuation of the headspace of the NMR tube is 

required so that p-H2 (3 bar) can be added. The sample is then shaken at approximately 

65 G using the stray magnet field outside of the NMR spectrometer for 10 seconds before 

quickly inserting the tube into the NMR spectrometer. A single scan is collected with a 90° 

pulse angle and the receiver gain set to 1 as standard.  

 Calculations of enhancement factors  
The calculations used for NMR enhancements, ε, were calculated using the formula: 

 

𝛆 =
Hyperpolarised signal integral

Thermal signal integral
 

 

The acquisitions for both the thermal and the hyperpolarised signal were kept the same 

along with the receiver gain and the number of scans. Thermal signals were taken after 

the activated sample had reached thermal equilibrium and aligned with the magnetic 

field in the spectrometer, which could be anytime between 1 to 10 minutes after 

polarisation.  

A hyperpolarised signal appears as a negative enhanced peak so when quoted the 

enhancement factor is also negative.  

 Synthesis 

The symmetric and asymmetric complexes made within the Duckett Group by Peter 

Rayner except for the asymmetric complexes [IrCl(PhCarCH3)(COD)] and  

[IrCl(MesCarCH3)(COD)]. The complex IrCl(COD)(tBuBIM) was synthesised by me. 

 Iridium Dimer [Ir(COD)Cl]2 

 

Figure 56: Iridium Dimer where COD = 1,5-cyclooctadiene 
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Isopropanol (3 mL) and distilled water (1.25 mL) were stirred under nitrogen gas for 10 

minutes. Iridium trichloride (250 mg, 0.84 mmol) was added to a microwave vial (2.5 mL-

5.0 mL) with a stirrer bar and flushed with nitrogen gas for 10 minutes.   

Into the flask containing isopropanol and distilled water, 1,5 – cyclooctadiene (3.5eq.) was 

added and stirred under nitrogen for another 10 minutes. The resulting solution was 

added to the microwave vial which was flushed with nitrogen gas for a further 10 

minutes.  The vial was then placed in the microwave at 90 °C for 20 minutes. The vial was 

again placed in the microwave for a further 20 minutes at 90 °C and then at 80 °C for 25 

minutes. The vial is then left in the freezer for 24 hours.  

 Symmetric complexes 

6.3.2.1 [IrCl(IMes)(COD)]  

 

 

Figure 57: IMes Carbene [IrCl(IMes)(COD)] which was synthesised within the Duckett Group where IMes = 

1,3-bis-(2,4,6-trimethylphenyl)-imidazol-2-ylidene 

 [IrCl(IMes)(COD)] was synthesised within the Duckett group according to the procedures 

in the literature88.   

6.3.2.2  [IrCl(IXy)(COD)] 

 

Figure 58: IXy Carbene [IrCl(IXy)(COD)] which was synthesised within the Duckett Group 
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Glyoxal (1.0 eq.) was added with formic acid (2 drops) in a stirred solution of 2,6-

Dimethylaniline (2.0eq.) in Methanol or Ethanol at rt. The resulting solution was then 

stirred for 16 hours at rt forming a yellow precipitate. The yellow precipitate was then 

filtered and washed with methanol and ethanol then dried under a vacuum to give an 

N,N'-Bis(2,6-dimethylphenyl)-1,2-ethanediimine (Ethylenediimine). To the 

ethylenediimine, a paraformaldehyde (1.1eq.) in 4M hydrochloric acid (1.5eq.) solution 

was added dropwise in ethyl acetate under nitrogen gas. The resulting solution is then 

stirred for 16 hours at rt forming an off white precipitate. The precipitate is then washed 

and filtered with ethyl acetate then dried under vacuum forming imidazolium chloride. 

KOtBu (2.4eq.) was added to a solution of the carbene (2.2eq.) in THF under nitrogen gas 

and stirring at rt and then stirred for 30 minutes at rt.  [Ir(COD)Cl2 (1.0eq.) was added to 

the resulting solution and stirred for a further 2hours at rt. The solvent was then removed 

via reduced pressure and purified over flash column chromatography on silica with DCM 

giving the IXy carbene shown in Figure 58. 

Yield: 95 % 

6.3.2.3 [IrCl(ITol)(COD)] 

 

Figure 59: ITol carbene [IrCl(ITol)(COD)] 

The ITol carbene complex was synthesised by using a similar procedure seen for 

IrCl(IXy)(COD). To the p-Toluidine solution (2.0 eq.) stirring, glyoxal (1.0 eq.) and formic 

acid (2 drops) were added in methanol or ethanol at rt. The solution was then stirred for 

16h at rt forming a yellow precipitate. This was then filtered and washed with methanol 

and ethanol and then dried under vacuum giving the ethylenediimine. To this, 

paraformaldehyde (1.1eq.) in 4M HCL in 1,4-dioxane (1.5 eq.)  The solution was added 

dropwise to the ethylenediimine (1.0eq.) in ethyl acetate at rt under nitrogen gas. The 

solution was then stirred for 16 hours forming an off white precipitate. This was then 

filtered, washed with ethyl acetate and dried under vacuum giving 1,3-Bis(4-
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methylphenyl)imidazolium chloride. To the imidazolium chloride carbene (2.2 eq.) in THF, 

KOtBu (2.4 eq.) was added and stirred at rt for 30 minutes. Then, a solution containing 

\[Ir(COD)Cl]2 (1.0 eq.) was added to the resulting solution and stirred for 2h at rt. The 

solvent was then removed under reduced pressure and purified by flash column 

chromatography on silica with DCM giving, a yellow crystalline solid, [IrCl(ITol)(COD)].  

Yield: 70% 

6.3.2.4 [IrCl(tBuBIM)(COD)] 

 

Figure 60: tBuBIM carbene [IrCl(tBuBIM)(COD)] 

1,3-Di-tert-butylimidiazolium chloride (145.7 mg, 0.546 mmol)  and Ag2O (63.9mg, 0.273 

mmol) were added to DCM (5 mL) and stirred at rt for 2 hours. Foil was used to shield the 

suspension from light. [Ir(COD)Cl]2 (183 mg, 0.273 mmol) was then added to the solution 

and stirred at rt for a further 4 hours. The resulting solution was then purified by column 

chromatography (on silica with DCM as the eluent), filtered and the solvent was removed 

under reduced pressure forming a yellow solid.  

Yield: 62 % 
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 Asymmetric complexes  

6.3.3.1 [IrCl(MesCarEtBn)(COD)] 

 

Figure 61: IMesCarEtBn Carbene [IrCl(MesCarEtBn)(COD)] which was synthesised within the Duckett Group 

where IMes = 1,3-bis-(2,4,6-trimethylphenyl)-imidazol-2-ylidene 

MesCarEtBn.BPH4 (101 mg, 0.170 mmol) was dissolved partially in acetone (20 mL). To the 

suspension, K2CO3 (127 mg, 0.920 mmol) was added and stirred for 15 minutes at room 

temperature before [Ir(COD)Cl]2 (57.2 mg, 0.00852 mmol) was added. This formed a 

bright orange mixture which was then heated under reflux for 4 hours where the mixture 

changes to an orange-yellow in colour. The mixture was then cooled to room temperature 

and filtered through celite; then evaporated to give an orange-yellow residue. The residue 

was then re-dissolved in DCM (20 mL), where a white solid precipitates out. The mixture 

was then filtered through celite once again and the solvent was evaporated off to give an 

orange-yellow solid. The solid was re-dissolved in hexane (30 mL) and heated, whilst 

stirring, in a water bath at 40 °C for approximately 15 minutes. The solution was then 

filtered and the two previous steps were repeated twice more until a brown solid remains 

undissolved. The yellow solution that was continuous collected was combined and 

reduced in volume to approximately 10mL. The yellow solution was then placed in a 

freezer overnight to give the IEtBn carbene as yellow needle-like crystals.  

Yield: 84 % 
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6.3.3.2 [IrCl(MesCarBn)(COD)] 

 

Figure 62: IMesCarBn Carbene [IrCl(IMesCarBn)(COD)] which was synthesised within the Duckett Group 

where IMes = 1,3-bis-(2,4,6-trimethylphenyl)-imidazol-2-ylidene 

MesCarBn.BPH4 (107 mg, 0.176 mmol) was dissolved partially in acetone (20 mL). To this 

suspension, K2CO3 (127 mg, 0.0917 mmol) was added and stirred for 15 minutes after 

which [Ir(COD)Cl]2 (59.0mg,  0.0878 mmol) was added. A bright yellow mixture formed 

and was heated at reflux for 4 hours where the mixture appeared an orange-yellow 

colour. The mixture was then cooled down to room temperature and filtered through 

celite, then evaporated to give an orange-yellow residue. The residue was then dissolved 

in DCM (20 mL), where a white solid precipitates out. The mixture was filtered through 

celite and the solvent was evaporated giving an orange-yellow solid. The solid was then 

re-dissolved in hexane (30 mL) and heated, whilst stirring, in a water bath at 40 °C for ca. 

15 minutes. The yellow solution was filtered and collected; with the previous two steps 

repeated twice more until a brown solid remains undissolved. All the yellow solutions 

collected were added together and reduced to approximately 10 mL in volume. The 

solution was placed in the freezer overnight to give [IrCl(MesCarBn)(COD)] as yellow-

needle like crystals.  

Yield: 73 % 
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 Characterisation Data for Symmetric and Asymmetric N-

Heterocyclic carbene complexes 

 IrCl(COD)(IXy)(1)  

 

Figure 63: Labelled Schematic of 1 

1H NMR (400 MHz, CD2Cl2, 233 K): δ= 7.36 (t, 2H, H8, JHH = 7.58Hz), 7.24 (d, 4H, H7, JHH 

=7.55Hz), 7.07 (s, 2H, H3), 3.97 (m, 2H, CH, COD), 2.98 (m, 2H, CH, COD), 2.40 (s, 6H, H5), 

2.26 (s, 6H, CH3, H5), 1.70 (m, 4H, CH2, COD), 1.38-1.21 (m, 4H, CH2, COD).  

13C NMR (101 MHz, CD2Cl2, 233 K): δ= 178.9 (N-C-N, C1), 138.6 (N-C=C, C4), 128.9 (C-C=C, 

C5), 128.4, 127.7 (C=C-CH3, C6, C7), 123.5 (C=C, 2C, C3), 82.3 (2CH, COD), 52.3 (2CH, COD), 

33.4, 28.9 (4CH2, COD), 19.4, 18.5 (CH3, C5) 

15N NMR (41 MHz, CD3OD, 263 K): δ= 192.2 (2N, N2) 

ESI+-MS calculated M: C27H32N2IrCl - 618.2 [M+CH3CN]+ , 577.22 [M-Cl]+  

 

Figure 64: ESI Mass spectra of [IrCl(IXy)(COD)]  
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 [Ir(COD)(IXy)(py)]Cl (1a) 

 

Figure 65: Labelled Schematic of 1a 

1H NMR (400 MHz, CD2Cl2, 294 K): δ= 7.88 (d, 2H, o-pyridine, JHH = 4.98Hz), 7.82 (t, 1H, O-

pyridine, JHH = 7.64Hz) 7.49 (m, 4H, H7) 7.46 ( d, 2H, H8, JHH =7.37Hz) , 7.30 (t, 2H, m-

pyridine, JHH = 7.06Hz), 7.21 (d, 2H, H3, JHH =7.28Hz), 3.66 (t, 2H, JHH = 2.84Hz, CH, COD), 

3.31 (t, 2H, JHH = 2.88Hz, CH, COD), 2.42 (s, 6H, CH3, H5), 2.10 – 1.59 (m, 8H, CH2, COD), 

1.92 (s, 6H, CH3, H5) 

 IrCl(H)2(IXy)(COD) (1b) 

 

Figure 66: Labelled Schematic of 1b 
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1H NMR (400 MHz, CD2Cl2, 233 K): 7.06 ( m, 5H, H7, H8), 6.81 (s, 2H, H3), 4.05 (2H, HC=CH, 

CH of COD), 3.05 (2H, HC=CH, CH of COD),  2.16 (12H, CH3, H5), 1.67, 1.33 (CH2 of CD), 

−13.42 (1H, Hydride, trans to COD),  −18.08 (1H, Hydride, trans to Cl). 

 [Ir(H)2(IXy)(COD)(py)]Cl (1c) 
 

 

Figure 67: Labelled Schematic of 1c 

1H NMR (400 MHz, CD3OD, 233 K): 8.39 (2H, o-py in equatorial position), 7.97 (1H, p-py in 

equatorial position), 7.45 ( m, 5H, H7, H8), 7.27 (2H, m-py in equatorial position), 7.19 (s, 

2H, H3), 4.70 (2H, HC=CH, CH of COD), 4.24 (2H, HC=CH, CH of COD),  2.42 (12H, CH3, H5), 

1.89, 1.31 (CH2 of CD), −12.05 (1H, Hydride, trans to COD),  −17.55 (1H, Hydride, trans to 

py). 
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 [IrCl(H)2(IXy)(py)2] (1d) 

 

Figure 68: Labelled Schematic of 1d 

1H NMR (400 MHz, CD2Cl2, 294 K): δ 8.84 (br, 2H, ‘o-py in axial), 8.71 (d, 2H, o-py in 

equatorial), 7.42 (t, 1H, p-py in equatorial), 7.07 (t, 2H, ‘m-py in axial), 6.97 (m, 3H, 2H, H8, 

CH-IXy overlap with 1H, ‘p-py  in axial), 6.82 ( m, 4H, 2H, m-py in equatorial overlap with 

2H, H3 ,CH-imidazolium), 5.60 (S, 4H, H7 ,CH-IXy), 2.39 (s, 3H, CH3-IXy, H5), 2.28 (S, 9H, 

CH3-IXy, H5), -23.74 (s, 1H trans to py), -24.34 (s, 1H, trans to Cl). 
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 [Ir(H)2(IXy)(py)3]Cl (2) 

 

Figure 69: Labelled Schematic of 2 

1H NMR (400 MHz, CD2Cl2, 294K): 8.34 (4H, o-py in equatorial position), 8.06 (2H, ‘o-py in 

axial position), 7.74 (2H, p-py in equatorial position), 7.67 (1H, ‘p-py in equatorial 

position), 7.15 ( m, 5H, H7, H8), 7.12 (4H, m-py in equatorial position), 6.91 (2H, ‘m-py in 

equatorial position), 6.85 (s, 2H, H3), 2.15 (12H, CH3, H5), 22.73 (2H, Hydrides) 
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  [IrCl(COD)(ITol)] (3) 
 

 

Figure 70: Labelled Schematic of 3 

1H NMR (400 MHz, CD2Cl2, 298 K): δ= 7.99 (d, 4H, CH, JHH= 8.34Hz, H6), 7.35 (d, 4H, JHH= 

8.27Hz, CH, H5), 7.34 (s, 2H, H3),  4.36 (m, 4H, CH, COD), 2.48 (S, 6H, CH3, H8), 1.82 (m, 2H, 

CH2, COD), 1.45 (m, 4H, CH2, COD), 1.22 (m, 2H, CH2, COD). 

13C NMR (101 MHz, CD2Cl2, 298 K): δ= 180.80 (N=C=N, C1), 137.95 (C-C=C, C4), 129.02 (C-

C=C, C7) 128.60 (C-C=C, C5), 125.34 (C=C-C, C6), 121.40 (C=C, 2C, C3), 82.42 (4CH, COD), 

33.20 (4CH2, COD), 29.50 (2CH2, COD), 20.90 (2CH3, 2C, C8). 

15N NMR (51 MHz, CD2Cl2, 288 K): δ= 195.8 (2N, N2) 

ESI+-MS calculated M: C25H29N2IrCl – 585.16, 547.17[M-Cl]+  
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 IrCl(H)(COD)(ITol) (3a) 

 

Figure 71: Labelled Schematic of 3a 

1H NMR (400 MHz, CD2Cl2, 298 K): δ= 7.80 (d, 4H, CH, JHH= 8.34Hz, H6), 7.35 (d, 4H, JHH= 

8.27Hz, CH, H5), 7.34 (s, 2H, H3),  4.42 (m, 4H, CH, COD), 2.33 (s, 6H, CH3, H8), 1.85 (m, 2H, 

CH2, COD), 1.51 (m, 4H, CH2, COD), 1.24 (m, 2H, CH2, COD), -17.17 (hydride) 

 [IrCl(H2)(ITol)(py)3]Cl (4) 

 

Figure 72: Labelled Schematic of 4 

1H NMR (400 MHz, CD3OD, 298 K): 8.30 (4H, o-py in equatorial position), 7.80 (2H, ‘o-py 

in axial position), 7.47 (1H, p-py in equatorial position), 7.35 (d, 4H, CH, H5), 7.34 (s, 2H, 

H3),  7.00 (2H, ‘p-py in axial position), 6.69 (2H, ‘m-py in axial position), 6.48 (4H, m-py in 

equatorial position), 5.57 (s, 2H, H6), 2.34 (12H, CH3, H5), −24.11 (2H, Hydrides) 
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 [IrCl(COD)(tBuBIM)] (5) 

 

Figure 73: Labelled Schematic of 5 

1H NMR (400MHz, CDCl3, 298 K): δ = 7.96 (dd, J = 3.2 Hz, 2H, H3), 7.60 (dd, J = 3.2 Hz, 2H, 

H2), 2.20 (m, 4H, COD-CH), 2.00 (s, 18H, CH3, H1),) 1.75-1.03 (m, 8H, COD-CH2) 

  [IrCl(COD)(IMes)] (6) 

 

Figure 74: Labelled Schematic of 6 

1H NMR (400 MHz, CD2Cl2, 298 K): δ= 7.05 (pseudo-d, 4H,-CH, H7), 7.02 (pseudo-d, 2H, H3), 

4.07 (m, 2H, =CH of COD), 3.04 (m, 2H, =CH of COD), 2.40 (s, 6H, CH3, H9), 2.34 (s, 6H, CH3, 

H5), 2.20 (s, 6H, CH3, H5), 2.10 – 1.59 (m, 8H, CH2, COD), 1.92 (s, 6H, CH3, H1). 

13C NMR (400 MHz, CD2Cl2, 294 K): δ 180.50 (N-C-N, C1), 138.61 (H3C-C=C, C4) 137.12 (N-

C=C, C4), 136.22 (C-C-CH3, C6, C8), 134.63 (C-C-CH3, C6), 129.22, 128.19 (C=C-C, C7), 123.48 

(C=C, C3), 81.80 (C=C, CH of COD), 51.50 (C=C, CH of COD), 33.40, 33.51, 33.35, 28.75 (CH2 

of COD), 20.74, 19.26, 17.98 (CH3, C5, C9). 

15N NMR (400MHz, CD2Cl2, 294K): δ 191.60 (N2). 
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  [IrCl(H)2(IMes)(3,5-Lutidine)3]Cl (7) 

 

Figure 75: Labelled Schematic of 7 

1H NMR (400 MHz, CD3OD, 298 K): δ 7.99 (s, 4H, ortho-CH lutidine in equa. position), 7.67 

(s, 2H, ‘o-CH lutidine in axial position), 7.44 (s, H, ‘p-CH lutidine in axial position), 7.33 (s, 

2H, para-CH lutidine in equa  position), 7.30 (s, 2H, -CH=CH-, H3), 6.73 (s, 4H, CH, H7), 2.23 

(s, 6H, CH3, H9), 2.19 (s, 12H, CH3-lutidine in axial position), 2.10 (s, 6H, CH3, H5),  2.01 (s, 

6H, CH3-lutidine in equa position), −22.79 (s, 2H, hydrides) 

 

13C NMR (500 MHz, CD3OD, 298 K): δ 164.9 (C-carbene, C1). 152.4 (para-CH, lutidine in 

axial), 152.3 (para-CH, lutidine in equa), 137.5 (ortho-CH, lutidine, equa), 135.9 (C(CH3), 

lutidine, axial), 135.2 (C(CH3), lutidine, equa), 134.9 (ortho-CH, lutidine, axial), 133.5, 

135.1, 137.9 (C(CH3)=CH, C4, C8), 128.11 (CH, C7), 122.4 (-CH=CH-, C3) , 17.4, 19.7 (CH3, C5, 

C9), 16.7 (CH3, lutidine equa), 16.1 (CH3, lutidine axial) 
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  [IrCl(COD)(PhCarCH3) (8) 

 

Figure 76: Labelled Schematic of 8 

1H NMR (400 MHz, CD2Cl2, 233 K): δ 8.03 ( d , JH-H=7.27 Hz, 2H, H8), 7.51 (m, 2H, H9), 7.45 

(m, 1H. H10), 7.41 (m, 4H, H7, H8), 7.23 (pseudo-s, 1H, H5, H4), 7.08 (pseudo-s, 1H, H5, H4), 

4.56 (m, 1H, =CH of COD), 4.32 (m, 1H, =CH of COD), 2.91 (m, 1H, =CH of COD), 2.16 (m, 

3H, CH2 of COD), 1.89 (m, 1H, =CH of COD), 1.71 (3H, CH3, H3), 1.61 (m, 2H, CH2 of COD), 

1.52 (m, 1H, CH2 of COD), 1.36-1.15 (m, 2H, CH2 of COD). 

13C NMR (101 MHz, CD2Cl2, 298K ): δ 179.70 (Im C=C, C4, C5), 128.70 (C=C-C, C9), (C=C-C, 

C10), 124.71 (C-C=C, C8), 122.65, 121.02 (C=C, C4, C5), 83.29, 82.78 (=CH, CH of COD), 51.76, 

51.75, 33.96, 29.31 (CH2, CH2 of COD overlap with CH3, C3) 

15N NMR (41 MHz, CD2Cl2, 294 K): δ 195.00, 176.36 (N2, N6). 
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 [Ir(H)2(PhCarCH3)(3,5-Lutidine)3]Cl (9) 
 

 

Figure 77: Labelled Schematic of 9 

1H NMR (400 MHz, CD3OD, 298 K): δ 8.03 (s, 4H, o-CH lutidine in equa position), 7.64 (s, 

2H, ‘o-CH lutidine in axial), 7.54 (s, 2H, p-CH lutidine in equa  position), 7.16 (s, H, ‘p-CH 

lutidine in axial  position) 7.11 (s, 2H, CH, JHH=1.95 Hz, H4, H5), 6.83 (m, 4H, H8, H9), 7.10 (d , 

JHH=7.35 Hz, H10), 2.29 (s, 6H, ‘m CH3-lutidine in equa position), 2.22 (s, 3H, CH3, H3), 2.20 

(s, 12H, m CH3-lutidine in axial position), -22.24 (s, 2H, hydrides). 

13C NMR (126 MHz, CD3OD, 303 K): δ 154.9 (C-carbene, C1). 149.3 (C, o-CH of lutidine in 

equa position), 148.3 (C, ‘p-CH of lutidine in axial position), 138.6 (C=C, C4, C5), 137.9 (C, p-

CH, lutidine of equatorial position), 135.9 (C-CH3, lutidine, axial), 135.2 (C-CH3, lutidine, 

equa),  133.0 (C, ‘o-CH, lutidine in axial position), 121.80, 121.30 (C=C-C=C, C8, C9), 109.8 

(para-CH, C10), 17.44, 16.52, (m-CH3, lutidine of equa and axial overlaps with CH3, C3). 
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  [IrCl(COD)(MesCarCH3)] (10) 
 

 

Figure 78: Labelled Schematic of 10 

1H NMR (500 MHz, CD3OD, 243 K): δ 7.10 (d, 1H, JH-H=1.75 Hz, Im-H5), 7.04 (s, 1H, H10), 

6.95 (s, 1H, H10), 6.97 (d, JH-H = 1.75 Hz, 1H, Im-H4), 4.30 (td, JH-H = 7.65 Hz, JH-H = 3.23 Hz, 

1H,  =CH of COD), 4.21 (td, JH-H = 7.32 Hz, JH-H = 3.09 Hz, 1H,  =CH of COD), 3.15 (td, JH-H = 

7.03 Hz, JH-H = 2.03 Hz, JH-H = 1H, =CH of COD), 2.72 (td, JH-H = 7.32 Hz, JH-H = 3.50 Hz, 1H, 

=CH of COD), 2.36 (s, 3H, H9),  2.26 (s, 3H, H9),  1.97 (m, 1H, CH2 of COD), 2.15 (m, 1H, CH2 

of COD), 2.05 (m, 1H, CH2 of COD), 1.90 (s, 3H, H12), 1.77 (m, 1H, CH2 of COD),  1.70 (s, 3H, 

H3),  1.54 (m, 2H, CH2 of COD), 1.43 (m, 2H, CH2 of COD), 1.19 (m, 1H, CH2 of COD) 

13C NMR (101 MHz, CD2Cl2, 298K): δ 180.2 (Im-C1), 138.7 (C9), 136.6 (C9), 135.8 (C11), 134.3 

(C12), 129.1(C11), 129.1 (C8 overlaps with -CH meta of Mes), 128.0 (C10), 128.0 (C8 overlaps 

with meta-CH of Mes), 122.7 (C4), 122.0 (C5), 82.6 (=CH of COD), 82.6 (=CH of COD), 51.2 

(=CH of COD), 50.3 (=CH of COD), 17.53 (4CH2 of COD) 

15N NMR (41 MHz, CD2Cl2, 298 K): δ= 188.9 (1N, N6), 176.5 (1N, N2) 
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  [Ir(COD)(MesCarCH3)(3,5-Lutidine)]Cl (10a) 
 

 

Figure 79: Labelled Schematic of 10a 

1H NMR (400 MHz, CD3OD, 298 K): 7.99(s, 4H, ortho-CH lutidine in equa. position), 7.50 (s, 

2H, para-CH lutidine in equa  position), 7.30 (d, H, =CH-CH5, imidazolium, JHH=1.95 Hz, H5), 

6.88 (d, H, =CH, imidazolium, JHH=1.95 Hz, H4 ), 3.15 (3H, CH3, H12), 6.69 (s, CH, H10), 4.41 

(2H, CH of COD), 3.82 (m, 2H, CH of COD), 2.50 (3H, CH3, H9), 2.43 (3H, CH3, H9) 2.20 (s, 

12H, meta-CH3-lutidine in equa position), 2.11 (s, 3H, CH3, H4), 1.68 (3H, CH3, H3) 1.40 – 

1.30 (m, 8H, CH2 of COD) 
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 [IrCl(H)2(MesCarCH3)(3,5-Lutidine)3]Cl (11) 
 

 

Figure 80: Labelled Schematic of 11 

1H NMR (400 MHz, CD3OD, 298 K): δ 7.99(s, 4H, o-CH lutidine in equv. position), 7.88 (s, 

2H, ‘o-CH lutidine in axial position), 7.50 (s, 2H, p-CH lutidine in equa  position), 7.49 (s, H, 

‘p-CH lutidine in axial position), 7.30 (d, H, =CH-CH3, imidazolium, JHH=1.95 Hz, H4), 6.88 

(d, H, -CH=, imidazolium, JHH=1.95 Hz, H5 ), 6.69 (s, CH, H10), 3.18 (3H, CH3, H12), 2.23 (s, 

6H, CH3, H9), 2.20 (s, 12H, m-CH3-lutidine in equa position), 2.11 (s, 3H, CH3, H3), 2.01 (s, 

6H, ‘m-CH3-lutidine in axial position), -22.35 (s, 2H, hydrides, Ir-H). 

 

13C NMR (500 MHz, CD3OD, 303 K): δ 158.9 (C-carbene, C1), 152.7 (‘p-CH, lutidine in axial), 

151.2 (p-CH, lutidine in equa), 138.8 (o-CH, lutidine in equa), 135.9 (C(CH3), lutidine, axial), 

135.2 (C(CH3), lutidine in equa),  137.9 ('o-CH, lutidine in axial), 122.0,128.4 (=CH-CH3, C2, 

C3), 37.0 (CH3, C9), 19.6, 19.7 (CH3, C3), 17.2 (CH3, lutidine in equa), 16.7 (CH3, lutidine in 

axial). 
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  IrCl(COD)(MesCarBenzyl) (12) 
 

 

Figure 81: Labelled Schematic of 12 

1H NMR (500 MHz, CD3OD, 298 K): δ 7.41 (m, 4H, H5, H6), 7.35 (m, 1H, H7), 7.04 (s, 1H, 

H13), 6.97 (d, 3JH-H = 1.98 Hz, 1H, Im-H8), 6.94 (s, 1H, H13), 6.80 (d, 3JH-H = 1.98 Hz, 1H, Im-

H9), 6.10 (d, 2JH-H = 15.1 Hz, 1H, H3), 5.57 (d, 2JH-H = 15.1 Hz, 1H, H3), 4.37 (dt, 3JH-H = 11.8 Hz, 

3JH-H = 3.94 Hz, 1H, =CH of COD), 4.30 (dt, 3JH-H = 11.8 Hz, 3JH-H = 3.94 Hz, 1H, =CH of COD), 

2.96 (dt, 3JH-H = 11.8 Hz, 3JH-H = 3.94 Hz, 1H, =CH of COD), 2.74 (dt, 3JH-H = 11.8 Hz, 3JH-H = 

3.94 Hz, 1H, =CH of COD), 2.36 (s, 3H, H15),  2.32 (s, 3H, H11),  1.97 (m, 1H, CH2 of COD),  

1.92 (s, 3H, H11), 1.89 (m, 1H, CH2 of COD), 1.77 (m, 1H, CH2 of COD),  1.51 (m, 1H, CH2 of 

COD),  1.41 (m, 3H, CH2 of COD),  1.18 (m, 1H, CH2 of COD).  

13C NMR (126 MHz, CD3OD, , 298 K): δ 180.9 (Im-C1), 139.1 (C14), 137.6 (C4), 137.0 (C12), 

136.3 (C10 ), 134.9 (C12), 129.6 (C13), 129.1 (C5), 128.5 (meta-CH of Mes overlapped with 

meta-CH of phenyl ring, C6, C13), 128.2 (C7), 123.7 (Im-C9), 121.2 (Im-C8), 83.5 (=CH of 

COD), 83.1 (=CH of COD), 55.2 (CH2, C3), 52.6 (=CH of COD), 51.5 (=CH of COD), 34.5 (CH2 

of COD), 33.0 (CH2 of COD), 29.7 (CH2 of COD), 29.1 (CH2 of COD), 21.2 (C15), 19.6 (C11), 

18.0 (C11). 

15N NMR (41 MHz, CD2Cl2, 298 K): δ 189.0 (2N, N2) 

ESI+-MS calculated M: C25H32N2IrCl – 577.22 [M-NaH]+  
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  [Ir(COD)(MesCarBenzyl)( 3,5-Lutidine)] Cl (12a) 

 

Figure 82: Labelled Schematic of 12a 

1H NMR (400 MHz, CD3OD, 298 K): δ 7.99 (s, 4H, o-CH lutidine in equa position), 7.82 (s, 

2H, ‘o-CH lutidine in axial position), 7.48 (s, 2H, p-CH lutidine in equa position), 7.47 (s, 1H, 

‘p-CH lutidine in axial position), 7.30 (s, 2H, H5, H6), 7.17 (pseudo-d, 1H, Im-H8), 7.04 (s, 1H, 

H7), 6.94 (pseudo-d, 1H, Im-H9), 6.74 (s, 2H, H13), 5.00 (s, 2H, CH2, H3),   2.26 (s, 3H, H15), 

2.17 (s, 3H, m-CH lutidine in equa position), 2.08 (s, 3H, ‘m-CH lutidine in axial position), 

2.07 (s, 3H, H11), −22.27 (s, 2H, hydrides) 
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  [Ir(H2)(MesCarBenzyl)(3,5-Lutidine)3]Cl (13) 

 

Figure 83: Labelled Schematic of 13 

1H NMR (400 MHz, CD3OD, 298 K): δ 7.99 (s, 4H, o-CH lutidine in equa position), 7.82 (s, 

2H, ‘o-CH lutidine in axial position), 7.48 (s, 2H, p-CH lutidine in equa position), 7.47 (s, 1H, 

‘p-CH lutidine in axial position), 7.30 (s, 2H, H5, H6), 7.17 (pseudo-d, 1H, Im-H8), 7.04 (s, 1H, 

H7), 6.94 (pseudo-d, 1H, Im-H9), 6.74 (s, 2H, H13), 5.00 (s, 2H, CH2, H3),   2.26 (s, 3H, H15), 

2.17 (s, 3H, m-CH lutidine in equa position), 2.08 (s, 3H, ‘m-CH lutidine in axial position), 

2.07 (s, 3H, H11), −22.27 (s, 2H, hydrides) 

13C NMR (101 MHz, CD3OD, 298 K): δ 187.5 (carbene, C1),  151.15 (4C, o-CH of lutidine in 

equa), 144.50 (2C, ‘o-CH of lutidine in equa), 138.98 (C14), 137.97 (3C, p-CH and ‘p-CH of 

lutidine in equa and axial position overlap), 137.97 (C12), 137.6 (C4), 136.3 (C10 ), 128.40 (Im-

C9 overlapped with C7) 129.1 (C5), 128.20 (C13) 128.01 (C5, C6), 126.88 (Im-C8),  55.2 (CH2, C3), 

19.73 (4C, m-CH of lutidine in equa overlap with C15, C11), 16.67 (2C, m-CH of lutidine in 

equa overlap with C15, C11) 
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 IrCl(COD)(MesCarHomoBenzyl) (14) 
 

 

Figure 84: Labelled Schematic of 14 

1H NMR (500 MHz, CD3OD, 298 K): δ 7.28 (m, 5H, H6, H7, H8), 7.03 (s, 1H, H14), 6.94 (d, 3JH-H 

= 1.92 Hz, 1H, Im-H9), 6.92 (s, 1H, H14), 6.74 (d, 3JH-H = 1.92 Hz, 1H, Im-H10), 5.13 (dt, 2JH-H = 

13.5 Hz, 3JH-H = 7.68 Hz, 1H, H7), 4.46 (dt, 2JH-H = 13.5 Hz, 3JH-H = 7.68 Hz, 1H, H3), 4.38 (dt, 3JH-

H = 11.6 Hz, 3JH-H = 3.56 Hz, 1H, =CH of COD), 4.29 (dt, 3JH-H = 11.6 Hz, 3JH-H = 3.56 Hz, 1H, =CH 

of COD), 3.30 (t, 3JH-H = 7.40 Hz, 2H, H4), 2.79 (dt, 3JH-H = 11.6 Hz, 3JH-H = 3.56 Hz, 1H, =CH of 

COD), 2.68 (dt, 3JH-H = 11.6 Hz, 3JH-H = 3.56 Hz, 1H, =CH of COD), 2.35 (s, 3H, H16), 2.28 (s, 3H, 

H12), 2.05 (m, 2H, CH2 of COD), 1.87 (s, 3H, H12), 1.76 (m, 1H, CH2 of COD), 1.48 (m, 3H, CH2 

of COD), 1.36 (m, 1H, CH2 of COD), 1.18 (m, 1H, CH2 of COD). 

13C NMR (101 MHz, CD3OD, 298 K): δ 180.1 (Im-C16), 139.1 (C15), 139.0 (C5), 137.0 (C13), 

136.4 (C11), 135.0 (C13), 129.6 (C14), 129.4 (C7), 129.0 (C6), 128.4 (C14), 127.0 (C8), 123.2 (Im-

C10), 121.1 (Im-C9), 83.2 (=CH of COD), 82.7 (=CH of COD), 53.1 (C3), 52.2 (=CH of COD), 51.7 

(=CH of COD), 37.5 (C4), 34.6 (CH2 of COD), 33.1 (CH2 of COD), 29.6 (CH2 of COD), 29.3 (CH2 

of COD), 21.2 (C16), 19.6 (C12), 17.9 (C12). 

15N NMR (CD3OD, 41 MHz, 298 K): δ= 188.9 (1N, N2, N1) 

ESI+-MS calculated M: C27H32N2IrCl – 591.24 [M-Cl]+  
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  [Ir(H)2(MesCarHomoBenzyl)(3,5-Lutidine)3]Cl (15) 

 

Figure 85: Labelled Schematic of 15 

1H NMR (400 MHz, CD3OD, 298 K): δ 8.00 (s, 4H, ortho-CH lutidine in equa. position), 7.88 

(s, 2H, ortho-CH lutidine in axial position), 7.51 (s, 2H, para-CH lutidine in equa  position), 

7.47 (s, H, para-CH lutidine in axial position), 7.31 (d, H, =CH-CH3, imidazolium, JHH=1.95 

Hz, H9, H10),  7.24 (d, 2H, CH-meta on Benz, JHH=7.24 Hz, H7), 7.19 (1H, CH-para on Benz, 

JHH=7.29 Hz, H8), 7.03 (d, 2H, CH-ortho on Benz, JHH=7.35Hz, H6), 6.88 (d, 1H, -CH=, 

imidazolium, JHH=1.95 Hz, H9, H10 ), 6.69 (s, 2H, H14), 3.74, 2.96 (t, 4H, CH2, H3, H4),  2.23 (s, 

3H, CH3, H16), 2.17 (s, 12H, CH3-lutidine in equa position),  2.11 (s, 6H, CH3-lutidine in axial 

position), 2.02 (s, 6H, CH3, Mes, H12), −22.38 (s, 2H, hydrides).  
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13C NMR (500 MHz, CD3OD, 298 K): 158.9 (C-carbene,  C1), 152.8 (‘p-CH, lutidine in axial), 

151.1 (p-CH, lutidine in equa), 138.8 (o-CH, lutidine, equa), 135.9 (C(CH3), lutidine, axial), 

135.2 (C(CH3), lutidine, equa),  134.9 (‘o-CH, lutidine, axial), 128. 3 (CH, Mes, C14), 128.1 

(CH, C6, C7), 126.0 (CH, C8), 120.5, 122.2 (-CH=CH-, Im-C9, C10), 51.8 (CH2, C3, C4), 17.3, 19.9 

(CH3, Mes, C12, C16), 16.7 (CH3, m-lutidine equa), 16.5 (CH3,'m-lutidine axial). 

 

 

 

7 Appendices 

 Appendix  

This is supplementary information for chapters 2 , 3 and 4 for symmetric  and asymmetric 

SABRE catalysts which are stated within this thesis. 

 NMR data collection for exchange rates calculations 

 Substrate exchange model of [Ir(H)2(IXy)(py)3]Cl and 

[Ir(H)2(ITol)(py)3]Cl  
All data for exchange rates can be modelled on this basis. When the carbenes form SABRE 

active complexes with pyridine or 3,5-lutidine, there is only one site that the substrates 

can dissociate and associate. When obtaining the rates constants for this process, 

equations must be formed to explain the transfer of polarisation from the bound pyridine 

species and the free pyridine complexes where an exchange takes place. In this model we 

make the assumption that as the iridium complex forms a stable 18-electron complex, 

where only one substrate dissociates as a time. The polarisation exchange takes place 

between the equatorial substrate protons and no polarisation transfer occurs in the axial 

substrate as seen in Figure 86. 
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Figure 86: The pathway the kinetics will follow by exchanging polarisation from complex A to E shown in 

EXSY spectra for both [Ir(H)2(IXy)(py)3]Cl and [Ir(H)2(ITol)(py)3]Cl. The exchange occurs on the substrate of 

these catalysts so this pathway is a model for many various NHCs with the substrate as pyridine. Each 

species has a chloride counterion which has not been added to this figure. 

 

As stated, in Figure 86, the pathway of the exchange polarisation model can be used for 

both IXy and ITol as the exchange occur within the equatorial substrate protons, this 

model can be explained: 

o In complex A, the polarised protons of pyridine are shown with a red circle 

surrounding the protons. One of the equatorial substrates can dissociate and form 

complex B at a rate of Kd.  

o When complex B has formed, a substrate molecule can either re-associate forming 

complex A at a rate of Ka, or a molecule x (non-polarised free pyridine) from complex C 

can associate to form complex C. 
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o When complex C has formed, a molecule of x can either dissociate to form complex B, 

or a molecule of y (a polarised free pyridine) can associate from complex D to form 

complex B.  

o When complex D has formed, it can either form complex E by associating a molecule of 

x or by re-associating a molecule of y to form complex C. 

o When complex E has formed, it can only dissociate a molecule of x, as it has formed 

the fully unpolarised SABRE species.  

The experimental data was then modelled by the formulae for each species 

concentration. The formulae were then used to simulate a graph on Microsoft Excel. The 

initial concentration of A [A]0 were 5mM and the value of [K]0 were measured at…  

 

Equation 3: Rate equations for the different species shown in figure 16.  

 

 Calculating exchange rates  

A multitude of 1H selective NOSEY NMR experiments were collected by exciting the bound 

ortho pyridine after a selectively short mixing time. The bound ortho pyridine integral was 

taken against the free pyridine in solution and changed to a percentage of each other 

which is then plotted in Excel and produces a graph seen in Figure 87. 
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Figure 87: A graph of bound ortho pyridine and free pyridine determined from the selective NOSEY 

experiments. The mixing time of the free pyridine and bound pyridine are plotted against the percentage of 

each of these. This data was collected for complex 4, IrCl (COD)(IXy) and 5 equivalents of pyridine in CD3OD, 

at 273 K monitored the ligand loss.  

 Calculating the thermodynamics data 
The thermodynamics data was calculated using the Eyring-Polanyi method which plots 

(
1

𝑇
) against ln

2𝑘

𝑇
 . T is the temperature in K and k being the rate constant measured in s-1. 

To determine the Gibbs free energy the line produced in Figure 87 is a straight line, 

therefore we can get the gradient and intercept from which can derive the Eyring 

equation using y = mx + c: 

ln
𝑘

𝑇
=

−∆𝐻≠

𝑅𝑇
+ ln

𝑘𝐵

ℎ
+

∆𝑆≠

𝑅
 

Equation 4: The Eyring-Polanyi Equation (Linear form) 

This in turn provides us with the Eyring-Polanyi Equation: 

𝑘 =
𝑘𝐵𝑇

ℎ
𝑒

∆𝑆≠

𝑅 𝑒
−∆𝐻≠

𝑅𝑇  

Equation 5: The Eyring-Polanyi Equation 
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The enthalpy and entropy can be determined from the gradient (−
∆𝐻≠

𝑅
) and the 

intercept (ln (
𝑘𝐵

ℎ
) +

∆𝑆≠

𝑅
 ). Once the dissociation rate constant is determined over 

multiple temperatures, this provides a route to determine the Gibbs free energy: 

∆𝐺≠ =  ∆𝐻≠ − 𝑇∆𝑆≠ 

Equation 6: Gibbs free energy 

 

 Rate constant and thermodynamic data for ligand loss of 

symmetric catalysts with pyridine 
The data collected in the section is for ligand loss of pyridine with the symmetric SABRE 

catalysts and IXy was the only SABRE catalyst monitored for its rates.  

 

[IrCl(COD)(IXy)] 

Temperature (K) Kd (s-1) 
263 0.085 

273 0.464 

283 2.110 

293 8.290 

298 12.100 

Table 6: The rate of dissociation constants for pyridine loss from 4 at different given temperatures 

 

The data in Table 6 is used to produce the Eyring plot, from the Eyring-Polanyi equation in 

Figure 88. 
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Figure 88: Eyring plots plotted for loss of pyridine from complex 4 with the gradient and intercept shown. 

This graph is produced from the table seen in  

Once the gradient and intercept are determined, we can then use this equation to work 

out the thermodynamic parameters, enthalpy, entropy and the Gibbs free energy. 

Ligand Loss (py) 

∆G≠ (kJ) −138.7 

∆H≠ (kJ) 91.5 

∆S≠ (kJ) 0.77 

Table 7:  The thermodynamic parameters for the loss of pyridine with catalyst 4. 

 Rate constant and thermodynamic data for symmetric catalysts 

with 3,5-Lutidine 
The data provided in this section is for the symmetric catalysts with 3,5 Lutidine as the 

substrate, IMes, being  the only symmetric catalyst examined with 3,5-Lutidine. 

 

[IrCl(COD)(IMes)] 

Temperature (K) Kd (s-1) 

298 2.10 

303 2.60 

Table 8: Rate constants for the loss of 3,5-Lutidine for IMes at different given temperature. 

 

y = -11005x + 34.583
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Figure 89: Eyring plot for ligand loss from IMes with 3,5-luidine as the substrate, this is then used to 
produce the thermodynamics data in  

Table 9 displays the thermodynamic parameters calculated from the Eyring plot seen in 

Figure 89. It is important to identify that there are only two data points due to the rates 

of ligand loss being unidentifiable at lower and higher temperatures than the two stated. 

 

Ligand Loss (3,5-Lutidine) 

∆G≠ (kJ) −133.90 

∆H≠ (kJ) 29.57 

∆S≠ (kJ) 0.54 

Table 9: Thermodynamic data presented and calculated using the gradient and intercept from  

 Rate constant and thermodynamic data for asymmetric catalysts 

with 3,5-Lutidine 
The data collected in this section is for the asymmetric catalysts with 3,5-lutidine as the 

ligand of choice. The SABRE catalysts monitored for the rate reactions were: PhCarCH3, 

MesCarCH3 and MesCarHomoBenzyl.  

The first catalyst examined with 3,5-Lutidine was PhCarCH3. 

[IrCl(COD)(PhCarCH3)] 

Temperature (K) Kd (s-1) 

298 0.337 

303 0.53 

Table 10: Rate constants for the loss of 3,5-Lutidine at different temperatures with IrCl(COD)(PhCarCH3) as 

the NHC and 3,5-Lutidine as the substrate ligand. 

y = -3556.4x + 7.6722

-4.3

-4.25
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ln
(2

k/
T)

1/T
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The data from Table 10 was used to produce the Eyring Plot seen in Figure 90. 

 

 

Figure 90:  An Eyring plot of the loss of 3,5-Lutidine as the ligand in the presence of [IrCl(PhCarCH3)] with 

the equation showing the gradient and intercept of the line . This graph was produced using the data in 

Table 10. 

The equation seen in Figure 90 was then used to calculate the Gibbs free energy, the enthalpy 

and entropy seen in Table 11. It is important to identify that there are only two data points due 

to the rates of ligand loss being unidentifiable at lower and higher temperatures than the two 

stated. 

 

 

 

Ligand Loss (3,5-Lutidine) 

∆G≠ (kJ) −129 

∆H≠ (kJ) 66.3 

∆S≠ (kJ) 0.654 

Table 11: Thermodynamic data for the loss of 3,5-Lutidine with the catalysts IrCl(PhCarCH3)   

 

 

 

 

 

y = -7876.4x + 20.339
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The same process that was used for the second catalyst examined with 3,5-Lutidine which 

was MesCarCH3. 

 

[IrCl(COD)(MesCarCH3)] 

Temperature (K) Kd (s-1) 

298 1.01 

303 1.89 

Table 12: Rate constants of the loss of 3,5-lutidine with IrCl(COD)(MesCarCH3) as the NHC at various 
temperatures. 

The data shown in Table 12 was used to produce the Eyring plot seen in Figure 91. 

 

 

 

Figure 91: This Eyring plot for ligand loss of 3,5-Lutidine with IrCl(COD)(MesCarCH3) was produced from the 

data shown in Table 11. 

The graph displayed in Figure 91, was used to calculate the data shown in Table 13. It is 

important to identify that there are only two data points due to the rates of ligand loss 

being unidentifiable at lower and higher temperatures than the two stated. 

 

Ligand Loss (3.5-Lutidine) 

∆G≠ (kJ) −132 

y = -11016x + 31.971
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∆H≠ (kJ) 91.6 

∆S≠ (kJ) 0.751 

Table 13: This table displays the thermodynamic data for the loss of 3,5-Lutidine with the catalyst  

 

The final catalysts examined to calculate the rate constants and the thermodynamic 

parameters was [IrCl(COD)(MesCarHomoBenzyl)]. Table 14 displays the rate constants for 

loss of 3,5-lutidine with 3 at various temperatures. 

 

[IrCl(COD)(MesCarHomoBenzyl)] 

Temperature (K) Kd (s-1) 

298 1.19 

303 3.70 

313 10.8 

Table 14: Rate constants for the loss of 3,5-Lutidine with catalyst 3 at different temperatures indicated.  

 

The data displayed in Table 15 was used to produce the Eyring plot graph seen in Figure 

92. 

 

Figure 92: Eyring plot of the loss of 3,5-lutidine ligands from 3 with the equation stating the gradient and 
intercept. The data in Table 14 was used to plot this data. 

 

Figure 92 displays the gradient and intercept equation needed to determine the 

thermodynamic data presented in Table 15. 
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Ligand Loss (3,5-Lutidine) 

∆G≠ (kJ) −133 

∆H≠ (kJ) 108 

∆S≠ (kJ) 0.807 

Table 15: Thermodynamic data of the activation for the loss of 3,5-Lutidine with catalyst 3. 
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8 Abbreviations 

∆G≠ Gibbs free energy 

∆H≠ Enthalpy of activation 

∆S≠ Entropy of activation 

µL Microlitre 

µM Mircomole 

1D 1-Dimensional 

2D 2-dimensional 

ALTADENA 
Adiabatic longitudinal transfer after dissociation engenders 
net alignment 

bar Unit of pressure 

ca. Approximately 

CD2Cl2 Deuterated Dichloromethane 

CD3OD Deuterated Methanol 

COD 1, 5 - cis-cis - Cyclooctadiene 

COSY Correlated spectroscopy 

Cy Cyclohexal 

DCM Dichloromethane 

dmp Di-methyl phenyl 

DNP Dynamic Nuclear Polarisation 

E Enhancement 

eq. Equivalent 

eq. Equivalent(s) 

ESI Electrospray Ionisation 

EtOAc Ethyl Acetate 

EtOH Ethanol 

EXSY Exchange Spectroscopy 

G Gauss 

G Gauss 

h Planck constant 

ħ reduced Planck constant 

HCl Hydrochloric Acid 

IMes 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene 

ITol 1,3-bis(4-methylphenyl)imidazolium chloride  

IXy 1,3 -bis(2,6-Dimethylbenzene)imidazol-2-ylidene 

J Joules 

K Kelvin 

k Boltzmann constant 

kJ Kilojoules 

KOtBu Potassium tert-butoxide 

m meta 

MeOH Methanol 

Mes Mesityl 
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MHz Megahertz 

mL Millilitre 

mM Millimolar 

mol mole 

MR Magnetic Resonance  

MRI Magnetic Resonance Imaging 

MS Mass Spectrometry 

NHC N-Heterocyclic Carbene 

NMR  Nuclear Magnetic Resonance 

o ortho 

p para 

PASADENA 
Parahydrogen And Synthesis Allow Dramatically Enhanced 
Nuclear Alignment 

Ph Phenyl 

p-H2 parahydrogen 

PHIP parahydrogen induced polarisation 

PPh3 triphenyl phosphine 

ppm parts per million 

PR3 phosphine ligand 

PTF polarisation transfer field 

py pyridine 

R any group 

R gas constant 

rt Room Temperature 

SABRE Signal Amplification by Reversible Exchange 

SIMes 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene 

sub Substrate 

T Tesla 

T  Temperature 

tBu tert-butyl 

tBuBIM 1,3-Di-tert-butylimidazolium chloride 

THF Tetrahydrofuan 
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