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SUMMARY

Considerable efforts have been made in recent years to develop a better

understanding of the mechanical behaviour of unsaturated soils in terms of elasto-

plastic critical state constitutive models. These models are defined in terms of four

independent stress state variables : mean net stress, deviator stress, suction and

specific volume. An important feature of the models is the suggestion of the existence

of a yield surface in mean net stress : deviator stress : suction space.

Suction-controlled triaxial tests were performed to investigate the shape of the

yield surface for unsaturated compacted speswhite kaolin with a particular stress

history. The tests were conducted in a Bishop-Wesley triaxial cell with suction applied

by the axis translation technique. The soil samples were instrumented with local strain

gauges for measuring the sample volume change.

Ten samples were tested, and in each test the location of the yield surface was

fixed by isotropically consolidating the sample to a mean net stress of 400 kl'a and a

suction of 100 kPa. This procedure effectively erased the one-dimensional stress

history produced by the compaction process. After unloading to stress states inside the

yield surface, samples were re-loaded either isotropically or by drained triaxial

shearing. Re-loading stages were conducted at three different values of suction.

Yield points in the re-loading stages were most easily identified from plots of

specific volume against the logarithm of mean net stress (even for shear tests), whereas

it was often difficult to identify a clear yield point from a plot of deviator stress against

shear strain. The yield points identified from the re-reloading stages were used to

define the shape of the yield surface in a stress space with axes of deviator stress, mean

net stress and suction. Constant suction cross-sections of the yield surface were

approximately elliptical in shape, with one axis of the ellipse coinciding with the mean

net stress axis. As expected, the size of the elliptical constant suction yield curves

increased with increasing suction.
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Soil elastic indices obtained from swell-back and suction-change stages showed

non-conservative behaviour, indicating that the behaviour of the soil was not truly

elastic even for stress states inside the yield surface. Plastic strain increment vectors

were plotted for the post-yield behaviour, and these were consistent with an associated

flow rule.
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CHAPTER 1

INTRODUCTION

This chapter serves as an introduction to the study of mechanical behaviour of

unsaturated soil described in this thesis. The occurence and nature of unsaturated soil

are initially given in brief. This is followed by a section explaining some of the

practical engineering problems posed by unsaturated soil as encountered by engineers

in the field. Although considerable efforts have been made over several decades to

investigate and explain the stress-strain behaviour of unsaturated soil, there seemed

to be no unified approach until the suggestion of elasto-plastic critical state

constitutive models for unsaturated soil in the late 1980s. A section dealing

specifically with this type of approach is given in brief. Finally a section on the aims

of the project is given at the end of the chapter, explaining briefly the aspects of

unsaturated soil behaviour that are investigated in this thesis.

A more detailed review of previous work on the stress-strain behaviour of

unsaturated soils is given in Chapter 2, and the objectives and methodology of the

project described in the thesis are fully explained in Chapter 3.

1.1 Occurrence of unsaturated soil

From the soil mechanics point of view, soils consist of three basic components

:soil particles, air and water. For the purposes of analysis the voids can be filled with

air (dry soil) or water (saturated soil) or a mixture of air and water (unsaturated soil).

Constitutive modelling in soil mechanics has concentrated on soils containing a single

pore fluid i.e. saturated clays, saturated sands and dry sands. However there are

practical instances where soils can contain both air and water. These situations

include
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a) soil above the water table : in arid and semi-arid regions or in tropical

regions where evapo-transpiration exceeds rainfall the depth of the

unsaturated soil may extend to many metres ;

b) placement and compaction of granular and clay fills in embankments, behind

retaining structures or beneath foundations ;

c) biogenic generation of natural gases within a soil stratum or diffusion of gas

into the stratum.

The three different types of formation process for unsaturated soils listed

above produce different types of soil structure or fabric. The details of these soil

fabrics are given in Section 2.1, but the fabric commonly consists of saturated

packets of material, separated by large unsaturated inter-packet voids (Brackley,

1975). Gens and Alonso (1992) sub-divided the structure of unsaturated compacted

soils into two levels of fabric : the saturated microstructure of individual packets and

the unsaturated macrostructure, with each level behaving differently. Seed and Chan

(1959) however proposed either a flocculated or dispersed structure for unsaturated

compacted soil, depending upon the compaction water content with respect to its

optimum water content.

1.2 Pore pressures within unsaturated soil

For unsaturated soil, the pore water pressure tin, is always lower than the pore

air pressure ua , because of the curvature of the menisci separating water and air (and

the fact that the contact angle of the menisci with soil grains is zero means that the

menisci must be convex on the water side). In many unsaturated soils, the air phase is

continuous and connected to the atmosphere, so that /4a is zero. This means that un, is

negative and the soil therefore has the tendency to draw in water if a supply of water

at atmosperic pressure is availabe. This led to the use of the term 'suction' to describe

the tendency of the soil to take up water.
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Marshall (1959) suggested the division of suction into two components

matrix suction and solute suction. Matrix suction was the physical value of negative

pore water pressure, due to capillary forces, which depended on particle

configuration and arrangement, while solute suction was due to the ion concentration

of the soil water (resulting from the presence of solutes in the soil). The ability of an

unsaturated soil to draw in water is dependent not just upon the physical negative

value of u 	 also on any difference in osmotic (chemical) potential between the

pore water in the soil and any free water that is available. The flow of water into or

through an unsaturated soil can therefore be related to the gradient of 'total suction'

which is made up of two components : the 'matrix suction' representing the negative

value of u 	 from the curvature of the menisci i.e. capillary effects) and the

'osmotic suction' or 'solute suction' representing any negative osmotic potential in the

pore water. However Aitchison (1961) pointed out that it was the physical pressure

of the pore water (matrix suction) which was relevant in the stress-strain behaviour of

unsaturated soil. Therefore the term 'suction' is simply taken to mean matrix suction

for the rest of the thesis. To generalise the definition to situations where the pore air

presure may not be zero, the suction is taken as the difference between the pore air

pressure and the pore water pressure u. — U.

Fig. 1.1 illustrates a simple mechanism of suction in soil. If a capillary tube is

immersed in water in a container, the water would rise to, say, BB inside the tube.

The water level AA in the container represents the ground water level where the

water is at atmospheric pressure. At any depth z below AA the water pressure un,

relative to atmospheric is given by

uw = rw x z
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where 7 is the unit weight of water. The water pressure at BB, a height h above

AA, is therefore negative (relative to atmospheric) and is given by

u= —y w xh	 (1.2)

However in actual soil the capillary moisture is somewhat different from that

shown in Fig. 1.1. Due to the irregular nature of the soil pores the water rises to a

higher level in small sized voids than it does in large sized voids, inevitably leading to

an unsaturated zone in which the small voids are water-filled but the large voids are

not. Fig. 1.2 shows a no-flow condition i.e. under equilibrium for capillary moisture

in the soil. AA is the ground water level where the pore water pressure is zero, hence

the zone beneath it is saturated. The pore water pressure below the ground water

table is positive given by un,= yr, x z. Zone 1 which is immediately above the ground

water level is saturated, because the capillary rise in even the largest pore sizes is

sufficient to ensure full saturation over this depth. The pore water pressure in Zone 1

is negative, given by uw = y,„ x z (with z taking a negative value). In Zone 2 the soil

becomes unsaturated. The water phase is continous while the air phase is

discontinous (containing discrete bubbles) and ua is not necessarily equal to

atmospheric pressure. The pore water pressure in Zone 2 is negative and is still given

by u,„= y,s, x z. Going further up to Zone 3 both the water and air phases are

continous, with the pore air now at atmospheric pressure and the pore water pressure

given by u= y,„ x z. Finally in Zone 4, where the air is continous but the water

phase is discontinous, u.= 0 and u,„ is negative but not necessarily equal to y n, x z.

Considerable efforts have been and are being made to measure soil suction in

the laboratory and in the field. Table 1.1 summarizes the methods of suction

measurement that have been devised in the past decades, including methods for

measuring total suction, matrix suction and osmotic suction. Many of the methods of
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suction measurement listed in Table 1.1 measure suction indirectly, in that the suction

is related to some other property of the soil or a material placed in contact with the

soil (such as a filter paper). Some direct methods of suction measurement, for

example the tensiometer (Krahn, Fredlund and Klassen, 1989) and the suction

transducer (Ridley and Burland, 1994) are very useful, because they measure the

matrix suction directly in the field without the need for an empirical calibration.

1.3 Practical problems associated with unsaturated soils

By virtue of the variability of unsaturated soil properties and the undeveloped

state of unsaturated soil mechanics in the past, engineers dealing with civil

engineering works involving unsaturated soil have been faced with increasing

problems. Jennings (1961) summarized the engineering problems associated with

unsaturated soils into four main groups, namely :

a) Immediate settlement due to the undrained compressibility. This was due to

the compressibility of the pore air or the rapid flow of pore air to the

atmosphere or solubility of air in the pore water.

b) Heave due to swelling on wetting. Wetting can occur due to the ingress of

water from the surface (from rainfall or run-off) or it can occur if the soil is

covered at the top surface, so preventing evaporation of ground water to the

atmosphere. Many unsaturated soils, particularly clays, are known to swell

(increase in volume) on wetting.

c) Additional settlement due to collapse of the soil on wetting. Some

unsaturated soils are known to collapse (reduce in volume) on wetting.

d) Loss of shear strength due to suction decrease (wetting).

The problems caused by the volume change and shear strength behaviour of

unsaturated soil can be illustrated by some practical examples. Holtz and Hilf (1961)

reported a failure of a canal embankment due to wetting (suction reduction) in the
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Mid-western USA, where wind-deposited loess soil was predominant. A low

embankment for a canal was constructed of loess soil in Nebraska to a height of five

feet, as shown in Fig. 1.3. Loess soil possessed high strength when unsaturated and

sustained high loading at low water content. Settlement of the embankment took

place shortly after water was introduced into the canal. Failure of the embankment

was attributed to loss of shear strength as wetting of the embankment occurred.

Perhaps one of the classic examples of a failure of an earth slope due to suction

decrease was given by Krahn, Fredlund and Klassen (1989). A railway embankment

near Notch Hill, British Columbia, Canada, shown in Fig. 1.4, was constructed of

local lacustrine silt which consisted of 10% clay, 85% silt and 5% fine sand. The

embankment height varied from 2m to over 10m, with side slopes of 34°. Several

years after the construction was completed large segments of the embankment began

to fail. The typical failure that took place is shown in Fig. 1.4. Instability of the slope

was most active in spring and after the ground had thawed but in late spring and late

summer when the weather was dry the movement came to a halt. Observations made

by Krahn, Fredlund and Klassen (1989) showed that during winter and spring the

slope was subjected to wetting, resulting in the reduction of suction. This was

followed by a loss of shear strength of the soil and hence failure of the slope.

Aitchison and Woodburn (1969) reported that shrinkage (drying) in

unsaturated soil caused cracks in the foundation soil without an increase in load.

They described the shrinkage process as dessication as the suction was increased. The

dessication induced cracks beneath a timber floor in the Adelaide Steamship Building,

Adelaide, South Australia as shown in Fig. 1.5.

Thomas and Rees (1994) examined soil heaving due to swelling in unsaturated

soil at a site on Kimmeridge clay in Swindon, UK. They carried out some field

observations for nearly nine months by monitoring the ground movement at two

stations A and B and data from their observations are shown in Fig. 1.6. Large

settlement was initially observed between the months of August and September 1988
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following a very dry period. After that period there was no significant movement of

the ground between October 1988 and mid-February 1989. However there was a

period of significant rainfall between mid-February and mid-March 1989 and large

heaving of the soil took place during mid-March. Thomas and Rees (1994) reported

that the suction in the soil was significantly reduced during the rainy season, and this

caused heaving of the ground.

1.4 Stress-strain relationships for unsaturated soil

The development of a proper understanding of the stress-strain behaviour of

unsaturated soil has been much more difficult than for saturated soils, because of the

fact that u„ and lc have different values. It has also been hampered by the complex

fabrics of many unsaturated soils and the diversity a unsaturated soiI types, as

dictated by mineralogy, origin and environmental conditions. The diversity of

unsaturated soils is very large, covering highly expansive clays, residual laterites, a

wide range of alluvial soils, different types of cemented soils and compacted fills

(Alonso, Gens and Hight, 1987). However considerable efforts have been made in

the last four decades towards developing an understanding of unsaturated soil

behaviour.

The historical development of stress-strain relationships for unsaturated soil,

which is described more fully in Chapter 2, can be divided into three phases. In the

first phase the development was dominated by attempts to use a single effective stress

equation for unsaturated soil, as proposed by Bishop (1959). The equation was

characterized by a factor x, the value of which was said to depend on the degree of

saturation of the soil, varying from zero (dry soil) to 1 (fully saturated soil). Many

authors including Bishop, Alpan, Blight and Donald (1960) and Bishop and Donald

(1961) attempted to show how x varied with the degree of saturation. However later

experimental results showed that the use of a single effective stress equation for
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unsaturated soil was invalid (see, for example Jennings and Burland (1962) and

Bishop and Blight (1963)).

The difficulty of using a single effective stress equation for unsaturated soil led

to the use of two stress state variables : net stress (cr— u.) and matrix suction

(u.—u) (see Bishop and Blight (1963) and Fredlund and Morgenstern (1977)).

This second phase of development took place between the early 1960s and the late

1980s. The concept of two independent stress state variables was used to explain the

volume change behaviour of unsaturated soils by authors such as Matyas and

Radhakrishna (1968), Fredlund and Morgenstern (1976) and Lloret and Alonso

(1985) (see Section 2.4). The shear strength of unsaturated soils was also related to

the net stress (a—u.) and matrix suction (u0 —u) by many authors including

Fredlund, Morgenstern and Widger (1978), Escario and Saez (1986) and Escario

and Juca (1989) (see Section 2.5).

Finally in the third phase of development, beginning in the late 1980s and

continuing to the present time, some authors have attempted to represent the stress-

strain behaviour of unsaturated soil by means of elasto-plastic critical state

constitutive models. This type of work was pioneered by Alonso, Gens and Hight

(1987), with the presentation of a possible model in a qualitative form.

1.5 Elasto-plastic critical state constitutive models

Alonso, Gens and Hight (1987) reported that the the behaviour of unsaturated

soil could be described in terms of an elasto-plastic critical state model, from their

investigation of the soil behaviour observed from many published works. This led to

the suggestion of the model in a qualitative form. Subsequently Alonso, Gens and

Josa (1990) proposed a quantitative form of the model, which was meant for non-

expansive or moderately expansive soils, including partially saturated sands, silts or

low plasticity clays. The model was based on four independent stress state variables
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mean net stress p', deviator stress q, suction s and specific volume v. The model

reduced to modified Cam Clay at full saturation. The full treatment of the model is

covered in Section 2.6.1.

For isotropic stress states (q=0) Alonso, Gens and Hight (1987) introduced the

concept of two sections of yield curve, the Loading Collapse (LC) and the Suction

Increase (SI) yield curves in the s : p plane, as shown in Fig. 1.7. AB, q is the initial

position of yield curve and 4B2 C2 is the position of the curve after expansion. The

behaviour of the soil inside the yield curve was assumed to be elastic. Irreversible

(plastic) compressive volumetric strains were predicted for any stress path involving

expansion of the yield curve. Yielding on the LC yield curve could be caused by an

increment ofp' (loading path), a decrement of s (wetting path) or both. The SI yield

curve was introduced to represent the irreversible compression that occurred when

the suction was increased above the previous maximum value. The model was able to

reproduce some of the basic behaviour of unsaturated soil, such as swelling and

collapse on wetting.

For anisotropic stress states (q>0) the LC yield curve was extended into q.p':s

space to form a yield surface, as shown in Fig. 1.8. Constant suction cross-sections of

the surface were assumed to be elliptical in shape, with the plastic components of the

shear and volumetric strains governed by a non-associated flow rule. The critical

state line for any value of suction, which passed through the the apex of the relevant

elliptical yield curve at a given suction, was assumed to have a constant slope M

(equal to the saturated critical state value). Alonso, Gens and Josa (1990) used their

model to predict some of the behaviour of unsaturated soil and compared the results

with some published experimental data. Good agreement was achieved between their

model predictions and the published data.

Sivakumar (1993) conducted a series of controlled-suction triaxial tests on

samples of compacted speswhite kaolin in the laboratory. The samples were normally

consolidated to virgin states at various values of p' and s prior to shearing. Various
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test paths were employed during the shear stage until the samples reached critical

states. The detailed experimental work was given in Sivakumar (1993). Wheeler and

Sivakumar (1995) used the data of Sivakumar (1993) to propose an elasto-plastic

critical state model for unsaturated soil which was qualitatively very similar to the

earlier model of Alonso, Gens and Josa (1990), but differed in points of detail in

order to fit the experimental data (see Section 2.6.5). Equations were proposed to

define isotropic normal compression relationships, critical state relationships and a

section of state boundary. The swelling and collapse behaviour observed during

wetting, the elasto-plastic compression behaviour during isotropic loading and the

increase in shear strength with suction were all related to the shape of the yield

surface and the hardening law defined by the state boundary. Constant suction cross-

sections of yield surface were taken to be elliptical in shape, with an associated flow

rule used to predict the plastic strain increment vectors. Predictions of the test paths

for a variety of shear tests showed good agreement with the observed behaviour.

1.6 Aims of the present study

Examination of the models of Alonso, Gens and Josa (1990) and Wheeler and

Sivakumar (1995) showed that there were some aspects of the soil behaviour within

the elasto-plastic critical state framework that had not been directly investigated in

the laboratory. These included

(a)The shape of the yield surface in q:p i :s space. Both the models of Alonso,

Gens and Josa (1990) and Wheeler and Sivakumar (1995) assumed a form

for this shape, but no direct experimental investigation of the yield surface

shape had been undertaken.

(b) The 'elastic' behaviour of unsaturated soil inside the yield surface. Alonso,

Gens and Josa (1990) assumed elastic indices lc, Ks (defined later) and G to

be independent of s and p' while Sivakumar (1993) did not measure these
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values in his tests because all samples were monotonically loaded to virgin

states.

(c) The form of the flow rule. Alonso, Gens and Josa (1990) adopted a non-

associated flow rule while Wheeler and Sivakumar (1995) adopted an

associated flow rule in their respective models.

(d) The elasto-plastic variation of water content. Both existing models did not

describe this aspect of unsaturated soil behaviour within the elasto-plastic

critical state framework.

The aims of the present research project were therefore to investigate some of

the behaviour of unsaturated soil not previously observed in the laboratory. This

would complement the experimental tests performed by Sivakumar (1993) and the

existing elasto-pastic critical state framework put forward by Wheeler and Sivakumar

(1995). An experimental research programme of triaxial tests on samples of

compacted speswhite kaolin was conducted at various values of suction after

subjecting the samples to various isotropic loading and unloading paths prior to a

final re-loading/shear stage. The test programme looked into four main areas of

interest, namely :

(a) The shape of yield surface in q:p':s space.

(b)The 'elastic' behaviour inside the yield surface. This meant whether the

elastic indices lc and Ks varied with s and p'. The variation of shear modulus

G with s and p' was also investigated.

(c) The appropriate form for the flow rule, in particular whether it was

associated or non-associated.

(d) The elasto-plastic variation of water content.

It was hoped that at the end of the research project a better understanding of the

behaviour of unsaturated soil would be achieved.
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Fig. 1.3: Cracking of canal embankment in Nebraska, USA
on loessal soil due to wetting (Holtz and Hilf, 1961)

Fig. 1.4: Failure of earth slope at Notch Hill, Canada due

to wetting (Krahn, Fredlund and Klassen, 1989)
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Method	 of
measurement

Suction
component

Laboratory /
in-situ

Direct	 /
indirect

Reference

Filter paper Matrix Laboratory	 /
in-situ

Indirect Chandler	 and
Gutierrez (1986)

Filter paper Total Laboratory	 /
in-situ

Indirect Chandler	 and
Gutierrez (1986)

Tensiometer Matrix In-situ Direct Fredlund	 and
Rahardjo (1988)

Brand (1988)Pressure plate Matrix Laboratory Direct

Psychrometer Total Laboratory	 /
in-situ

Indirect Edil, Motan and
Toha (1981)

Suction
transducer

Matrix Laboratory	 /
in-situ

Direct Ridley	 and
Burland (1994)

Thermal
conductivity

Matrix Laboratory	 /
in-situ

Indirect Fredlund & Wong
(1989)

Soil-moisture
extractor

Matrix Laboratory Indirect Edil, Motan and
Toha (1981)

Pore-fluid
sqeezer

Osmotic Laboratory Indirect Manheim (1966)

Pressure
membrane

Matrix Laboratory Indirect Lee (1993)

Table 1.1: Methods of suction measurement



CHAPTER 2

REVIEW OF THE STRESS-STRAIN BEHAVIOUR

OF UNSATURATED SOIL

This chapter consists of a review of previous work on the mechanical

behaviour of unsaturated soils. The chapter begins with a section on the role of soil

fabric, because the mechanical behaviour of unsaturated soil is critically affected

(even more than saturated soils) by the fabric and structure of the soil. This is

followed by a section on the choice of appropriate stress state variables for

unsaturated soils. Various aspects of mechanical behaviour are then reviewed

(including the volume change behaviour and the shear strength), together with the

mathematical equations that have been proposed to represent this behaviour. This

leads on naturally to a description of generalised elasto-plastic critical state

constitutive models for unsaturated soils, which link together both volumetric and

shear behaviour. This type of constitutive model forms the basis for the interpretation

of the experimental tests described in later chapters of the thesis. The sections on soil

behaviour and constitutive modelling are followed by a section on the experimental

methods that have been used for testing unsaturated soils in the laboratory. The

chapter concludes with a section on the identification of soil yielding, because this

aspect of soil behaviour was of particular concern in the research described in this

thesis.

2.1 The role of soil fabric

The study of soil fabric (the arrangement and packing of the soil particles) is

particularly important for unsaturated soils, because it has a very large influence on
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the behaviour of the soil. The fabric of unsaturated soil depends on several factors,

including :

a) The process by which the soil became unsaturated. This means whether the

soil was formed by compaction, by de-saturation due to evaporation of

water from the ground surface or by de-saturation due to generation of gas

within the soil.

b) Size and composition of the soil particles. Differences in the size and

composition of soil particles may result in different soil fabrics and thus

differences in behaviour.

c) The degree of saturation. Unsaturated soils at high degrees of saturation will

often have very different fabrics to those at low degrees of saturation.

Because the process by which the soil became unsaturated is of central

importance in dictating the type of soil fabric exhibited by the soil, the following

review of soil fabric is sub-divided into unsaturated natural soils (produced by

evaporation of water from the ground surface), unsaturated compacted soils and

unsaturated gassy soils (produced by gas generation or migration)

2.1.1 Unsaturated natural soils

Natural soils above the water table are normally unsaturated. The pore water

pressure above the water table is negative, thus giving the term "suction" (see

Section 1.2). Seasonal fluctuations in the level of the water table subject the soil to

changes in the value of suction and to cycles of saturation and de-saturation. The

maximum value of suction that can be sustained by a soil is dependent on the size of

the soil particles, with fine-grained soils able to sustain much larger values of suction

than coarse-grained soils.

The types of soil fabric for unsaturated natural soils fall into three main

categories, as shown in Fig. 2.1 (Wroth and Houlsby, 1985), depending on the

continuity of the air and water phases. Fig. 2.1 (a) shows the situation at low degrees

of saturation (commonly found in soil near the ground surface) where the water
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phase is discontinous while the air phase is continous. In this first category the pore

water pressure is strongly negative and the pore air is at atmospheric pressure. Fig.

2.1 (b) shows the situation in the next zone of soil (below the previous zone), where

intermediate degrees of saturation occur and both the air and water phases are

continous. The pore water pressure will be negative and the pore air pressure is zero

as it is connected to the atmosphere. Finally, Fig. 2.1 (c) shows the type of soil

found in a narrow transition zone immediately above the saturated soil. The degree of

saturation is high and the air phase is discontinous, in the form of occluded bubbles,

whereas the water phase is continous. The pore water pressure is negative (because

the soil is above the water table) and the pore air pressure is greater than the pore

water pressure (because of surface tension effects) but it is not necessarily equal to

atmospheric pressure.

For unsaturated natural soils containing widely differing particle sizes, Burland

(1965) suggested that the type of soil fabric shown in Fig. 2.2 would occur. The

large sand or silt grains are bonded together by clay "packets" which are

concentrated around the contact points of the larger grains. Burland (1965)

explained that the volume change that took place on loading / unloading or wetting /

drying was not only as a result of grain contact slippage but also by distortion,

shrinkage and swelling of the clay "packets".

2.1.2 Unsaturated compacted soils

Unsaturated compacted clays generally consist of saturated "packets",

containing small, water-filled intra-packet voids, separated by larger, unsaturated

inter-packet voids (see Fig. 2.3). Brackley (1975) introduced the concept of "packet

void ratio" which was defined as the ratio of the volume of intra-packet voids to the

volume of solid particles within the packets. Gens and Alonso (1992) refer to the

details of soil fabric within the saturated clay packets as the soil "microstructure" and

the arrangement of entire packets and the large inter-packet voids as the soil

"macrostructure". On wetting (an increase of pore water pressure, corresponding to a
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reduction of suction) the saturated microstructure of individual clay packets will

swell (increase in volume) but there may also be a tendency for "collapse" (reduction

in volume) of the unsaturated macrostructure.

For unsaturated compacted granular fills, the soil fabric is more likely to be as

shown in Fig. 2.2, with any small amounts of fine-grained material clustering around

the contact points of the larger grains.

The details of soil microfabric in unsaturated soil are very important, because

this microfabric controls the condition of the pore water, especially its negative

pressure or suction ( Alonso, Gens and Hight, 1987). The types of soil microfabric

for unsaturated compacted soil as proposed by Alonso, Gens and Hight (1987), are

shown in Fig. 2.4. Within these forms of microfabric there are three levels of particle

arrangement : elementary particle arrangements, particle assemblages and pore

spaces. Alonso, Gens and Hight (1987) pointed out that the microfabric shown in

Fig. 2.4 (a) is predominant in expansive soils or clayey soils compacted wet of

optimum. Conversely soil compacted at a water content dry of optimum could be

viewed as a collection of saturated or nearly saturated aggregations, separated by

relatively large pores at low saturation (see Fig. 2.4 (b)).

Seed and Chan (1959) reported that soils compacted dry of optimum had a

flocculated structure while soils compacted wet of optimum had a dispersed

structure. They showed that the shrinkage on drying of soils compacted dry of

optimum was smaller than the shrinkage of soils compacted wet of optimum. This

was because soils compacted dry of optimum were much stronger, due to their

flocculated fabric, than soils compacted wet of optimum (which had a dispersed

fabric resulting in a weaker structure).

Toll (1990) stated that the fabric of unsaturated compacted gravel was

influenced by the degree of saturation. This initial fabric was not destroyed even

when the soil was sheared to high strains. This agreed with the observations of Seed

and Chan (1959), who stated that unsaturated soils dry of optimum and wet of
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optimum retained different fabrics right up to failure, and this difference in fabric had

a profound influence on the shear strength.

2.1.3 Unsaturated gassy soils

Fig. 2.5 shows the structure of gassy soil commonly found in the offshore

environment, where gas (typically methane) is formed by bacterial or thermogenic

activity. Since the soil is confined within the seabed the pore gas pressure and the

pore water pressure are positive. In fine-grained seabed soils the gas bubbles are

typically much larger than the normal void spaces (although still a maximum of a few

millimetres in diameter) and Wheeler (1988a) proposed the structure shown in Fig.

2.5 (a). The gas bubbles form large cavities within an otherwise saturated soil. This

structure was idealised by the continuum model shown in Fig. 2.5 (b), with the gas

bubbles forming spherical cavities within a continuum of saturated soil.

2.2 Effective stress and stress state variables

In Chapter 1 it was shown how the matrix suction u.— lin, plays an important

role in the behaviour of unsaturated soils. The fact that the pore water pressure lc

and pore air pressure ua have different values has also made the theoretical analysis in

terms of effective stress more difficult. This is why the study of unsaturated soil

behaviour has lagged behind that of saturated soil.

2.2.1 Early attempts to use a single effective stress

The principal of effective stress in saturated or dry soil was first put forward by

Terzaghi (1936), who stated :

"The stresses at any point of a section through a mass of soil can be computed

from the total principal stress Grp o-2, 0-3 which act at this point. If the voids of the

soil are filled with water under a stress u, the total principal stresses consist of two

parts. One part, u acts in the water and in the solid in every direction with equal

intensity. It is called the neutral stress (or pore water pressure). 	 The
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balance, a; = cri —u, ci, = a, — u and a; = o-3 —u represents an excess over the

neutral stress u and it has its seat exclusively in the solid phase of the soil. This

fraction of the total principal stresses will be called principal effective stresses"

"A change in the neutral stress u produces practically no volume change and

has practically no influence on the stress conditions for failure. All the measurable

effects of a change in stress, such as compression, distortion and a change of

shearing resistance are exclusively due to changes in the effective stresses
,

al, a2 , a3. 1

In the case of an unsaturated soil, where the pore space contains air and water,

an expression for the effective stress was first proposed by Bishop (1959), who

suggested the following relationship:

d = o--ua + z(u.—uw )	 (2.1)

where a' was the effective stress, a was the total stress, ua was the pore air pressure,

uw was the pore water pressure and x was a parameter depending on the degree of

saturation Sr . Skempton (1960) stated that the effective stress in an unsaturated soil

was that stress controlling the changes in volume or shear strength of the soil and the

effective stress could be defined by Bishop's equation (Equation 2.1).

Jennings and Burland (1962) pointed out that , as for saturated soils, the

principle of effective stress could take the form of two propositions :

(a) all measurable effects of a change in stress such as compression, distortion

and a change of shearing resistance of the soil were exclusively due to

changes in effective stress ;

(b) the effective stress a' in a partially saturated soil was defined as the excess of

the total applied stress over the equivalent pore pressure (defined as

'cu., + (1— z)ua in Equation 2.1).

If the effective stress principle holds for unsaturated soil, then the properties and

behaviour of an unsaturated soil sample at a given value of effective stress (as defined
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by Equation 2.1) should be identical to those of a saturated sample of the same soil at

the same value of effective stress (defined in the conventional way for saturated

conditions) and with the same effective stress history. For example, as stated by

Bishop, Alpan. Blight and Donald (1960), the shear strength r would be given as

z = c' +[o-- ua + x(u.— u)] tan 0	 (2.2)

where the friction angle O' and cohesion c' are soil constants whose values are

independent of whether the soil is saturated or unsaturated.

To determine the value of, Bishop, Alpan, Blight and Donald (1960) carried

out some drained triaxial tests on normally consolidated Braehead silt. The samples

were prepared from slurry and then de-saturated by the application of a suction. The

values of cell pressure 03, pore air pressure ua and pore water pressure un, were

controlled. The deviator stress at failure and the average degree of saturation at

failure were obtained from observations of load and volume change. The value of x

was back-calculated from Equation (2.2) using values of 0 obtained from tests on

fully saturated samples. The test results are shown in Fig. 2.6.

The value of x was also determined by Bishop, Alpan, Blight and Donald

(1960) from a series of undrained triaxial tests at constant water content on

compacted soils having clay fractions of 22%, 18% and 4%. The soils used were a

clay shale (22% clay fraction) and two different boulder clays (18% and 4% clay

fractions). Both pore water and pore air pressures were measured throughout the

tests and values of x were again back-calculated from Equation (2.2) by using values

of 0 and c' measured on saturated samples. Results are shown in Fig. 2.7. No unique

relationship between x and the degree of saturation Sr was apparent for the three

different soils.

Jennings and Burland (1962) questioned the validity of the effective stress

equation proposed by Bishop. They pointed out that the effective stress equation

assumed that changes of effective stress caused by changes to the externally applied
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total stresses were directly comparable with changes of effective stress caused by

changes of suction, and they questioned whether this could be correct. Jennings

and Burland (1962) also stated that, in order for Bishop's effective stress equation to

be valid, the soil behaviour should be unaffected by changes in (cy — u.) and (u.— um,)

such that cr' as defined by Equation (2.1) remained constant. They carried out three

series of oedometer tests on silty soils to check whether this was in fact the case. In

one series of tests, on air-dried silts, the specimens were soaked at constant void

ratio. If Equation (2.1) was valid it would be expected that soaking at constant

volume would require an increase in applied total stress. However the results showed

that in order to retain constant volume it was necessary to reduce the applied load

during soaking. They concluded that it was not a' that controlled the behaviour of the

majority of unsaturated soils but rather the separate values of (a -- u(,) and (u.— un,).

It was also impossible to model the possibility of collapse on wetting by using

Bishop's effective stress equation. Jennings and Burland (1962) found no unique

relationship between void ratio and effective stress as defined by Equation (2.1).

Burland (1965) pointed out that the stress function controlling shear strength

could not be exactly the same as the one controlling volume change. He assumed that

the contact area between soil grains was negligible. In unsaturated soil, the pore

water pressure only formed as menisci around the grain contact points. This was why

a change in all-round applied total stress (which acts on the soil skeleton uniformly

throughout the soil) could not be equivalent to any function of a change in pore

water pressure (which acts on the soil skeleton only through the grain contact

points). Therefore the volume change characteristics could not be related to a unique

function of the applied stresses and the pore pressures as was the case for saturated

soil. Burland (1965) argued that the principle of effective stress could not therefore

be used to explain the volume change behaviour of unsaturated soil because the

fundamental assumption upon which the principle of effective stress was based was

not applicable to unsaturated soil i.e. changes in applied or boundary stresses were
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(2.3)

(2.4)

not equivalent to any function of pore water pressure as far as the volumetric

behaviour of the soil was concerned.

2.2.2 The use of two independent stress state variables

Having concluded that a single effective stress was unable to describe the

stress-strain behaviour of unsaturated soils (particularly the volumetric behaviour),

several authors, including Bishop and Blight (1963), suggested the use of two

independent stress state variables : net stress a— u0 and the suction u.—uw . In fact it

transpired that Coleman (1958) had effectively made the suggestion some years

earlier, in proposing incremental stress-strain relationships for unsaturated soil (see

next section).

Fredlund and Morgenstern (1977) showed from first principles that two

independent stress state variables were required to describe the behaviour of

unsaturated soil. These stress state variables could be any two chosen from the three

stress differences a—u., a—un, and ua — uw . The two normally selected are the net

stress a— u. and suction u.— uw , because the pore air pressure ua is commonly zero,

and under these conditions, the net stress and suction simplify to the total stress and

negative pore water pressure respectively.

At any point within a body of unsaturated soil there will be three principal net

stresses cr, — u., a,— u0 and cr3 — u.. For a three-dimensional problem, a total of four

stress parameters are therefore required to define fully the stress state within an

element of unsaturated soil : a; — ua , cr2 — ua , o-3 —u. and ua —uw . For axisymmetric

conditions (o-2 = cr3 ) these reduce to a total of three stress parameters, which are

most conveniently chosen as the mean net stress p', the deviator stress q and the

suction s, defined as follows

p, =  al +2.73 ua

3

q = al — 0-3
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(2.8)

(2.9)

S = U. - U,,,	 (2.5)

2.3 Incremental stress-strain relationships

Coleman (1958) derived incremental stress-strain relationships for an

element of unsaturated soil loaded in an axially symmetric manner. Considering only

the change dy, in the volume vw of water held in the soil, he proposed that:

– dV w = CI , (dug, – du w ) + Ci2 (dp – du a ) + C, 3 (do-, –do-3 )	 (2.6)V

Using Equations (2.3) to (2.5) this becomes

–
dVw 

= Cuds + Cudp' +C13dq	 (2.7)V

Considering the change dV in the overall volume of the soil, Coleman

proposed,

dV
-- = C2 ,(du a – du w ) + C„(dp – du a ) + C23 (do-, –do-3)V

or

– —
dV 

-- C21 ds + C22dp i +C23dq
V

Finally if el and 63 are the axial and lateral strains of the soil element referred

to the current dimensions of the element, the change in shear strain is given by,

-(del - d63 ) = C31 (du a – du w ) + C32(dP – dua ) + c33 (do-, - du3 )	 (2.10)

or

(del - A-0= C3I ds +C32dp' +C33 dg	 (2.11)
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Coleman (1958) stated that the coefficients cl, to c33 would depend on the current

values of all three stress variables and the stress history of the soil. For example, for

isotropic elastic behaviour of the soil, Coleman (1958) suggested that only

coefficients C1 C22 and C33 would be needed (all other coefficients being zero).

Fredlund (1979) also used the two stress state variables cr— ua and u.-14 to

define elastic stress-strain relationships for unsaturated soil

o-x — u. v
6 . =	 (o- + o- 2u )+

(u
°

— u
w

) 

E	 EY z	 a	 H
(2.12)

where E was the Young's modulus (which respect to net stress), v was the Poisson's

ratio and H was the elastic modulus for changes of suction. Similar equations were

given for ey and ez . An elasticity form of constitutive relation for the water phase

was also given by Fredlund (1979)

(o- + o-
Y

+ o-z-3u„,) ± (ua — Uw ) 
ow = x 	

3A	 R
(2.13)

where 0„, was the volumetric water content and A and R were two additional ealstic

constants.

2.4 Volume change behaviour

Bishop and Blight (1963) described the volume change behaviour of

unsaturated soil by using the two stress state variables : net stress and suction. The

behaviour under isotropic loading was expressed as a path in a space with axes of

void ratio e, mean net stress p—ua and suction ua —u as shown in Fig. 2.8. From

Fig. 2.8 Bishop and Blight (1963) showed that wetting the soil at a low value of

p—u. caused swelling of the soil (path AD) while wetting the soil at a high value of

p—u. caused collapse of the soil (path BE). For an unsaturated soil loaded at

constant water content from an initial state A (see Fig. 2.8) the volume decreased

and so did the suction (path ABC) until full saturation eventually occurred. If the
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sample was saturated at constant volume, it moved from A to N, but in general the

increase in p—ua during wetting was smaller than the decrease in ua —u,„. Bishop

and Blight (1963) pointed out that in unsaturated soil the paths of the two

components p—ua and ua —u should be taken into account in describing the

volume change.

MaOlas and Radhakrishna (1968) stated that the principle of a single effective

stress was more difficult to apply to the volume change behaviour than to the shear

strength. This was probably due to the fact that the volume change data were

normally analysed on an incremental basis in a continous process of deformation,

whereas shear strength data were normally analysed only at a failure state. Hence

interpretation of the volume change behaviour in terms of a single effective stress

required that the behaviour of an unsaturated sample be compared with that of an

equivalent saturated sample at every stage of its deformation.

Matyas and Radhakrishna (1968) carried out triaxial tests on a mixture of flint

(80%) and kaolin (20%) in all-round compression (Series A) and K0-compression

(Series B). Volume change measurements of pore air, pore water and the specimen

were made separately. All samples were statically compacted to the same initial

conditions. In Series-A (8 tests) and Series B (5 tests) the suction was either

increased (wetting) or reduced (drying) from its initial value at either constant

volume or constant mean net stress. The samples were then compressed by the

application of a cell pressure (Series A) or by increments of axial load and cell

pressure in a stress-controlled machine with no lateral deformation (Series B). The

results from both test series were plotted in terms of void ratio e against suction

ua — u„, and mean net stress p—ua , as shown in Figs. 2.9 and 2.10. Each plot shows

a warped surface in e, ua —u„„ p—u0 space, as shown in Fig. 2.9 (c) and 2.10 (c).

The results show the possibility of either swelling or collapse taking place when the

specimens imbibed water, depending on the magnitude of the mean net stress p— U0.

This is illustrated by curves for specimens A2 and A5 in Fig. 2.9 (a). Matyas and

Radhakrishna (1968) noted that the collapse behaviour caused by decreasing the
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suction at high values of p—u,, could not be explained by the principle of effective

stress as suggested by Bishop (1959)

The pattern of swelling or collapse observed during wetting can be explained

by considering the fabric of unsaturated compacted clay soils. The increase of lc

during wetting leads to a decrease in the local value of effective stress within the

saturated microstructure of clay packets, and therefore wetting always produces

swelling of the individual packets. The softening of these saturated clay packets may

however be sufficient to cause slippage at the inter-packet contact points, leading to

collapse of the macro-structural arrangement of particles into the large, partially air-

filled inter-packet voids. At low values of p—u., collapse does not occur, because

the soil is able to carry the applied load even after softening of the inter-packet

contacts. However at high values of p—u. collapse occurs on wetting, because the

macro-structure is unable to carry the high applied load after softening of the inter-

packet contacts.

Barden, Madedor and Sides (1969) also examined the volume change in terms

of the two stress state variables. They conducted a series of anisotropic consolidation

tests in a modified Rowe cell using compacted 6" diameter and 1" thick samples of

Westwater and Derwent clays. The samples were divided into 11 groups and were

consolidated at given values of suction and mean net stress and then were taken

through different stress paths involving wetting at constant mean net stress,

consolidation at constant suction and both consolidation and wetting at the same

time. The different test paths are shown in Figs. 2.11(a) and 2.11 (b).

Barden, Madedor and Sides (1969) observed that for samples compacted

appreciably dry of optimum, collapse occurred on wetting to zero suction under large

p' . The higher the clay content, the smaller was the collapse. This was presumably

caused by simultaneous swelling of the clay microstructure taking place. Samples

compacted close to optimum showed no collapse. However, regardless of clay

content, compressibility on loading decreased with increasing suction for samples

compacted dry of optimum. For samples compacted at or wet or optimum the
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suction had little effect on compressibility. This was because for samples dry of

optimum the soil structure tended to be flocculated which was sensitive to suction,

while wet of optimum the structure tended to be more dispersed. A low clay content

(presumably less expansive) and a flocculated structure were associated with collapse

whereas a high clay content (expansive) and a dispersed structure were associated

with swelling behaviour.

Fredlund and Morgenstern (1977) carried out null tests to examine the validity

of the stress state variables p—ua and u. —uw . Samples were isotropically

consolidated to pre-determined values of p— u0 and ua —uw and equal increments of

P, u, and lc were applied. No overall volume change or water volume change took

place during the null tests, confirming the validity of the stress state variables.

Fredlund and Morgenstern (1978) also examined the use of the stress state

variables p—u. and u. — u investigate the volume change behaviour of

unsaturated soils. Like MaOias and Radhakrishna (1968), Fredlund and

Morgenstern (1978) carried out a series of isotropic and IC0- compression tests on

three different soils. They calculated the moduli linking changes of e to changes of

p—u. and u. — un, from test data for two different stress paths, and then compared

the predicted behaviour for a third stress path with the observed behaviour. They

found that some samples showed good agreement in deformation moduli between the

predicted and measured values while others showed poor correlation. Correlation

was good between tests in which the mean net stress was monotonically increased

and the suction was monotonically decreased, but correlation was poor if mean net

stress was decreased or suction was increased. This suggested the possibility of

irreversible behaviour, and the need therefore to use an elasto-plastic form of

constitutive model (see Section 2.6).

Fredlund (1979) proposed that, for a limited range of stresses, the void ratio

would vary linearly with the logarithmic of both mean net stress and suction :
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e = eo — C, log 
(p — u a ) f 

C„, log 
(ua —uw ) f

(p—ua )a	(ua—uw)0
(2.14)

where c; and C. are compressibility coefficients and subscripts ! and 'o' indicate

final and initial states. However the values of q and Cm were said to be controlled

by the stress history of the soil. The relationship given in Equation (2.14) is in the

form of a planar surface (with stresses on a logarithmic scale) as shown in Fig. 2.12.

Thus it cannot model both swelling and collapse on wetting.

Lloret and Alonso (1985) also proposed constitutive relations linking volume

change and stress for unsaturated soil. They proposed the following equation for the

volume change, for suction greater than 1 kPa :

e=a+bln(p—ua)+cln(ua—uw)+dln(p—ua)ln(ua—uw) 	 (2.15)

where a, b, c and d are constants. Equation (2.15) represents a warped surface

linking e, to ua —un, and p—us . A typical state surface for Pinolen clayey sand as

represented by equation (2.15) is shown in Fig. 2.13. This representation is better

than Equation (2.14), because it describes a warped surface where swelling and

collapse can be modelled by a single equation. A similar equation for the degree of

saturation was also proposed by Lloret and Alonso (1985)

Sr = a— {1— exp[—Nua — u,„]}[c+d(p—ua)1 	 (2.16)

2.5 Shear strength

Fredlund, Morgenstern and Widger (1978) suggested an expression for the

shear strength t of an unsaturated soil in the following form :

1- = c' +(a— ua ) tan 0 +(ua — u)tan Ob
	

(2.17)
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where t was the shear stress on the failure plane at failure, a— ua was the net stress

normal to the failure plane at failure, and e was a friction angle indicating the rate of

change of shear strength with suction. Equation (2.16) describes a planar surface,

which is called the extended Mohr-Coulomb failure envelope, as shown in Fig. 2.14.

The surface is tangential to the Mohr's circles at failure. The equation was used by

Fredlund, Morgenstern and Widger (1978) to plot data from Bishop, Alpan, Blight

and Donald (1960), within a suction range from zero to 200 kPa, which showed that,

for this soil over this range of suction, O b was constant.

Ho and Fredlund (1982) also carried out some multi-stage triaxial tests on

unsaturated Hong Kong residual soils, which appeared to verify Equation (2.16).

Multi-stage tests were used so as to obtain as much information as possible from a

limited number of tests.

Later experimental data showed that the failure surface was not linear when

higher values of suction were used. Escario and Saez (1986) carried out some direct

shear tests on Madrid grey clay, Guadalix red clay and Madrid clayey sand to

investigate the validity of Equation (2.16). The results are shown in Fig. 2.15 and it

can be seen that for Madrid clayey sand, the shear strength envelopes plotted against

a— u0 for various values of suction were roughly parallel within the pressure range

used, suggesting that 01 was constant. However the test results for Guadalix red clay

and Madrid grey clay showed that the failure envelopes diverged over the same

pressure range. This indicated that 0 1 varied with suction for these two soils. Fig.

2.15 also shows graphs of the same test results, but replotted using u. —u,, as

abscissa. The graphs all show curvature at low suction values, indicating that e

varied with suction (0" decreased as suction was increased).

Fredlund, Rahardjo and Gan (1987) and Gan, Fredlund and Rahardjo

(1988) found that data from shear tests on unsaturated glacial till showed significant

non-linearity of the strength envelope t with respect to u„— u,„ when considered over

a large range of suction values (between 0 and 500 kPa) as shown in Fig. 2.16. The

strength envelope was planar up to a value of suction of about 75 kPa. Up to this
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point e was equal to 0, but as suction was increased beyond 75 kPa the strength

showed significant non-linearity and the value of 0 1' decreased. At high values of

suction (greater than 300 kPa) the value of Ob tended to a constant value, much

lower than 0' (see Fig. 2.17).

Escario and Juca (1989) carried out direct shear tests with controlled

suction on Madrid clay, Guadalix red clay and Madrid clayey sand over a larger

suction range than tested by Escario and Saez (1986). Typical results are shown for

Madrid grey clay at a - ua = 0.3 MPa in Fig. 2.18 (a). At lower values of suction

close to the origin, the tangent value of 0E  was roughly equal to 0'. As suction was

increased the tangent value of ob decreased until the shear strength reached a

maximum value (with a tangent value of e of zero). Fig. 2.18 (c) shows that for

Madrid clayey sand the value of 0' was found to be independent of suction, whereas

Fig. 2.18(b) shows that 0' was dependent on suction for Guadalix red clay.

Gulhati and Satija (1989) carried out triaxial shear tests on Dhanuri clay at

constant water content (Series -A) and fully drained (Series-B). Their findings were

consistent with the earlier results of Fredlund, Morgenstern and Widger (1978), in

that the failure surface was planar. Ob was found to be less than 0' because a— U.

had more influence in generating shear strength in unsaturated soil than U. — tin,

2.6 Critical state models for unsaturated soil

Sections 2.4 and 2.5 described how the volume change behaviour and the shear

strength of unsaturated soils were both related to the stress state variables : net stress

a--u0 and suction U. — uw . In all of the work presented in Sections 2.4 and 2.5 the

volume change and shear strength were however treated completely independently.

Only in the last few years have attempts been made to link the volume change

behaviour and the shear strength of unsaturated soils, following the example of the

development of critical state theory for saturated soil.

2.6.1 The elasto-plastic model of Alonso, Gens and Josa (1990)
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Alonso, Gens and Hight (1987) presented a qualitative description of an

elasto-plastic constitutive model for unsaturated soil. Subsequently the mathematical

development of the model was given by Alonso, Gens and Josa (1990).

Alonso, Gens and Josa (1990) proposed an elasto-plastic critical state model

for unsaturated soil which used concepts of the theory of hardening plasticity. The

model reduced to the Modified Cam Clay critical state model for full saturation. The

model was intended for unsaturated soils which are only slightly or moderately

expansive, such as sands and clays of low plasticity.

2.6.1.1 Isotropic stress states (q = 0)

Under isotropic loading to virgin states at a given suction the specific volume

was assumed to be given by :

v = N(s)— 2(s)ln ( /L)
Pc

(2.18)

where N(s) is the value of v at a reference stress pc (defined below) and 2(s) is the

compressibility parameter for changes in mean net stress for virgin states of the soil.

Both N(s) and 2(s) varied with suction s, with .1.(s) decreasing monotonically from

the saturated value i(o) as the suction was increased from zero. The assumed

isotropic normal compression lines for saturated and unsaturated states defined by

Equation (2.18) are shown in Fig. 2.19 (a).

Alonso, Gens and Josa (1990) introduced the concept of a yield curve in the

p'- s plane, which they named the Loading-Collapse (LC) yield curve (see Fig. 2.19

(b)). The shape of this yield curve was defined by,

(20:0-K)

(

P..). (po' (0))0.(4-0

Pc	 Pc
(2.19)
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dye = —
icdp' K As 

P'	 s + pas
(2.20)

where p:, was the yield value of mean net stress at a suction s, p0 1(o) was the yield

value of mean net stress for saturated condition (s = 0) and lc was the elastic swelling

index for changes in mean net stress. Inspection of Equation (2.19) shows that when

p 0' (o) = p c , then po' = pc . The reference stress pc therefore defines the value of p'

at which the yield stress Po is independent of suction and the LC yield curve forms a

straight vertical line in the s-p' plane. On subsequent expansion the yield curve

becomes curved in the s-p' plane, with Po greater than pc,' (o).

The Loading-Collapse yield curve was coupled with a second section of yield

curve, the Suction-Increase (SI) yield curve. The simplest assumption was to define

the SI yield curve as a straight, horizontal line in the s-p' plane, as given by s = so

(where so was the maximum past suction ever experienced by the soil). The two

sections of yield curve are shown in Fig. 2.20. The Suction-Increase (SI) yield curve

was incorporated to take into account the irrecoverable compression which occurred

when suction was increased beyond the previous maximum value (so).

For stress paths inside the LC and SI yield curves only elastic strains occur,

with specific volume v varying with p' and s via two elastic constants lc and Ks

where atmospheric pressure pot was included in the equation to avoid

indeterminancy as suction reduces to zero.

The LC yield curve provides a means of modelling both swelling and collapse

on wetting (reduction of s). At small values of p— uo, say point A in Fig. 2.20,

decreasing suction following path AB would result in a small elastic swelling within

the yield curve. However at a larger value of p—uo, say at point C, decreasing

suction following path CDE would initially cause elastic swelling (from C to D) but

this would be followed by irrecoverable (plastic) collapse (from D to E). The yield
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curve would be displaced after stress path CDE to the new position shown in Fig.

2.20.

2.6.1.2 Anisotropic stress states (q>0)

For anisotropic stress states Alonso, Gens and Josa (1990) extended the LC

yield curve up into q..p': s space to form a yield surface as shown in Fig. 2.21. Cross-

sections of this LC yield surface at constant suction were assumed to be elliptical in

shape, with an equation

q2 —M 2 (p' + ks)(po' — p. )= 0	 (2.21)

where Mis the critical state stress ratio for saturated soil.

The critical state line at any given suction passes through the apex of the

relevant elliptical yield curve (see Fig. 2.22)). A single value of M was assumed for

critical state lines for different values of suction. The model of Alonso, Gens and

Josa (1990) resulted in the following expressions for deviator stress q and specific

volume v at critical states

q =MP +ks	 (2.22)

v =N(s)— {2(s) — lc} ln {2 + Ls, } — A(s) ln ( /)
P	 Pc

(2.23)

Equation (2.22) is equivalent to equation (2.17) proposed by Fredlund, Morgenstern

and Widger (1978) i.e. no account is taken of the non-linearity of strength with

suction reported by authors such as Escario and Saez (1986) (see Section 2.5).

Alonso, Gens and Josa (1990) assumed a non-associated flow rule, relating the

plastic component of shear strain to the corresponding plastic component of

volumetric strain (see Fig. 2.22).
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2.6.2 Toll's critical state model

Toll (1990) carried out standard displacement controlled triaxial tests on

samples of 100mm-diameter and 200mm-high lateritic Kiunyu gravel (9% clay). The

soils were compacted in layers by using either static or drop hammer compaction.

Six samples were tested under full saturation and twenty-three samples were tested

under unsaturated conditions. Samples were sheared under constant water content,

with flow of water being prevented.

Toll (1990) stated that at critical states the deviator stress q and specific volume

v could be given by;

(2.24)

(2.25)

(2.26)

q =M„(p — u,7 )+M.(u —u)

v =	 — 2,, ln(p —u„)— 2„ ln(ua —u)

fan, = 1+  
1,—i

Sr

where M. was critical state stress ratio with respect to net stress, M ., was critical

state ratio with respect to suction, r was the saturated critical state parameter and

2. and A. were the slopes of the critical state plane with respect to net stress and

suction respectively.

Ma Ms, ita and 2,, were functions of the degree of saturation Sr as shown in

Fig. 2.23. This means that five variables are involved in Toll's proposal (q, p—u„,

u. — u. , v and Sr ), three of which are independent at critical states (Plea, ua—u„,

and Sr).

Wheeler (1991) argued that the use of S,. as an additional independent variable

meant that Toll's equations could not be used for predictive purposes without an

additional equation. Wheeler (1991) suggested that Toll's experimental critical state

values of q could be modelled by an equation which did not involve S,. , of the form :
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q =M(p 7 u.)+ f(u,,—u)
	

(2.27)

where M was the critical state ratio for saturated soil and the last term was a non-

linear function of suction. Equation (2.27) was therefore equivalent to the shear

strength expression of Equation 2.17, but with a value of O b that varied with suction

(as reported by authors such as Escario and Saez (1986)). Wheeler (1991) found that

the experimental values of q from Toll's data were more accurately predicted by

Equation (2.27) than by Equation (2.24). The only reason that Toll (1990) found

that M,„ and M., had to vary with Sr was because in Equation (2.24) he was,

incorrectly, attempting to force the values of q to fit a relationship that varied linearly

with suction. Wheeler (1991) also expressed some doubt about the experimental

values of v measured by Toll (1990), and hence on the validity of Equation (2.24).

These experimental problems are discussed in Section 2.7.4.1

2.6.3 An elasto-plastic model showing a maximum of collapse

Josa, Balmaceda, Gens and Alonso (1992) extended the model of Alonso,

Gens and Josa (1990) to include some aspects of soil behaviour not previously

described in the earlier model. This included modelling the behaviour of unsaturated

compacted soil with a maximum of collapse, whereas the original model predicted

that the collapse on wetting would increase indefinitely on increasing p', because the

normal compression lines for different values of suction diverged continously with

increasing p'. Josa, Balmaceda, Gens and Alonso (1992) argued that this was

physically unreasonable, because if an unsaturated soil is loaded to sufficiently high

values of p' the suction is unable to continue to maintain an open structure;

substantial plastic compression therefore occurs on loading, so that there is then

reduced scope for further plastic collapse on wetting.
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In the improved model for unsaturated soil of Josa, Balmaceda, Gens and

Alonso (1992) the shape of the LC yield curve was modified in order to describe the

maximum of collapse exhibited by the soil. The following equation was proposed

ic = (ic (0)— pc)+ Pc[(1---m)e-cu +In]
	

(2.28)

This means that, for a given position of the yield curve, the yield stress A increases

from A (o) at zero suction to a value of Po (o) + (m —1)p c as the suction tends to

infinity (see Fig. 2.24 (a)). The parameter m (which is always greater than 1)

therefore defines the increase of A as suction is increased to very high values, with

the increase of Po expressed in terms of a reference stress pc . The initial rate of

increase of Po with suction is determined by the exponential parameter cc. The

maximum of collapse was represented by having the parameter m vary with the

expansion of the yield curve in the following manner :

m=1+ c-1Y 	 ti (0) p } ex ( C. — 130. (0
c	

))
cPn, —A--,

(2.29)

m therefore has the value of 1 when A (o) is equal to the reference pressure pc ;m

increases to a peak value of gy when Po (o) is equal to cx ; and m decreases again

towards 1 as po' (o) tends to infinity (see Fig. 2.24 (b)). The yield curve therefore

expands from a straight line when po' (o)=pc to its maximum inclination when

p(o)=c, and it then tends back towards a straight vertical line as po' (o) tends to

infinity (see Fig. 2.24 (c)). The maximum collapse on wetting from a specified value

of initial suction so occurs for a stress path starting on the position of the yield curve

with maximum inclination, at pc,' (o) = gx (see path AB in Fig. 2.24 (c)). Josa,

Balmaceda, Gens and Alonso (1992) stressed that their improved model did not

involve an increased number of parameters. The model was able to reproduce most

of the characteristics of unsaturated non-expansive soil.
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2.6.4 An elasto-plastic model for highly expansive clays

Gens and Alonso (1992) presented a modified version of the earlier model of

Alonso, Gens and Josa (1990) in order to represent the behaviour of unsaturated

highly expansive clays. These materials show an irreversible component of swelling

on first wetting, whereas the original model of Alonso, Gens and Josa (1990)

assumed that swelling on wetting was a purely elastic (reversible) process. Gens and

Alonso (1992) incorporated an additional yield curve, which they called the Neutral

Line (NL) in order to model the irreversible component of swelling on first wetting

(see Fig. 2.25)

2.6.5 Wheeler and Sivakumar's model

Wheeler and Sivakumar (1993a) pointed out that a second volumetric

parameter (in addition to v), such as degree of saturation Sr or water content w

should be included to fully define the volumetric state of unsaturated soil. This

would mean that, for unsaturated soil, five state variables were involved : mean net

stress p', deviator stress q, suction s, specific volume v and water content w (or

degree of saturation, Sr). Wheeler and Sivakumar (1993a) argued that, although

unsaturated soil involved two more state variables than saturated soil, there should be

only one more degree of freedom, because there was only one additional phase i.e.

the air. Wheeler and Sivakumar (1993a) therefore proposed an isotropic normal

compression "hyper-line" defined by three equations of the form

q = 0 (2.30)

v = fl (p. , ․) (2.31)

w = f2 (11' , ․) (2.32)

The term "hyper" was introduced because of the need to work in a five- dimensional

mathematical space (because of the existence of five state variables)

A critical state hyper-line was also postulated defined by
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q = f,(p. , ․) (2.33)

v =-	 (15 , ․) (2.34)

w = f5 (p. , ․) (2.35)

A state boundary "hyper-surface" linking the normal compression hyper-line

and critical state hyper-ine was also defined by the following form

v = f6 (p' ,q, ․)
	

(2.36)

w = f7 (p', q, ․)
	

(2.37)

Equations (2.30), (2.31), (2.33), (2.34) and (2.36) are present (either explicitly

or implicitly) in the constitutive model of Alonso, Gens and Josa (1990), but

Equations (2.32) , (2.35) and (2.37) are missing, because the model of Alonso, Gens

and Josa (1990) provides no information on the variation of water content. This

means, in particular, that the model of Alonso, Gens and Josa (1990) is unable to

predict the stress-strain behaviour under undrained (constant water content)

conditions.

Wheeler and Sivakumar (1993a, 1995) described triaxial tests on 50mm-

diameter specimens of compacted kaolin performed by Sivakumar (1993). The

samples were compacted in 9 layers in a mould at water content of 25% (4% less

than optimum from the standard Proctor compaction test) using a displacement

controlled compression machine to give an initial dry density of about 1200 kg/m3

and degree of saturation of 54%.

The samples were first brought into equilibrium at a mean net stress p' of 50

kPa and suctions of zero, 100, 200 or 300 kPa. They were then isotropically

consolidated to a virgin state by increasing p (while holding s constant) to a stress

level higher than that produced by the compaction process. Five different types of

shearing stage were then performed :
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(a) constant v/constant s shearing : u0 and uw increased by equal amounts to

keep v constant

(b) constant pi/constant suction shearing : u0 and uw increased by equal

amounts to keep p' constant

(c) fully drained/constant suction shearing : ua and uu, both held constant

(d) constant w/ rising s shearing : ua was maintained constant but no drainage of

the water phase was allowed (leading to a decrease of uw and hence an

increase of s)

(e) constant p/ falling s shearing : ua was increased to keep p' constant while uw

was increased at 1.5 times the rate of ua.

The samples in type (a), (b) and (c) tests were sheared at suction values of 0, 100,

200 or 300 kPa whereas suction varied during shearing in type (d) and (e) tests. The

cell pressure was held constant in all shear tests.

Wheeler and Sivakumar (1995) interpreted the data from the consolidation

stages of the tests of Sivakumar (1993) (see Fig. 2.26), in terms of an isotropic

normal compression hyper-line relationship for specific volume (Equation 2.31)

which took the form

v= N(s)— .1.(s)in ( 11
P.,

(2.38)

where N(s) was the intercept of the line with the v-axis at p' = pat and A(s) was the

slope of the line. Atmospheric pressure (p.) was introduced into the equation to

ensure dimensional consistency. Both N(s) and A(s) were functions of suction, as

shown in Table 2.1. N(s) increased monotonically with increasing suction, consistent

with the model of Alonso, Gens and Josa (1990). 2.(s) did not however decrease

monotonically with increasing suction (as suggested by Alonso, Gens and Josa

(1990)).
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(2.40)

(2.41)

Equation (2.38), which defined the isotropic normal compression hyper-line, as

proposed by Wheeler and Sivakumar (1995) was slightly different from the normal

compression line equation relating v and fi proposed by Alonso, Gens and Josa

(1990) (see Equation 2.18). Alonso, Gens and Josa (1990) assumed the existence of

a reference stress pc at which the yield curve was a straight vertical line in the s-p'

plane (see also Equation 2.19). However Wheeler and Sivakumar (1995) argued that

the existence of this reference stress pc had never been validated experimentally.

Alternatively Wheeler and Sivakumar (1995) showed that the form of the LC yield

curve could be defined in terms of the parameters defining the normal compression

line relationship of Equation 2.38

(A(s)— lc) ln (kJ = (2(0)— x-)ln [ PI'	 ( 1+	 N(s) N(o)+ K in ES + Pat]
Pa,	 P.	 s P.,

(2.39)

Therefore N(s) and X.(s) together with lc and K s described the shape of the yield

curve for all possible values of pc,' (o). Wheeler and Sivakumar (1995) argued that it

was more convenient and much simpler to measure N(s) and 2 n.,(s) for a few different

values of suction in the laboratory than to attempt to measure the value of pc as

suggested by Alonso, Gens and Josa (1990). Equation (2.39) simplifies to the yield

equation given by Equation (2.19) if it is assumed that there exists a reference

pressure pc at which the yield curve is a straight vertical line.

Wheeler and Sivakumar (1995) showed that the data from Sivakumar's shear

stage (see Figs. 2.27 and 2.28) demonstrated the existence of critical state hyper-line

relationships for q and v (Equations 2.33 and 2.34 respectively) which took the form

q = M(s)p' + p(s)

v =F(s)— vi(s)ln[1--1
Pat
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The parameters M(s), g(s), F(s), and tv(s) were all functions of suction, as given in

Table 2.1. M(s) varied slightly with suction, so that the critical state lines of q versus

p' at various suctions were not quite parallel to each other (see Fig. 2.27) as assumed

by Alonso, Gens and Josa (1990) (see Equation 2.22). This suggests slight variation

of the value of 0' in Equation 2.17. The intercept n(s) did not increase linearly with

suction (as assumed by Alonso, Gens and Josa (1990) in Equation 2.22) and the

variation was equivalent to reduction in the parameter 0" in Equation 2.17 with

increasing suction (as proposed by Escario and Saez (1986) and others). The shapes

of the critical state line of v versus p at various suctions (see Fig. 2.28) were very

different to those predicted by the model of Alonso, Gens and Josa (1990), as given

by Equation 2.23, where the curves should be convex upwards.

Wheeler and Sivakumar (1995) proposed elliptical constant suction yield

curves passing through the yield point (p .0 ) on the normal compression hyper-line

and the intersection of the elastic wall with the critical state hyper-line (19) (see Fig.

2.29). The elliptical yield curve was given by :

q2 = 111; (p o' —p' )(p' +p, — 2p)	 (2.42)

where the aspect ratio M 	 given by,

M,= [M(s)P, + ,u(s)]	
(2.43)

Po and P., can both be expressed in terms of the values of p' and v at any general

point C on the yield curve, so Equation 2.42 (in combination with Equation 2.43)

gives the first state boundary relationship proposed in Equation 2.36.

Equations 2.42 and 2.43 were used to predict test paths in q-p'-v space for a

number of constant suction shear tests (types (a), (b) and (c)). Results from the

experimental programme were in good agreement with the predicted test paths. The
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shear strains could also be predicted along any particular test path with reasonable

success by assuming an associated flow rule (in contrast to the non-associated flow

rule proposed by Alonso, Gens and Josa ,1990).

Wheeler and Sivakumar (1995) were unable to confirm conclusively the

existence and form of the normal compression line, critical state and state boundary

relationship for water content w (Equations 2.32, 2.35 and 2.37 respectively) from

the experimental data of Sivakumar (1993). In particular, it was unclear whether a

unique critical state relationship for w existed.

2.7 Experimental methods for testing unsaturated soil

The testing of unsaturated soils is more complicated than for saturated soils

because of two additional requirements. Firstly the need to control or measure the

suction u. — u 	 the sample, and secondly the need to measure the sample volume

change. The sample volume change of a saturated sample is given by the volume of

water draining out of the sample, whereas the sample volume change of an

unsaturated sample is also affected by the changing volume of air inside the sample.

In this section various methods of testing unsaturated soil are given but the

experimental results will not be discussed as they have been covered elsewhere in this

chapter.

2.7.1 Methods of applying suction

2.7.1.1 Axis translation technique

In the field the pore water pressure within unsaturated soil is negative and the

pore air pressure is at atmospheric pressure. To simulate this condition in the

laboratory is difficult, because the negative value of pore water pressure induces

cavitation in the measuring system (along the water back pressure line).To overcome

this problem, Hilf (1956) devised a system known as the "axis translation technique"

whereby negative values of pore water pressure are avoided.
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In the axis translation technique the total stress a, the pore air pressure u a and

the pore water pressure u„, are all increased by equal amounts until the pore water

pressure is increased above zero. In theory this should have no influence on the soil

behaviour, because the net stress (a-- u.) and suction (u.—u,s,) remain unchanged.

This technique is widely used in testing unsaturated soils in the laboratory.

Because of the need to control or measure independently the pore air pressure

and pore water presure, a fine porous ceramic disc known as a high air entry filter, is

used to prevent air getting into the pore water pressure measuring system. The high

air entry filter must have an air entry value higher than the suction present within the

soil. Under these circumstances the filter remains saturated at all times, so that the

water in the pores of the high air entry filter is in pressure equilibrium with the pore

water pressure in the sample. The pore air pressure in the sample can be controlled or

measured through a coarse porous stone, known as a low air entry filter, with a

moisture retention so low that it is unable to draw water from the soil. The air

contained in the pores of the low air entry filter remains in pressure equilibrium with

the pore air pressure inside the sample.

The axis translation technique however has the disadvantage of not exactly

replicating the in-situ stress condition. In particular the phenomenon of cavitation

which may occur in unsaturated soil under in-situ stress conditions, and may

influence its behaviour, cannot be simulated with the axis translation technique. This

occurrence of cavitation within the soil is however thought to be important only

during the process of de-saturation of an initially saturated soil. The axis translation

technique is therefore considered valid for testing samples which are already in an

unsaturated condition.

2.7.1.2 Osmotic method of applying suction

Delage, Suraj de Silva and Laure (1987) and Cui and Delage (1993)

described an osmotic method used to control suction in a triaxial apparatus, and

Delage, Vicol and Suraj de Silva (1992) described the application of the same
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technique to a a suction-controlled oedometer. The soil sample was placed in contact

at the top and bottom with two semi-permeable cellulotic dialysis membranes resting

on a fine sieve mesh, as shown in Fig. 2.30. Behind the semi-permeable membranes,

the top cap and base pedestal were provided with concentric grooves to provide

circulation of a solution of polyethylene glycol 2000 through a closed circuit

containing a reservoir and a pump. The reservoir was provided with three glass

tubes, two of which provided circulation for the cell fluid and a third placed at the

centre of the reservoir was used to monitor the volume of the water exchanges

between the solution and the sample. The pore air pressure was applied at the bottom

of the sample through a small air vent in the bottom pedestal. The semi-permeable

membranes allowed the passage of small molecules of water but prevented the

passage of the larger polyethylene glycol molecules. A supply of polyethylene glycol

2000 solution from the reservoir was applied to the top and bottom of the sample via

the semi-permeable membranes and a difference in the osmotic pressure between the

the solution and the water inside the sample was set up across the membrane. This

osmotic pressure difference caused a flow of water from the sample to the solution.

Under equilibrium conditions (with no flow) the osmotic suction of the polyethylene

glycol 2000 must equal the total suction inside the soil sample. Thus by controlling

the concentration of the solution under equilibrium condition the total suction of the

soil could be controlled by means of a calibration chart of suction plotted aginst the

concentration of the solution.

Cui and Delage (1993) claimed that their method of suction control was better

than the axis translation technique because the pore water pressure within the sample

was maintained at a realistic negative value.

2.7.2 Oedometer testing

Basically in an oedometer test the soil sample is laterally confined such that no

horizontal movement is allowed. Thus loading and displacement only take place in
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the vertical direction. A variety of oedometer test apparatus has been used in the

laboratory for testing unsaturated soils.

Barden, Madedor and Sides (1969) used a modified form of Rowe

consolidation cell, as shown in Fig. 2.31 to carry out tests on samples of unsaturated

compacted soil having diameter of 150mm and a thickness of 25mm. The total stress

o- was applied to the rigid plate by means of hydraulic pressure in the convoluted

rubber jack. They used the axis translation technique to control the suction in the soil

sample. The pore water pressure u controlled via high air entry filters at the top

and bottom of the sample. The pore air pressure ua was controlled from a square grid

of channels cut into the surface of the high air entry filters. Water was flushed

through a spiral channel behind the high air entry filters to remove air bubbles, and

the flow of water entering or leaving the sample was measured by monitoring the

movement of mercury in horizontal tubes.

Fredlund and Morgenstern (1977) used a modified Anteus oedometer to carry

out tests on unsaturated samples of silt and kaolin. The construction of the apparatus

is shown in Fig. 2.32. The chamber of the oedometer was filled with air to regulate

the pore air pressure in the sample. Air and water pressures were separated by

means of a high air entry filter placed at the bottom of the sample, with pore air

pressure being supplied to the top of the sample. All pressures were controlled by

means of pressure regulators. The diffused air bubbles which went into solution in the

water and passed through the high air entry filter were flushed into a diffused air

volume indicator.

Lloret and Alonso (1985) used a specially built oedometer cell, shown in

Fig.2.33 to perform one-dimensional compression tests under controlled suction. The

pore water pressure was applied to the bottom of the sample through a high air entry

filter while the pore air pressure was applied to the top of the sample through a low

air entry filter. During the tests the pore air and pore water pressures were

controlled.
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In oedometer tests the behaviour of unsaturated soil has been investigated by

means of:

a) Consolidation of the soil sample at constant suction (including loading and

unloading) i.e variation of the net vertical stress o-„— ua while holding the

suction u. — u,„ constant.

b) Wetting or drying at constant applied load i.e. variation of the suction

u. — lc while holding the net vertical stress o-.— ua constant.

c) Wetting or drying of the sample with vertical strain prevented i.e. variation of

suction u. —u., with the corresponding change of net vertical stress cr„ — ua

measured under conditions of zero volume change.

2.7.3 Direct shear testing

In principle, a direct shear test is carried out by shearing the sample at a

constant rate of strain in a horizontal direction on a fixed shear plane under a

constant vertical load. The size of the sample may vary but it is usually square in

plan. Upon testing the sample fails on a pre-determined horizontal shear plane, due to

the nature of the test set-up.

Escario and Saez (1986) used a shear box test to test unsaturated samples of

Madrid soils as shown in Fig. 2.34. A direct shear box was placed inside a chamber

into which nitrogen (serving as the pore air) was introduced at pressure. The nitrogen

pressure was applied to the upper part of the soil through a coarse-grained porous

stone (a low air entry filter). The lower face of the sample was in contact with water

at atmospheric pressure through a high air entry filter. The vertical and horizontal

forces and displacements were measured by using push rods. In their shear box tests,

Escario and Saez (1986) used statically compacted samples of Madrid soils, 22mm

thick.

Gan, Fredlund and Rahardjo (1988) also used direct shear box tests on

unsaturated soils. The apparatus is shown in Fig. 2.35. A conventional direct shear

apparatus was modified to control the pore air pressure and pore water pressures
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using the axis translation technique. The sample dimensions were 50mm x 50mm x

20nun thick and the sample was sandwiched between a low air entry filter at the top

and a high air entry filter at the bottom. The apparatus was placed inside a pressure

chamber, and the air pressure inside the chamber was in direct contact with the top of

the low air entry filter while the flow of water (at atmospheric pressure) into the

bottom of the sample was controlled through the high air entry filter. Provision was

made for flushing the diffused air bubbles in the solution of water into a diffused air

volume indicator (Fredlund, 1975). The normal stress o- on the sample was applied

vertically via a loading ram and the shear test was performed at a slow rate to ensure

fully drained conditions.

As quoted by Escario and Saez (1986) and Gan, Fredlund and Rahardjo

(1988), the advantage of the shear box test over a triaxial test was the use of a thin

soil sample which shortened the time for equalization of suction during the test. In

the direct shear test apparatus the behaviour of unsaturated soil was investigated

under a constant vertical loading with both the air and water phases fully drained.

2.7.4 Triaxial testing

This is the commonest and most versatile technique of investigating the stress-

strain behaviour of soil in the laboratory. In principle a cylindrical soil sample is

subjected to unequal vertical and horizontal stresses, where the horizontal stress is

provided by a cell fluid while the deviator stress (the difference between the vertical

and horizontal stresses) is provided by a loading ram acting in the vertical direction.

With the advent of modern testing techniques the soil sample can be loaded along any

desired stress path. However in the testing of unsaturated soil in a triaxial test, the

measurement of sample volume change cannot be achieved by simply measuring the

the volume of water draining from the sample (as in saturated soil testing) because

the sample volume change in unsaturated soil is the combined changes of the volume

of air and water in the sample. Presently there are two methods available for
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measuring sample volume change in unsaturated soil in the triaxial apparatus : the

double-walled cell and local strain gauges mounted directly on the soil sample.

2.7.4.1 Double-walled cell

Bishop and Donald (1961) used a double-walled cell to carry out an

experimental study on unsaturated soil. The experimental set-up is shown in Fig.

2.36. The soil sample was surrounded by mercury contained within an inner perspex

cylinder. The upper part of the inner cell was filled with water, which was directly

connected via a cut-away in the inner perspex cell wall to water in an outer cell.

Equal pressures were therefore maintained on both inner and outer faces of the inner

cell wall, so that any changes of cell pressure did not cause a change of inner cell

volume. The sample volume change was measured by monitoring the level of

mercury, which was detected by a cathetometer measuring the movement of a

stainless ball floating on the mercury. The suction within the soil sample was

controlled or measured by the axis translation technique. The pore water pressure

was applied to the bottom of the sample through a high air entry filter while the pore

air pressure was applied to the top of the sample via a glass fibre disc.

The disadvantages of the type of double-walled apparatus used by Bishop and

Donald (1961) included the fact that the sample could not be seen and the hazard of

handling a large quantity of mercury. In addition, significant variation of lateral stress

over the height of the sample occurred because of the very high density of mercury.

Delage, Suraj de Silva and Laure (1987) developed a modified version of

Bishop and Donald's double-walled triaxial cell, in which the mercury in the inner cell

was replaced with water and the water in the outer cell and the upper section of the

inner cell was replaced with air (see Fig. 2.30). This solved most of the problems

inherent in Bishop and Donald's cell. The only remaining difficulty was that it was

difficult to provide a method of automatically recording sample volume change, as

this required a method for automatically measuring the movement of the water

46



surface in the inner cell. The triaxial cell of Delage, Suraj de Silva and Laure

employed the osmotic method of controlling suction.

Wheeler (1988b) also used a double-walled triaxial cell to measure sample

volume change of unsaturated soil samples as shown in Fig. 2.37. The principle of the

double-walled cell as used by Wheeler (1988b) was that the volume change of the

sample was given by the volume of water entering or leaving the inner cell. The

pressures of the inner and outer cell were kept equal, to prevent any change of the

inner cell volume that would be caused by expansion of the inner acrylic cylinder. A

rolling diaphragm seal on the loading ram was used to prevent leakage of water from

the inner cell. The double-walled cell was calibrated for any apparent volume change

caused by cell pressure application, water absorption by the acrylic cell wall and ram

displacement. The double-walled cell was successfully used by Sivakumar (1993) to

measure the volume change of unsaturated compacted kaolin samples.

Wheeler (1991) questioned the accuracy of the critical state values of v

reported by Toll (1990) (see Section 2.6.2) because Toll measured the sample

volume change of the soil samples in his tests by simply measuring the volume of

water entering or leaving his single-walled triaxial cell. This involved significant

errors in the calculated values of v, due to expansion of the cell wall (which cannot

be adequately calibrated, because of the marked creep and hyteresis of acrylic) and

water absorption by the acrylic cell wall.

2.7.4.2 Local strain gauges

Another method of measuring sample volume change in unsaturated soil in a

triaxial test is the use of local strain gauges (axial and radial) mounted directly on the

soil sample. The use of local gauges in measuring the small strain behaviour of soil

has been described in length by many authors. These local gauges include electrolevel

gauges (Burland and Symes, 1982 ; Jardine, Symes and Burland, 1984), LVDTs

(Costa-Filho, 1982), Hall-effect transducers (Clayton and Khatrush, 1987) and

proximity transducers (Hird and Yung, 1989). The principle of the technique is that

47



the individual axial and radial displacements of the sample are measured directly by

the local and radial gauges mounted directly on the soil sample as shown in Fig. 2.38.

The axial and lateral strains are then combined to give the volumetric strain of the

sample.

This technique may have an advantage over the double-walled cell technique at

small strains where the high precision of the local gauges is significant. The

disadvantage of the method is apparent at high values of strain, where non-uniform

deformation of the sample (such as barrelling) becomes significant and the lateral

strain measured at a single height on the sample become unrepresentative of the

whole sample. Also the local gauge measurements become completely meaningless as

a means of measuring sample volume change if a shear plane forms across the

sample.

2.7.4.3 Overall performance of triaxial testing technique

In contrast to oedometer and direct shear tests on unsaturated soil, the triaxial

test is the most versatile. The behaviour of unsaturated soil has been investigated in

the triaxial apparatus by a variety of methods, some of which are :

a) Wetting and drying tests where the suction in the sample is varied under

isotropic stress states with the mean net stress held constant.

b) Isotropic consolidation at constant suction (including loading and unloading),

in which the mean net stress is varied at constant suction.

c) Shearing at constant water content (water phase undrained, air phase

drained), giving rise to a variation of suction during shearing.

d) Fully drained shearing (both air and water phases drained), producing

constant suction shearing.

Perhaps the most important feature of the triaxial test over any other type of

shear test is the ability of the apparatus to simulate the stress conditions of the soil

along any desired axisymmetric stress path. This is made possible by the advent of

computerised logging and control systems. For example, Sivakumar (1993) used a
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feedback control system in his triaxial apparatus to control independently cell

pressure 0-3 , pore air pressure ua and pore water pressure un,. With these facilities

incorporated into the triaxial testing technique virtually any stress paths of the soil

can be followed with ease.

2.8 Yielding of soil

One of the main aspects of the soil behaviour that was investigated in the

research programme was the occurrence of yielding (see Chapter 3). An overview of

the concept of yielding of soil and its identification is briefly given here.

The yield point of an engineering material (including soil) is defined as the point

at which plastic (irrecoverable) strains commence. In practice, however, yield is

normally identified by a sudden change of stiffness, rather than by investigating

directly the onset of irrecoverable strains.

Yielding is an important feature of the stress-strain behaviour of over-

consolidated clays (Graham, Crooks and Lau, 1988). Yielding of soil has been

studied by many investigators, including Tavenas and Leroueil (1979), Tavenas, Des

Rosiers, Leroueil, La Rochelle and Roy (1979) Graham, Noonan and Lew (1983)

and Baracos, Graham and Domaschuk (1983). Most of their studies have

concentrated on natural saturated soils. Roscoe and Burland (1968) and Parry and

Nadarajah (1973) studied soil yielding on reconstituted specimens of kaolin in the

laboratory. Cui and Delage (1993) are perhaps the only authors to present results on

the yielding of unsaturated soil under triaxial stress states.

Fig. 2.39 shows some typical curves used by Graham, Noonan and Lew (1983)

to identify yielding in natural saturated soils. They pointed out that the initial straight

sections of the curves are considered elastic and the break (or kink) in each stress-

strain curve is considered to be a yield point. This is shown in Fig. 2.39 (a) and (b).

They also said that in the absence of discontinuity of slope of the stress-strain curves,

for natural saturated soil there generally exists two linear sections of the curve which
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can be extended to meet at a point. This point was also identified as a yield point, as

illustrated in Fig. 2.39 (c).

Roscoe and Burland (1968) used plots of specific volume v versus mean net

stress p' (withp' plotted a logarithmic scale) and deviator stress q versus axial strain

el to identify yield points from tests on kaolin subjected to isotropic loading and

shear (see Fig. 2.40). Fig. 2.40 (a) shows the intersection of two linear sections of

the v versus ln p curve at a point, and this point was identified as the yield point. This

yield point is also shown in Fig. 2.40 (b) which relates q to si.

Parry and Nadarajah (1973) used a linear scale for the p' and q- axes in their

plots to identify yield points from tests on lightly over-consolidated kaolin in a

triaxial cell. Their method is shown in Fig. 2.41. They found from the graphs that

there are two linear sections on the curves that meet a point which they termed the

yield point (denoted by arrow in Fig. 2.41).

Cui and Delage (1993) used similar techniques to Roscoe and Burland (1968)

and Parry and Nadarajah (1973) to identify yield points from triaxial shear tests on

unsaturated Jossigny silt. Their methods are shown in Fig. 2.42. From the graph of v

versus p' (with p' plotted on a logarithmic scale) two linear sections on the curve are

joined together to determine the yield point. Cui and Delage (1993) also found that

if the yield points shown in Fig. 2.42 (a) were plotted on q versus el diagram,

yielding occurred at an axial strain of approximately 2% in all tests. However no

distinct yield points were apparent from the plots of q versus el , and it would have

been difficult to use the q versus e, plots to identify yield points (Fig. 2.42 (b)).

Graham, Crooks and Lau (1988) however cautioned that their methods of

identification of yield points were applicable to natural soils which had experienced

diagenetic aging, where the stress-strain curves were approximated by two straight

lines intersecting at a point. They argued that the methods were inapplicable to re-

constituted clay soils where linear pre-yield behaviour proceeded directly into

exponential post-yield behaviour. However Wood (1990) pointed out that yielding

was more or less associated with a transition from stiff to less stiff response of the
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material and this criterion was more convenient in defining yield which was normally

shown by more or less well-defined kinks in stress-strain curves.

To summarize, there is agreement amongst researchers that yield points can be

identified from plots of v versus p' (with p' plotted on a logarithmic scale) and q

versus e, . Although a sharp kink or change in the curve is not always obvious, there

is a suggestion that in most cases there exist two linear sections on the curves that

can be extended to meet at a point defined as the yield point. However it seems likely

that the volumetric behaviour of the soil (v versus in p) often gives a better

indication of the yield point than the shear behaviour (q versus e,), even during shear

tests.

Recent high quality experimental measurements of the behaviour of soil at

small strains show that the stress-strain relationship is highly non-linear and the soil

deformation is influenced by the current state and stress history of the soil (Jardine

and Potts, 1988). This was substantiated by the fact that laboratory-measured

stiffnesses under-estimated values back-calculated from field observations. There was

also considerable evidence of plastic (irrecoverable) strains occurring for stress paths

remaining well inside what was conventionally thought of as the yield surface, and

the onset of yielding appeared to be a gradual process rather than a single distinct

yield point. A new approach for modelling the yielding of soil by a series of nested

kinematic yield surfaces was proposed by among others Stallebrass (1990) and

Smith, Jardine and Hight (1992). The model of Stallebrass (1990), consisting of

three yield surfaces, is schematically shown in Fig. 2.43. The stress-strain behaviour

of the soil is controlled by the movement of the two inner kinematic surfaces and the

expansion and contraction of all three surfaces. The outer third surface, called the

'bounding' surface, describes the overall stress history while the recent stress history

of the soil is represented by the 'yield' and 'history' surfaces of the soil (see Fig. 2.43).
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s (kPa) X(s) N(s) M(s) u(s) (kPa) w(s) F(s)

0 0.128 2.052 0.813 0.0 0.110 2.011

100 0.182 2.122 0.933 54.2 0.108 1.984

200 0.196 2.196 0.959 83.5 0.181 2.042

300 0.176 2.212 0.910 122.0 0.223 2.105

Table 2.1: Values of critical state soil parameters for compacted

speswhite kaolin (Wheeler and Sivakumar, 1995)



CHAPTER 3

RESEARCH OBJECTIVES AND
METHODOLOGY

3.1 Research objectives

Investigation of the literature review revealed that the shape of the yield surface

in q.p 1:s space had not been well defined experimentally. Although Wheeler and

Sivakumar (1995) showed that tests paths observed during the shear tests of

Sivakumar (1993) were reasonably consistent with the suggestion that constant

suction cross-sections of the yield surface were elliptical in shape, there had been no

direct investigation of the shape of the yield surface.

In addition, the tests of Sivakumar (1993) provided little information on the

elastic behaviour when the soil state was inside the yield surface, because no

unloading stages were included in the tests and because all samples were sheared

from virgin (normally compressed) states.

The form of the flow rule governing plastic behaviour was also rather

uncertain. Wheeler and Sivakumar (1995) assumed an associated flow rule to predict

the stress-strain behaviour in the tests of Sivakumar (1993), whereas Alonso, Gens

and Josa (1990) selected a non-associated flow rule. In neither case however was

there any direct evidence of the appropriate form for the flow rule.

Finally, the variation of water content w was not included within the elasto-

plastic models of Alonso, Gens and Josa (1990) or Wheeler and Sivakumar (1995),

partly because there was little high quality data available to develop this aspect of the

models.

The overall aim of the project was therefore to conduct experimental research

that would fill in some of these gaps in existing knowledge, thus enabling a fiffler

development of the elasto-plastic critical state framework for unsaturated soils.
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Specific objectives of the research project were as follows:

1). To investigate the shape of the yield surface in q:p': s space by examining

selected constant suction cross-sections of the surface. A particular

interest was to examine whether an assumption of elliptical constant

suction yield curves was reasonable.

2). To investigate the "elastic" behaviour of the soil inside the state boundary.

Three particular areas of interest were :

a) the value of the swelling index lc and whether it varied with suction

(this required unloading stages (reduction of p') within the test

programme)

b) the value of the swelling index lc, and whether it varied with p' (this

required test stages in which the suction s was increased or

decreased)

c) the value of the elastic shear modulus G and whether it varied with s

and p' (this required test stages in which the soil was sheared starting

from stress states inside yield surface).

K s and G might also vary with the position of yield surface (as defined

by (o), see Section 2.6.1.1)), but this would not be examined in the

project.

3). To define an appropriate form for the flow rule. By determining the plastic

strain increments de': and dc' occurring after yielding it would be possible

to establish whether the flow rule was associated or non-associated.

4). To incorporate the variation of water content within the elasto-plastic

framework for unsaturated soil. This required high quality data of the

variation of water content under a variety of different loading and

unloading conditions (including variation of p', s and q).

3.2 Research methodology
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In order to achieve the objectives listed above, a programme of triaxial tests on

unsaturated compacted speswhite kaolin was planned. All samples were compacted at

the same water content and with the same compactive effort, to ensure that the intial

soil fabric was identical in every case (Sivakumar, 1993). The position of the yield

surface was, however, then set by controlled-suction consolidation, rather than by

the original compaction process. It was thought that this would result in improved

repeatability of the position of the yield surface and a better definition of the stress

history. It was therefore decided that all samples would be initially consolidated to a

virgin state at a mean net stress p' of 400 kPa and a suction s of 100 kPa, in order to

set the position of the yield surface, prior to subsequent unloading.

The shape of the yield surface was examined by investigating three constant

suction cross-sections, at s = 0, 100 and 200 kPa as shown in Fig. 3.1. Several tests,

with different stress paths, were to be conducted at each value of suction.

Each sample was subjected to various test stages. Fig. 3.2 shows schematic

representations of the test stages as dictated by the research objectives.

(a) The first stage was undrained application of net stress (see AB in Fig. 3.2

(a), (b) and (c)). This stage took place virtually instantaneously, with the

undrained increase of p' generating an unknown increase of pore water

pressure and hence a decrease of suction.

(b) The next stage in each test was an equalization (wetting) stage (see BC in

Fig. 3.2 (a), (b) and (c)). In this stage the suction was reduced from its

initial high value at B (set by the compaction process and subsequent

undrained loading AB) to a value of 100 kPa, resulting in a flow of water

into the sample. This took place at constant p', with a variety of different

values ofp' used in the different tests.

(c) The third stage was ramped consolidation (see CD in Fig. 3.2 (a), (b) and

(c)). In this stage the mean net stress was increased to 400 kPa, while the

suction s was held constant at 100 kPa. This stage was identical for all
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tests, to ensure that the yield surface was expanded to the same position in

all tests.

(d) Most tests included an unloading or swell-back stage (see DX in Fig. 3.2

(a), DE or FX in Fig. 3.2 (b) and DE in Fig. 3.2(c)). During this stage the

mean net stress p' was reduced from 400 kPa to a final value pc' (which

varied in the different tests), while holding the suction constant.

(e) Some tests included a suction change stage (DF or EX in Fig. 3.2 (b) or

(c)). In this stage the suction was changed from 100 kPa to a value of

either zero or 200 kPa. This stage took place either before or after the

unloading stage described before, with the mean net stress held constant at

either 400 kPa or p.

(f) The final stage of each test was a re-loading or shear stage ( see Fig. 3.3).

In this stage (starting at point X) the sample was re-loaded, either

isotropically or with the application of a deviator stress q, with the suction

held constant. For each of the three values of suction (zero, 100 and 200

kPa) the intention was that tests would be conducted starting at various

different positions X and with various different values of Aq/Ap (see Fig.

3.3).

A typical test showing all the stages in 3-dimensional p':q:s space is shown in Fig:

3.4.

The first objective (to investigate the shape of the yield surface) was to be

achieved by the final re-loading stages of the tests. In this stage, values of s, p' and q

at yielding could be obtained and these values were to be used to plot cross-sections

of the yield surface at specific values of suction, as depicted in Fig. 3.1. By having

tests at various suction values the overall shape of the yield surface could then be

examined.

The "elastic" behaviour of unsaturated soil inside the state boundary, as stated

in the second objective, was examined in several different stages, with values of lc, lc
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and G taken from the unloading stages, suction change stages and re-loading (shear)

stages respectively.

The third objective was concerned with the post yielding behaviour of the soil.

This behaviour would be investigated during the later part of the final re-loading or

shear stage of the tests where the plastic strain increments def and de„P beyond

yielding could be experimentally determined. From the relative magnitudes of the

plastic strain increments del: and del: the direction of the total plastic strain increment

del with respect to the yield curve could be determined.

Lastly, the incorporation of water content within the elasto-plastic framework

for unsaturated soil required the data showing the variation of water content in all

stages of the test. It was suggested (Wheeler, 1991) that the change of water content

was best expressed in terms of specific water volume v., defined as the volume of

solids and water in a volume of soil containing unit volume of solids

v.=1+eS, =l+wG s	 (3.1)

Elastic changes of v. caused by changes of p' and s could then perhaps be

represented by an equation directly analogous to the one defining elastic variation of

v (see Equation 2.20)

dp'	 ds 
dv: = -Kw -- K

pi	s + pat

where K. and K. sw are two additional soil constants. The values of K. and Ksw were

investigated in the unloading stages and suction change stages respectively.

To investigate the behaviour of unsaturated soil inside the state boundary, it

was necessary to provide accurate measurements of the specimen displacements at

small strains. These requirements are discussed in detail in Chapter 4 (Experimental

Equipment and Calibration).
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Although the prime emphasis was the behaviour of unsaturated soil at relatively

small strains, each soil sample was sheared to the highest strains possible in the

available apparatus, so as to get as much information as possible from each test.

The research methodology was based on the assumption that unsaturated soil

behaviour can be adequately represented by a constitutive model involving a single

yield surface, rather than the type of multi-surface kinematic yield model developed

recently for saturated soils (see Section 2.8). This is obviously a major simplication,

but it was considered appropriate at this relatively early stage in the development of

elasto-plastic constitutive models for unsaturated soil.

Finally it was envisaged that each multi-stage test would take a long time to

accomplish and therefore the number of tests that could be completed would be

limited. This constraint had to be borne in mind when planning the detailed test

programme (see Chapter 5).
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CHAPTER 4

EXPERIMENTAL EQUIPMENT AND

CALIBRATION

To apply the research methodology outlined in Section 3.2 the experimental

apparatus had to be suitable for conducting isotropic consolidation (under controlled

suction), isotropic swell-back (again under controlled suction), change of suction and

finally shearing or isotropic re-loading (still under controlled suction). The overall

layout of the experimental equipment designed to fulfil these needs is shown in Fig.

4.1

4.1 Triaxial cell and pressure connections

4.1.1 Bishop-Wesley hydraulic triaxial cell

A wide-bodied Bishop-Wesley hydraulic triaxial cell, manufactured at Imperial

College, was used in the experimental work. The cell was designed for soil specimens

up to 50mm in diameter and 100mm in length, and the maximum working pressure

was 1300 kPa.

The specimen size was chosen after due consideration of the following factors:

1) The soil sample must be considerably larger than the dimensions of the

largest structural elements forming the soil fabric (the arrangement of

saturated packets and large, unsaturated inter-packet voids forming the soil)

(see Sivakumar, 1993).

2) The larger the size of the soil specimen the longer would be the time

required for each test ( because of the need for pore water pressure

58



equalisation throughout the specimen). This would limit the number of tests

that could be performed.

3) The existing triaxial cell was suitable for soil samples up to 50 mm in

diameter and 100 mm in height (including the attachment of local

displacement gauges).

After consideration of these points a sample size of 50 mm in diameter and 100

mm in height was selected.

The travel limit of the loading ram of the triaxial cell was about 26 mm, giving

a maximum axial strain of about 26 % for a soil sample with a height of 100 mm. As

a result it was not possible to achieve critical states in the shear stages of all tests

(see Section 5.3.6). Fortunately, however, the attainment of critical states was not a

prime objective of the research.

4.1.2 Cell pressure connection

The pressure to the cell was provided from a digital pressure/volume control

unit supplied by Geotechnical Digital System Instruments Ltd. of Surrey (hereafter

called GDS Unit 1 for simplicity) which was available in the department and had a

pressure limit of 2000 IcPa and a maximum volume displacement of 200 cm 3 . The

GDS unit could be used in a stand alone mode or computer-driven via an IEEE-488

interface card which could be plugged into the computer motherboard. Without

computer control the GDS unit could be used to hold either pressure or volume

constant or it could be used to ramp either pressure or volume at a constant rate

(specified by the operator) to a target value (specified by the operator). This facility

to ramp the cell pressure was particularly useful for the ramped consolidation and

swell-back stages (see Chapter 5).

The GDS unit was connected via an oil/water interface to an outlet in the cell

base and hence to the main chamber of the triaxial cell (see Fig. 4.1). Transparent
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nylon tubing was used for the connections so that any trapped air (if present) was

visible.

The cell pressure transducer was rigidly fixed to a de-airing block attached to a

separate outlet on the cell base. The same outlet was also connected to an oil

supply tank, located on the floor, which was used when filling and emptying the cell

(see Chapter 5).

4.1.3 Lower chamber pressure connection

The lower chamber of the triaxial cell was connected to a second GDS unit

through a nylon tube (see Fig. 4.1). The function of this GDS unit 2 was to drive the

loading ram of the hydraulic triaxial cell during shearing. By ramping the volume or

pressure with GDS Unit 2 it was possibte to provide either strain-controlled or stress-

controlled shearing.

The cross-sectional area of the Bellofram seal inside the lower chamber was

29.4 cm'. Therefore, if a shear test were to be conducted under strain-control then

29.4 cm' of water had to be pumped into the lower chamber of the triaxial cell to

produce 1 cm of piston movement. By knowing this relationship any rate of strain

on the soil specimen could be calculated to suit the test requirements. The lower

chamber was provided with only one outlet so a careful de-airing procedure had to

be performed to ensure that the lower chamber was free of air.

4.1.4 Control of pore air pressure

The pore air pressure uc, was controlled at the top face of the soil specimen.

Compressed air from a supply line with a maximum pressure of 600 kPa was

supplied via a pressure regulator to a connection in the triaxial cell base and then via

a flexible tube to the top cap on the soil specimen (see Fig. 4.1). The detail of the top

60



cap is shown in Fig. 4.2. A standard (low air entry) porous stone was used to make

the pressure connection to the soil specimen (see Fig. 4.3).

4.1.5 Control of pore water pressure

The pore water pressure uwwas controlled at the base of the soil specimen.

Compressed air from the supply line, having passed through a pressure regulator

with the outlet pressure read by a pressure gauge, was delivered to the top of a

bladder-type air/water interface 1. The air then pressurised the water (forming the

water back pressure line) leading to the bottom of an automatic volume gauge

(supplied by Imperial College). This water back pressure line then passed through a

connection in the triaxial cell base to the bottom of the soil specimen through a

system of filters as shown in Figs. 4.1 and 4.3.

For unsaturated soil under in-situ conditions the pore air pressure is normally

zero (atomspheric pressure) and the pore water pressure is therefore negative. It is

very difficult to reproduce this condition in the laboratory, because cavitation may

occur in the water back presure line. To alleviate the problem, Hilf (1956) devised a

system known as the 'axis translation technique' whereby the total stress, pore air

pressure and pore water pressure were all increased by identical amounts until the

pore water pressure was positive. In this way any positive value of suction u,, — u.

could be generated without the need to apply or measure negative values of pore

water pressure.

With the pore air pressure uc, within the soil specimen maintained at a higher

value than the pore water pressure u, applied at the base of the specimen, it was

necessary to use a high air entry filter in order to prevent air from the specimen

blowing through into the line providing the water back pressure.

A ceramic filter with an air entry value of 500 kPa was used in the test

programme. The filter was manufactured by Soilmoisture Equipment Corp. of
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California and came in large circular sheets about 300 mm in diameter and 8 mm

thick. A small disc, 30 mm in diameter and 6 mm thick, of the high air entry filter

material was cut from the sheet and used in the filter system as shown in Fig. 4.3 and

Fig. 4.4. The filter system also included a 4mm thick standard (low air entry) porous

stone placed underneath the high air entry filter. The function of the low air entry

porous stone was to increase the rate of flow through the filter and into the fine bore

drainage lines , by reducing the constriction of the flow lines through the low

permeability , high air entry ceramic (see Sivakumar, 1993). Both filters were

securely glued within an annular filter housing made of perspex (see Fig. 4.4). It was

extremely important to have a complete seal between the filters and the filter housing

to prevent the air inside the specimen from entering the water back pressure system.

The filter system was screwed onto a bottom pedestal, the details of which are

shown in Fig. 4.5

4.2 Transducers for stress and strain measurement

4.2.1 Measurement of water volume change

The water volume change in the soil specimen was monitored by means of an

automatic volume gauge supplied by Imperial College. The water draining from the

sample flowed along the water back pressure line, through a 3-way valve and then

to the volume gauge (see Fig. 4.6). Water flowing into the volume gauge displaced a

piston inside the gauge and this movement of the piston was detected by an LVDT

attached to the side of the gauge with its armature resting on an arm fixed to the

piston.

With high values of pore air pressure inside the specimen there was a

possibility that the air could go into solution in the pore water and then diffuse

through the high air entry ceramic filter. This phenomenon was undesirable because

the dissolved air could then come out of solution to form air bubbles within the back
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pressure line. A flushing system, to remove any bubbles of diffused air from beneath

the ceramic filter, was therefore included as shown in Fig. 4.6.

The flushing system consisted of a diffused air volume indicator (Fredlund,

1975), and a second bladder-type air/water interface and a system of 3-way valves.

The flushing line originating from the base of the specimen passed through the 3-way

valve and into a 10 cm' glass burette via a nylon tube. The glass burette was

surrounded by water contained inside a larger diameter perspex tube (to avoid

pressure differences across the glass walls of the burette) and the pressure to the

inner (glass) and outer (perspex) tubes was supplied from the compressed air supply

via bladder-type air/water interface 2. The flushing was accomplished by having a

small differential head between the two air/water interfaces, causing air bubbles to be

flushed into the diffused air volume indicator, where the air collected at the top of the

graduated glass burette. The flow through the drainage grooves beneath the high air

entry filter was reversed several times during flushing, using the 3-way valves, to

ensure that all diffused air was removed.

4.2.2 Measurement of sample volume change

The sample volume change occurred as a result of the combined volume

changes of the air and water phases (assuming that the solid particles were

incompressible). There were two options available for measuring the sample volume

change : either monitoring the flow of water in and out of the surrounding cell or

measuring the individual lateral and axial strains of the sample. The first option

required the use of a double-walled cell, as described by Bishop and Donald (1961)

and Wheeler (1988b). The method was found by Sivakumar (1993) to give accurate

values of overall sample volume change at small and large strains (including shearing

to failure, when the sample was highly deformed). The second option required the

use of local strain gauges mounted directly on the sample. This method gives

accurate values of sample volume change at small strains, when it is reasonable to
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the sample deforms as a cylinder, but becomes increasingly inaccurate as the sample

is sheared towards failure.

In the research project one of the main objectives was to investigate the

behaviour of unsaturated soil at small strains including the measurement of both

volumetric and shear strains. The measurement of small shear strains could only be

achieved by the use of local axial and radial strain gauges. Unfortunately, financial

constraints meant that it was not feasible to provide both local strain gauges and a

double-walled cell. It was therefore necessary to select the second option for

measurement of sample volume change i.e. the local axial and radial strain gauges

were used to calculate values of both shear and volumetric strains. Clearly this had

significant implications for the accuracy of the volumetric strain measurements when

the sample became very distorted.

4.2.3 Measurement of axial strain

Axial strain was measured directly on the soil specimen using inclinometer type

axial gauges developed at Imperial College (Ackerly, Hellings and Jardine, 1987) as

shown in Fig. 4.7. The inclinometer type axial gauge used in the experimental work

was a revised version of the original electrolevel type gauge (Jardine, Symes and

Burland, 1984). The gauge consisted of a heavy metal pendulum bob suspended by a

thin strip of spring steel which had been strain gauged to provide a full 350 S2

Wheatstone bridge. It could be used for various-sized specimens in conventional or

stress path triaxial cells.

The axial devices had a gauge length of 45 mm between the footings mounted

on the soil sample and a working range of about 15 mm. This gave an axial strain

range of over 30%, which was greater than the limit of 26% set by the maximum

travel of the triaxial cell piston (see Section 4.1.1).
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The axial gauges were mounted on the specimen by attaching their footing pads

onto the vertical face of the rubber membrane enclosing the soil specimen. Two

gauges were mounted on opposite sides of the specimen to reduce the influence of

any sample tilting. The gauges were fixed to the rubber membrane by applying

superglue on the faces of the pads, as shown in Fig. 4.7. The detailed procedure for

mounting the axial gauges onto the soil specimen is given in Section 5.2.3 including

the use of a suspension system to support the bouyant weight of the gauges.

Local axial gauges have been used for many years to minimise the errors in the

measurement of small axial or shear strains (Burland and Symes, 1982 ; Jardine,

Symes and Burland, 1984 ; Costa Filho, 1982). This was because in the

conventional method of measuring axial strains, by external LVDTs or dial gauges,

errors arise due to the compliance of the loading system and "bedding-in" at the top

and bottom of the specimen.

The triaxial cell was also provided with facilities for measuring the axial strain

of the specimen external to the cell. This was done by the use of two LVDTs

mounted vertically on the cell top plate, with the spindles of the LVDTs resting on

vertical bars supported on the cross-arms of the loading ram. The LVDTs had a

travel limit of about 26 mm (corresponding to the maximum travel of the loading ram

itself).

4.2.4 Measurement of radial strain

A radial gauge capable of measuring the lateral displacement of soil samples

was custom-built in the department. The radial gauge consisted of two L-shaped

brass arms joined together by a stainless steel strip as shown in Fig. 4.8. Mounted on

both sides of the stainless steel strip were two electrical resistance strain gauges. The

strain gauges were exposed, because coating them with a flexible sealant was found

to affect their performance (resulting in hysteresis, creep and lack of repeatability).
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With the electrical resistance strain gauges exposed it was not possible to use water

as the cell fluid. Instead a strain gauge oil called Diala-B was used as the cell fluid.

Experiments had shown (see Chapter 5) that the oil had no effect on the strain

gauges.

Each brass arm of the gauge was provided with an adjusting screw so that the

arms could be set at any aperture. A small hole was drilled in each arm so that the

gauge could be suspended by strings from two cantilevers attached to the acrylic cell

wall to avoid the weight of the radial gauge being carried solely by the soil specimen.

The detailed procedure for mounting the radial gauge on the specimen is given in

Section 5.2.3.

The arrangement of axial and radial strain gauges on a soil sample is shown in

Fig. 4.9.

4.2.5 Measurement of pressures

Pressure transducers were used to measure cell pressure, pore air pressure and

pore water pressure (Fig. 4.1). The pore air pressure and pore water pressure

transducers were manufactured by Bell & Howell Ltd. and had a range of 500 kPa.

The cell pressure transducer had a maximum capacity of 1000 kPa and was made by

Druck Ltd.

The pore air pressure transducer was fixed to a de-airing block mounted on the

air back pressure line. The pore water pressure transducer on the water back pressure

line was set at the specimen mid-height by clamping it to the exterior of the cell.

4.2.6 Measurement of deviator load

The deviator load on the soil was measured by means of an Imperial College

load cell with a maximum capacity of 4.5 kN. The load cell was rigidly attached to
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the cell cover and it could be raised or lowered by turning a nut placed on top of the

cell top plate.

The load cell was also provided with an alignment collar (designed and

fabricated in the department), shown in Fig. 4.3 and Fig. 4.10. A small clearance of

about 0.4 mm was provided between the inner cylindrical surface of the alignment

collar and the vertical cylindrical surface of the top cap, to avoid friction between the

two. The alignment collar prevented the soil specimen from tilting to one side during

consolidation or swell-back prior to shearing.

4.3 Logging system

The logging system consisted of an IBM-PC compatible computer, Quicklog

PCTm software and an interface card. The computer was provided with 640 kB of

RAM, a 40 MB hard disk, a 1.22 MB 5.25in. floppy disk drive and a 1.44 MB 3.5in.

floppy disk drive. The disk space was sufficient to store the large amount of data

from any single test. Data from each test were then stored on floppy disk at the end

of the test. A VGA colour monitor was used to display data from the gauges and

transducers.

A computer program called Quicklog PCTM, produced by Strawberry Tree Inc.

of California, was used to log and save data on disk. Data from each channel could be

displayed on the screen in engineering units. However only a limited amount of data

processing was possible with the Quicklog PCTM, and the data was therefore

subsequently transferred to a spreadsheet program, LOTUS 1-2-3, for further

manipulation (as described in Section 5.4.1). Unfortunately this transfer to LOTUS

1-2-3 could only be performed when the test was complete, so it was not possible to

complete data-processing while a test was in progress.

The logging system is schematically represented in Fig. 4.11. Two interface

boxes were used in the logging system and each interface box was provided with 8
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channels so that a maximum of 16 channels could be used for logging data from

transducers. Channels 1- 8 on the first interface box were connected to a 10V DC

power supply and these were used for the LVDTs, the pressure transducers, the

volume gauge and the load cell. Channels 9 - 16 on the second interface box were

connected to a 5V DC power supply and channels 9 - 12 were used for the local

strain gauges. Channels 13 - 16 were not used. The interface boxes were individually

connected to an interface card mounted inside the computer motherboard via

interface cables.

An interface card ACPC 16-16 manufactured by Strawberry Tree Inc. of

California was used to convert I10 signals from all channels. The ACPC 16-16

interface card had 16-bits resolution and had 16 analogue channels, where each

channel was individually programmable as input or output. The interface card

received an analogue signal from each channel and converted it to digital signal for

subsequent manipulation by the computer software.

If multiple channels were used to log data in a test, the manufacturer claimed

that the maximum scan rate was 60 Hz divided by the number of channels in use (in

the low noise mode as selected in the Quicklog PC software).

4.4 Calibration of transducers

In this section the calibration of the various devices is discussed. However only

a few calibration methods will be given in detail, because standard procedures were

used for many transducers. Channels 8 and 12 were used to monitor the 10V and 5V

supply voltages, by simply inserting blank plugs into the channels, as a check on the

supply voltage stability (see Section 5.4.2) All transducers were calibrated in exactly

the same configuration (power supply and logging) as was subsequently used in the

actual soil testing. Table 4.1 shows the various transducers and gauges connected to

specific channels for reading and logging the data.
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4.4.1 Calibration of pressure transducers

The pressure transducers for measuring cell pressure, pore air pressure and

pore water pressure were calibrated against a Budenburg dead load tester over their

full working range. Three calibrations were performed for each transducer, as a

check of repeatability. This resulted in a linear calibration equation for each

transducer, with, in each case, a standard error in the measured pressure of less than

±0.2 kPa.

4.4.2 Calibration of load cell

The load cell was calibrated against the dead load tester over a range of 0.2 IN

to 3.8 kN, because the minimum load of the dead load tester was 0.2 kN and the

maximum load envisaged during soil testing was about 3.5 kN.

It was found that regression analysis on the data using a first order polynomial

yielded a standard error of ±6.5 N on the deviator load over the full range of 3.8 kN.

This was considered unacceptable. Regression analysis using a third order polynomial

gave standard error of ±2.5 N on the deviator load over the same range. This was

equivalent to an error of about ±1.3 kPa in the deviator stress, assuming a specimen

cross-sectional area of about 1960 mm2 . This was considered satisfactory.

4.4.3 Calibration of LVDTs

The two LVDTs used for external measurement of axial strain were calibrated

against a micrometer gauge with a precision of 1 pm. The standard errors of the two

LVDTs using linear regression were found to be ±7.6 p.m and ±7.4 pm respectively

over a range of 25 mm. This was equivalent to a standard error in the axial strain

measurement of about 0.0075%, for a specimen height of 100 mm. This was

considered acceptable, given that the local axial displacement devices were to be used

for accurate measurements of axial strain.
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4.4.4 Calibration of volume gauge

The volume gauge used for measuring the volume of water draining from the

specimen was calibrated against a 10 cm 3 burette with a precision of +0.02 cm3.

The layout for the calibration is shown in Fig.4.12. The volume gauge unit was

calibrated over the full working range of 40 cm 3 by re-filling the burette as necessary.

Before the volume gauge was calibrated it was flushed under a pressure of

about 50 kPa with de-aired water so that no air was trapped inside the gauge cylinder

and the drainage line. This was done by opening the bleed valve at the top of the

volume gauge and slowly allowing water to drain out under the action of the applied

back pressure. While water was still flowing out, the bleed valve was tightened. The

system was left under a pressure of 200 kPa for 24 hours before calibration could be

done so that no trapped air was present. This could be detected by observing the

connecting tubes to the volume gauge . Any trapped air was visible through the

transparent tubes.

To calibrate the volume gauge the burette was initially filled with water by

opening valves 1 and 4 while closing valves 2, 3, 5 and 6 (see Fig. 4.12). A known

volume of water (typically 5 cm 3 ) was drained from the burette into the volume

gauge under a back pressure of 50 kPa by opening valves 2, 4, 5 and 6 and closing

valves 1 and 3. Back pressure increments were then applied without changing the

volume of water in the gauge, by opening valves 1, 3 and 5, closing valves 2, 4 and 6

and then adjusting the regulator on the compressed sir supply. The change in voltage

output of the LVDT attached to the volume gauge was noted for each back pressure

increment. The water back pressure was increased at intervals of 50 Oa until it

reached 300 kPa, the probable maximum water back pressure to be used in the test

programme. An additional 5 cm 3 was then drained into the volume gauge from the

burette, and at every increment of water volume the same increments of water back

pressure were applied. The process was repeated until the volume gauge reached its

working limit of 40 cm3.
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The calibration of the volume gauge included the influence of back pressure on

the calibration equation. It was found that at a given value of back pressure us,, the

volume of water V within the gauge could be related to the output voltage x by a

linear equation

Vw = A+Bx	 (4.1)

where the intercept A and slope B varied with the back pressure lc as shown in Fig.

4.13. Inspection of Figs. 4.13(a) and 4.13 (b) showed that both A and B varied

approximately linearly with back pressure uw i.e.

A= Ao + Au.,	 (4.2)

B= Bo + I3,uw	(4.3)

where Ao = 48.060 cm3 , Al = -0.000109 cm3 I kPa, Bo = 0.66656 cm3 I mV, B1 —

—0.00000568 cm3 ImV.kPa. The calibration equation was therefore given by :

V.,= Ao + A 1 u 1, +(130 +Bl uw )x	 (4.4)

The standard error in using Equation 4.4 was about ±0.015 cm3 . This corresponded

to a standard error of about ±0.006% in the change of water content w or better

than ±0.00016 in the change of specific water volume vs,, assuming that the typical

mass of solid particles was about 245 g. This was considered acceptable in the

experimental work.
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4.4.5 Calibration of local axial displacement gauges

The method of calibration for the local axial displacement gauges is shown in

Fig 4.14. The two gauges were mounted on a winding frame in an upright position.

The body of a micrometer gauge, with a precision of 1 p.m, was rigidly attached to

the base of the winding frame. The bottom footing pads of the gauges were fastened

to a stationary lower plate mounted on the frame, while the top footing pads were

fastened to a movable upper steel plate. The movable plate was securely attached to

the spindle of the micrometer gauge. The movement of the spindle could be adjusted

by turning the knob of the micrometer gauge.

The centre-to-centre distance between the top and bottom footing pads was

initially set at 45 mm, corresponding to the gauge length to be used during soil

testing, and initial readings of the voltage outputs from the two gauges recorded.

The axial gauges were calibrated at intervals of 0.2 mm over the fill range of 15 mm.

The calibration was carried out in such a way that the footing pads moved towards

each other, as would be expected in the soil test when the soil specimen shortened

during consolidation and shearing. However outward movement of the footing pads

was also carried out to check if hysteresis was present.

From the calibration data, regression analysis using a third order polynomial

gave standard errors of ±1.3 pm and ±1.0 pm for the two gauges. This meant that

the standard error in the measured axial strain was about ±0.0025% over the soil

gauge length of 45 mm. This was considered adequate for the experimental work

(given that the objectives of the research project did not require the measurement of

very small strains). The standard error may well have reflected the micrometer

precision, rather than the accuracy of the axial displacement gauges, and lower errors

might have been obtained if a more precise method of calibration had been employed.

However this was not considered necessary.
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4.4.6 Calibration of radial displacement gauge

The calibration of the radial gauge is shown schematically in Fig. 4.15. The

radial gauge was supported on a solid block at roughly the same level as the winding

frame, which was laid down on the bench. A small circular stud with a conical recess

on the outer face was glued to the outer side of the fixed steel plate mounted on the

winding frame. Another circular stud was also attached to the outer side of the

movable steel plate which was securely fixed to the spindle of the micrometer gauge.

The tips of the adjusting screws fixed to the radial gauge arm were then positioned

over the studs. The screws were adjusted so that the radial arm exerted a slight force

on the stud recess to ensure proper contact.

The calibration was performed using intervals of 0.2 mm. The maximum range

used was 5 mm outwards (gauge arm moving away from each other), starting from

an initial separation of 48 mm. This was because during the ramped consolidation

stage the sample would decrease in diameter and in the subsequent unloading and

shearing its diameter would increase. The overall change in specimen diameter was

unlikely to exceed -2 mm or +3 mm from the initial diameter of 50 mm.

Linear regression analysis of the first order on the data gave a standard error of

±1.7 1.tm. This represented a standard error of just over ±0.003% on a 50 mm

diameter specimen. The gauge was dismantled from the winding frame and another

independent run was carried out to check the reproducibility of the results. The

device was found to be sound and acceptable.
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Channel Measurand

,

Device

1 External axial strain LVDT

2 External axial strain LVDT

3 Water volume change I.C. volume gauge

4 Deviator load I.C. load cell

5 Pore water pressure Pressure transducer

6 Pore air pressure Pressure transducer

7 Cell pressure Pressure transducer

8 10V input supply

9 Local axial strain Inclinometer type axial gauge

10 Local axial strain Inclinometer type axial gauge

11 Radial strain Radial gauge

12 5V input supply

Table 4.1 : Channel number and device



CHAPTER 5

EXPERIMENTAL PROCEDURES

5.1. Sample Preparation

5.1.1 Choice of soil type

Speswhite kaolin (LL = 75%, PL = 38%) was chosen as the soil type for the

experimental work. There were many advantages of using kaolin as the test material

in this type of fundamental research :

1) It was readily and cheaply available in a uniform and homogeneous form.

2) Kaolin contains about 75% clay fraction and it is therefore representative of

the fine-grained soils which were of interest in this work.

3) Kaolin has a higher rate of consolidation than most other fine-grained soils,

thus reducing the time required for testing. This is especially important for

tests involving many stages, as described in Chapter 3.

4) The concept of an elasto-plastic critical state constitutive model was already

well established for saturated kaolin (see for example Schofield and Wroth

(1968), Roscoe and Burland (1968) and Balasubramaniam (1974)).

5) The proposed research project was an extension of previous research work

on the development of an elasto-plastic critical state model for unsaturated

soil by Sivakumar (1993), and Sivakumar used speswhite kaolin in his

experimental work.

Inevitably compacted kaolin may not be fully representative of the full range of

unsaturated clays found in practice. However in this type of fundamental research

work it was useful to start with a relatively simple, homogeneous material, the

condition of which could be readily controlled in the laboratory. The model could

then be extended to other types of unsaturated soil at a later date.
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The work of Sivakumar (1993) and that described in this thesis is restricted to

unsaturated soils containing relatively inactive clay minerals (such as kaolinite), and it

is not necessarily frilly applicable to unsaturated soils containing active (highly

expansive) clay minerals (such as montmorillonite). Additional features are required

in the elasto-plastic model if these highly expansive unsaturated soils are to be

represented (see Gens and Alonso, 1992).

5.1.2 Compaction procedure

Fig.5.1 shows the compaction characteristics for speswhite kaolin obtained

by Sivakumar (1993). The figure shows compaction curves produced by the standard

Proctor dynamic compaction (upper curve) and by the static compaction technique

actually employed to produce the soil samples used in the programme of triaxial tests

(lower curve). The static compaction curve was obtained by statically compacting

the soil in 9 layers, each layer being given a vertical pressure of 400 1cPa. Static

compaction was selected in preference to dynamic compaction because it was

envisaged that static compaction would give more repeatable results.

The optimum water content obtained from the standard Proctor compaction

was 29% at a maximum dry density of about 1440 kg 1 m3 . The static compaction

technique used by Sivalcumar produced samples of lower density than the standard

Proctor dynamic compaction (with a maximum dry density of about 1360 kg 1 m3 at a

water content of about 34%). This lower compactive effort was desirable, in order to

produce samples at sufficiently low density that they could subsequently be

consolidated to virgin states in the triaxial apparatus. It was considered desirable to

prepare samples in a substantially unsaturated state, with a significant air content.

Sivakumar (1993) therefore decided to prepare samples by static compaction at a

water content of 25% (4% below the standard Proctor optimum and 9% below the

static compaction optimum). This method produced compacted samples at a dry

density of about 1210 kg 1 in 3 (see point P in Fig.5.1). The static compaction
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procedure selected for the experimental research described in this thesis was identical

to that employed by Sivakumar.

To prepare compacted soil samples, a known mass of dry kaolin powder

(normally 1 kg) was thoroughly mixed with the required quantity of de-aired water

(to give a water content of 25%) in a domestic food mixer for between 5 and 10

minutes. Large lumps of soil formed by the mixing process were broken down to

smaller lumps by using a mortar and pestle.

The soil was then sieved through a 1.18nun aperture BS sieve and material

passing through the sieve was transferred to a plastic bag. Material retained on the

sieve was again ground and sieved as before. The process was repeated until only a

very small amount of material was retained on the sieve. The preparation of mixed

soil using this technique had to be done as quickly as possible to avoid moisture loss

during grinding and sieving. The plastic bag containing the sieved soil was sealed with

tape and kept in an air-tight container for at least 7 days. This allowed the moisture

in the soil to distribute evenly throughout the mass. Water content tests on the soil

showed that the moisture content remained constant even after several weeks. This

preparation technique yielded sufficient material for two soil samples 50mm in

diameter and 100mm long.

The split compaction mould, shown in Fig. 5.2, was made of brass and

fabricated in the department. The mould consisted of three sections : a top collar, a

middle section and a bottom collar. Each section was split vertically into two halves.

The mould section was designed in such a way that dismantling was easy (see later)

and caused little disturbance to the compacted sample. The middle section of the

mould was 100 mm high and the top and bottom collars were used to prepare an

over-length sample, which was subsequently trimmed to a length of 100 mm. The

compaction mould was set on a rectangular brass base 120mm x 85mm in plan and

10mm thick. The mould was also provided with four 49.75-mm diameter steel plugs,

having lengths of 112.5 mm, 87.5mm, 57.5mm and 17.5mm respectively. The plugs
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were used in turn to compress the sample inside the mould when it was placed in the

compression frame.

Three circular aluminium clamps were use to hold together the various sections

of the split mould during compaction (see Fig.5.2). The top clamp was positioned at

the interface between the top collar and the middle section of the mould, the middle

clamp was positioned at the mid-height of the mould and the bottom clamp was

placed at the interface between the middle section and the bottom collar. All clamps

were provided with a tightening screw at one end. Hook-shaped guides on the middle

and upper clamps were located on two vertical threaded bars mounted on the base

plate (see Fig.5.2). These guides were held in place during compaction by wing nuts

on the threaded bars, so that the entire split compaction mould was clamped firmly

down onto the base plate.

The inner surfaces of the various sections of the compaction mould were

sparingly cleaned with silicone grease to reduce friction during compaction. To

prepare a compacted soil sample, 9 identical portions of the soil mixture, each

weighing about 52.5 g, were taken from the sealed plastic bag and kept in a small

sealed plastic container to prevent moisture loss to the atmosphere while each portion

was being compacted in the mould in turn. The soil was then compacted in the

compaction mould in 9 layers in a mechanical loading frame (see Fig. 5.3). A

displacement rate of 1.5 mm/min was used and each layer was compressed to a

vertical pressure of 400 kPa. This procedure was identical to that employed by

Sivakumar (1993). The top surface of each layer was scarified a little to provide

better continuity with the oncoming layer.

After compaction, the mould was placed on a flat, rigid surface. The top clamp

was loosened, by unscrewing the tightening screw, and pushed downward a little

until it was clear of the interface between the top collar and the middle section. The

top collar was removed first by inserting a sharp-ended knife into one of the vertical

lines separating the two halves, after which they opened slightly. The two halves of

the top collar were then removed completely from the mould. It was extremely
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important to carry out this operation carefully to avoid damage to the sample. The

top surface of the sample was then trimmed with a knife, flush with the top of the

middle section of the mould.

To remove the bottom collar the mould was then turned upside down and the

process of removing the bottom collar was exactly the same as the top collar. Again,

the bottom surface of the sample was trimmed while it was still inside the middle

section of the mould. Finally, to remove the middle section, all three clamps were

removed and a sharp-ended knife was inserted into the top part of one of the vertical

lines separating the two mould halves and the knife was then twisted a little. The two

halves opened and the mould was turned upside down. The two halves were detached

from each other as before and then completely removed from the compacted soil

sample.

Immediately after its removal from the mould the soil sample was left exposed

to the atmosphere for 30 minutes, so that the pore air pressure inside the sample

equalized to atmospheric pressure. A period of 30 minutes was considered adequate

for pore air pressure equalization, while keeping water content changes (due to

evaporation) to an acceptably low level.

Sivakumar (1993) found that soil samples produced by the static compaction

technique showed a maximum variation of bulk density throughout a given sample of

only 1.4% (compared to 3.4% for dynamic compaction). Visual examination of soil

samples compacted by the static method also confirmed that there was little evidence

of significant interfaces between layers.

5.1.3 Measurement of sample dimensions

A portion of the compacted soil trimmed from the two ends of the sample was

weighed, dried in the oven for 24 hours and then weighed again for water content

determination. This served as a check on the consistency of the sample preparation

technique with regards to water content. These water content tests showed values

between 24% and 25% (the latter being the value of water content at which the soil
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was originally mixed). After the 30 minute equalization period the sample was

weighed to the nearest 0.01 g.

A technique to measure the specimen dimensions was devised by Sivakumar

(1993) to enable measurements to be taken to a precision of 0.01mm. The apparatus

for carrying out this operation is shown in Fig. 5.4. It consisted of a jig assembled on

an aluminium base, fitted with a micrometer for measuring the sample height. The

sample was placed on the aluminium base via a spacer, and an aluminium cap

provided with an upstand which ran through a slot in the top jig assembly was placed

on the top of the sample. A lateral retention spacer attached to the bracket supporting

the micrometer provided horizontal alignment of the sample.

A dial gauge (facing upward) was horizontally mounted on a holder with its

spindle pressing against one end of the micrometer holder (see Fig. 5.4). The intention

was that, as the micrometer spindle moved downward, when it came in contact with

the top cap upstand on the soil sample this triggered a movement of the dial gauge as

the jig flexed slightly. A reading on the micrometer scale was then taken. The

micrometer spindle was moved upward and the top cap spacer lifted so that the

sample could be freely rotated a little and more readings were taken. An average

reading from nine trials was taken. The soil sample was later replaced by a dummy or

'standard' sample made of solid brass having a length of 104.07 mm and

measurements were taken in exactly the same fashion as for the soil sample. The

length of the sample was given by the length of the dummy minus the difference in

readings of the dummy and the sample taken by the vertical micrometer scale.

The diameter of the sample was taken as the average internal diameter of the

split mould (49.997mm). This was subject to slight error, because of changes in

sample diameter on removal from the mould and during the subsequent 30 minute

equalization period. However Sivakumar (1993) found that this method was more

reliable than attempting to measure the sample diameter with a micrometer, because

of the difficulty of measuring accurately to the curved vertical surface of the

compressible soil sample.
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It was sometimes observed that a small amount of soil remained stuck to the

inner sides of the compaction mould, but measurements of the weight of this soil

indicated that it never exceeded 0.25% of the sample weight and normally it was

considerably less than this. This problem would lead to a small error in the

calculations of the overall volume of the specimen.

5.2 Setting-up in the triaxial cell

5.2.1 De-airing of apparatus

Before the sample was set-up in the triaxial apparatus the two GDS units , the

lower chamber of the triaxial cell, the high air entry filter and the drainage line

providing water back pressure had to be de-aired.

The de-airing procedure for the GDS units is shown in Fig. 5.5. The unit was

laid on a slope, supported on a rigid wooden block. The piston of the GDS unit was

driven forward towards the outlet forcing the water from inside the pressure cylinder

into a container of de-aired water. This operation also forced out any trapped air

bubbles from inside the pressure cylinder. The piston was then driven backward, so

that de-aired water was taken back into the cylinder. The process was repeated

several times until the GDS unit was properly de-aired. It was not necessary to de-air

the GDS units every time a test was to be conducted if this procedure was properly

performed.

To de-air the lower chamber of the triaxial cell, the de-airing procedure shown

in Fig. 5.6 was adopted. The triaxial cell was placed on a wooden saddle in a slightly

inclined position with the lower chamber pressure inlet at the highest point. Having

positioned the cell as shown, the loading ram was positioned at the forward end of its

travel (upper end in its normal orientation) and de-aired water was injected into the

lower chamber through the pressure inlet of the cell (only one inlet was provided) by

using a syringe. The loading ram was then pushed manually backward (downward in

its normal orientation) to expel the water and any trapped air. As the loading ram
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neared the end of its travel, a nylon tube from the pressure outlet of a de-aired GDS

unit was quickly connected to the pressure inlet of the lower chamber of the triaxial

cell. The GDS unit had previously been set to a small positive pressure, so that a

steady outflow of water was emanating from the unit at the time of connecting to the

triaxial cell (thus minimising the chances of trapping any air during connection). Once

the connection had been made, the pressure of the GDS unit was reduced to zero, so

that the weight of the loading ram took it down to its bottom position when the cell

was returned to an upright position (leaving the maximum travel of the ram available

for subsequent testing). The de-airing procedure for the lower chamber of the triaxial

cell was done only once at the beginning of the test programme and it was not

necessary to carry out this procedure again.

The apparatus used to de-air the high air entry filter is shown in Fig. 5.7. The

filter system, consisting of high air entry filter, low air entry stone and perspex holder

(see Fig. 4. 4) and the pedestal of the triaxial cell were securely screwed onto the

base of the de-airing cell. The de-airing cell was filled with de-aired water through an

inlet in the cell base and then connected to an air/water interface. The procedure of

de-airing the filter involved four steps. Firstly with valve 1 open and valve 2 closed,

the water pressure inside the cell was increased to 600 kPa and held at this value for

24 hours. This forced most of the air into solution. Secondly the drainage valve 2 was

opened (still with valve 1 open and a pressure of 600 kPa applied) resulting in a slow

flow of water through the high air entry filter. Sivakumar (1993) showed that for a

properly prepared high air entry filter the flow of water through the filter was between

2 and 3 drops per minute. This flow through the filter, which was maintained for 24

hours, flushed any remaining air from the pore spaces of the filter. Thirdly drainage

valve 2 was closed and the pressure of 600 IcPa in the cell was left for a further 24

hours. Finally, the pressure supply valve 1 was closed, the drainage valve 2 was

opened and the cell was left for another 24 hours while the pressure gradually

decreased to zero. For a new (dry) filter the entire procedure was repeated once
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more, after changing the water inside the cell, but for a filter that had been used

previously and was still virtually de-aired this was unnecessary.

Immediately prior to setting up a soil sample, a triaxial cell pedestal with a de-

aired high air entry filter system was taken from the de-airing cell and screwed onto

the loading ram of the triaxial cell. De-aired water under a pressure of about 50 kPa

from a bladder-type air-water interface was passed through the water back pressure

line into the connecting groove at the top of the pedestal (beneath the high air entry

filter system) and out via the flushing line, until the connecting tubes were completely

de-aired. The valve on the flushing line was then closed, the pressure on the water

back pressure line was reduced to zero and finally the valve on the water back

pressure line was closed.

5.2.2 Setting-up a soil sample in the triaxial cell

Two lengths of fuse wire, 0.3 mm in diameter and about 30min in length, were

placed on the top of the high air entry filter mounted on the pedestal of the triaxial

cell. The intention was to prevent direct contact between the soil sample and the high

air entry filter until the cell pressure was applied. Direct contact between the soil

sample and the filter before the cell pressure was applied would transmit a large

negative value of pore water pressure to the water in the filter and in the water back

pressure line, which might induce cavitation in the water back pressure line. This

technique, of using lengths of fuse wire to temporarily avoid contact between the

sample and the high air entry filter, was first developed at Imperial College and was

used successfully by Sivakumar (1993). The use of the fuse wire technique

introduced a small error in the measurement of sample volume change, because the

wires intruded into the bottom of the sample when the cell pressure was subsequently

applied. This error was estimated at 0.59 cm3 (based on the diameter of the fuse wire,

which was 0.3mm, and the cross-sectional area of the soil sample), and the

measurements of sample volume change during application of the cell pressure were

adjusted accordingly.
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The soil sample was carefully placed on the high air entry ceramic filter. A

special Neoprene rubber membrane was slowly sleeved onto the specimen by using a

membrane stretcher. An ordinary latex rubber membrane could not be used in the

experimental work because the Dialla-B oil used as the cell fluid would attack it,

causing the membrane to perish. The Neoprene membrane, which had a thickness of

0.35 mm, was stiffer than the standard latex membrane. Two 'O'-rings were used to

seal the bottom of the membrane on the bottom pedestal. An ordinary porous stone,

which had been dried in an oven for 24 hours, was placed on the top of the sample,

followed by the perspex top cap with the air back pressure line already connected (see

Fig. 4.8). Two more rubber 'O'-rings were used to seal the membrane on the top cap.

Finally any excess rubber membrane was trimmed off with scissors.

5.2.3 Mounting of local strain gauges on soil sample

Three hollow tubes (16 mm internal diameter and 235 mm long) were sleeved

onto the tie bars of the triaxial cell to provide a temporary support for the top plate of

the cell while the local strain gauges were being mounted on the soil sample. The cell

top plate was carefully placed in position so that the alignment collar attached to the

load cell (see Fig. 4.3) located on the sample top cap. The purpose of this operation

was to ensure verticality of the sample and to minimise sample disturbance while the

local strain gauges were being mounted.

The arrangement of the radial and axial gauges on the sample is shown in Fig.

5.8. The positions of the feet of the axial gauges and the radial gauge were marked on

the membrane with a permanent ink. Two circular studs, each with a conical recess

to support the tip of one of the adjusting screws on the radial gauge arms, were glued

to the membrane using a gel type superglue. The studs were positioned at the mid-

height of the sample and diametrically opposite each other. The positions for the

footing pads of the axial gauges were marked at a distance of 27.5mm from the top

and bottom of the soil sample, giving a gauge length of 45 mm for each gauge. The

two axial gauges were positioned diametrically opposite each other and at 90 0 to the
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attachment points of the radial gauge (see Fig. 5.8). The axial gauges were assembled

on the membrane one at a time by smearing the feet with superglue and then pressing

them against the rubber membrane. It was extremely important to carry out this

operation quickly and efficiently so that the axial gauges were properly mounted at

the right positions on the rubber membrane. This was because the superglue bonded

in seconds and improper mounting of the local strain gauges would affect the whole

specimen set-up in the triaxial cell. The buoyant weights of the radial and axial gauges

were supported by counterweight systems mounted on the triaxial cell wall (see next

section).

Results from one of the early triaxial tests (Test 2) suggested that the local

strain gauges attached to the membrane moved relative to the soil sample. The nature

of the problem is shown in Fig.5.9, where the local strain readings (axial and radial)

were plotted against time during the equalisation stage. There were abrupt changes in

the axial and radial strains in very short intervals of time which it was thought were

unlikely to represent sample deformation and were more likely to be caused by

slippage of the membrane relative to the sample.

This problem of membrane slippage had not been observed in earlier tests using

the same axial and radial gauges on reconstituted kaolin samples. There were two

possible explanations for this. Firstly the adhesion between the rubber membrane and

the surface of a compacted, unsaturated sample may not have been as great as for a

reconstituted saturated sample. Secondly the Neoprene membrane was stiffer than a

standard latex membrane and it did not grip the sample as well as a latex membrane.

It was observed that after the shear test it was very easy to strip the Neoprene

membrane from the sample, as if there was no frictional resistance between the

sample and the membrane.

To rectify the problem of membrane slippage, from Test 3 onwards the inner

face of each of feet of the axial gauges and the studs used to mount the radial gauge

was provided with a pin which had a length of about 8mm and diameter of 0.3mm. A

small hole was made in the footing or the stud and the pin was inserted so that it
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tightly fitted the hole. During mounting of the gauges, the footing pads or the studs

were slightly pressed into the soil sample. The perimeter of the footings pad and the

studs in contact with the membrane was smeared with superglue to prevent leakage

(see Detail 'x' in Fig. 5.8). This method prevented leakage effectively as the superglue

bonded in seconds and sealed any gap between the membrane and the footings or

studs. No evidence of leakage was observed in the later tests. This pinning method

caused some localized disturbance to the soil fabric, but this was unavoidable.

Further test results showed that the pinning method was successful in attaching the

axial and radial gauges firmly to the soil sample and that there was no further

evidence of membrane slippage (see Fig. 5.10 for typical test).

5.2.4 Cell asssembly

After attaching the radial and axial guages, the cell top plate and the hollow

tubes sleeves supporting it were withdrawn. The acrylic cell wall was then placed in

position.

Each axial strain gauge was suspended by a fine string attached to the canister

of the gauge. The string passed over two pulley wheels which were supported on a

cantilever attached to the cell wall (see Fig. 5.8). The other end of the string was tied

to a brass weight with a buoyant mass in oil of about 49.5g, equal to the buoyant

mass of the axial displacement gauge. The radial displacement gauge was suspended

by two strings, one attached to each arm of the gauge. These two strings were tied

directly to two hooks mounted on the cell wall. The whole operation of attaching the

counterbalancing systems had to be done carefully to avoid disturbance to the

specimen.

A ball bearing was placed in the conical recess within the top cap, and the

exterior surface of the rubber mem6rane was then coated with a thin layer of silicone

grease to reduce any attack by the cell fluid. The top plate of the cell was again placed

in position and securely tightened against the cell wall. The alignment collar attached

to the load cell was raised a little, by turning an adjusting nut provided on the cell top
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plate, so that when the nuts on the tie-rods were tightened the alignment collar was

well clear of the sample top cap. The alignment collar was then carefully lowered, by

using the adjusting nut, until the sample top cap located within the alignment collar

but the ball bearing was not yet seated in the recess with the collar. The required level

was indicated by a line marked on the top cap.

Finally Dialla-B oil from a storage tank was pumped at a slow rate into the cell,

via an inlet at the bottom of the cell base, until the cell was fill Any trapped air

inside the oil supply line or within the cell escaped through a bleed valve in the cell

top plate. The valve on the oil supply line and the bleed valve on the cell top plate

were closed, and the test was now ready to proceed.

5.3 Test stages

5.3.1 Application of net stress

The valves on the water back pressure line and the air back pressure line were

opened prior to ramping the cell pressure. The initial readings of the water back

pressure, air back pressure and cell pressure were all set at zero. The GDS unit 1

supplying the cell pressure was then used to ramp the cell pressure at relatively fast

rate of 21cPa/min from zero to the required target values of 200 kPa in Tests 1, 2, 3,

4, 5 and 10, 400 kPa in Tests 6 and 7, 350 kPa in Test 8 and 450 kPa in Test 9.

When the cell pressure reached 40 to 50 kPa the air back pressure was

manually increased to about 20 kPa by adjusting the pressure regulator on the air

back pressure line.The air back pressure was manually increased in further steps of 10

to 20 kPa every few minutes as the cell pressure steadily increased. The difference

between the cell presure and the the air back pressure at any time was kept to a

minimum of 20 kPa to avoid the membrane being blown up inside the cell.

In Tests 1, 2, 3, 4, 5 and 10 the final value of air back pressure was set at 150

kPa while in Tests 6, 7, 8 and 9 the final value air back pressure was set at 250 kPa.

This meant that the value of mean net stress (p — ua) for the subsequent equalisation
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stage po' was 50 kPa in Tests 1, 2, 3, 4, 5 and 10, 100 kPa in Test 8, 150 kPa in Tests

6 and 7, and 200 kPa in Test 9 (see Table 5.1).

In Tests 1, 2, 3, 4, 5 and 10 the water back pressure was manually increased by

using a pressure regulator on the water back pressure line, in a single step to 50 kPa

when the air back pressure was beyond 70 kPa. In Tests 6, 7, 8 and 9 the water back

pressure was increased to a final value of 150 kPa in three increments of 50 kPa each

when the air back pressure readings were 100 kPa, 200 kPa and 250 kPa respectively.

This meant that the final difference between air back pressure and water back pressure

(i.e. the suction) was 100 kPa in all tests.

GDS Unit 1 stopped ramping when the target cell pressure was achieved. The

cell pressure was maintained constant thereafter until the GDS was re-programmed.

The stage normally took between 2 and 3 hours, depending upon the target value of

cell pressure.

5.3.2 Equalization stage

The equalization stage followed immediately after the application of net stress.

The purpose of the equalization stage was to enable the pore water pressure within

the sample to equalize to the water back pressure value. During this stage, the suction

(the difference between pore air pressure and pore water pressure) within the sample

was brought down from its high initial (unknown) value after compaction to the

required value so of 100 kPa in all tests (see Table 5.1). This reduction in suction

took place at a mean net stress p., of 50 kPa in Tests 1, 2, 3, 4, 5 and 10, 100 kPa in

Test 8, 150 kPa in Tests 6 and 7, and 200 kPa in Test 9.

The water inflow into the sample and the axial and radial strains of the sample

were logged every 100 minutes throughout the equalization stage. The stage took 8

to 10 days to complete. Full equalization corresponded to no further flow of water

into the sample, and the criterion used for terminating the stage was that the rate of

water flowing into the sample had decreased to less than 0.1 cm3 / day. This was
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equivalent to a change in specific water volume v 	 less than 0.001 per day, given

that the solids content of a typical sample was about 100 cm3 .

5.3.3 Ramped consolidation stage

In the ramped consolidation stage the suction was kept constant at 100 kPa,

by maintaining air back pressure and water back pressure constant, while the value of

mean net stress was increased to a final value p 	 400 kPa in all tests (see Table

5.1). This increase ofp' was achieved by ramping the cell pressure with GDS unit 1 to

a new target value of 550 kPa in Tests 1, 2, 3, 4, 5 and 10 and 650 Oa in Tests 6, 7,

8 and 9.

Ramped consolidation was preferable to conventional step-loading

consolidation, so as to limit the excess pore water pressure generated at the top face

(water undrained) of the sample to an acceptably low value. A particular probJem

associated with the generation of high excess pore water pressure in unsaturated

samples is illustrated in Fig. 5.11. Fig 5.11 shows Loading-Collapse yield curves for

unsaturated soil as proposed by Alonso, Gens and Josa (1990). Sivakumar and

Wheeler (1993b) pointed out that for a point within the interior of an unsaturated

sample subjected to a step increment of total stress the stress path would be of the

form ABC shown in Fig.5.11. As the increment of total stress is applied to the

sample, excess pore air and pore water pressures are generated. The excess pore air

pressure dissipates quickly, because of the high air permeability, but the excess pore

water pressure takes much longer to dissipate because of the relatively low water

permeability. As a result, the stress state moves initially from A to B (at the desired

final value of p' but a reduced suction s) and it then moves slowly at constant p' from

B to the desired final point C, as the excess pore water pressure dissipates. The

consequence of this stress path ABC is that the yield curve expands from an initial

position YA to a position n during stress path AB and it then remains at this position

(n ) during stress path BC (which corresponds to elastic unloading inside the yield

curve). Thus the soil is not at a virgin state at the end of consolidation, and additional
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plastic compression has occurred (compared with the desired stress path direct from

A to C). It is therefore very important that consolidation of unsaturated soil samples

should be done in a ramped fashion, to ensure that the excess pore water pressure

remains acceptably small and the suction is held sensibly constant. This ramped

technique was employed in the experimental work.

Another advantage of using ramped consolidation was that it was possible to

produce continous plots of specific volume v or specific water volume vw against the

mean net stress p'. These represented constant suction compression curves if the

external load (cell pressure) was applied slowly enough that the excess pore water

pressure was minimal throughout the loading process. The continuous plot of v versus

p' was useful in accurately identifying the yield stress produced by the compaction

process.

Thomas (1987) presented a relationship for the equilibrium value of excess

pore water pressure u at the undrained face of a saturated soil sample

loaded by ramped consolidation with the total stress increasing with time at a constant

rate A

u=
Ah2
	

(5.1)

where cv was the coefficient of consolidation and h was the drainage path length. uex

is the value to which the excess pore water pressure would tend if ramped loading

continued indefinitely. The value of cv for compacted unsaturated speswhite kaolin

was measured as cv = 7.1*10 -8 m2 Is by Sivakumar (1993) from trial step-loading

isotropic consolidation tests. Inserting cv = 7.1*10 -8 m2 Is and h = 100 mm into

equation (5.1) the following relationship was obtained;

uex =19.5A	 (5.2)
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where A was the rate of increase of cell pressure expressed as a rate per hour. A

rate of increase of cell pressure of 1.2 kPa/hr was selected, suggesting an equilibrium

value of excess pore water pressure at the undrained face of about 24 kPa. This was

considered acceptably small, as it corresponded to only 6% of the final value of p'

of 400 kPa. With this rate of pressure increase, the ramped consolidation stage took

approximately 14 days. Although a slower rate of presure ramping would have

decreased the calculated value of excess pore water pressure below 24 kPa, it would

have resulted in fewer tests being achieved within the research programme.

It should be pointed out that Equation 5.1 was strictly true only for saturated

soil. In the case of unsaturated soil, the equilibrium value of excess pore water

pressure generated at the undrained face would be probably be less than predicted by

Equation 5.1 (because of the undrained compressibility of an unsaturated sample).

At the end of ramped consolidation, when p' reached 400 kPa, a period of 24

hours was allowed for complete dissipation of any excess pore water pressure.

5.3.4 Swell-back stage

In the swell-back stage the mean net stress p' was reduced from 400 kPa to a

lower value p: which varied for the different tests between 100 kPa and 300 kPa, as

shown in Table 5.1.The suction s was held constant during this reduction of p'. The

reduction of p' was achieved by decreasing the cell pressure at the same rate of 1.2

kPaihr used in the previous ramped consolidation stage.

In Tests 2, 4, 7 and 10, p was decreased from 400 kPa to 300 kPa; in Tests

1,3, 5 and 8, p' was decreased from 400 kPa to 200 kPa ; and in Test 6, p' was

decreased from 400 kPa to 100 kPa (see Table 5.1). No swell-back stage was

included in Test 9, so that p' remained at 400 kPa.

A period of 24 hours was allowed to elapse after the sample reached its target

pc' value of 100, 200 or 300 kPa, to ensure complete equalization of pore water

pressure throughout the sample.
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5.3.5 Suction-change stage

In this stage the suction was increased from 100 kPa to 200 kPa or decreased

from 100 kPa to zero. Four tests involved a suction increase to 200 kPa (Tests 5, 7, 8

and 9, see Table 5.1), while one test involved a suction decrease to zero (Test 6, see

Table 5.1). In the remaining tests (Tests 1, 2, 3, 4, 5 and 10) no suction change stage

was included, and the suction therefore remained at 100 kPa. In Test 6, the reduction

of suction to zero took place after the swell-back to a mean net stress of 100 kPa. In

the tests where suction was increased to 200 kPa, this took place before any swell-

back (at p:, = 400 IcPa) in Tests 8 and 9, but after swell-back (at p200 1cPa or 300

kPa) in Tests 5 and 7.

The suction change was carried out by adjusting the water back pressure

regulator manually while keeping the cell pressure and the air back pressure constant.

The water back pressure was adjusted manually in small steps at a rate of about 24

kPa/day. Unfortunately adjustment of the water back pressure was not possible

during the night (a period of about 12 hours). Increments of water back pressure

were applied manually at intervals of about four hours during the day and then left

overnight for about 12 hours with a single large increment applied the following

morning.

On reaching the target value of applied suction (200 kPa or zero), the sample

was left to achieve equilibrium, until the rate of flow of water entering or leaving the

sample was less than 0.1 cm 3 / day ( a rate of change of specific water volume of

less than 0.001 per day).

5.3.6 Reloading / shear stage

In the final reloading stage the sample was either isotropically re-loaded at

constant suction or sheared at constant suction. For isotropic reloading (Tests 3, 5

and 6, see Table 5.1) the cell pressure was ramped at a rate of 1.2 kPa/hour while the

water back pressure and the air back pressure were held constant. All but one of the
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remaining tests involved drained shearing with the cell pressure, water back pressure

and air back pressure all held constant (giving Aq / Ap' = 3).

In one test (Test 4) an attempt was made to carry out a shear test with p'

constant (Aq / Ap' =x), by reducing the cell pressure during shearing. For constant p',

Ao-3 = —0.5Ao-1 , so the cell pressure was reduced at half the rate at which the axial

stress was increased (this test was performed under stress-control, with GDS Unit 1

(providing the cell pressure) and GDS Unit 2 (providing the lower chamber pressure)

both set to ramp pressure at a constant rate). Unfortunately, it was found that

fluctuations of loading ram friction resulted in major deviations from the desired

stress path (see Section 6.7), and it was therefore concluded that this form of stress

path testing was impractical without the provision of feedback control. The purchase

or development of software for such feedback control was not possible within the

budget or timescale respectively of the project, and therefore no further attempt was

made to conduct constant p' shear tests.

The drained shear tests at constant cell pressure (Aq / Ap' =3) were all

performed under strain control, because the fluctuations of loading ram friction made

stress control an undesirable option without the provision of feedback control to the

lower chamber pressure. The method for determining the required rate of strain in the

shear stage was based on the equation proposed by Bishop and Henkel (1962) for the

time t for a sample to reach 95% dissipation of excess pore water pressure. The

equation is given as

t = 20h2	
(5.3)

ric,

where h was half the sample height, ri was a factor depending on the drainage

conditions at the sample boundaries (Ti = 0.75 for drainage from one end only) and c,

was the coefficient of consolidation. Using h = 50 mm and c7.1*10-8 m2 I s, t was

found to be about 10 days. The prime objectives of the test were to investigate soil
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yielding and the elastic behaviour of the soil before yielding. A trial test showed that

yielding occurred at axial strains of less than 2%. Therefore the early part of the shear

test, up to an axial strain of 2.5% to 3%, was conducted at a displacement rate of

about 0.00018 mm/min, giving an axial strain rate of about 0.26% per day. The

remainder of the shear stage was done at a faster rate of 0.0018 mm/min, giving a

strain rate of about 2.6% per day.

Shearing was discontinued when the limit of travel of the loading ram of the

triaxial cell was reached (at an axial strain of about 24%). This often preceded

attainment of a true critical state. The entire shear stage normally took about 18 days

to complete.

5.3.7 Dismantling of cell

When the test was completed, logging was halted and the valves on the water

back pressure line and the air back pressure line were closed. All applied pressures

were reduced to zero, the bleed valve in the cell top plate was opened and oil was

then drained from the triaxial cell into the storage tank under the bench. The cell top

plate was carefully removed and the acrylic cell wall was detached from the cell base.

The axial gauges were removed from the membrane by cutting the membrane around

footing pads. The radial gauge was dismantled by slightly pulling the arms of the

gauge away from the sample. Finally the rubber membrane was stripped from the

sample.

The wet weight of the sample was measured to the nearest 0.01 g and the

sample was then dried in an oven for 24 hours before measuring the dry weight. The

wet weight of the sample at the end of the test was considered less reliable than the

value measured at the beginning of the test, because of the difficulty of preventing

additional water or oil contaminating the sample during dismantling of the cell. The

wet weight of the sample at the beginning of the test was therefore used in the

subsequent calculations of the variation of specific water volume v n, throughout the
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test, and the final value of the wet weight was simply used as an additional check on

the consistency of the results.

5.4 Logging procedure

The Quicklog PCTm software was used to log all transducer channels every 100

minutes throughout the complete test.

5.4.1 Transfer of logged data to LOTUS 1-2-3 spreadsheet

The raw data from the test were stored in the floppy disk in the form of a

spreadsheet, but no manipulations were possible because the Quicklog PC software

lacked these facilities. Instead the raw data was transferred to a LOTUS 1-2-3

spreadsheet and saved as a LOTUS 1-2-3 worksheet file for further manipulations.

The Quicklog PC' software logged data from every channel for every stage of the

tests. However for some stages, data from some of the channels were irrelevant. For

example, the external axial displacements and deviator load were not relevant in the

ramped consolidation stage because the loading ram was not in contact with the

sample. In these circumstances the irrelevant data were simply not used in the

calculations.

5.4.2 Voltage corrections

It was observed that while a test was in progress, the input voltages from the

5V DC and 10V DC supplies fluctuated slightly with time (probably due to variation

in the mains supply). In the worst case the fluctuation was about ±0.2 V in the 5V DC

supply as recorded during the equalization stage in Test 4. The variation of the 5V

supply in this worst case is shown in Fig 5.12. This variation resulted in fluctuations

of the local axial and radial gauge readings. The typical variation in the 5V input

voltage was much less than shown in Fig.5.12, at about ± 0.004V.

To overcome the problem of fluctuating supply voltages a number of steps

were taken. Firstly, from Test 4 onwards a filtering device RS 236-924 (maximum
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current 13 Amp) was plugged into the mains power socket and then connected to the

5V and 10V power supplies via a multiple socket. The 5V and 10V power supplies

then showed more stabilised voltages, with the voltage fluctuation now being ±

0.003V on the 5V supply (see Fig.5.13). Secondly, from Test 4 onwards the 5V and

10V power supplies were continously logged (using channels 8 and 12 of the logging

system), and the calibration equations for the local axial and radial strain gauges were

continously corrected for the current value of the input voltage to the gauges.

A simple test was carried out to see the effect of variations in the input supply

voltage on the output of the axial and radial gauges, within the range of ±0.2V . This

showed that the output voltage was directly proportional to the input supply voltage,

so the appropriate calibration equations for the local gauges were adjusted

accordingly. No adjustments for supply voltage were considered necessary for any of

the remaining transducers.

5.5 Calculation of stress and strain parameters

5.5.1 Calculations of strains

Axial strain 61 was measured over a gauge length of about 45 mm centred on

the mid-height of the soil sample. Theoretical analysis by Moore (1966) suggested

that the stresses and strains over the central part of the sample were relatively

uniform. Two measurements of axial strain were made on opposite sides of the

sample, with 61 based on the average of the two measurements (to avoid any effects

of sample tilting).The axial strain el during any stage of a test was calculated from the

relative movement of the axial displacement gauge footings during the stage divided

by the separation of the footings at start of the stage

Radial strain 63 was measured at the sample mid-height. The radial strain 63

was calculated from the change in separation of the radial displacement gauge

divided by the gauge length (sample diameter) at the start of the stage.

The shear strain es was then given by :
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(5.4)

and the volumetric strain ev was given by :

ev = 1— (1— 6'1 )(1 — 6'3 )2 	(5.5)

Compressive strains were considered positive and tensile strains were considered

negative.

5.5.2 Calculation of deviator stress

The deviator stress q during the final reloading/shear stage was given by

(5.6)

where F was the deviator force and A was the current cross-sectional area of the

central part of the sample which was based on the measurements from the radial

displacement gauge. However the deviator stress q had to be corrected to take

account of the membrane stiffness. The correction for membrane stiffness as given by

Bishop and Henkel (1962) was

cr, = 
ii-DMe, (1— e1) 
	

(5.7)

where D was the diameter of the sample at the start of shearing, M was the membrane

modulus, el was the axial strain during the shear stage and Ao was the cross-sectional

area of the central part of the sample at the start of shear test. The value of o-,,
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obtained from Equation (5.7) was substracted from Equation (5.6) to get the

corrected deviator stress.

The method of determining the membrane modulus M was in accordance with

that of Bishop and Henkel (1962), but the test method was modified to investigate

the variation of M with the time of exposure to the cell fluid and the cell pressure at

which the exposure took place (because of deterioration of the rubber in the Diala-B

oil). Three newly cut loops of Neoprene membrane, each 25 mm wide, were soaked

and pressurised in Diala-B oil (the cell fluid) in a pressure cell as shown in Fig. 5.14.

These rubber loops were tested at a confining pressure of 450 kPa and another three

were later tested at 550 kPa (the latter was the maximum cell pressure applied in any

triaxial test). For each set of three membrane loops, the membrane modulus M was

measured after various intervals of time up to 48 days (the duration of a typical

triaxial test), using the method given by Bishop and Henkel (1962), as shown in

Fig.5.15. After testing, the Neoprene membrane loops were put back into the

pressurising cell, where they were left for a further interval of time before re-testing.

The variation of membrane modulus with time is shown in Fig. 5.16. For both

confining pressures the modulus M dropped sharply during the first 10 to 15 days of

exposure to the oil, after which the reduction of M with time was more gradual. From

an initial value for fresh unsoaked membrane, of about 2.4 kN/m width, the value of

M dropped after 40 days to about 1.4 kN/m width at a-, = 450 kPa and to about 1.2

kN/m width at o-3 = 550 kPa. The behaviour shown in Fig.5.16 suggested that coating

the membrane with silicone grease did not fully eliminate attack of the membrane by

the Diala-B oil.

The variation of membrane modulus with time was relatively slight for the

period corresponding to the final re-loading/shear stage of the triaxial tests (after

about 28 days of exposure to the oil). The procedure used was therefore to measure

a value ofM at the end of each triaxial test (on the actual membrane used in the test)

and then to assume that this value of M was applicable throughout the re-
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V + AV
V =  w° 1 7s w (5.10)

loading/shear stage of that test. The values of M measured on completion of the

triaxial tests were generally consistent with the curves shown in Fig. 5.16.

5.5.3 Calculation of mean net stress

The mean net stress p' was calculated as follows

P' = 63 + q-- — Ua

3
	 (5.8)

where a, was the cell pressure, q was the deviator stress and ua was the pore air

pressure.

5.5.4 Calculation of specific volume

The specific volume v, during any stage of the test, was calculated from

v= 
V0 (1— 6„)

Vs

where Vo was the sample volume at the start of the stage, e 	 the volumetric strain

during the stage and Vs was the volume of solid particles (calculated from the dry

weight of the sample measured at the end of the test and the specific gravity of the

soil particles). The value of V° for each stage was calculated from the initial sample

volume measured at the beginning of the test, which was then corrected for any

volumetric strains in preceding test stages.

5.5.5 Calculation of specific water volume

The specific water volume lc, defined in Equation 2.36 was calculated from

(5.9)
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lc —1
S,. =

v-1
(5.11)

where yvo was the volume of water within the sample at the start of the stage and

AK, was the inflow of water into the sample during that stage. The value of K o for

the first test stage was calculated as the difference between the wet weight of the

sample measured at the beginning of the test and the dry weight of the sample

measured at the end of the test. Values of V for subsequent test stages were

corrected for any water inflow or outflow from the sample during preceding stages.

The degree of saturation Sr was calculated from

5.6 Programme of tests

The test programme is shown in Table 5.1. A total of 10 tests were conducted,

with an average duration for each test of 45 days.

After equalization to a suction so of 100 kPa at a mean net stress p which

varied between 50 kPa and 200 kPa in the different tests (see Table 5.1), all samples

were consolidated to mean net stress io of 400 kPa at a constant suction so of 100

kPa. Subsequent test stages involved swell-back to a lower value of mean net stress

p , change of suction to a value so and then a reloading / shear stage at constant

suction and various values of Aq/Ap' (see Table 5.1). The tests were divided into

three different series, based on the value of suction s c during the final reloading stage.

5.6.1 Test series at s = 0

Only one test (Test 6) was included in this series, where the suction was

decreased to zero after first establishing the position of the yield surface by

consolidating at a suction of 100 kPa to a mean net stress of 400 kPa. The stress path

is shown in the s-p' and q-p' planes in Fig. 5.17 (a). The value of mean net stress

during equalisation po' was 150 kPa and after consolidation to a mean net stress io of

400 kPa at a suction of 100 kPa, the sample was allowed to swell-back at a suction of
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100 kPa to a mean net stress of 100 kPa. The suction decrease from 100 1cPa to zero,

was done after the swell-back stage at mean net stress p 	 100 kPa. During the

reloading stage, the sample was loaded isotropically (Aq / Ap' =0) at a constant

suction of zero. The test was terminated at a mean net stress of 590 kPa,

considerably after passing the yield point.

5.6.2 Test series at s = 100 kPa

The stress paths in the s-p' plane and q-p' plane for tests in this series are shown

in Fig. 5.17 (b). Five tests were performed (Tests 1, 2, 3, 4 and 10). The value of

mean net stress during equalization pe. was 50 kPa for all five tests. After

consolidation at a suction of 100 kPa to mean net stress p:, of 400 kPa , each sample

was allowed to swell-back at a constant suction of 100 kPa to a mean net stress p

200 kPa (Tests 1 and 3) or 300 1cPa (Tests 2, 4 and 10).

In Test 3 the sample was isotropically reloaded (Aq/41=0), and in Tests 1, 2

and 10 the samples were sheared at constant cell pressure (A4/ Ap t =3). Test 10 was

a repeat of Test 2. In Test 4, an attempt was made to conduct constant p' shearing (

Aq/ Api = 00), by reducing the cell pressure during shearing, but this was not entirely

successful (see Sections 5.3.6 and 6.7). For all five tests in this series the

reloading/shear stage was conducted at a constant suction of 100 kPa.

5.6.3 Test series at s = 200 kPa

Fig. 5.17 (c) shows the stress paths in the s-p' plane and q-p' plane for tests

done in this series. Four tests were included (Tests 5, 7, 8 and 9). The values of mean

net stress during equalisation pe. for Tests 5, 7, 8 and 9 were 50 kPa, 150 kPa, 100

kPa and 200 kPa respectively. In Tests 5 and 7, the suction increase from 100 kPa to

200 kPa was performed after the swell-back stage, whereas in Test 8 the suction

increase was applied before the swell-back stage. No swell-back was done in Test 9.

The sample in Test 8 was reloaded isotropically at a constant suction of 200 kPa. All
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remaining samples in the series were sheared with Aq / Ap' --3 at a constant suction

of 200 kPa.
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CHAPTER 6

EXPERIMENTAL RESULTS

This chapter summarizes the results obtained from the experimental

programme. The order of presentation follows the various test stages, beginning

with the equalization stage (including initial application of mean net stress), followed

by the ramped consolidation stage, the swell-back stage, the suction-change stage

and finally the reloading/shear stage. Interpretation of the results is given where

appropriate, with more general discussion provided in Chapter 7.

Table 6.1 shows the values of the soil state parameters after compaction for

all tests, calculated in accordance with Section 5.5.4. From Table 6.1 the water

content after compaction varied from 23.99% to 25.35% i.e. a difference of 1.36%

between tests. This caused variation in the degree of saturation from about 55% to

about 61%, and variation in the specific volume v from 2.098 to 2.176, with an

increase of w tending to cause a decrease of v (because the samples were on the dry

side of optimum) and an increase of Sr.

6.1 Equalization stage

The mean net stress during the equalization stage p: was 50 kPa in Tests 1, 2,

3, 4, 5 and 10, 100 kPa in Test 8, 150 kPa in Tests 6 and 7 and 200 kPa in Test 9.

During equalization, the suction was brought down from its high initial value

(unknown) to 100 kPa in all tests.

Table 6.2 gives the values of soil state parameters, calculated in accordance

with Sections 5.5.4 and 5.5.5, for all tests at the end of the equalization stage. The

mean net stress p' at the end of equalization stage was maintained within ± 2 kPa of

the target value, and the suction s was maintained within ± 1 1cPa of the target value.
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At the end of the stage the degree of saturation varied between 68.8% and 73.1% for

the seven samples prepared at po' = 50 kPa or 100 kPa, but Sr was considerably

higher (80.5% to 81.2%) for the three samples prepared at po' = 150 or 200 kPa. The

wide variation in the values of Sr was therefore attributed to the range of A values.

6.1.1 Variation of specific water volume

Fig. 6.1 shows the increase of specific water volume Av., with time during the

equalization stage for all tests. It can be seen that, in all cases, water entered the
t

samples during equalization, showing that the suction inside the sample after

compaction and application of the mean net stress p 	 higher than 100 kPa.

In most cases the equalization stage was terminated when the rate of change of

v„ was less than 0.001 per day. Unfortunately however, due to a mistake, the

equalization stages of Tests 3 and 5 were terminated prematurely, when the rate of

change of v,„ was still considerably in excess of 0.001 per day (see Fig. 6.1). This had

implications for the behaviour observed during the early phase of the subsequent

ramped consolidation stage (because equalization would still have been continuing).

From Fig. 6. 1, and discounting Tests 3 and 5 (in which incomplete equalization

occurred), the final increase in v,„ varied between 0.135 (Test 9) and 0.21 (Test 1).

The scatter in the final values of Avu, for the six tests conducted at p'e = 50 kPa was

greater than any difference between tests at different values of p , and Fig. 6.1 shows

no apparent trend with changing po' during the equalization stage.

The final values of lc at the end of equalization were (presumably) dependent

on the value of suction after the equalization stage so (100 Oa in all tests), as found

by Sivakumar (1993) (who used a variety of different values of so). The results

shown in Fig. 6.1 suggest however that the final values of v equalization were

relatively insensitive to the mean net stress ir.
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6.1.2 Variation of specific volume

Fig. 6.2 shows the variation of specific volume v with time during the

equalization stage for all tests.. The erratic variation of v observed in Test 2 was

attributed to membrane slippage, as discussed in Section 5.2.3.

Most of the six samples wetted at I; . = 50 kPa (Tests 1, 2, 3, 4, 5 and 10)

underwent a small reduction in v during the initial 'undrained' application of p : as

shown in Fig. 6.2 . The values of Av during this 'undrained' loading varied between

zero and -0.004 for the six samples. Swelling was then observed as drainage occurred

and equalization started to take place. The amant of swelling varied between the six

tests, ranging from Av = 0.006 to Av = 0.037. In some of the tests at i e = 50 IcPa

(Test 1 in particular and Test 10 to a lesser extent), the swelling phase was followed

by a small volume reduction (collapse). For example, in Test 1 a reduction in v of

about 0.011 occurred after the swelling phase, while the corresponding value for Test

10 was about 0.002. No collapse was observed in Tests 2, 3, 4 and 5.

For the single test at ie = 100 kPa (Test 8), a small immediate 'undrained'

compression during the application of p: (Av = -0.005 ) was followed by a very

small amount of swelling (Av = +0.001) and then a significant amount of collapse (Av

= -0.028).

For the two samples tested at p: = 150 kPa (Tests 6 and 7) and the single

sample tested at p.. = 200 kPa (Test 9), a much larger 'immediate' undrained

compression was observed (Av = -0.03 in Tests 6 and 7 and Av = -0.05 in Test 9).

This was then followed by a large amount of collapse as equalintion took place (Av

= -0.07 to -0.09), with no evidence of any prior swelling.

The behaviour of the soil during the 'undrained' application of mean net stress

and the subsequent equalization stage can be explained by means of the concept of a

Loading-Collapse yield curve in the s-p', plane as proposed by Alonso, Gens and

Josa (1990) (see Section 2.6.1.1) and as shown in Fig. 6.3. Y, is the approximate
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initial position of the yield curve after compaction, deduced from the experimental

results. The behaviour of the soil inside the yield curve is elastic, with an increase in

p' (a loading path) causing elastic compression and a reduction in s (a wetting path)

causing elastic swelling. The small amounts of immediate 'undrained' compression

that occurred during Tests 1, 2, 3, 4, 5 and 10 (p: = 50 kPa) and Test 8 (p: = 100

kPa) are consistent with the fact that points B and D in Fig. 6.3 are inside the initial

position of the yield curve produced by the compaction process. Conversely, the

substantially greater values of immediate 'undrained' compression during Tests 6 and

7 (p: = 150 kPa) and Test 9 ( p 	 200 ya) are consistent with the fact that the

points F and H in Fig. 6.3 are outside the initial position of the yield curve i.e.

expansion of the yield curve from position Yo to position YE (Tests 6 and 7) or

position YE (Test 9) occurred during 'undrained' application of p.

During subsequent equalization (wetting) the swelling observed in Tests 1, 2, 3,

4, 5 and 10 (p: = 50 IcPa) was consistent with the wetting stress path BC in Fig. 6.3

remaining inside the yield curve (the small amount of collapse observed in the later

stages of Tests 1 and 10 suggests that point C may be just outside the initial position

of the yield curve Yo ). The very small amount of swelling in Test 8 (pe. = 100 kPa)

followed by a significant amount of collapse was consistent with wetting path DE

starting inside the yield curve but then involving significant expansion of the yield

curve to a final position YE . Finally, the major collapse observed in Tests 6 and 7 (pe'

= 150 kPa) and Test 9 (p: = 200 IcPa) was consistent with wetting paths FG and HE

involving major expansion of the yield curve (to final positions YG and Yi

respectively).

6.1.3 Axial and radial strains

Fig. 6.4 shows the variation of axial strain (6,) and radial strain (6.3 ) with time

during the equalization stage for tests conducted at p: .=50 kPa. The values of 6.1

shown in the figure are the average from the two local axial gauges. The erratic
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variation of axial and radial strains in Test 2 was attributed to membrane slippage

(see Section 5.2.3). The variation of specific volume v illustrated in Fig. 6.2 is, of

course, the result of the individual axial and radial strains shown in Fig. 6.4. In Tests

1, 2, 3, 4, 5 and 10 (pe' =50 kPa) the swelling seen in Fig. 6.2 was mainly due to

expansion in the axial direction (see Fig. 6.4) with very little strain (even slight

compression) occurring in the lateral direction (see Fig. 6.4).

In Tests 6 and 7 (p 150 1cPa), Test 8 (io = 100 Icl'a) and Test 9 (pL = 200

kPa) the collapse observed in Fig. 6.2 was mainly due to compression in the lateral

direction, with small expansions actually oc,turing in the axial direction (see Fig. 6.5).

Thus it follows that, irrespective of whether the overall effect was swelling or

collapse, compression was more likely radially and expansion was more likely axially.

This shows that behaviour of the soil during the equalization stage was highly

anisotropic. This anisotropy was presumably induced by the one-dimensional

compaction procedure used to prepare the soil samples.

6.2 Ramped consolidation stage

In the ramped consolidation stage the mean net stress p' was increased from 50,

100, 150 or 200 kPa to p'0 = 400 kPa (the target value of p') while holding suction

constant at 100 kPa.

Table 6.3 shows the soil state parameters at the end of the ramped

consolidation stage calculated according to Sections 5.5.4 and 5.5.5. The final values

of p' and s varied slightly from their target values of 400 kPa and 100 kPa

respectively, reflecting the accuracy of the control system. The variation in p: and so

for all tests was generally less than ±2 kPa, which was considered acceptable. The

degree of saturation Sr varied between 83.5% and 95.2%. It was not clear whether

this relatively large variation of Sr represented a true variation between samples or

was due to measurement inaccuracies in either v or lc (see Equation 5.9 or 5.10).
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6.2.1 Variation of specific volume

Fig. 6.6 shows for all tests the variation of specific volume v with mean net

stress p (with p' on a logarithmic scale). The erratic nature of the curve for Test 2

was presumably due to membrane slippage.

From Fig. 6.6 Tests 1, 2, 3, 4 ,5 and 10 showed evidence of an initially stiff

(elastic) response, followed by yielding. This was consistent with point C in Fig. 6.3

lying just inside the yield curve. Fig. 6.6 shows almost immediate yielding take place

in Tests 6, 7, 8 and 9 at the beginning of ramped consolidation stage, consistent with

points E, G and I in Fig. 6.3 lying on the relevant yield curve.

The straight line portions of the curves shown in Fig. 6.6 define the normal

compression line for a suction of 100 kPa. As described in Section 2.6.5, Wheeler

and Sivakumar (1995) showed that this normal compression line, for any value of

suction, can be represented by the equation

v =N(s)— 2(s) ln 1-P- 	( 6.1)
Pa,

where pa, is atmospheric pressure and the intercept N(s) and slope X(s) are both

functions of suction. Inspection of Fig. 6.6 shows that, for a suction of 100 kPa, the

average value of X(s) obtained from the tests was 0.136 and the average value of

N(s) was 2.108 (see Table 6.4). The scatter in the value of N(s) was probably due to

the difficulty of accurately measuring absolute values of v (whereas changes of v can

be measured much more accurately). For a suction of 100 kPa, Sivakumar (1993)

obtained values of X(s) and N(s) of 0.182 and 2.122 respectively. The differences

between the values of X(s) and N(s) obtained from Fig. 6.6 and those obtained by

Sivakumar (1993) were probably due to the stress range over which the measurement

took place. In his tests Sivalcumar used values of po' ranging from 100 to 200 kPa for

a suction of 100 Oa while in the present tests all samples had a value of io of 400

kPa (all under a suction of 100 Oa). As A became larger, the 'linear' portion of the
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compression lines tended to flatten slightly, giving lower values of X(s) and N(s). The

scatter in N(s) measured by Sivakumar (1993) was also considerably less than shown

in Fig. 6.6. Possible reasons for this are discussed in Section 7.2.

6.2.2 Variation of specific water volume

Fig. 6.7 shows, for all tests, the variation of specific water volume v., during

the ramped consolidation stage. The variation of v,, during each test was small:

typically 0.01 to 0.03 (see Fig. 6.7 which has a large scale for v.,). The large
1

separation of the different graphs probably reflects the difficulty in accurately

measuring absolute values of v.„ whereas the changes in v., were measured

relatively accurately.

Tests 2, 4, 6, 7, 8, 9 and 10 showed a slight increase in v.,, (typically less than

0.01) during the early phase of the ramped consolidation stage. After reaching a

peak, v., then decreased again until the stage was terminated at p o' = 400 kPa. Tests

3 and 5 showed larger increases in v., during the early phase of ramped

consolidation (see Fig. 6.7), which was probably due to the incomplete equalization

during the preceding equalization stage (see Section 6.1.1). In contrast, Test 1

showed a completely different variation in v the consolidation stage. Initially

there was very little variation in v.„ and this was then followed by a significant

increase in v., in the later phase of the stage. It was thought that this might have been

due to imperfect testing technique employed in the first test.

The final straight line portion of the curves shown in Fig. 6.7 defines the normal

compression line for specific water volume for a suction of 100 kPa. By analogy

with Equation 6.1, the equation relating the specific water volume v., to changes in

mean net stress p' for virgin states can be given by
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v,s, = A(s)— a(s) In (1
Pat

where A(s) and a(s) are the intercept and slope of the normal compresion line for

specific water volume. Both A(s) and a(s)are presumably dependent on suction. The

average values of A(s) and a(s) were 0.026 and 1.849 respectively (see Table 6.4).

The values of A(s) and a(s) from Tests 1, 3 and 5 were not included because of the

problems of experimental procedure described above.

6.2.3 Axial and radial strains	 Jr

Figs. 6.8 and 6.9 show the axial and radial strains, given by the local strain

gauges, during the ramped consolidation stage. Fig. 6.8 shows the average local

axial strain (el ) for all tests. The erratic nature of the axial strain variation in Test 2

was attributed to membrane slippage (see Section 5.2.3). In Tests 1, 3, 4, 5 and 10

where the samples started from A =50 kPa in the ramped consolidation stage, the

final values of el varied from 1.10 to 1.7% whereas in Tests 6, 7, 8 and 9, where Pe

varied from 100 to 200 kPa, the final values of 6, varied from 0.45 to 1.00%.

Samples that had been previously subjected to higher values of p: in the equalization

stage had smaller axial compressive strains in the subsequent ramped consolidation

stage, because they had smaller axial tensile strains in the equalization stage (the total

axial strain during equalization and consolidation stages was approximately the same

for all samples).

Fig. 6.9 shows the variation of radial strain (63 ) with p' (with p' plotted on a

logarithmic scale) for all tests. The values of 6 3 show excellent consistency between

tests, reflecting the high accuracy of measuring radial strains by the local radial

gauge. Final values of 63 for Tests 1, 2, 3, 4, 5 and 10 (p: = 50 kPa) were about

5.5%, whereas the final values of 6.3 in Test 8 (p: = 100 kPa) was 3.8%, in Tests 6

and 7 ( p: = 150 kPa) was 3.0% and in Test 9 (p: = 200 kPa) was 1.5%. The total

(6.2)
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radial strain in the equalization stage and consolidation stage combined was very

similar in all tests.

Examination of Figs. 6.8 and 6.9 shows that in the early phase of the stage 63

was increasing at a much faster rate than el . This was to be expected from the

anisotropic nature of the soil as observed in the earlier equalization stage

(compression in the lateral direction was much higher than in the vertical direction).

As the stage progressed the radial strain rate decreased (see Fig. 6.9) whereas the

axial strain rate increased (see Fig. 6.8). The increase in rate of axial strain and the

decrease in rate of radial strain brought -The samples much closer to isotropic

straining by the end of the stage. The anisotropic history produced by the one-

dimensional compaction procedure was therefore gradually erased by continued

isotropic consolidation.

6.3 Swell-back stage

Eight of the ten tests involved swell-back at a suction of 100 kPa from a mean

net stress po. of 400 kPa to a lower mean net stress p: of 100, 200 or 300 kPa. The

exceptions were Test 9, which did not include a swell-back stage, and Test 8, which

involved swell-back to ic = 200 kPa but at a suction of 200 Oa (after a suction-

change stage).

The soil state parameters at the end of swell-back stage are shown for all tests

in Table 6.5.

6.3.1 Variation of specific volume

Fig. 6.10 shows the variation of v during the swell-back stage for all tests. The

vertical lines at end of all curves correspond to the rest period of 24 hours at the end

of the stage (to ensure complete equalization of pore water pressure throughout the

sample). The variation of v during the 24-hour rest period was much greater in Test 1
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di;	 ds 
dve = — K 	 Ks

p'	 s+ pat
(6.3)

than in any other tests, which might have been due to imperfect testing technique in

the first test.

From Fig. 6.10 the separation between curves is quite apparent. This reflects

the difficulty of accurately measuring absolute values of v, rather than changes in v.

However the slopes of the curves are reasonably consistent which implies that the

changes in v were accurately measured in all tests.

In the elasto-plastic model of Alonso, Gens and Josa (1990), as described in

Section 2.6.1.1, the elastic changes of v are given by

.0

where lc and Ks are elastic swelling indices with respect to changes of p' and s

respectively. In the swell-back stage, s was held constant and therefore the slope of

each curve in Fig. 6.10 gives a value for the elastic swelling index K.

Test 8 was the only swell-back stage conducted at s = 200 kPa and this gave a x

value of 0.022 All the remaining swell-back stages were conducted at a suction of

100 kPa, and these gave lc values ranging from 0.010 to 0.041 (see Table 6.4), with

an average of 0.025. There is therefore no strong influence of suction on the value of

K apparent in the data shown in Fig. 6.10 (any influence of suction is swamped by the

scatter between supposedly identical tests).

6.3.2 Variation of specific water volume

Fig. 6.11 shows the variation of specific water volume v„, with p' (with p' on a

logarithmic scale) for all tests. The vertical lines at end of all curves correspond to the

24 hour rest-period at the end of the stage. All tests except Test 8 should have been

identical at this stage, so the separation between the remaining curves in Fig. 6.11
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shows the difficulty of accurately measuring absolute values of vw . However the

slopes of all curves conducted at s = 100 IcPa are consistent, suggesting that changes

of vw were accurately measured in all tests.

By anology with Equation (6.2), the elastic variation of specific water volume

can be proposed as follows:

dve = —lc dP. — lc 	 ds
w PI	 sw s+pw

( 6.4)

where Kw and K elastic indices relating reversible changes of v., to changes

of p' and s respectively. For the eight tests at s = 100 kPa in Fig. 6.11 the values of

Kw varied between 0.010 and 0.041 (see Table 6.4), with an average value of 0.024.

For Test 8 (s = 200 kPa) lc, was -0.022. It follows that lc., can be negative or

positive, and Kw appears to decrease significantly with increasing suction. However

at this juncture this conclusion is based on evidence from a single test, and it must

therefore be somewhat tentative.

6.3.3 Axial and radial strains

Figs. 6.12 and 6.13 show, for all tests, the axial strain (6 1 ) and radial strain (63)

during the swell-back stage. From Figs. 6.12 and 6.13 the axial and radial strains are

negative, showing that the samples expanded during the swell-back stage, which was

to be expected. The slopes of all curves in Fig. 6.12 are very similar, suggesting

consistency of results. The curves in Fig. 6.13 also show excellent agreement

between tests. Test 1 showed a surprisingly high value of negative strain during the

final 24-hour rest period, which was probably due to membrane slippage (the pinning

method described in Section 5.2.3 was not employed in this test).
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It can be seen from Figs. 6.12 and 6.13 that the rates of change of e l and 83

were very similar i.e. both reached a value of about -0.25% when the swell-back was

carried out from 400 kPa to 200 kPa. This shows that the initial anisotropic

behaviour of the soil (caused by the one-dimensional compaction procedure) had

been virtually eliminated by subsequent isotropic loading during the ramped

consolidation stage.

6.4 Suction-change stage

Five tests involved a suction-change stage. Test 6 involved a reduction of

suction from 100 kPa to zero, whereas Tests 5, 7, 8 and 9 involved an increase in

suction from 100 kPa to 200 kPa. The suction-change was performed by adjusting

the pore water pressure manually at intervals, as described in Section 5.3.5.

Table 6.6 shows the soil state parameters at the end of the suction-change

stage. In tests involving a suction increase, Sr decreased very slightly. In Test 6

which involved a suction decrease to zero, full saturation was not achieved (S,.=98%

instead of 100%).

6.4.1 Variation of specific volume

Fig. 6.14 shows, for Tests 5, 6, 7, 8 and 9 the variation of specific volume v

with suction, with suction on a scale corresponding to the logarithm of suction plus

atmospheric pressure (see Equation 6.3). The direction of suction-change is shown

by arrows in the figure. The stepped shape of the curves was due to the fact that the

suction was adjusted manually in increments of 4 to 12 Oa (see Section 5.3.5).

From Fig. 6.14, for suction-increase tests (Tests 5, 7, 8 and 9) the elastic

parameter ics in Equation 6.3 varied between zero (Test 5) and 0.030 (Test 8), with

an average value of 0.014 (see Table 6.4). In these four tests in which the suction

was increased, the value of x-s seemed to increase with increasing p'. For the single
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suction-decrease test (Test 6), Ks was 0.053, which was significantly greater than

the values of ics found in the four suction-increase stages.

6.4.2 Variation of specific water volume

The variation of specific water volume v, 	 suction for tests involving a

suction-change stage (Tests 5, 6, 7, 8 and 9) is given in Fig. 6.15, with suction on a

scale corresponding to the logarithm of suction plus atmospheric pressure (see

Equation 6.4). From the results, it appears from the four suction-increase stages that

Ksn, increased with increasing p' (see Table 6.4). For example : at p' = 200 kPa, Ki.=

0 ( Test 5 ); at p' = 300 1cPa, lc in, = 0.032 (Test 7) ; and at p' = 400 kPa, 105,9 = 0.075

(average of Tests 8 and 9). For the single test with a suction-decrease stage (Test 6)

the value of K.,„ was 0.116 (at p' = 100 kPa). This value was much higher than the

value of K would have been expected at this value of p on the basis of the

suction-increase test results.

6.5 Isotropic re-loading stage

Three tests, at three different values of suction, were conducted with a final

isotropic re-loading stage (Aq/dp' = 0). The tests were conducted by increasing the

cell pressure, while holding suction constant at zero, 100 or 200 kPa. Tests 6, 3 and

5 were conducted at suctions of zero, 100 kPa and 200 respectively. The main

objective of these isotropic re-loading stages was to evaluate the yield points under

isotropic stress state conditions Po at three different values of suction.

6.5.1 Variation of specific volume

Fig. 6.16 shows the variation of specific volume v with mean net stress p' (with

pi plotted on a logarithmic scale) during the isotropic re-loading stage for Tests 3, 5
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and 6 . In Test 3 the suction was held at 100 kPa throughout all stages of the test,

whereas Test 5 involved a suction increase to 200 kPa and Test 6 involved a suction

decrease to zero. Test 3 was mistakenly terminated at p' = 400 kPa. The yield points

in Tests 5 and 6 were identified by following the procedure suggested by Casagrande.

The yield values of p' for Tests 6 and 5 were evaluated as 170 and 450 kPa

respectively, with an estimated precision of about ±10 kPa and ±20 IcPa respectively.

If Test 3 had been continued, yield would have been expected at p' = 400 kPa,

because the suction applied to the sample had been maintained at 100 kPa throughout

the consolidation, swell-back and isotropic re-loading stages, and the consolidation

stage involved loading to io = 400 kPa.

From the yield points shown in Fig. 6.16 it was possible to sketch in the s-p'

plane the position of the Loading-Collapse (LC) yield curve produced by the ramped

consolidation stage (see Fig. 6.17). The shape of the curve is such that the isotropic

yield stress p:, increases dramatically from the value at zero suction (p c,' (0)=170 kPa)

as suction is increased to about 100 kPa. However, for further increase of suction

above 100 kPa the additional increase of ic, is quite small, and there is suggestion

that the curve tends to an asymtotic value of p with increasing suction. This is

consistent with the model of Josa, Balmaceda, Gens and Alonso (1992) (see Section

2.6.3), which postulates that the yield curve reaches a maximum value of p'o with

increasing suction. Josa, Balmaceda, Gens and Alonso (1992) argued that p:, could

not increase indefinitely with increasing suction because there was a maximum

possible value of collapse on wetting.

6.5.2 Variation of specific water volume

The variation of specific water volume v„, with p' during the isotropic re-

loading stage of Tests 3 , 5 and 6 is shown in Fig.6.18. Test 5 shows a marked yield

point (following Casagrande's method) at about p' = 390 kPa. This value was lower

than the value of 450 kPa obtained from the plot of v versus Inil shown in Fig. 6.16.
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No yield point was apparent in Test 3 (s = 100 kPa), because the test was

prematurely terminated at p 1=400 kPa. Presumably yield would have taken place at

p' = 400 kPa had the test been continued further. Test 6 (s = 0) shows a peak in the

curve i.e. a change in slope of v 	 lnp' . This occurs at p' 130 kPa which is

somewhat lower than the yield value of p' (170 kPa) obtained from the v versus lnp'

plot shown in Fig. 6.16.

The value of K., (from the pre-yield section of the curve) for Test 5 (s=200

kPa), was found to be 0.007. This value clearly does not agree with the negative

value (Ku, = -0.023 measured during the swell-back stage of Test 8 conducted at a

suction of 200 kPa (see Section 6.3.2). The value of K., from the isotropic re-loading

stage for Test 3 was 0.010 (see Fig. 6.18). This value was less than one half of the

average value of Kw = 0.025 measured in the swell-back stage for Tests at s = 100

kPa.

For Test 6 the initial slope of the curve during the re-loading stage suggests a

negative value of tc., at s = 0. Note that full saturation of the sample was not

achieved despite the fact that the suction was zero (see Table 6.6). This lack of full

saturation was further supported by the fact that the change in lc was not equal to

the change in v during the isotropic re-loading stage. The saturation increased during

re-loading as a result of a larger reduction in v than the reduction in v.,. In fact the

measured absolute values of v and v., suggest that v was less than v., at the end of

re-loading stage. This was clearly impossible, because, for a fully saturated soil v=v„,

and the fact that v <lc implies S,>1. This contradiction therefore emphasizes the

difficulty in accurately measuring absolute values of v and v.,.

6.6 Shear stage conducted at constant cell pressure (Aq / Ap' =3)

Six fully drained shear tests were conducted with the cell pressure held

constant. Three tests were conducted at a suction of 100 kPa (Tests 1, 2 and 10) and
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the remaining three tests were conducted at a suction of 200 lcPa (Tests 7, 8 and 9).

Unfortunately Test 2 was unsuccessful, due to failure of the load cell, and Test 10

was therefore performed as a repeat of Test 2.

The objectives of conducting shear tests at constant suction and cell pressure

were as follow:

1) To investigate yielding under anisotropic stress states (q�0)

2) To investigate "elastic" shearing prior to yielding (i.e. evaluation of the

elastic shear modulus, G)

3) To investigate the form of the flow rule after yielding.

6.6.1 Performance of local strain gauges

Each soil sample was fully instrumented with local strain gauges (two axial

gauges and one radial gauge), to monitor the sample displacements in all stages of the

test. Of particular interest was the performance of these gauges in the early part of

the shear stage where the pre-yield behaviour of the soil was one of the main

concerns of the test programme.

Fig. 6.19 shows the variation of local axial strain from the individual axial

gauges and the radial strain from the local radial gauge for the shear stage of three

typical tests (Tests 4, 8 and 10) plotted against the corresponding external

measurement of axial strain. Note that Test 4 was a fully drained shear stage

conducted at contant p' (see Section 6.7) at a suction of 100 kPa, whereas Tests 8

and 10 were constant cell pressure shear tests conducted at suctions of 200 kPa and

100 kPa respectively. Generally the axial strains given by the two axial gauges in

each test were very similar, suggesting that relatively little tilting of the sample

occurred. However the use of two axial gauges (positioned diametrically opposite

each other on the sample) can detect tilting of the sample only within one plane, and

tilting cannot be observed in the vertical plane orthogonal to the plane containing the
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axial gauges. This technique could be improved by having four axial gauges mounted

on the sample, but this would have complicated the test procedure given the size of

the sample and size of the triaxial cell.

At axial strains greater than about 2% the percentage difference between the

average local strain and the external axial strain was quite small (see Fig. 6.19),

suggesting that external measurement of axial strain is adequate at large strains. The

significant advantage of the local axial gauges was the improved accuracy during the

early part of the shear stage and the elimination of bedding errors, as shown in Fig.

6.20 for two typical tests (Tests 9 and 10). In Test 9 there was relatively little

bedding error, but the initial stiffness of the sample would have been considerably

under-estimated by the use of external strain measurement. In Test 10 the external

strain measurement also involved a significant bedding error (about 0.4% axial strain)

together with an under-estimate of the yield value of q (by about 11 kPa).

6.6.2 Stress-strain curves

The stress-strain curves for the five successful shear tests conducted at constant

cell pressure are shown in Figs. 6.21 and 6.22. Fig. 6.21 shows the deviator stress q

plotted against the axial strain s1 for the complete set of tests, with 6-, based on the

average of the two local strain gauge measurements. Fig. 6.22 shows q plotted

against the shear strain sir , with cs calculated from Equation 5.4. The apparent

increase in stiffness at an axial strain of about 2.5% observed for all tests in Figs. 6.21

and 6.22 was due to the tenfold increase in axial strain rate applied at this point.

The erratic nature of the early part of stress-strain curves for Test 1 (see Figs.

6.21 and 6.22) was attributed to membrane slippage, because this test was conducted

before the introduction of the procedure of pinning the feet of the local strain gauges

(see Section 5.2.3). Inspection of Figs. 6.21 and 6.22 shows an initially stiff response

in shear, with more than 50% of the maximum deviator stress achieved in less than
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2.5% axial strain. The shear stiffness then decreased significantly. This general

behaviour is consistent with expectations, with the initial stiff response corresponding

to 'elastic' behaviour inside the yield surface and the reduction of stiffness

corresponding to the onset of plastic strains on reaching the yield surface.

Inspection of Figs. 6.21 and 6.22 shows that all samples except Test 7 reached

a maximum value of deviator stress prior to termination of the test (when the limit of

travel was reached). This maximum value of deviator stress occurred at an axial

strain of 15 to 20% . The maximum value of q generally increased with both the

mean net stress at the start of shearing p 	 the suction s . This was consistent

with expected behaviour for unsaturated soil (see Equation 2.21).

In Tests 8 and 10 there was a significant post-peak reduction of deviator stress,

and it is unclear whether this would also have occurred in the other tests if it had

been possible to continue them to higher strains. In general, true critical states were

not achieved. The critical state behaviour had, however, already been investigated by

Sivakumar (1993), and it was not the main area of study within the current project.

6.6.3 Specific volume and specific water volume

Fig. 6.23 shows the specific volume v plotted against the mean net stress p'

(with p' on a logarithmic scale) for the five successful shear stages conducted at

constant cell pressure. The effects of membrane slippage are again apparent in the

erratic nature of the curve for Test 1. All five curves show an initially stiff volumetric

response (with only small reductions of v for a given increase of In p') and then the

suggestion of yielding, as the compression of the samples increased significantly.

Tests 8 and 10, which were continued through post-peak reductions of deviator

stress (see Figs. 6.21 and 6.22), finally show a sudden increase of v. This was

probably caused by the formation of shear planes, such that the local strain gauges
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gauges no longer gave true readings of the sample displacements. This invalidates the

use of local strain gauges at higher strains.

Fig. 6.24 shows the variation of specific water volume for five successful shear

stages conducted at constant cell pressure. Tests 1 and 10 involved shearing at a

suction of 100 kPa, whereas Tests 7, 8 and 9 involved shearing at a suction of 200

kPa. In Tests 1 and 10, there was very little change of v., during most of the shear

stage, except towards the end where there was an increase in v 	 about 0.01.

In Tests 7, 8 and 9 there was a reduction in v  ranging from 0.025 (Test 7) to

0.050 (Test 9), indicating that water was expelled from the samples during the shear

stage (see Fig. 6.24).

6.6.4 Identification of yield points

To assist in the identification of the yield points, the stress-strain curves for

the initial part of each test (up to an axial strain of 2.5%, when the strain rate was

increased tenfold) were plotted to enlarged scales. Fig. 6.25 shows a plot of deviator

stress q versus axial strain s i and Fig. 6.26 shows q versus shear strain ss . Fig. 6.27

shows specific volume v versus mean net stress p' (with p' on a logarithmic scale).

Various other plots were also investigated, including p' versus volumetric strain ci,

(with p' on a linear scale) and stress increment 801 versus energy per volume W (as

recommended by Graham, Noonan and Lew (1983) (see Section 2.8). It was

however found that yield was even more ambigious in these additional plots than it

was in the curves shown in Figs. 6.25 to 6.27.

The erratic nature of the curves for Test 1 in Figs. 6.25 to 6.27 clearly shows

the effects of membrane slippage, and identification of a yield point was therefore

impossible for this test. For the remaining four tests, yield points were identified by

approximating the stress-strain curves in Figs. 6.25 and 6.26 to two linear sections,

and by using a Casagrande construction in Fig. 6.27. The change from a stiff
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response to a less stiff response was not always indicated by a sharp change in the

slope of the graphs, and identification of the yield points was therefore subject to a

considerable degree of uncertainty. This was particularly true for the q versus Si or

es plots for Tests 7 and 9 (see Figs. 6.25 and 6.26).

Yield values of deviator stress qy and mean net stress p; were calculated from

Fig. 6.25 (q versus 6.1 ) and Fig. 6.27 (v versus in p') and these are listed in Table

6.7. Final values of qy and p; were then calculated by averaging the two

independent sets of values (see Table 6.7). Yield values from Fig. 6.26 (q versus es)

were not included in this averaging process, because these essentially duplicated the

values from Fig. 6.25 The final values of qy and p; were considered to have

precisions of about ± 15 kPa and ± 5 kPa respectively.

6.7 Shear stage at constant mean net stress

In the experimental programme an attempt was made to conduct a fully

drained shear test at constant p' and Test 4 was designated for this purpose. The test

was performed under stress control, and the cell pressure was reduced at half the rate

at which the axial stress was increasing (calculated from the applied rate of pressure

increase to the lower chamber of the triaxial cell, see Section 5.3.6). Fig. 6.28 shows

the stress path actually achieved in Test 4. Due to friction on the loading ram, there

were considerable fluctuations from the desired path (no feedback control was

available to maintain p' exactly constant, see Section 5.3.6). As a result, p' varied by

as much as 10 kPa from the target value of 300 kPa. Even worse, there were large

step increases of q (of up to 25 kPa) and several periods when q reduced

temporarily. It was therefore decided that no further tests of this type should be

conducted.

The variation of deviator stress q with axial strain El during Test 4 is shown in

Fig. 6.29. The large step increases of q and the minor reductions of q are apparent in
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the graph. The variation of q with el and e 	 the early part of the test (up to el

= 2.5%) is shown in Fig. 6.30 on an enlarged scale. The yield point was identified

from Fig. 6.30 in the usual way, and corresponding yield values qy and p; are

tabulated in Table 6.7.

Fig. 6.31 shows the variation of v and v the shear stage of Test 4,

plotted against the deviator stress q (with q on a logarithmic scale). The initially stiff

volumetric response followed by more significant compression suggests a yield point

at a deviator stress of about 100 kPa (consistent with the value calculated from Fig.

6.30). The rapid increase of v at the end of the shear stage presumably corresponded

to the formation of a shear plane, such that the local strain measurements became

unreliable.

6.8 Yield surface

The estimated values of qy and p; for each test from Table 6.7 were used to

plot constant suction yield curves in the q : p' plane at suction values of 100 and

200 kPa, together with a single isotropic yield point p o. (o) at zero suction (see Fig.

6.32). From Fig. 6.32 it can be seen that the yield curves at suction values of 100

and 200 kPa are both approximately elliptical in shape, with the p' axis forming one

axis of the ellipse. This agrees well with the models of Alonso, Gens and Josa (1990)

and Wheeler and Sivakumar (1995) which were based on elliptical yield curves at

constant suction (see Sections 2.6.1.2 and 2.6.5). The shape is also consistent with

the behaviour of an isotropic material. This confirms the earlier observations that the

anisotropic nature of the soil produced by the compaction process had been

eradicated by subsequent isotropic ramped consolidation and swell-back.

Expansion of the curve with increasing suction was greater when the suction

was increased from zero to 100 Oa than it was when the suction was increased from

100 to 200 Oa. This is consistent with the model of Josa, Balmaceda, Gens and
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Alonso (1992) which suggested that expansion of the yield curves could not continue

indefinitely with increasing suction (see Section 2. 6.4).

Figs. 6.17, showing the LC yield curve in the s:p' plane from the isotropic re-

loading stage, and 6.32, showing the yield curves in the q:pl plane at different suction

values, can be combined to form the complete yield surface for the compacted kaolin

sample. This surface in p': q : s space, which defines the limits of 'elastic' behaviour

for soil samples isotropically consolidated to p' ,, = 400 kPa and so= 100 kPa, is

shown in Fig. 6.33. This form of yield surface is in qualitative agreement with the

models of Alonso, Gens and Josa (1990) and Wheeler and Sivakumar (1995).

6.9 Shear modulus

The shear modulus G was evaluated by assuming an isotropic behaviour of the

soil within the linear 'elastic' region at the beginning of the shear test on the q versus

es plot. This required an even more enlarged plot of q versus es , up to a shear strain

of about 0.2% (see Fig. 6.34). The slope of the initial linear portion was equal to 3G,

and the values of G obtained from Tests 4, 7, 8, 9 and 10 are shown in Table 6.4.

The measured values of G are plotted against the initial value of mean net stress

at the beginning of the shear stage p'o in Fig. 6.35. The results show considerable

scatter but, from the tests at s = 200 kPa, there was evidence of an increase in G

with increasing mean net stress. Comparing the results at s = 100 kPa with those at s

= 200 kPa it was unclear (because of the scatter) whether the change of suction had

any influence on the value of G.

6.10 Flow rule

The flow rule represents the relationship between the yield curve and the

direction of the plastic strain increment vector. To obtain the direction of the plastic

strain increment vector after yielding, plots of q versus Es and p' versus 6 were
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used. The elastic shear strain increment 84 and the plastic shear strain increment 3e'

were evaluated from the q versus es plot, whereas the elastic volumetric strain

increment 6e: and the plastic volumetric strain increment 84 were evaluated from

the p' versus Ey plot. The method is illustrated in Fig. 6 .36 for Test 8.

Fig. 6. 36 (a) shows the variation of q with es plotted on a large scale (up to

2.5% shear strain). X is the yield point determined earlier and OX is the initial linear

('elastic') part of the curve extended upward. An increment of deviator stress dq was

then selected (which in this example was 30 kPa), denoted by the line AX. A

horizontal line ABC was drawn through A to meet the projected initial linear part of

the curve at B and the straight line approximation of the plastic part of the curve at

C. AB then represented 84 and BC represented 864:. Similar techniques were used

to evaluate 84 and 84 (see Fig. 6. 36 (b)), with the interval of dp' taken as dq13

(10 kPa in Fig. 6. 36 (b)).

By using the values of plastic strain increments calculated as described above,

the plastic strain increment vectors for the successful shear tests (Tests 4, 7, 8, 9 and

10) were superimposed on the relevant yield curve, with the components OesP and

8‹, aligned with q and p' respectively (see Fig. 6.37).

The plastic strain increment vectors for isotropic re-loading tests (Tests 5 and

6) were inclined slightly upward, because small plastic shear strains occurred after

yielding for these tests. This was true even though the samples were only subjected to

isotropic loading during the final re-loading stage. For Test 3 however the direction

of 84, was not available because the test was mistakenly terminated at p' = 400 kPa

and no investigation of the plastic strain increment vectors was possible. The yield

point of 400 kPa for Test 3 was assumed rather than measured in the test (see Fig.

6.17).

It can be seen in Fig. 6.37 that the total plastic strain increment vectors Se" at

each yield point, were approximately perpendicular to the yield curve, indicating that

the flow rule was associated.
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Test	 no. v w (%) Sr (%) v,,,

1 2.159 24.00 54.9 1.636

2 2.146 23.99 55.5 1.636

3 2.176 24.58 55.4 1.651

4 2.135 25.35 59.2 1.672

5 2.098 25.30 61.1 1.671

6 2.137 24.01 55.9 1.636

7 2.149 24.79 57.7 1.663

8 2.153 24.63 56.6 1.653

9 2.118 25.30 59.0 1.671

10 2.123 25.22 59.5 1.668

Table 6.1 : Soil state parameters after compaction

Test no. p' (IcPa) s (kPa) v w (%) Sr (%) v,,,

1 49.7 100.1 2.155 31.94 73.1 1.846

2 48.3 100.3 2.176 31.40 70.8 1.832

3 50.5 100.1 2.213 31.51 68.8 1.835

4 48.1 100.0 2.150 30.54 70.4 1.809

5 50.0 100.2 2.106 29.44 70.5 1.780

6 152.1 99.9 2.013 31.05 81.2 1.823

7 151.6 99.4 2.041 31.83 81.1 1.844

8 100.0 100.5 2.127 30.52 71.8 1.809

9 198.4 100.6 2.004 30.47 80.5 1.808

10 48.4 101.0 2.131 30.61 71.7 1.811

Table 6. 2 : Soil state parameters at end of equalization stage



Test no. p' (kPa) s (1cPa) v w (%) Sr (%) v w

1 400.6 100.0 1.928 32.57 93.0 1.863

2 400.7 100.2 1.963 31.12 85.6 1.825

3 401.2 99.5 1.940 32.36 91.2 1.858

4 400.1 100.3 1.918 31.12 89.9 1.825

5 399.2 100.1 1.854 30.66 95.2 1.812

6 402.4 99.7 1.876 30.78 93.1 1.816

7 400.8 99.5 1.901 31.58 92.9 1.837

8 398.9 100.4 1.948 29.86 83.5 1.791

9 402.4 98.7 1.936 30.15 85.4 1.800

10 398.6 101.0 1.928 30.07 85.8 1.797

Table 6. 3 : Soil state parameters at end of ramped consolidation stage

Test no Ramped consolidation Swell-back Suction-change

K, K

Shearing

(MPa)X(s) N(s) a(s) A(s) x Kw

1 0.133 2.105 - - 0.023 0.023 - - -

2 0.127 2.136 0.018 1.852 0.041 0.041 - - -

3 0.169 2.168 - - 0.029 0.025 - - -

4 0.142 2.110 0.006 1.835 0.021 0.015 - - 28

5 0.148 2.067 - - 0.015 0.010 0.000 0.000 -

6 0.148 2.082 0.018 1.841 0.029 0.027 0.053 0.116 -

7 0.135 2.106 0.024 1.869 0.010 0.025 0.009 0.031 41

8 0.130 2.131 0.048 1.859 0.022 -0.022 0.030 0.032 27

9 0.102 2.078 0.028 1.838 - - 0.017 0.117 117

10 0.122 2.097 0.039 1.850 0.034 0.026 - - 53

Table 6. 4 : Soil constants obtained from all stages of tests



Test no. pi (kPa) s (1cPa) v w (%) Sr (%) lc

1 200.2 99.5 1.948 33.13 92.6 1.878

2 299.7 100.0 1.975 31.56 85.8 1.837

3 199.4 100.4 1.960 33.02 91.2 1.875

4 299.3 100.5 1.924 31.28 89.7 1.829

5 199.3 100.5 1.864 30.81 94.5 1.816

6 100.0 98.4 1.916 32.21 93.1 1.854

7 299.5 99.7 1.905 31.85 93.3 1.844

8 200.9 200.5 1.936 28.11 79.6 1.745

9 No swell-back done in this test

10 301.5 100.4 1.937 30.34 85.8 1.804

Table 6.5 : Soil state parameters at end of swell-back stage

Test no p' (kPa) s (kPa) v w (%) S ' , (%) 11,9

1 No suct'on change done

2 No suction change done

3 No suction change done

4 No sucf on change done

5 201.2 198.8 1.864 30.81 94.5 1.817

6 49.8 0.4 1.953 35.24 98.0 1.934

7 300.1 199.5 1.901 31.37 92.3 1.831

8 400.3 200.5 1.951 27.41 76.4 1.726

9 399.3 201.0 1.927 29.66 84.8 1.786

_	 10 No suction change done

Table 6.6 : Soil state parameters at end of suction-change stage



Test Suction From q versus el From v versus lnp' Average

no. (IcPa) p' y (Oa) qy (kPa) iy(cPa) qy (kPa) p' y (cPa) qy(kPa)

1 100 - - - - Membrane slippage

2 100 - - - - Load cell failure

3 100 - - 400 0 400 0

4 100 300 98 - - 300 98

5 200 - - 450 0 450 0

6 0 - - 170 0 170 0

7 200 335 105 336 108 336 107

8 200 250 150 254 162 252 156

9 200 425 75 425 75 425 75

10 100 330 90 322 66 326 78

Table 6.7 : Yield points from re-loading / shear stage



CHAPTER 7

DISCUSSION

7.1 Position of LC yield curve after compaction

The initial position of the LC yield curve, after compaction, identified from the

equalization stage of the tests, is sketched again in Fig. 7.1, together with the stress

paths employed during the equalization stages. Also shown in Fig. 7.1 is the initial

position of the LC yield curve calculated by Wheeler and Sivakumar (1995) for the

same speswhite kaolin and the same compaction procedure. The yield curve of

Wheeler and Sivakumar (1995) was based on the theoretical yield curve expression

given by Equation 2.39, with the values of the soil parameters X(s), N(s), lc and ics

taken from the tests of Sivakumar (1993), and the value of the intercept po. (o) of the

curve with the p' axis selected so as to fit the experimental yield points of Sivakumar

(1993). From Fig. 7.1 it can be seen that the initial position of LC yield curve

obtained from the equalization stage of the current tests was in excellent agreement

with the initial position of the yield curve calculated by Wheeler and Sivakumar

(1995). In fact, the initial position of the yield curve calculated by Wheeler and

Sivakumar (1995) fits all the experimental observations of the current series of tests

(see Section 6.1.2), in that it passes just outside point C but inside points E, G and I,

and if extended to higher values of suction it would almost certainly pass outside

points B and D but inside points F and H. This excellent agreement on the initial

position of the LC yield curve produced by the compaction procedure is very

pleasing.

The results from the equalization stage only gave the approximate position of

the yield curve. It was possible to say that the yield curve passed outside points B, C

and D in Fig. 7.1 and inside points E, F, G, H and I, but it was not possible to locate

exactly any points on the yield curve. This was because the reduction of suction
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during equalization was achieved by applying a single step change of suction to the

sample boundary (see Section 5.3.5). This step change of suction on the sample,

boundary resulted in a highly non-uniform distribution of suction within the sample

as illustrated in Fig. 7.2. The pore air pressure inside the sample quickly reduced to

the air back pressure value applied at the top of the sample, due to the high air

permeability, whereas the pore water pressure took much longer to increase to the

water back pressure value applied at the base of the sample, because of the relatively

low water permeability. During the wetting process the suction reduced most rapidly

at a point such as C (Fig. 7.2), close to the base of the sample, and most slowly at a

point such as A, at the top of the sample. At intermediate times during wetting, the

suction was therefore greatest at A and least at C. This variation of suction

throughout the sample meant that it was impossible to identify, on a given wetting

stress path, a particular value of suction at which the yield curve was reached and

swelling was replaced by collapse.

The yield points during the wetting stage could have been precisely identified

by gradually reducing the suction applied to the sample boundary, at a constant rate,

rather than reducing it in a single step. A gradual decrease in suction would have

required that the water back pressure u. was increased at a constant rate, slow

enough to ensure equalization of suction throughout the sample. This procedure

would have been somewhat similar to the ramping of cell pressure during the

ramped consolidation stage as described in Section 5.3.3. However this option of

gradually reducing the suction was not selected , because of two factors :

a) Lack of time. This method of suction reduction would have taken much

longer to perform than a single step reduction of suction, thus reducing the

number of tests that could have been performed within the available

research time ;

b) Lack of appropriate test apparatus. A gradual reduction of suction would

have required automatic control of the water back pressure us,, via an
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additional GDS controller or a computer-controlled stepper motor. This

facility was not available for the present research work.

7.2 Normal compression lines

The data from the ramped consolidation stage were used to define the normal

compression line for v at a suction of 100 kPa, as described in Section 6.2.1. Fig. 7.3

shows the normal compression line for v from the present tests and also the

corresponding data from five tests conducted by Sivakumar (1993) at a suction of

100 1cPa.

The most obvious difference between the curves from the present tests and

those from Sivakumar's tests is the much larger spread in the data from the current

tests (covering a range of v of about 0.1 at any given value of p', compared to 'a

range of v of only about 0.02 in Sivakumar's tests). This increased scatter in the data

from the current tests could represent either greater variation between samples than

occurred in Sivakumar's tests or greater measurement errors than in Sivakumar's

tests. Each of these possibilities is now considered.

There is clear evidence of greater variation between samples in the present

tests than in Sivalcumar's tests, resulting from poorer control of the original

compaction procedure. Table 6.1 shows that the compaction water content varied

from 23.99% to 25.35% in the present tests (a range of 1.36%), whereas it varied

from 24.08% to 24.85% in Sivakumar's tests (a range of only 0.77%). Even more

significant, in the present tests the specific volume v after compaction varied from

2.098 to 2.176 (a range of 0.078) and the degree of saturation Sr varied from 54.9%

to 61.1% (a range of 6.2%), whereas in Sivakumar's five tests, v varied from

2.195% to 2.213 (a range of only 0.018) and Sr varied from 53,0% to 55.1% (a

range of only 2.1%). This suggested that the compactive effort and the compaction

procedure, as well as the compaction water content, were much better controlled in
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Sivakumar's tests than in the present tests. The reasons for the poorer control of

compaction procedure in the present tests are uncertain. Clearly this greater

variability between samples may be responsible for much of the increased spread in

the data shown in Fig. 7.3.

There is also a suggestion that the values of specific volume v were less

accurately measured in the present tests than in Sivalcumar's tests. The fundamental

difference in the measurement of sample volume change between the present tests

and that of Sivakumar's tests was the use of local strain gauges mounted on the

samples. Two Imperial College axial displacement gauges and a custom-built radial

displacement gauge were used in the present tests to measure the individual axial and

radial strains and hence the sample volume change as explained in Section 5.5. In

contrast, Sivakumar (1993) used a double-walled triaxial cell to measure the sample

volume change of the sample (see Section 2.7.4.1). In this method the volume of

water leaving or entering the inner cell gave a direct measurement of the sample

volume change. The use of the double-walled cell in the measurement of sample

volume change was superior to the employment of local strain gauges, because it was

accurate at any value of strain and irrespective of the shape of the deformed sample.

Sivakumar (1993) reported that absolute values of specific volume v were measured

to an accuracy of about ±0.01 and this was borne out by the low level of scatter in

his test data in Fig. 7.3 . In contrast, the values of v measured in the present tests

were affected by errors arising from any non-uniform deformation of the sample

("barrelling" or "hour-glassing") caused by lateral restraint imposed by friction at the

top and bottom platens. Although an attempt was made to correct these errors by

adjusting the measured axial and radial strains by using a correction suggested by

Moore (1966), this correction was imperfect, because it was based on an assumption

of elastic behaviour. Any errors caused by non-uniform deformation during the initial

equalization stage would, of course, affect the values of v measured at the start of

the ramped consolidation stage.
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Although the spread of the data was much greater in the present tests than in

Sivalcumar's tests, inspection of Fig. 7.3 shows that a normal compression line drawn

as the average of the present test data would show reasonable agreement with

Sivakumar's results. From the present tests the average value of the intercept N(s) of

the normal compression line (see Equation 6.1) was 2.108, whereas the

corresponding average value from Sivakumar's tests (at a suction of 100 kPa) was

2.122, a difference of only 0.014. The average value of the slope X(s) of the normal

compression line was 0.136 in the present tests and 0.182 in Sivakumar's tests at s =

100 kPa. This difference in the average value of X(s) seems substantial, but

inspection of Fig. 7.3 suggests that much of the apparent difference is due to the

higher range of stresses covered in the present tests. The normal compression line of

v versus the logarithm of p is actually gently curved (see Fig. 7.3) and the measured

value of X(s) therefore decreases at higher values ofp'.

7.3 Elastic behaviour

The values of the elastic indices K,Ks ,Kw ,Ksw and G are shown, for all tests, in

Table 6.4.

7.3.1 Elastic variation of specific volume

Equation 6.3, involving the elastic indices lc and Ks, was proposed by Alonso,

Gens and Josa (1990) to represent the elastic variation of v. Values of lc were

obtained from the swell-back stage of all tests at s = 100 kPa except in Test 8 where

K was obtained from the swell-back stage at s = 200 kPa and Test 9 where there was

no swell-back stage. From the results shown in Table 6.4 the average value of lc was

0.025 and no significant variation of lc with s was apparent (within the limited range

of suction values tested) (see Section 6.3.1). This was consistent with the model of

Alonso, Gens and Josa (1990), where lc was taken as constant and independent of
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suction. Although Alonso, Gens and Josa (1990) reported that there might be some

dependence of lc on s, this aspect of soil behaviour was not considered, so as to keep

the model as simple as possible.

Values of Ks were measured during the suction-increase stage of four tests,

and these values of Ks were found to increase with increasing p' (see Section 6.4.1).

For example: in Test 5 (p' = 200 kPa), Ks = 0.000 ; in Test 7 (p' = 300 kPa), Ks =

0.009 and in Tests 8 and 9 (p' = 400 kPa), Ks = 0.023 (average of Ki3 values from

Tests 8 and 9). This variation of Ks with p' while lc remained independent of s

contradicted the requirement for conservative behaviour in the elastic region (no

permanent change of v for a closed stress path remaining inside the elastic region).

For conservative behaviour in the elastic region if x did not vary with s, then Ks

should not vary with p'. This departure from conservative behaviour is illustrated in

Fig. 7.4. A closed stress path ABCDE in the s : p' plane is shown in Fig. 7.4 (a), and

the corresponding changes of v are shown in Fig. 7.4 (b) if x is independent of s, but

Ks increases with increasing p' (such that the decrease of v along CD is greater than

the increase of v along AB). The end result is a net reduction of v on completing the

closed stress path (compare final point E with initial point A in Fig. 7.4 (b)). This

lack of conservative behaviour indicates that the soil behaviour may not be truly

elastic even for stress paths which remain inside the "yield surface".

For the single test subjected to a suction-decrease stage (Test 6) the value of

Ks was 0.053. This value was considerably higher than any of the Ks values obtained

from the suction-increase stages. This suggests that an additional (plastic)

component of swelling may occur on first wetting, and this is not recovered on

subsequent drying. Exactly this form of behaviour was proposed in the elasto-plastic

constitutive model for highly expansive soils developed by Gens and Alonso (1992)

(see Section 2.6.4).

7.3.2 Elastic variation of specific water volume
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Equation 6.4, involving the elastic indices cs, and ics„„ was proposed to

represent the elastic variation of v., . This was a new equation, not included in the

constitutive models of Alonso, Gens and Josa (1990) and Wheeler and Sivakumar

(1995). Results from the tests (see Table 6.4) showed that the average value of K.

from the swell-back stages was 0.024 at a suction of 100 kPa. For the single test

with swell-back at s = 200 kPa (Test 8) the value of Kw was -0.022, suggesting that

K., decreased significantly (from a positive to negative value) with increasing s.

However at this juncture this finding was rather inconclusive due to insufficient data

from a single test.

Values of K measured during the suction-change stage, and ic,„ was

found to increase with increasing p'. For example : in Test 5 (p' = 200 Oa), Ks., =

0.000 : in Test 7 (p' = 300 1cPa), Ks. = 0.031 and in Tests 8 and 9 (p' = 400 Oa),

Ki., = 0.074 (average from Tests 8 and 9). A decrease of K w with increasing s

combined with an increase of K with increasing p' contravened, once again, the

requirement for conservative elastic behaviour( no net change of v., for a closed

stress path). This is illustrated in Fig. 7.4 (c). This lends further support to the

suggestion that the soil behaviour is not truly elastic even for stress paths remaining

inside the "yield surfaceTM.

The value of Ks,, from the single suction-decrease stage (Test 6) was, at 0.116,

considerably higher than the value that would have been expected at this value of p'

(100 kPa) from the suction-increase tests. This, again, is consistent with the

suggestion of an additional plastic component of deformation on first wetting, as

proposed in the model of Gens and Alonso (1992).

For tests subjected to isotropic re-loading (see Section 6.5) the value of Kw

from the pre-yield section of the re-loading curve for Test 5 (s = 200 kPa) was 0.007

(see Fig. 6 18). This value was very different to the Kw value of -0.022 obtained

from the swell-back stage of Test 8 (s = 200 kPa). For Test 3, which was subjected

to isotropic re-loading at s = 100 kPa, the value of Kw during the pre-yield section of
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the re-loading curve (see Fig. 6.18) was about 0.011. This value was less than half

of the average Kw value of 0.024 obtained from the swell-back stages conducted at s

= 100 kPa (see Table 6.4). This all adds further weight to the conclusion that the soil

behaviour is not truly elastic even for stress paths remaining inside the "yield

surface".

7.3.3 Elastic shear modulus

The variation of shear modulus G with p' and s in the five successful shear tests

was shown in Fig. 6.35. At a suction value of 200 kPa, G was found to increase with

increasing p'. Any variation of G with suction was difficult to determine, because of

the large amount of scatter at s = 100 kPa (see Fig. 6.35). The results shown in Fig.

6.35 can be compared with the results of Cui (1993) from suction-controlled triaxial

tests on Jossigny silt, shown in Fig. 7.5. Cui (1993) found that G increased with

increasing p' and with increasing s, despite the scatter in his results. Allowing for the

scatter, the variation of G from the present tests, shown in Fig. 6.35, was consistent

with Cui's conclusion that G increased with increasing p' and s. Because of the

scatter it was not possible to propose an exact form of the variation of G with p' and

5-

7.4 Yield surface and flow rule

The yield curves in the q : p' plane, identified from the re-loading/shear stages,

were shown in Fig. 6.32 for suctions of 100 and 200 Oa, together with the isotropic

yield point at zero suction p:,(o). The entire yield surface in q:p':s space was shown

in Fig. 6.33. From Fig. 6.32 the constant suction yield curves were approximately

elliptical in shape, with one axis of the ellipse coinciding with the p' axis. This

supported the suggestion that the samples were isotropic by the time the shear stage

was performed; the anisotropic history of the sample induced by the one-dimensional
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compaction procedure having been gradually erased by subsequent isotropic

consolidation and swell-back. The elliptical shapes of the yield curves fitted well with

the constitutive models proposed by Alonso, Gens and Josa (1990) and Wheeler

and Sivakumar (1995).

In contrast, the constant suction yield curves obtained by Cui (1993) from his

shear tests on unsaturated compacted samples of Jossigny silt were asymmetric and

aligned along the K0 -line, as shown in Fig. 7.6. Yield curves were shown for

suctions of 200, 400, 800 and 1500 kPa. In his tests Cui (1993) used a one-

dimensional compaction procedure to produce samples which were then sheared,

without isotropic consolidation to virgin states and subsequent swell-back. This

resulted in highly anisotropic samples during the shear stage. The asymmetric yield

curves shown in Fig. 7.6 reflect this anisotropy, and they are of similar shape to those

observed for anisotropic saturated soils (see for example, Ohta and Wroth (1976),

Tavenas and Leroueil (1977) and Graham, Crooks and Lau (1988)).

The plastic strain increment vectors calculated from the post-yield sections of

the re-loading / shear stages of the current tests were shown in Fig. 6.37

superimposed upon the constant suction yield curves. The directions of the plastic

strain increment vectors were found to be approximately perpendicular to the yield

curves, suggesting that the flow rule was associated. This agreed with the proposal

of Wheeler and Sivakumar (1995), who adopted an associated flow rule in their

elasto-plastic model. In contrast Alonso, Gens and Josa (1990) suggested a non-

associated flow rule in their model.

Fig. 7.7 shows the plastic strain increment vectors from the shear tests of Cui

(1993) on unsaturated, compacted Jossigny silt, superimposed on the corresponding

yield curve. Results are shown only for a suction of 1500 kPa, but these are typical

of all the values of suction tested by Cui (1993). The results suggest that, for this

material, the flow rule was non-associated, because the direction of the plastic strain

increment vectors showed large departures from right angles to the yield curves.
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This fundamental difference between Cui's results and those from the present tests

was presumably due to the anisotropic nature of the soil samples tested by Cui

(1993). In the present tests the anisotropy of the soil was gradually erased by

subsequent isotropic consolidation and swell-back.

7.5 Overall variation of v and v,,,

Figs. 7.8 (a) to 7.8 (j) , show, for each test, the variation of v and v 	 pi

(with p on a logarithmic scale) for the entire test. The variation of v is shown as a

solid line whereas the variation of v 	 shown as a dotted line. The complete stress

path in p':q: s space for the individual test is shown in the inset. From Figs. 7.8 (a)

to 7.8 (j) it can be seen that the changes in v were qualitatively consistent with the

predictions of the elasto-plastic models of Alonso, Gens and Josa (1990) and

Wheeler and Sivakumar (1995). Of course these existing models did not predict the

variation of v., . The observed variation of v is qualitatively related to the model

predictions in the following sections.

7.5.1 Test 1

During the equalization (wetting) stage AC of Test 1 (at pe' = 50 kPa) there

was initially a small increase in v (see Fig. 7.8 (a)) corresponding to elastic swelling

inside the LC yield curve. This was followed by a small reduction in v, corresponding

to a small amount of plastic 'collapse' (because there was a small expansion of the

yield curve in reaching stress point C).

During the isotropic consolidation stage CD the soil yielded almost

immediately (as expected if point C was already on the newly expanded yield curve).

The soil then followed the isotropic normal compression line for this value of

suction, with a slope of X(s). The resulting large (plastic) reduction of v

corresponded to expansion of the yield curve.
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During the swell-back stage DE the soil swelled elastically (the stress path

coming back inside the yield surface), with an elastic compressibility lc much lower

than the plastic value X(s).

During shear stage EF the results were spiky, due to membrane slippage.

Despite this, it can be seen that the initial response of the soil was elastic with the

v:ln p' plot having a slope lc (identical to that from swell-back stage). The soil then

yielded and a much larger plastic reduction of v occurred. Yield occurred on the

elliptical yield curve in the q:p' plane, at a value of p' much lower than the value of

400 kPa that would have occurred under isotropic re-loading.

7.5.2 Test 2

Test 2 was badly affected affected by membrane slippage (see Fig. 7.8 (b)).

The equalization (wetting) stage AC (conducted at p: --= 50 kPa) was heavily

obscured by slippage. However it can be seen that there was a small net increase in v

corresponding to elastic swelling inside the yield curve.

During the isotropic consolidation stage CD there was substantial compression

of the soil with the large (plastic) reduction of v corresponding to expansion of the

yield curve.

During the swell-back stage DE the sample moved back inside the elastic

region, with an elastic compressibility K much lower than the plastic value X(s).

The shear stage for Test 2 was unsuccessful due to the failure of load cell.

7.5.3 Test 3

The results for Test 3 are shown in Fig. 7.8 (c). During the equalization

(wetting) stage AC (conducted at p'e = 50 kPa) there was an increase in v,
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corresponding to elastic swelling of the soil inside the LC yield curve. No

subsequent collapse was observed during the later phase of the stage.

During the isotropic consolidation stage CD there was a slight delay in

yielding, indicating that point C was just inside the yield curve. This was then

followed by a substantial (plastic) reduction in v, corresponding to expansion of the

yield curve. The soil followed the normal compression line with virgin

compressibility 2(s).

During the swell-back stage DE the stress path moved back elastically inside

the yield surface with an elastic constant lc much lower than the plastic value 2(s).

During isotropic re-loading, the stage was mistakenly terminated at p' = 400

kPa. The initial response of the soil was elastic, with the lc value during the pre-yield

section of the re-loading stage identical to the value of x during the swell-back stage

DE. The sample would presumably have yielded at p' = 400 kPa, because the sample

had been subjected to the same value of suction of 100 kPa throughout the entire test

and it had previously been consolidated to a p' value of 400 kPa during the earlier

consolidation stage.

7.5.4 Test 4

During the equalization stage AC (conducted at p: = 50 kPa) there was an

increase in v corresponding to elastic swelling of the sample inside the yield curve

(see Fig.7.8 (d)).

During the subsequent isotropic consolidation stage CD the soil yielded almost

immediately, indicating that point C was on the LC yield curve. The soil then

followed the isotropic normal compression line for this value of suction, with a large

(plastic) reduction of v corresponding to expansion of the yield curve. Swell-back

DE (at s = 100 kPa) occurred with an elastic compressibility K.
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During the shear stage EF, at constant-p', there was initially very little change

of v (consistent with elastic behaviour) and there was then a substantial reduction in v

corresponding to collapse of the soil sample once the yield surface was reached.

7.5.5 Test 5

During the equalization (wetting) stage AC of Test 5 (conducted at A' = 50

kPa) there was an increase in v, corresponding to elastic swelling of the soil inside

the LC yield curve (see Fig. 7.8 (e)).

During the isotropic consolidation stage CD the soil yielded almost

immediately, indicating that point C was on the yield curve. The soil moved along the

normal compression line at this value of suction accompanied by a large reduction of

v, corresponding to expansion of the yield curve (with virgin compresibility X(s))

During the swell-back stage DE the soil swelled elastically with the stress path

moving back inside the yield surface. The elastic compressibility x was much lower

than the plastic value X(s).

In the subsequent suction-increase stage EF there was no measurable change

of v, suggesting a tc, value of zero under these conditions.

During final isotropic re-loading FG the initial response of the soil was elastic

with the value of lc from the pre-yield section of the v :In pi plot approximately equal

to the value of lc during the swell-back stage. The soil yielded at a value of p'

significantly greater than the value of 400 kPa that it had been previously subjected

to during the ramped consolidation stage. This indicated the increase in the isotropic

yield stress /3'0 caused by increasing the suction from 100 kPa to 200 kPa. After

yielding the slope X(s) and position of the normal compression line at a suction of

200 1cPa differed significantly from the slope and position of the normal compression

line at s = 100 1cPa identified from the earlier consolidation stage CD.
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7.5.6 Test 6

During the equalization stage AC (conducted at Pe = 150 kPa) there was a

large reduction of v (collapse) corresponding to expansion of the LC yield curve (see

Fig. 7.8 (f)). This showed that point C was well outside the initial position of the LC

curve produced by the compaction procedure.

During isotropic consolidation CD the soil yielded immediately, because point

C was already on the newly expanded yield curve. The soil then followed the normal

compression line for this value of suction with a large (plastic) reduction of v

corresponding to expansion of yield curve with plastic compressibility X(s).

During the swell-back stage DE the soil swelled elastically as the stress path

moved back inside the yield surface, with an elastic swelling index lc which was much

lower than the plastic value of X(s).

During the suction-decrease stage EF there was a significant increase in v,

corresponding to swelling of the soil inside the yield curve.

During the isotropic re-loading stage FG at zero suction the soil yielded at a

value of p' much less than 400 kPa, showing the reduction of p 	 decreasing the

suction from 100 1cPa to zero. The value of elastic compressibility lc for the pre-yield

section of the curve on the v: In p' plot was almost identical to the value of lc during

the swell-back stage. After yielding, the slope X(o) and position of the normal

compression line at zero suction were very different to the slope and position of the

normal compression line at s = 100 kPa observed in the earlier consolidation stage

CD.

7.5.7 Test 7

During the equalization (wetting) stage AC (conducted at p'e = 150 kPa) there

was a large reduction in v (collapse) corresponding to expansion of the LC yield

curve (see Fig. 7.8 (g)).
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On subsequent isotropic consolidation CD the soil yielded immediately

because point C was already on the newly expanded yield curve. The soil then

followed the normal compression line, accompanied by a large reduction in v with

plastic compressibility X(s).

During the swell-back stage DE the stress path moved back inside the yield

surface with an elastic compressibility lc which was much smaller than the plastic

value X(s).

During the suction-increase stage EF there was a very small reduction in v,

corresponding to elastic compression of the soil with an elastic constant Ks.

During the final shear stage FG the initial response of the soil was elastic with

the v : In p plot having a slope lc (identical to the swell-back stage). This was

followed by yielding and a much larger (plastic) reduction of v. Yield occurred on the

elliptical yield curve in the q : p' plane at a value ofp' much lower than the isotropic

yield stress for a suction of 200 kPa identified in Test 5.

7.5.8 Test 8

During the equalization (wetting) stage AC of Test 8 (conducted at p'e = 100

kPa) there was large reduction of v (see Fig. 7.8 (h)), which corresponded to plastic

collapse because there was expansion of the LC yield curve from its initial position.

During the isotropic consolidation stage CD the soil yielded almost

immediately, because point C was already on the newly expanded yield curve. The

soil then followed the normal compression line for this value of suction, accompanied

by a large reduction of v corresponding to expansion of the yield curve (virgin

compressibility X(s)).

During the suction-increase stage DE there was a reduction of v corresponding

to elastic compression of the soil via the soil constant lc.
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On subsequent swell-back EF the soil expanded elastically as the stress path

came back inside the yield surface, with an elastic compressibility ic much lower than

the plastic value X(s).

During the final shear stage FG the initial response of the soil was elastic with

the initial pre-yield section of the v : In p' plot having a slope lc quite similar to that

from the swell-back stage. The soil then yielded, and a much larger plastic reduction

of v occurred. Yield occurred on the elliptical yield curve in the q :p' plane at a value

of p' much less than the isotropic yield stress at a suction of 200 kPa identified in

Test 5. A sudden increase in v during the later part of the shear stage suggested the

formation of a shear plane, indicating that the strain readings given by the local strain

gauges became unreliable.

7.5.9 Test 9

During the equalization stage AC of Test 9 (conducted at p..= 200 kPa) there

was a large reduction of v (see Fig. 7.8 (i)), corresponding to plastic collapse

produced by expansion of the LC yield curve from its initial position.

During the isotropic consolidation stage CD the soil yielded immediately,

because point C was already on the newly expanded yield curve. There was then a

large reduction of v, corresponding to the expansion of the yield curve with a virgin

compressibility X(s).

During the suction-increase stage DE there was reduction of v corresponding

to elastic shrinkage with a soil constant icy.

During the shear stage EF the initial response of the soil was relatively stiff

(elastic). The soil yielded on the elliptical yield curve in the q : p' plane at a value of

p' similar to the isotropic yield value at s = 200 kPa identified in Test 5 (see Fig.

6.32). The erratic shape of the curve in the v: ln p' plot in the later part of the shear
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stage was presumably due to the unreliable response of the local strain gauges at high

values of strain (see Section 6.6.3).

7.5.10 Test 10

During the equalization (wetting) stage AC of Test 10 (conducted at p', = 50

kPa) there was a small increase in v (see Fig. 7.8 (j)), corresponding to elastic

swelling inside the LC yield curve. This was followed by a very small amount of

plastic 'collapse' (because there was a small expansion of the yield curve in reaching

stress point C).

During the isotropic consolidation stage CD the soil yielded almost

immediately (because the stress state at point C was already on the newly expanded

yield curve). The soil then followed the normal compression line at this value of

suction with a large (plastic) reduction of v, corresponding to expansion of the yield

curve (virgin compressibility 7(s)).

During the swell-back stage DE the soil stress state moved back inside the

yield surface, with an elastic compressibility lc much lower than the plastic value A,

(s).

During the final shear stage EF the initial response of the soil was elastic, with

a ic value during the pre-yield section of the curve on the v: In p' plot identical to

that from the swell-back stage. Yielding of the soil occurred on the elliptical yield

curve at a value of p much less than the isotropic value of 400 kPa. The apparent

sudden increase of v during the later part of the shear stage was presumably due to

the formation of a slip plane, which meant that the readings from the local strain

gauges became meaningless (see Section 6.6.3)

7.6 Experimental apparatus and procedure
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7.6.1 Sample preparation

The variation of the compaction water content and the specific volume and

degree of saturation after compaction (see Table 6.1) clearly indicated that the

control of the compaction procedure was poorer than achieved by Sivakumar (1993)

(see Section 7.2). The reasons for this poorer control were uncertain, but the

experience clearly highlights the importance of careful attention to the compaction

procedure.

7.6.2 Some merits and demerits of the test procedure

a) Membrane slippage. It was observed during the the first two tests that there

was slippage between the membrane and the soil sample, as shown in Figs.

6.4 and 7.3. However the problem was overcome in subsequent tests by

fitting the footing pads of the axial gauges and the studs supporting the

adjusting screws of the radial displacement gauge with small diameter pins,

so that the pins fixed the gauges firmly in position and avoided any

movement of the footings relative to the soil sample.

b) Tilting of the sample. Slight tilting of the soil sample occurred during some

of the tests (see Fig. 6.19). The tilting was measured in the plane containing

the two axial gauges mounted on the soil sample diametrically opposite

each other. However tilting in a plane perpendicular to the plane containing

the axial gauges was not detected. This might affect the accuracy of the

axial strain readings.

c) Friction between the sample top cap and the toad cell extension. There was

a small amount of friction between the inner sides of the load cell extension

and the sample top cap during 'docking' prior to the shear stage. This

occurred as a result of tilting of the sample during the preceding ramped

consolidation and swell-back stages. The initial deviatior stress was
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therefore not quite zero at the start of shear stage, resulting in a slight

bedding error.

d) Disturbance to the soil sample. The mounting of the local strain gauges

(axial and radial) onto the sample inevitably caused some disturbance to the

sample. This was unavoidable, because the footing pads of the axial gauges

had to be pressed against the membrane so that the pins fixed to the footing

pads pierced through the membrane and deep into the soil sample. This

operation was important to ensure proper contact between the sample and

the footing pads of the axial gauges.

e) Technique for suction-change. In the present tests, suction reduction during

the equalization stage and suction-increase or suction-decrease during the

suction-change stage were carried out by manually changing the value of

the water back pressure in a step-loading manner. This procedure could

have been improved if facilities had been available to ramp the water back

pressure in a continous fashion.

7.6.3 Measurement of v

One of the important aspects of testing unsaturated soil samples in the triaxial

apparatus is the measurement of sample volume change during all stages of the test.

The double-walled cell was successfully used by Wheeler (1986) and Sham (1989) in

the testing of soil samples containing gas bubbles and later by Sivakumar (1993) in

the testing of unsaturated compacted kaolin samples. The principle of the double-

walled cell is simple in that the volume change of the sample is given directly by the

volume of water entering or leaving the inner cell (see Fig. 2.37 and Section 2.7.4.1).

The method was accurate at any value of strain and irrespective of the shape of the

deformed sample. Sivakumar (1993) reported that the absolute values of v were

measured to an accuracy of 0.01.
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In the present tests two Imperial College axial displacement gauges and a

custom-built radial displacement gauge were mounted onto the soil sample to

measure the individual axial and radial strains during all stages of the tests. The

volumetric strains of the sample and hence the sample volume change were

calculated from the individual axial and radial strains as described in Sections 5.5.4

and 5.5.5. Unfortunately the accuracy of this procedure is affected by any non-

uniform deformation of the sample.

If the relative merits of both methods of measuring the sample volume change

are compared then the double-walled cell seems to give more accurate

measurements of sample volume change. However local axial and radial gauges are

also useful if accurate measurements of shear strain are required at small strain levels

(where external measurements of axial strain are affected by bedding errors and

system compliance). So if accurate values of both shear strain e s and volumetric

strain ev were needed, the best solution would be to have a double-walled cell fitted

with local strain gauges (if cost was immaterial).

7.6.4 Logging and Control

The logging facilities used in the current tests did not include a feedback

control program, such as required for conducting stress path tests. Therefore the

only available options for conducting the final re-loading shear stages were to either

re-load isotropically (Aq/Ap' = 0) or to shear at constant cell pressure (Aq/Ap' = 3).

To capitalise on the available experimental equipment and to enhance the testing

techniques, some improvements could be incorporated into the existing logging and

control facilities such as

a) Use of feedback control on the existing hydraulic triaxial cell, to allow

stress path control and testing of soil samples at different inclinations of

the stress path (Aq/Ap').
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b) Use of a stepper motor and a computer programme to control the suction

variation during wetting and drying stages. This would mean that the

suction within the sample would be continously variable (as achieved by

Sivakumar (1993)).
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CHAPTER 8

CONCLUSIONS AND FURTHER WORK

A programme of suction-controlled triaxial tests was performed to investigate

aspects of the mechanical behaviour of unsaturated compacted kaolin. A total of ten

tests, with an average duration of 48 days, were conducted within the project. This

final chapter summarizes the main findings that have been drawn from the

experimental work. The chapter is divided into three main sections. Firstly it

concludes on the merits and demerits of the experirnentaJ equOnent gad test

methodology, including sample preparation and testing techniques. Secondly the

chapter briefly summarizes the main conclusions that have been drawn from the work

concerning the mechanical behaviour of unsaturated compacted kaolin and its

interpretation within an elasto-plastic critical state constitutive model. Finally

recommendations for further work are made, which highlight some aspects of

unsaturated soil behaviour which require further investigation.

8.1 Experimental equipment and test methodology

Tests on unsaturated soil were carried out on 50nun diameter kaolin soil

samples. The soil samples were directly compacted in a specially built compaction

mould at a compaction water content of about 25% (4% below optimum as

determined by the standard Proctor compaction tests). Each sample was compacted

in 9 layers, with each layer being compressed at a displacement rate of 1.5

mm/minute to a vertical pressure of 400 kPa in a compression machine. The variation

of water content after compaction between samples was 1.36%, the variation of the

degree of saturation was about 6.2% between samples while the variation of specific

volume between samples was 3.6 %. This indicated that the compaction procedure
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was not as well controlled as in the earlier tests of Sivakumar (1993) on the same

material. The reasons for this poorer level of compaction control were unclear.

The tests were conducted in a Bishop-Wesley hydraulic triaxial cell, with a

wide body to accommodate local strain gauges. The cell pressure and lower chamber

pressure were provided by GDS digital pressure/volume controllers, whereas the

pore air pressure and pore water pressure were manually controlled by regulators

operating on a compressed air supply. Pore air pressure was controlled at the top of

the sample, via a dry low air entry filter, whereas pore water pressure was controlled

at the bottom of the sample, via a saturated high air entry filter. The cell pressure,

pore air pressure and pore water presure were measured by pressure transducers. The

deviator load on the sample was measured by an internal load cell fixed to the cell top

plate. The volume of water draining from the sample was measured with an Imperial

College volume gauge which was connected to the water back pressure line. The

measurement of sample volume change was by means of two axial gauges and a

radial displacement gauge mounted directly on the soil sample. The axial gauges and

the radial gauge measured the axial and radial strains independently and hence the

sample volume change. Two external LVDTs attached to the cross-arm of the triaxial

cell were used to complement the measurement of axial displacements of the sample

during shearing.

The use of local strain gauges in the measurement of sample volume change

appeared to result in poorer accuracy in the measurement of specific volume than was

achieved by Sivakumar (1993). This was, presumably, the result of the non-uniform

deformation of the sample during testing. The use of double-walled cell as a means of

measuring the sample volume change would have been superior to the use of local

strain gauges.

Data from all transducers and gauges were logged into disks during the tests

using Quicklog PCTM software. The software was only able to log and save data into

disks without performing any calculation while the tests were in progress. On
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completion of a test the data was transferred to a spreadsheet for subsequent

processing. The software was solely for logging ; no feedback control capability was

available. As a result only two types of stress path were available for the final re-

loading/shear stages of tests (Aq/Ap' = 0 and 3).

Each sample was initially subjected to an undrained application of net stress of

50 to 200 kPa. This was followed by an equalization (wetting) stage, in which the

mean net stress was held constant at 50 to 200 kPa while the suction was reduced in

a single step to 100 kPa. The subsequent stage involved ramped consolidation at a

constant suction of 100 kPa to a mean net stress p:, of 400 kPa. When consolidation

was complete the samples were subjected to a swell-back stage. Four samples were

swelled back to pc. = 300 kPa, four samples were swelled back to p', = 200 kPa, one

sample was swelled to pc• = 100 kPa while another one was not subjected to a swell-

back stage.

In some tests a suction-change stage was conducted after the swell-back stage

(in one test the suction change was performed before reduction ofp). Four samples

were subjected to suction increase stage to s = 200 kPa while one sample was

subjected to suction decrease stage to s = 0. In the final re-loading/shear stage three

samples were subjected to isotropic re-loading (at suctions of zero, 100 and 200 kPa

respectively). Six tests involved a shear stage with the stress path inclined at Aq/Ap' =

3 (three of these tests were conducted at a suction of 100 kPa while another three

were conducted at a suction of 200 kPa). An attempt was made to carry out a single

shear test with p held constant, but this was not entirely successful (because of the

lack of a feedback control system for performing stress path testing).

8.2 Observed behaviour

The experimental work described in this thesis confirmed some of the

behaviour of unsaturated soil as predicted by the elasto-plastic critical state models of
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Alonso, Gens and Josa (1990) and Wheeler and Sivakumar (1995), but the observed

behaviour differed from the model predictions in several points of detail. Some of the

main conclusions drawn from the experimental work are as follow :

a) Initial position and shape of the LC yield curve. The behaviour observed

during the initial undrained application of net stress and the subsequent

equalization (wetting) stage was consistent with the existence of a LC yield

curve in the s : p' plane, as proposed by Alonso, Gens and Josa (1990) and

Wheeler and Sivakumar (1995). The initial position and shape of the yield

curve, produced by the compaction procedure, showed good agreement

with the model of Wheeler and Sivakumar (1995) and was similar to that

observed by Sivakumar (1993) in his tests on kaolin samples compacted in

the same manner as the samples in the current project.

b) Normal compression lines. On isotropic loading to virgin states at a suction

of 100 kPa, in the ramped consolidation stage, the values of v fell on a

unique isotropic normal compression line in v : p' space. The values of the

slope X(s) and intercept N(s) of the normal compression line (at a suction of

100 IcPa) obtained from the current tests were lower than the corresponding

values of Sivakumar (1993). This was partly due to slight curvature of the

normal compression line and the fact that the present tests covered a higher

range of mean net stress than Sivakumar's tests. There was also considerably

greater scatter in the values of X(s) and N(s) than was present in

Sivakumar's tests. This was attributed to poorer compaction control and

lower accuracy in the measurement of sample volume change (because of

the use of local strain gauges instead of a double-walled cell).

c) Elastic behaviour. The swell-back and suction change stages provided

information on the elastic indices lc and K. The value of lc was found to be

essentially independent of suction (over the limited range of suction tested)

whereas the value of Ks was found to increase with increasing p. This
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suggested a net change in v for a closed stress path in the s : p' plane,

contravening the requirement of conservative behaviour for elastic stress

paths. This suggested that the soil behaviour was not truly elastic even for

stress paths remaining inside the "yield curve". The shear modulus G,

measured in the early part of the final shear stage was also found to increase

with increasing p' (and possibly with increasing s), although it was not

possible to propose an exact form for the relationship between G, p' and s,

due to large scatter in the data.

d) Yield surface. The yield point was generally identified as the point of

intersection of two straight lines drawn on the v: ln p plot. It was often very

difficult to define a precise yield point and the suggestion of a very distinct

yield point by the models is not entirely correct. The volumetric behaviour

of the soil normally gave better indication of the yield point than the shear

behaviour. Constant suction cross-sections of the yield surface (yield curves

in the q : p' plane) were found to be elliptical in shape. This general shape

was consistent with the models of Alonso, Gens and Josa (1990) and

Wheeler and Sivakumar (1995). The shape of yield curves was also

consistent with an isotropic soil, in contrast with the results of Cui (1993)

from tests on Jossigny silt with a strongly anisotropic stress history.

e) Flow rule. The plastic strain increment vectors were approximately

perpendicular to the yield curves in the q : p plane, suggesting an associated

flow rule. This form of flow rule was consistent with an isotropic soil, in

contrast with the non-associated flow rule suggested by Cui (1993) on the

basis of his tests on samples with anisotropic stress history.

0 Variation of specific water volume. The values of the slope a(s) and

intercept A(s) of the normal compression line for v  (at a suction of 100

kPa) obtained from the current tests were higher than the corresponding

values of Sivakumar (1993). This was probably due to the incomplete
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equalization of pore water pressure during the early part of the test

(equalization stage), which affected the subsequent ramped consolidation

stage. The value of the elastic parameter Kw was found to be basically

independent of suction (over the limited range of suction tested) whereas the

value of K found to increase with increasing p' (in suction-increase

tests). This suggested a net change in v. for a closed stress path in the s : p'

plane, contravening the requirement of conservative behaviour for elastic

stress paths. This lent further support to the suggestion that the soil

behaviour was not truly elastic even for stress paths remaining inside the

"yield curve".

8.3 Recommendations for further work

The experimental research work described in this thesis has highlighted some

aspects of the mechanical behaviour of unsaturated compacted kaolin. Most of the

observed behaviour was consistent with the predictions of the elasto-plastic critical

state constitutive models of Alonso, Gens and Josa (1990) and Wheeler and

Sivakumar (1995). However certain features of the observed behaviour were not

predicted by these constitutive models, for exampfe the suggestion of an

irrecoverable component of swelling on first wetting. In view of the limited number

of tests possible in the curent experimental programme there is room for further

investigation of unsaturated soil behaviour, such as

a) The final re-loading / shear stage in the tests involved only two different

inclinations of stress path (Aq/Api = 0 or 3) (see Section 5.3.6). Further

work could therefore include a feed-back system incorporated into the

triaxial apparatus so that any desired stress paths on the soil could be

conducted. Automatic control of the pore water pressure would also be

desirable, so that the suction could be varied in a controlled and continous

fashion.
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b) In the experimental work tests on soil samples commenced with an initially

high value of suction (although unknown) and the LC yield curve was

expanded by reducing s or increasing p'. No direct investigation was carried

out on the existence of Suction Increase (SI) yield curve, as proposed by

Alonso, Gens and Josa (1990). This was because in the tests the suction

was never increased above the high initial value produced by the compaction

procedure. Further experimental work could investigate this aspect of the

model.

c) The behaviour of unsaturated soil observed in the current research work was

based on one particular type of soil fabric produced by a particular method

of compaction (see Section 5.2). It has been shown by many investigators

that the behaviour of unsaturated soil is highly influenced by the soil fabric

(see Section 2.1), whether naturally occurring or man-made. Thus further

work could be done on kaolin samples by employing different types of

compaction (varying the compaction water content, the compactive effort

and the method of compaction (static or dynamic)).

d) The unsaturated soil behaviour investigated in the current tests was based on

kaolin samples. A wide variety of different unsaturated soil types occur in

practice, and the behaviour of kaolin may not be representative of all these

soils. For example, compacted laterite soils (a form of residual soil) found in

the tropics are known to be highly expansive (Lee, 1993). There is therefore

a lot of scope for study of different types of unsaturated soil.

e) A great deal of work on unsaturated soil behaviour has concentrated on

compacted soil samples. The behaviour of unsaturated compacted soil might

not represent the behaviour of unsaturated natural soil, because of the

differences in soil fabric between compacted and naturally occurring

unsaturated soils. This would warrant further investigation of the mechanical

behaviour of unsaturated natural soils. This is a major challenge, because of
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the difficulty of taking undisturbed samples of naturally occurring

unsaturated soils.

Experimental results showed that the stress-strain curves in most tests were

non-linear during the early part of the shear stage. Yielding was simplified to

a single point determined by the intersection of two straight portions of the

relevant stress-strain plots. This was not necessarily true (yield was actually

a gradual process) but as the constitutive modelling of unsaturated soil is

less highly developed than that for saturated soil, this approach served a first

step towards the understanding of unsaturated soil behaviour. Thus future

work on unsaturated soil behaviour should investigate the use of a multi-

surface kinematic yield model, as described in Section 2.8 for saturated soil.
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