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Abstract 

This research investigates the characterisation of liquids using primarily 

substrate integrated waveguides and extending this to other interesting 

conventional transmission lines. Focus is drawn to liquid mixture 

quantification, which is significant in the distinction of the quantity of one 

biological or chemical liquid from another. This work identified and confirmed 

that microwave resonance methods are best suited to perform mixture 

quantification due to their high sensing accuracy and inherent single point 

detection. The tracking of the resonant frequency change with either the 

corresponding return loss or insertion loss (depending on the type of 

resonant structure) gives a good solution in this regard. On the other hand, it 

was affirmed that transmission line methods are best suited for general 

broadband characterisation of a particular liquid. Three major outputs were 

achieved in this research work, namely: (i) In-SIW millimetre wave sensor; 

(ii) SIW slot antenna microlitre sensor and (iii) Sub-terahertz CSRR sensor 

for solid dielectric characterisation. Using the SIW slot antenna sensor, 

microlitre liquid volumes of 7 µl were characterised and binary mixtures 

quantified with an overall accuracy of better than 3 % when compared with 

results from a commercial sensor. The In-SIW millimetre wave sensor 

showed proof of concept through simulation results of the characterisation of 

15 µl liquid volume results when compared to 100 ml liquid volume 

measurement done using the Keysight dielectric probe. The sub-terahertz 

CSRR sensor was used to characterise solid dielectrics using its 

multifuctionality capability of performing both resonant measurements and 

transmission line measurements.   
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Introduction 

1.1  Electromagnetic fields and materials 

Electromagnetic material characterisation to a great degree deals with the 

interactions of electromagnetic fields with dielectric materials. Dielectrics 

include a vast number of materials from biological tissues/fluids, substrate 

material in integrated circuits, food substances, building materials and 

agricultural products. From the knowledge of dielectric properties, it is 

possible to infer how a particular material stores or dissipates energy in the 

presence of electromagnetic fields and equally how the material would affect 

the electromagnetic field. Once the measured dielectric properties of a 

particular material have been established, they form what is termed as the 

material electromagnetic response within a particular measurement 

frequency band. Any changes in the dielectric properties from the expected 

response in the presence of an electromagnetic field, tends to indicate that 

the material’s dielectric properties are in a different state and hence gives 

reason for further investigation.  This kind of analysis has been used to 

diagnose malignant tissues in humans [1]. 

 

Some dielectric material measurement approaches have found significant 

application in the characterisation of biological materials because they offer 

quick and accurate results without alteration of the sample as opposed to 

most optical and chemical detection techniques [2]. Because of their non-
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destructive nature and increasing compactness, some of the 

electromagnetic techniques have been used to characterise samples of 

varying volumes from microlitre down to picolitre and have proved not to be 

wasteful by using small samples and environmentally friendly by providing 

an ease way of sample disposal. 

The measurement techniques of dielectric properties of any material depend 

on the nature of the dielectric material, the frequency of interest and the 

accuracy requirements. The nature of the material impacts how the 

electromagnetic energy propagates in that material. The electromagnetic 

characteristics of any material will in principle determine the velocity of 

propagation of the electromagnetic energy, which is given by: 

𝑣 =
1

√𝜇𝜖
       (1.1) 

where 𝜇 is the magnetic permeability and 𝜖 is the electric permittivity of the 

material under test (MUT). 

For free space propagation this becomes: 

𝑣 =
1

√𝜇𝑜𝜖𝑜
       (1.2) 

where 𝜇𝑜 and 𝜖𝑜 are the permeability and permittivity of free space 

respectively. Most liquids are nonmagnetic and have permeability equal to 

that of free space (µ = µo). The relative permeability of the liquids measured 

in this work was taken as 1 since they are nonmagnetic materials. 

It is well known that a material’s dielectric properties are obtained from the 

measured complex relative permittivity, which has no units as it is a relative 

quantity. Relative complex permittivity is expressed as 
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𝜖𝑟
∗ = 

𝜖

𝜖0
 =  𝜖′𝑟 − 𝑗𝜖"𝑟      (1.3) 

The real part of the relative complex permittivity, 𝜖′𝑟, gives a measure of how 

much energy is stored in the material from an oscillating external electric 

field or a measure of the charge displacement (the real part of complex 

permittivity is in most cases referred to only as the relative permittivity). The 

imaginary part, 𝜖"𝑟, on the other hand, gives a measure of how much energy 

is dissipated by the material upon application of an oscillating external 

electric field and is usually called the loss factor.  

The material interaction with electromagnetic fields is sufficiently described 

by Maxwell’s equations. Equations (1.4) and (1.5) below show Maxwell’s 

constitutive equations [3]: 

 

𝑫 = 𝜖𝑬 =  (𝝐𝒓
′  − 𝒋𝝐𝒓

" )𝜖0𝑬     (1.4) 

𝑩 =  𝜇𝑯 = (𝜇𝑟
′  −  𝜇𝑟

")𝜇0𝑯      (1.5) 

where E is the electric field strength vector, D is the electric displacement 

vector, H is the magnetic field strength vector and B is the magnetic flux 

density. 

Another important term is the loss tangent, which is a term used to describe 

the relative loss of a material and is defined as the ratio of the energy lost 

per cycle to the energy stored per cycle.  

𝑡𝑎𝑛 𝛿 =   
𝜖"𝑟

𝜖′𝑟
= 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑡 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒
 =  

1

𝑄𝑑
    (1.6) 

where Qd is defined as the quality factor of the material. 
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In a similar way the complex relative permeability is defined by the following 

expression: 

𝜇𝑟
∗ = 

𝜇

𝜇0
 =  𝜇′𝑟 − 𝑗𝜇"𝑟     (1.7) 

The real part of the relative complex permeability, 𝜇′𝑟, gives a measure of 

the magnetic energy stored while the imaginary part, 𝜇"𝑟, gives a measure of 

how much magnetic energy is lost in a magnetic material in the presence of 

an external magnetic field. 

In most cases therefore, materials are sufficiently described in terms of their 

complex permittivity, complex permeability and the loss tangent. 

Materials tend to have different dielectric properties due to the different 

measure by which the atoms, molecules, free charges and defects are 

repositioned in the presence of an external electromagnetic field. This 

repositioning brings about electric polarisation which is defined through three 

mechanisms [4]: 

- Dipole or Orientation Polarisation 

This is pronounced in materials that possess permanent dipoles that 

are  randomly oriented in the absence of an applied field. When 

subjected to an electric field, the dipoles tend to align with the applied 

field. Materials that exhibit this behaviour are called polar materials 

and water is such a material.  

- Ionic or Molecular Polarisation 

This form of polarisation is found in materials that have positive and 

negative ions that tend to displace themselves when an electric field 

is applied, for example Sodium Chloride. 

- Electronic Polarisation 
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This type of polarisation takes place when an applied electric field 

displaces the electric cloud centre of an atom relative to the centre of 

the nucleus and takes place in most materials. 

Fig. 1.1 shows the dielectric response of deionised (DI) water in the 

presence of an external electric field.  

 

 

 

 

 

 

 

 

Figure 1.1 Dielectric response of water in the presence of an external 
electric field 

 

Below 22 GHz, the dipole polarisation mechanism and the ionic conduction 

mechanism are dominant as the water molecules respond to the external 

electric field. The relative permittivity, ϵr′, decreases with increased 

frequency due to the phase lag between the dipole alignment and the 

electric field. At the same time the loss factor, ϵr′′, increases with frequency 

due to the rotational friction of the water molecules. The time required for the 

displaced molecules (dipoles) to be oriented in an electric field is called the 

relaxation time, τ. The behaviour illustrated in Fig. 1.1 is observed in polar 

liquids.  

 

In solids, the electronic and atomic polarisation are the dominant mechanism 

that influence the dielectric properties. Fig. 1.2 shows all the mentioned 

mechanisms and their frequency response. 

 

ε
r
'' 

ε
r
' 
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Figure 1.2 Dielectric mechanisms response [4] 

 

Dielectric measurements have found tremendous use in the evaluation of 

biological tissues for cancer research [1], building materials [5], negative 

index materials [6], electromagnetic shielding solutions and propagation of 

wireless signals. 

In [1], in-vivo investigations were conducted using an insertion-type planar 

probe to measure the permittivity characteristics of cancerous tissue and 

normal tissue. These were compared with ex-vivo measurements. The 

technique having used a probe exploited the reflection coefficients over a 

broad frequency band range from 0.5 to 30 GHz and used the values to 

obtain the complex permittivity of the tissue. The main objective was to 

investigate the suitability of the insertion-type planar probe for cancer 

detection.  

In [5] the potential of microwave technique for online monitoring and 

evaluation of biofilms in pipelines was investigated. The pipeline was taken 

as a circular waveguide, while the whole setup used a transmitting and 
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receiving coaxial-line transducer that was connected to a vector network 

analyser. The measurements were done in the 45-47GHz frequency range 

with the permittivity of the biofilm-contained area expressed as a function of 

the resonance frequency after the resonance condition was established in 

the waveguide. The whole design then focused on the change of the 

resonance frequency shift as the biofilm layer length and thickness grew.  

In [6], the dielectric properties of biological materials were investigated using 

an artificial metamaterial structure (MMS) with negative permittivity and 

permeability over the open waveguide sensor so that the sensing properties 

of the waveguide sensor could be increased. This used the classical 

waveguide sensor operating in the X-band. The waveguide sensor was 

designed for the measurement of dielectric properties for biological tissues in 

the microwave frequency band. 

1.2  Thesis objectives 

The objectives of this thesis are summarised through the following sub-

sections to help align the ideas and for coherence. 

 

1.2.1 Overall thesis objective 

This thesis aims to develop an accurate and sensitive liquid mixture 

quantification and characterisation method for biological solutions. In doing 

this, broadband as well as resonance techniques are considered to 

qualitatively develop the most appropriate technique. Reference liquids are 

used for modelling in the absence of actual biological liquids with 

perspectives of biological liquid measurements constantly considered 

throughout the project. 
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1.2.2 Research goals 

This research was driven by the following goals: 

1. Achieve 95 % accuracy in liquid quantification using micro-litre 

volume samples while extracting the permittivity properties of the 

liquid at the same time. 

2. Develop adequate guiding design criterion for achieving a highly 

sensitive sensor for water rich liquids. 

3. Determine what kind of measurement system is appropriate at 

millimetre and sub-terahertz frequencies for characterising and 

quantification of polar liquids. 

4. Compare the developed method to current available methods and 

conclude how the proposed method adds to the available knowledge. 

1.2.3 Research merit 

To enhance available spectroscopic methods for biological liquids by looking 

at possible high accuracy microwave quantification and characterisation 

methods using polar liquids. 

Liquid material characterisation at millimetre and sub-terahertz-wave 

frequencies ensures that results obtained are largely due to the material 

under test without the influence of liquid ionic conduction effects, prevalent 

at lower frequencies. For example in the determination of microwave 

dielectric signatures of tumorous B-lymphoma cells [7], better accuracy was 

obtained for measurements done between 20 GHz to 40 GHz than those 

done below 20 GHz. Due to the challenge that arises from characterisation 

of liquids at such high frequencies, traditional microwave methods have not 

broadly covered this region and most available solutions are encumbered 
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with several limitations. This research therefore looks at creating novel 

methods that will enhance accuracy while using micro-litre liquid volumes. 

This was seen as a driving merit of this research even though some of the 

work ended up being done below the millimetre-wave band. To arrive at the 

appropriate method, both transmission and resonant methods were 

considered. Ultimately higher accuracy was achieved with the resonant 

method for material characterisation. This work established that in designing 

a resonant method for liquid material characterisation, the following 

enhances the sensitivity of the sensor: 

 Create the sensing structure such that the liquid under test does not 

interrupt or interact with the main propagating field but only with the 

near-field or the evanescent field. This ensures that the signal 

monitored at the output port (which will also be the input port for a 

one-port structure) remains interpretable through all measurement.  

 Ensure that the resonant structure is optimised for the defined bounds 

of operation of the sensor. This ensures that even in the worst case 

scenario, the sensitivity of the sensor remains reliable. 

It is already established that a good knowledge of dielectric properties of 

liquids at microwave and millimetre-wave frequencies can be used to realise 

their composition. This has been shown to be important as it impacts on 

many applications pertaining to the human body as well other industrial and 

chemical processes. Even though a lot of work has been done in the 

characterisation of liquids, there continues to be a need for development of 

compact and cheap sensors that can easily be integrated with other devices. 

It has been observed that as the frequency increases from microwave into 

the millimetre-wave band and beyond, structures for liquid characterisation 



 10 

tend to become compact which makes them ideal for integration into 

microfluidic platforms which are necessary for lab-on-chip implementations.  

This work, in contrast to the conventional concept, focuses on development 

of novel liquid sensors which do not require the liquid to disturb the 

electromagnetic field in the main signal path. This non-conventional concept 

is based on transmission line structures that sense the liquid and determine 

the liquid’s dielectric properties through the interactions of the radiated field 

from the device and the liquid. This has potential to extend the usage to very 

high frequency as opposed to methods that place the liquid in the main field 

path, since high attenuation tends to take place with such methods as the 

wavelength reduces to millimetre and sub-millimetre range. The resultant 

miniaturised sensors allow for accurate sensing of microlitre and picolitre 

sample quantities which is desired in medical investigation of living matter. 

This work also builds on the existing knowledge base in extracting material 

properties from the measured scattering parameters. 

1.3 Thesis outline 

The thesis is arranged as follows: Chapter 1 introduces the topic and then 

gives the thesis objectives and novelty contributions. In Chapter 2, various 

microwave material characterisation methods are discussed, ending with the 

criteria for choosing the appropriate method. Chapter 3 focuses on the 

designed millimetre-wave In-Substrate Integrated Waveguide (SIW) sensor 

for broadband characterisation of liquids. This operates between 33 – 50 

GHz. In  Chapter 4, a Lab-On-Chip SIW slot antenna based sensor designed 

for microlitre liquid characterisation is presented. This operates at about 10 

GHz and was meant as a prototype for millimetre-wave characterisation of 
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liquids. Chapter 5 focuses on the developed sub-terahertz sensor for solid 

substrate material characterisation. This essentially was laying the 

foundation for liquid characterisation in the sub-terahertz range. Chapter 6 

concludes and gives future perspectives. 
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Microwave Characterisation Methods for Materials 

This chapter reviews the common material characterisation methods and 

how they are implemented with respect to the measured microwave 

responses (mostly scattering parameters). 

Material characterisation usually involves the measurement of 

complex permittivity as a function of frequency at a particular temperature, 

although at times complex permittivity has been obtained as a function of 

temperature at a fixed frequency. The knowledge of dielectric properties so 

obtained offers an opportunity to know the low frequency conduction 

mechanism, interfacial polarisation and molecular dynamics [8]. Many 

techniques for material characterisation have been developed; these include 

the cavity resonator method, the transmission line method, the free space 

method and the open-ended coaxial probes. Resonator methods are 

accurate but not broadband and best suitable for low-loss materials, 

whereas transmission line techniques are broadband but mostly suitable for 

medium to high-loss materials, giving reasonable accuracy [9]. Open-ended 

coaxial probes, waveguides and cavity resonators can all be used to 

measure the properties for liquids. The free space method finds more usage 

in adverse conditions, like high temperature situations and large flat solid 

materials. Each method has its merits and application where they are best 

suited. Whether a method is destructive or non-destructive also determines 

where the method finds application. All these methods are impacted by the 

nature of the materials that they measure. For example, even though 
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resonant methods offer higher accuracy when compared to other 

alternatives, when used to measure high loss materials they lose sensitivity 

and possess some challenges. On the other hand transmission line methods 

suffer from metal losses that impact measurements [9].    

Table 2.1 shows the common methods, the materials they measure, 

the s-parameters required to get the dielectric properties and the dielectric 

properties measured as a result. 

Table 2.1 Material characterisation methods 

Measurement Method Materials that 

can be 

measured 

Parameters 

required 

Reported 

Dielectric 

properties 

measured 

Transmission/Reflection 

method 

Solids, 

Liquids 

S11, S21 ϵ*r, µ*r 

Open-ended coaxial 

probe method 

Liquids, semi-

solids 

S11 ϵ*r 

Resonant cavity 

method 

Rod shaped 

solid 

materials, 

liquids 

Resonant 

Frequency, 

Q-factor 

ϵ*r, µ*r 

Free space method High 

temperature 

material, large 

flat solids, 

gas, hot 

liquids 

S11, S21 ϵ*r, µ*r 

  

In solid dielectric measurements, air gaps are undesired as they have the 

tendency of causing the electric field to suffer from depolarisation, especially 

when it is perpendicular to the material under test. In transmission line 
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methods that use electrodes, air gaps have a tendency of creating a series 

capacitance which contributes to the overall systematic errors [9]. 

The next sections look at each of the characterisation methods and their 

application in liquid characterisation. 

2.1  Open-ended coaxial probe method 

The open ended coaxial probe method for material characterisation relates 

the impedance at the coaxial line end to the complex permittivity of the 

material under test [10]. In order for repeatability and accuracy to be 

assured, the sample must be homogenous with sufficient volume that offers 

an electrically infinite size. Therefore, for open ended coaxial probes used to 

measure liquids, sufficient liquid volume must exist between the probe tip 

and the end of the liquid container to additionally ensure that any signal 

reflection is all due to the liquid and not the container. Equally there must be 

sufficient liquid volume between the sides of the probe and the liquid 

container to ensure that reflections from fringing fields, as shown in Fig. 2.1, 

are only reflected back by the sample under test and not the container. Fig. 

2.1 shows the typical parameters of an open ended coaxial line probe. As 

shown, when the traversing TEM field goes through the sample under test, 

reflections at the probe tip ensue. The measurement of the magnitude and 

phase of the reflections enable the extraction of the permittivity properties of 

the sample under test (SUT) as will be shown in the following sub-sections.  
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Figure 2.1 Open ended dielectric probe for permittivity measurements. 

 

When using the open-ended coaxial probe method, there are three main 

sources of error, namely, cable stability, air gaps in the case of solids or air 

bubbles in the case of liquids and sample thickness. It’s always advised that 

cable stability is ensured before measurements can be made and equally in 

between measurement and calibration, the cable is required to be in a firmly 

fixed position or errors will occur. Air gaps when measuring solids should be 

avoided by all means as they create a transition of capacitance and hence 

cause a significant source of error. This is true also for air bubbles on the tip 

of the probe. Measurements should therefore only be taken in the absence 

of these. The significance of the thickness of the sample arises from the fact 

that the desired measurement of the reflection coefficient should only be as 

a result of the material under test and not the effects coming from the 

sample holder or fixture. This requires that the sample appears infinitely 

thick to the probe. The sample thickness or depth must therefore be at least 
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twice the equivalent penetration depth of the electromagnetic wave. This in 

essence will ensure that the reflected waves at the far SUT-fixture interface, 

should the field reach there, will be attenuated by approximately -35 dB by 

the time the reflected signal reaches the probe end [11]. This effectively 

eliminates the effect of such reflected signals on the measurement. 

2.1.1 Open-ended coaxial probe models 

Four open-ended coaxial probe models have been developed, namely,  

capacitive model, antenna model, virtual line model and rational function 

model [12]. In each of the four models the probe is terminated by a semi-

infinite homogenous sample. 

2.1.2.1  Capacitive model 

This model, as can be inferred from the name, exploits the changes in the 

coaxial line capacitance as it is exposed to the sample under test, with the 

line capacitance when radiating in air acting as the reference. Fig. 2.2 shows 

the equivalent circuit model [13]. 

 

Figure 2.2 Capacitive model equivalent circuit 

 

In Fig. 2.2, the sensor is depicted by two main elements, namely a lossy 

capacitor, C(ϵ*), and a capacitor, Cf, that considers the effects of the fringing 

field in the Teflon (the dielectric for the coaxial line). The lossy capacitor on 
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the other hand relates to the capacitance measured when terminating in free 

space as shown in (2.1) [12]. 

 

𝐶(𝜖𝑟
∗) = 𝜖𝑟

∗𝐶0        (2.1) 

 

where C0 is the capacitance when the coaxial line is terminating in air. 

For the equivalent circuit to be valid, the dimensions of the line must be 

small when compared to the wavelength of the line at that frequency. This 

ensures that the open end of the line does not radiate and in turn confines 

the energy in the fringing region or reactive near field of the line. As the 

frequency increases, the evanescence modes increase and this leads to an 

equivalent increase in the value of C0. Therefore when the evanescent 

modes are considered, C0+Af2 should be used in the place of C0, where A is 

a constant dependant on the line dimensions. 

The input reflection coefficient, Γ*, at the discontinuity plane is calculated as 

shown in (2.2). 

𝛤∗ = 𝛤𝑗𝛷 =
1−𝑗𝜔𝑍0(𝐶(𝜖∗)+𝐶𝑓)

1+𝑗𝜔𝑍0(𝐶(𝜖∗)+𝐶𝑓)
       (2.2) 

where, 

ω is the angular frequency and  

Z0 is the characteristic impedance of the coaxial line probe. 

From (2.3), 

𝜖∗ =
1−𝛤∗

𝑗𝜔𝑍0𝐶0(1+𝛤∗)
−

𝐶𝑓

𝐶0
       (2.3) 
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Eqn. (2.3) has two unknowns, Cf and C0, that are determined by using a 

calibration standard, deionised water in most cases, with known dielectric 

properties. Eqns. (2.4) and (2.5) give the equations that are used to 

determine these two unknowns: 

 

𝐶0 =
(1−|𝛤𝑠𝑡𝑑

∗ |
2
)

𝜔𝑍0(1+2|𝛤𝑠𝑡𝑑
∗ | cos(𝛷𝑠𝑡𝑑)+|𝛤𝑠𝑡𝑑

∗ |
2
)𝜖"

𝑠𝑡𝑑

    (2.4) 

 

𝐶𝑓 =
−2|𝛤𝑠𝑡𝑑

∗ |sin (𝛷𝑠𝑡𝑑)

𝜔𝑍0(1+2|𝛤𝑠𝑡𝑑
∗ | cos(𝛷𝑠𝑡𝑑)+|𝛤𝑠𝑡𝑑

∗ |
2
)
− 𝜖𝑠𝑡𝑑

′ 𝐶0    (2.5) 

 

where, 

Γ*std is the complex reflection coefficient of the calibration standard 

referenced at the probe end, 

Φstd is the phase of the reflection coefficient, 

ϵ’std is the real part of the complex permittivity of the calibration 

standard and  

ϵ”std is the imaginary part of the complex permittivity of the calibration 

standard. 

Looking at Fig. 2.1, it is noticeable that the measured input reflection 

coefficient will be referenced at the A – A plane, however it is desired that 

this measurement be referenced at the B – B plane which is the discontinuity 

plane . The reference plane is moved from A – A to B – B by using the 

relationship in (2.6). 

 

𝛤𝐵−𝐵
∗ = 𝛤𝐴−𝐴

∗ 𝑒𝑗2𝜃       (2.6) 
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where 2θ considers the signal’s round trip in the coaxial line given by 

 

𝛷𝐴−𝐴 = 𝛷𝐵−𝐵 − 2𝜃       (2.7) 

 

where  

ΦB-B is the phase of the reflection coefficient measured at the B – B 

plane and ΦA-A is the phase of the reflection coefficient measured at 

the A – A plane. 

The phase of the reflection coefficient at the B – B plane is determined by 

measuring the reflection coefficient when the coaxial probe is terminating in 

air. From [14] and using the internal radius of the conductor in the coaxial 

probe (a) and the radius of the external conductor (b), Cf + C0 when 

terminating in air is 

𝐶𝑓 + 𝐶0 = 2.38𝜖0(𝑏 − 𝑎)      (2.8) 

Using (2.8) in (2.2) gives the value of the reflection coefficient at the B – B 

plane as 

𝛤0
∗ =

1−𝑗2.38𝜔𝑍0𝜖0(𝑏−𝑎)

1+𝑗2.38𝜔𝑍0𝜖0(𝑏−𝑎)
      (2.9) 

From (2.9) the phase gives the value of ΦB-B 

𝛷𝐵−𝐵 = 𝛷0 = −2.38𝜔𝑍0𝜖0(𝑏 − 𝑎)     (2.10) 

Using (2.10), (2.7) can be solved as  

2𝜃 = −2.38𝜔𝑍0𝜖0(𝑏 − 𝑎) − 𝛷𝐴−𝐴     (2.11) 
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where ΦA-A is obtained from the phase of the measured reflection coefficient 

at the A – A plane using a network analyser. 

 

2.1.2.2 Antenna or radiation model 

In the antenna or radiation model, the permittivity of the sample in contact 

with an open end coaxial line is calculated from the measured input 

admittance referred to the line discontinuity plane (where the line interfaces 

with the liquid) [12]. Fig. 2.3 shows the equivalent circuit of the antenna 

model. 

 

 

 

 

 

 

Figure 2.3 Antenna model equivalent circuit 

 

The admittance at the discontinuity plane of the coaxial line is represented 

by a capacitance and conductance (C2 and G in Fig. 2.3) [15]. The 

normalised admittance at the coaxial open end is given in (2.12). 

 

𝑌

𝑌0
= 𝑗𝜔𝐶1𝑍0 + 𝑗𝜔𝑍0𝐶2(𝜔, 𝜖𝑟

∗) + 𝑍0𝐺(𝜔, 𝜖𝑟
∗)  (2.12) 

 

Where, Z0 is the characteristic impedance of the coaxial line, C1 is the 

capacitance due to the fringing fields within the line, C2 is the capacitance 

due to the fringing fields outside the line, ϵr* is the complex permittivity of the 

G ϵr*C

2
 

C
1
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material under test, G is the radiation conductance and ω is the angular 

frequency. 

In this model, with the coaxial line inserted in a lossy liquid, the radiation into 

the liquid mimics an antenna. The admittance for an antenna in a lossy 

medium can be approximated by [15] 

𝑌(𝜔, 𝜖𝑟
∗) = √𝜖𝑟

∗𝑌(√𝜖𝑟
∗𝜔, 𝜖0)      (2.13) 

 

Hence (2.13) becomes 

 

𝑌

𝑌0
= 𝑗𝜔𝐶1𝑍0 + 𝑗𝜔𝜖𝑟

∗𝐶2𝑍0+𝜖𝑟
∗
5

2𝐺𝑍0     (2.14) 

 

Which is of a similar form to 

 

𝑌

𝑌0
= 𝐾1 + 𝐾2𝜖𝑟

∗ + 𝐾3𝜖𝑟
∗
5

2      (2.15) 

 

When the complex values of K1, K2 and K3 are known, the permittivity of the 

sample under test can be calculated from the measured normalised 

admittance. Three standards are commonly used to determine the complex 

values K1, K2 and K3, namely deionised water, methanol and air  [12].  

2.1.2.3 Rational function model 

The rational function model uses an aperture admittance model for the 50-Ω 

open-ended coaxial line in contact with an homogenous dielectric. The 

developed model is based on a rational function of a full-wave moment 

method [16]. The formulation of the model includes radiation effects, the 

near field region energy storage impact and the evanescent mode effects 

[12].  Fig. 2.4 shows the rational function model. 
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Figure 2.4 Rational function model 

The admittance of the rational model is given by (2.16) as shown in [12]. 

 

𝑌

𝑌0
=

∑ ∑ 𝛼𝑛𝑝(√𝜖𝑟
∗)

𝑝
(𝑗𝜔𝑎)𝑛8

𝑝=1
4
𝑛=1

1+∑ ∑ 𝛽𝑚𝑞(√𝜖𝑟
∗)

𝑞
(𝑗𝜔𝑎)𝑚8

𝑞=0
4
𝑚=1

     (2.16) 

 

Where αnp and βmq are the model coefficients, ϵ* is the complex permittivity 

of the dielectric under test, ɑ is the radius of the inner conductor of the 

coaxial line, while Y is the admittance at the coaxial line end and Y0 is the 

characteristic admittance of the coaxial line. The model is valid for the 

complex permittivity of the sample under test in the following range,              

1 ≤ ϵr′ ≤ 80 and 0 ≤ ϵr′′ ≤ 80, with the frequency range between 1 and 20 

GHz. 

In [16] to calculate the complex permittivity of the sample under test, the 

following functions were defined: 

 

𝑏𝑝 = ∑ 𝛼𝑚𝑝(𝑗𝜔𝑎)𝑚         𝑝 = 1, 2,… , 8;4
𝑚=1     (2.17)  

  

𝑏0 = 0;        (2.18) 

 

𝑐𝑞 = ∑ 𝛽𝑚𝑞(𝑗𝜔𝑎)𝑚           𝑞 = 1, 2,… , 8;4
𝑚=1     (2.19) 

 

𝑐0 = 1 + ∑ 𝛽𝑚0(𝑗𝜔𝑎)𝑚4
𝑚=1       (2.20) 

 

2b 2a 

Dielectric under  
test 

ϵr*=ϵr′-jϵr′′ 
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By substituting (2.17) – (2.20) in (2.17) and with Y considered as the 

6measured admittance, the unknown permittivity is the square root of the 

root of (2.21). 

 

∑ (𝑏𝑖 − 𝑌𝑐𝑖
)√𝜖∗

𝑖
= 08

𝑖=0       (2.21) 

 

It is necessary to observe that the correct root must have ϵr′ ˃ 1 and ϵr′′ > 0 

to be meaningful. 

2.1.2.4 Virtual line model 

In the virtual line model, the complex permittivity of the sample under test 

(SUT) is calculated by relating the reflection coefficient of an open-ended 

coaxial line, in contact with an SUT, with the effective transmission-line 

proposed [17]. The effective transmission line models the fringing electric 

field in the SUT and the open end of the coaxial line as shown in the 

equivalent circuit model shown in Fig. 2.5. 

 

 

 

 

 

 

 

Figure 2.5 Virtual line model 

 

In Fig. 2.5, plane B –B’ is the impedance reference plane, while plane A – A’ 

is the measurement plane. The admittance at plane B – B’ is calculated 
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using the characteristic admittance of the virtual line (Yd) and the terminating 

admittance at the end of the virtual line (YE) as shown in (2.22). 

 

𝑌𝐿 = 𝑌𝑑
𝑌𝐸+𝑗𝑌𝑑tan (𝛽𝑑𝐿)

𝑌𝑑+𝑗𝑌𝐸tan (𝛽𝑑𝐿)
      (2.22) 

 

where YL is the admittance at the input of the virtual line, L is the length of 

the virtual line and βd is the propagation constant in the SUT. 

If the radiation loss is neglected, the terminating impedance at the end of the 

virtual line is a reflected impedance. In this case the terminating impedance 

will be an open circuit and the admittance YE =0, effectively reducing (2.23) 

to 

 

𝑌𝐿 = 𝑗𝑌𝑑𝑡𝑎𝑛(𝛽𝑑𝐿)        (2.23) 

 

Yd is calculated by considering the virtual line as a coaxial line with external 

diameter b, internal diameter ɑ and dielectric permittivity ϵd (which is the SUT 

permittivity), as shown in (2.24). 

 

𝑌𝑑 =
√𝜖𝑑

60ln (𝑏 𝑎)⁄
        (2.24) 

 

The virtual line input admittance, YL, can also be calculated from the 

measured admittance at plane A – A’ as shown in (2.25). 

 

𝑌𝐿 =
1−𝛤𝑚𝑒2𝑗𝛽𝑡𝐷

1+𝛤𝑚𝑒2𝑗𝛽𝑡𝐷
𝑌𝑡       (2.25) 
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where Yt is the characteristic admittance of the physical coaxial line, βt is the 

propagation constant in the physical coaxial line and Γm is the reflection 

coefficient at plane A – A’. 

The permittivity of the SUT is calculated by substituting (2.24) and (2.25) in 

(2.23) to get (2.26) as 

𝜖𝑑 =
−𝑗𝑐√𝜖𝑡

2𝜋𝑓𝐿
.
1−𝛤𝑚𝑒2𝑗𝛽𝑡𝐷

1+𝛤𝑚𝑒2𝑗𝛽𝑡𝐷
(
2𝜋𝑓𝐿√𝜖𝑑

𝑐
)     (2.26) 

 

Where c is the speed of light in free space and f is the measured frequency, 

other parameters are as defined before. 

The two unknown variables that are necessary to calculate the permittivity of 

the SUT, D and L, are determined through measurements of two standards 

with known dielectric properties. In [17], air and deionised water were used 

and this was achieved by substituting (2.24) in (2.25). Using an iterative 

procedure with the measured reflection coefficient, values for D and L were 

obtained. 

2.2 Waveguide transmission and reflection method 

In the waveguide transmission and reflection method, the material under test 

is placed in a section of waveguide or coaxial line and then the scattering 

parameters are measured at the input and output ports of the transmission 

line using a VNA. Two scattering parameters, the S11 and S21, are used for 

onward post processing to obtain the full material characterisation. If the 

SUT is a solid, prior SUT machining is required so that it fits perfectly in the 

waveguide and does not leave any gaps. Similarly, liquids are required to 
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completely fill the waveguide section that is designated to hold them and not 

leave any space before the measurement is taken. 

2.2.1 Working principle of the transmission and reflection method 

In this method, the required equipment in most cases are a transmission line 

(could be a waveguide or coaxial line) and a vector network analyser. Prior 

to performing any measurements, the limits for the SUT thickness needs to 

be established, as this informs what scattering parameters to use between 

the forward scattering parameter, S21, and the reverse scattering parameter, 

S11. The transmission method finds application for measurements that have 

the transmission parameter, S21, not below -30 dB, otherwise the reflection 

method is preferred.  

Fig. 2.6 shows a typical setup of the transmission and reflection method. 
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Figure 2.6 Typical transmission and reflection method  

 

The developed equations from the measurement in Fig. 2.6 relate the 

scattering parameters to the permittivity and permeability of the material. Fig. 

2.6 can be simplified by the schematic given in Fig. 2.7. 

 

 

 

 

 

 

 

 

Figure 2.7 Schematic of the transmission and reflection method 

 

The developed system of equations is usually overdetermined with variables 

comprising complex permittivity, the two reference planes positions and the 
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sample length. The equations are developed from an analysis of the electric 

field at the SUT interfaces. If electric fields EA, EB and EC are considered in 

the regions A, B and C of Fig. 2.7 for either TEM mode in a coaxial line or 

TE10 mode in a waveguide, the following spatial distribution of the electric 

field for an incident field normalised to 1 can be written as [18]: 

 

𝐸𝐴 = 𝑒(−𝛾0𝑥) + 𝐶1𝑒
(𝛾0𝑥)      (2.27) 

 

𝐸𝐵 = 𝐶2𝑒
(−𝛾𝑥) + 𝐶3𝑒

(𝛾𝑥)      (2.28) 

 

𝐸𝐶 = 𝐶4𝑒
(−𝛾0𝑥)       (2.29) 

Where 

𝛾0 = 𝑗√(
𝜔

𝑐
)
2

− (
2𝜋

𝜆𝑐
)
2

       (2.30) 

 

𝛾 = 𝑗√(
𝜔

𝑐
)
2

. 𝜇𝑟
∗𝜖𝑟

∗ − (
2𝜋

𝜆𝑐
)
2

      (2.31) 

 

c is the speed of light in vacuum, γ0 and γ are the propagation constants in 

vacuum and SUT respectively, ϵr* and µr* are the relative permittivity and 

permeability respectively, ω is the angular frequency and λc is the cutoff 

wavelength. It is worth noting that in region C there is no backward wave 

since the transmission line is matched at port 2, this is reflected in (2.29). 

Using Maxwell’s equations to calculate the tangential components 

representing the boundary condition on the electric field with only a radial 

component, gives: 
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𝐸𝐴(𝑥 = 𝐿1) = 𝐸𝐵(𝑥 = 𝐿1)      (2.32) 

 

𝐸𝐵(𝑥 = 𝐿1 + 𝐿) = 𝐸𝐶(𝑥 = 𝐿1 + 𝐿)     (2.33) 

where L1 and L  are the distances from port 1 to the SUT interface and the 

SUT length respectively as defined in Fig. 2.7. 

By solving (2.27) – (2.29) using the boundary conditions in (2.32) and (2.33), 

the equations for the scattering parameters can be obtained as shown in 

(2.34) and (2.38). 

𝑆11 = 𝑅1
2 [

𝛤(1−𝑇2)

1−𝛤2𝑇2
]       (2.34) 

 

𝑆22 = 𝑅2
2 [

𝛤(1−𝑇2)

1−𝛤2𝑇2
]       (2.35) 

 

𝑆21 = 𝑅1𝑅2 [
𝑇(1−𝛤2)

1−𝛤2𝑇2
]       (2.36) 

Where 

 

𝑅1 = 𝑒(−𝛾0𝐿1)        (2.37) 

 

𝑅2 = 𝑒(−𝛾0𝐿2)        (2.38) 

 

R1 and R2 are the reference plane transformation expressions while L2 is the 

distance from port 2 to the SUT as defined in Fig. 2.7. T is the transmission 

coefficient in the SUT that is defined as 

𝑇 = 𝑒(−𝛾𝐿)        (2.39) 
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When there is a sample in the transmission line, the transmission scattering 

parameter becomes 

 

𝑆21 = 𝑅1𝑅2𝑒
(−𝛾0𝐿)       (2.40) 

 

The unknowns from (2.34) – (2.40) are ϵr′, ϵr′′, R1, and R2, whereas L is in 

most cases known. These equations are sufficient for the complex 

permittivity of the SUT to be calculated as Nicholson-Ross-Weir showed [19, 

20], the detail of which is given in the next section. 

2.2.2 Nicholson-Ross-Weir method 

Nicholson, Ross and Weir [19, 20] are credited with having developed the 

working principle of the transmission and reflection method that has evolved 

over time with the advancement or measurement methods. Nicolson-Ross 

[19], however, only considered solid materials in their measurements based 

on the model in Fig. 2.7. 

Using the sums and differences of the scattering equations in (2.34) –(2.36), 

Nicholson-Ross, established the following relationship, 

 

𝐾 =
𝑆112 − 𝑆212 +1

2𝑆11
       (2.41) 

 

They further defined the reflection and transmission coefficient as 

 

𝛤 = 𝐾 ± √𝐾2 − 1              (2.42) 

 

𝑇 =  
𝑆11 +𝑆21 − Γ

1 −(𝑆11 +𝑆21)Γ
       (2.43) 
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From basic principles however the reflection coefficient is defined as 

Γ =
Z − 𝑍𝑜

𝑍 + 𝑍0
 =  

√
𝜇𝑟

∗

𝜖𝑟
∗⁄  −1

√
𝜇𝑟

∗

𝜖𝑟
∗⁄  +1

         (2.44) 

From (2.44) 

 

𝜇𝑟
∗

𝜖𝑟
∗  =  (

1 + Γ

1 − Γ
)
2

= 𝑐1       (2.45) 

 

Also the transmission coefficient between the sample surfaces is 

 

𝑇 = 𝑒𝑥𝑝(−𝑗𝜔√𝜇𝜖𝑙𝑠)  = exp [−(𝜔 𝑐⁄ )√𝜇𝑟
∗𝜖𝑟

∗𝑙𝑠]    (2.46) 

 

From (2.46) 

 

𝜇𝑟
∗𝜖𝑟

∗  =  − {
𝑐

𝜔𝑙𝑠
𝑙𝑛 (

1

𝑇
)}

2

 =  𝑐2      (2.47) 

 

Using (2.45) and (2.47), Nicolson-Ross where able to explicitly obtain the 

permittivity and permeability of materials as follows: 

 

𝜇𝑟
∗  = √ 𝑐1𝑐2                    (2.48) 

 

𝜖𝑟
∗  =  √

𝑐2

𝑐1
          (2.49) 

 

In [18] as well as [21] it was shown that the Nicolson-Ross method is 

divergent at integer multiples of one-half wavelength in the sample for low-

loss materials. At these frequencies the |S11| parameter becomes very small 

and hence makes the equations give unreliable values as |S11| tends 
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towards zero. In an effort to overcome this problem others have tended to 

shorten the sample length. This however has been shown to lower 

measurement sensitivity. Furthermore, the solution for equation (2.45) and 

(2.47) was found not to be trivial as a phase ambiguity needed to be 

resolved at each calculated frequency and measured group delay [18]. 

What was proposed, which has widely been accepted and adopted, is that 

the combination of the equations (2.34) – (2.46) get solved iteratively. This 

results in solutions that are stable over the frequency band of measurement. 

This line of reasoning has therefore been followed in this work. 

Since in this project liquids were predominantly measured, a sample holder 

was introduced. In the case of the transmission and reflection method, this 

required that plugs to stop the liquid from flowing out are introduced at either 

side of the liquid plane. This therefore introduces a further requirement to 

shift the measurement plane, not only from the input and output ports but to 

include beyond the plugs holding the SUT in place. The procedure for this is 

explained in the next subsection that looks at the de-embedding and 

reference plane transformation. 

2.2.3 De-embedding and reference plane transformation 

In Section 2.2.2, it was shown that after the inclusion of the sample holder 

when measuring liquids, it becomes evident that the equations derived by 

Nicolson-Ross cannot be used straight away as the measured S-parameters 

would this time include the effect of the sample holder. This is overcome by 

using the de-embedding procedure that ensures that the reference plane is 

moved all the way to the face of the SUT. Consider the schematic shown in 

Fig. 2.8, that shows a transmission line being used to characterise a liquid. 



 33 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Schematic for liquid characterisation in a transmission line 

 

In Fig. 2.8 R1 – R1′ and R2 – R2′ are the SUT reference planes at the input 

and output respectively. Z0, γ0, Zp, γp, Zs and γs are the impedance and 

propagation constant of the air filled, plug filled and sample filled sections of 

the waveguide. The expressions for the total forward and backward 

scattering parameters for the whole line from (2.34) – (2.36) become [22] 

 

𝑆21 =
𝑇𝑠(1−𝛤𝑠

2)

1−𝛤𝑠
2𝑇𝑠

2 =
4𝛾𝑠𝛾0

(𝛾𝑠+𝛾0)
2𝑒𝛾𝑠𝐿−(𝛾𝑠−𝛾0)2𝑒−𝛾𝑠𝐿

     (2.50) 

 

𝑆11 =
𝛤𝑠(1−𝑇𝑠

2)

1−𝛤𝑠
2𝑇𝑠

2 =
(𝛾0−𝛾𝑠)

2𝑒𝛾𝑠𝐿−(𝛾0−𝛾𝑠)
2𝑒−𝛾𝑠𝐿

(𝛾𝑠+𝛾0)
2𝑒𝛾𝑠𝐿−(𝛾𝑠−𝛾0)

2𝑒−𝛾𝑠𝐿
     (2.51) 

 

Now, define Γ1 as the reflection coefficient at the interface between the air 

section and the plug of the waveguide, Γ2 as the reflection coefficient 

between the SUT and the plug as shown in (2.52) and (2.53): 
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𝛤1 =
𝑍𝑝−𝑍0

𝑍𝑝+𝑍0
         (2.52) 

𝛤2 =
𝑍𝑠−𝑍𝑝

𝑍𝑠+𝑍𝑝
        (2.53) 

With the transmission coefficient through the plug and the SUT defined as 

𝑇1 = 𝑒−𝛾𝑝𝐿𝑝        (2.54) 

𝑇2 = 𝑒−𝛾𝑠𝐿𝑠         (2.55) 

By substituting (2.52) – (2.55) in (2.50) and (2.51), they simplify to: 

𝑆21 =
(1−𝛤1

2−𝛤2
2+𝛤1

2𝛤2
2)𝑇1

2𝑇2
2

1+2𝛤1𝛤2𝑇1
2−𝛤2

2𝑇2
2−2𝛤1𝛤2𝑇1

2𝑇2
2+𝛤1

2𝛤2
2𝑇1

4−𝛤1
2𝑇1

4𝑇2
2    (2.56) 

𝑆11 =
𝛤1+𝛤2𝑇1

2(1+𝛤1
2)+𝛤1𝛤2

2𝑇1
4−𝛤1𝑇2

2(𝛤2
2+𝑇1

4)−𝛤2𝑇1
2𝑇2

2(1−𝛤1
2)

1+2𝛤1𝛤2𝑇1
2−𝛤2

2𝑇2
2−2𝛤1𝛤2𝑇1

2𝑇2
2+𝛤1

2𝛤2
2𝑇1

4−𝛤1
2𝑇1

4𝑇2
2    (2.57) 

The waveguide sections filled with a plug, SUT and another plug can be 

considered as a cascade assembly, which helps simplify the de-embedding. 

To proceed, first of all measurements or simulations are done with only one 

plug inserted in the transmission line. The obtained S-parameters must be 

corrected to the planes at the interfaces of the plug. Thereafter 

measurements or simulations are done with the entire assembly complete to 

get the total S-parameters. Using ABCD parameters and treating the whole 

assembly as a cascade, the following relationship is developed: 

[𝑇𝑆] = [𝑇𝑝]
−1. [𝑇𝑇]. [𝑇𝑝]

−1      (2.58) 

where, 

[Tp] represents the plug ABCD parameters 

[Ts] represents the SUT ABCD parameters 

[TT] represents the total ABCD parameters for the whole assembly 
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From the obtained ABCD matrix of the SUT, the corresponding S-

parameters only due to the SUT effect can be calculated as  

𝑆11𝑆 = [
𝐴𝑆+𝐵𝑆𝑍0

−1−𝐶𝑆𝑍0−𝐷𝑆

𝐴𝑆+𝐵𝑆𝑍0
−1+𝐶𝑆𝑍0+𝐷𝑆

]      (2.59) 

𝑆21𝑆 = [
2

𝐴𝑆+𝐵𝑆𝑍0
−1+𝐶𝑆𝑍0+𝐷𝑆

]       (2.60) 

𝑆12𝑆 = [
2(𝐴𝑆𝐷𝑆−𝐵𝑆𝐶𝑆)

𝐴𝑆+𝐵𝑆𝑍0
−1+𝐶𝑆𝑍0+𝐷𝑆

]       (2.61) 

𝑆22𝑆 = [
−𝐴𝑆+𝐵𝑆𝑍0

−1−𝐶𝑆𝑍0+𝐷𝑆

𝐴𝑆+𝐵𝑆𝑍0
−1+𝐶𝑆𝑍0+𝐷𝑆

]      (2.62) 

where Z0 is the characteristic impedance of the line and AS, BS, CS and DS are 

the elements of the SUT ABCD matrix. 

After obtaining the S-parameters due only to the liquid, the complex 

permittivity can then be obtained using similar methods as shown in 

subsection 2.2.2 as the assembly reduces to Fig. 2.7. The implementation of 

the transmission method is shown fully in Chapter 3. 

2.2.4 Air gaps correction 

Air gaps are a major source of errors when measuring solids using the 

transmission and reflection method, not so much for liquid samples. For 

liquid samples, the major source of errors in this regard are air bubbles. For 

the former case, air gaps are particularly of concern when present in the 

wide side of a rectangular waveguide or near the centre conductor of a 

coaxial line. This is because these regions have a stronger electric field. The 

case of a rectangular waveguide with an SUT leaving a gap as shown in Fig. 

2.9 is considered. 
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Figure 2.9 Rectangular waveguide showing gap left by SUT 

 

The gap has been analysed by considering it as a layered capacitor [3, 23]. 

However, due to the fact that the wavelength decreases at higher frequency 

leading to the domination of multiple scattering, the capacitor model fails. 

The frequency independent model uses a perturbation theory for cavities 

[28]. This is developed by considering the difference between the 

propagation constant for the case without a gap and that with a gap, given 

by: 

𝛾𝑔𝑎𝑝
2 − 𝛾𝑛𝑜 𝑔𝑎𝑝

2 = ∆𝛾2 = (𝜖𝑟
′ − 1) (

𝜔

𝑐
)
2 ∫ 𝐸1⃗⃗ ⃗⃗  

𝑔𝑎𝑝
.𝐸2⃗⃗ ⃗⃗  𝑑𝑆

∫ |𝐸1⃗⃗ ⃗⃗  |
2
𝑑𝑆

𝑆

    (2.63) 

Where E1 and E2 are the electric field with no air gap and with an air gap 

present, respectively, and S is the cross sectional area. 

By using the boundary condition relationship, (2.63) reduces to: 

∆𝜖𝑟
′

𝜖𝑟
′ = (𝜖𝑟

′ − 1) (
𝑏−𝑑

𝑏
)       (2.64)  

 

SUT 
d b 
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2.3 Resonant method 

Resonant methods use either cavities (generally called resonant 

perturbation method) or a resonator. For liquid measurements using 

resonant perturbation, a hole is made in the centre of the cavity where the 

electric field is maximum and hence causing the highest perturbation. For 

the resonator method, the strongest field region has to be identified, after 

which the liquid can be inserted across that region but all the while ensuring 

that the quality factor is not completely damped out and that the resonant 

mode propagates. 

Resonant methods offer the highest accuracy and sensitivity when 

compared to non-resonant methods. The principle of their operation is that 

the introduction of an SUT in a specific region of the resonator tends to 

modify their known response in terms of change in resonant frequency, 

change in quality factor (Q) and change in the S-parameters. Various 

methods have been developed that relate these changes to the dielectric 

properties of introduced SUT. The next subsections give some examples of 

resonant perturbation and resonator methods. 

2.3.1 Resonant perturbation method 

In the resonant perturbation method, a cavity is first designed and its 

response without perturbation characterised in terms of Q factor and 

resonant frequency. When an SUT is introduced, the perturbation introduced 

causes the resonant frequency to shift by Δf0 and a decrease in the unloaded 

Q-factor Qu. In [24] a substrate integrated waveguide (SIW) cavity was used 

to characterise various liquids. 
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In terms of design, the resonant frequency of the TE101 mode of a 

rectangular cavity is related to its width ɑ and length l (2.65) as  

𝑓101 =
𝑐

2𝜋√𝜖𝑟
′𝜇𝑟

′

√(
𝜋

𝑎
)
2

+ (
𝜋

𝑙
)
2

      (2.65) 

where ϵr′ and µr′ are the real part of the permittivity and permeability 

respectively of the dielectric filling the cavity. 

The goal is to critically couple the cavity at the input to the input feed section, 

which leads to a very high return loss at the resonant frequency and hence 

making the cavity very sensitive to any changes. This high sensitivity makes 

it possible to measure very small changes in the SUT. 

Fig. 2.10 (a) shows a rectangular waveguide cavity with a liquid channel fed 

through the broad walls [25], while Fig. 2.11 shows a rectangular waveguide 

cavity with  a liquid channel fed through the side walls [24]. 

 

 

 

 

 

 

 

 

 

Figure 2.10 Rectangular waveguide cavity with feed through the broad wall 
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Figure 2.11 Rectangular waveguide cavity with liquid channel fed through 

the side walls 

In both Fig. 2.10 and Fig. 2.11 the liquid is inserted in such a way that it 

interacts with the electric field at its maximum, which is in the centre of the 

cavity. Although inserting the liquid through the side walls is less sensitive 

when compared to inserting through the broad walls, it was preferred in [24] 

as it gives more mechanical stability since the width of side ɑ is bigger than 

that of side b. 

For the cavity perturbation method, the following equations that relate the 

dielectric properties of the SUT to the response of the cavity have been 

defined [24, 26]: 

𝜖𝑟
′ =

𝐴𝑉𝑐

𝑉𝑠
[
𝑓0−𝑓𝑠

𝑓𝑠
]        (2.66) 

𝜖𝑟
′′ =

𝐵𝑉𝑐

𝑉𝑠
[
𝑄0−𝑄𝑠

𝑄𝑠𝑄0
]       (2.67) 
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where, 

ϵr′ and ϵr′′ are the dielectric constant and the loss factor respectively. 

Vc and Vs are the volume of the cavity and of the sample respectively. 

f0 and fs are the resonant frequency when the capillary is empty and when its 

filled with a liquid respectively. 

Q0 and Qs are the Q factors of the cavity when its empty and when it has a 

sample. 

A and B are constants that depend on the shape of the cavity and the 

location of the sample. 

A and B are obtained through measurement of standards with known 

dielectric properties analytically. For the cases shown in Fig. 2.10, where a 

rectangular TE101 waveguide cavity has been used with a cylindrical sample 

inserted through the broad walls, A = 0.5 and B = 0.25. 

The relationship established in (2.66) and (2.67) is that the dielectric 

constant of the SUT is directly proportional to the change in resonant 

frequency of the cavity. And similarly that the loss factor of the SUT is direct 

proportional to the change in the Q factor of the cavity.  

 

2.3.2 Resonance sensing using dielectric resonators 

In the dielectric resonator method, the RF part of the design will normally 

consist of a circuit that is optimised to resonate at a particular designed 

frequency to meet the desired measurement requirements and a fluidic 

channel designed to interact with the radiated field at a maximum field 

location to achieve the highest sensitivity. This extension of the resonance 
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method has made it possible to measure high loss liquids, whereas the 

perturbation method has been predominantly used for measuring low loss 

liquids. This is mostly due to the significant dampening of the quality factor 

experienced when measuring high loss liquids, which makes the analysis 

used in the perturbation method difficult to apply. 

In [26], the resonant structure was designed using a planar folded quarter-

wavelength type resonator that was etched in the central conductor of a 

coplanar waveguide. The microfluidic channel was then bonded to the top 

surface of the structure located perpendicular to the central conductor of the 

coplanar waveguide. The sensing mechanism is centred around the principle 

that when unfilled the sensor is characterised by the resonant frequency, 

transmission coefficient and the Q factor. When the microfluidic channel is 

filled, these parameters shift in value in response to the field interaction with 

the liquid. It is this shift in the parameters that is used to characterise the 

SUT properties. The more sensitive the sensor is to the changing conditions 

and if this is reflected in significant change in the response parameters, the 

more the likelihood of fully characterising of the SUT increases. On the other 

hand if the sensor is only significantly sensitive in one parameter, then only 

one dielectric property of the SUT can be calculated. In cases where 

quantification of the SUT is the desired goal, characterisation in only one 

parameter (for example dielectric constant) is sufficient. 
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Figure 2.12 A quarter wavelength resonator built into central conductor of a 

coplanar waveguide to create a sensor 

In Fig. 2.12, the dielectric properties of the SUT were extracted from the 

change in the magnitude of the S21 and the resonant frequency. A system 

of equations is usually created that relates the dielectric properties to the 

measurement parameters. These equations are then solved iteratively, in 

most cases using the Newton Raphson method. 

The microfluidic channel is designed in an appropriate way that makes the 

sensing effective. In [26], polydimethylsiloxane (PDMS) was used to make 

the microfluidic channel. In the case of a microfluidic channel, attention must 

be paid on how the liquid is to be inserted into the channel and extracted out 

of the channel. Other considerations are the reusability of the channel after 

measurement. 

Overall, the resonance method offers the highest accuracy and sensitivity 

although users have to bear in mind that resonant sensors offer a solution at 

either one frequency or over a narrow band of frequencies. For quantification 
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of samples, resonant methods have found many applications when 

compared to transmission and reflection methods.  

2. 2.4 Free space method 

The free space method, as applied to the characterisation and measurement 

of dielectric materials properties, is contactless and non-destructive. It has 

found application in the characterisation of solids, especially those at high 

temperature where minimal handling is required. There are few reported 

studies where it has been used to characterise liquids [27], although this 

usage is rare.  

 

 

 

 

 

 

Figure 2.13 Illustration of free space method for material characterisation 

In the case of the liquid as the SUT, just like in the transmission and 

reflection method, the liquid has to be encapsulated into a dielectric with 

known electrical properties. The sample would then form three sections, 

namely the dielectric with known properties, then the SUT and the dielectric 

with known properties as shown in Fig. 2.14. 
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Figure 2.14 Encapsulation illustration for free space liquid characterisation 

The dielectric properties of the liquid are then extracted by using a similar 

method to that given in section 2.2.3. The characteristic impedance of the 

line Z0 is in this case replaced by the free-space wave impedance. The 

operation of the free space method extends from microwave to the millimetre 

region, offering a wide range of material characterisation.  

The free space method suffers from a number of inaccuracies influenced by 

several factors such as ensuring that the antenna used transmits a plane 

electromagnetic wave onto a focused area and also ensuring that the wave 

goes through the SUT with minimal diffraction. These two factors coupled 

with the need to have a controlled environment around the measurement 

setup, makes using this method challenging at times.  

In terms of calibration the through-reflect-line (TRL) is usually the calibration 

standard of choice. The initial setup must ensure that the antennas are 

placed at the start of the far field, that is at 2D2/λ. Where D is the big 

diameter of the horn antenna. 

The major selling point of this method, as already intimated, is that it offers a 

purely contactless method for measurement. With all the limitations of 

accuracy indicated, in some applications the value of the measurement 

being contactless can be compelling and therefore make this the method of 

choice. Such applications can be measurement of dangerous chemicals or 

hot samples as already indicated. 
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2.5 Criteria for choosing appropriate technique for material 

characterisation 

The change in a material’s permittivity as the frequency is increased varies 

differently between low-loss materials and high-loss materials. For low-loss 

materials, the permittivity decreases almost linearly with increased frequency 

from the RF region into the millimetre-wave region. At the same time, the 

loss tangent increases with increased frequency. The permittivity value 

decrease in high-loss materials, however, is more rapid with increased 

frequency with the loss factor increasing rapidly and reaching a relaxation 

peak before it again decreases. 

The aforementioned material characteristics including the materials’ spatial 

dimensions and geometry influence the choice of dielectric measurement 

technique to use. Materials are categorised as either bulk (like integrated 

circuit substrates, polymers for packaging, building materials and liquids) or 

thin (for those on the scale of micrometre or sub-micrometre in one 

dimension like thin films in integrated circuit processing, coatings and 

polymer sheets) or nanoscale (which includes nanowires, quantum dots and 

large molecules). Some important considerations to make when deciding 

which technique to use are [4]: 

 The frequency range of the method chosen, 

 The measurement accuracy that is required, 

 Whether the material is homogenous or isotropic, 

 The material form, i.e. whether it is liquid or solid or powder or sheet, 

 The restriction of the sample size, 
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 Whether the method is destructive or non-destructive, 

 Whether the method is contacting or non-contacting, 

 The temperature for the measurement, 

 The cost of the technique, 

 The expected values of permittivity and permeability. This also takes 

into account whether the material is low-loss or high-loss. 

2.6 Summary 

It is clear that the microwave characterisation method used depends to a 

great degree on the type of dielectric material that is to be measured. This is 

because materials come with differences in form, physical phase, size and 

shape [28].  Other important considerations before choosing the 

characterisation method include knowledge of the required uncertainty in the 

measurement, the required frequency of operation. After the characterisation 

method has been chosen, the next stage involves looking at the possible 

sources of errors  and how these can be dealt with. 

Dielectric measurements of solids suffer in accuracy when contrasted with 

those for liquids because whereas liquids fill the sample holder, solids suffer 

from leaving air-gaps. To counter this problem when measuring solids, 

others [9] have proposed coating the solid SUT with conductive material. 

Although this has the tendency of changing the line impedance and line loss, 

it is outweighed by the improved dielectric measurements as long as the air-

gap is small. It was shown in section 2.2.3 that even though liquids have the 

advantage of being able to fill the container completely, they inadvertently 

add another material to be considered when doing the analysis.  This is 
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overcome by de-embedding the obtained results by shifting the 

measurement plane to the liquid interface. There is therefore need to use a 

material with known properties as the container. 
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In–Waveguide SIW Sensor 

3.1 Introduction 

This chapter sets out to develop an SIW sensor for micro-litre liquid 

characterisation in the millimetre wave regime using a transmission line 

method. Overall, the sensor combines the well-known transmission line de-

embedding methods coupled with the newly developed Low Temperature 

Cofired Ceramic (LTCC) hollow SIW technique [29] in establishing a hollow 

structure in LTCC as the sample holder and subjecting the liquid under test 

to an E-field in the millimetre wave region. Although all efforts were made to 

fabricate the designed in-waveguide SIW LTCC sensor, the design was 

ultimately not made due to practical difficulty in vias hole filling and 

equipment availability for patterning. This meant that this work is presented 

with only simulation results and other methods were adopted, as described 

in chapter 4 and 5. 

It is well established in literature [22, 30-34] that transmission line methods 

offer the advantage of obtaining results over a wide bandwidth while giving 

comparatively accurate results to the resonance methods. However high 

loss liquid (lossy) measurements done at higher frequency, starting from the 

millimetre wave and upwards, pose a challenge as subjecting the liquid 

sample to the E-field direct path tends to cause high field attenuation that 

compromises the sensor’s sensitivity. To overcome this, it is desired that 

sensors designed for millimetre-wave and sub-millimetre-wave work with 
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extremely low volumes of liquids for reasonably meaningful results to be 

obtained. 

To achieve low liquid volume measurement while placing the liquid under 

test in the direct EM field path of a waveguide is not trivial. However, with the 

advanced research methods in LTCC technology, many millimetre-wave 

applications and beyond that were not possible are now possible. LTCC 

makes it possible to build solutions that are especially structured as layers. 

These layers can be structured separately as per design and then co-fired 

together to make a complete system. In some cases layers can be co-fired 

separately and then integrated together at the final design stage. 

Using LTCC has made it possible for a novel substrate integrated sensor 

built using Dupont 9K7 to be designed. The design has used some elements 

of substrate integrated waveguides (SIW) coupled with hollow SIW. The 

employment of vias walls in this regard helps to structure the full design 

given the fact that solid walls would be impossible to implement. To however 

enhance the performance of the sensor, the end product has been a 

compromise that has both solid walls and vias walls. The final design has 

the broader walls using solid walls with the narrow walls using vias walls. 

3.2 Sensor design  

The designed sensor works in the Q-band, between 33 – 50 GHz. This has 

great application potential in polar liquid measurements as very little ionic 

effects are experienced in this region and beyond. This particularly entails 

that results obtained are only as a result of the effect the liquid under test 

has on the EM field it is interacting with. This motivates the research 
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therefore, in that if accurate results can be obtained they then can all be 

attributed to the effect of the liquid on the applied electric field. 

The sensor has three layers, namely the bottom and upper layers that are 

both built for the purpose of acting as covers for the microfluidic cavity. The 

microfluidic cavity forms the main part of the middle layer whose main 

purpose is that of being the sample holder, Fig. 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Top layer of the 3-layer structure  

 

The walls of the structure are on the broad sides made of solid walls, while 

the vertical sides are made of vias holes as illustrated in Fig. 3.1. This 

ensures that the E-field loss is minimised. The details of the liquid cavity are 

shown in Fig. 3.2 that shows the middle layer. 
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Figure 3.2 Liquid holder layer (middle layer) 

 

The bottom layer and the top layer are designed exactly the same with the 

middle part left un-metallised as shown in Fig. 3.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Bottom layer of the structure 

 

The middle layer, in Fig 3.2, and the bottom layer, in Fig. 3.3, are cofired 

together to give a structure as shown in Fig. 3.4. The top layer is then 

assembled using the guide holes as shown in Fig. 3.5. 
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Figure 3.4 Assembly of the structure, middle and bottom layer are cofired 
together 

 

Fig. 3.5 illustrates how the network analyser connections after a TRL 

calibration is performed were supposed to be done. The practical 

measurements were not done as the fabrication could not be completed as 

mentioned earlier. To ensure that the cavity was secure, 0.1 mm Dupont 

substrate material was left on each side of the cavity to hold the vias and 

solid walls in place. This implied that the complex permittivity calculated from 

the simulation was the effective permittivity of a combination of that of the 

liquid under test and the Dupont substrate on all sides of the liquid. 

Subsection 3.2.1 gives more details of the analysis used to develop the 

model.  
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Figure 3.5 Network analyser illustration of the full setup 

 

The upper and the lower layers are exactly the same and stay constant 

throughout the simulations. This is exploited in the method that has been 

used by obtaining the response to electric field of the two layers put 

together. This meant that the simulations that were carried out with all three 

layers in place in effect show the signal attenuation and phase change as a 

result of the liquid being measured. This electrical signature then relates 

directly to the liquid’s properties and can hence lead to the liquid 

characterisation or identification. 

The cavity needs to be fully filled to ensure that accurate results are 

obtained, and the maximum liquid volume that the sensor allows is 16 µl. 
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This clearly shows that the proposed sensor is compact and well suited for 

liquid micro volume applications. The major limiting factor with the sensor is 

that the liquid volume will every time need to be the same, up to the capacity 

volume of the micro channel as no air spaces can be allowed. 

The design was initially simulated using Ansys’ 3D HFSS finite element 

software. The simulation designs were supposed to be fabricated using 

Dupont green tape 9K7 low temperature co-fired ceramic (LTCC) substrate, 

with ϵr′ of 7.1 and tanδ of 0.001. The Dupont 9K7 is free of both cadmium 

and lead and therefore exhibits biocompatible requirements for liquid 

measurements and does not pose any contamination challenges. 

 

3.2.1 Analysis of the permittivity of the fluid 

To understand the design fully, a look at the initial design stages is 

necessary. The waveguide used in this design is a WR-22 waveguide, 

operating in the Ka-band with a cut-off frequency (fc) of 26.35 GHz. If only 

the dominant TE10 is considered to propagate, the dimensions of the 

waveguide are obtained by using the following relationship [35], 

𝑓𝑐 =
1

2𝜋√𝜇𝑟
′𝜖𝑟

′

√(
𝑚𝜋

𝑎
)
2

+ (
𝑛𝜋

𝑏
)
2

    (3.1) 

where ϵ and µ are the permittivity and permeability of the material filling the 

waveguide, ɑ is the broad length of the waveguide, b is the height of the 

waveguide, and m and n represent the mode numbers. 

For a vacuum filled waveguide propagating the TE10 mode, (3.1) reduces to 

𝑓𝑐 =
1

2𝑎√𝜇𝑟
′𝜖𝑟

′
=

𝑐

2𝑎
      (3.2) 
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where c is the speed of light in free space and the other variables are as 

defined before. 

𝑎 =  
𝑐

2𝑓𝑐
= 5.69𝑚𝑚 in this particular case with the cut-off frequency defined 

as before. The design works as a wideband liquid characterisation sensor, 

operating between 33.35 GHz and 50.35 GHz. 

Through using HFSS and simulating a high loss liquid (namely deionised 

water), the optimum waveguide hollow length for holding the liquid was 

derived as 1mm, with the encapsulating covers on top and below also being 

1 mm as shown in Fig. 3.5. The total length of the waveguide in this design 

is therefore 3 mm. 

The final structure shown in Fig. 3.5 is taken as a three layer structure with 

two liquid encapsulating layers or barriers of similar composition, namely the 

top and the bottom layers. This therefore helps to make the permittivity 

analysis more straight forward as the two layers were combined to form a 

through standard which was also used during the calibration stage. The 

initial stage therefore involves getting two port S-parameters of the through 

standard, that is the top and bottom layer together. No part of the liquid 

sample was introduced at this stage. In essence, it then gives an opportunity 

for different types of liquids to be measured as the subsequent 

measurements will have no dependency on the de-embedded part of the 

encapsulating layers. 

Fig. 3.5 can be simplified as shown in Fig. 3.6 to simplify the analysis. 
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Figure 3.6 Cross section of the entire assembly or line assembly 

 

The through standard on the other hand can be simplified as shown in Fig. 

3.7. 

 

 

 

 

 

 

 

 

 

Figure 3.7 Cross section of the through standard 

The simulated S-parameters for both the line and the through standard are 

transformed to T-matrices (transfer matrix or sometimes known as 

transmission matrix), Tline and Tthr respectively as shown in (3.3):  
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[
𝑇11 𝑇12

𝑇21 𝑇22
] = [

𝑆12𝑆21−𝑆11𝑆22

𝑆21

𝑆11

𝑆21

−
𝑆22

𝑆21

1

𝑆21

]    (3.3) 

This was necessary as T-matrices offer a mathematically simpler way of 

handling cascaded networks. 

From Fig. 3.6 and considering the entire assembly as a cascade, the total T-

matrix, Tline, can be expressed as: 

[𝑇𝑙𝑖𝑛𝑒] = [𝑇𝑝]. [𝑇𝑙𝑖𝑞]. [𝑇𝑝]     (3.4) 

where [Tp] represents the T-matrix for the top and bottom encapsulating 

layers and [Tliq] is the T-matrix for the middle liquid layer. 

Similarly for the through scenario given in Fig. 3.7, the total T-matrix can be 

expressed as: 

[𝑇𝑡ℎ] = [𝑇𝑝]. [𝑇𝑝]      (3.5) 

By combining (3.3) and (3.4), Tliq can be found as: 

[𝑇𝑙𝑖𝑛𝑒]. [𝑇𝑡ℎ]
−1 = [𝑇𝑙𝑖𝑞]     (3.6) 

From (3.6) it is clear to see that [Tline] and [Tth] are known either from 

measurement or simulation. [Tliq] is unknown and contains the dielectric 

properties of interest. By finding the trace of either side of equation (3.6) it is 

possible to use the Newton Raphson method to iteratively calculate the 

complex permittivity of the liquid [34]. In this work fsolve, an iterative function 

in Matlab, was used to iteratively solve the trace of (3.6) and in so doing 

calculate the complex permittivity of different liquids: 

𝑇𝑟 ([𝑇𝑙𝑖𝑛𝑒]. [𝑇𝑡ℎ]
−1) = 𝑇𝑟 ([𝑇𝑙𝑖𝑞])𝑚   (3.7) 

where m signifies the measured or simulated value. 
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The trace of an n x n square matrix B with entries bij, is defined as: 

𝑇𝑟(𝐵) = ∑ 𝑏𝑖𝑖
𝑛
𝑖=1       (3.8) 

In other words the trace of the matrix B is the sum of all the diagonal entries, 

where the diagonal entries are defined as entries when i = j [36]  . 

The theoretical T-matrix of the liquid layer is defined as: 

[𝑇𝑙𝑖𝑞] = [𝑒
−𝛾𝑠𝑙𝑠 0
0 𝑒𝛾𝑠𝑙𝑠

]     (3.9)  

The trace of (3.9) is then given as: 

𝑇𝑟([𝑇𝑙𝑖𝑞])𝑡
= 2𝐶𝑜𝑠ℎ(𝛾𝑠𝑙𝑠)     (3.10) 

where t emphasises that the trace is for the theoretical case, ls is the length 

occupied by the liquid layer, and γs is the propagation constant given as: 

𝛾𝑠 =
𝑗2𝜋

𝜆0

√𝜖𝑟
∗ − (

𝜆0

𝜆𝑐
)
2

      (3.11) 

From (3.11) it can be clearly seen that the propagation constant contains in it 

the complex permittivity of the liquid under test. This expression when 

substituted in (3.10) forms the basis for complex permittivity extraction as is 

shown in this section. 

The simulated S-parameters from the cross section models shown in Fig. 

3.6 and Fig. 3.7 were converted to the T-parameters using the relationship 

given in (3.3). 

Using (3.3), the through T-parameters become 

[𝑇𝑡ℎ] = [

−𝑑𝑒𝑡𝑆𝑡ℎ

𝑆21
𝑡ℎ

𝑆11
𝑡ℎ

𝑆21
𝑡ℎ

−
𝑆22

𝑡ℎ

𝑆21
𝑡ℎ

1

𝑆21
𝑡ℎ

]             (3.12) 
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where detSth stands for determinant of the S-parameter matrix of the through 

scenario and th is the abbreviation for through. 

From (3.12), the inverse [Tth]-1 required in (3.6) is derived as follows: 

𝑑𝑒𝑡[𝑇𝑡ℎ] =
𝑆11

𝑡ℎ𝑆22
𝑡ℎ−𝑑𝑒𝑡𝑆𝑡ℎ

𝑆21
𝑡ℎ2              (3.13) 

[𝑇𝑡ℎ]
−1 =

𝑆21
𝑡ℎ2

𝑆11
𝑡ℎ𝑆22

𝑡ℎ−𝑑𝑒𝑡[𝑆𝑡ℎ]
[

1

𝑆21
𝑡ℎ −

𝑆11
𝑡ℎ

𝑆21
𝑡ℎ

𝑆22
𝑡ℎ

𝑆21
𝑡ℎ

−𝑑𝑒𝑡[𝑆𝑡ℎ]

𝑆21
𝑡ℎ

]           (3.14) 

Similarly, the transformed S-parameters of the entire structure is given as:  

[𝑇𝑙𝑖𝑛𝑒] = [

−𝑑𝑒𝑡[𝑆𝑙𝑖𝑛𝑒]

𝑆21
𝑙𝑖𝑛𝑒

𝑆11
𝑙𝑖𝑛𝑒

𝑆21
𝑙𝑖𝑛𝑒

−
𝑆22

𝑙𝑖𝑛𝑒

𝑆21
𝑙𝑖𝑛𝑒

1

𝑆21
𝑙𝑖𝑛𝑒

]             (3.15) 

Using (3.14) and (3.15) in (3.6) leads to the derivation of the T-matrix due 

only to the SUT given by: 

[𝑇𝑙𝑖𝑛𝑒]. [𝑇𝑡ℎ]
−1 = [

𝑆21
𝑡ℎ𝑆22

𝑡ℎ𝑆11
𝑙𝑖𝑛𝑒−𝑆11

𝑡ℎ𝑑𝑒𝑡[𝑆𝑙𝑖𝑛𝑒]

𝑆11
𝑙𝑖𝑛𝑒(𝑆11

𝑡ℎ𝑆22
𝑡ℎ−𝑑𝑒𝑡[𝑆𝑡ℎ])

𝑆11
𝑡ℎ𝑆21

𝑡ℎ𝑑𝑒𝑡[𝑆𝑙𝑖𝑛𝑒]−𝑆11
𝑙𝑖𝑛𝑒𝑆21

𝑡ℎ𝑑𝑒𝑡[𝑆𝑡ℎ]

𝑆11
𝑙𝑖𝑛𝑒(𝑆11

𝑡ℎ𝑆22
𝑡ℎ−𝑑𝑒𝑡[𝑆𝑡ℎ])

𝑆21
𝑡ℎ𝑆22

𝑡ℎ−𝑆21
𝑡ℎ𝑆22

𝑡ℎ

𝑆11
𝑙𝑖𝑛𝑒(𝑆11

𝑡ℎ𝑆22
𝑡ℎ−𝑑𝑒𝑡[𝑆𝑡ℎ])

𝑆11
𝑡ℎ𝑆21

𝑡ℎ𝑆22
𝑙𝑖𝑛𝑒−𝑆21

𝑡ℎ𝑑𝑒𝑡[𝑆𝑡ℎ]

𝑆11
𝑙𝑖𝑛𝑒(𝑆11

𝑡ℎ𝑆22
𝑡ℎ−𝑑𝑒𝑡[𝑆𝑡ℎ])

]      (3.16) 

From (3.16) the trace can be found as:  

𝑇𝑟 ([𝑇𝑙𝑖𝑛𝑒]. [𝑇𝑡ℎ]
−1) =

𝑆11
𝑙𝑖𝑛𝑒.𝑆22

𝑡ℎ+𝑆11
𝑡ℎ.𝑆22

𝑙𝑖𝑛𝑒−𝑑𝑒𝑡[𝑆𝑡ℎ]−𝑑𝑒𝑡[𝑆𝑙𝑖𝑛𝑒]

𝑆21
𝑙𝑖𝑛𝑒.𝑆12

𝑡ℎ       (3.17) 

Eqn. (3.17) as per relationship in (3.7) gives the trace of the simulated or 

measured liquid, i.e. 

𝑇𝑟𝑎𝑐𝑒(𝑙𝑖𝑞)𝑚 =
𝑆11

𝑙𝑖𝑛𝑒.𝑆22
𝑡ℎ+𝑆11

𝑡ℎ.𝑆22
𝑙𝑖𝑛𝑒−𝑑𝑒𝑡[𝑆𝑡ℎ]−𝑑𝑒𝑡[𝑆𝑙𝑖𝑛𝑒]

𝑆21
𝑙𝑖𝑛𝑒.𝑆12

𝑡ℎ            (3.18) 

where m signifies that this is a measured or simulated result. 
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Using (3.10) and (3.18), a set of nonlinear functions is formed that reduces 

to zero. By iteratively solving these using a Newton Raphson method, the 

complex permittivity is extracted from the created function as follows:  

𝐹(𝜖𝑒𝑓𝑓
∗ ) = [𝑟𝑒𝑎𝑙(𝑇𝑟 (𝑙𝑖𝑞)𝑚 − 𝑇𝑟 (𝑙𝑖𝑞)𝑡);  𝑖𝑚𝑎𝑔(𝑇𝑟 (𝑙𝑖𝑞)𝑚 − 𝑇𝑟 (𝑙𝑖𝑞)𝑡)]     (3.19) 

The extracted effective complex permittivity is defined as such because as 

per Fig. 3.6 it includes the liquid section and the small substrate section for 

holding the vias wall. 

A Matlab program was written to perform these functions coupled with the in-

built fsolve function that was used to solve the nonlinear equations. This is 

given in more detail in appendix A. The extracted permittivity properties of 

various liquids are given in Section 3.3 and Section 4.4. 

The next section introduces the measurement done using the Keysight 

dielectric measurement probe. These measurements where used to validate 

the simulation results of the developed sensor introduced in this chapter. 

  

3.2.2 Keysight dielectric probe kit  

The measurements using the dielectric probe validated the simulations done 

using the transmission/reflection method. This was also compared to other 

results in the literature. The dielectric probe kit makes it possible for 

measurements of complex permittivity to be undertaken for a wide range of 

semi-solids, malleable solids and liquid materials. The probe kit does all the 

network analyser control functions and calculations using the software 

installed either on the network analyser or an external computer. Once the 

reflection coefficient has been measured and presented to the software, it 
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converts it to the complex permittivity of the SUT. The results obtained are 

presented in various ways including plots of relative permittivity, loss 

tangent, loss factor, cole-cole as well as the tabular form of the same. 

Keysight have three dielectric probes that have some differences in their 

usage and the range of operation [37]: 

3.2.2.1 Performance probe  

This probe comes in a slim design and combines rugged, high temperature 

and frequency performance. It comes sealed on the probe tip and the 

connector end and hence makes it to withstand harsh conditions. It can 

operate over a very wide temperature range from -40oC to +200oC and 

hence can be used for measurements done as a function of frequency or 

those done as a function of temperature. Its frequency range is from 

500MHz to 50GHz. Because of its ruggedness, it finds application in 

fermentation tanks, chemical reaction chambers and many other food 

applications. 

The performance probe is mostly used in measuring liquids, but has also 

found application in measurement of semi-solids and flat surfaced solid 

materials. 
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Figure 3.8 (a) Performance Probe (b) Calibration short [37] 

3.2.2.2 High temperature probe 

This probe is also rugged in design and is able to survive corrosive 

chemicals and withstands high temperatures. Its temperature range is -40oC 

to 200oC and can therefore be used for measurements as a function of either 

temperature or frequency. Its frequency range is however only between 

200MHz to 20GHz but due to its large flange it gives better readings when 

used on flat faced solids as opposed to the other two. Its primary usage still 

remains on liquids. 
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Figure 3.9 High Temperature Probe Kit [37] 

 

3.2.2.3 Slim form probe 

As the name suggests, this probe comes in a slim design and therefore can 

be used in tight spaces and since they are designed as high turnover 

probes, sometimes they are cast into materials and left in place permanently 

until they can’t be used anymore. The Slim Form Probe has a frequency 

range of 500MHz to 50GHz which makes it one of the most used probes due 

to its convenience and good frequency range. Its temperature range is from 

0 to +125oC. The Slim probe can only be used for liquids or semi-solids that 

can conform to the probe tip. The minimum insertion of the probe is 5mm; 

this ensures that the sensing area is completely submerged in the SUT. 
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Figure 3.10 Three Slim Form Probes with the short standard and other 

accessories [37]. 

Apart from the probes, other important parts of the kit are the Electronic 

Calibration (ECal) module that is part of the setup and the flexible cable for 

connecting to the Network analyser. The ECal module has an automated 

electronic calibration feature that recalibrates the system automatically 

before each measurement is made. This helps eliminate the cable instability 

errors that can result when the cable is moved as can happen when moving 

the SUT to the sensor and also eliminates system drift errors. As much as 

possible the cable should be firmly fixed and not be subjected to movements 

once the calibration has been done. It’s always advised that the cable should 

stabilise before any measurements can be made. 
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Figure 3.11 ECal module in use with Slim Form Probe also showing the 

flexible cable connecting to the Network Analyser [37] 

3.2.3 Dielectric probe measurement results 

Deionised water was measured with the Slim form probe inserted at different 

depth to see the effect of the depth on the measurements. In the first case, 

the probe was inserted up to 25mm deep in deionised water at 25oC and in 

the second case the measurement was taken at 50mm insertion depth. At 

both depths the measurements did not show much change except minor 

differences that could be as a result of the liquid drifting in temperature 

slightly between the measurements. 
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3.2.3.1 Measurements done with Probe immersed at 25mm and 50mm 

The Fig. 3.12, Fig. 3.13 and Fig. 3.14 give the results obtained during 

measurements using the Keysight dielectric slim form probe immersed at 

25mm and 50mm into deionised water. 

 

Figure 3.12 Deionised water relative permittivity measurement results at 

25mm and 50mm probe depth 

 

 

Figure 3.13 Loss factor measurement results at 25mm and 50mm probe 

depth immersed in deionised water 
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Figure 3.14 Deionised water loss tangent measurement at 25mm and 50mm 

probe depth 

 

From the results obtained it is clear that once the mandatory 5mm depth of 

probe immersion has been achieved, it does not matter how deep the probe 

is immersed as long as it is not inserted too close to the base of the sample 

holder. In both cases above, it was ensured that the probe was not close to 

the base of the sample holder. The probe should not be immersed to 

anywhere near the base of the sample holder so that the measured 

reflection coefficient is purely from the sample. This meets the requirement 

for this method which desires that the sample is infinite in size. To confirm 

this, a short was put at the base of the beaker without seeing it’s influence 

on the measurement result. 

3.3 Simulation results 

In this section the simulation results using the in-waveguide LTCC sensor 

are presented. The extraction of the complex permittivity of the liquid under 

test was done using the three stage method given in section 3.2.1: 
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a. Simulate the through standard to obtain the scattering parameters. 

This is the case where only the two cover layers are considered, 

namely the top layer and the bottom layer. 

b. Simulate the line scenario. This is the setup where all three layers 

with the liquid well encapsulated are considered. 

c. Use the developed matlab code to extract the complex permittivity of 

the liquid. 

In the following subsection, the simulation results for deionised water and 

methanol are presented. 

3.3.1 Deionised water simulation results 

Fig. 3.15 gives the S-parameter plot of the through standard. The through 

standard scattering parameters shown in Fig. 3.15 are to be used for all 

subsequent simulations of different liquids as they are part of the permanent 

fixture. 

 

Figure 3.15 S11 and S21 plots for through standard 
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The line simulation with deionised water as the sample was then 

undertaken. All these simulations only took place after the optimised sample 

thickness for high loss liquids had been determined through several 

simulations in the earlier work. In these simulations it was concluded that as 

long as the S21 was above -30dB, valid results of the complex permittivity 

could be obtained. As can be seen in Fig. 3.16 the simulation of deionised 

water as the SUT falls well within the limits of operation of this sensor. 

 

Figure 3.16 S11 and S21 Simulation results for Deionised water using the in-

waveguide sensor 

Using the scattering parameters presented in Fig. 3.15 and Fig. 3.16 the 

complex permittivity of the liquid was extracted for this broadband case 

between 33.35 GHz to 50.35 GHz as shown in Fig. 3.17. 
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Figure 3.17 Extracted real and imaginary part of the complex permittivity of 

deionised water 

3.4 Comparison of In-SIW sensor results with dielectric 

probe kit measurement results 

The simulated results using the in-waveguide sensor were then compared 

with the measurement results obtained using the Keysight dielectric probe 

kit. Close agreement between the results was achieved which validated the 

designed sensor. For this exercise, deionised water and methanol were 

considered with the results as given in Fig. 3.18 – Fig. 3.21. Using two pure 

liquids and obtaining the results as presented was sufficient validation of 

both the design and the complex permittivity extraction method. In the 

extraction method, as shown in appendix A, the debye model was used as 

the initial estimation of the complex permittivity of the sample at the start 

frequency (33.35 GHz). The Matlab program converged quickly to the 
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correct complex permittivity values once it was run. After the conversion of 

the first iteration at 33.35 GHz, this value is then used as the initial estimate 

for the next iteration and so on and so forth until all the frequency points 

have been exhausted. 

 

 

Figure 3.18 Relative permittivity result for Deionised water when measured 

using the Keysight dielectric probe and LTCC in-waveguide sensor 

simulation result 
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Figure 3.19 Loss factor of Deionised water when measured using the 

Keysight dielectric probe and the LTCC In-waveguide simulation result 

 

Figure 3.20 Relative permittivity of Methanol when measured using the 

Keysight dielectric probe and the simulation result of the LTCC in-waveguide 

sensor 
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Figure 3.21 Loss factor of Methanol when measured using the Keysight 

dielectric probe and the simulation result when using the designed in-

waveguide sensor 

The slight difference between the measured results and the simulated 

results was attributed to the final part of the complex permittivity extraction 

that used a simple mixing formula to eliminate the effect of the substrate 

support wall from the calculated effective permittivity.  Using a robust mixture 

model like the Maxwell-Garnet model would have yielded a closer 

agreement as observed in Chapter 4. 

 

3.5 Summary 

In this chapter, the development of an In-waveguide  broadband liquid 

characterisation sensor based on an SIW structure has been described.  

The SIW structure was proposed to be fabricated using LTTC due to  the 

easy with which it enables layered structures to be fabricated.  It was 



 74 

proposed that the bottom layer and the middle layer (which has the liquid 

cavity), were to be cofired together. This would lead to the creation of a 

stable hollow structure.  Since each layer was going to be 1mm thick, 4 

layers of raw LTCC where to be used (each layer being 254 µm).  Although 

this structure was not successfully fabricated, the design, simulation and 

analysis offered valuable learning experience that was used in the 

subsequent work. Equally during this work the coding analysis of material 

dielectric properties was developed. This involved extracting the material 

dielectric properties based on the propagation constant of the wave in the 

material under test.  The next chapter will present a sensor that evolved from 

the work discussed in this chapter as it aimed to seek a sensor where the 

SUT interacted only with the evanescent waves and near-fields generated  

by the main transmission line.   
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Microfluidic-Integrated SIW Lab-on-Substrate Sensor for 

Microlitre Liquid Characterisation 

4.1 Introduction 

Microfluidic devices use a compact design to perform microlitre or nanolitre 

liquid volume measurements [38]. Predominantly, microfabrication 

techniques are employed to create micro-channels, whereas liquid insertion 

is achieved by using pumps, syringes and valves. Some measurements 

require that the liquid is flowing at all times whereas other measurements 

may take place with the liquid in what is referred to as a static state (not 

flowing). Sometimes, more than one microfluidic channel is used to enable 

the insertion of more than one liquid and allow for chemical reaction of the 

liquids to further facilitate property measurements as the mixture transitions 

through various stages. 

Microfluidic devices and/or lab-on-substrate devices have been used in 

sensors to characterise various chemical and biological liquids. Most devices 

tend to consist of two parts: one part provides for the microwave or optical 

circuit whose characteristics vary when exposed to the sample under test 

(SUT), the other part comprises the microfluidic channels with their covers. 

Lab-on-substrate devices are patterned on planar surfaces that allow for 

standard fabrication processes, from PCBs to metal electrode deposition. 

The work in Chapter 4 is published in the IEEE sensors journal [39] and was 

presented when in its early stage at the European Microwave Conference 
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2016 [40]. The journal extended the work presented at the European 

Microwave Conference. This work presented for the first time a microfluidic 

sensor  fabricated using an SIW structure that ensured that the device was 

planar and compact while returning the performance of the standard 

equivalent waveguide structure. 

Biological sensors play a critical role in the everyday investigation and 

analysis of liquids/fluids in various medical and biological applications [31, 

41-44]. Cell identification and quantification particularly are significant in 

arresting certain potential life threatening cases in the human body. This 

impact and motivation have been working as drivers to enhance further 

research into cheaper, environmentally friendlier and higher accurate 

devices but require very small volume of the sample materials. Additionally, 

the continued advancement in micro-technology and computational 

techniques are huge contributing factors to the current enhancement being 

seen in the quest for accurate biological material characterisation. 

Resonance methods are the most accurate when used in electrical material 

properties characterisation and material quantification compared to the other 

available alternatives such as transmission-line techniques [25, 26, 45-47]. 

The resonance methods are normally used to characterize materials at 

either a single frequency or a narrow band. Previously, resonance methods 

were restricted to measurement of low loss materials due to broadening of 

the resonance curve as the loss increased. However, the methods have 

recently been adapted to measure and characterize high-loss liquids through 

various modeling techniques [48]. Due to the high sensitivity of resonance 
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methods, they particularly allow for reduction of sample volume and enhance 

sensor compactness [49].  

With the advancement of substrate integrated waveguides (SIWs) in the last 

decade, it is now possible to design planar devices offering functionality that 

was previously reserved for traditional waveguides. This reduces cost, offers 

reduced size and makes for easy integration with other planar circuits [50, 

51]. Recently, [52] an SIW resonator sensor for liquid permittivity 

measurements was presented. However, the sensor requires substantial 

liquid volume as well as sensor immersion in the liquid. The immersion 

exposes the sensor to the possibility of contamination as well as corrosion. 

In [26] a planar resonator is presented, although compact, it is only able to 

characterize liquids with relative permittivity extending from 20 to 40 as 

these are the limits of the predictive model employed.   

In this chapter, a novel liquid sensor with application for liquid mixture 

solutions detection, identification and  quantification, e.g. cell quantification, 

that combines the following advantages compared to the state-of-the-art is 

presented: 1) measurement of relative permittivity, real part of complex 

permittivity, with ε'r ranging from low ε'r to high ε'r materials with no technical 

restriction, 2) noninvasive and contactless characterization, 3) compact 

liquid volume, with only 7 μl being sufficient, and 4) potentially reusable 

sensor requiring only a replacement of the microfluidic subsystem in the 

plug-and-play fashion. The sensor is made reusable by creating guiding 

holes on the microfluidic subsystem and the microwave subsystem. 

Furthermore, a mathematical model is developed to analyse and synthesize 

the SIW sensor. Based on the proposed analytical model, a program 
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implemented by using MATLAB is developed to transform the measured 

return losses and resonant frequencies to various interesting liquid material 

properties, e.g. dielectric constants. A performance comparison is conducted 

between the designed sensor and the commercial sensor from Keysight 

Technologies and other sensors designed by others. The frequency choice 

of 10 GHz is a compromise between sensor sensitivity and cost. At much 

lower frequency, the sensor would become less sensitive, while at very high 

frequency the sensitivity would increase but so would the fabrication cost 

and measurement challenge. 

 

4.2 Working principle and sensor design 

 Fig. 4.1 and Table 4.1 show the 3D structure and important design 

parameters of the SIW microfluidic-microwave sensor. The sensor is 

implemented using an SIW structure integrated on top with a longitudinal slot 

antenna, designed to operate at the center frequency of 10 GHz. The SIW is 

implemented based on a RT/Duroid 5880 substrate that is copper plated on 

the top and the bottom surfaces. Vertical copper plated via holes electrically 

connect the top copper layer to the bottom copper layer, thereby forming 

both side walls of the SIW. One edge of the SIW, as shown in Fig. 4.1, is 

short-circuited by using a series of vertical copper plated via 

interconnections. A longitudinal rectangular slot cavity antenna is then 

created into the top metallic layer with its center position located at a 

quarter-wavelength distance from the short-circuited end of the SIW. For the 

measurement, an additional 50-Ω microstrip feed line is integrated to the 
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design with a tapered microstrip transition that matches the SIW impedance 

of 72-Ω at the design frequency to that of the 50-ohm microstrip.  

Electromagnetic (EM) field radiation from the rectangular slot antenna 

occurs because the slot cavity interrupts the transverse surface currents in 

the metallic wall of the SIW, thereby creating an electric field in the slot. The 

induced electric field can be viewed using its equivalent magnetic sheet and 

radiates into the outer space [53]. To create a contactless sensor, a 

dielectric layer is used to cover on top of the SIW slot antenna, acting as an 

isolation layer between microwave and microfluidic subsystems. A micro-

fluidic subsystem, consisting of a micro-channel and liquid in and outlets, is 

then created in another substrate, which is subsequently bonded on top of 

the isolation layer. The final substrate layer, performing as a liquid-channel 

cover, was then bonded on top of the microfluidic subsystem to encapsulate 

the liquid inside the microfluidic channel. The microfluidic channel is 

transversely located above the centre of the antenna slot where the radiated 

EM near-field is maximum in order to get the best sensing accuracy and 

sensitivity. The sensing principle is to track any changes in resonant 

frequency and return loss of the slot antenna as a result of an interaction 

between the radiated near-field and the encapsulated liquid in the micro-

fluidic channel.  
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Figure 4.1 3D drawing of SIW waveguide integrated with a single slot 
antenna and microfluidic subsystem 

 

Table 4.1 Summary of the design parameters 

Parameter Description Length (mm) 

d Via post diameter 0.5 

p pitch 0.8 

aSIW SIW width 15.4 

b SIW height 1.575 

ls Slot length 11.7 

w Slot width 0.5 

x Displacement from centre 

of SIW to centre of slot 

1.85 

lt Microstrip taper length 6.7 

Wt Microstrip taper width 5.4 

Wm 50-Ω microstrip width 4.62 
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The SIW design procedure follows the steps given in [54]. The important 

design consideration is that the pitch (p) is less than or equal to twice the 

vias post diameter (d) and that the post diameter is less than a fifth of the 

guided wavelength (λg) as given in (4.1). Under this condition the field 

leakage can be negligible and the performance of the SIW structure is 

similar to the conventional rectangular waveguide. The SIW width (aSIW) is 

then the equivalent dielectric waveguide width (ae) given by (4.2), where 

aRWG is the width of a conventional rectangular waveguide and εr is the 

relative permittivity of the substrate. 

 

𝑑 <
𝜆𝑔

5
 and 𝑝 ≤ 2𝑑      (4.1) 

 

𝑎𝑆𝐼𝑊 =
𝑎𝑅𝑊𝐺

√𝜀𝑟
       (4.2) 

Rogers RT/Duroid 5880 substrate was used to implement the SIW structure, 

with a dielectric constant of 2.2 and a loss tangent of 0.0009 at 10 GHz. 

RT/Duroid 5880 has low moisture absorption, very good chemical resistance 

and offers the lowest electrical loss for reinforced Polytetrafluoroethylene 

(PTFE) material making it a good substrate for the dielectric encapsulating 

the liquid [20]. The optimum design parameters of the SIW waveguide are 

summarized in Table 4.1. 

A single slot antenna is well sufficient to achieve highly accurate tracking of 

the resonant frequency changes and the return loss variations when different 

types of liquid samples are encapsulated in the channel above the antenna 

slot. The slot length (ls) and the slot displacement from the SIW center (x) in 

Fig. 4.1 are optimized to obtain the lowest voltage standing wave ratio 
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(VSWR). The displacement of the slot from the center of the SIW plays a 

critical role in the design, since it directly impacts on the effective resonant 

slot conductance. The displacement is calculated by using the Stevenson 

formula [55] that gives the effective resonant slot conductance. 

𝑔(𝑥) = 𝑔𝑜𝑆𝑖𝑛
2 (

𝜋𝑥

𝑎𝑆𝐼𝑊
)          (4.3) 

 

𝑔𝑜 = (2.09𝑎𝑆𝐼𝑊𝜆𝑔/𝑏𝜆𝑜)𝐶𝑜𝑠2(𝜆𝑜𝜋/2𝜆𝑔)   (4.4) 

 

where g(x) (=Gs/GSIW) is the normalized conductance of a resonant 

longitudinal shunt slot, g0 is a constant, λg is the guide wavelength, λ0 is the 

free-space wavelength, x is the slot displacement from the center of the 

guide and aSIW and b are the waveguide width and height [56]. Gs is the slot 

conductance and GSIW is the guide characteristic conductance. The slot 

length (ls) is impacted by the permittivity of the dielectric filling the 

waveguide. This was calculated by (4.5), [57]: 

 

𝑙𝑠 =
𝜆𝑜

√2(𝜀𝑟+1)
       (4.5) 

 

 

Figure 4.2 Precisely cut Microfluidic subsystem layers aligned at the 
edges 



 83 

 

 

Figure 4.3 Fabricated prototype, before (top) and after (bottom) 

mounting the microfluidic subsystem 

For the design frequency of 10 GHz and substrate relative permittivity of 2.2, 

the calculated slot length is 11.86 mm. The slot length was further optimized 

with HFSS to 11.7 mm in order to achieve the lowest VSWR. 

A tapered microstrip transition from a 50-Ω input microstrip line to the SIW 

was designed to achieve good matching over the whole operation band of 

the SIW [58]. The tapered microstrip line converts the TEM propagation 

mode of the microstrip to the TE10, which is the fundamental mode, in the 

SIW.  

The position of the microfluidic channel is determined based on the design 

rule that the radiated EM near-field is maximum at the quarter-wavelength 

distance from the short-circuited end of the SIW. In this design, the 

microfluidic channel is located at 6.7 mm from the short-circuited end of the 

SIW, in order to achieve the best sensing accuracy. The microfluidic 

subsystem is made up of three layers, the isolation layer, the microfluidic 
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layer and the channel cover layer. All layers are precisely cut out using the 

LPKF 200 Protolaser machine in the laboratory. The three layers are aligned 

as shown in Fig. 4.2 for bonding. To ensure that the slot cavity is not in 

physical contact with the liquid sample under test, the isolation layer 

consisting of a low-loss dielectric substrate is bonded on top to cover the 

SIW antenna slot. The thickness of the isolation layer is 790 µm. However, 

adding a dielectric isolation layer on top of the slot results in a slight 

resonant frequency shift [59] : in this design from 10 GHz to 9.6 GHz. After 

integrating the isolation layer, the microfluidic subsystem is implemented on 

top by using another dielectric substrate containing a micro-channel. The 

height of the microfluidic channel is 790 µm, which equals the thickness of 

the substrate.  Another dielectric substrate is then bonded on top to cover 

the microfluidic channel, ensuring the liquid is well encapsulated inside the 

microchannel. Epoxy bonding was used for all three substrate layers. All 

three dielectric substrates forming the microfluidic subsystem are 

implemented by using Rogers Duroid 5880. The width of the microfluidic 

channel is optimized by HFSS to 500 µm for the best sensing accuracy and 

sensitivity. 

Fig. 4.3 shows the fabricated sensor prototype before (top) and after 

(bottom) integrating the microfluidic subsystem to the microwave SIW 

sensor, respectively.  

4.3 Model analysis 

An equivalent circuit model for the radiating area of the slot antenna was 

developed as shown in Fig. 4.4. It was developed by considering that 

because the slot interrupts the transverse currents of the SIW, the EM-wave 
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radiation is induced from the slot both in the upward direction into the 

isolation layer and microfluidic channel as well as in the downward direction 

into the SIW. Fundamentally, if the impedance or admittance attributed to 

the measured liquid can be calculated, it then means the relative permittivity 

of the liquid under test at the resonant frequency can be accurately 

determined.  

This becomes clear when it is considered that the slot cavity represents a 

rectangular waveguide. Similarly, the isolation, microfluidic and channel 

cover layers can be seen as dielectric waveguide slabs. The material 

properties of the unpatterned isolation and channel cover layers is 

sufficiently provided by the manufacturer, i.e. the Rogers Duroid 5880. The 

microfluidic layer, on the other hand, is composed of a micro-fluidic channel, 

filled with the liquid under test, embedded into the Rogers Duroid 5880 

substrate. This means that only the permittivity of the liquid under test is 

unknown and must be determined. Understanding this enables the relative 

permittivity of the liquid to be calculated using transmission line analysis of 

the conductance of the whole equivalent two-dimensional circuit model in 

Fig. 4.4, in relation to the measured resonant frequency and return loss. 
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Figure 4.4 SIW Sensor radiating area equivalent 2-D circuit 

 

The total conductance (Gt) of the equivalent circuit can be calculated as in 

[59] by:  

𝐺𝑡 = 𝑌𝑤 + 𝑌𝑑 + 𝐺𝑠 + 𝑗 (𝜔𝐶 −
1

𝜔𝐿
)      (4.6) 

where Gt is the total conductance of the entire equivalent model, Gs is the 

resonant conductance due to the thin slot, with C and L being capacitance 

and inductance of the slot cavity. Yw and Yd are respectively the admittance 

seen from the slot looking into the SIW and also from the slot looking into the 

isolation layer. This implies that Yd is the effective admittance due to the 

isolation layer, the microfluidic layer and the liquid channel cover layer. 

Resonance occurs when the slot admittance presented to the SIW is real 

[55]. In [59] it was investigated that the conductor wall thickness introduces a 

resonant frequency shift but leaves the resonant conductance of the antenna 
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slot unaffected. The total conductance of the equivalent circuit can therefore 

be reduced to (4.7) at the resonance while still giving accurate results: 

𝐺𝑟 = 𝑌𝑤 + 𝑌𝑑 + 𝐺𝑠      (4.7) 

where Gr is the resonant conductance of the entire equivalent model. The 

slot resonant admittance, Gs, has already been defined in (4.3) and (4.4).  

Assuming that the standing wave for the electric field across the slot is 

symmetrical, the return loss at the input port can be represented in the form 

of the equivalent shunt admittance (Gr/YSIW) as a result of the longitudinal slot 

in the broad wall of the waveguide [60]:  

𝑆11𝑐 =
−

𝐺𝑟
𝑌𝑆𝐼𝑊

2+
𝐺𝑟

𝑌𝑆𝐼𝑊

       (4.8) 

where YSIW is the characteristic admittance of the waveguide, which, in this 

case, is the equivalent characteristic admittance of the SIW, tapered 

transition and the 50-Ω microstrip. S11c is the calculated reflection coefficient 

at the input port. The expressions of the admittance variables in Fig. 4.4 

were developed as follows. From transmission line theory: 

𝑌𝑤 = −𝑗𝑌0𝑆𝐼𝑊𝑐𝑜𝑡(𝑘𝑆𝐼𝑊𝑏)     (4.9) 

where the characteristic admittance in the guide below the slot is given by 

 𝑌0𝑆𝐼𝑊 =
𝛽𝑑

𝑘0𝜂0
       (4.10) 

and 𝑘𝑆𝐼𝑊 =
2𝜋√𝜖𝑠

𝜆𝑜
 with ϵs being the relative permittivity of the dielectric filling 

the SIW. βd is the propagation constant in the dielectric given by: 

𝛽𝑑 = √𝜖𝑠𝑘0
2 − (

𝜋

𝑙𝑠
)
2

      (4.11) 
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where ls is the length of the slot cavity. 

Yd is equally calculated using the transmission line theory. This is done by 

considering the impedance due to the isolation layer and a combination of 

the microfluidic layer and the impedance due to the liquid channel cover 

layer. 

Yd can then be defined as:  

𝑌𝑑 = 𝑌0𝑑
1+𝑗𝑍𝑒𝑞𝑌0𝑑tan (𝑘0𝑑ℎ)

𝑍𝑒𝑞𝑌0𝑑+𝑗𝑡𝑎𝑛(𝑘0𝑑ℎ)
     (4.12) 

where Zeq is the total impedance seen looking into the microfluidic layer from 

the isolation layer, given in (4.13) and Y0d (which in this case is the same as 

Y0SIW) is the characteristic admittance of the isolation layer and k0d is equal to 

kSIW since the dielectric used in both cases has similar properties: 

𝑍𝑒𝑞 = 𝑍𝑙𝑖𝑞
𝑍0𝑑+𝑗𝑍𝑙𝑖𝑞𝑡𝑎𝑛(𝑘𝑙𝑖𝑞ℎ)

𝑍𝑙𝑖𝑞+𝑗𝑍0𝑑tan (𝑘𝑙𝑖𝑞ℎ)
     (4.13) 

where Zliq (=
𝑘0𝜂0

𝛽𝑙𝑖𝑞
) is the characteristic impedance due to the microfluidic 

layer, while kliq (=
2𝜋√𝜖𝑒𝑓𝑓

𝜆𝑜
) is the propagation constant in the microfluidic 

layer. ϵeff is the effective permittivity, which is the permittivity as a result of 

the liquid under test and the dielectric forming the microfluidic channel given 

by Maxwell-Garnet relationship as 

𝜖𝑒𝑓𝑓−𝜖𝑙𝑖𝑞

𝜖𝑒𝑓𝑓+2𝜖𝑙𝑖𝑞
= 𝑓

𝜖𝑠−𝜖𝑙𝑖𝑞

𝜖𝑠+2𝜖
      (4.14) 

where ϵliq and ϵs are the relative permittivity of the liquid and the dielectric 

forming the microfluidic channel respectively, while f is the fractional volume 

occupied by the dielectric in the microfluidic layer. The Maxwell-Garnet 

model was used because the electric field is considered constant across the 
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mixture of the dielectric substrate and the liquid under test. The Maxwell-

Garnet is also designed for small volume fractions of inclusions [61] and is 

easy to solve.  

To calculate the characteristic impedance of the waveguide feed network, 

the three sections of the feed network, consisting of the SIW, tapered 

microstrip transition and microstrip feedline, are considered as a cascade as 

shown in Fig. 4.5. 

 

 

Figure 4.5 Equivalent model of the feed network 

 

Each section of the feed network in Fig. 4.5 is designed using HFSS and 

their S-parameters are obtained. The S-parameters are converted to ABCD 

parameters so that the total ABCD parameters of the cascade can be 

obtained as: 

[𝑇𝑖𝑛] = [𝑇𝑚]. [𝑇𝑡]. [𝑇𝑆𝐼𝑊]     (4.15) 

where [Tin] represents the total cascade ABCD parameters of the feed circuit 

with [Tm], [Tt] and [TSIW] representing the ABDC parameters for the 50-Ω 

microstrip, the tapered microstrip and the SIW sections, respectively. The 

ABCD parameters for the entire feed network are then converted back to S-

parameters and used to obtain the equivalent characteristic impedance of 

the whole feed structure as:  
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𝑍𝑆𝐼𝑊 = 𝑍0√
(1+𝑆11)

2−𝑆21
2

(1−𝑆11)
2−𝑆21

2     (4.16) 

Substituting (4.3), (4.9) and (4.12) in (4.7) and then using (4.8) and (4.16), 

an expression for S11c can be written with the effective relative permittivity of 

the liquid and dielectric forming the microfluidic subsystem as a variable.  

The calculated S11c is then iteratively compared with the measured S11m to get 

the effective relative permittivity of the liquid and dielectric sample holder as 

shown in (4.17). In this particular case, the solve system, fsolve, of nonlinear 

equations in MATLAB was used, together with the developed MATLAB 

program, to numerically calculate the effective relative permittivity of the 

liquid at the resonant frequency. The known relative permittivity of the 

dielectric material forming the microfluidic subsystem was used as the initial 

value. Therefore, the relative permittivity of the liquid under test can be 

numerically calculated at the resonant frequency of the measurement using 

(4.14). The relative permittivity of various liquids and liquid mixtures 

characterized by the SIW sensor is compared to that measured by the 

Keysight 85070E dielectric probe sensor, under the same environment 

control. The measurement result comparisons are shown in Section 4.4. 

𝑓(𝜖𝑒𝑓𝑓) = [𝑅𝑒(𝑆11𝑚 − 𝑆11𝑐);  𝐼𝑚(𝑆11𝑚 − 𝑆11𝑐)]  (4.17) 
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4.4 Measurement results 

4.4.1  Measurement setup, sensor calibration and standard 

measurement 

The liquid under test was, prior to each measurement, injected into the 

microfluidic channel using a 100 µl syringe with one end of the microfluidic 

channel well capped. The liquid was let to overflow at the inlet before the 

microchannel inlet was capped to ensure complete liquid filling. When the 

microchannel was completely filled by the liquid under test without any air 

gap or bubble, the liquid inlet of the microchannel was then sealed. The S-

parameter measurement was done by using the Keysight E8361A Network 

Analyzer. One-Port reflection calibration was performed using the Keysight 

Electronic Calibration (ECal) N4691-60006 module prior to the 

measurement. All liquids were maintained at 25oC by using a warm water 

beaker that was maintained at 25oC. 

Three sample materials, which are air, Methanol and DI water, were 

measured and characterized. Air was measured in order to calibrate the 

measurement for an empty microfluidic channel, while the other two 

materials had their respective liquids filled in the channel. 
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Figure 4.6 S11 plot for simulated and measured Air, Methanol and DI water 
samples 

 

Fig. 4.6 shows that with the empty, air-filled, microfluidic channel, the 

measured resonant frequency of the SIW sensor was 8.96 GHz with a return 

loss of 20.02 dB. With methanol and DI water samples, the resonant 

frequency was 8.94 GHz with a return loss of 24.51 dB and 8.85 GHz with a 

return loss of 38.21 dB, respectively. A resonant frequency shift of 110 MHz 

was observed between DI water and air (empty channel), while a shift of 20 

MHz was observed between methanol and air. 

The resonant frequency shifts between the empty channel and liquid-filled 

channel were significant and; therefore, it was clear that accurate 

characterizations and discriminations between each different liquid material 

under test could be obtained.  

For all simulations, HFSS used the default meshing setting with the lambda 

target set at 0.3333. HFSS then used auto-adaptive meshing based on the 
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fields for it to obtain the final mesh. Fig. 4.6 shows that the simulated results 

are shifted in frequency and return loss because the epoxy effect was not 

included in the simulation, difference in conductor loss used, and also the 

simulation uses approximated properties for the samples under test.  The 

measured values are used for subsequent calculations. 

4.4.2 Quantification measurement of liquid mixture 

The SIW sensor demonstrated liquid quantification by measuring liquid 

mixtures of DI water and methanol with methanol to DI water composition 

varying from 0-100 % by volume. An increment of methanol volume by 20 % 

corresponding to an equal decrease of DI water by volume for each 

measurement step was conducted. Zero percent methanol constituent in the 

liquid mixture indicated 100 % DI water. Fig. 4.7 shows the measurement 

result indicating the reflection coefficient (S11) of the different liquid mixtures.  

 

 

Figure 4.7 Measured S11 plot for Methanol and DI water mixtures 
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Varying mixture concentration gives an equivalent change in resonant 

frequency and return loss. This change is mostly because a high loss liquid 

has more perturbation effect on the radiated near-field than a lower loss 

liquid and hence having a lower resonant frequency. Therefore, by starting 

with 100 % methanol and decrement each measurement step downwards by 

20 % by volume, it was observed that the resonant frequency 

correspondingly shifted downwards as more water by volume dominated the 

test sample. 

This is illustrated in Table 4.2 and Fig. 4.8, with values for the mixture 

characterization model, developed by a fitting curve method, included. This 

characterization model therefore embodies the behavior of this particular 

mixture and can be subsequently be used to determine the composition of 

any given DI water – methanol mixture.  

 

Table 4.2 Deionised water-methanol mixture measurement 

Frequency 

(GHz) 

Methanol 

fractional 

volume 

(measured) 

Methanol 

fractional 

volume (Model) 

Percentage 

difference 

8.86 0 0.00067215 0 

8.88 0.2 0.20378764 1.89382 

8.90 0.4 0.39054383 2.364042 

8.92 0.6 0.61892344 3.153907 

8.93 0.8 0.78270568 2.16179 

8.94 1.0 1.0047337 0.47337 
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Figure 4.8 Measured resonant frequency against Methanol fractional volume  

 

The equation characterizing the mixture measurement is given as  

𝐹𝑟 = 8.85893 + 0.12161𝑉𝑓 − 0.04018𝑉𝑓
2    (4.18) 

where Vf is the fractional volume of methanol and Fr is the measured 

resonant frequency. This means that for a deionised water – methanol 

mixture, by only using (4.18) and the measured resonant frequency, the 

methanol percentage in the mixture can be calculated. 

4.4.3 Relative permittivity measurement 

Using the software program developed from the mathematical model in 

section 4.3, it was possible to determine the relative permittivity (real part of 

the complex permittivity) of the liquid under test. This was achieved by 

solving iteratively the equation given in (4.17), with the Matlab program 

illustrated in Appendix B . The relative permittivity was calculated for the DI 
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water and methanol mixtures mentioned in the preceding subsection. These 

liquids and liquid mixtures were also measured using the Keysight 85070E 

dielectric probe under the same environment control and condition. As 

shown in Table 4.3, the results showed good agreement between the SIW 

sensor and the commercial probe, with the percentage difference between 

the two sensor devices varying from 0.4 % to 3 %. However, for the SIW 

sensor, only 7 μl of the sample liquid was required for an accurate 

measurement while the commercial probe required more than 100 ml for the 

same accuracy. 

 

Table 4.3 Relative permittivity measurement of methanol/DI-water mixture 
using SIW slot antenna and the Keysight dielectric probe 

Test sample 

(by volume) 

Freq. 

(GHz) 

Relative 

Permittivity (this 

work) 

*Relative 

permittivity 

(Keysight 

probe) 

% diff. 

100%Methanol 8.94 8.58 8.37 2.44 

80% Methanol  8.93 11.92 11.63 2.43 

60% Methanol  8.92 23.55 22.86 2.93 

40% Methanol  8.90 34.54 34.39 0.43 

20% Methanol  8.88 48.67 48.44 0.47 

100% DI water (0% 

methanol) 

8.85 66.12 65.67 0.68 

 

*Measured using Keysight 85070E probe sensor. 
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4.4.4 Sensor sensitivity 

Simulations were performed to analyse the sensitivity of the sensor. Three 

test samples with relative permittivity of 10, 10.01 and 10.1 were used, low 

ϵ′r values were used to prove good sensitivity for low relative permittivity 

liquids. The sensitivity of the sensor was approximated to be ±0.01 ϵ′r or ±1 

% of ϵ′r as shown in Fig. 4.9, where there is no significant shift in frequency 

with sample ϵ′r  difference of 0.01, but a clear difference is seen when the 

sample ϵ′r  has a difference of 0.1. 

 

Figure 4.9 Sensor sensitivity simulations 

In Table 4.4, key figure-of-merit and parameter comparisons between this 

work and the state-of-the-art [26] and [62-64] are presented. 
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Table 4.4 Key parameter comparison of measurement of this work and other work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Limited to indicated range because of the predictive model  

**Results obtained using developed interpolation function 

***K.D.P (Keysight Dielectric Probe) 

 

Key Parameter [26] K.D.P*** [62] [63] [64] This work 

Relative permittivity 

(ε’r) of deionised 

water 

Reported S21 

results  

65.67 63 63.5 66.5 66.12 

Liquid volume nl 100 ml 1.8 ml 1.16 ml Not 

indicated 

7 µl 

Freq. for DI water 

measurement 

(GHz) 

17.9-19.34 8.85 9.7 9.7 8.5 8.5 

Fabrication 

complexity 

Moderate Moderate Moderate Moderate N/A** Low 

Lab-on-substrate 

suitability 

Yes No No No N/A Yes 

Characterisation 

method 

Resonance Reflection Transmission Transmission N/A Resonance 

Permittivity 

measurement 

range 

20 – 40* Not limited Not limited Not limited Not 

limited 

Not limited 

Planar structure Planar Non-planar Non-planar Non-planar N/A Planar 

Measurement setup Non-invasive 

and contactless 

Non-invasive Non-invasive Non-invasive N/A Non-invasive and 

contactless 

Fabrication  Cleanroom Standard 

machining 

Standard 

machining 

Standard 

machining 

N/A Standard PCB 

Design complexity Complicated Moderate Moderate Moderate N/A Moderate 
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4.5 Summary 

The developed microwave microliter sensor in this work has shown some of 

its potential range of usage leading to accurate quantification of liquid 

mixtures and further liquid characterization through measurement of the 

relative permittivity. The accuracy in measurement was enhanced by the 

resonance operation of the sensor. This ensured that with only 7 µl of the 

liquid, sufficiently accurate results were obtained. Furthermore, the 

developed model based on a dielectric covered waveguide fed slot antenna 

enhanced confidence in the obtained results. The quantification 

measurements of DI water and Methanol mixtures with methanol varying in 

increments of 20 % by volume gave a good indication of how this sensor 

could be applied. Equally the measured relative permittivity of the liquids 

affirmed the universal nature of the characterization range, therefore lending 

this sensor to potentially vast applications. This microwave microliter sensor 

consequently has potential in the characterization of biological liquids. 
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Sub-millimetre Wave Sensor for Dielectric Material 

Characterisation 

5.1 Introduction 

This chapter describes the design of a sub-terahertz sensor for solid 

dielectric material characterisation. The importance of this work was twofold, 

namely to offer an alternative accurate characterisation method for the W-

band where dielectric properties of materials are not readily available and to 

lay the foundation for a method for calculating thin-film material thickness. 

Thin-film material thickness calculation has proved to be a challenge 

especially for substrates spun on glass substrates. Non-invasive, high 

frequency material characterization applications, demand that accurate 

devices are used. Resonant structures with high quality factor have proved 

to be sufficiently accurate when used in this regard. This is supported by the 

fact that the higher the quality factor, the more measurable and trackable are 

the small changes in material properties. One such device is the split-ring 

resonator (SRR). The last few decades have seen advancement in the 

design of split-ring resonator devices leading to high performance 

microwave devices with application mostly in left-handed metamaterials 

(LHMs) [65-69], filters [70-72] and material characterization sensors [73-76].  

Apart from offering high performance, split-ring resonators together with their 

counterpart, the complementary split-ring resonator (CSRR), offer compact 
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and low radiation loss systems and good control of the electrical 

characteristics.  

CSRRs respond to the electric field as opposed to the SRR that couples the 

magnetic field. In design terms the CSRR has a ring made of a dielectric on 

the conductor while the SRR has a metallized ring on a dielectric. Both forms 

of the ring resonator have attracted a lot of interest in sensing applications 

because of the relatively high quality factor type of resonators that they are 

able to create. In [76] a planar split-ring resonator based RF biosensor was 

developed for label-free detection of biomolecules, specifically the prostate 

specific antigen. This ability to detect such a sensitive material has 

motivated this research to characterize dielectric materials at high millimetre 

wave frequencies or sub-terahertz. Furthermore characterization information 

of most materials in this band is very limited. 

In this chapter, a resonant sub-terahertz dielectric characterization sensor 

operating at 100 GHz is presented. The use of CSRRs with their inherent 

gap reduces the resonant frequency of the structure. Furthermore having the 

design at sub-terahertz guarantees that the sensor is compact regardless of 

using a waveguide as the transmission line of choice. Using a waveguide for 

the transmission line ensures that the design benefits from it having high 

power handling and low radiation loss while still offering a competitive 

compact structure. This chapter primarily focuses on the design and 

accurate characterization of sub-terahertz applicable dielectric materials. 

This is motivated by the inadequately available reference data in this region. 

For the first time a sensor with three functions in one is presented. These 

functions are namely that: 1) the sensor can operate as a resonant sensor 
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offering dielectric characterization at a single frequency for applications 

requiring fast and accurate properties determination. This is achieved by 

using a sliding short at the output port, effectively making the structure a one 

port resonant structure, 2) the sensor can also be used for broadband 

measurements, with bandwidth of 6 GHz, to characterize dielectric materials. 

This is achieved by removing the sliding short at the output port, effectively 

having a two port transmission line structure and 3) the sensor can also work 

as a tuneable sensor offering resonant measurements at predetermined 

sliding short positions with known response behaviour. Having designed the 

sensor in this three-prone way validated its operation and measurement 

accuracy like never reported before. The extraction of the material dielectric 

properties was achieved through a developed model analysis made possible 

using the Ansoft finite element software (HFSS). Through this model the 

bounds for the materials that could be measured by the sensor were 

determined. The sensor was modelled for measurement of materials with 

relative permittivity values up to 5 and loss tangent up to 0.01. This covers 

most common low loss materials that find application at sub-terahertz 

frequencies. 

5.2 Sensor design and fabrication 

The CSRR in this work is patterned on the broad-wall of an air filled WR-10 

waveguide. Fig. 5.1 (a) shows a schematic of the top view of the CSRR 

patterned on a WR-10 waveguide with all parameters, this is not drawn to 

scale however. In Fig. 5.1 (b) the equivalent lumped element circuit of a 

double CSRR is shown.  
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(a)                                                           (b) 

Figure 5.1 (a) CSRR schematic in the broad-wall of a rectangular waveguide 
(b) CSRR equivalent lumped element model 

 

The inductor LC3 represents the mutual inductance between the two CSRRs 

separated by the distance (p-rw) in Fig. 5.1 (a). The metal plate in the middle 

of the each ring creates capacitance (CC1 and CC2) with the one outside the 

ring that is determined by the circumference of the inner metal ring as well 

as the size of the gap between the two metal sections, w. The inductance, 

contributed by LC1 and LC2, is determined by the size of the metal strip left to 

hold the ring in place, noted by g and w. The values of CC (total capacitance 

loading the line) and LC (total inductance loading the line) determine the 

resonant frequency (5.1), with the magnitude of the return loss being 

affected by the loading of the transmission line by the CSRR:  

𝑓𝑅 =
1

2𝜋√𝐶𝐶𝐿𝐶
        (5.1) 

where Cc is a combination of Cc1 and Cc2, and LC is a combination of LC1, LC2 

and LC3. 
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All the parameters in Fig. 5.1 are defined in Table 5.1 for this design 

operating at 100 GHz. Two CSRRs are used to increase the E-field 

interaction with the material under test as the measurements are surface 

based. 

Table 5.1 Summary of the design parameters 

Parameter Description Length (mm) 

a Waveguide width 2.54 

l Waveguide length 30 

p Pitch 1.5 

rl Ring length 1.81 

rw Ring width 1.0 

w Slot width 0.17 

g Gap width 0.23 

   

 

The fabricated prototype is shown in Fig. 5.2 with all the components used to 

make the device. To enable the patterning of the CSRRs, the WR-10 

waveguide was split in the H-plane, whereby the full waveguide grove was 

machined on the bottom block while the top layer, that acted as the 

conductor cover, had the two CSRRs patterned into it. Creating the device 

this way, adds reusability, by being able to structure different kind of devices 

on the top conducting cover. Sufficient screw holes were provided for to 

ensure that the contact when assembled was as close as possible to a 

completely enclosed waveguide in one block. The waveguide was made 

using copper as seen in Fig. 5.2. 
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Figure 5.2 Fabricated prototype, showing assembled structure and 
the components of the structure 

 

This design uses two scenarios, one where the device works as a resonant 

sensor and another where it works as a transmission line sensor. To make 

the device a resonant sensor with sufficient field radiation from the CSRR, a 

contacting sliding short was used at the output port. The CSRR was 

designed at 3λg/4 guided wavelength at 100 GHz from the short circuit 

position. To this end, the total length of the sliding short was 12.45 mm. The 

requirement for making a contacting sliding short is that it is made from a low 

loss metal and is able to make direct contact with one of the broadside 

waveguide walls. The sliding short was designed as given in [77], where 

periodic sections of low-Z and high-Z spaced at λg/4 are used to ensure a 

close to perfect short circuit, shown in Fig. 5.3. In [77] it was established that 

the sliding short does not need to touch the side walls of the waveguide, but 

only the bottom of the broad wall when created as described above. 
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Figure 5.3 Contacting sliding short 

 

In Fig. 5.4, a full setup of the transmission method measurement is shown 

as well as the resonant measurement setup. The transmission method setup 

is the case where the sliding short is removed and the sensor essentially 

works as a 2-port device, with SUT interaction with the sensor still being 

through the radiated field from the CSRR. In the resonant method setup as 

can be seen, the sliding short is inserted at port 2 to essentially create a one 

port system. The material under test was secured as shown in Fig. 5.4 to 

ensure that the air gap effect was minimised as much as possible. 
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Figure 5.4 Measurement setup (a) with sensor working as a resonant sensor 

(b) resonant setup with MUT (c) transmission method setup 

5.3 Complex permittivity extraction model 

5.3.1 Resonant method material permittivity extraction 

The case where the device is used as a resonant sensor is that when the 

sliding short circuit is inserted at port 2, pushed in up to 3λg/4 for maximum 

radiation. The complex permittivity extraction model for the resonant method 

starts with the analysis to establish the bounds of operation of the sensor. 

This analysis model was created by using hypothetical materials and 
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simulating the full design using HFSS. Air was used as the measurement 

standard in this analysis. By simulating the design with hypothetical 

materials with relative permittivity (ϵr′) ranging from 1 to 5 and loss tangent 

(tan δ) varying from 0 to 0.01, the relationship between the resonant 

frequency and return loss magnitude with the complex permittivity was 

developed for materials with properties in this range. A similar method was 

used in [26], where relative permittivity and loss factor where used as 

varying parameters. The difference in this model is that the relationship 

between both resonant frequency and S11 magnitude at the resonant 

frequency for both scenarios, when one variable is varied and the other kept 

constant, is used fully to yield the complex permittivity of the solid material 

being measured. In [26] this was not developed fully to the point of being 

used.  

In Fig. 6(a) and 6(b) the resonant frequency and minimum magnitude S11 

response with varying ϵr′ and tan δ respectively is shown. In summary this 

model is developed as follows: 

1. Vary ϵr′ from 1 – 5 (with Δϵr′ equal to 1) while keeping tan δ constant 

through the values 0, 0.0005, 0.005 and 0.01. Simulations were 

done using HFSS through each value of ϵr′ while keeping tan δ 

constant. 

2. Vary tan δ from 0 to 0.01while keeping ϵr′ constant through all 

values from 1 to 5. 

3. Use air as the standard, ϵr′ = 1 and tan δ = 0. 

4. Develop the following relationship: 

 

∆𝑓𝑟 =
1∆𝑓𝑟

2∆𝜖𝑟
′ ∆𝜖𝑟

′ +
1∆𝑓𝑟

2∆𝑡𝑎𝑛𝛿
∆𝑡𝑎𝑛𝛿     (5.2) 
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which can be simplified further as  

 

∆𝑓𝑟 = 𝑅1∆𝜖𝑟
′ + 𝑅2∆𝑡𝑎𝑛𝛿      (5.3) 

 

where R1 and R2 express the relative value of the resonant 

frequency change in relation to the relative permittivity and the loss 

tangent respectively. 

5. A similar relation was developed for the magnitude of S11 as shown 

below. 

 

∆𝑠11 =
1∆|𝑆11|

2∆𝜖𝑟
′ ∆𝜖𝑟

′ +
1∆|𝑆11|

2∆𝑡𝑎𝑛 𝛿
∆𝑡𝑎𝑛 𝛿 + 𝐾    (5.4) 

 

which again is simplified to  

 

∆𝑠11 = 𝑅3∆𝜖𝑟
′ + 𝑅4∆𝑡𝑎𝑛 𝛿     (5.5) 

 

Where R3 and R4 represent the relative change of the magnitude of S11 to the 

change in ϵr′ and tan δ respectively.  

The constants R1, R2, R3 and R4 are established through the simulations in 

step (1) and (2). Average values are used for the change in resonant 

frequency as well as the change in magnitude of S11 in respect to those of 

the measurement standard, air in this case. 
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Table 5.2 Calculation of R1 and R3 values 

tan δ  R1 (GHz) R3  

0 4.785 -0.2809 

0.0005 4.785 -0.2888 

0.005 4.75 -0.2852 

0.01 4.66 -0.2806 

 Mean R1 = 4.745 Mean R3 = -0.28592 

 

 

Table 5.3 Calculation of R2 and R4 values 

εr′ R2 (GHz) R4  

1 0 -0.61713 

2 -100 1.86503 

3 -400 0.93376 

4 -433.33 -1.2483 

5 -500 -2.6194 

 Mean R2 = -286.66 Mean R4 = -0.56202 

 

 

 

Figure 5.5 3D plot of resonant frequency against relative permittivity with 
loss tangent kept constant through values 0, 0.0005, 0.005 and 0.01 
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Figure 5.6 3D plot of S11 against loss tangent with relative permittivity kept 
constant through the values 1, 2, 3, 4, and 5. 

 

 

From Fig. 5.5, it is clear to see that the change in resonant frequency is 

influenced more by the relative permittivity rather than the loss tangent. With 

the loss tangent maintained constant, the maximum resonant frequency 

change is 17.4 GHz, while the maximum resonant frequency change as a 

result of varying the loss tangent is only 4 GHz. Using the analysis from Fig. 

5.5 and table 5.2 and table 5.3, (5.3) becomes 

 

∆𝑓𝑟 = 4.745∆𝜖𝑟
′ − 286.66∆𝑡𝑎𝑛𝛿    (5.6) 

 

Similarly using Fig. 5.6 and Table 5.2 and Table 5.3, (5.5) becomes  

 

∆𝑠11 = −0.28592∆𝜖𝑟
′ − 0.56202∆𝑡𝑎𝑛𝛿   (5.7)   

 

From (5.6) and (5.7) and using air (ϵr = 1, tanδ = 0) as the reference, the 

dielectric properties of the materials under test can be extracted. 
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5.3.2 Transmission method material permittivity extraction 

In the next stage of the measurements, the sliding short was removed, 

hence creating a 2-port device for broadband material characterization. The 

same materials as in section 5.3.1 were measured, namely PTFE, PMMA 

and HDPE. The analysis required two standards for accurate results to be 

obtained. The two standards used were air and PTFE. PTFE was chosen 

because its response is steady through the whole band of operation. This 

was confirmed using the Keysight free space method. Measured values of 

PTFE using the Keysight free space method were used for the second 

standard. The measurement had four steps as follows: 

1. Measure the full 2-port S-parameters with nothing loaded on the 

CSRR, i.e. air measurement standard. 

2. Measure the full 2-port S-parameters response with the PTFE 

securely fixed to the CSRR face. This was the second and final 

standard. 

3. Measure the SUT in a similar way as was done for PTFE. 

4. Using the developed matlab code obtain the relative permittivity of 

the SUT. The code was based on fitting a 3D data set comprising of 

the measured S21 parameters of the standards and the known 

relative permittivity of the standards as shown in Fig. 5.7. 
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Figure 5.7 3D fitted curve to S21 measurement standard  

From the fitted curve, a relationship was developed that was used to 

subsequently extract the relative permittivity of any measured SUT as 

follows: 

𝜖𝑟
′ =

|𝑠21|−𝑝1−𝑝2𝑓−𝑝3𝑓2−𝑝4𝑓3−𝑝5𝑓4−𝑝6𝑓
5

𝑝7+𝑝8𝑓+𝑝9𝑓2+𝑝10𝑓
3+𝑝11𝑓4     (5.8)  

where the coefficients are defined as shown in Table 5.4 for the three 

materials measured, f is in GHz and |S21| is in magnitude form: 
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Table 5.4 3D fitted curve coefficients for 3 materials 

Parameter 

coefficient 
PTFE PMMA HDPE 

p1  4.412184 106 6.097935 106  3.771760 106 

p2 -2.243027 105 3.077725 105 -1.913290 105 

p3  4.559849 103 6.212530 103  3.881261 103 

p4 -46.335277 62.691313 -39.357670 

p5  0.235352 0.316260  0.199503 

p6 -4.780377 10-4 6.380752 10-4 -4.044113 10-4 

p7  1.552182 105 3.590628 104  7.499228 104 

p8 -6.232793 103 1.433391 103 -3.013647 103 

p9  93.837832 21.446359  45.403181 

p10 -0.627791 0.142534 -0.303937 

p11  0.001574 3.550359 10-4  7.627779 10-4 

 

5.3.2.1 Keysight free-space material characterization measurement 

setup 

The dielectric properties of SUTs were additionally characterized using 

commercial Keysight 85071E material measurement software, which was 

regarded as the reference to the proposed method in this chapter. The 

measurement setup uses free-space transmission configuration, shown in 

Fig. 5.8. The SUTs are placed in the collimated beam between parabolic 

mirrors. Using 85071E software, the S-parameter network analyser data can 

be instantly converted into the complex permittivity and permeability of the 

SUTs. 
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Figure 5.8 Keysight free space material characterisation setup 
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5.4 Measurement results 

5.4.1 Resonant method results 

The Through-Reflect-Line (TRL) calibration method was used prior to 

conducting measurement. When using the resonant method, the 

measurements were essentially one port measurements as a sliding short 

was inserted in the second port. The sliding short was held in place by a 

precision movement block to ensure that it was always in the same position. 

Fig. 5.9 shows the S-parameter response of the measurement of PTFE, 

PMMA, HDPE and air as the standard. Loading the CSRR sensor with a 

solid MUT causes the resonant frequency to shift downwards in frequency 

and the return loss to increase. The shift in frequency and S11 magnitude 

corresponds to the complex permittivity of the material under test. Much 

more shift in either measurement parameter is seen for a material with 

higher relative permittivity while a higher loss tangent corresponded with a 

higher insertion loss.  
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Figure 5.9 Measured and simulated S11 response for Air, PTFE, PMMA and 
HDPE samples. 

Using the model developed in section 5.3.1, the permittivity of the materials 

under test were extracted as follows using only the measured data. 

(i) Measure the air standard and take note of the resonant 

frequency and s11 magnitude response. 

(ii) Measure the sample and calculate Δfr and Δs11 from the 

measured resonant frequency and s11 magnitude for each 

sample in Fig. 5.7. 

∆𝑓𝑟 = 𝑓𝑟0 − 𝑓𝑟𝑠       (5.9) 

∆𝑠11 = 𝑠11𝑜 − 𝑠11𝑠      (5.10) 

Where fr0 and frs are the resonant frequency when measuring 

air and the MUT respectively. Similarly s11o and s11s are the 

magnitude of the return measured signal for air and the sample 

at port 1 respectively. 
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(iii) Using (5.9) and (5.10) calculate Δϵr′ and Δtanδ 

(iv) Finally find the relative permittivity of the material under test as 

1 + Δϵr′ and the loss tangent as 0 + tanδ. 

The four steps were done by a simple Matlab program. The extracted 

complex permittivity values are given in table 5.4 together with the values 

measured using the Keysight free space method only for the frequency 

points of interest. 
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Table 5.5 Complex permittivity results – Resonant method 

MUT Freq 

(GHz)  

S11 Resonant 

Method 

(this work) 

εr′ 

Resonant 

Method 

(this work) 

tanδ 

Free space 

measurement 

(Keysight free 

space)  

εr′ 

Free space 

measurement 

(Keysight free 

space) 

tanδ 

Difference 

dB ∆𝜀𝑟
′

𝜀𝑟
′

 
∆𝑡𝑎𝑛𝛿

𝑡𝑎𝑛𝛿 
 

PTFE 95.12 -12.422 2.124 0.00028 2.055 0.00029 0.032 0.035 

PMMA 94.25 -9.146 2.652 0.006 2.6115 0.0062 0.015 0.033 

HDPE 94.775 -13.986 2.32 0.000122 2.3675 0.000126 0.0204 0.0327 
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5.4.2 Resonance Technique-Tuning Capability 

The tuning capability of the sensor was demonstrated by moving the sliding 

short to a new position optimized for optimal radiation. In the first instance 

given in section IV (a), the sliding short was inserted fully at 12.45 mm length 

from port 2. In this sub section however, the sliding short was inserted up to 

10.78 mm from port 2 to obtain another maximum radiation point. 

Measurements for all previously measured materials were then done with 

results obtained as shown in Fig. 5.10. 

 

Figure 5.10 Measured S11 with the sliding short inserted at 10.78 mm 

from port 2 

Using the complex permittivity extraction developed in section 5.3.1, the 

material properties were extracted as shown in Table 5.5. The results in 
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Table 5.5 compared well with those obtained using the Keysight free space 

method, further validating the tuning functionality of the sensor. 

Table 5.6 Complex permittivity with sliding short tuned at 10.78 mm from 
port 2 

MUT Freq 
(GHz) 

S11  
(dB) 

εr′ tanδ 

PTFE 93.225 -10.22 2.116 0.00027 
PMMA 92.45 -7.247 2.625 0.0059 
HDPE 92.975 -9.72 2.31 0.000265 

     

 

5.4.3 Transmission method results 

The transmission method measurement setup is illustrated in Fig. 5.4. In Fig. 

5.11 the measured S21 parameters for different solid materials together with 

the air measurement are shown. After repeated measurements, it was 

established that the meaningful bandwidth of measurement was about 5 

GHz, from 97 GHz to 102 GHz. 

 

Figure 5.11 S21 plot for measured Air, PTFE and PMMA samples. 



 122 

 

Using the relationship established in section 5.3.2, the relative permittivity of 

PTFE, and PMMA were extracted. These were compared with the results 

that were obtained when these materials were measured using the Keysight 

free space method as shown in Fig. 5.12: 

 

Figure 5.12 Transmission method extracted relative permittivity for PTFE 

and PMMA 

The difference between the measurement of this work and that done using 

the Keysight free-space method is within the reported values for the 

substrate materials. The advantage of using the developed method is that it 

offers a faster characterisation alternative by using a small device, whereas 

the Keysight method requires the use of many components to setup in order 

to ensure that the signal is correctly aligned. 
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5.5 Summary 

A multifunctional sensor was demonstrated in this chapter for the purposes 

of characterizing flat solid materials in the sub-terahertz region. Two major 

functions of the sensor were identified that serve two purposes: the resonant 

functionality gives highly accurate results at a single point, which quickly 

gives an indication of the properties of the SUT, while the transmission 

functionality gives measurement results at several frequency points, in turn 

giving a comprehensive broadband characterization of the SUT. 

Furthermore, the sensor offers the tuning functionality when operated in the 

resonant mode. By tuning the sliding short at port 2, the sensor is able to 

offer single resonant point properties of the SUT at a new measurement 

frequency. The developed sensor has potential in the characterization of thin 

film materials and especially the determination of thin film material thickness.  
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Conclusion and Future Work 

6.1  General summary  

This research work has shown the importance of choosing an appropriate 

material characterisation method to achieve reliable results. By not using an 

appropriate method, the designer risks wasting considerable time and 

developing an unreliable device encumbered with inaccuracies. 

For liquid mixture quantification, it was established that resonance methods 

are more appropriate when compared with transmission line alternatives. 

Apart from the high accuracy that resonance methods provide, the single 

point measurement makes quantification analysis more interpretable. 

Although in this work, the quantification was only done on liquid mixtures, 

similar analysis can be used on cell solutions and other biological solutions. 

The primary basis of the quantification is to obtain the characterisation 

profile of the pure quantity of the two major constituent elements being 

measured. The in-between variants of the two elements can then be added 

to the profile based on either the known volumes or quantities. The 

developed profile can be characterised by a mathematical expression for 

that mixture that can be used for any unknown mixture quantities to infer the 

constituent volumes or quantities as shown in Chapter 4. This work further 

reinforced the established understanding that transmission line methods are 

best suited for broadband characterisation of a material and for gathering 

general electrical properties of a material.  
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In Chapter 4 it was further shown that by choosing a substrate material with 

specific interesting properties, a microfluidic channel can be built cheaply 

without the need for extra tubing. The desired properties of such a substrate 

material are those that make the substrate not to be porous and reactive, 

and not to be contaminating. In this work the Rodgers Duroid 5880 was 

found to be such a substrate material. Using this material, a microfluidic 

channel housing up to 7 µl liquid volume was cut out and used. In making 

the microfluidic channel in this manner, it was necessary that another layer 

of the substrate material was used as an isolation layer. The isolation layer 

has the sole purpose of separating the microfluidic subsection from the 

microwave subsection. When looked at as a whole, the isolation layer 

together with the microfluidic channel, combines with the microwave 

subsection to form the permanent fixture. This forms the basis of 

establishing the air standard, as it is constant throughout all measurements.  

A multifunctional sensor was later designed and fabricated as shown in 

Chapter 5. This dual sensor was able to work as a resonance sensor on one 

hand and as a transmission sensor on the other. To work as a resonant 

sensor, a sliding short was inserted on port 2 while by removing the sliding 

short the sensor worked as a transmission sensor. It was also shown that 

the sensor could equally work as a tuneable sensor by changing the position 

of the sliding short. This multifunctional feature enables the sensor to give 

general electrical properties over a broad range as well as specific 

properties at those resonant frequency points. 

The work presented in both Chapter 4 and Chapter 5 resulted from the initial 

analysis done during the design of the In-SIW sensor that is illustrated in 
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Chapter 3. The In-SIW sensor worked well in simulation but showed how 

difficult characterisation of liquids gets when done using the propagating 

wave rather than the evanescent modes and near fields. 

The overall achievement of this work is seen in the reduction of the required 

liquid volume (microlitre to nanolitre volume) to achieve accurate liquid 

characterisation. This was made possible by ensuring that sensing was done 

using the evanescent and near fields that do not propagate and can as a 

result measure very small liquid volumes. 

 

6.2 Contributions 

One key contribution of this work has been in the development of a 

microfluidic sensor using an SIW slot antenna that exploited the near fields 

perturbation by the measured liquid dielectric. The sensor offered several 

important advantages, such as offering uncomplicated fabrication (no clean 

room process required), being cheap, potentially re-usable with only the 

replacement of the microfluidic subsystem and only requiring 7 µl liquid 

volume. 

Another key contribution of this work is in the design and development of a 

multifunctional sensor for sub-terahertz solid substrate material 

characterisation. This part of the work presented for the first time a sensor 

that integrated in one device the frequency-reconfigurable technique at 98 

and 100 GHz and 97 – 101 GHz modified broadband transmission 

technique. The design built on the developed knowledge previously by using 

the near fields to characterise various materials. In this case, however split 
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ring resonators were employed. The developed sensor offered advantages 

such as offering multiple characterisation techniques in a single device, ease 

of design and fabrication and cost effectiveness.  

 

6.3 Advantages of designs in this thesis 

 The adopted methods were noninvasive and contactless. All methods 

did not require any alterations of the SUT or additional markers in the 

case of liquids.  

 Adopted methods furthermore, offered effective measurements for 

both the microwave part and the mathematical analysis part. 

 The developed methods demonstrated the characterisation of very 

small volume of liquids without requiring expensive microfluidic 

channels and not requiring the clean room environment. 

 The work underlined how simple transmission lines can be exploited 

to develop interesting sensing devices cheaply. 

6.4 Prospects for further research 

There have been potentially two main ways of extending this research that 

have developed: 

1. To consider practical characterisation and specifically quantification of 

biological mixtures using some of the developed devices in this work. 

These could in the initial stages be cell solutions that could come from 

the cell culture labs within the University. Some of the researchers 

currently doing cell culture experiments have the difficult of counting 

cells using visual viewing. Microwave methods as studied in this 
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research and similar other variants could come in handy in this 

regard. Most of the pointers for quantification have already been 

highlighted in Chapter 4 and are re-emphasised here as follows: 

 Measure (to obtain either resonance frequency or relative 

permittivity) known volumes of both constituents on their own if 

possible. If not possible measure known mixture volumes. 

 Measure known mixture volumes of the two constituent 

materials. 

 From the first two steps establish the boundary of the 

characterisation. 

 Using mathematical analysis create a relationship between the 

constituent materials and the measured quantity. 

 Use the developed mathematical relationship to analyse any 

subsequent measurements that are done within the 

established operation bounds. 

The major work however will be in establishing what form the sensor will 

be in for the measurements to adequately analyse the cell solution or 

whatever biological solution to be characterised. 

2. To consider extending the development of sensing using evanescent 

modes from an antenna to between 220 – 300 GHz. Depending on 

how successful this will be, further extension can be considered. The 

design at this frequency will however need to consider the fabrication 

limitations of the workshop as the devices become reduced in size 

and hence making the resonator even much smaller in size. 
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Appendix A 

Matlab codes used in the extraction of material permittivity 

using the In-SIW transmission line sensor of chapter 3 

A.1  Main Matlab code for complex permittivity extraction 

clc 
clear 

  
%This code simulates for the LTCC implementation with no air space 

at the 
%input and output 

  
global lambdaz lambdac ds c n TraMs;  

  
disp('Liquid Permittivity Determination using Transmission and 

Reflection Method') 
disp('User needs to create m-file s2p & s3p with simulated or 

measured s-parameters at the Plug interface') 
disp(' ') 

  

  
Zint=120*pi; 
flower=33.35e9; 
fupper=50.35e9; 
step=1e8; 
f=flower:step:fupper; 
fc=26.35e9; 
c=3e8; 
v=15.932; %Total volume of middle layer 
v1=0.0527; %Fractional volume of protruding substrate part into the 

liquid 
v2=0.9473; %Fractional volume of the Liquid 
e1=7.1-i*0.001; %permittivity of the substrate 

  
% Total S-Parameters from the plug plane 
S11T=m1p(11); 
S12T=m1p(12); 
S21T=m1p(21); 
S22T=m1p(22); 
% Plug S-Parameters 
S11p=c3p(11); 
S12p=c3p(12); 
S21p=c3p(21); 
S22p=c3p(22); 
%Enter debye relationship values 
es=input('enter estimated static dielectric constant of MUT:'); 
einf=input('enter estimated optical dielectric constant of MUT:'); 
tau=input('enter estimated relaxation time of MUT: '); 

  
% Make initial estimate of permittivity at start frequency 
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er_old=[real(einf+(es-einf)/(1+i*2*pi*flower*tau)) -imag(einf+(es-

einf)/(1+i*2*pi*flower*tau))]; 

  
N=length(f); 
for n=1:N; 
    Factor=sqrt(1-(fc/f(n))^2); 
    Zo=Zint/Factor; 
    lambdaz=c./f(n); 
    lambdac=11.38e-3; 
    ds=1.0e-3; 

     
    %Workings for de-embedding the sample holder plugs to get s-

parameters due to sample follow 

     
    detTot(n)=(S11T(1,n)*S22T(1,n))-(S12T(1,n)*S21T(1,n)); 

%Determinant of the Line simulation 
    detThru(n)=(S11p(1,n)*S22p(1,n))-

(S12p(1,n)*S21p(1,n));%Determinant of the Through simulation 

     
    %Calculate Trace of the product of line simulation and the 

inverse of 
    %the through simulation 
    TraMs(n)=((S11T(1,n)*S22p(1,n))+(S11p(1,n)*S22T(1,n))-

detThru(n)-detTot(n))/(S21T(1,n)*S12p(1,n)); 

    
    options = optimoptions('fsolve','Display','iter'); % Option to 

display output 
    [er_new,fval] = fsolve(@myfunctnw,er_old,options); % Call solver 
    er_old=er_new; 
    eeff(n)=er_new(1,1)-j*er_new(1,2); 

     
end 
er=exp((log(eeff)-v1*log(e1))/v2); 
er 
plot(f,real(er),f,abs(imag(er))) 
xlabel('Frequency(Hz)') 
ylabel('Relative permittivity & Loss factor values') 
legend('Relative permittivity','Loss factor') 

 

A.1.1  Matlab function called by the code in A.1 

function F = myfunctnw(er) 
 %This function is called by Fsolve in permit_solverltcc 
 % Global Variables Declaration 
 global lambdaz lambdac ds c S21s n TraMs; 

  
 gams=(j*2*pi/lambdaz)*sqrt(er(1,1)-j*er(1,2)-(lambdaz/lambdac).^2); 

%propagation constant in sample filled waveguide portion 
 TraFl(n)=2*cosh(gams*ds);% Trace of the fluidic part 

  
 %define iteration equations where TraMs is the trace of the product 

of line 
%simulation and the inverse of the through simulation 
F=[real(TraMs(1,n)-TraFl(n));imag(TraMs(1,n)-TraFl(n))]; 
 end 
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Appendix B 

Matlab codes used for the extraction of relative permittivity 

for the liquid in chapter 4 

B.1  Main matlab code for permittivity extraction 

clc 
clear 

  
global Yw gs S11r Zod h lambdo no  Zo fr ko Lres Yod kw Cs Ls omega;  

  
disp('Liquid Permittivity Determination using Slot Antenna Sensor') 
disp('User needs to input the resonant frequency, either measured or 

simulated') 
disp(' ') 

  
fd=10e9; 
esub=2.2-i*0.00198; %Complex permittivity of the guide substrate 
Lres=11.7e-3; %Slot length 
w=0.5e-3; %Slot width 
Arg=22.86e-3; %Guide width of hollow rectangular guide 
a=15.4e-3; %SIW width 
t=0.0175e-3; %Conductor thickness 
x=1.85e-3; %Slot displacement from guide centre line 
b=1.575e-3; %Guide height 
Zo=50; %characteristic impedance of microstrip line 
no=120*pi; %Intrinsic impedance of free space 
c=3e8; 
h=0.79e-3;%slot cover height 

  
uo=1.2566e-6; 
eo=8.854e-12; 
Cs=(uo*Lres*w)/t;%Equivalent capacitance for the slot cavity 
Ls=(eo*t*w)/Lres;%Equivalent inductance for the slot cavity 
v2=0.957;%volume fraction occupied by substrate in the sample holder 
v1=0.043; %volume fraction occupied by liquid in the sample holder 
fc=c/(2*Arg); 

  
fr=input('enter measured or simulated resonant frequency in Hz with 

decimal points:'); 
S11r=input('enter measured or simulated S11 at resonant 

frequency:'); 

  
% Make initial estimate of liquid permittivity at start frequency 
%Use the permittivity of the dielectric material encapsulating the 

liquid 
eff_old=[real(esub) -imag(esub)]; 

  
lambdo=3e8/fr; 
lambdrg=lambdo/(sqrt(1-(lambdo/(2*Arg))^2)); 
lambdg=lambdrg/sqrt(2.2); 
%lambdg=(2)/sqrt((2.2*(2*fr)^2/(3e8)^2)-(1/Arg)^2); 
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ko=2*pi/lambdo; 
B10=sqrt((2.2*ko^2)-(pi/a)^2);%Propagation constant in the SIW 
g1=((2.09*a*lambdg)/(b*lambdo))*((cos((lambdo*pi)/(2*lambdg)))^2); 
gs=g1*((sin(x*pi/a))^2); %normalised resonant conductance of the 

slot 
omega=2*pi*fr; 
Betad=sqrt((2.2*ko^2)-(pi/Lres)^2);%Propagation constant in the 

dielectric 
Yod=Betad/(ko*no);%characteristic admitance in the dielectric cover 
%Yod=sqrt(2.2)/no; 
kw=(2*pi*sqrt(2.2))/lambdo; %propagation constant in the guide 
Yow=Yod; 
Yw=-j*Yow*cot(kw*b); %Input admitance looking into the guide from 

the slot position 
k=2*pi*sqrt(2.2)/lambdo; 
Zod=1/Yod; 
options = optimoptions('fsolve','Display','iter','MaxFunEvals', 

3000,'MaxIter',1000); % Option to display output 
    [eff_new,fval,EXITFLAG] = fsolve(@myfuncrSl,eff_old,options);% 

Call solver 
    eff=eff_new; 
eff=eff_new(1,1)+i*eff_new(1,2); 

  
%Now use the Maxwell Garnett formula to find the relative 

permittivity of 
%the liquid 
p=[2*(v2-1) (2*eff)-esub-(2*v2*esub)+(v2*esub) (1-v2)*esub*eff]; 
eliq=roots(p); 
eliq =  eliq(eliq>0); 
eliq=real(eliq) 

 

 

B.1.1 Matlab function called by the code in B.1 

function F = myfuncrSl(eff) 
 % Global Variables Declaration 
 global Yw gs S11r Zod h lambdo Gr no Zo fr ko Lres ZoSIW Yd S11c 

S11i S21i; 

  
kod=2*pi*sqrt(2.2)/lambdo; 
Betaliq=sqrt((eff(1)*ko^2)-(pi/Lres)^2); 
Zoliq=ko*no/Betaliq; 
%Zoliq=no/sqrt(eff(1)); 
kliq=2*pi*sqrt(eff(1))/lambdo; 
Zeq=Zoliq*(Zod+(i*Zoliq*tan(kliq*h)))/(Zoliq+(i*Zod*tan(kliq*h))); 
Zd=Zod*(Zeq+(i*Zod*tan(kod*h)))/(Zod+(i*Zeq*tan(kod*h))); 
Yd=1/Zd; 

  
lg=5.93e-2;%transmission feed line length 
flower=8e9; 
fupper=12e9; 
step=1e7; 
f=flower:step:fupper; 

  
% S-Parameters from the mstrip 
S11M=j2p(11); 
S12M=j2p(12); 
S21M=j2p(21); 
S22M=j2p(22); 
% S-Parameters from tapered line 
S11T=j3p(11); 
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S12T=j3p(12); 
S21T=j3p(21); 
S22T=j3p(22); 
% S-Parameters from SIW portion 
S11S=j4p(11); 
S12S=j4p(12); 
S21S=j4p(21); 
S22S=j4p(22); 

  

  
N=length(f); 
for n=1:N; 
    Zo=50; 

       
    %Start with converting microstrip s-parameters to ABCD 

parameters 
    Tm11(n)=((1+S11M(1,n))*(1-

S22M(1,n))+(S12M(1,n)*S21M(1,n)))/(2*S21M(1,n));   
    Tm12(n)=Zo*((1+S11M(1,n))*(1+S22M(1,n))-

(S12M(1,n)*S21M(1,n)))/(2*S21M(1,n)); 
    Tm21(n)=((1-S11M(1,n))*(1-S22M(1,n))-

(S12M(1,n)*S21M(1,n)))/(2*Zo*S21M(1,n)); 
    Tm22(n)=((1-

S11M(1,n))*(1+S22M(1,n))+(S12M(1,n)*S21M(1,n)))/(2*S21M(1,n)); 
    % Convert the tapered microstrip s-parameters to ABCD parameters 
    Tt11(n)=((1+S11T(1,n))*(1-

S22T(1,n))+(S12T(1,n)*S21T(1,n)))/(2*S21T(1,n));   
    Tt12(n)=Zo*((1+S11T(1,n))*(1+S22T(1,n))-

(S12T(1,n)*S21T(1,n)))/(2*S21T(1,n)); 
    Tt21(n)=((1-S11T(1,n))*(1-S22T(1,n))-

(S12T(1,n)*S21T(1,n)))/(2*Zo*S21T(1,n)); 
    Tt22(n)=((1-

S11T(1,n))*(1+S22T(1,n))+(S12T(1,n)*S21T(1,n)))/(2*S21T(1,n)); 

     
    % Convert the SIW s-parameters to ABCD parameters 
    Ts11(n)=((1+S11S(1,n))*(1-

S22S(1,n))+(S12S(1,n)*S21S(1,n)))/(2*S21S(1,n));   
    Ts12(n)=Zo*((1+S11S(1,n))*(1+S22S(1,n))-

(S12S(1,n)*S21S(1,n)))/(2*S21S(1,n)); 
    Ts21(n)=((1-S11S(1,n))*(1-S22S(1,n))-

(S12S(1,n)*S21S(1,n)))/(2*Zo*S21S(1,n)); 
    Ts22(n)=((1-

S11S(1,n))*(1+S22S(1,n))+(S12S(1,n)*S21S(1,n)))/(2*S21S(1,n)); 

  

     
    Tm=[Tm11(n) Tm12(n);Tm21(n) Tm22(n)]; 
    Tt=[Tt11(n) Tt12(n);Tt21(n) Tt22(n)]; 
    Ts=[Ts11(n) Ts12(n);Ts21(n) Ts22(n)]; 
    % Calculate ABCD parameters for the input and output of the feed 
    % cascade 
    Ti=Tm*Tt*Ts; 
    % S11 and S21 Parameters for feed cascade  

     

     
    S11i(n)=((Ti(1,1)+(Ti(1,2)./Zo))-(Ti(2,1).*Zo)-Ti(2,2))./... 
        (Ti(1,1)+(Ti(1,2)./Zo)+(Ti(2,1).*Zo)+Ti(2,2)); 
    S12i(n)=2*((Ti(1,1)*Ti(2,2))-

(Ti(1,2)*Ti(2,1)))./(Ti(1,1)+(Ti(1,2)./Zo)+(Ti(2,1)*Zo)+Ti(2,2)); 
    S21i(n)=2/(Ti(1,1)+(Ti(1,2)./Zo)+(Ti(2,1)*Zo)+Ti(2,2)); 
    S22i(n)=(-Ti(1,1)+(Ti(1,2)./Zo)-(Ti(2,1).*Zo)+Ti(2,2))./... 
        (Ti(1,1)+(Ti(1,2)./Zo)+(Ti(2,1).*Zo)+Ti(2,2)); 
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    ZoSIW(n)=Zo*(sqrt(((1+S11i(n))^2-(S21i(n))^2)/((1-S11i(n))^2-

(S21i(n))^2))); 

        
end 
y=((fr-flower)/1e7)+1; 
ZoSIW(y); 
GoSIW(y)=1/ZoSIW(y); 
%GoSIW=1/ZoSIW; 
Gs=gs*GoSIW(y); 
Gr=Yd+Yw+Gs; 
S11c=(-Gr/GoSIW(y))/(2+(Gr/GoSIW(y))); 
F=[real(S11r-S11c);imag(S11r-S11c)]; 
 end 


